
HAL Id: tel-03968114
https://pastel.hal.science/tel-03968114

Submitted on 1 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of deep neural network : a functional
perspective with applications in image classification

Simon Roburin

To cite this version:
Simon Roburin. Optimization of deep neural network : a functional perspective with applications in
image classification. Neural and Evolutionary Computing [cs.NE]. École des Ponts ParisTech, 2022.
English. �NNT : 2022ENPC0038�. �tel-03968114�

https://pastel.hal.science/tel-03968114
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
de l’École des Ponts ParisTech

Optimization of Deep Neural Networks:
A Functional Perspective with Applica-
tions in Image Classification

École doctorale École Nationale des Ponts et Chaussées ParisTech:
Mathématiques

Mathématiques Appliquées

Thèse préparée au sein du LIGM-IMAGINE
Financement: CIFRE, valeo.ai France

Thèse soutenue le 8 Novembre 2022, par
Simon Roburin

Composition du jury:

Patrick GALLINARI Rapporteur

Sorbonne University , Criteo AI Lab

Arnak S. DALALYAN Rapporteur

ENSAE ParisTech - CREST

Camille COUPRIE Examinatrice

Meta

Vicky KALOGEITON Examinatrice

LIX, École Polytechnique/CNRS, Institut Polytech-
nique de Paris
Mathieu AUBRY Directeur de thèse

École des Ponts ParisTech

Renaud MARLET Co-encadrant

École des Ponts ParisTech, valeo.ai

Patrick PÉREZ Co-encadrant

valeo.ai

École des Ponts ParisTech
LIGM-IMAGINE
6, Av Blaise Pascal - Cité Descartes
Champs-sur-Marne
77455 Marne-la-Vallée cedex 2
France

valeo.ai France
100 rue de Courcelles
75017 Paris France

Remerciements

En guise de préambule à ce manuscrit, je souhaiterais remercier toutes les personnes qui
m’ont accompagné et soutenu au cours de ces trois années de dur labeur.

Je dédie ces travaux à mes parents qui par leurs sacrifices, leur amour et leur soutien
indéfectible m’ont permis de conclure ces nombreuses années d’étude avec une thèse de
doctorat.

Je tiens à remercier particulièrement mon trio de directeurs de thèse, Mathieu, Renaud
et Patrick qui m’ont accompagné dans cette aventure. Renaud, pour sa bonne humeur,
son humour ainsi que son application à relire et comprendre le moindre terme de mes
innombrables équations. Patrick pour sa patience vis à vis de mes largesses concernant
les tâches administratives, ses nombreux conseils et sa confiance en m’intégrant aux
équipes de valeo.ai dès sa création. Et enfin Mathieu, pour son exemplarité tant éthique
que professionnelle, son suivi pointilleux et sa bienveillance avec chacun de ses étudiants.
Je remercie tous les membres du jury pour avoir pris le temps de s’échiner à relire mes
travaux et de s’être libéré afin d’assister à ma soutenance, point d’orgue de ces trois
dernières années.

Je remercie bien entendu les équipes des laboratoires entres lesquels j’ai oscillé, des
rues pavées du 8ème arrondissement de Paris aux larges trottoirs de Champs sur Marne
jusqu’aux grandes allées du campus de l’Ecole des Ponts. Chez valeo.ai, je pense
évidemment aux collectif des Bezos, Charles, Arthur et Maxime, devenus des amis et
sans qui l’expérience n’aurait sans aucun doute pas été aussi plaisante. Je remercie
particulièrement Andrei pour ses conseils, ses suggestions toujours avisées et son soutien
moral tout au long de cette thèse. Je remercie tous les membres de l’équipe avec qui
j’ai pu partager de nombreux déjeuners et discussions au cours d’innombrables pauses
café: Gabriel, Hédi, Matthieu, Eloi, Léon, Florent, Antoine, Alexandre, Laura, Bjorn,
Spyros, Gilles, Oriane, Tuan-Hung, Himalaya, Huy. A l’École des Ponts, je remercie Tom
pour ces heures passées à assurer conjointement dans la bonne humeur les TD de Deep
Learning. Merci à Xi, François, Thibault, Michaël, Victor, Eliott, Abdou, Yuming, Yang,
Benjamin, Théo pour leur disponibilité sans faille, leur sollicitude, et tous ces moments
plaisants passés en leur compagnie des terrains de foot. Je remercie également mon ami
et collègue Yann pour notre collaboration ayant mené à une première publication.

iv |

Enfin, je remercie évidemment mes fidèles amis Diego, Sabry, Corentin, Aziz et mon
binôme André-Louis. Diego pour ces années d’amitié inaltérable, son humour et son
accueil au cours de mes nombreuses escapades à Barcelone. Sabry pour nos ballades et
discussions passionnantes à écumer les rues de Paris. Corentin pour nos explorations
urbaines et nos longues nuits à sillonner les sentiers de la perdition. Aziz pour les
moments de rigolade et de galères depuis le lycée, sa motivation communicative et sa
générosité. André-Louis pour son enthousiasme dans cette compagnie de fortune dans
le froid et la fatigue en Bretagne, dans la boue à Beynes et sur le sol brûlant à Toulon
où nous faisions claquer les talons de ces chaussures qui nous broyaient les pieds. Je
remercie également mon talentueux petit frère pour ses excellents cocktails, les nombreux
repas partagés, son humour, son intelligence, et sa présence réconfortante. Un grand
merci à Bobeik pour les micros aventures sans cesse renouvelées à Pigalle et au 82. Merci
à Sophia pour ces nombreux cafés en terrasse. Je remercie les trois mousquetaires de
Centrale, mes amis Manu, Sacha et Othmane pour notre épopée. Tous les étudiants
qui ont côtoyé de près ou de loin cette chambre hors du temps qu’était la F221: Paul,
Sofien, Larry, Doi. Je remercie bien évidemment mes frères d’armes de la section 4
et tout particulièrement les membres de la fine du 11. Un immense merci à tous mes
guerriers, Amir, Marvin, Raph, Valentin, Saïku, Vincenzo, Marius, François, Romain,
pour les coups échangés au cours de nos nombreux sparring et notre mentor Greg pour
sa pédagogie, son intelligence et son humour. Enfin, je remercie Sophie pour m’avoir
soutenu et accompagné avec tendresse une grande partie de cette thèse; Clara pour ces
petites virées à Caen; Charlyn pour avoir bravi en ma compagnie les sommets Pyrénéens.
Je remercie Caroline qui m’a grandement aidé au cours de cette dernière ligne droite.

| v

Abstract

Despite numerous successes in a wide range of industrial and scientific applications, the
learning process of deep neural networks is poorly understood. Loosely speaking, learning
aims at finding the network parameters that not only minimize the network errors on
a set of training examples but also yield correct predictions on unseen data. Under
the prism of optimization, it boils down to minimizing a high dimensional non-convex
function. Generalization can generally be expected when one has access to very large
datasets and assumes that both training examples and unseen data are sampled from
identically independently distributed random variables. The goal of this thesis is to
develop analytical tools to better understand neural network optimization and to improve
the design of training algorithms in the context of image classification.

To better understand deep networks training, we raise the issue of comparing neural
networks. Instead of tackling this task by direct comparison of the networks’ parameters,
we study it from the functional perspective. In other words, all our work is guided by
the idea that looking at the encoded function rather than parameters enables to take
a fresh look at existing open problems. In this manuscript, we focus on two problems:
the impact of normalization layers on deep neural network training and generalization
properties of neural networks when the test data has a distribution different from the
one of the training data.

Firstly, to study the optimization of deep neural networks with normalization layers,
we exploit the radial invariance that stems from adding normalization layers in deep
neural network architectures. To this end, we build an analytic framework referred to as
the spherical framework. Concretely, we use the radial invariance of groups of parameters,
such as filters for convolutional neural networks, to translate their optimization steps on
the L2 unit hypersphere. This formulation and the associated geometric interpretation
shed new light on the training dynamics. It allows us to show that normalization layers
transform simple gradient-based optimization schemes in a way that is equivalent to a
scheduling of the learning rate (effective learning rate) and a change in the optimization
direction (effective direction). In addition, we demonstrate that, in the presence of
normalization layers, performing simple stochastic gradient descent alone is actually
equivalent to train using a variant of a more complex and adaptive algorithm: Adam.
Finally, this analysis outlines phenomena that previous variants of Adam act on and their
importance in the optimization process is experimentally validated. Last, by using the

vi |

tools of optimization constrained to manifolds, we introduce new variants of Adam that
significantly improve performances in the context of images classification with CNNs.

Secondly, we aim at improving generalization of deep networks when train and test
set have different distributions. In the context of image classification, we focus on the
case where data can be split into a majority group that includes images with a correlation
between a visual element and a class and a minority group that does not. A neural
network trained by minimizing the average errors on the training set will likely use the
previous correlation as a prediction rule. As a result the model may perform poorly if
the correlation does not hold on the test data. Such correlations are called spurious
correlations. This challenge is referred to as Group Robustness. To avoid such an
issue, we develop a method that identifies relevant splits of the train set with coherent
data distributions on which the neural network function performs unevenly. Extensive
attempts have been made to develop methods improving worst-group accuracy, i.e.,
the accuracy computed on the group of data that does not display the aforementioned
correlation. In general, all previous approaches require to know the presence of the
spurious correlation for each training input. Such information may be expensive to get
or unknown a priori. We therefore address the challenge of improving group robustness
without such annotations during training. To this end, we first propose to partition
the training dataset into groups based on Gram matrices of features extracted from an
identification model and then apply a robust optimization objective based on these pseudo-
groups. In the realistic context where no group labels are available, our experiments
show that our approach not only improves group robustness over standard training with
Empirical Risk Minimization (ERM) but also outperforms all recent baselines.

Résumé

Au cours des dernières décennies, l’apprentissage automatique a trouvé un nouveau
souffle grâce au développement foudroyant de l’apprentissage profond. Discipline constru-
ite sur une classe de modèles paramétrés, les réseaux de neurones profonds, le processus
d’apprentissage consiste à trouver des paramètres permettant au réseau de minimiser ses
erreurs sur une base d’exemples dans le but de généraliser ses prédictions à de nouvelles
données. Il s’agit de l’optimisation des réseaux de neurones profonds. Bien qu’ayant
conduit à des améliorations notoires dans de nombreux domaines d’applications, comme
la reconnaissance d’image, vocale ou de texte, la compréhension des mécanismes mis en
jeu lors de l’apprentissage reste très superficielle. Les progrès techniques et pratiques du
domaine sont fulgurants alors qu’un cadre théorique unifié peine à voir le jour. L’objectif
de cette thèse est d’élaborer différents outils d’analyse pour améliorer notre compréhension
de l’optimisation des réseaux de neurones d’une part, et l’améliorer d’autre part.

Les travaux présentés dans ce manuscrit ont été guidés par une problématique majeure
en apprentissage profond: la comparaison de différents réseaux neuronaux. Au lieu
d’adopter le point de vue classique qui consiste à comparer les paramètres associés aux
différents réseaux, nous privilégions l’analyse des fonctions encodées. Cette interrogation,
présente en toile de fond dans chacune de nos contributions, a permis d’apporter un
nouveau regard sur certains problèmes ouverts de la discipline. Précisément, nous nous
sommes focalisés sur:

• l’impact des couches de normalisation sur l’optimization des réseaux de neurones
profonds;

• la robustesse des réseaux de neurones profonds.

En guise de préambule, dans le chapitre 2, nous nous appliquons à introduire les
outils nécessaires aux notions abordées dans les chapitres suivants. Il s’agit tout d’abord
de formaliser mathématiquement le problème d’apprentissage paramétrique supervisé.
Le langage de la statistique couplé à celui de l’optimisation permet une formulation
du problème. Théoriquement, on suppose d’abord l’existence de variables aléatoires
indépendantes identiquement distribuées (i.i.d.) dont les réalisations sont les données
d’entrées et de sorties. Ensuite, l’objectif est de minimiser l’espérance de la fonction
de coût (quantifie les erreurs de prédiction du réseau par rapport à la sortie attendue)
selon les lois des variables aléatoires d’entrées et de sorties. En pratique, les lois sus-
mentionnées sont inconnues. Par conséquent, le problème de minimisation est approché

viii |

par l’estimateur empirique de l’espérance: la valeur moyenne de la fonction de coût sur les
données d’entraînement (ERM). En apprentissage profond, la classe de modèles utilisés
est celle des réseaux de neurones. Ils sont composés d’un enchevêtrement successif de
fonctions linéaires paramétrées suivies de non linéarités quant à elles non paramétrées.
On obtient ainsi une fonction non linéaire qui projette les entrées dans l’espace des
sorties pour réaliser ainsi une prédiction. Dans ce contexte, ERM est un problème
d’optimisation en haute dimension, non convexe, accompagné de son lot de challenges
et de difficultés. Le paysage d’optimisation (l’hypersurface de la fonction de coût dans
l’espace des paramètres) est parsemé de nombreuses régions et points atypiques comme
les points selles, minima locaux, vallées, falaises ou plateaux. L’enjeu est alors de
manoeuvrer à travers cette topographie complexe afin d’atteindre un minimum global.
Rappelons ici que le but in fine est de généraliser: les erreurs du modèle, bien que
minimisées sur le jeu d’entraînement, doivent également être faibles sur de nouvelles
données (le jeu de test). Ainsi, l’algorithme d’optimisation doit non seulement se frayer
un chemin jusqu’à un minimum mais aussi en trouver un capable de généraliser. A
ce jour, les outils mathématiques développés ne garantissent ni la convergence, ni la
généralisation. Pourtant, les méthodes de descente de gradient stochastique donnent des
résultats très satisfaisants en pratique. Il s’agit de suivre la direction pointée par l’opposé
du gradient de la fonction de coût, par rapport aux paramètres du réseau, estimé sur
une fraction du représentative du jeu de données (appelé batch) jusqu’à convergence
tout en contrôlant l’amplitude des pas à l’aide d’un hyperparamètre appellé learning
rate. A celà s’ajoute une myriade de techniques (détaillées en section 2.3) comme,
la pénalisation L2, le momentum, les méthodes à learning rate adaptatif ou le early
stopping. Ces améliorations incrémentales ont permis d’obtenir des réseaux toujours
plus performants à l’issue de l’apprentissage. Nous clôturons ce chapitre de revue de
l’état de l’art par la présentation des couches de normalisation. Ces techniques consistent
schématiquement à normaliser les données selon les moments statistiques d’ordre 1 et 2
de certaines portions des tenseurs de sorties des couches intermédiaires du réseau. Sans
les couches de normalisation, l’entraînement de réseaux de neurones profonds complexes
munis d’un grand nombre de paramètres est impossible. De ce fait, elles se sont petit
à petit imposées dans toutes les architectures modernes. Essentiellement introduites
pour des raisons heuristiques, leur impact quantitatif sur l’entraînement des réseaux
neuronaux reste un problème ouvert.

Dans le chapître 3, nous développons un nouvel outil d’analyse pour quantifier l’impact
des couches de normalisations sur l’optimisation des réseaux de neurones. L’ajout de

| ix

couches de normalisation au sein d’une architecture induit une invariance fonctionnelle
vis-à-vis de certains paramètres. Il s’agit de l’invariance radiale: toute multiplication
par un scalaire du groupe de paramètres en question laisse la fonction encodée par le
réseau de neurones inchangée. Les déplacements radiaux sont donc superflus en termes
fonctionnels. Grâce au quotientage topologique de l’espace des paramètres du réseau
par la relation d’équivalence associée à l’invariance radiale, on construit un espace qui
reflète davantage les changements de fonction du réseau au cours de l’entraînement:
l’hypersphère unité. Puisque l’entraînement des réseaux neuronaux est réalisé avec
succès dans l’espace des paramètres, nous allons projeter les pas d’optimisation sur
l’hypersphère unité. Cette formulation constitue un nouveau prisme pour analyser les
couches de normalisations et comprendre, entre autres, le rôle des déplacements radiaux au
cours de l’entraînement. Ainsi, nous montrons que les schémas d’optimisation classiques
(descente de gradient stochastique avec ou sans pénalité, L2, momentum ou Adam) sont
transformés en schémas équivalents munis d’un learning rate adaptatif et d’une direction
modifiée. Plus précisément, nous démontrons que, grâce aux couches de normalisation,
utiliser une simple méthode de gradient stochastique est équivalent au fait d’optimiser
le réseau avec une variante d’un schéma plus complexe, en l’occurrence: Adam. Ce
résultat théorique est vérifié empiriquement avec une architecture moderne sur une tâche
de classification d’images. Enfin, notre analyse permet également de mettre en lumière
certains phénomènes géométriques quand l’algorithme Adam est utilisé pour optimiser
un réseau de neurones muni de couches de normalisations. Après les avoir identifiés, nous
utilisons les outils de l’optimisation contrainte à variété afin de proposer des variantes
naturelles qui nulifient chacun des phénomènes précédents. Un volet expérimental avec
différentes architectures et jeux de données de classification d’image, montre que, dans
ce contexte, les variantes introduites améliorent les performances des réseaux obtenus et
valide de ce fait, l’importance des phénomènes géométriques identifiés.

Le chapître 4 s’intéresse à l’optimisation des réseaux de neurones dans le cas ou les
données dérogent à l’hypothèse i.i.d. Précisément, il s’agit de remarquer qu’il existe
au sein de certains jeu de données des sous-groupes cohérents sur lesquels la fonction
encodée par le modèle produit de faibles performances. Ce phénomène s’explique par
l’existence de corrélations dites falacieuses dans un groupe majoritaire dans les données
d’entrainement. Imaginons, par exemple, que l’on souhaite classifier des photos de vaches
et de chameaux. En raison de biais de sélection évidents, la plupart des vaches sont
représentées dans un environnement verdoyant alors que les chameaux auront tendance
à se trouver davantage dans des contrées désertiques. Ainsi, une manière simple pour

x |

discriminer les deux animaux est d’utiliser, non pas les caractéristiques propres de
chacune des espèces, mais le milieu dans lequel ces dernières évoluent. On se pose le
problème d’entrainer un modèle qui ne confondrait pas une vache dans un désert avec un
chameau. De manière plus générale, il s’agit du challenge dit de robustesse par groupe.
Certaines approches récentes ont développé des méthodes pour diminuer l’erreur de
classification sur le pire groupe (un chameau sur de l’herbe dans l’exemple précédent),
mais ces dernières requièrent toutes sans exception, l’information d’environnement a
priori sur le jeu de données d’entraînement ou sur le jeu de validation. En général, ces
informations supplémentaires sont soit coûteuses en annotation, ambigües (pensons à des
données satellites par exemple avec de nombreuses métadonnées comme la localisation,
l’heure ou l’année) voir même inconnues dans certains cas. Notre approche, propose
un partitionnement du jeu de données en groupe grâce aux matrices de gram extraites
d’un modèle exogène dit d’identification. Une fois clusterisé, on réalise un apprentissage
robuste d’un modèle de classification grâce à un objectif d’optimisation régularisé par les
pseudo groupes découverts lors de l’étape précédente. Un volet expérimental montre le
succès de notre approche sur plusieurs jeux de données: non seulement nous améliorons
la robustesse par groupe par rapport à un ERM standard mais nous surpassons en terme
de performances toutes les méthodes récemment introduites.

Table of contents

List of figures xv

List of tables xxi

Symbols xxiii

1 Introduction 1
1.1 Context . 1
1.2 Motivations . 2
1.3 Goals . 4
1.4 Challenges . 4
1.5 Contributions . 5
1.6 Outline . 6
1.7 Publications . 6

2 Literature review 9
2.1 Preliminary . 9

2.1.1 Statistical view of parametric machine learning problem 10
2.1.2 Optimization: basic concepts . 12
2.1.3 Deep Learning architectures . 13

2.2 Challenges of training DNNs . 15
2.2.1 Learning differs from traditional optimization 15
2.2.2 High dimension of the input data and black box analysis 16
2.2.3 High number of parameters and non-convexity of ERM 16

2.3 Training techniques in Deep Learning . 18
2.3.1 Parameter initialization . 18
2.3.2 Gradient based optimization schemes 18
2.3.3 Learning rate scheduling and adaptive optimization schemes. . . . 21
2.3.4 Early stopping . 23

xii | Table of contents

2.4 Normalization Layers . 24
2.5 Conclusion . 27

3 Impact of Normalization Layers on Optimization 29
3.1 Introduction . 30
3.2 Technical background . 32

3.2.1 Radial invariance . 32
3.2.2 Radially invariant parameters in DNN with NL. 33
3.2.3 Quotient of the parameter space and hypersphere 35
3.2.4 Riemannian geometry . 36

3.3 Spherical Framework . 38
3.3.1 Generic optimization scheme . 38
3.3.2 Image optimization on the hypersphere 39
3.3.3 Effective quantities . 44

3.4 SGD is equivalent to AdaGradG . 45
3.4.1 Equivalence between optimization schemes 46
3.4.2 A hypersphere-constrained scheme equivalent to SGD 46
3.4.3 Empirical validation . 50

3.5 Geometric phenomena in Adam . 51
3.5.1 Identification of geometrical phenomena in Adam 52
3.5.2 New variants of Adam. 54
3.5.3 Empirical study. 58

3.6 Related work . 61
3.7 Limitations . 62
3.8 Conclusion . 62

4 Avoid learning spurious correlations 65
4.1 Introduction . 67
4.2 Related work . 69

4.2.1 Group Robustness with group annotation. 70
4.2.2 Group Robustness without group annotation 70
4.2.3 Gram matrices . 70

4.3 GramClust: A Clustering Approach for Robust Optimization 71
4.3.1 Problem formulation . 71
4.3.2 Dataset partition . 72
4.3.3 Robust optimization with pseudo-group labels 75
4.3.4 Model selection via cross-validation on validation data 75

Table of contents | xiii

4.4 Experiments . 76
4.4.1 Setup . 76
4.4.2 Comparative results . 78
4.4.3 Study of the clustering features 79
4.4.4 Clustering analysis . 81
4.4.5 Discussion about improved results of GramClust over GroupDRO

on Waterbirds . 82
4.5 Conclusion . 83

5 Conclusion 85
5.1 Summary of contributions . 85
5.2 Future work . 87

Bibliography 89

Appendix A Omitted proofs 97
A.1 Proof of Lemma 1 . 97

Appendix B Additional experiments 99
B.1 Theorem 2 assumptions validity . 99
B.2 Theorem 4 assumptions validity . 99
B.3 Best hyperparameters for optimizers in table 3.3 and table 3.2. 100
B.4 Extended results from section 3.5.3 to other datasets and architectures . 100
B.5 Clustering analysis on CelebA . 101

Appendix C Implementation details 111
C.1 Weight trajectory tracking from section 3.4.3 111
C.2 Implementation details of experiments in section 4.4.1 112

C.2.1 Construction of COCO-on-Places-224 112
C.2.2 Details about robust optimization 112
C.2.3 Group discovery details . 113
C.2.4 Cross validation on pseudo-group annotations 114

List of figures

1.1 Loss surface and trajectories of training algorithms. In (a), Li et al.
(2018) provide a visualisation in a 3D space, for a 2D representation of the
parameter space of the VGG-56 architecture (Simonyan and Zisserman,
2014) on the CIFAR-10 dataset (Krizhevsky et al., 2009). In (b), a
comparison of trajectories from different optimization algorithms on a
simple ’bowl’ shaped surface for 2 parameters represented by each of the
axis is displayed. The values of the error function is visualized in color.
The darker the color is the lower the error function values are. (Image
credit: Tahavani). 2

1.2 Illustration of spurious correlation. Cows in canonical context (e.g.
grass) are correctly classified while cows in rare contexts (e.g. water)
are misclassified. Top five label and probability confidence produced by
clarifai.com. 3

2.1 Convex vs. non-convex function and critical points. We provide
a 3D illustration of the 2D surface of a convex function (left) and a non-
convex function (right) as well as the different critical points. Image credit:
Kolev (2011). 12

2.2 Illustration of a MLP. We illustrate a 3-layer neural network with two
hidden layers, the first one has four neurons and the second one has three
neurons. There is no connection between the neurons of the same layer.
Image credit: YashNita Github. 13

2.3 Illustration of a convolution operation. A 2D input tensor is con-
volved by a kernel (blue) that produces a scalar value (green). The kernel
results in a 2D feature maps once it has sliced the entire input. Image
credit: Sun et al. (2020). 14

https://towardsdatascience.com/comparative-performance-of-deep-learning-optimization-algorithms-using-numpy-24ce25c2f5e2
www.clarifai.com
https://github.com/YashNita/MLP_MNIST_BEST

xvi | List of figures

2.4 Exploding steps in a cliff region. Starting from x0 with a fixed learning
rate η, optimization steps bring the parameters close to a cliff region. At
x1, by following the gradient direction, the parameters reach x2. From x3,
the loss function gradient is high due to the steepness of the cliff region.
Updates are therefore catapulted far away from the local minima in the
bottom of the cliff. 17

2.5 Illustration of the gradient descent algorithm. Representation of
the level sets of the training loss function in a 2D parameter space. . . . 19

2.6 Illustration of the effect of Momentum. Representation of the level
sets of the training loss function in a 2D parameter space. 20

2.7 BN in ResNet architecture. Each BN layer is arranged between the
convolutional layer and the ReLu non linearity. Image credit: He et al.
(2016a) . 24

2.8 Normalization Layers. Each subplot displays a input tensor with B

as the batch axis, C the channel axis and D the spatial extension axis.
The blue pixels are normalized by the same mean and standard deviations.
Image credit: Wu and He (2018) . 25

3.1 Illustration of the spherical perspective for SGD. The loss function
L of a NN w.r.t. the parameters xk ∈ Rd of a neuron followed by a
BN is radially invariant. The neuron update xk → xk+1 in the original
space, with velocity ηk∇L(xk), corresponds to an update uk → uk+1 of
its projection through an exponential map on the unit hypersphere Sd−1

with velocity ηe
k∥∇L(uk)∥ at order 2 (see details in section 3.3). Note that

in this figure, just as in section 2.3, to avoid heavy notations we use L
to denote the training loss function evaluated on a random batch of the
dataset LBk

. 32
3.2 3D illustration of equivalent classes and unit hypersphere. The

ray Cx1 is the equivalent class of the parameter x1. The parameter x′
1 and

u1 yield the same model and hence loss function value. To avoid such a
redundancy, we map each parameter of Rd belonging to Cx1 to u1 ∈ Sd−1.
By repeating the previous mapping for all x ∈ Rd, it leads to the unit
hypersphere Sd−1. 35

List of figures | xvii

3.3 Illustration of exponential map on the unit hypersphere in dimen-
sion 3. There is a unique geodesic γ : [−1, 1]→M that is differentiable
and such that γ(0) = u and γ′(0) = w. Then, the exponential map along
the tangential direction w that belongs to the tangent space Tu(M) from
the point on the manifold u is defined as Expu(w) = γ(1). 37

3.4 Comparison of the trajectories of radially-invariant parameters
using different optimization schemes. For three randomly selected
filters in each block of a ResNet20 architecture, with BN (left) or WN
(right), we compute the cosine similarity between the parameter values
obtained with SGD and the parameters values obtained respectively by
AdaGradG and AdaGrad, at different iteration stages of a classification
training on CIFAR10. 51

3.5 Geometrical phenomena in Adam. (a) Effect of the radial part of ck

on the displacement on Sd−1; (b) Example of anisotropy and sign instability
for the deformation ψ(∇L(uk)) = ∇L(uk) ⊘ |∇L(uk)|

d−1/2∥∇L(uk)∥ (where | · | is
the element-wise absolute value) occurring in Adam’s first optimization
step; (c) Different contribution in c⊥

k of two past gradients ∇1 and ∇2 of
equal norm, depending on their orientation. Illustration of the transport
of ∇1 from uk−1 to uk : Γuk

uk−1
(∇1) (cf. 3.5.2 for details). 63

3.6 Training speed comparison with ResNet20 BN on CIFAR10. Left:
Mean training loss over all training epochs (averaged across 5 seeds) for
different Adam variants. Right: Zoom-in on the last epochs. Please refer
to Table 3.3 for the corresponding accuracies. 64

3.7 Valid accuracy comparison with ResNet20 BN on CIFAR10. Left:
Mean valid top1 acc over all training epochs (averaged across 5 seeds) for
different Adam variants. Right: Zoom-in on the first epochs. Please refer
to Table 3.3 for the corresponding accuracies. 64

4.1 Overview of the proposed approach for robust classification with
unsupervised group discovery. (1) We first extract deep image features
using an identification model and (2) we cluster the training dataset based
on their feature Gram matrices (their “style”’); (3) then, we train the
targeted classifier with a robust optimization that exploits the assigned
pseudo-group labels. 69

xviii | List of figures

4.2 Illustration of the style-based dataset partition. An identification
model Φ with parameters ω is trained for a limited number of epochs T
with ERM to fit groups with easy-to-learn spurious correlations. Then,
for each image si ∈ Rin, we extract intermediate features ϕ(l) and compute
their Gram matrix Gl with a random projection. These projected Gram
matrix representations are used as features to cluster the training dataset
Dtrain in E ′ environments. 73

