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Chapter I

Introduction

Contents
I.1 Rotating stall phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
I.2 Linear stability theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
I.3 Methods for high dimensional eigenvalue problems . . . . . . . . . . . . . . . 8
I.4 Positioning of the present work . . . . . . . . . . . . . . . . . . . . . . . . . . 9
I.5 Objectives and organization of the thesis . . . . . . . . . . . . . . . . . . . . 9

I.1 Rotating stall phenomenon
The prediction of unsteady aerodynamic phenomena specific to turbomachinery is a key issue for

aircraft manufacturers. In axial compressors, under the effect of a three-dimensional disturbance,
a pocket of fluid with a lower rotational speed than that of the machine might stall on one or more
blades. The stalls may coalesce and modify the angle of incidence seen by the upstream fluid,
which is then deflected, giving rise to aerodynamic blockages that result in significant flow rate
drops and consequent energy losses. The flow becomes unstable and the phenomenon, known as

Ω Ω Ω Ω

timeperturbation

Figure I.1: Illustrative representation of the rotating stall phenomenon occuring in a compressor
that rotates at speed Ω.
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Figure I.2: Compressor stall vizualization on a Sukhoi Su-57 ptototype, by Rulexip via Wikipedia
Commons.

rotating stall, occurs (schematically represented in fig. I.1). In severe cases, the fluid may not have
a high enough flow rate to counteract adverse pressure gradients, causing the flow to oscillate at
amplitudes that can be destructive for structures. These intense loads result in compressor stall,
which can even damage the turbomachinery (as shown in fig. I.2).

Understanding these mechanisms is crucial to expand operating conditions and ensure system
safety. The causes of these phenomena have been extensively investigated over the last century
[1]. Greitzer provided in [2], a theoretical criterion based on the mass flow coefficient for which
when the value exceeds a critical level, the system begins to pulse at frequencies characteristic
of the compressor surge. This criterion was validated using experimental data in [3]. Courtiade
& Gourdain [4] conducted experiments on rotating stall on the compressor CREATE (for Com-
presseur de Recherche pour l’Étude des effets Aérodynamiques et Technologiques) and established
a stability limit. They observed that the entrance into surge regime caused the appearance of
twelve stall cells successively shrinking and growing, spinning at 85% of compressor speed. When
loads increased beyond the critical level, this pseudo-stable state degenerated into a full-span cell,
triggering the surge. Other studies of the low-subsonic axial compressor CME2 [5] were carried
out as part of the European ACONITE project [6], which aims to improve the stable operating
range of axial compressor and reduce the surge margin.

Numerical investigations have also been documented. Hamilton [7] shows that a two-dimensional
simulation of unsteady incompressible Reynolds-averaged Navier-Stokes (RANS) equations can ef-
fectively model the rotating stall on a portion of an isolated rotor. The code simulated the sudden
appearance of a stall cell on a 15 rotor channels configuration. Other quasi-three-dimensional
approaches, like that of He [8], explores the rotor-stator interaction with a time-marching Navier-
Stokes (NS) method and a mixing-length turbulence model. Various configurations were tested
and the study shows that the rotating stall is strongly influenced by the stator. It also demon-
strates that the introduction of a perturbation upstream from the compressor plays a role in the
instability process. In [9], Gourdain presents quasi-3-D simulations of the CME2 compressor. The
computations were carried out over 60 revolution periods on a 6.5 × 105 points mesh. By estab-
lishing a "compressor characteristic", he predicts the limit cycle of the rotating stall and shows
that the basic mechanism is intrinsically two-dimensional. However, these methods face difficulties
in comparison with experimental data. To improve the accuracy of computational experiments
and take into account three-dimensional effects and losses, three-dimensional simulations must be
performed.

Analyzing the onset of rotating stall on a rotor/stator configuration, Marty et al. showed in [10]

2



that a 3-D RANS simulation on a single blade channel is sufficient to predict the stability margin.
However, to capture the phenomenon, unsteady RANS simulations in a computational domain
that matches the engine periodicity (at least 1/10 for the CME2 compressor, resulting in 3 rotor
channels and 4 stator channels) must be performed. This agrees with the calculations by Gourdain
[9] on the same configuration. However, above the stability threshold, such reduced computational
domains don’t accurately predict the flow behavior in the compressor. To better understand the
phenomenon and have a simulation that is more representative above the instability onset, 3-D
simulations are mandatory. Gourdain conducted such calculations in [9] on a 31 × 106 points
computational domain and observed the complete coalescence of every stall in about 13 machine
rotations. These calculations were carried out on a vectorial machine in approximately 900 hours.
Marty et al. [10] performed simulations on a full-annulus rotor-stator configuration to investigate
the control of the phenomenon. The computational domain consisted of 110 × 106 points, and the
complete coalescence was observed in 10 machine rotations, which took approximately 390 hours on
ONERA’s clusters. At the price of high restitution times for design phases, these studies improved
the understanding of the phenomenon, but its precise origin remains unknown. To reduce the
level of modeling induced by RANS computations, LES (for Large Eddy Simulation) simulations
can also be used [11]. However, these methods are about 500 times more expensive than RANS
computation, and therefore too costful for industrial use.

Alternatively, the emergence of unsteady phenomena is often linked to the formation of at least
one unstable mode in the flow. The exact source of these temporally self-sustained oscillations
can be understood using linear stability theory. Applying global stability analysis to the flow in
the CME2 compressor may help identify precursors to the rotating stall phenomenon. The various
concepts of global stability theory are described below.

I.2 Linear stability theory
Linear stability theory focuses on the stability of solutions of differential equation-governed

dynamic systems under the influence of small perturbations. A specific branch of stability theory
is the study of the stability of fixed points, which are steady solutions of the governing equations
in an equilibrium state. These states are considered stable if they return to equilibrium after being
perturbed, as with a damped pendulum that returns to its original position after being moved
away from its equilibrium state, or a ball that returns to its starting point in a well (see fig. I.3a).
If the perturbation results in a motion with large amplitudes, the system is considered unstable,
like a ball on the top of a hill (see fig. I.3b). The equilibrium may also be in a neutral state (see fig.

(a) (b) (c)

Figure I.3: Illustration of stable (a), unstable (b) and neutral (c) equilibrium.
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(a) (b)

Figure I.4: (a) Kelvin-Helmholtz cloud waves over the Bighorn Mountains in Wyoming, by R.
Gordon. (b) NASA satellite observation of a von Kàrmàn vortex street on the lee side of Tristan
da Cunha volcano, by J. Stevens & J. Allen.

I.3c), in which a perturbation would move the ball away from its starting position with dampened
motion.

Linear stability theory thus examines the behavior of small perturbations in a dynamic system.
In fluid dynamics, the stability of equilibrium states have been studied for over a century. For
instance, Kelvin and Helmholtz [12, 13] studied an hydrodynamic instability arising when two fluids
are superimposed and one has a velocity above a critical level, giving rise to the so-called Kelvin-
Helmholtz instability shown in fig. I.4a. Another example studied by Bénard and von Kàrmàn
[14, 15] is the flow past a body that, when reaching a critical Reynolds number [16], triggers a
vortex shedding, known as the von Kàrmàn vortex street, shown in fig. I.4b. Initially, instability
was associated with parallel shear flows or axisymmetric jet for instance with the work of Lin [17],
Batchelor & Gill [18] or Drazin & Reid [19]. In the 1990s, the stability theory about parallel flows
has been extended with nonmodal perturbation development by Schmid & Henningson in [20]. All
these studies were conducted on the basis of local stability analysis that lies on the hypothesis of
parallel or weakly nonparallel flows. For more complex configurations, such assumption is seldom
valid and the so-called global stability analysis is required. Huerre & Monkewitz, in [21], made the
distinction between convectively unstable flow, i.e. flows that are spatially unstable and convected
out of the domain; and absolutely unstable flows, i.e. flows which grow unsteadily all over the
domain and are amplified, without getting convected out (by analogy with the rotating stall and
surge presented lately). Absolutely unstable flows are a type of unstable global mode.

Direct global stability analysis. Let us consider a fluid governed by the so-called Navier-Stokes
(NS) equations, which is a nonlinear system of PDE (for Partial Differential Equations). Con-
sidering a state vector w containing the conservative variables of the flow, its evolution can be
described by the following conservative equations:

∂w

∂t
= R(w), (I.1)

where R is the NS operator. The linear stability analysis aims to study the temporal evolution
of a small perturbation around a base flow, which is a steady solution wb of the system such that
R(wb) = 0. This perturbation is governed by a linear equation, expressed as:

∂w′

∂t
= J (wb)w′, (I.2)
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where J (wb) = ∂R/∂w|wb
is the linearized NS operator, otherwise known as the Jacobian of the

flow. In global stability analysis, solutions are supposed to grow exponentially in time, under the
form w′ = ŵ(x, y, z, t)eλt, resulting in the so-called direct eigenvalue problem:

J (wb)ŵ = λŵ. (I.3)

The stability of the k-th direct mode ŵk is described by its corresponding eigenvalue λk. The latter
is composed of an amplification rate σk = ℜ(λk) and an angular frequency ωk = ℑ(λk), while the
eigenfunction ŵk(x, y, z) provides the spatial structure of the mode. If at least one eigenmode has
a positive amplification rate, the base flow is said to be asymptotically unstable. Global modes
are poorly sensitive to external perturbations and describe the asymptotical behaviour of the flow.
They give rise to self-sustained oscillations, making the flow act as an oscillator [22]. On the other
hand, the base flow is asymptotically stable when only stable modes are present. Additionally,
if the Jacobian is normal (i.e. JJ † = J †J , where J † is the adjoint of J as defined below),
its eigenvectors define an orthogonal modal basis. This means that expanding the perturbation
w′ onto such a basis composed only of stable modes will result in a monotonically decreasing
amplitude of the perturbation. However, when the Jacobian is non-normal (i.e. does not commute
with its adjoint), the modal basis is no longer orthonormal and energy growths may occur in the
flow even in the absence of unstable modes. This phenomenon is known as short-term instability
and can be studied using resolvent analysis, as described later.

With the improvement of computational resources, the global stability analysis has been in-
creasingly successful over the past decades [23]. The first documented investigation was made by
Pierrehumbert and Widnall in [24], studying a spatially periodic shear layer. Theofilis reviewed,
in [25], the various types of global stability analysis and some methods to address the problems.
When a 3-D domain is considered with two inhomogeneous directions, the analysis is referred to
as "biglobal", while it is referred to as "triglobal" if each spatial direction is inhomogeneous. The
first reported study of 3-D global stability analysis was carried out on the flow around a spheroid
by Tezuka and Suzuki [26]. Paladini [27] also showed that this technique successfully predicted
the appearance of the buffet phenomenon. In the context of turbomachinery, Xie et al. [28] re-
cently used the global stability analysis method to predict the stall inception of the transonic axial
compressor NASA Rotor 37.

Adjoint global stability analysis. It is also of interest to study the spectral components of the
adjoint operator J † in global stability analysis. It is defined relatively to a given scalar product
⟨·, ·⟩, as ∀a, b:

⟨a,J b⟩ = ⟨J †a, b⟩. (I.4)

Eigenpairs of J † are found by solving the adjoint eigenproblem:

J †(wb)ŵ† = λ†ŵ†. (I.5)

Each direct eigenpair (λk, ŵk) has a corresponding adjoint eigenpair (λ†
k, ŵ†

k) with λ†
k = λk and

ŵ†
k the adjoint mode’s spatial structure. In fluid mechanics, J is frequently non-normal, making

it difficult to expand the perturbation over the nonorthogonal direct modal basis. The difficulty is
overcome by normalizing each adjoint global mode such that ⟨ŵk, ŵ†

k⟩ = 1. The direct and adjoint
modal basis (ŵk, k ≥ 1) and (ŵ†

k, k ≥ 1) form a bi-orthogonal basis verifying ⟨ŵk, ŵ†
l ⟩ = δkl

1. The

1δkl being the Kroenecker symbol: δkl = 1 if k = l, and δkl = 0 if k ̸= l
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perturbation w′ can be uniquely decomposed in the dual basis as:

w′ =
∑
k≥1
⟨ŵ†

k,w′⟩ŵk. (I.6)

The adjoint mode provides the exact field to trigger the corresponding direct mode in the flow.
Its spatial structure shows the flow regions most sensitive to external forcing or initial condition
changes. The adjoint mode is useful for studying the receptivity of the direct mode and can be
used to establish a control strategy to delay unsteadiness [29, 22].

On the other hand, the computation of both direct and adjoint global modes gives access to
the so-called structural sensitivity introduced by Giannetti & Lucchini in [30]. It is defined by the
equation:

S(x0, y0, z0) = ∥ŵ(x0, y0, z0)∥2 · ∥ŵ†(x0, y0, z0)∥2 (I.7)

and represents the spatial overlap of two given direct and adjoint modes. It enables the detec-
tion of the so-called wavemaker, which identifies the regions directly responsible for generating
self-sustained oscillations. Citro has shown an example of adjoint modal analysis and structural
sensitivity calculation on a 3-D case for laminar flow around a spherical body in [31].

Resolvent analysis. As mentioned earlier, in some cases, transient phenomena associated with
short-term instabilities result in an increase of energy in the flow even in the absence of unstable
mode [32]. This occurs in the planar Couette flow, which is globally stable [33] but transitions to a
turbulent regime around Re = 350 [34]. The understanding of such phenomena was first improved
by Reddy et al. [35] through the study of the pseudo-spectrum of the Orr-Sommerfield operator
(see [20] for further details); or by Trefethen et al. [36], who proposed studying the pseudospectra
of the linearized problem. As briefly introduced in the paragraph on direct global modes, the
explanation lies in the non-normal nature of the Jacobian operator.

When J is normal, its eigenmodes are orthogonal and the flow dynamics is entirely governed
by the direct global modes. This means that an increase of energy in the system corresponds to
the existence of at least one unstable mode. However, when J is non-normal, the direct modes
are nonorthogonal and the spectrum of J , which provides the asymptotic behavior of the system,
is not sufficient to exhaustively study transient phenomena. Perturbations on a stable base flow
may thus result in pseudo-resonances, as in the case of the Couette flow. Fig. I.5 gives a geometric
interpretation of this particular type of transient instability. The perturbation w′ is represented as
a linear combination of two stable modes whose amplitudes are exponentially damped over time:

t
t

ŵ2 ŵ2

ŵ1
w′(t = 0) w′(t = 0)ŵ1

Figure I.5: Geometric illustration of the temporal evolution of ∥w′∥ in the normal (left) and
non-normal (right) cases.
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w′ = ŵ1e
λ1t + ŵ2e

λ2t, with σ1, σ2 < 0. When the modal basis is orthogonal, the amplitude of
w′, defined by ∥w′∥2 =

√
∥ŵ1∥2 + ∥ŵ2∥2, decreases monotonically in time. When the modal basis

is nonorthogonal, the amplitude is defined by ∥w′∥2 =
√
∥ŵ1∥2 + ∥ŵ2∥2 + 2⟨ŵ1, ŵ2⟩ cos( ̂̂w1, ŵ2),

where ̂̂w1, ŵ2 is the angle between the two damped modes. In this case, depending on the level of
non-normality of the global modes, an increase of energy may be observed before the amplitude of
w′ asymptotically decreases to zero. In this case, the flow is said to be a noise-amplifier.

The resolvent analysis, first introduced by Trefethen [36] in 1993, is suitable for studying short-
term instabilities. Let us apply a forcing term ϕ′ to the linearized equations (I.1):

∂w′

∂t
= J (wb)w′ + ϕ′. (I.8)

Using the Fourier transforms w′ = ŵ(x, y, z)eiωt and ϕ′ = ϕ̂(x, y, z)eiωt, the relation between the
harmonic response ŵ and forcing ϕ̂ becomes:

ŵ = R(ω)ϕ̂, (I.9)

where R(ω) = (iωI − J (wb))−1 is the so-called resolvent operator, I the identity matrix and
ω a given real frequency. The resolvent operator is a selective noise-amplifier that allows the
identification of the optimal forcing of the flow, i.e. the forcing that maximizes the energy gain
associated to R. This gain is defined given a certain Hermitian norm ∥ · ∥ (usually related to
kinetic or acoustic energy), as η2 = ∥ŵ∥2/∥ϕ̂∥2. Finding the optimal forcing is thus equivalent to
solve the following optimization problem:

η2 = max
ϕ̂

⟨ŵ, ŵ⟩
⟨ϕ̂, ϕ̂⟩

, (I.10)

which in turns, is adressed computing the singular value decomposition of R [37, 22]. To do so,
the following eigenvalue problem is solved:

R†Rϕ̂ = η2ϕ̂, (I.11)

where R† is the adjoint of R. The operator R†R is Hermitian, meaning its spectrum is real,
and the set of optimal forcings (ϕ̂k, k ≥ 1) forms an orthonormal basis over which the forcing
ϕ̂ can be expanded ϕ̂ = ∑

k≥1⟨ϕ̂k, ϕ̂⟩ϕ̂k. In a similar way, it may be shown that the set of
optimal responses (ŵk, k ≥ 1) forms an orthonormal basis and ŵ can be uniquely decomposed as
ŵ = ∑

k≥1⟨ŵk, ŵ⟩ŵk. For a given eigenpair of R†R composed of the k-th optimal forcing ϕ̂k and
gain η2

k, the k-th optimal response ŵk is recovered by:

ŵk = η−1
k Rϕ̂k. (I.12)

Using both forcing and response spaces, equation (I.9) may be recast as:

ŵ =
∑
k≥1

ηk⟨ϕ̂k, ϕ̂⟩ŵk (I.13)

As stated by Bennedine in [38], when a strong convective instability is present in the flow, the
optimal gain η1 is such that η1 ≫ ηk≥2, meaning the structure of ϕ̂ is close to ϕ̂1, which yields a
response ŵ close to ŵ1.

7



In a nutshell, the resolvent analysis improves the understanding of the genesis of nonmodal
and nonlinear phenomenon within a linear framework. Such analysis has been used to describe the
pseudo-resonance of Blasius boundary layer [39], incompressible jets [40], flow around OAT15A
airfoil [41], or to make separation control on a NACA0012 airfoil [42]. More recently, Lugrin [43]
exploited the resolvent analysis to explain the amplification mechanism of oblique modes, which
are linearly amplified convective instabilities appearing on hypersonic vehicles.

The tools of global stability may hence be useful to characterize the rotating stall phenomenon
on axial compressors like the CME2. However, as depicted hereafter, there are few methods
available for analyzing such large-scale configurations.

I.3 Methods for high dimensional eigenvalue problems
The global stability have been introduced within a continuous framework. In the context of

Computational Fluid Dynamics (CFD), each operator and vectors presented earlier must be dis-
cretized. If the computational domain consists of Nc cells, and the problem involves d conservative
variables, the number of degrees-of-freedom (DOF) of the problem is N = N × d. The discretized
state vectors are N -length vectors and the Jacobian operator is a N -by-N matrix. When Nc is
high, the modal and nonmodal global stability problems are therefore based on the resolution of
large eigenvalue problems. As only the least stable eigenvalues of the spectrum are of interest,
it would be counterproductive to use direct methods like QR factorization [44] that returns the
entire spectrum of the considered operator. Iterative eigensolvers such as Arnoldi [45] or Krylov-
Schur (KS) [46] algorithms are preferred instead. Many methods related to the resolution of large
eigenvalue problems have been described by Saad in [47].

The counterpart of Arnoldi-like eigensolvers is that they are best at finding the eigenvalues of
the largest magnitude of the considered operators. As discussed by Theofilis in [25], the operators
of modal analysis are preferentially modified with spectral transformations like shift-and-invert as
to solve the eigenvalue problem. The latter, first used in the context of global stability analysis by
Christodoulou & Scriven [48], involves selecting a complex scalar (called shift) s, and solving the
transformed problem:

(J − sI)−1 ŵ = λ̃ŵ, (I.14)

where λ̃ is linked to the eigenvalue of the original problem by the relation λ̃ = (λ− s)−1. This
technique allows for the calculation of only a portion of the spectrum of interest, as the largest
magnitude eigenvalues of the transformed operator are those closest to s. Thus, whether dealing
with modal or resolvent analysis, inversions of large complex-valued operators must be carried
out. For 2-D problems and small 3-D ones, the usual strategy is to use a direct method like
LU decomposition [49]. This can be achieved using the efficient parallel MUMPS solver (see
https://mumps-solver.org/) may be used.

As stated by L’Excellent in [50], if NE(J ) is the number of entries of the Jacobian, the mem-
ory cost of its LU factorization is of the order of (NE(J )/7)4/3. When dealing with complex
configurations exceeding the 10 × 106 DOF, such as the full-annulus compressor CME2, storage
of LU factorization thus becomes almost impossible due to memory limitations and inversions
must be managed with iterative methods instead. As pointed out by Guilbert [51], due to the
non-symmetrical, non-normal and not necessarily diagonal dominant nature of the operators en-
countered in compressible CFD, the most efficient current methods are preconditioned Krylov
ones. Saad describes such methods in details in [52]. For example, Mack & Schmid [53] used an
ILU-based preconditioned Krylov technique, the BICGSTAB, to conduct global stability analysis
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about a swept parabolic body. Timme & Thormann discussed in [54] the efficiency of various
preconditioned Krylov methods for solving global stability problems. Timme also carried out the
largest known direct and adjoint global stability analysis in [55] to characterize the buffet onset
of a full airplane configuration, resulting in approximately 50 × 106 mesh points for the finest grid
studied. To the author’s knowledge, no resolvent analysis has been performed on such large cases.

I.4 Positioning of the present work
Based on the previous sections, the understanding of the origin of rotating stall can be improved

through the use of global stability analysis. However, due to the size of the problem, traditional
direct factorization methods cannot be utilized, and the entire global stability process must be
adapted.

At ONERA, work is underway to improve the high performance computing (HPC) layers of the
compressible elsA CFD code [56, 57]. This includes cache-blocking and vectorization optimizations.
Guilbert [51] has also developed preconditioning tools to efficiently solve the large real-valued
sparse linear systems involved in computing fixed points in compressible CFD using the GMRES
algorithm [58]. This is achieved by computing the Jacobian matrix with Algorithmic Differentiation
(AD), which preserves the HPC layer, and using preconditioners based on ILU(k) [52] and local-LU
factorization. These developments could potentially be adapted for solving linear systems related
to global stability problems.

The main obstacle to this is that the linear systems involved in global stability analysis are
complex-valued, which is incompatible with vectorization as complex arithmetic is not vectorizable.
To take advantage of both Guilbert’s work and HPC optimizations, the complex operators need
to be reformulated in a real-equivalent version, which should be propagated throughout the entire
eigenvalue computation process.

I.5 Objectives and organization of the thesis
The objective of this work is to develop a method in elsA software to scale up the overall global

stability process to industrial configurations with more than 10 × 106 DOF like the compressor
CME2. To achieve this, the manuscript is divided into three chapters. The first chapter starts with
a presentation of numerical methods used to discretize governing equations of compressible CFD.
Then, efficient fixed point computations, a pre-requisite for global stability analysis, are discussed
using Newton-like methods. The concept of AD for Jacobian computation is also covered, followed
by an overview of various tools for global stability analysis in a discrete framework. Finally, the
efficient iterative eigensolver KS algorithm [46], in its complex version, is presented. Each concept
is illustrated using the viscous Burgers case [59], a 1-D nonlinear advection equation that resembles
the Navier-Stokes equations.

In chapter II, after establishing the mathematical background for laminar and RANS compu-
tations, the fixed point methods as implemented in elsA are discussed. The focus is on the implicit
backward Euler scheme solved with the approximate LU-SGS method and the exact GMRES-based
[58] method. A good preconditioner, based on the exact Jacobian matrix, is required to ensure
convergence of the latter method. The Jacobian is computed using multicoloring [51], while the
preconditioning is based on ILU(k) and hybrid local-LU methods. A KS algorithm compatible
with HPC optimizations is also developed. As mentioned earlier, the operators of global stabil-
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ity analysis have to be reformulated in a real-equivalent version for effective vectorization. To
do so, the K formulation, introduced by Day & Heroux in [60] is selected, which conserves the
sparsity pattern of the original complex operator and thus allows the reuse of the preconditioning
routines developed by Guilbert [51]. This formulation is first implemented to be operative with
the GMRES algorithm. The spectral properties of the K-formulated operators are then described,
and detailed in the case of modal and resolvent analysis. Implementations of the KS algorithm
applied to global stability in elsA are provided, giving rise to a new method named K-formulated
global stability analysis method (KFGSM). The method is further validated on the canonical case
of laminar cylinder flow for direct, adjoint, and resolvent computations.

In the last chapter, the KFGSM is tested on more challenging configurations. First, the RANS
case of OAT15A airfoil flow is addressed, and the method is validated for direct, adjoint, and
resolvent computations. The KFGSM is then tested on the subsonic laminar sphere flow, a 3-
D configuration that reaches 10 × 106 DOF, representing industrial configurations for which the
KFGSM was designed. The method is used to thoroughly characterize the two bifurcations of this
case using direct, adjoint, and resolvent analysis. The code is even tested on a refined mesh with
about 125 × 106 DOF for demonstration purposes.
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Chapter II

Overview of global stability analysis tools
and their implementation
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II.1 Introduction
The present chapter builds a mathematical background to introduce the various tools of global

stability analysis. The purpose is to describe each step of the process in a general way, in order to
set these ideas before the K-formulated global stability method (KFGSM), as implemented in elsA
[61] software is detailed in chapter II. To this end, general considerations about conservation laws
as well as numerical discretization, in the context of compressible Computational Fluid Dynamics
(CFD) are first addressed. Secondly, some fixed point computation methods with the strategy
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developed to get linearized operators are detailed. Finally, the main tools of global stability
analysis are discussed, and the Krylov-Schur (KS) [46] algorithm with complex arithmetics is
introduced.

II.2 Governing equations in compressible CFD
The general conservation equations arising in fluid mechanics and their discretization within

the framework of compressible CFD are presented here. Unlike the incompressible version of
Navier-Stokes (NS) equations that can be elliptic or parabolic, their compressible counterpart is
hyperbolic [62]. In the latter description, the convective part must be addressed using Riemann
solvers [63]. This section presents the general concepts of spatial discretizations, particularly for
compressible CFD solvers. These are illustrated on the one-dimensional Burgers equation [59],
which mimics the NS equations. Mathematical formulations of the CFD problem treated with the
elsA solver are presented in III.3.

II.2.1 Conservation laws
Let us consider the state vector w(M , t) ∈ Rd containing d conservative variables, where

M ∈ RNdim is the Ndim-dimensional vector representing the spatial position and t ∈ R+ is the time
parameter. The transformation p is defined in the following such that the primitive variables are
contained in the vector p(w) ∈ Rd. For the sake of conciseness, the notation p will be used to
denote p(w) in the following. From Newton’s second law, the evolution of such vector is governed
by the following system of partial differential equations (PDE):

∂w

∂t
+∇f = ts, (II.1)

where f = f(p,∇p) ∈ Rd × RNdim is the physical flux based on the primitive variables and ts =
ts(M , t) ∈ Rd represents source terms (ts = 0 leads to the homogeneous case). The conservation
law (II.1) is only valid for sufficiently smooth solutions. When discontinuities like shock waves
occur, the flow solution becomes discontinuous and the previous relation must be integrated over
a control volume Ω to get the integral form of the conservative equations:

ˆ
Ω

∂w

∂t
dΩ +

ˆ
Ω
∇fdΩ =

ˆ
Ω
tsdΩ. (II.2)

Considering the fluxes function to be of class C1, the time derivative can be decoupled from the
space integral, and the divergence theorem can be applied to get:

∂

∂t

ˆ
Ω
wdΩ +

˛
∂Ω
f · ndS −

ˆ
Ω
tsdΩ = 0, (II.3)

with n the unit external normal defined on the frontier ∂Ω of the domain. Physically, equation
(II.3) links the temporal variation of w to its flux crossing the frontier ∂Ω and its production
or destruction via the source term. Additionally, the flux term can be seen as the sum of two
contributions: the convective part fc, and the diffusive part fd. The system can be recast as:

∂

∂t

ˆ
Ω
wdΩ +

˛
∂Ω

(fc − fd) · ndS −
ˆ

Ω
tsdΩ = 0. (II.4)
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As a reminder, PDE can be classified as hyberbolic, parabolic or elliptic depending on their
properties. Hirsch presents the physical meaning of each of these classifications in [62]. A system of
equations is said to be hyperbolic if its homogeneous part admits wave-like solutions. The physics
of such system is dominated by convection phenomena. For instance, the so-called inviscid 1-D
Burgers equation which describes the convection without diffusion of a scalar quantity u is purely
hyperbolic:

∂u

∂t
+ u

∂u

∂x
= 0. (II.5)

When the wave-like solution is damped in time, the equation is said to be parabolic. Such property
is associated with time-dependent diffusion. A canonical case is the parabolic heat equation that
governs the evolution of the temperature T in a fluid at rest of thermal coefficient κ:

∂T

∂t
− κ∆T = 0. (II.6)

If the system does not admit any wave-like solution, it is said to be elliptic which is associated
to pure spatial diffusion. Such behaviour describes the spatial diffusion of the pressure p in an
incompressible 2-D flow:

∆p + ρ

(∂ux

∂x

)2

+ 2∂ux

∂y

∂uy

∂x
+
(

∂uy

∂y

)2
 = 0. (II.7)

The nature of the conservation laws varies depending on the physical system of interest. In
relation (II.4), the convective flux is an hyperbolic operator while the diffusive flux is parabolic.
The system is purely hyperbolic when the latter is zero, as in the stationary Euler equations. But
in the case of the NS equations, the presence of fd induces a hybrid mix hyperbolic-parabolic
describing a convection-diffusion phenomenon. This behaviour can be reproduced by adding a
viscosity parameter ν to the Burgers equation (II.5):

∂u

∂t
+ ∂

∂x

(
u2

2 − ν
∂u

∂x

)
= 0. (II.8)

In this case, fc = u2/2 and fd = −ν∂u/∂x. For the sake of better comprehension, the latter
equation will be used to illustrate the various concepts presented in this chapter.

