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RESUME

Dans cette theése, nous utilisons les outils de la géométrie polyédrale pour appréhender la struc-
ture de problemes stochastiques. Plus précisément, lorsque les variables aléatoires de problemes
stochastiques linéaires multiétapes (MSLP) peuvent étre remplacées par des variables aléatoires
a support fini sans changer les fonctions valeurs, on parle de discrétisation exacte. On qualifie
une discrétisation exacte de locale si elle s’applique a un point particulier de I'espace d’état,
d’uniforme si elle ne dépend pas de I’état et d’universelle si elle est indépendente de la distribu-
tion.

Notre but est de donner des conditions pour obtenir des discrétisations exactes universelles,
locale ou uniforme.

Grace a la notion d’éventail normal, nous établissons une discrétisation exacte locale et
universelle pour les probléemes stochastiques linéaires a 2 étapes (2SLP), qui permet ensuite
d’obtenir une discrétisation exacte, uniforme et universelle, a ’aide de 1’équivalence normale
des fibres du polyédre couplant sur les cellules d’un certain complexe polyédral appelé chamber
complex. En construisant par programmation dynamique, des complexes polyédraux universels,
ou la fonction des cotits futurs espérés est affine par morceaux, nous prouvons une discrétisation
exacte uniforme et universelle pour les MSLP avec distribution de cotit générale. De plus, nous
donnons une interprétation duale & l'aide d’une généralisation du polyedre de fibres pondéré
adapté au 2SLP que l'on étend aux MSLP au moyen de polyedres de fibres imbriqués. Ces
discrétisations nous permettent alors de déduire des résultats de complexité pour les MSLP en
montrant qu’ils deviennent résolubles en temps polynomial pour toute distribution réguliere,
lorsque certains parametres sont fixés.

Nous nous intéressons ensuite aux 2SLP dont la matrice et le second membre des contraintes
ont des distributions générales. Grace a une discrétisation exacte et locale, nous étendons la
portée des méthodes de partitions adaptatives (APM) en donnant un oracle géométrique pour
obtenir une partition adaptée, c’est a dire fournissant une discrétisation exacte locale. Nous
donnons également une condition nécessaire et suffisante pour la correction des algorithmes
APM, ainsi que des bornes de complexité.

Enfin, nous introduisons une classe d’algorithmes, appelée Programmation Dynamique par
Suivi de Trajectoire, Trajectory Following Dynamic Programming en anglais, qui affine succes-
sivement des approximations des fonctions des cofits futurs espérés d’un probleme stochastique
multi-étapes avec des variables aléatoires indépendantes. Ce cadre algorithmique englobe la plu-
part des variantes de Palgorithme Stochastic Dual Dynamic Programming (SDDP). En supposant
le caractere Lipschitz de la fonction valeur, nous donnons une nouvelle preuve de convergence
et de complexité qui autorise les variables aléatoires avec des supports infinis. En particulier,
nous en déduisons des nouveaux résultats de complexité pour plusieurs algorithmes.



ABSTRACT

In this manuscript we study how the tools from polyhedral geometry enlighten the structure of
multistage stochastic programming. More precisely, when the arbitrary random variables of a
Multistage Stochastic Linear Problem (MSLP) can be replaced by finitely supported random
variables without changing the value functions, we say that there exists an exact quantization.
We call an exact quantization local if it applies at a particular state, uniform if it does not
depend on the state and universal if it is independent of the noise distribution.

Our aim is to provide conditions to obtain local or uniform, universal exact quantization of
MSLP, and algorithms exploiting these conditions.

Through the notion of normal fans, we show a local and uniform exact quantization for
2-stage linear problems (2SLP) whose cost has a non necessarily finite distribution, which then
provides a universal and uniform exact quantization thanks to the property of normal equivalence
on a chamber complex. By constructing, through dynamic programming, universal chamber
complexes, where the expected cost-to-go function is piecewise affine, we prove a uniform and
universal exact quantization for MSLP with general cost distributions. Further, we give a dual
interpretation of this result by defining new objects which extend of the notion of fiber polytope
to general distributions. These quantizations allow us to derive new complexity results for MSLP
showing that with fixed parameters, MSLP becomes polynomial for every regular distribution.

We then focus on 2SLP with generally distributed matrix and right-hand side constraints.
Thanks to a local exact quantization, we extend the scope of Adaptive Partition-based meth-
ods (APM) by providing a geometric oracle to obtain an adapted partition. We also provide
necessary and sufficient conditions of correcteness of APM, as well as convergence speed result.

Finally, we introduce a class of algorithms, called Trajectory Following Dynamic Program-
ming (TFDP) algorithms, that iteratively refines approximations of expected cost-to-go func-
tions of multistage stochastic problems with independent random variables. This framework
encompasses most variants of the Stochastic Dual Dynamic Programming algorithm. Leverag-
ing a Lipschitz assumption on the expected cost-to-go functions, we provide a new convergence
and complexity proof that allows random variables with non-finitely supported distributions. In
particular, this leads to new complexity results for numerous known algorithms.
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NOTATIONS

As a general guideline bold letters denote random variables, normal scripts their realizations.
Capital letters denote matrices or sets, calligraphic (e.g. ') denote collections of sets. Depending
on the context, overline are either used for subcollections of maximal elements (as in C) or for
upper-approximation (as in V). Similarly, underline are either used for subcollections of minimal
elements or lower-approximation. Hats (as in ‘7) represent functions parametrized by &, and
their counterpart without hat (as in V') being their expectation.

o The (tropical) indicator function Ip takes value 0 if P is true and +o0o otherwise.
e The indicator function 1p takes value 1 if P is true and 0 otherwise.

o [k]:=A{1,...,k}.

e #F is the cardinal of a set F.

o 1i(FE) is the relative interior of a set E

o Ay is the submatrix of a matrix A, composed of the rows of indices i € I.

o A.jis the submatrix of a matrix A composed of the columns of indices j € J.
« Cone(A) := AR the conic hull of the columns of A.

e x < y is the standard partial order, given by Vi, z; < y;.

e FFC G ifF is a subface of G.

e P =< Qif P is a refinement of the polyhedral complex Q.

e P A Qis the common refinement of P and Q.

o E Cp F if F is “P-almost surely included” in F,i.e. P[E N F] = P[E].

o E ~p F if E is “P-almost surely equal” to F, i.e. P[EN F| = P[E] = P[F].

o suppC := Upec F is the support of a collection of sets C

e FE=XUY means that E=XUY and X NY = .

o C is the subcollection of maximal elements of a collection of sets C.

¢ ( is the subcollection of minimal elements of a collection of sets C.

o 1c(P) is the recession cone of a polyhedron P.

o F(P) the set of faces of P.
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Flow(P) the set of lower faces of P.
Vert(P) the set of vertices of P.

Ray(P) a set with vectors each representing one extreme rays (for example the normalized
extreme rays).

PV is the face of P given by arg min,cp P,

Np(z) is the normal cone of P at z

N (P) the normal fan of P.

K° is the polar {¢|¢'x < 0,Vx € K} of a cone K.
Iap(z) :={i | Ajx = b;} the set of active constraints in x for an H-representation {z | Az <
b}.

Z(A,b) the collection of these sets {I44(z) | Ax < b}.
B represents backward Bellman operators.

F represents forward Bellman operators.

¢ is a noise.

{; is the loss function at time ¢.

V} is the cost-to-go function at time ¢.

V; is the expected cost-to-go function at time t.

L denotes a Lipschitz constant.

L denotes a diameter.

X a set of state (e.g. X/ is the set of reachable state) and X a set-valued application
representing set of states (e.g. Xj(z,§) is the set of admissible next state, Xvﬁﬂf(V)(x,{) is
the set of y-optimal next state...).



ACRONYMS

APDP

APM

CMS

DSDDP

DP

ECSO

EDDP

GAPDP

GAPM

GKZ

LP

ISDDP

MIDAS

MSCP

MSLP

MSP

NDDP

PLP

RDDP

Adaptive Partition-based Dynamic Programming
Adaptive Partition-based method

Computational Management Science

Dual Stochastic Dual Dynamic Programming

Dynamic Programming

European Conference on Stochastic Optimization
Explorative Dual Dynamic Programming

Generalized Adaptive Partition-based Dynamic Programming
Generalized Adaptive Partition-based method

Gelfand Kapranov Zelevinsky (vector or coordinate)
Linear Problem

Inexact Stochastic Dual Dynamic integer Programming
Mixed Integer Dynamic Approximation Scheme
Multistage Stochastic Convex Problem

Multistage Stochastic Linear Problem

Multistage Stochastic Problem

Non-sequential Dual Dynamic Programming
Parametric Linear Problem

Robust Dual Dynamic integer Programming
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SAA

SDDiP

SDDP

SDP

SLDP

TDP

TFDP

2SLP

CONTENTS

Sample Average Approximation

Stochastic Dual Dynamic integer Programming

Stochastic Dual Dynamic Programming

Stochastic Dynamic Programming (should not be confused with Semi Definite Programming)
Stochastic Lipschitz Dynamic Programming

Tropical Dynamic Programming

Trajectory Following Dynamic Programming

Multistage Stochastic Linear Problem
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12 CHAPTER 1. INTRODUCTION (VERSION FRANCAISE)

L’optimisation est le domaine des mathématiques qui étudie les minima d’une fonction, ap-
pelée fonction objectif, sur un ensemble donné. Dans une perspective plus appliquée, 'optimisa-
tion modélise diverses situations ou une personne doit choisir la meilleure décision, selon un cer-
tain objectif, en satisfaisant différentes contraintes. Au XVIleme siecle, le calcul différentiel de
Leibniz et Newton a permis I’émergence de méthodes pour trouver des solutions aux problemes
d’optimisation sans constrainte avec des fonctions lisses. Des mathématiciens du XVIIIeme
siecle comme Euler et Lagrange ont ensuite développé des méthodes pour construire des so-
lutions de problémes d’optimisation sous contraintes. Depuis le XXeéme siecle, les progres
de linformatique ont permis d’implémenter des algorithmes pratiques pour résoudre divers
problémes d’optimisation avec des fonctions non lisses. Par exemple, la programmation linéaire
est un domaine de ’optimisation qui trouve de nombreuses applications et que I’on peut résoudre
tres efficacement en pratique. Dantzig [DT03] a développé une formulation générale pour
I’optimisation linéaire et inventé la méthode du simplexe, qui est maintenant mieux comprise
grace a la géométrie polyédrale. Plus généralement, en optimisation convexe non lisse, des
mathématiciens comme Fenchel et Rockafellar [Rocl5] ont découvert de nouveaux liens en-
tre optimisation et géométrie. Ainsi, les ponts entre I'optimisation et la géométrie ont per-
mis d’améliorer Defficacité d’algorithmes déja existants et d’en inventer de nouveaux. Dans
cette these, nous regarderons plus précisément les liens entre I'optimisation stochastique et la
géométrie polyédrale.

Dans ce chapitre, nous présentons d’abord, dans la section I'optimisation stochastique en
rappelant les principes de la programmation dynamique et différentes méthodes d’approximation
par discrétisation. Apres avoir donné un apercu des notions de géométrie polyédrale qui seront
utilisées tout au long de cette these, et des raisons pour lesquelles ces notions ont été définies
dans la section nous introduisons le probleme de discrétisation exacte dans la section
qui est la question centrale traitée dans ce travail. Les contributions principales de la these sont
présentées dans la section et son plan dans la section [1.5

1.1 Optimisation stochastique

En optimisation sous incertitude, on doit prendre une décision sans connailtre précisément cer-
tains parametres essentiels du probléeme. L’incertitude peut provenir d’'un manque d’information,
d’une imprécision dans les mesures ou d’une difficulté a modéliser le probleme. Le cas le plus
commun est lorsque le décideur doit faire un choix ici et maintenant mais que le critere qu’il
veut optimiser dépend d’un parametre qu’il ne pourra observer que dans le futur.

Il existe diverses approches de la décision dans l'incertain. Il y a deux représentations
principales de l'incertitude qui est soit modélisée comme antagoniste, soit stochastique. En
optimisation robuste [BTEGN09, BBC11], le décideur doit choisir une solution optimale en
considérant le pire cas d’un ensemble d’incertitude. En apprentissage par renforcement [KLM90,
SBI8|, ou dans les problémes de bandits manchots [BCB™12|, nous supposons que ’incertitude
est aléatoire mais que le décideur ne connait pas sa distribution et doit alors ’apprendre.

L’optimisation stochastique considere des problemes ot le décideur minimise une fonction a
valeurs réelles, parfois appelée mesure de risque, qui dépend de parameétres incertains modélisés
comme des variables aléatoires. Une partie de 'optimisation stochastique traite de problémes
d’optimisation distributionnellement robuste [WKS14, RM19, ZKW21] ot 'on doit considérer la
pire distribution dans un ensemble de distributions donné. Les probléemes d’optimisation stochas-
tique avec aversion au risque avec mesure de risque cohérente [ADEH99] sont équivalents aux
problemes d’optimisation distributionnellement robuste. L’objectif a minimiser le plus naturel
et répandu est ’espérance d’un coiit. Lorsque ’on choisit ’espérance comme mesure de risque a
optimiser, nous parlons de risque neutre. Dans cette these, nous considérerons essentiellementﬂ
des problemes avec risque neutre.

'Nous discuterons seulement le cas de Paversion au risque dans la section
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1.1.1 Optimisation stochastique multi-étapes

Les problémes d’optimisation stochastique multi-étapes, multistage stochastic problems (MSP)
en anglais, constituent une classe importante des probléemes d’optimisation stochastique ou les
décisions x; sont prises successivement a chaque étape t. Entre les étapes t et ¢ + 1, une partie
de l'incertitude & est révélée.

To &1 T v o v v o v £ v X7

Les parametres d’incertitude sont modélisés comme des variables aléatoires, et nous les noterons
en caracteres gras tout au long de cette thése. Nous présentons maintenant informellementﬂ un
cadre général pour les MSP.

T
min E [Z Et(wt, gt)‘| (MSP)
(®t)eem) =
S.C. oy = X0 p-.Ss.
Ty € Xt(:nt_l,&) p.s. Vte [T}
o(x) Co(€r,--- &) Vi e [T]

A chaque étape t, le décideur choisit une solution x; pour maximiser le cotlit actuel ¢, qui
dépend du choix @x; et d’une réalisation d’une variable aléatoire &;, auquel on ajoute I’espérance
des cotits futurs. La contrainte x; € X;(x;—1,&;) modelise le fait que la décision x; doit satisfaire
certaines contraintes qui dépendent de la décision passée x;_1 et du parametre d’incertitude
actuel &. La derniere contrainte, appelée contrainte de non-anticipativité, assure le fait que le
décideur ne peut baser sa décision que sur les parametres passés et présents observés et non
sur les parametres futurs pas encore observés. Ici, o fait réference aux tribus, ou c-algebres,
induites par des variables aléatoires. Pour la cohérence des notations, nous supposons que la
premiére variable aléatoire &1 est fixée presque stirement a un certain parametre déterministe &;
et que I'état xg est également fixé.

Ezemple 1.1 (Modélisation de la gestion d’une centrale de stockage hydraulique par un MSP).
Nous considérons une station de transfert d’énergie par pompage-turbinage. Les parameétres
d’incertitude sont la demande en électricité et le flux d’eau provenant de la pluie et du ruisselle-
ment. Le décideur choisit une quantité d’eau turbinée chaque jour pour optimiser un certain
colit, en respectant des contraintes physiques, par exemple en s’assurant que le barrage ne va
pas déborder. Pour modéliser ce probléme, nous pouvons définir le MSP suivant:

(uz)m ’vt t

T
min [Z Ct dt Ut ]
t=1

s.c. Ty = T p.S.
0<u <dg p.s. Vte|[T]
Ty =Ty +wp — U — U p.s. Vte|[T]
0<x <7 p.s. Vtel[T]
0< v p.s. Vtel[T]
o(u) C o(wy,dy -, wy, dy) vt € [T,

ou T est la capacité du réservoir, T' est le nombre d’étapes, ici nombre de jours, dans la période
que nous considérons, et pour chaque étape ¢, x; représente la quantité d’eau dans le réservoir,

2Une définition plus formelle sera donnée dans la section
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u; la quantité d’eau turbinée, v; la quantité d’eau évacuée en ouvrant la vanne, d; la demande,
w; la quantité d’eau apportée par la pluie et le ruissellement et ¢; le cotit d’'une unité de demande
non fournie.

1.1.2 Programmation dynamique

Les problémes d’optimisation stochastique multi-étapes sont notoirement difficiles a résoudre et
obtenir des solutions, méme approximées, dans un temps raisonnable est hors de portée dans le
cas général. En effet, sans hypothese supplémentaire, la solution optimale est une fonction des
bruits passés ce qui amene apres discrétisation a un nombre de variables de décisions exponentiel
en ’horizon. Une hypothese usuelle, permettant une décomposition d’une part et de condenser
I'information d’autre part, est 'indépendance des parametres d’incertitude. Plus formellement,
nous supposons que (ft)te[T] est une suite de variables aléatoires indépendantes.

Pour le décomposer, nous plongeons le probléeme dans une famille de problemes
d’optimisation obtenus en faisant varier I’état initial z;_1:

T
Vi) := ( min E [ZET(;BT,&T)]

@7 )i<r<T
S.C. Ty_1 = Ty4_1 p.s.
xr € Xp(xro1,&r) p.s. Vt<7t<T
o(wr) Co(&, - &) Vt<T<T

ou V; est appelée la fonction de cofit futur espéré au temps .

En s’appuyant sur ’hypothése d’indépendance, nous avons pour tout ¢ € [T], ’équation
suivante, appelée équation de Bellman ou équation de programmation dynamique (voir [BelG0,
Ber12]) qui lie les fonctions de cotit futur espéré aux étapes t et t + 1:

Viwi1) = B[ V(21,60 (1.22)

Vi(zio1,&) == min  l(2, &) + Viga(ze) (1.2b)
T €X (w—1,6t)

ou l'on pose V41 := 0 pour la cohérence des notations.
Notons enfin que 'on peut réécrire le probléme [MSP] dans la forme imbriquée suivante:

min  {1(z1,&) +E
r1€X1(0,61) (e 6)

zgeg%g,&)& (@2,62) + E [ TE [avTeX;I(lxl;lfhﬁT)eT(xT’ ET)H‘| .

Le principe de programmation dynamique nous apprend 'existence d’une solution optimale
donnée comme une fonction de I'état et du parametre d’incertitude actuels. Pour mémoire, rap-
pelons que, sans 'hypothése d’indépendance, la solution optimale dépend de toute I’histoire des
bruits passés. Ainsi, la programmation dynamique permet de condenser I'information nécessaire
dans 1’état.

De plus, la programmation dynamique permet également de décomposer un gros probleme
(voir le probleme a T étapes en une suite de T problémes d’intégration et de T
problemes paramétriques et déterministes a une étape. Plus précisément, pour calculer
Vi(x¢—1) pour tout z;_1, nous devons d’abord calculer Vt(azt_l,&) en résolvant des problémes
d’optimisation déterministe a une étape chacun paramétré par I’état x;_1 et le parameétre
d’incertitude &. Dans un deuxieme temps, nous devons d’abord calculer une intégrale car
Vi(xg—1) =E [V(mt,l, &:)]. Nous expliquons maintenant comment effectuer de tels calculs lorsque
les nombres d’états et de parameétres incertains possibles sont finis.

Lorsqu’a la fois les variables de décisions x; et les parametres d’incertitude & vivent dans
des ensembles ﬁniEE| X, et Z4, nous pouvons calculer exactement V; par récurrence rétrograde.

3Ce cadre est aussi appelé processus de décision Markovien.
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En supposant que Vii1(x;) est connu pour tout x; € Xy, nous itérons sur tous les états pos-
sibles x;—1 € X;_1, et les parametres incertains & € Z; pour calculer ‘7}(3:,5_1,&) comine
Ming, e v, (z,_, ) t(Te; &)+ Vir1(2¢). Le minimum est calculé par exploration exhaustive, et Vi(z¢—1)
=K [f/'(xt_l, &:)] est une moyenne finie des f/}(xt_l, &). Cet algorithme est appelé programma-
tion dynamique stochastique (SDP), voir I’algorithme

1 Vr1 =05
2 for t from T to 1 do

3 for ;1 € Xy_1 do
4 v+ 0;
5 for & € = do
6 m < +00;
7 for z; € X; do
8 if Tt € Xt(l’tfl,ft) then
9 m <+ min (m, Ce(xe, &) + Vt+1(:ct));
10 end
11 end
12 v v+mx P& = &l;
13 end
14 Vi(xi—1) < v;
15 end
16 end

Algorithm 1.1: Programmation dynamique stochastique (SDP) pour MSP dans le cas fini.

Néanmoins, dans beaucoup d’applications, 'espace d’état ou x; vit est continu. Nous con-
sidérons alors un cadre plus général ou z; peut prendre un nombre infini de valeurs. Une
premiere idée intéressante est de discrétiser. Au lieu de résoudre directement le MSP, nous
résolvons par I'algorithme SDP, une version approximée du MSP ou les variables de décision x;
appartiennent a un ensemble fini X;. La précision de 'approximation augmente avec le nombre
de points calculés. En particulier, la taille des ensembles discrétisés nécessaire pour obtenir une
certaine précision, est exponentielle en la dimension de ’espace d’état. Plusieurs approches ont
été développées pour résoudre les MSP tout en évitant ce probleme appelé malédiction de la
dimension.

Au lieu de réaliser une seule récurrence rétrograde en calculant Vi(z;—1) pour tout z;_q
appartenant a une grille discrétisée préalablement, nous pouvons approximer V;(x;—1) le long de
certaines trajectoires choisies au fur et a mesure de l'algorithme. L’algorithme Stochastic Dual
Dynamic Programming (SDDP), introduit par Pereira et Pinto dans [PP91] pour gérer le systéme
de production hydro-électrique Brésilien, réalise successivement des phases directes pour calculer
des trajectoires et des phases rétrogrades pour mettre a jour des estimations des fonctions de
colit futur espéré, le long de ces trajectoires, via la théorie de la dualité. Il existe de nombreuses
variantes de I’algorithme SDDP que nous présentons et commentons dans le chapitre [ nous
englobons toutes ces variantes sous le nom d’algorithmes de programmation dynamique par
suivi de trajectoire, Trajectory Following Dynamic Programming algorithm (TFDP) en anglais.
Ainsi, les algorithmes TFDP permettent de considérer des espaces de décisions X; infinis.

Cependant, dans la littérature actuelle, les algorithmes TFDP ne fonctionnent que lorsque
les variables &; sont a support fini. En effet, sans 'hypothese de support fini, nous ne pouvons
pas espérer calculer ‘A/t(xt_l, &) car il faudrait pour cela résoudre un nombre infini de probléme
a une étape, paramétré par le parametre incertain &. Pour éviter cette difficulté, nous
pouvons remplacer la distribution, a priori générale, de & par une distribution & support fini.
Les différentes approches dans la littérature pour réduire les parametres stochastiques & a un
nombre fini sont appelées méthodes de discrétisation.
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1.1.3 Discrétisation en optimisation stochastique

Nous présentons maintenant différentes méthodes de discrétisation fréquemment utilisées en
optimisation stochastique pour approximer des MSP avec des distributions générales.

Sample Average Approximation Une premiere idée consiste a remplacer les variables
aléatoires &; a distribution générale par N scénarios (fvt,k)ke[m tirés indépendamment et iden-
tiquement distribués selon la distribution de &. Comme dans les méthodes de Monte-Carlo, nous
remplagons alors la distribution de probabilité réelle P par la distribution de probabilité em-
pirique Py = % Zivzl 5& i L’espérance E[f(&;)] est alors remplacée par la moyenne d’un nom-

bre fini d’échantillons N% Zévzl f (ét,k). Par exemple, ’équation de programmation dynamique

(1.2) devient

1 X .
Vi(xi—1) = — min le(xy, + Vigi(xy) ).
H(241) N;(Mmmm oz, k) + Vira (@) )

=V (@i—1,€1)

Nous obtenons ensuite un nouveau MSP avec des variables aléatoires a support fini suivant
leurs distributions empiriques. Ce nouveau probléme est appelé Sample Average Approximation
(SAA), voir le chapitre 5 de [SDRI14] pour une analyse exhaustive du sujet. Par la loi des
grands nombres et sous hypotheses faibles de régularité, le probleme SAA converge vers le MSP
original, dans plusieurs sens, par exemple convergence de la valeur ou de I’ensemble des solutions
optimales. En supposant l'existence d’une variance, par le théoréeme de la limite centrale, on
peut aussi obtenir des intervalles de confiance pour la valeur du MSP.

Le premier avantage de la méthode SAA est qu’elle ne nécessite que de faibles hypotheéses et
fonctionne pour une tres grande classe de problemes d’optimisation stochastique. Deuxiémement,
SAA est tres facile a implémenter en pratique, des que 'on a une méthode pour tirer facilement
des réalisations des variables aléatoires. Cependant, les résultats de convergence sont soit asymp-

totiques, soit en —= tout en restant probabilistes. Notons que la valeur U]‘%AA du probleme SAA

N
est une variable éltéatoire (dépendant de I’échantillon tiré), et peut ainsi étre vu comme un
estimateur statisque de la valeur réelle du probléme. Si cet estimateur est cohérent (asympto-
tiquement presque siirement convergent), il est biaisé (I’espérance de UJ%AA est plus petite que
la valeur réelle), mais nous ne pouvons pas garantir qu’une réalisation donnée fournit une borne

inférieure de la valeur réelle.

Approximations basées sur les inégalités d’Edmundson-Madansky et de Jensen
Nous introduisons maintenant différentes méthodes d’approximation, sous des hypotheses de
convexité, exploitant les inégalités d’Edmundson-Madansky et de Jensen. Nous présentons plus
formellement ces inégalités dans la section et renvoyons a [Kuh06, [EZ94b), [EZ94a, [KM™76]
pour des études plus détaillées sur le sujet. Lorsqu’une fonction f est convexe en un parametre
stochastique &, l'inégalité de Jensen nous dit que f(E[€]) < E[f(£)]. Cette inégalité four-
nit alors des bornes inférieures aux valeurs de probléemes d’optimisation stochastique convexe
multi-étapes, Multistage Stochastic Convex Programs (MSCP) en anglais, en remplagant les
va-riables aléatoires &; par des variables déterministes égales & leurs espérances E[£;]. Le nou-
veau probléme est appelé le probléeme de la valeur espérée (voir par exemple [MABI14]) qui
donne une borne inférieure pour la valeur réelle du MSCP. Cependant, cette borne inférieure
peut étre tres éloignée de la valeur réelle. Pour améliorer cette borne inférieure, nous pou-
vons partitionner ’ensemble = ou la variable aléatoire & vit et appliquer I'inégalité de Jensen a
chaque ensemble P de la partition P. Nous pouvons alors considérer un nouveau probléeme ap-
proximé ol la variable aléatoire € est remplacée par une variable & support fini £ avec les scénari
f p = E[£| & € P] associés au probabilités pp := P[€ € P]. Dans ce cas, plus la partition P
est fine, meilleure est 'approximation. De plus, quand le diametre des ensembles P € P tend
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vers 0, la valeur approximée converge vers la valeur du MSCP réel. Lorsque les valeurs des va-
riables aléatoires appartiennent a un polyedre (), nous pouvons obtenir une borne supérieure sur
I'espérance E[f(&)] en prenant une combinaison convexe des valeurs f(v) ot v décrit les sommets
du polyedre Q. Cette inégalité, appelée inégalité d’Edmundson-Madansky (voir [Mad59]), per-
met d’obtenir de la méme fagon des schémas d’approximations avec des partitions pour déduire
des bornes supérieures convergentes. Enfin, lorsque les fonctions de cotits sont des fonctions
selles, c’est-a-dire qu’elles sont convexes dans une variable aléatoire £ et concave dans une autre
variable aléatoire m, en s’appuyant sur les idées des deux inégalités, nous pouvons obtenir des
bornes supérieures et inférieures pour les MSCP. L’avantage de ce genre d’approximations est
la garantie d’avoir des bornes supérieures ou inférieures. En revanche, ces approximations sont
plus difficiles & implémenter que SAA, et nécessitent une hypotheése de convexité.

Figure 1.2: Une illustration des inégalités de Jensen et d’Edmundson-Madansky, voir aussi la
proposition @

Approximations basées sur la dépendance Dans le cas ou les variables aléatoires sont
dépendantes entre elles, nous pouvons approximer ces dépendances. L’idée consiste a relacher
les contraintes de non-anticipativité, par exemple en considérant que le décideur peut voir le
futur, ou en rassemblant différents scénari en les représentant par leur moyenne. Par exemple,
lalgorithme progressive hedging présenté par Rockafellar et Wets dans [RW91] est basé sur ces
idées. Dans le cas convexe, en exploitant les inégalités de Jensen et d’Edmundson-Madansky,
nous pouvons obtenir des bornes supérieures et inférieures grace a des arbres de scénari barycen-
triques (voir [Era96, [(CS05, [Kuh06]). Dans [PP12], Pflug and Pichler ont défini une distance,
appelée distance imbriquée, nested distance en anglais, entre des suites de variables aléatoires
dépendantes. Cette distance imbriquée permet de borner 1’écart, notamment de valeur, entre
un MSP et ses problemes approximés et ainsi fournir de bonnes approximations du MSP.

Notons qu’en optimisation stochastique avec risque neutre, nous supposons en général que
les distributions des variables aléatoires sont connues par le décideur. Cette hypothese rend les
problemes d’optimisation stochastique tres dépendants du choix de la distribution lorsque 1’on
modélise un probléme pratique. L’impact de ce choix est étudié dans le domaine de 'analyse de
sensibilité [Dup90, [RS91] qui consiste & comprendre comment la valeur d’un probléme stochas-
tique varie avec de petites perturbations de la distribution. En pratique, il n’est souvent pas
nécessaire de résoudre un probleme d’optimisation stochastique de maniere trés précise ou exac-
te car lerreur de modélisation peut supplanter les erreurs d’optimisation ou d’approximation.
En revanche, d’un point de vue théorique, fournir des renseignements mathématiques sur les
solutions optimales d’un probleme avec distributions de probalités connues, ouvre la porte a
une meilleure compréhension de la structure du probleme et ainsi a ’amélioration d’algorithmes
existants et a des idées pour en développer de nouveaux.

Dans cette these, en lieu et place de ces approches, nous développons des méthodes de
discrétisation exacte en s’appuyant sur des notions de géométrie polyédrale.
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1.2 Géométrie polyédrale, combinatoire et complexité

L’optimisation a révélé des liens féconds avec les domaines de la géométrie et de la combina-
toire. Nous rappelons d’abord quelques connexions standards entre les problemes d’optimisation
linéaire et la géométrie polyédrale. Nous présentons ensuite brievement des outils de géométrie
polyédrale “d’ordre supérieur”, comme 1’éventail secondaire qui sera un objet essentiel dans
cette these, et leurs liens avec les problemes d’optimisation linéaire paramétrée. Ces notions
plus fondamentales sont a ’origine motivées par 1’étude des systéemes d’équations polynomiales
et la théorie de I’élimination, un sujet qui ne sera pas examiné dans cette thése mais que 'on
évoque brievement dans la section [[.2.3] Enfin, aprés avoir introduit rapidement la théorie de
la complexité, nous rappelons des résultats de complexité connus en géométrie polyédrale et en
optimisation stochastique.

1.2.1 Optimisation linéaire et polyeédres

L’optimisation linéaire est le domaine de 'optimisation qui considere des fonctions objectif
linéaires et des contraintes définies comme des inégalités affines (voir [MGO7]). Un polyedre
est un ensemble de points qui correspond & une intersection d’un nombre fini de demi-espaces.
Nous donnons une définition plus formelle de la notion de polyédre dans la section [3.I] et nous
renvoyouns & la lecture des livres [Ziel2 [Griil3] pour une introduction plus compléte & la théorie
des polyedres. Ainsi, I’ensemble des solutions admissibles d’un probléme linéaire (LP) est un
polyedre. Un résultat essentiel en optimisation linéaire est le fait que le minimum d’une fonction
linéaire sur un polyedre, est atteint sur au moins un sommet, ou point extréme, lorsque le
polyeédre admet au moins un sommet et que 'infimum est fini. La méthode du simplexe est I'un
des algorithmes les plus efficaces et communément utilisés pour résoudre les LP. Le simplexe
revient a suivre un chemin le long des sommets du polyedre des points admissibles en faisant
décroitre la fonction objectif.

T

;Iel%RI% cC T:=x1+ X9

s.e. x1<1 (1)
] — 29 < 2 (2)
—x1—29 <2 (3)
—x1 4+ 29 <2 (4)
e <1 (5)

Figure 1.3: Hlustration d’une étape de I’algorithme du simplexe pour un probleme d’optimisation
linéaire. Nous pivotons de la base {1,5} a la base {1,2}.

Pour implémenter la méthode du simplexe dans un ordinateur, nous avons besoin de notions
plus combinatoires. Une base est un ensemble d’indices, représentant les lignes ou les colonnes
d’une matrice, qui induit une sous-matrice inversible. Les sommets d’un polyédres peuvent étre
représentés grace a des bases. Ainsi, d’'un point de vue combinatoire, la méthode du simplexe
passe de base en base grace a une régle de pivot, voir la figure[I.3] Les ponts entre la géométrie
polyédrale et I'optimisation linéaire sont largement étudiés, par exemple pour améliorer les
performances de la méthode du simplexe. Des probléemes fondamentaux concernant la complexité
de I'optimisation linéaire tels que le 9éme probléme de Smale [Sma98] sont ainsi fortement liés a
des conjectures fondamentales de géométrie polyédrale comme la conjecture de Hirsch [Sanl2].



1.2. GEOMETRIE POLYEDRALE, COMBINATOIRE ET COMPLEXITE 19

1.2.2 Notions polyédrales d’ordre supérieur

L’optimisation linéaire paramétrée étudie le comportement des problemes d’optimisation linéaire
lorsque des parametres comme le vecteur de cofit, la matrice des contraintes ou le second membre
des contraintes varient. Une approche combinatoire de 'optimisation linéaire paramétrée a été
développée par Walkup et Wets [WW69]. Leur théoréme de décomposition en bases décrit
comment la valeur d’'un probléme linéaire sous forme standard varie avec le colit et le second
membre des contraintes. Une approche plus récente par Sturmfels et Thomas [ST97] a connecté
ce théoréme a la théorie des subdivisions régulieres.

Les subdivisions régulieres sont des objets combinatoires qui décrivent la géométrie d’un
nombre fini de points (resp. vecteurs) appelé configuration de points (resp. vecteurs.) Nous
définissons formellement les subdivisions régulieres dans la définition [3.17] et renvoyons a la
monographie de De Loera, Rambau et Santos [DLRSI0] pour une analyse plus exhaustive de
cette théorie. Informellement, une subdivision réguliere d’une configuration de vecteurs A =
(ai)ie[n) associée au vecteur de hauteurs w € R" est la collection des ensembles d’indices Ir =
{i € [n]]la; € F'} quand F décrit les faces visibles par dessous du cone Cone(a;,w;)ig[n), VOir
la figure Un objet géométrique fondamental appelé éventai]lﬂ secondaire et noté 3 -fan(A)
offre une meilleure compréhension de la structure des subdivisions régulieres. Plus précisément,
2 vecteurs de hauteur donnent la méme subdivision réguliere si et seulement s’ils appartiennent
au méme intérieur relatif d’un cone secondaire (i.e. un cone de ’éventail secondaire).

A i (a57w5) i
(a5, ws)
(a2, w2) (a1, wr) (a2, w2) (a2, w2)
(as,ws) (as,ws) (a3,ws) (a1, 1) (a3, ws3) (ar,wr)
(a4, wa) N (ag, wq) (a4, wa)\

> - ) > -

A a2

) ) gy
ay ay
az' as'
ay a3 ay

Figure 1.4: 3 configurations de vecteurs relevées et les projections des faces visibles par dessous
voir la section pour plus de détails.

Cet éventail est en fait I’éventail normal d’un certain polyedre appelé polytope secondaire
et noté X(A). Les sommets de X(A) peuvent étre retrouvés avec les subdivisions régulieres
de A vu comme une configuration de vecteurs, grace a ce qu’on appelle les coordonnées GKZ.
Dans [BS92], Billera et Sturmfels ont défini un autre objet fondamental appelé le polytope des
fibres, fiber polytope en anglais, pour mieux comprendre la structure d’une classe plus générale de
subdivisions. Ils ont aussi montré que le polytope secondaire était un cas particulier de polytope
des fibres.

1.2.3 Motivation par la théorie de I’élimination et les équations polynomiales

Ces notions récentes et avancées d’ordre supérieur, utilisées tout au long dans cette these dans le
contexte de I'optimisation stochastique, sont motivées, dans un tout autre contexte, par I’étude
des systémes d’équation polynomiales.

En théorie de I’élimination, le resultant R(P, @), ou déterminant de Sylvester, de 2 polynémes
P et @Q a une indéterminée, est un scalaire qui vaut 0 si et seulement si P et ) ont une racine

4Un éventail est un complexe polyédrale dont les cellules sont des cones.
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commune. Le résultant de P et () est défini comme le déterminant d’une matrice qui dépend des
coefficients de P et Q. Ainsi, la fonction résultant Ry : (P, Q) — R(P,Q), restreinte a I’ensemble
des polynomes de degrés plus petit que d, peut étre vue comme un polynéme multivarié dans
les coefficients de P et Q. Le discriminant Ag(P) d’un polynéme univarié P est défini comme
le résultant R(P, P’) de P et du polynome dérivé P’. Tout comme le résultant, la fonction
discriminant A, peut également étre vue comme un polynéme multivarié. Ces objets sont
fondamentaux en théorie de I’élimination pour résoudre des systémes polynomiaux.

Nous considérons & présent le cas de polynémes & plusieurs variables. Soit A € N un
ensemble fini de vecteurs d’entiers naturels. Les notions de résultants et de discriminants peuvent
étre étendus au polyndmes multivariés, nous parlons alors de A-résultant et A-discriminant,
notés respectivement R4 et Ay (voir [GKZ94, Chapitre 8 et 9]). Enfin, au polyndme multivarié
P =3 cac X' X5?% - X8 dont les exposants sont dans A, nous pouvons associer son polytope
de Newton noté Nw(P) := Conv{a € A|c, # 0}, voir la figure Le polytope de Newton
est une notion essentielle pour étudier le comportement des polyndmes multivariés (voir [EKO0S,
MTY19]). Dans [GKZ90] (voir aussi Chapter 13]), Gelfand, Kapranov et Zelevinsky
ont montré que le discriminant A4 avait des liens profonds avec la théorie des subdivisions
régulieres. Plus précisément, ils ont prouvé que le polytope de Newton Nw(A 4) du discriminant
A4 était égal, a un facteur scalaire pres, au polytope secondaire ¥ (A). Sturmfels a ensuite
prouvé dans [Stu94] que le polytope de Newton du résultant Nw(R,) divise, au sens de la
somme de Minkowski, un polytope de fibres particulier.

T e I I xl

1 2 3 4 5

Figure 1.5: The Newton polytope Nw(P) of the polynomial
P = X{X3+3XPX5 —TX1 X0+ X3P Xo — 8X3 + X1 X5 — 4X2X3

1.2.4 Théorie de la complexité

La théorie de la complexité classifie les problémes mathématiques selon leurs difficultés a étre
résolus. On peut prouver qu’un probleme de décision D est au moins aussi dur qu’un probléme
D’ en montrant que chaque instance de D’ est équivalente & une instance de D. On dit alors
que D’ peut étre réduit & D. A l'inverse, pour prouver qu'un probléme D peut étre résolu en
temps raisonnable, on peut étudier la complexité de n’importe quel algorithme qui résoud D.
Nous renvoyons a la monographie d’Arora et Barak pour une introduction exhaustive
sur la théorie de la complexité.

Dans [Khal0], Khachiyan a prouvé que la méthode de Dellipsoide résolvait les problémes
d’optimisation linéaire en temps polynomial, démontrant ainsi que 'optimisation linéaire était
dans la classe de complexité P. Nous renvoyons au livre [GLS12] de Grotschel, Lovasz et Schrijver
pour une introduction compléte sur la complexité de la programmation linéaire. En revanche,
lorsque 'on rajoute certaines contraintes, comme le fait d’avoir des solutions & coordonnées
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entieres, ou lorsque 'on modifie la structure du probleme, par exemple avec de ’aléatoire, la
classe de complexité du probléme change radicalement. En effet, la programmation linéaire
en nombres entiers est un probléme NP-difficile (voir [vz2GS78]). Quand un probléme est dans
un classe de complexité aussi difficile, nous pouvons montrer que des restrictions du probleme
avec des parametres fixés sont résolubles en temps polynomial, i.e. sont dans la classe P. Cette
approche est assez commune et souvent la meilleure que ’on puisse espérer. Par exemple, Lenstra
a démontré dans [LJ83] que, lorsque la dimension de I'ensemble des points admissibles est fixée,
la programmation linéaire en nombres entiers devient résoluble en temps polynomial. De méme,
si 'on peut prouver que compter le nombre de points a coordonnées entiéres d’un polytope est
un probléeme #P-complet, Barvinok a en revanche montré dans [Bar94|] (voir aussi [Bar(8]) que
lorsque la dimension est fixée, compter le nombre de points entiers dans un polytope devient un
probléme polynomial. De maniére peut-étre plus surprenante, le probléeme du calcul du volume
d’un polytope est comparable a celui du comptage de nombre de points entiers, c’est-a-dire
fP-complet en général [DESE| et polynomial lorsque que la dimension est fixée [Law91].

7
< PSPACE-Harq

NP-Hardj

Figure 1.6: Différentes classes de complexité. L’image provient de [[JCNI5].

La complexité de 'optimisation stochastique a elle aussi été beaucoup étudiée. Dans [DS06],
Dyer et Stougie ont montré qu’un cas particulier de I'optimisation stochastique multi-étapes
est PSPACE-difficile, et que I'optimisation stochastique & 2 étapes (2SP) avec des distributions
discretes est #{P-difficile en réduisant le probleme de fiabilité des graphes, graph reliability en
anglais, au probléeme 2SP. Hanasusanto, Kuhn et Wiesemann [HKWT6] ont ensuite démontré
que résoudre, avec une précision assez élevée, des problemes stochastiques linéaires a 2 étapes
(2SLP) avec distributions continues était aussi §P-difficile, en s’appuyant sur le caractere fP-
complet du calcul des volumes du polytope du sac a dos et de I’order polytope. Plusieurs articles
comme [Sha06] ont étudié la complexité de 2SLP et MSLP en analysant la convergence des
méthodes SAA. Shapiro et Nemirovski [SNO5| ont prouvé en particulier que les problémes 2SLP
peuvent étre résolus avec la méthode SAA, avec une grande probabilité et une précision ¢, en
temps pseudo-polynomial, 7.e. polynomial en 1/¢ et dans la taille de 'entrée du probléme, lorsque
les dimensions des espaces de décisions sont fixées. Ceci implique que les petits problemes 2SLP
peuvent étre facilement résolus avec une précision moyenne. Enfin, Lan [Lan20] et Zhang et
Sun [ZS22] ont analysé indépendemment la complexité de I'algorithme SDDP. Leurs résultats
impliquent que les MSLP avec des variables aléatoires a support fini peuvent étre résolus ap-
proximativement en temps pseudo-polynomial en I'erreur d’approximation € lorsque toutes les
dimensions sont fixées.



22 CHAPTER 1. INTRODUCTION (VERSION FRANCAISE)

1.3 Le probleme de discrétisation exacte

Dans cette theése, nous nous demandons comment traiter les problemes d’optimisation stochas-
tique avec des distributions générales (et donc avec des supports non-nécessairement finis). La
question principale est la suivante:

Comment résoudre de maniere ezacte des problemes
d’optimisation stochastique multi-étapes avec des distributions générales ?

En d’autres termes, existe-t-il des formules analytiques et des algorithmes pour calculer des
solutions exactes au problemes d’optimisation stochastique avec des distributions générales ?

Nous avons vu dans la section [I.1.3] que nous pouvons approximer un MSP, soit par SAA
soit avec les inégalités de Jensen et Edmundson-Madansky, en remplacant les variables aléatoires
continues par des variables aléatoires a support finis, voir la table Ces techniques peuvent
étre comprises comme des méthodes de discrétisations approximées, nous définissons maintenant
la notion de discrétisation exacte.

Définition 1.1 (Discrétisation exacte). Nous disons qu’un MSP (avec indépendance des vari-
ables aléatoires entre les étapes) admet une discrétisation exacte locale au temps t en xy_1 s’il
existe une variable aléatoire (ét)te[T} a support fini qui produit les mémes fonctions de cott futur
espéreé, c’est-a-dire tel que

‘/;5(%71) = E[‘Zﬁ(l‘tflagt)] = E[‘Zﬁ(l‘tfhét)]-

En particulier, nous avons V(x;_1) = > tcsupp(és) P& = f]f/(mt,l,&’).

Nous qualifions une discrétisation d’uniformément exacte si elle est localement exacte pour
tout xy—1 € R™-1 et tout t € [T1.

Nous disons qu’une discrétisation est induite par une partition s’il existe une partition Pi 4, ,
(mesurable et finie) de l’ensemble d’incertitude =; telle que pour tout P € Pyg, ,, on a

Pl =&pl =prp avec Prp=Pl&eP], &p=E[&|&¢€ P]-

En particulier, la discrétisation induite par une partition s’écrit

Vt(mt—l) = Z ﬁt,PV(xt—lygt,P)‘
Pept,xt,1

Enfin, s’il existe une partition Py 4, , telle que la discrétisation induite est exacte au tempst en
ZTi—1, pour toutes les distributions de (ET).,E[T], on dit que la discrétisation exacte est universelle.

Hypothese Approximations
SAA Général Intervalle de confiance
Jensen/Edmundson-Madansky Convexe Bornes supérieures et inférieures
Discrétisation exacte Linéaire Valeurs exactes

Table 1.1: Comparaison des avantages et inconvénients des méthodes de discrétisations ap-
proximées ou exactes

SLorsque ps p := P[ﬁt € P} est égal 4 0, E [Et | & € P] n’est pas bien défini. Nous choisissons alors un fvt,p
arbitraire dans P. Ce choix n’a pas d’importance car g}, p n’apparaitra dans les formules qu’apres le facteur nul
pe,p = 0.
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®
®
°
&, continu (fvt,k)k:N pour SAA (Et,p)pep pour une
avec N = 20 discrétisation induite par P

Figure 1.7: Comparaisons des scénari choisis selon la discrétisation.

Dans cette thése, nous nous intéressons uniquement aux discrétisations induites par des
partitions. Avant de rentrer précisément dans les théoremes de discrétisation exacte abordés
dans le coeur de la these, nous expliquons pourquoi nous ne pouvons pas espérer avoir un
théoreme général de discrétisation exacte sans linéarité. Nous nous concentrons ensuite sur
Ioptimisation stochastique linéaire. En donnant des contre-exemples, nous montrons qu’il
n’existe ni discrétisation locale ni discrétisation uniforme exacte et induite par une partition
lorsque la matrice de recours est stochastique avec support infini, et qu’il n’existe pas de
discrétisation uniforme lorsque les contraintes sont stochastiques avec support infini.

1.3.1 Cas non-linéaire

Si Pt o, , est une partition de Z;, la loi des espérances totales donne

Vilwee) = Y. PepE[Vi(zi1, &) | & € P).
PePtg, 4

Si nous supposons que la fonction V; de colit futur paramétré est convexe dans le parameétre

incertain &, par l'inégalité de Jensen nous avons Vt(:pt_l,fvtyp) = Vt(:vt_l,E[St\ét € P]) <

]E[f/}(xt_l,&) |& € P}, pour tout P € Py, ,. En particulier, nous avons une discrétisation

exacte induite par cette partition si et seulement si nous avons 1’égalité dans l'inégalité de
Jensen pour tout P € Py, , tel que p; p > 0. Lorsque I'on considere des fonctions strictement
convexes, l'inégalité de Jensen est généralement stricte, on dit aussi que le saut de Jensen est
strictement positif (voir par exemple [Wall4]). Ainsi, une discrétisation exacte induite par une
partition est trés improbable si V; est strictement convexe en &. Nous pouvons faire la méme
analyse lorsque V; est strictement concave en & en inversant l’inégalité. Méme si I'on pourrait
trouver certains cas particuliers qui fonctionnent, nous ne pouvons espérer obtenir un résultat
général de discrétisation exacte si V; nest pas affine par morceaux en &

Nous nous concentrons donc sur le cas linéaire.

