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Merci à tous mes amis proches. J’ai beaucoup de chance de vous avoir. Merci au Menu, aux CG,
pour tous les moments passés, votre soutien et amitié. Cette thèse ne se serait pas faite sans vous.

Enfin, merci à toute ma famille. Merci pour votre amour, sans lequel je ne serai pas là aujourd’hui.
A tous ceux de l’autre côté de l’océan Atlantique, je ne vous oublie pas

2



Contents

1 Introduction 24
1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3 Methodology and thesis plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Physical background and governing equations 30
2.1 Continuous equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Energy equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.2 Non dimensional compressible Navier–Stokes equations . . . . . . . . . . . . . 34

2.2 Phenomenological background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.1 Fluid composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.2 Pressure variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.3 Total energy conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.4 Buoyancy effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.5 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.6 Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.7 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Modelling the indoor physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.1 Acoustic waves and buoyancy . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.2 Turbulence modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 A time-staggered second order conservative time scheme for variable density flow 50
3.1 Numerical motivations and strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.1 Numerical goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.2 Literature and numerical strategy . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Set of equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 Space and time discretisation notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 Time discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.1 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.2 Scalars step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.3 Prediction step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.4 Correction step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Spatial discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3



3.5.1 Convective schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.2 Diffusive terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.7 Properties of the scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7.1 Positivity of the thermodynamical variables . . . . . . . . . . . . . . . . . . . . 64
3.7.2 Low Mach number limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.7.3 Local total energy balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.8 Verification and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.8.1 Pressure cooker like system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.8.2 1-D Convection verification case . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.8.3 Shock tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.8.4 Atmospheric column . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.8.5 Heated cavity - 2-D natural convection . . . . . . . . . . . . . . . . . . . . . . 81
3.8.6 Lock exchange case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.8.7 Axisymmetric jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.8.8 Minibat: 3-D iso and anisothermal jets . . . . . . . . . . . . . . . . . . . . . . . 94

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Appendices 122
3.A Derivation of the kinetic energy source term for the time staggered scheme . . . . . . . . 122
3.B Variable time step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.C code_saturne incompressible pressure correction time scheme (IPC) . . . . . . . . . . . 126
3.D code_saturne isentropic compressible time scheme (IC) . . . . . . . . . . . . . . . . . . 127
3.E Wall functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.E.1 Velocity wall function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.E.2 Scalars wall function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.F Minibat polar interpolation on the inlet quantities . . . . . . . . . . . . . . . . . . . . . 131
3.F.1 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.G Minibat results: comparison between the full mesh and the inlet interpolation simulations 138
3.H Reynolds stress tensor realisability and Lumley triangle . . . . . . . . . . . . . . . . . . 140
3.I Synthetic Eddy Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

3.I.1 Example on the Minibat configuration . . . . . . . . . . . . . . . . . . . . . . . 143
3.J Focus on the simulation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

3.J.1 Minibat configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.J.2 Natural convection cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
3.J.3 Coubertin stadium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
3.J.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4 Scheme extension to moist air 150
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.2.1 Saturation treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.3 Space and time discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.4 Properties of the moist air scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.4.1 Positivity of the internal energy . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.4.2 Positivity of the pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.5 Solution of the Riemann problem related to the moist air system of equations with no
phase change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.5.2 Set of equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4



4.5.3 System hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.5.4 Jump conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.5.5 States connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
4.5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.5.7 Intermediate state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

4.6 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
4.6.1 0-D closed cavity with phase change . . . . . . . . . . . . . . . . . . . . . . . . 179
4.6.2 Riemann problem associated to the system . . . . . . . . . . . . . . . . . . . . 180

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Appendices 187
4.A Derivation of the mixture equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

4.A.1 Mass equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
4.A.2 Momentum equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
4.A.3 Thermal equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.B Moist air parameters variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
4.B.1 Mixture viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
4.B.2 Mixture thermal conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
4.B.3 Specific heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5 Study of the Pierre de Coubertin stadium 192
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
5.2 Mesh generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
5.4 Identifying the first flow features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.5 Validation: on the reproduction of the french handball league final . . . . . . . . . . . . 205
5.6 Experimental protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.7 Schemes and model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
5.8 Impact of the modification of the stadium ceiling . . . . . . . . . . . . . . . . . . . . . 216
5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

6 Conclusion and perpectives 219

5



List of Figures

1.1 Pie chart of the relative final energy consumption in France in 2019/2020 by sector. . . . 25
1.2 Consequences of a bad design, monitoring or exploitation of industrial buildings. (Left)

Fukushima accident in 2011 caused by an hydrogen explosion after the endomagement
of the primary cooling cycle by an earthquake (credits: Fukushima Central Television).
(Right) Fire at a data centre in Strasbourg in 2021 (credits: Sapeurs Pompiers du Bas
Rhin), due to an overheat of two inverters. Moreover, given the building design, the
firefighter could not have a proper access to the burning devices. Additionally, the
centre architecture (which used a free cooling ventilation strategy) accelerated the fire
dispersion (Lawrance, 2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 Different scales when modelling a building. (Left) Nodal model. (Center) Multi zone
model. (Right) CFD. W is the variables array. Ncell is the number of cells of the CFD
simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4 Summary of the thesis methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 Example of configuration with three distinct initial states that may enter in contact at
a given time. Here, two pieces indoor system enter in contact between themselves and
with the outdoor conditions through the opening of a window. . . . . . . . . . . . . . . 37

2.2 Examples of turbulent flows. (Top left) Photo. Turbulence in an atmospheric flow. (Top
right) Simulations. Instantaneous stream-wise velocity for a 5x5 square rod bundle
configuration (Kraus et al., 2021). (Bottom left) Simulation. Velocity field of an
axisymmetric jet. (Bottom right) Photo. Offshore wind farm picture, credit: Christian
Steiness/Vattenfall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 (Left) Time average flow field from Liu et al. (2015) numerical results, (a) velocity
(b) temperature. (Right) Greenhouse effect illustration, which can affect the indoor
environment thermal state. Solar waves are in orange, infrared in red. . . . . . . . . . . 40

2.4 KH instabilities. (Left) Sky instabilities. Credits: Alec Kownacki. (Right) KH
instabilities represented by Van Gogh. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Aforementioned indoor physics to be accounted for an indoor airflow simulation. In
orange, the physical processes to be focused while designing the numerical scheme. . . . 41

2.6 Turbulence energy wavenumber spectrum. The viscous subrange is also called dissipa-
tion scale. The maximum y-axis point is the integral scale. Between lies the inertial
scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7 Comparison of the different turbulent approaches related to the modelling of the turbulent
energy spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6



3.1 Labelling information used for a mesh. xc and xc̃ are the barycentres of cells c and c̃,
respectively. xf is the barycentre of the face f separating the two cells. . . . . . . . . . . 55

3.2 Time variables localisation for the two θ values. . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Sub-iterative scheme main steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4 Classification of the studied verification and validation test cases. . . . . . . . . . . . . . 70
3.5 L2 error norm of the density, temperature and pressure for the Neumann boundary

condition case. (–) IPC scheme. (–) CPC scheme. . . . . . . . . . . . . . . . . . . . . 71
3.6 Sketch of the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.7 Dirichlet boundary condition case. L2 error norm for the pressure at t = 0.8τ2 s for a

first-order implicit Euler (θ = 1) and Crank Nicolson (θ = 1/2) time scheme. . . . . . . 71
3.8 Sketch of the system with the boundary conditions used. . . . . . . . . . . . . . . . . . 72
3.9 Mass conservation for the (left) Euler implicit scheme (θ = 1) and the (right) Crank

Nicolson scheme (θ = 1/2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.10 Momentum conservation for the (left) Euler implicit scheme (θ = 1) and the (right)

Crank Nicolson scheme (θ = 1/2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.11 ScalarL2 error norm following the grid refinement for three different convective schemes

for the (left) Gaussian scalar initialisation and (right) tanh scalar initialisation. . . . . . . 74
3.12 Scalar profiles at t = 45 s. (Top) Gaussian profile. (Bottom) tanh profile. . . . . . . . . . 75
3.13 L1 error convergence for the Dse case using an upwind convective scheme for two values

of CFL and θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.14 Double symmetric expansion wave results at t = 0.3 s using a 3200 cells mesh and with

θ = 1 (–) exact solution (–) simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.15 L1 error convergence for the Sod case using an upwind convective scheme for two values

of CFL and θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.16 L1 error convergence for the Sod case using a centered convective scheme for two values

of CFL and θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.17 Sod case results at t = 0.3 s for θ = 1 using a 3200 cells mesh (–) exact solution (- -)

simulation using the source term Γu2/2 (- -) simulation without the source term Γu2/2 . . 79
3.18 New CFL conditions related to the CPC scheme time discretisation for the Sod case and

for two different velocity based CFL simulations, with θ = 1. (Left) CFL = 0.04. (Right)
CFL = 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.19 Fields L2 error norm at t = 50 s according to the height. . . . . . . . . . . . . . . . . . 80
3.20 Potential temperature and vertical velocity at t = 50 s according to the height. . . . . . . 81
3.21 (a) Relative domain-averaged quantities ψ/ψ0 over time (b) Nusselt number over the non

adiabatic walls for different mesh refinements; the hot and cold walls are represented by
red and black lines, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.22 Steady fields at the final time of simulation for the 740 × 740 cells mesh. . . . . . . . . 82
3.23 (a) Nusselt number profiles for the hot and cold walls compared to the IPC scheme and

the reference results (Darbandi and Hosseinizadeh, 2006). (b) 740×740 cells hexahedral
mesh used for the presented results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.24 (Left) Sketch of the system. (Centre) Steady state dimensionless temperature t̂ iso-
contours. (Right) Steady state dimensionless temperature T̂ iso-contours, reference from
Darbandi and Hosseinizadeh (2006). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.25 Distribution of the velocity on the centrelines of the convective cavity compared to the
reference (Darbandi and Hosseinizadeh, 2006). . . . . . . . . . . . . . . . . . . . . . . 84

3.26 Sketch of the lock exchange system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.27 Zoom at the temperature evolution at the center of the system along time. . . . . . . . . 87
3.28 Density isolines at t+ = 10. (a) Reference (Härtel et al., 2000), DNS simulation. (b)

Reference (Ooi et al., 2007), LES simulation. (c) CPC scheme, LES simulation. (d) IPC
algorithm, LES simulation. (e) IC algorithm, LES simulation. . . . . . . . . . . . . . . 88

7



3.29 Density isolines at t+ = 20. (a) Reference (Härtel et al., 2000), DNS simulation. (b)
Reference (Ooi et al., 2007), LES simulation. (c) CPC scheme, LES simulation. (d) IPC
algorithm, LES simulation. (e) IC algorithm, LES simulation. . . . . . . . . . . . . . . 89

3.30 Setup sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.31 Jet turbulent length scales from the RANS simulation. (a) Integral scale (b) Taylor scale. 91
3.32 Different meshes used (a) 10 cm axial spatial step (b) 5 cm axial spatial step. . . . . . . 91
3.33 u/Uin along the axis x for the k − ε and LES different mesh refinements. . . . . . . . . 92
3.34 Time averaged velocity magnitude at t = 500 s for the most refined mesh. . . . . . . . . 92
3.35 Velocity magnitude at different times for the most refined LES simulation. . . . . . . . . 93
3.36 Wall thermocouples location for the temperature measurements (from Kuznik (2005)). . 95
3.37 System geometry and location of the horizontal and vertical line segments where the

numerical and experimental results are compared. . . . . . . . . . . . . . . . . . . . . . 96
3.38 Inlet geometry used for the experimental measurements and simulations in the reference

work (from Kuznik (2005)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.39 Quiver plot representing the velocity field interpolation over the inlet faces. . . . . . . . 97
3.40 Example of hexahedral mesh used for the simulations. . . . . . . . . . . . . . . . . . . 97
3.41 Isothermal jet. (Left) Velocity magnitude evolution over time at the six monitoring

probes. (Right) Probes location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.42 Isothermal jet. Profiles of the velocity magnitude at the vertical line segments for

different inlet epsilon values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.43 Isothermal jet. Profiles of the velocity magnitude at the horizontal line segments for

different inlet epsilon values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.44 Profiles of the velocity magnitude at the vertical and horizontal line segments for

different mesh refinements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.45 Isothermal jet. Turbulent integral length scale represented at 330 s of the k−ε simulation

using the 60.106 cells mesh. Isolines are spaced by 0.1 m. . . . . . . . . . . . . . . . . . 102
3.46 Isothermal jet. Turbulent Taylor length scale represented after at 330 s of the k − ε

simulation using the 60.106 cells mesh. Isolines are spaced by 0.01 m. . . . . . . . . . . 102
3.47 Isothermal jet. Velocity magnitude field over the axis x = 1.55 m for the three simulations.104
3.48 Isothermal jet. Velocity magnitude profiles over the vertical and horizontal segments lines.105
3.49 Isothermal jet. Rii value at y = 0.6 m at the vertical and horizontal Minibat profiles. . . 105
3.50 Isothermal jet. Rii value at y = 0.9 m at the vertical and horizontal Minibat profiles. . . 106
3.51 Isothermal jet. Rii value at y = 1.5m at the vertical and horizontal Minibat profiles. . . . 106
3.52 Lumley triangles for the isothermal jet case. Top left: experimental. Top right: k − ε.

Bottom left: Rij − ε. Bottom right: LES simulation. . . . . . . . . . . . . . . . . . . . 107
3.53 Velocity and temperature over time on the different monitoring probes for the hot jet case. 108
3.54 Hot jet. Velocity magnitude profiles over the vertical and horizontal segments lines. . . . 109
3.55 Hot jet. Temperature magnitude profiles over the vertical and horizontal segments lines. . 109
3.56 Hot jet. Velocity magnitude umag = 0.4 m s−1 isoline for all three hot jet simulations.

In blue, the k − ε simulation, in orange, the Rij and in green the LES. . . . . . . . . . . 110
3.57 (Left) Ratio (CPC/IPC schemes) of the total time per iteration for the hot jet k − ε

simulation. (Right) Absolute total time per iteration for the CPC scheme. . . . . . . . . 110
3.58 Hot jet. Rii components at y = 0.6 m for the vertical and horizontal profiles. . . . . . . 111
3.59 Hot jet. Rii components at y = 0.9 m for the vertical and horizontal profiles. . . . . . . 112
3.60 Hot jet. Rii components at y = 1.5 m for the vertical and horizontal profiles. . . . . . . 113
3.61 Lumley triangles for the hot jet case. Top left: experimental. Top right: k − ε. Bottom

left: Rij − ε. Bottom right: LES simulation. . . . . . . . . . . . . . . . . . . . . . . . . 114
3.62 Velocity and temperature at the monitoring probes for the cold jet. The k− ε model was

used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8



3.63 Velocity magnitude isoline umag = 0.15 m s−1 for all three cold jet simulations. In blue,
the k − ε simulation, in orange, the Rij and in green the LES. . . . . . . . . . . . . . . 115

3.64 Cold jet. Velocity magnitude profiles over the vertical and horizontal segments lines. . . 116
3.65 Cold jet. Temperature profiles over the vertical and horizontal segments lines. . . . . . . 116
3.66 Cold jet. Rii components at y = 0.6 m for the vertical and horizontal profiles. . . . . . . 117
3.67 Cold jet. Rii components at y = 0.9 m for the vertical and horizontal profiles. . . . . . . 118
3.68 Cold jet. Rii components at y = 1.5 m for the vertical and horizontal profiles. . . . . . . 119
3.69 Lumley triangles for the cold jet case. (Top left) Experimental. (Top right) k−ε. (Bottom

left) Rij − ε. (Bottom right) LES simulation. . . . . . . . . . . . . . . . . . . . . . . . 120
3.70 Lumley triangles from Kuznik (2005) for the cold jet case. (Left) k − ε simulation.

(Right) Rij − ε simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.F.1 Conversion of the reference coordinates values into the polar ones depending on θ. . . . 132
3.F.2 First test case. Velocity components fields, quiver plot and L2 error norm related to the

tangential velocity for the three different interpolations. . . . . . . . . . . . . . . . . . . 134
3.F.3 Second test case. Velocity components fields, quiver plot and L2 error norm related to

the horizontal velocity for the three different interpolations. . . . . . . . . . . . . . . . . 135
3.F.4 Velocity field for the three types of interpolation. . . . . . . . . . . . . . . . . . . . . . 136
3.F.5 R11 components for the Minibat inlet. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.F.6 R22 components for the Minibat inlet. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.F.7 R33 components for the Minibat inlet. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.F.8 R12 components for the Minibat inlet. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.F.9 R13 components for the Minibat inlet. . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.F.10R23 components for the Minibat inlet. . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.G.1(Left) System geometry including the inlet ventilation duct. (Right) Focus on the

ventilation duct discretisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.G.2Vertical and horizontal ε profiles at y = 0.58 m for the full mesh simulation and the inlet

interpolation simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.G.3Vertical (top) and horizontal (bottom) velocity magnitude profiles profiles at y = 0.6 m

and y = 1.5 m for the full mesh simulation and the inlet interpolation simulation. . . . . 140
3.H.1Lumley’s triangle using III∗ and II∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
3.I.1 Rii at y = 0.6 m for a simulation without SEM and two simulations with different eddy

spatial length threshold values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
3.I.2 Rii at y = 1.5 m for a simulation without SEM and two simulations with different eddy

spatial length threshold values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
3.I.3 Vertical and horizontal velocity magnitude profiles for the different simulations. . . . . . 145
3.I.4 Vertical and horizontal velocity magnitude profiles for two different mesh refinements

with δ = 1/3rin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3.J.1 Total time of simulation per iteration using the CPC scheme for three turbulence

approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.2.1 Comparison between the Antoine law expression for the saturation pressure used in this
manuscript and the original law expression. p0 = 101325 Pa is the reference pressure
and p? = 760 mmHg. Coefficients with ? are A? = 8.07131 ln(mmHg), B? = 1730.63
ln(mmHg) K and C? = 233.426 K, from Banat (1994). Coefficients with ′ are A′ =
5.40221 ln(Pa), B′ = 1838.675 ln(Pa) and C ′ = −31.737 K, from Bridgeman and
Aldrich (1964). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9



4.3.1 Strategy when treating saturation, with one Newton’s method iteration. (Left) Example
while getting in saturation. The orange filled dot corresponds to the point {T̂ , e(T̂ , ys)}
(see Algorithm (3)). (Right) Example when leaving saturation. The final temperature
Tn+1,k is a result of the correction of the vapor of water mass fraction related to Tn+1,k,1,
which was superior in that case to yn+1,k

w . These Figures do not represent a test case in
particular and were drawn only for illustrating the Newton’s method. . . . . . . . . . . . 160

4.4.1 (Left) 2-D representation of the internal energy partial derivative related to the tem-
perature between 260 K and 330 K for three different pressures in the indoor airflow
range and with yw = 0.0125. (Right) 3-D representation of the internal energy partial
derivative related to the temperature with yw = 0.0125. . . . . . . . . . . . . . . . . . . 162

4.4.2
∂ρ

∂p

∣∣∣∣
yw,e

(yw, p, T ) according to the temperature and total pressure for two total water

mass fraction values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.5.1 Presentation of the different Riemann problem waves and states. . . . . . . . . . . . . . 165
4.5.2 Sketch of the four possible cases for the one-dimensional Riemann problem. . . . . . . . 166
4.5.3 Connection function for both 1- and 4- waves with ΓL = 1.5 and ΓR = 2. . . . . . . . . 176
4.5.4 (Left) Numerator of g′

1(Φ1). (Right) Numerator of g′
4(Φ1) for αp = 10. . . . . . . . . . 179

4.5.5 Surface plot for the study of the monotony of F1(Φ1) (Left) Numerator of g′
1(Φ1).

(Right) Numerator of g′
4(Φ1) for αp = 10. . . . . . . . . . . . . . . . . . . . . . . . . . 179

4.6.1 Variables evolution following time. (Left) Temperature and internal energy. (Middle)
Pressure. (Right) water mass fractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

4.6.2 Variables L2 error norm evolution following time. (Left) density. (Right) internal energy. 180
4.6.3 (Left) Internal energy L1 error norm for each Newton’s method iteration for the first

time iteration in saturation. In blue, the error threshold value. (Right) Internal energy
variation at the same time iteration. In blue, the value of the solved internal energy. . . . 181

4.6.4 (Left) Vapour mass fraction compared to its value at saturation given the system pressure
and temperature following time. (Right) Vapour pressure compared to its value at
saturation given the system temperature following time. . . . . . . . . . . . . . . . . . 181

4.6.5 Variables L1 error norm for (right) UCD at t = 0.05 s, (left) DSS1 at t = 0.3 s. . . . . . 182
4.6.6 UCD case fields at t = 0.3 s for different mesh refinements (800, 3200, 12800). (- -)

Exact solution. (–) Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
4.6.7 DSS1 case fields at t = 0.03 s for different mesh refinements (80, 320, 1280). (- -) Exact

solution. (–) Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
4.6.8 Variables L1 error norm for the DSS2 test case (θ = 1). (Left) With the kinetic energy

source term and 4 inner iterations. (Centre) Without the kinetic energy source term and
4 inner iterations (Right) With the kinetic energy source term and 8 inner iterations.
(Bottom With the kinetic energy source term, 4 inner iterations and θ = 1/2. . . . . . . . 184

4.6.9 DSS2 case fields at t = 0.05 s for different mesh refinements (80, 320, 1280). (- -) Exact
solution. (–) Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.1.1 Main methodology steps for this chapter study. . . . . . . . . . . . . . . . . . . . . . . 193
5.2.1 Main steps of the numerical mesh generation. . . . . . . . . . . . . . . . . . . . . . . . 195
5.2.2 (Left) Overview of the stadium. Credits: Artstation. (Right) View of the 3-D cloud of

points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
5.2.3 Different point of view of the cloud of points. . . . . . . . . . . . . . . . . . . . . . . . 196
5.2.4 (Left) Cloud of points after translation and rotation. (Right) Porosity field after the first

CFD simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
5.2.5 Example of the porosity field on two slices of the box, with a minimum legend bar value

of 2.196 10−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

10



5.2.6 Example of the porosity field on two slices of the box, with a minimum legend bar value
of 0.98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.2.7 Mesh threshold porosity zones. (Left) 2-D slice. (Right) Volume view. . . . . . . . . . . 198
5.2.8 Slices of the mesh retained for the first simulations. . . . . . . . . . . . . . . . . . . . . 199
5.2.9 Different view comparing the (Left) cloud of points and (Right) final numerical mesh. . . 200
5.3.1 Photo. Vents located on the stadium ceiling related to the AHU. (Left) Blowing vents.

(Right) Extraction vents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
5.3.2 Numerical boundary conditions. Vents located on the stadium ceiling related to the AHU.

(Left) Outside view. In blue, the blowing vents, in red, the extraction ones. (Right) Inside
view. In blue, the extraction vents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

5.3.3 Numerical boundary conditions. Vents located on the ground level of the stadium in red. 202
5.3.4 Numerical boundary conditions. Complementary outlet boundary conditions in red. . . . 202
5.4.1 Monitoring probes location at z = 7.5 m. . . . . . . . . . . . . . . . . . . . . . . . . . 202
5.4.2 k − ε simulation. Velocity magnitude instantaneous and averaged quantities for the

different monitoring probes located at the top, bottom, right and left sides of the stadium
at z = 7.5 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.4.3 Averaged velocity magnitude field (in colour) over the flow streamlines for the isothermal
ventilation case at t = 3000 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.4.4 Volumes with a velocity magnitude higher than 0.5 m s−1 (red) for the isothermal
ventilation case at t = 3000 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.4.5 Instantaneous temperature field (in colour) over the flow streamlines for the anisothermal
ventilation case at 14 min (825 s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.4.6 Air age field (in colour) over the flow streamlines for the anisothermal ventilation case
at 14 min (825 s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.4.7 Volumes presenting an air age field above 600 s (yellow) for the anisothermal ventilation
case at 14 min (825 s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.5.1 PM10 concentration experimental profile. Time 0 is defined according to the maximum
peak of concentration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.5.2 (Left) Experimental sensor location. (Right) Probe location to study the PM10
concentration over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.5.3 Different initialisations of the PM10 concentration field tested for the first simulations.
(Left) Fully homogeneous initialisation. (Centre) Initialisation only in the sitting zones.
(Right) Initialisation for the cells below 9 m. . . . . . . . . . . . . . . . . . . . . . . . . 206

5.5.4 Comparison of the numerical PM10 concentration over time with the experimental
measurements. (Left) Initialisation 1. (Right) Initialisation 2. . . . . . . . . . . . . . . . 207

5.5.5 Comparison of the numerical PM10 concentration over time with the experimental
measurements for initialisation 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

5.5.6 (Left) Strategy for the heterogeneous initialisation. Red lines are the moving average
based on the last 5 values. (Right) Volumes with a PM10 concentration field >
2000µg m−3 using PCT A = 1.0 at t = 225 s. . . . . . . . . . . . . . . . . . . . . . . . 208

5.5.7 Numerical PM10 concentration over time for two AHU power compared to the experi-
mental measurements. (Left) Non log plot. (Right) Semi-log plot. . . . . . . . . . . . . 208

5.5.8 Cells occurrences histogram of the PM10 concentration at t = 1500 s for the simulation
using a linear PM10 filling of the system at the inlet faces. . . . . . . . . . . . . . . . . 209

5.5.9 Numerical PM10 concentration over time compared to the experimental measurements
and to the 0-D model. (Left) Comparison of the transient inlet source conditions. (Right)
Longer simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.6.1 Sketch of the experimental protocol concerning the dynamical and thermal quantities.
(Top) Location of the different sensors with a simplified stadium representation. (Bot-
tom) Zoom on the stadium main field. . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

11



5.7.1 Histogram of the cells temperature values for the three different turbulent simulations at
t = 300 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

5.7.2 Computation time for the different simulations per iteration. Figures (a) (b) and (c)
compares the time between the IPC and CPC schemes for each turbulent simulation.
Figure (d) shows the three turbulent simulation timers for the CPC scheme. . . . . . . . 214

5.7.3 Results using the CPC scheme at t = 300 s. (Left) Cells temperature histogram for
the three turbulent simulations. (Right) Cells air age histogram for the three turbulent
simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

5.7.4 Slice of the temperature field (in colour) at the stadium mid width, with the isocontour
T = 295 K at t = 300 s for the three turbulent simulations. (Top) k−ε. (Center)Rij −ε.
(Bottom) LES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

5.8.1 Sketch of a side and top view of the stadium with the mesh modification related to the
acoustic absorbing panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

5.8.2 Histogram of the cells PM10 concentration at two different times for both simulations
with and without acoustic panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

5.8.3 PM10 concentration along time for simulations with and without acoustic panels for
PAHU = 0.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

12



List of Tables

2.1 Adimensional numbers often used in thermal-aeraulics. α = λ/(ρcp) is the thermal
diffusivity, L is a characteristic length, g is the gravitational acceleration constant, h is
the convection heat transfer coefficient, U is a characteristic velocity, Tw is a surface
temperature and T∞ the bulk temperature. . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Comparison between the different approximations related to the Kovasnay modes (from
Schneider (2015)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Different turbulence scales definition Sagaut et al. (2013). . . . . . . . . . . . . . . . . . 44
2.4 SSG Constants (Speziale et al., 1991). . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Summary of the physical modelling stakes, the related numerical target and the proposed
numerical approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Different test cases used for the verification and validation related to their represented
physical phenomena and/or properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Different convective space schemes used to compute Yf . . . . . . . . . . . . . . . . . . 74
3.4 Initial states for the two one-dimensional Riemann problems used. . . . . . . . . . . . . 76
3.5 L1 convergence rates for the Dse case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.6 Convergence rates for the Sod case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.7 Comparison between the mean Nusselt numbers and total pressure ratio with the

reference values from Le Quéré et al. (2005). Results from the mesh simulation of a
converged 740×740 cells for both CPC and IPC schemes. . . . . . . . . . . . . . . . . 83

3.8 Additional references results to the Le Quéré cavity (test 1) related to the Nusselt number
over the cold and hot walls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.9 Boundaries conditions for three studied jets. All units are in K except the mean inlet
velocity Uin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.F.1 Summary of the different values of θα and θβ according to the angle value. . . . . . . . . 131
3.F.2 Polar equivalent interpolation variable φ0 according to the different angle value. . . . . . 131
3.J.1 Minibat isothermal jet. Solvers total simulation time for the CPC and IPC schemes. . . . 147
3.J.2 Minibat hot jet. Solvers total simulation time for the CPC and IPC schemes. . . . . . . . 148
3.J.3 Natural convection cavity. Solvers total simulation time for the CPC and IPC schemes. . 149
3.J.4 Coubertin stadium, isothermal ventilation. Solvers total simulation time for the CPC and

IPC schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.5.1 Eigenvalues, eigenvectors and Riemann invariants for the system (4.53) . . . . . . . . . 170
4.5.2 Summary of the relations between each system state. . . . . . . . . . . . . . . . . . . . 176
4.6.1 Initial states for the two one-dimensional Riemann problems used. . . . . . . . . . . . . 182

13



5.1.1 Summary of a number of studies related to semi and fully enclosed sport facilities using
CFD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

14



Nomenclature

Superscripts

k Current inner iteration

l Current iteration related to the Newton method

n Current time step

Subscripts

0 Reference value

c Considered cell

c̃ Neighbour cell separated by the face f

f Face separating c and c̃

a Dry air

in Inlet value

L Left state

l Liquid water

l Shock left state

R Right state

r Shock right state

v Water vapor

w Total water

Abbreviations

RH Relative humidity

AHU Air handling unit

AI Artificial intelligence
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CAD Computer-aided design

CFD Computational fluid dynamics

CFL Courant Friedrichs Levy

CO2 Carbon dioxide

CPC Compressible pressure correction

div Divergence

DNS Direct numerical simulation

DRSM Differential Reynolds stress model

DSS Double symmetric shock

EDF Electricité de France

EOS Equation of state

EVM Eddy viscosity model

GHG Greenhouse gases

HVAC Heat ventilation and air conditioning

IAQ Indoor air quality

IC Isentropic compressible

IPC Incompressible pressure correction

LES Large eddy simulation

PM10 Particle matter 10

PMV Predicted mean vote

RANS Reynolds averaged Navier–Stokes

SGDH Simple gradient diffusion hypothesis

SOLU Second order linear upwind

SSG Speziale-Sarkar-Gatski

UCD Unsteady contact discontinuity

VOC Volatile organic components

Greek symbols

α Thermal diffusivity

αf Weighting factor

αi Mass fraction i = a,w, v, l

αi Volume fraction i = a,w, v, l.
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β Dilatation coefficient

∆x Spatial step

∆T Temperature variation

∆t Time step

εm Water and air molar masses ratio

ηs Kolmogorov turbulent scale

Γ Mass source term

γ Heat capacity

Γu2/2
c Internal energy source term based on the kinetic energy

ΓE Total energy source term

Γs Entropy source term

ΓY Scalar source term

ρ̂ Dimensionless density

κ Wavelength

κq Volume viscosity

λ Heat conductivity

λi Eigenvalues i = 1, 2, 3, 4

λs Taylor turbulent scale

µ Dynamic viscosity

ν Kinematic viscosity

νT Turbulent viscosity

Ω Domain

ω Specific dissipation

Ωc Cell volume

Ωtot System total volume

φk Pressure increment

Φi Normalised pressure variable i = 1, 2

Π Porosity

ρ Density

ρr Characteristic density

σ Shock speed
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τη Kolmogorov turbulent scale characteristic time

τλ Taylor turbulent scale characteristic time

τL Integral turbulent scale characteristic time

ω Rotation tensor

Φ∗ Reynolds stress velocity-pressure gradient correlation term

σ Stress tensor

τ Viscous stress tensor

τ sgs Subgrid stress tensor

ε
R

Reynolds stress dissipation tensor

θ Theta scheme numerical parameter

Θ((.)n, (.)n+1) Time interpolation operator

θp Potential temperature

ε Turbulent kinetic energy dissipation rate

εe0 Newton method error threshold

εpiso0 Sub-iterative process error threshold

εk
piso Sub-iterative process error

ρ̃ Predicted density

Roman symbols

()′′ Instantaneous field component (Favre average framework)

(.)′ Instantaneous field component (Reynolds average framework)

(.)c Mean space value over a cell c

(.)f Mean space value over a face f

û Dimensionless velocity

ê Dimensionless internal energy

p̂ Dimensionless pressure

T̂ Dimensionless temperature

x̂ Dimensionless x coordinate

Ṁf Face mass flux

(.) Reynolds average operator

φi Riemann invariants i = 1, 2, 3, 4

P
R

Reynolds stress production term
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a Dimensionless anisotropy tensor

d Reynolds stress diffusive term

dµ Reynolds stress molecular diffusive term

dp Reynolds stress pressure diffusive term

dt Reynolds stress turbulent diffusive term

G Reynolds stress gravity production term

I Identity tensor

R Reynolds stress tensor

f Field of source terms

g Gravity acceleration

q Momentum

Q
c

Cell momentum

ri Eigenvectors i = 1, 2, 3, 4

Sf Face normal surface vector

u Velocity

uk Predicted velocity

uin Injected momentum

x Spatial coordinates vector (x, y, z)

xc Cell c barycentre

xf Face f barycentre

(̃.) Favre average operator

cp Isobaric heat capacity

cv Isochoric heat capacity

CP M PM10 concentration

cvm Mixture isochoric heat capacity

dcc̃ Distance used for the gradient computing

E Total energy

e Internal energy

Fo Fourier number

h Air heat transfer coefficient

h Enthalpy
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K Scalar molecular diffusivity

k Turbulent kinetic energy

L Characteristic length

lm Mixing length

Ls Integral turbulent scale

L00 Water latent heat related to the reference temperature

Mc Cell mass

Ma Dry air molar mass

p Total pressure

ps Water vapour pressure at saturation

PAHU Air handling unit power

PrT Turbulent Prandtl number

Q Heat exchange per unit of mass

Qi Heat flux

Ra Dry air specific gas constant

Rv Water vapour gas constant

s Entropy

STε Turbulent kinetic energy dissipation rate source term

STk Turbulent kinetic energy source term

T Temperature

t time

T∞ Bulk temperature

Tc Cold temperature

Th Hot temperature

Tr Characteristic temperature

Tw Wall temperature

U Characteristic velocity

W Work per unit of mass

xs Absolute humidity ratio

Y Scalar mass fraction

ys Water vapour mass fraction at saturation
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zi Normalised density variable i = 1, 2

G Turbulent kinetic energy gravity production term

P Turbulent kinetic energy shear stress production term

t+ Dimensionless time

c Speed of sound

Fr Froud number

KH Kelvin Helmholtz

Ma Mach number

Re Reynolds number

Sc Schmidt number
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Résumé
La caractérisation d’écoulements d’air intérieur est un enjeu d’importance dans un contexte social et
réglementaire visant à optimiser la consommation énergétique et le confort thermique dans le bâtiment.
Parallèlement, la qualité de l’air intérieur est responsable de milliers de décès dans le monde et suscite
l’intérêt croissant de la communauté scientifique et des institutions; la crise épidémique liée au virus
SARS-COVID 19 souligne l’utilité des études en milieu confiné. Dans ce but, la simulation est un outil
efficace pouvant reproduire de manière fiable l’écoulement considéré et de manière moins coûteuse
comparée à l’expérimental. Cette thèse se focalise sur le développement d’un outil numérique pour les
simulations aérauliques à l’échelle locale (computational fluid dynamics, CFD). Ce dernier a pour but
d’être appliqué dans des études de milieux intérieurs allant du domaine résidentiel (aide à la maîtrise
d’oeuvre, étude de la qualité d’air intérieur) à l’industriel et tertiaire (sûreté des centrales nucléaires,
ventilation d’enceintes sportives). Après avoir posé le contexte et les enjeux liés à l’aéraulique dans
le premier chapitre, l’identification des phénomènes physiques caractérisant les écoulements d’air
intérieurs et le choix des équations à utiliser sont présentés dans le second. Au troisième chapitre,
pour répondre aux enjeux de modélisation ciblés, un schéma volumes finis d’ordre 2 en temps
pour les écoulements à densité variable est proposé, pour des solutions régulières et discontinues.
Développé pour l’air sec tout d’abord, le schéma est implémenté dans le logiciel CFD sous licence libre
code_saturne. Ce dernier rentre dans la famille des theta-schémas de type prédiction correction. Le
second ordre en temps est atteint grâce à une localisation de variables décalées. De plus, l’énergie totale
est conservée grâce à la résolution de l’équation de l’énergie interne complétée par un terme source
dérivé de l’équation discrète de l’énergie cinétique. Enfin, la variation de pression est prise en compte en
linéarisant l’équation d’état, ce qui conduit à la formulation d’une équation d’Helmholtz à résoudre pour
la pression. Les termes liés à cette linéarisation sont implicités, menant à des calculs plus rapides tout
en évitant toute contrainte sur le pas de temps liée aux ondes acoustiques. Après une analyse numérique
menant à des nouvelles contraintes de stabilité, le schéma en temps est vérifié et validé à l’aide de cas
allant de zéro à trois dimensions et du régime incompressible au compressible, représentatifs des enjeux
de modélisation aérauliques. Des simulations d’écoulements turbulents (RANS, LES) sont également
réalisées. Le quatrième chapitre présente des développements complémentaires permettant d’étendre
le schéma à l’air humide avec changement de phase. L’équilibre thermodynamique est considéré et la
fraction massique d’eau totale, sous forme gazeuse et liquide, est transportée. Dans le but d’utiliser les
équations choisies auparavant, le changement de phase est traité en utilisant la méthode de Newton
à partir de l’énergie interne résolue. À nouveau, une analyse numérique et des vérifications sont
réalisées. De nouvelles conditions CFL sont ainsi présentées. Enfin, dans le cinquième chapitre,
l’outil numérique est appliqué pour caractériser l’écoulement d’air intérieur au sein du Stade Pierre
de Coubertin, dans le cadre des jeux olympiques 2024 de Paris. Le maillage numérique est créé à partir
d’un nuage de points issu de mesures scanners 3D. Les premières simulations mènent à l’identification
de zones d’intérêt dynamiques et thermiques et à l’élaboration d’un protocole expérimental pour une
campagne de mesures. S’en suit une validation du schéma dans le but de reproduire l’évolution de la
concentration de particules lors de la finale de la ligue de Handball française, lors de laquelle un pic de
PM10 (fumigènes) a été mesuré.
Les travaux de cette thèse ont mené à la publication d’un article dans la revue "International Journal
of Numerical methods in fluids" en 2022 intitulé "A time-staggered second order conservative time
scheme for variable density flow" (Hector Amino, Cédric Flageul, Sofiane Benhamadouche, Iztok
Tiselj, Bertrand Carissimo et Martin Ferrand).
Deux articles de conférence ont été également publiés en 2022, le premier étant "A second
order conservative time scheme for variable density flow" (Hector Amino, Cédric Flageul, Sofiane
Benhamadouche, Iztok Tiselj, Bertrand Carissimo et Martin Ferrand), à la 17th UK Heat Transfer
Conference (UKHTC2021) et le deuxième intitulé "A time-staggered second order scheme for moist air
variable density flow" (Hector Amino, Cédric Flageul, Jean-Marc Hérard, Bertrand Carissimo, Martin
Ferrand) à la conférence ECCOMAS 2022.
Mots clefs : aéraulique, CFD, schéma numérique, flottabilité, turbulence, compressible,
incompressible, changement de phase
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Abstract
Characterising indoor airflow is an important stake in a reglementary and social context of energy and
thermal comfort optimisation of buildings. Concomitantly, the indoor air quality is responsible for a
consequent number of deaths world-wide and arouses a growing interest of the scientific community.
The important number of studies related to the COVID virus propagation emphasises the importance of
studying such environments. In this purpose, numerical simulations are a powerful tool to predict the
indoor physical phenomena while being cost-less compared to experimental measurements. This thesis
focuses on the development of a local scale simulation (computational fluid dynamics, CFD) scheme for
indoor airflow in order to perform residential (indoor air quality and environment design) and industrial
(nuclear safety, sport facilities ventilation) thermoaeraulic studies. After presenting the aforementioned
context in the first chapter, an identification of the main physical phenomena driving the indoor airflow
is made in the second one. Some existing models are presented and a choice of the governing equations
to be used is made. In the third chapter, to meet the modelling challenges presented, a second order
conservative time scheme for variable density flow is proposed, for smooth and singular solutions. First
written for dry air, the time scheme is implemented in the CFD open source solver code_saturne. The
latter falls within the class of theta pressure correction schemes. The second order time convergence is
reached by a time staggered variable arrangement. Moreover, the total energy is conserved thanks to
the solving of the internal energy equation completed with a source term based on the kinetic energy
discrete equation. Finally, the pressure variation is taken into account by linearizing the equation of
state, leading to an Helmholtz equation for the pressure correction. Some pressure related terms are
implicited, leading to faster calculations and avoiding any stability condition related to acoustic waves.
An analysis on the positivity of the thermodynamic variables is made, leading to new stability conditions
which are studied as well in the manuscript. The scheme is verified and validated on test cases going
from zero to three dimensions, for incompressible and compressible flows, chosen to represent the
different indoor modelling stakes. Furthermore, it is verified that the scheme is compatible with first
and second order turbulent approaches (RANS, LES). In the fourth chapter, the dry air time scheme is
extended to moist air applications, including variable properties, another equation of state and phase
change. The thermodynamic equilibrium is considered and the total water mass fraction (in liquid and
vapor states) is transported as a scalar. In order to use the set of equations chosen previously, the phase
change is taken into account using the Newton method related to the solved internal energy. A numerical
analysis, verification and validation are made as well. Finally, in the fifth chapter, the numerical tool
is applied on the study of the Pierre de Coubertin handball stadium, in the context of the Paris 2024
Olympic Games. The numerical mesh is generated from a three dimensional cloud of points, created
from laser measurements. First simulations are performed to identify the stadium dynamic and thermal
interest zones and a protocol is proposed for an upcoming experimental campaign. Then, a numerical
validation is made on the evolution of particles concentration during the french league handball final,
where fog sources were ignited outside the stadium, promoting a concentration peak inside arena.
This thesis work led to a journal paper entitled "A time-staggered second order conservative time
scheme for variable density flow" (Hector Amino, Cédric Flageul, Sofiane Benhamadouche, Iztok
Tiselj, Bertrand Carissimo et Martin Ferrand), published in the "International Journal of Numerical
methods in fluids". Additionally, two conferences papers were published. The first one entitled "A
second order conservative time scheme for variable density flow" (Hector Amino, Cédric Flageul,
Sofiane Benhamadouche, Iztok Tiselj, Bertrand Carissimo et Martin Ferrand), presented at the 17th
UK Heat Transfer Conference (UKHTC2021) and the second one entitled "A time-staggered second
order scheme for moist air variable density flow" (Hector Amino, Cédric Flageul, Jean-Marc Hérard,
Bertrand Carissimo, Martin Ferrand), presented at the ECCOMAS 2022 congress.
Key words : indoor air flow, CFD, numerical scheme, finite volumes, buoyancy, turbulence,
compressible flow, incompressible flow, phase change
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CHAPTER 1

Introduction

Résumé
Dans ce chapitre sont introduits le contexte global de ce manuscrit et son objectif principal, qui est de
développer un schéma numérique pour des simulations aérauliques à l’échelle locale. Les motivations
sont nombreuses, allant de l’optimisation thermique d’environnements intérieurs, la qualité d’air et enfin
les études industrielles, comme la sûreté au sein de centrales nucléaires. La méthodologie globale de la
thèse est enfin décrite ainsi que le plan de ce manuscrit.

1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3 Methodology and thesis plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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1.1 Context and motivation

Since the 70’s, the world population has importantly grown to reach 7.8 billion people in 2021.
Predictions (Buettner, 2020) forecast a 12% additional increase by 2030. At the same time, the urban
population grows. By 2050, 6.4 billions citizens are expected in cities (UNO, 2018) , compared to 4.35
billions today. In parallel, the energy and natural resources consumption will increase directly linked
with the population raise.
Humans are thus very likely to spend more and more of their time in enclosed environments (residential
buildings, industrial facilities, transports, schools). Thermal comfort and recently indoor air quality
(IAQ) are important concerns in the current society. These stakes depends on parameters such as the
air temperature, its humidity rate, the environment ventilation, among others. Their comprehension is
crucial to insure the aforementioned stakes.
Today in France, buildings consume 43% of the primary energy (ADEME, 2018) , partially due to heat,
ventilation and air conditioning (HVAC) systems (see Figure 1.1 for the final consumption of energy in
France in 2019/2020, note that the building consumption is part of the residential and tertiary sectors
here), placing it on the top of the final energy consumption sector.
This percentage might grow every year with the increase of the usage of electrical devices and the change
of the weather conditions.
Moreover, the residential/tertiary sector represents 22% and 7.8% of France CO2 and green house gas
(GHG) emissions as well (ADEME, 2018) .
In that way, several laws and guidance have been set from the national institutions concerning the existing
and new buildings energy consumption and IAQ. To illustrate this, in France, the renovation of all
existing buildings to become low consumption before 2050 (Ministère de la Transition Ecologique et
Solidaire, 2018) and the reduction of 60% of energy consumption related to 2010 of all buildings as
well (Assemblée Nationale Française, 2018) .

Industry

19.46%

Transports

28.54%

Residential

31.37%

Tertiary

17.33%

Agriculture-fishing
3.30%

Figure 1.1: Pie chart of the relative final energy consumption in France in 2019/2020 by sector.