II.2.2 Spatial discretization and Riemann solvers
The following presents the spatial discretization by means of the finite volumes method. A

solution to the problem of interest is searched on the domain Ω, divided into Nc cells. The integral
conservation law (II.3) applied in a cell Ωk at a time t writes:

∂

∂t

ˆ
Ωk

wdΩ +
˛

∂Ωk

f · ndS −
ˆ

Ωk

tsdΩ = 0. (II.9)

If Ωk contains Nint interfaces where the j-th one is denoted by Ij, this relation becomes:

∂

∂t

ˆ
Ωk

wdΩ +
Nint∑
j=1

˛
Ij

f · ndS −
ˆ

Ωk

tsdΩ = 0. (II.10)
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We consider in addition the average value wk of w in cell Ωk:

wk = 1
V (Ωk)

ˆ
Ωk

wdΩ, (II.11)

where V (Ωk) stands for the volume of Ωk. The general formulation of the finite volume method is
thus given by:

∂(V (Ωk)wk)
∂t

+
Nint∑
j=1

(
hc(wL

Ij
,wR

Ij
)− hd(wL

Ij
,wR

Ij
)
)

Sj − V (Ωk)Tk = 0, (II.12)

where hc and hd are functions that compute convective part and diffusive part of the numerical
approximations of the physical fluxes

¸
Ij

(Fc − Fd)·ndS crossing each interface Ij of surface Sj. wL
Ij

and wR
Ij

are the left and right (from Ij) state of conservative variables. In compressible CFD, the
equations are dominated by convective fluxes, which makes them mainly hyperbolic. Special care
must be taken to build hc to avoid oscillations across a discontinuity in the solution. The diffusive
part hd can be seen as a numerical dissipation that damps discontinuities. Hereafter, some types
of numerical schemes used in this thesis are described in a general way. Hyperbolic convective
and parabolic viscous operators are separately considered to build each flux. These schemes are
illustrated for Burgers equation. An extension to 3-D configurations, such as implemented in elsA
solver, is presented in III.3.

Convective fluxes. We focus in the following on the homogeneous hyperbolic part of the con-
servation law (II.1). The finite volume method uses the average value of w in each cell so the
solution is a constant piecewise function, which creates discontinuities at each interface. Godunov
[64] introduced a first-order upwind scheme to compute the intercell numerical flux hcIj

, requiring
the resolution of a nonlinear hyperbolic local Riemann problem [63]. In 1-D (i.e. Ndim = 1), this
problem writes: 

∂w

∂t
+Ac

∂w

∂x
= 0,

w(x, 0) =
{
wL if x < 0
wR if x > 0

(II.13)

where Ac = ∂Fc/∂w ∈ Rd×Rd stands for the Jacobian matrix of the convective fluxes. The latter
is diagonalizable with real eigenvalues, meaning there exist matrices X ,D ∈ Rd × Rd verifying
Ac = XDX−1 and where D is a diagonal matrix containing the eigenvalues of Ac in its diagonal.
The expression for the Godunov flux based on the center of the interface Ij then writes:

hcIj
= 1

2
(
fc(pL

Ij
) + fc(pR

Ij
)
)
· nIj

− 1
2 |Ac|

(
wR

Ij
−wL

Ij

)
, (II.14)

where |Ac| = X|D|X−1, and |D| is the diagonal matrix containing the modulus of each eigenvalue.
Such a discretization conserves the local information of wave propagation through the entire do-
main, and physical discontinuities like shock waves can be captured without generating additional
spurious oscillations. The counterpart is the need to solve as many Riemann problems as there
are interfaces in the domain. This strategy is time-consuming as it requires Ac at each interface.

Instead of looking for the exact solution of problem (II.13), another possibility is to search for
approximate solutions by solving approximated Riemann problems. This idea is behind the Roe
scheme [65] widely used in this work. The concept is to replace the Riemann problem with an
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Figure II.1: Segment discretization.

approximated linearized one, which is achieved by replacing Ac in (II.13) by a so-called Roe matrix
Ãc. The latter only depends on wL and wR and must satisfy the three following properties:

(i) Ãc(wL,wR) is diagonalisable with real eigenvalues;
(ii) Ãc(wL,wR)(wR −wL) = fc(wR)− fc(wL);
(iii) Ãc(w,w) = A(w).

(II.15)

By analogy with the Godunov flux, the Roe intercell flux is defined as:

hcIj
= 1

2
(
fc(pR

Ij
) + fc(pR

Ij
)
)
· nIj

− 1
2
∣∣∣Ãc

∣∣∣ (wR
Ij
−wL

Ij

)
, (II.16)

Let us pinpoint that a lot of schemes based on the formulation of various Riemann problems at the
interfaces can be used, like the so-called HLLC scheme, and more details about their derivation
can be found in [63].

Such a scheme ensures a first-order-accurate discretization in space. They can be extended to
second-order accuracy using the Monotonic Upstream-centered Scheme for Conservation (MUSCL)
reconstruction method introduced by Van Leer in [66]. The latter assumes that the left and right
states are no longer constant but may vary linearly through the cells. Second-order accuracy is
obtained using a reconstruction at the faces of left and right states. If the left and right cells of
interface Ij respectively are Ωk and Ωl, then one may write:p

L
Ij

= pk + ∇p|k · d
k
Ij

pR
Ij

= pl + ∇p|l · d
l
Ij

,
(II.17)

where dk
Ij

is the vector going from the center of cell Ωk to the center of interface Ij. The use
of MUSCL reconstruction leads to spurious oscillations close to flow discontinuities. This can be
countered by using limitor functions for the reconstructed values [62].

In the case of Burgers equation, the domain Ω is a segment [x1, xNc ] in a cartesian coordinates
system with a uniform space grid ∆x, and each cell Ωk has two interfaces in xk− 1

2
and xk+ 1

2
, as

shown in fig. II.1. At second-order accuracy without limiting function, the Roe flux writes:

hck+ 1
2

= 1
2
(
fc(uL

k+ 1
2
) + fc(uR

k+ 1
2
)
)
− 1

4 |uk + uk−1| (uR
k+ 1

2
− uL

k+ 1
2
), (II.18)

with uL
k+ 1

2
and uR

k+ 1
2

defined as:


uL

k+ 1
2

= uk −
∆x

2 ∇u|k

uR
k+ 1

2
= uk+1 + ∆x

2 ∇u|k .

(II.19)
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Diffusive fluxes. Diffusive fluxes are calculated by a discretization purely centered at interface
Ij, based on the primitive variables:

hdIj
= fd

(
pIj

, ∇p|Ij

)
· nIj

. (II.20)

The primitive variables at the center of Ij are estimated by arithmetic mean of their values at
the center of each adjacent cells. Gradients are also computed at interfaces. Various methods can
be applied, but the one used in elsA is a corrected version of the so-called five-points stencil (5p)
method. It is described in III.3.2.

In the case of Burgers equation, the numerical diffusive flux writes:

hdk+ 1
2

= ν ∇u|k+ 1
2
· nk+ 1

2
. (II.21)

The gradient term is obtained by a Taylor expansion of uk+ 1
2
. At second-order, it gives:

uk+ 1
2

= uk + ∆x

2 ∇u|k+ 1
2

. (II.22)

From what precedes, the quantity u at the interface in xk+ 1
2

is uk+ 1
2

= (uk + uk+1)/2, from which
one deduces the expression of the gradient at the face:

∇u|k+ 1
2

= 1
2 (uk+1 − uk) . (II.23)

Hence, the numerical diffusive flux reads:

hdk+ 1
2

= ν

∆x
(uk+1 − uk) . (II.24)

In a similar way, we get at fourth order:

hdk+ 1
2

= ν

24∆x
(−uk−1 + 26uk − uk+1) . (II.25)

Now that the finite volume method and flux discretization have been introduced in the context
of compressible CFD, the next section presents methods to compute fixed points. In the following,
the discrete representation of all vectors and scalars will be written in upper case. For example,
the discretized state vector W ∈ RN , with N = d × Nc, is composed of the Nc state vectors w.
We also introduce the discrete residual operator R(W ) ∈ RN whose k-th component reads:

tsk −
1

V (Ωk)

Nint∑
j=1
h(wL

Ij
,wR

Ij
)Sj. (II.26)

The general discretized governing equations can thus be recast under the following form:

∂W

∂t
−R(W ) = 0. (II.27)
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II.3 Fixed point computation
As introduced in I.2, a global stability analysis studies the linear evolution of global harmonic

perturbations about a baseflow Wb to determine its asymptotic stability. Therefore, being able to
compute Wb accurately is a prerequisite. In this work, Wb is chosen to be a fixed point, i.e. a
steady solution of equation (II.1). Note that it is also physically relevant to carry out a stability
analysis on the mean flow instead of a fixed point (see for instance [38]). But this latter approach
is out of the scope of the present thesis and will not be discussed.

Finding a steady-state solution of equation (II.27) results in the following equivalence:

∂W

∂t
= 0 ⇔ R(W ) = 0. (II.28)

Such a problem can be solved by Newton-like methods or a pseudo time-marching loop. However,
from time integration, the use of explicit schemes such as the Runge-Kutta scheme [67] could be
very expansive in terms of CPU usage. This is why only implicit Newton-like methods were used
in this work.

Hereafter, the Newton method and the linearized first-order backward Euler method with local
time-step are derived for the conservative equations. They are then illustrated on the resolution of
the viscous Burgers problem defined by equation (II.8). We focus on its resolution on the segment
[−10, 10], with u(−10, t) = 1 and u(10, t) = −1, and where Nc = 400. A theoretical fixed point
of such a boundary-valued problem is known to be utheo = −tanh(x/2) [68]. Both convective and
diffusive fluxes are discretized at second-order accuracy using respectively (II.18) and (II.24).

II.3.1 Newton method
Given an initial guess W 0, the Newton method iteratively evaluates the gradient direction

toward a fixed point. The n-th Newton iteration is based on the following linearization:

R(W n+1) = R(W n + ∆W )
≃ R(W n) + J (W n)∆W ,

(II.29)

where J (W n) = ∂R/∂W |Wn
is the Jacobian matrix of the residual. Each iteration consists in

evaluating ∆W through the resolution of the following linear system:

J∆W = −R(W n), (II.30)

and the solution of the nonlinear problem at the next iteration is given by W n+1 = W n + ∆W .
The algorithm stops when R(W n+1) becomes lower than some user-defined tolerance. Under
certain assumptions, the convergence is expected to be quadratic. This method has been developed
on the Burgers case. Given the differentiated right Jacobian-vector product obtained using the
Algorithmic Differentiation (AD, presented in II.4), the Jacobian J is computed by applying this
product to each canonical vector ei =

(
0 · · · 0 1 0 · · · 0

)T
. The system (II.30) is solved by

LU factorization, and the nonlinear residual is ∥∆U∥2. Fig. II.2a shows the convergence curve
resulting from a computation initialised with U0 = 1. The quadratic convergence is identified
between iteration 8 and 16, where the error drops below 10−10. Fig. II.2b plots the base flow
obtained at the end of the computation, which compares well with the theoretical fixed point
Utheo.
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Figure II.2: Convergence curve (a) and initial, theoretical and converged field (b) after 16
iterations for the Newton method.

II.3.2 Implicit backward Euler method
The Newton method might not be robust enough when the physical problem is particularly

stiff2, or when the initial guess is too far from the searched solution. In fluid mechanics, a common
practice to overcome this difficulty is solving the nonlinear system (II.27) with an implicit scheme
in time. In particular, we focus in this thesis on the linearized first-order backward-Euler method
with a local time-step that leads to the following equation:( 1

∆t
IN − J (W n)

)
∆W = R(W n), (II.31)

where IN is the N -by-N identity matrix. A linear system has to be solved here as well, and one
may see that when ∆t→ +∞, this scheme is equivalent to a step of the Newton method (II.30).

To compute a steady-state solution, Crivellini et al. [69] developed a pseudo-transient con-
tinuation technique that uses an adaptative Courant–Friedrichs–Lewy (CFL) number [70] defined
as: 

CFL = min
(

CFLmin

rβ
, CFLmax

)
,

r = max
(
∥R(W n)∥2

∥R(W 0)∥2
,
∥R(W n)∥∞

∥R(W 0)∥∞

)
,

(II.32)

where CFLmin, CFLmax and β are user-defined input parameters. In this work, β is always 1.
During computation, the CFL number grows while the residual norms decrease. Since the time-
step ∆t is proportional to the CFL number, its value grows as the algorithm becomes closer to a
steady-state solution. This approach is physically relevant since the goal is to capture asymptotical
phenomena that do not vary even during large periods of time. Quadratic convergence is obtained
during this late part of the computation. Fig. II.3 shows a numerical experiment on Burgers
equation using CFLmin = 0.1 and CFLmax = 1020. The Jacobian operator is here again computed
with AD, and the linear system (II.31) is solved by LU factorization.

2meaning being highly sensitive to numerical modeling.
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Figure II.3: Convergence curve (a) and initial, theoretical and converged field (b) for the implicit
backward Euler with adaptative CFL method.

This fixed point method has been implemented on Burgers equation as well. Fig. II.3a shows
the convergence curve resulting from a computation initialised with U0 = 1. During the first 450
iterations, the system is more relaxed than that in Newthod method and converges slower with a
lot of oscillations. However, the solution reaches then a quadratical convergence toward the basin
of attraction. The resulting field provided in fig. II.3b also presents a good match with Utheo,
proving the robustness of the method.

Newton-like methods perform well at finding steady solutions with good accuracy. However, to
ensure a convergence below 10−10, the Jacobian operator must be computed with high reliability.
As mentioned earlier, the illustrative results from this section were obtained with AD to evaluate
Jacobian-vectors products. The AD theory and its practical implementation are detailed in the
following section.

II.4 Linearization procedure
Whether we work on fixed point computation or global stability analysis (see II.5), critical is

the importance of the linearization procedure for direct and adjoint operators. One solution is
differentiate equation (II.1) analytically, then to discretize the set of linearized equations [71, 72].
However, as stated in [73], in the compressible case, the consistency from continuous to discrete
operator is not guaranteed. The solution used in this thesis is to work in a fully discretized
framework in which equation (II.1) is discretized into equation (II.27), and then linearized. Mettot
[74] states such strategy has the other advantage of being less error-prone and simpler to implement
since all the complexity, such as boundary conditions or numerical schemes, is already accounted
for in the discrete linearized equations without additional treatment.

As introduced in [37], one way to approximate the product between J and a test vector φ is
to use the following finite differences relation:

Jφ ≈ 1
ϵ

(R(Wb +φ)−R(Wb)) , (II.33)

where ϵ is a small user-defined parameter. Nevertheless, Knoll & Keyes in [75] explained that the
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choice of ϵ can be tedious and case-dependent. If too large, the matrix-vector product is poorly
approximated, and if too small, floating-point round-off errors could contaminate the result. In this
work, the issue has been avoided by using AD tools instead, which provides exact matrix-vector
products.

II.4.1 Description of Algorithmic Differentiation with Tapenade

There are two main families of AD tools: the Source Code Transformation (SCT) which re-
places the source code for a function by an automatically generated source code that includes
statements for calculating the derivatives interleaved with the original instructions; and the Over-
loading Operator (OO) that computes the derivatives present in a computer code by appending
a dual component to all the dependent variables. For performance issues [57], the SCT has been
retained in this work. In particular, the choice was made to use the Tapenade software, devel-
oped by Hascoët & Pascual [76] as it is the most mature and reputable open-source tool in the
community nowadays.

Given m, l ∈ N and an algorithm that implements a function G : X ∈ Rm 7→ G(X) ∈ Rl,
Tapenade produces differentiated codes in SCT that computes the exact Jacobian-vector product
with a column (forward mode) vector by the right, or a line vector (backward mode) by the left, up
to machine precision. Assuming G is differentiable, AD relies on the fact that its implementation
is composed of a sequence of p elementary instructions, which are mathematical functions g that
can be differentiated one by one. The composition of these functions returns G:

G = gp ◦ gp−1 ◦ · · · ◦ g1. (II.34)

From such a relation, the chain rule applies on the derivatives to get the Jacobian operator JG =
∂G/∂X:

JG(X) = g′
p(Xp−1)× g′

p−1(Xp−2)× · · · × g′
1(X0) (II.35)

with X0 = X, Xk = gk(Xk−1) and g′
k = ∂gk/∂Xk−1.

Forward mode. From a given column vector XF ∈ Rm, the quantity JG(X)XF is evaluated
with successive right matrix-vector products:

JG(X)XF = g′
p(Xp−1)× g′

p−1(Xp−2)× · · · ×

=XF
1︷ ︸︸ ︷

g′
1(X0)XF︸ ︷︷ ︸

=XF
p−1

, (II.36)
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which, as shown in [76], is implemented using the following standardized sequence of instructions:

X0 = X

XF
0 = XF

X1 = g1(X0)
XF

1 = g′
1(X0)XF

0

. . .

Xk = gk(Xk−1)
XF

k = g′
k(Xk−1)XF

k−1

. . .

Xp = gp(Xp−1)
XF

p = g′
p(Xp−1)XF

p−1,

(II.37)

and JG(X)XF = XF
p .

Backward mode. This mode computes, for a given XB ∈ Rl, the quantity XBTJG(X) with
successive left matrix-vector products:

XBTJG(X) =

=XB
p−1︷ ︸︸ ︷

XBg′
p(Xp−1)×g′

p−1(Xp−2)× . . .︸ ︷︷ ︸
=XB

1

×g′
1(X0). (II.38)

Note that actually, since XBTJG(X) = (J T
G (X)XB)T , the backward mode provides the action of

J T on a given vector, which is particularly useful in the framework of global stability analysis (see
II.5.2 and [77]). Unlike the forward mode, the vectors Xk must all be computed before calculating
the first backward quantity XBg′

p(Xp−1):

X0 = X

X1 = g1(X0)
. . .

Xk = gk(Xk−1)
. . .

Xp = gp(Xp−1)
XB

p = XBg′
p(XB)

XB
p−1 = XB

p g
′
p−1(Xp−2)

. . .

XB
k = XB

k+1g
′
k(Xk−1)

. . .

XB
0 = XB

1 g
′
1(X0),

(II.39)

and XBTJG(X) = XB
0

T .
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Appendix A presents an example of AD code in forward and backward modes obtained with
Tapenade on a piece of FORTRAN code that computes the L2 scalar product. One may check the
accuracy of the produced routines by comparing their outputs to finite differences using equation
(II.33) or to the complex-step derivative approximation introduced by Martins [78]. To validate
the compatibility between forward and backward differentiated codes, a so-called duality test may
be performed [79]. Given two random vectors XF ∈ Rm and XB ∈ Rl, it consists in checking the
accuracy of the following equality:

XB ·
(
JG(X)XF

)
︸ ︷︷ ︸

forward

=
(
XBJG(X)

)
︸ ︷︷ ︸

backward

·XF, (II.40)

which is in practice achieved by evaluating the relative error ϵAD
rel :

ϵAD
rel =

XB ·
(
JGXF

)
−
(
XBJG

)
·XF

∥JGXF∥2
. (II.41)

II.4.2 Application to the conservation equations

Significant efforts have been made at ONERA, based on the work of Mary [56], to challenge the
two limiting factors of CFD applications: their CPU and memory costs. In elsA CFD solver, this
so-called high performance computing (HPC) layer consists of cache-blocking and vectorization
optimizations. The computational domain is divided into packs of tiles (cells or interfaces, de-
pending on what is computed) independent of each other for vectorization. Once a pack is loaded
in memory, the goal is to perform as many operations as possible before other packs have to be
treated. Such a technique optimizes loadings and unloadings of memory cache at the L3 level (see
fig. III.1), and allows for the vectorization of calculus loops since each tile is independent of others.
In practice, the solver is organised as a chain of operators specified by user choices, which ensures
these improvements on direct, forward, and backward computations.

The resulting chain of operators can be represented by a graph. For example, the graph of R :
W ∈ RN 7→ R(W ) ∈ RN with second-order schemes for fluxes, without source terms (Ts = 0) is:

W F R

∇P

P

where P and F are respectively the discretized primitive vector and fluxes defined in II.2.1. Such
graph illustrates how each operator must be successively computed and nested one by one to
finally give R(W ). This formulation allows the use of chain rules, and the Jacobian operator
J = ∂R/∂W can be computed with crossed derivatives:

J = ∂R

∂F

(
∂F

∂P
+ ∂F

∂∇P
∂∇P
∂P

)
∂P

∂W
. (II.42)

Tapenade is able to generate differentiated code for each operators in forward or backward mode.
The graph providing the right Jacobian-vector product, i.e. the mapping φ ∈ RN 7→ Jφ ∈ RN ,
reads:
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φ
∂P

∂W
φ

∂F

∂P

(
∂P

∂W
φ

)
+

∂F

∂∇P

(
∂∇P
∂P

∂P

∂W
φ

)
Jφ

∂∇P
∂P

(
∂P

∂W
φ

)

while that of the left Jacobian-vector product, i.e. the mapping ψ ∈ RNψT 7→ J ∈ RN , reads

ψ ψT
∂R

∂F

(
ψT

∂R

∂F

)
∂F

∂P
+
(
ψT

∂R

∂F

∂F

∂∇P

)
∂∇P
∂P

ψTJ

(
ψT

∂R

∂F

)
∂F

∂∇P

where the terms between parenthesis are line or column vectors following the mode used.
Once coded and assembled, the chain of operators can be integrally differentiated in forward

or backward mode to get the action of both J and J T (with the relation J Tψ = (ψTJ )T )
on a given vector at machine precision. The use of SCT allows the preservation of all HPC
optimizations as in the direct solver, unlike the OO differentiation [57]. As depicted in II.4.1, the
validity of each differentiated operator is verified by comparing with finite differences, and the
compatibility between forward and backward operators is checked using duality test (see equation
(II.40)). Such a strategy has been implemented for the Burgers equation and the resulting duality
error associated with J (Utheo) is ϵAD

rel = 1.6467×10−16. This is below machine precision, validating
the differentiated codes produced by Tapenade.

II.5 Global stability analysis
The stability of a base flow can be studied by analyzing its behavior under the effect of a pertur-

bation. As discussed in I.2, one or more global modes are necessarily involved in the asymptotical
behaviour of an unstable base flow. Their spatial support, amplification rate and frequency can be
computed by finding the least stable eigenpairs of J [22]. When the baseflow is stable, the global
modes are exponentially and asymptotically damped, and are not sufficient to give explanation of
transient energy growth in the system. The resolvent analysis [36, 20] examines such short-term
instability providing the most amplified frequency (and the associated forcing and response) of a
given sub-critical flow. The direct and adjoint global stability as well as the resolvent analysis in
their discrete form are detailed hereafter.

II.5.1 Direct modal analysis
By analogy with I.2, the discrete formulation of the direct eigenvalue problem is detailed

hereafter. We assume first the existence of a steady solution Wb of (II.27) perturbed by a small
disturbance W ′. The discrete residual can be linearized about Wb using:

R(Wb +W ′) ≃ R(Wb)︸ ︷︷ ︸
=0

+J (Wb)W ′. (II.43)
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For the sake of conciseness, the notation J will be used to denote J (Wb) in the following. In-
jecting this last quantity in equation (II.27) results in the so-called linearized Navier-Stokes (LNS)
equations that govern the temporal evolution of W ′:

∂W ′

∂t
= JW ′. (II.44)

As stated for instance by Sipp et al. in [22], these disturbances may be decomposed into modes of
the formW ′(x, t) = Ŵ (x)eλt, where Ŵ is an eigenfunction of J representing the spatial structure
of this direct mode. The quantities σ = ℜ(λ) and ω = ℑ(λ) respectively stand for the growth
rate and angular frequency associated with W ′. Equation (II.44) then reduces to the following
eigenproblem:

λŴ = J Ŵ . (II.45)
Wb is said to be unstable (respectively stable) if there exists at least one eigenvalue of J such
that σ > 0 (respectively σ < 0). The global stability of Wb is thus analyzed by computing the
spectrum of J . In this work for the sake of generality, we assume that the flow does not exhibit
any spatial homogeneity, but when there is one or more, the study simplifies into bi-global or local
stability analysis [80].

Usually, only the least stable modes of J are of interest, and the eigenproblem (II.45) is solved
with an iterative eigensolver3 like the Krylov-Schur algorithm (KS, presented later in section II.6).
This algorithm is best at finding the eigenvalues of the largest magnitudes of the considered opera-
tor, which are not necessarily the least stable ones. To target the least stable part of the spectrum,
the spectral shift-and-invert transformation is applied: a complex-valued shift s is introduced, and
the following transformed complex eigenproblem is solved instead:

λ̃Ŵ = (J − sIN)−1Ŵ , (II.46)

where λ̃ = (λ− s)−1. This strategy is further explained in II.6.5, which highlights its efficiency to
filter the eigenvalues closest to s.
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û

Figure II.4: Spectrum of J (a) computed by SLEPc and LAPACK and real part of eigenmode
calculated by SLEPc (b) corresponding to the least stable eigenvalue λ = −4.55× 10−6.

3rather than a direct eigensolver that returns the entire spectrum.
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The stability of the Burgers equation’s fixed point Wb computed in II.3.2, has been tested. The
computation of eigenpairs was carried out by both the direct QR algorithm (given the relatively
small dimensions of J ) with LAPACK [81]; and by SLEPc [82] with a KS algorithm with shift-
and-invert transformation, where only the least stable eigenvalues are looked for. The inversions of
the complex operator are managed in SLEPc by LU factorization, as in section II.3. The resulting
spectra are showed in fig. II.4a, where a good match between LAPACK and SLEPc for the least
stable eigenvalues. We also notice that Wb is a stable base flow. The least stable eigenvector
computed with SLEPc is presented in fig. II.4b. The largest part of the global mode is located is
located at the center of the domain.

II.5.2 Adjoint modal analysis
To describe the adjoint modal analysis in its discrete form, we first introduce a discrete scalar

product ⟨·, ·⟩Q : CN×N → C, represented by the mass matrix Q ∈ RN ×RN . For two given vectors
A,B ∈ CN , it reads:

⟨A,B⟩Q = AHQB, (II.47)

where the superscript H denotes the conjugate transpose. Assuming that Q is a non-singular
symmetric matrix, the discrete adjoint operator J † of J is defined relatively to ⟨·, ·⟩Q such that
⟨A,JB⟩Q = ⟨J †A,B⟩Q for all vectors A and B. Since J is real and Q is non-singular, an
explicit relation between J † and J T is obtained:

J † = Q−1J TQ. (II.48)

The matrices J † and J T are thus similar and share the same spectrum. We can therefore focus
on computing the eigenvalues of J T formed with the differentiated code provided by Tapenade in
backward mode, and pre-multiply the resulting modal basis with Q−1 to recover adjoint eigenfunc-
tions. For a given direct eigenpair (λk, Ŵk), a corresponding adjoint eigenpair (λk, Ŵ †

k ) solution
of the following adjoint eigenproblem exists:

λkŴ
†
k = J †Ŵ †

k , (II.49)

where Ŵ †
k is the adjoint eigenfunction. Solving (II.49) is achieved similarly to problem (II.45):

the eigenpairs of J T are computed using the shift-and-invert transformation, and the resulting
eigenvectors are pre-multiplied by Q−1 to get the adjoint global modes.

In fluid mechanics, J is often non-normal4 and due to the nonorthogonality of eigenmodes, the
expansion of W ′ over the direct modal basis (Ŵk, k ≥ 1) can’t be achieved easily [22]. Such a
difficulty can be overcome by introducing the dual basis made of the adjoint eigenmodes (Ŵ †

k , k ≥
1), which can be normalized such that ⟨Ŵ †

k , Ŵl⟩Q = δkl. The direct and adjoint modal bases form
a bi-orthogonal basis over which W ′ can be uniquely expressed:

W ′ =
∑
k≥1
⟨Ŵ †

k ,W ′⟩QŴk. (II.50)

The adjoint mode provides the receptivity of the direct mode [32] to a given forcing or variation of
an initial condition for instance. Additionally, the adjoint mode is the exact initial perturbation
that triggers the direct mode in the flow.

4verifying JJ T = J TJ .
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Figure II.5: Spectrum of J † (a) computed by SLEPc and LAPACK and real part of eigenmode
calculated by SLEPc (b) corresponding to the least stable eigenvalue λ = −4.55× 10−6.

In finite volumes, the scalar product is usually chosen to correspond to the L2-norm. On
a domain Ω, the latter is defined as ⟨A,B⟩QΩ =

´
ΩA

HB dΩ = AHQΩB, where QΩ is a real
diagonal matrix whose coefficients are the volumes V (Ωk) of each cell. A numerical experiment on
the Burgers equation in the same conditions as for the direct eigenproblem has been carried out,
and the resulting spectra are showed in fig. II.5a. Again, a good match between LAPACK and
SLEPc for the least stable eigenvalues is noticed. The least stable adjoint eigenfunction computed
with SLEPc is presented in fig. II.5b. The largest parts of the adjoint global mode is mainly
located at the limits of the domain.

II.5.3 Resolvent analysis
Based on the theoretical framework introduced in I.2, the discrete version of the resolvent

analysis, introduced by Trefethen & al. [36], is depicted hereafter. The goal is to analyse the
transient behaviour of a stable base flow under the effect of an external forcing Φ′. Adding such
a term in equation (II.44) leads to:

∂W ′

∂t
= JW ′ + Φ′. (II.51)

The Fourier transform of equation (II.51) gives:

iωŴ = J Ŵ + Φ̂. (II.52)

Introducing the harmonic response Ŵ and forcing Φ̂ at the frequency ω ∈ R, such that W ′ =
Ŵ (x)eiωt and Φ′ = Φ̂(x)eiωt, equation (II.51) can be recast as:

Ŵ = R(ω)Φ̂, (II.53)

with R(ω) = (iωI −J )−1 the resolvent operator, a transfert function between Ŵ and Φ̂ that is a
selective noise-amplifier. For the sake of conciseness, the notation R will be used to denote R(ω)
in the following. The forcing responsible for the maximum energetic response at the frequency ω
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in the flow is computed by maximizing the energetic gain η(ω) = ∥Ŵ ∥Q1/∥Φ̂∥Q2 associated to
R, where the norms are respectively defined relatively to the scalar products Q1 and Q2. As for
the adjoint discrete problem, Q1 and Q2 are non-singular symmetric real matrices. In practice,
Q1 = QΩ and Q2 is associated to kinetic or acoustic energy. In the computations carried out with
elsA in this work, Q2 is associated with the Chu energy [83] (see equation (III.110)). Considering
iω not to be an eigenvalue of R, meaning R and RH are defined5, the quotient η(ω) can be
expanded as:

η = ⟨Ŵ , Ŵ ⟩Q1

⟨Φ̂, Φ̂⟩Q2

= ⟨RΦ̂,RΦ̂⟩Q1

⟨Φ̂, Φ̂⟩Q2

= Φ̂HRHQ1RΦ̂
Φ̂HQ2Φ̂

, (II.54)

with RH = (−iωIN − J T )−1. Since RHQ1R is Hermitian (i.e. RHQ1R = (RHQ1R)H), such a
relation corresponds to a Rayleigh quotient and the problem can be recast in the following way:

Q−1
2 RHQ1RΦ̂ = η2Φ̂. (II.55)

The solutions of this eigenproblem are the eigenpairs of the Hermitian operator Q−1
2 RHQ1R.