1.3.2 Contre-exemples en optimisation stochastique linéaire

Les probléemes d’optimisation stochastique linéaire multi-étapes (MSLP) sont des cas particuliers
des MSP ou les fonctions de coiits instantanés sont linéaires et les contraintes sont affines. Pour
simplifier, nous considérons un probléme stochastique linéaire a 2 étapes (2SLP) qui est un cas
particulier de MSLP avec horizon 2. Dans les 2SLP, une seule fonction des cotits futurs espérés
est étudiée V := V5. Nous notons aussi n := ny et m := ns les dimensions des variables d’états
T =11 et y 1= 9 et = := supp(€) C R™ x RZ™ x R*™ x R le support de la variable aléatoire
£ = (q, ‘/V,'I’7 h) = EQ = (CQ, AQ, BQ, bg) .



24 CHAPTER 1. INTRODUCTION (VERSION FRANCAISE)

epi(Q°)
epi (‘7(7 g))

— C

{(z,y) | Tx+ Wy < h}

Y

Figure 1.8: epi (V(, 5)) is the projection of epi(Q¢)

Nous considérons ainsi la fonction des cofits futurs espérés suivante

R"xE — RU{—o00,+00}
v i mooql
I
s.t. Te+Wy<h

et nous définissons
V(z) =E[V(z,&)].

Nous montrons maintenant que dans le cas général, il n’existe ni de discrétisation locale ni
de discrétisation uniforme exacte et induite par une partition lorsque la matrice de recours W
est stochastique a support infini:

Ezemple 1.2 (W stochastique). Soit m=¢=1,qg= (1), T = (0), W = (—u), h=(-1) ou u
est une variable aléatoire uniforme sur [1,2]. Nous avons alors pour tout x € R™:

. min 1
Vi(z,§) = yer ==
st. uy>1 Y

La fonction V est donc constante en z et strictement convexe en £. Ainsi, pour toute partition
P de =:
> ppV(2.ép) < V(2)

peP

ou pp = P[¢ € P], ép = E[¢|€ € P]. Pour tout = € R, il n’y a donc pas de discrétisation
exacte locale en x, et a fortiori uniforme, quand W est a support infini. Nous détaillons la
preuve dans Pannexe [A]

Une condition nécessaire pour avoir une discrétisation exacte et uniforme est le fait qu’a
chaque temps ¢, les fonctions V; sont des fonctions polyédrales, c’est-a-dire qu’elle prennent
leurs valeurs dans R U {400} et que leurs épigraphes sont des polyedres (possiblement vides).
En effet, pour tout £ € supp(&), la fonction Q¢ : (x,7) — qu“l‘]ITx_i_Wygh est polyédrale. Ainsi,
V(¢ = mingerm Q(+,y) est polyédrale car epi (V(-,€)) est une projection d’epi (Q¢) (voir
la figure [1.§ et [JKMOS]). Enfin, V est aussi polyédrale comme combinaison linéaire positive
de fonctions polyédrales. Les exemples suivants montrent alors que si les contraintes n’ont
pas de distributions a support fini, nous ne pouvons pas espérer avoir un théoreme général de
discrétisation exacte et uniforme.
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Ezemple 1.3 (T stochastique). Ici, et dans ’exemple suivant, u est une variable aléatoire uni-
forme sur [0, 1].

mﬂi%n Y
yeRm™ 1 ifz<1
Vi)=& = E|max(ux,1)| = R
(z) st. wr<y [ ( )] {:§+21m ifz>1
1<y
Ezemple 1.4 (h stochastique).
yrgﬂi{rgl y 3 ifx <0
V(@) =E| gt o<y|=E[max(z,u)] = ZFL ifzeo,1]
r <y T ifz>1.

En revanche, nous montrerons un théoréme de discrétisation exacte uniforme et universelle
sans aucune restriction lorsque le coiit est stochastique. De plus, nous présenterons également
un résultat de discrétisation locale lorsque T et h sont stochastiques, voir la table [I.2]

1.4 Contributions

Nous synthésisons maintenant les contributions et résultats majeurs de cette these.

Nous montrons tout au long de la thése comment des notions de géométrie polyédrale peuvent
éclairer la structure des problemes d’optimisation stochastique linéaire multi-étapes. Dans le
chapitre [3| nous reformulons des résultats de géométrie polyédrale et de combinatoire avec des
notations utiles pour les chercheurs en optimisation stochastique. Méme si les résultats de ce
chapitre peuvent sembler déja connus en géométrie polyédrale, nous pensons d’une part qu’ils
sont utiles pour introduire le sujet aux non spécialistes et, d’autre part, cela permet d’expliciter
des preuves formelles qui peuvent étre compliquées a trouver dans la littérature.

1.4.1 Comprendre les MSLP grace a la géométrie polyédrale

Tout d’abord, nous construisons un pont entre la géométrie polyédrale et I’optimisation stochas-
tique.

Contribution 1. Nous montrons que les fonctions des coits futurs espérés sont affines par
morceaur sur des complexes polyédraux explicites et universels, lorsque les contraintes sont a
supports finis et que les cotts ont des distributions générales.

En effet, nous prouvons dans le théoréme [£.9] que dans le cas & 2 étapes, la fonction du cotit
futur espéré est affine sur chaque cellule du chamber complex, un complexe polyédral universel qui
dépend exclusivement des contraintes. Cela nous permet de déduire des formules combinatoires
pour la fonction du coiit futur espéré et son sous-différentiel dans le théoreme Nous étendons
ensuite ce résultat au MSLP dans le théoréme [.14] en introduisant par récurrence rétrograde
des complexes polyédraux universels ou les fonctions de cotits futurs espérés sont affines par
morceaux, indépendamment des distributions des cofits.

Contribution 2. Nous donnons une caractérisation explicite des fonctions de cotts futurs
espérés a laide des fonctions d’appui des polyédres de fibres imbriqués et pondérés, lorsque
les contraintes sont déterministes et que les cotits ont des distributions générales.

Nous définissons une généralisation du polytope de fibres, fiber polytope en anglais, de Billera
et Sturmfels [BS92], que 'on nomme polyedre de fibres pondéré, weighted fiber polyhedron, et
nous montrons, pour les 2SLP, dans le théoreme que la fonction du colt futur espéré est,
a une application affine pres, égale a la fonction d’appui du polyedre de fibres pondéré. Ce
résultat s’étend au MSLP dans le théoreme en définissant des polyedres de fibres imbriqués
par programmation dynamique.
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1.4.2 Résultats de discrétisation exacte

Dans cette these, nous donnons également plusieurs résultats de discrétisations exactes que nous
résumons ici.

Contribution 3. Nous montrons une discrétisation exacte locale et universelle pour les 25LP
avec recours fixé.

En effet, nous montrons dans le théoréme que tous les raffinements de 'opposé de
I’éventail normal NV (P,), de 'ensemble P, des recours admissibles & z, induit une discrétisation
exacte locale et universelle lorsque que le colt ¢ a une distribution générale. En considérant
le probleme dual, nous montrons également, dans le théoréme [5.3] une discrétisation locale et
universelle pour les 2SLP avec T et h stochastiques. Nous étendons ensuite cette discrétisation
exacte locale et universelle aux 2SLP ou q, T et h sont tous stochastiques dans le théoreme

0. 10l

Locale et universelle Uniforme et universelle
w x: Contre-exemple [1.2 x: Contre-exemple [1.2
(T, h) V1 Ry dans Thm. [5.3 x: Contre-exemples |1.3| et |1.4
q Vi =N(P;) dans Thm. 4.2 | v': A,ec(pr) —No dans Thm. 4.3
(q,T,h) Vi Ry dans Thm. [5.15 x: Contre-exemples [1.3| et ﬂ

Table 1.2: Existence ou non de discrétisation exacte, uniforme ou locale, induite par une partition
et universelle avec les contre-exemples ou les partitions associées.

Contribution 4. Nous montrons une discrétisation exacte uniforme et universelle pour les
MSLP avec des distributions des cotiits générales et des contraintes a supports finis.

Lorsque les contraintes sont déterministes, la discrétisation exacte et locale pour les 2SLP
est valide pour tous les états x appartenant au méme intérieur relatif d’une cellule du cham-
ber compler. En prenant le raffinement commun & toutes les cellules du chamber complex,
nous déduisons dans le théoréme [4.3] une discrétisation exacte uniforme et universelle pour les
colits ¢ avec distribution générale. En propageant les chamber complexes par programmation
dynamique, nous étendons la discrétisation exacte uniforme et universelle au MSLP avec des
contraintes & support fini dans le théoreme

1.4.3 Nouveaux algorithmes

Les nouvelles perspectives de la géométrie polyédrale et de la discrétisation exacte permettent de
définir de nouveaux algorithmes, voir la table pour résoudre des problémes d’optimisation
stochastique.

Contribution 5. Nous présentons une méthode de partitions adaptatives généralisée (GAPM)
pour résoudre les 2SLP avec T et h stochastiques et donnons une extension avec q stochastique.

Les méthodes de partitions adaptatives (APM) ont été introduites par Song et Luedtke
[SL15] pour réduire la taille des 2SLP avec support fini en rassemblant des scénari grace a des
partitions que 'on met & jour. Ramirez-Pico et Moreno ont montré dans [RPM21] que les
méthodes APM pouvaient étre adaptées aux distributions générales, appelant ainsi le nouvel
algorithme GAPM, si l'on respecte une condition analytique suffisante. Nous présentons un
algorithme, voir algorithme qui permet d’implémenter une méthode GAPM pour toute
distribution en appliquant une discrétisation exacte locale. Nous donnons aussi des résultats de
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2SLP MSLP
Locale (T', h) GAPM dans Chap. |5 GAPDP dans Chapl6
Locale q Simplexe®dans Chap. |7 GAPDP dans Chapl6
Uniforme g | GAPM étendu dans Chap. \E‘ Chamber complex dans ChapH

Table 1.3: Algorithmes et outils pour utiliser les discrétisations exactes dans les 2SLP et MSLP

convergence et complexité pour les méthodes APM. Grace & une implémentation en Julia, nous
comparons GAPM avec les méthodes SAA en donnant des résultats numériques.

Contribution 6. Nous fournissons un cadre algorithmique appelé Programmation Dynamique
par Suivi de Trajectoire, Trajectory Following Dynamic Programming (TFDP) en anglais, qui
englobe au moins 14 algorithmes, (voir la table en incluant SDDP et ses variantes. Nous
expliquons comment adapter tous ces algorithmes, a l’origine développés pour des distributions
a support fini, dans le cas de distributions générales.

Dans le chapitre[6], nous montrons comment toutes ces variantes rentrent dans le cadre TFDP,
voir algorithme [6.1], en discutant le choix d’approximations supérieures et inférieures appelées
coupes, le choix de la trajectoire dépendant du parametre incertain, i.e. la sélection du noeud,
et le probleme d’optimisation résolu dans la phase directe.

1.4.4 Résultats de complexité

Nous présentons plusieurs résultats concernant la complexité de l'optimisation stochastique
linéaire multi-étapes.

Contribution 7. Nous montrons que les MSLP avec distributions de cotts générales peuvent
étre résolus approximativement en temps polynomial en log(1l/e), pour une grande classe de
fonctions de densités réguliéres, lorsque T, no,--- ,ny sont fixés.

En particulier, la dimension n; de ’espace du premier état n’est pas fixé. La preuve repose
sur la théorie de l'optimisation linéaire avec oracles [GLS12] et sur les théorémes de bornes
supérieures de McMullen [McM70] and Stanley [Sta75] sur les nombre de sommets et taille de
triangulation d’un polyedre. Ce théoréme de complexité, voir corollaire s’applique dans
de nombreux cas car les distributions des coflits peut étre supposées essentiellement arbitraires;
nous supposons uniquement qu’elle est donnée implicitement grace & un oracle approximé (voir la
définition , cela s’applique en particulier a toutes les distributions avec une densité réguliere
par rapport a la mesure de Lebesgue. De plus, nous obtenons un résultat similaire de complexité
polynomiale dans le modele exact de calcul (ou modele de Turing) pour des classes de distribu-
tions appropriées, comme les distributions uniformes ou exponentielles dans le corollaire
Pour comparaison, a notre connaissance, toutes les bornes de complexité précédentes étaient en
temps pseudo-polynomial, c¢’est-a-dire polynomial en 1/e.

En outre, nous donnons des bornes de complexité sur le nombre d’itérations des méthodes
APM et pour les algorithmes rentrant dans le cadre TFDP. Nous considérons un MSLP tel que, a
chaque étape, nous avons un recours relativement complet, les ensembles de solutions admissibles
sont de diametres finis au plus D et de dimensions au plus d, et les fonctions des cofits futurs
espérés sont Lipschitziennes de parameétre L. Soit v 'erreur d’approximation accumulée pendant
une itération.

5Nous donnons des pistes pour développer un simplexe d’ordre supérieur pour les 2SLP avec distribution de
colit générale dans la conclusion de ce manuscrit.
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Contribution 8. Les algorithmes rentrant dans le cadre TFDP trouvent une solution e-optimale
n
en au plus (%) (T — 1)+ jtérations, lorsqu’ils sont implémentés avec les sélections de noeud

w)’”?(“)

problem child ou explorative, et en au plus (T —1) ( e

itérations quand ils sont
implémentés avec une sélection de noeud aléatoire.

En particulier, cela fournit de nouveaux résultats de complexité, voir le corollaire [6.17] et le
théoréme pour au moins 10 algorithmes dans la littérature (voir 6.1)) Pour les 2SLP, nous
montrons dans le théoreme que les méthodes APM, dont GAPM, trouvent une solution
e-optimale en au plus (1 + %)n itérations.

1.5 Plan de la theése

Le reste de la these est rédigé en langue anglaise et suit le plan suivant : Le chapitre [2] est une
traduction en langue anglaise de cette introduction.

Le chapitre [3] introduit la géométrie polyédrale pour les spécialistes d’optimisation stochas-
tique. Il rappelle des définitions de notions standards comme les polyedres et leurs représentations,
les éventails normaux et les chamber complexes. Nous donnons également des preuves formelles
pour les bijections entre les faces d’un polyedre, ses cones normaux et ses ensembles de con-
traintes actives. Nous définissons les notions plus combinatoires de subdivision réguliere et
d’éventail secondaire et montrons comment elles sont reliées au concept de contraintes actives.
Nous présentons enfin une adaptation du théoreme de décomposition par bases de Walkup et
Wets [WWG69] avec les notations utilisées dans cette these.

Dans le chapitre[d] nous étudions la structure polyédrale des MSLP avec distribution de cofit
générale. Nous montrons d’abord une discrétisation exacte uniforme et universelle pour les 2SLP
qui nous permet de donner une caractérisation de la fonction du coiit futur espéré. Nous donnons
également une interprétation duale en définissant un nouvel objet appelé polyedre des fibres
pondéré. Ces résultats sont ensuite étendus aux MSLP. En construisant, par programmation
dynamique, des complexes polyédraux universels ou les fonctions des colits futurs espérés sont
affines par morceaux, nous montrons une discrétisation exacte uniforme et universelle pour les
MSLP avec distributions de cofits générales. Nous en déduisons finalement des résultats de
complexité pour les MSLP en montrant qu’en fixant certains parametres, les MSLP deviennent
résolubles en temps polynomiaux pour toutes distributions des cofits régulieres. La plupart des
résultats du chapitre 4| proviennent du papier [FGL21], qui a été récompensé du prix du meilleur
papier étudiant a la conférence ECSO-CMS 2022. De nouveaux résultats complémentaires sont
également ajoutés.

Le chapitre [5| traite des méthodes de partitions adaptatives (APM), qui sont des méthodes
numériques qui résolvent en particulier des 2SLP. Nous disons qu’une partition de ’espace des
incertitudes est adaptée a 1’état de la premiere étape & si elle induit une discrétisation exacte
locale en . L’idée centrale des APM est de construire itérativement une partition adaptée a tous
les états que I'on a déja testés. En s’appuyant sur I’éventail normal de I’ensemble des solutions
duales admissibles, nous présentons une discrétisation exacte et locale lorsque la matrice T
et le second membre des contraintes h ont des distributions générales. Cela nous permet de
déduire une condition nécessaire et suffisante pour qu’une partition soit adaptée méme dans le
cas des distributions & support infini, et de fournir un oracle géométrique pour construire une
partition adaptée. En outre, en montrant les liens entre les APM et l'algorithme L-shaped,
nous prouvons la convergence et donnons des bornes de complexité pour les méthodes APM.
Nous présentons des résultats numériques comparant GAPM au méthodes SAA. Pour finir, nous
étendons 'algorithme GAPM au cas ou le coflit a une distribution générale. La majorité de ce
chapitre peut étre trouvé dans l'article [FL22b], publié dans Operations Research Letters, mais
I'extension aux cofits a distributions générales est écrite dans la section 3 du papier [FL22a].
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Dans le chapitre [6] nous introduisons une classe d’algorithmes appelée Programmation Dy-
namique par Suivi de Trajectoires, Trajectory Following Dynamic Programming (TFDP) en
anglais, qui raffine itérativement des approximations des fonctions des cotits futurs espérés pour
les MSP avec variables aléatoires indépendantes. Ce cadre algorithmique englobe la plupart des
variantes de 'algorithme SDDP. En supposant le caractere Lipschitz des fonctions des cofits
futurs espérés, nous fournissons une nouvelle preuve de convergence et de complexité qui per-
met de considérer des variables aléatoires a supports infinis. En particulier, nous en déduisons
de nouveaux résultats de complexité pour de nombreux algorithmes connus. De plus, nous
détaillons comment les algorithmes TFDP peuvent étre implémentés sans ’hypothese de sup-
port fini, soit grace a des approximations soit grace a des discrétisations exactes. Ce chapitre
présente les résultats du papier [FL22al, a 1'exception de la section 3 qui est présentée dans le
chapitre précédent.

Nous concluons et donnons quelques perspectives pour des travaux futurs dans le chapitre

[
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Optimization is the field of mathematics that studies the minimum of a function, known as
the objective, over a set. From an applied point of view, optimization model many situations
where a decision maker has to choose the best solution, with regard to some objective, while
satisfying various constraints. In the 17th century, the differential calculus of Leibniz and New-
ton opened the door to methods to find solutions to unconstrained and smooth optimization
problems. Then, mathematicians of the 18th century such as Euler and Lagrange provided
methods to derive solutions of constrained optimization problems. Since the 20th century, the
rise of computer science has allowed implementing practical algorithms to solve nonsmooth op-
timization problems. For instance, linear programming is a subfield of optimization which is
widely applicable in practice and can be solved very efficiently. Dantzig [DT03] developed a
general linear programming formulation and invented the simplex method, which is now better
understood thanks to polyhedral geometry. More generally, in nonsmooth convex optimization,
mathematicians such as Fenchel and Rockafellar [Rocl5] discovered new links between optimiza-
tion and geometry. Thus, the bridges between optimization and geometry led to improvements
on the efficiency of existing algorithms and to the inventions of new algorithms. In this thesis,
we will wonder what are the links between stochastic optimization and polyhedral geometry.

In this chapter, we first introduce the field of stochastic optimization by recalling dynamic
programming principles and different approximate quantization methods in Section After
giving an overview of the polyhedral geometry notions used throughout this thesis and their
original motivation in Section we introduce the exact quantization problem in Section [2.3
which is the main question tackled in this work. The main contributions of this thesis are
presented in Section and its structure in Section

2.1 Stochastic optimization

In optimization under uncertainty, one has to make a decision without knowing precisely some
key parameters of the problem. The uncertainty can come from a lack of information, an
imprecision in measures or a difficulty to model a problem. The most common case is when
the decision maker has to make a choice here and now but the criterion she wants to optimize
depends on a parameter she will only observe in the future.

There exists various approaches to decision under uncertainty. Typically we either assume
that the uncertainty is adversarial or stochastic. In robust optimization [BTEGN09, BBC11],
the decision maker has to choose the optimal solution while considering the worst case in an
uncertainty set. In reinforcement learning [KLM96, [SB18] or bandit optimization [BCBT12],
we assume that the uncertainty is random but that the decision maker does not know the
distribution and has to learn it.

Stochastic optimization considers problems where the decision maker minimizes a real-valued
function, sometimes called risk measure, depending on the uncertain parameters modeled as ran-
dom variables. A part of stochastic optimization deals with distributionally robust optimization
problems [WKS14, RM19, [ZKW21|] where we consider the worst possible distribution over a
set of distributions. Risk averse stochastic programs using a coherent risk measures [ADEH99]
are equivalent to distributionally robust optimization problems. The most common and natural
criterion to optimize is the expectation of the cost. When we choose the expectation as the risk
measure to optimize, we say that we are in a risk neutral setting. In this thesis, we will consider
essentiallyE] risk neutral problems.

Thus, stochastic programming is a powerful modeling paradigm that has found many appli-
cations in energy, logistics or finance (see e.g. [Dup02),[WZ05l [GZ13] and references therein). We
refer to the books [SDR14, RW21], BL.11], KM™76] for a more complete presentation on stochastic
optimization.

We only discuss risk averse extensions in Section
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2.1.1 Multistage stochastic optimization

Multistage stochastic problems (MSP) constitute an important class of stochastic programs
where decisions z; are taken sequentially during stages. Between stages ¢ and t 4+ 1, some part
of the uncertainty &; is revealed.

To &1~ T v o v v o v £ v X7

The uncertainty parameters are modeled as random variables, and we will denote them as bold
letters along this thesis. We now present informallyﬂ a general setting for MSP.

T
min E [Z ft($t,£t)] (MSP)
(®t)1e(T) i—1
s.t. ®y = x9 a.s.
x: € Xy(wi—1,&t) a.s. Vtel[T]
o(a) Colér, - &) vt € [T]

At each time step t, the decision maker chooses the solution x; in order to minimize the
actual loss function #;, which depends on the choice x; and on a realization of a random variable
&, plus the expected future losses. The first constraint x; € X;(x;—1, &) models that the decision
x; must satisfy some constraints which depends on the past decision x;_; and the actual random
parameter &. The last constraint, called non-anticipativity constraint, ensures that the decision
maker can only base her decision on the past and present observed parameters and not on the
unobserved future parameters. Here, o refers to the g-algebra induced by a random variable.
For notational consistency, we assume that the first random variable £&; is fixed to a certain
deterministic value £; almost surely and that the state xg is fixed.

Ezample 2.1 (MSP modeling hydroelectric energy storage management). We consider a hydro-
electic storage. The uncertain parameters are the demand in electricity and the water inflow
from rain and runoff. The decision maker chooses the quantity of water hustled each day to
optimize some cost, under physical constraints, for example ensuring that the dam must not
overflow. To model this problem, we can define the following MSP

T
min E [Z Ct(dt - Ut)]

(ut)t,(vt)t

t=1
s.t. g =29 a.s.
O0<u < d; a.s. Vte|T]
Ty = Tp—1 + Wy — Up — Vg a.s. Vte[T]
0<z <™ a.s. Vte|T]
0< v a.s. Vte|T]
o(ut) C o(wi,dy - wy, dy) vVt € [T

where T is the capacity of the reservoir, 1" is the number of time steps in the period we consider,
and at step t, x; represents the quantity of water in the reservoir, u; the quantity of water
hustled, v; quantity of water evacuated by opening the valve, d; the demand, w; the quantity
of water coming from rain and runoff and ¢; the cost of unmet demand.

2This is formally presented in Section
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2.1.2 Dynamic programming

Multistage stochastic problems are notoriously difficult to solve and obtaining solutions, even
approximate, in reasonable time, is out of reach in the general case. Indeed, without further as-
sumptions, optimal solution are given as a function of past noises which leads, after quantization,
to a number of variables exponential in the horizon. A usual assumption that allows information
compression and decomposition, is the stagewise independence of uncertainty parameters. More
formally, we assume that (Et)te[T] is a sequence of independent random variables.

To decompose it, we see Problem [MSP]as an element in a family of parametrized optimization
problems given by

T
‘/t(xt—l) ;= min E [Z ET(£T:£T>‘|
T T=t

Tr)i<r
S.Cc. Ty_1 = T4 1 a.s.
x; € Xp(xro1,&r) as. Vt<1T<T
o(x;) Co(&, - ,&) Vi< T <T.

where V; is known as the expected cost-to-go function at time ¢.

Leveraging the stagewise independence assumption, we have, at all ¢ € [T], the so-called Bell-
man or dynamic programming equations (see [Bel66l Ber12]) that relate the cost-to-go functions
at time ¢t and ¢t + 1:

Vi@i1) = B [Vi(wi1,&)] (2.2a)
Vw1, &) == min (e, &) + Viga () (2.2b)

2t €Xe(x4—1,6¢)

where we set Vi1 := 0 for notational consistency.
Finally, note that, we can also rewrite Problem (MSP)) in the following nested form:

min  fq(xq, +E
z1€X1(%0,£1) 1( ! 51)

min Eg(azg,ﬁg)-l-E[----i-E[ min ET(ﬁT,ET)”] )

x2€X2(71,£2) rr€Xr(TT_1,6T

The dynamic programming principle tells us that there exists an optimal solution given as
a function of the current state and noise. For comparison, recall that, without the indepen-
dence assumption, the solution depends on the whole history of past noises. Thus, dynamic
programming allows compressing sufficient information in the state.

Futhermore, it decomposed one big T-stage problem into a sequence of T integration
problems and 7" parametric deterministic 1-stage problems. More precisely, to compute V;(x;_1)
for all z; 1, we would first need to compute Vt(a:t_l, &) by solving deterministic 1-stage problems
each parametrized by the state x;_1 and the uncertainty parameter &. Secondly, we would
need to compute an integral since V;(x;_1) = E[V (241, &:)]. We now explain how to do so when
the number of possible states and noises is finite.

When both the decision variables x; and the uncertainty parameters & live in finite sets X,
and Zy, a framework also known as finite Markov decision processes, we can exactly compute
Vi by backward induction. Assuming that Vt—',—lA(xt) is known for all x; € X;, we loop over each
possible x;_1 € X;_1, and & € E; to compute Vi(xi—1,&) as MiNg, ey, (2,_1) Ci(w, &) + Vi1 ().
The minimimum is done by brute force, and Vi(xi—1) = E[V(xt_l,ft)} is a finite average of
Vt(:z:t_l, &t). This algorithm is called Stochastic Dynamic Programming (SDP) see Algorithm

However, in many applications, the state space where x; lives is continuous. We then consider
a more general setting where z; can take an infinite number of values. Since this general problem
is difficult to solve, a first interesting idea is to discretize. Instead of solving directly the MSP, we
solve by applying SDP, an approximate version of MSP where the decision variables x; belongs
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1 VT+1 =0 ;
2 for ¢t from T to 1 do
3 for z; 1 € Xy_1 do
4 v < 0;
5 for & € =4 do
6 m < +00;
7 for z; € X; do
8 if x4 € Xy(x4—1,&) then
9 m <+ min (m, Ci(xe, &) + ‘/}+1(xt));
10 end
11 end
12 v v+mx P& =&];
13 end
14 Vi(xg—1) < v;
15 end
16 end

Algorithm 2.1: Stochastic Dynamic Programming (SDP) for discretized version of MSP.

in a finite set X;. The precision of the approximation increases with the number of computed
points. In particular, the size of the discretized sets, needed to obtain a certain precision, is
exponential in the dimension of the initial space. Different approaches were developed to solve
MSP while avoiding this phenomenon called curse of dimensionality.

Instead of doing one backward induction computing V;(x;—1) for all z;—; in a precomputed
discretized grid, we can approximate Vi(z;—1) along some adaptive trajectories. The Stochastic
Dual Dynamic Programming (SDDP) algorithm, introduced by Pereira and Pinto in [PP91] to
manage the hydroelectric system in Brazil, iterates over forward pass to compute trajectories and
backward path to update the estimation of expected cost-to-go functions along said trajectories
through duality results. There are many variants of SDDP that we present and discuss in
Chapter [6] we encompass all these variants under the name Trajectory Following Dynamic
Programming algorithm (TFDP). Thus, TFDP algorithms allows considering infinite sets of
decision X;.

However, in the current literature, TFDP algorithms work when the random variables &;
have a finite support. Indeed, without the finite support assumption for random variables, we
cannot hope to compute V}(xt_l,ft) because it would require to solve an infinite number of
1-stage problems parametrized by the uncertainty parameter &. To avoid this difficulty,
we can replace the general distribution of & by a finitely supported distribution. The different
approaches in the literature to reduce the stochastic parameters & to a finite number of scenarios
are known as quantization methods.

2.1.3 Quantization in stochastic optimization

We now present different quantization methods commonly used in stochastic optimization to
approximate MSP with general distributions.

Sample Average Approximation The first idea is to replace the general random variables
&;: by a finite number of scenarios (étk) rke[n] sampled independently and identically distributed
according to the distribution of &. As in Monte-Carlo methods, we replace the true unknown
probability distribution P by the empirical probability Py = %Zszl 65tk~' Then, the ex-

v

pectation E[f(&;)] is replaced by the finite mean N% S f(&x). For example, the dynamic
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programming equation ([2.2)) becomes
1 N

Vi(zio1) = — Z min gt(xt;gt,w + Vi1 () )
N =1 Tt €Xe(Te—1,60k)

=V (@e—1,€0 1)

We then obtain a new MSP with finitely supported random variables following their empirical
distributions. This new problem is called Sample Average Approximation (SAA), see [SDR14,
Chapter 5] for a comprehensive review of the subject. By the Law of Large Numbers and
under some mild regularity assumptions, the SAA problem converges to the true MSP, in many
senses, for example the convergence of the value or of the set of optimal solutions. Assuming
the existence of a variance, by the Central Limit Theorem, confidence intervals for the value of
the MSP are also derived.

The first advantage of SAA is that it only requires mild assumptions and work on a large class
of stochastic optimization setting. Secondly, SAA is very easy to implement in practice, as long
as we know how to sample the random variables. However, these convergence results are either
asymptotic or converging in \/% while staying probabilistic. Note that the value U]SVAA of the SAA

problem is a random variable (depending on the sample), and thus can be seen as a statistical
estimator of the value of the true problem. If this estimator is consistent (asymptotically almost
surely converging), it is biased (the expectation of v34 is lower than the true value), but we
cannot guarantee that a given realization provides a lower bound for the true value. In the same
idea, there also exist quasi Monte-Carlo methods which generate samples through deterministic
methods in the hope to reduce variance while conserving asymptotic convergence.

Edmundson Madansky and Jensen based approximations We now present different
approximations method, under convexity assumptions, leveraging inequalities known as Jensen’s
and Edmundson-Madansky’s. We present more formally this inequalities in Section and
refer to [Kuh06, [EZ94b] [EZ94al, KM™76| for a detailed introduction on the topic. When a
function f is convex in a stochastic parameter &, the Jensen inequality tells us that f(E[¢]) <
E[f(¢)]. This inequality then provides a lower bound on the value of Multistage Stochastic
Convex Programs (MSCP) by replacing the random variables &; by deterministic variables equal
to their expectations E[&;]. This new problem known as the expected value problem (see
e.g. [MABI4]) then gives a lower bound on the true value of MSCP. However, this lower
bound can be very far from the real value. To improve the lower bound, we can partition the
set = where the random variable £ lives and leverage the Jensen inequality at each set P of
the partition P. We then consider another approximated problem where the random variable
€ is replaced by a finitely supported random variable & with scenarios fp =E[¢|& € P
associated to the probabilities pp := P[¢ € P|. In that case, the finer is the partition P, the
better is the approximation. Moreover, when the diameters of the sets P € P goes to 0, the
approximated value converges toward the value of the true MSCP. When the random variables
belongs to a polyhedron @, we have an upper bound on the expectation E[f(£)] by taking a
convex combination of the values f(v) where v describes the vertices of the polyhedron Q. This
inequality, called Edmundson-Madansky inequality (see [Madh9]), allows deriving to the same
kind of approximation schemes with partitions to get converging upper bounds. Finally, when
the loss functions are saddle functions, i.e. both convex in a random variable & and concave in
another random variable 1), leveraging the ideas of both inequalities, we can derive upper and
lower approximations of the problem MSCP. The advantage of these kinds of approximations is
the guarantee to have lower and upper bounds. However, these approximations are harder to
implement than SAA, and need a convexity assumption.

Dependence based approximations In the case where the random variables have de-
pendence, we can approximate these dependencies. The idea consists in relaxing the non-
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Figure 2.2: An illustration of Jensen and Edmundson-Madansky inequalities, see also Proposi-

tion @I

anticipativity constraints, for example by considering that the decision maker can see in the
future, or in gathering different scenarios together and representing them by their mean. For
example, the progressive hedging algorithm presented by Rockafellar an Wets in [RW91] is based
on these ideas. In the convex case, leveraging Jensen and Edmundson-Madansky inequalities, we
can show lower and upper bounds based on barycentric scenario trees (see [Fra96, [CS05, [Kuh06]).
In [PP12], Pflug and Pichler defined a distance, called the nested distance, between dependent
sequences of random variables. This nested distance allows to bound the gap between a MSP
and its approximated problems and thus to provide good approximation of MSP.

Note that, in risk neutral stochastic optimization, we generally assume that the distribu-
tions of random variables are known by the decision maker. This assumption makes stochastic
programs dependent on the choice of the distribution while modeling a practical problem. The
impact of this choice is studied by the field of sensitivity analysis [Dup90, [RS91] which con-
sists in understanding how the value of a stochastic problem varies with small perturbation of
the distribution. In practice, it is often not necessary to solve precisely, or exactly, a stochas-
tic program since the modeling error can overshadow the optimization or approximation error.
However, from a theoretical point of view, providing mathematical insights on the optimal so-
lutions of a problem with known probability distributions opens the door to improvements of
existing algorithms and ideas to develop new algorithms.

In this thesis, instead of the above approaches, we develop exact quantization leveraging
polyhedral geometry tools.

2.2 Polyhedral geometry, combinatorics and complexity

Optimization has found fruitful bridges with the fields of geometry and combinatorics. We first
recall some standard connections between linear problems and polyhedral geometry. We then
present briefly “higher order” tools in polyhedral geometry, such as the secondary fan which will
be a key tool in this thesis, and their link with parametric linear programming. These more
fundamental notions are originally motivated from polynomial systems and elimination theory,
a topic we will not consider in this thesis, but that is briefly evoked in Section Finally,
after introducing computational complexity theory, we recall complexity results in polyhedral
geometry and stochastic programming.

2.2.1 Linear optimization and polyhedra

Linear optimization is the subfield of optimization where the objective function is linear and the
constraint are defined as affine inequalities (see [MGO7]). A polyhedron is a set of points which
is equal to the intersection of a finite number of halfspaces. We give a more formal definition of
polyhedron in Section and refer to [Ziel2, [Gril3] for a complete introduction on polyhedral
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geometry. Thus, the set of admissible solutions of a linear problem (LP) is a polyhedron. A key
result in linear optimization is that the infimum of a linear function on a polyhedron is attained
on at least one vertex, i.e. an extreme point of the polyhedron, whenever the polyhedron admits
vertices and the infimum is finite. The simplex method is one of the most efficient and commonly
used algorithms to solve LP. It consists in following a path on the vertices of the polyhedron of
admissible solutions while decreasing the objective function.

min ¢ x:= T1 + T2

z€R?

st. <1 (1)
x] —x9 <2 (2)
—x1— 29 <2 (3)
—x1+29<2 (4)
e <1 (5)

Figure 2.3: Illustration of a step of the simplex algorithm for a simple linear problem. We pivot
from the basis {1,5} to the basis {1, 2}.

To implement the simplex method in a computer, we need more combinatorial notions.
A Dbasis is a set of indices, of the rows or columns of a matrix, which yields an invertible
submatrix. The vertices of a polyhedron can be retrieved and computed thanks to the bases.
Then from a combinatorial point of view, the simplex method goes from basis to basis thanks to
a pivot rule, see Fig. The links between polyhedral geometry and linear programming are
widely studied, for example to improve the performance of the simplex method. Fundamental
complexity problems for linear programming such as the 9th problem of Smale [Sma98| are thus
heavily linked with polyhedral geometry fundamental conjectures such as the Hirsch conjecture

[San12].

2.2.2 Higher order polyhedral notions

The parametric linear programming point of view consists in studying the behavior of linear
problems when parameters, such as the cost vector, the constraint matrix and the constraint
right-hand side vector, vary. A combinatorial approach of parametric linear programming was
developed by Walkup and Wets [WWG69]. Their basis decomposition theorem describes how the
value of a linear program in standard form varies with respect to the cost and the right-hand
side of the constraints. A more recent approach by Sturmfels and Thomas [ST97] linked this
theorem with the theory of regular subdivisions. Regular subdivisions are combinatorial objects
which describes the behavior of finite sets of points (resp. vectors) called configurations of points
(resp. vectors). We give a formal definition of regular subdivisions in Definition and refer
to the monograph [DLRSI0] for a complete introduction on this theory. Informally, the regular
subdivision of a vector configuration A = (a;);c[n associated with a height vector w € R™ is the
collection of sets of indices Ir = {i € [n]|a; € F'} when F describes the lower faces of the lifted
cone Cone(a;,w;)ic[y see Fig. 2.4 The structure of regular subdivisions is better understood
thanks to a fundamental geometric notion called secondary farﬁ Y -fan(A). More precisely, two
height vectors give the same regular subdivision if and only if they belong in the same relative
interior of a secondary cone (i.e. a cone of the secondary fan).

This fan happens to be the normal fan of a certain polytope called secondary polytope and
denoted 3(A). The vertices of ¥(A) can be retrieved with the regular triangulations of A seen
as a vector configuration, thanks to the so called GKZ coordinates (for Gelfand, Kapranov

3A fan is a polyhedral complex whose cells are cones.
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Figure 2.4: Three lifted vector configurations and the projection of their lower faces, see Sec-

tion for more details.
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and Zelevinsky, see next section). In [BS92], Billera and Sturmfels defined another fundamental
object called the fiber polytope, to enlighten the structure of a more general class of subdivisions.
They also showed that the secondary polytope was a special case of fiber polytope.

2.2.3 Motivation from polynomial systems and elimination theory

These advanced and recent higher order notions, used throughout this thesis in the context
of stochastic programming, are motivated, in another context, from the study of polynomial
systems.

In elimination theory, the resultant R(P,(Q), or Sylvester determinant, of two univariate
polynomials P and @), is a scalar which equals 0 if and only if P and @ have a common root. The
resultant of P and @ is defined as the determinant of a matrix which depends on the coefficients
of P and Q. Thus, the function resultant Ry : (P,Q) — R(P,Q), restricted to polynomials of
degrees smaller than d, can be seen as a multivariate polynomial in the coefficients of P and Q.
The discriminant Ag(P) of a univariate polynomial P is defined as the resultant R(P, P') of P
and its derivative P’. Like the resultant, the function discriminant Ay, restricted to polyhedron
of degree smaller than d, can also be seen as a multivariate polynomial. These objects are
fundamental in elimination theory to solve polynomials systems.

We now consider the multivariate setting. Let A C N" be a finite set of non-negative
integer vectors. Both notions of resultants and discriminants can be extended to multivariate
polynomials with non-null coefficients in A, we then speak of A-resultant and A-discriminant,
denoted Ry and Ay (see [GKZ94, Chapter 8 and 9]). Finally, to P := Y ,c 4 ca X' X52 - - X2n,
a multivariate polynomial with exponent in A, we can associate its Newton polytope Nw(P) :=
Conv{a € A|c, # 0}, see Fig. The Newton polytope is a key notion to study the behavior
of multivariate polynomials (see [EKO08, MTY19]).

In [GKZ90] (see also [GKZ94l Chapter 13]), Gelfand, Kapranov and Zelevinski showed that
the discriminant A 4 had strong connection with the theory of regular subdivisions. More pre-
cisely, they proved that the Newton polytope Nw(A 4) of the discriminant A 4 was equal, up to
a scalar factor, to the secondary polytope ¥(A). Sturmfels subsequently showed in that
the Newton polytope Nw(R4) of the resultant was a summand of a special fiber polytope.

2.2.4 Computational complexity

Computation complexity theory classifies mathematical problems according to how hard they
are to solve. A decision problem D can be proven at least as hard as a problem D’ by showing
that every instance of D’ is equivalent to an instance of D. We say that D’ can be reduced to
D. On the contrary, to prove that a problem D can be solved in reasonable time, we can study
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Figure 2.5: The Newton polytope Nw(P) of the polynomial
Pi= X3X3+3XPX4 — 7X4Xy + X2Xo — 8X2 + X, X4 — 4X2X3

the complexity of any algorithm that solves D. We refer to Arora and Barak monograph
for an introduction on complexity theory.

In [Kha&0], Khachiyan showed that the ellipsoid method solves linear programs in polynomial
time, thus proving that linear programming was in the complexity class P. We refer to the
book |GLS12] of Grotschel, Lovész and Schrijver for an introduction on complexity theory for
linear programs. However, adding some constraints, like having integer admissible solutions, or
modifying the structure of the problem, with stochasticity, changes a lot the complexity class.
Indeed, it was proven in [vzGST8], that integer linear programming (ILP) was NP-hard. When
a problem has a difficult complexity status, a rather common approach, and often the best
one can hope for, is to show that suitably restrictions with fixed parameters of the problem
become polynomial. For example, Lenstra proved in [LJ83] that, when the dimension of the set
of admissible points is fixed, integer linear programming becomes polynomial. Similarly, it was
proven that counting the number of integer points in a polytope was a f{P-complete problem.
Barvinok then showed in [Bar94] (see also [Bar(8]) that when the dimension is fixed, counting
the number of integer points in a polytope becomes a polynomial problem. Perhaps, more
surprisingly, the problem of computing the volume of a polytope is comparable to counting the
number of integer points, i.e. fP-complete in general [DF88] and polynomial when the dimension

is fixed [Law91].

Figure 2.6: Different classes of complexity. The figure is borrowed from [[JCNT5].
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The complexity of stochastic programming has been extensively studied. In [DS06], Dyer and
Stougie proved that a particular case of MSLP was PSPACE-hard, and that 2-stage stochastic
programming with discrete distributions is §P-hard, by reducing to it the problem of graph
reliability. Hanasusanto, Kuhn and Wiesemann [HKW16] then showed that solving, with a
sufficiently high accuracy, the 2-stage linear programming (2SLP) with continuous distribution
is also gP-hard, exploiting the gP-completeness of the computation of the volume of knapsack
polytopes and order polytopes. Several papers such as [Sha06] studied the complexity of 2SLP
and MSLP by analyzing the convergence of SAA methods. Shapiro and Nemirovski [SNO5]
showed in particular that the 2SLP problem can be solved by the SAA method, with high
probability and up to precision ¢, in a time which is pseudo-polynomial, i.e. polynomial in
1/e and in the input size when the dimensions of decision spaces are fixed. This entails that
2SLP problems can be solved in a scalable way with a moderate accuracy. Finally, Lan [Lan20]
and Zhang and Sun [ZS22] independently analysed the complexity of Stochastic Dual Dynamic
Programming (SDDP). It follows from their results that finitely supported MSLP can be solved
approximately in pseudo-polynomial time in the error approximation € when all the dimensions
are fixed. In other words the complexity of these SDDP methods is polynomially bounded in
1/e.

2.3 The exact quantization problem

In this thesis, we wonder how to deal with general (thus non-finitely supported) distribution in
stochastic programming. The main question is then

How to solve ezxactly multistage stochastic problems with general distributions ?‘

In other words, do there exist analytical formulas and algorithms to compute exact solutions
of stochastic programs with general distribution ?

We saw in Section that we can approximate a MSP, either by SAA or by Jensen and
Edmundson-Madansky inequalities, by replacing the continuous random variables by finitely
supported random variable, see Table These techniques can be seen as approximate quan-
tization method, we now define the notion of exact quantization.

Definition 2.1 (Exact quantization). We say that a MSP (with stagewise independence) admits
a local exact quantization at time t on x;_1 if there exists a finitely supported (gt)te[T} that yields
the same expected cost-to-go functions i.e. such that

V;:(l‘t—l) = E[Vt(u’ﬂt—laft)] = E[Vt(mt—hét)]-

In particular, we have V(z1-1) = Yecqnné P& = &)V (2i-1,€).

We call a quantization uniformly exact if it is locally exact at all x;—1 € R™=1 and all
tel[T).

We say that a quantization is partition based if there exists a (measurable, finite) partition
Ptz of the uncertainty set = such that, for P € Py, .,

P& =&p) =pp with pp=Pl&eP], &p=E[&|&¢€ P]

In particular, the partition based quantization reads

Vt(ﬂﬁt—l) = Z ﬁt,PV(ﬂft—h gt,P)-
PEPtay_4

If there exists a partition Py, , such that the induced quantization is exact at time t on
wi—1, for all distributions of (&§-)reir], we call the evact quantization universal.
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SAA Jensen/Edmundson-Madansky | Exact quantization
Setting General Convex Linear
Approximations | Confidence interval Upper and lower bounds Exact values

Table 2.1: Comparison of advantages and drawbacks of approximation methods with exact

quantization
. °
"t ..- .
: °
&, continu (ét,k)k:N pour SAA (Et,p)pep pour une
avec N = 20 discrétisation induite par P

Figure 2.7: Comparison of chosen scenarios according to quantization method.

In this thesis, we only discuss partition based quantization. Before diving in theorems of
exact quantization in the core of the thesis, we first explain in this section why we cannot
expect to have general exact quantization theorem in the non-linear setting. We then focus on
stochastic linear problems (SLP). By giving counter examples, we show that there is neither
local and uniform partition based exact quantization when the recourse matrix is stochastic
with non-finitely supported distribution, and that there is no uniform exact quantization when
the constraints are stochastic with non-finitely supported distribution.

2.3.1 Non-linear case

If Pt x, , is a partition of =, the law of total expectation yields

Vilwe—1) = > bpE[Vi(zi-1,&) | & € P).
PEPtw, 4

If we assume that the cost-to-go function V, is convex in the uncertainty parameter &, by
Jensen’s inequaliy, we have that for all P € P, |, ‘A/,g(xt_l,&p) = Vt(azt_l,IE[Et |& € P]) <

E [Vt(xt_l,&) |& € P}. In particular, we have the partition based exact quantization result if
and only if we have the equality in Jensen’s inequality, for all P € P;,, , such that p; p > 0.
When we have strict convexity, Jensen’s inequality is generally strict, we also say that the Jensen
gap is positive (see e.g. [Wall4]). Then, a partition-based exact quantization result is highly
improbable when V, is strictly convex in &. We have similar conclusions if V; is strictly concave
in &, by inverting the inequality. Although we might show some exact quantization results in
particular cases, this discussion shows that we cannot hope to have a general exact quantization
theorem if V; is not piecewise affine in &.
We thus focus on the linear setting.

2.3.2 Counter examples in 2SLP

Multistage stochastic linear problems (MSLP) are special cases of MSP where the loss functions
are linear and the constraints are affine. For sake of simplicity, we first 2-stage linear problems

“When p; p := ]P’[& € P} is equal to 0, E [ﬁt |& € P] is not well-defined. Then, we take an arbitrary g},p in

P. This choice does not matter since .fvt,p will only appear in functions multiplied by p; p = 0 in formulas.
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(2SLP) which are special cases of MSLP with horizon 2. In 2SLP, we only have to study a single
expected cost-to-go function V' := V5. We also denote the dimensions n := ni, m := ng, the
state variables z := 1, y := x5 and Z := supp(€) C R™ x R*"™ x R*™ x Rf the support of
£ = (q, W, T, h) = 52 = (CQ, AQ, BQ, bg)

We thus consider the expected cost-to-go function

R*"xZ — RU{—o00,+00}

V: (2.€) = mingegm q'y
’ s.t. Te+Wy<h

We define .
V(z) :=E[V(z,§)]

We now show that in the general case, there is neither local or uniform partition based exact
quantization when the recourse matrix W is stochastic:
Ezample 2.2 (Stochastic W). Let m=¢=1,q= (1), T = (0), W = (—u), h = (—1) where u
denotes a uniform random variable on [1,2]. We then have for all z € R™:

min vy

. 1
V(z,¢) = v~ == (2.3)
st. wy>1 Y

Thus, V is constant in  and strictly convex in £&. We then have for all finite partition P of =:

Z ﬁpV(x,gp) < V(ZL‘) (2.4)
Pep

with pp = P[¢ € P], £p = E[£|€ € P]. Thus, for all # € R™, there is no partition-based local,
thus uniform, exact quantization result at x when W is non-finitely supported. We give a more
detailed proof in Appendix [A]

An obvious necessary condition for having uniform exact quantization at all times ¢ is that
the value functions V; are polyhedral functions, meaning that they take value in RU {+oc} and
their epigraphs are (possibly empty) polyhedra. Indeed, for each ¢ € supp(€), Q¢ : (z,y) —
qu+]ITw+Wy<h is polyhedral. Thus, V(, ) = minyepm Q% (-, y) is polyhedral as epi ‘7(, §)isa
projection of epi Q¢ (see Fig. and [JKMOS§|). Finally, V', being a positive linear combination
of polyhedral functions, is also polyhedral. Hence, the following examples show that if the
constraints have non-discrete distributions, there is no hope to have a uniform exact quantization
theorem.

