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Part II: Self-Assembly through programmable folding

Chapter 5 We present the concept of self-assembly and discuss different strategies to realize it, putting an emphasis on folding. The experimental model system our results are based on, namely, colloidomers, is described.

The main motivation of the project, that is, to guide the folding of a colloidomer chain towards a unique geometry, is detailed.

Chapter 6 The goal of this chapter is introduce the reader to the tools and methods employed to characterize colloidomers in theory and simulations. Key points in the chapter are the use of mathematical graphs to describe colloidomer configurations, the enumeration of the folding pathways, and the calculation of the free energy landscape of the system. This will allow us to discuss the factors that impact colloidomer yields in and out-of-equilibrium in the next chapter.

Chapter 7 We discuss simulation results for the folding of a homopolymer chain, when droplets can unspecifically interact with each other. Results are reported at equilibrium and out-of-equilibrium and they demonstrate that depending on the regime, it is either thermodynamics or kinetics that determine the fate of the assembly. This highlights the importance of focusing the design process not only on the target structure, but also on the properties of the assembly pathways. We compare the results in the chapter to the assembly of a gas of particles for reference.

Chapter 8 We combine multiflavored colloidomer chains with temperature protocols to guide the out-of-equilibrium folding of a chain towards a unique cluster geometry. Temperature protocols funnel the energy landscape by determining the order in which bonds form. We introduce an algorithm to enumerate geometric solutions in protocol and sequence space, and report experimental and simulation results evidencing the success of the approach. We conclude the chapter by showing that these unique geometries, that we will denote as colloidal foldamers, open the possibility of further controlling the folding process from 2D to 3D and they can be used as building blocks for supracolloidal assemblies.

Chapter 9 We summarize the results obtained by folding a colloidomer chain and suggest an outlook.

Résumé en français

Les travaux présentés dans ce manuscrit tournent autour de deux phénomènes vitaux dans la matière vivante, à savoir la catalyse et l'auto-assemblage par repliement. Notre contribution à la compréhension de ces processus s'inscrit dans le cadre de l'effort interdisciplinaire actuel visant à développer des matériaux bio-inspirés [1] et, à terme, à réaliser la vie artificielle [2]. Nous aborderons ici (i) la catalyse et (ii) le repliement de courtes chaînes colloïdales du point de vue de la physique, en utilisant la théorie et les simulations. Néanmoins, nous notons que nos résultats sont en lien direct avec les systèmes expérimentaux et que nos modèles peuvent être réalisés physiquement en laboratoire.

I : Une approche ascendante de la catalyse

Un catalyseur accélère la vitesse d'une réaction chimique sans être consommé dans le processus. Le phénomène auquel il donne lieu, la catalyse, est fondamental pour les organismes vivants et constitue une pierre angulaire de l'industrie moderne, qui dépendent tous deux de réactions chimiques efficaces et rapides. De nos jours, plus de 85% des produits de l'industrie chimique sont le résultat d'un processus catalytique [3], et pratiquement toutes les voies de réaction dans les cellules sont régulées par des enzymes, les catalyseurs inégalés de la nature.

Malgré son omniprésence, il n'existe pas de théorie unifiée de la catalyse ni de cadre rationnel pour concevoir systématiquement ce phénomène cinétique. En outre, les contraintes géométriques et physiques à l'origine de la catalyse ne sont pas encore totalement comprises. L'élucidation des principes de conception de la catalyse n'est pas seulement pertinente au niveau fondamental, mais elle revêt une grande importance pratique, en particulier en période de crise climatique, énergétique et environnementale. Notre objectif dans cette thèse sera de déterminer comment les propriétés matérielles d'un catalyseur agissent en synergie pour accélérer une réaction. Pour y répondre, nous concevrons un modèle minimal de catalyseur utilisant des particules sphériques qui interagissent via des potentiels programmables, où nous pouvons accorder les interactions entre les particules et la géométrie du candidat catalyseur.

SUMMARY IN FRENCH

Un critère pour la catalyse

Afin de déterminer l'émergence de la catalyse dans un système, nous introduisons un cadre théorique pour la conception rationnelle de la catalyse basé sur la théorie des temps de premier passage. Ce cadre s'appuie sur une définition pratique de la catalyse où l'activité catalytique est définie par rapport à la réaction spontanée. Ce critère contraste avec les quantificateurs courants de l'activité catalytique, tels que k cat et K M dans le cas des enzymes, par exemple, qui supposent que la contribution de la réaction spontanée en présence du catalyseur peut être négligée. Le critère établit qu'un réactif qui interagit avec le substrat et le produit d'une réaction, est un catalyseur si sa présence dans le système réduit le temps moyen de réaction,

η + ≡ T S→P T C+S→C+P > 1, (1) 
sans être consommé dans le processus, où T S→P est le temps moyen de réaction en l'absence du catalyseur et T C+S→C+P est le temps moyen de réaction lorsqu'un seul substrat est en présence d'un seul catalyseur. Ce critère pour la catalyse constitue une fonction de score qui permet une optimisation systématique de la catalyse de bas en haut. En d'autres termes, la conception initiale d'un schéma d'optimisation ne doit pas nécessairement être une solution déjà établie, car le critère peut quantifier la distance qui sépare une conception spécifique d'un vrai catalyseur. Il est aussi important de noter que lorsque le cycle catalytique est décomposé en étapes élémentaires, le critère révèle des contraintes cinétiques qui peuvent être traduites en principes de conception physiques et géométriques. Ces principes guideront le processus de conception de notre catalyseur minimal.

Un modèle à gros grains pour la catalyse

Après avoir établi un critère pour la conception de la catalyse, nous nous concentrons sur l'accélération d'une réaction omniprésente en chimie, à savoir la dissociation d'une molécule. Nous définissons le substrat comme un dimère composé de deux particules sphériques qui peut se dissocier spontanément en deux monomères libres par activation thermique. En retour, nous proposons un dimère rigide comme catalyseur minimal. Ce candidat catalyseur sera constitué de deux particules maintenues à une distance fixe, qui interagiront avec les particules du substrat et du produit avec une force de liaison spécifique.

Nous explorons l'espace des paramètres du système en combinant théorie et simulations et déterminons qu'un dimère rigide peut cliver une liaison en utilisant la contrainte comme mécanisme catalytique. La déformation ne sera exercée que si la distance entre les particules du catalyseur est supérieure à un certain seuil. De même, nous constatons que le catalyseur doit lier le substrat à une liaison plus faible que celle qu'il entend cliver, afin que les produits puissent être libérés en temps voulu. Ces contraintes physiques et géométriques apparaissent lorsque le cycle catalytique complet, y compris la fixation du substrat et la libération des produits, est pris en compte dans le processus de conception. Des résultats supplémentaires montrent que les paramètres d'un catalyseur, sa géométrie et les forces d'interaction doivent être soigneusement choisis dans une fourchette étroite pour obtenir la catalyse. Ces résultats ouvrent la porte à la conception de systèmes artificiels autorégulés dotés de fonctionnalités bio-inspirées et ouvrent la voie à une meilleure compréhension des enzymes. Les colloïdes recouverts d'ADN représentent un candidat solide pour réaliser notre système en laboratoire.

II : L'auto-assemblage par pliage programmable

L'auto-assemblage désigne le processus par lequel un ensemble de sousunités s'organise de manière autonome en motifs ordonnés et en structures fonctionnelles [4]. Le repliement des protéines, ainsi que l'assemblage de machines moléculaires, de membranes lipidiques ou de capsides virales, par exemple, résultent tous de l'organisation spontané de blocs de construction spécifiques dans un organisme vivant, ce qui prouve l'omniprésence de ce processus dans la nature. Au-delà de son importance fondamentale en tant que processus de base de la vie, l'auto-assemblage est devenu au cours des dernières décennies une stratégie très populaire pour fabriquer des matériaux avec un contrôle exquis, notamment dans le domaine des nanotechnologies.

L'auto-assemblage repose sur la manière dont l'information est codée et traitée dans le système. En particulier, nous abordons ici l'auto-assemblage via le repliement programmable, dont les protéines naturelles constituent l'exemple prototypique. Au cours du repliement, les blocs de construction sont d'abord assemblés en une chaîne polymère et organisés selon une séquence spécifique. Les propriétés physiques du polymère déterminent largement l'ensemble des modèles disponibles que le système peut réaliser. Malgré le défi que représente la construction du polymère dans la première étape, l'approche est payante, suggérant qu'il est possible de réduire le nombre de blocs de construction requis par l'assemblage grâce au squelette du polymère.

Colloidomères comme système modèle pour le pliage

Ces dernières années, des systèmes modèles permettant un pliage programmable basé sur des particules colloïdales ont émergé [5,6]. Notre travail se concentre sur un système basé sur des particules colloïdales connectées en une chaîne connue sous le nom de colloidomères [5]. Les colloïdomères sont des polymères librement articulés constitués de N gouttelettes d'émulsion monodispersées. Ces gouttelettes interagissent via des brins d'ADN, qui sont activés par des protocoles de température. Ces protocoles de température constituent la base de notre recherche. En particulier, notre principal objectif est la conception : nous voulons contrôler l'état final de repliement d'un colloïdomère.
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Pour atteindre cet objectif, nous utiliserons la "saveur" des gouttelettes (voir spécificité), la séquence des particules dans la chaîne et les protocoles de température comme boutons de contrôle.

Une boîte à outils pour plier les colloidomères

Pour comprendre comment diriger l'assemblage d'un colloïdomère vers une géométrie spécifique, nous caractérisons d'abord le paysage de repliement des colloïdomères et énumérer toutes les géométries possibles dans lesquelles une chaîne peut se replier. Nous réalisons ensuite une expérience de contrôle et laissons un colloïdomère se replier en l'absence de conception. Cela nous permet de comprendre s'il existe des géométries préférées et d'étudier les propriétés générales des voies de repliement. Enfin, nous pouvons utiliser notre boîte à outils de boutons de contrôle (constituée par les saveurs des particules et la température) pour développer des protocoles de conception et diriger le processus d'assemblage.

Dans cette boîte à outils, la spécificité des particules contrôle les interactions entre les gouttelettes en déterminant lesquelles peuvent former des liaisons. Bien qu'avec suffisamment de spécificité, il soit possible d'assembler n'importe quel cluster souhaité avec un rendement élevé, nous aimerions garder la palette de saveurs de particules au minimum, et n'utiliser que deux types de particules distincts. Ceci est plus simple à réaliser dans les expériences et pose une question fondamentale : peut-on concevoir une stratégie qui maximise le nombre de structures qu'une palette limitée de saveurs peut coder, au-delà de la spécificité des blocs de construction ? Nous explorons cette question en considérant une dimension supplémentaire dans l'espace de conception, à savoir le contrôle du moment où des liaisons spécifiques peuvent être formées.

Les protocoles de température créent un entonnoir dans le paysage

On contrôle le moment où des liaisons spécifiques sont formés par des protocoles de température, qui dictent l'ordre dans lequel les interactions sont activées. Les interactions peuvent être activées de manière séquentielle en concevant de manière pratique les séquences d'ADN qui servent de médiateur aux interactions secondaires dans les gouttelettes et en diminuant progressivement la température du système. En conséquence, la chaîne se plie en suivant un processus d'assemblage hiérarchique. En outre, la température est responsable de l'entonnoir du paysage énergétique du système.

Il est intéressant de noter que, dans certains cas, cet entonnoir peut être suffisamment étroit pour conduire la chaîne vers une géométrie unique à haut rendement. Nous appelons ces géométries des foldamers colloïdaux, par analogie aux foldamers chimiques. Pour déterminer quels protocoles de température conduisent à un foldamère, nous développons un algorithme efficace sur le plan informatique qui balaie l'espace de conception. Les solutions dérivées de l'algorithme sont testées dans des expériences, menées au laboratoire de Brujic à NYU, et dans des simulations. Le succès de l'approche, attesté par les rendements élevés rapportés, est validé. Nos foldamers ouvrent la porte à l'assemblage hiérarchique d'architectures plus complexes au microscope, telles que des structures de type tubule et mycelle ou des tessellations du plan.

Preface

The work contained in this manuscript revolves around two vital phenomena in living matter, namely, catalysis and self-assembly through folding. Our contribution to the understanding of these processes falls within the ongoing interdisciplinary effort to develop more advanced bio-inspired materials [1] and ultimately, to achieve Artificial Life [2]. Here we will approach catalysis and folding from the perspective of Physics. In particular, we will use coarsegrained models of spherical particles interacting via programmable potentials as our main tool. Inspired by the framework of Artificial Chemistry [7], we will not consider real atoms or molecules. Instead, these will be abstracted into simpler objects, e.g., monomers and dimers made of spherical particles, with the goal of elucidating general underlying physical laws that constrain the design of a catalyst, on the one hand, and the structure of folding pathways for self-assembly, on the other.

The manuscript is organized in two parts. Part I, titled Catalysis from the Bottom-up, is devoted to the design of a minimal catalyst model that can accelerate dissociation reactions. Even though this work consists of theoretical and computational results, the experimental feasibility of the model is always considered. Therefore, whenever applicable, we provide suggestions on how the system could be realized in the lab. Part II, Self-Assembly Through Programmable Folding, presents design rules to guide and control the folding of freely-jointed colloidal chains known as colloidomers [5]. This second part of the manuscript has been conducted in collaboration with Jasna Brujic's lab at NYU. The experimental data we show therein has been obtained by Angus McMullen.

Chapter summaries Part I: Catalysis from the bottom-up

Chapter 1 We present the phenomenon of catalysis and discuss the challenge of designing efficient catalysts from the bottom-up, by connecting a material's structural properties to its emerging function as a catalyst. We also detail our objective of designing a minimal working catalyst for dissociation reactions in a physical model. The plan to achieve this goal is set out at the end of the chapter.

Chapter 2 We introduce a theoretical framework for catalysis design based on the theory of First-Passage Times (FPT). The framework relies on a criterion for catalysis that compares the Mean First Passage Times (MFPTs) of the reaction in the presence and absence of the catalyst. We first apply the criterion to derive general conditions for catalysis in unimolecular reactions. We then decompose the catalytic cycle into elementary processes and use the criterion to elucidate the kinetic constraints on the rates of the reaction. We conclude the chapter with a discussion on the limitations of the approach.

Chapter 3 We apply the criterion for rational catalysis design derived in the previous chapter to a practical case: the catalysis of a dissociation reaction in a physical model system of spherical particles interacting via programmable potentials. This model allows us to investigate the physical and geometrical constraints of catalysis in connection with the necessary kinetic conditions derived beforehand. Potential experimental realizations of the model are discussed.

Chapter 4 We summarize the main results of our coarse-grained model for catalysis and suggest future lines of research.
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Introduction

A catalyst accelerates the rate of a chemical reaction without being consumed in the process. The phenomenon it gives rise to, catalysis -from greek kata, down, and luein, to loosen or dissolve -, is fundamental for living organisms and a cornerstone of modern industry, both of which rely on efficient and fast chemical reactions. Nowadays, more than 85% of the products in the chemical industry are the result of a catalytic process [3], and virtually all reaction pathways in cells are regulated by enzymes, Nature's unsurpassed catalysts.

Catalysts come in different shapes and sizes, as exemplified by Fig. 1.1. They are traditionally classified into three main categories, although the boundaries between them have started getting blurry in recent years [8,9]. In heterogeneous catalysis, the catalyst is in a different phase than the reactants: the catalyst is usually a solid surface or a porous material in contact with the reactants in liquid or gas phase. In homogeneous catalysis, both catalyst and reactants are in the same phase. Finally, enzymes receive their own category due to their unmatched catalytic activity and high specificity, despite being homogeneous catalysts in essence. Even more remarkably, enzymatic efficiency is generally achieved at mild reaction conditions, i.e., at atmospheric pressure and room temperature.

Catalysis is a kinetic phenomenon that does not alter the thermodynamic properties of a chemical reaction, leaving its equilibrium constant unchanged. Furthermore, despite the broad range of catalytic designs, the resulting phenomenon is the same: all the molecules and surfaces responsible for catalytic activity operate out of equilibrium, providing kinetically favorable mechanisms that allow the reaction to proceed faster. Enzymes, for instance, have been compared to highly specialized "reaction vessels" for the reactions they accelerate [10]. The Swedish chemist Berzelius was the first to note that catalysis is not a fundamental force of nature, but rather an emergent property of matter 1 . However, to date it is still not fully understood what the geometrical and physical constraints that give rise to catalysis are. Elucidating how the material properties of a catalyst act in synergy to accelerate a reaction constitutes the main quest of rational catalysis design. This will be the driving question for our work. To answer it, we will design a minimal catalyst model using spherical particles that interact via programmable potentials. The model is schematically depicted Fig. 1.1 (c). Before diving into the details of our catalyst model, we first set the stage by discussing the state of the art of catalysis design in the upcoming sections with the goal of placing into context the contributions that make the subject of this manuscript. 

History, concepts and design principles of catalysis

Catalysis revolves around reaction timescales and kinetics. Central to the topic is the question of what dictates the rate of a chemical reaction, and how it can be accelerated. A catalyst achieves the remarkable feat of speeding up a reaction without energy input while remaining unconsumed. Naturally, the first question that arises is, how is that possible? Others follow: What are the mechanisms employed by catalysts to do so? Can we construct a catalyst for any reaction we are interested in? Are there fundamental principles that guide a catalyst's design process? Starting from a short historical introduction that illustrates how the knowledge in the field has evolved in the last century, this section provides the background necessary to answer to the above questions and establishes fundamental concepts that will be used throughout the manuscript.

A brief history of catalysis

As is the case for many phenomena in Nature, the study of catalysis was born as an empirical field at the beginning of the XIXth century. Progress was initially driven by kinetic analyses and chemical assays in the hands of chemists like Davy, Berzelius and Ostwald, among others, who experimented with different compounds to identify which of them were catalytically active [14]. The questions asked at the time revolved around determining whether the catalyst interacted directly with the reactants, and if so, what were the types of interactions established between them. In the early XXth century, their work was continued with the first theories of chemical and heterogeneous catalysis by Sabatier [15] and Langmuir [16], and the pioneering studies of enzymatic activity by Henri [17], and Michaelis and Menten [18]. In those days, the association of enzymes with living organisms raised many doubts as to whether enzymatic activity obeyed the laws of Chemistry [19,20]. This ultimately resulted in the gradual separation of biological and non-biological catalysis into different scientific disciplines. With the arrival of X-ray crystallography and other structure and surface characterization techniques, it became possible to start relating catalytic activity to the composition and structural properties of materials and (bio)molecules [3]. However, these experimental advances also revealed the complexity and apparent lack of order in enzymes' architecture on the one hand (see trypsin structure in Fig. 1.1), and of catalytic surfaces on the other, eventually directing the field away from efforts to formulate a unifying theory of catalysis [21]. Instead, research slowly centered in the study of individual systems. As a result, theoretical understanding of catalysis has primarily followed practical breakthroughs [3], and a general theory of catalysis that combines enzymes, heterogeneous and homogeneous catalysts has not been formulated yet. Many initiatives to establish bridges between these systems have emerged in the last few years [22,23,24].

Reaction coordinate

Free energy A B TS Figure 1.2: Free energy surface of a chemical reaction. The system, initialized in state A, must overcome the activation barrier ∆G AB to pass through the Transition State (TS) and reach state B in order to minimize its energy.

Transition State Theory (TST)

Much of our understanding of how catalysts mechanistically operate is based on Transition State Theory (TST), a theoretical framework derived from Chemical Kinetics, Quantum Theory and Statistical Physics in the early 30s of the past century [25]. TST provides tools to compute the rate of a reaction by considering the interactions between atoms and molecules. Built on Marcelin's concept of the energy surface of a reaction [26], the framework of TST recognized the importance of the saddle points on this surface in determining the reaction rate [21]. These points would later be known as the activated complex or Transition State (TS) of the reaction. According to TST, a chemical reaction can be mapped to a trajectory on the free energy surface of the reaction, and its progress therein can be described by an abstract one-dimensional reaction coordinate. The TS represents a short-lived, unstable conformation which has the highest energy along the reaction pathway and separates two valleys on the surface, each of which is associated to the initial and final state of the reaction, respectively (see Fig. 1.2). The rate of a reaction is dictated by the energy difference between the bottom of the initial valley and the height of the TS. This energy difference is known as the activation barrier or activation energy of the reaction, a concept introduced by Arrhenius to describe the temperature dependence of the rate of a chemical reaction [27]. In general [28], the higher the activation barrier, the slower the reaction proceeds. Therefore, being one of the main actors in determining the rate of a reaction, the activation barrier is the observable upon which a catalyst will act to exert its accelerating effect.

Connection between catalysis and TST

The connection between TST and catalysis was first established by Pauling in an attempt to explain the origin of enzymes' high catalytic efficiency [29]. Pauling suggested that the active site of an enzyme, a small region in the molecule where the reaction occurs, is structurally complementary not to the reactants of the reaction it catalyzes, but to the TS of the reaction instead. According to Pauling's idea, by binding the TS of the reaction stronger than the substrate2 in its ground state (i.e., without interacting with the catalyst), the enzyme favors the progress of the chemical reaction, since it helps the substrate reach and pass over the TS more efficiently. In other words, a catalyst decreases the activation barrier of a reaction, an effect that can be realized by either stabilizing the TS of the reaction, that is, by lowering its energy [30], or by destabilizing the substrate, by bringing its energy up [31]. However, it is important to keep in mind that the real picture may be more complex, as the catalyst can provide a completely alternative reaction pathway involving multiple intermediates that results in a higher reaction rate, i.e., the reaction pathway in the presence and absence of the catalyst may not be comparable [32].

Initially formulated in the context of biological catalysis, the idea that the catalyst interacts differently with the TS and the ground state of the reaction holds true for all catalyst classes [33]. In particular, Pauling's principle has had profound impact in the design of enzyme mimics, and, maybe more successfully, in the development of enzyme inhibitors for therapeutics [34]. Nevertheless, to date it has failed to provide artificial enzymes and catalysts that are as efficient as their natural counterparts.

Catalysis beyond Pauling's paradigm

Pauling's principle provides a straightforward recipe for catalysis. If an enzyme's catalytic activity relies on the geometric complementarity of its active site to the TS of the reaction it catalyzes, then it should be possible to design enzyme-like catalysts for any desired reaction by conveniently sculpting the active site. Two decades after Pauling's hypothesis of enzymatic activity, Jencks suggested a strategy to construct synthetic enzyme-like molecules based on antibodies [35]. Antibodies are highly specific molecules that are naturally evolved by our immune system (via a process known as affinity maturation) to recognize an antigen with increasing affinity. According to Jencks, if Pauling's hypothesis was correct, then it would suffice to construct a stable molecule that resembles the TS of the reaction as much as possible, a so-called TS analog [34], and to maturate the antibody against it in order to design a catalyst. The initial excitement as a result of the success of the approach [36,37] slowly faded when it was realized that efficiencies of catalytic antibodies, or abzymes, are not able to match those of natural enzymes [38]. The origin of the limitations of catalytic antibodies to produce highly efficient catalysts is not entirely clear, since, for example, determining the exact TS of a reaction is far from trivial. However, the field has gradually shifted its attention towards therapeutic applications in place of catalyst engineering.

Although Pauling's principle might be necessary for catalysis, approaches like the above suggest that it is not sufficient to guarantee (efficient) catalysis. Indeed, catalysis is much more than TS stabilization and reducing an activation barrier: it must be viewed as a complete reaction cycle. Arguments in favor of these ideas can be easily provided, since blind application of the principle of TS stabilization contravenes another design principle routinely exploited in the field of heterogeneous catalysis, namely, the Sabatier principle [39,40]. This principle arises from the empirical observation that the best catalysts bind the reactants with intermediate strength: if the catalyst binds the reactants weakly, the reaction will not proceed, and if the interaction is too strong, the catalyst will not be able to release the products and will not complete the reaction cycle. Highly accurate complementarity between the TS and the active site of a catalyst could result in product inhibition and lower catalytic activity, if any, an issue that has been previously raised for catalytic antibodies [37]. Interestingly, the Sabatier principle approaches catalysis from a broader perspective than Pauling's, because it considers simultaneously different aspects of a catalytic cycle, such as the chemical reaction conducted by the catalyst and the release of products. However, it is not obvious whether the Sabatier principle applies generally to all catalysts. For example, the coupling of different degrees of freedom in enzymes, as demonstrated by allostery [41], might not allow for this kind of relationship between a one-dimensional descriptor of the catalyst (e.g., the binding energy) and the catalyst's efficiency.

State of the art of bottom-up catalysis design

So far, we have introduced catalysis as a chemical phenomenon that emerges from the specific arrangement and composition of atoms in matter. However, most frameworks approach catalysis as an empirical phenomenon by describing it from top to bottom, i.e., from the unambiguous observation of catalytic activity to the analysis of the material causes for its emergence. Due to the difficulty in bridging the many time-and space-scales involved in catalysis, bottom-up approaches, where a few ingredients are rationally combined to yield catalysis, have been less explored. Nowadays the field is steadily growing in light of the computational power available for large calculations. For example, the last two decades have witnessed the rise of first-principles in-silico models for heterogeneous catalysis design [40,42], which combine ab initio (from first principles) quantum calculations with coarse-grained kinetic models to predict the catalytic activity of surfaces under different thermodynamic conditions [43,44]. Similarly, the Rosetta algorithm stands at the forefront of de-novo enzyme design by combining computationally constructed active sites generally based on Pauling's principle, quantum chemistry calculations (theozymes) and structural data [45,46]. Despite these advances, rational catalysis design still remains a challenge. Progress is partially hindered by the size of the design space and the difficulty in systematically probing it with costly computations, and more critically, by a potentially incomplete understanding of the driving forces underlying catalysis, specially in large molecular systems like enzymes. Consequently, catalysis design still relies on educated trial and error, coupled to systematic optimization approaches such as directed evolution, which can only act upon already established solutions [47]. As many other fields where large datasets are available, most recent approaches in catalysis are turning to Machine Learning (ML) models for progress [48,49]. The work we present in this manuscript will depart in an alternative direction, towards the construction of a minimal physical model.

Physical models of catalysis

Catalysis has long been assumed to pertain to chemistry and biochemistry alone. Instead, in this manuscript we approach catalysis from the less explored perspective of physics, with the aim of elucidating the physical principles that drive catalytic activity, and ultimately designing a minimal working catalyst. Our approach does not have many precedents: physical models with the goal of understanding how catalysis arises have remained scarce for much of its history. Catalysis is often taken for granted or modeled as a parameter by physicists, who have traditionally focused on studying properties of catalysis, like enzyme diffusivity [50], rather than on the emergence of the phenomenon itself. In this section we provide an overview of the few physical models on which our contributions build on. We note beforehand that most of these models mostly focus on how a catalyst reduces the activation barrier of the reaction, and that the discussion is biased towards enzymatic systems.

Strain and conformational dynamics in catalysis

Fischer's lock-and-key model of catalysis is one of the first mechanistic explanations of how enzymes may operate. It establishes that there exists a unique correspondence between the enzyme's geometry and its substrate [53]. However, the lock-and-key model is rather an explanation of the specificity of enzymes than it is of the emergence of their catalytic activity, as it does not explain how a catalyst can lower the activation barrier of a reaction. The first account of the mode of operation of catalysts, which views them as molecules [51], based on Haldane's original illustration in [52].

that affect -and not simply bind -the substrates they interact with, is due to Haldane. Preceding Pauling and the development of TST, in 1930 Haldane introduced the notion of strain as a mechanism that physically distorts the substrate to resemble the products [52,51], as schematically shown in Fig. 1.3. The distorting strain originates from the binding energy with which the catalyst interacts with the substrate [30]. Perhaps unsurprisingly given the experimental data available at the time, Haldane's model views the catalyst as a static entity [54]. This is a common feature in many other posterior models of enzymatic function, such as Jenck's the Circe effect, where enzymes' remarkable catalytic activity is attributed to the substrate's large entropy loss when it binds at the active site [55], or Koshland's induced fit model, where the substrate and the enzyme mutually distort each other upon binding [56]. Interestingly, the 70s and 80s saw the rise of a different school of thought, which, leaving behind the idea of a static catalyst, focused on the internal motions in proteins, the flexibility of enzymes and the potential role of conformational fluctuations in catalysis [57,58]. Enzymes are very big molecules, and their size in comparison to the small portion of the molecule that is apparently reactive is a puzzling question to this day [59]. This apparent paradox inspired (bio)physicists like Somogyi, Welch, Damjanovich and Volkenstein, among others, to propose models connecting both the fluctuations of an CHAPTER 1. INTRODUCTION enzyme's secondary structure and its size to catalysis [58]. Exploiting the language of Thermodynamics and Statistical Physics, these models approach enzymes as free energy transducers, exploring how protein fluctuations may serve to harvest thermal energy in order to catalyze reactions. Although many attempts to correlate enzymatic conformational changes with catalysis have been put forth, these dynamics models remain highly debated, and in the lack of more conclusive evidence [60], it is still difficult to answer with certainty (i) why are enzymes so big, (ii) how they achieve their remarkable catalytic power and (iii) whether there is a role for the conformational fluctuations they exhibit. In the context of the minimal coarse-grained model for catalysis that we will present in upcoming chapters, our results show that conformation dynamics are not necessary for catalysis.

A minimal model to study the physics of catalysis

In upcoming chapters we will introduce a coarse-grained model for catalysis, where atoms and molecules are substituted by spherical particles. Such model, as we will show, is deliberately simple in order to be tractable, yet it contains enough detail to capture the fundamental features of the problem we aim to study, namely, the emergence of catalysis in a system with building blocks whose interactions can be precisely programmed. Ultimately, our aim is to determine whether catalysis can be rationalized in terms of physics and geometry alone, without having to specify additional details about the material system, i.e., to derive physical laws for catalysis. Although the kind of model that we propose can be viewed as an oversimplified representation of a real system (it suffices to compare panels (b) and (c) in Fig. 1.1), and as such, criticized for having limited applicability, we note that minimal models can help elucidate design principles, reveal universal operating mechanisms and play an important role in the understanding of a complex phenomenon. Furthermore, thanks to the development of experimental programmable matter systems where it is possible to design the interactions between building blocks, theoretical and numerical results can be readily tested in experiments with e.g., colloids, DNA or magnetic handshake materials [61,62,63].

Little work exists regarding minimal physics models to study catalysis. One of the earliest examples is Gavish's work in 1978, who proposed a mechanical toy model for enzymes with the goal of correlating catalytic function to the geometrical and elastic properties of a mechanical scaffold decorated with magnets [64]. Motivated by recent progress in the field of DNA-coated colloids, Zeravcic and Brenner have studied the emergence of catalytic cycles using simulations of spherical particles interacting via short-range potentials [65]. More recently, Rivoire has introduced a solvable one-dimensional model to study the geometrical and physical constraints that apply to catalysis [66]. This particular model will be revisited in Chapter 3 in more detail.

Motivation and objectives of the work

Life, as we know it, depends on catalysis. However, despite its ubiquity, there is neither a unified theory of catalysis nor a rational framework to systematically design it from the bottom-up. Elucidating the design principles of catalysis is not only relevant at the fundamental level, but a matter of great practical importance, specially in times of the climate, energetic and environmental crisis: catalysts are expected to enable a reduction in greenhouse emissions through the production of clean fuels like H 2 hydrogen [START_REF]Global climate strike[END_REF], and to reduce landfill waste by breaking down plastics [START_REF] Ellis | Chemical and biological catalysis for plastics recycling and upcycling[END_REF], for example. The first step towards realizing these ambitious goals is to understand the fundamental constraints that shape the space of catalysis design. Only then it will be possible to determine the limitations associated to the different classes of catalystshomogeneous, heterogeneous and enzymatic -and to strive for better, more selective catalysts in the future.

In this work, we take a step towards understanding the fundamental constraints of catalysis and routinely constructing catalysts for any desired reaction within the framework of programmable matter. We tackle this challenge by designing the simplest possible catalyst with the ability to accelerate dissociation reactions with the goal of elucidating the minimal geometrical and physical ingredients necessary for the emergence of catalysis in the system. Our approach draws inspiration from MacMillan and List (recipients of the 2021 Chemistry Nobel prize), who, by striping down an enzyme to its basics, namely, the catalytic group in the active site, pioneered the field of asymmetric organo-catalysts -indirectly answering the question "how much of an enzyme is really necessary to catalyze a reaction?". In a similar spirit but from a coarse-grained perspective, that is, without turning to real chemistry, here we seek to understand what are the general design rules for the emergence of catalysis in a toy model of particles interacting via programmable potentials. Despite the simplicity of our model, our results are of practical interest for soft-matter systems aiming to imitate bio-inspired design.

Structure of the part

How does one build a catalyst from the bottom-up by combining simple spherical building blocks? The answer to this question is presented in two chapters: Chapter 2, which deals with the theory required to rationally design catalysis from scratch, and Chapter 3, which applies the theory to a practical case. The theoretical framework for catalysis design in Chapter 2 is based on the theory of first-passage times and it is built upon two pillars:

• It relies on a novel criterion for catalysis, which, unlike current widespread quantifiers of catalytic activity, explicitly considers the contribution of the spontaneous reaction in the system.

• It considers the kinetic constraints that arise from completing a full catalytic cycle beyond the chemical step, that is, by explicitly including binding and release in the process of designing a catalyst.

Having established the framework, in Chapter 3, we design the simplest possible catalyst with the ability to cleave bonds in a physical system. Chapter 3 will help us illustrate the applicability of the theoretical framework developed beforehand, and it also constitutes a step-by-step recipe for catalysis. A chapter summarizing the main conclusions and discussing an outlook closes this part of the manuscript.

A Theoretical Framework for Bottom-up Catalysis Design

Introduction

The first thing we need to define in order to design a catalyst is how we will quantify catalysis. Catalytic activity is usually scored through quantifiers like the Turnover Number (TON), i.e., the number of reactants transformed into products per unit time and catalytic center in a heterogeneous catalyst [START_REF] Kozuch | Turning Over" Definitions in Catalytic Cycles[END_REF], or the k cat and K M constants in the case of enzymes [START_REF] Bar-Even | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters[END_REF], which together describe the rate of the reaction as a function of reactant concentration [18]. All these descriptors of catalytic activity have a thing in common: they assume that the spontaneous reaction is negligible in the presence of the catalyst. Therefore, they are only meaningful as long as the presence of catalytic activity in the system is well established. This is not the case when designing a catalyst from scratch, like we are interested in doing, since catalytic activity cannot always be guaranteed. In fact, catalysis not only depends on the intrinsic architecture of the catalyst, but it also depends on the conditions at which the reaction takes place, such as the concentration of reactants and products in the system, and the volume, temperature and pressure of a chemical reactor or the cell, in the case of living organisms. An empirical definition of catalysis as the one currently provided by the IUPAC [START_REF] Laidler | A glossary of terms used in chemical kinetics, including reaction dynamics (iupac recommendations 1996)[END_REF], or common descriptors of catalytic activity like the TON, do not help us understand whether the absence of catalysis in a system or its low activity are due to a poor choice of reaction conditions for a given design or whether they stem from the material choice for the catalyst. We therefore conclude that, in order to design a catalyst from the bottom-up, we must introduce a different criterion to determine the emergence of catalysis. What characteristics must such criterion satisfy?

The spontaneous reaction matters

To guide rational design, a criterion for catalysis must establish the frontier between the absence and presence of catalysis. Such frontier is dictated by the rate of the spontaneous reaction, which defines the natural timescale of the problem. Nonetheless, as already addressed in the previous paragraph, the contribution of the spontaneous reaction to the overall reaction rate is often neglected in the study of catalysis, a choice that can be only justified in the context of very efficient catalysts like enzymes. It is worth noting here that, although largely ignored during catalysis design, uncatalyzed reaction rates have received considerable attention as a means to quantify enzyme's proficiency as catalysts, an effort primarily led by Wolfenden and collaborators [START_REF] Radzicka | A proficient enzyme[END_REF][START_REF] Radzicka | Rates of Uncatalyzed Peptide Bond Hydrolysis in Neutral Solution and the Transition State Affinities of Proteases[END_REF][START_REF] Wolfenden | The Temperature Dependence of Enzyme Rate Enhancements[END_REF][START_REF] Wolfenden | The Depth of Chemical Time and the Power of Enzymes as Catalysts[END_REF]. These authors define enzymatic proficiency as the ratio

k cat /(K M k uncat ),
where k uncat is the rate of the uncatalyzed reaction in water and in the absence of enzyme [START_REF] Radzicka | A proficient enzyme[END_REF]. Measuring the rate of very slow, uncatalyzed, reactions is a challenging task, especially when some spontaneous reactions have been estimated to occur at timescales comparable to the age of Earth [START_REF] Wolfenden | The Depth of Chemical Time and the Power of Enzymes as Catalysts[END_REF]. Wolfenden and collaborators conduct these reactions at very high temperatures in sealed quartz tubes and extrapolate the resulting Arrhenius plots, which consist of plotting the logarithm of the reaction rate log k uncat as a function of the inverse temperature 1/T , to room temperature to obtain the uncatalyzed rate (we note that the method works provided the Arrhenius law holds, i.e., the relationship between log k uncat and 1/T is linear). Their results show that enzymatic proficiency spans a remarkable range of sixteen orders of magnitude [START_REF] Wolfenden | The Depth of Chemical Time and the Power of Enzymes as Catalysts[END_REF], proving that the rate of the spontaneous reaction in the presence of modern enzymes is certainly negligible. However, this should be regarded as an exception for very successful catalysts, rather than the rule.

As long as efficient catalytic activity cannot be guaranteed, the spontaneous reaction must be explicitly accounted for in the process of designing a catalyst.

Kinetics of the catalytic cycle

Reaction kinetics are usually formulated in terms of mean-field approaches such as the law of mass action, also known as the law of Guldberg and Waage [START_REF] Baird | A Generalized Statement of the Law of Mass Action[END_REF]. The resulting system of coupled equations, which describe the time-evolution of the reactant concentrations for a given set of initial conditions, can rarely be solved analytically without turning to approximations. For instance, it is common to describe enzymatic kinetics within the preequilibrium and the quasi-steady-state approximations, also referred to as Michaelis-Menten [18] and Briggs-Haldane [START_REF] Edward | A Note on the Kinetics of Enzyme Action[END_REF] kinetics, respectively. Both kinetic models are phenomenological: the former assumes that the free substrate exists in equilibrium with the enzyme-substrate complex, while the latter assumes that the concentration of enzymatic intermediates does not change as the product is formed. These kinetic schemes will be discussed in more detail in section 2.3.1.1 when we analyze catalysis for different chemical reaction networks, and in particular, linear reaction schemes. Despite the overall success of these phenomenological models in explaining experimental enzymatic data, the above approximations not only rely on specific reaction conditions, such as the excess of substrate with respect to the catalyst, but they also constrain the value of the rate constants in the kinetic scheme, preconditioning the available designs in the space of catalysis. Instead, we would like to construct a definition of catalysis that enables an unconstrained sampling of said design space. In the same way as the spontaneous reaction should not be ignored in the design process, a criterion for general catalysis should not depend on kinetic assumptions about the reaction scheme either.

Beyond the catalytic mechanism

In general, most of the design effort in catalysis is spent on elucidating the catalytic mechanism, as it is often considered the slowest step in the reaction, i.e., the so-called rate-limiting step, which is said to determine the kinetics of the reaction. However, unsuccessful attempts to design true enzyme mimics and inefficient artificial catalysts (see section 1.1.4 in Chapter 1) invoke the need for a paradigm shift that extends catalysis beyond the chemical step. A proposal in that direction can be found in the series of lectures on Supramolecular Chemistry by Lehn [START_REF] Marie | Supramolecular Chemistry: Concepts and Perspective[END_REF], where he describes catalysis as a supramolecular process that can be divided into three major stages: (i) binding the reactants, (ii) chemically transforming them into products and (iii) releasing the products to regenerate the catalyst. In accordance with Lehn's holistic perspective, here we decompose the catalytic cycle into multiple elementary processes that go beyond the mere acceleration of the chemical transformation. Examples of these additional processes are the formation and cleaving of bonds during substrate binding and product release, which are governed by parameters that pertain both to the reaction conditions (e.g. reactant concentrations) and the intrinsic design of the catalyst, for instance, in the form of binding energies. Bottom-up rational catalysis design relies on understanding what constraints apply to all elementary kinetic steps in the catalytic cycle and the potential trade-offs in parameter space that these constraints give rise to.

Structure of the chapter

Our opening discussion can be summarized in two major points:

1. Current descriptors of catalytic activity are not suitable for bottom-up catalysis design; an alternative criterion is needed.

2.

A theory for catalysis must (i) account for the complete reaction cycle and (ii) reveal (kinetic) constraints that apply to the elementary processes therein, to be able to guide catalysis design.
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In this chapter, we address these two points by introducing a theoretical framework for catalysis design based on the theory of First-Passage Times (FPT). Our framework relies on a practical definition for catalysis that satisfies the following criteria: first, catalytic activity is defined with respect to the spontaneous reaction, which is not neglected during the design process; second, the definition for catalysis does not depend on the details of the kinetic model and hence, it is applicable to any reaction scheme, from enzymatic Michaelis-Menten kinetics to more complex reaction mechanisms; last, the definition is able to account for any kind of reaction condition, such as different substrate and product concentrations, helping us navigate the design space spanned by parameters intrinsic and extrinsic to the catalyst.

The chapter is divided into two main sections. The foundations of the theoretical framework and criterion for catalysis are set out in section 2.2, where we show its scope by applying it to the catalysis of a unimolecular reaction, the particular case we will focus on in chapter 3; in section 2.3 we decompose different catalytic cycles into elementary processes, and show how our criterion can be used to reveal kinetic constraints on the individual transitions in a catalytic cycle, paving the way for a general recipe to design catalysis. The kinetic constraints we derive in this chapter will be translated into geometrical and physical constraints once we apply them to our physical model of spherical particles and programmable potentials in chapter 3.

Criterion for catalysis

Our goal is to determine the parameters that lead to catalysis in a minimal physical model where we can only control the interactions between particles and the geometries in which they can arrange. How does one meaningfully score catalysis in such a system? What constitutes a suitable descriptor to guide the catalysis design process from the bottom-up? In this section we provide an answer to these questions by introducing a criterion for catalysis design based on FPT theory.

Catalysis as a first-passage time problem

Many events are triggered when a stochastic variable attains a threshold value. Classic examples include the shooting of a neuron, the dissociation of a molecule or a broker's decision to buy or sell stocks [START_REF] Redner | A Guide to First Passage Processes[END_REF]. A quantity of interest in these systems is how fast the triggering threshold is reached for the first time given an initial starting point, and what the distribution of first-arrival times, also known as FPT distribution, looks like. The growing popularity of stochastic approaches in Biology, motivated by the increasing sensitivity of experimental methods and the advent of single-molecule experiments in the last decades [START_REF] Bai | Single molecule physics and chemistry[END_REF], has established the theory of first-passage times as an essential tool to model biological systems, ranging from signaling pathways to diffusion-limited reactions and the dynamics of molecular motors, among others [START_REF] Szabo | First passage time approach to diffusion controlled reactions[END_REF]. We find many instances of FPT approaches in the context of catalysis. For example, in [START_REF] Ninio | Alternative to the steady-state method: derivation of reaction rates from first-passage times and pathway probabilities[END_REF] Ninio uses the formalism of FPTs to derive the rate of the reaction in the presence of an enzyme as a more versatile alternative to the steady-state approximation. Xie and collaborators have shown that the Michaelis-Menten equation holds at the single-molecule level [START_REF] Sunney Xie | Single-molecule Enzymology[END_REF][START_REF] English | Everfluctuating single enzyme molecules: Michaelis-Menten equation revisited[END_REF]. By analyzing the FPT distribution of an enzymatic reaction, they have been able to extract information on the dynamical and chemical conformations of an enzyme along the catalytic cycle, information which otherwise remains masked in ensemble averages. More recently, Reuveni et al. have questioned the role of substrate unbinding beyond Michaelis-Menten kinetics by analyzing the properties of different FPT distributions describing the process [START_REF] Reuveni | Role of substrate unbinding in Michaelis-Menten enzymatic reactions[END_REF]. Benichou and collaborators have analyzed how a combination of surface and bulk diffusion might speed up reactions in reminiscence to processes akin to heterogeneous catalysis [START_REF] Calandre | Accelerating search kinetics by following boundaries[END_REF][START_REF] Benichou | Mean exit time for surface-mediated diffusion: spectral analysis and asymptotic behavior[END_REF]. In our case, we will use the first moment of the FPT distribution, the Mean First-Passage Time (MFPT) to compare the reaction timescales in the absence and presence of a catalyst candidate.