Finding the forcing that maximizes η is thus equivalent to calculate the eigenvector associated to
the largest eigenvalue of Q−1

2 RHQ1R. The gain η can alternatively be expanded with the harmonic
response, leading to the following eigenproblem:

RQ−1
2 RHQ1Ŵ = η2Ŵ . (II.56)

Both operatorsRQ−1
2 RHQ1 and Q−1

2 RHQ1R share the same real spectrum, and their eigenvectors
respectively form the basis of optimal forcing (Φ̂k, k ≥ 1) and response (Ŵk, k ≥ 1). The response
Ŵk associated with the k-th gain ηk is linked with the forcing Φ̂k by the relation:

ηkŴk = Rϕ̂k, (II.57)

and the harmonic response can be decomposed in the following way:

Ŵ =
∑
k≥1

ηk⟨Φ̂k, Φ̂⟩Ŵk. (II.58)

The vectors composing the forcing and response space respectively are right and left singular
vectors of R, and the gains are its singular values. The curve of η(ω) is established by solving
one of the eigenproblems (II.55) or (II.56). In this work, we focus on the problem (II.56) as to
both benefit from the optimized Jacobian-vector products and avoid inversions when recovering
the responses from the forcings. For a given frequency ω, Φ̂1 is the optimal forcing, i.e. the forcing
providing the most energetic response in the flow. In general, η1 ≫ ηk≥2 and the gains ηk≥2 are
the sub-optimal ones.

The KS algorithm is suitable to solve the eigenproblem as it provides the eigenvalues of largest
magnitudes of RQ−1

2 RHQ1. One may notice that this operator is composed of the inverse matrices
R = (iωIN −J )−1 and RH = (−iωIN −J T )−1, meaning its application to a given vector requires
two inversions of complex linear systems. The computation of the KS basis (see II.6.2) is hence
much more expansive than for the modal analysis. However, as the optimal gain is much larger than
sub-optimal ones, the KS process usually requires less iteration to accurately converge eigenpairs, as
shown for instance in chapter IV. A resolvent analysis has been carried out on the Burgers equation
with Q1 = Q2 = QΩ. The eigenproblem is solved with SLEPc and inversions are managed with LU

5when R is not defined, iω is a marginally stable eigenvalue of J .
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Figure II.6: Optimal gain η1(ω) (a) and real parts of corresponding optimal forcing and response
(b) at ω = 10−3 Hz.

factorization. The gain curve in fig. II.6a indicates a peak at the zero frequency, corresponding
to a constant forcing that leads to a constant response. The real parts of optimal forcing and
response at ω = 10−3 Hz are presented in fig. II.6b.

This section was devoted to the derivation of the global stability tools in their discrete forms. As
mentioned several times, both modal and non modal analyses require the resolution of complex-
valued eigenproblems, usually addressed by Arnoldi-like methods like the KS algorithm. The
details of the KS algorithm are exposed hereafter.

II.6 Krylov-Schur algorithm
The KS algorithm, introduced by Stewart in [46], is an Arnoldi-based method that projects

the eigenvectors of a given complex operator onto a Krylov space. This iterative process provides
approximate eigenpairs, called Ritz pairs, such that the eigenvalues are of largest magnitude. In
this section, some concepts about the Krylov decomposition through Arnoldi process, as well as
the mechanics of the KS algorithm are exposed.

II.6.1 Krylov subspace and Arnoldi algorithm
The Krylov subspace Km(C,v) of order m, of an operator C ∈ CN × CN associated to a given

vector v ∈ CN , is defined as follows:

Km(C,v) = span
{
v, Cv, C2v, . . . , Cm−1v

}
. (II.59)

The principle of Arnoldi-based methods, as shown in [47], is to project C onto Km and extract
eigenpairs of this projection, which are approximations of the effective eigenpairs of C. To do this,
an orthonormal basis of Km is produced using the Arnoldi process (presented in Algorithm 1),
based on the modified Gram-Schmidt algorithm [84], and the matrix C is reduced to an upper
Hessenberg m-by-m matrix Hm. The output of Arnoldi process is a particular case of Krylov
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Algorithm 1 Arnoldi process
Input: C, v1 unitary (i.e. ∥v∥2 = 1) and m ∈ N
Output: Vm, Hm, vm+1 and hm+1,m

1: for k ∈ J1, mK do
2: vk+1 ← Cvk

3: for l ∈ J1, kK do
4: hkl ← ⟨Cvk,vl⟩2
5: vk+1 ← vk+1 − vlhkl

6: end for
7: hk+1,k ← ∥vk+1∥2
8: if hk+1,k = 0 then
9: stop

10: else
11: vk+1 ← vk+1/hk+1,k

12: end if
13: end for

decomposition:
CVm = VmHm + vm+1ĥ

H
m+1,m, (II.60)

where Vm is an N -by-m matrix whose columns are an orthonormal basis of Km, and ĥH
m+1,m =

hm+1,me
H
m.

II.6.2 General Krylov decomposition
Let us now consider an order-m general Krylov decomposition that reduces the matrix C to a

matrix Bm with an orthonormal basis Um:

CUm = UmBm + um+1b̂
H
m. (II.61)

Using the orthonormality of the columns of Um and pre-multiplying with UH
m provides:

UH
mCUm = Bm, (II.62)

where Bm is an approximate space whose spectrum is composed of the Ritz values λk ∈ C. The
Ritz vectors define the projection of the eigenspace of C onto Bm. The k-th Ritz vector is defined as
Umyk, with yk ∈ Cm the k-th eigenvector of Bm. The decomposition (II.61) can be post-multiplied
by yk to get:

CUmyk = UmBmyk + um+1b̂
H
myk. (II.63)

After recasting, taking the L2-norm and due to the unitarity of um+1, the exact error commited
on the k-th Ritz vector is:

∥CUmyk − λUmyk∥2 = |b̂H
myk|. (II.64)

The term |b̂H ŷk| is relatively cheap to compute as m is several orders of magnitude smaller than
N . When |b̂H ŷk| is sufficiently small, the Ritz pair (λk,Umyk) is considered to be an approximate
eigenpair of C:

CUmyk ≃ λUmyk, (II.65)
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It can additionally be shown that an orthogonal transformation of Bm produces a new Krylov
decomposition equivalent to (II.61). We introduce a m-by-m unitary matrix W6 that defines the
unitarily equivalent transformation of Bm = WHTmW , with Tm ∈ Cm × Cm. Both Bm and Tm

have the same Ritz values and equation (II.62) can be recast as:

WHUH
mCUmW = Tm, (II.66)

which means that Tm is also an approximate space. It can further generate the following new
Krylov decomposition:

CUmW = UmWTm + um+1b̂
H
mW , (II.67)

with UmW the new Krylov space. This illustrates the possibility of transforming a Krylov decom-
position without modifying the spectral properties of the initial approximate space. In the KS
algorithm, this helpful property is used to sort the targeted portion of the spectrum of C following
a provided criterion as described hereafter.

II.6.3 Krylov-Schur process
The KS process is based on the iterative expansion and contraction of a Krylov decomposi-

tion, by keeping the spectral informations of interest and enriching them at each iteration. More
details about this method, as well as its variations (like spectral KS) and the various possible
implementations, can be found in [46, 85, 86].

Let us first produce an order-m Krylov decomposition of operator C using the Arnoldi process:

CVm = VmHm + vm+1ĥ
H
m+1,m. (II.68)

With the QR algorithm [44], a Schur matrix Sm containing the Ritz values on its diagonal can be
calculated from the approximate space Hm, resulting in the relation Hm =W1SmWH

1 , with W1 a
unitary matrix. A sorting represented by the unitary transformation W2 can be applied without
modifying the spectral content of Hm. In practice, the KS algorithm performs best at computing
the eigenvalues of largest magnitude. To do so, Q2 is chosen so that the Ritz values are arranged
in descending magnitude from the top left corner to the bottom right one of Sm, leading to the
sorted Schur matrix Tm. From the results of II.6.2, by introducing the KS basis Ṽm = VmW1W2
and b̂H

m = ĥH
m+1,mW1W2, the new decomposition

CṼm = ṼmTm + vm+1b̂
H
m (II.69)

is a Krylov decomposition equivalent to (II.68). This relation can also be writen as:

CṼm = Ṽm

[
Tp ⋆
0 Tm−p

]
+ vm+1

[
b̂H

p b̂H
m−p

]
, (II.70)

where Tp contains the spectral information relative to the p wanted Ritz vectors. The upper
triangular shape of Tm allows the decomposition to be truncated at order p:

CṼp = ṼpTp + vp+1b̂
H
p , (II.71)

with vp+1 = vm+1. This step of truncation purges the unwanted part of the spectrum before a
re-extension at order m through m− p steps of the Arnoldi process is performed at next iteration.

6verifying WWH = Im.
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From the second iteration, the approximate space is not a Hessenberg matrix anymore. For
instance, if m = 6 and p = 3, the unsorted new approximate space has the following shape:

s s s h h h
0 s s h h h
0 0 s h h h
b b b h h h
0 0 0 h h h
0 0 0 0 h h


. (II.72)

II.6.4 Deflation of Ritz values
This process of successive extension and contraction is repeated until the desired number of

Ritz values are converged. Given a Ritz value λk and based on equation (II.73), the error associated
to the Ritz vector Ṽmyk is easily calculated:

∥CṼmyk − λkṼmyk∥2 = |b̂H
myk|. (II.73)

In this work, the relative error is rather used to test the eigenpairs:

ϵKS
rel = ∥CṼmyk − λkṼmyk∥2

|λk∥Ṽmyk∥2
= |b̂H

myk|
|λk|∥Ṽmyk∥2

. (II.74)

Algorithm 2 KS algorithm
Input: C, v1 unitary, m and l ≤ m the number of desired eigenpairs
Output: Vj, Hj such that CVj = VjHj, with j ≤ l

1: initialization of Vm ←
[
v1 0

]
, k ← 0, p← 0

2: while j ≤ l do
3: m− p Arnoldi steps with deflation:

CṼm = ṼmHm + vm+1b̂
H
m

4: Schur decomposition with sorting Hm ←WH
2 WH

1 HmW1W2
5: Vm ← VmW1W2
6: for k ∈ Jj, lK do
7: compute (λk,yk) verifying Hmyk = λkyk and set ϵKS

rel = |b̂H
myk|/(|λk|∥V̂myk∥2)

8: if ϵKS
rel < tol then

9: lock (λk,yk) and continue
10: else
11: break
12: end if
13: end for
14: j ← k
15: choose p, truncate and set vp+1 ← vm+1
16: compute bp and insert it into Hp

17: end while
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The Ritz value is considered as converged if ϵKS
rel is lower than the user-defined tolerance.

When a Ritz value is converged, it should no longer participate in the search for other eigenval-
ues. This is the goal of deflation. Supposing that λ1 is the Ritz value with the largest magnitude
of Tm, the decomposition (II.69) can also be writen as:

C
[
ṽ1 Ṽm−1

]
=
[
ṽ1 Ṽm−1

] [λ1 ⋆
0 Tm−1

]
+ vm+1

[
b1 b̂H

m−1

]
. (II.75)

If λ1 is converged, the coefficient b1 can be set to 0, and all subsequent operations can be managed
exclusively on the order-(m− 1) decomposition

CṼm−1 = Ṽm−1Tm−1 + vm+1b̂
H
m−1. (II.76)

The next Ritz values are then tested and when the test fails, the loop breaks and the decomposition
is truncated. Finally, if l Ritz values are converged, we get CṼj = ṼjTj, where the approximate
eigenvalues are on the diagonal of Tm, and the Ritz pairs of Tm are approximate eigenpairs of C.
Algorithm 2 gives a synthesized implementation of the KS method.

II.6.5 Shift-and-invert transformation
As stated earlier, the Schur matrix resulting from the KS basis expansion is sorted so that the

Ritz values of largest magnitude are located at its top left corner. Other critera such as sorting
by lowest magnitudes could have also been chosen, but the KS algorithm performs poorly when
computing eigenvalues located in the interior of the spectrum [86]. In global modal stability, the
KS algorithm is generally used in conjunction with the spectral shift-and-invert transformation
[25, 20] already mentioned in previous sections. A shift s ∈ C is selected and the transformed
eigenvalue problem involving the shit-and-invert operator (C − sIN)−1 is solved. Both operators C
and (C−sIN)−1 have the same eigenvectors but the eigenvalues of largest magnitude of (C−sIN)−1

are directly linked to the eigenvalues of C closest to s. The concept is schematically illustrated in
fig. II.7, where the spectrum of a fictive operator C is compared with that of the shift-and-invert
operator. Only one unstable eigenvalue, equal to 1, is identified. The transformation, carried out
with s = 0.9, clearly shows that the eigenvalues have been separated and the unstable eigenvalue
has become the one with the largest magnitude. The counterpart of such a technique is the many
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Figure II.7: Illustration of shift-and-invert transformation.
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inversions of complex linear systems needed during the formation of the KS basis, because of the
application of (C − sIN)−1 on the successive Krylov vectors.

II.7 Conclusion
This chapter provides the mathematical background for both the numerical discretization of

operators in compressible CFD and the overall global stability analysis process. The first-order
implicit backward Euler method is used to compute a fixed point of the Burgers equation with
high precision, matching the theoretical solution. The stability analysis is then applied to the fixed
point, which is shown to be unconditionally stable by modal analysis. The optimal gain computed
with resolvent analysis shows a peak at zero frequency, resulting in a steady optimal forcing. The
KS algorithm is also introduced in its complex arithmetic version for the sake of introduction.

The main challenge in scaling up global stability analysis for industrial configurations is dealing
with extremely large linear systems that are too big to be factored using LU factorization due to
memory constraints. The next chapter presents a strategy for conducting global stability analysis
on large-scale systems using elsA. Based on previous work by Guilbert [51], inversions in elsA
will be managed using the iterative GMRES algorithm [58]. To maintain HPC optimizations, the
linear systems of interest will be reformulated in the real-equivalent K formulation.
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Scaling up of the method to industrial cases
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III.1 Introduction
Chapter II was devoted to the presentation of the general concepts of global stability analysis

and gave an overview of the proposed method used in this thesis. Burgers equation has been
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used to illustrate fixed point computation as well as linear, adjoint, and resolvent global stability
analysis. This chapter gives details about the proposed method to deal with large CFD problems
(formulated with Euler, NS, or RANS equations), as implemented in elsA software. Because of
the number of degrees of freedom (DOF) of such configurations, the linear systems involved in
the analyses may become too large to solve with direct methods. Iterative methods must be used
instead, and we focus in particular on the Generalized Minimal Residual (GMRES) algorithm
introduced by Saad in [58].

III.1.1 Scale up issues
We consider a 3-D RANS case (d = 6) with Nc = 10×106 cells, corresponding to N = 60×106

complex-valued DOF for the global stability problems. The computation is run on a computer
cluster composed of CPUs like Cascade Lake processors (representative of ONERA’s clusters),
organized in nodes, as shown in fig. III.1. In this case, each node has 28 CPUs, with 4.57 GB/CPU
and a total memory of 128 GB. Global stability problems require the inversion of complex operators,
which have the same size as the Jacobian matrix, and the number of entries can be estimated as
NE(J ) ≃ stencil × d2 × Nc. Using a second-order finite volume discretization7, storage of the
Jacobian matrix with complex floating-point numbers in double precision requires about 720 GB
for the representative case.

We first focus on the memory footprint of the LU factorization of J , written LUJ . Based on
the work of L’Excellent [50], the number of entries of LUJ may be estimated with the following
relation:

NE (LUJ ) ≃
(

NE(J )
7

)4/3

. (III.1)

For the considered case, this results in about 500 TB of memory and would requires more than
100 × 103 CPU. Most of the existing calculators do not have this amount of memory available
during the computation unless resorting to an overly large number of CPUs in parallel. As an
indication, the maximum number of CPUs allowed at ONERA for one job is 4788, representing
171 nodes. Instead of such direct methods, the inversions might be addressed using preconditioned
iterative Krylov methods (KM) [52]. With such approach, preconditioners can be based on ILU(k)
or local LU factorization built from the Jacobian matrix partitioned on each CPU. If nKM is the
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Figure III.1: Schematic representation of computing components.
7for which the approximate size of the numerical stencil is stencil = 53 in elsA.
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Method Memory NCPU
LU ∽ 500 TB > 100000

KM-ILU(k) ∽ 2.5 TB ∽ 500
KM-local LU ∽ 30 TB ∽ 6000

Table III.1: Comparison of memory costs between direct and preconditioned iterative methods
for the considered case (N = 60× 106).

number of Krylov vectors involved in the computation and γ(k) a factor depending on the number
of fill-in8, the number of entry of the KM-ILU(k) method is approximated by:

NE(KM-ILU(k)) ≃ γ(k)× NE(J ) + nKM ×N. (III.2)

For the considered case, 2.5 TB of memory is needed and the computation can be launched on 500
CPUs. In this case, additional storages might be required if the convergence has to be improved
using Restricted Additive Schwarz (RAS) methods [51]. Nevertheless, such a cost is much more
affordable than that of direct methods. For particularly stiff cases, another approach based on local
LU factorization can be used. The number of entries in KM-local LU method is approximated by:

NE(KM-local LU) ≃ N
−1/3
CPU ×

(
NE(J )

7

)4/3

+ nKM ×N. (III.3)

This represents about 30 TB of memory and would requires 6000 processors for the computation,
considering the representative case. This is still being too large for ONERA’s clusters, which is why
hybrid preconditioners like Hybrid Local LU (HLU) factorization have been developed (see III.3.4
for more details). Table III.1 summarizes the costs of each method. Based on these observations,
the preconditioned KM suit well to circumvent memory issues resulting from direct factorizations.

Another important issue that must be addressed is the complexity of the arithmetic used to
construct and invert the operators of global stability, which is poorly vectorizable compared to
real arithmetic. This prevents optimal use of HPC optimizations. Moreover, Guilbert’s previous
work [51] introduced powerful preconditioning tools to efficiently solve real linear systems arising
in the fixed point computation (see II.31) in the context of compressible CFD. Taking these con-
siderations into account, we choose to reformulate the non-vectorizable complex linear systems of
global stability into a real-equivalent formulation that preserves HPC optimizations and reuses
the existing preconditioning tools developed in [51]. This is achieved in this thesis by using the K
formulation introduced by Day and Heroux [60] that preserves the sparsity pattern of the original
systems. Some of its properties and the K-formulated KS algorithm that has been implemented
in elsA are detailed in this chapter.

III.1.2 Numerical set-up of laminar cylinder flow
Each concept will be illustrated using the canonical example of laminar cylinder flow. This

example is used to validate the proposed algorithms as it has been widely documented (see [29, 30,
87]). The numerical domain, shown in Fig. III.2, is composed of 34560 unstructured hexahedral
cells in a C-grid. The Mach number, M = ∥u∥2/a, is introduced, where a is the speed of sound, and
the physical parameters are given in Table III.2. The problem is dimensionless using the diameter

8a typical three levels of fill-in, resulting roughly in γ(3) = 3 and nKM = 120 consitute good parameters.
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Free-stream Mach number M∞ = 0.1
Free-stream stagnation temperature T∞ = 300 K

Free-stream velocity u∞ = 34.7 m s−1

Free-stream density ρ∞ = 1.177 kg m−3

Reynolds number Re ∈ [40, 80]

Table III.2: Flow parameters of the 2-D laminar cylinder.

40

60

1

40x

y

Figure III.2: Schematic view of the cylinder mesh (left) and computational grid (right).

of the cylinder as the reference length, L, and the free-stream density, velocity, and temperature.
The other physical quantities are calculated using the following expressions:

a∞ = 1
M∞

, (III.4)

p∞ = 1
γM∞

, (III.5)

e∞ = 1
γ(γ − 1)M2

∞
= cv, (III.6)

R = 1
γM2

∞
, (III.7)

µ∞ = 1
Re∞

. (III.8)

A second-order Roe scheme with MUSCL reconstruction and no limiter is used for convective fluxes,
while diffusive fluxes are computed with a 5pcor scheme (see. III.3.2). The boundary conditions
are no-slip at the cylinder wall, non-reflective at the farfield, and symmetry conditions on each
side of the domain to produce a 2-D-like computation. Despite being inherently 2-D, this case will
be treated as a 3-D computation by the elsA code.

III.2 Equations of compressible CFD
The equations solved in elsA are based on the compressible NS equations, which describe the

behavior of a fluid flow in terms of mass, momentum, and energy conservation. This section
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provides the mathematical formulation of these equations in a general form for both laminar and
turbulent flows.

III.2.1 Navier-Stokes equations
A reference frame where the space-time coordinate of each point is identified by (x, y, z, t) is con-

sidered. The state vector of the conservative variables of the flow, w =
(
ρ ρux ρuy ρuz ρE

)T
,

involves the density field ρ, the absolute velocity field u =
(
ux uy uz

)T
and the total energy per

unit of mass E, which is the sum of the internal energy e and the kinetic energy ∥u∥2
2/2. The set

of NS equations governs the evolution in space and time of w and writes:


∂ρ

∂t
+ ∇ · ρu = 0

∂ρu

∂t
+∇ (ρu⊗ u+ pI3 − τ) = 0

∂ρE

∂t
+ ∇ · (ρEu+ pu− τ · u+ q) = 0.

(III.9)

with p, τ and q respectively standing for the static pressure, the viscous stress tensor and the
heat flux vector. Using the notation of II.2.1, the convective and diffusive parts of (III.9) are the
following:

fc =


ρux ρu2 ρu3

ρu2
x + p ρuxuy ρuxuz

ρuxuy ρu2
y + p ρuyuz

ρuxuz ρuyuz ρu2
z + p

ρux (E + p) ρuy (E + p) ρuz (E + p)

 , (III.10)

fd =


0 0 0

τxx τxy τxz

τxy τyy τyz

τxz τyz τzz

uxτxx + uyτxy + uzτxz − q1 uxτxy + uyτyy + uzτyz − q2 uxτxz + uyτyz + uzτzz − q3

 .

(III.11)
Expressions of τ and q have to be explicited with behavior laws. The fluid is assumed to be
Newtonian, meaning that the tensor τ which models the internal frictions in the fluid can be
expressed as:

τ = µ
[
2
(
∇u+∇uT

)
− 2

3∇ · uI3

]
, (III.12)

with µ is the dynamic viscosity of the fluid. Fourier law is used to describe the heat flux vector:

q = −κ∇T, (III.13)

with κ the thermal conductivity coefficient and T the absolute static temperature.
From now, we have a system of five equations for the seven unknowns ρ, ux, uy, uz, E, p and T .

This means that two additional relations must be provided to close the problem. In this work, only
perfect gas in thermodynamic equilibrium, not chemically reacting and with constant isochoric and
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isobaric specific heats cv and cp, are considered. The specific heat ratio is γ = cp/cv = 1.4. Such
assumptions lead to the following expressions for e and p:

e = cvT (III.14)
p = ρRT, (III.15)

with R the ratio of the perfect gas constant to the molar mass of the fluid, set at 287.053 J kg−1 K−1

for air.
For perfect gas, the viscosity coefficient µ is considered to be independent of the pressure but

strongly depends on the temperature. To this end, the Sutherland law [88] is used:

µ = µS

√
T

Tref

1 + TS/Tref

1 + TS/T
, (III.16)

with µS = 1.711× 10−5 N m−2 s the dynamic viscosity coefficient of air at temperature Tref = 273
K, and TS = 110.4 K the Sutherland temperature. As we mainly deal with gas, the thermal
coefficient κ is proportional to µ according to the law:

κ = cp
µ

Pr , (III.17)

where Pr is the Prandtl number [89], assumed to be constant and equal to 0.72.

III.2.2 Reynolds Averaged Navier-Stokes equations
In this work, turbulence is modeled using a statistical approach in which each field f is decom-

posed into a mean field f̂ , and a fluctuating one f ′, so that f(x, t) = f̂ + f ′. When f slowly varies
in time, it is assumed to be ergodic [90], and its average value can be obtained from the temporal
average on a certain period of time T :

f̂ = 1
T

ˆ T/2

−T/2
f(x, t + t′)dt′. (III.18)

When f has a variable density, the use of Favre average [91] is prefered, giving the decomposition
f(x, t) = f̃ + f ′′ in which the mean field writes:

f̃ = ρ̂f

ρ̂
. (III.19)

In NS equations, the temporal average is used for variables ρ, p, τ and q while the Favre average
is used for u and E. This results into the following set of RANS equations:

∂ρ̂

∂t
+ ∇ · ρ̂ũ = 0

∂ρ̂ũ

∂t
+∇

(
ρ̂ũ⊗ ũ+ p̂I3 − τ̂ − τ r

)
= 0

∂ρ̂Ẽ

∂t
+ ∇ ·

(
ρ̂
(
Ẽ + k

)
ũ+ p̂ũ− τ̂ · ũ+ q̂ + qt

)
= 0.

(III.20)

Three new terms appear in this last system: the kinetic energy of the turbulent movement
k = ρ̂u′′2/2ρ̂, the Reynolds tensor τ r = −ρu′′ ⊗ u′′

∧

and the turbulent heat flux qt = ρ̂u′′h′′.
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The problem is closed providing a turbulence model, which we choose to follow the Boussinesq
hypothesis. It states, by analogy with momentum transfers resulting in molecular viscosity µ, that
momentum transfers resulting from turbulent eddies are modeled with an eddy viscosity µt. The
Reynolds stress tensor and the turbulent heat flux vector can thus be recast as:

τ r = −2
3 (ρ̂k + µt∇ · ũ) I3 + 2µt

(
∇ũ+∇ũT

)
(III.21)

qt = −cpµt

Prt

∇T, (III.22)

where Prt is the turbulent Prandtl number, set at 0.9 for air. With such hypothesis, we can
therefore introduce the following starred quantities:



E⋆ = Ê + k

p⋆ = p̂ + 2
3 ρ̂k

τ ⋆ =
(

1 + µt

µ

)
τ̂

q⋆ =
(

1 + µt

µ

Pr
Prt

)
q̂

(III.23)

and replace in equation (III.20), their corresponding non-starred quantities, leading to the RANS
equations in a similar form as the NS equations.

The one-equation Spalart-Allmaras (SA) model [92] is commonly used in compressible RANS
simulations for aerodynamic. It has been designed for aerodynamic applications involving wall-
bounded flows. It solves a transport equation for a kinematic-like viscosity coefficient ν̃ that is
linked to the turbulent dynamic viscosity via:

µt = ρ̂ν̃fv1, (III.24)

where fv1 is the following damping function:

fv1 = χ3

χ3 + cv1
, (III.25)

with χ = ν̃/ν, ν being the molecular kinematic viscosity (ν = µ/ρ), and cv1 = 7.1. The conservative
form of the added transport equation governs the evolution of the quantity ρ̂ν̃ and writes:

∂ρ̂ν̃

∂t
+∇·

(
ρ̂ν̃ũ− 1

σSA

ρ̂ (ν + ν̃)∇ν̃
)

= cb1 (1− ft2) S̃ρ̂ν̃ + cb2

σSA

∇ν̃ · ∇ρ̂ν̃︸ ︷︷ ︸
production

− ρ̂

(
cw1fw −

cb1

κ2
SA

ft2

)(
ν̃

dw

)2

︸ ︷︷ ︸
destruction

.

(III.26)
Unlike the other considered equations, this one has a source term on its right-hand side representing
a balance between a production and a destruction terms. The various quantities of the model are
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then provided by:

ft2 = ct3e
−ct4χ2

, (III.27)

fw = g

(
1 + c6

w3
g6 + c6

w3

)1/6

, (III.28)

g = r + cw2
(
r6 − r

)
, r = min

(
ν̃

S̃κ2
SAd2

w

, 10
)

(III.29)

S̃ = S + ν̃

κ2
SAd2

w

fv2, S =
√

2Ω̃ : Ω̃, Ω̃ = 1
2
(
∇ũ−∇ũT

)
, (III.30)

fv2 = 1− χ

1 + χfv1
, (III.31)

where dw stands for the distance from the field point to the nearest wall. The constants of the
model are:

σSA = 2
3 , κSA = 0.41 (III.32)

cb1 = 0.1355, cb2 = 0.622, (III.33)

cw1 = cb1

κ2
SA

+ 1 + cb2

σSA

, (III.34)

cw2 = 0.3, cw3 = 2, (III.35)
ct3 = 1.2, ct4 = 0.5. (III.36)

(III.37)

This original SA model requires ν̃ to be always positive, which is ensured by taking its absolute
value. Since this function cann’t be differentiated at zero, we have preferred to use the negative
SA model [93] which is a slight modification of the standard model. When ν̃ ≥ 0, equation (III.26)
is solved. However, when it becomes negative, the following equation is solved instead:

∂ρ̂ν̃

∂t
+∇·

(
ρ̂ν̃ũ− 1

σSA

ρ̂ (ν + ν̃fn)∇ν̃
)

= cb1 (1− ct3) Sρ̂ν̃+ cb2

σSA

∇ν̃ ·∇ρ̂ν̃+ρ̂cw1fw

(
ν̃

dw

)2
, (III.38)

with
fn = cn1 + χ3

cn+1 − χ3 , cn1 = 16. (III.39)

Next section first provides a brief overview of the numerical discretization techniques utilized
in elsA. It then describes the two fixed point computation methods used and offers insight on
preconditioning and multicoloring.

III.3 elsA CFD solver
The numerical methods used in elsA for computing steady solutions of the discretized NS equa-

tions are described below. The focus is on implicit methods that solve (approximately or exactly)
the implicit backward Euler (see equation (II.31)), which are preferred over explicit methods due
to their unconditional stability and ability to handle larger time-steps. However, these methods
require solving linear systems, which can be computationally expensive.
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In some cases, such as when the initial field is uniform, using an exact inversion method at
each step can be counterproductive, especially during the first iterations. To address this issue, less
efficient but faster methods, like matrix-free ones [94] or the so-called LU-Symmetric Successive
Overrelaxation Scheme (LU-SSOR) [95] that solves an approximation of the linear system can be
used to refine the initial uniform field towards a fixed point, reducing the need for costly matrix
factorizations during the early iterations. After this, a more accurate computation is performed
using the GMRES [58] algorithm to invert the exact linear systems and decrease the residual below
10 × 10−10. These methods will be described in detail in the following section.