4.3 Illustration of the three datasets. 76
4.4 Impact of the layer choice to extract style features. Results in

matching accuracy on the validation set for GramClust on Waterbirds. 80
4.5 Impact of the number of clusters. Results in worst-group val accura-

cies of GramClust on Waterbirds. 81
4.6 Visualisation of confusing samples in Waterbirds dataset and

wrongly predicted by GramClust. (a) Samples of confusing land-
background images predicted as water background; (b) Samples of con-
fusing land-background images predicted as water background. In each
case, the actual image background is confusing due to the joint presence
of elements reflecting land background (forest, heavy vegetation, sand)
and water background (water surface, rainfalls, mist). 82

B.1 Tracking of Ak⟨ck,uk⟩ for SGD-M and Adam. The above graphs
show the maximum of the absolute value of Ak⟨ck,uk⟩ for all filters in
all layers of a ResNet20 CIFAR trained on CIFAR10 and optimized with
SGD-M (left) or Adam (right). The quantity is always small compared
to 1. Therefore we may assume that 1− Ak⟨ck,uk⟩ ≥ 0. 100

B.2 Tracking of ηe
k∥c⊥

k ∥ for SGD-M and Adam. The above graphs show
the maximum of the absolute value of ηe

k∥c⊥
k ∥ for all filters in all layers

of a ResNet20 CIFAR trained on CIFAR10 and optimized with SGD-M
(left) or Adam (right). 101

B.3 Validity of Taylor expansion. We tracked the maximum value of
(ηk∥∇L(uk)∥)2/r2

k for all filters in all layers of a ResNet20 CIFAR trained
on CIFAR10 with SGD. The order of magnitude of the gradient is roughly
the same for other architectures or datasets. It empirically validates the
approximation by the Taylor expansion. 102

List of figures | xix

B.4 Training speed comparison with ResNet18 BN on CIFAR10. Left:
Mean training loss over all training epochs (averaged across 5 seeds) for
different Adam variants. Right: Zoom-in on the last epochs. Please refer
to Table 3.3 for the corresponding accuracies. 103

B.5 Accuracy comparison on the validation set with ResNet18 BN
on CIFAR10. Left: Mean training loss over all training epochs (averaged
across 5 seeds) for different Adam variants. Right: Zoom-in on the first
epochs. Please refer to Table 3.3 for the corresponding accuracies. 103

B.6 Training speed comparison with VGG16 on CIFAR10. Left: Mean
accuracy on the validation set over all training epochs (averaged across
5 seeds) for different Adam variants. Right: Zoom-in on the last epochs.
Please refer to Table 3.3 for the corresponding accuracies. 104

B.7 Accuracy comparison on the validation set with VGG16 BN on
CIFAR10. Left: Mean training loss over all training epochs (averaged
across 5 seeds) for different Adam variants. Right: Zoom-in on the last
epochs. Please refer to Table 3.3 for the corresponding accuracies. 104

B.8 Training speed comparison with ResNet18 on CIFAR100. Left:
Mean training loss over all training epochs (averaged across 5 seeds) for
different Adam variants. Right: Zoom-in on the last epochs. Please refer
to Table 3.3 for the corresponding accuracies. 105

B.9 Accuracy comparison on the validation set with ResNet18 BN on
CIFAR100. Left: Mean training loss over all training epochs (averaged
across 5 seeds) for different Adam variants. Right: Zoom-in on the last
epochs. Please refer to Table 3.3 for the corresponding accuracies. 105

B.10 Training speed comparison with VGG16 on CIFAR100. Left:
Mean training loss over all training epochs (averaged across 5 seeds) for
different Adam variants. Right: Zoom-in on the last epochs. Please refer
to Table 3.3 for the corresponding accuracies. 106

B.11 Accuracy comparison on the validation set with VGG16 BN on
CIFAR100. Left: Mean training loss over all training epochs (averaged
across 5 seeds) for different Adam variants. Right: Zoom-in on the last
epochs. Please refer to Table 3.3 for the corresponding accuracies. 106

B.12 Accuracy comparison on the validation set with VGG16 BN on
CIFAR100. Left: Mean training loss over all training epochs (averaged
across 5 seeds) for different Adam variants. Right: Zoom-in on the last
epochs. Please refer to Table 3.3 for the corresponding accuracies. 107

xx | List of figures

B.13 Training speed comparison with ResNet18 on SVHN. Left: Mean
training loss over all training epochs (averaged across 5 seeds) for different
Adam variants. Right: Zoom-in on the last epochs. Please refer to
Table 3.3 for the corresponding accuracies. 107

B.14 Accuracy comparison on the validation set with ResNet18 BN
on SVHN. Left: Mean training loss over all training epochs (averaged
across 5 seeds) for different Adam variants. Right: Zoom-in on the last
epochs. Please refer to Table 3.3 for the corresponding accuracies. 108

B.15 Training speed comparison with VGG16 on SVHN. Left: Mean
training loss over all training epochs (averaged across 5 seeds) for different
Adam variants. Right: Zoom-in on the last epochs. Please refer to
Table 3.3 for the corresponding accuracies. 108

B.16 Accuracy comparison on the validation set with VGG16 BN on
SVHN. Left: Mean training loss over all training epochs (averaged across
5 seeds) for different Adam variants. Right: Zoom-in on the last epochs.
Please refer to Table 3.3 for the corresponding accuracies. 109

B.17 Impact of the layer choice to extract style features on CelebA. We
show the matching accuracy between the ground-truth environments on
the validation set CelebA and the discovered ones with GramStyle when
using different VGG-19 layers. The result denoted allconvX_1 is obtained
when using all the layers conv1_1, conv2_1, conv3_1, conv4_1, conv5_1
in our method. 110

List of tables

3.1 Effective learning rate and direction for optimization schemes
(we omit here the iteration index k). 45

3.2 Accuracy of Adam and its variants when training with BN w/o
affine layers. The figures in this table are the mean top1 accuracy ± the
standard deviation over 5 seeds on the test set for CIFAR10, CIFAR100
and on the validation set for SVHN. † indicates that the original method is
only used on convolutional filters while Adam is used for other parameters. 60

3.3 Accuracy of Adam and its variants when training with BN layers. 60

4.1 Comparative results on Waterbirds, CelebA and COCO-on-
Places-224 (COCO-on-P). Worst-group (w-g) and average (avg) test
accuracies (% mean and std.) for Waterbirds and CelebA datasets;
systematically-shifted (shift) and in-distribution (ind) test-set accura-
cies (% mean and std.) for COCO-on-Places dataset. Experiments with
ResNet-50 models. Underlined and bold type indicate respectively best
and per-block best performance (with significance p< 0.05 according to
paired t-test on five runs). 78

4.2 Study of the clustering features. Results in worst-group (Waterbirds,
CelebA) and systematically-shifted (COCO-on-P) test-set accuracies (%).
Gram matrix show to be the most effective type of clustering features to
obtain improved group robustness. 79

B.1 Best learning rate and momentum factor. We systematically found
the same learning rate for each dataset and architecture while the momen-
tum factor was fixed to 0.9. 101

B.2 Best L2 regularization (λ) and order-2 moment factors (β2). . . 102

C.1 SGD-M hyperparameters for GroupDRO training. 113
C.2 SGD-M hyperparameters for ERM training. 113

xxii | List of tables

C.3 SGD-M hyperparameters for IRM training. 114
C.4 Grid search results on the validation sets of Waterbirds, CelebA

and COCO-on-Places-224 with pseudo-group labels. We report
the worst-group (‘w-g’) and average (‘avg’) accuracies for Waterbirds and
CelebA datasets, and the systematically-shifted (‘shift’) and in-distribution
(‘ind’) accuracies for COCO-on-Places (‘COCO-on-P’) dataset. 114

Symbols

Roman Symbols

ℓ loss function

B batches of input and target datas

L empirical training loss function

M manifold

N norm in finite vector space

Tu(M) tangent space of the manifold M at point u

P probability measure

m momentum

s input data

t target data

u parameter on the unit hypersphere

v order-2 moment

x parameters of the ML problem model

S input random variables, each realisation is an input data

T target random variables, each realisation is a target data

Greek Symbols

α scaling parameter in BN

xxiv | Symbols

β momentum parameter

ω parameters of the identification model

δ bias parameter in BN

ϵ small scalar quantity

η learning rate

γ geodesic

Γuk
uk−1

(a) parallel transport from uk−1 to uk of a

λ L2 regularization parameter

µ mean

∇ gradient

ϕ model of the ML problem

π ≃ 3.14 . . .

ψ identification model

ρ scaling factor in the radial invariance

τ intermediate batch output in the Deep Neural Network

σ standard deviation

Acronyms / Abbreviations

AI Artificial Intelligence

BN Batch Normalization

CNN Convolutional Neural Network

DL Deep Learning

DNN Deep Neural Network

EIIL Environement Inference for Invariant Learning

ERM Empirical Risk Minimization

Symbols | xxv

GN Group Normalization

i.i.d. independently identically distributed

IN Instance Normalization

IRM Invariant Risk Minimization

JTT Just Train Minimization

LN Layer Twice

ML Machine Learning

MLP Multi Layer Perceptron

MMD Maximum Mean Discrepancy

NL Normalization Layer

SGD Stochastic Gradient Descent

SGD-M Stochastic Gradient Descent with Momentum

WD Weight Decay

WN Weight Normalization

Chapter 1

Introduction

1.1 Context

The stunning spread of Artificial Intelligence (AI) systems in a wide range of industrial
and scientific applications1 has been driven both by progresses in computer technology as
well as significant improvements in Deep Learning (DL). DL is built upon Deep Neural
Networks (DNNs). Loosely based on biological neural networks, DNNs are a class of
high dimensional parametric models built from many basic computational blocks called
neurons.

As an introductory example, let us consider the task of supervised image classification.
The training of a DNN consists in finding the parameters that minimize its errors,
i.e. misclassifcations, over the whole data distribution. In practice, we have: a DNN
with parameters to select, a training set to train the DNN and a test set to assess its
performance. Both train and test sets includes images with their associated classes. Then
a tractable optimization objective is built to find the parameters that minimizes the DNN
errors on the training samples. The overall purpose of the training process is to output
a DNN that generalizes well i.e. results in low test error in practice. In other words, a
desirable property for a DNN is to both classify correctly train and test images altought
it has only been trained with train images. The particular procedure used to find these
parameters is called a training algorithm, which relies on an optimization scheme. We
differentiate:

1To grasp the impact of AI on today’s world, the State of AI Report is published every year. It is a
thorough synthesis of developments in research, industry and politics (see stateof.ai).

https://www.stateof.ai/

2 | Introduction

(a) Visualization of the loss sur-
face.

(b) Comparison of trajectories from differ-
ent optimization algorithms

Fig. 1.1 Loss surface and trajectories of training algorithms. In (a), Li et al.
(2018) provide a visualisation in a 3D space, for a 2D representation of the
parameter space of the VGG-56 architecture (Simonyan and Zisserman, 2014)
on the CIFAR-10 dataset (Krizhevsky et al., 2009). In (b), a comparison of
trajectories from different optimization algorithms on a simple ’bowl’ shaped
surface for 2 parameters represented by each of the axis is displayed. The values
of the error function is visualized in color. The darker the color is the lower
the error function values are. (Image credit: Tahavani).

• The optimization objective that defines what quantity is minimized. It is con-
veniently represented by a surface where each point is the value of the previous
quantity for every single possible parameter (see illustration in Figure 1.1a).

• The training algorithm (or optimization scheme) that refers to how the quantity
is minimized. It is conveniently represented by a discrete trajectory on the above
surface (see illustration in Figure 1.1b on a different surface).

Despite the numerous successes of DL, there is a substantial divergence between theory
and practice. While researchers have managed to improve drastically the performance
of DNN over a variety of benchmarks, the theoretical analysis of the training process is
lagging behind, often involving unrealistic assumptions and restricted settings. In this
manuscript, we aim at reducing the gap between theory and practice by improving our
understanding of specific mechanisms involved in DNNs training.

1.2 Motivations

The study of the training process of DNNs are motivated by the following points:

https://towardsdatascience.com/comparative-performance-of-deep-learning-optimization-algorithms-using-numpy-24ce25c2f5e2

1.2 Motivations | 3

(a) Cow: 0.99, Pasture: 0.99,
Grass: 0.99, No Person: 0.98,
Mammal: 0.98

(b) No Person: 0.99, Water: 0.98,
Beach: 0.97, Outdoors: 0.97,
Seashore: 0.97

Fig. 1.2 Illustration of spurious correlation. Cows in canonical context (e.g. grass)
are correctly classified while cows in rare contexts (e.g. water) are misclassified.
Top five label and probability confidence produced by clarifai.com.

.

Understand the training mechanisms of DNNs. The optimization objective
mentioned previously displays a tremendous amount of local minima with barely indis-
tinguishable low error on the training data (see Figure 1.1a). This is commonly referred
to as a non-convex optimization problem. In general, solving a non-convex optimization
problem is NP-hard. Yet, practitioners have developed techniques that enable complex
DNNs to be reliably trained with more or less simple training algorithms. Despite
significant research efforts, our understanding of DNNs training mechanisms is still in its
early stages.

To improve DNNs training. A myriad of optimization schemes have been developed
to find the best network parameters. Among the parameters that minimize the training
error, some of them generalize well, i.e. result in low test errors, while others lead to
arbitrarily bad test performances. Unlike traditional optimization, what is of crucial
interest is not so much whether the optimization scheme converges quickly to a minimum,
but if it reaches a minimum with good generalization properties.

To avoid learning spurious correlations. With the advent of large-scale datasets,
there is less and less control on the quality of data. Among others, there are growing
concerns with data collection biases and confounding factors. Minimizing training errors
leads DNNs into recklessly absorbing the correlations found in the training data. It is
especially problematic if the trained DNN relies on spurious correlations, i.e. correlations
that are not expected to hold in future test use cases. For example, imagine crowd-

www.clarifai.com

4 | Introduction

sourcing images of cows. Due to selection biases, a high majority of cows stand in front
of grass environments. A simple way to correctly classify images with cows would be to
classify the background. This phenomena is observed empirically when training a DNN
to perform object recognition (see Figure 1.2). It constitutes an undesirable shortcut
that we want to avoid when training a DNN.

1.3 Goals

The concrete goals of this thesis are twofold: improve the understanding of the mecha-
nisms behind DNNs training and develop new algorithms to enhance DNN generalization
performance. More specifically, we focus on the following goals:

To understand better Normalization Layers (NLs) impact during training.
Over the recent years, DNN architectures have significantly evolved, increasing at the
same time both their complexity and performance. To ease the training of such complex
architectures, a wide range of techniques have been introduced. Among them, Nor-
malization Layers are the most critical: they have become necessary to train multiple
modern architectures. Although essential, their impact on the training process is not
fully understood and remains an active area of research.

To achieve Group Robustness. Spurious correlations are frequently observed in the
following setting: data can be split into a majority group which includes a confounding
factor and a minority group that does not. Under these circumstances, a DNN trained
over the whole dataset will recklessly absorb these spurious correlation leading to bad
performances on minority group. Our goal is to train a DNN with good performance both
on the majority and minority group. This challenge is referred to as Group Robustness.

1.4 Challenges

This manuscript have been shaped by numerous challenges. Overall, they all relate
to the following: comparing DNNs. Whether it is to assess DNN performance, or to
understand DNNs dynamics during training, we are ineluctably brought to tackle the
issue of comparing DNNs. There exists two main approaches to address this issue:
comparison of the functions encoded by the DNNs or direct analysis of their associated
parameters. Both approaches come with their fair share of challenges. Due to the high
dimension of parameters, there exists no appropriate metric to efficiently compare the

1.5 Contributions | 5

DNN parameters. For the functional perspective, the choice of metrics and sets of data
on which to compare DNNs constitutes a major issue. Yet distinct, both parameters
and functional perspectives remain closely related. In chapter 3, we reconcile both
views by analyzing training dynamics projected in the quotient space of the parameter
space yielded by an invariance property of the functions encoded by DNN with NLs.
In chapter 4, DNNs robust training and evaluation is performed by carefully choosing
appropriate splits of the train and test sets.

1.5 Contributions

In response both to the goals and challenges introduced beforehand, our main contri-
butions are as follows

The Spherical Framework. We introduce a generic framework that allows the analysis
and comparison of any gradient based optimization scheme for DNNs with NLs. In short,
we demonstrate the impact of NLs on optimization consists in a specific scheduling of the
magnitude and direction of the steps by the training algorithm during the training phase.
We also prove that, surprisingly, in presence of NLs, training with a simple stochastic
gradient descent (SGD) is equivalent to using a variant of Adam a more complex and
adaptive algorithm called Adam.

New optimization schemes for DNNs equipped with NLs. The Spherical Frame-
work highlights geometrical phenomena occurring when training with Adam (Kingma
and Ba, 2014). We leverage the tools of optimization constrained to a manifold to
design variants of the training algorithm Adam. These variants consistently improves
the generalization performance of the resulting DNNs over a variety of architectures and
datasets.

Group Robustness with no labels. In the context of supervised image classification,
we introduce a two-stage method that first partitions the training data into groups based
on style features without any group supervision. Then a robust optimization objective is
defined based on the previous discovered pseudo groups. The DNNs obtained with our
method outperform with a significant margin all recent baselines addressing the problem
of group robustness with no labels.

6 | Introduction

1.6 Outline

This manuscript revolves around the contributions set forth above and is organized as
follows:

Chapter 2: Literature review Before delving into the core material of this manuscript,
we present in chapter 2 an exhaustive overview of optimization in Deep Learning. All the
necessary technical prerequisites to tackle the subsequent chapters are also introduced.

Chapter 3: Impact of Normalization Layers on Optimization This chapter
introduces the first and second contributions of this thesis. The core idea is to leverage
a shared property of DNNs with NLs: these architectures are invariant to a positive
scaling of groups of parameters. We first provide a technical background on invariant
models and optimization constrained to a manifold. With the help of the previous tools,
we build the Spherical Framework and provide explicit expressions of the impact of NLs
on the magnitude and direction of popular optimization schemes. We demonstrate the
equivalence between SGD and a variant of Adam when training DNNs with NLs. Last,
we empirically assess the influence of geometric phenomena in Adam highlighted by the
Spherical Framework during the training process of DNNs with NLs. To this end, new
variants of Adam are designed and we evaluate their performances over a variety of
architectures and image classification datasets.

Chapter 4: Avoid learning spurious correlations This chapter introduces the
third contribution of this thesis. First, we introduce existing attempts to define robust
optimization objectives in order to perform Group Robustness. Although promising, these
approaches all require group labels on the training set. We design an easy-to-scale method
to split training images among distinct pseudo-groups, and train a robust optimization
objective based on the pseudo-groups labels. After presenting, our method, we conduct
extensive experiments on various image classification datasets with spurious correlations
to show that our method outperforms every recent baselines.

Chapter 5: Conclusion We conclude this manuscript by summarizing the contribu-
tions of the thesis and discussing several potential perspectives for future work.

1.7 Publications

One journal article and one conference submission are presented in the manuscript:

1.7 Publications | 7

• Simon Roburin2, Yann de Mont-Marin2, Andrei Bursuc, Renaud Marlet, Patrick
Pérez and Mathieu Aubry. Spherical Perspective on Learning with Normal-
ization Layers. Short version of the paper was accepted as a spotlight in Workshop
on Optimization at Advances in Neural Information Processing Systems (Neurips)
2021 and long version was published as a journal article in Neurocomputing 2022.
This is the subject of chapter 3 of this manuscript.

• Simon Roburin2, Charles Corbières2, Gilles Puy, Nicoles Thome, Mathieu Aubry,
Renaud Marlet and Patrick Pérez. (2022) Get One Gram of Neural Style
Features, Get Enhanced Group Robustness. Short version of the paper
accepted in Workshop on Out of Distribution Detection at European Conference on
Computer Vision (ECCV) 2022. This is the subject of chapter 4 of this manuscript.

During my PhD, I have also worked on an other project that is not presented in this
thesis but that has led to a publication:

• Oriane Siméoni, Gilles Puy, Huy Van Vo, Simon Roburin, Spyros Gidaris, Andrei
Bursuc, Patrick Pérez, Renaud Marlet and Jean Ponce. (2021) Localizing Objects
with Self-Supervised Transformers and no Labels. In British Machine Vision
Conference (BMVC).

2 Equal contribution

Chapter 2

Literature review

Abstract

In this chapter, a general overview of the training process of DNN is provided. First, the
paradigm of statistical learning is formalized in section 2.1 under the scope of function
approximation. The learning process, also referred to as the training of a DNN, is
challenging. There exists no mathematical framework that explains the success of DNN
and the error surface displays numerous complex regions that we discuss in section 2.2.
However, a myriad of techniques has been developed in order to train properly DNN. Even
if poorly understood, these techniques combined together allow DNNs to reach impressive
performances on a wide variety of benchmarks. They all can be understood as defining
general strategies to navigate on the loss surface until a model with good prediction
performance is found. In particular, we enumerate the main training algorithms used in
DL in section 2.3, explain the strategies to handle the learning rate and introduce the
concept of early stopping to obtain minima with good generalization properties. Although
these improvements are restricted to the training procedure, there exists also architecture
modifications that improves significantly the training process. We conclude this chapter
by providing an exhaustive review of one of the most prominent improvements in terms
of architecture modification in DL: Normalization Layers (see section 2.4).

2.1 Preliminary

Deep Learning is a sub-field of a broader discipline: Machine Learning (ML). In order
to solve a target task, usually too complex to be programmed from scratch, ML aims at
extracting knowledge from data. Two main branches of the field are supervised learning

10 | Literature review

and unsupervised learning. In supervised learning, the ML algorithm dispose of both the
inputs and expected outputs of the considered task whereas, in unsupervised learning
only the inputs are available. In the manuscript, we will exclusively focus on supervised
learning. A parametric ML problem is structured by the following mathematical objects:

• A class of parametric models;

• A set of samples;

The overall goal is to select among the parametric models, the model that better fits
the data. The specificity of DL lies in the class of models used to solve the ML problem:
DNNs. In this section, we first cover the main aspects of a supervised ML problem. Then
we delve into the mathematical characteristics of a supervised parametric ML problem
and introduce the basic concepts of optimization. Finally, we provide a succinct overview
of DNN architectures and their associated functional expressivity. This section is inspired
by the formalism developed both by Hastie et al. (2009) and Mallat (2020).

2.1.1 Statistical view of parametric machine learning problem

Whether we want to learn how to recognize objects, understand a spoken language or
predict physical quantities, the underlying goal of any ML problem is to find the best
candidate in a given class of parametric model that minimizes the model’s loss function
over the data distribution.

Statistical hypothesis. We denote respectively by Dtrain and Dtest the training and
test data. The latter are comprised of a finite number of input and output samples:
(s, t) ∈ Rin × Rout. ML problems are built upon the following fundamental hypothesis:
the pairs (s, t) ∈ Rin×Rin are the realisation of independently and identically distributed
(i.i.d.) random variables (S, T) according to some probability measure P(S,T) over
Rin × Rout. We will throughout assume that the corresponding σ-algebra is a product
of Borel σ-algebras w.r.t. the usual topologies. The statistical hypothesis ensures the
existence of a common causal link between inputs and expected outputs both in Dtrain

and Dtest. Without such assumptions, it will be harder to find a model that generalizes
from train samples (Dtrain) to samples unseen during training (Dtest).

Definitions and context. We define the hypotheses space by a family of parametric
model ϕx : Rin −→ Rout with parameters x ∈ Rd where d is the number of parameters of
the model. The loss function ℓ : Rout × Rout −→ R quantifies the discrepancy between a

2.1 Preliminary | 11

model’s prediction ϕx(s) and the expected output t. Overall, the purpose is to exploit
the training data Dtrain in order to select the best candidate in H that that minimize
the average loss over the data distribution P(S,T). To assess the performance of a trained
model, we disposes of a set of unseen input and output samples: Dtest.

Theoretical problem formulation. We want to find the parameters x ∈ Rd that
minimize the difference between ϕx(s) and t over the data distribution P(S,T). To this
end we aim at finding the following quantity:

arg min
x∈Rd

EP(S,T)

[
ℓ(ϕx(S), T)

]
= arg min

x∈Rd

∫
Rin×Rout

ℓ(ϕx(s), t)P(S,T)(ds, dt). (2.1)

Tractable optimization objective. Note that in practice, P(S,T) is uknwon. To
circumvent this issue, we construct the following estimator:

ÊP(S,T)

[
ℓ(ϕx(S), T)

]
= 1

#Dtrain

∑
(s,t)∈Dtrain

ℓ(ϕx(s), t), (2.2)

where # denotes the cardinality of a set. We define the empirical training loss function
by:

L : x ∈ Rd 7→
∑

(s,t)∈Dtrain

ℓ(ϕx(s), t) ∈ R. (2.3)

Now, we can rewrite Eq 2.1 with a tractable optimization objective. Called Empirical
Risk Minimization (ERM), it reads:

argminx∈RdL(x) = argminx∈Rd

[1
#Dtrain

∑
(s,t)∈D

ℓ(ϕx(s), t)
]
. (2.4)

Generalization. The Holy Grail of ML is to find the parameters that minimize Eq 2.1.
In practice, we are reduced to minimize Eq 2.4. A desirable property of a solution to
Eq 2.1 is to yield small loss values not only on the training data Dtrain but also on the
whole data distribution. Formally, for any parameters x ∈ Rd, it consists in narrowing
the following difference: ∣∣∣EP(S,T)

[
ℓ(ϕx(S), T)

]
− L(x)

∣∣∣. (2.5)

The lower the quantity in Eq 2.5 is, the better the associated learned model ϕx generalizes.
Conversely, if the quantity in Eq 2.5 is high, the learned model overfits or underfits. In
practice, we can approximate Eq 2.5 with the test set by the following:

12 | Literature review

Fig. 2.1 Convex vs. non-convex function and critical points. We provide a
3D illustration of the 2D surface of a convex function (left) and a non-convex
function (right) as well as the different critical points. Image credit: Kolev
(2011).

.

∣∣∣ 1
#Dtest

∑
(s,t)∈Dtest

ℓ(ϕx(s), t)− L(x)
∣∣∣. (2.6)

2.1.2 Optimization: basic concepts

The learning process formalized in Eq 2.4 is an optimization problem. Here we detail
the basic concepts of optimization.

Convexity vs non-convexity. An optimization problem is convex iff its objective func-
tion is convex. A function L is convex w.r.t the parameters x iff the line segment between
two points x1,x2 ∈ Rin lies above the graph G of L (defined by G = {(x,L(x)),x ∈ Rin})
between the two points. Otherwise, the function is non-convex (see illustration in Fig 2.3).

Critical points. Here, we assume that the objective function x 7→ L(x) is positive
and almost everywhere twice differentiable. Note that this hypothesis is verified in most
DL formulations. Let us consider a parameter x ∈ Rd at which L is twice differentiable.
If ∇L(x) ̸= 0, there exists a descent direction that leads to a smaller function value. By
following the descent direction, we might reach a parameter x∗ that verifies ∇L(x∗) = 0.
Depending on the eigenvalues of the Hessian of L as well as the values of L(x∗), x∗ is
called either a local minimum, a global minimum or a saddle point (see illustration in
Figure 2.1).

2.1 Preliminary | 13

Fig. 2.2 Illustration of a MLP. We illustrate a 3-layer neural network with two hidden
layers, the first one has four neurons and the second one has three neurons.
There is no connection between the neurons of the same layer. Image credit:
YashNita Github.

.

2.1.3 Deep Learning architectures

We provide a very succinct introduction to Deep Learning models. For an extensive
coverage of the subject, we refer the reader to Goodfellow et al. (2016).

Inspired by a simplified model of a biological neuron, a DNN is composed of a succession
of linear or non linear functions. These functions are called layers. Formally, for any
s ∈ Rin, and a fixed parameter x ∈ Rd, it reads:

ϕx(s) = ϕ
(L)
x(L) ◦ ϕ(L−1)

x(L−1) ◦ · · · ◦ ϕ(1)
x(1)(s) ∈ Rout, (2.7)

where, for all l ∈ J1, LK x(l) 7→ ϕ
(l)
x(l) are the function layer with L the number of

layers, x(l) ∈ Rdl and x = [x(1), · · · ,x(L)] the associated parameters. Note that for all
l ∈ J1, LK,x(l) 7→ ϕ

(l)
x(l) are differentiable almost everywhere. The latter property enables

the computation of the intermediate gradients w.r.t. each parameter individually. As a
consequence, for all s ∈ Rin, the function x 7→ ϕx(s) is differentiable almost everywhere.
It allows us to easily compute the gradients w.r.t. the network parameters via chain
rule. The intermediate layers are called hidden layers and can be interpreted as a non
linear projector of the input data. The number of layers L is called the depth of the DNN
architecture.

https://github.com/YashNita/MLP_MNIST_BEST

14 | Literature review

Fig. 2.3 Illustration of a convolution operation. A 2D input tensor is convolved
by a kernel (blue) that produces a scalar value (green). The kernel results in a
2D feature maps once it has sliced the entire input. Image credit: Sun et al.
(2020).

