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Résumé

Dans cette thèse, nous utilisons les outils de la géométrie polyédrale pour appréhender la struc-
ture de problèmes stochastiques. Plus précisément, lorsque les variables aléatoires de problèmes
stochastiques linéaires multiétapes (MSLP) peuvent être remplacées par des variables aléatoires
à support fini sans changer les fonctions valeurs, on parle de discrétisation exacte. On qualifie
une discrétisation exacte de locale si elle s’applique à un point particulier de l’espace d’état,
d’uniforme si elle ne dépend pas de l’état et d’universelle si elle est indépendente de la distribu-
tion.

Notre but est de donner des conditions pour obtenir des discrétisations exactes universelles,
locale ou uniforme.

Grâce à la notion d’éventail normal, nous établissons une discrétisation exacte locale et
universelle pour les problèmes stochastiques linéaires à 2 étapes (2SLP), qui permet ensuite
d’obtenir une discrétisation exacte, uniforme et universelle, à l’aide de l’équivalence normale
des fibres du polyèdre couplant sur les cellules d’un certain complexe polyédral appelé chamber
complex. En construisant par programmation dynamique, des complexes polyédraux universels,
où la fonction des coûts futurs espérés est affine par morceaux, nous prouvons une discrétisation
exacte uniforme et universelle pour les MSLP avec distribution de coût générale. De plus, nous
donnons une interprétation duale à l’aide d’une généralisation du polyèdre de fibres pondéré
adapté au 2SLP que l’on étend aux MSLP au moyen de polyèdres de fibres imbriqués. Ces
discrétisations nous permettent alors de déduire des résultats de complexité pour les MSLP en
montrant qu’ils deviennent résolubles en temps polynomial pour toute distribution régulière,
lorsque certains paramètres sont fixés.

Nous nous intéressons ensuite aux 2SLP dont la matrice et le second membre des contraintes
ont des distributions générales. Grâce à une discrétisation exacte et locale, nous étendons la
portée des méthodes de partitions adaptatives (APM) en donnant un oracle géométrique pour
obtenir une partition adaptée, c’est à dire fournissant une discrétisation exacte locale. Nous
donnons également une condition nécessaire et suffisante pour la correction des algorithmes
APM, ainsi que des bornes de complexité.

Enfin, nous introduisons une classe d’algorithmes, appelée Programmation Dynamique par
Suivi de Trajectoire, Trajectory Following Dynamic Programming en anglais, qui affine succes-
sivement des approximations des fonctions des coûts futurs espérés d’un problème stochastique
multi-étapes avec des variables aléatoires indépendantes. Ce cadre algorithmique englobe la plu-
part des variantes de l’algorithme Stochastic Dual Dynamic Programming (SDDP). En supposant
le caractère Lipschitz de la fonction valeur, nous donnons une nouvelle preuve de convergence
et de complexité qui autorise les variables aléatoires avec des supports infinis. En particulier,
nous en déduisons des nouveaux résultats de complexité pour plusieurs algorithmes.
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Abstract

In this manuscript we study how the tools from polyhedral geometry enlighten the structure of
multistage stochastic programming. More precisely, when the arbitrary random variables of a
Multistage Stochastic Linear Problem (MSLP) can be replaced by finitely supported random
variables without changing the value functions, we say that there exists an exact quantization.
We call an exact quantization local if it applies at a particular state, uniform if it does not
depend on the state and universal if it is independent of the noise distribution.

Our aim is to provide conditions to obtain local or uniform, universal exact quantization of
MSLP, and algorithms exploiting these conditions.

Through the notion of normal fans, we show a local and uniform exact quantization for
2-stage linear problems (2SLP) whose cost has a non necessarily finite distribution, which then
provides a universal and uniform exact quantization thanks to the property of normal equivalence
on a chamber complex. By constructing, through dynamic programming, universal chamber
complexes, where the expected cost-to-go function is piecewise affine, we prove a uniform and
universal exact quantization for MSLP with general cost distributions. Further, we give a dual
interpretation of this result by defining new objects which extend of the notion of fiber polytope
to general distributions. These quantizations allow us to derive new complexity results for MSLP
showing that with fixed parameters, MSLP becomes polynomial for every regular distribution.

We then focus on 2SLP with generally distributed matrix and right-hand side constraints.
Thanks to a local exact quantization, we extend the scope of Adaptive Partition-based meth-
ods (APM) by providing a geometric oracle to obtain an adapted partition. We also provide
necessary and sufficient conditions of correcteness of APM, as well as convergence speed result.

Finally, we introduce a class of algorithms, called Trajectory Following Dynamic Program-
ming (TFDP) algorithms, that iteratively refines approximations of expected cost-to-go func-
tions of multistage stochastic problems with independent random variables. This framework
encompasses most variants of the Stochastic Dual Dynamic Programming algorithm. Leverag-
ing a Lipschitz assumption on the expected cost-to-go functions, we provide a new convergence
and complexity proof that allows random variables with non-finitely supported distributions. In
particular, this leads to new complexity results for numerous known algorithms.
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d’être les rapporteurs de ma thèse et Francesca Maggioni, Nadia Oudjane et Lionel Pournin
d’avoir bien voulu être examinateurs dans mon jury de thèse.
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pour moi durant cette thèse. Un grand merci à Jean-Philippe Chancelier pour son aide et sa
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Coco, Julien, Nerea, Eduardo, Roberta, Hélène, Léo, Henri, François, à ceux du troisième et à
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Notations

As a general guideline bold letters denote random variables, normal scripts their realizations.
Capital letters denote matrices or sets, calligraphic (e.g.N ) denote collections of sets. Depending
on the context, overline are either used for subcollections of maximal elements (as in C) or for
upper-approximation (as in V ). Similarly, underline are either used for subcollections of minimal
elements or lower-approximation. Hats (as in V̂ ) represent functions parametrized by ξ, and
their counterpart without hat (as in V ) being their expectation.

• The (tropical) indicator function IP takes value 0 if P is true and +∞ otherwise.

• The indicator function 1P takes value 1 if P is true and 0 otherwise.

• [k] := {1, . . . , k}.

• ]E is the cardinal of a set E.

• ri(E) is the relative interior of a set E

• AI is the submatrix of a matrix A, composed of the rows of indices i ∈ I.

• A·,J is the submatrix of a matrix A composed of the columns of indices j ∈ J .

• Cone(A) := ARn+ the conic hull of the columns of A.

• x 6 y is the standard partial order, given by ∀i, xi 6 yi.

• F ⊂ G if F is a subface of G.

• P 4 Q if P is a refinement of the polyhedral complex Q.

• P ∧Q is the common refinement of P and Q.

• E ⊂P F if E is “P-almost surely included” in F ,i.e. P
[
E ∩ F

]
= P

[
E
]
.

• E ∼P F if E is “P-almost surely equal” to F , i.e. P
[
E ∩ F

]
= P

[
E
]

= P
[
F
]
.

• supp C := ⋃
C∈C E is the support of a collection of sets C

• E = X t Y means that E = X ∪ Y and X ∩ Y = ∅.

• C is the subcollection of maximal elements of a collection of sets C.

• C is the subcollection of minimal elements of a collection of sets C.

• rc(P ) is the recession cone of a polyhedron P .

• F(P ) the set of faces of P .

7
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• Flow(P ) the set of lower faces of P .

• Vert(P ) the set of vertices of P .

• Ray(P ) a set with vectors each representing one extreme rays (for example the normalized
extreme rays).

• Pψ is the face of P given by arg minx∈P ψ>x.

• NP (x) is the normal cone of P at x

• N (P ) the normal fan of P .

• K◦ is the polar {φ |φ>x 6 0, ∀x ∈ K} of a cone K.

• IA,b(x) := {i | Aix = bi} the set of active constraints in x for an H-representation {z | Az 6
b}.

• I(A, b) the collection of these sets {IA,b(x) | Ax 6 b}.

• B represents backward Bellman operators.

• F represents forward Bellman operators.

• ξ is a noise.

• `t is the loss function at time t.

• V̂t is the cost-to-go function at time t.

• Vt is the expected cost-to-go function at time t.

• L denotes a Lipschitz constant.

• L denotes a diameter.

• X a set of state (e.g. Xr
t is the set of reachable state) and X a set-valued application

representing set of states (e.g. Xt(x, ξ) is the set of admissible next state, X ]γ,t(Ṽ )(x, ξ) is
the set of γ-optimal next state...).
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12 CHAPTER 1. INTRODUCTION (VERSION FRANÇAISE)

L’optimisation est le domaine des mathématiques qui étudie les minima d’une fonction, ap-
pelée fonction objectif, sur un ensemble donné. Dans une perspective plus appliquée, l’optimisa-
tion modélise diverses situations où une personne doit choisir la meilleure décision, selon un cer-
tain objectif, en satisfaisant différentes contraintes. Au XVIIème siècle, le calcul différentiel de
Leibniz et Newton a permis l’émergence de méthodes pour trouver des solutions aux problèmes
d’optimisation sans constrainte avec des fonctions lisses. Des mathématiciens du XVIIIème
siècle comme Euler et Lagrange ont ensuite développé des méthodes pour construire des so-
lutions de problèmes d’optimisation sous contraintes. Depuis le XXème siècle, les progrès
de l’informatique ont permis d’implémenter des algorithmes pratiques pour résoudre divers
problèmes d’optimisation avec des fonctions non lisses. Par exemple, la programmation linéaire
est un domaine de l’optimisation qui trouve de nombreuses applications et que l’on peut résoudre
très efficacement en pratique. Dantzig [DT03] a développé une formulation générale pour
l’optimisation linéaire et inventé la méthode du simplexe, qui est maintenant mieux comprise
grâce à la géométrie polyédrale. Plus généralement, en optimisation convexe non lisse, des
mathématiciens comme Fenchel et Rockafellar [Roc15] ont découvert de nouveaux liens en-
tre optimisation et géométrie. Ainsi, les ponts entre l’optimisation et la géométrie ont per-
mis d’améliorer l’efficacité d’algorithmes déjà existants et d’en inventer de nouveaux. Dans
cette thèse, nous regarderons plus précisément les liens entre l’optimisation stochastique et la
géométrie polyédrale.

Dans ce chapitre, nous présentons d’abord, dans la section 1.1 l’optimisation stochastique en
rappelant les principes de la programmation dynamique et différentes méthodes d’approximation
par discrétisation. Après avoir donné un aperçu des notions de géométrie polyédrale qui seront
utilisées tout au long de cette thèse, et des raisons pour lesquelles ces notions ont été définies
dans la section 1.2, nous introduisons le problème de discrétisation exacte dans la section 1.3,
qui est la question centrale traitée dans ce travail. Les contributions principales de la thèse sont
présentées dans la section 1.4 et son plan dans la section 1.5.

1.1 Optimisation stochastique

En optimisation sous incertitude, on doit prendre une décision sans connâıtre précisément cer-
tains paramètres essentiels du problème. L’incertitude peut provenir d’un manque d’information,
d’une imprécision dans les mesures ou d’une difficulté à modéliser le problème. Le cas le plus
commun est lorsque le décideur doit faire un choix ici et maintenant mais que le critère qu’il
veut optimiser dépend d’un paramètre qu’il ne pourra observer que dans le futur.

Il existe diverses approches de la décision dans l’incertain. Il y a deux représentations
principales de l’incertitude qui est soit modélisée comme antagoniste, soit stochastique. En
optimisation robuste [BTEGN09, BBC11], le décideur doit choisir une solution optimale en
considérant le pire cas d’un ensemble d’incertitude. En apprentissage par renforcement [KLM96,
SB18], ou dans les problèmes de bandits manchots [BCB+12], nous supposons que l’incertitude
est aléatoire mais que le décideur ne connâıt pas sa distribution et doit alors l’apprendre.

L’optimisation stochastique considère des problèmes où le décideur minimise une fonction à
valeurs réelles, parfois appelée mesure de risque, qui dépend de paramètres incertains modélisés
comme des variables aléatoires. Une partie de l’optimisation stochastique traite de problèmes
d’optimisation distributionnellement robuste [WKS14, RM19, ZKW21] où l’on doit considérer la
pire distribution dans un ensemble de distributions donné. Les problèmes d’optimisation stochas-
tique avec aversion au risque avec mesure de risque cohérente [ADEH99] sont équivalents aux
problèmes d’optimisation distributionnellement robuste. L’objectif à minimiser le plus naturel
et répandu est l’espérance d’un coût. Lorsque l’on choisit l’espérance comme mesure de risque à
optimiser, nous parlons de risque neutre. Dans cette thèse, nous considèrerons essentiellement1

des problèmes avec risque neutre.
1Nous discuterons seulement le cas de l’aversion au risque dans la section 6.4.



1.1. OPTIMISATION STOCHASTIQUE 13

1.1.1 Optimisation stochastique multi-étapes

Les problèmes d’optimisation stochastique multi-étapes, multistage stochastic problems (MSP)
en anglais, constituent une classe importante des problèmes d’optimisation stochastique où les
décisions xt sont prises successivement à chaque étape t. Entre les étapes t et t+ 1, une partie
de l’incertitude ξt est révélée.

x0  ξ1  x1  ξ2  · · · xT−1  ξT  xT

Les paramètres d’incertitude sont modélisés comme des variables aléatoires, et nous les noterons
en caractères gras tout au long de cette thèse. Nous présentons maintenant informellement2 un
cadre général pour les MSP.

min
(xt)t∈[T ]

E
[
T∑
t=1

`t(xt, ξt)
]

(MSP)

s.c. x0 = x0 p.s.

xt ∈ Xt(xt−1, ξt) p.s. ∀t ∈ [T ]
σ(xt) ⊂ σ(ξ1, · · · , ξt) ∀t ∈ [T ]

À chaque étape t, le décideur choisit une solution xt pour maximiser le coût actuel `t, qui
dépend du choix xt et d’une réalisation d’une variable aléatoire ξt, auquel on ajoute l’espérance
des coûts futurs. La contrainte xt ∈ Xt(xt−1, ξt) modèlise le fait que la décision xt doit satisfaire
certaines contraintes qui dépendent de la décision passée xt−1 et du paramètre d’incertitude
actuel ξt. La dernière contrainte, appelée contrainte de non-anticipativité, assure le fait que le
décideur ne peut baser sa décision que sur les paramètres passés et présents observés et non
sur les paramètres futurs pas encore observés. Ici, σ fait réference aux tribus, ou σ-algèbres,
induites par des variables aléatoires. Pour la cohérence des notations, nous supposons que la
première variable aléatoire ξ1 est fixée presque sûrement à un certain paramètre déterministe ξ1
et que l’état x0 est également fixé.
Exemple 1.1 (Modélisation de la gestion d’une centrale de stockage hydraulique par un MSP).
Nous considérons une station de transfert d’énergie par pompage-turbinage. Les paramètres
d’incertitude sont la demande en électricité et le flux d’eau provenant de la pluie et du ruisselle-
ment. Le décideur choisit une quantité d’eau turbinée chaque jour pour optimiser un certain
coût, en respectant des contraintes physiques, par exemple en s’assurant que le barrage ne va
pas déborder. Pour modéliser ce problème, nous pouvons définir le MSP suivant:

min
(ut)t,(vt)t

E
[
T∑
t=1

ct(dt − ut)
]

s.c. x0 = x0 p.s.

0 6 ut 6 dt p.s. ∀t ∈ [T ]
xt = xt−1 +wt − ut − vt p.s. ∀t ∈ [T ]
0 6 xt 6 x p.s. ∀t ∈ [T ]
0 6 vt p.s. ∀t ∈ [T ]
σ(ut) ⊂ σ(w1,d1 · · · ,wt,dt) ∀t ∈ [T ],

où x est la capacité du réservoir, T est le nombre d’étapes, ici nombre de jours, dans la période
que nous considérons, et pour chaque étape t, xt représente la quantité d’eau dans le réservoir,

2Une définition plus formelle sera donnée dans la section 6.1
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ut la quantité d’eau turbinée, vt la quantité d’eau évacuée en ouvrant la vanne, dt la demande,
wt la quantité d’eau apportée par la pluie et le ruissellement et ct le coût d’une unité de demande
non fournie.

1.1.2 Programmation dynamique

Les problèmes d’optimisation stochastique multi-étapes sont notoirement difficiles à résoudre et
obtenir des solutions, même approximées, dans un temps raisonnable est hors de portée dans le
cas général. En effet, sans hypothèse supplémentaire, la solution optimale est une fonction des
bruits passés ce qui amène après discrétisation à un nombre de variables de décisions exponentiel
en l’horizon. Une hypothèse usuelle, permettant une décomposition d’une part et de condenser
l’information d’autre part, est l’indépendance des paramètres d’incertitude. Plus formellement,
nous supposons que (ξt)t∈[T ] est une suite de variables aléatoires indépendantes.

Pour le décomposer, nous plongeons le problème (MSP) dans une famille de problèmes
d’optimisation obtenus en faisant varier l’état initial xt−1:

Vt(xt−1) := min
(xτ )t6τ6T

E
[
T∑
τ=t

`τ (xτ , ξτ )
]

s.c. xt−1 = xt−1 p.s.

xτ ∈ Xτ (xτ−1, ξτ ) p.s. ∀t 6 τ 6 T
σ(xτ ) ⊂ σ(ξt, · · · , ξτ ) ∀t 6 τ 6 T.

où Vt est appelée la fonction de coût futur espéré au temps t.
En s’appuyant sur l’hypothèse d’indépendance, nous avons pour tout t ∈ [T ], l’équation

suivante, appelée équation de Bellman ou équation de programmation dynamique (voir [Bel66,
Ber12]) qui lie les fonctions de coût futur espéré aux étapes t et t+ 1:

Vt(xt−1) = E
[
V̂t(xt−1, ξt)

]
(1.2a)

V̂t(xt−1, ξt) := min
xt∈Xt(xt−1,ξt)

`t(xt, ξt) + Vt+1(xt) (1.2b)

où l’on pose VT+1 :≡ 0 pour la cohérence des notations.
Notons enfin que l’on peut réécrire le problème MSP dans la forme imbriquée suivante:

min
x1∈X1(x0,ξ1)

`1(x1, ξ1) + E
[

min
x2∈X2(x1,ξ2)

`2(x2, ξ2) + E
[
· · ·+ E

[
min

xT∈XT (xT−1,ξT )
`T (xT , ξT )

]]]
.

Le principe de programmation dynamique nous apprend l’existence d’une solution optimale
donnée comme une fonction de l’état et du paramètre d’incertitude actuels. Pour mémoire, rap-
pelons que, sans l’hypothèse d’indépendance, la solution optimale dépend de toute l’histoire des
bruits passés. Ainsi, la programmation dynamique permet de condenser l’information nécessaire
dans l’état.

De plus, la programmation dynamique permet également de décomposer un gros problème
(voir le problème MSP) à T étapes en une suite de T problèmes d’intégration (1.2a) et de T
problèmes (1.2b) paramétriques et déterministes à une étape. Plus précisément, pour calculer
Vt(xt−1) pour tout xt−1, nous devons d’abord calculer V̂t(xt−1, ξt) en résolvant des problèmes
(1.2b) d’optimisation déterministe à une étape chacun paramétré par l’état xt−1 et le paramètre
d’incertitude ξt. Dans un deuxième temps, nous devons d’abord calculer une intégrale car
Vt(xt−1) = E

[
V̂ (xt−1, ξt)

]
. Nous expliquons maintenant comment effectuer de tels calculs lorsque

les nombres d’états et de paramètres incertains possibles sont finis.
Lorsqu’à la fois les variables de décisions xt et les paramètres d’incertitude ξt vivent dans

des ensembles finis3 Xt et Ξt, nous pouvons calculer exactement Vt par récurrence rétrograde.
3Ce cadre est aussi appelé processus de décision Markovien.
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En supposant que Vt+1(xt) est connu pour tout xt ∈ Xt, nous itérons sur tous les états pos-
sibles xt−1 ∈ Xt−1, et les paramètres incertains ξt ∈ Ξt pour calculer V̂t(xt−1, ξt) comme
minxt∈Xt(xt−1)`t(xt, ξt)+Vt+1(xt). Le minimum est calculé par exploration exhaustive, et Vt(xt−1)
= E

[
V̂ (xt−1, ξt)

]
est une moyenne finie des V̂t(xt−1, ξt). Cet algorithme est appelé programma-

tion dynamique stochastique (SDP), voir l’algorithme 1.1.

1 VT+1 ≡ 0 ;
2 for t from T to 1 do
3 for xt−1 ∈ Xt−1 do
4 v ← 0;
5 for ξt ∈ Ξt do
6 m← +∞;
7 for xt ∈ Xt do
8 if xt ∈ Xt(xt−1, ξt) then
9 m← min

(
m, `t(xt, ξt) + Vt+1(xt)

)
;

10 end
11 end
12 v ← v +m× P

[
ξt = ξt

]
;

13 end
14 Vt(xt−1)← v;
15 end
16 end
Algorithm 1.1: Programmation dynamique stochastique (SDP) pour MSP dans le cas fini.

Néanmoins, dans beaucoup d’applications, l’espace d’état où xt vit est continu. Nous con-
sidérons alors un cadre plus général où xt peut prendre un nombre infini de valeurs. Une
première idée intéressante est de discrétiser. Au lieu de résoudre directement le MSP, nous
résolvons par l’algorithme SDP, une version approximée du MSP où les variables de décision xt
appartiennent à un ensemble fini Xt. La précision de l’approximation augmente avec le nombre
de points calculés. En particulier, la taille des ensembles discrétisés nécessaire pour obtenir une
certaine précision, est exponentielle en la dimension de l’espace d’état. Plusieurs approches ont
été développées pour résoudre les MSP tout en évitant ce problème appelé malédiction de la
dimension.

Au lieu de réaliser une seule récurrence rétrograde en calculant Vt(xt−1) pour tout xt−1
appartenant à une grille discrétisée préalablement, nous pouvons approximer Vt(xt−1) le long de
certaines trajectoires choisies au fur et à mesure de l’algorithme. L’algorithme Stochastic Dual
Dynamic Programming (SDDP), introduit par Pereira et Pinto dans [PP91] pour gérer le système
de production hydro-électrique Brésilien, réalise successivement des phases directes pour calculer
des trajectoires et des phases rétrogrades pour mettre à jour des estimations des fonctions de
coût futur espéré, le long de ces trajectoires, via la théorie de la dualité. Il existe de nombreuses
variantes de l’algorithme SDDP que nous présentons et commentons dans le chapitre 6, nous
englobons toutes ces variantes sous le nom d’algorithmes de programmation dynamique par
suivi de trajectoire, Trajectory Following Dynamic Programming algorithm (TFDP) en anglais.
Ainsi, les algorithmes TFDP permettent de considérer des espaces de décisions Xt infinis.

Cependant, dans la littérature actuelle, les algorithmes TFDP ne fonctionnent que lorsque
les variables ξt sont à support fini. En effet, sans l’hypothèse de support fini, nous ne pouvons
pas espérer calculer V̂t(xt−1, ξt) car il faudrait pour cela résoudre un nombre infini de problème
(1.2b) à une étape, paramétré par le paramètre incertain ξt. Pour éviter cette difficulté, nous
pouvons remplacer la distribution, a priori générale, de ξt par une distribution à support fini.
Les différentes approches dans la littérature pour réduire les paramètres stochastiques ξt à un
nombre fini sont appelées méthodes de discrétisation.
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1.1.3 Discrétisation en optimisation stochastique

Nous présentons maintenant différentes méthodes de discrétisation fréquemment utilisées en
optimisation stochastique pour approximer des MSP avec des distributions générales.

Sample Average Approximation Une première idée consiste à remplacer les variables
aléatoires ξt à distribution générale par N scénarios (ξ̌t,k)k∈[N ] tirés indépendamment et iden-
tiquement distribués selon la distribution de ξt. Comme dans les méthodes de Monte-Carlo, nous
remplaçons alors la distribution de probabilité réelle P par la distribution de probabilité em-
pirique P̂N := 1

N

∑N
k=1 δξ̌t,k . L’espérance E

[
f(ξt)

]
est alors remplacée par la moyenne d’un nom-

bre fini d’échantillons 1
Nt

∑N
k=1 f(ξ̌t,k). Par exemple, l’équation de programmation dynamique

(1.2) devient

Vt(xt−1) = 1
N

N∑
k=1

(
min

xt∈Xt(xt−1,ξ̌t,k)
`t(xt, ξ̌t,k) + Vt+1(xt)︸ ︷︷ ︸

:=V̂ (xt−1,ξ̌t,k)

)
.

Nous obtenons ensuite un nouveau MSP avec des variables aléatoires à support fini suivant
leurs distributions empiriques. Ce nouveau problème est appelé Sample Average Approximation
(SAA), voir le chapitre 5 de [SDR14] pour une analyse exhaustive du sujet. Par la loi des
grands nombres et sous hypothèses faibles de régularité, le problème SAA converge vers le MSP
original, dans plusieurs sens, par exemple convergence de la valeur ou de l’ensemble des solutions
optimales. En supposant l’existence d’une variance, par le théorème de la limite centrale, on
peut aussi obtenir des intervalles de confiance pour la valeur du MSP.

Le premier avantage de la méthode SAA est qu’elle ne nécessite que de faibles hypothèses et
fonctionne pour une très grande classe de problèmes d’optimisation stochastique. Deuxièmement,
SAA est très facile à implémenter en pratique, dès que l’on a une méthode pour tirer facilement
des réalisations des variables aléatoires. Cependant, les résultats de convergence sont soit asymp-
totiques, soit en 1√

N
tout en restant probabilistes. Notons que la valeur vSAAN du problème SAA

est une variable aléatoire (dépendant de l’échantillon tiré), et peut ainsi être vu comme un
estimateur statisque de la valeur réelle du problème. Si cet estimateur est cohérent (asympto-
tiquement presque sûrement convergent), il est biaisé (l’espérance de vSAAN est plus petite que
la valeur réelle), mais nous ne pouvons pas garantir qu’une réalisation donnée fournit une borne
inférieure de la valeur réelle.

Approximations basées sur les inégalités d’Edmundson-Madansky et de Jensen
Nous introduisons maintenant différentes méthodes d’approximation, sous des hypothèses de
convexité, exploitant les inégalités d’Edmundson-Madansky et de Jensen. Nous présentons plus
formellement ces inégalités dans la section 6.2.4 et renvoyons à [Kuh06, EZ94b, EZ94a, KM+76]
pour des études plus détaillées sur le sujet. Lorsqu’une fonction f est convexe en un paramètre
stochastique ξ, l’inégalité de Jensen nous dit que f

(
E[ξ]

)
6 E

[
f(ξ)

]
. Cette inégalité four-

nit alors des bornes inférieures aux valeurs de problèmes d’optimisation stochastique convexe
multi-étapes, Multistage Stochastic Convex Programs (MSCP) en anglais, en remplaçant les
va-riables aléatoires ξt par des variables déterministes égales à leurs espérances E

[
ξt
]
. Le nou-

veau problème est appelé le problème de la valeur espérée (voir par exemple [MAB14]) qui
donne une borne inférieure pour la valeur réelle du MSCP. Cependant, cette borne inférieure
peut être très éloignée de la valeur réelle. Pour améliorer cette borne inférieure, nous pou-
vons partitionner l’ensemble Ξ où la variable aléatoire ξ vit et appliquer l’inégalité de Jensen à
chaque ensemble P de la partition P. Nous pouvons alors considérer un nouveau problème ap-
proximé où la variable aléatoire ξ est remplacée par une variable à support fini ξ̌ avec les scénari
ξ̌P := E

[
ξ | ξ ∈ P

]
associés au probabilités p̌P := P

[
ξ ∈ P

]
. Dans ce cas, plus la partition P

est fine, meilleure est l’approximation. De plus, quand le diamètre des ensembles P ∈ P tend
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vers 0, la valeur approximée converge vers la valeur du MSCP réel. Lorsque les valeurs des va-
riables aléatoires appartiennent à un polyèdre Q, nous pouvons obtenir une borne supérieure sur
l’espérance E

[
f(ξ)

]
en prenant une combinaison convexe des valeurs f(v) où v décrit les sommets

du polyèdre Q. Cette inégalité, appelée inégalité d’Edmundson-Madansky (voir [Mad59]), per-
met d’obtenir de la même façon des schémas d’approximations avec des partitions pour déduire
des bornes supérieures convergentes. Enfin, lorsque les fonctions de coûts sont des fonctions
selles, c’est-à-dire qu’elles sont convexes dans une variable aléatoire ξ et concave dans une autre
variable aléatoire η, en s’appuyant sur les idées des deux inégalités, nous pouvons obtenir des
bornes supérieures et inférieures pour les MSCP. L’avantage de ce genre d’approximations est
la garantie d’avoir des bornes supérieures ou inférieures. En revanche, ces approximations sont
plus difficiles à implémenter que SAA, et nécessitent une hypothèse de convexité.

g(ξ)

ξ
v1 v2E

[
ξ
]

g
(
E
[
ξ
]) -

∑
v∈Vert(Ξ) E

[
σΞ,v(ξ)

]
g(v) -

E
[
g(ξ)

] -

Figure 1.2: Une illustration des inégalités de Jensen et d’Edmundson-Madansky, voir aussi la
proposition 6.7

Approximations basées sur la dépendance Dans le cas où les variables aléatoires sont
dépendantes entre elles, nous pouvons approximer ces dépendances. L’idée consiste à relâcher
les contraintes de non-anticipativité, par exemple en considérant que le décideur peut voir le
futur, ou en rassemblant différents scénari en les représentant par leur moyenne. Par exemple,
l’algorithme progressive hedging présenté par Rockafellar et Wets dans [RW91] est basé sur ces
idées. Dans le cas convexe, en exploitant les inégalités de Jensen et d’Edmundson-Madansky,
nous pouvons obtenir des bornes supérieures et inférieures grâce à des arbres de scénari barycen-
triques (voir [Fra96, CS05, Kuh06]). Dans [PP12], Pflug and Pichler ont défini une distance,
appelée distance imbriquée, nested distance en anglais, entre des suites de variables aléatoires
dépendantes. Cette distance imbriquée permet de borner l’écart, notamment de valeur, entre
un MSP et ses problèmes approximés et ainsi fournir de bonnes approximations du MSP.

Notons qu’en optimisation stochastique avec risque neutre, nous supposons en général que
les distributions des variables aléatoires sont connues par le décideur. Cette hypothèse rend les
problèmes d’optimisation stochastique très dépendants du choix de la distribution lorsque l’on
modélise un problème pratique. L’impact de ce choix est étudié dans le domaine de l’analyse de
sensibilité [Dup90, RS91] qui consiste à comprendre comment la valeur d’un problème stochas-
tique varie avec de petites perturbations de la distribution. En pratique, il n’est souvent pas
nécessaire de résoudre un problème d’optimisation stochastique de manière très précise ou exac-
te car l’erreur de modélisation peut supplanter les erreurs d’optimisation ou d’approximation.
En revanche, d’un point de vue théorique, fournir des renseignements mathématiques sur les
solutions optimales d’un problème avec distributions de probalités connues, ouvre la porte à
une meilleure compréhension de la structure du problème et ainsi à l’amélioration d’algorithmes
existants et à des idées pour en développer de nouveaux.

Dans cette thèse, en lieu et place de ces approches, nous développons des méthodes de
discrétisation exacte en s’appuyant sur des notions de géométrie polyédrale.
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1.2 Géométrie polyédrale, combinatoire et complexité

L’optimisation a révélé des liens féconds avec les domaines de la géométrie et de la combina-
toire. Nous rappelons d’abord quelques connexions standards entre les problèmes d’optimisation
linéaire et la géométrie polyédrale. Nous présentons ensuite brièvement des outils de géométrie
polyédrale “d’ordre supérieur”, comme l’éventail secondaire qui sera un objet essentiel dans
cette thèse, et leurs liens avec les problèmes d’optimisation linéaire paramétrée. Ces notions
plus fondamentales sont à l’origine motivées par l’étude des systèmes d’équations polynomiales
et la théorie de l’élimination, un sujet qui ne sera pas examiné dans cette thèse mais que l’on
évoque brièvement dans la section 1.2.3. Enfin, après avoir introduit rapidement la théorie de
la complexité, nous rappelons des résultats de complexité connus en géométrie polyédrale et en
optimisation stochastique.

1.2.1 Optimisation linéaire et polyèdres

L’optimisation linéaire est le domaine de l’optimisation qui considère des fonctions objectif
linéaires et des contraintes définies comme des inégalités affines (voir [MG07]). Un polyèdre
est un ensemble de points qui correspond à une intersection d’un nombre fini de demi-espaces.
Nous donnons une définition plus formelle de la notion de polyèdre dans la section 3.1 et nous
renvoyons à la lecture des livres [Zie12, Grü13] pour une introduction plus complète à la théorie
des polyèdres. Ainsi, l’ensemble des solutions admissibles d’un problème linéaire (LP) est un
polyèdre. Un résultat essentiel en optimisation linéaire est le fait que le minimum d’une fonction
linéaire sur un polyèdre, est atteint sur au moins un sommet, ou point extrême, lorsque le
polyèdre admet au moins un sommet et que l’infimum est fini. La méthode du simplexe est l’un
des algorithmes les plus efficaces et communément utilisés pour résoudre les LP. Le simplexe
revient à suivre un chemin le long des sommets du polyèdre des points admissibles en faisant
décrôıtre la fonction objectif.

min
x∈R2

c>x := x1 + x2

s.c. x1 6 1 (1)
x1 − x2 6 2 (2)
− x1 − x2 6 2 (3)
− x1 + x2 6 2 (4)
x2 6 1 (5)

•
1

•

2
3

4
5

c

x1

x2

Figure 1.3: Illustration d’une étape de l’algorithme du simplexe pour un problème d’optimisation
linéaire. Nous pivotons de la base {1, 5} à la base {1, 2}.

Pour implémenter la méthode du simplexe dans un ordinateur, nous avons besoin de notions
plus combinatoires. Une base est un ensemble d’indices, représentant les lignes ou les colonnes
d’une matrice, qui induit une sous-matrice inversible. Les sommets d’un polyèdres peuvent être
représentés grâce à des bases. Ainsi, d’un point de vue combinatoire, la méthode du simplexe
passe de base en base grâce à une règle de pivot, voir la figure 1.3. Les ponts entre la géométrie
polyédrale et l’optimisation linéaire sont largement étudiés, par exemple pour améliorer les
performances de la méthode du simplexe. Des problèmes fondamentaux concernant la complexité
de l’optimisation linéaire tels que le 9ème problème de Smale [Sma98] sont ainsi fortement liés à
des conjectures fondamentales de géométrie polyédrale comme la conjecture de Hirsch [San12].
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1.2.2 Notions polyédrales d’ordre supérieur

L’optimisation linéaire paramétrée étudie le comportement des problèmes d’optimisation linéaire
lorsque des paramètres comme le vecteur de coût, la matrice des contraintes ou le second membre
des contraintes varient. Une approche combinatoire de l’optimisation linéaire paramétrée a été
développée par Walkup et Wets [WW69]. Leur théorème de décomposition en bases décrit
comment la valeur d’un problème linéaire sous forme standard varie avec le coût et le second
membre des contraintes. Une approche plus récente par Sturmfels et Thomas [ST97] a connecté
ce théorème à la théorie des subdivisions régulières.

Les subdivisions régulières sont des objets combinatoires qui décrivent la géométrie d’un
nombre fini de points (resp. vecteurs) appelé configuration de points (resp. vecteurs.) Nous
définissons formellement les subdivisions régulières dans la définition 3.17 et renvoyons à la
monographie de De Loera, Rambau et Santos [DLRS10] pour une analyse plus exhaustive de
cette théorie. Informellement, une subdivision régulière d’une configuration de vecteurs A =
(ai)i∈[n] associée au vecteur de hauteurs ω ∈ Rn est la collection des ensembles d’indices IF =
{i ∈ [n] | ai ∈ F} quand F décrit les faces visibles par dessous du cone Cone(ai, ωi)i∈[n], voir
la figure 1.4. Un objet géométrique fondamental appelé éventail4 secondaire et noté Σ -fan(A)
offre une meilleure compréhension de la structure des subdivisions régulières. Plus précisément,
2 vecteurs de hauteur donnent la même subdivision régulière si et seulement s’ils appartiennent
au même intérieur relatif d’un cone secondaire (i.e. un cone de l’éventail secondaire).

(a1, ω1)(a2, ω2)
(a3, ω3)

(a4, ω4)
(a5, ω5)

a1
a2

a5
a3
a4

(a2, ω2)

(a5, ω5)

(a3, ω3)

(a4, ω4)

(a1, ω1)

a1
a2

a3
a4

(a2, ω2)
(a1, ω1)(a3, ω3)

(a4, ω4)

(a5, ω5)

a1
a2

a3
a5a4

Figure 1.4: 3 configurations de vecteurs relevées et les projections des faces visibles par dessous
voir la section 3.3.1 pour plus de détails.

Cet éventail est en fait l’éventail normal d’un certain polyèdre appelé polytope secondaire
et noté Σ(A). Les sommets de Σ(A) peuvent être retrouvés avec les subdivisions régulières
de A vu comme une configuration de vecteurs, grâce à ce qu’on appelle les coordonnées GKZ.
Dans [BS92], Billera et Sturmfels ont défini un autre objet fondamental appelé le polytope des
fibres, fiber polytope en anglais, pour mieux comprendre la structure d’une classe plus générale de
subdivisions. Ils ont aussi montré que le polytope secondaire était un cas particulier de polytope
des fibres.

1.2.3 Motivation par la théorie de l’élimination et les équations polynomiales

Ces notions récentes et avancées d’ordre supérieur, utilisées tout au long dans cette thèse dans le
contexte de l’optimisation stochastique, sont motivées, dans un tout autre contexte, par l’étude
des systèmes d’équation polynomiales.

En théorie de l’élimination, le resultant R(P,Q), ou déterminant de Sylvester, de 2 polynômes
P et Q à une indéterminée, est un scalaire qui vaut 0 si et seulement si P et Q ont une racine

4Un éventail est un complexe polyédrale dont les cellules sont des cones.
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commune. Le résultant de P et Q est défini comme le déterminant d’une matrice qui dépend des
coefficients de P et Q. Ainsi, la fonction résultant Rd : (P,Q) 7→ R(P,Q), restreinte à l’ensemble
des polynômes de degrés plus petit que d, peut être vue comme un polynôme multivarié dans
les coefficients de P et Q. Le discriminant ∆d(P ) d’un polynôme univarié P est défini comme
le résultant R(P, P ′) de P et du polynôme dérivé P ′. Tout comme le résultant, la fonction
discriminant ∆d peut également être vue comme un polynôme multivarié. Ces objets sont
fondamentaux en théorie de l’élimination pour résoudre des systèmes polynomiaux.

Nous considérons à présent le cas de polynômes à plusieurs variables. Soit A ⊂ Nn un
ensemble fini de vecteurs d’entiers naturels. Les notions de résultants et de discriminants peuvent
être étendus au polynômes multivariés, nous parlons alors de A-résultant et A-discriminant,
notés respectivement RA et ∆A (voir [GKZ94, Chapitre 8 et 9]). Enfin, au polynôme multivarié
P := ∑

a∈A caX
a1
1 Xa2

2 · · ·Xan
n dont les exposants sont dans A, nous pouvons associer son polytope

de Newton noté Nw(P ) := Conv{a ∈ A | ca 6= 0}, voir la figure 1.5. Le polytope de Newton
est une notion essentielle pour étudier le comportement des polynômes multivariés (voir [EK08,
MTY19]). Dans [GKZ90] (voir aussi [GKZ94, Chapter 13]), Gelfand, Kapranov et Zelevinsky
ont montré que le discriminant ∆A avait des liens profonds avec la théorie des subdivisions
régulières. Plus précisément, ils ont prouvé que le polytope de Newton Nw(∆A) du discriminant
∆A était égal, à un facteur scalaire près, au polytope secondaire Σ(A). Sturmfels a ensuite
prouvé dans [Stu94] que le polytope de Newton du résultant Nw(RA) divise, au sens de la
somme de Minkowski, un polytope de fibres particulier.
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Figure 1.5: The Newton polytope Nw(P ) of the polynomial
P := X3
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1.2.4 Théorie de la complexité

La théorie de la complexité classifie les problèmes mathématiques selon leurs difficultés à être
résolus. On peut prouver qu’un problème de décision D est au moins aussi dur qu’un problème
D′ en montrant que chaque instance de D′ est équivalente à une instance de D. On dit alors
que D′ peut être réduit à D. A l’inverse, pour prouver qu’un problème D peut être résolu en
temps raisonnable, on peut étudier la complexité de n’importe quel algorithme qui résoud D.
Nous renvoyons à la monographie d’Arora et Barak [AB09] pour une introduction exhaustive
sur la théorie de la complexité.

Dans [Kha80], Khachiyan a prouvé que la méthode de l’ellipsöıde résolvait les problèmes
d’optimisation linéaire en temps polynomial, démontrant ainsi que l’optimisation linéaire était
dans la classe de complexité P. Nous renvoyons au livre [GLS12] de Grötschel, Lovász et Schrijver
pour une introduction complète sur la complexité de la programmation linéaire. En revanche,
lorsque l’on rajoute certaines contraintes, comme le fait d’avoir des solutions à coordonnées



1.2. GÉOMÉTRIE POLYÉDRALE, COMBINATOIRE ET COMPLEXITÉ 21

entières, ou lorsque l’on modifie la structure du problème, par exemple avec de l’aléatoire, la
classe de complexité du problème change radicalement. En effet, la programmation linéaire
en nombres entiers est un problème NP-difficile (voir [vzGS78]). Quand un problème est dans
un classe de complexité aussi difficile, nous pouvons montrer que des restrictions du problème
avec des paramètres fixés sont résolubles en temps polynomial, i.e. sont dans la classe P. Cette
approche est assez commune et souvent la meilleure que l’on puisse espérer. Par exemple, Lenstra
a démontré dans [LJ83] que, lorsque la dimension de l’ensemble des points admissibles est fixée,
la programmation linéaire en nombres entiers devient résoluble en temps polynomial. De même,
si l’on peut prouver que compter le nombre de points à coordonnées entières d’un polytope est
un problème ]P-complet, Barvinok a en revanche montré dans [Bar94] (voir aussi [Bar08]) que
lorsque la dimension est fixée, compter le nombre de points entiers dans un polytope devient un
problème polynomial. De manière peut-être plus surprenante, le problème du calcul du volume
d’un polytope est comparable à celui du comptage de nombre de points entiers, c’est-à-dire
]P-complet en général [DF88] et polynomial lorsque que la dimension est fixée [Law91].

Figure 1.6: Différentes classes de complexité. L’image provient de [IJCN15].

La complexité de l’optimisation stochastique a elle aussi été beaucoup étudiée. Dans [DS06],
Dyer et Stougie ont montré qu’un cas particulier de l’optimisation stochastique multi-étapes
est PSPACE-difficile, et que l’optimisation stochastique à 2 étapes (2SP) avec des distributions
discrètes est ]P-difficile en réduisant le problème de fiabilité des graphes, graph reliability en
anglais, au problème 2SP. Hanasusanto, Kuhn et Wiesemann [HKW16] ont ensuite démontré
que résoudre, avec une précision assez élevée, des problèmes stochastiques linéaires à 2 étapes
(2SLP) avec distributions continues était aussi ]P-difficile, en s’appuyant sur le caractère ]P-
complet du calcul des volumes du polytope du sac à dos et de l’order polytope. Plusieurs articles
comme [Sha06] ont étudié la complexité de 2SLP et MSLP en analysant la convergence des
méthodes SAA. Shapiro et Nemirovski [SN05] ont prouvé en particulier que les problèmes 2SLP
peuvent être résolus avec la méthode SAA, avec une grande probabilité et une précision ε, en
temps pseudo-polynomial, i.e. polynomial en 1/ε et dans la taille de l’entrée du problème, lorsque
les dimensions des espaces de décisions sont fixées. Ceci implique que les petits problèmes 2SLP
peuvent être facilement résolus avec une précision moyenne. Enfin, Lan [Lan20] et Zhang et
Sun [ZS22] ont analysé indépendemment la complexité de l’algorithme SDDP. Leurs résultats
impliquent que les MSLP avec des variables aléatoires à support fini peuvent être résolus ap-
proximativement en temps pseudo-polynomial en l’erreur d’approximation ε lorsque toutes les
dimensions sont fixées.
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1.3 Le problème de discrétisation exacte

Dans cette thèse, nous nous demandons comment traiter les problèmes d’optimisation stochas-
tique avec des distributions générales (et donc avec des supports non-nécessairement finis). La
question principale est la suivante:

Comment résoudre de manière exacte des problèmes
d’optimisation stochastique multi-étapes avec des distributions générales ?

En d’autres termes, existe-t-il des formules analytiques et des algorithmes pour calculer des
solutions exactes au problèmes d’optimisation stochastique avec des distributions générales ?

Nous avons vu dans la section 1.1.3 que nous pouvons approximer un MSP, soit par SAA
soit avec les inégalités de Jensen et Edmundson-Madansky, en remplaçant les variables aléatoires
continues par des variables aléatoires à support finis, voir la table 1.1. Ces techniques peuvent
être comprises comme des méthodes de discrétisations approximées, nous définissons maintenant
la notion de discrétisation exacte.

Définition 1.1 (Discrétisation exacte). Nous disons qu’un MSP (avec indépendance des vari-
ables aléatoires entre les étapes) admet une discrétisation exacte locale au temps t en xt−1 s’il
existe une variable aléatoire (ξ̌t)t∈[T ] à support fini qui produit les mêmes fonctions de coût futur
espéré, c’est-à-dire tel que

Vt(xt−1) = E
[
V̂t(xt−1, ξt)

]
= E

[
V̂t(xt−1, ξ̌t)

]
.

En particulier, nous avons V (xt−1) = ∑
ξ∈supp(ξ̌t) P

[
ξt = ξ

]
V̂ (xt−1, ξ).

Nous qualifions une discrétisation d’uniformément exacte si elle est localement exacte pour
tout xt−1 ∈ Rnt−1 et tout t ∈ [T ].

Nous disons qu’une discrétisation est induite par une partition s’il existe une partition Pt,xt−1

(mesurable et finie) de l’ensemble d’incertitude Ξt telle que pour tout P ∈ Pt,xt−1, on a

P
[
ξ̌t = ξ̌t,P

]
= p̌t,P avec p̌t,P := P

[
ξt ∈ P

]
, ξ̌t,P := E

[
ξt | ξt ∈ P

]5.
En particulier, la discrétisation induite par une partition s’écrit

Vt(xt−1) =
∑

P∈Pt,xt−1

p̌t,P V̂ (xt−1, ξ̌t,P ).

Enfin, s’il existe une partition Pt,xt−1 telle que la discrétisation induite est exacte au temps t en
xt−1, pour toutes les distributions de (ξτ )τ∈[T ], on dit que la discrétisation exacte est universelle.

. Hypothèse . Approximations

SAA Général Intervalle de confiance

Jensen/Edmundson-Madansky Convexe Bornes supérieures et inférieures

Discrétisation exacte Linéaire Valeurs exactes

Table 1.1: Comparaison des avantages et inconvénients des méthodes de discrétisations ap-
proximées ou exactes

5Lorsque p̌t,P := P
[
ξt ∈ P

]
est égal à 0, E

[
ξt | ξt ∈ P

]
n’est pas bien défini. Nous choisissons alors un ξ̌t,P

arbitraire dans P . Ce choix n’a pas d’importance car ξ̌t,P n’apparâıtra dans les formules qu’après le facteur nul
p̌t,P = 0.
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ξt continu
.

(ξ̌t,k)k=N pour SAA
avec N = 20

(ξ̌t,P )P∈P pour une
discrétisation induite par P

Figure 1.7: Comparaisons des scénari choisis selon la discrétisation.

Dans cette thèse, nous nous intéressons uniquement aux discrétisations induites par des
partitions. Avant de rentrer précisément dans les théorèmes de discrétisation exacte abordés
dans le coeur de la thèse, nous expliquons pourquoi nous ne pouvons pas espérer avoir un
théorème général de discrétisation exacte sans linéarité. Nous nous concentrons ensuite sur
l’optimisation stochastique linéaire. En donnant des contre-exemples, nous montrons qu’il
n’existe ni discrétisation locale ni discrétisation uniforme exacte et induite par une partition
lorsque la matrice de recours est stochastique avec support infini, et qu’il n’existe pas de
discrétisation uniforme lorsque les contraintes sont stochastiques avec support infini.

1.3.1 Cas non-linéaire

Si Pt,xt−1 est une partition de Ξt, la loi des espérances totales donne

Vt(xt−1) =
∑

P∈Pt,xt−1

p̌t,PE
[
V̂t(xt−1, ξt) | ξt ∈ P

]
.

Si nous supposons que la fonction V̂t de coût futur paramétré est convexe dans le paramètre
incertain ξt, par l’inégalité de Jensen nous avons V̂t(xt−1, ξ̌t,P ) = V̂t

(
xt−1,E

[
ξt | ξt ∈ P

])
6

E
[
V̂t(xt−1, ξt) | ξt ∈ P

]
, pour tout P ∈ Pt,xt−1 . En particulier, nous avons une discrétisation

exacte induite par cette partition si et seulement si nous avons l’égalité dans l’inégalité de
Jensen pour tout P ∈ Pt,xt−1 tel que p̌t,P > 0. Lorsque l’on considère des fonctions strictement
convexes, l’inégalité de Jensen est généralement stricte, on dit aussi que le saut de Jensen est
strictement positif (voir par exemple [Wal14]). Ainsi, une discrétisation exacte induite par une
partition est très improbable si V̂t est strictement convexe en ξt. Nous pouvons faire la même
analyse lorsque V̂t est strictement concave en ξt en inversant l’inégalité. Même si l’on pourrait
trouver certains cas particuliers qui fonctionnent, nous ne pouvons espérer obtenir un résultat
général de discrétisation exacte si V̂t n’est pas affine par morceaux en ξt.

Nous nous concentrons donc sur le cas linéaire.

1.3.2 Contre-exemples en optimisation stochastique linéaire

Les problèmes d’optimisation stochastique linéaire multi-étapes (MSLP) sont des cas particuliers
des MSP où les fonctions de coûts instantanés sont linéaires et les contraintes sont affines. Pour
simplifier, nous considérons un problème stochastique linéaire à 2 étapes (2SLP) qui est un cas
particulier de MSLP avec horizon 2. Dans les 2SLP, une seule fonction des coûts futurs espérés
est étudiée V := V2. Nous notons aussi n := n1 et m := n2 les dimensions des variables d’états
x := x1 et y := x2 et Ξ := supp(ξ) ⊂ Rm×R`×n×R`×m×R` le support de la variable aléatoire
ξ = (q,W ,T ,h) := ξ2 = (c2,A2,B2, b2) .
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y

x

z

{(x, y) |Tx+Wy 6 h}

c

epi(Qξ)

epi
(
V̂ (·, ξ)

)

Figure 1.8: epi
(
V̂ (·, ξ)

)
is the projection of epi(Qξ)

Nous considérons ainsi la fonction des coûts futurs espérés suivante

V̂ :


Rn × Ξ → R ∪ {−∞,+∞}

(x, ξ) 7→
{

miny∈Rm q>y

s.t. Tx+Wy 6 h

et nous définissons
V (x) := E

[
V̂ (x, ξ)

]
.

Nous montrons maintenant que dans le cas général, il n’existe ni de discrétisation locale ni
de discrétisation uniforme exacte et induite par une partition lorsque la matrice de recours W
est stochastique à support infini:
Exemple 1.2 (W stochastique). Soit m = ` = 1, q = (1), T = (0), W = (−u), h = (−1) où u
est une variable aléatoire uniforme sur [1, 2]. Nous avons alors pour tout x ∈ Rn:

V̂ (x, ξ) =
min
y∈R

y

s.t. uy > 1
= 1
u

La fonction V̂ est donc constante en x et strictement convexe en ξ. Ainsi, pour toute partition
P de Ξ: ∑

P∈P
p̌P V̂

(
x, ξ̌P

)
< V (x)

où p̌P = P
[
ξ ∈ P

]
, ξ̌P = E

[
ξ | ξ ∈ P

]
. Pour tout x ∈ Rn, il n’y a donc pas de discrétisation

exacte locale en x, et a fortiori uniforme, quand W est à support infini. Nous détaillons la
preuve dans l’annexe A.

Une condition nécessaire pour avoir une discrétisation exacte et uniforme est le fait qu’à
chaque temps t, les fonctions Vt sont des fonctions polyédrales, c’est-à-dire qu’elle prennent
leurs valeurs dans R ∪ {+∞} et que leurs épigraphes sont des polyèdres (possiblement vides).
En effet, pour tout ξ ∈ supp(ξ), la fonction Qξ : (x, y)→ q>y+ITx+Wy6h est polyédrale. Ainsi,
V̂ (·, ξ) = miny∈Rm Qc,ξ(·, y) est polyédrale car epi

(
V̂ (·, ξ)

)
est une projection d’epi

(
Qξ
)

(voir
la figure 1.8 et [JKM08]). Enfin, V est aussi polyédrale comme combinaison linéaire positive
de fonctions polyédrales. Les exemples suivants montrent alors que si les contraintes n’ont
pas de distributions à support fini, nous ne pouvons pas espérer avoir un théorème général de
discrétisation exacte et uniforme.
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Exemple 1.3 (T stochastique). Ici, et dans l’exemple suivant, u est une variable aléatoire uni-
forme sur [0, 1].

V (x) = E


min
y∈Rm

y

s.t. ux 6 y

1 6 y

 = E
[
max(ux, 1)

]
=
{

1 if x 6 1
x
2 + 1

2x if x > 1

Exemple 1.4 (h stochastique).

V (x) = E


min
y∈Rm

y

s.t. u 6 y

x 6 y

 = E
[
max(x,u)

]
=


1
2 if x 6 0
x2+1

2 if x ∈ [0, 1]
x if x > 1 .

En revanche, nous montrerons un théorème de discrétisation exacte uniforme et universelle
sans aucune restriction lorsque le coût est stochastique. De plus, nous présenterons également
un résultat de discrétisation locale lorsque T et h sont stochastiques, voir la table 1.2.

1.4 Contributions

Nous synthésisons maintenant les contributions et résultats majeurs de cette thèse.
Nous montrons tout au long de la thèse comment des notions de géométrie polyédrale peuvent

éclairer la structure des problèmes d’optimisation stochastique linéaire multi-étapes. Dans le
chapitre 3, nous reformulons des résultats de géométrie polyédrale et de combinatoire avec des
notations utiles pour les chercheurs en optimisation stochastique. Même si les résultats de ce
chapitre peuvent sembler déjà connus en géométrie polyédrale, nous pensons d’une part qu’ils
sont utiles pour introduire le sujet aux non spécialistes et, d’autre part, cela permet d’expliciter
des preuves formelles qui peuvent être compliquées à trouver dans la littérature.

1.4.1 Comprendre les MSLP grâce à la géométrie polyédrale

Tout d’abord, nous construisons un pont entre la géométrie polyédrale et l’optimisation stochas-
tique.
Contribution 1. Nous montrons que les fonctions des coûts futurs espérés sont affines par
morceaux sur des complexes polyédraux explicites et universels, lorsque les contraintes sont à
supports finis et que les coûts ont des distributions générales.