III.3.1 Unstructured computation
In this thesis, only unstructured computational domain are considered. The mesh is contained

in a CGNS file (https://www.cgns.org) and, as discussed by Bourasseau in [96], elsA, for an
unstructured block, performs the calculations by iterating through all the faces of the mesh. The
faces are ordered by starting with the internal faces and ending with the boundary faces, grouping
both the connection faces and the physical boundary faces to which a physical boundary condition is
imposed. However, since the boundary faces are not ordered by physical or connection conditions,
elsA generates two lists grouping, for one, all physical boundary faces and, for the other, all
connection faces. Each of these lists contains lists whose length is equal to the number of faces of
the boundary condition it represents. It is therefore necessary to create, for each list, an indirection
table to go from the local numbering of the face corresponding to its position in the list to the
global numbering of that face. The correspondence between the faces and the cells is handled by
building two indirection tables to determine for each face its right and left cells, knowing that the
definition of right and left is imposed by the normal to the face, itself imposed by the ordering of
the nodes that make up this face.

III.3.2 Numerical discretization
To describe the numerical discretization as employed in elsA, we rely on the general form of

the governing equations of compressible CFD and their discretization with finite volumes detailed
in II.12. We work on a flow domain Ω that is partitioned into an unstructured grid containing Nc
cells, as illustrated in fig. III.3. The system (III.9) is integrated over each cell Ωk, and the finite
volume method is used to compute the solution as in equation (II.12). Approximate Riemann
solver like Roe’s (see equation (II.13)) or HLLC [63] are used to calculate the function hc at each
interface.

As for equation (II.20), the diffusive fluxes are computed with a discretization centered at the
faces. The main difficulty results from the computation of the gradients of the primitive variables.
The 5p method (for five-point stencil) is a simple arithmetic mean of gradients computed at cell
centers of both sides of the face Ij. Referring to the scheme of fig. III.3, it writes:

∇p5p
Ij

= 1
2 (∇p|k + ∇p|l) . (III.40)

However, this expression is modified to get a so-called 5pcor method to improve the discretization
quality and avoid oscillations. In the latter, the gradient is computed as if the control volume was
centered on Ij and composed of cells Ωk and Ωl, providing the following new expression:

∇p5pcor
Ij

= ∇p5p
Ij
−
(
∇p5p

Ij
· xk − xl

∥xk − xl∥2
− pk − pl

∥xk − xl∥2

)
xk − xl

∥xk − xl∥2
. (III.41)
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Ωk

Ωl

Ij

xck

Figure III.3: Example of unstructured mesh. Grey zone highlights the cell Ωk of center xck
.

Interface Ij is the fronter between Ωk and Ωl.

For RANS configurations, the turbulent source terms are discretized using a second-order integra-
tion method.

III.3.3 LU-SGS method for fixed point computation
Iterative methods such as matrix-free, LU-SGS, or LU-SSOR [94, 97] are derived by approxi-

mating the implicit operator A = ∆t−1IN +J to solve the system in equation (II.31). This system
is constructed by discretizing the convective component using the Rusanov flux and finding the
spectral radius of the resulting operator, which leads to a simple tridiagonal operator Ã. During
each nonlinear iteration, a sub-iteration process is used to calculate ∆W n and the system is solved
using the SSOR method [52, 95]. As pointed out in [98], the best results are achieved when the
relaxation parameter is set to 1, leading to the symmetric Gauss-Seidel (SGS) method. Consider-
ing Ll, Dl and Ul being the strictly lower part, the diagonal part, and the strictly upper part of
Ã(W n,l), the LU-SGS method is obtained by factorizing Ã(W n,l) as:

Ã(W n,l) = Ll +Dl + Ul ≃ (Ll +Dl)D−1
l (Ul +Dl) , (III.42)

where LlD−1
l Ul is the error committed relatively to the original factorization. The resolution is

carried out by the three following steps:
(Ul +Dl) ∆W l+1/3 = R̃(W n,l)

Dl∆W n,l+2/3 = ∆W n,l+1/3

(Ll +Dl) ∆W n,l+1 = ∆W n,l+2/3,

(III.43)

where R̃ stands for the residual associated with the approximated implicit system.
Inversions of the approximate tridiagonal operator at each nonlinear iteration is much less

expansive than that of the exact operator, resulting in a much faster computation. It is especially
fast for low CFL numbers up to CFL = 100, when the goal is to filter coarse unsteadiness, i.e.
decreasing the residual ∥R(W n)∥2 to below 10−3 to 10−4 (see [51]). However, when the goal is to
reach convergence around machine precision, the CFL number must increase to recover the Newton
method that achieves a quadratic convergence, and the exact linear system must be solved.

III.3.4 GMRES algorithm for fixed point computation
To increase the accuracy of a computed a fixed point of the governing equations, the implicit

backward Euler scheme (II.31) with adaptative CFL must be solved at each nonlinear iteration.
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This requires the multiple iversions of A during the computation. To this end, given the sizes of
3-D configurations, the use of iterative methods instead of direct ones is mandatory, due to memory
limitations. Additionally, as noted by Guilbert in [51], due to the non-symmetrical, non-normal,
and potentially non-diagonal dominant nature of the operator, the focus is placed on the GMRES
algorithm introduced by Saad & Schultz in [58].

Derivation of GMRES algorithm. Considering a non-singular matrix A ∈ RN×RN , and a right-
hand side vector b ∈ RN , we focus on the resolution of the following real-valued linear system:

Ax = b, (III.44)

where x ∈ RN is the unknown. The GMRES algorithm computes a solution to equation (III.44)
by projecting x onto a given Krylov space. Until convergence, the Krylov basis is continually
improved. The steps of the GMRES algorithm are described hereafter.

Given an initial approximation x0 of x, the initial residual r0 is defined as r0 = b−Ax0. The
first step is to produce an orthonormal basis of the Krylov space Km(A, r0) associated with r0,
denoted as Km in the following. As in II.6.1, this is achieved with the Arnoldi algorithm 1 which
produces the following Krylov decomposition:

AVm = VmHm + vm+1ĥ
T
m,m+1, (III.45)

which can be written in a more compact form as:

AVm = Vm+1H̃m. (III.46)

Here, Vm+1 and H̃m are N -by-(m+1) and (m+1)-by-m real matrices, respectively, and β = ∥r0∥2.
The Arnoldi algorithm is initialized with the unitary vector v1 = r0/β. The matrix-vector products
required to build the decomposition are computed using AD, which is optimal to benefit from all
HPC optimizations (see II.4).

The next step is to look for a vector xm ∈ x0+Km that minimizes ∥rm∥2. As (vk, 0 ≤ k ≤ m−1)
is an orthonormal basis of Km, there exists a vector ym ∈ Rm verifying xm = x0 + Vmym. The
residual rm = b−Axm can thus be recast as:

b−Axm = r0 −AVmym

= r0 − Vm+1H̃mym

= Vm+1
(
VT

m+1βv1 − H̃mym

)
,

(III.47)

which becomes, after taking the L2-norm and using the orthogonality of the Krylov vectors:

∥b−Axm∥2 = ∥βe1 − H̃mym∥2. (III.48)

Minimizing the left-hand side of the latter equality is hence equivalent to solve following size m
least-square problem:

xm = argminy∥βe1 − H̃my∥2. (III.49)
This can be efficiently achieved using the Givens rotations [99]. This technique has the additional
advantage of computing the relative residual ϵGMRES

rel = ∥rm∥/β implicitly, i.e. without requiring
an explicit calculation of the approximate solution xm. The approximation is computed once when
the relative residual becomes lower than the user-specified tolerance.
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Algorithm 3 Basic GMRES
Input: A, b, x0, tol and m
Output: xm minimizing ∥rm∥2 with actualized m

1: r0 = b−Aw0
2: β = ∥r0∥2
3: v1 = r0/β
4: for k ∈ J1, mK do
5: vk+1 ← Avk

6: for l ∈ J1, kK do
7: hlk ← ⟨Avk,vl⟩
8: vk+1 ← wk − vlhlk

9: end for
10: hk+1,k ← ∥vk+1∥2
11: compute the relative residual ϵGMRES

rel with Givens rotations
12: if hk+1,k = 0 or ϵGMRES

rel < tol then
13: m← k
14: break main loop
15: else
16: vk+1 ← vk+1/hk+1,k

17: end if
18: end for
19: ym = argminy∥βe1 − H̃my∥2
20: xm = x0 + Vmym

When using the GMRES algorithm to compute ∆W n, it can be counterproductive to set the
tolerance too low, as it may prevent the adaptive CFL from increasing as it should. Through trial
and error, a tolerance of 10−4 has proven to be a good compromise. In practice, this algorithm, in
its current state, is not expected to converge well, as the operator A is generally ill-conditioned.
In fact, the solvability of system (III.44) depends on the condition number of A, which, given a
convenient norm ∥ · ∥, is defined as:

κ(A) = ∥A−1∥∥A∥. (III.50)

In our systems of interest, the non-normality of A is responsible for increasing κ(A), and the larger
it is, the more complicated the resolution is. This is why we need to slightly modify this system
to incorporate operators called preconditioners, which aim at lowering κ(A).

Preconditioned GMRES. Preconditioning is a modification of a linear system that makes it
easier to solve using an iterative method. Although not guaranteed, the resulting system may
need fewer steps to converge. Concretely, the goal is to find an operatorM such thatM≃ A and
apply it on the left (equation (III.51)) or right (equation (III.52)) of the system (III.44):{

M−1Ax =M−1b

AM−1Mx = b.

(III.51)
(III.52)

As discussed in [100], the asymptotic behavior of an iterative method is the same whether we use
left or right-preconditioning. However, in the left-handed case, the preconditioning also applies
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Algorithm 4 Right-preconditioned GMRES
Input: A, M, b, x0, tol and m
Output: xm minimizing ∥rm∥2 with actualized m

1: r0 = b−Aw0
2: β = ∥r0∥2
3: v1 = r0/β
4: for k ∈ J1, mK do
5: vk+1 ← AM−1vk

6: for l ∈ J1, kK do
7: hlk ← ⟨Avk,vl⟩
8: vj+1 ← wj − vkhkj

9: end for
10: hk+1,k ← ∥vk+1∥2
11: compute the relative residual ϵGMRES

rel with Givens rotations
12: if hk+1,k = 0 or ϵGMRES

rel < tol then
13: m← k
14: break main loop
15: else
16: vk+1 ← vk+1/hk+1,k

17: end if
18: end for
19: ym = argminy∥βe1 − H̃my∥2
20: xm = x0 +M−1Vmym

to the residual making it different from that of the original problem. This might result in signif-
icant differences between the original residual and the left-preconditioned one, as the calculation
proceeds. Instead, we choose to work with right-preconditioning as it leaves the residual vector
unchanged and often shows better convergence:

r = b−Ax = b−AM−1Mx. (III.53)

With right-preconditioning, algorithm 3 becomes algorithm 4. In this version of GMRES, the
preconditioner remains the same at each iteration, and the solution is recovered at the end of
the process by pre-multiplying Vmym with M−1. Another version that is popular is CFD is the
so-called Flexible GMRES (FGMRES) algorithm [101] in which the preconditioner is updated at
each step. To this end, two GMRES are nested one into the other. At each step of the external
GMRES, an internal one computes the intermediate vector uk+1 with:

uk+1 =M−1
k vk, (III.54)

and the new participant to the external Krylov basis writes vj+1 = Auj+1. The set of internal
Krylov vectors are stored in the basis Um to recover the solution at the end of the main loop:

xm = x0 + Umym. (III.55)

Algorithm 5 presents an implementation of FGMRES. This variation usually shows significant
improvement in terms of convergence speed compared to the basic right-preconditioned GMRES.
However, it requires the storage of a second Krylov basis. The dimensions of both internal and
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Algorithm 5 FGMRES
Input: A, M, b, x0, tol and m
Output: xm minimizing ∥rm∥2 with actualized m

1: r0 = b−Aw0
2: β = ∥r0∥2
3: v1 = r0/β
4: u1 =M−1v1
5: for k ∈ J1, mK do
6: uk+1 ←M−1

j vk

7: vk+1 ← Auk+1
8: for l ∈ J1, kK do
9: hlk ← ⟨Avk,vl⟩

10: vk+1 ← wk − vlhlk

11: end for
12: hk+1,k ← ∥vk+1∥2
13: compute the relative residual ϵGMRES

rel with Givens rotations
14: if hk+1,k = 0 or ϵGMRES

rel < tol then
15: m← k
16: break main loop
17: else
18: vk+1 ← vk+1/hk+1,k

19: end if
20: end for
21: ym = argminy∥βe1 − H̃my∥2
22: xm = x0 + Umym

external Krylov bases must thus be carefully chosen to be compliant with memory limits. In each
case, the preconditioning is initially built upon the Jacobian matrix. In the next paragraph, the
procedure employed in elsA to compute J is described.

Formation and storage of J . A review of existing preconditioners is exposed in [52]. Simple
ones arise from classical iterative techniques like Jacobi or Gauss-Seidel. However, they are known
to show a poor convergence rate when used in the context of compressible CFD. The so-called
matrix-free approaches are really cheap in terms of both memory and CPU usage, but the most
efficient among them requires a minima the formation of a good approximation of A. When
addressing compressible CFD problems, Guilbert [51] showed that the most convenient way is to
precondition from the exact matrix. We recall that the matrices involved in CFD problems, like
J , usually are sparse matrices, i.e. matrices in which most of the elements are zero, as shown in
fig. III.4.

The first step of preconditioning is therefore to compute the exact operator A, and in particular
the Jacobian matrix J . In chapter I, the columns of J are calculated by evaluating successive
matrix-vector products with AD on each vector of the canonical base. However, when dealing with
larger 2-D or 3-D configurations, meshes could reach millions of cells, and such a strategy becomes
unaffordable. In elsA, this issue is addressed by using a multicoloring technique. Full details
about this approach can be found in [51]. To summarize, the idea is first to identify structurally
orthogonal columns, i.e. columns that have no common element in the same line, and then to
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Figure III.4: Jacobian pattern of the laminar cylinder (0.9% of nonzero elements).

produce a probing vector through which a Jacobian-vector product returns the identified columns.
Multicoloring can be illustrated with the following schematic sparse matrix whose structurally
orthogonal columns has been colored the same way:

A =


⋆ ⋆ ⋆

⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆

⋆ ⋆ ⋆

 −→
coloring


⋆ ⋆ ⋆

⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆

⋆ ⋆ ⋆

 . (III.56)

Introducing the three following probing vectors:

t1 =



1
0
1
0
0
0


, t2 =



0
1
0
1
0
0


, and t3 =



0
0
0
0
1
1


, (III.57)

the entire matrix can be recovered evaluating At1, At2 and At3. The matrix being built by blocks,
the final number of matrix-vector products to compute is Ncolor × d, which also depends on both
the discretization order and the mesh topology.

Several storage format are available to store sparse matrices and most of them are presented
in [52]. In elsA, A is stored in the Block compressed Sparse Row (BSR) format, that is the
block variation of the Compressed Sparse Row (CSR) format. The CSR storage of a matrix A
is composed of three tables AA(A), JA(A) and IA(A). The first one contains every nonzero
coefficient, the second their column index, and the third provides, for a given index p, the position
in AA(A) of the first nonzero coefficient of line p. An example of CSR storage for a 3-by-3 matrix
is provided hereafter:

A =

a11 0 a13
0 a22 0
0 a32 a33

 −→
CSR

AA(A) = a11 a13 a22 a32 a33

JA(A) = 1 3 2 2 3
IA(A) = 1 3 4

. (III.58)
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The BSR format is identical except that the coefficients aqr of A are d-by-d blocks instead of scalar
quantities.

Preconditioners. This thesis builds upon the previous developments made by Guilbert in elsA,
which give access to a large variety of preconditioning tools based on domain decomposition. In-
complete LU factorizations [52] like ILU(0) and ILU(k), where k is the level of fill-in, coupled with
FGMRES, are sufficient for a large variety of CFD problems. The quality of those preconditioners
may be enhanced by distributed computing extension via the Restricted Additive Schwarz (RAS)
methods. When the problem is particularly stiff, like in RANS computations, more sophisticated
preconditioning tools must be used. Guilbert [51] developed an hybrid method based on the mesh
partitioning, that identifies the critical zones through the "LU-ILU distance" criterion, and decides
whether ILU(0), ILU(k) or local LU factorization (see https://www.pardiso-project.org/) are
performed. In the most critical zones, the preconditioner is a local LU factorization, and user-
defined incomplete factorizations in the remaining zones. By allowing each domain to be pre-
conditioned differently, this hybrid approach may yield important gain over a classical local LU
decomposition. This type of preconditioning will be denoted HLU factorization in the following.
Finding a good preconditioner for large sparse systems in CFD remains a challenging task and is
still an important research topic at ONERA with for instance the work of Jang [102].

The different variations of preconditioning developed by Guilbert in elsA have been tested
on laminar cylinder case. To test and compare the convergence of FGMRES with the various
available preconditioners, the focus was made on the resolution of the system J z = b, where J
is the Jacobian matrix of a fixed point calculated at Re = 47, and b is some random vector. This
system is a particular case of equation (III.44) when CFL → +∞, i.e. when the fixed point is
reached and the time term vanishes. At the beginning of a fixed point computation, this term
is large and increases the diagonal dominance of A, which makes the system easier to solve. On
the contrary, the closer the fixed point is, the stiffer the system becomes, resulting in a more
challenging resolution. In the experiments, both internal and external Krylov basis were chosen
to be composed of 60 vectors, and ϵGMRES

rel has been set to 10−14 while the inner GMRES tolerance
is set to 10−3. Fig. III.5 presents the convergence results using ILU(1), ILU(2), ILU(3), and HLU
and table III.3 shows the required memory and elapsed time for each computation. HLU is the
best in term of CPU time but also has the highest memory requirement. This is why in practice,

5 10 15 20 25
External GMRES iteration

10−11

10−7

10−3

101
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M

R
E

S
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ILU(1)
ILU(2)
ILU(3)
HLU

Figure III.5: Comparison of preconditioned GMRES
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Preconditioner ILU(1) ILU(2) ILU(3) HLU
Allocated memory
for preconditioning 0.88 GB 0.96 GB 1.04 GB 1.61 GB

Allocated memory
for computation 1.14 GB 1.21 GB 1.29 GB 1.87 GB

CPU time 46.5 s 36.84 s 37 s 26.2 s

Table III.3: Memory consumption and computation duration for various preconditioners on the
laminar cylinder case at Re = 47.

we prefer to use ILU(3) preconditioning which provides good performances in both CPU time and
memory requirement. HLU will be used for highly stiff problems.

III.3.5 Fixed point calculation of the laminar cylinder flow
Fixed point computation on the laminar cylinder case have been performed by solving the

implicit backward Euler scheme presented in II.3.2 with adaptative CFL [69] and using FGMRES-
ILU(3) for inversions. The calculations were started with a uniform field. Considering ∆lk the
characteristic length of a cell Ωk, the local time-step in elsA is defined as follows:

∆tk = CFL min
(

∆lk
∥Uk∥2 + a

,
ρPr∆l2

k

2γµk

)
(III.59)

Internal and external Krylov basis are both composed of 60 vectors. The internal GMRES stops
when the relative error drops below 10−3 while the tolerance of the external GMRES is set at
10−4. The nonlinear computation stops when the nonlinear residual on the density ∥ρ∥2 drops
below 10−14.

Fig. III.6a shows the convergence evolution over the computation at Re = 47. A satisfying
level of convergence of 10−15 is obtained within 18 iterations. Fig. III.6b shows the streamlines
of the corresponding base flow. A large recirculation bubble that extends over x = 3.3 composed
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Figure III.6: Convergence curve (a) and streamlines (b) for the Re = 47 case. The solid black
line indicates the separated region.
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Figure III.7: Streamwise (a) and cross-stream (b) velocities of the baseflow computed at Re = 47.
The solid line indicates the recirculation bubble.

of a pair of counter clockwise rotating vortices is observed immediately downstream the cylinder
body, and the solid line highlights the iso-contour of zero streamwise velocity. The bubble length
Lb is measured from the rear stagnation point to the rightmost point of this line. For the sake of
exhaustivity, streamwise and cross-stream velocities are presented in fig. III.7.

The computations at various Reynolds number are validated by comparing the evolution of Lb

when Re increases which, according to Gianetti & Luchini [30], should be linear. The bubble length
evolution resulting from elsA computations is compared to the results of Gianetti & Lucchini in
fig. III.8, where a good match is observed.

This section was dedicated to the presentation of the techniques selected in this thesis to
accurately compute fixed points with elsA. The GMRES algorithm as well as the preconditioning
techniques, as implemented to address inversions of the real-valued linear systems involved in
fixed point computation, were detailed. The next natural step is to wonder how these tools could
be adapted to solve the complex linear systems involved in global stability analyses. Next section
presents the strategy developed in elsA to do so, and focus especially on the use of the K formulation
[60].

40 50 60 70 80
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L
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Figure III.8: Evolution of recirculation bubble length with Reynolds number.
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III.4 K formulation and some of its properties
The tools of fixed point computation developed by Guilbert operate in real arithmetics, which

differs from the global stability problems that are complex-valued. The code must therefore be
thoroughly rewritten to be adapted to solve complex linear systems. Moreover, one of the main
component of the HPC optimizations implemented for the fixed point computation is the vector-
ization of loop patterns. Under some conditions like the independence of each operation within
a loop (see [103] for more details), this provides a significant speed-up during the computation
[57]. For instance, if a given loop satisfies the vectorization conditions, and the optimization packs
the indices five by five, this means that all subsequent operations are managed for the five indices
at the same time. In practice, a speed-up factor of three is approximately observed when using
vectorization. Another mandatory condition for the vectorization is the memory contiguity of the
floats composing the input vector. However, in a complex vector, each component consist of a
tuple of real and imaginary parts. From a memory point of view, the complex vector is stored in
an alternance of real and imaginary components, and the contiguity is lost9. The use of complex
arithmetics thus breaks the vectorization and consequently the HPC optimizations. To avoid such
issue, we choose in this work to reformulate the complex systems involved in global stability in a
real-equivalent version. Among all available formulations, the K formulation introduced by Day &
Heroux [60] has been selected. The justification of this choice, as well as some of its mathematical
properties are provided in this section.

III.4.1 Real equivalent formulation of a complex problem
For the sake of clarity, the focus is made on the general complex system under the following

form:
(δB + γIN)z = t, (III.60)

with z, t ∈ CN , γ ∈ C, δ = ±1, and where B stands either for J or J T . We introduce the sparse
matrix C = (δB+ γIN). By decomposing each vector and matrix in their real and imaginary part,
and by respectively introducing D and E as the real and imaginary parts of C, the system (III.60)
becomes:

(D + iE)(zℜ + izℑ) = (tℜ + itℑ),
which can be recast in the following form:(

D −E
E D

)
︸ ︷︷ ︸

=CK1

(
zℜ
zℑ

)
=
(
tℜ
tℑ

)
. (III.61)

This so-called K1 formulation provides an equivalent real alternative to the complex system where
the operator C ∈ CN × CN has been reformulated into operator CK1 ∈ C2N × C2N . With such a
modification, the vectorization is preserved however, the sparsity pattern of the original system is
not. This is problematic since the preconditioners developed by Guilbert [51] are built from the
sparsity pattern of the considered operator.

For this reason, we choose instead to focus on the equivalent K formulation [60], in which each
coefficient cqr = dqr + ieqr is replaced by a 2-by-2 block entry cK

qr:

cK
qr =

(
dqr −eqr

eqr dqr

)
. (III.62)

9The contiguity is achieved when for a given v ∈ CN , each component of vℜ and vℑ are aligned in memory.
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The K-formulated matrix C in the K formulation will be noted CK. This mapping is an homomor-
phism [60], i.e. it satisfies the following condition:

(i) IK
N = I2N (III.63)

(ii) (XY)K = XKYK, ∀X ,Y ∈ CN × CN . (III.64)

For example, the K formulation of the matrix

C =

c11 0 c13
0 c22 0
0 c32 c33

 −→
CSR

AA(C) = c11 c13 c22 c32 c33

JA(C) = 1 3 2 2 3
IA(C) = 1 3 4

(III.65)

is the matrix

CK =



d11 −e11 0 0 d13 −e13
e11 d11 0 0 e13 d13
0 0 d22 −e22 0 0
0 0 e22 d22 0 0
0 0 d32 −e32 d33 −e33
0 0 e32 d32 e33 d33


−→
BSR

AA(CK) = cK
11 cK

13 cK
22 cK

32 cK
33

JA(CK) = 1 3 2 2 3
IA(CK) = 1 3 4

(III.66)

The block sparsity pattern of CK exactly matches the point sparsity pattern of C, and the CSR
storage of C has the exact same structure as the BSR storage of CK. Consequently, applying
any pattern-based block preconditioning technique like those implemented in the elsA software
(ILU(k), local LU, etc.) to CK corresponds to applying the equivalent point preconditioning to
C. This statement stays true if cqr are d-by-d block entries, as in elsA, and the block size of the
K-formulated operator becomes 2d-by-2d. This is shown in the case of the cylinder in fig. III.9,
on which we note that the patterns of J and J K are identical.

As detailed in II.6, the KS algorithm operates in complex arithmetics. To benefit from the
vectorization during the whole eigenproblem resolution, the real-equivalent formulation needs to
be conserved within each step of the KS algorithm, and not only for the inversions of linear systems.
To this end, the original eigenproblems are reformulated and the new problematic is to be able to
link the eigenpairs of the K-formulated operators to those of the original ones.

0
0 172800

172800

0
0 345600

345600

−→
K formulation

Figure III.9: Patterns of J (left) and J K (right) for the laminar cylinder.
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III.4.2 Eigenvalues of the K-formulated operator
Considering the eigenvalues λ1, . . . , λN of C in any prescribed order, the goal is to explicit the

spectrum Sp(CK). Provided that C is a complex squared matrix, there exists a so-called complex
Schur decomposition verifying:

C = XSXH , (III.67)

where X ∈ CN ×CN is a unitary matrix10, and S ∈ CN ×CN is an upper triangular matrix whose
diagonal entries are the eigenvalues of C:

S =


λ1 ⋆

. . .
0 λN

 . (III.68)

From property (III.64), the following relation holds:

CK = XKSKXHK
, (III.69)

where SK reads:

SK =


Λ1 ⋆

. . .
0 ΛN

 , with Λq =
(
ℜ(λq) −ℑ(λq)
ℑ(λq) ℜ(λq)

)
, for all q ∈ J1, NK. (III.70)

Proposition 1 Sp(CK) = Sp(C) ∪ Sp(C).

Proof Let us first focus on the attributes of XK. From properties (III.63) and (III.64), we have:

XKXHK = (XXH)K = IK
N = I2N . (III.71)

Moreover, if the general term of X is (xqr)1≤q,r≤N , then that of XH writes (xrq)1≤r,q≤N and the
general terms of XK and XHK are, for a given (q, r) ∈ J1, NK× J1, NK:

xK
qr =

(
ℜ(xqr) −ℑ(xqr)
ℑ(xqr) ℜ(xqr)

)
and xK

rq =
(
ℜ(xqr) ℑ(xqr)
−ℑ(xqr) ℜ(xqr)

)
. (III.72)

Equation (III.72) highlights the relation XHK = XKT , which combined with (III.71), yields:

XKXKT = I2N . (III.73)

We can therefore state that the K formulation XK of the unitary matrix X is an orthogonal matrix,
and the decomposition (III.69) can be rewritten under the following form:

CK = XKSKXKT
. (III.74)

Considering the shape of SK, we can stated, from [104], that the relation (III.74) is a real Schur
decomposition. In this real form, the eigenvalues are contained in 2-by-2 diagonal blocks (or

10verifying XXH = IN .
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scalar for real eigenvalues) instead of complex scalars. The consequence of this result is that
Sp(CK) = Sp(SK) and the eigenvalues of SK are those of all of its 2-by-2 diagonal blocks, i.e.:

Sp(SK) =
N⋃

q=1
Sp(Λq) =

N⋃
q=1
{λq, λq}, (III.75)

which demonstrates proposition 1:

Sp(CK) = Sp(C) ∪ Sp(C) . (III.76)

The operator CK thus contains the spectral informations of both C and C. The next objective is
to recover the eigenvectors of C or C from those of CK. This point is addressed in the following.

III.4.3 Eigenvectors of the K-formulated operator
As stated in [60], CK and CK1 are orthogonally similar matrices linked through the relation:

CK = PCK1PT , (III.77)

where P is a permutation matrix that, for a given (q, r) ∈ J1, 2NK× J1, 2NK, is of general term:

pqr =


1 if q is odd and r = (q + 1)/2,

1 if q is even and r = q/2 + N,

0 otherwise.

(III.78)

The main consequence of relation (III.77) is that Sp(CK) = Sp(CK1). Considering a complex
eigenvector υ = (υ)1≤q≤2N ∈ C2N of CK associated with the eigenvalue λ = α + iβ, we hence know
that Pυ is an eigenvector of CK1 verifying:

CK1Pυ = λPυ, (III.79)

and that λ is also an eigenvalue of CK1. Introducing the two vectors υo = (υ2q)1≤q<N ∈ CN and
υe = (υ2q+1)1≤q<N ∈ CN (respectively composed of the odd and even components of υ), and based
on the definition (III.78) of P :

Pυ =
(
υo

υe

)
. (III.80)

In the case N = 3, this leads to:

Pυ =



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1





υ1
υ2
υ3
υ4
υ5
υ6


=



υ1
υ3
υ5
υ2
υ4
υ6


. (III.81)

These relations are introduced in order to simplify the next demonstration. The following demon-
strated propositions clarify the shape of υ depending on whether λ belongs to Sp(C), to Sp(C),
or to Sp(C) ∩ Sp(C) (which is included in R), and show how an eigenvector of C can be recovered
from υ.
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Proposition 2 υo and υe are eigenvectors of C associated with λ ∈ C ⇔ υo = −iυe.

Proof This proposition is an equivalence that is demonstrated showing both implications. We
first focus on the left-to-right implication. Considering that υo and υe are eigenvectors of C
associated with the eigenvalue λ, we have Cυo = λυo and Cυe = λυe. Expanding these two
relations leads to the following set of equations:



Dυo
ℜ − Eυo

ℑ = αυo
ℜ − βυo

ℑ

Eυo
ℜ +Dυo

ℑ = βυo
ℜ + αυo

ℑ

Dυe
ℜ − Eυe

ℑ = αυe
ℜ − βυe

ℑ

Eυe
ℜ +Dυe

ℑ = βυe
ℜ + αυe

ℑ.