Definition of the criterion for catalysis

Let S → P describe a reaction where the substrate S spontaneously transforms into product P , where the substrate and product can consist of multiple reactants and both S and P are well defined states. We denote by T S→P the MFPT of the reaction, i.e., the mean time it takes the substrate to reach the product state for the first time. T S→P can describe the average lifetime of a covalent bond or the time for two molecules to find each other in solution, for example. It follows that the FPT distribution for S → P can in general depend on the reaction conditions such as the volume of the system. The addition of a new reagent φ to the system which interacts with the substrate and product, φ + S → φ + P , will impact the reaction time. We define as catalyst the reagent φ ≡ C whose presence in the system reduces the average reaction time to T C+S→C+P < T S→P without being consumed in the process. This definition gives rise to a criterion for the emergence of catalysis,

η + ≡ T S→P T C+S→C+P > 1, (2.1) 
where T C+S→C+P is the average reaction time when a single substrate is in the presence of a single catalyst. These single-molecule-like conditions correspond to what we denote as the "best case scenario" to design catalysis. It is under these conditions that our criterion for catalysis takes its simplest form. Indeed, when multiple substrates are present in the system, the definition of product state has to be refined. What does it mean to reach the product state in a situation where multiple product complexes can be produced? How can catalysis be scored then? Exploring the role of multiple substrates, products and catalysts CHAPTER 2. FRAMEWORK CATALYSIS FOR DESIGN is out of the scope of the work in this manuscript, but the interested reader is referred to ref. [START_REF] Sakref | On kinetic contraints on elementary processes in catalytic cycles[END_REF] for further details. With a exception in chapter 3, all results in this manuscript pertain to the case of one substrate, one product and one catalyst.

Given a spontaneous reaction and a set of reaction conditions, equation (2.1) constitutes both a sufficient condition for catalysis and a measure of the catalyst's efficiency. As a corollary, we say that reagents whose presence increases the average reaction time, i.e. η + < 1, behave as inhibitors φ ≡ I. Similarly, it is also possible to define a criterion for the catalysis of the reverse reaction,

η -= T P →S T C+P →C+S > 1. (2.2)
It is important to note that out of equilibrium neither η + has to be equal to η - nor η ± > 1 have to be simultaneously satisfied. It is not uncommon to read that "catalysts accelerate backward and forward reactions equally". This statement is true at equilibrium, as catalysts cannot alter the thermodynamic properties of the reaction or else, the Second Law of Thermodynamics would be violated.

One would nevertheless argue that there is little point in discussing catalysis at equilibrium. Additionally, we point out that is it is unlikely that the catalyst design that maximizes η + also optimizes η -, as the nature of the forward and backward reactions can be very different -in the limiting case, we can imagine an energy-limited forward reaction and an entropy-limited backward reaction. In a one-dimensional free-energy landscape, where the forward and backward reactions proceed through the same path, the simultaneous optimization of η ± must necessarily constrain the maximal efficiency that a design can achieve.

There is a priori no condition for the catalytic path to be bidirectional and unique. Indeed, in [START_REF] Joseph | Asymmetric Effect of Mechanical Stress on the Forward and Reverse Reaction Catalyzed by an Enzyme[END_REF] Joseph et al. report evidence of two separate pathways for the forward and reverse reaction for an enzyme-DNA chimera, which would suggest a mechanism to optimize forward and backward rates without incurring any efficiency trade-offs.

Criterion for unimolecular reactions

We now re-derive the criterion for catalysis in eq. (2.1) for the particular case of unimolecular reactions, i.e., when the substrate of the reaction is a single molecule. This is the case that interests us the most, as our work in chapter 3 revolves around accelerating the cleaving of a single dimer into two monomers. For the moment, we do not specify whether the product state consists of one or multiple reactants, and simply establish that the reaction is over once the substrate has been consumed and the catalyst is free, which implies that all product(s) have been released. Assuming that T S→P is known, deriving the criterion for catalysis requires computing T C+S→C+P . In order to do so, it is convenient to describe the dynamics of the system in the presence of the catalyst as a Continuous Time Markov Chain (CTMC). A CTMC is defined by a set of N discrete states and the transition rates between them. The markovian property implies that the evolution of the system only depends on its instantaneous state, and not on its past history, or equivalently, that the transitions between states are exponentially-distributed random events with a well defined rate. Below we consider the simplest possible reaction scheme to account for a unimolecular reaction in the presence of the catalyst:

C + S C + P CS k s k + 0 k - 0 k cat
The diagram decomposes the reaction in the presence of the catalyst into three different states: C + S, CS and C + P . C + S represents the state of the system when the substrate and the catalyst are not interacting with each other. State CS represents all configurations where the catalyst is bound to S or P , and all the states that may exist in-between, as for the moment we do not define explicitly the intermediate steps of the catalytic cycle. Finally, C +P corresponds to the state where the products have been produced and the catalyst is back to its initial state. In the presence of the catalyst, the C +P state can be reached through the spontaneous reaction, C + S → C + P , or through the catalytic pathway, C + S → CS → C + P . The arrows in the diagram represent the transitions between states: k s = 1/T S→P is the rate associated to the spontaneous reaction, k ± 0 are the rates of binding and unbinding from the catalyst, respectively, and k cat is the rate at which the catalyst transforms the substrate into product(s).

Deriving MFPT from an initial state to an absorbing target in the context of CTMC is a standard procedure and straightforward to achieve. As detailed in the calculations in Appendix A, we must first construct the transition matrix of the system, where we note that we have ignored the absorbing state,

L = -(k s + k + 0 ) k + 0 k - 0 -(k - 0 + k cat ) (2.3)
and solve eq. (A.11) to obtain T C+S→C+P . The MFPT in the presence of the catalyst is given by

T C+S→C+P = k - 0 + k + 0 + k cat k + 0 k cat + (k - 0 + k cat )k s .
(2.4)
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Finally, the criterion for catalysis results in

η + = T S→P T C+S→C+P = k + 0 k cat /k s + k - 0 + k cat k - 0 + k + 0 + k cat = 1 + k cat /k s -1 1 + k cat +k - 0 k + 0 . (2.5) 
Note that for η + > 1 to be satisfied, it is sufficient that

η+ = k cat /k s > 1.
This result is somehow trivial, as it indicates that, in agreement with regular definitions of catalysis, the catalyst must provide a pathway to reach the product state faster than it occurs spontaneously. Less trivial is the fact that the sufficient condition for catalysis is independent of the diffusion rate k + 0 . This occurs because the spontaneous reaction can still take place in the presence of the catalyst with rate k s = 1/T S→P as long as the substrate is not interacting with the catalyst. The result tells us that, in the case of a unimolecular reaction, the sufficient condition for catalysis only depends on the intrinsic properties of the catalytic design and not on the reaction conditions. However, the efficiency of the design is given by η + and not η+ , which depends on k + 0 and hence, on extrinsic parameters of the system such as volume.

We conclude this section by noting that the results above can be generalized to the semi-markovian case, where the waiting time distributions at each state in the reaction cycle are not exponential, and hence it is not possible to associate them to well-defined rates. These calculations are provided in Appendix A for the interested reader (section A.2), although we note that the main conclusions outlined in this section remain unchanged.

Kinetic constraints on elementary processes of the catalytic pathway

In the previous section, we have derived a criterion to determine the onset of catalysis for unimolecular reactions without having specified any structure for the catalytic path. We now decompose the catalytic pathway into elementary steps and revisit the criterion in different reaction network topologies.

Why decompose the catalytic pathway into elementary processes?

The decomposition of the pathway into elementary processes is a crucial step towards our general goal of designing a catalyst from scratch. As it will be shown in this section, when combined with the theoretical framework for catalysis that we have introduced above, this decomposition reveals local and long-range kinetic constraints on the rates of the system, that is, conditions that couple timescales associated to neighboring transitions (local) as well as transitions that are separated by multiple states in the reaction pathway (longrange). The transition rates in a reaction scheme are associated to parameters that we can control in our catalyst model, like the strength of the interaction between particles or the geometries adopted. For example, the rate to break a bond depends on the strength of the interaction between particles according to the Arrhenius law [27]. A constraint that sets a lower bound on the rate to break a bond also limits the range of bond strengths that we can use in our physical model to achieve catalysis. Therefore, both the decomposition of the catalytic pathway and the kinetic constraints that we will derive in this section lay at the heart of the design process in chapter 3, as they will guide the search for catalysis in the parameter space.

Why study different reaction schemes?

In this section we will focus on two types of reaction schemes: linear schemes, where the catalytic pathway consists of a succession of states and reversible transitions that start when the catalyst binds the substrate and end when product is released, and schemes that contain bifurcations or loops, which we study as detours from otherwise purely linear schemes. The necessary and sufficient condition for catalysis derived for the minimal unimolecular reaction scheme in section 2.2.3 was given by k s < k cat (1 < η+ ). As we have already discussed, this condition tells us that the rate to go through the catalytic path must be faster than the rate of the spontaneous reaction if catalysis is to occur. Therefore, if we now divide the catalytic pathway into elementary steps, we intuitively expect catalysis to require all forward rates in the pathway to be, at least, faster than the spontaneous reaction. Indeed, this result will be confirmed when we derive the kinetic constraints for linear reaction schemes in subsection 2.3.1. However, our intuition will be challenged by bifurcations. The main effect of a bifurcation will be to relax or tighten the local constraints on neighbouring rates, making it possible for some transitions in the catalytic pathway to be as slow as the spontaneous reaction while still allowing for catalysis. We note that the reaction scheme we will study in chapter 3 contains a bifurcation, which consists of a shortcut to the product state (subsection 2.3.2.1 below). Hence, one of the main purposes of this section is to introduce the non-trivial kinetic constraints that we will use later in the manuscript.

Linear catalytic paths

We open our discussion on linear reaction schemes with the Michaelis-Menten model due to its importance in enzymology, on the hand, and to establish a bridge with the previous section, on the other hand, as this scheme essentially describes a minimal unimolecular reaction with a single catalytic intermediate.

Our discussion then generalizes to the case of n intermediates.
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The Michaelis-Menten scheme (n = 1 step)

The Michaelis-Menten model is one of the most celebrated models in enzymology [18]. The catalytic path consists of a succession of two steps that account for the reversible binding of the substrate and subsequent transformation to product(s) according to

E + S kon ---- k off ES kcat --→ E + P • (2.6)
Here k on and k off are the first-order rates for binding and unbinding the enzyme, and k cat , usually called the catalytic rate, describes the irreversible conversion of the substrate to product(s). The model relies on the formation of a single catalytic intermediate ES known as the Michaelis complex. By assuming that ES is in rapid-equilibrium with the substrate, that is,

k cat k off and [S] = 0 = k of f [ES] -k on [E][S],
and that the substrate is in abundance with respect to the enzyme, [E]

[S], the model quantifies the rate v of the enzymatic reaction under different substrate concentrations [S],

1 [E] d[P ] dt = v [E] = k cat [S] K M + [S] . (2.7) 
Here [E] is the total enzyme concentration and K M = k off /k on is the Michaelis constant, which describes the dissociation of the substrate. Michaelis-Menten kinetics are also called saturation kinetics because the rate reaches saturation when all catalysts are occupied with fresh substrate and cannot further catalyze the reaction. This gives rise to the characteristic hyperbolic curve for v as a function of [S]. As already discussed at the introduction of this chapter, single-molecule derivations using the same reaction scheme prove that the Michaelis-Menten model holds at the single-molecule level [START_REF] Sunney Xie | Single-molecule Enzymology[END_REF].

The derivation of eq. (2.7) neglects the spontaneous reaction in the presence of the enzyme; this can only be justified in the context of enzymes, as we have discussed in section 2.1.1. However, if the spontaneous reaction in the presence of the enzyme/catalyst cannot be not ignored, we observe that the Michaelis-Menten kinetic scheme is identical to the minimal CTMC we have proposed to describe a unimolecular reaction in section 2.2.3, with

k + 0 → k on k - 0 → k off . (2.8)
Therefore, in the context of our theoretical framework for catalysis, the resulting criterion for the Michaelis-Menten scheme can be written as

η + = 1 + k cat /k s -1 1 + KM = 1 + η+ -1 1 + KM > 1, (2.9) 
with

KM = k off + k cat k on .
(2.10)

The above constant differs from the Michaelis constant (in the Briggs-Haldane steady-state derivation [START_REF] Edward | A Note on the Kinetics of Enzyme Action[END_REF]) as k on is a second-order rate constant, which accounts for the rate of association of a substrate and enzyme particles in a system with volume V . Instead, we can write k on = k on /V and express the criterion for catalysis as

η + = 1 + η+ -1 1 + k off +k cat k on V = 1 + η+ -1 1 + K M V . (2.11)
Once again, equation (2.9) tells us that for the system to be catalytic, it is sufficient that k s < k cat . The efficiency of a given design depends both k cat , K M and V , except in the limit k on /V → ∞, where optimizing the efficiency of the design corresponds to maximizing k cat . Note that, if we assume that the spontaneous reaction is negligible in comparison to the efficiency of the catalyst, i.e. k s k cat , we can rewrite eq. (2.9) as

1 T E+S→E+P = 1 T S→P + k cat -k s 1 + K M V ≈ k cat /V 1/V + K M , (2.12) 
which can be interpreted as the Michaelis-Menten equation (2.7) where the substrate concentration is

[S] = 1/V [82].

Generalization to n linear steps

The early (1913) Michaelis-Menten model constitutes a leap forward in the understanding of catalysis, as it proved that enzymatic kinetic data could only be explained if the enzyme forms at least one intermediate complex with the substrate [18]. Nowadays, the idea that the enzyme-substrate complex may adopt multiple configurations along the catalytic pathway is well-established, although identifying those intermediates is far from trivial as many are shortlived. In this section, we study the kinetic constraints that arise in a linear catalytic pathway with n intermediates C i , i ∈ [1, n]. The reaction scheme can be schematically depicted as

C + S C 1 C 2 ... C n C + P k + 0 k - 0 k + 1 k - 1 k + 2 k - 2 k + n-1 k - n-1 k + n
where C + S and C + P denote the initial and final state of the reaction, respectively, and k ± i are the rate constants associated to transitions towards (+) and from (-) the final state. This reaction scheme describes a classic type of stochastic process known as a birth and death process [START_REF] Karling | An Introduction to Stochastic Modelling[END_REF].

CHAPTER 2. FRAMEWORK CATALYSIS FOR DESIGN

To derive T C+S→C+P and compute the sufficient condition for catalysis, we may use the theoretical framework developed for birth and death processes [START_REF] Karling | An Introduction to Stochastic Modelling[END_REF], or turn to the standard methods presented in Appendix A. In particular, the results below follow the method of Net Rate Constants (NRC) (see section A.3). As we derived in section 2.2.3, the sufficient condition for catalysis is independent of the C + S → C 1 transition for unimolecular substrates and it only requires T C 1 →C+P #C+S < T S→P , where the # indicates that the process does not go back to the state C + S. Using the method NRC, we can rewrite the necessary and sufficient condition for catalysis as (2.13)

1 k s > n i=1 1 k + i + n-1 i=1 k - i k + i k + i+1 + n-2 i=1 k - i k - i+1 k + i k + i+1 k + i+2 + n-3 i=1 k - i k - i+1 k i+2 k + i k + i+1 k + i+2 k + i+3 + n-4 i=1 k - i k - i+1 k - i+2 k - i+3 k + i k + i+1 k + i+2 k + i+3 k + i+4 + Φ
where the terms contained in Φ are computed following the same pattern as the previous ones on the right hand side of the equation. Each of these terms represents a necessary condition

k s < Ω(k ± 1 , k ± 2 , ...k ± n )
that must be satisfied by the rates of the reaction. For instance, we observe that, as discussed at the beginning of this section, our intuition was right to expect

k s < k + i ∀i ∈ [1, n], (2.14) 
that is, each forward rate constant must be larger than the rate of the spontaneous reaction for the criterion for catalysis to be satisfied. In the absence of reversible transitions (k - i = 0, ∀i), this is the only class of condition that constrains the design of the catalyst. When the cycle includes reversible transitions, catalysis requires additional conditions associated to the reverse rate constants, such as

k s < k + i k + i+1 k - i ∀i ∈ [1, n -1], (2.15) 
which couples a sequence of neighbouring forward and backward rates along the catalytic pathway as illustrated by the schematic below

C i-1 C i C i+1 C i+2 C i+3 k + i k - i k + i+1
We note that the conditions in eq. (2.13) range from local constrains on single transitions, like the condition in eq. (2.14), to long-range couplings along the reaction chain, like the last term in eq. (2.13) and the terms contained in Φ.

When all transitions are reversible, there will be as many different classes of long and short-range couplings between elementary transitions, i.e., terms in eq. (2.13), as catalytic intermediates.

Schemes with bifurcations or loops

The catalytic pathway need not be linear. In fact, as suggested in section 2.2, multiple catalytic pathways can positively impact the efficiency of a design, for instance, by offering alternative pathways for the forward and backward reactions to proceed [START_REF] Joseph | Asymmetric Effect of Mechanical Stress on the Forward and Reverse Reaction Catalyzed by an Enzyme[END_REF]. Taking the results for linear schemes as a reference, we now focus on understanding how the deviation from linearity affects the kinetic constraints that we have derived in the previous section. In particular, we wish to understand whether the idea that all steps in the catalytic path must be as fast as the spontaneous reaction is a general design principle for catalysis. To do so, we analyze three different cases, depicted in Fig. 2.1: (i) pathways that contain a shortcut to the product state, (ii) the existence of two (competing) pathways and (iii) the impact of a futile state in the pathway from which it is not possible to complete the reaction. The results for case (i) will be directly applied in chapter 3.

Shortcut to the product state

The reaction scheme we will study in chapter 3 contains what we denote as a shortcut to the product state, which arises when the spontaneous reaction occurs while the substrate is partially bound to the catalyst. In this case, the catalyst does not mediate the transformation: in fact, the spontaneous reaction takes place because completely binding to the catalyst in the right conformation takes too long. The reaction, however, is not over when the spontaneous reaction takes place, because the catalyst must still release the parts in the substrate, now products, that it had initially interacted with. Therefore, this reaction scheme contains one step that is as slow as -in fact, equally slow as -the spontaneous reaction, together with an additional release step that does not exist in the absence of the catalyst. Is it still possible to achieve catalysis under these circumstances? In this subsection, we explore this question by using a simplified reaction scheme depicted in Fig. 2 necessary and sufficient condition for catalysis is given by

1 k s > 1 k + 3 + 1 k + 2 + k - 2 k 2 + k + 3 + k - 1 k - 2 k + 1 k + 2 k + 3 - 1 k + 1 k + 2 k + 3 (ζ -1)(k - 1 + k + 2 )k + 3 -ζ(k - 1 + k - 2 + k + 2 )k s .
(2.16)

We note that the condition does not depend on k + 0 , the time to diffuse to the catalyst, in agreement with the results discussed in section 2.2.3. If ζ = 0, the equation above simplifies to the sufficient condition for catalysis in a linear pathway with n = 3, as given by eq. (2.13). To simplify the upcoming discussion, we set k -

1 = k - 2 = 0. When ζ = 1, eq. (2.16) simplifies to 1 k s > 1 k + 2 + 1 k + 3 + k s k + 1 k + 3 .
(2.17)

Rates k + 2 and k + 3 must still satisfy the necessary conditions

k s < k + 2 k s < k + 3 , (2.18) 
as in the case of linear reaction schemes. However, k + 1 is no longer subjected to this kind of local necessary condition and must instead satisfy

k + 1 > k 2 s k + 3 . (2.19)
Since k s < k + 3 , we can rewrite the above equation as

k + 1 > λk s 0 ≤ λ < 1.
(2.20)

We observe that, contrary to what one may intuitively expect, the presence of a shortcut that is as slow as the spontaneous reaction, in fact, relaxes the constraints on k + 1 . Equation (2.20) implies that k + 1 = k s can still lead to catalysis, challenging the idea introduced in section 2.3.1 that every step forward in the catalytic cycle must be faster than the spontaneous reaction at the individual level. To rationalize how this result is possible, we keep ζ = 1 and define k + 1 = χk + s with χ > λ so that eq. (2.20) can be satisfied. In this case, the condition for catalysis reads

1 k s > χ + 1 χ 1 k + 3 + 1 k + 2 (2.21)
The local condition on k s < k + 2 still holds. However, the condition on k + 3 , which is associated to releasing the products, adopts the following shape,

χ + 1 χ k s < k + 3 → Xk s < k + 3 , (2.22) 
where X > 1. Equation (2.22) constitutes a tighter constraint on k + 3 . In other words, when ζ = 1, k + 1 can also be as slow as the spontaneous reaction, k + 1 = k s , but this occurs at the expense of -must be compensated by -a more efficient release process, that is, a larger k + 3 . When there is no possibility to access the catalytic pathway, k + 1 = 0, release must be immediate,

lim χ→0 k + 3 = ∞, (2.23) 
However, in such case it is impossible to satisfy η + > 1, as there is no catalytic pathway at all.

Two different catalytic pathways

We now consider a catalytic cycle that consists of two independent pathways to reach the product state, as shown in Fig. 2.1(b). The absorbing state C + P is connected to C 1 through a path that visits C 2 and C 3 , and through a direct pathway with rate k + 4 . As before, we are interested in understanding what occurs when a transition is slower than the spontaneous reaction. To test this, we choose k + 4 = ζk s , with 0 ≤ ζ and we take k - 2 = 0 so that equations can be written in a simpler form. We only consider the cases when ζ > 0, as ζ = 0 corresponds to the linear case with n = 3, which has already been studied above. Given these conditions, the necessary and sufficient condition for catalysis reads

1 k + s > 1 k + 2 + 1 k + 3 + (1 -ζ) k + 1 k + 2 (k - 1 + k + 2 ). (2.24) 
If ζ < 1, the conditions on k + 1 and k - 1 relax. For instance,

k + 1 > (1 -ζ)k + s , (2.25) 
implies that k + 1 = k + s is possible, as in section 2.3.2.1. We may ask ourselves: why is this possible in reaction schemes with bifurcations and not in linear schemes? Note that, in the case of the reaction scheme in Fig. 2.1(b), albeit slower than the spontaneous reaction (ζ < 1), the C 1 → C + P path also contributes to producing products. There are now two pathways that can guide the substrate to the product state. This is not the case in a purely linear scheme, where the only source of products, other than the spontaneous reaction, is the catalytic pathway, which explains why the kinetics constraints on the rates in linear schemes are more strict. If ζ = 1, the constraints on k + 1 and k - 1 disappear. Since the C 1 → C + P transition takes place at the spontaneous rate, the entry point start of the catalytic cycle has simply been displaced to C 2 . Note that, as expected, the condition for catalysis takes same structure as for a linear scheme, for catalytic cycle topology C 2 → C 3 → C + P . If ζ > 1, the last term in the right hand side of eq. 2.24 becomes negative, and as a result, the constrains on the C 2 → C + P path can again be relaxed. In this case, catalysis is guaranteed by the C 1 → C + P direct path, as long as the C 2 → C + P does not inhibit too much or equivalently, as long as the efficiency of the direct catalytic path, ζ, can compensate. For instance, imagine k + 3 = k + s . Then, equation (2.24) gives rise to the bound

ζ > k - 1 + k + 1 + k + 2 k - 1 + k + 2 , (2.26) 
which constrains the efficiency of the C 1 → C + P pathway.

Futile states

Is it possible to catalyze the reaction if the kinetic scheme contains deadends? We conclude this section by considering the possibility that the catalytic pathway contains states that are futile, i.e. that cannot lead to the product state. In other words, they constitute dead-ends. In Fig. 2.1(c) we show an example for a catalytic pathway with two intermediates, C 1 and C 2 and the futile state C 1 . The sufficient condition for catalysis in this kinetic scheme reads

1 k s > 1 k + 1 + 1 k + 2 + k - 1 k + 1 k + 2 + (k - 1 + k + 2 ) k + 1 k + 2 k + f k - f , (2.27) 
where k ± f are the rates in and out of the futile state, respectively. The three first terms in the right hand side of the equation correspond to the necessary conditions for rates in a linear scheme with n = 2. Nevertheless, the rates in and out of the futile state impose additional constraints, which, if k - 1 = 0, for k + 1 , take the form

1 + k + f k - f k s < k + 1 .
(2.28)

As rates are always positive, the above constraint poses a stricter limit on k + 1 than the one that exists for a purely linear reaction scheme, i.e. k s < k + 1 . This is expected, as the reaction time wasted on the futile states must be compensated.

Discussion

We have introduced a criterion for catalysis that is based on comparing the MFPT of the reaction in the presence and absence of the catalyst. The criterion uses the spontaneous reaction as the reference timescale to determine the emergence of catalysis, and it is independent of the details of the catalytic pathway. We consider that catalysis emerges in the system when the average reaction time in the presence of the catalyst is shorter than in its absence. In contrast to other quantifiers of catalytic activity such as the TON or the CHAPTER 2. FRAMEWORK CATALYSIS FOR DESIGN enzymatic k cat, enzyme , our criterion for catalysis constitutes a score function that enables systematic optimization of catalysis from the bottom-up. In other words, the initial design for an optimization scheme need not be an already established solution since the criterion can quantify how far from being a catalyst a specific design is and determine the direction in parameter space where catalytic efficiency increases. Once catalysis is well-established, however, our criterion does not differ much from the TON or k cat, enzyme . For example, in the limit when k + 0 → ∞ in eq. 2.5, optimizing the catalytic efficiency amounts to optimizing what we have called as k cat , which can be mapped to the TON.

We must note that these results rely on the validity of the MFPT as the characteristic timescale for the processes in the system. In recent years, many groups have shown that FPT distributions might be very broad depending on the underlying process [START_REF] Grebenkov | Towards a full quantitative description of single-molecule reaction kinetics in biological cells[END_REF][START_REF] Mejía-Monasterio | First passages for a search by a swarm of independent random searchers[END_REF]. In such cases, the most probable FPT, which is obtained from a limited sampling of the distribution, and the MFPT, that is, the first moment of the FPT distribution, can differ significantly. If this is true, then the MFPT is no longer a meaningful quantifier of the process and it can lead to spurious conclusions. Recasting our criterion for catalysis from comparing MFPTs to understanding how the presence of the catalyst modifies the FPT distribution of the reaction constitutes a natural direction for future work.

In the introduction of this chapter we have addressed the importance of considering the complete catalytic cycle when designing a catalyst by arguing that substrate binding and product release, steps in the cycle beyond the chemical transformation, also dictate what a catalyst looks like. In section 2.3, we have decomposed the cycle into elementary processes, in the same spirit as the microkinetic analyses conducted in heterogeneous catalysis [START_REF] Hussain Motagamwala | Microkinetic Analysis and Scaling Relations for Catalyst Design[END_REF], and derived kinetic constraints that dictate how fast binding, the chemical transformation and release must occur in order to guarantee the emergence of catalysis, as long as the reaction can be described as a CTMC. For instance, we have learned that, in the absence of alternative pathways to reach the product state upon interaction with the catalyst, that is, if the catalytic pathway is linear, all elementary forward transitions between intermediates must be faster than the spontaneous reaction. Similarly, we have found that the sufficient condition for catalysis is independent of the rate at which the substrate diffuses to the catalyst. These design principles will be extensively used in the upcoming chapter to narrow down the search in parameter space.

It is important to keep in mind that discretizing the catalytic pathway into individual states is an artificial procedure. The decomposition renders the problem of designing a catalyst tractable as it is then possible to determine constraints to shape the solution space, but the catalytic pathway need not be, a priori, separable into well-defined states. In fact, such decomposition into elementary transitions, that is, the formulation of a reaction mechanism as Motagamwala et al. denote it [START_REF] Hussain Motagamwala | Microkinetic Analysis and Scaling Relations for Catalyst Design[END_REF], is precisely the key to prove a proposed

Introduction

In this chapter, we build a catalyst that accelerates dissociation reactions in a physical model system using the theoretical framework we have previously introduced in Chapter 2. To do so, we approach catalysis design from a coarsegrained perspective: we do not consider real atoms or molecules, but rather turn to spherical particles that (i) occupy a finite volume in space, that is, they cannot be penetrated, (ii) are subjected to Brownian motion and (iii) whose size, interaction strength, interaction range and valence we can tune, which grants us complete control over the potential energy surface of the system. Therefore, our starting point is a set of building blocks (spheres), the possibility of controlling how they will interact with each other and a criterion based on FPT theory that tells us whether we have achieved catalysis or not. These ingredients constitute the basis of our toolbox, and will help us navigate the parameter space in search for a minimal catalyst that cleaves bonds. The missing piece of the puzzle is answering the following essential question: how do we establish a relationship between our system's material properties and catalytic function?

From structure to catalytic function in minimal models

As we have already addressed in Chapter 1, the problem of determining the kinetics of a reaction given some material support, e.g., by specifying the molecules participating in the reaction and calculating the interactions between them, pertains to TST [25]. Indeed, the framework of TST establishes that the kinetics of a reaction are dictated by the underlying free energy landscape of the system, which is a function of its material and dynamical properties. The inverse problem, that is, designing the structure of the energy landscape to achieve the desired kinetics -what we would like to optimize during bottom-up catalysis design -remains relatively unexplored [START_REF] Goodrich | Designing self-assembling kinetics with differentiable statistical physics models[END_REF].

Solving the inverse problem with all-atom systems is computationally expensive at the moment. Instead, it is possible to turn to coarse-grained strategies such as Elastic Network Models (ENM), which are suitable for systematic explorations of large parameter spaces at a reduced computational cost. In these toy models, particles, which are depicted as beads, interact via elastic springs. A single bead can represent several atoms or groups of amino-acids, for instance, and the pairwise interactions between beads follow a simple quadratic potential

U (r) = 1 2 k(r -r L ) 2 (3.1) 
that is characterized by two parameters: k, the rigidity of the spring and r L , its rest-length. For example, the analytically solvable one-dimensional ENM with point particles introduced in [66] exploits the simplicity of the harmonic potentials to investigate fundamental constraints for catalysis. After identifying the minimal set of kinetically relevant states for the reaction, the work in [66] exploits tools from TST -notably, Kramers' formula for the reaction rate [START_REF] Kramers | Brownian motion in a field of force and the diffusion model of chemical reactions[END_REF]-to compute the transition rates between states as a function of the parameters of the model, i.e., the rigidity and rest length of the springs. Having constructed the reaction mechanism and corresponding kinetic model, Rivoire optimizes the parameters of the model for catalysis and finds agreement with Pauling's principle of TS stabilization as well as the Sabatier trade-off. Nevertheless, the results in [66] are obtained under a set of assumptions concerning the height of the barriers separating the states and the equilibration therein, which restrict the designs that may be analyzed. The work presented in this chapter builds on the results in [66] without having to rely on the above assumptions and using the novel theoretical framework in chapter 2. Instead of using an ENM, here we opt for an extension of the latter, where, as we have written above, particles exclude volume in space, move in two and three dimensions, and we do not need to assume a priori the existence of states to score for catalysis -we will, eventually, construct a CTMC to investigate the dependence of η + (see eq. 2.1) on the parameters of the model. Importantly, our model is constructed keeping its experimental feasibility in mind. DNA-coated colloids [START_REF] Mirkin | A DNA-based method for rationally assembling nanoparticles into macroscopic materials[END_REF] constitute the primary candidate for its realization in the lab.

Programmable matter models for catalysis design

In recent years, programmable matter and artificial chemistry models have proved to be a promising tool to both understand how life-like functionalities may have emerged in the first place, and to develop bio-inspired materials and novel nanotechnology [1,[START_REF] Cademartiri | Programmable selfassembly[END_REF]. These models rely on building blocks whose interactions can be designed to exhibit properties characteristic of real molecular and atomic systems such as binding specificity, valence or chirality, among others. Experimental examples of these systems can be found across a wide range of scales, from DNA origami in the nanoscale [61] to microscopic colloidal clusters [START_REF] Meng | The Free-Energy Landscape of Clusters of Attractive Hard Spheres[END_REF]62] and DNA-coated colloids [START_REF] Mirkin | A DNA-based method for rationally assembling nanoparticles into macroscopic materials[END_REF]5], all the way up to magnetic handshake materials at the centimeter scale [63].

Our motivation to develop design rules for catalysis in the context of these systems is two-fold. Currently, systems that aspire to mimic bio-inspired functionalities incorporate external protocols such as temperature or UV-light cycles [START_REF] Zhuo | Litters of self-replicating origami cross-tiles[END_REF]. These protocols regulate and control processes in the system, performing tasks that are comparable to the role of enzymes in living organisms. However, in many cases external protocols are unspecific, affecting the system as a whole. As a step towards achieving completely autonomous life-like systems, these external controls could be removed by integrating in the system artificial catalysts that use the same chemistry as the objects they act upon. More fundamentally, employing a physical model constitutes a means of materializing abstract design principles, like the kinetic conditions in the previous chapter, into concrete physical and geometrical constraints, shedding some light into the relationship between the structure and function of catalysts.

Structure of the chapter

In this chapter, by constructing our catalyst step-by-step, we introduce a recipe to design catalysis in the context of artificial chemistry and programmable matter. Our recipe considers three aspects:

1. Structure of the design (physical and geometrical constraints).

Operation constraints (volume effects).

Efficiency of the design.

We open the chapter by defining the rules of the game, that is, the model system and its parameters, which involve the spontaneous reaction, the catalyst candidate, the catalytic pathway as well as the reference reaction conditions at which most of the design process will be undertaken. We then heuristically decompose the catalytic pathway in a series of elementary transitions and apply the design principle we have learned in section 2.3.1: that each individual transition in the pathway, with the exception of the diffusion of the substrate to the catalyst, must be faster than the spontaneous reaction for catalysis to occur. The application of this principle, in combination with Langevin dynamics simulations, reveals physical and geometrical constraints necessary for catalysis in our parameter space. We validate the decomposition of the pathway into discrete states by constructing a Markov State Model (MSM) and use it to derive all the kinetic constraints for catalysis in the model rigorously. Similarly, we turn to the MSM model to explore the parameter space beyond the regime accessible to our simulations. Finally, we quantify the efficiency of the design and test it in solution under different reaction set-ups. We conclude the chapter with an outlook for future work and suggestions for experimental realizations.

Definition of the model

As we have already introduced, we use a model of spherical particles subjected to Brownian motion to design catalysis. Interactions between particles are CHAPTER 3. CATALYSING A DISSOCIATION REACTION mediated by an isotropic pairwise potential with

U (r, ) = α(r c ) σ r 2 -1 r c r 2 -1 2 if r < r c , (3.2) 
and U (r, ) = 0 elsewhere [START_REF] Wang | The Lennard-Jones potential: when (not) to use it[END_REF] (see Fig. 3.1). Here α(r c ) serves to set the depth of the potential equal to (see [START_REF] Wang | The Lennard-Jones potential: when (not) to use it[END_REF] for further details), σ is the particle diameter and r c is the interaction range. The potential has a single minimum at σ < r min < r c . Motivated by experiments with DNA-coated colloids, where the interaction is typically short-ranged < 10%σ [START_REF] Rogers | Using DNA to program the self-assembly of colloidal nanoparticles and microparticles[END_REF]5], we choose r c = 1.1σ for all interactions in the model, which sets r min ≈ 1.03σ. All particles in the model have the same diameter σ. Unlike the Lennard-Jones or the Morse potentials, here U (r = r c , ) = 0 without introducing artificial cutoffs [START_REF] Toxvaerd | Communication: Shifted forces in molecular dynamics[END_REF]. This also implies that the formation of a bond between two free particles is, by default, limited by diffusion. In simulations, to tune particle reactivity, that is, the propensity with which two particles form a bond, we will work between two limits (see Fig. 1 in [START_REF] Muñoz-Basagoiti | Catalysis from the bottom-up[END_REF]): either (i) we let free particles form bonds as soon as they are within interaction range (reversible limit), or (ii) we forbid the interaction by not allowing free particles to interact (irreversible limit)particles will only repel once they come sufficiently close in order to avoid overlaps. The latter case is analogous to adding an entropic barrier to the interaction between particles. Experimentally, a potential with these features can be realized through patchy particles, where dissociation is controlled by an energy barrier, and bond formation requires the patches to orient in space in order to overlap [START_REF] Zhang | Multivalent, multiflavored droplets by design[END_REF]. Linker-mediated interactions can also be used to realize an entropic barrier for bond formation [START_REF] Rogers | A mean-field model of linker-mediated colloidal interactions[END_REF]. We note that in our system two particles can be initialized as a molecule, i.e., r < r c , even if we set bond formation to be irreversible: r = r c can always be reached from r < r c at finite time. In what follows, we use σ = 1, m = 1 and k B T = 1 as the units of length, mass and energy of the system, respectively. Most of the results throughout the chapter correspond to a system in two-dimensions, although we also include calculations and simulations generalized to three-dimensions when applicable.

The spontaneous reaction

Just like a pair of scissors or a stapler do not look the same, the design of a catalyst must necessarily depend on the type of reaction it accelerates. Here we focus on accelerating a ubiquitous reaction in chemistry, the dissociation of a molecule,

S k s P (3.3)
where S is the substrate of the reaction, P is the product, and k s is the first order forward rate constant. In our model, we define the substrate as a dimer composed of two spherical particles of diameter σ which interact according

Substrate Product

Catalyst (a) (b) The substrate is defined as a dimer that spontaneously dissociates into two monomers, the product of the reaction. This process can be accelerated with a rigid dimer that acts as a catalyst, where L c denotes the fixed distance between the particles in the catalyst. (b) Interaction matrix describing the depth of the potential for each interaction in the system. Two blue particles interact with strength s , while a red and blue particle interact with strength cs . The catalyst is rigid, symbolized by → ∞. to the potential in eq. (3.2) with bond strength s and interaction range r c , as shown in Fig. 3.2. The dimer spontaneously dissociates into two free monomers if the distance between them is larger than the interaction range, i.e., r > r c . This process is thermally activated.

To estimate the lifetime of a dimer bond as a function of the depth of the potential, we measure the MFPT of the S → P transition using Langevin dynamics simulations (see Appendix E for details). We initiate the simulation with a dimer at equilibrium, where the distance between the particles is r = r min , and measure the time it takes for it to dissociate into two free monomers at fixed temperature. The results are shown in Fig. 3.3. The FPT distribution is exponential and the inverse MFPT, the rate of the reaction, decreases exponentially with the depth of the potential, for fixed interaction range. The simulated data can be fitted according to an Arrhenius expression of the form k = Ae -/B . In kinetic theory, B = k B T is the thermal energy of the system, and the prefactor A accounts for the frequency of collisions with the solvent. Interestingly, we fit A = e 2.25 and 1/B = 0.91, for a thermostat with k B T = 1.0. This result suggests a slight deviation from the expected exponent value according to TST and kinetic theory. Indeed, this exponent is only true in the limit when the interaction barrier is very large in comparison to the thermal energy, or equivalently, when the temperature of the system is low, that is, k B T . To further justify the scaling difference, we turn to Kramers' formula, which provides the rate to transition from S to P in the large friction limit [START_REF] Kramers | Brownian motion in a field of force and the diffusion model of chemical reactions[END_REF],

k S→P = 1 γ ωk B T 2π rc r min e U (r, )/k B T dr -1 , (3.4) 
where γ is the friction coefficient and ω corresponds to the curvature of the potential near the minimum r min ,

)

ω = U (r) r=rmin = α r 4 12r 2 c -20 r 4 c r 2 -40 r 2 c σ 2 r 2 + 42 r 4 c σ 2 r 4 + 6 r=r min .
When inverted, eq. (3.4) corresponds to the MFPT to escape a potential, as proved by Reimann et al. [START_REF] Reimann | Universal equivalence of mean first-passage time and Kramers rate[END_REF]. We observe that the Kramers formula, which we numerically integrate and plot in Fig. 3.3(b) also deviates from the expected temperature dependence. We note, however, that even though the rate derived from simulations follows the same scaling as Kramers' law, it does not quantitatively overlap with the integrated expression unless the friction is increased. In what follows, we use our fitted model to determine the rate of escape from the potential in eq. (3.2) as a function of . The rate of the reverse reaction does not affect the T S→P MFPT because the product state behaves as an absorbing state. Nevertheless, in the presence of the catalyst, the substrate bond can reform before the reaction is over, which we consider to occur once both monomers in the dimer are free in solution. Therefore, it is necessary to specify the rate of association of two free monomers to fully characterize the properties of the spontaneous reaction. As discussed before, we will only consider two spontaneous reaction families where bond formation is either limited by diffusion (reversible case) or not possible at all (irreversible case).

The catalyst

The first step to construct a catalyst is to propose a candidate structure. Here we propose a rigid dimer as the minimal catalyst for a dissociation reaction, and we justify why simpler structures, such as a spherical monomer, can be discarded as catalyst candidates later in the chapter. The catalyst consists of two particles of diameter σ interacting according to

U C (r) = 1 2 k(r -L c ) 2 , (3.6) 
where L c is the rest length of the spring and k controls the flexibility of the structure. Previous results in the context of elastic networks have shown that rigid scaffolds are locally optimal [66]. Therefore, we initially choose k 1, which sets the two particles at a fixed distance L c . Consequently, L c , together with the diameter σ of the particles in the catalyst, completely characterizes the geometry of the catalyst. We will discuss the role of flexibility in subsequent sections. To realize this set-up in experiments, the two catalyst particles could be fixed to a surface, in order to ensure the rigidity of the complex -DNA origami constructs could be used for that purpose. The catalyst design we propose can be considered as an individual molecule, but it can also be viewed as part of the active site of a bigger system, with the two particles in the catalyst being reactive amino-acids in an enzyme, for instance, or active sites in a catalytically active surface. The particles in the catalyst symmetrically interact with the substrate and product particles with strength cs when the distance between them is r < r c according to the potential in eq. (3.2).

Reaction pathways

In order to limit the number of complexes in the system, which are shown in the table in Fig. 3.4(a), we impose particle valence. If we denote as red the particles in the catalyst and blue the particles that conform the substrate and product of the spontaneous reaction, the valence rules can be summarized as follows: a red particle can only interact with another red particle and a blue particle at a time, and a blue particle can only interact with a blue particle and a red particle at a time. Valence control has been previously realized Each state is characterized by the number of substrate (blue) and catalyst (red) particles (first and second column), the scissile bond in the substrate and the number of catalyst-substrate bonds (third, fourth and fifth columns). States C•S and C•P have symmetric counterparts that are not explicitly shown. (b) A rigid dimer can accelerate the dissociation of a dimer into two monomers. The catalytic pathway consists of three stages: binding the substrate, transforming it into products and releasing the products so that the catalyst can return to its initial state. Despite the presence of the catalyst in the system, the spontaneous reaction can still take place. in experiment in the context of DNA-coated colloids [START_REF] Mcmullen | DNA selforganization controls valence in programmable colloid design[END_REF][START_REF] Zhang | Multivalent, multiflavored droplets by design[END_REF]. We note, however, that in the absence of valence control, the limitation of the number of complexes can also be justified under dilute solution conditions.

In the presence of the catalyst, the reaction can proceed spontaneously, or through the catalytic pathway. This consists of three stages: substrate binding, the chemical transformation and product release, as shown in Fig. 3.4(b). In our model, substrate binding and product release require two steps in order to accommodate (let go) each of the particles in the substrate (product). The reaction ends as soon as two free monomers appear in the system. The arrow connecting C•S and C•P in Fig. 3.4(b) indicates that as long as the substrate has not fully attached to the catalyst, the spontaneous dimer dissociation can still take place. In such case, the catalyst must still release the remaining monomer for the reaction to end.

Criterion for catalysis

We remind the reader that catalysis requires (see section 2.2)

η + = T S→P T C+S→C+P > 1, (3.7) 
where T S→P and T C+S→C+P are the MFPT of the reaction in the presence and absence of the catalyst, respectively. These quantities can be empirically measured using Langevin dynamics simulations (see Appendix E). As detailed in 3.2.1, T S→P is estimated by preparing an ensemble of simulation boxes of length L B1 with a single substrate at equilibrium and recording the time it takes for it to dissociate into two free monomers. Similarly, we measure T C+S→C+P by initializing a simulation box of the same size with a single dimer and a single catalyst at a distance larger than the interaction range, and letting the system evolve until two free monomers appear in solution.

In this chapter we will mostly focus on single-molecule-like scenarios where the simulation box contains a single substrate and a single catalyst at a time. As we have previously addressed, when multiple substrates are present in the system, we need to specify what we denote as reaching product state in more detail, as it might refer to when the first product is produced or to reaching the state when all products have been released in solution. These matters are out of the scope of this chapter, although they will be revisited for discussion at the end. We remind the reader (section 2.2.3) that the size of the box does not have an impact on determining whether a design is catalytic or not for unimolecular reactions, although the volume of the system influences the efficiency of the catalyst. Therefore, a successful design can become more efficient by decreasing the size of the simulation box, but a non-catalytic design cannot become catalytic by tuning the volume of the system.

Optimal reaction conditions to design catalysis

During the first stages of the design process, we will set ourselves in the best possible conditions for the reaction to be accelerated, and assume that if catalysis cannot be achieved under these conditions, then it cannot be achieved at all. It is possible to show that this naive argument holds true except for FPT distributions with specific properties [START_REF] Sakref | On kinetic contraints on elementary processes in catalytic cycles[END_REF]. In these best case scenario conditions, we forbid free monomers from interacting with the catalyst as soon as they are released in the system to avoid product inhibition: when one of the monomers interacting with the catalyst crosses the r = r c threshold, it can no longer interact neither with the catalyst, nor with the other monomer in the system; we effectively set its valence to zero. By removing monomers from the system following this procedure, we eliminate any dependence on volume for the MFPT in the presence of the catalyst. This condition will be relaxed in subsequent sections to investigate how product inhibition constrains the design of the catalyst. To further simplify simulations, we immobilize the catalyst in space. Interestingly, this is actually a common practice in industry, because it eases the separation of the catalyst from the reagents [START_REF] Cozzi | Immobilization of Organic Catalysts: When, Why, and How[END_REF].

