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Chapter 1

Introduction

Abstract:

This chapter introduces the industrial context of the PhD and the main
industrial objectives. It also covers the most important research topics
involved in this PhD and identifies the relevant previous results and
approaches that have inspired the current work.

Résumé :

Ce chapitre introduit le contexte industriel de la thèse et les principaux
objectifs industriels. Il présente aussi les sujets de recherche explorés
pendant la thèse ainsi que les résultats et approches qui ont inspiré ces
travaux.
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1.1 Welding in the nuclear industry
This PhD was conceived as a CIFRE fellowship (“Convention Industrielle de Forma-
tion par la Recherche") between EDF R&D, Mines ParisTech and ANRT (“Associa-
tion Nationale Recherche Technologie"). The challenges presented in this document
correspond to industrial problems faced by engineers in the Research and Develop-
ment teams at EDF. The main objectives of EDF R&D are to improve the safety
of production facilities, optimise their operating time and increase their production
and environmental performance. In particular, the PhD took place at a department
called PRISME (“Performance, Risque Industriel, et Surveillance pour la Mainte-
nance et l’Exploitation"). PRISME is a multidisciplinary department that integrates
researchers in domains such as numerical simulation, statistics, probability or signal
processing but also in experimental domains such as welding mechanical experi-
ments and other topics related to risks and maintenance of mechanical components
of EDF’s power plants.

Welding is an omnipresent method in many industries as an assembly or a repair
technique. EDF is responsible for the robustness of its installations’ components and
making its maintenance operations safe. Welding involves complex multiphysical
phenomena that are still hard to understand and, thus, to control. Hence, it is
subject to many types of defects.

The high safety standards of the nuclear industry demand an even higher qual-
ity control of welding operations. The quality is controlled a posteriori by non-
destructive examinations after the procedure. In the event of non-conformity, the
weld has to be repaired, thus delaying either the maintenance or the manufacturing
operation with significant financial consequences.

Figure 1.1: Automatised Tungsten Inert Gas (TIG) welding exper-
iment at EDF R&D’s welding lab.

In that context, EDF’s R&D has worked for years in developing models for
numerical simulation of welding in order to help understand all the physical phe-
nomena and achieve a higher control of maintenance and manufacturing operations.
Numerical simulation of welding enables the thermo-metallo-mechanical behaviour
during welding to be described and the origin of defects to be understood. However,



4 Chapter 1. Introduction

the complex non-linear aspect of a welding operation simulation makes the com-
putational cost of a high-fidelity simulation impossible to use for real-time control.
Numerical simulation of welding is, nonetheless, useful for post-operation analysis
of the state of the mechanical components.

Nevertheless, the combination of simulation with sensor data extracted from the
instrumented execution of welding operations is a promising strategy to detect and
locate any possible defects. Such a strategy would allow the identification of not
properly known welding process parameters and the estimation of hidden variables
such as the stress tensor [173, 152]. With access to this kind of information, real-time
detection and location of drifts along the welding process becomes possible, as well
as the estimation of potential defects by assessing stresses in the weld. Subsequent
targeted examinations could be carried out a posteriori for regions with an identified
high defect risk. The implementation of real-time monitoring of the manufacturing
and repair welding processes would consolidate the control of these procedures and
reduce the repair rate and the number of post-process checks, thus contributing to
the optimisation of the planning of maintenance and repair operations. Finally, it
would also help the design engineering justifications by including an analysis of the
stress state of the components, which are known to affect the fit for service of metal
parts in pipes and pressure vessels.

Real-time control of welding operations is, thus, the next step towards a better
understanding and control of welding procedures in order to ensure the high safety
demands of the nuclear industry.

1.2 Objectives
In recent years, the welding industry has seen numerous efforts to include newer
technologies and intelligent systems [167]. New developments in machine learning
and deep learning allow detecting defects in welding from experimental data qual-
itatively [111, 68]. In [68], an X-Ray acquisition is performed once the operation
is finished. In [111], a real-time detection is performed but only for the surface
temperature field around the heat source. At the same time, the improved power
of computers in the last decade has allowed the appearance of high fidelity welding
numerical simulation models [60, 43, 95] aiming at predicting 3D transient tem-
perature fields and various mechanical variables such as the Cauchy Stress tensor.
Improving the computational times has led researchers to the utilisation of Reduced
Order Models (ROM) in welding [38, 176, 98]. Uncertainty in model parameters and
measures is addressed with well-established uncertainty quantification methods [58],
often through the resolution of inverse problems [40]. At the heart of all these new
approaches, one can identify two primary data sources: experimental and simulation
data.

Physical systems are mathematically modelled via parametrised Partial Differ-
ential Equations (PDE). The resolution of the PDE is obtained with a numerical
scheme such as Finite Elements (FE) [48, 14, 3] or Finite Volumes (FV) [59, 92].
Simulation data is obtained by running a computer code that solves these physical
models. It gives access to different physical fields in an entire specimen, including
not directly observable data, such as stress. The main drawback is that numerical
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simulation performed by using Finite Elements Analysis is time-consuming, espe-
cially for non-linear multi-physics problems such as welding. It also depends on
modelling hypotheses and parameters that are not well known and need calibration.

Experimental data is readily available in situ and does not need knowledge of
complex physical systems and mathematical models. However, it is often noisy,
and some data can only be partially observed or not observed at all in real time,
such as stresses. Some examples of partial observations are punctual thermocouple
measurements or surface-level temperature measures with an infrared camera.

This thesis’s main objective is to develop a numerical strategy that allows merg-
ing these two data sources to obtain real-time estimations of non-observed or par-
tially observed fields in a welding application. Experts could then analyse the esti-
mated physical fields to inform decisions on the quality of a welding operation. The
main challenges are dealing with the uncertainty of the experimental data and the
numerical models in order to obtain meaningful estimations of the mechanical state
as well as unknown welding parameters in real time.

Hence, the present thesis’ objective lies in the domain of Data Assimilation and
inverse problems, where only partial observations of the physical state of the weld
will be available. The experimental data will be coupled with high-fidelity simulation
data of very large dimension. Model Order Reduction will be used to overcome the
curse of dimensionality and obtain real-time solutions with efficient local surrogate
models. The construction and optimal selection of the local models will involve
clustering and classification algorithms.

1.3 State of the art
The general case studied in this document involves parametrised PDEs, which can
be described in the form of:

Find u ∈ V such that:

f(u, µ) = 0 (1.1)

where f represents a system of partial differential equations with adequate boundary
conditions, µ is a vector of parameters in a parametric space P ⊂ Rp, and V is a
Hilbert space. These parameters may refer to physical quantities such as emissivity,
the heat capacity or the elastic modulus, or modelling parameters such as source
terms. The PDE is often the mathematical formulation of a physics problem. For
elliptic equations, its weak formulation is given by:

Find u ∈ V such that, ∀v ∈ V :

a(µ;u(µ), v) = l(µ; v) (1.2)

with a(·, ·) is a parametric bilinear function, for linear problems such as elasticity,
and l(·) is a bounded parametric linear form. In this thesis, we restrict our attention
to thermomechanical problems that are approximated by a sequence of elliptic so-
lutions. Assuming that a(·, ·) is continuous and coercive and that l(·) is continuous,
the existence and unicity of a solution to the PDE, for a given value of µ, is guaran-
teed by the Lax-Milgram theorem. The solution is given by a function u ∈ V that
depends on the parameters µ and a variable x ∈ Ω ⊂ Rd, in a domain Ω which may
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represent space and time. The solution to this problem with the Finite Elements
method is given by a function in a discrete subspace VN ⊂ V . In this discrete space,
the problem reads:

Find uN ∈ VN such that, ∀vN ∈ VN :

a(µ;uN (µ), vN ) = l(µ; vN ) (1.3)

which can be written as a linear system of equations given by the matrix expression:

AN (µ)uN (µ) = lN (µ) (1.4)

where uN (µ) are the coordinates of the solution uN (µ) with respect to a basis of
VN .

In future sections, when referring to the solution of the PDE for a specific value
of µ, u(x, µ) will denote the N -dimensional vector obtained as a solution of the
Finite Elements Method.

The following sections will introduce some basic and classical notions of Reduced
Order Modelling, the resolution of inverse problems, and classification problems in
machine learning. Details will be given for methods considered of particular interest
for this work.

1.3.1 Model Order Reduction

Model Order Reduction (MOR) methods aim at approximating the solution of a
high-fidelity parametrised problem by a low-dimensional representation in a low-
dimension subspace of VN [123, 5, 9, 135, 143, 83, 36]. This is done by identifying
similarities in the solutions of a PDE. In a parametric PDE such as Equation (1.1),
different parameter values may produce similar solutions. In time-dependent PDEs,
the solution for different instants may be similar. The main goal of Reduced Order
Models (ROM) is to reduce the computational cost of solving the PDEs by capturing
these similarities.

Data driven ROM methods are usually separated into an offline and an online
stage. In the offline stage, a reduced basis is constructed by considering a training
set of data. This step is computationally expensive, as it requires the computation
of a large number of simulations for a variety of parameters in order to create the
training data set. The online stage involves using the reduced model as a fast
surrogate of the high-fidelity model used for the original simulations.

The basic idea of MOR is that a solution u(x, µ) can be approximated by a linear
combination of functions in a subspace of lower dimension N with respect to N , the
dimension of u:

u(x, µ) ∼
N∑
i=1

φi(x)γi(µ) = Φγ (1.5)

where Φ = [ϕ1, . . . , ϕN ] ∈ RN×N is called a reduced basis and γ ∈ RN contains the
coordinates in the reduced space.

In projection-based model order reduction, the objective of using a reduced ba-
sis is not only to obtain a reduced-dimension approximation of the solutions to a
PDE but also to calculate future solutions reducing significantly the computation
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time. The original PDE problem was solved in VN , but with a reduced basis Φ,
it can be solved in a reduced dimension space spanned by the orthonormal basis
functions {ϕi}Ni=1. By Galerkin projection[144], the linear system of equations in
(1.4) becomes:

ΦTAN (µ)Φγ(µ) = ΦT lN (µ) (1.6)
A fast resolution of this system of equations relies on the existence of an affine

dependence of a and l with the parameter µ. Indeed, this avoids the recalculation
of AN (µ) and lN (µ) for each new parameter µ.

The following sections will describe several methods to construct reduced bases,
such as the Proper Orthogonal Decomposition, the Probabilistic Principal Compo-
nent Analysis and the Reduced Basis Method. Furthermore, the Hyper-reduction
will be introduced as an attempt to reduce the computation times further by deal-
ing with the numerical bottleneck that may appear in Galerkin-POD methods. The
notion of local reduced bases that are valid in a limited region of the parameter
domain is also introduced, being a key aspect for this PhD. The final section briefly
introduces the Proper Generalised Decomposition, a ROM method based on the
hypothesis of separability of all problem variables.

Proper Orthogonal Decomposition

Among the Reduced Order Modelling methods, the Proper Orthogonal Decompo-
sition (POD)[12, 93, 172] stands out, as it has been used in several domains for
many years. It can be traced back to Lumley[99] for the study of turbulent flows,
and its snapshot version was introduced by Sirovich[150]. It is also known as the
Karhunen–Loève transform or the Principal Component Analysis (PCA) in other
domains, when considering spaces of finite dimension. Its close ties to the Singular
Value Decomposition (SVD) have been studied by several authors, such as Volk-
wein[166].

The snapshot version of POD assumes that U = [u1, u2, . . . , uM ] ∈ RN×N is a
matrix of rank d ≤ min{N , N} containing N parametric solutions of the EDP as a
training set of data. This is called a snapshot matrix. The main idea of the POD
is to find a set of orthonormal basis functions {ϕi}di=1 in a subspace such that the
solutions of the parametrised PDE in the columns of U can be expressed as a linear
combination of them:

U = ΦΓ (1.7)
where Φ = [ϕ1, . . . , ϕd] ∈ RN×d contains the basis functions and Γ =

[
γ1, . . . , γd

]
∈

Rd×N is a coefficient matrix.
For any column uj, j = 1, . . . , N , its representation in the basis {ϕi}di=1 is given

by the linear combination of the basis functions, with the coefficients of the corre-
sponding column γj of Γ:

uj =
d∑
i=1

γjiϕi (1.8)

The dimensionality reduction is obtained by reducing the number of basis func-
tions chosen, i.e. how many columns of Φ are taken. The l-rank approximation with
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the POD basis is given by the linear combination of the first l basis functions. It
is the optimal l-dimensional approximation in the sense of the Frobenius norm, as
proved in [166]. The l-rank approximation Ũl reads:

U ∼ Ũ l = ΦlΓl (1.9)

where Φl = [ϕ1, . . . , ϕl] ∈ RN×l only contains the first l basis functions, Γl =[
γ1, . . . , γl

]
∈ Rl×N now only has l rows and Ũ l is the l-rank approximation, which

is formed by individual approximations Ũ l =
[
ũl1, . . . , ũ

l
M

]
.

The POD basis of rank l can be determined by solving the following minimisation
problem:

min
ψ1,...,ψl∈RN

M∑
j=1

||uj − ũj||2 =
M∑
j=1

||uj −
l∑

i=1

γjiψi||2

s.t. ψTi ψj = δij, i, j = 1, . . . , l

(1.10)

where γj = ΨTuj and Ψ = [ψ1, . . . , ψl].
The solution to this minimisation problem can be obtained by a Singular Value

Decomposition of the matrix U [166]. The truncated SVD of U is given by:

U = V ΣW T (1.11)

where V ∈ RN×d, Σ ∈ Rd×d and W T ∈ Rd×N . Each vector of the reduced basis
{ϕi}di=1 corresponds to the columns of V . Furthermore, the matrix Γ is also deduced
from the SVD and is Γ = ΣW T . Because of the orthogonality, Γ can also be
expressed as:

Γ = ΣW T = (V TV )ΣW T = V T (V ΣW T ) = V TU = ΦTU (1.12)

In statistics, the POD is known as PCA[23], and it is usually calculated as
the eigendecomposition of the covariance matrix C of U . For centered data, the
covariance matrix is calculated as C = 1

N−1
UUT ∈ RN×N , assuming that the mean

of U is 0. The eigendecomposition is given by:

C = PΛP T (1.13)

where P is the matrix of eigenvectors and Λ is a diagonal matrix containing the
eigenvalues λi, i = 1, . . . , d.

The relationship between PCA and SVD can be found again. Taking the SVD
of U:

C =
1

N − 1
UUT =

1

N − 1
(V ΣW T )(V ΣW T )T =

1

N − 1
V ΣW TWΣV T

= V
Σ2

N − 1
V T = PΛP T

(1.14)
and we can deduce, that the left singular values and the eigenvectors of the covari-
ance matrix are the basis functions, whilst the eigenvectors and singular values σi
are related by:
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λi =
σ2
i

N − 1
(1.15)

Probabilistic PCA

A special case of PCA is known as Probabilistic PCA[158, 23, 113]. Tipping and
Bishop developed it in an attempt to redefine the PCA from a Gaussian latent
variable model, thus giving a probability model to the observed data. This approach
is closely related to factor analysis[19, 114] and is based on a linear latent variable
model[22]. In the EDP context, the linear latent variable model can be interpreted
as a low dimensional approximation of a set of solutions U ∈ RN×N by a linear
operator Φ ∈ RN×l and reduced coordinates γ ∈ Rl×N with two additional terms:
m that allows the model to have non-zero mean, and ε that accounts for the error
of the approximation:

U = Φγ +m+ ε (1.16)

Probabilistic PCA introduces two hypothesis:

1. ε is an isotropic multivariate Gaussian noise and follows the distribution ε ∼
N (0, σ2IN ) (where IN denotes the identity matrix of dimension N ),

2. γ ∼ N (0, I l).

The first hypothesis, in conjunction with equation (1.16), imply the following
conditional probability distribution:

p(U |γ) = N (Φγ +m, σ2IN ) (1.17)

and with the marginal distribution of γ being Gaussian and independent of ε, the
marginal distribution of U is also Gaussian and defined by:

p(U ) = N (m,ΦΦT + σ2IN ) (1.18)

The model parametersm, Φ, and σ2 can be computed by Maximum Likelihood.
The log-likelihood function is given by

logL = −N
2

(
log(2π)− log(|C|)− tr(C−1S)

)
(1.19)

where C = ΦΦT +σ2IN is the covariance matrix and S =
1

N − 1

N∑
i=1

(ui−m)(ui−

m)T is the sample covariance matrix. It is proven by Tipping and Bishop that
there is an explicit solution of the maximisation of the likelihood. The Maximum
Likelihood estimators for each parameter are given by:
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m = Ū =
1

N

N∑
i=1

ui (1.20)

Φ = V l

√
(Λl − σ2IN )R (1.21)

σ2 =
1

N − l
N∑

j=l+1

λ2
j (1.22)

Thus,m is the empirical mean of U . Matrices V l and Λl are truncated matrices
of the Singular Value Decomposition of U = V ΛW T , where only the l largest
singular values and their associated left singular vectors are retained. Finally, the
matrix R is an orthogonal rotation matrix that, in practice, is usually set as the
identity matrix. These estimators also give the error term ε the sense of a truncation
error, determined by the square of the non-selected singular values.

An alternative Expectation Maximisation algorithm to obtain these parameters
was also proposed by Tipping and Bishop, as well as by Roweis[134], who had
independently introduced a very similar model without specifying the nature of the
Gaussian noise ε, being simply defined by a general covariance matrix.

The reduced coordinates of a solution uj, j = 1, . . . , N , with the PPCA can be
calculated as a projection into the reduced-dimension space by algebraic manipula-
tion as with PCA:

γj = (ΦTΦ)−1ΦT (uj − Ū) (1.23)

Reduced Basis Method

The Reduced Basis Method (RBM) is a method that has been proposed as an
alternative to the POD method proposed by several authors [136, 123, 101, 71] .
The main difference with the POD is that the basis is built sequentially by searching
an optimal point in the parameter space P in order to compute a training set of
data.

From a basis Φk containing k basis functions, the iteration at step k+1 finds the
parameter value µk+1 that maximises the error between the high fidelity solution
and its low-dimensional representation with Φk:

µk+1 = arg max
µ∈P

||u(x, µ)−Φkγ(µ)|| (1.24)

where || · || is an adequate norm.
Once the parameter µk+1 is selected, the reduced basis is updated by including

the high-fidelity solution u(x, µk+1 to a snapshot matrix. Thus, if Φk was constructed
from a snapshot matrix U k = [u(x, µ1), . . . , u(x, µk)], Φk+1 is constructed from
U k+1 = [u(x, µ1), . . . , u(x, µk+1)]

An alternative solution is to include the vector ∆k(µk+1) = u(x, µ) − Φkγ(µ)
directly into the reduced basis after orthonormalisation by a Gram–Schmidt pro-
cess[4].

The RBM has been used for different applications and types of PDEs [63, 137]
and it has also been used for Data Assimilation applications in [104].
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Hyper-reduction method

The resolution of the Galerkin ROM, represented by a linear system of equations
such as in Equation (1.6), can be inefficient when there is no affine dependency with
respect to the parameters µ. Evaluation of the non-linear terms in high dimension
N represents a bottleneck in the computation of a solution. This has been observed
by several authors, giving birth to hyper-reduction methods or hyper-reduced order
models (HROM) [140, 141, 53].

An affine decomposition can be achieved by applying the Empirical Interpola-
tion Method (EIM) [18, 103] or its variations: its discrete version, the Discrete
Empirical Interpolation Method (DEIM)[33, 34] or the Generalised Empirical Inter-
polation Method (GEIM)[105]. The EIM method is a greedy approach that aims at
constructing an approximation space of dimension K spanned by a set of functions
{qk}Kk=1 and a set of interpolation points XK = {x1, . . . , xK} for a sufficiently regular
parametric function g(x, µ) : Ω ×M −→ Rd, such that the interpolator gK can be
written as:

gK(x, µ) =
K∑
k=1

qk(x)βk(µ) (1.25)

respecting the K interpolation constraints:

gK(xk, µ) = g(xk, µ) (1.26)

where k = 1, . . . , K. For more details on the EIM algorithm, we refer to Bar-
rault[18]. Its discrete version, the DEIM avoids the greedy algorithm by using the
space spanned by the columns of a POD basis as the approximation space.

The interpolation points can be used to define a Reduced Integration Domain
(RID) ΩZ ⊂ Ω [142]. The idea behind the creation of a RID is to compute the
solution of the PDE exclusively on the mesh nodes associated with the interpolation
points selected by DEIM. The solution is known only on a limited amount of points.
In order to extend the solution to the rest of the domain, the Gappy POD method
(introduced later on in this chapter) is used. The RID should be large enough
so that the problem is well-posed. This redefinition of the domain necessitates a
redefinition of the boundary conditions of the problem [141]. Some examples of the
application of HROMs in welding applications can be found in [38], where robustness
was improved for non-linear simulation and a moving framework was introduced for
moving heat sources, or in [176], which saw inclusion of the strain field to improve
the performance of the elasto-plastic models. More recently, it has been applied to
additive manufacturing in [98]. The hyper-reduction method has also been used in
other domains such as fluid dynamics [31, 16].

Local ROMs

The previous sections have introduced Reduced Order Models from a global perspec-
tive; the solutions are approximated on a single subspace spanned from global basis
functions. However, for highly non-linear or transient problems, a better approach
would be to approximate the solutions by subspaces spanned from adequate local
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basis functions [7]. Thus, the parameter (or time) domain is divided into regions
that a local reduced basis will individually represent.

Partitioning the domain can be done in several manners. Some physical problems
are well-suited for a time or space decomposition where physical phenomena are local
by nature [44, 46]. In parametric problems the partitioning can be performed on
the parameter state [62] or on the state space [168, 6, 131, 41]. The partition can be
performed according to different criteria, for example the k-means algorithm with
the Euclidean distance in [168] or a dissimilarity metric based on the projection
error between snapshots in [6]. In the present work, two partitioning principles
are explored. In Chapter 3, the domain is separated by the positions of a moving
welding torch, whilst in Chapter 4, three clustering techniques are used to partition
the parameter space or the state space.

A new parametric solution is calculated using the local model associated with the
new parameter’s region [8]. The selection of a local basis may prove a difficult task,
which will be tackled in this work by a Gaussian mixture for position-based local
bases (Chapter 3) and a classification machine learning algorithm for state-based
local bases (Chapter 4. An alternative to the selection of local bases is interpolation
on the associated Grassmann manifold [112, 9, 5]. This interpolation approach is
based on the notion of Grassmann manifolds [2]. A reduced basis Φ ∈ RN×d spans
a subspace Sd ⊂ RN . This subspace belongs to G(d,N ), which is a Grassmann
manifold defined as the set of all subspaces of RN that are of dimension d. A
distance can be defined on G(d,N ) [175] such that the subspaces spanned from two
reduced bases can be compared. If Φ,Ψ ∈ G(d,N ), then this distance is defined as:

δG(Φ,Ψ) =

√√√√ d∑
n=1

λ2
n (1.27)

where λn, n = 1, . . . , d are the nth principal angles between Φ and Ψ, which are
computed from a SVD of ΨTΦ = V ΣW T :

λn = cos−1(σn) (1.28)

with σn the nth singular value. This distance is the geodesic distance on G(d,N )
when considering the manifold as a Rimannian manifold [175].

In the present document, the Grassmann distance will be used as a dissimilarity
metric for a clustering algorithm in the partitioning stage of the construction of
local reduced bases in Chapter 4. Such a distance gave satisfactory results for local
hyper-reduced model in uncertainty quantification for thermomechanical prediction
of lifetime for turbine blades in [41] and also for harmfulness prediction of voids in
welded seems in [142].

Proper Generalised Decomposition

Another type of ROM method is the Proper Generalised Decomposition (PGD), a
technique based on the a priori approximation of a PDE solution by a separated
representation of the parameters. Assuming that the variable x represents space
and time, x = (x, t), the solution u(x, t, µ) is expressed as:
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u(x, t, µ) =
N∑
i=1

Xi(x)Ti(t)

p∏
k=1

Mik(µk) (1.29)

This method finds its roots in Ladevèze’s work on the LATIN method [88].
For a brief review of the history of the PGD method, we refer to [36]. It has
seen applications in different domains, including welding [30] and to accelerate the
resolution of inverse problems [138].

1.3.2 Inverse Problems

Many mathematical problems are stated in the following manner: given an input,
find the output. This is the case of the PDE presented in Equation (1.1), where the
objective is to find the solution of the PDE for a given set of parameters µ. This is
called a direct, or forward, problem. However, another type of problem exists when
parts of the parameters µ are unknown and only an observation y = h(u(x, µ)) ∈
RNobs of the solution is available via an observation operator h. These kinds of
problems are known as inverse problems. Inverse problems can be further divided
into two main groups:

1. State estimation problems: the objective is to find an approximation ũ of
u(x, µ) from the observations y.

2. Parameter estimation problems: the objective is to find an approximation µ̃
of the parameter µ such that the observation y comes from u = u(x, µ̃).

In this document, the objective is to estimate both the state and unknown pa-
rameters of the model. The p parameters can be separated into a set of nµ known
parameters µ and nθ unknown parameters θ:(

µ

θ

)
∈ Rp (1.30)

The field solution of the PDE becomes u(x, µ, θ) ∈ RN . The objective is to
estimate the true joint vector z:

z =

(
u(x, µ, θ)

θ

)
∈ RN+p (1.31)

from an observation y = h(z).
The main difficulty in this PhD is the highly non linear causal relation between θ

and multiphysics variables u, involving both temperature and mechanical variables.
The resolution of an inverse problem is often a difficult task. The difficulty comes

from a variety of sources. They are most often ill-posed problems because they do
not necessarily have a unique solution. A problem is considered well-posed in the
sense of Hadamard [64] when:

1. a solution exists,

2. the solution is unique,
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3. and the solution’s behaviour changes continuously with the initial conditions.

The ill-posedness of the problem often comes from the existence of several solu-
tions for the available observations, which is sometimes known as identifiability of
the solution [11]. Another source of ill-posedness is the nature of the observations.
The observations can be partial and contain noise, i.e. they are perturbed and not
exact. Thus, an observation y can be modelled by a functional h and an observation
error term:

y = h(z) + ε (1.32)

The observation error is unknown, and it is usually modelled by a random vari-
able with 0-mean, without bias. In the case of experimental data, the error is
usually produced by the measurement instrument or by numerical error (truncation
or rounding, for example). The noise is usually identified as a zero-mean Gaussian
distribution with a certain covariance matrice C:

ε ∼ N (0, C) (1.33)

Perturbations in the input data produced by noise can cause large differences in
the result. The amount of available data can also influence the ill-posedness of the
problem. When there are not enough observations, i.e. Nobs < N + p, the problem
is considered underdetermined, leading to multiple possible solutions.

Classical approaches for the resolution of inverse problems

All the approaches to solving inverse problems must deal with their ill-posedness.
Two classical approaches can be developed. The first approach, often called the
deterministic or variational approach, relies on functional minimisation. The so-
lution to the problem is found by minimising a certain functional J that aims at
representing the discrepancy between the available observed data and the model:

z̃ = arg min
z∈RN+p

J(y, z) (1.34)

Determining J is the main task. Once J is fixed, the minimisation problem
can be solved using standard optimisation methods [116]. A usual choice is the
least-squares formulation given in Equation (1.35).

z̃ = arg min
z∈RN+p

1

2
||y − h(z)||22 (1.35)

In this type of approach there usually is a regularisation term. Tikhonov regu-
larisation [165, 25] adds a regularisation term αR(z) to the least squares formulation
in Equation (1.35):

z̃ = arg min
z∈RN+p

1

2
||y − h(z)||22 + αR(z) (1.36)

The addition of a regularisation term can be interpreted as the addition of prior
information on the solution and aims at improving the identifiability of the solution.
The scalar value α is called the regularisation coefficient. Finding an optimal value
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for α can be done, for example, using the L-method, described in [67]. The choice
of R(z) is problem dependent, but a usual choice is:

R(z) = ||z − z̄||22 (1.37)

where z̄ represents prior knowledge of z, for example, its mean.
The second classical framework is the Bayesian approach[42], where the problem

is treated from a probabilistic point of view. In this context, y, z and ε are all
treated as random variables. The joint probability distribution of y and z is given
by p(y, z). From this joint distribution, the marginal distributions are defined as:

p(y) =

∫
RN+p

p(y, z)dz

p(z) =

∫
Rd
p(y, z)dy

(1.38)

This approach is based on the notion of conditional probability. The goal is to
compute the conditional density p(z|y) and is defined by:

p(z|y) =
p(y, z)

p(y)
(1.39)

The conditional distribution can be calculated by applying Bayes theorem, which
states:

Theorem 1. Let a ∈ Rn and b ∈ Rm be two random variables and p(a, b) their joint
probability distribution. The conditional probability of a knowing b, p(a|b), is:

p(a|b) =
p(b|a)p(a)

p(b)
(1.40)

In this formulation of the Bayes theorem, p(a|b) is known as the posterior density,
p(b|a) is known as the likelihood and p(a) is called the prior density. Thus, in the
Bayesian approach, the goal is to compute the posterior distribution of the unknown
vector z conditioned by the observations y:

p(z|y) =
p(y|z)p(z)

p(y)
(1.41)

The posterior density p(z|y) is the probability of vector z knowing the obser-
vations (usually measurements). The prior distribution p(z) represents a specific
knowledge about z that was available before observing y. The sources of this knowl-
edge are varied and include expertise, some physical property or a model. The like-
lihood p(y|z) can be interpreted as the probability that the observation functional
h produces the vector y from z. Finally, the term p(y) comes from the observations
and is constant, meaning that it serves as a normalisation term. This leads to the
common notation

p(z|y) ∝ p(y|z)p(z) (1.42)

which means that the posterior distribution is proportional to the product of likeli-
hood and prior.
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In a general case where there are no hypotheses on the probability distribution
of z and y, an explicit formulation of the posterior density does not exist. A usual
approach is to sample the posterior distribution using Markov Chain Monte Carlo
(MCMC) methods [130]. The objective of these methods is the simulation of direct
draws from complex distributions, in this case, the posterior distribution. There are
many different MCMC algorithms, some of the most common one being Metropolis-
Hastings [35].

There are plenty of examples of the application of Bayesian inference with MCMC
methods in the literature, for instance, in [73], where a fully Bayesian approach is
used to calibrate a computer model that predicts the shape of a cylinder after im-
ploding it with a high explosive charge. The main disadvantage of this approach
is that MCMC methods need an extensive amount of samples to converge. A com-
mon issue with the resolution of inverse problems is the curse of dimensionality, the
matrices needed for most numerical solutions are massive, and computation times
are long. In particular, for MCMC methods, when the samples are extracted from
an expensive computer code like a FEM solver, their application becomes imprac-
tical. There exist numerous attempts at using surrogate models to accelerate these
methods [109, 108], including ROM methods such as the PGD [138] or the RBM
[40].

An alternative to MCMC methods are the Approximate Bayesian Computation
(ABC) methods[39, 106].

Gappy POD

Gappy POD, introduced by Everson and Sirovich [51] is a method that appeared as a
way of reconstructing partial pixel observation of human faces. It is a great example
of the use of reduced models for the resolution of an inverse problem. In a first article,
Sirovich and Kirby[151] used POD to create low-dimensional representations of a
set of black and white pictures of human faces. The level of gray of each image is
determined by a function f(x), where x is the position [151]. Then, a grey scale
matrix can be computed with each element of the matrix corresponding to a pixel.
The image F is finally defined as a vector of concatenated rows of the grey scale
matrix. Using a POD basis constructed from a database of 115 male human faces,
they were able to reconstruct a whole face (see Figure 1.2, b) ) from a limited amount
of pixels that is referred to as gappy data (see Figure 1.2, a) ). However, a major
drawback of the Gappy POD method is that it cannot deal with noisy observations
contrary to the PPCA.