(III.82)
(III.83)
(III.84)
(III.85)

Pυ being an eigenvector of CK1, equation (III.79) can be recast as:(
D −E
−E D

)(
υo

ℜ + iυo
ℑ

υe
ℜ + iυe

ℑ

)
= (α + iβ)

(
υo

ℜ + iυo
ℑ

υe
ℜ + iυe

ℑ

)
. (III.86)

This system is equivalent to the following new set of equations:


Dυo
ℜ − Eυe

ℜ = αυo
ℜ − βυo

ℑ

Eυo
ℜ +Dυe

ℜ = αυe
ℜ − βυe

ℑ

Dυo
ℑ − Eυe

ℑ = βυo
ℜ + αυo

ℑ

Eυo
ℑ +Dυe

ℑ = βυe
ℜ + αυe

ℑ.

(III.87)
(III.88)
(III.89)
(III.90)

After summing equation (III.82) and (III.87), and rearranging, a new relation is obtained:

Dυo
ℜ −

1
2E(υo

ℑ + υo
ℜ) = αυo

ℜ − βυo
ℑ, (III.91)

which, referring to equation (III.82), is accurate only if:

1
2(υo

ℑ + υe
ℜ) = υe

ℜ, (III.92)

i.e. υo
ℑ = υe

ℜ. Such a result allows the replacement of υe
ℜ by υo

ℑ in equation (III.88), making the
left-hand side equal to that of equation (III.83). Equaling both right-hand sides provides:

βυo
ℜ + αυo

ℑ = αυo
ℑ − βυe

ℑ. (III.93)

Assuming λ /∈ Sp(C)∩Sp(C), and thus λ /∈ R, then β ̸= 0, and finally υo
ℜ = −υe

ℑ, which completes
the demonstration of υo = −iυe .

We now focus on the right-to-left implication by considering that υo = −iυe, i.e. υo
ℜ = −iυe

ℑ
and υo

ℑ = υe
ℜ. Pυ is an eigenvector of CK1 so the set of equations (III.87) to (III.90) holds.

Replacing υe
ℜ by υo

ℑ and υe
ℑ by −υo

ℜ in equation (III.87) and (III.88) leads to equation (III.82)
and (III.83). And replacing υo

ℜ by −υe
ℑ and υo

ℑ by υe
ℜ in equation (III.89) and (III.90) leads to

equation (III.84) and (III.85). Finally, the whole system (III.82) to (III.85) is satisfied, which
means υo and υe are eigenvectors of C .

Proposition 3 υo and υe are eigenvectors of C associated with λ ∈ C ⇔ υo = iυe.
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Proof The proof is similar to that of proposition 2, except that the system (III.82) to (III.85) is
replaced by: 

Dυo
ℜ + Eυo

ℑ = αυo
ℜ − βυo

ℑ

−Eυo
ℜ +Dυo

ℑ = βυo
ℜ + αυo

ℑ

Dυe
ℜ + Eυe

ℑ = αυe
ℜ − βυe

ℑ

−Eυe
ℜ +Dυe

ℑ = βυe
ℜ + αυe

ℑ.

(III.94)
(III.95)
(III.96)
(III.97)

Proposition 4 If λ ∈ Sp(C)∩ Sp(C), i.e. λ ∈ R, then υo
ℜ + iυe

ℜ and υo
ℑ + iυe

ℑ are eigenvectors of
C; and υo

ℜ − iυe
ℜ and υo

ℑ + iυe
ℑ are eigenvectors of C.

Proof λ being real, the system (III.87) to (III.90) simplifies as:



Dυo
ℜ − Eυe

ℜ = αυo
ℜ

Eυo
ℜ +Dυe

ℜ = αυe
ℜ

Dυo
ℑ − Eυe

ℑ = αυo
ℑ

Eυo
ℑ +Dυe

ℑ = αυe
ℑ,

(III.98)
(III.99)

(III.100)
(III.101)

which shows that υo
ℜ + iυe

ℜ and υo
ℑ + iυe

ℑ are eigenvectors of C, and υo
ℜ − iυe

ℜ and υo
ℑ − iυe

ℑ are
eigenvectors of C.

For a given eigenpair of CK, whether the eigenvalue is complex or real, we are hence able to
recover an eigenpair of C. We now have all the required informations to adapt the KS algorithm to
K formulation. The next section provides the implementation details of the K formulation applied
to both GMRES and KS algorithms.

III.5 K-formulated global stability analysis method

To get a complete working implementation of global stability analysis in K formulation, each
component of the eigenproblem resolution must be adapted. This section first presents the adapta-
tion of the Jacobian-vector products of Tapenade, which is one of the main elementary component
of the GMRES. The preconditioning tools are also adapted and some convergence results of the
GMRES in K formulation are provided for the laminar cylinder case.

III.5.1 K-formulated matrix-vector product

Producing differentiated code with Tapenade in K formulation is not only doubling the size
of each input vectors. In fact, as mentioned earlier, the contiguity of the real and imaginary
components of the input K-formulated vector must be conserved. To this end, the input vector
must be split and Jacobian-vector products must be managed on the real and imaginary parts
separately. The description of the process is described below.

For the sake of illustration and without loss of generalities, we consider here that B = J and
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δ = 1. The product between C = J + sIN and a given complex vector υ ∈ CN writes:

Cυ = [J + (sℜ + isℑ) IN ] (υℜ + iυℑ)
= Jυℜ + sℜυℜ − sℑυℑ + i (Jυℑ + sℜυℑ + sℑυℜ)

=


(Jυℜ)1 + sℜυℜ1 − sℑυℑ1

...
(Jυℜ)N + sℜυℜN

− sℑυℑN


︸ ︷︷ ︸

=ℜ(Cυ)

+i


(Jυℑ)1 + sℜυℑ1 − sℑυℜ1

...
(Jυℑ)N + sℜυℑN

− sℑυℜN


︸ ︷︷ ︸

=ℑ(Cυ)

.
(III.102)

The general term of the K formulation CK = (cK
qr)1≤q,r≤N of C is expressed as follows:

cK
qr =



(
Jqr + sℜ −sℑ

sℑ Jqr + sℜ

)
if q = r,(

Jqr 0
0 Jqr

)
otherwise.

(III.103)

Now, reformulating υ in υK =
(
υℜ1 υℑ1 · · · · · · υℜN

υℑN

)T
∈ R2N , the K formulation of Cυ

reads:

CKυK =



(Jυℜ)1 + sℜυℜ1 − sℑυℑ1

(Jυℑ)1 + sℜυℑ1 − sℑυℜ1
...
...

(Jυℜ)N + sℜυℜN
− sℑυℑN

(Jυℑ)N + sℜυℑN
− sℑυℜN


. (III.104)

To achieve the computation of CKυK, the vector υK has first to be split into υℜ and υℑ. Given the
Jacobian-vector products provided by Tapenade (see II.4.1), the two products Jυℜ and Jυℑ must
then be performed. They are finally assembled in a 2N -dimensional vector with the remaining
terms of sυ. Using the notation of II.4.2, the graph providing the K-formulated right matrix-vector
product, i.e. the mapping φK ∈ R2N 7→ J KφK ∈ R2N , reads:

J KφKφK

∂P

∂W
φℜ

∂F

∂P

(
∂P

∂W
φℜ

)
+

∂F

∂∇P

(
∂∇P
∂P

∂P

∂W
φℜ

)

∂∇P
∂P

(
∂P

∂W
φℜ

)

∂P

∂W
φℑ

∂F

∂P

(
∂P

∂W
φℑ

)
+

∂F

∂∇P

(
∂∇P
∂P

∂P

∂W
φℑ

)

∂∇P
∂P

(
∂P

∂W
φℑ

)

while that of the left matrix-vector product, i.e. the mapping ψK ∈ R2N 7→ J T K
ψK ∈ R2N , reads:
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ψKTJ KψK

ψT
ℜ

∂R

∂F

(
ψT

ℜ
∂R

∂F

)
∂F

∂P
+
(
ψT

ℜ
∂R

∂F

∂F

∂∇P

)
∂∇P
∂P(

ψT
ℜ

∂R

∂F

)
∂F

∂∇P

ψT
ℑ

∂R

∂F

(
ψT

ℑ
∂R

∂F

)
∂F

∂P
+
(
ψT

ℑ
∂R

∂F

∂F

∂∇P

)
∂∇P
∂P(

ψT
ℑ

∂R

∂F

)
∂F

∂∇P

A possible implementation consists in extracting and storing the real and imaginary parts from
the input K-formulated vector, successively computing the two Jacobian-vector products, and re-
combining them into a new K-formulated vector. This strategy requires three copies for each
matrix-vector product in K formulation, resulting in a large number of additional copies when
thousands of matrix-vector products are needed as in global stability computation. Alternatively,
by inlining the product in K formulation, the real and imaginary Jacobian-vector products might
be computed simultaneously on a 2N -dimensional vector conveniently arranged. This strategy
avoids the three copies and improves the vectorization and cache-blocking optimization. It has
been the object of a collaboration with Hascoët and resulted in a new feature of Tapenade in which
the operations on the real and imaginary parts are done directly on the 2N -dimensional vector.
Examples of K-formulated differentiated codes are provided in appendix B.

III.5.2 GMRES algorithm in K formulation
By doubling the size of the Krylov vectors and using the matrix-vector product in K formulation,

the whole GMRES implementation described in III.3.4 can be used on the K-formulated problem
CKzK = tK. Likewise, the preconditioning routines already implemented in elsA can be reused
on the K-formulated operators, doubling the block size, as shown in III.4.1. The jacobian matrix
is formed at the beginning of the computation, and the K-formulated operator is obtained by
transforming AA(J ) to AA(J K).

The resulting implementation of the GMRES in K formulation has been tested on the K-
formulated linear systems associated to the laminar cylinder case. As in III.3.4, both external
and internal Krylov basis are composed of 60 vectors, and the solver is the FGMRES-ILU(3).
Results are presented in fig. III.10, and table III.4 shows the allocated memory and time of each
computation. We first observe that the resolution converges faster with the K-formulated adjoint
operator than for the direct one. This agrees with the results of Timme [55] who also noticed
such behaviour. On the other hand, when s = 0, convergence is more difficult than when s ̸= 0.
This is explained by the reinforcement of the diagonal dominance (see III.3.4) with a nonzero
shift. Additionally, when the shift is really close to an eigenvalue, the operator is almost singular
resulting in a large condition number and a more difficult inversion. A balance is thus to be found
between setting a shift with a large real part, which makes the inversions easy and fast but requires
much more eigensolver iterations to converge toward the desired eigenvalue; and setting a shift
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Figure III.10: GMRES convergence curves for various operators on the laminar cylinder case at
Re = 47. The dashed line is at 10−5 which is the selected tolerance for global stability analysis
about cylinder flow. the shift is s = 1 + 0.9i.

Operator J J K (J − sIN)K J T K (
J T − sIN

)K

Allocated memory
for preconditioning 1.04 GB 1.61 GB 1.72 GB 1.71 GB 1.84 GB

Allocated memory
for computation 1.29 GB 3.01 GB 3.03 GB 3.06 GB 3.05 GB

CPU time 37 s 86.2 s 34 s 65.7 s 34.2 s

Table III.4: Memory consumption and computation duration for various operators on the laminar
cylinder case at Re = 47.

very close to the selected eigenvalue, which makes the eigensolver faster but the systems stiffer ant
the inversions slower.

III.5.3 Adaptating the Krylov-Schur algorithm to the K formulation
The KS algorithm also have to be adapted to K formulation. It has been implemented in

elsA in its real version, in which the complex Schur decomposition in equation (III.67) is replaced
by a real one [104], where the eigenvalues are contained in 2-by-2 diagonal blocks (or scalar for
real eigenvalues). The size of the Krylov vectors that compose the KS basis has been doubled to
comply with the K formulation. For the shift-and-invert transformation, the convergence test has
been modified to test the errors associated with eigenvectors of J instead of J K. Some details of
these implementations are provided below.

Modal analysis. Whether we focus on the direct of adjoint eigenproblem, the operator of interest
has the form of a shift-and-invert operator, as shown in II.5. The KS algorithm builds a KS basis
from K formulation of operator C−1 = (B − sIN)−1. The homomorphism properties (III.63) and
(III.64) of the K formulation provide:

C−1K = CK−1
. (III.105)
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The KS basis is generated by successive evaluations of CK−1 on the Krylov vectors through GMRES
algorithm. This basis is successively extended and truncated to find the eigenvalues λ̃K

l of CK−1,
which are linked to the eigenvalues λK

l of CK through the relation λK
l = λ̃K−1

l . Both CK−1 and CK

have the same eigenvectors. The eigenvalues λl of B can then directly be recovered from the λK
l

by using the K formulation properties and the fact that C−1 = C−1:

λl =

λK
l + s if λK

l ∈ Sp(C),
λK

l + s otherwise.
(III.106)

To discriminate one of the two possibles values, a test must be carried out. By using the results
of III.4.3 and provided the eigenvector υl ∈ C2N associated to λK

l , a test that compares the
quantities ∥υo

l + iυe
l ∥2 and ∥υo

l − iυe
l ∥2 may be implemented. However, based on the author’s

experience, the relations υo
l = −iυe

l and υo
l = iυe

l do not necessarily hold when the eigenvector is
not perfectly converged. We choose instead to focus on the residual associated to an eigenvector
of B extracted from υl. To do so, let us consider υo

l the eigenvector to test and the quantities
ϵ1 = ∥Bυo

l − (λ + s)υo
l ∥2 and ϵ2 = ∥Bυo

l − (λ + s)υo
l ∥2. The lowest value between ϵ1 and ϵ2

indicates the correct value of λl in equation (III.106) and gives the residual associated with the
operator B. Hence, the KS algorithm is entirely implemented in K-formulated shift-and-invert,

Algorithm 6 K-formulated KS algorithm for modal analysis
Input: B, s ∈ C, v1 ∈ R2N unitary, m and l ≤ m the number of desired eigenpairs
Output: j eigenpairs of B, with j ≤ l

1: initialization of Vm ←
[
v1 0

]
, j ← 0, p← 0

2: while j ≤ l until convergence do
3: m− p Arnoldi steps with deflation using preconditioned GMRES:

(B − sIN)K−1Ṽm = ṼmHm + vm+1b̂
T
m

4: real Schur decomposition with sorting Hm ←WT
2WT

1 HmW1W2
5: Vm ← VmW1W2
6: for k ∈ Jj, lK do
7: compute (λ̃K

k ,yk) verifying Hmyk = λ̃K
k yk and set υk = V̂myk

8: compute ϵ1 = ∥Bυo
k − (λ̃K−1

k + s)υo
k∥2

9: compute ϵ2 = ∥Bυo
k − (λ̃K−1

k + s)υo
k∥2

10: set ϵKS
rel = min(ϵ1, ϵ2)/(|λk|∥υo

k∥2)
11: if ϵKS

rel < tol then
12: lock (λk,yk) and continue
13: else
14: break
15: end if
16: end for
17: j ← k
18: choose p, truncate and set vp+1 ← vm+1
19: compute bp and insert it into Hp

20: end while
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but the convergence test is done on the original operator instead of the K-formulated one. The
implementation is given in algorithm 6. It is worth noting that such a test is associated to an
eigenpair of B instead of C−1, which might give too optimistic bounds and provide an eigenvalue
of B that is not really converged [82].

Resolvent analysis. The shift-and-invert transformation is not used here, but the operator of
interest still involves inverted operators. As stated in II.5.3, the resolvent analysis can be achieved
by solving the eigenproblem associated to one of the operator RQ−1

2 RHQ1 or Q−1
2 RHQ1R. When

solving the eigenproblem associated with Q−1
2 RHQ1R, the resulting eigenvectors are the optimal

forcings and, as seen with relation (II.57), each optimal response’s computation involve an inver-
sion. In this work, the focus is made on the operator C = RQ−1

2 RHQ1, whose eigenvectors provide
the optimal responses, from which the optimal forcings can be recovered by using a simple matrix-
vector product with the operator (iωIN − J ). Based on what we know about the K formulation,
the expression of CK reads:

CK = RKQK
2

−1RHKQK
1 = (−J − iωI)K−1QK

2
−1(−J T + iωI)K−1QK

1 . (III.107)

From [60], this operator is also Hermitian and has the same eigenvalues as C, each with dou-
bled multiplicity11. Moreover, we know that a real matrix with real eigenvalues have complex
eigenvectors. However, we ensure the eigenvectors are real by operating with real arithmetics,

Algorithm 7 K-formulated KS algorithm for resolvent analysis
Input: J , J T , Q1, Q2, ω ∈ R, v1 ∈ R2N unitary, m and l ≤ m the number of desired eigenpairs
Output: j eigenpairs of RQ−1

2 RHQ1, with j ≤ l

1: initialization of Vm ←
[
v1 0

]
, j ← 0, p← 0

2: while k ≤ l do
3: m− p Arnoldi steps with deflation using preconditioned GMRES:

(−J − iωI)K−1QK
2

−1(−J T + iωI)K−1QK
1 Ṽm = ṼmHm + vm+1b̂

T
m

4: real Schur decomposition with sorting Hm ←WT
2WT

1 HmW1W2
5: Vm ← VmW1W2
6: for k ∈ Jj, lK do
7: compute (η̃k,yk) verifying Hmyk = η̃kyk and set ϵKS

rel = |b̂T
myk|/(|η̃k|∥V̂myk∥2)

8: if ϵKS
rel < tol then

9: lock (η̃k,yk) and continue
10: else
11: break
12: end if
13: end for
14: j ← k
15: choose p, truncate and set vp+1 ← vm+1
16: compute bp and insert it into Hp

17: end while

11we recall that Sp(C) ∈ R.
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meaning if the eigenvalue is real, the corresponding eigenvector will also be. From proposition 4,
by considering an eigenpair (υl, η̃l) ∈ R2N × R of CK, the vector υo

l + iυe
l is selected as an eigen-

vector of RQ−1
2 RHQ1 and the resulting optimal forcing is calculated by

√
η̃l

−1R−1(υo
l + υe

l ). No
spectral transformation is performed in this resolvent case. The error calculated from the Krylov
decomposition (see equation (II.73)) directly provides the residual associated to the K-formulated
eigenproblem. The calculation of the residual associated to C is avoided since it requires two inver-
sions for each eigenpair to test. An error is thus committed because the convergence is based on
the K-formulated problem. However, based on the author’s experience, the error of an eigenpair
of CK is usually of the same order of magnitude as the error associated to the extracted eigenpair
of C. An implementation of the K-formulated KS algorithm for resolvent analysis is presented in
algorithm 7.

These adaptations of the KS algorithm to K formulation complete the description of the method
to scale up global stability analysis to industrial configurations, denoted as K-Formulated Global
Stability Method (KFGSM). In the next section, the KFGSM is tested to draw an exhaustive
picture of the stability of the laminar cylinder flow, and the results are compared to the reference
SLEPc eigensolver.

III.6 Global stability analysis of the laminar cylinder flow
The numerical experiments carried out on the laminar cylinder case to validate the KFGSM

are described hereafter. The various eigenproblems that arise in the global stability analysis are
solved for the base flows discussed in III.3.5, and the results are compared to those obtained from
the reference eigensolver SLEPc [82]. The latter uses complex arithmetic, forms the operators
explicitly through multicoloring (see III.3.4), and solves the complex linear systems through an
LU factorization, while the KFGSM uses real arithmetic and the K formulation, and employs
FGMRES-ILU(3) with an external tolerance of 10−6. The relative tolerance for the eigenpairs for
all calculations has been set to 10−4. The KS basis includes 20 vectors for direct and adjoint calcu-
lations and 10 vectors for resolvent analysis. We also introduce the direct and adjoint perturbation
velocities Û and Û †.

III.6.1 Direct modal analysis
The eigenpairs of J were calculated by solving the eigenproblem in equation (II.45) using

both SLEPc and elsA. The relative tolerance for the two solvers was set to ϵKS
rel = 10−4. The

amplification rate σ, and Strouhal number St = 2π/ω, obtained for the least stable eigenvalues
are shown as a function of Re, in fig. III.11a and III.11b, respectively. These values agree with
those obtained by Gianetti and Luchini in [30]. The critical value of Re at which the global mode
becomes unstable is Rec = 47, which is consistent with values found in the literature [29, 22, 30].
These results validate our numerical setup. The spatial structures of the streamwise and cross-
stream perturbation velocities, normalized by the L∞-norm of the perturbation velocity vector, are
shown in fig. III.12. Coherent structures, with an anti-symmetry through x-z plane, can be seen
to be temporally and spatially amplified with a spatial wavelength of Λx ≃ 6.3L, and advected
downstream. The von Kármán vortex street appears when the Reynolds number is increased
beyond Rec, due to this unstable mode, which denotes a linearly amplified mechanism. The mode
having a nonzero frequency, it is oscillating and thus denotes a so-called Hopf bifurcation12. These

12unlike a regular bifurcation in which the mode is steady.
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linear computations are confronted to nonlinear unsteady ones in III.7.

Moreover, a good match is observed between the eigenvalues computed with elsA and SLEPc.
This result validates the implementation of the K-formulated KS algorithm in elsA using real
arithmetic, which returns the same eigenvalues as the complex reference eigensolver SLEPc. Table
III.5 also shows that elsA returns the same eigenvalue using 1 or 8 CPUs, demonstrating its ability
to operate in a massively parallel environment. However, in this particular case, the SLEPc solver
is much faster than elsA. This was expected as our solver, designed for industrial configurations,
has a much higher arithmetic intensity than the SLEPc counterpart used here, which relies on LU
factorizations. This SLEPc strategy may be used for 2-D cases and small 3-D ones, but is unable
to handle 3-D configurations with a high number of DOF, as discussed in III.1.1.
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Gianetti
SLEPc - direct
elsA - direct
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Re

0.11
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0.115

0.1175

0.12
St

Figure III.11: Evolutions of amplification rate (a) and Strouhal number (b) according to Re for
direct modal analysis. The critical Reynolds number is Rec = 47.

Solver SLEPc - 1 CPU elsA - 1 CPU elsA - 8 CPUs
Allocated memory
after computation 3.34 GB 3.55 GB 3.52 GB

CPU time 78 s 6204 s 1895 s
KS iteration 8 10 10
Eigenvalue 5.62× 10−4 + 0.745i 5.616× 10−4 + 0.745i 5.616× 10−4 + 0.745i

ϵKS
rel 8.2 × 10−5 2.1 × 10−5 2.35 × 10−6

Table III.5: Comparison between SLEPc an elsA computation for direct global stability analysis,
computation at Re = 47.
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Figure III.12: Real part of streamwise (a) and cross-stream (b) velocity perturbation of the
direct unstable mode at Re = 47. Solid lines indicate iso-contours at ℜ(ûx)± 0.1 and ℜ(ûy)± 0.1.

III.6.2 Adjoint modal analysis
The same numerical experiments as in the direct eigenproblem are shown for the adjoint one

(see (II.49)). The mass matrix considered is the 5N -by-5N matrix QΩ (see II.5.2) of general term:

qΩ =


V (Ω) 0 0 0 0

0 V (Ω) 0 0 0
0 0 V (Ω) 0 0
0 0 0 V (Ω) 0
0 0 0 0 V (Ω)

 . (III.108)

The least stable eigenpairs was computed with both elsA and SLEPc eigensolvers. The evolu-
tions of σ and St as a function of Re are presented in fig. III.13a and III.13b, respectively. A good
agreement between direct and adjoint eigenvalues is observed, demonstrating the duality between
of the direct and adjoint eigensolvers. The critical Reynolds number is also found to be Rec = 47.
Fig. III.14 displays the spatial structure for the streamwise and cross-stream perturbation veloci-
ties, normalized by the L∞-norm for the least stable mode at Rec. Both shapes are consistent with
previous results from the literature [87]. Unlike the direct mode, the adjoint is advected upstream.
As stated by Sipp [22], this is due to the opposite signs of the advection operator in the adjoint
and direct perturbation equation. The areas with the brightest colors correspond to the zones
where the flow instability is the most sensitive to an external forcing. This information is useful
to develop flow control strategy in order to delay the instability onset [22].

As for the direct eigenproblem, a good match is observed between elsA and SLEPc, which
validates the K-formulated KS algorithm for the adjoint operator. Table III.6 presents detailed
results after various computations. The eigenvalue returned by elsA using 1 or 8 CPUs is the same,
further confirming the solver’s ability to operate in a massively parallel environment. Additionally,
it can be noted that the adjoint eigensolver implemented in elsA converges faster than the direct
one, in agreement with Timme [55]. Again, SLEPc is faster than elsA for the reasons mentioned
above.

Given both direct and adjoint unstable modes, and by analogy with equation (I.7), the struc-
tural sensitivity can be computed in its discrete form to describe the critical zones in the domain
responsible for the instability (the so-called wavemaker). From [30, 29], it is defined as:

S(x) = ∥Û (x)∥2∥Û †(x)∥2, (III.109)

where the L2 norm is complex. The resulting map is shown in fig. III.15 and agrees with the
results from [30]. It displays two dark parts around x = 2.3, indicating the precise origin of the
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instability. This means that modifying the base flow outside these zones will have a marginal
effect on the instability mode as long as these sensitive zones remain unaltered. In an industrial
context, this information is valuable as it also provides insights into how to distribute meshing
points economically while still capturing the instability.
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elsA - direct
elsA - adjoint
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Figure III.13: Evolution of amplification rate (a) and Strouhal number (b) according to Re for
adjoint modal analysis. The critical Reynolds number is Rec = 47.

Solver SLEPc - 1 CPU elsA - 1 CPU elsA - 8 CPUs
Allocated memory
after computation 3.34 GB 3.54 GB 3.61 GB

CPU time 74 s 4512 s 1022 s
KS iteration 8 10 10
Eigenvalue 5.62× 10−4 + 0.745i 5.616× 10−4 + 0.745i 5.616× 10−4 + 0.745i

ϵKS
rel 6.6 × 10−5 1.1 × 10−5 6.2 × 10−5

Table III.6: Comparison between SLEPc an elsA computation for adjoint global stability analysis
computation at Re = 47.
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Figure III.14: Real part of streamwise (a) and cross-stream (b) velocity perturbation of the
adjoint unstable mode at Re = 47. Solid lines indicate iso-contours at ℜ(ûx)±0.1 and ℜ(ûy)±0.05.
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Figure III.15: Structural sensitivity of the laminar cylinder flow at Re = 40. The dark zones
indicates the wavemaker.

III.6.3 Resolvent analysis
The KFGSM was ultimately tested on the resolvent analysis for the subcritical Reynolds num-

ber Re = 40. The energetic gain was optimized with respect to Chu’s energy [83] for which the
mass matrix QChu is of general term:

qChu = V (ω)
ρ2


∥u∥2

2 −ux −uy −uz 0
−ux 1 0 0 0
−uy 0 1 0 0
−uz 0 0 1 0

0 0 0 0 0

 . (III.110)

Fig. III.16 shows the two optimal gains obtained at this regime. A peak at St = 0.117 is observed,
corresponding to the frequency of the least stable mode at this regime. This most amplified
frequency corresponds to that of the vortex shedding observed when the von Kàrmàn instability
is triggered. Spatial structures of streamwise and cross-stream velocities for Φ̂opt and Ŵopt are
presented in fig. III.17. As expected, the optimal forcing has the same shape as the adjoint mode
of fig. III.14, while the optimal response is similar to the direct mode of fig. III.12.

The eigenvalues calculated with elsA match well with those obtained with SLEPc. Table III.7
shows the results of various numerical experiments at St = 0.1165. Although SLEPc is faster
than elsA, it requires more memory due to the need to compute and store LU factorizations of R
and RH , while elsA only stores their ILU(3) factorizations, which are less expensive. In addition,
SLEPc must store the mass matrix, whereas elsA never forms the matrix explicitly, using only
matrix-vector products to calculate the actions of Q−1

Ω and QChu on a given vector. The results of
the numerical experiments show that elsA can work in a massively parallel environment, with the
same eigenvalues being obtained using 1 or 8 CPUs.

To ensure the accuracy of the eigenpairs, it is important to set the external tolerance of GM-
RES as low as possible, with a maximal value of 10−6. This is to ensure the validity of the product
(RQ−1

Ω RHQChu)K with a given vector. The KS algorithm is efficient in finding the largest eigen-
values, which is why a large KS basis and multiple iterations may not be necessary in the resolvent
case. Indeed, the largest eigenvalue is generally much higher than the other ones and, based on the
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author’s experience, the algorithm usually converges it in one or two iterations, using a relatively
small KS basis. This contrasts with direct and adjoint calculations, which use shift-and-invert
without knowledge a priori of the eigenvalue, and may require a larger basis and more iterations

0.04 0.08 0.12 0.16 0.2
St

103

104

105
η

η2 - SLEPc
η2 - elsA
η1 - SLEPc
η1 - elsA

Figure III.16: Optimal gain obtained for the resolvent analysis at Re = 40.

Solver SLEPc - 1 CPU elsA - 1 CPU elsA - 8 CPUs
Allocated memory
after computation 7.12 GB 4.59 GB 4.58 GB

CPU time 51s 4705 s 1116 s
KS iteration 1 1 1
Eigenvalue 609481 609482 609482

ϵKS
rel 6.7 × 10−15 8 × 10−23 8 × 10−23

Table III.7: Comparison between SLEPc an elsA computation for resolvent analysis computation
at Re = 40 and St = 0.1165.
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Figure III.17: Real part of streamwise and cross-stream perturbation velocity of the optimal
forcing (a-b) and response (c-d) adjoint unstable mode at Re = 40 and St = 0.117.
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to converge the eigenpairs.
This section aimed at showing the validation of the KFGSM on both the reference eigensolver

SLEPc, and the literature, for modal and nonmodal analyses. A common practice to compare
the amplification mechanism in both linear and nonlinear frameworks is to perform nonlinear
unsteady computations. In the next section, the second-order Gear method is described and
unsteady computations are performed on the laminar cylinder case.