Physical and geometrical constraints of catalysis

Our first goal is to delimit the region in the parameter space spanned by {L c , s , cs } where catalysis can emerge. To do so, in this section, we study how the parameters of the model control the kinetics of the catalytic pathway. As discussed in the previous chapter, we approach the problem by decomposing the catalytic cycle into elementary transitions. We perform such decomposition heuristically for now and justify it more rigorously in subsequent sections. We have learned that for catalysis to occur, each forward transition in the catalytic path must be faster than the spontaneous reactionwithout considering the diffusion of the substrate to the catalyst, and in the absence of loops (section 2.3). Here we start by investigating whether the chemical transformation in the catalytic pathway can satisfy such condition.

Although not sufficient to guarantee catalysis, the existence of a catalytic mechanism is necessary for a (colloidal) architecture to accelerate a reaction. If absent, the overall design of the catalyst must be changed into a more elaborated structure. Once the catalytic mechanism is determined, we will then proceed to study the kinetic constraints associated to substrate binding and product release. We conclude the section with simulation results that show the emergence of catalytic activity within the boundaries of the parameter space we decipher throughout the section.

The catalytic mechanism

The chemical step in the catalytic path shown in Fig. 3.4(b) corresponds to the C:S → C:P transition. In this section we explore what catalyst parameters yield T S→P > T C:S→C:P #C•S , where T C:S→C:P #C•S is the MFPT from C:S to C:P and '#' indicates that we ignore contributions from processes other than the pure chemical transformation. We divide the discussion in two parts: we first focus on how the geometry of the catalyst affects T C:S→C:P #C•S and then incorporate the catalyst binding energy into the picture.

The role of the catalyst geometry

We use Langevin dynamics simulations to measure the MFPT for the C:S → C:P transition as a function of the catalyst geometry. We initiate the system at one of the minimum energy configurations of C:S and record the time it takes to reach for the first time a configuration within C:P , when the scissile bond in the substrate becomes r c < r. To make sure that the unbinding transition C:S → C•S does not truncate the simulated FPT distribution, we set s cs . Results are shown in Fig. 3.5, where we observe two different regimes: for (i) L c /3r min < 1, the presence of the catalyst does not significantly alter the lifetime of the substrate bond despite the large binding energy available; for (ii) L c /3r min > 1, the bond is cleaved almost immediately.

The L c = 3r min threshold is geometrically significant as it corresponds to the catalyst geometry where the two particles in the substrate fit between the two particles in the catalyst. Above this threshold, all particles are aligned along the catalytic axis, and the catalyst is able to interact with the substrate directionally despite the isotropic interaction potential. The C:S state consists of three scissile bonds, one for the substrate and two with each particle in the catalyst. Below the threshold, when L c /3r min < 1, the particles in the catalyst are sufficiently close for all three bonds to coexist at equilibrium, that is, r = r min . The interaction with the catalyst reduces the degrees of freedom of the substrate, which, once bound, can only diffuse on a limited manifold dictated by the shape of the catalyst. However, such entropic effect
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(a) (b) is not sufficient for a noticeable reduction in the lifetime of the bond. When L c /3r min > 1, the three bonds in C:S can no longer adopt their equilibrium values simultaneously, and as a result, at least one of the three bonds will be strained. By not allowing the substrate to adopt its equilibrium position and therefore modifying the underlying energy landscape, the catalyst is able to reduce the lifetime of the bond. In Fig. 3.6 we show what the free energy landscape of the system looks like for two different catalyst geometries.

From these considerations, it is evident that the catalyst cleaves the substrate bond by pulling from both ends, that is, the catalytic mechanism is strain. In fact, it bears resemblance to Haldane's mechanism (introduced in section 1.3.1). Our results are in agreement with Pauling's principle: when L c /3r min > 1, the geometry of the catalyst is more complementary to the TS of the reaction than to the substrate in its ground state, i.e., the catalyst can bind the TS stronger than it binds the substrate. We note however that the reason Simulated free energy landscape where the substrate bond r s is taken as the reaction coordinate and the bonds with the catalyst satisfy r cs,i < r c for both particles. Results are shown for two different catalyst designs: a single spherical particle (black) and a rigid dimer with L c /3r min = 1.02 (dashed grey). The single particle catalyst does not change the depth of the interaction potential for the scissile bond in the substrate, which remains equal to s despite the interaction with the catalyst. The interaction with the rigid dimer when L c /3r min > 1 reduces the depth of the potential, accelerating the escape process via ground state destabilization [31]. Results correspond to

s = cs = 8.
why the chemical step is accelerated is the destabilization of the substrate dimer rather than bringing the energy of the TS down, as evidenced by the results in Fig. 3.7 -given the shape of the interaction potential in eq. (3.2), where the TS and the product state are the same, GS destabilization seems to be the only possible way to accelerate the reaction. It is remarkable that despite the large binding energy available ( s cs ), only a subset of geometries can accelerate the transition, which echoes Pauling's idea that TS stabilization (or ground state destabilization) is achieved through geometric complementarity [29].

The results above also point out that a single spherical particle cannot catalyze the dissociation reaction in our model, because it is be unable to differentially bind [30] the ground state and the TS of the reaction (see L c /3r min = 0 limit in Fig. 3.5 and Fig. 3.7). This proves that a dimer is the simplest possible candidate for a dissociation reaction within the set of rules defined in section 3.2. It is worth reminding here that the design of the catalyst and the type of catalytic mechanism depend on the reaction to accelerate. It is not a coincidence that in order to accelerate an energy-limited reaction (dissociation), the catalytic mechanism is also of energetic nature. Examples where the catalytic mechanism is entropic have been previously reported in the context of condensation reactions. A notable example is the ribosome, which is responsible for building proteins by chaining amino-acids together. The ribosome has been reported to increase the energy barrier of the reaction it catalyzes at the expense of providing a reaction pathway with a significantly lower entropic cost [START_REF] Sievers | The ribosome as an entropy trap[END_REF]. Thus, the spherical particle cannot be discarded as the simplest possible catalyst for a spontaneous reaction of different nature than the one considered in this chapter.

The role of binding energy

Now that we have identified the catalytic mechanism and delimited the values of L c that can support it, we analyze how T C:S→C:P #C•S depends on the catalyst-substrate interaction, cs . We do not use simulations for this purpose, because, unlike in the previous section, where we could set s cs to prevent the substrate from unbinding, we can no longer guarantee that the C:S → C•S transition will not truncate the FPT distribution for arbitrary cs .

To circumvent this problem, we build a simple ENM to analyze how the rate of the transition depends on cs and L c simultaneously. When L c /3r min > 1, we can approximate the C:S configuration to be one-dimensional, as the catalyst and the substrate are aligned along the catalytic axis. For these configurations, the bonds in the complex satisfy

r s + r cs,1 + r cs,2 = L c , (3.8) 
where r s is the distance between the particles in the substrate and r cs,i represents the distance between the i-th catalyst particle and the substrate particle it is interacting with. Given L c , cs and s , it is possible to find the C:S configuration of minimum energy,

U C:S,min (r * s , r * cs,i ) = min rs,r cs,i U (r s , s ) + U (r cs,1 , cs ) + U (r cs,2 , cs ) , (3.9) 
where r * s and r * cs,i are subjected to eq. ( 3.8). The potential energy of the TS for the C:S → C:P process corresponds to the configuration where r s = r c , and we estimate it as Results for this simplified model are shown in Fig. 3.8, where we plot * for different geometries within the range where the assumption of C:S being one-dimensional holds. The scaling of * with cs is approximately linear, suggesting the emergence of a linear free-energy scaling relationship, that is, a correlation between the activation barrier and the stability of the adsorbed species, in this case C:P [39]. If we assume that it is possible to associate a rate to the C:S → C:P transitions by taking the inverse of the MFPTs above, then, within the Arrhenius approximation,

U (C:S) * = 2U L c -r s 2 , cs , (3.10 
* < s → k s ∝ e -s < k C:S→C:P ∝ e - * .
(3.12)

The lower the activation barrier in the presence of the catalyst, * < s , the more efficiently the bond is cleaved. As * decreases (approximately) linearly with increasing cs , the stronger the catalyst binds the substrate, the more efficient the catalytic mechanism will be. We note that this estimation does not consider how the interaction with the catalyst may also modify the overall shape of the potential, further contributing to the rate of the reaction. We assume that the modification of the activation barrier is the dominant effect responsible for the acceleration. 

Trade-offs in parameter space

Now that the catalytic mechanism, strain, has been elucidated, it is evident that the further apart the two particles in the catalyst are, i.e., the greater L c , and the stronger the catalyst pulls the substrate, i.e., the greater cs , the faster the substrate bond can be cleaved. In the limit where the catalyst is exactly complementary to the TS of the reaction, L c = 2r min + r c , and the binding energy is very large, cs s , cleaving the bond occurs instantaneously (see limit for L c /3r min 1 in Fig. 3.5). However, we must consider other elementary steps in the catalytic cycle beyond the catalytic mechanism! How long does it take the substrate to adopt a conformation that resembles exactly the TS? How long does it take the catalyst to release tightly bound products? In this section we show how the constraints pertaining to timely binding, efficient release and strong strain lead to the emergence of trade-offs in the parameter space.

Binding the substrate

In our model, substrate binding consists of two steps: first, the substrate must locate the catalyst in space by diffusing within its interaction range, which is represented by the transition C + S → C•S in Fig. 3.4; second, once one of the particles in the substrate is attached to a particle in the catalyst, the remaining substrate particle must adopt the right conformation to bind the remaining catalyst particle, C•S → C:S. For the moment, the C + S → C•S transition can be ignored as it does not impact the intrinsic design of the catalyst for unimolecular reactions. This will be included once we analyze the efficiency of the design. In this section, we focus on analyzing the kinetics of the C•S → C:S transition instead.

As the binding process is purely driven by diffusion, T C•S→C:S only depends on L c and not cs or s . In Fig. 3.9 we show simulation results for the scaling of T C•S→C:S with L c , which are obtained by initiating the system at random C•S configurations and recording the time it takes to reach C:S. As before, we have set cs 1 and s 1 to avoid unbinding and other transitions from truncating the FPT distribution. We observe that T C•S→C:S diverges as L c → 3r c . This is because the MFPT depends on how easy it is to find the second catalyst particle in space, which is quantified by the size of the overlap between the interaction shells of the substrate particle that is already attached to the catalyst and the other catalyst particle. These shells are schematically represented in Fig. 3.10(a), with the overlap colored in yellow. The overlap area decreases monotonically as L c grows; when the area becomes a point, the MFPT diverges. If the substrate and catalyst bonds present in the C•S complex would not fluctuate around their equilibrium position, that is, if r s = r cs = r min at all times, then T C•S→C:S would diverge exactly at L c = 2r min + r c , as shown in Fig. 3.10(b).

The binding transition can be mapped to a diffusive search process in a closed domain with an absorbing target. This allows us to obtain an analytic expression for the MFPT with the functional form,

T C•S→C:S = A log f (L c ) + B. (3.13)
where the coefficients A and B are associated to the geometry of the domain and the size of absorbing target, as well as the dimensionality of the problem (see Appendix B). The resulting curve is plotted on top of the simulation data in Fig. 3.9(a). The results in this section show that the larger L c the longer it will take to adopt the right configuration in the catalyst. We then conclude that a trade-off arises between binding in the shortest amount of time and being as complementary as possible to the TS of the reaction. It is also trivial to see that for the substrate to be able to bind to the catalyst, its geometry must be bounded by L c < 3r c .

Release

The results in Fig. 3.8 establish a correlation between binding energies cs (which would be referred to as adsorption energies in the context of heterogeneous catalysis), and activation energies, * : the activation barrier is lowered at the expense of increasing the stability of the adsorbed species, i.e., larger cs . For catalysis to be possible, T S→P > T C•P →C+P or similarly, k s < k C•P →C+P , where k i = 1/T i must be satisfied. Within the Arrhenius approximation, this result implies that cs < s , that is, the catalyst cannot bind the substrate as strongly as the bond it is intending to cleave, or else, the acceleration of the chemical transformation will be overshadowed by the release step, which will take longer than the spontaneous reaction. As a consequence, we expect to see an optimum in catalytic efficiency arise along the cs axis in parameter space. If the binding is too weak, the catalyst won't strain the substrate enough to accelerate the reaction; if the binding is too strong, the chemical step will be favored but the catalyst won't be able to release the product. This trade-off, already introduced in Chapter 1, embodies the Sabatier principle and its graphical representation, which we will observe arise in the parameter space, is known as a Volcano plot [START_REF] Balandin | Modern State of the Multiplet Theor of Heterogeneous Catalysis[END_REF].

Numerical results

The necessary conditions for catalysis outlined in previous sections can be summarized into the following physical and geometrical constraints:

• Physical constraints → 0 < cs < s . The dashed line along the diagonal marks the cs < s condition. The data above the solid white line has been extrapolated from the Langevin simulation results. The white rectangle for s > 15 marks the limit where we can get good statistics from MD simulations. Results correspond to a simulation box of side L B /σ = 7.5. Results in (a) and (b) correspond to the irreversible case, that is, the C:P → C:S is not allowed. Panels (c) and (d) are analogous to (a) and (b), but the reformation of the substrate bond is diffusion limited. In all cases, free monomers are removed from the system as soon as they are produced to avoid product inhibition. Note that range of the color scale changes from (a) and (b), to (c) and (d).

• Geometrical constraints → 3r min < L c < 3r c .

We verify that all catalytic solutions lie within those boundaries by simulating the complete reaction in the presence of the catalyst, in order to record T C+S→C+P . The results are shown in Fig. 3.11 for the irreversible case (a,b) (no bond reformation) and the reversible case (c, d) (diffusion-limited bond reformation). In panels (a, c), we plot a slice of the parameter space for a fixed spontaneous reaction. The results show that there is an optimal catalyst geometry, which optimizes the trade-off between timely binding, efficient strain and minimal bond reformation C:P → C:S, when applicable (c). Additionally, there is an optimal binding energy cs as expected from Sabatier's principle. There are no catalytic solutions for s < cs , in agreement with the discussion in the previous section. In (b, d), we fix the catalyst geometry and plot the parameter space for different cs and s . These results evidence the existence of a lower bound for the spontaneous reaction, s,min , below which it cannot be accelerated by our catalyst design. Indeed, if the spontaneous reaction occurs too fast, the substrate will dissociate before it can bind the catalyst in the right configuration. In fact, the catalyst inhibits the reaction for s < s,min because, even though the substrate bond breaks at its spontaneous rate along C•S → C•P , releasing one of the monomers in solution, the second one still remains attached to the catalyst. Since the reaction ends only once there are two free monomers in solution, and the catalytic path contains the extra step of release which does not exist for the spontaneous reaction, the catalysts acts as an inhibitor by delaying the production of free monomers. Importantly, we note that the physical and geometrical constraints, which are marked as green lines in the figure, have been derived by heuristically decomposing the reaction path into discrete states. The simulation results, which are agnostic to this decomposition, agree with the necessary conditions established in this way.

Flexible catalyst

Our choice of a rigid scaffold has been motivated by the results in [66]. However, is it really true that a rigid catalyst is the best design to accelerate the dissociation of a dimer? Here we briefly compare the catalytic efficiency of a flexible scaffold to its rigid counterpart. We start by investigating how efficient the catalytic mechanism is for designs with different flexibility. Following the same simulation procedure detailed in 3.3.1.1, we compare the MFPT for the chemical step on the catalyst T C:S→C:P to the the spontaneous reaction. Results are shown in Fig. 3.12 (a). We observe that a flexible catalyst can reduce the lifetime of the substrate bond before the L c /3r min = 1 threshold. The rest length of the catalyst fluctuates around L c + δl, with δl proportional to k, which enables it to transiently adopt geometries that strain the substrate bond even when L c /3r min < 1. However, well into the L c /3r min > 1 regime, the rigid catalyst is the optimal solution. In fact, an excessively flexible scaffold, e.g. k = 10, can barely accelerate the chemical step for any catalyst geometry. Flexibility might enable faster substrate binding, but this effect does not compensate the less efficient chemical step, as it is evidenced by the results in Fig. 3.12(b), where we compare the catalytic efficiency of a flexible (k = 10 3 ) and a rigid design. In all cases, the rigid catalyst performs better than the flexible candidate. We conclude that the rigid scaffold is the optimal design, in agreement with the results reported in [66] for a one-dimensional elastic network model.

Kinetic constraints

In the previous section we have heuristically decomposed the catalytic pathway into elementary processes and identified the regions in parameter space where catalysis arises. The fact that these solutions are contained within the geometrical and physical constraints that we have derived validates, indirectly, the naive decomposition of the pathway into states. In this section, we will validate such decomposition more rigorously by constructing a Markov State Model (MSM) that will help us derive all kinetic constraints on the transitions in the reaction cycle. The model will serve two purposes: (i) to extend our results beyond the limits of the MD simulations (see caption in Fig. 3.11) and more importantly, (ii) to scan the parameter space beyond the best case scenario conditions, where free monomers can inhibit the activity of the catalyst. This second goal will be accomplished later in the manuscript, when we explicitly consider the volume of the system as a parameter that impacts catalysis design.

Markov State Model

As the rate of a bond-breaking reaction decreases exponentially with the depth of the interaction potential , escaping the potential becomes increasingly rare, making it difficult to gather good statistics in our Langevin MD simulations. In recent years, MSMs have become a popular method to overcome the timelimitations of MD simulations by producing kinetically meaningful coarsegrained representations of the dynamics of the system [START_REF] Pande | Everything you wanted to know about Markov State Models but were afraid to ask[END_REF]. Indeed, building a MSM consists of constructing a kinetic model in the same spirit as one sets the laws of mass action to determine the time-evolution of a chemical system: we first identify the set of kinetically meaningful states in the system, and then compute the transition rates between them [START_REF] Pande | Everything you wanted to know about Markov State Models but were afraid to ask[END_REF]. Transitions must satisfy the Markovian, i.e., memoriless, property, introduced in section 2.2.3. Here, we will construct two different MSM models:

1. A MSM based on our numerical simulations, that will be used to validate the decomposition of the reaction pathway into states.

2.

A MSM where the transition rates are given by analytical expressions. This will grant us complete independence from MD simulations.

States and coarse-grained trajectories

A state consists of an ensemble of configurations that are kinetically equivalent. We initially coarse-grain the configurations in the model into 5 transient states, i.e. C + S, C•S, C:S, C:P , C•P and a single absorbing state C + P , where each is characterized by the number and types of bonds in the respective configuration (see table in Fig. 3.4(a)). However, such definition of a state is based on purely geometric boundaries and not kinetics. As a result, it does not guarantee that once a transition occurs, that is, once a new bond forms or breaks at the geometrical r = r c boundary, memory of past transitions is lost for the next step. It is no longer true that all configurations belonging to the same state are equivalent! This is evidenced by the non-exponential waiting time distributions shown in Fig. 3.13 (a)-(e), constructed by measuring the time elapsed between bond formation and bond cleaving in simulations. The To minimize these effects, we further coarse-grain the trajectories: instead of recording the time elapsed between bond formation and bond breaking events, we sample the system at a fixed frequency and record the state the system is in. The frequency or lag time τ Lag between samples must be sufficiently large so that barrier recrossings are ignored, but sufficiently small to allow for a meaningful description of the dynamics [START_REF] Schütte | Markov state models based on milestoning[END_REF]. In our particular case, C:S is quite short-lived in comparison to the other states in the model, as shown in Fig. 3.13(f), where we plot the average lifetime of each state in the model for different catalyst binding energies. As C:S and C:P constitute important steps in the catalytic cycle, we merge them into a single state (C:S + C:P ) to ensure a minimum level of resolution of the catalytic path during the sampling. The resulting waiting time distributions after lagged sampling are shown in Fig. 3.14. With the exception of (C:S + C:P ) all other waiting time distributions can be fit reasonably well with an exponential distribution of rate k i = 1/τ i in each case, where τ i is the average waiting time for the i-th state.

Transition rates

The transition rate from state i to state j is given by k ij = p ij /τ i , where p ij is the probability to jump from state i to state j [START_REF] Schütte | Markov state models based on milestoning[END_REF]. In this subsection, we first infer the rates from numerical simulations by analyzing the coarse-grained trajectories, and then construct an analytic model for the rates as a function of the parameters in the system. 

Simulation-inferred transition rates

To compute the transition probabilities from simulations, we first obtain the average transition frequency between states along the lagged trajectories,

nij = 1 N N k=1 n ij,k , (3.14) 
where N is the number of trajectories simulated and n ij,k is the number of transitions between states i and j during the k-th trajectory. The transition probability is given by [START_REF] Bhat | Some Properties of Regular Markov Chains[END_REF] 

p ij = nij j nij . ( 3.15) 
The transition rates that result from combining the waiting times τ i from Fig. 3.14 and transition probabilities p ij are shown in Fig 3 .15, as a function of cs . As expected, the rate of diffusion-limited transitions, such as C +S → C•S, is independent of cs . Similarly, the rate of the C•S → C•P transition is also independent of cs as it corresponds to the spontaneous reaction when the substrate is attached to the catalyst. On the contrary, the rate of transitions that require breaking a bond with the catalyst, like C•S → C + S, are shown to decrease exponentially with cs .

Analytic model for transition rates

To derive analytic expressions for the transition rates, we divide the elementary processes in our catalytic path into two categories: (1) escape processes, which consist of overcoming the activation barrier of a potential, and (2) diffusive processes. Breaking a bond can be approximated as a barrier escape problem, where the rate is given by an Arrhenius-like expression k( ) ∝ e -. In the case of the C•S → C + S, C:P → C•P and C•P → C + P transitions, the magnitude of the broken bond corresponds exactly to cs , and hence, the rate is k( cs ). The bond broken during the C•S → C•P transition is the scissile bond in the substrate, and therefore, k( s ). Identifying the interaction barriers for the C:S → C:P and C:S → C•S transitions is not as straightforward, because the interaction with the catalyst modifies the potential. As a result, the barrier depends on s , cs and L c . In section 3.3.1.2, we provide an estimation of the activation barrier * for the C:S → C:P transition. Following the same arguments, for the barrier of the

C:S → C•S transition we propose † = U (r min , s ) + U (r min , cs ) -U C:S,min (r * s , r * cs,i ), (3.16) 
where U C:S,min (r * s , r * cs,i ) was computed via eq. (3.9). The corresponding rate is therefore k( † ).

Transitions C + S → C•S, C•S → C:S and C:P → C:S can be mapped to search processes, as discussed for substrate binding in section 3.3.2.1. A search process is a FPT problem where a stochastic process such as a Brownian particle, diffuses in a domain that contains a target where it will get absorbed. In general, the FPT distribution of a search process is not exponential except for its tail, and it depends on the source-target distance, that is, the initial condition of the search [START_REF] Mejía-Monasterio | First passages for a search by a swarm of independent random searchers[END_REF]. Consequently, there is no well defined rate for the process and the full distribution must be considered. However, in the narrow escape limit [START_REF] Singer | Narrow Escape, Part I[END_REF][START_REF] Singer | Narrow Escape, Part II: The Circular Disk[END_REF][START_REF] Singer | Narrow Escape, Part III: Non-Smooth Domains and Riemann Surfaces[END_REF], where the size of the trap is much smaller than the domain of the problem, the exponential decay at long times dominates the distribution. This is the case for the C•S → C:S and C:S → C:P transitions (the latter being almost the same problem as the former), as exemplified by the exponential distribution in Fig. 3.9. Nevertheless, it is not necessarily true for C + S → C•S. Nonetheless, we know that the sufficient condition for catalysis does not depend on this particular transition, and hence, the only impact on the results will be at the level of the catalyst's efficiency. In conclusion, in order to determine the rates associated to these diffusion-limited transitions, here we map each corresponding transition to a search process in a simple domain (e.g., disk in two dimensions or a sphere in three-dimensions) to be able to compute the MFPT (Appendix B).

Validation of the model

To validate the MSM and the coarse-graining of the catalytic path into states, we compare the catalytic efficiency η + = T S→P /T C+S→C+P measured in simulations, where the catalytic pathway is not divided into elementary transitions, to the same observable derived from the MSM in its two versions: rates inferred from simulations and from an analytic model. The comparison is with their corresponding transition rates. We remind the reader that C:S and C:P are grouped into a single state when inferring the transition rates from simulations (yellow); the analytic model for the rates considers them separately instead. The dashed arrow for the C:P → C:S transition represents the rate constant which is k - 2 = 0 in the irreversible case. Single-headed arrows represent irreversible transitions, as a result of removing monomers from the system. (b) Comparison of the catalytic efficiency T S→P /T C+S→C+P of different catalyst designs according to the Langevin MD simulations (blue), the MSM with the rates inferred from simulation (red) and the MSM with the analytic rates (dashed black line). Top panel corresponds to a spontaneous reaction with s = 15, where the substrate bond can reversibly reform, while the bottom panel corresponds to the same parameters but for irreversible bond formation.
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shown in Fig. 3.16 for reversible C:S ↔ C:P transition (top) and irreversible C:S → C:P transition (bottom). To gather the data for the reversible case, we let simulations run until two free monomers are released in solution under the reaction conditions detailed in section 3.2.4. For the irreversible case, we use the same simulation data, but only keep the trajectory up to the first time the substrate bond breaks, preventing the C:P → C:S transition from happening; we then simulate the release of the monomers bound to the catalyst by drawing from an exponential distribution with rate k( cs ). This procedure is certainly artificial and it might be one of the reasons why the results do not quantitatively agree for small cs in the irreversible case for the MSM with the simulation inferred rates. The agreement in the reversible case is much better. We also note that the analytic model for the rates underestimates the efficiency of the catalyst for the irreversible case, which is not surprising given our discussion on diffusion above. Nevertheless, in subsequent sections we show that the MSM provides a good estimation of other simulation results and it is therefore a useful tool to discuss the kinetic constraints that apply to our reaction, validating the decomposition of the catalytic path into discrete states to analyze the kinetic constraints of the reaction.

Necessary and sufficient conditions for catalysis

We now apply the theoretical formalism in Chapter 2 to derive kinetic constraints on all elementary transitions of the reaction cycle. Given the MSM scheme in Fig. 3.16(a), the criterion for catalysis can be expressed in terms of the transition rates of the model as

1 k s > 1 k + 2 + 1 k + 3 + 1 k + 4 + k - 2 k + 2 k + 3 + k + s k + 1 k + 4 1 + k - 1 k - 2 k + 2 k + 3 + k - 1 k + 2 .
(3.17)

Each of the terms on the right hand side of the equation constitutes a necessary condition for catalysis. Conditions concerning the forward transitions have already been explored before. For example, the condition k s < k + 2 pertains to the catalytic mechanism and it was explored in section 3.3.1, where we concluded that 3r min < L c < 3r c and cs > 0. Conditions k s < k + 3 and k s < k + 4 , where k + 3 ≈ 2k + 4 (as there are two symmetric C•P states), are associated with the release of products, as we saw in section 3.3.2.2, and lead to the condition cs < s . The fourth condition in the equation references the reversible bond formation on the catalyst, i.e. the C:P → C:S transition, which disappears in the irreversible case as k - 2 = 0. In upcoming sections we will use k - 2 → γk - 2 , where γ will help us tune the reactivity of free monomers: γ = 0 corresponds to the irreversible bond formation case, while the reversible case, where the substrate bond formation is diffusion-limited, is represented by γ = 1. The last term in parenthesis arises as a result of the alternative pathway that the substrate may take in the presence of the catalyst to produce products, i.e. C•S → C•P → C + P . As discussed in section 2.3.2, this shortcut to the final state of the reaction relaxed the constraint on k + 1 , which does not have to be as fast as the spontaneous reaction for catalysis to emerge. The necessary conditions above delimit the region in the parameter space where catalysis can be achieved. Together they define the sufficient condition for catalysis, from which the rates k ± 0 are absent, as expected. We summarize these constraints by constructing a phase diagram for catalysis that extends the simulation results shown in the contour plot in Fig. 3.11. The phase diagram, depicted in Fig. 3.17, contains two phases: catalytically active designs, for which η + > 1, and inhibitors, for which η + < 1. The lines in the diagram (solid, dashed and dotted) represent necessary conditions for catalysis. By determining where in the phase diagram a particular design is, it is possible to derive what necessary conditions are not being satisfied and attempt to modify the parameters so that eventually the solution enters the catalytically active region.

Characterization of the catalytic solutions under different reaction conditions: from best-case scenario to product inhibition

So far, we have shown that a minimal rigid dimer can accelerate a dissociation reaction. However, this has been accomplished under very specific reaction (best-case scenario) conditions, that is, by removing free monomers from the system once they are released in solution. In principle, this is not an artificial scenario: substrate channeling, whereby a reaction intermediate gets transferred from the active site of an enzyme to another one (the product released by an enzyme becomes the substrate for a different enzyme), is a wellstudied phenomenon; it is hypothesized that it prevents reactive molecules from diffusing away in the cytoplasm, and it may also be a mechanism to avoid product inhibition [START_REF] Miles | The Molecular Basis of Substrate Channeling*[END_REF]. Although there exist experimental strategies to realize this in the context of programmable matter systems (see discussion at the end of the chapter), we would also like to understand whether it is still possible to achieve catalysis if we let free monomers diffuse close to the catalyst, allowing for product inhibition. In this section, we first characterize the efficiency and optimality of our catalyst design when monomers are removed from the system, because this represents the maximal speed up that the design will be able to provide. We then investigate whether the model can still lead to catalysis if monomers are removed from the system only when they have diffused sufficiently far away from the catalyst.

Efficiency and optimality under best-case scenario conditions

Given a spontaneous reaction, how much can our minimal rigid dimer accelerate it, and how does the speed-up depend on whether substrate bond formation is reversible or not? Does the optimal catalyst design depend on the reaction conditions, i.e., on the size of the simulation box? These are the two questions we first address in this section.

Scaling of maximal efficiency with dimer bond

For a fixed spontaneous reaction, defined by s , there is an optimal catalyst design that leads to the highest catalytic efficiency max(η + ). In Fig. 3.18(a), we plot the max(η + ) values from our Langevin numerical simulations. When γ = 0, i.e., the irreversible case for substrate bond formation, the maximal efficiency scales exponentially with s . However, for γ = 1, i.e., when substrate bond formation is diffusion-limited, the maximal efficiency saturates. We compare the simulation points to the curves derived from the analytic MSM model and find that they are in good agreement. Furthermore, using the MSM model we can also explore other values of γ ∈ [0, 1], where we remind the reader that γ is regulating the rate k - 2 → γk - 2 (see eq. 3.17). The saturation observed for γ = 1 also appears as γ → 0, although the max(η + ) value at which it saturates increases. We justify the two behaviors reported above, namely, the exponential scaling when γ = 0 and the saturation when γ = 0, as follows.

Why does the efficiency scale exponentially with s if γ = 0?

To understand why the maximal catalytic efficiency scales exponentially with the substrate bond when substrate bond formation is irreversible (γ = 0), we propose a minimal reaction scheme that captures the essential features of our model and the constraints for catalysis we have elucidated so far. Such reaction scheme is shown below,

C + S CS CP C + P k + 0 k - 0 k + 1 k + 2 k s
It contains four states, where the CS → CP transition accounts for the chemical transformation step and CP → C + P represents product release. We model the rates as

k s = e -s k + 1 = k s e α cs k + 2 = e -cs , (3.18) 
and we leave k + 0 and k - 0 unspecified as they don't take part in the sufficient condition for unimolecular catalysis. Here α represents the catalyst's ability to reduce the rate of the spontaneous reaction. As we have learned from previous sections, catalysis requires 0 < α and cs < s . We have encoded the trade-off between lowering the activation barrier of the reaction and product release (the Sabatier principle) in the definition of k + 1 and k + 2 : for fixed s , the larger cs , the larger k + 1 will be, but the smaller k + 2 . The efficiency of the design in the limit where k + 0 → ∞ is given by

η + = 1 e -α cs + e cs-s . (3.19) 
This expression has an optimum at

* cs = s + log α 1 + α (3.20)
if s > log α/α and α > 1, or if s >log α and 0 < α ≤ 1. Substituting the optimal binding energy in the expression for the efficiency, we obtain

η + | * cs = 1 1 + α e α/(1+α)( s+log α) ∝ e α s , (3.21) 
where α = α/(1 + α). This expression recovers the scaling in Fig. 3.18. We note, however, that ignored in the calculation is the fact that α is generally a function of cs . Alternatively, we could also reach the same conclusion by invoking the Arrhenius law. If we assume that the rate of the spontaneous reaction is k s ∝ e -s and that the effect of the catalyst is simply to reduce the barrier as k c ∝ e -α s , then the rate enhancement in the presence of the catalyst will scale as

k s /k c ∝ e -(1-α) s .
Why does the efficiency saturate if γ = 0?

The saturation of the maximal efficiency when γ = 0 necessarily stems from the step associated to the reformation of the bond on the catalyst, i.e., C:P → C:S. This transition is independent of cs and its rate is fully determined once the geometry of the catalyst is set. The value of s at which the efficiency saturates corresponds to the timescale at which the rate of release, which depends on cs becomes comparable to the rate of bond formation. The maximal catalytic efficiency results from the catalyst optimizing the tradeoff between timely release and efficient bond cleaving. When the rate of bond formation is comparable to any of these processes, the efficiency is compromised and consequently saturates. We mathematically prove the saturation in the Supplementary Information in [START_REF] Muñoz-Basagoiti | Catalysis from the bottom-up[END_REF].

Optimality of the design

The optimal catalyst design is expected to vary depending on the reaction conditions. Nevertheless, we find that this is not the case for our minimal catalyst: the design parameters do not depend much on the volume of the simulation box, as shown in Fig. 3.18(b). The results compare the efficiency η + of the catalyst as a function of cs for different simulation box sizes L B /σ. The position of the peak of the resulting Volcano plots remains relatively unchanged for all reaction conditions. Nevertheless, by increasing the size of the box, we also increase the time it takes the substrate to find the catalyst, and consequently, we reduce the effect of the catalyst on the timescale of the reaction. This explains why the efficiency of the catalytic design decreases with L B .

Volume effects

We now allow free monomers to rebind the catalyst once they are released in solution. They will only be removed from the system if they diffuse sufficiently far away, at a distance that we denote as R Diff /σ (see Suppl. Information in [START_REF] Muñoz-Basagoiti | Catalysis from the bottom-up[END_REF] for a schematic depiction of R Diff ). The catalyst is now susceptible to product inhibition due to its potential interaction with free product particles. Furthermore, it is now possible for a free monomer to rebind another monomer particle in the system if the substrate bond can reform, i.e., γ = 0. Therefore, it is not obvious whether it will still be possible to catalyze the reaction under these conditions. The goal of this section is to investigate the additional constraints on catalyst design dictated by the volume of the system. Using an extended MSM which considers that monomers only leave the system when they have diffused sufficiently far away from the catalyst, we first investigate whether it is possible to achieve η + > 1 in a system in twodimensions if monomers are not allowed to reform a bond, i.e., γ = 0. The results are plotted in Fig. 3.19(a), where we show that it is possible to catalyze the reaction (colored red region and red squares) as long as the substrate bond is above a certain threshold, s > s,min . Figure 3.19: Are there catalytic solutions when monomers are not removed from the system? (a) Minimal substrate bond s required to observe catalysis in the irreversible limit (γ = 0), as a function of R Diff /σ, which is the distance a free monomer has to diffuse away from the catalyst in order to be removed from the system. Results correspond to a system in two-dimensions. Red squares correspond to simulation data, while the red region has been obtained from the MSM model. Crosses and the white region indicate that no catalysis could be observed. (b) Maximal γ that can be afforded for catalysis to be possible when monomers are not removed and the reformation of the substrate bond is reversible. Only results from the MSM model are shown.

Considering the irreversible case, that is, setting γ = 0, helps suppress transitions that increase the reaction time. Thus, the remaining step in our exploration is to relax the constraint on γ and analyze whether solutions exist when γ = 0. These results are presented in Fig. 3.19(b), where we show the largest γ value that can be afforded for catalysis to occur, indicating that there is a degree of irreversibility that is required for catalysis to emerge. In order words, there is a γ < γ max that sets an upper bound to the propensity with which free monomers associate. The extension of these results to three dimensions can be found in the Suppl. Information in [START_REF] Muñoz-Basagoiti | Catalysis from the bottom-up[END_REF] (see preprint in section IV). Note that the dimensionality of the problem will only impact the rates associated to the transitions involving diffusion. However, a more rigorous treatment of diffusion is required, as in many cases it is not possible to associate a single timescale, i.e., a rate, to a diffusive transition. This can be done, for example, by turning to reaction-diffusion equations in the future.

Ensemble simulations

We conclude the chapter by testing in solution, with more substrate and catalyst molecules, some of the designs identified as catalytically active in the single-molecule scenario. It is not evident that these designs will remain catalytically active once the number of substrate molecules in the system increases, because the rate of the spontaneous reaction is proportional to the later, a matter that has been explored in detail in [START_REF] Sakref | On kinetic contraints on elementary processes in catalytic cycles[END_REF]. We test our designs for catalytic activity in two different set-ups: (i) in a chemostat, where the system can reach the steady-state, and (ii) in a closed system, by letting the reaction proceed to completion. In both cases, free monomers are inert once they are released in solution and all spontaneous reactions correspond to the irreversible case, that is, we do not allow the substrate bond to reform once broken.

Steady-state simulations

To perform steady-state simulations, we initiate the simulation box with N C catalysts distributed in a square lattice, and place N D dimers randomly in the box, making sure that none of them is within interaction range of any catalyst and that there are no overlaps. Each time two free monomers are released in solution we introduce a new dimer in the simulation box, making sure that there are no overlaps with other particles. This procedure keeps the concentration of dimers in the system constant and eventually establishes the The rate of the reaction in the presence of the catalyst is larger than the rate of the spontaneous reaction for low substrate concentrations. However, as [S] increases, the curve begins to follow the spontaneous rate. In other words, the simulation data does not follow Michaelis-Menten-like saturation kinetics, where we would expect to see a maximum reaction rate in the limit of large [S] because the catalyst is saturated with substrate. In our case, at high substrate concentrations, the catalyst population is also saturated but the rate of the spontaneous reaction is non-negligible. As a consequence, when all catalysts are occupied and producing product at their maximal efficiency, the rate of the spontaneous reaction begins to dominate.

Complete conversion of substrates to products

By accelerating the rate of a reaction, catalysts bring chemical reactions faster to equilibrium. We test whether this is true for our minimal catalyst design by comparing the progress of the reaction until completion in the presence and absence of catalysts. We follow the evolution in time of the number of reactants in two simulation boxes, with and without catalysts. The first simulation box is initiated with a population of N D substrate dimers and evolved in time until they have all dissociated into free monomers. At this point we establish that the reaction has run to completion since free monomers are not allowed to recombine due to γ = 0 (alternatively, this time can also be estimated analytically by solving the laws of mass action for the spontaneous reaction). We then compare the results to a simulation box initiated with a population of N D substrate dimers and N C catalysts. Fig 3.20(b) shows a comparison of the number of free monomers in solution as a function of time for different fractions of catalysts in the system. In all cases, the presence of the catalyst significantly reduces the time at which the reaction is completed, and as expected, the larger the number of catalysts in solution, the faster the reaction will proceed.

Discussion

In this chapter we have designed a minimal catalyst that cleaves bonds using a physical model of spherical particles and programmable potentials. We now conclude the chapter by summarizing the key findings in our work, as well as addressing the limitations of our approach.

We find agreement with well-established design principles of catalysis

Our catalyst model recovers well-established catalysis design principles. These emerge naturally in the model as necessary constraints in the parameter space. For instance, the conditions on the catalyst's geometry (i.e., L c /3r min > 1) recapitulate Pauling's principle of TS stabilization [29]. Similarly, the conditions on the binding energies (i.e., cs < s and the Volcano plots) correspond to Sabatier's principle of optimal adsorption energy. While the former is well-known in the context of enzymes, and the latter mostly prevails for heterogeneous catalysis, our results show that both must be simultaneously considered to achieve catalysis in the context of our dimer. The emergence of the Sabatier principle primarily stems from the symmetry with which our catalyst interacts with the substrate and the product of the reaction. Exploring how to break this symmetry and escape the trade-off between strong substrate binding and timely product release, which may be what enzymes excel in doing, is left for future investigations. Suggestions on how to realize this asymmetry have already been proposed [START_REF] Rivoire | How flexibility can enhance catalysis[END_REF].

Flexibility is not necessary for catalysis

Our results establish that conformational changes and flexibility are not necessary for catalysis: a rigid structure can accelerate a reaction. It is yet to determine whether flexibility concerns other functions usually associated to efficient catalytic activity such as specificity, which, although not necessary for catalysis, might improve its productivity in systems where discriminating between different substrates is crucial [START_REF] John M Mcbride | A general theory of specific binding: insights from a genetic, mechano-chemical protein model[END_REF]. Flexibility might also aid in expelling the product out of the active site to prevent product inhibition, or in regulating the re-binding of the substrates and products. We remind the reader that the specific design of the catalyst candidate we have proposed, a rigid dimer, is inspired by previous results [66], which reported a rigid scaffold as the optimal solution to dissociate a dimer. We have verified that a rigid structure is also the best catalyst in our model.

The system is prone to product inhibition

In most of the results introduced in this chapter, our catalyst is not entirely independent: it requires external intervention to remove free monomers when they are released in the system, or an appropriate design of the substrate particles so that they stop interacting once they are released by the catalyst. Other catalytic designs, different from a rigid dimer, may be able to overcome this limitation by using principles that remain to be formulated, and which can only be studied if the catalyst has a more complex architecture. For instance, our minimal structure is not able to display allostery, which is a well-recognized phenomenon in enzymes.

It is worth mentioning that the reason why we have been removing (blocking) monomers from the system is due to the fact that our model is particularly prone to product inhibition: first, bond reformation is diffusion-limited in the absence of barriers (see interaction potential in Fig. 3.1), and so, a monomer can reform a bond with the catalyst as soon as it is released; second, particles do not change identity after a bond cleaving or bond formation event. Thus, a catalyst particle will interact equally strong with a substrate and a product particle. This is not entirely true in real chemical systems, where the substrate and the product are two different molecular entities -valence changes as the reaction progresses. In the future it will be worth exploring how an asymmetric interaction with the substrate and the product modifies the phase diagram for catalysis in Fig. 3.17.

The proposed design cannot accelerate condensation reactions in the reversible limit

We have only focused on accelerating the forward direction of the spontaneous reaction, that is, the dissociation of the substrate. The reverse direction, namely, the condensation of two monomers into a dimer, has been addressed only to clarify the formation of the bond in the presence of the catalyst. We have not attempted to optimize the design so that it can also accelerate the formation of bonds. In fact, we know that this is actually not possible in the reversible case and two-catalyst-particles scenario, because monomer bond formation is diffusion-limited, and the catalyst and substrate particles have the same diameter σ: it would take the same amount of time for the monomers to find the catalyst or another monomer to bind. Therefore, when the formation of the substrate bond is diffusion-limited, the design in this chapter constitutes an example of a catalyst that can accelerate the cleaving of bonds, but it cannot speed up the reverse direction, an argument that can only be made as long as the system is out of equilibrium. We note that our results depend on the type of reaction we have chosen to accelerate. However, the framework we have introduced is general. Ongoing work [START_REF] Sakref | On kinetic contraints on elementary processes in catalytic cycles[END_REF] aims to extend them to other classes of reactions, starting from condensation.

Potential experimental realizations

Ultimately, we would like to construct the minimal catalyst we have introduced in this chapter in experiment. Having worked with spherical particles interacting via short-range potentials with designed valence and specificity, DNA-coated colloids represent a strong candidate to realize our system in the lab [START_REF] Mirkin | A DNA-based method for rationally assembling nanoparticles into macroscopic materials[END_REF][START_REF] Mcmullen | DNA selforganization controls valence in programmable colloid design[END_REF][START_REF] Zhang | Multivalent, multiflavored droplets by design[END_REF]. Some of our results, however, rely on specific reaction conditions, like removing monomers from the system or controlling the particle reactivity upon bond formation. How could this be achieved in experiment?

Controlling particle reactivity: how to tune γ in experiment?

As we have already discussed, the propensity with which two monomers form a bond can be controlled by including an entropic barrier. This barrier can be implemented through interaction patches on the surface of the particles, so that bond formation only occurs once the patches have correctly oriented in space [START_REF] Amar | Fabrication, Assembly, and Application of Patchy Particles[END_REF], or by designing the DNA interactions to be mediated through staples (linkers) [START_REF] Rogers | A mean-field model of linker-mediated colloidal interactions[END_REF], in the same spirit as DNA-origami. In the latter case, two particles would only be able to interact as long as a third entity, the staple, binds each particle and connects them. The time for bond reformation could be controlled by tuning the concentration of staples in the system.

Removing monomers from the system

The secondary structure of DNA, that is, the formation of loops and hairpins, makes it is possible to switch-off attractive interactions between particles [START_REF] Mirjam | Switchable self-protected attractions in DNA-functionalized colloids[END_REF]. The DNA that coats the particles could be designed such that, once the catalyst has released a monomer, the DNA strands on the surface fold onto themselves, self-protecting the monomer and effectively "removing" it from the system.