.

Multi Layer Perceptron (MLP). Initially introduced by Minsky and Papert (1969),
an MLP is a type of DNN architecture in which the hidden layers are a parametric linear
transformation of the input followed by a non-parametric linear transformation called an
activation function. The last layer is a parametric linear transformation that is a mapping
to the output space Rout. Each node is called either unit or neuron (see illustration in
Figure 2.2). The typical activations are the sigmoid functions, the hyperbolic tangent or
the Rectified Linear Unit (ReLU), the latter being the most popular.

Convolutional Neural Networks (CNNs). CNNs (LeCun et al., 1989) substitutes
the simple linear projection in MLPs by a convolutional layer. Still falling in the class
of linear transformation, a convolutional layer convolves a kernel, called a filter, over
the entire input. The convolution operation assumes the input has a specific structure.
In this manuscript, we focus only on 2D-convolution on images (see illustration in
Figure 2.3). Yet, note that there exists 3D-convolution (for LiDAR data for instance) or
1D-convolution (used in the case of text data). It a performs local scalar product between
a group of local values and the kernel, producing a scalar value. The scalar values are
then successively arranged to create an output tensor. This operation is particularly well
suited to high dimensional data, structured along a vertical and an horizontal axis with
translation invariant patterns, such as images.

2.2 Challenges of training DNNs | 15

Approximation Theorems. Here, we shortly summarize the main results in terms of
approximation capabilities of DNNs: Hornik et al. (1989) show that the hypothesis class
of MLPs, with a width of arbitrary size (maximum number of neurons in the architecture)
and at least one hidden layer, is dense in the set of continuous functions on compact
subset of Rin; Yarotsky (2022) demonstrates an analogous result for CNNs and the set
of functions invariant by translation. Although hinting us on expressive capacities of
DNNs, the previous results assume an exponentially-large number of parameters which
is infeasible in practice.

2.2 Challenges of training DNNs

Training DNN is the particular procedure that consists in minimizing Eq 2.1 w.r.t. the
parameters of the network. It is accompanied by its fair share of challenges. Existing
mathematical tools actually fail to explain the success of DNN suggesting that the current
angle chosen to tackle learning problems must be reconsidered. In this section, we cover
the main aspects of the encountered difficulties when training DNNs. First, we highlight
what makes learning different from traditional optimization. Then, we detail the inherent
problems of high-dimension function approximation. Last, an overview of the topography
of the regions encountered in the training loss landscape is provided.

2.2.1 Learning differs from traditional optimization

Solving a ML/DL problem differs from traditional optimization. In most ML problems,
the object of interest is usually a performance measure defined w.r.t. the test set (Hastie
et al., 2009).

First, the test set is not accessible during training. The model is learned by exploiting
data from the training set. Unlike traditional optimization, what is of crucial interest, is
not so much whether we quickly reach a minimum of the empirical risk but if we reach a
parameter value with good generalization properties (Goodfellow et al., 2016).

Second, in some cases, the performance measure cannot be optimized efficiently. To
circumvent this issue, a surrogate loss function that acts as a proxy and does not suffer
from the previous flaw, is defined. This is in contrast to traditional optimization where
minimizing the loss function is a goal of itself. For instance, in the context of image
classification, the performance measure is the accuracy (ratio of correctly classified
samples with the total number of samples); the latter is also called the 0-1 loss. Marcotte

16 | Literature review

and Savard (1992) demonstrate that minimizing directly the 0-1 loss is intractable, even
for linear classifiers. In this case, the negative log-likelihood of the correct class is used
as a substitute for the 0-1 loss.

2.2.2 High dimension of the input data and black box analysis

Coarsely, training a DNN consists in finding the parameters in a high-dimensional
space that yield to a low expected loss over an unknown data distribution (see Eq 2.1).
In terms of dimension, the order of magnitude of the dimension of high-quality images
is about 106. To obtain a good predictor, Signal Processing teaches us that samples
have to be close to each other, and the speed of variations of the predictor between two
samples must be bounded (Mallat, 2016). Yet, in such a high dimensional space, samples
are typicially far from each other. Imagine, that one wants to cover the unit hypercube
in high dimension with a distance of ϵ between samples. To achieve that, we need ϵ−in

samples ! With ϵ = 10−1, it would require 10106 samples which is higher than the number
of atoms in the observable universe. Needless to say, that it is infeasible in practice.
In addition, the probability distribution P(S,T) is unknown. It makes any attempt of
theoretical analysis of the training process difficult without any additional hypothesis.
There exists no clean mathematical characterisation of the loss landscape, this is referred
to as black-box analysis.

2.2.3 High number of parameters and non-convexity of ERM

The training loss function of DNNs (cf. Eq 2.4) displays two serious flaws: it is at the
same time highly-dimensional and highly non convex.

Blum and Rivest (1992) demonstrate that finding a global minimizer for a simple
2-layers, 3-neurons MLP is already an NP-hard problem. In modern DNNs, the typical
number of parameters is d = 108. In such a context, it is infeasible to find global minima
to Eq 2.1. Indeed, it would require to explore the whole parameter space Rd. One can
show that in Rd, there exists exp d/ϵ directions such that all directions have angle at most
ϵ with one of these. In addition, traditional Learning Theory predicts that a model with
such a high capacity leads to poor generalization performances (Bartlett and Mendelson,
2002; Bousquet and Elisseeff, 2002; Vapnik, 1998). Last, there exist transformations in
the parameter space called symmetries T : Rd −→ Rd that leave the training loss function
unchanged: ∀x ∈ Rd,L(T (x)) = L(x) (Kornblith et al., 2019). These symmetries yield

2.2 Challenges of training DNNs | 17

Fig. 2.4 Exploding steps in a cliff region. Starting from x0 with a fixed learning
rate η, optimization steps bring the parameters close to a cliff region. At x1,
by following the gradient direction, the parameters reach x2. From x3, the loss
function gradient is high due to the steepness of the cliff region. Updates are
therefore catapulted far away from the local minima in the bottom of the cliff.

.

to areas of constant loss values in the parameter space, thus to a large number of local
minima.

The optimization objective also displays saddle points, cliffs or flat regions. In particular,
motivated by arguments introduced in Statistical Physics, Dauphin et al. (2014) show
empirically that a DNN optimization objective (ERM) displays a very large amount of
saddle points compared to the number of local minima. The widespread use of non-
smooth activation functions, gives rise to gradients with high magnitude in some regions.
If, during the training process, the parameters come close to such a cliff, following the
descent direction could catapult far away the parameters, making the whole process
highly unstable (see Figure 2.4). Conversely, we also observe vanishing gradients that
corresponds to region of the parameter space in which gradients are very small. As a
result, parameters can be stuck in such a region while still displaying relatively high loss
value.

18 | Literature review

2.3 Training techniques in Deep Learning

In response to the previous challenges, a myriad of techniques has been developed to
properly train DNNs. In practice, DNNs reach surprisingly good performance on a high
variety of benchmarks with relatively simple training algorithms. Yet, this behaviour is
not universal: the trainability of DNNs is highly dependent on a variety of good practices.
In this section, we cover the main strategies to properly train DNNs. We first delve
into different parameter initialization strategies. Then, we introduce popular training
algorithms, explain how to handle the amplitude of the steps throughout training. In
addition, we highlight the stopping criterion referred to as early stopping in order to
select parameters with low generalization gap (Eq. 2.5). Last, we detail the mechanisms
of popular Normalization Layers that aim at improving the training of complex DNN
architectures.

2.3.1 Parameter initialization

The stability of the training process of DNNs seems to heavily rely on the strategy
chosen to initialize parameters of the network (Glorot and Bengio, 2010). Parameter
initialization strategies in DL are mainly heuristic and little is known on how to properly
initialize DNNs. The idea consists in avoiding vanishing and exploding gradients at
the beginning of the training. To achieve that, Glorot and Bengio (2010) introduce
an initialization strategy that aims at controlling both the variance of the activations
and the variance of the gradient w.r.t. activations to avoid saturing parts of the non
linearities. At a layer l ∈ J1, LK, the parameters x(l) ∈ Rdl are initialized according to
the following uniform distribution U(− 2

dl−1+dl
, 2

dl−1+dl
). When ReLU activations function

are used, He et al. (2015) observe that the forward and backward pass act as if the
parameters had half their variances which motivates multiplying the parameters by

√
2.

2.3.2 Gradient based optimization schemes

The optimization scheme also called training algorithm, is the cornerstone of DNNs
training. It is the computational procedure used to select parameters x ∈ Rd that
minimize ERM (Eq 2.4). First-order method all rely on the same basic principle: follow
the descent direction, i.e. the opposite of the gradient until a predefined stopping criterion
is met. This technique is called gradient descent. The empirical training loss function
x 7→ L(x) is assumed to be almost everywhere differentiable. Note that there also exists
second-order methods based on approximate computation of the Hessian (Agarwal et al.,

2.3 Training techniques in Deep Learning | 19

Fig. 2.5 Illustration of the gradient descent algorithm. Representation of the
level sets of the training loss function in a 2D parameter space.

.

2017; Martens et al., 2010; Martens and Grosse, 2015) but they do not yield better
minima compared to simpler first-order methods. Therefore, in this manuscript, we
only focus on first-order optimization schemes. Formally, starting from a parameter
initialization x0 ∈ Rd for all iterations k ≥ 0, it reads:

xk+1 = xk − ηk∇L(xk), (2.8)

where ηk ∈ R is called the learning rate. We illustrate the mechanisms of gradient descent
in Figure 2.5.

Stochastic Gradient Descent. In practice, the number of inputs in the training
dataset is very large. To compute efficiently the empirical loss, the computational power
of parallel computing in Graphical Processors Units (GPUs) is leveraged. Due to memory
limitations, at each training step k ∈ N, the gradient of the empirical training loss is
evaluated on a different random portion of the training dataset Bk ⊂ Dtrain called a batch.
The resulting training algorithm is called Stochastic Gradient Descent (SGD). For all
training iterations k ≥ 0, it reads:

xk+1 = xk − ηk∇LBk
(xk), (2.9)

LBk
(xk) = 1

#Bk

∑
(s,t)∈Bk

ℓ(ϕx(s), t). (2.10)

20 | Literature review

Fig. 2.6 Illustration of the effect of Momentum. Representation of the level sets
of the training loss function in a 2D parameter space.

.

Depending on the batch size (i.e. #Bk,∀k), the estimate of the empirical training loss
is more or less noisy. In addition to its practical benefits in terms of memory usage, Ge
et al. (2015) demonstrates that, under smoothness hypothesis of the empirial loss function
x 7→ L(x), SGD escapes saddle points in a polynomial number of iterations. Therefore,
SGD ensures the convergence to a local minimum. In the rest of the manuscript, to
avoid heavy notations, we use L to actually denote the training loss function evaluated
on a random batch of the dataset LBk

when referring to the gradient estimate used at an
iteration k of the training procedure.

L2 regularization. In traditional ML, L2 regularization aims at mitigating overfitting.
It consists in encouraging the optimization algorithm to reach solutions with small L2

norm. Formally, it takes the form of as an additional term to the training loss function:
λ∥x∥2

L2 where λ (usually picked in [0, 1]) controls the amplitude of the L2 regularization
term. Combined with SGD, by differentiating the L2 regularization term, we obtain the
following update rule for all k ≥ 0:

xk+1 = xk − ηk(∇L(xk) + λxk) (2.11)

Yet, when training DNNs the role of L2 regularization appears to be less clear. Notably,
Krizhevsky et al. (2012) observes not only improved test accuracy, but also training
accuracy when using L2 regularization. In chapter 4, we provide an extensive analysis of
the impact of L2 regularization when training DNNs with Normalization Layers (NLs).

2.3 Training techniques in Deep Learning | 21

Momentum. Despite SGD being a popular training algorithm in DL, it turns out to
be quite slow. Introduced by Polyak (1964), momentum accumulates an exponentially
decaying moving average of past gradients and follow the resulting direction. As a result,
momentum accelerates drastically learning when confronted with high curvature, noisy
gradients or small but consistent gradients in terms of direction. Combined with SGD,
the resulting optimization scheme is dubbed SGD with Momentum (SGD-M). Its updates
are:

xk+1 = xk − ηkmk, (2.12)
mk+1 = βmk +∇L(xk) + λxk, (2.13)

where mk is the momentum, m0 (usually null in practice) the initial momentum, β ∈ [0, 1]
the momentum parameter and λ ∈ [0, 1] is the L2 regularization parameter. Eq 2.13 can
be rewritten as: mk = βkm0 +∑k

i=0 β
k−i−1

(
∇L(xi)+λxi

)
. In SGD, the amplitude of the

step is monitored by the learning rate η. In SGD-M, the size of the step depends on how
large and how aligned the sequence of the past gradients are. The momentum parameter
β controls the memory of the past gradients’ direction and amplitude. In the extreme
case where β = 1, there is no attenuation, each past gradient has the same contribution.
If β < 1, the lower beta is, the lesser the past gradients influence the current step. In
addition, there is a coupling of momentum and L2 regularization parameters β and λ. To
ease the search of best hyper parameters β and λ, Loshchilov and Hutter (2017) design a
decoupled variant of SGD-M, dubbed SGD-W. Its updates are:

xk+1 = xk − ηkmk + λxk, (2.14)
mk+1 = βmk +∇L(xk). (2.15)

2.3.3 Learning rate scheduling and adaptive optimization schemes.

Among all the hyperparameters, the learning rate ηk is undoubtedly one of the most
difficult to set. A large learning rate can cause instability, whereas a too small learning
rate can yield slow progress or cause being trapped in a bad local minimum. To address
this issue, two main approaches were designed: learning rate scheduling and adaptive
optimization schemes.

Learning rate scheduling. The particular procedure used to find a good learning
rate value is described as follows: one tries a range of learning rate values and picks one
that makes the training loss decrease significantly. Once the training loss plateaus, the

22 | Literature review

learning rate is decreased. Then, the previous steps are repeated until convergence is
reached. This process is called a step-wise learning rate scheduling. The sequence k 7→ ηk

is hence piece-wise constant. Note that there exists more exotic learning rate scheduling.
For instance, Loshchilov and Hutter (2016) introduces periodical restarts of the learning
rate followed by a cosine annealing decrease. As a results, cosine annealing scheduler
improves slightly the performance of the obtained DNNs.

Since scheduling the learning rate during training is laborious and relies mainly on
empirical heuristics, smarter optimization algorithms were introduced. These algorithms
adapt the learning rate during learning for every parameter. They are called adaptive
optimization schemes. We cover here the most popular adaptive training algorithms.

AdaGrad (Duchi et al., 2011). The training algorithm AdaGrad adapts the learning
rates of every parameter in the network. Formally, the learning rate per parameter is
scaled by the inverse of the square root of the sum of the past gradients’ norm. The
latter quantity is called the order-2 moment. The parameters with the largest gradients
are associated to a rapid decrease in learning rate, while parameters with small gradients
get a relatively small decrease in their learning rate. AdaGrad updates are:

vk = vk−1 + (∇L(xk) + λxk)2, (2.16)
xk+1 = xk − ηk

(
∇L(xk) + λxk

)
⊘
√

vk + ϵ, (2.17)

where vk is the second-order moment (usually v0 is null), ⊘ is the element wise division
and ϵ prevents division by zero. (Here and in the following, the square and the square
root of a vector are to be understood as element-wise). Even if AdaGrad enjoys desirable
convergence properties in the context of convex optimization, empirically, AdaGrad
performs well for some but not all DL models. The accumulation of past gradient norm
without decay can potentially cause premature decay of the amplitude of the steps.

Adam (Kingma and Ba, 2014). The optimization scheme Adam is a version of
AdaGrad with momentum as well as additional correction terms to correct the estimator
by exponential moving average of the momentum and the gradient’s norm. Its updates

2.4 Normalization Layers | 23

are:

mk = β1mk−1+(1− β1)(∇L(xk) + λxk), (2.18)
vk = β2vk−1 + (1− β2)(∇L(xk) + λxk)2, (2.19)

xk+1 = xk − ηk
mk

1− βk+1
1
⊘
√

vk

1− βk+1
2

+ ϵ, , (2.20)

where mk is the momentum with parameter β1 (usually m0 is null) , vk is the second-
order moment with parameter β2 (usually v0 is null) , and ϵ prevents division by zero.
Analogously to momentum, Adam estimates both order-1 (direction of the past gradients)
and order-2 (norm of the past gradients) with an exponential moving average. To unbias
the previous estimators using the exponential moving average, correction terms are
introduced to account for the initialization of both m0 and v0, respectively 1

1−βk+1
1

and
1

1−βk+1
2

. Again, β1 and β2 control the memory of their corresponding past moments.
Empirically, Adam is fairly robust to the choice of the learning rate, making it one of the
most popular training algorithm in DL.

Similarly to SGD with SGD-W, Loshchilov and Hutter (2017) introduces a decoupled
version of Adam dubbed Adam-W. It reads for all k ≥ 0:

xk+1 = xk − ηk

(mk

1− βk+1
1
⊘
√

vk

1− βk+1
2

+ ϵ+ λxk

)
, (2.21)

mk = β1mk−1+(1− β1)∇L(xk), (2.22)
vk = β2vk−1 + (1− β2)(∇L(xk))2. (2.23)

2.3.4 Early stopping

Optimization schemes aims at minimizing ERM (Eq 2.4) on the training set Dtrain. In
fine, the goal is to reach a minimum with good generalization properties. Quantitatively,
we want a small generalization gap (Eq. 2.5). Since the test set Dtest is not accessible,
the training set can be split into two disjoint sets: D′

train and Dvalid. The performance
measure (e.g., the accuracy in the context of classification) is computed on the validation
set Dvalid. Since, the validation loss might increase while the train loss continues its
decrease, the model associated to the parameters with highest validation accuracy during
training is kept at the end of the training. This process is referred to as early stopping.

24 | Literature review

Fig. 2.7 BN in ResNet architecture. Each BN layer is arranged between the
convolutional layer and the ReLu non linearity. Image credit: He et al. (2016a)

.

2.4 Normalization Layers

To ease the training of more and more complex architectures, significant efforts were
made by researchers. Normalization Layers have drastically improved training of such
highly parametric architectures. NLs are layers that are arranged between linear layers
and the activation functions within DNN architectures (see illustration in Figure 2.7).
Loosely speaking, they all consist in normalizing and centering the batch output of the
linear layer before feeding it through the activation function. One of the most prominent
is Batch Normalization (BN) (Ioffe and Szegedy, 2015). It improves significantly both the
training speed and the prediction performance but has however a notable shortcoming:
BN relies heavily on the batch size. To avoid such a dependency, normalization layers as
LayerNorm (LN) (Ba et al., 2016), WeightNorm (WN) (Salimans and Kingma, 2016),
InstanceNorm (IN) (Ulyanov et al., 2016) or GroupNorm (GN) (Wu and He, 2018) were
introduced. In this section, we focus on NLs in the case of CNNs. Note that, without loss
of generality, a linear layer can be expressed as a 1×1 convolution. Let us consider a layer
with intermediate batch output τ ∈ RB×C×D where B is the batch size, C the number of
channels and D the spatial extension. We introduce the following notations for any slice
of the tensor for all (b, c, j) ∈ J1, BK× J1, CK× J1, DK τ b,c,· ∈ RD, τ b,·,j ∈ RC , τ ·,c,j ∈ RB

2.4 Normalization Layers | 25

Fig. 2.8 Normalization Layers. Each subplot displays a input tensor with B as the
batch axis, C the channel axis and D the spatial extension axis. The blue
pixels are normalized by the same mean and standard deviations. Image credit:
Wu and He (2018)

.

Batch Normalization (BN). BN normalizes and centers intermediate convolutional
output along the batch and spatial dimension. It computes C means and standard
deviations and applies the normalization to each channel independently. Formally, for all
c ∈ J1, CK, and all b ∈ J1, BK it corresponds to:

µc = 1
BD

∑
b,j

τb,c,j (2.24)

σ2
c = 1

BD

∑
b,j

(τb,c,j − µc)2 (2.25)

τ
(BN)
b,c,·

def= (σc
2 + ϵ)

−1
2 (τ b,c,· − µc1D) ∈ RD, (2.26)

where 1D denotes the all-ones vector of dimension D and ϵ is a small constant used for
numeric stability. Once normalized, the output is scaled as follows:

∀(b, j) ∈ J1, BK× J1, DK, α⊙ τ
(BN)
b,·,j + δ, (2.27)

where α ∈ RC , δ ∈ RC are learnable parameters and ⊙ is the element-wise mutliplication.
At test time, BN uses running estimates of the mean and the standard deviation over all
the training samples instead of µc and σc

2.

Instance Normalization (IN). Based on a similar mechanism as BN, IN incorporates
a slight difference. It normalizes and centers each channel and each batch independently.

26 | Literature review

The statistics are computed along the spatial dimension. It reads:

µb,c = 1
D

∑
j

τb,c,j (2.28)

σ2
b,c = 1

D

∑
j

(τb,c,j − µc)2 (2.29)

τ
(IN)
b,c,·

def= (σ2
b,c + ϵ)

−1
2 (τ b,c,· − µb,c1D) ∈ RD, (2.30)

Unlike BN, at run time, IN does not use the running estimates of the statistics accumulated
during training. Instead, IN uses instance statistics from the considered test input at
run time. The scaling and shift of the output after the IN layer is performed for each
element of the batch and each channel independently whereas with BN it is applied only
to each channel independently.

Layer Normalization (LN). LN normalizes and center each instance of a batch
independently and computes its statistics along the spatial and channel dimension. It
reads:

µb = 1
DC

∑
c,j

τb,c,j (2.31)

σ2
b = 1

DC

∑
j

(τb,c,j − µb)2 (2.32)

τ
(LN)
b,c,·

def= (σ2
b + ϵ)

−1
2 (τ b,c,· − µb1D) ∈ RD, (2.33)

Like IN, LN uses instance statistics at test time. As BN, it rescales and shift the previous
output for each channel independently.

Group Normalization (GN). Similarly to LN, GN also computes its statistics along
the spatial and channel dimensions but divides it into groups of fixed size and normalizes
each group independently (see illustration in Fig 2.8). As BN, it rescales and shifts the
previous output for each channel independently. To avoid heavy notations, we refer to
the original paper (Wu and He, 2018) for a detailed review of the algorithm.

Weight Normalization (WN). WN (Salimans and Kingma, 2016) is simply a
reparametrization of the parameters in a DNN that decouples their length from their
direction. In the case of CNNs let us consider a layer l ∈ J1, LK. The associated convolu-
tional layer is parameterized by x(l) ∈ RF ×C×K where F is the number of filters, C the

2.5 Conclusion | 27

number of channels of the intermediate input and K the kernel size of each filter. For
each filter f ∈ J1, F K, the parameters actually used in the convolution reads:

g(l)

∥x(l)
f,·,·∥

x(l)
f,·,· ∈ RC×K , (2.34)

where g(l) ∈ RF are learnable parameters that control the magnitude of the parameters.
Note that unlike BN, there is no scaling and shift of the previous output, but only a
decoupling of the length and direction of the parameters.

2.5 Conclusion

Although appearing, by many aspects, as a challenging task, training DNN has been
made possible thanks to significant research efforts. Yet, many gray areas remain. The
absence of any unified theoretical framework hardens any attempt of improvement of
the optimization process. Significant breakthroughs to ease the training of more and
more complex architectures have been achieved but are mostly backed up by researcher’s
intuition rather than formal theoretical analyses. Overall, existing mathematical tools
fail to explain the success of DNN. It stresses out the urge to reconsider the mathematical
framework to tackle learning problems. In chapter 3, we introduce an analytical tool
built upon a mathematical invariance to analyse and compare the effects of NLs on the
most popular optimization schemes. Despite its recent successes, training DNN still need
to be improved in practice. To this end, we first introduce new optimization schemes
suited to DNN equipped with NL in chapter 3. Last, in chapter 4, we introduce a new
method to train DNN in the difficult context where data are not sampled from a single
distribution.

Chapter 3

Impact of Normalization Layers on
Optimization

The work described in this chapter is based on the following publication: Simon Roburin,
Yann de Mont-Marin, Andrei Bursuc, Renaud Marlet, Patrick Pérez and Mathieu Aubry.
Spherical Perspective on Learning with Normalization Layers.

• Short version of the paper was accepted as a spotlight in Workshop on Optimization
at Advances in Neural Information Processing Systems (Neurips) 2021.

• Long version was published as a journal article in Neurocomputing 2022.

.

Abstract

Normalization Layers (NLs) are widely used in modern deep-learning architectures.
Despite their apparent simplicity, NLs’ effect on optimization is not yet fully understood.
This chapter starts with a technical background on invariances in DNN and cover the
fundamental concepts of quotient space as well as the basics of Riemannian Geometry.
Then, we introduce the spherical framework to study the optimization of neural networks
with NLs from a geometric perspective. Concretely, the radial invariance of groups of
parameters, such as filters for convolutional neural networks, allows to translate the
optimization steps on the L2 unit hypersphere. This formulation and the associated
geometric interpretation shed new light on the training dynamics. Firstly, the first
effective learning rate expression of Adam is derived. Then the demonstration that, in
the presence of NLs, performing SGD alone is actually equivalent to a variant of Adam

30 | Impact of Normalization Layers on Optimization

constrained to the unit hypersphere, stems from the framework. Finally, this analysis
outlines phenomena that previous variants of Adam act on and their importance in the
optimization process are experimentally validated.

3.1 Introduction

Inspite of significant research efforts, the optimization of deep neural networks is still
poorly understood. Deep Neural Network (DNN) training involves minimizing a high-
dimensional non-convex function, which has been proved to be a NP-hard problem (Blum
and Rivest, 1989). Yet, elementary gradient-based methods show good results in practice.
To improve the quality of reached minima, numerous NLs have stemmed in the last years
and become common practices. Batch Normalization (BN) (Ioffe and Szegedy, 2015)
is undoubtedly the most noteworthy. It improves drastically both the training speed,
the prediction performance and allows deeper networks to be trained properly; BN has
however a notable shortcoming: it relies heavily on the batch size. To alleviate the
dependency w.r.t the batch size, normalization layers such as LayerNorm (LN) Ba et al.
(2016), WeightNorm (WN) Salimans and Kingma (2016), InstanceNorm (IN) Ulyanov
et al. (2016), or GroupNorm (GN) Wu and He (2018) were introduced. We refer the
reader to section 2.4 for an extensive presentation of NLs. Despite their success, the
interaction of NLs with optimization remains an open research topic.

Previous studies highlighted some of the mechanisms of the interaction between BN
and Stochastic Gradient Descent (SGD), both empirically (Santurkar et al., 2018) and
theoretically (Arora et al., 2019; Bjorck et al., 2018; Hoffer et al., 2018b). But none
of them provides a generic framework, nor studies the interaction between NLs and
the Adam optimizer (Kingma and Ba, 2014). In this chapter, we provide an extensive
analysis of the relation between NLs and any order-1 optimization scheme. Moreover,
we theoretically relate SGD with NLs to a variant of Adam (AdaGradG). It is of high
interest since Adam is probably the most commonly-used adaptive scheme for Neural
Networks (NNs). A shared effect of all mentioned NLs is to make NNs invariant to
positive scalings of groups of parameters. These groups of parameters may differ from
one NL method to another. The core idea of this chapter is precisely to focus on these
groups of radially-invariant parameters and analyze their optimization projected on the
L2 unit hypersphere (see Figure 3.1), which is topologically equivalent to the quotient
manifold of the parameter space by the scaling action. In fact, one could directly optimize
parameters on the hypersphere as Cho and Lee (2017). Yet, most optimization methods

3.1 Introduction | 31

are still performed successfully in the original parameter space. Here we propose to study
an optimization scheme for a given group of radially-invariant parameters through its
image scheme on the unit hypersphere. This geometric perspective sheds light on the
interaction between normalization layers and Adam.