III.7 Unsteady computation
The nonlinear unsteady computation can be performed prior to a global stability analysis

in order to determine the frequency of the unsteadiness. This information can then be utilized
to choose the shift in a modal analysis or to compute the optimal forcing and response at this
frequency through the resolvent analysis. The results of the global stability analysis can also be
compared retrospectively with the unsteady computation to verify if the origin of a particular
unsteadiness can be attributed to a linearly amplified mechanism. To carry out the temporal
integration of the governing equations, the elsA software employs the Gear method, which is
explained in more detail below. Unsteady computations have been performed on the laminar
cylinder flow and validate the capability of the KFGSM to predict the onset of the von Kármán
vortex street.

III.7.1 Gear method
Each unsteady computations in this work are carried out by solving the Gear scheme. The

latter, described in [105], is a backward multistep method that is second-order accurate in time.
It is associated with the following nonlinear implicit scheme:

G(W n+1) = V (Ω)
∆t

(3
2W

n+1 − 2W n + 1
2W

n−1
)
−R(W n+1) = 0. (III.111)

Similarly to II.3.1, this scheme is equivalent to a Newton method:

JG(W n,l)∆W n,l = −G(W n,l) (III.112)

where l is the index of the current sub-iteration of the Newton algorithm. As for the LU-SGS
method described in III.3.3, the Jacobian matrix is replaced by an approximated operator J̃ and
the following system is solved at each nonlinear iteration:( 3

2∆t
IN + J̃ (W n,l)

)
∆W n,l = R(W n,l) (III.113)

Note that J̃ is updated at each sub-iteration of the Newton resolution. The time-step ∆t corre-
sponds to the physical user-defined one.

III.7.2 Nonlinear unsteady computation of the laminar cylinder flow
The physical time-step for these computations has been set to ∆t = 10−3, so that the CFL

number at the wall is approximately 10. The initial fields are the base flows presented in III.3.5,
and perturbed by least stable mode computed using the direct eigensolver. Fig. III.18 displays
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the time evolution of the lift coefficient CL at Re = 55. It grows exponentially until the nonlinear
saturation leads to a limit cycle around t = 190, which represents the destabilization of the unstable
steady base flow toward the von Kármán vortex street. This can be seen in fig. III.19, which shows
isocontours of vorticity magnitude at t = 300. A spatial wavelength of Λx ≃ 6.5L is also observed,
which is of the same order as that identified for the direct unstable mode (see Fig. III.12).

The measured signal is analyzed in fig. III.20a and III.20b to extract the corresponding nonlin-
ear amplification rate σNL and Strouhal number StNL. Only one peak is identified in the magnitude
spectrum, which is associated to the frequency of the vortex shedding. Table III.8 summarizes the
results obtained for various Reynolds numbers, where (σL, StL) are the values resulting from the
linear direct eigensolver. The growth rates from the linear analyses are consistent with those ob-
tained from the linear stage of the nonlinear simulations. Differences in both the amplification
rate and Strouhal number can be seen between the linear and nonlinear computations. As stated
for instance in [106], while this discrepancy is normal since it is due to nonlinearities, the actual
nonlinear frequency may nonetheless be recovered from the linear stability analysis by linearizing
the equations about the mean flow instead of the fixed point. This is further discussed for instance
in [38]. However, at relatively low Reynolds number, these results support the conclusion that the
vortex shedding originates from a linearly amplified mechanism.

The unsteady computation is hence useful in identifying unsteadiness in the flow, but when
multiple unsteady phenomena coexist, they interact nonlinearly and it is often difficult to isolate
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Figure III.18: Time evolution of lift coefficient at Re = 55.
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Figure III.19: Vorticity magnitude map at Re = 55 and t = 300. The computation was
initialized using the baseflow perturbed by the unstable mode. Solid lines indicate iso-contours at
∥∇× u∥2 = 0.175.
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Figure III.20: (a) Lift coefficient trend over the time. The dotted line represents σNL = 0.028.
(b) Magnitude spectrum of the signal at Re = 55. A pike at StNL = 0.13 is identified.

Re (σL,StL) (σNL,StNL) ∆St ∆σ
48 (0.0046, 0.1188) (0.0043, 0.1205) 1.3% 6.5%
55 (0.03, 0.12) (0.028, 0.13) 7.7% 7.1%
60 (0.045, 0.1205) (0.04, 0.1366) 11.8% 12.5%

Table III.8: Comparison between SLEPc an elsA computation for resolvent analysis computation
at Re = 40 and St = 0.1165.

them. Additionally, the required computation time to reach the limit cycle can be quite long. This
is why global stability analysis is useful, as it allows for the isolation of different mechanisms in a
reasonable amount of computation time.

III.8 Conclusion
This chapter first presents the fixed point methods, including preconditioning computation,

as implemented in elsA. Then, a mathematical foundation for the KFGSM is established. The
code is validated through testing on the laminar cylinder case. In chapter III, the KFGSM is
applied to more complex configurations, including the turbulent OAT15A airfoil flow in transonic
conditions, which is a challenging RANS case, and the 3-D laminar subsonic sphere flow, which
contains a large number of DOF. Bifurcations of axisymmetric and planar-symmetric base flows
are successfully characterized.
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IV.1 Introduction
Chapter II aims to introduce general concepts related to compressible CFD and global stability.

In chapter III, the KFGSM is described and validated on the canonical case of the laminar cylinder
flow to predict the emergence of the von Kármán vortex street. In this chapter, the capability
of the KFGSM to handle more challenging cases is demonstrated. The first case studied is the
RANS OAT15A airfoil flow, which destabilizes through a Hopf bifurcation resulting in the buffet
phenomenon, an interaction between the boundary layer and a shock wave located on the suction
side of the airfoil [41]. The linear systems involved in both fixed point computation and global
stability analysis are known to be particularly stiff [51].

The second case considered is the 3-D subsonic laminar sphere flow. This flow has two bi-
furcations: a regular one around Re = 210 that breaks one symmetry, and a second one around
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Re = 280 which is a Hopf bifurcation, responsible for the degeneration towards hairpin-like vortex
shedding [107]. The computational grid for this case consists of about 10 × 106 cells, resulting
in 50 × 106 DOF. For the super-critical Hopf bifurcation of the planar-symmetric base flow, a
refined mesh consisting of about 125 × 106 DOF was used. Such sizes are representative of those
of industrial configurations that the code was designed for. This demonstrates the capability of
the KFGSM to operate on such configurations where direct factorizations are not feasible due to
memory limits. As a reminder, the largest known global stability analysis conducted by Timme to
characterize the buffet phenomenon on an entire plane was performed on 50 × 106 DOF [55].

IV.2 OAT15A airfoil case

Under given Mach number and angle of attack, the shock on the suction side of a plane wing
may interact with the detached boundary layer and gives rise to the so-called unsteady buffet
phenomenon [108]. This causes the shock to oscillate through a self-sustained mechanism, and may
lead to severe damage, mainly due to fatigue. Crouch first showed in [109] that this mechanism
could be predicted on a 2-D airfoil through the use of global stability analysis. Sartor conducted
such an analysis on the OAT15A airfoil as described in [41], and Paladini [27] extended the study
to 3-D unswept wing, exhibiting buffet cells on the boundary layer. In this section, we focus on the
2-D supercritical OAT15A airfoil to validate the KFGSM on this particularly stiff RANS case [51].
As for the laminar cylinder flow, fixed point computation as well as direct, adjoint, and resolvent
analysis are detailed below.

IV.2.1 Numerical set-up

The computational domain presented in fig. IV.1 is an unstructured C-grid composed of 70091
hexaedral cells. The first mesh point in the boundary layer on the profile is always below y+ = 0.9,
and considering the chord length c as the characteristic dimension, the grid definition in the
shock region is ∆x/c = 0.003. The selected physical parameters are given in table IV.1. To
improve the resolution of linear systems during fixed point computations or global stability analysis,
the problem is undimensioned using stagnation density ρi,∞, stagnation temperature Ti,∞, and
the associated sound-velocity ai,∞, which means that these quantities are all unitary. Such a
modification of the original problem is a form of preconditioning that improves the condition

Free-stream Mach number M∞ = 0.73
Free-stream stagnation temperature Ti,∞ = 288 K

Free-stream stagnation pressure pi,∞ = 101325 Pa
Free-stream stagnation density ρi,∞ = 1.226 kg m−3

Reynolds number 3.2 × 106

Angle of attack α ∈ [3.75◦, 6◦]

Table IV.1: Flow parameters of the 2-D OAT15A airfoil.
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Figure IV.1: Computational domain for the two-dimensional OAT15A airfoil. It expands over
100c.

number of the linear systems. Other physical quantities are obtained with the following relations:

a∞ =
√(

1 + γ − 1
2 M2

∞

)−1
, (IV.1)

p∞ =
(

1 + γ − 1
2 M2

∞

) −γ
γ−1

, (IV.2)

ρ∞ =
(

1 + γ − 1
2 M2

∞

) −1
γ−1

, (IV.3)

e∞ = 1
γ(γ − 1)

(
1 + γ − 1

2 M2
∞

)−1
, (IV.4)

R = 1
γ

, (IV.5)

µ∞ = cρ∞M∞a∞

Re∞
. (IV.6)

The angle of attack α is taken in to account by imposing at the farfield boundaries the streamwise
ux,∞ = u∞ cos(α) and cross-stream uy,∞ = u∞ sin(α) velocities.

Concerning the numerical methods, the negative SA scheme presented in III.2.2 is used to
model turbulent effects. Convective fluxes are discretized using the approximate Riemann solver
HLLC scheme as described in [63], with second-order accuracy without a limiter function. The
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diffusive fluxes, as in the case of the laminar cylinder case, are discretized by computing the
gradient at faces using the 5pcor method (see III.3.2). As for laminar cylinder flow (see III.1.2), the
boundary conditions are set to no-slip velocity at the wall, non-reflective conditions in the farfield,
and symmetry conditions on the transverse faces of the domain.

IV.2.2 Fixed point computation
Under unstable regimes, computing a fixed point in this case is particularly difficult. In fact,

using the backward Euler scheme with GMRES, as presented in III.3.4, initialized with a uniform
field fails and causes the calculation to diverge. We chose instead to first perform a LU-SGS
computation (see III.3.3) initialized with a uniform field to get a non-converged field that can then
be used to initialize the backward Euler scheme combined with the GMRES. Both simulations were
run on 24 CPUs, and the convergence result for the LU-SGS method is presented in fig. IV.2a.
The residual ∥ρ∥2 was reduced to 7× 10−7 in 104 iterations.

For GMRES computations, the FGMRES-HLU method is employed due to the stiffness of the
linear systems of interest (see III.3.4), with both the internal and external Krylov bases consisting of
60 vectors. The internal and external tolerances are set to 10−3 and 10−4, respectively. Fig. IV.2b
displays the convergence curve obtained using the GMRES algorithm, which was initialized with
the field returned by the LU-SGS computation. The final nonlinear residual ∥ρ∥2 was reduced to
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Figure IV.2: Convergence curve of LU-SGS method initialized with a uniform field (a) and
FGMRES-ILU(3) method (b) at α = 4◦.

Solver LU-SGS GMRES
nonlinear iterations 104 139

Final ∥ρ∥2 7 × 10−7 4 × 10−13

Allocated memory
after computation 0.59 GB 4.14 GB

CPU time 127 s 582 s

Table IV.2: Comparative figures between LU-SGS and FGMRES-ILU(3) method for fixed point
computation at α = 4◦.
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Figure IV.3: Streamwise velocity of the base flow at α = 4◦ case. Sonic line is indicated by the
solid black line.

4 × 10−13 after 139 iterations. The horizontal velocity of the corresponding base flow is illustrated
in fig. IV.3, where the sonic line is indicated. The contour map is in good agreement with the
results reported by Sartor in [41]. Table IV.2 provides quantitative data to compare the two
methods. As expected, the memory requirements for the GMRES method are significantly higher
than those of the LU-SGS method, as the GMRES method solves the exact linear systems rather
than approximate ones, requiring the formation of an effective preconditioner, which consumes a
lot of memory.

Such results demonstrate the complementary nature of both fixed point computation methods
and the efficacy of using them successively to compute a fixed point in a stiff case without prior
knowledge of its shape. However, in an industrial setting, particularly for turbomachinery compu-
tations, the LU-SGS method may not converge at all when initialized with a uniform field. This
issue can be addressed by approximating the initial field using the meridian model, as described
in [110]. Based on these successful base flow computations, the focus is made in the following on
the global stability analyses of this case.

IV.2.3 Direct modal analysis
With the fixed points computed with high accuracy, the KFGSM can now be tested on this

configuration. The computations are still performed on 24 CPUs. The KS basis consists of 30
vectors and the relative tolerance for the eigenvalue is set to 10−4. The inversion method used
is the FGMRES-HLU with 2-level RAS [51], where both the internal and external Krylov bases
consist of 60 vectors. The internal and external tolerances are set to 10−2 and 10−6, respectively.
For this case, the linear systems are so stiff that the real part of the shift was set to 5 to make the
inversions operational. The imaginary part of the shift was set near the expected non-dimensional
buffet frequency, which is related to the Strouhal number defined as follows:

St = fc

u∞
. (IV.7)

The evolution of both σ and St with respect to α is presented in fig. IV.4a and IV.4b, re-
spectively. The buffet onset is found to occur at αc = 4◦ with the corresponding critical Strouhal
number Stc = 0.062, resulting in a buffet onset frequency around 64 Hz. The flow restabilizes
between α = 5.5◦ and α = 6◦, which indicates the buffet offset. These results are in agreement
with the results obtained by Sartor in [41, 111]. The contour maps of both velocity and density
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of the direct unstable mode at αc are shown in fig. IV.5. The most energetic part of the mode is
located within the shock wave, and a smaller part is identified in the mixing layer.

As with the laminar cylinder flow, the elsA solver is compared to the SLEPc solver to validate
the implementation of the K-formulated KS algorithm. A good match is observed for both σ and
St. Table IV.3 provides quantitative figures to compare both solvers at αc. The elsA computation
requires much more memory than the SLEPc solver, which is not surprising since the GMRES
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Figure IV.4: Evolutions of amplification rate (a) and Strouhal number (b) according to α for
direct modal analysis. Critical angle of attack is found to be αc = 4◦.

Solver SLEPc - 1 CPU elsA - 24 CPU
Allocated memory
after computation 10.05 GB 17.84 GB

CPU time 248 s 18040 s
KS iteration 6 15
Eigenvalue 0.017 + 1.12i 0.017 + 1.12i

ϵKS
rel 4.9 × 10−5 3.8 × 10−5

Table IV.3: Comparison between SLEPc ans elsA computations for direct global stability analysis
at α = 4◦.

(a)

−0.2 0 0.2 0.4
x

0

0.2

y

-0.01
0.01

(b)

−0.2 0 0.2 0.4
x

0

0.2
-4.e-3
4.e-3

Figure IV.5: Real part of streamwise velocity perturbation (a) and density (b) for the direct
unstable mode at α = 4◦.
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inversions require many arrays to be allocated for the Krylov basis and the two-level overlapping
preconditioning is memory-intensive. However, it should be noted that this case serves as a demon-
stration and is not representative of industrial cases for which it was designed. The direct modal
analysis is hence validated for this RANS case, and the adjoint modal analysis is described in the
following.

IV.2.4 Adjoint modal analysis
The adjoint operator is defined relative to the scalar product defined by the 6N -by-6N matrix

QΩ (see equation (III.108)). Similar to the laminar cylinder flow and in agreement with Timme
[55], the adjoint problem is less stiff than the direct one, allowing the shifts to be set closer to the
expected eigenvalues, resulting in fewer KS iterations for the solver to converge. As shown in table
IV.4, both solvers only required one KS iteration with a tolerance of 10−4. In comparison with the
direct eigensolver, the memory requirements for the elsA adjoint solver are also 70% higher than
those of SLEPc due to the HLU preconditioning with two RAS levels.

The evolution of both σ and St with respect to the angle of attack is shown in fig. IV.6
and compared with SLEPc. The close proximity of the eigenvalues confirms the validity of the
adjoint eigensolver under RANS conditions. Furthermore, the eigenvalues computed using the
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Figure IV.6: Evolutions of the growth rate (a) and Strouhal number (b) according to α for
adjoint modal analysis. Critical angle of attack is found to be αc = 4◦.

Solver SLEPc - 1 CPU elsA - 24 CPUs
Allocated memory
after computation 10.07 GB 17.43 GB

CPU time 176 s 7391 s
KS iteration 1 1
Eigenvalue 0.017 + 1.12i 0.017 + 1.12i

ϵKS
rel 1.2 × 10−7 2.51 × 10−5

Table IV.4: Comparison between SLEPc and elsA computations for adjoint global stability
analysis at α = 4◦.
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Figure IV.7: Real part of streamwise velocity perturbation (a) and density (b) for the adjoint
unstable mode at α = 4◦.

adjoint solver are identical to those obtained using the direct eigensolver within a certain tolerance,
demonstrating the duality between the two operators. The least stable adjoint mode calculated
for αc is displayed in fig. IV.7. In accordance with the findings of Sartor [41], the most energetic
part of the adjoint is the oblique component which follows the characteristic line that impacts the
suction side at the start of the separation region. This suggests a strong receptivity of the flow
to external forcing in this area. As noted by Sartor, this position of the adjoint could indicate a
significant influence of the start of the separation region on the flow’s dynamics. Additionally, the
placement of the adjoint indicates that a perturbation downstream of the airfoil could impact the
instability, as a result of the propagation of upstream acoustic waves. The structural sensitivity is
calculated using equation (III.109), and the contour map for αc is shown in fig. The wavemaker is
identified as having a lambda shape and is mainly located in the shock wave. As a result, the grid
definition in this mesh zone should be carefully selected to capture the instability.

In agreement with the direct eigensolver, the KFGSM in its adjoint form is validated for RANS
computations. This implies that the K-formulated resolvent operator can be assembled and made
operational. In the following, a resolvent analysis of a sub-critical base flow is demonstrated,
illustrating the flow’s receptivity to the various frequencies calculated.
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Figure IV.8: Structural sensitivity at α = 4◦.
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IV.2.5 Resolvent analysis
The mass matrices are set to the 6N -by-6N matrices QChu and QΩ (see equations (III.110)

and (III.108) respectively). The angle of attack is set to the sub-critical value of α = 3.75◦.
The tolerance for GMRES inversions must be set lower than for the direct or adjoint eigensolver
to ensure accuracy when performing matrix-vector products with the operator RKQK

Ω
−1RHQK

Chu.
The tolerance is set to 10−6 for all computations. The KS basis consists of 10 vectors, requiring
20 inversions for the first iteration and 10 for subsequent iterations, as only half of the basis is
recycled through the KS iterations. This relatively small number of vectors compared to the size
of the problem is due to the fact that the largest eigenvalue is typically well separated from the
others, leading to rapid convergence.

The two highest gains computed for various frequencies with elsA are shown in fig. IV.9
and compared with SLEPc results. The results of are close to each other, but accuracy could be
improved by carrying out the same analysis with more vectors in the KS basis. Table IV.5 provides
a comparison of both solver computations. elsA require to store two HLU factorizations with two
RAS level, which results in an extra 80% memory usage compared to SLEPc. The linear systems
in resolvent analysis are stiff, and the relatively high tolerance set for GMRES convergence leads
to a much higher CPU time than SLEPc, which operates with the faster LU resolution. This is
consistent with the results from the direct and adjoint modal analysis.

From a physical perspective, the evolution of η1 with respect to St shows two peaks. The

0.1 1
St
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η2 - SLEPc
η2 - elsA
η1 - SLEPc
η1 - elsA

Figure IV.9: Optimal gain evolution according to St at α = 3.75◦. Two peaks are identified at
St = 0.0613 (buffet) and St = 2.44 (Kelvin-Helmholtz).

Solver SLEPc - 1 CPU elsA - 24 CPUs
Allocated memory
after computation 16.2 GB 29.7 GB

CPU time 144 s 14129 s
KS iteration 1 1
Eigenvalue 3.098 × 1012 3.994 × 1012

ϵKS
rel 2.4 × 10−13 2.5 × 10−23

Table IV.5: Comparison between SLEPc and elsA computations for resolvent analysis at α =
3.75◦ and St = 0.1165.
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first and largest peak is observed at St = 0.0613, which corresponds to a dimensional frequency
of 73.5 Hz. This frequency is the same as that of the least stable mode calculated with modal
analysis (see fig. IV.4b) at this incidence. The optimal forcing and response are displayed in fig.
IV.10. The contours of both streamwise velocity and density are similar to the direct and adjoint
eigenmodes that correspond to the buffet phenomenon, in a similar manner to the laminar cylinder
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Figure IV.10: Resolvent analysis at α = 3.75◦ and St = 0.0613. (top) ℜ(ûx) (a) and ℜ(ρ̂) (b)
for optimal forcing. (bottom) ℜ(ûx) (a) and ℜ(ρ̂) (b) for the corresponding optimal response.
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Figure IV.11: Resolvent analysis at α = 3.75◦ and St = 2.44. (top) ℜ(ûx) (a) and ℜ(ρ̂) (b) of
optimal forcing. (bottom) ℜ(ûx) (a) and ℜ(ρ̂) (b) of the corresponding optimal response.
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flow (see fig. III.6.3). This indicates that the sub-critical base flow at αc can become unstable
by amplifying such frequency. A secondary instability is identified at St = 2.44, resulting in a
dimensional frequency of 3430 Hz. The corresponding optimal forcing and response are plotted
in fig. IV.11. The optimal response is related to a Kelvin-Helmholtz instability. As stated by
Sartor in [41], due to the higher frequency, both the optimal response and forcing exhibit small-
scale structure patterns. Furthermore, because of the receptivity of the flow at these medium
frequencies, the optimal forcing shape could be used to stabilize the unstable buffet phenomenon
that occurs at lower frequencies.

We have just demonstrated that the developed KFGSM is fully operational for RANS cases,
ranging from modal to non-modal analysis. As for the laminar cylinder case, nonlinear unsteady
computations have been performed, and the results are shown below.

IV.2.6 URANS computation
The accuracy of the linear solver in predicting the unsteady buffet phenomenon was tested

by conducting nonlinear URANS computations using the Gear method (see III.7). The physical
non-dimensional time-step was set at ∆t = 2.2 × 10−5 to maintain a CFL number at the wall of
approximately 10. The calculations were initiated with the base flow perturbed by the unstable
direct mode. Fig. IV.12 shows the exponential temporal evolution of the lift coefficient at α = 4.5◦.
The limit cycle is reached around t = 50, where self-sustained oscillations are observed. The motion
at two consecutive instances is depicted by plotting contours of the density gradient in fig. IV.13.
A strong lambda shock is visible on the suction side of the profile, a characteristic of the buffet
phenomenon [111]. This instability causes the shock to move from x/c = 0.25 at t = 86 to
x/c = 0.16 at t = 88.

The temporally amplified signal is analyzed in fig. IV.14a and IV.14b to extract σNL and StNL,
respectively. Table IV.6 compares the values of σ and St for linear and nonlinear computations
for various angles of attack. Small discrepancies are observed for the amplification rates between
linear and nonlinear computations, except for α = 5.5◦, but in this case, we are far from the
criticality and this may be improved by lowering the tolerance of the eigensolver. The frequencies
calculated with the linear solver are in good agreement with those obtained with URANS compu-
tations, demonstrating the capability of the linear RANS solver in predicting instability both onset
and frequency. As discussed by Sartor [41], this result suggests that the second-order harmonics
generated by the nonlinearities remain weak, even in very unstable regimes. This outcome is not
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Figure IV.12: Time evolution of the exponentially growing lift coefficient at α = 4.5◦.

83



(a)

0 0.2 0.4
x

−0.1

0

0.1

0.2

y

−2

7

(b)

0 0.2 0.4
x

−0.1

0

0.1

0.2

y

−2

7

Figure IV.13: Magnitude of the density gradient ∥∇ρ∥2 map at t = 86 (a) and t = 88 (b) with
logarithmic scale, at α = 4.5◦.

obvious, as in the case of the laminar cylinder, the prediction of the shedding frequency with the
linear solver quickly diverges as the Reynolds number increases (see III.20). It is also worth noting
that these results validate our strategy of using the negative SA model instead of the original one
to avoid linearization issues.
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Figure IV.14: (a) Lift coefficient trend over the time where the dotted line represents σNL =
0.1248. (b) Magnitude spectrum of the signal, where a pike at StNL = 0.063667 is identified, as
well as second and third harmonics.

α (σL,StL) (σNL,StNL) ∆St ∆σ
4.5° (0.1243, 0.0638) (0.1248, 0.0657) 2.9% 4%
5° (0.1185, 0.0669) (0.113, 0.0695) 3.7% 4.8%

5.5° (0.0717, 0.0728) (0.062, 0.0733) 0.7% 15%

Table IV.6: Comparison between SLEPc and elsA computations for resolvent analysis at Re = 40
and St = 0.1165.
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The second part of this chapter focuses on the 3-D subsonic laminar sphere flow. This case
was chosen to evaluate the code’s ability to solve large 3-D problems and to identify multiple
bifurcations in the converged base flows. The bifurcations are investigated using both modal and
non-modal analysis, and the results are presented subsequently.

IV.3 Subsonic laminar three-dimensional sphere flow
The unsteadiness in the subsonic laminar sphere flow is a significant area of research because

of its similarity to some industrial problems, as noted by Tezuka et al. [26]. Sansica et al.
have studied both subsonic and supersonic regimes in [107, 112] and describe the frequencies and
eigenfunctions associated with the unstable modes that cause various instabilities. A schematic
bifurcation diagram for this flow is shown in fig. IV.15. When the Reynolds number is greater
than Re1

c ≃ 210, the base flow is axisymmetric (AS) and has a pair of steady streamwise vortices
immediately after the sphere body. After Re1

c, a regular steady bifurcation occurs, breaking the
axisymmetry and transforming the base flow into a planar-symmetric (PS) steady flow. A second
bifurcation, a supercritical Hopf bifurcation, occurs around Re2

c = 280, leading to unsteadiness
that takes the form of a large-scale hairpin-like vortex shedding behind the sphere, similar to
the laminar cylinder flow (see III.7.2). In this work, we focus on the subsonic case, and both
bifurcations are analyzed using direct and adjoint global stability analyses. The receptivity of both
types of base flows at various frequencies is also studied through resolvent analysis. Additionally,
we demonstrate that the pseudo-transient continuation technique thoroughly used in this thesis
(see II.3.2) is robust enough to compute AS base flows that do not have physical existence in
regimes above the Hopf bifurcation of PS base flows, revealing another specific Hopf bifurcation.

IV.3.1 Numerical set-up
The computational domain, presented in fig. IV.16, is based on that used by Sansica in [107].

It is an unstructured grid composed of 9.3 × 106 hexahedral cells and constitutes a good test case
to assess the capability of the KFGSM to perform global stability analysis on a 3-D configuration
of size representative of industrial applications. The physical parameters are presented in table
IV.7. Like in the cylinder case (see III.1.1), the conservative equations are non-dimensionalized
by T∞, u∞, and ρ∞. A second-order Roe scheme with MUSCL reconstruction and no limiter is
used for convective fluxes, while diffusive fluxes are computed using the 5pcor presented in III.3.2.
A no-slip velocity condition is imposed at the wall, non-reflective boundary conditions based on

Re1
c ≃ 210 Re2

c ≃ 280
Re

AS steady

PS steady PS steady

unsteady periodic

AS steady AS steady

Figure IV.15: Schematic bifurcation diagram of the laminar 3-D sphere flow.
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Free-stream Mach number M∞ = 0.1
Free-stream temperature T∞ = 300 K

Free-stream velocity u∞ = 34.7 m s−1

Free-stream density ρ∞ = 1.177 kg m−3

Reynolds number Re ∈ [200, 320]

Table IV.7: Flow parameters of the subsonic laminar flow around sphere.
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Figure IV.16: Schematic view of computational domain taken from [107] and respresentative
vizualisation of the mesh.

characteristics are set at the lateral domain boundaries, a uniform inflow velocity u∞ is imposed
at the x = 0 plane, and an outflow condition is imposed at the x = 20 plane.

As with the two previous test cases, the first step of this study is to compute a base flow, a
steady solution of the conservative equations. The following section provides details on the strategy
used to compute both AS and PS base flows.

IV.3.2 Fixed point computation
The computations were carried out on 18 Intel Xeon Broadwell E5-2680v4 nodes, utilizing

500 CPUs. For AS base flows, the calculations were converged using the backward Euler scheme
combined with the GMRES method, initialized with a uniform field. The preconditioning used was
FGMRES-ILU(3) with one RAS level [51]. The internal and external Krylov bases were composed
of 60 vectors, and the internal and external tolerances were set to 10−3 and 10−4 respectively.
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The convergence, demonstrated at Re = 210 in fig. IV.17a, was achieved in 10 iterations with a
precision of 4 × 10−16 on the density residual ∥ρ∥2.

A different strategy was adopted to compute PS base flows beyond the first regular bifurcation.
In fact, initializing the computations with a uniform field always result in an AS base flow, even at
Reynolds numbers above the supercritical Hopf bifurcation. To overcome this issue, the uniform
field was advanced toward the asymptotic PS base flow using the LU-SGS computation (see III.3.3)
over 104 iterations, performed on 200 CPUs. The resulting field was used to initialize the implicit
backward Euler solution with FGMRES-ILU(3) preconditioning. The tolerance on ∥ρ∥2 was set
to 10−11 and the convergence, shown in fig. IV.17b, was achieved in 41 iterations. Table IV.8
provides comparative figures between both resolution methods. As with the OAT15A case (see
IV.2.2), the memory requirement of the FGMRES-ILU(3) method is much higher than that of the
LU-SGS method, but the base flow is converged with higher precision, reducing numerical noise
in the computed fields.

The contour maps of velocity magnitude for the AS and PS base flows at Reynolds numbers
Re = 210 and Re = 280 are shown in fig. IV.18. In agreement with the flow visualizations reported
by Magarvey et al. in [113], a single thread is observed within the AS base flow and symmetry
across both the x-y and x-z planes is demonstrated in fig. IV.18a and IV.18c. On the other
hand, the PS base flow has two threads, and fig. IV.18d and IV.18b highlight the preservation
of symmetry across the x-z plane and the loss of symmetry across the x-y plane. It is worth
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Figure IV.17: Convergence of steady base flow at Re = 210 (a) and Re = 280 (b).