The Gappy POD method works as follows. Let Φ = [ϕ1, . . . , ϕN ] ∈ RN×N a
POD basis of dimension N describing pictures with N pixels. An individual picture
F can be described as F = Φγ, where γ is an N-dimensional vector containing the
reduced coordinates. A partial observation of the face, HF is obtained by a boolean
operator H ∈ RD×N that selects a limited amount of pixels D << N . It follows
that the observation HF can be written as

HF = HΦγ (1.43)

where HΦ restricts the POD basis to the observed pixels.
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Figure 1.2: a) Gappy data. b) Reconstruction of the face with 50
POD modes. c) Original face. d) Projection of the original face onto

50 POD modes. (Image taken from [151].)

An approximation γ̃ of the reduced coordinates of the picture can be obtained
from the limited observation by:

γ̃ =
(
(HΦ)THΦ

)−1
(HΦ)T (HF ) (1.44)

Thus, an approximation F̃ of the original picture F is given by:

F̃ = Φγ̃ (1.45)

Gappy POD has been used for many applications, for example, to approximate a
whole field of unsteady flows from sensor measurements[171] or for the reconstruction
of missing flow data[164]. It has also been used as a way of reconstructing a hyper-
reduced simulation computed in a Reduced Integration Domain in [38, 45, 141].

Methods for state estimation in Data Assimilation

This final section on inverse problems briefly introduces some specific methods for
the resolution of inverse problems. The first presented method is the Kalman Filter
[79, 169], the most well-known data assimilation method. Filtering refers to the
problem of updating the knowledge of a certain state or parameter from sequential
observations [89]. Filtering usually involves two separate steps. First, a prediction
of the future state using some linear mapping from the current state to a future one,
and an update step where some data is observed and the prediction is corrected
with this new knowledge. Kalman filters make some key assumptions. The first is
that the prior and error models are Gaussian, allowing for an explicit expression of
the posterior distribution. The second one is the markovian behaviour of the data
sequences, where the current state depends exclusively on the previous state. A
brief review of its industrial applications over the last decades is presented in [13].

Derivations of the Kalman filter exist to compensate for its shortcomings, most
notably, the extended Kalman filter [129] that deals with non-linear dynamical sys-
tems, or the ensemble Kalman filter [50], which is designed to solve very large
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problems by replacing the covariance matrix of the prior distribution by the empiric
covariance of a state sample matrix.

Other notable methods are the 3D-Var and 4D-Var methods [11], two examples of
the deterministic approach to inverse problems. Both methods aim at minimising a
functional J (see Equation (1.34)) that represents the difference between all available
data sources at a given instant, usually the previous estimation and observed data.
The 4D-Var is an extension of 3D-Var used to estimate a trajectory of the system’s
state. This allows integration of the system’s evolution over time as input data.
4D-Var is well-known for being the method used for weather forecasting [115]. In
recent years, methods reminiscent of 3D-Var and 4D-Var have appeared, such as the
Parametrised-Background Data-Weak methods [104, 66, 102] that include the use
of ROMs for state estimation.

1.3.3 Classification and clustering problems in machine learn-
ing

Classification and clustering are, alongside regression and dimensionality reduction,
the main type of problems in machine learning. In this document, they will be used
to create and assign local reduced basis models. The construction of such models
is motivated by the need to capture local physical phenomena during a wleding
operation.

Classification

Classification problems are supervised problems, meaning that their goal is to iden-
tify a certain mapping f : X −→ Y between inputs x ∈ X and outputs y ∈ Y [114].
In particular, in classification, the output space is a discrete set Y = {1, . . . , K} of
dimension K ∈ N, such that each value is a label designing a class. When there are
only two classes, it is called binary classification.

Learning a classification model is done with a training dataset consisting of N
pairs (xi, yi) ∈ X × Y . Figure 1.3 shows a basic scheme of the application of a
classification algorithm to determine a predictor or classifier function.

Data
{x1, . . . , xN} ⊂ X

Labels
{y1, . . . , yN} ⊂ Y

Algorithm
Classifier
f(x) = y

Binary classification
yi ∈ {0, 1} = Y

Multi-class classification
yi ∈ {1, . . . ,K} = Y

Figure 1.3: General scheme of a classification problem.

The main idea for the resolution of classification problems is to separate the
input space X intoK decision regions by determining decision boundaries that allow
assigning a label to each element of the input space. When the decision boundaries
are linear, the methods that find them are called linear classification methods. There
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exist many classification methods and algorithms. Bishop distinguishes three types
of algorithms in [23]. The first type of model is called discriminant functions. Their
objective is to construct a function that directly links each vector x ∈ X to a class.
The other two types of models arise from a probabilistic view of the classification
problem. The objective is to determine the conditional probability distribution
p(y = k|x), where y = k indicates that x belong to the class Ck, which is the class
associated to label k ∈ Y . The two types of methods depend on how the conditional
probability is calculated. Probabilistic generative models try to find p(y = k|x) by
applying Bayes’ theorem (see Theorem (1)). Thus, they try to model the priors
p(y) and the likelihoods p(x|y). The final type of methods are the Probabilistic
discriminative models, which express p(y = k|x) as a generalised linear model and
determine its parameters by Maximum Likelihood.

Three classification methods are presented in the following section: the logistic
regression method and classification neural networks. For a more detailed overview
of these and other classification methods, we refer to one of the many books covering
general topics in Machine Learning, such as [23, 114, 113, 69].

Logistic regression

Logistic regression is one of the classical methods for classification [23] and it is still
important for its relationship to classification with neural networks, in particular
with Multi Layer Perceptrons, the neural network architecture used in Chapter 4.
Logistic regression can be divided into binary logistic regression and multinomial
(or multiclass) logistic regression. The multinomial case assumes that there are K
distinct classes. Let as also assume that {xi}Ni=1 = X ⊂ Rd, with d ≥ 1, is a set of
N samples and {yi}Ni=1 = Y ⊂ R is, likewise, a set of N label samples.

The conditional distribution p(y|x) is supposed to follow a generalised Bernoulli
distribution such that the probability of xi ∈ X belonging to each class Ck is given
by:

p(y = k|x = xi) =
e(αT

kxi+βk)

K∑
j=1

e(αT
j xi+bj)

(1.46)

where αj ∈ Rd, j = 1, . . . , K are coefficient vectors of a linear model and βj ∈
R, j = 1, . . . , K are the offset coefficients of a linear model. These coefficients are
calculated by maximum likelihood estimation, which is computed by minimising
the negative log-likelihood (NLL). The negative log-likelihood in this case is known
as the cross-entropy error function. Let us introduce the notation pk(xi) = p(y =
k|x = xi). For N observations, the cross-entropy reads:

NLL = −
N∑
n=1

K∑
k=1

log pk(xn) (1.47)

The cross-entropy function is one of the usual choices for loss functions in clas-
sification neural networks.
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Classification neural networks

Neural networks are non-linear statistical learning models that can be used for re-
gression [154] and classification [127]. They can be applied to many types of data,
for example: images with deep convolutional neural networks (CNN) [85], graphs
with graph neural networks (GNN) [174] or sequences with recurrent neural net-
works (RNN) [110], which are used for language modelling. In recent years, there
have been numerous developments in the deep learning field, including applications
to the resolution of physical problems via Physics-informed neural networks [125], or
to ROM with ROM-Nets [41]. This section introduces the general concept of neural
networks for classification, and Chapter 4 presents the particular architecture of the
Multi-Layer Perceptrons (MLP).

The main idea of neural networks is the successive feature transformation of the
data along a certain number L of layers [114]. Mathematically, it is the composition
of L non-linear differentiable functions f1(·,ω1), . . . , fL((·,ωL)):

f(x,ω) = fL(fL−1(· · · (f1(x,ω1)) · · · ,ωL−1),ωL) (1.48)

where ω = (ω1, . . . ,ωL) are unknown coefficients that are learnt during the training
process.

In the most simple neural network example, these coefficients refer to the coef-
ficients of a linear combination of the previous layers’ output features. This is the
type of layer applied in MLPs and as the final layer of classification neural networks.
Different types of layers can be used depending on the network architecture and type
of data. For more types of layers, we refer to [113].

Defining zl as the output of layer l, if it is computed as a linear combination of
the previous layer output, the current layer output reads:

zl = fl(zl−1,ωl) = φl(ω
T
l zl−1) (1.49)

where φl : R −→ R is a non-linear differentiable activation function. This non-linear
activation function is responsible for the non-linearity of the neural network models.
Some examples of common activation functions are:

• ReLU function: φl(x) = max(0, x)

• Sigmoid function: φl(x) = 1
1+e−x

• Hyperbolic tangent: φl(x) = tanh(x) = ex−e−x
ex+e−x

In a K-class classification task, the final layer usually applies a softmax function.
The softmax function g is applied to a vector x ∈ RK :

g : RK −→ RK

g(x) −→ (g1(x1), . . . , gK(xK))

where each component gk, k = 1, . . . , K is computed as:
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gk(xk) =
exk

K∑
i=1

exi

(1.50)

If vector x comes from a linear combination in the previous equation, we recog-
nise the similarity with the expression of the probability of an element belonging to
a certain class in logistic regression, shown in Equation (1.46).

Training a neural network is done by a process called backpropagation, in which
a particular loss function is minimised in order to calibrate ω. The gradient of f
can be calculated with respect to the parameters of each function in the composition
using the chain rule.

Clustering

Clustering, contrary to classification, is an unsupervised problem in which a group
of N input points xi ∈ X are separated into K classes, without any prior knowledge
of the classes themselves. The data points are separated (or grouped) according to
a certain dissimilarity metric δ:

δ : X × X −→ R+

(x, y) −→ δ(x, y)

The goal is that all elements belonging to the same cluster are similar to each
other and distinct from elements in other clusters [55]. The choice of metric is, thus,
crucial to the clustering results and should be adapted to the data. An important
distinction must be made between hard and fuzzy (or soft) clustering. In hard
clustering, each data point belongs to only one class, whilst in fuzzy clustering, a
data point can belong to one or more clusters with a certain probability. The output
of a clustering algorithm is an assignment function f :

f : X −→ [0, 1]K

f(x) −→ (f1(x), . . . , fK(x))

where
K∑
k=1

fk(x) = 1. In hard clustering, the image of X by the assignment function

is {0, 1}K , meaning that the value of f(x) is a vector (0, . . . , 1, . . . , 0) with a 1 in
the kth position, which determines that x belongs to the class Ck.

There are two main types of clustering algorithms according to [23]: hierar-
chical algorithms and partitional algorithms. Hierarchical algorithms are further
divided into agglomerative and divisive algorithms. Their main characteristics are
summarised below:

• Agglomerative hierarchical algorithms start with N individual clusters, and,
after each iteration, two clusters are merged.
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• Divisive hierarchical algorithms start with one single cluster containing all the
data points, and after each iteration, one cluster is divided into two clusters.

• Partitional algorithms create a non-overlapping partition of the data points.
These methods include many different approaches, such as centre-based algo-
rithms like k-means [100, 94], or density-based algorithms like DBSCAN [49,
149].

Similarly to the field of classification, there are numerous methods for clustering
analysis. The following sections will present one of the most popular clustering
methods, k-means. In Chapter 4, a divisive hierarchical algorithm, stemming from
Amsallem’s work on local bases [6], is presented. For a general overview of clustering,
we refer to [55, 82] or to a general Machine Learning book that covers unsupervised
learning [69, 114, 113].

K-means algorithm

K-means was first described by Macqueen [100] in 1967 and is based on the minimi-
sation of the within-cluster sum of squares, which is the variance of the cluster and
corresponds to the squared Euclidean distance between the elements of a cluster and
its center, called mean or centroid. In k-means clustering, the number of clusters K
is supposed to be known in advance.

Let us assume that X is a subset of Rd, with d ≥ 1, and {xi}Ni=1 ⊂ X is a set of
data points. The squared Euclidean distance between two points x, y ∈ X is:

δEU(x, y) =
d∑
i=1

(xi − yi)2 (1.51)

The within-cluster sum of squares is defined as:

wk =
∑
x∈Ck

δEU(x, ck) (1.52)

where ck is the centroid of cluster Ck. The centroid is calculated as the mean of all
the elements in the cluster:

ck =
1

#Ck

∑
x∈Ck

x (1.53)

The problem is, thus, to find the clusters C1, . . . , CK that minimise the within-
cluster :

arg min
C1,...,CK

K∑
i=1

wi = arg min
C1,...,CK

K∑
i=1

∑
x∈Ci

δEU(x, ci) (1.54)

There are different algorithms and implementations that solve this problem, for
instance the k-means++ algorithm presented in [10], which proposes a particular
initialisation step. The most basic algorithm works as follows:

1. Choose an initial centroids set C = {c1, . . . , ck}
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2. Assign a cluster to each element xi ∈ X, i = 1, . . . , N such that:

xi ∈ Ck ⇐⇒ δEU(xi, ck) ≤ δEU(xi, cj) ∀j 6= k (1.55)

3. Recalculate all the centroids in C as the mean of elements in each cluster:

ck =
1

#Ck

∑
x∈Ck

x (1.56)

4. Repeat steps 2 and 3 until the centroids in C don’t change between two iter-
ations.

The result of k-means clustering depends on the algorithm’s initialisation, which
is usually random. The initialisation is subject to study, as shown in [119, 32]. The
other difficulty is the choice of K, which can be addressed, for example, with the
silhouette score method [132, 82].

K-medoids

K-medoids is a variant of k-means where the centroid points, now called medoids,
are chosen from the data set instead of being calculated as the mean of the elements
in each of the K clusters. As for k-means, the number of clusters K is supposed
to be known in advance. These medoids minimise the average dissimilarity with
respect to the other elements of its cluster:

mk = arg min
xi∈Ck

1

#Ck

∑
xj∈Ck

δ(xi, xj) (1.57)

K-medoids main advantage is that it can be used with non-euclidean dissimilarity
metrics. In fact, all the pairwise dissimilarities are pre-computed and stored in
a N × N dissimilarity matrix D, where each component Dij = δ(xi, xj), i, j =
1, . . . , N . For instance, a Grassmann distance between local reduced bases have
been used as a dissimilarity measure in [142].

The classical algorithm is known as PAM (Partitioning around medoids), which
was first proposed by Kaufman and Rousseew [133]. Other algorithms have been
developed, most notably the CLARA and CLARANS algorithm, as well as their
improved and faster versions [147]. A final algorithm, similar to the k-means, was
proposed by Park et al. [117] and is claimed to be faster than the previous ones.
This last algorithm, with an in-house implementation, will be used in Chapter 4.

1.4 Contributions
This section summarises the results produced during three years of work. It is
divided as follows:

• Chapter 2 introduces the PVR experiment, which is selected as a welding
operation application case of the methods presented in the following chapters.
It is presented from an experimental and digital-twining perspective, paying
attention to the available data and how to treat it.
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• Chapter 3 presents a position-based local multi-physics surrogate model that
takes into account surface thermal data and transforms it into 3D estimations
of temperature and stress. Details are given on the construction of the local
model from multi-physics snapshot matrices. Numerical results are obtained
from simulation and experimental input data, and the topic of future state
forecasts is addressed.

• Chapter 4 generalises the creation of local models by presenting three cluster-
ing methods that aim at separating the domain optimally according to different
metrics during the offline stage. The most adequate local model is assigned
by a universal classifier obtained with a Multi-Layer Perceptrons neural net-
work. The training process is discussed in detail, and numerical results with
simulation data are shown.

• Chapter 5 presents an exploratory work aiming at producing reduced bases
in the context of multipass welding. In particular, it deals with multipass
welding cases with a large number of passes and presents two methods to ex-
trapolate thermo-mechanical fields in order to construct reduced order models
for welding beads that have not been simulated yet.

1.5 Computational tools
The high dimensionality of the problems tackled in the present work is directly
responsible for memory allocation an computation time issues. Thus, it is essential
to consider the computational tools used during the PhD. In terms of software, all
the codes were homemade unless indicated otherwise (be it a python package or a
simulation code). All the development was done in Python and aims at being as
non-intrusive as possible.

In terms of hardware, two machines were used: a laptop and a scientific cluster,
both of them using a Linux environment. The laptop contains an Intel(R) Core(TM)
i7-6700HQ CPU 2.60GHz and 32 Gb of RAM. It has been used for numerical tests
(without parallelisation) and part of the data post-processing (with parallelisation).
The scientific cluster is situated in a distant datacenter and has a theoretical com-
putational power of 2940 TFlops. It is composed of:

• 1112 standard nodes with 192 Gb of RAM per node, 36 cores per node and
Skylake 6140 processors.

• 70 high memory nodes with 384 Gb of RAM per node, 36 cores per node and
Skylake 6140 procesors.

• 32 graphical nodes equipped with 192 Gb of RAM per node and 2 NVIDIA
Volta V100 GPUs per node.

It was mainly used for the Finite Elements simulations, the training of neural
networks on the graphcal nodes and the rest of the post-processing that needed to
be applied to very large files.
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Chapter 2

PVR hot-cracking tests: experiments
and digital twining

Abstract:

This chapter will present the PVR experiment, which is the application
case used in the following chapters to illustrate the methods developed in
the present document. Here, we will describe a PVR hot cracking test.
We will show the experiences carried out at EDF R&D welding lab, the
type of available experimental data, and how to use them. Next, we will
tackle the numerical simulation of these experiments, focusing on the
calibration of the models thanks to the experimental data. Finally, we
will show how to perform an exhaustive parametrical study of a PVR
experiment. This study will be used as a numerical database in future
chapters to build reduced-order models.

Résumé :

Ce chapitre présente l’essai expérimental PVR, qui est le cas test ex-
périmental utilisé dans les chapitres suivants pour illustrer les méthodes
développées dans ce manuscrit. Ici, on décrira un essai de fissuration à
chaud PVR. On montrera les essais qui ont été réalisés au laboratoire de
soudage d’EDF R&D, les différentes sources de données expérimentales
et comment les utiliser. Après, on expliquera comment réaliser une sim-
ulation numérique de ce type d’essai, en se concentrant particulièrement
sur la calibration du modèle à l’aide des données de thermocouples. Fi-
nalement, une étude paramétrique complète sera réalisée. Cette étude
sera utilisée comme une base de données de simulation pour la construc-
tion de modèles réduits dans les chapitres suivants.
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2.1 The PVR experiment
The use case for this PhD is the PVR hot-cracking test. It was chosen as an ap-
plication case because it represents fairly well the conditions found in a real-life
welding operation in EDF’s nuclear power plants. In particular, it is the same kind
of welding procedure (TIG welding) used in a production site, and the material of
the specimen (316L stainless steel) is often used in the nuclear industry. This section
will describe the hot-cracking test and the specimen. Then, the experimental config-
uration used in EDF R&D’s welding lab is presented, including the instrumentation
and a description of the measurement instruments.

2.1.1 The PVR experiment: a hot cracking test

The PVR, for Programmierter-Verformungs-Risstest (meaning cracking test with
programmable deformation), was developed during the 70s by the Austrian company
Boehler. It consists of a fusion line performed on a specimen being uniaxially tensile
loaded [80, 124], as seen in the diagram in Figure 2.1. The deformation rate is
augmented linearly to a predefined maximum value during the test. The main
advantage of PVR tests is that they allow one to observe hot cracks of all types
[80], including liquation and solidification cracks. These cracks appear in the heat-
affected zone around the welded fusion line. The PVR test has been used to study
the ocurrence of hot cracking in different alloys [54].

Starting point Final point

130 mm

Tensile load
Fusion line

Figure 2.1: Scheme of a PVR experiment.

From a data assimilation perspective, the large surface of the PVR specimen
allows easy instrumentation of the experiment in a lab environment. Some of the
instrumentation options are:

• Placement of thermocouples for punctual temperature measurements.

• Filming with an infrared camera for surface-level temperature measurements.

• Mechanical force and displacement data given by the tensile load machine.

• Filming with stereo correlation cameras for strain and displacement data.

In Figure 2.2, one can observe an instrumented specimen before a PVR exper-
iment. In this image, the specimen is instrumented with two thermocouples (see
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the black wires on both sides of the specimen) and inserted into the tensile loading
machine. A brief explanation of each instrument and the data they provide is given
in the following sections.

Figure 2.2: Experimental configuration of a PVR test with two
thermocouples.

2.1.2 The PVR specimen

The chosen specimen material is 316L stainless steel, an austenitic steel used reg-
ularly in the nuclear industry [17, 15]. The chemical composition of the material
is summed up in Table 2.1. On Figure 2.2 one can notice that the design of the
specimen borders fit clamping jaws of the tensile-loading machine.

The temperature-dependent material properties were obtained from a variety of
results, including material characterisation by Geeble tests performed during Minh
Le’s PhD [90] and studies by CEA Saclay. They are summed up in Table 2.2. The
parameters are not defined for all temperatures. Missing data points are linearly
interpolated between available data. In absence of interpolation points, the last
value is extended as a constant if needed.
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Table 2.1: Chemical composition of the 316L stainless steel speci-
men (in percentages except for boron, which is expressed in particles

per million).

B C Mn Si P S Cr Ni Mo Co Cu Al N
39± 4 0.016 1.59 0.540 0.027 0.0011 17.25 10.03 2.05 0.080 0.106 0.043 0.052

Table 2.2: Temperature dependent material parameters of 316L
stainless steel: thermal conductivity, volumetric heat capacity, ther-

mal expansion coefficient and Young’s modulus.

Temperature (◦C) k ( W
mmK

) ρcp ( J
mm3K

) α ( 1
K

) E (MPa)

20 14× 10−3 3.784× 10−3 15.5× 10−6 190× 103

100 15.2× 10−3 - 16× 10−6 -
200 16.6× 10−3 4.036× 10−3 16.6× 10−6 -
300 17.9× 10−3 - 17.1× 10−6 -
400 19× 10−3 4.302× 10−3 17.5× 10−6 -
500 20.6× 10−3 - 18× 10−6 -
600 21.8× 10−3 4.557× 10−3 18.4× 10−6 140× 103

700 23.1× 10−3 - 18.7× 10−6 -
775 - - - 56.3× 103

800 24.3× 10−3 4.823× 10−3 19× 10−6 -
850 - - - 56.3× 103

900 26× 10−3 - 19.2× 10−6 -
1000 27.3× 10−3 5.072× 10−3 19.4× 10−6 -
1150 - - - 37.3× 103

1200 29.9× 10−3 5.327× 10−3 - -
1250 - - - 20.3× 103

1384 - 5.572× 10−3 - -
1390 - 7.823× 10−3 - -
1394 - 11.175× 10−3 - -
1400 32.5× 10−3 - 19.6× 10−6 -
1404 - 22.35× 10−3 - -
1420 - 44.70× 10−3 - -
1425 - 52.15× 10−3 - -
1450 - 5.7× 10−3 - -
1600 - 5.7× 10−3 19.7× 10−6 -
2400 32.5× 10−2 - - -
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Previous studies at EDF R&D have used the same design but with different
dimensions [159]. In that case, the specimen’s dimensions were 260mm long, 80mm
large and 3.5mm thick. The ones used in this document are shown in Figure 2.3.
They are 200mm long, 80mm large and 3mm thick. The central area is where a
fusion line is done, along a line of 130 mm. This fusion line aims at doing a welding
operation easily reproducible. This part is 40 mm large.

40
 m

m
200 mm

80
 m

m

Thermocouple position

14 mm

90 mm

Figure 2.3: Dimensions of the PVR specimen and position of the
thermocouple.

2.1.3 Experimental configuration

Two instruments are needed for a PVR experiment, a welding torch and a tensile
loading machine. The fusion line is done with a ValkWelding TIG-welding torch
attached to a 6-axes Panasonic robotic arm (see Figure 2.4, on the left). The heat
source’s velocity (v [mm/s]), voltage (U [V ]) and current (I [A]) are the three oper-
ational parameters that are fixed at the start of the experiment. The voltage and
current are going to be represented together as the torch’s power (Q [W ]) by the
following relationship:

Q = U · I (2.1)

This choice is motivated by the equivalent heat source model [61], which is used
to approximate the heat source during a welding operation. It also allows reducing
the number of operational parameters to two. Using a robotic arm instead of a
manual welder allows greater control of the operational parameters, including a
constant torch velocity and a constant flux of shielding gas, which in this case is
argon.

In regards to the tensile loading machine, a Lloyd Instruments LS100 plus (Figure
2.4, on the right), the maximum deformation rate, in mm/s is fixed in advance. The
experiment starts with a constant force of 5000N applied to the specimen and, as
soon as the torch starts working, the deformation rate is augmented linearly up to
the maximum deformation rate for the duration of the test.

One could also consider the duration of the experiment and the maximum de-
formation rate as two more operational parameters. The experiment duration is
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Figure 2.4: Machines needed for a PVR experiments. On the left,
TIG welding torch attached to a robotic arm. On the right, tensile

loading machine.

discarded as a parameter because it depends directly on the torch speed. In prac-
tice, all the experiments realised at EDF’s welding lab used the same maximum
deformation rate values to ensure repeatability for other engineering projects out-
side this research work. Thus, it is considered a constant operational parameter in
our examples.

The successive steps of the PVR experiments are:

PVR experiment steps

1. The specimen is inserted into the tensile loading machine and is loaded
with a constant force of 5000N .

2. The torch, located at the starting position, is initiated with the selected
current and voltage.

3. The torch moves straight at the selected constant velocity while the spec-
imen is deformed with a deformation rate that augments linearly.

4. The torch arrives at the ending position, it is turned off, and the tensile
loading machine starts relaxing the deformation.

2.1.4 Instrumentation

As indicated previously, a great advantage of the PVR test is that it offers the
possibility of further instrumentation to obtain real-time data. In particular, the
experiments are instrumented with two homemade type-K thermocouples and filmed
with an SC7500 FLIR infrared camera. The infrared video will provide real-time
temperature measurements on part of the specimen’s surface. Whilst both sides of
the specimen have thermocouples, only the surface that is not being welded is filmed
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to avoid reflections from the welding arc and the robotic arm. Additionally, some of
the experiments were instrumented with stereo-correlation cameras.

Thermocouples

Thermocouples consist of two different electric conductors that measure an electric
temperature-dependent voltage that can be interpreted as a temperature measure-
ment. The thermocouples used at the welding lab are type K, which use two nickel
alloys, chromel and alumel, as conductors.

The thermocouples are manually welded to the specimen with a ceramic cover
to isolate them from the exterior. They are located close to the centre of the spec-
imen as indicated in Figure 2.3. The thermocouples measure temperature in 0.02
seconds intervals, i.e., with a frequency of 50Hz. The operating temperature range
is between −200◦C and 1370◦C. However, they are more accurate between 0◦C and
1100◦C according to the calibration curves in Figure 2.5, which was provided by the
manufacturer of our National Instruments NI 9213 thermocouple data acquisition
module.

Figure 2.5: Thermocouple measurement error. The use case for
PVR experiments is circled in red.

Infrared camera

An infrared camera is a device that produces images using light in the infrared range
(wavelengths between 1µm and 14µm). All objects with temperatures higher than
the absolute zero emit thermal radiation in different frequencies. This spectral
radiation is observable. Planck’s law allows to relate the monochromatic spectral
luminance (quantity of energy that is radiated) to temperature for a black body:

L(λ, T ) =
c1

λ5

1

exp
(
c2
λT

)
− 1

(2.2)

where c1 = 2hc2 and c2 = hc
k
are the first and second radiation constants respectively.

They are expressed in terms of three other physical constants: Planck’s constant h,
Boltzmann’s constant k and the speed of light c.

For non-black bodies, the luminance is somewhat reduced by the emissivity of
the material. The emissivity depends on the temperature, the wavelength and the
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angle of observation θ. It is defined as the ratio between an object’s luminance
L(λ, T, θ) and a black body’s luminance (L0(λ, T )):

ε(λ, T, θ) =
L(λ, T, θ)

L0(λ, T )
(2.3)

If the emissivity of the observed material is known, Planck’s law can be used
to deduce the temperature of an object. It is usually complicated to determine the
emissivity precisely. In order to avoid this problem, bichromatic systems observe a
scene for two wavelengths λ1 and λ2. This way, the temperature can be calculated,
by inversion, from the ratio between the two luminances L1 and L2:

L1

L2

=

(
λ1

λ2

)−5 exp
(

c2
λ2T

)
− 1

exp
(

c1
λ1T

)
− 1

(2.4)

The infrared camera at EDF’s welding lab is an SC7500 FLIR infrared camera
(see Figure 2.6, in blue). The resolution of the camera images is 320 × 256 pixels.
This camera uses a filter wheel with 8 slots that are used simultaneously to observe
a scene at different spectral bands, allowing to capture several temperature ranges.
According to the calibration, it is able to identify temperatures between −20◦C and
3000◦C. The filters can be used by pairs while analysing a scene with two spectral
bands. When all the filters are used, the maximum acquisition frequency is 383Hz.
The maximum per filter frequency is divided by 8.

The camera films the surface that is not being welded in order to avoid reflections
from the welding arc. The camera is fixed on top of a tripod and films a fixed area,
i.e., the video does not follow the torch.

Stereo-correlation cameras

Digital Image Correlation (DIC) is a technique that measures displacement with
a set of two cameras (see Figure 2.6, in red). The specimen needs to be painted
in black with white drops randomly distributed on its surface so that the cameras
can identify differences in the positions of the white drops. Figure 2.7 shows an
example of a painted sacrificial specimen after a PVR experiment. The paint is
temperature resistant up to 700 ◦C. The white points position’s differences are
measured according to a calibration scheme. Two cameras are needed to observe
depth and perform 3D analysis. The cameras used in the welding lab are two Pike F-
421 with a resolution of 2048×2048 and Schneider-Kreuznach precision lenses. They
operate with a maximum frame rate of 16 Hz at full resolution. In our experiments,
the cameras capture thousands of images with a frequency of 10Hz. These images
are later treated with specialised software such as Vic-3D or Vic-2D for 3D and 2D
analysis, respectively.

The data offered by the stereo-correlation cameras have not been exploited in
this document. Although the mechanical information obtained with these cameras
could be of great interest, treating the thousands of images requires a long time.
Exploration of such data and their use to validate the performances of a real-time
deviation detection tool for welding operations is postponed to further research.
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Figure 2.6: Two stereo correlation cameras (red) on top of the
infrared camera (blue).

2.2 PVR experimental campaign
Two different experimental campaigns were carried out at EDF’s welding lab. The
first one, which was used for most of the numerical tests in this document, was done
late in 2019 and involved a single PVR test. The second one, performed by the end
of 2021, involved a total of 6 PVR tests. Unfortunately, these last experiments took
place very late in the PhD due to Covid-related issues and could not be used for the
numerical tests. The following sections will discuss both campaigns.

2.2.1 2019 campaign

The first experimental campaign aimed at reproducing the results of a previous PhD
at EDF [160] with a different specimen geometry. As stated previously, the PVR
specimen had larger dimensions in that work. The same operational parameters
found in Giai Tran Van’s thesis [160] were used for this experiment: a heat source
speed of 2 mm/s, a current of 81 A and a voltage of 8.4 V . The maximum defor-
mation rate is 20 mm/min, or 0.333 mm/s. All the parameters are summed up in
Table 2.3.
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Figure 2.7: Painted sacrificial specimen after welding.

Table 2.3: PVR experiment parameter values.

Current 81 A
Voltage 8.4 V

Travel speed 2.00 mm/s
Shielding gas Argon

Maximal stroke rate 20 mm/min
Linear energy 340.2 J/mm

The experiment was instrumented with two type-K thermocouple positioned on
both sides of the specimen as indicated in Figure 2.3 and an infrared camera. The
camera films a portion of the specimen that is fixed during the entire experiment,
illustrated in Figure 2.9.
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Figure 2.8: Welded PVR specimen after the 2019 experiment.

Figure 2.9: Infrared camera image taken during the 2019 experi-
ment projected onto the FE mesh.

2.2.2 2021 campaign

The experiments in this campaign were divided into three sets according to the
linear energy transmitted to the specimen. The linear energy, measured in J/mm,
is:

El =
U · I
v

(2.5)

Considering the parameters of the first PVR campaign as the nominal energy
(340.2 J/mm), we chose two additional energy levels for the tests: one of them higher
than the nominal energy and another one lower. The low energy level is obtained
by reducing the current and the voltage, and augmenting the torch speed. The
high energy level is obtained by augmenting the current and the voltage. The used
parameters, shown in Table 2.4, were selected after testing the weldability in martyr
specimens. Two tests were carried out for each linear energy level configuration.