En effet, nous prouvons dans le théorème 4.9 que dans le cas à 2 étapes, la fonction du coût
futur espéré est affine sur chaque cellule du chamber complex, un complexe polyédral universel qui
dépend exclusivement des contraintes. Cela nous permet de déduire des formules combinatoires
pour la fonction du coût futur espéré et son sous-différentiel dans le théorème 4.9. Nous étendons
ensuite ce résultat au MSLP dans le théorème 4.14 en introduisant par récurrence rétrograde
des complexes polyédraux universels où les fonctions de coûts futurs espérés sont affines par
morceaux, indépendamment des distributions des coûts.
Contribution 2. Nous donnons une caractérisation explicite des fonctions de coûts futurs
espérés à l’aide des fonctions d’appui des polyèdres de fibres imbriqués et pondérés, lorsque
les contraintes sont déterministes et que les coûts ont des distributions générales.

Nous définissons une généralisation du polytope de fibres, fiber polytope en anglais, de Billera
et Sturmfels [BS92], que l’on nomme polyèdre de fibres pondéré, weighted fiber polyhedron, et
nous montrons, pour les 2SLP, dans le théorème 4.5 que la fonction du coût futur espéré est,
à une application affine près, égale à la fonction d’appui du polyèdre de fibres pondéré. Ce
résultat s’étend au MSLP dans le théorème 4.17 en définissant des polyèdres de fibres imbriqués
par programmation dynamique.
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1.4.2 Résultats de discrétisation exacte

Dans cette thèse, nous donnons également plusieurs résultats de discrétisations exactes que nous
résumons ici.

Contribution 3. Nous montrons une discrétisation exacte locale et universelle pour les 2SLP
avec recours fixé.

En effet, nous montrons dans le théorème 4.2 que tous les raffinements de l’opposé de
l’éventail normal N (Px), de l’ensemble Px des recours admissibles à x, induit une discrétisation
exacte locale et universelle lorsque que le coût c a une distribution générale. En considérant
le problème dual, nous montrons également, dans le théorème 5.3, une discrétisation locale et
universelle pour les 2SLP avec T et h stochastiques. Nous étendons ensuite cette discrétisation
exacte locale et universelle aux 2SLP où q, T et h sont tous stochastiques dans le théorème
5.15.

Locale et universelle Uniforme et universelle

W ×: Contre-exemple 1.2 ×: Contre-exemple 1.2

(T ,h) X: Rx dans Thm. 5.3 ×: Contre-exemples 1.3 et 1.4

q X: −N (Px) dans Thm. 4.2 X: ∧σ∈C(P,π)−Nσ dans Thm. 4.3

(q,T ,h) X: Rx dans Thm. 5.15 ×: Contre-exemples 1.3 et 1.4

Table 1.2: Existence ou non de discrétisation exacte, uniforme ou locale, induite par une partition
et universelle avec les contre-exemples ou les partitions associées.

Contribution 4. Nous montrons une discrétisation exacte uniforme et universelle pour les
MSLP avec des distributions des coûts générales et des contraintes à supports finis.

Lorsque les contraintes sont déterministes, la discrétisation exacte et locale pour les 2SLP
est valide pour tous les états x appartenant au même intérieur relatif d’une cellule du cham-
ber complex. En prenant le raffinement commun à toutes les cellules du chamber complex,
nous déduisons dans le théorème 4.3 une discrétisation exacte uniforme et universelle pour les
coûts c avec distribution générale. En propageant les chamber complexes par programmation
dynamique, nous étendons la discrétisation exacte uniforme et universelle au MSLP avec des
contraintes à support fini dans le théorème 4.15.

1.4.3 Nouveaux algorithmes

Les nouvelles perspectives de la géométrie polyédrale et de la discrétisation exacte permettent de
définir de nouveaux algorithmes, voir la table 1.3, pour résoudre des problèmes d’optimisation
stochastique.

Contribution 5. Nous présentons une méthode de partitions adaptatives généralisée (GAPM)
pour résoudre les 2SLP avec T et h stochastiques et donnons une extension avec q stochastique.

Les méthodes de partitions adaptatives (APM) ont été introduites par Song et Luedtke
[SL15] pour réduire la taille des 2SLP avec support fini en rassemblant des scénari grâce à des
partitions que l’on met à jour. Ramirez-Pico et Moreno ont montré dans [RPM21] que les
méthodes APM pouvaient être adaptées aux distributions générales, appelant ainsi le nouvel
algorithme GAPM, si l’on respecte une condition analytique suffisante. Nous présentons un
algorithme, voir algorithme 5.1, qui permet d’implémenter une méthode GAPM pour toute
distribution en appliquant une discrétisation exacte locale. Nous donnons aussi des résultats de
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2SLP MSLP

Locale (T ,h) GAPM dans Chap. 5 GAPDP dans Chap.6

Locale q Simplexe6dans Chap. 7 GAPDP dans Chap.6

Uniforme q GAPM étendu dans Chap. 5 Chamber complex dans Chap.4

Table 1.3: Algorithmes et outils pour utiliser les discrétisations exactes dans les 2SLP et MSLP

convergence et complexité pour les méthodes APM. Grâce à une implémentation en Julia, nous
comparons GAPM avec les méthodes SAA en donnant des résultats numériques.

Contribution 6. Nous fournissons un cadre algorithmique appelé Programmation Dynamique
par Suivi de Trajectoire, Trajectory Following Dynamic Programming (TFDP) en anglais, qui
englobe au moins 14 algorithmes, (voir la table 6.1) en incluant SDDP et ses variantes. Nous
expliquons comment adapter tous ces algorithmes, à l’origine développés pour des distributions
à support fini, dans le cas de distributions générales.

Dans le chapitre 6, nous montrons comment toutes ces variantes rentrent dans le cadre TFDP,
voir algorithme 6.1, en discutant le choix d’approximations supérieures et inférieures appelées
coupes, le choix de la trajectoire dépendant du paramètre incertain, i.e. la sélection du noeud,
et le problème d’optimisation résolu dans la phase directe.

1.4.4 Résultats de complexité

Nous présentons plusieurs résultats concernant la complexité de l’optimisation stochastique
linéaire multi-étapes.

Contribution 7. Nous montrons que les MSLP avec distributions de coûts générales peuvent
être résolus approximativement en temps polynomial en log(1/ε), pour une grande classe de
fonctions de densités régulières, lorsque T , n2, · · · , nT sont fixés.

En particulier, la dimension n1 de l’espace du premier état n’est pas fixé. La preuve repose
sur la théorie de l’optimisation linéaire avec oracles [GLS12] et sur les théorèmes de bornes
supérieures de McMullen [McM70] and Stanley [Sta75] sur les nombre de sommets et taille de
triangulation d’un polyèdre. Ce théorème de complexité, voir corollaire 4.30, s’applique dans
de nombreux cas car les distributions des coûts peut être supposées essentiellement arbitraires;
nous supposons uniquement qu’elle est donnée implicitement grâce à un oracle approximé (voir la
définition 4.27), cela s’applique en particulier à toutes les distributions avec une densité régulière
par rapport à la mesure de Lebesgue. De plus, nous obtenons un résultat similaire de complexité
polynomiale dans le modèle exact de calcul (ou modèle de Turing) pour des classes de distribu-
tions appropriées, comme les distributions uniformes ou exponentielles dans le corollaire 4.25.
Pour comparaison, à notre connaissance, toutes les bornes de complexité précédentes étaient en
temps pseudo-polynomial, c’est-à-dire polynomial en 1/ε.

En outre, nous donnons des bornes de complexité sur le nombre d’itérations des méthodes
APM et pour les algorithmes rentrant dans le cadre TFDP. Nous considérons un MSLP tel que, à
chaque étape, nous avons un recours relativement complet, les ensembles de solutions admissibles
sont de diamètres finis au plus D et de dimensions au plus d, et les fonctions des coûts futurs
espérés sont Lipschitziennes de paramètre L. Soit γ l’erreur d’approximation accumulée pendant
une itération.

6Nous donnons des pistes pour développer un simplexe d’ordre supérieur pour les 2SLP avec distribution de
coût générale dans la conclusion de ce manuscrit.
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Contribution 8. Les algorithmes rentrant dans le cadre TFDP trouvent une solution ε-optimale
en au plus

(
2DL
ε−γ

)n
(T −1)n+1 itérations, lorsqu’ils sont implémentés avec les sélections de noeud

problem child ou explorative, et en au plus (T − 1)
(

4DL(T−1)
ε−γ

)n+2(T−1)
itérations quand ils sont

implémentés avec une sélection de noeud aléatoire.

En particulier, cela fournit de nouveaux résultats de complexité, voir le corollaire 6.17 et le
théorème 6.21, pour au moins 10 algorithmes dans la littérature (voir 6.1) Pour les 2SLP, nous
montrons dans le théorème 5.11 que les méthodes APM, dont GAPM, trouvent une solution
ε-optimale en au plus

(
1 + LD

ε

)n itérations.

1.5 Plan de la thèse

Le reste de la thèse est rédigé en langue anglaise et suit le plan suivant : Le chapitre 2 est une
traduction en langue anglaise de cette introduction.

Le chapitre 3 introduit la géométrie polyédrale pour les spécialistes d’optimisation stochas-
tique. Il rappelle des définitions de notions standards comme les polyèdres et leurs représentations,
les éventails normaux et les chamber complexes. Nous donnons également des preuves formelles
pour les bijections entre les faces d’un polyèdre, ses cônes normaux et ses ensembles de con-
traintes actives. Nous définissons les notions plus combinatoires de subdivision régulière et
d’éventail secondaire et montrons comment elles sont reliées au concept de contraintes actives.
Nous présentons enfin une adaptation du théorème de décomposition par bases de Walkup et
Wets [WW69] avec les notations utilisées dans cette thèse.

Dans le chapitre 4, nous étudions la structure polyédrale des MSLP avec distribution de coût
générale. Nous montrons d’abord une discrétisation exacte uniforme et universelle pour les 2SLP
qui nous permet de donner une caractérisation de la fonction du coût futur espéré. Nous donnons
également une interprétation duale en définissant un nouvel objet appelé polyèdre des fibres
pondéré. Ces résultats sont ensuite étendus aux MSLP. En construisant, par programmation
dynamique, des complexes polyédraux universels où les fonctions des coûts futurs espérés sont
affines par morceaux, nous montrons une discrétisation exacte uniforme et universelle pour les
MSLP avec distributions de coûts générales. Nous en déduisons finalement des résultats de
complexité pour les MSLP en montrant qu’en fixant certains paramètres, les MSLP deviennent
résolubles en temps polynomiaux pour toutes distributions des coûts régulières. La plupart des
résultats du chapitre 4 proviennent du papier [FGL21], qui a été récompensé du prix du meilleur
papier étudiant à la conférence ECSO-CMS 2022. De nouveaux résultats complémentaires sont
également ajoutés.

Le chapitre 5 traite des méthodes de partitions adaptatives (APM), qui sont des méthodes
numériques qui résolvent en particulier des 2SLP. Nous disons qu’une partition de l’espace des
incertitudes est adaptée à l’état de la première étape x̌ si elle induit une discrétisation exacte
locale en x̌. L’idée centrale des APM est de construire itérativement une partition adaptée à tous
les états que l’on a déjà testés. En s’appuyant sur l’éventail normal de l’ensemble des solutions
duales admissibles, nous présentons une discrétisation exacte et locale lorsque la matrice T
et le second membre des contraintes h ont des distributions générales. Cela nous permet de
déduire une condition nécessaire et suffisante pour qu’une partition soit adaptée même dans le
cas des distributions à support infini, et de fournir un oracle géométrique pour construire une
partition adaptée. En outre, en montrant les liens entre les APM et l’algorithme L-shaped,
nous prouvons la convergence et donnons des bornes de complexité pour les méthodes APM.
Nous présentons des résultats numériques comparant GAPM au méthodes SAA. Pour finir, nous
étendons l’algorithme GAPM au cas où le coût a une distribution générale. La majorité de ce
chapitre peut être trouvé dans l’article [FL22b], publié dans Operations Research Letters, mais
l’extension aux coûts à distributions générales est écrite dans la section 3 du papier [FL22a].
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Dans le chapitre 6, nous introduisons une classe d’algorithmes appelée Programmation Dy-
namique par Suivi de Trajectoires, Trajectory Following Dynamic Programming (TFDP) en
anglais, qui raffine itérativement des approximations des fonctions des coûts futurs espérés pour
les MSP avec variables aléatoires indépendantes. Ce cadre algorithmique englobe la plupart des
variantes de l’algorithme SDDP. En supposant le caractère Lipschitz des fonctions des coûts
futurs espérés, nous fournissons une nouvelle preuve de convergence et de complexité qui per-
met de considérer des variables aléatoires à supports infinis. En particulier, nous en déduisons
de nouveaux résultats de complexité pour de nombreux algorithmes connus. De plus, nous
détaillons comment les algorithmes TFDP peuvent être implémentés sans l’hypothèse de sup-
port fini, soit grâce à des approximations soit grâce à des discrétisations exactes. Ce chapitre
présente les résultats du papier [FL22a], à l’exception de la section 3 qui est présentée dans le
chapitre précédent.

Nous concluons et donnons quelques perspectives pour des travaux futurs dans le chapitre
7.
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Optimization is the field of mathematics that studies the minimum of a function, known as
the objective, over a set. From an applied point of view, optimization model many situations
where a decision maker has to choose the best solution, with regard to some objective, while
satisfying various constraints. In the 17th century, the differential calculus of Leibniz and New-
ton opened the door to methods to find solutions to unconstrained and smooth optimization
problems. Then, mathematicians of the 18th century such as Euler and Lagrange provided
methods to derive solutions of constrained optimization problems. Since the 20th century, the
rise of computer science has allowed implementing practical algorithms to solve nonsmooth op-
timization problems. For instance, linear programming is a subfield of optimization which is
widely applicable in practice and can be solved very efficiently. Dantzig [DT03] developed a
general linear programming formulation and invented the simplex method, which is now better
understood thanks to polyhedral geometry. More generally, in nonsmooth convex optimization,
mathematicians such as Fenchel and Rockafellar [Roc15] discovered new links between optimiza-
tion and geometry. Thus, the bridges between optimization and geometry led to improvements
on the efficiency of existing algorithms and to the inventions of new algorithms. In this thesis,
we will wonder what are the links between stochastic optimization and polyhedral geometry.

In this chapter, we first introduce the field of stochastic optimization by recalling dynamic
programming principles and different approximate quantization methods in Section 2.1. After
giving an overview of the polyhedral geometry notions used throughout this thesis and their
original motivation in Section 2.2, we introduce the exact quantization problem in Section 2.3
which is the main question tackled in this work. The main contributions of this thesis are
presented in Section 2.4 and its structure in Section 2.5.

2.1 Stochastic optimization

In optimization under uncertainty, one has to make a decision without knowing precisely some
key parameters of the problem. The uncertainty can come from a lack of information, an
imprecision in measures or a difficulty to model a problem. The most common case is when
the decision maker has to make a choice here and now but the criterion she wants to optimize
depends on a parameter she will only observe in the future.

There exists various approaches to decision under uncertainty. Typically we either assume
that the uncertainty is adversarial or stochastic. In robust optimization [BTEGN09, BBC11],
the decision maker has to choose the optimal solution while considering the worst case in an
uncertainty set. In reinforcement learning [KLM96, SB18] or bandit optimization [BCB+12],
we assume that the uncertainty is random but that the decision maker does not know the
distribution and has to learn it.

Stochastic optimization considers problems where the decision maker minimizes a real-valued
function, sometimes called risk measure, depending on the uncertain parameters modeled as ran-
dom variables. A part of stochastic optimization deals with distributionally robust optimization
problems [WKS14, RM19, ZKW21] where we consider the worst possible distribution over a
set of distributions. Risk averse stochastic programs using a coherent risk measures [ADEH99]
are equivalent to distributionally robust optimization problems. The most common and natural
criterion to optimize is the expectation of the cost. When we choose the expectation as the risk
measure to optimize, we say that we are in a risk neutral setting. In this thesis, we will consider
essentially1 risk neutral problems.

Thus, stochastic programming is a powerful modeling paradigm that has found many appli-
cations in energy, logistics or finance (see e.g. [Dup02, WZ05, GZ13] and references therein). We
refer to the books [SDR14, RW21, BL11, KM+76] for a more complete presentation on stochastic
optimization.

1We only discuss risk averse extensions in Section 6.4
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2.1.1 Multistage stochastic optimization

Multistage stochastic problems (MSP) constitute an important class of stochastic programs
where decisions xt are taken sequentially during stages. Between stages t and t + 1, some part
of the uncertainty ξt is revealed.

x0  ξ1  x1  ξ2  · · · xT−1  ξT  xT

The uncertainty parameters are modeled as random variables, and we will denote them as bold
letters along this thesis. We now present informally2 a general setting for MSP.

min
(xt)t∈[T ]

E
[
T∑
t=1

`t(xt, ξt)
]

(MSP)

s.t. x0 = x0 a.s.

xt ∈ Xt(xt−1, ξt) a.s. ∀t ∈ [T ]
σ(xt) ⊂ σ(ξ1, · · · , ξt) ∀t ∈ [T ]

At each time step t, the decision maker chooses the solution xt in order to minimize the
actual loss function `t, which depends on the choice xt and on a realization of a random variable
ξt, plus the expected future losses. The first constraint xt ∈ Xt(xt−1, ξt) models that the decision
xt must satisfy some constraints which depends on the past decision xt−1 and the actual random
parameter ξt. The last constraint, called non-anticipativity constraint, ensures that the decision
maker can only base her decision on the past and present observed parameters and not on the
unobserved future parameters. Here, σ refers to the σ-algebra induced by a random variable.
For notational consistency, we assume that the first random variable ξ1 is fixed to a certain
deterministic value ξ1 almost surely and that the state x0 is fixed.

Example 2.1 (MSP modeling hydroelectric energy storage management). We consider a hydro-
electic storage. The uncertain parameters are the demand in electricity and the water inflow
from rain and runoff. The decision maker chooses the quantity of water hustled each day to
optimize some cost, under physical constraints, for example ensuring that the dam must not
overflow. To model this problem, we can define the following MSP

min
(ut)t,(vt)t

E
[
T∑
t=1

ct(dt − ut)
]

s.t. x0 = x0 a.s.

0 6 ut 6 dt a.s. ∀t ∈ [T ]
xt = xt−1 +wt − ut − vt a.s. ∀t ∈ [T ]
0 6 xt 6 x a.s. ∀t ∈ [T ]
0 6 vt a.s. ∀t ∈ [T ]
σ(ut) ⊂ σ(w1,d1 · · · ,wt,dt) ∀t ∈ [T ]

where x is the capacity of the reservoir, T is the number of time steps in the period we consider,
and at step t, xt represents the quantity of water in the reservoir, ut the quantity of water
hustled, vt quantity of water evacuated by opening the valve, dt the demand, wt the quantity
of water coming from rain and runoff and ct the cost of unmet demand.

2This is formally presented in Section 6.1
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2.1.2 Dynamic programming

Multistage stochastic problems are notoriously difficult to solve and obtaining solutions, even
approximate, in reasonable time, is out of reach in the general case. Indeed, without further as-
sumptions, optimal solution are given as a function of past noises which leads, after quantization,
to a number of variables exponential in the horizon. A usual assumption that allows information
compression and decomposition, is the stagewise independence of uncertainty parameters. More
formally, we assume that (ξt)t∈[T ] is a sequence of independent random variables.

To decompose it, we see Problem MSP as an element in a family of parametrized optimization
problems given by

Vt(xt−1) := min
(xτ )t6τ6T

E
[
T∑
τ=t

`τ (xτ , ξτ )
]

s.c. xt−1 = xt−1 a.s.

xτ ∈ Xτ (xτ−1, ξτ ) a.s. ∀t 6 τ 6 T
σ(xτ ) ⊂ σ(ξt, · · · , ξτ ) ∀t 6 τ 6 T.

where Vt is known as the expected cost-to-go function at time t.
Leveraging the stagewise independence assumption, we have, at all t ∈ [T ], the so-called Bell-

man or dynamic programming equations (see [Bel66, Ber12]) that relate the cost-to-go functions
at time t and t+ 1:

Vt(xt−1) = E
[
V̂t(xt−1, ξt)

]
(2.2a)

V̂t(xt−1, ξt) := min
xt∈Xt(xt−1,ξt)

`t(xt, ξt) + Vt+1(xt) (2.2b)

where we set VT+1 :≡ 0 for notational consistency.
Finally, note that, we can also rewrite Problem (MSP) in the following nested form:

min
x1∈X1(x0,ξ1)

`1(x1, ξ1) + E
[

min
x2∈X2(x1,ξ2)

`2(x2, ξ2) + E
[
· · ·+ E

[
min

xT∈XT (xT−1,ξT )
`T (xT , ξT )

]]]
.

The dynamic programming principle tells us that there exists an optimal solution given as
a function of the current state and noise. For comparison, recall that, without the indepen-
dence assumption, the solution depends on the whole history of past noises. Thus, dynamic
programming allows compressing sufficient information in the state.

Futhermore, it decomposed one big T -stage problem (2.1) into a sequence of T integration
problems and T parametric deterministic 1-stage problems. More precisely, to compute Vt(xt−1)
for all xt−1, we would first need to compute V̂t(xt−1, ξt) by solving deterministic 1-stage problems
(2.2b) each parametrized by the state xt−1 and the uncertainty parameter ξt. Secondly, we would
need to compute an integral since Vt(xt−1) = E

[
V̂ (xt−1, ξt)

]
. We now explain how to do so when

the number of possible states and noises is finite.
When both the decision variables xt and the uncertainty parameters ξt live in finite sets Xt

and Ξt, a framework also known as finite Markov decision processes, we can exactly compute
Vt by backward induction. Assuming that Vt+1(xt) is known for all xt ∈ Xt, we loop over each
possible xt−1 ∈ Xt−1, and ξt ∈ Ξt to compute V̂t(xt−1, ξt) as minxt∈Xt(xt−1) `t(xt, ξt) + Vt+1(xt).
The minimimum is done by brute force, and Vt(xt−1) = E

[
V̂ (xt−1, ξt)

]
is a finite average of

V̂t(xt−1, ξt). This algorithm is called Stochastic Dynamic Programming (SDP) see Algorithm 2.1.
However, in many applications, the state space where xt lives is continuous. We then consider

a more general setting where xt can take an infinite number of values. Since this general problem
is difficult to solve, a first interesting idea is to discretize. Instead of solving directly the MSP, we
solve by applying SDP, an approximate version of MSP where the decision variables xt belongs
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1 VT+1 ≡ 0 ;
2 for t from T to 1 do
3 for xt−1 ∈ Xt−1 do
4 v ← 0;
5 for ξt ∈ Ξt do
6 m← +∞;
7 for xt ∈ Xt do
8 if xt ∈ Xt(xt−1, ξt) then
9 m← min

(
m, `t(xt, ξt) + Vt+1(xt)

)
;

10 end
11 end
12 v ← v +m× P

[
ξt = ξt

]
;

13 end
14 Vt(xt−1)← v;
15 end
16 end
Algorithm 2.1: Stochastic Dynamic Programming (SDP) for discretized version of MSP.

in a finite set Xt. The precision of the approximation increases with the number of computed
points. In particular, the size of the discretized sets, needed to obtain a certain precision, is
exponential in the dimension of the initial space. Different approaches were developed to solve
MSP while avoiding this phenomenon called curse of dimensionality.

Instead of doing one backward induction computing Vt(xt−1) for all xt−1 in a precomputed
discretized grid, we can approximate Vt(xt−1) along some adaptive trajectories. The Stochastic
Dual Dynamic Programming (SDDP) algorithm, introduced by Pereira and Pinto in [PP91] to
manage the hydroelectric system in Brazil, iterates over forward pass to compute trajectories and
backward path to update the estimation of expected cost-to-go functions along said trajectories
through duality results. There are many variants of SDDP that we present and discuss in
Chapter 6, we encompass all these variants under the name Trajectory Following Dynamic
Programming algorithm (TFDP). Thus, TFDP algorithms allows considering infinite sets of
decision Xt.

However, in the current literature, TFDP algorithms work when the random variables ξt
have a finite support. Indeed, without the finite support assumption for random variables, we
cannot hope to compute V̂t(xt−1, ξt) because it would require to solve an infinite number of
1-stage problems (2.2b) parametrized by the uncertainty parameter ξt. To avoid this difficulty,
we can replace the general distribution of ξt by a finitely supported distribution. The different
approaches in the literature to reduce the stochastic parameters ξt to a finite number of scenarios
are known as quantization methods.

2.1.3 Quantization in stochastic optimization

We now present different quantization methods commonly used in stochastic optimization to
approximate MSP with general distributions.

Sample Average Approximation The first idea is to replace the general random variables
ξt by a finite number of scenarios (ξ̌t,k)k∈[N ] sampled independently and identically distributed
according to the distribution of ξt. As in Monte-Carlo methods, we replace the true unknown
probability distribution P by the empirical probability P̂N := 1

N

∑N
k=1 δξ̌t,k . Then, the ex-

pectation E
[
f(ξt)

]
is replaced by the finite mean 1

Nt

∑N
k=1 f(ξ̌t,k). For example, the dynamic
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programming equation (2.2) becomes

Vt(xt−1) = 1
N

N∑
k=1

(
min

xt∈Xt(xt−1,ξ̌t,k)
`t(xt, ξ̌t,k) + Vt+1(xt)︸ ︷︷ ︸

:=V̂ (xt−1,ξ̌t,k)

)
.

We then obtain a new MSP with finitely supported random variables following their empirical
distributions. This new problem is called Sample Average Approximation (SAA), see [SDR14,
Chapter 5] for a comprehensive review of the subject. By the Law of Large Numbers and
under some mild regularity assumptions, the SAA problem converges to the true MSP, in many
senses, for example the convergence of the value or of the set of optimal solutions. Assuming
the existence of a variance, by the Central Limit Theorem, confidence intervals for the value of
the MSP are also derived.

The first advantage of SAA is that it only requires mild assumptions and work on a large class
of stochastic optimization setting. Secondly, SAA is very easy to implement in practice, as long
as we know how to sample the random variables. However, these convergence results are either
asymptotic or converging in 1√

N
while staying probabilistic. Note that the value vSAAN of the SAA

problem is a random variable (depending on the sample), and thus can be seen as a statistical
estimator of the value of the true problem. If this estimator is consistent (asymptotically almost
surely converging), it is biased (the expectation of vSAAN is lower than the true value), but we
cannot guarantee that a given realization provides a lower bound for the true value. In the same
idea, there also exist quasi Monte-Carlo methods which generate samples through deterministic
methods in the hope to reduce variance while conserving asymptotic convergence.

Edmundson Madansky and Jensen based approximations We now present different
approximations method, under convexity assumptions, leveraging inequalities known as Jensen’s
and Edmundson-Madansky’s. We present more formally this inequalities in Section 6.2.4 and
refer to [Kuh06, EZ94b, EZ94a, KM+76] for a detailed introduction on the topic. When a
function f is convex in a stochastic parameter ξ, the Jensen inequality tells us that f

(
E[ξ]

)
6

E
[
f(ξ)

]
. This inequality then provides a lower bound on the value of Multistage Stochastic

Convex Programs (MSCP) by replacing the random variables ξt by deterministic variables equal
to their expectations E

[
ξt
]
. This new problem known as the expected value problem (see

e.g. [MAB14]) then gives a lower bound on the true value of MSCP. However, this lower
bound can be very far from the real value. To improve the lower bound, we can partition the
set Ξ where the random variable ξ lives and leverage the Jensen inequality at each set P of
the partition P. We then consider another approximated problem where the random variable
ξ is replaced by a finitely supported random variable ξ̌ with scenarios ξ̌P := E

[
ξ | ξ ∈ P

]
associated to the probabilities p̌P := P

[
ξ ∈ P

]
. In that case, the finer is the partition P, the

better is the approximation. Moreover, when the diameters of the sets P ∈ P goes to 0, the
approximated value converges toward the value of the true MSCP. When the random variables
belongs to a polyhedron Q, we have an upper bound on the expectation E

[
f(ξ)

]
by taking a

convex combination of the values f(v) where v describes the vertices of the polyhedron Q. This
inequality, called Edmundson-Madansky inequality (see [Mad59]), allows deriving to the same
kind of approximation schemes with partitions to get converging upper bounds. Finally, when
the loss functions are saddle functions, i.e. both convex in a random variable ξ and concave in
another random variable η, leveraging the ideas of both inequalities, we can derive upper and
lower approximations of the problem MSCP. The advantage of these kinds of approximations is
the guarantee to have lower and upper bounds. However, these approximations are harder to
implement than SAA, and need a convexity assumption.

Dependence based approximations In the case where the random variables have de-
pendence, we can approximate these dependencies. The idea consists in relaxing the non-
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Figure 2.2: An illustration of Jensen and Edmundson-Madansky inequalities, see also Proposi-
tion 6.7

anticipativity constraints, for example by considering that the decision maker can see in the
future, or in gathering different scenarios together and representing them by their mean. For
example, the progressive hedging algorithm presented by Rockafellar an Wets in [RW91] is based
on these ideas. In the convex case, leveraging Jensen and Edmundson-Madansky inequalities, we
can show lower and upper bounds based on barycentric scenario trees (see [Fra96, CS05, Kuh06]).
In [PP12], Pflug and Pichler defined a distance, called the nested distance, between dependent
sequences of random variables. This nested distance allows to bound the gap between a MSP
and its approximated problems and thus to provide good approximation of MSP.

Note that, in risk neutral stochastic optimization, we generally assume that the distribu-
tions of random variables are known by the decision maker. This assumption makes stochastic
programs dependent on the choice of the distribution while modeling a practical problem. The
impact of this choice is studied by the field of sensitivity analysis [Dup90, RS91] which con-
sists in understanding how the value of a stochastic problem varies with small perturbation of
the distribution. In practice, it is often not necessary to solve precisely, or exactly, a stochas-
tic program since the modeling error can overshadow the optimization or approximation error.
However, from a theoretical point of view, providing mathematical insights on the optimal so-
lutions of a problem with known probability distributions opens the door to improvements of
existing algorithms and ideas to develop new algorithms.

In this thesis, instead of the above approaches, we develop exact quantization leveraging
polyhedral geometry tools.

2.2 Polyhedral geometry, combinatorics and complexity

Optimization has found fruitful bridges with the fields of geometry and combinatorics. We first
recall some standard connections between linear problems and polyhedral geometry. We then
present briefly “higher order” tools in polyhedral geometry, such as the secondary fan which will
be a key tool in this thesis, and their link with parametric linear programming. These more
fundamental notions are originally motivated from polynomial systems and elimination theory,
a topic we will not consider in this thesis, but that is briefly evoked in Section 2.2.3. Finally,
after introducing computational complexity theory, we recall complexity results in polyhedral
geometry and stochastic programming.

2.2.1 Linear optimization and polyhedra

Linear optimization is the subfield of optimization where the objective function is linear and the
constraint are defined as affine inequalities (see [MG07]). A polyhedron is a set of points which
is equal to the intersection of a finite number of halfspaces. We give a more formal definition of
polyhedron in Section 3.1 and refer to [Zie12, Grü13] for a complete introduction on polyhedral
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geometry. Thus, the set of admissible solutions of a linear problem (LP) is a polyhedron. A key
result in linear optimization is that the infimum of a linear function on a polyhedron is attained
on at least one vertex, i.e. an extreme point of the polyhedron, whenever the polyhedron admits
vertices and the infimum is finite. The simplex method is one of the most efficient and commonly
used algorithms to solve LP. It consists in following a path on the vertices of the polyhedron of
admissible solutions while decreasing the objective function.

min
x∈R2

c>x := x1 + x2

s.t. x1 6 1 (1)
x1 − x2 6 2 (2)
− x1 − x2 6 2 (3)
− x1 + x2 6 2 (4)
x2 6 1 (5)

•
1

•

2
3

4
5

c

x1

x2

Figure 2.3: Illustration of a step of the simplex algorithm for a simple linear problem. We pivot
from the basis {1, 5} to the basis {1, 2}.

To implement the simplex method in a computer, we need more combinatorial notions.
A basis is a set of indices, of the rows or columns of a matrix, which yields an invertible
submatrix. The vertices of a polyhedron can be retrieved and computed thanks to the bases.
Then from a combinatorial point of view, the simplex method goes from basis to basis thanks to
a pivot rule, see Fig. 2.3. The links between polyhedral geometry and linear programming are
widely studied, for example to improve the performance of the simplex method. Fundamental
complexity problems for linear programming such as the 9th problem of Smale [Sma98] are thus
heavily linked with polyhedral geometry fundamental conjectures such as the Hirsch conjecture
[San12].

2.2.2 Higher order polyhedral notions

The parametric linear programming point of view consists in studying the behavior of linear
problems when parameters, such as the cost vector, the constraint matrix and the constraint
right-hand side vector, vary. A combinatorial approach of parametric linear programming was
developed by Walkup and Wets [WW69]. Their basis decomposition theorem describes how the
value of a linear program in standard form varies with respect to the cost and the right-hand
side of the constraints. A more recent approach by Sturmfels and Thomas [ST97] linked this
theorem with the theory of regular subdivisions. Regular subdivisions are combinatorial objects
which describes the behavior of finite sets of points (resp. vectors) called configurations of points
(resp. vectors). We give a formal definition of regular subdivisions in Definition 3.17 and refer
to the monograph [DLRS10] for a complete introduction on this theory. Informally, the regular
subdivision of a vector configuration A = (ai)i∈[n] associated with a height vector ω ∈ Rn is the
collection of sets of indices IF = {i ∈ [n] | ai ∈ F} when F describes the lower faces of the lifted
cone Cone(ai, ωi)i∈[n] see Fig. 2.4. The structure of regular subdivisions is better understood
thanks to a fundamental geometric notion called secondary fan3 Σ -fan(A). More precisely, two
height vectors give the same regular subdivision if and only if they belong in the same relative
interior of a secondary cone (i.e. a cone of the secondary fan).

This fan happens to be the normal fan of a certain polytope called secondary polytope and
denoted Σ(A). The vertices of Σ(A) can be retrieved with the regular triangulations of A seen
as a vector configuration, thanks to the so called GKZ coordinates (for Gelfand, Kapranov

3A fan is a polyhedral complex whose cells are cones.
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Figure 2.4: Three lifted vector configurations and the projection of their lower faces, see Sec-
tion 3.3.1 for more details.

and Zelevinsky, see next section). In [BS92], Billera and Sturmfels defined another fundamental
object called the fiber polytope, to enlighten the structure of a more general class of subdivisions.
They also showed that the secondary polytope was a special case of fiber polytope.

2.2.3 Motivation from polynomial systems and elimination theory

These advanced and recent higher order notions, used throughout this thesis in the context
of stochastic programming, are motivated, in another context, from the study of polynomial
systems.

In elimination theory, the resultant R(P,Q), or Sylvester determinant, of two univariate
polynomials P and Q, is a scalar which equals 0 if and only if P and Q have a common root. The
resultant of P and Q is defined as the determinant of a matrix which depends on the coefficients
of P and Q. Thus, the function resultant Rd : (P,Q) 7→ R(P,Q), restricted to polynomials of
degrees smaller than d, can be seen as a multivariate polynomial in the coefficients of P and Q.
The discriminant ∆d(P ) of a univariate polynomial P is defined as the resultant R(P, P ′) of P
and its derivative P ′. Like the resultant, the function discriminant ∆d, restricted to polyhedron
of degree smaller than d, can also be seen as a multivariate polynomial. These objects are
fundamental in elimination theory to solve polynomials systems.

We now consider the multivariate setting. Let A ⊂ Nn be a finite set of non-negative
integer vectors. Both notions of resultants and discriminants can be extended to multivariate
polynomials with non-null coefficients in A, we then speak of A-resultant and A-discriminant,
denoted RA and ∆A (see [GKZ94, Chapter 8 and 9]). Finally, to P := ∑

a∈A caX
a1
1 Xa2

2 · · ·Xan
n ,

a multivariate polynomial with exponent in A, we can associate its Newton polytope Nw(P ) :=
Conv{a ∈ A | ca 6= 0}, see Fig. 2.5. The Newton polytope is a key notion to study the behavior
of multivariate polynomials (see [EK08, MTY19]).

In [GKZ90] (see also [GKZ94, Chapter 13]), Gelfand, Kapranov and Zelevinski showed that
the discriminant ∆A had strong connection with the theory of regular subdivisions. More pre-
cisely, they proved that the Newton polytope Nw(∆A) of the discriminant ∆A was equal, up to
a scalar factor, to the secondary polytope Σ(A). Sturmfels subsequently showed in [Stu94] that
the Newton polytope Nw(RA) of the resultant was a summand of a special fiber polytope.

2.2.4 Computational complexity

Computation complexity theory classifies mathematical problems according to how hard they
are to solve. A decision problem D can be proven at least as hard as a problem D′ by showing
that every instance of D′ is equivalent to an instance of D. We say that D′ can be reduced to
D. On the contrary, to prove that a problem D can be solved in reasonable time, we can study
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the complexity of any algorithm that solves D. We refer to Arora and Barak monograph [AB09]
for an introduction on complexity theory.

In [Kha80], Khachiyan showed that the ellipsoid method solves linear programs in polynomial
time, thus proving that linear programming was in the complexity class P. We refer to the
book [GLS12] of Grötschel, Lovász and Schrijver for an introduction on complexity theory for
linear programs. However, adding some constraints, like having integer admissible solutions, or
modifying the structure of the problem, with stochasticity, changes a lot the complexity class.
Indeed, it was proven in [vzGS78], that integer linear programming (ILP) was NP-hard. When
a problem has a difficult complexity status, a rather common approach, and often the best
one can hope for, is to show that suitably restrictions with fixed parameters of the problem
become polynomial. For example, Lenstra proved in [LJ83] that, when the dimension of the set
of admissible points is fixed, integer linear programming becomes polynomial. Similarly, it was
proven that counting the number of integer points in a polytope was a ]P-complete problem.
Barvinok then showed in [Bar94] (see also [Bar08]) that when the dimension is fixed, counting
the number of integer points in a polytope becomes a polynomial problem. Perhaps, more
surprisingly, the problem of computing the volume of a polytope is comparable to counting the
number of integer points, i.e. ]P-complete in general [DF88] and polynomial when the dimension
is fixed [Law91].

Figure 2.6: Different classes of complexity. The figure is borrowed from [IJCN15].
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The complexity of stochastic programming has been extensively studied. In [DS06], Dyer and
Stougie proved that a particular case of MSLP was PSPACE-hard, and that 2-stage stochastic
programming with discrete distributions is ]P-hard, by reducing to it the problem of graph
reliability. Hanasusanto, Kuhn and Wiesemann [HKW16] then showed that solving, with a
sufficiently high accuracy, the 2-stage linear programming (2SLP) with continuous distribution
is also ]P-hard, exploiting the ]P-completeness of the computation of the volume of knapsack
polytopes and order polytopes. Several papers such as [Sha06] studied the complexity of 2SLP
and MSLP by analyzing the convergence of SAA methods. Shapiro and Nemirovski [SN05]
showed in particular that the 2SLP problem can be solved by the SAA method, with high
probability and up to precision ε, in a time which is pseudo-polynomial, i.e. polynomial in
1/ε and in the input size when the dimensions of decision spaces are fixed. This entails that
2SLP problems can be solved in a scalable way with a moderate accuracy. Finally, Lan [Lan20]
and Zhang and Sun [ZS22] independently analysed the complexity of Stochastic Dual Dynamic
Programming (SDDP). It follows from their results that finitely supported MSLP can be solved
approximately in pseudo-polynomial time in the error approximation ε when all the dimensions
are fixed. In other words the complexity of these SDDP methods is polynomially bounded in
1/ε.

2.3 The exact quantization problem

In this thesis, we wonder how to deal with general (thus non-finitely supported) distribution in
stochastic programming. The main question is then

How to solve exactly multistage stochastic problems with general distributions ?

In other words, do there exist analytical formulas and algorithms to compute exact solutions
of stochastic programs with general distribution ?

We saw in Section 2.1.3 that we can approximate a MSP, either by SAA or by Jensen and
Edmundson-Madansky inequalities, by replacing the continuous random variables by finitely
supported random variable, see Table 2.1. These techniques can be seen as approximate quan-
tization method, we now define the notion of exact quantization.

Definition 2.1 (Exact quantization). We say that a MSP (with stagewise independence) admits
a local exact quantization at time t on xt−1 if there exists a finitely supported (ξ̌t)t∈[T ] that yields
the same expected cost-to-go functions i.e. such that

Vt(xt−1) = E
[
V̂t(xt−1, ξt)

]
= E

[
V̂t(xt−1, ξ̌t)

]
.

In particular, we have V (xt−1) = ∑
ξ∈supp(ξ̌t) P

[
ξt = ξ

]
V̂ (xt−1, ξ).

We call a quantization uniformly exact if it is locally exact at all xt−1 ∈ Rnt−1, and all
t ∈ [T ].

We say that a quantization is partition based if there exists a (measurable, finite) partition
Pt,xt−1 of the uncertainty set Ξt such that, for P ∈ Pt,xt−1,

P
[
ξ̌t = ξ̌t,P

]
= p̌t,P with p̌t,P := P

[
ξt ∈ P

]
, ξ̌t,P := E

[
ξt | ξt ∈ P

]4.
In particular, the partition based quantization reads

Vt(xt−1) =
∑

P∈Pt,xt−1

p̌t,P V̂ (xt−1, ξ̌t,P ).

If there exists a partition Pt,xt−1 such that the induced quantization is exact at time t on
xt−1, for all distributions of (ξτ )τ∈[T ], we call the exact quantization universal.



42 CHAPTER 2. INTRODUCTION

SAA Jensen/Edmundson-Madansky Exact quantization

Setting General Convex Linear

Approximations Confidence interval Upper and lower bounds Exact values

Table 2.1: Comparison of advantages and drawbacks of approximation methods with exact
quantization

ξt continu
.

(ξ̌t,k)k=N pour SAA
avec N = 20

(ξ̌t,P )P∈P pour une
discrétisation induite par P

Figure 2.7: Comparison of chosen scenarios according to quantization method.

In this thesis, we only discuss partition based quantization. Before diving in theorems of
exact quantization in the core of the thesis, we first explain in this section why we cannot
expect to have general exact quantization theorem in the non-linear setting. We then focus on
stochastic linear problems (SLP). By giving counter examples, we show that there is neither
local and uniform partition based exact quantization when the recourse matrix is stochastic
with non-finitely supported distribution, and that there is no uniform exact quantization when
the constraints are stochastic with non-finitely supported distribution.

2.3.1 Non-linear case

If Pt,xt−1 is a partition of Ξt, the law of total expectation yields

Vt(xt−1) =
∑

P∈Pt,xt−1

p̌t,PE
[
V̂t(xt−1, ξt) | ξt ∈ P

]
.

If we assume that the cost-to-go function V̂t is convex in the uncertainty parameter ξt, by
Jensen’s inequaliy, we have that for all P ∈ Pt,xt−1 , V̂t(xt−1, ξ̌t,P ) = V̂t

(
xt−1,E

[
ξt | ξt ∈ P

])
6

E
[
V̂t(xt−1, ξt) | ξt ∈ P

]
. In particular, we have the partition based exact quantization result if

and only if we have the equality in Jensen’s inequality, for all P ∈ Pt,xt−1 such that p̌t,P > 0.
When we have strict convexity, Jensen’s inequality is generally strict, we also say that the Jensen
gap is positive (see e.g. [Wal14]). Then, a partition-based exact quantization result is highly
improbable when V̂t is strictly convex in ξt. We have similar conclusions if V̂t is strictly concave
in ξt, by inverting the inequality. Although we might show some exact quantization results in
particular cases, this discussion shows that we cannot hope to have a general exact quantization
theorem if V̂t is not piecewise affine in ξt.

We thus focus on the linear setting.

2.3.2 Counter examples in 2SLP

Multistage stochastic linear problems (MSLP) are special cases of MSP where the loss functions
are linear and the constraints are affine. For sake of simplicity, we first 2-stage linear problems

4When p̌t,P := P
[
ξt ∈ P

]
is equal to 0, E

[
ξt | ξt ∈ P

]
is not well-defined. Then, we take an arbitrary ξ̌t,P in

P . This choice does not matter since ξ̌t,P will only appear in functions multiplied by p̌t,P = 0 in formulas.



2.3. THE EXACT QUANTIZATION PROBLEM 43

(2SLP) which are special cases of MSLP with horizon 2. In 2SLP, we only have to study a single
expected cost-to-go function V := V2. We also denote the dimensions n := n1, m := n2, the
state variables x := x1, y := x2 and Ξ := supp(ξ) ⊂ Rm × R`×n × R`×m × R` the support of
ξ = (q,W ,T ,h) := ξ2 = (c2,A2,B2, b2).

We thus consider the expected cost-to-go function

V̂ :


Rn × Ξ → R ∪ {−∞,+∞}

(x, ξ) 7→
{

miny∈Rm q>y

s.t. Tx+Wy 6 h

We define
V (x) := E

[
V̂ (x, ξ)

]
We now show that in the general case, there is neither local or uniform partition based exact

quantization when the recourse matrix W is stochastic:
Example 2.2 (Stochastic W ). Let m = ` = 1, q = (1), T = (0), W = (−u), h = (−1) where u
denotes a uniform random variable on [1, 2]. We then have for all x ∈ Rn:

V̂ (x, ξ) =
min
y∈R

y

s.t. uy > 1
= 1
u

(2.3)

Thus, V̂ is constant in x and strictly convex in ξ. We then have for all finite partition P of Ξ:∑
P∈P

p̌P V̂
(
x, ξ̌P

)
< V (x) (2.4)

with p̌P = P
[
ξ ∈ P

]
, ξ̌P = E

[
ξ | ξ ∈ P

]
. Thus, for all x ∈ Rn, there is no partition-based local,

thus uniform, exact quantization result at x when W is non-finitely supported. We give a more
detailed proof in Appendix A.

An obvious necessary condition for having uniform exact quantization at all times t is that
the value functions Vt are polyhedral functions, meaning that they take value in R∪ {+∞} and
their epigraphs are (possibly empty) polyhedra. Indeed, for each ξ ∈ supp(ξ), Qξ : (x, y) →
q>y+ ITx+Wy6h is polyhedral. Thus, V̂ (·, ξ) = miny∈Rm Qc,ξ(·, y) is polyhedral as epi V̂ (·, ξ) is a
projection of epiQξ (see Fig. 2.8 and [JKM08]). Finally, V , being a positive linear combination
of polyhedral functions, is also polyhedral. Hence, the following examples show that if the
constraints have non-discrete distributions, there is no hope to have a uniform exact quantization
theorem.
Example 2.3 (Stochastic T ). Here, and in the next example, u denotes a uniform random variable
on [0, 1].

V (x) = E


min
y∈Rm

y

s.t. ux 6 y

1 6 y

 = E
[
max(ux, 1)

]
=
{

1 if x 6 1
x
2 + 1

2x if x > 1

Example 2.4 (Stochastic h).

V (x) = E


min
y∈Rm

y

s.t. u 6 y

x 6 y

 = E
[
max(x,u)

]
=


1
2 if x 6 0
x2+1

2 if x ∈ [0, 1]
x if x > 1 .

In contrast, we shall see, in a perhaps surprising way, that there is a uniform and universal
exact quantization theorem without any restriction on the cost distribution. Moreover, there
also exists a local quantization result when T and h are stochastic, see Table 2.2.
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Figure 2.8: epi
(
V̂ (·, ξ)

)
is the projection of epi(Qξ)

2.4 Contributions

We now sum-up in a concise way the main contributions and results of this thesis.
In this thesis, we show how the tools from polyhedral geometry enlighten the structure of

multistage stochastic linear problems.
In Chapter 3, we reformulate results from polyhedral geometry and combinatorics with useful

notations for the stochastic programming community. Although the results in this chapter may
look like common knowledge for the polyhedral community, we believe that they both introduce
the topic to the stochastic optimizers and give formal proofs that can be hard to find explicitly
in the literature.

2.4.1 Understanding MSLP through polyhedral geometry

First, we build a bridge between polyhedral geometry and stochastic programming.

Contribution 1. We show that the expected cost-to-go functions are piecewise affine on explicit
and universal polyhedral complexes, when the constraints are finitely supported and the costs
have general distributions.

For the 2-stage case, we indeed prove in Theorem 4.9 that the expected cost-to-go function
is affine on every cell of the chamber complex, a universal polyhedral complex only depending
on the constraints. This also allows us to derive combinatorial formulas for the expected cost-
to-go functions and its subdifferential in Theorem 4.9. We then extend this result to MSLP in
Theorem 4.14 by constructing by backward induction universal chamber complexes where the
expected cost-to-go functions are piecewise affine, independently of the cost distributions.

Contribution 2. We give an explicit characterization of expected cost-to-go functions in terms
of support functions of nested weighted fiber polyhedra, when the constraints are deterministic
and the costs have general distributions.

We define a generalization of the fiber polytope of Billera and Sturmfels [BS92], called
weighted fiber polyhedron, and show in Theorem 4.5 that the expected cost-to-go function in
2SLP is equal, up to an affine change of variable, to the support function of the weighted fiber
polyhedron. This result is extended to MSLP in Theorem 4.17 by defining nested fiber polyhedra
through dynamic programming.
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2.4.2 Exact quantization results

In this thesis, we also give several exact quantization results that we sum up here.

Contribution 3. We give local and universal exact quantization results for 2SLP with fixed
recourse.

Indeed, we show in Theorem 4.2 that any refinement of the opposite of the normal fan N (Px)
of the second stage admissible set Px at x yields a local and universal exact quantization when
the c is stochastic. By taking the dual problem, we also show in Theorem 5.3 that we have a
local and universal exact quantization result when T and h are stochastic in the 2-stage case.
This local and universal exact quantization result extends to the 2-stage case where q, T and
h are all stochastic in Theorem 5.15. We sum up the exact quantization results in 2SLP in
Table 2.2.

Local and universal Uniform and universal

W ×: Counter ex 2.2 ×: Counter ex 2.2

(T ,h) X: Rx in Theorem 5.3 ×: Counter ex 2.3 and 2.4

q X: −N (Px) in Theorem 4.2 X: ∧σ∈C(P,π)−Nσ in Theorem 4.3

(q,T ,h) X: Rx in Theorem 5.15 ×: Counter ex 2.3 and 2.4

Table 2.2: Existence of partition based uniform and local (both universal) quantization for 2SLP
with the associated partitions or counter examples

Contribution 4. We give uniform and universal exact quantization results for MSLP with
general cost distribution c and finitely supported constraints.

When the constraints are deterministic, the local exact quantization in 2SLP is valid at all the
first state x belonging to the same relative interior of a cell of the chamber complex. By taking
the common refinement on all cells of the chamber complex, we derive in Theorem 4.3 a uniform
and universal exact quantization for general cost c. By propagating the chamber complexes
through dynamic programming, we extend the uniform and universal exact quantization to the
multistage case and to finitely supported constraints in Theorem 4.15.

2.4.3 New algorithms

The new perspectives of polyhedral geometry and exact quantization allow to define new algo-
rithms, summed up in Table 2.3, to solve stochastic problems.

Contribution 5. We present a generalized adaptive partition based method (GAPM) to solve
2SLP with stochastic T and h and give an extension to stochastic q.

Adaptive partition based methods (APM) were introduced by Song and Luedtke [SL15] to
reduce the size of finitely supported 2SLP by gathering scenarios thanks to a partition. Ramirez-
Pico and Moreno showed in [RPM21] that APM can be adapted to general distributions, calling
it generalized adaptive partition based method (GAPM), if we are able to respect an analytical
sufficient condition. We present an algorithm, see Algorithm 5.1, that allows to implement a
GAPM methods for every distribution by applying an exact quantization result. We also give
convergence and complexity results for APM methods. Thanks to an implementation of the
algorithm in Julia, we compare GAPM with SAA methods by providing numerical results.

5We give ideas to develop a higher order simplex algorithm for 2SLP with general cost distribution in the
conclusion of this manuscript.
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2SLP MSLP

Local (T ,h) GAPM in Chapter 7 GAPDP in Chapter 6

Local q Secondary Simplex5in Chapter 7 GAPDP in Chapter 6

Uniform q Extended GAPM in Chapter 5 Nested fiber and chamber complex in Chapter 4

Table 2.3: Algorithms and tools to tackle exact quantization in 2SLP and MSLP

Contribution 6. We provide a framework called Trajectory Following Dynamic Programming
(TFDP) which encompasses at least 14 algorithms (see Table 6.1), including SDDP and its
variants. We then explain how to adapt all these algorithms, originally designed for finitely
supported distribution, to the case of general distributions.

In Chapter 6, we show how all these variants integrates the framework, see Algorithm 6.1,
by discussing the choice of the upper and lower approximations called cuts, the choice of the
trajectory depending on the uncertain parameter, i.e. the node selection, and the optimization
problem we solve in the forward phase.

2.4.4 Complexity results

We present several results concerning the complexity of multistage stochastic linear programs.

Contribution 7. We show that MSLP with general cost can be solved approximately in polyno-
mial time in log(1/ε), when T , n2, · · · , nT are fixed for a large class of regular density functions.

In particular, the first state dimension is not fixed. The proof relies on the theory of linear
programming with oracles [GLS12] as well as on upper bound theorems of McMullen [McM70]
and Stanley [Sta75] concerning the number of vertices and the size of a triangulation of a poly-
hedron. This complexity theorem, see Corollary 4.30, is widely applicable since the distribution
cost can now be essentially arbitrary; we only assume that it is given implicitly through an
appropriate oracle (see Definition 4.27) – this applies in particular to any distribution with a
smooth density with respect to Lebesgue measure. Moreover, we obtain a similar polynomial
complexity bounds in the exact (Turing) model of computation for appropriate classes of distri-
butions, such as uniform on polytopes or exponential in Corollary 4.25. For comparison, to best
of our knowledge, all the other complexity bounds were in pseudo-polynomial time, i.e. polyno-
mial in 1/ε.

Moreover, we give complexity bounds in the number of iterations for APM methods and for
the algorithms following the TFDP framework. In multistage setting, assume, for every time
step, relatively complete recourse, that the admissible sets have diameter smaller than D and
dimensions at most d, and that the expected cost-to-go functions have a Lipschitz constants
smaller than L. Let γ be the approximation error accumulated during an iteration.

Contribution 8. The algorithms encompassed by TFDP framework find an approximate ε-
solution in at most

(
2DL
ε−γ

)n
(T − 1)n+1 iterations , when implemented with the problem child

(resp. explorative) node selection, and in at most (T − 1)
(

4DL(T−1)
ε−γ

)n+2(T−1)
iterations when

implemented with a randomized node selection.

In particular, this provides new complexity results, see Corollary 6.17 and Theorem 6.21, for
at least 10 algorithms in the literature (see Table 6.1). For 2SLP, we show in Theorem 5.11 that
APM methods, including GAPM, find an ε-solution in at most

(
1 + LD

ε

)n iterations.
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2.5 Structure of the thesis

The rest of the thesis is laid out as follows:
Chapter 3 gives an introduction on polyhedral geometry for stochastic optimizers. It recalls

the definition of basic notions such as polyhedra and their representations, fans and chamber
complexes. We give formal proof for the correspondences between the faces of a polyhedron,
its normal cones and its sets of active constraints. We define the more combinatorial notions of
regular subdivisions and secondary fan and show how they are related to the notion of active
constraint sets. Finally, we present an adaptation of the basis decomposition theorem of Walkup
and Wets [WW69] to our notations.