Solver LU-SGS GMRES
nonlinear iterations 104 41

Final ∥ρ∥2 2.4 × 10−8 9 × 10−12

Number of CPUs 300 500
Memory/CPU
after computation 0.72 GB 3.24 GB

CPU time 300 s 10.65 h

Table IV.8: Indicative quantities for both fixed point computation methods at Re = 280 for the
planar-symmetric base flow.
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(a) (b)

(c) (d)

Figure IV.18: Contour map of velocity magnitude for the AS base flow at Re = 210, in the
x-y (a) and x-z (c) planes, and the PS base flow at Re = 280 in the x-y (b) and x-z (d) planes.
Streamlines are plotted and the dashed-lines represent the recirculation bubble.

mentioning that since the symmetry break may occur with equal probability at each azimuthal
position, the PS base flow has been rotated so that its symmetric plane aligns with the x-z plane.

The evolution of Lb with respect to Re is plotted in fig. IV.19 and compared to the results
reported by Sansica in [107] under similar conditions. The length of the recirculation bubble Lb

for the PS base flow was calculated by taking the average of the lengths of its projections onto the
x-y and x-z planes. The lengths of the AS bubbles are in good agreement with Sansica’s results,
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Figure IV.19: Evolution of the recirculation bubble length according to Re for axi and planar-
symmetric base flows.
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in contrast to the PS ones, which grow slightly slower in our case. This difference can be explained
by both the different convergence rates achieved in both computations and the different numerical
modelling. Despite these observations, both tendencies seem similar enough to validate our base
flow computations.

Due to the distinct characteristics of AS and PS base flows, the rest of this study is organized
to analyze the modal and non-modal stability of each type of base flow separately. The following
sections present a global stability analysis around each of these distinct base flows.

IV.3.3 Regular bifurcation of axi-symmetric base flow
Direct modal analysis. The selected preconditioner for solving the K-formulated linear sys-
tems involved in the global stability analyses performed on the laminar 3-D sphere case was the
FGMRES-ILU(3) with one RAS level. The computations were carried out on the same cluster as
the fixed point computations, but 43 nodes, consisting of 1200 CPUs, were required for the modal
analyses to meet the memory requirements of the preconditioner. Within the GMRES, the internal
and external Krylov bases consisted of 100 and 30 vectors, respectively. The internal tolerance
was set to 10−3 and the external one was set to 10−6. The shift was set to s = 1, and the KS basis
was composed of 22 vectors, with a relative tolerance for convergence of eigenpairs of 10−4. The
least stable eigenpair converged below the tolerance in about 8 KS iterations.

The eigenvalues are shown in fig. IV.20. The onset of symmetry breaking is determined to
occur between Re = 200 and Re = 210, which is consistent with previous studies by Sansica [107],
Tezuka & Suzuki [26], and Fabre et al. [114]. The least stable direct eigenfunction at Re = 210 is
depicted in fig. IV.21, normalized by the L∞-norm of the perturbation velocity vector. To better
highlight the azimuthal nature of the eigenfunctions, a transformation from cartesian coordinates
(x, y, z) to cylindrical coordinates (x, r, θ) has been applied, yielding the transformed perturbation
velocity components: ux

ur

uθ

 =

 ux

cos(θ)uy + sin(θ)uz

− sin(θ)uy + cos(θ)uz

 . (IV.8)
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Figure IV.20: Evolution of amplification rate of the least stable mode according to Re for direct
global stability analysis around AS base flow in the regular bifurcation. Symmetry breaking occurs
at Re1

c = 210.
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Figure IV.21: 3-D views of the direct unstable mode at Re = 210, with (σ, St) = (0.02027, 0)
for AS base flow. (top) Isosurfaces of streamwise (a), radial (b) and azimuthal (c) perturbation
velocities for the values ux = ±0.1, ur = ±0.1, uθ±0.1. (bottom) Corresponding sectional contour
plot at (d) z = 0, (e) z = 0 and (f) y = 0, with solid-lines indicating iso-contours at ux = ±0.1,
ur = ±0.1, uθ ± 0.1.

The steady mode’s spatial structure is consistent with previous findings by Sansica [107], Fabre
[114] and Tezuka & Suzuki [26]. As noted by Fabre, the mode displays reflectional symmetries
about longitudinal planes. The dynamic is dominated by the streamwise velocity component,
which expands and grows over the domain at x = 20 with infinitely large scale structures due to
its non-oscillatory character.

Adjoint modal analysis. The computation of adjoint eigenpairs of AS base flows was performed
using the same parameters as for direct modal analysis, except for the tolerance on the eigenpairs,
which was set to 10−3. The convergence was reached in approximately 5 KS iterations. The re-
sulting least stable adjoint eigenvalues are shown in Fig. IV.20. A good agreement is observed
between the direct and adjoint eigenvalues. The duality between the direct and adjoint operators
has already been validated in the laminar case using a cylinder, but this result shows that the du-
ality is also valid in three dimensions. The perturbation velocity components of the corresponding
unstable eigenfunction in cylindrical coordinates at Re = 210, normalized by the L∞-norm, are
shown in fig. IV.23. Unlike the direct mode, the dynamic of the adjoint mode is dominated by
radial and streamwise perturbation velocity components. The main part of this mode is localized
immediately after the sphere body and extends up to x ≃ 2. It also shares the same symmetry
properties as the direct mode. To delay the breaking of symmetry for this AS base flow, it is hence
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important to consider the strong receptivity of the direct mode to external forcing in these regions.
The shape of the structural sensitivity calculated using the direct and adjoint unstable steady

modes is displayed in fig. IV.24. It is seen to be plane-symmetric across the x-y and x-z planes,
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Figure IV.22: Evolution of amplification rate of the least stable mode according to Re for adjoint
global stability analysis around AS base flow in the regular bifurcation.
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Figure IV.23: 3-D views of the adjoint unstable mode at Re = 210, with (σ, St) = (0.02028, 0)
for AS base flow. (top) Isosurfaces of streamwise (a), radial (b) and azimuthal (c) perturbation
velocities for the values ux = ±0.1, ur = ±0.1, uθ±0.1. (bottom) Corresponding sectional contour
plot at (d) z = 0, (e) z = 0 and (f) y = 0, with solid-lines indicating iso-contours at ux = ±0.1,
ur = ±0.1, uθ ± 0.1.
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Figure IV.24: (a) Isosurface of structural sensitivity for the AS base flow at Re = 210 for the
value S = 0.5, and corresponding sectional contour plots at (b) z = 0 and (c) y = 0.

and it indicates that a symmetry break may occur when one of the two dark lobes visible between
x = 0.5 and x = 2 is perturbed. The most significant values are observed in the x-z plane.
The streamlines of the corresponding AS base flow have been added to help better understand
the localization of the wavemaker in the beginning of the recirculation bubble. The two dark
lobes in the recirculation bubble are therefore the zones directly responsible for the instability. As
previously mentioned, the computational mesh must be small enough in this region. This quantity
is of great interest in an industrial context as it enables the reduction of the mesh size while still
capturing the instability. To the author’s knowledge, both the adjoint eigenfunction and structural
sensitivity for this first bifurcation have not been shown in the literature.

Having characterized the first bifurcation of the AS base flow, we will focus in the following
on a second bifurcation that occurs in this flow. This second bifurcation is a Hopf bifurcation and
results in oscillatory modes.

IV.3.4 Hopf bifurcation of axi-symmetric base flow
Above Re = 210, the AS base flow has already undergone a bifurcation towards a plane-

symmetric configuration, which, in turn, becomes unsteady through a supercritical Hopf bifurcation
around Re = 280 (see fig. IV.3.6 and [107, 31]). As stated in the introduction, an AS base
flow computed above Re = 280 is not physically meaningful. However, as the Reynolds number
is increased, a pair of complex conjugate oscillatory unstable modes appear, related to a Hopf
bifurcation. Thus, two types of instability coexist consisting in one steady mode and two unsteady
ones. This situation mimics more complex configurations in which multiple bifurcations can occur
simultaneously and demonstrates the robustness of our approach in computing them. Being able
to compute each of these modes can help to understand the scenario of transition from steady
to unsteady. To this end, direct and adjoint modal oscillating modes are calculated for the cases
Re = 240, Re = 260, and Re = 280.
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Direct modal analysis. The KS bases used in these computations consisted of 30 vectors and half
of the basis was reused from one KS iteration to the next. The shift was set to s = 0.5 + 0.82i in
order to target the oscillatory unstable mode, which, based on resolvent analysis (to be presented
in IV.3.5), should have a frequency close to St = 0.13. The errors associated to the unstable
oscillatory eigenpairs drop below 10−4 in 4 KS iterations. The computations yield both steady and
unsteady modes. Fig. IV.25 shows the spectra of the least stable eigenvalues calculated for the
various Reynolds numbers considered. It turns out that the oscillatory mode becomes unstable
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Figure IV.25: Spectra consisting of the least stable direct modes at various Reynolds number
for AS base flows. The oscillatory mode destabilizes between Re = 260 and Re = 280.
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Figure IV.26: 3-D views of oscillatory unstable direct mode at Re = 280, with (σ, St) =
(0.0145, 0.1235) for AS base flow. (top) Isosurfaces of streamwise (a), radial (b) and azimuthal (c)
perturbation velocities for the values ux = ±0.1, ur = ±0.1, uθ ± 0.1. (bottom) Corresponding
sectional contour plot at (d) y = 0, (e) y = 0 and (f) z = 0, with solid-lines indicating iso-contours
at ux = ±0.1, ur = ±0.1, uθ ± 0.1.
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between Re = 260 and Re = 280. This is an interesting result since the Hopf bifurcation of the
PS base flow also occurs in this range of Reynolds numbers (see fig. IV.3.6). To the author’s
knowledge, this result has never been reported in the literature.

Isosurfaces and sectional contours of the velocity components, normalized by the L∞ norm,
are shown in fig. IV.26 for Re = 280. Since each mode computed using linear stability analysis is
defined by one phase and one amplitude, and due to the axisymmetry of the base flow, we chose
the phase so that the symmetry plane aligns with the x-z plane. The mode consists of small-scale
structures that are advected downstream from the sphere body until x = 20. A symmetry pattern
across the longitudinal direction is also observed. It is worth noting that the mode has a similar
spatial structure to the directly unstable mode computed by Sansica in [107] and Citro in [31] for
the planar-symmetric base flow. The steady mode is not displayed here, but it has a shape that is
very similar to that calculated at Re = 210 and shown in fig. IV.21.

Adjoint modal analysis. For these adjoint computations, the same parameters were used as for
the direct ones. As previously demonstrated for the direct case, the spectra corresponding to the
specified Reynolds number are shown in Fig. IV.27. The adjoint eigenvalues match the direct
eigenvalues exactly, further confirming the duality between the direct and adjoint eigensolvers.

Isosurfaces and sectional contours of the perturbation velocity components, normalized by
the L∞-norm, are shown in fig. IV.28. The most energetic part of the mode is located in the
recirculation bubble downstream of the spherical body. This eigenfunction shares similarities with
the adjoint mode calculated by Citro in [31] for the Hopf bifurcation of PS base flows. Similar to
the direct mode, a symmetry pattern along the longitudinal direction is observed. However, unlike
the direct mode, this adjoint mode is convected upstream in the flow domain, which is analogous
to the results from the laminar cylinder case (see III.6.2).

The structural sensitivity calculated from the direct and adjoint oscillatory modes have been
computed and the resulting spatial structure is shown in Fig. IV.29. Similar to the structural
sensitivity calculated at Re = 210 for the steady mode (see fig. IV.24), this one is symmetric
across both the x-y and x-z planes. The wavemakers are also located in the recirculation region,
but at the periphery of the counterclockwise rotating vortices, which differ slightly from these of
the regular bifurcation. Additionally, the wavemaker is found to lie in the x-z plane, which agrees
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Figure IV.27: Spectra consisting of the least stable adjoint eigenvalues at various Reynolds
number for AS base flows. The corresponding direct eigenvalues are also displayed with circles.
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Figure IV.28: 3-D views of oscillatory unstable direct mode at Re = 280, with (σ, St) =
(0.0145, 0.1235) for AS base flow. (top) Isosurfaces of streamwise (a), radial (b) and azimuthal (c)
perturbation velocities for the values ux = ±0.15, ur = ±0.1, uθ ± 0.1. (bottom) Corresponding
sectional contour plot at (d) y = 0, (e) y = 0 and (f) z = 0, with solid-lines indicating iso-contours
at ux = ±0.15, ur = ±0.1, uθ ± 0.1.
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Figure IV.29: (a) Isosurface of structural sensitivity for the AS base flow at Re = 280 for the
value S = 0.65, and corresponding sectional contour plots at (b) z = 0 and (c) y = 0.
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with the spatial distributions of both the direct and adjoint modes that are dominated by the
streamwise velocity, which is anti-symmetric across the x-y plane, but symmetric across the x-z
plane. Once again, to the best of the author’s knowledge, these results have not been previously
shown in the literature.

To conclude the global stability analysis of the AS base flows, a resolvent analysis is performed
and described in the following on a subcritical AS base flow. As demonstrated below, even far from
the Hopf bifurcation, a peak in the energetic gain curve is observed, indicating a strong receptivity
of the flow at the frequency corresponding to the oscillatory axisymmetric mode.

IV.3.5 Resolvent analysis of axi-symmetric base flow
This study focuses on the subcritical AS base flow at Reynolds number 200. Like the previous

two test cases in this work, the mass matrices used to solve the eigenvalue problem are selected as
Q1 = QChu and Q2 = QΩ. As previously stated, the resolvent analysis requires the computation
of two preconditioners for the application of RKQK

Ω
−1RHQK

Chu. The number of CPUs used for
direct and adjoint computation is not sufficient to meet the memory requirements. Thus, there
are two possible strategies: either we store only one preconditioner at a time, meaning that for
each inversion, one preconditioner is formed and the old one is erased, resulting in lower memory
requirements but more CPU time; or we can double the number of processors to increase the total
available memory to meet the memory requirements for storing two preconditioners. Given the
imposed usage of ONERA’s clusters, we chose the second strategy. This results in computations
run on 2800 CPUs, using FGMRES-ILU(3) preconditioning with one RAS level. Inversion of the
adjoint operator is stiff in this case, so both Krylov bases have been composed of 100 vectors to
ensure inversions fall below the tolerance of 10−6. The internal tolerance was set to 5 × 10−2. Based
on the experience of the OAT15A case (see IV.2.5), the KS basis is composed of only 9 vectors,
resulting in 18 inversions at each KS iteration. These parameters are sufficient to converge the
most energetic gain with a relative precision of 5 × 10−4, which is usually well separated from the
others. The total memory used during the computations is about 12 TB, and the CPU time is
about 9 hours.

The optimal gain for various St is shown in fig. IV.30. There is no peak near zero-frequency,
unlike what was expected based on previous modal analysis results. This might be improved by
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Figure IV.30: Evolution of optimal gain for the resolvent analysis of the sub-critical AS base
flow at Re = 200. A peak is identified at St = 0.13.
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conducting resolvent analysis closer to St = 0, but this would require solving ill-conditioned linear
systems that may not be possible with current tools. Tests were conducted at St = 10−4, but
the GMRES method did not converge. However, a peak is seen near St = 0.13, indicating strong
flow receptivity at this frequency, which corresponds to that of the previously calculated unstable
oscillatory modes. This means that this mode can be expressed as a convective instability by
exciting this frequency, even in a sub-critical regime where the base flow is still AS. Fig. IV.31
and IV.32 show views of the normalized velocity components of the optimal forcing and response
at St = 0.13, respectively. Both forcing and response have a longitudinal symmetry pattern and
are dominated by streamwise velocity. As expected, they are similar to the adjoint and direct
modes shown in fig. IV.28 and fig. IV.26. These results demonstrate the effectiveness of resolvent
analysis in predicting the most amplified frequencies in a flow, even far from the Hopf bifurcation
thresholds.

This analysis terminates the study of the bifurcation scenario for the AS base flow. We can
now focus on the Hopf one that occurs on PS base flows, to draw an exhaustive picture of the
bifurcation diagram of the laminar subsonic flow around the sphere.
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Figure IV.31: 3-D views of optimal forcing at Re = 200 calculated at St = 0.13. (top) Isosurfaces
of streamwise (a), radial (b) and azimuthal (c) perturbation velocities for the values ux = ±5×10−5,
ur = ±3.5×10−5, uθ±3.5×10−5. (bottom) Corresponding sectional contour plot at (d) y = 0, (e)
y = 0 and (f) z = 0, with solid-lines indicating iso-contours at ux = ±5× 10−5, ur = ±3.5× 10−5,
uθ ± 3.5× 10−5.
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Figure IV.32: 3-D views of optimal response at Re = 200 calculated at St = 0.13. (top)
Isosurfaces of streamwise (a), radial (b) and azimuthal (c) perturbation velocities for the values
ux = ±6 × 10−4, ur = ±6 × 10−4, uθ ± 6 × 10−4. (bottom) Corresponding sectional contour plot
at (d) y = 0, (e) y = 0 and (f) z = 0, with solid-lines indicating iso-contours at ux = ±6 × 10−4,
ur = ±6× 10−4, uθ ± 6× 10−4.

IV.3.6 Hopf bifurcation of planar-symmetric base flow
In the following, the KFGSM is used to predict the onset of the Hopf bifurcation on the PS base

flow presented in IV.3.2. This bifurcation has been well described in the literature, and the results
of the direct and adjoint global stability analyses are compared to those obtained by Sansica in
[107] and Citro in [31].

Direct modal analysis. The inversion parameters used in the KFGSM are the same as those used
in direct and adjoint computations around the AS base flows. The KS basis consisted of 22 vectors,
and the shift was set at s = 0.5 + 0.82i to target oscillatory unstable modes. For each Reynolds
number, the relative error on the least stable eigenpairs decreased below 10−4 after approximately
8 KS iterations.

Fig. IV.33a and IV.33b respectively show the evolution of the growth rate, and the Strouhal
number with respect to the Reynolds number. The values of σ obtained are in good agreement with
those calculated by Sansica in [107]. However, some discrepancies are observed in the evolution of
St between the elsA results and those of Sansica and Citro. This may be attributed to different
numerical schemes and levels of convergence. Nevertheless, the overall trend is similar and validates
the curve obtained in elsA, which compares well with the results obtained by both Sansica and
Citro [31]. The instability threshold is found to be Re = 280, which is consistent with the literature
[26, 107]. These results obtained from the linear solver are further validated by nonlinear unsteady
computations presented in IV.3.8.
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Figure IV.33: (a) Growth rate and (b) Strouhal number evolutions for direct modal analysis of
PS base flow. Critical Reynolds number is Re2

c = 280.
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Figure IV.34: 3-D views of oscillatory unstable direct mode at Re = 280 for PS base flow. (top)
Isosurfaces of streamwise (a), cross-stream (b) and transverse (c) perturbation velocities for the
values ux = ±0.08, uy = ±0.03, uz ± 0.05. (bottom) Corresponding sectional contour plot at
(d) z = 0, (e) z = 0, (f) z = 0, (g) y = 0, (h) y = 0 and (i) y = 0, with solid-lines indicating
iso-contours at ux = ±0.08, uy = ±0.03, uz ± 0.05.
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Adjoint modal analysis. Adjoint computations are carried out using the same KS parameters
as for direct computations. The errors for the least stable mode drop below the tolerance set at
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Figure IV.35: (a) Growth rate and (b) Strouhal number evolutions for adjoint modal analysis
of PS base flow. Critical Reynolds number is Re2

c = 280.
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Figure IV.36: 3-D views of oscillatory unstable adjoint mode at Re = 280 for PS base flow. (top)
Isosurfaces of streamwise (a), cross-stream (b) and transverse (c) perturbation velocities for the
values ux = ±0.1, uy = ±0.025, uz ± 0.05. (bottom) Corresponding sectional contour plot at (d)
y = 0, (e) y = 0 and (f) y = 0, with solid-lines indicating iso-contours at ux = ±0.1, uy = ±0.025,
uz ± 0.05.
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Figure IV.37: (a) Isosurface of structural sensitivity for the PS base flow at Re = 280 for the
value S = 0.4, and corresponding sectional contour plots at (b) z = 0 and (c) y = 0.

10−3 after approximately 6 KS iterations. The resulting eigenvalues for each Reynolds number
considered are shown in fig. IV.35. Once again, the duality between the direct and adjoint
operators is confirmed.

The adjoint mode at Re = 280 is shown in fig. IV.36, where the perturbation velocities have
been normalized with the L∞-norm. The first observation is that the spatial structure is in good
agreement with that reported by Citro in [31]. The adjoint mode is advected upstream of the
domain, in contrast to the direct mode, which is consistent with what was mentioned earlier.
The eigenfunction has a similar reflectional symmetry pattern across the x-z plane as the direct
mode. Secondly, as with the direct mode, it shares similarities with the adjoint mode of the Hopf
bifurcation of the AS base flow.

The structural sensitivity is computed from both the direct and adjoint unstable modes at
Re = 280, and the resulting isosurfaces and sectional contours are presented in fig. IV.37. The
shape is consistent with the result obtained by Citro [31]. Unlike the structural sensitivities
calculated for the AS base flow, only a symmetry across the x-z plane is observed. The wavemaker
is located immediately downstream of the spherical body, at the bottom of the recirculation vortex.
It differs from the wavemakers identified in the AS case.

As with the AS base flow, this study can be concluded by analyzing the receptivity of the flow
to external forcings. To do so, a resolvent analysis is performed on a sub-critical PS base flow, and
the results are discussed below.

IV.3.7 Resolvent analysis of planar-symmetric base flow
As previously identified with modal analysis and further confirmed with unsteady computations,

the PS base flow evolves toward an unsteady solution above Re = 280. The mode responsible for
this unsteadiness has been calculated, as well as the precise region where the instability is triggered,
thanks to the structural sensitivity. The natural extension of this work is to conduct a resolvent
analysis.

The analysis is conducted on a stable PS base flow computed for Re = 260. The mass matrices
defining the resolvent operator are, again, Q1 = QChu and Q2 = QΩ. Both the KS parameters and
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the number of CPUs used are the same as those used for the resolvent analysis of the AS base
flow (see IV.3.5). Similar to the latter, the frequencies where the linear systems were most difficult
to solve were those close to St = 0. For instance, for the case with St = 0.025, an average of 95
external GMRES iterations were required during inversions of the adjoint part of the resolvent
operator to reduce the error below 10−6.

The resulting gain curve is presented in Fig. IV.38. It exhibits a peak at St ≃ 0.13. The
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Figure IV.38: Evolution of optimal gain for the resolvent analysis of the sub-critical PS base
flow at Re = 260. A peak is identified at St = 0.13.
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Figure IV.39: 3-D views of optimal forcing at Re = 260, calculated for St = 0.13. (top)
Isosurfaces of streamwise (a), cross-stream (b) and transverse (c) perturbation velocities for the
values ux = ±2.5 × 10−5, uy = ±5 × 10−6, uz ± 1.1 × 10−5. (bottom) Corresponding sectional
contour plot at (d) z = 0, (e) z = 0 and (f) z = 0, with solid-lines indicating iso-contours at
ux = ±2.5× 10−5, uy = ±5× 10−6, uz ± 1.1× 10−5.
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Figure IV.40: 3-D views of optimal response at Re = 260 calculated at St = 0.13. (top)
Isosurfaces of streamwise (a), cross-stream (b) and transverse (c) perturbation velocities for the
values ux = ±0.01, uy = ±4× 10−4, uz ± 6× 10−4. (bottom) Corresponding sectional contour plot
at (d) z = 0, (e) z = 0, (f) z = 0, (g) y = 0, (h) y = 0 and (i) y = 0, with solid-lines indicating
iso-contours at ux = ±0.01, uy = ±4× 10−4, uz ± 6× 10−4.

Strouhal number of the least stable oscillating mode calculated at this Reynolds number is 0.133.
It turns out that a convective instability might be triggered by exciting the stable base flow at
this frequency. The shapes of both the optimal forcing and response calculated at St = 0.13 are
respectively shown in fig. IV.39 and IV.40. As expected, the optimal forcing has the same spatial
characteristics as the adjoint eigenmode calculated at Re = 280 (see IV.36). The optimal forcing is
mainly localized immediately after the spherical body, is convected upstream, and is dominated by
streamwise velocity, which is symmetric across the x-z plane. It highlights the zones most sensitive
to external forcing to trigger or control this convective instability. The optimal response, in turn,
is similar to the unstable direct eigenmode calculated at Re = 280 (see IV.34). It is convected
downstream and shares the same symmetry pattern as the optimal forcing. The spatial wavelength
for this eigenfunction is Λx ≃ 6.1L, which is of the same order as that measured for the direct
eigenmode at Re = 280.

This description of the resolvent analysis carried out on a sub-critical PS base flow completes
the global stability analysis of the subsonic laminar 3-D sphere flow. The last step was to perform
unsteady computations to compare the results with the modal analysis, which is the aim of the
following.
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IV.3.8 Unsteady computation of planar-symmetric base flow.
Unsteady nonlinear calculations are conducted at Reynolds numbers of Re = 300 and Re = 320.

The physical non-dimensional time-step is set to ∆t = 10−3, resulting in a CFL number around 10
at the wall. As for the two precedent test cases, the Gear method was used for these computations.
The base flow, perturbed by the oscillating direct mode, is used as the initial condition. A probe
in the wake of the sphere measures the perturbation velocity signal, as shown in fig. IV.41. The
temporal evolution of the signal indicates an exponential growth until reaching the limit cycle
around t = 85.

Fig. IV.42 displays a typical isosurface of the Q-criterion extracted at t = 124 from nonlinear
unsteady calculations at Re = 300. The shedding of hairpin vortices is identified at a Strouhal
number of St = 0.1344, which is consistent with the value reported by Sansica in [107]. This
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Figure IV.41: Temporal evolution of lift coefficient at Re = 300. Calculation was initialized with
PS base flow perturbed by direct unstable mode.
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Figure IV.42: 3-D views of isosurface of Q-criterion for the value Q = 10−4, for Re = 300 in
unsteady computation.
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Figure IV.43: (a) Lift coefficient trend over the time where the dotted line represents σNL =
0.1248. (b) Magnitude spectrum of the signal, where a pike at StNL = 0.063667 is identified.

St (σL,StL) (σNL,StNL) ∆St ∆σ
300 (0.0617, 0.1344) (0.0615, 0.1371) 1.9% 3.2%
320 (0.1113, 0.1354) (0.1052, 0.1373) 1.4% 5.8%

Table IV.9: Amplification rate and Strouhal number of linear and nonlinear computations.

sequence of interconnected coherent structures extends and grows far from the sphere boundary
at x = 20. Additionally, the spatial wavelength Λx ≃ 6.5L is very close to that identified for the
direct unstable mode at Re = 280.

Both σNL and StNL are extracted from the perturbation velocity signal and shown in fig. IV.43a
and IV.43b, respectively. The amplification rates obtained from linear calculations are very close
to those of nonlinear computations. The same applies to the Strouhal number, for which a relative
difference of only 1.4% is observed, even far from the instability threshold at Re = 320. As
stated by Sansica [107], this finding contrasts with the case of the laminar cylinder flow, where
the prediction of shedding frequency diverges quickly as the Reynolds number increases (see table
III.8). While the linear stability theory is less predictive for the amplification rate, it may be
enhanced by reducing the tolerance of the eigensolver.

Before concluding this section on the laminar sphere flow, some data concerning the scaling up
process for this case will be provided below.

IV.3.9 Data about the scaling up process
As mentioned in the introduction of this chapter, a finer mesh consisting of about 25 × 106 cells

(representing 125 × 106 DOF) was also considered. In particular, direct and adjoint computations
were carried out on the PS base flow at Re = 280, with the same parameters as for the regular mesh.
For both the direct and adjoint unstable modes, the relative error in the associated eigenvalue with
respect to that computed with the regular mesh was 4.4%. This small error validates the global
stability computations on this refined mesh.

Table IV.10 compares the memory footprint of global stability computations carried out on the
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Mesh NDOF NCPU Memory elsA Memory LU
regular 47 × 106 1200 4.9 TB ∽ 300 TB

fine 125 × 106 4788 20.5 TB ∽ 1000 TB

Table IV.10: Quantitative figures from modal stability analysis on regular and fine mesh.

two types of mesh, with the theoretical memory footprint of the corresponding LU factorizations,
based on the estimations built in III.1.1. A factor of 50 is identified between the memory footprint
of the KFGSM and the LU factorization. This result is satisfying as it allows us to conduct global
stability computations on such 3-D configurations. As a reminder, and to the author’s knowledge,
the largest global stability analysis ever performed with the type of method used in this thesis was
carried out by Timme [55] on a 3-D plane configuration composed of about 50 × 106 DOF.

IV.4 Conclusion
This chapter aims to demonstrate the capabilities of the KFGSM on challenging test cases.

First, the code is validated on the RANS case of the flow around an OAT15A airfoil. Fixed
points of this stiff problem are computed with high accuracy, and the method performs well for
direct and adjoint modal analyses. The compatibility with the linear solver and nonlinear URANS
computations with a negative-SA turbulence model is also verified. Resolvent analysis is carried
out and characterizes both the buffet phenomenon for sub-critical base flow and the secondary
Kelvin-Helmholtz instability, as tackled by Sartor [41].

The 3-D case of the laminar flow around a sphere body is then addressed. The computational
domain for this case is composed of approximately 10 × 106 DOF. AS and PS base flows are studied.
The code allows the prediction of regular and Hopf bifurcations for the AS base flow. A resolvent
analysis at sub-critical Reynolds numbers illustrates the similarity between optimal forcing and
response and adjoint and direct modes for the Hopf bifurcation. New results concerning adjoint
steady mode of AS base flow, and the corresponding structural sensitivity, were demonstrated. A
complete description of the Hopf bifurcation occurring in AS base flow at relatively high Reynolds
number is also provided, which, to the author’s knowledge, have not been shown in the literature.

Finally, the data provided to illustrate the scaling up of the KFGSM demonstrate its efficiency
in terms of memory storage relative to classical global stability methods involving LU factorization.
The global stability analysis was successfully scaled up, which was the main objective of this thesis.
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Chapter V

Conclusion

As discussed in chapter I, global stability analysis is a powerful tool for improving the un-
derstanding of unsteady flows. After a base flow has been computed, this method may be seen
as a thorough post-processing that returns modes of the flow that may be linearly amplified and
potentially responsible for the unsteadiness. In particular, it could be used to predict the appear-
ance of the rotating stall phenomenon occurring in axial compressors like the CME2, and thus
help aircraft manufacturers to adapt their design to delay instability, reduce the surge margin, and
improve performance. However, this methodology requires the inversion of many linear systems.
When addressing large-scale problems exceeding 10 × 106 DOF, inversions cannot be managed
using direct methods like LU factorization, as is often the case [22, 25].