All tests were instrumented with two type-K thermocouple positioned, as in
the 2019 campaign, on both sides of the specimen as shown in Figure 2.3, and an
infrared camera. Additionally, the low energy tests were also instrumented with
stereo-correlation cameras. This configuration was the only one that ensured that
the paint would not burn. In order to allow both infrared and stereo-correlation
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Table 2.4: PVR experiment parameter values for each energy level.

Energy level Low Nominal High
Current 74 A 81 A 85 A
Voltage 8 V 8.4 V 10 V

Travel speed 2.50 mm/s 2.00 mm/s 2.00 mm/s
Shielding gas Argon Argon Argon

Maximal stroke rate 20 mm/min 20 mm/min 20 mm/min
Linear energy 236.8 J/mm 340.2 J/mm 425 J/mm

observations, only half the specimen is painted, as shown in Figure 2.10. This
makes it possible to analyse half of the specimen with the infrared camera without
the disturbance produced by the different emissivity of the painted surface.

Figure 2.10: Half-painted low energy specimen after welding.

The experiments are labelled according to the label that appears on the specimen
after fabrication. The specimens are numbered from 1 to 9. Table 2.5 details what
each specimen was used for, including the sacrificial specimens. The latter were used
to test the low and high energy configurations and verify the proper functioning of
the instrumentation.

The duration of each experiment is determined by the speed v and determined
by:

texp =
v

l
+ tini (2.6)

where l = 130 mm is the length of the weld line and tini = 2 s is the time needed to
initiate the torch.
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Table 2.5: Experiment labels, energy levels and total experiment
time.

Specimen number Energy level Total time
1 Nominal 67 s
2 Sacrificial –
3 Sacrificial –
4 Sacrificial –
5 Low 54 s
6 High 67 s
7 High 67 s
8 Low 54 s
9 Nominal 67 s

2.3 Digital twin of a PVR experiment
This section describes the creation of a digital twin of the above PVR experiment via
Finite Elements Analysis. First, the thermomechanical model is described, detailing
the equations, boundary conditions and initial conditions. A second subsection
presents the equivalent heat source model and its calibration, which is treated as an
optimisation problem between numerical and experimental data.

2.3.1 Thermomechanical model

Thermo-elasto-plasticity

Numerical simulation of welding is a complex problem, as it needs to consider a
significant number of parameters to represent multiscale and multiphysics phenom-
ena, using temperature-dependent material properties that are not always precisely
known. In the general context of welding simulations, the main phenomena that
have to be considered are the strong interactions between the thermal dynamics,
metallurgy and mechanics that occur in welding need to be simulated. These inter-
actions are briefly summed up in Figure 2.11, as described in [78]. More details on
the nature of these interactions can be found, for exemple, in [27] In the case of 316L
stainless steel, the metallurgic interactions are negligible [43], and thus, the model
is reduced to a weakly coupled non-linear parametric thermo-elasto-viscoplasticity
problem.

We consider a model of unsteady thermo-elasto-viscoplasticity over spatial do-
main Ω ∈ R3, whose boundary will be denoted by ∂Ω, and time domain T ∈ [0, T ].
For all (x, t) ∈ Ω× T , the unsteady heat equation reads as

ρcp
∂T

∂t
−∇ · k∇T = qd (2.7)

where T : Ω×T → R is the temperature field, ρ is the mass density, k is the thermal
diffusion coefficient, cp is the specific heat capacity, and qd is the volumetric source
term of the heat source.
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Figure 2.11: Interactions between temperature, metallurgy and me-
chanics in a welding process.

The above equation is complemented by the boundary condition:

T = T0 (2.8)

on domain boundary ∂Ω0∪∂Ωu (the clamping zones, as indicated in Figure 2.1), with
T0 = 20 the temperature of the room in which the experiment is carried out. The
other boundary condition for the heat problem is the radiation-convection, which is
active on the surface of the specimen as:

− k∇T · n = γ(T 4 − T 4
0 ) + ζ(T − T0) (2.9)

where γ is the radiation coefficient, and ζ is the thermal convection coefficient.
The entire specimen’s temperature is supposed to be equal to room temperature

at the beginning of the experiment, so the initial condition is set to:

T (x, 0) = T0 ∀x ∈ Ω (2.10)

Based on previous work on the simulation of PVR experiments [159], the selected
constitutive law used to describe the mechanical behaviour is the Chaboche elasto-
visco-plastic model [91, 21]. This law is described by the parameters presented in
Table 2.6.

For all (x, t) ∈ Ω× T , the mechanical equilibrium reads as

∇ · σ = 0 (2.11)

In the specimen of a PVR test, the traction boundary conditions are enforced
by Dirichlet boundary conditions:

u(x, t) = ud(x, t)
t

tw
∀x ∈ ∂Ωu (2.12)

on the part of the domain ∂Ωu, where the tensile loading machine applies the charge.
On the other side of the tensile loading machine, the clamping is enforced by:

u(x, t) = 0 ∀x ∈ ∂Ω0 (2.13)
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These boundary conditions are complemented by:

σ · n = 0 (2.14)

on the rest of the specimen’s surface.
The coupled thermo-mechnical problem is closed by the following constitutive

relation:

σ = C :
(
ε(u)− εp − αth(T − T0)Id

)
(2.15)

where ε(u) := 1
2

(
∇u+∇uT

)
is the total strain, εp is the plastic strain, and αth(T −

T0)Id is the thermal strain, with αth the coefficient of thermal expansion and Id
the identity tensor. The plastic strain is fully determined by a Von Mises plasticity
model with isotropic and kinematic hardening [91].

f(σ,R(p), X) :=

√
3

2
(σ̃ −X) : (σ̃ −X)−R(p) ≤ 0 (2.16)

ε̇p = λ
df

dσ
(2.17)

ṗ = λ
dR

dp
(2.18)

R(p) = R∞ + (R0 −R∞)e−bp (2.19)

X =
2

3
C(p)α (2.20)

α̇ = ε̇p − γ(p)αṗ (2.21)

γ(p) = γ0 (2.22)

C(p) = C∞ (2.23)

λ ≥ 0 λf(σ) = 0 (2.24)

where X is the kinematic hardening tensor and R(p) is the isotropic part of the
hardening and is determined by R0 and R∞, which denote the yield stress (expressed
in MPa) without cumulative plastic deformation and with infinite cumulative plastic
deformation, respectively. λ is the plastic multiplier and σ̃ = σ − 1

3
Tr(σ)Id is the

deviatoric part of the stress tensor.
The main mechanical quantity of interest in the present work is the first principal

stress, denoted by σI and computed from the stress tensor σ as:

σI = max
n∈R3

n · σ · n
||n||2 (2.25)

The first principal stress is the highest principal stress that appears in the same
direction as the weld.
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Table 2.6: Temperature dependent parameters of the elasto-visco-
plastic Chaboche model.

T (C◦) R0 (MPa) R∞ (MPa) b K N C∞ (MPa) γ0
20 60 80 8 151 24 3× 104 350
600 10 79.4 8 150 12 2× 104 300
775 9.2 19.8 16.5 179 12.8 8.12× 103 279
850 2.4 15.8 22.5 298 7.06 1324 154
1000 1 0.2 7.97 192 5.25 244.6 26.3
1150 0.2 0.1 7.97 111 4.98 0 26.3
1250 0.1 0.1 7.97 70 4.91 0 26.3

Thermomechanical load

A volumetric equivalent heat source model is introduced into the heat equation in
order to simulate the heat transfer between the torch and the specimen. The choice
of a model for the moving heat source is crucial in the numerical simulation of
welding. The most commonly used one is Goldak’s double ellipsoid model [61, 60],
represented in Figure 2.12.

Notice that, as a result of the advancement of the torch, the heat distribution is
different in the front and the rear of the heat source; thus, the model depends on
the current central position of the heat source P (t) = (X(t), Y (t), Z(t)) ∈ R3, which
is given by:

P (t) = P0 +

(
t · v

(PF − P0)
− εP (t)

)
(PF − P0) (2.26)

In the equation above, P0 ∈ R3 is the position of the heat source at the start
of the welding operation, and PF ∈ R3 is the position at the end of the operation.
Tsimu = (PF−P0)

v
corresponds to the total welding time, which depends linearly on the

velocity v of the source. εP (t) is a slight (nondimensional) time delay that accounts
for potential errors in the control of the welding robot and will be estimated online.
This model considers the velocity constant during the whole experiment, which is
realistic in the case of a robotic arm. However, it can be easily modified for variable
velocity.

Assuming that the heat source moves in the direction x, the final equation is

q(x, y, z, t) =


12
√

3ηQ

(ar+af )bc
√
π3
exp

(
−3(x−X)2

a2
f

+ −3(y−Y )2

b2
+ −3(z−Z)2

c2

)
, x ≥ X.

12
√

3ηQ

(ar+af )bc
√
π3
exp

(
−3(x−X)2

a2
r

+ −3(y−Y )2

b2
+ −3(z−Z)2

c2

)
, x < X.

(2.27)
where ar, af , b and c are unknown parameters describing the geometry of the double
ellipsoid, Q = UI is the power, with U the voltage, I the current and η the efficiency.
X, Y and Z correspond in this equation to the current position of the heat source,
P (t). The equation depends on the position of a point (x, y, z) ∈ Ω at time t with
respect to the current torch position, given by P (t) = (X, Y, Z).
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Figure 2.12: Goldak’s double ellipsoid model.

Space and time discretization

The mesh used for the simulations is a quadratic mesh and it can be observed on
Figure 2.13. It contains 104101 nodes. The different levels of mesh refinement in
the centre of the specimen to adequately capture the heat evolution around the weld
line. The refinement can be observed in Figure 2.13. The specimen is symmetrical,
which means that only half of the specimen could have been modelled. Instead, we
decided to represent the entire specimen so that more experimental data from the
infrared camera could be projected onto the mesh.

Figure 2.13: PVR mesh.

The resolution of the thermo-mechanical problem presented in the previous sec-
tion is done using the Finite Elements Method. A detailed description of the method
and the steps needed to obtain the weak formulation of the problem from the phys-
ical equations can be found in general Finite Elements books such as [48, 14]. For
details on the implementation in code_aster, EDF’s open-source thermo-mechanical
Finite Elements software, we refer to its documentation [1].

2.3.2 Design of experiment

The previous sections presented the parameters of the PVR experiment and the
numerical model. The PVR experiment can be determined by the operational pa-
rameters related to the welding torch: speed (v) and power (Q). Let us remind
that the maximum displacement rate could also be an operational parameter, but
it is fixed for all the experiments, so it is discarded. Goldak’s equivalent heat source
model introduces five more parameters relative to the geometry of the double ellip-
soid and the efficiency: af , ar, b, c, and η. In practice, we will calibrate the following
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parameters: af , b, c, η, and K, where K = ar
af

is the ratio between the front and
rear lengths of the ellipsoid.

For the data assimilation applications presented in future chapters, these pa-
rameters are divided into two separate groups: the known parameters µ = (v,Q) ∈
M ⊂ R2 and the unknown parameters θ = (af , b, c, η,K) ∈ Θ ⊂ R5. Thus, the
parameter space P can be defined as the product of two distinct blocsM and Θ:

P =M×Θ ⊂ R7 (2.28)

The parameter values are bounded by welding experts. Determining the possible
values for the operational parameters µ is no easy task. The experts need to find
a combination that ensures weldability but does not pierce the specimen, often
by testing the parameters on sacrificial specimens. Numerically, the operational
parameter bounds are depicted in Table 2.7.

Table 2.7: Minimum and maximum values for the PVR operational
known parameters µ.

Minimum value Maximum value
Current 70 A 90 A
Voltage 8 V 12 V
Power 560 W 1080 W
Speed 1 mm/s 3 mm/s

The unknown parameters θ are also bounded by experts. The selected values
are shown in Figure 2.8. This allows to define more precisely the parameter space
P . As a result,M and Θ now read:

M = [1.0, 3.0]× [560, 1080] ⊂ R2 (2.29)
Θ = [3, 12]× [1, 7]× [0.5, 3]× [0.75, 0.95]× [1.15, 2.5] ⊂ R5 (2.30)

Table 2.8: Minimum and maximum values for the unknown param-
eters θ, as determined by the experts.

af b c η K

Min. value 3 mm 1 mm 0.5 mm 0.75 1.15
Max. value 12 mm 7 mm 3 mm 0.95 2.5

Considering the boundaries of each parameter value given in Table 2.7 and Table
2.8, all parameters are supposed to follow a uniform distribution between their
extreme values:
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v ∼ U(1, 3) (2.31a)
Q ∼ U(560, 1080) (2.31b)
af ∼ U(3, 12) (2.31c)
b ∼ U(1, 7) (2.31d)
c ∼ U(0.5, 3) (2.31e)
η ∼ U(0.75, 0.95) (2.31f)
K ∼ U(1.15, 2.5) (2.31g)

The parameter space P can be explored using one of many Desing of Experiments
(DOE) techniques such as Latin Hypercube Sampling [52] (LHS) or low discrepancy
methods [87]. The simulations cannot be calibrated individually because of the lack
of experiments for every single combination of parameters. The DOE has to be
performed on a joint uniform distribution calculated from Equations (2.31).

2.3.3 Calibration of Goldak’s model

The unknown parameter values of Goldak’s equivalent heat source model need to be
calibrated before simulating a welding experiment. Mistakes in the values of these
parameters lead to vastly different heat distributions in the specimen (see Figure 2.14
in the following section for an example of 400 temperature trajectories computed
with 400 different parameter values). The mechanical behaviour depends strongly on
the current temperature of the metal, and it cannot be correctly estimated without
proper modelling of the heat source.

In some research work, the equivalent heat source’s parameters are estimated by
measuring the weld pool, as recommended by Goldak [60]. EDF’s usual practice
is to calibrate the equivalent heat source involved in the FE models with thermo-
couple experimental data. Calibrating the simulations is meant to ensure a better
correspondence between experimental and simulation data. The calibration is pre-
sented as a least-squares optimisation problem between the thermocouple data and
temperature data extracted from simulations. In particular, we have heeded the
following procedure to calibrate the simulation of PVR experiments realised at the
laboratory.

In order to calibrate the parameters, we will minimise the discrepancy between
the experimental thermocouple measurements and the output of a Finite Elements
model which depends on θ and is evaluated at the same position as the thermocou-
ple. The thermocouple data is considered the true value of the temperature and is
represented by the vector Tth. The dimension of Tth depends on the amount of time
the thermocouple has been active and the acquisition frequency. To simplify this
issue, the thermocouple data is systematically resampled to represent the same Nt

time steps as the simulations. Thus, Tth ∈ RNt and the minimisation problem is
between two vectors of the same dimension:

θ∗ = arg min
θ∈Θ

||Tth − T (θ)||2 (2.32)
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where || · ||2 is the euclidean distance, Θ is the parameter space defined in Equation
(2.30) and T (θ) ∈ RNt is a vector containing the output of the Finite Elements
model at the desired position.

The resolution of this problem involves repeated calls to the Finite Elements
model, which would be highly costly. Using surrogate models is a way to avoid
this particular problem. Here, the output of the Finite Elements simulation is
approximated by a Polynomial Chaos Expansion (PCE) [26, 153]. PCE is a re-
gression method based on spectral decomposition of L2 functions. Let us assume
that one such function, h, is the output of interest which depends random variables
X = (X1, X2, . . . , XN). PCE uses a basis of orthonormal polynomials {ψj(X)}j∈N
on a Hilbert space to represent the output of h. The PCE is written:

h(X) =
∑
j∈N

yjψj(X) (2.33)

which is truncated to a finite set J ⊂ N:

h(X) =
∑
j∈J

yjψj(X) (2.34)

where yj are coefficients that characterize the output of h(X) and which need to
be estimated using simulation data.

In our case, the output corresponds to the temperature trajectories resulting
from a FE simulation T (θ), which depend on θ. A function f will describe the
behaviour of the trajectories as a series of polynomials. Following the notation in
Equation (2.34), the surrogate model is:

T (θ) ≈ f(θ) =
∑
j∈J

yjψj(θ) (2.35)

The PCE needs the simulation parameters θ as input. In order to cover the entire
θ-space, the first step is to define a design of experiment. Considering the boundaries
of each parameter value given in Table 2.8, all parameters are supposed to follow a
uniform distribution between their extreme values, as presented in Equation (2.31).
Using LHS, M = 400 vectors θ1, θ2, . . . θM are sampled. A whole heat simulation is
computed for each sample setting the operational parameters as v = 2.0mm/s and
Q = 850W , which corresponds to the high energy configuration of the experiment.
The temperature values at the thermocouple position are extracted for all time
steps, yielding a total of M temperature trajectories T (θ1), T (θ2), . . . T (θM) where
each T (θi) is a vector of dimension Nt. More details on how the simulations are
carried out are given in the next section.

The resulting surrogate model might have a large dimension if the simulation
is computed for many time steps. To simplify the problem, the dimensionality
of the data can be reduced by a standard Singular Value Decomposition (SVD)
performed on a matrix containing temperature trajectories computed via Finite
Elements simulation for different θ values. The trajectories are stored in a matrix
S containing the M trajectories:

S = [T (θ1), T (θ2), . . . T (θNt)] ∈ RNt×M (2.36)
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where each line is one of the trajectories. The SVD reads

S = V ΛW T (2.37)

Selecting the reduced dimension l < Nt is always a key when applying dimen-
sionality reduction. Here it is chosen to represent at least 95% of the variance. The
variance ratio, or sometimes called energy ratio [166], measures how much of the
variance (or energy) is explained by the selected modes with respect to the total
variance. 95% of variance corresponds to a ratio of E(l) = 0.95, where E(l) is:

E(l) =

l∑
i=1

λi

Nt∑
i=1

λi

(2.38)

where λi are the singular values ordered from largest to smallest. The tempera-
ture trajectories are projected into the p-dimensional space in order to obtain their
reduced representation:

T̃ (θ) = V T
p T (θ) (2.39)

where Vp is a matrix composed of the first p singular vectors. In order to quantify
the performance of the dimensionality reduction, the relative reconstruction error of
S, the matrix containing the M trajectories, can be computed as:

er =
||S − Vp(V T

p S)||2
||S||2

(2.40)

where || · ||2 denotes the euclidean norm.
After the dimensionality reduction, the output of the surrogate model is a p-

dimensional vector. The PCE will now be a function f̃ : Θ ⊂ R5 → Rp that
approximates the reduced temperature trajectories :

T̃ (θ) ≈ f̃(θ) =
∑
j∈J

yjψj(θ) (2.41)

where p is the first reduced dimension such that E(p) ≥ 0.95. The predictivity factor
Q2 of the PCE can be used as an estimator of the performance of the surrogate
model. The Q2 score is the classic R2 score applied to the prediction residuals [107].
It is given by:

Q2 = 1−

N∑
i=1

(
T̃ (θi)− f̃(θi)

)2

N · V ar(T̃ (θ))
(2.42)

The optimisation problem is reduced to the minimisation of the distance between
two vectors of dimension p. Indeed, the experimental data can also be projected onto
the reduced dimension space. The p-dimensional representation of the experimental
data is written T pth. The final optimisation problem is:
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θ∗ = arg min
θ∈Θ

||T pth − f̃(θ)||2 (2.43)

A standard BFGS algorithm [116] is used to solve the problem.

Example of calibration

This section shows the calibration process on one of the experiments of the 2021
campaign, in particular specimen number 6. According to Table 2.5, Test number
6 is a high energy test.

Latin Hypercube Sampling is used to sample M = 400 θ vectors θ1, θ2, . . . θ400.
The 400 hundred temperature trajectories T (θ1), T (θ2), . . . T (θ400) are obtained from
a simulation with Nt = 260 times steps. Thus, each T (θi) is a vector of dimension
260. We remind that the position of the thermocouple in this case is 110 mm from
the bottom and 6 mm to the right of the specimen’s centre (see Figure 2.3). These
400 trajectories are shown in Figure 2.14, where it is clear that θ has a significant
influence on the temperature profile in the simulation.
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Figure 2.14: Temperature values at the thermocouple position for
400 samples of θ.

With the SVD, the dimension of the data can be reduced to p = 2, which
corresponds to 96% of the variance, as seen in Fig 2.15. The reconstruction error,
presented in Equation (2.40), of S is 2.24% whilst the reconstruction error of the
thermocouple’s data is 3.61%.

The surrogate model links a vector θ with the 2-dimensional representation of
the temperature trajectories. To construct the PCE, the data is randomly divided
into a training set with 80% of the data and a testing set with 20%. The surrogate
model is computed using the Open TURNS library [20], which is developed at EDF
R&D. According to Equation (2.31), the distribution of each element of θ is uniform.
Thus the polynomials used for the PCE are Legendre polynomials [26].

The finalQ2 prediction score of the surrogate model is excellent, as it is extremely
close to 1:
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Figure 2.15: Explained variance per number of modes in SVD.

Q2 = 0.99995 (2.44)

The surrogate model can be used for further Uncertainty Quantification (UQ).
For example, to compute Sobol Indices [145] to determine the most influential pa-
rameters. These additional studies are out of scope for this chapter and thus will not
be treated. The surrogate model is then used for the resolution of the minimisation
problem formulated in Equation (2.43). We have used a BFGS algorithm [116] with
multiple start points in order to converge towards the solution. The convergence of
the optimisation problem allowed to identify the following Goldak’s parameters:

θ = (5.69, 5.24, 2.71, 0.95, 1.99) (2.45)
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Figure 2.16: Thermocouple and surrogate model result for the op-
timal θ.
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These parameters have been used to simulate the high energy experiment of the
2021 campaign. The surrogate model applied on the optimal θ is shown in Figure
2.16, which is very close to the thermocouple time series. Indeed, the relative L2

error between these curves is 2.94% and the relative L∞ error is 4.17%.

Calibration methodology

The following list summarises the main steps of the heat source calibration:

Calibration methodology

1 Design of Experiment for an adequate exploration of the parameter space.

2 Simulate a large number of cases and extract the temperature trajectories
at the thermocouple position.

3 Compute an SVD to reduce the dimension of the problem.

4 Create a surrogate model that mimics the temperature trajectories pro-
duced by simulation.

5 Minimise the distance between the thermocouple and the output of the
surrogate model to find the optimal parameters.

2.4 Parametric study of a PVR experiment
This section describes the generation of a numerical database from a parametric
study of a PVR experiment.

2.4.1 Design of Experiment

The objective of the parametric study is to represent a large variety of parametric
solutions to the thermo-mechanical problem in order to create reduced local bases
capable of representing them. A total of 128 samples are obtained by using LHS on a
joint uniform distribution that includes the random variables described in Equations
(2.31).

2.4.2 Simulation

The simulations are run on a scientific cluster with code_aster, EDF’s open-source
thermomechanical FE software [47]. As said previously, numerical simulation of
welding with 316L steel can be treated as a weakly coupled heat and mechanical
problem where the heat problem is solved first, and the result is used as input for
the mechanical problem.

The simulations run for Nt = 260 time steps that vary with the speed. In all
cases the welding line is 130mm long, which means that for each time increase ∆t
the torch has advanced 0.5mm. The time grid is:
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T̄ = {t0 = 0, t1 = ∆t, t2 = 2∆t, ... tNt = Nt∆t} (2.46)

where ∆t depends on the speed v:

∆t =
(PF − P0)

Ntv
(2.47)

The final results are, thus, computed with a different ∆t for each speed value,
but the stored data always refers to the same positions of the torch’s advance, which
will be of crucial importance in the following chapter.

Table 2.9 presents the average computation time of the thermo-mechanical sim-
ulations, separated into the thermal and mechanical steps of the weakly coupled
problem:

Table 2.9: Number of CPUs and average computation time of the
simulations.

Number of CPUs Average computation time
Heat problem 8 1 h 50 min

Mechanical problem 48 7 h 56 min

2.4.3 Results

The parametric study results in a large simulation database of temperature and
mechanical fields that will be used in the following chapters. Figures 2.17 and
2.18 present examples of the calibrated simulations of the 2019 experiment. The
temperature simulation (2.17) shows the progression of the welding torch, located
in the centre of the specimen. Figure 2.19 displays the predicted molten zone on the
PVR specimen’s cross-section, corresponding to the same snapshot.

A usual analysis of PVR experiments is the comparison of the force/displacement
profiles [160]. Using the experimental data obtained in the 2021 campaign, Figure
2.20 shows the comparison between the simulations and the machine results. Despite
using the same model (and software) presented by Tran Van in [160], the experi-
mental and simulated profiles do not coincide. The only difference between Tran
Van’s case and the one presented in this PhD is the size of the specimen, which has
been shortened from 260 mm to 200 mm. The discrepancy between the experimen-
tal and simulated data was identified after finishing the 2021 campaign. The main
reason that explains why this constitutive law might not work as intended might be
the existing fitted implementation of the law in code_aster. Fitting the Chaboche
constitutive behaviour is a difficult task that needs monotonic or cyclic thermo-
mechanical experimental data [152], and the fitted implementation in code_aster
might not be well-suited for PVR experiment’s simulations. Not being the main ob-
jective of the PhD and after having spent some time searching for possible solutions
without success, it was decided to keep using this model and show the results as
they are. This is an opportunity to point out the dependence between the ability
of the FE models to correctly represent the problem’s physics and the accuracy of
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the results for the data assimilation approaches presented in the following chapters.
Especially in the current case, where no observations of the mechanical fields are
made.

Figure 2.17: Snapshot of a temperature calibrated simulation of
the 2019 experiment.

Figure 2.18: Snapshot of a principal stress field of a calibrated
simulation of the 2019 experiment.
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Figure 2.19: Cross-section view of the molten zone of a temperature
snapshot of the 2019 experiment.
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Figure 2.20: Force/displacement simulation and experimental pro-
files of the 3 energy levels.

2.4.4 Dimension and size of the generated data

Let us underline the dimensions of the involved DOE and the size of the saved files.
The DOE contains 128 simulations. For each, the computational domain contains
104101 spatial nodes and 260 time steps. The simulation output is made of two
result files, one for the heat problem and another one for the mechanical problem.
Each heat solution file is 844Mb and each mechanical solution file is 33Gb. The
whole parametrical study occupies more than 4Tb.

Not all the data generated during the simulations are needed for the inverse
problems applications explained in future chapters. For an efficient treatment of the
data, only the desired fields are stored and compressed in HDF5 [157] containers,
that allow for high-speed access and reduced storage space. This way, only saving
temperature and nodal stress (the projection from the Gauss integration points to
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the nodes), the heat solution files only occupy, on average, 126Mb and the mechan-
ical results occupy, on average, 2.9Gb.

2.5 Merging experimental and simulation data
This chapter has explained the experiments that were carried out during the PhD
and how to create their high-fidelity digital twins. All the generated data will be
used as input for a data assimilation problem or to generate models in future chap-
ters. However, the interaction between simulation and experimental data requires
some additional treatment. This last section shows two particular instances of this
treatment: estimating the infrared camera’s measurement error and the projection
of experimental data to the Finite Elements mesh.

2.5.1 Estimating the infrared camera measurement error

Determining the measurement error of the camera is of the most importance for the
data assimilation problem that will be presented in the following chapter. The actual
temperature cannot be measured without noise, neither with the thermocouples nor
the camera. The camera manufacturer gives a measurement error estimated on
a black body calibrator. However, without accurate knowledge of the specimen
material’s emissivity, this error is not applicable to our situation. Our proposal is
to estimate the measurement error of the camera as the discrepancy between both
sources of experimental data.

The camera measures temperature on a surface whilst the thermocouple offer
a punctual measurement. The first step consists of identifying the thermocouple
measurement point on the image and extracting the temperature over time. Figure
2.21 shows both measurements obtained from the 2019 experiment. One can observe
that the measurements are quite similar for both instruments for temperatures above
300◦C. The exception is a slight peak at the beginning of the cooling phase that
can be attributed to a reflection that creates a visual artefact, which is interpreted
as a higher temperature.

0 50 100 150 200 250
Time(s)

0

200

400

600

800

Te
m

pe
ra

tu
re

 (°
C)

Thermocouple
Camera

Figure 2.21: Temperature measures taken with a thermocouple and
an infrared camera obtained from the 2019 experiment.
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Both curves are resampled to take into account the different acquisition times.
All temperatures below 400◦C are discarded for the analysis because the camera is
not calibrated to measure in that temperature range correctly. The absolute error
between both measurements is stored in a variable η:

η = Tcam − Tthermo (2.48)

where Tcam and Tthermo are the temperature values measured with the camera and
thermocouple, respectively. The time series η is plotted in Figure 2.22.

The measurement error is estimated as the variance of η, which corresponds
to a standard deviation of about 18◦C for the 2019 experiment. A more robust
estimation of the error between the camera and the thermocouples requires more
experimental data. However, when the measurement error was calculated, only the
2019 experiment was available.
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Figure 2.22: Difference between camera and thermocouple data
over time.

2.5.2 Projection of the infrared camera data into the FE
mesh

The methods presented in the following chapters rely on using the infrared images
in conjunction with the Finite Elements solutions obtained in the parametric study.
The raw images from the camera are expressed in Digital Level signals, a value
between 0 and 16000 that represents the luminance going through the filters. The
digital level can be transformed into temperature using the software provided by the
manufacturer.

Instead of using this software, two of the paired filters are selected, and the raw
data is converted into temperature using Planck’s law, as seen in Equation (2.4).
This allows for a faster and automatised analysis of the images in the same Python
environment, which should be helpful for on-the-fly analysis of infrared images and,
thus, the estimation of temperature and stress fields. The code that accesses the
raw data and transforms it to temperature was developed in collaboration with
Théo Boutin for his PhD on the detection of abnormal behaviour in welding [28],
and tested on the 2019 PVR experiment and a test case for Sami Hilal’s PhD [74].
The overall approach and results are detailed in an internal report [29].
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Figure 2.23: Raw infrared video frame. Colours represent Digital
Levels.

Once the data has been transformed into temperatures, it has to be projected
onto the Finite Elements mesh. We will use an intermediate mesh with the same
dimensions as the image. This requires the translation of distances in pixels dp into
distances in millimetres dm. The relationship between pixel and millimetre distances
is calculated using an easily identifiable and known feature of the specimen, for
example, its width. The width of the specimen is 40 mm, and it is easily separated
from the background, as seen in Figure 2.23. Thus, the ratio r between distance in
pixels and millimetres reads:

r =
dm
dp

(2.49)

The intermediate virtual mesh is a regular grid created with the same dimensions
as the image. This allows to recreate the image in the same referential as the FE
mesh, which can be seen in Figure 2.24. As a consequence, the intermediate and PVR
meshes lie in the same space, therefore they can be aligned by using a reference point.
In this approach, the starting point of the weld is usually selected as the reference
point because it is easily identifiable on the infrared images, being the point that
lights up when the torch is turned on. Figure 2.25 shows the intermediate mesh on
top of the PVR mesh, which is represented by its wireframes.

The temperature field is assigned to the PVRmesh by evaluating the temperature
field on the coordinates of the PVR mesh’s nodes. This results on a temperature
field assigned exclusively on the observed area, shown in Figure 2.26.
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Figure 2.24: Temperature values on the intermediate mesh. Exam-
ple obtained from specimen 9 of the 2021 campaign.

Figure 2.25: Superposition of the intermediate and the PVR
meshes. Example obtained from specimen 9 of the 2021 campaign.
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Figure 2.26: Infrared temperature values on the PVR mesh. Ex-
ample obtained from specimen 9 of the 2021 campaign.

2.6 Conclusion
This chapter has presented the PVR experiments realised at EDF R&D and how
to create their digital twins. Although the objective of the PhD is not to study hot
cracking issues, the PVR experiments are a practical use case for data assimilation
problems in welding. Indeed, a great variety of instrumentation can be deployed
during the experiments in order to obtain experimental data. Such data have been
obtained from three different sources: thermocouples, infrared cameras and stereo-
correlation cameras. The main advantage of the PVR experiment with respect to
industrial welding operations is its ability to control parameters while using the
same material and process.