In Chapter 4, we study the polyhedral structure of MSLP with general cost distribution. We
first prove that we have a universal and uniform exact quantization of 2SLP with general cost
distribution which allows us to give a characterization of the expected cost-to-go function. We
give a dual interpretation by defining a new object called weighted fiber polyhedron. This results
are then extended to the multistage case. By constructing, through dynamic programming,
universal chamber complexes, where the expected cost-to-go function is piecewise affine, we give
a uniform and universal exact quantization results for MSLP with general cost distributions. We
finally derive complexity results for MSLP showing that with fixed parameters, MSLP becomes
polynomial for every regular distribution. Most of the results of Chapter 4 comes from the
preprint [FGL21], which was awarded the best student paper price at ECSO-CMS 2022, with
some new results detailed in the introduction of the chapter.

Chapter 5 deals with Adaptive Partition-based Methods (APM), which are numerical meth-
ods that solve, in particular, two-stage stochastic linear problems (2SLP). We say that a partition
of the uncertainty space is adapted to the current first stage control x̌ if it induces a local exact
quantization results at x̌. The core idea of APM is to iteratively constructs an adapted partition
to all past tentative first stage controls. Relying on the normal fan of the dual admissible set,
we present a local exact quantization when the technology matrix T and the right-hand side
vector h have general distributions. This allows us to derive a necessary and sufficient condition
for a partition to be adapted even for non-finite distribution, and provide a geometric oracle
to obtain an adapted partition. Further, by showing the connection between APM and the L-
shaped algorithm, we prove convergence and complexity bounds of the APM methods. We give
some numerical results and compare GAPM with SAA methods. We finally extend the results
to general distribution for the second stage cost. The majority of this chapter can be found in
the paper [FL22b], but the extension to general second stage cost is written in [FL22a, Section
3].

In Chapter 6, we introduce a class of algorithms, called Trajectory Following Dynamic Pro-
gramming (TFDP) algorithms, that iteratively refines approximations of expected cost-to-go
functions of multistage stochastic problems with independent random variables. This framework
encompasses most variants of the Stochastic Dual Dynamic Programming algorithm. Leverag-
ing a Lipschitz assumption on the expected cost-to-go functions, we provide a new convergence
and complexity proof that allows random variables with non-finitely supported distributions. In
particular, this leads to new complexity results for numerous known algorithms. Further, we
detail how TFDP algorithms can be implemented without the finite support assumption, either
through approximations or exact computations. This chapter presents the results of the preprint
[FL22a], except Section 3, included in the previous chapter.

We conclude and give some perspectives for subsequent works in Chapter 7.
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This chapter presents the tools and results from polyhedral geometry that are used through-
out this thesis. We reformulate properties from polyhedral geometry and combinatorics with
useful notations for the stochastic programming community. While most of these results are con-
sidered as general knowledge, some proofs can be hard to find explicitly in the literature without
falling in circular reasoning. With this in mind, this chapter might be seen as a Bourbaki-like
polyhedral geometry toolbox for stochastic programmer.

We first define polyhedra and explain how they can be implemented through V-representation
or H-representation. We then recall the notion of polyhedral complexes in order to focus on two
particular cases, namely the normal fan and the chamber complex. These two particular polyhe-
dral complexes happen to be key tools to describe the structure of stochastic linear programming.
To derive explicit formulas and implement computations, we eventually present combinatorial
notions such as the active constraints sets. We end this chapter by recalling the link with the
general theory of regular subdivisions.

3.1 Polyhedra, cones and faces

Polyhedra are geometrical objects that are central to optimization. In this chapter, we give a
brief introduction to polyhedral geometry. We refer to [Zie12, Grü13, Fuk16, JT13] for a detailed
introduction to this field.

3.1.1 H-representation, V-representation

Polyhedra are convex1 sets that can be represented, either as an intersection of a finite number
of closed half spaces, we speak of H-representation, or as a set generated by vertices and rays
called the V -representation.

More formally, a subset P of Rd is a polyhedron if there exists a finite collection (Hi)i∈[p]
of p hyperplanes Hi := {x ∈ Rd | a>i x 6 bi}, with ai vector in Rd and bi a scalar such that
P = ⋂p

i=1Hi. In particular, the polyhedron can be written in the following H-representation as

P =
{
x ∈ Rd | a>i x 6 bi,∀i ∈ [p]

}
(3.1)

We define the convex hull of vectors v1, . . . , vs ∈ Rd as

Conv(v1, . . . , vs) :=
{ s∑
j=1

λjvj
∣∣ λj > 0,

s∑
i=1

λj = 1
}

(3.2)

A subset Q of Rd is a polytope if there exist vectors (vi)i∈[s] such that Q = Conv(v1, · · · , vs).
We say that (v1, · · · , vs) is a V -representation of Q.

For d ∈ N, the simplices of Rd are the polytopes which can be written Conv(v1, · · · , vn) with
n 6 d+ 1. As stated in Theorem 3.4, the polytopes are exactly the bounded polyhedra.

The conic hull of vectors r1, . . . , rt ∈ Rd is

Cone(r1, . . . , rt) :=
{ t∑
j=1

µjrj
∣∣ µj > 0

}
(3.3)

A cone is a non-empty set of point C stable by multiplication by a positive scalar:

C is a cone ⇐⇒ ∀x ∈ C, ∀λ ∈ R+, λx ∈ C (3.4)

A polyhedral cone is a cone which is also a polyhedron. Since in this thesis, we are only
interested in polyhedral cones, we use the name cone to refer to polyhedral cones. Note that

1There exist a large field of mathematics that deals with non-convex polyhedra. In this thesis, the terms
polyhedron and polyhedra always refer to convex polyhedra.
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(b) V-representation: P = Conv(v1, ..., vn)

Figure 3.2: 2 representations of the same polytope

the set Cone(r1, · · · , rt) is a cone. We state in Theorem 3.3 that every (polyhedral) cone C can
be written in this way and we say that (ri)i∈[t] is a V -representation of C.

The simplicial cones of Rd are the cones which can be written Cone(r1, · · · , rt) with t 6 d.
The Minkowski sum of X and Y two subsets of Rd is

X + Y :=
{
x+ y | x ∈ X, y ∈ Y

}
(3.5)

We now present the Minkowski-Weyl Theorem which states that a subset of Rd is a polyhe-
dron if and only if it is the Minkowski sum of a polytope and a cone.

Theorem 3.1 (Minkowski-Weyl’s theorem for polyhedra see [Zie12] 1.2 or [Fuk16] Thm 3.9).
For P ⊂ Rd, the following statements are equivalent :

1. There exist (ai)i∈[q] ∈ (Rd)q and (bi)i∈Rq such that P :=
{
x ∈ Rd | a>i x 6 bi,∀i ∈ [q]

}
.

2. There exist finite families of vectors vi and rj in Rd such that P = Conv(v1, . . . , vs) +
Cone(r1, . . . , rt)

In particular, P is a polyhedron if and only if it satisfies one of this statement.

Thus, we have two ways to represent, for example in a computer, the polyhedron P . We
say that (ai, bi)i∈[q] is a H-representation of P . Similarly, we say that

(
(vi)i∈[s], (ri)i∈[t]

)
is a

V-representation of P .
Note that H-representation and V -representation are not unique. Indeed, we can add in-

equalities a>i x 6 bi that are always valid without changing the polyhedron P . Similarly, adding
points vi already in the convex hull does not change the polyhedron P either. However, a
polytope Q admits a unique minimal V -representation. We call the elements of these minimal
representation the vertices of Q. On the other hand, a full dimensional polyhedron admits a
unique minimal H-representation (ai, bi)i∈[q] up to positive scalar factors.

To ease the reading, we prefer to rely on matrix notation. If we define the matrix A as the
matrix whose rows are the row vectors a>i and the vector b with coefficients bi. The polyhedron
P can be written as

P =
{
x ∈ Rd | Ax 6 b

}
(3.6)

Equivalently we can write the convex and conic hulls with a matrix representation. We
define the matrices V ∈ Rd×s and R ∈ Rd×t as the matrices whose columns are respectively the
vectors (vi)i∈[s] and (ri)i∈[t]. We can equivalently define the convex hull of V as

Conv(V ) := V∆s−1 (3.7)

where ∆d stands for the canonical simplex of dimension d as ∆d := {x ∈ Rd+1 |xi > 0,∑d+1
i=1 xi =

1}.
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Similarly, we define the conic hull of R as

Cone(R) := Cone(R) =
{
Rµ | µ > 0, µ ∈ Rt

}
(3.8)

We now restate the Minkowski-Weyl theorem with this notation.

Theorem 3.2 (Minkowski-Weyl’s Theorem for polyhedra with matrix notation). For P ⊂ Rd,
the following statements are equivalent :

1. There exist A ∈ Rq×d and b ∈ Rq such that P =
{
x ∈ Rd | Ax 6 b

}
.

2. There exist V ∈ Rd×s and R ∈ Rd×t such that P =
{
V λ+Rµ | µ > 0,1>λ = 1, λ > 0

}
=

V∆s−1 +RRt+

In particular, P is a polyhedron if and only if it satisfies one of this statement.

Similarly, we say that (A, b) is a H-representation of P and that (V,R) is a V-representation
of P . The idea of the proof is to add a lift variable and represent the polyhedron P ⊂ Rd as a
cone P̃ = {(x, λ) ∈ Rd×R+ |x ∈ λP} in Rd+1. With this homogenization trick, the Theorem 3.2
is a consequence of the following Minkowski-Weyl for cones:

Theorem 3.3 (Minkowski-Weyl’s Theorem for cones (see [Fuk16] Thm 3.10)). For P ⊂ Rd,
the following statements are equivalent :

1. There exist A ∈ Rq×d such that P =
{
x ∈ Rd | Ax 6 0

}
.

2. There exists R ∈ Rd×t such that P =
{
Rµ | µ > 0

}
= RRt+.

In particular, P is a cone if and only if it satisfies one of these conditions.

The idea of the proof is to obtain the H-representation from the V -representation by Fourier-
Motzkin elimination. The backward implication is proved by a duality argument.

We eventually adapt the Minkowski-Weyl theorem for polytopes which states that the poly-
topes are exactly the bounded polyhedra.

Theorem 3.4 (Minkowski-Weyl’s Theorem for polytopes). For P ⊂ Rd non-empty, the follow-
ing statements are equivalent :

1. There exist A ∈ Rq×d and b ∈ Rq such that P = {x ∈ Rd |Ax 6 b} and P is bounded.

2. There exists V ∈ Rd×s such that P = {V λ |1>λ = 1, λ > 0} = V∆s−1

In particular, P is a polytope if and only if P satisfies one of these statements or P is empty.

Proof. By Theorem 3.1, we only have to prove that for P := Conv(v1, · · · , vn)+Cone(r1, · · · , rt),
we have that

P is bounded if and only if t = 0.
(⇒) If t > 1, for all µ ∈ R+, µr1 ∈ P , thus P is not bounded.
(⇐) If t = 0, let M = max(‖v1‖, · · · , ‖vn‖). Then, for all x ∈ P = Conv(v1, · · · , vn),

‖x‖ 6M . Thus, P is bounded.

3.1.2 Basic properties of polyhedra

Polyhedra are stable by intersection, Minkowski sum, linear transformation and projection.

Proposition 3.5. For P and Q be two polyhedra, A a matrix and π a linear projection. We
have the following properties.

- P ∩Q is a polyhedron.
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- P +Q is a polyhedron.

- AP is a polyhedron.

- π(P ) is a polyhedron.
If f : Rd → R∪{+∞} is a function, we say that f is polyhedral function (see [Roc15, Chapter

19]) if its epigraph epi(f) is a polyhedron of Rd+1.
Proposition 3.6. Let f : Rd → R∪{+∞} be a polyhedral function. Then there exists (αi)i∈[n] ∈
(Rd)n, (βi)i∈[n] ∈ Rn, a matrix A and a vector b such that

f : x 7→ IAx6b + max
i∈[n]

{
α>i x+ βi

}
(3.9)

In particular, dom(f) = {x ∈ Rd |Ax 6 b} is a polyhedron.
Proof. If epi(f) is empty, the result is trivial. We now assume that epi(f) is not empty.
Since epi(f) is a polyhedron, there exist a matrix M and vectors v and h such that epi(f) =
{(x, z) |Mx+ vz 6 h}.

By contradiction, assume that there exists an index i such that vi > 0. Let (x, z) ∈ epi(f),
i.e. f(x) 6 z. Then, for all z > z′, f(x) 6 z 6 z′ and thus (x, z′) ∈ epi(f) and Mix+ viz

′ 6 hi.
If we take z′ := hi−Mix+1

vi
, then z 6 z′ and Mix + viz

′ 6 hi. By simplifying, we get the
contradiction 1 6 0. Then, for all i, vi 6 0. Let I0 = {i|vi = 0} and I− = {i|vi < 0}. We then
have (x, z) is in epi(z) if and only if MI0x 6 hI0 and z > hi

vi
− 1

vi
Mix for all i ∈ I−. We define

A := MI0 the submatrix of M with row indices in I0 and b := hI0 the subvector of h. We also
define, up to changing the indices, αi := − 1

vi
M>i and βi := hi

vi
. With this notation, we now have

epi(f) := {(x, z) |Ax 6 b, α>i x+ βi 6 z, ∀i} which gives Eq. (3.9).

We now define basic notions on polyhedra.
The polar of a convex set C ⊂ Rd is the convex cone

C◦ := {α ∈ Rd | ∀x ∈ C, α>x 6 0}. (3.10)
The lineality space of C is the following vector space

Lin(C) :=
{
r ∈ Rd | ∀x ∈ C,∀λ ∈ R, x+ λr ∈ C

}
. (3.11)

The recession cone of a convex set C ⊂ Rm is the set
rc(C) :=

{
r ∈ Rd | ∀x ∈ C,∀µ ∈ R+, x+ µr ∈ C

}
(3.12)

Note that, if P is a polyhedron such that P = Q + C with Q a polytope and C a cone, as in
Theorem 3.1, we then have rc(P ) = C.

We say that a cone is pointed if its lineality space is reduced to {0}. A pointed cone C
has a minimal V -representation up to positive scalar factors. An element of a minimal V -
representation of C is called a ray of C.
Proposition 3.7. The recession cone and the lineality space of a non-empty polyhedron P =
{x ∈ Rd |Ax 6 b} with A ∈ Rq×d and b ∈ Rq are respectively

rc(P ) = {x ∈ Rd |Ax 6 0} = A−1(Rq−) (3.13a)
Lin(P ) = {x ∈ Rd |Ax = 0} = Ker(A) (3.13b)(
rc(P )

)◦ = Cone(A>) = A>Rq+. (3.13c)

Proof. Let r ∈ rc(P ), since P is not empty, there exists x ∈ P . We have that A(x+λr) 6 b, for all
λ ∈ R+. In particular, Ar 6 (b−Ax)/λ. By letting λ goes to infinity, we have Ar 6 0. Now, if we
take r such that Ar 6 0. Then, for x ∈ P and λ ∈ R+, we have that A(x+λr) 6 Ax+λ×0 6 b,
thus x + λr belongs to P . It follows that r ∈ rc(P .) The proof for the lineality space is
similar.
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3.1.3 Faces

A face F of a polyhedron P ⊂ Rd is a subset of Rd such that there exists c ∈ Rd and β ∈ R with

P ⊂ {x ∈ Rd | c>x 6 β} (3.14a)
F = P ∩ {x ∈ Rd | c>x = β} (3.14b)

We denote by F(P ) the set of faces of P .
Some faces are reduced to singleton we call them vertices and we denote by Vert(P ) the set

of vertices of P .
Note that, for a polyhedron P , we denote

Pψ := arg min
x∈P

ψ>x (3.15)

By taking c = −ψ and β = maxx∈P ψ>x we see that Pψ is a face of P . More generally, for any
set E ⊂ Rd, we write

PE := ∩ψ∈EPψ. (3.16)

In many contexts, it is useful to consider polyhedra in Rd×R, e.g. for epigraphs of polyhedral
functions. In these cases, the last coordinate plays a particular role that can be interpreted as
a ”height” or a lift variable. We say that a face F of the polyhedron P ∈ Rd ×R is a lower face
if it is “visible from below” i.e. , if there exists a vector ϕ ∈ Rd such that F = P (ϕ,1).

Proposition 3.8. If P is a non-empty polyhedron, we have that

3.8.(a) ∅ and P are faces of P .

3.8.(b) Any face F ∈ F(P ) is a polyhedron.

3.8.(c) If F and F ′ are faces of P , then F ∩ F ′ is also a face of P .

3.8.(d) A set F is a non-empty face of P if and only if there exists ψ ∈ −
(

rc(P )
)◦ such that

F = Pψ.

3.8.(e) F(P ) is a finite collection of polyhedra.

3.8.(f) The relative interior of P is given by

ri(P ) = P\
⋃

F∈F(P )\{P}
F (3.17)

Proof. 3.8.(a). By taking c = 0 and β = 1, we have that P ⊂ {x ∈ Rd | 0>x 6 1} and
∅ = P ∩{x ∈ Rd | 0>x = 1}. Similarly, by taking c = 0 and β = 0, we get P ⊂ {x ∈ Rd | 0>x 6 0}
and P = P ∩ {x ∈ Rd | 0>x = 0}.

3.8.(b). Is direct from the definition of polyhedron as intersection of half-spaces.
3.8.(c). Let c, c′, β, β′ such that F = P ∩ {x ∈ Rd | c>x = β}, F ′ = P ∩ {x ∈ Rd | c′>x = β′}

and for all x ∈ P , c>x 6 β and c′>x 6 β′. We then have that for all x ∈ P , (c+ c′)>x 6 β + β′

and F ∩ F ′ = P ∩ {x ∈ Rd | (c+ c′)>x = β + β′}.
3.8.(d). Since x 7→ c>x is continuous and P is non-empty and closed, we have that Pψ

is empty if and only if infx∈P ψ>x = −∞. Moreover, if F := P ∩ {x ∈ Rd | c>x = β}, with
P ⊂ {x ∈ Rd | c>x 6 β}, is a non-empty face of P , then β = maxx∈P c>x and F = P−c. We
first prove that infx∈P ψ>x = −∞ is empty if and only if ψ ∈ −

(
rc(P )

)◦:
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(⇒) Let ψ /∈ −rc(P )◦. By definition of the polar cone, there exists r ∈ rc(P ) such that
−ψ>r > 0. By definition of the recession cone, there exists x ∈ P , such that, for any µ ∈ R+,
x+ µr ∈ P . Thus, we have limµ→+∞ ψ

>(x+ µr) = −∞ and then infx∈P ψ>x = −∞.
(⇐) Let ψ ∈ −rc(P )◦. Then for all r ∈ rc(P ), −c>r 6 0, and infr∈rc(P ) c

>r = 0. By
Minkowski Weyl theorem’s 3.1, there exists a polytope Q such that P = Q + rc(P ). Thus,
infx∈P ψ>x = minx∈Q,r∈rc(P ) ψ

>(x+ r) = minx∈Q ψ>x is finite as Q is bounded.
We now prove 3.8.(d). Let F = P ∩ {x ∈ Rd | c>x = β} be a non-empty face of F with

P ⊂ {x ∈ Rd | c>x 6 β}. Let b = supx∈P c>x. We cannot have β < b because P ⊂ {x ∈
Rd | c>x 6 β}. We cannot have β > b otherwise F is empty. Thus, b = β and F = P−c.
Reciprocally, we already saw that Pψ is a face of P and that it is non-empty if ψ ∈ −

(
rc(P )

)◦.
We prove 3.8.(e). and 3.8.(f). in Section 3.2.1 after defining active constraints sets.

3.1.4 Polyhedral complex, fan and chamber complex

Polyhedral complexes are collections of polyhedra satisfying some combinatorial and geometrical
properties. In particular the relative interiors of the elements of a polyhedral complex (without
the empty set) form a partition of their union. We refer to [DLRS10] for a complete introduction
to polyhedral complexes and triangulations.

A finite collection of polyhedra C is a polyhedral complex if it satisfies
1. For every polyhedron P ∈ C and every non-empty2 face F of P , F ∈ C.

2. For any polyhedra P and Q in C, P ∩Q is a (possibly empty) face of P and Q.
We denote by supp C := ⋃

P∈C P the support of a polyhedral complex. Further, if all the
elements of C are polytopes (resp. cones, simplices, simplicial cones), we say that C is a polytopal
complex (resp. a fan, a simplicial complex, a simplicial fan).

For example, the set of faces F(P ) of a polyhedron P is a polyhedral complex.
Proposition 3.9. For any polyhedral complex C, the relative interiors of its elements (without
the empty set) form a partition of its support: supp(C) = ⊔

P∈C ri(P ).
We recall that the notation t refers to a disjoint union.
Let C and R be two polyhedral complexes, we say that R is a refinement of C, denoted

R 4 C, if for every cell R ∈ R there exists a cell C ∈ C containing R: R ⊂ C.
Note that 4 defines a partial order on the space of polyhedral complexes, and the meet

associated with this order is given by the common refinement of two polyhedral complexes C
and C′ defined as the polyhedral complex of the intersections of cells of C and C′:

C ∧ C′ := {R ∩R′ |R ∈ C, R′ ∈ C′} (3.18)

A triangulation T of a polytope Q is a refinement of F(Q) such that the cells of dimension
0 of T are the vertices of Q and T is a simplicial complex. A triangulation T of a cone K
is a refinement of F(K) such that the cells of dimension 1 of T are the rays of K and T is a
simplicial fan.

We recall that a simplex of dimension d is the convex hull of d+1 affinely independent points
and that a simplicial cone of dimension d is the conical hull of d linearly independent vectors.
We speak of triangulations because simplices in dimension 2 and 3 are respectively triangles and
tetrahedra. Thus, simplices are generalization of triangles in higher dimensions.

Finally, to study the projection of the faces of P , we present classical polyhedral tools known
as fibers and chambers complex3 (see [BS92, RZ96, Ram96]).

2For some authors, a polyhedral complex must contain the empty set. We do not make this requirement.
3The terms validity domain, instead of chamber, and parametrized polyhedron, instead of fiber, are also used

in the literature [CL98, LW97].
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(d) P ∧ U .

Figure 3.3: A polyhedral complex P, a triangulation T of the square, another triangulation U
which refines T . The common refinement P ∧ U .

Definition 3.10 (Chamber complex and fiber). Let P ⊂ Rd be a polyhedron and π a linear
projection defined on Rd. For x ∈ π(P ) we define the chamber of x for P along π as

σP,π(x) :=
⋂

F∈F(P ) s.t. x∈π(F )
π(F ). (3.19)

The chamber complex C(P, π) of P along π is defined as the (finite) collection of chambers, i.e.

C(P, π) := {σP,π(x) | x ∈ π(P )} . (3.20)

We define the fiber Px of P at x along π as the projection of P ∩π−1({x}) on the space Ker(π).
Further C(P, π) is a polyhedral complex such that supp C(P, π) = π(P ). In particular,{

ri(σ) |σ ∈ C(P, π)
}

is a partition of π(P ).
More generally, the chamber complex of a polyhedral complex P is

C(P, π) := {σP,π(x) | x ∈ π
(

supp(P)
)
} . (3.21)

with σP,π(x) := ⋂
F∈P s.t. x∈π(F )

π(F ).

Im π

Kerπ

• • • ••••
C(P, π)

x

π
−

1 (
x

)∩
P

•

Px

•

•
F

•

•
π(F )

•
•

π(P )
•

Figure 3.4: A polytope P in light green, its chamber complex in red on the x-axis and a fiber
Px in blue on the y-axis, for the orthogonal projection π on the horizontal axis.

3.2 Active constraints sets and normal fan

We now introduce the notions of active constraints and normal fan with basic properties. These
notions are in one-to-one correspondences and the collection of active constraint sets will provide
H-representations of the faces of a polyhedron and V -representations of its normal cones.
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3.2.1 Active constraints sets

We introduce in this section the collection of active constraints which we use to obtain explicit
formulas and make computations in practice. This notion is algebraic and depends on the matrix
A and vector b used to define the polyhedron, i.e. its H-representation.

For any matrix A ∈ Rq×p and a subset I ⊂ [q], we denote by AI the submatrix composed of
the rows of indices in I of A

AI := AI,· = (Ai,j)i∈I,j∈[p] (3.22)

For i ∈ [q], we also denote Ai := A{i} the ith row of A. To avoid confusion, we use the parenthesis
rule A>I := (AI)>.

H1

H2
H3

H4

H5

•

•

•

Figure 3.5: An example of a polyhedron P = {x | Ax 6 b} with an H-representation (A, b). Each
Hi corresponds to the hyperplane {x | Aix = bi} and the label Hi is located in the halfspace
{x | Aix > bi}. We have I(A, b) =

{
∅, {1}, {1, 3}, {3}, {3, 4, 5}, {5}, {1, 5}

}
. Constraint 2 is

never active (2 /∈ supp I(A, b)), and constraint 4 is redundant with constraints 3 and 5.

We now give basic properties of active constraints sets. In particular, the collection of active
constraints sets I(A, b) provides H-representations of the non-empty faces of P .

Definition 3.11 (Active constraints set). For a polyhedron P = {x ∈ Rd | Ax 6 b}, we
denote by IA,b(x) the set of active constraints of P in x ∈ Rd, with the H-representation
(A, b) ∈ Rq×d × Rq:

IA,b(x) := {i ∈ [q] | Aix = bi} (3.23)

More generally, for a set E ⊂ P , we write IA,b(E) := ⋂
x∈E IA,b(x).

We denote by I(A, b), the collection of active constraints sets of P with the H-representation
(A, b):

I(A, b) := {IA,b(x) | Ax 6 b} (3.24)

We now give elementary properties for the collection of active constraints sets.

Proposition 3.12 (Basic properties of active constraint sets). Let P = {x ∈ Rd |Ax 6 b}, for
I ∈ [q], we define the face P (I) := {x ∈ P |AIx = bI}. We then have the following propositions.

3.12.(a) If I ∈ I(A, b), then the relative interior of P (I) is

ri
(
P (I)

)
= {x ∈ Rn |AIx = bI and Ajx < bj ,∀j ∈ [q]\I} (3.25)

3.12.(b) The mapping {
I(A, b) → F(P )\{∅}
I 7→ P (I)

(3.26)

is a one-to-one correspondence whose inverse is F 7→ IA,b(F ).

3.12.(c) For any I and J in I(A, b), we have I ∩ J ∈ I(A, b).
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3.12.(d) For F ∈ F(P )\{∅}, we have IA,b(F ) = IA,b(x) for every x ∈ ri(F ).

3.12.(e) For F, F ′ ∈ F(P )\{∅} and I, I ′ ∈ I(A, b)

I ⊂ I ′ ⇐⇒ P (I) ⊃ P (I ′) (3.27a)
F ⊂ F ′ ⇐⇒ IA,b(F ) ⊃ IA,b(F ′) (3.27b)

3.12.(f) For I ∈ I(A, b) and F ∈ F(P )\{∅},

dim
(
P (I)

)
= n− rg(AI) (3.28a)

dim(F ) = n− rg(AIA,b(F )) (3.28b)

Proof. 3.12.(a) We first show that Aff
(
P (I)

)
is equal to HI := {x ∈ Rd |AIx = bI}. Indeed,

P (I) is included in HI . Moreover, there exists x such that AIx = bI and Ajx < bj for all
j ∈ [q]\I. Then, for ε > 0 small enough, B(x, ε) ∩ HI ⊂ P . In particular, every affine subset
which contains P also contains HI , which implies Aff

(
P (I)

)
= HI . Finally, a point x is in

ri
(
P (I)

)
if and only if there exists ε > 0 such that B(x, ε) ∩HI ⊂ P (I) which is equivalent to

AIx = bI and Ajx < bj for all j ∈ [q]\I.
3.12.(b) Let F ∈ F(P )\{∅}. We define I := IA,b(F ). We first prove that F = P (I). If x ∈ F ,

we have that I = IA,b(F ) ⊂ IA,b(x). In particular, AIx = bI and x ∈ P (I). Reciprocally, we
now assume that x /∈ F . By 3.8.(d), there exists ψ ∈ Rd such that F = P−ψ. We now show that
ψ ∈ Cone(AI). Let ϕ ∈ Rd such that ϕ /∈ Cone(AI). By Farkas lemma, there exists z ∈ Rd, such
that AIz > 0 and ϕ>z < 0. Since F is non-empty there exists y ∈ F ⊂ P (I). Let ε > 0, we have
AI(y − εz) = bI − εAIz 6 bI . Since for all j /∈ I, Ajy < bj , for ε small enough, Aj(y − εz) < bj
for all j /∈ I and thus y − εz belongs to P . As ϕ>z < 0, we get −ϕ>(y − εz) < −ϕ>y and then
F 6= P−ϕ. In particular, since F = P−ψ, we have that ψ ∈ Cone(AI), i.e. there exists µ ∈ RI+
such that ψ = AIµ. Since x /∈ F = P−ψ, there exists y ∈ F = P (I) such that −ψ>y < −ψ>x
which rewrites µ>AIy > µAIx. As AIy = bI , we have µ>(bI − AIx) > 0 and then there exists
i ∈ I such that Aix < bi. Thus, x /∈ P (I) and we can conclude F = P (I) = P (IA,b(F )).

Finally, by 3.12.(a) and since F is not empty, there exists x ∈ ri(F ) and we have IA,b(F ) =
IA,b(x) ∈ I(A, b). The mapping I 7→ P (I) is then well-defined and surjective. We now prove
that it is injective. Let I, J ∈ I(A, b) with I 6= J . By symmetry, we can assume without loss of
generality that there exists i ∈ I\J . Since J ∈ I(A, b), there exists x ∈ P such that AJx = bJ
and Akx < bk for all k ∈ [q]\J . In particular, x ∈ P (J) and Aix < bi and then x /∈ P (I). Thus,
P (I) 6= P (J) which proves the mapping is injective.

We already proved that F = P (IA,b(F )). Then, by bijectivity, F 7→ IA,b(F ) is the inverse of
I 7→ P (I).

3.12.(c) Since I, J ∈ I(A, b), there exist x, y ∈ P , such that AIx = bI , Akx < bk for all
k ∈ [q]\I and AJy = bJ , Akx < bk for all k ∈ [q]\J . Then, for i ∈ I ∩ J , Ai(x + y)/2 = bi and
for k ∈ [q]\(I ∩ J), Ak(x + y)/2 < bk. Thus, I ∩ J = IA,b(x + y/2) as (x + y)/2 is in P , we
conclude I ∩ J ∈ I(A, b).

3.12.(d) By 3.12.(b), there exists I ∈ I(A, b) such that F = P (I). Then, for all x ∈ F ,
AIx = bI and then IA,b(x) ⊂ I. We thus have that IA,b(F ) = ∩x∈F IA,b(x) ⊂ I. Moreover, by
3.12.(a), for all x ∈ ri(F ), IA,b(x) = I. We then have for x ∈ ri(F ), I = IA,b(x) ⊂ ∩x∈F IA,b(x) =
IA,b(F ) ⊂ I, Thus, we have IA,b(x) = IA,b(F ) for all x ∈ ri(F ).

3.12.(e) The implications (⇒) are easy. The backward implications (⇐) are obtained because
I 7→ P (I) and F 7→ IA,b(F ) are the inverse of each other.
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3.12.(f) We saw in the proof of 3.12.(a) that Aff P (I) = HI . Thus, dimP (I) = dimHI =
dim Ker(AI) = d−rg(AI), by the rank theorem. The other equality is obtained by the one-to-one
correspondence in 3.12.(b).

We are now able to prove 3.8.(e) and 3.8.(f) which stated that F(P ) is finite and that

ri(P ) = P\
⋃

F∈F(P )\{P}
F (3.29)

Proof of 3.8.(e) and 3.8.(f). The point 3.8.(e) is a consequence of 3.12.(b): ]F(P ) = ]F(P )\{∅}+
1 = ]I(A, b) + 1 6 ]2[q] + 1 = 2q + 1 < +∞.

Let I = IA,b(P ) and x ∈ P . We first notice that ∃j ∈ [q]\I, Ajx = bj if and only if
x ∈

⋃
F∈F(P )\{P} F :

∃j ∈ [q]\I, Ajx = bj ⇐⇒ IA,b(x) 6= I (3.30a)
⇐⇒ P

(
IA,b(x)

)
6= P (3.30b)

⇐⇒ ∃F ∈ F(P )\{P}, x ∈ F (3.30c)
⇐⇒ x ∈

⋃
F∈F(P )\{P}

F (3.30d)

By point 3.12.(a), we have ri(P ) = {x ∈ P | ∀j ∈ [q]\I, Ajx < bj , } = P\{x ∈ P | ∃j ∈
[q]\I, Ajx = bj} from which we get the result.

3.2.2 Normal fan

The normal fan is the collection of the normal cones of all faces of a polyhedron. See [LR08] for
a review of normal fan properties.

The normal cone of a convex set C ⊂ Rm at the point x is the set NC(x) := {α ∈ Rm | ∀y ∈
C, α>(y − x) 6 0}. More generally, for a set E ⊂ C, we define NC(E) := ⋂

x∈E NC(x).
We also remark that by definition Pψ in Section 3.1.3, x ∈ Pψ if and only if −ψ ∈ NP (x).

Indeed, both are equivalent to ψ>x 6 ψ>y for all y ∈ P .

(a) A polytope P and its normal fan N (P )

•

(b) The recession cone of rcP = {0} in red and its
normal fan N (P ) in green. supp(N ) = R2 = {0}◦

(c) A polyhedron P and its normal fan.

•

(d) The recession cone of P in red and its normal fan
N (P ) in green.

Figure 3.6: Examples of polyhedra and their normal fans and recession cones.
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Definition 3.13 (Normal Fan). The normal fan4 of a convex set C is the collection of polyhedral
cones

N (C) := {NC(x) | x ∈ C} (3.31)

We say that two convex sets C and C ′ are normally equivalent if they have the same normal fan
: N (C) = N (C ′).

We now state basic properties of normal fans. In particular, we show that the collection of
active constraints sets I(A, b) provides V -representations of the normal cones in N (P ).

Proposition 3.14 (Basic properties of normal fans). Let P := {x ∈ Rn |Ax 6 b}, we have

3.14.(a) The support of the normal fan N (P ) can be expressed geometrically as the polar of the
recession cone of P , i.e.

suppN (P ) = rc(P )◦ (3.32)

3.14.(b) For all x ∈ P , we have NP (x) = Cone(AI) with I := IA,b(x).

3.14.(c) The mapping {
I(A, b) → N (P )
I 7→ Cone(AI)

(3.33)

is a one-to-one correspondence whose inverse is N 7→ IN :=
{
i ∈ supp I(A, b) | A>i ∈ N

}
.

3.14.(d) N (P ) is a finite collection of normal cones.

3.14.(e) For I, J ∈ I(A, b) and N,N ′ ∈ N (P )

I ⊂ J ⇐⇒ Cone(AI) ⊂ Cone(AJ) (3.34a)
N ⊂ N ′ ⇐⇒ IN ⊂ IN ′ (3.34b)

3.14.(f) For I, J ∈ I(A, b) and N,N ′ ∈ N (P )

Cone(AI∩J) = Cone(AI) ∩ Cone(AJ) (3.35a)
IN∩N ′ = IN ∩ IN ′ (3.35b)

3.14.(g) The normal fan N (P ) is a fan, i.e. a polyhedral complex whose elements are cones, which
by definition means:
-For all N,N ′ ∈ N (P ), N ∩N ′ is a face of both N and N ′.
-For all N ∈ N (P ), all non-empty faces of N belong to N (P ).

3.14.(h) For I ∈ I(A, b) and N ∈ N (P ),

dim
(

Cone(AI)
)

= rg(AI) (3.36a)
dim(N) = rg(AIN ) (3.36b)

4Sometimes called outer normal cones and fan, as opposed to inner cones obtained either by inverting the
inequality in the definition of the normal cone or by taking the opposite cones respect to the origin.
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3.14.(i) The mapping {
F(P )\{∅} → N (P )
F 7→ NP (F )

(3.37)

is a one-to-one correspondence whose inverse is N 7→ P−N .
Moreover, these mapping are composition of the later mappings as described in Fig. 3.7.

3.14.(j) For F, F ′ ∈ F(P )\{∅} and N,N ′ ∈ N (P )

N ⊂ N ′ ⇐⇒ P−N ⊃ P−N ′ (3.38a)
F ⊂ F ′ ⇐⇒ NP (F ) ⊃ NP (F ′) (3.38b)

3.14.(k) For F ∈ F(P )\{∅} and N ∈ N (P ), we have

NP (F ) = NP (x), for every x ∈ ri(F ) (3.39a)
P−N = P−ψ, for every ψ ∈ ri(N). (3.39b)

We sum up the propositions Propositions 3.12 and 3.14 in Fig. 3.7, that shows that, if P is
a polyhedron, its normal fan N (P ), its set of non-empty faces F(P ) \ {∅} and its collection of
sets of active constraints I(A, b) are in one-to-one correspondence. Furthermore, the orders are
preserved or inverted by the correspondences.

The collection of active constraints sets I(A, b) then provides H-representations of the faces
of P and V -representations of the normal cones in N (P ). Indeed, each normal cone N ∈ N (P )
can be written Cone(AI) then A>I is a V -representation of N . Similarly, for a non-empty face
F ∈ F(P )\{∅}, there exists I ∈ I(A, b) with F = {x ∈ Rd |Ax 6 b, AIx = bI}. Then,(
(A,−AI), (b,−bI)

)
is a H-representation of F .

F ∈ F(P )\{∅},⊃

NP (F )
&&

IA,b(F )
xx

I ∈ I(A, b),⊂
Cone(AI)

..

P (I)

88

N ∈ N (P ),⊂
{i∈supp I(A,b) |A>i ∈N}

⋂
nn

P−N

ff

Figure 3.7: Monotonous one-to-one correspondences between normal fan, collection of active
constraints sets and set of faces of a non-empty polyhedron P = {x | Ax 6 b}. The sign ∩
means that the mappings are morphisms for the intersection.

We illustrate these correspondences on an example in Table 3.1.

Proof. 3.14.(a) If ψ ∈ Rd, we have

ψ ∈ suppN (P ) ⇐⇒ ∃N ∈ N (P ), ψ ∈ N (3.40a)
⇐⇒ ∃x ∈ P, ψ ∈ NP (x) (3.40b)
⇐⇒ ∃x ∈ P, x ∈ P−ψ (3.40c)
⇐⇒ P−ψ 6= ∅ (3.40d)
⇐⇒ ψ ∈ rc(P )◦ by 3.8.(d) (3.40e)
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A>3

A>2

A>1

A>5

A>4

(a) The polyhedron P = [−1, 0]× R−

A>5

A>3

A>2

A>1•

(b) The normal fan N (P ) of P .

Figure 3.8: Illustration of correspondences of Table 3.1.

F I N dim(N) dim(F )

{(−1, 0)} {2, 3} R− × R+ 2 0

{(0, 0)} {1, 2, 5} R+ × R+ 2 0

{0} × R− {1} R+ × {0} 1 1

[−1, 0]× {0} {2} {0} × R+ 1 1

{−1} × R− {3} R− × {0} 1 1

[−1, 0]× R− ∅ {(0, 0)} 0 2

Table 3.1: Correspondences illustrated in Fig. 3.8 between the normal fan N (P ), the collection
of active constraints sets I(A, b) and the collection of non-empty faces F(P )\{∅} for P =
[−1, 0]× R− given by the H-representation (A, b) with

A =


1 0
0 1
−1 0
−1 1
1 1

 and b =


0
0
1
2
0

.

Indeed, we already saw that x ∈ P−ψ is equivalent to ψ ∈ NP (x).
3.14.(b) (⊃) Let ψ = A>I µ with µ ∈ RI+. For y ∈ P , we have that ψ>(y−x) = µ>AI(y−x) =

µ>(AIy − bI) 6 0, since AIx = bI . Then, ψ ∈ NP (x).
(⊂) By contraposition, assume that there is no µ ∈ RI+ such that A>I µ = ψ. By Farkas

lemma, there exists z ∈ Rd such that AIz > 0 and ψ>z < 0. We define y := x − εz for ε > 0.
Since for all j ∈ [q]\I, Ajx < bj , we can take ε > 0 small enough such that Ajy < bj for all
j ∈ [q]\I. Moreover, AIy = bI − εAIz 6 bI . Then, for ε > 0 small enough, y ∈ P . Finally,
ψ>(y − x) = −εψ>z > 0, and thus ψ /∈ NP (x).

3.14.(c) We start by proving that for j ∈ supp I(A, b) and I ∈ I(A, b), we have

A>j ∈ Cone(AI) ⇐⇒ j ∈ I (3.41)

Indeed, the implication (⇐) is trivial. We now assume j /∈ I. Since I ∈ I(A, b), there exists x in
P such that AIx = bI and Ajx < bj . Moreover, since j ∈ supp I(A, b), there exists y ∈ P such
that Ajy = bj . We set z = x−y, then we have that Ajz = Ajx−bj < 0 and AIz = bI−AIx > 0.
Then, by Farkas lemma, there is no µ ∈ RI+ such that A>j = A>I µ. Thus, A>j /∈ Cone(AI) leading
to Eq. (3.41).

The mapping I 7→ Cone(AI) from I(A, b) to N (P ) is well-defined and surjective by 3.14.(b).
Let I and J be two active constraints sets in I(A, b). If J ⊂ I, it is trivial that Cone(AJ) ⊂
Cone(AI). Reciprocally if Cone(AJ) ⊂ Cone(AI), then, for all j ∈ J , A>j ∈ Cone(AI) and by
Eq. (3.41) we have j ∈ I for all j ∈ J , leading to J ⊂ I. Thus, Cone(AJ) ⊂ Cone(AI) is
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equivalent to J ⊂ I. In particular, we have that Cone(AI) = Cone(AJ) if and only if I = J .
Proving that I 7→ Cone(AI) is injective.

It remains to prove that N 7→ {i ∈ supp I(A, b) |A>i ∈ N} is the inverse function. Let
I ∈ I(A, b), we now prove that I = {i ∈ supp I(A, b) |A>i ∈ Cone(AI)}. The inclusion ⊂ is easy
since A>i ∈ Cone(AI) for all i ∈ I. For the other inclusion, let j ∈ [q]\I. If j /∈ supp I(A, b),
we have that j does not belong to {i ∈ supp I(A, b) |A>i ∈ Cone(AI)}. If j ∈ supp I(A, b), by
Eq. (3.41), A>j /∈ Cone(AI) and then j /∈ {i ∈ supp I(A, b) |A>i ∈ Cone(AI)}.

3.14.(d) ]N (P ) = ]I(A, b) 6 2q < +∞.
3.14.(e) We already proved I ⊂ J ⇐⇒ Cone(AI) ⊂ Cone(AJ) in the proof of 3.14.(c). The

other equivalence is obtained thanks to the one-to-one correspondence of 3.14.(c).
3.14.(f) (⊂) Let ψ ∈ Cone(AI∩J), there exists µ ∈ RI∩J+ such that ψ = A>I∩Jµ then ψ =

A>I∩Jµ + A>I\J0 ∈ Cone(AI). By symmetry, ψ ∈ Cone(AJ). Thus, Cone(AI∩J) ⊂ Cone(AI) ∩
Cone(AJ).

(⊃) Let ψ /∈ Cone(AI∩J). If ψ /∈ Cone(AI), we have ψ /∈ Cone(AI) ∩ Cone(AJ). We now
assume ψ ∈ Cone(AI). There exist µ ∈ RI∩J+ and λ ∈ RI\J+ such that ψ = A>I∩Jµ + A>I\Jλ.
Since I ∈ I(A, b), there exists x such that AIx = bI and for j /∈ I, Ajx < bj . Similarly, since
J ∈ I(A, b), there y such that AJy = bJ and for i /∈ J , Aix < bi. We define z := y − x.

ψ>z = ψ>y − ψ>x (3.42a)
= µ>AI∩Jy + λ>AI\Jy − µ>AI∩Jx− λ>AI\Jx (3.42b)
= µ>bI∩J + λ>AI\Jy − µ>bI∩J − λ>bI\J (3.42c)
= λ>(AI\Jy − bI\J) < 0 (3.42d)

Indeed, the last term is negative because for all i ∈ I\J,Aiy < bi and because, since ψ ∈
Cone(AI)\Cone(AI∩J), there exists at least one index of λ which is positive. Moreover, AJz =
AJy − AJx = bJ − AJx > 0. To sum up, we have the existence of z such that ψ>z < 0 and
AJz > 0. By Farkas lemma, there is no ν ∈ RJ+ such that ψ = A>J ν, i.e. ψ /∈ Cone(AJ). In
particular, ψ /∈ Cone(AI) ∩ Cone(AJ) which concludes the proof.

The other equality is a direct consequence of the correspondence 3.14.(c).
3.14.(g) - Let N,N ′ ∈ N (P ), there exists x, x′ ∈ P such that N = NP (x) and N ′ = NP (x′).

Let I = IA,b(x) and x′ = IA,b(x′). In the proof of 3.12.(c), we saw that IA,b(x+x′
2 ) = IA,b(x) ∩

IA,b(x′) = I∩I ′. Thus, by Item 3.14.(f) and 3.14.(b), we get N ∩N ′ = Cone(AI∩I′) = NP (x+x′
2 ).

We have that N ∩ {ψ ∈ Rd | (x′ − x)>ψ 6 0} since N = NP (x) and x′ ∈ P . We now prove
that N ∩ N ′ = NP (x+x′

2 ) is the face N ∩ {ψ ∈ Rd | (x′ − x)>ψ = 0} of N . Let ψ ∈ N such
that (x′ − x)>ψ = 0}, we have ψ>(y − x+x′

2 ) = ψ>(y − x) + 1
2ψ
>(x′ − x) = ψ>(y − x) 6 0 and

then ψ ∈ NP (x+x′
2 ). Reciprocally, assume ψ ∈ NP (x+x′

2 ). Then, by taking y = x ∈ P we have
1
2ψ
>(x−x′) = ψ>(y− x+x′

2 ) 6 0 and by taking y = x′ ∈ P , we get 1
2ψ
>(x′−x) = ψ>(y− x+x′

2 ) 6 0
and thus (x′ − x)>ψ = 0. Finally, NP (x+x′

2 ) = Cone(AI∩I′) ⊂ Cone(AI) = N . By symmetry,
we also have that N ∩N ′ is a face of N ′.

-Let N ′ a non-empty face of N . By definition of a face, there exists z ∈ Rd and β ∈ R such
that N ′ = N ∩ {ψ ∈ Rd | z>ψ = β} and P ⊂ {ψ ∈ Rd | z>ψ 6 β}. Since 0 ∈ P , we have 0 6 β.
Moreover, for all ψ ∈ N and all λ ∈ R?+, λψ>z 6 β, in particular by letting λ goes to infinity, we
have ψ>z 6 0 for all ψ ∈ N . If β > 0, then we would have N ′ = {ψ ∈ Rd |ψ>z = β} ∩N = ∅.
Since we assumed that N ′ is not empty we have β = 0.

Let x ∈ P such that N = NP (x) and I ∈ I(A, b) such that I = IA,b(x). By Item 3.14.(b),
N = Cone(AI). Since, N ⊂ {ψ ∈ Rd |ψ>z 6 0} and as A>i belongs to N = Cone(AI) for all
i ∈ I, we have AIz 6 0. Then, there exists ε > 0 such that A(x+ 2εz) 6 b, i.e. x+ 2εz ∈ P . By
convexity, we also have x+εz ∈ P . We now prove thatNP (x+εz) = N ′ = N∩{ψ ∈ R | z>ψ = 0}.

(⊃) Let ψ ∈ N ′ = N ∩{ψ ∈ R | z>ψ = 0}. Then, for every y ∈ P , we have ψ>
(
y−(x+εz)

)
=

ψ>(y − x) 6 0 and thus ψ ∈ NP (x+ εz).
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(⊂) Let ψ ∈ NP (x + εz). By taking y = x ∈ P we have −ε>z = ψ>
(
y − (x + ε)

)
6 0

and by taking y = x + 2ε ∈ P , we have εψ>z = ψ>
(
y − (x + ε)

)
6 0, thus ψ>z = 0 and

NP (x + εz) ⊂ {ψ ∈ R | z>ψ = 0}. We eventually prove that NP (x + εz) ⊂ N = NP (x). Let
j /∈ I = IA,b(x), we have Ajx < bj and, since x + 2εz ∈ P , Aj(x + 2εz) 6 bj leading to
Aj(x+ εz) < bj . In particular, j /∈ IA,b(x+ εz) and thus IA,b(x+ εz) ⊂ IA,b(x). By 3.14.(b) and
3.14.(e), we conclude NP (x+ εz) ⊂ N = NP (x).

3.14.(h) We have that Cone(AI) ⊂ AIRI . Moreover, let a = ∑
i∈I A

>
i there exists ε > 0 such

that B(a, ε) ∩ AIRI ⊂ Cone(AI). Thus, dim
(

Cone(AI)
)

= dim(A>I RI) = rg(A>I ) = rg(AI).
The other equality is obtained by the correspondence in 3.14.(c).

3.14.(i) It is enough to prove that we have the composition of functions summed up in
Fig. 3.7. We first prove that NP (F ) = Cone(AIA,b(F )), for F ∈ F(P )\{∅}. We denote by IF the
set {IA,b(x) |x ∈ F}. By applying successively 3.14.(b) and 3.14.(f), as IF ⊂ I(A, b) is finite,
we have

NP (F ) = ∩x∈FNP (x) (3.43a)
= ∩x∈F Cone(AIA,b(x)) (3.43b)
= ∩I∈IF Cone(AI) (3.43c)
= Cone(A∩I∈IF I) (3.43d)
= Cone(AIA,b(F )) (3.43e)

We now prove that P−N = P (IN ) with IN := {i ∈ supp I(A, b) |A>i ∈ N}. Let x ∈ P .

x ∈ P (IN ) ⇐⇒ ∀i ∈ IN , Aix = bi by definition of P (IN )
(3.44a)

⇐⇒ IN ⊂ IA,b(x) by definition of IA,b(x)
(3.44b)

⇐⇒ Cone(AIN ) ⊂ Cone(AIA,b(x)) by 3.14.(e)
(3.44c)

⇐⇒ N ⊂ NP (x) by 3.14.(c) Cone(AIN ) = N and by 3.14.(b)
(3.44d)

⇐⇒ ∀ψ ∈ N, ∀y ∈ P,ψ>(y − x) 6 0 (3.44e)
⇐⇒ x ∈ P−N (3.44f)

3.14.(j) It is a consequence of the composition in Fig. 3.7 and the monotonicity results 3.12.(e)
and 3.14.(e).

3.14.(k) We just proved that NP (F ) = Cone(AIA,b(F )). If x ∈ ri(F ),by 3.12.(d), IA,b(F ) =
IA,b(x) then NP (F ) = Cone(AIA,b(x)). Finally, by 3.14.(b), we get NP (F ) = NP (x).

We now prove that for ψ ∈ ri(N), P−ψ = P−N . By definition of as P−N as an intersec-
tion, P−N ⊂ P−ψ. By 3.14.(j), NP (P−ψ) ⊂ NP (P−N ) = N . By Item 3.14.(g), NP (P−ψ) =
NP (P−ψ) ∩ N is a face of N . Moreover, for all x ∈ P−ψ and y ∈ P ψ>(y − x) 6 0 thus
ψ ∈ NP (P−ψ). In particular, NP (P−ψ) ∩ ri(N) 6= ∅. By 3.8.(f), ri(N) = P\

⋃
N ′∈F(N)\{N}N

′

and thus we haveNP (P−ψ) = N . By the correspondence Item 3.14.(i), we conclude P−ψ = P−N .

3.2.3 Vertices, maximal constraint sets and full-dimensional cones

We now focus on the collection of maximal elements of the normal fan N (P ) and active con-
straints set I(A, b) and on the collection of minimal elements of the non-empty faces F(P )\{∅}.
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For a collection C, we denote by C the subcollection of its maximal elements according to the
inclusion and by C the subcollection of its minimal element:

C := {E ∈ C | ∀F ∈ C, E ⊂ F ⇒ F = E} (3.45a)
C := {E ∈ C | ∀F ∈ C, F ⊂ E ⇒ F = E} (3.45b)

Proposition 3.15. Let A ∈ Rq×p, b ∈ Rq, P := {x ∈ Rd |Ax 6 b} and r = rg(A). If P is not
empty, we have

I(A, b) = {I ∈ I(A, b) | rg(AI) = r} (3.46a)
N (P ) = {N ∈ N (P ) | dim(N) = r} (3.46b)

F(P )\{∅} = {F ∈ F(P ) | dim(F ) = d− r} (3.46c)

Proof. We only prove that the minimal faces are the faces of dimension d−r. The other equalities
follow from Proposition 3.14 and Proposition 3.12. For all face F ∈ F(P )\{∅}, by Eq. (3.13b),
we have that Lin(F ) = Ker(A) = Lin(P ) and then dim(F ) > d− r.

(⊃) Let F ∈ F(P ) such that dim(F ) = d − r. Let G a non-empty face of P included
in F . There exist I, J ∈ I(A, b) such that F = P (I) and G = P (J). If G ( P , we have
P ∩HJ = P (J) ( P (I) = P ∩HI . Then, HJ ( HI and then dim(G) = dim(HJ) < dim(HI) =
dim(F ) = d− r. We have a contradiction with the fact that all non-empty faces have dimension
at least d− r. Thus, G = F and F ∈ F(P )\{∅}.

(⊂). Let F ∈ F(P )\{∅}. Then, F(F ) = {F, ∅} and by 3.8.(f), ri(F ) = F . There exists
I ∈ I(A, b), such that F = P (I). We now prove that Ker(AI) = Ker(A). It is trivial that
Ker(A) ⊂ Ker(AI). Let v ∈ Ker(AI) and assume, by contradiction, that there exists j ∈ [q]\I
such that Aj 6= 0. Without of generality, we choose j such that for all j′ ∈ [q]\I, |Aj | 6 |Aj′ |.
Then, by setting λ = bj−Ajx

Ajv
we have that AI(x+λv) = bI and for all j′ ∈ [q]\I, Aj′(x+λv) 6 bj′ .

Moreover, Aj(x + λv) = bj and thus x + λv ∈ P (I)\ ri
(
P (I)

)
= F\ ri(F ) = ∅. We then have a

contradiction and Ker(AI) = Ker(A). We conclude by remarking that dim(F ) = dim
(
P (I)

)
=

dim Ker(AI) = dim Ker(A) = d− r.

In particular, when r = d, we define the following assumption.
Assumption 3.1. Let P := {x ∈ Rd |Ax 6 b} be a non-empty polyhedron such that one of the
following equivalent statements holds:

- P admits at least one vertex, i.e. Vert(P ) 6= ∅

- A is a full rank matrix: rg(A) = d

- The lineality space of P is trivial: Lin(P ) = {0}.

- All maximal normal cones are full-dimensional cones.

- From every maximal active constraint set I ⊂ I(A, b), we can extract a basis BI ⊂ I.