The purpose of this thesis was to develop a robust method capable of scaling up global stability
analysis to industrial cases like the CME2 compressor. To tackle this problem, the main constraint
was to find a way to solve extremely large complex-valued linear systems while preserving high-
performance computing optimizations, with the knowledge that complex arithmetic cannot be
vectorized. To do so, a new method was designed in which complex problems were reformulated
in the real-equivalent K formulation [60], a formulation that preserves the sparsity pattern of the
original complex operators, and where inversions are managed by the iterative preconditioned
GMRES algorithm [58, 52]. A mathematical background was established to build the method,
named the K-Formulated Global Stability Method (KFGSM). Even not presented in this work,
the latter was first validated on a toy code that solved the global stability problems for the nonlinear
advection-diffusion Burgers equation [59].

To implement the KFGSM in the elsA software, several elementary bricks needed to be as-
sembled. The first step was to adapt the existing preconditioned GMRES based on obtaining
Jacobian-vector products using Algorithmic Differentiation (AD) through the Tapenade software
developed by Hascoët and Pascual [76], and the efficient preconditioning tools developed by Guil-
bert [51] to solve the real-valued problems arising in the computation of fixed points in compressible
CFD. A collaboration with Hascoët led to a new feature of Tapenade that computes the forward
and backward K-formulated Jacobian-vector products. The preconditioning tools of Guilbert were
also adapted so that the resolution of linear systems with preconditioned GMRES is operative
on K-formulated problems. The final step was to implement the Krylov-Schur eigensolver in real
arithmetic, where the Schur matrix is in real form, incorporating the K-formulated GMRES. Slight
modifications in the convergence test needed to be carried out to ensure the algorithm returned
the eigenpairs of the original system and not the K-formulated one. The algorithm have been
developed in three versions corresponding to the resolution of eigenproblems arising in direct and
adjoint modal analysis and resolvent analysis.
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The method was challenged on three test cases of gradual difficulty. The simplest is the laminar
flow around a cylinder. Fixed points at various Reynolds numbers were computed with Flexible
GMRES preconditioned with ILU(3) factorization. A good convergence near machine precision
is obtained, demonstrating the robustness of the fixed point computation method developed by
[51]. The direct, adjoint, and resolvent analysis conducted with the KFGSM are in good agree-
ment with the literature [29, 30], validating the method on the laminar case and demonstrating
its capability to predict the onset of von K’arm’an vortex street. Moreover, a comparison with
unsteady computations showed the compatibility between linear and nonlinear solvers.

The second problem addressed is the RANS case of the flow around the OAT15A airfoil. This
case has been selected due to its high stiffness [51]. Fixed points were computed in sub and
supercritical regimes with high accuracy. The KFGSM showed good results at predicting the
buffet onset on this RANS case with direct and adjoint modal analysis. Such results were also
successfully compared with URANS computations. From the resolvent analysis, two energy peaks
were observed. The largest one corresponds to the buffet frequency, while the second is linked
with a secondary instability that is a Kelvin-Helmholtz one [41], illustrating the capability of the
resolvent analysis to study in detail the receptivity of the flow within a large range of frequencies.

The code was ultimately tested on the three-dimensional subsonic laminar flow around a sphere
body. The computational grid was composed of about 10 × 106 degrees of freedom (DOF), repre-
sentative of the industrial cases the KFGSM has been designed for. After fixed point computation
near machine precision were carried out for axi and planar-symmetric base flows, the two bifur-
cations were studied in detail with direct, adjoint, and resolvent analysis. In particular, our fixed
point computation method allowed the calculation of axi-symmetric base flow above a second bifur-
cation that, to the author’s knowledge, had never been documented. The resolution of both direct
and adjoint eigenproblems allowed the calculation of the structural sensitivity [30]. The second
bifurcation occurring on the planar-symmetric base flow was also successfully characterized. On
this particular type of base flow, a global stability analysis was even performed on a refined mesh
composed of about 125 × 106 DOF. Such results validated the scale up of global stability analysis,
as the largest reported global stability case is the characterization of the buffet phenomenon on a
full airplane configuration composed of about 50 × 106, carried out by [55].
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Chapter VI

Perspectives

Various perspectives can be proposed for this work. At ONERA, important work is currently
being carried out to improve the GMRES solver. For instance, Jang [102] has improved the
formation of the Krylov basis by implementing the randomized Gram-Schmidt process in elsA.
This process can be less computationally expensive than the classical Gram-Schmidt process,
while being at least as numerically stable as the modified Gram-Schmidt process used in this
work. Another perspective for improving the GMRES algorithm is to improve the preconditioning
tools. As seen with the laminar flow around the sphere body, the memory cost for the storage of
the preconditioner remains high when dealing with large problems. For problems stiffer than the
sphere case, ILU(k) factorization may not be sufficient to allow the GMRES to converge, and more
advanced techniques like the HLU may need to be used. However, the HLU method is currently
unusable on the ONERA cluster for such large cases. To circumvent the potential memory issue
related to preconditioning, a thesis is currently being carried out by Dubois at ONERA. The aim
is to reduce the memory cost of preconditioning.

Improvements to the Krylov-Schur solver can also be cited. In fact, given the time limit imposed
on the computing cluster at ONERA, a job may not be sufficient to carry out the entire global
stability analysis. To this end, it could be useful to include restarting so that the Krylov-Schur
basis can be extracted at the end of the computation if not all the desired eigenpairs have yet
converged. This basis could then be read in a subsequent job to restart the computation where it
stopped in the previous job.

Another natural perspective of this work is to perform a global stability analysis on the isolated
compressor CME2 to characterize the genesis of the rotating stall phenomenon. The full-annulus
case represents a domain of about 30 × 106 cells. The usual boundary conditions for this case are
an injection condition at the inlet, no-slip at walls, and a radial equilibrium with a valve law at the
outlet. However, such a radial condition is not yet linearized in the elsA software. To circumvent
this difficulty, computations have been carried out with an extended domain representing about
40 chords, and an outflow condition has been applied at the outlet. To check the validity of this
configuration, compressor characteristics have been calculated by conducting RANS computations
with the LU-SGS method (which doesn’t require the linearized matrix-vector products), where
the convective fluxes are discretized with a second-order Roe scheme, the diffusive fluxes with the
5pcor method, and the turbulence model is the negative Spalart-Allmaras. The results are given in
fig. VI.1. The pressure distribution is slightly lower in the extended vein with outflow condition
compared with the normal vein with radial equilibrium condition. However, until the stability limit
occurring around Q = 4 kg s−1, the extended vein with outflow condition is in good agreement with
the extended vein with radial equilibrium. Based on these positive results, a URANS computation
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Figure VI.1: Characteristic curve of the single channel flow for various tested cases, with SVRE
for Short Vein Radial Equilibrium; EVRE for Extended Vein Radial Equilibrium; EVO for Ex-
tended Vein Outflow.

has been carried out on the full-annulus CME2 with the extended vein and outflow condition over
20 laps. The signal recorded by three probes placed on three successive channels is shown in fig.
VI.2a, which clearly highlights the appearance of self-sustained oscillations characteristic of the
rotating stall. The instantaneous entropy field after 12 laps is displayed in fig. VI.2b, and shows
that each stall cell has merged into one large cell extending over 15 channels.

This may be challenging because, in the author’s opinion, the instability may involve the
rotation of the stall cells, making it a stiff problem. One approach is to converge a detached base
flow on a single-channel case, duplicate it, and use the result as the starting field for the base flow
computation. Another possibility is to use the Schmid approach, already utilized by Paladini in a
previous study, which allows for the computation of eigenpairs of the full-annulus compressor by
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Figure VI.2: (a) Time evolution of a pressure signal recorded on three probes during URANS
computation of the full-annulus compressor CME2. (b) Instantaneous entropy field after 12 revo-
lutions.
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Figure VI.3: Hypersonic BOLT configuration.

performing a stability analysis on only three channels.
The continuation of this work is to perform a fixed point computation to obtain a converged

base flow with high accuracy. This may be challenging because, in the author’s opinion, the
instability may involve the rotation of the stall cells. Thus, the unstable base flow has to be
already detached and could result in a stiff problem. A possibility is to converge a detached base
flow on a single channel case, to duplicate it and use the result as the starting field for the base
flow computation. Another possibility would be to benefit from the periodicity of the compressor
CME2 and use the Schmid [115] approach. The latter, already exploited by Paladini in [27], allows
the computation of eigenpairs of the full-annulus compressor by carrying a stability analysis on
only three channels.

More globally, the tools developed in elsA in this work allow for the analysis of modal and non-
modal phenomena in an industrial context. This will allows for the characterization of oscillating
phenomena on a linear basis, which is very interesting for predicting undesirable unsteady phe-
nomena. This work also provides robust tools to characterize noise-amplified phenomena through
resolvent analysis. In a flow, multiple unsteadiness may coexist with highly variable time-scales.
A computation that captures each phenomenon requires performing with all time-scales, which
could result in very long and costly calculations. The resolvent is hence of interest for many appli-
cations involving super or hypersonic flows and could improve the knowledge about the laminar-
to-turbulent transition scenario on such configurations. One can cite, for instance, the studies
currently carried out at ONERA on the BOLT configuration, presented in fig. VI.3, which was
expressly designed to study the laminar-to-turbulent transition on hypersonic configurations.
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Appendix A

AD code of L2 scalar product

1 subroutine scalProdL2 (n , vec1 , vec2 , sca lProd )
2 implicit none
3 ! > INPUT v a r i a b l e s
4 integer : : n
5 real ∗8 , dimension (n) : : vec1 , vec2
6 real ∗8 , dimension (n) : : sca lProd
7 ! > LOCAL v a r i a b l e s
8 integer : : i
9

10 sca lProd = 0 . d0
11 do i =1,n
12 sca lProd = sca lProd + vec1 ( i )∗ vec2 ( i )
13 end do
14 end subroutine scalProdL2

Fortran code A.1: Implementation of L2 scalar product.

1 subroutine scalprodL2_d (n , vec1 , vec1d , vec2 , vec2d , sca lprod , sca lprodd )
2 implicit none
3 ! > INPUT v a r i a b l e s
4 integer , : : n
5 real ∗8 , dimension (n) : : vec1 , vec2
6 real ∗8 , dimension (n) : : vec1d , vec2d
7 real ∗8 : : s ca lp rod
8 real ∗8 : : s ca lprodd
9 ! > LOCAL v a r i a b l e s

10 integer : : i
11

12 s ca lp rod = 0 . d0
13 sca lprodd = 0 . d0
14 do i =1,n
15 sca lprodd = sca lprodd + vec2 ( i )∗ vec1d ( i ) + vec1 ( i )∗ vec2d ( i )
16 s ca lp rod = sca lp rod + vec1 ( i )∗ vec2 ( i )
17 end do
18 end subroutine scalprodL2_d

Fortran code A.2: Forward differentiation of L2 scalar product.

123



1 subroutine scalprodL2_b (n , vec1 , vec1b , vec2 , vec2b , sca lprod , sca lprodb )
2 implicit none
3 ! > INPUT v a r i a b l e s
4 integer , : : n
5 real ∗8 , dimension (n) : : vec1 , vec2
6 real ∗8 , dimension (n) : : vec1b , vec2b
7 real ∗8 , : : s ca lp rod
8 real ∗8 , : : s ca lprodb
9 ! > LOCAL v a r i a b l e s

10 integer : : i
11

12 vec1b = 0 . d0
13 vec2b = 0 . d0
14 do i =1,n
15 vec1b ( i ) = vec1b ( i ) + vec2 ( i )∗ sca lprodb
16 vec2b ( i ) = vec2b ( i ) + vec1 ( i )∗ sca lprodb
17 end do
18 sca lprodb = 0 . d0
19 end subroutine scalprodL2_b

Fortran code A.3: Adjoint differentiation of L2 scalar product.

124



Appendix B

AD code of primitive computation

1 subroutine computepr imit ive ( n c e l l , w, p , gamma)
2 implicit none
3 ! > INPUT v a r i a b l e s
4 integer : : n c e l l
5 real ∗8 , dimension ( n c e l l , 5) : : w
6 real ∗8 , dimension ( n c e l l , 5) : : p
7 real ∗8 : : gamma
8 ! > LOCAL v a r i a b l e s
9 integer : : i c e l l

10

11 do i c e l l =1, n c e l l
12 p( i c e l l , 1) = w( i c e l l , 1)
13 p( i c e l l , 2) = w( i c e l l , 2)/w( i c e l l , 1)
14 p( i c e l l , 3) = w( i c e l l , 3)/w( i c e l l , 1)
15 p( i c e l l , 4) = w( i c e l l , 4)/w( i c e l l , 1)
16 p( i c e l l , 5) = (gamma−1.)∗(w( i c e l l , 5) −0.5/w( i c e l l , 1 )∗ (w( i c e l l , 2)∗w&
17 & ( i c e l l , 2)+w( i c e l l , 3)∗w( i c e l l , 3)+w( i c e l l , 4)∗w( i c e l l , 4 ) ) )
18 end do
19 end subroutine computepr imit ive

Fortran code B.1: Primitive routine.

1 subroutine computeprimitive_d ( n c e l l , w, wd, p , pd , gamma)
2 implicit none
3 ! > INPUT v a r i a b l e s
4 integer : : n c e l l
5 real ∗8 , dimension ( n c e l l , 5) : : w
6 real ∗8 , dimension ( n c e l l , 5) : : wd
7 real ∗8 , dimension ( n c e l l , 5) : : p
8 real ∗8 , dimension ( n c e l l , 5) : : pd
9 real ∗8 : : gamma

10 ! > LOCAL v a r i a b l e s
11 integer : : i c e l l
12 real ∗8 : : temp
13

14 pd = 0 . d0
15 do i c e l l =1, n c e l l
16 pd( i c e l l , 1) = wd( i c e l l , 1)
17 p( i c e l l , 1) = w( i c e l l , 1)
18 temp = w( i c e l l , 2)/w( i c e l l , 1)
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19 pd( i c e l l , 2) = (wd( i c e l l , 2)−temp∗wd( i c e l l , 1 ) )/w( i c e l l , 1)
20 p( i c e l l , 2) = temp
21 temp = w( i c e l l , 3)/w( i c e l l , 1)
22 pd( i c e l l , 3) = (wd( i c e l l , 3)−temp∗wd( i c e l l , 1 ) )/w( i c e l l , 1)
23 p( i c e l l , 3) = temp
24 temp = w( i c e l l , 4)/w( i c e l l , 1)
25 pd( i c e l l , 4) = (wd( i c e l l , 4)−temp∗wd( i c e l l , 1 ) )/w( i c e l l , 1)
26 p( i c e l l , 4) = temp
27 temp = (w( i c e l l , 2)∗w( i c e l l , 2)+w( i c e l l , 3)∗w( i c e l l , 3)+w( i c e l l , 4)∗&
28 & w( i c e l l , 4 ) )/w( i c e l l , 1)
29 pd( i c e l l , 5) = (gamma−1.)∗(wd( i c e l l , 5) −0.5∗(2∗w( i c e l l , 2)∗wd( i c e l l&
30 & , 2)+2∗w( i c e l l , 3)∗wd( i c e l l , 3)+2∗w( i c e l l , 4)∗wd( i c e l l , 4)−temp∗wd&
31 & ( i c e l l , 1 ) )/w( i c e l l , 1 ) )
32 p( i c e l l , 5) = (gamma−1.)∗(w( i c e l l , 5) −0.5∗ temp )
33 end do
34 end subroutine computeprimitive_d

Fortran code B.2: Forward differentiation of primitive routine.

1 subroutine computeprimitive_d_kform ( n c e l l , w, wdr , wdi , p , pdr , pdi , gamma)
2 implicit none
3 ! > INPUT v a r i a b l e s
4 integer : : n c e l l
5 real ∗8 , dimension ( n c e l l , 5) : : w
6 real ∗8 , dimension ( n c e l l , 5) : : wdr
7 real ∗8 , dimension ( n c e l l , 5) : : wdi
8 real ∗8 , dimension ( n c e l l , 5) : : p
9 real ∗8 , dimension ( n c e l l , 5) : : pdr

10 real ∗8 , dimension ( n c e l l , 5) : : pdi
11 real ∗8 : : gamma
12 ! > LOCAL v a r i a b l e s
13 integer : : i c e l l
14 real ∗8 : : temp
15

16 pdr = 0 . d0
17 pdi = 0 . d0
18 do i c e l l =1, n c e l l
19 pdr ( i c e l l , 1) = wdr ( i c e l l , 1)
20 pdi ( i c e l l , 1) = wdi ( i c e l l , 1)
21 p( i c e l l , 1) = w( i c e l l , 1)
22 temp = w( i c e l l , 2)/w( i c e l l , 1)
23 pdr ( i c e l l , 2) = (wdr ( i c e l l , 2)−temp∗wdr ( i c e l l , 1 ) )/w( i c e l l , 1)
24 pdi ( i c e l l , 2) = ( wdi ( i c e l l , 2)−temp∗wdi ( i c e l l , 1 ) )/w( i c e l l , 1)
25 p( i c e l l , 2) = temp
26 temp = w( i c e l l , 3)/w( i c e l l , 1)
27 pdr ( i c e l l , 3) = (wdr ( i c e l l , 3)−temp∗wdr ( i c e l l , 1 ) )/w( i c e l l , 1)
28 pdi ( i c e l l , 3) = ( wdi ( i c e l l , 3)−temp∗wdi ( i c e l l , 1 ) )/w( i c e l l , 1)
29 p( i c e l l , 3) = temp
30 temp = w( i c e l l , 4)/w( i c e l l , 1)
31 pdr ( i c e l l , 4) = (wdr ( i c e l l , 4)−temp∗wdr ( i c e l l , 1 ) )/w( i c e l l , 1)
32 pdi ( i c e l l , 4) = ( wdi ( i c e l l , 4)−temp∗wdi ( i c e l l , 1 ) )/w( i c e l l , 1)
33 p( i c e l l , 4) = temp
34 temp = (w( i c e l l , 2)∗w( i c e l l , 2)+w( i c e l l , 3)∗w( i c e l l , 3)+w( i c e l l , 4)∗&
35 & w( i c e l l , 4 ) )/w( i c e l l , 1)
36 pdr ( i c e l l , 5) = (gamma−1.)∗( wdr ( i c e l l , 5) −0.5∗(2∗w( i c e l l , 2)∗wdr ( i c e l l&
37 & , 2)+2∗w( i c e l l , 3)∗wdr ( i c e l l , 3)+2∗w( i c e l l , 4)∗wdr ( i c e l l , 4)−temp∗wdr&
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38 & ( i c e l l , 1 ) )/w( i c e l l , 1 ) )
39 pdi ( i c e l l , 5) = (gamma−1.)∗( wdi ( i c e l l , 5) −0.5∗(2∗w( i c e l l , 2)∗ wdi ( i c e l l&
40 & , 2)+2∗w( i c e l l , 3)∗ wdi ( i c e l l , 3)+2∗w( i c e l l , 4)∗ wdi ( i c e l l , 4)−temp∗wdi&
41 & ( i c e l l , 1 ) )/w( i c e l l , 1 ) )
42 p( i c e l l , 5) = (gamma−1.)∗(w( i c e l l , 5) −0.5∗ temp )
43 end do
44 end subroutine computeprimitive_d_kform

Fortran code B.3: K-formulated forward differentiation of primitive routine.

1 subroutine computeprimitive_b ( n c e l l , w, wb, p , pb , gamma)
2 implicit none
3 ! > INPUT v a r i a b l e s
4 integer : : n c e l l
5 real ∗8 , dimension ( n c e l l , 5) : : w
6 real ∗8 , dimension ( n c e l l , 5) : : wb
7 real ∗8 , dimension ( n c e l l , 5) : : p
8 real ∗8 , dimension ( n c e l l , 5) : : pb
9 real ∗8 : : gamma

10 ! > LOCAL v a r i a b l e s
11 integer : : i c e l l
12 real ∗8 : : tempb
13

14 wb = 0 . d0
15 do i c e l l=n c e l l ,1 , −1
16 wb( i c e l l , 5) = wb( i c e l l , 5) + (gamma−1.)∗pb( i c e l l , 5)
17 tempb = −(0.5∗(gamma−1.)∗pb( i c e l l , 5)/w( i c e l l , 1 ) )
18 wb( i c e l l , 2) = wb( i c e l l , 2) + 2∗w( i c e l l , 2)∗ tempb
19 wb( i c e l l , 3) = wb( i c e l l , 3) + 2∗w( i c e l l , 3)∗ tempb
20 wb( i c e l l , 4) = wb( i c e l l , 4) + 2∗w( i c e l l , 4)∗ tempb
21 wb( i c e l l , 1) = wb( i c e l l , 1) − (w( i c e l l , 2)∗∗2+w( i c e l l , 3)∗∗2+w( i c e l l&
22 & , 4)∗∗2)∗ tempb/w( i c e l l , 1)
23 tempb = pb( i c e l l , 4)/w( i c e l l , 1)
24 wb( i c e l l , 4) = wb( i c e l l , 4) + tempb
25 wb( i c e l l , 1) = wb( i c e l l , 1) − w( i c e l l , 4)∗ tempb/w( i c e l l , 1)
26 tempb = pb( i c e l l , 3)/w( i c e l l , 1)
27 wb( i c e l l , 3) = wb( i c e l l , 3) + tempb
28 wb( i c e l l , 1) = wb( i c e l l , 1) − w( i c e l l , 3)∗ tempb/w( i c e l l , 1)
29 tempb = pb( i c e l l , 2)/w( i c e l l , 1)
30 wb( i c e l l , 2) = wb( i c e l l , 2) + tempb
31 wb( i c e l l , 1) = wb( i c e l l , 1) + pb( i c e l l , 1) − w( i c e l l , 2)∗ tempb/w(&
32 & i c e l l , 1)
33 end do
34 end subroutine computeprimitive_b

Fortran code B.4: Adjoint differentiation of primitive routine.

1 subroutine computeprimitive_b_kform ( n c e l l , w, wb, p , pb , gamma)
2 implicit none
3 ! > INPUT v a r i a b l e s
4 integer : : n c e l l
5 real ∗8 , dimension ( n c e l l , 5) : : w
6 real ∗8 , dimension ( n c e l l , 5) : : wbr
7 real ∗8 , dimension ( n c e l l , 5) : : wbi
8 real ∗8 , dimension ( n c e l l , 5) : : p
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9 real ∗8 , dimension ( n c e l l , 5) : : pbr
10 real ∗8 , dimension ( n c e l l , 5) : : pbi
11 real ∗8 : : gamma
12 ! > LOCAL v a r i a b l e s
13 integer : : i c e l l
14 real ∗8 : : tempbr
15 real ∗8 : : tempbi
16

17 wbr = 0 . d0
18 wbi = 0 . d0
19 do i c e l l=n c e l l ,1 , −1
20 wbr ( i c e l l , 5) = wbr ( i c e l l , 5) + (gamma−1.)∗ pbr ( i c e l l , 5)
21 wbi ( i c e l l , 5) = wbi ( i c e l l , 5) + (gamma−1.)∗ pbi ( i c e l l , 5)
22 tempbr = −(0.5∗(gamma−1.)∗ pbr ( i c e l l , 5)/w( i c e l l , 1 ) )
23 tempbi = −(0.5∗(gamma−1.)∗ pbi ( i c e l l , 5)/w( i c e l l , 1 ) )
24 wbr ( i c e l l , 2) = wbr ( i c e l l , 2) + 2∗w( i c e l l , 2)∗ tempbr
25 wbi ( i c e l l , 2) = wbi ( i c e l l , 2) + 2∗w( i c e l l , 2)∗ tempbi
26 wbr ( i c e l l , 3) = wbr ( i c e l l , 3) + 2∗w( i c e l l , 3)∗ tempbr
27 wbi ( i c e l l , 3) = wbi ( i c e l l , 3) + 2∗w( i c e l l , 3)∗ tempbi
28 wbr ( i c e l l , 4) = wbr ( i c e l l , 4) + 2∗w( i c e l l , 4)∗ tempbr
29 wbi ( i c e l l , 4) = wbi ( i c e l l , 4) + 2∗w( i c e l l , 4)∗ tempbi
30 wbr ( i c e l l , 1) = wbr ( i c e l l , 1) − (w( i c e l l , 2)∗∗2+w( i c e l l , 3)∗∗2+w( i c e l l&
31 & , 4)∗∗2)∗ tempbr/w( i c e l l , 1)
32 wbi ( i c e l l , 1) = wbi ( i c e l l , 1) − (w( i c e l l , 2)∗∗2+w( i c e l l , 3)∗∗2+w( i c e l l&
33 & , 4)∗∗2)∗ tempbi/w( i c e l l , 1)
34 tempbr = pbr ( i c e l l , 4)/w( i c e l l , 1)
35 tempbi = pbi ( i c e l l , 4)/w( i c e l l , 1)
36 wbr ( i c e l l , 4) = wbr ( i c e l l , 4) + tempbr
37 wbi ( i c e l l , 4) = wbi ( i c e l l , 4) + tempbi
38 wbr ( i c e l l , 1) = wbr ( i c e l l , 1) − w( i c e l l , 4)∗ tempbr/w( i c e l l , 1)
39 wbi ( i c e l l , 1) = wbi ( i c e l l , 1) − w( i c e l l , 4)∗ tempbi/w( i c e l l , 1)
40 tempbr = pbr ( i c e l l , 3)/w( i c e l l , 1)
41 tempbi = pbi ( i c e l l , 3)/w( i c e l l , 1)
42 wbr ( i c e l l , 3) = wbr ( i c e l l , 3) + tempbr
43 wbi ( i c e l l , 3) = wbi ( i c e l l , 3) + tempbi
44 wbr ( i c e l l , 1) = wbr ( i c e l l , 1) − w( i c e l l , 3)∗ tempbr/w( i c e l l , 1)
45 wbi ( i c e l l , 1) = wbi ( i c e l l , 1) − w( i c e l l , 3)∗ tempbi/w( i c e l l , 1)
46 tempbr = pbr ( i c e l l , 2)/w( i c e l l , 1)
47 tempbi = pbi ( i c e l l , 2)/w( i c e l l , 1)
48 wbr ( i c e l l , 2) = wbr ( i c e l l , 2) + tempbr
49 wbi ( i c e l l , 2) = wbi ( i c e l l , 2) + tempbi
50 wbr ( i c e l l , 1) = wbr ( i c e l l , 1) + pbr ( i c e l l , 1) − w( i c e l l , 2)∗ tempbr/w(&
51 & i c e l l , 1)
52 wbi ( i c e l l , 1) = wbi ( i c e l l , 1) + pbi ( i c e l l , 1) − w( i c e l l , 2)∗ tempbi/w(&
53 & i c e l l , 1)
54 end do
55 end subroutine computeprimitive_b_kform

Fortran code B.5: K-formulated adjoint differentiation of primitive routine.
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Abstract
In specific physical conditions, rotating stall is an unsteady phenomenon that may be triggered in
axial compressors of turbomachinery and could lead to drastic loads on the structures. Nowadays, its
understanding remains partial and could be enhanced by performing a global stability analysis. After
finding a fixed point of the governing equations of the flow, it consists of solving an eigenvalue problem
where large sparse complex-valued linear systems need to be inverted. A usual strategy involves di-
rect factorizations that, for systems exceeding 10 × 106 degrees-of-freedom, lead to memory overflow.
To overcome such a limit, the use of preconditioned iterative algorithms becomes mandatory. Fur-
thermore, as complex arithmetic loops can’t be vectorized, the complex systems need to be rewritten
to preserve HPC optimizations, for which important work has been carried out recently at ONERA.
In this thesis, a method to scale up the global stability problems to industrial cases has been devel-
oped: the KFGSM, for K-formulated Global Stability Analysis Method. The linearized matrix-vector
products used to solve the eigenvalue problem are obtained by means of Algorithmic Differentiation,
which ensures the preservation of loop optimizations. The complex problems have also been refor-
mulated in the real-equivalent K formulation that preserves the sparsity patterns of the considered
operators, allowing the reuse of the most advanced preconditioning techniques of compressible CFD.
The reformulated eigenvalue problem is solved by means of a Krylov-Schur algorithm where inversions
are managed by the GMRES algorithm. The KFGSM is validated on three test cases with gradually
increasing difficulty.

KEYWORDS: Global Stability; Fixed point; Krylov Methods; Algorithmic Differentiation; K Formu-
lation; Sensitivity

Résumé
Dans des conditions physiques spécifiques, le décollement tournant est un phénomène instationnaire
pouvant se produire dans les compresseurs axiaux de turbomachines. Même de nos jours, la com-
préhension de ce type d’évènement potentiellement destructeur demeure incomplète mais pourrait être
améliorée par une étude de stabilité globale. Après avoir calculé un point fixe des équations de conserva-
tion gouvernant l’écoulement, cette technique consiste à résoudre un problème aux valeurs propres dont
l’inversion nécessite de nombreuses résolutions de grands systèmes linéaires creux à valeurs complexes.
La stratégie usuelle est de recourir à des méthodes d’inversions directes de type factorisation LU. Ce
genre de pratique devient néanmoins inutilisable sur des cas dépassant les 10 × 106 degrés de liberté du
fait des limitations mémoires. Cette difficulté peut être outrepassée en utilisant des méthodes itératives
de type Krylov préconditionnées. Par ailleurs, l’arithmétique complexe n’étant pas vectorisable, les
sytèmes linéaires complexes impliqués dans les problèmes de stabilité globale doivent être reformulés
dans une version réelle équivalente, ceci afin de pouvoir bénéficier des optimisations HPC récemment
menées à l’ONERA. Dans cette thèse, une méthode permettant le passage à l’échelle d’outils de stabilité
globale a été développée, la KFGSM pour K-Formulated Global Stability Method. Le produit matrice-
vecteur utilisé pour résoudre le problème aux valeurs propres est obtenu par différentiation algorithmique
qui préserve l’optimisation des pattern de boucle. Les systèmes complexes impliqués dans les problèmes
de stabilité globale ont été réécrits en K formulation, qui préserve la sparsité des opérateurs et permet la
réutilisation des routines de préconditionnement les plus avancées en CFD compressible. Les problème
aux valeurs propres en K formulation sont résolus grâce à l’algorithme de Krylov-Schur dans lequel les
inversions sont réalisées à l’aide d’un GMRES préconditionné. La KFGSM est ensuite validée sur des
cas tests à difficultés croissantes.

MOTS-CLÉS : Stabilité Globale; Point Fixe; Méthodes de Krylov; Différentiation Algorithmique; For-
mulation K; Sensibilité
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