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Vorrei esprimere la mia più sincera gratitudine ai miei inquadranti Marco Montemurro,
Frédéric Dau e Laurent Guillaumat, i quali hanno contribuito direttamente alla realizza-
zione di questo lavoro, redendolo possibile. In particolare, vorrei ringraziare Marco per
tutte le conoscenze scientifiche che mi ha trasmesso e per la grande pazienza che ha avuto
nel seguire il mio operato pedissequamente in questi anni, mostrando una grande passione
per la Scienza e l’Ingegneria. Un grazie a Frédéric ed a Laurent per aver supervisionato
continuamente il mio lavoro, dando preziosi consigli tecnici, frutto di una lunga esperienza
in campo ingegneristico.

Ringrazio tutti i membri del progetto FULLCOMP, in particolare Erasmo Carrera
e Marco Petrolo, senza i quali tale progetto non sarebbe mai esistito. Durante questa
esperienza ho conosciuto 11 persone speciali: Guohong Li, Alberto Garćıa de Miguel,
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Introduction

The thesis context and the FULLCOMP project

The word composite in the engineering context means that two, or more, different ma-
terials are combined together with the purpose of manufacturing a third material char-
acterised by a set of material properties responding to a specific need. By conducting a
macroscopic examination, the constitutive elements can be identified by the naked eye
(e.g. multilayer composites) or can show a macroscopic homogeneous appearance (e.g.
short fibre composites). These features highlight the huge variety of structural configur-
ations and properties that can be obtained/designed through composite materials [2].

Composites can be conceived in different format and topologies. Usually they are de-
signed in order to highlight the best qualities of the constitutive components and, often,
to show properties that neither of their constituents possesses. Composite materials are
massively employed due to their outstanding strength-to-weight and stiffness-to-weight
ratii, fatigue life, thermal conductivity, acoustical insulation, etc. Accordingly, it is pos-
sible to understand why, nowadays, the use of composite materials in the engineering
field grows continuously. Composites involve a multibillion market in which automotive,
aerospace and wind energy sectors are the main players. The success of composites stems
from their superior specific properties and the possibility of creating fit-for-purpose mater-
ials and structures. However, the lack of knowledge still undermines the cost-effectiveness
of composites and overweight characterising some solutions (especially in the aerospace
field). [3].

The development of the scientific knowledge on this topic requires synergistic ap-
proaches in which, the multi-scale and the multi-physics modelling, characterisation,
design/optimisation and validation phases must be considered. These aspects should
be taken into account at all stages of the composite specimen life: from the preliminary
design to the manufacturing process, from the numerical modelling to the experimental
validation. Only in this way, it is possible to take advantage from the peculiar features of
composite materials.

To facilitate the transition between design, modelling, manufacturing and experiment-
ation, a paradigm shift in the field of composite materials, under a multidisciplinary point
of view, is required. This paradigm change constitutes the main topic of the FULLCOMP
(FULLy integrated analysis, design, manufacturing and health-monitoring of COMPosite
structures) project. In particular, the FULLCOMP project deals with the advances in
predictive models and techniques for numerical analyses of the composite materials.

FULLCOMP is an H2020 Marie Sklodowska-Curie project which is dedicated to the
training of twelve Ph.D. students in the field of advanced models for composite materials
and structures. The most relevant common thread of the contributions is the increment of
the numerical efficiency, in terms of simulation, with an increment of accuracy for a given
computational costs, when compared to the existing methodologies. The FULLCOMP

13



14 THE THESIS CONTEXT AND THE FULLCOMP PROJECT

project started in 2015 as an European Training Network (ETN). The consortium is
composed by seven Universities (Politecnico di Torino, University of Bristol, Leibniz Uni-
versität Hannover, École Nationale Supérieure d’Arts et Métiers of Bordeaux, Universid-
ade do Porto, University of Washington and RMIT), one research institute (Luxembourg
Institute of Science and Technology) and one company (ELAN-AUSYGmbH).

The training of the Ph.D. students followed five main work packages, i.e. analysis and
computational methods, design and optimisation, damage and failure analysis, multi-scale
methods, and experimental approaches. Other forms of training included three courses on
entrepreneurship and project management, four workshops on composite materials and
structures, one spring school, and ten seminars or courses. Also, each student spent two
secondment periods of several weeks in academic and non-academic institutions to increase
the multidisciplinary aspects, facilitate cross-fertilisation and the transfer of knowledge
toward industry.

The research activities , constituting the kernel of the FULLCOMP project, can be
summarised in three main research axes.

• Advanced finite element models.
Numerical techniques focusing on enhanced one-dimensional (1D) and two-dimensional
(2D) models, commonly referred to as beams and shells, are developed. The im-
plementation of such theories/models allows to predict accurately 3D displacements
and stress fields, without requiring a strong computational effort with respect to
classical 3D finite element (FE) models. The proposed models are based on the
Carrera Unified Formulation (CUF) [4, 5] and employed for multi-field and multi-
scale analyses.

• Damage and failure models.
New models for damage prediction and failure analysis of composite materials, to-
gether with studies on the structural health monitoring (SHM) are also carried out.
Concerning the modelling strategies, they are developed at the level of the struc-
tural theory (e.g. by implementing the CUF), in order to obtain accurate 3D stress
fields and reducing, at the same time, the computational effort. By coupling special
modelling strategies (such as global-local methods) it is possible to limit the de-
tailes (and expensive) FE analyses to local zones and to extend the predictive tools
to complex structures. In particular, the material non-linearities are included into
1D structural models to deal with damage mechanisms and failure.

For example one of the main applications, presented in the FULLCOMP project,
focuses on dry fabrics and their ballistic application. The modelling approach deals
with hyperelastic constitutive laws for the yarn structure and full characterisation
via experimental/numerical approaches. Various numerical models exist for dry
fabric layers in literature [6]: among them, the so-called mesoscopic models are
the most efficient in terms of accuracy and computational costs. In particular, the
Gasser’s mesoscopic model [7] for dry fabrics is universally adopted. However, the
characterisation of the yarn transverse behaviour remains unsolved: unfortunately
this last aspect assumes a fundamental role in determining the ballistic performances
and, for this reason, these aspects are investigated.

Finally, suitable SHM tools, ensuring structural integrity during service and re-
ducing substantially the operating costs are developed. In this context, the guided
ultrasonic waves (GUW) are a suitable candidate to detect, localize and characterise
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the defects [8]. However, in laminated structures the phenomena is highly complex:
the anisotropy of the material causes distorted wave-fronts and the heterogeneity of
the material might result in mode couplings. Numerical models are necessary and,
to this purpose, high-order theories based on the CUF [5] are used to simulate wave
propagation analysis in composite laminates.

• Virtual characterisation and manufacturing.
Real structures are imperfect, despite advances in the manufacturing processes and
quality controls. A real composite structure is characterised by a number of differ-
ences in terms of geometry and material properties with respect to its numerical
model, due to the variability in the manufacturing process throughout the produc-
tion line [9, 10]. The main contribution of the FULLCOMP project on this topic
focuses on the development of suitable models able to properly integrate the uncer-
tainty (at each pertinent scale) in the analysis of composite materials and structures.
A particular attention is put on the correlation between mechanical response and
the spatial variation of material properties which allows identifying the areas in
which variability of material properties has a relevant effect. This aspect is of para-
mount importance in order to define the product inspection zones and to improve
the performances of a structure.

Concerning the issues related to the uncertainty, the composite materials hetero-
geneous nature is the main cause of the variability of the mechanical response
(e.g. stiffness, strength, etc.) at the macroscopic scale. Classical examples are
the aleatory uncertainty related to the fibre and matrix properties, together with
their geometrical features. Many efforts are devoted to simulate the random fibre
distributions [11] and uncertainty propagation through the scales.

Finally, the multi-scale nature of composite materials makes mandatory, analysis
and design purposes, the characterisation of the full set of material properties, at
each pertinent scale, i.e. the mesoscopic scale of the elementary lamina and the
microscopic scale of the constituent phases. Moreover, from the industrial point of
view, the cost reduction of the experimental characterisation tests is of outstanding
importance: usually, destructive tests are conducted and a significant number of
samples is needed to get reliable results [12]. However, as far as the characterisation
of the composite behaviour at the mesoscopic scales, common standard ASTM tests
are not able to provide the full set of 3D properties of the composite. Moreover, in
the case of laminates, the elastic behaviour of the lamina is, generally, anisotropic
due to the mechanical behaviour of the constituent phases at the microscopic scale.
Concerning the identification of elastic properties at the microscopic scale, only
few standard tests are available in the literature and usually non-standard tests
are used [13–15], yet they show major shortcomings (complex experimental set-up,
significant dispersion of results, etc.).

In this context, the need of a general multi-scale identification strategy, able to
smartly combine the information resulting from both suitable numerical model and
cheap non-destructive tests, is of paramount importance. The identification proced-
ure should be as general as possible in order to include the uncertainty related to
both the material and the manufacturing process. This is precisely the goal of this
third research axis.

This Ph.D. thesis belongs to the third researc axis of the FULLCOMP project.
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Identification of composite material properties: issues

and challenges

When dealing with the characterisation of the composite material behaviour, one of the
main issues is related to the difficulty of characterising the material properties of the
constitutive phases (microscopic scale).

Experimental destructive tests are commonly used to carry out the characterisation
procedure, though they lead to an expensive experimental campaigns. As outlined in [12]
they can be divided into mesoscopic and microscopic identification tests. The most rel-
evant tests at the mesoscopic/macroscopic scale can be summarised as follows: the ten-
sion test for flat specimens (ASTM D3039 [16]), three/four points bending test (ASTM
D790 [17]), compression tests (shear loading methods ASTM D3410 [18], end loading
methods ASTM D695 [19], combined loading methods ASTM D6641 [20]) and shear tests
(in-plane shear tests ASTM D5379 [21]-D7078 [22]-D3518 [23], out-of-plane - interlam-
inar shear tests ASTM D2344 [24]-D5379). These tests are often used to determine the
elastic constants of the constitutive lamina. However, they do not allow identifying the
full set of 3D elastic properties required to uniquely describe the lamina stiffness tensor.
For example, an unidirectional fibre-reinforced pre-preg lamina has an orthotropic beha-
viour. The ASTM standard tests conducted at the lamina-level are able to provide only
the in-plane elastic properties, together with an approximation of the out-of-plane shear
moduli.

Concerning the identification of the material properties of the constituent phases, i.e.
fibres and matrix, only few standard tests can be performed at the microscopic scale:
single fibre test to obtain the Young’s modulus along the fibre axis (ASTM D3379 [25])
and the matrix tensile test (ASTM D638 [26]). Conversely, to characterise the rest of
the elastic properties, only non-standard tests are available in the literature: the pull-
out test [13], the micro-indentation test [14], the fragmentation test [15], etc. However,
non-standard microscopic tests present some major shortcomings: the experimental set-
up is usually difficult to be realised and the results often show significant dispersions, as
outlined in [27].

In this context, the main challenge is to identify the composite behaviour, at each
pertinent scale, avoiding destructive tests. To overcome these limitations, a dedicated
multi-scale identification strategy (MSIS) should be developed.
Firstly, the MSIS should be as general as possible in order to allow for characterising both
linear and non-linear behaviour of the composite at each scale.

For example, under dynamic loads, the characterisation of the composite damping
capability is of outstanding importance [28]. The macroscopic dynamic response of the
composite is strongly affected by the viscoelastic behaviour of the fibre and the matrix.
However, the characterisation of the viscoelastic behaviour of the constitutive phases is
anything but trivial.

From the experimental point of view, two methods are commonly used in the literat-
ure: the direct technique and the indirect one. On the one hand, the direct techniques
are mainly based on the measurement of the dissipated energy per load cycle, through
the evaluation of the area hysteresis loop [29]. On the other hand, the indirect methods
allow evaluating the dissipated energy through the specimen spectrum response. Typ-
ical indirect techniques for damping characterisation are: the free vibration-decay, the
resonant-dwell, the bandwidth and the impedance methods [30]. However, all the afore-
mentioned methods are able to provide information only at the mesoscopic scale: the



THE THESIS OBJECTIVES 17

viscoelastic behaviour of the microscopic constituents cannot be characterised through
these techniques.

Secondly, the MSIS should take into account for the variability of the composite ma-
terial at each scale. This aspect is very important, especially in large-scale production,
where a large amount of variability arises from unavoidable manufacturing imperfections
both for geometrical and material properties, affecting, hence, the macroscopic response
of the composite. As outlined in [31], the uncertainty can be classified as follows: aleatory
(variability of material parameters), epistemic (lack of adequate information about the
system) and prejudicial (absence of stochastic characterisation of the structural system).
Composite structures are affected by these forms of uncertainty and the characterisa-
tion of the parameters tuning the model describing the uncertainty becomes of prime
importance. However, experimental methods that are commonly used to characterise the
uncertainty require a huge number of standard ASTM tests [32]. Moreover, these tests are
only suited to evaluate mesoscopic uncertainty, in terms of material and geometrical prop-
erties at the mesoscopic scale, without providing useful information about the variability
characterising the properties of the constitutive phases at the microscopic scale.

In order to get statistical representative results, the aforementioned tests must be
performed a huge number of times. Of course, this implies significant costs (and time)
and the variability results (i.e. mean and standard deviation of material properties) are
strongly affected by the errors introduced to carry out the experimental campaign, espe-
cially for those tests conducted at the microscopic scale. To this purpose, Sepahvand et
al. developed the inverse stochastic method based on the general polynomial chaos (gPC)
to identify uncertain lamina elastic parameters from experimental modal data. Further
examples of probabilistic methods are the parametric probabilistic approach [33] and the
Bayesian inference techniques wherein all information are included into a prior distribu-
tion model [34–37]. However, in the case of composite structures, the uncertainty affecting
the ply elastic behaviour is strictly related to the variability of the elastic properties of the
constitutive phases. Up to now, the aforementioned probabilistic techniques have never
been extended to the identification of the variability parameters characterising the elastic
properties of the microscopic constituents of the composite. This aspect represents the
main challenge concerning the uncertainty identification of composite structures, together
with the need to use macroscopic non-destructive techniques.

The thesis objectives

In the light of the issues and challenges listed beforehand, this Ph.D. thesis aims to develop
a general MSIS exploiting the information restrained in non-destructive tests and making
use of pertinent FE models at each scale of the composite. In particular, the research
activity carried out in this thesis focuses on four main goals.

1. A general, multi-purpose MSIS should be developed in the framework of inverse
problems.

2. The MSIS should allow characterising both the linear and the non-linear behaviour
of the composite at each scale.

3. The MSIS should be able to integrate the material properties variability, at each
scale. Moreover, it should take into account the uncertainty propagation among
scales.
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4. The MSIS should efficiently exploit the information hidden into macroscopic non-
destructive tests.

Of course, point (1) requires the formulation of an opportune constrained non-linear
programming problem (CNLPP). The idea is to propose a CNLPP formulation free from
simplifying hypotheses (or at least reducing the number of such hypotheses) which allows
characterising, in a reliable way, the behaviour of the composite (linear and non-linear) at
each scale. // The proposed formulation should also reduce/avoid the user’s intervention,
i.e. the MSIS should be, ideally, problem-independent. Morevoer, the CNLPP formulation
should integrate all the variables involved into the definition of the composite behaviour
at each scale. Obviously, the price to pay is an increased problem complexity in terms of
both lack of uniqueness of the solution and sophistication of models and tools to perform
the solution search for the CNLPP.// As far as the numerical tool used to perform the
solution search for the (multi-scale) inverse problem, formulated as a CNLPP, a particular
care should be put in choosing an adequate optimisation algorithm. Due to the increased
problem complexity, the best choice is the use of a hybrid global/local optimisation tool
composed by the union of a meta-heuristic algorithm (to perform the global exploration)
and of a deterministic algorithm (to refine the local search).

Finally, points (2)-(4) require the development of pertinent numerical models. These
models should be, on the one hand, as accurate as possible to properly describe the beha-
viour of the composite at each scale. On the other hand, they should be computationally
efficient in order to be integrated in an optimisation loop and to provide a solution in a
reasonable time.

The thesis outline

The manuscript is articulated in six chapters.
Chapter 1 presents a literature survey on inverse problems and their application to

the characterisation of composite material properties.
Inasmuch as the work carried out in this thesis makes use of optimisation methods, a

brief overview on deterministic and on meta-heuristic algorithms is provided in Chapter
2.

Chapters 3, 4 and 5 constitute the core of this thesis: the effectiveness of the MSIS is
tested on some meaningful real-world engineering problems. Each one of these chapters
directly reports the related paper, published in an international journal.

In particular, Chapter 3 deals with the problem of the multi-scale characterisation of
the elastic properties of composites. In this work the identification process is conducted
at both the lamina-level and at the microconstituents-level. The MSIS makes use of the
information provided by a linear harmonic analysis.

In Chapter 4 the MSIS is generalised to the identification of the viscoelastic behaviour
of the composite at both the mesoscopic and microscopic scales. In this case, the MSIS
uses the information restrained in non-linear modal and harmonic analyses.

Chapter 5 further extend the MSIS by integrating the characterisation of the paramet-
ers tuning the variability of elastic properties of the composite material at each pertinent
scale. In this case, the multi-scale identification makes use of the information restrained
in buckling tests.

Finally, Conclusions and Perspectives of this Ph.D. work are presented in Chapter 5.2.



Chapter 1

Literature survey

1.1 Inverse problems: generalities and application to

composite materials

1.1.1 General comments

Given a physical system, the forward or direct problem consists in using a physical theory
to predict the outcome of possible experiments [38]. In classical physics this problem has
a unique solution. For instance, for a given mathematical model describing the behaviour
of a system (e.g. an aircraft uniquely defined by a set of material and geometrical para-
meters) and for a given model of the external inputs (e.g. applied loads, environmental
conditions, etc.), it is possible to predict the static and dynamic responses of the system.

The inverse problem arises when a good model of the considered system or a good
model of the inputs are not available, but only a set of experimental data is available.
These information can be used to infer the main features characterising the system be-
haviour, or a model of the external inputs. Generally speaking, inverse problems have
not a unique solution. Two classical examples can be found in the field of heterogeneous,
anisotropic materials. The first one concerns laminates: different stacking sequences
can correspond to the same macroscopic behaviour in terms of membrane, bending and
membrane-bending coupling stiffness tensors. The second one is about cellular structures:
different microscopic representative volume elements (RVEs), e.g. cubic, octahedron,
gyroid topologies, can show the same macroscopic stiffness.

1.1.2 Historical review

The use of optimisation techniques to solve inverse problems has a long history. Laplace
explicitly stated the least absolute values criterion. This formulation together with the
least-squares criterion were later popularised by Gauss [39]. While Laplace and Gauss
were mainly interested in overdetermined problems, Hadamard [40] introduced the notion
of an ill-posed problem, that can be viewed in many cases as an underdetermined problem.
The period from late sixties to early seventies was a golden age for the theory of inverse
problems. In this period the first attempts of using the Monte Carlo theory to obtain
Earth models were made by Keilis-Borok and Yanovskaya [41] and by Press [42]. At
about the same time, Backus and Gilbert [43–48] made original contributions to the
theory of inverse problems, focusing on the problem of obtaining an unknown function
from discrete data. Although the resulting mathematical theory is elegant: its initial

19



20 CHAPTER 1. LITERATURE SURVEY

predominance over the Monte Carlo theory was only possibly due to the quite limited
capacities of the computers at that time. An investigation of the connection between
analogue models, discrete models and Monte Carlo models can be found in a paper by
Kennett and Nolet [49]. Important developments of inverse theory were also made by
Wiggins [50] with the method of suppressing the small eigenvalues and by Franklin [51],
by introducing the right mathematical setting for the Gaussian functional, i.e. infinite
dimensional inverse problem. A reference on the probabilistic approach of Akaike can be
found in Parzen et al. [52].

1.1.3 Probabilistic formulation of inverse problems

As stated above, an inverse problem must be formulated when a set of measured data are
available and information on unknown parameters of the physical system are sought. For
standard inverse problems all the variables can be separated in two groups, the directly ob-
servable parameters and the model parameters. In particular, for a given physical system,
it is possible to describe its behaviour by assigning values to a given set of parameters
m = {m1,m2, ...,mNM}, defined as the model parameters, that may not be directly ob-
servable. Indirect measurements are then performed and the set of (directly) observable
parameters d = {d1, d2, ..., dND} can be defined.

The second ingredient is the mathematical model describing a given physical theory
that can be used to solve the forward problem, i.e. given a mathematical model uniquely
defined by the set m, it can be used to predict the theoretical data d that an ideal
measurement should produce. The generally non-linear function that can be associated
to this model can be represented as

d = f (m) . (1.1)

Usually, mathematical models are characterised also by a priori information, i.e. the
information that do not depend upon of the measurements. These information show a
generally complex probability distribution over the model space and, for this reason, one
can introduce the probability density function ρm (m), as outlined in [53].

Similarly, the observation of the considered physical phenomena is represented by the
set d: as in any measurement, the data are determined with an associated uncertainty,
which can be described by a probability density function over the data parameter space,
denoted as ρd (d).

Assuming that the probability density in the model space does not depend upon
the measurements, it is possible to define a joint probability density ρ (x) in the space
X = (M,D), defined as

ρ (x) = ρ (m,d) = ρm (m) ρd (d) . (1.2)

In the (M,D) = M×D space, the natural and common way to compose the probability
density ρ (m,d) and the hypersurface d = f (m) is to define the conditional probability
density σm (m) [38]:

σm (m) = ρm|d(m) (m | d = f (m)) = kρ (m,d)

√
det (gm + FTgdF)√
det (gm)

√
det (gd)

∣∣∣∣
d=f(m)

, (1.3)
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where F = F (m) is the matrix of partial derivatives, with components Fiα = ∂fi
∂mα

; where
gm and gd are the metric in the model parameter space M and in the data space D,
respectively.

Once the conditional probability density σm (m) is defined, there are different ways
of using it. If the model space M is characterised by a small number of dimensions the
values of σm (m) can be computed at every point of a grid and a graphical representation
of σm (m) can be obtained. Conversely, if the model space M has a large number of
dimensions (e.g. grather than five), then an exhaustive exploration of the space is not
possible and the Monte Carlo sampling method can be implemented to extract information
from σm (m), as outlined in [54].

1.1.4 Solution techniques for inverse problems

The solution techniques for inverse problems are substantially three: the examination
of the combined probability density, the Monte Carlo and the optimisation methods.
The examination of the probability density consists of directly plotting σm (m), when
few parameters are investigated (i.e. from one to five). However, when the number
of parameters increases, the Monte Carlo algorithm or the optimisation methods are
mandatory to solve the inverse problem.

On the one hand, an extensive systematic exploration of the model space is needed
and, concerning the meta-heuristic algorithms, different sampling methods are available
in the literature: the inversion method, the rejection method, the sequential realisa-
tion, the Gibbs sampler, the Metropolis algorithm and the genetic algorithms [55] (GAs).
Nowadays, the most well-established techniques are the Metropolis algorithm [56–58] and
the GAs: the basic idea is to perform a random exploration of the model space and the
main differences are that the Metropolis algorithm is based on a sort of Brownian motion,
while the GA is a biological metaphor exploiting the mechanisms at the basis of genetics
and of the Natural selection.

On the other hand, deterministic methods can also be used. Roughly speaking, the
solution of an inverse problem essentially consists of a probability distribution over the
space of all possible models of the physical system under study. In general, if the model
dimension is high (i.e. greater than five) the only way to explore it is by means of the
Monte Carlo method. However, if the probability distributions are bell-shaped (i.e. a
generalised Gaussian shape), it is possible to simplify the problem by calculating the
point around which the probability is maximum. Common deterministic methods based
on the gradient of the function are: maximum likelihood point, misfit, steepest descent
algorithm and quasi-Newton methods (for more general methods, the reader is addressed
to [54,59–62] and to Chapter 2).

When the non-linearity is weak, inverse problems can be solved with the least-absolute-
values and the min-max criteria (l1-norm criteria) introduced by Laplace [63], or the least-
squares criterion (l2-norm criterion) introduced by Legendre and Gauss [39]. Least-squares
are popular for solving inverse problems because they lead to the easiest computations.
The only drawback is their lack of robustness, i.e. their strong sensitivity to a small
number of large errors in the data set.
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1.1.5 Material properties characterisation as an inverse problem

This Ph.D. thesis deals with the characterisation of the behaviour of composite materials
at each pertinent scale, ideally by using non-destructive tests. Unfortunately, the set of
material properties provided by manufactures is often not sufficient to describe completely
the behaviour of the composite for all its potential applications [64]. For example, the
technical sheet for standard fibre-reinforced pre-pregs [65–67] includes only basic inform-
ation, like fibre volume fraction, in-plane Young’s moduli (tension and flexural), density,
etc. However, very often the out-of-plane elastic constants are not provided, thus experi-
mental tests reveal necessary to fully characterise the 3D elastic response of the pre-preg.
Furthermore, as far as the non-linear behaviour is concerned, no information are available.

Different techniques are commonly applied to deal with material properties character-
isation. The experimental tests are of two types: destructive and non-destructive tests.
Usually, when the characterisation of the material properties of a composite is formu-
lated as an inverse problem the data provided by non-destructive tests are employed.
In particular, the identification of the material behaviour by means of inverse methods
has recently seen a significant growth, mainly because of the availability of efficient and
modern technologies such as automated testing, full-field measurement techniques [68],
and inexpensive computing resources [69]. Two exhaustive surveys on this topic are avail-
able in [70,71]. These works highlight that the vibration-based techniques (based on the
evaluation of natural frequencies and the related modal shapes) are the most popular
non-destructive tests associated to inverse problems for material properties identification.
The researchers dealing with this topic make use of deterministic algorithms to carry out
the solution search of the inverse problem [72,73]. When possible the sensitivity analysis
(i.e. the evaluation of the gradient of either objective function or constraint functions)
is performed analytically or by means of surrogate models like artificial neural networks
(ANNs) [74]. When the inverse problem is strongly non-convex meta-heuristic algorithms,
like GAs, are adopted [75]. Often the inverse problem is solved for single-layer [72–74] or
multilayer composite plates [75].

As stated above, the identification of the material properties of composites can be
formulated as an inverse problem, as widely discussed in [76]. Although often the aim
is to find static material data, eigenfrequencies and/or modal shapes are measured for a
given specimen. In a pilot project by Markworth and Petersen [76] this technique was
found very promising (some of the results can be found in Pedersen and Frederiksen [77]).
The same conclusions were reported in the Ph.D. thesis by Sol [78]. The research groups in
Brussels and in Eindhoven have continuously refined the method and obtained impressive
results. The proceedings from an Euromech colloquium, edited by Sol and Oomens [79],
give a picture of the state of the art. A doctoral thesis by Kuttenkeuler [80] shows
the importance of these techniques for composite materials characterisation and design.
Combination with the FE method and thick plate kinematics formulation are investigated
and the relative issues and challenges are discussed in the work by Mota Soares et al. [81].

1.2 Multi-scale characterisation of composite mater-

ial properties

Due to their nature, composite materials show a behaviour significantly different from
that of conventional materials, such as metals. For metals, the hypothesis of homogeneous
isotropic behaviour is consistent in most cases. In addition, in the framework of linear
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elasticity the stiffness tensor of metals depends only upon the Young’s modulus and the
Poisson’s ratio [82]. In the case of composite materials, the assumption of homogeneous-
isotropic behavior is not possible, and more complex models have to be used depending
on the problem at hand [83]. The complex behaviour of composites is actually due to
two intrinsic properties of these materials, i.e. the heterogeneity and the anisotropy. The
heterogeneity is involved mainly at the micro-scale (i.e. the scale of constitutive “phases”).
Conversely, the anisotropy intervenes at both mesoscale (that of the constitutive lamina)
and macro-scale (that of the laminate). As a consequence of the anisotropy, the mechanical
response of the material depends upon a considerable number of parameters, i.e. 21 for a
general triclinic material, 13 for the monoclinic case, nine for the orthotropic one, five for
the transverse isotropic case and two for an isotropic material. Accordingly, composite
materials need the development of suitable multi-scale models and theories. To this
purpose, they are conveniently studied from two points of view: the micro-mechanics and
the macro-mechanics.

In this work, the characterisation of the behaviour of the composite material is per-
formed at each characteristic scale. In particular, the main goal is the identification of the
behaviour of the microscopic constituents starting from the evaluation of a macroscopic
mechanical response, as the dynamic response or the first buckling load. More precisely,
this thesis focuses on the multi-scale characterisation of the elastic and viscoelastic prop-
erties of composite materials, eventually in presence of uncertainty. Therefore, a state-of-
the-art concerning the application of characterisation techniques and inverse problems to
the above topics is presented in the following sections.

1.2.1 Identification of the elastic properties

The heterogeneity and anisotropy typical of composite materials require more sophistic-
ated experimental procedures for characterising their behaviour. The standards normally
used for homogeneous isotropic materials are inadequate for the complete identification
of the composite response [82]. In fact, even under the hypothesis of linear elastic beha-
viour, the anisotropy requires that the material response must be measured along several
directions. The microconstituents, in turn, implies a local variation of the mechanical
properties, which requires the averaging of deformations over areas sufficiently larger
than the heterogeneity characteristic sizes.

For these reasons, multiple standard destructive tests have been developed. The most
important tests aiming at characterising the composite behaviour at the mesoscopic scale
(i.e. lamina-level) are the tension test for flat specimens (ASTM D3039 [16]), three/four
points bending test (ASTM D790 [17]), compression tests (shear loading methods ASTM
D3410 [18], end loading methods ASTM D695 [19], combined loading methods ASTM
D6641 [20]) and shear tests (in-plane shear tests ASTM D5379 [21]-D7078 [22]-D3518 [23],
out-of-plane - interlaminar shear tests ASTM D2344 [24]-D5379). Nevertheless, ASTM
standard tests conducted at the lamina level are not able to provide the full set of 3D
elastic properties: only the in-plane material properties together with an approximated
value of the out-of-plane shear moduli can be retrieved through these tests.

Conversely, only few standard tests can be carried out at the microscopic scale: single
fibre test to obtain the Young’s modulus along the fibre longitudinal direction (ASTM
D3379 [25]) and matrix tensile test (ASTM D638 [26]). In order to characterise the rest of
the constitutive phases properties, only non-standard tests are available in the literature:
pull-out [13], micro-indentation [14], fragmentation tests [15], etc.
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Indeed, it is very interesting, especially from an industrial point of view, to be able
to reduce the cost of experimental characterisation tests which are usually destructive
procedures that must be carried out for a significant number of samples in order to get
reliable results (thus leading to quite expensive experimental campaigns) [12]. Moreover,
as far as concerns the characterisation of the elastic properties of the constitutive phases,
a large data dispersion is obtained during experimental tests. This is due to the difficulty
to properly set the experiment and to handle the microscopic constituents [14].

In this scenario, it interesting to observe that in the literature two techniques are
proposed to overcome the aforementioned issues [82]: the virtual field method (VFM)
and the finite element model updating (FEMU).

The VFM is an approach which allows identifying the constitutive parameters of
a material by means of the principle of the virtual work, in the hypothesis of small
strains [84,85]. For instance, it is possible to assume a static test performed on a thin an-
isotropic plate of uniform thickness: under the hypotheses of plane stress field, specimen
subjected to N concentrated forces and negligible body forces, it is possible to charac-
terise the lamina elastic coefficients. Therefore, the VFM allows defining more complex
characterisation tests able to provide more information, than standard procedures. In
addition, as for the standard procedures, the VFM does not imply iterative procedures
with the related typical convergence issues [82]. The VFM results to be a powerful tool
for characterising anisotropic materials. In fact, many researchers continue to study and
develop new approaches based on virtual fields. In [86] Gu et al. proposed a new test able
to identify the whole set of elastic constants for an orthotropic plate. Rossi et al. [87–89]
developed new procedures to find the most significant experimental and operative para-
meters that can play an important role in the measurement process, like the orientation
of the fibres. In [88] Nigamaa et al. proposed a variant of the VFM, the Eigenfunction
Virtual Field Method (EVFM), according to which the measured strains are used for
generating the virtual fields. Similarly, in [90] Rahmani et al. presented an identification
method, based on Regularized Virtual Field Method (RVFM), aimed to determine the
local properties of a unidirectional composite transversally loaded.