Two PVR experimental campaigns were carried out at EDF R&D welding lab.
The different operational parameters were introduced and discussed. The exper-
imental configuration and the instrumentation of each experiment were also pre-
sented.

Simulation-based digital twining depends on many external factors that are not
well controlled, such as material properties and modelisation. The calibration of the
equivalent heat source model is a critical step in the numerical simulation of welding
for an optimal correspondence between the results and the experimental data. The
calibration procedure involves the resolution of an optimisation problem. A batch
of 400 simulations is computed in order to generate a Polynomial Chaos surrogate
model that mimics temperature trajectories. Dimensionality reduction is used to
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simplify the construction of the surrogate models. The surrogate model is then used
to generate a larger number of temperature trajectories.

The parametrical study of the PVR experiment is the basis for the offline-online
approach presented in the next chapter. With a very refined mesh as the one used
for these studies, the dimension of the temperature and mechanical fields is very
large. Dealing with large amounts of data is a challenge in itself, especially when
the goal is to obtain results in real time.

The data assimilation problem that will be tackled in the following chapters
requires the interaction between the simulation and experimental data, in particular,
the infrared images. We have shown a custom-made method that allows to extract
temperature values from luminance levels on the infrared image and the projection of
the infrared images onto the FE mesh. The measurement error of the camera needs
to be estimated. Indeed, the experimental configuration of the PVR experiment is
such that the measurement error given by the manufacturer is not applicable. An
estimation of this error as the variance of the difference between two time series has
been presented in this chapter.
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Chapter 3

Local Probabilistic PCA surrogate
models

Abstract:

This chapter will present our offline-online approach to solving a welding
data assimilation problem where not all the desired objective quantities
are observable. Here, most observable data are obtained by an infrared
camera. First, we will introduce the “truth” inverse problem that we aim
to solve and present the infeasibility of its resolution in real time. The
following section will explain the offline stage of the approach: detailing
the construction of the local multiphysics Probabilistic PCA model and
how to obtain them from a Finite Elements parametric study. Then, we
will show how to solve the new reduced data assimilation problems in
real-time using Bayesian inversion and focusing on the hurdles we need
to overcome: the fast computation of the posterior distribution and the
identification of the adequate model. A brief section will introduce the
notion of forecasting with these local models. Finally, we will show some
numerical results on the PVR experimental case.

The contents of this chapter were adapted from an article published in
2021 [122].

Résumé :

Ce chapitre présente une approche offline-online pour résoudre un prob-
lème d’assimilation de données en soudage où une partie des quantités
d’intérêt ne sont pas observables. Ici, la plupart des données observ-
ables sont obtenues à l’aide d’une caméra infrarouge. Premièrement, on
introduira le “vrai” problème inverse que l’on essaie de résoudre et on
montrera pourquoi sa résolution en temps réel n’est pas faisable. La
section suivante traitera la partie offline de notre approche en détaillant
la construction d’un modèle local d’Analyse en Composantes Principales
Probabiliste (ACPP) multiphysique à partir d’une étude paramétrique
par Éléments Finis. Puis, on montrera comment résoudre les problèmes
réduits d’assimilation de données en temps réel par inversion Bayésienne,
en se concentrant sur les principaux verrous techniques : le calcul rapide
de la distribution postérieure et l’identification du bon modèle à utiliser.
Une brève section introduira, en suite, la notion de la prévision d’instants
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futurs et comment le réaliser avec ces modèles. Finalement, on montrera
des résultats de tests numériques sur le cas test expérimental PVR.

Le contenu de ce chapitre a été adapté à partir d’un article publié en
2021 [122].
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3.1 Truth inverse problem
As we saw in Chapter 1, real-time quality control of welding operations would be a
game-changer for the nuclear industry. Some welding defects can be identified using
temperature and mechanical criteria [160]. In most cases, the mechanical fields are
not observable during the welding operation. Other physical quantities might be
observable but do not give enough information to describe the state of the welding.
One such quantity is temperature, which can be measured with thermocouples and
infrared cameras.

Numerical simulation of welding is a powerful tool that could give access to the
desired fields, such as stress and strain, but the complexity of the thermomechanical
models makes digital twining unfit for real-time estimation. The use of Model Order
Reduction (MOR) techniques such as the hyper-reduction method[140, 141, 45,
176, 37] would be helpful, but it does not solve the problem of identifying the
problem parameters on the fly from an observable physical quantity. This section
will introduce the parametrised probabilistic setting of the problem. Then, the
inverse problem will be formulated, and its resolution will be discussed.

3.1.1 Parametrised probabilistic setting

In Chapter 2, the simulation and experimental data were presented. We saw that the
thermomechanical Finite Element models are heavily parametrised, including ther-
mal and mechanical temperature-dependent parameters, operational parameters,
boundary conditions, and the volumetric equivalent heat source model. Correctly
identifying these parameters is necessary because they introduce uncertainty into
the model.

The three main operational parameters, the heat source’s velocity (v), voltage U ,
and current (I), are supposed to be controlled with a reasonable degree of accuracy.
Those are the input settings of the robotic arm and are called, from now on, the
known parameters µ. Usually, U and I are presented together as the heat source
power Q = UI. The mechanical load ud is also well controlled during the experimen-
tal procedure. However, it will not be considered as one of the known parameters
because none of the experiments realised at the welding lab changed the tensile load
ud and is, thus, fixed in all the simulations. In order to build the “truth" digital
twin, we further assume that the thermal capacity and diffusivity of the material are
well characterised. The mechanical behaviour of the structure (thermal expansion,
elasticity and plasticity) are also assumed to be well characterised, qualitatively and
quantitatively. These assumptions are consistent with EDF’s decades of experience
in modelling, characterising and simulating such welding processes. Finally, the
thermal and mechanical boundary conditions are reasonably well quantified in our
experimental setting.

However, several sources of uncertainties negatively affect the predictive capa-
bilities of the simulation model. These sources are listed below:

• the position P of the centre of the heat source is not perfectly well known
at all times. This lack of knowledge is represented by a random variable
εP of unknown distribution (see equation (3.2)). It is a source of epistemic
uncertainty.
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• the spatial distribution of the equivalent heat source is not known with pre-
cision. We surmise that the main contribution to the overall uncertainty of
the model is the spatial length-scale of the Goldak model. More details on
the Goldak model are given in the previous chapter, but we remind that these
parameters are :

– af : the front half of the ellipsoid.

– b: the half-width of the ellipsoid.

– c: the depth of the ellipsoid.

– η: the efficiency of the heat source.

– K: the relationship between the rear and the front of the ellipsoid
(
K = ar

af

)
.

Therefore, the parameter space P =M×Θ space comprises two distinct blocks.
The first block is formed by the set of known parameters µ = {v,Q} ∈ M,
which will vary from one welding operation to the next, but can be controlled
with precision. The other block is the set of unknown Goldak model parameters
θ = {af , b, c, η,K, } ∈ Θ , which are endowed with a probability distribution θ ∼ pθ
that encodes the prior knowledge available about these parameters.

We remind that the unknown parameters are usually calibrated before simulating
an experiment and that experts give their minimum and maximum values. If no
further information is provided, pθ is considered a uniform distribution between the
extreme values.

There is one additional source of uncertainty, which does not depend on the
parameters. Indeed, any measurement of the welding procedure is noisy, and this
noise has to be modelled with a probability distribution whose parameters are di-
rectly determined by the sensor that generates the data.

3.1.2 “Truth" online Bayesian conditioning

Before introducing the inverse problem, let us remind that data will be assimilated
at homogeneously distributed times T̄ = {t0 = 0, t1 = ∆t, t2 = 2∆t, ... tNt = Nt∆t}.
The assimilation time step ∆t is adjusted so that the number of assimilation steps
Nt is the same for all simulations, independently of the velocity v of the heat source,

∆t =
(PF − P0)

Ntv
(3.1)

where PF and P0 are, respectively, the final and starting positions. In general, the
position at time t is given by:

P (t) = P0 +

(
tv

(PF − P0)
− εP (t)

)
(PF − P0) (3.2)

Online at time tk ∈ T̄ , we assume that surface temperatures are measured noisily
(i.e. with the infrared camera). Let us introduce NH the nodes of the mesh that
cover the surface observerd by the infrared camera (see Chapter 2, Figure 2.9 for
more details). The observed data, dk ∈ RNH is written :
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dk = HT k(θ, µ) + εkM (3.3)

where H is a fixed Boolean operator acting on the vector of finite element tempera-
ture nodal values T k at time step k, for the parameters µ and θ. The additive mea-
surement noise is supposed to be zero-mean Gaussian distributed εM ∼ N (0,ΣM =
σ2
MINH ). The sources of the temperature measurement uncertainty are varied and

might include light reflections or lack of knowledge of material parameters like the
emissivity at different temperatures, see [77] for a discussion on that topic. The
measure error parameter σ2

M is calibrated empirically comparing the measure from
two sensors available in EDF’s welding lab, as shown in Chapter 2, Section 2.5.

The objective is to identify the unknown parameter values θ that best describe
the observed data at a given time tk, for a noisy observation dk:

p(θ|dk,dk−1, · · · ,d0, µ) (3.4)

where we consider a sequence of data.
Assuming that the successive noise vectors {εk}k∈[0,...,Nt] are independent, the

statistical inverse problem to be solved online is the following:
At time tk ∈ T̄ , the posterior distribution of unknown parameters given the past

measurements is

p(θ|dk,dk−1, · · · ,d0, µ) ∝ Πk′≤kLk
′
(θ;dk

′
)pθ(θ) (3.5)

where Lk′(θ;dk′) is the likelihood function. The measurement error is considered
Gaussian. The likelihood of the observation writes:

∀k′ ≤ k Lk′(θ;dk′) = exp
(
−1

2
(dk

′ −HT k(θ, µ))TΣ−1
M (dk

′ −HT k(θ, µ))

)
(3.6)

A usual approach to compute a maximum a posteriori (MAP) estimator of the
posterior distribution would be Markov Chain Monte-Carlo methods. This would
require multiple evaluations of the Finite Elements model, which is not feasible in
real-time. Using surrogate models to avoid the costly calls to the Finite Elements
is, thus, necessary. However, one has to recall that the objective of the approach is
not the calibration of the unknown parameters but the estimation of unobservable
physical quantities such as stress. After calibrating the parameters, the following
step would be the computation of the overall temperature field and the resolution
of the mechanical problem up to tk.

The method presented in the following sections aims at creating time-independent
multiphysics local surrogate models that allow the estimation of observable and
unobservable physical quantities and the calibration of the unknown parameters
simultaneously and in real-time.

3.2 Local multiphysics PCA model
The previous section showed that the truth inverse problem is not well suited for
real-time applications if solved with classical methods. In this section, in order to
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overcome these issues, the construction of local surrogate models from snapshots
of a Finite Elements parametric study is discussed. This approach relies on an
offline-online procedure where local surrogate models are constructed from simula-
tion data. Then, they are used to obtain real-time estimations of physical quantities
and unknown model parameters.

In the first section, the notion of the joint state vector is introduced as well as
the local positional surrogate models. Then, the theoretical resolution of the data
assimilation is shown. The final section explains how to obtain the model parameters
using a Singular Value Decomposition of snapshot matrices.

3.2.1 Local surrogate models

We propose to make local surrogate models for a linear joint representation of the
state, known parameters, and unknown parameters for every position of the heat
source at the different assimilation times tk, where k = 0, . . . , Nt.

The positions are fixed in a grid between the initial position P0 and the final
position PF with a regular separation ∆P . The parametric solutions are clustered
by the position P (t) of the heat source and associated to the position P k = k∆P if
|P (t)− P k| < ∆P

2
. In total, there are P = bPF−P0

∆P
c positions .

The joint state vector at position P k for a welding application is:

sk =


T k

σkI
µk

θk

 (3.7)

where T k are the nodal values of temperature, σkI are the nodal values of the maxi-
mum principal stress, µk are the known parameters, and θk the unknown parameters.
The dimension of the joint state vector is very large and depends on the mesh used
for the Finite Elements simulations. For a mesh containing Nn nodes, Nµ known
parameters and Nθ unknown parameters, the dimension of sk is:

Ns = 2×Nn +Nµ +Nθ (3.8)

The Finite Elements parametric study presented in the previous chapter uses a
mesh with Nn = 104101 nodes. Let us underline that the known parameters are
fixed for the duration of the experiment. From now on, we will write them as µ
independently of the position.

The joint state vector will be expressed as a local reduced-order model. Local
model approaches have been proposed to avoid the use of a single large reduced
bases, for example in [128]. Usually, the partition is done by time, such as in [44].
We have chosen to use local models that capture the non-linear behaviour for all
the parameter values at a single position in space. This partition of the heat source
trajectory in discrete position points avoids the use of a single reduced basis that
could be, potentially, too large for real-time applications and not precise enough for
an accurate representation of the physical phenomena.

The local model at position P k reads as
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sk =


T k

σkI
µk

θk

 = s̄k + Φkαk + εkT (3.9)

with s̄k the mean of the state vector, αk ∼ N (0, Inφ) and εkT ∼ N (0, σ2
TINs).

The operator Φk ∈ RNs×Nnφ -a decoder- is fixed for each position and possesses nφ
columns. It is obtained by using all parametric solutions of the welding problem
corresponding to position P k. This model provides a low-dimensional representation
of the state sk in a subspace of dimension nφ, with an error term εkT .

This probabilistic model encodes the dependency between all the state variables
and the known and unknown parameters in the form of a multivariate Gaussian:

sk ∼ N (s̄k,Σsk) (3.10)

with Σsk = Φk
(
Φk
)T

+ σ2
TINs

The probabilistic expression of the joint state vector defines a prior distribution.
The solution of the inverse problem is now the probability distribution of sk given a
set of known parameters µ and observed data dk ∈ RNH : p(sk|dk, µ). The joint state
vector contains different types of data, including various physical quantities (some
of them might be unobservable, like stress in our application case) and unknown
model parameters that need to be calibrated. All of them can be estimated at the
same time using Bayes theorem. This is an essential advantage of these models.
We can obtain quick estimations of the desired physical fields, and at the same
time the unknown parameters of the Finite Elements model are calibrated, ensuring
that a more detailed study of the experience can be launched without any further
calibration. The application of Bayes theorem reads:

p(sk|dk, µ) =
p(dk|sk)p(sk)

p(dk)
(3.11)

The observed data, in a classical way, can be considered as a partial observation
of the joint state vector with added measurement noise εkM that comes from the
sensor, as presented in equation (3.3).

dk = Hsk + εkM (3.12)

where H ∈ RNH×NS is a boolean operator that extracts the NH observed nodes of
the mesh and the known parameters from the multiphysics state vector. The effect
of such a function is illustrated in future sections (for example, in Figure 3.1). The
measurement error is the same for all frames of a video, so it is not dependent on
k. The error is assumed to be Gaussian distributed:

εM ∼ N
(
0, σ2

MINH
)

(3.13)

These Gaussian assumptions are particularly interesting for a real-time applica-
tion. If the observed data is also supposed to have a Gaussian measurement error,
it follows that it is also modelled by a Gaussian distribution:
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dk ∼ N
(
Hs̄k, HΣskH

T + σ2
MINH

)
(3.14)

With both sk and dk following Gaussian distributions, the posterior distribution
p(sk|µ,dk) of the joint state vector will also be Gaussian and can be calculated
analytically, significantly decreasing computation time. This avoids the need for
expensive Markov Chain Monte Carlo methods to determine the posterior distri-
bution. The mean of the posterior distribution gives the Maximum A Posteriori
(MAP) estimator. The analytical expression of the mean and covariance is given
by:

msk|dk,µ = s̄k + ΣskH
T
(
HΣskH

T + σ2
MINH

)−1
(dk − d̄k) (3.15)

Σsk|dk,µ = Σsk −ΣskH
T
(
HΣskH

T + σ2
MINH

)−1
HΣsk (3.16)

where d̄k is the mean of dk.

3.2.2 Maximum likelihood PCA

Two parameters of the local surrogate models presented in equation (3.9) need to
be calibrated: the decoder Φk and σ2

T , that guides the error term.
Let us assume that a snapshot matrix is available for each heat source position

Sk =
{
sk1, s

k
2, . . . , s

k
np

}
∈ RNs×np , where each column of Sk is composed of a joint

state vector containing the objective fields, i.e. temperature and maximum principal
stress for a welding application, and the set of known and unknown parameters at
position P k. There should be as many columns as the number of parameters in
the Design of Experiment (DOE). Thus, the dimension of the snapshot matrices is
Ns× np. More details on the DOE and the computation of a numerical database of
welding simulations were given in Chapter 2. Without loss of generality, we will drop
the superindex k of the models and snapshot matrices for the rest of this section.

Instead of using a standard POD (or PCA) on the snapshot matrix, we will
introduce the probabilistic PCA. In 1999, Tipping and Bishop[158] showed that a
probabilistic formulation of PCA can be obtained from a Gaussian latent variable
model, for which the basis vectors are maximum-likelihood estimates. This Gaussian
latent variable model is described in Equation (3.9). Although all the parameters in
Equation (3.9) can be computed with an Expectation Maximisation (EM) algorithm
[158, 134], there are explicit expressions for the maximum likelihood estimates of
the parameters when εT ∼ N (0, σ2

TINS). The Singular Value Decomposition of the
snapshot matrix S reads:

S = UΛW T (3.17)

where U ∈ RNs×np is the matrix of left singular vectors, Λ ∈ Rnp×np is a diagonal
matrix containing the singular values and W T ∈ Rnp×np is the matrix of right
singular values.

The maximum likelihood parameters are:

Φ = Unφ

√(
Λnφ − σ2Inφ

)
R (3.18)
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where Unφ ∈ RNS×nφ contains the left singular vectors associated to the greatest
nφ < np singular values of the snapshot matrix’s SVD. The diagonal matrix Λnφ

is contains the greatest nφ singular values in decreasing order. R is an orthogonal
rotation matrix that, in practice, will be chosen to be the identity matrix. Finally,
σ2
T is related to the truncation error:

σ2
T =

1

np − nφ

np∑
j=nφ+1

λ2
j . (3.19)

where λj are the diagonal elements of Λ.
These results mean that the local probabilistic PCA models can be easily com-

puted from an SVD of the output of a parametric study of the finite thermo-
mechanical elements model.

3.2.3 Offline stage methodology

To sum up this section on the local multiphysics PCA models, we will now list the
different steps of the offline stage :

Offline methodology

1 Choose a fixed assimilation grid from which observation data will be ac-
quired.

2 Cluster the parametric Finite Elements solutions by heat source positions.

3 Compute an SVD for each position.

4 Choose nφ (the number of modes in the reduced basis) and compute the
Probabilistic PCA.

Let us remind that the two error terms εT and εM are modelled by two param-
eters, σT and σM . The value of σT is given by the Maximum-Likelihood estimator
(see Equation (3.19)), whilst the measurement error depends on the sensors used to
obtained the experimental data. The error of the infrared image was estimated in
Chapter 2.

3.3 Online prediction in real time
Once the local models are constructed, the offline stage is finished. Now, we need
to consider the online application of the local models. The input data is a vector
of known parameters and an infrared image of the experiment. The two problems
to solve are the quick computation of the mean and covariance of the posterior
distribution presented in equations (3.15) and (3.16) and the selection of the best
local model for the input data.

The large dimension of the joint state vector and the reduced bases are the main
obstacles towards a real-time application. High fidelity simulations involve large and
detailed meshes, leading to very high-dimensional data.
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The selection of the best local model is of great importance. Using the incorrect
model will not yield accurate estimations because the encoded data in the multi-
physics bases is position-dependent. Two cases have to be considered depending on
whether the torch position is known or not. The first case, when the heat source
position is known at all times, is straightforward, and the predictions are obtained
using a single well-identified PPCA model. In the second case, the torch position
needs to be estimated with some uncertainty. The predictions will be computed
from a mixture of local PPCA models.

In the first subsection, we will tackle the computation time issue, detailing how to
rewrite equations (3.15) and (3.16) for real-time applications. The next two sections
will focus on the online selection of local models, separating the cases where the torch
position is known and unknown. In particular, we will see how to estimate the heat
source position from an infrared image and deal with the estimation’s uncertainty.

3.3.1 Fast computation of mean and covariance

The evaluation of equations (3.15) and (3.16) could be potentially slow due to the
dimensions of the matrices involved. To illustrate this issue, we remind that the
mesh used to generate the simulation database contains Nn = 104101 nodes. A
joint state vector with two different physical quantities has a dimension of NS =
2×Nn +Nµ +Nθ = 208209. The reduced bases Φk ∈ RNS×nφ are also large.

To avoid this cost, we propose to compute the posterior distribution of the re-
duced coordinates αk instead. The prior distribution is Gaussian αk ∼ N

(
0, Inφ

)
,

so the posterior distribution p(αk|dk, µ) is also Gaussian. The mean and covariance
of the posterior distribution have the following explicit expression:

mαk|dk,µ =
(
Φk
)T
HT

(
HΦk

(
Φk
)T
HT + (σ2

M + σ2
T )INH

)−1

(dk − d̄k) (3.20)

Σαk|dk,µ = Inφ −
(
Φk
)T
HT

(
HΦk

(
Φk
)T
HT + (σ2

M + σ2
T )INH

)−1

HΦk (3.21)

where Φk ∈ RNS×nφ is the PPCA basis, H ∈ RNH×NS is the Boolean observation
function, dk ∈ RNH is the observed data, NH is the dimension of the observed data
and σM and σT are the parameters guiding the measurement and truncation errors.

The mean of the posterior distribution of sk can be then deduced using the
reduced basis Φk as follows:

msk|dk,µ = s̄k + Φkmαk|dk (3.22)

As for the covariance matrix, it can be calculated by:

Σsk|dk,µ = ΦkΣαk|dk,µ
(
Φk
)T

+ σ2
TINS (3.23)

The whole covariance matrix might be impossible to store in RAM if the number
of degrees of freedom is large. For instance, in our application case, the covariance
matrix would be a full matrix of dimensions NS × NS = 208209 × 208209. In this
case, only the diagonal of the matrix product ΦkΣαk|dk,µ

(
Φk
)T is calculated. This

would represent, for each node of the mesh, the variance of its associated value of
temperature and stress.



70 Chapter 3. Local Probabilistic PCA surrogate models

Remark

The covariance matrix is a full matrix of dimension NS×NS = 208209×208209.
Such a matrix needs an amount of memory that cannot be allocated. Only the
diagonal of the covariance matrix is calculated.

This first change improves the computation times, but there are still parts of
the equation that are time-consuming for very large matrices. Further algebraic
manipulation is needed for computation efficiency. Let’s introduce the notation
X := HΦk ∈ RNH×nφ and Z := (σ2

M + σ2
T )INH ∈ RNH×NH to simplify the reading

of the expressions. Equations (3.20) and (3.21) become

mαk|dk,µ = XT
(
XXT +Z

)−1
(dk − d̄k) (3.24)

Σαk|dk,µ = Inφ −XT
(
XXT +Z

)−1
X (3.25)

Mean of the posterior Gaussian distribution

To accelerate the evaluation, this algebraic identity, found in Appendix C of [23], is
used: (

P−1 +BTR−1B
)−1

BTR−1 = PBT
(
BPBT +R

)−1 (3.26)

These matrices have the following dimensionalities: P ∈ RM×M , R ∈ RN×N

and B ∈ RN×M . Equality (3.26) can be verified by multiplying both sides by
(BPBT +R).

Interestingly, this expression is such that depending on the relationship between
N and M, one side of it is quicker to evaluate than the other. The left side of the
equation is faster when M << N . On the contrary, if N << M , the right side is
cheaper.

It is easy to see that XT
(
XXT +Z

)−1 in equation (3.24) corresponds to the
right side of equation (3.26) when P = Inφ , B = X and R = Z. In our case,
the left side of Eq. (3.26) is faster because nφ, the number of modes in the PPCA
basis, is always smaller than NH , the number of mesh nodes observed by the infrared
camera. For a faster implementation, the expressions that should be evaluated are:

mαk|dk,µ =
(
XTZ−1X + Inφ

)−1
XTZ−1(dk − d̄k) (3.27)

Σαk|dk,µ = Inφ −
(
XTZ−1X + Inφ

)−1
XTZ−1X (3.28)

Notice that Z is a diagonal matrix, which means that computing Z−1 is trivial,
and XTZ−1 is very cheap.

Covariance of the posterior Gaussian distribution

In the case of the covariance matrix, further improvements are possible using the
Woodbury identity[70] rather than the previous transformation. The Woodbury
identity is :
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(A+UBV )−1 = A−1 −A−1U
(
B−1 + V A−1U

)−1
V A−1 (3.29)

where A ∈ RM×M , U ∈ RM×N , B ∈ RN×N and V ∈ RN×M .
If A = Inφ , U = XT , B = Z−1 and V = X, then we recognize that the right

side of equation (3.29) is the original expression of the posterior covariance matrix
in equation (3.25). Writing the covariance as in the left-hand size of the Woodbury
identity leads to:

Σαk|dk,µ =
(
XTZ−1X + Inφ

)−1 (3.30)

Notice that equation (3.30) is part of equation (3.27), meaning that it only needs
to be computed once, which saves a lot of computation time.

Example

Let us provide two examples of the computation time needed to evaluate the old
expressions in Equations (3.24) and (3.25), and the new ones in Equations (3.27)
and (3.30). The first example uses input on all nodes on the surface of the specimen
(NH = 8093) and 20 PPCA modes (nφ = 20). The second example uses input on
a limited area seen by the infrared camera (the surface shown in Figure 3.6 , with
NH = 3418) and 20 PPCA modes (nφ = 20).

The results shown in Table 3.1 are the average of 7000 runs for both examples
using each of the expressions presented previously. The computation time is greatly
reduced using the expression in equations (3.27) and (3.28), with speedup factors of
411 and 16 respectively.

Table 3.1: Computation time with both expressions with two dif-
ferent observation functions.

Old expression New expression Speedup
Whole surface 1.55 s 0.00377 s ∼ 411

Camera area 0.337 s 0.00212 s ∼ 16

3.3.2 Known position

Let us assume that the heat source position P (t) is known at all times. The selection
of the best local model is trivial: it is the one located closer to the heat source.

Perfect knowledge of the heat source position is not always assured. This sit-
uation arises, for example, when the robotic arm is equipped with a sensor that
measures the travelled distance. Another possibility is that all measurements are
synchronised. Knowing how much time has passed between the start of the experi-
ment and the current time is enough to determine precisely the heat source position
P (t) in an infrared image because the travel speed is a known parameter. However,
even in these cases, there might be sources of uncertainty, such as noise in the sensor
signals.
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3.3.3 Unknown position

As is the case in EDF’s welding lab, we may not have access to the exact heat
source position because of a lack of synchronicity between the measurement sensors.
In this case, εP (t) 6= 0 in equation (3.2) and the torch position needs to be estimated
from the video frame, which adds more uncertainty to the model. The filmed side
of the specimen is the opposite side of the weld. There exists a delay between the
highest temperature on this side and the torch position. Furthermore, this delay is
dependent on material and operational parameters, such as speed.

Using the finite elements simulations presented in the previous chapter, we cre-
ated a Gaussian surrogate model that links the position of the highest temperature
measured on the camera side of the specimen x and the known parameters µ with
the position of the heat source on the welded surface of the specimen P k. The
surrogate model reads as:

P k̂ = f (x) ∼ GP (m(x), k(x, x′))) (3.31)

where x := (xk, µ) is a vector containing the highest temperature position and the
known operational parameters. The Gaussian Process is entirely determined by its
mean, given by the deterministic function m(x), and its covariance, given by the
function k(x,x′). The model is fitted using a Matérn kernel [57, 126] as covariance
function:

k(x, x′) =
1

Γ(ν)2ν−1

(√
2ν

l
d(x, x′)

)ν

Kν

(√
2ν

l
d(x, x′)

)
, (3.32)

In equation (3.32), Γ(·), d(·, ·) and Kν(·) are, respectively, the gamma function,
the euclidean distance and a modified Bessel function. The parameters ν > 0 and
l > 0 were fixed to ν = 3

2
and l = 1. This choice of ν ensures that the process f is

differentiable[57, 126].
Given a set of observations P = {(x1, P

1), . . . , (xn, P
n)}, the posterior distribu-

tion p(P k̂|P) can be derived. Thus, the posterior distribution represents a family
of functions that link x and a position of the heat source. We could use the mean
of the posterior distribution and evaluate it for any x. However,in the case where
the posterior distribution’s variance is larger than the separation ∆P between two
consecutive positions in the assimilation grid, assigning a local model remains un-
certain.

Indeed, we decided to sample the posterior distribution M = 1000 times and
evaluate each function for x. In practice, this gives M = 1000 candidate positions
of the heat source. Individually, each candidate positions P̂i, for 1 ≤ i ≤ M , is
associated with a PPCA model, determined by its reduced basis Φi. We define an
empirical discrete probability distribution of assignment given by:

∀j ∈ J0, NtK pj =
1

M

M∑
i=1

1{P̂ i∈[P j−∆P
2
,P j+ ∆P

2 ]} (3.33)

Thus, the probability of assignment of a local model is 0 if not a single one of
the M candidate positions is associated with it. We define J as the set of indices of
the active local models:
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J = {j ∈ J0, NtK : pj > 0} (3.34)

The multiphysics state we want to estimate, s̃k̂ is calculated as a Gaussian mix-
ture where the probabilities pj are the weights of each local model. The mean and
covariance of the posterior distribution are computed as the weighted sum of each
active model’s mean and covariance posterior distribution. Naming the observed
data of the unknown position dk̂:

msk̂|dk̂,µ =
∑
j∈J

pjmsj |dk̂,µ (3.35)

Σsk̂|dk̂,µ =
∑
j∈J

pjΣsj |dk̂,µ (3.36)

were msj |dk̂,µ and Σsj |dk̂,µ are the mean and covariance of the posterior distribution
using the local model located at position P j, ∀j ∈ J .

The torch position estimation is sufficiently accurate to ensure that the number
of active PPCA models is not too large, as we will see in a future section. The
assimilation is still performed in real-time, thanks to the rapid evaluation of each
Bayesian inference.

3.3.4 Online stage methodology

To sum up this section on the online use of the local surrogate models, we will list the
consecutive steps, considering the known and unknown torch position dichotomy:

Online stage methodology

1. We obtain a new infrared image.

2. If the torch position is known:

(a) Find the closest position P k in the assimilation grid and select the
associated local model.

(b) Compute the Maximum A Posteriori estimation of the state s:
p(ŝ|dk, µ).

3. If the torch position is unknown:

(a) Find the heat source position posterior distribution using the kriging
surrogate model (Equations (3.31) and (3.32)).

(b) Sample the posterior distribution and associate a local model to each
predicted position.

(c) Compute the discrete probability weights for each position.

(d) Assign weights to each model induced by J .

(e) Compute the MAP from a mixture of the active local models.
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3.4 Forecasting of future states
Despite the lack of Markovian assumption in the models, they can forecast future
states without observed experimental data. Assuming that the unknown parame-
ters are not changed online, which is the case in a welding application, previously
estimated values can be used to obtain predictions of future states.

Let us suppose that we have previously estimated a joint state vector ŝk, includ-
ing a set of unknown parameters θ̂k, with the PPCA model at position P k and that
predictions of a future state are desired. The position of the future state is defined
by a displacement of δz = z∆P in the direction of the weld, where ∆P is the regular
separator in the positions grid.

Again, this opens two possibilities whether the torch position was known or was
estimated from the data frame. If the heat source position was known, the prediction
is computed using the PPCA model for position P k+z = (k + z)∆P . Taking the
estimated unknown parameters θk as an observation implies that the observation
function H is restricted to a function that observes µ and θ̂k in the multiphysics
state vector. The posterior distribution in this case is:

p(s̃k+z|µ, θk) (3.37)

where s̃ indicates that the joint state vector is forecasted. Notice that computing
this posterior distribution is done with Equation (3.20) with dk is a vector that
contains µ and θ̂k and σ2

M is the posterior covariance of the estimated unknown
parameters.