The chapter is organized as follows. In section 3.2, we provide background on radial
invariance in DNN, explicit its consequence on the parameter space via the concept of
quotient space and introduce basic concepts of Riemanian Geometry. In section 3.3, we
introduce our spherical framework to study the optimization of any radially-invariant
model. We also define a generic optimization scheme that encompasses methods such as
SGD with momentum (SGD-M) and Adam. We then derive its image step on the unit
hypersphere, leading to definitions and expressions of effective learning rate and effective
learning direction. These new definitions are explicit and have a clear interpretation,
whereas the definition of van Laarhoven (2017) is asymptotic and the definitions of Arora
et al. (2019) and of Hoffer et al. (2018b) are variational. In section 3.4, we leverage
the tools of our spherical framework to demonstrate that, in presence of NLs, SGD is
equivalent to AdaGradG, a combination of AdaGrad Duchi et al. (2011) (a special case
of Adam without momentum) and AdamG (Cho and Lee, 2017) (a variant of Adam
constrained to the unit hypersphere). In other words, AdaGradG is a variant of Adam
without momentum and constrained to the unit hypersphere. In section 3.5, we analyze
the effective learning direction for Adam. The spherical framework highlights phenomena
that previous variants of Adam (Cho and Lee, 2017; Loshchilov and Hutter, 2019) act on.
We perform an empirical study of these phenomena and show that they play a significant
role in the training of convolutional neural networks (CNNs). In section 3.6, these
results are put in perspective with related work.

Our main contributions are the following:

• A framework to analyze and compare order-1 optimization schemes of radially-
invariant models;

• The first explicit expression of the effective learning rate for Adam;

• The demonstration that, in the presence of NLs, standard SGD is equivalent to
AdaGradG, a variant of Adam without momentum and constrained to the unit
hypersphere;

• The identification and the study of geometrical phenomena that occur with Adam
and that impact significantly the training of CNNs with NLs.

32 | Impact of Normalization Layers on Optimization

Fig. 3.1 Illustration of the spherical perspective for SGD. The loss function L of a NN
w.r.t. the parameters xk ∈ Rd of a neuron followed by a BN is radially invariant. The
neuron update xk → xk+1 in the original space, with velocity ηk∇L(xk), corresponds
to an update uk → uk+1 of its projection through an exponential map on the unit
hypersphere Sd−1 with velocity ηe

k∥∇L(uk)∥ at order 2 (see details in section 3.3).
Note that in this figure, just as in section 2.3, to avoid heavy notations we use L to
denote the training loss function evaluated on a random batch of the dataset LBk

.

3.2 Technical background

In this section, we cover the main mathematical tools used to build our analytical
framework to quantify the impact of NL on DNN optimization. We first give background
on the radial invariance. Then, we detail how this radial invariance stems from the use
of NL in DNN architectures. The concept of quotient space by the equivalence relation
associated to radial invariance is leveraged to define a space that better reflects the model
function than the full parameter space. Once built, we cover the basic intuitions behind
Riemannian geometry to introduce the tools needed to perform projections.

3.2.1 Radial invariance

General case. We consider a family of parametric functions ϕx : Rin −→ Rout parame-
terized by a group of radially-invariant parameters x ∈ Rd\ {0}, i.e., ∀ρ> 0, ϕρx =ϕx, a
dataset Dtrain comprised of a finite number of input and output samples:(s, t) ∈ Rin×Rout,
a loss function ℓ : Rout × Rout → R and a training loss function L : Rd → R defined as:

L(x) def= 1
|Dtrain|

∑
(s,t)∈Dtrain

ℓ(ϕx(s), t). (3.1)

3.2 Technical background | 33

It verifies: ∀ρ > 0, L(ρx) = L(x). By using the previous, equality, the definition of the
differential of L as well as the composition of differentials, we obtain the following lemma
that states that the gradient of a radially-invariant loss function is tangential and −1
homogeneous (see proof in appendix 1):

Lemma 1 (Gradient of a function with radial invariance). If L : Rd → R is radially
invariant and almost everywhere differentiable, then, for all ρ > 0 and all x ∈ Rd

where L is differentiable, we have:

⟨∇L(x),x⟩ = 0 and ∇L(x) = ρ∇L(ρx). (3.2)

3.2.2 Radially invariant parameters in DNN with NL.

In the context of DNN equipped with NL, not all groups of parameters are radially
invariant. The set of parameters Rd can be split into two disjoint sets Rd = F ∪R where
F is the set of groups of radially-invariant parameters and R is the set of remaining
parameters. Note that the set of remaining parameters in R differs from one architecture
to another depending on the considered NLs. The following notations are restricted to
this section only.

DNNs with BN. In this paragraph, we show the radial invariance of a set of filters
equipped with BN. For the sake of simplicity, we only consider the case of a convolutional
layer that preserves the spatial extension of the input. We also focus on a single filter.
Since all filters act independently on input data, the following calculation holds for
any filter. Let x ∈ RC×K be the parameters of a single filter, where C is the number
of input channels and K is the kernel size. During training, this layer is followed by
BN and applied to a batch s ∈ RB×C×D of B inputs of spatial size D. The output of
the convolution operator ϕ applied to a filter x ∈ RC×K and to a given batch element
sb ∈ RC×D, with b ∈ J1, BK, is thus:

τ b
def= ϕ(x, sb) ∈ RD. (3.3)

The application (x, sb) 7→ ϕ(x, sb) is bilinear. BN then centers and normalizes the output

34 | Impact of Normalization Layers on Optimization

t using the mean and variance over the batch and the spatial dimension:

µ = 1
BD

∑
b,j

τb,j, (3.4)

σ2 = 1
BD

∑
b,j

(τb,j − µ)2 , (3.5)

τ
(BN)
b

def= (σ2 + ϵ)−1/2 (τ b − µ1D) , (3.6)

where 1D denotes the all-ones vector of dimension D and ϵ is a small constant.
Now if the coefficients of the filter are rescaled by ρ > 0, then, by bilinearity, the new
output of the layer for this filter verifies:

τ̃ b = ϕ(ρx, sb) = ρϕ(x, sb). (3.7)

Since the variance of inputs is generally large in practice, for small ϵ, the mean and
variance are:

µ̃ = ρµ, (3.8)
σ̃2 ≈ ρ2σ2. (3.9)

It can then be considered that the subsequent BN layer is invariant to this rescaling, i.e.,
τ̃

(BN)
b ≈ τ

(BN)
b . The model, at the convolutional layer is therefore radial invariant w.r.t.

every single filter. In other words the set of radially parameters F is precisely the set of
all convolutional filters in the network.

Other NLs. The above calculus is analogous for other normalization schemes. Only
the considered group of radially invariant parameters differs from one architecture to
another. The radial invariance for BN described above applies as well to IN and WN as
the normalization is also done with respect to channels but without the batch dimension.
Regarding LN, the normalization is performed over all channels and the entire weight layer
can thus be rescaled too, without impacting the output. As for GN, it associates several
channels for normalization; the radial invariance in this case concerns the corresponding
group of filters. Thanks to this general property of radial invariance, the results in this
chapter not only concern BN but also WN and IN. In fact, they apply as well to LN and
GN when considering the suitable group of parameters. The optimization in this case
concerns the proper slice of the parameter tensor of the layer, i.e., the whole tensor for
LN, and the selected group of filters for GN.

3.2 Technical background | 35

Fig. 3.2 3D illustration of equivalent classes and unit hypersphere. The ray Cx1 is the
equivalent class of the parameter x1. The parameter x′

1 and u1 yield the same model
and hence loss function value. To avoid such a redundancy, we map each parameter of
Rd belonging to Cx1 to u1 ∈ Sd−1. By repeating the previous mapping for all x ∈ Rd,
it leads to the unit hypersphere Sd−1.

In the rest of this chapter, all results and calculus only concerns radially invariant
parameters. In contrast to section 2.1.1, for the purpose of notations, we use x ∈ Rd

to denote a group of radially parameters of dimension d. The scope of our analysis is
restricted to the set of identified radially invariant parameters in the corresponding DNN
with NL architecture.

3.2.3 Quotient of the parameter space and hypersphere

The radial invariance implies redundancy among the parameters in Rd. All parameters
that belong to the same ray starting from the origin result in the same model function
and hence the same loss function. Now, we construct a subset of the parameter space
Rd in which each parameter corresponds to a different function value. Constructing
such a set is of interest since it will better reflect the model function associated to the
parameters. To achieve that, we need to quotient the parameter space by the equivalence
relation associated to radial invariance. Intuitively, each element of the set defined
by {x ∈ Rd|N (x) = 1} is enough to represent the parameter space (where N is the
Euclidean norm associated to the scalar product). Formally, the equivalence relation

36 | Impact of Normalization Layers on Optimization

associated to radial invariance R is defined by:

∀x, x̃ ∈ Rd \ {0Rd},∀ρ > 0,xRx̃⇔ x = ρx̃. (3.10)

The quotient space by the equivalence relation associated to radial invariance is denoted
Rd \ {0Rd}/R and defined by the set of all equivalent classes:

∀x ∈ Rd \ {0Rd}, Cx =
{
x̃ ∈ Rd|xRx̃

}
. (3.11)

The quotient space by the equivalence relation associated to radial invariance Rd\{0Rd}/R
is topologically equivalent to {x ∈ Rd|N (x) = 1}. Note that, since we aim at analyzing
the optimization process, the choice of the norm N is of high importance. We consider
here the L2 sphere Sd−1 = {u ∈ Rd/∥u∥2 = 1} whose canonical metric corresponds to
angles: dS(u1,u2) = arccos(⟨u1,u2⟩). This choice of metric is relevant to study NNs
since filters in CNNs or neurons in MLPs are applied through scalar product to input
data. Besides, normalization in NLs is also performed using the L2 norm directly in
WeightNorm (Salimans and Kingma, 2016), and indirectly in other NLs because the
standard deviation can be interpreted as a centered L2 norm. To give a better intuition
of the above-mentionned mathematical objects, we provide an illustration in Figure 3.2.

3.2.4 Riemannian geometry

We previously built a set that better reflects the model function associated to the
parameters, which boils down to the hypersphere Sd−1. From now on, we could directly
optimize parameters on the unit hypersphere. Yet, order-1 optimization schemes already
produce successful results in NL-equipped DNN architectures. In order to analyze
their success and quantify the impact of NLs on the optimization of radially-invariant
parameters, we are going to project the successive updates on the L2 unit hypersphere
during training. Precisely, when updating parameters via an optimization step in the
parameter space we want to quantify the equivalent step taken on the unit hypersphere.
To characterize properly such an equivalent step on Sd−1, which is a nonlinear space, we
need to introduce the basic concepts of Riemannian geometry. This theory articulates
around the concept of Riemannian manifold as well as the notion of Riemannian distance.
Overall, Riemannian geometry aims at extending methods from traditional geometry
restricted to Euclidean space to smooth and possibly nonlinear space. The goal of this
section is not to cover extensively this tpoic but only to give simple intuitions of the

3.2 Technical background | 37

Fig. 3.3 Illustration of exponential map on the unit hypersphere in dimension
3. There is a unique geodesic γ : [−1, 1] →M that is differentiable and such that
γ(0) = u and γ′(0) = w. Then, the exponential map along the tangential direction w
that belongs to the tangent space Tu(M) from the point on the manifold u is defined
as Expu(w) = γ(1).

different concepts. We refer the reader to Lee (2006) for an in-depth review of Riemannian
geometry.

Riemannian manifold. Intuitively, a smooth manifold M is a space that can be
approximated locally by a linear space around every point. The linearization at such
a point u is called the tangent space at u: Tu(M). To define a Riemannian structure
on the manifold we equip each tangent space with its own inner product ⟨·, ·⟩u that
varies smoothly with u. Note that each inner product depends on the points u on the
manifold. This choice of inner products is called a Riemannian metric. The resulting
structure is called a Riemannian manifold. Note that a Riemannian manifold allows
one to define properly the notion of gradients (as well as Hessians) on the manifold to
perform optimization constrained to manifold.

Exponential mapping. To express the equivalent step on the manifold, the notion of
distance on M needs to be introduced. The Riemannian metric induces a distance δ on
the connected components of M. Intuitively, δ(u,u′) for all u,u′ ∈M is the length of
the shortest smooth curve onM joining u and u′. Formally the length of a smooth curve
on M is the integral of the norm of the curve’s speed computed with the Riemannian
metric. Note that the latter quantity depends on the parametrization of the curve. The
Riemannian distance δ is defined as the infinimum over all curves ofM joining u and u′.

38 | Impact of Normalization Layers on Optimization

By convention, a geodesic is the reached infinimum over all curves of M joining u and
u′ with constant tangent velocity 1. Geodesics are paths minimizing the local distance
on M while conserving the tangent velocity. They are the generalization of straight line
in linear spaces to manifolds. Using the tools from the study of ordinary differential
equations, one can show that, given a Riemannian manifoldM, for a point u ∈M there
exists an open set O of the tangent space TuM containing 0, such that for any tangent
vector w ∈ O, there is a unique geodesic γ : [−1, 1]→M that is differentiable and such
that γ(0) = u and γ′(0) = w. Then, the exponential map of w from u is defined as
Expu(w) = γ(1). The exponential map allows one to move away from u smoothly along
a prescribed tangent direction w while remaining on the manifold (see illustration in
Figure 3.3). This is precisely what we aim at, when quantifying the equivalent step on
the hypersphere of an optimization step in the parameter space.

3.3 Spherical Framework

In this section, we first introduce a generic optimization scheme that encompasses
SGD, SGD with momentum (SGD-M) and Adam, with and without L2-regularization.
Projecting the scheme update on the unit hypersphere leads to the formal definitions of
effective learning rate and learning direction for any order-1 optimization scheme. This
geometric perspective leads to the first explicit expression of the effective learning rate
for Adam. These expressions cast new light on the interaction between optimization and
radially-invariant parameters. The main notations are summarized in Figure 3.1.

3.3.1 Generic optimization scheme

There is a large body of literature on optimization schemes (Duchi et al., 2011; Kingma
and Ba, 2014; Loshchilov and Hutter, 2019; Sutskever et al., 2013; Tieleman and Hinton,
2012). We focus here on two of the most popular ones, namely SGD and Adam (Kingma
and Ba, 2014). Yet, to establish general results that may apply to a variety of other
schemes, we introduce here a generic optimization update:

xk+1 = xk − ηkak ⊘ bk, (3.12)
ak = βak−1 +∇L(xk) + λxk, (3.13)

where xk ∈ Rd is the group of radially-invariant parameters at iteration k, L is the
group’s loss estimated on a batch of input data (to ease the notation we use this notation
instead of LBk

), ak ∈ Rd is a momentum, bk ∈ Rd is a division vector that can depend on

3.3 Spherical Framework | 39

the trajectory (xi,∇L(xi))i∈J0,kK, ηk ∈ R is the scheduled trajectory-independent learning
rate, ⊘ denotes the Hadamard element-wise division, β is the momentum parameter,
and λ is the L2-regularization parameter. We show how it encompasses several known
optimization schemes.

Stochastic gradient descent (SGD) has proven to be an effective optimization
method in deep learning. It can include L2 regularization (also called weight decay) and
momentum. Its updates are:

xk+1 = xk − ηkmk, (3.14)
mk = βmk−1 +∇L(xk) + λxk, (3.15)

where mk is the momentum, β is the momentum parameter, and λ is the L2-regularization
parameter. It corresponds to our generic scheme (Eqs. 3.12-3.13) with ak = mk and
bk = [1 · · · 1]⊤.

Adam is likely the most common adaptive scheme for NNs. Its updates are:

xk+1 = xk − ηk
mk

1− βk+1
1
⊘
√

vk

1− βk+1
2

+ ϵ, (3.16)

mk = β1mk−1+(1− β1)(∇L(xk) + λxk), (3.17)
vk = β2vk−1 + (1− β2)(∇L(xk) + λxk)2, (3.18)

omentum with parameter β1, vk is the second-order moment with parameter β2, and ϵ

prevents division by zero. (Here and in the following, the square and the square root of
a vector are to be understood as element-wise.) It corresponds to our generic scheme
(Eqs. 3.12-3.13) with β=β1 and:

ak = mk

1− β1
, (3.19)

bk = 1− βk+1
1

1− β1

√
vk

1− βk+1
2

+ ϵ. (3.20)

3.3.2 Image optimization on the hypersphere

The radial invariance implies that the radial part of the parameter update x does not
change the function ϕx encoded by the model, nor does it change the loss L(x). Due to
radial invariance, the parameter space projected on the unit hypersphere is topologically

40 | Impact of Normalization Layers on Optimization

closer to the functional space of the network than the full parameter space. It hints
that looking at optimization behaviour on the unit hypersphere might be interesting. To
achieve this, we separate the quantities that can (tangential part) and cannot (radial
part) change the model function. Theorem 2 formulates the spherical decomposition of
our generic optimization scheme (Eqs. 3.12-3.13) in simple terms. It relates the update
of radially-invariant parameters in the parameter space Rd and their update on Sd−1

through an exponential map. Our framework relies on the decomposition of vectors into
radial and tangential components. During optimization, we write the radially-invariant
parameters at step k ≥ 0 as xk = rkuk where rk = ∥xk∥ and uk = xk/∥xk∥. For any
quantity qk ∈ Rd at step k, we write q⊥

k = qk−⟨qk,uk⟩uk its tangential component
relatively to the current direction uk.

Theorem 2 (Image step on Sd−1). Let’s consider the update of a group of radially-
invariant parameters xk at step k following the generic optimization scheme (see
Eqs. 3.12-3.13) and the corresponding update of its projection uk on Sd−1. If the
following hypothesis are verified:

• (H1): 1− ηk⟨ck,uk⟩
r2

k
d−1/2∥bk∥

> 0.

• (H2): ηe
k∥c⊥

k ∥ < π.

The update of a group of radially-invariant parameters xk at step k following the
generic optimization scheme (Eqs. 3.12-3.13) and the corresponding update of its
projection uk on Sd−1 is given by an exponential map at uk with velocity ηe

kc⊥
k :

uk+1 = Expuk

(
−
[
1 +O

(
∥ηe

kc⊥
k ∥2

)]
ηe

kc⊥
k

)
, (3.21)

where Expuk
is the exponential map on Sd−1, and with:

ck
def= rkak ⊘

bk

d−1/2∥bk∥
, (3.22)

ηe
k

def= ηk

r2
kd
−1/2∥bk∥

(
1− ηk⟨ck,uk⟩

r2
kd
−1/2∥bk∥

)−1

. (3.23)

More precisely:

uk+1 = uk − ηe
kc⊥

k√
1 + (ηe

k∥c⊥
k ∥)2

. (3.24)

3.3 Spherical Framework | 41

Also, the learning rate is tuned by the dynamics of radiuses rk which follow:

rk+1

rk

=
(

1− ηk⟨ck,uk⟩
r2

kd
−1/2∥bk∥

)√
1 + (ηe

k∥c⊥
k ∥)2. (3.25)

The theorem is illustrated in the case of SGD in Figure 3.1. The quantities defined in
Theorem 2 are discussed in section 3.3.3. Note that for CNN training the hypothesis (H1)
and (H2) with typical values of 1− ηk⟨ck,uk⟩

r2
k

d−1/2∥bk∥
> 0 (H1) are true. The other hypothesis

ηe
k∥c⊥

k ∥ < π (H2) where steps are supposed shorter than π is also true (see appendix B.1).

Proof. To simplify the calculation in the demonstration, we introduce the following
notation:

Ak
def= ηk

r2
kd
−1/2∥bk∥

. (3.26)

We first demonstrate the expression for the radius dynamics in Eq. (3.25) and the precise
step for u in Eq. (3.24). Then we use geometric arguments and a Taylor expansion to
derive the update on the sphere stated in Eq.(3.21).

Radius dynamics. We first show Eq. (3.25), which we recall here using the Ak

notation:

rk+1

rk

= (1− Ak⟨ck,uk⟩)
√

1 + (ηe
k∥c⊥

k ∥)2. ((3.25))

First, we rewrite the step of a generic scheme in Eqs. (3.12-3.13) along the radial and
tangential directions and separate the division vector bk into its deformation bk

d−1/2∥bk∥

and its scalar scheduling effect d−1/2∥bk∥, as stated in the discussion:

rk+1uk+1 = rkuk −
ηk

d−1/2∥bk∥
ak ⊘

bk

d−1/2∥bk∥

= rk

[
uk −

ηk

r2
kd
−1/2∥bk∥

rkak ⊘
bk

d−1/2∥bk∥

]

= rk

[
uk − Akrkak ⊘

bk

d−1/2∥bk∥

]
. (3.27)

We can note the appearance of a new term rkak. The vector ak is a gradient momentum
and therefore homogeneous to a gradient. Using Lemma 1, rkak is homogeneous to a
gradient on the hypersphere and can be interpreted as the momentum on the hypersphere.
From Eq. (3.27), we introduce ck (the deformed momentum on hypersphere) as in

42 | Impact of Normalization Layers on Optimization

Eq. (3.23) and decompose it into the radial and tangential components. We have:

rk+1

rk

uk+1 = uk − Akck

= (1− Ak⟨ck,uk⟩) uk − Akc⊥
k . (3.28)

By taking the squared norm of the equation, we obtain:

r2
k+1
r2

k

= (1− Ak⟨ck,uk⟩)2 +
(
Ak∥c⊥

k ∥
)2
. (3.29)

Making the assumption that 1−Ak⟨ck,uk⟩ > 0, which is true in practice and discussed
in the next subsection, we have:

rk+1

rk

= (1− Ak⟨ck,uk⟩)

√√√√1 +
(

Ak

1− Ak⟨ck,uk⟩
∥c⊥

k ∥
)2

. (3.30)

After introducing ηe
k = Ak

(1−Ak⟨ck,uk⟩) as in Eq. (3.23), we obtain the result of (3.25).
Update of normalized parameters. We then show Eq. (3.24):

uk+1 = uk − ηe
kc⊥

k√
1 + (ηe

k∥c⊥
k ∥)2

. ((3.24))

Combining the radius dynamics previously calculated with Eq. (3.28), we have:

uk+1 = (1− Ak⟨ck,uk⟩)uk − Akc⊥
k

(1− Ak⟨ck,uk⟩)
√

1 + (ηe
k∥c⊥

k ∥)2
(3.31)

=
uk − Ak

1−Ak⟨ck,uk⟩c
⊥
k√

1 + (ηe
k∥c⊥

k ∥)2
. (3.32)

Hence the result (3.24) using the definition of ηe
k. This result provides a unique decom-

position of the generic step as a step in span(uk, c⊥
k) for the normalized filter (Eq. (3.24))

and as a radius update (Eq. (3.25)). We split the rest of the proof of the theorem in
three parts.

Distance covered on the sphere. The distance covered on the hypersphere Sd−1

by an optimization step is:

distSd−1(uk+1,uk) = arccos(⟨uk+1,uk⟩). (3.33)

3.3 Spherical Framework | 43

From Eq. (3.24) and with Lemma 1, we also have:

⟨uk+1,uk⟩ = 1√
1 + (ηe

k∥c⊥
k ∥)2

. (3.34)

Therefore, distSd−1(uk+1,uk) = φ(ηe
k∥c⊥

k ∥) where φ : z 7→ arccos
(

1√
1+z2

)
, which is equal

to arctan on R+. Then a Taylor expansion at order 3 of arctan yields for ηe
k∥c⊥

k ∥:

distSd−1(uk+1,uk) = ηe
k∥c⊥

k ∥+O
((
ηe

k∥c⊥
k ∥
)3
)
. (3.35)

The Taylor expansion validity is discussed in the next subsection.
Exponential map on the sphere. Given a Riemannian manifold M, for a point

u ∈M there exists an open set O of the tangent space TuM containing 0, such that for
any tangent vector w ∈ O there is a unique geodesic (a path minimizing the local distance
on M when conserving the tangent velocity) γ : [−1, 1]→M that is differentiable and
such that γ(0) = u and γ′(0) = w. Then, the exponential map of w from u is defined
as Expu(w) = γ(1). In the case of the manifold Sd−1, the geodesics are complete (they
are well defined for any point u ∈ Sd−1 and any velocity w ∈ TuSd−1) and are the great
circles: for any u ∈ Sd−1 and any w ∈ TuSd−1, the map ψ : t ∈ R 7→ Expu(tw)) verifies
ψ(R) = Sd−1 ∩ span({u,w}) which is a great circle passing through u with tangent w
(see proofs in Lee (2006)). Furthermore, since the circumference of the great circle is 2π,
we have that for any p ∈ Sd−1\{−u} there is a unique w verifying ∥w∥ < π such that
p = Expu(w) and we have:

distSd−1(u,p) = ∥w∥ and ⟨p,w⟩ ≥ 0. (3.36)

Optimization step as an exponential map. We will use the previously stated
differential geometry properties to prove:

uk+1 = Expuk

(
−
[
1 +O

((
ηe

k∥c⊥
k ∥
)2
)]
ηe

kc⊥
k

)
. ((3.21))

For an optimization step we have:
• by construction, c⊥

k ∈ Tuk
Sd−1;

• from Eq. (3.24), uk+1 ∈ Sd−1 ∩ span({uk, c⊥
k });

• from Eq. (3.24), ⟨uk+1, c⊥
k ⟩ ≤ 0.

Then, there exists α that verifies ∥αc⊥
k ∥ < π such that:

uk+1 = Expuk

(
αc⊥

k

)
. (3.37)

44 | Impact of Normalization Layers on Optimization

From Eq. (3.36), because of the inequality ⟨uk+1, c⊥
k ⟩ ≤ 0, we have α < 0. We also

have that ∥αc⊥
k ∥ = distSd−1(uk+1,uk). Then, using the distance previously calculated in

Eq. (3.35), we have:

|α|∥c⊥
k ∥ = ηe

k∥c⊥
k ∥+O

((
ηe

k∥c⊥
k ∥
)3
)
, (3.38)

|α| = ηe
k

[
1 +O

((
ηe

k∥c⊥
k ∥
)2
)]
. (3.39)

Combining the sign and absolute value of α, we get the final exponential map expression:

uk+1 = Expuk

(
−
[
1 +O

((
ηe

k∥c⊥
k ∥
)2
)]
ηe

kc⊥
k

)
, ((3.21))

≈ Expuk

(
−ηe

kc⊥
k

)
. (3.40)

Note that we implicitly assume here that |α|∥c⊥
k ∥ ≈ ηe

k∥c⊥
k ∥ < π, which is discussed in

appendix B.1.

3.3.3 Effective quantities

In Theorem 2, the normalized parameters update in Eq. 3.21 can be read uk+1 ≈
Expuk

(
−ηe

kc⊥
k

)
, where ηe

k and c⊥
k can then be respectively interpreted as the learning

rate and the direction of an optimization step constrained to Sd−1. Since ak is the
momentum and, with Lemma 1, the quantity rkak in ck can be seen as a momentum
on the hypersphere. Due to the radial invariance, only the change of parameter on the
unit hypersphere corresponds to a change of model function. Hence we can interpret
ηe

k and c⊥
k as effective learning rate and effective learning direction. In other words,

these quantities correspond to the learning rate and direction on the hypersphere that
reproduce the function update of the optimization step.

Using Theorem 2, we can derive actual effective learning rates for any optimization
scheme that fits our generic framework. These expressions, summarized in Table 3.1 are
explicit and have a clear interpretation, in contrast to learning rates in (van Laarhoven,
2017), which are approximate and asymptotic, and in (Arora et al., 2019; Hoffer et al.,
2018a), which are variational and restricted to SGD without momentum only. In
particular, we provide the first explicit expression of the effective learning rate for Adam:

ηe
k = ηk

rkνk

(
1− ηk⟨ck,uk⟩

rkνk

)−1

(3.41)

3.4 SGD is equivalent to AdaGradG | 45

Table 3.1 Effective learning rate and direction for optimization schemes (we omit
here the iteration index k).

Scheme ηe c⊥

SGD η
r2 ∇L(u)

SGD + L2
η

r2(1−ηλ) ∇L(u)

SGD-M η
r2 (1− η⟨c,u⟩

r2)−1 c⊥

Adam η
rν

(1− η⟨c,u⟩
rν

)−1 c⊥

where νk = rkd
−1/2∥bk∥ is homogeneous to the norm of a gradient on the hypersphere and

can be related to an second-order moment on the hypersphere. Indeed, with Eq. (3.65)
and using Lemma 1, we can give the exact expression of the second-order moment on
the sphere, defined as νk = rkd

−1/2∥bk∥:

νk =d−1/2 1− βk+1
1

1− β1

(1− β2

1− βk+1
2

)1/2(k∑
i=0

βk−i
2

r2
k

r2
i

∥∇L(ui) + λr2
i ui∥2

)1/2

. (3.42)

Using the variable ν also simplifies the in-depth analysis in section 3.5, allowing a better
interpretation of formulas.

The expression of the effective learning rate of Adam, i.e., the amplitude of the step
taken on the hypersphere, reveals a dependence on the dimension d (through ν) of the
update of the considered group of radially-invariant parameters. In the case of an MLP
or CNN that stacks layers with neurons or filters of different dimensions, the learning
rate is thus tuned differently from one layer to another.

We can also see that for all schemes the learning rate is tuned by the dynamics of
radiuses rk, which follow Eq. 3.25. In contrast to previous studies (Arora et al., 2019; van
Laarhoven, 2017), this result demonstrates that for momentum methods, ⟨ck,uk⟩, which
involves accumulated gradients terms in the momentum as well as L2 regularization,
tunes the learning rate.