As far as the FEMU is concerned, it combines the experimental data with FE simu-
lations [91, 92]. It has become popular in the last 20 years, thanks to the progresses in
informatics (namely hardware capacity) and to the diffusion of commercial FE software.
In the framework of the FEMU, a mechanical test is chosen and it is performed on the
composite specimen. According to the adopted full-field technique, a specific field (dis-
placement or strain components) is measured over a portion (or over the whole) outer
surface of the specimen. Then, the same mechanical test is simulated by a FE analysis
assuming a first guess for the elastic parameters, and the same deformation field is numer-
ically calculated [82]. The numerical and experimental results are compared by building
a pertinent cost function (usually an error-estimator), which is evaluated and compared
with some threshold values in order to satisfy convergence requirements. If the conver-
gence criteria are met, the search procedure is stopped, otherwise a new set of elastic
parameters is chosen and used for the next iteration.

Moreover, the FEMU approach has been improved by Rahmani et al. [93], who pro-
posed an improved FEMU approach, the Regularized Model Updating (RMU), based on
micromechanics concepts and which adds some mathematical constraints in order to speed
up the convergence of the algorithm and improve the accuracy of the solutions. In [94]
the authors proposed an identification procedure based on the natural frequencies of a
composite panel. In this procedure, the moduli of the constitutive phases are evaluated



25

and particular attention was put on the effect of the noise on the experimental data and
on the influence of the boundary conditions, modelled as extension springs whose stiffness
was evaluated by the FEMU procedure. The method reported in [95] allows to measure
all the 21 elastic coefficients of a completely anisotropic medium. In this case, seven static
mechanical tests are required on a single L-shaped specimen.

Other approaches were successfully used for linear elastic characterisastion, such as
the constitutive equation gap method [96], the equilibrium gap method [96, 97], the re-
ciprocity gap method [98], and the constitutive compatibility method [99]. All these
approaches, reviewed in [100, 101], were mostly used for isotropic materials, hence they
are not discussed here.

Finally, it is interesting to briefly analyse the comparison between the standard ASTM
tests, VFM and FEMU techniques, as done in [82]. Of course, the number of tests to
be carried out is the highest in the case of standard ASTM tests, according to which
the stress/strain states are quite simple. Accordingly, their sensitivity to different elastic
parameters is often uncoupled. The higher complexity of testing configurations adopted
by VFM and FEMU allows for a significant reduction in the number of tests required to
completely characterise the material. Conversely the sensitivity analysis is harder than
in the case of ASTM tests. Finally, the computational complexity is low for standard
ASTM tests and VFM technique, which allows for a direct calculation of elastic coefficients
after an evaluation of stress and strain field, while the FEMU approach requires iterative
procedures that are often time consuming. However, the VFM is based on the assumption
of constant stiffness matrix terms and its generalisation to the characterisation of the non-
linear material behaviour is anything but trivial.

1.2.2 Identification of the parameters tuning the viscoelastic be-
haviour

Composite materials are characterised by a dynamical behaviour that is strongly affected
by damping [102]. Accordingly, a proper characterisation of the damping capability of
the material, at each relevant scale, is a challenging task [28]. This problem is more
difficult than that of the elastic properties characterisation essentially because of the non-
linear nature of the viscoelastic behaviour of the matrix, in terms of time response, which
influences the damping capability of the composite at all characteristic scales.

From an experimental point of view, two methods are commonly used: the direct
method and the indirect one. On the one hand, the direct techniques are based on the
measurement of the dissipated energy per load cycle, which can be evaluated from the
area of an hysteresis loop [29]. On the other hand, the indirect methods allow estimating
the dissipated energy from the analysis of the spectrum response: free vibration-decay,
resonant-dwell, bandwidth and impedance methods are some of the experimental tech-
niques used for damping characterisation [30].

As stated above, the damping capability of the composite at the macroscopic scale can
be directly related to the viscoelastic properties of its microscopic constituents [103,104].
Nowadays, the so-called Dynamical Mechanical Analysis (DMA) [105–107] represents an
useful method to characterise the material properties of reinforced polymers in terms of
thermal, elastic and viscoelastic behaviours [108].

The DMA test is performed by applying harmonic loads to the specimen. By meas-
uring the sample response, it is possible to compute an apparent modulus that can be
used to estimate the viscoelastic material parameters of the specimen. In the case of a
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composite multilayer plate wherein the lamina has an isotropic transverse behaviour [28],
the identification process has to be carried out three different times, e.g. by considering a
symmetric angle-ply stack, to determine the longitudinal and transversal Young’s moduli
as well as the in-plane shear modulus. In particular, the ply orientation θ must be set
equal to 0◦, 90◦ and 45◦ respectively, to determine the longitudinal EL, transversal ET
and shear GLT moduli. In this way, it is possible to compute an apparent modulus Ex,
that can be used to estimate the viscoelastic behaviour of the specimen, as

1

Ex
=

1

EL
· cos4(θ) +

(
1

GLT

− 2 · νLT
EL

)
· sin2 (θ) · cos2 (θ) +

1

ET
· sin4 (θ) . (1.4)

Unfortunately, when high modulus composite materials are investigated, the DMA
technique provides less accurate results [108] compared to the ASTM three-points bending
test [17]. Indeed, the DMA test provides an apparent modulus giving only an average
approximation of the plate flexural stiffness which group both structural and material
aspects. However, the DMA test does not allow to extract information about microscopic
properties.

From the engineer’s viewpoint it is more interesting to look for those tests which allow
identifying material properties at all relevant scales and which are not limited by the size
of the composite sample or by the geometrical and material properties of the constitutive
phases composing it. The formulation of a suitable inverse problem for material properties
characterisation is a widely studied topic in the literature [109–111]. In this background,
Barkanov et al. [112] proposed an inverse technique based on modal analysis and on the
response surface method to characterise the nonlinear behaviour of the viscoelastic core
layer in sandwich panels. Elkhaldi et al. [113] worked on the viscoelastic parameters
identification for a sandwich panel where a generalised Maxwell model is considered and
a gradient-based algorithm is used to solve the associated inverse problem. Cortés et
al. [114] developed an identification strategy to characterise the parameters of the frac-
tional derivative model representing the viscoelastic behaviour of a sandwich beam. In
all these works the goal is the minimisation of the error between the predicted Frequency
Response Function (FRF) and the measured one. Ledi et al. [115] proposed an identifica-
tion method for frequency-dependent material properties of viscoelastic sandwich beams
able to take into account for the behaviour of the interface between layers.

As it can be inferred from the aforementioned works, the damping capability related
to the viscoelastic behaviour of the constitutive phases (mostly that of the matrix) can
be characterised by exploiting the information restrained in the dynamic response of
the structure. The strategy presented in Chapter 4 follows this trend and represent a
generalisation of the above works by extending the identification procedure to the lower
scale, i.e. to the viscoelastic behaviour of the constitutive phases.

As far as the numerical implementation of the viscoelastic behaviour, different material
laws are available and in the literature. A common approach is to enrich the existent
models with more parameters. Classical linear viscoelastic material models are: (a) the
Maxwell’s model, (b) the Kelvin-Voigt model, (c) the Maxwell-Kelvin model, (d) the
power law, (e) the Prony’s series and, finally, the generalised Kelvin model [116].

The Maxwell’s model yields totally unrecoverable viscous flow plus recoverable elastic
deformation

ε̇ (t) =
σ (t)

τE0

+
σ̇ (t)

E0

, (1.5)
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where τ is the time constant of the material and E0 the Young’s modulus.
A Kelvin-Voigt yields totally recoverable deformation with no unrecoverable viscous

flow

σ (t) = τE0ε̇ (t) + E0ε (t) , (1.6)

where the deformation does not recover instantaneously.
The Maxwell-Kelvin model is a four-parameter model, where Maxwell and Kelvin

models are placed in series and the resulting compliance D (t) reads

D (t) =
1

E1

+
t

τ1E1

+
1

E2

[
1− exp

(
− t

τ2

)]
, (1.7)

where the first index is related to the Maxwell’s model parameters and the second
index concerns the Kelvin-Voigt model parameters.

The short-term deformation of polymers can be described with the power law, in which
the stiffness can be represented as

E (t) = At−n, (1.8)

where the parameters A and n are adjusted with experimental data.
Although the short-term creep and relaxation of polymers can be well-described by

the power law, as the time becomes longer, a more refined model becomes necessary. The
Prony’s series allows describing the required long-term behaviour, in terms of stiffness:

E (t) = Einf +
n∑
i=1

Eie
−
t

τi , (1.9)

where τi are the relaxation times, Ei the relaxation moduli and Einf the static Young’s
modulus.

However, the choice to increase the number of parameters into the viscoelastic law
leads to a drastically increase of the computational time, as described in [117]. The im-
plementation of more efficient material laws is, thus, of paramount importance and the
fractional derivative approach could represent a sound alternative, as outlined in [29]. In
particular, from the experimental point of view, it is observed that the stress is propor-
tional to the fractional derivative of order α (fractional exponent):

σ (t) =
G

Γ (1− α)

∫ t

0

ε̇

(t− τ)α
dτ = GDα

0 (t) , (1.10)

where Dα
0 (t) is the fractional derivative operatore relative to the Riemann-Liouville

formulation, 0 ≤ α ≤ 1 and G ∈ <∗+. It is noteworthy that the elastic behaviour is reached
when α = 0 (Hooke’s law) and, on the other hand, the visco-anelastic law is obtained
with α = 1 (Newton’s law).

The physical meaning of the fractional-derivative model has been shown with the
molecular model of Rouse [118], for dilute solutions of polymers. A polymer molecule
is composed by chains of atoms in which the relative forces are modelled with springs.
Moreover, the polymer molecules are surrounded by a Newtonian fluid at temperature T :
every polymer molecule shows a velocity composed by the fluid speed and the velocity due
to the relative motion between different molecules. By following the proposed Rouse’s
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model, it is possible to find a relationship between stress and strain rate, defined by a
fractional derivative model, in the time domain:

σ (t) = νs ˙ε (t) +

[
3

2
(ν0 − νs)nkT

]1/2
D1/2ε (t) , (1.11)

where νs and ν0 are the polymer and the fluid viscosity, respectively, T is the temper-
ature, n the number of molecular chains and k the Boltzmann’s constant. Therefore, it
is possible to consider that the numerical implementation of a fractional-derivative law is
physically justified from a molecular model.

This model is able to well describe the viscoelastic behaviour of composites, which
is history-dependent. As described in [29], a significant number of fractional-derivative
viscoelastic models have been developed to describe the mechanical response of eterogen-
eous materials such as elastomers and polymers [119, 120]. Indeed, classical rheological
models previously introduced can be written in terms of fractional derivatives: the Kelvin-
Voigt [121], Maxwell [122] and Zener [123, 124] to obtain creep and relaxation functions.
Rabotnov et al. developed an hereditary theory representing a generalised fractional-
derivative rheological model [125]. The Rabotnov’s theory is widely used to describe
the behaviour of the polymers, metals and concrete. Bagley and Torvik derived the
fractional-derivative law in the frequency domain to describe the behaviour of polymers
and elastomers [126].

Some examples of application of this model can be found in the literature: Krasnobrizhaet
al. [117] proposed a model to describe the hysteresis behaviour of woven composite us-
ing a collaborative elastoplastic damage model, based on fractional derivatives; Meral
et al. [127] used the fractional-derivative model to describe the viscoelastic behaviour of
soft biological tissues; Fukunaga et al. [128] applied the fractional-derivative operator to
describe the behaviour of viscoelastic materials under large strain.

1.2.3 Identification of the composite behaviour under uncer-
tainty

As outlined in [31], the uncertainties can be classified in three main categories: aleatory
(variability of structural parameters), epistemic (lack of adequate information about the
system) and prejudicial (absence of stochastic characterisation of the structural system).
Composite structures are affected by the three forms of uncertainty and the characterisa-
tion of the parameters tuning the variability law becomes of prime importance.

A lot of efforts has been put in the development of robust identification methods in
presence of noise. Regarding the identification procedures available in the literature, vari-
ous methods have been developed over the last decades [101]. Some of them explicitly
require full-field measurements to be available [129]. The FEMU was the first proposi-
tion [130–132]. Least squares errors were considered with no special emphasis on their
weighting. Other types of gaps were introduced. In elasticity, different variational prin-
ciples were considered [100, 133]. The constitutive equation error, which was initially
introduced for the verification of numerical models [134], was also used for identification
purposes [135–137]. The reciprocity gap [98, 138, 139] considers only surface measure-
ments to determine various types of defects in the bulk material of the analysed domain.
Non-iterative methods such as the VFM [140] and the equilibrium gap method [141–145]
were introduced to calibrate elastic parameters and damage models.
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In the majority of aforelentioned studies, the uncertainty characterising the measure-
ment was not explicitly accounted for. Optimal extractors, namely, the least sensitive to
measurement uncertainties were introduced for the choice of virtual fields [146], the es-
timation of fracture mechanics parameters [147], or the identifiability of load and contrast
fields in micro-cantilevers [148]. Specific weighting based on global Digital Imagine Correl-
ation (DIC) uncertainty was also proposed for the identification of elastic properties [149].
Roux and Hild [150] extended this optimality feature by analysing each of the aforemen-
tioned identification methods in view of their sensitivity to measurement uncertainty and
by formulating an optimal criterion. In particular, an unified framework was proposed to
recast the identification procedures described above. The main difference is the metric
used to measure the distance between measured and computed displacement fields. In
this unified framework, the spectral sensitivity of all these identification methods has been
assessed and a comparison between the sensitivity of all these methods to measurement
uncertainty has been performed. In [150], the optimality of the identification is defined
as its least sensitivity to measurement noise. It was proven that the metric based on
the inverse covariance matrix of the measured displacements minimises the Mahalanobis
distance: it corresponds to weighted FEMU.

Moreover, Roux and Hild observed that the constitutive law could be relaxed to bet-
ter account for the measured data [151]: in this way, the identification appears as a
compromise between a constitutive law describing a material and noise corrupting the
measurements.

The previously described identification procedures consider, however, only the effects
of noise on the characterisation process.

Composites are multi-phase, heterogeneous materials that can be tailored to obtain
the required engineering properties offering, thus, many unique advantages in terms of
mechanical properties, compared to conventional materials. However, the manufacture of
composites involves complex processes, which are often difficult to control, thus poten-
tially leading to a considerable scatter in their mechanical properties; this distinguishes
composites from other common engineering materials [152]. Uncertainty in the perform-
ance of composite structures can be broadly addressed through material, geometric and
structural considerations [153–155].

The influence of the manufacturing process on the composite material property uncer-
tainty is multi-faceted and is often not traced explicitly. The material properties variab-
ility is significantly influenced by the relative amounts of the constituent elements (fibres
and matrix), i.e. fibre volume fraction, rich resin regions, lack of appropriate curing,
porosity of the matrix, alignment of fibres, adequate bonding between fibres and matrix,
temperature effects, etc. [156–160]. Yushanov and Bogdanovich [161] highlighted that
uncertainty in fibre curvature and layer arrangement, associated with manufacturing pro-
cesses such as thermal treatment, filament winding, braiding, etc. are also important
in estimating the appropriate material properties. The uncertainty in these parameters
propagates to the macroscopic scale and translates into the variability of stiffness and
strength properties affecting the overall structural response. All the above factors com-
plicate the definition and quantification of uncertainty in design and assessment of such
structures.

Uncertainty at the assembly level is associated with different joining techniques, joint
types and machining aspects. Furthermore, the interaction between tooling and composite
lay-up processes may contribute to geometrical variability [156, 160]. For example, if the
laminate is cured at high temperature, then the tooling and lay-up might have different
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thermal coefficients of expansion resulting in residual stresses and distortions [158]. Fi-
nally, the inherent random nature of various load types and classes, environmental factors
such as temperature variation and permeability, and the imperfections and misalignments
arising from boundary conditions further contribute to the nature and level of uncertainty
which needs to be accounted for in modelling and predicting the response of composite
structures.

Experimental methods that are commonly used to characterise the uncertainty require
a huge number of standard ASTM tests, which are really expensive [32]. Moreover,
these tests are only suited to evaluate mesoscopic uncertainties, in terms of material
and geometrical properties of the lamina without providing any information about the
variability characterising the properties of the constitutive phases at the microscopic scale.

In order to get statistical representative results, the aforementioned tests must be
performed a huge number of times. Of course, this implies significant costs (and time)
and the variability results (e.g. mean and standard deviation of material properties)
are strongly affected by the (human) errors introduced to carry out the experimental
campaign, especially for those tests conducted at the microscopic scale. To this purpose,
Sepahvand et al. developed the inverse stochastic method based on the general polynomial
chaos (gPC) [162–168] to identify uncertain lamina elastic parameters from experimental
modal data. Further examples of probabilistic methods are the parametric probabilistic
approach [33] and the Bayesian inference techniques wherein all information are included
into a prior distribution model [34–37]. However, in the case of composite structures,
the uncertainty affecting the ply elastic behaviour is strictly related to the variability of
the elastic properties of the constitutive phases. To the best of the author’s knowledge,
the aforementioned probabilistic techniques have never been extended to the identifica-
tion of the variability parameters characterising the elastic properties of the microscopic
constituents of the composite.

Concerning the state-of-the-art of the approaches combining optimisation and uncer-
tainty, three specific research areas can be identified in the literature, as outlined in [169]:
reliability-based optimisation (RBO), robust design optimisation (RDO) and model up-
dating. The RBO technique concerns the solution of an optimisation problem in which
the main goal is to design for safety by considering extreme events: common objective
functions are defined by the structural weight and the constraints are both deterministic
and probabilistic (e.g. probability of failure of the structure) [170–173]. The RDO method
is usually implemented in order to minimise the influence of stochastic variations on the
mean design [174]. Finally, the typical goal of the model updating technique is to reduce
the differences between model prediction and data from tests [132, 175]. In this context,
the MSIS proposed in this thesis and presented in Chapter 5 (in a slightly different for-
mulation to deal with uncertainty) can be considered as a model updating technique that
allows identifying the elastic properties of the composite (and the related uncertainty) at
each scale. This information can be later used in the framework of both RBO and RDO
approaches.

1.3 Conclusions

This bibliographic study has highlighted peculiarities of the (multi-scale) characterisation
of the composite material behaviour. Composite materials show a complex behaviour,
that is manly due to their inherently heterogeneous nature at the microscopic scale: the
constitutive phases are the main responsible for the anisotropic behaviour at the upper
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scales (i.e. ply-level and laminate-level). In this context, the characterisation of the ma-
terial properties, at each pertinent scale, is of paramount importance in order to correctly
predict the macroscopic response of the composite.

In particular, this thesis is focused on the development of a general MSIS well-suited for
the characterisation of both the elastic and the viscoelastic behaviours of the composite,
eventually in presence of uncertainty, at each pertinent scale, starting from non-destructive
tests. Regarding the characterisation of the elastic properties, standard and non-standard
tests are commonly used in the literature, but they are not able to provide the full-set
of 3D elastic properties. Moreover, VFM and the FEMU techniques have recently been
developed to identify the 3D set of elastic properties of the elementary ply. However,
all these techniques and methods have never been generalised to characterise the elastic
behaviour of the microscopic constituents with non-destructive tests.

As far as the viscoelastic behaviour of the composite is concerned, three main tech-
niques are available in the literature: the estimation of the dissipated energy through the
evaluation of the hysteresis loop; the DMA test, that is able to identify only the meso-
scopic properties of a particular specimen; the solution of an inverse problem based on
the experimental dynamic response of the specimen, which has been investigated only for
sandwich composite plates (by considering a simple isotropic viscoelasticity behaviour for
the elastomeric layer).

As far as the identification of the parameters describing the variability of the elastic
properties is concerned, three approaches are proposed in the literature to overcome the
main restrictions affecting both standard and non-standard (destructive) tests, which are
expensive and that produce non-reliable results at the microscopic scale. In particular,
they are: (a) the inverse stochastic method (based on the general polynomial chaos and
on the macroscopic modal data), (b) the parametric probabilistic approach and (c) the
Bayesian inference technique. Although their interesting features and the great potential
behind each method, these techniques have never been generalised to the identification
of the uncertainty of the microscopic material properties starting from non-destructive
macroscopic tests.

Starting from the analysis of the advantages and shortcomings characterising each of
the aforementioned techniques, three different declinations of the developed MSIS will be
presented in Chapters 3, 4 and 5 in order to give a contribution in the field of inverse
problems applied to the identification of the composite material behaviour.
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Chapter 2

Optimisation Methods and
Algorithms

2.1 Introduction

Optimisation methods and algorithms have been attracted the interest of researchers and
companies from several decades. Often, the word “optimisation” is excessively and im-
properly used in different contexts. In this Chapter, the general features of optimisation
are discussed and the word “optimisation” is intended in the sense of mathematical pro-
gramming.
The Chapter is split into two main parts. The first one introduces a brief literature survey
on optimisation methods, both deterministic algorithms and meta-heuristics. The second
part presents the special genetic algorithm used in this work.
The Chapter is structured as follows. In Section 2.2 a possible classification of optim-
isation methods is given. In Section 2.3 the main features of deterministic algorithms
used to solve constrained non-linear programming problems are briefly recalled. Section
2.4 focuses on the generalities of meta-heuristics and, in a second time, on genetic al-
gorithms (GAs). Section 2.5 briefly recalls the main features of the original GA used in
this thesis initially presented [1], while Section 2.6 presents the last version of the general,
multi-purpose GA presented in [176]. Finally, Section 2.7 ends the Chapter with some
conclusions and perspectives.

2.2 Classification of optimisation methods

Roughly speaking, optimisation can be defined as the selection of the best element (ac-
cording to a given criterion) from a set of available alternatives [177]. Before proceeding
with the discussion, some main concepts must be introduced.

The aim of optimisation is to minimise an assigned objective function (or cost function)
f depending on several (sometime a huge amount of) parameters. Those parameters that
cannot be set to a constant value are called optimisation variables or design variables.
Design variables are usually collected in the array x ∈ Rn and constitute the unknowns
of the optimisation problem, so the dependence of f on x is made clearer by the notation
f(x).

In practical engineering applications, an optimisation problem is usually subject to
me equality constraints, in the form of hi(x) = 0, i = 1, ...,me, and/or mi inequality

33
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constraints, in the form gj(x) ≤ 0, j = 1, ...,mi. Optimisation constraints formalise some
physical or technological requirements, depending on the problem at hand. A point x∗

meeting the set of constraints is called feasible. The choice of the mathematical form of
the objective/constraints functions and of the design variables set is called modelling.

From a mathematical viewpoint, the optimisation problem is classically stated in the
form of a constrained minimisation problem as follows:

min
x

f(x),

subject to:
gi(x) ≤ 0, i = 1, . . . ,mi,

hj(x) = 0, j = 1, . . . ,me,

xLB ≤ x ≤ xUB.

(2.1)

In Eq. (2.1), xLB and xUB are the lower and upper bounds on the design variables,
respectively. Problem (2.1) is conventionally referred as a Constrained Non-Linear Pro-
gramming Problem (CNLPP).

Usually, the solution of problem (2.1) cannot be derived in a closed form (apart some
very special cases) and a suitable optimisation algorithm must be used in order to carry
out the solution search. The choice of the optimisation algorithm is influenced by several
factors:

• the nature of design variables;

• the presence of constraint functions;

• the nature of both objective and constraint functions, i.e. continuity, convexity,
linearity, etc.

Accordingly, optimisation algorithms can be classified by taking into account the pre-
vious criteria: a possible classification, taken from [178], is proposed in Fig. 2.1.

The first classification criterion is the presence of optimisation constraints. Although
engineering problems often involve several constraints, unconstrained optimisation theory
is fundamental because constrained problems are typically solved by reducing them to
equivalent unconstrained ones.

The second criterion focuses on the linearity: if objective and constraints functions are
linear functions of the design variables x, then the optimisation problem is linear. Linear
Programming constitutes an important branch of optimisation methods. The peculiarity
of linear programming problems is that the only information exploited by the algorithm
is related, at most, to the gradient of objective/constraint functions (in fact, the Hessian
matrix is identically null).

The third criterion is related to the convexity. Convexity is extremely important in
optimisation problems because it brings information about the nature of the optimum
solution that the algorithm is searching for. The notion of convexity applies to both sets
and functions. An optimisation problem is convex if the following conditions are met:

• the objective function is convex;

• the equality constraint functions are linear;
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Figure 2.1 – Classification of optimisation algorithms.

• the inequality constraint functions are convex (i.e. gj(x) is convex ∀j = 1, ...,mi).

A point x∗ is a global minimiser if f(x∗) ≤ f(x) for all x in the feasible domain. Ac-
cordingly, f(x∗) is the global minimum (also called global optimum or global solution).
Alternatively, if f(x∗) ≤ f(x) only in a neighbourhood of x∗, x∗ is called local minimiser
and f(x∗) is the local minimum (or local optimum or local solution). It can be shown
that, when f is convex, any local minimiser is a global minimiser and, if f is also differen-
tiable, then any stationary point x∗ is a global minimiser [178]. On the other hand, it is
noteworthy that almost all real-world engineering problems are intrinsically non-convex.
Therefore, it is not surprising that searching the global solution is prohibitive for several
problems from a computational viewpoint.

Another criterion for classifying optimisation algorithms is related to the continuity.
An optimisation problem is continuous only when objective/constraint functions are con-
tinuous and, meanwhile, the set of design variables is continuous in Rn (or, at least, in a
subset of Rn). The discontinuous nature of a problem can come from either functions or
the variables set. If the variables are discrete (regularly or scattered, i.e. without a fixed
step length), suitable algorithms should be employed to solve the related optimisation
problem.

Finally, the information available about the model is important to determine which
algorithm is the most suited for solving the optimisation problem. When the model
is completely known and the optimisation variables as well as objective and constraint
functions are continuous, deterministic algorithms are the best choice. However, it could
happen that some quantities are characterised by uncertainty. In this case, stochastic
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algorithms are the most suited. A special class of algorithms, deserving a particular
attention, is referred as meta-heuristics [179]. The main feature of these algorithms is the
insertion of a random component to perform the solution search. The randomness allows
for an efficient exploration of the computational domain and, therefore, meta-heuristics are
particularly recommended in case of non-convex optimisation problems. Moreover, meta-
heuristics are the only possible solution when the optimisation problem is characterised
by discontinuous design variables and/or objective/constraint functions. Nevertheless, an
exhaustive overview on all the variants of optimisation algorithms is out of the scopes of
this work.

The inverse problems faced in this thesis are non-convex. To deal with this kind of
problems, both deterministic and meta-heuristic algorithms have been used, constituting,
hence, a hybrid strategy. In the following sections, some basic information about the
adopted deterministic and meta-heuristics algorithms are given.

2.3 Deterministic Methods for CNLPP

2.3.1 Generalities on Deterministic Methods

Deterministic methods exploit the information provided by the model to update the design
variables array from xk to xk+1, where the subscrpit k denotes the current iteration.
Deterministic algorithms constitute a well-established research field in the literature (refer,
for instance, to [180] and [59]). In the following, the expression “deterministic” and
“gradient-based” can be confused: this means that the basic information for updating the
design variables relies on the knowledge of the gradient (of both objective and constraint
functions).

Before discussing the main features of constrained optimisation, a brief recall of the
fundamentals of unconstrained optimisation is needed. When dealing with unconstrained
optimisation, there are essentially two families of strategies for generating the iterate xk:
line search methods and trust region methods [178].

• Line search methods. Firstly a suitable descent direction direction pk is chosen for
the objective function f . Secondly, the following mono-dimensional optimisation
problem is solved

min
s>0

f(xk + spk) (2.2)

in order to determine a suitable step length s. The algorithms available in the
literature mainly differ because of the different choice of the descent direction and
also for the strategy to update the step length s.
Regarding the descent direction, four different choices are available: the steepest
descent direction pk = −∇f(xk) (i.e. the anti-gradient), the Newton direction
pk = − [∇2f(xk)]

−1∇f(xk) (needing the computation of the second derivatives
of the function at each iteration), the quasi-Newton iteration pk = −B−1k ∇f(xk)
(where the matrix Bk is a suitable approximation of the Hessian matrix) and the
conjugate direction. As far as the calculation of the step length is concerned, several
algorithms/methods are available in literature: the Armijo’s algorithm, the cubic
interpolation method, the golden section search method, etc. The interested reader
is adressedd to [178] for a deeper insight into the matter.
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• Trust-region methods. In trust-region methods, firstly the ball radius (or trust-region
radius), ∆k, is chosen, then the search direction is calculated. Since the search dir-
ection is unknown at the beginning of the iteration, it is preferable to talk about ball
radius instead of step length. A quadratic approximation of the original problem is
solved within the trust region, in order to determine the following iterate. Provided
a suitable technique for updating ∆k during iterations, the possibilities for the search
direction are the same as the aforementioned line search algorithms (except for the
conjugate gradient method, that has not an equivalent formulation in the trust re-
gion framework). An important remark concerning trust-region algorithms is their
sensitivity to poorly scaled models. A model is poorly scaled when the sensitivity
of the objective function with respect to the design variables can significantly vary.
Line search algorithms are, in general, more robust than trust-region methods and
they can intrinsically guarantee for invariance, i.e. non-sensitivity to poorly scaled
models.

As stated above, algorithms developed for unconstrained optimisation are of para-
mount importance because, with minor modifications, they can be used to solve the
CNLPP, which is often transformed into an equivalent unconstrained problem [178].

2.3.2 Optimality Conditions for CNLPP

In the following, the two basic theorems for constrained optimisation are recalled. Given a
CNLPP in the form of Eq. (2.1), the functional L, also called Lagrangian of problem (2.1),
can be defined as:

L(x,λ,µ) = f(x) + λTg(x) + µTh(x), (2.3)

where λ and µ are the arrays of Lagrange multipliers for inequality constraints (λi ≥
0, ∀i = 1, ...,mi) and equality constraints (µj, ∀j = 1, ...,me), respectively.

Theorem 2.3.1 First-order necessary conditions.
Assume that

1. x∗ is a local solution of problem (2.1);

2. the functions f , gi and hj are continuously differentiable;

3. the LICQ (Linear Independence Constraint Qualification) condition holds at x∗,
i.e. the gradient of each equality and inequality constraint function must be linearly
independent.

Then, two Lagrange multipliers arrays λ∗ ≥ 0 and µ∗ exist and the following conditions,
known as Karush-Kuhn-Tucker (KKT) conditions, are met:

∇xL(x∗,λ∗,µ∗) = 0,

λ∗i gi(x
∗) = 0, ∀i = 1, . . . ,mi,

hj(x
∗) = 0, ∀j = 1, . . . ,me.

(2.4)

In Eq. (2.4), ∇x is the gradient operator with respect to the design variables x. The
point (x∗,λ∗,µ∗) is named KKT point.
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Theorem 2.3.2 Second-order sufficient conditions.
Let the functions f , gi and hj be twice continuously differentiable. Suppose (x∗,λ∗,µ∗)
is a KKT point and suppose the Hessian of the Lagrangian ∇2L(x∗,λ∗,µ∗) is positive
definite. Then x∗ is a strict local solution of problem (2.1).

For the proof of the aforementioned theorems, the reader is addressed to [59,178,180].

2.3.3 Deterministic algorithms for CNLPPs

The deterministic algorithms used in this manuscript rely on the well-known fmincon
optimisation toolbox implemented into the MATLAB package [181]. For the sake of
brevity, in this Section only the Sequential Quadratic Programming (SQP) and the Active
Set (AS) algorithms are discussed.