Under Assumption 3.1, the correspondences of Fig. 3.7 can be simplified as presented in
Fig. 3.9. In particular, we replace the set of non-empty faces F(P )\{∅} by the set of vertices
Vert(P ). For I ∈ I(A, b), the minimal non-empty faces P (I) are then reduced to singleton
{x(I)}. Since, x(I) satisfies AIx(I) = bI and since we can extract a basis BI from I, x(I) can
only be equal to A−1

BI
bBI . We say that x(I) is a basic point. We thus replace the mapping

I 7→ P (I) by I 7→ A−1
BI
bBI .
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v ∈ Vert(P )

NP (v)
$$

IA,b(v)

��

I ∈ I(A, b)
Cone(AI)

..

A−1
BI
bBI

AA

N ∈ N (P )
{i∈supp I(A,b) |A>i ∈N}

nn

P−N

dd

Figure 3.9: One-to-one correspondences between the collections of vertices of P := {x ∈
Rd |Ax 6 b}, maximal active constraint sets and full-dimensional normal cones of P , in the
case where A is a full rank matrix.

Lemma 3.16. Let C a collection of sets and D a polyhedral complex such that

C ⊂ D (3.47a)
supp(C) = supp(D) (3.47b)

Then,
C = D (3.48)

Moreover, if C is also polyhedral complex, then C and D are equal up-to the empty set.

C\{∅} = D\{∅} (3.49a)
C ∪ {∅} = D ∪ {∅} (3.49b)

Proof. If C or D is reduced to {∅} or ∅, the result is trivial. We assume C and D are different
from {∅} and ∅ We first prove that C = D.

Let D ∈ D. Since D ⊂ supp(C) = supp(D) = ∪C∈CC, then D = ∪C∈CD ∩ C. In particular,
there exists C ∈ C such that dim(C ∩D) = dim(D). Since C ⊂ D, we have C ∈ D, then D and
C are two elements of D. However, since D is a polyhedral complex C ∩D is a face of D. By
Item 3.12.(f), the only face of D of dimension dim(D) is D itself. Then, C ∩D = D and D ⊂ C.
Finally, as D ∈ D is maximal, we have D = C ∈ C and thus C = D.

In the case where C is a polyhedral complex, we just notice that a polyhedral complex, up
to the empty set, is fully determined by its collection of maximal elements: C ∪ {∅} = {F | ∃C ∈
C,F ∈ F(C)}.

3.3 Regular subdivisions and secondary fan

In this section, we explain the link between the regular subdivisions presented in the monograph
of De Loera, Rambau and Santos [DLRS10] and the collection of active constraint sets. We
first recall the definition of a regular subdivision S(V, ω) of a vector configuration V induced
by a height vector ω. We recall and prove formally that the collection of active constraints sets
I(A, b) is exactly the regular subdivision S(A>, b) of the vector configuration of the rows of A
induced by the height vector b.

We then introduce the secondary fan Σ -fan(V ) thanks to the equivalence classes of height
vectors b giving the same regular subdivision S(V, ω). The secondary fan is a fundamental
geometric object, which has strong links with elimination theory. Indeed, Gelfand, Kapranov
and Zelevinsky [GKZ94] proved that the secondary fan was the normal fan of the secondary
polytope which is equal to the Newton polytope of a discriminant.
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3.3.1 Regular subdivisions

Let (vi)i∈[q] be a family of vectors in Rd. We define the matrix V ∈ Rd×q whose columns are the
vector vi and refer for simplicity to the family (vi)i∈[q] as V . As V is a finite set of vectors, each
corresponding to n index in [q], where we allow the set to have repeated vectors, V is often called
a vector configuration. A subdivision is a collection of sets of indices, here in [q], satisfying some
properties we do not detail here (see [DLRS10, Definition 2.3.1]). Here, we are only interested
in particular subdivisions, called regular subdivisions and presented hereafter.

Let ω ∈ Rd be a vector called the height vector. For each i ∈ [q], we draw the vectors
(vi, ωi) ∈ Rd × R and refer to this collection as the lifted configuration. Recall that the lower
faces are the faces of a polyhedron P ∈ Rd×R that are visible from below, i.e. the faces F which
can be written F = P (ϕ,1) for ϕ ∈ Rd. We now consider all the lower faces of the lifted cone
LCV,ω, defined as the conic hull of the vectors (vi, ωi) in Rd × R. Each face can be represented
by the set of indices i such that (vi, ωi) belongs to the face. The regular subdivision induced by
ω is the collection of sets of indices representing the lower faces of LCV,ω. More formally, we
have the following definition.
Definition 3.17 (Regular subdivision). Let (vi)i∈[q] be a vector configuration represented by a
matrix V ∈ Rd×q and a vector ω ∈ Rq. We denote by LCV,ω the lifted cone.

LCV,ω := Cone

(vi
ωi

)
i∈[q]

 (3.50)

When ω ∈ V >Rd+Rq+, we define the regular subdivision associated to the configuration of vector
V induced by the height vector ω:

S(V, ω) := {IF |F ∈ Flow
(
LCV,ω

)
} (3.51)

where
IF := {i ∈ [q] | (vi, ωi) ∈ F}. (3.52)

We illustrate these notions in Fig. 3.10.
The Lemma 2.5.11 in [DLRS10] states that the regular subdivision of a vector configuration

is well-defined if the function vi 7→ ωi differs from a non-negative function only by a linear
function: this gives an interpretation why ω should be in V >Rd + Rq+. The next proposition
explains why this condition on ω is natural.
Lemma 3.18. Let A ∈ Rq×d and b ∈ Rq. Then, the following statements are equivalent

1. The polyhedron {x ∈ Rd |Ax 6 b} is not empty.

2. The set of lower faces is not trivial: Flow(LCA>,b) 6= {∅}.

3. S(A>, b) is defined meaning that b ∈ ARd + Rq+.

Proof. We first show that x does not verify Ax 6 b if and only if the lower face LC(−x,1)
A>,b

is
empty:

∃i ∈ [q], Aix > bi ⇐⇒ ∃i ∈ [q], 0 > −x>A>i + bi (3.53a)

⇐⇒ ∃(α, β) ∈ LCA>,b, 0 > −x>α+ β as LCA>,b is the conic hull of
(
A>i
bi

)
i∈[q]

(3.53b)
⇐⇒ inf

(α,β)∈LC
A>,b

−x>α+ β = −∞ because LCA>,b is a cone

(3.53c)

⇐⇒ LC
(−x,1)
A>,b

= ∅ (3.53d)



68 CHAPTER 3. POLYHEDRAL GEOMETRY AND PARAMETRIC LP

(v1, ω1)(v2, ω2)
(v3, ω3)

(v4, ω4)

(v5, ω5)

v1
v2

v5
v3

v4

(a) For small ω5, the lifted vector
(v5, ω5) is salient and belongs to
three lower faces:
S(V, ω) = Sco ∪

{
{5}, {4, 5}, {1, 5}

}

(v2, ω2)

(v5, ω5)

(v3, ω3)

(v4, ω4)

(v1, ω1)

v1
v2

v3

v4

(b) For large ω5, the lifted vec-
tor (v5, ω5) is pointed inward,
and belongs to no lower face:
S(V, ω) = Sco ∪

{
{1, 4}

}

(v2, ω2)
(v1, ω1)(v3, ω3)

(v4, ω4)

(v5, ω5)

v1
v2

v3
v5

v4

(c) In the limit case, the
lifted vector (v5, ω5) belongs
to one lower face:
S(V, ω) = Sco ∪

{
{1, 4, 5}

}
Figure 3.10: Three lifted vector configurations, their projections and the regu-
lar subdivisions I(V, ω) induced for different values of ω5. We define Sco :={
∅, {1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {3, 4}

}

In particular, we have that {x ∈ Rd |Ax 6 b} is empty if and only if Flow
(
LCA>,b

)
is equal to

{∅}:

{x ∈ Rd |Ax 6 b} = ∅ ⇐⇒ ∀x ∈ Rd, ∃i ∈ [q], Aix > bi (3.54a)

⇐⇒ ∀x ∈ Rd, LC(−x,1)
A>,b

= ∅ (3.54b)
⇐⇒ Flow

(
LCA>,b

)
= {∅} (3.54c)

We now prove the equivalence 1. ⇐⇒ 3. If there exists x ∈ Rd such that Ax 6 b, then
b = Ax + (b − Ax) ∈ ARd + Rq+. Reciprocally, if b ∈ ARd + Rq+, let x ∈ Rd and η ∈ Rq+ such
that b = Ax+ η, then b−Ax = η > 0 and thus Ax 6 b.

We now state that the collection of active constraints sets I(A, b) is exactly the regular
subdivision S(A>, b) of the vector configuration of the rows of A induced by the height vector b.

Proposition 3.19. Let A ∈ Rq×d and b ∈ Rq. If one of the equivalent statements of Lemma 3.18
is true, we have

I(A, b) = S(A>, b) (3.55)

Proof. Let x such that Ax 6 b, by Eq. (3.53c), we know that inf(α,β)∈LC
A>,b
−x>α+ β is differ-

ent from −∞. Since, LCA>,b is a cone, we have −x>α+β > 0, for all (α, β) ∈ LCA>,b, otherwise
inf(α,β)∈LC

A>,b
−x>α+β is equal to−∞. Moreover, LCA>,b contains 0, thus min(α,β)∈LC

A>,b
−x>α+
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β = 0. We now show that IA,b(x) = I
LC

(−x,1)
A>,b

:

i ∈ IA,b(x) ⇐⇒ Aix = bi (3.56a)
⇐⇒ 0 = −x>A>i + bi (3.56b)
⇐⇒ min

(α,β)∈LC
A>,b

−x>α+ β = −x>A>i + bi (3.56c)

⇐⇒ (A>i , bi) ∈ LC
(−x,1)
A>,b

(3.56d)
⇐⇒ i ∈ I

LC
(−x,1)
A>,b

(3.56e)

We conclude the proof by using the definitions of regular subdivisions, lower faces and active
constraints sets:

S(A>, b) = {IF |F ∈ Flow
(
LCA>,b

)
} (3.57a)

= {I
LC

(−x,1)
A>,b

|x ∈ Rd, I
LC

(−x,1)
A>,b

6= ∅} (3.57b)

= {IA,b(x) |x ∈ Rd, Ax 6 b} (3.57c)
= I(A, b) (3.57d)

3.3.2 Secondary fan

We now introduce a fundamental notion in polyhedral geometry called the secondary fan. We
refer to [DLRS10], in particular its Section 5.2, for a complete introduction on secondary fans.
Definition 3.20. Let V ∈ Rd×q be a vector configuration. We define the secondary cone
Σ -C(V, I), and respectively its relatively open secondary cone Σ -C◦(V, I)5, of a regular subdi-
vision I of V as the set of height vectors ω such that I refines, resp equals, S(V, ω).

Σ -C(V, I) := {ω ∈ Rq | I 4 S(V, ω)} (3.58a)
Σ -C◦(V, I) := {ω ∈ Rq | I = S(V, ω)} (3.58b)

The secondary fan is the set of all secondary cones of regular subdivisions.
Σ -fan(V ) :=

{
Σ -C(V, I) | ∃ωI ∈ Cone(V >) + Rq+, I = S(V, ωI)

}
(3.59a)

Σ -fan◦(V ) :=
{
Σ -C◦(V, I) | ∃ωI ∈ Cone(V >) + Rq+, I = S(V, ωI)

}
(3.59b)

We remark that Σ -fan◦(V ) is the set of equivalence classes of the relation ∼V defined as
ω ∼V ω′ if S(V, ω) = S(V, ω′). In particular, Σ -fan◦(V ) is a partition of V >R + Rq+.

We now give a H-representations of secondary cones when the vector configuration is full
dimensional.
Proposition 3.21. Let A ∈ Rd×q such that rg(A) = d and I a regular subdivision of A>. For
all I ∈ I, we can extract a basis BI ⊂ I. Then, for all such choices of bases BI for every I ∈ I,
we have that

Σ -C(A>, I) =
{
b ∈ Cone(A) + Rq+

∣∣∣∣∣ ∀I ∈ I, AiA
−1
BI
bBI = bi, ∀i ∈ I

AiA
−1
BI
bBI 6 bi, ∀j ∈ [q]\I

}
(3.60a)

Σ -C◦(A>, I) =
{
b ∈ Cone(A) + Rq+

∣∣∣∣∣ ∀I ∈ I, AiA
−1
BI
bBI = bi, ∀i ∈ I

AiA
−1
BI
bBI < bi, ∀j ∈ [q]\I

}
. (3.60b)

5We adapt here the notation in [DLRS10]. The sign ◦ in exponent refers to the relative interior and should
not be confused with the polar of a set.
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In particular, Σ -C◦(A>, I) = ri
(
Σ -C(A>, I)

)
.

Proof. Let I ∈ I and b ∈ Cone(A) + Rq+, we have that

∃I ′ ∈ I(A, b), I ⊂ I ′ ⇐⇒ ∃x ∈ P, I ⊂ IA,b(x) (3.61a)
⇐⇒ ∃x ∈ P, AIx = bI and Ajx 6 bj , ∀j ∈ [q]\I (3.61b)
⇐⇒ AIA

−1
BI
bBI = bI and AjA

−1
BI
bBI 6 bj , ∀j ∈ [q]\I (3.61c)

Indeed, since we can extract a basis BI ⊂ I. The only x satisfying AIx = bI is A−1
BI
bBI . Similarly,

we have

∃I ′ ∈ I(A, b), I = I ′ ⇐⇒ ∃x ∈ P, I = IA,b(x) (3.62a)
⇐⇒ ∃x ∈ P, AIx = bI and Ajx < bj , ∀j ∈ [q]\I (3.62b)
⇐⇒ AIA

−1
BI
bBI = bI and AjA

−1
BI
bBI < bj , ∀j ∈ [q]\I (3.62c)

Finally, since a regular subdivision is completely determined by its sets of maximal elements,
we have

I 4 I(A, b) ⇐⇒ ∀I ∈ I, ∃I ′ ∈ I(A, b), I ⊂ I ′ (3.63a)
I = I(A, b) ⇐⇒ ∀I ∈ I, ∃I ′ ∈ I(A, b), I = I ′ (3.63b)

which concludes the proof.

3.3.3 Regular triangulations

Regular triangulations are a particularly interesting classes of regular subdivisions are trian-
gulations which give their name to the book of De Loera, Rambau and Santos [DLRS10] a
monograph on the theory of regular subdivisions.
Definition 3.22 (Regular triangulation). Let (vi)i∈[q] be a vector configuration represented by a
matrix V ∈ Rd×q. We say that the regular subdivision S of the point configuration V is a regular
triangulation if, for all I ∈ S, the (vi)i∈I is an independent family of vectors.

We remark that if I is a regular triangulation of A>, then all maximal collections of indices
I ∈ I are basis. Indeed, Cone(AI) is full dimensional and AI is a full rank matrix thus, AI is
invertible.

We now state that the regular triangulations are the regular subdivisions with a generic
height vector:
Proposition 3.23. Let (vi)i∈[q] be a vector configuration represented by a matrix V ∈ Rd×q and
a vector ω ∈ Rq. Then, the regular subdivision S(V, ω) is a regular triangulation if and only if
there exists a maximal relatively open cone S of Σ -fan◦(V ) such that ω ∈ S.

3.4 Basis decomposition theorems

In this section, we study the value of the standard linear problem:

val(LP=
A,b,c) =


minx∈Rd c>x

s.t. Ax = b

x > 0
(LP=

A,b,c)

In the standard form, A ∈ Rq×d is a rectangular matrix whose width is larger than its heigth
q 6 d. For J ⊂ [d], we denote by A·,J = (Ai∈[q],j∈J) the submatrix obtained by taking the
columns of indices in J .

Before proving Theorem 3.27, we recall some usual definitions and results in linear program-
ming’s theory that can be found in any standard linear programming book, e.g. [MG07].
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Definition 3.24 (Basic point, reduced cost). We say that B ⊂ [d] is a basis of A if the submatrix
A·,B = (ai)i∈B, where ai is the i-th column of A, is invertible.

We define the basic point associated to the basis B as the vector in Rd, with coordinates
xB := A−1

·,Bb for i ∈ B and 0 for i /∈ B.
A basis B is said to be admissible (resp. optimal), if its associated basic point is an admissible

(resp. optimal), solution of (LP=
A,b,c).

Finally, the reduced cost associated to a basis B is the vector

(cj − a>j A−1>
·,B cB)j∈[d] (3.64)

Reduced cost is a key ingredient of the simplex method. In particular, it is well known that
an admissible basis is optimal if and only if its reduced cost is non-negative. More formally, we
have:

Lemma 3.25. Let B ⊂ [d] a basis. If xB := A−1
·,Bb > 0 and for all j ∈ [d], cj − a>j A−1>

·,B cB > 0.
Then, B is optimal and in particular,

val(LP=
A,b,c) = c>BA

−1
·,Bb (3.65)

Finally, we recall a classical generalization of Carathéodory’s theorem for conic hull.

Lemma 3.26 (Carathéodory). Let A ∈ Rq×d be a matrix and a subset of indices J ⊂ [d] such
that span((ai)i∈J) := A·,JRJ = Rq where ai is the i-th column of A.

Consider a vector b in the conic hull of (ai)i∈J , i.e. b ∈ Cone(A·,J). Then, there exists a
basis B ⊂ J such that h is in the conic hull of (ai)i∈B, i.e. b ∈ Cone(A·,B).

Proof. Let I ⊂ J be such that b ∈ Cone(A·,I) and (ai)i∈I is spanning Rq. There exist (µi)i∈I ∈
RI+ nonnegative coefficients such that b = ∑m

i=1 µiai. Assume that I is not a basis, then (ai)i∈I
is not linearly independent, that is there exists a collection (λi)i∈I ∈ RI such that ∑i∈I λiai = 0
with at least one λi different of zero, that can be assumed w.l.o.g positive.

Define j := arg mini∈I|λi>0
µi
λi

. Then, we have aj = −∑i∈I\{j}
λi
λj
ai and thus b = ∑

i∈I\{j}(µi−
µj

λi
λj

)ai. In particular, (ai)i∈I\{j} is spanning Rl. We now show that each coefficient in this sum
is nonnegative, that is b ∈ Cone(A·,I\{j}). Note that λj > 0 and for all i ∈ I, µi > 0. Thus,
if λi 6 0 we have µi − µj λiλj > 0. Otherwise, λi > 0, and by definition of j, µi

λi
> µj

λj
and thus

µi − µj λiλj > 0. Which shows that b = ∑
i∈I\{j}(µi − µj λiλj )ai ∈ Cone(A·,I\{j}).

By induction, we drop indices until we get a basis B.

We can now state a reformulation the basis decomposition theorem, initially proved by
Walkup and Wets in [WW69], and then adapted to modern vocabulary by Sturmfels and Thomas
in [ST97].

Theorem 3.27 (Basis decomposition theorem for linear problem in standard form). Let A ∈
Rq×d be matrix of rank q, a right-hand side vector b ∈ Rq and c ∈ Rd, then

1. (LP=
A,b,c) is primal admissible if and only if b ∈ Cone(A).

2. (LP=
A,b,c) is dual admissible if and only if c ∈ A>Rq + Rd+.

3. If val(LP=
A,b,c) ∈ R, then I(A>, c) is well-defined and there exist I ∈ I(A>, c) with b ∈

Cone(A·,I) and B ⊂ I a basis of A extracted from I.

4. If I(A>, c) is well-defined, for all I ∈ I(A>, c) such that b ∈ Cone(A·,I) and all B ⊂ I
basis extracted from I, we have that B is an optimal basis:

val(LP=
A,b,c) = c>BA

−1
·,Bb. (3.66)
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Remark 3.28. In [ST97], Sturmfels and Thomas present the basis decomposition theorem of
Walkup and Wets with the modern definitions of regular subdivision. Their second point reads
as (LP=

A,b,c) is bounded for all b ∈ Cone(A) and all c ∈ Rd if and only if Ker(A)∩Rd− = {0}. We
see that with our version of the basis decomposition theorem, we have (LP=

A,b,c) is bounded for all
b ∈ Cone(A) and all c ∈ Rd if and only if A>Rq + Rd+ is equal to Rd. We recall that by [JW92,
Lemma 2.2], for 2 closed convex cones K and L, we have (K ∩ L)◦ = K◦ + L◦. In particular,
A>Rq+Rd+ =

(
Ker(A) ∩ Rd−

)◦. Thus, A>Rq+Rd+ = Rd is equivalent to Ker(A)∩Rd− = {0} and
then to Ker(A) ∩ Rd+ = {0}. Like Walkup and Wets in [WW69], Thomas and Sturmfels worked
with a fixed cost c. For simplicity, they assume in the rest of their paper that Ker(A) ∩ Rd+
is reduced to {0}. As we want to deal with varying b and c, we chose to extend the basis
decomposition theorem to the case where Ker(A) ∩ Rd+ is not necessarily reduced to {0}.

Proof. 1. val(LP=
A,b,c) > −∞ is equivalent to the existence of a primal admissible point x > 0

such that Ax = b which is by definition b ∈ Cone(A).
2. By the equivalence 1. ⇐⇒ 3. in Proposition 3.19. c ∈ A>Rq + Rd+ is equivalent to

∅ 6= {λ ∈ Rq |A>λ 6 c} which is the dual admissible set of (LP=
A,b,c).

3. If val(LP=
A,b,c) ∈ R, by 1. and 2. c ∈ Cone(A>) + Rd+ and b ∈ Cone(A). Let DA,c := {λ ∈

Rq |A>λ 6 c}. The support suppN (DA,c) of the normal fan is equal to Cone(A) by 3.14.(a)
and Proposition 3.7. Then, there exists a full dimensional cone N ∈ N (DA,c) such that b ∈ N .
By 3.14.(c), there exists I ∈ I(A>, c) such that N = Cone(A·,I). Since the cone Cone(A·,I) is
full dimensional, the matrix A·,I has full rank and thus we can extract a basis B from I.

4. Let J ∈ I(A>, c), b ∈ Cone(A·,J) and B ⊂ I a basis. Since B is an extracted basis, we
know that the matrix A·,I has full rank and thus (ai)i∈J is spanning Rq. Then by Caratheodory’s
Lemma 3.26, there exists a basis Bb ⊂ I, such that b ∈ Cone(A·,Bb). In particular, we have that
xBb = A−1

·,Bbb > 0, thus Bb is an admissible basis. Moreover, by definition of I(A>, b) in (3.24),
there exists λ(I) such that

∀i ∈ I, a>i λ(I) = ci (3.67a)
∀j ∈ [d]\I, a>j λ(I) < cj . (3.67b)

As Bb ⊂ I, by (3.67a), we have that, for all i ∈ Bb, a>i λ(I) = ci which in turn implies λ(I) =
A−1>
·,Bb cBb . Thus, for all j ∈ [m], we can compute the reduced cost coordinate cj − a>j A−1>

·,Bb qBb =
cj − a>j λ(I) > 0, by (3.67a) and (3.67b). By Lemma 3.25, Bb is an optimal basis, leading to

val(LP=
A,b,c) = c>BbA

−1
·,Bbb.

We now prove that the following formula does not depend on the choice of the extracted
basis Bb. As B ⊂ I, for all i ∈ B, a>i λ(I) = ci, we also have A−1>

·,B cB = λ(I) = A−1>
·,Bb cBb . Thus,

val(LP=
A,b,c) = c>BbA

−1
·,Bbb = c>BA

−1
·,Bb.

We can also have the same basis decomposition theorem for the linear problem in inequality
form

val(LP=
A,b,c) =

{
minx∈Rd c>x

s.t. Ax 6 b
(LP6A,b,c)

Theorem 3.29 (Basis decomposition for linear problem in inequality form). Let A ∈ Rq×d
matrix of rank d, a right-hand side vector b ∈ Rq and c ∈ Rd, then

1. (LP6A,b,c) is primal admissible if and only if b ∈ ARq + Rd+.

2. (LP6A,b,c) is dual admissible if and only if c ∈ Cone(−A>).
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3. If val(LP6A,b,c) ∈ R, then I(A, b) is well-defined and there exist I ∈ I(A, b) with c ∈
Cone(−AI) and B ⊂ I a basis of A> extracted from I.

4. If I(A, b) is well-defined, for all such I ∈ I(A, b) such that c ∈ Cone(−AI) and B ⊂ I a
basis extracted from I, we have that B is an optimal basis:

val(LP6A,b,c) = c>A>−1
B bB (3.68)

Proof. The dual of (LP6A,b,c) is

max
µ∈Rq

− b>µ (3.69a)

A>µ = −c (3.69b)
µ > 0 (3.69c)

By remarking that maxµ−b>µ = −minµ b>µ, this problem is equivalent to (LP=
A>,b,−c) with

val(LP6A,b,c) = − val(LP=
A>,b,−c) when we have strong duality. We conclude by applying Theo-

rem 3.27 to (LP=
A>,b,−c).

3.5 Coupling polyhedron, fibers and chamber complex

In this section, we are interested in the case where the polyhedron depends on two variables.
For T ∈ R`×n, W ∈ R`×m and h ∈ R`, we denote the coupling polyhedron by

P :=
{
(x, y) ∈ Rn+m | Tx+Wy 6 h

}
. (3.70)

Let π be the projection of Rn × Rm onto Rn such that π(x, y) = x. For any set E of Rn+m,
we recall that the projection of E is

π(P ) = {x ∈ Rn | ∃y ∈ Rm, (x, y) ∈ E}. (3.71)

Recall that, for any x ∈ Rn, the polyhedron Px the fiber Px of P at x along π as the projection
of P ∩ π−1({x}) on the space Ker(π). Alternatively, we have

Px := {y ∈ Rm | Tx+Wy 6 h} (3.72)

Note that Px is not empty if and only if x ∈ π(P ).
We recall that for any subset of indices I ∈ I

(
(T,W ), h

)
, we denote by P (I) the face

P (I) := {(x, y) ∈ P | TIx+WIy = hI}. (3.73)

Similarly, for x ∈ π(P ) and I ∈ I(W,h− Tx), we define

Px(I) := {y ∈ Px |WIy = hI − TIx} (3.74)

Finally, we define Gx the collection of lifted faces above x, i.e. the faces G of the coupling
polyhedron such that x belongs to the relative interior of the projection π

(
ri(G)

)
= ri

(
π(G)

)
:

Gx :=
{
G ∈ F(P ) |x ∈ π

(
ri(G)

)}
(3.75)
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3.5.1 Normal equivalence on the chamber complex

We now show that all fibers Px are normally equivalent for x in the relative interior of a cell of
the chamber complex C(P, π) defined in Definition 3.10.

Proposition 3.30 (Normal equivalence above a chamber). Let σ ∈ C(P, π) be a chamber, and
x and x′ two points in its relative interior, then Px and Px′ are normally equivalent, i.e. they
have the same normal fan N (Px) = N (Px′). Similarly, I(W,h − Tx) and I(W,h − Tx′) are
equal.

Thus, we define the collection of active constraints set Iσ and the normal fan Nσ above6

σ ∈ C(P, π) by:

Nσ := N (Px) for an arbitrary x ∈ ri(σ) (3.76a)
Iσ := I(W,h− Tx) for an arbitrary x ∈ ri(σ) (3.76b)

Figure 3.11: Two normally equivalent polytopes P and P ′ and their normal fan N (P ) = N (P ′).

To prove the normal equivalence, we need to extend the correspondences of Fig. 3.7 to a
subcollection of faces of P .

Proposition 3.31 (Basic properties of collection of lifted faces). Let P :=
{
(x, y) ∈ Rn+m | Tx+

Wy 6 h
}

and x ∈ π(P ).

3.31.(a) The mapping {
Gx → I(W,h− Tx)
G 7→ I(T,W ),h(G)

(3.77)

is a one-to-one correspondence whose inverse is I 7→ P (I). Moreover, these mappings are
morphisms with respect to the intersection ∩.

3.31.(b) The mapping {
Gx → F(P )\{∅}
G 7→ Gx := {y ∈ Rm | (x, y) ∈ G}

(3.78)

is a one-to-one correspondence whose inverse is the function which, for an input F ∈
F(P )\{∅}, returns the minimal face G ∈ F(P ) such that {x} × F ⊂ G.
Moreover, these mappings are composition of the later mappings as described in Fig. 3.12
where for all I ∈ I

(
(T,W ), h

)
, we recall the notation P (I) := {(x, y) ∈ P | TIx + WIy =

hI}. and similarly, for x ∈ π(P ) and I ∈ I(W,h − Tx), we denote Px(I) := {y ∈
Px |WIy = hI − TIx}.

6The normal fan Nσ ⊂ 2Rm

above σ should not be confused with N (σ) ⊂ 2Rn

the normal fan of σ which we
never consider.
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G ∈ Gx,⊃
Gx

⋂
00

I(T,W ),h(G)

  

F ∈ F(Px)\{∅},⊃
G∈F(P ) minimal s.t.{x}×F⊂G

pp

NPx(F )

%%

IW,h−Tx(F )

��

I ∈ I(W,h− Tx),⊂
Cone(WI)

..

Px(I)

@@

P (I)

__

N ∈ N (Px),⊂
{i∈supp I(W,h−Tx) |W>i ∈N}

⋂
nn

P−Nx

ee

Figure 3.12: Monotonous one-to-one correspondences between normal fan, collection of active
constraints sets and set of faces of a fiber Px such that x ∈ ri(σ). For example, the downward
arrow on the right reads F1 ⊂ F2 is equivalent to NPx(F1) ⊃ NPx(F2).

Proof. 3.31.(a) Let G ∈ Gx, we have that x ∈ π
(

ri(G)
)

and there exists y ∈ Rm such that
(x, y) ∈ ri(G), then I(T,W ),h(G) = I(T,W ),h(x, y) = IW,h−Tx(y) ∈ I(W,h − Tx). Then, the
mapping is well-defined.

Moreover, on the one hand, we have by definition Gx ⊂ F(P )\{∅}. On the other hand,
for I ∈ I(W,h − Tx), there exists y ∈ Rm such that IW,h−Tx(y) = I. We then have I =
I(T,W ),h(x, y) ∈ I

(
(T,W ), h

)
and thus I(W,h − Tx) ⊂ I

(
(T,W ), h

)
. Thus, the mappings in

3.31.(a) are restrictions of the mappings in 3.12.(b) with A = (T,W ) and b = h which proves
that they are inverse one-to-one correspondences. The morphism property is direct by noticing
that y is in Gx and G′x if and only if (x, y) is in G and G′ which is equivalent to y being in
(G ∩G′)x.

3.31.(b) We prove that these mappings are indeed the composition in Fig. 3.12. Let G ∈ Gx,
since x ∈ π

(
ri(G)

)
, there exists y ∈ Rm such that (x, y) ∈ ri(G). In particular, y ∈ Gx. Since,

by 3.8.(f), for all G′ ∈ F(G)\{G}, (x, y) /∈ G′ and then y /∈ G′x, we deduce that y ∈ ri(Gx).
We then have I(T,W ),h(G) = I(T,W ),h(x, y) = IW,h−Tx(y) = IW,h−Tx(Gx), which is exactly the
composition of mappings in Fig. 3.12.

We now prove the other composition. Let I ∈ I(W,h − Tx). We show that P (I) is the
minimal faceG ∈ F(P ) such that {x}×Px(I) ⊂ G. First, for all y ∈ Px(I), TIx+WIy = hI , thus,
{x}×Px(I) ⊂ P (I). Secondly, let G ∈ F(P ) such that {x}×Px(I) ⊂ G and y ∈ ri

(
Px(I)

)
. We

have I(T,W ),h(G) ⊂ ∩(x′,y′)∈GI(T,W ),h(x′, y′) ⊂ I(T,W ),h(x′, y′) = I. In particular, I(T,W ),h(G) ⊂ I
and by 3.12.(b) and 3.12.(e), we have G ⊃ P (I). Thus, P (I) is the minimal face G ∈ F(P ) such
that {x} × Px(I) ⊂ G. We have proved the composition which concludes the proof.

With these one-to-one correspondences, we are now able to prove the normal equivalence
property.

Proof of Proposition 3.30. We define

Gσ := {G ∈ F(P ) | ri
(
σ
)
⊂ ri

(
π(G)

)
} = Gx for an arbitrary x ∈ ri(σ) (3.79)

Let x ∈ ri(σ). For G ∈ F(P ), ri(σ) ⊂ ri
(
π(G)

)
implies x ∈ ri

(
π(G)

)
. Then, Gσ ⊂ Gx. However,

σ = ∩G∈F(P ) |x∈π(G)π(G). Then, if G ∈ Gx, we have x ∈ ri
(
π(G)

)
⊂ π(G) leading to σ ⊂ π(G)

and then ri(σ) ⊂ ri
(
π(G)

)
. We thus have Gx = Gσ.

To sum up, for all points x in the relative interior of a chamber ri(σ) have the same set of
lifted faces Gx = Gσ.
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By the correspondences of Fig. 3.12 and since G 7→ I(T,W ),h(G) does not depend on x. For
all x ∈ ri(σ), I(W,h−Tx) is constant. Similarly, as I 7→ Cone(WI), N (Px) does not depend on
x, N (Px) only depends on σ ∈ C(P, π) such that x ∈ ri(σ).

We rewrite Fig. 3.12 with these new notations in Fig. 3.13.

G ∈ Gσ,⊃
Gx

⋂
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I(T,W ),h(G)

��

F ∈ F(Px)\{∅},⊃
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NPx(F )

%%

IW,h−Tx(F )

��

I ∈ Iσ,⊂
Cone(WI)

..

Px(I)

CC

P (I)

\\

N ∈ Nσ,⊂
{i∈supp Iσ |W>i ∈N}

⋂
nn

P−Nx

ee

Figure 3.13: Monotonous one-to-one correspondences between normal fan, collection of active
constraints sets and set of faces of a fiber Px such that x ∈ ri(σ). For example, the downward
arrow on the right reads F1 ⊂ F2 is equivalent to NPx(F1) ⊃ NPx(F2).

We end with a monotonicity property concerning the cells of the chamber complex and its
associated normal fans and collections of active constraint sets:

Proposition 3.32. Let σ and τ two cells of the chamber complex C(P, π) such that

τ ⊂ σ. (3.80)

Then, we have

Nσ 4 Nτ (3.81a)
Iσ 4 Iτ (3.81b)

Proof. We first prove that for every G ∈ Gσ, there exists G′ ∈ Gτ such that G ⊃ G′. Let G ∈ Gσ,
by definition we have ri(σ) ⊂ ri

(
π(G)

)
and by continuity σ ⊂ π(G). Let x ∈ ri(τ), we have

that x ∈ τ ⊂ σ ⊂ π(G). Then, there exists y such that (x, y) ∈ G. By Item 3.8.(f), there
exists G′ ∈ F(G) such that (x, y) ∈ ri(G′). In particular, x ∈ π

(
ri(G′)

)
= ri

(
π(G′)

)
which gives

G′ ∈ Gx = Gτ . We thus have that there exists G′ ∈ Gτ such that G ⊃ G′.
Then, by the one-to-one monotonous correspondences of Fig. 3.13, we have that for all I ∈ Iσ

there exists I ′ ∈ Iτ such that I ⊂ I ′ which is exactly Iσ 4 Iτ and it is the same for Nσ 4 Nτ .

3.5.2 H-representation of chamber and link with secondary fan

We now provide H-representations of chambers which allow us to interpret the chamber complex
as a section of the secondary fan. For sake of simplicity, we assume in this section that W is a
full rank matrix, i.e. rg(W ) = m. Under this assumption, see Assumption 3.1, every non-empty
fiber Px = {y ∈ Rm |Tx+Wy 6 h} have at least one vertex.

Proposition 3.33 (H-representation of the chamber). Assume that W is a full rank matrix,
i.e. rg(W ) = m. For B a basis of W>, and i ∈ [p], we denote by vBi the row vector

vBi := Ti −WiW
−1
B TB (3.82)

and by uBi the scalar
uBi := hi −WiW

−1
B hB. (3.83)
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vBi and uBi can be understood as vectors and right-hand side of a reduced constraint.
Then, for every I ∈ I

(
(T,W ), h

)
from which we can extract a basis (i.e. rg(W>I ) = m) and

BI such basis, we have

x ∈ ri
(
π(P I)

)
⇐⇒ ∀i ∈ I\BI , vBIi x = uBIi and ∀j ∈ [`]\I, vBIj x < uBIj (3.84a)
⇐⇒ I ∈ I(W,h− Tx) (3.84b)

Moreover, for every σ ∈ C(P, π) we have the following H-representations:

σ =
{
x ∈ Rn

∣∣∣∣∣ ∀I ∈ Iσ, vBIi x = uBIi , ∀i ∈ I\BI
vBIj x 6 uBIj , ∀j ∈ [p]\I

}
(3.85a)

ri(σ) =
{
x ∈ Rn

∣∣∣∣∣ ∀I ∈ Iσ, vBIi x = uBIi , ∀i ∈ I\BI
vBIj x < uBIj , ∀j ∈ [p]\I

}
(3.85b)

where for all I ∈ Iσ, BI is an extracted basis of I.
Furthermore, the representations do not depend on the choice of these extracted bases BI .
The set Iσ is thus a very useful tool for computation, as it provides a H-representation of

the chamber σ and a V -representation of the normal fan Nσ. For any x ∈ ri(Px), it allows us
to retrieve the H-representation of the faces of Px and in particular its vertices. Finally, Iσ is a
regular subdivision and then presents a rich and well-studied combinatorial structure.

Proof. (3.84a) We have x ∈ π
(

riP (I)
)

if and only if there exists y ∈ Rm such that (x, y) ∈
ri
(
P (I)

)
which is equivalent to TIx + WIy = hI and for all j ∈ [q]\I, Tjx + Wjy < hj . We

remark that the only y ∈ Rm which can satisfy these constraints is W−1
BI

(hBI − TBIx). Thus,
x belongs to π

(
riP (I)

)
if and only if TIx + WIW

−1
BI

(hBI − TBIx) = hBI and for all j ∈ [q]\I,
Tjx + WjW

−1
BI

(hBI − TBIx) < hj . Since, for all i ∈ Bi, vBii = 0 and uBii = 0, the equation
vBIi x = uBIi is equivalent to the trivial equation 0 = 0, we can only keep the indices in I\BI for
the equalities. The definitions of vBIi and uBIi then yield the equivalence.

(3.84b) x ∈ π
(

ri(PI)
)
⇐⇒ ∃y ∈ Rm, TIx+WIy = hI and T[`]\Ix+W[`]\Iy � h[`]\I (3.86a)
⇐⇒ ∃y ∈ Rm, IW,h−Tx(y) = I and Wy 6 h− Tx (3.86b)
⇐⇒ I ∈ I(W,h− Tx) (3.86c)

In particular, π(P I) is contained in the vector subspace E := {x ∈ Rn | vBIi x = uBIi , ∀i ∈
I\B}. Let x ∈ ri

(
π(P I)

)
6= ∅, then since the inequality are strict, there exists ε > 0, such that

B(x, ε) ∩ E ⊂ ri
(
π(P I)

)
. Thus, dim(π(P I)) = dim(E).

Let σ ∈ C(P, π). Then, the collections Gσ, Iσ, Nσ and Vert(Px), for x ∈ ri(σ), are in one-to-
one correspondences. By definition of Gσ, we have that ri(σ) = ∩G∈Gσπ

(
ri(G)

)
, which is equal to

∩I∈Iσπ
(

riP (I)
)
. Let I ∈ Iσ be a maximal set of constraints. By the discussion in Section 3.2.3

and since rg(W ) = m, there exists a basis BI of W> such that BI ⊂ I. By (3.84a), we have
x ∈ π

(
riP (I)

)
if and only if ∀i ∈ I\BI , vBIi x = uBIi and ∀j ∈ [`]\I, vBIj x < uBIj . Finally, since

ri(σ) = ∩I∈Iσπ
(

riP (I)
)
, we then have

ri(σ) =
{
x ∈ Rn

∣∣∣∣∣ ∀I ∈ Iσ, Tix+WiW
−1
BI

(hBI − TBIx) = hi, ∀i ∈ I\BI
Tjx+WjW

−1
BI

(hBI − TBIx) < hj , ∀j ∈ [p]\I

}
(3.87)

We conclude using the definition of vBIi and uBIi and by taking the closure to get the represen-
tation of σ.
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We now show that the chamber complex can be interpreted as an affine section of the
secondary fan.

Theorem 3.34. Consider the affine function a : x 7→ h − Tx. Then, the chamber complex
C(P, π) is the inverse image, under a, of the secondary fan of W>:

C(P, π) = a−1
(
Σ -fan(W>)

)
:=
{
a−1(S)

∣∣∣S ∈ Σ -fan(W>)
}∖{
∅
}

(3.88)

Proof. Assume for sake of simplicity that rg(W ) = m. The proof can be adapted by taking a
quotient space if this assumption does not hold.

(⊂) Let σ ∈ C(P, π), by (3.85), setting b = h− Tx, we have

ri(σ) =
{
x ∈ Rn

∣∣∣∣∣ ∃b ∈ Rp, b = h− Tx and ∀I ∈ Iσ,
WiW

−1
BI
bBI = bi, ∀i ∈ I\BI

WjW
−1
BI
bBI < bj , ∀j ∈ [p]\I

}

By Proposition 3.21, we then have ri(σ) = a−1(Σ -C◦(W>, Iσ)
)
. By taking the closure

and as a is continuous, we obtain σ = a−1(Σ -C(W>, Iσ)
)
. We then deduce that C(P, π) ⊂

a−1
(
Σ -fan(W>)

)
.

(⊃) Reciprocally, we consider S ∈ Σ -fan(W>) such that a−1(S) is not empty and we now
prove that a−1(S) ∈ C(P, π). As S ∈ Σ -fan(W>), there exists a regular subdivision I such that
S = Σ -C(W>, I). If a−1(S) is not empty, then ri

(
a−1(S)

)
= a−1( ri(S)

)
= a−1(Σ -C◦(W>, I)

)
is not empty and there exists x such that h − Tx ∈ Σ -C◦(W>, I) i.e. I = S(W>, h − Tx) =
I(W,h − Tx). In particular, by Lemma 3.18, h − Tx belongs to Cone(W ) + R`+ and Px is
not empty, which is equivalent to x ∈ π(P ). Thus, there exists σ ∈ C(P, π) such that x ∈
ri(σ). We then have I = I(W,h − Tx) = Iσ and then by the previous discussion a−1(S) =
a−1(Σ -C(W>, I)

)
= a−1(Σ -C(W>, Iσ)

)
= σ ∈ C(P, π) which concludes the proof.
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4.1 Introduction

In this chapter, we show that every MSLP with general cost distribution is equivalent to an MSLP
with finite distribution. In particular, we provide a uniform and universal exact quantization
for MSLP with general cost. This leads to explicit representations of their value functions and
to new complexity results. Most of this chapter is adapted from the preprint [FGL21], winner
of the best paper student prize of ECSO-CMS 2022 conference in Venice. We added proofs for
the normal equivalence property, for the characterization of the chamber complex as a section
of the secondary fan and for the reduction of the Minkowksi integral to a Minkowski sum for
the weighted fiber polyhedron. We also introduced a generalization of weighted fiber polyhedra
to the multistage case by defining nested fiber polyhedra.

4.1.1 Multistage stochastic linear programming

Let (Ω,A,P) be a probability space. Given a sequence of independent random variables ct ∈
L1(Ω,A,P;Rnt) and ξt = (At,Bt, bt), indexed by t ∈ [T ] := {1, . . . , T}, we consider the MSLP
given by

min
(xt)t∈[T ]

c>1 x1 + E
[ T∑
t=2
c>t xt

]
s.t. A1x1 6 b1

Atxt +Btxt−1 6 bt a.s. ∀t ∈ {2, · · · , T}
xt ∈ L∞(Ω,A,P;Rnt) ∀t ∈ {2, · · · , T}
xt 4 Ft ∀t ∈ {2, · · · , T}

(4.1)

where x1 ≡ x1, A1 ≡ A1 and b1 ≡ b1 are deterministic and Ft is the σ-algebra generated by
(c2, ξ2, · · · , ct, ξt). The last constraint, known as non-anticipativity, means that xt is measurable
with respect to Ft.

Most results for MSLP with continuous distributions rely on discretizing the distributions.
The Sample Average Approximation (SAA) method (see e.g. [SDR14, Chap. 5]) samples the
costs and constraints. It relies on probabilistic results based on a uniform law of large number
to give statistical guarantees. Obtaining a good approximation requires a large number of
scenarios. In order to alleviate the computations, we can use scenario reduction techniques
(see [DGKR03, HR03]). Latin Hypercube Sampling and variance reduction methods are also
used to produce scenarios. Finally, one generates heuristically “good” scenarios, representing
the underlying distribution (see [KW07]). Alternatively, we can leverage the structure of the
problem to produce finite scenario trees (see [Kuh06, MAB14, MP18]) that yields bounds for the
value of the true optimization problem. In each of these approaches, one solves an approximate
version of the stochastic program, with or without statistical guarantee.

4.1.2 The exact quantization problem

Here, we aim at solving exactly the original problem, by finding an equivalent formulation with
discrete distributions. This notion of equivalent formulation is best understood through the
dynamic programming approach of MSLP. We define the cost-to-go function Vt inductively as
follows. We set VT+1 ≡ 0 and for all t ∈ {2, · · · , T}:

Vt(xt−1) := E
[
V̂t(xt−1, ct, ξt)

]
V̂t(xt−1, ct, ξt) := min

xt∈Rnt
c>t xt + Vt+1(xt)

s.t. Atxt +Btxt−1 6 bt

(4.2)

where xt−1 ∈ Rnt−1 , ct ∈ Rnt and ξt = (At, Bt, bt) ∈ Rqt×nt × Rqt×nt−1 × Rqt .



4.1. INTRODUCTION 81

We choose to distinguish the random cost ct from the noise ξt affecting the constraints.
Indeed, our results require ξt to be finitely supported (see examples 2.4 and 2.3) while ct can
have a continuous distribution. This separation does not preclude correlation between ct and ξt.
However, we require {(ct, ξt)}t∈[T ] to be a sequence of independent random variables to leverage
Dynamic Programming, even though some results can be extended to dependent (ξt)t∈[T ].

4.1.3 Contribution

We rely on a geometric approach, which enlightens the polyhedral structure of MSLP. We
first establish exact quantization results in the two-stage case showing that there exists an
optimal recourse affine on each cell of a polyhedral complex which is precisely the chamber
complex [BS92, RZ96], a fundamental object in combinatorial geometry. A chamber complex
is defined as the common refinement of the projections of faces of a polyhedron. In particular,
Theorem 4.2 provides a local explicit exact quantization, in which the quantized probabilities
and costs are attached to the cones of a polyhedral fan N , and Theorem 4.3 gives a uniform exact
quantization result (we refer the reader to [DLRS10, Zie12, Grü13, Fuk16] for background on
polyhedral complexes and fans). On each cone N ∈ N , we replace the distribution of c1riN by
a Dirac distribution concentrated on the expected value čN = E

[
c|c ∈ riN

]
, and an associated

weight p̌N = P
[
c ∈ riN

]
. Further, N is universal in the sense that it does not depend on the

distribution of c.
In order to extend this result to the multistage case we establish in Lemma 4.12 a Dynamic

Programming type equation in the space of polyhedral complexes. We then show an exact quan-
tization result in Theorem 4.15. Again, this quantization is universal in the cost distribution.

We apply this polyhedral approach to obtain fixed parameters polynomial time complexity
results considering both the exact computation problem and the approximation problem. For
distributions that are uniform on polytopes or exponential, we show the MLSP can be solved
in a time that is polynomial provided that the horizon T and the dimensions n2, . . . , nT of
the successive recourses are fixed. The proof relies on the theory of linear programming with
oracles [GLS12] as well as on upper bound theorems of McMullen [McM70] and Stanley [Sta75]
concerning the number of vertices and the size of a triangulation of a polyhedron. We obtain
similar results for the approximation problem. Then the distribution cost can be essentially
arbitrary: we only assume that it is given implicitly through an appropriate oracle. This applies
in particular to distributions with a smooth density with respect to Lebesgue measure.

In summary, our main contributions are the following:

1. MSLP with arbitrary cost distribution and finitely supported constraints admit an exact
quantization result, i.e. are equivalent to MSLP with discrete cost distribution;

2. the expected cost-to-go functions of such MSLP are polyhedral and affine on the cells of a
universal polyhedral complex (i.e. independent of the cost distribution);

3. characterization of the expected cost-to-go function in terms of a weighted and nested
extensions of the fiber polytope;

4. fixed-parameter polynomial time tractability results for 2SLP and MSLP.

4.1.4 Structure of the chapter

In Section 4.2 we establish the exact quantization result for 2-stage stochastic linear program-
ming. In Section 4.3, we show that chamber complexes can be propagated through dynamic
programming, leading to the exact quantization result for the MSLP. We give an analytical
example in Section 4.4. In Section 4.5, we draw the consequences of our results in terms of
computational complexity.
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4.2 Exact quantization of the 2-stage problem

Let (Ω,A,P) be a probability space, q ∈ L1(Ω,A,P;Rm) be an integrable random vector, and
suppose ξ = (T,W, h) is deterministic. We study the cost-to-go function of the 2-stage stochastic
linear problem, written as

V (x) := E
[
V̂ (x, q)

]
with V̂ (x, q) := min

y∈Rm
q>y

s.t. Tx+Wy 6 h
(4.3)

The dual of the latter problem, for given x and c, is

max
µ∈Rq

(Tx− h)>µ (4.4)

s.t. W>µ = −q (4.5)
µ > 0 (4.6)

As in Section 3.5, we denote the coupling constraint polyhedron of Problem (4.3) by

P := {(x, y) ∈ Rn+m | Tx+Wy 6 h} (4.7)

and π the projection of Rn × Rm onto Rn such that π(x, y) = x.
The projection of P is the following polyhedron :

π(P ) = {x ∈ Rn | ∃y ∈ Rm, Tx+Wy 6 h} (4.8)

and for any x ∈ Rn, the fiber1 of P along π is

Px := {y ∈ Rm | Tx+Wy 6 h} (4.9)

4.2.1 Uniform exact quantization result

The following lemma provides an explicit formula for the cost-to-go function. It shows that an
optimal recourse can be chosen as a function of c that is piecewise constant on the normal fan of
Px. This lemma can be interpreted as a reformulation of the basis decomposition Theorem 3.29
to the 2SLP notations.

Lemma 4.1. Let x ∈ Rn and c ∈ Rm,

1. If x /∈ π(P ), then V̂ (x, q) = +∞;

2. If x ∈ π(P ) and −q /∈ Cone(W>), then V̂ (x, q) = −∞;

3. Suppose now that x ∈ π(P ) and −q ∈ Cone(W>). For each
cone N ∈ N (Px), let us select in an arbitrary manner a vector qN in ri(−N). Then, there
exists a vector yN (x) which achieves the minimum in the expression of V̂ (x, qN ) in (4.3).
Further, for any selection of such a yN (x), we have

V̂ (x, q) =
∑

N∈N (Px)
1q∈− riN q>yN (x) . (4.10)

1The term parametrized polyhedron, instead of fibers is also used in the literature [CL98, LW97].
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Proof. The first point comes from the definitions of π(P ) in (4.8) and V̂ (x, q) in (4.3). If
x ∈ π(P ) and −q /∈ Cone(W>), then the primal problem Eq. (4.3) is feasible and the dual
problem is Eq. (4.14a) infeasible. Thus, by strong duality, V̂ (x, q) = −∞.

By Eq. (3.32), we have that
(

rc(Px)
)◦ = suppN (Px). Further, by Proposition 3.7 all non

empty fibers Px have the same recession cone {y ∈ Rm |Wy 6 0} whose polar is Cone(W>).
Assume now that x ∈ π(P ) and −q ∈ Cone(W>) = supp(N (Px)). Then, there exists

N ∈ N (Px) such that −q ∈ ri(N). Moreover, for every choice of cN ∈ − ri(N), we have
arg miny∈Px q>y = arg miny∈Px q>Ny, by 3.14.(k) . Moreover, there exists yN (x) such that N =
NPx

(
yN (x)

)
by definition of a normal cone, thus yN (x) ∈ arg miny∈Px q>Ny; in particular, the

latter argmin is non empty. Thus, when −q ∈ ri(N), V̂ (x, q) = q>yN (x).
Thanks to the partition property of Proposition 3.9, we know that c belongs to the relative

interior of precisely one cone in the normal fan of Px, leading to (4.10).

Having this property in mind, we make the following assumption:

Assumption 1. The cost q ∈ L1(Ω,A,P;Rm) is integrable with q ∈ −Cone(W>) almost surely.

Theorem 4.2 (Local exact quantization of the cost distribution). Let x ∈ π(P ) and Assump-
tion 1 holds. Then, for every refinement Rx of −N (Px), we have:

V (x) =
∑
R∈Rx

p̌RV̂ (x, q̌R) with V̂ (x, q̌R) := min
y∈Rm

q̌>Ry + ITx+Wy6h (4.11)

where p̌R := P
[
q ∈ ri(R)

]
and q̌R := E

[
q | q ∈ ri(R)

]
if p̌R > 0 and q̌R := 0 if p̌R = 0.

This is an exact quantization result, since (4.11) shows that V (x) coincides with the value
function of a second stage problem with a cost distribution supported by the finite set {q̌R | R ∈
R}.

Proof. For R ∈ R, there exists one and only one N ∈ −N (Px) such that ri(R) ⊂ ri(N), that we
denote N(R). Indeed, as R is a refinement of −N (Px), there exists at least one such element,
and as −N (Px) is a polyhedral complex it is unique.

By Lemma 4.1, under Assumption 1 and since x ∈ π(P ),

V (x) = E
[ ∑
N∈N (Px)

1q∈− riNq
>yN (x)

]
= E

[ ∑
N∈−N (Px)

∑
R∈R| ri(R)⊂ri(N)

1q∈riR q
>yN (x)

]
by the partition property

=
∑
R∈R

E
[
1q∈riRq

>]yN(R)(x) by linearity

=
∑
R∈R

p̌Rq̌
>
RyN(R)(x)

=
∑
R∈R

p̌R min
y∈Rm

q̌>Ry + ITx+Wy6h

the last equality is obtained by definition of yN(R)(x) as q̌R ∈ N(R), which leads to Eq. (4.11).

The local exact quantization Theorem 4.2 together with the normal equivalence on the
chamber complex Proposition 3.30 allows us to derive a uniform exact quantization result:
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Theorem 4.3 (Uniform exact quantization of the cost distribution). Let x ∈ π(P ) and As-
sumption 1 holds. Then, for every refinement R of −∧

σ∈C(P,π)Nσ, we have:

V (x) =
∑
R∈R

p̌RV̂ (x, q̌R) with V̂ (x, q̌R) := min
y∈Rm

q̌>Ry + ITx+Wy6h (4.13)

where p̌R := P
[
q ∈ ri(R)

]
and q̌R := E

[
q | q ∈ ri(R)

]
if p̌R > 0 and q̌R := 0 if p̌R = 0.

Proof. Let R be a refinement of −∧σ∈C(P,π)Nσ. Let x ∈ π(P ), there exists σx ∈ C(P, π) such
that x ∈ ri(σx). We have that R 4 ∧σ∈C(P,π)Nσ 4 Nσx = N (Px), which, by Theorem 4.2, leads
to Eq. (4.13).