The other possibility is that the current position was estimated from the exper-
imental data. In this case, the displacement will be added to the position samples
to maintain the torch position’s uncertainty. This means that δz is added to each
candidate position Pi, with 1 ≤ i ≤M :

P̂i = Pi + δz, ∀1 ≤ i ≤M (3.38)

The local basis assignment changes, and a new set J is defined for this problem.
Then, the prediction will be calculated using the mixture of PPCAs described in
the previous section. Remark that, if the position was unknown, (3.37) becomes

p(s̃k̂+j|µ, θ̂k̂) (3.39)

where ·̂ indicates that the position is unknown. In particular, s̃k̂ is estimated from
a mixture of local PPCAs. The mean and posterior distribution are now computed
by:

ms̃k̂|µ,θk̂ =
∑
j∈J

pjms̃j |µ,θ̂k̂ (3.40)

Σs̃k̂|µ,θk̂ =
∑
j∈J

pjΣsj |µ,θ̂k̂ (3.41)

3.4.1 Forecasting methodology

The following list details the steps to perform a forecast of a future state:
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Online stage methodology

1. Compute an estimation of the joint multiphysics state sk.

2. If the torch position is known:

(a) Estimate the joint multiphysics state at position P k+z using its cor-
responding local model by p(s̃k+z|µ, θ̂k).

3. If the torch position is unknown:

(a) Find the heat source position posterior distribution using the kriging
surrogate model.

(b) Sample the posterior distribution and add δz to the candidate posi-
tions.

(c) Associate a local model to each position.

(d) Assign weights to each model.

(e) Compute the MAP from a mixture of the active local models using
µ and θ̂k̂ as input data.

3.5 Numerical results
The following numerical tests use two different data sources to showcase the pre-
viously mentioned situations: the torch position is well known, and an estimation
of the heat source position is needed. The torch position will be deduced from the
infrared image and the state estimation computed from a mixture of PPCAs. The
first test will use noisy synthetic data obtained from a previously calibrated Finite
Element solution as input. The joint multiphysics state and unknown parameters
estimation is obtained using a single PPCA model located at the exact position.
Then, we will consider a frame of an infrared video of a real PVR experiment, in
particular the experiment from the 2019 experimental campaign presented in Chap-
ter 2. Lastly, the forecasting capabilities of the model will be shown. Considering the
real experimental case as reference, we will predict a state situated 12 mm further.

As a reminder, none of the parameters used for the experiments was part of the
Finite Elements parametrical study.

3.5.1 Estimation of the heat source position

The first step in the online stage is to identify the heat source position and its asso-
ciated local models. A frame of the infrared video, out of 450, is selected arbitrarily
for these tests. The projection of the infrared video frame on the FE mesh is shown
in Figure 3.1.

The heat source position is estimated using the surrogate model presented in
section 3.3.3. First, the highest temperature position is identified. We use this
temperature and the 2019 experiment’s welding parameters µ (v = 2.0 mm/s and
Q = 680.4 W , as indicated in Chapter 2) to obtain the posterior distribution of
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Figure 3.1: Projection of infrared images on the FE mesh.

the heat source position. We sample M = 1000 torch candidate positions from this
posterior distribution and find their associated models. Figure 3.2 shows the discrete
empirical probability of assignment of each local model. The most probable model
is the one located at position 130, which corresponds to 65mm from the starting
position. This estimation is relatively close to the one assessed by the equipment.
Only seven models are active in the mixture of PPCAs, and their weight is given by
the distribution in Figure 3.2.
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Figure 3.2: Possible PPCA bases with associated probability.

The snapshot for position 130 will be used as input for the noisy synthetic data
case.
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3.5.2 Tests with noisy synthetic data

In this first test, the input data comes from the calibrated finite elements simula-
tion of the experiment of the 2019 experimental campaign, which uses µ = (v =
2.0 mm/s,Q = 680.4 W ). This experimental configuration is the same as the nomi-
nal energy experiments of the 2021 experimental campaign. As indicated previously,
the snapshot corresponds to the position with the highest probability. White noise
of the same amplitude as the measurement error εM , estimated for the camera, has
been added to the data. The measurement error εM is calculated as described in
Chapter 2, Section 2.5. The observation function H restricts the view to a region
"seen" by the camera, and it is represented in Figure 3.3.

Figure 3.3: Noisy simulation data on camera area.

The mean of the posterior distribution mk
sk|dk contains the estimation of the

temperature and maximum principal stress fields, as well as the unknown parame-
ters. We can compare these results to the calibrated finite elements simulation, from
which the input data was taken. First, we can calculate a global relative reconstruc-
tion error between the mean posterior fields and the Finite Elements simulations.
This relative error is calculated as:

ekT =
||T
(
mk

sk|dk,µ

)
− T k

|µ,θ||2
||T k
|µ,θ||2

(3.42)

ekσI =
||σI

(
mk

sk|dk,µ

)
− σkI|µ,θ||2

||σkI|µ,θ||2
(3.43)

where T k
|µ,θ and σkI|µ,θ are the nodal temperature and principal stress simulation

values, T
(
mk

sk|dk,µ

)
and σI

(
mk

sk|dk,µ

)
are the estimated nodal temperature and

principal stress extracted from the joint state vector, and || · ||2 is the euclidean
norm.
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The 3D reconstruction of the temperature and stress fields is very accurate, with
a global relative error of 0.489 % for the temperature and 6.857 % for the principal
stress.

For visualisation reasons, the following results are compared only along a line of
130 mm at the centre of both sides of the specimen, which coincides with the weld
line on the torch side. The 95% confidence interval of the estimation is also plotted
around the posterior mean in Figure 3.4 and Figure 3.5.

The confidence intervals are thin for the observed temperature data, as is ex-
pected, but it is larger around the peak on the non-observed surface. Although no
data was seen for the principal stress estimations, the estimated posterior mean is
close to the simulation on both surfaces. One can also notice that the principal
stress estimation is closer to the FE field on the camera side compared to the torch
side. This illustrates the fact that observed temperature has also an impact on the
principal stress accuracy.
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Figure 3.4: Temperature estimations, FE simulation and confidence
interval. (a) Camera side (observed noisy FE data). (b) Torch side

(No observed data).
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Figure 3.5: Maximum principal stress estimations, FE simulation
and confidence interval. (a) Camera side (observed noisy FE data).

(b) Torch side (No observed data).
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The estimation of the unknown parameters θ is very close to the results of the de-
terministic calibration presented in the previous chapter. A comparison of the values
obtained by the deterministic calibration and the mean posterior theta estimation
is given in Table 3.2. It also shows the relative error between the values calibrated
with thermocouple temperature data and the MAP of the posterior distribution
estimated from the noisy snapshot.

Table 3.2: Posterior estimation of the unknown parameters θ.

af b c η K

Calibrated value 6.657 3 1.5 0.9 1.15
Estimated value 6.189 2.842 1.586 0.890 1.165
Relative error 7.03 % 5.27 % 5.73 % 1.11 % 1.30 %

The computation time needed to produce the multiphysics state estimation is
3.04 milliseconds. Calculating the covariance matrix is more expensive, at 34.76
milliseconds, in particular the expression ΦkΣαk|dk,µ

(
Φk
)T is very costly despite only

calculating the diagonal. The total computation time of the posterior distribution
is 0.038 seconds. These computation times are the average results of 1000 runs.

3.5.3 Tests with real experimental data

In this test, we will use the camera frame projected onto the mesh as input data for
the model. The camera is configured to capture temperatures above 400◦C, so the
observation function H is modified to only use data above 400◦C, which is the area
represented in Figure 3.6.

Figure 3.6: Experimental data - Temperatures above 400 ◦C

The estimation is calculated as a mixture of the results given by the local PCA
models in Figure 3.2. The amount of active local models is small, and each individual
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conditioning is computed very fast, amounting to a total of 0.256 seconds for the
entire posterior distribution estimation. The multiphysics state can be computed in
only 0.019 seconds. As we observed in the previous case, computing the diagonal of
the covariance matrix is more expensive, with a computation time of 0.237 seconds.
Both computation times are the average of 1000 runs. All the confidence intervals
are the 95% confidence intervals.

Table 3.3: Posterior estimation of the unknown parameters θ.

af b c η K

Calibrated value 6.657 3 1.5 0.9 1.15
Estimated value 6.408 3.855 1.47 0.736 1.098

The estimations can be compared to the measured temperature on the camera
side. In Figure 3.7, we can see that the model estimates a temperature that follows
the experimentally measured one. The relative error between the measured tem-
perature and the estimated one is 2.85 %. In Figure 3.8, the state estimation is
compared to the FE simulated temperature field. We observe that the estimation
deviates from the simulation. Indeed, the temperature is higher for the FE results.
We interpret this difference in the estimation and the FE simulation as a model
correction given by the partial observation of the temperature. We remind that the
FE model was calibrated using only the thermocouple measures and not the infrared
camera. This difference between the FE simulation and the measured data in Figure
3.8 may indicate that the calibration of θ using the thermocouples does not ensure
a total agreement between the simulation’s thermal dynamics and temperature ob-
servations. This is supported by the fact that the estimated efficiency η, shown in
Table 3.3 along with the other unknown parameters, is smaller at around 0.74 while
the initial calibration estimated it at 0.9. A smaller efficiency would transfer less
heat to the specimen, explaining the lower estimated temperature obtained with the
local PPCA model.

It can be noticed that on the camera side, the confidence interval is very small
for the temperature estimation, as it is expected from observed data, whilst on the
torch side, the confidence interval is larger, especially around the peak position. The
maximum principal stress confidence intervals are relatively large, as no mechanical
data is observed. There is an area where this is an exception, around the current
heat source position, where there is no variance. This is explained by the physics of
the problem. Indeed, there are no stresses at the heat source position in any of the
parametric FE simulations.
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Figure 3.7: Temperature estimations and camera data.
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Figure 3.8: Temperature estimations, FE simulation and confidence
interval. (a) Camera side. (b) Torch side.
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Figure 3.9: Maximum principal stress estimation, FE simulation
and confidence interval. (a) Camera side (observed infrared camera

data). (b) Torch side (no observed data).
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Forecasting

In this last example, the forecasting capabilities of the model will be shown. Let
us assume that we want to estimate the temperature and maximum principal stress
fields in a future position that has not been observed yet. This position is situated
12 mm further than the one studied for the previous tests, which was shown in Figure
3.1. The new frame is shown in Figure 3.10. We are still in the case where the torch
position is unknown. The future position is represented by a frame corresponding to
an advancement of 12 mm from the previous one, thus. All the information available
is the value of the known parameters µ = (v = 2.0 mm/s,Q = 680.4 W ) and the
posterior estimation of the unknown parameters with their posterior covariance. The
estimated values are displayed on the second row of Table 3.3.

Choosing the active coefficient of the mixture of PPCAs for this position P j =
(k+ 12)∆P is the first problem to solve. When an image is available, the surrogate
model for position estimation takes the highest temperature position identified in
the image and returns the probability distribution of the torch position. In the
forecasting problem, we have no video frame to find the highest temperature, so the
probability distribution obtained previously (see Figure 3.2) is shifted by the 12mm.
It is then used to obtain the discrete assignment probability. The multiphysics state
s̃j will be predicted by conditioning its distribution by the known parameters µ
and the estimated unknown parameters θk̂ with its associated posterior variance,
following equation (3.41).

Figure 3.10: Camera data of the future state.

As with previous tests, the predicted estimations, p(s̃j|µ, θk) are compared to the
experimental data and a Finite Elements simulation over a line on both sides of the
specimen. The infrared camera measurements corresponding to the centre line on
Figure 3.11 are compared to the predictions in Figure 3.11. The estimation is very
close to the camera data, but the 95% confidence interval is very large compared
to the one in Figure 3.7, a case where the data was observed, thus, reducing the
uncertainty.
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Figure 3.11: Forecasted temperature and camera data.
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Figure 3.12: Forecasted temperature, FE simulation and confidence
interval. (a) Camera side. (b) Torch side.
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Figure 3.13: Forecasted maximum principal stress, FE simulation
and confidence interval. (a) Camera side. (b) Torch side.
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The Finite Elements simulation was used as a reference in Figure 3.12 and Fig-
ure 3.13, where we observe, generally, large confidence intervals on both sides of
the specimen with respect to Figures 3.8 and 3.9, for which temperature data was
observed. Overall, knowledge of the known and unknown parameters is enough to
obtain predictions that represent the behaviour of the temperature and maximum
principal stress fields but with a high degree of uncertainty, which can be greatly
reduced by observation of the thermal images.

Forecasting alternatives

Section 3.4 explained how to use the estimation of the unknown parameters θ to
forecast unseen results and in Figures 3.11, 3.12, and 3.13 we showed the predictions
with their confidence intervals. Here, we provide some complementary forecasting
results. In particular, we want to compare a forecast performed with and without
observing the posterior theta values. Then, a comparison between the posterior
covariance of a forecast and an estimation obtained by observing an infrared im-
age located on the forecasted position. Only temperature results are shown. The
comparison is restricted to the temperature field.

Figure 3.14 shows that temperature predictions obtained with and without ob-
serving the mean θ posterior. It can be observed that without observing the mean
θ posterior the estimation is far from the infrared camera measurements, and fore-
casting is not possible. This indicates that the prior distribution of the unknown
parameters might not be well-chosen or reflects a spectrum of values that is too large
for this case. This justifies using the previously estimated unknown parameters to
forecast states located further away, which result in a more accurate estimation of
the temperature field.
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Figure 3.14: Forecasted temperature conditioning by the known pa-
rameters (µ) and by the known and unknown parameters (µ, θ) with
their correspondent confidence interval. (a) Compared to experimen-

tal camera data. (b) Compared to FE results.

Additionally, we want to compare the posterior covariance of a forecasted es-
timation and an estimation obtained after observing an infrared image located on
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the forecasted position, which can be seen in Figure 3.10. When observing the in-
frared image data, one can notice that the uncertainty on the temperature field, the
uncertainty is significantly reduced in Figure 3.15.
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Figure 3.15: Forecasted temperature conditioning by the known
and unknown parameters (µ, θ) and posterior estimation using the
infrared camera data with their correspondent confidence interval.
(a) Compared to experimental camera data. (b) Compared to FE

results.

3.6 Conclusion
This chapter presented an offline/online approach for a multiphysics joint state and
parameter estimation in real-time for a welding problem. This approach allows the
estimation of observable and unobservable physical quantities and the calibration of
parameters simultaneously.

In the offline stage, the local models are constructed from a numerical simulation
database, discretised by the position of the heat source. We have shown that a simple
SVD on different snapshot matrices is enough to construct the modes of each local
model. Besides, the local multiphysics PPCAs allow to tackle several problems:

• Firstly, choosing a local model avoids using a global reduced basis. Thus,
they capture local effects generated by the non-linear physics of the welding
process.

• Secondly, the probabilistic framework considers the uncertainty in the observed
data.

• Lastly, the multiphysical nature of the reduced bases allows the estimation of
an unobserved quantity via the correlations with observed partial quantities
such as surface temperature measurements.

The Gaussian assumptions that lead to the PPCAs have the advantage of an
explicit solution for the MAP. Further algebraic manipulation helps attain the goal
of a real-time application in the online stage.
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The numerical tests, using synthetic and experimental data, show that the esti-
mations are accurate compared to equivalent but costly Finite Elements simulations.
The different data sources also showcase two situations: one where the heat source
position is unknown and another where there is perfect knowledge of the torch po-
sition. A way to infer the heat source position that uses the simulation database
is also given in this chapter. It relies on a surrogate model based on Gaussian
Processes that links the highest temperature on one side of the specimen with the
current torch position.

Despite the models being time-independent, we have shown how to use them to
forecast future positions of the welding torch that have not been observed at the
cost of more uncertainty in the predictions.



87

Chapter 4

Clustering local reduced bases

Abstract:

This chapter presents an alternative solution to the creation of the local
PPCA models. In the previous chapter, each local model was created
by selecting a position along the trajectory of the welding torch and
assembling snapshot matrices for all known and unknown parameters
(µ, θ).

In this present chapter, a new automatic approach is explored in which
a clustering algorithm determines how to separate the numerical data in
order to create optimally accurate local models. Firstly, we will present
three different ways of clustering the data, detailing the methods and
showing examples. Secondly, a universal assignment function is con-
structed using a classification neural network. Such a function aims at
assigning a given infrared temperature image to the most appropriate
PPCA model in a physical sense. Three neural networks are designed,
one for each clustering method. Finally, some results are shown using
the new local bases.

Résumé :

Ce chapitre présente une méthode alternative pour la construction de
modèles locaux d’ACP probabiliste. Dans le chapitre précédent, chaque
modèle était créé en prenant une position dans la trajectoire de la torche
de soudage et en assemblant une matrice avec les snapshots correspon-
dant à tous les paramètres connus et inconnus (µ, θ).

Maintenant, dans ce chapitre, une nouvelle approche automatique est
explorée. Un algorithme de clustering déterminera comment séparer les
données de simulations pour construire des modèles locaux optimaux.
D’abord, on présentera trois métriques qui permettront de séparer les
données, en précisant les méthodes et en montrant des exemples de
leur application. Ensuite, on construira une fonction d’assignation uni-
verselle par un réseau de neurones de classification. Une telle fonction a
pour but d’assigner le meilleur modèle d’ACP probabiliste à une image
de température infrarouge. Trois réseaux de neurones seront entraînés
(un par méthode) et ils seront utilisés pour réaliser des nouveaux tests
numériques pour évaluer la performance des nouveaux modèles locaux.
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4.1 Generalising the construction of local models
The previous chapter presented an offline-online approach for the real-time estima-
tion of partially observed and non-observed physical fields in a welding application.
This method relies on the construction of local reduced bases with a Gaussian struc-
ture that are consequently conditioned by observations in the online stage. A critical
point that was not explored was how to partition the data to create the local models.

In most situations, time and space might be a natural way of separating the local
models. This is the case of the PVR experiment, where the natural choice is to use
the position of the heat source as the partition. There are numerous examples in
the literature that use time for partitioning, for example in Dihlmann et al. [44] or
Drohmann et al. [46]. In the case of parametrised problems, other studies propose a
partition of the parameter space [62] or a partition on the state space [168, 8, 131].
More recently, novel approaches such as ROM-Nets [41] have appeared, making use
of recent developments in neural networks to solve classification problems related to
data partition and local reduced bases.

Most of these approaches use some notion of distance or dissimilarity measure
in order to partition the data. This partitioning of the data in the offline stage can
be achieved by clustering. Clustering methods allow separating the data in groups
called clusters such that all elements in a cluster are similar to each other according
to some metric and, at the same time, are distinct from elements in other clusters
[55].

The idea is to run a clustering algorithm that will separate all the simulation
snapshots into K clusters Ci, ∀i ∈ {1, . . . , K} according to a particular criterion. A
reduced basis ΦCi will be computed from the snapshots in Ci. The construction of
the local PPCA models is the same independently of the clustering method.

Let us assume that all the snapshots from the parametrical study are divided
into K clusters. Following the methodology presented in the previous chapter, a
snapshot matrix Si is defined per cluster Ci as:

Si = {sj, j ∈ {1, . . . , NS} : sj ∈ Ci} , ∀i ∈ {1, . . . , K}, (4.1)

where NS is the total number of snapshots, and sj identifies a multiphysics joint
state vector, such as they are presented in the previous chapter. Let us remind that
a joint state vector contains a temperature field, a principal stress field, and the
known and unknown parameters:

sj =


T j

σjI
µj

θj

 ∈ R2×Nn+Nµ+Nθ (4.2)

where Nn is the number of nodes in the mesh, Nµ is the number of known parame-
ters and Nθ is the number of unknown parameters, following the notations already
introduced in Chapter 3.

Once the snapshot matrices are assembled, the local PPCA models are computed
by SVD and the Maximum Likelihood estimators (see Chapter 3 for more details).
The offline-online approach is summed up as follows:
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Offline-online approach

• Offline stage:

1. Partition the data into K clusters Ci, ∀i ∈ {1, . . . , K}.
2. Compute a SVD on a snapshot matrix formed by all snapshots in Ci
∀i ∈ {1, . . . , K}.

3. Select the amount of modes nφi in the SVD and compute the PPCA
model.

• Online stage:

1. Receive a new infrared image.

2. Identify the most adequate local PPCA model.

3. Compute the MAP of the posterior distribution of the multiphysics
vector conditioned by the infrared image and its confidence interval.

The following sections will focus on partitioning the data and selecting the ade-
quate local model for new input data.

4.2 Clustering the simulation data
The previous section introduced some notions on partitioning the data in a simula-
tion database in order to create local reduced-order models. Data clustering depends
on a set of points in a certain space X and a metric δ:

δ : X × X −→ R+

(x, y) −→ δ(x, y)

that allows determining how similar or dissimilar two data points are. The choice
of an adequate metric is of utmost importance.

The following subsections will explain the clustering method that was selected in
this work and describe the data points. Finally, three metrics are presented. These
three metrics are the Euclidean distance in the solution space, the projection error
between snapshots and the Grassmann distance.

4.2.1 The K-medoids method

The K-medoids method [117, 148] is going to be used in the following sections to
cluster the simulation data. This method has been chosen in the present work as
it requires very few input parameters: the number of clusters and a dissimilarity
matrix. Using a dissimilarity matrix allows to try a large variety of metrics because
the algorithm is not based on the properties of a particular metric. A dissimilarity
matrix is a symmetrical matrix D where each element Dij = δ(xi, xj) is a pseudo
distance between data points xi and xj. To be numerically efficient, only half of
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the matrix is computed. One more advantage of the K-medoids algorithm is that
each cluster’s medoid is a dataset point, unlike similar methods like the K-means
algorithm. Medoids mk are defined as the points of each cluster that minimize the
average dissimilarity to all other elements in their cluster:

mk = arg min
xi∈Ck

1

#Ck

∑
xj∈Ck

δ(xi, xj) (4.3)

Algorithm 4.1: K-medoids algorithm
Input: Dissimilarity matrix D ∈ Rp×p, number of clusters K
Output: Labels {li}ni=1 where li ∈ J1, KK, medoids M = {mi}Ki=1

Initialisation:
Select the initial medoids M = {m1, . . . ,mK}:
1 - Calculate vj, j = 1, . . . , p:

vj =

p∑
i=1

Dij, j = 1, . . . , p

2 - Sort {vj}pj=1 in ascending order sorted({vj}pj=1) and assign the first K
indices j as medoids {m1, . . . ,mK}
3 - Assign a label li to each data point:
li = arg mink=1,...,K Di,mk

4 - Create the clusters C1, . . . , CK :
Ck = {i ∈ J1, pK : li = k} k = 1, . . . , K
5 - Create an empty list of medoids M old // This is used as the
stopping criterium
while M 6= M old do

Store the medoids of the previous iteration in M old: M old ←M
Update the medoids:
foreach Cluster Ck do

Compute the sum of dissimilarities of each element of the cluster to
the others and select the one that minimizes it as new medoid m∗k:
vi =

∑
j∈Ck

Dij , ∀i ∈ Ck

m∗k = arg mini∈Ck vi
end
Store the new medoids in M :
M ← {m∗1, . . . ,m∗K}
Assign new labels and create new clusters:
li = arg mink=1,...,K Di,m∗k

Ck = {i ∈ J1, pK : li = k} k = 1, . . . , K

end

There are several algorithms of the K-Medoids method, of which the most pop-
ular ones are the PAM, CLARA and CLARANS algorithms[82, 147]. Our in-house
implementation is based on the algorithm proposed by Park et al. [117] and is shown
in 4.1. This algorithm is divided into an initialization step and an update step. The
initialization step selects a first set of candidate medoids and assigns each element to
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a medoid. The update step is a loop that runs until two consecutive iterations yield
the same result. In each iteration of the loop, we find the element of each cluster k
that minimizes the sum of the dissimilarities to other elements in its cluster. Then,
each data point is reassigned to the medoid that minimizes the dissimilarity.

4.2.2 Description of the simulation data

The starting point of this section is the simulation database resulting from the
parametrical study presented in Chapter 2. Let us recall that the parametrical study
is composed of M = 128 simulations of PVR experiments depending on two sets of
parameters: µ = (v,Q) the known operational parameters and θ = (af , b, c, η,K) the
unknown parameters of the equivalent heat source model. Experts delimit the values
of each parameter, and the parametrical space is explored using Latin Hypercube
Sampling. Each simulation is run for Nt = 260 time steps that correspond to
260 positions of the welding torch in a regular assimilation grid. In total, there are
NS = Nt×M = 33280 snapshots that are entirely determined by the triplet (µ, θ, P ),
corresponding to the known parameters (speed and power), the unknown parameters
and the position of the heat source. The snapshots are joint state vectors that
contain a nodal temperature field, mechanical fields and the known and unknown
parameters. This was presented in Equation (3.7) for positional state vectors. Here
we will index each snapshot by an integer j ∈ {1, . . . , NS} = J :

sj = s(µi, θi, P
k) =


T j

σjI
µj

θj

 (4.4)

where i ∈ {1, . . . ,M} indexes the parameters in the DOE and k ∈ {1, . . . , Nt}
indexes the positions. The index j is calculated from :

j = (i− 1)Nt + k (4.5)

4.2.3 Euclidean distance

One of the most commonly used, if not the most used, distance in clustering and
machine learning algorithms is the Euclidean distance. The Euclidean distance,
noted δE, between two n-dimensional vectors x,y ∈ Rn reads:

δE(x,y) =

√√√√ n∑
i=1

(xi − yi)2 (4.6)

The input data for this clustering method are the snapshots sj in the state
space. The temperature, stress and parameters are all compared at the same time.
The main advantage of the Euclidean distance is its simplicity and the numerous
optimised implementations to compute it for large vectors. This is helpful for the
construction of the dissimilarity matrix.
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There is, however, a disadvantage to this metric in the context of Model Order
Reduction. The Euclidean distance between two snapshots u, v that are only differ-
ent by a multiplicative factor might be very high. The clustering method will assign
them to different clusters, but it is clear that they can be expressed by the same
basis function. The other metrics should deal with this disadvantage.

In order to cluster the data, we could have considered using the triplet xj =
(µi, θi, P

k) as input data. This version of the Euclidean clustering greatly increases
the computation time because the involved vectors in the PVR application case are
8-dimensional (Nµ = 2 and Nθ = 5). Each multiphysics snapshot sj is represented
by a vector xj =

(
µi, θi, P

k
)
that contains the parameters used for its generation

and the current torch position, where i, j and k are related by Equation (4.5).
The different parameters and fields are not expressed in the same scale. For

example, in the PVR application case, the power of the welding torch is expressed
in the hundreds of watts whilst the efficiency in the Goldak equivalent heat source
model is a number between 0 and 1. Before computing the distance matrix, all
data is rescaled between 0 and 1 according to the minimum and maximum values
observed, with 0 assigned to the minimum (xmin) and 1 to the maximum (xmax):

x̄j =
xj − xmin
xmax − xmin

(4.7)

Clustering the snapshots by the input parameters ignores that different param-
eter values might lead to the same solution. If the Euclidean distance between two
sets of parameters that yield the same solution is sufficiently large, the snapshots
will be separated in different clusters. This is contrary to the clustering objective
and, thus, this method will not be investigated any further.

4.2.4 Grassmann distance

The second proposed metric is the Grassmann distance, which has already been
used as a dissimilarity metric in Reduced Order Modelling (ROM) applications. In
particular, the Grassmann manifold and its geodesic distance have been used by
Amsallem and Farhat [5], or by Mosquera [112] to interpolate local bases.

The Grassmann distance, already introduced in the state of the art, is a geodesic
distance on the a Grassmann manifold [175]. The Grassmann manifold G(m,n), with
m ≤ n, is defined as the set of all m-dimensional subspaces of Rn. Two reduced
bases Φ ∈ RN×nφ and Ψ ∈ RN×nφ span subspaces span(Φ), span(Ψ) ⊂ RN . Those
two subspaces are on the Grassmann manifold G(nφ,N ). Thus, a way of comparing
two reduced bases is to compare their respective spanned subspaces on a Grassmann
manifold. The Grassmann distance between Φ and Ψ, δG(Φ,Ψ), is defined as:

δG(Φ,Ψ) =

√√√√ nφ∑
n=1

λ2
n (4.8)

where λn, n = 1, . . . , nφ are the nth principal angles between Φ and Ψ, which are
computed from a SVD of ΨTΦ = V ΣW T :

λn = cos−1(σn) (4.9)
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with σn the nth singular value. This distance is the geodesic distance on G(nφ,N )
when considering the manifold as a Rimannian manifold [175]. For more in-depth
details on the Grassmann manifold and its properties, we refer to Amsallem’s or
Mosquera’s work [5, 112].

The dissimilarity metric is defined between subspaces, but our dataset is formed
by snapshots. In order to use this metric, we need existing local bases. The proposed
solution is to run a preliminary Euclidean clustering with a large number of clusters
K. In this case, we will choose K = 4000. This produces a new dataset composed
of 4000 preliminary local reduced bases from which a distance matrix is computed.
Other methods were proposed for this partitioning: overlapping time intervals and
balls of a specific user-defined radius in the parameter space. The entire procedure
is summed up as follows:

Grassmann clustering procedure

1. Partition the data into K = 4000 clusters with the Kmedoids algorithm
using Euclidean distance.

2. Construct preliminary POD bases via SVD on the clustered snapshots.

3. Compute the Grassmann distance matrix between the K preliminary
bases.

4. Partition the data into K = 260 clusters with the Kmedoids algorithm
and the Grassmann distance matrix.

5. Construct the POD bases via SVD on the clustered snapshots.

6. Construct the local PPCA model per cluster from the POD bases.

The initial number of clusters K = 4000 determines the computational complex-
ity of the distance matrix calculation. It was already indicated that for the sake
of numerical efficiency, only the upper diagonal is computed. This is, however, still
a considerable number of distances between high dimensional bases, in particular,
K(K−1)

2
. For K = 4000, the total number of distances to compute is almost 8× 106,

which takes between two and three days of parallel computation on a scientific clus-
ter.

4.2.5 Projection error in the state space

The final metric that is considered is the projection error between snapshots. This
idea, proposed by Amsallem and Haasdonk [6], aims at partitioning the data ac-
cording to the properties of the solution in the state space. We define the projection
error between to vectors u,v in the state space :

δP (u,v) = ||u− vv
Tu

vTv
||2 (4.10)

An advantage over the Euclidean distance for MOR applications is that it cap-
tures effects of scale invariance, as indicated by Amsallem. Indeed, the dissimilarity
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between two vectors u,v and u, αv, with α a non-zero real number, is the same.
The vectors v and αv can be expressed by the same basis function and should be
clustered together. This property is easily demonstrated:

Proposition 1. The metric δP is scale invariant:

δP (u, αv) = δP (u,v), ∀α ∈ R∗

Proof. Let α be a non-zero real number.

δP (u, αv) = ||u− (αv)(αv)Tu

(αv)T (αv)
||2 = ||u− α2vvTu

α2vTv)
||2 = δP (u,v)

It follows that the projection error between a vector and a scaled version of itself
is nil, assuring that scaled versions of the same solution are clustered together.

Corollary 1.1.
δP (u, αu) = 0, ∀α ∈ R∗

Proof. Let α be a non-zero real number. According to the previous proposition
δP (u, αu) = δP (u,u).