Ezample 2.3 (Stochastic T'). Here, and in the next example, u denotes a uniform random variable
on [0, 1].
min y

yer™ 1 if < 1
Vir)=E = E|max(uzx,1)| = h
(z) st. ur<y [ ( )] {§+21x ifr>1
1<y
Ezample 2.4 (Stochastic h).
min y L ifr<o
V(@) =E| gt w<y|=E[max(z,u)] = =2 ifzeo,1]

In contrast, we shall see, in a perhaps surprising way, that there is a uniform and universal
exact quantization theorem without any restriction on the cost distribution. Moreover, there
also exists a local quantization result when T' and h are stochastic, see Table
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{(z,y) | Tx+ Wy < h}

Figure 2.8: epi (V(, ﬁ)) is the projection of epi(Q¢)

2.4 Contributions

We now sum-up in a concise way the main contributions and results of this thesis.

In this thesis, we show how the tools from polyhedral geometry enlighten the structure of
multistage stochastic linear problems.

In Chapter[3] we reformulate results from polyhedral geometry and combinatorics with useful
notations for the stochastic programming community. Although the results in this chapter may
look like common knowledge for the polyhedral community, we believe that they both introduce
the topic to the stochastic optimizers and give formal proofs that can be hard to find explicitly
in the literature.

2.4.1 Understanding MSLP through polyhedral geometry

First, we build a bridge between polyhedral geometry and stochastic programming.

Contribution 1. We show that the expected cost-to-go functions are piecewise affine on explicit
and universal polyhedral complexes, when the constraints are finitely supported and the costs
have general distributions.

For the 2-stage case, we indeed prove in Theorem [£.9] that the expected cost-to-go function
is affine on every cell of the chamber complex, a universal polyhedral complex only depending
on the constraints. This also allows us to derive combinatorial formulas for the expected cost-
to-go functions and its subdifferential in Theorem We then extend this result to MSLP in
Theorem [£.14] by constructing by backward induction universal chamber complexes where the
expected cost-to-go functions are piecewise affine, independently of the cost distributions.

Contribution 2. We give an explicit characterization of expected cost-to-go functions in terms
of support functions of nested weighted fiber polyhedra, when the constraints are deterministic
and the costs have general distributions.

We define a generalization of the fiber polytope of Billera and Sturmfels [BS92], called
weighted fiber polyhedron, and show in Theorem that the expected cost-to-go function in
2SLP is equal, up to an affine change of variable, to the support function of the weighted fiber
polyhedron. This result is extended to MSLP in Theorem [£.17] by defining nested fiber polyhedra
through dynamic programming.
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2.4.2 Exact quantization results
In this thesis, we also give several exact quantization results that we sum up here.

Contribution 3. We give local and universal exact quantization results for 25LP with fized
recourse.

Indeed, we show in Theorem that any refinement of the opposite of the normal fan N'(P,)
of the second stage admissible set P, at x yields a local and universal exact quantization when
the ¢ is stochastic. By taking the dual problem, we also show in Theorem [5.3] that we have a
local and universal exact quantization result when T and h are stochastic in the 2-stage case.
This local and universal exact quantization result extends to the 2-stage case where g, T' and
h are all stochastic in Theorem We sum up the exact quantization results in 2SLP in
Table 2.21

Local and universal Uniform and universal
w x: Counter ex [2.2 x: Counter ex [2.2
(T, h) v': Ry in Theorem 5.3 x: Counter ex [2.3|and |2.4
q Vi =N(P;) in Theorem (4.2 | v': A,ec(px) —No in Theorem 4.3
(q,T,h) Vi Ry in Theorem [5.15 x: Counter ex|2.3|and [2.4

Table 2.2: Existence of partition based uniform and local (both universal) quantization for 2SLP
with the associated partitions or counter examples

Contribution 4. We give uniform and universal exact quantization results for MSLP with
general cost distribution ¢ and finitely supported constraints.

When the constraints are deterministic, the local exact quantization in 2SLP is valid at all the
first state x belonging to the same relative interior of a cell of the chamber complex. By taking
the common refinement on all cells of the chamber complex, we derive in Theorem [£.3]a uniform
and universal exact quantization for general cost c¢. By propagating the chamber complexes
through dynamic programming, we extend the uniform and universal exact quantization to the
multistage case and to finitely supported constraints in Theorem

2.4.3 New algorithms

The new perspectives of polyhedral geometry and exact quantization allow to define new algo-
rithms, summed up in Table to solve stochastic problems.

Contribution 5. We present a generalized adaptive partition based method (GAPM) to solve
2SLP with stochastic T and h and give an extension to stochastic q.

Adaptive partition based methods (APM) were introduced by Song and Luedtke [SL15] to
reduce the size of finitely supported 2SLP by gathering scenarios thanks to a partition. Ramirez-
Pico and Moreno showed in [RPM21] that APM can be adapted to general distributions, calling
it generalized adaptive partition based method (GAPM), if we are able to respect an analytical
sufficient condition. We present an algorithm, see Algorithm that allows to implement a
GAPM methods for every distribution by applying an exact quantization result. We also give
convergence and complexity results for APM methods. Thanks to an implementation of the
algorithm in Julia, we compare GAPM with SAA methods by providing numerical results.

SWe give ideas to develop a higher order simplex algorithm for 2SLP with general cost distribution in the
conclusion of this manuscript.
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2SLP MSLP

Local (T, h) GAPM in Chapter [7] GAPDP in Chapter |6

Pin Chapter |7 GAPDP in Chapter [6

Local q Secondary Simplex

Uniform q Extended GAPM in ChapterH Nested fiber and chamber complex in ChapterH

Table 2.3: Algorithms and tools to tackle exact quantization in 2SLP and MSLP

Contribution 6. We provide a framework called Trajectory Following Dynamic Programming
(TFDP) which encompasses at least 14 algorithms (see Table , including SDDP and its
variants. We then explain how to adapt all these algorithms, originally designed for finitely
supported distribution, to the case of general distributions.

In Chapter [6] we show how all these variants integrates the framework, see Algorithm
by discussing the choice of the upper and lower approximations called cuts, the choice of the
trajectory depending on the uncertain parameter, i.e. the node selection, and the optimization
problem we solve in the forward phase.

2.4.4 Complexity results

We present several results concerning the complexity of multistage stochastic linear programs.

Contribution 7. We show that MSLP with general cost can be solved approzimately in polyno-
mial time in log(1/e), when T, ng,--- ,ny are fixed for a large class of reqular density functions.

In particular, the first state dimension is not fixed. The proof relies on the theory of linear
programming with oracles [GLS12] as well as on upper bound theorems of McMullen [McMT70]
and Stanley [Sta75] concerning the number of vertices and the size of a triangulation of a poly-
hedron. This complexity theorem, see Corollary is widely applicable since the distribution
cost can now be essentially arbitrary; we only assume that it is given implicitly through an
appropriate oracle (see Definition — this applies in particular to any distribution with a
smooth density with respect to Lebesgue measure. Moreover, we obtain a similar polynomial
complexity bounds in the exact (Turing) model of computation for appropriate classes of distri-
butions, such as uniform on polytopes or exponential in Corollary [£.25] For comparison, to best
of our knowledge, all the other complexity bounds were in pseudo-polynomial time, i.e. polyno-
mial in 1/e.

Moreover, we give complexity bounds in the number of iterations for APM methods and for
the algorithms following the TEFDP framework. In multistage setting, assume, for every time
step, relatively complete recourse, that the admissible sets have diameter smaller than D and
dimensions at most d, and that the expected cost-to-go functions have a Lipschitz constants
smaller than L. Let v be the approximation error accumulated during an iteration.

Contribution 8. The algorithms encompassed by TEDP framework find an approximate e-

. . oDL\" _\n+l g . . . .
solution in at most ( ) (T —1) iterations , when implemented with the problem child

ey
ADL(T—1) ) n+2(T-1)

— iterations when

(resp. explorative) node selection, and in at most (T — 1) (
implemented with a randomized node selection.

In particular, this provides new complexity results, see Corollary [6.17] and Theorem [6.21] for
at least 10 algorithms in the literature (see Table[6.1]). For 2SLP, we show in Theorem that
APM methods, including GAPM, find an e-solution in at most (1 + %)n iterations.
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2.5 Structure of the thesis

The rest of the thesis is laid out as follows:

Chapter [3] gives an introduction on polyhedral geometry for stochastic optimizers. It recalls
the definition of basic notions such as polyhedra and their representations, fans and chamber
complexes. We give formal proof for the correspondences between the faces of a polyhedron,
its normal cones and its sets of active constraints. We define the more combinatorial notions of
regular subdivisions and secondary fan and show how they are related to the notion of active
constraint sets. Finally, we present an adaptation of the basis decomposition theorem of Walkup
and Wets [WW69| to our notations.

In Chapter [4] we study the polyhedral structure of MSLP with general cost distribution. We
first prove that we have a universal and uniform exact quantization of 2SLP with general cost
distribution which allows us to give a characterization of the expected cost-to-go function. We
give a dual interpretation by defining a new object called weighted fiber polyhedron. This results
are then extended to the multistage case. By constructing, through dynamic programming,
universal chamber complexes, where the expected cost-to-go function is piecewise affine, we give
a uniform and universal exact quantization results for MSLP with general cost distributions. We
finally derive complexity results for MSLP showing that with fixed parameters, MSLP becomes
polynomial for every regular distribution. Most of the results of Chapter [4] comes from the
preprint [FGL21], which was awarded the best student paper price at ECSO-CMS 2022, with
some new results detailed in the introduction of the chapter.

Chapter |5| deals with Adaptive Partition-based Methods (APM), which are numerical meth-
ods that solve, in particular, two-stage stochastic linear problems (2SLP). We say that a partition
of the uncertainty space is adapted to the current first stage control  if it induces a local exact
quantization results at . The core idea of APM is to iteratively constructs an adapted partition
to all past tentative first stage controls. Relying on the normal fan of the dual admissible set,
we present a local exact quantization when the technology matrix T' and the right-hand side
vector h have general distributions. This allows us to derive a necessary and sufficient condition
for a partition to be adapted even for non-finite distribution, and provide a geometric oracle
to obtain an adapted partition. Further, by showing the connection between APM and the L-
shaped algorithm, we prove convergence and complexity bounds of the APM methods. We give
some numerical results and compare GAPM with SAA methods. We finally extend the results
to general distribution for the second stage cost. The majority of this chapter can be found in
the paper [FL22b], but the extension to general second stage cost is written in [FL22al Section
3.

In Chapter [6], we introduce a class of algorithms, called Trajectory Following Dynamic Pro-
gramming (TFDP) algorithms, that iteratively refines approximations of expected cost-to-go
functions of multistage stochastic problems with independent random variables. This framework
encompasses most variants of the Stochastic Dual Dynamic Programming algorithm. Leverag-
ing a Lipschitz assumption on the expected cost-to-go functions, we provide a new convergence
and complexity proof that allows random variables with non-finitely supported distributions. In
particular, this leads to new complexity results for numerous known algorithms. Further, we
detail how TFDP algorithms can be implemented without the finite support assumption, either
through approximations or exact computations. This chapter presents the results of the preprint
[FL22a], except Section 3, included in the previous chapter.

We conclude and give some perspectives for subsequent works in Chapter [7}
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This chapter presents the tools and results from polyhedral geometry that are used through-
out this thesis. We reformulate properties from polyhedral geometry and combinatorics with
useful notations for the stochastic programming community. While most of these results are con-
sidered as general knowledge, some proofs can be hard to find explicitly in the literature without
falling in circular reasoning. With this in mind, this chapter might be seen as a Bourbaki-like
polyhedral geometry toolbox for stochastic programmer.

We first define polyhedra and explain how they can be implemented through V-representation
or H-representation. We then recall the notion of polyhedral complexes in order to focus on two
particular cases, namely the normal fan and the chamber complex. These two particular polyhe-
dral complexes happen to be key tools to describe the structure of stochastic linear programming.
To derive explicit formulas and implement computations, we eventually present combinatorial
notions such as the active constraints sets. We end this chapter by recalling the link with the
general theory of regular subdivisions.

3.1 Polyhedra, cones and faces

Polyhedra are geometrical objects that are central to optimization. In this chapter, we give a
brief introduction to polyhedral geometry. We refer to [Ziel2) [Grul3l [Fuk16l .JT13| for a detailed
introduction to this field.

3.1.1 H-representation, V-representation

Polyhedra are convexE] sets that can be represented, either as an intersection of a finite number
of closed half spaces, we speak of H-representation, or as a set generated by vertices and rays
called the V-representation.

More formally, a subset P of R? is a polyhedron if there exists a finite collection (Hi)ie[p]
of p hyperplanes H; := {x € R?|a/2z < b;}, with a; vector in R? and b; a scalar such that

P =(_, H;. In particular, the polyhedron can be written in the following H -representation as

P={xecR|a)z<b,Vie[p} (3.1)
We define the convez hull of vectors vy, ...,vs € R? as
S S
COI]V(’Ul,...,US) = {Z)\j’l}j ’ /\j 20,2)\]‘ = 1} (32)
j=1 i=1
A subset Q of R? is a polytope if there exist vectors (vi)ig[s such that @ = Conv(vy, - -+, vs).
We say that (vi,---,vs) is a V-representation of Q.
For d € N, the simplices of R? are the polytopes which can be written Conv(vy,--- , v,) with
n < d+ 1. As stated in Theorem the polytopes are exactly the bounded polyhedra.
The conic hull of vectors ri, ..., € R% is
t
Cone(ry,...,r) = {Zujrj | pj = O} (3.3)
j=1

A cone is a non-empty set of point C stable by multiplication by a positive scalar:
Cisacone <= Vexe(C, VAeR,, \xel (3.4)

A polyhedral cone is a cone which is also a polyhedron. Since in this thesis, we are only
interested in polyhedral cones, we use the name cone to refer to polyhedral cones. Note that

IThere exist a large field of mathematics that deals with non-convex polyhedra. In this thesis, the terms
polyhedron and polyhedra always refer to conver polyhedra.
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(a) H-representation: P = {x| Az < b} (b) V-representation: P = Conv(vy,...,vy)

Figure 3.2: 2 representations of the same polytope

the set Cone(ry,--- ,r¢) is a cone. We state in Theorem that every (polyhedral) cone C' can
be written in this way and we say that (r;);c[q is a V-representation of C.

The simplicial cones of R? are the cones which can be written Cone(ry, - -- ,7;) with ¢ < d.
The Minkowski sum of X and Y two subsets of R? is

X+Y: ={z+y|lzeXyecY} (3.5)

We now present the Minkowski-Weyl Theorem which states that a subset of R? is a polyhe-
dron if and only if it is the Minkowski sum of a polytope and a cone.

Theorem 3.1 (Minkowski-Weyl’s theorem for polyhedra see [Ziel2] 1.2 or [Fukl6] Thm 3.9).
For P C R4, the following statements are equivalent :

1. There exist (a;)ic|q € (RN and (b;)icra such that P:= {x € R | a2z < b;,Vi € [q]}.

2. There exist finite families of vectors v; and r;j in R? such that P = Conv(vy,...,vs) +
Cone(r1,...,7¢)

In particular, P is a polyhedron if and only if it satisfies one of this statement.

Thus, we have two ways to represent, for example in a computer, the polyhedron P. We
say that (a;,b;)icpq is a H-representation of P. Similarly, we say that ((vi)ic[s, (7i)icfy) is a
V-representation of P.

Note that H-representation and V-representation are not unique. Indeed, we can add in-
equalities a, z < b; that are always valid without changing the polyhedron P. Similarly, adding
points v; already in the convex hull does not change the polyhedron P either. However, a
polytope @ admits a unique minimal V-representation. We call the elements of these minimal
representation the wvertices of ). On the other hand, a full dimensional polyhedron admits a
unique minimal H-representation (a;, bi)ie[q] up to positive scalar factors.

To ease the reading, we prefer to rely on matrix notation. If we define the matrix A as the
matrix whose rows are the row vectors aiT and the vector b with coefficients b;. The polyhedron
P can be written as

P={zecR?| Az <b} (3.6)

Equivalently we can write the convex and conic hulls with a matrix representation. We
define the matrices V € R%® and R € R¥? as the matrices whose columns are respectively the
vectors (v;)ie[s) and (r);cy- We can equivalently define the convex hull of V' as

Conv(V) :=VA,_ (3.7)

d+1 _
il Ty =

where Ay stands for the canonical simplex of dimension d as Ay := {x € R¥*! |z; > 0, 3¢

1.
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Similarly, we define the conic hull of R as
Cone(R) := Cone(R) = {Ru | p > 0,1 € R"} (3.8)
We now restate the Minkowski-Weyl theorem with this notation.

Theorem 3.2 (Minkowski-Weyl’s Theorem for polyhedra with matrix notation). For P C R,
the following statements are equivalent :

1. There exist A € R?*? and b € R? such that P = {x € R | Az < b}.

2. There exist V € RS and R € R such that P = {VAX+Ru|p=>0, 1A =1)> 0} =
VA1 -I-RRZ_

In particular, P is a polyhedron if and only if it satisfies one of this statement.

Similarly, we say that (A, b) is a H-representation of P and that (V| R) is a V-representation
of P. The idea of the proof is to add a lift variable and represent the polyhedron P C R? as a
cone P = {(x,\) € RYxR |z € AP} in R™!. With this homogenization trick, the Theorem

is a consequence of the following Minkowski-Weyl for cones:

Theorem 3.3 (Minkowski-Weyl’s Theorem for cones (see [Fukl6] Thm 3.10)). For P C R
the following statements are equivalent :

1. There exist A € R?*? such that P = {x € R? | Az < 0}.
2. There exists R € Rt such that P = {Ru | p >0} = RRY,.
In particular, P is a cone if and only if it satisfies one of these conditions.

The idea of the proof is to obtain the H-representation from the V-representation by Fourier-
Motzkin elimination. The backward implication is proved by a duality argument.

We eventually adapt the Minkowski-Weyl theorem for polytopes which states that the poly-
topes are exactly the bounded polyhedra.

Theorem 3.4 (Minkowski-Weyl’s Theorem for polytopes). For P C R? non-empty, the follow-
ing statements are equivalent :

1. There exist A € R?% and b € RY such that P = {x € R?| Az < b} and P is bounded.
2. There exists V € R™® such that P = {VA|1TA=1,A>0} = VA,
In particular, P is a polytope if and only if P satisfies one of these statements or P is empty.

Proof. By Theorem we only have to prove that for P := Conv(vy, -+ ,v,)+Cone(ry, -+ , 1),
we have that

P is bounded if and only if ¢t = 0.

(=) Ift>1, for all p € Ry, pury € P, thus P is not bounded.

(<) Ift =0, let M = max(||vi]],---,|lvn]). Then, for all z € P = Conv(vy,--- ,vp),
lz|| < M. Thus, P is bounded. O

3.1.2 Basic properties of polyhedra

Polyhedra are stable by intersection, Minkowski sum, linear transformation and projection.

Proposition 3.5. For P and @) be two polyhedra, A a matrix and 7 a linear projection. We
have the following properties.

- PN Q is a polyhedron.
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- P+ Q is a polyhedron.

- AP is a polyhedron.

- w(P) is a polyhedron.

If f: RY — RU{+o0} is a function, we say that f is polyhedral function (see [Roclf, Chapter
19]) if its epigraph epi(f) is a polyhedron of R4*1,

Proposition 3.6. Let f : R? — RU{+o00} be a polyhedral function. Then there exists (@i)iepn) €
(R4)", (Bi)icin) € R™, a matriz A and a vector b such that

f :xr—>]IAx<b+m?}]<{a;rx+ﬁi} (3.9)
en

In particular, dom(f) = {x € R?| Az < b} is a polyhedron.

Proof. If epi(f) is empty, the result is trivial. We now assume that epi(f) is not empty.
Since epi(f) is a polyhedron, there exist a matrix M and vectors v and h such that epi(f) =
{(z,2) | Mz + vz < h}.

By contradiction, assume that there exists an index ¢ such that v; > 0. Let (z, 2) € epi(f),
ie. f(z) < z. Then, for all z > 2/, f(z) < z < 2/ and thus (z,2') € epi(f) and M;z + v;2" < h;.
If we take 2/ := %f“‘l, then z < 2/ and Mz + v;2’ < h;. By simplifying, we get the
contradiction 1 < 0. Then, for all 4, v; < 0. Let I® = {ilv; = 0} and I~ = {i|v; < 0}. We then
have (z, z) is in epi(z) if and only if Moz < hjo and z > Z—Z - U%sz for all i € I~. We define
A := Mo the submatrix of M with row indices in I® and b := ho the subvector of h. We also
define, up to changing the indices, a; := —U%_MZ-T and 5; := % With this notation, we now have

epi(f) := {(z,2) | Az < b, o) v + B; < z, Vi} which gives Eq. (3.9). O

We now define basic notions on polyhedra.
The polar of a convex set C C R is the convex cone

C°:={acR| Vel a'z <0} (3.10)

The lineality space of C' is the following vector space
Lin(C) := {r e R |Vz € C,VA € R,z + M € C}. (3.11)

The recession cone of a convex set C' C R™ is the set
rc(C) := {r e R? |Vz € O,V € RY x + pr € C} (3.12)

Note that, if P is a polyhedron such that P = Q 4+ C with @ a polytope and C a cone, as in
Theorem [3.1} we then have rc(P) = C.

We say that a cone is pointed if its lineality space is reduced to {0}. A pointed cone C
has a minimal V-representation up to positive scalar factors. An element of a minimal V-
representation of C' is called a ray of C.

Proposition 3.7. The recession cone and the lineality space of a non-empty polyhedron P =
{z € RY| Az < b} with A € R?*¢ and b € RY are respectively

rc(P) = {z € R| Az <0} = A7}(R?) (3.13a)
Lin(P) = {z € RY| Az = 0} = Ker(A) (3.13b)
(rc(P))° = Cone(AT) = ATRY. (3.13c)

Proof. Let r € rc(P), since P is not empty, there exists x € P. We have that A(z+Ar) < b, for all
A € Ry. In particular, Ar < (b—Az)/\. By letting A goes to infinity, we have Ar < 0. Now, if we
take 7 such that Ar < 0. Then, for z € P and A € R, we have that A(x+Ar) < Az +Ax0 < b,
thus « + Ar belongs to P. It follows that » € rc(P.) The proof for the lineality space is
similar. O
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3.1.3 Faces

A face F of a polyhedron P C R? is a subset of R? such that there exists ¢ € R? and 3 € R with

Pc{zeRl|c'z< B} (3.14a)
F=Pn{zcR¥cz=p4} (3.14b)

We denote by F(P) the set of faces of P.

Some faces are reduced to singleton we call them vertices and we denote by Vert(P) the set
of vertices of P.

Note that, for a polyhedron P, we denote

PY :=argminy 'z (3.15)
zeP

By taking ¢ = —t and § = max,cp ' = we see that P¥ is a face of P. More generally, for any
set £ C R?, we write

P¥ = nyepP?. (3.16)

In many contexts, it is useful to consider polyhedra in R% xR, e.g. for epigraphs of polyhedral
functions. In these cases, the last coordinate plays a particular role that can be interpreted as
a "height” or a lift variable. We say that a face F' of the polyhedron P € R% x R is a lower face
if it is “visible from below” i.e. , if there exists a vector ¢ € R% such that F = P(®1),

Proposition 3.8. If P is a non-empty polyhedron, we have that

a) 0 and P are faces of P.

i
(0.9]

(
3(

w

b) Any face F € F(P) is a polyhedron.

3.

Q0

)
)

(¢) If F and F' are faces of P, then FNF' is also a face of P.
)

w

8l(d) A set F is a non-empty face of P if and only if there exists i € —(rc(P))O such that
F=PpPv.

(e) F(P) is a finite collection of polyhedra.

B
(0]

(f) The relative interior of P is given by

riP)=P\ |J F (3.17)
FeF(P)\{P}

Proof. By taking ¢ = 0 and 8 = 1, we have that P C {z € R¢|0"z < 1} and
) = Pn{z € R¥| 0"z = 1}. Similarly, by taking c = 0 and 8 = 0, we get P C {x € R?|0" 2 < 0}
and P=Pn{zcR¥ 0"z =0}.
3.8.(b)l Is direct from the definition of polyhedron as intersection of half-spaces.
3.8 (c)l Let ¢,c/, 3,8 such that F = PN{zr € R¢|c'a =B}, ' =Pn{z cR¥| Tz =p}
and for all z € P, ¢'x < 8 and ¢'T2 < 8. We then have that for all z € P, (c+ )Tz < B+ 5
and FNF' =Pn{z cR|(c+)Ta=p+751

Since x + ¢'x is continuous and P is non-empty and closed, we have that PY
is empty if and only if inf,eptp 'z = —o0o. Moreover, if F:= PN {z € R¥|c'xz = B}, with
P c {z € R¥ c"z < B}, is a non-empty face of P, then 8 = max,epc'z and F = P~¢. We
first prove that inf,cp 1) "o = —oo is empty if and only if ¥ € —(rc(P))O:
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(=) Let ¢ ¢ —rc(P)°. By definition of the polar cone, there exists r € rc(P) such that
—1Tr > 0. By definition of the recession cone, there exists = € P, such that, for any u € Rt,
x + pr € P. Thus, we have lim,, |« YT (x + pr) = —oo and then infyepyp 'z = —oc.

(<) Let ¢ € —rc(P)°. Then for all » € re(P), —c'r < 0, and inf,ere(p) c¢c'r =0. By
Minkowski Weyl theorem’s there exists a polytope @ such that P = @ + rc(P). Thus,
infoeptp o = Milge rere(P) Y (x + 1) = mingeg ¢ Tz is finite as Q is bounded.

We now prove Let F = PN {z € R¥|c"z = B} be a non-empty face of F' with
Pc{r eRlc's < B} Let b =sup,epc'x. We cannot have 3 < b because P C {z €
Re|c"z < B}. We cannot have B > b otherwise I is empty. Thus, b = 3 and F = P~¢,
Reciprocally, we already saw that P is a face of P and that it is non-empty if ¢ € —(rc(P))°.

We prove [3.8/(e)l and [3.8](f)l in Section after defining active constraints sets.
0

3.1.4 Polyhedral complex, fan and chamber complex

Polyhedral complexes are collections of polyhedra satisfying some combinatorial and geometrical
properties. In particular the relative interiors of the elements of a polyhedral complex (without
the empty set) form a partition of their union. We refer to [DLRSI0] for a complete introduction
to polyhedral complexes and triangulations.

A finite collection of polyhedra C is a polyhedral complez if it satisfies
1. For every polyhedron P € C and every non—emptyﬂ face F' of P, FF € C.

2. For any polyhedra P and @ in C, PN Q is a (possibly empty) face of P and Q.

We denote by suppC := Upcc P the support of a polyhedral complex. Further, if all the
elements of C are polytopes (resp. cones, simplices, simplicial cones), we say that C is a polytopal
complex (resp. a fan, a simplicial complex, a simplicial fan).

For example, the set of faces F(P) of a polyhedron P is a polyhedral complex.

Proposition 3.9. For any polyhedral complex C, the relative interiors of its elements (without
the empty set) form a partition of its support: supp(C) = |pec ri(P).

We recall that the notation LI refers to a disjoint union.

Let C and R be two polyhedral complexes, we say that R is a refinement of C, denoted
R < C, if for every cell R € R there exists a cell C' € C containing R: R C C.

Note that < defines a partial order on the space of polyhedral complexes, and the meet
associated with this order is given by the common refinement of two polyhedral complexes C
and C’ defined as the polyhedral complex of the intersections of cells of C and C”:

CANC":={RNR|ReC,R e} (3.18)

A triangulation T of a polytope @ is a refinement of F(Q) such that the cells of dimension
0 of T are the vertices of @) and T is a simplicial complex. A triangulation T of a cone K
is a refinement of F(K) such that the cells of dimension 1 of 7 are the rays of K and T is a
simplicial fan.

We recall that a simplez of dimension d is the convex hull of d+1 affinely independent points
and that a simplicial cone of dimension d is the conical hull of d linearly independent vectors.
We speak of triangulations because simplices in dimension 2 and 3 are respectively triangles and
tetrahedra. Thus, simplices are generalization of triangles in higher dimensions.

Finally, to study the projection of the faces of P, we present classical polyhedral tools known
as fibers and chambers complexf| (see [BS92, [RZ96, Ram96]).

2For some authors, a polyhedral complex must contain the empty set. We do not make this requirement.
3The terms wvalidity domain, instead of chamber, and parametrized polyhedron, instead of fiber, are also used
in the literature [CLI98) [LW97].



56 CHAPTER 3. POLYHEDRAL GEOMETRY AND PARAMETRIC LP

(a) P (b) T () U (d) P AU

Figure 3.3: A polyhedral complex P, a triangulation 7 of the square, another triangulation U
which refines 7. The common refinement P A U.

Definition 3.10 (Chamber complex and fiber). Let P C R? be a polyhedron and © a linear
projection defined on R?. For x € n(P) we define the chamber of z for P along 7 as

opx(x) = ﬂ w(F). (3.19)

FeF(P)s.t. zen(F)
The chamber complex C(P, ) of P along 7 is defined as the (finite) collection of chambers, i.e.
C(P,m):={opx(z) |z €n(P)}. (3.20)

We define the fiber P, of P at = along 7 as the projection of PN 7w~ *({z}) on the space Ker(r).
Further C(P,m) is a polyhedral complex such that suppC(P,7) = =w(P). In particular,
{ri(o) |0 € C(P,7)} is a partition of w(P).
More generally, the chamber complex of a polyhedral complex P is

C(P,x) :={opr(z) |z € n(supp(P))}. (3.21)

with op x(x) = N w(F).
FePs.t. zen(F)

Figure 3.4: A polytope P in light green, its chamber complex in red on the z-axis and a fiber
P, in blue on the y-axis, for the orthogonal projection 7w on the horizontal axis.

3.2 Active constraints sets and normal fan

We now introduce the notions of active constraints and normal fan with basic properties. These
notions are in one-to-one correspondences and the collection of active constraint sets will provide
H-representations of the faces of a polyhedron and V-representations of its normal cones.
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3.2.1 Active constraints sets

We introduce in this section the collection of active constraints which we use to obtain explicit
formulas and make computations in practice. This notion is algebraic and depends on the matrix
A and vector b used to define the polyhedron, i.e. its H -representation.

For any matrix A € R?*P and a subset I C [q], we denote by A; the submatrix composed of
the rows of indices in I of A

A[ = A]’. = (Ai,j)iGI,jE[p] (322)

For i € [q], we also denote A; := Ay;, the ith row of A. To avoid confusion, we use the parenthesis

rule A} := (A)T.

H &
Hs3

Figure 3.5: An example of a polyhedron P = {z | Az < b} with an H-representation (A, b). Each
H; corresponds to the hyperplane {x | A;x = b;} and the label H; is located in the halfspace
{ | Aiz > b;}. We have Z(A,b) = {0,{1},{1,3},{3},{3,4,5},{5},{1,5}}. Constraint 2 is
never active (2 ¢ suppZ(A,b)), and constraint 4 is redundant with constraints 3 and 5.

We now give basic properties of active constraints sets. In particular, the collection of active
constraints sets Z(A,b) provides H-representations of the non-empty faces of P.

Definition 3.11 (Active constraints set). For a polyhedron P = {x € R? | Az < b}, we
denote by Iap(x) the set of active constraints of P in x € R?, with the H-representation
(A,b) € RI¥4 x R:

IA,b(x) = {Z S [q] | Aix = bz} (3.23)

More generally, for a set E C P, we write I5p(E) := \per Lap(z).

We denote by Z(A,b), the collection of active constraints sets of P with the H-representation
(A,0):
Z(A,b) :={lap(z) | Az < b} (3.24)

We now give elementary properties for the collection of active constraints sets.

Proposition 3.12 (Basic properties of active constraint sets). Let P = {x € R?| Az < b}, for
I € [g], we define the face P(I) :={x € P|Arx = br}. We then have the following propositions.

(a) If I € IZ(A,b), then the relative interior of P(I) is

1i(P(I)) ={z € R" | Ajz = by and Ajz < b;,Vj € [g]\I} (3.25)

3.12L(b) The mapping

{I(A, b) — F(P)\{0} (3.26)

1 — P(I)
is a one-to-one correspondence whose inverse is F'+— I (F).

B-12l(c) For any I and J in I(A,b), we have INJ € Z(A,b).
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(d) For F € F(P)\{0}, we have I4(F) = Lap(z) for every x € ri(F).
B.12l(e) For F,F' € F(P)\{0} and I,I' € Z(A,b)

Icl' < P()>PI) (3.27a)
FCF «— IAJ)(F) D) IAJ,(F,) (3.27b)

(f) For I € Z(A,b) and F € F(P)\{0},

dim (P(I)) =
dim(F) =

—1g(Ar) (3.28a)
—18(Az, ,(F)) (3.28b)

Proof. We first show that Aff (P(I)) is equal to Hy := {x € RY| A;z = bs}. Indeed,
P(I) is included in Hj. Moreover, there exists x such that Arz = by and Ajz < b; for all
j € [g]\I. Then, for £ > 0 small enough, B(z,e) N Hy C P. In particular, every affine subset
which contains P also contains Hj, which implies Aff (P(I)) = Hj;. Finally, a point z is in
ri (P(I)) if and only if there exists € > 0 such that B(z,e) N Hy C P(I) which is equivalent to
Ajx = by and Ajz < b; for all j € [g]\1.

B-12[(b)|Let F' € F(P)\{0}. We define I := I44(F). We first prove that F = P(I). If z € F,
we have that I = I4,(F) C Iap(x). In particular, Ajz = by and z € P(I). Reciprocally, we
now assume that = ¢ F. By|[3.8.(d)] there exists 1/ € R? such that F = P~%. We now show that
Y € Cone(Aj). Let ¢ € R? such that ¢ ¢ Cone(Aj). By Farkas lemma, there exists z € R?, such
that A7z > 0and ¢!z < 0. Since F is non-empty there exists y € F C P(I). Let € > 0, we have
Ap(y —ez) = by — Az < by. Since for all j ¢ I, Ajy < bj, for € small enough, A;(y —ez) < b;
for all j ¢ I and thus 5 — ez belongs to P. As ¢z < 0, we get —p' (y —2) < —p 'y and then
F # P~%. In particular, since F = P~%, we have that ¢ € Cone(Ay), i.e. there exists p € R{r
such that 1) = Arp. Since x ¢ F = P~%, there exists y € F = P(I) such that — Ty < —¢ 'z
which rewrites ,uTAIy > pArx. As Ary = by, we have ,uT(bI — Ajx) > 0 and then there exists
i € I such that A;x < b;. Thus, z ¢ P(I) and we can conclude F' = P(I) = P(Ia(F)).

Finally, by and since F' is not empty, there exists x € ri(F') and we have I ,(F) =
Iap(x) € Z(A,b). The mapping I — P(I) is then well-defined and surjective. We now prove
that it is injective. Let I,J € Z(A,b) with I # J. By symmetry, we can assume without loss of
generality that there exists ¢ € I\J. Since J € Z(A,b), there exists © € P such that Ayx = by
and Agz < by, for all k € [¢]\J. In particular, x € P(J) and A;x < b; and then x ¢ P(I). Thus,
P(I) # P(J) which proves the mapping is injective.

We already proved that F' = P(I4(F)). Then, by bijectivity, F' — I4(F) is the inverse of
I+ P(I).

3.12{ (c)| Since I,J € Z(A,b), there exist z,y € P, such that Ajz = by, Arx < by for all
k€ [¢g)\I and Ayy = by, Apx < b for all k € [¢]\J. Then, fori € INJ, Aj(x +y)/2 = b; and
for k € [g\(INJ), Ax(z +y)/2 < by. Thus, INJ = Ixp(x +y/2) as (z +y)/2 is in P, we
conclude I NJ € Z(A,b).

[3.12L(d)| By [3.12{(b)| there exists I € Z(A,b) such that ' = P(I). Then, for all z € F,
Ajz = by and then I4(z) C I. We thus have that I ,(F) = Nzeplap(z) C 1. Moreover, by
for all x € ri(F'), Tap(x) = I. We then have for z € ri(F), I = Ixp(x) C Ngerlap(x) =
Iap(F) C I, Thus, we have I4(z) = I4(F) for all x € ri(F).

3.12| ()| The implications (=) are easy. The backward implications (<) are obtained because
I— P(I) and F — I4,(F) are the inverse of each other.
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3.12|(f)] We saw in the proof of [3.12(a)| that Aff P(I) = H;. Thus, dim P(I) = dim H; =

dim Ker(Ar) = d—rg(Ay), by the rank theorem. The other equality is obtained by the one-to-one
correspondence in |3.12}(b)| O

We are now able to prove (3.8 (e) and [3.8] ()| which stated that F(P) is finite and that

riP)=pP\ |J F (3.29)
FeF(P)\{P}

Proof of 3.8/ (¢)| and [3.8.(f)l The point|3.8|(e)|is a consequence of[3.12L(b); §F(P) = §F(P)\{0}+
1 =HT(A,b) +1 <1219 41 =2941 < 4o0.
Let I = I44(P) and o € P. We first notice that 35 € [¢]\I, Ajz = b; if and only if

v € Urerp)\py I

Jj e g\I, Ajz =bj <= Tap(z) #1 (3.30a)
< P(lap(x)) #P (3.30b)
< JF e F(P)\{P},z € F (3.30¢)
= zec |J F (3.30d)

FeF(P)\{P}
By point we have 1i(P) = {z € P|Vj € [¢]\l, Ajz < b;,} = P\{z € P|3j €
[¢]\I, Ajz = b;} from which we get the result. O

3.2.2 Normal fan

The normal fan is the collection of the normal cones of all faces of a polyhedron. See [LROS| for
a review of normal fan properties.

The normal cone of a convex set C' C R™ at the point z is the set No(z) := {a € R™ | Vy €
C, a'(y — x) < 0}. More generally, for a set E C C, we define No(E) := (\,ep No(z).

We also remark that by definition P¥ in Section x € P¥ if and only if —¢ € Np(x).
Indeed, both are equivalent to 1"« < Ty for all y € P.

? ¥ (b) The recessmn cone of rc P = {0} in red and its

normal fan N (P) in green. supp(N = {0}°
) A polytope P and its normal fan N (P

v !

(d) The recession cone of P in red and its normal fan

) A polyhedron P and its normal fan.
(P) in green.

Figure 3.6: Examples of polyhedra and their normal fans and recession cones.
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Definition 3.13 (Normal Fan). The normal farﬁ of a convex set C' is the collection of polyhedral
cones

N(C):={N¢g(z) |z € C} (3.31)

We say that two convex sets C and C' are normally equivalent if they have the same normal fan

: N(C) = N(C).

We now state basic properties of normal fans. In particular, we show that the collection of
active constraints sets Z(A,b) provides V-representations of the normal cones in N(P).

Proposition 3.14 (Basic properties of normal fans). Let P := {x € R"| Az < b}, we have

3.14l(a) The support of the normal fan N (P) can be expressed geometrically as the polar of the
recession cone of P, i.e.

supp N (P) = rc(P)° (3.32)
3.141(b) For all x € P, we have Np(x) = Cone(Ar) with I := I ().
3.14}(c) The mapping

{I(A, b)) — N(P) (3.33)

I — Cone(Ay)

is a one-to-one correspondence whose inverse is N v+ Iy := {i € suppZ(A,b) | A] € N}.

3.141(d) N(P) is a finite collection of normal cones.
3.14l(e) For I,J € Z(A,b) and N,N' € N(P)

I cJ <= Cone(Ar) C Cone(Ay) (3.34a)
NcCcN = In C Ipny (334b)

3.141(f) For I,J € Z(A,b) and N,N' € N(P)

Cone(Ajny) = Cone(Ar) N Cone(Ay) (3.35a)
Inan' = In N Ipy (3.35b)

3.14.(g) The normal fan N'(P) is a fan, i.e. a polyhedral complex whose elements are cones, which
by definition means:

-For all N,N' € N(P), NN N’ is a face of both N and N'.
-For all N € N(P), all non-empty faces of N belong to N(P).

3.14l(h) For I € Z(A,b) and N € N(P),

dim ( Cone(As)) =rg(Ar) (3.36a)
dim(N) =rg(Ary) (3.36b)

4Sometimes called outer normal cones and fan, as opposed to inner cones obtained either by inverting the
inequality in the definition of the normal cone or by taking the opposite cones respect to the origin.
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3.14.(i) The mapping
FIP\0} N (P) -
P .

'—>NP(F)

is a one-to-one correspondence whose inverse is N — PN,

Moreover, these mapping are composition of the later mappings as described in Fig. [3.7
(j) For F,F" € F(P)\{0} and N,N’" € N(P)

NCcN «— pNopN (3.38a)
F CF' <= Np(F)> Np(F') (3.38b)

B.14l(k) For F € F(P)\{0} and N € N (P), we have

Np(F) = Np(x), for every x € ri(F) (3.39a)
PN =P  forevery i € ri(N). (3.39b)

We sum up the propositions Propositions [3.12] and [3.14] in Fig. [3.7] that shows that, if P is
a polyhedron, its normal fan NV(P), its set of non-empty faces F(P) \ {0} and its collection of
sets of active constraints Z(A, b) are in one-to-one correspondence. Furthermore, the orders are
preserved or inverted by the correspondences.

The collection of active constraints sets Z(A,b) then provides H-representations of the faces
of P and V-representations of the normal cones in N'(P). Indeed, each normal cone N € N'(P)
can be written Cone(A;) then A] is a V-representation of N. Similarly, for a non-empty face
F ¢ F(P)\{0}, there exists I € T(A,b) with F = {x € R*| Az < b, Ajx = b;}. Then,
((A,—Ar), (b,—br)) is a H-representation of F.

Fe]—" N\{0}, D

Tap(F
Cone(Ay)
I TR

{iesuppZ(A,b) | A] N}

Figure 3.7: Monotonous one-to-one correspondences between normal fan, collection of active
constraints sets and set of faces of a non-empty polyhedron P = {x | Az < b}. The sign N
means that the mappings are morphisms for the intersection.

We illustrate these correspondences on an example in Table
Proof. [3.14(a)| If 1 € R?, we have

P € suppN(P) <= IN e N(P), v € N (3.40a)
<= dr € P, yp € Np(z) (3.40b)
— JzcP azcPV? (3.40c)
— PV£) (3.40d)
— 1) €1¢(P)° by [B.8[(d)] (3.40¢)



62 CHAPTER 3. POLYHEDRAL GEOMETRY AND PARAMETRIC LP

Ay

A |
4 AT A3

Al Al
3 1 AT AT

b) The normal fan N (P) of P.
(a) The polyhedron P = [—1,0] x R_ (b) #)

Figure 3.8: Illustration of correspondences of Table

F I N dim(N) | dim(F)
{(-1,0)} {2,3} | R xRy 2 0
{(0,0)} {1,2,5} | Ry xRy 2 0
{0} x R_ {1} R4 x {0} 1 1
[—1,0] x {0} {2} {0} x Ry 1 1
{—-1} xR_ {3} R_ x {0} 1 1
[—1,0] x R_ 0 {(0,0)} 0 2

Table 3.1: Correspondences illustrated in Fig. between the normal fan N(P), the collection
of active constraints sets Z(A,b) and the collection of non-empty faces F(P)\{0} for P =
[—1,0] x R_ given by the H-representation (A,b) with

1 0 0
0 1 0
A=]|-1 O|landb= |1
-1 1 2
1 1 0

Indeed, we already saw that z € P~% is equivalent to ¢ € Np(z).

3.14L(b)[ (D) Let ¢ = A] p with u € RL. Fory € P, we have that ¢ " (y—z) = u' Af(y—x) =
p' (Ary —br) <0, since Arx = by. Then, ¥ € Np(z).

(C) By contraposition, assume that there is no pu € Rfr such that A}ru = 7). By Farkas
lemma, there exists z € R% such that A;z > 0 and ¥ "2 < 0. We define y := = — ez for ¢ > 0.
Since for all j € [¢]\I, Ajz < bj, we can take ¢ > 0 small enough such that A;y < b; for all
J € [q]\I. Moreover, Ajy = by — eArz < b;. Then, for ¢ > 0 small enough, y € P. Finally,
Y (y—2)=—e'z >0, and thus 1) ¢ Np(z).

3.14{ (c)| We start by proving that for j € suppZ(A,b) and I € Z(A,b), we have

AJ-T € Cone(4y) < jel (3.41)

Indeed, the implication (<) is trivial. We now assume j ¢ I. Since I € Z(A,b), there exists x in
P such that Arz = by and Ajxz < b;. Moreover, since j € suppZ(A,b), there exists y € P such
that A;y = b;. We set z = x —y, then we have that A;z = Ajx—b; <0and A7z =br—Arx > 0.
Then, by Farkas lemma, there is no u € Rfr such that AjT = A] p. Thus, AjT ¢ Cone(Ay) leading
to Eq. .

The mapping I — Cone(Aj) from Z(A,b) to N(P) is well-defined and surjective by [3.14] (D)
Let I and J be two active constraints sets in Z(A,b). If J C I, it is trivial that Cone(A;) C
Cone(Ag). Reciprocally if Cone(A;) C Cone(Ay), then, for all j € J, AjT € Cone(Aj) and by
Eq. we have j € [ for all j € J, leading to J C I. Thus, Cone(A;) C Cone(Aj) is



3.2. ACTIVE CONSTRAINTS SETS AND NORMAL FAN 63

equivalent to J C I. In particular, we have that Cone(A;) = Cone(Ay) if and only if I = J.
Proving that I — Cone(Ay) is injective.

It remains to prove that N + {i € suppZ(A4,b)|A] € N} is the inverse function. Let
I € I(A,b), we now prove that I = {i € suppZ(A,b)| A € Cone(A;)}. The inclusion C is easy
since A] € Cone(A;) for all i € I. For the other inclusion, let j € [¢]\I. If j ¢ suppZ(A,b),
we have that j does not belong to {i € suppZ(A,b)| A, € Cone(A;)}. If j € suppZ(A,b), by
Eq. (3.41), A] ¢ Cone(AI) and then j ¢ {i € suppZ(A,b)| A] € Cone(Aj)}.
A4(d) 4NV (P) = $Z(A,b) < 27 < 400.
14[(e)] We already proved I C J <= Cone(As) C Cone(Ay) in the proof of The
other equivalence is obtained thanks to the one-to-one correspondence of [3.14

3.14L(f)| (C) Let ¢ € Cone(Asnys), there exists u € RIN such that 1/1 AmJu then 1 =
AITmJu + AIT\JO € Cone(Aj). By symmetry, ¢ € Cone(AJ) Thus, Cone(Ajny) C Cone(Af) N
Cone(Ay).

(D) Let ¢ ¢ Cone(Arny). If ¢ ¢ Cone(Ar), we have 1 ¢ Cone(Ar) N Cone(As). We now
I\ uch that Vo= Al u+ A}—\J)\.