3.4 SGD is equivalent to AdaGradG

In this section, we leverage the tools introduced in the spherical framework of section 3.3
to find a scheme constrained to the hypersphere that is equivalent to SGD. We show that,
for radially-invariant models, SGD is actually an adaptive optimization method. Formally,

46 | Impact of Normalization Layers on Optimization

SGD is equivalent to a special case of AdamG (Cho and Lee, 2017) without momentum,
where AdamG is a variant of Adam adapted and constrained to the unit hypersphere.
Alternatively, we can also say that SGD is equivalent to a variant of AdaGrad adapted
and constrained to the hypersphere, where AdaGrad is a special case of Adam without
momentum. Besides, we illustrate this theoretical equivalence empirically.

3.4.1 Equivalence between optimization schemes

Due to the radial invariance, the functional space of the model is encoded by Sd−1.
In other words, two schemes with the same sequence of groups of radially-invariant
parameters on the hypersphere (uk)k≥0 encode the same sequence of model functions. We
say that two optimization schemes O and Õ are equivalent if and only if ∀k ≥ 0,uk = ũk.
Hence, starting from the same parameters, they reach the same optimum. By using
Eq. 3.24, we obtain the following lemma, which is useful to prove the equivalence of two
given optimization schemes:

Lemma 3 (Sufficient condition for the equivalence of optimization schemes). u0 = ũ0

∀k ≥ 0, ηe
k = η̃e

k, c⊥
k = c̃⊥

k

⇒ ∀k ≥ 0,uk = ũk. (3.43)

3.4.2 A hypersphere-constrained scheme equivalent to SGD

We now study, within our spherical framework, SGD with L2 regularization, i.e., its
associated update is: xk+1 = xk − ηk(∇L(xk)− λkxk). From the effective learning rate
expression, we know that SGD yields an adaptive behaviour because it is scheduled by
the radius dynamic, which depends on gradients. In fact, the tools in our framework
allow us to find that SGD is equivalent to a variant of Adam constrained to the unit
hypersphere, similar to AdamG (Cho and Lee, 2017), and without momentum, similar to
AdaGrad. AdamG (Cho and Lee, 2017) uses the same updates as Adam (eq. 3.16-3.18)
but project the weight on the hyper-sphere after each optimization step. More precisely,
SGD is equivalent to AdamG with a null momentum factor β1 = 0 (like AdaGrad), a
non-null initial second-order moment v0, an offset of the scalar second-order moment
k + 1 → k and without the bias correction term 1 − βk+1

2 . Dubbed AdaGradG, this

3.4 SGD is equivalent to AdaGradG | 47

scheme reads:

(AdaGradG):


x̂k+1 = xk − ηk

∇L(xk)√
vk

,

xk+1 = x̂k+1
∥x̂k+1∥ ,

vk+1 = βvk + ∥∇L(xk)∥2.

AdaGradG, like AdamG, is an adaptive method. Unlike Adam, which is adaptive with
respect to the second-order moment for each parameter, AdaGradG and AdamG are
adaptive for each group of radially-invariant parameters (e.g., filters for CNNs with BN
or WN). In other words, each filter is adapted individually and independently by the
optimization algorithm; it is not a global scheduling. Now if we call « equivalent at
order 2 in the step » a scheme equivalence that holds when we use for rk an expression
that satisfies the radius dynamic with a Taylor expansion at order 2, then we have the
following theorem:

Theorem 4 (SGD equivalent scheme on the unit hypersphere). For any λ ≥ 0, η >
0, r0 > 0, we have the following equivalence when using the radius dynamic at order
2 in (ηk∥∇L(uk)∥)2/r2

k:


(SGD)
x0 = r0u0

λk = λ

ηk = η

is scheme-equivalent at order 2 in step with



(AdaGradG)
x0 = u0

β = (1− ηλ)4

ηk = (2β)−1/2

v0 = r4
0(2η2β1/2)−1.

This result is unexpected because SGD, which is not adaptive by itself, is equivalent
to a second order moment adaptive method. The scheduling performed by the radius
dynamics actually replicates the effect of dividing the learning rate by the second-order
moment of the gradient norm: vk. For standard values of hyperparameters λ < 1 (order
of magnitude of 10−4) and η < 1 (order of magnitude at most 10−1), the higher-order
terms of the radius in the Taylor expansion empirically become negligible in practice.
Second, with standard values of the hyper-parameters, namely learning rate η < 1 and
L2 regularization λ < 1, we have β ≤ 1 which corresponds to a standard value for a
moment factor. Interestingly, the L2 regularization parameter λ controls the memory of
the past gradients’ norm. If β = 1 (with λ = 0), there is no attenuation, each gradient
norm has the same contribution in the order-2 moment. If λ ̸= 0, there is a decay factor
(β < 1) on past gradients’ norm in the order-2 moment. This gives a new interpretation
of the role of the L2 regularization parameter λ in SGD with NLs.

48 | Impact of Normalization Layers on Optimization

Proof. Starting from SGD, we first use Lemma 3 to find a strict equivalence scheme
with a simpler radius dynamic. We resolve this radius dynamic with a Taylor expansion
at order 2 in (ηk∥∇L(uk)∥)2/r2

k. A second use of Lemma 3 finally leads to the scheme
equivalence in Theorem 4. The fact that rk is well approximated at order 2 in practice is
illustrated and discussed in appendix C.1. As summarized in Table 3.1, the expressions
of the effective learning rates and directions for SGD are c⊥

k = rk∇L(xk) = ∇L(uk) and
ηe

k = ηk

r2
k

(1−ηkλk) .
Equivalence with SGD and L2 regularization. We look for conditions leading to

an equivalence between SGD with L2 regularization and SGD without L2 regularization.
Using Lemma 3, the equality of effective directions is trivial and the equality of effective
learning rates for any step k yields the following equivalence:


(SGD)
x̃0 = r0u0

λ̃k = λ

η̃k = η

is scheme-equivalent to


(SGD)
x0 = r0u0

λk = 0
ηk = η(1− ηλ)−2k−1

(3.44)

L2 regularization is equivalent to an exponential scheduling of the learning rate, as found
in Li and Arora (2020). Here, we provide a proof in a constructive manner. We are going
to use Lemma 3 and find a sufficient condition to have: (i) u0 = ũ0

(ii) ∀k ≥ 0, ηe
k = η̃e

k, c⊥
k = c̃⊥

k .

Equation (i) is trivially satisfied by simply taking the same starting point: x̃0 = x0.
Regarding (ii), because effective directions are the same and only depend on uk, we only
need a sufficient condition on ηe

k. For effective learning rates, using Eq. ((3.25)) and
expressions in Table 3.1, we have:

ηe
k = η̃e

k ⇔
ηk

r2
k

= η̃k

r̃2
k(1− η̃kλ) . (3.45)

Since η̃k = η, we obtain:

(3.45)⇔ ηk =
(
rk

r̃k

)2 η

(1− ηλ) .

Therefore:
ηk+1

ηk

=
(
rk+1r̃k

r̃k+1rk

)2

=
(
rk+1/rk

r̃k+1/r̃k

)2

.

3.4 SGD is equivalent to AdaGradG | 49

By using the radius dynamics in Eq. (3.25) for the two schemes, SGD and SGD with L2

regularization, and by the equality of effective learning rates and directions, we have:

ηk+1

ηk

=


√
1 + (ηe

k∥c⊥
k ∥)2

(1− ηλ)
√

1 + (η̃e
k∥c̃⊥

k ∥)2

2

= (1− ηλ)−2.

By taking Eq. (3.45) for k = 0, because r0 = r̃0 we have: η0 = η(1− ηλ)−1. Combining
the previous relation and the initialization case, we derive by induction that ηk =
η(1−ηλ)−2k−1 is a sufficient condition. We can conclude, using Lemma 3, the equivalence
stated in Eq. (3.44).

Resolution of the radius dynamics. Without L2 regularization, the absence of
radial component in ck makes the radius dynamics simple:

r2
k+1 = r2

k + (ηk∥∇L(uk)∥)2

r2
k

. (3.46)

With a Taylor expansion at order 2, we can show that for k ≥ 1 the solution

r2
k =

√√√√2
k−1∑
i=0

(ηi∥∇L(ui)|)2 + r4
0

satisfies the previous equation. Indeed using the expression at step k + 1 gives:

r2
k+1 =

√√√√2
k−1∑
i=0

(ηi∥∇L(ui)|)2 + r4
0 + 2(ηk∥∇L(uk)∥)2

= r2
k

√√√√1 + 2(ηk∥∇L(uk)∥)2

r4
k

= r2
k

(
1 + (1/2)2(ηk∥∇L(uk)∥)2

r4
k

+ o

(
(ηk∥∇L(uk)∥)2

r4
k

))

= r2
k + (ηk∥∇L(uk)∥)2

r2
k

+ o

(
(ηk∥∇L(uk)∥)2

r2
k

)
.

50 | Impact of Normalization Layers on Optimization

Using ηk = η(1− ηλ)−2k−1, introducing β = (1− ηλ)4, omitting the o
(

(ηk∥∇L(uk)∥)2

r2
k

)
and

injecting the previous solution in the effective learning rate, we obtain the closed form:

ηe
k = η(1− ηλ)−2k−1√

2∑k−1
i=0 η

2(1− ηλ)−4i−2∥∇L(ui)∥2 + r4
0

= (2β)− 1
2√∑k−1

i=0 β
(k−1)−i∥∇L(ui)∥2 + βk r4

0

2η2β
1
2

. (3.47)

AdaGradG. The AdaGradG scheme is constrained on the hypersphere thanks to
the normalization; the radius is therefore constant and equal to 1. The absence of radial
component in the update gives: c⊥

k = ∇L(uk) and ηe
k = ηk√

vk
. Thus, the resolution of the

induction on vk leads to the the closed form:

ηe
k = ηk√∑k−1

i=0 β
(k−1)−i∥∇L(ui)∥2 + βkv0

. (3.48)

Hence the final theorem, when identifying the closed-form expressions of effective learning
rates and using Lemma 3.

3.4.3 Empirical validation

In order to illustrate the equivalence in Theorem 4, we experiment with learning
an image classifier on CIFAR10 using different optimization schemes. We consider
two architectures: ResNet20 with BN and ResNet20 with WN (He et al., 2016a). We
recall the set of parameters θ of the above architectures can be split into two disjoint
subsets: θ = F ∪R, where F is the set of groups of radially-invariant parameters and
R is the set of remaining parameters. Note that the set of remaining parameters in R
differs from one architecture to another: for ResNet20 BN, it includes the last linear
layer as well as the scaling and bias of BN layers; for ResNet20 WN, it includes the
magnitude parameters in each convolutional layer as well as the last linear layer. For each
architecture, we experiment with tracking the trajectory of parameters under different
optimization schemes: SGD, AdaGradG and AdaGrad. As our analysis is restricted to
radially-invariant parameters, we only track the trajectory of parameters belonging to
F , while the remaining parameters, belonging to R, are always optimized in the same
way, i.e., with SGD. For stability purposes, we finetune a previously trained architecture
with SGD. The order of batches as well as the random seed for data augmentation are
fixed to obtain comparable trajectories. The hyperparameters are chosen for SGD and

3.5 Geometric phenomena in Adam | 51

(a) ResNet20 BN. (b) ResNet20 WN.

Fig. 3.4 Comparison of the trajectories of radially-invariant parameters using
different optimization schemes. For three randomly selected filters in each
block of a ResNet20 architecture, with BN (left) or WN (right), we compute
the cosine similarity between the parameter values obtained with SGD and
the parameters values obtained respectively by AdaGradG and AdaGrad, at
different iteration stages of a classification training on CIFAR10.

AdaGrad so that gradient steps have the same order of magnitude (see appendix C.1
for details); the hyperparameters for AdaGradG are provided by the equivalence in
Theorem 4. In Figure 3.4, we show the angle between the training trajectories using SGD
and AdaGradG (resp. SGD and AdaGrad), for three different filters in each block of the
ResNet20 architectures. We observe that the trajectories on the L2 unit hypersphere
remain aligned for SGD and AdaGradG whereas, for SGD and AdaGrad, they quickly
diverge. It empirically validates the equivalence mentioned in Theorem 4.

3.5 Geometric phenomena in Adam

Our framework with its geometrical interpretation reveals intriguing behaviors occurring
in Adam. Indeed, since the unit hypersphere is enough to represent the functional space
encoded by the network, from the perspective of manifold optimization, the optimization
direction should only depend on the trajectory on that manifold. In the case of Adam, the
effective direction not only depends on the trajectory on the hypersphere but also on the
deformed gradients and additional radial terms. These terms are thus likely to play a role
in Adam optimization. In order to understand their role, we describe these geometrical

52 | Impact of Normalization Layers on Optimization

phenomena in section 3.5.1. Interestingly, previous variants of Adam, AdamW (Loshchilov
and Hutter, 2019) and AdamG (Cho and Lee, 2017) are related to these phenomena. To
study empirically their importance, we consider in section 3.5.2 variants of Adam that
first provide a direction intrinsic to the unit hypersphere, without deformation of the
gradients, and then where radial terms are decoupled from the direction. The empirical
study of these variants over a variety of datasets and architectures suggests that these
behaviors do play a significant role in CNNs training with BN.

3.5.1 Identification of geometrical phenomena in Adam

Here, we perform an in-depth analysis of the effective learning direction of Adam.

(a) Deformed gradients. Considering the quantities defined for a generic scheme in
Eq. 3.23, bk has a deformation effect on ak, due to the Hadamard division by bk

d−1/2∥bk∥
,

and a scheduling effect d−1/2∥bk∥ on the effective learning rate. In the case where the
momentum factor is null β1 = 0, the direction of the update at step k is ∇L(uk)⊘ bk

d−1/2∥bk∥
(Eq. 3.23) and the deformation bk

d−1/2∥bk∥
may push the direction of the update outside the

tangent space of Sd−1 at uk, whereas the gradient itself lies in the tangent space. This
deformation is in fact not isotropic: the displacement of the gradient from the tangent
space depends on the position of uk on the sphere. We illustrate this anisotropy in
Figure 3.5(b).

(b) Additional radial terms. In the momentum on the sphere ck, quantities that are
radial (resp. orthogonal) at a point on the sphere may not be radial (resp. orthogonal) at
another point. To clarify the contribution of ck in the effective learning direction c⊥

k , we
perform the following decomposition. We recall that:

ck = rkak ⊘
bk

d−1/2∥bk∥
,

We start by the recurrence in Eq (3.13):

ak =
k∑

i=0
βk−i (∇L(xi) + λxi) . (3.49)

3.5 Geometric phenomena in Adam | 53

Using Lemma 1 and decomposing on ∇L(ui) and ui, we have:

ak =
k∑

i=0
βk−i

(1
ri

∇L(ui) + λriui

)
(3.50)

= 1
rk

(
k∑

i=0
βk−i

(
rk

ri

∇L(ui) + λrkriui

))
. (3.51)

Thus:

rkak =
k∑

i=0
βk−i rk

ri

∇L(ui) + λr2
k

k∑
i=0

βk−i ri

rk

ui, (3.52)

Overall, we obtain the decomposition:

ck = (cgrad
k + λr2

kcL2
k)⊘ bk

d−1/2∥bk∥
with: (3.53)

cgrad
k

def= ∇L(uk) +
k−1∑
i=0

βk−i rk

ri

∇L(ui) (3.54)

cL2
k

def= uk +
k−1∑
i=0

βk−i ri

rk

ui. (3.55)

b1. Contribution of cgrad
k . At step k, the contribution of each past gradient corre-

sponds to the orthogonal part ∇L(ui)−⟨∇L(ui),uk⟩uk. It impacts the effective learning
direction depending on its orientation relatively to uk. Two past points, although equally
distant from uk on the sphere and with equal gradient amplitude may thus contribute
differently in c⊥

k due to their orientation (cf. Figure 3.5(c)).

b2. Contribution of cL2
k . Naturally, the current point uk does not contribute to

the effective learning direction c⊥
k , unlike the history of points in ∑k−1

i=0 β
k−i ri

rk
ui, which

does. This dependency can be avoided if we decouple the L2 regularization, in which
case we do not accumulate L2 terms in the momentum. This shows that the decoupling
proposed in AdamW (Loshchilov and Hutter, 2019) actually removes the contribution of
L2 regularization in the effective learning direction.

(c) The radius ratio rk

ri
present in both cgrad

k and cL2
k (in inverse proportion) impacts

the effective learning direction c⊥
k : it can differ for identical sequences (ui)i≤k on the

sphere but with distinct radius histories (ri)i≤k. Since the radius is closely related to
the effective learning rate, it means that the effective learning direction c⊥

k is adjusted
according to the learning rates history.

54 | Impact of Normalization Layers on Optimization

Note that AdamG (Cho and Lee, 2017), by constraining the optimization to the unit
hypersphere and thus removing L2 regularization, neutralizes all the above phenomena.
However, this method has no scheduling effect allowed by the radius dynamics (cf.
Eq.3.25) since it is kept constant during training.

3.5.2 New variants of Adam.

We recall that AdamW neutralizes (b2) and that AdamG neutralizes all of above
phenomena but loses the scheduling effect identified in Eq. 3.25. To complete our analysis,
we use geometrical tools to design variations of Adam which neutralizes sequentially each
phenomenon while preserving the natural scheduling effect in Theorem 2. We neutralize
(a) by replacing the element-wise second-order moment, (b1) and (b2) by transporting
the momentum from a current point to the new one, (c) by re-scaling the momentum at
step k.

Adam without deformation of gradients (a). Following Theorem 2, the division
vector bk has two contributions in the decomposition:

• a deformation in ck applied to ak: ck = rkak ⊘ bk

d−1/2∥bk∥
;

• a scheduling effect in the effective learning rate d−1/2∥bk∥ (Eq. (3.23)).

The goal is to find a new division vector S(bk) that does not create a deformation while
preserving the scheduling effect of bk in the effective learning rate. This means:

S(bk)
d−1/2∥S(bk)∥

= [1 · · · 1]⊤, (3.56)

d−1/2∥S(bk)∥ = d−1/2∥bk∥. (3.57)

This leads to S(bk) = d−1/2∥bk∥[1 · · · 1]⊤.
In the case of β1 = 0, ak = ∇L(xk), for any bk. When we apply the standardization,

we obtain:

ck = rk∇L(xk)⊘ S(bk)
d−1/2∥S(bk)∥

= ∇L(uk)⊘ [1 · · · 1]⊤ = ∇L(uk). (3.58)

3.5 Geometric phenomena in Adam | 55

The direction lies in the tangent space because, by Lemma 1, the gradient belongs to it.
In the generic scheme, using the standardization gives:

xk+1 = xk − ηkak ⊘ S(bk) (3.59)
= xk − ηkak ⊘ (d−1/2∥bk∥[1 · · · 1]⊤) (3.60)
= xk − ηkak/(d−1/2∥bk∥). (3.61)

This means that the standardization consists in replacing the Hadamard division by bk

with a scalar division by d−1/2∥bk∥. In the case of Adam, we recall that:

bk = 1− βk+1
1

1− β1

√
vk

1− βk+1
2

+ ϵ . ((3.20))

Omitting ϵ for simplicity we have:

d−1/2∥bk∥ = 1− βk+1
1

1− β1

(
1

1− βk+1
2

) 1
2

d−1/2∥
√

vk∥. (3.62)

Let us calculate ∥√vk∥. Developing the recursion of vk, as defined in Eq. (3.18), leads to:

vk = (1− β2)
k∑

i=0
βk−i

2 (∇L(xi) + λxi)2 , (3.63)

√
vk =

√
1− β2

√√√√ k∑
i=0

βk−i
2 (∇L(xi) + λxi)2, (3.64)

where the square and the square-root are element-wise operations. Hence, if we take the
square norm:

∥
√

vk∥2 = (1− β2)
d∑

j=1


√√√√ k∑

i=0
βk−i

2 (∇L(xi) + λxi)2

2

j

= (1− β2)
d∑

j=1

k∑
i=0

βk−i
2 (∇L(xi) + λxi)2

j

= (1− β2)
k∑

i=0
βk−i

2

d∑
j=1

(∇L(xi) + λxi)2
j

= (1− β2)
k∑

i=0
βk−i

2 ∥∇L(xi) + λxi∥2, (3.65)

56 | Impact of Normalization Layers on Optimization

where the j subscript denotes the j-th element of the vector. It is exactly the order-2
moment of the gradient norm. Therefore, we define the scalar vk:

vk = β2vk−1 + (1− β2)d−1∥∇L(xk) + λxk∥2, (3.66)

which is the order-2 moment of the gradient norm with a factor d−1. It verifies √vk =
d−1/2∥√vk∥, needed for the scalar division stated in Eq. (3.62). By applying the bias
correction, it gives the formula given in the chapter of Adam w/o (a):

xk+1 = xk − ηk
mk

1− βk+1
1

/

√
vk

1− βk+1
2

+ ϵ, (3.67)

mk = β1mk−1+(1− β1)(∇L(xk) + λxk), (3.68)
vk = β2vk−1 + (1− β2)d−1∥∇L(xk) + λxk∥2. (3.69)

Note that the previous demonstration makes the factor d−1 appear in vk to have exactly
the scheduling effect of Adam without the deformation.

Adam without deformed gradients and no additional radial terms (ab). We
introduce the rescaling and transport transformation of the momentum to neutralize the
identified effects on the effective direction. The resulting, new ck is orthogonal to uk and
does not contribute in the effective learning rate tuning with its radial part. To avoid
gradient history leaving the tangent space and thus neutralize (b), we perform a parallel
transport of the momentum ak−1 from the corresponding point on the sphere uk−1 to
the new point uk denoted as Γuk

uk−1
(ak−1) at each iteration k ≥ 1. Figure 3.5(c) illustrates

the transport of a gradient. The parallel transport between two points associates each
vector of the tangent space of the first point to a vector of the second tangent space by
preserving the scalar product with the derivatives along the geodesic. Consequently, the
gradients accumulated in the resulting momentum now lie in the tangent space of uk

at each step. This neutralizes the additional radial terms phenomena from cgrad
k . Since

uk−1, uk and ak are coplanar, the transport of the momentum on the hypersphere can
be expressed as a rotation:

T(ak−1) def= Γuk
uk−1

(ak−1)=⟨uk−1,uk⟩ak−1 − ⟨ak−1,uk⟩uk−1, (3.70)
ak = βT(ak−1) +∇L(xk) + λxk. (3.71)

Although the transport operation is strictly defined on the tangent space only, the scalar
product formulation enables its extension to the whole space. The transformation is

3.5 Geometric phenomena in Adam | 57

linear and T(uk−1) = 0. We thus have:

T(ak−1 − λuk−1) = T(ak−1). (3.72)

In the previous formulation, we see that the L2 component is not transported and does not
contribute in the new momentum. Finally, the momentum only contains the contribution
of the current L2 regularization. This means that the RT transformation decouples the
L2 regularization and thus neutralizes the additional radial terms from cL2

k .

Adam without deformed gradients, no additional radial terms and no radius
ratio (abc). To avoid the ratio rk

ri
in the effective learning direction and thus to cancel

(c), we rescale the momentum in the update by the factor rk−1
rk

at each iteration k ≥ 1.
From Lemma. 1, we obtain:

R(ak−1) def= rk−1

rk

ak−1 (3.73)

ak = βR(ak−1) +∇L(xk) + λxk (3.74)

= 1
rk

(k∑
i=0

βk−i(∇L(uk) + λrkriui)
)
. (3.75)

Note that now, the factor rk

ri
is not contained anymore in the gradient contribution of

ck = rkak, which neutralizes the radius ratio phenomenon. We can note that R and T
are commutative and that we can combine them in a simple concise scalar expression:

RT(ak−1) def= ⟨xk,xk−1⟩ak−1 − ⟨xk, ak−1⟩xk−1

⟨xk,xk⟩
, (3.76)

ak = βRT(ak−1) +∇L(xk) + λxk. (3.77)

This new momentum leads to ck = cRT
k + r2

kλuk with ⟨ck,uk⟩ = λr2
k and c⊥

k = cRT
k . The

latter relies only on the trajectory on the hypersphere and always lies in the tangent
space:

cRT
k = βΓuk

uk−1
(cRT

k−1) +∇L(uk). (3.78)

58 | Impact of Normalization Layers on Optimization

Algorithm 1 Adam w/o (abc) and its algorithm illustrated for a filter x ∈ Rd followed
by BN. Steps that are different from Adam are shown in highlight . For non-convolutional
layers we use standard Adam.

1: procedure Adam w/o (abc) ◃ Require: β1, β2 ∈ [0, 1]; λ, η ∈ R; L(x)
2: while stopping criterion not met do
3: k ← k + 1
4: g← ∇L(xk) + λxk

5: mk ← β1mk−1 + (1− β1)g
6: vk ← β2vk−1 + (1− β2)d−1g⊤g
7: m̂←mk/(1− βk+1

1)
8: v̂ ← vk/(1− βk+1

2)
9: xk+1 ← xk − ηm̂/(

√
v̂ + ϵ)

10: mk ←mk(x⊤
k+1xkmk −m⊤

k xk+1xk)/(x⊤
k+1xk+1)

11: vk ← vk(x⊤
k xk/x⊤

k+1xk+1)
12: end while
13: return parameters xk

14: end procedure

The final Adam w/o (abc) scheme reads:

xk+1 = xk − ηk
mk

1− βk+1
1

/

√
vk

1− βk+1
2

+ ϵ, (3.79)

mk = β1RT(mk−1)+(1− β1)(∇L(xk) + λxk), (3.80)

vk = β2
r2

k−1
r2

k

vk−1 + (1− β2)d−1∥∇L(xk) + λxk∥2. (3.81)

We also rescale the introduced scalar vk at each step with the factor r2
k−1
r2

k
. This removes

the radius from the gradient contribution of the scheduling νR = rkvk, in contrast with
νk from Eq. (3.42). The new scheduling effect reads:

νR
k = d−1/2 1− βk+1

1
1− β1

√√√√ 1− β2

1− βk+1
2

(k∑
i=0

βk−i
2 ∥∇L(ui) + λrirkui∥2

)1/2
.

3.5.3 Empirical study.

To assess empirically the significance of the above phenomena in the context of CNNs
with BN and BN w/o affine, we evaluate the different variants of AdamW, AdamG, Adam
w/o (a), w/o (ab), w/o (abc) over a variety of datasets and architectures.

3.5 Geometric phenomena in Adam | 59

Protocol. For evaluation, we conduct experiments on two architectures: VGG16 (Si-
monyan and Zisserman, 2014) and ResNet (He et al., 2016a) – more precisely ResNet20,
a simple variant designed for small images (He et al., 2016a), and ResNet18, a popular
variant for image classification. We consider three datasets: SVHN (Netzer et al., 2011),
CIFAR10 and CIFAR100 (Krizhevsky et al., 2009). Since our goal is to evaluate the
significance of phenomena on radially-invariant parameters, i.e., the convolution filters
followed by BN, we only apply variants of Adam including AdamG and AdamW on
convolution layers. The algorithm of Adam w/o (abc) is illustrated in Algorithm 1.
Note, the optimization schemes introduced in this chapter do not change the complexity
in time of the algorithm. During the update of parameters in a layer, we only do a
temporary copy of the parameter tensor just before the update to perform the RT
transformation. This temporary copy is flushed after the RT transformation. Nothing
permanent is stored in the optimizer. For comparison consistency, we keep standard
Adam on the remaining parameters, and we use a fixed grid hyperparameter search
budget and frequency for each method and each architecture. For each optimization
scheme, each dataset and each architecture, the same grid search range and budget
was performed while mini-batch size was fixed. We used a mini-batch size of 128 for
SVHN, CIFAR10 and CIFAR100. The learning rates η varied in {10−4, 10−3, 10−2, 10−1},
the weight decay in 10−3 · {0, 1

128 ,
1
64 ,

1
32 ,

1
32 ,

1
16 ,

1
8 ,

1
4} (similar to Loshchilov and Hutter

(2019)), the momentum was fixed to 0.9 (β1 for variants of Adam) and the order-two
moment β2 in {0.99, 0.999, 0.9999} (as in Kingma and Ba (2014)). We used the same
step-wise learning rate scheduler for each method. For SVHN, CIFAR10 and CIFAR100,
models were trained for 405 epochs, and the learning rate multiplied by 0.1 at epochs
135, 225 and 315. For each architecture and each dataset, the same learning rate was
systematically found for each method while the momentum factor was fixed at 0.9 (cf.
appendix table B.1). Best other hyperparameters, i.e., L2 regularization and order-2
moment, are shown in appendix table B.2. Besides, please also remember that the impact
of the scaling and bias parameters (which belongs to the remaining non radially-invariant
parameters) is out of the scope of this study. Nevertheless, we additionally evaluate the
variants of Adam on CNNs with BN without scaling and bias parameters (BN w/o affine)
in table 3.2 and observe marginal performance difference in comparison to CNNs with
standard BN. It hints that the normalization layer in BN plays the most important role
regarding the model performance.