δP (u, αu) = δP (u,u) = ||u− u(uTu)

uTu)
||2 = ||u− u||2 = 0

Alternative hierarchical clustering algorithm

Computing a dissimilarity matrix for this metric is extremely expensive. The total
number of operations is NS(NS−1)

2
, which in this case amounts to 553762560 evalua-

tions of the projection error between vectors of dimension 2×Nn+Nµ+Nθ = 208209.
Instead, we will follow the hierarchical algorithm presented by Amsallem [6]. The
hierarchical algorithm does not take the number of clusters as input, instead there
is a criterion εP > 0 that ensures that the projection error between all the elements
in the same cluster is sufficiently small:

∀i, j ∈ J such that si, sj ∈ Ck =⇒ δP (si, sj) < εp (4.11)

The proposed algorithm is a divisive hierarchical algorithm, meaning that at
first, all the data are part of a single cluster and iteratively, the datapoints are split
into smaller clusters. The hierarchical algorithm is initialised by selecting an anchor
point and calculating the projection error of all snapshots with respect to the anchor.
In successive iterations, the snapshot that realises the highest error is selected as a
new anchor point and its cluster is divided into two clusters. All snapshots whose
projection error is smaller with respect to the new anchor point are selected as part
of the new cluster. The procedure is repeated until the maximum error is smaller
than the stop criterion εP . Although the algorithm presented in 4.2 stem from
[6], its initialization step has been modified in the present work. Indeed, we have
observed that in our dataset, starting with the snapshot with the highest L2 norm
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leads to a very large first cluster that doesn’t concentrate data in any meaningful
way. Instead of choosing the snapshot with the highest L2 norm, the median value
has been chosen. More details on this are given in Annexe A.

Algorithm 4.2: Projection Error Clustering
Input: Snapshots si, εP
Output: Labels {li}ni=1 where li ∈ J1, . . . , KK, anchor points {mi}Ki=1

Initialisation:
Select the first anchor point m1 and compute the maximum error to the
anchor ε1:
m1 = median(||sj||L2), ∀j ∈ J
C1, εi = maxs δP (s,m1) // initialise first cluster
k = 1 // counts the current amount of clusters
while ∃i ∈ {1, . . . , k} with εi ≥ εP do

Find which cluster contains the highest error:
i = arg maxi∈{1,...,k} εi
Search new anchor point:
k ← k + 1
mk = arg maxs∈Ci δP (s,mi)
Create new clusters Ck = {s ∈ Ci : δp(s,mi) > δp(s,mk)} and
Ci ← Ci \ Ck
Update M:
M = {m1, . . . ,mk}
Compute new errors εi, ∀i ∈ {1, . . . , k}:
εi = maxs∈Ci δP (s,mi)

end

A problem that can arise when clustering the snapshot data is the appearance of
too small clusters, including unitary clusters. This is not desirable, as the resulting
local models would not be representative of many states. A second step to the
algorithm has been added with respect to Amsallem’s. If a cluster has less elements
than a certain threshold tsize, we will find the closest cluster in terms of projection
error between representatives and merge them in order to obtain bigger clusters.
The following Algorithm 4.3 adds this step. It should be noted that there is a new
parameter tsize that sets the minimum size of the clusters.

Using this algorithm instead of calculating the dissimilarity matrix saves a lot of
time. The first two iterations need NS = 33280 evaluations of the projection error,
but the following iterations keep decreasing the amount of evaluations needed.

4.3 Offline stage results
This section compares the results obtained using each different dissimilarity metric.
The number of clusters K is selected to match the number of local bases in the
previous chapter: 260. For the projection error clustering, the stopping criteria is
set to εi = 0.245, which yields 255 clusters.
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Algorithm 4.3: Modified Projection Error Clustering
Input: Snapshots si, εP , threshold tsize
Output: Labels {li}ni=1 where li ∈ J1, . . . , KK, anchor points {mi}Ki=1

Initialisation:
Select the first anchor point m1 and compute the maximum error to the
anchor ε1:
u1 = median(||sj||L2), ∀j ∈ J
C1, ε1 = maxs δP (s,m1) // initialise first cluster
k = 1 // counts the current amount of clusters
while ∃i ∈ {1, . . . , k} with εi ≥ εP do

Find which cluster contains the highest error:
i = arg maxi∈{1,...,k} εi
Search new anchor point:
k ← k + 1
mk = arg maxs∈Ci δP (s,mi)
Create new clusters Ck = {s ∈ Ci : δp(s,mi) > δp(s,mk)} and
Ci ← Ci \ Ck
Update M:
M = {m1, . . . ,mk}
Compute new errors εi, ∀i ∈ {1, . . . , k}:
εi = maxs∈Ci δP (s,mi)
foreach Ci i ∈ {1, . . . , K} do

if #Ci < tsize then
Find the cluster whose anchor is closest to mi:
arg mink∈{1,...,K} δP (mi,mk)
Redefine Ck, Ci and M :
Ck ← Ck ∪ Ci, Ci = ∅, M ←M \ {mi}

end
end
Reset indices and redefine K ← #M

end

Visualisation of the clustering results is challenging due to the high dimensions
of the data and the number of clusters. In order to analyse the clusters obtained
with each metric, one cluster is arbitrarily selected. The observed trends issued from
this analysis need to be validated by some notion of representativity. In this case,
we have decided to measure the intra-cluster variance of the interquartile range of
the scaled parameters v (speed), Q (power) and P (position). The interquartile
range IQR is defined as the difference between the 75th (P75) and the 25th (P25)
percentiles:

IQR = P75 − P25 (4.12)

where a percentile Pn is the point below which the n% of the data is found.
This means that for a given cluster Ck, we will define a variable IQRk that

measures the spread of the snapshots by observing the distribution of the parameters
that determine them. The mean of this variable indicate that the parameters in each
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cluster are spread in a similar way. Thus, if its variance is close to zero, the trends
that we can observe in one cluster are transferable to other clusters.

Figure 4.1 shows a boxplot of the cluster sizes produced by each metric. This type
of plot, introduced by Tukey [161], summarizes the data with a box that extends
from the first to the third quartiles (Q1 and Q3, respectively). The median is
depicted by an orange line. The upper and lower boundaries of the whiskers (ub and
lb, respectively) are calculated by:

ub = Q3 + 1.5× IQR (4.13a)
lb = Q1 − 1.5× IQR (4.13b)

All data beyond the whiskers’ boundaries are represented individually.
The first noticeable difference between the three clustering methods is that only

the Euclidean distance produces homogeneous clusters. Indeed, the Projection error
and Grassmann clusterings produce heterogeneous clusters with some extremely
large clusters compared to the rest.
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Figure 4.1: Distribution of cluster sizes for each dissimilarity metric.

4.3.1 Euclidean clustering

The Euclidean clustering is done in a straightforward manner. The distance matrix
is computed from the snapshot list in parallel. Then, the K-medoids algorithm
separates the data into 260 clusters. Figure 4.2 shows a boxplot of the distribution
of the scaled speed, power and position of the snapshots selected for cluster number
3, which was selected arbitrarily.

One can notice that the Euclidean distance concentrates snapshots with similar
power and position. This seems like a natural consequence of how power and po-
sition affect the heat on the specimen. Power affects the temperature values, and
the position changes the form of the heat distribution on the specimen completely.
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Figure 4.2: Distribution of speed, power and position for an arbi-
trary cluster (Euclidean distance).

Considerable variations in these parameters might create vastly different fields from
the perspective of the Euclidean distance.

The interquartile range’s mean and variance of each of the scaled parameters are
given in Table 4.1. The IQR’s mean and variance for position and power suggest that
all the clusters concentrate the snapshot according to the value of power and posi-
tion, which validates the previous comments. However, there is no such behaviour
regarding the speed. The range of speed values is greater in most clusters.

Table 4.1: Interquartile range mean and variance of each scaled
parameter (Euclidean clustering).

IQR(Speed) IQR(Power) IQR(Position)
Mean 0.420207 0.021012 0.042119

Variance 0.040117 0.000044 0.000016

4.3.2 Grassmann clustering

The Grassmann clustering is performed in two consecutive steps. It has already been
noted that the Grassmann distance is not defined between snapshots, as they are not
points in the Grassmann manifold. There is a need for a first partitioning of the data
in order to create preliminary reduced bases to be compared with the Grassmann
distance. It should be pointed out that this first partitioning might introduce a bias
in the way the Grassmann clusters are constructed. The first partitioning consists
of a Euclidean clustering performed on the parameter space for a very large number
of clusters K, in this case, K = 4000.

According to Figure 4.1, the Grassmann cluster produces clusters of varying sizes
instead of the very homogeneous clusters obtained with the Euclidean distance. Fig-
ure 4.3 displays cluster 10, which is the largest cluster obtained with the Grassmann
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distance. Unlike the Euclidean clustering, only snapshots with similar positions are
clustered together, with significant variance in speed and power. The interquartile
range variance, presented in Table 4.2, shows, in agreement with the cluster in Fig-
ure 4.3, that most clusters tend to group snapshots around the same position, with
the speed and power having greater variety.
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Figure 4.3: Distribution of speed, power and position for an arbi-
trary cluster (Grassmann distance).

Table 4.2: Interquartile range mean and variance of each scaled
parameter (Grassmann clustering).

IQR(Speed) IQR(Power) IQR(Position)
Mean 0.344514 0.380694 0.016801

Variance 0.022942 0.029629 0.000033

The Grassmann distance creates some very big clusters. We are interested in
whether these clusters capture a stationary region in the specimen that is very easily
reproduced by the reduced bases. The welding torch positions that are represented
in the six largest clusters were analysed and summed up in a histogram in Figure
4.4. These six clusters are those with more than 500 snapshots in them (1286, 1142,
992, 626, 567 and 502, respectively), which accounts for 15.31% of the snapshots.
In agreement with Table 4.2, these clusters gather around separated positions.
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Figure 4.4: Welding torch positions represented in the 6 largest
clusters (Grassmann clustering).

4.3.3 Projection error clustering

Finally, the last clustering method involves the projection error between snapshots
in the solution space. One should be reminded that the clustering method is not K-
medoids, as in the previous examples, but the algorithm presented in Algorithm 4.3.
The stopping criterion is set to εP = 0.245 and the minimum cluster size threshold
is set to 10. This configuration yields a total of 255, close to the 260 of the previous
methods.
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Figure 4.5: Distribution of speed, power and position for the largest
cluster (Projection error).

Once again, we have decided to show the results on the largest cluster produced
by this method in Figure 4.5. In this cluster, the snapshots are concentrated by
the position, with variety in the speed and power values. The IQR in Table 4.3
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Table 4.3: Interquartile range mean and variance of each scaled
parameter (Projection error clustering).

IQR(Speed) IQR(Power) IQR(Position)
Mean 0.303896 0.415119 0.010011

Variance 0.009896 0.010675 0.000019

show that this behaviour is shared by other clusters, where the spread of snapshots
according to the three parameters is similar.

The largest cluster contains 1877 snapshots with the torch positioned at the end
of the specimen. This suggests that the temperature snapshots when the torch is
arriving at the final position are very similar in the sense of vector spaces even
for signification variations of speed and power. Indeed, the 5 largest clusters are
concentrated around the final position, see Figure 4.6. These five clusters account
for 11.87 % of the snapshots and have, respectively, 1877, 554, 550, 539 and 447
snapshots.
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Figure 4.6: Welding torch positions represented in the 5 largest
clusters (Projection error clustering).

4.3.4 Offline stage results recap

The previous sections have shown the results of clustering the simulation data by
applying three different dissimilarity metrics. The most remarkable result is that all
three metrics tend to group data according to the position of the heat source in the
selected snapshots. This supports the physical intuition that led to the separation
of local models by position in Chapter 3.

The Euclidean distance also grouped snapshots according to the power of the
snapshots, indicating a sensibility in the Euclidean distance to variations in power
that lead to temperature fields with an extensive range of values. This phenomenon
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is mitigated for the other two metrics. Grassmann clustering groups snapshots ac-
cording to the similarity between the spanned subspaces of reduced bases calculated
from the snapshots. Intuitively, two similar fields with a difference in scale will
span similar subspaces because they can be represented by the same basis func-
tion with a different coefficient. Projection Error clustering has been proven to be
scale-invariant.

The other major difference is in the size of the clusters. Whilst the Euclidean
clustering produces homogeneous clusters, the other two methods were observed to
create very heterogeneous clusters in terms of size when sampling the parameter
space by using a Latin Hyper Cube algorithm.

Finally, the results were analysed according to the known parameters µ = (v,Q)
and the position of the torch. Additional analysis on the unknown parameters θ was
made, but it is not shown in this document, as no relevant pattern was observed
and including them in the boxplots make them more difficult to read.

4.4 Online stage
The online stage is divided into two distinct steps: a classification step in which new
input data, in this case a partial observation of the temperature field, is assigned
the most adequate local surrogate model, and an estimation step in which the local
model produces a 3D estimation of the entire temperature and maximum principal
stress fields, as well as an estimation of the unknown parameters. In this section,
we will focus on the classification step, whilst we refer to Chapter 3 for details on
how the estimations are computed.

In the online stage, an infrared image has to be assigned to the adequate local
surrogate model, which is associated with a cluster. The classification step is, thus,
reduced to finding a label for a vector containing the partially observed temperature
and known parameters, which points to a local surrogate model. The three clustering
methods introduced in the previous section produce a natural classification tool to
identify the best cluster for the input data. However, this assignment could be
computationally expensive for large numbers of clusters K.

In this work, we aim at finding a universal classification function that assigns the
most appropriate PPCA model inexpensively and independently of the clustering
method used to construct them. This universal classification will be a Multi Layer
Perceptron (MLP) neural network. In order to train the MLP, we will need a set of
labels for all of the simulation snapshots. The following subsections will introduce
the labelling methods that naturally arise from the clustering methods and a new
optimal labelling method that takes into account the reconstruction error of the
snapshot with the reduced bases computed for each cluster. Finally, the chosen
MLP model is explained in detail.

4.4.1 Clustering labels

As it was indicated at the beginning of this section, the clustering methods provide
a natural classification tool by identifying each snapshot with the cluster that it was
assigned into. The assignment of a label to new data is done differently for each
clustering method and will rely on the use of the clustering metric, which could prove
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computationally expensive. Moreover, the training data is composed of multiphysics
state vectors whilst in the online stage the data will consist exclusively of partial
surface measurements of temperature.

In the online stage, the input data consists only of partial superficial temperature
data and the known parameters µ: speed and power. This partial knowledge can be
represented by a boolean operator H, which has already been introduced in Chapter
3 that restrains the current knowledge of the multiphysics vector to the available
data:

T j = Hsj ∈ RNd (4.14)

where Tj is a vector containing the observed temperature field and the known pa-
rameters of the snapshot sj, and Nd is the dimension of the observed data vector,
corresponding to the number of nodes observed with the camera and the number of
known parameters.

Euclidean clustering

The Euclidean clustering assignment of a label to a new observed vector is straight-
forward. The cluster for a certain snapshot sj can be calculated as the cluster whose
centroid realises the minimum distance to sj. The label lj assigned to a multiphysics
snapshot sj is:

lj = arg min
k∈J1,KK

δE(sj,mk) (4.15)

where mk is the medoid associated to the cluster Ck. The labelling method in
Equation (4.15) still holds for the observed snapshots T j:

lj = arg min
k∈J1,KK

δE(T j, Hmk) (4.16)

and can be used for new unknown input infrared images.

Projection Error clustering

The same idea presented for the Euclidean clustering could be applied to the Pro-
jection Error clustering. The label is assigned by computing the projection error to
the representatives mk of each cluster. However, the computation time increases
significantly for large values of K. Here, K = 255 makes the computation quite
expensive, unlike for the Euclidean case. The label assignment is:

lj = arg min
k∈J1,KK

δp(sj,m
k) (4.17)

where mk is the representative of cluster Ck, as presented in Algorithm 4.3.
Furthermore, an alternative version could also compute the projection error with

respect to the reduced bases Φk of each cluster Ck, offering a more meaningful
labelling in the context of MOR:

lj = arg min
k∈J1,KK

δp(sj,Φ
k) = arg min

k∈J1,KK
||sj −Φk(Φk)Tsj||2 (4.18)
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In this case, the projection error is related to the projection of sj onto the reduced
basis Φk.

As for the Euclidean assignment, both of these labelling methods hold when con-
sidering partially observed snapshots T j by computing the Projection error between
T j and Hmk or HΦk, respectively. The labelling in these cases are:

lj = arg min
k∈J1,KK

δp(T j, Hm
k) (4.19)

and:

lj = arg min
k∈J1,KK

δp(T j, HΦk) (4.20)

Grassmann clustering

The assignment with the Grassmann clustering cannot be done in the same way as
in Equations (4.16) or (4.19). In both cases, the representatives of each cluster, are
multiphysics snapshots sj. The dissimilarity between the input data and the repre-
sentatives has a closed-form expression, but this is not the case with the Grassmann
clustering. Indeed, the medoids are reduced bases and the Grassmann distance is
only defined between the subspaces they span. As a result of the clustering using
the Grassmann distance, each preliminary reduced basis has a label and each pre-
liminary reduced basis is related to a preliminary cluster of data. Hence, we assign
to the data in a preliminary cluster the label of its preliminary reduced basis.

4.4.2 Optimal relabelling

Whilst labelling the existing simulation snapshots is possible simply by identifying
which snapshots were used for the construction of each reduced basis, the assignment
of a cluster to new data is a more difficult task. The previous subsection showed how
to label the existing simulation snapshots and introduced a way of assigning a label
to new data in the form of partially observed temperature fields. An alternative
to these assignment functions is the use of a classification neural network that can
link the observed data to a set of labels. The computationally expensive training
phase leads to a fast assignment of a label. The universality of this approach relies
on optimally labelling the data without the metrics that were used in the clustering
offline stage. This can be achieved by computing labels l∗j taking into account the
reconstruction error of the PPCA models Φk and the snapshots sj:

l∗j = arg min
k∈J1,KK

δR(sj,Φ
k) (4.21)

where δR is the reconstruction error with a PPCA model, which is given by:

δR(sj,Φ
k) = ||sj − (s̄j + Φk

(
(Φk)TΦk

)−1
(Φk)T (sj − s̄j))||2 (4.22)

The reconstruction error, similar to the Projection error, measures the error
between a snapshot and the orthogonal projection with a PPCA basis, as defined in
Chapter 3. This metric is directly connected to the second step of the online stage:
the estimation of the 3D temperature and maximum principal stress fields, and
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the estimation of the unknown parameters. It offers an optimal assignment of local
surrogate models independently of the clustering method used for their construction.

There are significant differences between the labels assigned directly via cluster-
ing and the new set of labels defined in Equation (4.21). Table 4.4 sums up how
many labels were changed when using this new formulation.

Table 4.4: Amount of labels that were changed when comparing the
clustering labels and the optimal labels with respect to the PPCA

reconstruction error.

Euclidean Grassmann Projection
Total amount 3408 12421 4993
Percentage 10.20 % 37.18 % 14.95 %

These labels are considered optimal in the sense of the reconstruction error,
which means that the local reduced model associated to the assigned class is the one
that best represents the snapshot. The labels will be used as a way of identifying
the "true" class of every snapshot in the training of a classification neural network.

4.4.3 Multi Layer Perceptrons

The selected architecture for the classification neural network is the Multi-Layer
Perceptron (MLP) [56]. MLPs are known to be universal approximators [76]. Ac-
cording to Hagan in [65], two hidden layers are sufficient to approximate any function
arbitrarily well, according to, provided that enough hidden units are available.

An MLP can be described as the successive application of functional transforma-
tions to the input data. Each layer creates new features from a linear combination
of the current layer’s inputs and applies a non-linear activation function. It is com-
posed of at least an input layer, a hidden layer and an output layer. The number of
hidden layers is one of the hyper-parameters of the model. To explain how an MLP
works, let us see an example of a single hidden layer model, shown in Figure 4.7 .

Let x be a p-dimensional input vector and Λk ∈ RK be a vector of zeroes except
for a 1 at the kth position, which represents its “true label" in a K-class classification
problem. The input vector x is transformed into a vector y ∈ RM as:

y = f(α0 + Ax) (4.23)

whereα0 ∈ RM and A ∈ RM×p are, respectively, a vector and a matrix of coefficients.
These coefficients are unknown parameters of the model and are also known as
weights. Finally, f : R −→ R is a derivable non-linear activation function. This
function is applied element-wise. Some examples of activation functions are:

• ReLU function: f(x) = max(0, x)

• Sigmoid function: f(x) = 1
1+e−x

• Hyperbolic tangent: f(x) = tanh(x) = ex−e−x
ex+e−x



4.4. Online stage 107

Figure 4.7: Scheme of a one hidden layer MLP.

The result of the output layer is a vector z ∈ RK that is obtained by a linear
combination of the elements in y, and the application of a softmax function g,
which is a generalisation of the logistic regression function and outputs positive
values that add up to one. Therefore its results can be interpreted as a probability
distribution. The softmax function in a K-class classification problem is applied to
a K-dimensional vector v, where the transformation of each of its components is
given by:

g(vk) =
evk

K∑
i=1

evi

(4.24)

The softmax function can be substituted by a log-softmax, which consists in ap-
plying the logarithm of the softmax function. The result, in this case, is interpreted
as a vector of log probabilities. Using log probabilities offer several advantages in
terms of numerical efficiency and stability. The log-softmax function is obtained by
applying the natural logarithm to the results of the softmax function:

g̃(vk) = log (g(vk)) = log

 evk

K∑
i=1

evi

 (4.25)

Thus, the vector z is calculated as:
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z = g̃ (β0 + By) (4.26)

where β0 ∈ RK and B ∈ RM×K are another vector and matrix of unknown parame-
ters.

The action of the consecutive layers could be summed up by the application of
a non-linear function Ψ that depends on the M(p+ 1) +K(M + 1) weights: α0, A,
β0 and B. In order to simplify the notations, the weights are grouped together in a
variable ω. This function Ψ is:

Ψ : Rp × RM(p+1)+K(M+1) −→ RK

x −→ Ψ(x,ω) = z
(4.27)

where z is calculated as the composition of Equations (4.23) and (4.26). For simplic-
ity’s sake, dependency on the weights is dropped from the notation in the following
paragraphs.

Finally, the predicted class l for the input vector x is given by the most probable
class:

l = arg max
k=1,...,K

Ψ(x) (4.28)

The whole procedure can be interpreted as a classifier function C that assigns a
label l to the original input dataX by picking the most probable class, as determined
by Ψ:

C : Rp −→ {1, . . . , K}
x −→ C(Ψ(x)) = l

(4.29)

Training the neural network consists of calibrating the weights ω. These param-
eters are optimised according to an objective function, which in multi-class clas-
sification usually is the cross-entropy function. Optimising the cross-entropy loss
function is equivalent to maximising the likelihood of the correct label [69, 23]. The
cross-entropy depends on the weights and the true label Λk:

CE(ω,Λk) = −
K∑
k=1

Λk(Ψ(x))k (4.30)

which is the negative log-probability of the class in Λk.
Training is done in batches of Nbatch input vectors. The problem should be

generalised for a matrixX ∈ RNbatch×p and the true labels are stored in a matrix Λ ∈
RNbatch×K , where each row is a vector such as Λk, where the only non-zero component
is a 1 for the true label. When considering a batch, x should be interpreted as a
the transpose of a row Xn, n = 1, . . . , Nbatch of X in all previous equations. The
cross-entropy is now calculated as the mean cross-entropy of the batch:

CE(ω,Λ) = − 1

Nbatch

Nbatch∑
n=1

K∑
k=1

Λnk(Ψ(Xn, ω))k (4.31)
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where Ψ(Xn,ω)k denotes the kth component of the neural network’s output.
The training process is divided into several steps called epochs. In each epoch,

all the training set is processed in a two-step process:

• a forward pass in which the current weights are used to produce a prediction;

• and a backward pass in which the objective function is minimised.

This process is called back-propagation. The objective function is minimised
with a gradient descent algorithm [116], usually some implementation of stochastic
gradient descent.

4.4.4 Training a classification Multi Layer Perceptron

Several architectures of MLPs were tested for assigning a local PPCA model to
the vectors of partially observed temperatures and known parameters. The version
presented in this document is a 2 hidden layer model with ReLU activation functions
(presented in the previous section and in Equation (4.32)). Each layer is followed
by a dropout layer to avoid overfitting [155]. The dropout layer sets a probability p
of deactivation to each node, which means that the input temporarily set to 0. the
dropout layers were set to a probability of p = 1

2
.

f(x) = max(0, x) (4.32)

The objective function is the cross-entropy function, minimised with an ADAMW
algorithm [84] with warm restarts [97, 96]. It was shown in previous sections that
the different clustering metrics produce clusters of varying sizes. The optimal labels
introduced in Equation (4.21) also produce an imbalance in the sense of the number
of snapshots assigned to each model. Figure 4.8 show the label spreading, i.e. how
many snapshots have been assigned for each label. This imbalance in the data
distribution is translated by a weight wk attributed to each cluster:

wk =
#Ck
#Ck∗

(4.33)

where #Ck∗ is the amount of elements in the biggest cluster and serves as a nor-
malisation term. In order to take these weights into account, the formulation of the
Cross-entropy objective function presented in Equation (4.34) needs to be changed
to:

CE(ω,Λ) = − 1
N∑
n=1

K∑
k=1

wkΛnk

N∑
n=1

K∑
k=1

wkΛnkΨ(Xn, ω)k (4.34)

The warm restarts strategy aims at improving the accuracy of the neural network
by setting the learning rate to a new value in each epoch following a cosine annealing
schedule and restarting the parameters of the optimiser after a certain number of
epochs. It was first proposed by Loshilov [97] for the Stochastic Gradient Descent
algorithm. The cosine annealing function is:
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Figure 4.8: Optimal label boxplots showing the number of snap-
shots per label for each clustering metric.

ρt = ρmin +
1

2
(ρmax − ρmin)

(
1 + cos

(
Tcur
Ti

π

))
(4.35)

where ρt is the learning rate for epoch t, Tcur is the number of epochs since the last
restart and Ti is the number of epochs between warm restarts. When Tcur = Ti,
the current learning rate ρt is set as the minimum learning rate ρt = ρmin. After a
restart, Tcur = 0 and ρt is set to the maximum learning rate ρt = ρmax. The number
of epochs between two restarts can be modified by a multiplier Tmult. Thus, the
value of Ti is updated after each restart as:

Ti ← Ti × Tmult (4.36)

which means that restarts are less frequent over time if Tmult 6= 1.
One MLP is trained for each clustering method using the PyTorch library [118].

The snapshot database is divided into a training set and a test set with a 90-10
random split. The input data are temperature snapshots T j, j ∈ J , which are
extracted from the multiphysics vector sj as shown in Equation (4.14). The data
had been previously clustered into 260 clusters for the Euclidean and Grassmann
metrics and 255 with the Projection Error metric.

4.5 Numerical results
In the following sections, numerical results related to the online phase are dis-
played.We will focus on two different types of results: the classification problem
and the estimation of temperature and stress fields using the local PPCA models
created after clustering.



4.5. Numerical results 111

4.5.1 Training of the MLP

The input data is a filtered multiphysics snapshot containing the nodal tempera-
ture values on the observable surface of the specimen and the corresponding known
parameters µ. The data is randomly divided into a training and test sets with a
90-10 split. Usually, data is pre-processed before training in order to increase per-
formance. This pre-processing generally involves normalisation and scaling of the
data. In the present case, the whole dataset does not fit into memory at the same
time. As a consequence, the mean and standard deviation of the data have been
obtained using Welford’s algorithm [170] on consecutive batches. This was tried on
all learning strategies presented in the following sections, but the networks didn’t
improve their accuracy score. As a result, the data was not normalised.

The classifier’s output is a numerical label l ∈ J1, KK corresponding to the most
likely label according to the MLP. In order to quantify the performance of the
trained MLPs, the accuracy score is used. The accuracy measures how many labels
are correctly assigned with respect to the optimal labels obtained by reconstruction
with each cluster’s associated basis, assigned as in Equation (4.21). The accuracy
score A is computed as:

A =
1

N

N∑
j=1

1{l∗j=C(T j)} (4.37)

where N is the number of tested snapshots, l∗j are the true optimal labels and C is
the classification function. In the following paragraphs and sections, N should be
interpreted as the amount of snapshots in the training or test sets when the results
refer to either of those sets.

We have tested three different training strategies:

1. Learning rate of 10−5 and no warm restarts.

2. Learning rate between ρmax = 10−5 and ρmin = 10−8, and warm restarts with
Ti = 1 and a multiplier Tmult = 2.

3. Learning rate between ρmax = 10−5 and ρmin = 10−8, and warm restarts with
Ti = 10 and a multiplier Tmult = 2.

The learning rate evolution with strategies 2 and 3 are shown in Figures 4.9. The
accuracy result of each strategy is shown for each clustering metric in the following
subsections. All the networks were trained on a single V100 16Gb Nvidia GPU
graphic card on a scientific cluster. The training time for 1000 epochs oscillates
between two and three days.
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Figure 4.9: Evolution of the learning rate following a cosine schedule
with Tmult = 2, and Ti = 1 (left) and Ti = 10 (right).

Euclidean clustering

The accuracy on the training and test sets for the three training processes are shown
in Figures 4.10, 4.11 and 4.12. These figures show that the attempts at improving
the accuracy by resetting the learning rates have worked as intended. Whilst the
accuracy without Warm Restarts remains below 50% for the test set (see Figure
4.10), the other two strategies go well beyond 80%.

In the cases were the Warm Restarts are used, one can observe a decline in
accuracy followed by a steady improvement in the training and test sets for both
configurations Ti = 1 and Ti = 10. Those are the instants where the optimiser
parameters and the learning rate are reset. There is no significant difference between
both strategies, both of them showing accuracy scores of around 92% for the training
set and around 86% for the test set.
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Figure 4.10: Evolution of the accuracy over 1000 epochs. No warm
restarts.
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Figure 4.11: Evolution of the accuracy over 1000 epochs. Warm
restarts with Ti = 1.
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Figure 4.12: Evolution of the accuracy over 1000 epochs. Warm
restarts with Ti = 10.

Grassmann clustering

The Grassmann clustering proved to be more challenging than the Euclidean clus-
tering. The best results in this case do not go as high as for the Euclidean clustering,
with an accuracy between 82 and 85 % with Warm Restarts in the training test and
around 70% in the test set (see Figures 4.14 and 4.15). There is a noticeable differ-
ence between the training and test sets that was less important for the Euclidean
clustering.
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Figure 4.13: Evolution of the accuracy over 1000 epochs. No warm
restarts.
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Figure 4.14: Evolution of the accuracy over 1000 epochs. Warm
restarts with Ti = 1.

When it comes to the training without Warm Restarts, it behaves in the same
way as the previous case. The accuracy barely goes over 50%, in particular 56.73%
for the training set and 51.51% for the test set, as presented in Figure 4.13. Once
again, this proves that the Warm Restarts are helpful with training processes that
would get stuck otherwise.
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Figure 4.15: Evolution of the accuracy over 1000 epochs. Warm
restarts with Ti = 10.

Projection error clustering

Finally, the Projection Error clustering has very similar results to the other clus-
tering methods except for a higher accuracy without Warm Restarts. In this case,
as it is shown in Figure 4.16, the training and test sets’ accuracy reach 70.50% and
68.48% respectively, which is significant when compared to the other two results
that were around 50%. We could find no clear explanation to why the Projection
error clustering gives a better result than the other two clusterings without Warm
Restarts.

0 200 400 600 800 1000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy no WR
Training set
Test set

Figure 4.16: Evolution of the accuracy over 1000 epochs. No warm
restarts.

Both Warm Restart strategies yield very similar results to the ones observed for
the Euclidean clustering, but with a different tendency during the training process.
Indeed, as it can be observed in Figures 4.17 and 4.18, the accuracy spikes very early
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on and then slightly improves over the course of the following epochs. The fact that
this fast initial convergence is not continued later does not change the end results,
which are again above 80% for the training and test sets in both configurations
Ti = 1 and Ti = 10. Similarly to the Euclidean clustering, the training and test sets’
accuracy are very similar, with a training set accuracy close to 88% and a test set
accuracy between 82% and 83%.
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Figure 4.17: Evolution of the accuracy over 1000 epochs. Warm
restarts with Ti = 1.
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Figure 4.18: Evolution of the accuracy over 1000 epochs. Warm
restarts with Ti = 10.