[9Y)
N

Y
'S

assume ¢ € Cone(Ar). There exist u € RN and X\ € RY
Since I € Z(A,b), there exists « such that Arz = by and for j ¢ I, Ajxz < b;. Similarly, since
J € I(A,b), there y such that Ayy = by and for i ¢ J, A;z < b;. We define z 1=y — z.

va=yTy—y'x (3.42a)
= u" Angy + )\TAI\Jy —u" Az — )\TAI\J:U (3.42b)
= 1" by + N Ap gy — 1 bing — A by (3.42¢)
=X (Apgy —bpy) <0 (3.42d)

Indeed, the last term is negative because for all i € I\J, A;y < b; and because, since ¢ €
Cone(Ar)\ Cone(Arny), there exists at least one index of A which is positive. Moreover, Az =
Ajy — Ajx = by — Ajz > 0. To sum up, we have the existence of z such that "z < 0 and
Ayz > 0. By Farkas lemma, there is no v € RJ such that ¢ = Alv, ie. 1 ¢ Cone(Ay). In
particular, 1) ¢ Cone(Ar) N Cone(A;) which concludes the proof.

The other equality is a direct consequence of the correspondence [3.14](c)]

3.14l(g)| - Let N, N € N(P), there exists x,2’ € P such that N = Np(z) and N’ = Np(2/).
Let I = I4p(x) and 2’ = I4(2’). In the proof 0f|3.12[(c)|, we saw that [y b(x“” ) =Tap(z)N
Izp(2’) =INI'. Thus, by Item|3.14l(f)|and|3.14l(b)|, we get NNN' = Cone(Ajnp) = Np(%m/).
We have that N N {¢ € R?| (2" —x)T¢ < 0} since N = Np(x) and 2/ € P. We now prove
that NN N’ = Np(%m/) is the face NN {y) € RY|(z' —2)"¢ = 0} of N. Let ¢ € N such
that (z' — ) "¢ = 0}, we have ¥ (y — M) =T (y—2)+ 3¢ (2’ —2) =9 (y—2) <0 and
then ¢ € Np(’“gx ). Reciprocally, assume ¢ € NP(I—HE ). Then, by taking y = = € P we have
%1/}T(x—x’) =9 (y "”23” ) < 0 and by taking y = 2’ € P, we get %w—r(x’—ac) = z/JT(y—%“/) <0
and thus (z' — z) "¢ = 0. Finally, Np(%x/) = Cone(Ajnr) C Cone(Ar) = N. By symmetry,
we also have that N N N’ is a face of N'.

-Let N’ a non-empty face of N. By definition of a face, there exists z € R? and 8 € R such
that N = NN {yp € R*| 2Ty = 8} and P C {¢p € R?| 2T+ < B}. Since 0 € P, we have 0 < f3.
Moreover, for all » € N and all A € R* , Ay Tz < 3, in particular by letting A goes to infinity, we
have 1"z < 0 for all 1 € N. If 3 > 0, then we would have N’ = {1 ¢ R*|¢Tz = 3} N N = .
Since we assumed that N’ is not empty we have 5 = 0.

Let z € P such that N = Np(z) and I € Z(A,b) such that I = I43(z). By Item 3.14[(b)]
N = Cone(Aj). Since, N C {1 € R[4 2 < 0} and as A belongs to N = Cone(A;) for all
i € I, we have Arz < 0. Then, there exists € > 0 such that A(x+2¢z) < b, i.e. z+2ecz € P. By
convexity, we also have z+ez € P. We now prove that Np(z+ez) = N' = NN{yp e R| 279 = 0}.

(D) Let p € N' = NN{p € R| 2T+ = 0}. Then, for every y € P, we have ¢ (y— (z+e2)) =
YT (y — ) <0 and thus 1 € Np(z + €2).
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(C) Let ¢ € Np(z +€z). By taking y = 2 € P we have —¢'2 = ¢ (y — (z +¢)) <0
and by taking y = = + 2¢ € P, we have ez = wT(y — (x +¢)) <0, thus 'z = 0 and
Np(z +ez) C {1 € R|z"¢ = 0}. We eventually prove that Np(z +cz) C N = Np(z). Let
J ¢ 1 = Isp(x), we have Ajz < b; and, since z + 2e2 € P, A; (:1:—1—2@7:) < b; leading to
Aj (x—l—sz) < bj. In partlcular Jjé¢ IA b(x+¢€2) and thus T4 b(:c+5z) Clap(z By-and
3.14](e)l, we conclude Np(x +ez) C N = Np(x).

@ We have that Cone(A;) C A/RL. Moreover, let a = 3°,.; A/ there exists ¢ > 0 such

hat B(a,e) N A/RY € Cone(A;). Thus, dim (Cone(A;)) = dim(A]RY) = rg(A]) = rg(Aj).
Th e other equality is obtained by the correspondence in [3.14](c)]

3.14 It is enough to prove that we have the composition of functions summed up in
Fig. We first prove that Np(F) = Cone(A;, ,(r)), for F € F(P)\{0}. We denote by Zr the
set {Iap(x) |2 € F}. By applying successively [3.14](b)| and [3.14](f)| as Zr C Z(A,b) is finite,

Np(F) = NzerNp(z) )
= MNyeF Cone(AIA,b(x)) )
= Nrez, Cone(Ar) (3.43c¢)
= Cone(An; ;1) (3.43d)
= Cone(4y7, ,(r)) (3.43¢)

We now prove that P~ = P(Iy) with Iy := {i € suppZ(A,b) | A} € N}. Let z € P.

x € P(Iy) < Viely, Aix=0b; by definition of P(Iy)
(3.44a)

— Iny Clap(x) by definition of I4 ()
(3.44b)

Cone(Ar,,) € Cone(Ar, () by BTAI(C]]
(3 44(3)

N C Np(x) by [3.14[(c)] Cone(A;,) = N and by B.14[(b)|
(3. 44d

Vi e N,Yy e Pap (y—z) <0 (3.44¢)
ze PN (3.44f)

!

!

—
—

3.14[(j)| It is a consequence of the composition in Fig. and the monotonicity results|3.12(e)|
and [3 -[@]

We just proved that Np( ) = Cone(A;, ,(m). If x € ri( by Ipp(F
IA,b T then Np(F) = Cone(AIA’b( . Finally, by |3 :@, we get Np(F) = Np(x

We now prove that for ¢ € ri(N), P v = p~N, By definition of as P~ as an intersec-
tion, PN ¢ P~¥. By B.14()} Np(P~¥) C Np(P~N) = N. By Item .14 (g)] Np(P~¥) =
Np(P~%)N N is a face of N. Moreover, for all x € P™+ and y € P ¢! (y — x) < 0 thus
¥ € Np(P7¥). In particular, Np(P~%) Nri(N) # 0. By B(®)] ri(V) = P\Unreram vy N
and thus we have Np(P~%) = N. By the correspondence Item_3.14 we conclude P~% = PN,

O

3.2.3 Vertices, maximal constraint sets and full-dimensional cones

We now focus on the collection of maximal elements of the normal fan A(P) and active con-
straints set Z(A, b) and on the collection of minimal elements of the non-empty faces F(P)\{0}.
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For a collection C, we denote by C the subcollection of its maximal elements according to the
inclusion and by C the subcollection of its minimal element:

C:={FeC|VFeC, ECF=F=E} (3.45a)
C:={EcC|VFeC, FCE=F =E)} (3.45b)

Proposition 3.15. Let A € RI*P b € RY, P := {rx € RY| Az < b} and r = rg(A). If P is not
empty, we have

Z(A,b) ={I € Z(A,b)| rg(Ar) =1} (3.46a)
N(P)={N e N(P)| dim(N) = r} (3.46b)
F(P)\{0} ={F € F(P)| dim(F) =d —r} (3.46¢)

Proof. We only prove that the minimal faces are the faces of dimension d—r. The other equalities
follow from Proposition and Proposition For all face F € F(P)\{0}, by Eq. (3.13b),
we have that Lin(F') = Ker(A) = Lin(P) and then dim(F) > d —r.

(D) Let F € F(P) such that dim(F) = d —r. Let G a non-empty face of P included
in F. There exist I,J € Z(A,b) such that F = P(I) and G = P(J). If G € P, we have
PNH;= P(J) - P(I) = PN H;. Then, H;y C H; and then dlm(G) = dim(HJ) < dim(H[) =
dim(F') = d —r. We have a contradiction with the fact that all non-empty faces have dimension
at least d —r. Thus, G = F and F' € F(P)\{0}.

(C). Let F € F(P)\{0}. Then, F(F) = {F,0} and by ri(F) = F. There exists
I € Z(A,b), such that F' = P(I). We now prove that Ker(A;) = Ker(A). It is trivial that
Ker(A) C Ker(Ay). Let v € Ker(Ay) and assume, by contradiction, that there exists j € [¢]\]
such that A; # 0. Without of generality, we choose j such that for all j' € [q]\I, |[4;] < |A;].
Then, by setting A = % ;4 we have that A7(z+Av) = by and for all j* € [¢]\I, Aj(z+Av) < bjr.
Moreover, A;(z + \v) = bj and thus z + Av € P(I)\ri (P(I)) = F\ri(F) = 0. We then have a
contradiction and Ker(Ajy) = Ker(A4). We conclude by remarking that dim(F) = dim (P(I)) =
dimKer(A;) = dimKer(A) =d — r. O

In particular, when r = d, we define the following assumption.

Assumption 3.1. Let P := {x € RY| Az < b} be a non-empty polyhedron such that one of the
following equivalent statements holds:

- P admits at least one vertex, i.e. Vert(P) # ()

A is a full rank matrix: rg(A4) =d

The lineality space of P is trivial: Lin(P) = {0}.

All maximal normal cones are full-dimensional cones.

From every maximal active constraint set I C Z(A,b), we can extract a basis By C I.

Under Assumption the correspondences of Fig. can be simplified as presented in
Fig. In particular, we replace the set of non-empty faces F(P)\{0} by the set of vertices
Vert(P). For I € Z(A,b), the minimal non-empty faces P(I) are then reduced to singleton
{z(I)}. Since, xz(I) satisfies Arz(I) = by and since we can extract a basis By from I, z(I) can
only be equal to A;}bBl. We say that x(I) is a basic point. We thus replace the mapping

I+ P(I) by I~ Aglbp,.
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v € Vert(P)

]AJJ(’U)

Apibs, Np(v)
Cone(Ar)
| e— )
{iesuppZ(A,b) | A] N}

Figure 3.9: One-to-one correspondences between the collections of vertices of P := {z €
RY| Az < b}, maximal active constraint sets and full-dimensional normal cones of P, in the
case where A is a full rank matrix.

Lemma 3.16. Let C a collection of sets and D a polyhedral complex such that

ccD (3.47a)
supp(C) = supp(D) (3.47b)
Then,
C=D (3.48)
Moreover, if C is also polyhedral complex, then C and D are equal up-to the empty set.
C\{0} = D\{0} (3.49a)
cu{l} =Du{0) (3.49D)

Proof. 1f C or D is reduced to {0} or @, the result is trivial. We assume C and D are different
from {} and () We first prove that C = D.

Let D € D. Since D C supp(C) = supp(D) = U.zC, then D = U, D N C. In particular,
there exists C' € C such that dim(C' N D) = dim(D). Since C C D, we have C € D, then D and
C' are two elements of D. However, since D is a polyhedral complex C' N D is a face of D. By
Item[3.12[(f)] the only face of D of dimension dim(D) is D itself. Then, CND = D and D C C.
Finally, as D € D is maximal, we have D = C € C and thus C = D.

In the case where C is a polyhedral complex, we just notice that a polyhedral complex, up
to the empty set, is fully determined by its collection of maximal elements: CU {0} = {F |3C €
C,FeF)}.

O

3.3 Regular subdivisions and secondary fan

In this section, we explain the link between the regular subdivisions presented in the monograph
of De Loera, Rambau and Santos [DLRS10] and the collection of active constraint sets. We
first recall the definition of a regular subdivision S(V,w) of a vector configuration V induced
by a height vector w. We recall and prove formally that the collection of active constraints sets
T(A,b) is exactly the regular subdivision S(AT,b) of the vector configuration of the rows of A
induced by the height vector b.

We then introduce the secondary fan Y -fan(V') thanks to the equivalence classes of height
vectors b giving the same regular subdivision S(V,w). The secondary fan is a fundamental
geometric object, which has strong links with elimination theory. Indeed, Gelfand, Kapranov
and Zelevinsky [GKZ94] proved that the secondary fan was the normal fan of the secondary
polytope which is equal to the Newton polytope of a discriminant.
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3.3.1 Regular subdivisions

Let (vi)ie[q be a family of vectors in R?. We define the matrix V € R?*? whose columns are the
vector v; and refer for simplicity to the family (v;);c[q as V. As V' is a finite set of vectors, each
corresponding to n index in [¢], where we allow the set to have repeated vectors, V' is often called
a vector configuration. A subdivision is a collection of sets of indices, here in [g], satisfying some
properties we do not detail here (see [DLRSI10, Definition 2.3.1]). Here, we are only interested
in particular subdivisions, called regular subdivisions and presented hereafter.

Let w € R? be a vector called the height vector. For each i € [q], we draw the vectors
(vi,w;) € R? x R and refer to this collection as the lifted configuration. Recall that the lower
faces are the faces of a polyhedron P € R% x R that are visible from below, 7.e. the faces F' which
can be written F = P for o € R%. We now consider all the lower faces of the lifted cone
LCy,,, defined as the conic hull of the vectors (v;,w;) in R x R. Each face can be represented
by the set of indices i such that (v;,w;) belongs to the face. The regular subdivision induced by
w is the collection of sets of indices representing the lower faces of LCy,,. More formally, we
have the following definition.

Definition 3.17 (Regular subdivision). Let (v;)ic[q be a vector configuration represented by a
matriz V € R and a vector w € RY. We denote by LCv,, the lifted cone.

LCy,, := Cone ((”) ) (3.50)
Wi | .
i€[q]

When w € VT]Rd—FRZ_, we define the regular subdivision associated to the configuration of vector
V' induced by the height vector w:

S(V,w) == {Ip| F € Fiow(LCvw)} (3.51)

where
Ip := {l S [q] ’ (vi,wi) S F} (352)

We illustrate these notions in Fig.

The Lemma 2.5.11 in [DLRS10] states that the regular subdivision of a vector configuration
is well-defined if the function v; — w; differs from a non-negative function only by a linear
function: this gives an interpretation why w should be in VTRY + R%. The next proposition
explains why this condition on w is natural.

Lemma 3.18. Let A € R?% qnd b € RY. Then, the following statements are equivalent
1. The polyhedron {x € R?| Az < b} is not empty.
2. The set of lower faces is not trivial: Fiow(LC 47 ) # {0}
3. S(AT,b) is defined meaning that b € AR? + RY.

Proof. We first show that x does not verify Ax < b if and only if the lower face LCﬁl_fl’)l) is
empty:

Jie[q), Aix>b; < Fielq], 0> -z A +b (3.53a)

i

-
< (o, B) € LCy7 4, 0> —z'a+p3 as LC s p is the conic hull of (Ai )
i€[q]

(3.53b)
= inf —z'a+f=—o00 because LC 47 ; is a cone
(O[:B)ELCATJ) ’
(3.53¢)

= 1oV =0 (3.53d)
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(vs, ws)
(vs, ws)
(v2, wa) (Ubwl) (v2,w2) (v2, w2)
(’Ug,wg) ( (’Ug,wg) ('Ul,CUl) (’Ug,wg) (vl,wl)
V5, Ws)
»}}(_U4,W4)

(v, wa) (va,000)

» »
V2 V2
U1 U1 v1
Vs Vs
V4 V4 V4

(a) For small ws, the lifted vector (b) For large ws, the lifted vec- (¢) In the limit case, the
(vs,ws) is salient and belongs to tor (vs,ws) is pointed inward, lifted vector (vs,ws) belongs
three lower faces: and belongs to no lower face: to one lower face:

S(uw) :Scou{{5}a{4’5}’{175}} S(‘/aw):ScoU{{174}} S(V,LO):SCOU{{174,5}}

Figure 3.10: Three lifted vector configurations, their projections and the regu-
lar subdivisions Z(V,w) induced for different values of ws. We define S, :=

{0,413, 42, {3}, {4} {1. 2}, {2. 3}, {3.4} }

In particular, we have that {z € R?| Az < b} is empty if and only if Fioy (LC 47 ») 1s equal to

{0}:

{r eRY Az <b} =0 < Vo e R% Jielq], A > b, (3.54a)
= vz eR:, LOY = (3.54b)
<~ ‘EOW(LCATJ)) = {@} (354C)

We now prove the equivalence 1. <= 3. If there exists z € R? such that Az < b, then
b= Az + (b— Az) € AR? + RY. Reciprocally, if b € AR? + R%, let x € R? and n € RY such
that b = Az 4+ 7, then b — Az = n > 0 and thus Ax < b. O

We now state that the collection of active constraints sets Z(A,b) is exactly the regular
subdivision S(AT,b) of the vector configuration of the rows of A induced by the height vector b.

Proposition 3.19. Let A € R7¢ and b € RY. If one of the equivalent statements of Lemma
s true, we have

(A, b) = S(AT,b) (3.55)

Proof. Let x such that Az < b, by Eq. (3.53c), we know that inf, g B)ELC, T, —z "o+ f is differ-

ent from —oo. Since, LO 1 4 is a cone, we have —x Ta+p >0, forall (a 5) € LCy 3, otherwise
inf(a”@)eLCA-r , —z " a+f is equal to —co. Moreover, LC 7 j contains 0, thus min(oé”@)eLCAT \ —za+
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B = 0. We now show that I p(z) =1, (-=1:

AT b

i€ lsp(x) = Aixz=1U (3.56a)
= 0=—z"A] 4+ (3.56b)
min —zla+p=—z"A +b (3.56¢)

(a,B)ELC T,
= (A, b) e LCTHY (3.56d)
= ic ILC(_TZ,I) (3.56¢e)

A'lb

We conclude the proof by using the definitions of regular subdivisions, lower faces and active
constraints sets:

S(AT,b) ={Ip | F € Fiow(LCp7 )} (3.57a)
_ d

= {ILCS{:) \x e R 7ILCf4T|':i};1) 7& @} (3.57b)

= {Iap(x) |z € RY, Az < b} (3.57¢)

= Z(A,b) (3.57d)

O

3.3.2 Secondary fan

We now introduce a fundamental notion in polyhedral geometry called the secondary fan. We
refer to [DLRS10], in particular its Section 5.2, for a complete introduction on secondary fans.

Definition 3.20. Let V € R¥X9 be a wvector configuration. We define the secondary cone
X-C(V,I), and respectively its relatively open secondary cone - C°(V, I)EL of a reqular subdi-
vision Z of V' as the set of height vectors w such that T refines, resp equals, S(V,w).

YX-CWVI)={weRINIxSV,w)} (3.58a)
X-C°(V,I) ={w e R I =5(V,w)} (3.58b)
The secondary fan is the set of all secondary cones of reqular subdivisions.
S-fan(V) := {£-C(V,Z) | Jwz € Cone(V") + R, T = S(V,wz)} (3.59a)
Y -fan®(V) := {2-C°(V,T) | Fwr € Cone(V") +RL, T = S(V,wr)} (3.59b)

We remark that ¥ -fan®(V') is the set of equivalence classes of the relation ~y defined as
w~y W if S(V,w) = S(V,w'). In particular, X -fan°(V) is a partition of V'R 4+ RY.

We now give a H-representations of secondary cones when the vector configuration is full
dimensional.

Proposition 3.21. Let A € R¥9 such that rg(A) = d and T a reqular subdivision of AT. For
all I € T, we can extract a basis By C I. Then, for all such choices of bases By for every I € T,
we have that

AjAglbg, = b, Viel

$-C(AT,T) = {b € Cone(A) + R? VI €T, v ,
" AiAglbg, <bi, Vjelg\I

} (3.60a)

Az‘AEbBI =0b;, Viel
AiAglbp, <bi, Vje g\l

$-C°(AT, 1) = {b € Cone(4) + R% VI €T, } (3.60b)

SWe adapt here the notation in [DLRSI0]. The sign o in exponent refers to the relative interior and should
not be confused with the polar of a set.
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In particular, ©-C°(AT,Z) =1i (X-C(AT,T)).
Proof. Let I € Z and b € Cone(A) + R%, we have that

' e Z(Ab),I CI' < Jz € P, 1 C Iap(x) (3.61a)
<= dJzx € P, Ajx = by and Ajz < bj, Vj € [q]\] (3.61b)
— AjAglbp, = by and AjA5bp, < bj, Vi € [g]\] (3.61c)

Indeed, since we can extract a basis By C I. The only x satisfying Ajx = by is AE;} bp,. Similarly,
we have

II' e Z(Ab), I =1 <= Fw e P, 1= 144(x) (3.62a)
<= Jr € P, Az =br and Ajz < b;, Vj € [¢]\] (3.62b)
> AjAglbp, = by and A;jA5lbp, < bj, Vj € [g\] (3.62¢)

Finally, since a regular subdivision is completely determined by its sets of maximal elements,
we have

I<I(A)b) < VI€Z, 3I' eZ(Ab), ICT (3.63a)
I=TI(Ab) < VIeZ II'cZ(Ab), I=T (3.63b)
which concludes the proof. O

3.3.3 Regular triangulations

Regular triangulations are a particularly interesting classes of regular subdivisions are trian-
gulations which give their name to the book of De Loera, Rambau and Santos [DLRS10] a
monograph on the theory of regular subdivisions.

Definition 3.22 (Regular triangulation). Let (v;)ic[q be a vector configuration represented by a
matriz V€ R¥9. We say that the reqular subdivision S of the point configuration V is a regular
triangulation if, for all I € S, the (v;)ier s an independent family of vectors.

We remark that if Z is a regular triangulation of AT, then all maximal collections of indices
I € T are basis. Indeed, Cone(A) is full dimensional and Ay is a full rank matrix thus, Ay is
invertible.

We now state that the regular triangulations are the regular subdivisions with a generic
height vector:

Proposition 3.23. Let (vl-)ie[q] be a vector configuration represented by a matriz V € R¥? and
a vector w € Re. Then, the regular subdivision S(V,w) is a regular triangulation if and only if
there exists a mazximal relatively open cone S of ¥ -fan®(V') such that w € S.

3.4 Basis decomposition theorems

In this section, we study the value of the standard linear problem:

mingcpd clz
val(LP% ) = { s.t. Az =1b (LPZ5.0)
x>0

In the standard form, A € R?*? is a rectangular matrix whose width is larger than its heigth
q < d. For J C [d], we denote by A. ; = (Ajg|qjes) the submatrix obtained by taking the
columns of indices in J.

Before proving Theorem we recall some usual definitions and results in linear program-
ming’s theory that can be found in any standard linear programming book, e.g. [MGOT7].
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Definition 3.24 (Basic point, reduced cost). We say that B C [d] is a basis of A if the submatriz
A. g = (a;)ieB, where a; is the i-th column of A, is invertible.

We define the basic point associated to the basis B as the vector in R, with coordinates
rp = A,_Elgb fori € B and 0 fori ¢ B.

A basis B is said to be admissible (resp. optimal ), if its associated basic point is an admissible

(resp. optimal), solution of ([LPZ, ]

Finally, the reduced cost assoctated to a basis B is the vector
(¢j —aj A3 cn)jep (3.64)

Reduced cost is a key ingredient of the simplex method. In particular, it is well known that
an admissible basis is optimal if and only if its reduced cost is non-negative. More formally, we
have:

Lemma 3.25. Let B C [d] a basis. If xp := A:éb > 0 and for all j € [d], ¢; — ajTA:éTcB > 0.
Then, B is optimal and in particular,

val(LP% ) = cp A b (3.65)

Finally, we recall a classical generalization of Carathéodory’s theorem for conic hull.

Lemma 3.26 (Carathéodory). Let A € R7*? be a matriz and a subset of indices J C [d] such
that span((a;)icy) == A. jR? = R? where a; is the i-th column of A.

Consider a vector b in the conic hull of (a;)icy, i.e. b € Cone(A. j). Then, there exists a

basis B C J such that h is in the conic hull of (a;)icp, i.e. b € Cone(A. ).
Proof. Let I C J be such that b € Cone(A. 1) and (a;)ics is spanning R?. There exist (p;)icr €
Ri nonnegative coefficients such that b = Y /" p;a;. Assume that I is not a basis, then (a;);er
is not linearly independent, that is there exists a collection (\;);c; € R’ such that Y icr Niai =0
with at least one )\; different of zero, that can be assumed w.l.o.g positive.

Define j := arg min;c |y, >0 ’;—Z Then, we have aj = — >Zicn 5y i—;’_ai and thus b = Zie[\{j}(ﬂi_
ujf\‘—;)ai. In particular, (a;);ep\ ¢;} is spanning R!. We now show that each coefficient in this sum
is nonnegative, that is b € Cone(A. 1\(;1). Note that A; > 0 and for all 7 € I, y; > 0. Thus,
if \; < 0 we have u; — Hj,)\\*; > 0. Otherwise, A; > 0, and by definition of j, % > ’)f—; and thus
i — Mji‘—; > 0. Which shows that b= >";cp\ ;3 (1 — ujf\‘—;)ai € Cone(A. n\ (1)

By induction, we drop indices until we get a basis B. O

We can now state a reformulation the basis decomposition theorem, initially proved by
Walkup and Wets in [WW69], and then adapted to modern vocabulary by Sturmfels and Thomas
in [ST97].

Theorem 3.27 (Basis decomposition theorem for linear problem in standard form). Let A €
R7%% be matriz of rank q, a right-hand side vector b € RY and ¢ € RY, then

1. (LP%, ) is primal admissible if and only if b € Cone(A).

2. (LPZ, ) s dual admissible if and only if ¢ € ATRY + Ri.

3. If val(LPZ,.) € R, then T(AT,c) is well-defined and there exist I € T(AT,c) with b €
Cone(A. 1) and B C I a basis of A extracted from I.

4. If (AT, ¢) is well-defined, for all I € T(AT,c) such that b € Cone(A. ;) and all B C I
basis extracted from I, we have that B is an optimal basis:

val(LP3 ;) = cp A b, (3.66)
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Remark 3.28. In [ST97/, Sturmfels and Thomas present the basis decomposition theorem of
Walkup and Wets with the modern definitions of regular subdivision. Their second point reads
as is bounded for all b € Cone(A) and all ¢ € R if and only if Ker(A)NRE = {0}. We
see that with our version of the basis decomposition theorem, we have 1s bounded for all
b € Cone(A) and all c € RY if and only if ATRI 4 R‘i is equal to RY. We recall that by [JIW92,
Lemma 2.2], for 2 closed convex cones K and L, we have (K N L)° = K° + L°. In particular,
ATRI+R?E = (Ker(A) NRY)®. Thus, ATRI+RE = R? is equivalent to Ker(A)NRE = {0} and
then to Ker(A) NRL = {0}. Like Walkup and Wets in [WWG69], Thomas and Sturmfels worked
with a fized cost c. For simplicity, they assume in the rest of their paper that Ker(A) N Ri
is reduced to {0}. As we want to deal with varying b and ¢, we chose to extend the basis
decomposition theorem to the case where Ker(A) N Ri is not necessarily reduced to {0}.

Proof. 1. val(LPZ, .) > —o0 is equivalent to the existence of a primal admissible point z > 0
such that Az = b which is by definition b € Cone(A).

2. By the equivalence 1. <= 3. in Proposition c e ATRY + Ri is equivalent to
f#{\ € R?| AT\ < ¢} which is the dual admissible set of (LPZ .-

3. If val(LP% ;) €R, by 1. and 2. c € Cone(A") + R4 and b € Cone(A). Let D4, :={\ €
R7| ATX < ¢}. The support suppN'(Da ) of the normal fan is equal to Cone(A) by (a)
and Proposition Then, there exists a full dimensional cone N € N'(D4,) such that b € N.
By there exists I € Z(AT,c) such that N = Cone(A. ;). Since the cone Cone(A. ;) is
full dimensional, the matrix A. ; has full rank and thus we can extract a basis B from I.

4. Let J € Z(AT,¢), b € Cone(A. ;) and B C I a basis. Since B is an extracted basis, we
know that the matrix A. ; has full rank and thus (a;);e is spanning R?. Then by Caratheodory’s
Lemma there exists a basis B, C I, such that b € Cone(A. p,). In particular, we have that
xB, = A:Bbb > 0, thus By is an admissible basis. Moreover, by definition of Z(A",b) in ,
there exists A(1) such that

Viel, a] \I)=c¢ (3.67a)

Vi€ [d\I, a]AI)<c;. (3.67b)

As By C I, by (B.674)), we have that, for all i € By, a/ A(I) = ¢; which in turn implies A\(I) =
AT é:CBb Thus, for all j € [m], we can compute the reduced cost coordinate ¢; — aTA é;rqu

cj — ajT)\(I ) = 0, by (3.67a) and (3.67b)). By Lemma By, is an optimal basis, leadlng to

val(LP%,.) = cp, A g b.

We now prove that the following formula does not depend on the choice of the extracted
basis By. As B C I, for all i € B, a/ A\(I) = ¢;, we also have A:éTcB =\I)=A"} B, cBb Thus,
Val(LPZ,b,C) = cgbA:ébb = ch:éb.

O

We can also have the same basis decomposition theorem for the linear problem in inequality
form

. T
mingpd c'x

LPS
s.t. Ax <b ( A’b’c)

val(LP% ) = {

Theorem 3.29 (Basis decomposition for linear problem in inequality form). Let A € R7*¢
matriz of rank d, a right-hand side vector b € R and ¢ € R?, then

1. 1) is primal admissible if and only if b € AR? + }Ri.
2. lb is dual admissible if and only if ¢ € Cone(—AT).
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3. If Val(LPj’b’c) € R, then Z(A,b) is well-defined and there exist I € I(A,b) with ¢ €
Cone(—Ag) and B C I a basis of AT extracted from I.

4. If Z(A,b) is well-defined, for all such I € T(A,b) such that ¢ € Cone(—Aj) and B C I a
basis extracted from I, we have that B is an optimal basis:

val(LPg, ) =c' A 'bp (3.68)
Proof. The dual of 1' is

max — b (3.69a)

peRY
Alp=—c (3.69b)
w=0 (3.69c¢)
By remarking that max, b= — min, b" i, this problem is equivalent to (LPyr, ) with
Val(LPf‘ pe) = —val(LPZ+, ) when we have strong duality. We conclude by applying Theo-
rem [3.27to (LPTr, ). O

3.5 Coupling polyhedron, fibers and chamber complex

In this section, we are interested in the case where the polyhedron depends on two variables.
For T € R*™ W € R™ and h € RY, we denote the coupling polyhedron by

P:={(z,y) e R"™ | Tz + Wy < h}. (3.70)

Let 7 be the projection of R” x R™ onto R™ such that m(x,y) = x. For any set E of R"*"
we recall that the projection of F is

7(P)={zx e R" | Jy € R", (z,y) € E}. (3.71)

Recall that, for any x € R™, the polyhedron P, the fiber P, of P at x along m as the projection
of PNw~1({x}) on the space Ker(r). Alternatively, we have

P,:={yeR™|Tax+ Wy < h} (3.72)

Note that P, is not empty if and only if x € 7(P).
We recall that for any subset of indices I € 7 ((T, W), h), we denote by P(I) the face

P(I):={(x,y) € P|Tre + Wry = hr}. (3.73)
Similarly, for € m(P) and I € Z(W,h — Tx), we define
P.(I):={ye€ P, | Wiy = hy — Trx} (3.74)

Finally, we define G, the collection of lifted faces above x, i.e. the faces G of the coupling
polyhedron such that = belongs to the relative interior of the projection 7(ri(G)) = ri (7(G)):

G, :={G € F(P)|z € n(1i(G))} (3.75)
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3.5.1 Normal equivalence on the chamber complex

We now show that all fibers P, are normally equivalent for = in the relative interior of a cell of
the chamber complex C(P, ) defined in Definition

Proposition 3.30 (Normal equivalence above a chamber). Let o € C(P,m) be a chamber, and
x and x’' two points in its relative interior, then P, and P, are normally equivalent, i.e. they
have the same normal fan N (P;) = N(Py). Similarly, ZW,h — Tx) and Z(W,h — Tx') are
equal.

Thus, we define the collection of active constraints set T, and the normal fan N, abovfﬂ
oe€C(P,m) by:

Ny = N(Py) for an arbitrary x € ri(o) (3.76a)
I, :=IZ(W,h —Tx) for an arbitrary x € ri(o) (3.76b)

Figure 3.11: Two normally equivalent polytopes P and P’ and their normal fan N'(P) = N'(P’).

To prove the normal equivalence, we need to extend the correspondences of Fig. to a
subcollection of faces of P.

Proposition 3.31 (Basic properties of collection of lifted faces). Let P := {(z,y) € R"*™ | Tz+

Wy < h} and z € ©(P).
3.31l(a) The mapping

S TIW,h—T
{gm ( z) (3.77)
G = Lirw)n(G)

is a one-to-one correspondence whose inverse is I — P(I). Moreover, these mappings are
morphisms with respect to the intersection N.

3.31}(b) The mapping

{gx - F(P\D) )
G —Gy={yeR"|(z,y) € G} '

is a one-to-one correspondence whose inverse is the function which, for an input F €

F(P)\{0}, returns the minimal face G € F(P) such that {z} x F C G.

Moreover, these mappings are composition of the later mappings as described in Fig.
where for all I € Z((T,W),h), we recall the notation P(I) := {(z,y) € P | Trx + Wiy =
hr}. and similarly, for x € w(P) and I € Z(W,h — Tx), we denote Py(I) = {y €
PI | W]y = h[ — T]l’}.

The normal fan N, C 2% above o should not be confused with A/ (o) C 28" the normal fan of o which we
never consider.
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GeF(P) minimal s.t.{z}xFCG

)

|F € F(P)\{0}, D]

Cone(Wry)
1€ Z(W,h—Ta),C| N
{iesupp Z(W,h—Tz) | W, €N}

‘NEN(PQ;),C‘

Figure 3.12: Monotonous one-to-one correspondences between normal fan, collection of active
constraints sets and set of faces of a fiber P, such that = € ri(o). For example, the downward
arrow on the right reads Fy C Fj is equivalent to Np, (F1) D Np, (F2).

Proof. Let G € G;, we have that € 7(ri(G)) and there exists y € R™ such that
(z,y) € ri(G), then Iipw)n(G) = Irw)n(®y) = Iwn-12(y) € Z(W,h — Tz). Then, the
mapping is well-defined.

Moreover, on the one hand, we have by definition G, € F(P)\{0}. On the other hand,
for I € Z(W,h — Tx), there exists y € R™ such that Iy p_7,(y) = I. We then have I =
Irwyn(z,y) € Z((T,W),h) and thus Z(W,h — Txz) C Z((T,W),h). Thus, the mappings in
3.31| (a)| are restrictions of the mappings in [3.12|(b)| with A = (7, W) and b = h which proves
that they are inverse one-to-one correspondences. The morphism property is direct by noticing
that y is in G, and G’ if and only if (z,y) is in G and G’ which is equivalent to y being in
(GNG)y,.

3.31} (b)| We prove that these mappings are indeed the composition in Fig. Let G € G,
since z € 7(1i(G)), there exists y € R™ such that (x,y) € ri(G). In particular, y € G,. Since,
by for all G' € F(G)\{G}, (z,y) ¢ G’ and then y ¢ G, we deduce that y € ri(Gy).
We then have I7ywy 1 (G) = Iirw)n(z,y) = Iwh-12(y) = Iwp—72(G2), which is exactly the
composition of mappings in Fig.

We now prove the other composition. Let I € Z(W,h — Tz). We show that P(I) is the
minimal face G € F(P) such that {x}x Py(I) C G. First, forally € P,(I), Trx+Wry = hy, thus,
{a} x Py(I) C P(I). Secondly, let G € F(P) such that {} x P,(I) C G and y € ri (Py(I)). We
have Iipw) i (G) C N yyeclaw)n(@y') C Iwyn(@',y') = 1. In particular, Iipw n(G) C I
and by [3.12|(b) and [3.12](e)l we have G D P(I). Thus, P(I) is the minimal face G € F(P) such
that {x} x Py(I) C G. We have proved the composition which concludes the proof.

O]

With these one-to-one correspondences, we are now able to prove the normal equivalence
property.

Proof of Proposition[3.30. We define
Go ={G e F(P)|ri(c) Cri(r(Q))}=Gs for an arbitrary x € ri(o) (3.79)

Let z € ri(0). For G € F(P), ri(c) C ri (7(G)) implies z € ri (7(G)). Then, G, C G,. However,
0 = Ngerp)|zen(@)(G). Then, if G € G, we have z € 11 (7(G)) C 7(G) leading to o C 7(G)
and then ri(c) C ri (7(G)). We thus have G, = G,.

To sum up, for all points z in the relative interior of a chamber ri(o) have the same set of
lifted faces G, = G,.
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By the correspondences of Fig. - 2/ and since G + I(7 ) ;(G) does not depend on z. For
all z € ri(o), Z(W,h — T'z) is constant. Similarly, as I — Cone(WI) N (P,) does not depend on
z, N(P;) only depends on ¢ € C(P, ) such that x € ri(o )

We rewrite Fig. [3.12] with these new notations in Fig. O

GEF(P) minimal s.t.{z}xFCG

[Gego o] [FeFE)\{0}.0]

Irw),w(G) Ty 1z (F)

Py (I)

Cone(Wr)

2 e —) Y

{iesuppZ, |W," €N}

Figure 3.13: Monotonous one-to-one correspondences between normal fan, collection of active
constraints sets and set of faces of a fiber P, such that = € ri(o). For example, the downward
arrow on the right reads Fy C Fj is equivalent to Np, (F1) D Np, (F2).

We end with a monotonicity property concerning the cells of the chamber complex and its
associated normal fans and collections of active constraint sets:

Proposition 3.32. Let o and 7 two cells of the chamber complex C(P, ) such that

T Co. (3.80)

Then, we have
Ny <N (3.81a)
Is I, (3.81b)

Proof. We first prove that for every G' € G, there exists G’ € G, such that G D G’. Let G € G,,
by definition we have ri(¢) C ri(7(G)) and by continuity ¢ C n(G). Let x € ri(r), we have
that * € 7 C 0 C 7(G). Then, there exists y such that (z,y) € G. By Item [3.8/(f), there
exists G’ € F(G) such that (z,y) € ri(G’). In particular, z € 7(ri(G’)) = ri (7(G’)) which gives
G' € G, = G,. We thus have that there exists G’ € G, such that G D G'.

Then, by the one-to-one monotonous correspondences of Fig. we have that for all I € 7,
there exists I’ € Z, such that I C I’ which is exactly Z, < Z, and it is the same for N, < N,. [0

3.5.2 H-representation of chamber and link with secondary fan

We now provide H-representations of chambers which allow us to interpret the chamber complex
as a section of the secondary fan. For sake of simplicity, we assume in this section that W is a
full rank matrix, i.e. rg(W) = m. Under this assumption, see Assumption every non-empty
fiber P, = {y € R™|Tx + Wy < h} have at least one vertex.

Proposition 3.33 (H-representation of the chamber). Assume that W is a full rank matriz,
i.e. vg(W) =m. For B a basis of W', and i € [p], we denote by vP the row vector

oP =T, - W,Wg5'Tg (3.82)

and by u® the scalar
uPl == h; —WWg5'hp. (3.83)

7
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B

vB and uP can be understood as vectors and right-hand side of a reduced constraint.

Then, for every I € Z((T,W),h) from which we can extract a basis (i.e. rg(W,) =m) and
By such basis, we have
zeri(n(Ph) < Vie I\By, vP'e =uP" and Vj e [(\I, ’UJBI.%' < uf’ (3.84a)

— I e€I(W,h—Tx) (3.84b)

Moreover, for every o € C(P,m) we have the following H-representations:

_ Uffx:uff, Vi € I\By

o=¢x R Viel,, , B . (3.85a)
vile <uy', Vje€[p\]
_ viBIx:ulBI, Vi € I\B;

ri(lo) =<z e R" Viel,, 4 B (3.85b)
vile <wuit, Vi€ [p\

where for all I € I, By is an extracted basis of I.
Furthermore, the representations do not depend on the choice of these extracted bases By.

The set Z, is thus a very useful tool for computation, as it provides a H-representation of
the chamber ¢ and a V-representation of the normal fan N,. For any z € ri(P,), it allows us
to retrieve the H-representation of the faces of P, and in particular its vertices. Finally, Z, is a
regular subdivision and then presents a rich and well-studied combinatorial structure.

Proof. We have x € m(ri P(I)) if and only if there exists y € R™ such that (z,y) €
ri (P(I)) which is equivalent to Trxz + Wiy = hy and for all j € [¢]\I, Tjz + W,y < h;. We
remark that the only y € R™ which can satisfy these constraints is ngl(hBI — Tp,x). Thus,
z belongs to 7 (ri P(I)) if and only if Trz + WIngll(hB] — Tp,x) = hp, and for all j € [¢]\,
Tix + Wjngl(hBI — Tg,x) < hj. Since, for all i € B;, lei = 0 and ufi = 0, the equation
le T'p = ufg ' is equivalent to the trivial equation 0 = 0, we can only keep the indices in I'\ By for

I

the equalities. The definitions of viB and uZB T then yield the equivalence.

(13.84b) =z € TI'(I‘i(P[)) <— JyeR™, Trx+ Wry = hr and T[g]\[l‘ + W[g]\[y < h[@]\[ (3.86a)
<~ Hy S Rm, IW’h,Tx(y) =TI and Wy <h-Tx (386b)
< [ e€I(W,h—Tx) (3.86¢)

In particular, 7(P’) is contained in the vector subspace E := {x € R" ]UzBIx = uf’, Vi €
I\B}. Let x € 1i (m(PT)) # (), then since the inequality are strict, there exists ¢ > 0, such that
B(z,e) N E Cri(x(P!)). Thus, dim(r(P!)) = dim(E).

Let 0 € C(P, 7). Then, the collections G,, Z,, N, and Vert(P,), for = € ri(s), are in one-to-
one correspondences. By definition of G,, we have that ri(o) = Ngeg, 7(1ri(G)), which is equal to
N Ieiﬂ'( ri P(I)). Let I € Z, be a maximal set of constraints. By the discussion in Section
and since rg(W) = m, there exists a basis By of W' such that By C I. By (3.84a]), we have
x € m(ri P(I)) if and only if Vi € I\By, vz = uP" and Vj € [(\I, UJB’:U < uj’. Finally, since
ri(o) = N;-m(1i P(I)), we then have

Tiw + WiWg ! (hp, — Tp,x) = hi, Vi€ I\B;

ri(o) = {x e R" ‘ VI € I, - ,
Tjﬂj + WJWBI (hBI — TBI$) < hj, Vj e [p}\[

} (3.87)

We conclude using the definition of ’UZ»B and ulB " and by taking the closure to get the represen-

tation of o. O

I
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We now show that the chamber complex can be interpreted as an affine section of the
secondary fan.

Theorem 3.34. Consider the affine function a : © — h — Tx. Then, the chamber complex
C(P, ) is the inverse image, under a, of the secondary fan of W':

() =a ! (B-fan(WT)) == {a7'(9) | § € B-fan(W ) }\ {0} (3.88)

Proof. Assume for sake of simplicity that rg(W) = m. The proof can be adapted by taking a
quotient space if this assumption does not hold.

(C) Let 0 € C(P,7), by (3.85), setting b = h — Tz, we have

WiWgbp, = b;, Vi€ I\BI}

ri(a):{xE]R" ‘ FbeRP, b=h—Tz and VI € Z,, 1 ,
W;Wg bg, <bj, Vje€[p\I

By Proposition we then have 1i(0) = a1 (X-C°(W',Z,)). By taking the closure
and as a is continuous, we obtain o = a1 (X-C(WT,Z,)). We then deduce that C(P,7) C
a=! (Z —fan(WT)>.

(D) Reciprocally, we consider S € ¥ -fan(W ') such that a=!(S) is not empty and we now
prove that a=1(S) € C(P,n). As S € ¥ -fan(W ), there exists a regular subdivision Z such that
S=X-C(W'",Z). If a=(S) is not empty, then ri (a71(S)) = a=1(1i(S)) = a "} (X-C°(W T, 1))
is not empty and there exists x such that h — Tw € X-C°(W',I)ie. Z=S(W' h—Tz) =
Z(W,h — Tz). In particular, by Lemma h — Tz belongs to Cone(W) + R% and P, is
not empty, which is equivalent to x € 7w(P). Thus, there exists 0 € C(P,7) such that x €
ri(o). We then have T = Z(W,h — Tz) = I, and then by the previous discussion a=*(S) =
a Y (Z-C(WT, 1)) =a 1 (£-C(WT,Z,)) = 0 € C(P,7) which concludes the proof.

O
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4.1 Introduction

In this chapter, we show that every MSLP with general cost distribution is equivalent to an MSLP
with finite distribution. In particular, we provide a uniform and universal exact quantization
for MSLP with general cost. This leads to explicit representations of their value functions and
to new complexity results. Most of this chapter is adapted from the preprint [FGL21], winner
of the best paper student prize of ECSO-CMS 2022 conference in Venice. We added proofs for
the normal equivalence property, for the characterization of the chamber complex as a section
of the secondary fan and for the reduction of the Minkowksi integral to a Minkowski sum for
the weighted fiber polyhedron. We also introduced a generalization of weighted fiber polyhedra
to the multistage case by defining nested fiber polyhedra.

4.1.1 Multistage stochastic linear programming

Let (2,.A4,P) be a probability space. Given a sequence of independent random variables ¢; €
Li(Q,A,P;R™) and & = (A, By, by), indexed by t € [T] :=={1,...,T}, we consider the MSLP

given by
T

min oz +E[Y ¢z
(xt)eem) =

s.t. Az < by
Ay + By < by as. Vte{2,--- T}
Tt € Loo(Q, A, P;R™) Vte{2,---,T}
x: < F Vte{2,---,T}

where 1 = x1, A1 = Ay and b; = by are deterministic and F; is the o-algebra generated by
(co, &2, , ¢, &). The last constraint, known as non-anticipativity, means that x; is measurable
with respect to F.

Most results for MSLP with continuous distributions rely on discretizing the distributions.
The Sample Average Approximation (SAA) method (see e.g. [SDR14, Chap. 5]) samples the
costs and constraints. It relies on probabilistic results based on a uniform law of large number
to give statistical guarantees. Obtaining a good approximation requires a large number of
scenarios. In order to alleviate the computations, we can use scenario reduction techniques
(see [IDGKRO3, [HRO03]). Latin Hypercube Sampling and variance reduction methods are also
used to produce scenarios. Finally, one generates heuristically “good” scenarios, representing
the underlying distribution (see [KWOQT7]). Alternatively, we can leverage the structure of the
problem to produce finite scenario trees (see [Kuh06, MAB14, MP18§|) that yields bounds for the
value of the true optimization problem. In each of these approaches, one solves an approximate
version of the stochastic program, with or without statistical guarantee.

4.1.2 The exact quantization problem

Here, we aim at solving exactly the original problem, by finding an equivalent formulation with
discrete distributions. This notion of equivalent formulation is best understood through the
dynamic programming approach of MSLP. We define the cost-to-go function V; inductively as
follows. We set Vry; =0 and for all t € {2,--- ,T}:

Vi(zi—1) == E[‘A/}(l“t—h ct, &)
Vi(mio1,e,&) o= Ilel]%%}lt of e+ Viga(xe) (42)
Tt

s.t. Az + Bizp—1 < by

where ;1 € R"-1 ¢, € R™ and & = (Ay, By, by) € R4X™M x RUXT-1 5 R,
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We choose to distinguish the random cost ¢; from the noise &; affecting the constraints.
Indeed, our results require & to be finitely supported (see examples and while ¢; can
have a continuous distribution. This separation does not preclude correlation between ¢; and &;.
However, we require {(c, &) }+[r to be a sequence of independent random variables to leverage
Dynamic Programming, even though some results can be extended to dependent (&;);c(77-

4.1.3 Contribution

We rely on a geometric approach, which enlightens the polyhedral structure of MSLP. We
first establish exact quantization results in the two-stage case showing that there exists an
optimal recourse affine on each cell of a polyhedral complex which is precisely the chamber
complex [BS92, [RZ96], a fundamental object in combinatorial geometry. A chamber complex
is defined as the common refinement of the projections of faces of a polyhedron. In particular,
Theorem provides a local explicit exact quantization, in which the quantized probabilities
and costs are attached to the cones of a polyhedral fan A/, and Theorem gives a uniform exact
quantization result (we refer the reader to [DLRS10, [Ziel2l [Griil3l [Fuk16] for background on
polyhedral complexes and fans). On each cone N € N, we replace the distribution of ¢l y by
a Dirac distribution concentrated on the expected value ¢y = E[c|c € ri N|, and an associated
weight py = P[c € ri N]. Further, N is universal in the sense that it does not depend on the
distribution of c.