We now prove that ∧σ∈C(P,π)Nσ = ∧
σ∈C(P,π)Nσ. If τ is included in σ, by Proposition 3.32,

we have that Nσ refines Nτ . Thus, ∧σ∈C(P,π)Nσ = ∧
σ∈C(P,π)Nσ.

4.2.2 Weighted fiber polyhedron

In this subsection, we give a dual interpretation to the exact quantization theorem for 2-stage
stochastic linear programming.

We first notice that for all q ∈ −Cone(W>) and x ∈ Rn, we have strong duality for the
second stage problem

V̂ (x, q) = sup
λ∈Rq

(Tx− h)>λ (4.14a)

s.t. W>λ = −q (4.14b)
λ > 0 (4.14c)

We denote by Dq := {λ ∈ Rl+ |W>λ + q = 0} the admissible dual set for a fixed cost q ∈
−Cone(W ). Then, for every q ∈ −Cone(W ), we have

V̂ (x, q) = sup
λ∈Dq

(Tx− h)>λ (4.15)

In [BS92], Billera and Sturmfels defined the fiber polytope as the normalized Minkowski
integral 1

Vol(Q)
∫
Q Pxdx of bounded fibers Px where x is uniformly distributed on a polytope Q.

We now extend the notion of fiber polytope. First, we allow the fibers to be polyhedron with
non trivial recession cones and lineality spaces. Secondly, we replace the uniform distribution
on a polytope by a probability distribution on a polyhedron. We call this new polyhedron
the weighted fiber polyhedron. To link this notion with stochastic programming, we give the
definition with respect to the dual fibers Dq.

Definition 4.4 (Weighted fiber polyhedron). Let Assumption 1 holds. The weighted fiber
polyhedron E of the bundle (Dq)q∈supp(q) is the Minkowski integral of all the fiber at q when q
varies according to its probability distribution:

E := E
[
Dq
]

=
∫
DqP(dq) =

{∫
λ(q)P(dq)

∣∣∣ λ(q) ∈ Dq P - a.s., λ ∈ L1(P,Rm,R`)
}

(4.16)

The weighted fiber polyhedron synthesises the polyhedral structure of 2SLP with stochastic
cost q. In particular, the expected cost-to-go function V is, up to a change of variable, equal to
the support function of the weighted fiber polyhedron.

Theorem 4.5. Let Assumption 1 holds. Then, the expected cost-to-go V defined in (4.3) is the
composition of the support function of the weighted fiber polyhedron E defined in Definition 4.4

and the affine transformation a :
{
Rm → R`

x 7→ Tx− h

V (x) = σE ◦ a(x) := sup
λ∈E

(Tx− h)>λ (4.17)
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In particular, the affine regions of V are exactly the maximal sets of the polyhedral complex
a−1

(
N (E)

)
.

The proof consists in applying the interchangeability theorem (see [RW09, Thm 14.60]) to
the dual formulation of the second stage problem.

Proof. Under Assumption 1, we have q ∈ Cone(W>) almost surely then

V (x) = E
[
V̂ (x, q)

]
(4.18a)

= E
[

sup
λ∈Dq

(Tx− h)>λ
]

(4.18b)

= E
[

sup
λ∈R`

(Tx− h)>λ− Iλ∈Dq

]
by (4.15)

(4.18c)

=
∫
Rn

sup
λ∈R`

(
(Tx− h)>λ− Iλ∈Dq

)
P(dq) (4.18d)

= sup
λ(.)∈L1(Rn,R`)

∫
Rn

(
(Tx− h)>λ(q)− Iλ(q)∈Dq

)
P(dq) by [RW09, Thm 14.60]

(4.18e)

= sup
λ(.)∈L1(Rn,R`)

(Tx− h)>
∫
Rn
λ(q)P(dq)− Iλ(q)∈Dq P - a.s. (4.18f)

= sup
λ(.)∈L1(Rn,R`)

∣∣ λ(q)∈Dq P - a.s.
(Tx− h)>

∫
Rn
λ(q)P(dq) (4.18g)

= sup
λ∈E

(Tx− h)>λ by definition of E

(4.18h)

Indeed, we can apply [RW09, Thm 14.60] since the opposite of the function (q, λ) 7→ (Tx−h)>λ−
Iλ∈Dq is a normal integrand (see [RW09, Def 14.27]) and as L1(Rn,R`) is a decomposable space
(see [RW09, Def 14.59]) with the measure P.

We now show that the weighted fiber polyhedron is indeed a polyhedron. To do so, we
replace the Minkowski integral by a Minkowski sum of well-chosen fibers, leveraging the normal
equivalence on the cells of the chamber complex.

Let D be the dual coupling polyhedron

D := {(λ, q) ∈ R` × Rm |W>λ+ q = 0, λ > 0} (4.19)

and C(D,πλ,qq ) ⊂ 2−Cone(W>) ⊂ 2Rm be the chamber complex after projecting on the space Rm
where q belongs.

We now give an adaptation of [BS92, Theorem 1.5] for the weighted fiber polyhedron.

Theorem 4.6. The fiber polyhedron can reduced to the finite Minkowski sum

E =
∑

γ∈C(D,πλ,qq )

p̌γDq̌γ (4.20)

where p̌γ := P
[
q ∈ ri(γ)

]
and q̌γ := E

[
q | q ∈ ri(γ)

]
is the centroid of the cell γ if p̌γ > 0 and q̌γ

is an arbitrary point in ri(γ) if p̌γ = 0.

Proof. By Proposition 3.7, all Dq for q ∈ −Cone(W>) have the same recession cone C and
lineality space L. We can assume, if we restrict all polyhedra to the orthogonal L⊥ of the
lineality space, that Lin(Dq) = {0} for all q ∈ −Cone(W>).
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By noticing that −Cone(W>) = t
γ∈C(D,πλ,qq ) ri(γ), we have

E =
∫
−Cone(W>)

DqP(dq) =
∑

γ∈C(D,πλ,qq )

∫
ri(γ)

DqP(dq) (4.21)

We now show that
∫

ri(γ)DqP(dq) = p̌γDq̌γ . If all lineality spaces are reduced to {0}, we have
by Theorem 3.2 that Dq = Conv

(
Vert(Dq)

)
+ C. Since the common recession cone C is

convex, we have
∫
−Cone(W>)CP(dq) = C. We thus only need to prove that Vert(p̌γDq̌γ ) =

Vert
( ∫

ri(γ)DqP(dq)
)
. By [BS92, Proposition 1.2], we have that for every measurable Q ⊂ Rm

and ψ ∈ Rm,
∫
QD

ψ
q P(dq) =

( ∫
QDqP(dq)

)ψ. We then deduce( ∫
ri γ
DqP(dq)

)ψ
=
∫

ri γ
Dψ
q P(dq) = E

[
Dψ
q 1q∈ri γ

]
= p̌γE

[
Dψ
q | q ∈ ri γ

]
.

For γ ∈ C(D,πλ,qq ) and every q and q′ in ri(γ), Dq and Dq′ are normally equivalent, i.e.
N (Dq) = N (Dq′). In particular, we have by Fig. 3.9 that for ψ ∈ ri(N) and N ∈ N (Dq) each
vertex D−ψq of Dq depends affinely on q and then get E

[
Dψ
q | q ∈ ri γ

]
= Dψ

q̌γ
. We then have

Vert(p̌γDq̌γ ) = Vert
( ∫

ri(γ)DqP(dq)
)

which implies
∫

ri(γ)DqP(dq) = p̌γDq̌γ and thus Eq. (4.20).

We now show that the normal fan of the weighted fiber polyhedron is refined by the secondary
fan, up to a change of sign.
Theorem 4.7. The normal fan of the weighted fiber polyhedron E is such that

− Σ -fan(W>) 4 N (E) (4.22)

Since for two polyhedra Q and Q′, we have N (Q+Q′) = N (Q)∧N (Q′), see e.g. [Zie12, Prop.
7.12]. Then if a polyhedron Q have a coarser normal fan than Q, i.e. N (P ) 4 N (Q), it means
that Q has a more simple combinatorial structure than P and that there exists a polyhedron
Q′ such that P = Q + Q′. We say that Q is a Minkowski summand of P . Moreover, the
secondary fan is the normal fan of a well-studied polytope called secondary polytope introduced
in [GKZ94]. In [BS92], Billera and Sturmfels defined the fiber polytope and showed that the
secondary polytope was a particular case of fiber polytope.
Remark 4.8. We saw in Theorem 4.5 that the affine regions of V were equal to a−1(N (E)

)
. By

Theorem 4.7, we then have that the affine regions are refined by a−1( − Σ -fan(W>)
)
. Finally,

in Theorem 3.34, we saw that the chamber complex was a section of the secondary C(P, π) =
a−1(−Σ -fan(W>)

)
. Thus, we will see in Theorem 4.9 that V is affine on every cell of C(P, π).

One can see that the more chamber γ ∈ C(D,πλ,qq ) are such that p̌γ = 0, the coarsest will be
N (E) and thus the affine regions a−1(N (E)

)
.

Proof. We first prove that −∧q∈−Cone(W>)N (Dq) = Σ -fan(W>). We have that

supp
( ∧
q∈−Cone(W>)

−N (Dq)
)

= Cone(W ) + R`+ = supp
(
Σ -fan(W>)

)
. Since these collections of sets are both fans, by Lemma 3.16, it is enough to show an inclusion
for the collection of maximal sets: Σ -fan(W>) ⊂ −∧

γ∈C(D,πλ,qq )N (Dqγ ).
Let S ∈ Σ -fan(W>) by Definition 3.20, we know that there exists a regular triangulation I

such that S = Σ -C(W>, I). Thus, by Proposition 3.21, we have

Σ -C(W>, I) =
⋂
B∈I

CB (4.23a)

where CB :=
{
ψ ∈ Cone(W ) + R`+

∣∣WW−1
B ψB 6 ψ

}
(4.23b)
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Assume q ∈ −Cone(WB) and denote λB,q the basic point, of the polyhedron in standard form
Dq associated to the basis BI , see Definition 3.24. As q ∈ −Cone(WB), we have λB,q ∈ Dq i.e. B
is an admissible basis for the linear problem LP=

W>,−q,ψ. We now prove that CB = −NDq(λB,q).
If ψ ∈ CB, we have that the reduced cost ψ − WW−1

B ψB is nonnegative. In particular, by
Lemma 3.25, BI is an optimal basis for the problem LP=

W>,ψ,−q and λB,q is an optimal point.
Thus, for all λ ∈ Dq, ψ>λB,q 6 ψ>λ which is equivalent to ψ ∈ −NDq(λB,q). Reciprocally, if
ψ ∈ −NDq(λB,q) then the basic point λB,q is an optimal point of LP=

W>,−q,ψ and the reduced
cost ψ −WW−1

B ψB is non-negative and thus ψ ∈ CB.
Since I is a triangulation of Cone(W>), we have ⋃B∈I Cone(WB). In particular, for every

q ∈ −Cone(W>), there exists I ∈ I such that q ∈ −Cone(WB). Then, for every q ∈ −Cone(W ),
we associate a point function λI,q = λB,q where we choose B ∈ I such that q ∈ −Cone(WB).

Finally, we have

S =
⋂
B∈I

CB =
⋂
B∈I

⋂
q∈−Cone(WB)

−NDq(λB,q) =
⋂

q∈−Cone(W>)
−NDq(λI,q) (4.24)

Thus, S ∈ −∧q∈−Cone(W>)N (Dq).
We proved that −∧q∈−Cone(W>)N (Dq) = Σ -fan(W>). Moreover, by the normal equiv-

alence Proposition 3.30 for every γ ∈ C(D,πλ,qq ) and q ∈ ri(γ), N (Dq) = N (Dq̌γ ). Then,
−
∧
γ∈C(D,πλ,qq )N (Dq̌γ ) = Σ -fan(W>).
Recall that the normal fan of the Minkowski sum is the common refinement of the normal

fan N (P +Q) = N (P )∧N (Q), see e.g. [Zie12, Prop. 7.12], and that N (αP ) = N (P ) for every
α > 0. Then, since E = ∑

γ∈C(D,πλ,qq ) | p̌γ>0N (Dq̌γ ) Thus, by Eq. (4.20) and −Σ -fan(W>) =∧
γ∈C(D,πλ,qq )N (Dqγ ) 4 ∧

γ∈C(D,πλ,qq ) | p̌γ>0N (Dq̌γ ) = N (E)

4.2.3 Explicit characterization of expected cost-to-go

As a consequence of the exact quantization Theorem 4.2, we obtain explicit representations for
the values and subdifferentials of the expected cost-to-go function V . We also show that V is
affine on every cell of the chamber complex for every distribution of the random cost.

Theorem 4.9 (Characterization of the expected cost-to-go function). Let Assumption 1 holds.
For x ∈ Rn and c ∈ Rm, we denote

Dh−Tx
c := argmax

{
(Tx− h)>λ : A>λ = −c, λ > 0

}
the set of optimal dual solutions of the second stage problem. Then,

∀σ ∈ C(P, π), ∀x, x′ ∈ ri(σ), ∀c ∈ supp(c), Dσ
c := Dh−Tx

c = Dh−Tx′
c .

Set
ασ :=

∑
N∈−Nσ

B>λσčN and βσ :=
∑

N∈−Nσ
−b>λσčN (4.25)

where λσc is an element of Dσ
c . Then, we have

∀σ ∈ C(P, π), ∀x ∈ σ, V (x) = α>σ x+ βσ (4.26a)
∀x ∈ Rn, V (x) = Ix∈π(P ) + max

σ∈C(P,π)
α>σ x+ βσ (4.26b)

In particular, for all distributions of c satisfying Assumption 1, V is affine on each cell of
C(P, π), i.e. the cells of the chamber complex are universal affine regions.

Moreover, we characterize the subdifferential of the cost-to-go function as

∂V (x) = Nπ(P )(x) + Conv
{
(ασ)

σ∈C(P,π) |x∈σ
}
. (4.27)
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Proof. By the basis decomposition theorem Theorem 3.27, we have that Dψ
c = Dψ′

c for all ψ
and ψ′ belonging to the same relative interior of a cone of the secondary fan Σ -fan(W>). In
particular, by Theorem 3.34, for every x, x′ in the same relative interior of a chamber σ, we have
Dh−Tx
c = Dh−Tx′

c .
For all x ∈ ri(σ) ⊂ π(P ) and all c ∈ supp(c), by Lemma 4.1, we have V̂ (x, c) < +∞ and then

by strong duality, V̂ (x, c) = (Tx− h)>λcσ. Then by the exact quantization result Eq. (4.11), for
all x ∈ ri(σ),

V (x) =
∑

N∈−Nσ
p̌N V̂ (x, čN ) =

∑
N∈−Nσ

p̌N (Tx− h)>λčNσ = α>σ x+ βσ.

Further, as V is lower semicontinuous and convex, we deduce Eq. (4.26a).
To show Eq. (4.26b), suppose first that dim

(
π(P )

)
= m. Then, for σ ∈ C(P, π), x→ α>σ x+βσ

is a supporting affine function of V which coincide with V on σ whose dimension is m. Since⋃
σ∈C(P,π) σ = supp(C(P, π)) = π(P ), V is piecewise affine on the polyhedron π(P ) and equals

to +∞ elsewhere. Together with convexity of V , this yields Eq. (4.26b). When π(P ) is not full
dimensional, we get the same result by restraining the ambient space to the affine hull Aff

(
π(P )

)
.

Since C(P, π) does not depend on c, for all distributions of c satisfying Assumption 1, V is affine
on each cell of C(P, π). Finally, the subgradient formula follows from Eq. (4.26).

Remark 4.10. Let Vmax be the collection of affine regions of V . Theorem 4.9 implies that the
chamber complex C(P, π) refines Vmax. However, it does not imply that C(P, π) = Vmax. Indeed,
if c = 0 P-almost surely, then Vmax = {π(P )}.

More precisely, for all cost distribution such that Assumption 1 holds, Vmax is the collection
of maximal elements of a polyhedral complex V such that C(P, π) 4 V. We gave an exact
representation of V in Theorem 4.5, showing that V = a−1

(
N (E)

)
.

4.3 Exact quantization of the multistage problem

In this section, we show that the exact quantization result established above for a general cost
distribution and deterministic constraints carries over to the case of stochastic constraints with
finite support and then to multistage programming.

We denote by πx,yx for the projection from Rn × Rm to Rn defined by πx,yx (x′, y′) = x′. The
projections πx,y,zx,y , πx,y,zx , πy,zy , πxt−1,z

xt−1 are defined accordingly. Note that in the notation πx,y,zx ,
x, y and z are part of the notation and not parameters.

4.3.1 Propagating chamber complexes through Dynamic Programming

We next show that chamber complexes are propagated through dynamic programming in a way
that is uniform with respect to the cost distribution. This is a key tool to extend the exact
quantization theorem to the multistage setting. Note that the proof of Theorem 4.3 cannot be
extended to the multistage setting as, in this case, the extensive form requires non-anticipativity
constraints that cannot be tackled directly.

We start with a monotonicity result for chamber complexes.
Lemma 4.11 (Chamber complex monotonicity with respect to refinement order). Consider two
polyhedral complexes of Rd and a projection π. If R 4 S then C(R, π) 4 C(S, π).
Proof. For any R ∈ R, there exist SR ∈ S such that R ⊂ SR. Let x ∈ supp C(R, π) =
π(suppR) = π(suppS) = supp C(S, π)

σR,π(x) :=
⋂

R∈R s.t. x∈π(R)
π(R) ⊂

⋂
R∈R s.t. x∈π(R)

π(SR)

⊂
⋂

S∈Ss.t. x∈π(S)
π(S) =: σS,π(x) ∈ C(S, π)
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Recall that, for a polyhedron P and a vector ψ, we denote Pψ := arg minx∈P ψ>x. Let
f be a polyhedral function on Rd, with a slight abuse of notation we denote epi(f)ψ,1 =
arg min(x,z)∈epi(f) ψ

>x+z. We denote Flow
(

epi(f)
)

:= {epi(f)ψ,1 | ψ ∈ Rd} the set of lower faces
of epi(f). The collection of projections (on Rd) of lower faces of epi(f) is the coarsest polyhedral
complex such that f is affine on each of its cells (see [DLRS10, Chapter 2]). Moreover, we have

πRd
(

epi(f)ψ,1
)

= arg min
x∈Rd

ψ>x+ f(x) (4.28)

Lemma 4.12. Let U be a polyhedral function on Rm and U := πy,zy

(
Flow

(
epi(U)

))
a coarsest

polyhedral complex such that U is affine on each element of U . Let ξ = (A,B, b) be fixed and
Assumption 1 holds. Define, for all x ∈ Rn

Q(x, y) := U(y) + IAy+Bx6b (4.29a)
V (x) := E

[
min
y∈Rm

c>y +Q(x, y)
]

(4.29b)

Let V := C
(
F(P ) ∧ (Rn × U) , πx,yx

)
⊂ 2Rn with P := {(x, y) | Ay +Bx 6 b}.

Then, V 4 C
(

epi(Q) , πx,y,zx

)
and V is a polyhedral function which is affine on each element

of V.

x

y

z

•

•

•

P

Q

epi(U)

•
•

•
•

U
• •

• •

• •

•

epi(Q)

• •
• •

• •
•

•
•

•• • • •• • ••V

Figure 4.2: An illustration of the proof of Lemma 4.12: the epigraph epi(Q) of the coupling
function in blue in the (x, y, z) space, the epigraph of U in yellow in the (y, z) plane, the affine
regions U of U in green on the y axis, the coupling polyhedron P in orange and brown in the
(x, y) plane, the polyhedral complex Q in red and brown in the (x, y) plane and the chamber
complex V in violet on the x axis.

Proof. We have epi(Q) =
(
Rn × epi(U)

)
∩ (P × R) ⊂ Rn+m+1. Since

V (x) = E
[

min
y∈Rm,z∈R

c>y + z + I(x,y,z)∈epi(Q)
]
,
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by Theorem 4.9 applied to the problem with variables (y, z) and the coupling polyhedron epi(Q),
V is a polyhedral function affine on each element of C(epi(Q), πx,y,zx ). We now show that V 4
C(epi(Q), πx,y,zx ). As epi(Q) is the epigraph of a polyhedral function, Q := πx,y,zx,y

(
Flow(epi(Q))

)
⊂

2Rn+m is a polyhedral complex.
Let x̌ ∈ πx,y,zx (epi(Q)), using notation of Definition 3.10,

σepi(Q),πx,y,zx
(x̌) :=

⋂
F∈F(epi(Q)) s.t. x̌∈πx,y,zx (F )

πx,y,zx (F ) (4.30)

=
⋂

F∈Flow(epi(Q)) s.t. x̌∈πx,y,zx (F )
πx,y,zx (F ) (4.31)

=
⋂

F ′∈Q s.t. x̌∈πx,yx (F ′)
πx,yx (F ′) =: σQ,πx,yx (x̌) (4.32)

Indeed, as epi(Q) is an epigraph of a polyhedral function, if F ∈ F(epi(Q)) such that
x̌ ∈ πx,y,zx (F ) then there exists G ∈ Flow(epi(Q)) such that G ⊂ F and x̌ ∈ πx,y,zx (G), allowing
us to go from the first to second equality. The third equality is obtained by setting F ′ = πx,y,zx,y (F ).
Thus, C(epi(Q), πx,y,zx ) = C(Q, πx,yx ).

We now show that F(P ) ∧ (Rn × U) 4 Q. Let G ∈ F(P ) ∧
(
Rn × U

)
. There exist σ ∈ U

and F ∈ F(P ) such that G = F ∩ (Rn × σ). By definition of Flow , there exists ψ ∈ Rm such
that σ = πy,zy

(
epi(U)ψ,1

)
. We show that G ⊂ πx,y,zx,y (epi(Q)0,ψ,1) ∈ Q. Indeed, let (x, y) ∈ G =

F ∩
(
Rn×πy,zy (epi(U)ψ,1)

)
. We have (x, y) ∈ F ⊂ P such that y ∈ arg miny′∈Rm

{
ψ>y′+U(y′)

}
.

Which implies that (x, y) ∈ arg min
{
ψ>y′+U(y′) | (x′, y′) ∈ P

}
. This also reads, by Eq. (4.28),

as (x, y) ∈ πx,y,zx,y (epi(Q)0,ψ,1). Thus, G ⊂ πx,y,zx,y (epi(Q)0,ψ,1) ∈ Q leading to F(P )∧(Rn×U) 4 Q.
Finally, by monotonicity, Lemma 4.11 ends the proof.

Remark 4.13. In Lemma 4.12, the complex V is independent of the distribution of c. However,
for special choices of c, V might be affine on each cell of a coarser complex than V. For
instance, if U = 0 and c ≡ 0, we have that V = Iπx,yx (P ), V is affine on πx,yx (P ). Nevertheless,
V = C(P, πx,yx ) is generally finer than F

(
πx,yx (P )

)
.

4.3.2 Exact quantization of MSLP

We next show that the multistage program with arbitrary cost distribution is equivalent to a
multistage program with independent, finitely distributed, cost distributions. Further, for all
step t, there exist affine regions, independent of the distributions of costs, where Vt is affine.
Assumption 1 is naturally extended to the multistage setting as follows
Assumption 4.1. The sequence (ct, ξt)26t6T is independent.2 Further, for each t ∈ {2, · · · , T},
ξt = (At,Bt, bt) is finitely supported, and ct ∈ L1(Ω,A,P;Rnt) is integrable with ct ∈ −Cone(A>t )
almost surely.

Note that Assumption 4.1 does not require independence between ct and ξt. For t ∈ [T ],
and ξ = (A,B, b) ∈ supp(ξt) we define the coupling polyhedron

Pt(ξ) := {(xt−1, xt) ∈ Rnt−1 × Rnt | Axt +Bxt−1 6 b}, (4.33)

and consider, for xt−1 ∈ Rnt−1 ,

Ṽt(xt−1|ξ) := E
[

min
xt∈Rnt

c>t xt + Vt+1(xt) + IAxt+Bxt−16b | ξt = ξ
]
. (4.34)

Then, the cost-to-go function Vt is obtained by

Vt(xt−1) =
∑

ξ∈supp(ξt)
P
[
ξt = ξ

]
Ṽt(xt−1|ξ) (4.35)

2The results can be adapted to non-independent ξt as long as ct is independent of (cτ )τ<t conditionally on
(ξτ6t).
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The next two theorems extend the quantization results of Theorem 4.3 to the multistage
settings.

Theorem 4.14 (Affine regions independent of the cost). Assume that (ξt)t∈[T ] is a sequence of
independent, finitely supported, random variables. We define by induction PT+1 := {RnT } and
for t ∈ {2, . . . , T}

Pt,ξ := C
(
(Rnt × Pt+1) ∧ F

(
Pt(ξ)

)
, πxt−1,xt

xt−1

)
(4.36a)

Pt :=
∧

ξt∈supp ξt
Pt,ξ (4.36b)

Then, for all costs distributions (ct)26t6T such that (ct, ξt)26t6T satisfies Assumption 4.1 and
all t ∈ {2, . . . , T}, we have supp(Pt) = dom(Vt), and Vt is polyhedral and affine on each cell of
Pt.

Proof. We set for all t ∈ {2, . . . , T + 1}, Vt := π
xt−1,z
xt−1

(
Flow

(
epi(Vt)

))
the affine regions of Vt.

As VT+1 ≡ 0 is polyhedral and affine on RnT , we have PT+1 = VT+1. Assume now that
for t ∈ {2, . . . , T}, Vt+1 is polyhedral and Pt+1 refines Vt+1 (i.e. Vt+1 is affine on each cell
σ ∈ Pt+1).

By Lemma 4.12, Ṽt(·|ξ), defined in Eq. (4.34), is affine on each cell of C(Rnt × Vt+1 ∧
F
(
Pt(ξ)

)
, π

xt−1,xt
xt−1 ) which is refined by Pt,ξ = C(Rnt × Pt+1 ∧ F

(
Pt(ξ)

)
, π

xt−1,xt
xt−1 ) by induction

hypothesis and Lemma 4.11. Thus, by Eq. (4.35), Vt is affine on each cell of Pt. In particular,
Vt is polyhedral and Pt := ∧

ξt∈supp ξt Pt,ξ refines Vt. Backward induction ends the proof.

By Lemma 4.12, we have that Pt,ξ 4 C(epi
(
Qξt
)
, π

xt−1,xt,z
xt−1 ) where Qξt (xt−1, xt) := Vt+1(xt) +

IAxt+Bxt−16bt . In particular, consider σ ∈ Pt,ξ, then for all xt−1 ∈ ri(σ), all fibers epi(Qξt )xt−1 are
normally equivalent. We can then define Nt,ξ,σ := N (epi(Qξt )xt−1) for an arbitrary xt−1 ∈ ri(σ).

The next result shows that we can replace the MSLP problem Eq. (4.2) by an equivalent
problem with a discrete cost distribution.

Theorem 4.15 (Exact quantization of the cost distribution, Multistage case). Assume that
(ξt)t∈[T ] is a sequence of independent, finitely supported, random variables. Then, for all costs
distributions such that (ct, ξt)26t6T satisfies Assumption 4.1, for all t ∈ [T ], all xt−1 ∈ Rnt−1

and all ξ ∈ supp(ξt), we have a quantized version of Eq. (4.34):

Ṽt(xt−1|ξ) =
∑

N∈Nt,ξ

p̌t,N |ξ min
xt∈Rnt

{
č>t,N |ξxt + Vt+1(xt) + IAxt+Bxt−16b

}
(4.37)

where Nt,ξ := ∧
σ∈Pt,ξ −Nt,ξ,σ and for all ξ ∈ supp(ξt) and N ∈ Nt,ξ we denote

p̌t,N |ξ := P
[
(ct, 1) ∈ riN | ξt = ξ

]
(4.38a)

čt,N |ξ :=
{
E
[
ct | (ct, 1) ∈ riN, ξt = ξ

]
if P

[
ξt = ξ, (ct, 1) ∈ riN

]
6= 0

0 otherwise
(4.38b)

Proof. Since Ṽt(xt−1|ξ) = E
[
minxt∈Rnt ,z∈R c>xt + z + I(xt−1,xt,z)∈epi(Qξt )

]
and the polyhedral

complex Pt,ξ refines C(epi
(
Qξt
)
, π

xt−1,xt,z
xt−1 ), by applying Theorem 4.3 with variables (xt, z) and

the coupling constraints polyhedron epi(Qξt ), we deduce that the coefficients (p̌t,N |ξ)N∈Nt,ξ and
(čt,N |ξ)N∈Nt,ξ satisfy

Ṽt(xt−1|ξ) =
∑

N∈Nt,ξ

p̌t,N |ξ min
xt∈Rnt ,z∈R

{
č>t,N |ξxt + z + I(xt−1,xt,z)∈epi(Qξt )

}
(4.39)

as the deterministic coefficient before z is equal to its conditional expectation.
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In particular, the MSLP problem is equivalent to a finitely supported MSLP as shown in the
following result.

For t0 ∈ [T −1], we construct the scenario tree Tt0 as follows. A node of depth t− t0 of Tt0 is
labelled by a sequence (Nτ , ξτ )t0<τ6t where Nτ ∈ Nτ,ξτ and ξτ ∈ supp(ξτ ). In this way, a node
of depth t − t0 of Tt0 keeps track of the sequence of realizations of the random variables ξτ for
times τ between t0 and t, and of a selection of cones in Nt,ξt at the same times. Note that, by
the independence assumption, all the subtrees of Tt0 , starting from a node of depth t − t0 are
the same as Tt0+t. We denote by lv(Tt0) the set of leaves of Tt0 .

Corollary 4.16 (Equivalent finite tree problem). Define the quantized probability cost cν :=
čt,Nt|ξt and probability pν := ∏

t0<τ6t pξτ p̌τ,Nτ |ξτ , for all nodes ν = (Nτ , ξτ )t0<τ6t. Then, the
cost-to-go functions associated with Eq. (4.1) are given by

Vt0(x̌) = min
(xν)ν∈Tt0

∑
ν∈Tt0

pνc
>
ν xν (4.40a)

s.t. Axµ +Bxν 6 b ∀ν ∈ Tt0\ lv(Tt0),∀µ < ν , (4.40b)

for all 2 6 t0 6 T − 1. Here, x̌ is the value of x at the root node of Tt0, and the notation
∀µ = (ν,N,A,B, b) < ν indicates that µ ranges over the set of children of ν.

4.3.3 Dual characterization through nested fiber polyhedra?

We now show that the dual characterization of the expected cost-to-go function through a
weighted fiber polyhedron in Theorem 4.5 can be extended to the multistage case. Leverag-
ing dynamic programming equations, we can define at each stage a weighted fiber polyhedron
depending on the weighted fiber polyhedron of the next stage. We call them, the nested fiber
polyhedra.

We denote the dual admissible set at stage t as

Dt,ct := {µt|µt > 0, A>t µt + ct = 0} (4.41)

For sake of simplicity, we present the case where the constraints are deterministic.
Assumption 4.2. For each t ∈ {2, · · · , T}, ξt = (At,Bt, bt) is deterministic and almost surely
equal to ξt = (At, Bt, bt) Further, the sequence (ct)26t6T is independent and ct ∈ L1(Ω,A,P;Rnt)
is integrable with ct ∈ −Cone(A>t ) almost surely.

We now define a nested extension of weighted fiber polyhedra and give a dual characterization
of the expected cost-to-go function of an MSLP with deterministic constraints. We denote by
λ[t:T ], the vector (λt, λt+1, · · · , λT ).

Theorem 4.17. Assume Assumption 4.2 holds. We define by backward induction the nested
fiber polyhedra Et ⊂ Rnt × · · · × RnT :

FT,cT := DT,cT (4.42)
Et := E

[
Ft,ct

]
∀t ∈ [T ] (4.43)

Ft,ct :=
{
(λ[t:T ])

∣∣λt ∈ Dt,ct+B>t+1λt+1
, λ[t+1:T ] ∈ Et+1

}
∀t ∈ [T − 1] (4.44)

Then, at each stage t, the expected cost-to-function can be expressed thanks to the support
function of a nested fiber polyhedron. More precisely, for all t ∈ {2, · · · , T} and all xt−1 ∈ Rnt−1,
we have

Vt(xt−1) = σEt

(
Btxt−1 − bt,−b[t+1:T ]

)
. (4.45)

Observe that this theorem gives an explicit polyhedral representation of the expected cost-
to-go functions as the support functions of the nested fiber polyhedra.
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Proof. Note that by backward induction on t, Ft,ct is a polyhedron depending affinely on ct and
that Et is indeed a polyhedron by Theorem 4.6.

We show the result by backward induction. For t = T , the proof is the same as Theorem 4.5.
Let t 6 T − 1 and assume the result holds for t+ 1, we have by definition

V̂t(xt−1, ct) = inf
xt∈Rnt

c>t xt + Vt+1(xt) + IAtxt+Btxt−16bt (4.46)

Thinking of the rigth-hand side of this equation as a linear problem and denoting by V ?
t+1 the

Fenchel transform of Vt+1, by strong duality, we also have

V̂t(xt−1, ct) = sup
λt∈Rmt+

(Btxt−1 − bt)>λt − V ?
t+1(−ct −A>t λt) (4.47)

Using the induction assumption, we have

V ?
t+1(ψt) = sup

xt∈Rnt
ψ>t xt − Vt+1(xt) (4.48a)

= sup
xt∈Rnt

ψ>t xt − sup
λ[t+1:T ]∈Et

(Bt+1xt − bt+1)>λt+1 −
T∑

s=t+2
b>s λs (4.48b)

= sup
xt∈Rnt

inf
λ[t+1:T ]∈Et+1

ψ>t xt + (bt+1 −Bt+1xt)>λt+1 +
T∑

s=t+2
b>s λs (4.48c)

= inf
λ[t+1:T ]∈Et+1

T∑
s=t+1

b>s λs + sup
xt∈Rnt

x>t (ψt −B>t+1λt+1) (4.48d)

= inf
λ[t+1:T ]∈Et+1

T∑
s=t+1

b>s λs + IB>t+1λt+1=ψt (4.48e)

Thus, by putting this new expression into Eq. (4.47), we have

V̂t(xt−1, ct) = sup
λt∈Rmt+

(Btxt−1 − bt)>λt − inf
λ[t+1:T ]∈Et+1

T∑
s=t+1

b>s λs + IA>t λt+ct+B>t+1λt+1=0 (4.49a)

= sup
λ[t:T ]

(Btxt−1 − bt)>λt −
T∑

s=t+1
b>s λs + Iλ[t+1:T ]∈Et+1 + Iλt∈Dt,ct+B>t+1λt+1

(4.49b)

= sup
λ[t:T ]

(Btxt−1 − bt)>λt −
T∑

s=t+1
b>s λs + Iλ[t:T ]∈Ft,ct (4.49c)

By interchangeability principle (see the proof of Theorem 4.5), we have

V̂ (xt−1) = E
[

sup
λ[t:T ]∈Ft,ct

(Btxt−1 − bt)>λt −
T∑

s=t+1
b>s λs

]
(4.50a)

= sup
λ[t:T ]∈Et

(Btxt−1 − bt)>λt −
T∑

s=t+1
b>s λs (4.50b)

= σEt(Btxt−1 − bt,−b[t+1:T ]) (4.50c)
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4.4 An illustrative example

We consider the following second-stage problem, with n = 1 and m = 2 :

V (x) = E

min
y∈R2

c>y

s.t. ‖y‖1 6 1, y1 6 x and y2 6 x

 . (4.51)

We apply our results, to provide an explicit representation of V .

P x

y1

y2

x = −0.25x = 0.25x = 0.75 x = 1.5

• • • •x = −0.5 x = 0 x = 0.5 x = 1
C(P, π)

Figure 4.3: The coupling polyhedron P in blue, different cuts and fibers Px vertical in yellow,
and its chamber complex C(P, π) in red on the bottom.

y1

y2

(a) x = −0.25, σ = [−0.5, 0]

y1

y2

(b) x = 0.25, σ = [0, 0.5]

y1

y2

(c) x = 0.75, σ = [0.5, 1]

y1

y2

(d) x > 1, σ = [1,+∞)

Figure 4.4: Fibers Px in blue and their normal fan N (Px) = Nσ in green for different x ∈ R.

The coupling polyhedron is P = {(x, y) ∈ R × R2 | ‖y‖1 6 1, y1 6 x, y2 6 x} presented
in Fig. 4.3, and its V-representation is the collection of vertices (0,−1, 0), (−0.5,−0.5,−0.5),
(0, 0,−1), (1, 1, 0), (0.5, 0.5, 0.5), (1, 0, 1) and the ray (1, 0, 0). By projecting the different faces,
we see that its projection is the half-line, π(P ) = [−0.5,+∞) and its chamber complex C(P, π)
is the collection of cells composed of {−0.5}, [−0.5, 0], {0}, [0, 0.5], {0.5}, [0.5, 1], {1}, [1,+∞)
as presented in Fig. 4.3. As there are 4 different maximal chambers, there are 4 different classes
of normally equivalent fibers as shown in Fig. 4.4.

We evaluate čN and p̌N for N ∈ −Nσ using the formulas of Table B.1. For example, when c
is uniform on the centered ball for the ∞-norm of radius R, Fig. 4.5 shows the regions of which
the areas and centroids need to be computed.
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••

• •
N5

N6

N3

• ••
•
•

•

(a) σ = [−0.5, 0]

••

• •
N5

N6
N4

N3 N2

• ••
•
•

•
•

•
•
•

(b) σ = [0, 0.5]

••

• •
N5

N1
N6

N4

N3 N2

• ••
•

•
•
•

•
•

•
•
•

(c) σ = [0.5, 1]

••

• •

N1N4

N3 N2

N6

•
•

•
•
•

•
•
•

(d) σ = [1,+∞)

Figure 4.5: Exact quantization illustrated. The normal fan Nσ in green with Ni = W>i R+, c
is uniform on the support Q = −Q = B∞(0, R) in light orange, the sets W>i R+ ∩ Q in red.
The polyhedral complex Rσ shown in red or orange. The quantized costs čN are determined by
centroids (small circles in pink).

x

V (x)
-0.5 0 0.5 1

θ2e−θ‖c‖1
4 dc

uniform on norm 1 ball

uniform on norm ∞ ball
uniform on norm 2 ball

e
−
‖c‖22
2γ2

2πγ2 dc

Figure 4.6: Graph of the cost-to-go function V for different distribution of the cost c with
R = θ = γ = 1.

dP(c) −1
2 6 x 6 0 0 6 x 6 1

2
1
2 6 x 6 1 1 6 x

1‖c‖16R
2R2 dc −7R

24 (1 + 2x) −R
24 (7 + 6x) −R

6 (2 + x) −R
2

θ2e−θ‖c‖1
4 dc −7

8θ (1 + 2x) −1
8θ (7 + 6x) −1

2θ (2 + x) −3
2θ

1‖c‖∞6R

4R2 dc −R
12 (5 + 10x) −R

12 (5 + 4x) −R
6 (3 + x) −2R

3

e−‖c‖
2
2/2γ

2

2πγ2 dc −γ(2+
√

2)(1+2x)
2
√

2π
−γ(2+

√
2+2
√

2x)
2
√

2π
−2γ(1+(−1+

√
2)x)√

2π − 2√
π
γ

1‖c‖26R
πR2 dc −R(2+

√
2)(1+2x)

3π
−R(2+

√
2+2
√

2x)
3π

−4R(1+(−1+
√

2)x)
3π −4

√
2R

3π

Table 4.1: Different values of V (x) for different distributions of the cost c.

4.5 Complexity

Hanasusanto, Kuhn and Wiesemann showed in [HKW16] that 2-stage stochastic programming
is ]P-hard, by reducing the computation of the volume of a polytope to the resolution of a
2-stage stochastic program. Nevertheless, we show that for a fixed dimension of the recourse
space, 2-stage programming is polynomial. Therefore, the status of 2-stage programming seems
somehow comparable to the one of the computation of the volume of a polytope – which is also
both ]P-hard and polynomial when the dimension is fixed (see for example [GK94, 3.1.1]). We
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also give a similar result for multistage stochastic linear programming.
We now give a summary of our method. A naive approach would be to use directly the exact

quantization result Theorem 4.3. However, even in the two-stage case, the latter yields a linear
program of an exponential size when only the recourse dimension m is fixed. Indeed, the size
of the quantized linear program, (2SLP ) is polynomial only when both n and m are fixed as∧
σ∈C(P,π)−Nσ can have, by McMullen’s and Stanley’s upper bound theorems ([McM70, Sta75]),

an exponential size in n and m, and these bounds are tight. Hence, to handle the case in which
only the recourse dimension m is fixed, we need additional ideas. We use the local quantization
result Theorem 4.2, observing that when m is fixed, N (Px) has a polynomial size. We thus
have a polynomial time oracle that gives the values V (x) and a subgradient g ∈ ∂V (x) by
Theorem 4.9. Then, we rely on the theory of linear programming with oracle [GLS12], working
in the Turing model of computation (a.k.a. bit model). In particular, all the computations are
carried out with rational numbers. We now provide the needed details of the proof.

4.5.1 Multistage programming with exact oracles

Recall that a polyhedron can be given in two manners. The “H-representation” provides an
external description of the polyhedron, as the intersection of finitely many half-spaces. The
“V -representation” provides an internal representation, writing the polyhedron as a Minkowski
sum of a polytope (given as the convex hull of finitely many points) and of a polyhedral cone
(generated by finitely many vectors).

We say that a polyhedron is rational if the inequalities in its H-representation are rational
or, equivalently, the generators of its V -representation have rational coefficients. We shall say
that a (convex) polyhedral function V is rational if its epigraph is a rational polyhedron.

Recall that, in the Turing model, the size (or encoding length see [GLS12, 1.3]) of an integer
k ∈ Z is 〈k〉 := 1 + dlog2(|k| + 1)e; the size of a rational r = p

q ∈ Q with p and q coprime
integers, is 〈r〉 := 〈p〉 + 〈q〉. The size of a rational matrix or a vector, still denoted by 〈·〉, is
the sum of the sizes of its entries. The size of an inequality α>x 6 β is 〈α〉 + 〈β〉. The size of
a H-representation of a polyhedron is the sum of the sizes of its inequalities and the size of a
V -representation of a polyhedron is the sum of the sizes of its generators.

If the dimension of the ambient space is fixed, one can pass from one representation to the
other one in polynomial time. Indeed, the double description algorithm allows one to get a V -
representation from a H-representation, see the discussion at the end of Section 3.1 in [FP95],
and use McMullen’s upper bound theorem ([McM70] and [GLS12, 6.2.4]) to show that the
computation time is polynomially bounded in the size of the H-representation. A fortiori, the
size of the V -representation is polynomially bounded in the size of the H-representation. Dually,
the same method allows one to obtain a H-representation from a V -representation. Hence, in the
sequel, we shall use the term size of a polyhedron for the size of a V or H-representation: when
dealing with polynomial-time complexity results in fixed dimension, whichever representation is
used is irrelevant. In particular, we define the size 〈N〉 of a rational cone N as the size of a H
or V representation of N .

We first observe that the size of the scenario tree arising in the exact quantization result
becomes polynomial when suitable dimensions are fixed.

Proposition 4.18. Let t ∈ {2, . . . , T}, and suppose that the dimensions nt, . . . , nT and the
cardinals ](supp ξt), · · · ,](supp ξT ) are fixed. Let T be the scenario tree constructed in Corol-
lary 4.16. Then, the subtree of T rooted at an arbitrary node of depth t can be computed in
polynomial in ∑T

s=t
∑
ξ∈supp(ξs)〈ξ〉.

Proof. Recall that the number of chambers of a chamber complex is polynomial when both
dimensions are fixed by [VWBC05, 3.9]. Thus, we can compute recursively the (maximal)
chambers of the complexes Pt defined in Theorem 4.14 thanks to the algorithm in [CL98, 3.2] in



4.5. COMPLEXITY 97

polynomial time. We then can compute in polynomial time the fans Nt defined in Theorem 4.15.

We recall the theory of linear programming with oracle applies to the class of “well described”
polyhedra which are rational polyhedra with an a priori bound on the bit-sizes of the inequalities
defining their facets, we refer the reader to [GLS12] for a more detailed discussion of the notions
(oracles) and results used here.

Definition 4.19 (first-order oracle). Let f be a rational polyhedral function. We say that f
admits a polynomial time (exact) first-order oracle, if there exists an oracle that takes as input
a vector x and either returns a hyperplane separating x from dom(f) if x /∈ dom(f) or returns
f(x) and g ∈ ∂V (x) if x ∈ dom(f), in polynomial time in 〈x〉.

Lemma 4.20. Let Q ⊂ Rd be a polyhedron, c ∈ Rd a cost vector and f be a polyhedral function
given by a first-order oracle. Furthermore, assume epi(f) and Q are well described. Then, the
problem minx∈Q c>x+ f(x) can be solved in oracle-polynomial time in 〈c〉+ 〈epi(f)〉+ 〈Q〉.

Proof. The case where dom(f) = Rd is tackled in Theorem 6.5.19 in [GLS12]. If f has a general
domain, we can write f = f̃ + Idom f where f̃ is a polyhedral function with a well described
epigraph and such that dom f̃ = Rd. Then, noting that epi(f) = epi(f̃) ∩ dom(f) × R, we can
adapt the proof of the latter theorem, using Exercise 6.5.18(a) of [GLS12].

We do not require the distribution of the cost c to be described extensively. We only need
to assume the existence of the following oracle.

Definition 4.21 (cone-valuation oracle). Let c ∈ L1(Ω,A,P,Rm) be an integrable cost distri-
bution such that, for every rational cone N , the quantized probability p̌N and quantized cost čN
are rational. We say that c admits a polynomial time (exact) cone-valuation oracle, if there
exists an oracle which takes as input a rational polyhedral cone N and returns p̌N and čN in
polynomial time in 〈N〉.

Theorem 4.22 (Cone valuation to first-order oracle). Consider the value functions of prob-
lem (4.1) defined in Eq. (4.2). Assume that T, n2, . . . , nT , ](supp ξ2), · · · ,](supp ξT ) are fixed
integers, and that (ct, ξt)26t6T satisfies Assumption 4.1. Assume in addition that, every vector
ξ ∈ supp(ξt) has rational entries and that the probabilities pt,ξ := P

[
ξt = ξ

]
are rational num-

bers. Assume finally that every random variable ct conditionally to {ξt = ξ}, denoted by ct,ξ,
admits a polynomial-time cone-valuation oracle (see Definition 4.21).

Then, for all t > 2, Vt admits a polynomial time first-order oracle.

Proof. We start with the 2-stage case with deterministic constraints. We recall our notation
V (x) := E

[
miny∈Rm c>y + IAy+Bx6b

]
. Let x ∈ Rn be an input vector. We first check if

x ∈ π(P ) = dom(V ). By solving the dual of miny∈Rm{ 0 |Ay 6 b − Bx}, we either find an
unbounded ray generated by µ ∈ Rq such that µ > 0, µ>A = 0 and µ>(b−Bx) < 0 or a y ∈ Rm
such that Ay 6 b − Bx, so that x ∈ π(P ). In the former case we have x /∈ π(P ), and we get a
cut {x′ ∈ Rn |µ>Bx′ = µ>b+µ>Ax

2 }, separating π(P ) = dom(V ) from x.
So, we now assume that x ∈ π(P ), i.e., V (x) < +∞. We next show that we can compute

V (x) and a subgradient α ∈ ∂V (x) in polynomial time. Indeed, the McMullen upper-bound
theorem [McM70], in its dual version, guarantees that a polytope of dimension m with f facets
has O(f bm/2c) faces, see [Sei95]. Since the number of cones in N (Px) is equal to the number
of faces of Px which is polynomially bounded in the number of constraints q 6 〈ξ〉, ]N (Px)
is polynomial in 〈ξ〉. Thus, since c is given by a cone valuation oracle, we can compute in
polynomial time the collection of all quantized costs and probabilities čN and p̌N , indexed by
N ∈ −N (Px). Then, by Theorem 4.9, we can compute V (x) and a subgradient α ∈ ∂V (x) by
solving a linear program for each cone N ∈ −Nσ. All these operations take a polynomial time.
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The case of finitely supported stochastic constraints reduces to the case of deterministic
constraints dealt with above, using dom(V ) = ∩ξ∈supp ξπ(P (ξ)) and V (x) = ∑

ξ∈supp ξ pξṼ (x|ξ)
where Ṽ (x|ξ) := E

[
V̂ (x, c, ξ) | ξ = ξ

]
.

We finally deal with the multistage case similarly, using the quantization result Corollary 4.16
in extensive form. Applying Proposition 4.18, the quantized costs and probabilities arising there
can be computed by a polynomial number of calls to the cone-valuation oracle. This provides a
first order oracle for the expected cost-to-go function Vt.

We now refine the definition of cone-valuation oracle, to take into account situations in which
the distribution of the random cost c is specified by a parametric model. We shall say that such a
distribution admits a polynomial-time parametric cone-valuation oracle if there is an oracle that
takes as input the parameters of the distribution, together with a rational cone N , and outputs
the quantized probability p̌N and cost čN . Especially, we consider the following situations:

1. Deterministic distribution equal to a rational cost c. We set 〈c〉 := 〈c〉

2. Exponential distribution on a rational cone K with rational parameter θ. We set 〈c〉 :=
〈K〉+ 〈θ〉

3. Uniform distribution on a rational polyhedron Q such that Aff(Q) = {y ∈ Rm | ∀j ∈ J ⊂
[m], yj = qj ∈ Q} where J is a subset of [m] and qj are rational numbers (in particular, Q
is full dimensional when J = ∅). We set: 〈c〉 = 〈Q〉

4. Mixtures of the above distributions, i.e., convex combination with rational coefficients
(λk)k∈[l] of distributions of random variables (ck)k∈[l] satisfying 1. 2. or 3. Then, we
set 〈c〉 = ∑l

k=1〈ck〉+ 〈λk〉.

Theorem 4.23. Assume that the dimension m is fixed, and that c is distributed according to
any of the above laws (deterministic, exponential, uniform, or mixture). Then, the random cost
c admits a polynomial-time parametric cone-valuation oracle.

Proof. 1. Case of a deterministic distribution. We first check whether c ∈ ri(N), which can be
done in polynomial time, see Section 6.5 of [GLS12]. Then, if c ∈ ri(N), we set čN = c and
p̌N = 1 otherwise čN = 0 and p̌N = 0.

2. Case of an exponential distribution. Since the dimension is fixed, for every polyhedron R,
we can triangulate R ∩ supp(c) and partition it into (relatively open) simplices and simplicial
cones (Sk)k∈[l], and by Stanley upper bound theorem, the size l of the triangulation is polynomial
in 〈R〉. By using the Brion formula in Table B.1, we compute in polynomial time p̌R = ∑l

k=1 p̌Sk
and čR = ∑l

k=1 p̌Sk čSk/p̌R if p̌R = 0 and čR = 0 otherwise.
3. Case of a uniform distribution. After triangulating (as in the case of an exponential

distribution), we may suppose that the support of the distribution is a simplex S, so that Q = S.
If this simplex S is full dimensional, then its volume is given by a determinantal expression, and
so, it is rational (see e.g. [GK94] 3.1). Then, the formulas of Table B.1 yield the result. If this
simplex is not full dimensional, we have Aff(S) = {y ∈ Rm | ∀j ∈ J, yj = qj}, a similar formula
holds, ignoring the coordinates of y whose indices are in the set J .

4. Case of mixtures of distributions. Trivial reduction to the previous cases.

Remark 4.24. The conclusion of Theorem 4.23 does not carry over to the uniform distribution
on a general polytope of dimension k < n. The condition that Aff(Q) = {y ∈ Rm | ∀j ∈ J, yj =
qj} ensures that the orthogonal projection on Aff(Q) preserves rationality, which entails that the
k-dimensional volume of Q is a rational number. In general, this volume is obtained by applying
the Cayley Menger determinant formula (see for example [GK94, 3.6.1]), and it belongs to a
quadratic extension of the field of rational numbers. For example, if ∆d is the canonical simplex
{λ ∈ Rd+1

+ |
∑d+1
i=1 λi = 1} then Vol(∆d) =

√
d+1
d! .
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For the Gaussian distribution, čS and p̌S can be determined in terms of solid angles (see
[Rib06]) arising in Table B.1. These coefficients generally involve the number π and Euler’s Γ
function, and thus they are irrational.

Corollary 4.25 (MSLP is polynomial for fixed dimensions). Consider the problem Eq. (4.1)
. Assume that T, n2, . . . , nT , ](supp ξ2), · · · ,](supp ξT ) are fixed integers, that (ct, ξt)26t6T
satisfies Assumption 4.1. Suppose in addition that, for all ξ ∈ supp(ξt), pt,ξ := P

[
ξt = ξ

]
and ξ are rational and that the random variable ct conditionally to {ξt = ξ}, denoted by ct,ξ, is
of the type considered in Theorem 4.23.

Then, Problem (4.1) can be solved in a time that is polynomial in the input size 〈c1〉+ 〈ξ1〉+∑T
t=2

∑
ξ∈supp(ξt)(〈ct,ξ〉+ 〈ξ〉+ 〈pt,ξ〉).

Proof. We first show by backward induction that the epigraph epi(V2) is well described. The
dynamic programming equation Eq. (4.2) allows us to compute a H-representation of epi(Vt)
from a H-representation of epi(Vt+1). Indeed, by Theorem 4.15, we have

Vt(xt−1) =
∑

ξ∈supp(ξt)
pt,ξ

∑
N∈Nt,ξ

p̌t,N |ξ min
xt∈Rnt

Qt,N |ξ(xt, xt−1) , with

Qt,N |ξ(xt, xt−1) := č>t,N |ξxt + Vt+1(xt) + I(xt,xt−1)∈Pt(ξ) .

We then have

epi(Qt,N |ξ) =
(

epi(xt 7→ č>t,N |ξxt) + epi(Vt+1)
)
∩ (Pt(ξ)× R)

epi(Vt) =
∑

ξ∈supp(ξt)
pt,ξ

∑
N∈Nt,ξ

p̌t,N |ξ π
xt−1,xt,z
xt−1,z

(
epi(Qt,N |ξ)

)
,

recalling that πxt−1,xt,z
xt−1,z denotes the projection mapping (xt−1, xt, z) 7→ (xt−1, z). Well described

polyhedra are stable under the operations of projection, intersection, and Minkowski sum, see in
particular [GLS12, 6.5.18]. It follows that epi(Vt) is well described. Then, the corollary follows
from Lemma 4.20, Theorem 4.22 and Theorem 4.23.

4.5.2 Multistage programming with approximate oracles

We finally consider the situation in which the law of the cost distribution is only known approx-
imately. Hence, we relax the notion of cone-valuation oracle, as follows.

Definition 4.26 (Weak cone-valuation oracle). Let c ∈ L(Ω,A,P,Rm) be an integrable cost
distribution. We say that c admits a polynomial time weak cone-valuation oracle, if there exists
an oracle which takes as input a rational polyhedral cone N together with a rational number
ε > 0, and returns a rational number p̃N and a rational vector c̃N such that |p̃N − p̌N | 6 ε and
‖c̃N − čN‖ 6 ε, in a time that is polynomial in 〈N〉+ 〈ε〉.