From these major stakes, optimising the indoor environment appears to be essential to reduce the GHG
emissions, energy consumption and to respect the institutions guidance.
In addition, IAQ plays a major role from a public health point of view, causing close to 4 millions deaths
around the world per year (WHO, 2021) . Generated largely by inefficient and poorly ventilated stoves
burning biomass fuels, an optimised environment would prevent many life losses. In France, for instance,
formaldehyde’s concentrations (cancerous, inflammable and allergic species) in indoor environments are
actually ten times higher than in the outdoor ambient environment (Ramalho and Kirchner, 2007) .
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Finally, in the last Sars-COVID crisis context, it was shown that ensuring a proper ventilation reduces
the virus contamination in indoor environments, by dispersing the particles containing virus and
consequently, its concentration (Bhagat et al., 2020; Sun and Zhai, 2020; Meng et al., 2020) .
From an industrial point of view, understanding the indoor airflow is crucial for safety studies, such as
the conception of optimised ventilation systems in rooms with thermal sources (Hassan et al. (2013) ,
Figure 1.2, right) or the dispersion of flammable species in an enclosed system (e.g. hydrogen in a
nuclear plant, see Hoyes and Ivings (2016) , Figure 1.2, left). An a priori comprehension of the indoor
airflow is useful as well when designing residential and tertiary buildings, regarding the system energy
consumption (Norton et al., 2010; Bustamante et al., 2013; Yang et al., 2014; Cuce et al., 2019)
, thermal comfort (Kwong et al., 2014) and IAQ (Spengler and Chen, 2000; Tong et al., 2016) (see

Shree et al. (2019) for a review of IAQ CFD applications).
Regardless of any particular strategy related to energy reduction, industrial safety, air comfort or air
quality, the key within this optimisation process is the accurate understanding of the physics governing
the given system.
To do so, either experiments or numerical simulations can be made. The first leads to results close to
reality but are complex to set up and can be expensive, in particular when looking for reproductibility in
complex environments. The second depends on experimental data and reference results for validation, but
is financially more affordable. Additionally, with the growing computational power context, simulations
are more and more used in both industrial and academic fields. Therefore, a good combination of both
may lead to a better understanding of the phenomena.

Figure 1.2: Consequences of a bad design, monitoring or exploitation of industrial buildings. (Left)
Fukushima accident in 2011 caused by an hydrogen explosion after the endomagement of the primary
cooling cycle by an earthquake (credits: Fukushima Central Television). (Right) Fire at a data centre
in Strasbourg in 2021 (credits: Sapeurs Pompiers du Bas Rhin), due to an overheat of two inverters.
Moreover, given the building design, the firefighter could not have a proper access to the burning devices.
Additionally, the centre architecture (which used a free cooling ventilation strategy) accelerated the fire
dispersion (Lawrance, 2020).

Yet, the indoor environment can be very difficult to properly reproduce numerically. First, the studied
system can be very complex: many geometries are very often connected by the HVAC system or by any
opening; from furniture to occupants and possible heat and pollutant sources, the complexity increases
rapidly. Simultaneously, the indoor flow can be driven by numerous physical influences, such as natural
convection, a differential of pressure and jets. Given this difficulty, very often the problem is simplified
by the application of models and large scale numerical methods.
Indeed, following the context and the goal of the simulation, a modeller may use different numerical
techniques. Among them, the most popular are the nodal, multi zones and local scale methods (Chen,
2009) , represented in Figure 1.3.
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The nodal zone model studies the building at a macroscopic scale. It considers the system characteristics
(temperature, pressure...) to be spatially uniform over the node (Kusuda, 1976) . Nevertheless, it has
been shown that for studies where mass and heat transfer are coupled (such as natural ventilation or in
presence of natural convection), this type of simulation is too simple (Mora, 2003) . The multi zone
modelling appeared then, where a building would be divided in different spatial zones linked by airflow
resistances. This allows particular conditions following the studied environment (corresponding to a
zone) to be imposed. A detailed description of the theory related to multi zones modelling can be found
in Axley (2007) . Examples of using multi zones to model the indoor environment can be cited: Allard
and Inard (1992); Inard et al. (1996); Musy et al. (2002); Teshome and F. Haghighat (2004); Foucquier
et al. (2013) . Moreover, this type of method is fast, allowing long time simulations (of one or
several months, for instance) to be performed. However, it may not account any local heterogeneous
behaviour, such as thermal stratification (Wang and Chen, 2008) , which, according to the situation, has
a strong impact on the flow.
Various multi zone softwares and libraries exist and are widely used to analyse HVAC systems
(CONTAM (Walton et al., 2006) , COMIS (Feustel, 1999) , BuildSysPro (Plessis et al., 2014) ,
TRNSYS/Energy plus).
The last method is the local scale simulation, also known as computational fluid dynamics (CFD), which
takes into account the local fields by solving conservation equations on a highly discretised domain. Yet,
while multi zone simulations can cover a year of prediction, CFD will focus on smaller time periods.
A coupling between these techniques can also be interesting; the CFD simulation can provide local
information for a larger scale model (Wang and Chen, 2007) and the latter can be used during a CFD
simulation to accelerate the computation time (Bellivier, 2004) . Also, CFD can be coupled to multi
zone models to perform simulations covering the flow of a single room to the local urban micro-climate
scale (Malys et al., 2015) . Still, CFD is widely used for indoor airflow studies due to its capacity
to predict both spatial and temporal fields (Nielsen, 2015) . Among its distinct applications, one may
highlight, related to indoor environments, studies on site planning (Zhai, 2006) , human body impact
on the flow (see Gao and Niu (2005) for a review) , personalised ventilation (Zhai et al., 2002; Shen
et al., 2013; Liu et al., 2019) , pollution dispersion and control (Zhai et al., 2003; Kassomenos et al.,
2008; Rui et al., 2008) and thermal comfort (Zhang and Chen, 2007; Catalina et al., 2009) .

Wint

Wext

W1

Wtext

W2

W3

Wtext

Wi

i ∈ [1, Ncell]

Figure 1.3: Different scales when modelling a building. (Left) Nodal model. (Center) Multi zone model.
(Right) CFD. W is the variables array. Ncell is the number of cells of the CFD simulation.

Note that local simulations do not always provide accurate results. The verification and validation
processes, where the numerical results are compared to analytical, reference or experimental data are
crucial (Chen and Srebric, 2002) when designing any tool. While the verification verifies that one is
solving the equations correctly, the validation confirms that the system of equations, including the choice
of models, initial and boundary conditions is in agreement with the studied physics.
This thesis focuses essentially on the local scale of simulation. Indeed, the main goal is to properly
reproduce the indoor air-flow complexity that can be characterised by different coexistent processes,
which is ideal for CFD simulations.
To conclude, a focus on the indoor environment modelling stakes to reproduce at the local scale shall lead
to a better understanding on the indoor airflow physics. With the new numerical tool, an easier indoor
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space design optimisation may be made, inducing a reduction of the building energy consumption, GHG
emissions and occupants negative health impact.
Among the different under license and open source CFD solvers (Jasak, 2009; Popinet, 2003) , all
the numerical implementations and studies in this thesis are made with code_saturne (Archambeau et al.,
2004) , used extensively in the industry, see for example nuclear thermal-hydraulic applications (Flageul
et al., 2019; Gauffre et al., 2020) , atmospheric modelling (Milliez and Carissimo, 2007; Defforge
et al., 2021) , ventilation, waves interactions (Ferrand and Harris, 2021) , and combustion (Han and
Morgans, 2015) .

1.2 Problem formulation

The aim of this thesis is to develop a new numerical scheme to simulate indoor air-flow. In order to
reproduce the thermal stratification and recirculation zones, the local simulation scale is chosen.
More precisely, this manuscript focuses on answering the following question:

Can one accurately simulate the physics of indoor airflow in a local scale while preserving an affordable
computation time?

The expected outcome of the present work is a robust and accurate numerical tool for indoor airflow local
scale simulations. The latter should also be easy to use. Furthermore, an additional care is provided to
the simulations computation time, which is one of the criteria for the numerical choices while designing
the scheme.

1.3 Methodology and thesis plan

To achieve this goal, the methodology combines a numerical and a physical approaches, whose main
steps are represented on Figure 1.4. First, from a physical point of view, an identification is made
regarding the main physical phenomena that should be accounted for an indoor airflow CFD simulation.
This is done thanks to a literature review. Also, this step is useful to identify test cases for the tool
verification and validation. This physical step is followed by the choice concerning the equations and
models to be used. The next step is to propose a space and time discretised numerical scheme related to
this set of equations, to be implemented in code_saturne. Then, a numerical analysis is performed on the
numerical scheme properties and stability, followed by the verification and validation processes. Finally,
the numerical tool is tested on a more complex configuration: an enclosed stadium. Physical insights
are provided for a better understanding of the airflow patterns, illustrating and emphasising the presented
time scheme type of application.
Realised between EDF’s R&D Fluid Mechanics, Energy and Environment department (MFEE) and the
Center of Research and Teaching in Atmospheric Flow (CEREA) at the Ecole des Ponts ParisTech, this
thesis main achievements are:

The development and validation (on relatively simple test cases) of a novel numerical time scheme
for variable density dry airflow, able to handle pressure variations while preserving the total energy,
with no time step restriction related to sound waves, and compatible with first and second order
turbulent simulations.

Its extension to moist air with phase change using an homogeneous model.

The application of the numerical tool on a complex 3D configuration, the Pierre de Coubertin
stadium.

Thus, the outline of the manuscript is the following:
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Chapter 2 focuses on the physical aspect of the problem. The continuous governing equations are
presented and the main modelling stakes are identified. Then, models are presented followed by a
final choice of equations.

Chapter 3 presents the time scheme developed for indoor dry airflow. Both space and time
discretisations are detailed, followed by a numerical analysis and the scheme verification and
validation.

Chapter 4 describes the extension of the dry air scheme from the previous chapter to moist airflow.
After the presentation of the new set of equations and its discretisation, the scheme verification
and analysis is performed.

Finally, chapter 5 focuses on the study of the Pierre de Coubertin stadium. The problem parameters
are detailed and different cases and applications are discussed.

A. Literature study
· CFD applied to indoor air flows
· Existing models

B. Identification of the main physical
phenomena to be modelled

C. Modelling strategy
· Choice of equations
· Choice and design of verification
and validation test cases

D. Design of the indoor air flow scheme
· Space and time discretization
· Implementation

E. Verification
and

Validation

F. Numerical analysis

G. Applied study and conclusion

Figure 1.4: Summary of the thesis methodology.
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CHAPTER 2

Physical background and governing equations

Résumé
Dans ce chapitre, les équations continues de Navier–Stokes compressibles sont présentées, ainsi que
les équations thermiques. Ensuite, une identification des phénomènes physiques ayant un impact sur
l’écoulement intérieur est réalisée. Des modèles existant dans la littérature sont décrits, notamment
ceux liés à la turbulence et au filtrage des ondes acoustiques. A partir des enjeux de modélisation et
simplifications présentés, un choix sur le système d’équations à discrétiser est enfin réalisé.
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2.1 Continuous equations

Consider a domain Ω (usually bounded). Fluid motion, when studied with the continuum hypothesis can
be described by the conservative laws – mass, momentum and energy conservation – supplemented with
an equations of state (EOS). This set of equations is called the Navier–Stokes equations.
The application of the mass conservation on a local volume leads to the continuity equation:

∂ρ

∂t
+ div

(
q
)

= Γ, (2.1)

where ρ represents the fluid density and q = ρu its momentum, with u the fluid velocity. Γ is a possible
mass source term.
In terms of physical interpretation, the first term represents the rate of density variation inside the volume
and the second is the rate of mass flux passing in its surfaces. The Newton’s second law applied to the
fluid at the same volume leads to the momentum q conservation equation:

∂q

∂t
+ div (u⊗ q) = div (σ) + f + Γuin. (2.2)

σ is the stress tensor, f is a field of source terms (e.g., gravity, Coriolis, additional head losses), and uin

the value of the corresponding injected momentum. For sake of simplicity, Γ will be set to zero hereafter.
The stress tensor σ is decomposed, for the so called Newtonian fluids (where the stress at a point varies
linearly with the rate of the fluid deformation), into an isotropic component, called the pressure p, and
the deviatoric component, called the viscous stress tensor, τ :

σ = −pI + τ , (2.3)

where:

τ (u) = µ
(
∇u+ ∇uT

)
+
(
κq − 2

3µ
)

div (u)I. (2.4)

µ is the molecular viscosity and κq the volume viscosity, usually neglected for fluids and therefore
omitted hereafter. Similarly to the continuity equation, Equation (2.2) first term describes the variation
of momentum per unit of volume. The second is a convection term of the momentum fluxes over
surfaces.

Remark 2.1.1. Equations (3.1) and (2.2) are written in their conservative form: all terms are written
as space or time divergence. When dealing with singular solutions, those are mandatory. Otherwise,
the non conservative form is equivalent and reads for these equations:

∂ρ

∂t
+ ∇ρ · u = −ρdiv (u),

ρ

(
∂u

∂t
+ ∇u · u

)
= div (σ) + f.

(2.5)

When studying the transport of a variable ψ, two point of views can be adopted. The Eulerian one
looks at ∂

∂tψ(x, t), where the space variable x is fixed.
The Lagrangian point of view looks at the variable evolution following the fluid particles, so the
space variable x(t) is time dependent. The variable evolution can then be defined by its Lagrangian
derivative, also called particle derivative:

dψ(x(t), t)
dt = ∂ψ(x(t), t)

∂t
+ ∇ψ · u.

31



2.1.1 Energy equations

This subsection presents the different energy equations that can be solved for the fluid. The latter is
considered as an ideal gas. Its equation of state linking the density, pressure and energy reads:

p = ρRaT = (γ − 1)ρ e, (2.6)

with T the fluid temperature, e its internal energy (per unit of mass), Ra = 287.058 J kg−1 K−1 the
specific gas constant and γ = cp

cv
= 1.4 the dry air heat capacity ratio. Let’s now derive the different

energy equations. Applying the first law of thermodynamics to a control volume yields to the total energy
(per unit of mass) E equation:

∂ (ρE)
∂t

+ div (ρEu) = −div (q
E

) + ρf · u+ div
(
σ · u

)
+ ΓE , (2.7)

where E = e+ |u|2

2 is the sum of the internal e and kinetic energy.

Remark 2.1.2. It is considered that the total energy is only composed of the internal and kinetic
energy, since the present manuscript focuses mainly on studies with negligible variation of potential
energy.

Equation (2.7) right-hand-side first term is the heat transfer rate by conduction through the volume
surfaces, modelled by the Fourier et al. (1822) law:

q
E

= −λ∇T, (2.8)

where λ is the fluid thermal conductivity. The second term is the work done on the volume by the external
forces. The third is the work done by the surface forces and ΓE is a source term. One can see the analogy
to the first law of Thermodynamics, where the evolution of the volume energy is equal to the sum of heat
transfer and work done on it.
Equation (2.7) can be used for derive the transport equation of other thermal quantities. By applying
the scalar product of the momentum equation (Equation (2.2), without the mass source term) and the
velocity u, one obtains:

u · ∂(ρu)
∂t

+ u · div (u⊗ ρ u) = u · div (σ) + u · ρf. (2.9)

which can be rewritten as:

∂

(
ρ

|u|2

2

)
∂t

+ div

(
ρ

|u|2

2 u

)
= −u · ∇p+ u · div (τ) + u · ρf. (2.10)

Subtracting the kinetic energy transport equation (Equation (2.10)) to the total energy equation (Equation
(2.7)) yields to the internal energy equation:

∂ (ρe)
∂t

+ div (ρeu) = −pdiv (u) + τ : ∇u+ div (λ∇T ) + ΓE . (2.11)

Note that −pdiv (u) = div (pu) − u · ∇p and τ : ∇u = div (τ · u) − u · div (τ). The latter term is called
the dissipation function related to the deformation of the fluid due to the molecular viscosity.
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Remark 2.1.3. In the ideal gas scope, this equation can also be rewritten using the temperature. The
Maxwell’s relation states that:

de = cvdT +
(
T
∂p

∂T

∣∣∣∣
ρ

)
dv, so e = cvT,

where cv is the fluid heat capacity, considered constant here. The internal energy equation reads then:

cv

(
∂ (ρT )
∂t

+ div (Tuρ)
)

= −pdiv (u) + τ : ∇u+ div (λ∇T ) + ΓE , (2.12)

To go further, the fluid enthalpy can be defined as h = e + p

ρ
. Since

d
dt

(
p

ρ

)
= 1

ρ

dp
dt − p

ρ2
dρ
dt and

dρ
dt = −ρdiv (u), the enthalpy expression can be injected in the Equation (2.11) leading to:

∂ (ρh)
∂t

+ div (ρhu) = dp
dt + τ : ∇u+ div (λ∇T ) + ΓE . (2.13)

Remark 2.1.4. In the ideal gas scope, this equation can also be rewritten using the temperature. The
Maxwell’s relation states that:

dh = cpdT + 1
ρ

(1 − βT )dp, so h = cpT.

With β the fluid dilation coefficient, defined as:

β = ρ
∂ρ−1

∂T

∣∣∣∣
p

= 1
T
, for ideal gases.

The enthalpy equation reads then:

cp

(
∂ (ρT )
∂t

+ div (ρTu)
)

= dp
dt + τ : ∇u+ div (λ∇T ) + ΓE . (2.14)

The first and second thermodynamic laws state that de = δQ + δW , where Q and W are the heat

exchange and work (per unit of mass) done over the system, and that ds = δQ

T
(for a reversible process),

with s the fluid entropy. Combining both laws leads to the fundamental thermodynamic relation, used to
the derivation of other known thermodynamic laws such as the Maxwell relations:

de = Tds− pd
(1
ρ

)
, (2.15)

where chemical reactions were not considered. The latter equation is written as:

ρT
ds
dt = ρ

de
dt − p

ρ

dρ
dt . (2.16)

Notice that the right hand side second term is (using the continuity equation) equal to −pdiv (u).
Injecting Equation (2.16) into Equation (2.11) leads to the fluid entropy transport equation:

∂ (ρs)
∂t

+ div (ρsu) = 1
T
τ : ∇u+ 1

T
div (λ∇T ) + Γs.

= 1
T
τ : ∇u+ div

(
λ

∇T
T

)
− λ

∇2T

T 2 + Γs.

(2.17)
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Remark 2.1.5. For outdoor atmospheric applications, the potential temperature θp is defined
using the entropy. This thermal variable is conserved during isentropic displacements through the
atmosphere i.e.:

cp

θp

dθp

dt = ds
dt . (2.18)

The potential temperature can be interpreted as the temperature that a volume would have if it travels
isentropically from a height z to the surface. Its expression, by integrating Equation (2.18), is:

θp = T

(
p0
p

)Ra

cp . (2.19)

This variable is used in code_saturne’s atmospheric module by solving the following equation:

cp
∂(ρθp)
∂t

+ cpdiv (ρθpu) = div (λ∇θp) + ΓE

(
p

p0

)Ra
cp
.

To summarise, the different thermal equations that can be solved are:

(E) ∂ (ρE)
∂t

+ div (ρEu) = −div (q) + ρf · u+ div
(
σ · u

)
+ ΓE ,

(e) ∂(ρe)
∂t

+ div (ρeu) = −pdiv (u) + τ : ∇u+ div (λ∇T ) + ΓE ,

(h) ∂(ρh)
∂t

+ div (ρhu) = dp

dt
+ τ : ∇u+ div (λ∇T ) + ΓE .

(s) ∂(ρs)
∂t

+ div (ρsu) = 1
T
τ : ∇u+ div

(
λ

∇T
T

)
− λ

∇2T

T 2 + Γs.

(2.20)

Any additional scalar transport equation, such as chemical species, reads:

∂ (ρY )
∂t

+ div (Y ρu) = div (K∇Y ) + ΓY . (2.21)

where ΓY is a scalar source term, and K is the molecular diffusivity of the scalar.

2.1.2 Non dimensional compressible Navier–Stokes equations

Non dimensional variables related to the ones used in the Navier–Stokes equations are defined:
x := x̂L , ρ := ρ̂ρr , p := p̂RaρrTr , t := t+L/U , u := Uû , T := T̂ Tr and e := êcvTr. The
equations presented in the section above are rewritten using these new variables for an ideal gas. The
mass conservation Equation (3.1) reads:

ρrU

L

∂ρ̂

∂t+
+ ρrU

L
d̂iv (ρ̂û) = 0 ⇔ ∂ρ̂

∂t+
+ d̂iv

(
q̂
)

= 0. (2.22)

The momentum Equation (2.2) can be rewritten (considering the viscosity constant) after some
rearrangement as:

∂(ρ̂û)
∂t+

+ d̂iv (û⊗ ρ̂ û) = −RaTr

U2 ∇̂p̂+ µ

LUρr
d̂iv

(
(∇̂û+ ∇̂ûT ) − 2

3 d̂iv (û)I
)

+ L

U2 ρ̂g. (2.23)

Introducing the Mach number,

Ma := U

c
, (2.24)
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the speed of sound for ideal gases,

c =
√
γRaTr, (2.25)

the Reynolds number

Re := ULρ

µ
, (2.26)

and the Froude number

Fr := U√
gL

, (2.27)

leads to the final non dimensional form of the momentum equation:

∂(ρ̂û)
∂t+

+ d̂iv (û⊗ ρ̂ û) = − 1
γMa2 ∇̂p̂+ 1

Re
d̂iv

(
(∇̂û+ ∇̂ûT ) − 2

3 d̂iv (û)I
)

+ 1
Fr2 ρ̂ez. (2.28)

Note that the Reynolds number is the ratio of inertial forces to viscous forces within the fluid. The Froude
number is the ratio of the flow inertia to the external field (here the gravity).

Remark 2.1.6. Non dimensional equations are useful when studying a particular type of flow. For
instance, for high speed flows, the Mach number is also high, which leads to the vanishment of the
first right hand term of the Equation (2.28).

The internal energy equation, which is the thermal equation used in this work, is rewritten in its non
dimensional form. Details on the choice of this equation are given later in the manuscript. Disconsidering
additional source terms, the modified Equation (2.12) reads:

ρrcvTrU

L

(
∂ρ̂T̂

∂t+
+ d̂iv (T ûρ̂)

)
= −RaTrρr

L
p̂d̂iv (û) + µU

L
τ : ∇̂û+ Tr

L2 d̂iv (λ∇̂T̂ ). (2.29)

In the ideal gas framework, Ra = cp − cv. Equation (2.12) is then multiplied by
L

ρrcvTrU
:

∂ρ̂T̂

∂t+
+ d̂iv (T ûρ̂) = −Ra

cv
p̂d̂iv (û) + Uν

LcvTr

U

U
τ : ∇̂û+ λ

LcvρrU

µcp

µcp
d̂iv (∇̂T̂ ). (2.30)

After defining the Prandtl number as the ratio of the momentum diffusivity to the thermal diffusivity, the
latter equation is written in its final form:

∂ρ̂T̂

∂t+
+ d̂iv (T ûρ̂) = −(γ − 1)p̂d̂iv (û) + (γ − 1)γMa2

Re
τ : ∇̂û+ γ

Pr Re
d̂iv (∇̂T̂ ). (2.31)

Lastly, the scalar equation and ideal gas equation of state read:

∂ρ̂Y

∂t+
+ d̂iv (Y ρ̂û) = 1

Re Sc
d̂iv

(
∇̂Y

)
, p = ρrTrρRaT. (2.32)

Where Sc = ν

K
, the ratio of the kinematic viscosity ν = µ/ρ and the scalar molecular viscosity, is the

Schmidt number. A summary of other non dimensional number useful for the indoor environment, used
to characterised its different physics is presented in Table 2.1.
To conclude on this subsection, the non dimensional equations are often used as basis to simplify the
Navier–Stokes set of equations depending on the type of application.
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Name Ratio Formula Used in

Prandtl Pr Dynamic x heat diffusion
µCp

λ Diffusion

Nusselt Nu Convection x conduction hL
λ Heat transfers

Reynolds Re Inertia x viscous forces ρUL
µ Turbulence description

Rayleigh Ra
gβ∆TL3

αν Turbulence description

Grashoff Gr Buoyant x viscous forces
gβ(Tw−T∞)L3

ν2 Natural convection

Richardson Ri Natural x forced convection
gβ(Tw−T∞)L

U2 Convection

Table 2.1: Adimensional numbers often used in thermal-aeraulics. α = λ/(ρcp) is the thermal
diffusivity, L is a characteristic length, g is the gravitational acceleration constant, h is the convection
heat transfer coefficient, U is a characteristic velocity, Tw is a surface temperature and T∞ the bulk
temperature.

2.2 Phenomenological background

The indoor airflow can be characterised by different physical phenomena. In the following, some
identified important flow drivers are presented.

2.2.1 Fluid composition

One may define in the first place which kind of fluid is simulated. Indeed, taking into account every
single mixture component is usually more binding than useful. In case of a reactive flow, considering
some particular species is primordial. However, all chemical reaction is left to further investigation and
is beyond the scope of the present manuscript (since it usually leads to very small species concentration);
thus, the problem will be simplified. The major fluid component is the dry air, modelled as a mixture
of oxygen and nitrogen with a molar mass equal to Ma = 0.028 96 kg mol−1. Another important
component is the water, in both its liquid and gaseous phases, which needs to be considered. Its
presence affects the mixture properties such as the density and thermal coefficients. In some cases, a
phase change may occur and cannot be neglected. The latter phenomena complicates considerably the
numerical resolution method.
A high humidity level in a given set up can affect the occupants well being; it also facilitates the
microbes growth and expansion. Moreover, a low humidity may lead to a respiratory system infection
and eventually electrostatic shocks (Toftum et al. (1998); Fountain et al. (1999) , see Arens and
Baughman (1996) for a review of the humidity effects on health as addressed in indoor ventilation
and environmental standards). Some CFD studies related to the humidity in indoor systems can be
highlighted (Steeman et al., 2009; Teodosiu et al., 2003; You et al., 2017) .

2.2.2 Pressure variation

In indoor environments, a small pressure variation relative to the atmospheric one can induce flow. It is
thus important to consider such variations. In addition, pressure can be a quantity of interest to reproduce
correct thermal exchanges in presence of natural convection.
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To illustrate this phenomena, the pressure variation created by the opening of two windows which are not
in the same building facade is likely to create a draught. Similarly, if an indoor zone is exposed to any
source of power, its temperature will rise creating thermal and pressure gradients and thus mass transfer.

2.2.3 Total energy conservation

Besides the importance of preserving the mass and momentum of the system, it is important as well
to preserve its total energy. This is particularly relevant to correctly reproduce singular solutions
(Archambeau et al., 2009; Amino et al., 2022) . The reader may ask himself, in the given indoor
context, if focusing on the correct shock reproduction is of importance. Indeed, this would be doubtlessly
true in the aerospace’s context for instance, where the flow is at high velocity, with the possible
propagation of pressure shock waves. Nevertheless, one may illustrate the importance of being consistent
(see the definition in Chapter 3) related to singular solutions when a fluid, at a given state (density,
pressure, velocity), enters in contact through an interface with another state (the opening of a door or
windows for example). This is a singular problem in a smaller scale, but not negligible since a small
pressure difference is able to impact the flow (see Figure 2.1 for an illustration).

W 2

W 1

W ext

Figure 2.1: Example of configuration with three distinct initial states that may enter in contact at a
given time. Here, two pieces indoor system enter in contact between themselves and with the outdoor
conditions through the opening of a window.

Another example of the importance of taking account of the pressure variation and preserving the total
energy is to properly perform simulations of laboratories or hospital rooms under safety conditions. CFD
is notably cited as an useful tool for designing such configurations ventilation systems (norm NF-EN-
ISO-14644-16 ). Indeed, for rooms where no contamination is wanted, a differential of pressure of
15 ± 5 Pa is mandatory in France (norm NF-S90-351 ). In this context, in case of contact between two
rooms, a pressure (and possibly other variables) discontinuity needs to be considered.

2.2.4 Buoyancy effects

Buoyancy effects are a crucial physical stake to correctly reproduce the thermal impacts on the flow.
Directly linked to the density, this phenomena is a consequence of artificial and natural sources of power
such as a convector, the presence of humans in the given room and the sun radiation. Such sources create
a thermal plume which drives the local flow. Buoyant effects are also used to design natural ventilated
systems (see Linden (1999) for more details about natural ventilation). Many studies focused on this
phenomena using CFD (Alsaad and Voelker; Zukowska et al., 2007; Choi and Kim, 2012; Teodosiu et al.,
2014) , notably with some guidance for buoyancy driven flows (Cook and Lomas, 1997) .
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In case of human presence in the system, a correct treatment of possible thermal sources has to be
made. Indeed, thermal plumes can be created with presences of humans (Murakami et al., 2000b;
Liu et al., 2015) ; this is also directly linked to the buoyancy forces effects on the flow (see
Figure 2.3, left). Occupants can be as well source of pollution in some enclosed spaces. For further
information, experimental (Zukowska et al., 2007, 2012) and numerical studies (Sørensen and Voigt,
2003; Srebric et al., 2008; Gupta et al., 2011) are available in the literature. Natural convection
flow can also be turbulent, which makes it even harder to simulate (Salat et al., 2004) . Experimental
data concerning thermal plumes, useful for validation purposes, are also available for different source
geometries (Kofoed, 1991; Bouzinaoui et al., 2007; Blaise, 2008) .

2.2.5 Turbulence

In both indoor and outdoor environments, the majority of flows are turbulent; this phenomena is chaotic
by itself. This term is used to characterise random fluctuations appearing in a given flow when its speed
is important or when its scale is large. This phenomena is present in atmospheric, rivers, ocean and
indoor flows. In the industrial context, flows around any solid shape such as cars, planes and trains are
affected by turbulence as well (see Figure 2.2 for some examples of turbulent flows).
To describe its origin, one may focus on the non dimensional momentum equation (Equation (2.28)). The
momentum may be transported by both diffusive and convective effects. Their interaction is useful to
describe the flow turbulence. Indeed, in the diffusive term of the non dimensional equation, the Reynolds
number appears. This number is defined as the ratio between the inertial and viscous flow effects. It can
be interpreted as the ratio between characteristic times of both physical phenomena aforementioned.
If the inertia effects are more important than the viscous ones, then the Reynolds number is greater than
unity and the flow is turbulent. Otherwise, the flow is laminar and the diffusive effects prevail.
An important concept related to turbulent flows which needs to be accounted for in simulations is the
energy cascade, mentioned first by Lewis Fry Richardson (1922) . The latter stated that a given turbulent
flow is composed of several structures of different scales. The Reynolds number for those with a larger
length scale is important. Thus, the viscous effects, less important, are not able to dissipate the structure
kinetic energy into heat. These eddies are also less stable, and tend to vanish with time to smaller
structures. Similarly, these structures will be divided into even smaller eddies at their turn until their
length scale is small enough so the viscous effects related to the inertial ones are not small anymore:
the energy is finally dissipated into heat. Kolmogorov (1941b,a) studied at his turn the turbulent
cascade and proposed a definition of this dissipation scale where Re = 1, named after his name. The
Kolmogorov scale, also known as the dissipation scale has the particularity of dissipating the structures
kinetic energy into heat. However, turbulence is a complex problem, and is not completely described by
the aforementioned sketch. It remains an open fundamental research area, in particular when looking at
advanced statistical properties such as intermittency (Yasuda and Vassilicos, 2018) .
In the indoor environment framework, turbulence models and approaches were widely tested on
experimental configurations or in conception and optimisation studies. Zhai et al. (2007) and Chen
(1995) compared several turbulence models, showing that different average models (later presented in
Subsection 2.3.2) have correct accuracy on the mean indoor flow quantities but are not able to reproduce
turbulent ones. Other comparisons were made in the last decades (Posner et al., 2003; Kuznik et al.,
2007; Blocken, 2018) . Recently, more and more research on indoor airflow is made by combining
both averaged and unsteady approaches (Jiang et al., 2002; Chang et al., 2006; Sajjadi et al., 2017) .
Note that more details on the different turbulence modelling are provided in the next section.

2.2.6 Radiation

The most impacting radiations in the indoor environment are the solar and infrared (emissions of low
temperature bodies) ones. They can impact the thermal behaviour of a given system (Sadrizadeh and
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Figure 2.2: Examples of turbulent flows. (Top left) Photo. Turbulence in an atmospheric flow. (Top right)
Simulations. Instantaneous stream-wise velocity for a 5x5 square rod bundle configuration (Kraus et al.,
2021). (Bottom left) Simulation. Velocity field of an axisymmetric jet. (Bottom right) Photo. Offshore
wind farm picture, credit: Christian Steiness/Vattenfall.

Holmberg, 2015) . A good example is the greenhouse effects of a room under the sun radiation (sketched
in Figure 2.3, right), where the room thermal conditions would vary in a non negligent time. However,
a good setting of the thermal boundary conditions, such as treating the radiation effects as source terms
and taking into account possible emissions may be sufficient in some cases to correctly reproduce the
flow. Sometimes, a radiation model shall be used as well, since a little difference in the temperature
distribution over the environment can lead to an incorrect airflow pattern and thus impact any type of
study.
This topic is left to further investigations given its complexity.

2.2.7 Jets

Jets are common in indoor environments, usually used for ventilation. A velocity shear is created between
the entering and ambient fluids and may lead to an important amount of turbulence.
A jet can be classified as plane, round, axial or three-dimensional. Depending on the thermal environment
conditions, it can also be classified as isothermal or anisothermal, where its behaviour will depend on
buoyant forces. Each jet can be characterised by its Reynolds number based on the initial jet speed, the
inlet length d, the fluid viscosity and density. Above Re = 2.103, the jet is considered turbulent (Lee
et al., 2003) and a good account of this phenomena is necessary.
Different jet zones exist (Pope, 2000) . The first is the potential core, where the jet maximum velocity
Um is equal to the injection velocity Uin, followed by the characteristic zone, where Um

Uin
= 1

yn , y being
the axial coordinate. This zone is negligible for axisymmetric jets (Kuznik, 2005) . The axisymmetric
zone or developing zone (Kaushik et al., 2015) describes the majority of the jet heat and mass transfer.
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T

Figure 2.3: (Left) Time average flow field from Liu et al. (2015) numerical results, (a) velocity (b)
temperature. (Right) Greenhouse effect illustration, which can affect the indoor environment thermal
state. Solar waves are in orange, infrared in red.

In this zone, Um
Uin

= 1
y . Finally, the terminal zone, also called fully-developed zone, contains the less

important jet velocities with a consequent jet diffusion.
Kelvin-Helmholtz (KH) instabilities, which comes from shear stresses, are commonly present in jets.
They are created by the velocity difference in the interface between two different fluids. For instance,
ocean waves or vortices created behind trains or planes are typically result from KH instabilities (Figure
2.4). This type of instability contributes to vortices in the jet and other fluid interfaces, whose size gets

Figure 2.4: KH instabilities. (Left) Sky instabilities. Credits: Alec Kownacki. (Right) KH instabilities
represented by Van Gogh.

more important while distancing the jet inlet. Thus, in presence of jets, a good reproduction of these
instabilities is important.

2.2.8 Summary

The main physical processes to be accounted for have been presented in this section. From the buoyant
forces to the pressure variation, the present work shall focus as well on the possible variable fluid
properties and if possible, on all the other processes.
Given the number of physical phenomena of interest and their complexity, not all are considered in this
thesis. More particularly, the radiation effects and the human presence impact on the flow are left for
further scientific investigations (see Figure 2.5 for a summary of the aimed stakes).
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Figure 2.5: Aforementioned indoor physics to be accounted for an indoor airflow simulation. In orange,
the physical processes to be focused while designing the numerical scheme.

2.3 Modelling the indoor physics

In a CFD simulation, models are used to simplify or close the complex system of equations to be solved.
Moreover, the numerical results are dependent on the way one discretises the time and space and also on
how the mathematical problem is solved. In this section are presented the different modelling strategies
related to some physical phenomena aforementioned. Note that the numerical discretisation details are
left for the next chapter.

2.3.1 Acoustic waves and buoyancy

To better understand the motivations of the following simplifications, one needs to define the Courant
Friedrichs and Lewy number (CFL), a classical stability conditions related to numerical schemes in fluid
mechanics. It is defined as the ratio of the distance travelled by the flow at speed u during a given time
step by the volume spatial step i.e.:

CFL = u ∆t/∆x.

In order to capture the flow information in this case, the simulation time step must be inferior to the ratio
of the spatial step and the velocity u. If one wants to take the macro speed u and also the pressure waves
speed c on a simulation, the condition on the time step reads:

∆t < ∆x
u+ c

For flows with low speed, taking into account the sound pressure waves can be thus computationally
more expensive than it could be without accounting for the celerity (for important Mach number flows,
the simulation would automatically considerate the acoustic effects). In cases where the acoustic have
little impact on the physical simulated phenomena, it is efficient to get rid of it in the Navier–Stokes
equations. To do so, several methods which apply an asymptotic expansion on the governing equations
variables exist and are detailed hereafter. Generally, the problem stated is how to accurately reproduce
the flow while saving as much as possible computational time of simulation.
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The ”simplest” and very popular approximation of the Navier–Stokes equation is the incompressible flow
hypothesis, often used when the flow Mach number u/c << 1. In that case, the density along the line of

the flow is considered constant, that is
dρ
dt = 0. The mass equation becomes then:

div (u) = 0.

The density and pressure waves are disconsidered and the incompressible momentum equation reads:

∂(ρu)
∂t

+ div (u⊗ ρ u) = −∇(p) + div (µ∇u) + ρg.

Similarly, the velocity non divergence affects the thermal equations as well, but this will not be further
discussed here since this thesis aims to take into account both pressure and density variations.
Another model uses the so called Boussinesq (1903) approximation, which is based on a linearisation of
the initial set of equations with respect to the thermodynamic variables. It is widely used, assuming that
density variations have no effect on the flow, except for the buoyancy forces (i.e. on the momentum
equation). In more practical terms, this approximation is typically used to model liquids around a
constant temperature or natural ventilation. A reference state is introduced corresponding to a steady
horizontal motion under adiabatic and non viscous conditions, satisfying a thermodynamic hydrostatic
and adiabatic equilibrium (Chassaing et al., 2002) , leading to simplified Navier–Stokes equations. For
instance, the mass equation reads:

div (u) = 0,

which is identical to the incompressible model mass equation. As previously mentioned, the Boussinesq
approximation states that the density variation is only present in the momentum equation buoyant term
and is considered constant in the rest of the equation, resulting in:

ρ0

(
∂u

∂t
+ div (u⊗ u)

)
= −∇(p) + div (µ∇u) + ρg,

where:

ρ = ρ0 − βρ0(T − T0).

In this approximation, the density is considered to vary linearly with the temperature: pressure effects
are not accounted, once again, restraining this type of model application field.
The anelastic approximation, widely used in the simulation of atmospheric flows, was first proposed by
Ogura and Phillips (1962) to filter the acoustic waves by decomposing the Navier–Stokes equations
variables. For instance, the density is written as

ρ(x, y, z, t) = ρ(0)(z) + γMa2ρ(1)(x, y, z, t) + ....

Other thermodynamic fields are decomposed similarly, and the velocity reads

u(x, y, z, t) = u(0)(x, y, z, t) + γMa2u(1)(x, y, z, t) + ....

Then, the non dimensional Navier–Stokes equations (see 2.1.2) are rewritten using the anelastic
decomposition at the order (γMa2)0 for the velocity and density (except for the buoyant term in the
momentum equation) and at the first order for the temperature and pressure. This takes into account a
possible pressure and density variation; the momentum equation reads in this case:(

∂

∂t
(ρ(0)u(0)) + div (u(0) ⊗ ρ(0)u(0))

)
= −∇p(1) + 1

Re
div

(
τ (0)

)
+ γMa2

Fr
ρ(1)g.
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The density is no more considered constant, but only depends on the vertical coordinate z, based on an
adiabatic reference state. To this approximation the isobaric one is added: the variables are once again
decomposed but differently. The pressure first term p(0) is time dependent. The other variables first term
are both spatial and time dependent i.e. ψ(0) = ψ(0)(x, y, z, t).
To better understand the differences between the aforementioned approximations, Schneider (2015)
proposed to study which Kovasznay (1953) modes each model is able to reproduce.

Remark 2.3.1. Kovasnay modes are used to describe random fluctuations in a supersonic flow, which
can be decomposed into three distinct modes: vorticity, sound and entropy. The modes follow separate
linear differential equations if the fluctuations are weak. Otherwise, they have moderate interaction.
If the disturbances are not negligible, the effect of heat transfer and viscosity can be neglected
regarding the short time history of disturbances. The velocity, temperature and pressure fluctuations
are divided into these modes.
The velocity is split into a non divergent and an irrotational field. The first contributes to the vorticity
mode and the last one to the acoustic. Pressure variations contribute to the acoustic modes and finally,
the temperature variation is divided into an isentropic and a anisentropic fluctuations. The first belongs
to the acoustic modes and the second to the entropy ones.

What can be already seen from the previous equations, is that the pressure variation is not completely
accounted in all approximations. This is confirmed by Schneider (2015) where none of the previous
approximations take into account the acoustic modes (see Table 2.2).

Model Continuity Vorticity modes Entropy modes Acoustic modes

Incompressible div (u) = 0 no no no

Boussinesq div (u) = 0 yes no no

Isobaric
∂ρ(0)

∂t
+ div (ρ(0)u) = 0 yes partial no

Anelastic div (ρ(0)u) = 0 yes yes no

Compressible
∂ρ

∂t
+ div (ρu) = 0 yes yes yes

Table 2.2: Comparison between the different approximations related to the Kovasnay modes (from
Schneider (2015)).

2.3.2 Turbulence modelling

When simulating high Reynolds number flows, the latter are no longer laminar and a complex
phenomena, turbulence, introduced previously as an important physical stake, needs to be accounted
for. When it comes to turbulent flows, one may distinguish several approaches.
Usually the more details one wants to get in the flow, the more computationally expensive the simulation
is. Indeed, a major problem is that both space and time turbulent scales can be very small, so the number
of spatial grid points and the time step needed to solve them are respectively increased and reduced.
Among the wide range of length and time scales related to turbulent flows, some are important to
highlight. These are useful when setting up a turbulent simulation. One may choose which spatial
scale the simulation should take into account for instance. Here are presented the four main scales in a
turbulent flow (note that other scales related to heat transfer and combustion exist (Echekki, 2009)) .
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First, the largest scale which is dependent on the problem geometry. Then, the integral scale (Ls) often
taken as 1/5 of the large scale, followed by the Taylor microscale (λs), corresponding to the inertial
subrange and finally, the Kolmogorov scale (ηs), the smallest one. These scales can be compared and
characterised by their wavenumbers κ (Figure 2.6). Note that when the Reynolds number decreases, the
inertial subrange decreases as well.

ln (κ)

ln
E
(κ
)

Integral scale Inertial scale

Kolmogorov scale

Energy
dissipationEddies containing energy

Figure 2.6: Turbulence energy wavenumber spectrum. The viscous subrange is also called dissipation
scale. The maximum y-axis point is the integral scale. Between lies the inertial scale.

These scales can be written according to the flow variables (Sagaut et al., 2013) and are presented in
Table 2.3.

Scale Integral Taylor Kolmogorov

Space Ls = k3/2

ε λs = (10kν
ε )0.5 ηs = (ν3

ε )1/4

Time τL = k
ε τλ =

√
15ν

ε τη =
√

ν
ε

Turbulent Reynolds number ReL = k2

νε Reλ =
√

20
3

k√
νε

Reη = 1

Table 2.3: Different turbulence scales definition Sagaut et al. (2013).

Note that the turbulent time scales can be very useful in order to correctly perform time averages during
a simulation.
The most accurate numerical technique, called direct numerical simulation (DNS) is to solve the
complete set of equations with no special treatment. Even with the computational growing power context,
the DNS is not often used in industrial applications due to its computational cost. One effective way to
reduce the calculation time while conserving a numerical accuracy is to either proceed with a statistical
average on the governing equations or to apply a spatial filter in order to control which turbulent scales
are modelled and which are solved (Figure 2.7).
The first method is the Reynolds averaged Navier–Stokes equations (RANS) which decomposes the fluid
variables into a mean and a fluctuating part using the Reynolds average operator (.). Each variable ψ
is written as ψ = ψ̄ + ψ′. For compressible and low compressible flow, the density weighted Favre
average operator is used instead (i.e. ψ̃ = ρψ/ρ, ψ = ψ̃ + ψ′′). The second approach is the large
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eddy simulation (LES), where a spatial filter is applied on the Navier–Stokes equations; one part of the
turbulence spectrum is solved whereas the other is modelled. ψ being a variable, the filtering operation ψ
is defined as ψ =

∫∞
−∞G(x− ξ)ψ(ξ)dξ, where G is the LES filter function (considered homogeneous).

Similar to the RANS method, the Favre filter is defined as ψ̃ = ρψ/ρ. For both turbulent approaches,
the averaged Navier–Stokes equations (using the internal energy equation) read:

(a) ∂ρ

∂t
+ div

(
q
)

= 0,

(b)
∂q

∂t
+ div

(
ũ⊗ q

)
= −∇p̄+ div

(
µ

[
∇ũ+ ∇ũT − 2

3div ũ I
])

− div
(
τ

T

)
+ f,

(c) ∂ (ρ ẽ)
∂t

+ div
(
ẽ⊗ q

)
= −p̄div (ũ) + div

(
λ∇T̃

)
+ div

(
λ∇T ′′

)
︸ ︷︷ ︸

(1∗)

− cvdiv
(
ρu′′T ′′

)
+ τ̃ : ∇ũ+ τ : ∇u′′︸ ︷︷ ︸

(2∗)

+ τ ′′ : ∇ũ︸ ︷︷ ︸
(3∗)

,

(d)
∂
(
ρ Ỹ

)
∂t

+ div
(
Ỹ ⊗ q

)
= div

(
K∇Ỹ

)
+ div

(
K∇Y ′′

)
− div

(
ρu′′Y ′′

)
,

(e) p̄= ρRaT̃ ,

(2.33)

where q = ρũ and f is the source term. The term (1*) can be neglected considering ∆T̃ >> ∆T ′′, which
is usually the case for non reactive flows. The same hypothesis is considered for the scalar transport
equation. Terms (2*) and (3*) can also be neglected by assuming a flow below the hypersonic regime
and that |τ̃ | >> |τ ′′|. The tensor τ

T
is defined according to the operator applied to the balance equations.