SQP and AS algorithms can be presented together. Indeed, AS is just a particular
SQP method wherein constraints are handled in a more effective way. Therefore, the main
steps described here below are shared by both SQP and AS methods.
The main idea behind the SQP method is to approximate the CNLPP at hand in a
sequence of Quadratic Programming (QP) problems. The conditions to be met for a QP
problem are:

• the objective function f is a quadratic function of the design variables;

• equality (hj) and inequality (gi) constraints are linear functions of the design vari-
ables.

A solution can always be provided by using QP techniques or, at least, it can be proven
that the solution does not exist. The shortcoming of such a method is related to the
computational burden which depends on nature of both the objective function and the
constraint ones and on the number of optimisation constraints, as well. An extensive
amount of books and articles on this topic can be found in the literature [178,182,183].

A general overview of the SQP algorithm is given in Fig. 2.2. Once the CNLPP
has been stated in the form of Eq. (2.1), a suitable initial guess should be provided.
The Lagrange multipliers are initialised and the iteration index k is set to 0. Then,
the Lagrangian functional is evaluated through Eq. (2.3). The gradients of objective
and constraint functions are needed for the following steps: they can be analytically
provided or numerically evaluated (e.g. through a finite-difference scheme). Hence, the
Hessian matrix of the Lagrangian is approximated (through a suitable formula) to be used,
together with the previously computed gradients, to set up the local QP subproblem:

min
d

Qk(d) = min
d

1

2
dTHBFGS

kd +∇fTk d,

subject to:

Akd ≤ bk.

(2.5)

In Eq. (2.5), the Hessian matrix H has been approximated by means of the BFGS for-
mula [178]. d is the array of design variables for the subproblem and represents the
search direction for the k-th iteration of the SQP algorithm. It is noteworthy that, being
subproblem (2.5) a QP problem, optimisation constraints should be in linearised form.
Therefore, the optimisation constraints of the original problem (2.1) are linearised, as
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Figure 2.2 – Overview of the SQP algorithm.

shown in Fig. 2.2, and their gradients are collected in the matrix Ak. Without going
into details, the assembly technique implemented to get matrix Ak constitutes the main
difference between SQP and AS methods. More precisely, for AS algorithm only those
inequality constraints that are violated give a contribution to the matrix Ak (equality
constraints are always included). Analogously, the coefficients of the constraints first-
order approximation are collected into the array bk. The QP subproblem (2.5) is solved
thanks to standard techniques [178]. For AS method, some internal iterations could be
needed to check if the active-set of optimisation constraints has been correctly evaluated
and, eventually, the matrix Ak is updated.
As previously remarked, the solution is the descent direction dk along wich the correct step
sk must be computed. At the end of this phase, Lagrange multipliers are updated and,
finally, the new iterate xk+1 can be evaluated. Different stopping criteria are considered
for SQP/AS algorithms [181]:

• Maximum number of iterations: k + 1 = Kmax;

• Small Objective function improvement: |f(xk+1)− f(xk)| < σf , with 0 < σf << 1;

• Negligible change of variables values: |xk+1 − xk| < σx, with 0 < σx << 1;

• Norm of the Lagrange function gradient close to 0: ||∇L(xk+1)|| < σ∇, with 0 <
σ∇ << 1.

If one among these convergence criteria is met, the algorithms stops. Of course, the latter
set of criteria makes sense only if the objective function and the imposed constraints
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are dimensionless. For a deeper insight into SQP algorithms, the reader is addressed
to [178,181].
When compared to the SQP method, the AS algorithm can tolerate some iterations
outside the feasible region in solving constrained optimisation problems. This fact allows
for an efficient exploration of the feasible domain (especially its boundary) in CNLPPs.

2.4 Meta-heuristics for CNLPPs

2.4.1 Generalities on Meta-heuristics

Meta-heuristics can be defined as “global” optimisation methods for non-convex CNLPPs
making use of several empirical rules, which are inspired by a precise natural phenomenon.
The word “global” must be interpreted in the sense that a meta-heuristic allows for a
better exploration of the domain if compared to deterministic methods, because it acts
on a population of points within the design domain rather than on a single point. However,
a meta-heuristic can find only a pseudo-optimal solution (probably in the neighbourhood
of the global optimum) but there is no guarantee to actually find it.
In the literature one can find several types of meta-heuristics. A short list is given here
below.

• Evolution Algorithms (EAs) [184–186] are a particular class of algorithms that im-
itate the principles of natural evolution. The main EAs are:

1. Fogel’s Evolutionary Programming (FEP) [187] that is an exploring search
technique within a space of finite-state machines;

2. Glover’s Scatter Search Algorithm (GSSA) [188] that, starting from an initial
population of reference points, creates a new generation of offspring through
weighted linear combinations;

3. Genetic Algorithms (GAs) that have been initially introduced by Holland [189,
190] and which are based on both Natural Selection and genetics (GAs are
presented in the next Section).

• Bacteriologic algorithms (BAs) [191] are inspired by evolutionary ecology and, more
particularly, by bacteriologic adaptation.

• Gaussian or Natural Adaptation algorithms (NAAs) [192] rely on a certain the-
orem valid for all regions of acceptability and all Gaussian distributions: the NAAs
efficiency is defined as information divided by the work needed to get the informa-
tion [192]. Because the NAA maximises the average fitness rather than the fitness
of the individual, the landscape is smoothed such that valleys between peaks may
disappear.

An useful and common term often used for all the evolution-based systems cited before-
hand is Evolution Programs (EPs).

The idea of evolution programming is not new and many researchers studied and dealt
with this topic in the last sixty years. Several EPs have been conceived and developed for
many different problems. However, despite EPs can be formulated to deal with a given
problem, and even though they can differ for several features, all EPs share a common
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principle: a population of individuals undergoes a certain number of transformations and,
during this evolution, individuals “fight” to survive.

Among the methods based on swarm intelligence it is possible to include the following
algorithms:

• the Ant Colony Optimisation (ACO) method [193] uses many ants (or agents) to
explore the solution space and find locally productive areas;

• the Particle Swarm Optimisation (PSO) strategy [194] makes use of a population
(swarm) of candidate solutions (particles) moving in the search space: the movement
of the particles is influenced both by their own best-known position and swarm global
best-known position;

• the Intelligent Water Drops (IWD) algorithm [195] is an optimisation algorithm
inspired from natural water drops which change their environment to find the near-
optimal or optimal path to their destination.

Other meta-heuristics, falling within the class of stochastic optimisation methods, are
Simulated Annealing (SA) [196] and Tabu Search (TS) [197] algorithms.

Nevertheless, the aim of this Section is nor to discuss about the different features
characterising each meta-heuristic, neither to discuss about any philosophical and/or con-
ceptual difference between the various algorithms available in the literature. Rather, in
the followings the attention is focused on a special class of EPs: the GAs.

2.4.2 Generalities on Genetic Algorithms

During the last sixty years, GAs have known an impressive development and have gained
an increasing popularity. There is a huge literature on GAs: the interested reader is
adressedd to the fundamental works of Holland [189], Goldberg [190], Michalewicz [186],
Renders [198] and the independent contribution of Rechenberg [199].

GAs were introduced and studied for the first time by Holland and his co-workers
and students, see [189, 190]. GAs are search algorithms based, on the one hand, on the
Darwinian concept of the Natural Selection and, on the other hand, on genetics. In a
certain sense, GAs make their own the concept of the Survival of the Fittest by using a
pseudo-random exchange of information in order to create an exploration algorithm having
some features of the Natural Selection. Moreover, GAs effectively (and smartly) handle
the information obtained through the exploration of the domain in order to generate new
and more efficient individuals which represent the result of the Natural Evolution.

GAs make use of a vocabulary taken from genetics. The population evolving along
the generations is composed of individuals and each individual is composed of chromo-
somes. Chromosomes constitute the individual’s genotype. Very often, in standard GAs,
the individual has a genotype made of a single-chromosome, i.e. a haploid individual.
Each chromosome is made of genes arranged in a linear succession: each gene controls
the inheritance of a particular character and it is located in a precise position within
the chromosome (such positions are called loci). For more details on haploidy, diploidy,
dominance and other similar topics related to GAs, the reader is addressed to [190,200].

In a standard GA, the information restrained in the individual’s genotype is generally
coded by means of an alphabet of cardinality k = 2 (i.e. standard GAs use a binary
alphabet). Each genotype codes a particular phenotype, i.e. the physical expression of the
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individual’s genotype whose meaning is defined externally by the user. Therefore, each
individual represents a potential solution for the problem at hand.
In organisms, the phenotype includes physical characteristics, like eyes color, hair color,
etc., whilst in the framework of GAs the phenotype represents the set of all possible values
(real, discrete, etc.) that the design variables can take.

The evolution of a population along the generations corresponds to a search through
a space of potential solutions. This search requires a balance among two features: the
exploration of the whole domain and the exploitation of the information related to the
best solutions (i.e. best individuals) within this space [190].

2.4.3 The standard GA

According to [186,190], a standard GA is characterised by the following five features:

1. a genetic representation of the potential solution to a given problem;

2. a strategy to create an initial population of potential solutions;

3. a cost function that plays the role of the environment (ranking solutions in terms of
their fitness) together with a selection operator that chooses, according to a certain
criterion, the individuals involved into the reproduction process;

4. genetic operators that alter the composition of the individuals (i.e. standard cros-
sover and mutation operators);

5. parameters governing the behaviour of the GA (population size, crossover probab-
ility, mutation probability, etc.) to be set by the external user.

The general architecture of a standard GA is illustrated in Fig. 2.3

Figure 2.3 – General flowchart of a standard GA.

Adaptation and selection operators

As stated above, the starting population, composed of Nind individuals, is randomly
generated. Once the phenotype has been determined and translated into the genotype,
objective and constraint functions can be evaluated (for all the individuals).

The role of the adaptation operator is to provide a unique measure of the individual’s
adaptation. In this phase, a suitable fitness function is defined. This is a scalar function
that, depending on the value of both objective and constraint functions for the generic
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individual, can vary in the range [0, 1], where 0 corresponds to the worst individual
(within the current population), while 1 is assigned to the best one. The definition of the
fitness function is not unique and several choices are possible [190].

The role of the selection operator is to form the Nind/2 couples of parents for the
reproduction phase on the basis of their fitness values. The basic concept is that the fitter
individuals (i.e. individuals characterised by high values of the fitness function) have a
high probability to be chosen for the reproduction phase. The selection criterion aims at
mimicking this simple natural phenomenon: the most adapted individuals (with respect
to the surrounding environment) will live longer than the less adapted ones, thus they
have an increased probability to reproduce. In practice, the previously defined fitness
function is employed to assign to each individual a probability of selection and, then, the
effective selection is done through an ad hoc criterion.

An easy way to realise a selection operator consists of using a random process known
as roulette-wheel selection. The roulette-wheel selection operator is built as follows: at
each individual corresponds a portion of the wheel equal to the ratio of its fitness to the
total fitness of the population. Generally speaking, the k-th individual occupies a portion
of the wheel proportional to the ratio:

pk =
fitk

Nind∑
i=1

fiti

, (2.6)

where fitk is the fitness of the k-th individual. pk represents also the selection probability
of the k-th individual. The selection operator simply works by turning the roulette-
wheel. Of course, according to this scheme, the individuals which have an increased
probability to take part to the reproduction phase (and hence to pass their traits to the
next generation) are those characterised by high values of the fitness function. Since the
size of the population is constant and equal to Nind, the wheel must be turned exactly
Nind times to form the couples of parents for the reproduction phase.

The reproduction phase: crossover and mutation operators

The next step of the process is the reproduction phase which takes place on each couple
of individuals by means of two operators: crossover and mutation.

The crossover operator carries out, concretely, the creation of new individuals. In par-
ticular, the crossover operator acts at the gene-level. For each individual composing the
generic couple, every single gene of each chromosome is randomly cut, with a probability
pcross, in one ore more locations (of course, the cut is done at the same position for each
homologous gene of the couple genotype). At this point two new individuals are created
by mixing and crossing the information restrained in the parents’ genotype.
At the end of the crossover phase, for each couple, two new individuals are obtained
through the recombination of the genetic information restrained into the parents’ geno-
type.

Then, the mutation operator gains the scene. Such an operator randomly acts, with
a probability pmut (which takes a very low value), at the level of the gene for the generic
individual. In particular, the mutation operator works on the single bit of the chain,
by switching it from 0 to 1 or vice-versa. The mutation operator aims at increasing
the biodiversity among the individuals composing the population. In addition, it can
be noticed that such a process represents a pure random search in the design space.
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Indeed, mutation operator plays also the role of a second-order adaptation mechanism
within the whole genetic search process, see [190] for more details. It is noteworthy
that, introducing (and increasing) biodiversity by means of the mutation mechanism is
an aspect of outstanding importance: through the biodiversity it is possible to avoid
a premature convergence of the algorithm towards local minima and/or pseudo-optimal
solutions, a phenomenon often called genetic drift.

Finally, if the the stopping criterion defined by the user (typically a given number
of iterations) is satisfied, the GA provides the optimal solution together with a number
of pseudo-optimal or near-optimal solutions due to the “average adaptation” of the final
population.

A summary of the advantages and drawbacks of GAs is listed here below.

Advantages of GAs

• GAs can deal with non-convex problems because of their intrinsic capability of
exploring the design domain. Moreover, they work on a population of points and
not on a single point in the design space.

• GAs are zero-order methods, i.e. they only need the evaluation of objective and
constraint functions, without any further information. This fact allows for dealing
with discontinuous problems, wherein the discontinuity could occur in terms of
function or in terms of variables nature (discrete/scattered variables can be easily
handled as well as continuous ones).

• The use of probability-based rules instead of deterministic ones does not mean that
GAs act completely randomly. The information about the behaviour of the objective
function and constraints is suitably stored and exploited along the iterations.

Drawbacks of GAs

• Real-world engineering problems, especially those of the structural domain, need
an important computational effort. One single objective function evaluation could
require a significant amount of time. The solution to this issue is to promote systems
providing a reliable, but still computationally cheap, approximation of the objective
function.

• GAs are not effective when decisions problems are faced.

• A GA is sensitive to the setting of its intrinsic parameters, namely the crossover
and mutation probabilities, the size of the population, the choice of the selection
operator, etc.

2.5 The Genetic Algorithm BIANCA

This Ph.D. thesis makes use of the GA ERASMUS [176] which is an improved version
of the GA BIANCA (Biologically Inspired ANalysis of Composite Assemblages), initially
developed by Montemurro [1]. Therefore, before introducing the GA ERASMUS described
in Section 2.6, it is necessary to present some basic features of the GA BIANCA.

As suggested by its name, BIANCA was developed mainly to deal with the optimisa-
tion of composite structures. The first version of BIANCA (which was implemented in
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FORTRAN language) was based on the structure of the standard GA described above.
In particular, this GA has been generalised by Montemurro [1] in order to deal with a
wide class of optimisation problems: it has been formulated in order to outperform
the capabilities of standard GAs available in the literature. In particular, a new general
representation of the individual genotype and new genetic operators was developed, thus
making BIANCA able to deal with a new class of optimisation problems: the optimisation
of engineering modular systems. Moreover, this algorithm implements also a very gen-
eral (i.e. problem-independent) constraint handling technique, called Automatic Dynamic
Penalisation (ADP) strategy [1, 201].

The most important feature of BIANCA is the capability of dealing with engineering
modular systems. A modular system is whatever system constituted of several elementary
and repetitive unit entities (the modules) which have certain intrinsic parameters. In
particular, each module is characterised by the same vector of unknows which can take
different values for each module (in the most general case of different modules). A typical
example of a modular system is a composite laminate, in which the module is represented
by the single ply that is characterised by the orientation angle, the thickness, the material
properties, etc. It is noteworthy that the optimisation of modular systems has been
considered as a prohibitive problem for decades. The most important challenge is related
to the fact that, when optimising a modular system, there is no criterion to a priori
define the optimum number of modules. Therefore, the number of modules should be
included among the optimisation variables together with the constitutive parameters of
each module. However, as discussed in [1, 176], when the optimisation problem of a
modular system is stated in the most general sense, the resulting CNLPP is defined over
a space with non-constant dimension. Roughly speaking, the problem is characterised
by a variable number of optimisation variables. For a modular system, the associated
CNLPP can be formalised as

min
x

f(x, nc),

subject to:

gi(x, nc) ≤ 0, i = 1, . . . ,mi(nc),

hj(x, nc) = 0, j = 1, . . . ,me(nc),

xLB ≤ x ≤ xUB,

xLB, x, xUB ∈ Rn(nc),

(2.7)

where the dependence of the number of both design variables and constraints on the num-
ber of modules nc has been made explicit.
It is noteworthy that, being the number of modules included among the design variables,
the classical concept of design domain for problem (2.7) can be generalised and reinter-
preted as a multi-verse of design spaces on which the algorithm acts simultaneously [176].
This multi-verse is thus populated by points representing modular systems made of differ-
ent numbers of modules: consequently, each space within this multi-verse has a different
dimension. As a consequence, the number of unknowns of the CNLPP of Eq. (2.7) is
different for distinct points. For more details the interested reader is addressed to [176].
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2.5.1 The structure of the individual’s genotype

In order to deal with problem (2.7) and to develop an appropriate tool for performing the
solution search, an optimisation strategy inspired by a more rigorous interpretation of the
Natural Selection was developed in the Montemurro’s Ph.D. thesis [1]. More precisely,
the advantage of the intrinsic capability of “algorithmic adaptation” of GAs was fully
exploited to this purpose. Basically, a richer and well-structured encoding of the genetic
information represents the necessary preamble for building an improved GA able to deal
with optimisation problems of modular systems.

According to the metaphor adopted by GAs, each point in the design space corres-
ponds to an individual and its genotype is composed of chromosomes and genes [186,190].
As stated above, a standard GA performs the reproduction phase on a couple of individu-
als selected within the population according to a certain criterion. However, standard
reproduction operators (i.e. crossover and mutation) are not suited to deal with op-
timisation problems of modular systems because the number of optimisation variables
encoded within the individual genotype is constant and cannot change during iterations.

Moreover, in classical GAs, the Darwinian concept of natural selection is not properly
implemented. In fact, this concept is strictly related to that of species : during a suffi-
ciently long time interval, the selection, by operating on a certain number of individuals,
can lead to the appearance of new species, which fit better to the surrounding environ-
ment.
In particular, a GA wherein individuals and species evolve simultaneously has been con-
ceived in [1]: in this way the real natural selection is more closely synthetically reproduced
by the numerical algorithm.
In this framework, the first step is the translation of the concept of species in the context
of GAs. To achieve this task, the structure of the individual’s genotype is changed: chro-
mosomes and genes must be organised in such a way that different species can be clearly
identified.
In agreement with the paradigm of Nature, within BIANCA the species is identified by
the number of chromosomes of the individual’s genome. Therefore, individuals having a
genotype made of different number of chromosomes belong to different species.

Considering the previous aspects, in [1] the individual’s genotype has been generalised
though it is still represented by a binary array, as shown in Fig. 2.4. In this picture, the
quantity (gij)

k represents the j-th gene of the i-th chromosome of the k-th individual.
Letter e stands for empty location, i.e. there is no gene at this location, while nk is the
k-th individual chromosomes number (which identifies also the species to which such an
individual belongs to).

It is evident that a GA that allows for evolving simultaneously (and independently)
species and individuals must be characterised by genetic operators allowing the reproduc-
tion between individuals belonging to different species.
To this purpose , the classical reproduction phase has been generalised by introducing new
operators called Chromosome Shift, Chromosome Reorder, Chromosome Number Muta-
tion and Chromosome Addition-Deletion. A complete description of these new operators
and their role in the reproduction phase is given in [1].
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Figure 2.4 – Structure of the individual’s genotype with variable number of chromosome
in BIANCA [1].

2.6 The ERASMUS algorithm

The GA BIANCA has been originally coded in FORTRAN environment in order to foster
computational speed.

However, the individual’s genotype structure presented in Section 2.5 is suited only
for dealing with optimisation problems of modular systems characterised by a single type
of modularity.
A modular system is characterised by different types of modularity when the constitutive
modules can be regrouped in different sets: within each set, the modules are characterised
by the same vector of unknowns (i.e. the module design variables). An example of modular
system showing different types of modules is given in Fig. 2.5. In the fuselage section,

Figure 2.5 – An example of modular structure (a fuselage section) with two types of
modules: stringers and frames

for example, there are two families of modules: the stringers and the frames. Of course,
each kind of module is characterised by different types of design variables.

When a system presents more than one type (or class) of modularity, the structure of
the individual’s genotype must be generalised in order to integrate the variable number
of modules for each modularity class.
To this purpose a very general derivative-free optimisation algorithm has been developed
by Montemurro and his co-workers [176]: the ERASMUS (EvolutionaRy Algorithm for
optimiSation of ModUlar Systems) code. Its main objective is the generalisation of both
the structure of the individual and the genetic operators initially introduced in BIANCA
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to the case of modular systems with different classes of modularity. As far as the new
structure of the individual’s genotype is concerned, it has been enriched to consider differ-
ent kinds of modules. This task has been carried out by means of the structured variables
in MATLAB and of the lists in PYTHON, as illustrated in Fig. 2.6.

Without loss of generality, let Nm be the number of different types of modules for the

Figure 2.6 – The general individual’s genotype structure in ERASMUS

problem at hand. Each individual (i.e. a point in the design space) is characterised by a
genome composed of Nm + 1 sections having a precise hierarchy.
The first section (i.e. the standard section) is linked to the non-modular part of the prob-
lem and its genotype is split in two parts. The first one is composed of a fixed number
(nc−stand) of chromosomes and each chromosome is made of ng−stand genes. The second
part is composed of only one chromosome having Nm genes which can be related (or not)
to the values of some genes of the first part. This first section undergoes the action of the
standard GA operators (refer to Section 2.4).
As shown in Fig. 2.6, each gene belonging to the mono-chromosome structure of the
standard section is related to the number of modules nc−mod(k) of the generic k-th modu-
lar section, (k = 1, . . . , Nm). Accordingly, each one of the remaining Nm modular sections
is characterised by a genotype composed of nc−mod(k) chromosomes and ng−mod(k) genes.
Naturally, the reproduction between species is allowed only for the modular sections.

The main features of the ERASMUS tool are listed here below.

Improved Capabilities of ERASMUS

• ERASMUS can handle optimisation problems of modular systems with different
types of modularity.

• Selection: two known techniques of selection are included, i.e. roulette wheel and
tournament.
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• Standard reproduction operators: the main genetic operators are crossover and
mutation, acting, with a certain probability, on each gene of the individual’s geno-
type, i.e. independently on each design variable.

• Additional genetic operators: the elitism operator is used to preserve the best indi-
vidual at each generation.

• Handling multiple populations: the need to simultaneously explore different regions
of the design space, as well as the search of optima responding to distinct design
criteria require the introduction of multiple populations evolving simultaneously. A
classical ring-type migration operator has been introduced in order to allow exchange
of information between populations evolving through parallel generations.

• Stop criteria: maximum number of generations reached or test of convergence, i.e.
no improvements of the mean fitness of the population after a given number of
cycles.

• ERASMUS has no limitations in terms of constraints handling thanks to the imple-
mented ADP strategy [201].

• Representation of information: a new structure of the individual’s genotype adapted
and extended to represent the concept of species.

• New genetic operators of crossover allowing the reproduction among individuals
belonging to different species.

• New mutation operators allowing the evolution of the different species.

2.7 Conclusions

Some optimisation tools have been discussed. As the domain of optimisation is wide,
the purpose of this Chapter is just to introduce the main features of some optimisation
algorithms and to explain why they are important. Classification criteria for optimisation
problems have been provided, as well, and the attention has been focused on deterministic
and meta-heuristic algorithms for the solution of CNLPPs. The most remarkable aspect
of this discussion is that the choice of the optimisation algorithm should be carefully
addressed according to the problem at hand.

Thus, when the optimisation problem is non-convex, the use of meta-heuristics is a
possible answer to solve it: this kind of optimisation algorithms allow to explore widely the
research domain, decreasing the possibility to find a local minimum, instead of the global
one. However, the computational cost related to the use of meta-heuristics is expensive.
For this reason, in order to speed up the optimisation process, in this work the use of the
hybrid meta-heuristic - deterministic tools is proposed. The optimisation process is always
split in two steps. During the first step, the domain is explored through the ERASMUS
algorithm and, when a profitable zone is identified, the best individual provided by the
meta-heuristic algorithm is used as initial guess for the second optimisation step which is
carried out by a deterministic algorithm.
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Chapter 3

Characterisation of composite elastic
properties by means of a multi-scale
two-level inverse approach

3.1 Introduction and main motivations of the study

The article reported in this Chapter has been published in Composite Structures. It deals
with the problem of characterising the elastic properties of a composite material at both
mesoscopic (ply-level) and microscopic (constitutive phases-level) scales. In particular,
this Chapter presents the first version of the MSIS. In its first version the MSIS is able
to identify, at each pertinent scale, the elastic properties of the composite, by using the
data resulting from non-destructive experimental techniques.

The MSIS is here tested on a multilayer plate where the elementary lamina is a fibre-
reinforced undirectional pre-preg. The non-destructive test is a harmonic test.

In order to prove the effectiveness of the MSIS, the experimental test has been replaced
by a numerical analysis carried out on a reference configuration of the multilayer plate.
Therefore, the information restrained in the reference macroscopic dynamic response of
the composite is used into the inverse problem formulation. In this background, the
multi-scale identification problem is split into two interdependent sub-problems which are
stated, at both levels, as CNLPPs. At the first level, the goal is the characterisation of
the lamina properties by minimising the distance between the numerical and the reference
harmonic responses of the composite, subject to suitable constraints on the laminate
natural frequencies and on the positive definiteness of the lamina stiffness tensor.

The goal of the second-level inverse problem is the identification of the elastic prop-
erties of both fibre and matrix by minimising the distance between the effective elastic
properties evaluated through a homogenisation process and those provided by the first-
level inverse problem. Of course, also in this case suitable thermodynamic constraints are
considered in order to avoid an ill-posed problem. The MSIS for the elastic case is based
on the strain energy homogenisation method of periodic media [75,116,176,202]. For both
levels of the optimisation procedure the GA ERASMUS coupled with the fmincon tool of
the MATLAB optimisation toolbox have been used to perform the solution search.
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3.2 Characterisation of composite elastic properties

by means of a multi-scale two-level inverse ap-

proach
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A B S T R A C T

This work deals with the problem of characterising the elastic properties of a composite material at both me-
soscopic (ply-level) and microscopic (constitutive phases-level) scales. This goal is attained by means of an
adequate multi-scale identification strategy (MSIS) which aims at identifying the constitutive properties, at each
relevant scale, by exploiting the information restrained in the macroscopic dynamic response of the composite.
In this background, the multi-scale identification problem is split into two interdependent sub-problems which
are stated, at both levels, as constrained minimisation problems. At the first level the goal is the characterisation
of the lamina properties by minimising the distance between the numerical and the reference harmonic re-
sponses of the composite. The second level problem aims at identifying the elastic properties of both fibre and
matrix by minimising the distance between the effective elastic properties evaluated through a homogenisation
process and those provided by the first-level inverse problem. The MSIS is based on a special global hybrid
optimisation tool and on the strain energy homogenisation method of periodic media. Its effectiveness is proven
through a meaningful benchmark.

1. Introduction

Nowadays, composite materials are widely used in several fields,
from automotive applications to aerospace ones. This is mainly due to
their high stiffness/mass and strength/mass ratios when compared to
steel or aluminium alloys. Furthermore, engineers are continuously
looking for strategies that allow increasing performances, building in-
tegrated and lighter structures, designing complex geometry and pro-
viding stiffness and strength where needed.

Nevertheless, in order to properly conceive complex and optimised
solutions, it is mandatory to characterise the full set of the composite
material properties at each pertinent scale. One of the main issues of
composite materials is related to the difficulty of characterising the full
set of elastic properties at the lower scales, i.e. microscopic (that of the
constitutive phases) and mesoscopic (the lamina level) ones.

Indeed, it is very interesting, especially from an industrial point of
view, to be able to reduce the cost of experimental characterisation tests
which are usually destructive procedures. Such tests must be carried out
on a significant number of samples in order to get reliable results (thus
leading to quite expensive experimental campaigns) [1]. Moreover, as
far as concerns the characterisation of the elastic properties of the
constitutive phases, a large data dispersion is obtained during micro-

scale experimental tests, due to the difficulty to properly set the ex-
periment and to handle the microscopic constituents [2].

Concerning the experimental (destructive) tests, they can be divided
into meso and micro-scale characterisation tests. The most important
meso-scale tests are: (1) the tension test for flat specimens (ASTM
D3039 [3]); (2) three/four points bending test (ASTM D790 [4]); (3)
compression tests (shear loading methods ASTM D3410 [5]; (4) end
loading methods ASTM D695 [6]; (5) combined loading methods ASTM
D6641 [7]); (6) shear tests (in-plane shear tests ASTM D5379 [8]-
D7078 [9]-D3518 [10], out-of-plane - interlaminar shear tests ASTM
D2344 [11]-D5379).

Nevertheless, ASTM standard tests conducted at the lamina level are
not able to provide the full set of 3D elastic properties: only the in-plane
material properties together with an approximated value of the out-of-
plane shear moduli can be retrieved through these tests.

Conversely, only few standard tests can be carried out at the mi-
croscopic scale: single fibre test to obtain the Young’s modulus along
the fibre longitudinal direction (ASTM D3379 [12]) and matrix tensile
test (ASTM D638 [13]). In order to characterise the rest of the con-
stitutive phases properties, only non-standard tests are available in
literature: pull-out [14], micro-indentation [2], fragmentation tests
[15], etc.
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When looking at the determination of the elastic properties of the
microscopic phases, the limitations related to ASTM tests and/or un-
conventional destructive tests become more important. On the one
hand, ASTM tests can provide information (with a high level of dis-
persion) only about the Young’s modulus along fibre axis and matrix in-
plane properties. The rest of the elastic properties (especially those of
the fibre) cannot be retrieved by means of ASTM tests. On the other
hand, also unconventional destructive tests, often used to characterise
the matrix-fibre interface properties, present some major shortcomings:
the experimental set-up is quite complex and, even when the experi-
ment is properly realised, the obtained results show a significant dis-
persion (results are very sensitive to boundary conditions and edge
effects related to the experimental set-up), see [16].

In order to go beyond the main restrictions imposed by destructive
tests, the research activity here presented focuses on the development
of a multi-scale identification strategy (MSIS), based on non-destructive
tests, able to characterise the elastic properties of the composite at each
relevant scale, namely microscopic and mesoscopic ones.

The main idea behind this approach is quite simple: the proposed
MSIS aims at identifying the full set of elastic properties at both lamina-
level and constitutive phases-level starting from the analysis of the
macroscopic dynamic response of a multilayer plate. In particular, the
macroscopic dynamic behaviour can be easily obtained by means of
non-destructive modal tests: the information restrained in the harmonic
spectrum response of the specimen can be then exploited to carry out
the multi-scale characterisation process.

It is noteworthy that the utilisation of identification strategies ex-
ploiting the information restrained in a macroscopic modal analysis is
not new. This kind of approach has already been applied in literature
[17–21] for characterising the elastic properties of the constitutive la-
mina. An assessment of these approaches is available in [22,23]. Most
of these techniques, e.g. that proposed in [24], make use of an opti-
misation tool (generally a gradient-based algorithm) in order to mini-
mise the difference between the measured dynamic response (typically
a given set of natural frequencies) and the numerical one calculated via
a finite element (FE) model of the structure.

However, to the best of the authors’ knowledge, this approach has
never been generalised to characterise the material and geometrical
features of the microstructure of composite materials.

Indeed, in the context of the proposed approach, the material
characterisation problem is split into two distinct (but related) sub-
problems. The first level of the procedure focuses on the transition from
macroscopic scale to mesoscopic one and aims at minimising the dis-
tance between the reference harmonic response of the structure and its
numerical counterpart: the goal is to search for the elastic properties of
the constitutive ply minimising this distance. The second step focuses
on the transition from mesoscopic scale to microscopic one: the goal is
the determination of both geometrical and elastic properties of the
constitutive phases meeting the lamina elastic properties resulting from
the first-level inverse problem.