Table 4.5 sums up the final training accuracy results for the three training strate-
gies. The final accuracy scores shown in the Table confirm what was observed in
the previous Figures: there are no major differences between Ti = 1 and Ti = 10
when using Warm Restarts. The most significant difference appears for the Grass-
mann clustering, with a difference of around 3 % in favour of Ti = 10. In the next
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section, only the MLPs trained with Warm Restarts and Ti = 10 are used to test
the estimation of multiphysics state vectors with the new local bases.

Table 4.5: Accuracy results for each MLP and all training strategies.

Set Euclidean Grassmann Projection

No WR
Training 49.04 % 56.73 % 70.50 %
Test 40.29 % 51.51 % 68.48 %

Ti = 1
Training 92.66 % 84.17 % 88.00 %
Test 86.35 % 70.73 % 82.85 %

Ti = 10
Training 91.83 % 87.27 % 87.63 %
Test 86.17 % 73.24 % 82.22 %

A high accuracy score is needed to ensure that the input data is correctly assigned
the optimal label and, thus, the optimal local PPCA model. Failing at this, the
local PPCA model might not be able to estimate the desired physical fields from
the observed data.

4.5.2 3D temperature and stress estimation with noisy syn-
thetic data

The numerical tests’ objective is to showcase the online phase, starting with the
label assignment and then estimating 3D temperature and principal stress fields.
White noise is added to each input snapshot with the same variance as the camera
error estimated in chapter 2. This error was calculated as the variance between the
infrared camera and thermocouple temperature measures. It was estimated to be
σ2
M = 323.880246, which corresponds to a standard deviation of 18◦C.
This will produce additional miss-classification by the neural network, as it will

be shown. The tests are done on the scientific cluster following these steps:

Numerical tests’ steps

1. Select a batch of snapshots.

2. Add white noise to the snapshots.

3. For each clustering method, assign a label using the corresponding trained
MLP.

4. Estimate temperature and principal stress fields for each clustering method.

5. Compute relative L2 error with respect to a reference FE simulation.

The snapshots are selected in batches. Reusing the notation of chapter 3, each
vector in the batch is called dj, j = 1, . . . , NS and is calculated as:

dj = Hsj + εj (4.38)
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where εj ∼ N (0, σ2
M) is white noise, sj is a multiphysics vector and H is a boolean

operator that extracts the observed temperature nodes and the known parameters.
For these numerical tests, the observed temperature nodes correspond to the entire
surface observable surface, the one opposite to the welding arc.

The classifier C assigns a label lj = C(dj) to the snapthot. This will determine
which PPCA model is used in order to obtain the estimations. The estimation is
the mean of the posterior distribution ml

sl|dj . We refer to chapter 3 for all the details
on the formulation and the resolution.

The relative L2 errors were already introduced in chapter 3, in particular in
Equations (3.42) and (3.43). In this case, they write:

ejT =
||T
(
ml
sl|dj

)
− T j|µ,θ||2

||T j|µ,θ||2
(4.39)

ejσI =
||σI

(
ml
sl|dj ,µ

)
− σjI|µ,θ||2

||σjI|µ,θ||2
(4.40)

where T and σI are operators that extract the entire temperature or principal stress
fields respectively.

The temperature and principal stress estimation errors are shown in Tables 4.6
and 4.7 respectively. The tables compare the average estimation error according to
different criteria for each clustering metric.

The first two rows show the overall average estimation error for the training
and test sets snapshots. This error is averaged over the entire parameter study,
independently of whether the classification was successful or not with respect to
the true label. The difference between the training and test set’s errors are not
significant when comparing the same metric for either temperature and principal
stress. The difference between metrics is, however, noticeable. The projection error
clustering presents the lowest estimation errors in temperature and principal stress,
with less than 2 % and 6 %, respectively. On the contrary, the Euclidean clustering
obtained the worst results on average, with temperature estimation errors above 7
% and principal stress errors above 22 %.

Table 4.6: Average temperature estimation error.

Set Euclidean Grassmann Projection

Overall
Training 7.4 % 4.60 % 1.80 %
Test 7.71 % 4.52 % 1.78 %

Correctly assigned
Training 3.78 % 1.60 % 1.05 %
Test 3.24 % 1.61 % 1.01 %

Incorrectly assigned
Training 35.16 % 21.73 % 6.28 %
Test 28.45 % 11.43 % 4.94 %
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Table 4.7: Average principal stress estimation error.

Set Euclidean Grassmann Projection

Overall
Training 22.34 % 11.68 % 5.96 %
Test 22.88 % 11.66 % 5.96 %

Correctly assigned
Training 11.90 % 6.78 % 5.23 %
Test 9.32 % 6.60 % 5.12 %

Incorrectly assigned
Training 102.80 % 40.07 % 10.41 %
Test 85.92 % 23.79 % 9.45 %

The results are also separated into two groups according to whether the MLP
correctly identified the true label or not. The white noise applied to the input
data introduces more miss-classifications than the ones obtained during the training
process. Indeed, Table 4.8 shows the difference between the accuracy scores in
training and with noisy data. The accuracy is slightly lower with noisy data, with
decreases between 2 % and 4 %.

Table 4.8: Accuracy results for each MLP with noisy input.

Set Euclidean Grassmann Projection

Accuracy in training
Training 91.83 % 87.27 % 87.63 %
Test 86.17 % 73.24 % 82.22 %

Accuracy with noisy data
Training 88.47 % 85.07 % 85.79 %
Test 82.28 % 70.40 % 80.34 %

The third and fourth rows of Tables 4.6 and 4.7 correspond to the snapshots in
the training and test sets that the MLP correctly classified. We observe that the
estimation error is almost two times smaller than the one observed when mixing all
the snapshots, except for the Projection Error clustering which shows a decrease of
less than 1 %. Hence, the estimations are closer to the Finite Elements reference
solutions for the three metrics and both physical fields, which is the expected be-
haviour. The temperature errors are remarkably low for the projection error and
the Grassmann clustering, which are close to 1 %. The average Euclidean clustering
stress’ errors when the snapshot is correctly classified are 11.90 % for the training
test and 9.32 % for the test set.

Finally, the last two rows of Tables 4.6 and 4.7 present the results when the MLP
did not correctly assign the true optimal label. The average errors are increased
for all categories, but it is especially significant for the Euclidean clustering. On
average, when the snapshot is not correctly classified, the temperature error with
the Euclidean clustering are 35.16 % for the training set and 28.45 % for the test
set. The order of these errors is high for the temperature field. What is more, the
results are even worse for the average principal stress errors, for which relative errors
reach 100 %. The estimations are, thus, not close at all to the reference solutions.
On the other hand, the average errors with the Projection Error clustering stay very
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low even when the snapshot is miss-classified in both temperature (6.28 % for the
training set and 4.94 % for the test set ) and principal stress (10.41 % and 9.45
%). In particular, it should be noted that the principal stress errors are similar
to the Euclidean clustering errors when the snapshots are correctly classified. The
Grassmann clustering average errors are also greatly increased, but not as much as
the Euclidean clustering errors.

Hence, the local PPCA models created from the Projection Error clustering
produce better estimation results and, on average, seems to be less influenced by an
error in the classification. The following subsections will show examples of the best
and worst estimations.

These results were presented on average, but it is well known that extreme values
greatly perturb this measure. Table 4.9 presents the percentage of snapshots whose
error is below 1, 5, 10 and 20 % in temperature and stress. For temperature,
almost 90 % of the snapshot have an estimation relative error under 5 %, reaching
97 % for the projection error clustering. With respect to the maximum principal
stress, results are more heterogeneous. More than 85 % of the snapshots have an
error below 20 %, including 98.95 % in the projection error clustering. However,
the 10 % threshold shows much variance, with 92.93 % in the projection error
clustering, 79 % in the Euclidean clustering, but going as low as 52.74 % for in the
Grassmann clustering. Overall, the same conclusions can be reached: the projection
error clusters tend to produce the better results in term of L2 norm between the
estimations and the reference snapshots.

Table 4.9: Percentage of snapshots with an error below a certain
threshold.

Field Euclidean Grassmann Projection

Below 1 %
Temperature 66.51 % 15.08 % 57.13 %

Stress 0.02 % 0.76 % 0 %

Below 5 %
Temperature 88.90 % 89.95 % 97.09 %

Stress 50.06 % 13.78 % 48.58 %

Below 10 %
Temperature 91.73 % 95.78 % 98.63 %

Stress 79.00 % 52.74 % 92.93 %

Below 20 %
Temperature 95.35 % 97.94 % 99.38 %

Stress 86.12 % 88.84 % 98.95 %

Examples of best and worst temperature estimations

The best temperature estimations for the three clustering metrics are obtained for
snapshots that are assigned their optimal reconstruction label and all of them were
part of the training set.

The best temperature estimation obtained with the Euclidean clusters is pre-
sented in Figure 4.19. It corresponds to a snapshot were the torch has advanced
112.5 mm and its speed and power are v = 1.12 mm/s and 652.03 W . The es-
timation error is 0.11%. Figure 4.20 shows a comparison between the estimated
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temperature field’s profile along the welding line and the reference snapshot, with
the confidence region of the estimation. The selected cluster’s medoid is a snapshot
with a torch speed of 1.89 mm/s, a power of 657.6 W and located 107.5 mm after
the initial position. One can notice that the power and positions are particularly
close, which was already observed in Figure 4.2. The assigned cluster contains 109
snapshots with similar positions and powers, with power values between 646.76 W
and 665.89 W , and positions between 101.5 mm and 113.5 mm. The speed is the
largest source of variance in this cluster, covering almost all the parameter space,
going from 1.12 mm/s to 2.78 mm/s. As a consequence, the variance of the estimate
is large on Figure 4.20.

20.0 385. 751. 1.12e+03 1.48e+03
Temperature estimation (°C)

Figure 4.19: Best temperature estimation - Euclidean clustering.

In the Grassmann clustering case, the best result (see Figure 4.21) is obtained for
a snapshot were the torch is located only 0.5 mm further than its assigned cluster’s
medoid. The snapshot has the following known parameters µ = (2.64 mm/s, 843.62 W )
and the torch has advanced 82.5 mm, whilst the medoid has the same known param-
eters µ but the torch has advanced 82 mm. This produces a very small estimation
error, at 0.01%, as can be observed in Figure 4.22. The corresponding cluster is clus-
ter 169, which contains only 5 snapshots that are consecutive positions of the same
FE simulation, resulting in an estimation with a model with almost no variance.

These snapshots may have been clustered together because of the unknown pa-
rameters θ. The unknown parameters vector is θ = (11.16, 2.51, 2.36, 0.85, 2.43).
This vector combines a very large parameter af = 11.16 and a large coefficient factor
K = 2.43. These two parameters are responsible for the front and rear lengths of the
double ellipsoid in Goldak’s equivalent heat source (see Chapter 2 for more details),
giving this snapshot a very characteristic look with a very long heat affected zone and
low temperature, as shown in Figure 4.21. A similar situation arises in the Projec-
tion Error clustering. The best temperature estimation, presented in Figure 4.23, is
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Figure 4.20: Best result compared to the reference FE simulation -
Euclidean clustering.

20.0 304. 587. 871. 1.15e+03
Temperature estimation (°C)

Figure 4.21: Best temperature estimation - Grassmann clustering.

obtained for a snapshot with known parameters µ = (1.02 mm/s, 1071.19 W ), which
are extreme values of the parameter space. The minimum speed value is 1 mm/s
and the maximum power value is 1080 W . The representative of this snapshot’s
cluster is a snapshot that uses the same known parameters µ. The advancement of
the torch is 122 mm for the snapshot and 121 mm for the cluster’s representative.
The estimation error is, again, very low at 0.14 %.

However, in the case of projection error clustering, the assigned cluster is larger
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Figure 4.22: Best result compared to the reference FE simulation -
Grassmann clustering.

than Grassmann’s cluster. It contains 91 snapshots with positions between 121 mm
and 128.5 mm, with a larger variance in speed and power: speed values between
1.01 mm/s and 1.8 mm/s, and power values between 652.03 W and 1073.83 W . The
small confidence region observed in Figure 4.24 indicates, that these large ranges
of parameter values result in very similar fields that are accurately captured by the
associated PPCA basis.

20.0 461. 903. 1.34e+03 1.79e+03
Temperature estimation (°C)

Figure 4.23: Best temperature estimation - Projection Error clus-
tering.
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Figure 4.24: Best result compared to the reference FE simulation -
Projection Error clustering.

The worst results correspond to snapshots that where incorrectly assigned. In
some cases, such as the Euclidean cluster case, the snapshot can be assigned to a
cluster that cannot properly represent the snapshot. Figure 4.25 shows the temper-
ature estimation of a snapshot with known parameters µ = (2.42 mm/s, 563.91 W )
at position 1.5 mm, which is shown in Figure 4.26. The estimation is not physical,
as evidenced by the negative temperature value of 17200 ◦C. This non-physical state
estimation is associated to an error of 1458 %.

In the Grassmann clustering case, the classification incorrectly assigned cluster
121 to the snapshot presented in Figure 4.28. This snapshot’s speed is 2.44 mm/s,
its power is 925.99 W , and its position is 16.5 mm. Cluster 121 is a very small
cluster that only contains 6 snapshots, 5 of them being consecutive positions be-
tween 16.5 mm and 18.5 mm, but with a known parameters that are quite different
from the reference snapshot: µ = (1.28 mm/s, 637.15W ). This produces a non-
physical estimation with an estimation error of 2795 % and with negative values up
to −16800◦C in some regions, as seen in Figure 4.27.

The Projection Error clustering’s worst temperature estimation shows a differ-
ent situation in which the assigned cluster is concentrated around a very different
position with respect to the considered snapshot. Whilst the reference snapshot in
Figure 4.30 is located at the end of the weld line, at 113.5 mm, the assigned cluster
contains 16 snapshots grouped between positions 3 mm and 5 mm for a large range
of speeds (between 1.83 mm/s and 3 mm/s) and powers (between 563.91 W and
1055.56 W ). The error between the reference snapshot and the estimation is very
large, at 97 %, but much smaller than for the other two clustering methods. How-
ever, the estimation, shown in Figure 4.29, is non-physical with negative temperature
values, and it does not represent at all the reference snapshot.

These examples have shown some of the advantages and disadvantages of the
proposed method. When the snapshots are correctly assigned the optimal label,
the associated local models perform very well in the sense of the estimation error.
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However, a miss-classified snapshot may try to calculate an estimation with a local
basis that is incapable of reproducing the reference snapshot, which might result in
a meaningless estimation.

-1.72e+04-1.10e+04-4.77e+03 1.44e+03 7.66e+03
Temperature estimation (°C)

Figure 4.25: Worst temperature estimation - Euclidean clustering.

20.0 220. 420. 620. 820.
Temperature (°C)

Figure 4.26: Reference snapshot - Euclidean clustering.
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-1.68e+044.85e+03 2.65e+04 4.82e+04 6.99e+04
Temperature estimation (°C)

Figure 4.27: Worst temperature estimation - Grassmann clustering.

20.0 406. 791. 1.18e+03 1.56e+03
Temperature (°C)

Figure 4.28: Reference snapshot - Grassmann clustering.
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-55.7 266. 588. 909. 1.23e+03
Temperature estimation (°C)

Figure 4.29: Worst temperature estimation - Projection Error clus-
tering.

20.0 281. 542. 803. 1.06e+03
Temperature estimation (°C)

Figure 4.30: Reference snapshot - Projection Error clustering.
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4.6 Conclusion
This chapter has presented different methods to generate local PPCA models via
clustering of a snapshot database. Three metrics that assess dissimilarity between
snapshots were proposed. All three of them provide a way of separating the dataset
into clusters. Here, the offline stage includes the clustering and the computation of
PPCA bases, whilst the online stage refers to the label assignment to a new data
point. All of them show advantages and disadvantages during the offline and online
stages.

The three proposed metrics are the Euclidean distance, the Grassmann distance
and the Projection error between snapshots. However, not all of them treat data in
the same way. The main conclusions extracted from the clustering results are :

• The Euclidean distance clustering defined on the space state tends to generate
very homogeneous clusters in size and concentrate snapshots around a specific
position and torch power values.

• The Grassmann distance clustering defined on a Grassmann manifold, creates
heterogeneous clusters in terms of number of snapshots. The clusters contain
snapshots grouped mainly through their position on the specimen. The main
drawback of this method is that it needs the computation of preliminary local
reduced bases.

• The Projection error clustering behaves similarly to the Grassmann clustering
in that the clusters are heterogeneous in size and concentrate snapshots ac-
cording to their position on the specimen. The final number of clusters is not
controllable in advance, as the method relies on two alternative parameters:
the maximum intracluster error and the minimum size threshold.

All the clustering results share some common properties. The three suggested
methods tend to group the data snapshots according to the position of the heat
source, which confirms the intuition that led to the partitioning in Chapter 3. Clus-
tering the data snapshots to find an optimal partition is relevant for more complex
problems where there is no easily identifiable solution. For problems similar to the
PVR experiment, with a linear trajectory of the welding torch, another possibility
would be to produce snapshots in the torch reference frame, i.e., in a moving frame
along the welding direction.

The first task of the online stage is the assignment of the best possible local
model to the input data. Some problems were identified in this context:

• The Grassmann distance is only defined between subspaces spanned by re-
duced bases, not between snapshots and reduced bases. It cannot be used to
determine the closest basis to some new data.

• For large numbers of clusters, the computation of the closest basis might be-
come too expensive. In particular, this could be a problem for the Projection
error clustering.
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As a universal solution for all three methods, we decided to train a classification
model that points towards the best possible model, defined by a new set of optimal
labels with respect to the PPCA reconstruction error. The chosen classifier is an
MLP neural network. We created one MLP per clustering method and trained them
following different training schemes to increase the network’s accuracy. In all three
cases, the different training schemes resulted in very similar accuracy results for the
classifier.

The final results presented in this chapter are the errors between Finite Elements
reference solutions and the estimations produced by the PPCA local models. All the
snapshots where used as input for the estimation of 3D temperatures and principal
stress fields. They where separated into two distinct groups, the training set and
the test set (which reference the partition used for the classifier training) and the
L2 relative error was averaged over them. Furthermore, the results were also com-
pared when the classifier correctly assigns the optimal cluster label to the snapshot.
This extensive test shows that the PPCA models created from the Projection Error
clusters produce the best estimations in all categories, including the cases where the
snapshots are miss-classified.

The best and worst estimations presented at the end of the chapter show main
advantages and disadvantages of the clustering approach. When a snapshot is cor-
rectly assigned, the estimations are very close to the reference snapshot. However,
a miss-classification may cause an estimation with a local model that is incapable
of correctly reproducing the reference field. This is something that needs to be im-
proved in the future, the objective being that a miss-classification points to a close
enough cluster. What is more, even in the case of miss-classification, the estimation
of the state should abide by physical laws such as positivity of the temperature fields
(measured in K).
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Chapter 5

Multipass welding hyper-reduction

Abstract:

Previous chapters have dealt with the PVR experiment, a welding exper-
iment where no filler metal is used. However, most manufacturing and
repair operations involve a large number of welding passes. Multipass
welding is known to be a challenge for simulations and, in particular, for
reduced order models. This chapter presents exploratory work on exten-
sions to the hyper-reduction method in the context of multipass welding.
Specifically, two methods are proposed to forecast future states when FE
simulations are too long to produce training data for a complete welding
operation. Only the first passes are simulated. These results are used to
forecast the state of future passes. A hyper-reduced model is built from
the forecasted states in order to predict the final state of the weld.

The contents of this chapter have been extracted from an internal report
produced at the beginning of the PhD [120] using results from a previous
internship.

Résumé :

Les chapitrés précédents ont utilisé l’essai de fissuration à chaud PVR
comme cas test, un essai de soudage sans métal d’apport. Néanmoins,
la plupart des opérations de maintenance et assemblage utilisent une
large quantité de cordons de soudure. La simulation d’une opération
de soudage multipasses est connue pour sa difficulté, en particulier pour
l’application de modèles réduits.

Ce chapitre présente un travail exploratoire sur l’extension de la méthode
d’hyper-réduction à un cas de soudage multipasses. En particulier, deux
méthodes seront proposées pour prédire l’état thermomécanique futur
d’un cordon quand les simulations numériques par Éléments Finis sont
trop longues pour produire des données d’entraînement pour l’opération
entière. Seulement les premiers cordons seront simulés et ces résultats
seront utilisés pour prédire l’état des passes futures. Un modèle hyper-
réduit sera construit à partir des prédictions pour réaliser un calcul plus
fin de l’état final de la soudure.

Les contenus de ce chapitre ont été adaptés à partir d’un rapport interne
produit au début de la thèse [120] en utilisant les résultats d’un stage
précédent.
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5.1 Introduction
In welding processes, highly localised transient heat cause non-uniform thermal ex-
pansion and contraction and thus result in plastic deformation in the weld and
surrounding areas. Then, residual stress, strain and distortion are permanently pro-
duced in the welded structures. Stresses are known to promote fracture and fatigue,
and no experimental device gives access to the in-situ three-dimensional distribution
of stresses. Hence, prediction of residual stresses and distortion for various param-
eter values of the welding process is essential for optimising a welding process.

Due to the complexity of the physical processes involved in welding, Finite El-
ement Analysis (FEA) play an indispensable role in the numerical simulation of
welding. Hibbitt and Marcal [72] presented the first two-dimensional FEA to pre-
dict residual stresses in welding. As explained in [177], most FEA simulation efforts
during the 70s and 80s were focused on simplified 2D geometries [81], primarily due
to computational costs. Since the end of the 80s, 3D welding simulations can be
conducted using commercial FEA software, as reported in [156]. In addition, when
considering mobile heat sources, numerical simulation has a computational complex-
ity that is nonlinearly growing with respect to the length of the passes involved in
the process. On many occasions, the Finite Elements simulations are not feasible in
reasonable times.

Recently, projection-based model order reduction has been proposed to speed-up
welding simulations in [176, 38] in order to speed-up numerical predictions. In these
publications, a reduced basis of empirical modes is extracted from offline simulations
before setting the reduced equations for online predictions as explained in [31].
A common way to perform such an extraction of the reduced basis for nonlinear
simulations is the POD method proposed in [12]. Although these models have
proved to be useful in accelerating non-linear welding simulations, the multipass
case is still a challenge. Being an a posteriori method, a reduced model constructed
for the nth pass cannot be used to simulate a future bead.

In this chapter, we propose a prediction step to extrapolate finite element solu-
tions from one pass to another in order to obtain a reduced-order model for passes
that have not been simulated yet. A complete pipeline of the extrapolation and
hyper-reduced computation will be presented.

Two methods to calculate extrapolated simulations are introduced, and then they
will be combined to improve their performance. A first extrapolation method uses
a dynamic mode decomposition (DMD) of the displacements [146]. Here the DMD
describes the underlying physical mechanisms captured in a sequence of displacement
fields. We assume that these underlying physical mechanisms can be extended from
a set of first passes to the remainder of passes. The second extrapolation method is
the Physical Fields Shift Method [121]. In this approach, physical transformations
in the neighbourhood of the heat source are assumed to be almost steady-state
transformations in a moving frame. A final method combines both previous ones
in order to improve the results. The physical domain is divided into two distinct
zones with a clustering algorithm and one method is applied on each zone. Results
using all the presented approaches and the performance of the extrapolated reduced
models are shown in a final section.
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5.2 Simplified multipass welding test case
The extrapolation methods will be applied to a simplified case of multipass welding.
The test case consists of a 316L stainless steel plate with N = 20 deposited beads
on top of it (see Figure 5.1). The metal base dimensions are 100×200×20 mm and
each bead’s dimensions are 52 × 4 × 2 mm. The mesh is a regular grid containing
N = 57768 nodes. For details on the numerical model and temperature-dependent
material parameters, see Chapter 2. The operational parameters for this simplified
case are displayed in Table 5.1.

Figure 5.1: Simplified scheme of a N passes multipass welding.

Table 5.1: Simplified test case operational parameters.

Current 200 A
Voltage 12 V

Travel speed 1.00 mm/s
Linear energy 2400 J/mm

The results of the simulation after each pass n are stored in a matrixQn ∈ RN×τ ,
n = 1, . . . , N such that qij is the nodal value of a quantity of interest at node i and
time step tj, j = 0, . . . , τ . These quantities of interest are defined over a domain Ω
that contains the metal base and all the beads. Physical properties are activated
as the heat source progresses. Before the deposition of the weld joint, points in the
path of the heat source have the properties of the void.

The complete simulation of the multipass welding case has, thus, T = N × τ
time steps. The quantities of interest are mechanical fields such as displacement,
stress or plastic strain.

5.3 Physical mechanisms captured by dynamic mode
decomposition

Dynamic Mode Decomposition (DMD) [146, 24] has been introduced in fluid dynam-
ics to extract dynamic information from flow fields that are numerically simulated
or measured in an experiment. The extracted dynamic modes have been interpreted
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as a generalisation of global stability modes in view of the analysis of localised in-
stability phenomena. In this document, DMD defines a recurrence relation between
displacement fields of consecutive welding passes. In other words, it will represent
the evolution of the displacement between a certain pass n− 1 and the next pass n,
with n ≤ N , the total number of passes. We will consider that simulation data is
restricted solely to the weld’s first n− 1 first passes. Let us assume, without loss of
generality, that the objective quantity of interest is displacement.

After the simulation of n − 1 passes, simulation data related to displacement
are arranged in a matrix Q ∈ RN×(n−1) τ , such that each element qij of the matrix
denotes the nodal value of displacement at the mesh node i, i = 1, . . . ,N and at
time step j, j = 1, . . . , T . The number of columns in Q increases on the fly after
each time step during the FE simulation of the welding process. Here we consider
sets of data related to the same pass of welding. We denote vk ∈ R(N τ) the vector
of data related to the kth pass:

vk(p) = Q(i, j), p = (j − τ (k − 1)− 1)N + i, (5.1)

with: i ∈ {1, . . .N}, j ∈ {τ (k − 1) + 1, . . . τ k}.
The set of data related to a group of n− 1 passes between pass number one and

pass number n− 1 has the following matrix form:

V n−1
1 = [v1, . . . vn−1] ∈ R(N τ)×(n−1) (5.2)

The dynamic mode decomposition aims to identify an empirical linear model to
predict V n

2 ∈ R(N τ)×(n−1) knowing V n−1
1 , with:

V n
2 = [v2, . . . vn] ∈ R(N τ)×(n−1) (5.3)

Following Schmid [146], the last vector vn can be expressed as a linear combi-
nation of the previous ones. In the multipass welding case, this relation assumes
that the displacement obtained during a welding pass can be expressed as a linear
combination of the displacements related to previous passes.:

vn = a1v1 + · · ·+ an−1vn−1 + r (5.4)

or in matrix form:

vn = V n−1
1 a+ r (5.5)

with a =

 a1

...
an−1

 ∈ Rn−1 and r ∈ RN τ a residual vector.

Citing Ruhe [139], Schmid then introduces the following matrix expression:

AV n−1
1 = V n

2 = V n−1
1 C + reTn−1 (5.6)

where eTn−1 ∈ Rn−1 is the (n − 1)th unit vector. The matrix C has the following
form:



136 Chapter 5. Multipass welding hyper-reduction

C =


0 a1

1 0 a2

. . . . . . ...
1 0 an−2

1 an−1

 (5.7)

A robust approach to compute C involves the SVD of V n−1
1 = UΣW T . Substi-

tuting V n−1
1 in Equation (5.6), we obtain:

UTAU = UTV n
2WΣ−1 ≡ C̃ (5.8)

The matrix C contains empirical dynamics information related to the n first
passes. In the construction of the DMD, we identify C̃ as a matrix that allows to
compute an approximation of V n+1

3 via the following extrapolation:

V n+1
3 ≈ Ṽ n+1

3 = V n
2 C̃ (5.9)

An approximation of the displacement of the (n + 1)th pass, vn+1 is included in
the last column of V n+1

3 :

Ṽ
n+1

3 = [v3, . . . , ṽn+1] (5.10)

The extrapolation of matrix Q is denoted by Q̂ such that:

Q̂ = [Q, Q̃], Q̃ ∈ RN×τ (5.11)

with the following prediction of the displacement for pass number n+ 1:

Q̃(i, j) = ṽn+1(p), p = (j − 1)N + i, (5.12)

with: i ∈ {1, . . .N}, j ∈ {1, . . . τ}
Hence for pass number n + 1 the following extrapolation holds, for θj ∈ {τ n +

1, . . . τ (n+ 1)}:

ũ(x, θj) = ue(x, θj) +
N∑
i=1

ϕi(x) Q̂(i, j) ∀x ∈ Ω (5.13)

where the elastic prediction ue(x, θj) takes into account the moving heat source by
using a fast simulation.

Schmid shows in [146] that DMD captures the evolution of a dynamical system
efficiently. Here, applying a multipass welding case consisting of 10 welding beads
deposited on a metallic base gives an accurate prediction over a significant part of
the studied domain. The results on the new bead are, however, not satisfactory, as
we can see in Figure 5.2. The displacement field for the 10th pass is defined on a
new region of the domain after deposition of the bead. We decided to combine this
method with the Physical Fields Shift method, presented in Section 5.4, which will
be able to predict the behaviour of the new bead.

This happens because the domain changes after the deposition of a new bead in
multipass welding.
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Figure 5.2: Example of the extrapolation of the first component
of the displacement by using the DMD with n = 9, on the left the
extrapolated displacement at the end of pass #10, on the right the

FE prediction

5.4 Physical fields shift method
The Physical Fields Shift method[121] is a simplified method used in multipass
welding simulation to predict new passes from the data of previously computed
ones. This method is an early attempt at using extrapolation for the construction of
reduced models. It is used in cases where the welding beads have the same geometry,
and the deposition of the new beads is done in the same direction. It is based on
the similarities observed between two consecutive passes. After a certain number of
simulated passes, we observe a propagation of the solution in the direction of the
deposition of welding beads. In fact, after each pass, the main difference between two
consecutive passes is a spatial translation. Indeed, almost the same fields reappear on
the new bead, and on the previous beads, the stress and displacement accumulate.
This evolution will be capitalised to obtain an approximation of the subsequent
passes.

Let us assume that the first n < N passes of a multipass welding simulation have
been computed using the Finite Elements method. We would like to approximate
the final state of displacement and stress sn+1 after the n+1 pass from the solutions
of the n and n− 1 passes.

An increment field ∆sn is computed to capture the evolution between passes
n− 1 and n:

∆sn = sn − sn−1 (5.14)

This evolution is assumed to be similar to the one that will be produced between
passes n and n + 1. When the increment field is calculated, we need to shift it
of a distance d in the direction of the deposition of welding beads. The shifted
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increment field ∆ŝn approximates the evolution that will happen between the m
and m+1 passes.

The approximation s̃n+1 of sn+1 is computed as the last simulated pass (sn) plus
the predicted evolution between the n and n+ 1 passes:

s̃n+1 = sn + ∆ŝn (5.15)

Figure 5.3: Approximation of the uX component of displacement
field in an industrial Overlay case.

The prediction is very accurate in the welding area, but far from this zone, this
method might produce errors after applying it several times. Figure 5.3 shows an
example of the use of the method on an industrial Overlay repair. The value of the
displacement component uX is plotted over a line which goes from one end of the
tube to the other. One hundred beads are deposited over the tube in an area between
750 and 1150 mm. PFS was applied 80 times to determine the final distortion after
the 100 passes.

5.5 Local-global extrapolation method
In the previous sections, two extrapolation methods were presented. Figure 5.2 illus-
trated that the DMD method does not predict correctly the final passes. Previous
work on the Physical Fields Shift showed that the prediction on the first beads suffer
from boundary effects. A better prediction might be generated by combining both
methods by applying them were they work best. We propose to separate a region
where the moving heat source has a strong effect such that the Physical Fields Shift
method is accurate from a region where DMD should be accurate. This is done by
using clustering the simulation data.