For the RANS approach, τ
T

= ρR, with R = ρu′′
i u

′′
j /ρ being the Reynolds stress tensor. If the filter

operator is used, τ
T

is the subgrid stress tensor defined as τ sgs := ρ(ũiuj − ũiũj).
In both RANS and LES simulations, a closure for τ

T
is required. The averaged internal energy and

scalar equations also present a new term corresponding to the turbulent flux u′′T ′′ and u′′Y ′′ which also
require a closure. The simple gradient diffusion hypothesis (SGDH) is used in the present work, which
is an eddy viscous model (EVM). For instance for the internal energy equation:

u′′T ′′ = − νT

PrT
∇T, (2.34)

where PrT is the turbulent Prandtl number, set as 0.9. Such model adds no additional transport equation
to the simulation. Other more complex model exist for the turbulent thermal flux but are beyond the
scope of this manuscript.
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Figure 2.7: Comparison of the different turbulent approaches related to the modelling of the turbulent
energy spectrum.
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RANS closures

Numerous RANS closures exist, from algebraic models to the resolution of a single or several additional
transport equations related to the turbulent quantities.
The first class of models are the eddy viscosity models. The second one solves the Reynolds stress tensor
transport equations, called the differential Reynolds stress model (DRSM).
The EVM relies on the Boussinesq (1903) closure which states that the Reynolds stresses tensor is
based on the viscous stress tensor:

−ρR = µT

(
∇ũ+ ∇ũT − 2

3div ũ I
)

− 2
3ρkI. (2.35)

The whole point here is to model the turbulent viscosity µT . The simplest models are the algebraic ones
(Smith and Cebeci, 1967; Baldwin and Lomax, 1978) . For instance, Prandtl (1925) proposes the
following expression for the turbulent viscosity :

µT = l2m

∣∣∣∣∂ũ∂y
∣∣∣∣, (2.36)

where l2m is the mixing length, which depends on the nature of the studied flow and is generally space
dependent.
Then, come the one equation models, where a single turbulent transport equation is added to the system,
usually being the turbulent kinetic energy k. These methods, which are not used in the presented
simulations, are widely referenced (Baldwin and Barth, 1991; Spalart and Allmaras, 1992) and are
beyond the scope of this thesis.
Two equations models are the most popular turbulent method. The turbulent viscosity is defined
following two quantities. The popular k − ε model, first introduced by Launder and Sharma (1974b)
, uses turbulent kinetic energy k and its dissipation rate ε:

µT = Cµρ
k2

ε
, with Cµ = 0.09.

The standard closure is supplemented by two transport equations for both quantities:

∂(ρk)
∂t

+ div (kũρ) = div
([
µ+ µT

σk

]
∇k
)

+ ρ(P + G) + STk − ρε, (2.37)

∂(ρε)
∂t

+ div (ũρε) = div
([
µ+ µT

σε

]
∇ε
)

+ ρCε1
ε

k
[P + (1 − Cε3)G] + STε − ρCε2

ε2

k
, (2.38)

P = −R : ∇ũ, G = −µT

σT
∇ρ · g.

P is the shear stress production term, G is the gravity production term and ST are source terms. σk = 1,
σε = 1.3, Cε1 = 1.44, Cε2 = 1.92 and Cε3 = 1.0 are constants based on Launder and Sharma (1974a)
. The standard model is essentially used for high Reynolds numbers. Other versions of the k− ε model

exist as well such as the realisable k − ε model or the RNG k − ε model (Yakhot et al., 1992) . In
this work, the k − ε with a linearised turbulent production is used (Guimet and Laurence, 2002) . A
second type of two equations model is the k − ω, which is also commonly used, where ω is the specific
dissipation (Menter, 1994) . The latter is not detailed here since it is not used in the present simulations.

For the Differential Reynolds Stress Models (DRSM), the Reynolds stress tensor R is calculated by
solving its transport equations rather than modelling it:

∂(ρR)
∂t

+ div (R⊗ ρũ) = ρPR + d+ Φ∗ − ε
R

+G. (2.39)

46

https://gallica.bnf.fr/ark:/12148/bpt6k61635r.image
https://apps.dtic.mil/sti/pdfs/AD0656430.pdf
https://arc.aiaa.org/doi/10.2514/6.1978-257
https://ntrs.nasa.gov/citations/19930091180
https://arc.aiaa.org/doi/10.2514/6.1991-610
https://arc.aiaa.org/doi/10.2514/6.1992-439
https://www.sciencedirect.com/science/article/abs/pii/0094454874901507
https://doi.org/10.1016/0094-4548(74)90150-7
https://aip.scitation.org/doi/10.1063/1.858424
https://doi.org/10.1016/B978-008044114-6/50014-4
https://arc.aiaa.org/doi/abs/10.2514/3.12149?journalCode=aiaaj


P
R

is the Reynolds stresses production term:

P
R

= R · ∇(ũ) +R · ∇(ũ)T . (2.40)

G is the gravity production term:

G = −β
(

(g ⊗ u′′T ′′) + (u′′T ′′ ⊗ g)
)
. (2.41)

Φ∗ is the velocity-pressure gradient correlation:

Φ∗ = p′′(∇u′′ + ∇u′′T ), (2.42)

which is divided in three tensors. The first is linked to the instantaneous velocities, the second is
calculated with the velocity gradient and the third is linked to the buoyant effects:

Φ∗ = Φ(1) + Φ(2) + Φ(3).

In this manuscript simulations, each tensor is modelled using the SSG (Speziale et al., 1991) closure
(other models exist) . Φ(1) reads:

Φ(1) = −C1
ε

k
a+ C ′

1
ε

k2 (a · a− 1
3 tr(a2)I), (2.43)

where a is the dimensionless anisotropy tensor:

a = u′ ⊗ u′

k
− 2

3I,

and Φ(2) is given by:

Φ(2) = −C ′
2

1
2k tr(P

R
)a+ (C3 − C ′

3

√
tr(a2))kS + C4(a · S + S · a− 2

3 tr(a · S)I) (2.44)

+C5k(a · ω − ω · a),

where ω = 1
2(∇(u) − ∇(u)T ) is the rotation tensor. The last correlation tensor reads:

Φ(3) = −C6(G− 1
3 tr(G)I). (2.45)

The constants are represented in Table 2.4.

C1 C ′
1 C ′

2 C3 C ′
3 C4 C5 C6

1.7 -1.05 0.9 0.8 0.65 0.625 0.2 0.55

Table 2.4: SSG Constants (Speziale et al., 1991).

d is the diffusive term which is divided in a molecular, pressure and turbulent diffusion:

d = dµ + dp + dt = div
(
µ∇(R) − p′

(
u′′ ⊗ I + I ⊗ u′′

)
− ρu′′ ⊗ u′′ ⊗ u′′

)
. (2.46)

While the molecular diffusion does not require a closure, the turbulent and pressure diffusive diffusive
terms

dT = −div
(
p′
(
u′′ ⊗ I + I ⊗ u′′

)
+ ρu′′ ⊗ u′′ ⊗ u′′

)
,
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can be closed using either the Shir (1973)

dp + dT = Csdiv

(
ρk2

ε
∇(R)

)
. (2.47)

or the Daly and Harlow (1970)

dp + dT = Csdiv
(
ρ
k

ε
R · ∇R

)
. (2.48)

models, where Cs = 0.22. The dissipation tensor ε
R

is assumed to be isotropic:

ε
R

= 2
3εI. (2.49)

An additional transport equation is solved for ε.
The DRSM approach has a larger scope of validity than the first order approaches but needs consequently
more computational effort due to the many new equations to be solved. For further theoretical
information the reader is invited to consult Dehoux (2012) .

LES closure

As for the RANS equations, many models exist for the LES closure. The dynamic Smagorinsky model,
which relies on an EVM hypothesis, is used in the current work. The subgrid stress tensor is written as:

τ sgs = µsgs

(
∇ũ+ ∇ũT − 2

3div ũ I
)

− 2
3 tr(τ sgs)I.

The Smagorinsky (1963) formula for the subgrid scale is used

µsgs = ρCs∆2
√

2S̃ : S̃,

where ∆ is the local grid spacing and S̃ = 1
2(∇ũ + ∇ũT ). The dynamic model uses a test filter, ∆̂,

usually taken as ∆̂ = 2∆ which generates a second set of filtered fields. Using the Germano (1992)
identity, the resolved stress tensor:

L = T − τ sgs.

Where T = ũ⊗ ũ − ũ ⊗ ũ is the test filter subgrid stress tensor. Using the Smagorinsky model, the
resolved stress tensor expression becomes:

L = (C∆
s )2M + 1

3 tr(L)I,

where M = 2∆2|S̃| S̃ − 2∆̂2|S̃| S̃. In order to evaluate Cδ
s , Lilly (1992) proposed a minimisation

resolution by a least square method which gives:

(C∆
s )2 = max

(
M : L
M : M , 0

)
.

For the sake of simplicity, the governing equations are written without the average and filter operators
from now on.
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2.4 Summary

Section 2.2 presented the main physics of indoor air flow. The objective of this chapter is to select the
most important ones to take into account in simulations and to chose a system of equations accordingly.
It is recalled (Section 1.1) that the main guidance and objectives related to buildings are the stakes related
to occupants i.e. the thermal comfort, indoor air quality, ventilation systems, but also related to industrial
safety.
However, it is difficult to separate each stake independently with a particular physic introduced
previously. Indeed, for instance, to perform a study related to a system thermal comfort, one needs
to consider buoyant effects, the present humidity, pressure variation, turbulence in the ventilation jets...
Thus, the main goal will be to develop a numerical scheme able to account for the most number of the
presented phenomena.

Remark 2.4.1. Note that the radiation and human presence effects on the flow, which may not be
neglected in some cases, are left to further investigations.

From Section 2.3, the choice of using the compressible Navier–Stokes equations is made. Indeed, the
different approximations presented are less likely to properly reproduce temporal and spatial pressure
variations.
Regarding turbulence, no particular approach is brought to the front. Yet, let’s keep in mind that RANS
simulations may be interesting for steady problems, while LES should be performed when trying to have
a more detailed flow characterisation, notably for transient simulations.
In the next chapters, the numerical strategy to discretise the chosen equations are detailed to take into
account the latter physical stakes.
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CHAPTER 3

A time-staggered second order conservative time scheme for variable
density flow

Résumé
Ce chapitre détaille le schéma en temps numérique développé pour des simulations aérauliques d’air
sec. Ce dernier a été développé dans le but de répondre aux enjeux physiques de modélisation
présentés auparavant. Après la présentation du contexte et des objectifs numériques du schéma, la
stratégie de discrétisation en espace et en temps est introduite, suivie de la présentation de certaines
propriétés numériques, dont des nouvelles conditions de stabilité pour préserver la positivité des
variables thermodynamiques. Enfin, les propriétés et la précision du schéma en temps sont testées
sur des cas tests de vérification et de validation, allant du régime incompressible au compressible.
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This chapter presents in details the development of a numerical scheme for indoor dry airflow
simulations. After a description of the numerical stakes and the scheme novelties related to the literature,
the set of the continuous equations and turbulence models used are introduced. The discrete spatial
and temporal schemes are then described and a numerical analysis to ensure the thermodynamic fields
positivity is performed. Finally, the proposed scheme properties are verified on analytical test cases
and their numerical results are compared with the existing code_saturne incompressible second-order
variable density time scheme for reactive flow, by Ma et al. (2019) (denoted incompressible pressure
correction, IPC, scheme and detailed in Appendix 3.C) and compressible scheme (Colas et al., 2019)
, which uses an isentropic pressure step (denoted isentropic compressible, IC scheme and detailed in

Appendix 3.D). This is first done with a pressure-cooker-like system, showing that the scheme takes into
account the correct pressure variation while preserving the systems global mass, and then by transporting
a scalar through an one-dimensional tube in order to verify both mass and momentum conservation and
the time scheme convergence order. Its consistency related to irregular solutions is also tested with a
shock tube configuration. Finally, the scheme is validated on a natural convection, gravity flow, jet and a
ventilation case, emphasising its ability and robustness to provide accurate results in an industrial context.

3.1 Numerical motivations and strategy

The numerical strategy adopted goes with the identification of indoor physics to be taken into account
during the simulation.

3.1.1 Numerical goals

From a numerical point of view, different stakes related to the schemes and models (Ferziger et al., 2002)
exist and are summarised in the next paragraph.

The first one is the consistency of a numerical scheme, related to the spatial discretisation error, also
called truncation error. For a numerical method to be consistent, the truncation error must become zero
when the mesh spacing and the time step tend to zero. In case of consistency, this error is usually
proportional to a power of the grid spacing or time step: this is why one may cite "high order" spatial
and time schemes; in such cases, the given scheme is called of nth order approximation. Note that even if
the approximation is consistent, it does not necessarily insure that the solution of the discretised system
of equations will be the exact solution of the problem in the limit of small step size.
The second important numerical property is the scheme stability, which insures that the possible
numerical errors which appear during the resolution process are not amplified. One known method
for studying a scheme stability is the Von Neumann’s analysis (Isaacson and Keller, 2012) .
Moreover, the set of equations to be simulated are conservation equations: the numerical scheme should
thus conserve these quantities. For instance, without considering any diffusive or source terms and
by assuming a steady state, the flow entering and leaving a given system should be the same. If the
conservation of mass, momentum and total energy are insured, the error can only improperly distribute
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these quantities over the solution domain. In opposition, non conservative schemes can produce artificial
sources, changing the local and global balances. Still, these types of schemes can be consistent and
stable in the limit of fine grids. These errors due to non conservation are in most cases noticeable for
coarse grids; the problem is the difficulty to accurately know on which grid refinement they become
small enough. Therefore, conservative schemes are preferred.
Finally, a numerical scheme should have solutions within proper bounds. A negative temperature (in
Kelvin) or total pressure magnitude has no physical sense in the indoor environment framework. Another
example is that any volume, mass or concentration fraction must lie between 0 and 1. These constraints
should be inherited by the numerical approximation. Boundedness may be difficult to guarantee and
leads sometimes to numerical constraints. The consistency, stability, conservation and boundedness are
thus very important to keep in mind while designing any numerical scheme or model.

3.1.2 Literature and numerical strategy

Simulating variable density flow at all Mach numbers is an active field of research and can be useful
in many additional industrial domains such as combustion (Huang et al., 2003) , power generation
(Douce et al., 2003; Archambeau et al., 2009; Kraus et al., 2021) among others. When the flow Mach
number tends to zero, the compressible Navier–Stokes equations converge toward the incompressible
ones (Klainerman and Majda, 1981) . This is not easily achieved in numerical simulations as an
incompressible formulation of the equations does not reproduce correctly compressible effects and
compressible solvers can perform poorly when the Mach number decreases (Guillard and Viozat, 1999)
.

In the latter context, the low-Mach set of the Navier–Stokes equations is often used to describe flow
motion, where the acoustic waves propagate at an infinite speed and are not considered in the simulation.
Nevertheless, if one wants to consider its effects on the flow, the compressible Navier–Stokes equations
are used. In this case, an additional numerical constraint appears, limiting the simulation time step related
to sound celerity. This can be very inconvenient for slow-speed flow simulations. Thus, significant
attention was given to designing time schemes for CFD able to cover both regimes, while compromising
the preservation of accurate numerical results and reducing the total computational calculation time. In
that scope, one solution is the use of implicit time integrators, which may not be simple to implement due
to the complexity of the system to solve. An alternative method related to different time scale problems
is the implicit treatment of some terms of the system while keeping the remaining explicit. This semi
implicit (or implicit explicit) approach allows the development of stabler schemes by reducing the time
step constraint related to the fast time scale.
In the context of incompressible and compressible flow, different all speed semi-implicit schemes based
on the asymptotic preserving method have been proposed in the last decades (Park and Munz, 2005;
Degond and Tang, 2011; Haack et al., 2012; Cordier et al., 2012; Herbin et al., 2012; Boscheri et al.,
2020) , which inspired some features of this work, notably the incompressible limit of the
pressure equation, which is later detailed in this chapter.
Moreover, the present scheme belongs to the pressure correction methods, which are time marching
techniques widely used in CFD. First introduced in the late 60’s (Chorin, 1968; Temam, 1969) for
incompressible flow (see Guermond et al. (2006) for a review of the different variants), they were
extended for compressible flow (Harlow and Amsden, 1968, 1971; Gallouët et al., 2008) followed
by many numerical schemes (including diphasic flow Kheriji et al. (2013) ), mostly using finite volume
methods. Among them, one can highlight the essentially implicit (Van Doormaal et al., 1987; Demirdžić
et al., 1993; Politis and Giannakoglou, 1997; Moukalled and Darwish, 2001) algorithms which differ
from the semi-implicit ones (such as the SIMPLE (Karki and Patankar, 1989) method) where a prediction
of the momentum is first performed, followed by a correction step for the pressure, momentum, and
velocity (Issa, 1986b,a; Colella and Pao, 1999; van der Heul et al., 2003; Herbin et al., 2020) .
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Furthermore, recent work addressed a strategy of using high-order schemes to capture unsteady turbulent
flow phenomena. Harlow and Welch (1965) introduced a staggered grid arrangement for a second order
finite difference scheme for incompressible flow using the Crank and Nicolson (1947) method. Pierce
and Moin (2004) extended the previous scheme to variable-density flow using the low Mach assumption.
A similar version of this algorithm was proposed by the same authors (Wall et al., 2002) , where an
Helmholtz equation was used instead of a Poisson equation in the correction step, avoiding the acoustic
Courant–Friedrichs–Lewy (CFL) number limitation. The latter used the enthalpy equation to compute
the temperature and was specially designed for low speed flow, with no presence of shocks. Solving an
Helmholtz equation to correct the pressure was also shown to be relevant for an atmospheric flow solver
by Benacchio and Klein (2019) and for a low Mach number kinetic energy conservation scheme by
Moureau et al. (2007) . High-order low and all Mach number schemes remain very popular. Desjardins
et al. (2008) proposed a high order version of Pierce’s low Mach finite difference staggered time-
stepping, using the Poisson equation in the correction step. The combination of semi-implicit asymptotic
preserving and Runge–Kutta methods (Ascher et al., 1997; Pareschi and Russo, 2005; Bispen et al.,
2017) led also to high-order all Mach number schemes (Boscheri et al., 2020; Boscheri and Pareschi,
2021) .
Note that boundary conditions, especially in incompressible pressure correction methods, can affect its
time convergence order (Guermond et al., 2006) . This is beyond the scope of the current study.
This chapter presents a conservative second-order time scheme for variable density flow using the
compressible Navier–Stokes equations. The finite difference scheme introduced by Pierce and Moin
(2004) with a staggered variable arrangement in time is extended on different grounds using the
collocated finite-volume discretisation (Versteeg and Malalasekera, 2007) for regular and discontinuous
solutions. The staggered arrangement should allow the scheme to be of first and second time order;
making it compatible with both steady and unsteady turbulent approaches.
Three major features of the new scheme are highlighted. First, it includes the effect of the thermodynamic
pressure in the correction step by solving an Helmholtz equation (thanks to the linearisation of the
EOS). Therefore, the acoustic waves are treated implicitly and are thus separated from advection, which
removes the acoustic CFL restriction on the time step.
Moreover, the internal energy equation is used to compute the temperature. First introduced by Herbin
et al. (2020) for an Euler pressure correction scheme, this choice of equation allows the third feature, a
numerical analysis, to be made, ensuring the temperature, pressure and density positivity under certain
constraints detailed later. Since computing shock solutions using the internal energy equation yields
an incorrect velocity field (Archambeau et al., 2009; Toro, 2013) , a correction term based on the
discrete kinetic energy equation similar to the one used by Herbin et al. (2020) is added to the internal
energy equation. This term, derived here for the sub-iterative time-staggered scheme, preserves the sum
of the internal and kinetic energy to ensure the conservation of the total energy, thus implying a good
reproducibility of the numerical shock velocities.
Table 3.1 summarises each modelling stake introduced in the last chapter and the corresponding
numerical objective and strategy deployed.
Note that the humidity and phase change numerical treatments are detailed and discussed in Chapter 4.
The proposed algorithm, from now on called compressible pressure correction (CPC) scheme, is
implemented in the open-source CFD solver code_saturne, verified and validated on a wide range of
zero to three dimensions test cases.
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Modelling stake Numerical objetive Corresponding numerical approach

Pressure

variation

Density dependence on

both the pressure and

temperature i.e. ρ(T, p)

Equation of state linearisation

Solve of Helmholtz equation

for the pressure

Buoyant

effects
Density variation

∂ρ

∂t
6= 0

Use of the compressible Navier–Stokes

equations

Wall effects

Take into account the

dynamic and thermal

walls effects

Use of wall functions

Compatibility

with turbulent

approaches

Possibility of first

and second order time

convergence rate

Be compatible with

the existing turbulent

approaches of code_saturne

Time variables staggered arrangement

Regular and

singular solutions

Conservation of the mass,

momentum and total energy

Solve of the internal energy with

a corrective source term related to the

kinetic energy dissipation

Acoustic waves
No time step constraint

related to the celerity

Implicitation of the sources related to

the pressure

Humidity
Phase change and properties

variation consideration

Transport of the water mass fraction

Change of the equation of state

Newton method on the phase change

Table 3.1: Summary of the physical modelling stakes, the related numerical target and the proposed
numerical approach.
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3.2 Set of equations

The Navier–Stokes compressible conservative equations supplemented with scalars Y transport equation
and an equation of state were chosen in Chapter 2 to be discretised.
As a reminder, for a fluid considered as a perfect gas of density ρ, velocity u, momentum q = ρu,
internal energy e, temperature T , viscosity µ, heat capacities cv and cp; thermal conductivity λ, and
scalar diffusion coefficient K, the final set of equations reads:

(a) ∂ρ

∂t
+ div

(
q
)

= 0,

(b)
∂q

∂t
+ div

(
u⊗ q

)
= −∇p+ div

(
τ
)

+ f,

(c) ∂ (ρe)
∂t

+ div
(
eq
)

= −pdiv (u) + τ : ∇u+ div (λ∇T ) ,

(d) ∂ (ρY )
∂t

+ div
(
Y q
)

= div (K∇Y ) ,

(e) T = T (ρ, e) = γ − 1
Ra

e, p = P(ρ, e) = ρRaT.

(3.1)

(a) is the mass conservation equation (b) is the momentum conservation equation. (c) is the internal
energy equation, which is not conserved. (d) is the scalar transport equation and (e) is the equation of
state. The other equations terms are presented in Chapter 2, Section 2.1. In the perfect gas context, the
internal energy is linked to the fluid temperature through e = cv T . Possible additional source terms
were not considered in the aforementioned equations.

3.3 Space and time discretisation notations

The space domain Ω is meshed with a collection of polyhedral cells c of volume Ωc. Two neighbouring
cells c and c̃ share a polygonal face f of normal surface vector Sf oriented from c to c̃, as shown in
Figure 3.1.

Sf

× xc̃ (J)
×
xc (I)

×
xf (F )

Ωc̃
Ωc

× ×
(J ′)(I ′)

×
(O)

Figure 3.1: Labelling information used for a mesh. xc and xc̃ are the barycentres of cells c and c̃,
respectively. xf is the barycentre of the face f separating the two cells.
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Mean space values over a cell c and averaged values over a face f of a quantity (.) are denoted by:

(.)c := 1
Ωc

∫
c
(.)dΩ, (.)f := 1

Sf

∫
f
(.)dS. (3.2)

Sf is the cells face surface. Note that face values are computed using spatial schemes presented in
Section 3.5. The mean time value over the time interval [tn, tn+1[ is denoted by

(.)|n+1
n := 1

∆t

∫ tn+1

tn
(.)dt, (3.3)

where ∆t = tn+1 − tn is the interval measure. Moreover, the time values at time tn and tn+1 are written
with the superscript (.)n and (.)n+1, respectively.
In the present numerical scheme, the time stepping is defined by the parameter θ, bounded in [0, 1] (theta-
scheme). We consider the cases where θ = 1 (implicit Euler, 1st order time interpolation of (.)|n+1

n )
and θ = 1/2 (Crank Nicolson, 2nd order time interpolation of (.)|n+1

n ). A field ψ time interpolation
Θ
(
ψn, ψn+1) between times n and n+ 1 is defined as:

Θ
(
ψn, ψn+1

)
:= (1 − θ)ψn + θψn+1.

The dual time interval around time n is denoted by [n− 1 + θ, n+ θ], and is of length:

∆t|n+θ
n−1+θ := Θ

(
∆t|nn−1, ∆t|n+1

n

)
,

From the above expressions, the extensive quantities such as the cell mass Mc, cell momentum Q
c

and
face mass flux Ṁf are defined as follows:

Mc :=
∫

c
ρdΩ, Q

c
:=
∫

c
ρudΩ, Ṁf :=

∫
f
q · dS = q

f
· Sf .

Finally, discrete spatial operators (denoted by capital letters) are defined. The discrete operator
divergence of a face-averaged field ψ

f
is written as follows:

Divc

(
ψ

f

)
:= 1

Ωc

∑
f∈Fc

ψ
f

· Sf =
(

div (ψ)
)

c
, (3.4)

where Fc is the ensemble of all the planar polygonal faces of the cell c, and Sf is the outward surface
vector. The discrete cell gradient operator of a field ψ is also defined as the divergence of the tensor ψI:

Gradc (ψf ) := 1
Ωc

∑
f∈Fc

ψfSf =
(

div (ψI)
)

c
. (3.5)

Finally, the discrete Laplacian operator of a given scalar ψ with coefficient of diffusion K uses the two
points flux approximation (TPFA) (see Eymard et al. (2014) and Ferrand et al. (2014) for more details)
and is defined as:

Lapc (K, ψ) := 1
Ωc

∑
f∈Fc

K∇fψ · Sf , ∇fψ =
ψc̃ − ψc

dcc̃

. (3.6)

Remark 3.3.1. The mass balance is performed between time steps n and n+ 1. Therefore, since
they are linked by the equation of state, scalar mass fractions Y , temperature T , total pressure p and
density ρ are stored in the same space and time locations. The mass balance implies that the mass
fluxes denoted by q

f
·Sf are stored in the time interval [n, n+ 1] and on the mesh faces. Note that the

time interval [n, n+ 1] is the dual space of time n+ 1
2 . Therefore, the momentum equation is solved

between times n − 1
2 and n + 1

2 when θ = 1/2. Figure 3.2 shows the time locations of the different

56

https://hal.archives-ouvertes.fr/hal-00801648v3
https://www.researchgate.net/publication/287063422_An_Anisotropic_Diffusion_Finite_Volume_Algorithm_Using_a_Small_Stencil/stats


scheme variables. When θ = 1/2, the velocity location is at the centre of the time interval [n, n+ 1],
whereas other fields are evaluated at times n and n+ 1, respectively.

x

t

Tn−1
c , Y n−1

c , ρn−1
c

Tn
c ,Y

n
c , ρnc

Tn+1
c ,Y n+1

c , ρn+1
c

n− 1

n

n+ 1

f0 f1

q
f

∣∣∣n
n−1

q
f

∣∣∣n+1

n

un−1
c , pn−1

c

unc , p
n
c

un+1
c , pn+1

c

pc|nn−1

pc|n+1
n

(a) θ = 1.

x

t

Tn−1
c ,Y n−1

c , ρn−1
c

Tn
c ,Y

n
c , ρnc

Tn+1
c , Y n+1

c , ρn+1
c

n− 1

n

n+ 1

f0 f1

q
f

∣∣∣n
n−1

q
f

∣∣∣n+1

n

u
n− 1

2
c

u
n+ 1

2
c

pc|
n− 1

2

n− 3
2

pc|
n+ 1

2

n− 1
2

pn+1
c

pnc

pn−1
c

(b) θ = 1/2.

Figure 3.2: Time variables localisation for the two θ values.

3.4 Time discretisation

The CPC scheme assumes that numerical fluxes are evaluated by considering one mean variable value
ψn

c at a given cell of volume Ωn
c and at the time t = n∆t presented in Figure 3.2, according to the

theta-scheme parameter θ. Each time stepping is divided in a sub-iterative process, with inner iterations
characterised by the subscript k (PISO method (Barton, 1998) ). The latter stops either if a maximum
sub iteration or local error is reached. The reader may distinguish two different pressures. The total
thermodynamic pressure, denoted pn+1 at the time tn+1, which is located with other thermodynamic
variables, can be differentiated from the mechanical pressure p|n+θ

n−1+θ, which applies a force on the
momentum equation during the time interval [n − 1 + θ, n + θ]. More explicitly, the total pressure
expression reads:

pn+1,k = p0 + 1
θ
p|n+θ,k

n−1+θ − 2 [1 − θ] p|n−1+θ
n−2+θ, (3.7)

where variables with the subscript 0 are reference values.
Figure 3.3 shows the time scheme main steps. First, an initialisation is made for the given time iteration.
As mentioned in this chapter motivations, the presented work belongs to the pressure-correction class
of CFD schemes. The transport equations of the internal energy and scalars are then solved leading to
the internal energy en+1,k and to Y n+1,k. After deduction of the temperature from the internal energy,
an intermediate predicted density ρ̃k. The prediction step uses the momentum conservation equation to
estimate a predicted velocity denoted ũk. Finally, a combination of the mass and momentum equation is
used to solve an Helmholtz equation for the pressure increment, denoted φk = p|n+θ,k

n−1+θ − p|n+θ,k−1
n−1+θ . The

thermodynamical pressure pn+1,k, the mechanic pressure p|n+θ,k
n−1+θ , the velocity un+θ,k and the density

57

https://fr.scribd.com/document/229630924/Comparison-of-Simple-And-Piso-type-Algorithms-for-Transient-Flows


Time iteration

Initialisation
Sub-itération −→ k

Scalars Intermediary ρ Prediction Correction εkpiso?

Γ
u2/2
c

Figure 3.3: Sub-iterative scheme main steps.

ρn+1,k are then updated. The last elements are used to compute, if needed, the discrete kinetic energy

source term Γu2/2
c

∣∣∣n+1,k−1

n
that is injected in the next step internal energy equation.

Remark 3.4.1. Three conditions are considered while designing the proposed scheme.

At each inner step, the instantaneous density must be in coherence with the convective mass
flux.

To maintain the scheme conservation property, when adding the prediction and correction
Equations (3.13) and (3.14), the unsteady terms of the predicted velocity ũk should disappear.

The densities of the prediction and correction step are centred at the time step n when θ = 1/2.

For a sake of clarity, the time step ∆t is supposed constant in this section. The reader may find the
scheme equations for a variable time step in Appendix 3.B.
In the following, each main step of the system of equations time discretisation is detailed.

3.4.1 Initialisation

The first inner step within a time step is the variables initialisation regarding the sub iterative process.
Thus, for k = 1, the different variables at k − 1 are initialised as following:

ρn,0
c = ρn−1

c , ρn+1,0
c = ρn

c , q
f

∣∣∣n+1,0

n
· Sf = q

f

∣∣∣n
n−1

· Sf , p|n+θ,0
n−1+θ = pn.

As a side note, at any sub-iteration, the mass flux should verify the following mass balance equation:

Divc

(
q

f

∣∣∣n+1,k

n

)
= −

(
ρn+1,k

c − ρn,k
c

)
∆t .

3.4.2 Scalars step

Buoyant scalars Y n+1,k, which for dry air do not contribute to the density variation, are computed by
solving each scalar transport equation in [n, n+ 1]:

ρn+1,k−1
c Y n+1,k

c − ρn,k−1
c Y n

c

∆t + Divc

(〈
Θ
(
Y n, Y n+1,k

)〉
f
q

f

∣∣∣n+1,k−1

n

)
=

Lapc

(
K,Θ

(
Y n, Y n+1,k

))
.

(3.8)
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Note that for the first sub-iteration, ρn,k−1 is ρn−1 and ρn+1,k−1 is ρn; thus, the density variation (ρn −

ρn−1) is balanced by the mass flux q
f

∣∣∣∣n
n−1

term, as stated in the first of the three conditions presented in

this section introduction.
As for the internal energy, its equations is solved using the variable Tn+1,k in [n, n+ 1]:

cv

[
ρn+1,k−1

c Tn+1,k
c − ρn,k−1

c Tn
c

∆t + Divc

(〈
Θ
(
Tn, Tn+1,k

)〉
f
q

f

∣∣∣n+1,k−1

n

)]
= µ(S2

c )n+θ,k−1 + Γu2/2
c

∣∣∣n+1,k−1

n

+ Lapc

(
λ,Θ

(
Tn, Tn+1,k

))
− Divc

(〈
Θ
(
pn, pn+1,k−1)un+θ,k−1〉

f

)
+ un+θ,k−1

c · ∇c p|
n+θ,k−1
n−1+θ .

(3.9)

The term −p div (u) is computed here as −div (pu) + u · ∇p due to the ease of implementation that the
pressure gradient is already computed in the previous prediction step (k− 1) and that all faces values are
computed as well. Thus, the user has the choice on the spatial discretisation (later detailed) of the term
div (pu). µ(S2

c ) is the dissipation term and reads:

µ(S2
c ) = µ

[
2
(
∂u

∂x

)2
+ 2

(
∂v

∂y

)2
+ 2

(
∂w

∂z

)2
+
(
∂v

∂x
+ ∂u

∂y

)2
+
(
∂w

∂y
+ ∂v

∂z

)2
+
(
∂u

∂z
+ ∂w

∂x

)2

− 2
3

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)2 ]
,

(3.10)

where u, v and w are the different components of the velocity vector. Inspired by Herbin et al. (2020) ,

the internal energy equation is supplemented with Γu2/2
c

∣∣∣n+1,k−1

n
, a corrective source term derived from

the discrete kinetic energy equation. Its expression reads:

Γu2/2
c

∣∣∣n+1,k−1

n
=

Θ
(
ρn

c , ρ
n+1,k−2
c

)
Θ
(
ρn

c , ρ
n+1,k−1
c

)Θ
(
ρn−1

c , ρn
c

) [|ũk−1
c − un−1+θ

c |2
]

2∆t

+

1 −
Θ
(
ρn

c , ρ
n+1,k−2
c

)
Θ
(
ρn

c , ρ
n+1,k−1
c

)

Θ

(
ρn−1

c , ρn
c

) |un−1+θ
c |2

2∆t − Divc


∣∣∣∣〈Θ

(
un−1+θ, ũk−1

)〉
f

∣∣∣∣2
2 q

f

∣∣∣n+θ,k−2

n−1+θ




−
Θ
(
ρn

c , ρ
n+1,k−2
c

)
Θ
(
ρn

c , ρ
n+1,k−1
c

)Divc


∣∣∣∣〈Θ

(
un−1+θ, ũk−1

)〉
f

− ũk−1
c

∣∣∣∣2
2 q

f

∣∣∣n+θ,k−2

n−1+θ

 .
(3.11)

This corrective term allows the total energy to be conserved in the given interval, leading to consistent
solutions even in the presence of irregularities. Note that this term is computed in the previous inner
iteration. The reason is related to its derivation, detailed in Appendix 3.A.
The new temperature is used to predict an intermediary density value through the equation of state:

ρ̃k
c = pn+1,k−1

c

RaT
n+1,k
c

(3.12)

This new density is not balanced by any mass flux. The mass conservation is insured in the correction
step.
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3.4.3 Prediction step

The momentum equation is integrated over the time interval [n− 1 + θ, n+ θ] to compute the predicted
velocity ũk:

Θ
(
ρn

c , ρ
n+1,k−1
c

)
ũk

c − Θ
(
ρn−1

c , ρn,k−1
c

)
un−1+θ

c

∆t + Divc

(〈
Θ
(
un−1+θ, ũk

)〉
f

⊗ q
f

∣∣∣n+θ,k−1

n−1+θ

)
= −Gradc

(〈
p|n+θ,k−1

n−1+θ

〉
f

)
+ Divc

(
τ

f

∣∣∣k
n−1+θ

)
+ f

c

∣∣∣n+θ,k−1

n−1+θ
.

(3.13)

The mass flux q
∣∣∣n+θ,k−1

n−1+θ f
is defined by:

q
f

∣∣∣n+θ,k−1

n−1+θ
= Θ

(
q

f

∣∣∣n
n−1

, q
f

∣∣∣n+1,k−1

n

)
.

Note that the cell pressure gradient and external volume force are taken at the same time interval; if they
are in a partial balance, no parasite velocities are created.

3.4.4 Correction step

During this stage, the pressure increment φk = p
∣∣n+θ,k

n−1+θ
− p
∣∣n+θ,k−1
n−1+θ

is computed and used to correct the
velocity un+θ,k. The following system is solved on [n, n+ 1]:

Θ
(
ρn

c , ρ
n+1,k
c

)
un+θ,k

c − Θ
(
ρn

c , ρ
n+1,k−1
c

)
ũk

c

∆t + ∇cφ
k = δfk

c
,

Divc

(
q

f

∣∣∣n+1,k

n

)
+ ρn+1,k

c − ρn
c

∆t = 0,
(3.14)

with

δfk
c

= f
c

∣∣∣n+θ,k

n−1+θ
− f

c

∣∣∣n+θ,k−1

n−1+θ

and where, by definition:

q
f

∣∣∣n+1,k

n
=
〈

Θ
(
ρn, ρn+1,k

)
un+θ,k

〉
f

=
〈

Θ
(
ρn, ρn+1,k−1

)
ũk
〉

f

− ∆t
(
∇fφ

k − δfk
c

)
, (3.15)

which verifies the mass balance with
ρn+1,k

c − ρn
c

∆t , and whose field face values are calculated using a

centred scheme. Combining the equations in (3.14) and using the Rhie and Chow (1983) filter leads to
an Helmholtz equation for the cell thermodynamic pressure pn+1,k

c , solved for φk:

ρn+1,k
c − ρn

c

∆t − θLapc

(
∆t, pn+1,k

)
= − Divc

(〈
Θ
(
ρn, ρn+1,k−1

)
ũk + ∆t

(
∇p|n+θ,k−1

n−1+θ + δfk
)〉

f

)
+ (1 − θ)Lapc

(
∆t, p|n−1+θ

n−2+θ

)
,

(3.16)

where, alternatively to Equation (3.7), the total pressure pn+1,k is linked to φk through:

φk = Θ
(
p|n−1+θ

n−2+θ, p
n+1,k

)
− p|n+θ,k−1

n−1+θ . (3.17)
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The density ρn+1,k
c is written as:

ρn+1,k
c = ρ̃c

k +
(
pn+1,k

c − pn+1,k−1
c

)(∂ρ
∂p

∣∣∣∣
T

(
Tn+1,k

c , pn+1,k−1
c

))
. (3.18)

Note that for ideal gases, the density ρn+1,k expression (Equation (3.18)) reduces to the ideal gas equation

of state since
∂ρ

∂p

∣∣∣∣
T

= 1
RaT

.

This density update makes the scheme conservative in space and time for mass, which is an important
property, especially for non-regular solutions. From a generic point of view, the density ρn+1,k in
Equation (3.16) might not satisfy the equation of state (contrary to what was done in step 6 of Wall
et al. (2002) ).

Remark 3.4.2. As mentioned, Equation (3.16) is solved for the pressure increment φk as following:

(3 − 2θ)
∆t

∂ρ

∂p

∣∣∣∣
T

(pn+1,k−1
c , Tn+1,k

c )φk − θLapc

(
∆t, φk

)
= (1 − θ)Lapc

(
∆t, p|n−1+θ

n−2+θ

)
− Divc

(〈
Θ
(
ρn, ρn+1,k−1

)
ũk + ∆t

(
∇p|n−1+θ

n−2+θ + δfk
)〉

f

)
− ρ̃k

c − ρn
c

∆t

−
(2 − 2θ)pc|n+θ,k−1

n−1+θ − pc|n−1+θ
n−2+θ

∆t
∂ρ

∂p

∣∣∣∣
T

(pn+1,k−1
c , Tn+1,k

c ).

The sub-iterative process for the time step ends when the error:

εk
piso =

√√√√Ncell∑
c=1

Ωc

∣∣un+θ,k
c − un+θ,k−1

c

∣∣2
is below a fixed value εpiso0 or when a maximal number of inner iterations is reached.
The scheme main steps, showing the primary variables solved and their related equations are summarised
in Algorithm 1.

3.5 Spatial discretisation

The time scheme is integrated in the open source solver code_saturne, which uses a collocated finite
volume method. Based on the notations introduced in Section 3.3, the time integrated equations are
integrated over a control volume. In their spatially discretised form, they involve many faces values.
Thus, in this section the convective schemes used in the different numerical simulations are presented.
Concerning the spatial cells notations, the reader is invited to use Figure 3.1 as reference.

3.5.1 Convective schemes

As a reminder, a faces mass flux, denoted Ṁf is defined as:

Ṁf = q
f

· Sf .

The first convective scheme is the first order upwind scheme, where the face field ψ value reads:

ψf =
{
ψc, if Ṁf ≥ 0,
ψc̃, if Ṁf < 0.

(3.19)
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Algorithm 1 Time scheme main steps
1: First time step initialisation,
2: Time loop
3: for n = 0, N-1 do
4: Initialisation of variables at the first sub-iteration k = 1
5: for k = 1, M do
6: Compute scalars and temperature Y n+1,k

c , Tn+1,k
c , . Equation (3.9)

7: Update of the density ρ̃k
c with Tn+1,k

c , . Equation (3.12)
8: Compute the predicted velocity ũk

c , . Equation (3.13)
9: Correction step: compute φk → pc|n+θ,k

n−1+θ, . Equation (3.16)
10: Correct the thermodynamic pressure pn+1,k

c , . Equation (4.27)
11: Correct the density ρn+1,k

c , . Equation (3.18)
12: Correct the velocity un+θ,k

c , . Equation (3.15)
13: if εkpiso ≤ εpiso0 then
14: Break the for loop,
15: else
16: Compute the kinetic energy source term Γu2/2

c

∣∣∣n+1

n
, . Equation (3.11)

17: end if
18: end for
19: end for

Then, for a centred scheme, one has:

ψf = αfψc + (1 − αf )ψc̃ + 1
2
[
∇cψ + ∇c̃ψ

]
·OF. (3.20)

αf is a weighting factor defined to measure the distance of the cell center I to the face f relative to the
neighbour cell c̃, written as following:

αf =
dfc̃′

dc′c̃

, (3.21)

with the distances:

dc′c̃ =
I ′J ′ · Sf

|Sf |
, dfc̃′ =

FJ ′ · Sf

|Sf |
. (3.22)

This scheme ensures a second order space discretization for the given variable (see Saturne (2019) for
further details).

Remark 3.5.1. code_saturne’s strategy for computing the numerical cell gradient can be found in
Archambeau et al. (2004) and is beyond the scope of this manuscript.

The second order linear upwind (SOLU) scheme is used as well (Fromm, 1968) . In that case, the field
face value reads:

ψf =


ψc + ∇cψ.IF if Ṁf ≥ 0

ψc̃ + ∇c̃ψ.IF if Ṁf < 0
(3.23)
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For the boundary face value,

ψf =


ψc + ∇cψ.IF if Ṁf ≥ 0

Ag
fb

+Bg
fb
ψc if Ṁf < 0

(3.24)

Remark 3.5.2. A slope test can switch from the centred and SOLU scheme to the upwind one. Also
it is possible to compute the field face value as a weighted average between the upwind and centred
face value.

Remark 3.5.3. The coefficients Ag
fb

and Bg
fb

are presented in the boundary conditions Section 3.6.

3.5.2 Diffusive terms

The scalar ψ diffusive term div (K∇ψ) is written as a sum of numerical fluxes Df (Kf , ψ) discretised as
following: if the field ψ is non reconstructed, the flux reads:

Df (Kf , ψ) = −
Kf |Sf |
dc′c̃′

(
ψc − ψc̃

)
, (3.25)

where

Kf =
KcKc̃

αfKc + (1 − αf )Kc̃

. (3.26)

In case of reconstruction, the diffusive flux reads:

Df (Kf , ψ) = −
Kf |Sf |
dc′c̃′

(
ψc − ψc̃

)
−
Kf |Sf |
dc′c̃′

1
2
(
∇cψ + ∇c̃ψ

)
·
(
II ′ − JJ ′) . (3.27)

This reconstruction ensures the second order discretisation in space for ψ.

3.6 Boundary conditions

As any numerical scheme, a specific treatment related to boundary conditions is made. The latter can
be either an imposed flux, also called Neumann condition, an imposed field variable value, known as
Dirichlet condition, and a mix of the two previous conditions, called Robin condition.
These conditions are translated into implicit and explicit contributions entering the linear system to be
solved. More precisely, within the code_saturne solver, for a given variable ψ, two families of coefficient
exist. The first one, denoted Ag

fb and Bg
fb respectively, is used by the gradient and advection operators

through the calculation of the boundary field variable face value ψfb:

ψfb = Ag
fb +Bg

fbψI′ .

The other type of coefficients, denoted Af
cb and Bf

cb, are used for the diffusive flux calculation as
mentioned in the last Subsection.
A particular boundary condition is assigned to a boundary face following its type.
For example, inlet faces are assigned Dirichlet condition for scalar fields except for the pressure, where
an homogeneous Neumann condition is imposed.
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For outlet faces, an homogeneous Neumann conditions is assigned for all variables, excepting the
pressure whose conditions is:

∂2p

∂η∂τ
= 0,

for any vector τ parallel to the face. This condition means that the pressure profile does not vary in the
normal direction of the face outlet.

Remark 3.6.1. In case of a negative boundary face mass flux, a clipping to 0 concerning the flux is
performed to respect the outlet face condition.

Remark 3.6.2. The pressure is also defined as the constant reference pressure p0 defined by the user.

A combination of inlet and outlet conditions, called free inlet outlet exists as well. In that case, a standard
outlet condition is set when the flow is outgoing. In the other case, an inlet condition is set. To couple
both velocity and pressure at these free inlet faces, the Bernoulli relationship is used to derive a boundary
condition on the pressure increment.
For symmetry faces, an homogeneous Neumann condition is assigned for scalar fields. For vectors such
as the velocity, a null Dirichlet value is set for the normal component and an homogeneous Neumann
condition for the tangential components.
The conditions for tensors are beyond the scope of this Section. Further details can be found in Saturne
(2019) .
For walls, the boundary condition treatment depends on the variable. For the velocity, a Dirichlet
condition on the wall is transformed into a Neumann condition where the wall shear stress is accounted.
This is done using the so called wall functions. Similarly, the same strategy is used for the scalar fields.
For the pressure field, an homogeneous Neumann condition is set by default.

Remark 3.6.3. If the numerical mesh is enough refined to capture the variations of the variables near
the wall, wall functions are no longer needed and thus a Dirichlet condition is assigned to the variables.

For the velocity, one or two friction velocity scales wall functions can be used. More information about
those can be found in Appendix 3.E.