The MSIS is characterised by several original features. On the one
hand, it relies on a special hybrid optimisation tool to perform the so-
lution search, i.e. an in–house code made by the union of a special
genetic algorithm (GA) (able to deal with problems characterised by a
variable number of design variables [25]) and of a classical gradient-based
one. On the other hand, the link between the two identification pro-
blems (stated at different scales) is ensured by a general numerical
homogenisation scheme: the one utilising volume-averaged stresses
determined on a suitable representative volume element (RVE) of the
material in the framework of the strain energy method of periodic
media [26].

The paper is structured as follows: the problem and the MSIS are
introduced in Section 2. The mathematical formulation of the inverse
problem at the ply-level and the related numerical aspects are discussed
in Section 3, while the micro-scale characterisation problem as well as
the numerical homogenisation scheme (and the related FE model) are

discussed in Section 4. The numerical results of the MSIS are illustrated
and discussed in Section 5. Finally, Section 6 ends the paper with some
conclusions and perspectives.

2. Multi-scale identification of composite elastic properties

2.1. Problem description

The multi-scale inverse approach presented in this study is applied
to a reference multilayer composite plate made of unidirectional la-
minae whose geometry is illustrated in Fig. 1.

The constitutive ply is made of carbon-epoxy fibre Hexcel
T F650/ 584 pre-impregnated tapes, with a fibre volume fraction

=V 0.555f : the material properties of the constitutive phases composing
the ply (taken from [27]) are listed in Table 1. As it can be noticed, the
fibre has a transverse isotropic behaviour, while the matrix is isotropic.

The reference laminate is constituted of eight identical plies (i.e.
same material and thickness) arranged according to the following stack

° − ° ° °[0 / 45 /45 /90 ]S. The thickness of the lamina is =t 0.28225ply mm.
The orientation angle of the generic ply is positive according to counter-
clockwise rotation around the z-axis: x-axis indicates the °0 orientation.

The analysis presented in this work constitutes a numerical valida-
tion of the MSIS: the reference response of the structure (at each scale) is
determined by means of a multi-scale numerical analysis on the re-
ference configuration of the laminate described above.

In particular, as described in Section 5.1, the reference material
properties of the constitutive phases are used in order to calculate, on
the one hand, the reference effective elastic properties of the lamina at the
mesoscopic scale and, on the other hand, the reference harmonic response
and the reference natural frequencies of the multilayer plate (macro-
scopic scale).

Concerning the microscopic scale the following hypotheses apply:

Fig. 1. Geometry of the multilayer composite plate (sizes in [mm]).

Table 1
Micro-scale reference material properties for the fibre −T K650/35 3 and the
matrix F584 (taken from [27,28]).

Fibre
properties

Matrix
properties

E f
1 [MPa] E f

2 [MPa] ν f
12 ν f

23 G f
12 [MPa] Em [MPa] νm

276000.0 17300.0 0.250 0.428 11240.0 4140.0 0.350
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• the material of both constitutive phases has a linear elastic beha-
viour;

• perfect bonding condition at the fibre-matrix interface is considered;

• the damping capability of both phases is disregarded.

As far as mesoscopic and macroscopic scales are concerned, the fol-
lowing assumptions are made:

• the constitutive lamina has an elastic orthotropic behaviour;

• perfect bonding condition at the interface between two consecutive
plies;

• the damping properties of the ply are neglected;

• the laminate kinematic is described in the framework of the first-
order shear deformation theory (FSDT).

2.2. The multi-scale identification strategy

The main goal of the MSIS is to find the material properties of the
considered structure at each relevant scale by exploiting the informa-
tion restrained in the macroscopic dynamical response of the compo-
site. The reference response can be provided either by a non-destructive
harmonic test or by a numerical harmonic analysis conducted on a
reference structure. This latter is the case considered in the present
study: the reference configuration of the multilayer plate as well as the
reference dynamical results are presented in Section 5.

In this background, the problem of characterising the elastic prop-
erties of the composite at different scales can be split into two distinct
(but related) inverse problems.

• First-level inverse problem. This phase involves the transition
from macroscopic scale (laminate-level) to mesoscopic one (ply-
level): the goal is to characterise the ply elastic properties (the de-
sign variables of this phase) minimising the distance between the
numerical harmonic response of the multilayer plate and the re-
ference one.

• Second-level inverse problem. This step focuses on the transition
from mesoscopic scale to microscopic one (that of the constitutive
phases): the goal is to find the optimum value of elastic properties of
both fibre and matrix (the optimisation variables of this phase)
meeting the set of the lamina elastic properties provided by the first-
level problem. In this second phase, the link between the two scales
is ensured by means of a homogenisation analysis performed on the
numerical model of the RVE of the material in order to compute the
effective elastic properties of the ply.

The general architecture of the two-level MSIS is shown in Fig. 2.

3. Mathematical formulation of the first-level inverse problem

3.1. Optimisation variables, objective function and constraints

As stated above, the first-level inverse problem concerns the mac-
roscopic/mesoscopic scale transition. The aim of this phase is to char-
acterise the elastic properties of the constitutive lamina. In this back-
ground, the identification problem is formalised as a classical inverse
problem. The goal is to find the set of elastic properties of the ply (in the
most general 3D case) minimising the distance between the reference
dynamic response of the structure and that provided by the numerical
model of the structure.

According to the general hypotheses recalled in Section 2, the
constitutive ply has a linear elastic orthotropic behaviour. However,
taking into account the fibres arrangement, only six parameters must be
identified during this step. As illustrated in Fig. 6, the considered RVE is
characterised by five planes of orthogonal symmetry implying the fol-
lowing relationships: = =E E G G,2 3 12 13 and =ν ν12 13.

Therefore, all the meso-scale material parameters can be collected

into the vector of design variables xI as follows:

= E E G G ν νx { , , , , , }.I
1 2 12 23 12 23 (1)

It is noteworthy that the ply elastic properties cannot get arbitrary
values, rather they have to satisfy a set of existence constraints in order
to ensure the positive definiteness of the lamina stiffness tensor:
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Moreover, the lamina elastic constants vary within the design space
defined in Table 2, i.e. by introducing appropriate lower and upper
bounds for each design variable. The lower and upper bounds are
chosen equal to the 80% and the 120% of the reference material prop-
erties at meso-scale respectively (given in Table 4). Only the lower and
upper bounds of the optimisation variable ν23 are set equal to the 85%
and the 115% of the corresponding reference value, respectively.

Concerning the expression of the first-level objective function, an
error estimator of the least-squares type has been chosen:
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In the previous equation, fr is the r-th sampled frequency, while Hr q,
is the fast Fourier transform (FFT) of the frequency response function
(FRF) determined at the q-th sample point of the multilayer plate and
evaluated at the r-th sampled frequency. Of course, f H,r r q

ref
,

ref are the
same quantities evaluated on the reference configuration of the lami-
nate.

Ns and Np are the number of sampled frequencies and of sample
points over the laminate plate (where the FRF is computed/measured),
respectively.

In order to get a numerical harmonic spectrum really close to the
reference one (and also to match the reference natural frequencies), a
set of constraints on the laminate eigenfrequencies is considered:

=
−

−∊ ⩽ = …+g
f f

f
j nx( ) 0, 1, , .j

jn jn

jn
j f3

I I
ref

ref
(4)

In Eq. (4), nf is the overall number of natural frequencies involved
in the analysis (i.e. in the frequency range used for the determination of
the FRF), whilst f jn and f jn

ref are the numerical and reference j-th ei-
genfrequency, respectively. ∊j is a user-defined tolerance on the relative
error for each natural frequency: in this study a maximum relative error
equal to 0.005 has been considered.

Finally, the first-level inverse problem can be stated as a classical
constrained non-linear programming problem (CNLPP):

⩽ = … +g j n

x

x

min Φ ( ),

subject to:
( ) 0, 1, , 3.j f

x

I I

I I

I

(5)

3.2. The macroscopic finite element model

A picture of the FE model of the multilayer plate at the macroscopic
scale together with the applied loads and boundary conditions (BCs) is
illustrated in Fig. 3. Such a FE model (developed within ANSYS® en-
vironment [29]) is built by using ANSYS® SHELL281 layered shell
elements with eight nodes and six degrees of freedom (DOFs) per node.
The kinematic model is that of the first-order shear deformation theory
(FSDT) [30].

The choice of shell elements is due to the aspect ratio (between the
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shortest edge length and the overall thickness) of the multilayer plate
whose value, =AR 44.29, is in the range [20, 100] whereby the FSDT is
well-suited to describe the laminate mechanical response.

During the optimisation process of the first step of the MSIS, two FE
analyses are invoked for each point in the design space: firstly a modal
analysis (eigenvalue analysis) to extract the first nf natural frequencies
and, secondly, a linear harmonic analysis in order to determine the
harmonic response of the laminate. This latter is obtained by measuring
the displacement uz in each one of the q sample nodes of the mesh, at

every sampled frequency fr , as depicted in Fig. 4.
Subsequently, the FRF for each sample point is obtained by evalu-

ating the ratio between the FFT of the displacement u f( )zq r and that of
the applied force F f( )z r , namely

=H
u f
F f

( )
( )

.r q
zq r

z r
,

(6)

It is noteworthy that, before starting the optimisation process two
sensitivity studies (not reported here for the sake of brevity) have been
conducted. The first one focused on the sensitivity of the system re-
sponse with respect to the mesh size: it was observed that a mesh
having 4176 DOFs, is sufficient to properly evaluate both the eigen-
frequencies and the FRF of the laminate in each sample point.
Conversely, the second sensitivity analysis aimed at investigating the
influence of the number of sample points Np on the overall FRF of the
multilayer plate. It has been observed that an overall number of =N 62p
sample points is sufficient to properly evaluate the global FRF of the
structure.

Fig. 2. The overall architecture of the MSIS.

Table 2
First-level inverse problem: design variables lower and upper bounds.

Ply elastic properties Lower bound Upper bound

E1 [MPa] 124022.7 186034.1
E2 [MPa] 6558.3 9837.4
ν12 0.232 0.348
ν23 0.433 0.586
G12 [MPa] 3069.7 4604.5
G23 [MPa] 2626.2 3939.3

Fig. 3. FE model of the multilayer plate and the related BCs.

Fig. 4. Location of the sample points over the laminate used for harmonic
displacements evaluation (the FRF related to nodes highlighted in red is shown
in Fig. 9).
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Finally, as far as the linear harmonic analysis is concerned, the FFT
of the structure in each sample point has been evaluated in the fre-
quency range [500, 6000]Hz wherein =N 82s sampled spectrum fre-
quencies have been considered, according to the strategy detailed in
Section 5.

3.3. The numerical strategy

Problem (5) is highly non linear and non-convex in terms of both
objective and constraint functions. Its non-linearity is mainly related to
the expression of both objective and constraint functions, see Eqs.
(2)–(4).

For inverse problems, the uniqueness of solution is not a priori
guaranteed: the set of parameters matching a given observed state may
not be unique. Nevertheless, no proved theoretical rules exist in lit-
erature [31,32] to define the number of data points Np for a given
number of unknowns (n) that have to be identified. Generally, the in-
verse problem is stated as a CNLPP and it can be viewed as an over-
determined system of equations [31,32]. Since more observation points
than parameters exist (Np is usually much greater than n) there are
more equations than unknowns. If an optimal point exists, of course it
may be not unique, thus implying the existence of many combinations
of parameters that result to be equivalent optimal solutions for the
CNLPP at hand.

Considering all these aspects and according to the practice always
employed in literature, in this work a number of observed states (i.e.
sample points Np) greater than two times the number of design vari-
ables n has been considered. As previously stated, the number of sample
points has been inferred by means of a numerical sensitivity analysis of
the FRF of the plate with respect to parameter Np: as a results =N 62p
has been chosen to properly perform the optimisation calculations.

Taking into account the previous aspects, a hybrid optimization tool
composed of the new version of the GA BIANCA [33], interfaced with
the MATLAB fmincon algorithm [34], has been used.

The GA BIANCA has already been successfully applied to solve
different kinds of real-world engineering problems, see for instance
[33,35–37].

As shown in Fig. 5, the optimisation procedure for problem (5) is

split in two phases. During the first phase, solely the GA BIANCA is used
to perform the solution search. Due to the strong non-linearity of pro-
blem (5), the aim of the genetic calculation is to provide a potential sub-
optimal point in the design space, which constitutes the initial guess for
the subsequent phase, i.e. the local optimisation, where the MATLAB
fmincon tool is employed to finalise the solution search. The optimisa-
tion algorithm is the active-set which is a Quasi-Newton method making
use of an approximation of the Hessian matrix to estimate the descent
direction. For more details on the active-set algorithm see [34].

For the resolution of the first-level inverse problem, both optimi-
sation algorithms have been interfaced with the FE model of the mul-
tilayer plate. As shown in Fig. 5, for each individual at each generation,
the optimisation tool performs two FE analyses: a modal analysis to
extract the nf natural frequencies followed by a linear harmonic ana-
lysis for the evaluation of the FRF of the laminate. Then, the GA ela-
borates the results provided by the two FE analyses in order to execute
the genetic operations on the basis of the current value of both objective
and constraint functions. These operations are repeated until the GA
BIANCA meets the user-defined convergence criterion.

The number of design variables and that of constraint functions is
six and +n 3f , respectively. The generic individual of the GA BIANCA
represents a potential solution for the problem at hand. The genotype of
the individual for problem (5) is characterised by only one chromosome
composed of six genes, each one coding a component of the vector of
design variables, see Eq. (1).

4. Mathematical formulation of the second-level inverse problem

4.1. Optimisation variables, objective function and constraints

As stated previously, the second-level inverse problem is focused on
the transition from mesoscopic scale to microscopic one. The main
purpose of this step is the characterisation of the elastic properties of
the constitutive phases (i.e. fibre and matrix) by minimising the dis-
tance between the effective elastic properties of the constitutive lamina
(determined numerically) and the reference ones (i.e. the optimum
values) resulting from the first-level inverse problem, which represent
the reference response for this phase.

Fig. 5. Two-phases optimisation scheme for the first-level inverse problem.
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Of course, the effective elastic properties of the lamina must be
evaluated by means of a suitable homogenisation procedure. To this
purpose, a FE model of the RVE of the composite is built in order to
carry out the numerical homogenisation calculations which allow de-
termining the equivalent meso-scale ply properties as a function of
those of the constitutive phases. It is noteworthy that both geometrical
and material parameters of the constitutive phases affect the equivalent
material properties of the constitutive layer. Nevertheless, in the fol-
lowing the fibre volume fraction is set a priori, thus it is not considered
among the design variables because it is always a reliable datum (al-
ways provided by the supplier in the specification sheet).

Considering the general hypotheses described in Section 2.1, the
fibre has a linear elastic transverse isotropic behaviour while, the ma-
trix has a linear elastic isotropic behaviour: only seven material para-
meters need to be identified. Therefore, these quantities are collected
into the vector xII as follows:

= E E G ν ν E νx { , , , , , , }.f f f f f
m m

II
1 2 12 12 23 (7)

Similarly to the first-level inverse problem, the constitutive elastic
properties cannot assume arbitrary values, but they have to fulfil a set
of existence constraints to guarantee the positive definiteness of the
fibre and matrix stiffness tensors:
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Furthermore, the components of the design variables vector can
take values within the design space defined in Table 3, in which ap-
propriate lower and upper bounds for each design variable are assigned.
The lower and upper bounds are chosen equal to the 80% and the 120%
of the reference material properties at micro-scale (given in Table 1),
respectively.

Moreover, regarding the objective function expression, an error
estimator of the least-square type has been chosen:
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In the previous equation, superscript “I” indicates the optimum
value of the generic ply elastic property provided by the first-level in-
verse problem.

Also in this case, the second-level inverse problem can be formalised
as a classical CNLPP:
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4.2. The microscopic finite element model and the homogenisation strategy

The link between the microscopic and mesoscopic scales is re-
presented by a homogenisation phase, performed on the RVE of Fig. 6.
The lamina effective elastic properties are computed by means of the
well-known strain energy homogenisation technique of periodic media
described in [26]. This homogenisation scheme has proven to be an
efficient numerical homogenisation procedure able to determine the
equivalent material properties of different heterogeneous materials
characterised by complex RVE topologies. The strain energy homo-
genisation technique of periodic media based on volume averaged
stresses has already been used in other works, see [35,38–40].

The main hypothesis of this technique is that the repetitive unit of
the periodic structure and the corresponding volume of the homo-
geneous solid undergo the same deformation having, hence, the same
strain energy. At the mesoscopic scale (i.e. at the ply level), the het-
erogeneous medium is then replaced by an equivalent homogeneous
anisotropic virtual material characterised by a set of elastic properties
determined during the homogenisation phase. Of course, these prop-
erties depend upon the geometrical and material parameters of the
RVE.

In this study, the real random micro-structure of the lamina (which
is usually characterised by misalignments of the fibres, porosity, da-
maged zones, etc.) is not taken into account and the topology of the
RVE is described by a perfect hexagonal array, as shown in Fig. 6.

The FE model of the RVE has been realised within the commercial
FE code ANSYS®. A 20-nodes solid element (SOLID186) with three
DOFs per node has been used. The model together with its structured

Table 3
Second-level inverse problem: design variables lower and upper bounds.

Micro-scale elastic properties Lower bound Upper bound

E f
1 [MPa] 220800.0 331200.0

E f
2 [MPa] 13840.0 20760.0

ν f
12

0.200 0.300

ν f
23

0.343 0.514

G f
12 [MPa] 8992.0 13488.0

Em [MPa] 3312.0 4968.0

νm
f 0.280 0.420

Fig. 6. The reference RVE.
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mesh is illustrated in Fig. 7. Finally, a sensitivity study (not reported
here for the sake of brevity) on the proposed FE model with respect to
the mesh size has been conducted: it was observed that a mesh having
19551 DOFs is sufficient to properly evaluate the set of homogenised
elastic properties at the mesoscopic scale.

In order to evaluate the components of the stiffness matrix [C] of the
lamina, the RVE is submitted to an average strain field εij

0 (tensor no-
tation). The six components of the average strain are applied by con-
sidering the classical periodic boundary conditions (PBCs) on the RVE
[26].
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The PBCs, shown in Eq. (11), result in a complex strain field inside
the RVE. The applied average strains always meet the following con-
dition (V denotes the RVE volume):

∫= =ε
V

ε dV ε1 · .ij V ij ij
0

(12)

For the homogeneous material at the upper scale, the relationship
between average stress and strain (Voigt’s notation) is:

= = …σ C ε α β· , , 1, , 6.α αβ β (13)

In the previous equation the Einstein’s summation convention on
repeated indexes is tacitly assumed. The components of the stiffness
matrix [C] are determined by solving six static analyses on the RVE and
by imposing the previous PBCs, where only one component at time of
the strain εβ

0 is different from zero for each one of the six problems. For
all the static analyses the volume-averaged value of the generic com-
ponent of the stress field σα can be easily computed and the stiffness
matrix of the ply can be calculated one column at time:
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The engineering moduli of the constitutive lamina at the mesoscopic
scale can be calculated starting from the components of the compliance

matrix = −[S] [C] 1. For more details on the homogenisation procedure,
the interested reader is addressed to [26].

4.3. The numerical strategy

Problem (10) is a non-convex CNLPP in terms of both constraint and
objective functions, see Eqs. (8) and (9).

Concerning problem (10), the number of variables is equal to seven.
The existence of the optimum solution may not be unique because the
number of observed states is lower than that of design variables to be
identified. Therefore, the transition from mesoscopic to microscopic
scale is governed by non-bijective relationships which can give rise to a
significant amount of equivalent optimum solutions for the problem at
hand.

In order to find a solution for the second-level inverse problem, the
two-step optimisation procedure is adapted to the transition from me-
soscopic scale to microscopic one, as illustrated in Fig. 8.

For the resolution of the second-level inverse problem, the optimi-
sation algorithm has been interfaced with the FE model of the RVE at
micro-scale, to perform the numerical homogenisation. As stated above,
the optimisation tool invokes the FE model of the material RVE on
which six static analyses are performed: the PBCs allow determining the
components of the ply stiffness tensor, for each individual at each
generation.

Then, the optimisation tool elaborates the results provided by the FE
analyses in order to execute the optimisation operations on the basis of
the current values of both objective and constraint functions (both for
the GA and the gradient algorithm). These operations are repeated until
the user-defined convergence criterion is satisfied.

Concerning the GA, the genotype of the individual for problem (10)
is characterised by only one chromosome composed of seven genes, each
one coding a component of the vector of design variables of Eq. (7).

5. Numerical results

5.1. Determination of the harmonic response for the reference configuration

Before launching the optimisation process, the reference harmonic
response must be determined. The geometry as well as the material
properties of the reference configuration have been introduced in
Section 2. The reference harmonic response is calculated by performing

Fig. 7. FE model of the RVE, micro-scale.
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two successive analyses (modal analysis followed by a linear harmonic
one) on the macroscopic FE model of the multilayer plate discussed in
Section 3. Of course, at the macroscopic scale both the reference FRF of
the laminate and the set of reference natural frequencies have been
calculated by using the geometrical properties of the reference structure
and by considering the ply elastic properties listed in Table 4. These
material parameters are obtained by means of a preliminary homo-
genisation analysis through the FE model of the RVE of the composite
(see Section 4) in which the reference values of Table 1 for the elastic
properties of both fibre and matrix are used.

The frequency samples used for the determination of the structure
FRF vary between =f 500LB Hz and =f 6000UB Hz. =n 8f natural fre-
quencies falls in this interval: they are extracted to evaluate the opti-
misation constraints of Eq. (4). Their reference values are listed in
Table 5. The FRF of the multilayer plate is divided according to the
sampling sequence summarised in Table 6. It must be noticed that the
sampling intervals used for the definition of the FRF and, hence, of the
objective function of the first-level inverse problem of Eq. (3), have
been properly parametrized in terms of the current value of the

structure natural frequencies = …f j n, ( 1, , )jn f . Moreover, since
damping is neglected, a small range of frequencies in the neighbour-
hood of each natural frequency f jn (by considering a “small” interval of
length =δ 1 Hz centred at each natural frequency) has been excluded
from the sampling sequence. The exciting nodal force has a value

=F N1z .
Finally, as discussed in Section 3, the FRF is calculated at each one

of the 62 reference points defined over the laminate, as illustrated in
Fig. 4.

5.2. Results of the first-level inverse problem (meso-scale)

In this section, the results of the first-level inverse problem are
shown and discussed. After carrying out a statistic analysis in order to
evaluate the effect of the optimisation parameters on the optimum so-
lutions, according to [38], the main parameters tuning the behaviour of
both the GA and the active-set algorithm (used to carry out global and
local optimisation, respectively) are set as listed in Tables 7 and 8.

For this first case, the GA makes use of two populations with 60
individuals evolving along 130 generations. The exchange of informa-
tion among populations is performed through a ring-type operator
every 10 generations, with a probability which is automatically eval-
uated by the GA itself. Moreover, concerning the constraint-handling
technique for the first-level inverse problem, the Automatic Dynamic
Penalisation (ADP) method has been considered, see [41].

Fig. 8. Optimisation scheme for the second-level inverse problem.

Table 4
Reference values of the lamina material properties.

Ply properties

E1 [MPa] E2 [MPa] ν12 ν23 G12 [MPa] G23 [MPa] ρ [kg/m ]3

s155028.4 8197.9 0.290 0.510 3837.1 3282.8 1770.0

Table 5
Reference natural frequencies.

Nat. freq. Value Hz[ ]

f n1
ref 760.98

f n2
ref 1847.19

f n3
ref 1997.35

f n4
ref 2966.36

f n5
ref 3770.59

f n6
ref 3856.76

f n7
ref 4605.93

f n8
ref 5061.77

Table 6
Sampling sequence for FRF calculation ( =δ 1 Hz).

Frequency intervals [Hz] N. of sampled spectrum points
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The choice of using multiple populations of small size, i.e. with a
small number of individuals, is motivated by the fact that here the goal
is to find the global minimum (for the objective function of the problem
at hand) without increasing too much the computational effort. Indeed,
the exchange of information between best individuals belonging to
different populations (through the use of the ring-type operator), and
hence the possibility of crossing them, allows the GA for exploring the
feasible design domain and for handling the genetic information in the
best way. More details about the use of multiple populations can be
found in [25]. For the first-level inverse problem, the single numerical
harmonic analysis (which must be performed for each individual at
each iteration) needs about 30 s to be executed (on an Intel® Xeon®
2.70 GHz CPU with two processors and with a RAM of 128 GB), which
implies an overall time of about 8.3 days to get an optimum solution.

The optimum solutions found at the end of both the genetic calcu-
lation and the local gradient-based optimisation are summarised in
Table 9, whilst the values of the eigenfrequencies for the optimum so-
lution are given in Table 10.

The FRF of the optimum solution evaluated in four different nodes
(nodes 40, 447, 501 and 660 according to Fig. 4) are illustrated in Fig. 9.

As it can be easily inferred from the analysis of these results, the ply
elastic properties of the optimum solution are in good agreement with
the reference data: the absolute percentage difference ranges from 0%
for G12 to 5.78% for ν23. This is a quite expected result because, due to
the kinematic model at the basis of ANSYS shell elements (first-order
shear deformation theory), the effect of ν23 on both the displacement
field and the natural frequencies is negligible. The plate is not thick
enough to observe a significant influence of ν23 on its dynamic response.

Nevertheless, both the eigenfrequencies and the FRF, in all sample
points, are very well estimated. The numerical results found at the end
of the optimisation perfectly match the reference data with an absolute
percentage difference ranging from × −3.51 10 %4 (for the 1-th mode) to

× −4.58 10 %4 (for the 8-th mode).
Finally, the utilisation of the active-set method really improves the

quality of the pseudo-optimal solution provided by the GA: the value of
the objective function decreases from × −4.29 10 4, at the end of the
genetic calculation to × −6.00 10 7, at the end of the local optimisation.

5.3. Results of the second-level inverse problem (micro-scale)

The second-level inverse problem is solved by considering a fibre
volume fraction =V 0.555F [27] and a fibre diameter equal to

=d 6.8 μmf [42].
The RVE dimensions are obtained as follows:

= = =a
d π

V
a a a a

4
2 , , /4.f

f
3 2 3 1 2

(15)

The parameters tuning the behaviour of both the GA and the active-
set algorithm for the second-level inverse problem are listed in Tables 7
and 8. As in the case of the first-level inverse problem, the Automatic
Dynamic Penalisation (ADP) method has been considered for handling
constraints [41]. As far as the second-level inverse problem is con-
cerned, the optimisation process is faster: about 2.3 days are required to
find a solution because the set of 6 static analyses to be conducted on
the composite RVE needs only 6 s (and they must be performed for each
point in the design space).

The optimum solutions of the second-level problem found at the end
of both the genetic calculation and the local gradient-based optimisa-
tion are summarised in Tables 11 and 12.

As it can be easily inferred from the analysis of these results, the
elastic properties of the constitutive phases for the optimum solution
are in agreement with the reference data. In particular, Young’s and
shear moduli for both fibre and matrix are estimated with a very good
accuracy: the absolute percentage difference ranges from 0.254% for E f

1
to 5.56% for E f

2 .
Conversely, the estimation of the Poisson’s ratio (for both phases) is

characterised by a higher discrepancy: the maximum absolute percen-
tage difference is 13.4% on ν f

23. However, this is a quite expected result
because, as stated above, the Poisson’s ratio ν23 of the lamina has a
negligible influence on the laminate dynamic response. Indeed, the
related sensitivity of both objective and constraint functions of the first-
level problem to the variable ν23 is not significant at all. Therefore, the
relatively small absolute percentage error on ν23 at the end of the first-
level inverse problem (5.78%) is amplified when looking for the op-
timum solution of the second-level inverse problem in terms of
Poisson’s ratios of both fibre and matrix (the associated optimisation
problem is non-linear).

Finally, the quality of the optimum solution of the second-level

Table 7
Genetic algorithm parameters (for both first-level and second-level inverse
problems).

Parameters First-level Second-level

N. of individuals 120 140
N. of populations 2 2
N. of iterations 130 130
Crossover probability. 0.85 0.85
Mutation probability. 0.06 0.07
Isolation time 10 10

Table 8
Gradient-based algorithm parameters (for both first-level and second-
level inverse problems).

Parameters Value

Solver algorithm Active-set
Max function evaluation 10000
Tolerance on the objective function −10 15

Tolerance on the gradient norm −10 15

Table 9
Optimum solution of the first-level inverse problem provided by the GA and the
gradient-based algorithm; the percentage difference between the solution and
the ply reference data are given in parentheses.

Meso-scale Reference data GA results Gradient-based results
elastic
properties

E1 [MPa] 155028.4 153846.0
(−0.762)

155027.5 (− × −6.45 10 04)

E2 [MPa] 8197.9 8103.3 (−1.15) 8197.7(− × −1.95 10 03)
ν12 0.290 0.284 (−1.94) 0.290 ( × −3.45 10 03)
ν23 0.510 0.480 (−5.76) 0.480 (−5.78)
G12 [MPa] 3837.1 3906.9 (1.82) 3837.1 (0)
G23 [MPa] 3282.8 3291.1 (0.254) 3282.5 (− × −7.62 10 03)

Table 10
First eight natural frequencies for the optimum solution of the first-level inverse
problem; for each value, the percentage difference with respect to the reference
counterpart is indicated in parentheses.

Nat. freq. fin
ref [Hz] fin [Hz]

f n1 760.98 760.97 ( × −3.51 10 04)
f n2 1847.19 1847.18 ( × −3.82 10 04)
f n3 1997.35 1997.34 ( × −3.83 10 04)
f n4 2966.36 2966.34 ( × −3.99 10 04)
f n5 3770.59 3770.57 ( × −4.20 10 04)
f n6 3856.76 3856.74 ( × −4.23 10 04)
f n7 4605.93 4605.91 ( × −4.27 10 04)
f n8 5061.77 5061.74 ( × −4.58 10 04)
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inverse problem is very good: the objective function value is
× −2.0519 10 5 at the end of the local gradient-based optimisation.

6. Conclusions and perspectives

In this work a multi-scale identification strategy (MSIS) able to
characterise the elastic properties of composite materials, at each
characteristic scale, is presented. The MSIS is characterised by several
original features that make it a very general methodology for char-
acterising the elastic properties of anisotropic media.

In the context of the MSIS, the problem of characterising the elastic
properties of the composite at different scales is split into two distinct
(but related) inverse problems. The first-level inverse problem involves
the transition from macroscopic scale (laminate-level) to mesoscopic
one (ply-level): the goal is to characterise the ply elastic properties

minimising the distance between the numerical harmonic response of
the multilayer plate and the reference one. Conversely, the second-level
inverse problem focuses on the transition from mesoscopic scale to
microscopic one (that of the constitutive phases): the goal is to find the
optimum value of elastic properties of both fibre and matrix matching
the set of the lamina elastic properties provided by the first-level pro-
blem.

The overall identification process relies on a single non-destructive
harmonic test performed at the macroscopic scale. The MSIS makes use
of the strain energy homogenisation technique of periodic media to
carry out the scale transition (from microscopic to mesosocopic one) as
well as of a hybrid optimisation tool to perform the solution search for
both first-level and second-level inverse problems.

The effectiveness of the MSIS is evaluated through a numerical
benchmark: a multilayer plate made of unidirectional carbon/epoxy
pre-preg plies T F650/ 584, whose elastic properties are taken from lit-
erature, is considered as a reference structure and its harmonic response
has been taken as a reference one.

At the mesoscopic scale (ply-level) the results of the identification
process are very good: the maximum absolute percentage error is ob-
served on the ply transverse Poisson’s ratio ν23 and is about 5.78%. At the
microscopic scale (constitutive phases-level) all elastic properties are
identified with a good level of accuracy, except the fibre and matrix
Poisson’s ratios: those of the fibre, i.e. ν f

12and ν f
23, are affected by a

absolute percentage error of about 10% and 14%, respectively, whilst
that of the matrix, νm, is characterised by a percentage error of about
10%.