CHAPTER 4

Conclusions and outlook

In 1969, Balandin, who introduced the concept of Volcano plot to represent the Sabatier principle, wrote: "The time is now ripe for the creation of a single theory of catalysis. It has become a necessity and is particularly important for finding the principles that will allow anticipation of catalytic effects." [START_REF] Balandin | Modern State of the Multiplet Theor of Heterogeneous Catalysis[END_REF]. To date, fifty years in the future, there is still no unified theory of catalysis as Balandin had hoped. Despite the remarkable advances in the field -the last two decades have seen five Nobel Prizes being awarded to contributions related to catalysis [START_REF] Ooi | Nobel Laureates Recognized in Organocatalysis[END_REF] -, do we understand how catalysts work?

We may say that we fully understand something when the questions that we ask have answers that satisfy us. In face of the present and upcoming energetic and environmental challenges, we would like to be able to design catalysts that are (i) highly efficient, (ii) highly selective and (iii) able to accelerate any desired reaction. Nature has remarkably accomplished this feat through millions of years of evolution. Human-based design is gradually catching up, with approaches based on directed evolution [START_REF] Bunzel | Designing better enzymes: Insights from directed evolution[END_REF] and Machine Learning leading the field [48]. This search process could be sped up with a theoretical framework for catalysis that sets the basis, constraints and fundamental principles of the phenomenon. The work that we have introduced in this manuscript contributes to establishing the foundations of such theory.

In this manuscript we have laid out a set of ideas that can be used to complement current bottom-up approaches of catalysis design [9]. We believe that one of the most important ideas is the need to redefine how we score catalysis when its presence is not guaranteed, by considering its emergence with respect to the timescale of the spontaneous reaction. In the future, we hope that this measure of distance from the uncatalyzed reaction proves useful as a score function for catalysis design in systematic optimization approaches. For example, an interesting project would be to test evolutionary algorithms to develop more complex catalytic architectures starting from our minimal rigid dimer, in the same spirit as Sims's virtual creatures [START_REF] Sims | Evolving virtual creatures[END_REF]. Such an approach could lead to a plethora of catalytic designs which would maybe naturally classify as one of the three main types of catalysts -heterogeneous, homogeneous or enzymatic -depending on the selection pressures.

Another key message we have put forth is that catalysis is more than a chemical step. We have argued for the importance of accounting for the full catalytic cycle by explicitly including binding and release in the design process. These steps impose additional constraints that crucially shape the final solution and its efficiency. Many approaches to catalysis design only focus on optimizing the catalytic step of the reaction. For example, catalytic antibodies are primarily designed to bind with precise complementarity a TS analog (see chapter 1). What about the constraints beyond TS binding? Do catalytic antibodies exhibit Volcano plots as they go through rounds of affinity maturation against the TS analog? As maturation proceeds, the antibody is expected to bind tighter and tighter the analog it is presented. Is there an optimal number of rounds for antibody catalytic activity before product release becomes inhibiting? At the moment, there are no Volcano plots available for enzymatic activity, since the Sabatier principle may not be applicable when too many degrees of freedom are coupled. Investigating the kinetic, physical and geometric constraints we have previously discussed in the context of catalytic antibodies could shed light on the connection between enzymes and other classes of catalysts, helping us understand what makes enzymes so proficient.

By using a physically realizable model, our results open the door to the design of self-regulated artificial systems with bio-inspired functionalities and pave the way for a better understanding of enzymes. We have shown how the parameters of a catalyst, its geometry and interaction strengths must be carefully chosen within a narrow range to achieve catalysis. Within this range, a minimal catalyst -a rigid dimer -can accelerate a dissociation reaction. We have also shown that flexibility is not necessary for catalysis, even though many enzymes exhibit conformational changes. Questions that are left unanswered for the future pertain to the role of flexibility in enzymes and their large size. Can an enzyme's size be a requirement to achieve sufficient rigidity in certain conformations? Future work will take on this question. Finally, we note that because of its simplicity, our minimal catalyst can be of interest in Original of Life studies, to investigate what primordial catalysts may have looked like before they evolved into modern enzymes.

Introduction

The advancement of technology greatly relies on our ability to manipulate materials for desired functions. Satisfying the societal requirements of the future rests upon the design of novel materials with advanced functionalities, similar to -and potentially beyond -those already found in Nature. Indeed, living organisms constitute one of the most complex forms of matter. Contrary to the passive and rather functionally rigid current generation of materials [START_REF] De Pablo | New frontiers for the materials genome initiative[END_REF], living matter is able to heal, adapt, respond to stimuli from the environment and conduct a myriad of other sophisticated functions autonomously. The widespread realization of bio-inspired materials in the future depends on cracking the so-called materials genome [START_REF] De Pablo | New frontiers for the materials genome initiative[END_REF], that is, determining the material properties that define a specific functionality [START_REF]Nørskov and Thomas Bligaard[END_REF] -, a challenge that we have explicitly addressed in the previous part of the manuscript for catalysis. Equally crucial to this endeavor is envisioning materials manufacturing methods that are efficient, robust, cheap, scalable to industrial conditions and respectful of the environment. Only when these production conditions are met will a material succeed in becoming part of our everyday lives and impact society as a whole. A promising strategy to satisfy these demands in the short-term is embodied by one of Nature's preferred fabrication methods, namely, self-assembly.

Self-assembly refers to the bottom-up process in which a set of subunits autonomously organize into orderly patterns and functional structures [4]. The folding of proteins, as well as the assembly of molecular machines, lipid membranes or viral capsids, for instance, all result from the spontaneous arrangement of specific building blocks in a living organism, evidencing the ubiquity of the process in Nature. As a fabrication method, self-assembly offers numerous advantages, a major appeal being the possibility of achieving long range control of the structure through locally encoded interactions. This allows the size of the final assembly to be much larger than the size of its constituents, a feature that is difficult to realize with high precision through direct manipulation and top-down approaches at the nanoscale, for example. Consequently, beyond its fundamental importance as a basic process of life, in the last few decades, self-assembly has become a highly popular strategy to manufacture materials with exquisite control, most notably in the field of nanotechnology.

The work we introduce in this part of the manuscript joins the ongoing experimental, theoretical and computational efforts to push the boundaries of self-assembly towards the ultimate goal of building materials with functionalities and efficiencies that rival with those currently known in Nature [START_REF] De Pablo | New frontiers for the materials genome initiative[END_REF]. Inspired by proteins, here we adopt the strategy of folding to materials science by using colloidal droplet chains, i.e., colloidomers [5], as our model system. Our work demonstrates that a colloidomer chain can be programmed to fold into a selection of well-defined geometries with high yield and high fidelity. This is achieved using a small palette of particle types and exploiting temperature protocols for hierarchical assembly. In this part of the manuscript we describe how such design process can be realized, and the results that we obtain by applying it. We first provide context for our results by discussing the state of art of the field.

Self-assembly strategies

Self-assembly relies on how information is encoded and processed in the system. The specific interactions between building blocks dictate the assembly instructions. These include, among others, the position of the building blocks within the assembly and the order in which they should join the structure [START_REF] Cademartiri | Programmable selfassembly[END_REF]. Remarkable progress has been achieved in developing experimental methods to encode information on building blocks with different morphology. Designer building blocks open the door to programmable self-assembly. For example, sticky, i.e., single stranded DNA on the surface of particles convey them with short-range binding specificity, that is, control over what particle types can interact to form bonds [START_REF] Mirkin | A DNA-based method for rationally assembling nanoparticles into macroscopic materials[END_REF]. Sticky surface patches and lock-and-key-like shape complementarity mechanisms can be used to encode for directional bonding [START_REF] Wang | Colloids with valence and specific directional bonding[END_REF][START_REF] Sacanna | Lock and key colloids[END_REF] and valence control [START_REF] Zhang | Multivalent, multiflavored droplets by design[END_REF][START_REF] Chakraborty | Self-Assembly Dynamics of Reconfigurable Colloidal Molecules[END_REF]. In parallel, greatly motivated by these experimental advances, many groups have focused on understanding how the shape of the building blocks dictate the structure of the final assembly [START_REF] Damasceno | Predictive Self-Assembly of Polyhedra into Complex Structures[END_REF], what is the information required to realize a target structure with high yield, and how this information can be best conveyed as a succinct set of design principles and physical laws [START_REF] Hormoz | Design principles for selfassembly with short-range interactions[END_REF][START_REF] Zeravcic | Size limits of self-assembled colloidal structures made using specific interactions[END_REF][START_REF] William | Rational design of self-assembly pathways for complex multicomponent structures[END_REF].

The set of design rules that robustly yield a structure is not unique a priori. Indeed, a target structure can be achieved by exploiting different design strategies. Each strategy may present advantages and disadvantages,

+ +

(a) Puzzle (gas) approach (b) Folding approach In the puzzle approach, the structure assembles from a gas of particles. The assembly information is carried by the building blocks in the system. In the figure, information is encoded in an interaction matrix, which dictates what particles can interact with each other: black squares indicate that the two particle types attract each other, while white squares indicate that the particles do not interact at all, and simply repel to avoid overlapping. (b) In the folding approach, the building blocks are first assembled into a polymer chain with a specific sequence -in the figure, an alternate sequence with two particle flavors. Building block specificity is provided through an interaction matrix smaller than the one shown for (a). For the final assembly to be possible, the polymer must behave as a freely jointed chain [5]. Figure adapted from [START_REF] Cademartiri | Programmable selfassembly[END_REF].
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and require different levels of complexity1 depending on the geometrical properties of the assembled structure itself. For example, in [START_REF] Zeravcic | Size limits of self-assembled colloidal structures made using specific interactions[END_REF], Zeravcic and collaborators show that, the yields of colloidal clusters with designed specific interactions outperform the yields for non-specific clusters in general. However, authors find that for some clusters it is not necessary to endow particles with specificity in order to guarantee the assembly. This information would simplify the building-block manufacturing process required to realize the system in experiment. Therefore, characterizing the scope of each assembly strategy is crucial so that we can tailor the design rules to the target assembly, and build any desired structure in a robust, efficient and cheap manner.

Self-assembly strategies can be organized in many ways by focusing on different aspects and properties of the process, like equilibrium and out-ofequilibrium self-assembly, or self-limited as opposed to bulk assemblies [4], for example. In 2015, Cademartiri and Bishop introduced two programmable selfassembly categories based on the state in which the system is initiated [START_REF] Cademartiri | Programmable selfassembly[END_REF]: the puzzle approach, that is, the assembly from a gas of free particles, and the folding approach, where the building blocks are first assembled into a chain that sequentially adopts more compact configurations as it folds. These two approaches are schematically depicted in Fig. 5.1. One approach can be seen as containing the other, since the polymer chain must itself assemble from a gas of particles. However, the existence of the backbone introduces constraints that are not found in the puzzle approach, making it a class on its own. In this section we present both puzzle and folding approaches, and provide a list of numerical, theoretical and experimental studies that show their application, scope and limitations.

Self-assembly starting from a gas of particles

The puzzle approach designates the self-assembly strategy where the building blocks in the system, which carry all the assembly information (e.g., interaction specificity, directionality, valence and shape), are initially free in the medium where the process is conducted. This strategy has shown to be particularly fruitful for the assembly of unlimited and periodic structures [START_REF] Wang | Crystallization of DNA-coated colloids[END_REF][START_REF] Lowensohn | Self-Assembly and Crystallization of DNA-Coated Colloids via Linker-Encoded Interactions[END_REF] with promising applications for the mass production of photonic crystals, for instance. Periodic assemblies only require few distinct building blocks to emerge, as it is sufficient to specify the unit cell of the lattice to achieve the desired crystal [START_REF] He | Colloidal diamond[END_REF]. Furthermore, Damasceno and collaborators have shown that, even when building block specificity cannot be controlled, nonspecific, identical polyhedra can give rise to a zoo of crystalline phases through entropic ordering [START_REF] Damasceno | Predictive Self-Assembly of Polyhedra into Complex Structures[END_REF][START_REF] Frenkel | Order through entropy[END_REF].

Self-limited and aperiodic structures can also be realized with high yield by starting from a gas of particles, but this requires a large number of distinct building blocks [START_REF] William | Rational design of self-assembly pathways for complex multicomponent structures[END_REF]. The success of this approach, known as addressable assembly, is not evident a priori given the large number of pieces that have to find their precise location in the final structure [START_REF] Jacobs | Self-Assembly of Structures with Addressable Complexity[END_REF]. However, numerous computational and experimental studies have now shown that by prescribing sufficient specificity through locally encoded information, practically any structure can be assembled from a gas [START_REF] Lester | Growth of equilibrium structures built from a large number of distinct component types[END_REF]. For example, the Yin group has experimentally designed 100 nm cavities of arbitrary shape by combining over 10 4 distinct DNA bricks as if they were (nanoscopic) Lego pieces (see teddy bear in [START_REF] Luvena | Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components[END_REF] or the assemblies in [START_REF] Ke | Three-Dimensional Structures Self-Assembled from DNA Bricks[END_REF]).

Despite these remarkable results, such large number of distinct pieces limits the scalability of the approach for the fabrication of mesoscopic materials, suggesting the need for complex protocols to ensure high yields at a sufficiently fast manufacturing rate. Additionally, it is important to note that not many experimental systems display as much capacity for encoding specific interactions or are as well characterized as DNA at the moment [START_REF] Knorowski | Materials design by DNA programmed self-assembly[END_REF]. Lockand-key interactions also have large capacity for encoding specificity [START_REF] Huntley | Information capacity of specific interactions[END_REF], but they are in practice much more difficult to realize in experiment. Thus, it is of great interest, both at the fundamental, but specially at the practical level, to determine whether it is possible to realize complex structures with a smaller palette of building blocks. This goal can be pursued by turning to alternative self-assembly strategies such as folding, where the assembly information is distributed among the building blocks and the properties of the polymer backbone that connects them.

Self-assembly via programmable folding

In the folding approach, the building blocks are first assembled into a polymer chain and organized according to a specific sequence. The physical properties of the polymer (e.g., its persistence length) greatly determine the ensemble of available designs that the system can realize. The chain confines the dynamics of the system, reducing the number of available conformations through geometric constraints. This way, building blocks are spared from containing all the assembly information. Natural proteins constitute the prototypical example of system that best exploits folding to self-assemble into functional structures. In proteins, the set of angles that the peptide backbone can adopt limits the configurations available in the system. It has been hypothesized that this alone can determine the emergence of secondary-structure-like motifs, such as alpha helices and beta sheets, independent of the amino-acid sequence [START_REF] Škrbić | Spontaneous dimensional reduction and ground state degeneracy in a simple chain model[END_REF]. As for synthetic systems, one of the most successful experimental realizations of the folding approach is embodied by DNA-origami, which consists of folding a long strand of scaffold DNA into specific geometries -as varied as smileys or stars -using shorter DNA strands that act as staples [61]. Similarly, in recent years, new model systems that allow for programmable folding based on colloidal particles have emerged [5,6]. One of these systems constitutes the basis of our work, and it will be presented in detail in subsequent sections.

It is experimentally challenging to realize (long) polymer backbones with controlled physical properties and a designed sequence. This difficulty has hindered experimental progress and diverted the attention from folding as a promising paradigm for self-assembly. As a consequence, the assembly from a gas of particles, which is easier to realize experimentally, has been much more studied and it currently dominates the field. Why should one be interested in folding a polymer chain if it is difficult to experimentally construct it in the first place? Because, as we will show later in the manuscript, the (experimental) cost of building the polymer backbone eventually pays off: the building blocks in the chain can be simpler, that is, less particle types are required to achieve a specific assembly, as illustrated by the example in Fig. 5.1. This feature makes folding an attractive alternative to the puzzle approach. The work in this part of the manuscript focuses on self-assembly via the lesser exploited folding, using a model system introduced by the Brujic group in 2018. The model consists of freely jointed polymer chains made of DNAcoated colloidal droplets, colloidomers [5]. Our theoretical and computational results, in collaboration with experiments from the Brujic group, will show that colloidomers endowed with only two different types of particles can encode for a large number of geometries with high fidelity.

Colloidomers: folding at the colloidal scale

Colloidomers are a freely-jointed polymers made of N monodisperse emulsion droplets [START_REF] Feng | Specificity, flexibility and valence of DNA bonds guide emulsion architecture[END_REF]5]. These droplets are a few microns in diameter and they are made of oil, dispersed in water, and functionalized with sticky DNA that can freely diffuse on the surface of the droplet. These DNA strands allow for specific and reversible binding between droplets: specific, because sticky DNA can only bind its complementary strand through A-T, G-C pairing; reversible, because DNA interactions can be melted and (re)-assembled through temperature cycles. Both the specificity and melting temperature of the DNA interactions, that is, the temperature that determines whether an interaction is on or off, are controlled through the design of the strand sequence. Since the DNA can diffuse freely on the surface of the droplets, the interactions are isotropic, and the colloidomer behaves as a freely-jointed polymer chain, where the droplets do not deform upon contact [5]. The experimental system is quasi-two dimensional because the droplets in the chain are denser than water, but three-dimensional folding is also experimentally possible by tuning droplet floatability, for example. Most of our work, however, limits to the two-dimensional case. 

DNA-mediated interactions

The DNA on the surface of a colloidomer droplet is designed to serve one of two purposes (see Fig. 5.2). On the one hand, it can be part of a colloidomer's backbone. This is also referred to as the primary DNA interaction, and it is responsible for keeping the droplets together in a chain. These primary DNA strands are designed to exhibit a very high T m melting temperature, in comparison to the temperature at which experiments are conducted. This guarantees the existence of the backbone for the duration of an experiment. For instance, the melting temperature reported in [START_REF] Mcmullen | Self-assembly of emulsion droplets via programmable folding[END_REF] for the backbone was of 75 • C, while the experiments were conducted below 30 • C. On the other hand, the DNA in the droplet can belong to the secondary interactions. These interactions mediate the folding of the colloidomer chain towards more compact structures. They allow the formation of bonds between droplets that are not adjacent in the chain. Secondary DNA-strands can endow droplets with flavor, that is, specificity. The sequence of a colloidomer is determined by the distribution of droplet flavors along the chain. Flavor determines what interactions are allowed in the system at a given temperature. This information is encoded in the interaction matrix. For a colloidomer with n flavors, the interaction matrix has dimensions n × n and its entries are such that

I(T ) = I ij = 1 if flavors i and j can interact I ij = 0 if flavors i and j cannot interact (5.1)
from where we deduce that the interaction matrix is symmetric. Each flavorencoding DNA sequence can have different melting temperatures, and therefore, be on or off depending on T . Since the melting transition of DNA is sharp, if the temperature of the system is close to the melting temperature, T ≈ T m , bonds can reversibly form; on the contrary, if the temperature of the system is quenched well below T m , T T m , bond formation is irreversible and the folding process occurs downhill, with the chain only being able to sample a small portion of the configuration space. The melting temperatures associated to different flavors can be designed such that it is possible to sequentially and selectively turn them on as the temperature of the system is lowered. This programmability of DNA will be exploited in chapter 8 to control the folding of the colloidomer chain towards a specific geometry.

Connection to models for protein folding

Our work will use colloidomers as the model system to study the design principles of folding, with views on applications for materials design and self-assembly. Nonetheless, being a model for folding, the design rules that we will discuss in upcoming chapters bear resemblance to principles that have previously been enunciated in the context of the protein folding problem. For example, the colloidomers with two flavors in chapter 8 are reminiscent of the HP lattice model introduced by Dill in the 80s [START_REF] Dill | Theory for the folding and stability of globular proteins[END_REF], which classifies the aminoacids in a protein sequence into Hydrophobic (H) and Polar (P), and considers that folding is driven by the minimization of the number of contacts between hydrophobic residues and the solvent. Similarly, our discussion will use concepts like the funneling of the energy landscape, which is a hypothesis put forth to explain how proteins achieve their native fold in short timescales [START_REF] Dill | The Protein-Folding Problem, 50 Years On[END_REF]. This hypothesis establishes that the number of configurations that a protein samples as it folds is reduced when it approaches the native state. We note, however, that despite these resemblances, the colloidomer chains we will work with are too short (N < 16 particles in the chain) in comparison to actual proteins, which are in general over 100 amino-acids long [START_REF] Brocchieri | Protein length in eukaryotic and prokaryotic proteomes[END_REF]. Therefore, we remain cautious in drawing analogies with proteins.

Motivation and objectives of the work

The ultimate goal of self-assembly is to design structures with arbitrary shape and functionality with high yield, and in an robust, cheap and timely manner that can meet industrial manufacturing demands. These ambitions crucially rely on determining design principles and strategies to efficiently guide the assembly process. With these ambitions in mind, our work focuses on how to achieve self-assembly via programmable folding, using short colloidomer chains as our model system and experimental canvas. Our major objective is designability: we want to control the final folded state of a colloidomer. To realize this goal, we will use droplet flavor, the sequence of particles in the chain and temperature protocols as control knobs. Questions that motivate our work are: (i) How can we control the folding of a colloidomer into a desired geometry? (ii) What are the minimal ingredients required to do so? (iii) How are these results different from the assembly from a gas of particles?

Why choose colloidomers as our model system?

Colloidomer chains can fold into compact clusters in two-and three dimensions. Despite the apparent simplicity of these structures, it has been shown that the number of different clusters that can be assembled using spherical particles, even for systems with a small number of particles (N < 16), is very large [START_REF] Arkus | Deriving Finite Sphere Packings[END_REF][START_REF] Miranda | Enumerating Rigid Sphere Packings[END_REF]. Therefore, determining the design rules that can selectively increase the probability of observing a specific colloidomer cluster constitutes a non-trivial exercise. Additionally, colloidomers offer great advantages as a experimental system due to their scale: while the droplets in a colloidomer are sufficiently small to be subjected to Brownian motion, they are large enough to be observed under the microscope. This implies that the folding process can be tracked in real-time! In other words, it is possible to record and visualize the folding dynamics in experiment, from the fully unfolded chain to its final folded geometry. This feature is not accessible at the moment in the case of other experimental systems capable of folding, like DNA-origami for example. This will not only make it easier for us to calibrate our simulations to the phenomenology observed in experiment, but it also opens the door to, in general, a better characterization of the system.

Structure of the part

To understand how to direct the assembly of a colloidomer towards a specific geometry, we must go through three stages:

1. First, we must characterize the colloidomer folding landscape and enumerate all possible geometries a chain can fold into.

2. Then, we must perform a control experiment and let a colloidomer fold in the absence of design, to understand whether there are preferred geometries and to study the general properties of the folding pathways.

3. Finally, we can use our toolbox of control knobs (constituted by particle flavors and temperature) to develop design protocols and direct the assembly process.

These points are addressed in the three chapters that comprise this part of the manuscript. The goal of chapter 6 is to help the reader familiarize with the theoretical and computational tools that we use to describe colloidomers. In this chapter, we provide an overview of the different methods that we use to model and characterize a colloidomer chain and its energy landscape. These methods are then used to enumerate all rigid clusters in two-dimensions for chains with up to N = 15 droplets and to construct folding pathways. In chapter 7, we contextualize the problem of directing the assembly of a colloidomer by illustrating how the system behaves in the absence of design, when all droplets can interact with each other. We also take this opportunity to compare the folding of a collodoimer to the assembly of a gas of particles. Finally, our main results are presented in Chapter 8, where we introduce a design strategy based on temperature protocols, flavor and sequence design to guide the folding of a colloidomer towards a unique structure.

Theoretical and numerical tools to model colloidomer folding 6.1 Introduction

In the pursuit of our main goal, namely, the controlled folding of a colloidomer, we must first establish the tools to describe and characterize our model system. This will help us contextualize the task at hand. In this chapter we tackle the following points:

• How do we model a colloidomer cluster in theory and simulations?

• What are the final folded states that a colloidomer can adopt?

• What does the potential energy landscape of a colloidomer look like?

To answer these questions, we will use results and theoretical tools developed in recent years for clusters of colloidal particles and sphere packings [START_REF] Arkus | Deriving Finite Sphere Packings[END_REF].

Colloidal particles in the microscale have become a popular model system for designed self-assembly, because the system is easy to image while being thermal [62]. As a consequence, the assembly properties of clusters of monodisperse spherical particles have been extensively studied from the experimental, theoretical and computational perspectives: the number of rigid clusters in three-dimensions has been enumerated for systems with up to N = 15 particles (estimations exist up to N = 19) [START_REF] Arkus | Deriving Finite Sphere Packings[END_REF][START_REF] Hoy | Structure of finite sphere packings via exact enumeration: Implications for colloidal crystal nucleation[END_REF][START_REF] Miranda | Enumerating Rigid Sphere Packings[END_REF], a statistical mechanical model to construct the free energy landscape for different system sizes has been established [START_REF] Perry | Two-Dimensional Clusters of Colloidal Spheres: Ground States, Excited States, and Structural Rearrangements[END_REF][START_REF] Klein | Physical interpretation of the partition function for colloidal clusters[END_REF] and the kinetics of the assembly pathways when the cluster emerges from a gas of particles have been studied [START_REF] Perry | Two-Dimensional Clusters of Colloidal Spheres: Ground States, Excited States, and Structural Rearrangements[END_REF][START_REF] Holmes-Cerfon | A geometrical approach to computing free-energy landscapes from short-ranged potentials[END_REF]. In all these cases, one of the main order parameters of the system is the connectivity of the particles in the cluster. This makes graph theory a suitable framework to model the system, and the starting point of the current chapter. The solid lines in the graph represent secondary DNA bonds. The upper triangle of the interaction matrix is shadowed to emphasize its symmetry, and the particle labels used to construct it are explicitly shown on each vertex of the graph.

Colloidomer clusters as graphs

A colloidomer consists of N particles in the plane, and hence, it can be described by the set of 2 × N position coordinates. However, we are interested in describing the chain as it folds, and therefore, it is more important to keep track of the bonds that form, rather than the relative positions of particles.

For our purposes, it is more convenient to describe a colloidomer cluster as a mathematical graph G(V, E), where the vertices V and edges E of the graph represent the droplets and the bonds that connect them together, respectively (see Fig. 6.1). An edge connects two vertices in a graph if and only if the corresponding droplets in the colloidomer cluster are interacting with each other. In this section, we show how the cluster connectivity is represented by an adjacency matrix, and discuss the role of Hamiltonian paths in graphs associated to a colloidomer cluster. We also address the limitations of graph theory to describe colloidomers.

Dimensionality of space and graphs

The length of an edge has no meaning in a graph, in contrast to the length of a bond in the cluster: it simply shows a connection between two vertices. This implies that graphs are useful to account for the bond connectivity of a colloidomer cluster, but they do not say anything about the dimension of the space where the cluster lives. Such dimensionality is crucial for folding and CHAPTER 6. TOOLS FOR COLLOIDOMER MODELING 101 self-assembly, as it limits the number of configurations that exist in the system. It is not simple a priori to identify whether a graph describes a two-dimensional or a three-dimensional cluster. Graphs associated to two-dimensional colloidal clusters have the property of being planar, that is, it is always possible to find an embedding in the plane such that the edges of the graph do not cross. Nevertheless, the inverse is not true: not all planar graphs represent flat, i.e., two-dimensional clusters. Examples illustrating when the connectivity of a graph is an incomplete representation of a colloidomer are provided in subsequent sections. We also detail how to circumvent this limitation and include information pertaining to the dimensionality of the system.

The adjacency matrix

The adjacency matrix represents the connectivity of a graph. For a colloidomer with N particles, the adjacency matrix A is an N × N symmetric matrix where

A = A ij = 1 if r ij < r c A ij = 0 if r ij ≥ r c , (6.1) 
where r ij is the distance between droplets i and j, and r c is the range for the interaction potential between droplets. An example of an adjacency matrix is shown in Fig. 6.1(c). Given a set of coordinates describing the positions of the droplets in a colloidomer cluster, it is straightforward to construct the associated adjacency matrix. We do this by iterating over pairs of droplets, computing the interparticle distance and using eq. (6.1) to determine the elements of the matrix. It is important to note that the adjacency matrix of a graph is not unique because we can permute the particle labels while preserving the connectivity. For example, the following adjacency matrices describe an unfolded chain with N = 3 droplets,

A 3 =   0 1 0 1 0 1 0 1 0   and A 3 =   0 0 1 0 0 1 1 1 0   . (6.2) 
The matrix A 3 corresponds to an unfolded chain where particles are labelled

0 1 2
while in the case of matrix A 3 , the labelling is 0 2 1 instead. Even though the matrices in (6.2) look different, the cluster topology described by A 3 and A 3 , exemplified by the diagrams above, is exactly the same: two unfolded chains with N = 3 particles. We then say that the graphs associated to A 3 and A 3 are isomorphic. Two graphs are isomorphic if they have the same number of vertices and edges, and if the connectivity is preserved from one graph to the other. The graph isomorphism problem is a classic problem in computer science. Therefore, many standard routines are available to determine if two graphs are isomorphic or not. In this work, we have extensively used the tools available at Boost C++ Libraries [160] to check for isomorphisms.

Adjacency matrices to describe cluster configurations

In subsequent sections, we will enumerate all possible cluster configurations that a colloidomer chain can adopt upon folding (section 6.4). This will allow us to map out its potential energy landscape and determine the folding pathways. Each configuration in such potential energy landscape describes an embedding of the colloidomer cluster in the plane, characterized by the number of bonds and the cluster connectivity. To describe them, each configuration is assigned a canonical adjacency matrix with an ID, which allows us to build a configuration database. The database can be used to translate experimental and simulation data. Adjacency matrices constructed from experimental or simulated particle coordinates will be compared to the canonical matrices in our database, and assigned the corresponding ID when an isomorphism is found. Following this procedure, we can translate any set of coordinates for a cluster into a specific ID in the database, without having to worry about the specific labeling of particles.

Limitations of the adjacency matrix I: Chiral clusters

The correspondence between a colloidal cluster and its canonical adjacency matrix is not unique for chiral cluster pairs, as both clusters in the pair are described by isomorphic adjacency matrices. Two clusters form a chiral pair if they are mirror images of each other but they cannot be superimposed, in the same way as our left hand mirrors the right hand, but it is not possible to overlap them without turning one of them first. An example is shown in Fig. 6.2(a). In what follows, we do not resolve chiral pairs and describe both clusters in the pair by the same canonical adjacency matrix and ID, keeping in mind that the ID accounts for two configurations. We direct the interested reader to the enumeration of two-dimensional clusters and free energy calculations presented by Morgan and Wales in [START_REF] John | Energy landscapes of planar colloidal clusters[END_REF], where authors explicitly distinguish all chiral pairs up to N = 10. 

Limitations of the adjacency matrix II: Clusters in the plane

Colloidomer configurations with the same graph connectivity may differ on how the particles are embedded in the plane. An example is shown in Fig. 6.2(b), where we plot two isomorphic graphs with N = 7 particles that have different embeddings. The two graphs represent two different colloidomer clusters: in the structure on the left, the chain closes on itself trapping the tail of the backbone (red particle) inside the loop; in the structure on the right, the loop closes by forming the same secondary bond as before, but the red particle remains outside of the loop. In three-dimensions, the red particle can transition from being inside to outside the loop, and therefore, both configurations in the figure are equivalent with respect to the topological transitions they can undergo. However, in two-dimensions, the position of the red particle with respect to the loop -trapped or outside -defines two different configurations that will fold differently. The only way to distinguish these two graphs, given the embeddings in the figure, is to compare their distance matrices. Unlike the adjacency matrix, which only accounts for contacts, the distance matrix is a symmetric matrix whose entries contain the distance between particles. It is important to note that the distance matrix is not welldefined for structures that can fluctuate and deform without needing to break a bond. Therefore, it is difficult to use it to systematically distinguish clusters as the ones in the figure. In the upcoming sections, we will not consider the issue addressed in this section explicitly, and deliberately collapse structures with the same connectivity and different planar embeddings into a single configuration to simplify the enumerations. Resolving these structures will only become important when droplet flavor is introduced in the system and kinetic traps emerge. This is explicitly addressed in section 6.4.1.2.

Hamiltonian paths

Colloidomers differ from other clusters of colloidal particles in their polymeric nature: the primary DNA-backbone connects all particles in a chain. This means that the graph of a colloidomer must contain, at least, one Hamiltonian path, that is, it must be possible to trace a line connecting all vertices in the graph by visiting each vertex exactly once (see examples in Fig. 6.1 and Fig. 6.2). In fact, as the droplets in a colloidomer chain are freely jointed, there are many ways in which the backbone can be arranged to yield the same final structure, which means that there are multiple Hamiltonian paths that can be traced. Each Hamiltonian path constitutes a different example of backbone arrangement in the cluster. The ensemble of Hamiltonian paths for a graph with a given connectivity can be easily obtained through standard backtracking algorithms such as Breath First Search/Deep First Search (BFS/DFS). Do all clusters with colloidal particles contain a Hamiltonian path? Not necessarily. For example, it is not always possible to find Hamiltonian paths for colloidal clusters in three-dimensions. At the moment, two clusters with N = 14 and N = 16 particles have been found to not contain any Hamiltonian paths [START_REF] Hayes | Sphere packings and hamiltonian paths. bit-player[END_REF]. These examples illustrate one primordial difference between colloidal clusters assembled from a gas of particles, and clusters folded from a linear chain: the polymer backbone reduces the number of configurations available by imposing geometrical constraints.

Rigid clusters in two-dimensions

What does a colloidomer chain fold into? The goal of this section is to introduce the structures that a colloidomer chain can adopt once it has finished folding, that is, when no additional bonds can be formed. These are known as rigid clusters. We define as rigid the clusters that can only be deformed by breaking a bond. Within the range of cluster sizes we have worked on, N ∈ [6,15], it is sufficient for a cluster to have N B = 2N -3 contacts to be rigid in two dimensions, according to Maxwell's criterion. Any cluster that is not rigid, including the fully unfolded chain, is defined as floppy. Floppy clusters can be deformed without breaking a bond, i.e., without energy cost.

Rigid clusters constitute potential energy minima. It follows that the number of rigid clusters a chain of N droplets can fold into can be interpreted as the ruggedness of the underlying energy landscape. This information is crucial to tackle the challenge of directing the assembly of a colloidomer chain towards a single rigid cluster: we must know what the potential competing configurations are. In this section, we first enumerate all rigid clusters in two-dimensions up to N = 15 droplets. We then use the enumeration to construct the free energy landscape of rigid clusters as a function of chain length N .

A foreword on enumerations

Many of the sections in this chapter are devoted to enumerations of different objects: the enumeration of rigid clusters that a colloidomer chain folding in two-dimensions can adopt (this section) or the enumeration of all possible configurations in a folding pathway, which we present as a folding tree (section 6.4), for example. Why do we put so much emphasis in enumerating different objects? Because an enumeration constitutes a complete list of elements. In our case, these enumerations show us all possible outcomes for a folding colloidomer chain, that is, they define the boundaries of our problem. In other words, they determine what is possible.

Enumeration of 2D rigid clusters

The enumeration of colloidal clusters in three-dimensions pertains to the historical and highly non-trivial problem of determining the total number of possible compact sphere packings [START_REF] Arkus | Deriving Finite Sphere Packings[END_REF]. In two-dimensions, the enumeration problem is greatly simplified because the clusters can be embedded in a triangular lattice. In this section we show how to enumerate the set of rigid clusters for colloidomers with N droplets by exploiting this property. Several methods were developed during this work. These are discussed below.

Using N particles to generate the seeds for N + 1

For N sufficiently low, it is possible to enumerate rigid clusters by hand 1 . It is simple to show that there is a single possible rigid cluster for N ∈ (3, 5). The smallest chain length for which the potential energy landscape has multiple minima is N = 6, where the three rigid clusters -known as the triangle, the chevron and the ladder in reference to their shape [START_REF] Perry | Two-Dimensional Clusters of Colloidal Spheres: Ground States, Excited States, and Structural Rearrangements[END_REF] -have the same number of bonds. With enough patience, one could continue the enumeration by hand for larger clusters, but the process becomes intractable quickly. Therefore, we devised a strategy that relied on generating the minima for chains with N + 1 particles using the minima with N particles as seeds: the hand-identified minima for N = 6 would serve as the seeds to derive the minima for N = 7, and so on. This method is schematically shown in Fig. 6.3. The enumerating strategy works as follows: by embedding the three rigid clusters for N = 6 in a triangular lattice, we determine the outer face of the corresponding graphs, that is, the shortest sequence of edges that isolates all vertices in the Chevron Flower Turtle Rocket N = 6 seed N = 7 When the red particle is added, the chevron becomes the flower; when the blue particle is added, the turtle emerges; finally, when the yellow particle is added, the rocket is obtained.

N = 13 N = 14 N = 15 graph from the rest of the plane. We then add a new vertex to the graph by connecting one of the free neighboring points in the lattice to two adjacent vertices in the outer face. This process results in a new adjacency matrix that contains two additional bonds. We must then verify whether the new vertex can make extra bonds with other particles in the structure or not (see the case of the flower in Fig. 6.3). If it is possible, we update the adjacency matrix by adding the remaining bond. The outcome, after removing repeated structures through isomorphism checks and iterating through all seeds for N = 6, are the potential energy minima for N = 7, 4 rigid clusters. This method has an important limitation: it relies on the assumption that every local minima for N + 1 can be generated from an N seed. This is not true in general [START_REF] Arkus | Deriving Finite Sphere Packings[END_REF]. In particular, in two-dimensions the method fails to identify clusters that are rigid but not compact, i.e., clusters that contain stabilized holes, the first of which we have observed arises at N = 13 (see Fig. 6.4).

Using N + 1 particles to generate the seeds for N

Alternatively, it is possible to use groups of N + 1 particles to derive the seeds for clusters with N particles. In this method, we start by selecting all possible sets of N + 1 neighbouring points on a (N + 1) × (N + 1) triangular lattice and form bonds between lattice points located at a unit distance. Then, we CHAPTER 6. TOOLS FOR COLLOIDOMER MODELING iteratively remove a single2 point from the set and all the bonds that connect it to the rest of the selected points. In some cases, removing this particle leads to the formation of a hole in the bulk of the structure. Next, we test the rigidity of the resulting structure by analyzing the normal modes of its dynamical matrix, which describes the harmonic fluctuations of the particles around the lattice points. If the dynamical matrix contains a mode of zero energy, i.e., an eigenvalue that is equal to zero, the associated cluster is discarded as it means that it can be deformed without energy cost, i.e., it is floppy.

The number of rigid clusters obtained using this procedure for N ∈ [6, 15] is shown in Table 6.1. Additionally, the method reveals 6 rigid, non-compact clusters for N = 14 and 41 for N = 15. We believe the enumeration is complete, although we have no proof of it. We have run simulations to verify whether the chain could fold into additional rigid clusters and no new clusters were identified. However, the validity of this claim depends on how thorough our sampling of the phase space was. Additionally, we also used the method detailed in the previous section 6.3.1.1 to verify that resulting solutions were consistent.

Equilibrium probability of rigid clusters

It has been shown, both in theory and experiment, that compact colloidal clusters can be described using a statistical mechanical model where the cluster is treated as a molecule [START_REF] Meng | The Free-Energy Landscape of Clusters of Attractive Hard Spheres[END_REF][START_REF] John | Energy landscapes of planar colloidal clusters[END_REF][START_REF] Perry | Two-Dimensional Clusters of Colloidal Spheres: Ground States, Excited States, and Structural Rearrangements[END_REF][START_REF] Klein | Physical interpretation of the partition function for colloidal clusters[END_REF]. Here we use such model to compute the frequency at which each cluster is observed at equilibrium, i.e., the cluster equilibrium probabilities P i , and map out their free energy landscape as F/k B T =log P i . The theory underlying the results below can be found in Appendix C. The free energy landscapes for clusters with N ∈ [6,9] particles are shown in Fig. 6.5. While the results for assemblies from a gas had already been reported elsewhere [START_REF] Perry | Two-Dimensional Clusters of Colloidal Spheres: Ground States, Excited States, and Structural Rearrangements[END_REF][START_REF] John | Energy landscapes of planar colloidal clusters[END_REF], here we extend those results to include the assembly starting from a chain in two dimensions. There are several interesting features in the energy landscapes:

1. Degenerate potential energy ground states. The figure shows that the systems with N = 6 and N = 9 particles have degenerate potential energy ground states (three clusters for N = 6 and four clusters for N = 9). In the case of N = 7 and N = 8 particles, there is a single potential energy ground state with 12 and 14 bonds respectively, i.e., there is only one rigid cluster with more bonds than the rest. In our enumeration up to N = 15, we have found that N = 10 (19 bonds) and N = 12 (24 bonds) also contain a single potential energy ground state. These ground states correspond to the free energy minimum of the landscape because of the , for clusters that assemble from a gas (black circles) or a chain (grey crosses). Clusters are ordered according to the gas data, from the structure with the lowest free energy to the one with the highest. We color in red the potential energy ground states of each system, which contain more bonds than the rest of the structures. For the calculations, we assume that the strength of each bond is = 5k B T .

extra bond in the structure. For three-dimensional colloidal clusters, the existence of rigid clusters with different number of bonds only occurs for N > 10 [155].

2. Symmetric clusters are suppressed. For rigid clusters with the same number of bonds, symmetric clusters are suppressed as there are less ways in which the structure can be made, a result that has been well-established both in theory and experiments before [START_REF] Meng | The Free-Energy Landscape of Clusters of Attractive Hard Spheres[END_REF][START_REF] Perry | Two-Dimensional Clusters of Colloidal Spheres: Ground States, Excited States, and Structural Rearrangements[END_REF].

3. Clusters assembled from a chain are more stable. We observe that the the free energy difference between the clusters with extra bonds and the local minima increases for structures derived from a chain. This difference stems from the n i prefactor in eq. (C.3), which accounts for the number of particle permutations that leave the cluster unchanged. In the assembly from a gas this prefactor is the same for all clusters, as 110 CHAPTER 6. TOOLS FOR COLLOIDOMER MODELING there are no constraints regarding the ordering of the particles in the structure. However, this prefactor is different for structures assembled from a chain, since the number of Hamiltonian paths that can be traced in a structure with extra bonds is larger than for the local minima.

Folding trees

All possible colloidomer configurations between the linear chain and the final rigid clusters map out a potential energy landscape that can be represented in a tree form [65] (see example is shown in Fig. 6.6). Such folding tree is a graph of graphs: each vertex in the tree represents a different colloidomer configuration, which is itself associated to a canonical adjacency matrix and an ID. The edges in the tree depict the topological transitions between colloidomer configurations. These configurations are organized by levels according to the number of secondary bonds. The top-most level in the tree corresponds to the unfolded colloidomer chain, with N -1 secondary bonds. The configurations at the bottom are the fully folded rigid clusters. Read from top to bottom, an edge in a folding tree is a bond-making process; from bottom to top, it describes the process of breaking a secondary (non-backbone) bond. We note that a folding tree is only a synthetic representation of the configuration space of a colloidomer, and therefore, it is agnostic to the dynamics responsible for bond making and bond cleaving in the system. In the particular case of colloidomers, these processes are driven by diffusion and thermal noise.

A folding tree constitutes a database of all possible configurations that a colloidomer chain with a specific flavor sequence can adopt as it folds. As such, the structure of the tree depends on the number of flavors and the sequence in the colloidomer chain, the interaction matrix of the system, which controls what bonds are allowed, and the dimension of the space at which the folding process occurs. The more restricted the degrees of freedom in the system, the fewer the number of configurations accessible during folding, and thus, the smaller the folding tree will be, as exemplified in Fig. 6.7.

How to construct a folding tree

In this section, we describe the algorithms we use to construct folding trees. Two different algorithms have been used, depending on whether the colloidomer chain contains flavor or not. The construction process is simpler if all particles can interact with each other, as we do not have to resolve configurations based on their flavor arrangement.

Homopolymer folding trees

In the absence of specific interactions, i.e., when the colloidomer chain contains no flavors, a folding tree is constructed from the bottom-up, starting from the configurations at the bottom of the tree and moving upwards until the chain is reached. The algorithm to construct the tree can be described as follows: for a system with N particles, take one of the N R rigid clusters identified in section 6.3.1, either a ground state or a local minimum, and remove a bond at random from the cluster. This operation is realized by setting to zero one of the entries in the canonical adjacency matrix that describes the rigid cluster. The process results in a new configuration, which becomes a candidate to joining the tree. For the candidate to join the tree, its adjacency matrix must describe a connected graph, that is, it must be possible to connect any two vertices in the graph through a path. If it is not the case, the candidate is discarded. If the candidate is a connected graph, then we run an isomorphism check against the graphs with the same number of edges that have already been added to the tree, in order to avoid adding repeated configurations. If no isomorphism is found, the candidate is added to the tree. We now repeat the process starting from the newly added configuration and iterate, configuration after configuration, until we reach a configuration with N -1 bonds. This configuration is not necessarily the unfolded chain, as the process could result in a branched polymer, where it is not possible to draw a Hamiltonian path.