Definition 4.27 (Weak first-order oracle). Let f be a rational polyhedral function. We say that
f admits a polynomial time weak first-order oracle, if there exists an oracle that takes as input
a vector x and either returns a hyperplane separating x from dom(f) if x /∈ dom(f) or returns
a scalar f̃ and a vector g̃ such that |f̃ − f(x)| 6 ε and d

(
g̃, ∂f(x)

)
6 ε if x ∈ dom(f), in a time

which is polynomial in 〈x〉+ 〈ε〉.

Remark 4.28. In our definition of weak first order oracle, we require that feasibility (x ∈
dom(f)) be tested exactly, whereas the value and a subgradient of the function are only given
approximately. This is suitable to the present setting, in which the main difficulty resides in the
approximation of the function (which may take irrational values for relevant cost distributions).
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We now rely on the theory of linear programming with weak separation oracles developed
in [GLS12]. Let C ⊂ Rd be a convex set, for ε > 0, let S(C, ε) := {x ∈ Rd | ‖x − y‖ 6 ε} and
S(C,−ε) := {x ∈ Rd | B(x, ε) ⊂ C} where B(x, ε) denotes the Euclidean ball centered at x of
radius ε. A weak separation oracle for a convex set C ⊂ Rd takes as argument a vector x ∈ Rd
and a rational number ε > 0, and either asserts that x ∈ S(C, ε) or returns a rational vector
γ ∈ Rd, of norm one, and a rational scalar δ, such that γ>y 6 γ>x+ ε for all y ∈ S(C,−ε).

Theorem 4.29 (Weak cone valuation to weak first-order oracle). Consider the value functions
of problem (4.1) defined in Eq. (4.2) . Assume that T, n2, . . . , nT , ](supp ξ2), · · · ,](supp ξT ) are
fixed integers, and that (ct, ξt)26t6T satisfies Assumption 4.1. Assume in addition that, every
vector ξ ∈ supp(ξt) has rational entries and that the probabilities pt,ξ := P

[
ξt = ξ

]
are rational

numbers. Assume finally that the diameters of domVt, for t > 2, are bounded by a rational
constant R, and that every random variable ct conditionally to {ξt = ξ}, denoted by ct,ξ, admits
a polynomial-time weak cone-valuation oracle (see Definition 4.21).

Then, for all t > 2, Vt admits a polynomial time weak first-order oracle.

Proof. The proof is similar to the one of Theorem 4.22. The main difference is that we need an
a priori bound R on the diameter of domVt, so that if d(g̃, ∂Vt(x)) 6 ε, then, using Cauchy-
Schwarz inequality, Vt(y)− Vt(x) > g̃ · (y− x)− εR holds for all y ∈ domVt. Together with and
approximation of Vt(x), this allows us to get a weak separation oracle for the epigraph of Vt.

Corollary 4.30 (Approximate (MSLP) is polynomial-time for fixed recourse dimension m).
Consider Problem (4.1). Assume that T, n2, . . . , nT , ](supp ξ2), · · · ,](supp ξT ) are fixed integers
Assume finally that the diameters of domVt, for t > 2, are bounded by a rational constant R,
and that for all ξ ∈ supp(ξt), the random variable ct conditionally to {ξt = ξ}, denoted by ct,ξ,
admits a polynomial-time weak cone-valuation oracle.

Then, there exists an algorithm that either asserts that Problem Eq. (4.1) is infeasible or find
a feasible solution x∗ whose cost does not exceed the cost of an optimal solution by more than ε,
in polynomial-time in 〈c1〉+ 〈ξ1〉+∑T

t=2
∑
ξ∈supp(ξt)(〈ct,ξ〉+ 〈ξ〉+ 〈pt,ξ〉) + 〈R〉.

Proof. This follows from Theorem 4.29, using the result analogous to Lemma 4.20 for weak
separation oracles, see [GLS12, 6.5.19].

Finally, we show that every absolutely continuous cost distribution, with a suitable density
function, admits a polynomial-time weak cone-valuation oracle.

Definition 4.31. We shall say that a density function f : Rn → R+ is combinatorially tight if:

1. there is a polynomial time algorithm which, given a rational number ε > 0, returns a
rational number r > 0 such that

∫
‖x‖>r f(x)dx 6 ε.

2. there is a polynomial time algorithm, which given a rational vector x ∈ Rn, and a rational
number ε > 0, returns an ε approximation of f(x).

The terminology is inspired by the notion of tightness from measure theory (analogous to
condition 1 in Definition 4.31).

We shall need a classical result on the numerical approximation of multidimensional integrals,
which can be found in [DR84]. The total variation in the sense of Hardy and Krause, ‖f‖BVHK,
of a function f on a n dimensional hypercube is defined in [DR84, Def. p.352]. In particular, if
f is of regularity class Cn, ‖f‖BVHK is finite. The error made when approximating the integral
of a function of n variables by its Riemann sum taken on a regular grid with k points is bounded
by (n‖f‖BVHK)/k1/n, see the theorem on p 352 of [DR84].
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Proposition 4.32. Suppose that a cost distribution c admits a density function f : Rn → R+,
that is such that the function (1 + ‖ · ‖)f is combinatorially tight and that it has a finite total
variation in the sense of Hardy and Krause, bounded by an a priori constant. Suppose that the
dimension n is fixed. Then, c admits a polynomial-time weak cone valuation oracle.

Proof. Given a rational cone N , we need to approximate the integrals
∫
N f(c)dc and

∫
N cf(c)dc,

up to the precision ε. Using the tightness condition, it suffices to approximate the integrals of
the same functions restricted to the domain Nr := N ∩ B∞(0, r), where B∞(0, r) denotes the
sup-norm ball of radius r, and the encoding length of r is polynomially bounded in the encoding
length of ε. We only discuss the approximation of

∫
Nr
cf(c)dc (the case of

∫
Nr
f(c)dc being

simpler). We denote by c̃Nr the approximation of
∫
Nr
cf(c)dc provided by taking the Riemann

sum of the function c 7→ cf(c) over the grid ([−r, r))n ∩ ((r/M)Z)n, which has (2M)r points.
Then, setting g := (1 + ‖ · ‖)f , it follows from the result [DR84, Th. p 352] recalled above
that ‖

∫
Nr
cf(c)dc − c̃Nr‖ 6 n‖g‖BVHK/(2M). Hence, for a fixed dimension n, we can get an ε

approximation of
∫
N cf(c)dc in a time polynomial in the encoding length of ε.

Remark 4.33. Proposition 4.32 and Corollary 4.30 entail that, under the previous fixed-parameter
restrictions (including dimensions of the recourse spaces), the MSLP problem is polynomial-time
approximately solvable for a large class of cost distributions. This applies in particular to dis-
tributions like Gaussians, which are combinatorially tight. In this case, condition 1 of Defini-
tion 4.31, whereas condition 2 follows from the result of [BB88], implying that the exponential
function, restricted to the interval (−∞, 0], can be approximated in polynomial time.
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5.1 Introduction

In this chapter, we show a local exact quantization result for 2SLP with generally distributed
constraints and fixed recourse. We present this local exact quantization through the notion of
adapted partition. This allows us to present an explicit geometric oracle to construct adapted
partition and to derive a necessary and sufficient condition for a partition to be adapted even
for non-finitely supported distributions. The content of this chapter, without Section 5.5, was
published in Operation Research Letters [FL22b] and Section 5.5 can be found in Section 3 of
the preprint [FL22a].

5.1.1 Setting

We consider the following 2-stage stochastic linear problem with fixed recourse:

min
x∈Rn+

{
c>x+ E

[
Q(x, ξ)

]︸ ︷︷ ︸
:=V (x)

| Ax = b
}
, (2SLP)

where the expectation is with respect to ξ = (T ,h) an integrable random variable on (Ω,A,P)
taking values in Ξ ⊂ R`×n × R`, and the recourse cost is

Q(x, ξ) := min
y∈Rm+

{
q>y | Tx+Wy = h

}
. (5.1)

The dual formulation of the recourse problem is

QD(x, ξ) := max
λ∈R`

{
(h− Tx)>λ |W>λ 6 q

}
. (5.2)

We define
X := {x ∈ Rn+ | Ax = b}, (5.3a)

D := {λ ∈ R` |W>λ 6 q}. (5.3b)

In the rest of the chapter, we assume D 6= ∅ which implies by duality: Q(x, ξ) = QD(x, ξ).
For the sake of simplicity, we assume throughout the chapter that we are in a relatively

complete recourse setting, that is X ⊂ dom(V ). Most results can be obtained without this
assumption if we add feasibility cuts (see Section 5.3.2).

5.1.2 Literature review

Most results for 2SLP with continuous distributions rely on discretizing the distributions. The
Sample Average Approximation (SAA) method samples the costs and constraints. It relies on
probabilistic results based on uniform laws of large numbers to give statistical guarantees, see
[SDR14, Chap. 5] for details. Obtaining an approximation with satisfying guarantees requires a
large number of scenarios. Otherwise, when the support of the random variables are simplices,
we can leverage convexity inequalities (like Jensen’s and Edmundson-Madansky’s) or moments
inequalities to construct finite scenario trees such that the discretized problem yields upper or
lower bound of the continuous one (see e.g. [Kuh06, EZ94b]).

In each of these approaches, we solve an approximate version of the stochastic program, with
or without guarantees. In any case, the number of scenarios increases the numerical burden of
2SLP.

In order to alleviate the computations, we can use scenario reduction methods. Some are
based on heuristics, aiming at matching properties of the underlying distribution (e.g. matching
moments), others are based on adequate distances on the scenario tree (see [DGKR03, HR07]).
Alternatively, APM methods iteratively solve an aggregated version of 2SLP over a partition of
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the uncertainty space by replacing each subset of scenarios by its weighted mean. We say that
a partition is adapted to a first-stage control x if the aggregated recourse problem has the same
optimal objective value as the recourse problem with the original distribution. After solving an
aggregated 2SLP, an APM method call a (adapted) partition oracle to define a new (adapted)
partition at the current first-stage control. APM were first introduced by Song and Luedtke
[SL15], who gave a partition oracle designed for fixed recourse 2SLP with finitely supported
random variables. Van Ackooj, de Oliveira and Song [vAdOS18] improved the performance
of APM by combining it with level decomposition methods ideas. Finally, Ramirez-Pico and
Moreno extended the scope of APMs, under the name GAPM, in [RPM21] to problems with
continuous distributions for the right-hand side and technology matrix (and fixed recourse cost
vector and matrix). They gave a sufficient condition for a partition to be adapted. They also
provided adapted partition oracles for some specific problems.

5.1.3 Contributions

The main contributions of the chapter are the following: i) using polyhedral geometry tools we
provide a general adapted partition oracle, ii) we give a new necessary and sufficient condition
for a partition to be adapted to x̌ even in the non-finitely supported case, iii) by casting APM
methods as accelerated L-Shaped algorithms where tangeant cones are added instead of tangeant
planes (affine cuts), we give convergence and complexity results for APM methods.

5.1.4 Structure of the chapter

Section 5.2 presents the APM framework and a necessary and sufficient condition for a partition
to be adapted to x̌. Section 5.3 uses the link between APM and L-Shaped to obtain convergence
and complexity results. Finally, Section 5.4 presents numerical results, while Section 5.5 briefly
extends GAPM to non-fixed recourse problem.

5.2 General framework and geometric oracle

In this section, we start by presenting a generic framework for APM algorithms, which depends
on partition oracle choice.

We proceed by giving a necessary and sufficient condition for a partition oracle to be adapted,
and then a geometric adapted partition oracle.

5.2.1 Partition, refinements and APM framework

A partition P of Ξ is a collection of non-empty pairwise disjoint subsets covering Ξ, i.e. ∪P∈PP =
Ξ, P ∩ P ′ = ∅ and P 6= ∅ for P 6= P ′ ∈ P. Let P be a measurable subset of Ξ. We denote by
E
[
· |P

]
the conditional expectation E

[
· |ξ ∈ P

]
and P

[
P
]

the probability P
[
ξ ∈ P

]
. We say

that two measurable subsets of E,F ⊂ Ξ are P-equivalent, denoted E ∼P F , if and only if they
differ by a P-negligeable set

E ∼P F ⇐⇒ P
[
E ∩ F

]
= P

[
E
]

= P
[
F
]
, (5.4)

similarly we denote
E ⊂P F ⇐⇒ P

[
E ∩ F

]
= P

[
E
]
. (5.5)

A P-partition of Ξ is the equivalence class of all partitions that are P-equivalent.
Let P and R be two P-partitions of Ξ. We say that P refines R, denoted P 4P R, if

∀P ∈ P, ∃R ∈ R, P ⊂P R, (5.6)

The common refinement of P and R is given by

P ∧R = {P ∩R |P ∈ P, R ∈ R}. (5.7)
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Definition 5.1 (Expected recourse cost of partition). For P a P-partition of Ξ ⊂ R`×m × R`
we define

VP : x 7→
∑
P∈P

P
[
P
]
Q
(
x,E

[
ξ|P

])
. (5.8)

Let x̌ ∈ dom(V ). We say that a P-partition P is adapted to x̌ if

• VP is valid, i.e. VP(x) = V (x) := E
[
Q(x, ξ)

]
for all x ∈ Rn.

• and VP is tight at x̌ i.e. VP(x̌) = V (x̌) := E
[
Q(x̌, ξ)

]
.

The following lemma shows that, by convexity, a finer partition yields a larger expected
cost-to-go function.

Lemma 5.2. Let P and R two P-partitions of Ξ then

P 4P R =⇒ VP > VR. (5.9)

Moreover,
VP∧R > max(VP , VR). (5.10)

Finally,
Q
(
·,E
[
ξ
])
6 VP 6 V. (5.11)

In particular, in this setting with deterministic recourse matrix W and cost q, for all partition
P, VP is valid. We then only have to prove VP(x̌) = V (x̌) to prove that P is adapted to x̌.
However, this would not be the case when we will extend to general cost q in Section 5.5.

Proof. Since P is a P-partition 1ξ∈R = ∑
P∈P 1ξR∩P almost surely. For any measurable set

E ⊂ Ξ, E
[
ξ1ξ∈E

]
= P

[
E
]
E
[
ξ|E

]
. We then have,

P
[
R
]
E
[
ξ|R

]
= E

[
ξ1ξ∈R

]
=
∑
P∈P

E
[
ξ1ξR∩P

]
(5.12)

=
∑
P∈P

P
[
R ∩ P

]
E
[
ξ|R ∩ P

]
(5.13)

When P
[
R
]
> 0, by dividing this equation by P

[
R
]
, we obtain that E

[
ξ|R

]
is equal to the convex

combination ∑P∈P
P[R∩P ]
P[R] E

[
ξ|R ∩ P

]
. Finally, consider x̌ ∈ X, the convexity of ξ 7→ Q(x̌, ξ)

yields

Q
(
x̌,E

[
ξ|R

])
6
∑
P∈P

P
[
P ∩R

]
P
[
R
] Q

(
x̌,E

[
ξ|P ∩R

])
. (5.14)

Then, if P 4P R,

VR(x̌) =
∑
R∈R

P
[
R
]
Q
(
x̌,E

[
ξ|R

])
(5.15a)

6
∑
P∈P

∑
R∈R

P
[
P ∩R

]
Q
(
x̌,E

[
ξ|P ∩R

])
(5.15b)

=
∑
P∈P

P
[
P
]
Q
(
x̌,E

[
ξ|P

])
= VP(x̌) (5.15c)

The last line follows from the fact, that for P ∈ P, with P
[
P > 0

]
and P 4P R, there exists a

unique R ∈ R such that P
[
P ∩R

]
= P

[
P
]
, all other R ∈ R being such that P

[
P ∩R

]
= 0.

Eq. (5.10) is a direct consequence of VP∧P ′ > VP and VP∧P ′ > VP ′ . Thus, VP∧P ′ >
max(VP , VP ′). Coupling this result with P 4P {Ξ} yields the left inequality of Eq. (5.11)
while the other can be found in [RPM21, Prop. 1].

With those definitions we present in Algorithm 5.1 a generic framework for APM methods.
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1 k ← 0, z0
U ← +∞, z0

L ← −∞, P0 ← {Ξ} ;
2 while zkU − zkL > ε do
3 k ← k + 1;
4 Solve zkL ← minx∈X c>x+ VPk−1(x) and let xk be an optimal solution ;
5 Call the oracle on xk yielding Pxk ;
6 Pk ← Pk−1 ∧ Pxk ;
7 zkU ← min

(
zk−1
U , c>xk + VPk(xk)

)
;

8 end
Algorithm 5.1: Generic framework for APM.

5.2.2 Coarsest adapted partition

In this section, we define Rx̌, a particular P-partition, and prove that it is, in a generic case, the
coarsest partition adapted to x̌ ∈ X, i.e., the only partition adapted to x̌ that refines Rx̌ is Rx̌
itself. Indeed, we are looking for partitions that yield a precise approximation of recourse cost
(exact at x̌ in the adapted case), while having the smallest possible number of elements.

When the distributions have finite support, [SL15] characterized the partitions adapted to
x̌. Building on this result, a sufficient condition for continuous distribution can be found in
[RPM21, Prop. 2]. We now prove that, for any distribution, a partition is adapted to x̌ if and
only if it refines the collection Rx̌ defined in (5.17b). Unfortunately, Rx̌ is not necessarily a
P-partition, thus we also provide a partition Rx̌ 4 Rx̌ (see Figure 5.2 for an illustration).

Recall that D = {λ ∈ R` | W>λ 6 q} and that the normal cone of D at λ is the set
ND(λ) := {ψ ∈ R` |ψ>(λ′ − λ) 6 0,∀λ′ ∈ D}. We denote by ri(N) the relative interior of a
cone N . Let N (D) := {ND(λ) |λ ∈ D} be the normal fan of D, i.e., the (finite) collection of all
normal cones of D (see Chapter 3). We denote by N (D)max := {N ∈ N (D) | ∀N ′ ∈ N (D), N ⊂
N ′ ⇒ N = N ′} the collection of the maximal elements of N (D) (i.e., full dimensional cones
up-to lineality spaces).

Theorem 5.3. Fix x̌ ∈ dom(V ) and N a cone in Rm. We define EN,x̌ and EN,x̌, subsets of Ξ,
as

EN,x̌ := {ξ ∈ Ξ | h− T x̌ ∈ ri(N)} (5.16a)
EN,x̌ := {ξ ∈ Ξ | h− T x̌ ∈ N} (5.16b)

We define Rx̌ and Rx̌ as

Rx̌ :=
{
EN,x̌ | N ∈ N (D)

}
(5.17a)

Rx̌ :=
{
EN,x̌ | N ∈ N (D)max}. (5.17b)

Then,

P 4P Rx̌ =⇒ VP(x̌) = V (x̌) (5.18a)
P 4P Rx̌ ⇐⇒ VP(x̌) = V (x̌). (5.18b)

Remark 5.4. When the distribution of ξ is absolutely continuous with respect to the Lebesgue
measure of Ξ, Rx̌ ∼P Rx̌, thus Rx̌ is the coarsest partition adapted to x̌ ∈ dom(V ).

If ξ does not admit a density, Rx̌ is still an adapted partition but not necessarily the coarsest,
which might not exist (see Fig. 5.2). Nevertheless, any adapted partition should refine Rx̌.
Unfortunately, we cannot use Rx̌ in Algorithm 5.1, as we cannot guarantee that Rx̌ is a P-
partition.
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ξ1

ξ2

•

(a) Rx̌

ξ1

ξ2

••

(b) Rx̌

ξ1

ξ2

•

(c) P

ξ1

ξ2

•

(d) P ′

Figure 5.2: Rx̌ is a partition of Ξ into 6 elements, Rx̌ is not a partition, P and P ′ are two
distinct coarsest partitions (into 2 elements) with Rx̌ 4 P 4 Rx̌ and Rx̌ 4 P ′ 4 Rx̌.

Remark 5.5. Note that Proposition 2 of [RPM21] implies that all partition oracle returning
partitions satisfying assumption (7) of [RPM21] must be refinements of Rx̌ by Theorem 5.3. In
the finite scenario case, our adaptedness condition is equivalent to Song and Luedtke’s condition
[SL15].

We preclude the proof by a technical lemma.
Lemma 5.6. Consider a set P ⊂ Ξ such that P(P ) > 0, and a first-stage control x̌ ∈ dom(V ).
Then,

∃R ∈Rx̌, P ⊂P R (5.19)
=⇒ Q(x̌,E

[
ξ|P

]
) = E

[
Q(x̌, ξ)|P

]
, (5.20)

∃R ∈Rx̌, P ⊂P R (5.21)
⇐⇒ Q(x̌,E

[
ξ|P

]
) = E

[
Q(x̌, ξ)|P

]
. (5.22)

Proof. Since ∃R ∈ Rx̌, P ⊂P R implies ∃R ∈ Rx̌, P ⊂P R, we only need to prove the second
equivalence.

(⇒) Let P be such that there existsN ∈ N (D) with P ⊂P EN,x̌. By definition ofN (D), there
exists a dual point λN ∈ D such that N is the normal cone of D at λN . By definition of a normal
cone, for all ψ ∈ N and all λ ∈ D, ψ>(λ− λN ) 6 0. In other words, ψ>λN = maxλ∈D ψ>λ.

As P ⊂ EN,x̌, for P-almost-all ξ ∈ P , we have h−T x̌ ∈ N . Recall that Q(x̌, ξ) = supλ∈D(h−
T x̌)>λ, thus, Q(x̌, ξ) = (h− T x̌)>λN . Hence,

E
[
Q(x̌, ξ)|P

]
= E

[
(h− T x̌)>λN |P

]
(5.23a)

= E
[
h− T x̌|P

]>
λN = Q(x̌,E

[
ξ|P

]
) (5.23b)

as N is convex and E
[
h− T x̌|P

]
∈ N .

(⇐) For ψ ∈ R`, we denote the face Dψ := argmaxλ∈D ψ>λ. Note that, for all ψ,ψ′ ∈ ri(N),
with N ∈ N (D), we have DN := Dψ = Dψ′ .

Assume that there is no R ∈ Rx̌ such that P ⊂P R. Then, for all R ∈ Rx̌, P
[
P ∩R

]
< P

[
P
]
.

Since P
[
P
]
6
∑
R∈Rx̌ P

[
P ∩ R

]
, there exist R1 and R2 in Rx̌ such that P

[
P ∩ R1

]
> 0 and

P
[
P ∩ R2

]
> 0. Let λ ∈ D such that Q(x̌,E

[
ξ|P

]
) = E

[
h − T x̌|P

]>
λ i.e., λ ∈ DE[h−T x̌|P ].

Let N1 and N2 ∈ N (D)max be such that R1 = EN1,x̌ and R2 = EN2,x̌. Since N1 6= N2 are
maximal, DN1 ∩DN2 = ∅. Thus, there exists at least one i ∈ {1, 2} such that λ 6∈ DNi . Then,
E
[
Q(x̌, ξ)|P ∩Ri

]
> E

[
h− T x̌|P ∩Ri

]>
λ.

Note that Q(x̌, ξ) = σD(h − T x̌), where σD is the support function of the polyhedron D,
thus ξ 7→ Q(x̌, ξ) is a polyhedral function. Further, its affine regions are the elements of Rx̌.

By convexity, for any measurable set A, E
[
Q(x̌, ξ)|P ∩A

]
> Q

(
x̌,E

[
ξ|P ∩A

])
which is equal

to maxλ′∈D E
[
h−T x̌|P ∩A

]>
λ′. Since λ ∈ D, we have E

[
Q(x̌, ξ)|P ∩A

]
> E

[
h−T x̌|P ∩A

]>
λ.

Thus, E
[
Q(x̌, ξ)|P

]
> Q

(
x̌,E

[
ξ|P

])
.
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Proof of Theorem 5.3. By definition P 4P Rx̌, if and only if, for all P ∈ P there exists a cell
R ∈ Rx̌ such that P ⊂P R. By Lemma 5.6 this is equivalent to, for all P ∈ P, Q(x̌,E

[
ξ|P

]
) =

E
[
Q(x̌, ξ)|P

]
. Now, by Jensen’s inequality, this equality (for all P ∈ P) is equivalent to the

equality of a convex sum like∑
P∈P

Q
(
x̌,E

[
ξ|P

])
P
[
P
]

=
∑
P∈P

E
[
Q(x̌, ξ)|P

]
P
[
P
]
.

Law of total expectation yields (5.18).

Remark 5.7. Let x? be an optimal solution of

min
x∈X

c>x+ VP?(x) (5.24)

where P? 4P Rx?. Then, x? is also a solution of Problem (2SLP). In other words, P? is a
0-sufficient partition according to [SL15, Def. 1.2].

5.3 Comparison with other algorithms and convergence

In this section, we show that the partition-based methods can be seen as an acceleration of the
cutting plane method. It then gives us a finite convergence proof with a bound on the number
of steps.

5.3.1 Adapted partition and subdifferential

We show that, for any first stage control x ∈ X, if the partition is adapted to x, then the
subdifferential of approximate expected recourse cost coincides with the subdifferential of the
true expected recourse cost.

Lemma 5.8. Let x̌ ∈ dom(V ) and P be a refinement of Rx̌, i.e. P 4 Rx̌, then

∂VRx̌(x̌) ⊂ ∂VP(x̌) ⊂ ∂V (x̌) (5.25)

Furthermore, if x̌ ∈ ri(dom(V )),

∂VRx̌(x̌) = ∂VP(x̌) = ∂V (x̌) (5.26)

Proof. Let g ∈ ∂VRx̌(x̌) then for all x, VRx̌(x) > VRx̌(x̌) + g>(x − x̌). By monotonicity (see
(5.9)) VP(x) > VRx̌(x) and as Rx̌ is adapted to x̌, we have VRx̌(x̌) = V (x̌) = VP(x̌). Thus,
VP(x) > VP(x̌) + g>(x− x̌) and g ∈ ∂VP(x̌). The proof for the second inclusion is similar.

Let x̌ ∈ ri(dom(V )), we now prove that ∂VRx̌(x̌) = ∂V (x̌). Recall that DN = Dψ =
argmaxλ∈D ψ>λ, for ψ ∈ ri(N) where N ∈ N (D). By [SDR14, Prop 2.8 p.37], ∂V (x̌) =
E
[
− T>Dh−T x̌

]
+Ndom(V )(x̌). Thus, since x̌ ∈ ri(dom(V )),

∂V (x̌) = E
[
− T>Dh−T x̌

]
(5.27a)

= E
[ ∑
N∈N (D)

−1h−T x̌∈ri(N)T
>DN ] (5.27b)

= E
[ ∑
N∈N (D)

−1ξ∈EN,x̌T
>DN ] (5.27c)
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Further,
E
[
1ξ∈EN,x̌T

>DN ] (5.27d)

= P
[
EN,x̌

]
E
[
T |EN,x̌

]>
DN (5.27e)

= P
[
EN,x̌

]
E
[
T |EN,x̌

]>
DE[h−T x̌|EN,x̌] (5.27f)

(5.27g)
And by definition of Rx̌ in (5.17a) , we get

∂V (x̌) =
∑
P∈Rx̌

−P
[
P
]
E
[
T |P

]>
DE[h−T x̌|P ] (5.27h)

=
∑
P∈Rx̌

P
[
P
]
∂xQ(x̌,E

[
ξ|P

]
) (5.27i)

= ∂VRx̌(x̌) (5.27j)

5.3.2 Link with L-shaped and Benders decomposition

The classical L-shaped method (see e.g. [BL11, Chapter 5]) is a specification of Benders decom-
position to 2SLP with finitely supported distributions. The core idea consists in representing
the expected recourse cost in (2SLP), by a lift variable

min
x∈X,θ∈R

{
c>x+ θ | (x, θ) ∈ epi(V )

}
. (5.28)

We then relax the epigraphical representation (x, θ) ∈ epi(V ), replacing it by a set of valid
inequalities called cuts, i.e.

min
x∈X,θ∈R

c>x+ θ (5.29a)

s.t. g>x+ v 6 θ, ∀(g, v) ∈ O, (5.29b)
f>x 6 f, ∀(f, f) ∈ F . (5.29c)

More precisely, assume that we have such a relaxation of (2SLP). Let xk be an optimal first
stage control of this relaxation. If it is admissible, meaning that for all scenario ξ there exists
an admissible recourse control yξ, we compute, through duality, a subgradient gk ∈ ∂V (xk).
This yields a new optimality cut θ > (gk)>(x − xk) + V (xk), which is added to O. If xk is not
admissible we can add a feasibility cut to F instead by using dual optimal extreme ray (see
[BL11, §5.1.b]). We then solve our strengthened relaxation to obtain xk+1.

The L-Shaped method specifies that the subgradient gk can be obtained as an average over
ξ of subgradients gk,ξ ∈ ∂xQ(xk, ξ). In particular, it means that, to compute the subgradient,
we can solve | supp(ξ)| smaller LP instead of a large one.
Remark 5.9 (L-shaped for continuous distribution). When the distribution are non-finitely
supported, we cannot apply naively this method as there is a non-finite number of scenarios.
Nevertheless, we can still approximate epi(V ) with cuts. We can compute θ = VRx̌(x̌) and
a subgradient g ∈ ∂VRx̌(x̌) by solving |Rx̌| linear problems of the form (5.2) through exact
quantization. By Theorem 5.3, θ = VRx̌(x̌) = V (x̌). Further, g ∈ ∂VRx̌(x̌) ⊂ ∂V (x̌) by
Lemma 5.8. Then (θ, g) define an optimality cut.

Lemma 5.8 shows that, at each step k of Algorithm 5.1, we add a collection of valid cuts
which are exact at xk to our collection of cuts. This means that APM methods can be seen
as a Bender’s decomposition method where we add more than one exact cut per iteration. In
particular, when xk ∈ ri

(
dom(V )

)
we add the whole tangent cone of epi(V ) at x instead of a

single cut.
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5.3.3 Convergence of APMs

We start by showing that the bounds generated in Algorithm 5.1 are monotonic.

Lemma 5.10. Assume that the partition oracle used is adapted. For every computed step k we
have

zk−1
L 6 zkL 6 val (2SLP) 6 zkU 6 zk−1

U (5.30)

Proof. Since Pk 4P Pk−1, by Lemma 5.2, we have, for all x ∈ X,

c>x+ VPk−1(x) 6 c>x+ VPk(x) (5.31a)
6 c>x+ V (x) (5.31b)

Minimizing over x yields zk−1
L 6 zkL 6 val (2SLP). For any k, we have that Pk is adapted to

xk ∈ X, hence VPk(xk) = V (xk), thus val (2SLP) 6 c>xk + VPk(xk). Further, by definition of
zUk in Algorithm 5.1, zUk = minκ6k c>xκ + VPκ(xκ), yielding val (2SLP) 6 zkU 6 zk−1

U .

We now prove finite convergence of any APM.

Theorem 5.11. Assume that the partition oracle used is adapted. If X ⊂ Rn+ has a finite
diameter M ∈ R+ and x 7→ c>x + V (x) is Lipschitz with constant L then the partition based
Algorithm 5.1 finds an ε-solution in at most

(
LM
ε + 1

)n iterations.

Proof. We adapt the classical proof of Kelley’s cutting plane algorithm to APMs. Let k ∈ N
and 1 < i < k, we have that V (xi) = VPk−1(xi) = VPi(xi). Let g ∈ ∂VPk−1(xi) ⊂ ∂V (xi) such
that ‖c+ g‖ is bounded by the Lipschitz constant L then

zkU − zkL 6 c>xi + VPi(xi)−
(
c>xk + VPk−1(xk)

)
(5.32a)

= c>(xi − xk) + VPk−1(xi)− VPk−1(xk)) (5.32b)
6 c>(xi − xk)− g>(xk − xi) (5.32c)
6 ‖c+ g‖2‖xi − xk‖2 6 L‖xi − xk‖2. (5.32d)

Then, for k such that, ε < zUk − zLk , we have ε < L‖xi − xk‖, in particular ‖xi − xk‖ > ε/L.
By definition of M there are at most

(
LM
ε + 1

)n balls of radius ε/L in X. An ε-solution being
obtained as soon as two points are in the same ball.

5.4 Numerical examples

In this section, we detail the actual computation required by Algorithm 5.1 and illustrate the
algorithm on numerical examples.

5.4.1 Detailing computation

In the following two sections, we give more details on how to compute the Lines 4 to 7 of
Algorithm 5.1.
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5.4.1.1 Master problem and subproblems

Once E
[
ξ |P

]
and P

[
P
]

have been computed for P ∈ Pk−1, by Eq. (5.8) and Eq. (5.1), the
problem of Line 4 is reduced to the following linear problem

min
x∈X,(yP )∈(Rm+ )Pk−1

c>x+
∑
P∈Pk

P
[
P
]
q>yP (5.33a)

s.t. E
[
T |P

]
x+WyP = E

[
h|P

]
∀P ∈ Pk. (5.33b)

Moreover, to compute the upper bound in Line 7, we need to solve at most |Pk| linear
problems of dimension m

Q(xk,E
[
ξ|P

]
) := min

yP∈Rm+
q>yP (5.34a)

s.t. E
[
T |P

]
xk +WyP = E

[
h|P

]
(5.34b)

5.4.1.2 Refinement, expectation and probabilities

Recall that we can store a polyhedron E, either as a family of constraints (M,β) such that
E = {x ∈ Rd |Mx 6 β} (H-representation) or as families of vertices (vi)i∈I and rays (rj)j∈J such
that E = Conv(vi)i∈I + Cone(rj)j∈J (V -representation), see Section 3.1. Both representation
are implemented polymake, an open source software and julia library [GJ00]. We can switch
between representations through algorithms such as the double description [FP96].

We can simultaneously compute conditional expectations, probabilities and refinement as
detailed in Algorithm 5.2.

Data: Pk−1 and Rxk the partition to refine, second stage distributions T and h.
1 Set Pk := ∅;
2 for P ∈ Pk−1 and R ∈ Rxk do
3 Set P ′ := P ∩R;
4 if P

[
P ′
]
> 0 then

5 Store P
[
P ′
]
, E
[
T |P ′

]
and E

[
h|P ′

]
;

6 Set Pk := Pk ∪ {P ′};
7 end
8 end

Algorithm 5.2: Refinement procedure.

In this algorithm, the computation of probabilities on polyhedra in Line 5 is a ]P -complete
problem in the general case, although, for a large class of distributions, formulas exist (see
Appendix B and [DLDK+12, Las21]).

5.4.1.3 Explicit partition oracle

In this section, we explain how to compute, for x̌ ∈ X, Rx̌ =
{
EN,x̌ |N ∈ N (D)

}
where

EN,x̌ =
{
(T, h) |h− T x̌ ∈ ri(N)

}
.

The computation of the normal fan N (D), already implemented in polymake, can be done
thanks to a double description and active constraint sets. Note that if N ∈ N (D), then EN,x̌
is a relatively open polyhedral cone of Ξ. In particular, if N := {ψ |Mψ 6 0} is given in
a non-redundant H-representation where M ∈ Rp×l, we have ri(N) = {ψ |Mψ � 0}. Then
EN,x̌ = {ξ ∈ Ξ |Hxξ � 0}, with Hx = (−x1M · · · − xnM M).
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Unfortunately, obtaining anH-representation of the normal cone, from the usual V -representation,
requires a double-description which is numerically intractable in large dimension (see McMullen
bounds [McM70]).

The double-description can be avoided if the technology matrix T ≡ T is fixed. Indeed, in
this case EN,x̌ ∼P {T}×

(
T x̌+ri(N)

)
. Thus, we can compute, at the beginning of the algorithm,

a V -representation of all N ∈ N (D), and easily deduce a V -representation of EN,x̌ by adding
Tx to each representant ray.

5.4.2 Numerical examples

We applied Algorithm 5.1with our geometric oracle to the problems LanDs and CV@R of
[RPM21]. We obtained the same partition, and thus the same numerical results. Finally, we
treat the problem Prod-Mix for which no partition oracle were given in the literature. Our code
is available at https://github.com/maelforcier/GAPM.

5.4.2.1 Energy planing problem - LandS

We applied numerically our method to the LandS problem and constated that our geometric
oracle returned the same partition as [RPM21].

5.4.2.2 Conditional value-at-risk linear problems

For the conditional value-at-risk problem in [RPM21], note that our geometric oracle yields the
same partition:

QD(x̌, ξ) := max
λ∈R

(−x̌>rξ − τ)λ (5.35a)

s.t. 0 6 λ 6 1 (5.35b)

Here D = [0, 1] and N (D) = {R−, {0},R+} Then, if x̌ 6= 0, Rx̌ =
{
{r|x̌>r > −τ}, {r|x̌>r =

−τ}, {r|x̌>r < −τ}
}
.

5.4.2.3 Prod-Mix

We adapted the problem Prod-mix of https://stoprog.org/SavedLinks/IBM_StoExt_problems/
node4.php as

min
x,y

− c>x+ E
[
q>y

]
(5.36)

s.t. Tx− y 6 h (5.37)
x,y > 0, (5.38)

where q> = (5, 10), c> = (12, 40), T follows the uniform law
(
U [3.5, 4.5] U [9, 11]
U [0.8, 1.2] U [36, 44]

)
and h>

follows the uniform distribution
(
U [5970, 6030], U [3979, 4021]

)
. Algorithm 5.1 gave the results

summed up in Table 5.1
To compare our approach with SAA, we solved the same problem 100 times, each with 10′000

scenarios randomly drawn, yielding a 95% confidence interval centered in −17711, with length
4.4. This statistical confidence interval required 2058s of computation. By APM, an exact gap
smaller than 4.4 is obtained after iteration 6, that is in 23s, which is here roughly the time
required for solving one SAA. Thus, Algorithm 5.1 can be useful to find accurate values.

The most time-consuming parts of the algorithm are the computations of volumes which take
85% of the total time, because polymake only implement exact computations, which was proven
to be ]P -complete [DF88]. To improve Algorithm 5.1, we could use precise rapid approximation
volume algorithms, see e.g. [CV16].

https://github.com/maelforcier/GAPM
https://stoprog.org/SavedLinks/IBM_StoExt_problems/node4.php
https://stoprog.org/SavedLinks/IBM_StoExt_problems/node4.php
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k zkL zkU zkU − zkL Total time |Pk|
1 -18666.67 -16939.71 1726.96 0.57 s 4
2 -17873.01 -17383.73 489.28 2.1 s 9
4 -17744.67 -17709.00 35.67 9.1 s 25
6 -17713.74 -17711.37 2.37 23.7 s 49
8 -17711.71 -17711.56 0.15 50.0 s 81
10 -17711.57 -17711.56 0.01 88.0 s 121

Table 5.1: Results of Algorithm 5.1 for Prod-Mix

5.5 Extension to general cost

We now provide an adapted partition oracle for problems with finitely supported recourse matrix
W and cost q. The convergence results of Section 5.3 can directly be applied.

By Assumption 6.1, the admissible primal set {y ∈ Rm |Tx+Wy = h, y > 0} is non-empty
and compact. Then, by strong duality, we can rewrite Q defined in Eq. (6.16b) as

Q(x,W, q, T, h) = max
λ∈R`

{
(h− Tx)>λ | W>λ 6 q

}
(5.39)

We now define the dual admissible set DW,q as

DW,q := {λ ∈ R` |W>λ 6 q} (5.40)

When W and q are fixed, the value of Q(x̌,W, q, T, h) depends on which normal cone h−T x̌
belongs to. Thus, we finally define

EN,x̌ := {(T, h) | h− T x̌ ∈ ri(N)} (5.41a)
Rx̌,W,q :=

{
EN,x̌ | N ∈ N (DW,q)

}
(5.41b)

We begin with the finitely supported q case as a warm-up.

Remark 5.12 (Finitely supported q). We can show that, when W and q are fixed, Rx̌,W,q is
an adapted partition to x̌ (see Theorem 5.3). If supp(W ) and supp(q) are finite, we can extend
this result to show that

{
{W} × {q} × Rx̌,W,q | (W, q) ∈ supp(W , q)

}
is an adapted partition to

x̌:

E
[
Q(x̌,W , q,T ,h)

]
(5.42a)

=
∑

(W,q)∈supp(W ,q)
E
[
Q(x̌,W, q,T ,h)

∣∣∣W = W, q = q
]
P
[
W = W, q = q

]
(5.42b)

=
∑

(W,q)∈supp(W ,q)

∑
R∈Rx̌,W,q

Q
(
x̌,E

[
W , q,T ,h

∣∣∣ (T ,h) ∈ R,W = W, q = q
])
P
[
(T ,h) ∈ R,W = W, q = q

]
(5.42c)

We now extend this result to the case where q has a non-finitely supported distribution. This
extension relies on a partition SW of R`×m such that q 7→ Rx̌,W,q is constant on each S ∈ SW .
Actually, this partition SW is the collection of relative interiors of secondary cones Σ -fan◦(W )
(see Definition 3.20).

Let SW be the collection of relative interiors of the elements of Σ -fan(W ):

SW := Σ -fan◦(W ) =
{

ri(S) | S ∈ Σ -fan(W )
}
. (5.43)
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In particular; the elements of SW are relatively open (convex) cones of Rm. Further, note that
Proposition 3.21 provides constructive representation of Σ -fan(W ) and thus of SW , which paves
the way toward explicit computation of SW .

Lemma 5.13. Let W ∈ R`×m and S ∈ SW . For every q, q′ ∈ S we have Rx,W,q = Rx,W,q′.
Consequently, instead of considering an infinite number of Rx,W,q parametrized by q, we can
consider a finite number of Rx,W,S parametrized by S ∈ SW where

Rx,W,S := Rx,W,q for an arbitrary q ∈ S. (5.44)

Proof. Let D := {(µ, c) ∈ R` × Rm |W>µ 6 q} be the dual coupling polyhedron, and πµ,cc the
orthogonal projection of R` × Rm to Rm Recall that C(D,πµ,cc ) is the chamber complex of D
along πµ,cc (see Definition 3.10). By Theorem 3.34, the chamber complex C(D,πµ,qq ) is equal
to the secondary fan Σ -fan(W ), and then for all S ∈ SW there exists γ ∈ C(D,πµ,qq ) such that
S = ri(γ). By Proposition 3.30, for all S ∈ SW , we have the normal equivalence property, i.e. for
all q, q′ ∈ S, N (DW,q) = N (DW,q′). Then, since by definition Rx,W,q = {EN,x |N ∈ N (WW,q)},
we have Rx,W,q = Rx,W,q′ for all q, q′ ∈ S.

We now leverage this reduction to a finite number of Rx,W,S to define an adapted partition.
By using the basis decomposition theorem (see Theorem 3.27), we deduce the following lemma
which give regions where we can interchange the function Q with the expectation. This lemma
can be seen as an exact quantization result. For sake of simplicity, we make a slight abuse of
notation with, for any event A ∈ A,

Q
(
x,E

[
(W , q, ξ)|A

])
= Q

(
x,E

[
W |A

]
,E
[
q|A

]
,E
[
ξ|A

])
. (5.45)

Lemma 5.14. Let W ∈ R`×m. Assume that (T ,h) and q are independent random variables,
then, for all S ∈ SW and R ∈ Rx̌,W,S,

Q
(
x̌,W,E

[
q,T ,h | q ∈ S, (T ,h) ∈ R

])
= E

[
Q(x̌,W, q,T ,h) | q ∈ S, (T ,h) ∈ R

]
(5.46)

Proof. Let S ∈ SW and R ∈ Rx̌,W,S . There exists N ∈ N (DW,q) such that and all (T, h) ∈ R, we
have h− T x̌ ∈ ri(N) for all (T, h) ∈ R. In particular, by the basis decomposition Theorem 3.27
in standard form, there exists a basis B ⊂ [m] such that

∀q ∈ S, ∀(T, h) ∈ R, Q(x̌,W, q, T, h) = q>BW
−1
B (h− T x̌) (5.47)

Let B such a basis. By independence of (T ,h) and q, we have

E
[
Q(x̌,W, q,T ,h) | q ∈ S, (T ,h) ∈ R

]
= E

[
q>BW

−1
B (h− T x̌) | q ∈ S, (T ,h) ∈ R

]
(5.48a)

= E
[
q>B | q ∈ S

]
W−1
B E

[
h− T x̌ | (T ,h) ∈ R

]
(5.48b)

= Q
(
x̌,W,E

[
q | q ∈ S

]
,E
[
T ,h | (T ,h) ∈ R

])
(5.48c)

Indeed, by convexity of S (resp. R), we have E
[
q | q ∈ S

]
∈ S (resp. E

[
T ,h | (T ,h) ∈ R

]
∈ R).

By summing over all W ∈ supp(W ), all S in SW and R ∈ Rx̌,W,S and applying this lemma
for every term of the sum, we can now deduce an explicit adapted partition.
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Theorem 5.15 (Adapted partition for general second stage cost q). Assume that q and ξ are
independent conditionally to W and that supp(W ) is finite. We define Px̌ the following partition

Px̌ =
{
{W} × S ×R | W ∈ supp(W ), S ∈ SW , R ∈ Rx̌,W,S

}
(5.49)

then Px̌ is an adapted partition to x̌.

Proof. We denote AW,S,R the event {W = W, q ∈ S, (T ,h) ∈ R}, we then have

VPx̌(x̌) :=
∑
P∈Px̌

P
[
(W , q,T ,h) ∈ P

]
Q
(
x̌,E

[
(W , q,T ,h) | (W , q,T ,h) ∈ P

])
(5.50a)

=
∑

W∈supp(W )

∑
S∈SW

∑
R∈Rx̌,W,S

P
[
AW,S,R

]
Q
(
x̌,E

[
(W , q,T ,h) |AW,S,R

])
(5.50b)

=
∑

W∈supp(W )

∑
S∈SW

∑
R∈Rx̌,W,S

P
[
AW,S,R

]
Q(x̌,W,E

[
(q,T ,h) |AW,S,R

]
) (5.50c)

=
∑

W∈supp(W )

∑
S∈SW

∑
R∈Rx̌,W,S

P
[
AW,S,R

]
E
[
Q(x̌,W, q,T ,h) |AW,S,R

]
(5.50d)

=
∑

W∈supp(W )

∑
S∈SW

∑
R∈Rx̌,W,S

P
[
AW,S,R

]
E
[
Q(x̌,W , q,T ,h) |AW,S,R

]
(5.50e)

= E
[
Q(x̌,W , q,T ,h)

]
= V (x̌) (5.50f)

Eq. (5.50a) comes from the definition of the partitioned expected cost-to-go function VPx̌
(see (5.8)), and Eq. (5.50b) from the definition of Px̌. The equality (5.50b)=(5.50c) is simply
the abuse of notation presented in (5.45). Conditioned by W = W , we can use Eq. (5.46) to
obtain (5.50c)=(5.50d). Finally, law of total expectation yields (5.50e)=(5.50f).

It remains to prove that VP is valid , i.e. VPx̌ 6 V . For all W ∈ supp(W ) and S ∈ SW ,
we denote EW,S (resp PW,S) the expectation (resp. the probability) conditional to the event
{W = W, q ∈ S}. Let x ∈ Rn. By the law of total expectation, we have

VPx̌(x) =
∑

W∈supp(W )

∑
S∈SW

P
[
W = W, q ∈ S

] ∑
R∈Rx̌,W,S

PW,S
[
ξ ∈ R

]
Q(x,W,EW,S

[
(q,T ,h) | (T ,h) ∈ R

]
(5.51)

By the independence of q and (T ,h) and Lemma 5.14 we have

Q(x,W,EW,S
[
(q,T ,h) | (T ,h) ∈ R

]
) = Q(x,W,EW,S

[
q
]
,EW,S

[
(T ,h) | (T ,h) ∈ R

]
) (5.52)

By convexity of (T, h) 7→ Q(x,W, q, T, h) and Jensen inequality, we have that

Q(x,W,EW,S
[
q
]
,EW,S

[
(T ,h) | (T ,h) ∈ R

]
) 6 EW,S

[
Q(x,W,EW,S

[
q
]
,T ,h) | (T ,h) ∈ R)

]
(5.53)

Now, for an event A, note that we have, by applying the law of total expectation and
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Lemma 5.14 twice, and with the abuse of notation Eq. (5.45),

EW,S
[
Q(x,W,EW,S

[
q
]
,T ,h)|A

]
(5.54a)

=
∑

R∈Rx,W,S

EW,S
[
1(T ,h)∈R Q(x,W,EW,S

[
q
]
,T ,h)|A

]
(5.54b)

=
∑

R∈Rx,W,S

PW,S
[
(T ,h) ∈ R

]
EW,S

[
Q(x,W,EW,S

[
q
]
,T ,h) | A ∩ (T ,h) ∈ R

]
(5.54c)

=
∑

R∈Rx,W,S

PW,S
[
(T ,h) ∈ R

]
Q
(
x,EW,S

[
(W,EW,S

[
q
]
,T ,h) | A ∩ (T ,h) ∈ R

])
by Lemma 5.14

(5.54d)
=

∑
R∈Rx,W,S

PW,S
[
(T ,h) ∈ R

]
Q
(
x,EW,S

[
(W, q,T ,h) | A ∩ (T ,h) ∈ R

])
by Eq. (5.45)

(5.54e)
=

∑
R∈Rx,W,S

PW,S
[
(T ,h) ∈ R

]
EW,S

[
Q(x,W, q,T ,h) | A ∩ (T ,h) ∈ R

]
by Lemma 5.14

(5.54f)
=

∑
R∈Rx,W,S

PW,S
[
(T ,h) ∈ R

]
EW,S

[
Q(x,W , q,T ,h) | A ∩ (T ,h) ∈ R

]
under W = W

(5.54g)
= EW,S

[
Q(x,W , q,T ,h)|A

]
(5.54h)

By replacing A by (T ,h) ∈ R, for R ∈ Rx̌,W,S to Eq. (5.54h), we have

EW,S
[
Q(x,W,EW,S

[
q
]
,T ,h) | (T ,h) ∈ R

]
= EW,S

[
Q(x,W , q,T ,h) | (T ,h) ∈ R

]
(5.55)

Combining(5.51),(5.52) and (5.53), we now get

VPx̌(x) 6
∑

W∈supp(W )

∑
S∈SW

P
[
W = W, q ∈ S

] ∑
R∈Rx̌,W,S

PW,S
[
ξ ∈ R

]
EW,S

[
Q(x,W , q,T ,h) | (T ,h) ∈ R

]
(5.56)

By the law of total expectation, we see that the right term is equal to V (x). Thus, VPx̌ 6
V (x).
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6.1 Introduction

In this chapter, we present a framework called Trajectory Following Dynamic Programming
(TFDP), that encompasses SDDP algorithm and most of its variants to solve non necessarily
linear nor convex MSP. By proving an upper bound on the number of iterations, we deduce
complexity results that are new for most of these algorithms. The contents of this chapter can
be found in the preprint [FL22a].

More precisely, considering a probability space (Ω,F ,P), we define a sequence of random
variables, called noises, (ξt)t∈[T ], where [T ] stands for {1, . . . , T} and T is the horizon of the
problem. Assuming that each ξt has finite support of size nc, an MSP problem admits an
equivalent deterministic formulation with O(nTc ) variables. There are multiple algorithms (for
a recent introduction to the topic we recommend [RW21]), each with various extensions and
a rich literature, that exploit the special structure of the equivalent deterministic formulation,
among which L-Shaped method [VSW69, LL93], and its extension to MSP i.e. nested Bender’s
decomposition [Lou80, Bir85], or progressive hedging algorithm [RW91].

However, each of these algorithms are numerically limited to small horizon T . For larger
horizon we need some additional assumptions on the noises. If they have a limited memory
(i.e. that (ξt, ξt+1, . . . , ξt+τ ) is a Markov chain - for adequate indices) this open the door
to Dynamic Programming methods, among which the Stochastic Dual Dynamic Programming
(SDDP) algorithm [PP91] algorithm, and its variants (e.g [BDZ17, ZAS19, ACdC20, PWB20]).
All these algorithms compute a state trajectory and then follow it to update approximations
of cost-to-go functions. We call them Trajectory Following Dynamic Programming (TFDP)
algorithms.

6.1.1 Problem setting

We present here the general setting of multistage stochastic problem (MSP) we are considering
in the chapter. We also introduce three assumptions that are assumed to hold true throughout
the chapter.

All random variables (noises ξt or states xt) are assumed to be valued, for some adequate
integer nt, in Rnt endowed with its Borel σ-algebra. To model the constraint of our stochastic
problem, we consider for t ∈ [T ], the following Borel-measurable set-valued applications Xt :
Rnt−1 × Ξt ⇒ Rnt where Ξt := supp(ξt) ⊆ Rn. We further assume, for simplicity, that the first
noise is deterministic, that is Ξ1 = {ξ1}. For notational consistency we introduce x0 ∈ Rn0 as a
parameter, and x0 as the random variable with support {x0}. We define recursively a sequence
of reachable set by

Xr
0 = {x0} (6.1a)

Xr
t =

⋃
xt−1∈Xr

t−1

⋃
ξ∈Ξt
Xt(xt−1, ξ) ∀t ∈ [T ]. (6.1b)

Finally, we consider a sequence of loss functions (`t)t∈[T ] where `t : Rnt × Ξt → R ∪ {+∞}.
Assumption 6.1 (Compatibility of constraints). We make the following assumptions, for all t ∈
[T ],

i) `t is a proper normal integrand;

ii) for all xt ∈ Xr
t , the random variable `t(xt, ξt) is integrable (in particular `t(xt, ξt) < +∞

P-almost surely);

iii) for all xt−1 ∈ Xr
t−1 and almost all ξt ∈ Ξt−1, Xt(xt−1, ξt) is a non-empty compact subset

of Rnt .
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Finally, we say that (xt)t∈[1:T ] is an admissible policy if it is a sequence of random variables
such that, for all t ∈ [T ], xt ∈ Xt(xt−1, ξt) P-almost surely, and xt is measurable with respect
to σ({ξτ}τ∈[t]). We denote Xad the set of admissible policies. Then, the multistage stochastic
problem (MSP) consists in minimizing over the set of admissible policies the sum of losses, that
is

min
x∈Xad

E
[ T∑
t=1

`t(xt, ξt)
]

(MSP)

Assumption 6.1 ensures that (MSP) is well-posed and admits an optimal solution. It also
guarantees that we are in a relatively complete recourse setting in the sense that any sequence
of variable (xτ )τ6t satisfying xτ ∈ Xτ (xτ−1, ξτ ), for τ 6 t can be completed into an admissible
policy (xτ )τ6T such that E

[∑T
t=1 `t(xt, ξt)

]
< +∞.

As we are considering Dynamic Programming methods, the following stagewise independence
assumption is assumed to holds true.
Assumption 6.2 (Stagewise independence). (ξt)t∈[T ] is a sequence of independent exogeneous
random variables, i.e. such that the law of ξt is independent of all decisions variables.