On the one hand, the relatively small error on the transverse
Poisson’s ratio of the lamina is due to the very low sensitivity of the
objective function to this material property (the laminate is not thick
enough). On the other hand, this error propagates at the lower scale and
affect the Poisson’s ratios of both fibre and matrix for which the per-
centage error is amplified (the problem is non-linear).

Nevertheless, thanks to the proposed multi-scale identification ap-
proach, it is possible to retrieve both longitudinal and transversal ef-
fective properties of the constitutive phases of the RVE and this task
cannot be easily performed by means of standard ASTM tests.
Moreover, such a result has been obtained by using a unique macro-
scopic non-destructive harmonic test.

The proposed strategy constitutes just a “first attempt”: the meth-
odology must be generalised and improved in order to catch the true
behaviour of the material of the constitutive phases at the microscopic
scale. To this purpose, research is ongoing in order to include into the
MSIS the following aspects: on the one hand, the viscoelastic behaviour

Fig. 9. Example of FRF for both optimum and reference solutions evaluated at nodes 40, 447, 501 and 660.

Table 11
Optimum solution of the second-level inverse problem provided by both the GA
and the active-set algorithm; the percentage difference between the solution
and the reference material properties are given in parentheses.

Micro-scale Reference data GA results Gradient-based results
elastic properties

E f
1 [MPa] 276000.0 276701.0 (0.254) 276701.0 (0.254)

E f
2 [MPa] 17300.0 18277.5 (5.65) 18262.1 (5.56)

ν f
12

0.250 0.274 (9.76) 0.275 (9.83)

ν f
23

0.428 0.487 (13.6) 0.486 (13.4)

G f
12 [MPa] 11240.0 10807.1 (−3.85) 10780.7 (−4.09)

Em [MPa] 4140.0 4108.4 (−0.763) 4108.4 (−0.763)
νm 0.350 0.315 (−9.99) 0.315 (−9.99)

Table 12
Ply material properties at the end of the first-level inverse problem (used as
target values) and those related to the optimum solution resulting from the
second-level inverse problem; the percentage differences are indicated in par-
entheses.

Ply elastic properties First-level problem results Optimum results

E1 [MPa] 155027.5 155392.0 (0.235)
E2 [MPa] 8197.7 8170.8 (−0.328)
ν12 0.290 0.290 (0.0)
ν23 0.480 0.480 (0.0)
G12 [MPa] 3837.1 3837.2 ( × −2.87 10 3)
G23 [MPa] 3282.5 3289.0 (0.196)
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of both fibre and matrix in order to validate the effectiveness of the
approach by means of a comparison with experimental harmonic tests;
on the other hand, the variability effects induced by the manufacturing
process, e.g. local variation of the fibre volume fraction, misalignments
of fibres, variation of the plies orientation angles, etc.

Of course, the integration of the viscoelastic behaviour of the matrix
at the microscopic scale has three main consequences:

• the equivalent elastic properties of the constitutive lamina at the
mesoscopic scale will depend upon the frequency;

• since the ply elastic properties depends upon the frequency, the
problem of determining the structure natural frequencies becomes a
non-linear eigenvalue problem, thus a suitable iterative method
must be foreseen to perform the related modal analysis;

• the harmonic response of the laminate, at the macroscopic scale,
will be strongly affected by the matrix viscoelastic behaviour; in
particular, the eigenfrequencies values reduce (when compared to
the undamped modal analysis) and the amplitude of the FRF take a
finite value (instead of an infinite one) when the frequency of the
applied load/displacement is equal to the generic damped natural
frequency.

In this context, the MSIS presented in this work can be used, on the one
hand, to characterise the parameters of the law tuning the matrix vis-
coelastic behaviour and, on the other hand, to select the mathematical
model which fits best the true viscoelastic behaviour, for a given fre-
quency range

Finally, thanks to the versatility of the proposed MSIS, it is possible
to characterise the geometrical features of the RVE of the composite
material: the parameters defining the shape of the inclusion or its vo-
lume fraction can be easily integrated among the optimisation vari-
ables, without altering the overall architecture of the identification
methodology. On the other hand, also geometric parameters of the la-
minate (mesoscopic scale) can be included among the unknowns to be
identified, e.g. the orientation angles and the thickness of each lamina.
Research is ongoing on these aspects as well.
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Chapter 4

Multi-scale identification of the
viscoelastic behaviour of composite
materials

4.1 Introduction and main motivations of the study

The second article, presented in this Chapter, has been published in Mechanics of Materi-
als. It deals with the characterisation of the viscoelastic behaviour of composite materials,
at each pertinent scale. To this purpose, the MSIS has been extended to efficiently ex-
ploit the information restrained into the macroscopic non-linear dynamic response of the
composite specimen in order to properly identify its damping capability.

In particular, the idea is to identify the viscoelastic behaviour of the composite at
both mesoscopic (lamina-level) and microscopic (constitutive phases level) scales. This
objective can be achieved by solving an inverse problem, in which the identification of
the parameters tuning the viscoelastic behaviour of the constitutive phases is obtained
by minimising the distance between the numerical and the reference harmonic macro-
scopic responses of the composite subject to pertinent constraints on the natural damped
frequencies as well as on the positive definiteness of the stiffness tensor of each phase.

Of course, the homogenisation procedure based on the strain energy of periodic media
has been generalised to the case of viscoelastic materials in this work. More precisely, the
viscoelastic behaviour of the matrix is described, in the frequency domain, by means of
the Bagley-Torvik model [203] which makes use of fractional derivatives.

Nevertheless, when considering such a viscoelastic model, both modal and harmonic
analyses (which are used at the macroscopic scale to assess the dynamic response of the
composite) become non-linear because the stiffness tensor of the lamina depends upon
the frequency. Accordingly, a suitable solver based on the non-linear Arnoldi’s method
(NLAM) has been implemented in the MATLAB environment and interfaced with the
ANSYS software used to build the FE model of the multilayer plate.

4.2 Multi-scale identification of the viscoelastic be-

haviour of composite materials
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A B S T R A C T

The problem of characterising the viscoelastic behaviour of a composite material, at each pertinent scale, is
addressed in this paper. To this purpose, a dedicated multi-scale identification strategy (MSIS), exploiting the
information restrained in the macroscopic non-linear dynamic response of the composite, is developed. The MSIS
aims to identify the viscoelastic behaviour of the composite at both mesoscopic (lamina-level) and microscopic
(constitutive phases level) scales. This goal can be achieved by solving an inverse problem, wherein the iden-
tification of the parameters tuning the viscoelastic behaviour of the constitutive phases is obtained by mini-
mising the distance between the numerical and the reference harmonic (macroscopic) responses of the com-
posite; Of course, pertinent constraints on the natural damped frequencies as well as on the positive definiteness
of the stiffness tensor of each phase must be provided. The MSIS relies on: (i) a general homogenisation pro-
cedure based on the strain energy of periodic media generalised to the case of viscoelastic materials; (ii) a
dedicated solver to deal with the non-linear modal and harmonic analyses of the multilayer plate at the mac-
roscopic scale; (iii) the Bagley-Torvik viscoelastic model to describe the viscoelastic behaviour of the matrix; (iv)
a general hybrid optimisation algorithm able to deal with optimisation problems defined over a domain of
variable dimension to solve the inverse problem. The effectiveness of the MSIS is proven through a suitable
benchmark.

1. Introduction

Composite materials have a long story: they were employed by
Israelites for the manufacturing of strengthen mud bricks and by the
Egyptians to produce plywood (Jones, 1975). Nowadays, because of the
introduction of constitutive phases with adequate mechanical proper-
ties in terms of strength, stiffness and heat transfer behaviour, high-
performance engineering structures are more and more made of com-
posite materials.

Composite structures are subjected to a wide variety of loading
conditions, including both static and dynamic loads. In order to de-
crease the design costs related to experimental tests, accurate numerical
simulations coupled to cheaper tests are required to predict the complex
behaviour of the structure.

In order to carry out numerical simulations, reliable material
properties have to be defined, under both static and dynamic condi-
tions. In particular, for fibre-reinforced composites, the macroscopic
behaviour depends upon that of the constitutive phases at the lower
scales. For multilayer plates three characteristic scales can be identified.

At the macroscopic scale the laminate is usually modelled as a homo-
geneous anisotropic plate whose structural response depends upon the
constitutive stiffness, mass and damping matrices (membrane, bending
and membrane/bending coupling behaviours). The mesoscopic scale
focuses on the lamina-level: each constitutive ply is characterised by
some geometric and material parameters, i.e. the orientation angle, the
thickness, the position and the material properties of the ply. Of course,
each one of the previous parameters is involved in the definition of the
laminate stiffness and mass matrices and has a strong influence on the
macroscopic response of the multilayer plate. Finally, the microscopic
scale is that of the constitutive phases (e.g. fibres and matrix for fibre-
reinforced composites): at this scale each phase is characterised by a
given material behaviour and by a set of geometrical parameters, e.g.
fibres volume fraction, fibre shape, fibres arrangement, etc.

The characterisation of the composite material properties at each
relevant scale is a rather complex problem. Concerning the identifica-
tion of the elastic properties, ASTM standard tests can be found in the
literature: mesoscopic destructive tests (as tension
ASTM International, 2017a, three/four points bending
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ASTM International, 2017b and shear tests ASTM International, 2012)
and few microscopic ASTM standard tests are available (to characterise
the matrix ASTM International, 2014 and the fibre
ASTM International, 1975 longitudinal Young’s modulus, respectively).
Unfortunately, the aforementioned tests are not able to provide the
required 3D set of material properties.

Moreover, composite materials show also a dynamical behaviour
that is strongly affected by damping properties (Mahmoudi et al.,
2019). Accordingly, a proper characterisation of the damping capability
of the material, at each relevant scale, is a challenging task
(Suarez et al., 1986). This problem is more difficult than that of the
elastic properties characterisation essentially because of the non-linear
nature of the viscoelastic matrix behaviour, in terms of time response,
which influences the damping capability of the composite at all char-
acteristic scales.

From an experimental point of view, two methods are commonly
used: the direct method and the indirect one. On the one hand, the
direct techniques are based on the measurement of the dissipated en-
ergy per load cycle, which can be evaluated from the area of an hys-
teresis loop (Krasnobrizha et al., 2016). On the other hand, the indirect
methods allow estimating the dissipated energy from the analysis of the
spectrum response: free vibration-decay, resonant-dwell, bandwidth
and impedance methods are some of the experimental techniques used
for damping characterisation (Kostopoulos and Korontzis, 2003).

However, it is possible to describe the damping behaviour of a
composite structure by directly looking at the viscoelastic properties
(Jayendiran and Arockiarajan, 2015; Swain and Roy, 2018): nowadays,
a common and useful method is the so-called Dynamical Mechanical
Analysis (DMA) (Melo and Radford, 2005; Finegan et al., 2003;
Chandra et al., 2003). DMA is an indirect method to characterise the
material properties of reinforced polymers in terms of thermal, elastic
and viscoelastic behaviours (Abedi, 2016).

The DMA test is performed by applying harmonic loads to the
specimen. By measuring the sample response, it is possible to compute
an apparent modulus that can be used to estimate the viscoelastic
properties of the specimen. In the case of a composite multilayer plate,
wherein the lamina has an isotropic transverse behaviour (Suarez et al.,
1986), the identification process has to be carried out three times, e.g.
by considering a symmetric angle-ply stack, to determine the long-
itudinal EL, transversal ET and shear GLT moduli.

Unfortunately, when high modulus composite materials are in-
vestigated, the DMA technique provides less accurate results
(Abedi, 2016) compared to the ASTM three-points bending test
(ASTM International, 2017b). Indeed, the DMA test provides an ap-
parent modulus giving only an average approximation of the plate
flexural stiffness response which group both structural and material
aspects. However, the DMA test does not allow to extract information
about microscopic properties and only fibre-reinforced polymers can be
tested.

From the engineer’s viewpoint it is more interesting to look for those
tests which allow to identify material properties at all relevant scales

and which are not limited by the size of the composite sample or by the
geometrical and material properties of the constitutive phases com-
posing it. The formulation of a suitable inverse problem for material
properties characterisation is a widely studied topic in the literature
(Meng et al., 2017; Yap et al., 2019; Ghorbal et al., 2017). In this
background, Barkanov et al. (2009) proposed an inverse technique
based on modal analysis and on the response surface method to char-
acterise the nonlinear behaviour of the viscoelastic core layer in sand-
wich panels. Elkhaldi et al. (2012) worked on the viscoelastic para-
meters identification for a sandwich panel where a generalised Maxwell
model is considered and a gradient algorithm is used to solve the as-
sociated inverse problem. Cortés and Elejabarrieta (2006) developed an
identification strategy to characterise the parameters of the fractional
derivative model representing the viscoelastic behaviour of a sandwich
beam. The goal is the minimisation of the error between the predicted
Frequency Response Function (FRF) and the measured one.
Ledi et al. (2018) proposed an identification method for frequency-
dependent material properties of viscoelastic sandwich beams able to
take into account for the property of the interface between layers.

As it can be inferred from the aforementioned works, the damping
capability related to the viscoelastic behaviour of the matrix can be
characterised by exploiting the information restrained in the dynamic
response of the structure. In these works, sandwich beams/plates
manufactured by interposing a viscoelastic layer between metallic ones
were considered because this configuration is well suited to reduce
noise and vibration. However, in multilayer plates the macroscopic
damping capability is mainly related to the viscoelastic behaviour of the
matrix at the microscopic scale.

This work focuses on the damping capability of multilayer plates
made of unidirectional fibre-reinforced laminae. In particular, this
study aims to generalise the multi-scale identification strategy (MSIS)
developed in a previous study (Cappelli et al., 2018) to the case of the
viscoelastic behaviour of composites. The MSIS relies on the informa-
tion restrained in a non-destructive harmonic test conducted at the
macroscopic scale. The idea is to exploit this information to characterise
the viscoelastic behaviour of the constitutive phases at the microscopic
scale.

In the context of the MSIS, the multi-scale identification problem is
stated as a constrained non-linear programming problem (CNLPP). The
goal is to minimise the distance between a reference harmonic response
(that can be obtained either experimentally or numerically) and the
numerical one. This function is subject to some requirements involved
at different scales: (a) on the positive definiteness of the stiffness tensor
of the constitutive phases (microscopic scale); (b) on the damped nat-
ural frequencies of the composite (macroscopic scale); (c) on a non-
negative internal work and a non-negative dissipation rate as far as the
viscoelastic model is concerned.

Nevertheless, the identification of the viscoelastic behaviour of the
constitutive phases (mostly due to the matrix) at the microscopic scale
is characterised by two difficulties: (a) the equivalent viscoelastic
properties of the constitutive lamina at the mesoscopic scale depend
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CNLPP Constrained non-linear programming problem
DOF Degree Of Freedom
DMA Dynamical Mechanical Analysis
ERASMUS EvolutionaRy Algorithm for optimiSation of ModUlar

Systems
FE Finite Element
FFT Fast Fourier Transform
FRF Frequency Response Function

FSDT First-order Shear Deformation Theory
GA Genetic Algorithm
HERO Hybrid EvolutionaRy-based Optimisation
IIA Inverse Iteration algorithm
ISIM Iterative Shift-Inverter Method
LB Lower Bound
MSIS Multi-Scale Identification Strategy
NLAM Non-Linear Arnoldi's method
NLJDM Non-Linear Jacobi-Davidson Method
PBCs Periodic Boundary Conditions
RVE Representative Volume Element
SEHT Strain Energy Homogenisation Technique
UB Upper Bound

L. Cappelli, et al. Mechanics of Materials 137 (2019) 103137

2

67



upon the frequency ; (b) since the ply material properties depend upon
the frequency, the problem of determining the structure damped nat-
ural frequencies becomes a non-linear eigenvalue problem, thus a sui-
table iterative method must be foreseen to perform the related modal
analysis. Therefore, the harmonic response of the laminate, at the
macroscopic scale, is strongly affected by the matrix viscoelastic be-
haviour.

In this context, the MSIS presented in Cappelli et al. (2018) is
generalised here to the characterisation of the parameters of the law
tuning the viscoelastic behaviour of the constitutive phases, for a given
frequency range. The proposed MSIS relies upon the following features:
(a) an hybrid optimisation tool called HERO (Hybrid EvolutionaRy-based
Optimisation) algorithm, see Montemurro (2018); (b) an extension of the
numerical homogenisation method based on the strain energy of peri-
odic media and on volume-averaged stresses and strains
(Barbero, 2007) to the case of viscoelastic materials; (c) the Arnoldi’s
method (Voss, 2004; Hamdaoui et al., 2016) to solve the non-linear
modal analysis for materials with frequency-dependent viscoelastic
properties. The effectiveness of the MSIS for viscoelastic materials is
proven on a meaningful benchmark taken from the literature.

The paper is structured as follows. The problem and the MSIS are
introduced in Section 2. The mathematical formulation of the inverse
problem and the related numerical aspects are discussed in Section 3.
The finite element (FE) models of the composite at both microscopic
and macroscopic scales are presented in Section 4. The numerical re-
sults of the MSIS are illustrated and discussed in Section 5. Finally,
Section 6 ends the paper with some conclusions and perspectives.

2. Multi-scale identification of composite viscoelastic properties

2.1. Problem description

In this work, the MSIS is applied to a rectangular composite plate
made of unidirectional viscoelastic plies, whose geometrical parameters
are shown in Fig. 1.

The constitutive ply is made of carbon-epoxy fibre Hexcel T650/
F584 pre-impregnated tapes, whose fibre volume fraction is =V 0.555f .
Concerning the available material properties of the constitutive phases,
only the elastic properties can be found in litterature (they are taken
from Soutis and Beaumont (2005)). The parameters tuning the viscoe-
lastic response of the F584 matrix are set a priori because they are not
available in Soutis and Beaumont (2005). They are set to reasonable
values to give all the necessary microscopic material parameters de-
fining the matrix behaviour. The reference material properties for both
the fibre and the matrix are reported in Table 1. It is noteworthy that
the viscoelastic behaviour of the F584 matrix is described by means of
the Bagley–Torvik model (briefly discussed in Section 2.2 and taken
from Bagley and Torvik (1986)).

The reference laminate is constituted of 16 identical plies with the
stacking sequence [0 / 45 /45 /90 /45 /90 / 45 /0 ]S. The average
thickness of the ply is =t 0.28225ply mm and the orientation angle of the
lamina is defined positive according to counter-clockwise rotation
around the z-axis.

The goal of this study is to provide a numerical validation of the
MSIS for viscoelastic materials. To this purpose, the reference response of
the structure is determined by means of modal and harmonic analyses
performed on the reference configuration of the laminate described
above. As described in Section 5.1, the reference material properties of
the constitutive phases are implemented at the microscopic scale in
order to determine the reference effective viscoelastic properties of the
single lamina. Due to the viscoelastic behaviour of the matrix, the la-
mina elastic properties depend upon the frequency. This variation is
determined by generalising, to the viscoelastic case, the well-known
homogenisation technique for periodic media based on the strain en-
ergy (Barbero, 2007), as detailed in Section 4.1. Finally, the reference
harmonic response and the reference natural frequencies of the laminate

are determined, at the macroscopic scale, on a FE model of the multi-
layer plate making use of the reference properties provided by the
homogenisation method.

In order to easily follow the flow of information throughout the
manuscript, Table 2 lists all the adopted models, techniques and
methods which are needed to achieve the ambitious goal of the multi-
scale identification of the viscoelastic behaviour of the composite.

2.2. The Bagley–Torvik viscoelastic material model

Composite structures show a dynamical behaviour that is sig-
nificantly influenced by the damping capability of the matrix. The time-
dependent response of materials can be classified into elastic (crystal-
line materials), viscous and viscoelastic. A viscoelastic material can be
characterised by either a linear or a non-linear time-strain relationship
and it can be in the form of a liquid (unrecoverable viscous flow) or a
solid (fully recoverable viscous deformation).

From a numerical point of view, different linear viscoelastic mate-
rial models are available in the literature. These models are usually
implemented to fit experimental data (usually creep and relaxation
tests) (Barbero, 2007; Krasnobrizha, 2015). The most common models
are: (a) Maxwell model; (b) Kelvin–Voigt model; (c) Zener model; (d)
power law-based models; (e) Prony series-based models; (f) generalised
Kelvin model. These models differ essentially in terms of the number of
parameters required to get the best possible fitting of experimental
data. However, these laws are usually applied in the α-region of polymer
creep (the characteristic time of the load application varies from sec-
onds to years) (Barbero, 2007). Nevertheless, when looking at the fre-
quency range characterising the application presented in this study (see
Section 5.1), one can state that harmonic excitation falls in the β-region
of polymer creep (Barbero, 2007); accordingly, a different viscoelastic
model must be considered.

The effectiveness of a mathematical model in describing the vis-
coelastic behaviour of a given material can be seen as the ability of
fitting a set of data points by using the least number of parameters
tuning the model. Moreover, from a computational viewpoint and for
optimisation purposes, the interest is always to have a limited number
of parameters to be identified without reducing the accuracy of the
model. Among the most effective mathematical representations of the
viscoelasticity, the models based on fractional derivatives have been
widely studied in the last three decades (Krasnobrizha, 2015). For such
models, the general constitutive law reads:

+ = +t b D t E t E D t
E E b

( ) ( ) ( ) ( ),
where , , , , .

m m m

m m m m m
0 1

0 1

m m

(1)

Fig. 1. Geometrical parameters of the reference composite plate (sizes in mm).
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In Eq. (1), Dα is the fractional derivative operator which represents a
generalisation of the concept of derivative of a function. Consider a
function f L a b a b([ , ])| ,1 . If +*, the fractional derivative of
order α is defined as the fractional integral of order n derived n
times (Riemann–Liouville definition - RL):

= < <D f x d
dx

f x
x t

dt( ) ( ) 1
(1 )

( )
( )

, where 0 1.a RL a

x

(2)

The function Γ(z), with +z *, is the extension of the factorial func-
tion to real numbers. The reader is addressed to Krasnobrizha (2015)
and Krasnobrizha et al. (2016) for further information concerning the
mathematical formulation.

The fractional derivative model has been generalised to materials
presenting a reticular complex molecular structure, because the choice
of 0< α<1 well reproduces the relaxation function of different kind of
polymers, as widely discussed in Schiessel et al. (2000). The Fast
Fourier Transform (FFT, whose operator is indicated as F) of the frac-
tional derivative operator can be computed as:

= < <+ +F D f x F f x x[( ) ( )] ( i) [ ( )], * | 0 1 ,a RL (3)

where Ω is the frequency and i the imaginary unit. It is noteworthy that
working in frequency domain allows dealing with a very simple
mathematical expression of the fractional derivative operator. Applying
the FFT to Eq. (1), one obtains

= = =F t F E t F t E^ ( ) [ ( )] [ ( )] [ ( )] ^ ( )^ ( ),m m
(4)

where the relaxation modulus Ê ( i)
m

reads (Bagley and Torvik, 1986)

= +
+

E E E
b

^ ( ) ( i)
1 ( i)

,
m m m

m
0 1

m

m
(5)

that represents the Bagley–Torvik viscoelastic model. It can be observed
that, when + , the relaxation modulus of the matrix

E E
b

i^ ( ) ( )
m m

m
1 m m

(vitreous domain). Otherwise, when Ω↦0, the
relaxation modulus tends to the elastic constant E m

0 . However, a reli-
able viscoelastic model must be characterised by a non-negative in-
ternal work and a non-negative rate of dissipation, as highlighted in
Bagley and Torvik (1986). In order to ensure these thermodynamical
properties, the material parameters must satisfy the following re-
lationships:

< = < > >E E E b0 1, 0 and .m m m m m m
0 1 0 (6)

Therefore, only four parameters are needed to describe the viscoe-
lastic behaviour of the considered polymeric matrix.

2.3. The multi-scale identification strategy

The goal of the MSIS is to find the optimum value of the parameters
tuning the viscoelastic behaviour of the composite, at each scale, by
smartly exploiting the information restrained into the harmonic re-
sponse, measured in some precise locations, of the multilayer plate.

The reference response can be obtained either by a non-destructive
experimental harmonic test (e.g. performed with shaker, hammer or
solenoidal excitation system) or by carrying out a numerical harmonic
test on the reference structure. This work deals with the latter case: the
reference configuration of the multilayer plate as well as the reference
dynamical results are presented in Section 5.2.

The MSIS aims to identify the parameters defining both the elastic
behaviour of the fibre and the viscoelastic behaviour of the matrix by
using the information available into the dynamical response of the
composite at the macroscopic scale. The proposed approach relies on
some hypotheses. As far as the microscopic scale is concerned, the
following assumptions are considered:

• the matrix has a viscoelastic isotropic behaviour, described by the
Bagley–Torvik model, with a constant Poisson’s ratio according to
Luciano and Barbero (1995);
• the fibre has an elastic transversely isotropic behaviour;
• the fibre-matrix interface is perfect (i.e. perfect bonding condition
between the two phases).

Regarding the mesoscopic and macroscopic scales, the following
hypotheses apply:

• the constitutive lamina has a viscoelastic orthotropic behaviour with
only six parameters, due to the plane of symmetries characterising
the considered Representative Volume Element (RVE), as shown in
Fig. 3a;
• perfect bonding condition at the interface between two consecutive
plies;
• the first-order shear deformation theory (FSDT) is considered to
describe the kinematics of the multilayer plate.

The general flow-chart of the one-shot MSIS for viscoelastic mate-
rials is shown in Fig. 2.

3. Mathematical formulation of the multi-scale inverse problem

3.1. Optimisation variables, objective function and constraints

The multi-scale identification problem considered in this work is
formulated as a classical inverse problem: the goal is the determination
of the material properties of the constitutive phases of the composite by
minimising the euclidean distance between the reference harmonic
response at macroscopic scale and that provided by the numerical si-
mulation.

Table 1
Reference material properties for the fibre T K650/35 3 and the epoxy matrix
F584 (taken from Soutis and Beaumont, 2005; Hexcell Corporation, 2016;
Cappelli et al., 2018).

Fibre properties

E f
1 [MPa] E f

2 [MPa] f
12

f
23 G f

12 [MPa]
276000 17,300 0.25 0.428 11240
Matrix properties
E m

0 [MPa] E m
1 [MPa] bm =m m νm

4140 30 0.0053 0.5 0.35

Table 2
Models, techniques and methods used in this study.

Model / Technique / Method Role

The Bagley–Torvik model Used to define the viscoelastic behaviour of the matrix
Strain energy homogenisation technique Used to perform the microscopic/mesoscopic scale transition
Finite Element Method Used to model both the RVE of the composite and the multilayer plate at microscopic and macroscopic scales, respectively
Non-Linear Arnoldi’s method Used to solve the non-linear eigenvalue problem at the macroscopic scale
GA ERASMUS Used to perform the global search of optimal solutions for the multi-scale identification problem
Automatic Dynamic Penalisation Method Used to handle optimisation constraints during the global search stage
fmincon tool and active-set algorithm Used to perform the local search of optimal solutions for the multi-scale identification problem
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According to the hypotheses introduced in Section 2, the effective
elastic properties of the ply depend upon the frequency (due to the
viscoelastic behaviour of the matrix) and must be computed through a
suitable numerical homogenisation procedure. To achieve this task, a
dedicated FE model of the RVE at the microscopic scale is built to
perform the numerical homogenisation: the results are the frequency-
dependent elastic constants of the lamina. In this analysis, the fibre
volume fraction Vf is set up a priori, because usually it is a value that the
manufacturer can provide reliably, as highlighted also in
Cappelli et al. (2018).

Considering the behaviour of the constituent phases, as discussed in
Section 2.3, the design variables of the inverse problem, i.e. the mate-
rial parameters to be identified, are five elastic constants for the fibre,
supposed to have a transversely isotropic behaviour and five para-
meters tuning the law of the isotropic viscoelastic matrix. In particular,
as discussed in Cappelli et al. (2018), the fibre Poisson’s coefficient f

23 is
not considered among the design variables due to negligible sensitivity
of the harmonic and modal responses of the plate to this parameter.
Indeed, the reference plate (illustrated in Fig. 1) is very thin and f

23
does not significantly influences the macroscopic dynamical response of
the structure. Accordingly, f

23 has been set to the reference value given
in Table 1. Therefore, only nine material properties characterise the
composite at the microscopic scale. They can be collected in the vector
of design variables x, as:

= E E G E E bx { , , , , , , , , }.f f f f m m m m m
1 2 12 12 0 1 (7)

In order to guarantee the positive definiteness of fibre and matrix
stiffness tensors (Cappelli et al., 2018) and the thermodynamic re-
quirements related to the viscoelastic behaviour of the matrix (see

Section 2.2), the following set of non-linear constraints must be con-
sidered:
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Fig. 2. Flow-chart of the one-shot MSIS.

Table 3
Lower and upper bounds of the design variables for the multi-scale inverse
problem.

Material properties Lower bound Upper bound

E f
1 [MPa] 220,800 331,200

E f
2 [MPa] 13,840 20,760

f
12

0.2 0.3

G f
12 [MPa] 8992 13,488

E m
0 [MPa] 3312 4968

E m
1 [MPa] 24 36
bm 0.00424 0.00636
αm 0.4 0.6
νm 0.28 0.42
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In order to get a numerical harmonic spectrum really close to the re-
ference one (and also to match the reference damped natural fre-
quencies), a set of constraints on the laminate (damped) eigen-
frequencies must be integrated into the problem formulation:

= = …+g
f f

f
i nx( ) 0, 1, , .i

in in

in
i f7

ref

ref
(9)

In Eq. (9), nf is the number of damped natural frequencies falling in the
selected frequency spectrum range (as discussed in Section 5.1), whilst
fin and fin

ref are the ith computed and reference damped eigenfrequency,
respectively. ϵi is a user-defined tolerance that establish the relative
error for each eigenfrequency: here, a maximum relative error equal to
0.005 is chosen.

The microscopic material parameters vary within the design space
defined in Table 3.

The objective function Φ(x) is defined by introducing an Euclidean
distance between the reference and the numerical harmonic responses,
both for real and imaginary parts. In particular, an error estimator of
the least-squares type has been chosen:
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In Eq. (10), fr is the rth sampled frequency, while Hr,q is the FFT of the
FRF determined at the qth sample point of the multilayer plate and
evaluated at the rth sampled frequency. Of course, f ,r

ref Hr q,
ref are the

same quantities evaluated on the reference configuration of the lami-
nate. ℜ(⋅⋅⋅) and ℑ(⋅⋅⋅) represent real and imaginary parts, whilst Ns and
Np are the number of sampled frequencies and of sample points over the
laminate plate (where the FRF is computed/measured), respectively.
These quantities are detailed in Sections 4 and 5.2.

Finally, the multi-scale inverse problem can be stated as a classical
CNLPP:

= … +g j n

x

x

min ( ),

subject to:
( ) 0, 1, ,7 .j f

x

(11)

3.2. The numerical strategy

Problem (11) is highly non-linear in terms of both constraint and
objective functions, see Eqs. (8)–(10).

For inverse problems, the uniqueness of solution is not a priori
guaranteed: the set of parameters matching a given observed state may
not be unique. Nevertheless, no proved theoretical rules exist in lit-
erature (Sun, 1999; Tarantola, 1988) to define the number of data
points Np for a given number of unknowns (n) that have to be identified.
Often, the inverse problem is stated as a CNLPP and it can be viewed as
an over-determined system of equations (Sun, 1999; Tarantola, 1988).
Since more observation points than parameters exist (Np is usually
much greater than n) there are more equations than unknowns. If an
optimal point exists, it may be not unique, thus implying the existence
of many combinations of parameters that result to be equivalent op-
timal solutions for the CNLPP at hand.