By iteratively removing one bond at a time from each new configuration, these are organized into parents and offspring: a parent configuration gives birth to an offspring configuration when a bond is removed from the former. An offspring may have multiple parents, and a parent can have multiple offspring. The only exceptions are the rigid clusters, which have no parents, and the fully unfolded chain and branched polymers with N -1 bonds, which do not have offspring. We are only interested in the folding tree derived from an unfolded, non-branched chain. Thus, we only keep the configurations that descend from it by purging away configuration that cannot be connected to the chain through parent and offspring relationships. We note that the above algorithm can be used to construct folding trees in both two-and threedimensions. Constructing the folding tree is computationally expensive for chains with large N , but the algorithm above can be made more efficient by exploiting recurrence. A pseudo-algorithm is provided in Appendix D. In two-dimensions, the embedding in the plane matters. Two heteropolymer colloidomer clusters with the same adjacency matrix but a different embedding on the plane: particles 2 and 3 have swapped places because the colloidomer backbone (dashed lines) has arranged differently in each case. As the interaction matrix only allows the formation of bonds between blue particles, the configuration labeled as transient can continue folding (bond between particles 2 and 5). For the cluster on the right it is not possible to form additional bonds if the folding occurs in two-dimensions, and as a consequence, it constitutes a local minimum.

Flavored folding trees

The presence of the polymer chain and the flavor sequence make it difficult to extend the algorithm for homopolymer folding trees to the flavored case. First, flavor introduces degeneracy in the colloidomer configurations: it can now happen that configurations that are described by the same adjacency matrix have different flavor arrangements. These arrangements reflect the many ways in which the freely-jointed backbone can fold. It is crucial to account for them, as they can correspond to configurations with very different topological properties, as shown in Fig. 6.8. Second, it is now important not only to ensure that all configurations include a Hamiltonian path, but that all these paths give rise to the same input sequence, that is, we cannot randomly color particles. Finally, the interaction matrix restricts the number of available bonds, which leads to the emergence of floppy local minima. These minima cannot be detected using the homopolymer algorithm, which builds the tree starting from rigid seeds. For all these reasons, a new algorithm is required.

Here we detail the version for a system in two-dimensions, which exploits the embedding of the clusters in the triangular lattice. A flavored folding tree is also constructed from the bottom-up, by removing bonds from configurations with no parents. The first step in the algorithm is to identify the global and local minima in the tree, which act as the new seeds. Global minima are configurations with the largest number of bonds for the specified interaction matrix, and unlike for a homopolymer tree, they need not be rigid (see example in Fig. 6.7). Local minima are configurations that cannot further fold due to topological constraints.

We use the triangular lattice to identify the local and global minima: since the chain eventually folds into one of the rigid clusters, this implies that any floppy configuration can be embedded in the set of coordinates corresponding to, at least, one of the rigid clusters of the system. This property allows us to associate a well-defined embedding for any floppy cluster, which, as we show below and in Fig. 6.9, is key to resolve the flavored minima. The Table 6.2: Particle coloring example for a 3-flavored ABC alternate sequence. identification proceeds as follows: first we take the rigid clusters and generate the complete ensemble of Hamiltonian paths therein, where the particles retain their coordinates in the lattice, as shown in panels (a, b) in Fig. 6.9. We can then map the flavored sequence onto the ensemble of Hamiltonian paths, such that there is a unique correspondence between the position of a particle within Hamiltonian path and the flavor at the same position in the sequence. For example, for N = 6, a 3-flavor alternating sequence ABCABC and a Hamiltonian path H = {1 → 2 → 5 → 4 → 0 → 3}, the sequence-to-path mapping leads to the particle coloring shown in Table 6.2. Once the ensemble of Hamiltonian paths have been produced, we turn to the interaction matrix and form bonds between particles if the interaction is allowed (see Fig. 6.9(d)).

It is then easy to identify the global minima of the system, by counting the number of bonds on each element of the list, and selecting those with most bonds. Local minima have less bonds by definition, and have to be identified differently among the sea of transient configurations, that is, configurations that could form more bonds if their embedding in the plane was different. The particularity of local minima, in contrast to transient structures is that, as they cannot further fold, it is also not possible to find a different embedding in the triangular lattice such that additional bonds can be formed. Therefore, in order to enumerate the local minima in the system, we iterate over the ensemble of Hamiltonian paths by checking whether, for each element in the list, it is possible to find a different embedding that preserves the (i) bond connectivity, (ii) the color arrangement and (iii) the handedness of the cluster. We define as handedness the order in which the faces of the graph in the planar embedding are read clock-wise. The handedness check is the essential ingredient that allows us to distinguish between structures in the two-dimensional plane. For example, in Fig. 6.8, both graphs have the same connectivity and color distribution. The only difference between them is that, starting from particle 1, the traversal of the lower triangle clockwise results in the particle label ordering 1 → 2 → 3 (BBY) in one case, and 1 → 3 → 2 (BYB) in the other case.

When the global and local minima have been identified, the tree is constructed by iteratively removing non-backbone bonds from these configurations, as it was described for the homopolymer case. The only additional difficulty in the case of a flavored tree is that an isomorphism check is not sufficient to remove repeated structures. In this case, the checklist that a candidate Figure 6.10: Unique pathways funnel the potential energy landscape. The two-dimensional folding tree and all unique pathways (colored) for a colloidomer of length N = 9, which can fold into 16 different rigid clusters. configuration must satisfy in order to be added to the tree is stricter: we now check for isomorphisms, whether the same bonds and flavor arrangement are preserved and finally, whether the handedness is not changed. If all three checks test positive, it means that the configuration has already been added to the tree and as a result, the candidate is discarded. A pseudo-algorithm detailing these steps is provided in Appendix D.

Folding pathways

Beyond the enumeration of all possible configurations, a folding tree also serves to account for the folding pathways, that is, the sequence of configurations adopted by the chain as it reaches a rigid cluster. As we will see in chapters 7 and 8, what pathways are available, and how these pathways are navigated greatly determines the probability to fold into a rigid cluster. For example, some of the pathways in a folding tree have the special property of being uniquely connected to a single rigid cluster at the bottom (see Fig 6 .10). If a colloidomer chain folds into a configuration in one of these pathways during downhill folding, then it is guaranteed that it will eventually fold into the rigid cluster at the end of the pathway with 100% yield. These unique folding pathways funnel the energy landscape towards a single rigid cluster, as a result of geometric constraints alone. The final fold of a colloidomer cluster is determined by the formation of a few key bonds. 

Pathways and cluster yields

We cannot predict the yield of a specific cluster by counting the number of pathways that lead to it. There is no correlation between the yield of a rigid cluster and the number of pathways to the configuration, because many pathways can be difficult to access and therefore, not often visited.

To predict the yield of a cluster using a folding tree, we must incorporate information about the free energy barrier of each transition, i.e., the probability of said transition occurring. This probability can be determined using MD simulations. The yields can then be easily reconstructed using the tree as a discrete Markov chain and computing the steady state occupation probabilities of the chain. An example is shown in Fig. 6.11 for a system with N = 4, where the transition probabilities during downhill folding have been explicitly drawn over the corresponding edges of the tree. An N = 4 chain folds into a single geometry, a tetramer, but we can distinguish three different configurations -folds -depending on how flavors are arranged on the rigid cluster. The yields of each fold are explicitly shown in the figure below the corresponding image. One fold (a) prevails with a 46% of the yield. This is 

which are in close agreement with the simulation results reported in the figure. This result evidences the impact of loop formation, which is entropically penalized. All three folds in Fig. 6.11 has two pathways that lead to them. Pathways to folds (b) and (c) contain a configuration where the head of the chain must form a bond with its tail. This is an unlikely transition, which explains why both folds are less frequent than fold (a).

Summary

In this chapter we have shown how graph theory can be used to describe colloidomer configurations. We have addressed the limitations of the approach, notably pertaining to the uniqueness of the adjacency matrix, and proposed strategies to encode a colloidomer's embedding on the plane. We have characterized the ruggedness of the potential energy landscape of the system by enumerating the rigid clusters for N ≤ 15, and mapped out the space of configurations for a folding chain, organizing it as a tree. This characterization of the system sets us on our way towards the final goal of controlling the folding of a chain into a specific geometry. In the next step, we ask: what does a colloidomer chain fold into, in the absence of design? CHAPTER 7

Homopolymer folding

Introduction

This chapter constitutes a control experiment: we want to understand how a colloidomer chain folds in the absence of design, when all droplets can interact with each other and we do not use any control knob to direct the outcome of the assembly. Given these constraints, a homopolymer, that is, a colloidomer with unspecific droplets, constitutes the simplest class of colloidomer chain with the ability to fold into a rigid cluster. These clusters have the potential to be functional: for example, they could serve as sieves to filter molecules in the case of clusters with holes (see structures in Fig. 6.4) or building blocks for more complex architectures, as we will show in the next chapter. Potential applications rely on the specific geometry adopted by the colloidomer. Hence, one of the first questions we may ask is how likely it is to observe each homopolymer rigid cluster in experiment and simulation when the assembly is driven by unspecific bond formation. Does a homopolymer chain fold into a preferred cluster, or does it adopt any cluster geometry with equal probability? When the temperature of the system is quenched well below the melting temperature of the secondary DNA interactions in the colloidomer (see section 5.2.1), i.e., T T m (irreversible bond formation), the experimental and simulation data in Figs. 7.1 and 7.2 shows that:

1. There are preferred structures. 2. The cluster yields, defined as the frequency with which each cluster is observed at the end of an experiment or simulation run, do not agree with the equilibrium distribution. 3. There is a correlation between cluster yield and moment of inertia.

Why is the reported yield distribution different from the one expected at equilibrium? What makes ladder-like structures prevail? In this chapter, we [6,9]. Results show a correlation between moment of inertia and cluster yield. They also evidence how the maximum yield decreases with increasing N , because the total number of rigid clusters grows (see Table 6.1). explore these points by studying the assembly of a colloidomer chain near and far from equilibrium. In order to conduct the exploration, we choose the two-dimensional colloidomer of N = 7 particles as our case study, which is the smallest system size with multiple rigid clusters and a single potential energy ground state. We first present different ways in which the yield of a cluster can be sampled both in experiment and simulations. We then discuss simulation results where we fold a homopolymer using different bond strengths, from weak binding to irreversible bond formation. These limits will take us from near equilibrium to far from it, respectively.

Definition of the cluster yield

Before discussing homopolymer yields at different assembly conditions, we use this section to define in more detail how to compute such yields. We start by imagining the experimental system. A typical homopolymer experiment proceeds as follows: the system is first prepared as an unfolded chain at a temperature T = T init , which is above the melting temperature of the secondary interactions in the droplets, T m . Since T init > T m , droplets cannot form bonds with each other at this stage. Then, the temperature of the system is lowered, T < T m , so that droplets can interact and form bonds, and after a certain waiting time, a sample of the system is taken. In simulations, the procedure is similar, with the exception that, instead of lowering the temperature of the system, we increase the strength of the interactions once these are turned on.
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The yield of the i-th cluster, Y i , can be computed as

Y i = S i N S j=1 S j , (7.1) 
where S i is the number of samples that correspond to the cluster, and the sum in the denominator extends to all N S is a subset of the samples that we have taken of the system. It is important to note that samples do not necessarily correspond to a rigid cluster, and hence, N R i=1 Y i = 1, where N R is the total number of rigid structures for a system of size N , is not necessarily true. When N S = N S , that is, the total number of samples taken, we call the yield absolute Y A . Instead, when N S only considers samples of rigid clusters, the yield is relative, Y R , as it informs us of the probability of observing a specific rigid cluster only within the proportion of chains that fully folded. The yields satisfy Y A ≤ Y R .

How should we sample the system to compute the yield?

There are two options. On the one hand, the average state of the system can be computed over samples taken from a long experimental (or simulated) trajectory at different time-points. This is known as the time average. On the other hand, it is also possible to average over samples coming from different trajectories at the same time-point. This is the ensemble average. These two methods are schematically shown in Fig. 7.3, and if the system is ergodic, both give the same result at equilibrium. We note that experimentally it is easier to compute the ensemble average by following multiple individual trajectories, rather than keeping track of a single colloidomer for a long time. Experiments are conducted in a dilute regime dilute but there is a risk of aggregation with other colloidomers that are folding nearby. This risk increases the longer we let the system evolve in time. When the system is out-of-equilibrium, each sampling method reveals different results. Why this is the case, and what it reveals about the system is analyzed in the upcoming section.

Homopolymer yields in and out-of-equilibrium

The equilibrium yield distribution we have calculated in section 6.3.2 is based on the assumption that the system has had sufficient time to sample all the available configurations in the phase space, i.e., to reach equilibrium. The extent of the sampling in configuration space depends on the chain's ability to form and break bonds. As such, the timescale to reach equilibrium is influenced by the strength of the interaction between droplets or equivalently, the temperature of the system. These timescales can be beyond the time windows accessible to experiments and simulations and therefore, the empirical yields can differ from equilibrium results. It follows that the yield will depend on the We call these values the melting temperature of the corresponding system. observation time, as it has already been discussed by Whitelam and collaborators [START_REF] Whitelam | The Statistical Mechanics of Dynamic Pathways to Self-Assembly[END_REF]. In this section, we first study the fraction of fully folded clusters as a function of bond strength /k B T . We then discuss what determines the cluster yield distribution for a heptamer near the melting temperature, when bonds can reversibly form, and far from it, when bond formation is irreversible.

Fraction of fully folded clusters

A homopolymer chain transitions between two phases as a function of the particle bond strength /k B T : a random, disordered phase at low binding energies (high temperature limit) and an ordered phase at high binding energies (low temperature limit). The disordered phase is the unfolded chain; the ordered phase corresponds to a rigid cluster that can be embedded in the triangular lattice. The transition is shown in the simulation results in Fig. 7.4, where we plot the fraction of fully folded (i.e., rigid) clusters for both a gas of particles and a colloidomer chain with N = 7 particles; both ensemble and time averages are shown. Simulations are initiated in the disordered phase as a fully unfolded chain for the colloidomer, and as randomly placed particles for the gas. To compute the time average, we wait for 100 simulation time units (t.u.), and then start sampling the system every 100 t.u., letting the simulation run for a long time. For the ensemble average, we sample the system when 400 t.u. have elapsed and restart the simulation on a different random condition to repeat the process.

We observe that the transition from unfolded to folded occurs within a narrow range of binding energies. Similarly, we note that if the assembly is mediated by the chain, the system requires lower binding energies to reach 50% of fully folded structures, in contrast to the gas of particles. If we define the simulation melting temperature as the /k B T value for which f R = 0.5, we estimate /k B T C m = 5 ± 0.25 for the chain and /k B T G m = 6.5 ± 0.25 for the gas. This result suggests that the presence of the chain stabilizes the assemblies, which is expected since part of the required bonds are already part of the backbone. By keeping particles in proximity, a chain also reduces the diffusion time needed for bonds to form and the assembly to proceed.

Numerical results for the yields

When the target structure is the thermodynamic (free energy) minimum of the system, successful self-assembly relies on reversible interactions that must be fine-tuned to guarantee the assembly with high yield [START_REF] Knorowski | Materials design by DNA programmed self-assembly[END_REF]. If the interactions are too weak, the system does not manage to completely assemble into its final form, and if the interactions are too strong, the building blocks in system are prone to random aggregation and they can get stuck in kinetic traps, that is, metastable states that prevent the system from reaching the free energy minimum. Optimal assembly conditions for an equilibrium target structure lie somewhere in-between, where two conflicting requirements, namely, escaping kinetic traps and stabilizing the desired structure, can be simultaneously satisfied [START_REF] Whitelam | The Statistical Mechanics of Dynamic Pathways to Self-Assembly[END_REF]. This is evidenced by the results in Fig. 7.5, where we plot the yield of the four clusters a heptamer chain can fold into as a function of /k B T . We can distinguish three regimes:

• When /T T C,G m , the system fails to fully assemble and consequently, the absolute yields for each rigid cluster are low. The disordered phase prevails.

• When /T ≈ T C,G m , the flower cluster prevails, because it has an additional bond and it is the thermodynamic minimum of the system. In this regime, the time and ensemble averages agree. Therefore, the system is at equilibrium.

• When /T T C,G m , the time average and the ensemble average do not agree. The system is out-of-equilibrium. In this regime, bond formation is irreversible and consequently, cluster reconfigurations are difficult. This means that the samples used to compute the time-averaged yields will be dominated by the first rigid cluster that the chain hits when it folds downhill. This is also the reason why the time average fluctuates wildly for very high /k B T . For the ensemble average, yields are computed by averaging over multiple initializations, which gives the system the opportunity to hit a different cluster for the first time in each trajectory. This also means that the ensemble average reflects which of the rigid clusters is favored by the assembly pathways, that is, which is the easiest cluster to assemble during downhill folding.

Results in Fig. 7.5 show that ladder-like structures prevail when folding occurs downhill. This seems intuitive in the case of the assembly mediated by a chain. Our attempts to correlate the out-of-equilibrium cluster yield with the arrangements of the polymer backbone suggest that accordion-like folding, where small triangles are closed, dominates the kinetics of the chain. This is also suggested by the data in Fig. 7.6, where we plot the most visited configurations that a homopolymer chain with N = 7 adopts when it forms its first bond. Large loop formation is hindered due to its entropic cost while small triangles are favored. Interestingly, the assembly from a gas also favors the ladder and the turtle in Fig. 7.5, to the detriment of the rocket and the flower. While the low yield of the flower is expected, as the rest of the clusters have less bonds, it is surprising to see that the rocket also has a lower yield. Further work is required to give a detailed explanation to this observation and to better contrast the assembly from a gas of particles versus a chain.

Conclusions

In this chapter we have learned that while near equilibrium the yield distribution depends on the geometric properties of the clusters, out-of-equilibrium its fate is determined by the kinetic properties of the assembly pathways. This suggests two possible design strategies to increase the yield of a desired structure: we can either focus on (i) the properties of the target assembly or (ii) design the folding pathways, as we will do in the upcoming chapter. Our discussion also serves to motivate the need for design if one desires to selectively assemble a specific structure with high yield. Indeed, despite the existence of preferred cluster geometries both in and out of equilibrium, the results in Fig. 7.1 and Fig. 7.2 show that the maximum yield decreases with N because the number of rigid clusters grows. Importantly, results in these figures show that our DPD simulations agree with downhill folding experiments conducted at the Brujic lab. The agreement suggests that experiments and simulations are sampling comparable configuration spaces, which will be relevant in the upcoming chapter.

CHAPTER 8

Temperature driven colloidomer folding

The results in this chapter have been published in A. McMullen*, M. Muñoz Basagoiti*, Z. Zeravcic and J. Brujic, "Self-assembly of emulsion droplets through programmable folding", Nature (2022) [START_REF] Mcmullen | Self-assembly of emulsion droplets via programmable folding[END_REF]. The article can be found in part IV of the manuscript.

Introduction

In this chapter, we use particle specificity in combination with non-equilibrium temperature protocols to direct the assembly of colloidomer chains with length N ≤ 15 into specific geometries. Particle specificity controls the interactions between droplets by determining which of them can form bonds. With enough specificity, it is possible to assemble any desired cluster with high yield [START_REF] Zeravcic | Size limits of self-assembled colloidal structures made using specific interactions[END_REF], as we have previously discussed in chapter 5. However, we would like to keep the palette of particle flavors to the minimum, and only use two distinct particle types: blue (B) and yellow (Y). Not only is this simpler to realize in experiments, but it also poses a fundamental question: can we devise a strategy that maximizes the number of structures that a limited palette of flavors can encode, beyond building block specificity? Here we explore this question by considering an additional dimension in design space, that is, controlling when specific bonds can be formed. This control is realized through temperature protocols, which dictate the order in which interactions are turned on. Interactions can be sequentially activated by conveniently designing the DNA sequences that mediate secondary interactions in colloidomer droplets and gradually quenching the temperature of the system. As a result, the chain folds following a hierarchical assembly process. The order Step 1

Step 2

Step 3 in which the interactions are turned on constitutes a temperature protocol. An example of this process is depicted in Fig. 8.1, where we show a three-step temperature protocol that consists of turning Blue-Blue (BB) interactions first, then Blue-Yellow (BY) and finally Yellow-Yellow (YY). This protocol directs the folding of a colloidomer chain with N = 10 droplets into a crown-like rigid cluster, selecting this geometry over a total of 35 possibilities (see table 6.1).

Temperature protocols to direct assembly

Temperature protocols are routinely used in self-assembly. Probably the best established and most widespread type of temperature protocol is annealing, which consists of slowly lowering the temperature of the system after increasing it, with the goal of guaranteeing the formation of a crystal lattice. This strategy helps melt possible defects and break incorrect bonds so that kinetic traps can be avoided. Nevertheless, the role of temperature in sys-tems that require annealing pertains to the conditions of the assembly rather than being an integral part of the design process. In other words, in a world where kinetic traps would not exist, annealing would not be required. In contrast, in our work temperature protocols are central to control the final assembly. This is also the case for a recent publication by Bupathy and collaborators, who integrate the use of temperature protocols to the design process in order to selectively retrieve one of two competing structures [START_REF] Bupathy | Temperature protocols to guide selective self-assembly of competing structures[END_REF]. This is possible by tuning the temperature-dependence of the nucleation barrier for each assembly. In contrast to their equilibrium approach, our the system is out-of-equilibrium. For us, temperature controls the existence of bonds of a certain type in the system, narrowing down the set of configurations that the colloidomer chain can adopt. Temperature is responsible for funneling the energy landscape of the system. Interestingly, in some cases, such funneling can be sufficiently narrow to lead the chain towards a unique geometry. This hierarchical funneling process can be designed, and it constitutes the basis of the chapter.

Motivation and structure of the chapter

Our goal is to guide the folding of colloidomer chains into two-dimensional rigid geometries in the plane. The control knobs available to achieve this are the following:

1. Number of particle flavors.

2. The flavor sequence of the colloidomer backbone.

3. Temperature protocols.

In this chapter, we use the simplest colloidomer system where design is possible, that is, a heteropolymer chain, which consists of two droplet flavors arranged in an alternate sequence. With two flavors (e.g., blue and yellow), it is possible to program three different types of interactions: BB, BY and YY. The driving motivation of the chapter is to determine the temperature protocols that lead a heteropolymer chain to adopt a single geometry, that is, to fold into a specific colloidal cluster. This chapter is organized as follows: we first show how flavor funnels the folding tree of a colloidomer using an example, and introduce a strategy based on temperature protocols and irreversible bond formation to prune the energy landscape (section 8.2). We next envision an efficient computational algorithm to search in the design space and enumerate all possible solutions. In section 8.4, these solutions are compared to experimental as well as simulation results, which validate the approach, and two folding modes are proposed to describe the assembly process. We conclude the chapter with an outlook discussing, among others, how sequentially assembled clusters can further interact to make supracolloidal architectures. does not lead to a final rigid cluster: the global minimum of the yellow subtree is floppy. However, by sequentially turning on YY, BY and BB interactions (yellow, red and purple pathways, respectively), it is possible to guide the folding process towards a single rigid geometry. In this case, both folding strategies, i.e., single and three-step quenches, lead to the same final geometry, with a different color arrangement or fold.

Funneling the energy landscape with particle flavor and temperature protocols

In this section we discuss how flavors prune the energy landscape of a colloidomer and introduce a strategy based on temperature protocols to direct assembly. We illustrate these ideas by taking a heptamer chain as example.

Case study: Folding a N = 7 heteropolymer

In Fig. 8.2, we show the folding tree of a N = 7 heteropolymer, where gray lines represent the tree when all particles are allowed to interact with each other. The tree is larger than that shown in Fig. 6.6 because we now distinguish configurations with identical adjacency matrices but different flavor arrangement or fold. If only BB bonds can form in the system, the ground state of the corresponding subtree (marked with blue lines in the figure) is a single rigid configuration, the rocket, out of a total of four possible rigid clusters. This implies that, whatever the dynamics driving the system, the chain will eventually fold into the rocket, as it constitutes the thermodynamic ground state. Therefore, the blue subtree shows that a single color distributed in an alternate sequence (the yellow droplets have no effect in the folding process), can sufficiently funnel the configuration space to guarantee the folding of the chain into the unique geometry. We note that the blue subtree also contains two local minima (not explicitly shown in the tree; see Fig. 2 in [START_REF] Mcmullen | Self-assembly of emulsion droplets via programmable folding[END_REF]), which will nonetheless impact the kinetic accessibility to the rocket. As a heptamer contains an odd number of droplets, the situation in Fig 8 .2 is different if the YY interaction is turned on in the first place: the resulting subtree is smaller than the blue subtree (there are less yellow droplets than blue in the chain), and its ground state is a floppy cluster with two dangling droplets. Unlike rigid clusters, floppy clusters can still continue folding if new interactions are turned on. For example, if the initial YY interaction is followed by the BB and BY interactions, each of which is sequentially turned on after some τ waiting time, the chain will end up adopting one of two rigid configurations: an elongated ladder-like structure or the rocket (see Fig. 2 in [START_REF] Mcmullen | Self-assembly of emulsion droplets via programmable folding[END_REF]). However, reversing the order of the interactions 1 and activating BY before BB, guides the chain uniquely towards the rocket geometry once again, as shown on the right side of Fig. 8.2. Note that this three-step process folds the chain in a different fold. At the moment, we only consider the geometry of the rigid cluster and not the way in which flavors are distributed in it.

Conditions for hierarchical assembly

For the hierarchical approach we have detailed above to succeed, two conditions must be satisfied:

1. Bond formation must be irreversible. 2. Each interaction is turned on after a sufficiently long waiting time.

Irreversibility (condition 1) ensures downhill folding. It makes sure that, when additional interactions are activated, the chain will not explore configurations that are higher in free energy than the ground state of previous interaction trees. It is a way of guaranteeing that the pruning achieved by turning on 1 Experimentally realizing different protocols for the same sequence requires designing the DNA strands on the droplets to exhibit distinct ordered Tm, that is, we must use two different polymers. Therefore, even though both protocols in Fig. 8.2 are depicted as starting from the same chain, in experiment they are achieved using two polymers: the droplets in the first heteropolymer (protocol BB) are such that T m, BB > T m, YY is satisfied, while T m, YY > T m, BB holds for the second (protocol YY→BY→YY). This issue does not exist in simulations and theory, where we allow or forbid interactions based on the interaction matrix and particle type. interactions is not lost. Nevertheless, it also means that it will not be possible to escape from kinetic traps along the pathway. In subsequent sections, we will relax the constraint on irreversible bond formation and discuss possible strategies to avoid local minima. Experimentally, irreversible bond formation implies that the temperature of the system is lowered well below the melting temperature of the corresponding interaction, T T m . The role of waiting time (condition 2) is to make sure that before additional interactions are activated, the chain has adopted the maximum number of available bonds. In order words, we would like the folding process to continue from the states at the bottom of the corresponding subtrees.

Colloidal foldamers

If a temperature protocol folds a chain into a single rigid structure, we denote this uniquely folded geometry a colloidal foldamer. This nomenclature is chosen in analogy to chemical foldamers, which are short polymers that tend to adopt the same configuration [START_REF] Samuel | Foldamers: A Manifesto[END_REF]. Similarly, colloidal foldamers should fold with a high yield under the protocol and sequence associated to it, as they are, by definition, the only rigid structure that the system can adopt. In Fig. 8.2 we report a single foldamer geometry, the rocket, which is assembled through the following two formulas:

Fold type Protocol Sequence 1
Blue core BB BYBYBYB 2 Yellow core YY→BY→BB BYBYBYB Nevertheless, not all temperature protocols lead to a unique rigid geometry, as illustrated by the YY→BB→BY protocol discussed for the heptamer heteropolymer. Can we predict the ensemble of temperature protocols and flavor sequences that are associated to a foldamer? In upcoming sections, we describe how to construct a foldamer database that can be experimentally tested and exploited for self-assembly.

Foldamer identification algorithm

Here we introduce an efficient method to systematically identify foldamer solutions in temperature protocol and sequence spaces. For a colloidomer of length N and fixed composition with two droplet flavors (B and Y), the total number of sequences corresponds to the number of combinations N S = n B N -n B , where n B is the number of blue droplets in the chain. The total number of temperature protocols for a m-flavored polymer is given by

N P = (k -1) × k! - k-1 l=2 k l (8.1)
where k = m(m+1)

2
is the number of independent elements in the interaction matrix, the multiplicative factor (k -1) accounts for protocols that begin with multiple interactions simultaneously on and the summation in l removes repeated protocols. The calculation in eq. ( 8.1) assumes that once an interaction is turned on, it cannot be turned off, which is true for colloidomers. Indeed, the only way of turning an interaction off is by increasing the temperature of the system. However, this is equivalent to undoing one step in the temperature protocol, because it would provoke the melting of already formed bonds.

The number of sequences and temperature procotols grows fast with the chain length and number of flavors in the system. As a result, the systematic identification of foldamer solutions in this large design space can only be realized through an efficient search algorithm. Below we discuss two different approaches to identify foldamer solutions. The first approach is straightforward but inefficient, which motivates the introduction of the second, faster identification algorithm.

An enumeration problem

The yellow, red and purple paths in Fig. 8.2 schematically show the naive algorithm that we had initially envisioned to identify foldamers. This algorithm relies on constructing the flavored folding tree for a specific colloidomer sequence (in gray in Fig. 8.2), which contains all possible configurations in the system. Since the edges in the tree represent the formation of new bonds, it is sufficient to prune the tree by keeping the bonds that are allowed by the interaction matrix in the temperature protocol. If the configurations with the largest number of bonds in the subtree are floppy, as it is the case for the YY interaction in the heptamer, one repeats the procedure by continuing the pruning from these floppy states until rigid clusters are found. A foldamer is reported if the final rigid cluster is unique.

Constructing a flavored tree is computationally expensive. Furthermore, the structure of the tree depends on the droplet sequence in the chain, which means that we would have to build N S trees and scan them by applying N P protocols to determine the existence of foldamers. The above approach renders a systematic scan of the foldamer design space and the enumeration of solutions difficult and time-consuming, even for short colloidomer chains. The three-step protocol in Fig. 8.2 holds the key to speed up the algorithm: if the folding process is purely downhill given sufficient time, the chain will eventually adopt the configurations, floppy or rigid, with the largest number of bonds at the bottom of the corresponding folding subtree. These configurations are shown in bubbles in the figure. Thus, to predict a foldamer, it suffices to enumerate the configurations with the largest number of bonds for each interaction matrix in a temperature protocol. Exceptions arise if the subtree contains local minima, which kinetically trapp the chain; these will be discussed later in the section. However, how do we keep track of specific configurations in a folding tree, without actually constructing the tree?

Algorithm

The basic idea behind our computationally efficient algorithm is the same principle we have used to construct the seeds that generate flavored trees in section 6.4.1.2: all configurations in the system must fit within the lattice embedding of at least one rigid cluster. Therefore, we can use the triangular lattice to keep track of the configurations we are interested in. Here provide a description of the foldamer search algorithm that scans the design space for a colloidomer with m flavors and predicts the set of protocol and sequence pairs, S = {(p i , s j )} with ∀i ∈ (1, N P ), j ∈ (1, N S ) that produce a foldamer. The algorithm requires as input the set of Hamiltonian paths {H 1,1 , ..., H l 1 ,1 , ..., H 1,q , ..., H lq,q }, ∀q ∈ (1, N R ), where N R is the number of rigid graphs for a chain of length N and the total number of Hamiltonian paths per rigid cluster, l q , depends on the connectivity of the cluster. The total number of configurations in a folding tree grows faster than the number of Hamiltonian paths on the rigid clusters (see Fig. 8.3). Besides, Hamiltonian paths do not depend neither on sequence nor protocol. Hence, they must only be computed once per N , unlike folding trees, which explicitly depend on the foldamer sequence. This significantly reduces the foldamer search time in stark contrast with the folding tree-based approach we have previously introduced. For a pair (p i , s j ), the algorithm can be summarized as follows:

1. Prepare the input. For a chain of length N , map the flavor sequence s j onto the ensemble of Hamiltonian paths (see section 6.4.1.2 for further details on the mapping). The process results in a list of colored Hamiltonian paths embedded along different geometries in the triangular lattice. 2. Form bonds. Turn on the first interaction in the temperature protocol and iterate over the colored Hamiltonian paths forming bonds. A bond will be formed between two nodes in the lattice if they are within interaction range (r c = 1 in the triangular lattice) and if the interaction is allowed by the interaction matrix. 3. Are there rigid clusters? a) If rigid clusters are found, the algorithm stops. If there is a single rigid cluster, a foldamer is reported. We choose to report a solution even if there are competing floppy configurations with the same or more bonds as the foldamer (possible when N ≥ 7). In the future, the code could be modified to ignore these cases.

b) If there are no rigid clusters, the algorithm continues.

4. Select global minima. Select floppy graphs with the largest number of secondary contacts. This is analogous to selecting the configuration at the bottom of the first folding subtree.

During this procedure, we choose to ignore the local minima that may exist in the first interaction tree, in order to increase the efficiency of the search. These local minima impact the foldamer yields, as they can end up in a different rigid cluster once additional interactions are activated. This effect will be discussed separately in a different section. 5. Update the interaction matrix, according to the protocol. The algorithm assumes that the interaction matrix is updated once the system has waited long enough at the previous step, to ensure that all bonds that can form have formed. 6. Repeat the bond-making process detailed in step 2 by iterating over the selection of floppy graphs in step 4. 7. Classify the graphs. The goal now is to find the new set of configurations that will continue to the next round of interactions. We classify the graphs into transient states, or global or local minima. Global minima are states of a tree that cannot acquire additional bonds either because they reached a rigid state or because spatially accessible neighbours do not have flavors with attractive interactions. Local minima are floppy states for which the topology prevents further formation of bonds. All other states are classified as transient states. 8. Select all global as well as local minima in the classification. 9. Repeat steps 5-8 until the protocol ends. When the protocol is over, we analyze the resulting rigid clusters. If a single rigid cluster is found, a foldamer is reported.

The algorithm is provided in pseudo-code form in Appendix D. A figure summarizing the main steps above can be found in the Supplementary Information in [START_REF] Mcmullen | Self-assembly of emulsion droplets via programmable folding[END_REF].

Foldamers in two-dimensions

In this section we report our algorithm's predictions for short colloidomer chains of up to N = 15 droplets in two dimensions. We first focus on the particular case of a heteropolymer chain with an alternating sequence, which at the moment is the simplest sequence to design in experiment, and then extend the results to random sequence space. At the end of the section, we propose two folding mechanisms based on the intermediate states that a foldamer adopts before fully folding.

Heteropolymer foldamers predicted by the algorithm

The algorithm identifies a total of twelve foldamers with distinct geometry for alternating heteropolymer chains up to 15 droplets long. These are shown in Fig. 8.4. There are a few features worth noting among these results:

1. A two-flavor alternating sequence encodes all rigid clusters for N = 6. In fact, while the triangle and the chevron are encoded by a single temperature protocol (BB→BY and BY→BB, respectively), the hexamer ladder can be produced through two different protocols (BB→YY or by simply turning BB+YY at the same time). This is also the case for the heptamer rocket.

2. Temperature protocols can increase the yield of symmetric clusters. Only the heptamer flower and the decamer double-flower, marked with an asterisk in the figure, are the free energy ground states of a folded homocolloidomer (see Fig. 6.5). The rest of the foldamers, most notably the highly symmetric octamer hourglass, are unlikely geometries in equilibrium [START_REF] Perry | Two-Dimensional Clusters of Colloidal Spheres: Ground States, Excited States, and Structural Rearrangements[END_REF]. This suggests that foldamers correspond to kinetic states whose accessibility is determined by geometric considerations alone and not thermodynamic control. that when the first interaction is turned on, the ground state of the system consists of 5 floppy states. These states fold into one floppy state when the second interaction is turned on, which eventually becomes the crown when the last interaction is activated. This folding process evidences a funneled energy landscape, reminiscent of models proposed for protein folding [START_REF] Dill | The Protein-Folding Problem, 50 Years On[END_REF].

Experimental and simulated yields for predicted foldamers

To verify the algorithm's predictions, we tested the successful foldamer protocols both in experiment and DPD simulations (see Appendix E). The results for chains up to N = 10 droplets are shown in Table 8.5, where we report relative and absolute foldamer yields. Relative yields are defined as the proportion of rigid clusters that reach the correct geometry at the end of the corresponding protocol, that is, we compute the average over rigid clusters alone. In contrast, absolute yields account for the proportion of clusters that have reached the correct geometry out of all attempts starting from an unfolded chain. For absolute yields, the average extends over the total number of colloidomers in solution, rigid or floppy. Consequently, the absolute yield will always be smaller than, or equal to the relative yield. Overall, the table in 8.5 shows that (i) experimental and simulation results are in good agreement, and that (ii) the identified protocols lead to high yields in general, demonstrating the control over the folding landscape. Nonetheless, we must emphasize that the yield is computed at the end of the protocol that leads to the expected foldamer. The length of such protocol might be a single step, which implies that the relative yield is 100% by definition, as no other rigid clusters have fully folded yet. In such cases, the absolute yield, if smaller than the relative one, reflects the impact of local minima. This is exemplified by the heptamer rocket obtained in a single BB quench: for downhill folding, its relative yield in simulations is 100%, while its absolute yield is only 27%. These results show that the chain gets stuck in the two local minima that exist along the folding pathways (see Fig. 2 in ref. [START_REF] Mcmullen | Self-assembly of emulsion droplets via programmable folding[END_REF] for the exact geometry of the minima). Is it possible to increase the absolute yield despite the local minima? We address this issue in the upcoming section.

Exploring the effect of local minima

The yields reported in the previous section evidence the general success of our method. However, some of the foldamers, like the heptamer flower or the decamer crown, exhibit low yields due to the existence of local minima. Most of these minima only emerge because the system is confined to twodimension; they could easily be escaped through out-of-plane flips (see Fig. 6.8 for an example). This is not possible in simulations, where the system is strictly two-dimensional and local minima are dead-ends if bond formation is Figure 8.6: Absolute (solid lines and circles) and relative yields (dashed lines and triangles) for the ladder (blue), hourglass (orange) and crown (green) foldamers as a function of the bond strength , for the first interaction in the protocol. The relative yield of the ladder remains unchanged as it is the only rigid cluster that can arise from the one-step protocol. The hourglass and the crown greatly benefit from allowing the bonds to break and explore the configuration space in order to escape local minima. To obtain these results, we wait τ = 10 3 time units in the first interaction and τ = 10 2 in the subsequent ones, if applicable.

irreversible. The chain cannot further fold unless new interactions are turned on. Interestingly, the experimental system is quasi-two-dimensional and outof-plane rearrangements are possible. These rearrangements are the reason why experiments score higher yields than simulations in the table in Fig. 8.5 for strict downhill folding.

Our algorithm considers every local minima along the folding pathway except for those associated to the first interaction matrix in the temperature protocol. These are the only minima that impact the yield. Their impact can be decreased by lifting the constraint on irreversible bond formation. When bond formation is reversible, local minima can be escaped and the system eventually reaches the bottom of the subtree. If subsequent interactions in the protocol are turned on after a sufficiently long time, the yield increases. In Fig. 8.6, we simulate the folding of three foldamers by allowing bonds to reversibly form during the first interaction in the protocol. By varying the strength of the bonds between droplets, from weak ( ∼ k B T ) to irreversible bonding ( k B T ), results show optimal relative and absolute yields at intermediate binding energies. At weak binding energies, the thermal agitation breaks the bonds and the colloidomer cannot stabilize at the bottom of the tree; at strong binding, the colloidomer falls in kinetic traps and misfolds. Therefore, the optimum yield is achieved at intermediate binding strength. We finally note that, as we have already discussed in chapter 7, yields will also depend on the time we wait in the first step of the protocol. This suggests that, by optimizing over time, the yields in 8.6 can be further improved.

Extension to sequence space

The efficiency of our foldamer identification algorithm allows us to extend the exploration to random sequence space, where we keep the droplet composition, that is, the proportion of blue and yellow droplets, but scramble the sequence. Results are shown in Fig. 8.7, where we also include the results for colloidomer chains with three different types of droplets and random sequences. The data shows that the number of foldamers for a palette of two flavors increases when all possible sequences are considered. Including a third color uniquely encodes more than half of the 619 possible two-dimensional The core collapse mechanism consists of forming a rigid, single flavored core and subsequently locking the remaining droplets on the outside. The single-colored core is only possible if it consists of N < 6 droplets. We hypothesize that the N = 13 star foldamer folds via the core-collapse mechanism, but in this case it requires two colors to be simultaneously on initially in order to form the rigid core. (b) The geometric frustration mechanism relies on the formation of strategic bonds that pre-select the final geometry of the foldamer. Figure adapted from [START_REF] Mcmullen | Self-assembly of emulsion droplets via programmable folding[END_REF] geometries for chains up to N = 13 droplets.

Folding modes

The key concept behind our results is hierarchical assembly. A foldamer is constructed step-wise, as each interaction is turned on. In this section we analyze the intermediate states that an unfolded chain adopts in each step as it folds, that is, the global minima of the folding subtrees in a temperature protocol. These states contain information on the mechanisms that guide the assembly and help us understand what is the connection between a protocol and the foldamer it leads to. We propose two folding mechanisms, that we have labeled as (i) core-collapse and (ii) geometric frustration. These are schematically shown in Fig. 8.8 for chains with an alternate sequence, which is the system where the mechanisms have been studied.

Mechanism I: Core-collapse

The core-collapse mechanism describes the process in which a colloidomer folds by assembling a rigid core during the first step of the protocol, and locking-in the remaining droplets on the outside in subsequent steps. Up to decamers (see Fig. 8.8(a)), the core of a foldamer can consist of a maximum of five droplets of the same color. These can only assemble into a single rigid geometry, i.e., a trimer, a tetramer or a pentamer. The N = 6 triangle, N = 7 rockets and N = 8 hourglass, for example, fold following this mechanism. For longer chains, the cores contain more than N > 5 particles of the same color. Then, it is no longer possible to guarantee the uniqueness of the core; remember that N = 6 is the first system size for which there are multiple rigid clusters. We propose that in that case, foldamers are comprised of multiflavored cores formed by turning on two interactions simultaneously, as seen for the N = 13 star in the figure. We note that the core-collapse mechanism is reminiscent of the HP model, which, as we have introduced in chapter 5, hypothesizes that proteins fold by minimizing the number of hydrophobic residues in contact with the solvent [START_REF] Dill | Theory for the folding and stability of globular proteins[END_REF]. In our case, the chain is also trying to minimize its energy by compacting and forming as many bonds as possible.

Mechanism II: Geometric frustration

The mechanism that we denote as geometric frustration describes the process in which the first interaction in the protocol traps the droplets via certain locking bonds. Droplets are locked into specific positions where they are surrounded by neighbors with whom they cannot form secondary bonds, as shown in Fig. 8.8. The cluster is still floppy as further bonds could be formed. However, the activation of additional secondary interactions will not change its overall geometry: the final folded geometry is pre-selected by the bonds that formed during the first interaction. We find that this mechanism prevails for protocols that begin by turning on the off-diagonal elements of the interaction matrix, which, for a chain with alternate sequence, it is the interaction that forms the backbone. The N = 6 chevron, N = 7 flower, N = 10 double flower follow this assembly mechanism.

Summary and outlook

In this chapter, we have introduced a method to funnel the energy landscape of a colloidomer via hierarchical assembly. This hierarchy is reflected in the order in which specific bonds in the chain are formed, and it is controlled by out-of-equilibrium temperature protocols. Considering this new dimension in design space, which contrasts with equilibrium approaches, allows us to keep the number of particle flavors low, while still being able to encode for a The sequence and protocol for each foldamer are provided next to it. Numbers in the interaction matrix indicate the order in which the interaction is turned on. Supracolloidal assemblies crucially depend on the foldamer fold, that is, its flavor arrangement. In all examples, the system is initialized as a population of already folded structures and allowed to interact via BB bond formation.

large number of geometries. The algorithm we have detailed in section 8.3 enumerates the set of colloidal foldamers for sequences with two and three flavors up to N = 13 droplets. At the moment, the algorithm ignores a few local minima and competing states along the pathway (see section 8.3). In the future, it could be made more strict so that it only reports solutions in the absence of kinetic traps of any kind. However, this could pose a problem for the scalability of the approach, particularly considering how fast protocol and sequence spaces grow with chain length and particle type. The results introduced in this chapter constitute a first step towards solving the inverse problem of determining the protocols and sequences that give rise to a desired structure. The folding mechanisms proposed in section 8.4.4 can serve as a starting point to realize this goal, as they suggest strategies to decompose a target structure into sequentially assembled layers. Additional possibilities for future lines of work are listed below.

Supracolloidal folding

Foldamers can serve as supracolloidal building blocks to assemble more complex architectures. Both the geometry of the foldamer and, more importantly, its fold, become relevant for this purpose, dictating the interactions between individual foldamers. In Fig. 8.9 we show simulation snapshots of
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.10: Foldamers in sequence and protocol space for a hexamer chain.

Colored squares represent the triangle (yellow), chevron (red) and ladder (blue) foldamers. White squares show sequence and protocol combinations that do not lead to a unique solution. The sequences are ordered according to their Hamming distance to the alternate sequence, marker with an asterisk.

The "+" in the last protocol indicates that BB and YY interactions are turned on at the same time.

four different foldamer geometries assembling into mycelle and tubule-like structures (a-b), dimers (d) which could be used for compartimentalization, or a tesselation of the plane with a non-trivial pattern. The initial state of these simulations corresponds to a population of N F foldamers, that is, it is assumed that foldamers assemble in a separate step, prior to the supracolloidal assembly. The interaction matrix is then reset, so that we can control new "supracolloidal" interactions. If this were not the case, foldamers would interact unspecifically and aggregate for examples (a), (b), and (d). The mosaic in panel (c) is the only case that it is not affected by the resetting, although it is also the only example of unlimited (bulk) assembly [4]. Further work is needed in order to determine the full potential of the foldamer database we report in this chapter with regards to larger assemblies, and to avoid the need for interaction resetting.