Leveraging Assumption 6.2, we can rewrite Problem (MSP) in the following equivalent nested
form

min
x1∈X1(x0,ξ1)

`1(x1, ξ1) + E
[

min
x2∈X2(x1,ξ2)

`2(x2, ξ2) + E
[
· · ·+ E

[
min

xT∈XT (xT−1,ξT )
`T (xT , ξT )

]]]
(6.2)

which can be tackled by Dynamic Programming. To this end we introduce the following (back-
ward) Bellman operators. For a measurable proper l.s.c function Ṽ : Rnt → R∪+∞, we denote
the Bellman operator of Problem (MSP) applied to Ṽ by

B̂t(Ṽ ) =

Rnt × Ξt+1 → R ∪ {+∞}
(xt, ξt+1) 7→ min

xt+1∈Xt+1(xt,ξt+1)
`t+1(xt+1, ξt+1) + Ṽ (xt+1) (6.3a)

Further, note that for Ṽ l.s.c. and finite valued on Xr
t , B̂t(Ṽ ) is also a normal integrand. We

then define,
Bt(Ṽ ) : xt 7→ E

[
B̂t(Ṽ )(xt, ξt+1)

]
(6.3b)

With this notation we define by induction the expected cost-to-go functions Vt : Rnt−1 → R

VT :≡ 0 (6.4a)
Vt := Bt(Vt+1) ∀t ∈ {0, .., T − 1}. (6.4b)

Finally, as the law of ξ1 is a dirac on ξ1, the value of Problem (MSP) is simply V0(x0).
Remark 6.1 (Stepwise control). For notational simplicity we chose to consider loss function
`t that only depends on the next state1 xt. However, it is worth keeping in mind that these loss
functions are often defined as the partial minimum of another normal integrand, i.e.

`t(xt, ξ) = inf
y∈Rm

˜̀(xt, y, ξ).
In theory, the same problem can be tackled by extending the state vector x to also contains the
step decisions y. However, this is misleading: the theoretical complexity is exponential in the di-
mension of x, which is in line with the curse of dimensionality of Dynamic Programming. Thus
extending the state to include y falsely seems to imply an increase in the number of iterations
required by trajectory following algorithms to converge. For example, in long term electricity
management problem it is standard to have decisions y of dimension a few thousands (ther-
mal generation, transmission on lines...) while the actual state x (hydroelectric storage) is of
dimension a few dozen at most.

1Cost dependence on xt−1 is not considered here simply for notational convenience.



122 CHAPTER 6. TFDP FOR MSP

We end the presentation of our setting with a non-trivial assumption.
Assumption 6.3 (Lipschitz). For t ∈ [T ], we assume that2

i) Xr
t has a diameter smaller than Dt < +∞;

ii) the expected cost-to-go function Vt is Lt-Lipschitz.

Both part of Assumption 6.3 are strong requirement, needed for the convergence results,
while still being natural in most settings. Part i) is satisfied for example if Assumption 6.1
holds, Xt(xt−1, ·) is Lipschitz for all xt−1 ∈ Xr

t−1 and all Ξt are bounded. Part ii) is satisfied
under Assumption 6.1 in the linear case, or through an extended relatively complete recourse
assumption (see [GLP15]) which requires that state xt that are slightly outside of Xr

t are still
admissible.

6.1.2 Review of known convergence results

The SDDP algorithm, and its brethren, called in this manuscript Trajectory Following Dynamic
Programming, relies on the dynamic programming equation (6.4). The main idea consists in
iteratively refining lower (and sometimes upper) approximations of the expected cost-to-go func-
tions Vt. More precisely, at each iteration, they decide, in a forward phase, trial points at which
the approximations should be refined. Then, in a backward phase, they construct cuts, that are
functions that under approximate Vt. These cuts are as close as possible to the true expected
cost-to-go functions around the trial points. The lower approximations are finally defined as the
maximum of computed cuts. This is detailed in Section 6.2.

To our knowledge, almost all prior works make the following assumption or consider an
approximated problem which satisfies this assumption.
Assumption (FSN) (Finitely supported noise). The support of the random process (ξt)t∈[T ] is
finite.

The first proven convergence result of SDDP algorithm is due to Philpott and Guan [PG08].
In this paper, the authors consider the linear setting. Using Assumption (FSN) they prove that
the number of (affine) cuts that can be generated is finite. Then, leveraging the fact that each
scenario is sampled an infinite number of time, they prove the almost-sure convergence in a finite
number of iterations, without any bound on this number. Later convergence results by [GLP15]
(then reformulated and adapted to the risk averse setting in [Gui16]) showed convergence in a
non-linear, convex setting. Again, the proof argues that each scenario are selected randomly
an infinite number of time. A technical lemma coupled with Borel-Cantelli’s yields almost-sure
asymptotic convergence.

Instead of random sampling, some deterministic sampling, have been proposed. The problem-
child algorithm [BDZ17], which maintains both an upper and a lower approximation, proved
convergence by showing that the gap between upper and lower bound is non-increasing with the
iteration. This algorithm has been extended to convex-concave framework, using saddle-cuts
[BDZ18], e.g. allowing for stagewise-dependent objective uncertainty in [DDB20], or risk-averse
problem [GTW19]. In other cases, deterministic sampling are considered as a first step for
proving the convergence of the randomized version [PG08, Lan20, ZS20].

The above papers all rely on affine, often called Benders’, cuts. Some variants of SDDP,
handled by our framework, uses other types of cuts and also have proven asymptotic conver-
gence. Zou et. al. presented a version of SDDP for binary variables, which has an asymptotic
convergence proven in [ZAS19] for the convex case, although the proof can be directly adapted to
the Lipschitz case. In addition to traditional Benders’ cuts it relies on integer, Lagrangian and
strengthened Benders’ cut, recalled in Section 6.A. Stochastic Lipschitz Dynamic Programming

2We do not necessarily require the knowledge of the diameters or Lipschitz constants.
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(SLDP) by Ahmed et. al. [ACdC20] uses concave L1 cuts instead of affine cuts for any Lipschitz
Vt. MIDAS by Philpott et al. [PWB20] uses step-function cuts for quasi-monotonous Vt and
also fall in this category.

Other works have been dedicated to improve the numerical efficiency of the algorithm. Some
methods alleviate the computational burden of each iteration, like Guigues in [Gui20] which
considers inexact cuts, or Bandarra and Guigues in [BG21] that present cut selection strate-
gies, which delete some cuts from the representation of Vt. Other methods, like regularization
approaches [AP18, VAdOS19, BFFdO20], try to reduce the number of required iterations. To
our knowledge, if they sometimes preserve asymptotic convergence, none of these approaches
provably reduce the number of iterations required to reach an ε-solution. These extensions are
either handled by our framework or discussed in Section 6.2.2.

It is worth noting that the convergence arguments that relies on each possible scenarios being
sampled an infinite number of time are mainly theoretical arguments: due to the sheer number
of scenarios, in most applications, the algorithms sample only a very small subset of scenarios
(and probably never twice the same).

In two recent papers ([Lan20, ZS22]) new approaches were developed, focusing on the state
space akin to the complexity proof of Kelley’s cutting plane algorithm. They independently
obtained the first explicit bound on the number of iterations required to obtain an ε-solution.
To this end, they fix the error ε and define some saturated points in the state space. These points
are such that the gap between the approximated value and the true value is controlled. Then,
leveraging Lipschitz continuity of the value function they control the error in a ball around the
saturated points. As the reachable sets are compact, only a finite number of such balls exists.
They then each provide a deterministic algorithm with proven convergence, and use it as a proxy
to bound the expected number of iterations. Interestingly, the complexity of the deterministic
algorithm is polynomial in the horizon T while the sampled algorithm complexity is exponential
in T as it requires a given event to happen at each stage simultaneously.

All the convergence proofs recalled here rely on reachable set compactness, relatively com-
plete recourse and finitely supported noise assumption. They then fall into two categories:
either they directly use the Lipschitz continuity3 of Vt, or argues that there exists only a fi-
nite number of possible cuts (e.g., [PG08, ZAS19]). Our framework cover all these variants,
but the convergence proof presented in Section 6.3, which is built on [Lan20], does not require
the finitely supported noise assumption (FSN). It is instead replaced, for the randomized algo-
rithms, by a dedicated nested Hoeffding lemma (see Section 6.C.1). This is another step toward
understanding the practical convergence of these TFDP algorithms.

Further, without finitely supported noise assumption (FSN), the standard approach consists
in first discretizing the noise and then solving the discretized problem. A common method con-
sists in sampling the problem through the Sample Average Approximation (SAA) approaches.
The statistical guarantees of this approach are discussed by Shapiro in [Sha11]. Other sampling
strategies are numerically discussed in [HdMDMF11, Löh16]. While never used, to our knowl-
edge, in the context of TFDP algorithms, there are ways of discretizing the noise distribution
in order to guarantee that the value of the discretized model under (or over) estimate the value
of the true problem, especially in the convex setting, see [BW86, Kuh06, MAB14, MP18].

An alternative approach could consist in finding a finitely supported, stagewise independent
distribution that minimize the nested-distance [PP12], to provide a good representation of the
true problem. Other approaches exist, like [Fra96, CS05], which uses convexity tools and infor-
mation relaxation to construct bounds. These approaches seem more relevant for problems with
non-independent noises.

Finally, SDDP has been extended to various problem settings to handle risk aversion (e.g.[STdCS13,
GTW19, DM20]), infinite horizon (e.g. [SD20]), partially observable problems [DMP20]... We
briefly discuss extensions to risk averse setting in the last section, other extensions are outside

3Actually MIDAS has a slightly milder requirement (see [PWB20, Eq. (17)]).
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the scope of this manuscript.

6.1.3 Contributions and structure of the chapter

Our main contributions are the following:

• we provide a flexible framework (including inexact or regularized computations) for TFDP
algorithms for finite horizon, risk neutral problems, that encompass at least 14 variants of
SDDP summed up in Table 6.1;

• we provide geometric tools to extend those algorithms to non-finitely supported uncertain-
ties, without sampling or approximations in the linear case;

• we give a convergence speed result with an upper bound on the (expected) number of
iterations to reach an ε-solution for these algorithms (which is new for most of those
variants) that does not require the finite support assumption;

• we explain how to adapt those results to the minimax case. Some risk averse or robust
cases are seen as a special case.

The remains of the chapter is as follows. Section 6.2 introduces the general framework,
discusses some extensions, and the classical ways of obtaining exact or approximated cuts.
Section 6.3 provides the main convergence and complexity results. Finally, Section 6.4 briefly
reviews extensions to some robust and risk averse settings. Technical proofs and definitions can
be found in the appendix.



Algorithm’s Node selection: Complexity
name Paper Choice ξkt Ft V k

t V
k
t Hypothesis known

SDDP [PP91] Random sampling Exact Benders cuts Vt Convex X

EDDP [Lan20] Explorative Exact Benders cuts Vt Convex X

APDP [SS22] Random sampling Exact Adaptive partition Vt Linear ×

SDDiP [ZAS19] Random sampling Exact Lagrangian or integer cuts Vt Mixed Integer Linear ×

MIDAS [PWB20] Random sampling Exact Step cuts Vt Monotonic Mixed Integer ×

SLDP [ACdC20] Random sampling Exact Reverse norm cuts Vt Non-Convex ×

[BDZ17] Problem child Exact Benders cuts Epigraph as convex hull Convex ×

[BDZ18] Problem child Exact Benders × Epigraph Hypograph × Benders Convex-Concave ×

RDDP [GTW19] Deterministic Exact Benders cuts Epigraph as convex hull Robust ×

ISDDP [Gui20] Random sampling Inexact Inexact Lagrangian cuts Vt Convex ×

TDP [ACT20] Problem child Exact Benders cuts Min of quadratic Convex ×

[ZS22] Random or Problem Regularized Generalized conjugacy cuts Norm cuts Mixed Integer Convex X

NDDP [ZS20] Random or Problem Regularized Benders cuts Norm cuts Distributionally Robust X

DSDDP [LCC+20] Random sampling Exact Benders cuts Fenchel transform Linear ×

Table 6.1: Synthesis of algorithms following the same framework
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6.2 Trajectory Following Dynamic Programming framework

Various extensions of the Stochastic dual dynamic programming (SDDP) algorithm have been
developed for different set of assumptions. In this section, we first present a generic algorithmic
framework for TFDP algorithms (see Algorithm 6.1) for risk-neutral multistage stochastic pro-
gram that encompasses multiple known algorithms (see Table 6.1). These algorithms consider
under and over approximations of the expected cost-to-go functions. The under-approximations
are defined as the maximum of basic functions called cuts (some classical cuts are recalled in
Section 6.A). The upper-approximations are more diverse and not always computed. The re-
mains of the section detail how to obtain cuts, in particular Section 6.2.3 presents the finitely
supported case, while Section 6.2.4 builds approximated cuts in the convex case.

6.2.1 Algorithm

The flexible framework of Algorithm 6.1 defines improving lower approximations V k
t (resp. upper

approximations4 V
k
t ) of the expected cost-to-go functions Vt. Each iteration k of the algorithm

consists in a forward phase to determine where to refine the approximations, followed by a
backward phase to actually refine the approximations.

During the forward phase, we generate a trajectory xk1, · · · , xkT−1. Each xkt is chosen as an
(almost) optimal decision at time t starting from state xkt−1, knowing that the random variable
ξt takes the value ξkt , and considering that the cost-to-go is given by the lower approximation
V k−1
t . This is encapsulated in the forthcoming notion of forward Bellman operator. We denote

γ - arg minx∈X f(x) the set of x ∈ X such that f(x) 6 infx∈X f(x) + γ. We now define, for any
Lipschitz (on Xr

t ) function Ṽ , the set X ]γ,t(Ṽ ) of γ-optimal solution of the parametrized stage t
problem with cost-to-go function Ṽ , that is,

X ]γ,t(Ṽ ) : (x, ξ) 7→ γ - arg min
y∈Xt(x,ξ)

`t(y, ξ) + Ṽ (y).

Since `t+ Ṽ is a normal integrand, [RW09, Corollary 14.33] guarantees measurability of X ]γ,t(Ṽ ).
Further, as X ]γ,t(Ṽ ) is compact, there exists ([RW09, Cor 14.6]) a measurable selection of ξ 7→
X ]γ,t(Ṽ )(x, ξ) for all x ∈ Xr

t .
The following definition mathematically formalizes the selection choice5.

Definition 6.2 (Forward operator). We say that Ft is a γFt+1-forward operator if, for all func-
tions Ṽ : Rnt+1 → R ∪ {+∞}, Lipschitz on Xr

t+1 and x ∈ Xr
t , Ft(Ṽ )(x, ·) is a measurable

selection of X ]
γFt+1,t+1(Ṽ )(x, ·).

During the backward phase, we refine the approximations V k
t and V k

t , they are both assumed
to be Lipschitz on Xr

t . Further, the lower approximations V k
t is defined as the maximum of a

finite number of cuts: V k
t = maxκ6k fkt .

For Algorithm 6.1 to converge we make the following assumption on the approximations
computed.
Assumption 6.4 (Admissible approximations). The computed cuts fkt of Bt(V k

t+1) at xkt satisfy:

i) fkt is γ
t
-tight, i.e. fkt (xkt ) > Bt(V k

t+1)(xkt )− γt

ii) fkt is valid, i.e. fkt 6 Bt(V k
t+1)

4In some common cases, the upper approximations are chosen as V kt = Vt but never evaluated.
5This choice is comparable to selecting a stage solver which always return the same solution among the set of

optimal solutions.
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iii) V
k
t is Lt-Lipschitz

On the other hand the upper approximations V k
t , not necessarily computed, shall satisfy the

following properties:

iv) V
k
t (xkt ) 6 Bt(V

k
t+1)(xkt ) + γt (tightness)

v) V
k
t > Bt(V

k
t+1) (validity)

vi) V
k
t 6 V

k−1
t (monotonicity)

vii) V
k
t is Lt-Lipschitz

Data: Random variables ξt, cost function at each step `t, constraints set-valued
function Xt, initial state x0, γFt -forward operators Ft.

1 V 0
t ≡ −∞ and V

0
t ≡ +∞ for t ∈ [T ];

2 for k ∈ N do
/* Forward phase */

3 Set xk0 = x0;
4 for t = 1 : T − 1 do
5 Choose ξkt ∈ supp(ξt) ;
6 Let xkt = Ft−1(V k−1

t )(xkt−1, ξ
k
t ) ;

7 end
/* Backward phase */

8 Set V k
T ≡ V

k
T ≡ 0;

9 for t = T − 1 : −1 : 1 do
10 Find a Lt-Lipschitz on Xr

t , valid and γ-tight cut fkt of Bt(V k
t+1) at xkt , i.e. such

that fkt (xkt ) > Bt(V k
t+1)(xkt )− γt and fkt 6 Bt(V k

t+1) ;
11 Set V k

t = max(V k−1
t , fkt );

12 Define V k
t satisfying Assumption 6.4, Items iv) to vii) ;

13 end
14 end

Algorithm 6.1: A general framework for TFDP algorithms
For the algorithm to be well-defined we need to guarantee the existence of cuts and upper

approximation satisfying previous assumption, as formally assumed now:
Assumption 6.5. For every t ∈ [T ] and k ∈ N?, there exists at least one cut fkt of Bt(V k

t+1)
satisfying Assumption 6.4.

This assumption is for example ensured through relatively complete recourse in the linear
setting [PP91], through extended relatively complete recourse in the convex setting [GLP15],
through relatively complete continuous recourse in the binary setting [ZAS19], and relatively
complete recourse and Lipschitz assumption in the Lipschitz setting of [ACdC20].

Remark 6.3 (Asymmetry of upper and lower approximations). The framework is not symmet-
rical in its treatment of the upper and lower cost-to-go approximations. Indeed, Line 6 should
not be done with the upper approximations6 as it would restrict the exploration of the state space.
For example, assume that V t are (slightly Lipschitz-regularized) indicator functions of a single
point, then the forward phase would always produce the same trajectory, and the upper bound
would not be updated.

Further, multiple TFDP algorithm do not actually compute V t, simply setting it to the true
expected cost-to-go Vt (for iterations bounds).

6The upper approximations (V kt )t∈[T ] still provide an admissible policy through the forward Bellman operators
which has interesting properties, see [LCC+20].
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We have a first monotonicity result.

Lemma 6.4. Under Assumptions 6.1 to 6.5, for all k ∈ N, t ∈ [T − 1] and x ∈ Rnt we have

V k−1
t (x) 6 V k

t (x) 6 Bt(V k
t+1)(x) 6Vt(x) (6.5a)

Vt(x) 6 Bt(V
k
t+1)(x) 6 V k

t (x) 6 V k−1
t (x) (6.5b)

In particular, the gap can only decrease

0 6 V k
t (x)− V k

t (x) 6 V k−1
t (x)− V k−1

t (x) (6.6)

Proof. Direct by double induction on t and k and monotonicity of the Bellman operator.

Remark 6.5 (The standard SDDP algorithm). The most common TFDP algorithm is the
stochastic dual dynamic programming (SDDP). It was originally designed by Pinto and Pereira
([PP91]) for multistage stochastic linear problems. In SDDP, the value of the noise ξkt , chosen in
Line 5, is drawn randomly on supp(ξt) which is assumed to be finite. The lower approximations
are defined as maximum of affine cuts. For each ξ ∈ supp(ξt), computing B̂t(V k−1

t+1 )(xkt , ξ)
consists in solving a LP, and standard linear programming duality yields a subgradient α̂kt (ξ) ∈
∂B̂t(V k−1

t+1 )(xkt , ξ) and value β̂kt (ξ) = B̂t(V k−1
t+1 )(xkt , ξ). Taking the expectation, we set αkt =

E
[
α̂kt (ξt)

]
and βkt = E

[
β̂kt (ξt)

]
, to define the so-called Benders’ cut

fkt : xt 7→ αk>t (xt − xkt ) + βkt . (6.7)

Under relatively complete recourse assumption, the cuts can be assumed to be Lt-Lipschitz. Fur-
ther, in this simple setting, all errors are null: γ

t
= γt = γFt = 0. Finally, no upper bound are

computed and the complexity results of Section 6.3 are obtained by taking V k
t = V k

t .

Algorithm 6.1 is a flexible framework, and some lines remain to be detailed, which we now
discuss.

Node selection choice in Line 5 Most TFDP algorithms choose ξkt by drawing it randomly
according to the law of the random variable ξkt . The forward phase can then be seen as a Monte
Carlo method for finding a trajectory xk1, · · · , xkT . Then, it is also possible to choose ξkt thanks
to quasi Monte-Carlo methods.

Another way of choosing ξkt consists in picking the ξ ∈ supp(ξt) that maximizes a certain
criterion. In [BDZ17], Baucke, Downward and Zakeri suggested to chose ξkt such that xkt maxi-
mizes the gap between the upper and lower approximations, i.e., V k

t (xkt )− V k
t (xkt ). They called

this choice of ξkt , the problem child node selection. In [Lan20], Lan presented the Explorative
Dual Dynamic Programming algorithm, where ξkt is chosen so that xkt is the most distinguishable
point, i.e. such that xkt is far from the previous computed points, see Eq. (6.29b), we speak of
explorative node selection.

The proofs of convergence are harder to derive when ξkt is chosen randomly, and the best
upper bound known on the number of iterations of these algorithms are exponential in the
horizon T . In comparison, when ξkt is chosen deterministically as the problem child or as the
most distinguishable point, the number of iterations is bounded by a polynomial in T . However,
random sampling is often more efficient in practice (and easier to implement). We discuss the
complexity results in Section 6.3.

Forward operator choice in Line 6 In most algorithms, we assume that γFt = 0 for all
t ∈ [T −1], thus Ft−1(Ṽ )(x, ·) is a measurable selection of arg miny∈∈Xt(x,·) `t(y, ·)+ Ṽ (y). There
has also been proposition to use inexact cuts [Gui20] to alleviate computational burden of each
iteration.



6.2. TRAJECTORY FOLLOWING DYNAMIC PROGRAMMING FRAMEWORK 129

Further, there have been various propositions to regularize the SDDP algorithm, see [AP18,
VAdOS19, GLT20]. They mostly boil down to choosing a different forward operator, e.g., by
adding a regularization term, which can be seen as γFt -forward operator with γFt 6= 0. For
example, one can choose Ft−1(Ṽ )(x, ξ) as a proximity operator prox

`t(·,ξ)+Ṽ (·),α(y̌) which by
definition is equal to arg miny∈Xt(x,ξ) `t(y, ξ)+Ṽ (y)+α‖y−y̌‖22. In that case, ifXt(x, ξ) has a finite
diameter D, for y = Ft−1(Ṽ )(x, ξ), we have `t(y, ξ)+ Ṽ (y) 6 miny′∈Xt(x,ξ) `t(y′, ξ)+ Ṽ (y′)+αD.
Then, Ft is an αD-forward operator.

Finally, it is important that the algorithm use a single γFt -forward operator. Indeed, if
the set of γFt -optimal solutions X ]

γFt ,t
(Ṽ )(x, ξ) is not reduced to a single point, the convergence

results only holds for the points selected by the forward operator. This remark is not only
theoretical and have implications in practice: to be safe one should use the same solver (and
parameters) during the training phase and exploitation phase of the algorithm. For example,
consider a problem with two equivalent storage and that only one of them is required to provide
an optimal solution. Consider two forward operators, the first one, F1

t−1, prefers using the first
storage while the second, F2

t−1 prefers using the second storage. Now assume that the algorithm
ran until convergence with F1

t−1 yielding the approximations V∞t . Then, V∞t correctly evaluates
the value of the first storage, but has no information on the second. Consequently, a trajectory
given by F2

t−1(V∞t ) might be far from optimal. A discussion of this fact, and practical answers,
can be found in [Dow18, §2.7].

Cuts fkt choice in Line 10 We need to compute cuts fkt to approximate Bt(V k
t+1) in the

neighborhood of xkt−1. Recall that in Eq. (6.3b), Bt is defined as an expectation of parametric
Bellman operators Bt(V k

t+1) = E
[
B̂t(V k

t+1)(·, ξt)
]

Eq. (6.3a). Then, we can compute the average
cut fkt thanks to parametric cuts f̂kt,ξ. In the finitely supported case in Section 6.2.3, we show
that we can compute the average cut fkt directly by taking fkt = E

[
f̂kt,ξ
]

whereas in the convex,
non finitely-supported case, we present in Section 6.2.4 methods to approximate E

[
fkt,ξ
]
. Finally,

exact methods for linear problems are developed in Section 6.2.5. Furthermore, depending on
the problem structure, there exist several types of parametrized cuts f̂kt,ξ in the literature. We
recall them in Section 6.A.

Upper approximations V k
t choice in Line 12 In most TFDP algorithms, no upper bound

function is computed. In that case, we just set V k
t ≡ Vt in the convergence proof. How-

ever, some algorithms rely on the computation of these upper bounds, for example for com-
puting a problem-child node selection. In the convex case, assume that we have, for t ∈ [T ],
some points (xκt , vκt )κ∈[k] that are in the epigraph of Vt. Now define V k

t such that epi(V k
t ) =

Conv
((
xκt , v

κ
t

)
κ∈[k]

)
+ {(x, z) ∈ Rnt × R | Lt‖x‖1 6 z} ⊆ epi(Vt), see Fig. 6.2. Then, V k

t is an

upper-approximation V
k
t of Vt on Xr

t . Computing points (xκt , vκt )κ∈[k] in the epigraph of V̂t can
be done either throughout the algorithm as in the problem-child approach [BDZ17], or in batch
backward in time for a given set of trajectories as suggested by [PdMF13]. Upper approximation
functions can also be obtained through duality see [LCC+20, dCL21].

6.2.2 Extensions of the framework

Although we tried to present a general framework, for the sake of simplicity, Algorithm 6.1 does
not integrate every variants of SDDP. We now discuss how this framework can be extended and
if the complexity results and proofs are still valid with these new extensions.

Multiple forward phases. In practice, SDDP is often implemented with multiple forward
phases, i.e., at iteration k we compute N forward phases (xk,it )t∈[T−1],i∈[N ], in parallel. Conse-
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Figure 6.2: An example of upper and lower approximations

quently, in the backward phase we compute, for each time step t ∈ [T − 1], N tight and valid
cuts (fk,it )i∈[N ]. This variation is included in the framework of Algorithm 6.1 by considering that
the cut fkt is the maximum over i ∈ [N ] of all cuts fk,it . The complexity results follow directly
(in iteration number).

Multicut. In the finitely supported case, instead of computing an average cut fkt of the ex-
pected cost-to-go function Vt, it is possible to store for each ξ ∈ supp(ξt) a cut f̂t,ξ of the
cost-to-go function V̂t(·, ξ). Unlike the single cut case where V k

t (·) = maxκ6k fκt (·), in the multi-
cut case, we compute approximation functions as V k

t (·) = ∑
ξ∈supp(ξt) P

[
ξ
]
maxκ6k f̂κt,ξ(·). Up to

a slight reinterpretation, by considering a global cut ft(·) = ∑
ξ∈supp(ξt) P

[
ξ
]
maxκ6k f̂t,ξ(·), this

variation is covered by our framework.
However, with continuous random variables, the notion of multiple cuts is not well-defined.

Cut computation in forward. Another variation of SDDP consists in computing the cuts
during the forward phase (and no backward phase). In this variant, the cuts do not approximate
Bt(V k

t+1) and Bt(V
k
t+1) in the neighborhood of xkt , but approximate Bt(V k−1

t+1 ) and Bt(V
k−1
t+1 ) in

the same neighborhood. Although this variant is not handled by the framework, all proofs
can be adapted in a straightforward manner. More precisely, we only need to adapt the forth-
coming proof of Lemma 6.28. In particular, in the proof of Lemma 6.28, we obtain directly
Eq. (6.57c) and Eq. (6.58c), without using the monotonicity, because we approximate Bt(V k−1

t+1 )
and Bt(V

k−1
t+1 ).

Cut selection. After many iterations, the number of cuts can slow down the new iterations.
To speed up SDDP iterations, another idea is to delete some cuts. For example, we can decide to
delete only the dominated cuts, i.e., the cuts that do not affect the values of the approximations
V k
t . The monotonicity property and the complexity results are still valid in this setting. Un-

fortunately, finding which cut is dominated is time-consuming which do not make this method
numerically efficient. Instead, we often use some heuristics to delete cuts which are probably
dominated. However, these heuristics do not guarantee that we have the monotonicity property
of approximations. Then, the complexity and convergence results seems harder to obtain. See
[BG21] for an asymptotic convergence result on SDDP with cut selection.

Adaptive partition based methods In [SL15], Song and Luedtke presented the adaptive
partition based methods (APM) to solve 2-stage linear problems by partitioning the set of
scenarios. It was then adapted to the multistage case in [SS22] where Siddig and Song proposed
an adaptive partition based SDDP, in both case under the finitely supported noise assumption
(FSN). Recall, see Chapter 5, that the idea of APM is to replace the expected cost-go-function
V = E

[
V̂ (·, ξ)

]
by a partitioned expected cost-to-go function VP = ∑

P∈P P
[
ξ ∈ P

]
V̂ (·,E

[
ξ | ξ ∈
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P
]
) where P is a partition of the uncertainty set Ξ. A partition P is said to be tight at x̌,

if VP(x̌) = V (x̌), valid if VP(x) 6 V (x) for all x ∈ Rnt and adapted to x̌ if it is valid and
tight at x̌. Then, when P is a partition adapted to x̌, we can see the partitioned expected
cost-to-go function VP as a valid and tight cut of V at x̌. Such cuts represent the tangeant cone
of epi(Bt(V k

t+1)) at x where Benders’ cut represent a single tangeant plane (see Lemma 5.8).
APM methods were extended to general distribution in [RPM21]. In Chapter 5, we provided
a necessary and sufficient condition for a partition to be adapted (without Assumption (FSN))
as well as a geometric method to obtain a valid and adapted partition. In particular, Adaptive
Partition-based Dynamic Programming (APDP) algorithm of [SS22] is a TFDP algorithm falling
in the framework of Algorithm 6.1. It can be adapted to the non-finitely supported case through
the discussion in Section 6.2.5. As Ramirez-Pico and Moreno called GAPM the generalisation
of APM methods to general distributions, we will name the GAPDP the extension of APDP
algorithm to general distributions.

6.2.3 Cuts with finitely supported distribution

We now focus on finding a cut in Line 10 of Algorithm 6.1. More precisely, we want to ap-
proximate Bt(V k

t+1) in the neighborhood of xkt−1. Recall that Bt is defined as an expectation
of parametric Bellman operators B̂t (see Eq. (6.3)). When the distribution of ξt is finitely sup-
ported, computing a cut of B̂t(Ṽ )(·, ξ) for each elements ξ ∈ supp(ξt) automatically yields a cut
for Bt(Ṽ ).

Proposition 6.6. Assume that ξt is finitely supported with pξ := P
[
ξt = ξ

]
, for all ξ ∈ supp(ξt),

then

Bt(Ṽ )(x) =
∑

ξ∈supp(ξt)
pξB̂t(Ṽ )(x, ξ) (6.8a)

For every ξ ∈ supp(ξt), assume that f̂ξ is a valid and γ̂
t,ξ

-tight cut of function B̂t(Ṽ )(·, ξ) at
x̌ , then we have

f :=
∑

ξ∈supp(ξt)
pξ f̂ξ is a valid and γ

t
-tight cut of Bt(Ṽ ) at x̌ with γ

t
:=

∑
ξ∈supp(ξt)

pξγ̂t,ξ (6.8b)

In this finitely-supported distribution setting, it remains to find cuts of the function B̂t(Ṽ )(., ξ).
There exist several tight and valid cuts depending on the structure of `t and Xt. We present
classical cuts of the literature in Section 6.A where we detail under which conditions these cuts
are tight and valid and show how to compute them.

6.2.4 Approximated cuts in the convex case

In this section, we now turn to obtaining approximated cuts leveraging convexity. We present a
method based on the inequalities of Jensen and Edmundson-Madansky, adapting the results of
Birge and Wets [BW86] to our setting, see also [KM+76, 4.7].

We start by recalling two well-known useful convex inequalities illustrated in Fig. 6.3.

Proposition 6.7 (Jensen’s and Edmunson-Madansky inequalities). Let g : R` 7→ R be a convex
function and ξ be a random variable. Assume that there exists a polytope7 Ξ ⊂ R` containing
supp(ξ).

For any ξ ∈ Ξ we denote SΞ(ξ) the set of barycentric coordinates of ξ, that is the set of coeffi-
cients (σ̃Ξ,v)v∈Vert Ξ(ξ) ∈ [0, 1]|Vert Ξ| such that ξ = ∑

v∈Vert(Ξ) σ̃Ξ,v(ξ)v and ∑v∈Vert(Ξ) σ̃Ξ,v(ξ) =
7The results can be extended to the case where Ξ is an unbounded polyhedron. We must then consider a set

Ray(Ξ) of extreme rays of the recession cone of Ξ (see [EZ94a])
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[
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E
[
g(ξ)

] -

Figure 6.3: An illustration of Jensen and Edmundson-Madansky inequalities

1. Let ξ 7→ (σΞ,v(ξ))v∈Vert Ξ be any measurable selection8 of SΞ(ξ). We have the following
inequality:

g
(
E
[
ξ
])
6 E

[
g(ξ)

]
6

∑
v∈Vert(Ξ)

E
[
σΞ,v(ξ)

]
g(v) (6.9)

Moreover, if g is Lipschitz with constant L and Ξ has a diameter D, the gap is at most LD:∑
v∈Vert(Ξ)

E
[
σΞ,v(ξ)

]
g(v) 6 g

(
E
[
ξ
])

+ LD (6.10)

Proof. Left-hand side of Eq. (6.9) is the classical Jensen inequality. Let ξ ∈ Ξ, as (σΞ,v)v∈Vert Ξ(ξ)
are barycentric coordinates, we have, by convexity of g, g(ξ) 6 ∑v∈Vert(Ξ) σΞ,v(ξ)g(v). Taking
the expectation leads to the right-hand side of Eq. (6.9) called Edmundson-Madansky inequality.

Assume now that Ξ has diameter D. Since Ξ is convex, E
[
ξ
]
∈ Ξ, thus for all v ∈ Vert Ξ,

‖E
[
ξ
]
− v‖ 6 D. Further, as g is Lipschitz, we have ‖g(v)− g(E

[
ξ
]
)‖ 6 LD. Taking the convex

combination yields Eq. (6.10).

These inequalities can be refined. Let P be a finite collection of almost surely disjoint
polyhedra covering supp(ξ), i.e. supp(ξ) ⊂ ∪P∈PP and P

[
P ∩P ′

]
= 0 if P 6= P ′ ⊂ P. Then, by

the law of total expectation, E
[
g(ξ)

]
= ∑

P∈P P
[
P
]
E
[
g(ξ)|P

]
. Applying Jensen and Edmundson

inequalities to each term of this sum, we get∑
P∈P

P
[
P
]
g(E

[
ξ|P

]
) 6 E

[
g(ξ)

]
6
∑
P∈P

P
[
P
] ∑
v∈Vert(P )

E
[
σP,v(ξ)

]
g(v) (6.11)

In particular, if all polyhedra P ∈ P have a diameter smaller than d, the gap can be bounded
by Ld.

We now get back to the problem of Line 10 of Algorithm 6.1 where we want to approximate
Bt(V k

t+1) in the neighborhood of xkt−1. Recall that Bt is defined as an expectation of parametric
Bellman operators B̂t (see Eq. (6.3)). Unlike in Section 6.2.3 where the random variable where
finitely supported, we cannot write the expected cut as a finite sum of parametric cuts. However,
the Jensen and Edmundson-Madansky inequalities allows us to derive approximate cuts and
upper bound functions.

Proposition 6.8. Assume that `t is a jointly convex function with Lipschitz constant L. Let P
be a finite collection of almost surely disjoint polyhedra covering supp(ξ), such that any P ∈ P
has a diameter smaller than d ∈ R+. Denote for each P ∈ P, pP := P

[
P
]

and ξP := E
[
ξ|P

]
.

For every P ∈ P, assume that f
P

is a valid and γ
t,P

-tight cut of the parametric function
B̂t(Ṽ )(·, ξP ) at x̌ , then by defining γ

t
:= Ld+∑

P∈P pPγt,P , we have

f :=
∑
P∈P

pP fP is a valid and γ
t
-tight cut of Bt(Ṽ ) at x̌ (6.12)

8Such a selection always exists. Indeed, if Ξ is a simplex, barycentric coordinates are uniquely defined through
a linear application. Then, any triangulation of Ξ define a measurable selection as piecewise linear applications.
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For every P ∈ P and v ∈ VertP , assume that fv,P satisfies f > B̂t(Ṽ )(·, v) and f(x̌) 6
B̂t(Ṽ )(x̌, v) + γt,P , then by defining γt := Ld+∑

P∈P pP
∑
v∈Vert(P ) E

[
σP,v(ξ)

]
γt,P , we have

f :=
∑
P∈P

pP
∑

v∈Vert(P )
E
[
σP,v(ξ)

]
fP,v satisfies f > Bt(Ṽ ) and f(x̌) 6 Bt(Ṽ )(x̌) + γt (6.13)

This result can also be adapted to “saddle” cost functions, i.e. functions that are convex
in some coordinates of ξ and concave in the other coordinates of ξ, by using both inequalities
according to the sign of convexity, see e.g. [Kuh06, §4].

6.2.5 Exact SDDP in the linear case with general distributions

In this section, we consider the particular case of multistage linear stochastic programming
i.e. Problem (MSP) where, for all t ∈ [T ], ξt = (At,Bt, bt, ct), `t(xt, ξt) = c>t xt is linear and
Xt(xt−1, ξt) = {xt |Atxt + Btxt−1 = bt, xt > 0} is a polyhedron. We first reformulate the stage
problem (6.3a) as a standard two-stage linear program. Then, we show that we can construct
exact cuts thanks to adapted partitions, fsuch as the partition defined in Theorem 5.15.

We make the following assumptions:
Assumption (LS) (Linear setting). For t ∈ [T ] we have `t(xt, ξt) = c>t xt and Xt(xt−1, ξt) = {xt ∈
Rnt |Atxt + Btxt−1 = bt, xt > 0}. Further, the random variable ξt = (At,Bt, bt, ct) and the
approximated expected cost-to-go functions V k

t satisfy

1. At has a finitely supported distribution;

2. ct and (Bt, bt) are independent9;

3. the lower expected cost-to-go function V k
t are defined as the maximum of affine cuts, i.e.,

we have (αlt)l6k and (βlt)l6k such that

V k
t (xt) = max

l6k
αl>t xt + βlt (6.14)

Under Assumption (LS), Bellman operator defined in (6.3a) applied to V k
t reads

B̂t−1(V k
t )(xt−1, ξt) = min

xt,z
c>t xt + z = min

xt,z+,z−,r
c>t xt + z+ − z−

s.t. Atxt +Btxt−1 = bt, s.t. Atxt +Btxt−1 = bt,

ακ>t xt + βκt 6 z, ∀κ 6 k ακ>t xt + βlt + r = z+ − z−, ∀κ 6 k
xt > 0 xt, z

+, z−, r > 0

Then, for any t ∈ [T ] and k ∈ N, setting

x := xt, y := (xt, z+, z−, r), W :=


At 0 0 0
α1
t −1 1 1
...

...
...

...
αkt −1 1 1

 , q :=


ct
1
−1
0

 , T :=


Bt

0
...
0

 and h :=


bt
−β1

t
...
−βkt


We obtain

V (x) = E
[
Q(x,W , q,T ,h)

]
= E

[
B̂t−1(V k

t )(xt−1, ξt)
]

= Bt(V k
t+1)(xt−1). (6.16a)

with Q(x,W, q, T, h) := min
y

{
q>y | Tx+Wy = h, y > 0

}
. (6.16b)

9Independence can be replaced by finite support assumption on one of the random variables. More generally,
we can consider a finitely supported random variable Mt such that ct and (Bt, bt) are independent conditionally
to Mt.
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Under Assumption (LS) we have that i) W is finitely supported, and ii) q and (T ,h) are
independent. In particular, under Assumption (LS) we can apply Theorem 5.15 to find an
explicit adapted partition. We now show that this adapted partition provides a valid and tight
cut.

Proposition 6.9. Let P be an adapted partition to x̌. For all P ∈ P, let f̂P be a valid and tight
cut of Q

(
·,E
[
W , q,T ,h|P

])
at x̌. Then f := ∑

P∈P P
[
P
]
f̂P is a valid and tight cut of V at x̌.

Proof. We have

f(x) =
∑
P∈P

P
[
P
]
f̂P (x) (6.17a)

6
∑
P∈P

P
[
P
]
Q
(
x,E

[
W , q,T ,h|P

])
since f̂P is valid (6.17b)

= VP(x) 6 V (x) since VP is valid. (6.17c)

Thus, f is valid. Moreover,

f(x̌) =
∑
P∈P

P
[
P
]
f̂P (x̌) (6.18a)

=
∑
P∈P

P
[
P
]
Q
(
x̌,E

[
W , q,T ,h|P

])
since f̂P is tight (6.18b)

= VP(x̌) = V (x̌) since VP is tight. (6.18c)

Thus, f is tight.

Remark 6.10. As we saw in Section 6.2.2, this explicit adapted partition provides a new method
to find tight and valid cuts in Line 10 of Algorithm 6.1 without having an approximation error,
i.e., γ

t
= 0, in the linear case (under Assumption (LS)). Moreover, this explicit adapted partition

allows to extend the scope of APM methods. Siddig and Song presented in [SS22] an algorithm
combining ideas of APM methods and SDDP in the finitely supported case (APDP). The explicit
adapted partition in Theorem 5.15 paves the way to a generalized APDP algorithm for non-
finitely supported random variables (GAPDP).

6.3 Complexity results

In this section, we give convergence and complexity results for various instances of Algorithm 6.1.
In Section 6.3.1, we first define the notion of effective iteration and deduce an upper bound on
the number of effective iterations required by Algorithm 6.1 to get an ε-solution. We then
distinguish between deterministic and randomized selection processes for the choice in Line 5 of
the algorithm. For deterministic selection processes, namely the problem-child and explorative
node selections, we show in Section 6.3.2 that all iterations are effective. Finally, when the
node selection is randomized, we show in Section 6.3.3 the existence of a positive probability
for an iteration to be effective. We then deduce a complexity bound on the expected number of
iterations.

6.3.1 Bounding the number of effective iterations

We first recall that the value of Problem (MSP) can be written in a more concise form, by using
the nested problem in Eq. (6.2) and the definition of expected cost-to-go function in Eq. (6.4),
and keeping in mind that ξ1 is deterministic:

val (MSP) = min
x1∈X1(x0,ξ1)

`1(x1, ξ1) + V1(x1) (6.19)
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Our aim is to show that, for some iteration k, the solution xk1 is a ε-solution of Eq. (6.19),
and the lower-bound V 0(x0) is ε-tight. Unfortunately, Assumptions 6.1 to 6.5 are not enough
to ensure convergence of Algorithm 6.1: we need a further assumption on the node selection
process.

Regardless of node selection, we define the notion of effective iteration. Recall that γFt , γ
t
,

γt are errors in forward Bellman operator and approximation update (see Algorithm 6.1) at
time t ∈ [T ], and Lt (resp. Lt) are Lipschitz bounds on the cuts (resp. upper-approximation)
at time t. In the remains of the section we consider a sequence (V k

t , V
k
t , x

t
k)t∈[T ],k∈N produced

by Algorithm 6.1.

Definition 6.11 (effective iteration). For every t ∈ [T − 1], let δt > 0 and ηt > 0. By backward
induction, we define

εT−1 := γ
T−1 + γT−1 (6.20a)

εt := εt+1 + (Lt+1 + Lt+1)(δt+1 + ηt+1) + γFt+1 + γ
t
+ γt ∀t ∈ [T − 2] (6.20b)

ε0 := ε1 + (L1 + L1)(δ1 + η1) + γF1 (6.20c)

For t ∈ [T − 1] and k ∈ N, we say that
xkt is εt-saturated, if V k

t (xkt )− V k
t (xkt ) 6 εt and

xkt is δt-distinguishable if ‖xkt − xκt ‖ > δt for all κ < k such that xκt is εt-saturated.
We say that an iteration k ∈ N is effective if it generates either a ε1-saturated point, which

is also a ε0-solution to Problem (6.19), or a new εt-saturated and δt-distinguishable point for at
least one t ∈ [T ], i.e.,

xk1 is ε1-saturated and `1(xk1, ξ1) + V1(xk1)− val (MSP) 6 ε0 (6.21a)
OR ∃t ∈ [T − 1], xkt is εt-saturated and δt-distinguishable. (6.21b)

We now give an upper bound on the number of effective iterations of Algorithm 6.1 to find
an ε0- optimal solution.

Theorem 6.12 (bound on effective iterations number). Let Assumptions 6.1 to 6.5 be satisfied
and t ∈ [T − 1], assume that δt ∈ [0, Dt] and ηt ∈ R+ are given and εt defined by (6.20). Let

K :=
T−1∑
t=1

(
Dt

δt
+ 1

)nt
(6.22)

After at most K + 1 effective iterations we have a ε1-lower bound of Problem (MSP):

V k
0(x0) = `1(xk1, ξ1) + V k

1(xk1) > val (MSP)− ε1 (6.23)

Further, there exists, among those K + 1 effective iterations, at least one such that xk1 is an
ε0-solution to Problem (6.19):

`1(xk1, ξ1) + V1(xk1) 6 val (MSP) + ε0 (6.24)

Proof. For t ∈ [T − 1], there are at most (Dtδt + 1)nt disjoint balls10 of diameter δt in a ball of
diameter Dt + δt (see [ZS22, A.3.2]). In particular, we cannot compute more than (Dtδt + 1)nt ,
δt-distinguishable points at step t. Thus, after K = ∑T−1

t=1 (Dtδt + 1)nt effective iterations, for all
10We consider here balls for the euclidean norm ‖ · ‖2, but the result is still valid with the p-norm ‖ · ‖p for

every p ∈ [1,+∞].
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t ∈ [T ], it is impossible to compute a new δt-distinguishable point. Then, as the iteration k
is effective and we cannot have (6.21b), we have (6.21a) and in particular xk1 is an ε0-solution
Moreover, xk1 is ε1-saturated. Then,

`1(xk1, ξ1) + V k
1(xk1) > `1(xk1, ξ1) + V

k
1(xk1)− ε1 (6.25a)

> `1(xk1, ξ1) + V1(xk1)− ε1 (6.25b)
> min

x1∈X1(x0,ξ1)
`1(x1, ξ1) + V1(x1)− ε1 (6.25c)

= val (MSP)− ε1 (6.25d)

Remark 6.13. Finally, although the theorems of this section state that we find an ε0-optimal
solution at stage 1, we have no guarantee that the approximations V k

t converges to Vt. We cannot
hope that these approximations converge to the true expected cost-to-go functions far from the
optimal and reachable trajectories.

Nevertheless, by considering the sets of points that are δt-close to every optimal and reachable
trajectories, we could hope to have a convergence of strategies generated by F(V k

t ) on those sets.
If we add a finite diameter of the support of ξt and a Lipschitz assumptions for ξt, we are
confident that the proof can be adapted. However, the general case looks harder and might
require different ideas for proving complexity results for the convergence of strategies at every
stages.

For a class of specific (deterministic) implementations of Algorithm 6.1 each iteration is
effective, in which case we can directly bound the number of iterations required to obtain an
ε0-optimal solution.

6.3.2 Deterministic node selection

In this section, we present sufficient condition for an iteration to be effective. Consequently, for
two algorithms with deterministic node selections (namely problem-child node selection [BDZ17]
and explorative node selection [Lan20]), we show that each iteration is effective, yielding a
complexity result.

We first define the distance to the set of εt-saturated points.

Definition 6.14. Let t ∈ [T − 1] and k > 1.
We denote ykt the random variable

ykt := Ft−1(V k−1
t )(xkt−1, ξt) (6.26)

We denote by dkt the distance function to the set of εt-saturated points until iteration k :

dkt (x) := min
κ<k|xκt is εt-saturated

‖x− xκt ‖ (6.27)

In particular, xkt is δt-distinguishable if and only if dkt (xkt ) > δt.

The following technical lemma, whose proof can be found in Section 6.B, shows that if the
new state xkt (resulting from the choice of ξkt ) is either i) far enough from the set of saturated
points, or ii) yielding a large enough gap, then iteration k is effective.

Lemma 6.15. Let Assumptions 6.1 to 6.5 be satisfied and assume that, for all t ∈ [T − 1],
δt ∈ [0, Dt], ηt ∈ R+ are given and εt defined by (6.20). Let k ∈ N?. If, for all t ∈ [T − 1], at
least one of the following inequalities is satisfied

E
[
V
k−1
t

(
ykt
)
− V k−1

t

(
ykt
)]
6 V

k−1
t (xkt )− V k−1

t (xkt ) + (Lt + Lt)ηt (6.28a)
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E
[
dkt (ykt )

]
6 dkt (xkt ) + ηt (6.28b)

then, iteration k is effective.

In [Lan20], Lan suggested to choose xkt as the most distinguishable point in a new algorithm
called Explorative Dual Dynamic Programming (EDDP). We then speak of explorative node
selection. The following lemma shows that both these selections lead to effective iterations.

Lemma 6.16. Let Assumptions 6.1 to 6.5 holds and assume that, for all t ∈ [T ] δt ∈ [0, Dt],
ηt = 0, are given and εt is defined by (6.20).

We say that we have a problem-child node selection if for all k ∈ N?, and t ∈ [T − 1], ξkt is
chosen such that it maximizes the current gap, i.e.,

ξkt ∈ argmax
ξ∈supp(ξt)

V
k−1
t

(
Ft−1(V k−1

t )(xkt−1, ξ)
)
− V k−1

t

(
Ft−1(V k−1

t )(xkt−1, ξ)
)

(6.29a)

We say that we have an explorative node selection if for all k ∈ N?, and t ∈ [T − 1], ξkt is
chosen such that xkt maximizes the distance to previous εt-saturated points, i.e.,

ξkt ∈ argmax
ξ∈supp(ξt)

dkt
(
Ft−1(V k−1

t+1 )(xkt−1, ξ)
)

(6.29b)

Then, with a problem-child or an explorative node selection method, each iteration of Algo-
rithm 6.1 is effective.

Proof. It is a consequence of Lemma 6.15. Indeed, as ηt = 0, xkt = Ft−1(V k−1
t )(xkt−1, ξ

k
t )

and ykt = Ft−1(V k−1
t )(xkt−1, ξt), and since the maximum is greater than the expected value,

Eq. (6.28a) implies Eq. (6.29a) and Eq. (6.28b) implies Eq. (6.29b).

Lemma 6.16 implies that every iteration of these deterministic node selection method is
effective. Coupled with Theorem 6.12 we easily obtain complexity bounds, for example as
follows.

Corollary 6.17. Let Assumptions 6.1 to 6.5 holds and assume that every iteration of Algo-
rithm 6.1 is effective (e.g., problem-child or explorative node selection). Further, for simplicity,
let the total error be γΣ := ∑T−1

t=1 γ
t
+ γt + γFt and choose n,D,L such that, for all t ∈ [T − 1],

nt 6 n, Dt = D, Lt = Lt = L. Then, for every ε > γΣ, sufficiently small (e.g. such that
ε 6 2DL + γΣ), Algorithm 6.1 finds an ε-first stage solution xk1 within at most Kε iterations
where

Kε :=
( 2DL
ε− γΣ

)n
(T − 1)n+1 (6.30)

Proof. We set δt := ε−γΣ
2L(T−1) and ηt := 0 for all t ∈ [T − 1]. Then, as ε 6 2DL + γΣ we have

δt 6 D = Dt. Moreover, ε0, defined in Eq. (6.20), satisfies

ε0 =
T−1∑
t=1

[
(Lt + Lt)(δt + ηt) + γ

t
+ γt + γFt

]
= (T − 1)2Lδ + γΣ = ε. (6.31)

With this setting, we have that K, as defined in (6.22), satisfies

K 6 (T − 1)
(
D

δ
+ 1

)n
= T

(2DL (T − 1)
ε− γΣ

+ 1
)n

Now, as ε is assumed to be small enough to have 2DL/(ε− γΣ) 6 1 (i.e. ε 6 2DL+ γΣ) we
get

K 6 (T − 1)
(2DL(T − 1)

ε− γΣ

)n
= Kε.

By assumption all iterations are effective and Theorem 6.12 ends the proof.
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Remark 6.18. Note that the maximum in (6.29a) (resp. (6.29b)) is easily obtained under
finitely supported noise Assumption (FSN). Indeed, we can compute the gap (resp. the distance)
for every ξt in the support of ξt and keep ξkt maximizing the gap.

However, without finite noise Assumption (FSN), we just need to find a ξkt leading to a gap
worse than the expected gap (see Lemma 6.15), and not necessarily a maximizer. This paves the
way for a deterministic node selection, with non finitely supported random variables.

6.3.3 Randomized algorithms

When the choice of ξkt is made randomly, there is no guarantee that the iteration will be effective.
However, through a technical, yet necessary to deal with dependence issue, nested Hoeffding
lemma’s shown in Section 6.C.1, we show that there is a positive probability p for an iteration
to be effective. Then, by comparing the time to obtain an effective iteration to a geometric
random variable of probability of success p in Section 6.C.2, we deduce a bound on the expected
number of iteration required to get an ε-optimal solution.

Remark 6.19 (Notational difficulty of randomized algorithm on stochastic problem). We are
now considering a stochastic algorithm for solving the MSP Problem (MSP). Thus, there are
two sources of randomness: the intrinsic (ξt)t∈[T ] and the node selection ξkt = ξ̃kt . To distinguish
both, we denote in bold random variables that are (ξt)t∈[T ] measurable, with a tilde random
variables that are (ξ̃kt )t∈[T ],k∈N∗ measurable (and with both if they are neither).

For example the trajectory determined during the forward phase (x̃kt )t∈[T ] only depends on
the past node selections, whereas the tentative points ỹkt depends both on the past node selections
and the actual realization of ξt.

Under Assumption (FSN), this discussion is usually avoided by representing the dependence
on (ξt)t∈[T ] with a (finite) scenario tree, and indexing the variables by the tree nodes.

Let (Ak)k∈N? be the filtration such that Ak := σ
(
ξ̃κt
)
t∈[T−1],κ∈[k], and A∞ = ⋃

k∈NAk. In
particular, a random variable measurable with Ak knows all node selection up to iteration k,
that include, for example, V k

t for all t ∈ [T ].

Lemma 6.20. Let Assumptions 6.1 to 6.5 be satisfied and assume that, for all t ∈ [T − 1],
δt ∈ [0, Dt], ηt ∈ R+ are given and εt defined by (6.20). Further, assume that in Algorithm 6.1,
Line 5, we draw ξkt randomly according to the distribution of ξt, and independently of all other
ξ̃κτ as well as (ξτ )τ∈[T−1].

Then, for all iteration k ∈ N of Algorithm 6.1 and all event Ak−1 ∈ Ak−1 such that
P
[
Ak−1] > 0, we have

P
[
Iteration k is effective.

∣∣∣Ak−1
]
>

T∏
t=1

1− e
−2η2

t
D2
t

 (6.32)

Proof. Let A∞ := σ
(
ξ̃κt
)
t∈[T−1],κ∈N? and k ∈ N?. By Lemma 6.15, we have

P
[
Iteration k is effective. |Ak−1] > P

[
∀t ∈ [T − 1], E

[
d̃kt (ỹkt ) | A∞

]
< d̃kt (x̃kt ) + ηt |Ak−1

]
(6.33)

For t ∈ [T − 1], let Akt := σ
(
Ak−1, (ξ̃tk)τ∈[t]

)
. We have that σ

(
d̃kt (ỹkt )

)
⊂ σ(Akt−1, ξt) from

which we deduce that E
[
d̃kt (ỹkt ) | A∞

]
= E

[
d̃kt (ỹkt ) | Akt−1

]
. We define the events Ekt :=

{
ω ∈

Ω | E
[
d̃kt (ỹkt ) | Akt−1

]
< d̃kt x̃

k
t + ηt

}
. Thus, P

[
Iteration k is effective |Ak−1] > P

[⋂T−1
t=1 Ekt |Ak−1]

By applying Lemma 6.30 with the random variables
(
ξ̃kt
)
k∈N,t∈[T−1], the filtration (Akt )k∈N,t∈[T−1]
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and the measurable function fkt : ((ξκτ )τ∈[T−1],κ∈[k−1], (ξkτ )τ∈[t]) 7→ dkt (xkt ) taking its value in

[0, Dt], we have P
[⋂T−1

t=1 Ekt

∣∣∣Ak−1
]
>
∏T
t=1

1− e
−2η2

t
D2
t

 which gives Eq. (6.32).