Considering all these aspects and according to the practice always
employed in the literature, in this work a number of observed states
(i.e. sample points Np) greater than two times the number of design

variables n has been considered. As explained in the next Section, the
number of sample points has been inferred by means of a numerical
sensitivity analysis of the FRF of the plate with respect to parameter Np:
as a results =N 329p has been chosen to properly perform the optimi-
sation calculations.

Taking into account all of the aforementioned points, a hybrid op-
timisation tool composed of the genetic algorithm (GA) ERASMUS
(EvolutionaRy Algorithm for optimiSation of ModUlar Systems) devel-
oped by Montemurro (2018), interfaced with the MATLAB fmincon al-
gorithm (The Math Works Inc., 2017), has been used. The GA
ERASMUS has already been successfully applied to solve different kinds
of real-world engineering problems, see for instance (Montemurro
et al., 2016; Costa et al., 2018; Montemurro and Catapano, 2016; 2017;
Montemurro et al., 2019; Panettieri et al., 2019; Montemurro et al.,
2018).

As shown in Fig. 2, the optimisation procedure for problem (11) is
split in two phases. During the first phase, solely the GA ERASMUS is
used to perform the solution search. Due to the strong non-linearity of
problem (11), the aim of the genetic calculation is to provide a potential
sub-optimal point in the design space, which constitutes the initial
guess for the subsequent phase, i.e. the local optimisation, where the
MATLAB fmincon tool is employed to finalise the solution search. The
optimisation algorithm is the active-setwhich is a Quasi-Newton method
making use of an approximation of the Hessian matrix to estimate the
descent direction. For more details on the active-set algorithm see
The Math Works Inc. (2017).

For the resolution of the multi-scale inverse problem, both optimi-
sation algorithms have been interfaced with the FE models of the
multilayer plate at two different scales: microscopic (constitutive
phases-level) and macroscopic (laminate-level). As shown in Fig. 2, for
each individual at each generation, the optimisation tool performs three
different types of FE analyses:

1. an homogenisation analysis to determine the frequency-dependent
equivalent elastic properties of the lamina (microscopic / macro-
scopic scale transition);

2. a non-linear modal analysis (by means of a suitable in-house coded
solver) to extract the nf natural frequencies;

3. a non-linear harmonic analysis for the evaluation of the FRF of the
laminate.

Then, the optimisation algorithm elaborates the results provided by
the two FE analyses in order to execute the optimisation operations on
the basis of the current value of both objective and constraint functions.
These operations are repeated until the algorithm satisfies the user-
defined convergence criterion. The details of the FE analyses are given
in Section 4.

The number of design variables and that of constraint functions is
nine and +n 7,f respectively. The generic individual of the GA
ERASMUS represents a potential solution for the problem at hand. The
genotype of the individual for problem (11) is characterised by only one
chromosome composed of nine genes, each one coding a component of
the vector of design variables, see Eq. (7).

4. Finite element models at different scales

4.1. The finite element model at the microscopic scale and the
homogenisation strategy

The microscopic / macroscopic scale transition is carried out
through a homogenisation step performed on the RVE shown in Fig. 3a.
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The frequency-dependent elastic properties of the ply are obtained
by means of the strain energy homogenisation technique (SEHT) of
periodic media (Barbero, 2007; Cappelli et al., 2018). This technique,
originally introduced for elastic heterogeneous materials, can be gen-
eralised to different kinds of composites showing a general non-linear
behaviour, e.g. fabrics, lattice structures, etc. This technique has al-
ready been successfully used in other works, see (Montemurro et al.,
2016; 2012; Catapano and Montemurro, 2014a; 2014b): in this work,
the SEHT is generalised to the case of viscoelastic materials subjected to
harmonic loads. The SEHT is based on the main hypothesis that the RVE
of the periodic heterogeneous material and the corresponding homo-
genised volume undergo the same deformation having, hence, the same
strain energy. Consequently, at the ply scale, an equivalent homo-
geneous anisotropic material replaces the heterogeneous medium, by
using the frequency-dependent stiffness tensor resulting from the
homogenisation phase.

In this study, the real random micro-structure of the lamina (which
is usually characterised by misalignments of the fibres, porosity, da-
maged zones, etc.) is not taken into account and the topology of the
RVE is described by a perfect hexagonal array, as illustrated in Fig. 3a.
The FE model of the RVE has been realised into the commercial FE code
ANSYS®. A 20-node solid element (SOLID186) with three degrees of
freedom (DOFs) per node has been used. The model together with its
structured mesh is shown in Fig. 3b. A sensitivity study (not reported
here for the sake of brevity) on the proposed FE model with respect to
the mesh size has been conducted: it was observed that a mesh having
19551 DOFs is sufficient to properly evaluate the set of frequency-de-
pendent homogenised elastic properties of the lamina.

The RVE is submitted to an average strain field īj (tensor notation),
to evaluate the stiffness matrix components C̄ij. The six components of
the average strain tensor are applied, by means of the classical periodic
boundary conditions (PBCs) as follows (Barbero, 2007; Cappelli et al.,
2018):

=
=
=

=

u a x x u a x x a a x a a x a
u x a x u x a x a a x a a x a
u x x a u x x a a a x a a x a

i

( , , ) ( , , ) 2 ¯ , , ,
( , , ) ( , , ) 2 ¯ , , ,
( , , ) ( , , ) 2 ¯ , , ,

where 1, 2, 3.
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i i i

i i i

1 2 3 1 2 3 1 1 2 2 2 3 3 3

1 2 3 1 2 3 2 2 1 1 1 3 3 3

1 2 3 1 2 3 3 3 1 1 1 2 2 2

(12)

As stated above, the RVE is subjected to harmonic excitations, in
order to compute the frequency-dependent elastic properties at the
upper scale. Consequently, the internal stresses σα and strains

= …, 1, , 6 (Voigt’s notation) vary harmonically with different
amplitudes and phases, for each RVE internal point xp:

= +f t f f t fx x x( , , ) | ( , )| exp[(2 ( , ))i],p p p0 0 0 0 (13)

= +f t f f t fx x x( , , ) | ( , )| exp[(2 ( , ))i].p p p0 0 0 0 (14)

The equivalent stresses and strains at the lamina-level can be eval-
uated from the corresponding fields by considering an average over the
RVE volume, i.e.

=

=

f t f t
f t

V
f f dV

x

x x

¯ ( , ) ( , , )
exp[(2 )i]

| ( , )| exp[ ( , )i] ,
V

p

p p

0 0

0

RVE
0 0RVE (15)

=

=

f t f t
f t

V
f f dV

x

x x

¯ ( , ) ( , , )
exp[(2 )i]

| ( , )| exp[ ( , )i] .
V

p

p p

0 0

0

RVE
0 0RVE (16)

where =V a a a8RVE 1 2 3 according to Fig. 3.
The internal RVE stresses and strains of Eqs. (13) and (14) can also

be written in the Laplace–Carson (L is the related operator) space:

= =f f L f t
f f

f f
x x

x x
* ( , , ) [ ( , , )]

| ( , )| exp[ ( , )i]
2 ( )i

,p p
p p

0 0
0 0

0 (17)

= =f f L f t
f f

f f
x x

x x
* ( , , ) [ ( , , )]

| ( , )| exp[ ( , )i]
2 ( )i

.p p
p p

0 0
0 0

0 (18)

By following the same logical steps, also the average stresses and
strains components of Eqs. (15) and (16) can be written in the Laplace-
Carson L space:

=

=

f f L f t

V f f
f f dVx x

¯ *( , ) [ ¯ ( , )]
1

2 ( )i
| ( , )| exp[ ( , )i] ,

V p p

0 0

RVE 0
0 0RVE (19)

=

=

f f L f t

V f f
f f dVx x

¯*( , ) [¯ ( , )]
1

2 ( )i
| ( , )| exp[ ( , )i] .

V p p

0 0

RVE 0
0 0RVE (20)

In order to perform the numerical homogenisation process,

Table 4
Material properties of the fibre and the matrix used to illustrate the effective-
ness of the homogenisation procedure.

Fibre properties

E f
1 [MPa] E f

2 [MPa] f
12

f
23 G f

12 [MPa]
275622 20,435 0.32 0.451 10693
Matrix properties
E m

0 [MPa] E m
1 [MPa] bm =m m νm

3000 30 0.0053 0.5 0.33

Fig. 3. (a) The reference Representative Volume element (RVE) and (b) details of the RVE mesh.
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harmonic analyses are required and the imposed strain field, applied
through the PBCs of Eq. (12), reads:

= = = …

= = …

f f L f t
f

V f f
f f

¯*( , ) [¯ ( , )]
|¯ ( )|

2 ( )i
, 1, ,6, with

¯*( , ) 0 1, ,6 and .

0 0
0

0

0 (21)

Finally, the frequency-dependent components of the homogenised
stiffness complex tensor C̄ of the lamina can be evaluated as:

= =C f
f f
f f V f

f f dVx x¯ ( )
¯ *( , )
¯*( , )

1
|¯ ( )|

| ( , )| exp[ ( , )i] ,
V p p0

0

0 RVE 0
0 0RVE

(22)

R =C f
V f

f f dVx x[ ¯ ( )] 1
|¯ ( )|

| ( , )| cos[ ( , )] ,
V p p0

RVE 0
0 0RVE (23)

I =C f
V f

f f dVx x[ ¯ ( )] 1
|¯ ( )|

| ( , )| sin[ ( , )] .
V p p0

RVE 0
0 0RVE (24)

Even in the case of a complex stiffness tensor, the compliance matrix
at a given frequency f0 can be determined as: =f fS C¯ ( ) ¯ ( )0

1
0 . Finally,

the frequency-dependent lamina (complex) elastic properties can be
computed from the components of the compliance matrix
(Barbero, 2007).

To give an idea of the homogenisation of the frequency-dependent
elastic properties of the lamina at the mesoscopic scale, an analysis is
performed by considering the material properties of the constitutive
phases listed in Table 4, in the frequency range f∈ [100, 6000] Hz.
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Fig. 5. Frequency-dependent elastic properties (amplitude) of the lamina resulting from the homogenisation.
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Fig. 4 illustrates the viscoelastic behaviour of the matrix, re-
presented through the Bagley–Torvik model: the storage and the loss
moduli are respectively the real and the imaginary part of the matrix
Young’s modulus. The trend of the engineering moduli of the lamina vs.
the frequency is give in Figs. 5 and 6. As it can be easily inferred from
these figures, the lamina Poisson’s ratios, namely ν12, ν13 and ν23, can
be considered constant with the frequency. This result is of paramount
importance to reduce the required computational effort for the multi-
scale identification process.

4.2. The finite element model at the macroscopic scale

The FE model of the multilayer plate is built into the ANSYS® en-
vironment (Ansys, 2013) by using SHELL281 layered shell elements
with eight nodes and six DOFs per node: the plate kinematics is

described by the FSDT (Jones, 1975).
The laminate together with the applied excitation load and

boundary conditions (BCs) is illustrated in Fig. 7: the model is char-
acterised by 1974 DOFs and the mesh size has been chosen after a
convergence study (not reported here for the sake of brevity). The
choice of shell elements is due to the aspect ratio of the considered
laminate ( =AR 22.14), which is in the range [20, 100] where the FSDT
gives satisfactory results.

As far as the assessment of both the constraint functions of Eqs. (8)
and (9) and the objective function of Eq. (10) two macroscopic FE
analyses are run for each point of the design space. Firstly, a non-linear
modal analysis is performed to extract the first nf damped natural fre-
quencies and, secondly, a non-linear harmonic analysis is carried out to
calculate the harmonic response of the plate for each sampling har-
monic frequency of the chosen spectrum (Section 5.1). The harmonic
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Fig. 6. Frequency-dependent elastic properties (phase) of the lamina resulting from the homogenisation.

Fig. 7. FE model of the multilayer plate.
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response is obtained by measuring the displacement uz at the generic
node of the macroscopic FE model mesh, at every sampled frequency fr,
as shown in Fig. 8.

The harmonic response can be obtained by solving the following
problem (Hamdaoui et al., 2015; Daya and Potier-Ferry, 2001; Bilasse
et al., 2009):

=U fK M[ ( ) ]{ } { },sys sys sys ext (25)

where Ksys(Ω), Msys, {Usys} and {fext} are the stiffness matrix (which
depends upon the pulsation R= 1

2 due to the viscoelastic matrix
behaviour), the mass matrix, the nodal displacements vector and the
external nodal forces, respectively.

The harmonic response, for each sample point, is obtained by
evaluating the ratio of the FFT of the displacement along the z-axis
uzq(fr) to the nodal force along the same direction Fz(fr):

=H
u f
F f

( )
( )

.r q
zq r

z r
,

(26)

It is noteworthy that the problem of determining the structure
natural frequencies becomes non-linear due to the viscoelastic beha-
viour of the ply. The following non-linear eigenvalue problem must be
faced:

=
=

×

U

U

K M
K M

[ ( ) ]{ } {0},
det[ ( ) ] 0,
( , { }) .

sys sys sys

sys sys

sys n (27)

Unfortunately, the non-linear eigenvalue problem of Eq. (27) cannot
be solved by means of commercial FE codes because it requires a
dedicated algorithm / solver. Some research works are explicitely de-
voted to the implementation of a suitable algorithm for solving non-
linear eigenvalue problems. As discussed in Hamdaoui et al. (2016),
several algorithms are available in the literature: the asymptotic nu-
merical method (ANM) (Daya and Potier-Ferry, 2001), the inverse
iteration algorithm (IIA) Schreiber, the iterative shift-inverter method
(ISIM) (Moler and Stewart, 1973), the non-linear Jacobi–Davidson
method (NLJDM) (Voss, 2007) and the non-linear Arnoldi’s method
(NLAM) (Voss, 2004). Each method is characterised by its own ad-
vantages and drawbacks: in this work, the NLAM has been implemented
into the MATLAB environment and interfaced with the FE model of the
multilayer plate implemented into the ANSYS software.

In particular, the stiffness matrix of the FE model is recovered from
ANSYS® and exported (and elaborated) into the MATLAB® software.
The frequency-dependent stiffness matrix of the FE model can be ex-
pressed as:

R I= +K K K( ) [ ( )] i [ ( )].sys sys sys (28)

The stiffness matrix of the structure depends upon the frequency
because of the viscoelastic behaviour of the ply (due to the matrix), see
Eq. (22). However, this means that the numerical homogenisation
method, discussed in Section 4.1, must be performed for each sampled
frequency in the considered range. This would require a strong com-
putational effort (and simulation time) which is not acceptable for
optimisation purposes. This issue can be easily overcome by looking at
the volume-averged stress tensor of Eq. (19) which can be expressed in

the following form:

= +
V

dV
V

dVx x¯ ( ) 1 ( ) 1 ( ) .
V V

f
V V

m
p p

RVE RVE (1 )f fRVE RVE (29)

Since the Poisson’s ratio of the matrix νm does not depend upon the
frequency, the previous expression can be rewritten as:

= +…

+
+

+

V
dV

E
V

tr dV

x

x x

¯ ( , ¯) 1 ( , ¯)

^ ( ) 1
1

( , ¯)
1 2

[ ( , ¯)] ,

V V
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V V m
m

m

m
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p p

RVE

RVE (1 )
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f

RVE

RVE

(30)

therefore, the previous equation can be rearranged in a more compact
form as follows

= +

=

=
+

+
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dV

V
tr dV

M R

M x
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x x

¯ ( , ¯) ( ¯) ^ ( ) ( ¯),
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1 1
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V V m
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m
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p p

RVE

RVE (1 )

f

f

RVE

RVE

(31)

As a consequence of Eq. (32), the equivalent frequency-dependent
stiffness matrix of the homogeneous anisotropic material of the ply can
be evaluated as (Voigt’s notation):

= = + = …C M E R j k¯ ¯
¯

^ ( ) , where , 1, ,6.jk
j

k
jk

m
jk (32)

It is straightforward to verify that the global stiffness matrix of the
FE model at the macroscopic scale can be decomposed as follows:

= + EK K K( ) ^ ( ) ˜ ,sys sys m sys
0 (33)

where Ksys
0 is the term related to the constant part of the ply stiffness

tensor, whilst K̃sys is the contribution related to the frequency-depen-
dent part.

Eqs. (32) and (33) allow obtaining the frequency-dependent stiff-
ness matrices of the material and of the structure, respectively, directly
within the ANSYS® software by means of only two homogenisation
analyses carried out at two arbitrary frequencies (in this case the lower
and the upper bounds of the considered frequency spectrum), instead of
performing an homogenisation calculation (recall that each homo-
genisation corresponds to six FE analyses) for each sampled frequency
in the considered range. Accordingly, the computational costs of the
whole optimisation process is significantly reduced (the FE analyses at
both microscopic and macroscopic scales must be carried out for each

Table 5
Reference damped natural frequencies.

Nat. freq. Value [Hz]

f n1
ref 1716.34

f n2
ref 3626.36

f n3
ref 4758.54

f n4
ref 6481.66

f n5
ref 6677.52

Table 6
Sampling sequence for FRF calculation.

Frequency intervals [Hz] N. of sampled spectrum points

< <
f f

f
f f f1 n LB

n
n n

1
ref

1
ref 1 1 1

11

+ < <f f fn n1 1 2 2 11
+ < <f f fn n2 2 3 3 11
+ < <f f fn n3 3 4 4 11
+ < <f f fn n4 4 5 5 11

+ < <f f
f f

f
f1n

UB n

n
n5 5

5
ref

5
ref 8

11

< < +f f fn n1 1 1 1 6
< < +f f fn n2 2 2 2 6
< < +f f fn n3 3 3 3 6
< < +f f fn n4 4 4 4 6
< < +f f fn n5 5 5 5 6
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point in the design space).

5. Numerical results

5.1. Harmonic response for the reference configuration

Before running the optimisation procedure, the reference response
must be calculated. To this purpose, firstly the numerical harmonic
homogenisation process is performed on a RVE characterised by the
material properties listed in Table 1 in order to obtain the reference ply
material properties.

Secondly, the reference viscoelastic behaviour of the ply is im-
plemented into the FE model of the multilayer plate for which both a
non-linear modal analysis and a harmonic analysis are performed to
calculate the reference damped natural frequencies and the reference

harmonic response. The reference damped eigenfrequencies are listed in
Table 5.

For modal and harmonic analyses the frequency samples vary be-
tween =f 100LB Hz and =f 7500UB Hz: for the reference solution =n 5f
damped natural frequencies fall into this interval.

The sampling of the considered spectrum is made according to the
sequence reported in Table 6.

The value of δi is computed according to the following formula:

= × + × + ×f f f( ) 4.34 10 ( ) 2.6 10 ( ) 6.53 10 ,i in in in
12 2 7 4 (34)

which has been chosen in order to have a value of δi(fin) that increases
with the frequency. Indeed, by looking at the viscoelastic effect on the
amplitude of the FRF (evaluated at the fours sampled points highlighted
in Fig. 8), as shown in Fig. 9, it is possible to observe that the damping
effect is more pronounced at high frequencies.

The exciting nodal force (as illustrated in Fig. 7) has a value
=F N| | 1z and it is not applied at the plate center, in order to be able to

Fig. 8. Location of the sample points over the plate for harmonic displacements
evaluation.
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Fig. 9. Amplitude and phase of the FRF for the reference solution at the four sampling points highlighted in Fig. 8.

Table 7
Optimisation parameters for the GA ERASMUS.

Parameters One-shot analysis

N. of individuals 50
N. of populations 2
N. of iterations 100
Crossover probability. 0.85
Mutation probability. 0.02
Isolation time 10

Table 8
Optimisation parameters for the gradient-based algorithm.

Parameters Value

Solver algorithm active-set
Max function evaluation 10000
Tolerance on the objective function 10 15

Tolerance on the gradient norm 10 15
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excite even and odd modes. Finally, the number of sampling fre-
quencies is =N 87,s for each plate point, whose number is =N 329p .

5.2. Results of the inverse problem

The optimisation process has been performed by selecting the main
optimisation parameters tuning the behaviour of the GA ERASMUS as a
result of a statistic analysis to evaluate their effects on the optimum
solutions, according to the best practices discussed in
Montemurro et al. (2012). The parameters governing both the GA and
the deterministic algorithm are listed in Tables 7 and 8, respectively.

The GA ERASMUS is run with two populations, each one composed
of 50 individuals evolving along 100 generations. The exchange of in-
formation among populations is realised by using a ring-type operator
every 10 generations: the probability of success of the ring-type op-
erator is automatically computed by the GA. As far as the constraint-
handling technique is concerned, the Automatic Dynamic Penalisation
(ADP) method is used, see Montemurro et al. (2013).

The choice of using multiple populations, with a small number of
individual, is due to the fact that the main goal is to find the global
minimum without increasing too much the computational time. In this
way, the GA has the possibility to explore the design domain by ex-
changing information between best individuals belonging to different
populations. More details about the use of multiple populations can be
found in Montemurro (2018).

The inverse problem is solved by considering a fibre volume fraction
=V 0.555F (Soutis and Beaumont, 2005) and a fibre diameter equal to
=d 6.8f µm (Cytec Industries Inc., 2012). The RVE dimensions are

obtained as follows:

= = =a
d

V
a a a a

4
2 , , /4.f

f
3 2 3 1 2

(35)

For each point in the design space, the FE analyses, constituted of the
union of a numerical homogenisation analysis, of the solution of the
non-linear eigenvalue problem and of the computation of the harmonic
responses, need about 104 s to be executed (on an Intel® Xeon® 2.70
GHz CPU with two processors and with a RAM of 128 GB). These
analyses must be performed for each individual, at each iteration,
which implies an overall time of about 26.3 days to get an optimum
solution.

The optimum solutions obtained from the genetic calculation and
the local gradient-based optimisation in terms of microscopic material
properties, for both fibre and matrix, are listed in Table 9, while the
relative eigenfrequencies values are summarised in Table 10.

As it can be easily inferred from the analysis of these results, the
microscopic viscoelastic properties of the optimum solution are in good
agreement with the reference data: the absolute percentage difference
ranges from 0.10% for E f

1 to 11.94% for E f
2 . Only the material para-

meters E m
1 and G f

12 are characterised by significant percentage errors
which are equal to 15.49% and 19.73%, respectively. This is a quite
expected result because of the kinematic model at the basis of ANSYS
shell elements. In fact, the effect of these material parameters on the
dynamic response at the macroscopic scale is negligible and this is also
due to the particular stacking sequence (orientation angles and thick-
ness) used for the reference structure: the considered plate is not thick
enough to observe a significant influence of G f

12 and E m
1 on its dynamic

response.
Nevertheless, both the damped eigenfrequencies and the FRF, at

each sample point, are in excellent agreement with the reference values
and the numerical results found at the end of the optimisation perfectly
match the reference data with an absolute percentage difference ran-
ging from ×3.58 10 %2 (for the first mode) to ×2.19 10 %1 (for the
fourth mode).

6. Conclusions and perspectives

In this paper, an extension of the Multi-Scale Identification Strategy
(MSIS) (initially presented in Cappelli et al. (2018)) is proposed. The
MSIS is here applied to characterise the viscoelastic behaviour of the
matrix and the elastic behaviour of the fibres, by exploiting the in-
formation included into the dynamic response of the composite at the
macroscopic scale. The proposed MSIS shows several features that make
it a general methodology, that can be easily applied for different classes
of materials and structures, e.g. multilayer, fabrics, etc, for identifica-
tion of material properties without performing destructive tests.

In this study, the multi-scale inverse problem has been solved by
means of a “one-shot” hybrid optimisation strategy. The multi-scale
inverse problem is stated as an equivalent constrained non-linear pro-
gramming problem (CNLPP) aiming at minimising the distance between
the numerical and reference harmonic responses for the considered
multilayer composite plate.

The scale transition is ensured by means of the strain energy
homogenisation method for periodic media, which has been generalised
to the viscoelastic case. In this way, the ply viscoelastic properties can
be computed and used to build the FE model of the multilayer plate. At
the microscopic scale the matrix viscoelastic behaviour is described
through the Bagley-Torvik model that requires only four material
parameters.

Moreover, the modal and harmonic analyses performed on the
multilayer plate at the macroscopic scale are non-linear due to the
viscoelastic behaviour of the ply. The main issue is related to the non-
linear modal analysis: no dedicated solvers are available in commercial
FE software. To this purpose, the Arnoldi’s method (Voss, 2004) for
non-linear eigenvalue problems has been coded into the MATLAB®
environment and interfaced with the ANSYS code.

The effectiveness of the proposed strategy is evaluated through a
numerical benchmark in which a composite laminate made of uni-
directional carbon/epoxy pre-preg plies T650/F584 is considered as a
reference structure.

The results provided by the MSIS are quite satisfactory: all viscoe-
lastic properties are identified with a good level of accuracy, except the
in-plane shear modulus of the fibre G f

12 and the viscoelastic matrix
parameter E m

1 which are affected by an absolute percentage error of
19% and 15%, respectively. These errors are mainly due to the very low
sensitivity of the objective function to these parameters. On the one
hand, this low sensitivity is due to the geometry of the considered la-
minate which is not thick enough to highlight the influence of these
properties on its dynamical response. On the other hand, the laminate
stacking sequence plays a fundamental role: the stack considered in this
work is a standard symmetric balanced stack taken from the literature
which has not been designed to maximise the influence of some ma-
terial properties on the laminate dynamic behaviour.

Table 9
Optimum solution of the inverse problem: results provided by the GA and the
active-set algorithm. The percentage difference is indicated in parentheses.

Micro-scale Reference GA Gradient-based
viscoelastic properties data results results

E f
1 [MPa] 276000 275,730 (−0.10) 275724.86 (−0.10)

E f
2 [MPa] 17300 19366.50 (11.95) 19365.77 (11.94)

f
12

0.25 0.26 (5.34) 0.26 (5.34)

f
23

0.428 0.428 (0) 0.428 (0)

G f
12 [MPa] 11240 13457.20 (19.73) 13457.22 (19.73)

E m
0 [MPa] 4140 3802.49 (−8.15) 3802.44 (−8.15)

E m
1 [MPa] 30 25.35 (−15.50) 25.35 (−15.49)
bm 0.0053 0.0050 (−5.92) 0.0050 (−5.92)
αm 0.5 0.4989 (−0.21) 0.50 (−0.22)
νm 0.35 0.38 (7.92) 0.38 (7.92)
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The proposed strategy constitutes just a “first attempt”: the MSIS
needs to be generalised to catch the true behaviour of the material of
the constitutive phases. In order to achieve this ambitious goal, re-
search is ongoing in order to include into the MSIS the following as-
pects:

• validation of the effectiveness of the proposed MSIS to characterise
the viscoelastic behaviour of composite materials by exploiting the
data resulting from experimental harmonic tests;
• design of a suitable stack to maximise the sensitivity of the objective
function Φ(x) to the full set of the material properties to be identi-
fied;
• extension of the MSIS to the characterisation of the variability re-
lated to some parameters like the fibre volume fraction, misalign-
ments of fibres, variation of the plies orientation angles, etc. (as
partially done in Cappelli et al. (2019));
• application of the proposed strategy to different macroscopic spe-
cimen geometries and microscopic RVE topologies (in terms of
constituent phases configurations).

As far as the experimental validation of the MSIS is concerned, two
major difficulties must be faced before programming a campaign of
harmonic/modal tests.

Firstly, the variability of the material properties should be included
into the inverse problem formulation. This requires the development of
a suitable numerical model to properly describe the variability related
to the viscoelastic behaviour of the composite, at each pertinent scale.
Even if some models are available in the literature to properly describe
the uncertainty of the elastic properties of both fibre and matrix, few
research studies focuses on the modelling of the variability of their
viscoelastic behaviour (to the best of the authors’ knowledge).
Therefore, a preliminary numerical/theoretical study should be con-
ducted in order to find/develop a pertinent model to describe the
variability characterising the viscoelastic behaviour, at each pertinent
scale of the composite.

Secondly, experimental results are unavoidably affected by noise. In
the literature, one can find several methods/techniques to take into
account the influence of noise on the characterisation of the elastic
properties of the composite (very often at the mesoscopic scale).
However, to the best of the authors’ knowledge, the influence of noise
on the identification of the parameters governing the viscoelastic be-
haviour of the microscopic constituents of the composite has not fully
investigated yet. This aspect is also of paramount importance and
should be addressed before starting an experimental campaign which
aims at validating the proposed MSIS.

Due to its versatility, the MSIS can be used to characterise the
geometrical parameters of the RVE of the composite material. The
variables defining the shape of the inclusion or its volume fraction can
be easily integrated into the vector of optimisation variables, without
altering the overall architecture of the MSIS. Furthermore, laminate
parameters can be included among the unknowns to be identified, e.g.
the orientation angle and the thickness of each ply. Research is ongoing
on these aspects as well.
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Chapter 5

Multi-scale identification of the
elastic properties variability for
composite materials

5.1 Introduction and main motivations of the study

The article presented in the present Chapter has been published in Composites Part B:
Engineering. It deals with the identification of the parameters describing the variability of
the elastic properties of the constitutive phases of a composite (at the microscopic scale)
starting from the analysis of the buckling strength of the structure at the macroscopic
scale. To this purpose, the information contained into the probability distribution of the
first buckling load of a multilayer plate (made of unidirectional fibre-reinforced pre-preg
plies) are exploited to carry out the multi-scale identification process.

In this case the inverse problem is stated as the minimisation of the distance between
the numerical and the reference buckling response of the plate in terms of probabilistic
distribution response. Furthermore, thermodynamic constraints are considered to ensure
the positive definiteness of the stiffness tensor of each constituent of the composite.

Due to the strong computational effort required to assess the probability distribution
of the buckling load at the macroscopic scale for different combinations of the constitutive
phases material properties (i.e. multi-scale numerical analysis under uncertainty), some
modifications/improvements have been introduced into the original MSIS presented at
Chapter 3.

On the one hand, an analytical homogenisation method is used to determine the
effective elastic properties of the lamina (microscopic/mesoscopic scale transition).

On the other hand, the Monte Carlo technique combined with a suitable surrogate
model of the composite (developed in the form of an Artificial Neural Network) has
been used to determine the first-buckling load distribution of the multilayer plate, at
the macroscopic scale, by taking into account for the elastic properties variability of
the microscopic constituents. Of course, the learning phase of the surrogate model is
performed by using a suitable FE model of the multilayer plate.

5.2 Multi-scale identification of the elastic properties

variability for composite materials
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A B S T R A C T

The problem of the identification of the variability characterising the elastic properties of the constitutive
phases of a composite (at the microscopic scale) is addressed in this work. To this purpose, the information
contained into the probability distribution of the first buckling load of a macroscopic composite specimen is
considered, in order to develop a multi-scale identification strategy (MSIS).

The goal of the proposed MSIS is achieved by solving an inverse problem: the minimisation of the distance
between the numerical and the reference buckling response of the plate, at the macroscopic scale, in terms of
statistical moments. Furthermore, thermodynamic constraints are considered to ensure the positive definiteness
of the stiffness tensor of each constituent of the composite.

The proposed strategy relies on: (a) a semi-analytical homogenisation method, to perform the microscopic
/ mesoscopic scale transition; (b) the Monte-Carlo technique and an Artificial Neural Network to determine
the material properties variability; (c) a general hybrid optimisation algorithm able to deal with optimisation
problems defined over a domain of variable dimension to perform the solution search. The effectiveness of the
MSIS is proven through two meaningful benchmarks.

1. Introduction

Composite materials are nowadays widely used into mechanical
components or engineering systems and structures belonging to dif-
ferent fields: from automotive to aerospace, from naval to biomedical.
They are mainly employed due to their outstanding strength-to-weight
and stiffness-to-weight ratios: these features are of paramount impor-
tance for lightweight applications, such as aircraft and space vehicles
architectures [1]. Composites can be used to build integrated structures
because both stiffness and strength can be tailored point-wise according
to the requirements of the problem at hand. This feature allows for
preserving structural continuity without introducing complex struc-
tural elements (and the related manufacturing aspects) by opportunely
meeting geometrical and mechanical design requirements.