3.7 Properties of the scheme

3.7.1 Positivity of the thermodynamical variables

This sub-section focuses on the new numerical constraints related to the positivity of the internal energy
(consequently, the temperature), the pressure and the density. To do so, the concerned equations are
written in their space and time discretised form (from section 3.5). Note that this numerical analysis is
made using an upwind spatial discretisation for the convective terms.
The discretised internal energy (Equation (3.9)) written using the temperature variable, for k > 1, reads:

cv

Mn
c

Tn+1,k
c − Tn

c

∆t +
∑

f∈Fc

(〈
Θ
(
Tn, Tn+1,k

)〉
f

− Tn+1,k
c

)
Ṁf

∣∣∣n+1,k−1

n


+
∑

f∈Fc

λ|Sf |
Θ
(
Tn

c , T
n+1,k
c

)
− Θ

(
Tn

c̃
, Tn+1,k

c̃

)
dcc̃

= Ωcµ(S2
c )n+θ + Γu2/2

c

∣∣∣n+1,k−1

n

−
∑

f∈Fc

〈
Θ
(
pn, pn+1,k−1

)
un+θ,k−1

〉
f

· Sf + Ωcu
n+θ,k−1
c · ∇c p|

n+θ,k−1
n−1+θ .

(3.28)
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Equation (4.34) yields a linear system AX = B, where X = (Tn+1,k
c )c∈{1,..,Ncell}.

The diagonal matrix A coefficients are, ∀c ∈ {1, ..., Ncell}:

Acc = cv
Mn

c

∆t + cv

∑
f∈Fc

θṀ+
f

∣∣∣n+1,k−1

n
− Ṁf

∣∣∣n+1,k−1

n

+

∑
f∈Fc

θ
|Sf |λc

dcc̃

 , (3.29)

where, Ṁ+
f

∣∣∣n+1

n
= max

(
0, Ṁf

∣∣∣n+1

n

)
is the positive contribution of the face f mass flux. To ensure that

these terms are positive, the following sufficient CFL-like condition is defined:

Maxc(CFL+
T1

)c < 1, (3.30)

where:

(CFL+
T1

)c := (1 − θ) ∆t
Mn

c

∑
f∈Fc

Ṁ+
f

∣∣∣n+1,k−1

n
. (3.31)

∀c, c̃,∈ {1, ..., Ncell} with c 6= c̃, the off-diagonal coefficients are

Acc̃ = θṀ−
f

∣∣∣n+1,k−1

n
. (3.32)

Ṁ−
f

∣∣∣n+1,k−1

n
= min

(
0, Ṁf

∣∣∣n+1

n

)
is the negative contribution of the face f mass flux.

Remark 3.7.1. If the initial temperatures for all cells are positive, dcc̃ > 0, cv, λ, Ra, and ∆t are
positive and the condition (3.30) is respected, all diagonal terms of the matrix A are strictly positive.
Moreover, all off-diagonal coefficients are negative or null. The diagonal terms are strictly larger than
the sum of the modulus of off-diagonal terms. Therefore, A is diagonal dominant and a M-matrix.

The internal energy equation right hand side coefficients are (without the kinetic energy source term):

Bc = cv
Mn

c T
n
c

∆t + µcΩn
c (S2

c )n+1 −
∑

f∈Fc

cv(1 − θ)Tn
f Ṁf

∣∣∣n+1,k−1

n

+ Ωcu
n+θ,k−1
c · ∇c p|

n+θ,k−1
n−1+θ −

∑
f∈Fc

[
|Sf |λc(1 − θ)

(Tn
c − Tn

c̃
)

dcc̃

]

−Ra

∑
f∈Fc

[
Θ
(
Tn

c , T
n+1,k−1
c

)
Ṁ+

f

∣∣∣n+1,k−1

n
+ Θ

(
Tn

c̃
, Tn+1,k−1

c̃

)
Ṁ−

f

∣∣∣n+1,k−1

n

]
.

We seek for a sufficient condition insuring that Bc > 0 ∀c. Thus, the positive contributions related to
the mass flux are discarded and the convective and diffusive right hand side terms are treated separately.
Each case leads to a new condition to keep Bc positive.
The first, related to the convective term, is a CFL-like condition:

Maxc(CFL+
T2

)c < 1, (3.33)

where:

(CFL+
T2

)c := ∆t
Mn

c

∑
f∈Fc

[
θ(γ − 1)T

n+1,k−1
c

Tn
c

+ (1 − θ)γ
]
Ṁ+

f

∣∣∣n+1,k−1

n

−
∆t(γ − 1)un+θ,k−1

c · ∇c p|
n+θ,k−1
n−1+θ

pn
c

.

(3.34)
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The second, related to the diffusion term, is a Fourier-like condition:

Maxc(Fo+
T )c < 1, (3.35)

where:

(Fo+
T )c := λc(1 − θ)∆t

cvMn
c

∑
f∈Fc

|Sf |
Tn

c − Tn
c̃

Tn
c dcc̃

. (3.36)

Property 3.7.1. If the initial temperatures for all cells are positive, dcc̃ > 0, cv, λ, Ra, and ∆t are
positive and the conditions (3.30), (3.34) and (3.35) are respected, A is a M-matrix and Bc > 0. The
solution of the linear system is thus positive.

Now, the same methodology is applied to the pressure (Equation (3.16)):

Ωcp
n+1,k
c

∆tRaT
n+1,k
c

− θ∆t
∑

f∈Fc

∇fp
n+1,k
c · Sf = (ρn

c − ρ̃c)Ωn
c

∆t

−
∑

f∈Fc

〈
Θ
(
ρn, ρn+1,k−1

)
ũk + ∆t∇c p|

n+θ,k−1
n−1+θ

〉
f

· Sf

+ (1 − θ)∆t
∑

f∈Fc

∇f p|
n−1+θ
n−2+θ · Sf + Ωcp

n+1,k−1
c

∆tRaT
n+1,k
c

.

(3.37)

Equation (4.43) yields a linear system AX = B, where X = (pn+1,k
c )c∈{1,..,Ncell}.

The diagonal matrix A coefficients are, ∀c ∈ {1, ..., Ncell}:

Acc = Ωc

∆tRaT
n+1,k
c

+ θ∆t
∑

f∈Fc

|Sf |
dcc̃

. (3.38)

∀c, c̃,∈ {1, ..., Ncell} with c 6= c̃, the off-diagonal coefficients are

Acc̃ = −θ ∆t
|Sf |
dcc̃

. (3.39)

Remark 3.7.2. If the initial temperature for all cells is positive, dcc̃ > 0, cv, λ, Ra, and ∆t are
positive, all the diagonal terms of the matrix A are strictly positive. Moreover, all off-diagonal
coefficients are negative or null. Moreover, the diagonal terms are strictly larger than the sum of
the modulus of off-diagonal terms. Therefore, A is diagonal dominant and a M-matrix.

The right hand side terms Bc are strictly positive if:

ρn
c Ωn

c

∆t −
∑

f∈Fc

〈
Θ
(
ρn, ρn+1,k−1

)
ũk + ∆t∇p|n+θ,k−1

n−1+θ

〉
f

·Sf +(1−θ)∆t
∑

f∈Fc

∇f p|
n−1+θ
n−2+θ ·Sf > 0,

(3.40)

i.e. if:

Maxc(CFL+
p )c < 1, (3.41)

(CFL+
p )c := ∆t

ρn
c Ωn

c

∑
f∈Fc

aφ
f , (3.42)

and
aφ

f =
〈
Θ
(
ρn, ρn+1,k−1

)
ũk + ∆t∇p|n+θ,k−1

n−1+θ

〉
f

· Sf − (1 − θ)∆t∇f p|
n−1+θ
n−2+θ · Sf .
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Property 3.7.2. If the initial temperature for all cells is positive, dcc̃ > 0, cv, λ, Ra, and ∆t are positive
and the condition (3.41) is respected, then A is a M-matrix and Bc > 0 ∀c. Thus, the solution to the
linear system is strictly positive.

Remark 3.7.3. If both the cell temperature and pressure are positive, then its density is positive as
well thanks to the equation of state.

Remark 3.7.4. The new presented conditions are compared to the classical material velocity based
CFL number in the next section.

3.7.2 Low Mach number limit

By defining the sound speed
1
c2 = ∂ρ

∂p

∣∣∣∣
s

≈ ∂ρ

∂p

∣∣∣∣
T

, the Helmholtz Equation (3.16) can be rewritten as

pn+1,k
c − pn+1,k−1

c

c2 ∆t − θLapc

(
∆t, pn+1,k

)
= − ρ̃k

c − ρn
c

∆t + (1 − θ)Lapc

(
∆t, p|n−1+θ

n−2+θ

)
− Divc

(〈
Θ
(
ρn, ρn+1,k−1

)
ũk + ∆t

(
∇p|n+θ,k−1

n−1+θ + δfk
)〉

f

)
.

(3.43)

By introducing the Mach number Ma = U

c
with U a characteristic velocity, the order of magnitude of

the first term on the left-hand side is

Ma2 ∆p
ρrU2

ρr

∆t .

In the limit of the zero-Mach number, this term is negligible compared with the first term on the
right-hand side. The Helmholtz equation becomes a Poisson equation, similar to the one used for
incompressible flow with variable density (IPC scheme, see Appendix 3.C).

3.7.3 Local total energy balance

The total energy balance is performed in the interval [n;n + 1, k]. The discrete kinetic energy equation
related to the source term injected in the internal energy equation is recalled (Appendix 3.A):

Θ
(
ρn

c , ρ
n+1,k−1
c

)
|un+θ,k−1

c |2 − Θ
(
ρn−1

c , ρn,k−1
c

)
|un−1+θ

c |2

2∆t + Divc

 |Θ
(
un−1+θ

f , ũk−1
f

)
|2

2 q
f

∣∣∣n+θ,k−2

n−1+θ


+ Gradc

(〈
p|n+θ,k−1

n−1+θ

〉
f

)
· un+θ,k−1

c = −Γp
c |n+θ,k−1

n−1+θ − Γu2/2
c

∣∣∣n+1,k−1

n
,

(3.44)

where

Γp
c |n+θ,k−1

n−1+θ = ∆t
2Θ
(
ρn

c , ρ
n+1,k−1
c

) [∣∣∣∣Gradc

(〈
p|n+θ,k−1

n−1+θ

〉
f

)∣∣∣∣2 −
∣∣∣∣Gradc

(〈
p|n+θ,k−2

n−1+θ

〉
f

)∣∣∣∣2
]
. (3.45)
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Summing the internal and kinetic energies equations ((3.44) and (3.9)) for k ≥ 1 leads to the local total
energy balance between [n;n+ 1, k]:

ρn+1,k−1
c

(
en+1,k

c + θ
|un+θ,k−1

c |2

2

)
− ρn

c

(
en

c + θ
|un−1+θ

c |
2

)
∆t + (1 − θ)ρ

n
c |un+θ,k−1

c |2 − ρn−1
c |un−1+θ

c |2

2∆t

Divc

 |Θ
(
un−1+θ

f , ũk−1
f

)
|2

2 q
f

∣∣∣n+θ,k−2

n−1+θ

+ Divc

(〈
Θ
(
en, en+1,k

)〉
f
q

f

∣∣∣n+1,k−1

n

)
=

Divc

(〈
Θ
(
pn, pn+1,k−1

)
un+θ,k−1

〉
f

)
− Γp

c |n+θ,k−1
n−1+θ + µ(S2

c )n+θ,k−1 + Lapc

(
λ,Θ

(
Tn, Tn+1,k

))
.
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3.8 Verification and Validation

The CPC scheme is verified and validated on different analytical and experimental test cases. Each
numerical study was chosen in order to verify the scheme accuracy and properties related to the indoor
air-flow context. To illustrate this, Table 3.2 shows the different cases used during this important process.
For each study, the reader may find in this section all the information concerning the numerical mesh, the
boundary conditions and other parameters used to perform the simulation. Inner iterations are performed
following an error threshold εpiso0 , that may variate following the test case. Note that this errors differs
from the solver precision, which is related for each solved equation in the sub-iterative process.

Verification case Physical phenomena/property

0-D pressure cooker like system Pressure variation, Mass conservation, Time convergence order

1-D convective flow
Mass and Momentum conservation, Spatial schemes compatibility,

Time convergence order

Shock tube
Discontinuous solutions, Time convergence order,

Total energy conservation

Atmosphere column Reproduction of the pressure variation related to the height

Validation case Physical phenomena/property

Axisymmetric jet 3-D isothermal jet reproduction

Le Queré Cavity Natural laminar convection, Pressure variation

Minibat 3-D turbulent jet reproduction, Buoyant effects, Turbulence

Lock exchange configuration Gravity flow, Incompressible scheme limit

Table 3.2: Different test cases used for the verification and validation related to their represented physical
phenomena and/or properties.

Note that the various verification and validation problems can be classified between the incompressible to
the compressible flow, represented in Figure 3.4. Other flow characteristics (laminar or turbulent, steady
or unsteady) can be found in the figure as well.
The numerical results presented in this section are compared, according to the type of case, to exact,
reference or experimental solutions. For some simulations, an additional comparison between the CPC
scheme and code_saturne’s IPC or IC schemes is made.
In the following simulations, the time step was kept constant and only hexahedral meshes were used.
Moreover, test cases are ran using a constant CFL number; in case of mesh refinement, the time step is
divided as well, according to the latter.
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Figure 3.4: Classification of the studied verification and validation test cases.

3.8.1 Pressure cooker like system

This first verification case is designed to test the time scheme ability to take into account a correct
pressure variation while conserving the system total mass. Physically, this test is based on a pressure
cooker (in the indoor context, the reproduction of the greenhouse effect for instance).

Motivations 3.8.1. This test case is interesting since incompressible pressure correction schemes
which solve a Poisson equation for the pressure usually are not able to reproduce an accurate pressure
and density variation.

The system is composed of a single [1 × 1 × 1]m3 cell, represented in Figure 3.6. The enclosed cell is
heated through its lateral walls while other walls are considered adiabatic i.e. with no heat exchange
with the exterior. Two cases are considered, where the lateral walls boundary condition changes.
First, a constant flux Neumann boundary condition is imposed, allowing to verify the scheme correct
reproduction of the pressure while preserving the system mass. Then, a Dirichlet condition is imposed
and the scheme time convergence rate is studied at a given time and for the two θ values.
For both cases, the initial conditions are T0 = 300 K and ρ0 = 1.177 kg m−3. Thanks to the simplicity
of the problem, an analytical expression is derived from the energy balance for the temperature, pressure
and density. For the Neumann (N) case, the temperature expression reads:

TN(t) = T0

(
1 + t

τ1

)
, τ1 = Ωtot ρ0 cv T0

S Qi
, (3.46)

where Ωtot is the total cell volume, cv is the fluid heat capacity, and S is the total heated wall surface. Qi

is the lateral walls heat flux, equal to 100 W m−2. The temperature expression for the Dirichlet (D) case
reads:

TD(t) = (T0 − Tw) e− t
τ2 + Tw, τ2 = Ωtot ρ0 cv

S h
, (3.47)
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where Tw = 313 K denotes the wall temperature. The interior air heat transfer coefficient h =
30 W m−2 K−1 remains constant. Since the density for both cases is expected to stay constant, the
exact pressure value pi can be expressed as well using the EOS:

pi = ρ0RaTi. (3.48)

For a field ψ, the numerical ψc results are compared to their analytical ψex solution through the L2
relative error norm:

Lerr
2 (ψ) :=

√√√√√√√
1

Ωtot

∑
c

(ψc − ψex)2Ωc

1
Ωtot

∑
c

ψ2
0Ωc

. (3.49)

For all simulations, the time step is set to ∆t = 1 s, with a single inner iteration (εpiso0 = 10−6, but
note that since the zero dimensional system and the absence of velocity, the inner iterations error εk

piso is
zero). The Neumann simulation is ran during 1000 s and the Dirichlet during 0.8τ2 s.
Figure 3.5 shows the density, temperature and pressure errors over time for both CPC and IPC scheme
for the Neumann test case.
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Figure 3.5: L2 error norm of the density, temperature and pressure for the Neumann boundary condition
case. (–) IPC scheme. (–) CPC scheme.
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Figure 3.7: Dirichlet boundary condition case. L2 error norm
for the pressure at t = 0.8τ2 s for a first-order implicit Euler
(θ = 1) and Crank Nicolson (θ = 1/2) time scheme.

It is shown that the presented algorithm takes into account the pressure variation while the cell is heated
(Fig 3.5, black lines) whereas the IPC scheme leads to more important and increasing errors (red lines).
This is an expected result: solving the Helmholtz equation allows the simulation to take into account the
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correct pressure variation. Moreover, the errors are below the solver precision for all variables, fixed as
10−8. Note that the increasing behaviour of all errors can be explained as an accumulation of numerical
truncation errors. For a 0-D case, the scheme was thus able to catch correctly the thermodynamical
variables evolution with negligible density variation.
Figure 3.7 shows the pressure L2 error at t = 0.8τ2 s for the Dirichlet boundary condition study. It
is verified that the first and second order time convergence rates are obtained when θ = 1 and 1/2,
respectively.

3.8.2 1-D Convection verification case

Motivations 3.8.2. This verification case is designed to first verify the scheme mass and momentum
conservation over time and its time convergence order when using the different code_saturne spatial
schemes.

In this case, two studies are made. The domain is a 1-D tube of length L (L = 40 m for the first and
20 m for the second), represented in Figure 3.8. For all simulations, viscous terms are disabled turning
the problem fully convective.

Inlet:


∇p · ex = 0
u = Uin ex

T = Tin

Symmetry:


u · ey = 0
∇(T ) · ey = 0
∇p · ex = 0
∇ (u · ex) · ey = 0

Outlet:

{
∇T · ex = 0
P = p0

ey

ex

Figure 3.8: Sketch of the system with the boundary conditions used.

A first study is made to verify the mass and momentum conservation, using a mesh composed of 40
hexahedral cells. In this context, the temperature inlet boundary condition varies over time as follows:

Tin = 473 K if t ∈ [10, 20[, Tin = 300 K otherwise.

The outlet pressure is set to a reference value p0 and all other walls are considered as symmetries. A
constant inlet velocity Uin = 1 m s−1 and an initial density of ρ0 = 1.177 kg m−3 are set. Mass and
momentum balances are then performed over the entire system and normalised by their initial values
during 100 s as follows:

Iρ =

∫
Ω
ρndΩ +

∫ tn

t=0

∫
∂Ω
ρudSxdt∫

Ω
ρ0dΩ

, (3.50)

Iq =

∫
Ω

(ρu)n−θdΩ +
∫ tn−θ

t=0

∫
∂Ω

(ρuu+ p) dSxdt∫
Ω
ρ0UindΩ

. (3.51)

The conservation of both quantities is tested for θ = 1 and θ = 1/2.
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For each time step, set as ∆t = 0.3 s, five inner-iterations are performed (εpiso0 = 10−7). The results of
this study (Figure 3.9, Figure 3.10) show that the variation of mass and momentum relative to their initial
values are negligible for both simulations, validating their conservation. Note that slight variations are
observed when the inlet scalar condition changes; yet, they can still be neglected given their amplitude.
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Figure 3.9: Mass conservation for the (left) Euler implicit scheme (θ = 1) and the (right) Crank Nicolson
scheme (θ = 1/2).
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Figure 3.10: Momentum conservation for the (left) Euler implicit scheme (θ = 1) and the (right) Crank
Nicolson scheme (θ = 1/2).

The second study consists on verifying the CPC scheme time convergence rate while transporting a
passive scalar for different convective schemes. The scalar is initialised following two different profiles:

Y (x, 0) = Y0 exp(−(x/L− 5)2) and Y (x, 0) = Y0 tanh(x/L− 5),

where Y0 = 1 denotes an initial constant. The source and diffusive terms being disabled, an exact solution
can be derived from its transport Equation (3.52) and compared to the numerical solution through the L2
error norm:

∂Y

∂t
+ Uin

∂Y

∂x
= 0 −→ Y (x, t) = Y (x− Uint, 0). (3.52)

The inlet velocity Uin is set to 0.1 m s−1.
Several mesh refinements are used to study the scheme time convergence rate. The time step is adjusted
so the CFL number is equal to 0.05 and four inner iterations are performed (εpiso0 = 10−7). Table 3.3
summarises the three different types of spatial discretisations for its face value Yf that are tested.
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Name Formula Notation

First Order Upwind Yf :=
{

Yc if Ṁf ≥ 0
Yc̃ else

Upwind

Second Order Linear Upwind Yf :=
{

Yc + ∇cY · IF if Ṁf ≥ 0
Yc̃ + ∇c̃Y · JF else

SOLU

Centered Yf := αcc̃Yc + (1 − αcc̃)Yc̃ Centered

Table 3.3: Different convective space schemes used to compute Yf .
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Figure 3.11: Scalar L2 error norm following the grid refinement for three different convective schemes
for the (left) Gaussian scalar initialisation and (right) tanh scalar initialisation.

At the time t = 45 s, the scalar error L2 norm is studied over the spatial grid refinement. Results (Figure
3.11) show that the scheme converges to the first order when using the upwind scheme for both initial
scalar profiles. When using the centered and SOLU convective schemes, a second order convergence
rate is reached. The scalar profiles over the x axis at the final time are represented in Figure 3.12; one
can see that the upwind simulations led to a more important error that can be explained by the convective
numerical diffusion. This can be observed as well in the errors Figure 3.11.
This 1-D convection setup provided results showing that the scheme is able to verify the conservation
of mass and momentum by the CPC scheme. Its convergence rate while transporting a scalar was also
verified through two scalar profiles and different spatial convective schemes, compatible with the time
scheme.
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Figure 3.12: Scalar profiles at t = 45 s. (Top) Gaussian profile. (Bottom) tanh profile.

3.8.3 Shock tube

Motivations 3.8.3. The aim of this test case is to verify the accuracy and consistency of the scheme
for regular and singular solutions which confirms as well the scheme preservation in fine of the total
energy, which is one of its numerical goals.

Two one-dimensional Riemann problems are considered to verify the scheme accuracy for flows with
shock and rarefaction waves. First, a double symmetric rarefaction wave expansion (Dse) is studied and
then a more irregular configuration (Sod (1978) shock tube).
The computational domain is a tube of length L = 400 m extending from x = −L/2 to x = L/2, the
interface being located at x = 0.
Simulations are carried out on grids with 2m × 800 cells, 0 ≤ m ≤ 6. The initial conditions are
given in Table 3.4; note that a membrane in the middle of the system separates two different fluid states.
Symmetry conditions are imposed on all boundary faces of the computational domain except at the two
end faces of the tube, which are set to be outlets. For each case, the fields L1 error norm (related to
the Riemann problem exact solution ψe (Smoller, 2012) , Equation (4.115)) time convergence rate
α(Lerr

1 (ψ)) is studied for both θ values and for two fluid-velocity based CFL numbers (CFL = 0.04 and
CFL = 1.00).
The convergence rate α(Lerr

1 (ψ)) is calculated using Equation (3.53) applied on the data from the two
most refined meshes simulations for each configuration. Independently of the time step, results are
achieved with 3 inner-iterations (εpiso0 = 10−7).

Lerr
1 (ψ) =

Nc∑
c=1

|Ωc| |ψe(xc) − ψc|

Nc∑
c=1

|Ωc| |ψe(xc)|
, α(Lerr

1 (ψ)) =

∣∣∣∣Lerr
1 (ψ)

∣∣
m=6 − Lerr

1 (ψ)
∣∣
m=5

∣∣∣∣
25600 . (3.53)
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The profiles of the density, temperature, pressure and velocity magnitude are qualitatively studied as
well.

Test ρL[kg m−3] uL[m s−1] pL[Pa] ρR[kg m−3] uR[m s−1] pR[Pa]

Dse 1 -100 100,000 1 100 100,000

Sod 1 0 100,000 0.125 0 10,000

Table 3.4: Initial states for the two one-dimensional Riemann problems used.

Double Symmetric Expansion

Numerical results show that for all fields, the simulation convergence rates are close to 0.8 for CFL =
0.04 (Figure 3.13, and Table 3.5). A slight improvement is observed when θ = 1/2.
For the cases with CFL = 1.00, the theta value has a more important impact on the numerical results:
the convergence rates are higher (close to 1) when using the time staggered scheme.
Figure 3.14 shows the simulation fields at t = 0.3 s so all waves are visible in the computational domain,
for a mesh composed of 3200 cells. The different fields are in agreement with the analytical solution,
confirming the scheme accuracy related to regular solutions.
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Figure 3.13: L1 error convergence for the Dse case using an upwind convective scheme for two values
of CFL and θ.

CFL θ ρ rate u rate p rate T rate

0.04 1.00 0.83 0.83 0.83 0.83

0.04 0.50 0.88 0.88 0.87 0.89

1.00 1.00 0.49 0.73 0.74 0.58

1.00 0.50 0.88 0.91 0.91 0.85

Table 3.5: L1 convergence rates for the Dse case.
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Figure 3.14: Double symmetric expansion wave results at t = 0.3 s using a 3200 cells mesh and with
θ = 1 (–) exact solution (–) simulation.

Sod case

This test case is used to show the importance of adding the source term Γu2/2 to the internal energy
equation. Based on the qualitative numerical results (Figure 3.17), one can notice that without the
source term, even if the pressure, velocity and density values are close to the exact solution, the correct
temperature plateau value is incorrect (Figure 3.17, blue lines). When using the source term (Figure
3.17, red lines), the temperature plateau value is well reached by the simulation, leading to consistent
numerical results.
Table 3.6 shows the fields L1 error convergence rate that are represented in Figures 3.15 and 3.16. For
irregular solutions, it is known that even second order schemes used for compressible flows do not
exhibit second order accuracy. The convergence rates are around 0.5 for the density and temperature
and around 1.0 for the pressure and velocity. They can be actually comparable and are in agreement with
the convergence rates available in the literature for compressible flow solvers (Archambeau et al., 2009;
Colas et al., 2019; Herbin et al., 2020) . Similarly to the previous case, when using the staggered
scheme (θ = 1/2), the overall L1 error for all fields is less important than the one obtained with θ = 1.
Finally, Figure 3.18 shows that for the Sod configuration, the CFL like conditions presented in Section
3.7 are respected and below the speed-based CFL number for both calculations CFL simulations (θ =
1). This is a good point, where for important velocity and pressure jumps, both conditions are less
constraining than the classical one.

77

https://hal.archives-ouvertes.fr/hal-01265395
https://hal.archives-ouvertes.fr/hal-01969129
https://hal.archives-ouvertes.fr/hal-01861734/document


103 104
10−4

10−3

10−2 1/2

1

nsys

L
e
r
r

1
(ψ

)

ρ
T
u
p

(a) CFL = 0.04, θ = 1.

103 104
10−4

10−3

10−2

1/2

1

nsys

ρ
T
u
p

(b) CFL = 0.04, θ = 1/2.

103 104
10−4

10−3

10−2

1/2

1

nsys

ρ
T
u
p

(c) CFL = 1.0, θ = 1.

103 104
10−4

10−3

10−2

1/2

1

nsys

ρ
T
u
p

(d) CFL = 1.0, θ = 1/2.

Figure 3.15: L1 error convergence for the Sod case using an upwind convective scheme for two values
of CFL and θ.

CFL θ Convective scheme ρ rate u rate p rate T rate

0.04 1 Upwind 0.60 0.88 0.86 0.54

0.04 0.5 Upwind 0.59 0.86 0.85 0.53

1.00 1 Upwind 0.65 0.89 0.82 0.54

1.00 0.5 Upwind 0.59 0.90 0.85 0.53

0.04 1 Centered 0.61 0.96 0.92 0.53

0.04 0.5 Centered 0.60 0.95 0.95 0.54

1.00 1 Centered 0.64 0.89 0.82 0.56

1.00 0.5 Centered 0.56 0.90 0.89 0.51

Table 3.6: Convergence rates for the Sod case.
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Figure 3.16: L1 error convergence for the Sod case using a centered convective scheme for two values
of CFL and θ.
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Figure 3.17: Sod case results at t = 0.3 s for θ = 1 using a 3200 cells mesh (–) exact solution (- -)
simulation using the source term Γu2/2 (- -) simulation without the source term Γu2/2 .
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Figure 3.18: New CFL conditions related to the CPC scheme time discretisation for the Sod case and for
two different velocity based CFL simulations, with θ = 1. (Left) CFL = 0.04. (Right) CFL = 1.0.

Remark 3.8.1. This test case could correctly be reproduced by the IC scheme, but an incompressible
scheme wouldn’t be able to correctly simulate the singular solution.

3.8.4 Atmospheric column

Motivations 3.8.4. This test emphasises the potential of coupling indoor and outdoor airflow
simulations using the CPC time scheme. For instance, a good reproduction of the thermodynamical
variables evolution in an atmospheric context is interesting for a micro urban scale simulation.

This case represents an one-dimensional atmospheric column of 100 m height. The numerical
reproduction of the system pressure, temperature and density variation while increasing the altitude is
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tested here. The expected thermodynamic fields expressions are:

T = T0 − g

cp
z,

ρ = ρ0

(
1 − γ − 1

γ

ρ0gz

p0

) 1
γ−1

, and

p = p0

(
1 − γ − 1

γ

ρ0gz

p0

) γ
γ−1

.

(3.54)

T0 = 300 K, p0 = 105Pa and ρ0 = p0/(RaT0) are references values. The system initial fields values
are set according to the expected profiles and the simulation is ran during 50 s with an initial time step
(divided per two for each mesh refinement) equal to ∆t = 1 s. The fields L2 error norm (see Equation
(3.49)) are plotted over time. Moreover, it is verified that no parasite velocities are created and that the
potential temperature (Equation (2.19)) remains constant along the z axis.
Simulations are carried out on three different spatial grids (100, 200 and 400 cells). One inner iteration
is performed (εpiso0 = 10−5). The bottom face is considered as a non-slip adiabatic wall and other faces
are set as symmetries.
Figure 3.19 shows the L2 error norm for the temperature, density and pressure at t = 50 s following
the z axis. First, it is observed that all variables error related to their exact solution are below the solver
precision 10−8 (cells out of the boundaries). Some higher errors exist in the boundary zone.
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Figure 3.19: Fields L2 error norm at t = 50 s according to the height.

Finally, Figure 3.20 represents the potential temperature and the vertical velocity along z at the end of the
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simulation. The left figure shows the correct conservation of the potential temperature over the height.
The right one shows some parasite velocities for all different meshes, but that presents negligible values.
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Figure 3.20: Potential temperature and vertical velocity at t = 50 s according to the height.

3.8.5 Heated cavity - 2-D natural convection

Motivations 3.8.5. This validation case is of great importance since it represents a numerical
benchmark case of natural convection, which is, as presented in the introduction, often present in
indoor environments. Providing results in agreement with the reference emphasises the scheme
application for such systems. A comparison between the IPC and CPC schemes is made.

This natural convection validation case presented in Le Quéré et al. (2005) and studied in Le Quéré et al.
(1992); Vierendeels et al. (1999a); Becker et al. (1999); Darbandi and Hosseinizadeh (2006) focuses
on the heat transfer in a steady flow driven by buoyancy effects.
The corresponding 2-D system of characteristic length L = 0.4603 m is illustrated on Figure 3.24.
The flow is driven by the lateral walls temperature difference, respectively at Th = 960 K and Tc =
240 K. In some situations, a small temperature difference may be modelled using the incompressible
equations and the Boussinesq approximation. In case of a larger difference, the flow shall be considered
as compressible. In this section, only the test case T1 of the reference paper is studied, with Ra = 106

(Equation (3.56)) and constant fluid properties.
The mean Nusselt number

Nu = 1
L

∫ y=L

y=0
Nu(y)dy, (3.55)

evaluated on the cold and hot walls are compared to their referenced values, with:

Nu(y) = L

(Th − Tc)
λ

λ0

∂T

∂x

∣∣∣∣
w

(y),

Ra = Pr
gρ2

0(Th − Tc)L3

T0µ2
0

.

(3.56)

The flow dimensionless variables are:

p̂ := p/p0, û := u/U, v̂ := v/U, and T̂ := (T − Tc)/(Th − Tc),
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where U = α0/L, with α0 = λ0/(ρ0Cp). The initial conditions are p0 = 10.1325 × 104 Pa and
T0 = 600 K. Other walls are considered adiabatic. The following fluid properties are constant: µ0 =
1.68 × 10−5 kg m−1 s−1 and λ0 = µ0γRa/((1 − γ)Pr), with Pr = 0.71 and Ra = 287 J kg−1 K−1.
All simulations are performed with θ = 1 (steady solution) and 2 inner iterations (εpiso0 = 10−5).
First, a mesh sensitivity study is performed and shown in Figure 3.21 (b). Beyond 740×740 cells, the
Nusselt number have negligible variation. Thus, only results obtained with this mesh (Figure 3.23, (b))
are discussed. The corresponding time step for the mesh is ∆t = 0.0025 s. The steady state, represented
in Figure 3.22, is reached after approximately 10 s of simulation (Figure 3.21, (a)). One can see that
the wall temperature difference causes a non symmetric flow, with a consequent temperature gradient.
Similarly to the first verification test case, the mean cavity density remains constant over time (Figure
3.21, left, continuous line), while the other thermodynamic fields converge to their steady solution.
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Figure 3.21: (a) Relative domain-averaged quantities ψ/ψ0 over time (b) Nusselt number over the non
adiabatic walls for different mesh refinements; the hot and cold walls are represented by red and black
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Figure 3.22: Steady fields at the final time of simulation for the 740 × 740 cells mesh.

Figure 3.24 compares some temperature iso-contours over the cavity for the presented algorithm to the
reference results (Darbandi and Hosseinizadeh, 2006) , which are very similar.
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presented results.

Table 3.7 compares the CPC and IPC schemes mean Nusselt number and mean pressure value against the
reference ones (Le Quéré et al., 2005) . The pressure variation is well reproduced by the CPC algorithm
in the heated cavity, where its mean value reaches the expected reference value of 0.856. This is not the
case for the IPC scheme due to the lack of pressure variation (and possibly a variation of density).
Moreover, the mean Nusselt numbers of both walls are in agreement with their expected values of 8.86
(see Figure 3.23 (a) for the Nusselt number profiles over the two given walls). This is directly linked to
the correct shape of the vertical and horizontal velocity profiles over the cavity, as shown in Figure 3.25,
and the steady problem behaviour.
As observed in the pressure cooker test case (3.8.1), the present comparison clearly shows that the
thermodynamic pressure variation and wall heat fluxes are well reproduced and not negligible for natural
convection.
To conclude on this case, the simulation results showed that the proposed scheme can be as accurate as
other numerical methods (Le Quéré et al., 1992; Becker et al., 1999; Le Quéré et al., 2005; Vierendeels
et al., 1999b) , which are known to predict correct natural convection solutions. Additional
comparisons are made in Table 3.8 between the CPC and the literature reference results.

IPC scheme CPC scheme Ref (Le Quéré et al., 2005)

Nuw 9.689 8.859 8.860

p̂ 1.000 0.855 0.856

Table 3.7: Comparison between the mean Nusselt numbers and total pressure ratio with the reference
values from Le Quéré et al. (2005). Results from the mesh simulation of a converged 740×740 cells for
both CPC and IPC schemes.
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Figure 3.24: (Left) Sketch of the system. (Centre) Steady state dimensionless temperature t̂ iso-
contours. (Right) Steady state dimensionless temperature T̂ iso-contours, reference from Darbandi and
Hosseinizadeh (2006).
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Figure 3.25: Distribution of the velocity on the centrelines of the convective cavity compared to the
reference (Darbandi and Hosseinizadeh, 2006).
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3.8.6 Lock exchange case

Motivations 3.8.6. Here we aim to validate the numerical scheme related to an incompressible test
case, where the flow is only driven by the gravity. Numerical results are compared to reference results
and to both IPC and IC schemes.

This case focuses on a two dimensional gravity current flow in a lock exchange configuration. The
system is a rectangular cavity of height 2L and width 30L, with L = 1 m the half-height of the cavity
(see Figure 3.26 for the system sketch). The temperature difference ∆T = 2 K between the heavy and
light fluids, respectively at Tc (on the right) and Th (on the left), drives the flow. An adiabatic non slip
condition is imposed to the top and bottom walls while others are treated as symmetries.

x
Light fluid Heavy fluid

z

g

30 L

2 L

Figure 3.26: Sketch of the lock exchange system.

The Grashof number describing the flow is

Gr = gβ∆TL3

ν2 = 1.25.106.

The dimensionless time is denoted by t+ = tU
L , where U =

√
β∆TgL and β = 2/(Th + Tc).

A LES simulation is performed using a mesh with 768 × 91 cells based on the reference paper (Härtel
et al., 2000) , with ∆t = 0.017 s. 2 inner-iterations are performed by time-step (εpiso0 = 10−6) and
θ = 1/2 (we focus on a unsteady flow, thus using the staggered scheme is of interest).
The CPC simulation numerical density isolines (10 contours linearly separated from the minimum and
maximum densities) at respectively t+ = 10 and 20 are compared with the 2D DNS (Härtel et al., 2000)
and LES (Ooi et al., 2007) reference results.

Moreover, both IC and IPC code_saturne algorithms are tested as well using the LES approach. Figure
3.27 shows the temperature evolution over time at the centre of the system for the CPC simulation.
Symmetric structures can be observed induced by the buoyant flow effects.
The results presented in Figures 3.28 and 3.29 show the different density isolines, for the reference papers
and code_saturne simulations at t+ = 10 and 20.
One can observe that both IPC and CPC simulations led to similar density isolines compared to the
references. As expected, due to its isentropic pressure step, the IC time scheme was not able to reproduce
correctly the flow structures.
Such results emphasise the ability of the proposed algorithm to reproduce incompressible and compress-
ible flows.
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Figure 3.27: Zoom at the temperature evolution at the center of the system along time.
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(a)

(b)

(c)

(d)

(e)

Figure 3.28: Density isolines at t+ = 10. (a) Reference (Härtel et al., 2000), DNS simulation. (b)
Reference (Ooi et al., 2007), LES simulation. (c) CPC scheme, LES simulation. (d) IPC algorithm, LES
simulation. (e) IC algorithm, LES simulation.
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(a)

(b)

(c)

(d)

(e)

Figure 3.29: Density isolines at t+ = 20. (a) Reference (Härtel et al., 2000), DNS simulation. (b)
Reference (Ooi et al., 2007), LES simulation. (c) CPC scheme, LES simulation. (d) IPC algorithm, LES
simulation. (e) IC algorithm, LES simulation.
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3.8.7 Axisymmetric jet

Motivations 3.8.7. In order to perform LES simulations on a more complex ventilation validation
case, a 3-D axisymmetric jet is studied and a mesh analysis is made. The goal is to determine,
given the jet Reynolds number, the required mesh refinement to get accurate numerical results for
an axisymmetric jet.

This case, based on Lee et al. (2003) , focuses on reproducing the jet decay by studying the evolution of
the centerline velocity u/Uin. Uin = 1 m s−1 is the inlet (circle with a diameter ofDin = 0.5 m) velocity
and u the maximal jet velocity given a vertical profile on the non dimensional axial coordinate x/Din.
The jet turbulent length scales are analysed in order to have an idea of the required mesh refinement
on the more complex Minibat jet case that follows in this chapter. The fluid considered here is water

x

z y

L = 10m ∅ = 10m

outlet

inlet

Figure 3.30: Setup sketch

and the jet Reynolds number is Re = 5.62.104 (close to the next case Reynolds number). The system,
reproduced in Figure 3.30, is an extruded cylinder of length L = 10 m and diameter of 10 m, the outlet
being the entire circle of diameter 10 m at x = 10 m. For all simulations, the time step is set so the
CFL condition is equal to the unity related to the inlet velocity and two inner iterations are performed
(εpiso0 = 10−6).
A first RANS k − ε simulation is realised with a 7.6 105 cells mesh (∆x = 10 cm), to compute the
flow turbulent spatial integral and Taylor length scales (Figure 3.31). The Kolmogorov scale could be
represented as well but we assume that this scale should not be taken into account by the mesh refinement
(due to computational costs). The mesh used for this case is represented in Figure 3.32, (a).
A mesh sensibility analysis is then made on u/Uin where a LES simulation is performed for three
different meshes during 500 s (∆x = 10 cm, ∆x = 5 cm and ∆x = 2.5 cm corresponding respectively
to 7.6 105, 6.1 106 and 4.8 106 cells), to achieve converged time averages (the 100 last seconds are
averaged). A focus is made on the axial spatial step. Note that this jet is isothermal; no density variation
is considered. Figure 3.33 presents for the different meshes the velocity decay when increasing the axial
distance related to the inlet.

Remark 3.8.2. The numerical value of u/Uin is computed from a time averaged velocity profile (see
Figure 3.34 to see the average velocity field).

Results show that for the most refined mesh, corresponding to the half (between the minimum and
maximum values) of the Taylor turbulent length scale, the jet decay is close to the experimental one.
This conclusion must be kept in mind while designing the next test case mesh.
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Figure 3.35 shows the evolution of the jet diffusion over the system along time for the most refined mesh
(i.e. ∆z = 0.025 m, 32 106 cells). Figure 3.34 shows the average velocity magnitude at the final time
of simulation. From the three figures, one can identify the different theoretical jet regions presented
in Subsection 2.2.7. Close to the inlet, the centerline velocity remains equal to the initial one (plateau
value in Figure 3.33), denoting the core jet region. Around x/Din = 5, a decay region begins where
the velocity starts decreasing, corresponding to the axisymmetric zone. The decay is proportional to the
axial distance from the inlet, which is in agreement with jets similarity theory. Note that the study did
not focus on the terminal zone, since no experimental data were available for larger x values.

(a) Integral scale

(b) Taylor scale

Figure 3.31: Jet turbulent length scales from the RANS simulation. (a) Integral scale (b) Taylor scale.

(a) (b)

Figure 3.32: Different meshes used (a) 10 cm axial spatial step (b) 5 cm axial spatial step.
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Figure 3.33: u/Uin along the axis x for the k − ε and LES different mesh refinements.

Figure 3.34: Time averaged velocity magnitude at t = 500 s for the most refined mesh.
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(t= 62.5 s)

(t= 125.0 s)

(t= 500.0 s)

Figure 3.35: Velocity magnitude at different times for the most refined LES simulation.
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3.8.8 Minibat: 3-D iso and anisothermal jets

Motivations 3.8.8. This is the last validation case related to the dry air scheme. Simulations are
carried out on both isothermal and anisothermal ventilation jets in a studied room. We want to compare
as well the accuracy of the different first and second order turbulent approaches.

This test case represents the most complex validation case for the dry air time scheme. The Minibat
(Kuznik, 2005) experimental configuration represents something common in the real habitations,
ventilation. The goal of this study is to compare dynamic and thermal numerical results to experimental
data, presented by Gresse et al. (2020) . Even if the system geometry (shown in Figure 3.37) appears
simple, several studies have shown the difficulty in predicting the flow mean and instantaneous quantities
(Kuznik et al., 2006, 2007) . RANS simulations, using the k−ε andRij −ε approaches were compared
to LES simulations; results showed an increasing difference between numerical and experimental results
when studying more distant fields profiles to the jet inlet.
Our goal is to validate the CPC scheme related to three different jets. First, an isothermal (I) jet is studied,
without the complexity related to the thermal buoyant effects. Then, a hot (H) and a cold (C) jets are
studied.

Experimental setup

The following is based on Kuznik (2005).
The system is an enclosure of [3.1 × 3.1 × 2.5] m, represented in the Figure 3.37. Five of its walls are
thermally isolated. The south wall is in contact with a climatic chamber allowing its temperature to be
set between 263 K and 313 K. The walls thermal isolation is made using an optimal air circulation. The
ceiling is made of plaster and glass wool. The floor is made of aerated concrete and other walls are made
of wood and plaster.
The inlet airflow is generated by a centrifugal ventilation fan. The inlet duct geometry (Figure 3.38,
left) is chosen in order to generate an axisymmetrical jet, commonly found in ventilated rooms. The air
extractor is located on the lower part of the east wall.
To do the boundary conditions measurements, nine thermocouples were placed on each wall (Figure
3.36). The inlet and outlet mass flow are measured with two flowmeters. The air thermal measures
were made with three miniature Pt100 thermoprobes with a resolution of ±0.2 K. A DANTEC 55R91 is
used for the measurement of the three instantaneous velocity components. The uncertainty on the mean
velocity measurements is of 0.5 m s−1.
Many mean quantity profiles were measured; the temperature ones were determined by averaging the
measures over an acquisition time of 15 s and the mean velocity were calculated from a total of 1.5 105

samples corresponding to an acquisition time of 30 s. Note that these acquisition times were in agreement
with the physical characteristic times (Kuznik, 2005) . Finally, the Reynolds stresses were calculated
from the measured velocity variances, with a relative uncertainty of 6%.

Remark 3.8.3. The experimental uncertainties presented in the paragraph above are accounted in the
comparison between the numerical and experimental data.

Further information on the configuration and the experiment conditions can be found in Gresse et al.
(2020) and Kuznik (2005) .
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Figure 3.36: Wall thermocouples location for the temperature measurements (from Kuznik (2005)).

Simulations settings

In the experimental configuration and first simulations carried by Kuznik (2005) , an inlet duct was
considered, represented in Figure 3.38. A consequent work was made to reproduce correctly the inlet
jet conditions according to the experimental setup and data. Two different systems were studied in the
manuscript: the first takes into account the whole system geometry, including the inlet duct and the
second one uses a radial interpolation on the inlet experimental measurements to define the room inlet
conditions. Appendix 3.F presents the detailed content concerning the inlet interpolation. Appendix 3.G
provides the main reasons concerning the choice on the system inlet treatment. Only the second system,
which uses the experimental interpolation of the velocity, temperature and turbulent kinetic energy at the
inlet faces is used in this section.

Remark 3.8.4. Only velocities, temperature and the components of the turbulent Reynolds stress
tensor are available in the experimental database.

To illustrate this interpolation, the resulting 2-D inlet velocity field for the jet (I) is shown in Figure 3.39.
One can see that as a direct consequence of the experimental inlet duct, the flow deviates along the x
axis, making the jet non-symmetric.
The system walls are considered with no slip and with a Dirichlet condition on the temperature. Table
3.9 shows for each jet case these conditions. The outlet is set as a free inlet outlet.
A first hexahedral mesh (Figure 3.40) composed of around 106 cells was created based on the reference
system using the Salome platform with a refinement in the inlet zone.
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Figure 3.37: System geometry and location of the horizontal and vertical line segments where the
numerical and experimental results are compared.

Figure 3.38: Inlet geometry used for the experimental measurements and simulations in the reference
work (from Kuznik (2005)).

Jet south north east west ceiling floor Tin Uin[m s−1]

Isothermal 295.6 295.6 295.5 295.5 295.6 295.7 294.98 2.96

Hot 295.2 296.3 296 296.1 297.3 296 304 1.3

Cold 295.1 294 294.2 294.2 294.1 294 285.6 1.7

Table 3.9: Boundaries conditions for three studied jets. All units are in K except the mean inlet velocity
Uin.
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Figure 3.39: Quiver plot representing the velocity field interpolation over the inlet faces.