One protocol to fold them all

Our enumeration in sequence and protocol spaces reveals that different sequences can encode for foldamers with distinct geometry in the same protocol. This result paves the way towards the one-pot assembly of a mixture of foldamers. In Fig. 8.10, we list the foldamers for a hexamer chain with two flavors in sequence and protocol space. Protocols BY→YY→BB and BB+YY→BY are able to encode for the chevron and the ladder simultaneously, given dif- By subsequently activating the BY interaction, the heptamer chain eventually folds into a single rigid cluster out of the five possibilities for N = 7 in three dimensions.

CHAPTER 8. TEMPERATURE DRIVEN FOLDING

ferent input sequences. In the cell, proteins are synthesized according to a prescribed stoichiometry, and subsequently organize into larger assemblies like molecular motors or the ribosome, among others [START_REF] Marsh | Structure, Dynamics, Assembly, and Evolution of Protein Complexes[END_REF]. Drawing inspiration from Nature, the one-pot assembly of a mixture of foldamers using a single protocol could be applied to the construction larger structures in the same environment.

Leaving flatland: Foldamers in 3D

All the foldamers reported in this chapter fold in two-dimensions, that is, they are embedded in the plane. However, the system is experimentally quasitwo-dimensional and it can be designed to fold in three dimensions. Here we propose using the dimensionality of the space where a colloidomer lives as an additional control knob to direct the assembly. Two examples are provided in Fig. 8.11 for the chevron and rocket foldamers. The chevron illustrates how geometry alone can funnel the energy landscape in three-dimensions. In other words, the specific fold of the chevron does not matter: the assembly will always result in the hexamer polytetrahedron. The rocket illustrates a different situation. In the absence of specific interactions, the two-dimensional rocket can fold into any of the five possible three-dimensional rigid clusters for a heptamer chain. However, if we consider the specific two-dimensional fold that results from turning on the BB interaction, and we only let blue particles interact with each other, the rocket adopts a single floppy structure in three dimensions. If the BY interaction is then turned on, a single rigid geometry arises. The combination of temperature protocols and 2D-to-3D folding transition can serve as a strategy to reduce the number of distinct particles required to guide assembly. CHAPTER 9

Conclusions and outlook

In this part of the manuscript we have focused on characterizing (chapters 6 and 7) and guiding (chapters 8) the folding of short colloidomer chains to rigid structures in two-dimensions. Our work is inspired by the folding of natural proteins, and based on DNA-coated colloids connected in a chain [5]. Two important differences can be pointed out between our model system and natural proteins:

1. Proteins spontaneously fold at constant temperature under physiological conditions. Instead, our system relies on out-of-equilibrium temperature protocols to direct the assembly process.

2. Natural proteins are subjected to evolution. In contrast, artificial chemistry models like colloidomers are, in principle, only limited by the laws of physics. For this reason, exploring self-assembly design strategies in synthetic model systems can not only help us understand better the processes that drive protein folding, but also extend our knowledge beyond what is possible in biology.

At the moment, we are able to answer whether a protocol and a sequence will lead a chain towards a unique geometry. Solving the inverse problem, that is, optimizing the protocol and the sequence to enhance the yield of a target geometry remains a task for the future. This task can be tackled using the configuration enumeration we have introduced in chapter 6 and treating the folding tree as a discrete Markov chain. Indeed, it is possible to derive temperature protocols that optimize the yield by constructing a cost function that is minimized when the outcome of the folding process is the desired structure. Towards this goal, our group is currently working on developing models to describe the kinetics of out-of-equilibrium colloidomer folding. Similar approaches have been recently presented that optimize the trade-off between thermodynamic stability and kinetic accessibility [START_REF] Trubiano | Thermodynamic stability versus kinetic accessibility: Pareto fronts for programmable selfassembly[END_REF].

CHAPTER 9. CONCLUSIONS AND OUTLOOK

We conclude this second part of the manuscript by emphasizing that, aside from folding, our results crucially rely on the hierarchy of bond formation. This hierarchy allows us to specify the location of particles in the assembly using a reduced palette of distinct building blocks. The idea of hierarchical addressable assembly has been previously suggested in [START_REF] Frenkel | Order through entropy[END_REF], for example, where Frenkel writes, referring to the challenges for assemblies with addressable complexity: "(...) does not necessarily mean that the design of large structures with addressable complexity is doomed. Rather, it suggests that assembly will have to follow a protocol where not all units assemble at the same time." For a system with m flavors, there are m(m + 1)/2 interactions that can be controlled and over m! protocols available (see eq. 8.1). This suggests that even a small palette of flavors offers many possibilities for the design of complex architectures when combined with hierarchical assembly. Can this be one of the strategies that proteins, with their palette of 20 different amino-acids, exploit? If so, how do they encode the hierarchy without turning to a temperature protocol? The (functional) assemblies we will be able to realize in the future may give an answer to these questions.

Epilogue

Elucidating the origin of (enzymatic) catalysis on the one hand, and the rules of protein folding, on the other hand, constitute two major scientific challenges with promising applications for bio-inspired design. In this manuscript we have introduced (i) a coarse-grained model for the catalysis of dissociation, and (ii) a strategy based on folding to guide the assembly of a colloidal chain towards a unique geometry. These works have been conducted separately, with catalysis and folding being approached as independent problems. Best of both worlds is simultaneously found in enzymes, which are folded proteins that have been selected by evolution to exhibit remarkable catalytic properties. Indeed, enzymes reversibly fold in short timescales under physiological conditions, and they are able to accelerate reactions with high proficiency when they adopt their native fold [START_REF] Anfinsen | Studies on the principles that govern the folding of protein chains[END_REF][START_REF] Wolfenden | The Depth of Chemical Time and the Power of Enzymes as Catalysts[END_REF]. This raises an intriguing question: What are the benefits of folding a catalyst?

An exciting outlook for the work we have introduced in this manuscript is to envision a coarse-grained colloidal catalyst that must fold in the right conformation to become functional. Such system should satisfy the constraints derived in part I to be catalytically active, while still being able to fold according to the strategies outlined in part II. Using the model of spherical particles and programmable potentials that we have worked with throughout the manuscript, we can imagine particle chains with the ability to simultaneously satisfy such constraints. Indeed, we already find several promising candidates for foldable catalysts among the foldamer geometries reported in chapter 8, with gaps in the structure that could be used to cleave bonds efficiently. Questions of fundamental importance follow: How does the assembly strategy constrain catalytic function and efficiency, and in turn, how does function constrain the possibilities for assembly? What is the most efficient way to encode for all the information, i.e., should some of the particles be exclusively responsible for folding and others mediate catalysis, or can the roles be shared? Does this compromise the efficiency of the design? Lastly, can we envision a catalyst that accelerates folding? We expect the results in this manuscript to prove useful in helping answer these questions, and in assisting the search for artificial enzyme-like colloidal clusters (colloizymes) in the future.

where L is the transition matrix with elements L ij = L S i ,S j , U is a vector with all entries equal to 1 and T is a vector whose components give

T = T (S i |S 1 ), T (S i |S 2 ), • • • T (S i |S j ) • • • T (S i |S N ) T . (A.12)
In conclusion, the calculation of the MFPT in a CTMC reduces to computing the inverse of the transition matrix and adding up the rows associated to the initial state in the process to extract the MFPT we are interested in. We note that by definition, T (S i |S i ) = 0.

A.2 Criterion for catalysis in unimolecular reactions: Semi-Markov case

As we have already introduced in section 2.2.3, we consider the simplest possible reaction scheme where the substrate can be converted into product(s) either spontaneously or through the reversible interaction with the catalyst:

C + S C + P CS (1 -α) α (1 -β) β
To derive a criterion for catalysis, we must compute T C+S→C+P . Here we assume that, with the exception of the spontaneous reaction, the transitions in the reaction scheme are not exponentially distributed, which renders the process semi-markovian. In such case, the MFPT from S to P in the presence of C can be expressed as

T C+S→C+P = αT CS→C+P + (1 -α)T C+S→C+P #CS , (A.13) 
where # notation indicates that the reaction path does not visit a specific state [START_REF] Ninio | Alternative to the steady-state method: derivation of reaction rates from first-passage times and pathway probabilities[END_REF]. Therefore, T C+S→C+P #CS represents the MFPT from S to P without binding to the catalyst, that is, the spontaneous reaction time T S→P . The transition probability α is defined as,

α = IP(t C+S→CS < t C+S→C+P #CS ), (A.14)
and it describes the probability of interacting with the catalyst before the spontaneous reaction takes place. Since it is associated to the time it takes the substrate to diffuse to the catalyst, α will in general depend on the volume of the system. If the substrate binds the catalyst, there are two options to reach the product state: either the reaction proceeds to completion through the mediation of the catalyst or the substrate unbinds and stops interacting with the catalyst, in which case

T CS→C+P = βT CS→C+P #C+S + (1 -β)T C+S→C+P , (A.15)
where β is a transition probability defined as

β = IP(t CS→C+P #CS < t CS→C+S ). (A.16)
Combining equations (A.13) and (A.15) to obtain T C+S→C+P yields the MFPT of the reaction in the presence of the catalyst,

T C+S→C+P = 1 1 -α(1 -β) αβT CS→C+P #C+S + (1 -α)T S→P , (A.17)
which can be rewritten as

T C+S→C+P = ρT CS→C+P #C+S + (1 -ρ)T S→P , (A.18) where ρ = αβ 1 -α(1 -β) (A.19)
is the probability that the reaction will proceed through the catalytic pathway.

The criterion for catalysis introduced in (2.1) can now be written as

η + = T S→P T C+S→C+P = 1 + η+ -1 1 + (1-α) αβ η+ > 1, (A.20)
where η+ is

η+ = T S→P T CS→C+P #C+S . (A.21)
As we have already established, for η + > 1 to be satisfied, it is sufficient that η+ > 1, i.e., the catalytic pathway must be a means to reach the product state faster than it occurs spontaneously.

A.3 Method of Net Rate Constants

The method of Net Rate Constants (NRC) was introduced in 1975 by Cleland [START_REF]Partition analysis and concept of net rate constants as tools in enzyme kinetics[END_REF] and it consists of substituting all reversible transitions in the kinetic scheme with irreversible steps. This is done by redefining the forward rate constants so that the flux through each catalytic intermediate remains effectively the same. The rate constants are redefined k i → k * i according to the following recurrent rules:

Irreversible transitions → k * i = k + i (A.22) Reversible transitions → k * i = k + i k * i+i k - i + k * i+i . (A.23)

B.2.1 Estimation of the absorbing boundary

Fig. 3.10 schematically shows one of the possible geometric configurations of the C•S state. One of the monomers in the substrate dimer, M 2 , diffuses on the surface of the interaction shell with radius r min centered in M 1 . Substrate particle M 1 is itself diffusing on the surface of the interaction shell centered in C 1 of radius r min . We must note however that in simulations the radius of the interaction shells fluctuates, which implies that particles M 1 and M 2 are actually diffusing on spherical shells of non-zero thickness. We will ignore this for the derivation below. We define the angles θ 1 and θ 2 as

cos θ 1 = r C 1 ,C 2 • r C 1 ,M 1 | r C 1 ,C 2 || r C 1 ,M 1 | , (B.8) cos θ 2 = r M 1 ,C 2 • r M 1 ,M 2 | r M 1 ,C 2 || r M 1 ,M 2 | , (B.9)
where r i,j denotes the position vector from particle i to particle j. The particle M 2 is only able to bind the catalyst in C 2 when the two interaction shells centered in M 1 and C 2 overlap. This will occur when r M 1 ,C 2 (θ 1 ) ≤ r min + r c . Such configuration defines a spherical cap on the C 1 shell of radius

r cap = r 2 min - L 2 c -r 2 c -2r min r c 2L c 2 , (B.10) 
which allows us to define the critical angle θ C 1 (L c ), where the shells in M 1 and C 2 intersect at a single point, as

θ C 1 (L c ) = arcsin r cap r min . (B.11)
The condition θ 1 < θ C 1 (L c ) is necessary for binding, but it does not guarantee the formation of a bond between M 2 and C 2 , since M 2 is itself diffusing, i.e., θ 2 is changing over time. For binding to occur, we must add a second condition,

θ 2 ≤ θ M 1 (θ 1 )
, where θ M 1 is the aperture of the spherical cap on the surface of the M 1 interaction shell resulting from the overlap between the M 1 and C 2 interaction shells. The distance distance between M 1 and C 2 can be expressed in terms of the parameters of the system,

r M 1 ,C 2 (θ 1 ) = r 2 min + L 2 c -2r min L c cos θ 1 (B.12)
For θ 1 < θ C 1 (L c ), the radius b cap (θ 1 ) of the circunference that results from the intersection of the M 1 and C 2 shells is

b cap (θ 1 ) = 1 2r M 1 ,C 2 (-r M 1 ,C 2 + r min -r c )(-r M 1 ,C 2 -r min + r c ) (-r M 1 ,C 2 + r min + r c )(r M 1 ,C 2 + r min + r c ) 1/2
, (B.13)

Statistical model for colloidal clusters

In this appendix we present a statistical mechanical model for rigid colloidal clusters that allows us to compute the equilibrium distribution. The derivation below follows the works by Perry and collaborators [START_REF] Perry | Two-Dimensional Clusters of Colloidal Spheres: Ground States, Excited States, and Structural Rearrangements[END_REF], and Klein and collaborators [START_REF] Klein | Physical interpretation of the partition function for colloidal clusters[END_REF]. Let a colloidomer chain with N droplets fold into N R different rigid clusters. For a system in contact with a heat bath at fixed temperature, where particles interact via short-ranged potentials, the equilibrium probability of the i-th rigid cluster is given by

P i = Z i N R j=1 Z j , (C.1)
where Z i is the partition function of the i-th cluster. In the center of mass coordinates and within the rigid-rotor, harmonic-oscillator approximation, where the vibrational and rotational degrees of freedom are assumed to be decoupled [START_REF] Klein | Physical interpretation of the partition function for colloidal clusters[END_REF], the partition function for cluster i can be separated into three contributions

Z i ∝ Z i,trans Z i,rot Z i,vib e -βU i , (C.2)
which account for its translational, rotational and vibrational degrees of freedom around the cluster's center of mass. U i is the potential energy of the cluster, and if we assume that all bonds in the cluster are equal, this quantity simply represents the total number of contacts, U i = N B , where N B is the number of bonds in the cluster and is the strength of the bond. Note that for a cluster that assembles from a chain, not all bonds are equivalent, as the backbone cannot be broken. Therefore, the U i exponent rather represents the number of secondary bonds, which can be different depending on the cluster's geometry. The translational degrees of freedom of the center of mass 164 APPENDIX C. STATISTICAL MODEL FOR COLLOIDAL CLUSTERS will be the same for all clusters and will cancel out when included in eq. (C.1). The vibrational partition function, Z i,vib , is proportional to the square root of the inverse vibrational frequencies, which are obtained through normal mode analysis by diagonalizing the dynamical matrix of the cluster. Finally, the rotational partition function is given by [START_REF] Perry | Two-Dimensional Clusters of Colloidal Spheres: Ground States, Excited States, and Structural Rearrangements[END_REF] Z

i,rot ∝ n i χ i M i,I σ i , (C.3)
where χ i = 1 for non-chiral clusters and χ i = 2 for chiral ones, M i,I is the determinant of the moment of inertia tensor, σ i is the symmetry number of the cluster, that is, the size of its symmetry group (note that in two-dimensions there are no out-of-plane rotation symmetries) and n i accounts for all particle permutations that leave the cluster unchanged. For a cluster that forms from a gas, there are N ! possible particle permutations that leave the cluster unchanged. In the case of a cluster that forms from a chain, particle permutations are constrained by the existence of the polymer backbone. Therefore, we should account for all possible backbone arrangements, or the total number of Hamiltonian paths, instead of all particle permutations. if ISTHERESINGLERIGIDCLUSTER(R i ) then 

Algorithms and pseudocodes

E.2 Dissipative Particle Dynamics

All simulation results reported in part II are the outcome of Dissipative Particle Dynamics (DPD). Unlike Langevin dynamics simulations, where the solvent is implicit, in DPD solvent particles are explicitly simulated together with the colloidal particles [START_REF] Robert | Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation[END_REF]. This also implies that, contrary to Langevin dynamics simulations, DPD is able to account for hydrodynamic interactions with the solvent, a feature we judged could be important for colloidomer folding. We use a multiple step simulation scheme to integrate the equations of motion with dt s = 10 -2 t.u. to resolve the dynamics of the solvent and dt c = 10 -4 t.u. for the dynamics of the colloids. The interactions with the solvent are soft harmonic repulsions, which allows us to afford the larger time step.

E.2.1 Coarse-grained DNA interactions

To simulate the DNA-mediated interactions in a colloidomer chain, we use the interaction potential introduced by Wang and collaborators in [START_REF] Wang | The Lennard-Jones potential: when (not) to use it[END_REF] as we have previously done for the catalysis part (see eq. (3.2) for expression). We use a short interaction range of r c = 1.05σ, where σ is the particle diameter, and /k B T is the strength of the interaction. Our simulation results agree with the experimental data reported throughout part II. We note, however, that by focusing on downhill folding, details of the interaction potential are not very important as it suffices for the bonds to not break. The agreement with experiment is therefore not surprising. It is yet to determine whether the agreement holds when data pertaining to unbinding kinetics is compared. A more detailed potential, tailored to DNA-coated colloids has been recently introduced [START_REF] Cui | Comprehensive view of microscopic interactions between DNA-coated colloids[END_REF].

Catalysis from the bottom-up

Maitane Muñoz-Basagoiti, 1 Olivier Rivoire, 2, * and Zorana Zeravcic Catalysis, the acceleration of chemical reactions by molecules that are not consumed in the process, is essential to living organisms but currently absent in physical systems that aspire to emulate biological functionalities with artificial components. Here we demonstrate how to design a catalyst using spherical building blocks interacting via programmable potentials, and show that a minimal catalyst design, a rigid dimer, can accelerate a ubiquitous elementary reaction, the cleaving of a bond. By combining coarse-grained molecular dynamics simulations and theory, and by comparing the mean reaction time in the presence and absence of the catalyst, we derive geometrical and physical constraints for its design and determine the reaction conditions under which catalysis emerges in the system. The framework and design rules that we introduce are general and can be applied to experimental systems on a wide range of scales, from micron size DNA-coated colloids to centimeter size magnetic handshake materials, opening the door to the realization of self-regulated artificial systems with bio-inspired functionalities.

I. INTRODUCTION

Bio-inspired design combines principles from physics, chemistry, biology and engineering to create artificial materials with functionalities that rival those of biological systems, paving the way for the next generation of "smart" materials. One of the key ingredients for biological self-assembly and self-organization is the specificity of interactions between building blocks at the molecular scale. This has motivated an enormous experimental progress over the last decades in making artificial building blocks that differ in shape, size and types of interactions. For example, single stranded DNAs grafted on the surface of nano-and micron size particles lead to short-range binding specificity which controls what particle types can interact [1][2][3][4][5][6], patchy and asymmetric particles can be used for directional bonding with valence control [7,8], and mobile DNA linkers on colloidal particles and emulsion droplets lead to valence control without predetermined particle geometry [9][10][11][12]. Following these advances, model systems based on such artificial building blocks have been used in experiments, theory and simulations to demonstrate desired properties like robust and reliable self-assembly into target structures [4,[13][14][15][16][17][18][19][20][21][22], structure reconfiguration [23][24][25] and self-replication [26][27][28][29].

A major obstacle for efficiency and scalability in these artificial systems is the control over the formation and cleavage of targeted bonds. For instance, escaping kinetic traps, which are detrimental for the self-assembly yield of target structures [22,[30][31][32], requires breaking bonds between particular building blocks. Likewise, in artificial self-replicating systems bonds between specific building blocks must successively form and break in a timely manner [27,28,33]. The efficiency of these and many similar processes currently relies on external intervention, such as temperature and UV cycling protocols or mechanical forcing, which can non-specifically impact all the bonds in the system [26,28,33,34]. Nature, however, does it differently. In biological systems, reactions are facilitated by catalysts -enzymes -which, besides being extremely efficient and specific, are not energy consuming and are systematically recycled. Mimicking this level of control in artificial systems using designed building blocks will open the door to realizations of self-regulated systems with bio-inspired functionalities.

One challenge is therefore to build tailor-made catalysts out of artificial building blocks. Over many decades, qualitative principles have been formulated, including notably Haldane's principle of strain-based catalysis [35], Pauling's principle of complementarity to the transition state [36] and Sabatier's principle of "just-right" interaction strength [37]. These principles address different aspects of the design of a catalyst, but they do not constitute a general framework to build artificial catalysts from scratch for any desired reaction. As a result, successful designs of physical catalysts have so far relied on astute mechanisms that are not readily applicable beyond their original context [38][39][40], and only recently general considerations for catalysis have been investigated in an abstract model, shedding light on the constraints that apply to the design of a catalyst [41]. There is thus a need for empirical and theoretical insights with a bottom-up approach that integrates kinetic, geometrical and physical constraints to enable the design of catalysts that are experimentally implementable in physical systems.

To make the first steps towards this goal, here we present the computational design of a minimal catalyst capable of accelerating the dissociation of a dimer into monomers, i.e., cleaving a bond. Starting from building blocks interacting via programmable potentials, we pro- We use a short-range pairwise interaction potential with depth , interaction range r cutoff and equilibrium position rmin [43].

As indicated by the interaction matrix, blue particles interact with strength s, and blue and red particles interact with strength cs; the catalyst bond is rigid. The spontaneous reaction can be reversible or irreversible. (C) Reaction scheme in the presence of the catalyst. Gray arrows correspond to the most favourable reaction conditions for catalysis: free monomers are removed from the system and the substrate bond is not allowed to reform once broken by the catalyst; dashed red arrows correspond to the worst-case conditions, where the above transitions are reversible and diffusionlimited.

vide rules for making a catalyst and test our design in numerical simulations of a physical model system. To our knowledge, this is the first proposal of a physically realizable artificial catalyst that is designed from the bottom up. The framework and design rules we introduce are general and can be applied to experimental systems spanning different length scales, from micron size DNAcoated colloids [4] to centimeter size magnetic handshake materials [42].

II. MODEL SYSTEM A. Spontaneous reaction

The design of a catalyst depends on the reaction it accelerates. Here we focus on the dissociation of a dimer S = M •M into two free monomers P = M +M , which we refer to as the substrate S and the product P of the reaction (Fig. 1A). The substrate dimer is composed of two spherical particles of diameter σ interacting via an isotropic pairwise potential of depth s and interaction range r cutoff [43] (Methods), which, if exceeded, leads to the dissociation of the dimer into monomers (Fig. 1B). Inspired by the short-range interactions between colloids mediated by DNA (through direct hybridization or by using linkers) [4,44], we set the interaction cutoff to be r cutoff = 1.10 σ, which results in r min = 1.03 σ as the equilibrium position of the substrate bond (Methods). We consider two limiting cases for the reaction between the free monomers: irreversible, when the monomers cannot reform a bond and, reversible, when the bond formation is diffusion-limited. In what follows, we take k B T = 1 for the energy scale and σ = 1 for the length scale in our system. The transition from the dimer to the two-monomer state occurs spontaneously through thermal activation. We perform Molecular Dynamics (MD) simulations of this system (Methods) and verify that the dissociation events, defined as the first time the distance between two monomers exceeds r > r cutoff , are exponentially distributed with mean reaction time T S→P (Fig. S1). This mean time is the key parameter that we will use for the assessment of catalysis.

B. Catalyst design

To build a minimal catalyst we use the same-sized spherical particles that comprise the substrate. As we verify in numerical simulations, a single particle cannot catalyze the dissociation reaction (Fig. S2). The next simplest design is a dimer made of two particles whose centers are held at a distance L c . Motivated by previous theoretical results [41], we set the catalyst bond to be rigid. Each catalyst particle can interact with a substrate particle via the potential in Fig. 1B [43], with a strength cs and an interaction range that we constrain to be the same r cutoff . Bond formation between catalyst and substrate particles is diffusion-limited. For simplicity, we assume that particles exhibit valence: a catalyst particle can interact with only one substrate particle at a time, while a substrate particle can interact with only one substrate and only one catalyst particle at the same time. This type of restricted binding has been achieved in experiments with colloidal particles [11,45,46], while the fixed distance L c between catalyst particles could be realized experimentally by placing them on a surface.

C. System parameters

Catalysis depends on three sets of parameters. First, it depends on the reaction to be accelerated, characterized by the overall shape of the interaction potential, and the entropic barriers for the forward and the reverse direction. In our simple model, these are controlled by the strength of the bond we want to cleave, s , and by the (ir)reversibility of the spontaneous reaction respectively. Second, catalysis depends on the intrinsic properties of the catalyst, like its geometry and types of interactions. These correspond to the two particles rigidly bound, placed at a fixed distance L c and the interaction strength towards the substrate cs in our model. Finally, catalysis depends on extrinsic properties of the system such as the concentration of substrate and product and their diffusion constant, as well as the volume and tem-perature of the system, which we will discuss in more detail elsewhere [47].

Our goal here is to identify intrinsic parameters of the catalyst that lead to catalysis in the system. To assess if there is catalysis, we consider a box of volume V with a single substrate, and compare the mean reaction time in the absence and presence of a single catalyst in the system, i.e., compare the mean first-passage times T S→P to T C+S→C+P , where C + S and C + P account for the substrate and product particles in the presence of, but not interacting with the catalyst. A successful catalytic design must reduce the mean reaction time, and our criterion for catalysis is T S→P /T C+S→C+P > 1. To proceed, we first explore the parameter space under two assumptions that are most favorable for catalysis, and then investigate what happens when we lift those constraints. The first assumption is that the spontaneous reaction is irreversible, preventing spontaneous formation of substrate bonds once broken. The second assumption is that the product monomers are removed from the system as soon as they are released in solution, preventing them from binding the catalyst. In the setup shown in Fig. 1C, red arrows correspond to the four backward processes that are excluded due to these assumptions.

III. RESULTS

A. Conditions for catalysis

In order to identify necessary conditions for catalysis, we decompose the catalytic cycle into elementary processes, each of which corresponds to the formation or cleavage of a single bond. As illustrated in Fig. 1C, this defines six possible states of the system: C +S, where the substrate and catalyst are not interacting; C•S, where the substrate forms one bond with the catalyst; C:S, where both substrate particles are bound to the catalyst; C:P , where the substrate bond has been cleaved and both products remain bound; C•P , where one product particle has been released into the solution and the second one remains bound; and finally C +P , where the two product particles are released by the catalyst, which recovers its initial state. The reaction C•S → C•P corresponds to the spontaneous dissociation of the substrate bond while the substrate is partially bound to the catalyst. The series of reactions from state C:S up until the recycling of the catalyst in C +P comprise an alternate pathway to reach the final product state exclusively due to the presence of the catalyst.

A trivial necessary condition for catalysis is that the state C:S is accessible from C•S. Otherwise, the only way for product particles to appear in solution is through the transitions S → P and C•S → C•P , i.e., through the spontaneous reaction. This condition constrains the distance between the catalyst particles L c to be small enough and imposes favorable binding between the catalyst and the substrate, i.e., L c < 3r cutoff and cs > 0, respectively.

Next, one expects the transition from C:S to C + P to take on average less time than the spontaneous reaction S → P . This implies necessary conditions on the elementary steps (i) C:S → C:P , (ii) C:P → C•P and (iii) C•P → C + P . Process (i) leads to the necessary condition T C:S→C:P \C•S < T S→P , where T C:S→C:P \C•S denotes the mean first-passage time from C:S to C:P excluding the possibility of the back transition to the state C•S. In other words, cleaving the substrate bond in the presence of the catalyst should be faster than in its absence. To find which parameters this condition constrains, we perform MD simulations of one catalyst and one substrate in a box initiated in C:S configuration, with fixed s , and cs 1 to avoid substrate unbinding (Fig. S2). By varying the geometry of the catalyst we find that the condition can be satisfied only if L c > 3r min . At L c = 3r min , which corresponds to the geometrical threshold above which the substrate can fit between the particles in the catalyst, the C:S configuration is onedimensional (see Fig. 1C) and all the bonds are in equilibrium. For larger L c , the bonds are stressed, leading to the substrate bond being strained by the catalyst.

Steps (ii) and (iii) lead to the additional necessary conditions T C:P →C•P \C:S < T S→P and T C•P →C+P \C:P < T S→P .

Given that these two steps correspond to the same process (breaking an cs bond with the catalyst), and that the catalyst releases product monomers independently, both conditions are satisfied if T C•P →C+P \C:P < T S→P . Simply, releasing one product particle should be faster than the spontaneous reaction. This condition depends only on how strongly the product is bound to the catalyst, and is satisfied by imposing cs < s , i.e., the interaction between S and C should be weaker than the scissile bond in the substrate (Methods).

No similar conditions apply to the remaining two elementary steps towards C + P in Fig. 1C, namely, transitions C +S → C•S and C•S → C:S. First, the emergence of catalysis is independent of the time it takes the substrate to find the catalyst T C+S→C•S , because the spontaneous dissociation of the substrate into two monomers can always occur along the way. Second, the necessary condition on T C•S→C:S non-trivially involves mean reaction times of other elementary steps in the catalytic pathway because of the C•S → C•P transition. As a result, no simple additional constraint on the catalyst design can be derived. We discuss these transitions in more details in the SI and more formally in [47].

B. Phase diagram for catalysis

For a given spontaneous reaction, i.e., for a given s in the irreversible limit, and based on the above analysis, the necessary conditions for catalysis in our model constrain the design parameters for the dimer catalyst to 3r min < L c < 3r cutoff and 0 < cs < s . We perform MD simulations of the system with and without the cat- alyst present within this parameter range and compare the mean reaction times to produce two free monomers in both cases. Our results for a 2-dimensional (2D) system are shown in the phase diagrams in Fig. 2.

In Fig. 2A we show catalytic efficiency, i.e., T S→P /T C+S→C+P , for different values of L c and cs , with s fixed. Under these conditions, we demonstrate that catalysis can occur within the range of identified necessary conditions (dashed and dotted lines). The maximum in the heat map reveals the best design for the catalyst. In Fig. 2B we now fix the catalyst geometry L c and vary s and cs , showing again that catalysis occurs within the range of necessary conditions.

Our detailed simulations in the prescribed ( cs , L c , s ) parameter space reveal that catalysis requires a minimal value of s (Fig. 2B). This is another condition on catalysis that applies to the spontaneous reaction rather than to the catalyst design itself. We interpret this result through two arguments. Firstly, if the spontaneous reaction occurs too fast, the substrate will dissociate before it can bind the catalyst in the right configuration. Secondly, the catalyst inhibits the reaction for too small s because the substrate is able to diffuse to the catalyst, reaching the C•S state, but the bond breaks at its spontaneous rate along the C•S → C•P pathway instead of using the catalytic mechanism. One of the monomers is released in solution, while the second one remains attached on the surface of the catalyst. Since the reaction ends only once there are two free monomers in solution, and the catalytic pathway contains the extra step of release which does not exist for the spontaneous reaction, the design effectively inhibits the reaction by delaying the production of free monomers. As energies are here given in units of k B T , this last condition indicates a threshold temperature above which catalysis does not occur anymore.

C. Trade-offs

Our phase diagram in Fig. 2 reveals trade-offs applying to the geometry L c of the catalyst and how strongly it binds the substrate cs . These trade-offs emerge from considering all elementary steps in the catalytic cycle simultaneously.

In the case of the catalyst geometry, within the bounds 3r min < L c < 3r cutoff , there is an optimum L c that maximizes the strain on the substrate bond while minimizing the time to fully bind the substrate. The strain is greater the more complementary the catalyst is to the transition state (Fig. S2), in agreement with Pauling's principle [48], where exact complementarity in our model implies L c /3r min = 2/3 + r cutoff /3r min = 1.023 (Methods). However, adopting this configuration takes long time (Fig. S4), giving rise to the trade-off [49]. In the case of the catalyst-substrate bond, the optimal strength cs maximizes the strain on the substrate while minimizing the time to release the product particles into solution, which embodies Sabatier's principle [37] of optimal intermediate binding strength.

D. Coarse-graining and relaxing constraints

To examine the conditions for catalysis beyond the restrictive assumptions that we made so far -irreversible reaction and systematic removal of products -we follow the approach usually taken in chemistry to coarse-grain chemical reactions as Markov processes [50]. Under this approximation, a larger range of parameters can be more efficiently explored. In general, one cannot assume that all the steps in a cycle (as in Fig. 1C) can be represented as Markov transitions. We verify, however, that this is the case in our model system within the range of parameters necessary for catalysis, which means that the rates for the transition between states can be inferred from our simulations, an approach previously applied in other MD studies [51][52][53] (Fig. S5). We use rates inferred from MD simulations to verify the coarse-graining (Methods), and the resulting Markov State Model (MSM) is shown in Fig. 3A. To extend the exploration of the parameter space, we develop an analytical model for the dependency of the rates on the parameters (Methods) that we use in all MSM calculations that follow.

We first consider relaxing only the condition that the reaction is irreversible. In the MSM we therefore intro- ) when free monomers are removed from the system as a function of the substrate bond strength s for a fixed geometry of the catalyst Lc/3rmin = 1.02. Data points correspond to 2D MD simulations and black lines to the MSM depicted in panel A. The maximal efficiency in the model, which is obtained when γ = 0, scales exponentially as α s, with a factor αMD = 0.50 ± 0.04 (the fit is conducted for points where the efficiency is larger than one, i.e., s ≥ 8) and αMSM = 0.44. The maximal efficiency saturates for large s when γ = 0 (SI). (C) Substrate bonds s for which catalysis is observed (red) in a 2D system with free monomers removed only after they have diffused a distance R Diff /σ from the catalyst. We keep the spontaneous reaction irreversible, i.e., γ = 0. Red region represents results from the Markov model and red squares are results from our MD simulations. White region and gray crosses mark the regions where catalysis is not possible in the model and simulations respectively. (D) MSM results showing the γ values for which catalysis can be observed in 2D when monomers are removed from the system if they have diffused a distance R Diff /σ from the catalyst.

duce a parameter γ ∈ [0, 1] as a prefactor to the rates corresponding to diffusion-limited transitions C•P → C•S and C:P → C:S. This allows us to interpolate between the reversible (γ = 1) and irreversible (γ = 0) limits of substrate bond formation (Fig 3A). In Fig. 3B we show maximal catalytic efficiency for increasing substrate bond strength s at different values of the parameter γ (black lines). For γ = 0, the maximal efficiency of our catalyst scales exponentially with s (SI). When γ > 0, the transition C:P → C:S is possible. As a result, an additional constraint on catalysis arises, which couples the cleavage of the substrate bond and release of the first product monomer to the reformation of the substrate bond. This condition is responsible for the saturation of the catalytic efficiency at high s seen in Fig. 3B (SI). These Markov state model results agree with our MD simulations in the irreversible and reversible limit, shown as blue triangles and green circles in the figure, validating the coarsegraining of the catalytic pathway into states (see SI for additional validations).

Next we explore whether we can measure catalytic activity of our dimer catalyst if free monomers are not taken out of the system as soon as they are released into the solution. To do this, we introduce a disk of radius R Diff centered around the catalyst and consider that we have reached the C + P state only once both free monomers diffuse out of this volume (Fig. S7). Results we obtain from the MSM when γ = 0 are shown in Fig. 3C (red shaded region). As can be seen, under these conditions, the onset of catalysis depends on the volume of the disk around the catalyst: the larger the volume, the longer it takes free monomers to diffuse out, which implies that the spontaneous reaction must be slower, i.e., the minimal s should be larger to observe catalysis in our model. Our 2D MD simulations, reporting the minimal substrate bond strength at which we observe catalysis in the irreversible limit (red squares), agree with the Markov model predictions.

Finally, when γ > 0, our MSM predicts catalysis in 2D to be possible only for a range of γ < γ max values, as shown in Fig. 3D. In other words, our model predicts that beyond the most favorable conditions, the reverse reaction cannot be diffusion-limited, and that some finite barrier is necessary in order to observe catalysis. To verify this prediction in MD simulations requires first changing how particles interact, i.e., introducing a finite backward reaction barrier, and second expanding the range of substrate bond strengths explored, which becomes computationally more challenging as s grows. We leave this verification for future work. Results for a 3D system are shown in the SI (Fig. S9). FIG. 4. Efficiency and catalyst design beyond most favourable reaction conditions. MD simulation results in 2D when free monomers are removed if they diffuse beyond r > R Diff , where R Diff /σ is the radius of a disk centered around the catalyst (Fig. S7). The spontaneous reaction is assumed to be irreversible. (A) Catalytic efficiency, TS→P /TC+S→C+P for a fixed substrate bond with s = 15 and catalyst geometry Lc/3rmin = 1.02, for different simulation box sizes and varying cs. (B) Volcano plots showing the optimal catalyst binding strength cs for a fixed volume R Diff /σ = 5 and varying substrate bonds. The optimal cs/ s remains unchanged as s varies. The average for each data point is taken over at least 200 simulations.

E. Efficiency and optimality of the catalyst design

Motivated by possible experiments to be discussed below, we quantify the efficiency of our catalyst as function of bond strengths in the conditions where the product is not immediately removed, while the catalyst geometry (L c ) is kept fixed and the spontaneous reaction is irreversible. We first focus on the effect R Diff (volume) has on the maximal efficiency, which is represented by blue triangles in Fig. 3B. While our simulation results in Fig. 4A show (as expected) that the maximal efficiency decreases with increasing volume (increasing R Diff /σ), our minimal catalyst for a given spontaneous reaction (fixed s ) still succeeds in accelerating the spontaneous reaction several fold and the maximal efficiency still scales exponentially in the limit s 1. Moreover, our simulations demonstrate the robustness of our catalyst design. First, as seen in Fig. 4A, the optimum cs / s ≈ 0.6 remains unchanged as the volume varies. Second, as seen in Fig. 4B, the optimum cs / s remains unchanged also when s varies for fixed R Diff /σ. In other words, the curves of catalytic efficiency, known as Volcano plots in the catalysis literature [54,55], share approximately the same optimum cs / s .

IV. DISCUSSION

We have taken a first step toward introducing catalysis in artificial physical systems by presenting design rules for constructing the simplest possible catalysta rigid dimerthat can accelerate bond dissociation. Our design is directly implementable in a physically-realizable system of building blocks interacting via programmable potentials. Along the way, we have outlined a general approach to design catalysis from the bottom-up. Breaking up the catalytic cycle into steps allows us to derive necessary conditions that limit the region in the parameter space where catalysis can emerge. These conditions lead to trade-offs when simultaneously considered, as we verify in MD simulations.

Our design rules are general and can be applied to a range of experimental systems with programmable interactions. Spherical particles with short-range specific interactions we focused on here can be easily realized with DNA-coated colloids [4]. Particle valence, which we assumed in our model, is readily available in these systems. For example, emulsion droplets functionalized with mobile DNA strands can exhibit valence by controlling the strand density [11]. Likewise, droplets can be functionalized with mobile DNA-origami constructs, where their number sets the valence [46]. Controlling the geometry of the catalyst can simply be achieved by patterning a surface with precisely spaced DNA patches on which catalyst particles can be deposited. Alternatively, DNAorigami constructs could also be used to fix the distance between the particles in the catalyst [56], or the desired catalyst geometry could be 3D printed [57] and functionalized with DNA afterwards. Finally, the most favourable reaction conditions in our model require controlling the reaction between two product monomers as well as the re-binding of products to the catalyst (product inhibition). Linker-mediated interactions [44] can introduce an entropic barrier for the reformation of the substrate bond once broken, controlled by the concentration of the free floating linkers in solution. Similarly, self-protected attractions in DNA-functionalized particles could serve to minimize product inhibition [26]. Note that because our catalyst is robust, i.e., the optimum cs / s remains unchanged when s varies, the same substrate dimer and catalyst dimer could be used in experiments at a range of temperatures.

Our catalyst operates through a strain mechanism first proposed by Haldane for enzymes [35]. This is however not the only possible mechanism of catalysis. In particular, other spontaneous reactions, such as bond formation, where the barrier to overcome is entropic rather than energetic, require different mechanisms which will be interesting to investigate in future work.

Bond cleavage plays a role in essentially all reactions. Our catalyst may therefore find applications in problems of self-assembly and self-replication where bond cleavage is currently non-specific and externally driven. A catalyst provides several advantages over such protocols: it can be made specific to a particular bond, it does not require intervention and energy input, and, as we have here demonstrated, it can be implemented using the same building blocks as the rest of the system. Although minimal, our catalyst provides insights into the design prin-ciples underlying catalysis, opening the door to a control over the reactions in bio-inspired artificial systems.

We would like to thank Jasna Brujic, Ludwik Leibler, Angus McMullen, Clément Nizak, Ben Rogers, and Yann Sakref for insightful discussions. This work has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 754387. ZZ acknowledges funding from the city of Paris EMER-GENCE(S) grant.

METHODS

Model and numerical simulations. We model the interactions between particles with an isotropic interaction potential introduced by Wang et al. in [43], where

U (r, ) = α(r cutoff , σ) σ r 2 -1 r cutoff r 2 -1 2 
(1) if r < r cutoff and zero elsewhere, and where α(r cutoff , σ) fixes U (r min , ) = . The equilibrium position r min is given by the minimum of U (r, ), which for r cutoff /σ = 1.1 results in r min /σ ≈ 1.03. When the distance between two particles that cannot interact due to valence restrictions is r < r min , they repel via a soft-harmonic potential,

U H (r) = 1 2 k(r -r min ) 2 (2) 
where we take k = 1000. We perform Langevin Molecular Dynamics (MD) simulations using an in-house code that implements a modified velocity-Verlet algorithm to integrate the equations of motion [58]. All simulations are performed with temperature T = 1.0, friction coefficient γ = 12.5 and time-step ∆t = 10 -4 time units, and we used periodic boundary conditions. To investigate the effect of product inhibition (Fig. 3C and Fig. 4), the side of the simulation box is chosen as L = 2R Diff + σ, where R Diff is the radius of a disk centered around the catalyst (Fig. S7). The latter is placed in the center of the simulation box. Physical and geometrical constraints for catalysis. The cs < s condition: MD results show that the mean first passage times for the S → P and C•P → C + P transitions scale exponentially as T S→P ∝ e -A s and T C•P →C+P \C:P ∝ e -A cs , with A = 0.91 (SI). Thus, T C•P →C+P \C:P < T S→P leads to cs < s for sufficiently large s .

Complementarity to the transition state: When L c /3r min > 1, the C:S configuration is linear, and it is not possible for all three bonds to adopt their equilibrium value (Fig. S2B). As a consequence, the substrate bond is strained and the effective barrier for C:S → C:P is given by ∆U

C:S→C:P = 2U L c -r cutoff 2 , cs - min r * s ,r * cs U (r s , s ) + U (r cs , cs ) + U (L c -r s -r cs , cs ) , (3) 
where r s represents the substrate bond length, r cs the substrate-catalyst bond length, the first term in the equation is the potential energy for r s = r cutoff , i.e., when the substrate is at the transition state, and the second term is the minimum of the potential energy when the substrate is completely attached to the catalyst. The same approach for the effective barrier for a one-dimensional catalyst has been reported in [41]. The smaller ∆U C:S→C:P , the faster the substrate bond will break (Fig. S2). The first term in (3) reaches its minimum when L c = 2r min + r cutoff . This threshold marks when the catalyst is geometrically completementary to the transition state. Construction of the Markov State Model. We construct a MSM by coarse-graining the MD trajectories into discrete states (configurations in Fig. 1C). We first infer the transition rates from the discretized trajectories using k ij = p ij /τ i , where k ij is the rate from state i to state j, τ i is the average time the system stays at state i, and p ij is the jump probability from i to j [59]. To extract τ i and p ij from simulations, we initiate the system in state C + S and sample the system every τ Lag = 50 time units recording the formation and breaking of bonds, where τ Lag is chosen sufficiently large to ignore barrier recrossings (e.g. immediate reformation of a bond after breaking) while still allowing us to resolve the states along the catalytic pathway. This procedure leads to the merging of states C:S and C:P (Fig. S5). Transition probabilities are then computed by measuring the average transition frequency between states [60].

To explore the parameter space beyond simulations, we next construct an analytical model for the rates by classifying the transitions in the MSM into escape and diffusive processes.