In the literature, research studies exploiting refined numerical and
experimental techniques are increasingly used to characterise the me-
chanical behaviour of composite materials [2–4]. Nevertheless, espe-
cially in large-scale production, a large amount of uncertainty arises
from unavoidable manufacturing imperfections for both geometrical
and material properties. Intralaminar and/or matrix voids, excess of

∗ Corresponding author.
E-mail addresses: marco.montemurro@ensam.eu, marco.montemurro@u-bordeaux.fr (M. Montemurro).

resin between adjacent laminae and incomplete cure of resin are only
some examples: environmental factors and uncertain operational aggra-
vate this issue.

As outlined in [5], the uncertainties are classified in three main
categories: aleatory (variability of structural parameters), epistemic
(lack of adequate information about the system) and prejudicial (ab-
sence of stochastic characterisation of the structural system). Composite
structures are affected by all three forms of uncertainty and the char-
acterisation of parameters tuning the variability law becomes of prime
importance. However, experimental methods commonly used to char-
acterise the material properties require a huge number of standard
ASTM tests, if used for uncertainty characterisation, which are de-
structive and expensive [6]. Moreover, these tests are only suited to
evaluate mesoscopic uncertainties, in terms of material and geometrical
properties of the lamina, without providing any information about the
variability characterising the properties of the constitutive phases at the
microscopic scale.

Standard tests that can be carried out at the mesoscopic scale
include the tension test for flat specimens (ASTM D3039 [7]), the

https://doi.org/10.1016/j.compositesb.2019.107193
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three/four points bending test (ASTM D790 [8]), the compression tests
(shear loading methods ASTM D3410 [9]) and the shear tests (in-plane
shear tests ASTM D5379 [10]-D7078 [11]-D3518 [12], out-of-plane -
interlaminar shear tests ASTM D2344 [13]-D5379). As far as the mi-
croscopic scale is concerned, only few standard experimental tests can
be found in the literature: single fibre tensile test (ASTM D3379 [14])
and matrix tensile test (ASTM D638 [15]) to characterise the Young’s
moduli of the fibre in the longitudinal direction and that of the matrix,
respectively. In order to characterise the rest of the constitutive phases
elastic properties, only non-standard tests are available in the literature:
pull-out [16], micro-indentation [17], fragmentation tests [18], etc.
These tests are not able to evaluate the 3D set of the material properties
of the constituents and they are very difficult to be carried out, due to
the fibre diameter size.

In order to get statistically representative results, the aforemen-
tioned tests must be performed a huge number of times. Of course,
this implies significant costs (and time) and the variability results
(e.g. mean and standard deviation of material properties) are strongly
affected by the errors introduced to carry out the experimental cam-
paign, especially for those tests conducted at the microscopic scale. To
this purpose, Sepahvand et al. developed the inverse stochastic method
based on the general polynomial chaos (gPC) [19–25] to identify
uncertain lamina elastic parameters from experimental modal data.
Further examples of probabilistic methods are the parametric proba-
bilistic approach [26] and the Bayesian inference techniques wherein
all information are included into a prior distribution model [27–30].
However, in the case of composite structures, the uncertainty affecting
the ply elastic behaviour is strictly related to the variability of the
elastic properties of the constitutive phases. To the best of the authors’
knowledge, only few works on the identification of the variability
parameters characterising the material properties of the microscopic
constituents of the composite are available in the literature [31]. The
majority of researches in this field is devoted to the characterisation of
the material properties uncertainty parameters at the ply-level [32–35].

The research activity here presented focuses on the development
of a multi-scale identification strategy (MSIS) which smartly exploits
the data resulting from macroscopic buckling tests to characterise the
uncertainty of the constitutive phases elastic properties. The proposed
MSIS has been initially proposed in [36] to identify the elastic prop-
erties of the composite (at each relevant scale), starting from the
harmonic response of the multilayer composite plate at the macroscopic
scale. Here, the MSIS is extended to the multi-scale characterisation of
the variability related to the elastic properties at the microscopic scale
of the composite.

The MSIS is characterised by some original features. Firstly, it relies
on a particular hybrid optimisation tool used to perform the solution
search, which is an in-house code made by the union of a special
genetic algorithm (GA), i.e. ERASMUS (EvolutionaRy Algorithm for
optimiSation of ModUlar Systems) developed by Montemurro [37]
(which is able to deal with problems characterised by a number of
design variables that can change during the optimisation process [38])
and of a gradient-based one, belonging to the MATLAB® fmincon
family [39]. Secondly, the MSIS makes use of the Chamis’ micro-
mechanical model [40,41] to perform the microscopic/mesoscopic
scale transition. Finally, the MSIS makes use of the Monte Carlo
framework that allows describing the statistical nature of the elastic
response. To improve the efficiency of the Monte Carlo technique
(i.e. to minimise the computational effort related to such a method),
an Artificial Neural Network (ANN) [41] is developed as a surrogate
model: the probability distribution of the first buckling load is predicted
starting from the probability density functions of the elastic properties
of the constituent phases. The effectiveness of the MSIS is proven by
means of two meaningful benchmarks.

Concerning the state-of-the-art of the approaches combining optimi-
sation and uncertainty, three specific research areas can be identified
in the literature, as outlined in [42]: reliability-based optimisation

(RBO), robust design optimisation (RDO) and model updating. The RBO
technique concerns the solution of an optimisation problem in which
the main goal is to design for safety by considering extreme events:
common objective functions are defined by the structural weight and
the constraints are both deterministic and probabilistic (e.g. probability
of failure of the structure) [43–46]. The RDO method is usually imple-
mented in order to minimise the influence of stochastic variations on
the mean design [47]. Finally, the typical goal of the model updating
technique is to reduce the differences between model prediction and
data from tests [48,49]. In this context, the MSIS can be considered as a
model updating technique that allows identifying the elastic properties
of the composite (and the related uncertainty) at each scale. This
information can be later used in the framework of both RBO and RDO
approaches.

The paper is organised as follows. The problem description and
the MSIS are presented in Section 2. The analytical and the finite
element (FE) models, developed at each pertinent scale, are shown in
Section 3. The uncertainty microscopic quantification with the Monte-
Carlo technique and the implemented ANN are described in Section 4.
The sensitivity analyses concerning the meta-model of the considered
benchmarks are presented in Section 5, while the mathematical formu-
lation of the inverse problem is discussed in Section 6. The numerical
results provided by the MSIS are given in Section 7. Finally, Section 8
ends the paper with conclusions and perspectives.

2. Multi-scale identification of the variability of composite elastic
properties

2.1. The multi-scale identification strategy

The goal of the MSIS is the characterisation of the variability related
to the elastic properties of the microscopic constituents of the compos-
ite, by using only the information contained into the statistical sample
of the first buckling load of the multilayer plate at the macroscopic
scale. In this way, only cheap, standard tests have to be realised,
with the main advantage of reducing the characterisation time, the
associated costs and the necessity of specialised skills.

The reference macroscopic response can be evaluated either by
means of an extensive experimental campaign of buckling tests or
through a wide numerical campaign of tests on a reference configu-
ration of the multilayer plate. To prove the effectiveness of the MSIS,
this latter case has been considered in this work.

To this purpose, the problem of characterising the variability re-
lated to the elastic properties of the fibre and the matrix is stated as
a multi-scale constrained inverse problem. Of course, the numerical
models involved in the MSIS are characterised by some fundamental
hypotheses. As far as the microscopic scale is concerned, the main
hypotheses are: (a) linear elastic isotropic behaviour for the matrix;
(b) linear elastic transversely isotropic behaviour for the fibre; (c) the
matrix/fibre interface is perfect; (d) the damping capability of both
phases is neglected; (e) the uncertainty of the elastic properties is
described by means of a Gaussian probability distribution.

At the laminate macroscopic scale the following hypotheses hold:
(a) the constitutive lamina has a linear elastic transversely isotropic
behaviour; (b) the interface between two adjacent plies is perfect; (c)
the damping capability of the lamina is neglected; (d) the kinematics
of the laminate is described by the first-order shear deformation theory
(FSDT).

The general flow chart of the MSIS is illustrated in Fig. 1. The details
of the optimisation algorithms employed within the MSIS are given
in [36,37].
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Fig. 1. Flow chart of the MSIS.

2.2. Problem description

The proposed multi-scale inverse approach for uncertainty char-
acterisation is here applied to a reference multilayer composite plate
made of unidirectional laminae: the relevant geometrical parameters
are shown in Fig. 2. Two different benchmarks are investigated to eval-
uate the identification capability of the proposed MSIS. In particular the
geometry of the reference laminate is the same for both cases, the only
difference being the considered stacking sequence, i.e.

• benchmark 1 (BK1) [0◦∕ − 45◦∕45◦∕90◦]S;
• benchmark 2 (BK2) [45]8.

For both laminates, the thickness of the elementary lamina is 𝑡ply =
0.282 mm. The orientation angle of the generic ply is positive according
to counter-clockwise rotation around the 𝑧-axis: the 𝑥-axis indicates the
0◦ orientation, as illustrated in Fig. 2.

The constitutive ply is made of carbon-epoxy fibre-reinforced Hexcel
𝑇 650∕𝐹584 pre-impregnated tapes: its elastic properties are listed in
Table 1. The mean values are taken from [50,51], while the standard
deviation and the relative shapes of the probability density functions
are not available experimentally for both the microscopic and the
mesoscopic material properties. To this purpose, a Gaussian probability
density function 𝜒𝑖 = 𝜒𝑖

(
𝑥𝑖
)

is selected as a reference distribution for
describing the uncertainty of the generic property 𝑥𝑖 at the scale of the
constituent phases. The analytical formula of such a distribution is

𝜒𝑖
(
𝑥𝑖
)
= 1

𝜎
(
𝑥𝑖
)√

2𝜋
𝑒

(
𝑥𝑖 − 𝜇

(
𝑥𝑖
))2

2𝜎2
(
𝑥𝑖
)

, with 𝑥𝑖 ∈ ℜ. (1)

In particular, the Gaussian distribution involves two parameters,
i.e. the mean value 𝜇

(
𝑥𝑖
)

and the variance 𝜎2
(
𝑥𝑖
)

of the i-th material

Fig. 2. Geometrical parameters of the reference multilayer composite plate (dimensions
are in [mm]).

property 𝑥𝑖. If 𝑥𝑖𝑗 is the j-th value of 𝑥𝑖 occurring with a probability 𝑝𝑖𝑗 ,
the relative mean value and the variance can be expressed as:

𝜇
(
𝑥𝑖
)
=

𝑁𝑖∑
𝑗=1

𝑥𝑖𝑗 𝑝𝑖𝑗 ,

𝜎2
(
𝑥𝑖
)
= 𝜇

(
𝛽𝑖
(
𝑥𝑖
))

,

𝛽𝑖
(
𝑥𝑖
)
=
(
𝑥𝑖 − 𝜇

(
𝑥𝑖
))2 .

(2)

Usually, the coefficient of variation COV
(
𝑥𝑖
)

is introduced as a stan-
dard measure of the dispersion of the probability distribution function:

COV
(
𝑥𝑖
)
=

𝜎
(
𝑥𝑖
)

𝜇
(
𝑥𝑖
) . (3)

In this work, the reference distribution of the first buckling load of
the structure is determined by means of a multi-scale numerical analy-
sis on the reference configuration of the plate for both benchmarks. In
particular, the reference material properties of the constitutive phases,
listed in Table 1, are implemented, firstly, to compute the reference
distribution of the ply elastic properties. Secondly, the resulting distri-
bution of the lamina elastic properties is used to compute the reference
distribution of the first buckling load of the composite plate, for each
considered benchmark (as described in Section 7.1).

3. Analytical and numerical models at different scales

3.1. Microscopic/mesoscopic scale transition: the Chamis’ model

Multi-scale modelling strategies are widely used to assess the be-
haviour of the composite at each relevant scale [52,53]. The transition
from the scale of the constitutive phases (microscopic scale) to that
of the elementary ply (mesoscopic scale) is performed by means of a
homogenisation calculation. This phase can be performed either numer-
ically, e.g. by implementing the well-known strain energy homogeni-
sation technique of periodic media (SEHTPM) [54], or analytically by
using a suitable homogenisation scheme for composites, as the Chamis’
model [40]. As discussed in [36], the SEHTPM has already been in-
tegrated into the MSIS to determine the equivalent elastic behaviour
of general periodic materials with complex microstructures. Despite its
general nature, the SEHTPM can be quite time consuming (depending
on the problem at hand) since the equivalent elastic properties at the
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Table 1
Mean value and standard deviation of the elastic properties for the fibre 𝑇 650∕35 − 3𝐾 and the matrix 𝐹584 (the mean values are taken
from [50,51]).

Fibre Matrix

𝐸𝑓
1 [GPa] 𝐸𝑓

2 [GPa] 𝜈𝑓12 𝜈𝑓23 𝐺𝑓
12 [GPa] 𝐸𝑚 [GPa] 𝜈𝑚 𝑉𝐹

𝜇
(
𝑥𝑖
)

276 17.3 0.25 0.428 11.24 4.14 0.35 0.555
𝜎
(
𝑥𝑖
)

27.6 1.73 0.025 0.0428 1.124 0.414 0.035 0.0555

Fig. 3. Loads and boundary conditions (BCs) of the macroscopic FE model.

upper scale are the result of six static FE analyses (i.e. the equivalent
stiffness tensor of the homogenised material is evaluated column-wise).
When dealing with uncertainty quantification, the SEHTPM requires a
strong computational effort to evaluate the propagation of the uncer-
tainty from the microscopic scale to the mesoscopic one. Therefore, to
reduce the computational cost, an efficient analytical homogenisation
scheme has been considered in this work, i.e. the aforementioned
Chamis’ model. Moreover, this choice allows avoiding the integration
of further FE model-related parameters like the mesh size. In particular,
according to the Chamis’ model, the ply engineering constants can be
determined as follows:

𝐸1 = 𝑉𝐹𝐸
𝑓
1 +

(
1 − 𝑉𝐹

)
𝐸𝑚,

𝐸2 = 𝐸3 =
𝐸𝑚

1 −
√
𝑉𝐹

(
1 − 𝐸𝑚

𝐸𝑓
2

) ,

𝐺12 = 𝐺13 =

𝐸𝑚

2 (1 + 𝜈𝑚)

1 −
√
𝑉𝐹

⎛
⎜⎜⎜⎝
1 −

𝐸𝑚

2 (1 + 𝜈𝑚)
𝐺𝑓
12

⎞
⎟⎟⎟⎠

,

𝐺23 =

𝐸𝑚

2 (1 + 𝜈𝑚)

1 −
√
𝑉𝐹

⎛⎜⎜⎜⎝
1 −

𝐸𝑚
(
1 + 𝜈𝑓23

)

𝐸𝑓
2 (1 + 𝜈𝑚)

⎞⎟⎟⎟⎠

,

𝜈12 = 𝜈13 = 𝜈𝑚 + 𝑉𝐹
(
𝜈𝑓12 − 𝜈𝑚

)
,

𝜈23 =
𝐸2
2𝐺23

− 1.

(4)

In Eq. (4), 𝐸𝑓
1 , 𝐸𝑓

2 , 𝐺𝑓
12, 𝜈𝑓12, 𝜈𝑓23 are the elastic constants of the

transversely isotropic fibre, while 𝐸𝑚 and 𝜈𝑚 are the Young’s modulus
and the Poisson’s ratio of the isotropic matrix. The volume fraction
of the fibre is indicated as 𝑉𝐹 . Moreover, the homogenised elastic

properties of the ply are denoted as 𝐸1, 𝐸2, 𝐸3, 𝐺12, 𝐺13, 𝐺23, 𝜈12, 𝜈13,
𝜈23.

3.2. Mesoscopic/macroscopic scale transition: the finite element model

The distribution of the first buckling load of the multilayer plate
is the result of an eigenvalue buckling analysis which is carried out
by considering the distribution of the ply elastic properties evaluated
by means of the Chamis’ model. The FE model is developed into the
Abaqus® environment [55]: the Abaqus® shell layered element S4R
having four nodes and six degrees of freedom (DOFs) per node has
been used to build the FE model of the multilayer plate. The kinematics
of the element is described in the framework of the first-order shear
deformation theory (FSDT) [1]. Of course, this type of element is well
suited to describe the buckling strength of the laminate when its aspect
ratio is in the range [20, 100]. For the problem at hand the multilayer
plate is characterised by an aspect ratio 𝐴𝑅 = 44.29. Fig. 3 illustrates
the loads and boundary conditions (BCs) for the proposed benchmarks.

As far as the mesh size is concerned, a sensitivity study of the first
buckling load of the laminate to the number of elements (not reported
here for the sake of brevity) has been performed: a model with 3654
DOFs is sufficient, to evaluate the first buckling load of the composite
plate. The mesh of the FE model is illustrated in Fig. 4.

4. Probabilistic modelling and uncertainty quantification

4.1. Monte Carlo Analysis

The Monte Carlo (MC) method [41] is the most straightforward and
robust one, among the popular methods used for calculating the re-
sponse variability in stochastic structural mechanics. Based on the law
of large numbers, MC approximates the statistical moments (e.g. mean,
variance, etc.) of the quantity of interest (QoI), by performing a suffi-
cient number of model evaluations, while sampling random, indepen-
dent variables from the input space. The generated finite sample of
the QoI is then post-processed, to obtain the unbiased statistics of the
response estimates. In mathematical terms, the first and second moment

85



Composites Part B 176 (2019) 107193

5

L. Cappelli et al.

Fig. 4. Mesh of the macroscopic FE model.

described in Eq. (2) for the discrete case, can be approximated after 𝑁
realisations as:

𝜇 (𝐫) = 1
𝑁

𝑁∑
𝑗=1

𝑟𝑗 ,

𝜎2 (𝐫) = 1
𝑁 − 1

𝑁∑
𝑗=1

[
𝑟𝑗 − 𝜇(𝐫)

]2 .
(5)

where 𝐫 = {𝑟𝑖, 𝑖 = 1,… , 𝑁} is the sample of the response QoI (e.g. dis-
placement, force, bucking load etc.). Although MC can practically
handle every problem, regardless of the complexity of the response
surface topology, the large number of required model evaluations
sets the method prohibitive for high-fidelity models (e.g. FE models),
especially for applications of reliability or uncertainty quantification.

4.2. Variance-based global sensitivity analysis

In order to understand the cause-and-effect relationship between
the input variables and the response, a classification of the random
parameters in terms of output variability can be achieved through
a global sensitivity analysis (GSA). The total variance of the QoI is
decomposed into parts induced from single input parameters, but also
potential interactions of the latter. Thus, the uncertain parameters can
be qualitatively quantified, and the dominating ones can be later used
into the models involved into the optimisation process introduced in
Section 6.

Let 𝑓 (𝑥1, 𝑥2,… 𝑥𝑘) be a square integrable scalar function over the
𝑘-dimensional unit hypercube 𝛺𝑘 model. According to Sobol [56], 𝑓
can be decomposed into sums of increasing dimensions as follows:

𝑓 = 𝑓0 +
∑
𝑖
𝑓𝑖 +

∑
𝑗>𝑖

𝑓𝑖𝑗 +⋯ + 𝑓12...𝑘, (6)

where 𝑓𝑖 = 𝑓𝑖(𝑥𝑖), 𝑓𝑖𝑗 = 𝑓𝑖𝑗 (𝑥𝑖, 𝑥𝑗 ) etc. After several algebraic manip-
ulations (the reader is referred to [56] or [41] for details), the final
expression for the variance decomposition is reached:

Var(𝑦) =
𝑘∑
𝑖=1

𝑉𝑖 +
𝑘∑
𝑗>𝑖

𝑉𝑖𝑗 +⋯ + 𝑉12...𝑘, (7)

where 𝑉𝑖 = Var𝑥𝑖 (𝐸𝑥∼𝑖 (𝑦|𝑥𝑖)), (8)

𝑉𝑖𝑗 = Var𝑥𝑖𝑗 (𝐸𝑥∼𝑖𝑗 (𝑦|𝑥𝑖, 𝑥𝑗 )) − 𝑉𝑖 − 𝑉𝑗 , etc. (9)

The 𝑥∼𝑖 notation indicates the set of all variables except 𝑥𝑖. By dividing
the term of interest by the unconditional variance Var(𝑦), the first-order
Sobol index is obtained as a fractional contribution:

𝑆𝑖 =
𝑉𝑖

Var(𝑦)
. (10)

In the case of non-analytical models, expressions such as Eq. (8)
or (9) must be approximated via a sampling (e.g. Monte Carlo) proce-
dure. Firstly, two (𝑁, 𝑘) matrices with random samples from the input

Fig. 5. Architecture of a single layer feed-forward neural network.

space are generated, namely 𝐴 and 𝐵, with 𝑁 being the number of
realisations and 𝑘 the stochastic dimension of the problem. After that,
a third matrix 𝐴𝑖

𝐵 is formed, identical to 𝐴, except its 𝑖th column which
is replaced by the 𝑖th column of 𝐵 (𝑖 = 1,… , 𝑘). Finally, the model is
evaluated with respect to the aforementioned input matrices, according
to the following estimator for the first-order Sobol index, for every
input parameter 𝑖:

𝑉𝑖 = Var𝑥𝑖 (𝐸𝑥∼𝑖 (𝑦|𝑥𝑖)) ≈
1
𝑁

𝑁∑
𝑗=1

𝑓 (𝐵)𝑗 (𝑓 (𝐴𝑖
𝐵)𝑗 − 𝑓 (𝐴)𝑗 ). (11)

It is noteworthy that there are several other options available,
regarding estimators of this sort [56]. A drawback of GSA, is that
formulae like Eq. (11) require excessive realisations in order to con-
verge (order of 104 or 105). In the context of computationally expensive
simulations, such as FE analyses, a possible remedy is the emulation of
the input–output relationship via a surrogate model, as it is described
in the next section.

4.3. Surrogate modelling with Artificial Neural Networks

Surrogate models (or metamodels) are mathematical functions able
to mimic the response of a model, when trained with a relatively
small training set of model evaluations. Afterwards, the demanding
model can be substituted from these inexpensive proxy models, for
applications requiring an excessive amount of simulations (e.g. optimi-
sation, reliability, GSA etc.) Popular choices, among relevant research
studies, are ANNs, Gaussian processes (or Kriging), polynomial chaos
expansions (PCE) and support vector machines (SVM), as outlined
in [57].

In this work, a surrogate is appropriately trained to emulate the
multi-scale modelling strategy described in Section 3. The material
properties of the different phases at the micro-scale, listed in Eq. (15),
are used as input, while the output response is the plate first buckling
load. The aim of the surrogate is twofold. Firstly, it is used for the GSA
and the evaluations required by the estimator of Eq. (11). Secondly,
as explained in Section 1, it is used into the multi-scale identification
strategy to boost the optimisation process. Concerning the surrogate
type, ANNs are selected in this study, mostly because, despite their
versatility and their good generalisation, they only have few parameters
to be tuned within their training procedure, which is beneficial for the
optimisation algorithm.

In particular, an ANN is a parallel information-processing system,
consisting of at least three layers: the input, the output and one (or
more) hidden layer. The nodes inside every layer are called neurons
and they are linked by the so-called synapses. When information is
circulated only in a single direction, the network is called feed-forward.
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An illustration of a typical single-layer, feed-forward ANN configu-
ration is shown in Fig. 5. It is noteworthy that the input neurons
(squares) connect the network to the external environment, without
further processing information, while the hidden layer neurons (circles)
process information from a previous layer and feed it to the next one.

The learning procedure of an ANN is based on a general uncon-
strained optimisation problem, where the weight parameters 𝑤𝑖𝑗 as-
signed to every synapse are the design variables, and the objective
function is the sum squared error between the predicted output 𝑡(𝑤𝑖𝑗 )
and the target output 𝑦0:

𝐸(𝑤𝑖𝑗 ) =
1
2
∑

[𝑡(𝑤𝑖𝑗 ) − 𝑦0]2. (12)

During the process, the weights are updated through an iterative proce-
dure, until the desired error level is achieved or the maximum number
of cycles is reached:

𝑤(𝑡+1)
𝑖𝑗 = 𝑤(𝑡)

𝑖𝑗 + 𝛥𝑤𝑖𝑗 , (13)

where 𝛥𝑤𝑖𝑗 is the correction of the weight at the 𝑡th learning step.
In order to avoid overfitting, a fraction of the sample data is used as
a validation dataset and the error is monitored over the iterations to
stop the training early enough. Regarding the internal process in every
neuron, each input from the previous neuron is placed into a weighted
sum as the following:

𝑧𝑗 =
𝑘∑
𝑖=1

𝑥𝑖𝑤𝑖𝑗 + 𝑏, (14)

which then goes through an activation function where the nonlinearity
of the decision boundary is introduced (usually of sigmoid type). The
term 𝑏 in the previous equation is a bias term allowing the neuron to
cover a broader range. For more details on ANNs, the interested reader
is addressed to [41].

5. Sensitivity analysis of the meta-model

5.1. Global sensitivity analyses for the two benchmarks

The implementation of the Artificial Neural Network, described in
Section 4.3, allows to apply the variance-based GSA described in Sec-
tion 4.2, since the computational effort needed to perform the conver-
gence of the Sobol index is negligible. All the material and geometrical
variables of the constitutive phases with the related uncertainty are
considered here: through the total output variance decomposition, it is
possible to identify the dominant microscopic input parameters, from
a statistical point of view.

According to the hypotheses given in Section 1, a total of eight
variables can be identified for the microscopic constituents of the
composite, i.e.

𝐱 =
{
𝐸𝑓
1 , 𝐸

𝑓
2 , 𝐺

𝑓
12, 𝜈

𝑓
12, 𝜈

𝑓
23, 𝐸

𝑚, 𝜈𝑚, 𝑉𝐹
}
. (15)

The related mean and standard deviation values are summarised
in Table 1, in which, a COV equal to 10% is set, for all the parame-
ters concerning the microscopic scale. The causes at the basis of this
uncertainty are various and often very difficult to be identified. For
example, the uncertainty of the fibre volume fraction is often related
to the manufacturing process parameters.

The results of the variance-based GSA for every benchmark are
shown in Figs. 6(a) and 7(a), in terms of the evolution of the Sobol in-
dex, defined in Eq. (11), over the number of simulations. It is possible to
observe that the Sobol index converges after around 15000 simulations,
for both benchmarks.

The pie diagrams shown in Figs. 6(b) and 7(b) highlight a result
of paramount importance: the sensitivity of the first buckling load to
the material and geometrical properties of the constitutive phases (and
the related uncertainty as well) is strongly influenced by the nature
of the stacking sequence. In particular, for benchmark BK1, which is

Table 2
Benchmark BK1: bounds of the design variables.

Microscopic parameters Lower bound Upper bound

𝜇
(
𝐸𝑓

1

)
[GPa] 220.8 331.2

𝜎
(
𝐸𝑓

1

)
[GPa] 22.08 33.12

𝜇
(
𝑉𝐹

)
0.444 0.666

𝜎
(
𝑉𝐹

)
0.0444 0.0666

characterised by a quasi-isotropic symmetric stack, the sensitivity of the
first buckling load to the elastic properties 𝐸𝑓

2 , 𝐺𝑓
12, 𝜈

𝑓
12, 𝜈

𝑓
23, 𝐸

𝑚, 𝜈𝑚 is
negligible. Accordingly, only 𝐸𝑓

1 and 𝑉𝐹 affects the laminate behaviour
in terms of first buckling load.

Conversely, since the multilayer plate of benchmark BK2 is charac-
terised by an angle-ply orthotropic symmetric stacking sequence, the
first buckling load is influenced by the following properties: 𝐸𝑓

1 , 𝐸𝑓
2 ,

𝐸𝑚 and 𝑉𝐹 . The sensitivity of the laminate buckling strength to the
other elastic properties remains negligible also for this configuration of
the plate.

According to the aforementioned remarks, the number of param-
eters (characterising the material and geometrical properties uncer-
tainty) to be identified varies with the considered benchmark. These
aspects are discussed in detail in the following Section.

6. Mathematical formulation of the inverse problem

6.1. Optimisation variables, objective function and constraints

The multi-scale identification problem is stated as a classical con-
strained inverse problem: the identification of the elastic properties
variability of the composite constitutive phases can be achieved by
minimising the Euclidean distance between the reference distribution
of the buckling load and that resulting from the numerical simulation.

As discussed in Section 5, the sensitivity of the buckling load
distribution to the material and geometrical parameters of the micro-
scopic constituents is strongly affected by the stacking sequence of
the laminate. Therefore, the number of optimisation variables (i.e. the
parameters of the distribution law, for each property at the microscopic
scale, to be identified) depends upon the considered benchmark. As
a result of the GSA discussed in Section 5, the parameters tuning the
distribution of the most relevant elastic and geometrical properties of
the constitutive phases can be arranged in the vector of design variables
𝝃𝛼 , (𝛼 = BK1,BK2) as follows:

𝝃BK1 =
{
𝜇
(
𝐸𝑓
1

)
, 𝜎

(
𝐸𝑓
1

)
, 𝜇

(
𝑉𝐹

)
, 𝜎

(
𝑉𝐹

)}
, (16)

𝝃BK2 =
{
𝜇
(
𝐸𝑓

1

)
, 𝜎

(
𝐸𝑓

1

)
, 𝜇

(
𝐸𝑓

2

)
, 𝜎

(
𝐸𝑓

2

)
, 𝜇 (𝐸𝑚) , 𝜎 (𝐸𝑚) , 𝜇

(
𝑉𝐹

)
, 𝜎

(
𝑉𝐹

)}
.

(17)

Accordingly, benchmark BK1 is characterised by four design variables,
whilst benchmark BK2 has eight design variables. In both cases, the
elastic properties excluded from the vector of design variables (due to
the negligible sensitivity of the first buckling load to these quantities)
have been set to the reference mean values listed in Table 1.

Each design variable can vary into a suitable definition domain
which depends upon the considered benchmark. Lower and upper
bounds of design variables for benchmarks BK1 and BK2 are given in
Tables 2 and 3, respectively.

Moreover, in order to ensure the positive definiteness of the stiffness
tensors of both the lamina (mesoscopic scale) and the constitutive
phases (microscopic scale) [36], every combination of elastic properties
generated through the Monte-Carlo technique, must satisfy a set of
non-linear constraints 𝐠 (𝝃𝛼) [36]. Of course, these constraints must be
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Fig. 6. (a) Convergence of the Sobol index and (b) sensitivity analysis results, for the first benchmark (BK1).

Fig. 7. (a) Convergence of the Sobol index and (b) sensitivity analysis results, for the second benchmark (BK2).

Table 3
Benchmark BK2: bounds of the design variables.

Microscopic parameters Lower bound Upper bound

𝜇
(
𝐸𝑓

1

)
[GPa] 220.8 331.2

𝜎
(
𝐸𝑓

1

)
[GPa] 22.08 33.12

𝜇
(
𝐸𝑓

2

)
[GPa] 13.84 20.76

𝜎
(
𝐸𝑓

2

)
[GPa] 1.384 2.076

𝜇 (𝐸𝑚) [GPa] 3.312 4.968
𝜎 (𝐸𝑚) [GPa] 0.3312 0.4968
𝜇
(
𝑉𝐹

)
0.444 0.666

𝜎
(
𝑉𝐹

)
0.0444 0.0666

imposed at the lamina-level and at the constitutive phases-level. For
the elementary lamina, these constraints read:

𝑔1(𝝃𝛼) = |𝜈12(𝝃𝛼)| −
√

𝐸1(𝝃𝛼)
𝐸2(𝝃𝛼)

< 0,

𝑔2(𝝃𝛼) = |𝜈23(𝝃𝛼)| −
√

𝐸2(𝝃𝛼)
𝐸3(𝝃𝛼)

< 0,

𝑔3(𝝃𝛼) = 2𝜈12(𝝃𝛼)𝜈13(𝝃𝛼)𝜈23(𝝃𝛼)
𝐸3(𝝃𝛼)
𝐸1(𝝃𝛼)

+⋯

+𝜈12(𝝃𝛼)
2𝐸2(𝝃𝛼)
𝐸1(𝝃𝛼)

+ 𝜈23(𝝃𝛼)
2𝐸3(𝝃𝛼)
𝐸2(𝝃𝛼)

+ 𝜈13(𝝃𝛼)
2𝐸3(𝝃𝛼)
𝐸1(𝝃𝛼)

− 1 < 0,

(18)

whilst for the constitutive phases they can be written as

𝑔4(𝝃𝛼) = |𝜈𝑓12| −
√√√√√ 𝐸𝑓

1 (𝝃
𝛼)

𝐸𝑓
2 (𝝃

𝛼)𝑓
< 0,

𝑔5(𝝃𝛼) = |𝜈𝑓23| − 1 < 0,

𝑔6(𝝃𝛼) =
𝐸𝑓
1 (𝝃

𝛼)

𝐸𝑓
2 (𝝃

𝛼)

[
2𝜈𝑓23

(
𝜈𝑓12

)2
+ 2

(
𝜈𝑓12

)2
]
− 1 < 0.