Figure 3.40: Example of hexahedral mesh used for the simulations.

The dynamic quantities such as the velocity magnitude, the Reynolds tensor components and the
temperature are compared to their experimental values at the different vertical and horizontal profiles
defined along the y axis, represented in Figure 3.37. However, before doing this comparison, some
preliminary simulations on the jet (I) are performed to evaluate important elements related to a CFD
study:

The simulation convergence in time.

The inlet condition on the turbulent kinetic energy dissipation rate.

The numerical results’ mesh sensitivity.

Finally, three turbulent approaches are tested for the three different jets and the aforementioned
dynamic and thermal numerical quantities are compared to the experimental data.
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Preliminary simulations

For the isothermal jet (I), preliminary simulations are run using the k−ε model. The inlet kinetic energy

k is calculated through a polar interpolation of
3∑

i=1

1
2Rii from the experimental data.

Keeping the one million cells mesh, a first long simulation is run in order to study the steady state
convergence for a RANS method.
The velocity magnitude is studied during 400 seconds of simulation. The time step is set as ∆t = 0.005 s
and two inner iterations are performed (εpiso0 = 10−8). 6 different monitoring probes are defined at
x = 1.55 m following the jet diffusion at y = 0.9, 1.5 and 2.4 m. For each y value, two probes are
placed in two jet zones as represented in Figure 3.41, right. In the same figure on the left, one can see
that a semi steady state is reached after approximately 300 seconds. Moreover, the more distanced probes
present a larger velocity absolute variation.
It is fixed for the preliminary studies that the global variables will be analysed after an averaging time
starting from 300 s until the end of the simulation for the jet (I) (taken at 330 s).
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Figure 3.41: Isothermal jet. (Left) Velocity magnitude evolution over time at the six monitoring probes.
(Right) Probes location.

From this first simulation, it was observed that the jet decay and diffusion were over estimated; one
possible reason is that the inlet conditions were not properly reproduced.
The only field with no experimental data avalaible for a k − ε simulation is the turbulent kinetic energy
dissipation rate εin. The expression for this quantity, also used in the reference Kuznik (2005) is first
set as:

εin(r) = 1
κ
µ2/3 k3/2

R− r + 0.2R = ε0(r), (3.57)

with κ = 0.41. Before doing any further study, it is decided to run a parametric study on the inlet
εin value. Since it was observed that the jet dissipation was too important using Equation (3.57), an
hypothesis is made that the jet is more turbulent than it should be. Thus, several k − ε simulations are
performed, where the inlet ε expression (3.57) is multiplied by 2, 5, 7.5 and 10.
Figure 3.42 shows the velocity magnitude for three vertical line segments for this study. It is clearly
visible that the inlet epsilon boundary condition impacts the jet diffusion as presumed. While imposing
εin = 2ε0 as inlet condition led to an important jet diffusion (one can see that at y = 1.5 m, the
numerical profile is less important than the experimental one), the simulations above 5ε0 underestimate
the jet diffusion.
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Figure 3.42: Isothermal jet. Profiles of the velocity magnitude at the vertical line segments for different
inlet epsilon values.

Figure 3.43 presents the velocity magnitude horizontal profiles for the parametric study. Globally, the
simulation with 5ε0 led to the closer results regarding the expected experimental ones. Nevertheless, all
simulations above 2ε0 overestimated the velocity amplitude on y = 0.9 m. Moreover, in the horizontal
profiles, the velocity for the simulation with εin = 2ε0 presents smoother velocity profiles.
It is complicated to conclude on which value of εin to take. On the one hand, a higher dissipation led
to overall better vertical profiles for high y values. On the other hand, it overestimated the velocity
for small y values. The choice of keeping εin = 2ε0 for the next simulations is made; maybe the jet
diffusion comes rather from the k− ε model (which is known to be more diffusive than other turbulence
approaches) than the inlet kinetic energy dissipation itself.

Remark 3.8.5. Since the experimental data provides values for the Rij components, no model for
the inlet ε is needed for the RSM and LES simulations.

Now that the simulation convergence and inlet ε profile are studied, a sensitivity mesh analysis can be
realised.
The initial 106 cells mesh is refined to respectively a 8.106 and 60.106 cell meshes. The main objective
is to find a correct mesh refinement, coherent with the previous validation case and computationally
affordable. Only the velocity magnitude profiles are studied for the moment.
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Figure 3.43: Isothermal jet. Profiles of the velocity magnitude at the horizontal line segments for different
inlet epsilon values.

Figure 3.44 shows the velocity magnitude on the horizontal and vertical profiles for the isothermal jet as
the distance to the inlet increases.
Globally, the numerical results are close to the experimental ones and very little difference exist between
the different mesh refinements. Moreover, simulations did not catch correctly the light jet deviation,
noticeable on the horizontal velocity profiles.
The more refined mesh simulation is also used to compute the turbulent length scales related to the
Minibat configuration. The integral and Taylor scales are represented respectively in Figures 3.45 and
3.46. The purpose is to set a minimal mesh refinement for the LES simulation. Indeed, in order to have
consistent results, the mesh should be able to solve at least the half of the Taylor scale, as shown in the
last validation case.
In both figures, isolines of the integral and Taylor scales are presented as well. If one wants to solve half
of the Taylor scale, then the axial spatial step in the jet axis direction y should be around 2 cm. The first
mesh composed of 106 cells has a spatial step of 0.027 m in the y axis, which is not enough refined to
perform LES simulations. The second mesh has a spatial step of 0.0135 m, which should be able to solve
this length scale.
Moreover, given the little variation of the numerical results and the rise of computational time between
the second and third mesh simulations, the choice of keeping the second mesh, composed of 8 106 cells,
is made for the next simulations.
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Figure 3.44: Profiles of the velocity magnitude at the vertical and horizontal line segments for different
mesh refinements.
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Figure 3.45: Isothermal jet. Turbulent integral length scale represented at 330 s of the k − ε simulation
using the 60.106 cells mesh. Isolines are spaced by 0.1 m.

Figure 3.46: Isothermal jet. Turbulent Taylor length scale represented after at 330 s of the k−ε simulation
using the 60.106 cells mesh. Isolines are spaced by 0.01 m.
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Turbulent approaches comparison

The preliminary simulations provided us essential information concerning the problem steady state,
inlet boundary condition and mesh refinement regarding the isothermal jet Minibat configuration. Now,
different turbulent approaches comparison is made. Keeping the same profiles over both x and z axis, a
k − ε, Rij − ε and LES simulations are performed for the three different jets.
The Rij simulation uses the SSG and Shir model and the LES the dynamic Smagorinsky model.
Simulations of a constant CFL = 0.8 are performed during 330 s. Two inner iterations (εpiso0 =
10−8) are ran. The quantities of interest (velocity magnitude, Reynolds stress tensor components and
temperature) are averaged during the 30 last seconds of simulation to be consistent with the experimental
data sampling.
For the LES simulation, θ = 1/2 and for the RANS simulations, θ = 1. A system initial velocity equal
to zero is considered.
Lastly, the Lumley triangle is plotted for each simulation (see Appendix 3.H for further details on the
invariants calculation) and compared to the experimental ones from Kuznik (2005) . To do so, the
invariants are calculated using 1000 samples from the vertical profiles at y = 0.6, 0.9, 1.2 and 1.5 m,
from z = 2 to 2.5 m.

Jet (I)

For a qualitative comparison, the averaged velocity profile is compared for all simulations at their final
time step. Figure 3.47 shows that there is no important differences in the average velocity field between
all simulations for the represented view. However, small differences can be observed quantitatively.
Figure 3.48 shows the different velocity magnitude profiles over the presented vertical and horizontal
segment lines for the three simulations. The k − ε and Rij simulations underestimate the velocity
magnitude as the distance to the jet inlet increases. The LES simulation leads to a less important jet
diffusion, resulting on larger profiles in both directions, notably by overestimating the velocity magnitude
at y = 0.9 m. However, the vertical and horizontal profiles at y = 1.5 m are better reproduced. Globally,
any simulation was able to reproduce the jet shift correctly.
Figures 3.49, 3.50 and 3.51 present the horizontal and vertical Rii profiles for respectively y = 0.6 m,
y = 0.9 m and y = 1.5 m.
At y = 0.6 m, while the Rij and k − ε simulations correctly reproduce the experimental data (which
is expected, since their values are set in the inlet condition), the LES simulation does not. This can be
explained by the non-use of any turbulence generation technique, such as the synthetic eddy method
(SEM, Jarrin et al. (2006) ). As shown in Appendix 3.I, the use of the SEM led to Rii profiles in
agreement with the expected data for small y values, but also to an important diffusion of the jet. Note
that globally the Rij simulation is slightly more precise than the k − ε.
As the distance to the jet inlet increases, at y = 0.9 m, turbulence is created in the LES simulation,
but the Rii profiles still underestimate the experimental ones. In the other hand, the k − ε simulation
reproduces well the R11 and R33 profiles, but underestimates the R22 ones.
Finally, for the last figure, the k − ε simulation led to an overestimation of the R11 and R33 values and
an underestimation of the axial component. The LES profiles are no longer below the experimental data,
slightly overestimating it for all three components. Lastly, the Rij simulation provided the most accurate
profiles. Indeed, the global shape and profiles amplitude are close to the measurements. Transporting
the Reynolds stress tensor components led thus to the better reproduction of the Rii profiles, with a good
accuracy from small to high y values.
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(a) k − ε (b) Rij − ε

(c) LES instantaneous (t = tmax) (d) LES averaged

Figure 3.47: Isothermal jet. Velocity magnitude field over the axis x = 1.55 m for the three simulations.

Figure 3.52 shows the Lumley triangles for the jet (I) for each simulation. The experimental triangle
provides some information concerning the jet turbulent structure; an axysimmetrical expansion in the
cigar form tending to an one dimensional turbulence. The Lumley triangles from the three simulation are
very distinct. The k−ε andRij simulations show two categories of turbulence (axysimmetrical expansion
and contraction), the LES one tend to a more one dimensional turbulence, closer to the experimental
triangle.
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Figure 3.48: Isothermal jet. Velocity magnitude profiles over the vertical and horizontal segments lines.
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Figure 3.49: Isothermal jet. Rii value at y = 0.6 m at the vertical and horizontal Minibat profiles.
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Figure 3.50: Isothermal jet. Rii value at y = 0.9 m at the vertical and horizontal Minibat profiles.
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Figure 3.51: Isothermal jet. Rii value at y = 1.5m at the vertical and horizontal Minibat profiles.
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Figure 3.52: Lumley triangles for the isothermal jet case. Top left: experimental. Top right: k − ε.
Bottom left: Rij − ε. Bottom right: LES simulation.
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Hot jet (H)

The same type of study is performed with the hot jet. Simulations are carried out with the 8 106 cells
mesh. However, this time the quasi-steady state is reached after about 600 s for the velocity and after
900 s for the temperature (see Figure 3.53 for the monitoring probes fields evolution). Thus, simulations
are performed until 930 s, with an averaging process between 900 and 930 s. The average velocity
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Figure 3.53: Velocity and temperature over time on the different monitoring probes for the hot jet case.

magnitude (Figure 3.54) and temperature (Figure 3.55) are studied over the vertical and horizontal
profiles.
Globally, concerning the velocity magnitude profiles, the numerical results are in agreement with the
expected ones. Yet, at y = 0.9 s, the k − ε and LES simulation underestimates the jet diffusion. At
y = 1.5 m, both perform better; the LES simulation profiles are the closest to the experimental data. The
Rij simulation seems to underestimate the jet velocity.
Concerning the temperature profiles, some similarities are observed related to the dynamic profiles.
While all simulations overestimate the temperature at y = 0.9 m, the LES simulation performed better
at y = 1.5 m.
Figures 3.58, 3.59 and 3.60 present the numerical Rii profiles as the distance to the jet inlet increases for
the three simulations. At y = 0.6 m, only the Rij simulation provided results close to the experimental
one. For the LES, this is understandable given the inlet turbulent conditions. For the k − ε simulation,
this means that the model has decreased the jet turbulence imposed at the inlet faces.
At y = 0.9 m the turbulence starts to be developed for the LES, but the profiles still underestimates the
Rii components. The Rij profiles are globally better than the k− ε ones, except for the axial component
R22 which is importantly overestimated. This may be the numerical reason of the Rij simulation
overestimation of the jet diffusion at y = 1.5 m. At this distance, the numerical simulations can hardly
reproduce the experimental profiles. For the R11 component, the vertical profile is underestimated and
the horizontal one slightly overestimated. The Rij simulation led to an underestimation of all quantities.
The Lumley triangles are represented in Figure 3.61. The expected triangle presents a turbulent
axysimmetrical expansion (cigar shape) and contraction (pancake shape), with a clear separation between
the two types of turbulent structures. This is correctly reproduced by the k − ε and the Rij simulations.
In this test case, even if the LES simulation led to a bad reproduction of the Rii components and Lumley
triangle, the global averaged dynamic and thermal profiles were better reproduced, compared to the two
other turbulence approaches. Quantifying the impact of the instantaneous velocities on the averaged
quantities may be an interesting subject for further investigations.
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Figure 3.54: Hot jet. Velocity magnitude profiles over the vertical and horizontal segments lines.
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Figure 3.55: Hot jet. Temperature magnitude profiles over the vertical and horizontal segments lines.
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Figure 3.56: Hot jet. Velocity magnitude umag = 0.4 m s−1 isoline for all three hot jet simulations. In
blue, the k − ε simulation, in orange, the Rij and in green the LES.

Figure 3.56 presents the velocity magnitude umag = 0.4 m isoline for the three hot jet simulations.
While the LES simulation presents the less important jet diffusion, the Rij is the turbulent approach that
diffused it the most. All simulations seem to reproduce the buoyant effects on the flow. Lastly, these
results are in agreement with the presented velocity profiles.
Finally, a comparison is made on the simulation computational time between the IPC and CPC schemes.
Figure 3.57, left, shows that the CPC scheme leads to a total time per iteration smaller than the IPC
(an average of 75% of the IPC time for each iteration). Figure 3.57, right, shows the absolute time per
iteration for the CPC simulation. This difference of simulation time can be explained by a faster solving
of the numerical system, notably with the solve of the Helmholtz equation for the pressure, where the
diagonal terms were reinforced.
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Figure 3.57: (Left) Ratio (CPC/IPC schemes) of the total time per iteration for the hot jet k−ε simulation.
(Right) Absolute total time per iteration for the CPC scheme.
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Figure 3.58: Hot jet. Rii components at y = 0.6 m for the vertical and horizontal profiles.
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Figure 3.59: Hot jet. Rii components at y = 0.9 m for the vertical and horizontal profiles.
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Figure 3.60: Hot jet. Rii components at y = 1.5 m for the vertical and horizontal profiles.
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Figure 3.61: Lumley triangles for the hot jet case. Top left: experimental. Top right: k − ε. Bottom left:
Rij − ε. Bottom right: LES simulation.

Cold jet (C)

Finally, a cold jet is studied to conclude the turbulent approaches comparison. The CPC scheme
numerical results are compared to the experimental data and to the k − ε and Rij − ε simulations
performed in Kuznik (2005) . In Figure 3.62 are represented the evolution of the velocity magnitude
and temperature among time for the 6 probes previously defined. The amplitude of variation of both
quantities are more important than for the jets studied before. However, after 400 s of simulation a
pseudo-steady state seems to be reached, which is set for this jet study as the starting averaging time,
which lasts 30 s.
A qualitative representation of the velocity magnitude isoline umag = 0.15 m s−1 is represented in Figure
3.63. One can see that the jet cold temperature impacts importantly its diffusion. Simarly to the hot jet,
the LES simulation led to the less diffused jet while the k − ε diffused it the most. Moreover, Figure
3.63, right, shows that the k − ε approach was not able to reproduce correctly the jet shift, which should
be confirmed in the quantitative comparisons presented hereafter.
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Figure 3.62: Velocity and temperature at the monitoring probes for the cold jet. The k − ε model was
used.

The velocity magnitude profiles are represented in Figure 3.64. Compared to the other jets, all vertical
and horizontal CPC numerical profiles are close to the experimental ones, except for the horizontal profile
at y = 1.5 m. One can highlight that the LES simulation even reproduced the jet shift at y = 0.9 m.
However, the vertical thermal profiles (Figure 3.65) underestimate the minimum temperature, which is
also the case of the two reference simulations. Globally both references and CPC simulations led to
similar temperature profiles, except for the horizontal one at y = 1.5 m.
Similarly to the previous jets, the Rij − ε simulation reproduced better the Rii profiles for small y values
and the LES performed better at y = 1.5 m. Still, any simulation was able to accurately reproduce the
horizontal Rii profiles at this distance of the inlet (Figures 3.66, 3.67, 3.68).
The experimental Lumley triangle (Figure 3.69) describes a two dimensional turbulence, hardly
reproduced by the three different simulations, with the LES triangle being the closest one to the
experimental. Globally, it can be observed that each turbulent approach leads to a type of Lumley
triangle, for all jets. While for a k − ε model, the turbulence presents both an asymmetrical expansion
and contraction, the Rij − ε model usually has a majority of points close to the expansion. The LES
at its turn tends to the one dimensional turbulence, with still some points in the contraction zone. From
the three approaches, the k − ε is the closest to the isotropic turbulence, which is in agreement with
the theory. Moreover, the reference k − ε and Rij simulations triangles (Figure 3.70) may confirm the
aforementioned conclusion.

one

Figure 3.63: Velocity magnitude isoline umag = 0.15 m s−1 for all three cold jet simulations. In blue,
the k − ε simulation, in orange, the Rij and in green the LES.
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Figure 3.64: Cold jet. Velocity magnitude profiles over the vertical and horizontal segments lines.
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Figure 3.65: Cold jet. Temperature profiles over the vertical and horizontal segments lines.
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Figure 3.66: Cold jet. Rii components at y = 0.6 m for the vertical and horizontal profiles.
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Figure 3.67: Cold jet. Rii components at y = 0.9 m for the vertical and horizontal profiles.
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Figure 3.68: Cold jet. Rii components at y = 1.5 m for the vertical and horizontal profiles.
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Figure 3.70: Lumley triangles from Kuznik (2005) for the cold jet case. (Left) k − ε simulation. (Right)
Rij − ε simulation.
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3.9 Summary

This chapter presented a numerical time scheme designed to answer the physical and numerical stakes
aforementioned related to indoor simulations.
More precisely, a second-order accurate conservative scheme for variable-density flow was developed as
an extension of the work of Pierce et al. (Wall et al., 2003) The staggered time variable arrangement
is used but for the finite volume discretisation. an Helmholtz equation is solved in the correction step.
This allows the thermodynamic pressure variation to be considered while avoiding a time-step restriction
linked to the acoustic waves. Further, the use of the internal energy equation supplemented with a
kinetic energy-based source term, presented by Herbin et al. (2020) , was extended for the proposed
sub-iterative algorithm architecture. Hence, shock solutions were well reproduced by simulations.
After implementation in the CFD solver code_saturne, the time scheme accuracy and properties were
verified and validated against the analytical solutions and experimental values of various compressible
and incompressible flows related to the indoor environment.
First, we showed that the scheme can accurately consider pressure variations while conserving the
mass. The second order accuracy was then achieved, and the conservation of mass and momentum
were ensured in an one-dimensional convection test case. Moreover, the proposed method provided
consistent solutions for regular and irregular shock problems, even for a material velocity-based Courant
number equal to one. Two new CFL-like conditions to ensure the positivity of the pressure, temperature
and density were provided and shown to be less constraining than the classical CFL condition during the
verification process. For the validation process, a natural convection benchmark case was used, where
the scheme provided results in agreement with the reference. A comparison between the presented
time algorithm and one using a Poisson equation in the correction step emphasised the importance of
considering the thermodynamical pressure during this crucial scheme step in order to reproduce such
phenomena correctly. Finally, RANS and LES turbulent simulations were performed on a 3D ventilation
geometry, emphasising the potential of the scheme for tertiary studies. In this test case, three different
turbulent approaches were tested. Globally, the numerical results tend to underestimate the jet dynamics
as the distance of its inlet increases. Nevertheless, the LES provided slightly more accurate profiles
related to the experimental ones, notably by better catching the jet deviation, even without turbulence
generation in the inlet faces. It is interesting to highlight as well that the CPC scheme led to faster
simulations related to an incompressible scheme (about a quarter of reduction of the computational time).
Note that all developments were made considering the flow composed only of dry air. Thus, the next
chapter will focus on the extension of the presented algorithm to moist air, notably with phase change.
Also, it may be interesting to push the verification and validation processes of this numerical scheme to
high Mach number flows to test it accuracy related to more complex compressible problems. Testing it
as well on a atmospheric application and compare it to the existing code_saturne atmospheric module
would be useful to evaluate its ability to perform in and outdoor flow simulations. Moreover, natural and
forced convection were studied separately in this chapter; further studies could focus on validating the
scheme for mixed convection.
Lastly, understanding why the correct reproduction of the velocities fluctuations in the ventilation inlet
did not lead to correct averaged profiles (Minibat configuration, LES simulation for the isothermal jet,
Appendix 3.I) should be useful to optimise the synthetic turbulence generation method and improve the
accuracy of LES simulations in this type of configuration.
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Appendix

3.A Derivation of the kinetic energy source term for the time staggered
scheme

In this section, the source term Γu2/2
c

∣∣∣n+1,k

n
expression is detailed. To do so, the discrete kinetic energy

equation is derived. The following methodology, based on Herbin et al. (2020) , extends the utilisation
of a source term in the internal energy equation to time-staggered schemes using sub-iterations. The time
scheme architecture implies that the source term used in the buoyant step in the temperature equation at
time step n + 1, k is calculated after the corrective step at time step n + 1, k − 1. Thus, for the sake
of simplicity, we consider k > 1 and the Euler equations for this section. The mass flux at a given
face is denoted by Ṁf = q

f
· Sf and its positive and negative face contributions Ṁ+

f = max(Ṁf , 0)
and Ṁ−

f = min(Ṁf , 0). It is recalled that the momentum equation is solved between the time steps
[n− 1 + θ;n+ θ, k]:

Ωc

Θ
(
ρn

c , ρ
n+1,k−1
c

)
ũk

c − Θ
(
ρn−1

c , ρn,k−1
c

)
un−1+θ

c

∆t +
∑

f∈Fc

〈
Θ
(
un−1+θ, ũk

)〉
f
Ṁf

∣∣∣n+θ,k−1

n−1+θ

+ ΩcGradc

(〈
p|n+θ,k−1

n−1+θ

〉
f

)
= 0.

(3.58)

The mass equation between the time steps [n− 1 + θ;n+ θ, k − 1] is multiplied by ũk
c :

Ωcũ
k
c

Θ
(
ρn

c , ρ
n+1,k−1
c

)
− Θ

(
ρn−1

c , ρn,k−1
c

)
∆t +

∑
f∈Fc

ũk
c Ṁf

∣∣∣n+θ,k−1

n−1+θ
= 0. (3.59)

(3.58) - (3.59) reads:

Θ
(
Mn−1

c , Mn,k−1
c

) ũk
c − un−1+θ

c
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∑
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Θ
(
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(3.60)
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Multiplying equation (3.60) by ũk
c and using (a− b)a = a2 − b2

2 + |a− b|2

2 yields:
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(3.61)

Then, the mass equation between the time steps [n− 1 + θ;n+ θ, k − 1], multiplied by
1
2 |ũk

c |2 is added
to (3.61), leading to
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|ũk

c |2 − Θ
(
Mn−1

c , Mn,k−1
c

)
|un−1+θ

c |2

2∆t +
∑

f∈Fc

∣∣∣∣〈Θ
(
un−1+θ, ũk
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(3.62)

The simplified momentum equation is used to replace Gradc
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Taking the square of this and multiplying by
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By replacing ΩcGradc
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where:
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The discrete kinetic energy equation is then written as:
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)〉
f

∣∣∣∣2
2 Ṁf
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− ũk
c

∣∣∣∣2
2 −

∣∣∣∣〈Θ
(
un−1+θ, ũk
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(3.67)

Two terms compose this discrete equations right hand side: the kinetic energy dissipation into heat,

Γu2/2
c

∣∣∣n+θ,k

n−1+θ
and the second-order term Γp

c |n+θ,k
n−1+θ, defined by Equation (3.66) and not taken into account

in the source term for the sake of implementation and because its value tends to zero as the spatial
discretisation is refined, as explained in Herbin et al. (2020) .
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3.B Variable time step

In case of variable time step, equations presented in Section 3.5 change.

In the initialisation step, q
f
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n
· Sf = ∆t|nn−1
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n

q
f
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· Sf .
In the buoyant scalars step, the discretised equations read:
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The corresponding kinetic energy source terms expression is modified as well:
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− ũk−1
c

∣∣∣∣2
2 q

f

∣∣∣n+θ,k−2

n−1+θ


+

Θ
(
ρn

c , ρ
n+1,k−2
c

)
Θ
(
ρn

c , ρ
n+1,k−1
c

)Θ
(
ρn−1

c , ρn
c

) [|ũk−1
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The mass flux q
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The prediction step reads:
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Finally, the Helmholtz equation turns into:
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)〉

f

)
.

(3.71)

where

(
1 − (1 − θ)

(
1 − ∆t|n+1

n

∆t|nn−1

))
τ |n+θ

n−1+θ = ∆t|n+θ
n−1+θ. With the pressure increment:

φk
c =

Θ
(

∆t|n+1
n

∆t|nn−1
pc|n−1+θ

n−2+θ, p
n+1,k
c

)
(

1 − (1 − θ)
(

1 − ∆t|n+1
n

∆t|nn−1

)) − pc|n+θ,k−1
n−1+θ . (3.72)

3.C code_saturne incompressible pressure correction time scheme (IPC)

The main steps of the incompressible pressure correction time scheme is presented in this section.
Proposed by Ma et al. (2019) , the following belongs to the pressure correction class of schemes
and has a sub-iterative process. The second order Crank Nicolson scheme is employed for the time
advancement.

Remark 3.C.1. The IPC scheme was first designed for low-Mach number variable density applica-
tions and possibly reactive flows.

The set of equations used is the following:

∂ρ

∂t
= div (ρu) = Γ,

∂(ρu)
∂t

+ div (u⊗ ρu) = −∇p+ div (τ) + f,

∂(ρY )
∂t

+ div (ρY u) = div (K∇Y ) + ΓY ,

ρ = f(Y ).

(3.73)

The first step is the initialisation of the variables for k = 0:

qn+ 1
2 ,0 = 2qn+ 1

2 −1 − qn+ 1
2 −2,

pn+ 1
2 ,0 = pn+ 1

2 −1,

fn+ 1
2 = 3

2f
n − 1

2f
n−1,

Γn+ 1
2

Y = 3
2Γn

Y − 1
2Γn−1

Y , and

ρn+1,0 = 3ρn − 3ρn−1 + ρn−2.
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Remark 3.C.2. The density is initialised in that way to insure the mass conservation.

This step is followed by the solving of the scalar equation (enthalpy equation, for instance), to get
Ỹ n+1,k+1, an intermediate scalar.
The equation of state is used to compute the density ρn+1,k+1 from the scalar previously computed.
Then, an update of the scalar field is made to insure the conservativity:

Y n+1,k+1 = ρn+1,kỸ n+1,k+1

ρn+1,k+1 . (3.74)

The momentum equation is solved during the prediction step to get the predicted velocity ũn+1,k+1.
This step is followed by the correction of the pressure, where, similarly to this scheme correction step, an
equation is solved for the pressure increment Φn+1,k+1. Nevertheless, the combination of the momentum
and mass equations yields to a Poisson equation:

div (∆t∇Φn+1,k+1) = div (ρn+1,k+1ũn+1,k+1) + 3
2
ρn+1,k+1 − ρn

∆t + 1
2div (q)n− 1

2 . (3.75)

The pressure increment is used to correct the new pressure:

pn+ 1
2 ,k+1 = pn+ 1

2 ,k + Φn+1,k+1,

and so is the mass flux

qn+1,k+1 = (ρn+1,k+1un+1,k+1) = −∆t∇Φn+1,k+1 + (ρn+1,kũn+1,k+1),

and the velocity

un+1,k+1 =
qn+1,k+1

ρn+1,k
.

Lastly, the mass flux qn+ 1
2 ,k+1 is reconstructed:

qn+ 1
2 ,k+1 = 2

3q
n+1,k+1 + 1

3q
n+ 1

2 −1. (3.76)

3.D code_saturne isentropic compressible time scheme (IC)

The main steps of the isentropic compressible time scheme available in code_saturne are presented in this
section. Note that only the time discretisation is detailed. Further details on the spatial discretisation can
be found in Colas et al. (2019) and Archambeau et al. (2009) . Globally, the main differences between
this time scheme and the CPC one are the use of the Euler equations, a first order in time, the absence of
inner iterations, the solve of the total energy equation and finally, an isentropic pressure correction step.
First, an intermediate pressure p∗ is computed solving the mass equation and using an acoustic
approximation of the variation of ρ i.e.

p∗ − pn

(c2)n
+ ∆tdiv (ρnun − ∆t∇p∗) = 0. (3.77)

The density ρn+1 and an intermediate mass flux q∗ are then updated

ρn+1 = ρn + p∗ − pn

(c2)n
, and q∗ = ρnun − ∆t∇p∗.
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The second step is to solve the momentum equation to get un+1:

ρn+1un+1 − ρnun

∆t + div
(
un+1 ⊗ q∗

)
= −∇p∗ + ρn+1fn. (3.78)

Finally, the last step is to compute the total energy En+1 by solving its conservation equation (here
written with no source terms):

En+1 − En

∆t + div

(
En+1

ρn+1 q
∗
)

= −div
(

p∗

ρn+1 q
∗
)

+ ρn+1
(
fn · un+1

)
. (3.79)

The new pressure is finally updated using an EOS:

pn+1 = P (ρn+1, en+1), with en+1 = En+1

ρn+1 − 1
2
(
un+1 · un+1

)

Remark 3.D.1. This scheme was shown to be conservative, with positive density (given some spatial
discretisation choices) and with a total enthalpy preserved (Archambeau et al., 2009) .

3.E Wall functions

3.E.1 Velocity wall function

The purpose of the velocity wall function is to provide to the finite volume solver a dimensionless
analytical velocity value, denoted u+, representing the non linear real velocity profile close to the wall.
This value is proportional to the cell centre to the wall dimensionless distance, denoted y+. For the
velocity, u+ and y+ are made dimensionless by the wall shear stress τw and the turbulent kinetic energy.
Note that only smooth walls are considered here.

Remark 3.E.1. In case of using only the wall shear stress, one may talk about "one scale friction
velocity". If the turbulent kinetic energy is used, the wall function is named "two friction velocity
scales".

Remark 3.E.2. Walls functions are usually derived from EVM.

One friction velocity scale

The first boundary cell simplified momentum equations reads:

(µ+ µT )∂u
∂y

= τw. (3.80)

The friction velocity u? is defined as

u? =
√
τw

ρ
.

Equation (3.80) is then rewritten as(
1 + µT

µ

)
∂u+

∂y+ = 1, (3.81)
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with

u+ = |uI′ |
u?

, and

y+ = yu?

ν
.

Two layers are defined. The first one, where µT /µ < 1 is called the viscous sub-layer; the velocity
profile in this zone is linear i.e.

u+ = y+. (3.82)

If µT /µ < 1, then the velocity profile becomes logarithmic:

u+ = 1
κ

ln(y+) + Clog, (3.83)

where Clog = 5.2 and κ = 0.42 are constants. In code_saturne, the viscous sub-layer is valid for y+ < 5
and the logarithm layer for y+ > 30. Between them there is a gap, called the buffer layer. Some models
can cover it but are beyond the scope of this manuscript. Instead, a dimensionless limit, denoted y+

lim is
set, usually equal to 1/κ for RANS simulations for instance.
Finally, the friction velocity u? is computed as following:
u? =

√
|uI′ |ν
y

, if
|yuI′ |
ν

< (y+
lim)2,

(u?)0 = exp(−κClog)ν
y
, (u?)q+1 = κ|uI′ + (u?)q

ln
(
y(u?)q

ν

)
+ κClog + 1

, otherwise (iterative solving in q).

(3.84)

Two friction velocity scales

The turbulent kinetic energy is used as well in the non 6dimensional process.
A new friction velocity based in the boundary first cell turbulent energy is defined:

uk =
√√

Cµk.

Remark 3.E.3. In code_saturne, the latter definition of the friction velocity is only valid for important
y+ values. For smaller ones, a blending is performed if the turbulent intensity is low:

uk =
√
g
ν|uI′ |
y

+ (1 − g)
√
Cµk. (3.85)

g is a blending factor defined as

g = exp

(
−

√
ky

11ν

)
.

The final form of the friction velocity is thus expressed following the wall shear stress and the turbulent
kinetic energy friction velocity:

u? = τw

ρuk
.
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The momentum equation is now rewritten using the new notations (see Saturne (2019) for further
details):

(1 + κy+
k )∂u

+

∂y+
k

= 1, (3.86)

with

u+ = |uI′ |
u?

, and (3.87)

y+
k = yuk

ν
. (3.88)

The two zones presented for the one friction velocity scale still hold, but with y+
k instead of y+.

3.E.2 Scalars wall function

For scalars, such as the temperature, the approach is similar for the fluid velocity.
The simplified scalar T balance (considering the fluid properties constant) on the considered wall
neighbour cell reads:

qib = −
(
λ+ cp

µT

PrT

)
∂T

∂y
. (3.89)

qib is the heat flux at the boundary. This equation is made dimensionless by the introduction of

T ? = − qib

ρcpuk

Equation (3.89) is finally written as( 1
Pr

+ 1
PrT

µT

µ

)
∂T ?

∂y+ = 1, (3.90)

where

y+ = yuk

ν
,

T+ = T − Tw

T ?
,

with Tw the wall temperature. Similarly to the velocity, three different layers (the buffer layer is
disconsidered) are defined and T+ is computed as following:

y+

T+ = 1
Pr

, if y+ < y+
0 ,

y+

T+ = y+

PrT

κ
ln

(
y+

y+
0

)
+ Pry+

0

, (3.91)

with

y+
0 = PrT

κPr
. (3.92)
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3.F Minibat polar interpolation on the inlet quantities

In this section the polar interpolation on the Minibat configuration inlet variables is detailed. Considering
the variables in the polar coordinates, we no longer work with u1, u2, u3 but rather with ur, uθ and u2,
reminding that the axial velocity follows ey. The Reynolds stress tensor in the polar coordinates is
composed of Rrr, Rθθ, Ryy, Rrθ, Rry and Rθy. The interpolation of a given variable φ(r, θ) chosen is :

φinterp = β − α

β
φ0(r, θα) + α

β
φ0(r, θβ). (3.93)

Three types of interpolation are tested:

• I0 : interpolation using r on the experimental data + a linear θ interpolation considering every
quantity as a scalar (i.e. φ0 is the variable itself projected on the given axis experimental data.
α = θ, β = π/2, γ = φ.

• I1 : interpolation using r on the experimental data + a linear θ interpolation.
α = θ, β = π/2.

• I2 : interpolation using r on the experimental data + a sin θ interpolation.
α = sin(θ), β = sin(π/2).

θ ∈ [0, π
2 ] θ ∈ [π

2 , π] θ ∈ [π, 3π
2 ] θ ∈ [3π

2 , 2π]

θα 0 π
2 π 3π

2

θβ
π
2 π 3π

2 2π

Table 3.F.1: Summary of the different values of θα and θβ according to the angle value.

θ ur uθ u2 Rrr Rθθ R22 Rrθ Rr2 Rθ2

0 u1 u3 u2 R11 R33 R22 R13 R12 R23

π

2 u3 −u1 u2 R33 R11 R22 −R13 R23 −R12

π −u1 u3 u2 R11 R33 R22 R13 −R12 −R23

3π
2 −u3 u1 u2 R33 R11 R22 −R13 −R23 R12

Table 3.F.2: Polar equivalent interpolation variable φ0 according to the different angle value.

φ0(r, θα) and φ0(r, θβ) are calculated from a linear interpolation of the experimental available data on
the ex and ez axis based on Table 3.F.2 and Figure 3.F.1 for interpolations I1 and I2. The polar quantities
are estimated following (3.93) and converted into the reference axis readable by the solver. Since er =
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cos(θ)ey + sin(θ)ez and eθ = −sin(θ)ey + cos(θ)ez , the velocity vector in (ex, ey, ez) reads:

u =


0

urcos(θ) − uθsin(θ)

ursin(θ) + uθcos(θ)


, (3.94)

and

R11 = Rrrcos
2(θ) +Rθθsin

2(θ) − 2cos(θ)sin(θ)Rrθ,

R22 = Rxx,

R33 = Rrrsin
2(θ) +Rθθcos

2(θ) + 2cos(θ)sin(θ)Rrθ,

R12 = Rrycos(θ) −Rθysin(θ),
R13 = cos(θ)sin(θ)(Rrr −Rθθ) +Rrθ(cos2(θ) − sin2(θ)),
R23 = Rrysin(θ) +Rθycos(θ).

(3.95)

ur = u1

ut = u3

Rrr = R11

Rtt = R33

R22 = R22

Rrt = R13

Rry = R12

Rty = R23

ur = u3

ut = −u1

Rrr = R33

Rtt = R11

R22 = R22

Rrt = −R13

Rry = R23

Rty = −R12

ur = −u1

ut = u3

Rrr = R11

Rtt = R33

R22 = R22

Rrt = R13

Rry = −R12

Rty = −R23

ur = −u3

ut = u1

Rrr = R33

Rtt = R11

R22 = R22

Rrt = −R13

Rry = −R23

Rty = R12

Figure 3.F.1: Conversion of the reference coordinates values into the polar ones depending on θ.
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3.F.1 Verification

Two analytical velocity solutions are used to verify the inlet polar interpolation. The center of the inlet
is located at [x0, y0, z0] = [1.55, 0.57, 2.32] m.

Rotating cylinder

First we consider a rotating inlet i.e. with only a tangential and axial velocity. The radial velocity ur is
fixed to zero. The axial velocity reads:

ux
2 = uz

2 = umax

(
1 − r2

R2

)
. (3.96)

umax is fixed and R is the inlet radius. The tangential velocity uθ = θ̇r can be translated to uz>z0
1 =

−ru0, uz<z0
1 = ru0 and ux

1 = 0 m s−1. u0 = 1 m s−1 is a reference velocity.
Similarly, ux>x0

3 = ru0, ux<x0
3 = −ru0 and uz

3 = 0 m s−1. The three different polar interpolation led
to the velocity components represented on Figure 3.F.2. The L2 error norm of the tangential velocity is
also represented. On a first look, the different velocity fields seems similar, but the error related to the
angular velocity shows that the interpolations I1 and I2 performed better for this test case. This is an
expected result since the interpolation I0 interpolates the wrong quantities over the experimental axis.

Constant axial velocity

As the title says, here the axial velocity is fixed as ux
2 = uz

2 = 1.5 m s−1 and other are considered equal
to zero. In this test case it is expected that the interpolations I1 and I2 perform poorly. Figure 3.F.3 shows
the horizontal and vertical components of the velocity as well as the L2 error norm related to u1. One
can observe that besides the experimental imposed data equal to zero for the vertical and axial velocity
components, the interpolation I1 and I2 led to a non null vertical velocity field. On the opposite, the first
interpolation I0 led to a correct velocity field.
From these two test cases, it seems that there is no proper interpolation strategy: the interpolations I1
and I2 performed better for a rotating cylinder and the interpolation I0 for the constant axial velocity.
In this case, a choice is made according to the type of flow to be reproduce. In the one hand, if there is
heterogeneous velocity fields, the I1 I2 strategies should be more appropriated. In the other, using the
I0 interpolation would be a better choice in case of quasi homogeneous horizontal and vertical velocity
field.

Minibat configuration (isothermal jet)

Considering the isothermal jet of the Minibat configuration, the three interpolation are ran over the
available experimental data. Figures 3.F.4 to 3.F.10 show the different velocity and Reynolds stress tensor
components fields over the system inlet. While the two radial interpolation I1 and I2 present similar
results, the first interpolation method present clear differences, for both velocity and stress tensors.
It can be noticed that for the interpolation I0 the profiles are smoother. Even if some rotation may be
present (given the jet deviation), the chosen of keeping this interpolation is made for the third chapter
simulations.

Conclusion

Since the interpolation I0 led to the smoothest velocity fields and that only the information of the velocity
horizontal and vertical profiles are provided by the experimental database, it is used for the final Minibat
configuration simulations.
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(I0) (I1) (I2)

(I0) (I1) (I2)

(I0) (I1) (I2)

(I0) (I1) (I2)

Figure 3.F.2: First test case. Velocity components fields, quiver plot and L2 error norm related to the
tangential velocity for the three different interpolations.
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(I0) (I1) (I2)

(I0) (I1) (I2)

(I0) (I1) (I2)

(I0) (I1) (I2)

Figure 3.F.3: Second test case. Velocity components fields, quiver plot and L2 error norm related to the
horizontal velocity for the three different interpolations.

135



(I0) (I1) (I2)

(I0) (I1) (I2)

(I0) (I1) (I2)

Figure 3.F.4: Velocity field for the three types of interpolation.
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(I0) (I1) (I2)

Figure 3.F.5: R11 components for the Minibat inlet.

(I0) (I1) (I2)

Figure 3.F.6: R22 components for the Minibat inlet.

(I0) (I1) (I2)

Figure 3.F.7: R33 components for the Minibat inlet.

(I0) (I1) (I2)

Figure 3.F.8: R12 components for the Minibat inlet.

137



(I0) (I1) (I2)

Figure 3.F.9: R13 components for the Minibat inlet.

(I0) (I1) (I2)

Figure 3.F.10: R23 components for the Minibat inlet.

3.G Minibat results: comparison between the full mesh and the inlet
interpolation simulations

The complete mesh for the Minibat configuration, including the inlet duct is represented in Figure 3.G.1.
The discretised system is composed here of 11.106 hexahedral cells.
Both geometry and mesh discretisation were made on the Salome platform, reconstructed from a .stl file.

Figure 3.G.1: (Left) System geometry including the inlet ventilation duct. (Right) Focus on the
ventilation duct discretisation.

To see if this configuration is more interesting than performing an interpolation on the experimental inlet
data a first study on the kinetic energy dissipation is made. Considering the isothermal jet (I), an uniform
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Figure 3.G.2: Vertical and horizontal ε profiles at y = 0.58 m for the full mesh simulation and the inlet
interpolation simulation.

velocity profile, with a magnitude of 2.8 m s−1 is imposed in the beginning of the ventilation duct. This
choice was made in order to have a correct velocity magnitude on the room flow inlet. The turbulent
variable ε profiles from two k − ε simulations (full mesh and inlet interpolation 3.F, with εin = 2ε0)
are compared at y = 0.58 m (entering flow in the room). The time of comparison is equal to 3 s, when
the flow is established in the ventilated room. For both simulation, two inner iterations are performed
(εpiso0 = 10−6) and the CFL number remains under the unity.
Figure 3.G.2 shows that the ε field at the room inlet is clearly different in both z and x axis. This
is probably due to a bad reproduction of the inlet duct flow in the full mesh simulation. A particular
treatment of the boundary conditions on the duct walls and inlet velocity profile may lead to different
results.
Moreover, Figure 3.G.3 shows for the simulation using the full mesh geometry an overestimation of the
velocity in both vertical and horizontal profiles.
Note that at y = 0.6 m, one may observe that the full mesh simulation mass flow entering the room is
superior to the other. We are aware that this should explain the overestimation of the velocity profile
in higher y values. Nevertheless, when reducing the mass flow in the entering ventilation duct for
the complete mesh configuration, the velocity profile at y = 0.6 m was too insufficient (way below
the expected magnitude of around 3 m s−1). Additionally, few information concerning the flow in the
ventilation duct is available in the literature. Thus, for reasons of time, the choice of using interpolated
inlet quantities for the final Minibat studies was made. Of course, this topic deserves further investigation
for a better understanding of the ventilation duct impact on the system air flow.
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Figure 3.G.3: Vertical (top) and horizontal (bottom) velocity magnitude profiles profiles at y = 0.6 m
and y = 1.5 m for the full mesh simulation and the inlet interpolation simulation.

3.H Reynolds stress tensor realisability and Lumley triangle

Realisability can be defined as a robustness of a numerical method related to its physical reliability.
For instance, in the Navier–Stokes equations, this can be seen as the preservation of the positivity of the
thermodynamical variables and scalars concentration.
This is applied as well to the turbulent quantities and the Reynolds stress tensor. Its transport equation is
derived from the conservative relations (mass, momentum, energy); properties related to these quantities
are preserved if exact derived equations are used.
Nevertheless, this is not the case in turbulent approaches, where enclosures and models are used. This
can break the realisability conditions, which reads, for the Reynolds Stress Tensor (Du Vachat, 1977;
Schumann, 1977; Lumley, 1979; Norddine, 2020) :

(a) Rii ≥ 0 i ∈ {1, 2, 3}
(b) RiiRjj −R2

ij ≥ 0 (i, j) ∈ {1, 2, 3}2

(c) det(R) > 0.
(3.97)
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Condition (a) means that that the velocity field is real and the kinetic energy is positive. Condition (b)
correspond to the Cauchy-Schawarz inequality (Steele, 2004) . The last condition is consequence of the
definition of the Reynolds stress tensor as a statistical average.
These conditions can be studied using the anisotropy tensor a defined as:

a = 1
2kR− 1

3I.

Lumley (1979) proposed that two linearly independent scalar invariants of the anisotropy tensor exist.
Denoted II and III , they are defined as:

II = 1
2 tr(a · a),

III = 1
3 tr(a · a · a).

Provided a positive turbulent kinetic energy, a sufficient condition for ensuring the realisability of the
Reynolds Stress Tensor is that both invariants of the anisotropy tensor are in the closed and bounded
space ΩI defined as:

ΩI =
{

(II, III) ∈ R2, 3
( |III|

2

)2/3
≤ −II ≤ 1

9(1 + 27III), III ∈
[
− 1

108 ,
2
27

]}
For a better analysis, Pope (2000) proposed a new graphical representation, based on two functions,
η(II, III) and ξ(II, III) defined as:

η(II, III) =
√

−1
3II, and

ξ(II, III) =
(1

3III
)1/3

.