Results. In Table 3.3, we report quantitative results of Adam variants across
architectures and datasets. To indicate that AdamW and AdamG are actually only used
on convolutional filters, while Adam is used for the other parameters, we denote the

60 | Impact of Normalization Layers on Optimization

Table 3.2 Accuracy of Adam and its variants when training with BN w/o
affine layers. The figures in this table are the mean top1 accuracy ± the
standard deviation over 5 seeds on the test set for CIFAR10, CIFAR100 and
on the validation set for SVHN. † indicates that the original method is only
used on convolutional filters while Adam is used for other parameters.

CIFAR10 CIFAR100 SVHN
Method ResNet20 ResNet18 VGG16 ResNet18 VGG16 ResNet18 VGG16

Adam 90.41 ± 0.06 93.67 ± 0.15 92.62 ± 0.15 71.60 ± 0.22 68.28 ± 0.19 95.29 ± 0.11 95.56 ± 0.18
AdamW† 90.36 ± 0.11 93.7 ± 0.16 93.03 ± 0.12 70.11 ± 0.31 69.68 ± 0.12 89.83 ± 0.28 95.63 ± 0.11
AdamG† 91.12 ± 0.09 93.62 ± 0.14 93.20 ± 0.20 69.96 ± 0.34 70.07 ± 0.23 95.12 ± 0.09 95.62 ± 0.21
Adam w/o (a) 91.15 ± 0.11 93.98 ± 0.18 93.12 ± 0.14 75.43 ± 0.13 70.01 ± 0.24 95.75 ± 0.09 95.64 ± 0.10
Adam w/o (ab) 91.38 ± 0.08 94.63 ± 0.08 93.45 ± 0.06 75.68 ± 0.22 71.74 ± 0.15 95.77 ± 0.08 95.78 ± 0.07
Adam w/o (abc) 91.11 ± 0.11 94.02 ± 0.10 93.56 ± 0.09 75.38 ± 0.21 72.08 ± 0.22 95.51 ± 0.08 95.69 ± 0.09

Table 3.3 Accuracy of Adam and its variants when training with BN layers.

The figures in this table are the mean top1 accuracy ± the standard deviation over 5
seeds on the test set for CIFAR10, CIFAR100 and on the validation set for SVHN.

† indicates that the original method is only used on convolutional filters while Adam is
used for other parameters.

CIFAR10 CIFAR100 SVHN
Method ResNet20 ResNet18 VGG16 ResNet18 VGG16 ResNet18 VGG16

Adam 90.98 ± 0.06 93.77 ± 0.20 92.83 ± 0.17 71.30 ± 0.36 68.43 ± 0.16 95.32 ± 0.23 95.57 ± 0.20
AdamW† 90.19 ± 0.24 93.61 ± 0.12 92.53 ± 0.25 67.39 ± 0.27 71.37 ± 0.22 95.13 ± 0.15 94.97 ± 0.08
AdamG† 91.64 ± 0.17 94.67 ± 0.12 93.41 ± 0.17 73.76 ± 0.34 70.17 ± 0.20 95.73 ± 0.05 95.70 ± 0.25
Adam w/o (a) 91.15 ± 0.11 93.95 ± 0.23 92.92 ± 0.11 74.44 ± 0.22 68.73 ± 0.27 95.75 ± 0.09 95.66 ± 0.09
Adam w/o (ab) 91.92 ± 0.18 95.11 ± 0.10 93.89 ± 0.09 76.15 ± 0.25 71.53 ± 0.19 96.05 ± 0.12 96.22 ± 0.09
Adam w/o (abc) 91.81 ± 0.20 94.92 ± 0.05 93.75 ± 0.06 75.28 ± 0.35 71.45 ± 0.13 95.84 ± 0.07 95.82 ± 0.05

experimented methods as AdamW† and AdamG†. In addition, we compare the evolution
of the training loss in Figure 3.6 and the top1 accuracy on the validation set in Figure 3.7.
We observe that each phenomenon displays a specific trade-off between generalization
(accuracy on the test set) and training speed, as following. Neutralizing (a) has little
effect on the speed over Adam, yet achieves better accuracy on the train set. Although it
slows down training, neutralizing (ab) leads to minima with the overall best accuracy on
test set in the case of BN equipped CNNS. Note that AdamW† neutralizes (b2) with its
decoupling and is the fastest method, but finds minima with overall worst generalization
properties. By constraining the optimization to the hypersphere, AdamG† speeds up
training over the other variants. Finally, neutralizing (c) with Adam w/o (abc) brings a
slight acceleration, though reaches lower accuracy than Adam w/o (ab). In terms of
generalization, before the first decrease of the learning rate, neutralizing (a) displays
the same speed in terms of reached accuracy on the valid set compared to Adam. When
neutralizing (ab) and (abc), we observe a slight increase, comparable with AdamG†.

3.6 Related work | 61

After the first decrease of the learning rate, we observe the same hierarchy as in Table 3.3.
These results show that the geometrical phenomena revealed by our analysis in the
spherical framework have a significant impact on the training of BN-equipped CNNs.

3.6 Related work

Understanding Batch Normalization. Albeit conceptually simple, BN has been
shown to have complex implications over optimization. The argument of Internal
Covariate Shift reduction (Ioffe and Szegedy, 2015) has been challenged and shown to
be secondary to smoothing of optimization landscape (Ghorbani et al., 2019; Santurkar
et al., 2018) or its modification by creating a different objective function (Lian and Liu,
2019), enabling of high learning rates through improved conditioning (Bjorck et al., 2018),
or alleviating the sharpness of the Fisher information matrix Karakida et al. (2019). In
an analysis of a variant of GD, Kohler et al. (2019) show that BN accelerates optimization
by decoupling the optimization of the direction and length of parameters. Daneshmand
et al. (2020) argue that BN is an effective strategy to ensure that activations generated
by a randomly-initialized network have high rank, unlike vanilla networks where the
rank in the final layers collapses with depth Saxe et al. (2013). Arora et al. (2019)
demonstrate that (S)GD with BN is robust to the choice of the learning rate, with
guaranteed asymptotic convergence, while a similar finding for GD with BN is made
in Cai et al. (2019).

Invariances in neural networks. Cho and Lee (2017) propose optimizing over
the Grassmann manifold using Riemannian GD. Liu et al. (2017) project weights and
activations on the unit hypersphere and compute a function of the angle between them
instead of inner products, and subsequently generalize these operators by scaling the
angle (Liu et al., 2018). In Li and Arora (2020) the radial invariance is leveraged to prove
that weight decay (WD) can be replaced by an exponential learning-rate scheduling for
SGD with or without momentum. Arora et al. (2019) investigate the radial invariance
and show that radius dynamics depends on the past gradients, offering an adaptive
behavior to the learning rate. Here we go further and show that SGD projected on the
unit hypersphere corresponds to Adam constrained to the hypersphere, and we give an
accurate definition of this adaptive behavior.

Effective learning rate. Due to its scale invariance, BN can adaptively adjust the
learning rate (Arora et al., 2019; Cho and Lee, 2017; Li and Arora, 2020; van Laarhoven,

62 | Impact of Normalization Layers on Optimization

2017). van Laarhoven (2017) shows that in BN-equipped networks, WD increases the
effective learning rate by reducing the norm of the weights. Conversely, without WD,
the norm grows unbounded (Soudry et al., 2018), decreasing the effective learning rate.
Zhang et al. (2019) bring additional evidence supporting hypothesis in van Laarhoven
(2017), while Hoffer et al. (2018a) find an exact formulation of the effective learning rate
for SGD in normalized networks. In contrast with prior work, we find generic definitions
of the effective learning rate with exact expressions for SGD and Adam.

3.7 Limitations

Our study only concerns the optimization of radially-invariant parameters. It does not
include the impact on other parameters, e.g., for CNNs with BN, scaling and bias in BN
layers, and last linear layer.

3.8 Conclusion

The spherical framework introduced in this study provides a powerful tool to analyse
Adam optimization scheme through its projection on the L2 unit hypersphere. It allows us
to give a precise definition and expression of the effective learning rate for Adam, to relate
SGD to a variant of Adam, and to identify geometric phenomena which empirically impact
training. The framework also brings light to existing variations of Adam, such as L2-
regularization decoupling. The geometry of invariance properties appears as a promising
research direction toward a better understanding of their impact on optimization.

3.8 Conclusion | 63

(a) Radial scheduling. (b) Deformation anisotropy.

(c) Gradient history contribution.

Fig. 3.5 Geometrical phenomena in Adam. (a) Effect of the radial part of ck on
the displacement on Sd−1; (b) Example of anisotropy and sign instability for
the deformation ψ(∇L(uk)) = ∇L(uk)⊘ |∇L(uk)|

d−1/2∥∇L(uk)∥ (where | · | is the element-
wise absolute value) occurring in Adam’s first optimization step; (c) Different
contribution in c⊥

k of two past gradients ∇1 and ∇2 of equal norm, depending
on their orientation. Illustration of the transport of ∇1 from uk−1 to uk :
Γuk

uk−1
(∇1) (cf. 3.5.2 for details).

64 | Impact of Normalization Layers on Optimization

Fig. 3.6 Training speed comparison with ResNet20 BN on CIFAR10. Left:
Mean training loss over all training epochs (averaged across 5 seeds) for different
Adam variants. Right: Zoom-in on the last epochs. Please refer to Table 3.3
for the corresponding accuracies.

Fig. 3.7 Valid accuracy comparison with ResNet20 BN on CIFAR10. Left:
Mean valid top1 acc over all training epochs (averaged across 5 seeds) for
different Adam variants. Right: Zoom-in on the first epochs. Please refer to
Table 3.3 for the corresponding accuracies.

Chapter 4

Avoid learning spurious correlations

The work described in this chapter is based on the following publication: Simon
Roburin, Charles Corbières, Gilles Puy, Nicoles Thome, Mathieu Aubry, Renaud Marlet
and Patrick Pérez. Get One Gram of Neural Style Features, Get Enhanced
Group Robustness.

• Short version of the paper accepted in the Workshop on Out Of Distribution
Detection at European Conference on Computer Vision (ECCV) 2022.

• Long version of the paper sumbited at Internation Conference on Learning Repre-
sentation (ICLR) 2023.

Abstract

Predictive performance of machine learning models trained with empirical risk mini-
mization (ERM) can degrade considerably under distribution shifts. In particular, the
presence of spurious correlations in training datasets leads ERM-trained models to display
high loss when evaluated on minority groups not presenting such correlations in test
sets. Extensive attempts have been made to develop methods improving worst-group
robustness. However, they require group information for each training input or at least, a
validation set with group labels to tune their hyperparameters, which may be expensive
to get or unknown a priori. In this chapter, we address the challenge of improving
group robustness without group annotations during training. To this end, we propose
to partition automatically the training dataset into groups based on Gram matrices of
features extracted from an identification model and to apply robust optimization based
on these pseudo-groups. In the realistic context where no group labels are available, our

66 | Avoid learning spurious correlations

experiments show that our approach not only improves group robustness over ERM but
also outperforms all recent baselines.

4.1 Introduction | 67

4.1 Introduction

Empirical Risk Minimization (ERM) (Vapnik, 1991) is the most standard machine
learning (ML) formulation, which assumes that training and testing samples are inde-
pendent and identically distributed (i.i.d.). While academic datasets are mainly built
to respect the i.i.d. assumption, practical settings display more challenging configura-
tions with distribution shifts. Training data might be affected by selection biases and
confounding factors, also called spurious correlations (Duchi et al., 2019; Woodward,
2005). For example, imagine crowd-sourcing an image dataset of camels and cows (Beery
et al., 2018). Due to selection biases, a high majority of cows stand in front of grass
environments and camels in the desert. Therefore, a simple way to differentiate cows
from camels would be to classify the background, an undesirable shortcut that ERM will
naturally exploit. ERM may perform poorly on minority groups that do not display such
spurious correlation (Duchi et al., 2019; Hashimoto et al., 2018; Tatman, 2017), e.g., a
cow standing in the desert.

Extensive attempts (Ahmed et al., 2021; Arjovsky et al., 2020; Sagawa* et al., 2020;
Zhang et al., 2021) have been made to develop new training objectives that are robust
to spurious correlations, e.g., by ensuring high worst-group accuracy. However, these
approaches require a prior knowledge about the confounding factors during training.
This is a major limitation since these factors might be a priori unknown and, if known,
ambiguous to define and expensive to annotate. Recent works Ahmed et al. (2021);
Creager et al. (2021); Liu et al. (2021); Matsuura and Harada (2020); Sohoni et al.
(2020) rely on two-stage schemes, first automatic environment discovery (e.g., based on
deep feature clustering), then robust optimization based on environment pseudo-labels.
However, all these approaches still require the availability of ground-truth environment
labels on a validation set in order to properly tune their hyperparameters.

This chapter addresses the problem of learning a robust classifier, which, for instance,
would not confuse a cow standing in the desert with a camel although not given any
annotation about grass or desert. In computer vision, many identified spurious correlations
are closely related to visual aspects, such as background (Beery et al., 2018), texture
(Geirhos et al., 2019), image style (Hendrycks et al., 2021), physic attributes (Liu et al.,
2015) or camera characteristics (Koh et al., 2021). In this work, we assume that relevant
environment labels can be inferred from visual feature statistics, and demonstrate they
lead to meaningful environments and robust classifiers for standard datasets used to
evaluate robust classification. We propose a two-stage approach, GramClust, which

68 | Avoid learning spurious correlations

first assigns a group label, i.e., a class-environment pair label, by partitioning a training
dataset into clusters of images with similar visual statistics and then trains a robust
classifier based on these pseudo-group labels. Our approach is summarized in Figure 4.1.
We use Gram matrices as visual descriptive statistics, which are second-order moments of
neural activation. Gram matrices are well known for displaying impressive results in style
transfer techniques (Gatys et al., 2016), but more importantly for the interpretation of our
approach, Li et al. (2017) demonstrate that matching Gram matrices between two groups
of images is equivalent to aligning the respective distribution of each group, minimizing
the Maximum Mean Discrepancy. Therefore, our method can be interpreted as grouping
images into clusters of similar feature distributions that are sensible candidates for
environments

The chapter is organized as follows. In section 4.2, we provide background on group
robustness methods with or without group annotation as well as neural style transfer.
In section 4.3, our two-stages approach is detailed and formalized: firstly we discover
without any group supervision pseudo-environment labels, secondly we perform robust
training of a model from scratch by minimizing the worst pseud-group accuracy. In
section 4.4, our method is evaluated on a standard benchmark in group-robustness
composed of three datasets. In addition, we provide various empirical analysis of our
approach whether it is the importance of using Gram matrices as styles features, the
impact of the choice of layers to extract features from or the impact of the number of
cluster.

Our main contributions are:

• We introduce an easy-to-scale method to split training images among distinct
pseudo-environments, based on feature Gram matrices extracted by a specifically-
trained identification model;

• GramClust alleviates the need of ground-truth group labels altogether, even in
the validation set, as hyperparameters are set based on validation performance
computed from our pseudo-groups;

• Extensive experiments on various image classification datasets with spurious correla-
tions show that GramClust outperforms all recent baselines addressing robustness
without group annotation. In particular, on the realistic large-scale CelebA dataset
(Liu et al., 2015), we improve worst-group test accuracy by +24.3 points.

4.2 Related work | 69

Fig. 4.1 Overview of the proposed approach for robust classification with
unsupervised group discovery. (1) We first extract deep image features
using an identification model and (2) we cluster the training dataset based on
their feature Gram matrices (their “style”’); (3) then, we train the targeted
classifier with a robust optimization that exploits the assigned pseudo-group
labels.

4.2 Related work

The reliability of ML learning process assumes that the associations between inputs
and targets remain similar between training and test distributions (see section 2.1.1).
However useful correlations between visual elements of images and their associated
classes at training time that results into correct prediction over the training distribution
can become useless or even harmful at test time. Such correlations are called spurious
correlations. Group robustness focus on the specific case where data can be split into a
majority group which includes a confounding factor and a minority group that does not.
Under these circumstances, a DNN trained over the whole dataset will recklessly absorb
these spurious correlation leading to bad performances on minority group. The goal is
to train a DNN with good performance both on the majority and minority group. In
this section, we cover the main methods developed to perform group-robutsness with or
without group annotation. In section 4.4, we evaluate our method against these methods.
Then, a quick overview of neural style transfer is provided.

70 | Avoid learning spurious correlations

4.2.1 Group Robustness with group annotation.

To improve group robustness, many recent approaches propose to leverage group
annotations during training. IRM Arjovsky et al. (2020) augments the standard ERM
term with invariance penalties across data from different groups. Similarly, Ahmed et al.
(2021) promotes, through a simple penalty, identical prediction behaviour across groups.
Other works such as Sagawa* et al. (2020); Zhang et al. (2021) minimize explicitly the
worst-group loss during training; Sagawa et al. (2020) re-balances majority and minority
groups via re-weighting and sub-sampling.

4.2.2 Group Robustness without group annotation

Here, we focus on a more realistic setting in which group annotations are not available
on the training data. Existing approaches undergo two distinct phases: groups discovery
and robust training by minimizing the worst pseudo-group accuracy with GroupDRO.
Environment Inference for Invariant Learning (EIIL) Creager et al. (2021) derives a
group inference objective from a trained identification model that maximizes variability
across environments, and is differentiable w.r.t a distribution over group assignments.
Just Train Twice (JTT) Liu et al. (2021) is a simple method in which environments are
defined by images on which a trained identification model performs poorly. GEORGE
Sohoni et al. (2020) is based on an unsupervised clustering algorithm in the feature
space of a trained identification model. These methods require implicitly or explicitly a
small validation set with group annotation. JTT explicitly tunes its hyperparameters
on a small validation set with group annotation while EIIL and GEORGE use best
hyperparameters found in the GroupDRO paper Sagawa* et al. (2020) to minimize the
worst-group accuracy on their inferred groups. These best hyperparameters were actually
found using a validation set with true-group labels in the original study.

4.2.3 Gram matrices

The original work of Gatys et al. (2016) demonstrated impressive results to generate
images with the style of an existing image. The style of a first image is transferred to a
second one by matching Gram matrices of features extracted by a convolutional neural
network. Sastry and Oore (2020) also used Gram matrices in out-of-distribution detection
to identify an anomaly by comparing their values to the respective range observed over
the training data. Interestingly, Li et al. (2017) demonstrate a formal equivalence between
matching Gram matrices of neural activations with an L2 norm and the MMD with the
second-order polynomial kernel. This shows that Gram matrices are also implicitly used

4.3 GramClust: A Clustering Approach for Robust Optimization | 71

in the process of distribution alignment between images. This finding motivates our
approach, which consists in discovering pseudo-groups using Gram matrices.

4.3 GramClust: A Clustering Approach for Robust
Optimization

Our method, GramClust, consists of two main steps. First, we discover pseudo-
environments among the images of a given dataset (see section 4.3.2). Second, we train a
robust classifier that leverages the inferred pseudo-environment labels to reduce classifi-
cation errors due to spurious environment correlations (see section 4.3.3). To discover
environments, we train during a few iterations an exogenous “identification model”.
Then, using this model, we compute for each image its Gram matrix representation
from different layers and apply random projections to reduce dimension. The resulting
concatenated features are then fed to an unsupervised clustering algorithm (k-means)
to produce pseudo-environment labels. This allows us to define pseudo-groups as the
intersection of pseudo-environments and classes. Last, we train the target classifier by
minimizing the standard cross-entropy classification loss on the worst pseudo-group with
GroupDRO (Sagawa* et al., 2020).

4.3.1 Problem formulation

Let us consider a dataset D = {(si, ti)}N
i=1 ∈ (Rin × Rout) of N samples where Rin

represents the input space and Rout = J1, KK is a set of labels. We assume the data is
sampled from random variables (Se, Te) in Rin × Rout with probability law P(Se,Te) for
all e ∈ J1, EK, where E is the number of environments. The full dataset can then be
seen as the union of subsets associated to each random variable, i.e., D = ⋃E

e=1De where
each De is composed of i.i.d. realisations of a random variable with joint probability law
P(Se,Te). For notation purposes, we choose the following equivalent formulation for the
dataset D = {(si, ti, ei)}N

i=1 ∈ (Rin × Rout × J1, EK)N where ei refers to the environment
from which si and ti were sampled.

Our goal is to find a model m in a given hypothesis space H which minimizes the
error on the worst group. A group is defined as a set of samples from the same class and

72 | Avoid learning spurious correlations

in the same environment. Formally, we introduce group distributions:

PG1,1 = P(S1|T1 = 1), (4.1)
...

PGE,K
= P(SE|TE = K). (4.2)

The purpose is then to minimize the following objective:

m̂ ∈ arg min
m∈H

{
max

g∈J1,EK×J1,KK
E(s,t)∼PGg

[
ℓ(m(s), t)

]}
, (4.3)

where ℓ : Rout × Rout → R+ is the cross-entropy loss between the model’s prediction and
the true label. Note that we do not have access to any of the environment labels. To
circumvent this issue, we first discover pseudo-environment labels and then estimate the
pseudo-group distributions to be used in Eq. 4.3.

4.3.2 Dataset partition

In this section, we describe the first stage of GramClust, which aims at environment
discovery. The method is illustrated in Figure 4.2.

Identification model. Our approach starts by initializing a convolutional neural
network Φ for the classification task at hand; it is composed of L layers with parameters
ω and is pre-trained on ImageNet (Deng et al., 2009).

Previous work Liu et al. (2021) observed that ERM tends to fit models on data
presenting easy-to-learn spurious correlations at the beginning of the learning process. It
is only after a significant number of epochs that the model starts to learn more difficult
patterns. Hence, we only train Φ during a few iterations, minimizing the following
empirical loss function:

min
ω

1
N

N∑
i=1

ℓ(Φω(si), ti), (4.4)

where ℓ : Rout × Rout → R+ is the cross-entropy loss between the model’s predicted label
Φω(si) and the true label t associated with sample s. In the following, we call Φ the
identification model as our clustering is based on features extracted from this model. The
idea is to leverage the biases learned by Φ to identify relevant environments and efficiently
partition the training dataset into groups of images presenting spurious correlations on
one side and groups of images free from these correlations on the other side. Hence, after

4.3 GramClust: A Clustering Approach for Robust Optimization | 73

Fig. 4.2 Illustration of the style-based dataset partition. An identification model
Φ with parameters ω is trained for a limited number of epochs T with ERM
to fit groups with easy-to-learn spurious correlations. Then, for each image
si ∈ Rin, we extract intermediate features ϕ(l) and compute their Gram matrix
Gl with a random projection. These projected Gram matrix representations
are used as features to cluster the training dataset Dtrain in E ′ environments.

this initial training and in the rest of the chapter, the parameters ω of the identification
model Φ are frozen.

Features Gram matrix. We denote the feature map of an image s at layer l of Φ by
ϕ(l)(s) ∈ RMl×Cl , where Cl is the number of channels and Ml is the spatial dimension of
the feature map. For each image si ∈ Rin, we extract its feature maps at L′ ≤ L different
and fixed layers {l1, · · · lL′}, and compute the Gram matrices defined as:

Gl(si) = 1
Ml

ϕ(l)(si)⊺ϕ(l)(si) ∈ RCl×Cl , l ∈ {l1, · · · lL′}. (4.5)

Given input si and identification model Φ, the Gram matrix of its feature ϕ(l)(si) ecodes
visual correlations via an inner product between each pair of vectorized feature maps.
In visual style transfer (Gatys et al., 2016), these Gram matrices have been shown to
encode the “style” of an image, that is, loosely speaking, its textures and color palette,
by contrast with its “structure”.

Clustering with k-means. For each image si, we vectorize and normalize its L′

associated Gram matrices: f (l)
i = vec(Gl(si))/∥vec(Gl(si))∥2 ∈ RC2

l . The normalization

74 | Avoid learning spurious correlations

permits us to have all the Gram matrices contributing equally in the clustering loss.
Each image si is thus encoded by the vector fi =

[
f (l)
i , . . . , f (L′)

i

]
∈ RC , where C = ∑

l C
2
l .

Relying on our assumption that the environments can be identified from visual feature
statistics, we propose to discover E ′ environments by clustering the N training images
into E ′ clusters {C1, . . . CE′} via k-means clustering, i.e., by computing a solution to:

min
{C1,...CE′ }

E′∑
e=1

1
2|Ce|

∑
i,j∈Ce

∥fi − fj∥2
2, (4.6)

where ∥fi − fj∥2
2 = ∑S

l=1 ∥f
(l)
i − f (l)

j ∥2
2. Li et al. (2017) demonstrate that matching Gram

matrices is actually equivalent to distribution alignment using the Maximum Mean
Discrepancy distance with the second-order polynomial kernel. Built on the Euclidean
distance of normalized Gram matrices (Eq.4.6), our method can hence be interpreted as
grouping images into clusters of similar feature distributions that are likely candidates
for environments.

Scaling with random projections. Storing all these vectors and computing distances
between them in a high-dimensional space is computationally and memory expensive
on large datasets. We overcome this difficulty by projecting the vectors f (l)

i in a lower-
dimensional space as proposed in Achlioptas (2003). We build a matrix P ∈ Rℓ0×C whose
entries Pmn are the realisation of independent random variables: Pmn = 1 or Pmn = −1
with probability 1/2. Then we compute:

f̃ (l)
i = 1√

ℓ0
Pf (l)

i (4.7)

and substitute f̃ (l)
i for f (l)

i in Eq. 4.6. We justify this choice by the fact that this projection
preserves the distances ∥f (l)

i − f (l)
j ∥2

2 involved in the k-means objective of Eq. 4.6. Indeed,
let ϵ ∈]0, 1[and ℓ0 ∝ log(N), then with high probability,1

(1− ϵ)∥f (l)
i − fj,l∥2 ≤ ∥f̃ (l)

i − f̃ (l)
j ∥2 ≤ (1 + ϵ)∥f (l)

i − f (l)
j ∥2, (4.8)

for all (i, j) ∈ J1, NK2. In practice, we choose ℓ0 = ⌊100 log(N)⌋ which yields dimensions
for f̃ (l)

i much lower than typical values of C. We remark that this choice of projection is
independent of all f (l)

i and thus can be defined and fixed before any feature extraction.
1We let the reader refer to Theorem 1.1 in Achlioptas (2003) for the exact expression of this probability

as a function of ϵ, N , and ℓ0.

4.3 GramClust: A Clustering Approach for Robust Optimization | 75

4.3.3 Robust optimization with pseudo-group labels

For all i ∈ J1, NK, based on our estimated environments labels êi, we define for each
image, pseudo-groups ĝi as the intersection of a pseudo-environment and a class. Formally,
êi ∈ J1, E ′K and therefore ĝi = (êi, ti) ∈ J1, E ′K × J1, KK. Going back to Eq. 4.3, the
distribution over the groups PGĝ

are estimated by

P̂Gĝ
= δ(G(ĝ)) for all ĝ ∈ J1, E ′K× J1, KK, (4.9)

where δ is the Dirac distribution, and:

G(1, 1) = {(si, ti), i ∈ J1, NK | ti = 1, si ∈ C1, } (4.10)
...

G(E ′, K) = {(si, ti), i ∈ J1, NK | ti = K, si ∈ CE′} (4.11)

are the sets of images and labels associated with the pseudo-group labels. Each training
point si ∈ Rin is now associated with a class label ti and a pseudo-group annotation ĝi.
We train a robust classifier h with parameters x by minimizing the worst-group risk on
the training dataset (GroupDRO Sagawa* et al. (2020)):

x̂ ∈ arg min
x

{
max

ĝ∈J1,E′K×J1,KK

1
|G(ĝ) |

∑
(s,t)∈G(ĝ)

[
ℓ(hx(s), t)

]}
, (4.12)

where the loss ℓ : Rout ×Rout → R+ remains the cross-entropy between robust classifier’s
predicted label hx(s) and the true label t associated with sample s.

4.3.4 Model selection via cross-validation on validation data

Setting relevant hyperparameters is important in optimization algorithms to ensure a
proper convergence. Hyperparameters tuning is performed with cross-validation using a
held-out subset of training data. With robust optimization, worst-group accuracy of the
final classifier is the go-to metric for model selection. Previous approaches rely on true
group labels of the validation set to define and assess performance on the worst group.
In contrast, we do not rely on such a prior information. We partition the validation set
using the clusters found on the training set and we conduct cross-validation based on
the resulting pseudo-groups. In our experiments, we observe that this type of model
selection is effective to achieve proper group robustness.

76 | Avoid learning spurious correlations

Fig. 4.3 Illustration of the three datasets.

4.4 Experiments

In this section, we evaluate the capacity of GramClust to improve group robustness
on image classification datasets with spurious correlations. In section 4.4.2, we empirically
show that it outperforms, on three datasets, other baselines addressing robustness without
group annotation. We then present in section 4.4.3 an empirical analysis of our approach,
including: the importance of using Gram matrices as clustering features, the impact of
the choice of layers to extract features from, and the impact of the number of clusters.