(19)

The objective function 𝛷(𝝃𝛼) is defined as the Euclidean distance
between the reference and the numerical mechanical response, in terms
of the probabilistic parameters 𝜇𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 and 𝜎𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 of the first buck-
ling load. In particular, this objective function is a least-square error
estimator defined as:

𝛷(𝝃𝛼) =

(
𝜇𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 (𝝃𝛼) − 𝜇ref

𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔

𝜇ref
𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔

)2

+

(
𝜎𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 (𝝃𝛼) − 𝜎ref𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔

𝜎ref𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔

)2

. (20)

Finally, the multi-scale inverse problem is stated as a classical CNLPP
as:

min
𝝃𝛼

𝛷 (𝝃𝛼) ,

subject to:

𝑔𝑗 (𝝃𝛼) ≤ 0, 𝑗 = 1,… , 6.

(21)
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Fig. 8. Optimisation strategy for the resolution of problem (21).

6.2. The numerical strategy

Problem (21) is a non-convex CNLPP, in terms of constraints and
objective function. The number of parameters, describing the variabil-
ity of material and geometrical properties of the constitutive phases,
depends on the considered benchmark: the first benchmark (BK1)
allows to characterise four parameters, while the second benchmark
(BK2) allows to characterise up to eight parameters. Of course, the
non-convexity of problem (21) implies the lack of uniqueness of its
solution [36].

Taking into account all these aspects, the CNLPP of Eq. (21) is
solved by means of a hybrid optimisation tool based on the GA ERAS-
MUS (EvolutionaRy Algorithm for optimiSation of ModUlar Systems),
which is interfaced with the MATLAB® fmincon algorithm [39], as
shown in Fig. 8. The GA ERASMUS has already been used successfully
to solve different classes of real-world engineering problems [58–66].

The procedure illustrated in Fig. 8 is articulated in two phases.
The first one represents the global solution search and it is carried
out through the GA ERASMUS: the goal is to find potential suboptimal
solutions which will constitute the starting points for the gradient-based
optimisation algorithm. The genotype of the individual is characterised
by one chromosome and four genes for the first benchmark (BK1) and
eight genes for the second benchmark (BK2).

The second step is the local optimisation phase and it is performed
by means of the MATLAB® fmincon tool. The selected optimisation
solver is the active-set algorithm, i.e. a Quasi-Newton method, in which
an approximation of the Hessian matrix is used to compute the descent
direction [39].

Each optimisation algorithm has been interfaced to the ANN, pre-
sented in Section 4, which emulate both the homogenisation phase and
the eigenvalue buckling analysis. The ANN has been employed in order
to reduce significantly the computational effort.

In particular, the output of the ANN is the current value of both
the objective and the constraint functions which are passed to the
optimisation tool in order to execute the optimisation operations: these
operations are repeated until the user-defined convergence criteria are
met.

Table 4
Variability parameters of the reference first buckling load.

Benchmark 𝜇
(
𝜎𝐼
𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔

)
[MPa] COV

(
𝜎𝐼
𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔

)

BK1 83.41 0.12
BK2 59.3 0.098

7. Numerical results

7.1. Buckling response for the reference configuration

The multi-scale inverse problem defined in Eq. (21) requires the
computation of the objective function 𝛷(𝝃𝛼) of Eq. (20): this function
depends upon the buckling reference response which must be evaluated
before starting the optimisation process. Due to the difficulty to get
experimental data in terms of variability of the microscopic mate-
rial properties and the related buckling probability distribution at the
macroscopic scale, a numerical test is performed in order to obtain the
reference data.

To deal with this task, the reference variability parameters of mate-
rial and geometrical properties of the microscopic constituents, listed
in Table 1, are considered for each benchmark.

Firstly, a Monte-Carlo simulation is performed to generate randomly
a statistically representative number of samples. Secondly, for each
sample, the homogenisation step is performed by using the Chamis’
model, described in Section 3, to get the lamina elastic properties that
are used into the macroscopic FE model, to compute the first buckling
load of the plate. After carrying out these operations for the whole
set of samples, it is possible to determine the mean value and the
relative COV of the first buckling load, according to Eqs. (2) and (3),
respectively. The variability parameters of the reference first buckling
load distribution are then summarised in Table 4: these quantities have
been obtained by performing 1000 realisations.

Furthermore, a small sub-set of 20 realisations has been used to train
the ANN, for each benchmark. In order to check the accuracy of the
ANN, 50 samples generated with the Monte-Carlo technique have been
selected as a validation set and a comparison between them and the
results provided by the ANN is carried out, as shown in Fig. 9 (only
the results related to the first benchmark have been reported for the
sake of brevity). As a matter of fact, the results provided by the ANN
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Fig. 9. Comparison between the validation set of samples and the results provided by
the ANN.

Table 5
Optimisation parameters for the genetic algorithm, for benchmarks BK1 and BK2.

Parameters BK1 BK2

N. of individuals 40 80
N. of populations 2 2
N. of iterations 100 100
Crossover probability. 0.85 0.85
Mutation probability. 0.025 0.0125
Isolation time 20 20

Table 6
Optimisation parameters for the gradient-based algorithm, for benchmarks BK1 and
BK2.

Parameters BK1 BK2

Solver Active-set Active-set
Max n. of function evaluation 10000 10000
Tol. on the objective function 10−15 10−15
Tol. on the gradient norm 10−15 10−15

are in very good agreement with the samples constituting the validation
set.

7.2. Numerical results of the MSIS for benchmarks BK1 and BK2

As discussed in Section 2, two benchmarks are investigated in order
to show the effectiveness of the proposed MSIS, by varying the stacking
sequence of the multilayer plate.

The parameters tuning the GA and the deterministic algorithms are
summarised in Tables 5 and 6, respectively, according to the main
guidelines described in [67].

The GA calculation is performed with two populations, in which, the
number of individuals, evolving along the selected maximum number
of generations, depends on the considered benchmark. Indeed, the best
practice is to set the number of individuals greater than or equal to ten
times the number of optimisation variables. Accordingly, benchmarks
BK1 and BK2 are characterised by two populations composed of 40 and
80 individuals, respectively. The two populations exchange the best
individual every ten iterations, by using a ring-type operator, whose
probability is automatically computed by the considered GA. Moreover,
as far as the constraint-handling technique is concerned, the Automatic
Dynamic Penalisation (ADP) method is used [68].

It is noteworthy that, the choice of multiple populations, with
a small number of individuals, allows finding the global minimum
without increasing too much the computational effort. In this way,
the GA has the possibility to explore the design domain in the most
effective way, by exchanging information between the best individuals

Table 7
Optimum solution of the multi-scale inverse problem provided by the GA, for
benchmark BK1.

Analysis name 𝜇
(
𝐸𝑓

1

)
[GPa] 𝜎

(
𝐸𝑓

1

)
[GPa] 𝜇

(
𝑉𝐹

)
𝜎
(
𝑉𝐹

)

REF 276 27.6 0.555 0.0555
GE1A 238 27.1 0.628 0.0562
GE1B 237 27.1 0.630 0.0562
GE1C 237 27.1 0.630 0.0564
GE2A 257 25.5 0.589 0.0595
GE2B 257 25.5 0.589 0.0595
GE2C 257 25.4 0.589 0.0597
GE3A 221 25.3 0.665 0.0597
GE3B 223 25.5 0.662 0.0593
GE3C 223 25.5 0.661 0.0593

belonging to each population: the reader is addressed to [37] for more
details about these aspects.

Inasmuch as the proposed strategy makes use of a metaheuristic
algorithm, the GA is run three times for each benchmark. The best
individual obtained at the end of the genetic calculation is used as a
starting guess for the gradient-based algorithm, in order to execute the
subsequent local optimisation.

In terms of computational effort, the training phase of the ANN
needs several seconds to be performed. Then, the hybrid optimisation
strategy needs 37.8 and 68.2 h for the benchmarks BK1 and BK2,
respectively, on an Intel® Xeon® 2.70 GHz CPU with two processors
and with a RAM of 128 GB.

The results provided by the ERASMUS GA for benchmarks BK1
and BK2 are summarised in Tables 7 and 9, respectively, whilst those
provided by the gradient-based algorithm are reported in Tables 8 and
10, respectively. In order to compare the obtained results with the
reference ones, the average of the solutions provided by the gradient-
based algorithm is performed for each identified parameter, as it can
be seen in Tables 8 and 10, for each benchmark.

As it can be easily inferred from the analysis of these results, the
mean value and the standard deviation of the microscopic material
properties are in good agreement with the reference data: the absolute
percentage error ranges from 2.8% to 13.4% for the first benchmark and
from 0.2% to 3.2% for the second benchmark.
The discrepancy between the values of 𝜇

(
𝐸𝑓
1

)
and 𝜇

(
𝑉𝐹

)
provided

by the MSIS and the reference ones, for benchmark BK1, is related
to the nature of the laminate stack. Indeed, for this benchmark, the
considered sequence has an isotropic membrane stiffness matrix but
a completely anisotropic bending stiffness matrix. This aspect has a
strong influence on the solution search for the multi-scale inverse
problem because the first buckling load is dominated by the bending
stiffness of the laminate. In particular, if the bending stiffness matrix
is not orthotropic, problem (21) becomes strongly non-convex and
several equivalent optimal solutions exist. Therefore, finding the global
minimum is anything but trivial in such a case.
These results prove that a particular care should be put in the choice
of the stacking sequence, which strongly affects both the number of
parameters that is possible to identify and the quality of the final result.

8. Conclusions

In this work the multi-scale identification strategy (MSIS), initially
presented in [36], has been extended to the characterisation of the
uncertainty of the geometrical and the elastic properties of the fibre and
the matrix at the microscopic scale, by using information restrained in
the macroscopic response of the laminate, i.e. the first buckling load of
the multilayer plate.

In this context, the multi-scale characterisation problem, is stated
as a constrained inverse problem. The goal is the minimisation of the
distance between the numerical and the reference variability parame-
ters that describe the probability distribution of the first buckling load.
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Table 8
Optimum solution of the multi-scale inverse problem provided by the gradient-based algorithm, for benchmark BK1; the percentage
difference between the solution and the microscopic reference data are given in parentheses.

Analysis name 𝜇
(
𝐸𝑓

1

)
[GPa] 𝜎

(
𝐸𝑓

1

)
[GPa] 𝜇

(
𝑉𝐹

)
𝜎
(
𝑉𝐹

)
𝛷 (𝐱)

REF 276 27.6 0.555 0.0555 0
GR1A 238 27.1 0.625 0.0564 3.01E−05
GR1B 244 27.6 0.616 0.0567 5.58E−07
GR1C 235 27.1 0.632 0.0526 1.62E−05
GR2A 257 25.6 0.588 0.0594 7.33E−06
GR2B 257 25.5 0.589 0.0596 3.00E−07
GR2C 255 25.2 0.594 0.0586 2.88E−07
GR3A 221 25.3 0.665 0.0597 2.48E−07
GR3B 223 27.1 0.663 0.0512 2.11E−06
GR3C 223 25.5 0.661 0.0593 7.37E−08
AVERAGE 239 (−13.4) 26.2(−5) 0.626 (12.8) 0.0571 (2.8)

Table 9
Optimum solution of the multi-scale inverse problem provided by the GA, for benchmark BK2.

Analysis name 𝜇
(
𝐸𝑓

1

)
[GPa] 𝜎

(
𝐸𝑓

1

)
[GPa] 𝜇

(
𝐸𝑓

2

)
[GPa] 𝜎

(
𝐸𝑓

2

)
[GPa] 𝜇 (𝐸𝑚) [GPa] 𝜎 (𝐸𝑚) [GPa] 𝜇

(
𝑉𝐹

)
𝜎
(
𝑉𝐹

)

REF 276 27.6 17.3 1.73 4.14 0.414 0.555 0.0555
GE1A 255 31.2 15.7 1.50 3.64 0.412 0.620 0.0540
GE1B 311 30.3 20.1 2.02 4.49 0.366 0.482 0.0547
GE1C 313 30.2 20.0 1.59 4.47 0.363 0.482 0.0554
GE2A 304 22.4 18.3 1.51 3.43 0.484 0.568 0.0523
GE2B 304 22.4 18.3 1.51 3.43 0.484 0.568 0.0523
GE2C 258 24.5 16.0 1.93 4.23 0.467 0.581 0.0593
GE3A 233 24.8 16.0 1.59 4.16 0.404 0.615 0.0633
GE3B 233 24.8 16.0 1.59 4.16 0.409 0.615 0.0632
GE3C 233 24.8 16.0 1.60 4.16 0.404 0.615 0.0633

Table 10
Optimum solution of the multi-scale inverse problem provided by the gradient-based algorithm, for benchmark BK2; the percentage difference between the solution and the
microscopic reference data are given in parentheses.

Analysis name 𝜇
(
𝐸𝑓

1

)
[GPa] 𝜎

(
𝐸𝑓

1

)
[GPa] 𝜇

(
𝐸𝑓

2

)
[GPa] 𝜎

(
𝐸𝑓

2

)
[GPa] 𝜇 (𝐸𝑚) [GPa] 𝜎 (𝐸𝑚) [GPa] 𝜇

(
𝑉𝐹

)
𝜎
(
𝑉𝐹

)
𝛷 (𝐱)

REF 276 27.6 17.3 1.73 4.14 0.414 0.555 0.0555 0
GR1A 288 31.3 17.7 1.74 4.24 0.433 0.520 0.0514 4.50E−04
GR1B 280 28.8 18.8 1.75 4.33 0.401 0.529 0.0539 1.77E−06
GR1C 306 29.4 19.5 1.58 4.38 0.377 0.497 0.0548 4.27E−07
GR2A 288 31.3 17.7 1.74 4.24 0.433 0.520 0.0514 1.71E−09
GR2B 304 22.4 18.3 1.51 3.43 0.484 0.568 0.0523 3.59E−08
GR2C 258 26.1 16.4 1.96 4.14 0.450 0.569 0.0579 2.76E−04
GR3A 236 24.7 16.0 1.61 4.14 0.402 0.610 0.0634 2.05E−05
GR3B 233 24.8 16.0 1.59 4.16 0.409 0.615 0.0632 1.45E−07
GR3C 233 24.7 16.2 1.59 4.14 0.407 0.617 0.0634 1.98E−07
AVERAGE 270 (−2.3) 27 (−2) 17.4 (0.5) 1.67 (−3.2) 4.13 (−0.2) 0.422 (1.9) 0.561 (1) 0.0569 (2.5)

In this case, the solution search is performed by a hybrid optimisation
tool, in which, a metaheuristic algorithm and a gradient-based one have
been interfaced to solve the related non-convex CNLPP.

The MSIS makes use of an analytical homogenisation scheme,
i.e. the Chamis’ model, to perform the microscopic/mesoscopic scale
transition. The elastic properties of the elementary lamina evaluated
by means of the Chamis’ model are then used into the FE model of the
multilayer plate to evaluate its first buckling load.

Moreover, a Monte-Carlo simulation campaign has been performed
to compute the probability distribution of the first buckling load, start-
ing from a Gaussian probability distribution of the material properties
of the constituent phases. The obtained samples have been used to
train an ANN which emulates the multi-scale mechanical response of
the plate: the inputs are the geometrical and elastic properties of the
microscopic constituents of the composite and the output is the first-
buckling load of the laminate. Then, the obtained surrogate model has
been used into the optimisation process to reduce the computational
effort.

Before executing the hybrid optimisation process, a sensitivity study
has been performed to determine the most relevant microscopic pa-
rameters influencing the first buckling load at the macroscopic scale.
In particular, numerical results show that this sensitivity is strongly
affected by the nature of the stacking sequence. Therefore to prove

the effectiveness of the proposed MSIS two different stacking sequences
have been considered: the first benchmark is characterised by a sym-
metric quasi-isotropic stack, while the second one is characterised by a
symmetric orthotropic one.

As a consequence, also the obtained results, in terms of the iden-
tification of the parameters tuning the variability of the elastic and
geometrical properties of the constitutive phases of the composite, are
strongly influenced by the nature of the laminate lay-up. In particular,
for the first benchmark the absolute percentage error ranges from 2.8%
to 13.4% for the standard deviation of the fibre volume fraction 𝜎

(
𝑉𝐹

)
and the mean value of the fibre longitudinal elastic modulus 𝜇

(
𝐸𝑓
1

)
,

respectively. Conversely, for the second benchmark the absolute per-
centage error ranges from 0.2% to 3.2% for the mean value of the
matrix elastic modulus 𝜇 (𝐸𝑚) and the standard deviation of the fibre
transverse elastic modulus 𝜎

(
𝐸𝑓
2

)
.

Nevertheless, thanks to the proposed MSIS, it is possible to retrieve
the variability of both longitudinal and transversal effective properties
of the constitutive phases and this task cannot be easily performed by
means of standard ASTM tests.

As far as perspectives of this work are concerned, research is ongo-
ing in order to include into the MSIS the following aspects:
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• the validation of the MSIS by means of experimental data. In this
case, the influence of noise on the results provided by the MSIS
should be properly taken into account. To this purpose, suitable
regularisation techniques, as the Tikhonov–Morozov one, which
is widely used in different engineering fields [69,70], must be
efficiently integrated into the multi-scale identification process to
handle noise;

• the formulation of a dedicated optimisation problem to find a
suitable stack which maximise the sensitivity of the first buckling
load to each parameter defined at the microscopic scale of the
composite;

• the extension of the MSIS to the characterisation of the variabil-
ity of the viscoelastic properties of the microscopic constituent
and the evaluation of the variability effects related to further
geometrical parameters, e.g. fibre misalignment, macroscopic ge-
ometrical defects, etc.

Finally, thanks to the versatility of the proposed MSIS, it is possible
to increase the accuracy in terms of variability parameters by introduc-
ing more general probability density functions for both the buckling
load and the microscopic parameters. In this way, it will be possible to
go beyond the limits of the Gaussian model, in which the shape of the
distribution is imposed a priori.
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Conclusions and perspectives

General conclusions

This Ph.D. thesis has been developed in the context of the research project FULLCOMP,
which is an H2020 Marie Sklodowska-Curie project. It is framed into one of the three
main research axes characterising the project, i.e. the Virtual characterisation and man-
ufacturing effects.

The main subject of this work is the development of a suitable methodology able to
characterise the composite material properties at each characteristic scale. The basic idea
consisted in developing a suitable multi-scale identification strategy (MSIS) by formulat-
ing the multi-scale characterisation problem as an unconventional inverse problem. In
particular, the use of non-destructive tests and the related advantages like the recycling
of the specimens and the reduction of experimental activities costs with respect to the
standard characterisation procedures have been highlighted. If on the one hand the MSIS
relies on the exploitation of the information coming from non-destructive tests, on the
other hand it makes use of the following numerical methods

• a general numerical homogenisation procedure based on the strain energy of periodic
media to perform the scale transition;

• classical deterministic algorithms and original meta-heuristics developed at the I2M
laboratory to solve the inverse problem at each pertinent scale;

• stochastic methods (like Monte Carlo algorithm) and surrogate models (like arti-
ficial neural networks) when the parameters tuning the variability of the material
properties are integrated among the identification parameters;

• a dedicated solver for non-linear eigenvalue problems when the non-linear viscoelastic
behaviour of the composite is the object of the inverse problem.

In Chapter 3, the MSIS is applied to the problem of characterising the elastic prop-
erties of the composite at each characteristic scale. The MSIS, relies on a single non-
destructive harmonic test performed at the macroscopic scale of the composite specimen.
In this background, the problem of characterising the elastic properties of the composite
at different scales has been split into two related inverse problems. The first-level inverse
problem concerns the macroscopic / mesoscopic scale transition. At this level, the goal is
to determine the ply elastic properties by minimising the distance between the numerical
harmonic response and the reference one.

As far as the second-level inverse problem is concerned, it focuses on the mesoscopic
/ microscopic scale transition: in this case, the main goal is to find the optimum value of
elastic properties of both fibre and matrix matching the set of the lamina elastic properties
provided by the first-level problem.
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The effectiveness of the MSIS is proven through a numerical benchmark: a multilayer
plate made of unidirectional carbon/epoxy pre-preg plies T650/F584 is considered as the
reference structure.

At the mesoscopic scale, the results of the identification process are very good: the
maximum absolute percentage error is 5.78% on the ply transverse Poisson’s ratio ν23.
At the scale of the constitutive phases, all elastic properties are identified with a good
level of accuracy, except for parameters νf12, ν

f
23 and νm, which are affected by an absolute

percentage error of about 10%, 14% and 10%, respectively. The relatively small error
on the transverse Poisson’s ratio of the lamina is due to the very low sensitivity of the
objective function to this material property (the laminate is not thick enough). On the
other hand, this error propagates at the lower scale and affect the Poisson’s ratii of both
fibre and matrix for which the percentage error is amplified, due to the non-linear nature
of the considered problem.

Nevertheless, the first fundamental result is that the MSIS allows determining the full
set of elastic properties of the microscopic constituents of the composite: this task cannot
be easily performed by means of standard ASTM tests. Moreover, such a result has been
obtained by using a unique macroscopic non-destructive harmonic test that allows to
recycle the specimen and , thus, to strongly reduce the experiments cost.

In Chapter 4 the MSIS has been extended to the characterisation of the viscoelastic
behaviour of the matrix and the elastic behaviour of the fibre, by exploiting the inform-
ation restrained into the non-linear dynamic response of the composite at the specimen
scale. In this case, the multi-scale inverse problem has been solved by using a “one-shot”
hybrid optimisation strategy. The inverse problem is stated as an equivalent CNLPP
aiming at minimising the distance between the numerical non-linear harmonic response
and the reference one for the considered composite plate.

To deal with this problem, the energy homogenisation method of periodic media has
been generalised to the case of viscoelastic heterogeneous materials. At the microscopic
scale, the matrix viscoelastic behaviour is modelled through the Bagley-Torvik law, that
requires only four material parameters and which constitutes the design variables affecting
the matrix behaviour.

The main consequence deriving from the viscoelastic behaviour of the matrix is that
the elastic properties of the constitutive lamina (at the mesoscopic scale) are frequency-
dependent. This means that the modal and harmonic analyses at the macroscopic scale
of the sample becomes non-linear. Unfortunately, no dedicated solvers are available in
commercial FE software to solve non-linear eigenvalue problems. To overcome this issue,
the Arnoldi’s method has been coded in MATLAB R© environment to solve the non-linear
eigenvalue problem and interfaced with the ANSYS R© code.

In this case, the effectiveness of the MSIS is evaluated through a numerical bench-
mark: a composite plate made of unidirectional carbon/epoxy pre-preg plies T650/F584
is considered as a reference structure. The results are quite satisfactory: all viscoelastic
properties are identified with a good level of accuracy, except the in-plane shear modulus
of the fibre, Gf

12 and the viscoelastic matrix parameter Em
1 , which are affected by an

absolute percentage error of 19% and 15%, respectively. These errors are mainly due to
the very low sensitivity of the objective function to these parameters. This low sensit-
ivity is due, on the one hand, to the geometry of the considered laminate which is not
thick enough to highlight the influence of these properties on its dynamical response.
On the other hand, the laminate stacking sequence plays a fundamental role: the stack
considered in this work is a standard symmetric balanced stack taken from the literature
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which has not been designed to maximise the influence of some material properties on the
laminate dynamic behaviour. Nevertheless, the MSIS allows identifying the viscoelastic
behaviour of both the lamina and the constitutive phases, by using a unique macroscopic
non-destructive harmonic test, without introducing any simplifying assumption.

Finally, in Chapter 5, the MSIS has been extended to the characterisation of the
uncertainty characterising geometrical and elastic properties of both fibre and matrix, by
exploiting the information restrained in the first buckling load of the laminate.

Also in this case, the multi-scale identification problem is stated as a CNLPP. However,
in this context, the goal is the minimisation of the distance between the numerical and the
reference variability parameters affecting the probability distribution of the first buckling
load of the laminate. In this case, in order to reduce the computational effort of the
whole procedure, the microscopic / mesoscopic scale transition is performed through an
analytical homogenisation scheme, i.e. the Chamis’ model, and the ply material properties
are then used into the FE model of the composite laminate to evaluate its first buckling
load.

A Monte-Carlo simulation campaign is carried out in order to compute the probability
distribution of the first buckling load, starting from a Gaussian probability distribution of
the material properties of the constituent phases. The obtained samples are used to train
an Artificial Neural Network (ANN), which is able to emulate the multi-scale mechanical
response of the specimen: the geometrical and elastic properties of the constitutive phases
are the inputs and the first-buckling load of the laminate is the output. Then, the ANN
has been interfaced with the optimisation algorithm, to reduce the computational time.

The numerical results show that the identification process is strongly affected by the
nature of the stacking sequence. Accordingly, two benchmarks with different stacking
sequences are considered: the first benchmark is characterised by a symmetric quasi-
isotropic stack, while the second one is characterised by a symmetric balanced one.

In particular, for the first benchmark the absolute percentage error ranges from 2.8%
to 13.4% for the standard deviation of the fibre volume fraction σ (VF ) and the mean value

of the fibre longitudinal elastic modulus µ
(
Ef

1

)
, respectively. Conversely, for the second

benchmark the absolute percentage error ranges from 0.2% to 3.2% for the mean value
of the matrix elastic modulus µ (Em) and the standard deviation of the fibre transverse

elastic modulus σ
(
Ef

2

)
.

In any case, the MSIS proved to be an efficient and versatile tool to identify the
material properties variability of the constitutive phases. To the best of the author’s
knowledge, this task cannot be achieved with conventional ASTM tests.

Perspectives

This work constitutes just a “first attempt” and the MSIS needs to be further generalised
in order to catch the true behaviour of the composite at each characteristic scale.

Firstly, the effectiveness of the method must be proven by using experimental data.
This can be easily done by exploiting the results of non-destructive experimental modal
tests to characterise the viscoelastic behaviour of the composite.

A second point of paramount importance is the design of a suitable stack maximising
the sensitivity of the objective function to the full set of the material properties to be iden-
tified (in this way, a dedicated sample is generated, giving the possibility to standardise
the proposed procedure).
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Moreover, the MSIS is a really versatile procedure that can be used for the evaluation of
the variability affecting the microscopic geometrical parameters, e.g. fibre misalignment,
porosity, etc.

Furthermore, the MSIS could be easily generalised to characterise the geometrical
features of the RVE of the composite material: the parameters defining the shape of the
inclusion or its volume fraction can be easily integrated among the optimisation variables,
without altering the overall architecture of the identification methodology. On the other
hand, also geometric parameters of the laminate (mesoscopic scale) can be included among
the unknowns to be identified, e.g. the orientation angles and the thickness of each lamina.

Finally, one can imagine also to use the MSIS for identifying the topology of the
damaged zone and the parameters governing the beaviour of the damage models typically
used in the analysis of composite structures subject to impacts. In this case the MSIS
could constitute a sound alternative to classical non-destructive testing methods.
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A general multi-scale identification 
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Résumé 

Les matériaux composites sont largement utilisés en raison de leurs propriétés exceptionnelles. S'agissant de la 

caractérisation de leur comportement matériel, les principaux problèmes sont liés à la difficulté de caractériser 

les propriétés matérielles à chaque échelle. Les tests destructifs expérimentaux utilisés conduisent à des 

campagnes qui ne permettent pas d'identifier l'ensemble des propriétés élastiques 3D du pli. 

En ce qui concerne l'identification microscopique des propriétés matériaux, seuls quelques tests standard et non 

standard sont effectués, lesquels montrent des dispersions de résultats significatives. Pour surmonter ces 

limitations, une stratégie d'identification multi-échelle (MSIS) est développée dans cette thèse. 

De plus, la caractérisation du comportement non linéaire des matériaux composites permet de décrire la capacité 

d'amortissement sous des charges dynamiques. La réponse dynamique est affectée par le comportement 

viscoélastique des phase microscopiques et la caractérisation viscoélastique est tout sauf triviale. 

Expérimentalement, les techniques courantes peuvent fournir des informations uniquement à l'échelle du pli. 

Pour cette raison, le MSIS est étendu à la caractérisation viscoélastique des propriétés des matériaux composites 

à chaque échelle, en utilisant des tests non destructifs. 

Concernant l’identification des propriétés des matériaux composites, il est important de caractériser la variabilité 

liée aux imperfections de fabrication. Les méthodes expérimentales d'identification de la variabilité ne peuvent 

pas évaluer l'incertitude des phases constitutives. Le grand nombre de tests requis implique des coûts importants 

pour obtenir des résultats qui sont toutefois affectés par les erreurs expérimentales. Différentes méthodes 

probabilistes sont décrites dans la littérature, qui ne permettent pas la caractérisation de la variabilité à l’échelle 

microscopique. Cet aspect représente le principal défi concernant l'identification de l'incertitude des structures 

composites, ainsi que la nécessité d'utiliser des techniques macroscopiques non destructives. Pour faire face à ce 

problème, le MSIS proposé est étendu pour intégrer la caractérisation de l’incertitude des propriétés des 

matériaux composites, à chaque échelle pertinente. 

Mots-clés : Optimisation, Caractérisation, Problèmes inverses, Essais non-destructifs, Variabilité, 

Viscoélasticité. 
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Abstract: 

Composite materials are widely employed due to their outstanding properties. When dealing with the 

characterisation of their material behaviour, the main issues are related to the difficulty of characterising the 

material properties at each scale. The commonly used experimental destructive tests lead to expensive 

campaigns, which are not able to identify the full set of 3D elastic properties of the ply. 

Concerning the identification of the microscopic material properties, only few standard and non-standard tests 

can be performed, which show significant result dispersions. To overcome these limitations, a multi-scale 

identification strategy (MSIS) is developed in the presented thesis. 

Moreover, the characterisation of the non-linear behaviour of composite materials allows to describe the damping 

capability under dynamic loads. Their dynamic response is affected by the viscoelastic behaviour of the 

microconstituents and the viscoelastic characterisation is anything but trivial. From an experimental viewpoint, 

common techniques can provide information only at the mesoscopic scale, whilst they cannot be used to 

characterise the microscopic viscoelastic properties. For these reasons, the MSIS is extended to the viscoelastic 

characterisation of composite materials properties at each pertinent scale, by using non-destructive tests.  

Concerning the composite material properties, it is important to enhance the identification process by integrating 

the large amount of variability from manufacturing imperfections. Experimental methods for variability 

identification are only suited to evaluate mesoscopic uncertainty, without providing information about the 

constitutive phases. The huge number of required tests implies important costs to get results that are however 

affected by the experimental errors. Different probabilistic methods are found in literature, but they are not 

extended to the variability affecting the microscopic constituents. This aspect represents the main challenge 

concerning the uncertainty identification of composite structures, together with the need to use macroscopic non-

destructive techniques. In order to face this problem, the proposed MSIS is extended to integrate the 

characterisation of the uncertainty of composite material properties, at each pertinent scale. 

Keywords : Optimisation, Characterisation, Inverse problems, Non-destructive tests, Variability, Viscoelasticity. 
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