A new space is defined for R to be realisable. The new two variables need to belong to the following
closed set ΩI′ :

ΩI′ =
{

(η, ξ) ∈ R2, |ξ| ≤ η ≤
√

1
27 + 2ξ3, ξ ∈

[
−1

6 ,
1
3

]}
This set is commonly called Lumley’s triangle.
In this manuscript, this triangle is studied for the Minibat validation case. For an ease of comparison with
the experimental data from the reference (Kuznik, 2005) , a different graphical representation, based on
the invariants functions II∗ and III∗ is used:

II∗ = 3
√

−II, and

III∗ = 6
(1

2III
)1/3

.

In the reference work, these invariants are used to measure linearly the turbulence anisotropy, which is
very useful for studying jets for instance. The Lumley’s triangle is modified as well, with new boundaries
(see Figure 3.H.1):

II∗ =
√

1 + 1
4III

∗, and

II∗ = 1
2

√
3|III∗|.

At any point and time in a turbulent flow, III∗ and II∗ can be computed from the Reynolds Stress Tensor
and plotted in the II∗ − III∗ plane. If the point is in the Lumley’s triangle, then the Reynolds stress is
realisable. Otherwise, every point outside the triangle corresponds to a non realisable Reynolds stress,
with negative or complex eigenvalues.
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Figure 3.H.1: Lumley’s triangle using III∗ and II∗.

3.I Synthetic Eddy Method

In this section the Synthetic Eddy Method (SEM), used to generate an unsteady inlet boundary condition
in the Minibat LES simulations, is presented.
This method, proposed by Jarrin et al. (2006) , consists on generating synthetic eddies in a given zone
which fluctuations satisfy statistical moments, provided for instance with a RANS calculation. The
synthetic generated eddies in a virtual Cartesian box contribute to a preliminary velocity field (Skillen
et al., 2016) :

u∗
j (x, t) =

N∑
i=1

√
Ωb

Ωi
εjf(x− xi, σi). (3.98)

where Ωb and Ωi are respectively the box and eddy volumes. ε is an integer representing the sign of the
eddy i.e. ε = ±1. N is the total number of eddies and f is a shape function, based on the eddy distance
to the box centre. σ is the eddy length scale (Integral, Taylor for instance).
The inner product of the fluctuating field u∗

j (x, t) with the Cholesky decomposition of the Reynolds
stress tensor forms a velocity field with the prescribed second order statistics and a mean equal to zero.
From the mean velocity, denoted here Ui, the new velocity field ui(x, t) reads:

ui(x, t) = Liju
∗
j (x, t) + Ui, (3.99)

with:

L =



√
R11 0 0

R21/L11
√
R22 − L2

21 0

R31
L11

R32−L21L31
L22

√
R33 − L2

31 − L2
32


. (3.100)

At each time iteration, the eddy positions are updated using the bulk inflow velocity. If an eddy leaves
the box, it is automatically regenerated at a random location on the opposite face where it left.
For further information and latest developments on the SEM, the reader may refer to De Laage de Meux
et al. (2015) and Duffal (2020) .
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3.I.1 Example on the Minibat configuration

The SEM impact on the numerical results is illustrated for the Minibat validation test case.
Considering the jet (I), different eddy threshold length scales are tested. Indeed, when creating a SEM
structure, the algorithm set a length σi to each structure i as:

σi = min

{
max

{
(3

2u
′2
i )3/2

ε
,∆i

}
, δ

}
. (3.101)

Two different SEM simulations are compared to a LES simulation with no SEM. The parameter δ is

set first as
2
3rin and then as

1
2rin, with rin the inlet radius. The mean and instantaneous velocities are

studied.
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Figure 3.I.1: Rii at y = 0.6 m for a simulation without SEM and two simulations with different eddy
spatial length threshold values.

Close to the inlet zone (Figure 3.I.1), the SEM leads to instantaneous velocities that are closer to the
expected ones than the simulation with no particular treatment regarding the inlet condition. Note
that the Rii values are close to zero without SEM. For a more important y value (Figure 3.I.2), the
opposite is observed. Both SEM simulations underestimate the Rii amplitudes in both vertical and
horizontal profiles, while the simulation with no SEM leads to closer numerical results (even if it slightly
overestimates it sometimes).
A better performance can be observed as well concerning the mean velocity for the simulation with no
SEM (Figure 3.I.3). Similarly to the instantaneous profiles, the SEM simulations underestimated the
velocity when increasing the axial distance from the jet inlet.
Moreover, when keeping the parameter δ = 1/3rin and refining the mesh to 60.106 cells (Figure
3.I.4), one can see that the velocity profiles do not improve, where at y = 1.5 m the velocity profile
is underestimated.
To conclude on this subsection, even if the SEM allowed a better reproduction of the inlet instantaneous
quantities, it led to less accurate global results. Thus, for the simulations presented in Chapter 3, no SEM
was used for the inlet flow.
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Figure 3.I.2: Rii at y = 1.5 m for a simulation without SEM and two simulations with different eddy
spatial length threshold values.
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Figure 3.I.3: Vertical and horizontal velocity magnitude profiles for the different simulations.
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δ = 1/3rin.
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3.J Focus on the simulation time

In this section we study the simulation time using both CPC and IPC schemes for different problems.
For all simulations, the preconditioned conjugate gradient method is used to solve the different equations
(Hager and Zhang, 2006) and a number of inner-iterations of 2 is set.

3.J.1 Minibat configuration

We begin by analysing the time of simulation using the k − ε model for both numerical schemes.

Solver IPC time (s) CPC time (s)

Temperature 3.3 14.2

Velocity 17.675 16.843

k 2.8 6.93

ε 2.3 2.2

Pressure 124.4 128.0

Total time 238.4 253.9

Table 3.J.1: Minibat isothermal jet. Solvers total simulation time for the CPC and IPC schemes.

Table 3.J.1 shows the total solver time for each variable and for both simulations related to the isothermal
jet. 330 s were simulated using a mesh composed of 6 millions hexahedral cells and 99 processors. It can
be noticed that the IPC scheme total time of simulation for this isothermal case is slightly (reduction of
7% of the simulation time) faster than the CPC. This difference is due mostly to the temperature and the
turbulent kinetic energy solvers, which is at least expected for the first variable, where new terms where
implemented. When the jet becomes anisotropic, the thermal effects affect the time of simulation, shown
in Table 3.J.2.
Keeping the same physical simulated time and processors, the mesh is now composed of 8 millions
cells. Results show that the CPC scheme led to a faster simulation time (40% of simulation time
reduction) explained by a gain of 55% in the pressure equation solver time. This can be explained
by the reinforcement of the diagonal of the Helmholtz equation system, which accelerates the system
resolution. Again, the time of the thermal equation solver is highly increased, but remains relatively
small related to the pressure equation gain of time.
A focus on the diagonal reinforcement would lead to a better understanding of this simulation time
reduction.
Lastly, Figure 3.J.1 presents for the isothermal jet and the CPC scheme the total time per iteration of
three turbulence approaches simulations. Results show a faster simulation performed by the k−εmodel,
which is expected. The Rij − ε and LES simulations present relatively close time per iterations.
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Solver IPC time (s) CPC time (s)

Temperature 19.3 30.6

Velocity 94.251 87.0

k 53.8 50.9

ε 29.3 23.9

Pressure 4341.7 2451.6

Total time 5066.5 3131.7

Table 3.J.2: Minibat hot jet. Solvers total simulation time for the CPC and IPC schemes.
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Figure 3.J.1: Total time of simulation per iteration using the CPC scheme for three turbulence
approaches.

3.J.2 Natural convection cavity

The same comparison is performed for the natural convection validation case, where 2.5 seconds are
simulated using a mesh composed of 104 hexahedral cells and 10 processors. This goal here is to observe
the simulation time for an enclosed system with buoyant effects. Table 3.J.3 shows that the CPC scheme
led to a longer simulation, similarly to the isothermal jet study on the Minibat configuration. A small gain
of time is observed for the pressure equation which is far exceeded by the temperature time of simulation
(increased by a factor 10). This can be explained by the importance of the thermal effects in this test
case. Even if a pressure variation was observed in this case reference numerical results, the reduction of
the pressure equation solving time seems to be partially related to the presence of in and outlets.

3.J.3 Coubertin stadium

Lastly two simulations are performed for the Pierre de Coubertin stadium. This time the jets are
isothermal and we focus on a case with numerous inlets and outlets. The mesh presented in Chapter
5, composed of 2 millions of cells, is used, using 150 processors to simulate 100 physical seconds.
Again, the CPC and IPC scheme are compared using the k − ε model. The hypothesis of the link
between the reduction of the simulation time and the presence of inlet and outlets can be confirmed by
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Solver IPC time (s) CPC time (s)

Temperature 1.7 17.8

Velocity 36.5 52.9

Pressure 31.1 28.9

Total time 70.6 101.0

Table 3.J.3: Natural convection cavity. Solvers total simulation time for the CPC and IPC schemes.

the results represented in Table 3.J.4. The gain of simulation is about a factor 10, which is mostly due
to the pressure equation solve. This shows the importance of further studies related to the impact of
boundaries conditions, specially those with mass fluxes, on the pressure field.

Solver IPC time (s) CPC time (s)

Temperature 1.17 3.3483

Velocity 10.4 11.8

k 2.38 2.84

ε 2.6 3.0

Pressure 2143.5 (2096.2) 195.1

Total time 2206.4 260.4

Table 3.J.4: Coubertin stadium, isothermal ventilation. Solvers total simulation time for the CPC and
IPC schemes.

3.J.4 Conclusion

This conclusion is representative of the few test cases studied. For the author, many points remain to
be investigated related to the impact of the numerical scheme on the simulation time. Since this stake is
very important in an industrial context, some exploratory results showed that the time of simulation is
affected by the numerical scheme mainly in two equations.
First, the thermal equation resolution time is increased due to the new terms implemented. Then, the
pressure equation is globally solved faster in the correction step. Yet, the degree of gain of time seems to
be related to two main factors. A possible dependence of the presence of thermal effects was shown in
the hot jet for the Minibat configuration. On the other hand, for an enclosed cavity with buoyant effects,
no time was gained in the pressure equation step. A possible impact of the boundary conditions, specially
inlets and/or outlets is to be investigated: indeed, an important reduction of the time of resolution of the
pressure equation was observed for the Coubertin Stadium simulations.
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CHAPTER 4

Scheme extension to moist air

Résumé
Ce chapitre présente l’extension du schéma développé pour l’air sec à l’air humide. Comme mentionné
à la section 2.3, l’humidité est omniprésente en environnements intérieurs. En termes physiques, les
propriétés du fluide sont affectées et un éventuel changement de phase peut avoir lieu. En termes
numériques, l’objectif est de préserver les propriétés numériques du schéma proposé au chapitre
précédent. Ce chapitre est structuré de la manière suivante. Après une introduction concernant les
différents modèles existants pour la modélisation d’écoulements d’air humide avec changement de
phase, les équations continues du mélange considéré sont écrites. Ensuite, leur discrétisation en espace
et en temps est présentée, suivie par une analyse numérique et la vérification du nouveau schéma en
temps.
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4.1 Introduction

Flows with different phases are widely found in many industrial applications such as transport systems
(pipeline transport, air-lift pumps...), geo-meteorological phenomena (sedimentation, rain droplets),
power systems (pressurised water in nuclear reactors, boilers and evaporators), among others, including
the indoor environment (moisture studies, electronic cooling systems, air conditioners, refrigerators).
According to the combination of the two phases the flow can be characterised either as a gas-solid, gas-
liquid, liquid-solid or liquid-liquid mixtures. In this chapter, the focus is only made on the water effect
on the airflow i.e. a gas-gas-liquid mixture. In that scope, three classes of flow are defined, according
to the problem geometry and configuration: separated (atomisation, jet condenser, film condensation),
transitional (steam generator, boiling reactor channel) and dispersed (chemical reactors, spray cooling)
flows (see Ishii and Hibiki (2010) for a more detailed description of each class).
In this manuscript, we are interested in dispersed flows and more particularly in the droplet flow typical
regime, corresponding to liquid droplets in gas.
When it comes to simulate moist airflow with phase change, one may differentiate the homogeneous and
the two fluid models. The first considers the fluid as an unique pseudo compound, a mixture, composed of
both air and water components (Downar-Zapolski et al., 1996; Clerc, 2000; Hurisse, 2017) ; therefore,
the flow can be treated as if it had one phase, leading to a simplified set of equations. The second solves
equations for both gas and liquid phases separately, which can be computationally more expensive but
is more accurate when the phasic disequilibrium is important (Hérard and Hurisse, 2012) . In the
homogeneous models framework, if the fluid components are ideal gases, the mixture thermodynamic
expressions, such as the density, can be written as combinations of analytic formulas.
Section 2.2 presented the importance of accounting humidity for indoor flow simulations. For instance,
this is useful when studying ventilation scenarios (Liu et al., 2004) , historical buildings and art
conservation (D’Agostino et al., 2014; D’Agostino and Congedo, 2014) or indoor air quality (Heseltine
and Rosen, 2009; Wolkoff, 2018) . Concerning the numerical methods used for moisture in CFD
simulations, Gan and Awbi (1994) studied the air quality of a ventilated room by considering a same
water vapor pressure for all cells. Teodosiu et al. (2003) proposed a moisture transport model included
in the CFD simulation which used a first order SIMPLE scheme. The transport of the vapour of water
mass fraction was performed and the Dalton (1802) law was used to determine the mixture density,
composed of dry air and vapour. Kilic and Sevilgen (2008) used a thermo-physiological model (Gagge
et al., 1986) to study the moisture transport around a standing human body and validate it against
experimental data.
Finally, Lu and Viljanen (2009) used neural networks to predict both temperature and relative humidity
quantities in an indoor environment.
Note that another important numerical stake when simulating moist air is the heat and moisture transfer
in building envelopes, considered as porous media. Given the complexity of this process and the focus
of this thesis related to the flow transport, this issue is out of the scope of this chapter (for further, a heat
and moisture transfer model is presented and applied in Lü (2002a,b) .
Yet, any of the previous cited work do take account of a possible water phase change in the flow
(condensation in walls, modelled by laws exist (Ambrosini et al., 2005; Zschaeck et al., 2014)) except
Teodosiu et al. (2003) model, extended to surface and volume condensation (Teodosiu, 2013) . Even
if in most of the indoor studies no phase change occurs, a part of the system can sometimes reach
saturation. This happens by two major factors. The first one is by adding moisture sources in the system,
that can be for instance a high concentration of occupants (classroom, theatre) or by the presence of
a sink or shower. Also, in some cases (mostly industrial) the environment conditions may lead to a
high variability of the temperature and pressure, leading to a phase change. Condensation can thus be
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deposited in the structures or walls, which may, according to its presence time, lead to material damage
and to the emissions of other pollutant species, such as VOC.
The present chapter introduces an homogeneous model for moist air implemented in the previously
introduced dry air scheme for indoor airflow applications. The fluid is composed of dry air, water vapor
and depending on the context, liquid water and uses a strategy similar to Teodosiu et al. (2003) , where
the mixture pressure is computed using the Dalton law. A particular attention is given to the saturation
state; in order to stay in the range of homogeneous models and given the indoor scope of studies related
to the scheme, in case of presence of liquid water, it is assumed that its volume fraction is small compared
to the others. The numerical choices made in this chapter have the main goal to modify the less possible
the properties of the dry air scheme, such as the time staggered variables arrangement, the solve of the
Helmholtz equation for the pressure and the conservation of the total energy while adding a new transport
equation and accounting for a possible phase change.
The outline of the chapter is the following. The governing equations, based on Satoh (2013) are first
introduced, followed by the scheme space and time discretisation and the numerical strategy to take into
account saturation. Then, a numerical analysis is performed on the scheme properties. Next, the solution
of the Riemann problem is derived for the moist air set of equations, used by the verification process
carried out right after.

4.2 Governing equations

An homogeneous mixture of air (a) and water in liquid (l) and vapor (v) phases is considered at the
same velocity u and temperature T . An additional transport equation for the total water mass fraction
is solved. In the indoor airflow framework, the hypothesis is made of a negligible water liquid volume
fraction αl compared to the others.
The compressible Navier–Stokes equations are written for each mixture component. Then, the three
equations are summed leading to the mixture governing equations used to design the moist air time
scheme (see Appendix 4.A for the derivation):

(a) ∂ρ

∂t
+ div

(
q
)

= 0,

(b)
∂q

∂t
+ div

(
u⊗ q

)
= −∇p+ div

(
τ
)

+ f,

(c) ∂ (ρ e)
∂t

+ div
(
eq
)

= −pdiv (u) + τ : ∇u+ div (λ∇T ) ,

(d) ∂ (ρ yw)
∂t

+ div
(
ywq

)
= div (K∇yw) ,

(e) p = pa + pv = ρRaT
[
1 − yw + yv(p, T )ε−1

m

]
,

(f) e(yw, p, T ) = cvm(yw, p, T )T + yv(p, T )L00.

(4.1)

ρ is the mixture density, q = ρu its momentum and e its internal energy. The mixture total water mass
fraction is denoted yw, with yw = yv + yl and ya + yw = 1. The mixture pressure p (Equation (4.1), (e))
is the sum of the partial pressures of dry air and water vapor following the Dalton (1802) law.

εm = Ra

Rw
= 0.62197 (4.2)

is the ratio between the molar masses of water (Rw = 461.500 J kg−1K−1) and dry air (Ra =
287.058 J kg−1K−1). f and τ are respectively the external forces field and the shear stress tensor whose
expressions are the same as Equation (2.2). Ra = R/Ma is the specific dry air constant. The mixture
temperature is directly linked to the internal energy through Equation (4.1), (f), where cvm is the mixture
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heat capacity defined as:

cvm(yw, p, T ) = (1 − yw)cva + yv(p, T )cvv + ylcvl. (4.3)

cva, cvv and cvl are respectively the specific heat capacities of the dry air, vapor and liquid water, assumed
constant in this chapter and whose expression (Satoh, 2013) reads:

cva = cpa −Ra, cvv = cpv −Rw, cvl = cpl. (4.4)

Where:

cpa = 7Ra

2 = 1004.6 J kg−1 K−1,

cpv = 4Rw = 1846 J kg−1 K−1,

cpl = 4218 J kg−1 K−1.

(4.5)

L00 is the water latent heat related to the reference temperature T0 = 273.15 K and reads L00 = L0 −
(cpv − cpl)T0, with L0 = 2.5.106J kg−1.

Remark 4.2.1. The fluid properties such as the molecular viscosity µ, thermal conductivity λ, heat
capacities cvi and scalar diffusivity K are considered constant in this chapter. These parameters
variation, according to the situation, need to be accounted for. Appendix 4.B presents some models
related to these properties proposed in the literature. The variability of these properties is let to further
implementations complementary to those made in this chapter.

4.2.1 Saturation treatment

A numerical strategy is set up to take into account the saturation. Note that only the phase change
between the water liquid and vapor phases is considered. Outside the saturation regime, the vapor of
water mass fraction is equal to the total water mass fraction value i.e. yv(p, T ) = yw.
Otherwise, its value yv(p, T ) depends on both pressure and temperature and is calculated using the
humidity ratio at saturation, denoted xs(p, T ):

yv(p, T ) = xs(p, T )
1 + xs(p, T ) , (4.6)

where:

xs(p, T ) = εmps(T )
p− ps(T ) , (4.7)

with:

ps(T ) = exp
(
A+ B(T − T0)

C + (T − T0)

)
(4.8)

the pressure at saturation calculated using the Antoine (1888) law, with T0 = 273.15 K. The constants
are set as A = 6.4147 ln(Pa), B = 17.438 ln(Pa) and C = 239.78 K. The final saturation vapor mass
fraction reads:

yv(p, T ) = εmps(T )
p− (1 − εm)ps(T ) . (4.9)
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Remark 4.2.2. The expression for the vapor pressure at saturation (Equation (4.8)) is equivalent to
the Antoine law:

ln(ps(T )) = A− B

C + T − T0
. (4.10)

Note that ps(T ) can be calculated in mmHg, Pa or bar, depending on the coefficient units. Its formula
uses either the temperature in Kelvin or in Celsius and be written using loge or log10. Figure 4.2.1
compares Equation (4.8) with two other versions of Antoine equation with different coefficients based
respectively on Banat (1994) and Bridgeman and Aldrich (1964) . In the indoor temperature range
(273 to 330 K), the three equations lead to very close results.

280 300 320

0.5

1

1.5

·104

Temperature (K)

p
s
(P

a)

ps(T ) = exp
(
A +

B(T−T0)

C+T−T0

)
ps(T ) =

p0
p?

10
A?− B?

C?+T−T0

ps(T ) = p010
A′+ B′

C′+T

Figure 4.2.1: Comparison between the Antoine law expression for the saturation pressure used in this
manuscript and the original law expression. p0 = 101325 Pa is the reference pressure and p? = 760
mmHg. Coefficients with ? are A? = 8.07131 ln(mmHg), B? = 1730.63 ln(mmHg) K and C? =
233.426 K, from Banat (1994). Coefficients with ′ are A′ = 5.40221 ln(Pa), B′ = 1838.675 ln(Pa) and
C ′ = −31.737 K, from Bridgeman and Aldrich (1964).

Remark 4.2.3. Equation (4.9) results from

• The definition of the absolute humidity ratio xs(p, T ) = ys(p, T )
ya

i.e. ys(p, T ) = xs(p, T )
1 + xs(p, T ) ,

where ys(p, T ) is the vapor of water mass fraction at saturation.

• The relation between the absolute and relative humidity:

xs(p, T ) = Mw

Ma

ps(T )
p− ps(T ) .

This comes from the definition of the absolute humidity:

x(p, T ) = mw

ma
= yv(p, T )

ya
.
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Applying the equation of state considered yields

x(p, T ) = Ra

Rw

pv(T )
pa(p, T ) = εm

pv(T )
p− pv(T ) .

At saturation, x = xs and pv = ps.

4.3 Space and time discretisation

The time staggered scheme presented in the last chapter (Amino et al., 2022) is extended to an ideal gas
mixture with a small volume fraction of liquid. The iterative process with inner-iterations and the global
main steps before introduced are retained. However, some modifications are made and are highlighted
here. The time step ∆t is supposed constant in this section.

Initialisation: for k = 1, no changes are applied regarding the dry air scheme, excepted the addition
of the initial total water mass fraction yn+1,0

w,c = yn
w,c.

Sub-iterations for k ∈ [1,M − 1]:

Buoyant scalars step: The water mass fraction yn+1,k
w is computed by solving its transport equation

in the interval [n, n+ 1]:

ρn+1,k−1
c yn+1,k

w,c − ρn,k−1
c yn

w,c

∆t + Divc

(〈
Θ
(
yn

w, y
n+1,k
w

)〉
f
q

f

∣∣∣n+1,k−1

n

)
=

Lapc

(
K,∇Θ

(
yn

w, y
n+1,k
w

))
.

(4.11)

Remark 4.3.1. The face terms ψf and 〈.〉f remain to be spatially discretised.

The equation for the internal energy, also solved in [n, n + 1] remains unchanged (including the kinetic

energy source term Γu2/2
c

∣∣∣n+1,k−1

n
):

ρn+1,k−1
c en+1,k

c − ρn,k−1
c en

c

∆t + Divc

(〈
Θ
(
en, en+1,k

)〉
f
q

f

∣∣∣n+1,k−1

n

)
= µ(S2

c )n+θ,k−1 + Γu2/2
c

∣∣∣n+1,k−1

n

+ Lapc

(
λ,Θ

(
Tn, Tn+1,k−1

))
− Divc

(〈
Θ
(
pn, pn+1,k−1

)
un+θ,k−1

〉
f

)
+ un+θ,k−1

c · ∇c p|
n+θ,k−1
n−1+θ .

(4.12)

Note that the temperature on the diffusive right-hand-side of the equation is explicited for implementation
reasons.
The mixture temperature Tn+1,k is then computed from the mixture internal energy en+1,k using
Equation (4.1), (f). In case of non-saturation, its expression is straightforward, with yv = yw:

Tn+1,k
c =

en+1,k
c − yn+1,k

w,c L00

(1 − yn+1,k
w,c )cva + yn+1,k

w,c cvv

. (4.13)

In case of saturation, a constant pressure pn+1,k−1 and total water mass fraction yn+1,k
w,c are considered.

Then, the internal energy expression is written as a function of Tn+1,k
c :

en+1,k
c =

[
(1 − yn+1,k

w,c )cva + yv(pn+1,k−1
c , Tn+1,k

c )cvv + (yn+1,k
w,c − yv(pn+1,k−1

c , Tn+1,k
c ))cvl

]
Tn+1,k

c

+ yv(pn+1,k−1
c , Tn+1,k

c )L00,
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(4.14)

with:

yv(pn+1,k−1
c , Tn+1,k

c ) = εmps(Tn+1,k
c )

pn+1,k−1
c − (1 − εm) ps(Tn+1,k

c )
,

ps(Tn+1,k
c ) = exp

(
A+ B(Tn+1,k

c − T0)
C + Tn+1,k

c − T0

)
.

(4.15)

T0 is the reference temperature fixed here as 273.15 K. Equation (4.14) is then solved for T using the
Newton method (Equation (4.16)). Thus, an iterative process inside the inner iteration, denoted by the
superscript l, is performed to compute the temperature at a given precision (absolute error, fixed by the
user and denoted εe0 = 10−4, by default):

Tn+1,k,l
c =

en+1,k
c − e(yn+1,k

w,c , Tn+1,k,l−1
c , pn+1,k−1

c )
∂e

∂T

∣∣∣∣
yw

(
yn+1,k

w,c , Tn+1,k,l−1
c , pn+1,k−1

c

) + Tn+1,k,l−1
c . (4.16)

The initial temperature Tn+1,k,0 and internal energy en+1,k,0 depend on the previous cell state (i.e.
saturated or not). Algorithm 3 and Figure 4.3.1 details this methodology. Note that a study concerning
the Newton method convergence is made in the first verification case.

Remark 4.3.2. The internal energy derivative related to the temperature reads:

∂e

∂T

∣∣∣∣
yw

(yw, p, T ) =(1 − yw)cva + ywcvl + εm(cvv − cvl)
p(ps(T ))−1 − (1 − εm)

− εm[L00 + T (cvv − cvl)]
[p(ps(T ))−1 − (1 − εm)]2

(
∂p

∂T

∣∣∣∣
yw,e

(ps(T ))−1 − BC(ps(T ))−1

(C + T − T0)2

) (4.17)

where:

∂p

∂T

∣∣∣∣
yw,e

= − ∂e

∂T

∣∣∣∣
yw,p

(
∂e

∂p

∣∣∣∣
yw,T

)−1

. (4.18)

Proof: the internal energy is supposed constant during the Newton method i.e.:

de(p, T )
∣∣∣∣
yw,e

= 0 = ∂e

∂T

∣∣∣∣
yw,p

dT + ∂e

∂p

∣∣∣∣
yw,T

dp ⇔ dp = −
(
∂e

∂p

∣∣∣∣
yw,T

)−1
∂e

∂T

∣∣∣∣
yw,p

dT. (4.19)

Note that:

∂e

∂T

∣∣∣∣
yw,p

(yw, T, p) = cva(1 − yw) + cvlyw + εm B C p (L00 − cvlT + cvvT ) ps(T )−1

(C + T − T0)2 (p ps(T )−1 − (1 − εm))2

+ εm(cvv − cvl)
p ps(T )−1 − (1 − εm) .

(4.20)

and:

∂e

∂p

∣∣∣∣
yw,T

(yw, p, T ) = −(ps(T ))−1εm[L00 + T (cvv − cvl)]
[p(ps(T ))−1 − (1 − εm)]2

. (4.21)
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The mass fractions yn+1,k
v,c = yv(pn+1,k−1

c , Tn+1,k
c ) and yn+1,k

l = yn+1,k
w,c − yn+1,k

v,c are then updated
using the new temperature value.
The intermediate density is then calculated using the equation of state:

ρ̃k
c = pn+1,k−1

c

RaT
n+1,k−1
c

[
1 − yn+1,k

w,c + yv(pn+1,k−1
c , Tn+1,k

c )ε−1
m

] . (4.22)

Again, the new density is not balanced by the mass flux yet. The mass conservation is insured in the
correction step.

Prediction step: No changes are made in the prediction step, where the intermediate velocity ũ is obtained
by solving the momentum equation in the interval [n− 1 + θ, n+ θ]:

Θ
(
ρn

c , ρ
n+1,k−1
c

)
ũk

c − Θ
(
ρn−1

c , ρn,k−1
c

)
un−1+θ

c

∆t + Divc

(〈
Θ
(
un−1+θ, ũk

)〉
f

⊗ q
f

∣∣∣n+θ,k−1

n−1+θ

)
= −Gradc

(〈
p|n+θ,k−1

n−1+θ

〉
f

)
+ Divc

(
τk

f

)
+ f

c

∣∣∣n+θ,k−1

n−1+θ
.

(4.23)

Correction step: The Helmholtz equation for the pressure is solved for the pressure increment φk =
p
∣∣n+θ,k

n−1+θ
− p

∣∣n+θ,k−1
n−1+θ

and is the same compared to the dry air scheme. The following equations are
combined in the interval [n, n+ 1]:

Θ
(
ρn

c , ρ
n+1,k
c

)
un+θ,k

c − Θ
(
ρn

c , ρ
n+1,k−1
c

)
ũk

c

∆t + ∇fφ
k = δfk

c
,

Divc

(
q

f

∣∣∣n+1,k

n

)
+ ρn+1,k

c − ρn
c

∆t = 0,
(4.24)

with

δfk
c

= f
c

∣∣∣n+θ,k

n−1+θ
− f

c

∣∣∣n+θ,k−1

n−1+θ

and:

q
f

∣∣∣n+1,k

n
=
〈

Θ
(
ρn, ρn+1,k

)
un+θ,k

〉
f

=
〈

Θ
(
ρn, ρn+1,k−1

)
ũk
〉

f

− ∆t
(
∇fφ

k − δfk
c

)
, (4.25)

leading to:

ρn+1,k
c − ρn

c

∆t − θLapc

(
∆t, pn+1,k

)
= − Divc

(〈
Θ
(
ρn, ρn+1,k−1

)
ũk + ∆t

(
∇p|n+θ,k−1

n−1+θ + δfk
)〉

f

)
+ (1 − θ)Lapc

(
∆t, p|n−1+θ

n−2+θ

)
.

(4.26)

The pressure pn+1,k
c is linked to φk

c through:

φk
c = Θ

(
pc|n−1+θ

n−2+θ, p
n+1,k
c

)
− pc|n+θ,k−1

n−1+θ . (4.27)

It is reminded that the thermodynamical pressure pn+1,k
c is distinguished from the mechanical pressure

pc|n+θ,k
n−1+θ which contributes to the momentum equation. The non change of the Helmholtz is a direct

consequence of the form of the mixture equation of state, which can be linearised (considering a total
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water mass fraction and internal energy constant in the correction step) and used to correct the density
ρn+1,k:

ρn+1,k
c = ρ̃c

k +
(
pn+1,k

c − pn+1,k−1
c

)(∂ρ
∂p

∣∣∣∣
yw,e

(
yn+1,k

w,c , Tn+1,k
c , pn+1,k−1

c

))
. (4.28)

where:

∂ρ

∂p

∣∣∣∣
yw,e

(yw, T, p) =


1

RaT
[
1 − yw + ywε

−1
m

] , without saturation. Else:

− ∂ρ

∂T

∣∣∣∣
yw,p

(
∂e

∂T

∣∣∣∣
yw,p

)−1
∂e

∂p

∣∣∣∣
yw,T

+ ∂ρ

∂p

∣∣∣∣
yw,T

.

(4.29)

The expressions of the saturation pressure ps(T ) and vapor fraction at saturation yv(p, T ) are given
respectively by Equations (4.10) and (4.9). In case of saturation, the vapour mass fraction depends on
the temperature and the pressure. Thus, the correction of the pressure is followed by the update of
ρn+1,k

c , un+θ,k
c and of the couple Tn+1,k

c and yn+1,k
v,c . The two last variables are corrected by performing

the Newton method presented in the buoyant scalars step by the Equations (4.13), (4.14), (4.15) and
(4.16). However Equation (4.14) is solved using en+1,k and the new pressure pn+1,k.

Remark 4.3.3.

dρ
∣∣∣∣
yw,e

(p, T ) = ∂ρ

∂T

∣∣∣∣
yw,p

dT + ∂ρ

∂p

∣∣∣∣
yw,T

dp. (4.30)

one wants
∂ρ

∂p

∣∣∣∣
yw,e

. The internal energy is supposed constant in the correction step. Thus, de(p, T ) =

0, i.e.:

∂e

∂T

∣∣∣∣
yw,p

dT = ∂e

∂p

∣∣∣∣
yw,T

dp,

which yields:

dT = −
(
∂e

∂T

∣∣∣∣
yw,p

)−1
∂e

∂p

∣∣∣∣
yw,T

dp.

From Equation (4.30),

dρ
dp

∣∣∣∣
yw,e

= − ∂ρ

∂T

∣∣∣∣
yw,p

(
∂e

∂T

∣∣∣∣
yw,p

)−1
∂e

∂p

∣∣∣∣
yw,T

+ ∂ρ

∂p

∣∣∣∣
yw,T

. (4.31)

The next step is to express the derivatives. Equation (4.20) and (4.21) defines
∂e

∂T

∣∣∣∣
yw,p

and
∂e

∂p

∣∣∣∣
yw,T

respectively. The others are defined as:

∂ρ

∂T

∣∣∣∣
yw,p

= −p
RaT 2(1 − yw + yv(p, T )ε−1

m )

+ pBC(ps(T ))−1

RaT (1 − yw + yv(p, T )ε−1
m )2(p(ps(T ))−1 − (1 − εm))2(C + T − T0)2 .

(4.32)
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∂ρ

∂p

∣∣∣∣
yw,T

= 1
RaT

[
1 − yw + yv(p, T )ε−1

m

]+ (RaT )−1(ps(T ))−1p

[p(ps(T ))−1 − (1 − εm)]2
[
1 − yw + yv(p, T )ε−1

m

]2 .
(4.33)

Similarly to the dry air scheme, the sub-iterative process for the time step ends when the error

εk
piso =

√√√√Ncell∑
c=1

Ωc

∣∣un+θ,k
c − un+θ,k−1

c

∣∣2
is below a fixed value εpiso0 . Algorithm (2) summarises the moist air scheme main steps.

Remark 4.3.4. The inner iterative process error threshold εpiso0 is speed dependent. Such condition
was sufficient for the dry air scheme. However, the moist air scheme presents more couplings between
its variables. Thus, defining a new error dependent of both speed and pressure could be of interest.

Algorithm 2 Moist air time scheme main steps
1: First time step initialisation,
2: Time loop
3: for n = 0, N-1 do
4: Initialisation of variables at the first sub-iteration k = 1,
5: for k = 1, M do
6: Compute the water mass fraction yn+1,k

w,c , . Equation (4.11)
7: Compute the internal energy en+1,k

c , . Equation (4.12)
8: Compute the temperature Tn+1,k

c and vapor of water mass fraction yn+1,k
v,c from en+1,k

c and
pn+1,k−1

c , . Algorithm (3)
9: Update of the density ρ̃c with Tn+1,k

c , . Equation (4.22)
10: Compute the predicted velocity ũk

c , . Equation (4.23)
11: Correction step: compute φk → pc|n+θ

n−1+θ, . Equation (4.26)
12: Correct the thermodynamic pressure pn+1,k

c , . Equation (4.27)
13: Correct the density ρn+1,k

c , . Equation (4.28)
14: Compute the temperature Tn+1,k

c and vapor of water mass fraction yn+1,k
v,c from en+1,k

c and
pn+1,k

c , . Algorithm (3)
15: Correct the velocity un+1,k

c , . Equation (4.25)
16: if εkpiso ≤ εpiso0 then
17: Break the for loop
18: else
19: Compute the kinetic energy source term Γu2/2

c

∣∣∣n+1

n
, . Equation (3.11)

20: end if
21: end for
22: end for

Algorithm (3) summarises the numerical strategy related to the saturation. Its main idea is to consider a
non saturated volume first. Then, using Equation (4.15), the vapor mass fraction at the pressure and the
new temperature T̂ is computed. If this quantity is inferior to the total water mass fraction, the Newton
method is ran. Figure 4.3.1 illustrates this strategy related to saturation.
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Figure 4.3.1: Strategy when treating saturation, with one Newton’s method iteration. (Left) Example
while getting in saturation. The orange filled dot corresponds to the point {T̂ , e(T̂ , ys)} (see Algorithm
(3)). (Right) Example when leaving saturation. The final temperature Tn+1,k is a result of the correction
of the vapor of water mass fraction related to Tn+1,k,1, which was superior in that case to yn+1,k

w . These
Figures do not represent a test case in particular and were drawn only for illustrating the Newton’s
method.

4.4 Properties of the moist air scheme

A similar analysis made for the dry air scheme is made on the internal energy, pressure and density
positivity, leading to new CFL and Fourier like conditions. The upwind spatial scheme is used for the
convective terms in this analysis.

4.4.1 Positivity of the internal energy

Let’s first analyse the internal energy discretised equation between [n, n + 1] and determine if stability
conditions exist so the equation variable is strictly positive. For k > 1, Equation (4.12) is written:Mn

c

en+1,k
c − en

c

∆t|n+1
n

+
∑

f∈Fc

(〈
Θ
(
en, en+1,k

c

)〉
f

− en+1,k
c

)
Ṁf

∣∣∣n+1,k−1

n


+
∑

f∈Fc

λ|Sf |
Θ
(
Tn

c , T
n+1,k−1
c

)
− Θ

(
Tn

c̃
, Tn+1,k−1

c̃

)
dcc̃

= Ωcµ(S2
c )n+θ + Γu2/2

c

∣∣∣n+1,k−1

n

−
∑

f∈Fc

〈
Θ
(
pn, pn+1,k−1

)
un+θ,k−1

〉
f

· Sf + Ωcu
n+θ,k−1
c · ∇c p|

n+θ,k−1
n−1+θ .

(4.34)

The equation (4.34) yields a linear system AX = B, where X = (en+1,k
c )c∈{1,..,Ncell}. Considering the

cell initial internal energy, λ, Ra, and ∆t positive, A is diagonal dominant and a M-matrix if:

Maxc

(
CFL+

T1

)
c
< 1, (4.35)

where:

(CFL+
T1

)c := (1 − θ) ∆t
Mn

c

∑
f∈Fc

Ṁ+
f

∣∣∣n+1,k−1

n
. (4.36)
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Algorithm 3 Saturation numerical treatment. p̂c can be either pn+1,k−1
c or pn+1,k

c

1: Compute internal energy en+1,k
c for all Ncell cells, . Equation (4.12)

2: for c = 0, Ncell do
3: Compute the mixture temperature without saturation T̂c, . Equation (4.13)
4: Compute the saturated vapor of water mass fraction ys,c(p̂c, T̂c), . Equation (4.15)
5: if ys,c < yn+1,k

w,c then
6: Initialise Tn+1,k,0

c = T̂c,
7: Initialise the error E0

e,c = |en+1,k
c − ec(p̂c, T̂c)|,

8: while El
e,c < εe0 do

9: Compute
∂e

∂T

∣∣∣∣
yw

(p̂c, y
n+1,k
w,c , Tn+1,k,l

c ), . Equation (4.17)

10: Update Tn+1,k,l
c , . Equation (4.16)

11: Update the error El
e,c = |en+1,k

c − ec(p̂c, T
n+1,k,l
c )|

12: end while
13: Verify the boudedness of the mass fractions
14: if yn+1,k

v,c > yn+1,k
w,c then

15: yn+1,k
v,c = yn+1,k

w,c ,
16: Correct Tn+1,k

c , . Equation (4.13)
17: else
18: Tn+1,k

c = Tn+1,k,l
c ,

19: Correct yn+1,k
v,c , . Equation (4.15)

20: end if
21: else
22: yn+1,k

v,c = yn+1,k
w,c ,

23: Tn+1,k
c = T̂c.

24: end if
25: end for

Maxc(CFL+
T2

)c < 1, (4.37)

where:

(CFL+
T2

)c := ∆t
Mn

c

∑
f∈Fc

(1 − θ) +
RaΘ

(
Tn

c , T
n+1,k−1
c

)
en

c

 Ṁ+
f

∣∣∣n+1,k−1

n

−
∆tun+θ,k−1

c · ∇c p|
n+θ,k−1
n−1+θ

ρn
c e

n
c

.

(4.38)

Maxc(Fo+
T )c < 1, (4.39)

where:

(Fo+
T )c := λc∆t

Mn
c

∑
f∈Fc

|Sf |
Θ
(
Tn

c − Tn
c̃
, Tn+1,k−1

c − Tn+1,k−1
c̃

)
en

c dcc̃

. (4.40)
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Remark 4.4.1. The internal energy is positive if the conditions (4.36), (4.38) and (4.40) are verified.
However this does not enforce the positive of the mixture temperature Tn+1,k.

In case of non-saturation, the temperature is computed using Equation (4.13). Considering that yw is
bounded in [0, 1], the positivity of a given cell c temperature in that case is insured if:

en+1,k
c > yn+1,k

w,c L00. (4.41)

Remark 4.4.2. In the indoor context, the humidity absolute ratio highest values are around 30 g kg−1

of dry air, leading to a total water (with no saturation) mass fraction of yw = 0.029. Thus, condition
(4.41) is respected and the temperature would stay positive in this context of application.

In case of saturation, two conditions must be respected to preserve the temperature positivity. The
first is the function e(T ) monotony (at fixed pressure and water mass fraction). Figure 4.4.1 shows
this derivative in the indoor airflow conditions. Note that the total water mass fraction is constant;
its variation, which is relatively small, has a little impact in the derivative value. For three different
pressures, it can be seen that the internal energy partial derivative related to the temperature is positive.
Thus, the Newton’s method has an unique solution. However, this still does not insure the temperature
positivity; a last condition, written as:

en+1,k
c − e

(
yn+1,k

w,c , pn+1,k−1
c , Tn+1,k,l−1

c

)
∂e

∂T

∣∣∣∣
yw

(
yn+1,k

w,c , pn+1,k−1
c , Tn+1,k,l−1

c

) + Tn+1,k,l−1
c > 0, (4.42)

should be satisfied, which is the case for non important internal energy variations.
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Figure 4.4.1: (Left) 2-D representation of the internal energy partial derivative related to the temperature
between 260 K and 330 K for three different pressures in the indoor airflow range and with yw = 0.0125.
(Right) 3-D representation of the internal energy partial derivative related to the temperature with yw =
0.0125.

162



4.4.2 Positivity of the pressure

Similarly to the internal energy equation, the Helmholtz equation solved for the pressure increment for
k > 1 is written with the spatial discretisation (note that the Rhie and Chow filter is included in the
following):

Ωcp
n+1,k
c

∆t
∂ρ

∂p

∣∣∣∣
yw,e

(yn+1,k
w,c , pn+1,k−1

c , Tn+1,k
c ) − θ∆t

∑
f∈Fc

∇fp
n+1,k · Sf = ρn

c Ωc

∆t

(1 − θ)∆t
∑

f∈Fc

∇f p|
n−1+θ
n−2+θ · Sf −

∑
f∈Fc

〈
Θ
(
ρn, ρn+1,k−1

)
ũk + ∆t∇c p|

n+θ,k−1
n−1+θ

〉
f

· Sf ,
(4.43)

If the volume is not saturated,

∂ρ

∂p

∣∣∣∣
yw,e

(yn+1,k
w,c , pn+1,k−1

c , Tn+1,k
c ) = 1

RaT
n+1,k
c

[
1 − yn+1,k

w,c + yn+1,k
v,c ε−1

m

] ,
with:

yn+1,k
v,c = yn+1,k

w,c .

From the thermal equation, if the internal energy is positive so is the temperature and the vapor pressure
at saturation ps(T ).

Moreover,
∂ρ

∂p

∣∣∣∣
yw,e

(yn+1,k
w,c , pn+1,k−1

c , Tn+1,k
c ) is strictly positive if yn+1,k

v,c is, i.e. if:

pn+1,k−1
c > (1 − εm) ps(Tn+1,k

c ). (4.44)

This is verified in the indoor context. Indeed, the water saturation pressure at the indoor temperature
range (around 104Pa, see Figure 4.2.1) is less important than the indoor pressure values (around 105Pa).
In case of saturation,

∂ρ

∂p

∣∣∣∣
yw,e

(yn+1,k
w,c , pn+1,k−1

c , Tn+1,k
c ) =− ∂ρ

∂T

∣∣∣∣
yw,p

(
∂e

∂T

∣∣∣∣
yw,p

)−1
∂e

∂p

∣∣∣∣
yw,T

+ ∂ρ

∂p

∣∣∣∣
yw,T

 (yn+1,k
w,c , pn+1,k−1

c , Tn+1,k
c ).

Given the complexity to write an analytical positivity condition for this derivative, in this section a

qualitative analysis is made. To do so,
∂ρ

∂p

∣∣∣∣
yw,e

(yw, p, T ) is represented in Figure 4.4.2, for a very low

total water mass fraction (yw = 0.002) and its maximum value considered in the indoor environment
framework (yw = 0.029). Two main points can be highlighted. First, the variation of water mass fraction
has a little impact (not negligible) in the partial derivative value. Second, in the indoor environment
context, this derivative is positive. This will be also the case when yw = 0, since the derivative will tend
to the dry air equation of state derivative presented in Chapter 3.3. One interesting point to investigate
in further studies could be an analysis on how this derivative expression, which is not simple in case of
saturation, is impacted by the different terms. According to the result, its expression could be simplified.

Equation (4.43) is a linear system AX = B, where X = (pn+1,k
c )c∈{1,..,Ncell}. Considering the cell

internal energy, λ, Ra, and ∆t positive, A is diagonal dominant and a M-matrix if the condition (4.44)
and the following CFL condition are respected:

Maxc(CFL+
p )c < 1, (4.45)
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Figure 4.4.2:
∂ρ

∂p

∣∣∣∣
yw,e

(yw, p, T ) according to the temperature and total pressure for two total water mass

fraction values.

where:

(CFL+
p )c := ∆t

ρn
c Ωn

c

∑
f∈Fc

aφ
f , (4.46)

and
aφ

f =
〈
Θ
(
ρn, ρn+1,k−1

)
ũk + ∆t∇p|n+θ,k−1

n−1+θ

〉
f

· Sf − (1 − θ)∆t∇f p|
n−1+θ
n−2+θ · Sf .