4.4.1 Setup

Datsets. We experiment with three image classification datasets on which previous
works evaluate worst-group performance. These datasets are illustrated in Figure 4.3.

• Waterbirds Sagawa* et al. (2020) is a dataset composed of images combining
bird photographs from the CUB dataset (Welinder et al., 2010) with background
scenes taken from the Places365 dataset (Zhou et al., 2018). The target labels are
“landbirds” and “waterbirds” which are spuriously correlated with the background
images of either “land” or “water”. The train set is composed of 4,795 images and
the validation and test set are respectively composed of 1,199 and 2,897 images.

• CelebA (Liu et al., 2015) is a celebrity face dataset with 202,599 images. Sagawa*
et al. (2020) considered the task of classifying the hair color of the individual
as “blond” or “not blond”. The authors observed that there exists a spurious
correlation between the hair color and the gender (“male” or “female”) of a person.
For instance, in the dataset, only 2% of blond people are male. We use the official
train-val-test split from Liu et al. (2015).

4.4 Experiments | 77

• COCO-on-Places-224 is a dataset of 10 segmented COCO (Lin et al., 2014)
objects superimposed on scenes from the Places365 dataset. Training set has
7,200 training images – 800 images per category – and validation and test sets are
composed of 900 images – 100 images per category. As in the Waterbirds dataset,
the background has spurious correlation with the object classification. At test time,
the evaluation is performed either on images that possess the same biases as the
training set (in-distribution) or images with objects correlated to backgrounds that
were not seen at training time (systematically-shifted). We rebuilt this dataset
based on the code provided by Ahmed et al. (2021)2 but with images resized to
224× 224 (instead of 64× 64 in the original paper, which considerably degrades
visual features of object and background).

Baselines. We compare our approach against the standard ERM baseline and re-
cent methods that aim at robust predictions across groups without the use of train
group annotations (EIIL Creager et al. (2021), GEORGE Sohoni et al. (2020) and
JTT Liu et al. (2021)). We also include robust methods that use train group annotations
(IRM Arjovsky et al. (2020), importance weighting and GroupDRO Sagawa* et al.
(2020)). The latter methods and ERM were already implemented and we took care
to reproduce results for all methods. Our results with baselines are in line with those
reported respectively in each original paper. Note that our approach and GroupDRO
share the same robust optimization objective (Eq. 4.3). Hence, GramClust would
boil down to GroupDRO if discovered pseudo-groups were to match exactly the ones
annotated in the dataset.

Training details. All methods use a ResNet-50 architecture pre-trained on ImageNet
Deng et al. (2009) as the robust classifier. Models are optimized using SGD with
momentum. For GroupDRO and ERM, we use the hyperparameters reported by the
authors on Waterbirds and CelebA datasets. Further training details are available in
appendix C.2. Note that hyperparameters have been selected with the use of a validation
set with group labels. Regarding our approach, we select a VGG-19 Simonyan and
Zisserman (2015) architecture for the identification model Φ and train it for 1 epoch
using SGD with momentum. Among usual layers used to compute style representations
in neural style transfer, we observed improved performance by selecting deeper layers in
the network (see section 4.4.4). Consequently, for each dataset, we consistently extract
features from the conv5_1 layer, i.e., the first convolutional layer of block 5. We include

2https://github.com/Faruk-Ahmed/predictive_group_invariance

https://github.com/Faruk-Ahmed/predictive_group_invariance

78 | Avoid learning spurious correlations

Table 4.1 Comparative results on Waterbirds, CelebA and COCO-on-Places-
224 (COCO-on-P). Worst-group (w-g) and average (avg) test accuracies (%
mean and std.) for Waterbirds and CelebA datasets; systematically-shifted
(shift) and in-distribution (ind) test-set accuracies (% mean and std.) for
COCO-on-Places dataset. Experiments with ResNet-50 models. Underlined
and bold type indicate respectively best and per-block best performance
(with significance p< 0.05 according to paired t-test on five runs).

Group labels Waterbirds CelebA COCO-on-P
Method train val (w-g) (avg) (w-g) (avg) (sys) (ind)
ERM ✓ 65.0±2.7 97.3±0.1 42.4±1.5 94.8±0.1 71.9±0.3 95.5±0.1

IRM Arjovsky et al. (2020) ✓ ✓ 77.4±0.3 97.3±0.1 75.1±0.6 94.5±0.1 78.8±0.3 95.1±0.2

Imp. Weighting ✓ ✓ 74.4±0.6 97.4±0.1 72.4±1.4 94.4±0.2 71.7±0.5 93.7±0.2

GroupDRO Sagawa* et al. (2020) ✓ ✓ 83.9±0.3 96.8±0.1 85.7±2.0 93.7±0.2 79.0±0.4 95.2±0.2

EIIL Creager et al. (2021) ✓ 78.7±0.3 96.9±0.1 - - 68.5±0.4 94.8±0.3

GEORGE Sohoni et al. (2020) ✓ 76.2±2.0 95.7±0.5 53.7±1.3 94.6±0.2 71.6±0.3 95.1±0.1

JTT3 Liu et al. (2021) ✓ 82.9±0.3 96.4±0.2 56.0±0.7 93.6±0.0 69.2±0.4 94.7±0.3

GramClust-orig (Ours) ✓ 85.3±1.1 96.6±0.1 77.9±2.2 94.2±0.2 72.4±0.4 95.0±0.2

GramClust-cv (Ours) 85.3±1.1 96.6±0.1 80.3±1.9 93.4±0.1 73.2±0.3 95.3±0.3

results with two types of model selection via cross-validation: (i) based on validation set
with true-group annotations (GramClust-orig), and; (ii) based on pseudo-group labels
(GramClust-cv) predicted by our clustering (see section 4.3.4).

Metrics. Following previous works, we report worst-group and average test accuracy (%)
for Waterbirds and CelebA datasets. On COCO-on-Places-224, we follow the evaluation
protocol proposed by Ahmed et al. (2021) and report predictive performances on the
in-distribution test set, which follows the same distribution as the training set, and on
the systematically-shifted test set, where the spurious correlations have been removed
and COCO objects are composed with uniformly-sampled random backgrounds.

4.4.2 Comparative results

We observe that GramClust improves worst-group test accuracy over ERM baseline
on Waterbirds and CelebA and systematic generalisation on COCO-on-Places224. More
importantly, GramClust-cv achieves state-of-the-art performance on group robustness
compared to all methods that do not use group labels on the training set. This results
show empirically that our proposed approach, using Gram matrices of feature to discover
pseudo-groups, which are then used for robust optimization and hyperparameter cross-
validation, is very effective for group robustness. It also supports that Gram matrices are
well suited to capture various types of dataset biases (background for Waterbirds, physical

4.4 Experiments | 79

Table 4.2 Study of the clustering features. Results in worst-group (Waterbirds,
CelebA) and systematically-shifted (COCO-on-P) test-set accuracies (%).
Gram matrix show to be the most effective type of clustering features to
obtain improved group robustness.

Clustering features Architecture Layer Waterbirds CelebA COCO-on-P
Standard ResNet-50 AvgPool 76.2±2.0 53.7±1.3 71.6±0.3

MeanVar VGG-19 Conv5_1 85.3±1.2 69.8±1.0 71.4±0.5

Gram matrix VGG-19 Conv5_1 85.3±1.1 77.9±2.2 72.4±0.4

attribute in CelebA, multiple backgrounds in COCO-on-Places-224). For instance, on
Waterbirds, GramClust-cv achieves 85.3% worst-group accuracy compared to the
second-best method, JTT, which reaches 82.9%. The gap is even more pronounced
on CelebA where our approach outperforms JTT by 24.3 pts. CelebA constitutes an
interesting dataset to evaluate the scalability of methods as the training dataset is
composed of 200k images. For instance, we were not able to scale EIIL on this dataset.
Note that GramClust-orig uses the same hyperparameters as EIIL, GEORGE and JTT
for robust training of the target classifier from predicted group labels, and still displays
significant improvements on the three datasets in terms of worst-group accuracy. Liu et al.
(2021) reported results that were obtained with early stopping thanks to a small validation
set annotated with group labels. The authors selected models before convergence (around
epoch 3) with low average accuracy on the test set but high worst-group accuracy. We
argue that it is not a suitable property for a model and prefer models with high accuracy
both in average and on the worst group of the test set. Surprisingly, GramClust-cv
and GramClust-orig outperform GroupDRO on Waterbirds with 85.3% vs. 83.9%,
while the latter method uses true-group labels during training. Our intuition is that it
may be due to the ambiguity of the background in some Waterbirds images. We further
discuss this result in section 4.4.5. Overall, these results show that our pseudo-groups
on the validation set are relevant to select good hyperparameters and more importantly,
that GramClust does not require any group labels during training to achieve group
robustness.

4.4.3 Study of the clustering features

In this section, we compare the performances obtained when clustering images with
different features. As noted in section 4.4.1, Huang and Belongie (2017) uses the channel-

3Results with JTT differ from the original paper as the scores that we report correspond to models
trained without early-stopping.

80 | Avoid learning spurious correlations

Fig. 4.4 Impact of the layer choice to extract style features. Results in matching
accuracy on the validation set for GramClust on Waterbirds.

wise mean and variance of image features, instead of Gram matrices as in Gatys et al.
(2016), to perform style transfer. We thus compare the use of such features (‘MeanVar’)
against our use of Gram matrices.

We also compared our use of VGG-19 conv5_1 features with the direct use of the
penultimate (‘AvgPool’) representation of a ResNet-50 identification model. Indeed, our
clustering features are extracted using a VGG-19, but our robust classifier is a ResNet-50.
One may thus wonder if using directly the deepest features (‘Standard’) before the
classification head in a ResNet-50 could be better than using VGG-19 features. For fair
comparison, we trained the robust classifier with the same hyperparameters for each
method, which are consistent with those found by Sagawa* et al. (2020) with GroupDRO.

The results are available in Table 4.2 for Waterbirds, CelebA and COCO-on-Places-
224. First, we observe that using the penultimate layer of a ResNet-50 as features for the
clustering produces poorer performance than Gram matrices of VGG-19 features in every
configuration. MeanVar reaches test worst-group accuracy on-par with Gram matrix
on Waterbirds but degrades significantly performances on CelebA: 69.8% in average
compared to 77.9% with Gram matrix. Gram matrices provide more information than
MeanVar as their diagonals already contain the information about the channel-wise mean
and variance of the deep features (see Eq. 4.5). Hence, these results show that, when
scaling on large datasets such as CelebA, keeping all the correlations between different
channels is important for group robustness.

4.4 Experiments | 81

Fig. 4.5 Impact of the number of clusters. Results in worst-group val accuracies of
GramClust on Waterbirds.

4.4.4 Clustering analysis

In this section, we study the behavior of our clustering algorithm with respect to
the layers selected to extract features and to the number of clusters. This analysis is
conducted on the Waterbirds dataset.

Effect of the selected layers for clustering features. We evaluate the impact of the
selection of VGG-19 layers to extract the features in the clustering stage. To this end, we
study the matching of the predicted environments to the true environment labels on the
validation set. The assignment problem is solved via Hungarian matching Kuhn (1955)
and we measure the global matching accuracy across all validation samples. In Figure 4.4,
we compare results between using all five layers commonly used in neural style transfer
(conv1_1,conv2_1,conv3_1,conv4_1,conv5_1) and each layer taken independently on
Waterbirds dataset. Results show that: (i) Features from deeper layers correlate with
better matching accuracy; (ii) Our approach is robust to the choice of deep layers either
taken together (allconvX_1) or individually such as conv4_1 and conv5_1 ; (iii) Using
conv5_1 outperforms selecting all traditional style layers and results in the highest score
of 93.41%. We found consistent conclusions on the CelebA dataset. Results are reported
in appendix B.5.

82 | Avoid learning spurious correlations

(a) True land background predicted as water background by GramClust

(b) True water background predicted as land background by GramClust

Fig. 4.6 Visualisation of confusing samples in Waterbirds dataset and wrongly
predicted by GramClust. (a) Samples of confusing land-background images
predicted as water background; (b) Samples of confusing land-background im-
ages predicted as water background. In each case, the actual image background
is confusing due to the joint presence of elements reflecting land background
(forest, heavy vegetation, sand) and water background (water surface, rainfalls,
mist).

Impact of the number of clusters. . We now study the impact of the number
of clusters as hyperparameter in the clustering algorithm. Worst-group accuracy on
the validation set for E ′ ∈ {2, 4, 8, 16, 32} clusters are reported in Figure 4.5 for Water-
birds datasets. Overall, our method is robust to a variation in the number of clusters:
GramClust with higher numbers of clusters produces a slight drop in performance but
still improves performance over ERM. It also has on-par performances with GroupDRO
Sagawa* et al. (2020).

4.4.5 Discussion about improved results of GramClust over
GroupDRO on Waterbirds

Comparative results in Table 4.1 actually show that GramClust-orig outperforms
GroupDRO on the Waterbirds dataset. The difference between the approaches lies in the

4.5 Conclusion | 83

usage of true-group labels on the training dataset for GroupDRO while GramClust-orig
leverages its predicted pseudo-groups. Hence, this might be surprising given that the
evaluation is performed on true test group labels and that both GramClust-orig and
GroupDRO methods share the same robust optimization algorithm and hyperparameters.
We intuit that this behavior, which occurs only on Waterbirds dataset, is related to the
dataset group labels. In Figure 4.6, we show some examples of confusing images that were
not correctly assigned with our predicted group labels with GramClust. These images
were taken from the set of mismatches between true-group labels and our pseudo-group
labels after the Hungarian matching. We can see that some of these samples present
dominant characteristic elements from land background, such as heavy vegetation and
sand, while being labeled as water background. Conversely, some samples labeled as land
background display a high percentage of water surfaces in the image. As mentioned in
section 4.4.1, the Waterbird dataset was created by combining bird photographs with
background scenes taken from the Places365 dataset. But the latter dataset is actually
composed of very diverse images which might not reflect the expected background for
a category. This unwanted behavior raises the issue of creating benchmarks including
datasets with spurious correlations from real-world data, such as hair color/gender
detected in CelebA dataset. We leave this for future work. More importantly, it outlines
the difficulty of annotating groups on web-crawled images. It motivates the need to push
for future works towards automatically discovering groups in data, as proposed in our
method.

4.5 Conclusion

In this chapter, we introduce GramClust, a two-stage method that first partitions a
training dataset into clusters via k-means clustering based on Gram matrices computed
from image features, which are extracted from a identification model trained to catch
spurious correlations in a biased dataset. This first stage is then followed by learning a
robust classifier which minimizes the error on the worst pseudo-group labels previously
discovered. GramClust demonstrates to be an effective approach to tackle group
robustness and outperforms every baseline on standard datasets with spurious correlations.
The usage of Gram matrices of features is crucial to capture pertinent visual statistics
of the image and enables a relevant partition for robust training. Our approach also
alleviates the need to label a validation set of images with group information and is
able to tune its hyperparameters in an unsupervised fashion by applying its clustering
algorithm on the validation set.

Chapter 5

Conclusion

In this chapter, we summarize the contributions presented in the thesis. We then
discuss a few research directions opened by this work.

5.1 Summary of contributions

This manuscript revolves around a central issue in DL: comparing neural networks.
Instead of tackling this task by direct comparison of the networks’ parameters, we study
it from the functional perspective. All our work is guided by the idea that looking at the
encoded function rather than its parameters enables to take a fresh look at existing open
problems. Namely, we focus on the impact of (i) Normalization Layers (NLs) on Deep
Neural Network (DNN) training and (ii) DNN robustness. Firstly, regarding (i), we
exploit the radial invariance that stems from adding NLs in DNN architectures to shed
a new light on the NL’s impact on training dynamics (chapter 3). Secondly, regarding
(ii), we develop a method that identifies relevant splits of the training set with similar
data distribution on which the neural network’s function performs unevenly. The pseudo
labels yielded by the splits previously defined allow us to perform robust training in
order to obtain more robust models (chapter 4).

(i) Impact of Normalization Layers on DNN training. To quantify the impact
of NLs, we introduce an analytical tool dubbed the spherical framework. Built on the
radial invariance that stems from adding NLs to DNN architectures, it enables the
analysis and comparison of order-1 optimization schemes. This perspective shows that
NLs transform gradient-based optimization schemes into algorithms with an adapted
learning rate scheduling (effective learning rate) and a regularized direction (effective
learning rate). We provide not only the first expression of the effective learning rate and

86 | Conclusion

direction for Adam, but also the demonstration that, in the presence of NLs, standard
(Stochastict Gradient Descent) SGD is equivalent to AdaGradG, a variant of Adam
without momentum and constrained to the unit hypersphere. This result is unexpected
because SGD, which is not adaptive by itself, is equivalent to a second-order moment
adaptive method. The scheduling performed by the radius dynamics actually replicates
the effect of dividing the learning rate by the second-order moment of the gradient norm.
Overall, NLs allow us to relate a standard simple SGD with a variant of a more complex
algorithm, and one of the most popular optimization schemes in DL: Adam.

New optimization schemes suited to the training of DNN with NLs. The
spherical framework reveals intriguing geometrical behaviours occurring in Adam. In the
context of manifold optimization, the optimization direction should only depend on the
trajectory on that manifold. With Adam, the effective direction not only depends on the
trajectory on the hypersphere but also on the deformed gradients and additional radial
terms. By using the tools of optimization on manifold, we introduce natural variants of
Adam that better respect the geometry of the hypersphere. Thereby, we are able to (a)
identify geometrical phenomena that play empirically a significant role in CNNs training
with BN, and (b) define new optimization schemes that are better suited to the training
of CNNs with BN layers.

(ii) Group-robustness without environment labels. We introduce an easy-to-
scale method to split training images among distinct groups of images with similar data
distribution. It is based on Gram-matrix features extracted by an exogenous identification
model. These splits, called pseudo groups, are subsequently leveraged to perform robust
training of a neural network. Our method, GramStyle, is evaluated on the standard
benchmarks of group robustness. It is composed of datasets that include a majority group
of data displaying correlations between a visual element in images and the target classes
and a minority group that does not exhibit such correlations. In addition to the class label
for each image, there is a group label: the information whether an image belongs to the
majority or minority group. Unlike recent approaches, our method alleviates the need for
these ground-truth group labels altogether, even in the validation set as hyperparameters
are set based on the validation performance computed from our pseudo-groups. Overall,
GramStyle outperforms by a significant margin all recent baselines addressing group
robustness without group annotation.

5.2 Future work | 87

5.2 Future work

Let us now discuss interesting directions that could be addressed in future work.

Stochasticity in Optimization. The study of both stochasticity and functional
variability in the training process is of interest for various reasons. Stochasticity seems to
play a role in the generalization capability of DNNs. As mentioned in section 2.2.1, not
all minima of the training loss have the same generalization capabilities. Various recent
works (Barrett and Dherin, 2020; Smith et al., 2021) suggest that SGD preferably selects
minima with good generalization due to its intrinsic stochasticity. Note also that Picard
(2021) shows that the stochasticity’s influence on DNN performance (which is an indirect
measure of functional variability) is underestimated. Improving our understanding of its
impact on the training process is therefore of importance to explain generalization in DL
and design better benchmarks in order to assess properly the performance of the different
models. Concretely, the sources of stochasticity in the training of DNNs are plural.
They are: the random initialization of DNNs parameters; the noise in the empirical loss
estimation using random batches; the use of stochastic data augmentation to improve NNs
performances; the noise in practical implementation of certain operations on Graphical
Computer Units (GPUs). The different contributions of these stochastic components
result in a very noisy training process. The leading interrogation is to precisely analyze
how these sources of stochasticity impact the obtained models. Due to the existence of
symmetries in the parameter space of the network, changes in the parameter space do not
necessary imply a change of function encoded by the corresponding parameters. Instead
of comparing the obtained parameters, one could adopt the functional perspective and
focus on analyzing to what extent the obtained functions are similar or different. In other
words, the purpose would be to quantify how the training process of DNNs is functionally
stable. Such an approach would address the following interrogations: (1) To what extent
is the training process stable w.r.t. functional variability? (2) What is the influence
of the different sources of stochasticity on training stability? (3) Is it possible to find
processes that mitigate the functional instability? Functional variability during training
informs us indirectly over trajectories followed during the optimization process. We think
here of regions of stability or instability, of the impact of regularization techniques over
the trajectories or of differences between training algorithms. This approach could also
shed new lights on intriguing techniques such as knowledge distillation (Hinton et al.,
2015) or the Lottery Ticket Hypothesis (Frankle and Carbin, 2018; Frankle et al., 2019),
that manages to train highly-sparse and iteratively-pruned architectures by rewinding
the parameters to their initial values for simple architectures, or at an iteration close

88 | Conclusion

to the beginning of the original training for more complex DNNs. Finally, note that
function variability is also presumably playing an important role in ensembles of DNNs.
Ensembling consists in averaging the predictions of several DNNs obtained from different
training processes. It results in significant improvements in terms of performances and
provides state-of-the-art performance in out-of-distribution detection (Lakshminarayanan
et al., 2017).

ERM and path of least efforts. Our empirical study in chapter 4 shows that
architectures trained with ERM using the cross entropy loss lead to poor worst group
accuracy. Arjovsky et al. (2020) argue that this phenomenon is explained by the fact
that simple correlations found in data are used as predictive rules by the model. Overall,
this phenomenon is often backed up by the blurry intuition that ERM naturally selects
the path of least efforts by converging to the ‘simplest’ solutions. Currently, there exists
no mathematical characterization of a so called ‘simple’ solution. Let us reflect on the
Colored MNIST dataset (Arjovsky et al., 2020) as a starting point. In this dataset,
a specific color in the background is correlated to a given digit. One can easily be
convinced that using the background is simpler than learning invariant features for each
digit. Somehow, the ’simple’ criterion seems to be related to the function with the
fewest invariances w.r.t. the input data. Formally, given parameters in Rd, finding a
mathematical method to approximate the size of the set of invariances w.r.t. the input
data is very challenging. However, trying to find properties that characterize models
with few invariances could be a way to circumvent the previous challenge. In the domain
of network similarity, previous works (Charpiat et al., 2019; Kornblith et al., 2019) have
developed metrics to analyze a neural network’s internal representation. In addition,
neural networks trained in Table 4.1 provide a variety of functions that perform unevenly
in terms of worst group accuracy. Analyzing and comparing the internal representation
of neural networks with different generalization properties could be used as a starting
point for such a study. If a satisfying quantitative criterion that discriminates networks
w.r.t. their robustness is found, one could also imagine to regularize the training process
of neural networks by penalizing the optimization objective to get in fine more robust
models.

Bibliography

Achlioptas, D. (2003). Database-friendly random projections: Johnson-lindenstrauss with
binary coins. Journal of Computer and System Sciences, pages 671—-687.

Agarwal, N., Bullins, B., and Hazan, E. (2017). Second-order stochastic optimization
for machine learning in linear time. The Journal of Machine Learning Research,
18(1):4148–4187.

Ahmed, F., Bengio, Y., van Seijen, H., and Courville, A. (2021). Systematic general-
isation with group invariant predictions. In International Conference on Learning
Representations (ICLR).

Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-Paz, D. (2020). Invariant risk
minimization.

Arora, S., Li, Z., and Lyu, K. (2019). Theoretical analysis of auto rate-tuning by batch
normalization. In International Conference on Learning Representations (ICLR).

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450.

Barrett, D. G. and Dherin, B. (2020). Implicit gradient regularization. arXiv preprint
arXiv:2009.11162.

Bartlett, P. L. and Mendelson, S. (2002). Rademacher and gaussian complexities: Risk
bounds and structural results. Journal of Machine Learning Research, 3(Nov):463–482.

Beery, S., Horn, G. V., and Perona, P. (2018). Recognition in terra incognita. In European
Conference on Computer Vision (ECCV).

Bjorck, N., Gomes, C. P., Selman, B., and Weinberger, K. Q. (2018). Understanding batch
normalization. In Advances in Neural Information Processing Systems (NeurIPS).

Blum, A. and Rivest, R. L. (1989). Training a 3-node neural network is np-complete. In
Advances in Neural Information Processing Systems (NeurIPS).

Blum, A. L. and Rivest, R. L. (1992). Training a 3-node neural network is np-complete.
Neural Networks, 5(1):117–127.

Bousquet, O. and Elisseeff, A. (2002). Stability and generalization. The Journal of
Machine Learning Research, 2:499–526.

90 | Bibliography

Cai, Y., Li, Q., and Shen, Z. (2019). A quantitative analysis of the effect of batch
normalization on gradient descent. In 36th International Conference on Machine
Learning (ICML).

Charpiat, G., Girard, N., Felardos, L., and Tarabalka, Y. (2019). Input similarity from
the neural network perspective. Advances in Neural Information Processing Systems,
32.

Cho, M. and Lee, J. (2017). Riemannian approach to batch normalization. In Advances
in Neural Information Processing Systems (NeurIPS).

Creager, E., Jacobsen, J.-H., and Zemel, R. (2021). Environment inference for invariant
learning. In Proceedings of the 38th International Conference on Machine Learning
(ICML).

Daneshmand, H., Kohler, J., Bach, F., Hofmann, T., and Lucchi, A. (2020). Batch
normalization provably avoids rank collapse for randomly initialised deep networks. In
NeurIPS.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., and Bengio, Y. (2014).
Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization. Advances in neural information processing systems, 27.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research, 12(7).

Duchi, J. C., Hashimoto, T., and Namkoong, H. (2019). Distributionally robust losses
against mixture covariate shifts. Under review, 2.

Frankle, J. and Carbin, M. (2018). The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635.

Frankle, J., Dziugaite, G. K., Roy, D. M., and Carbin, M. (2019). Stabilizing the lottery
ticket hypothesis. arXiv preprint arXiv:1903.01611.

Gatys, L. A., Ecker, A. S., and Bethge, M. (2016). Image style transfer using convolutional
neural networks. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Ge, R., Huang, F., Jin, C., and Yuan, Y. (2015). Escaping from saddle points—online
stochastic gradient for tensor decomposition. In Conference on learning theory, pages
797–842. PMLR.

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., and Brendel,
W. (2019). Imagenet-trained CNNs are biased towards texture; increasing shape
bias improves accuracy and robustness. In International Conference on Learning
Representations (ICLR).

Bibliography | 91

Ghorbani, B., Krishnan, S., and Xiao, Y. (2019). An investigation into neural net
optimization via hessian eigenvalue density. In 36th International Conference on
Machine Learning (ICML).

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Hashimoto, T., Srivastava, M., Namkoong, H., and Liang, P. (2018). Fairness without
demographics in repeated loss minimization. In International Conference on Machine
Learning, pages 1929–1938. PMLR.

Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H. (2009). The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034.

He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Deep residual learning for image
recognition. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F., Dorundo, E., Desai, R.,
Zhu, T., Parajuli, S., Guo, M., Song, D., Steinhardt, J., and Gilmer, J. (2021). The
many faces of robustness: A critical analysis of out-of-distribution generalization. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV).

Hinton, G., Vinyals, O., Dean, J., et al. (2015). Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2(7).

Hoffer, E., Banner, R., Golan, I., and Soudry, D. (2018a). Norm matters: efficient and
accurate normalization schemes in deep networks. In Advances in Neural Information
Processing Systems (NeurIPS).

Hoffer, E., Hubara, I., and Soudry, D. (2018b). Fix your classifier: the marginal value of
training the last weight layer. In International Conference on Learning Representations
(ICLR).

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks
are universal approximators. Neural networks, 2(5):359–366.

Huang, X. and Belongie, S. (2017). Arbitrary style transfer in real-time with adaptive
instance normalization. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV).

92 | Bibliography

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning,
pages 448–456. PMLR.

Karakida, R., Akaho, S., and Amari, S.-i. (2019). The normalization method for alleviating
pathological sharpness in wide neural networks. In NeurIPS.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang, M., Balsubramani, A., Hu, W.,
Yasunaga, M., Phillips, R. L., Gao, I., et al. (2021). Wilds: A benchmark of in-the-wild
distribution shifts. In International Conference on Machine Learning, pages 5637–5664.
PMLR.

Kohler, J., Daneshmand, H., Lucchi, A., Hofmann, T., Zhou, M., and Neymeyr, K. (2019).
Exponential convergence rates for batch normalization: The power of length-direction
decoupling in non-convex optimization. In AISTATS.

Kolev, K. (2011). Convexity in image-based 3d surface reconstruction.

Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. (2019). Similarity of neural network
representations revisited. In International Conference on Machine Learning, pages
3519–3529. PMLR.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny
images.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25.

Kuhn, H. W. (1955). The Hungarian Method for the Assignment Problem. Naval
Research Logistics Quarterly, 2:83–97.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing
systems, 30.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and
Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551.