Escape processes. We describe bond breaking events as barrier escape problems with Arrhenius-like expression for the rate of the transition, k( ) = e -A +B with A = 0.91 and B = 2.20 (Fig S1B). The broken bond for transitions C•S → C + S and C•P → C + P corresponds to cs , and hence, the rate is k( cs ). The same bond is broken during the C:P → C•P transition, but k C:P →C•P ≈ 2k C•P →C+P as any of the two monomers attached to the catalyst can be released independently. The bond broken during the C•S → C•P transition is the scissile bond in the substrate, and therefore, the rate is k( s ). The barrier for C:S → C:P is described by (3). The barrier for the C:S → C•S transition is approximated by

∆U C:S→C•S = U (r min , s ) + U (r min , cs ) -min r * s ,r * cs U (r s , s ) + U (r cs , cs )+ U (L c -r s -r cs , cs ) , (4) 
where r s represents the distance between the particles in the substrate and r cs the substrate-catalyst particle distance. The calculations for ∆U C:S→C:P and ∆U C:S→C•S assume that C:S is strictly one dimensional, which we have shown is true within the range of L c values necessary for catalysis (Fig. S2B). Diffusive processes. Transitions C + S → C•S, C•S → C:S and C:P → C:S are limited by diffusion. While the first transition depends on the volume of the system, the two latter are intrinsic to the catalyst design and only depend on L c . We verify that in the narrow escape limit, i.e., L c /3r min > 1, the first-passage time distributions for C•S → C:S and C:P → C:S are described by a single timescale (Fig. S4). To interpolate between the reversible and irreversible cases, we introduce a parameter γ, such that kC:P →C:S = γk C:P →C:S , where γ = 1 accounts for the reversible (diffusion-limited) case and γ = 0 accounts for the irreversible case. The first-passage time distribution associated with the C + S → C•S transition is not exponential and depends on the initial distance of the substrate with respect to the catalyst [61]. To estimate a rate, we map the transition to a search process in a disk of radius R Diff with reflecting boundary and an absorbing trap with radius r = r cutoff in the center. To compute the mean first-passage time to reach the absorbing trap starting from the reflecting boundary, we solve D∆t(r) = -1, where D is the diffusion constant, with boundary conditions ∇t(r)| r=R Diff = 0 and t(r = r cutoff ) = 0. We use the inverse of the mean first-passage time k C+S→C•S = 1/t(R Diff ) as the rate. We note that the necessary and sufficient conditions for catalysis do not depend on this particular transition (SI), and hence, the value we set for this rate only impacts the catalyst's efficiency and not the regions where catalysis emerges. In particular, the maximal catalytic efficiency, depicted in Fig 3B in the main text, is obtained in the limit when k C+S→C•S 1. To account for the diffusion of the monomers towards and from the catalyst (Fig. 3C andD), we extend the MSM in Fig. 3A. See section 6 in SI for further details.
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I. MEAN REACTION TIME FOR THE SPONTANEOUS DISSOCIATION

Using Molecular Dynamics (MD) simulations, we verify that the time it takes the substrate dimer to spontaneously dissociate into two free product monomers for the first time, that is, the first-passage time to overcome the interaction potential (Methods), is exponentially distributed (Fig. S1A). For fixed interaction range r cutoff /σ = 1.1, the rate constant associated with the spontaneous reaction, defined as the inverse of the mean first-dissociation time [62,63], k S→P = 1/T S→P , decreases exponentially with the depth of the potential (Fig. S1B). We fit the simulation data with an Arrhenius-like expression k = e -A +B , with A = 0.91 and B = 2.20 ± 0.07 within the range ∈ [3,17]. Since A < 1, the cs < A s < s necessary condition for catalysis holds (Methods).

II. A SPHERICAL PARTICLE CANNOT CATALYZE THE DISSOCIATION REACTION

A single spherical particle, i.e. L c = 0, cannot catalyze a dissociation reaction within our model. This is shown in Fig. S2A, where we plot the free energy of the system along the substrate bond r s when the substrate is completely attached to the catalyst, i.e., r cs < r cutoff for the two substrate-catalyst bonds. We compare two different catalyst designs: a single catalyst particle and a rigid dimer with L c > 3r min . The activation barrier to break the substrate bond in the presence of a single catalyst particle with cs / s = 1 equals the barrier in the absence of the catalyst. In other words, the interaction between the substrate dimer and the catalyst particle does not modify the average time to cleave the substrate bond. For the same binding energy, a rigid dimer satisfying L c > 3r min reduces the activation barrier by straining the substrate bond, consequently accelerating the cleaving of the bond.

III. THE Lc > 3r min NECESSARY CONDITION FOR THE CATALYST GEOMETRY

Catalysis requires T C:S→C:P \C•S < T S→P , where T C:S→C:P \C•S is a function of the catalyst geometry L c , the cs binding energy and the substrate bond s . To investigate the effect of L c on T C:S→C:P \C•S , we initiate the system in C:S and record the time it takes to reach C:P using MD simulations (Methods). To prevent unbinding events, we set cs s . Simulation results in Fig. S2B show that catalysis requires L c /3r min > 1. In this limit, the catalyst geometry does not allow the three bonds in C:S, namely, the substrate bond and the two catalyst-substrate bonds, to simultaneously exist at equilibrium. As a consequence, the substrate bond can be strained and the cleaving of the bond accelerated. Note that despite the large interaction energy cs available, the catalyst only accelerates the reaction for a small subset of geometries, in agreement with Pauling's principle of transition state stabilization [48]. For this subset of geometries, the isotropic interaction with the catalyst becomes directional.

IV. SIMULATION DATA AND STATISTICS FOR FIG. 2

To produce Fig. 2 in the main text, we initiate an ensemble of simulations in C + S by placing the substrate at a random r > r cutoff distance from both particles in the catalyst in a simulation box with side L/σ = 7.5, and record the time it takes two monomers to be released in solution in the presence of the catalyst. This time is compared to the timescale of the spontaneous reaction (see SI section I). Each time a monomer is released in solution, it is systematically blocked, that is, it is not allowed to interact with any other particle. We only perform simulations for the reversible case, where the substrate bond can reform in the presence of the catalyst through the C:P → C:S 

(3)

(5) . We first extract rates from numerical simulations (Methods). Examples of waiting time distributions, transition probabilities and simulation-inferred rates are shown in Fig. S5. Next we derive analytical expressions for the dependence of the rates on the parameters of the system. This allows us to explore the parameter space beyond simulations (Methods).

To validate the coarse-graining and discretization of the catalytic path into states, we compare the efficiency of the catalyst design, i.e., T S→P /T C+S→C+P , in simulations, where the catalytic pathway is not divided into elementary transitions, to the efficiency using the minimal MSM with rates inferred from simulations and rates from the analytical model. The comparison is shown in Fig. S6 for the reversible (γ = 1) and irreversible (γ = 0) cases. The agreement in the reversible case supports the coarse-graining of the system into states. The way in which data is generated for the irreversible case (see SI section IV) might be one of the reasons why the results do not quantitatively agree for small cs for the MSM with the simulation inferred rates. Although the analytical model for the rates underestimates the efficiency of the catalyst in the irreversible case, the overall scaling agreement between the MSM and simulation data in Fig. 3B in the main text for both reversible and irreversible cases further support the coarse-graining. FIG. S6. Comparison of the catalytic efficiency, i.e., TS→P /TC+S→C+P , for a fixed substrate bond ( s = 15) and catalyst geometry (Lc/3rmin = 1.02) and different cs for numerical simulations (blue points), the MSM with the rates inferred from simulation (red crosses, kE) and the MSM using the analytical rates (dashed black line, kA) (Methods). Top panel corresponds to the reversible case (γ = 1), while the bottom panel corresponds to the irreversible case (γ = 0). In all cases, monomers are removed as soon as they are released in the solution. Simulation results correspond to a box with side L/σ = 15.

B. Extended MSM to account for volume

To explore the impact of product inhibition and other volume effects on catalysis, we require monomers to diffuse sufficiently far away from the catalyst, i.e., r > R Diff , in order to leave the system, where R Diff is the radius of a disk (sphere) centered around the catalyst (see Fig. S7A). We extend the MSM in Fig 3A in the main text to 10 states and introduce transitions that describe the substrate and product particles diffusing towards or away from the catalyst. To estimate a rate for these transitions, we take the inverse of the mean first-passage time of a search process in a bounded domain. We compute the mean first-passage time by solving D∆t(r) = -1 with the appropriate boundary conditions, where D is the diffusion constant [64]. For example, we estimate the mean first-passage time for the C + S| f → C + S| c transition, where the subscripts f and c indicate that the substrate is 'far' (r = R Diff ) and 'close' (r = r cutoff + δ, with δ 1) from the catalyst, by mapping the transition to a diffusion process in a disk (sphere) with boundary conditions t(r = r cutoff + δ) = 0 and ∇t(r)| r=R Diff = 0. The first condition represents an absorbing target of radius r = r cutoff + δ in the center of the domain and the second one accounts for the reflecting boundary at r = R Diff . The mean first-passage time will depend on the starting point of the process t = t(r 0 ), which we set at r 0 = R Diff , corresponding to state C + S| f . We estimate the first return time for C + S| c → C•S by assuming a similar setup, but setting the starting point of the process at r 0 = r cutoff + δ and absorbing boundary at r = r cutoff . Transitions For transitions requiring the monomers to diffuse away from the catalyst, such as C•P | c → C•P | f and C + P | 2c → C + P | c , we consider t(r = R Diff ) = 0 and ∇t(r)| r=r cutoff = 0 as boundary conditions, and set the starting point of the process at r 0 = r cutoff . We note that despite our procedure to estimate the rates, the first-passage time distributions for these processes are not exponential [61,65], and therefore, a rate cannot be properly defined. The comparison between MD simulation data in Fig. 3C 

FIG. S7. (A)

States considered in the extended MSM, when product monomers (blue) are not immediately removed after they are released in solution and have to diffuse a distance r > R Diff from the center of the system, where the catalyst is placed (red), to leave it. We now consider that the substrate and product particles particles can be far (f ) or close (c) to the catalyst. (B) Extension of the MSM in Fig. 3A in the main text to account for the diffusion of the monomers away from the catalyst.

VII. NECESSARY CONDITIONS FOR CATALYSIS.

We derive the necessary conditions for catalysis when monomers are systematically removed from the system (MSM in Fig. 3A in the main text) by comparing the mean first-passage time from C + S to C + P , i.e., T C+S→C+P , to the mean reaction time in the absence of catalyst, T S→P = 1/k S→P . T C+S→C+P can be analytically computed [66] and the criterion for catalysis, T S→P /T C+S→C+P > 1, takes the form 

where k i→j is the rate to transition from state i to state j. The above equation is a sufficient condition for catalysis of the form T S→P > n T n . Each individual term on the right hand side of the equation leads to a necessary condition for catalysis that can be subsequently translated into physical and geometrical constraints in our model.

The first necessary condition in eq. (S1), k S→P < k C:S→C:P , pertains to the catalytic mechanism and leads to L c > 3r min and cs > 0. The second and third necessary conditions in eq. (S1), k S→P < k C:P →C•P and k S→P < k C•P →C+P , are associated to product release and lead to cs < s . The fourth necessary condition in eq. ( S1) is non trivial only in the reversible case, when C:P → C:S is possible. In the irreversible case, this transition is not allowed and hence, k C:P →C:S = 0. The last necessary condition on the right hand side in equation (S1) stems from the alternative pathway that the substrate may take in the presence of the catalyst to produce products, i.e. C•S → C + P , without visiting C:S. This shortcut to the final state of the reaction relaxes the constraint on k C•S→C:S , which does not have to be as fast as the spontaneous reaction for catalysis to emerge. Note that eq. (S1) is independent of T C+S→C•S , the average time it takes the substrate to diffuse to the catalyst. This is because the substrate can always dissociate spontaneously into two monomers in a single step in the presence of the catalyst. As here we consider that the reaction ends when two monomers have been released into solution (systematic product removal), any catalyst design that successfully accelerates the production of monomers will only contribute to reducing the mean reaction time. In other words, as long as the product is systematically removed, catalysis is an intrinsic property of our catalyst design, and therefore independent of the volume of the system. The efficiency of the catalyst, however, depends on volume. 

VIII. SCALING OF THE MAXIMAL EFFICIENCY

To understand why the maximal catalytic efficiency scales exponentially with s in the irreversible case and why it saturates in the reversible case (Fig 3B in the main text), we propose a minimal reaction scheme that captures the essential features of our model. This scheme is shown in Fig. S8 and it contains four states, where the CS → CP transition accounts for the chemical transformation step and CP → C + P represents product release. We model the rates as

k s = e -s k + 1 = k s e α cs k + 2 = e -cs k - 1 = γk CP →CS , (S2) 
and we leave k + 0 and k - 0 unspecified as they do not take part in the sufficient condition for catalysis (see SI section VII). Here α represents the catalyst's ability to reduce the rate of the spontaneous reaction, k CP →CS is the diffusion-limited rate of the reverse reaction in the catalyst and γ is the parameter that regulates such rate. Note that for fixed s , the larger cs , the larger k + 1 will be, but the smaller k + 2 , recovering the Sabatier principle of optimal intermediate binding strength. To make the notation compact, we use γk CP →CS ≡ γ. Catalysis requires α > 0 and cs < s . When α = 1, the catalyst cancels the barrier of the spontaneous reaction.

We determine the efficiency of the catalyst by computing the mean first-passage time to reach the product state in the presence and absence of the catalyst, which yields

T S→P T C+S→C+P = k + 0 k + 1 k + 2 + k + 1 k + 2 k s + k - 0 (k - 1 + k + 2 )k s [k + 1 k + 2 + k - 0 (k - 1 + k + 2 ) + k + 0 (k - 1 + k + 1 + k + 2 )]k s . (S3) 
A. Irreversible case: exponential scaling

In the limit when k + 0 → ∞ and γ = 0, the mean-first passage time to produce two product monomers in the presence of the catalyst is

T C+S→C+P = 1 k + 1 + 1 k + 2 = e cs + e s-α cs , (S4) 
which is minimized by

* cs = s + log α 1 + α . ( S5 
)
As a result, the maximal catalytic efficiency for s → ∞ scales as

lim s→∞ T S→P T C+S→C+P cs = * cs = 1 1 + α e 1 1+α ( s+log α) ∼ e α s , (S6) 
recovering the scaling in Fig. 3B in the main text for the irreversible case, where α = (1 + α) -1 . Note that when α = 1, the optimal binding strength * cs = s /2 and α = 0.5. For our MD results in Fig 3B, α M D = 0.50 ± 0.04.

B. Reversible case: Saturation

When γ = 0, T C+S→C+P in the limit when k + 0 → ∞ is given by

T C+S→C+P = 1 k + 1 + 1 k + 2 + k - 1 k + 1 k + 2 = e cs + e s-α cs + γe (1-α) cs + s , (S7) 
and the catalytic efficiency is

T S→P T C+S→C+P = e s e cs + e s -α cs + γe (1-α) cs + s = 1 e cs -s + e -α cs + γe (1-α) cs (S8)
Since catalysis requires s > cs , in the limit when s → ∞,

T S→P T C+S→C+P = 1 e -α cs + γe (1-α) cs . (S9)
The catalytic efficiency is maximal when the denominator is the smallest, which is minimized when cs = 0. As a result, the maximal efficiency saturates,

T S→P T C+S→C+P = 1 e -α cs + γe (1-α) cs cs =0 = 1 1 + γ , (S10) 
in agreement with the cases for γ = 0 in Fig. 3B in the main text.

IX. EMERGENCE OF CATALYSIS IN 3D

In Fig. S9, we produce Figs. 3C and D in the main text for a system in 3D. To construct Fig. S9A, we simulate the system at varying s and R Diff , with fixed catalyst geometry L c /3r min = 1.02 and we explore a range of cs that satisfy cs < s . We consider that catalysis emerges for a given s and R Diff if there is at least one cs for which T S→P /T C+S→C+P > 1. We note that since our resolution in binding energy is ∆ cs /k B T = 1, we may miss designs for which the criterion for catalysis is satisfied. The results qualitatively agree with the MSM (blue region). MD results in 3D indicate that catalysis emerges at smaller values of s than in the 2D case, i.e., 

Design of the folding landscape

Along the folding process, each new bond that forms causes the chain to adopt a different configuration. Those configurations that have the same contact matrix, ignoring chirality, are here defined to belong to a given state.

All possible states between the linear chain and the final geometries map out an energy landscape that can be represented in a tree form. In the folding tree in Fig. 2 (a), each row shows states with the same number of secondary bonds, i.e., the same potential energy. Two states are connected in the tree if one can topologically transform into the other by making or breaking a single bond.

Designing folding protocols, or the order of secondary droplet interactions, allows us to funnel the landscape to one final folded state.

The example of an alternating heptamer chain in Fig. 2 (a) shows that switching on only the blue-blue interaction yields a rocket foldamer as the final state. This tree was constructed theoretically and then populated by images of states that were observed along experimental folding We start by enumerating only the rigid states [31] and we map out all the possible backbone arrangements therein (Methods). Superimposing the alternating sequence on the backbones, we add secondary bonds between neighboring droplets according to a specific interaction matrix.

Resulting states are then classified as local or global minima. Keeping track of the minima each time an interaction is added, we determine if a colloidomer eventually folds into a unique geometry for a given sequence of interactions steps. The algorithm relies on the assumption that interactions are irreversible and that all bonds form, which requires a long enough waiting time at each temperature step in the experiment. This strategy is general for any linear polymer that can freely rearrange during folding via hierarchical interactions.

Alternating sequence foldamers

Our systematic search identifies successful protocols that yield a total of eleven foldamer geometries for chains up to 13 droplets long, as shown in Fig. 3 

Colloidomer folding mechanisms

More generally, alternating colloidomers follow two mechanisms to reach the foldamer state: core collapse and geometric frustration, as illustrated in Fig. 3 (c).

The most common mechanism is the core collapse, which first forms a rigid core and then locks in the remaining droplets on the outside. Up to decamers, the cores con- vors have the properties of uniqueness [38], robustness 251 [39], and kinetic accessibility in a funnel landscape [33].

252

The core collapse folding mechanism resembles the hy-253 drophobic collapse in proteins [40,41], while that of geo-254 metric frustration has been proposed as a design principle 255 in the assembly of peptides [42]. On the supracolloidal 256 scale, foldamer assembly mimics the polymerization of 257 fibrils [43], the formation of protein-based micelles [44] or 258 protein dimerization [45]. These similarities occur even 259 though our system is strictly out-of-equilibrium, high- 

Methods

Droplet synthesis.

Monodisperse PDMS droplets were synthesized according to a protocol modified from that outlined in [25], [26], and [49]. An equal volume of dimethoxydimethysilane (Sigma Aldrich) and (3,3,3trifluoropropyl)methyldimethoxysilane (Gelest) was mixed together with DI water at approximately 2% v/v. The monomers were prehydrolyzed by vortexing for 60 minutes.

Ammonia was added at 1% v/v, and the droplets were left to grow over 24 hours. The droplets were then dialyzed against 5mM sodium dodecyl sulfate (SDS, Sigma Aldrich) to remove the remaining ammonia and reaction byproducts. We then incubated the droplets in 1% v of (3-glycidoxypropyl) methyldiethoxysilane (Gelest) with 10mM Sodium Azide and 5mM SDS. This embedded reactive azide groups inside the droplets, such that they can be fluorescently labeled at a later stage. This synthesis produced monodisperse oil droplets that were denser than water with a low gravitational height, forming a quasi-2D system. Video analysis. Folding videos were analyzed using a cus-513 tom MATLAB data analysis software. All particles were iden-514 tified and located using thresholding. These particles were 515 then tracked through the whole movie using custom software 516 modeled after that in [50]. Polymers were identified using the 517 same metrics as in [25] from the first ten minutes of every recording, which was always above the melting temperature of the strongest secondary interaction. A N × N × t (where N is the number of monomers in the polymer and t is the time) connectivity matrix was then calculated for each polymer using the particle locations and diameters. The contact matrix was median filtered over t to remove transient interactions.

Each contact matrix was then matched to a polymer configuration theoretically computed, allowing us to track the polymer configuration over time. Selections of data were vetted by hand afterwards to ensure the integrity of the data. Polymers that aggregated or that folded into three-dimensional structures were discarded.

For Figure 2 (a), the yield plotted is defined as the proportion of all polymers that are identified with a given configuration. If a polymer is lost at a given time, aggregates with another one, or enters an unidentifiable configuration, it is removed from the pool. For Foldamer search algorithm. We develop a computationally efficient search algorithm to systematically scan protocol and sequence spaces and find foldamers of a given length N . The algorithm requires as input the ensemble of all backbone configurations within the geometries NR for a chain of length N , i.e., the set of Hamiltonian paths {H1,1, ..., Hp 1 ,1, ..., H1,q, ..., Hp q ,q }, ∀q ∈ (1, NR), where pq is the number of paths in the q-th geometry. The total number of Hamiltonian paths grows exponentially and it does not depend on the sequence or the interaction matrix. Thus, they are computed only once per N , significantly reducing the computation time. The structure of the algorithm is shown in the Extended Data Fig. 1. For a given protocol and sequence, the algorithm can be summarized as follows:

Input. Map the sequence onto Hamiltonian paths.

1. Form bonds. Apply the first interaction of the protocol.

A bond will be formed between two vertices if they are in neighbouring lattice points and the interaction is allowed 

where ri = 1.05σ is the interaction range, ε is the strength of 622 the interaction and α is a parameter that sets the minimum 623 of the potential U (rmin) = ε (see [52] for further details Extended Data Fig. 2. Foldamer yields for an alternating ABAB sequence with length N = 6 -13. From left to right, we show the results for single, two, and three-step protocols. All yields are given as relative yields, in which the number of foldamers is normalized by the total number of rigid structures observed at the end of the corresponding protocol. The experimental number of observations is n6 [ladder, triangle, chevron] = [START_REF]Global climate strike[END_REF]19,[START_REF] Calandre | Accelerating search kinetics by following boundaries[END_REF], n7 [rocket #1, rocket #2, flower] = (175, 25, 7), n8 [hourglass] = 8, n9 [poodle] = 24 and n10 [crown] = 8. 'ND' stands for 'No Data'. These experimental data are in good agreement with numerical simulations. Purely downhill simulations optimize the yield Y Sim_Downhill of geometrically frustrated foldamers, such as the flower and the bed. Repeating the simulations on timescales where some rearrangements are possible optimizes the yield Y Sim_StepT hermal of core collapse foldamers, as shown in Supplementary Video 8. For simulations with multistep protocols, the waiting time between subsequent interactions is τ = 10 5 simulation time units. The total number of simulations is > 2 × 10 3 for all cases reported.
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Catalyse, auto-assemblage, pliage, chimie artificielle, particules colloïdales, matière molle.

RÉSUMÉ

Dans cette thèse, nous étudions les principes de conception pour la catalyse et l'auto-assemblage par repliement, en utilisant des modèles physiques à gros grains de particules sphériques interagissant via des potentiels programmables. La catalyse, l'accélération des réactions chimiques par des molécules qui ne sont pas consommées dans la réaction, est centrale aux organismes vivants et une pierre angulaire de l'industrie chimique. Malgré son omniprésence, les contraintes géométriques et physiques qui donnent lieu à la catalyse ne sont pas entièrement comprises. En outre, il n'existe pas de cadre théorique permettant de concevoir rationnellement la catalyse à partir de zéro. Par conséquent, l'élucidation des principes de conception d'une catalyse efficace reste un défi majeur, les enzymes artificielles ne parvenant pas à atteindre les capacités de leurs homologues naturels. Nous introduisons ici un cadre théorique pour la conception ascendante de la catalyse basé sur la théorie des temps de premier passage et nous appliquons ce cadre pour concevoir un catalyseur minimal qui accélère les réactions de dissociation dans un modèle basé sur la chimie artificielle. Nous montrons qu'un dimère rigide minimal accélère le clivage d'une liaison dans une plage étroite de l'espace des paramètres couvert par la géométrie et les interactions physiques du catalyseur avec le substrat, ainsi que par les conditions de réaction. Nos résultats ouvrent la voie à la conception de systèmes artificiels autorégulés dotés de fonctionnalités bio-inspirées. L'auto-assemblage désigne le processus par lequel des sous-unités s'organisent de manière autonome en motifs ordonnés et en structures fonctionnelles. Une stratégie d'auto-assemblage efficace est incarnée par les protéines naturelles, qui se replient de manière réversible dans leur état natif à partir d'une chaîne comportant une séquence d'acides aminés spécifique. La stratégie d'auto-assemblage la plus répandue est l'assemblage à partir d'un gaz de particules. Au contraire, dans ce travail, nous introduisons un nouveau paradigme pour la conception de matériaux en étudiant le repliement de courtes chaînes colloïdales librement jointes, les colloïdomères, où les interactions sont médiées par l'ADN. Le contrôle de l'état plié final est obtenu en concevant des protocoles de température de non-équilibre qui canalisent l'espace de configuration du polymère, guidant le pliage de la chaîne vers une géométrie unique que nous appelons un foldamer (colloïdal). Afin d'identifier systématiquement toutes les solutions de foldamères, nous développons un algorithme qui sélectionne des repliements uniques en deux dimensions en cherchant dans l'espace des séquences, des espèces de particules et des interactions.

Notre approche révèle des modes de repliement qui rappellent ceux proposés dans le contexte des protéines et permet de concevoir de nouveaux blocs de construction supra-colloïdaux.

ABSTRACT

In this thesis we investigate the design principles for catalysis and self-assembly through folding using coarse-grained physical models of spherical particles interacting via programmable potentials. Catalysis, the acceleration of chemical reactions by molecules that are not consumed in the reaction, is central to living organisms and a cornerstone of the chemical industry. Despite its ubiquity, the geometrical and physical constraints that give rise to catalysis are not fully understood. Furthermore, there is no theoretical framework to rationally design catalysis from scratch. Consequently, elucidating the design principles of efficient catalysis remains a major challenge, with artificial enzymes failing to meet the capabilities of their natural counterparts. Here we introduce a theoretical framework for bottom-up catalysis design based on the theory of First-Passage Times and apply the framework to design a minimal catalyst that accelerates dissociation reactions in a model based on artificial chemistry. We show that a minimal rigid dimer accelerates the cleaving of a bond in a narrow range of the parameter space spanned by the geometry and physical interactions of the catalyst with the substrate, as well as the reaction conditions. Our results open the door to the design of self-regulated artificial systems with bio-inspired functionalities. Self-assembly refers to the process in which subunits autonomously organize into orderly patterns and functional structures. An efficient self-assembly strategy is embodied by natural proteins, which reversibly fold into their native state starting from a chain with a specific amino-acid sequence. The prevailing self-assembly strategy is the assembly from a gas of particles. Instead, in this work we introduce a new paradigm for materials design by studying the folding of short, freely-jointed colloidal chains, colloidomers, where interactions are mediated by DNA. Control over the final folded state is achieved by designing non-equilibrium temperature protocols which funnel the polymer configuration space, guiding the folding of the chain towards a unique geometry that we call a (colloidal) foldamer. In order to systematically identify all foldamer solutions, we develop an algorithm that selects unique folds in two dimensions by searching in sequence, particle species and interaction space.

Our approach reveals folding modes reminiscent of those proposed in the context of proteins and allows for the design of novel supra-colloidal building blocks.

KEYWORDS

Catalysis, self-assembly, folding, artificial chemistry, colloids, soft matter

Figure 1 . 1 :

 11 Figure 1.1: Catalysts come in all shapes and sizes. (a) Scanning electron micrograph of zeolite crystals, which are aluminosilicate minerals with a highly porous structure. Zeolites are widely used as heterogeneous catalysts in the chemical industry. Figure adapted from [11]. (b) Cartoon representation of bovine trypsin, a protease enzyme that cuts peptide bonds, with colors indicating the secondary structure of the protein. Image corresponds to the PDB entry 2PTN. (c) Our minimal catalyst design consists of spherical particles interacting via programmable potentials. The work in this manuscript shows that a rigid dimer (red) has the ability to catalytically cleave bonds (blue).
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Figure 1 . 3 :

 13 Figure 1.3: Haldane's strain model. Schematic diagram showing the steps in which a catalyst (white rectangle) induces the dissociation of a dimer (blue), from (a) to (f), or bond reformation between two monomers (orange), from (f) to (a), according to Haldane's strain model. Diagrams in (c) and (d) show the catalyst exerting the strain on the substrate. Figure adapted from [51], based on Haldane's original illustration in [52].

Figure 2 . 1 :

 21 Figure 2.1: Three catalytic pathway examples with bifurcations or loops. (a) The catalytic pathway, composed of three intermediate states C 1 , C 2 and C 3 contains a shortcut connecting C 1 to C 3 . The reaction scheme we will focus on in chapter 3 corresponds to this category (see Fig. 3.4). (b) The catalytic pathway consists of two pathways. The product state might be reached by visiting C 2 and C 3 from C 1 or by transitioning directly from C 1 without visiting any other state. (c) The catalytic pathway, simplified to only two intermediate states C 1 and C 2 , contains a futile state, C 1 , from which it is not possible to reach the product state. The k ± i denote the transition rates between states.

Figure 3 . 1 :

 31 Figure 3.1: Pairwise interaction potential designed by Wang et al. [104] (solid black line), where and r c are the depth and interaction range of the potential, respectively, σ is the particle diameter and r min is the equilibrium position.

Figure 3 . 2 :

 32 Figure 3.2: Parameters of the model. (a)The substrate is defined as a dimer that spontaneously dissociates into two monomers, the product of the reaction. This process can be accelerated with a rigid dimer that acts as a catalyst, where L c denotes the fixed distance between the particles in the catalyst. (b) Interaction matrix describing the depth of the potential for each interaction in the system. Two blue particles interact with strength s , while a red and blue particle interact with strength cs . The catalyst is rigid, symbolized by → ∞.

Figure 3 . 3 :

 33 Figure 3.3: Lifetime of a dimer bond. (a) Logarithm of the exponential distribution of first-escape times for potentials with different depths. (b) Rate constant for the escape from the interaction potential in (3.2), as a function of the barrier height . Solid lines in color correspond to the numerical integration of Kramers' rate in eq. (3.4) for two friction coefficients 1/D. Black crosses are Langevin dynamics simulation results, with noise level ζ = 5 and friction coefficient 1/D = ζ 2 /2k B T = 12.5[START_REF] Robert D Groot | On the role of hydrodynamic interactions in block copolymer microphase separation[END_REF]. We fit simulation data using an Arrhenius like expression, k = Ae -B (dotted line). Arrows point at the rates that are associated to the distributions in (a).

Figure 3 . 4 :

 34 Figure 3.4: State space of the model. (a) States allowed in solution, controlled by particle valence. Each state is characterized by the number of substrate (blue) and catalyst (red) particles (first and second column), the scissile bond in the substrate and the number of catalyst-substrate bonds (third, fourth and fifth columns). States C•S and C•P have symmetric counterparts that are not explicitly shown. (b) A rigid dimer can accelerate the dissociation of a dimer into two monomers.The catalytic pathway consists of three stages: binding the substrate, transforming it into products and releasing the products so that the catalyst can return to its initial state. Despite the presence of the catalyst in the system, the spontaneous reaction can still take place.

Figure 3 . 5 :

 35 Figure3.5: The catalytic mechanism is strain. Simulated MFPT to break the bond in the absence of catalyst, T S→P , compared to the equivalent MFPT when the substrate is fully attached to the catalyst, T C:S→C:P , as a function of the parameter controlling the catalyst geometry. When (i) L c /3r min < 1, the presence of the catalyst does not affect the reaction time. When (ii) L c /3r min > 1, the catalyst accelerates the bond-breaking process by straining the scissile bond in the substrate. Results are shown for three different substrates s (colored lines). In all cases, cs = 30 to prevent the unbinding of the substrate.

Figure 3 . 6 :

 36 Figure 3.6: Simulated free energy landscape, F/k B T = log P (r cs , r s ), for (a) L c /3r min = 0.36 and (b) L c /3r min = 1.02. The landscape is shown along two reaction coordinates: r s , the distance between the particles in the substrate, and r cs , the distance between a substrate and a catalyst particle. The remaining catalyst-substrate bond is r cs ≈ r min . The figure shows the ensemble of C•S, C:S, C:P and C•P configurations, delimited by solid lines. Dotted lines indicate the equilibrium position for the r cs and r s bonds. We have used s = 10 and cs = 11 for both cases. Additionally, the spontaneous reaction includes a potential energy barrier at r s = r c to prevent immediate barrier recrossings.

Figure 3 . 7 :

 37 Figure3.7: A single spherical particle cannot accelerate a dissociation reaction. Simulated free energy landscape where the substrate bond r s is taken as the reaction coordinate and the bonds with the catalyst satisfy r cs,i < r c for both particles. Results are shown for two different catalyst designs: a single spherical particle (black) and a rigid dimer with L c /3r min = 1.02 (dashed grey). The single particle catalyst does not change the depth of the interaction potential for the scissile bond in the substrate, which remains equal to

Figure 3 . 8 :

 38 Figure 3.8: Linear scaling relationships. Scaling of the activation barrier * for the C:S → C:P transition as a function of the catalyst-substrate interaction cs . Different catalyst geometries with L C /3r min > 1 are shown.

  ) by assuming that the catalyst pulls symmetrically on the substrate to simplify the calculation; (C:S) * here symbolizes the TS. The activation barrier for the C:S → C:P transition is given by * (L c , cs , s ) = U (C:S) * -U C:S,min .(3.11)

Figure 3 . 9 :

 39 Figure 3.9: Timescale of substrate binding. (a) MFPT for binding for the C•S → C:S transition as a function of L c , for diffusion in two (blue squares) and three-dimensions (red circles). The vertical dashed line marks the L c = 2r min +r c limit. (b) First binding time distributions for L c /3r min = 1.02 for two and three dimensions in red and blue, respectively. The solid line corresponds to an exponential fit with rate k = 1/T C•S→C:S . An arrow in panel (a) marks the average value each distribution gives rise to. Results were obtained by setting s = cs = 30 to avoid unbinding transitions.
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 310 Figure 3.10: Geometrical constraints to bind the substrate. (a) Schematic showing the substrate particle M 2 (blue) trying to bind the catalyst particle C 2 (red). Circles in black represent interaction shells (with radius r c , only drawn around catalyst particles for clarity), while circles in gray represent equilibrium shells (with radius r min ). In yellow, we show the overlap between the M 1 equilibrium shell and C 2 interaction shell, which depends on θ 1 and L c . The overlap gives rise to the chord of length 2b in two-dimensions. (b) b as a function of L c for θ 1 = 0. Note how b = 0 when L c = 2r min + r c . Further details can be found in Appendix B.
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 311 Figure 3.11: Catalytic solutions in the parameter space. (a) Slice of the parameter space for fixed spontaneous reaction s = 14, as a function of L c and cs . The color scale represents the ratio T S→P /T C+S→C+P , where the criterion for catalysis requires T S→P /T C+S→C+P > 1. Green lines mark the necessary conditions for catalysis: the horizontal line marks the cs < s condition, while the vertical lines indicate L c /3r min > 1 (left) and L c < 3r c (right). (b) We now fix the geometry L c /3r min = 1.02, and vary s and cs .The dashed line along the diagonal marks the cs < s condition. The data above the solid white line has been extrapolated from the Langevin simulation results. The white rectangle for s > 15 marks the limit where we can get good statistics from MD simulations. Results correspond to a simulation box of side L B /σ = 7.5. Results in (a) and (b) correspond to the irreversible case, that is, the C:P → C:S is not allowed. Panels (c) and (d) are analogous to (a) and (b), but the reformation of the substrate bond is diffusion limited. In all cases, free monomers are removed from the system as soon as they are produced to avoid product inhibition. Note that range of the color scale changes from (a) and (b), to (c) and (d).

Figure 3 . 12 :

 312 Figure 3.12: A flexible catalyst is sub-optimal. (a) T C:S→C:P /T S→P ratio as a function of the catalyst geometry, for different scaffold flexibilities k = 10 (red squares), k = 10 2 (blue triangles), k = 10 3 (green rhomboids) and k = 10 4 (yellow crosses). For comparison we show the results for a rigid structure (black dots). The simulation procedure to obtain the data is detailed in section 3.3.1.1. Simulation parameters are s = 8 and cs = 30. (b) Comparison of the catalytic efficiencies η + = T S→P /T C+S→C+P for a flexible catalyst with k = 10 3 (η + 10 3 ) and its rigid counterpart (η + ∞ ). Colors indicate different substrates s . The geometry is fixed at L c /3r min = 1.02. Crosses indicate when η + 10 3 < 1 and η + ∞ < 1 simultaneously.

Figure 3 . 13 :

 313 Figure 3.13: Coarse-grained reaction cycle. (a)-(e) Waiting time distributions for states C + S, C•S, C:S, C:P and C•P , respectively. The peaked first bin (a)-(d) indicates the presence of short-lived barrier recrossings and signals the inadequacy of the definition of states. The parameters used for the plots are s = 15, cs = 10.5, L c /3r min = 1.02 and L B = 15. (F) Average lifetime of the states in the model as a function of cs / s (colors) and fixed geometry L c /3r min = 1.02. The state C:S is the shortest lived in all cases.
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 314 Figure 3.14: Sampling simulation trajectories with a lag time. Waiting time distributions for states C + S, C•S, C•P and the new state (C:S + C:P ). Results in blue correspond to the waiting time distributions obtained by coarse-graining the MD simulations into states defined by their geometrical properties, such as the number of bonds. Results in red are obtained by sampling the trajectories every 50 time units and noting the configuration the system is in. Dashed line shows an exponential fit. Parameters for this data are s = 15, cs = 10, L c /3r min = 1.02 and L B = 15.
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 315 Figure 3.15: Simulation-inferred rates. Transition rates extracted from Langevin dynamics simulations as a function of the catalyst binding energy during the construction of a MSM.

Figure 3 .

 3 Figure 3.16: (a) Schematic diagram showing all states of the MSM, togetherwith their corresponding transition rates. We remind the reader that C:S and C:P are grouped into a single state when inferring the transition rates from simulations (yellow); the analytic model for the rates considers them separately instead. The dashed arrow for the C:P → C:S transition represents the rate constant which is k - 2 = 0 in the irreversible case. Single-headed arrows represent irreversible transitions, as a result of removing monomers from the system. (b) Comparison of the catalytic efficiency T S→P /T C+S→C+P of different catalyst designs according to the Langevin MD simulations (blue), the MSM with the rates inferred from simulation (red) and the MSM with the analytic rates (dashed black line). Top panel corresponds to a spontaneous reaction with s = 15, where the substrate bond can reversibly reform, while the bottom panel corresponds to the same parameters but for irreversible bond formation.

Figure 3 .

 3 Figure3.17: Necessary (lines) and sufficient (colored areas) conditions for catalysis, i.e., η + > 1, according to the MSM with analytic rates. The black solid line along the diagonal corresponds to the cs < s condition; dashed lines represent the k s < k + 2 k + 3 /k - 2 condition; dotted lines are the necessary condition associated to the last term in eq. (3.17). Colors represent different values of γ, which regulates the value of k - 2 in the model: γ = 1 corresponds to diffusion-limited bond formation, while γ = 0 is the irreversible case. The white region above the diagonal represents inhibition, i.e., η + < 1. Results shown correspond to L c /3r min = 1.02.

Figure 3 . 18 :

 318 Figure 3.18: Efficiency and optimality of the rigid dimer design for the best-case scenario conditions. (a) Maximal catalytic efficiency as a function of the spontaneous reaction for simulations in the reversible case (orange) and irreversible case (green). Results from the analytic MSM are shown as lines, with kC:P →C:S = γk C:P →C:S . While the optimal efficiency for γ = 1 saturates, it scales exponentially with s for γ = 0. Simulation data fits α = 0.50 ± 0.04. (b) Simulated Volcano plots for different simulation box sizes L B /σ. We show reversible (top) and irreversible (bottom) spontaneous reactions. Results correspond to s = 15. The position of the peak does not depend much on the reaction conditions.

Figure 3 .

 3 Figure 3.20: (a) Steady-state rate of the reaction measured in numerical simulations as a function of substrate concentration [S] (gray points).For comparison, we plot the results for the MSM model developed in section 3.4.1 using the rates inferred from simulation (blue) and the analytic rates (red). The rate of the spontaneous reaction is shown in green. The horizontal dashed lines show an attempt to fit the model to a Michaelis-Menten model. (b) Fraction of monomers released in solution in a closed system as a function of time. The black curve shows the system without a catalyst. The colored lines correspond to the system with a catalyst, where each color is associated to a different ratio of catalyst-to-substrate.

  steady-state. We measure the rate of the reaction once the concentration of intermediates in the catalytic pathway, such as [C•S] or [C•P ], does not change with time. In Fig. 3.20(a), we show the rate of the reaction at the steady state for different substrate concentrations, where [S] [C].
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 51 Figure 5.1: Two different strategies for bottom-up self-assembly. (a)In the puzzle approach, the structure assembles from a gas of particles. The assembly information is carried by the building blocks in the system. In the figure, information is encoded in an interaction matrix, which dictates what particles can interact with each other: black squares indicate that the two particle types attract each other, while white squares indicate that the particles do not interact at all, and simply repel to avoid overlapping. (b) In the folding approach, the building blocks are first assembled into a polymer chain with a specific sequence -in the figure, an alternate sequence with two particle flavors. Building block specificity is provided through an interaction matrix smaller than the one shown for (a). For the final assembly to be possible, the polymer must behave as a freely jointed chain[5]. Figure adapted from[START_REF] Cademartiri | Programmable selfassembly[END_REF].

Figure 5 . 2 :

 52 Figure 5.2: Colloidomers are polymers made of colloidal droplets. (a) The droplets in a colloidomer chain are made of oil, dispersed in water and coated with two different types of mobile DNA strands: the backbone or primary DNA, which has a high T m melting temperature (shown as double-stranded DNA), and the secondary DNA interactions, depicted as single stranded DNA in blue and red on the surface of each droplet. Secondary interactions are responsible for mediating the folding of the polymer towards more compact structures. (b) Assembly process showing the formation of a colloidomer chain from a gas of particles and its subsequent folding into a structure. (c) Experimental images, obtained by A. McMullen at the Brujic Lab showing the folding of an octamer chain (scale bar ∼ 2.5 µm).
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 100661 Figure 6.1: A colloidomer can be modeled as a mathematical graph. The figure shows a two-dimensional colloidomer cluster with N = 6 particles (a), its graph representation (b) and the corresponding adjacency matrix (c). The dotted lines in the graph in (b) indicate one of the 24 possible Hamiltonian paths that can be traced within the cluster. The Hamiltonian path depicted in the figure is {0 → 3 → 1 → 4 → 2 → 5} (it can also be read in reverse order).The solid lines in the graph represent secondary DNA bonds. The upper triangle of the interaction matrix is shadowed to emphasize its symmetry, and the particle labels used to construct it are explicitly shown on each vertex of the graph.
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 62 Figure 6.2: Isomorphic graphs can represent different clusters. (a) A pair of chiral clusters, which can only be overlapped through a mirror symmetry, cannot be distinguished through an isomorphism check. (b) In two-dimensions isormophic graphs can represent topologically different colloidomer configurations in the plane. The colloidomer backbone is shown with dashed lines. Each cluster contains a single secondary bond, indicated by a solid line. The two clusters have different kinetic properties depending on the position of the red particle in the plane (inside or outside).
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 63 Figure 6.3: Generating rigid clusters with N particles from a seed with N -1 particles. Schematic depicting how the N = 6 chevron cluster can be used to generate three out of the four rigid clusters for N = 7 in two-dimensions.All graphs in the figure are embedded in a triangular lattice. The outer face of the chevron graph is marked by thick black lines. The method consists of connecting new vertices to two adjacent ones in the outer face of the seed, as indicated by the colored dashed lines in the figure. When the red particle is added, the chevron becomes the flower; when the blue particle is added, the turtle emerges; finally, when the yellow particle is added, the rocket is obtained.
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 6410761 Figure 6.4: Rigid, non-compact clusters.Three examples of two-dimensional colloidal clusters that contain a stable hole in the bulk for N = 13, 14 and 15 particles, respectively. In total, there is a single rigid cluster with a stable hole for N = 13, 6 for N = 14 and 41 for N = 15. Notice how these geometries with their holes look similar to molecular sieves, suggesting a potential application.
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 65 Figure 6.5: Free energy landscapes of rigid colloidal clusters in twodimensions. Results are shown for N = 6, 7, 8 and 9, for clusters that assemble from a gas (black circles) or a chain (grey crosses). Clusters are ordered according to the gas data, from the structure with the lowest free energy to the one with the highest. We color in red the potential energy ground states of each system, which contain more bonds than the rest of the structures. For the calculations, we assume that the strength of each bond is = 5k B T .

Figure 6 . 6 :

 66 Figure 6.6: Colloidomer potential energy landscape.The folding tree for a colloidomer chain with N = 7 droplets, where all particles can interact with each other. The nodes in the tree correspond to chain configurations ordered according to the number of bonds they contain. The fully unfolded chain is at the top of the tree, colored in blue. Rigid clusters, which cannot further fold, are shown at the bottom of the tree. The N = 7 system has a single potential ground state and three rigid local minima.
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 67 Figure 6.7: Reducing degrees of freedom decreases the number of configurations.Folding trees for a homopolymer chain folding in three-dimensions (left) and in two-dimensions (center), and for a heteropolymer chain when only yellow-yellow interactions are allowed. As the number of constraints increases, the trees become smaller. The three-dimensional folding tree contains 528 configurations, five of which are rigid clusters (shown in blue). The two-dimensional folding tree has 114 configurations, four of which are rigid in 2D (shown in red). The flavored heteropolymer tree contains 8 configurations and no rigid cluster (floppy ground state is drawn). Note that the levels in the trees are aligned.

  Figure 6.8: In two-dimensions, the embedding in the plane matters. Two heteropolymer colloidomer clusters with the same adjacency matrix but a different embedding on the plane: particles 2 and 3 have swapped places because the colloidomer backbone (dashed lines) has arranged differently in each case. As the interaction matrix only allows the formation of bonds between blue particles, the configuration labeled as transient can continue folding (bond between particles 2 and 5). For the cluster on the right it is not possible to form additional bonds if the folding occurs in two-dimensions, and as a consequence, it constitutes a local minimum.