In order to extend this result to the multistage case we establish in Lemma [4.12| a Dynamic
Programming type equation in the space of polyhedral complexes. We then show an exact quan-
tization result in Theorem Again, this quantization is universal in the cost distribution.

We apply this polyhedral approach to obtain fixed parameters polynomial time complexity
results considering both the exact computation problem and the approximation problem. For
distributions that are uniform on polytopes or exponential, we show the MLSP can be solved
in a time that is polynomial provided that the horizon T and the dimensions ns,...,ny of
the successive recourses are fixed. The proof relies on the theory of linear programming with
oracles [GLS12] as well as on upper bound theorems of McMullen [McM70] and Stanley [Sta75]
concerning the number of vertices and the size of a triangulation of a polyhedron. We obtain
similar results for the approximation problem. Then the distribution cost can be essentially
arbitrary: we only assume that it is given implicitly through an appropriate oracle. This applies
in particular to distributions with a smooth density with respect to Lebesgue measure.

In summary, our main contributions are the following:

1. MSLP with arbitrary cost distribution and finitely supported constraints admit an exact
quantization result, i.e. are equivalent to MSLP with discrete cost distribution;

2. the expected cost-to-go functions of such MSLP are polyhedral and affine on the cells of a
universal polyhedral complex (i.e. independent of the cost distribution);

3. characterization of the expected cost-to-go function in terms of a weighted and nested
extensions of the fiber polytope;

4. fixed-parameter polynomial time tractability results for 2SLP and MSLP.

4.1.4 Structure of the chapter

In Section [£.2] we establish the exact quantization result for 2-stage stochastic linear program-
ming. In Section 4.3] we show that chamber complexes can be propagated through dynamic
programming, leading to the exact quantization result for the MSLP. We give an analytical
example in Section [£.4] In Section we draw the consequences of our results in terms of
computational complexity.
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4.2 Exact quantization of the 2-stage problem

Let (2, A,P) be a probability space, ¢ € L1(2, A,P; R™) be an integrable random vector, and
suppose £ = (T, W, h) is deterministic. We study the cost-to-go function of the 2-stage stochastic
linear problem, written as

— ¥ ; (7 . T
V(z):=E [V(ZE, q)} with V(z,q) == Jin 'y (43
st. Tx+Wy<h

The dual of the latter problem, for given = and ¢, is

T
Pr}réeﬂmgg (Tx—h) p (4.4)
st. Wlp=—q (4.5)
=0 (4.6)

As in Section we denote the coupling constraint polyhedron of Problem (4.3]) by
P:={(x,y) e R"""™ | Tx + Wy < h} (4.7)

and 7 the projection of R” x R™ onto R™ such that 7(z,y) = x.
The projection of P is the following polyhedron :

m(P)={z € R" |y e R™, Tx + Wy < h} (4.8)
and for any = € R™, the ﬁbe7E| of P along 7 is

P, :={yeR™|Tx+ Wy < h} (4.9)

4.2.1 Uniform exact quantization result

The following lemma provides an explicit formula for the cost-to-go function. It shows that an
optimal recourse can be chosen as a function of ¢ that is piecewise constant on the normal fan of
P,. This lemma can be interpreted as a reformulation of the basis decomposition Theorem [3.29]
to the 2SLP notations.

Lemma 4.1. Let x € R" and c € R™,
1. If & ¢ n(P), then V(zx,q) = +o0;
2. If x € m7(P) and —q ¢ Cone(W), then V(z,q) = —oo;

3. Suppose now that x € 7(P) and —q € Cone(W ). For each

cone N € N(P,), let us select in an arbitrary manner a vector qn in ri(—N). Then, there
exists a vector yn(x) which achieves the minimum in the expression of V(x,qn) in (4.3)).
Further, for any selection of such a yn(x), we have

Vizg,g) = > lge—uinq yn(z) . (4.10)
NeN(Py)

The term parametrized polyhedron, instead of fibers is also used in the literature [CL.98| LW97].
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Proof. The first point comes from the definitions of 7(P) in ([@.8) and V(z,q) in (&.3). If
x € m(P) and —q ¢ Cone(WT), then the primal problem Eq. (4.3) is feasible and the dual

problem is Eq. 1) infeasible. Thus, by strong duality, V (z,q) = —oc.

By Eq. (3.32), we have that (rc(P;))° = suppN(P;). Further, by Proposition all non
empty fibers P, have the same recession cone {y € R™ | Wy < 0} whose polar is Cone(W ).

Assume now that z € 7(P) and —¢ € Cone(W ') = supp(N(P;)). Then, there exists
N € N(P,) such that —q € ri(N). Moreover, for every choice of ¢y € —r1i(N), we have
arg min e p, q'y = arg mingep, a4y, by . Moreover, there exists yy(z) such that N =
Np, (yn(z)) by definition of a normal cone, thus yy(z) € argmin,cp qly; in particular, the
latter argmin is non empty. Thus, when —¢ € ri(N), V(x, q) = q yn(z).

Thanks to the partition property of Proposition [3.9] we know that ¢ belongs to the relative
interior of precisely one cone in the normal fan of P, leading to (4.10]). O

Having this property in mind, we make the following assumption:

Assumption 1. The cost g € L'(Q, A, P;R™) is integrable with ¢ € — Cone(W ") almost surely.

Theorem 4.2 (Local exact quantization of the cost distribution). Let x € w(P) and Assump-
tz’on holds. Then, for every refinement R, of —N (Py), we have:

V(z)= Y prV(z,4r) with V(x,dr):= Join Ry + Irarwy<h (4.11)
ReR,

where pr :=P[q € ri(R)] and Gr :=E[q|q € ri(R)] if pr > 0 and r := 0 if pr = 0.

This is an exact quantization result, since (4.11]) shows that V(x) coincides with the value
function of a second stage problem with a cost distribution supported by the finite set {¢r | R €

Proof. For R € R, there exists one and only one N € —N(P,) such that ri(R) C ri(N), that we
denote N(R). Indeed, as R is a refinement of —N(P,), there exists at least one such element,
and as —N(P,) is a polyhedral complex it is unique.

By Lemma under Assumption |If and since z € 7(P),

V(I) = ]E[ Z ]lqefriNquN(x)}

NeN (Pr)
= ]E[ Z Z Lgerir quN(CU)} by the partition property
Ne—N(P;) ReR|ri(R)Cri(N)
= Z E[ﬂqErquT]yN(R) (z) by linearity
RER
_ LT
= Y PrirYn(R)(T)
RER
= Z PR mﬂiglgln dRY + e wy<n
Rer Y€

the last equality is obtained by definition of yy(g) () as §gr € N(R), which leads to Eq. (4.11)).
O

The local exact quantization Theorem together with the normal equivalence on the
chamber complex Proposition [3:30] allows us to derive a uniform exact quantization result:



84 CHAPTER 4. EXACT QUANTIZATION OF MSLP

Theorem 4.3 (Uniform exact quantization of the cost distribution). Let z € w(P) and As-

sumption holds. Then, for every refinement R of — /\Uem]\/g, we have:
V()= > prV(w.dr) with V(r,Gr):= min  dry+TIreswycn (4.13)

ReR
where pr :=P[q € ri(R)] and ¢r :=E|[q|q € ri(R)] if pr > 0 and ¢r := 0 if pr = 0.
Proof. Let R be a refinement of — A,ce(p ) No. Let @ € 7(P), there exists o, € C(P, ) such

that = € ri(o;). We have that R < A,ec(pr) No < No, = N(P%), which, by Theorem leads

to Eq. (E13).
We now prove that A,ceipr Ny = /\aec )/\/'U. If 7 is included in o, by Proposition

we have that N, refines Nr. Thus, Ascc(pr) N = /\aeC(Pﬂ) No-

4.2.2 'Weighted fiber polyhedron

In this subsection, we give a dual interpretation to the exact quantization theorem for 2-stage
stochastic linear programming.

We first notice that for all ¢ € —Cone(W ) and 2 € R", we have strong duality for the
second stage problem

V(z,q) = sup (Tz—h)"A (4.14a)
AeRY

st. WA= —¢q (4.14b)

A0 (4.14c)

We denote by D, := {\ € R |[WTX + ¢ = 0} the admissible dual set for a fixed cost ¢ €
— Cone(WW). Then, for every g E Cone(W), we have
V(x,q) = sup (Tz —h)"A (4.15)
AED,

n [BS92|, Billera and Sturmfels defined the fiber polytope as the normalized Minkowski
integral m fQ P,dx of bounded fibers P, where x is uniformly distributed on a polytope Q.
We now extend the notion of fiber polytope. First, we allow the fibers to be polyhedron with
non trivial recession cones and lineality spaces. Secondly, we replace the uniform distribution
on a polytope by a probability distribution on a polyhedron. We call this new polyhedron
the weighted fiber polyhedron. To link this notion with stochastic programming, we give the
definition with respect to the dual fibers Dj,.

Definition 4.4 (Weighted fiber polyhedron). Let Assumption |1 holds. The weighted fiber
polyhedron E of the bundle (Dg)qesupp(q) i the Minkowski integral of all the fiber at g when q
varies according to its probability distribution:

/D P(dg) = /)\ B(dg) | Mq) € Dy P-a.s. A€ L'B.R™RY}  (4.16)

The weighted fiber polyhedron synthesises the polyhedral structure of 2SLP with stochastic
cost ¢. In particular, the expected cost-to-go function V' is, up to a change of variable, equal to
the support function of the weighted fiber polyhedron.

Theorem 4.5. Let Assumption holds. Then, the expected cost-to-go V' defined in (4.3)) is the
composition of the support function of the weighted fiber polyhedron E defined in Definition [{.4)

. R™ — R’
and the affine transformation a :
z—=Tx—h
V(z) =ogoa(z) :=sup (Tx —h)" A (4.17)

AEE
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In particular, the affine regions of V are exactly the maximal sets of the polyhedral complex
a™l (./\/(E)) .

The proof consists in applying the interchangeability theorem (see [RW09, Thm 14.60]) to
the dual formulation of the second stage problem.

Proof. Under Assumption |1} we have ¢ € Cone(W ") almost surely then

V(z) = E[V(z,q)] (1.182)
=E[ sup (Tx —h) "\l (4.18b)
AeDg
=E[sup (Tz —h)"A—Lep,] by (4.15)
AERE
(4.18¢)
_ / sup (T — h)"A ~ Iiep, ) P(dg) (4.18d)
R™ \eR¢
I / (T2~ )T Mg) ~ Ingyen, ) B(da) by [RW09, Thm 14.60]
A()EL (R, RE) JR™
(4.18¢)
= Sup (TLU - h)T )‘(Q)P(dQ) - I[)\(q)GDq P- a.s. (418f)
A()ELL (RM,RE) R™
= sup (Tz—h)" | Mq)P(dg) (4.18g)
A()ELM(R™RY) | A(q)€Dq B- as. R
=sup (Tz —h)" A by definition of £
AEE
(4.18h)

Indeed, we can apply [RW09, Thm 14.60] since the opposite of the function (g, A) +— (Tz—h)T A—
Ixep, is a normal integrand (see [RW09, Def 14.27]) and as L' (R",R?) is a decomposable space
(see []RWQ9, Def 14.59]) with the measure P. O

We now show that the weighted fiber polyhedron is indeed a polyhedron. To do so, we
replace the Minkowski integral by a Minkowski sum of well-chosen fibers, leveraging the normal
equivalence on the cells of the chamber complex.

Let D be the dual coupling polyhedron

D:={(}\q) eR xR™|WTA+q=0,1>0} (4.19)

and C(D, 7r;"q) C 2~ Cone(WT) = oR™ 16 the chamber complex after projecting on the space R™
where ¢ belongs.
We now give an adaptation of [BS92, Theorem 1.5] for the weighted fiber polyhedron.

Theorem 4.6. The fiber polyhedron can reduced to the finite Minkowski sum

E= Z ﬁ’YDq’y (420)
veC(D,my)

where P, :=P[q € ri(y)] and ¢, := E[q|q € ri(7)] is the centroid of the cell v if py > 0 and ¢,
is an arbitrary point in ri(7y) if p, = 0.

Proof. By Proposition all D, for ¢ € — Cone(WT) have the same recession cone C' and
lineality space L. We can assume, if we restrict all polyhedra to the orthogonal Lt of the
lineality space, that Lin(D,) = {0} for all ¢ € — Cone(W ).



86 CHAPTER 4. EXACT QUANTIZATION OF MSLP

By noticing that — Cone(W ") = LI

~eC(D,my*) ri(7y), we have
oo / Cone(W'T DiP(dg) = 3, / _DgP(dq) (4.21)
one( ) ~vee(D, 7l'q 9) ri(7)

We now show that fri(v) D,P(dq) = pyDg,. If all lineality spaces are reduced to {0}, we have

by Theorem that D, = Conv (Vert(D,)) + C. Since the common recession cone C' is
convex, we have [_ Cone(WT) CP(dg) = C. We thus only need to prove that Vert(p,D;, ) =

Vert ( fri(v) D,P(dq)). By [BS92, Proposition 1.2], we have that for every measurable @ C R™
and i) € R™, [ DYP(dq) = (Jo DqP(dq))w. We then deduce

4 y .
([ D) = [ DyPdg) = E[Dy1gers] = 5,ED] |q € 1i]
rivy rivy

For v € C(D,Tra\’q) and every ¢ and ¢ in ri(y), Dy and Dy are normally equivalent, i.e.
N(Dg) = N(Dy). In particular, we have by Fig. that for ¢ € ri(N) and N € N(D,) each
vertex D, Y of D, depends affinely on ¢ and then get ]E[Dg |q €riy] = Dg;. We then have

Vert(py Dy, ) = Vert ( [, DglP(dg)) which implies [;;.) DgP(dg) = py Dy, and thus Eq. 1'
L]

We now show that the normal fan of the weighted fiber polyhedron is refined by the secondary
fan, up to a change of sign.

Theorem 4.7. The normal fan of the weighted fiber polyhedron E is such that
—S-fan(W') g N(E) (4.22)

Since for two polyhedra @ and @', we have N (Q+ Q') = N(Q)AN(Q’), see e.g. [Ziel2, Prop.
7.12]. Then if a polyhedron @ have a coarser normal fan than @, i.e. N(P) < N (Q), it means
that () has a more simple combinatorial structure than P and that there exists a polyhedron
Q' such that P = Q + Q'. We say that @ is a Minkowski summand of P. Moreover, the
secondary fan is the normal fan of a well-studied polytope called secondary polytope introduced
n |[GKZ94]. In [BS92], Billera and Sturmfels defined the fiber polytope and showed that the
secondary polytope was a particular case of fiber polytope.

Remark 4.8. We saw in Theorem that the affine regions of V. were equal to a™* (N(E)). By
Theorem we then have that the affine regions are refined by a=*( — E—fan(WT)). Finally,
m h

in Theore we saw that the chamber complex was a section of the secondary C(P,m) =

“H—=SAfan(W")). Thus, we will see in Theorem that V' is affine on every cell of C(P, ).
One can see that the more chamber v € C(D,T[';"q) are such that p, = 0, the coarsest will be
N(E) and thus the affine regions a1 (N(E)).

Proof. We first prove that — A c_ conew ™) N (Dy) = Y -fan(W ). We have that
supp ( /\ —./\/(Dq)) = Cone(W) 4+ R’ = supp (Z —fan(WT))
g€— Cone(WT)

. Since these collections of sets are both fans, by Lemma [3.16] it is enough to show an inclusion
for the collection of maximal sets: X fan(WT) C - /\veC D) )N(Dqﬂ/).

Let S € ¥ -fan(WT) by Definition we know that there exists a regular triangulation 7
such that S = X-C(W",Z). Thus, by Proposition we have

S-cWwh,I)= () Cs (4.23a)
BeT
where Cp := {1 € Cone(W) + R | WW5'p < ¢} (4.23b)
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Assume g € — Cone(Wp) and denote Ap, the basic point, of the polyhedron in standard form
D, associated to the basis By, see Definition As g € — Cone(Wp), we have Ap 4 € Dy i.e. B
is an admissible basis for the linear problem LPj + e We now prove that Cp = —Np, (ABq)-

)

If v € Cp, we have that the reduced cost ¥ — WWg L4 g is nonnegative. In particular, by
Lemma By is an optimal basis for the problem LPV?/T’ - and Ap g4 is an optimal point.
Thus, for all A € Dy, wT)\B,q < ¢ X which is equivalent to ¢ € —Np,(AB,q). Reciprocally, if
Y € —Np,(AB,4) then the basic point Ap, is an optimal point of LPy+ e and the reduced
cost Y — WngwB is non-negative and thus ¢ € Cp.

Since Z is a triangulation of Ci)ne(WT), we have (J 7 Cone(Wp). In particular, for every
q € — Cone(WT), there exists I € Z such that ¢ € — Cone(Wpg). Then, for every ¢ € — Cone(W),
we associate a point function Az, = Ap 4 where we choose B € 7 such that g € — Cone(Wp).

Finally, we have

S=Ncz= (1 ~NpOsad= (1  —Np,(Azy) (4.24)
BeT BeZ g€— Cone(Wp) ge— Cone(WT)
ThUS, Se _/\qE—Cone(WT)N(Dq)'

We proved that — Age_ conew ) N (Dg) = Y -fan(WT). Moreover, by the normal equiv-
alence Proposition for every v € C(D,m)) and ¢ € ri(y), N(Dg) = N(Dy ). Then,
- /\WGC(DJQ@)N (Dg,) = S-fan(WT).

Recall that the normal fan of the Minkowski sum is the common refinement of the normal
fan N(P+ Q) = N(P) AN(Q), see e.g. [Ziel2, Prop. 7.12], and that N (aP) = N (P) for every
a > 0. Then, since £ = ZyGC(D,w?'q)UBApON(D‘?W) Thus, by Eq. (4.20) and —X-fan(W ') =

/\’YGC(D,ﬂ';"q) N(DQW) < /\'YGC(DJT;\’(Z) | py>0 N(Dq,y) = N(E) OJ

4.2.3 Explicit characterization of expected cost-to-go

As a consequence of the exact quantization Theorem [£.2] we obtain explicit representations for
the values and subdifferentials of the expected cost-to-go function V. We also show that V is
affine on every cell of the chamber complex for every distribution of the random cost.

Theorem 4.9 (Characterization of the expected cost-to-go function). Let Assumption |1| holds.
For x € R" and c € R™, we denote

DMT% .— argmax {(Tx — MIA:ATA=—c, ) > 0}
the set of optimal dual solutions of the second stage problem. Then,

Vo € C(Pw), Voo €rio), Veesupp(e) DI = DT = DI

Set
as= > B'X and Br:= D —b'AT, (4.25)
Ne—-N, Ne-No
where XJ is an element of DJ. Then, we have
Vo € C(P,m), Yxeco, V(z)=aolz+ps (4.26a)
Vz € R", V(z) =l enp) + max o)z + B, (4.26b)
oceC(P,m)

In particular, for all distributions of ¢ satisfying Assumption [1], V is affine on each cell of
C(P,m), i.e. the cells of the chamber complex are universal affine regions.
Moreover, we characterize the subdifferential of the cost-to-go function as

OV (z) = Nr(py(x) + Conv { () (4.27)

c€C(Pr) | z€o } :
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Proof. By the basis decomposition theorem Theorem we have that DY = D}f/ for all ¢
and v belonging to the same relative interior of a cone of the secondary fan ¥ -fan(W ). In
particular, by Theorem for every x, 2’ in the same relative interior of a chamber o, we have
D?*Tx _ Dészz/.

For all z € ri(o) C m(P) and all ¢ € supp(c), by Lemma we have V(z,¢) < 400 and then
by strong duality, V (z,¢) = (I'z — h) T XS. Then by the exact quantization result Eq. (4.11)), for
all z € ri(o),

Vi)=Y pnV(zen)= > pn(Tz—h)"XN =alz+ 8.
Ne—-N, Ne-N,
Further, as V is lower semicontinuous and convex, we deduce Eq. .

To show Eq. , suppose first that dim (7(P)) = m. Then, for o € C(P,7), * = aj z+f,
is a supporting affine function of V which coincide with V' on ¢ whose dimension is m. Since
erma = supp(C(P,m)) = w(P), V is piecewise affine on the polyhedron m(P) and equals
to +oo elsewhere. Together with convexity of V', this yields Eq. . When 7(P) is not full
dimensional, we get the same result by restraining the ambient space to the affine hull Aff (7(P)).
Since C(P, 7) does not depend on ¢, for all distributions of ¢ satisfying Assumption |1} V is affine
on each cell of C(P, 7). Finally, the subgradient formula follows from Eq. . O

Remark 4.10. Let V™ be the collection of affine regions of V. Theorem [[.9 implies that the
chamber complex C(P, ) refines V™. However, it does not imply that C(P, ) = V™. Indeed,
if ¢ =0 P-almost surely, then V™ = {n(P)}.

More precisely, for all cost distribution such that Assumption[]] holds, V™®* is the collection
of maximal elements of a polyhedral complex V such that C(P,w) < V. We gave an exact

representation of ¥V in Theorem showing that V = a™! (N(E))

4.3 Exact quantization of the multistage problem

In this section, we show that the exact quantization result established above for a general cost
distribution and deterministic constraints carries over to the case of stochastic constraints with
finite support and then to multistage programming.

We denote by 72 for the projection from R™ x R™ to R"™ defined by n%¥(z’,y’) = 2’. The
projections m>b*, wp¥E e, ma )" are defined accordingly. Note that in the notation 7Z¥72,
x, y and z are part of the notation and not parameters.

4.3.1 Propagating chamber complexes through Dynamic Programming

We next show that chamber complexes are propagated through dynamic programming in a way
that is uniform with respect to the cost distribution. This is a key tool to extend the exact
quantization theorem to the multistage setting. Note that the proof of Theorem cannot be
extended to the multistage setting as, in this case, the extensive form requires non-anticipativity
constraints that cannot be tackled directly.

We start with a monotonicity result for chamber complexes.

Lemma 4.11 (Chamber complex monotonicity with respect to refinement order). Consider two
polyhedral complezes of R? and a projection ©. If R < S then C(R,w) < C(S, 7).

Proof. For any R € R, there exist Sg € S such that R C Sr. Let z € suppC(R,w) =
m(supp R) = m(supp S) = suppC(S, )

ore(r):= () wRC () w(Sk)

ReRs.t. zem(R) ReRs.t. zem(R)

C ﬂ 7(S) =t osx(x) € C(S,7)
SeSs.t. zenw(S)
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O

Recall that, for a polyhedron P and a vector v, we denote P¥ := arg min,cp YTz, Let
f be a polyhedral function on R?, with a slight abuse of notation we denote epi(f)¥! =
arg min ; ) cepi( f) Y x+2. We denote Fioy (epi(f)) := {epi(f)¥! | ¥ € Re} the set of lower faces
of epi(f). The collection of projections (on R?) of lower faces of epi(f) is the coarsest polyhedral
complex such that f is affine on each of its cells (see Chapter 2]). Moreover, we have

ma(epi(f)¥!) = argmine 'z + f(z) (4.28)
z€R
Lemma 4.12. Let U be a polyhedral function on R™ and U := ﬂg’z (]—'bw(epi(U))> a coarsest

polyhedral complex such that U is affine on each element of U. Let §& = (A, B,b) be fized and
Assumption [1] holds. Define, for all x € R™

Q(z,y) == U(y) + Lay+Ba<s (4.29a)
V(w) :=E[ min 'y +Q(z,y)] (4.29D)

Let V:=C(F(P) A (R" x U), m2¥) C 25" with P = {(x,y) | Ay + Bz < b}.

Then, V < C(epi(Q) , W;JW) and V is a polyhedral function which is affine on each element
of V.

Figure 4.2: An illustration of the proof of Lemma the epigraph epi(Q) of the coupling
function in blue in the (z,y, z) space, the epigraph of U in yellow in the (y, z) plane, the affine
regions U of U in green on the y axis, the coupling polyhedron P in orange and brown in the
(x,y) plane, the polyhedral complex Q in red and brown in the (z,y) plane and the chamber
complex V in violet on the z axis.

Proof. We have epi(Q) = (R x epi(U)) N (P x R) ¢ R**™*1 Since

. T
V() =E[ min  c'y+ztleyseni@l
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by Theorem applied to the problem with variables (y, z) and the coupling polyhedron epi(Q),
V is a polyhedral function affine on each element of C(epi(Q), 72¥*). We now show that V <
C(epi(Q), m%¥*). As epi(Q) is the epigraph of a polyhedral functlon Q = mpt* (Flow(epi(Q))) C
2R™™ s a polyhedral complex.

Let & € n2¥*(epi(Q)), using notation of Definition

Jepi(Q)Jr;f’y’z (5:) = m W?MZ(F) (430)
FeF(epi(Q))s.t. seny¥?(F)
= N YA (F) (4.31)
FEFiow(epi(Q)) s.t. demy’¥*(F)

_ N TV (F') =t 0 e (F) (4.32)
F'eQs.t. zemyV(F')

Indeed, as epi(Q) is an epigraph of a polyhedral function, if F € F(epi(Q)) such that
T eniy Z(F) then there exists G € Flow(epi(Q)) such that G C F and & € n2%*(G), allowing
us to go from the first to second equality. The third equality is obtained by setting ' = w34 (F').
Thus, C(epi(Q), 72¥*) = C(Q, mLY).

We now show that F(P) A (R x U) < Q. Let G € F(P) A (R™ x U). There exist 0 € U
and F' € F(P) such that G = F N (R™ x o). By definition of Fj,y , there exists ¢» € R™ such
that o = 7% (epi(U)*!). We show that G C m%*(epi(Q)*¥!) € Q. Indeed, let (z,y) € G =
Fn(R™x 7727 (epi(U)¥1)). We have (z,y) € F C P such that y € argmin,rcpm {17y +U(y')}.
Which implies that (z,y) € argmin {¢'y'+U(y/) | (2/,y') € P}. This also reads, by Eq. (4.28),
as (z,y) € mgpp #(epi(Q)*¥1). Thus, G C % 2 (epi(Q)™¥!) € Qleading to F(P)A(R™ xU) < Q.
Finally, by monotomcity, Lemma [£.11] ends the proof. O

Remark 4.13. In Lemmal[{.13, the complex V is independent of the distribution of c. However,
for special choices of ¢, V might be affine on each cell of a coarser complex than V. For
instance, if U = 0 and ¢ =0, we have that V =L s p), V is affine on 7Y (P). Nevertheless,
V = C(P,m%Y) is generally finer than F(nZY(P)).

4.3.2 Exact quantization of MSLP

We next show that the multistage program with arbitrary cost distribution is equivalent to a
multistage program with independent, finitely distributed, cost distributions. Further, for all
step t, there exist affine regions, independent of the distributions of costs, where V; is affine.
Assumption [I] is naturally extended to the multistage setting as follows

Assumption 4.1. The sequence (¢, & )a<i<T 18 independentﬂ Further, for each t € {2,--- T},
& = (A, By, by) is finitely supported, and ¢; € L'(Q, A, P; R™) is integrable with ¢; € — Cone(A, )
almost surely.

Note that Assumption does not require independence between ¢; and &;. For t € [T,
and £ = (A, B,b) € supp(&;) we define the coupling polyhedron

P(&) :={(x4—1,2) € R™1 x R™ | Axy + Bay—1 < b}, (4.33)
and consider, for x;_; € R™~1,
Vi(zi-1]€) ==E [xfg]%%t cf @+ Vi1 () + Lag 8o,y <o | & = €. (4.34)
Then, the cost-to-go function V; is obtained by
Viwe) = 0 Plé =€ Viweal) (4.35)
£esupp(&:)

2The results can be adapted to non-independent &; as long as ¢; is independent of (¢-)-<: conditionally on

(ﬁq—gt)~
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The next two theorems extend the quantization results of Theorem to the multistage
settings.

Theorem 4.14 (Affine regions independent of the cost). Assume that (&).c(7) is a sequence of
independent, finitely supported, random variables. We define by induction Pryq1 := {R"T} and
forte{2,...,T}

Pie = C((R”t X Pey1) NF(Pe(§)), Wﬁfj}’xt) (4.36a)
Pei= N Pue (4.36b)
§t€supp &t

Then, for all costs distributions (¢;)o<i<r such that (¢, &)o<i<T Satisfies Assumption and
allt € {2,...,T}, we have supp(Py) = dom(Vy), and Vi is polyhedral and affine on each cell of
Py

Proof. We set for all t € {2,...,T + 1}, V := w51 (Flow(epi(V;))) the affine regions of V;.
As Vryp = 0 is polyhedral and affine on R"”, we have Pry; = Vr41. Assume now that
for t € {2,...,T}, Viq1 is polyhedral and Py4q refines Vi1 (i.e. Viyq is affine on each cell
S Pt+1). B

By Lemma @7 Vi(+|€), defined in Eq. , is affine on each cell of C(R™ x Vi1 A
F(P(€)), mz=™) which is refined by Pre = C(R™ x Pyyy A F(Py(€)), m2i21™") by induction
hypothesis and Lemma Thus, by Eq. , V; is affine on each cell of P;. In particular,
Vi is polyhedral and Py := A¢, cquppe, Pte refines Vy. Backward induction ends the proof. O

&

By Lemma we have that P, ¢ < C(epi (Qf),wfﬁf:}’x“z) where Qf(mt,l, xt) = Vigr () +
TAzs+ Bz, <b:- In particular, consider o € Py ¢, then for all 2,1 € ri(o), all fibers epi(QS)s,_, are
normally equivalent. We can then define N; ¢, := N(epi(Qf)xt_l) for an arbitrary x;_; € ri(o).

The next result shows that we can replace the MSLP problem Eq. by an equivalent
problem with a discrete cost distribution.

Theorem 4.15 (Exact quantization of the cost distribution, Multistage case). Assume that
(Et)te[T] is a sequence of independent, finitely supported, random variables. Then, for all costs
distributions such that (¢, &)o<t<T Satisfies Assumption for allt € [T, all x—; € R™-1
and all £ € supp(&;), we have a quantized version of Eq. :

‘Z(mt—ﬂf) = Z PN x?el]g}% {5ZN|g$t + Vit (ze) + I[Am+Ba:t71<b} (4.37)
NENt,g

where Ny ¢ = /\O'Gpt,g —Nigo and for all & € supp(&;) and N € Ny¢ we denote

Denje = Pl(e, 1) €1iN | & = ¢] (4.38a)
B — E[Ct| (ct,l)eriN,Etzﬁ] ifIP’[Etzﬁ,(ct,l)EriN] 750 (4 38b)
BNIE 0 otherwise '

Proof. Since Vi(z;_1|¢) = E[ming,crne ser ¢ @ + 2 + 1 and the polyhedral

(wtflﬂﬁt,z)EePi(Qf)]
complex Py refines C(epi (Qf),wﬁj’w“z), by applying Theorem with variables (xy, z) and
the coupling constraints polyhedron epi(Qf), we deduce that the coefficients (p;, N| ¢)Ne N, and
(¢, Nje)Nen, . satisfy

~ B . . T
V%(xt_llg) - N;f Pele xtGIrRE’l%fr,lzeR {CtﬁNKmt Tt H(mtflvxtvz)eepi(Qf)} (4'39)
ENt e

as the deterministic coefficient before z is equal to its conditional expectation. ]
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In particular, the MSLP problem is equivalent to a finitely supported MSLP as shown in the
following result.

For ty € [T'— 1], we construct the scenario tree Ty, as follows. A node of depth t —t¢ of Ty, is
labelled by a sequence (N7, &7 )ty<r<t Where Ny € N ¢ and & € supp(&;). In this way, a node
of depth t — o of Ty, keeps track of the sequence of realizations of the random variables &, for
times 7 between to and ¢, and of a selection of cones in N, ¢, at the same times. Note that, by
the independence assumption, all the subtrees of 7y,, starting from a node of depth t — ¢y are
the same as T;,+¢. We denote by 1v(7y,) the set of leaves of Ty,.

Corollary 4.16 (Equivalent finite tree problem). Define the quantized probability cost ¢, :=

Ce,Nyle, and probability p, = 1y <7<t Pe,PrN, e, > for all nodes v = (N, & )ig<r<t- Then, the
cost-to-go functions associated with Eq. (4.1) are given by

Vio(£) =  min Z PuCy T (4.40a)
(@ )veT, veTh,
s.t. Az, + Bz, <b Vv € Te \Wv(Thy), Y = v (4.40b)
for all 2 < tg < T — 1. Here, ¥ is the value of x at the root node of Ty,, and the notation
VYu = (v, N, A, B,b) = v indicates that p ranges over the set of children of v.

4.3.3 Dual characterization through nested fiber polyhedra*

We now show that the dual characterization of the expected cost-to-go function through a
weighted fiber polyhedron in Theorem can be extended to the multistage case. Leverag-
ing dynamic programming equations, we can define at each stage a weighted fiber polyhedron
depending on the weighted fiber polyhedron of the next stage. We call them, the nested fiber
polyhedra.

We denote the dual admissible set at stage t as

Dy, = {pulp = 0, A py + ¢, = 0} (4.41)

For sake of simplicity, we present the case where the constraints are deterministic.
Assumption 4.2. For each t € {2,--- T}, & = (A4, By, by) is deterministic and almost surely
equal to & = (Ay, By, by) Further, the sequence (¢;)a<i<7 is independent and ¢; € L'(2, A, P; R™)
is integrable with ¢; € — Cone(A, ) almost surely.

We now define a nested extension of weighted fiber polyhedra and give a dual characterization

of the expected cost-to-go function of an MSLP with deterministic constraints. We denote by
A7), the vector (Mg, Apy1, -+ 5 Ar).

Theorem 4.17. Assume Assumption [{.4 holds. We define by backward induction the nested
fiber polyhedra Ey C R™ x --- x R"T;

FT,CT = DT,CT (442)
E; :=E|[Fi.,] Vt € [T] (4.43)
F; o = { )‘[t T | )\t € Dt e+ BT Aig1 )‘[t+1:T] S Et+1} vVt € [T - 1] (4.44)

t+1

Then, at each stage t, the expected cost-to-function can be expressed thanks to the support
function of a nested fiber polyhedron. More precisely, for allt € {2,--- ,T} and all z;—1 € R™-1,
we have

Vi(zi-1) = 0F, (BtJUt—l — by, _b[t+1:T])~ (4.45)

Observe that this theorem gives an explicit polyhedral representation of the expected cost-
to-go functions as the support functions of the nested fiber polyhedra.
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Proof. Note that by backward induction on ¢, Fy ., is a polyhedron depending affinely on ¢; and
that E; is indeed a polyhedron by Theorem [£.6]

We show the result by backward induction. For ¢ = T, the proof is the same as Theorem [£.5]
Let t < T — 1 and assume the result holds for ¢ + 1, we have by definition

A

Vi(@e-1,ct) = mf C;rl‘t + Vit1(wt) + LAz + Bozy o <be (4.46)

T €ER

Thinking of the rigth-hand side of this equation as a linear problem and denoting by V}%; the
Fenchel transform of V41, by strong duality, we also have

‘/715($t_1, Ct) = Ssup (tht—l - bt)TAt - Vt’ll(—ct - A:At) (447)
)\tERTt

Using the induction assumption, we have

Vi) = sup o wp — Vi () (4.48a)
¢ €RY
= sup z/)tht —  sup (Biy1me — big1) Thg1 — Z bT (4.48b)
xt€ERY Ale1:1) EE: s=t+2
T
= sup inf UJJLL} + (bt+1 — Bt+1l't)—r)\t+1 + Z b;—)\s (4.48C)
Tt €RY Alt+1:T)€ By g s=t+2
T
=  inf ST biA+ sup ) (¥ — Bl A1) (4.484)
Al+1:171€EEt+1 s—t+1 ztERY
T
=  inf bIN +1 _ 4.48
>\[t+1:1Tr]1€Et+1 S:Zt;-l s As t Bl Air1=t1 ( e)

Thus, by putting this new expression into Eq. (4.47]), we have

T

‘A/;f(l’t_l, Ct) = Sup (BtLUt_l — bt)T)\t - inf Z bT)\ + ]IAT)\t+ct+B Ae41=0 (449&)
A€ERT A+ €E 57 t+
T
= sup (Biwi—1 — b)) ' A= D b A + I yme B +Inep,, o7 (4.49b)
Al s=t+1 t+17EH
T
= sup (Btflft_l — bt)T)\t — Z b;r)\s + ]I)\[t:T]eFt,ct (449C)
A s=t+1
By interchangeability principle (see the proof of Theorem , we have
. T
Viz) =E[ sup  (Bae1—b) M~ Y bIA (4.50a)
)\[t:T]EFt,ct s=t+1
T
= sup (Buwi1—b) M— > bl (4.50b)
A1) € B s=t+1
= opg,(Biwi—1 — by, —b[t+1:T]) (4.50¢)
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4.4 An illustrative example

We consider the following second-stage problem, with n =1 and m =2 :

min cTy
V(z) =E |veR? (4.51)
st. Jyllh <1, yi<zandy <z

We apply our results, to provide an explicit representation of V.

Figure 4.3: The coupling polyhedron P in blue, different cuts and fibers P, vertical in yellow,
and its chamber complex C(P, 7) in red on the bottom.

(a) z = —0.25,0 = [~0.5,0] (b) z = 0.25,0 = [0,0.5] (¢) z=0.75,0 = [0.5,1] (d) z>1,0 = [1,+0o0)

Figure 4.4: Fibers P, in blue and their normal fan NV (P,) = N, in green for different x € R.

The coupling polyhedron is P = {(z,y) € R x R?||ly[l1 < 1, y1 < , yo < x} presented
in Fig. and its V-representation is the collection of vertices (0,—1,0), (—0.5,—0.5,—0.5),
(0,0,—-1), (1,1,0), (0.5,0.5,0.5), (1,0,1) and the ray (1,0,0). By projecting the different faces,
we see that its projection is the half-line, 7(P) = [—0.5, +00) and its chamber complex C(P, )
is the collection of cells composed of {—0.5}, [-0.5,0], {0}, [0,0.5], {0.5}, [0.5,1], {1}, [1,+00)
as presented in Fig. As there are 4 different maximal chambers, there are 4 different classes
of normally equivalent fibers as shown in Fig. [1.4]

We evaluate ¢y and py for N € —N,; using the formulas of Table [B:I] For example, when ¢
is uniform on the centered ball for the co-norm of radius R, Fig. shows the regions of which
the areas and centroids need to be computed.
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Ng N,
6 N, 5N
°s o> N o W2+ N
N3 N3 N
(a) o0 =[—0.5,0] (b) ¢ =[0,0.5] (¢) o =[0.5,1] (d) o =[1,+00)

Figure 4.5: Exact quantization illustrated. The normal fan A in green with N; = W,RT, ¢
is uniform on the support Q = —Q = Boo(0, R) in light orange, the sets W,’RT N Q in red.
The polyhedral complex R, shown in red or orange. The quantized costs ¢y are determined by
centroids (small circles in pink).

uniform on norm 1 ball

uniform on norm 2 ball
uniform on norm oo ball

3

e 20°?
2my2 de
2—0llcll1
%dc

Figure 4.6: Graph of the cost-to-go function V for different distribution of the cost ¢ with
R=0=~v=1.

dP(c) —1<2<0 0<z<i i<z 1<z
Ly, < _ _ _ _
Hdi=Rge | ZEE(1 4 27) S2(7 + 62) 2 +2) =£
2o—0llc|| _ — - —
e “de | FH(1+22) 57 (7 + 6z) 5 (2+2) 52
Heeshge | B(54102) | E(5+ 4a) =B34 ) =2
o325 | v @4vD)(1420) | —v(24+v2+2VEE) | —2(H(—l+vD)e) | _ 2
277? 2/2r 2/or Var v
Yjelpsr g, | ZRC+V2)(A422) | —RQ2+V2+2V20) | —4R(I+(=1+V2)z) | _4v2R
TR?2 3T 37 3T 3T

Table 4.1: Different values of V' (z) for different distributions of the cost c.

4.5 Complexity

Hanasusanto, Kuhn and Wiesemann showed in [HKW16] that 2-stage stochastic programming
is #P-hard, by reducing the computation of the volume of a polytope to the resolution of a
2-stage stochastic program. Nevertheless, we show that for a fixed dimension of the recourse
space, 2-stage programming is polynomial. Therefore, the status of 2-stage programming seems
somehow comparable to the one of the computation of the volume of a polytope — which is also
both #P-hard and polynomial when the dimension is fixed (see for example [GK94, 3.1.1]). We
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also give a similar result for multistage stochastic linear programming.

We now give a summary of our method. A naive approach would be to use directly the exact
quantization result Theorem However, even in the two-stage case, the latter yields a linear
program of an exponential size when only the recourse dimension m is fixed. Indeed, the size
of the quantized linear program, (2SLP) is polynomial only when both n and m are fixed as
Noec(px) —No can have, by McMullen’s and Stanley’s upper bound theorems ([McMT70, [Sta75]),
an exponential size in n and m, and these bounds are tight. Hence, to handle the case in which
only the recourse dimension m is fixed, we need additional ideas. We use the local quantization
result Theorem observing that when m is fixed, N'(P,) has a polynomial size. We thus
have a polynomial time oracle that gives the values V(z) and a subgradient g € 9V (z) by
Theorem E Then, we rely on the theory of linear programming with oracle [GLS12], working
in the Turing model of computation (a.k.a. bit model). In particular, all the computations are
carried out with rational numbers. We now provide the needed details of the proof.

4.5.1 Multistage programming with exact oracles

Recall that a polyhedron can be given in two manners. The “H-representation” provides an
external description of the polyhedron, as the intersection of finitely many half-spaces. The
“V-representation” provides an internal representation, writing the polyhedron as a Minkowski
sum of a polytope (given as the convex hull of finitely many points) and of a polyhedral cone
(generated by finitely many vectors).

We say that a polyhedron is rational if the inequalities in its H-representation are rational
or, equivalently, the generators of its V-representation have rational coefficients. We shall say
that a (convex) polyhedral function V' is rational if its epigraph is a rational polyhedron.

Recall that, in the Turing model, the size (or encoding length see [GLS12, 1.3]) of an integer
k € Zis (k) := 1+ [logy(|k| + 1)]; the size of a rational r = g € Q with p and ¢ coprime
integers, is (r) := (p) + (q). The size of a rational matrix or a vector, still denoted by (-), is
the sum of the sizes of its entries. The size of an inequality o'z < 3 is (a) + (8). The size of
a H-representation of a polyhedron is the sum of the sizes of its inequalities and the size of a
V-representation of a polyhedron is the sum of the sizes of its generators.

If the dimension of the ambient space is fized, one can pass from one representation to the
other one in polynomial time. Indeed, the double description algorithm allows one to get a V-
representation from a H-representation, see the discussion at the end of Section 3.1 in [FP95],
and use McMullen’s upper bound theorem ([McM70] and [GLS12, 6.2.4]) to show that the
computation time is polynomially bounded in the size of the H-representation. A fortiori, the
size of the V-representation is polynomially bounded in the size of the H-representation. Dually,
the same method allows one to obtain a H-representation from a V-representation. Hence, in the
sequel, we shall use the term size of a polyhedron for the size of a V' or H-representation: when
dealing with polynomial-time complexity results in fixed dimension, whichever representation is
used is irrelevant. In particular, we define the size (N) of a rational cone N as the size of a H
or V representation of V.

We first observe that the size of the scenario tree arising in the exact quantization result
becomes polynomial when suitable dimensions are fixed.

Proposition 4.18. Let t € {2,...,T}, and suppose that the dimensions ny,...,np and the
cardinals §(supp &), - - 4(supp &r) are fized. Let T be the scenario tree constructed in Corol-
lary [{-16 Then, the subtree of T rooted at an arbitrary node of depth t can be computed in

polynomial in 31, 2gesupp(e,) (€)-

Proof. Recall that the number of chambers of a chamber complex is polynomial when both
dimensions are fixed by [VWBCO05, 3.9]. Thus, we can compute recursively the (maximal)
chambers of the complexes P; defined in Theorem thanks to the algorithm in [CL98| 3.2] in
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polynomial time. We then can compute in polynomial time the fans N; defined in Theorem
O

We recall the theory of linear programming with oracle applies to the class of “well described”
polyhedra which are rational polyhedra with an a priori bound on the bit-sizes of the inequalities
defining their facets, we refer the reader to [GLS12] for a more detailed discussion of the notions
(oracles) and results used here.

Definition 4.19 (first-order oracle). Let f be a rational polyhedral function. We say that f
admits a polynomial time (exact) first-order oracle, if there exists an oracle that takes as input
a vector x and either returns a hyperplane separating x from dom(f) if x ¢ dom(f) or returns
f(z) and g € OV (x) if x € dom(f), in polynomial time in (z).

Lemma 4.20. Let Q C R be a polyhedron, ¢ € R? a cost vector and f be a polyhedral function
given by a first-order oracle. Furthermore, assume epi(f) and Q are well described. Then, the
problem mingeq ¢’ + f(x) can be solved in oracle-polynomial time in (c) + (epi(f)) + (Q).

Proof. The case where dom(f) = R is tackled in Theorem 6.5.19 in [GLS12]. If f has a general
domain, we can write f = f + Iqom f Where f is a polyhedral function with a well described

epigraph and such that dom f = R?. Then, noting that epi(f) = epi(f) N dom(f) x R, we can
adapt the proof of the latter theorem, using Exercise 6.5.18(a) of [GLS12]. O

We do not require the distribution of the cost ¢ to be described extensively. We only need
to assume the existence of the following oracle.

Definition 4.21 (cone-valuation oracle). Let ¢ € L1(Q, A,P,R™) be an integrable cost distri-
bution such that, for every rational cone N, the quantized probability py and quantized cost ¢
are rational. We say that ¢ admits a polynomial time (eract) cone-valuation oracle, if there
exists an oracle which takes as input a rational polyhedral cone N and returns py and ¢n in
polynomial time in (V).

Theorem 4.22 (Cone valuation to first-order oracle). Consider the value functions of prob-
lem defined in Eq. (4.2). Assume that T,no,...,ny, f(supp&2), --- f(supp&r) are fized
integers, and that (ct, & )a<i<r Satisfies Assumption . Assume in addition that, every vector
€ € supp(&:) has rational entries and that the probabilities py¢ := P[& = &| are rational num-
bers. Assume finally that every random variable ¢; conditionally to {& = £}, denoted by ¢y,
admits a polynomial-time cone-valuation oracle (see Definition .

Then, for allt > 2, V; admits a polynomial time first-order oracle.

Proof. We start with the 2-stage case with deterministic constraints. We recall our notation
V(z) := E[mingegm €'y + Lay1Br<p]. Let # € R be an input vector. We first check if
xz € w(P) = dom(V). By solving the dual of minycgm{ 0| Ay < b — Bz}, we either find an
unbounded ray generated by p € RY such that 4> 0, u' A=0and u' (b—Bz) <0OoraycR™
such that Ay < b — Bz, so that € 7(P). In the former case we have = ¢ 7(P), and we get a
cut {2/ € R"|pu' Ba! = %}, separating 7(P) = dom(V) from z.

So, we now assume that z € 7(P), i.e.,, V(z) < +00. We next show that we can compute
V(z) and a subgradient o« € 9V (z) in polynomial time. Indeed, the McMullen upper-bound
theorem [McMT70], in its dual version, guarantees that a polytope of dimension m with f facets
has O(fL™/2]) faces, see [Sei95]. Since the number of cones in N'(P,) is equal to the number
of faces of P, which is polynomially bounded in the number of constraints g < (£), tN(Fy)
is polynomial in (£). Thus, since ¢ is given by a cone valuation oracle, we can compute in
polynomial time the collection of all quantized costs and probabilities ¢y and Py, indexed by
N € —N/(P,). Then, by Theorem we can compute V(x) and a subgradient o« € 9V (z) by
solving a linear program for each cone N € —N,. All these operations take a polynomial time.
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The case of finitely supported stochastic constraints reduces to the case of deterministic
constraints dealt with above, using dom(V') = Necsuppem(P(§)) and V(x) = desuppgpgv(l"f)
where V(z|€) :=E[V(z,¢, &) | € = ¢€].