4.5 Solution of the Riemann problem related to the moist air system of
equations with no phase change

This section presents the derivation of the solution of the Riemann problem related to the mixture set of
equations. The solution is then used for the moist air scheme verification.

4.5.1 Introduction

Riemann problems are well known and documented in the literature. Often used to verify numerical
schemes (Archambeau et al., 2009; Colas et al., 2019; Herbin et al., 2020; Amino et al., 2022) ,
they represent the propagation of waves in a given system. However, finding the exact solution of this
problem related to a set of equations is not always possible.
This section work is strongly inspired by Smoller (2012) book. The reader may refer to the latter for
the derivation of the Riemann problem exact solution for the Euler equations for instance.
In this type of problem, two fluid initial states are separated by an interface. The different left and
right initial states are called respectively WL and WR (which are known and steady). According to the
initialisation, shock, expansion and contact waves propagate over the system.
In order to derive an exact solution related to the Riemann problem, some hypothesis have been made.
First, diffusive terms are disabled. Then, phase change is not considered. This yields yv = yw and
yl = 0. Finally, an one-dimensional problem in space is considered.

Proposition

• The one-dimensional Riemann problem associated with the System (4.1) with initial data:

W (x < 0, t = 0) = WL, W (x > 0, t = 0) = WR,
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neglecting the diffusive terms, admits an unique self-similar solution W (ξ), with ξ = x/t, with no
vacuum occurrence, if and only if the following condition (4.47) is respected:

uR − uL <
2

Γ(yw,R) − 1cR + 2
Γ(yw,L) − 1cL, (4.47)

with c and Γ defined as following:

c(yw, ρ, p) =
(
p

ρ
Γ(yw)

) 1
2
, Γ(yw) = Ra(1 − yw(1 − ε−1

m ))
cvm

+ 1. (4.48)

• The solution is composed by constant intermediate states, WL, W 1, W 2 and WR, separated
respectively by a genuinely nonlinear wave (1-wave), a double contact discontinuity wave and
a last genuinely nonlinear wave (4-wave). With those are associated the eigenvalues λ1/4 = u± c
and λ2/3 = u (see Figure 4.5.1).

The proof, which is detailed in the next subsections, is classically obtained (Smoller, 2012) by
construction using the Rankine–Hugoniot conditions and considering the entropy inequality:

∂(ρs)
∂t

+ div (ρsu) < 0, (4.49)

where s(yw, ρ, p) = pρ−Γ(yw). The methodology to derive the exact solution of the Riemann problem
can be summarised in three main steps. First, the verification of the hyperbolicity of the system is made
by studying its eigenvalues. The eigenvectors and Riemann invariants are then calculated. The next step
is to respectively connect the left (L) and right (R) states to the intermediate ones (1 and 2). This is done
by writing expressions linking those states at the 1- and 4- waves, that can be either an expansion or a
shock wave. This induces four different possible cases, summarised in Figure 4.5.2. The final step is to
connect an intermediate state (in this study, the state (1)) to to the states (L) and (R).

0

0

λ1

1-wave

λ4

4-wa
ve

x

t

λ2/3

WL WR

W 2W 1

Figure 4.5.1: Presentation of the different Riemann problem waves and states.

After introducing the studied set of equations in Subsection 4.5.2, the hyperbolocity of the system is
studied in Subsection 4.5.3. Then the Rankine–Hugoniot relations are presented and the connection
between the states L− 1 and 2 −R for the four different cases is made in Subsection 4.5.5. Finally, the
intermediate state calculation strategy is explained in Subsection 4.5.7.
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Figure 4.5.2: Sketch of the four possible cases for the one-dimensional Riemann problem.

4.5.2 Set of equations

The mixture Euler equations (4.116) are written using the total energy equation and in their conservative
form:

∂(ρyw)
∂t

+ div (ρywu) = 0,

∂ρ

∂t
+ div (ρu) = 0,

∂(ρu)
∂t

+ div (ρu⊗ u) + ∇p = 0,

∂(ρE)
∂t

+ div (ρEu+ pu) = 0.

(4.50)

The total energy is defined by:

E = u2/2 + e. (4.51)

The equation of state is written as:

e = pcvm

ρRa(1 − yw(1 − ε−1
m ))

+ ywL00 (4.52)
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For regular solutions, system (4.50) is equivalent to the following non conservative one:

∂yw

∂t
+ ∇yw · u = 0,

∂s

∂t
+ ∇s · u = 0,

∂u

∂t
+ u · ∇u+ τ∇p = 0,

∂p

∂t
+ ∇p · u+ ρc2div (u) = 0.

(4.53)

The new set of variable is, considering an one dimensional problem, Y = (yw, s, u, p)t, where s is the
system entropy defined as:

s(yw, ρ, p) = pρ−Γ(yw), Γ(yw) = Ra(1 − yw(1 − ε−1
m ))

cvm
+ 1. (4.54)

And c is the system celerity:

c =
(
p

ρ
Γ(yw)

) 1
2
. (4.55)

Remark 4.5.1 – Equivalence between systems (4.50) and (4.53). Combining the momentum
and total energy equations leads to the internal energy equation. The system associated, in its non
conservative form reads:

∂yw

∂t
+ ∇yw · u = 0,

∂ρ

∂t
+ ∇ρ · u+ ρdiv (u) = 0,

∂u

∂t
+ u · ∇u+ 1

ρ
∇p = 0,

∂e

∂t
+ ∇e · u+ p

1
ρ

div (u) = 0.

(4.56)

The internal energy e differential (function of y, ρ and p) is written:

∂e

∂p

∣∣∣∣
yw,ρ

(
∂p

∂t
+ ∇p · u

)
− ∂e

∂ρ

∣∣∣∣
yw,p

ρdiv (u)+ ∂e

∂yw

∣∣∣∣
ρ,p

(
∂yw

∂t
+ ∇yw · u

)
+p1

ρ
div (u) = 0. (4.57)

With some manipulations, the latter leads to an equation for the pressure:

∂p

∂t
+ ∇p · u+ ρc2div (u) = 0, (4.58)

where c2 is defined as:

c2 :=

p

ρ2 − ∂e

∂ρ

∣∣∣∣
yw,p

∂e

∂p

∣∣∣∣
ρ,yw

=

p

ρ2 + pcvm

ρ2Ra(1 − yw(1 − ε−1
m ))

cvm

Raρ(1 − yw(1 − ε−1
m ))

= p

ρ

(
Ra(1 − yw(1 − ε−1

m ))
cvm

+ 1
)
. (4.59)
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The celerity is positive if p and ρ are, which is the case if the CFL conditions presented in Section 4.4
are respected. Introducing:

Γ(yw) := Ra(1 − yw(1 − ε−1
m ))

cvm
+ 1, (4.60)

yields:

c2 = p

ρ
Γ. (4.61)

Moreover, we define the system entropy s(yw, ρ, p) whose derivative verifies:

∂s

∂t
+ ∇s · u+ ρ

(
∂s

∂ρ

∣∣∣∣
yw,p

+ c2 ∂s

∂p

∣∣∣∣
yw,ρ

)
div (u) = 0. (4.62)

Indeed,

ds = ∂s

∂t
+ ∇s · u = ∂s

∂yw

∣∣∣∣
ρ,p

dyw

dt + ∂s

∂ρ

∣∣∣∣
yw,p

dρ
dt + ∂s

∂p

∣∣∣∣
yw,ρ

dp
dt ,

where:

dyw

dt = 0, dρ
dt = −ρdiv (u), dp

dt = −ρc2div (u).

Defining s(yw, ρ, p) = pρ−Γ,

∂s

∂ρ

∣∣∣∣
yw,p

+ c2 ∂s

∂p

∣∣∣∣
yw,ρ

= 0 (4.63)

is respected and Equation (4.62) reads:

∂s

∂t
+ ∇s · u = 0. (4.64)

Note that ρ = (p/s)1/Γ. The final system uses the entropy and pressure equations rather than the
momentum and internal energy ones, which facilitates the calculation of its eigenvalues, eigenvectors
and Riemann invariants, presented in the next Subsection.

4.5.3 System hyperbolicity

The set of equations presented on Equation (4.53) is kept. The latter reads

∂Y

∂t
+A(Y )∇Y = 0, (4.65)
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with Y = (yw, s, u, p)T . A is the associated Jacobian matrix:

A(Y ) =



u 0 0 0

0 u 0 0

0 0 u
1
ρ

0 0 ρc2 u


.

Let’s verify that this system is hyperbolic, i.e. that A is diagonalisable and has eigenvalues in R. Its
eigenvalues are the following:

λ1 = u− c, λ2 = λ3 = u, λ4 = u+ c,

with λ1 < λ2/3 < λ4. The eigenvectors ri associated to the λi are:

r1 = (0, 0, 1,−ρc),
r2 = (1, 0, 0, 0),
r3 = (0, 1, 0, 0),
r4 = (0, 0, 1, ρc).

Moreover, Riemann invariants φi for each eigenvector can be calculated. They verify:

ri · ∇φi = 0.

For the double eigenvalue λ2 = λ3, the couple of invariants φ2/3 is straightforward and reads

φ2/3 = {u, p}.

Then, yw and ρ are two invariants of the first and fourth waves. The other invariants of these waves
verify:

∂φ

∂u

∣∣∣∣
yw,ρ,p

− ρc
∂φ

∂p

∣∣∣∣
yw,u,p

= 0 (4.66)

Searching φ of the form φ = u+ ψ(yw, s, p) leads to:

φ3
1 = u+

∫ p

p0

dp′

ρc(p′, s, y) , φ
3
4 = u−

∫ p

p0

dp′

ρc(p′, s, y) . (4.67)

Table (4.5.1) summarises the last results, which are useful to derive the exact solution.
Moreover, we recall that c2(yw, ρ, p) = pρ−1Γ, so

ρc(yw, ρ, p) = (ρpΓ)
1
2 . (4.68)

Since ρ = p1/Γs−1/Γ, the latter becomes:

ρc(yw, s, p) = Γ
1
2 s− 1

2 Γp
1
2 − 1

2 Γ. (4.69)

We define

I(yw, s, p) =
∫ p

p0

dp′

ρc(p′, yw, s)
=
∫ p

p0

dp′

Γ
1
2 s− 1

2 Γp′ 1
2 + 1

2 Γ
(4.70)

Integrating this expression yields:

I(yw, s, p) = 2c(yw, s, p)
Γ − 1 . (4.71)

Note that Γ = Γ(yw), defined in Equation (4.60).
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i = 1 2 3 4

λi u− c u u u+ c

ri (0, 0, 1,−ρc)t (1, 0, 0, 0)t (0, 1, 0, 0)t (0, 0, 1, ρc)t

φi {yw, s, u+
∫ p

p0

dp′

ρc(p′, s, y)} {u, p} {u, p} {yw, s, u−
∫ p

p0

dp′

ρc(p′, s, y)}

Table 4.5.1: Eigenvalues, eigenvectors and Riemann invariants for the system (4.53)

Remark 4.5.2. The results presented in Table 4.5.1 can be compared to the classical Euler system
of equations Riemann problem solution. First, an additional eigenvalue exists λ3 = u related to the
solve of the total water transport equation. This leads as well to three (instead of two) invariants for
the first and fourth waves. Moreover, the second invariants for those waves present similarities to the
Euler system ones, where only the definition of the celerity and Γ are different.

4.5.4 Jump conditions

For system (4.53), the jump conditions, also called the Rankine–Hugoniot conditions (Smoller, 2012) ,
are:

−σ[ρyw] + [ρuyw] = 0,
−σ[ρ] + [ρu] = 0,

−σ[ρu] + [ρu2 + p] = 0,
−σ[ρE] + [u(ρE + p)] = 0,

(4.72)

where [ψ] := ψr − ψl (the subscripts l and r are the shock left and right states respectively) and σ is
the shock speed in the frame of reference moving with the shock. A more convenient way to write these
conditions is to introduce the variable v = u− σ. Equation (4.72) becomes then:

[ρvyw] = 0,
[ρv] = 0,

[u]2 = [p][ρ]
ρlρr

,

[e] + p[ 1
ρ

] = 0,

(4.73)

where p := 1
2(pr + pl). Some useful information for solving the Riemann problem can be deduced

from these relations. For instance, using the entropy inequality (Smoller, 2012; Gavrilyuk et al., 2022)
yields

[u] = −
( [p][ρ]
ρlρr

) 1
2
. (4.74)

Thus,

ur = ul −
((pr − pl)(ρr − ρl)

ρrρl

) 1
2
. (4.75)
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Combining the first two Rankine–Hugoniot conditions leads to:

ρv[y] = 0. (4.76)

For genuinely non-linear (GNL) fields, v 6= 0 and ρ is assumed strictly positive. Thus,

[y] = 0, (4.77)

i.e. there is no jump for the total water mass fraction in case of shock. Also,

[e] + p

[1
ρ

]
= 0. (4.78)

Using the definition of the internal energy (Equation (4.52)) and multiplying Equation (4.78) by (Γ − 1)
leads to:[

p
1
ρ

]
+ (Γ − 1)p

[1
ρ

]
= 1
ρ

[p] + Γp
[1
ρ

]
= 0,

i.e.

1
2

( 1
ρr

+ 1
ρl

)
(pr − pl) + Γ/2 (pr + pl)

( 1
ρr

− 1
ρl

)
= 0. (4.79)

The normalised pressure

Φ = pr

pl
, (4.80)

and density variables

z = ρr

ρl
, (4.81)

related to a wave are defined. Equation (4.79) reads then:

Φ [(1 + z) + Γ(1 − z)] = 1 + z1 + ΓL(z1 − 1),

⇔ Φ(Γ − 1)
(Γ + 1

Γ − 1 − z

)
= (Γ − 1)

(Γ + 1
Γ − 1z − 1

)
,

⇔ Φ = βz − 1
β − z

, and z = βΦ + 1
β + Φ .

(4.82)

Where:

β = Γ + 1
Γ − 1 .

The use of the R.H conditions for a shock wave provided the essential expression (4.82) linking the
pressure and density variables that is used in the problem exact solution derivation.

4.5.5 States connection

In this subsection we want to find the connections between the different system states i.e. the connections
in the 1- and 4- waves for the unknowns Y = (yw, s, u, p)t.
As a reminder, each 1- 4- waves can either be an expansion or shock wave. We introduce the left (WL)
and right (WR) system states related to the problem initialisation which are known and steady. The
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found connections lead to the Riemann problem solution presented in the next section, where the contact
wave invariants

u1 = u2, p1 = p2, (4.83)

are used to connect all states together.
The normalised pressure and density variables associated to states 1 and 2 are defined:

Φ1 = p1
pL
, Φ2 = p2

pR
, (4.84)

and

z1 = ρ1
ρL
, z2 = ρ2

ρR
. (4.85)

The choice to solve the pressure variable Φ1 is made in the following.

The main goal here is to write expressions for the 1-wave and 4-wave expressions linking the unknowns
variables and the known states WL and WR i.e.:

u1 − uL

cL
= f1(WL,Φ1),

z1 = h1(WL,Φ1),
u2 − uR

cR
= f4(WR,Φ2),

z2 = h2(WR,Φ2).

(4.86)

Connection of the L-state to the 1-state through an expansion

In case of expansion (0 < Φ1 ≤ 1), the Riemann invariants are conserved between the state L and the
state 1. For the 1-wave, they read:

φ1 =
{
yw, s, u+ 2c(yw, s, p)

Γ(yw) − 1

}
.

Thus,

yw,L = yw,1, sL = s1, and Γ(yw,1) = Γ(yw,L) = ΓL.

Let’s write the condition related to the third Riemann invariant, using the notation for the constant
c(yw,L, sL, pL) = cL:

uL + 2cL

ΓL − 1 = u1 + 2c(yw,L, sL, p1)
ΓL − 1 . (4.87)

This leads to:

u1 = uL + 2cL

ΓL − 1 − 2c(yw,L, sL, p1)
ΓL − 1 = uL + 2

ΓL − 1(cL − c(yw,L, sL, p1)), (4.88)

which is rewritten using cL and Φ1:

u1 − uL

cL
= f1(WL,Φ1), (4.89)
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where:

f1(WL,Φ1) := 2
ΓL − 1

(
1 − Φ

1
2

(
1−Γ−1

L

)
1

)
.

The next step is to find a link between pressure and density for the 1-wave using the definition of the
invariant s:

s = pρ−ΓL .

This yields:

z1 = Φ
1

ΓL
1 . (4.90)

Connection of the L-state to the 1-state through a shock

Equation (4.79) is written for the 1-wave with z1 and Φ1 (in case of shock, i.e. if Φ1 > 1):

⇔ Φ1(ΓL − 1)
(ΓL + 1

ΓL − 1 − z1

)
= (ΓL − 1)

(ΓL + 1
ΓL − 1z1 − 1

)
,

⇔ Φ1 = βLz1 − 1
βL − z1

, and z1 = βLΦ1 + 1
βL + Φ1

= h1(WL,Φ1).
(4.91)

With

βL = ΓL + 1
ΓL − 1 .

This expression is essential to link the pressure and density in the linearly degenerated wave. Now we
look for an expression linking the velocity and Φ1. The Rankine–Hugoniot condition (Equation (4.75))
is used:

u1 = uL −
√

(p1 − pL)(ρ1 − ρL)
ρ1ρL

= uL − cL

√
(Φ1 − 1)(z1 − 1)

ΓLz1
(4.92)

i.e.
u1 − uL

cL
= f1(WL,Φ1), (4.93)

where,

f1(WL,Φ1) := −

√
(Φ1 − 1)(z1 − 1)

ΓLz1
.

Summary of the relations for the 1-wave

To sum up, for the 1-wave, the final connection between the states 1 − L is:

u1 − uL

cL
= f1(WL,Φ1) =


2

ΓL − 1

(
1 − Φ

1
2

(
1−Γ−1

L

)
1

)
, if 0 < Φ1 ≤ 1 (1-expansion),

−
((Φ1 − 1)(z1 − 1)

ΓLz1

) 1
2
, if Φ1 > 1 (1-shock).

(4.94)

with

z1 = h1(WL,Φ1) =


Φ

1
ΓL
1 , if 0 < Φ1 ≤ 1 (1-expansion),
βLΦ1 + 1
βL + Φ1

, if Φ1 > 1 (1-shock).
(4.95)
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Connection of the R-state to the 2-state through an expansion

Similarly, the invariants for the 4-wave are:

φ2 =
{
yw, s, u− 2c(yw, s, p)

Γ(yw) − 1

}
.

Thus:

yw,R = yw,2, sR = s2,

and Γ(yw) = Γ(yw,R) = ΓR. Let’s write the expression related to the third Riemann invariant, using the
notation for the constant c(yw,R, sR, pR) = cR:

uR − 2cR

ΓR − 1 = u2 − 2c(yw,R, sR, p2)
ΓR − 1 , (4.96)

which can be written as:

u2 − uR

cR
= f4(WR,Φ2), if 0 < Φ2 ≤ 1, (4.97)

where:

f4(WR,Φ2) := − 2
ΓR − 1cR

(
1 − Φ

1
2

(
1−Γ−1

R

)
2

)
.

Similarly, the link between pressure and density for the 4-wave using the definition of the invariant s is:

z2 = Φ
1

ΓR
2 . (4.98)

Connection of the R-state to the 2-state through a shock

Equation (4.79) is written for the 4-wave in case of shock (Φ1 > 1) leading to:

Φ2 = 1 − z2βR

z2 − βR
, and z2 = βRΦ2 + 1

βR + Φ2
, (4.99)

with

βR = ΓR + 1
ΓR − 1 .

Using the Rankine–Hugoniot condition (Equation (4.75)) again:

u2 = uR +
√

(pR − p2)(ρR − ρ2)
ρRρ2

=
√

(1 − Φ2)(1 − z2)
ΓRz2

(4.100)

i.e.

u2 − uR

cR
= f4(WR,Φ2), (4.101)

where:

f4(WR,Φ2) :=
√

(1 − Φ2)(1 − z2)
ΓRz2

.
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Summary of the relations for the 4-wave

Finally, the 4-wave relations are:

u2 − uR

cR
= f4(WR,Φ2) =


− 2

ΓR − 1

(
1 − Φ

1
2

(
1−Γ−1

R

)
2

)
, if 0 < Φ2 ≤ 1 (4-expansion),((1 − Φ2)(1 − z2)

ΓRz2

) 1
2
, if Φ2 > 1 (4-shock).

(4.102)

with

z2 = h4(WR,Φ2) =


Φ

1
ΓR
2 , if 0 < Φ2 ≤ 1 (4-expansion),
βRΦ2 + 1
βR + Φ2

, if Φ2 > 1 (4-shock).
(4.103)

175



4.5.6 Summary

Table 4.5.2 summarises the different states relations for all waves.

Wave Φi Relations

1-wave

0 < Φ1 ≤ 1 (expansion)

u1 − uL

cL
= f1(WL,Φ1) = 2

ΓL − 1

(
1 − Φ

1
2

(
1−Γ−1

L

)
1

)
z1 = Φ

1
ΓL
1

Φ1 > 1 (shock)

u1 − uL

cL
= f1(WL,Φ1) = −

((Φ1 − 1)(z1 − 1)
ΓLz1

) 1
2

z1 = βLΦ1 + 1
βL + Φ1

4-wave

0 < Φ2 ≤ 1 (expansion)

u2 − uR

cR
= f4(WR,Φ2) = − 2

ΓR − 1

(
1 − Φ

1
2

(
1−Γ−1

R

)
2

)
z2 = Φ

1
ΓR
2

Φ2 > 1 (shock)

u2 − uR

cR
= f4(WR,Φ2) =

((Φ2 − 1)(z2 − 1)
ΓRz2

) 1
2

z2 = βRΦ2 + 1
βR + Φ2

2/3-wave
u1 = u2

Φ2 = pLpR
−1Φ1

Table 4.5.2: Summary of the relations between each system state.

1 2 3 4 5

−2

2

4

expansion

shockexpansion

shock

Φi

(ui − uI)/cI

1-wave : i=1 I=L

4-wave : i=2 I=R

Figure 4.5.3: Connection function for both 1- and 4- waves with ΓL = 1.5 and ΓR = 2.
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4.5.7 Intermediate state

We know that in the contact wave u1 = u2 and p1 = p2 (invariants). Thus, one may link the pressure
variables Φ1 and Φ2:

Φ2 = p2
pL

= p1
pL

= pL

pR
Φ1, (4.104)

and:

uL + cLf1(WL,Φ1) = uR + cRf4

(
WR,

pL

pR
Φ1

)
. (4.105)

The latter equation can be written as:

F (Φ1) = 0, (4.106)

where:

F (Φ1) = uL − uR + cLf1(WL,Φ1) − cRf4

(
WR,

pL

pR
Φ1

)
.

Note that the functions f1 and f4 depends of the type of wave (Table 4.5.2). Equation (4.106) can be
solved numerically, leading to Φ1. The other variables calculation is then straightforward.

Monotony of F (Φ1)

In order to insure that Equation (4.106) has a solution, one must study the study of F (Φ1). From Equation
(4.105), one can see that F (Φ1) has the form of:

F (Φ1) = uL − uR + f1(Φ1) − f4

(
pL

pR
Φ1

)
The monotony of f1 is first studied for Φ1 > 0. If Φ1 ∈]0, 1]:

∂f1
∂Φ1

= − 2
ΓL − 1

(1
2 − 1

2ΓL

)
Φ− 1

2 [1+Γ−1
L ]

1 < 0, since ΓL > 1. (4.107)

If Φ1 > 1, f1(Φ1) reads:

f1(Φ1) = −

(Φ1 − 1)
(
βLΦ1 + 1
βL + Φ1

− 1
)

(βL + Φ1)

ΓL (βLΦ1 + 1)


1
2

(4.108)

∂f1
∂Φ1

< 0 if:

∂

∂Φ1

(Φ1 − 1)
(
βLΦ1 + 1
βL + Φ1

− 1
)

(βL + Φ1)

ΓL (βLΦ1 + 1)

 = g′
1(Φ1) > 0. (4.109)

g′
1 is positive if its numerator

β2
L − 1

(βL + Φ1)2

[
ΓL(βLΦ1 + 1)(Φ2

1 + Φ1(βL − 1) − βL)
]

+ ΓL

(
βLΦ1 + 1
Φ1 + βL

− 1
)

(βLΦ2
1 + 2Φ1 + β2

L + βL − 1)

(4.110)
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is positive. To ease this function study, we plot it between 0 and 2 (Figure 4.5.4, left), for three different
ΓL values belonging to our studies range. It is observed that after Φ1 > 1, which is the case for the
shock condition, g′

1(Φ1) > 0, so f ′
1(Φ1) < 0. Figure 4.5.5 presents the same quantity but continuously

related to ΓL and confirms the positivity of g′
1(Φ1) for Φ1 > 1. For both shock and expansion, that is,

for Φ1 ∈ [0,+∞[, the function f1(Φ1) decreases. This is confirmed as well by Figure 4.5.3.
The same process is made with the function −f4(Φ1), which has a similar form compared to f1(Φ1). If
Φ2 ∈]0, 1], i.e. if Φ1 ∈]0, pR

pL
], one has:

∂(−f4(Φ1))
∂Φ1

= − 1
ΓR − 1

(
1 − 1

ΓR

)(
pR

pL

) 1
2 (1−Γ−1

R )
Φ− 1

2 [1+Γ−1
R ]

1 < 0, since ΓR > 1. (4.111)

If Φ1 >
pR

pL
,

−f4(Φ1) = −



(
1 − pR

pL
Φ1

)1 −
βR

pR

pL
Φ1 + 1

βR + pR

pL
Φ1

(βR + pR

pL
Φ1

)

ΓR

(
βR

pR

pL
Φ1 + 1

)



1
2

(4.112)

The term inside the brackets is positive if Φ1 >
pL

pR
, which is insured if pR > pL in the given conditions.

Then, the derivative of f4(Φ1) is negative if

∂

∂Φ1



(
1 − pR

pL
Φ1

)1 −
βR

pR

pL
Φ1 + 1

βR + pR

pL
Φ1

(βR + pR

pL
Φ1

)

ΓR

(
βR

pR

pL
Φ1 + 1

)


= g′

4(Φ1) > 0. (4.113)

that is, if g′
4(Φ1) numerator:

ΓR

(
1 − βRαpΦ1 + 1

βR + αpΦ1

)(
βRα

3
pΦ2

1 − 2α2Φ1 − β2
Rαp − βRα+αp

)
+ ΓR

αp − β2
Rαp

(βR + αpΦ1)2

(
(βRαΦ1 + 1)(βR + αpΦ1 − βRαpΦ1 − α2

pΦ2
1)
)
> 0,

where αp = pR

pL
. Figure 4.5.4, right, shows, for a fixed αp = 10 and three different ΓR values, the

numerator of g′
4(Φ1). For Φ1 >

1
αp

= pL

pR
, the numerator is positive for all ΓR displayed and thus

f4(Φ1) is a decreasing function. Again, the same function is represented in three dimensions in Figure

4.5.5, right, and confirms the term positivity for Φ1 >
1
α

. Finally, if f1(Φ1) and −f4(Φ1) are decreasing

functions, so is F (Φ1) and the Riemann problem has an unique solution. In presence of shocks, this is
the case only if Φ1 >

pL

pR
, which is always verified if

pR

pL
> 1.
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Figure 4.5.4: (Left) Numerator of g′
1(Φ1). (Right) Numerator of g′

4(Φ1) for αp = 10.
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Figure 4.5.5: Surface plot for the study of the monotony of F1(Φ1) (Left) Numerator of g′
1(Φ1). (Right)

Numerator of g′
4(Φ1) for αp = 10.

The exact solution of the Riemann problem related to the moist air time scheme set of equations was
derived in this section. The latter will be used in the next section to verify the scheme accuracy on
different Riemann problems.

4.6 Verification

4.6.1 0-D closed cavity with phase change

Motivations 4.6.1. This verification case test the scheme ability to correctly reproduce the water
phase change while preserving the system mass with a temperature and pressure variation. The
convergence of the Newton method related to the saturation treatment is studied as well.

A single [1 × 1 × 1] m cell is first considered to evaluate the treatment of the water phase change by
the presented scheme. During 10 s, an outgoing heat flux (Qin = 100 W m−2) is imposed on the cell
lateral walls, then, the same flux is injected back from 10 s to 20 s. The time step is ∆t = 1 s and 1
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inner iteration is performed (the error threshold related to the inner iterations is directly reached, since
the velocity is null).
The initial temperature and pressure are T0 = 293.15 K and p0 = 101 325 Pa. The cell total water mass
fraction is constant and equal to yw = 0.0125. With the system internal energy variation, the cell reaches
saturation and the liquid and vapor water mass fractions change over time.
As shown in Figure 4.6.1, the initial state is recovered for all studied variables. It is observed as well that
when the saturation is reached, the slope of the temperature variation changes, but not the internal energy
one. Note that the sum of the water vapor and liquid mass fraction is always equal to the total water
mass fraction, which is in agreement with the chosen moist air model. Moreover, Figure 4.6.2 shows the
density and internal energy L2 normalised error norm:

Lerr
2 (ψ) :=

√√√√√√√
1

Ωtot

∑
c

(ψc − ψex)2Ωc

1
Ωtot

∑
c

ψ2
0Ωc

. (4.114)

For the two variables, the error is below the solver precision of 10−8, emphasising the simulation
accuracy. Figure 4.6.3 illustrates the Newton’s method used to compute the temperature from the mixture
internal energy. The method error threshold is set to 10−4, reached after three inner iterations. Finally,
Figure 4.6.4 compares the water vapour mass fraction and pressure to their saturation values. One wants
to verify that if the phase change occurs, both quantities are equal.
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Figure 4.6.1: Variables evolution following time. (Left) Temperature and internal energy. (Middle)
Pressure. (Right) water mass fractions.
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4.6.2 Riemann problem associated to the system
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Motivations 4.6.2. In this test case the time scheme is tested for the system (4.53) Riemann problem,
whose exact solution was derived in Section 4.5. Its consistency, i.e. conservation of total energy
through the source term in the internal energy equation, is verified through shock and contact waves.

Different test cases are studied to verify the scheme accuracy related to the Riemann problem presented
in Section 4.5. First, an unsteady contact discontinuity (UCD) is considered followed by two double
symmetric shock (DSS1 and DSS2) problems. No phase change is considered and the simulations are
carried out on grids with 2m ×M0 cells, 0 ≤ m ≤ 5, with M0 = 800 for the UCD and DSS2 cases and
M0 = 80 for the DSS1 case.
The initial conditions are given in Table 4.6.1. Note that the first DSS problem falls within the indoor
environment context, while the second involves more important velocity magnitudes, which is useful to
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test the kinetic energy source term in the mixture internal energy equation. The computational domain
is a tube of length L = 400 m for the UCD and DSS2 and L = 40 m for the DSS1, extending from
x = −L/2 to x = L/2, the interface being located at x = 0 m. Symmetry conditions are imposed on
all boundary faces of the computational domain except at the two end faces of the tube, which are set to
be outlets. For each case, the fields L1 error norm (related to the Riemann problem exact solution ψe,
Equation (4.115)) is studied for θ = 1, and a constant CFL at t = 0.3 s for the UCD (CFL = 0.04),
t = 0.03 s for the DSS1 (CFL = 0.04) and t = 0.05 s for the DSS2 (CFL = 0.8).

Test yw,L TL[K] uL[m s−1] pL[Pa] yw,R TR[K] uR[m s−1] pR[Pa]

UCD 0.01 300 2.0 100,000 0.015 320 2.0 100,000

DSS1 0.0125 293.0 10.0 100,000 0.0125 293.0 -10.0 100,000

DSS2 0.0125 293.0 200.0 100,000 0.0125 293.0 -200.0 100,000

Table 4.6.1: Initial states for the two one-dimensional Riemann problems used.

Lerr
1 (ψ) =

Nc∑
c=1

|Ωc| |ψe(xc) − ψc|

Nc∑
c=1

|Ωc| |ψe(xc)|
. (4.115)
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Figure 4.6.5: Variables L1 error norm for (right) UCD at t = 0.05 s, (left) DSS1 at t = 0.3 s.

Figure 4.6.5 shows the L1 error norm for the different system variables given the mesh refinement for
the UCD and DSS1. It is observed for both cases that the numerical scheme is consistent compared to
the exact solution. Moreover, for the UCD, the density and water mass fraction have a convergence rate
of 1

2 whereas the pressure and velocity convergence rate is close to 1, which is expected (Gallouët et al.,
2002) .
For the DSS1, all the variables present a convergence rate of 1

2 , which is expected as well (note that
the error for the total water mass fraction was to the machine precision, this is the reason that it is not
represented in the right figure).
Figures 4.6.6 and 4.6.7 show in a qualitative way the good agreement between the numerical results and
the problems UCD and DSS1 exact solutions while the mesh is refined.
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Figure 4.6.8 shows the L1 error norm for the different DSS2 variables for different mesh refinements at
t = 0.05 s and θ = 1). The left figure represents simulations with 4 inner iterations and the kinetic energy
source term. The centre one represents simulations with 4 inner iterations but with no source term and
lastly, the right figure is related to simulations with 8 inner iterations and source term. It is observed first
that with no kinetic energy source term, the scheme is not consistent: an asymptotic error is reached for
more refined meshes in the centre figure. This confirms the results presented in the verification section
of the dry air scheme related to singular solutions (Section 3.8). For the others, the numerical error
convergence rate tends to 1

2 , even if for coarse meshes it presents a first order rate. Although the scheme
is consistent, it is observed that some numerical error is created, polluting its convergence rate. The same
can be observed using θ = 1/2 (Figure 4.6.8, bottom). The different fields at the final simulation time
are represented in Figure 4.6.9.
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Figure 4.6.6: UCD case fields at t = 0.3 s for different mesh refinements (800, 3200, 12800). (- -) Exact
solution. (–) Simulation.
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4.7 Summary

In this chapter the dry air scheme, implemented in code_saturne, verified and validated in Chapter 3 is
extended for moist air applications. A dispersed flow (droplet flow) is considered and an homogeneous
model is used. The mixture pressure is computed through the Dalton law and the temperature is
calculated from the solved internal energy using the Newton method in case of saturation. Note that
all properties presented for the dry air scheme are preserved.
A numerical analysis provided similar stability conditions compared to the previous scheme; this is a
direct consequence of the use of the same equations for the internal energy and pressure correction.
Then, the scheme is verified against two analytical cases. The first verifies its capability to take into
account phase change. The second tests its accuracy for the Riemann problem related to the moist air
scheme set of equations, which presents some differences compared to the classical Euler equations. Its
exact solution derivation is detailed as well in this chapter.
We highlight in this summary that the use of this type of scheme is recommended only when the volume
fraction of liquid water in the mixture is small compared to the two others, since it is an important
hypothesis made while designing the scheme.
For further investigations, two main subjects can be mentioned. First, the validation of the scheme,
notably in cases with diffusion and phase change. This could be done at first for nuclear safety
applications (Blain et al., 2016; Tonello and Fournier, 2017) using the "cooling tower" module (already
existent in code_saturne), then for an indoor environment test case, which is still to be identified.
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Also, an investigation on a possible Riemann problem exact solution in case of phase change (yv varies)
shall be interesting, which was not done in this chapter for reasons of time. Other methods to compute
the temperature from the internal energy could be tested as well to accelerate the calculation time.
This scheme application to the atmospheric framework can be study as well for coupling indoor and
outdoor flow. The simplified model may not be able to accurately reproduce high height flow notably with
the presence of nucleation. A transport equation could be added and a new verification and validation
process would be necessary.
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Appendix

4.A Derivation of the mixture equations

4.A.1 Mass equation

The mass equation for each element reads:

(a) ∂(yaρ)
∂t

+ div (yaρu) = 0,

(v) ∂(yvρ)
∂t

+ div (yvρu) = Γw,

(l) ∂(ylρ)
∂t

+ div (ylρu) = −Γw,

(4.116)

where ρ is the mixture density and Γw is a source term related to phase change (either condensation or
evaporation). The sum of the three equations leads to the mixture equation of mass:

∂ρ

∂t
+ div (ρu) = 0, (4.117)

since ya + yv + yl = 1.

4.A.2 Momentum equation

Similarly, one has, for the momentum equation:

(a) ∂(yaρu)
∂t

+ div (yaρu⊗ u) = yaρf + div (yaτ) − ∇pa,

(v) ∂(yvρu)
∂t

+ div (yvρu⊗ u) = yvρf + div (yvτ) − ∇pv,

(l) ∂(ylρu)
∂t

+ div (ylρu⊗ u) = ylρf + div (ylτ).

(4.118)

The mixture pressure p follows the Dalton (1802) law so:

p = pa + pv.

By adding the latter equations, the mixture momentum equation reads:

∂(ρu)
∂t

+ div (ρu⊗ u) = ρf + div (τ) − ∇p. (4.119)
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4.A.3 Thermal equations

It is reminded that the goal is to use the same equations from the indoor dry air time scheme, in order
to preserve as possible its numerical main features, presented in the last chapter. The internal energy
equation for each mixture component is thus written.
First, the total energy equation for the dry air (with no external thermal sources) reads:

∂ (yaρEa)
∂t

+ div (yaρEau) = div
(
(yaτ − paI) · u

)
+ yadiv (λ∇T ) + yaρf · u. (4.120)

Using the momentum equation, it has been shown in the second chapter that the kinetic energy equation
ek can be written for the dry air as:

∂(yaρek)
∂t

+ div (yaρeku) = −u · ∇pa + u · div (yaτ) + yaρf · u. (4.121)

Subtracting Equation (4.121) to Equation (4.120) leads to the internal energy equation for the dry air:

∂ (yaρea)
∂t

+ div (yaρeau) = −padiv (u) + yadiv (λ∇T ) + yaτ : ∇u. (4.122)

For the vapor of water, the total energy equation is:

∂ (yvρEv)
∂t

+ div (yvρEvu) = div
(
(yvτ − pvI) · u

)
+ yvdiv (λ∇T ) + yvρf · u. (4.123)

Note that this equation written is the non conservative form has a new term related to the vapor of water
source term in the continuity equation:

yvρ
dEv

dt + Ev

(
∂yvρ

∂t
+ div (yvρu)

)
= yvρ

dEv

dt + EvΓw,

= div
(
yvτ · u

)
− div (pvu) + yvdiv (λ∇T ) + yvρf · u.

(4.124)

Similarly, the water vapor kinetic energy equation reads:

yvρ
dek

dt + uΓw = −u · ∇(pv) + yvρf · u+ u · div (yvτ), (4.125)

leading to the internal energy equation for the vapor of water:

yvρ
dev

dt + (Ev + u)Γw = −pvdiv (u) + yvdiv (λ∇T ) + yvτ : ∇u. (4.126)

Finally, using the same methodology, the internal energy for the liquid water reads:

ylρ
del

dt − (El + u)Γw = yldiv (λ∇T ) + ylτ : ∇u. (4.127)

Summing up the internal energy equation of each element leads to the mixture internal energy equation:

ρ

[
ya

dea

dt + yv
dev

dt + yl
del

dt

]
+ Γw [ev − el] = −(pa + pv)div (u)

+ (ya + yv + yl)
[
div (λ∇T ) + τ : ∇u

]
.

(4.128)

Note that Ev −El = ev + ek − el − ek. Writing the latter equation in its conservative form and denoting
the mixture internal energy e = yaea + yvev + ylel, one has:

∂(ρe)
∂t

+ div (ρeu) = −pdiv (u) + div (λ∇T ) + τ : ∇u. (4.129)

Each element internal energy may be written in terms of temperature (Satoh, 2013) :

ea = cvaT,

ev = cvvT + yvL00,

el = clT.

(4.130)

cva, cvv and cl are the different mixture components heat capacities.
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4.B Moist air parameters variation

In this Section are presented some physical laws for the moist air parameters proposed in the literature
(Tsilingiris, 2018) that may complement this chapter work.
Let’s define some useful quantities, not yet presented, that are used in the following expressions.
The relative humidity is defined in this section as

RH = pv

ps
.

The water vapor molar fraction is defined as

xv = nv

na + nv
,

where na and nv are respectively the moles of dry air and water vapor. The different formula involve
the air and vapor of water components properties denoted with respectively subscripts (a) and (v). For
further details on each component expression (usually empirical), the user may refer to Tsilingiris (2018)
.

4.B.1 Mixture viscosity

Sutherland (1895) proposed a relation for the viscosity of a mixture based on simple kinetic theory
considerations, that is the base of the extensive investigations that followed. Nevertheless, he did not
take into account the effect of inter-molecular forces and collisions in his formula. These effects led to
more complicated mathematical expressions. One of the most cited is the Wilke (1950) one:

µm =
n∑

i=1

xiµi
n∑

j=1
xjφij

, (4.131)

where µi is an element i viscosity, φij is an interaction parameterx:

φij =

1 +
(
µi

µj

) 1
2 (Mj

Mi

) 1
4

2

[
8
(

1 + Mi

Mj

)] 1
2

. (4.132)

The combination of the two previous equations yields, for the mixture components:

µm =

[
1 − f RH

ps

p0

]
µa[

1 − f RH
ps

p0

]
+ f RH

ps

p0
Φav

+

[
1 − f RH

ps

p0

]
µv[

1 − f RH
ps

p0

]
+ f RH

ps

p0
Φva

. (4.133)

f is a functional dependent on the temperature and pressure of the mixture which recommended
expression (Greenspan, 1976) is:

f = exp
(
ξ1

(
1 − ps

p0

)
+ ξ2

(
ps

p0
− 1

))
,

with ξ1 =
∑3

i=0AiT
i and ξ2 = exp

(∑3
i=0BiT

i
)

. The coefficientsAi andBi can be found in Tsilingiris
(2018) .
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A simpler semi-empirical alternative (Touloukian et al., 1975) for Wilke’s equation is:

µm =
∑n

i=1 xiµiM
0.5
i∑n

i=1 xiM0.5
i

. (4.134)

For the dry air and water vapor mixture this becomes:

µm = µa(p0 − pv)
√
Ma + µvpv

√
Mw

(p0 − pv)
√
Ma + pv

√
Mw

(4.135)

Studnikov (1970) proposed an empirical formula using the experimental measurements by Kestin and
Whitelaw (1964) at 298, 323 and 348K. For the present mixture, it reads:

µm =
[
µa(1 −RH

ps

p0
) + µvRH

ps

p0

] [
1 + 1

α
RH

ps

p0
(1 −RH

ps

p0
)
]

(4.136)

Finally, Nelson (RH and Chilton, 1973) proposed:

µm = µa + xv(0.78887µv − µa)
1 − 0.2113xv

(4.137)

In his recent review, Tsilingiris (2018) compared Nelson’s formula (4.137) and Vilke’s (4.133) to
experimental data. Both expressions led to similar results, with a slight underestimation of the
experimental viscosity, especially at the mid temperature range of interest (> 320 K, about 8% of
deviation).

4.B.2 Mixture thermal conductivity

Using the same analogy presented in the viscosity section, the most detailed formula for the thermal
conductivity applied to the air vapor mixture is:

km =

[
1 − f RH

(
ps

p0

)]
ka[

1 − f RH

(
ps

p0

)]
− f RH

ps

p0
Φav

+

[
1 − f RH

(
ps

p0

)]
kv[

1 − f RH

(
ps

p0

)]
− f RH

ps

p0
Φva

, (4.138)

where:

Φij = ε

1 +
(
ki

kj

) 1
2 (Mj

Mi

) 1
4

2

[
8
(

1 + Mi

Mj

)] 1
2

.

ε is usually set as 1, but can be found also as 1.065 and 0.85. Nelson proposes the following empirical
formula:

km = ka + xv(0.8536kv − ka)
1 − 0.1464xv

. (4.139)

Similarly to the mixture viscosity, the Nelson formula (4.139) and Equation (4.138) are compared to
experimental data (even if the thermal conductivity measurements in the literature are scarce). The
differences between the two expressions are about 1%. Nevertheless, for the only available experimental
data (above 330 K) these formulas clearly underestimated the thermal conductivity.
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4.B.3 Specific heat capacity

Tsilingiris (2018) , proposes the following formula for the moist air specific air capacity:

cpm =
cpa

(
1 − f RH

ps

p0

)
Ma + cpvf RH Mw

ps

p0

[1 − f RH
ps

p0
]Ma + f RH Mw

ps

p0

(4.140)

However, it is reminded that the present scheme solves the mixture internal energy equation, which uses
the isobaric heat capacity cvm, defined as:

cvm = yacva + yvcvv + ylcvl.

Since a specific procedure related to the variation of water vapor is done if saturation, the last expression
is kept.

191

https://doi.org/10.1016/j.rser.2017.10.072


CHAPTER 5

Study of the Pierre de Coubertin stadium

Résumé
Ce chapitre applicatif traite de l’étude de l’aéraulique du stade Pierre de Coubertin en utilisant le
schéma CFD présenté dans les deux chapitres précédents. L’étude du système se fait grâce à un
maillage numérique construit à partir d’un nuage de points 3-D obtenu grâce à des mesures laser et
est divisée en trois étapes principales. La première est l’identification de zones d’intérêt grâce aux
premières simulations, qui servira à l’établissement d’un protocole expérimental pour une campagne qui
se déroulera en 2023. La deuxième est une validation complémentaire du schéma aéraulique basée sur
des données chimiques mesurées en 2021 lors d’une campagne réalisée par différents laboratoires dont
le CEREA. Enfin, une comparaison entre approches turbulentes et schémas est réalisée et un exemple
d’application possible est présenté pour conclure le chapitre.
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5.1 Introduction

As saw in Chapter 2, the indoor airflow is highly influenced by pressure differences and buoyant
effects (Linden, 1999; Hunt and Linden, 1999; Cook et al., 2003) . With the increasing number
of international sports competitions and mediation, sport institutions are more likely to invest on
gymnasium and stadium constructions. This comes with interesting research content to design optimal
and comfortable sport structures. Indeed, as a public space, every new sport stadium shall provide
requirements related to a healthy, comfortable and energy effective ventilation-system.
This chapter focuses on the study of the indoor airflow of the Pierre de Coubertin stadium, located in
Paris. All numerical simulations are performed using the CPC scheme, presented in the last two chapters.
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Figure 5.1.1: Main methodology steps for this chapter study.