Let us assume that the first n passes are simulated. For each pass i, the final
state (at time t = τ i, i = 1, . . . , n), the nodal values of the objective quantity of
interest (displacement or stress, for example), are denoted qi, i = 1, . . . , n. The
objective is to compute an estimate q̃n+1 of the future state qn+1 at the end of the
pass n + 1. In order to evaluate where each method will perform best, we will
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compute an estimation q̃n of qn using the Physical Fields Shift method and compare
it to the FE solution. For each node of the mesh a relative error is calculated:

ηi =
|qni − q̂ni |
||qn||F

, ∀i ∈ L (5.16)

where L is the list of nodes, qni is the value of the field in the node i, i ∈ L, and
q̃ni is the value of the prediction in the node i.

To separate the regions, three methods are proposed:

• Selecting a criterium ε and then creating two sets: IPFS = {i ∈ L : ηi ≤ ε}
and IDMD = {i ∈ L : ηi > ε}.

• Applying the Kmeans method [94] to create two clusters IPFS and IDMD.

• Applying Hierarchical Clustering (Ward’s method) [55] to create two clusters
IPFS and IDMD.

This relative error indicates in what regions the PFS produces an accurate es-
timation of the last simulated pass. In that area, the PFS will be applied when
computing the prediction of the pass n+ 1.

5.6 Inherent strain method
In order to compute a mechanical hyper-reduced order model, displacement and
stress fields are needed to obtain the primal and dual bases, respectively [45]. The
methods presented in previous sections can estimate those results, but there is no
guarantee that the forecasted fields are mechanically admissible. In order to en-
sure that, the forecasting will be performed on plastic strain fields and, then, the
displacement and stress fields will be calculated in an additional step. This step
is based on the inherent strain method, which is a hybrid experimental/analytical
method used to determine residual stresses from sectioning and strain measures [163,
162]. Residual stresses in a body appear as a consequence of an incompatible strain
field, which is measured experimentally. Then, the Finite Elements method is used
to compute the relation between the stress and the strains. Assuming an elastic
behaviour, this relation reads:

σ = C (ε− ε∗) (5.17)
with σ the stress, ε the total strain, ε∗ the inherent strain and C the elastic consti-
tutive tensor.

The inherent strain method has been applied to many different problems; for
instance, Hill and Nelson have used it to determine the residual stress in a long
welded joint in [75]. Instead of a measured field of inherent strains, an extrapolation
of a plastic strain is used. The relation between stress and strain now reads:

σ = C (ε− εp) (5.18)
with εp the plastic strain.

A linear elastic thermo-mechanical FEA is then computed, imposing the pre-
dicted strain on each mesh node. The result is an approximation of the displacement
and stress fields that will be used to build a hyper-reduced order model.
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5.7 Numerical results
In this section, several tests are carried out. First of all, the DMD and PFS methods
are used to compute forecasts of the 11th pass of the simplified multipass welding test
case. Then, the same test will be applied to the plastic strain field. The final tests
will analyse the results of the hyper-reduced model constructed from the forecasted
fields. In the following sections, the relative errors are computed by:

en =
||qn − q̃n||2
||qn||2

(5.19)

where qn ∈ RN×τ is the reference FE solution for the objective quantity of interest
and q̃n ∈ RN×τ is the forecast.

5.7.1 Displacement and stress extrapolation

The first tests concern the extrapolation of nodal displacement and stress fields.
The test is done as follows:

Displacement and stress extrapolation

1. Compute the first 11 passes of the simplified multipass test case.

2. Use the first 10 results to forecast the state of the 11th pass using the
presented methods:

(a) DMD

(b) PFS

(c) Combination (ε = 10−4)

(d) Combination (ε = 5 · 10−4)

(e) Combination (Kmeans)

(f) Combination (Ward)

3. Compare the results to the FE simulation of the 11th pass.

Figures 5.4 and 5.5 illustrate the final snapshot at time step 11τ obtained with
two of the tested methods and the FE simulation. From left to right, one can observe
the estimation with the combination of DMD and PFS using a criterium ε = 5·10−4,
the estimation with the combination of DMD and PFS using Ward’s Hierarchical
Algorithm and the FE solution.

A full comparison of the methods is presented in Table 5.2. The relative error
of the displacements field is very low for all methods, being below 2% in all cases.
However, the relative error of the nodal stress field is very high for the DMD and
PFS methods, at 29% and 13%, respectively. The combinations prove to produce
better estimations of the stress field, with Ward’s method producing an estimation
with an error lower than 2%.
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Table 5.2: Comparing different methods to predict the 11th pass.

Error
Method Displacements Stress
DMD 2% 29%

Physical Fields Shift 0.8% 13%
Combination (ε = 10−4) 0.3% 6.1%

Combination (ε = 5 · 10−4) 0.3% 2.9%
Combination (Kmeans) 1.2% 4.4%
Combination (Ward) 1.97% 1.95%

In Figure 5.4, in particular in the Ward prediction, there is a discontinuity in the
forecasted displacement field. This represents a non physical behaviour that needs to
be avoided. The apparition of such a discontinuity indicates that the predicted field
might not be mechanically admissible and which motivates the use of the inherent
strains method on the plastic strain in order to produce the displacement and stress.

Figure 5.4: Comparing the final state of displacements (uX compo-
nent) after the 11th pass. (From left to right: ε = 5 · 10−4, Ward, FE

simulation).
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Figure 5.5: Comparing the final state of stress (σXX component)
after the 11th pass. (From left to right: ε = 5 · 10−4, Ward, FE

simulation).

5.7.2 Plastic strain extrapolation

In the previous section, it was shown that the forecasted states might not be mechan-
ically admissible. In order to avoid that, a new approach based on the prediction of
plastic strain and the use of the inherent strain method is proposed. The main idea
is to predict the plastic strain suffered by the structure after the n+1 pass and then
use the inherent strain method to obtain displacement and stress fields that respect
the equilibrium equations.

Table 5.3: Comparing different methods to predict the 11th pass’
plastic strain.

Error
Method Plastic strain Displacements Stress
DMD 27.02% 2.16% 53.6%

Physical Fields Shift 9.38% 0.18% 11.50%
Combination (Kmeans) 23.36% 0.30% 34.12%
Combination (Ward) 23.07% 0.23% 31.16%

The tests are done similarly to the previous ones:
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Plastic strain extrapolation

1. Compute the simulation of the first 11 passes of the simplified multipass
test case.

2. Use the first 10 results to forecast the state of the plastic strain for the
11th pass using the following methods:

(a) DMD

(b) PFS

(c) Combination (Kmeans)

(d) Combination (Ward)

3. Compute the displacement and stress fields using the inherent strains
method.

4. Compare the predicted plastic strain, displacement and stress to the FE
simulation of the 11th pass.

Table 5.3 reports a summary of the tests. It presents 5 columns. The first one,
as in table 5.2, shows the method used to compute the prediction. The second
one shows the relative error of the prediction of plastic strain compared to the FE
solution. The third and fourth columns represent the relative error of the inherent
strain method compared to the FE simulation. The predictions of plastic strain are
not as accurate as the displacement and stress ones shown in Table 5.2. In this
case, the errors are higher than 20% for all the methods except the PFS. However,
the inherent strain method gives a close approximation of the displacement fields
despite the high plastic strain errors. The relative errors are remarkably low for all
extrapolation methods except for the DMD.

The inherent strains method uses an elastic constitutive law in order to accelerate
the computation time of the simulation. This simplification affects the stress fields
predictions more than the displacement ones. As a result, the stress extrapolations
are not very accurate except for the PFS, with a relative error of 11.5%. The relative
error obtained by combining DMD and PFS are above 30%, whilst for the DMD it
is higher than 50%.

An additional test is proposed in order to verify if the plastic strain of consecutive
passes can be predicted. This would be particularly useful in cases where the number
of passes is high and computing the entire simulation is very costly. In this test, the
first 17 passes are simulated using the FE method. The goal is to predict the 20th
pass. The test is performed as follows:
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Plastic strain extrapolation of consecutive passes

1. Compute the simulation of entire simplified multipass test case (20 passes).

2. Use the first 17 results to forecast the state of the plastic strain for the
18th, 19th and 20th passes using the following methods:

(a) Combination (Kmeans)

(b) Combination (Ward)

3. Compute the displacement and stress fields of the 20th pass using the
inherent strains method.

4. Compare the predicted plastic strain, displacement and stress to the FE
simulation of the 20th pass.

The results of this test are shown in Table 5.4. The relative error of the plastic
strain predictions are higher than the ones in Table 5.3. However, the displacement
and stress show similar levels of error. This results are very satisfactory because the
hyper-reduced models are built from the displacement and stress fields, and not from
the plastic strain. The final tests will deal with the construction of hyper-reduced
models.

Table 5.4: Comparing different methods to predict the 20th pass’
plastic strain.

Error
Method Plastic strain Displacements Stress

Combination (Kmeans) 39.82% 0.40% 32.78%
Combination (Ward) 39.77% 0.3% 29.95%

5.7.3 Hyper-reduced models from extrapolated fields

The final tests presented in this chapter consist of creating a hyper-reduced model
(HROM) from the forecasted displacement and stress fields. The HROM is com-
puted from a POD basis that covers the entire temporal domain of a pass. The
objective of this HROM is to obtain a prediction of the entire mechanical state of
the weld after the entire operation. Two tests were done, the first one uses the
predicted fields of the 11th pass shown in Table 5.3 to create a HROM.
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HROM from plastic strain extrapolation

1. Compute the simulation of the first 11 passes of the simplified multipass
test case.

2. Use the first 10 results to forecast the state of the plastic strain for the
11th pass using the following methods:

(a) DMD

(b) PFS

(c) Combination (Kmeans)

(d) Combination (Ward)

3. Compute the displacement and stress fields using the inherent strains
method.

4. Calculate a POD basis from the displacement and stress predictions.

5. Create the Reduced Integration Domain (RID).

6. Compute a hyper-reduced solution of the 11th pass.

7. Compare the hyper-reduced displacement and stress to the FE simulation
of the 11th pass.

The results obtained with the Hyper-reduction method are compared to the FE
simulations. Two different HROMs were used, with two sets of parameters. The two
parameters are the number of POD modes and the number of extra element layers
surrounding the RID. The number of POD modes is chosen by a hyper-parameter
µPOD, which is the ratio between the smallest selected singular value and the first
singular value of the decomposition. More details on the parameters are given in
[45].

The number of extra layers is fixed to 3 extra layers for both HROMs. The
number of POD modes is determined by µPOD = 10−3 and µPOD = 10−5). The
number of POD modes has a direct influence on the accuracy of the method, as well
as the amount of nodes in the RID (as a consequence of using the DEIM [33, 34]).
Table 5.5 shows the relative errors between the hyper-reduced solution and the FE
simulation. In the case of the prediction done with the PFS method, the number of
modes retained when choosing µPOD = 10−3 is very low (only 8 modes), and thus
the result is not valid. Setting µPOD = 10−5 improves the prediction of the stress
fields with respect to the inherent strains method (see Table 5.3).
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Table 5.5: Hyper-reduced computations of the 11th pass.

Error
µPOD = 10−3 µPOD = 10−5

Method Displacements Stress Displacements Stress
DMD 4.73% 63.31% 3.81% 39.51%

Physical Fields Shift 90.41% 100.03% 0.21% 8.05%
Combination (Kmeans) 6.43% 46.01% 1.03% 20.24%
Combination (Ward) 9.58% 42.40% 0.41% 16.38%

The final test constructs the HROM from the forecasted displacement and stress
fields in Table 5.4. The test proceeds as follows:

HROM from consecutive plastic strain extrapolations

1. Compute the simulation of entire simplified multipass test case (20 passes).

2. Use the first 17 results to forecast the state of the plastic strain for the
18th, 19th and 20th passes using the following methods:

(a) Combination (Kmeans)

(b) Combination (Ward)

3. Compute the displacement and stress fields of the 20th pass using the
inherent strains method.

4. Compare the predicted plastic strain, displacement and stress to the FE
simulation of the 20th pass.

5. Calculate a POD basis from the displacement and stress predictions.

6. Create the Reduced Integration Domain (RID).

7. Compute a hyper-reduced solution of the 20th pass.

8. Compare the hyper-reduced displacement and stress to the FE simulation
of the 20th pass.

The same parameters for the hyper-reduced simulations are used. Table 5.6
summarises the results. In figure 5.6, we can observe a comparison of the final state
of stress after the 20th pass. On the left, the RID of a hyper-reduced simulation
is presented. From this solution computed on the RID, a solution over the whole
domain is obtained by applying the gappy POD method [51]. In the middle, the
result of the inherent strain method is shown. On the right, the FE solution of
the 20th welding pass. As for the predictions of the 11th pass, the hyper-reduced
solutions with µPOD = 10−5 improve the stress estimations of the inherent strains
method.
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Figure 5.6: Comparing the final state of stress (σXX component)
after the 20th pass. The plastic strain predictions were computed
using the Ward clustering method. (From left to right: view of the
RID of a hyper-reduced simulation, inherent strain, FE simulation).

Table 5.6: Hyper-reduced computations of the 11th pass.

Error
µPOD = 10−3 µPOD = 10−5

Method Displacements Stress Displacements Stress
Combination (Kmeans) 3.4% 35.06% 1.18% 13.47%
Combination (Ward) 1.18% 64.89% 1.17% 12.5%

5.7.4 Execution time

The main goal of the presented methods is to obtain accurate predictions of future
passes using the information of previous ones. The reduction of execution time is
nonetheless of great importance. Two different computers were used to compute all
the tests presented in the previous subsections. The FE simulations were computed
on a scientific cluster using 16 CPUs on two nodes. The other computations were
done on a laptop with an i7-6700HQ CPU.

Significant time gains have been observed. On average, the execution time of
each of the passes on the scientific cluster (domain decomposition, 2 nodes and 16
CPUs) is 3361 seconds, around 56 minutes. A prediction combining PFS and DMD
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computed on laptop takes between 10 and 15 minutes on average, mainly depending
on the clustering algorithm used (Kmeans is faster than Ward). For example, to
predict the plastic strain of the 20th pass with Kmeans algorithm, 674 seconds of
execution time were needed: 11 minutes and 14 seconds.

The inherent strains step is costly when computed on a computer with a single
i7 processor and sequential algorithms. Its execution time is, on average, 4109
seconds, around 1 hour and ten minutes. This execution time could be significantly
improved if computed on the scientific cluster with parallel algorithms and domain
decomposition.

The hyper-reduction parameters determine its duration. A higher number of
modes and/or extra element layers lead to a longer execution time. Two configura-
tions were tested, one of them is faster but less accurate, and the other one is more
accurate but slower as it takes into account more modes and more elements of the
original mesh:

• µPOD = 10−3, 3 extra layers: 658 seconds on average (10 minutes and 58
seconds).

• µPOD = 10−5, 3 extra layers: 1567 seconds on average (26 minutes and 7
seconds).

5.8 Conclusion
Predicting mechanical fields of future passes is an alternative way of accelerating
multipass welding simulations. We have presented two extrapolation methods to
compute predictions of future passes using the data from the already simulated
ones. Each of these methods has advantages and disadvantages that have been
pointed out in their respective section. Clustering the regions where they perform
better has allowed to improve the accuracy of the predictions.

Two approaches using different mechanical fields have been proposed. On the
one hand, if displacement and stress fields are used, the predictions are very accurate
with respect to the FE simulations, but we have observed that they might produce
results that are not mechanically admissible. On the other hand, if plastic strain
fields are used, the predictions are less accurate, but an additional step involving the
inherent stress method gives displacement and stress fields from which performing
reduced-order models can be computed. Hyper-reduction can then improve the
accuracy of the inherent strain results.

There is still some margin to improve the results and the methods. Further and
more thorough testing of the presented methods is also suggested for future studies.
New prediction methods could also be introduced. For example, a probabilistic
approach could be explored. Treating the multipass welding problem as a time
series would allow us to use autoregressive models to describe it.

One of the main problems encountered when using these methods is the large
size of the files involved. Numerical simulation of welding is not only costly in
computation time but also in terms of storage.

The presented results point towards new strategies to accelerate multipass weld-
ing simulations involving many passes or to accelerate similar problems such as
additive manufacturing simulation.
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In the context of the nuclear industry, strict safety standards demand a high level
of control of welding maintenance and manufacturing operations. It is of utmost
importance to increase the reliability of the procedures and identify defects as early
as possible. Currently, most quality controls are performed a posteriori. In the
case of non-conformity, the weld has to be repaired, delaying the operation, which
has time and financial consequences. Real-time monitoring of welding processes
would allow to assess the weld’s mechanical state and, thus, optimise the planning
of maintenance and repair operations by increasing the procedure’s reliability and
decreasing the need for inspection. Accurate assessment of a weld’s mechanical
state in real-time based on the operation’s physics is one of EDF’s ambitions for the
coming years. This PhD work represents the first step in this direction.

The main objective of the PhD was to obtain real-time estimations of tempera-
ture and stress fields from partial temperature observations. High-fidelity simulation
gives access to unobservable physical quantities that are helpful for post-operation
analysis, but it is not fit for real-time applications due to the non-linear multiphysics
nature of welding. The increasing availability of data is pushing the boundaries of
what can be achieved by integrating classical numerical analysis, reduced-order mod-
els and machine learning. We have proposed an offline-online approach that allows us
to use rich simulation offline data and integrates observed experimental data in real-
time for anomaly detection. The models presented in this document link observed
surface temperature measurements obtained with infrared cameras with unobserv-
able mechanical quantities of interest through high-fidelity digital twinning. The
offline-online techniques allow achieving the real-time objective without sacrificing
accuracy.

We have presented the whole experimental and numerical methodology for moni-
toring a welding experiment, as well as the construction of the reduced-order models
and their use in real-time. Outlooks into the acceleration of challenging multipass
welding operations were also explored.

PVR experiments and digital twin

In Chapter 2 we presented the PVR experiment, as well as the experimental and
numerical campaigns, which served as a basis for all the developments of the thesis.
The PVR hot cracking experiment was selected for the complexity of the physical
phenomena and its ability to acquire different types of data. Numerically modelling
the thermo-mechanical behaviour of the specimen represents a complicated chal-
lenge that includes the calibration of Goldak’s equivalent heat source model. Such
calibrations have been performed using punctual temperature measurements given
by instrumented experiments with thermocouples.

Besides, the instrumentation of the experiment also gave access to surface tem-
perature measurements. The infrared images were used as input data for the model,
and comparisons between thermocouple and infrared surface measurements were
used to estimate an observation error with the camera. A more extensive calibra-
tion phase of the measurement error could be envisioned. Temperatures are deduced
from the digital levels of the camera without knowledge of 316L stainless steel’s
emissivity by a multi-filter approach based on Planck’s equation. The temperature
values are then projected onto the Finite Element mesh so they can be used with
the models.
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The high-fidelity simulations of the PVR experiment are produced by solving a
weakly coupled thermo-mechanical problem using the Finite Elements Method with
EDF’s open-source software code_aster. It results in a simulation divided into two
separate steps. The first step is to solve a non-linear heat problem with a moving
heat source. The resulting temperature field is then used as input for a thermo-
mechanical problem solved with an elasto-visco-plastic Chaboche behaviour law. A
high-fidelity parametric study involving known process parameters and unknown
modelling parameters constitutes the basis for the methods introduced in the sub-
sequent chapters. Such a database involves large amounts of data that need to be
treated efficiently for real-time applications.

PPCA local surrogate models

The main obstacles to obtaining real-time 3D temperature and stress estimations are
the high dimensions of the data and the computation time constraints. The method
proposed in Chapter 3 tackles all the dimensional and time-restriction difficulties
at the same time by use of the local PPCA models. The reduced bases deal with
the large dimension of the simulation data. Furthermore, using local models instead
of a single global model helps consider the non-linear parametric variation of the
temperature and mechanical fields. This piecewise linear approach is key for real-
time efficiency, as it allows to optimise the linear temperature observations of the
weld.

The infrared camera is the only source of experimental data in the current work.
There are no experimental devices capable of measuring quantities of interest, such
as the stress tensor, during the operation, which is an additional significant difficulty.
The lack of mechanical data highlights the need for performing thermo-mechanical
models, which are the only source of knowledge on the mechanical state of the weld.
These models have to accurately describe the physical state of the specimen in order
to obtain meaningful estimations from a temperature field. Using multiphysics state
vectors has allowed us to estimate fields that are never observed, thanks to the
correlations that appear in the reduced bases. Moreover, the multiphysics state
vectors include the known and unknown parameters, which allows the estimation
of the unknown parameters as well as using the known parameters as an input
observation.

Constructing the local bases is as expensive as computing an SVD of the snap-
shot matrix, so there is no additional cost associated with using PPCA bases instead
of the more common PCA or POD bases. However, the multiphysics vector distri-
bution is endowed with a Gaussian prior when using the probabilistic version. This
Gaussian prior is particularly useful because it allows solving the inverse problem in
a Bayesian way without being confronted with costly sampling methods like MCMC.
What is more, an explicit expression of the posterior mean and variance exists as
a consequence of the Gaussian modelling. Through algebraic manipulation and the
presence of the reduced bases, the posterior mean and variance of the state can
be evaluated extremely quickly by only computing low-rank operations with the
involved matrices and vectors.

The local models are computed after partitioning the domain in regions according
to the heat source position. This physical partition leads to a sequence of models
determined by the progression of the torch. New states are estimated by finding the
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adequate model for the new infrared image. Two scenarios were considered: one in
which the torch position was perfectly known, making the model selection trivial,
and one in which there is an uncertainty on the torch position. This second case
reflects a situation where no sensor signals the position of the torch or even cases
where the different data acquisition devices are not well synchronised. Uncertainty
in the knowledge of the heat source position is addressed by a kriging surrogate
model that associates the highest temperature with the torch position. This strategy
was shown to work for a real PVR experiment where the position of the torch was
unknown.

The method presented in Chapter 3 is also well suited to forecast future states.
Indeed, considering the parameter estimation of a previous infrared image as noisy
knowledge of the parameters, an estimation of a future state is available. However,
the forecasted state will have a large confidence region because no data has been
observed. Nevertheless, the reduced bases contain enough data related to the phys-
ical behaviour of the system that the mean of the posterior forecast is not far from
the “true solution" provided by simulation data.

The accuracy of the predicted states and the computation times are encouraging
and show potential for the industrialisation of the method. Different extensions for
the presented approaches can be envisioned. First of all, by extending the simula-
tion time domain and filming the specimen during the cooling phase, estimation of
residual stresses could be possible.

However, obtaining experimental data might be challenging in a non-laboratory
environment. For example, using infrared cameras might not be possible because
of their physical dimensions. What is more, external factors might compromise the
image quality. High-quality image acquisition during an industrial welding applica-
tion can be challenging because of the reflection from the arc. In the case of PVR
experiments, this was overcome by filming the backside of the experiment. In the
case of an industrial repair operation on a pipe, this might be impossible to do.

Furthermore, most repair and assembly operations involve a filler metal in the
weld, and this approach has not been tested for the more challenging multipass
welding. For mono-bead welding, the application of the method should not vary all
that much, but new challenges may arise. The models should be constructed with a
mesh containing the whole structure, and the bead’s nodes should be activated on
the fly.

Another limitation is that for each new type of welding operation, a new physical
model has to be created. Indeed, a new geometry or parameter domain needs a new
FEM formulation and a subsequent parametric study similar to the one performed
in Chapter 2 in order to construct the local reduced models. This issue could be
addressed by generating reduced models in the welding torch referential. Assuming
that all welding operations are similar locally (in a neighbourhood of the weld and
with similar enough curvature), these reduced bases would be useful for a more
extensive range of operations that would now differ by the boundary conditions
around the torch’s neighbourhood. This is not a flawless solution, as this kind of
approach would need a secondary coupled global model in order to predict the state
of the rest of the structure, increasing the complexity of the numerical schemes.
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Clustering local reduced bases

The local basis approach presented in Chapter 3 relied on the natural choice of
the heat source progression as the means of partitioning the simulation snapshots
in order to create the local models. Chapter 4 presented an exploratory work in
which the partitioning of the parameter domain is performed automatically via
clustering. Three proposed metrics are presented with the goal of grouping similar
states into clusters to create models that capture the physics associated with the
clustered snapshots. These three metrics are the Euclidean distance in the state
space, the Projection Error between snapshots and the Grassmann distance between
preliminary local reduced bases.

Clustering similar data together helps reduce the variance in the local mod-
els but makes the online assignment a more difficult task. In the present case, a
new snapshot is given the label of the cluster whose local PPCA model minimises
its reconstruction error. This objective-based criterion ensures the optimality of
assignment, as the selected model produces the best approximation of the initial
snapshot. The assignment in the online stage is done by a neural network classifier
trained on the simulation data.

The results of this approach were obtained from noisy simulated data, where
the noise amplitude on the temperature field is the same that was estimated in the
experimental infrared data. In most cases, it was shown that the estimations were
very accurate with respect to the original multiphysics snapshots. The Projection
Error clustering, based on Amsallem’s work [6], proved to produce the most accurate
estimation results in both temperature and principal stress.

However, forecasting future states is difficult with this approach. Contrary to
the position-based local models in Chapter 3, there is no easy way to interpret what
model should be selected for a future state. A solution to this problem could be
to extrapolate the current estimation and create new data from the original input
at a later position. This newly generated image would then be given as input to
the neural network to indicate what local model to use. It would work in a similar
way as a filtering scheme such as Kalman Filters, where a prediction of the future
state is done and is later corrected by the observations. In this potential approach,
the prediction would be used to find the local model. The main challenge is to
define how to generate the new data for future positions and if it can all be done in
real-time.

The numerical results presented in Chapter 4 illustrate the relationship between
the classification accuracy and a low state estimation error. It was shown that
accurate estimations depend on assigning the appropriate local model correctly.
A potential improvement in the classification could be achieved by changing the
neural network’s architecture. Recent work on convolutional neural networks has
shown promising results by applying convolution directly to mesh nodes [86], which
could be an alternative to the more classic MLP architecture described in Chapter
4. Additionally, based on the notion of classification via logistic regression, other
possibilities involve the renumbering of classes such that consecutive classes share
similar model properties. In that case, a miss-classification of a snapshot would point
to a reduced basis with similar characteristics. Ordering the clusters can be achieved
by using the Grassmann distance between the local reduced bases associated with
each cluster.
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Beyond the accuracy and the computation time of the overall approach, attention
should be paid to ensuring that the reconstructed state is physically admissible.
Indeed, the worst results showed non-physical solutions that should not be accepted.
In order to avoid that, physical constraints should be enforced to ensure, for example,
the positivity of a temperature field.

Hyper-reduced models for multipass welding

Most maintenance and manufacturing welding operations involve a large number of
welding passes. Numerical simulation of multipass welding is a difficult challenge
due to the enormous computation times needed for the entire procedure. In this
context, we have proposed two extrapolation techniques as well as different ways
of combining them to produce training data for welding beads that have not been
simulated yet. After simulating the deposition of the first beads, the mechanical
fields are extrapolated to obtain an estimation of the final state of the weld after
the deposition of all the beads.

The main goal of those extrapolations is to construct hyper-reduced models that
allow producing accurate predictions of the mechanical state of the structure after
the operation. The hyper-reduced simulations are meant to improve the prediction
of stresses by taking into account the problem’s physics. This approach would
save time compared to high-fidelity non-linear simulations of every bead without
sacrificing accuracy in the predictions.

However, this exploratory work needs further testing in order to validate it. More
thorough analysis of the accuracy of the predictions with respect to the FE simu-
lations is mandatory, in particular when extrapolating the results for consecutive
beads. Comparing the Grassmann distance between the subspaces spanned by the
reduced bases created by FE simulations and by extrapolation could also be use-
ful. This distance would indicate if the hyper-reduced models approximate the FE
simulations on similar subspaces when using the extrapolations as training data.

Extensions of these methods could be applied to other thermo-mechanical proce-
dures such as wire-arc additive manufacturing. This additive manufacturing method
is similar to welding and could benefit from accelerated simulations for post manu-
facturing quality assessment.

Industrial perspectives

The industrialisation of the presented methods requires additional work. It has
already been stated that most maintenance and manufacturing operations involve a
significant number of welding passes. However, the real-time approaches developed
during this PhD have not been tested for a welding experiment with filler metal.
The next step toward industrialisation would be an experimental proof of concept in
which a single bead is deposited. Then, subsequent tests on simple multipass cases
should be performed.

A possible test configuration would be a simplified groove weld. This test
presents two major challenges, the first one being the already mentioned filler metal.
The other one is related to the data acquisition with an infrared camera in a lab en-
vironment, which would need improvement in order to avoid reflections from the arc.
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Overcoming those challenges would be a significant step toward real-time control of
industrial operations that can be done in a welding workshop.
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Appendix A

Appendix A: Projection error
algorithm

Abstract:

This appendix will come back to the Projection Error clustering pre-
sented in Chapter 4. In particular, the effect of the original initialisation
step of the algorithm proposed by Amsallem in [6] is shown.

Résumé :

Cet annexe revient sur la méthode de clustering par Erreur de Projection
présentée dans le Chapitre 4. En particulier, on regardera l’effet de
l’étape d’initialisation originale de l’algorithme proposé par Amsallem
dans [6].
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The hierarchical divisive algorithm presented in Algorithms 4.2 and 4.3 starts
with a single clustering that contains all the snapshots. The new clusters are created
by extracting the snapshots that have the largest reconstruction error with respect
to a representative snapshot. In Amsallem’s article [6], the representative of this
initial snapshot is chosen as the snapshot with the maximum L2 norm, whilst our
version uses the median L2 norm.

The results that we obtained with Amsallem’s initialization lead to a first cluster
where there is no concentration of snapshots whatsoever, as shown in Figure A.1.
This is not necessarily wrong, but it is the only cluster where this happens. All the
other ones behave similarly as the cluster shown in Figure 4.5 obtained with the
present method: clusters are centered around certain positions.
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Figure A.1: Distribution of speed, power and position for the first
cluster when initialising with the maximum L2 norm.

In order to verify that this cluster is abnormal, we calculated the reconstruction
error of all snapshots of a cluster with respect to the basis associated to the cluster,
and then we calculated the average reconstruction error per cluster ∆i:

∆̄i =
1

#Ci

∑
s∈Ci

δR(s,Φi), ∀i ∈ J1, . . . , KK (A.1)

where the PPCA reconstruction error δR is presented in Equation (4.22) and # is
the cardinal operator.

Whilst all clusters have an average reconstruction error between 0 and 2 %, the
first cluster has an average reconstruction error of 15.31%, more than seven times
than the next cluster.

This is not the case when using the median L2 norm as the first vector, which is
the example shown in Figure 4.5. Here, the first cluster is also the largest by a great
margin: the first cluster has 1877 snapshots, more than three times the size of the
next biggest cluster (554 snapshots). However, the average PPCA reconstruction
error in this cluster is 1.87%.
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We have not found yet an explanation on why there is such a difference between
the two initialisation steps, but the correction that we implemented definitely seems
to solve the issue.
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MOTS CLÉS

Réduction de modèle, Assimilation de données, Temps réel, Soudage.

RÉSUMÉ

Nous proposons le développement d’une stratégie d’assimilation de données offline/online en temps réel pour l’estimation
de champs physiques et paramètres inconnus basée sur des métamodèles probabilistes locaux et thermographie in-
frarouge. Les apports récents des algorithmes d’apprentissage automatique et des méthodes de réduction de modèle
permettent d’obtenir des modèles phénoménologiques exploitables en temps réel afin d’évaluer un risque de dérive lors
du soudage. Ces métamodèles sont construits à partir de simulations haute-fidélité par éléments finis faites offline. On-
line, les prévisions en temps réel seront réalisées à l’aide de métamodèles de champs multiphysiques et d’observations
surfaciques de température par caméra infrarouge.

ABSTRACT

We propose developing a real-time offline/online data assimilation strategy for the estimation of physical fields and un-
known parameters based on local probabilistic surrogate models and infrared thermography. The recent contributions
of machine learning algorithms and model order reduction methods make it possible to obtain phenomenological mod-
els that can be used in real-time to evaluate the risk of drift during welding. These surrogate models are built from
high-fidelity finite element simulations performed offline. Online, real-time predictions will be made using multiphysics
surrogate models and surface temperature observations obtained with an infrared camera.

KEYWORDS

Model Order Reduction, Data Assimilation, Real-time, Welding.
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