We finally deal with the multistage case similarly, using the quantization result Corollary [4.16|
in extensive form. Applying Proposition [£.18] the quantized costs and probabilities arising there
can be computed by a polynomial number of calls to the cone-valuation oracle. This provides a
first order oracle for the expected cost-to-go function V;. O

We now refine the definition of cone-valuation oracle, to take into account situations in which
the distribution of the random cost c is specified by a parametric model. We shall say that such a
distribution admits a polynomial-time parametric cone-valuation oracle if there is an oracle that
takes as input the parameters of the distribution, together with a rational cone N, and outputs
the quantized probability py and cost ¢y. Especially, we consider the following situations:

1. Deterministic distribution equal to a rational cost c. We set (¢) := (c)

2. Ezponential distribution on a rational cone K with rational parameter . We set (c) :=
(K) +(0)

3. Uniform distribution on a rational polyhedron @ such that Aff(Q) ={y e R™ |Vje J C
[m],y; = q; € Q} where J is a subset of [m] and ¢; are rational numbers (in particular, Q
is full dimensional when J = (}). We set: (¢) = (Q)

4. Mixtures of the above distributions, i.e., convex combination with rational coeflicients
(A¥)ep of distributions of random variables (cx)ep satisfying 1. 2. or 3. Then, we

set (c) = 22:1<Ck> + (k).

Theorem 4.23. Assume that the dimension m is fized, and that c is distributed according to
any of the above laws (deterministic, exponential, uniform, or mizture). Then, the random cost
c admits a polynomial-time parametric cone-valuation oracle.

Proof. 1. Case of a deterministic distribution. We first check whether ¢ € ri(N), which can be
done in polynomial time, see Section 6.5 of |[GLS12]. Then, if ¢ € ri(N), we set ¢y = ¢ and
py = 1 otherwise ¢y = 0 and py = 0.

2. Case of an exponential distribution. Since the dimension is fixed, for every polyhedron R,
we can triangulate R N supp(c) and partition it into (relatively open) simplices and simplicial
cones (Sk) ke, and by Stanley upper bound theorem, the size [ of the triangulation is polynomial
in (R). By using the Brion formula in Table we compute in polynomial time pr = Y%, Ps,
and ¢g = 22:1 ﬁgkésk/ﬁ}g if prg = 0 and ¢g = 0 otherwise.

3. Case of a uniform distribution. After triangulating (as in the case of an exponential
distribution), we may suppose that the support of the distribution is a simplex S, so that Q = S.
If this simplex S is full dimensional, then its volume is given by a determinantal expression, and
so, it is rational (see e.g. [GK94] 3.1). Then, the formulas of Table yield the result. If this
simplex is not full dimensional, we have Aff(S) = {y € R™ | Vj € J,y; = ¢;}, a similar formula
holds, ignoring the coordinates of y whose indices are in the set J.

4. Case of miztures of distributions. Trivial reduction to the previous cases. O

Remark 4.24. The conclusion of Theorem[{.23 does not carry over to the uniform distribution
on a general polytope of dimension k < n. The condition that Aff(Q) = {y e R™ |Vj € J,y; =
q;} ensures that the orthogonal projection on Aff(Q) preserves rationality, which entails that the
k-dimensional volume of Q) is a rational number. In general, this volume is obtained by applying
the Cayley Menger determinant formula (see for example |[GK94, 3.6.1]), and it belongs to a
quadratic extension of the field of rational numbers. For example, if A4 is the canonical simplex

e Ri—kl’ Zfi‘ll Ai = 1} then Vol(Ay) = \/Z!ﬁ'
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For the Gaussian distribution, ¢s and pg can be determined in terms of solid angles (see
[Rib06]) arising in Table . These coefficients generally involve the number m and Euler’s T’
function, and thus they are irrational.

Corollary 4.25 (MSLP is polynomial for fixed dimensions). Consider the problem Eq.
Assume that T,nga,...,np, f(supp&s), ---,t(supp&r) are fized integers, that (ct,&t)a<t<T
satisfies Assumption . Suppose in addition that, for all & € supp(&:), pre = P& = ]
and & are rational and that the random variable ¢; conditionally to {&§ = &£}, denoted by ¢, ¢, is
of the type considered in Theorem [{.23.
Then, Problem can be solved in a time that is polynomial in the input size (c1) + (1) +

Z?:Q Zfesupp(ﬁt)(<ct,§> + <§> + <pt,§>)'

Proof. We first show by backward induction that the epigraph epi(V5) is well described. The
dynamic programming equation Eq. (4.2)) allows us to compute a H-representation of epi(V;)
from a H-representation of epi(V;+1). Indeed, by Theorem we have

Vilwm—1) = Y. e > Pinie nelIiRI}LtQt,NK(xt?xt—l) , with
gesupp(§r)  NeNi¢ “

Qi Ne(Tt, T-1) 1= 5;\/\51} + Vir1(@t) + Ligy 2y _1)epi(e) -

We then have

epi(Qy,nie) = (epi(zy — 5ZN|§»’Ct) +epi(Vir1)) N (Pi(€) X R)

epi(V) = D pre D Prnje T 12 (epi(Qunie))
(esupp(§r)  NENe
recalling that 7z, 172"° denotes the projection mapping (z;_1, ¢, 2) + (241, 2). Well described
polyhedra are stable under the operations of projection, intersection, and Minkowski sum, see in
particular [GLS12| 6.5.18]. It follows that epi(V;) is well described. Then, the corollary follows

from Lemma Theorem and Theorem O

4.5.2 Multistage programming with approximate oracles

We finally consider the situation in which the law of the cost distribution is only known approx-
imately. Hence, we relax the notion of cone-valuation oracle, as follows.

Definition 4.26 (Weak cone-valuation oracle). Let ¢ € L(Q, A,P,R™) be an integrable cost
distribution. We say that ¢ admits a polynomial time weak cone-valuation oracle, if there exists
an oracle which takes as input a rational polyhedral cone N together with a rational number
e > 0, and returns a rational number py and a rational vector ¢y such that |py — pn| < & and
Iy — enll < e, in a time that is polynomial in (N) + (¢).

Definition 4.27 (Weak first-order oracle). Let f be a rational polyhedral function. We say that
f admits a polynomial time weak first-order oracle, if there exists an oracle that takes as input
a vector x and either returns a hyperplane separating x from dom(f) if x ¢ dom(f) or returns
a scalar f and a vector § such that |f — f(x)| < & and d(§,8f(x)) < e if x € dom(f), in a time
which is polynomial in (x) + (g).

Remark 4.28. In our definition of weak first order oracle, we require that feasibility (x €
dom(f)) be tested exactly, whereas the value and a subgradient of the function are only given
approximately. This is suitable to the present setting, in which the main difficulty resides in the
approximation of the function (which may take irrational values for relevant cost distributions).
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We now rely on the theory of linear programming with weak separation oracles developed
in [GLS12]. Let C C R? be a convex set, for ¢ > 0, let S(C,¢) := {x € R? | ||z — y| < &} and
S(C,—¢) := {x € R | B(x,¢) C C} where B(x,¢) denotes the Euclidean ball centered at z of
radius €. A weak separation oracle for a convex set C' C R? takes as argument a vector z € R?
and a rational number € > 0, and either asserts that = € S(C,¢) or returns a rational vector
v € R%, of norm one, and a rational scalar §, such that v'y < 'z + ¢ for all y € S(C, —¢).

Theorem 4.29 (Weak cone valuation to weak first-order oracle). Consider the value functions
of problem defined in Eq. . Assume that T,ng,...,ny, {(supp &2), - - - ,f(supp &r) are
fized integers, and that (ci,&)o<i<T Satisfies Assumption . Assume in addition that, every
vector & € supp(&;) has rational entries and that the probabilities py¢ == P[& = €] are rational
numbers. Assume finally that the diameters of domV;, for t > 2, are bounded by a rational
constant R, and that every random variable ¢; conditionally to {§; = £}, denoted by c,¢, admits
a polynomial-time weak cone-valuation oracle (see Definition .
Then, for allt > 2, Vi admits a polynomial time weak first-order oracle.

Proof. The proof is similar to the one of Theorem The main difference is that we need an
a priori bound R on the diameter of dom V;, so that if d(g, 0Vi(x)) < ¢, then, using Cauchy-
Schwarz inequality, V;(y) — Vi(x) > g - (y — ) — eR holds for all y € dom V. Together with and
approximation of Vi(z), this allows us to get a weak separation oracle for the epigraph of V;. [

Corollary 4.30 (Approximate (MSLP) is polynomial-time for fixed recourse dimension m).
Consider Problem . Assume that T, na, ..., np, f(supp &), - - - ,H(supp &r) are fized integers
Assume finally that the diameters of dom Vy, for t > 2, are bounded by a rational constant R,
and that for all § € supp(&;), the random variable ¢; conditionally to {&§ = £}, denoted by ¢ ¢,
admits a polynomial-time weak cone-valuation oracle.

Then, there exists an algorithm that either asserts that Problem Ejq. is infeasible or find
a feasible solution x* whose cost does not exceed the cost of an optimal solution by more than €,

in polynomial-time in (c1) + (&1) + Y {—a Xeesupp(en) ((€r.e) + (€) + (pre)) + (R).

Proof. This follows from Theorem using the result analogous to Lemma for weak
separation oracles, see [GLS12, 6.5.19]. O

Finally, we show that every absolutely continuous cost distribution, with a suitable density
function, admits a polynomial-time weak cone-valuation oracle.

Definition 4.31. We shall say that a density function f : R™ — Ry s combinatorially tight if:

1. there is a polynomial time algorithm which, given a rational number € > 0, returns a
rational number r > 0 such that fHJ»‘||>T flz)dr < e.

2. there is a polynomial time algorithm, which given a rational vector x € R™, and a rational
number € > 0, returns an € approximation of f(x).

The terminology is inspired by the notion of tightness from measure theory (analogous to
condition 1 in Definition .

We shall need a classical result on the numerical approximation of multidimensional integrals,
which can be found in [DR84]. The total variation in the sense of Hardy and Krause, || f|Bvuk,
of a function f on a n dimensional hypercube is defined in [DR84, Def. p.352]. In particular, if
f is of regularity class C", || f||pvuxk is finite. The error made when approximating the integral
of a function of n variables by its Riemann sum taken on a regular grid with k points is bounded
by (n||fllsvak)/k"", see the theorem on p 352 of [DR84].
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Proposition 4.32. Suppose that a cost distribution ¢ admits a density function f: R™ — R,
that is such that the function (14| - ||)f is combinatorially tight and that it has a finite total
variation in the sense of Hardy and Krause, bounded by an a priori constant. Suppose that the
dimension n is fixed. Then, ¢ admits a polynomial-time weak cone valuation oracle.

Proof. Given a rational cone N, we need to approximate the integrals [, f(c)dc and [y cf(c)dc,
up to the precision €. Using the tightness condition, it suffices to approximate the integrals of
the same functions restricted to the domain N, := N N B (0,7), where By (0,7) denotes the
sup-norm ball of radius r, and the encoding length of r is polynomially bounded in the encoding
length of . We only discuss the approximation of [y cf(c)dc (the case of [y f(c)dc being
simpler). We denote by ¢y, the approximation of [y cf(c)dc provided by taking the Riemann
sum of the function ¢ — cf(c) over the grid ([—r,r))"” N ((r/M)Z)", which has (2M)" points.
Then, setting g := (1 + | - ||)f, it follows from the result [DR84, Th. p 352] recalled above
that || [y cf(c)de — ¢n, || < nllgllBvak/(2M). Hence, for a fixed dimension n, we can get an ¢
approximation of [y cf(c)dc in a time polynomial in the encoding length of . O

Remark 4.33. Proposition[f.39 and Corollary[{.30 entail that, under the previous fized-parameter
restrictions (including dimensions of the recourse spaces), the MSLP problem is polynomial-time
approzimately solvable for a large class of cost distributions. This applies in particular to dis-
tributions like Gaussians, which are combinatorially tight. In this case, condition 1 of Defini-
tion whereas condition 2 follows from the result of [BB8S], implying that the exponential
function, restricted to the interval (—o0, 0], can be approximated in polynomial time.
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5.1 Introduction

In this chapter, we show a local exact quantization result for 2SLP with generally distributed
constraints and fixed recourse. We present this local exact quantization through the notion of
adapted partition. This allows us to present an explicit geometric oracle to construct adapted
partition and to derive a necessary and sufficient condition for a partition to be adapted even
for non-finitely supported distributions. The content of this chapter, without Section [5.5 was
published in Operation Research Letters [FL22b] and Section can be found in Section 3 of
the preprint [F1.22a].

5.1.1 Setting

We consider the following 2-stage stochastic linear problem with fixed recourse:

”'%gi {ch +E[Q(z,8)] | Az = b}, (2SLP)
=V (x)

where the expectation is with respect to & = (T', h) an integrable random variable on (£, .4, P)
taking values in = € R x Rf, and the recourse cost is

Q€)= min {d"y | Te+ Wy =n}. (5.1)

The dual formulation of the recourse problem is

D o T T
Q7 (x,&) = max {(h Tz) N| W qu}. (5.2)
We define
X :={zx R} | Az = b}, (5.3a)
D:={NeR | W'X<qg}. (5.3b)

In the rest of the chapter, we assume D # () which implies by duality: Q(z,¢) = QP (z, €).

For the sake of simplicity, we assume throughout the chapter that we are in a relatively
complete recourse setting, that is X C dom(V). Most results can be obtained without this
assumption if we add feasibility cuts (see Section [5.3.2)).

5.1.2 Literature review

Most results for 2SLP with continuous distributions rely on discretizing the distributions. The
Sample Average Approximation (SAA) method samples the costs and constraints. It relies on
probabilistic results based on uniform laws of large numbers to give statistical guarantees, see
[SDR14, Chap. 5] for details. Obtaining an approximation with satisfying guarantees requires a
large number of scenarios. Otherwise, when the support of the random variables are simplices,
we can leverage convexity inequalities (like Jensen’s and Edmundson-Madansky’s) or moments
inequalities to construct finite scenario trees such that the discretized problem yields upper or
lower bound of the continuous one (see e.g. [Kuh06l [EZ94Db]).

In each of these approaches, we solve an approximate version of the stochastic program, with
or without guarantees. In any case, the number of scenarios increases the numerical burden of
2SLP.

In order to alleviate the computations, we can use scenario reduction methods. Some are
based on heuristics, aiming at matching properties of the underlying distribution (e.g. matching
moments), others are based on adequate distances on the scenario tree (see [DGKRO03, HROT]).
Alternatively, APM methods iteratively solve an aggregated version of 2SLP over a partition of
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the uncertainty space by replacing each subset of scenarios by its weighted mean. We say that
a partition is adapted to a first-stage control x if the aggregated recourse problem has the same
optimal objective value as the recourse problem with the original distribution. After solving an
aggregated 2SLP, an APM method call a (adapted) partition oracle to define a new (adapted)
partition at the current first-stage control. APM were first introduced by Song and Luedtke
[SL15], who gave a partition oracle designed for fixed recourse 2SLP with finitely supported
random variables. Van Ackooj, de Oliveira and Song [vAdOS18| improved the performance
of APM by combining it with level decomposition methods ideas. Finally, Ramirez-Pico and
Moreno extended the scope of APMs, under the name GAPM, in [RPM21] to problems with
continuous distributions for the right-hand side and technology matrix (and fixed recourse cost
vector and matrix). They gave a sufficient condition for a partition to be adapted. They also
provided adapted partition oracles for some specific problems.

5.1.3 Contributions

The main contributions of the chapter are the following: i) using polyhedral geometry tools we
provide a general adapted partition oracle, ii) we give a new necessary and sufficient condition
for a partition to be adapted to & even in the non-finitely supported case, iii) by casting APM
methods as accelerated L-Shaped algorithms where tangeant cones are added instead of tangeant
planes (affine cuts), we give convergence and complexity results for APM methods.

5.1.4 Structure of the chapter

Section presents the APM framework and a necessary and sufficient condition for a partition
to be adapted to &. Section uses the link between APM and L-Shaped to obtain convergence
and complexity results. Finally, Section presents numerical results, while Section briefly
extends GAPM to non-fixed recourse problem.

5.2 General framework and geometric oracle

In this section, we start by presenting a generic framework for APM algorithms, which depends
on partition oracle choice.

We proceed by giving a necessary and sufficient condition for a partition oracle to be adapted,
and then a geometric adapted partition oracle.

5.2.1 Partition, refinements and APM framework

A partition P of Z is a collection of non-empty pairwise disjoint subsets covering =, i.e. UpcpP =
E,PNP =0and P # () for P # P' € P. Let P be a measurable subset of Z. We denote by
E[ - |P] the conditional expectation E[ - | € P] and P[P] the probability P[£ € P]. We say
that two measurable subsets of E, F' C = are P-equivalent, denoted E ~p F, if and only if they
differ by a P-negligeable set

E ~p F < P[ENF| =P[E] = P[F], (5.4)

similarly we denote
EcpF < P[ENF|=P[E]. (5.5)

A P-partition of = is the equivalence class of all partitions that are P-equivalent.
Let P and R be two P-partitions of Z=. We say that P refines R, denoted P <p R, if

VPeP,dReR, PCpR, (5.6)
The common refinement of P and R is given by

PAR={PNR|PeP,ReR} (5.7)
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Definition 5.1 (Expected recourse cost of partition). For P a P-partition of 2 C R>*™ x R*
we define

Vp:x— Y P[P]Q(z,E[¢|P]). (5.8)
pPeP

Let & € dom(V). We say that a P-partition P is adapted to & if
o Vp iswalid, i.e. Vp(z) =V (z) :=E[Q(z,&)] for all z € R".
o and Vp is tight at & ie. Vp(i) =V (%) :=E[Q(%,E)].

The following lemma shows that, by convexity, a finer partition yields a larger expected
cost-to-go function.

Lemma 5.2. Let P and R two P-partitions of = then

P<xpR = Vp2=Vg. (5.9)
Moreover,
Vpar = max(Vp, Vg). (5.10)
Finally,
Q(HE[E]) <Vp < V. (5.11)

In particular, in this setting with deterministic recourse matrix W and cost ¢, for all partition
P, Vp is valid. We then only have to prove Vp(Z) = V(&) to prove that P is adapted to Z.
However, this would not be the case when we will extend to general cost q in Section

Proof. Since P is a P-partition lgcr = > pep Lernp almost surely. For any measurable set
E C E, E[¢l¢cr] = P[E]E[€|E]. We then have,

P(RIE[E|R] =E[€lecr] = Y E[€lepnp] (5.12)
PeP
= Z P[RN P|E[¢|RN P] (5.13)
PeP

When P[R] > 0, by dividing this equation by P[R], we obtain that E [£|R] is equal to the convex
combination Y pep IP[]P?E]P [€|R N P]. Finally, consider # € X, the convexity of £ — Q(%,¢)
yields

P[P N R]

i, E[¢|R]) < EIPNR 5.14
QEEEIR) < 3~ QEElEPN ). (5.14)
Then, if P <p R,
=Y P[R E[¢|R]) (5.15a)
ReR
<Y Y P[PNR]Q(%E[PNR)) (5.15b)
PeP RER
= Y P[PIQ(z,E[¢|P]) = Vp(i) (5.15¢)
PeP

The last line follows from the fact, that for P € P, with P[P > 0] and P <p R, there exists a
unique R € R such that P[P N R| = P[P], all other R € R being such that P[P N R| = 0.

Eq. is a direct consequence of Vparpr = Vp and Vpapr = Vpr. Thus, Vpap >
max(Vp, Vps). Coupling this result with P <p {E} yields the left inequality of Eq.
while the other can be found in [RPM21] Prop. 1]. O

With those definitions we present in Algorithm [5.1] a generic framework for APM methods.
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k0, 20 < +o0, 2) + —oc0, PV + {E} ;

while z’f, — zf > ¢ do

k<+—k+1;

Solve 2¥ < mingex ¢’ + Vpr—1(z) and let x¥ be an optimal solution ;
Call the oracle on z* yielding P, ;

Pk PR A Por ;

7 2+ min (z[kj_l, ek + Vi (xk)) ;

[~ I U N

8 end
Algorithm 5.1: Generic framework for APM.

5.2.2 Coarsest adapted partition

In this section, we define R;, a particular P-partition, and prove that it is, in a generic case, the
coarsest partition adapted to & € X, i.e., the only partition adapted to & that refines Ry is Ry
itself. Indeed, we are looking for partitions that yield a precise approximation of recourse cost
(exact at & in the adapted case), while having the smallest possible number of elements.

When the distributions have finite support, [SL15] characterized the partitions adapted to
Z. Building on this result, a sufficient condition for continuous distribution can be found in
[RPM21, Prop. 2]. We now prove that, for any distribution, a partition is adapted to & if and
only if it refines the collection R; defined in (5.17b)). Unfortunately, Rz is not necessarily a
P-partition, thus we also provide a partition Rz < Rz (see Figure for an illustration).

Recall that D = {\A € R | WTA < ¢} and that the normal cone of D at \ is the set
Np(A) := {¢p € R |ypT (N —)) < 0,¥N € D}. We denote by ri(N) the relative interior of a
cone N. Let N(D) := {Np(A) |\ € D} be the normal fan of D, i.e., the (finite) collection of all
normal cones of D (see Chapter [3). We denote by (D)™ := {N € N(D)|VN' € N(D),N C
N’ = N = N'} the collection of the maximal elements of N (D) (i.e., full dimensional cones
up-to lineality spaces).

Theorem 5.3. Fiz i € dom(V) and N a cone in R™. We define Ey z and Ey z, subsets of E,

as
Enz ={(€Z|h—-Ti cri(N)} (5.16a)
EN@ ={{€=Z|h—-Tiec N} (5.16b)
We define Rz and Rz as
Ri = {EN,QE N € N(D)} (5173)
ﬁj = {EN@ ’ N € N(D)max}' (517b)
Then,
P <xp Ry = Vp(&) =V () (5.18a)
P <p 750 <~ Vp(i‘) = V(i’) (5.18b)

Remark 5.4. When the distribution of € is absolutely continuous with respect to the Lebesque
measure of 2, Ry ~p R, thus R is the coarsest partition adapted to & € dom(V).

If € does not admit a density, Ry is still an adapted partition but not necessarily the coarsest,
which might not exist (see Fig. . Nevertheless, any adapted partition should refine R;.
Unfortunately, we cannot use Rz in Algorithm as we cannot guarantee that Ry is a P-
partition.
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) §2 &2 &2

: T : :

G ~ & Tt =& R ~ & Lo ~ &
(a) Rz (b) R (c) P (d) P’

Figure 5.2: Ry is a partition of Z into 6 elements, Rz is not a partition, P and P’ are two
distinct coarsest partitions (into 2 elements) with Rz < P < Rz and Rz < P’ < R;.

Remark 5.5. Note that Proposition 2 of [RPM21|] implies that all partition oracle returning
partitions satisfying assumption (7) of [RPM21] must be refinements of Rz by Theorem . In
the finite scenario case, our adaptedness condition is equivalent to Song and Luedtke’s condition
ISL15).

We preclude the proof by a technical lemma.

Lemma 5.6. Consider a set P C = such that P(P) > 0, and a first-stage control & € dom(V').
Then,

JREeRz, PCpR (5.19)
= Q(#,E[¢|P]) = E[Q(z,8)|P], (5.20)
JReRz;, PCpR (5.21)
< Q(z,E[¢|P]) = E[Q(%,&)|P]. (5.22)

Proof. Since IR € Rz, P Cp R implies 3R € Rz, P Cp R, we only need to prove the second
equivalence.

(=) Let P be such that there exists N € N'(D) with P Cp E ;. By definition of N'(D), there
exists a dual point Ay € D such that IV is the normal cone of D at Ay. By definition of a normal
cone, for all ¢y € N and all A € D, ¢ " (A — Ay) < 0. In other words, 9" Ay = maxyep ¢!\

As P C Ey 4, for P-almost-all £ € P, we have h—T'% € N. Recall that Q(&, ) = supycp(h—
T#) "\, thus, Q(Z,€) = (h — T#) " Ay. Hence,

E[Q(# €)|P] = E[(h — T#)TAy|P] (5.23a)
=E[h—T#P] Ay = Q(&,E[¢|P]) (5.23b)

as N is convex and E[h — T'Z|P] € N.

(«=) For ¢ € R, we denote the face DY := argmax,cp %' A. Note that, for all ¢, 4’ € ri(N),
with N € (D), we have DV := D¥ = D¥',

Assume that there is no R € R; such that P Cp R. Then, for all R € Rz, P[PNR] < P[P].
Since P[P] < ZRE@z P[P N R], there exist Ry and Ry in R; such that P[P N R;] > 0 and

P[P N Ry] > 0. Let A € D such that Q(#,E[¢|P]) = E[h — T#|P]' A d.c., A\ € DEIR-T3P],

Let N1 and Ny € N(D)™** be such that Ry = En, ; and Ry = Ep, 3. Since Ny # Ny are
maximal, DNt N DN2 = (). Thus, there exists at least one i € {1,2} such that A ¢ D™i. Then,
E[Q(#,&)|PNR;] >E[h—T#|PNR;] A
Note that Q(&,&) = op(h — T'%), where op is the support function of the polyhedron D,
thus € — Q(i,€) is a polyhedral function. Further, its affine regions are the elements of R .
By convexity, for any measurable set A, E[Q(%,&)|PNA] > Q(&,E[¢|P N A]) which is equal
to maxAxeDE[h—TiﬂPﬂA]T)\’. Since A € D, we have E[Q(Z,&)|PNA] > E[h—T:ﬂPﬂA]TA.
Thus, E[Q(#, &)|P] > Q(#,E[€|P]). O
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Proof of Theorem [5.3 By definition P <p Rz, if and only if, for all P € P there exists a cell
R € R; such that P Cp R. By Lemma this is equivalent to, for all P € P, Q(z,E[¢|P]) =
E[Q(&, &)|P]. Now, by Jensen’s inequality, this equality (for all P € P) is equivalent to the
equality of a convex sum like

> Q&E[EP))P[P] = Y E[Q(,&)|P|P[P].

PeP PeP

Law of total expectation yields (5.18)). O
Remark 5.7. Let x* be an optimal solution of

- T
x .24
min ¢z + Vp« () (5.24)

where P* <p Ryr. Then, x* is also a solution of Problem (2SLP)). In other words, P* is a
0-sufficient partition according to [SL15, Def. 1.2].

5.3 Comparison with other algorithms and convergence

In this section, we show that the partition-based methods can be seen as an acceleration of the
cutting plane method. It then gives us a finite convergence proof with a bound on the number
of steps.

5.3.1 Adapted partition and subdifferential

We show that, for any first stage control x € X, if the partition is adapted to x, then the
subdifferential of approximate expected recourse cost coincides with the subdifferential of the
true expected recourse cost.

Lemma 5.8. Let & € dom(V) and P be a refinement of Rz, i.e. P < Ry, then
OVR, (%) C OVp(&) C OV (%) (5.25)
Furthermore, if & € ri(dom(V)),

VR, (¥) = OVp(F) = OV (7) (5.26)

Proof. Let g € OV, (¥) then for all z, Vg, (x) > Vg,(Z) + ¢ (z — &). By monotonicity (see
(G-9) Vp(z) > Vr,(z) and as R; is adapted to &, we have Vg, (¥) = V(&) = Vp(Z). Thus,
Vp(z) = Vp(&) + g' (x — &) and g € OVp(Z). The proof for the second inclusion is similar.

Let # € ri(dom(V)), we now prove that OVg_ (#) = OV (Z). Recall that DV = DV =
argmax,cp ' A\, for ¢ € 1i(N) where N € N(D). By [SDRI4, Prop 2.8 p.37], oV (¥) =
E[—TTD" T + Nyomv)(£). Thus, since & € ri(dom(V)),

V(i) =E[- T D" T (5.27a)
=E[ Y —lp_riciT DV] (5.27b)

NeN (D)
=E[ Y —l¢cp,,T'DV] (5.27c)

NeN (D)
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Further,

E[leepy, T'DV] (5.27d)
= P[En]E[T|En;] DY (5.27¢)
= P[Ens]E[T|Ey ;] DER-THEN:] (5.27f)

(5.27g)
And by definition of R; in , we get

av(#) = > —P[PIE[T|P] DFIR-TF] (5.27h)

PeR;
= Y P[P]0.Q(&,E[¢|P]) (5.271)

PeR;
— OV, (¥) (5.27j)
0

5.3.2 Link with L-shaped and Benders decomposition

The classical L-shaped method (see e.g. [BL11l Chapter 5]) is a specification of Benders decom-
position to 2SLP with finitely supported distributions. The core idea consists in representing
the expected recourse cost in (2SLPJ), by a lift variable

. T .
Luin {c r+0|(z,0) € epl(V)}. (5.28)

We then relax the epigraphical representation (z,6) € epi(V), replacing it by a set of valid
inequalities called cuts, i.e.

min ¢ x40 (5.29a)
zeX,0eR
st. glz+v<o, Y(g,v) € O, (5.29b)

flz <7, V(f, f) e F. (5.29¢)

More precisely, assume that we have such a relaxation of . Let zF be an optimal first
stage control of this relaxation. If it is admissible, meaning that for all scenario £ there exists
an admissible recourse control y¢, we compute, through duality, a subgradient g* € v (zF).
This yields a new optimality cut 0 > (¢*)" (z — 2¥) + V(2*), which is added to O. If z* is not
admissible we can add a feasibility cut to F instead by using dual optimal extreme ray (see
[BL11, §5.1.b]). We then solve our strengthened relaxation to obtain z**+1.

The L-Shaped method specifies that the subgradient ¢g* can be obtained as an average over
¢ of subgradients ¢"¢ € 9,Q (2", €). In particular, it means that, to compute the subgradient,
we can solve |supp(€)| smaller LP instead of a large one.

Remark 5.9 (L-shaped for continuous distribution). When the distribution are non-finitely
supported, we cannot apply naively this method as there is a non-finite number of scenarios.
Nevertheless, we can still approzimate epi(V) with cuts. We can compute § = Vg, (%) and
a subgradient g € OVgr,(Z) by solving |Rz| linear problems of the form through eract
quantization. By Theorem 0 = Vg, () = V(). Further, g € 0Vg, (Z) C OV (&) by
Lemma[5.8 Then (0,9) define an optimality cut.

Lemma shows that, at each step k of Algorithm we add a collection of valid cuts
which are exact at ¥ to our collection of cuts. This means that APM methods can be seen
as a Bender’s decomposition method where we add more than one exact cut per iteration. In
particular, when z* € ri (dom(V)) we add the whole tangent cone of epi(V) at x instead of a
single cut.
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5.3.3 Convergence of APMs

We start by showing that the bounds generated in Algorithm [5.1] are monotonic.

Lemma 5.10. Assume that the partition oracle used is adapted. For every computed step k we
have

71 < 2f <val @SID) < 2f; < 2 (5.30)
Proof. Since P*¥ <p P*~1, by Lemma we have, for all x € X,

<c'a+ Vpi(x) (5.31a)
<clz+V(x) (5.31b)

Mlnlmlzmg over x ylelds zk ! < < val (2 m For any k, we have that P¥ is adapted to
zF € X, hence Vpi ) V( thus val 2SLP) < ¢"ag + Vpr(2¥). Further, by deﬁnition of
z¢ in Algorithm 2V = mln,{gk e’ 2" 4 Vpr (2%), yielding val (2SLP)) < z@ < z . O

We now prove finite convergence of any APM.

Theorem 5.11. Assume that the partition oracle used is adapted. If X C Rt has a finite
diameter M € Ry and x +— c'x + V(x) is Lipschitz with constant L then the partition based
Algomthmﬁnds an e-solution in at most (LM + 1) iterations.

Proof. We adapt the classical proof of Kelley’s cutting plane algorithm to APMs. Let &k € N
and 1 < i < k, we have that V(z;) = Vpr-1(x;) = Vpi(x;). Let g € OVpr-1(x;) C OV (z;) such
that ||c + g|| is bounded by the Lipschitz constant L then

2 — 2 <elal + Vpi(ah) — (eTaf + Vi (2F)) (5.32a)
=c' (@ —a") + Vpio 1( ) = Vpr-i (24)) (5.32b)
el (@t —ab)—g" (& - 2h) (5.32¢)
< e+ gll2)l2’ —$k|l2 Lij* — z*||2. (5.32d)

Then, for k such that, ¢ < 2/ — zF, we have ¢ < L||z* — 2|, in particular ||z* — z*| > /L.
By definition of M there are at most (% +1)" balls of radius /L in X. An e-solution being
obtained as soon as two points are in the same ball. O

5.4 Numerical examples

In this section, we detail the actual computation required by Algorithm and illustrate the
algorithm on numerical examples.

5.4.1 Detailing computation

In the following two sections, we give more details on how to compute the Lines [ to [7] of
Algorithm [5.1]
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5.4.1.1 Master problem and subproblems

Once E[¢| P] and P[P] have been computed for P € P¥~1, by Eq. (5.8) and Eq. (5.1)), the
problem of Line [] is reduced to the following linear problem

min c'z+ > P[Plqyp (5.33a)
2eX,(yp)e(RT)PF Pepk
s.t. E[T|P]x + Wyp = E[h|P]
VP e PF. (5.33b)

Moreover, to compute the upper bound in Line [7, we need to solve at most |P¥| linear
problems of dimension m

Q(z*,E[¢|P]) := min ¢'yp (5.34a)
yp€eER

+

st. E[T|P]z" + Wyp = E[h|P] (5.34b)

5.4.1.2 Refinement, expectation and probabilities

Recall that we can store a polyhedron E, either as a family of constraints (M, ) such that
E = {x € RY| Mz < 8} (H-representation) or as families of vertices (v;);es and rays (r;) e such
that £ = Conv(v;)ier + Cone(r;)jes (V-representation), see Section Both representation
are implemented polymake, an open source software and julia library |[GJ00]. We can switch
between representations through algorithms such as the double description [FP96].

We can simultaneously compute conditional expectations, probabilities and refinement as
detailed in Algorithm

Data: P*~! and R+ the partition to refine, second stage distributions T" and h.
1 Set PF .= )
2 for P € P*~! and R € R« do
3 Set P := PN R;
if P[P'] > 0 then
Store P[P'], E[T|P'] and E[h|P'];
Set Pk :=PF U {P'};

end

® N o ;A

end
Algorithm 5.2: Refinement procedure.

In this algorithm, the computation of probabilities on polyhedra in Line [f is a §P-complete
problem in the general case, although, for a large class of distributions, formulas exist (see
Appendix [Bland [DLDK™12, [Las21]).

5.4.1.3 Explicit partition oracle

In this section, we explain how to compute, for & € X, Rz = {Enz|N € N(D)} where
E'N,gfj = {(T, h) | h—Tzx € l“i(N)}.

The computation of the normal fan N (D), already implemented in polymake, can be done
thanks to a double description and active constraint sets. Note that if N € N (D), then En ;
is a relatively open polyhedral cone of =. In particular, if N := {¢| My < 0} is given in
a non-redundant H-representation where M € RP*!| we have 1i(N) = {¢)| M) < 0}. Then
EN@ = {f S E|Hx§ <K 0}, with H* = (—le” c—x M M)
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Unfortunately, obtaining an H-representation of the normal cone, from the usual V-representation,
requires a double-description which is numerically intractable in large dimension (see McMullen
bounds [McM70]).

The double-description can be avoided if the technology matrix T' = T is fixed. Indeed, in
this case En z ~p {T} X (T'#+1i(N)). Thus, we can compute, at the beginning of the algorithm,

a V-representation of all N € N(D), and easily deduce a V-representation of Ey ; by adding
Tz to each representant ray.

5.4.2 Numerical examples

We applied Algorithm [5.Tjwith our geometric oracle to the problems LanDs and CV@R of
[RPM21]. We obtained the same partition, and thus the same numerical results. Finally, we
treat the problem Prod-Mix for which no partition oracle were given in the literature. Our code
is available at https://github.com/maelforcier/GAPM.

5.4.2.1 Energy planing problem - LandS
We applied numerically our method to the LandS problem and constated that our geometric
oracle returned the same partition as [RPM21].

5.4.2.2 Conditional value-at-risk linear problems

For the conditional value-at-risk problem in [RPM21], note that our geometric oracle yields the
same partition:

Dy, o A
Q7 (%,¢) : max (=% r*=T1)A (5.35a)
st. 0<A<1 (5.35b)

Here D = [0,1] and N(D) = {R7,{0},R*} Then, if ¥ # 0, Rz = {{r|z"r > -7}, {rli"Tr =
—7}{rl#Tr < —7}}.
5.4.2.3 Prod-Mix

We adapted the problem Prod-mix of https://stoprog.org/SavedLinks/IBM_StoExt_problems/
node4.php|as

I:IEIIJI —c'z+E[q"y] (5.36)
st. Tr—y<h (5.37)
z,y 20, (5.38)

U[0.8,1.2] U[36,44]
follows the uniform distribution (U4[5970,6030], ¢/[3979,4021]). Algorithm gave the results
summed up in Table

To compare our approach with SAA, we solved the same problem 100 times, each with 10’000
scenarios randomly drawn, yielding a 95% confidence interval centered in —17711, with length
4.4. This statistical confidence interval required 2058s of computation. By APM, an exact gap
smaller than 4.4 is obtained after iteration 6, that is in 23s, which is here roughly the time
required for solving one SAA. Thus, Algorithm can be useful to find accurate values.

The most time-consuming parts of the algorithm are the computations of volumes which take
85% of the total time, because polymake only implement exact computations, which was proven
to be §P-complete [DF88]. To improve Algorithm we could use precise rapid approximation
volume algorithms, see e.g. [CV16].

where ¢ = (5,10), ¢ = (12,40), T follows the uniform law <L{[3.5,4.5] up, 11]) and h'
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k 2% zE 2k — 2k | Total time | |P¥|
1 | -18666.67 | -16939.71 | 1726.96 0.57 s 4

2 | -17873.01 | -17383.73 | 489.28 21s 9

4 | -17744.67 | -17709.00 | 35.67 9.1s 25
6 |-17713.74 | -17711.37 2.37 23.7s 49
8 | -17711.71 | -17711.56 0.15 50.0 s 81
10 | -17711.57 | -17711.56 0.01 88.0 s 121

Table 5.1: Results of Algorithm for Prod-Mix

5.5 Extension to general cost

We now provide an adapted partition oracle for problems with finitely supported recourse matrix
W and cost q. The convergence results of Section [5.3] can directly be applied.

By Assumption the admissible primal set {y € R™ | Tz + Wy = h,y > 0} is non-empty
and compact. Then, by strong duality, we can rewrite @ defined in Eq. as

Q(z, W,q,T,h) = masx {(h=Tx)"\ | W'A<q) (5.39)
€
We now define the dual admissible set Dy, as
Dwg:={NeR | WIA< g} (5.40)

When W and q are fixed, the value of Q(&, W, q,T,h) depends on which normal cone h — T'%
belongs to. Thus, we finally define
ENJV; = {(T, h) ’ h—-Tzx e rl(N)}
Riwg = {Enz | N € N(Dwyg)}

(5.41a)
(5.41b)

We begin with the finitely supported g case as a warm-up.

Remark 5.12 (Finitely supported q). We can show that, when W and q are fized, Rz wq is
an adapted partition to & (see Theorem[5.3). If supp(W') and supp(q) are finite, we can extend
this result to show that {{W} x {q} x Riw,q| (W.q) € supp(W,q)} is an adapted partition to
xT:

]E [Q(j% Wv q, Tv h’)]
= Y E[Q@W,qT.h)|W=W,q=qP[W=Wq=q
(W,q)€supp(W ,q)

- X > Q(#E[W,qT,h|(T,h)c RW =W,q=q|)P[(T,h) € R,W = W,q =]
(W,q)esupp(W ,q) RER: w,q

(5.42a)
(5.42b)

(5.42¢)

We now extend this result to the case where q has a non-finitely supported distribution. This
extension relies on a partition Sy of RY*™ such that ¢ — Riw,q is constant on each S € Syy.
Actually, this partition Sy is the collection of relative interiors of secondary cones X -fan® (W)

(see Definition (3.20)).

Let Sy be the collection of relative interiors of the elements of ¥ -fan(1V):

Sy = X-fan®(W) = {ri(9) | S € T-fan(W)}. (5.43)
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In particular; the elements of Sy are relatively open (convex) cones of R™. Further, note that
Proposition provides constructive representation of 3 -fan(W) and thus of Sy, which paves
the way toward explicit computation of Syy.

Lemma 5.13. Let W € R™>*™ and S € Sy. For every q,¢' € S we have Rew,g = Raw,y -
Consequently, instead of considering an infinite number of R.w,q parametrized by q, we can
consider a finite number of R w s parametrized by S € Sy where

Raw,s := Raw,q for an arbitrary g € S. (5.44)

Proof. Let D := {(u,c) € R x R™|W Ty < ¢} be the dual coupling polyhedron, and ¢ the
orthogonal projection of R x R™ to R™ Recall that C(D,7#¢) is the chamber complex of D
along ¢ (see Definition . By Theorem m the chamber complex C(D,w/"?) is equal
to the secondary fan X -fan(WW), and then for all S € Sy there exists v € C(D, wt?) such that
S =ri(y). By Proposition for all S € Sy, we have the normal equivalence property, i.e. for
all ¢,¢' € S, N(Dw,4) = N(Dw,y). Then, since by definition Ry w,q = {Eng | N € N(Wwg)},
we have Ry wq = Raw,qy forall ¢, ¢ € S. O

We now leverage this reduction to a finite number of R, w g to define an adapted partition.
By using the basis decomposition theorem (see Theorem , we deduce the following lemma
which give regions where we can interchange the function Q with the expectation. This lemma
can be seen as an exact quantization result. For sake of simplicity, we make a slight abuse of
notation with, for any event A € A,

Q(=.E[(W,q.6)|4]) = (=, E[W|4],E[q|4], E[¢]4]). (5.45)

Lemma 5.14. Let W € R*™. Assume that (T,h) and q are independent random variables,
then, for all S € Sy and R € Rz w,s,

Q(aé,W,E[q,T,h lge S, (T,h) e RD = E[Q(aé,w,q,:r,h) lge S, (T,h) e R] (5.46)

Proof. Let S € Sy and R € Ry w,s. There exists N € N(Dyy4) such that and all (T, h) € R, we
have h —T% € ri(N) for all (T, h) € R. In particular, by the basis decomposition Theorem
in standard form, there exists a basis B C [m] such that

VYge S, Y(T,h)€R, Q(&,W,q, T, h) = ¢yWg'(h —T%) (5.47)

Let B such a basis. By independence of (T, h) and g, we have

E[Q(#,W,q,T,h) | g€ S,(T,h) € R =E[qgyW5'(h—Ti) | q€S,(T,h) € R] (5.48a)
=Elq} | g€ S)WL'E[h —T% | (T,h) € R] (5.48b)
=Q(&,W,Elq|q<€ S|,E[T,h|(T,h) € R]) (5.48¢)

Indeed, by convexity of S (resp. R), we have E[q | g € S] € S (resp. E[T,h | (T, h) € R] € R).
O

By summing over all W € supp(W), all S in Sy and R € Rz w5 and applying this lemma
for every term of the sum, we can now deduce an explicit adapted partition.
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Theorem 5.15 (Adapted partition for general second stage cost q). Assume that q and € are
independent conditionally to W and that supp(W) is finite. We define Pi the following partition

Pi={{W}xSxR | Wesupp(W),SeSw,RecRsws} (5.49)
then Py is an adapted partition to X.
Proof. We denote Ay, s r the event {W =W, q € S, (T, h) € R}, we then have

Vp, (&) := > P[(W,q,T,h) € P] Q& E[(W,q,T,h)|(W,q,T,h) € P]) (5.50a)

PeP;

= > > > PlAwsr Q& E[(W,q,T,h)|Awsgr]) (5.50b)
W esupp(W) SESWw RER:,w,s

= > > > PlAwsr] Q@ W,E[(q, T, h)| Aws.r]) (5.50¢)
W esupp(W) SESw RER: w,s

= > Y Y PlAwsk E[Q@& W,q, T h)| Aw,s ] (5.50d)
W esupp(W) SESw RER;: w,s

= Z Z Z IP[AVVMS’»R] E [Q(i, W7 q, T? h) ‘ AW,S,R} (5506)
Wesupp(W) SESw RERz, w,s

=E[Q(%,W,q,T,h)] = V(i) (5.50f)

Eq. @ comes from the definition of the partitioned expected cost-to-go function Vp,
(see ), and Eq. from the definition of Pz. The equality : is simply
the abuse of notation presented in . Conditioned by W = W we can use Eq. to
obtain :. Finally, law of total expectation yields :.

It remains to prove that Vp is valid , i.e. Vp, < V. For all W € supp(W) and S € Sy,
we denote Ey g (resp Pw.g) the expectation (resp. the probability) conditional to the event
{W =W, q € S}. Let z € R". By the law of total expectation, we have

Vp,(z)= > > PW=W,qeS] Y Pwslé€R] QaxW,Ews[(qg,T,h)| (T, h)€R)
W esupp(W) SeSw ReR: w,s
(5.51)

By the independence of g and (7', h) and Lemma we have
Q(z,W,Ew,s[(q,T,h) | (T,h) € R]) = Q(z, W,Ew,s[q],Ew,s[(T,h) | (T,h) € R]) (5.52)
By convexity of (T, h) — Q(x, W, q,T,h) and Jensen inequality, we have that

Q(z, W, Ew,s[q],Ew,s[(T,h) | (T, h) € R]) < Ew,s[Q(z,W,Ew,s[q], T, h) | (T, h) € R)]
(5.53)

Now, for an event A, note that we have, by applying the law of total expectation and
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Lemma twice, and with the abuse of notation Eq. (5.45)),

Ews[Q(z, W,Ews|q], T, h)|A] (5.54a)
= Y Ews[Lirner Q@ W,Ewslq],T,h)|A] (5.54b)
RERI,W,S
= Y Pws[(T.h) € R|Ews[Q(z,W,Ews[q],T,h) | AN (T, h) € R| (5.54c)
ReRz w,s
= Y Pwsl(T,h) € R|Q (z,Ew,s[(W.Ew,s[q],T,h) | AN(T,h) € R]) by Lemma
RERZ,W’S
(5.54d)
= Z Pws[(T,h) € R]Q(z,Ews[(W,q,T,h) | AN (T,h) € R]) by Eq.
ReRz w,s
(5.54e)
= Y Pwsl(T,h) € R|Ew;s[Q(z,W,q,T,h) | AN (T,h) € R] by Lemma [5.14]
RERz,W,S
(5.54f)
= Y Pwsl(T,h) € REw;s[Q(x,W,q,T,h) | AN (T,h) € R] under W =W
RERI,W,S
(5.54g)
=Ews|Q(z,W,q,T, h)|A] (5.54h)

By replacing A by (T, h) € R, for R € Rz w,s to Eq. (5.54h)), we have
]EVV,S [Q(xa VV; EW7S [Q] ) T7 h’) ’ (T7 h) € R] = EW,S [Q($7 Wv q, T7 h) | (Ta h) S R] (555)

Combining([5.51)),(5.52)) and ([5.53)), we now get

Vo)< S S BW=W,qeS] 3 Puslt € REws[Q(s, W,q,T,k) | (T,h) € K]
W esupp(W) SESw ReRsz w,s
(5.56)
By the law of total expectation, we see that the right term is equal to V(z). Thus, Vp, <

V(x). O
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6.1 Introduction

In this chapter, we present a framework called Trajectory Following Dynamic Programming
(TFDP), that encompasses SDDP algorithm and most of its variants to solve non necessarily
linear nor convex MSP. By proving an upper bound on the number of iterations, we deduce
complexity results that are new for most of these algorithms. The contents of this chapter can
be found in the preprint [FL22al.

More precisely, considering a probability space (€2, F,P), we define a sequence of random
variables, called noises, (&t)ieir], where [T] stands for {1,...,T} and T is the horizon of the
problem. Assuming that each & has finite support of size n., an MSP problem admits an
equivalent deterministic formulation with O(nl) variables. There are multiple algorithms (for
a recent introduction to the topic we recommend [RW21]), each with various extensions and
a rich literature, that exploit the special structure of the equivalent deterministic formulation,
among which L-Shaped method [VSW69, [LL93|, and its extension to MSP i.e. nested Bender’s
decomposition [Lou80, [Bir85], or progressive hedging algorithm [RW91].