We now give a complexity results for all TFDP algorithms (following framework of Algo-
rithm 6.1) where the choice of ξkt is made randomly.

Theorem 6.21. Let Assumptions 6.1 to 6.5 be satisfied and assume that in Line 5, we draw ξkt
randomly according to the distribution of ξt, and independently from the previous ξκτ .

Further, for simplicity, let the total error be γΣ := ∑T−1
t=1 γ

t
+ γt + γFt and choose n,D,L

such that, for all t ∈ [T − 1], nt 6 n, Dt = D, Lt = Lt = L.
Then, for ε > γΣ , sufficiently small ( e.g., such that ε 6 4DL+ γΣ), the expected number of

iterations of Algorithm 6.1 required to find an ε-solution xk1 to problem (6.19), i.e. , such that
`1(xk1, ξ1) + V2(xk1) 6 val (MSP) + ε is bounded by (T − 1)

(
4DL(T−1)
ε−γΣ

)n+2(T−1)
.

Proof. We set for all t ∈ [T − 1], δt = ηt = ε−γΣ
4L(T−1) . Then, as ε 6 4DL + γΣ we have

ηt = δt 6 D = Dt. Moreover, ε0, defined in Eq. (6.20), satisfies

ε0 =
T−1∑
t=1

[
(Lt + Lt)(δt + ηt) + γ

t
+ γt + γFt

]
= (T − 1)2L× 2 ε− γΣ

4L(T − 1) + γΣ = ε.

Let K̃ the (random) number of iterations needed to compute Kε := ∑T−1
t=1

(
1 + Dt

δt

)nt
6(

4DL
ε−γΣ

)n
(T −1)n+1 effective iterations, then by Theorem 6.12, Algorithm 6.1 finds an ε-solution

after at most K̃ iterations. Let p := ∏T
t=1

(
1− exp

(−2η2
t

D2
t

))
, by Lemma 6.20, for Ak−1 ∈ Ak−1,

we have P
[
Iteration k is effective |Ak−1] > p. Thus, by Lemma 6.31, we have E

[
K̃
]
6 Kε

p .
Moreover, since as x 7→ x

1−e−x is an increasing function on (0, 1
2 ], then for all x ∈ (0, 1], we

have 1
1−e−x 6

1
1−e−1 × 1

x 6 1.6 × 1
x . Thus, as 2η2

t

D2
t
6 1, we have that 1

p 6
∏T−1
t=1 1.6 × D2

t

2η2
t
6(4DL(T−1)

ε−γΣ

)2(T−1). We then obtain E
[
K̃
]
6 Kε

p 6
(

4DL
ε−γΣ

)n
(T − 1)n+1 ×

(4DL(T−1)
ε−γΣ

)2(T−1) =

(T − 1)
(

4DL(T−1)
ε−γΣ

)n+2(T−1)
.

Remark 6.22 (Stochastic dominance and comparison with finitely supported noise). The proof
of Theorem 6.21 actually give more information on the (random) number of iteration K̃ after
which we obtain an ε-solution: K̃ is stochastically dominated by a random variable with a
negative binomial distribution representing the number of trials to obtain Kε successes with
probability of success p, (see Lemma 6.31).

Further, under finitely supported noise assumption (FSN), the probability of choosing the
problem child ξkt (cf Lemma 6.16) for each t ∈ [T −1] is lower bounded by ∏T−1

t=1
1

| supp(ξt)| . Then,
Lemma 6.20 still holds after replacing the right hand side probability of success by ∏T−1

t=1
1

| supp(ξt)| .
We can then deduce other complexity bounds under (FSN). For example, in [Lan20], assuming
that | supp(ξt)| 6 N , for all t ∈ [T −1], the probability of having an effective iteration is bounded
by 1

NT−1 .

6.4 Extension to risk-averse setting

We now briefly discuss extensions involving a maximization problem in the dynamic program-
ming equation, arising for example from multistage risk-averse, robust or distributionally robust
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problems. Algorithm 6.1 can be adapted to such problems, by changing the definitions of the
Bellman operators.

Further, in the risk neutral case, Algorithm 6.1 is not symmetrical in its treatment of lower
and upper approximations. As noted in Remark 6.3, for a minimization problem, in Algo-
rithm 6.1, the forward phase Line 6 should be done using the lower approximations V k

t . More
generally, one should use an outer approximation (that is under approximation for min sub-
problems and upper approximations for max sub-problems) during the forward phase to be
able to explore the state space. Thus, for those min-max problems the computation of upper-
approximations V k

t is not optional.

Minimax problems. Baucke, Downward and Zakeri, in [BDZ17], presented a convergent
problem-child algorithm to solve stochastic minimax dynamic programs. Although our frame-
work of Algorithm 6.1 do not handle such minimax problem, we can extend it to do so. More
precisely, we consider a problem where the decision maker chooses xt ∈ Xt(xt−1, yt−1, ξt), and
then an adversary chooses yt ∈ Yt−1(xt−1, yt−1, xt, ξt). Thus, the Bellman operators are now
defined as

Bt−1(Ṽ )(xt−1, yt−1) = E
[

min
xt∈Xt(xt−1,yt−1,ξt)

max
yt∈Yt−1(xt−1,yt−1,xt,ξt)

`t(xt, yt, ξt) + Ṽ (xt, yt)
]
. (6.34)

The reachable sets then become

Xr
0 = {x0} Y r

0 = {y0} (6.35a)
Xr
t =

⋃
xt−1∈Xr

t−1

⋃
yt−1∈Y rt−1

⋃
ξt∈Ξt

Xt(xt−1, yt−1, ξt) ∀t ∈ [T ]. (6.35b)

Y r
t =

⋃
xt−1∈Y rt−1

⋃
yt−1∈Y rt−1

⋃
xt∈Xr

t

⋃
ξt∈Ξt

Yt(xt−1, yt−1, xt, ξt) ∀t ∈ [T ]. (6.35c)

In the forward phase, as in Algorithm 6.1, the γFt -optimal solution xkt should be chosen thanks
to the approximation V k−1

t . However, as we maximize over yt, ykt must be a γFt -optimal solution
of the step problem with the approximation V

k−1
t :

xkt = Fmin
t−1 (V k−1

t )(xt−1, yt−1, ξ
k
t ) ∈ γFt - arg min

xt∈Xt(xt−1,yt−1,ξkt )
max

yt∈Yt−1(xt−1,yt−1,xt,ξkt )
`t(xt, yt, ξkt ) + V k−1

t (xt, yt)

(6.36a)

ykt = Fmax
t−1 (V k−1

t )(xt−1, yt−1, x
k
t , ξ

k
t ) ∈ γFt - argmax

yt∈Yt−1(xt−1,yt−1,xkt ,ξ
k
t )
`t(xt, yt, ξkt ) + V

k−1
t (xt, yt) (6.36b)

Assuming that the reachable sets Xr
t and Y r

t have finite dimensions dx and dy and diameter
D, and that the objective function are L-Lipschitz, the convergence and complexity results still
hold developing on the ideas of [ZS22]. The upper bound on the number of effective iterations
then becomes Kε :=

(
2DL
ε−γΣ

)dx+dy (T − 1)dx+dy+1.

Robust Closely related, in [GTW19], Georghiou, Tsoukalas and Wiesemann presented the
Robust Dual Dynamic Programming algorithm (RDDP) to solve multistage robust optimization
problems. In such problems, instead of minimizing the expectation like in Eq. (MSP), we
minimize considering the worst case scenario ξt ∈ Ξt. In this setting, the Bellman operator
reads

Bt−1(Ṽ ) = max
ξt∈Ξt

min
xt∈Xt(xt−1,ξt)

`t(xt, ξt) + Ṽ (xt). (6.37)
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Note that this robust setting can be seen as a particular case of minimax problems where we
have deterministic random variables. Indeed, if we invert the order of max and min, either by
changing the indices or by taking the opposite, and Eq. (6.37) can be written as Eq. (6.34) where
ξt of (6.37) plays the role of yt and the ξt of (6.34) are deterministic parameter. The upper
bound on the number of effective iterations then becomes Kε :=

(
2DL
ε−γΣ

)dx+dξ (T − 1)dx+dξ+1.

Risk averse Multistage stochastic problems in the risk averse setting are MSP where the
expectation is replaced by a multiperiod risk measure. In the nested coherent risk measure
framework we present conditions under which Algorithm 6.1 can be adapted.

Let ρ be a coherent risk measure (see [ADEH99, ADE+07] or [SDR14, Def 6.4]) the Bellman
operator in the risk averse setting reads

Bt−1(Ṽ ) : xt−1 7→ ρ
(

min
xt∈Xt(xt−1,ξt)

`t(xt, ξt) + Ṽ (xt)
)
. (6.38)

We recall a classical Fenchel representation theorem for proper, lower semicontinuous, law-
invariant, coherent risk measure (see [SDR14, Thm 6.5]). For every random variable z ∈
L1(Ω,A,P,R), we have

ρ(z) = max
y∈Aρ

EP
[
yz
]

(6.39)

where Aρ := {y ∈ L∞(Ω,A,P,R) | E
[
y
]

= 1, y > 0 a.s., E
[
yz′

]
6 ρ(z), ∀z′ ∈

L1(Ω,A,P,R)}.
With this representation, we get

Bt−1(Ṽ ) = max
y∈Aρ

EP
[

min
xt∈Xt(xt−1,ξt)

y `t(xt, ξt) + yṼ (xt)
]
. (6.40)

Up to a slight change of notation, we can write this problem as a minimax problem. In particular,
a sufficient condition to obtain convergence and complexity bounds for risk averse MSP is that
the set Aρ has a finite dimension and a finite diameter. For example, if Ω is finite, Aρ is
contained in the space of random variables in Ω, isomorphic to a simplex of dimension |Ω| − 1
which has finite diameter. More generally, if Aρ is contained in the convex hull of n random
variables (yk)k∈[n], then Aρ has a finite diameter smaller than maxk,`∈[n](‖yk−y`‖∞) and a finite
dimension smaller than n− 1. Thus, we obtain complexity results similar to Corollary 6.17 and
Theorem 6.21 with Kε :=

(
2DL
ε−γΣ

)d+n−1
(T − 1)d+n.

We now comment the particular case of the average value at risk [RU+00] with value α ∈
[0, 1), denoted AV@Rα and defined as:

AV@Rα(z) := inf
s∈R

{
s+ 1

1− αEP
[
max(z − s, 0)

]}
(6.41)

We cannot use the dual representation Eq. (6.39) to derive complexity bounds as AAV@R has,

in general, non-finite dimension. However note that in Eq. (6.41), since AV@Rα(z) 6 EP
[
z
]

1−α the
infimum on s over R can be replaced by a minimum on the compact interval [0, 1

1−αEP
[
z
]
]. To ob-

tain an upper bound that does not depend on k and xt−1, we set z = minxt∈X (xt−1,ξt) `t(xt, ξt)+
V k
t (xt) then EP

[
z
]

is upper bounded by minxt∈Xr
t
E
[
`t(xt, ξt) + V

1
t (xt)

]
which has a finite value

by Assumption 6.3. Thus, MSP with nested average value at risk measure can be handled by
this framework and we can obtain complexity results similar to Corollary 6.17 and Theorem 6.21
with Kε :=

(
2DL
ε−γΣ

)d+1
(T − 1)d+2.
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6.A Cut methodologies

In this section, for the sake of completeness, we give several cuts that are used in different
algorithms to solve particular multistage problems.

Cut Oracle needed Setting and avantages

Benders First order Convex, simple to implement

Reverse norm Zeroth order and Lipschitz constant Lipschitz

Step Zeroth order, ε and γ Monotonic

Lagrangian Solving a dual problem Problem with small duality gap

Integer Zeroth order Binary variables

Adaptive partition Adapted partition oracle Linear, whole tangent cone

Generalized conjugacy Conjugate computation Regularisation

Saddle First order and Lipschitz constant Minimax problems

Fenchel conjugate Fenchel Dual of Bellman equation Linear, Exact upper bound

Table 6.2: Synthesis of different cuts and oracle required

6.A.1 Benders cuts for convex functions

The most commonly used cuts are the Benders cuts which are affine functions. This kind of cut
only works if the expected cost-to-go functions are convex.

The word cut is actually used because the graph of a Benders cut is a hyperplane which is
tangent to the epigraph of the approximated function.

Proposition 6.23. Let F be a convex function and g ∈ ∂F (x) a subgradient of F . We define
the Benders cut f at x̂ as

f(x) := F (x̂) + g>(x− x̂) (6.42)

Then, f is valid and tight at x̂.

Proof. By definition of a subgradient, f(x) := F (x̂) + g>(x − x̂) 6 F (x), thus f is valid. By
definition of f , f(x̂) = F (x̂) + g>(x̂− x̂) = F (x̂) thus f is tight at x.

We see that a first order oracle for the function F , i.e., an oracle that returns the value F (x̂)
and a subgradient g ∈ ∂F (x̂) for an input x̂, provides a direct algorithm to compute Benders
cut.

6.A.2 Reverse norm cuts for Lipschitz functions

Stochastic Lipschitz Dynamic Programming (SDLP) presented in [ACdC20] provides an algo-
rithm to deal with non-convex Lipschitz multistage stochastic programs. In this setting, the
cost functions `t are simply assumed to be Lipschitz continuous. Thus, the expected cost-to-go
functions Ft is not necessarily convex and Benders cuts are not valid anymore. Ahmed, Cabral
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and da Costa replaced these cuts by reverse norm cuts or augmented lagrangian cuts using only
the Lipschitz property of expected cost-to-go functions.

Proposition 6.24. Let F be a function with Lipschitz constant L (for norm ‖ · ‖). We define
the reverse norm cut f of F at x as

f(x) := F (x̂)− L‖x− x̂‖ (6.43)

Then, f is valid and 0-tight at x̂.

Proof. For any given x and x̂

f(x) = F (x̂)− L‖x− x̂‖ (6.44a)
= F (x̂)− F (x) + F (x)− L‖x− x̂‖ (6.44b)
6 L‖x̂− x‖+ F (x)− L‖x− x̂‖ (6.44c)
= F (x) (6.44d)

Thus, f is valid. By definition of f , f(x̂) = F (x̂)− L‖x̂− x̂‖ = F (x̂) thus f is tight at x.

We see that a zeroth order oracle for the function F , i.e., an oracle that returns the value
F (x̂) for an input x̂ , together with a Lipschitz constant L provides a direct algorithm to compute
reverse norm cuts. Thus, SDLP integrates our framework in Algorithm 6.1.

We can also define the norm cut f(x) := F (x̂) + L‖x − x̂‖ . These norm cuts can be used
to compute V k

t . The algorithm Tropical dynamic programming in [ACT20] uses this upper cuts
together with Benders cuts for lower approximation V k

t and thus integrates the framework of
Algorithm 6.1.

6.A.3 Step cuts for monotonic functions

We now look at “almost monotonic” expected cost-to-go functions.

Proposition 6.25. Let F be a function such that there exists δ > 0 and γ > 0 with

∀x, y, x 6 y + δ1 =⇒ F (x) 6 F (y) + γ (6.45)

where 1 is the vector whose coefficients are all equal to 1. We assume that F is upper bounded
by M .

For a point x̂, we define the upper increasing step cut f as

f(x) :=
{
F (x̂) + γ if x 6 x̂+ δ1
M otherwise

(6.46)

Then, the upper increasing step cut f satisfies

f(x) > F (x), ∀x (6.47)
f(x̌) 6 F (x̌) + γ (6.48)

Proof. Since x̂ 6 x̂ + δ, f(x̂) = F (x̂) + γ. Moreover, if x 6 x̂ + δ1, by Eq. (6.45) F (x) 6
F (x̂) + γ = f(x) and otherwise f(x) = M > F (x).

We could also define lower increasing step cuts for functions verifying Eq. (6.45). This cut
methods also adapt to lower bounded decreasing functions, we will define in the same way
upper and lower decreasing step cuts. However, these cuts are not Lipschitz. To integrate the
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framework of Algorithm 6.1, we could adapt these step cuts by interpolating with affine functions
between the constant regions of the cuts.

In [PWB20], Philpott, Wahid and Bonnans presented an algorithm called mixed integer
dynamic approximation scheme (MIDAS). This method applies to multistage mixed integer
problems, given as a maximization problems. After adapting the problem by taking the oppo-
site of the expected cost-to-go function, adding the constant γ and choosing the right affinely
interpolated step cut, the algorithm MIDAS integrates the framework of Algorithm 6.1 with
step cuts.

6.A.4 Lagrangian cuts

Lagrangian cuts were introduced for TFDP by Zou, Ahmed and Sun in [ZAS19]. These cuts are
based on the Lagrangian relaxation of an optimisation problems.

Proposition 6.26. Let F be a function, H be a convex function and x 7→ Y (x) be a graph-convex
set valued mapping see [RW09, p155] such that F is defined as

F (x) := inf
y∈Y (x)

`(y) (6.49)

We define the Lagrangian cut f at x̂ as

f(x) := λ̂>x+ β̂ (6.50)

where

λ̂ ∈ argmax
λ

λ>x̂+ inf
y,z | y∈Y (z)

`(y)− λ>z (6.51a)

β̂ = inf
y,z | y∈Y (z)

`(y)− λ̂>z (6.51b)

Then, the Lagrangian cut is valid and tight at x̂.

Proof. Consider x ∈ dom(Y ). We rely on a strong duality result:

F (x) = inf
y∈Y (x)

`(y) (6.52a)

= inf
y,z | y∈Y (z) and z=x

`(y) (6.52b)

= inf
y,z | y∈Y (z)

max
λ

`(y) + λ>(x− z) (6.52c)

= max
λ

λ>x+ inf
y,z | y∈Y (z)

`(y)− λ>z (6.52d)

(6.52e)

Indeed, as Y is graph-convex, we have that {(y, z) | y ∈ Y (z)} is a non-empty convex set. Thus,
we have

f(x̂) = λ̂>x̂+ inf
y,z | y∈Y (z)

`(y)− λ̂>z (6.53a)

= max
λ

λ>x̂+ inf
y,z | y∈Y (z)

`(y)− λ>z (6.53b)

= F (x) (6.53c)
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and f is tight at x̂. Moreover,

f(x) = λ̂>x+ inf
y,z | y∈Y (z)

`(y)− λ̂>z (6.54a)

6 max
λ

λ>x+ inf
y,z | y∈Y (z)

`(y)− λ>z (6.54b)

= F (x) (6.54c)

and then f is valid.

Note that this result is still true without the convexity assumption if we replace the tightness
result by a lower γ-tighness result where γ is the duality gap.

Secondly, in this simplified setting and when the variable x takes value in a continuous space,
the Lagrangian cut can be seen as a Benders cut since λ̂ is a subgradient of F at x̂. Nevertheless,
the point of view of Lagrangian allows new ideas to compute cuts. In particular, one can define
the Lagrangian cut with a different relaxation to deal with more complex setting such as integer
cases as presented in [ZAS19]. We can also combine the Lagrangian cut with the reverse norm
cut, such ideas are presented under the name augmented Lagrangian cuts in [ACdC20]. Thus,
the algorithm SLDP from [ACdC20] integrates the framework of Algorithm 6.1.

Zhang and Sun in [ZS22] generalized these Lagrangian cuts by introducing the point of view
of generalized conjugacy (see [RW09, Chapter 11]). They called these new cuts generalized
conjugacy cuts, and proved them to be tight and valid, thanks to the Fenchel-Young inequality.

6.A.5 Integer optimality cuts

The integer optimality cuts where first introduced by Laporte and Louveaux in [LL93] for 2-stage
sochastic integer problems.

Proposition 6.27. Let F be a function taking value in {0, 1}d and x̂ ∈ {0, 1}d be a binary
vector with Ŝ := {i |xi = 1}. We assume that F is lower bounded by M .

We define the integer optimality cut f as

f(x) := (F (x̂)−M)
(∑
i∈Ŝ

xi −
∑
i/∈Ŝ

xi − |Ŝ|+ 1
)

+M (6.55)

Then, f is a valid and tight at x̂.

Proof. We have that f(x̂) = (F (x̂)−M)
(
|Ŝ| − 0− |Ŝ|+ 1

)
+M = F (x̂). Thus, f is tight at x̂.

Let x ∈ {0, 1}d different from x̂, we have ∑i∈Ŝ xi −
∑
i/∈Ŝ xi 6 |Ŝ| − 1. Then, f(x) 6M 6 F (x)

and thus f is valid.

In [ZAS19], Zou, Ahmed and Sun presented an algorithm called Stochastic dual dynamic
integer programming (SDDiP), suggesting to use integer optimality cuts or Lagrangian cuts
instead of classical Benders cuts. By tightness and validity of these cuts, the algorithm SDDiP
integrates the framework of Algorithm 6.1 (with a potentially large Lipschitz constant).

6.B Sufficient conditions for effective iterations

In this appendix, we want to prove Lemma 6.15. We start with a technical lemma linking the
gap at t− 1 with the expected gap for tentative points at t.
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Lemma 6.28. Let Assumptions 6.1 to 6.5 be satisfied and t ∈ [T − 1], assume that δt ∈ [0, Dt]
and ηt ∈ R+ are given and εt defined by (6.20). Then, for all algorithms satisfying the framework
of Algorithm 6.1, we have for t ∈ [T − 1]

0 6 V k
t−1(xkt−1)− V k

t−1(xkt−1) 6 E
[
V
k−1
t

(
ykt
)
− V k−1

t

(
ykt
)]

+ γ
t−1 + γt−1 + γFt (6.56)

where we recall that ykt := Ft−1(V k−1
t )(xkt−1, ξt).

Proof.

V k
t−1(xkt−1) > Bkt−1(V k

t )(xkt−1)− γ
t−1 (backward phase: γ

t−1-tight cut)

(6.57a)
= E

[
min

x∈Xt(xkt−1,ξt)
`t(x, ξt) + V k

t (x)
]
− γ

t−1 (definition of Bt)

(6.57b)
> E

[
min

x∈Xt(xkt−1,ξt)
`t(x, ξt) + V k−1

t (x)
]
− γ

t−1 (monotonicity of approx.)

(6.57c)
> E

[
`t
(
ykt , ξt

)
+ V k−1

t

(
ykt
)]
− γFt − γt−1 (definition of Ft−1)

(6.57d)

V
k
t−1(xkt−1) 6 Bkt−1(V k

t )(xkt−1) + γt−1 (backward phase)

(6.58a)

= E
[

min
x∈Xt(xkt−1,ξt)

`t(x, ξt) + V
k
t (x)

]
+ γt−1 (definition of Bt)

(6.58b)

6 E
[

min
x∈Xt(xkt−1,ξt)

`t(x, ξt) + V
k−1
t (x)

]
+ γt−1 (monotonicity of approx.)

(6.58c)

6 E
[
`t
(
ykt , ξt

)
+ V

k−1
t

(
ykt
)]

+ γt−1 (as ykt ∈ Xt(xkt−1, ξt) P-a.s.)
(6.58d)

Combining these two results we get Eq. (6.56).

Proof of Lemma 6.15. Let t ∈ [T − 1]. We first prove that if one of the inequalities Eqs. (6.28a)
and (6.28b) is satisfied then, xkt−1 is εt−1-saturated as soon as xkt is not δt-distinguishable. Recall
that dkt (x) := min

κ<k|xκt is εt-saturated
‖x− xκt ‖.

Assume now that xkt+1 is not δt+1-distinguishable, then dkt (xkt ) 6 δt and there exists j < k
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such that xjt is εt-satured and ‖xjt − xkt ‖ 6 δt. If Eq. (6.28a) is satisfied, we have

E
[
V
k−1
t

(
ykt
)
− V k−1

t

(
ykt
)]
6 V

k−1
t (xkt )− V k−1

t (xkt ) + (Lt + Lt)ηt Eq. (6.28a)
(6.59a)

6 V
k−1
t (xkt )− V

k−1
t (xjt ) + V

k−1
t (xjt )− V k−1

t (xjt ) + V k−1
t (xjt )− V k−1

t (xkt ) + (Lt + Lt)ηt
(6.59b)

6 Lt‖xkt − x
j
t‖+ V

k−1
t (xjt )− V k−1

t (xjt ) + Lt‖x
j
t − xkt ‖+ (Lt + Lt)ηt (Lipschitz)

(6.59c)

6 (Lt + Lt)δt + V
j
t (x

j
t )− V

j
t (x

j
t ) + (Lt + Lt)ηt (monotonicity)

(6.59d)
6 (Lt + Lt)(δt + ηt) + εt (εt-saturation)

(6.59e)

Similarly, if Eq. (6.28b) is satisfied, we define j(ξ) such that

j(ξ) ∈ arg min
j6k−1,xjtεt-saturated

‖xjt −Ft−1(V k−1
t )(xkt−1, ξ)‖ (6.60)

In particular, dkt
(
Ft−1(V k−1

t )(xkt−1, ξ)
)

= ‖xj(ξ)t −Ft−1(V k−1
t )(xkt−1, ξ)‖ and thus E

[
dkt (ykt )

]
=

E
[
‖xj(ξ)t − ykt ‖

]

E
[
V
k−1
t

(
ykt
)
− V k−1

t

(
ykt
)]

6 E
[
V
k−1
t

(
ykt
)
− V k−1

t (xj(ξt)t ) + V
k−1
t (xj(ξt)t )− V k−1

t (xj(ξt)t ) + V k−1
t (xj(ξt)t )− V k−1

t

(
ykt
)]

6 E
[
Lt‖ykt − x

j(ξt)
t ‖+ εt + Lt‖x

j(ξt)
t − ykt ‖

]
= (Lt + Lt)E

[
dkt (ykt )

]
+ εt

6 (Lt + Lt)(δt + ηt) + εt

Then, in both cases, E
[
V
k−1
t

(
ykt
)
−V k−1

t

(
ykt
)]
6 (Lt +Lt)(δt + ηt) + εt. By Lemma 6.28, we

have

V
k
t−1(xkt−1)− V k

t−1(xkt−1) 6 E
[
V
k−1
t

(
ykt
)
− V k−1

t

(
ykt
)]

+ γ
t−1 + γt−1 + γFt (6.61a)

6 (Lt + Lt)(δt + ηt) + εt + γ
t−1 + γt−1 + γFt = εt−1 (6.61b)

Thus, xkt is εt-saturated as soon as xkt+1 is not δt+1-distinguishable.
We now prove by backward induction on t that iteration k is effective. We first prove that,

for all k ∈ N?, xkT−1 is εT−1-saturated.

V T−1(xkT−1)− V T−1(xkT−1) 6 BT−1(V k
T )(xkT−1) + γT−1 − BT−1(V k

T )(xkT−1) + γ
T−1 (6.62a)

= BT−1(0)(xkT−1) + γT−1 − BT−1(0)(xkT−1) + γ
T−1 (6.62b)

= γT−1 + γ
T−1 = εT−1 (6.62c)

Let t > 2 such that, for every τ > t, xkτ is ετ -saturated . If xkt is δt-distinguishable, then
iteration k is effective. Otherwise, xkt is not δt-distinguishable and by the previous paragraph,
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it implies that xkt−1 is εt−1-saturated. Eventually, assume that xk1 is ε1-saturated. If xk1 is δ1-
distinguishable, then iteration k is effective. Otherwise, there exists j < k such that ‖xj1−xk1‖ 6
δ1 and xj1 is ε1 saturated. We get

V1(xk1) 6 V j
1(xk1) (6.63a)

= V
j
1(xk1)− V j

1(xj1) + V
j
1(xj1) (6.63b)

6 L1‖xk1 − x
j
1‖+ V

j
1(xj1) (6.63c)

6 L1δ1 + ε1 + V j
1(xj1) (6.63d)

= L1δ1 + ε1 + V j
1(xj1)− V j

1(xk1) + V j
1(xk1) (6.63e)

6 L1δ1 + ε1 + L1‖xk1 − x
j
1‖+ V k−1

1 (xk1) (6.63f)
6 (L1 + L1)δ1 + ε1 + V k−1

1 (xk1) (6.63g)

Then,

`1(xk1, ξ1) + V1(xk1) 6 (L1 + L1)δ1 + ε1 + `1(xk1, ξ1) + V k−1
1 (xk1) (6.64a)

6 (L1 + L1)δ1 + ε1 + γF1 + min
x1∈X1(x0)

`1(x1, ξ1) + V k−1
1 (x1) (6.64b)

6 ε0 + min
x1∈X1(x0)

`1(x1, ξ1) + V1(x1) (6.64c)

Thus, in all the covered cases, iteration k is effective.

6.C Probabilistic lemmas

In this appendix, we present useful probabilistic lemmas to prove the convergence of SDDP with
randomized choice of ξkt .

6.C.1 A nested Hoeffding lemma

Lemma 6.29. Let (Ω,A,P) be a probability space, X and Y be two independent random vari-
ables taking values respectively in the euclidean spaces X and Y.

Let r > 0 be a positive real and f : X × Y 7→ R be a measurable function such that 0 6
f(X,Y ) 6 r almost surely.

Then for every η > 0 and A ∈ σ(X) such that P
[
A
]
> 0, we have

P
[
f(X,Y ) > E

[
f(X,Y )|σ(X)

]
− η

∣∣∣A] > 1− e
−2η2

r2 (6.65)

Proof. Recall that the Hoeffding lemma states that if Z is a real random variable such that
there exists a, b ∈ R with a 6 Z 6 b almost surely then for every η > 0 we have

P
[
Z − E

[
Z
]
6 −η

]
6 e

−2η2

(b−a)2 (6.66)

By taking the complementary event, we have

P
[
Z > E

[
Z
]
− η

]
> 1− e

−2η2

(b−a)2 (6.67)

Then for every x ∈ X, by applying the Hoeffding lemma to the random variable Z = f(x,Y ),
a = 0 and b = r, we have

P
[
f(x,Y ) > E

[
f(x,Y )

]
− η

]
> 1− e

−2η2

r2 (6.68)
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Let A ∈ σ(X) and B ⊂ X such that A = X−1(B)

P
[
{f(X,Y ) > E

[
f(X,Y )|σ(X)

]
− η} ∩A

]
=
∫

Ω
1{

f(X(ω),Y (ω))>E[f(X,Y )|σ(X)](ω)−η
}1ω∈AP(dω)

(6.69a)

=
∫

Ω
1{f(X(ω),Y (ω))>EY [f(X(ω),Y )]−η}(ω)1X(ω)∈BP(dω)

(6.69b)

=
∫
X

∫
Y
1f(x,y)>E[f(x,Y )]−η1x∈BPY (dy)PX(dx)

(6.69c)

=
∫
X
1x∈B

( ∫
Y
1f(x,y)>E[f(x,Y )]−ηPY (dy)

)
PX(dx)

(6.69d)

=
∫
X
1x∈BP

[
f(x,Y ) > E

[
f(x,Y )

]
− η

]
PX(dx)

(6.69e)

>
∫
X
1x∈B(1− e

−2η2

r2 )PX(dx) (6.69f)

= (1− e−
−2η2

r2 )PX
[
B
]

(6.69g)

= (1− e−
−2η2

r2 )P
[
A
]

(6.69h)
(6.69i)

Thus, by dividing by P
[
A
]
, we get P

[
f(X,Y ) > E

[
f(X,Y )|σ(X)

]
− η

∣∣∣A] > 1− e
−2η2

r2 .

Lemma 6.30. Let (Ω,A,P) be a probability space, (Xn)n∈N be a sequence of independent random
variables taking values in the euclidean space X and An = σ(Xk)k∈N be its adapted filtration.

For every n ∈ N, let rn and ηn be two positive real and fn : Xn 7→ R be a measurable function
such that 0 6 fn(X1, . . . , Xn) 6 rn almost-surely.

We denote by En the event
{
ω
∣∣∣ fn(X1, . . . ,Xn) > E

[
fn(X1, . . . ,Xn)|An−1

]
− ηn

}
∈ An .

Then, for all m 6 n ∈ N and Am−1 ∈ Am−1 such that P
[
Am−1

]
> 0, we have

P
[

n⋂
k=m

Ek
∣∣∣Am−1

]
>

n∏
k=m

1− e
−2η2

k
r2
k

 (6.70)

Proof. For every n ∈ N?, η > 0 and An−1 ∈ An−1 such that P
[
A
]
> 0, by the previous lemma

applied to X = (X1, . . . , Xn−1), Y = Xn, f = fn, η = ηn and r = rn, we have

P
[
En
∣∣∣An−1

]
> 1− e

−2η2
n

r2n (6.71)

Let m ∈ N, we now prove our lemma by induction on n. If n = m = 1 the result is true by
the Hoeffding lemma and for n = m > 1 the result is true by Eq. (6.71) with An−1 = Am−1.
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Let n > m and assume that P
[⋂n

k=mEk∩Am−1
]
> 0 and P

[⋂n
k=mEk

∣∣∣Am−1
]
>
∏n
k=m

1− e
−2η2

k
r2
k

.

P
[ n+1⋂
k=m

Ek
∣∣∣Am−1

]
= P

[
En+1

∣∣∣ n⋂
k=m

Ek ∩Am−1
]
P
[ n⋂
k=m

Ek
∣∣∣Am−1

]
(6.72a)

>

1− e
−2η2

n+1
r2
n+1

 n∏
k=m

1− e
−2η2

k
r2
k

 (6.72b)

where we underestimate the first factor thanks to Eq. (6.71) and ⋂nk=mEk ∈ An and the second
factor thanks to the induction hypothesis. In particular, P

[⋂n+1
k=mEk∩Am−1

]
> 0 and induction

ends the proof.

6.C.2 Stochastic dominance by geometric random variables

Recall that a real random variable X is (first-order) stochastically dominated by a real random
variable Y if the cumulative density function of X is smaller than the cumulative density
function of Y . If X and Y are integer random variables, X is stochastically dominated by Y is
equivalent to P

[
X > n

]
6 P

[
Y > n

]
, for all n ∈ N?. We now present a lemma where we leverage

this notion to bound the number of effective iteration in randomized algorithm in Theorem 6.21.

Lemma 6.31. Let (Ω,A,P) be a space of probability, (Xn)n∈N be a sequence of independent
and identically distributed random variables and An = σ(Xk)k∈N? be its adapted filtration. Let
(Yn)n∈N be a sequence of (non necessarily independent neither identically distributed) binary
random variables, i.e. taking values in {0, 1}, such that σ(Yn) ⊂ An. Assume that there exists
p ∈ (0, 1) such that for all n ∈ N? and all An ∈ An such that P

[
An
]
> 0, we have

P
[
Yn+1 = 1 |An

]
> p (6.73)

For m ∈ N, we define the stopping time τm := inf{n ∈ N |
∑n
k=1 Yi > m}. Let Bm,p be a

random variable with a negative binomial distribution representing the number of trials to obtain

m successes with probability of success p, i.e. P
[
Bm,p = n

]
=
(
n− 1
m− 1

)
pm(1 − p)n−m, for all

n > m.
Then, τm is stochastically dominated by Bm,p i.e.

P
[
τm > n

]
6 P

[
Bm,p > n

]
, ∀n ∈ N? (6.74)

In particular,
E
[
τm
]
6 E

[
Bm,p

]
= m

p
(6.75)

Proof. Let (Ỹn)n∈N? a sequence of independent and identically distributed Bernoulli random
variables with parameter p. For all n ∈ N?, we define the random variables Sn := ∑n

k=1 Yn and
S̃n := ∑n

k=1 Ỹn. We first show by induction on n that S̃n is stochastically dominated by Sn, i.e.
for all a ∈ N?, we have P

[
Sn > a

]
> P

[
S̃n > a

]
. Indeed, for n = 1 we have S1 = Y1 and S2 = Y2

then P
[
Sn > 0

]
= P

[
S̃n > 0

]
= 1 and P

[
Sn > 1

]
= P

[
Yn = 1

]
> p = P

[
S̃n > 1

]
. Finally, for all

a > 2, P
[
Sn > 2

]
= P

[
S̃n > 2

]
= 0.
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We now assume that there exists n ∈ N? such that for all a ∈ N?, P
[
Sn > a

]
> P

[
S̃n > a

]
.

We then have

P
[
Sn+1 > a

]
= P

[
Sn+1 > a,Sn 6 a− 2

]
+ P

[
Sn+1 > a,Sn = a− 1

]
+ P

[
Sn+1 > a,Sn > a

]
(6.76a)

= 0 + P
[
Sn+1 > a |Sn = a− 1

]
P
[
Sn = a− 1

]
+ P

[
Sn > a

]
(6.76b)

= P
[
Yn+1 = 1 |Sn = a− 1

]
P
[
Sn = a− 1

]
+ P

[
Sn > a

]
(6.76c)

> pP
[
Sn = a− 1

]
+ P

[
Sn > a

]
by assumption (6.73) (6.76d)

= p(P
[
Sn > a− 1

]
− P

[
Sn > a

]
) + P

[
Sn > a

]
(6.76e)

= pP
[
Sn > a− 1

]
+ (1− p)P

[
Sn > a

]
(6.76f)

> pP
[
S̃n > a− 1

]
+ (1− p)P

[
S̃n > a

]
by induction assumption (6.76g)

= P
[
Ỹn+1 = 1 | S̃n > a− 1

]
P
[
S̃n > a− 1

]
+ P

[
Ỹn+1 = 0 | S̃n > a

]
P
[
S̃n > a

]
(6.76h)

= P
[
S̃n > a− 1, Ỹn+1 = 1

]
+ P

[
S̃n > a, Ỹn+1 = 0

]
(6.76i)

= P
[
S̃n+1 > a, Ỹn+1 = 1

]
+ P

[
S̃n+1 > a, Ỹn+1 = 0

]
(6.76j)

= P
[
S̃n+1 > a

]
(6.76k)

Then, by induction, S̃n is stochastically dominated by Sn. For m ∈ N?, we recall that we
had τm = inf{n ∈ N |Sn > m}, similarly we define τ̃m := inf{n ∈ N | S̃n > m}. As S̃n is
stochastically dominated by Sn, it is easy to see that the stopping time τm is stochastically
dominated by the stopping time τ̃m. Indeed, P

[
τm > a

]
= P

[
Sa < m

]
= 1 − P

[
Sa > m + 1

]
6

1 − P
[
S̃a > m + 1

]
= P

[
S̃a < m

]
= P

[
τ̃m > a

]
. Finally, the random variable τ̃1 and the

random variables τ̃k+1− τ̃k, for all k ∈ N?, are independent and identically distributed geometric
random variables with probability of success p. Thus, Bm,p := τ̃m = τ̃1 +∑m−1

k=1 (τ̃k+1 − τ̃k) is a
random variable with negative binomial distribution representing the number of trials to obtain
m successes with probability of success p and τm is stochastically dominated by Bm,p.





7 Conclusion and perspectives

In this thesis, we showed how polyhedral geometry enlightens the structure of multistage stochas-
tic problems. We understood how higher order polyhedral notions such as chamber complexes
and fiber polyhedra characterize the expected cost-to-go functions. By doing so, we constructed
explicit local or uniform, universal exact quantization results for MSLP with fixed recourse.
These results allowed us to derive both complexity results and new algorithms such as GAPM
and TFDP to deal with MSLP with general distributions. However, the size of the exact quan-
tization can be exponential in the state dimension and thus difficult to use directly in practice.

We now present some perspectives for subsequent works leveraging this manuscript’s results.

Higher order simplex method for 2SLP Simplex methods solve linear problems by fol-
lowing a path on the vertices of the polyhedron. Combinatorially, the simplex updates a basis
by making pivots while reducing the cost. The tools of Chapter 3 are a first step to define a
higher order simplex algorithm to solve 2SLP with general cost. In particular, a collection of
active constraints sets not only represents the current visited cell of the chamber complex, see
Proposition 3.33, but also the normal fan of the fibers, see Fig. 3.13, and the affine coefficients
of the expected cost-to-go function, see Theorem 4.9. Geometrically, we could follow a path on
the chamber complex while reducing the cost. Combinatorially, it would be equivalent to imple-
ment and update the current collection of active constraints sets while reducing the cost through
local changes. Moreover, we could leverage the theory of regular subdivisions to understand the
behavior of this collection as, by Proposition 3.19, the collection of active constraints sets is a
regular subdivision. We leave the full development of this algorithm for further work.

2-time scale MSLP, nested fiber polyhedra and convex bodies A common application
in stochastic optimization is the management of an electrical microgrid with storage capacity
to maximize the return on the sales and purchases on the intraday and day-ahead markets, see
[LF21, Chapter 3]. In this setting, the decision maker has to take a decision, before the first
time step of the multistage problem, which impacts the dynamics of the multistage problem at
each time, we speak of two-time-scale MSLP:

min
p∈Rm,(xt)∈Rnt

q>p+ E
[ T∑
t=1
c>t xt

]
(7.1a)

s.t. Dp 6 d (7.1b)
Atxt +Btxt−1 + Ctp 6 ht a.s. ∀t ∈ [T ] (7.1c)
xt ∈ L∞(Ω,A,P;Rnt) ∀t ∈ [T ] (7.1d)
σ(xt) ⊂ σ(c1, · · · , ct) ∀t ∈ [T ] (7.1e)
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In Theorem 4.17, the nested fiber polyhedra only depends on At, Bt and ct but not on the
right handside ht. Thus, by replacing ht by ht − Ctp in Theorem 4.17, we have that Problem
(7.1) is equivalent to the deterministic problem

min
p∈Rm

q>p+ max
(λt)t∈[T ]

T∑
t=1

(Ctp− ht)>λt (7.2a)

s.t. Dp 6 d (7.2b)
λ = (λ1, · · · , λT ) ∈ E1 (7.2c)

By introducing, a lift variable Problem (7.1) is equivalent to the deterministic linear problem:

min
p∈Rm

q>p+ z (7.3a)

s.t. Dp 6 d (7.3b)
T∑
t=1

(Ctp− ht)>vt 6 z ∀v = (v1, · · · , vT ) ∈ Vert(E1) (7.3c)

This new formulation of this two-time-scale MSLP could open the door to new resolution meth-
ods, such as Benders decomposition to deal with the great number of constraints induced by the
vertices of the weighted nested fiber polyhedron.

More generally, we could extend the notion of fiber convex bodies [MM21] to weighted fiber
convex bodies, for two-stage stochastic convex problems, and to nested fiber convex bodies for
multistage stochastic convex problems.

Reintroduce Approximation or Sampling In Section 5.4, we saw that the most time-
consuming parts of GAPM algorithm are the exact computations of volumes. Indeed, it was
proven to be ]P -complete [DF88]. Thus, to improve Algorithm 5.1, we could use precise rapid
approximation volume algorithms, see e.g. [CV16]. More generally, we could develop approx-
imate quantization for example by approximating the expectation as in Section 4.5.2 or use
classical approximation ideas such as sampling, barycentric scenario trees or nested distance,
see Section 2.1.3. In particular, the exact quantization results could provide new insights both to
understand theoretically the convergence of such approximations or to improve them in practice.
For example, we conjecture that the Hausdorff distance between nested weighted fiber polyhedra
is connected to the nested distance of [PP12].

Exact quantization for stochastic integer linear problems The complexity of multistage
stochastic integer linear problems has been recently studied in the case of finitely supported
distribution (see [KR22]). The exact quantization result can be understood thanks to the basis
decomposition theorem of Walkup and Wets [WW69], which shows, in a modern vocabulary,
that the secondary fan is a key notion to understand the behavior of the value of a parametric
linear problem. In [ST97], Sturmfels and Thomas extended this basis decomposition theorem to
parametric integer linear problems showing that the key notions to understand how the value of
an integer linear problem varies with its parameter are the Gröbner and Graver fans. We thus
conjecture that there exist exact quantization results for stochastic integer linear problems by
using these Gröbner and Graver fans, from which we could deduce new complexity results.

Understanding the complexity of MSLP We saw that 2SLP with general cost distribution
was in some way similar to the problem of computing the volume of polytope from a complexity
point of view. Indeed, in [HKW16], Hanasusanto, Kuhn and Wiesemann proved that 2SLP was
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]P-hard and we proved in Section 6.3 that 2SLP was polynomial when we fix the dimension of the
recourse, like the computation of the volume, see [Bar08]. However, it was proven in [DF88] that
computing the volume of a polytope is ]P-complete. This raises the question of showing that for
a large enough class of cost distributions (including uniform measures on rational polytopes),
2SLP is not only ]P-hard but ]P-complete.

Moreover, we studied the complexity of TFDP algorithms in Chapter 6. If deterministic node
selections, such as problem child and explorative, lead to a number of iterations polynomial in
the horizon, the best bound yet proven for random node selection, is exponential in the horizon.
We thus need further works to understand if TFDP algorithms with random node selection,
such as SDDP, are polynomial in the horizon. Indeed, SDDP algorithm is not really affected
by the horizon in practice. However, the proof of complexity of TFDP algorithms exploits very
few the structure, aside from Lipschitz continuity and compactness, this raises the question of
showing if more assumptions, such as convexity or linearity, improve the number of iterations.



A Proof of a counter example

We prove that Example 2.2 does not admit neither a local nor a uniform exact quantization.
Let n = m = ` = 1, q = (1), T = (0), W = (−u), h = (−1) where u denotes a uniform

random variable on [1, 2]. We then have for all x ∈ Rn:

V̂ (x, ξ) =
min
y∈Rm

y

s.t. uy > 1
= 1
u

(A.1)

In particular, by the law of total expectation and Jensen’s inequality for all partition P of
Ξ:

V (x) = E
[
V̂ (x, ξ)|P

]
=
∑
P∈P

P
[
P
]
E
[
V̂ (x, ξ)|P

]
>
∑
P∈P

P
[
P
]
V̂
(
x,E

[
ξ|P

])
(A.2)

However, for all 1 6 a < b 6 2 we have

E
[
V̂ (x, ξ) | a 6 u 6 b

]
= E

[ 1
u
| a 6 u 6 b

]
= 1
b− a

ln
(
b

a

)
(A.3a)

V̂
(
x,E

[
ξ | a 6 u 6 b

])
= 1

E
[
ξ | a 6 u 6 b

] = 2
b+ a

(A.3b)

Since, for all t ∈ (1,+∞), 2 t−1
t+1 6 ln(t), we have for all 1 6 a < b 6 2, 2

b+a <
1
b−a ln

(
b
a

)
and

then E
[
V̂ (x, ξ) | a 6 u 6 b

]
> V̂

(
x,E

[
ξ | a 6 u 6 b

])
.

Finally, for all partition P since the partition is finite there exists 1 6 a < b 6 2 and P ∈ P
such that P

[
a 6 u 6 b ∩ P

]
= P

[
a 6 u 6 b

]
. We then have

P
[
P
]
E
[
V̂ (x, ξ)|P

]
= P

[
a 6 u 6 b

]
E
[
V̂ (x, ξ)

∣∣ a 6 u 6 b] (A.4a)

+ P
[
{a < u or u > b} ∩ P

]
E
[
V̂ (x, ξ)

∣∣ {a < u or u > b} ∩ P
]

(A.4b)

< P
[
a 6 u 6 b

]
V̂
(
x,E

[
ξ | a 6 u 6 b

])
(A.4c)

+ P
[
{a < u or u > b} ∩ P

]
V̂
(
x,E

[
ξ | {a < u or u > b} ∩ P

])
(A.4d)

= P
[
P
]
V̂
[
x,E

[
ξ|P

]]
(A.4e)

Thus, for all x ∈ Rn, there is no partition-based local, thus uniform, exact quantization result
at x when W is non-finitely supported.
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B Computing the quantized costs and
probabilities

In this appendix, we show that, for three standard classes of distributions (uniform on a polytope,
exponential, and Gaussian), the quantized costs čR and probabilities p̌R arising in the exact
quantization (Theorems 4.2 and 4.3), can be effectively computed. More generally, there exist
formulas and software to compute quantized costs and probabilities for all distributions with a
polynomial density (see [DLDK+12, Las21]).

The formulas are summed up in Table B.1. They are detailed and established in Sections B.1–
B.3. We provide these formulas for simplices or simplicial cones S with dim(S) = dim(supp c).
This extends to any polyhedron R, through triangulation of R ∩ supp(c) into simplices and
simplicial cones (Sk)k∈[l]. We then compute p̌R = ∑l

k=1 p̌Sk and čR = ∑l
k=1 p̌Sk čSk/p̌R if p̌R 6= 0

and čR = 0 otherwise.

Uniform Exponential Gaussian

dP(c) 1c∈Q
Vold(Q)dLAff(Q)(c) eθ

>c1c∈K
ΦK(θ) dLAff(K)(c) e−

1
2 c
>M−2c

(2π)
m
2 detM

dc

supp c Polytope : Q Cone : K Rm

p̌S
Vold(S)
Vold(Q)

| det(Ray(S))|
ΦK(θ)

∏
r∈Ray(S)

1
−r>θ

Ang
(
M−1S

)
čS

1
d

∑
v∈Vert(S) v

(∑
r∈Ray(S)

−ri
r>θ

)
i∈[m]

√
2Γ(m+1

2 )
Γ(m2 ) M SpCtr

(
S ∩ Sm−1

)
Table B.1: Probabilities p̌S and expectations čS arising from different cost distributions over
simplicial cones or simplices S ⊂ supp(c) with dimS = dim(supp c), where LA is the Lebesgue
measure on an affine space A.

B.1 Uniform distributions on polytopes

The volume of a polytope Q ⊂ Rm is the volume of Q seen as a subset of the smallest affine space
Aff(Q) it lives in. The volume of a full dimensional simplex S in Rd with vertices v1, . . . , vd+1 is
given by Vol(S) = 1

n! |det(v1−vd+1, · · · , vd−vd+1)|, see for example [GK94] 3.1. The centroid of
a non-empty polytope Q ⊂ Rm is Ctr

(
Q
)

:= 1
VolQ

∫
Q ydLAff Q(y). For instance, the centroid of

a simplex S of (non necessary full) dimension d is the equibarycenter of its vertices: Ctr
(
S
)

=
1
d+1

∑
v∈Vert(S) v.

Assume now that Q is a polytope of dimension d, and that c is uniform on Q. Let S ⊂ Q

157



158 APPENDIX B. COMPUTING THE QUANTIZED COSTS AND PROBABILITIES

be a simplex with dim(S) = dim(Q), then we have

p̌S = Vold S
VoldQ

and čS = 1
d+ 1

∑
v∈Vert(S)

v . (B.1)

B.2 Exponential distributions on cones

Let P ⊂ Rm be a polyhedron and θ ∈ ri
(
(rcP )◦

)
. We denote by ΦP (θ) :=

∫
P e

θ>cdLAff(P )(c)
the exponential valuation of P with parameter θ.

Proposition B.1 (Brion’s formula [Bri88]). Let S be a full dimensional simplicial cone, and let
by a sligth abuse of notation Ray(S) be a square matrix whose columns are obtained by selecting
precisely one element in every extreme ray of S, so that S = Cone

(
Ray(S)

)
. Then for any

θ ∈ riS◦, the exponential valuation of S is given by

ΦS(θ) = |det(Ray(S))|
∏

r∈Ray(S)

1
−θ>r

. (B.2)

Let K be a (non necessarily simplicial) full dimensional polyhedral cone of Rm and θ ∈ riK◦
a vector. Assume that c has the following exponential density :

dP(c) := eθ
>c1c∈K

1
ΦK(θ)dLAff(K)(c) (B.3)

Let S ⊂ K be a simplicial cone with dimS = dimK, by Brion’s formula (B.2),

p̌S = ΦS(θ)
ΦK(θ) = 1

ΦK(θ) | det(Ray(S))|
∏

r∈Ray(S)

1
−r>θ

(B.4)

Further,

p̌S čS = E
[
1c∈Sc

>] = 1
ΦK(θ)

∫
S
ceθ
>cdc = ∇ΦS(θ)

ΦK(θ) . (B.5)

By computing explicitly the latter gradient, dividing by p̌S , and simplifying, we obtain:

čS =
( ∑
r∈Ray(S)

−ri
r>θ

)
i∈[m]

. (B.6)

where ri is the i-th coordinate of r.

B.3 Gaussian distributions

The solid angle of a pointed cone K ⊂ Rd is defined as the normalized volume of its intersec-
tion with the unit ball Bd, i.e.: Ang

(
K
)

:= Vold(K ∩ Bd)/Vold(Bd). Recall that Vold(Bd) =
π
d
2 /Γ(d2 + 1) with Γ the Euler gamma function, and that ([Rib06]) for any function f : Rm → R

invariant under rotations around the origin and any pointed coneK ⊂ Rm, we have Ang
(
K
) ∫

Rm f =∫
K f .

Let c be a non-degenerate, centered, Gaussian random variable of variance M2, where M is
a symmetric positive definite matrix. Then, if K is a polyhedral cone, we have

p̌K =
∫
M−1K

e−
1
2‖c‖

2
2

(2π)m2
dc = Ang

(
M−1K

)
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We shall use the notion of spherical centroid SpCtr
(
U
)

for a measurable subset U included
in the unit sphere. It is defined as the barycenter of the elements of U with respect to the
uniform measure on the sphere. Note that the spherical centroid does not belong to the sphere,
unless U is trivial. By denoting Sm−1 the unit sphere in Rm, we have

p̌K čK =
∫
M−1K

Mc
e−

1
2‖c‖

2
2

(2π)m2
dc = M

∫
R+
rm

e−
r2
2

(2π)m2
dr

∫
M−1K∩Sm−1

ϕdϕ

= M
Γ(m+1

2 )
√

2πm2
Volm−1(Sm−1) Ang

(
M−1K

)
SpCtr

(
M−1K ∩ Sm−1

)
= M

√
2Γ(m+1

2 )
Γ(m2 ) Ang

(
M−1K

)
SpCtr

(
M−1K ∩ Sm−1

)
Similarly, one can get explicit formulæ when c is distributed uniformly on an ellipsoid, or on

the surface of an ellipsoid, or more generally, when the distribution of c is invariant under the
action of an orthogonal group. Then, the quantized costs and probabilities čS and p̌S are still
given by solid angles and spherical centroids, in a way similar to Table B.1.
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[Dup02] Jitka Dupačová. Applications of stochastic programming: Achievements and
questions. European Journal of Operational Research, 140(2):281–290, 2002.

[EK08] Alexander Esterov and Askold Khovanskii. Elimination theory and newton poly-
topes. Functional Analysis and Other Mathematics, 2(1):45–71, 2008.

[EZ94a] NCP Edirisinghe and William T Ziemba. Bounding the expectation of a saddle
function with application to stochastic programming. Mathematics of Operations
Research, 19(2):314–340, 1994.

[EZ94b] NCP Edirisinghe and William T Ziemba. Bounds for two-stage stochastic pro-
grams with fixed recourse. Mathematics of Operations Research, 19(2):292–313,
1994.
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