Lee, J. M. (2006). Riemannian manifolds: an introduction to curvature, volume 176.
Springer Science & Business Media.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. (2018). Visualizing the loss
landscape of neural nets. Advances in neural information processing systems, 31.

Li, Y., Wang, N., Liu, J., and Hou, X. (2017). Demystifying neural style transfer. In
International Joint Conference on Artificial Intelligence, page 2230–2236.

Li, Z. and Arora, S. (2020). An exponential learning rate schedule for deep learning. In
International Conference on Learning Representations (ICLR).

Bibliography | 93

Lian, X. and Liu, J. (2019). Revisit batch normalization: New understanding and
refinement via composition optimization. In The 22nd International Conference on
Artificial Intelligence and Statistics (AISTATS).

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P.,
Ramanan, D., Zitnick, C. L., and Dollár, P. (2014). Microsoft coco: Common objects
in context.

Liu, E. Z., Haghgoo, B., Chen, A. S., Raghunathan, A., Koh, P. W., Sagawa, S., Liang,
P., and Finn, C. (2021). Just train twice: Improving group robustness without training
group information. In Proceedings of the 38th International Conference on Machine
Learning (ICML).

Liu, W., Liu, Z., Yu, Z., Dai, B., Lin, R., Wang, Y., Rehg, J. M., and Song, L. (2018).
Decoupled networks. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Liu, W., Zhang, Y.-M., Li, X., Yu, Z., Dai, B., Zhao, T., and Song, L. (2017). Deep hyper-
spherical learning. In Advances in Neural Information Processing Systems (NeurIPS).

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep learning face attributes in the wild.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV).

Loshchilov, I. and Hutter, F. (2016). Sgdr: Stochastic gradient descent with warm
restarts. arXiv preprint arXiv:1608.03983.

Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101.

Loshchilov, I. and Hutter, F. (2019). Decoupled weight decay regularization. In Interna-
tional Conference on Learning Representations (ICLR).

Mallat, S. (2016). Understanding deep convolutional networks. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
374(2065):20150203.

Mallat, S. (2020). Sciences des données. L’annuaire du Collège de France. Cours et
travaux, (118):31–42.

Marcotte, P. and Savard, G. (1992). Novel approaches to the discrimination problem.
Zeitschrift für Operations Research, 36(6):517–545.

Martens, J. et al. (2010). Deep learning via hessian-free optimization. In ICML, volume 27,
pages 735–742.

Martens, J. and Grosse, R. (2015). Optimizing neural networks with kronecker-factored
approximate curvature. In International conference on machine learning, pages 2408–
2417. PMLR.

Matsuura, T. and Harada, T. (2020). Domain generalization using a mixture of multiple
latent domains. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI).

94 | Bibliography

Minsky, M. and Papert, S. (1969). An introduction to computational geometry. Cambridge
tiass., HIT, 479:480.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning.

Picard, D. (2021). Torch. manual_seed (3407) is all you need: On the influence of
random seeds in deep learning architectures for computer vision. arXiv preprint
arXiv:2109.08203.

Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods.
Ussr computational mathematics and mathematical physics, 4(5):1–17.

Sagawa*, S., Koh*, P. W., Hashimoto, T. B., and Liang, P. (2020). Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case
generalization. In International Conference on Learning Representations (ICLR).

Sagawa, S., Raghunathan, A., Koh, P. W., and Liang, P. (2020). An investigation of why
overparameterization exacerbates spurious correlations. In International Conference
on Machine Learning, pages 8346–8356. PMLR.

Salimans, T. and Kingma, D. P. (2016). Weight normalization: A simple reparameteriza-
tion to accelerate training of deep neural networks. Advances in neural information
processing systems, 29.

Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. (2018). How does batch normalization
help optimization? In Advances in Neural Information Processing Systems (NeurIPS).

Sastry, C. S. and Oore, S. (2020). Detecting out-of-distribution examples with Gram
matrices. In Proceedings of the 37th International Conference on Machine Learning
(ICML).

Saxe, A. M., McClelland, J. L., and Ganguli, S. (2013). Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations (ICLR).

Smith, S. L., Dherin, B., Barrett, D. G., and De, S. (2021). On the origin of implicit
regularization in stochastic gradient descent. arXiv preprint arXiv:2101.12176.

Sohoni, N. S., Dunnmon, J. A., Angus, G., Gu, A., and Ré, C. (2020). No subclass left
behind: Fine-grained robustness in coarse-grained classification problems. In Advances
in Neural Information Processing Systems 33 (NeurIPS).

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and Srebro, N. (2018). The implicit
bias of gradient descent on separable data. The Journal of Machine Learning Research
(JMLR).

Bibliography | 95

Sun, X., Peng, J., Shen, Y., and Kang, H. (2020). Tobacco plant detection in rgb aerial
images. Agriculture, 10(3):57.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of
initialization and momentum in deep learning. In 30th International Conference on
Machine Learning (ICML), Atlanta, Georgia, USA.

Tatman, R. (2017). Gender and dialect bias in youtube’s automatic captions. In
Proceedings of the first ACL workshop on ethics in natural language processing, pages
53–59.

Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural networks for machine
learning.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2016). Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022.

van Laarhoven, T. (2017). L2 regularization versus batch and weight normalization.
arXiv preprint arXiv:1706.05350.

Vapnik, V. (1991). Principles of risk minimization for learning theory. In Moody, J.,
Hanson, S., and Lippmann, R. P., editors, Advances in Neural Information Processing
Systems, volume 4. Morgan-Kaufmann.

Vapnik, V. N. (1998). Adaptive and learning systems for signal processing communications,
and control. Statistical learning theory.

Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., and Perona, P.
(2010). Caltech-UCSD Birds 200. Technical Report CNS-TR-2010-001, California
Institute of Technology.

Woodward, J. (2005). Making things happen: A theory of causal explanation. Oxford
university press.

Wu, Y. and He, K. (2018). Group normalization. In Proceedings of the European
conference on computer vision (ECCV), pages 3–19.

Yarotsky, D. (2022). Universal approximations of invariant maps by neural networks.
Constructive Approximation, 55(1):407–474.

Zhang, G., Wang, C., Xu, B., and Grosse, R. (2019). Three mechanisms of weight decay
regularization. In International Conference on Learning Representations (ICLR).

Zhang, J., Menon, A. K., Veit, A., Bhojanapalli, S., Kumar, S., and Sra, S. (2021).
Coping with label shift via distributionally robust optimisation. In International
Conference on Learning Representations.

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., and Torralba, A. (2018). Places: A 10
million image database for scene recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 40(6):1452–1464.

Appendix A

Omitted proofs

A.1 Proof of Lemma 1
Lemma 1 (Gradient of a function with radial invariance) If L : Rd → R is radially
invariant and almost everywhere differentiable, then, for all ρ > 0 and all x ∈ Rd

where L is differentiable, we have:

⟨∇L(x),x⟩ = 0 and ∇L(x) = ρ∇L(ρx).

Proof. Let us consider x ∈ Rd \ {0Rd} a parameter on which L is differentiable. By using
the definition of the radial invariance and the composition of differentials we obtain:

∇L(x) = ∇L(ρx), (A.1)
∇L(x) = ρ∇L(ρx). (A.2)

Then:

⟨∇L(x),x⟩ = ⟨∇L(ρx),x⟩, (A.3)
⇔ ⟨∇L(ρx),x⟩ = ρ⟨∇L(ρx),x⟩, (A.4)
⇔ ⟨∇L(ρx),x⟩ − ρ⟨∇L(ρx),x⟩, (A.5)
⇔ (1− ρ)⟨∇L(x),x⟩ = 0. (A.6)

Since 1− ρ ̸= 0, we have: ⟨∇L(x),x⟩ = 0

Appendix B

Additional experiments

B.1 Theorem 2 assumptions validity

Sign of 1−Ak⟨ck,uk⟩. We tracked the maximum of the quantity Ak⟨ck,uk⟩ for all the
filters of a ResNet20 CIFAR trained on CIFAR10 and optimized with SGD-M or Adam
with learning rate parameter of 0.1 (SGD) and 0.01 (Adam) as well as L2 regularization
of 10−4, momentum parameter of 0.9 for SGD and 0.9 for both the order-1 and order-2
moment with Adam. As can be seen on Figure B.1, this quantity is always small compared
to 1, making 1− Ak⟨ck,uk⟩ always positive in practice. The order of magnitude of this
quantity is roughly the same for different architectures and datasets.

Taylor expansion. We tracked the maximum of the quantity ηe
k∥c⊥

k ∥ for all the filters
of a ResNet20 CIFAR trained on CIFAR10 and optimized with SGD-M or Adam. The
observed values justify the Taylor expansion and validate the assumption |α|∥c⊥

k ∥ ≈
ηe

k∥c⊥
k ∥ < π. (cf. Figure B.2). The order of magnitude of this quantity is roughly the

same for other different architectures and datasets.

B.2 Theorem 4 assumptions validity

Validity of the Taylor expansion. For a CNN trained with SGD optimization, we
tracked the quantity (ηk∥∇L(uk)∥)2/r2

k, which is the variable of the Taylor expansion.
As can be seen in Figure B.3, the typical order of magnitude is 10−2, justifying the Taylor
expansion.

A quick formal analysis also suggests the validity of this hypothesis. Thanks to the
expression of ηk = (1− ηλ)−2i−kη shown in the previous section, if we replace ∥∇L(uk)∥

100 | Additional experiments

Fig. B.1 Tracking of Ak⟨ck,uk⟩ for SGD-M and Adam. The above graphs show
the maximum of the absolute value of Ak⟨ck,uk⟩ for all filters in all layers of a
ResNet20 CIFAR trained on CIFAR10 and optimized with SGD-M (left) or
Adam (right). The quantity is always small compared to 1. Therefore we may
assume that 1− Ak⟨ck,uk⟩ ≥ 0.

by a constant for asymptotic analysis, the comparison becomes:

(1− ηλ)−4k−2 ≪ (1− ηλ)−2 1− (1− ηλ)−4k

1− (1− ηλ)−4 (B.1)

1≪ 1− (1− ηλ)4k

(1− ηλ)−4 − 1 . (B.2)

It is asymptotically true.

B.3 Best hyperparameters for optimizers in table 3.3
and table 3.2.

This section provides the best hyperparameters found for each optimizer of the benchmark.
Learning rates and momentum factors can be found in table B.1 while L2 regularization
and order-2 moment parameters are in table B.2.

B.4 Extended results from section 3.5.3 to other
datasets and architectures

In this section, we observe the mean loss training curves associated to Adam, AdamW,
AdamG, Adam w/o (a), Adam w/o (ab), Adam w/o (abc) on datasets CIFAR10,
CIFAR100 and SVHN with architecture ResNet20, ResNet18 or VGG16 with BN,

B.5 Clustering analysis on CelebA | 101

Fig. B.2 Tracking of ηe
k∥c⊥

k ∥ for SGD-M and Adam. The above graphs show
the maximum of the absolute value of ηe

k∥c⊥
k ∥ for all filters in all layers of a

ResNet20 CIFAR trained on CIFAR10 and optimized with SGD-M (left) or
Adam (right).

Table B.1 Best learning rate and momentum factor. We systematically found the
same learning rate for each dataset and architecture while the momentum
factor was fixed to 0.9.

Method η0 β, β1

Adam 0.001 0.9
AdamW 0.001 0.9
AdamG 0.01 0.9
Adam w/o (a) 0.001 0.9
Adam w/o (ab) 0.001 0.9
Adam w/o (abc) 0.001 0.9

corresponding to the accuracies given in Table 3.3.These curves are illustrated in Fig-
ures B.4 B.5-B.6 B.6 B.7 B.8 B.9 B.10 B.12 B.13 B.14 B.15 B.16. The case of ResNet20
is illustrated in Figure 3.6 of the manuscript.

B.5 Clustering analysis on CelebA

We present, in Figure B.17, the matching accuracy between the ground-truth environments
and the environments discovered with our method on the validation set of CelebA for
different layers of the VGG-19. As on Waterbirds, we notice that the best result is
obtained when using the layer conv5_1.

102 | Additional experiments

Fig. B.3 Validity of Taylor expansion. We tracked the maximum value of
(ηk∥∇L(uk)∥)2/r2

k for all filters in all layers of a ResNet20 CIFAR trained
on CIFAR10 with SGD. The order of magnitude of the gradient is roughly the
same for other architectures or datasets. It empirically validates the approxi-
mation by the Taylor expansion.

Table B.2 Best L2 regularization (λ) and order-2 moment factors (β2).

Setup Adam AdamW AdamG Adam Adam Adam
w/o (a) w/o (ab) w/o (abc)

CIFAR10

ResNet20 λ× 104 2.5 5 1.25 0.31 1.25 5
β2 0.99 0.99 0.99 0.99 0.99 0.99

ResNet18 λ× 104 2.5 0.08 0.63 2.5 1.25 0.16
β2 0.999 0.99 0.99 0.99 0.99 0.99

VGG16 λ× 104 2.5 0.31 2.5 0.63 0.00 0.31
β2 0.999 0.999 0.999 0.999 0.99 0.999

CIFAR100
ResNet18 λ× 104 1.25 1.25 1.25 1.25 1.25 0.00

β2 0.999 0.99 0.99 0.99 0.99 0.999

VGG16 λ× 104 0.63 0.16 0.63 0.63 1.25 0.08
β2 0.99 0.99 0.99 0.99 0.99 0.99

SVHN
ResNet18 λ× 104 0.00 0.08 5 0.31 5 0.08

β2 0.999 0.999 0.99 0.99 0.999 0.999

VGG16 λ× 104 0.00 0.31 5 0.08 2.5 2.5
β2 0.99 0.99 0.99 0.99 0.99 0.999

B.5 Clustering analysis on CelebA | 103

Fig. B.4 Training speed comparison with ResNet18 BN on CIFAR10. Left:
Mean training loss over all training epochs (averaged across 5 seeds) for different
Adam variants. Right: Zoom-in on the last epochs. Please refer to Table 3.3
for the corresponding accuracies.

Fig. B.5 Accuracy comparison on the validation set with ResNet18 BN on
CIFAR10. Left: Mean training loss over all training epochs (averaged across 5
seeds) for different Adam variants. Right: Zoom-in on the first epochs. Please
refer to Table 3.3 for the corresponding accuracies.

104 | Additional experiments

Fig. B.6 Training speed comparison with VGG16 on CIFAR10. Left: Mean
accuracy on the validation set over all training epochs (averaged across 5 seeds)
for different Adam variants. Right: Zoom-in on the last epochs. Please refer
to Table 3.3 for the corresponding accuracies.

Fig. B.7 Accuracy comparison on the validation set with VGG16 BN on
CIFAR10. Left: Mean training loss over all training epochs (averaged across
5 seeds) for different Adam variants. Right: Zoom-in on the last epochs. Please
refer to Table 3.3 for the corresponding accuracies.

B.5 Clustering analysis on CelebA | 105

Fig. B.8 Training speed comparison with ResNet18 on CIFAR100. Left: Mean
training loss over all training epochs (averaged across 5 seeds) for different
Adam variants. Right: Zoom-in on the last epochs. Please refer to Table 3.3
for the corresponding accuracies.

Fig. B.9 Accuracy comparison on the validation set with ResNet18 BN on
CIFAR100. Left: Mean training loss over all training epochs (averaged across
5 seeds) for different Adam variants. Right: Zoom-in on the last epochs. Please
refer to Table 3.3 for the corresponding accuracies.

106 | Additional experiments

Fig. B.10 Training speed comparison with VGG16 on CIFAR100. Left: Mean
training loss over all training epochs (averaged across 5 seeds) for different
Adam variants. Right: Zoom-in on the last epochs. Please refer to Table 3.3
for the corresponding accuracies.

Fig. B.11 Accuracy comparison on the validation set with VGG16 BN on
CIFAR100. Left: Mean training loss over all training epochs (averaged
across 5 seeds) for different Adam variants. Right: Zoom-in on the last epochs.
Please refer to Table 3.3 for the corresponding accuracies.

B.5 Clustering analysis on CelebA | 107

Fig. B.12 Accuracy comparison on the validation set with VGG16 BN on
CIFAR100. Left: Mean training loss over all training epochs (averaged
across 5 seeds) for different Adam variants. Right: Zoom-in on the last epochs.
Please refer to Table 3.3 for the corresponding accuracies.

Fig. B.13 Training speed comparison with ResNet18 on SVHN. Left: Mean
training loss over all training epochs (averaged across 5 seeds) for different
Adam variants. Right: Zoom-in on the last epochs. Please refer to Table 3.3
for the corresponding accuracies.

108 | Additional experiments

Fig. B.14 Accuracy comparison on the validation set with ResNet18 BN on
SVHN. Left: Mean training loss over all training epochs (averaged across 5
seeds) for different Adam variants. Right: Zoom-in on the last epochs. Please
refer to Table 3.3 for the corresponding accuracies.

Fig. B.15 Training speed comparison with VGG16 on SVHN. Left: Mean
training loss over all training epochs (averaged across 5 seeds) for different
Adam variants. Right: Zoom-in on the last epochs. Please refer to Table 3.3
for the corresponding accuracies.

B.5 Clustering analysis on CelebA | 109

Fig. B.16 Accuracy comparison on the validation set with VGG16 BN on
SVHN. Left: Mean training loss over all training epochs (averaged across 5
seeds) for different Adam variants. Right: Zoom-in on the last epochs. Please
refer to Table 3.3 for the corresponding accuracies.

110 | Additional experiments

Fig. B.17 Impact of the layer choice to extract style features on CelebA.
We show the matching accuracy between the ground-truth environments on
the validation set CelebA and the discovered ones with GramStyle when
using different VGG-19 layers. The result denoted allconvX_1 is obtained
when using all the layers conv1_1, conv2_1, conv3_1, conv4_1, conv5_1 in
our method.

Appendix C

Implementation details

C.1 Weight trajectory tracking from section 3.4.3

Due to the high non-convexity of the optimization landscape, we choose to start from
a relatively stable point in the parameter space. The finetuning of each architecture
(ResNet20 BN, ResNet20 BN w/o affine and ResNet WN) starts from previously trained
architectures on CIFAR10 via a simple SGD with an initial learning rate of 10−1, a
L2-regularization parameter of 10−4 and a momentum parameter of 0.9. The training is
performed during 200 epochs, and the learning rate is multiplied by 0.1 at epochs 80,
120 and 160.

Then we track the trajectory obtained with SGD, AdaGrad and AdaGradG. The
effective learning rate for SGD is fixed to 10−2 and the L2-regularization parameter is set
to 10−3 during finetuning. It gives us the following equivalent parameters for AdaGradG:
order-2 moment parameter β ≈ 0.99996 and learning rate η ≈ 0.71. Since the effective
direction is the same for both SGD and AdaGrad (Adam without momentum), in order to
have the same order of magnitude for the gradient steps we need to have effective learning
rates of same order of magnitude. From Table 3.1, in the case of SGD we have ηe

kSGD = ηk

r2
k
,

and in the case of AdaGrad we have ηe
kAdaGrad = ηk

rkνk
= ηk

r2
k

d−1/2∥bk∥
= ηe

kSGD
1

d−1/2∥bk∥
.We

track the quantity 1
d−1/2∥bk∥

during training, which is roughly in the order of magnitude
of 10−1. Therefore, to have gradient steps of equivalent order of magnitude between SGD
and AdaGrad, we have to choose a learning rate of 10−3 for AdaGrad.

112 | Implementation details

C.2 Implementation details of experiments in sec-
tion 4.4.1

This section focuses on implementation details used to produce the results in the main
text of our paper. The code that we used is provided along with this appendix. Our
implementation builds upon the WILDS framework1 released with the paper of Koh et
al. Koh et al. (2021).

C.2.1 Construction of COCO-on-Places-224

We generated the dataset using the code2 of Ahmed et al. Ahmed et al. (2021) but, as
explained in the main paper, we modified it to produce images of size 224× 224 instead
of 64× 64. The reader can refer to the appendix of Ahmed et al. (2021) for more details
regarding the generation of the COCO-on-Places dataset.

C.2.2 Details about robust optimization

We trained all models on one NVIDIA® V100 Tensor Core with 16GB of memory, using
PyTorch 1.10 and CUDA 10.2.

We used the implementations of IRM Arjovsky et al. (2020), Importance Weighting
and GroupDRO Sagawa* et al. (2020) available in WILDS Koh et al. (2021), our own
implementations of JTT Liu et al. (2021) and of GEORGE Sohoni et al. (2020) (while
making sure that we could reproduce the original performances on Waterbirds and
CelebA), and the official implementation3 of EIIL Creager et al. (2021). Concerning
EIIL, we recall that we were not able to make this method scale to large datasets such
as CelebA.

For all methods, we used a ResNet-50 He et al. (2016b) architecture trained using
stochastic gradient descent with momentum (SGD-M) and L2 regularization, but without
any learning rate scheduler. We used a momentum of 0.9 and a batch size of 128 for all
datasets and all methods. The learning rate η and L2 regularization parameters λ are
set as detailed below.

JTT, GEORGE, EIIL, GramStyle all use GroupDRO Sagawa* et al. (2020) as
robust optimization step. On Waterbirds and CelebA, we did not redo any grid search and
used the hyperparameters found in Sagawa* et al. (2020). These hyperparameters were

1https://github.com/p-lambda/wilds
2https://github.com/Faruk-Ahmed/predictive_group_invariance
3https://github.com/ecreager/eiil

https://github.com/p-lambda/wilds
https://github.com/Faruk-Ahmed/predictive_group_invariance
https://github.com/ecreager/eiil

C.2 Implementation details of experiments in section 4.4.1 | 113

Table C.1 SGD-M hyperparameters for GroupDRO training.

SGD-M hyperparameters Waterbirds CelebA COCO-on-Places-224
Learning rate η 10−5 10−5 5 · 10−5

L2 regularization λ 1.0 0.1 10−2

Table C.2 SGD-M hyperparameters for ERM training.

SGD-M hyperparameters Waterbirds CelebA COCO-on-Places-224
Learning rate η 10−4 10−4 10−4

L2 regularization λ 10−3 10−4 10−4

optimized using a small validation set annotated with true group labels. To produce the
results on COCO-on-Places-224, we performed our own grid search using the annotated
validation set. We considered values of η and λ close to those used in Sagawa* et al.
(2020): λ ∈ {10−4, 10−2, 10−1, 1} and η ∈ {10−5, 5·10−5, 10−4}. The best hyperparameters
for GroupDRO are summarized in Table C.1.

To ensure fair comparisons, we also performed the same grid search over η and λ for
ERM, IRM and Importance Weighting. The best hyperparameters for ERM and IRM
are summarized for each dataset in Table C.2 and Table C.3, respectively. Note that
they correspond to those reported in Sagawa* et al. (2020) for Waterbirds and CelebA.

C.2.3 Group discovery details

For GramStyle, we follow standard practice of neural style transfer Gatys et al. (2016)
and use the VGG-19 Simonyan and Zisserman (2015) architecture for the identification
model. This model is trained during 1 epoch on the training dataset with ERM using a
batch size of 128 and SGD-M. In the experiments of Section 4.2 in the main paper, we
set the number of clusters to 2, and use the layer conv5_1 to extract Gram Matrices.
For EIIL and GEORGE, the identification model is a ResNet-50 He et al. (2016b) as
used in the original methods. We train the model for 1 epoch with ERM using SGD-M,
as for GramStyle. Note that the activation at the output of the last layer is a sigmoid
in EIIL Creager et al. (2021) while it is a softmax in GEORGE Sohoni et al. (2020).
As for GramStyle, the best results were obtained when using 2 clusters for EIIL and
GEORGE. We refer the reader to Creager et al. (2021) and Sohoni et al. (2020) for other
implementation details specific to EIIL and GEORGE, respectively.

114 | Implementation details

Table C.3 SGD-M hyperparameters for IRM training.

SGD-M hyperparameters Waterbirds CelebA COCO-on-Places-224
Learning rate η 10−4 10−5 5 · 10−5

L2 regularization λ 10−3 0.1 0.1

Table C.4 Grid search results on the validation sets of Waterbirds, CelebA
and COCO-on-Places-224 with pseudo-group labels. We report the
worst-group (‘w-g’) and average (‘avg’) accuracies for Waterbirds and CelebA
datasets, and the systematically-shifted (‘shift’) and in-distribution (‘ind’)
accuracies for COCO-on-Places (‘COCO-on-P’) dataset.

Hyperparam. Waterbirds CelebA COCO-on-P
Method λ η w-g avg w-g avg sys ind
GramStyle-cv 0.01 1 · 10−5 74.6 82.4 86.0 93.2 62.8 92.3

0.01 5 · 10−5 69.2 79.9 53.5 94.6 70.7 76.5
0.01 1 · 10−4 70.0 80.6 - - 78.5 82.7
0.1 1 · 10−5 75.4 82.6 85.6 93.7 78.7 83.3
0.1 5 · 10−5 73.8 82.4 85.0 89.1 70.4 76.4
0.1 1 · 10−4 76.9 85.8 - - 76.2 81.2
1 1 · 10−5 80.8 86.4 - - 65.5 72.6
1 5 · 10−5 0.0 23.1 - - 0.1 11.1
1 1 · 10−4 0.0 23.1 - - 0.2 11.1

C.2.4 Cross validation on pseudo-group annotations

We report in Table C.4 the results of our grid search on the validation set of each dataset
using the pseudo-annotations discovered with our method, i.e., using our discovered
environments instead of the ground-truth ones. Hence, the average and worst group
accuracies in Table C.4 are computed using the discovered pseudo-groups. The hyperpa-
rameters used in GramStyle-cv correspond to those which yield the best worst-group
accuracy in this table.

	Table of contents
	List of figures
	List of tables
	Symbols
	1 Introduction
	1.1 Context
	1.2 Motivations
	1.3 Goals
	1.4 Challenges
	1.5 Contributions
	1.6 Outline
	1.7 Publications

	2 Literature review
	2.1 Preliminary
	2.1.1 Statistical view of parametric machine learning problem
	2.1.2 Optimization: basic concepts
	2.1.3 Deep Learning architectures

	2.2 Challenges of training DNNs
	2.2.1 Learning differs from traditional optimization
	2.2.2 High dimension of the input data and black box analysis
	2.2.3 High number of parameters and non-convexity of ERM

	2.3 Training techniques in Deep Learning
	2.3.1 Parameter initialization
	2.3.2 Gradient based optimization schemes
	2.3.3 Learning rate scheduling and adaptive optimization schemes.
	2.3.4 Early stopping

	2.4 Normalization Layers
	2.5 Conclusion

	3 Impact of Normalization Layers on Optimization
	3.1 Introduction
	3.2 Technical background
	3.2.1 Radial invariance
	3.2.2 Radially invariant parameters in DNN with NL.
	3.2.3 Quotient of the parameter space and hypersphere
	3.2.4 Riemannian geometry

	3.3 Spherical Framework
	3.3.1 Generic optimization scheme
	3.3.2 Image optimization on the hypersphere
	3.3.3 Effective quantities

	3.4 SGD is equivalent to AdaGradG
	3.4.1 Equivalence between optimization schemes
	3.4.2 A hypersphere-constrained scheme equivalent to SGD
	3.4.3 Empirical validation

	3.5 Geometric phenomena in Adam
	3.5.1 Identification of geometrical phenomena in Adam
	3.5.2 New variants of Adam.
	3.5.3 Empirical study.

	3.6 Related work
	3.7 Limitations
	3.8 Conclusion

	4 Avoid learning spurious correlations
	4.1 Introduction
	4.2 Related work
	4.2.1 Group Robustness with group annotation.
	4.2.2 Group Robustness without group annotation
	4.2.3 Gram matrices

	4.3 GramClust: A Clustering Approach for Robust Optimization
	4.3.1 Problem formulation
	4.3.2 Dataset partition
	4.3.3 Robust optimization with pseudo-group labels
	4.3.4 Model selection via cross-validation on validation data

	4.4 Experiments
	4.4.1 Setup
	4.4.2 Comparative results
	4.4.3 Study of the clustering features
	4.4.4 Clustering analysis
	4.4.5 Discussion about improved results of GramClust over GroupDRO on Waterbirds

	4.5 Conclusion

	5 Conclusion
	5.1 Summary of contributions
	5.2 Future work

	Bibliography
	Appendix A Omitted proofs
	A.1 Proof of Lemma 1

	Appendix B Additional experiments
	B.1 Theorem 2 assumptions validity
	B.2 Theorem 4 assumptions validity
	B.3 Best hyperparameters for optimizers in table 3.3 and table 3.2.
	B.4 Extended results from section 3.5.3 to other datasets and architectures
	B.5 Clustering analysis on CelebA

	Appendix C Implementation details
	C.1 Weight trajectory tracking from section 3.4.3
	C.2 Implementation details of experiments in section 4.4.1
	C.2.1 Construction of COCO-on-Places-224
	C.2.2 Details about robust optimization
	C.2.3 Group discovery details
	C.2.4 Cross validation on pseudo-group annotations