Figure 6 . 9 :

 69 Figure 6.9: Identifying flavored global and local minima. (a) For a chain of length N , we first enumerate all rigid clusters and describe them as graphs. (b) We then enumerate all Hamiltonian paths in each rigid cluster, and keep the lattice coordinates for the path. Here a and b represent the starting and ending point of the path. (c) As a Hamiltonian path represents the backbone of a colloidomer, we map the flavor sequence on to it. In the panel, we show an example with an alternate BYBYBYB sequence. (d) We form bonds between particles according to what is allowed by the interaction matrix. Depending on the number of bonds that we can form, a configuration is classified into a global or local minimum, which cannot further fold, and a transient configuration, which can continue folding. Arrows in the figure indicate allowed motion that would lead to new bonds.
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 611 Figure 6.11: Yield prediction requires free energy information. Flavored folding tree for a colloidomer with N = 4 and an alternating sequence with two flavors. The chain can fold into a single geometry, a tetramer, but adopt three different folds (a)-(c). The numbers on the edges of the tree indicate the probability of each transition, extracted from simulations. The simulated downhill folding yields Y SIM can be explained by computing the probability of each pathway. Experimental yields agree with simulation results. Experimental images obtained by A. McMullen (NYU).
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 6 TOOLS FOR COLLOIDOMER MODELING because the yield of each structure corresponds to the sum of the probabilities of each trajectory that leads to them. Adding up the probability of each downhill trajectory, we obtain, Y a = 0.45 × 0.5 + 0.45 × 0.5 = 0.45 (6.3) Y b = Y c = 0.45 × 0.5 + 0.1 × 0.5 = 0.275,

120 CHAPTER 7 Figure 7 . 1 :

 120771 Figure 7.1: Equilibrium vs out-of-equilibrium folding. Simulated (light orange) and experimental (dark orange) yields for the rigid colloidomer clusters with N ∈ [6, 9] particles when bond formation is irreversible. The solid line and the dashed horizontal lines indicate the theoretical equilibrium probability of each cluster, for a gas and a chain of particles. These calculations follow the derivation in Appendix C (for /k B T = 5). Ground states for each size are colored in gray; rigid local minima are shown in black.
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 72 Figure 7.2: Irreversible folding favors elongated structures. Simulated and experimental yields as a function of the moment of inertia for chain sizes N ∈[6, 9]. Results show a correlation between moment of inertia and cluster yield. They also evidence how the maximum yield decreases with increasing N , because the total number of rigid clusters grows (see Table6.1).

Figure 7 . 3 :

 73 Figure 7.3: Different ways to sample the system. (a)The time-averaged yields can be computed by observing a long trajectory and sampling the system every t obs,i = t obs,1 + i × τ with i > 1, where t obs,1 is the initial observation time and τ is the time elapsed between samples. (b) To compute the ensemble averaged yields, we follow multiple trajectories and sample all of them at a fixed t obs time. At equilibrium, the time and ensemble averages give the same result. In the figure, each cluster represents a different sample.

Figure 7 . 4 :

 74 Figure 7.4: Simulated fraction of rigid clusters as a function of the particle interaction strength /k B T , for a system initiated as a gas (squares and hexagons) and a colloidomer chain (circles and triangles). Dashed lines indicate the /k B T values at which f R = 0.5. For the chain, /k B T C m = 5 ± 0.25, while for the gas, /k B T C m = 6.5 ± 0.25.We call these values the melting temperature of the corresponding system.
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 7576 Figure 7.5: Homopolymer rigid cluster yields. Simulated (DPD) absolute yields Y abs for the four rigid clusters a system with N = 7 particles can adopt.Results for the system initiated as a chain are shown in red, and for the system as a gas in blue. Dark data points correspond to ensemble averages, while light data points are time averages; All data points have been averaged over at least 2000 samples.

Figure 8 . 1 :

 81 Figure 8.1: Hierachical assembly of the crown geometry. (a) Three-step temperature protocol, where BB, BY and YY interactions are sequentially activated, as indicated by the interaction matrices. The protocol guides the folding of a decamer chain into the crown geometry. Panel (b) shows experimental images taken by A. McMullen at the Brujic lab (scale bar ∼ 5 µm); panel (c) shows our DPD simulation snapshots at different stages of the temperature protocol in (a).

Figure 8 . 2 :

 82 Figure 8.2: Flavors funnel the energy landscape. Folding tree for an N = 7 heteropolymer (gray lines). If only BB bonds are allowed, the folding tree has a single global minimum (left, blue). The YY interaction alone (right, yellow) does not lead to a final rigid cluster: the global minimum of the yellow subtree is floppy. However, by sequentially turning on YY, BY and BB interactions (yellow, red and purple pathways, respectively), it is possible to guide the folding process towards a single rigid geometry. In this case, both folding strategies, i.e., single and three-step quenches, lead to the same final geometry, with a different color arrangement or fold.

Figure 8 . 3 :

 83 Figure 8.3: Number of hamiltonian paths, N HP (blue), and number of configurations in a homopolymer folding tree, N Config (orange), as a function of colloidomer chain length N . The number of configurations in a homopolymer tree represents a lower bound for the configurations that exist in a flavored tree. Therefore, we conclude that N Config grows faster than the number of hamiltonian paths for N > 8.
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 8485 Figure 8.4: Foldamer solutions for an alternating heteropolymer chain of length N ∈ [6, 15]. (a) Foldamers predicted by our algorithm. The temperature protocols that yield each foldamer must be read in columns. In some cases, the protocol requires multiple steps to produce a foldamer. Foldamers are shown as connectivity graphs inside the squares, while the numbers represent the number of floppy structures at the bottom of the corresponding folding subtree. (b) Experimental fluorescent images of foldamers up to decamers. Experimental images have been taken by A. McMullen at the Brujic lab (scale bar ∼ 5µm).

Figure 8 . 7 :

 87 Figure 8.7: Beyond the alternate sequence. Number of foldamers as a function of chain length N for chains up to 13 droplets long. Light blue bars correspond to the number of foldamers for an alternate sequence with two flavors, while dark blue bars extend these results to random sequence space (including the alternate one). Red bars account for the number of foldamers when the size of the palette is increased by one and the sequence can be randomly chosen. The black solid line indicates the total number of rigid clusters for each chain length N .

Figure 8 . 8 :

 88 Figure 8.8: Two folding mechanisms. (a)The core collapse mechanism consists of forming a rigid, single flavored core and subsequently locking the remaining droplets on the outside. The single-colored core is only possible if it consists of N < 6 droplets. We hypothesize that the N = 13 star foldamer folds via the core-collapse mechanism, but in this case it requires two colors to be simultaneously on initially in order to form the rigid core. (b) The geometric frustration mechanism relies on the formation of strategic bonds that pre-select the final geometry of the foldamer. Figure adapted from[START_REF] Mcmullen | Self-assembly of emulsion droplets via programmable folding[END_REF] 

Figure 8 . 9 :

 89 Figure 8.9: Supracolloidal assemblies. DPD simulation snapshots showing that foldamers can be used to assemble more complex architectures such as mycelle (a) and tubule-like structures (b), mosaics (c) or dimers (d).The sequence and protocol for each foldamer are provided next to it. Numbers in the interaction matrix indicate the order in which the interaction is turned on. Supracolloidal assemblies crucially depend on the foldamer fold, that is, its flavor arrangement. In all examples, the system is initialized as a population of already folded structures and allowed to interact via BB bond formation.

Figure 8 . 11 :

 811 Figure 8.11: From 2D to 3D. (a) When particles can access the third dimension, a two-dimensional chevron (assembled according any of the protocols in Fig. 8.10) can only fold into a three-dimensional polytetrahedron, selecting one of the two possible rigid clusters for N = 6 in three-dimensions. This is based on geometric grounds alone, which means that particles can interact unspecifically: any of the folds associated to the chevron can guide the assembly. (b) A two-dimensional rocket foldamer, assembled by turning the BB interaction on, can further fold in three dimensions to a unique floppy cluster.By subsequently activating the BY interaction, the heptamer chain eventually folds into a single rigid cluster out of the five possibilities for N = 7 in three dimensions.
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 9131 Figure E.1: (a) Temperature of the system as a function of the simulation steps. The dashed line shows the average temperature. (b) Particle velocities follow the Maxwell-Boltzmann distribution (black line).

2 FIG. 3 .

 23 FIG. 3.Lifting constraints in the model. (A) Structure of the Markov State Model (MSM) inferred from MD simulations showing the states of the system in the presence of the catalyst. The reaction is over when state C + P , colored in gray, is reached. We consider two different constraints on the model: (1) removing monomers as soon as they are released into solution; and (2) limiting the reformation of the substrate bond through the parameter γ ∈ [0, 1], with γ = 1 corresponding to reversible reactions and γ = 0 to irreversible ones. Dashed arrows indicate the transitions affected by these constraints. (B) Maximal catalyst efficiency max(TS→P /TC+S→C+P ) when free monomers are removed from the system as a function of the substrate bond strength s for a fixed geometry of the catalyst Lc/3rmin = 1.02. Data points correspond to 2D MD simulations and black lines to the MSM depicted in panel A. The maximal efficiency in the model, which is obtained when γ = 0, scales exponentially as α s, with a factor αMD = 0.50 ± 0.04 (the fit is conducted for points where the efficiency is larger than one, i.e., s ≥ 8) and αMSM = 0.44. The maximal efficiency saturates for large s when γ = 0 (SI). (C) Substrate bonds s for which catalysis is observed (red) in a 2D system with free monomers removed only after they have diffused a distance R Diff /σ from the catalyst. We keep the spontaneous reaction irreversible, i.e., γ = 0. Red region represents results from the Markov model and red squares are results from our MD simulations. White region and gray crosses mark the regions where catalysis is not possible in the model and simulations respectively. (D) MSM results showing the γ values for which catalysis can be observed in 2D when monomers are removed from the system if they have diffused a distance R Diff /σ from the catalyst.

FIG

  FIG. S1. (A)Distribution of first-dissociation times τ obtained from MD simulations for different potential depths , with fixed interaction range r rcutoff /σ = 1.1. The dissociation occurs when the distance between particles in the substrate dimer, initially at equilibrium r = rmin, exceeds r > r cutoff for the first time. (B) Logarithm of the dissociation rate k, defined as the inverse of the mean first-dissociation time, k = 1/ τ , as a function of . Simulation data (squares) can be fit with an Arrhenius-like expression ln k = -0.91 + 2.20 (dashed line).

  FIG. S5. (A) Waiting time distributions for states C + S, C•S, C•P and the merged state (C:S + C:P ) (Methods), obtained by recording the time it takes the system to form and break bonds (blue) or by coarse-graining the MD trajectories with a lag time τLag = 50 time units, which allows us to fit an exponential distribution to the data (dashed line) and to extract the average waiting time τi . Simulation parameters are s = 15 and cs = 10.5. Results correspond to the reversible limit. (B) Transition probabilities pij from states i = C•S and i = (C:S + C:P ) as a function of the catalyst binding strength cs. Legend indicates states j where the system transitions next. (C) Transition rates kij = pij/ τi as a function of the catalyst binding energy cs: (1) kC•S→C+S, (2) kC+S→C•S, (3) k C•S→(C:S+C:P ) , (4) kC•S→C•P , (5) k (C:S+C:P )→C•S and (6) k (C:S+C:P )→C•P .

  C•P | c → C:P , C + P | 2c → C•P | c and C + P | c → C•P | f also fall within this category. We note that results depend on the choice of δ, and we use δ = 0.01 to produce Fig. 3C and D in the main text.

  in the main text, and Fig. S9 below show qualitative agreement. Further improvements of the model regarding diffusive processes are left as future work.

  FIG. S8. (A) Minimal reaction scheme that we use to explain the scaling of the maximal catalytic efficiency in the reversible and irreversible limits. (B) MSM model results for the maximal catalytic efficiency when γ = 0 and monomers are removed from the system if r > R Diff , for R Diff /σ = 5 (black solid line) and R Diff /σ = 100. (Inset) Zoom in the small s region showing MD simulation data for R Diff /σ = 5 (blue triangles) and R Diff /σ = 40 (red triangles).

  s,min . In Fig.S9B, we show MSM results where catalysis was observed for a range of s ∈[2, 30].

FIG. 1 .

 1 FIG.S9. Simulation and MSM data for the system in 3D. (A) Substrate bonds s for which there is catalysis when monomers are removed from the system if they diffuse sufficiently far from the catalyst, i.e., r > R Diff . Simulation data is shown as squares and crosses and the MSM results are shown as a shaded blue region. (B) MSM results showing values of γ for which catalysis can be observed in 2D (red region) and 3D (red and blue regions) when monomers are removed from the system if they have diffused a distance R Diff /σ from the catalyst.
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 148149150155 pathways (Methods). The remarkable overlap between experiment and theory indicates that the experiments are sampling all the available states. Tracking n = 255 folding heptamers allows us to plot the evolution of the yield of the most popular states in each level of the tree in the side panels. Long-lived states correspond to local minima (states S1 and S2 in the tree) that are theoretical dead-ends, but are overcome in experiments because our system is quasi-two-dimensional and rare out-of-plane re-130 arrangements are possible. As a result, all pathways lead 131 to the rocket foldamer out of the four possible heptamer 132 geometries on a timescale of ∼ 20 minutes. 133 Because the heptamer is comprised of four blue and 134 three yellow droplets, switching on the yellow-yellow in-135 teraction funnels the landscape into a much simpler tree, 136 shown in Fig 2 (b). Here the final state is a unique floppy 137 state that needs additional interactions to become rigid. 138 Subsequently turning on the blue-blue interaction yields 139 two new floppy states, one of which closes into a rigid lad-140 der, while the other requires the remaining blue-yellow 141 interaction to fold into the rocket shape. This particular 142 protocol yields a mixture of the ladder and the rocket and 143 does not qualify as a successful protocol. On the other 144 hand, reversing the order of the last two steps leads only 145 to the rocket foldamer, but with a different color arrange-146 ment, or fold, to the one obtained from a single blue-blue 147 interaction in Fig. 2 (a). This feature demonstrates the search of foldamers, we sweep all protocols for fold-151 ing alternating sequences. The construction of folding 152 trees becomes computationally expensive as the chain 153 length grows, so we devise an alternative strategy for 154 a systematic search that allows us to reach chains with ≥ 13 droplets, as shown in the Extended Data Fig. 1

  .

156

 156 

157

 157 

FIG. 2 .

 2 FIG. 2. (a)All folding pathways of a four blue, three yellow droplets heptamer result in a rocket foldamer when only the blueblue interaction is turned on. Experimental images of states are superimposed with the theoretical tree, in order of frequency, to show the diversity of observed pathways. The number of secondary bonds acquired is shown at each level of the tree. The plots on the right show the time evolution after the temperature quench t quench of the yield of each color-coordinated state. (b) When the yellow-yellow interaction is switched on first, the same polymer folds into a single floppy state. Further interactions fold it into a rocket with a different fold, but reversing the order of interactions leads to a mixture of the rocket and the ladder.

3 FIG. 3 .

 33 FIG. 3. (a) Alternating polymers of length N = 6 -14 (subscripts indicate the number of blue and yellow droplets), can be successfully folded by distinct protocols (columns) with a maximum of three interactions (rows). Foldamers shaded in yellow require only one step, which can switch on one or more interactions. At the end of each step, foldamers are shown on the left and the number of floppy geometries on the right, in order of increasing chain length. (b) Experimental results show fluorescent images of predicted foldamers up to decamers, as well as their relative folding yields. Scale bar is 5 µm. (c) Modes of folding: core collapse (left) and geometric frustration (right).

FIG. 4 .

 4 FIG. 4. (a) Exponential growth of the number of possible rigid geometries as a function of chain length N (black line). Numbers of foldamers encoded by an alternating AB sequence (light blue), any AB sequence (dark blue) and any ABC sequence (red) via all available protocols are shown as bars (N = 13 bar is a lower bound). (b) Simulated examples of supracolloidal architectures self-assembled using specific foldamer interactions. Each foldamer is shown with the protocol and sequence that leads to it. The numbers within the interaction matrix indicate the order of activation of interactions.
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  lighting the importance of geometry in guiding assembly. 261 This bottom up approach gives access to the under-262 lying rules that govern successful folding by dissecting 263 the respective roles of sequence design, minimal num-264 ber of flavors, hierarchy of interactions, and topological 265 constraints. Moreover, 2D foldamers offer a direct route 266 to folding 3D architectures. Instead of using droplets, 267 one can imagine folding molecular polymers designed 268 with hydrophobic and polar moieties [46], or building 269 macroscopic beads-on-a-string models with specific inter-270 actions, facilitated by an external drive [47, 48]. This new 271 paradigm of hierarchical folding as a precursor for large-272 scale self-assembly offers design rules for biomimetic ma-273 terials with tunable functionalities. 274 * A.M. and M.M.B. contributed equally to this work.
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  DNA sequences and their interactions. The following is a complete list of DNA sequences used in this work, listed with their modifications from 5 to 3 . The strands which formed the interactions were as follows: A: Azide Cy3A GCA TTA CTT TCC GTC CCG AGA GAC CTA ACT GAC ACG CTT CCC ATC GCT A GA GTT CAC AAG AGT TCA CAA B: Azide Cy5 A GCA TTA CTT TCC GTC CCG AGA GAC CTA ACT GAC ACG CTT CCC ATC GCT A TT GTG AAC TCT TGT GAA CTC C: Azide AG CAT TAC TTT CCG TCC CGA GAG ACC TAA CTG ACA CGC TTC CCA TCG CTA TTT TTA GTC D: Azide AG CAT TAC TTT CCG TCC CGA GAG ACC TAA CTG ACA CGC TTC CCA TCG CTA TTT GAC TAA P: Azide AG CAT TAC TTT CCG TCC CGA GAG ACC TAA CTG ACA CGC TTC CCA TCG CTA TTT ATC GAT CS: TAG CGA TGG GAA GCG TGT CAG TTA GGT CTC TCG GGA CGG AAA GTA ATG CT Azide The A and B strands were responsible for the backbone formation and have 20 base long sticky ends. In typical experimental conditions, bonds formed by A and B complexation melted at around 75 • C. The C and D strands made a weak complementary interaction, which melted between 30 • and 35 • C. This interaction made the AB secondary interaction. The P strand formed palindromic self interactions. In typical experimental conditions, it melted between 40 • and 45 • C. The P strand is what gave AA secondary interactions. Finally, the D strand also had a weak palindromic self interaction. In typical experimental conditions, it melted around 27 • and provided the BB interaction. DNA-labeling of emulsion droplets. Before labeling with DNA, emulsion droplets were diluted into 1 mM SDS at a volume fraction of approximately 6%. DNA strands with sticky ends were reacted with a DBCO terminated pegylated lipid (DPSE-PEG-DBCO, Avanti Polar Lipids), and then annealed with a complementary spacer strand as described in refs [25, 26]. Droplets were incubated with backbone DNA at 200 nM concentrations with a volume fraction of 0.6% with 50 mM NaCl, 10 mM Tris pH 8, and 1 mM EDTA. After 30 minutes, secondary interaction DNA was added, bringing the total concentration to 5-25 µM . The droplets were then incubated for two hours before being diluted by a factor of two with a buffer containing 50 mM NaCl, 10 mM Tris pH 8, 0.1% w/v Triton 165, and Cyanine 3 DBCO (or Cyanine 5 457 DBCO, both from Lumiprobe). The droplets were incubated 458 for a further 30 minutes before being washed several times in 459 50 mM NaCl to remove all unreacted dye. 460 Colloidomer formation. Droplet polymerization was ac-461 celerated by dispersing the droplets in an aqueous ferrofluid 462 (EMG 707, FerroTec) and aligning them with a magnetic 463 field. The ferrofluid was washed several times into 0.3% F68 464 pluronic surfactant via centrifugation to remove the propri-465 etary surfactant in the ferrofluid. Two sets of droplets were 466 prepared with complementary backbone DNAs and secondary 467 DNA strands of choice. The two droplet types were mixed at a 468 1:1 ratio along with a 1/3 dilution of the F68 ferrofluid buffer, 469 200 mM NaCl, and 20 mM EDTA pH 8. The sample was 470 added to a custom flow chamber made from a hexamethyldis-471 ilazane (Sigma Aldrich) treated glass slide and coverslip, and 472 parafilm. The flow cell was sealed with UV glue. 473 The sample was then heated up to 75 • C to break all bonds 474 in the system, and then cooled down to just above the melting 475 temperature of the strongest secondary interaction, typically 476 50 • C. The sample was then put through a repeated cycle of 477 alignment with rare earth magnets and relaxation in order to 478 grow the chains. Typically, this produced a mixed sample of 479 monomers, linear chains, and branched chains. The density 480 of droplets was optimized such that they would grow sizable 481 polymer chains, but that the chains would not aggregate on 482 the timescale of the folding experiments. The colloidomers 483 were allowed to relax in the absence of a magnetic field before 484 the folding data was taken. Data was taken using a Nikon 485 TI Eclipse with a 20x objective using either single or double 486 channel fluorescence imaging. 487 Temperature protocols and waiting times. The tem-488 perature was adjusted using a custom made heating cell com-489 posed of a indium tin oxide coated glass slide (SPI) connected 490 to a Thorslabs TC200 resistive heater with a thermocouple 491 for feedback. The temperature protocol was programmed 492 through custom software. For a given temperature proto-493 col, first a sample of droplet polymers with the desired set 494 of interactions was made. A manual sweep of the tempera-495 ture was performed to determine where each interaction takes 496 place, since the melting temperatures can change from sam-497 ple to sample. The first temperature step lasting 10 minutes 498 was programmed to be above the melting temperature of all 499 interactions to identify the unfolded colloidomers. 500 Subsequently, there can be one, two, or three additional 501 steps depending on how many interactions are to be turned 502 on. If there is more than one interaction that is turned on, 503 the waiting step for the first interaction is the longest. For 504 the data in Fig. 3 (c), the waiting time at the first step 505 was 20 minutes (except for the N = 6 triangle, which had a 506 waiting time of 30 minutes), while that for the second and 507 third steps was typically 5 to 10 minutes. In principle, longer 508 waiting times allow for the resolution of local minima and 509 lead to better yields. In practice, however, longer waiting 510 times increase the chance that colloidomers aggregate during 511 folding, which can be avoided in dilute samples.
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Figure 3 (

 3 c), the yield is defined as the fraction of polymers of length N that fold to completion into the target structure over the fraction of polymers of length N that fold to completion into any structure.Enumerating two-dimensional geometries. We define as a geometry any colloidomer cluster where deformations cost energy, i.e., a deformation requires breaking a secondary bond. Geometries are therefore rigid clusters. To enumerate two-dimensional geometries for a system of size N , we start by selecting all possible sets of N neighbouring points on a N ×N triangular lattice. We form bonds between points located at a unit distance and test the rigidity of resulting geometries by analyzing the normal modes of the dynamical matrix. We describe the ensemble of geometries for a chain of length N by a set of planar graphs {Gi,N (V, E)}, i ∈ (1, NR), where the vertices are the droplets in the chain and the edges are the DNA-mediated bonds. Edges may be of two types: backbone bonds and secondary bonds. Each graph is characterized by a contact matrix, which describes the bonds between droplets, and a distance matrix, which contains the distances between each droplet pair in a geometry. The first size with more than one geometry is N = 6[32]. At N ≥ 13 the first geometries with stable holes in the bulk appear.

2 . 3 .

 23 Are there geometries? (a) Yes. If the classification flags geometries, the algorithm stops. If there is a single geometry, a foldamer is reported. We choose to report a solution even if there are competing floppy states with the same or more bonds 580 as the foldamer geometry (this becomes possible when 581 N ≥ 7). 582 (b) No. A foldamer is not selected. 583 Select global minima. This is analogous to se-584 lecting floppy states with the largest number of 585 bonds. Note that this also implies that local min-586 ima in the first interaction tree are not considered 587 (we assume here strict downhill folding).

588 4 . 5 . 6 .

 456 Continue the protocol of adding interactions. Up-589 date the interaction matrix according to the pro-Form new bonds. Repeat the bond-making pro-592 cess iterating over the states from step 3. 593 Classify states. We classify states into global and 594 local minima, and transient states. Global min-595 ima are states of a tree that cannot acquire addi-596 tional bonds either because they reached a rigid 597 state, or because spatially accessible neighbors do 598 not have flavors with attractive interactions. Lo-599 cal minima are floppy states whose topology pre-600 vents further formation of bonds. All other states 601 are classified as transient states.

602 7 .kBT = 1 .

 71 Is the protocol over? 603 i) Yes. Analyze the resulting geometries. If a 604 single geometry is found, a foldamer is re-605 ported. 606 ii) No. Repeat steps 4-7 until the protocol ends.607 Simulation details. We perform Dissipative Particle Dy-608 namics (DPD) [51] simulations using an in-house code. Our 609 unit of length is the particle diameter σ = 1 and we assume 610 all particles have the same mass m = 1. Energy is measured 611 in units of kBT and we fix the temperature of the system at 612 When folding a colloidomer of length N , we set the 613 simulation box size to L/σ = (N + 2). For the self-assembly 614 of supracolloidal architectures, we choose L/σ = 30. In both 615 cases we use periodic boundary conditions. We use a multiple-616 step simulation scheme to integrate the equations of motion 617 with dts = 10 -2 to resolve the dynamics of the solvent and 618 dtc = 10 -4 for the dynamics of the colloids. DNA-mediated 619 interactions are modelled via a short-range, isotropic interac-

  = ζk s , where k s = T S→P and 0 ≤ ζ. Here ζ controls the nature of the shortcut. The case we are interested in corresponds to ζ = 1, which is when the shortcut will be as slow as the spontaneous reaction. The

	.1(a).
	The catalytic pathway consists of three different intermediates, C 1 , C 2 and C 3 .
	States C 1 and C 3 are connected by a shortcut that skips the sojourn in state C 2 with rate k + 4 . We write k + 4

  Table describing the number of rigid clusters in 2D, N R (2D), total number of Hamiltonian paths before, N HP , and after, N HP,Sym , applying rotational symmetries to remove degenerate paths, and the number of rigid clusters with stable holes, N H , for colloidomer clusters with N ∈[6, 15] particles. A comparison with the number of rigid sphere packings in 3D, N R (3D) is provided. This data is taken from Holmes-Cerfon's enumeration in[START_REF] Miranda | Enumerating Rigid Sphere Packings[END_REF], where the asterisk indicates that the number is an estimation.

	N N R (2D) N R (3D)	N HP	N HP,Sym N H
	6	3	2	86	53	0
	7	4	5	256	156	0
	8	9	13	632	541	0
	9	16	52	1806	1670	0
	10	35	263	5874	5016	0
	11	69	1659	15978	15729	0
	12	155	11980	55050	50168	0
	13	328	98529	164302	161116	1
	14	740	895478	528358	512413	6
	15	1655	9 × 10 6 (*) 1685898 1670755	41

1 Folding trees Algorithm 1

  Homopolymer folding tree construction 1: input N → colloidomer chain length; N R → number of rigid clusters for colloidomer of length N ; A i,n with i ∈ [1, N R ] → canonical adjacency matrices for rigid clusters (i : matrix ID, n : number of edges). → colloidomer chain length; I → interaction matrix; S → flavor sequence; H m,n,l with m ∈ [1, N R ] → Hamiltonian paths embedded on triangular lattice within rigid cluster coordinates(m: rigid cluster ID, n: path ID with n ∈ [1, n(m)], l: number of bonds in the embedding); P → temperature protocol. Hm,n,l } ←MAPSEQUENCEONHAMILTONIANPATHS({H m,n,l }, S) 3: {H m,n,l } ← FORMBONDS({ Hm,n,l }, I) 4: if ARETHERERIGIDCLUSTERS({H m,n,l }) then

	Algorithm 3 Heteropolymer folding tree construction (continued)
	35: function HASNOTBEENADDEDTOTREE(H m,n,l )
	36: 37: 38: 39: 40:	for H i,j,k ∈ Tree do if AREISOMORPHIC(H i,j,k , H m,n,l ) then if BONDSPRESERVED(H i,j,k , H m,n,l ) then if HANDEDNESSPRESERVED(H i,j,k , H m,n,l ) then return False
	41:	return True
	D.2 Foldamer identification
	Algorithm 4 Foldamer identification algorithm (see SI in [150] for a flowchart
	diagram depicting the algorithm).
	3: 5: 6:	SAVEINTREE(A i,n ) R i ← RIGIDCLUSTERS
	4: 5: 6:	for edge ∈ A i,n do Remove edge, create new ID: A i,n → A j,n-1 ADDSTATETOTREE(A j,n-1 )
	7: FILTERSTATESDESCENDINGFROMCHAIN( )
	8: function ADDSTATETOTREE(A m,l )
	9: 10:	if l < N -1 then return
	11:	else
	12: 13: 14:	connected ← CHECKCONNECTEDGRAPH(A m,l ) noisofound ← NOISOMORPHISMFOUND(A m,l ) if connected and noisofound then
	15:	SAVEINTREE(A m,l )
	16: 17: 18:	for edge ∈ A m,l do Remove edge, create new ID A m,l → A k,l-1 ADDSTATETOTREE(A k,l-1 )
	19:	return

D.

2: for A i,n ∈ N R do

1: input N 2: {

  1, † 1 Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France 2 Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France (Dated: November 23, 2022)

  Model parameters. (A) Our system consists of a substrate dimer S that can dissociate into two free product monomers P (in blue), and a catalyst C (in red). The particles in the catalyst are kept at a fixed distance Lc. (B)

		(A)	(C)
		Substrate Product	Catalyst
		(B)
		Reversible
		Irreversible
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  FIG. 2. Phase diagram of catalysis.Simulation results for a 2D system under conditions that are most favorable for catalysis, i.e., systematic product removal and irreversible spontaneous reaction. The simulation box length is L/σ = 7.5. Event statistics over which the average reaction times are computed are shown in Fig.S3. (A) For a fixed spontaneous reaction ( s = 14) in the irreversible limit, catalysis, i.e., TS→P /TC+S→C+P > 1, requires 3rmin < Lc < 3r cutoff (green dashed lines) and cs/ s < 1 (green dotted line). Catalysis (in red) is indeed observed only within these bounds. (B) Fixing the catalyst geometry (Lc/3rmin = 1.02) shows that there is a minimal s required for catalysis. The diagonal green dotted line represents the cs/ s < 1 constraint. The white solid line separates simulated data (below) from extrapolated data (above). The grey dashed line gives an indication of experimental time of 1 s for a model system of colloids with σ = 1 µm at room temperature.

  ). Pri-624 mary bonds are made irreversible by setting εP = 40kBT . To 625 simulate secondary interactions, we gradually increase εS un-The authors would like to thank

			Single quench			Double quench				Triple quench
		1	1		1	1	2	1	2	1	2	3	1	2	3
	Protocol												
	N	6	7 43	9 54	13 67	6	8	6	7	7 34	10	11 56		10
	Geometry												
	Y Exp (%)	100	100	100	ND	95	75	100	43	75	38	ND		ND
	Y Sim_Downhill (%)	100	100	100	100	64	72	100	76	73	14	4		53
	Y Sim_StepThermal (%)	100	100	100	100	88	98	100	40	86	85	23		20
							626						
							627	til it reaches εB, once the corresponding interaction is turned
							628	on. The increase is done over the course of 200 simulation
							629	steps to ensure downhill folding while preventing poor poten-
								tial sampling.				
							631						
								David Pine, Alexander Grosberg, Paul Chaikin, Sascha
							635						
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In 1836, Berzelius introduced the term catalysis for the first time by writing: "It is then proved that several simple and compound bodies, soluble and insoluble, have the property of exercising on other bodies an action very different from chemical affinity. By means of this action they produce, in these bodies, decompositions of their elements with different recombinations of these same elements to which they themselves remain indifferent. (...) I do not believe that it is a force quite independent of the electrochemical affinities of matter; I believe, on the contrary, that it is only a new manifestation of the same; but, since we cannot see their connection and mutual dependence, it will be more convenient to designate the force by a separate name. I will therefore call this force the catalytic force, and I will call catalysis the decomposition of bodies by this force (...)". The original citation is in French[12]; the English translation has been taken from[13]. Later in the same citation, Berzelius was also first to hypothesize that all biological reactions are influenced by catalysis.

We clarify that, throughout this work, the word substrate will be borrowed from enzymology to refer to the reactants that initially interact with the catalyst before transforming into products. The word will not be used to denote surfaces.

catalytic pathway, and consequently, far from obvious in general. In the field of heterogeneous catalysis, identifying the intermediate species in a catalytic pathway can be accomplished through automated methods[START_REF] Gao | Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms[END_REF]. In biochemistry, numerous experimental methods are exclusively devoted to this endeavor[START_REF] Anderson | Detection of novel enzyme intermediates in PEPutilizing enzymes[END_REF][START_REF] Barman | The identification of chemical intermediates in enzyme catalysis by the rapid quench-flow technique[END_REF].

In the case of unimolecular reactions, the size of the box has no impact on the S → P transition. This is not true in general. For instance, the volume of the system impacts the reaction rate for bimolecular reactions.

Complexity here is understood as the amount of information required for the assembly, that is, whether particles selectively interact with each other through directional or isotropic interactions and whether valence control is required, for example.

This can be done by using Geomags, for example, a magnetic toy that consists of connecting beads and bars. It is handy for modeling clusters and visualizing configurations.

For our enumeration, we have only removed a single point from the ensemble of selected lattice points. However, the method should be generalized to removing multiple points, as for large enough clusters it becomes possible to stabilize more than one hole.

The decamer crown foldamer results from a many-to-one transition. The crown folds in three steps (BB→BY→YY protocol). The results in Fig.8.4 show
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Appendices

First-Passage Time Calculations

In this appendix we provide an introduction to the calculation of the First-Passage Time (FPT) distribution and the Mean First-Passage Time (MFPT) for Continuous Time Markov Chains (CTMC). The derivation we present follows Redner in [START_REF] Redner | A Guide to First Passage Processes[END_REF], and Iyer-Biswas and Zilman in [169]. Additionally, we also rederive the criterion for catalysis in section 2.2.3 for the semi-Markovian case and introduce the method of Net Rate Constants at the end of the appendix.

A.1 Introduction to Master Equations in Markovian Dynamics

The time-evolution of a CTMC can be expressed in terms of either the Forward Master Equation (FME) or the Backward Master Equation (BME). Here we provide a derivation of both equations to illustrate the connection between them. However, we note that the BME is more useful as it provides a simple recipe to compute MFPTs for the associated stochastic process. Details will follow below.

Let P (S i , t + dt) represent the probability that the system is in state S i at time t + dt. This probability can be expressed in terms of occupation probabilities of the system at time t, P (S i , t + dt) = P (S i , t) + j L S i ,S j dt P (S j , t)j L S j ,S i dt P (S i , t), (A. 1) where L S i ,S j dt represents the transition probability from state S j to state S i in the time interval dt and thus, L S i ,S j is the transition rate from S j to S i . Eq. (A.1) states that the probability of occupying S i at time t + dt depends on the probability that the system was already there at time t, P (S i , dt), the APPENDIX A. FIRST-PASSAGE TIME CALCULATIONS probability of jumping from a different state to S i and the probability of jumping out of S i . In the limit when dt → 0, the equation becomes ∂ t P (S i , t) = j L S i ,S j P (S j , t)j L S j ,S i P (S i , t).

(A.2)

The above equation is known as the FME. Given an initial condition, it describes the time-evolution of the occupation probabilities of a CTMC. As the equation A.2 is linear, for a general initial condition P (S i , t 0 ), we can express P (S i , t) as a linear combination of conditional probabilities P (S i , t|S j , t 0 ), which represents the probability of occupying state S i at time t given that the system was in state S j at time t 0 . These conditional probabilities are also solutions to the FME, with initial conditions P (S i , t 0 ) = δ S i ,S j [169]. The time-evolution of P (S i , t|S j , t 0 ) is given by

which accounts for both the probability that the system jumps from S j to S k , and from S k eventually to S i (second term in the equation), or that the transition occurs directly from S j to S i (first term in the equation). If we assume that the transition rates do not depend on time (homogeneous Markov chain), P (S i , t|S j , t 0 ) only depends on tt 0 , which allows us to rewrite eq. (A.3) with t → tdt and t 0 + dt → t 0 . In the limit when dt → 0, the time-evolution of the conditional probabilities results in

This equation is the BME of the CTMC.

A.1.1 FPT distribution

Let F (τ ; S i , |S j ) denote the FPT distribution for first-passage times τ from an initial state S j at t = t 0 to state S i , which is reached at time t = τ + t 0 for the first time. To compute the FPT distribution it is useful to consider that the state S i behaves as an absorbing boundary, where the system remains indefinitely, i.e., L S k ,S i = 0 ∀k. We define as S(S i , t|t 0 , S j ) the probability that at time t the system has not been absorbed in S i . This quantity is also known as the survival probability, and it is related to the FPT distribution as

The equation above can be equivalently written as

which tells us that the FPT distribution describes to the rate at which the survival probability changes at the absorbing boundary, i.e., state S i . Alternatively, the FPT distribution can also be computed using the BME in eq. (A.4). By deriving the survival probability in time, we obtain

Deriving again with respect to time, we obtain

This equation shows that FPT distribution also obeys a BME.

A.1.2 MFPT distribution

The MFPT from S j to S i is formally defined as

where we have set t 0 = 0 for simplicity. We now derive a practical formula to compute the MFPT based on equations (A.8) and (A.9) to show the usefulness of the BME. Multiplying both sides of eq. (A.9) by the transition matrix containing the rates

where we have used the fact that the absorption is certain when t → ∞ and that it has not occurred at t = 0. We can also express eq. (A.10) in vector form,

APPENDIX A. FIRST-PASSAGE TIME CALCULATIONS

The method requires the existence of at least one irreversible transition, so that the rest of the rates can be redefined with respect to it, which can always be guaranteed in the case of an absorbing chain. Although applicable to reactions with loops, the method is particularly convenient to derive MFPTs in linear reaction schemes as the one we have depicted in section 3.4. This is because the MFPT from any state i to the absorbing state n + 1 in a linear chain with irreversible transitions is simply the sum of the inverse redefined rates of each transition in the pathway,

APPENDIX B

Mean First-Passage Time in Diffusion-driven processes

In this appendix we show how to compute the MFPT of a particle diffusing in a finite domain with an absorbing trap. The results, both in two-and threedimensions are used in the MSM introduced in chapter 3. We also provide details associated to the calculation of the T C•S→C:S MFPT in our minimal model for catalysis.

B.1 MFPT for diffusive processes

For a random process in continuum space and time, the MFPT t( r) satisfies the Poisson equation [START_REF] Redner | A Guide to First Passage Processes[END_REF],

where D is the diffusion constant, r is the starting point of the process and Ω represents that absorbing trap that marks the end of the process. The process can be subjected to additional boundary conditions. For example, for a process in a confining domain with reflecting boundaries, the corresponding boundary conditions are expressed as

where ∂Ω corresponds to the reflecting boundary. Below we solve the equation in two simple domains in two-and three-dimensions: a disk and a sphere.

B.1.1 Two-dimensional system: Disk

The solution to the Poisson equation in eq. B.1 in polar coordinates is

where C 1 and C 2 are constants to be determined by applying boundary conditions. For example, we can imagine a disk of radius R out that delimits a region where a particle is diffusing. Inside this domain, there is another disk, with radius R in that acts as an absorbing trap. These boundary conditions imply

The MFPT for the diffusing particle is

B.1.2 Three-dimensional system: Sphere

The solution for the Poisson equation in spherical coordinates is

where C1 and C2 must again be determined through boundary conditions.

For instance, in analogy with the previous example, we can take a sphere with radius R out that contains an absorbing trap of radius R in . Then, the MFPT for diffusion in three-dimensions is given by

B.2 MFPT for complete substrate binding

Binding the substrate in the model presented in chapter 3 is a diffusionlimited process that depends on L c (see Fig. 3.9). The MFPT associated to this transition can be estimated by mapping the problem to a two-dimensional random walk on a finite domain Ω with an absorbing boundary δΩ a and reflecting boundary δΩ r = δΩ -δΩ a . The reflecting boundary conditions arise from the finite volume and impenetrability of the particles in the model, while the absorbing trap corresponds to the overlap of interaction shells between substrate particles and catalyst particles (see Fig. 3.10 in the main text). The area of the trap depends on the geometry of the catalyst, L c . Below we show how this area can be estimated.

where we have simplified the notation r ij = r ij . Finally, we can write the aperture θ M 1 as

where

is the Heaviside function indicating that the binding between M 2 and C 2 can only occur if θ 1 < θ C 1 . The first passage process ends when

simultaneously. The absorbing boundary can thus be defined as

For L c /3r min > 1 and θ 1 = 0, the apperture angle θ M 1 will decrease with increasing L c until it becomes zero. At this point, the substrate dimer is not able to bind the catalyst anymore. if ISLOCALMINIMUM(H m,n,l , I) then 

Simulations

All the simulations reported in this manuscript have been conducted using inhouse codes written in C++. Nevertheless, the algorithms we have employed are standard and they can be found in efficient simulation packages like LAMMPS [START_REF] Thompson | LAMMPS -a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[END_REF] or HOOMD-blue [START_REF] Anderson | HOOMDblue: A Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations[END_REF]. Below we provide details regarding the parameters chosen for our simulations.

E.1 Langevin Dynamics

All simulations for part I in the manuscript are Langevin dynamics simulations. These simulations consist of integrating the Langevin equation,

where U (r) is the interaction potential between particles (we have used the potential in [START_REF] Wang | The Lennard-Jones potential: when (not) to use it[END_REF]), γ is the friction coefficient and χ = √ 2k B T γ is the amplitude of the random force. We integrate equation (E.1) using a modified velocity-Verlet algorithm presented by Groot and Warren [START_REF] Robert | Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation[END_REF][START_REF] Robert D Groot | On the role of hydrodynamic interactions in block copolymer microphase separation[END_REF], and use χ = 5 and γ = 12.5 according to the discussion therein. The Langevin thermostat, which results from the combination of the dissipative and the random force in eq. (E.1), keeps the temperature of the system at k B T = 1 and ensures that particle velocities are distributed according to the Maxwell-Boltzmann distribution, as shown in Fig. E.1. We use dt = 10 -4 time units (t.u.) as our simulation time step, to make sure that we are able to resolve the short-range particle interaction potential. Additionally, all simulations are conducted using periodic boundary conditions. 

Part IV

Articles

The preprints corresponding to articles (2) and ( 3) are provided below. transition. To account for the irreversible case, which concerns Fig. 2 in the main text, we use the same simulation trajectories, but only keep the trajectory up to the first time the substrate bond breaks. If the bond breaks after a C:S → C:P or a C•S → C•P transition, we then simulate the release of the monomer(s) bound to the catalyst by drawing from an exponential distribution with the rate k( cs ) ( Fig. S1B). The number of simulations run for each set of parameters is shown in Fig. S3.

V. FIRST-PASSAGE TIMES TO BIND AND REFORM THE SUBSTRATE BOND

The C•S → C:S transition is diffusion-limited and only depends on the catalyst geometry. To measure the mean first-binding time associated to it, we initiate the system in a random configuration corresponding to state C•S and record the time its takes to reach C:S for the first time, i.e., the time for the free particle in the substrate to attach to the catalyst. The average first-binding time diverges as L c → 3r cutoff , as shown for a system in 2D and 3D in Fig. S4A. This gives rise to the L c /3r min < r cutoff /r min necessary condition for catalysis and impacts the trade-off for optimal catalyst geometry. Indeed, the further apart the two particles in the catalyst, the longer it will take the substrate to fully bind. We note that when L c /3r min 1 (narrow escape limit), the first-binding time distribution is dominated by an exponential ( Fig. S4B).

The C:P → C:S transition is similar to the C•S → C:S process: it is also limited by diffusion and only depends on the catalyst geometry L c . We provide the average first-time to reform the substrate bond, and first-passage time distribution in Fig. S4C andD. These are obtained by initiating the simulations in C:P and recording the time it takes to reform the substrate bond, i.e., reach C:S for the first time.

VI. MARKOV STATE MODELS

We use Markov State Models (MSMs) to extend our results beyond the parameter range that we can explore with MD simulations. We first construct a minimal model to account for the system when free monomers are systematically

Self-assembly Through Programmable Folding

Angus McMullen, 1 Maitane Muñoz Basagoiti, 2, * Zorana Zeravcic, 2 and Jasna Brujic 1 Self-assembly of materials currently requires a toolbox of building blocks with a given shape and a multitude of interaction flavors and strengths to ensure a unique product. The underlying design principles either employ thermodynamics in search of a crystalline global free energy minimum [5,6,13,[15][16][17][18][19], or prescribe sufficient specificity such that the building blocks can assemble one [9,12,[20][21][22] or several target structures [23]. Despite these advances, achieving self-assembly of an arbitrary structure with high yield using a limited palette of flavors remains a key challenge.

In search of an alternative approach for the design of functional materials, we turn to the biological concept of self-assembly via folding. At the molecular level, RNA and proteins robustly fold into well-defined struc-tures starting from evolution-selected sequences of only Supplementary Information: Supplementary Information is available for this paper. 

(2)