However, each of these algorithms are numerically limited to small horizon 7. For larger
horizon we need some additional assumptions on the noises. If they have a limited memory
(i.e. that (&,&t+1,-.-,&+r) is a Markov chain - for adequate indices) this open the door
to Dynamic Programming methods, among which the Stochastic Dual Dynamic Programming
(SDDP) algorithm [PP91] algorithm, and its variants (e.g [BDZ17, [ZAS19, [ACdC20, PWB20]).
All these algorithms compute a state trajectory and then follow it to update approximations
of cost-to-go functions. We call them Trajectory Following Dynamic Programming (TFDP)
algorithms.

6.1.1 Problem setting

We present here the general setting of multistage stochastic problem (MSP) we are considering
in the chapter. We also introduce three assumptions that are assumed to hold true throughout
the chapter.

All random variables (noises &; or states x;) are assumed to be valued, for some adequate
integer ng, in R™ endowed with its Borel g-algebra. To model the constraint of our stochastic
problem, we consider for ¢t € [T], the following Borel-measurable set-valued applications & :
R™-1 x Z; = R™ where Z; := supp(&;) C R™. We further assume, for simplicity, that the first
noise is deterministic, that is =Z; = {£;}. For notational consistency we introduce zp € R™ as a
parameter, and x( as the random variable with support {xo}. We define recursively a sequence
of reachable set by

Xy = {zo} (6.1a)
x= U U X9 vt € [T). (6.1Db)

xtfleX[_l £€Et

Finally, we consider a sequence of loss functions ({;);cir) where £; : R™ x Z; — R U {+00}.

Assumption 6.1 (Compatibility of constraints). We make the following assumptions, for all ¢ €
11,

i) ¢; is a proper normal integrand;

ii) for all x; € X[, the random variable ¢;(x¢, &) is integrable (in particular ¢;(x¢, &) < 400
P-almost surely);

iii) for all z;—1 € X]_; and almost all & € E;_1, X(24-1,&) is a non-empty compact subset
of R™,
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Finally, we say that (mt)te[lzT] is an admissible policy if it is a sequence of random variables
such that, for all t € [T], x; € Xi(@—1, &) P-almost surely, and @; is measurable with respect
to o({&-}rey)- We denote X @ the set of admissible policies. Then, the multistage stochastic
problem (MSP) consists in minimizing over the set of admissible policies the sum of losses, that
is

reXad

T
min  E [ A gt)} (MSP)
t=1

Assumption ensures that (MSP) is well-posed and admits an optimal solution. It also
guarantees that we are in a relatively complete recourse setting in the sense that any sequence
of variable (x;),<; satisfying . € X (x,_1,&;), for 7 < ¢ can be completed into an admissible
policy (x;)r<7 such that E[Zthl Uz, &4)] < +o0.

As we are considering Dynamic Programming methods, the following stagewise independence
assumption is assumed to holds true.

Assumption 6.2 (Stagewise independence). (&) is a sequence of independent exogeneous
random variables, i.e. such that the law of & is independent of all decisions variables.
Leveraging Assurnption we can rewrite Problem (MSP)) in the following equivalent nested

form

min  {1(x1,&)+E min £y (o, +E|---+E min bp(xp, 6.2
z1€X1(x0,61) @ &) [x26X2(év17£2) 2(72,€2) [ [xTeXT(ITq,&T r(er fT)]]] (6.2)
which can be tackled by Dynamic Programming. To this end we introduce the following (back-
ward) Bellman operators. For a measurable proper Ls.c function V : R™ — R U +o0, we denote
the Bellman operator of Problem (MSP)) applied to V' by

o Rnt X Et+1 — R U {+OO}
Bi(V) = (w4, &41) — min lip1 (241, &) + V(we41) (6:32)
T 1 €Xy1(we,E041)

Further, note that for V Ls.c. and finite valued on X7, Bt(f/) is also a normal integrand. We
then define, B B
Bt(V) LT > E[Bt(v)(fft,ﬁurl)] (63b)

With this notation we define by induction the expected cost-to-go functions V; : R™-1 — R

Vr:=0 (6.4a)
Vi = Bi(Vig1) vt € {0,..,T — 1}. (6.4b)
Finally, as the law of &; is a dirac on £, the value of Problem (MSP)) is simply Vy(zo).

Remark 6.1 (Stepwise control). For notational simplicity we chose to consider loss function
Ly that only depends on the next stateﬂ xt. However, it is worth keeping in mind that these loss
functions are often defined as the partial minimum of another normal integrand, i.e.

Z1f($t> g) = yier]gm E(J;t? Y, g)

In theory, the same problem can be tackled by extending the state vector x to also contains the
step decisions y. However, this is misleading: the theoretical complexity is exponential in the di-
mension of x, which is in line with the curse of dimensionality of Dynamic Programming. Thus
extending the state to include y falsely seems to imply an increase in the number of iterations
required by trajectory following algorithms to converge. For example, in long term electricity
management problem it is standard to have decisions y of dimension a few thousands (ther-
mal generation, transmission on lines...) while the actual state x (hydroelectric storage) is of
dimension a few dozen at most.

LCost dependence on x;_; is not considered here simply for notational convenience.
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We end the presentation of our setting with a non-trivial assumption.

Assumption 6.3 (Lipschitz). For t € [T], we assume thatﬂ
i) X7 has a diameter smaller than D; < 4o0;

ii) the expected cost-to-go function V; is L;-Lipschitz.

Both part of Assumption are strong requirement, needed for the convergence results,
while still being natural in most settings. Part [i)| is satisfied for example if Assumption
holds, X;(x¢—1,-) is Lipschitz for all z;—; € X/ ; and all =; are bounded. Part [ii)|is satisfied
under Assumption [6.1] in the linear case, or through an extended relatively complete recourse
assumption (see [GLP15]) which requires that state x; that are slightly outside of X| are still
admissible.

6.1.2 Review of known convergence results

The SDDP algorithm, and its brethren, called in this manuscript Trajectory Following Dynamic
Programming, relies on the dynamic programming equation . The main idea consists in
iteratively refining lower (and sometimes upper) approximations of the expected cost-to-go func-
tions V;. More precisely, at each iteration, they decide, in a forward phase, trial points at which
the approximations should be refined. Then, in a backward phase, they construct cuts, that are
functions that under approximate V;. These cuts are as close as possible to the true expected
cost-to-go functions around the trial points. The lower approximations are finally defined as the
maximum of computed cuts. This is detailed in Section [6.2

To our knowledge, almost all prior works make the following assumption or consider an
approximated problem which satisfies this assumption.

Assumption (FSN) (Finitely supported noise). The support of the random process (&;)¢c[r) is
finite.

The first proven convergence result of SDDP algorithm is due to Philpott and Guan [PGO0S].
In this paper, the authors consider the linear setting. Using Assumption they prove that
the number of (affine) cuts that can be generated is finite. Then, leveraging the fact that each
scenario is sampled an infinite number of time, they prove the almost-sure convergence in a finite
number of iterations, without any bound on this number. Later convergence results by [GLP15]
(then reformulated and adapted to the risk averse setting in [Guil6]) showed convergence in a
non-linear, convex setting. Again, the proof argues that each scenario are selected randomly
an infinite number of time. A technical lemma coupled with Borel-Cantelli’s yields almost-sure
asymptotic convergence.

Instead of random sampling, some deterministic sampling, have been proposed. The problem-
child algorithm [BDZ17], which maintains both an upper and a lower approximation, proved
convergence by showing that the gap between upper and lower bound is non-increasing with the
iteration. This algorithm has been extended to convex-concave framework, using saddle-cuts
[BDZ18], e.g. allowing for stagewise-dependent objective uncertainty in [DDB20], or risk-averse
problem [GTWI19]. In other cases, deterministic sampling are considered as a first step for
proving the convergence of the randomized version [PGO08| Lan20} [ZS20].

The above papers all rely on affine, often called Benders’, cuts. Some variants of SDDP,
handled by our framework, uses other types of cuts and also have proven asymptotic conver-
gence. Zou et. al. presented a version of SDDP for binary variables, which has an asymptotic
convergence proven in [ZAS19] for the convex case, although the proof can be directly adapted to
the Lipschitz case. In addition to traditional Benders’ cuts it relies on integer, Lagrangian and
strengthened Benders’ cut, recalled in Section [6.A] Stochastic Lipschitz Dynamic Programming

2We do not necessarily require the knowledge of the diameters or Lipschitz constants.
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(SLDP) by Ahmed et. al. [ACdC20] uses concave L; cuts instead of affine cuts for any Lipschitz
Vi. MIDAS by Philpott et al. [PWB20] uses step-function cuts for quasi-monotonous V; and
also fall in this category.

Other works have been dedicated to improve the numerical efficiency of the algorithm. Some
methods alleviate the computational burden of each iteration, like Guigues in [Gui20] which
considers inexact cuts, or Bandarra and Guigues in [BG21] that present cut selection strate-
gies, which delete some cuts from the representation of V;. Other methods, like regularization
approaches [AP18, [VAdOS19, BFFdO20], try to reduce the number of required iterations. To
our knowledge, if they sometimes preserve asymptotic convergence, none of these approaches
provably reduce the number of iterations required to reach an e-solution. These extensions are
either handled by our framework or discussed in Section [6.2.2

It is worth noting that the convergence arguments that relies on each possible scenarios being
sampled an infinite number of time are mainly theoretical arguments: due to the sheer number
of scenarios, in most applications, the algorithms sample only a very small subset of scenarios
(and probably never twice the same).

In two recent papers ([Lan20) [ZS22]) new approaches were developed, focusing on the state
space akin to the complexity proof of Kelley’s cutting plane algorithm. They independently
obtained the first explicit bound on the number of iterations required to obtain an e-solution.
To this end, they fix the error € and define some saturated points in the state space. These points
are such that the gap between the approximated value and the true value is controlled. Then,
leveraging Lipschitz continuity of the value function they control the error in a ball around the
saturated points. As the reachable sets are compact, only a finite number of such balls exists.
They then each provide a deterministic algorithm with proven convergence, and use it as a proxy
to bound the expected number of iterations. Interestingly, the complexity of the deterministic
algorithm is polynomial in the horizon T" while the sampled algorithm complexity is exponential
in T as it requires a given event to happen at each stage simultaneously.

All the convergence proofs recalled here rely on reachable set compactness, relatively com-
plete recourse and finitely supported noise assumption. They then fall into two categories:
either they directly use the Lipschitz Continuityﬂ of V4, or argues that there exists only a fi-
nite number of possible cuts (e.g., [PGO8| [ZAS19]). Our framework cover all these variants,
but the convergence proof presented in Section which is built on [Lan20], does not require
the finitely supported noise assumption It is instead replaced, for the randomized algo-
rithms, by a dedicated nested Hoeffding lemma (see Section . This is another step toward
understanding the practical convergence of these TFDP algorithms.

Further, without finitely supported noise assumption the standard approach consists
in first discretizing the noise and then solving the discretized problem. A common method con-
sists in sampling the problem through the Sample Average Approximation (SAA) approaches.
The statistical guarantees of this approach are discussed by Shapiro in [Shall]. Other sampling
strategies are numerically discussed in [HAMDMEFT11l [Loh16]. While never used, to our knowl-
edge, in the context of TFDP algorithms, there are ways of discretizing the noise distribution
in order to guarantee that the value of the discretized model under (or over) estimate the value
of the true problem, especially in the convex setting, see [BW86, [Kuh06, MAB14, MP18§].

An alternative approach could consist in finding a finitely supported, stagewise independent
distribution that minimize the nested-distance [PP12], to provide a good representation of the
true problem. Other approaches exist, like [Fra96l [CS05], which uses convexity tools and infor-
mation relaxation to construct bounds. These approaches seem more relevant for problems with
non-independent noises.

Finally, SDDP has been extended to various problem settings to handle risk aversion (e.g.[STdCS13|,
GTWI9, [DM20]), infinite horizon (e.g. [SD20]), partially observable problems [DMP20]... We
briefly discuss extensions to risk averse setting in the last section, other extensions are outside

3 Actually MIDAS has a slightly milder requirement (see [PWB20, Eq. (17)]).
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the scope of this manuscript.

6.1.3 Contributions and structure of the chapter

Our main contributions are the following:

we provide a flexible framework (including inexact or regularized computations) for TFDP
algorithms for finite horizon, risk neutral problems, that encompass at least 14 variants of
SDDP summed up in Table

we provide geometric tools to extend those algorithms to non-finitely supported uncertain-
ties, without sampling or approximations in the linear case;

we give a convergence speed result with an upper bound on the (expected) number of
iterations to reach an e-solution for these algorithms (which is new for most of those
variants) that does not require the finite support assumption;

we explain how to adapt those results to the minimax case. Some risk averse or robust
cases are seen as a special case.

The remains of the chapter is as follows. Section [6.2] introduces the general framework,
discusses some extensions, and the classical ways of obtaining exact or approximated cuts.
Section provides the main convergence and complexity results. Finally, Section briefly
reviews extensions to some robust and risk averse settings. Technical proofs and definitions can
be found in the appendix.



Algorithm’s Node selection: Complexity
name Paper Choice & Fi Zf Vf Hypothesis known
SDDP [PPI1] Random sampling Exact Benders cuts Vi Convex v
EDDP [Lan20) Explorative Exact Benders cuts Vi Convex v
APDP [SS22] Random sampling Exact Adaptive partition Vi Linear X
SDDiP [ZAS19] Random sampling Exact Lagrangian or integer cuts Vi Mixed Integer Linear X

MIDAS [PWB20] Random sampling Exact Step cuts Vi Monotonic Mixed Integer X
SLDP [ACdC20] | Random sampling Exact Reverse norm cuts Vi Non-Convex X
[BDZ17] Problem child Exact Benders cuts Epigraph as convex hull Convex X

[BDZ18| Problem child Exact Benders x Epigraph Hypograph x Benders Convex-Concave X

RDDP [GTWI9] Deterministic Exact Benders cuts Epigraph as convex hull Robust X
ISDDP [Gui20] Random sampling Inexact Inexact Lagrangian cuts Vi Convex X
TDP [ACT20] Problem child Exact Benders cuts Min of quadratic Convex X
[2S22] Random or Problem | Regularized | Generalized conjugacy cuts Norm cuts Mixed Integer Convex v

NDDP [2520] Random or Problem | Regularized Benders cuts Norm cuts Distributionally Robust v
DSDDP [LCCT20] | Random sampling Exact Benders cuts Fenchel transform Linear X

Table 6.1: Synthesis of algorithms following the same framework
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6.2 Trajectory Following Dynamic Programming framework

Various extensions of the Stochastic dual dynamic programming (SDDP) algorithm have been
developed for different set of assumptions. In this section, we first present a generic algorithmic
framework for TFDP algorithms (see Algorithm for risk-neutral multistage stochastic pro-
gram that encompasses multiple known algorithms (see Table . These algorithms consider
under and over approximations of the expected cost-to-go functions. The under-approximations
are defined as the maximum of basic functions called cuts (some classical cuts are recalled in
Section [6.A)). The upper-approximations are more diverse and not always computed. The re-
mains of the section detail how to obtain cuts, in particular Section [6.2.3] presents the finitely
supported case, while Section [6.2.4] builds approximated cuts in the convex case.

6.2.1 Algorithm

The flexible framework of Algorithmdeﬁnes improving lower approximations Zf (resp. upper
approxirnation Vf) of the expected cost-to-go functions V;. Each iteration k of the algorithm
consists in a forward phase to determine where to refine the approximations, followed by a
backward phase to actually refine the approximations.

During the forward phase, we generate a trajectory ¥, - - - ,xl%_l. Each zF is chosen as an
(almost) optimal decision at time ¢ starting from state zf ;, knowing that the random variable
&; takes the value £F, and considering that the cost-to-go is given by the lower approximation
Kf‘l. This is encapsulated in the forthcoming notion of forward Bellman operator. We denote
v-argmin,cy f(z) the set of z € X such that f(x) <infyex f(z) + . We now define, for any
Lipschitz (on X7) function V, the set Xgﬂf(f/) of y-optimal solution of the parametrized stage t

problem with cost-to-go function V', that is,

X2V : (2,€) = - argmin £(y, &) + V(y).
yEXt(JJ,E)

Since £;+V is a normal integrand, [RW09, Corollary 14.33] guarantees measurability of Xvﬁt(f/)
Further, as X}jt(f/) is compact, there exists ([JRW09, Cor 14.6]) a measurable selection of &
X5 (V) (2,€) for all z € X7

The following definition mathematically formalizes the selection choicd?|

Definition 6.2 (Forward operator). We say that F; is a ’ytljrl—forward operator if, for all func-
tions V : R"+1 — R U {400}, Lipschitz on X{,, and x € X|, F(V)(x,-) is a measurable
selection of X, t+1(‘7)($’ ).

Vi1

During the backward phase, we refine the approximations K,]f and Vf , they are both assumed
to be Lipschitz on X;. Further, the lower approximations Kf is defined as the maximum of a
finite number of cuts: V¥ = max,< fF.

For Algorithm [6.1] to converge we make the following assumption on the approximations
computed.

Assumption 6.4 (Admissible approximations). The computed cuts ff of By(VF,,) at z} satisfy:
i) fFis y,-tight, ie. fF(zf) > Bu(VE)(af) — 7,

i) fFis valid, ie. fF < B, (VE,,)

. . —k
“In some common cases, the upper approximations are chosen as V; = V; but never evaluated.
5This choice is comparable to selecting a stage solver which always return the same solution among the set of
optimal solutions.
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i) V7 is T;-Lipschitz

On the other hand the upper approximations Vf, not necessarily computed, shall satisfy the
following properties:

" —k _ -

iv) Vi(ay) < Be(Viga)(f) + 7 (tightness)
v) Vf 2 Bt(vf;-l) (validity)
vi) Vi <V (monotonicity)

vii) V7 is L;-Lipschitz

Data: Random variables &;, cost function at each step ¢, constraints set-valued
function X4, initial state z, %F -forward operators F;.

1 VY = —c0 and V' = +oo for t € [T];

2 for k € Ndo
/* Forward phase */
3 Set zk = z;
4 fort=1:7T—-1do
5 Choose &F € supp(&;) ;
6 Let of = Fia (Vi )(wfo1,€F)
7 end
/* Backward phase */
8 | SetVhk=VE=o0
9 fort=T-1:—-1:1do
10 Find a L,-Lipschitz on X7, valid and y-tight cut fF of By(V},,) at «f, i.e. such
that ff(zf) > Bi(Vi)(2f) — v, and fff < Bi(Vi)
11 Set VF = max(VFL, F);
12 Define Vf satisfying Assumption Items to ;
13 end
14 end

Algorithm 6.1: A general framework for TFDP algorithms
For the algorithm to be well-defined we need to guarantee the existence of cuts and upper
approximation satisfying previous assumption, as formally assumed now:

Assumption 6.5. For every t € [T] and k € N*, there exists at least one cut fF of Bt(KfH)
satisfying Assumption [6.4

This assumption is for example ensured through relatively complete recourse in the linear
setting [PP91], through extended relatively complete recourse in the convex setting [GLP15],
through relatively complete continuous recourse in the binary setting [ZAS19], and relatively
complete recourse and Lipschitz assumption in the Lipschitz setting of [ACdC20].

Remark 6.3 (Asymmetry of upper and lower approximations). The framework is not symmet-
rical in its treatment of the upper and lower cost-to-go approzimations. Indeed, Line [6 should
not be done with the upper approximatz’onﬂ as it would restrict the exploration of the state space.
For example, assume that Vy are (slightly Lipschitz-reqularized) indicator functions of a single
point, then the forward phase would always produce the same trajectory, and the upper bound
would not be updated.

Further, multiple TFDP algorithm do not actually compute V¢, simply setting it to the true
expected cost-to-go Vi (for iterations bounds).

5The upper approximations (Vf)tem still provide an admissible policy through the forward Bellman operators
which has interesting properties, see [LCC™20).
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We have a first monotonicity result.

Lemma 6.4. Under Assumptions to forallk e N, t € [T — 1] and x € R™ we have
Vi o) < Vi) < Bi(VEL) (@) <Vilw) (6.5)
Vi(e) < B(Vip)(@) < Vi(@) <V (@) (6.5D)
In particular, the gap can only decrease
0 < V(@) = Vi) <V (@) = Vi (@) (6.6)
Proof. Direct by double induction on ¢ and k£ and monotonicity of the Bellman operator. O

Remark 6.5 (The standard SDDP algorithm). The most common TFDP algorithm is the
stochastic dual dynamic programming (SDDP). It was originally designed by Pinto and Pereira
([PP91))) for multistage stochastic linear problems. In SDDP, the value of the noise £F, chosen in
Line @ is drawn randomly on supp(&;) which is assumed to be finite. The lower appro:czmatz’ons
are defined as mazximum of affine cuts. For each & € supp(&;), computing Bt( t+1)(mt,£)
consists in solving a LP, and standard linear programming duality yields a subgradient &F(€) €
8Bt(Vt+1)(xf,§) and value BF(E) = Bt(VH_l)(xf,&). Taking the expectation, we set af =
E[aF(&)] and BF = E[Bf(&)], to define the so-called Benders’ cut

fEwe e o (@ — 2f) + B (6.7)

Under relatively complete recourse assumption, the cuts can be assumed to be L,-Lipschitz. Fur-
ther, in this simple setting, all errors are null: v, =7, = 'th = 0. Finally, no upper bound are

Yt
computed and the complexity results of Section are obtained by taking Vf =Vk.

Algorithm is a flexible framework, and some lines remain to be detailed, which we now
discuss.

Node selection choice in Line Most TFDP algorithms choose £ by drawing it randomly
according to the law of the random variable &F. The forward phase can then be seen as a Monte
Carlo method for finding a trajectory x]f, ‘.- ,m’%. Then, it is also possible to choose §f thanks
to quasi Monte-Carlo methods.

Another way of choosing & consists in picking the ¢ € supp(&;) that maximizes a certain
criterion. In [BDZI17], Baucke, Downward and Zakeri suggested to chose £ such that z§¥ maxi-

mizes the gap between the upper and lower approximations, i.e., Vf (zF) — VF(2F). They called
this choice of 5,{“, the problem child node selection. In [Lan20], Lan presented the Explorative
Dual Dynamic Programming algorithm, where £f is chosen so that ¥ is the most distinguishable
point, i.e. such that xf is far from the previous computed points, see Eq. , we speak of
explorative node selection.

The proofs of convergence are harder to derive when & is chosen randomly, and the best
upper bound known on the number of iterations of these algorithms are exponential in the
horizon T. In comparison, when £F is chosen deterministically as the problem child or as the
most distinguishable point, the number of iterations is bounded by a polynomial in T". However,
random sampling is often more efficient in practice (and easier to implement). We discuss the
complexity results in Section [6.3}

Forward operator choice in Line |§| In most algorithms, we assume that v/ = 0 for all
t € [T —1], thus F;_1(V)(z, ) is a measurable selection of arg minye ey, (2, (Y, )+ V(y). There
has also been proposition to use inexact cuts [Gui20] to alleviate computational burden of each
iteration.
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Further, there have been various propositions to regularize the SDDP algorithm, see [AP18|
VAJOS19, [IGLT20]. They mostly boil down to choosing a different forward operator, e.g., by
adding a regularization term, which can be seen as v/ -forward operator with v/ # 0. For
example, one can choose Fi_1(V)(x,€) as a proximity operator proxet(.7£)+‘~/(.)’a(;§) which by
definition is equal to arg min,c v, ;. ¢) ¢(Y, )4V (y)+ally—7|3. In that case, if X;(x, €) has a finite
diameter D, for y = Fi_1(V)(x, £), we have £:(y,€)+V (y) < mingy ey, (z,¢) 4 (Y, €) +V(y)+aD.
Then, F; is an aD-forward operator.

Finally, it is important that the algorithm use a single 4/ -forward operator. Indeed, if
the set of 4/ -optimal solutions Xj P t(‘~/)(x, €) is not reduced to a single point, the convergence
results only holds for the points selected by the forward operator. This remark is not only
theoretical and have implications in practice: to be safe one should use the same solver (and
parameters) during the training phase and exploitation phase of the algorithm. For example,
consider a problem with two equivalent storage and that only one of them is required to provide
an optimal solution. Consider two forward operators, the first one, 7} ;, prefers using the first
storage while the second, F? ; prefers using the second storage. Now assume that the algorithm
ran until convergence with 7} ; yielding the approximations V$°. Then, V° correctly evaluates
the value of the first storage, but has no information on the second. Consequently, a trajectory

given by F7 ,(V$°) might be far from optimal. A discussion of this fact, and practical answers,
can be found in [Dowl8, §2.7].

Cuts fF choice in Line We need to compute cuts fF to approximate B¢(V}, ;) in the
neighborhood of Jrf_l. Recall that in Eq. (6.3b)), B; is defined as an expectation of parametric
Bellman operators By(V} ;) = E[Bt (V5. 1)(-,&)] Eq. (6.3a). Then, we can compute the average

cut fF thanks to parametric cuts ftlfg- In the finitely supported case in Section we show

that we can compute the average cut fF directly by taking fFf = E [ ft’fg] whereas in the convex,
non finitely-supported case, we present in Section methods to approximate E [ ft’fs] . Finally,
exact methods for linear problems are developed in Section Furthermore, depending on
the problem structure, there exist several types of parametrized cuts ffg in the literature. We
recall them in Section [6.A]

Upper approximations Vf choice in Line In most TFDP algorithms, no upper bound
function is computed. In that case, we just set Vf = V; in the convergence proof. How-
ever, some algorithms rely on the computation of these upper bounds, for example for com-
puting a problem-child node selection. In the convex case, assume that we have, for ¢ € [T7],
some points (zf,7y).ek that are in the epigraph of V;. Now define Vf such that epi(Vf) =

Conv <(x’§,@f)ﬁe[k]) +{(z,2) € R" x R | L||z||y < 2} C epi(V4), see Fig. ﬁ Then, Vf is an

upper-approximation Vf of V; on X]. Computing points (zf,v}) xelk] in the epigraph of V; can
be done either throughout the algorithm as in the problem-child approach [BDZ17], or in batch
backward in time for a given set of trajectories as suggested by [PdAMFE13]. Upper approximation
functions can also be obtained through duality see [LCC™20, [dCL.21].

6.2.2 Extensions of the framework

Although we tried to present a general framework, for the sake of simplicity, Algorithm does
not integrate every variants of SDDP. We now discuss how this framework can be extended and
if the complexity results and proofs are still valid with these new extensions.

Multiple forward phases. In practice, SDDP is often implemented with multiple forward
phases, i.e., at iteration k we compute N forward phases (xf ’Z)te[T,l]yie[N}, in parallel. Conse-
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Figure 6.2: An example of upper and lower approximations

quently, in the backward phase we compute, for each time step t € [T — 1], N tight and valid
cuts ( ftk )ie[n]- This variation is included in the framework of Algorithm . by considering that

the cut fF is the maximum over i € [N] of all cuts ft . The complexity results follow directly
(in iteration number).

Multicut. In the finitely supported case, instead of computing an average cut fF of the ex-
pected cost-to-go function V;, it is possible to store for each £ € supp(&) a cut ft,g of the
cost-to-go function V;(-, ). Unlike the single cut case where VF(-) = max,.<j, f*(-), in the multi-
cut case, we compute approximation functions as Z,’f() = desupp(g ) P[¢] max,< ft’fﬁ() Up to

a slight reinterpretation, by considering a global cut fi(-) = > ccoupp(e,) P[¢] max,.< ﬁg(-), this
variation is covered by our framework.
However, with continuous random variables, the notion of multiple cuts is not well-defined.

Cut computation in forward. Another variation of SDDP consists in computing the cuts
during the forward phase (and no backward phase) In this variant, the cuts do not approximate
B,(V},,) and Bt(Vt+1) in the neighborhood of z}, but approximate Bt(vt+l) and Bt(VfJ:ll) in
the same neighborhood. Although this variant is not handled by the framework, all proofs
can be adapted in a straightforward manner. More precisely, we only need to adapt the forth-

coming proof of Lemma [6.28 In particular, in the proof of Lemma [6.28, we obtain directly
Eq. 1) and Eq. 1) without using the monotonicity, because we approximate Bt(Vt 1 )
and Bt(VtH ).

Cut selection. After many iterations, the number of cuts can slow down the new iterations.
To speed up SDDP iterations, another idea is to delete some cuts. For example, we can decide to
delete only the dominated cuts, i.e., the cuts that do not affect the values of the approximations
K,’f. The monotonicity property and the complexity results are still valid in this setting. Un-
fortunately, finding which cut is dominated is time-consuming which do not make this method
numerically efficient. Instead, we often use some heuristics to delete cuts which are probably
dominated. However, these heuristics do not guarantee that we have the monotonicity property
of approximations. Then, the complexity and convergence results seems harder to obtain. See
[BG21] for an asymptotic convergence result on SDDP with cut selection.

Adaptive partition based methods In [SL15], Song and Luedtke presented the adaptive
partition based methods (APM) to solve 2-stage linear problems by partitioning the set of
scenarios. It was then adapted to the multistage case in [SS22] where Siddig and Song proposed
an adaptive partition based SDDP, in both case under the finitely supported noise assumption
Recall, see Chapter I, 5, that the idea of APM is to replace the expected cost- go-function
V=E[V(, 5)} by a partitioned expected cost-to-go function Vp = Y. pep P[€ € P]V (-, E[£|€ €
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P]) where P is a partition of the uncertainty set Z. A partition P is said to be tight at &,
if Vp(&) = V(&), valid if Vp(z) < V(z) for all z € R™ and adapted to & if it is valid and
tight at ©. Then, when P is a partition adapted to &, we can see the partitioned expected
cost-to-go function Vp as a valid and tight cut of V' at &. Such cuts represent the tangeant cone
of epi(B;(V},1)) at = where Benders’ cut represent a single tangeant plane (see Lemma [5.8)).
APM methods were extended to general distribution in [RPM21]. In Chapter [5, we provided
a necessary and sufficient condition for a partition to be adapted (without Assumption
as well as a geometric method to obtain a valid and adapted partition. In particular, Adaptive
Partition-based Dynamic Programming (APDP) algorithm of [SS22] is a TFDP algorithm falling
in the framework of Algorithm It can be adapted to the non-finitely supported case through
the discussion in Section [6.2.5] As Ramirez-Pico and Moreno called GAPM the generalisation
of APM methods to general distributions, we will name the GAPDP the extension of APDP
algorithm to general distributions.

6.2.3 Cuts with finitely supported distribution

We now focus on finding a cut in Line of Algorithm More precisely, we want to ap-
proximate B¢(V},;) in the neighborhood of ¥ ;. Recall that B; is defined as an expectation

of parametric Bellman operators B, (see Eq. ) When the distribution of &; is finitely sup-
ported, computing a cut of By(V)(+,§) for each elements £ € supp(&:) automatically yields a cut
for B,(V).

Proposition 6.6. Assume that & is finitely supported with pe := P[& = ], for all § € supp(&;),
then

B(V)(@)= > peBuV)(,€) (6.8a)

£esupp(&t)

For every £ € supp(&;), assume that fg is a valid and 4, E-tight cut of function l’;’t(V)(, €) at
T , then we have

f= Z pgfg is a valid and vy -tight cut of Bt(f/) at & with vy, = Z pfjt,g (6.8b)
gesupp(&t) £€supp(&r)

In this finitely-supported distribution setting, it remains to find cuts of the function B, (V) (., ).
There exist several tight and valid cuts depending on the structure of ¢; and X;. We present
classical cuts of the literature in Section [6.A]l where we detail under which conditions these cuts
are tight and valid and show how to compute them.

6.2.4 Approximated cuts in the convex case

In this section, we now turn to obtaining approximated cuts leveraging convexity. We present a
method based on the inequalities of Jensen and Edmundson-Madansky, adapting the results of
Birge and Wets [BWS8G] to our setting, see also [KM™76, 4.7].

We start by recalling two well-known useful convex inequalities illustrated in Fig. [6.3

Proposition 6.7 (Jensen’s and Edmunson-Madansky inequalities). Let g : R — R be a conver
function and € be a random variable. Assume that there exists a polytop = C R containing
supp(§)-

For any & € E we denote S=(§) the set of barycentric coordinates of £, that is the set of coeffi-
cients (0= y)vevert=(§) € [0, 1IVertZl such that € = > vevers(z) 02,0 (§)v and 3 cvery(z) 0=z,0(§) =

"The results can be extended to the case where Z is an unbounded polyhedron. We must then consider a set
Ray(E) of extreme rays of the recession cone of Z (see [EZ94al)
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Figure 6.3: An illustration of Jensen and Edmundson-Madansky inequalities

1. Let & — (0=4(&))vevertz be any measurable selectiorﬁ of S=(§). We have the following
inequality:
JE[E) <Elg@] < Y Eloz(©)]g(v) (6.9)
veVert (=)

Moreover, if g is Lipschitz with constant L and Z has a diameter D, the gap is at most LD:
Y. Elo=.(&)]g(v) < g(E[¢]) + LD (6.10)

veVert(E)

Proof. Left-hand side of Eq. is the classical Jensen inequality. Let & € =, as (0= 4)vevert =(§)
are barycentric coordinates, we have, by convexity of g, g(§) < X yevery(z) 720(§)g(v). Taking
the expectation leads to the right-hand side of Eq. called Edmundson-Madansky inequality.

Assume now that = has diameter D. Since Z is convex, E[£] € Z, thus for all v € VertZ,
|E[€] —v|| < D. Further, as g is Lipschitz, we have ||g(v) — g(E[£])|| < LD. Taking the convex
combination yields Eq. . O

These inequalities can be refined. Let P be a finite collection of almost surely disjoint
polyhedra covering supp(£), i.e. supp(§€) C UpepP and P[PNP'] =0 if P # P’ C P. Then, by
the law of total expectation, E[g(&)] = Y- pep P[P]E[g(&)|P]. Applying Jensen and Edmundson
inequalities to each term of this sum, we get

3" PIPIg(E[EIP]) <E[g(€)] < Y. P[P] Y Elop.(€)]g(v) (6.11)

pPcp pPcpP vEVert(P)

In particular, if all polyhedra P € P have a diameter smaller than d, the gap can be bounded
by Ld.

We now get back to the problem of Line [I0] of Algorithm [6.1] where we want to approximate
By(VE 1) in the neighborhood of 2} ;. Recall that B; is defined as an expectation of parametric
Bellman operators B; (see Eq. ) Unlike in Section where the random variable where
finitely supported, we cannot write the expected cut as a finite sum of parametric cuts. However,
the Jensen and Edmundson-Madansky inequalities allows us to derive approximate cuts and
upper bound functions.

Proposition 6.8. Assume that ¢; is a jointly convex function with Lipschitz constant L. Let P

be a finite collection of almost surely disjoint polyhedra covering supp(&), such that any P € P

has a diameter smaller than d € Ry. Denote for each P € P, pp :=P[P] and {p := E[£|P].
For every P € P, assume that [, is a valid and lt’P—tight cut of the parametric function

Bt(V)(-,gp) at & , then by defining v, := Ld + 3} pep pPY, p, we have

f= Z prfp is a valid and vy, -tight cut of B,(V) at & (6.12)
pPep

8Such a selection always exists. Indeed, if Z is a simplex, barycentric coordinates are uniquely defined through
a linear application. Then, any triangulation of = define a measurable selection as piecewise linear applications.
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For every P € P and v € Vert P, assume that f, p satisfies [ > B,(V)(-,v) and f(%) <

&(V)(f, V) +Fyp , then by defining 7, := Ld + 3" pep PP X pevert(p) E[Upyv(ﬁ)]itp, we have

F=>pp > Elop(&)]fp, satisfies f > Bi(V) and f(&) < B(V)(&) +7, (6.13)
pPep veVert(P)

This result can also be adapted to “saddle” cost functions, i.e. functions that are convex
in some coordinates of & and concave in the other coordinates of £, by using both inequalities
according to the sign of convexity, see e.g. [Kuh06l §4].

6.2.5 Exact SDDP in the linear case with general distributions

In this section, we consider the particular case of multistage linear stochastic programming
i.e. Problem where, for all t € [T], & = (A¢, By, by, ¢t), be(24,&) = ¢ a4 is linear and
Xe(xp—1,&) = {x¢ | Ayxy + Bpxy—1 = by, x > 0} is a polyhedron. We first reformulate the stage
problem as a standard two-stage linear program. Then, we show that we can construct
exact cuts thanks to adapted partitions, fsuch as the partition defined in Theorem [5.15

We make the following assumptions:

Assumption (LS) (Linear setting). For t € [T] we have £;(x¢, &) = ¢ 2 and Xy(21,&) = {zy €
R™ | Ayxy + Byxy—1 = by, x; > 0}. Further, the random variable & = (Ay, By, by, ¢;) and the
approximated expected cost-to-go functions Kf satisfy

1. A has a finitely supported distribution;
2. ¢; and (By, by) are independentﬂ

3. the lower expected cost-to-go function Kf are defined as the maximum of affine cuts, 7.e.,
we have (al);<, and (B!);<x such that

VE(xy) = max odTay + (6.14)

Under Assumption Bellman operator defined in (/6.3a)) applied to Kf reads

Bi (V) (xi-1,&) = 12121 el xi+ 2 = gigﬁ ) el +27 — 2
st.  Ayxy + Bywi—q = by, s.t.  Ajxy + Bixyoq = by,
o Toy + B < 2, Ve < k T+ Bl 4r=2t—27, VR <k
=0 xt,z+,z_,r>0
Then, for any t € [T] and k € N, setting
A 0 00 e B, by
ri=ap, y = (2,27, 27,0), W= a% _:1 1 1 , q = _11 , T = O and h := _Btl
ab 111 0 0 b
We obtain
V(e) = B[Q W,a.T,h)] = BBy (V) (we1,6)] = B(VE ) @), (616a)
with Q(z, W,q,T,h) := myin {¢"y | Tx+Wy=h,y>0}. (6.16b)

9Independence can be replaced by finite support assumption on one of the random variables. More generally,
we can consider a finitely supported random variable M, such that ¢; and (By, b:) are independent conditionally
to Mt.
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Under Assumption |(LS)| we have that i) W is finitely supported, and ii) ¢ and (T, h) are
independent. In particular, under Assumption |(LS)| we can apply Theorem to find an
explicit adapted partition. We now show that this adapted partition provides a valid and tight
cut.

Proposition 6.9. Let P be an adapted partition to . For all P € P, let fp be a valid and tight
cut of Q(-,E[W,q,T,h|P]) at . Then f:=3 pcpP[P]|fp is a valid and tight cut of V at &.

Proof. We have

fx) =" P[P]fr(x) (6.17a)
Pep

< ) P[P]Q(x,E[W,q,T,h|P)) since fp is valid (6.17b)
pPeP

= Vp(z) < V(x) since Vp is valid. (6.17¢)

Thus, f is valid. Moreover,

f(@) =" P[P]fp(¥) (6.182)
Pep
= > P[P]Q(#,E[W,q,T,h|P]) since fp is tight (6.18b)
pPeP
=Vp(2) =V (2) since Vp is tight. (6.18¢)
Thus, f is tight. O

Remark 6.10. As we saw in Section[6.2.9, this explicit adapted partition provides a new method
to find tight and valid cuts in Line of Algorithm [6.1 without having an approzimation error,
Le., 7, =0,in the linear case (under Assumption . Moreover, this explicit adapted partition
allows to extend the scope of APM methods. Siddig and Song presented in [SS22] an algorithm
combining ideas of APM methods and SDDP in the finitely supported case (APDP). The explicit
adapted partition in Theorem [5.15 paves the way to a generalized APDP algorithm for non-
finitely supported random variables (GAPDP).

6.3 Complexity results

In this section, we give convergence and complexity results for various instances of Algorithm
In Section [6.3.1], we first define the notion of effective iteration and deduce an upper bound on
the number of effective iterations required by Algorithm to get an e-solution. We then
distinguish between deterministic and randomized selection processes for the choice in Line [5| of
the algorithm. For deterministic selection processes, namely the problem-child and explorative
node selections, we show in Section [6.3.2] that all iterations are effective. Finally, when the
node selection is randomized, we show in Section the existence of a positive probability
for an iteration to be effective. We then deduce a complexity bound on the expected number of
iterations.

6.3.1 Bounding the number of effective iterations

We first recall that the value of Problem (MSPJ|) can be written in a more concise form, by using
the nested problem in Eq. (6.2]) and the definition of expected cost-to-go function in Eq. (6.4)),
and keeping in mind that &; is deterministic:

val =  min  li(x1,&) + Vi(xr) (6.19)

x1€X1 (20,61)
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Our aim is to show that, for some iteration k, the solution z% is a e-solution of Eq. ,
and the lower-bound V(xg) is e-tight. Unfortunately, Assumptions to are not enough
to ensure convergence of Algorithm we need a further assumption on the node selection
process.

Regardless of node selection, we define the notion of effective iteration. Recall that v/, Yy
7, are errors in forward Bellman operator and approximation update (see Algorithm at
time ¢t € [T], and L, (resp. L;) are Lipschitz bounds on the cuts (resp. upper-approximation)

at time ¢t. In the remains of the section we consider a sequence (Vf v wi)te[T},keN produced
by Algorithm

Definition 6.11 (effective iteration). For everyt € [T —1], let 6; > 0 and n; > 0. By backward
induction, we define

ET-1'=Yp ; t V-1 (6.20a)
Et ‘= Et+1 + (fﬁ.l + Lt+1)(5t+1 + 77t+1) + ’Ytlj_l + lt + 7,5 Vit S [T — 2] (620b)
eo:=e1+ (L1 + Ly)(61+m) + 7 (6.20¢)

Fort e [T —1] and k € N, we say that
xF is e-saturated, if Vf(mt) VEF) < e and
x§ is §-distinguishable if ||zf — x¥|| > & for all k < k such that xf is e;-saturated.

We say that an iteration k € N is effective if it generates either a €1-saturated point, which
is also a go-solution to Problem (6.19)), or a new ei-saturated and 0,-distinguishable point for at
least one t € [T, i.e.,

z¥ is e1-saturated and 01 (2%, &) + Vi(2}) — val (MSP) < &9 (6.21a)
OR 3te [T —1], aF ises-saturated and 6;-distinguishable. (6.21b)

We now give an upper bound on the number of effective iterations of Algorithm to find
an g£g- optimal solution.

Theorem 6.12 (bound on effective iterations number). Let Assumptions to be satisfied
and t € [T — 1], assume that ¢ € [0, Dy] and ny € Ry are given and & defined by (6.20). Let

_ -
= Z < + 1) (6.22)
After at most K + 1 effective iterations we have a £1-lower bound of Problem (MSP):

Vi(zo) = b(2F, &) + Vi (2F) = val (MSP) — & (6.23)

Further, there exists, among those K + 1 effective iterations, at least one such that :c’f is an

go-solution to Problem (/6.19):
012, &) + Va(2}) < val (MSP) + & (6.24)
Proof. For t € [T — 1], there are at most (% + 1)™ disjoint ball of diameter §; in a ball of

diameter D; + d; (see [2522, A.3.2]). In particular, we cannot compute more than (% + 1),
d;-distinguishable points at step ¢t. Thus, after K = EtT:_ll(% + 1)™ effective iterations, for all

OWe consider here balls for the euclidean norm || - ||2, but the result is still valid with the p-norm || - ||, for
every p € [1,4+o0].
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t € [T], it is impossible to compute a new J;-distinguishable point. Then, as the iteration k
is effective and we cannot have (6.21bf), we have (6.21a)) and in particular x’f is an gg-solution
Moreover, x’f is e1-saturated. Then,

(k&) + VER) > 0(ah,6) + Vih) — (6.252)
> (21, 6) + Vi(z)) — e (6.25b)
> min 2 (:El, 51) + ‘/1(1‘1) — €1 (6.25C)

x1€X1(20,61)
= val (MSP)) — &1 (6.25d)
O

Remark 6.13. Finally, although the theorems of this section state that we find an g-optimal
solution at stage 1, we have no guarantee that the approximations Kf converges to Vy. We cannot
hope that these approximations converge to the true expected cost-to-go functions far from the
optimal and reachable trajectories.

Nevertheless, by considering the sets of points that are d¢-close to every optimal and reachable
trajectories, we could hope to have a convergence of strategies generated by ]—"(Zf) on those sets.
If we add a finite diameter of the support of & and a Lipschitz assumptions for &, we are
confident that the proof can be adapted. However, the general case looks harder and might
require different ideas for proving complexity results for the convergence of strategies at every
stages.

For a class of specific (deterministic) implementations of Algorithm each iteration is
effective, in which case we can directly bound the number of iterations required to obtain an
gp-optimal solution.

6.3.2 Deterministic node selection

In this section, we present sufficient condition for an iteration to be effective. Consequently, for
two algorithms with deterministic node selections (namely problem-child node selection [BDZ17]
and explorative node selection [Lan20]), we show that each iteration is effective, yielding a
complexity result.

We first define the distance to the set of e;-saturated points.

Definition 6.14. Lett € [T — 1] and k > 1.
We denote yF the random variable

yr = Fa (Vi) 6) (6.26)
We denote by df the distance function to the set of e¢-saturated points until iteration k :

d¥(z) = min |z — xf|| (6.27)

Kk<k|z} is et-saturated
In particular, ¥ is 6;-distinguishable if and only if dF (zF) > 6.

The following technical lemma, whose proof can be found in Section [6.B] shows that if the
new state ¥ (resulting from the choice of £F) is either i) far enough from the set of saturated
points, or ii) yielding a large enough gap, then iteration k is effective.

Lemma 6.15. Let Assumptions to be satisfied and assume that, for all t € [T — 1],
0 € 10, D], m¢ € Ry are given and €, defined by (6.20)). Let k € N*. If, for allt € [T — 1], at
least one of the following inequalities is satisfied

—k—1 _ wh—1 - -
E[Vi (yf) Vi ' y))] <V (af) — Vi @f) + (L + L)m (6.28a)
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E[df (y;)] < dy(af) +m (6.28b)
then, iteration k is effective.

In [Lan20], Lan suggested to choose xf as the most distinguishable point in a new algorithm
called Explorative Dual Dynamic Programming (EDDP). We then speak of ezplorative node
selection. The following lemma shows that both these selections lead to effective iterations.

Lemma 6.16. Let Assumptions[6.1] to [6.5 holds and assume that, for all t € [T] & € [0, Dy],

n = 0, are given and €; is defined by -
We say that we have a problem-child node selection if for all k € N*, and t € [T — 1], &F is

chosen such that it maximizes the current gap, i.e.,

—k—1 _
& € argmax Vi~ (F (V) ek 1,0) - VE (FL () @k ,,0) (6:290)
gesupp(&t)
We say that we have an explorative node selection if for all k € N*, and t € [T — 1], &F is
chosen such that xf maximizes the distance to previous e¢-saturated points, i.e.,

& € argmax di (Fe1 (Vi) (21, €)) (6.29b)
g£esupp(&r)

Then, with a problem-child or an explorative node selection method, each iteration of Algo-

rithm [6.1 is effective.

Proof. It is a consequence of Lemma Indeed, as n; = 0, zf = F (VN2 |, €F)
and yF = F_ (V¥ Y(zF |, &), and since the maximum is greater than the expected value,

Eq. (6.28a) implies Eq. (6.29al) and Eq. (6.28b]) implies Eq. (6.29b)). O

Lemma [6.16] implies that every iteration of these deterministic node selection method is
effective. Coupled with Theorem [6.12] we easily obtain complexity bounds, for example as
follows.

Corollary 6.17. Let Assumptions [6.1] to [6.5 holds and assume that every iteration of Algo-
m’thm is effective (e.g., problem-child or explorative node selection). Further, for simplicity,
let the total error be vy := ZtT:_ll Ve TV T vF and choose n, D, L such that, for all t € [T — 1],
ng <n, Dp =D, Ly = L, = L. Then, for every ¢ > ~x, sufficiently small (e.g. such that
e < 2DL + ~y), Algorithm finds an e-first stage solution x¥ within at most K. iterations
where

2DL
1=

K. = — 72>n (T —1)"*! (6.30)

Proof. We set §; := 25(} =5 and g =0 for all t € [T —1]. Then, as ¢ < 2DL + 5, we have
0¢ < D = Dy. Moreover, g, defined in Eq. ( -, satisfies

z[mLt (Gotm) +9, 7+ = (T = 1)2L6 + 75 =e. (6.31)

With this setting, we have that K, as defined in (6.22)), satisfies

Kg(T—1)<?+1> :T(QDeL 7 +1)
-z

Now, as ¢ is assumed to be small enough to have 2DL/(e —vx) <1 (i.e. e <2DL+x) w
get

2DL(T —1)\"

( )) _ %
€=

By assumption all iterations are effective and Theorem [6.12] ends the proof. O

K<(T—1)(
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Remark 6.18. Note that the maximum in (resp. ) is easily obtained under
finitely supported noise Assumption . Indeed, we can compute the gap (resp. the distance)
for every & in the support of & and keep £F mazimizing the gap.