Thermal comfort in such structures has been already widely studied in the literature. Semi (Aarts et al.,
2009; van Hooff and Blocken, 2013; Shi and An, 2017; Sofotasiou et al., 2017; Guo et al., 2022)

and fully enclosed (Qin et al., 2006; Sakai et al., 2007; Qian and Yang, 2016; Huang et al., 2021)
structures studies have been carried out. Table 5.1.1 summarises the different applications of CFD

simulations related to stadiums and gymnasiums. The various studies performed in this chapter are
based on them. Note that besides the different type of studies, going from the comparison of models
to the optimisation of the stadium geometry or the study of a specie propagation, no study dealt with
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thermal comfort indices. Riffelli (2021) presents different global comfort indices and a review of the
indoor studies related to them. Among the thermal indices, the predicted mean vote (PMV) is the most
popular (Fanger, 1984) . Based on the relationship between human body functions and the feeling of the
thermal comfort, its values lies between -3 (too cold) and 3 (too hot), zero representing the ideal thermal
condition. For an occupant, its formula (Fanger et al., 1970) is function of the air relative humidity, mean
air temperature, mean radiant temperature, which takes into account the effect of incident solar radiation,
the operating temperature (average of aforementioned temperatures), the mean air speed surrounding the
occupant and finally its clothing insulation.
Concerning the IAQ indices, one may use one of the three following design parameters (Comité
Européen de Normalisation, 2007) :

Perceived quality of air.

Pollutant concentration criteria.

Ventilation airflow rate.

Reference Type of structure Model Studies

van Hooff and Blocken (2013) semi-enclosed 3-D k − ε CO2 concentration decay ventilation efficiency

Shi and An (2017) semi-enclosed 3-D k − ε canopy optimisation

Sofotasiou et al. (2017) semi-enclosed 2-D k − ε design optimisation of the roof geometry

Guo et al. (2022) enclosed 3-D k − ε ventilation study on the meteorological conditions

Qin et al. (2006) enclosed 3-D LES smoke filling, spread and evacuation with combustion

Sakai et al. (2007) enclosed 3-D k − ε / LES turbulence approaches comparison

Huang et al. (2021) enclosed 3-D N.A. study on the gymnasium thermal comfort

Table 5.1.1: Summary of a number of studies related to semi and fully enclosed sport facilities using
CFD.

Moreover, to perform an accurate CFD simulation, one needs a detailed geometry or 3-D model of the
studied system. In a classical or simple configuration, this can be achieved using CAD softwares and
a combination of basic geometries and shapes. The various studies presented in Table 5.1.1 used this
technique. When it comes to study stadiums or gymnasiums, the complex system can sometimes be hard
to reproduce with all its details numerically. This is the case of the Coubertin stadium. Thus, a more
complex mesh generation can be used, such as the point cloud immersion.
The outline of this chapter is summarised in Figure 5.1.1: from a 3-D cloud of points, a numerical mesh is
generated, whose methodology is introduced in Section 5.2. Then, based on the available experimental
data and the stadium ventilation system information, the problem set up (boundary zones, boundary
conditions) is detailed. Various CFD simulations are then performed with four main goals, presented
respectively in the four last sections:

Preliminary simulations are used to identify zones of interest in the stadium in order to design an
experimental protocol for the next campaign, planned in 2023. More precisely, the focus is made
on important flow velocity areas, "dead-zones" and a possible thermal stratification.
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Then, a study complements the CPC scheme validation, using the experimental data from a
chemical campaign performed in 2021. Based on the IAQ indexes and van Hooff and Blocken
(2013) study, a focus in made on the decay of the particle matter concentration during a handball
game related to the stadium ventilation airflow rate.

Then, similarly to Sakai et al. (2007) , three turbulent approaches are compared in a transient
hot ventilation jet case. Additionally, simulations are performed using the CPC and IPC schemes,
presented in Chapter 3.3. The jet diffusion and the simulation time are compared.

Lastly, a study on the modification of the stadium geometry is made. The impact of installing
acoustic panels in the ceiling area on the PM10 concentration decay is discussed, joining studies
like Shi and An (2017) and Sofotasiou et al. (2017) .

5.2 Mesh generation

In this section the numerical mesh creation methodology is detailed. The final objective here is to
generate a three dimensional hexahedral mesh from a cloud of points that reproduce correctly the stadium
main details (Figure 5.2.2, left). This process can be divided in four main steps, summarised in Figure
5.2.1. First, a pre-processing treatment is made on the cloud of points. Then, an hexahedral mesh in the
form of a box that covers the cloud of points is defined. The latter is used to compute a numerical field
used to generate the final mesh. This field is called porosity in this section whose value lies between 0
and 1. The closer it gets to 1, the more important are the chances that the cell is a fluid volume. In the
following are better detailed each step from Figure 5.2.1.

3-D cloud
of points

Pre-processing Box definition
CFD simulation
Porosity field

Final mesh

Figure 5.2.1: Main steps of the numerical mesh generation.

3-D laser scans were made at different locations of the stadium leading to a final cloud of points.
The scanners used are the Focus M70 model . Each cloud points is represented by its position,
colour value (R,G,B) and intensity (see Figure 5.2.2, right and Figure 5.2.3 for different views of
the cloud).

In order to set up the CFD simulation used to generate the final mesh, a transformation and
rotation of every point is performed. This allows all points to be in a wanted zone, facilitating
the immersion that leads to the final mesh. In this study, a translation of [22.13, 40.12, 6.30] m and
a rotation of −37.25o were made relative to the points initial coordinates. The transformed cloud
of points is represented in Figure 5.2.4, left.

Then, a numerical box, large enough in all three dimensions to contain all points of interest is
defined. In the current case, its length, width and height are respectively of 50 m, 70 m and 18 m.
The initial mesh refinement uses homogeneous hexahedral cells of [0.25, 0.25, 0.15] m, leading
to a total cell number of about 5 millions. Note that a less refined mesh would not be able to
capture the stadium details, notably in the sitting zone, and a more refined mesh would lead to
more expensive simulations.
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Figure 5.2.2: (Left) Overview of the stadium. Credits: Artstation. (Right) View of the 3-D cloud of
points.

Figure 5.2.3: Different point of view of the cloud of points.

Figure 5.2.4: (Left) Cloud of points after translation and rotation. (Right) Porosity field after the first
CFD simulation.

The next step is to perform a CFD simulation transporting a passive scalar in order to compute the
porosity field for the box defined previously. The latter is based on the number of cloud points
on each finite volume and is used for the selection of the solid and fluid cells. For each laser
scan (several scans were made to catch as much details as possible), a porosity source is defined
(porosity of 1 at each source), which radiates spherically and whose value is set to zero when
touching a volume with enough points of the scan (a threshold point value need to be set by the
user). Naming the porosity Π Its transported equation reads:

∂Π
∂t

+ div (Πer) − div (er) Π = 0. (5.1)
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er = x− x0
|x− x0|

is the radial direction from the considered source x0.

For illustration, the porosity field this simulation is represented in Figure 5.2.4, right. Its value
is heterogeneous and the shape of stadium can be perceived. Two slices of the porosity field are
presented in Figure 5.2.5. One can see that the porosity is very close (quasi equal) to 1 inside
the system, representing the fluid cells. However, in its boundaries the porosity value varies
importantly. According to which details one wants to reproduce in the mesh, a deeper study of
this field in the stadium borders is made. The strategy is consider fluid all cells presenting a
porosity above a defined threshold value.

Figure 5.2.5 presents the porosity field slices with a minimum value of 2.196 10−4. In that case,
one can see that if the selection threshold is set to 0.25, then some fake fluid cells in the bottom
left corner of the box will be retained, which does not correspond to the correct stadium shape.
In the other hand, fixing an important threshold leads to a not enough detailed mesh. To illustrate
that, Figure 5.2.6 shows the same porosity field, but with a minimum value of 0.98. If this value
is retained for the selection threshold, the final mesh would not consider the siting zones (Figure
5.2.6).

Therefore, for this particular system, the porosity field threshold was fixed following the stadium
zone, in order to find a compromise of an enough detailed mesh without fake fluid cells. Figure
5.2.7 summarises the different zones related to their porosity threshold values. Note that corridors
around the sitting area were added, based on the stadium real architecture. Lastly, 4 extruded
doors are added for numerical stability concerns related to outlet boundary conditions. The roof
details were not considered in the first mesh since the mesh refinement was not able to catch such
small details. In the public area, the porosity threshold value (0.33) is smaller in order to catch the
correct border shape.

Figure 5.2.5: Example of the porosity field on two slices of the box, with a minimum legend bar value of
2.196 10−4.

The final mesh retained for the first simulations, represented in Figures 5.2.8 and 5.2.9 is designed
in order to study the main stadium field and its stands as it catches a minima the stadium details,
notably in the siting zones. From the five millions of cells, around 2.4 millions were kept from the
presented process.

5.3 Boundary conditions

To accurately simulate the stadium airflow, correct boundary conditions should be imposed. To do so, the
first simulations are based on the information provided by the stadium management team. First, related
to the air handling unit (AHU), which is connected to the stadium ceiling, blowing and return vents are
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Figure 5.2.6: Example of the porosity field on two slices of the box, with a minimum legend bar value of
0.98.

Figure 5.2.7: Mesh threshold porosity zones. (Left) 2-D slice. (Right) Volume view.

defined. Figure 5.3.1 shows two photos of these vents; on the left, the blowing vents and on the right, the
extraction ones. The numerical definition of both zones is represented in Figure 5.3.2. Numerically, the
blowing zone is set as an inlet boundary condition and the extraction one as an outlet. Additionally, other
possible sources of in and outflow are considered at the ground level, close to the field. More precisely,
outlet zones are defined (see Figure 5.3.3), corresponding to ventilation ducts directly connected with the
outdoor conditions (i.e. the mass flow is induced by a pressure differential). Finally, doors are defined
on the corridors and on the 4 corners of the main stadium zone, represented in Figure 5.3.4.
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Figure 5.2.8: Slices of the mesh retained for the first simulations.

5.4 Identifying the first flow features

First simulations on the presented mesh are carried out in order to locate and identify zones of interest
to be studied during an experimental campaign taking place in 2023. More precisely, a focus is made
on zones with not negligible speed and on a possible thermal stratification in the given system in case of
heating.
To do so, two ventilation scenarios are tested. First, an isothermal simulation (related to the initial
temperature) is performed to evaluate the flow dynamic characteristics and then, the stadium is heated
through a higher injected flow temperature of Tin = 298 K. In both situations, the stadium initial
temperature is T0 = 293.15 K. The time step is set to ∆t = 0.055 s to verify a Courant number inferior
to the unity and the inner iterations error threshold (defined in Chapter 3) is set to εpiso0 = 10−8.
For these simulations, the k− ε model is used. Walls are considered adiabatic. The entering mass flux is
set to 60 000 m3 h−1 (corresponding to approximately three time the stadium volume per hour) and the
ceiling return blowers mass flux is taken as 80% of the entering flow (information given by the stadium
monitoring team).
To study the simulation convergence, four monitoring probes are defined, at the mid stadium height
(z = 7.5 m), represented in Figure 5.4.1. The velocity magnitude evolution over time is then represented
in Figure 5.4.2, left. It is observed that the velocity does not reach properly a steady state, even for a large
simulation time and for all probes. Thus, for exploitable results, a time average is performed, leading to
the mean velocity field represented in Figure 5.4.2, right.
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Figure 5.2.9: Different view comparing the (Left) cloud of points and (Right) final numerical mesh.

From these two simulations the velocity field, temperature and air age are studied. Figure 5.4.3 shows
the velocity averaged field for the isothermal simulation at 3000 s. The inlet jets can be clearly discerned,
driving the flow and creating different recirculation zones in the stadium. Moreover, one can distinguish
the impact of the extraction vents in the ceiling, which drags a part of the entering mass flux.
To better quantify the dynamic zones of interest, the volumes with a larger mean velocity magnitude
value than 0.5 ms−1 are presented in Figure 5.4.4. As showed in mean velocity magnitude slices, the
important velocity zones are below the blowing vents. These zones are thus interesting to measure
the velocity during the experimental campaign. Now, let’s focus on the anisothermal ventilation study.
Figure 5.4.5 presents the temperature instantaneous field after around 14 minutes of simulation. Two
things are clearly observed. First, the injected hot flow did not reach completely the field ground at the
final simulation time, which remained at the initial temperature. Then, a vertical thermal stratification
is visible and identifying it by experimental measurements would be of great interest (this data could be
used to validate thermal transient simulations for instance).
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Figure 5.3.1: Photo. Vents located on the stadium ceiling related to the AHU. (Left) Blowing vents.
(Right) Extraction vents.

Figure 5.3.2: Numerical boundary conditions. Vents located on the stadium ceiling related to the AHU.
(Left) Outside view. In blue, the blowing vents, in red, the extraction ones. (Right) Inside view. In blue,
the extraction vents.

Finally, the air age is studied by transporting a passive scalar whose value is incremented at each time
step. Figure 5.4.6 shows, for the anisothermal simulation, the air age field at t = 14 min. The results are
directly linked with the thermal ones. One can confirm that the ventilation did not reach the low heights
of the stadium, where the air age is higher. The external corridors also presented more important air ages.
This is confirmed by Figure 5.4.7 which represents the volumes having air ages above 600 s. This type
of field is useful to identify the presence of eventual dead zones. Even if these first numerical results
need to be analysed carefully, since the boundary conditions are simplified, they can already provide
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Figure 5.3.3: Numerical boundary conditions. Vents located on the ground level of the stadium in red.

Figure 5.3.4: Numerical boundary conditions. Complementary outlet boundary conditions in red.

Figure 5.4.1: Monitoring probes location at z = 7.5 m.

some insights of the indoor air flow. Also examples of useful numerical tools, such as the air age, are
presented.
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Figure 5.4.2: k−ε simulation. Velocity magnitude instantaneous and averaged quantities for the different
monitoring probes located at the top, bottom, right and left sides of the stadium at z = 7.5 m.

Figure 5.4.3: Averaged velocity magnitude field (in colour) over the flow streamlines for the isothermal
ventilation case at t = 3000 s.

Figure 5.4.4: Volumes with a velocity magnitude higher than 0.5 m s−1 (red) for the isothermal
ventilation case at t = 3000 s.
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Figure 5.4.5: Instantaneous temperature field (in colour) over the flow streamlines for the anisothermal
ventilation case at 14 min (825 s).

Figure 5.4.6: Air age field (in colour) over the flow streamlines for the anisothermal ventilation case at
14 min (825 s).
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Figure 5.4.7: Volumes presenting an air age field above 600 s (yellow) for the anisothermal ventilation
case at 14 min (825 s).

5.5 Validation: on the reproduction of the french handball league final

A continuous experimental campaign was made by different laboratories (CSTB , LISA , LCPP ,
CEREA ), leading to many chemical measurements. On the 4th of June 2021 took place the french
handball league final, opposing the Paris Saint Germain to the Nimes team, where the first team won
both the match and the championship. This led to a festive celebration, and the ignition of some fireboxes
outside the stadium by the champion club supporters. The installed sensors captured this episode, where
the particle matter 10 (PM10) concentration measured at a given point in the stadium (Figure 5.5.2, left)
increased consequently as shown in Figure 5.5.1.
This section main goal is to try to reproduce numerically this evolution over time using the CPC scheme.
To do so, the previously presented mesh is used and the experimental sensor (Figure 5.5.2, left) is defined
as a monitoring probe in the numerical mesh (Figure 5.5.2, right) . Its PM10 concentration is studied
over time and compared to the experimental results.

−1,000−500 0 500 1,000 1,500 2,000 2,500

0

1,000

2,000

3,000

Time [s]

P
M
1
0
co
n
ce
n
tr
at
io
n
[µ
g
.m

−
3
]

Figure 5.5.1: PM10 concentration experimental profile. Time 0 is defined according to the maximum
peak of concentration.
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Figure 5.5.2: (Left) Experimental sensor location. (Right) Probe location to study the PM10
concentration over time.

However, during the experimental campaign, no measurements concerning the thermal and dynamics
quantities of the flow were made. Again, the lack of boundary conditions information for the numerical
simulation makes harder the challenge of reproducing precisely what happened that day.
Thus, two parameters are first studied. The first is the AHU power relative to its maximum mass flow
Qmax

in = 100 000 m3 s−1. At first, three different AHU power PAHU (60%, 80% and 100%) related to its
maximum value are tested. The second parameter is the way the PM10 concentration field is numerically
initialised. Given the lack of information regarding this field heterogeneity at the measurements time,
three initialisations are tested, represented in Figure 5.5.3. The first considers an homogeneous PM10
initial concentration equal to the experimental maximum value (at t = 0 s) C0 = Cmax = 2870µg m−3

(Figure 5.5.3, left). Keeping the same initial value, the second initialisation considers only an initial
non-null concentration in the sitting zones (Figure 5.5.3, center). Finally, the last one only considers the
cells below 9 m to have an initial PM10 concentration equal to Cmax. For all simulations performed,
εpiso0 = 10−8 and the time step is set so the CFL number is equal to 0.8. All the simulations are
considered isothermal.

Figure 5.5.3: Different initialisations of the PM10 concentration field tested for the first simulations.
(Left) Fully homogeneous initialisation. (Centre) Initialisation only in the sitting zones. (Right)
Initialisation for the cells below 9 m.

Figures 5.5.4 and 5.5.5 show that the first initialisation globally overestimate the PM10 concentration
over time. Indeed, measurements are made on a single experimental location; it is very likely that
at the starting time, the particle matter concentration in the system was not homogeneous. Moreover,
the other two non homogeneous initialisation led to worse results: an important variation is observed
as the simulation begins, deforming the decreasing exponential shape of the concentration field (even
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if the second initialisation leads to correct results excepting the important gap at the beginning of the
simulation). This is understandable given the discontinuous initialisation of both simulations. Thus, no
interesting conclusion can be made from these first simulations, except that one should consider an initial
heterogeneous PM10 initialisation. The biggest question from now on is how to correctly reproduce this
initial field state with no further dynamic and thermal conditions on this day.
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Figure 5.5.4: Comparison of the numerical PM10 concentration over time with the experimental
measurements. (Left) Initialisation 1. (Right) Initialisation 2.
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Figure 5.5.5: Comparison of the numerical PM10 concentration over time with the experimental
measurements for initialisation 3.
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The idea of reproducing a more accurate initial PM10 field comes in mind. To do so, the initial simulation
time is set 1500 s before the previous one and the initial PM10 concentration is set homogeneous and
equal to PM100 = 1200µg m−3 (see Figure 5.5.6, left, for an illustration). Then, particle matter is
injected in the blowing vents linearly (representing hypothetically the PM10 coming from outside), which
leads to an increase of its concentration (illustration in Figure 5.5.6, right). The latter is set (through a
calibration) so the numerical PM10 concentration is equal to its experimental moving average (MA5,
red lines in Figure 5.5.6, left) of the last 5 points at 1500 s. Note that the hypothesis of outside PM10
sources is considered. This strategy is performed for two AHU power of 60% and 100% related to its
maximum value. For each inlet mass flux, a parametric study on the PM10 inlet source term was made.
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Figure 5.5.6: (Left) Strategy for the heterogeneous initialisation. Red lines are the moving average based
on the last 5 values. (Right) Volumes with a PM10 concentration field > 2000µg m−3 using PCT A = 1.0
at t = 225 s.
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Figure 5.5.7: Numerical PM10 concentration over time for two AHU power compared to the
experimental measurements. (Left) Non log plot. (Right) Semi-log plot.

Results show that despite showing correct shapes, both simulations underestimate the decreasing of the
PM10 concentration. Nevertheless, the PAHU = 0.6 simulation (Figure 5.5.7, green lines) performed
better than the other simulation (in blue lines).
To eventually get better results, two additional simulations are added. The first tries to better fit the PM10
concentration between 0 and 1500 s by a transient PM10 source term in the inlet ventilation faces (Figure
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5.5.9, left). The other keeps an AHU power of P 3D
AHU = 0.6PAHUmax and the previous initialisation, but

is ran longer (8000 s compared to 5000 s previously).
Additionally, the stadium can also be modeled as a 0-D cell. Its concentration CP M equation reads then:

∂CP M

∂t
= −Qin

Ωtot
CP M + Qext

Ωtot
Sext

P M , (5.2)

where Qin is the blowing mass flux and Ωtot the system total volume, Qext the mass flux blown by the
natural ventilation vents. Sext

P M is a possible source term coming from the same vents, set as zero for
this simulation, given the lack of experimental data. Note that Sext

P M is positive (even if its value may be
very small related to the inside mean PM10 concentration). Considering an initial concentration C0 at
t0 = 1500 s, the 0-D concentration evolution is:

CP M = C0e
− Qin

Ωtot
(t−t0)

. (5.3)
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Figure 5.5.8: Cells occurrences histogram of the PM10 concentration at t = 1500 s for the simulation
using a linear PM10 filling of the system at the inlet faces.

Filling the stadium through a particle matter source term at the inlet faces leads to a PM10 concentration
field heterogeneous at t = 1500 s, illustrated in Figure 5.5.8. Note that the low concentration occurrences
(about 1250µg m−3) can be explained by the start of the emptying of the stadium (the inlet scalar source
term is set to 0).
Figure 5.5.9, left shows a comparison between the different transient initialisations performance
regarding the PM10 concentration evolution. Very few differences can be observed between the two
simulations, even if the system concentration field at 1500 s is different for each of them. However, when
performing the simulation longer (Figure 5.5.9, right, corresponding to a linear PM10 source term), one
can observe that the PM10 numerical evolution gets closer to the experimental data. Note that at around
3000 s, the numerical curve underestimates the real PM10 evolution. This can be explained by either
new sources terms that were not accounted for in the present simulations or a variation of the ventilation
flux; both phenomena can not be confirmed given the available information.
The 0-D evolution evacuates faster the particles and is further away from the experimental data than
the CFD simulation. Indeed, it is likely that the initial concentration and air circulation were not
homogeneous in the stadium, as shown in this study first simulations, which is the case in 0-D. Note that
no thermal stratification was considered in this validation case. This could possibly lead to a variation of
the numerical results.
Two main elements should be kept in mind. The first is the validation of the entering mass flux of 60% of
the maximum AHU power, which is in agreement with the information given by the stadium monitoring
team. This will be the inlet flux from now on.
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Figure 5.5.9: Numerical PM10 concentration over time compared to the experimental measurements and
to the 0-D model. (Left) Comparison of the transient inlet source conditions. (Right) Longer simulation.

Moreover, this test proved that reproducing numerical results close to the reality relies importantly on
accurate boundary conditions. Thus, in the 2023 experimental campaign, important attention should be
given to correctly collect enough useful information regarding the ambient and boundary conditions,
including the outdoor ones.
To conclude this section, studying the propagation of a given specie (smoke, PM) could be an interesting
experiment to do, if the campaign conditions allow it. Qualitative and quantitative data could be acquired
and, if well combined with real-based boundary conditions, could be a good set of validation for turbulent
transient schemes. Also, the numerical results were closed to the experimental, complementing the CPC
scheme validation.

5.6 Experimental protocol

From both first simulations and validation related to Pierre de Coubertin stadium, interesting information
was kept to design an experimental protocol to be performed in 2023. Indeed, zones of interest were
identified by k − ε isothermal and anisothermal simulations. Additionally, from the validation case the
idea of reproducing the dispersion of a gas inside the system was highlighted. An additional attention
should be given to correctly measure as accurately as possible the system information relative to the
boundary conditions.
To perform the experimental measurements, anemometers are at our disposal to measure velocities, five
pressure sensors and thermocouples to measure the temperature. Figure 5.6.1 presents two sketches with
the main experimental strategy related to the dynamical and thermal measurements.
Concerning the velocity measurements, five anemometers are used to measure the instantaneous flow.
Two anemometers are set respectively on the stands of the main stadium field, where the velocity was
shown to be more important. Another anemometer will be installed in the center of the field. Finally, the
two last anemometers are set in the corridors, behind the main field, as shown in Figure 5.6.1. This is
done to measure a possible flow caused by the difference of pressure and temperature between the in and
outdoor environments. These corridors are directly connected to external doors. To better quantify the
pressure differential between the indoor environment and outside of the stadium (very important for free
inlet/outlet conditions), several pressure sensors will be installed in both indoor and outdoor locations,
notably in the front of the ventilation blows presented at the field height, represented in Figure 5.6.1,
bottom, by a green circle. Two complementary hot wire anemometers are set in the other field side, to
quantity the mass flow blown under the teams benches (represented by the red segments in the figure).
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Figure 5.6.1: Sketch of the experimental protocol concerning the dynamical and thermal quantities.
(Top) Location of the different sensors with a simplified stadium representation. (Bottom) Zoom on the
stadium main field.

Finally the figure blue segment represents a thermocouple profile to catch the thermal stratification during
the experimental campaign.
To these measurements could be added the study of a specie injected in the AHU system ducts, leading
to an interesting validation database for turbulent transient problems (for instance, the dispersion of
Helium).

5.7 Schemes and model comparison

This section compares, for the same configuration setup, three turbulence approaches and the IPC and
CPC scheme. Note that since there is no dynamical or thermal experimental data available for the
Coubertin stadium, this study has no goal of determining which approach or scheme performs better,
but rather analyse if they present differences, and if it is the case, if they are in agreement with their
theory.
More precisely, the temperature field and the time of computation are studied for a k−ε,Rij −ε and LES
simulations using respectively the IPC and CPC schemes. To do so, the hot jet case, with Tin = 298 K
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is ran during five minutes. The boundary conditions are identical to those presented for the anisothermal
case in Section 5.4.
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The time step is set to 0.03 s so the maximum CFL number reached during the simulation is equal to 0.9.
The threshold error related to the inner iterations εpiso0 , presented in Chapter 3.3, is set to 10−8.
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Figure 5.7.1: Histogram of the cells temperature values for the three different turbulent simulations at
t = 300 s.

When comparing the temperature distribution between the incompresssible and compressible pressure
correction schemes (Figure 5.7.1), it is noticeable that the IPC scheme leads to a more important jet
diffusion, for all turbulent simulations. Indeed, the orange temperature histograms are flatter compared
to the blue ones, whose peak is at lower temperatures. Another difference between both schemes is the
total computation time to perform the 5 minutes simulation.
Figure 5.7.2 shows, for each turbulent simulation, the time of computation per single iteration using both
schemes. It is observed that for all simulations, the CPC presents performs faster. More precisely, the
CPC scheme is equal to respectively 22%, 30% and 60% of the IPC scheme time of simulation. These
important values are in agreement with the timer results presented in the Minibat validation case (Section
3.8.8). This difference can be explained by two major points. The first is a faster solver of the pressure
equation and the second is the gradient computation time. Note that the time peaks for some iterations
correspond to the post-processing visualisation outputs.
The turbulent approaches can be compared as well using Figure 5.7.3 results. The most flattened
temperature histogram is the Rij − ε one. The hot jet seems to be the most diffused for this simulation.
The LES simulation presents a higher peak of temperature, but with a relatively less flat shape. The k−ε
simulation led to a diffused jet, but with slightly more occurrence for low temperatures compared to the
Rij simulation. This can be confirmed looking at the air age histogram (Figure 5.7.3, (b)), where there
are more cells with an important field value for the LES simulation, represented in green. Again, the air
age confirms a better jet diffusion when using the k − ε and Rij approaches, with a less important age
peak and a flattened shape. A complementary qualitative analysis can be made by looking at the final
temperature field at a given slice of the stadium (Figure 5.7.4). As shown in the histograms, both k − ε
and Rij simulations diffuse better the hot jet.
Finally, the time of simulation of the different turbulence approaches using the CPC scheme are presented
in Figure 5.7.2, (d). As expected, the k − ε simulation is the fastest, followed by the Rij and then, the
LES simulation. Again, due to the lack of validation results concerning thermal transients problems for
this configuration, the conclusion of this section is the following: first, the numerical results confirmed
those presented in the Minibat test case, where the k − ε was the most diffusive turbulent approach,
and the LES the less diffusive. Also, the LES simulation time of computation was almost equal to three
times the k − ε one, which is not negligible. Finally, the CPC scheme allowed, for the same simulation
mesh, boundary and initial conditions, to perform faster iterations for all turbulent approaches. This is an
important point to highlight while CFD simulations are often criticised to be computationally expensive
for indoor systems design.
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Figure 5.7.2: Computation time for the different simulations per iteration. Figures (a) (b) and (c)
compares the time between the IPC and CPC schemes for each turbulent simulation. Figure (d) shows
the three turbulent simulation timers for the CPC scheme.
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Figure 5.7.3: Results using the CPC scheme at t = 300 s. (Left) Cells temperature histogram for the
three turbulent simulations. (Right) Cells air age histogram for the three turbulent simulations.
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Figure 5.7.4: Slice of the temperature field (in colour) at the stadium mid width, with the isocontour
T = 295 K at t = 300 s for the three turbulent simulations. (Top) k − ε. (Center) Rij − ε. (Bottom)
LES.
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5.8 Impact of the modification of the stadium ceiling

In this section an example of application of the indoor air scheme is given, where the main stadium ceiling
design is studied. Renovation works are actually in process regarding some stadium zones. Among them,
it is planned to install acoustic absorbing panels close to the roof. The objective of this section is to
evaluate if this type of change would impact its ventilation efficiency, and thus its energy consumption.
To do so, the only experimental data available, presented in Section 5.5 is used and the same study is
performed, but with a change in the numerical mesh.
The acoustic panels are modeled as six 3-D boxes of [8.0, 10.0, 0.3]m placed at z = 13 m (height of
the boxes centre) as shown in Figure 5.8.1. At first, the expected results would be a slower PM10
concentration emptying compared to the CFD simulation presented before. As mentioned, the simulation
performed aims to reproduce the PM10 concentration measured during the French handball final match.
The final strategy of Section 5.5 is retained: a constant source term is imposed in the stadium inlet faces
for t ∈ [0, 1500]s. Then, this source is set to 0 and the emptying of the system particles field is studied.
The system inlet velocity is constant during all the simulation (PAHU = 0.6).

Figure 5.8.1: Sketch of a side and top view of the stadium with the mesh modification related to the
acoustic absorbing panels.

The time step is set so the simulation maximum CFL number is equal to 0.8. The error threshold related
to inner iterations is equal to εpiso0 = 10−8. The numerical results for this new mesh (P 3D

AHU2
) are

compared to the previous one using (P 3D
AHU = 0.6) and to the 0-D model of the stadium (P 0D

AHU ). In
addition to comparing the PM10 concentration in a particular spatial point, it is interesting to compare
this concentration histogram to the previous one. This gives an insight of the field distribution in the
system. Figure 5.8.2 presents the PM10 concentration cells histogram for both P 3D

AHU simulations at
t = 1500 s and t = 8000 s. Both histograms at the different times are clearly different, which already
shows the impact of the acoustic panels in the stadium dynamics. At t = 1500 s (left figure), the
simulation with panels presents a higher peak of concentration and a less flattened shape. Note that
the source term imposed at the inlet faces in the beginning of the simulation is exactly the same for both
cases. Yet, even if the stadium overall PM10 concentration is higher in presence of panels, the studied
point concentration at 1500 s (Figure 5.8.3, left, orange lines) for the simulation P 3D

AHU2
is close to the

previous one. The histograms at the final simulation time are distinct as well. The simulation with no
panels present a less important peak of PM10 concentration, even if both histogram shapes are similar.
This confirms a less important air emptying rate in the presence of panels, which would lead either to a
more polluted space or a more important energy consumption. Figure 5.8.3 presents the locally studied
PM10 concentration along time for the two simulations. Globally, the new mesh simulation leads to
results close to the experimental ones, with an exponentially decreasing concentration curve. However,
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Figure 5.8.2: Histogram of the cells PM10 concentration at two different times for both simulations with
and without acoustic panels.
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Figure 5.8.3: PM10 concentration along time for simulations with and without acoustic panels for
PAHU = 0.6.

when zooming in the time interval [6000, 8000]s, some differences can be observed between the three
different evolution (Figure 5.8.3, right). While the simulation with no panels (green lines) are the closest
to the expected data, the curve related to the mesh with panels is higher, which goes with the histogram
results presented in the paragraph above and with the expected results. Moreover, the difference between
the 3-D and 0-D simulations is emphasised here with an important relative difference. At t = 8000 s, the
0-D PM10 concentration underestimates the experimental data by 80%. Thus, in case of the installation
of new panels in the stadium ceiling, the CFD numerical results suggests that some ventilation efficiency
is lost, which could be recovered by increasing the AHU power.
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5.9 Summary

This chapter provides an example of an applied case using the CPC numerical scheme. Different
numerical simulations were performed on the Pierre de Coubertin stadium system, leading to an
experimental protocol, an additional validation case and a study on the stadium geometry.
All simulations are run on a three dimensional numerical mesh build from a cloud of points, obtained by
laser scans. This mesh generation strategy was detailed. First computations provided useful information
to determine interesting zones to place velocity sensors and to identify if the stadium can present a
thermal stratification. Then, the scheme was validated using experimental data available through the
reproduction of the PM10 concentration evolution during a handball competition. Numerical results
were in agreement with the expected ones and performed better than a 0-D model. From this case and
using the identified zones aforementioned, an experimental protocol was proposed. Different turbulence
approaches were then compared related to a hot jet diffusion and computation time, for both the IPC
and CPC schemes. Simulations carried out with the CPC schemes were run faster compared to the
incompressible scheme. Such result emphasises the interest of using the proposed time scheme for
indoor environment studies, were the computation time is an important numerical factor. Finally, the
impact of installing acoustic panels in the stadium ceiling in the flow was shown and discussed. Their
presence led to a less important stadium ventilation efficiency.
In the Coubertin stadium framework, further studies shall focus on three major points. The first is to
produce a better representation of the system geometry. Indeed, some hypothesis were made in this
chapter which led to a mesh accounting for only the main stadium field. Including some additional
zones such as the entrance hall could lead to a better representation of the link between the in and
outdoor environments, which is currently done by the numerical boundary conditions. The second
point is to better represent the stadium flow using experimentally based boundary conditions. This can
be done thanks to the future experimental data campaign and by defining more boundary zones (for
instance, windows were not considered in the presented simulations). For that matter, the use of artificial
intelligence methods could be of interest. For instance, by performing a classification on the available
cloud of points information, such as the colours, one could automatically separate the given zones (walls,
doors, windows), leading to a more precise mesh.
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CHAPTER 6

Conclusion and perpectives

Achievements of this work

In this manuscript, a novel time scheme for indoor airflow CFD applications is introduced, implemented
in code_saturne, analysed, verified and validated. The scheme is designed to take into account the
different physical processes responsible for the flow in indoor environments. Among them, one may
highlight the pressure variation, the conservation of the total energy, the compatibility with RANS and
LES turbulence approaches and the moisture dynamics. The scheme development is divided into two
main parts and a third one provides an example of the scheme application to a large-scale problem.
First, a second order conservative time scheme for variable density flow is introduced for dry air. The
compressible Navier–Stokes equations supplemented with the ideal gas law are discretised in space and
time using the finite volume method. Belonging to the pressure-correction class of schemes, the second
time convergence order is reached through a staggered variables arrangement in time. A numerical
parameter, denoted θ, allows a simulation to switch between the first and second order, allowing the
scheme to be applied for both steady and unsteady applications. The pressure variation is considered
through the linearisation of the equation of state, leading to an Helmholtz equation to be solved in the
scheme correction step. The acoustic effects are implicited, avoiding stability constraints related to the
speed of sound. Finally, the total energy is conserved by solving the internal energy equation with a
source term related to the discrete kinetic energy equation. A numerical analysis related to the scheme
thermodynamic variables positivity is performed and new Fourier and CFL conditions are defined.
Then, a verification and validation is made on a wide variety of test cases representing the physical stakes
of the indoor environment and going from the incompressible to the compressible type of flow. For some
cases, the numerical results are compared to other code_saturne time marching methods. The scheme
properties are first successfully verified on analytic and academic cases: a pressure cooker like system
is considered to insure its correct pressure variation and to verify its time convergence order, while the
preservation of mass and momentum and its compatibility with different spatial schemes are tested in an
one-dimensional convection tube case. Then, two Riemann problems are studied to check the consistency
of the scheme with both smooth and singular solutions. Among them, the Sod (1978) case showed the
importance of the source term implemented in the internal energy equation step to catch accurately shock
solutions. Different reference and experimental test cases are used for the validation process. The scheme
was shown to be accurate for natural convection, gravity flow and axisymmetric jets simulations. More
importantly, in cases with thermal variation and in and outlets boundary conditions, the proposed scheme
was shown to be faster than an incompressible solver. Such results from the verification and validation
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processes suggest that the numerical scheme can be used for both incompressible and compressible
problems, enlarging its domain of application.
The extension of the dry air scheme to moist air applications is then detailed and a specific treatment in
case of phase change is presented. An homogeneous model is used and the mixture is assumed to have
a small volume fraction of liquid compared to the gaseous ones. After writing the mixture governing
equations, the discretisation and strategy of saturation treatment are introduced. A transport equation for
the total water mass fraction is solved and the Newton method is used to compute the temperature from
the internal energy, if needed. An important attention is given to keep the numerical properties presented
for the dry air scheme. A numerical analysis is then made, leading to stability conditions similar to those
presented for the dry air scheme. For verification purposes, the Riemann problem associated to the moist
air system of equations is then introduced and its exact solution derived. Finally, the moist air scheme
is verified first through a 0-D dimensional volume to test its ability to correctly reproduce water phase
change and through two type of Riemann problems. Accounting for the moist dynamics and its effects
on the flow completed the physical stakes identified to be simulated by the numerical solver.
Finally, the last chapter illustrates one example of application of the indoor air scheme on a more complex
configuration. Preliminary studies on the Pierre de Coubertin stadium indoor airflow are performed and
provide some useful insight and information. The numerical mesh used was built from a 3-D cloud of
points. A new validation was performed for the numerical scheme, where the numerical results where in
agreement with the experimental ones. The identification of dynamic and thermal zones of interest led
to the design of an experimental protocol. Three different turbulence approaches were compared using
the presented and an incompressible schemes; their differences concerning the numerical jet diffusion
and their time of computation were compared. In this comparison, the LES simulation has been shown
to be the less diffusive but the most computationally expensive approach. Lastly, some modifications
are brought to the system and its impact on the flow are quantified and analysed, emphasising a type of
application for the numerical scheme.
Regarding the main objective presented in the introduction, which was to develop a numerical tool in
the local simulation scale for indoor applications, the proposed indoor air scheme provided correct and
accurate numerical solutions related to the physics identified and chosen to be modelled. Its compatibility
with different convective spatial schemes, turbulence approaches (RANS and LES simulations) and
accuracy for both incompressible and compressible flow cases is promising for future applications and
developments. Moreover, given its stability conditions, shown to be less constraining than the classical
CFL condition and its simulation reduced time, the solver seems ready to be used and applied for indoor
studies.
However some points are left for further investigations and developments. Those are detailed in the next
section.

Perspectives

Extending the indoor scheme verification and validation process
Additional studies regarding the presented numerical scheme would extend its validation domain.

Concerning the dry air scheme, further validation can be made for compressible flows.
Indeed, high Mach-number studies would complete the compressible verification cases of
this manuscript (Woodward and Colella (1984); McCroskey (1987) ). Moreover, most
physical processes were verified and validated separately. Cases with the presence of various
phenomena, such as mixed convection, would be of great interest. For that purpose, one may
cite Lecocq et al. (2008); Sharma et al. (2015) for mixed convection and other test cases
of interest not studied in this manuscript: Birman et al. (2005) for non-Boussinesq gravity
flows, Hunt and Kaye (2005) for lazy plumes and Amielh et al. (1996); Van Hooff et al.
(2012) for jets. Finally, larger scales simulations related to the urban environment would
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emphasise the scheme utility for indoor studies, where insights of the outdoor flow could
directly impact the indoor one. The outdoor part of the simulation can be compared as well
to an atmospheric solver, such as code_saturne atmospheric module.
Concerning the moist air scheme, more verification and validation cases need to be carried out
to verify its accuracy related to phase change. Further investigation can be made concerning
the exact solution for the Riemann problem of the system of equations with phase change.
Moreover, validation cases with phase change in the indoor environment framework are
still to be tested, which would complete this process and certify the applicability of the
homogeneous model for thermo-aeraulic applications. Other validation cases such as the
Minibat moist study (Teodosiu et al., 2003; Teodosiu, 2013) , the Mistral configuration,
cooling towers (Razafindrakoto et al., 1998; Blain et al., 2016) and orographic precipitation
(Bouzereau, 2004) can be highlighted. Note that to achieve accurate results in some of the
aforementioned cases may induce the use of one or more supplementary equations that are
thus left for further investigation (for instance, in order to simulate orographic precipitation,
a nucleation modelling may be necessary).

Physical phenomena to investigate
Besides the supplementary verification and validation proposed, some new numerical features to
be implemented and analysed are of interest. Note that for each new implementation it is highly
recommended to perform a verification and validation process.

This work did not focused particularly on the dynamical and thermal walls functions, even
if they were used for some simulations. Some work related to other existing walls functions
interesting for indoor flow’s driving processes such as natural convection may be highlighted
(Howard and Tully, 2012; Wald, 2016; Mangeon, 2020) .
Moreover, the strategy adopted in the correction scheme step, which solves an Helmholtz
equation, could be extended for other mixtures and equations of state. Intuitively, the
easiest mixture to be generalised is the mixture of different ideal gases (except the air vapor
mixture, studied in the fourth chapter). Such implementation is relatively feasible for linearly
dependent equations of states related to the pressure.
The numerical scheme compatibility with other turbulent approaches that are more and
more used in the academic and industrial fields can be tested or developed as well. Some
approaches can be highlighted such as the hybrid RANS-LES or the unsteady RANS. These
methods can be of high interest when simulating different flow phenomena scales at the same
time.
Further investigation shall focus as well on the physical phenomena identified in Section 2.2
which were not accounted for in the scheme design. Radiation and the occupants thermal,
dynamical and chemical impact on the flow would complement the scheme accuracy related
to the indoor environment. One should keep in mind that chemical reactions are sensible to
radiation and that its inclusion in the simulation would lead to source terms in the thermal
equation . In that scope, La Gennusa et al. (2007) studied the radiation impact on the indoor
thermal comfort. Concerning the occupants impact on the flow, one may cite Ai and Melikov
(2018) and Srebric et al. (2008) for interesting studies on the boundary conditions related
to an occupant and droplet dispersion.
Surface condensation laws would also complement the moist air scheme, which currently
takes into account only the volume phase change. The implemented law could be validated
for instance in the case presented in Teodosiu (2013) .
Other physical phenomena that may not be neglected in some cases is the moisture dynamics
related to fluid-solid interaction in the indoor environment. Existent hygrothermal models
can be found in Busser et al. (2018)
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In the same scope, chemical reactions were not considered in this work but can be important
to take into account for local scale IAQ studies. The coupling of the CPC numerical scheme
to a chemistry module, such as the ssh aerosol module (Sartelet et al., 2020) , can lead
to interesting results and insights on a system IAQ. At first glance, this coupling should
not be a problem, where a mixture of ideal gases and a small volume of aerosols could be
transported. For instance, VOCs, that are responsible for the creation of ground-level ozone,
can react with species such as nitrogen oxides. Yet, this point need to be treated carefully.
Two major difficulties exist. The first is to identify the numerous primary and secondary
reactions important in the indoor environment context (refer to Uhde and Salthammer (2007)
and Fiorentino et al. (2021) ). The second is to perform the coupling between them and the

CFD solver. If too many reactions are considered, the computation time is very likely to be
multiplied. From preliminary studies one may find that further developments are necessary
to reach accurate chemical simulations, such as law walls for VOCs (Murakami et al., 2000a;
Huang and Haghighat, 2002; Haghighat et al., 2005) .

The same numerical design can be used for reactive flow and combustion applications.
However, the enthalpy equation is recommended in that case given the use of the species
reaction enthalpy that are commonly referenced in the literature. Still, the kinetic energy
based source term can be adapted to this equation. The pressure step would remain
unchanged and the staggered variable arrangement can be kept. Yet, an additional attention
for moist flow would be necessary and the mixture would change as well.

Applications

Some examples of application can be highlighted:

The design and optimisation of industrial and residential ventilation systems. This is
applicable for desk offices, rooms with important thermal sources, such as server centres,
the air ventilation in nuclear power-plants or hospital rooms.

Risk assessment studies. For instance, investigating combustion conditions for industrial
systems such as hydrogen dispersion in enclosed environments.

Indoor air quality studies such as the dispersion of potentially dangerous chemical species in
enclosed rooms with many occupants (classrooms, offices, stadiums).

Coupling to other numerical methods

Coupling CFD and multi zones models is a promising perspective to perform faster and
accurate simulations related to the indoor environment. On the one hand simulations using
the CPC scheme can provide useful information to tune a larger scale model corresponding to
a characteristic flow (jet, plume). This model can be in turn used for multi zones simulations
or for detailed CFD ones. Even if its impact in the results accuracy needs to be quantified,
one would be sure to accelerate the total computational time. Both simulation tools can be
complementary in a simulation where two rooms are studied but with different complexity.
The CFD could be used for the more complex one, whereas the other is studied through a
multi zone model. Again, a particular attention should be given on the boundary conditions
coupling.

Artificial intelligence (AI) methods can be of interest as well when trying to characterise
complex flow. Such methods could be used to provide a model data, thus accelerating CFD
simulations (turbulent quantities for instance). Yet, accurate training data is necessary. Given
the difficulty to gather interesting data covering a wide enough range of flow information
with experiences, CFD simulations may be the key to train, verify and validate such models.
Other AI application could be to automatise the choice of a CFD sub-models (turbulence,
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buoyancy, compressible or incompressible) during a simulation given its results thanks to
a learning classification algorithm. The reader may refer to a review on neural networks
applications related to CFD in the indoor framework (Calzolari and Liu, 2021) .

Numerical study of complex configurations

Finally, some perspectives regarding the study of more complex geometries are provided.

As mentioned previously, accurate boundary conditions are crucial to achieve numerical
results in agreement with reality. Beyond their type of value, the way one define the boundary
faces groups is of great importance. In this manuscript, these groups were defined manually
by defining geometrical criteria. Therefore, classification methods, based on points colours
for instance, would be helpful to define more precise boundary groups. Various techniques
exist and are left for further investigation. For instance, the reader may refer to Grilli et al.
(2017) .

The numerous perspectives show that there are still several points to be studied and the potential
of using the proposed numerical scheme for many applications in the indoor environment.
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