However, without finite noise Assumptian we just need to find a &F leading to a gap
worse than the expected gap (see Lemma , and not necessarily a mazximizer. This paves the
way for a deterministic node selection, with non finitely supported random variables.

6.3.3 Randomized algorithms

When the choice of £ is made randomly, there is no guarantee that the iteration will be effective.
However, through a technical, yet necessary to deal with dependence issue, nested Hoeffding
lemma’s shown in Section [6.C.I] we show that there is a positive probability p for an iteration
to be effective. Then, by comparing the time to obtain an effective iteration to a geometric
random variable of probability of success p in Section [6.C.2} we deduce a bound on the expected
number of iteration required to get an e-optimal solution.

Remark 6.19 (Notational difficulty of randomized algorithm on stochastic problem). We are
now considering a stochastic algorithm for solving the MSP Problem . Thus, there are
two sources of randomness: the intrinsic (ft)te[T} and the node selection &F = Ef To distinguish
both, we denote in bold random variables that are (&t)icqr) measurable, with a tilde random
variables that are (Etk)tE[T},k:eN* measurable (and with both if they are neither).

For example the trajectory determined during the forward phase (iﬁf)te[T] only depends on
the past node selections, whereas the tentative points gf depends both on the past node selections
and the actual realization of &;.

Under Assumptz’on this discussion is usually avoided by representing the dependence
on (&t)ie[r) with a (finite) scenario tree, and indexing the variables by the tree nodes.

Let (A¥)gen+ be the filtration such that A* := U(gf)te[T_l] wepp and A = Ugen AF. In

particular, a random variable measurable with A*¥ knows all node selection up to iteration k,
that include, for example, V¥ for all t € [T].

Lemma 6.20. Let Assumptions to be satisfied and assume that, for all t € [T — 1],
0 € 10, D], m € Ry are given and e, defined by . Further, assume that in Algorithm
Line @ we draw & randomly according to the distribution of &, and independently of all other
&r as well as (&) rer—1)-

Then, for all iteration k € N of Algorithm and all event AF=1 ¢ A1 such that
P[A*1] > 0, we have

T —2nf
P{Itemtion k is effective. ’ Ak_l} > H (1 —e Dt ) (6.32)
t=1

Proof. Let A := a({f) and k € N*. By Lemma |6.15, we have

te[T—1],keN*

P[Tteration k is effective. | A¥ 1] > ]P’[Vt e [T -1, E[dF(gF) | A®] < dF (@) +n: | Akil} (6.33)

For t € [T — 1], let Af := o(AFL, (E,@)Tem). We have that o (df(gf)) C o(AF_;, &) from
which we deduce that E[dF(gF)|A®] = E[dF(gF)| AF ,]. We define the events Ef = {w €
Q| E[dF(gF) | AF_,] < dFzF + ;). Thus, P[Tteration k is effective | A¥~1] > P[NL P EF | AF1]
By applying Lemma|6.30{with the random variables (gtk) , the filtration (AF)gen teir—1]

keNte[T—1]
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and the measurable function fF : ((§5)re[r—1),relk—1]5 (fﬁ)re[t]) > dF(zF) taking its value in

_gn?

[0, Dy], we have IP[ ' EF ‘ Ak—l} > -, (1 —e 7 ) which gives Eq. (6.32). O

We now give a complexity results for all TFDP algorithms (following framework of Algo-
rithm |6.1)) where the choice of £F is made randomly.

Theorem 6.21. Let Assumptions to be satisfied and assume that in Line@ we draw §f
randomly according to the distribution of &, and independently from the previous £~.

Further, for simplicity, let the total error be vy = Zg;l v+t v and choose n, D, L
such that, for allt € [T —1], ny <n, Dy=D, Ly =L, = L.

Then, for e >~ , sufficiently small (e.g., such that ¢ < 4DL + vyx), the expected number of
iterations of Algorithm required to find an e-solution x¥ to problem , i.e. , such that

n+2(T—1
01(2%, &) + Va(ak) < val (MSP)) + € is bounded by (T — 1) (w) +( ).

E-s

Proof. We set for all t € [T — 1], 0 = n = 45%7_21). Then, as ¢ < 4DL + s we have
ne = 0y < D = D;. Moreover, ¢, defined in Eq. (6.20]), satisfies

~
L

f0= 3 [T+ LG+ m) 3,4 7+ | = (T = 2L x 27

t=1

+ s = €.

Let K the (random) number of iterations needed to compute K. := T_ll (1 + %)nt <
(%)n (T —1)"*! effective iterations, then by Theorem [6.12, Algorithm |_ finds an e-solution
after at most K iterations. Let p := ML, (1 — exp (_ )) by Lemma [6.20], for A¥—1 ¢ A1
we have P[Iteration k is effective ] AF=1] > p. Thus, by Lemma 6.31, we have E [fﬂ < [;5.

Moreover, since as = — — is an increasing function on (0, 2] then for all = € (0, 1], w
have ﬁ < # X 5 < 1.6>< % Thus, as QDig < 1, we have that 1 HtTlllGx —?2 <
t
(%)2@71). We then obtain E[K]| < % < (feé)n(T - 1)n+1 X (%)Q(T 1) =
_ ADL(T—1) n+2(T—-1)
(T —1) (LHI=D) .

O

Remark 6.22 (Stochastic dominance and comparison with finitely supported noise). The proof
of Theorem actually give more information on the (random) number of iteration K after
which we obtain an e-solution: K is stochastically dominated by a random wvariable with a
negative binomial distribution representing the number of trials to obtain K. successes with
probability of success p, (see Lemma

Further, under finitely supported noise assumptzon the probabzlzty of choosing the

problem child £F (cf Lemma 0) for eacht € [T —1] is lower bounded by Ht ] m Then

Lemmal6.20 still holds after replacing the right hand side probability of success by thl |Supp(&)| .
We can then deduce other complexity bounds under|(FSN). For example, in [Lan20], assuming
that | supp(Et)] < N, for allt € [T —1], the probability of having an effective iteration is bounded

by NT T-

6.4 Extension to risk-averse setting

We now briefly discuss extensions involving a maximization problem in the dynamic program-
ming equation, arising for example from multistage risk-averse, robust or distributionally robust
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problems. Algorithm can be adapted to such problems, by changing the definitions of the
Bellman operators.

Further, in the risk neutral case, Algorithm is not symmetrical in its treatment of lower
and upper approximations. As noted in Remark for a minimization problem, in Algo-
rithm m the forward phase Line @ should be done using the lower approximations Z,’f. More
generally, one should use an outer approrimation (that is under approximation for min sub-
problems and upper approximations for max sub-problems) during the forward phase to be
able to explore the state space. Thus, for those min-max problems the computation of upper-

approximations Vf is not optional.

Minimax problems. Baucke, Downward and Zakeri, in [BDZ17|], presented a convergent
problem-child algorithm to solve stochastic minimax dynamic programs. Although our frame-
work of Algorithm do not handle such minimax problem, we can extend it to do so. More
precisely, we consider a problem where the decision maker chooses x; € Xi(x¢—1,yi—1,&), and
then an adversary chooses v € YVi—1(x¢—1,yt—1,2¢,&). Thus, the Bellman operators are now
defined as

Bi1(V) (i1, ye—1) = E min max Oy, ye, &) + V(z, . (6.34
! 1( )( =L 1) [lvtext(mtfl,yt—l,&t)yteytfl(%tflaytfl@ta&t) t( bt Et) ( K yt)] ( )

The reachable sets then become

Xy = {zo} Yy = {yo} (6.35a)
xi= U U U X%@evw-1.8) vt € [T). (6.35b)

Tt—1€X][_ yt—1 €Y | §1€EL

vy = (J U U U Y@ vr,2.&) vt € [T]. (6.35¢)

- 1€Y{ | yr—1€Y] | mE€X] &€S

In the forward phase, as in Algorithm the v/-optimal solution z should be chosen thanks
to the approximation fol. However, as we maximize over g, yF must be a v/"-optimal solution

of the step problem with the approximation Vf -1

$f = ﬁii‘(zf_l)(mt-l,yt—l,éf) € ’Yf' arg min max i ft(l“tayt,ff) +Kf_1($t,yt)
T €Xy (we—1,y—1,60) YEVI-1(T1—1.yt—1,20.87)
(6.36a)
—k—1 —k—1
yf = trgaix(vt )(It—la Yt—1, xf? gf) € FYtF - argmax £t<mt7 Yt, ‘gf) + Vt (.’L't, yt) (636b)

YE€V—1(Te—1,yt—1,7% £F)

Assuming that the reachable sets X/ and Y," have finite dimensions d, and d, and diameter
D, and that the objective function are L-Lipschitz, the convergence and complexity results still
hold developing on the ideas of [Z522]. The upper bound on the number of effective iterations

dy+d
then becomes K, := (%) Y (T — 1)%datdy+1,

Robust Closely related, in [GTW19], Georghiou, Tsoukalas and Wiesemann presented the
Robust Dual Dynamic Programming algorithm (RDDP) to solve multistage robust optimization
problems. In such problems, instead of minimizing the expectation like in Eq. (MSP)), we
minimize considering the worst case scenario & € Z;. In this setting, the Bellman operator
reads

By 1(V) = max ﬂciGX{r(l:;tn,l,&) b, &) + V(1) (6.37)
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Note that this robust setting can be seen as a particular case of minimax problems where we
have deterministic random variables. Indeed, if we invert the order of max and min, either by
changing the indices or by taking the opposite, and Eq. can be written as Eq. where
& of plays the role of y; and the & of are deterministic parameter. The upper

2DL )d”dﬁ (T — 1)datdet1
=% :

bound on the number of effective iterations then becomes K, := (
Risk averse Multistage stochastic problems in the risk averse setting are MSP where the
expectation is replaced by a multiperiod risk measure. In the nested coherent risk measure
framework we present conditions under which Algorithm can be adapted.

Let p be a coherent risk measure (see [ADEH99, ADET07] or [SDR14, Def 6.4]) the Bellman

operator in the risk averse setting reads

Bi_1(V): 21— p( min C (e, &) + V(mﬁ) (6.38)
xt€Xe(xt—1,6¢)

We recall a classical Fenchel representation theorem for proper, lower semicontinuous, law-
invariant, coherent risk measure (see [SDR14, Thm 6.5]). For every random variable z €

Li(Q, A P,R), we have
p(z) = max Ep|yz] (6.39)

yeA,
where A, := {y € Lo(QAPR) | Ely] =1, y > 0 as., E[yz] < p(z), V2 €
Ll(Q7 -’47 Pv R)}
With this representation, we get

Bi_1(V) = max E min Ly (s, +yV(zs)]. 6.40
(V) = puax P{xtext(ztﬂ,ﬁoy a0+ 9V (@) (640)
Up to a slight change of notation, we can write this problem as a minimax problem. In particular,
a sufficient condition to obtain convergence and complexity bounds for risk averse MSP is that
the set %A, has a finite dimension and a finite diameter. For example, if € is finite, %A, is
contained in the space of random variables in €2, isomorphic to a simplex of dimension || — 1
which has finite diameter. More generally, if 2, is contained in the convex hull of n random
variables (Y )re[n), then 21, has a finite diameter smaller than maxy, yc(,) (|[Yx —Y¢llo) and a finite

dimension smaller than n — 1. Thus, we obtain complexity results similar to Corollary [6.17] and
d+n—1
Theorem [6.21{ with K, := (%) ! (T —1)d+n,
We now comment the particular case of the average value at risk [RUT00] with value o €
[0,1), denoted AV@R,, and defined as:

AV@R,(2) = inf {s+

seR

Ep|max(z — s, 0)}} (6.41)

11—«

We cannot use the dual representation Eq. (6.39)) to derive complexity bounds as 2A4yar has,

E
in general, non-finite dimension. However note that in Eq. (6.41)), since AVQR,(z) < 1]1)_[2] the
infimum on s over R can be replaced by a minimum on the compact interval [0, ﬁEp [z]]. To ob-

tain an upper bound that does not depend on k and x;_1, we set z = ming, c v(s,_, ¢,) &t (1, &) +
V¥ () then Ep [z] is upper bounded by ming,c xrE [Oe (¢, &) + V% (z¢)] which has a finite value
by Assumption [6.3] Thus, MSP with nested average value at risk measure can be handled by
this framework and we can obtain complexity results similar to Corollary and Theorem

d+1
with K := (M) (T —1)%+2,

E=Ts
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6.A Cut methodologies

In this section, for the sake of completeness, we give several cuts that are used in different
algorithms to solve particular multistage problems.

Cut Oracle needed Setting and avantages
Benders First order Convex, simple to implement
Reverse norm Zeroth order and Lipschitz constant Lipschitz
Step Zeroth order, € and Monotonic
Lagrangian Solving a dual problem Problem with small duality gap
Integer Zeroth order Binary variables
Adaptive partition Adapted partition oracle Linear, whole tangent cone
Generalized conjugacy Conjugate computation Regularisation
Saddle First order and Lipschitz constant Minimax problems
Fenchel conjugate Fenchel Dual of Bellman equation Linear, Exact upper bound

Table 6.2: Synthesis of different cuts and oracle required

6.A.1 Benders cuts for convex functions

The most commonly used cuts are the Benders cuts which are affine functions. This kind of cut
only works if the expected cost-to-go functions are convez.

The word cut is actually used because the graph of a Benders cut is a hyperplane which is
tangent to the epigraph of the approximated function.

Proposition 6.23. Let F' be a convex function and g € OF(z) a subgradient of F'. We define
the Benders cut f at T as
f(x):=F@)+g' (xz—2) (6.42)

Then, f is valid and tight at Z.

Proof. By definition of a subgradient, f(x) := F(#) +g' (z — %) < F(x), thus f is valid. By
definition of f, f(#) = F(2) + ¢ (2 — 2) = F(2) thus f is tight at 7. O

We see that a first order oracle for the function F, i.e., an oracle that returns the value F(%)
and a subgradient g € 0F(Z) for an input Z, provides a direct algorithm to compute Benders
cut.

6.A.2 Reverse norm cuts for Lipschitz functions

Stochastic Lipschitz Dynamic Programming (SDLP) presented in [ACdC20] provides an algo-
rithm to deal with non-convex Lipschitz multistage stochastic programs. In this setting, the
cost functions ¢; are simply assumed to be Lipschitz continuous. Thus, the expected cost-to-go
functions F} is not necessarily convex and Benders cuts are not valid anymore. Ahmed, Cabral
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and da Costa replaced these cuts by reverse norm cuts or augmented lagrangian cuts using only
the Lipschitz property of expected cost-to-go functions.

Proposition 6.24. Let F' be a function with Lipschitz constant L (for norm || -||). We define
the reverse norm cut f of F' at T as

f(@) = F(#) — Lilo - 4] (6.43)
Then, f is valid and 0-tight at Z.

Proof. For any given x and &

f(z) = F(&) — Ll — 2| (6.44a)
= F(&) — F(z) + F(z) — Ll|z — 2| (6.44D)
< L|& — 2 + F(z) — Lz — 2| (6.44c)
= F(x) (6.44d)

Thus, f is valid. By definition of f, f(z) = F (&) — L||z — 2|| = F(&) thus f is tight at 7. O

We see that a zeroth order oracle for the function F', i.e., an oracle that returns the value
F(z) for an input Z , together with a Lipschitz constant L provides a direct algorithm to compute
reverse norm cuts. Thus, SDLP integrates our framework in Algorithm

We can also define the norm cut f(x) := F(2) + L||lx — Z|| . These norm cuts can be used

to compute Vf . The algorithm Tropical dynamic programming in [ACT20] uses this upper cuts
together with Benders cuts for lower approximation Kf and thus integrates the framework of

Algorithm

6.A.3 Step cuts for monotonic functions
We now look at “almost monotonic” expected cost-to-go functions.
Proposition 6.25. Let F' be a function such that there exists § > 0 and v = 0 with
Ve,y, v<y+0l = F(z) < F(y)+7vy (6.45)
where 1 is the vector whose coefficients are all equal to 1. We assume that F' is upper bounded

by M.
For a point T, we define the upper increasing step cut f as

F(Z)+~y ifz <2+l
f(z) = 7( ) ) (6.46)
M otherwise
Then, the upper increasing step cut f satisfies
f(z) > F(z), Ve (6.47)
f(#) < F(%) +~ (6.48)

Proof. Since & < &+ 0, f(2) = F(&) + . Moreover, if < & + §1, by Eq. (6.45) F(z) <
F(2) +~ = f(z) and otherwise f(x) = M > F(x). O

We could also define lower increasing step cuts for functions verifying Eq. (6.45). This cut
methods also adapt to lower bounded decreasing functions, we will define in the same way
upper and lower decreasing step cuts. However, these cuts are not Lipschitz. To integrate the
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framework of Algorithm we could adapt these step cuts by interpolating with affine functions
between the constant regions of the cuts.

In [PWB20], Philpott, Wahid and Bonnans presented an algorithm called mixed integer
dynamic approximation scheme (MIDAS). This method applies to multistage mixed integer
problems, given as a maximization problems. After adapting the problem by taking the oppo-
site of the expected cost-to-go function, adding the constant v and choosing the right affinely
interpolated step cut, the algorithm MIDAS integrates the framework of Algorithm with
step cuts.

6.A.4 Lagrangian cuts

Lagrangian cuts were introduced for TFDP by Zou, Ahmed and Sun in [ZAS19]. These cuts are
based on the Lagrangian relaxation of an optimisation problems.

Proposition 6.26. Let F' be a function, H be a convex function and x — Y () be a graph-convex
set valued mapping see [RW0Y, p155] such that F is defined as

F(z):= yeigfx) (y) (6.49)

We define the Lagrangian cut f at & as

fx)=ATz+8 (6.50)
where
Acargmax A2+ inf  L(y)— ATz (6.51a)
A v,2|y€Y (2)
B= inf ly)—\z (6.51b)
y,2|y€Y (2)

Then, the Lagrangian cut is valid and tight at Z.

Proof. Consider x € dom(Y). We rely on a strong duality result:

Flo)= Bt () (6.520)
= ety Y s e W) (6.52b)
=, ok, max(y) + 2 (@~ ) (6.52¢)
S N Y.z |iyrgY(z) Uy) ="z (6.52d)

(6.52¢)

Indeed, as Y is graph-convex, we have that {(y,z) |y € Y(2)} is a non-empty convex set. Thus,
we have

f@)=ATe4+ inf y)-ATz (6.53a)
y,2 | yeY (2)

—max\' 2+ inf lly) =Nz 6.53b

) Y.z | yeY (2) 2 ( )

= F(z) (6.53¢)
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and f is tight at . Moreover,

fl@)=ATz+ inf ly)—ATz (6.54a)
Y,z | y€Y (2)
<max\'z+4+ inf  L(y) -z (6.54b)
A v,z |yey (2)
= F(x) (6.54c)
and then f is valid. O

Note that this result is still true without the convexity assumption if we replace the tightness
result by a lower ~y-tighness result where ~ is the duality gap.

Secondly, in this simplified setting and when the variable x takes value in a continuous space,
the Lagrangian cut can be seen as a Benders cut since Ais a subgradient of F' at . Nevertheless,
the point of view of Lagrangian allows new ideas to compute cuts. In particular, one can define
the Lagrangian cut with a different relaxation to deal with more complex setting such as integer
cases as presented in [ZAS19]. We can also combine the Lagrangian cut with the reverse norm
cut, such ideas are presented under the name augmented Lagrangian cuts in [ACdC20]. Thus,
the algorithm SLDP from [ACdC20] integrates the framework of Algorithm

Zhang and Sun in [ZS22] generalized these Lagrangian cuts by introducing the point of view
of generalized conjugacy (see [RWQ9, Chapter 11]). They called these new cuts generalized
conjugacy cuts, and proved them to be tight and valid, thanks to the Fenchel-Young inequality.

6.A.5 Integer optimality cuts

The integer optimality cuts where first introduced by Laporte and Louveaux in [LI93] for 2-stage
sochastic integer problems.

Proposition 6.27. Let F be a function taking value in {0,1}¢ and & € {0,1}¢ be a binary
vector with S = {i|x; = 1}. We assume that F is lower bounded by M.
We define the integer optimality cut f as

Fo) = (F@) — MY — S — 18]+ 1) + M (6.55)
€8 ¢S
Then, f is a valid and tight at .
Proof. We have that f(2) = (F(2) — M)(|S| =0 —|S| + 1) + M = F(z). Thus, f is tight at .

+
Let z € {0,1}? different from 2, we have Y-, ¢ x; — Digs Ti < |S| — 1. Then, f(z) < M < F(z)
and thus f is valid. O

n [ZAS19], Zou, Ahmed and Sun presented an algorithm called Stochastic dual dynamic
integer programming (SDDiP), suggesting to use integer optimality cuts or Lagrangian cuts
instead of classical Benders cuts. By tightness and validity of these cuts, the algorithm SDDiP
integrates the framework of Algorithm (with a potentially large Lipschitz constant).

6.B Sufficient conditions for effective iterations

In this appendix, we want to prove Lemma We start with a technical lemma linking the
gap at t — 1 with the expected gap for tentative points at t.
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Lemma 6.28. Let Assumptions|0.1 to - be satisfied and t € [T — 1], assume that §; € [0, Dy]
andn, € Ry are given and g, defined by - Then, for all algorithms satisfying the framework
of Algorithm we have fort € [T — 1]

—k k—1 _ _
0< Vt—l(mf—l) Vt 1(95715C 1) < [Vt (yf) - Kf l(yf)} Y TV +’Yf (6.56)

where we recall that yF == F_ (VI Y (b |, &).

Proof.
VE L (@F ) = BE (VR F ) - Y4 (backward phase: v, |-tight cut)
(6.57a)
=E[ min li(2, &) + VE(2)] - Y 4 (definition of B)
mEXt( Ty 1,51}) -
(6.57b)
>E|[ min  Ly(x, &) + V()] - Y (monotonicity of approx.)
CEGXt( Ty 1,£t) -
(6.57¢)
E [0 (yr, &) + Vi (yl)] —~F - Yy (definition of F;_1)
(6.57d)
—k <~k _
Vt—l(xf—l) < Bf—l(‘/t )(x?—l) + 71 (backward phase)
(6.58a)
=E|[ min  Ly(x, &) + Vf(ac)] + 1 (definition of By)
JL'EXt( Ty 17575)
(6.58b)
<E[ min  ly(x, &) + Vf_l(x)] + 71 (monotonicity of approx.)
JL'EXt( Ty 17575)
(6.58¢)
—k—1 _
Elb(yf &) + Vi (9)] +7ia (as yr € Xy(zf_1,&) P-as.)
(6.584)
Combining these two results we get Eq. (6.56)). O

Proof of Lemma[6.15 Let t € [T — 1]. We first prove that if one of the inequalities Eqgs. ((6.28al)
and (6.28b)) is satisfied then, =¥ | is ;_1-saturated as soon as '} is not &;-distinguishable. Recall
that df (z) := min lx — zf].

k<k|zf is e¢-saturated

Assume now that zf, | is not &;11-distinguishable, then df(z}) < §; and there exists j < k
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such that 2 is e-satured and ||z} — 2¥|| < 6. If Eq. (6.28a) is satisfied, we have

E[V: ™ (yf) - VE b)) < Vi (af) — VI @b) + (Te + Lom &yg?
. a
<v?%ﬁwwﬁ*@b+v?%ﬂww¢*@b+vr%ﬁw4¢*@b+u4+@m? |
6.59b

< Lyllaf — )|+ V Had) = VN ad) + Lilla] — )l + (Lo + Lom (ﬁﬁﬁﬁ)
. C
< (L + Ly)or + Vi(:ci) — V(@] + (Te + Ly)ne (monoto(nicity;
6.59d

<(Le+ L) (6 +me) + &4 (e1-saturation)

(6.59¢)

Similarly, if Eq. (6.28b)) is satisfied, we define j(§) such that

Jj(€) € argmin ||z} — Fima (V) (2, 6| (6.60)

J<k—1 ,xz e¢-saturated

In particular, df (F—y (V") (2, €)) = [|&]® = Fit (V1) (@f_1, )l| and thus B [df (yf)] =
E[||z]® - y}|]

E[Vy (yF) — Vi (yF)]

<EWT*<%—V?%j@U+V?%£@h—z?%d@5+z?%ﬂ@h—zf%ﬁﬂ
<E[Lillyf — 2] ) + &0 + Lyl|2] ) — yF||]

= (L + L,)E [dk( ] + e

<(Li+ L) (6 +mp) + &

Then, in both cases, E Wf_l (yF) = VI (yF)] < (Li + L) (6 + ) + &4 By Lemma we
have

—k _ -
Vii(af ) = Vi (af ) ET ( )—Kf Y(yy)] +1t—1+%—1+7f (6.61a)

<
< (Le+ L) (0 +me) + e+ Yooq TVt %F =&t-1 (6.61b)

Thus, xf is e4-saturated as soon as xf '\ 1 is not &;41-distinguishable.
We now prove by backward induction on ¢ that iteration k is effective. We first prove that,
for all k € N*, 2| is ep_q-saturated.

= —k _

VT—l(xl%fl) - KTfl(ngl) < BT—l(VT)(xIJCLl) +Yr-1— BT—l(ZI%)(xIYCLl) + Y (6.62a)
= Br1(0)(@F_1) + V71 — Br-1(0)(2F_1) + v, (6.62b)
=1 +Yp_, =71 (6.62c)

Let t > 2 such that, for every 7 > t, x¥ is e,-saturated . If af is &;-distinguishable, then
iteration k is effective. Otherwise, x,’:? is not &;-distinguishable and by the previous paragraph,
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it implies that zf | is e,_;-saturated. Eventually, assume that x¥ is e1-saturated. If 2% is &;-
distinguishable, then iteration k is effective. Otherwise, there exists j < k such that ||z} —zf|| <
81 and ] is €1 saturated. We get

Vi(ah) < V() (6.63a)
= Vi(=h) - Vi) + Vi) (6.63b)
< Tull2b — 2] + Vi (2) (6.63¢)
< Li6y 4 &1 + Vi(a)) (6.63d)

= T161 + &1 + Vi ()) - V() + Vi (a) (6.63¢)
< Lidy +e1 + Lyl|laf — 2| + v~ (ah) (6.63f)
< (L1 + Loy + 61 + Vi~ () (6.63g)

Then,
(2, &) + Vi(ah) < (Ly + Ly)dy + &1+ (2, &) + Vi (af) (6.64a)
<(Li+ L))o +er+1 + GI?(H(I )51(901,51) + V(@) (6.64b)

1 1(Zo
<e+ min 4 (.,”Ul, fl) + Vl(xl) (6.640)
rl€X1(m0)

Thus, in all the covered cases, iteration k is effective. O

6.C Probabilistic lemmas

In this appendix, we present useful probabilistic lemmas to prove the convergence of SDDP with
randomized choice of &F.

6.C.1 A nested Hoeffding lemma

Lemma 6.29. Let (2, A, P) be a probability space, X and'Y be two independent random vari-
ables taking values respectively in the euclidean spaces X and Y.

Let r > 0 be a positive real and f : X X Y — R be a measurable function such that 0 <
f(X,Y) < r almost surely.

Then for every n > 0 and A € o(X) such that P[A] > 0, we have

2

Pf(X,Y) > E[f(X,Y)lo(X)] - n|4] >1-¢* (6.65)

Proof. Recall that the Hoeffding lemma states that if Z is a real random variable such that
there exists a,b € R with a < Z < b almost surely then for every n > 0 we have

—2n?

P|Z - E[Z] < —n] < @07 (6.66)
By taking the complementary event, we have
_on?
P[Z >E[Z] -] > 1 - 0P (6.67)

Then for every z € X, by applying the Hoeffding lemma to the random variable Z = f(z,Y),
a =0 and b =r, we have

—2n

Pf(2.Y) > E[f(z.Y)] —n] > 1—¢ 7 (6.68)
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Let A € 0(X) and B C X such that A = X~ (B)

P(/(X.Y) > E[f X Y)N0(X)] =} 1 A] = [ w0 LeeaP(d)

(6.69a)
= /Q]l{f(X(UJLY(w))>EY[f(X(UJLY)]—U}(W)]IX(w)eBP(dW)
(6.69b)
:/X/Y]1f(x,y)>IE[f(:c,Y)]—n]1:ceBPY(dy)]P)X(dx)
(6.69¢)
:/X]lmeB(/Y]lf(ac,y)>E[f(x,Y)]—nPY(dy))]P)X(dx)
(6.69d)
= | LeenP[f(@,Y) > E[f(2.Y)] ~ n]Px(da)
(6.69%)
—29?
>/1m63(1—efT)PX(dm) (6.69f)
X
—29p?
—(1—e  )Px[B] (6.69g)
—29p?
—(1—e 2 )P[A] (6.69h)
(6.691)

9.2

Thus, by dividing by P[A], we get P[f(X,Y) > E[f(X,Y)|o(X)] —n ] Al z1-e7F . O

Lemma 6.30. Let (2, A, P) be a probability space, (Xp)nen be a sequence of independent random
variables taking values in the euclidean space X and A, = 0(Xy)ren be its adapted filtration.

For everyn € N, let r,, and n, be two positive real and f,, : X" — R be a measurable function
such that 0 < fn(X1,...,Xy) < 1y almost-surely.

We denote by E,, the event {w ‘ (X1, X)) > E[fu(X, .., X)) [An-1] — nn} €A, .
Then, for allm < n € N and Ay—1 € Apm—1 such that P[A,,—1] > 0, we have

P[ﬁ Ek’Am_l

k=m

n —2
> H 1—e "k (6.70)

k=m

Proof. For every n € N*, n > 0 and A, € A,_1 such that P[A] > 0, by the previous lemma
applied to X = (X4,...,X,1), Y = X,,, f = fu, n =1, and r = r,,, we have

—on2
2

P[E, ] Apa]z1-¢7 (6.71)

Let m € N, we now prove our lemma by induction on n. If n = m = 1 the result is true by
the Hoeffding lemma and for n = m > 1 the result is true by Eq. (6.71]) with 4,1 = A;,—1.
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Let n > m and assume that P[ﬂzzm EkﬁAm,l} > 0and P[ﬂzzm Ep ’ Am,l} > [liem (1 —e

[nﬁ By | Am-1| = P|Ens1 | ﬂ BN A |P| N B | A1 (6.72a)
k=m

—2'7n+1 n 727]}26
2
>(1-ema | J] [1—e % (6.72b)
k=m

where we underestimate the first factor thanks to Eq. (| and N;—,, Ex € Ay and the second
factor thanks to the induction hypothesis. In particular, IP’[ ntl o BN Ap, 1] > 0 and induction
ends the proof.

O]

6.C.2 Stochastic dominance by geometric random variables

Recall that a real random variable X is (first-order) stochastically dominated by a real random
variable Y if the cumulative density function of X is smaller than the cumulative density
function of Y. If X and Y are integer random variables, X is stochastically dominated by Y is
equivalent to P[X > n| < P[Y > n], for all n € N*. We now present a lemma where we leverage
this notion to bound the number of effective iteration in randomized algorithm in Theorem [6.21

Lemma 6.31. Let (2, A,P) be a space of probability, (X, )nen be a sequence of independent
and identically distributed random variables and A, = o(Xy)ren+ be its adapted filtration. Let
(Yo )nen be a sequence of (non necessarily independent neither identically distributed) binary
random variables, i.e. taking values in {0,1}, such that o(Y,) C A,. Assume that there exists
p € (0,1) such that for all n € N* and all A,, € A, such that P[A,] > 0, we have

P[Yy1 =1]4,] >p (6.73)

For m € N, we define the stopping time T, := inf{n € N| Y0 Y; > m}. Let By, be a
random variable with a negative binomial distribution representing the number of trials to obtain
n—1

_ 1) p"(1 —p)" "™, for all

m successes with probability of success p, i.e. P[By,, = n|] =

n=m.
Then, T, is stochastically dominated by By, i.e.

Pry = n] < P[B,, > n], VYn € N* (6.74)

In particular,

E[rn] <E[Bn,| = (6.75)

m
p
Proof. Let (?n)neN* a sequence of independent and identically distributed Bernoulli random
Var1ables with parameter p. For all n € N*| we define the random variables S,, := Y7, Y,, and

Sy = p—1 Yn. We first show by induction on n that S, is stochastically dominated by S, i.e.
forall a € N*, we have P[S,, > a] > P[S a]. Indeed, for n = 1 we have S; = Y7 and Sp = Y-
then P[S,, > 0] = P[S,, > 0] = 1 and P[S,, > 1] = P[Y,, = 1] > p = P[S,, > 1]. Finally, for all
a>2, P[S,>2]=P[S,>2]=0.
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We now assume that there exists n € N* such that for all a € N*, P[S,, > a] > P[S,, > a.
We then have

P[SnJrl = (I] = ]P[SnJrl > a,S, <a-— 2] +]P[Sn+1 >a,S,=a-— 1} +]P)[Sn+1 > a,S, > a]
(

6.762)
=0+P[Spht1 > a|S, =a—1]P[S, =a—1] +P[S, > d (6.76Db)
=P[Yp41 =18, =a—1]P[S, =a—1] +P[S, > q] (6.76¢)
>pP[S, =a—1] +P[S, > a by assumption (6.76d)
= p(P[Sp > a— 1] — P[S, > a]) +P[S, > d] (6.760)
=pP[S,, > a—1] + (1 — p)P[S, > a (6.761)
> pP[S, > a—1] + (1 — p)P[S, > d] by induction assumption (6.76g)
—P[ﬁﬂ = 1\§n >a—1]P[S, > a—1] ‘HP[EH = 0|§n > a|P[S, > a]

(6.76h)
=P[S,>a—1,Y1 =1] +P[S, >a,Y, 1 =0 (6.76i)
=P[Sp1 >0, Y1 =1] +P[Sp1 > a, Yo =0 (6.76;)
= P[S,11 > d] (6.76k)

Then, by induction, S, is stochastically dominated by S,. For m € N* we recall that we
had 7, = inf{n € N|S, > m}, similarly we define 7, := inf{n € N|S, > m}. As S, is
stochastically dominated by S, it is easy to see that the stopping time 7, is stochastically
dominated by the stopping time 7,. Indeed, P[1,, > a] =P[S, <m]| =1-P[S, > m+1] <
1-— P[ga >m+1] = ]P’[ga < m] = P[7, > a]. Finally, the random variable 71 and the
random variables Ty — T, for all £ € N*, are independent and identically distributed geometric
random variables with probability of success p. Thus, By, := Ty, = T1 + Z;”;ll (The1 — Tk) is a
random variable with negative binomial distribution representing the number of trials to obtain
m successes with probability of success p and 7, is stochastically dominated by B, p. O






CONCLUSION AND PERSPECTIVES

In this thesis, we showed how polyhedral geometry enlightens the structure of multistage stochas-
tic problems. We understood how higher order polyhedral notions such as chamber complexes
and fiber polyhedra characterize the expected cost-to-go functions. By doing so, we constructed
explicit local or uniform, universal exact quantization results for MSLP with fixed recourse.
These results allowed us to derive both complexity results and new algorithms such as GAPM
and TFDP to deal with MSLP with general distributions. However, the size of the exact quan-
tization can be exponential in the state dimension and thus difficult to use directly in practice.

We now present some perspectives for subsequent works leveraging this manuscript’s results.

Higher order simplex method for 2SLP Simplex methods solve linear problems by fol-
lowing a path on the vertices of the polyhedron. Combinatorially, the simplex updates a basis
by making pivots while reducing the cost. The tools of Chapter [3| are a first step to define a
higher order simplex algorithm to solve 2SLP with general cost. In particular, a collection of
active constraints sets not only represents the current visited cell of the chamber complex, see
Proposition but also the normal fan of the fibers, see Fig. and the affine coefficients
of the expected cost-to-go function, see Theorem Geometrically, we could follow a path on
the chamber complex while reducing the cost. Combinatorially, it would be equivalent to imple-
ment and update the current collection of active constraints sets while reducing the cost through
local changes. Moreover, we could leverage the theory of regular subdivisions to understand the
behavior of this collection as, by Proposition the collection of active constraints sets is a
regular subdivision. We leave the full development of this algorithm for further work.

2-time scale MISLP, nested fiber polyhedra and convex bodies A common application
in stochastic optimization is the management of an electrical microgrid with storage capacity
to maximize the return on the sales and purchases on the intraday and day-ahead markets, see
[LE21, Chapter 3]. In this setting, the decision maker has to take a decision, before the first
time step of the multistage problem, which impacts the dynamics of the multistage problem at
each time, we speak of two-time-scale MSLP:

PR ()Rt a'p+E| ; &/ ] (7.1a)
st. Dp<d (7.1b)

Ay + By + Cip < by as. vt € [T] (7.1c)

Ty € Loo(Q, A, P;R™) vt € [T] (7.1d)

o(xy) Coler, - ,¢t) vt € [T (7.1e)
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In Theorem the nested fiber polyhedra only depends on A;, B; and ¢; but not on the
right handside h;. Thus, by replacing h; by hy — Cyp in Theorem [4.17] we have that Problem
(7.1) is equivalent to the deterministic problem

T
T T
min + max Cip—hy) A 7.2a
pequ p ety ;( tP ) A ( )
s.t. Dp<d (7.2b)
A= ()\1, s ,)\T) e F, (7.20)

By introducing, a lift variable Problem ([7.1]) is equivalent to the deterministic linear problem:

T
p%lﬁ%q p+z (7.3a)
s.t. Dp<d (7.3b)
T
Z(C’tp —hy) v < 2 Yv = (vy,--- ,vp) € Vert(Eq) (7.3¢)
t=1

This new formulation of this two-time-scale MSLP could open the door to new resolution meth-
ods, such as Benders decomposition to deal with the great number of constraints induced by the
vertices of the weighted nested fiber polyhedron.

More generally, we could extend the notion of fiber convex bodies [MM21] to weighted fiber
convex bodies, for two-stage stochastic convex problems, and to nested fiber convex bodies for
multistage stochastic convex problems.

Reintroduce Approximation or Sampling In Section [5.4] we saw that the most time-
consuming parts of GAPM algorithm are the exact computations of volumes. Indeed, it was
proven to be $P-complete [DF88]. Thus, to improve Algorithm we could use precise rapid
approximation volume algorithms, see e.g. [CV16]. More generally, we could develop approx-
imate quantization for example by approximating the expectation as in Section @ or use
classical approximation ideas such as sampling, barycentric scenario trees or nested distance,
see Section [2.1.3] In particular, the exact quantization results could provide new insights both to
understand theoretically the convergence of such approximations or to improve them in practice.
For example, we conjecture that the Hausdorff distance between nested weighted fiber polyhedra
is connected to the nested distance of [PP12].

Exact quantization for stochastic integer linear problems The complexity of multistage
stochastic integer linear problems has been recently studied in the case of finitely supported
distribution (see [KR22]). The exact quantization result can be understood thanks to the basis
decomposition theorem of Walkup and Wets [WW69], which shows, in a modern vocabulary,
that the secondary fan is a key notion to understand the behavior of the value of a parametric
linear problem. In [ST97], Sturmfels and Thomas extended this basis decomposition theorem to
parametric integer linear problems showing that the key notions to understand how the value of
an integer linear problem varies with its parameter are the Grobner and Graver fans. We thus
conjecture that there exist exact quantization results for stochastic integer linear problems by
using these Grobner and Graver fans, from which we could deduce new complexity results.

Understanding the complexity of MSLP We saw that 2SLP with general cost distribution
was in some way similar to the problem of computing the volume of polytope from a complexity
point of view. Indeed, in [HKW16|, Hanasusanto, Kuhn and Wiesemann proved that 2SLP was
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P-hard and we proved in Section[6.3|that 2SLP was polynomial when we fix the dimension of the
recourse, like the computation of the volume, see [Bar08]. However, it was proven in [DF88] that
computing the volume of a polytope is fP-complete. This raises the question of showing that for
a large enough class of cost distributions (including uniform measures on rational polytopes),
2SLP is not only gP-hard but #P-complete.

Moreover, we studied the complexity of TFDP algorithms in Chapter[6] If deterministic node
selections, such as problem child and explorative, lead to a number of iterations polynomial in
the horizon, the best bound yet proven for random node selection, is exponential in the horizon.
We thus need further works to understand if TFDP algorithms with random node selection,
such as SDDP, are polynomial in the horizon. Indeed, SDDP algorithm is not really affected
by the horizon in practice. However, the proof of complexity of TFDP algorithms exploits very
few the structure, aside from Lipschitz continuity and compactness, this raises the question of
showing if more assumptions, such as convexity or linearity, improve the number of iterations.



PROOF OF A COUNTER EXAMPLE

We prove that Example does not admit neither a local nor a uniform exact quantization.
Letn=m=¢=1,q= (1), T = (0), W = (—u), h = (—1) where u denotes a uniform
random variable on [1,2]. We then have for all z € R™:

() yréll}&% Y 1
Vix,§) = = — (A.1)
st. ouy>1 U

In particular, by the law of total expectation and Jensen’s inequality for all partition P of

—_
—
—

V(z) =E[V(zx,€&)|P] = > P[P V(z,€)|P] > > P[P V(z,E[¢|P]) (A.2)

pep PecP

However, for all 1 < a < b < 2 we have

E[V(w,{)\aéugb}:E{imguéb}:bialn(fb) (A.3a)
Vﬁmgmgugm):Ekmiugﬂzbia (A.3b)

Since, for all t € (1,400), 251 < In(t), we have for all 1 < a < b < 2, ;2 < ;= In (2) and

then E[V(z,€)[a <u<b| > V(2,E[¢]a <u<b]).
Finally, for all partition P since the partition is finite there exists 1 <a<b< 2 and P € P
such that Pla < u < bN P|] =Pla < u < b]. We then have

> =

P[PIE[V (2,£)|P] = Pla < u < B[V (2,€) [a < u < b (A.4a)
P[{a <woru>b}NPE[V(z,€)[{a<uoru>bnP| (Adb)
<Pla<u<b]V(s,E[£]a<u<b]) (A.4c)
+P[{a<woru>b}NPIV(s,E[¢|{a<uworu>b}NP]) (Add)

= P[PV [2,E[¢]P]] (A.4c)

Thus, for all x € R", there is no partition-based local, thus uniform, exact quantization result
at  when W is non-finitely supported.
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COMPUTING THE QUANTIZED COSTS AND
PROBABILITIES

In this appendix, we show that, for three standard classes of distributions (uniform on a polytope,
exponential, and Gaussian), the quantized costs ¢ and probabilities pr arising in the exact
quantization (Theorems and , can be effectively computed. More generally, there exist
formulas and software to compute quantized costs and probabilities for all distributions with a
polynomial density (see [DLDK™12, [Las21]).

The formulas are summed up in Table They are detailed and established in Sections[B.1}-
We provide these formulas for simplices or simplicial cones S with dim(S) = dim(supp ¢).
This extends to any polyhedron R, through triangulation of R N supp(ec) into simplices and
simplicial cones (Sk)rep). We then compute pr = 22:1 ps, and ¢r = 22:1 DS, Cs,. /Pr if pr # 0
and ¢ = 0 otherwise.

Uniform Exponential Gaussian
A K —LeTm=2e
dP(c) Vo1d(Q)d£Aff( y(c) 7(‘9€)d£Aff( y(©) m c
supp ¢ Polytope : @ Cone : K R™
v Volg(S) | |det(Ray(S))| 1 .
. Yolu($) | [detRay(S) g 1 Ang (M-15)
VOld(Q) @K(Q) reRay(S) —r'o
< —r; Var(ms)
¢s é ZUGVert(S) v (ZreRay(S) W)ze[m] ﬁM SpCtr (S NS 1)

Table B.1: Probabilities ps and expectations ¢g arising from different cost distributions over
simplicial cones or simplices S C supp(c) with dim .S = dim(supp ¢), where L4 is the Lebesgue
measure on an affine space A.

B.1 Uniform distributions on polytopes

The volume of a polytope @@ C R™ is the volume of () seen as a subset of the smallest affine space
Aff(Q) it lives in. The volume of a full dimensional simplex S in R? with vertices v1, ..., v441 is
given by Vol(S) = X|det(vi —vgy1, -+, va—vat1)|, see for example [GK94] 3.1. The centroid of
a non-empty polytope @ C R™ is Ctr (Q) := ﬁ fQ ydLago(y). For instance, the centroid of
a simplex S of (non necessary full) dimension d is the equibarycenter of its vertices: Ctr (S) =
%{-1 ZvGVert(S) v.

Assume now that Q) is a polytope of dimension d, and that ¢ is uniform on Q. Let S C Q
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be a simplex with dim(S) = dim(Q), then we have

volg 5 and és = L Z v . (B.1)

e Volg Q d+1 veVert(S)

B.2 Exponential distributions on cones

Let P C R™ be a polyhedron and 6 € ri ((rc P)°). We denote by ®p(0) := [p eeTcdﬁAff(P)(C)
the exponential valuation of P with parameter 6.

Proposition B.1 (Brion’s formula [Bri88]). Let S be a full dimensional simplicial cone, and let
by a sligth abuse of notation Ray(S) be a square matriz whose columns are obtained by selecting
precisely one element in every extreme ray of S, so that S = Cone (Ray(S)). Then for any
0 € riS°, the exponential valuation of S is given by

25(0) = | det(Ray(S)| [] —5r - (B.2)
reRay(S)

Let K be a (non necessarily simplicial) full dimensional polyhedral cone of R™ and 6 € ri K°
a vector. Assume that ¢ has the following exponential density :

1
dP(¢) i= ® 1 e ————d B.
(c):=e K e (0) Lagx)(c) (B.3)

Let S C K be a simplicial cone with dim .S = dim K, by Brion’s formula (B.2)),

1
Ps = = |det(Ray(S))] ][] - (B.4)
(I)K(Q) ‘I)K(Q) reRay(S) T 9
Further,
L. 1 T Vogs(6)
=E[leege'] = / 0 cde = . B.
pSCS |: CESC ] (I)K(e) g ce dc @K(g) ( 5)

By computing explicitly the latter gradient, dividing by pg, and simplifying, we obtain:

Gs=( > %)ie[m]. (B.6)

reRay(S)

where r; is the i-th coordinate of r.

B.3 Gaussian distributions

The solid angle of a pointed cone K C R? is defined as the normalized volume of its intersec-
tion with the unit ball By, i.e.: Ang (K) := Volg(K NBy)/Volg(By). Recall that Voly(Bg) =

2 / I'(4 + 1) with T the Euler gamma function, and that ([Rib06]) for any function f : R™ — R
invariant under rotations around the origin and any pointed cone K C R™, we have Ang (K) [gm [ =

Ji I

Let ¢ be a non-degenerate, centered, Gaussian random variable of variance M2, where M is
a symmetric positive definite matrix. Then, if K is a polyhedral cone, we have

5 llell3
—/ ¢ 2alc—Ang(AM*lK)
-1k (2m)
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We shall use the notion of spherical centroid SpCtr (U) for a measurable subset U included
in the unit sphere. It is defined as the barycenter of the elements of U with respect to the
uniform measure on the sphere. Note that the spherical centroid does not belong to the sphere,
unless U is trivial. By denoting S,,_; the unit sphere in R™, we have

»

T

e—zllell3 e T
PrCK —/ o E dc = M/ rmimdr/ wdp
1K (2m) R+  (2m)z  JM-IKNS,—1

(m—i—l)

V212
A

I'(3)

=M Volyy,—1(Sm—1) Ang (M~ K) SpCtr (M~ 'K N'S,—1)

Ang (M'K) SpCtr (M~ 'K NSp,—1)

Similarly, one can get explicit formulae when ¢ is distributed uniformly on an ellipsoid, or on
the surface of an ellipsoid, or more generally, when the distribution of ¢ is invariant under the
action of an orthogonal group. Then, the quantized costs and probabilities ¢g and pg are still
given by solid angles and spherical centroids, in a way similar to Table [B:1]
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