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1.4 Structure de la Thèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
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1.5.1.1 Hypothèses et Notations . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.5.1.2 Mélange de Gaz : Propriétés Thermodynamiques . . . . . . . . . . . . 36
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1.12 Déformation pyro-mécanique d’une tranche 2D du domaine (b) dans le plan xy. La
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Chapitre 1

Synthèse de la Thèse

Nomenclature

Latin Letters

A facteur pré-exponentiel de la loi d’Arrhenius [s−1]
A élément/espèce générique
C tenseur de rigidité du quatrième ordre [kg m−1 s−2]
cp chaleur spécifique à pression constante [J kg−1 K−1]
D champ de déplacement [m]
E énergie d’activation de la loi d’Arrhenius [J mol−1]
e énergie interne spécifique [J kg−1]
Esm module de Young [kg m−1 s−2]
F flux de diffusion effectif [kg m−2 s−1]
f force volumique générique [m s−2]
g énergie libre de Gibbs spécifique [J kg−1]
h enthalpie absolue spécifique [J kg−1]
hv tenseur de transfert de chaleur volumétrique [W m−3 K−1]
hv coefficient de transfert de chaleur volumétrique [W m−3 K−1]
I tenseur d’identité
K tenseur de perméabilité [m2]
k tenseur de la conductivité thermique [W m−1 K−1]
k coefficient de la conductivité thermique [W m−1 K−1]
keq, kfw, kbw constantes de vitesse chimique à l’équilibre, en avant, et en arrière
l, L longueur caractéristique à l’échelle microscopique et macroscopique [m]
M masse molaire [kg mol−1]
m,n paramètres de la loi d’Arrhenius
n nombre de moles
Ng nombre d’espèces gazeuses
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Nomenclature

Np,i nombre de sous-phases dans la phase solide i
Ns nombre de phases solides
Nt nombre de réactifs et de produits dans une réaction chimique
Pi,Pi,j phase solide i et sous-phase j de la phase solide i.
p pression [Pa]
Q flux de chaleur de diffusion effectif [J m−2 s−1]
R constante universelle des gaz parfaits [J kg−1 K−1]
r rayon générique d’une sphère [m]
R constante spécifique des gaz parfaits [J mol−1 K−1]
S surface spécifique [m2 m−3]
s entropie spécifique [J kg−1 K−1]
t temps [s]
T température [K]
v vitesse de convection [m s−1]
v volume spécifique [m3 kg−1]
V volume de prise des moyennes [m3]
Vi volume de la phase i [m3]
x coordonnées microscopiques [m]
X coordonnées macroscopiques [m]
X fraction molaire
y fractions massiques des espèces
z fractions massiques des éléments

Greek Letters

α tenseur de l’expansion thermique [K−1]
α coefficient d’expansion thermique [K−1]
β tenseur de correction du glissement [Pa]
γ indicateur de phase
ϵ tenseur de déformation
ϵ fraction de volume
θ angle d’orientation de la vitesse
Θ densité du site actif [mol m−3]
λ libre parcours moyen [m]
µ coefficient de viscosité volumique [Pa s]
µsm, λsm constantes de Lame [kg m−1 s−2]
ν coefficient stoechiométrique
νsm coefficient de Poisson
ξ tenseur de contribution de la pyrolyse

ξ coefficient de contribution de la pyrolyse
πk taux de production de l’espèce/élément k par pyrolyse [kg m−3 s−1]
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Nomenclature

Π taux global de production de gaz de pyrolys [kg m−3 s−1]
ρ densité [kg m−3]
σ tenseur des contraintes [kg m−1 s−2]
τ tenseur des contraintes visqueuses [N m−2]
τ avancement total des réactions de pyrolyse
χi,j avancement de la réaction de pyrolyse de la sous-phase j dans la phase i.
ω vorticité [s−1]
ωi taux de production des espèces i [mol m−3 s−1]
ωh

i réactions hétérogènes taux de production de masse des espèces i [kg m−3 s−1]
Ωh taux global de production de masse des réactions hétérogènes [kg m−3 s−1]

Subscripts and Superscripts

0 temps initial
bw arrière
cl cluster
eff effective
eq équilibre
f fluide
fw avant
g gasz
i, j, k indices utilisés dans les opérateurs somme/produit
s solide
sm matériau solide

Formalism

A tenseur du second ordre A
A vecteur A
A scalaire A
⟨ ⟩ moyenne intrinsèque
∂t dérivée partielle à t
∂x opérateur gradient
∂x · opérateur divergence
tr() opérateur trace∑︁Nt

j=1 opérateur de somme dont l’indice j varie de j = 1 à j = Nt∏︁Nt
j=1 opérateur produit dont l’indice j varie de j = 1 à j = Nt

∗ variable non dimensionnelle

Adimensional Groups

Kn nombre de Knudsen
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SYNTHÈSE DE LA THÈSE

Nomenclature

Pe nombre de Peclet
Re nombre de Reynolds

Acronims

CMT Computed Micro-Tomography
LTE Local Thermal Equilibrium
LTNE Local Thermal Non-Equilibrium
MSL Mars Science Laboratory
PATO Porous material Analysis Toolbox based on OpenFoam
TACOT Theoretical Ablative Composite for Open Testing
TPS Thermal Protection System

1.1 Les Matériaux Poreux

Un milieu poreux est constitué d’une structure solide, la matrice, et d’espaces vides, les pores.

Ces derniers sont généralement remplis par un fluide, comme l’air, l’eau, l’huile ou un mélange de

différents fluides. Les matériaux poreux se rencontrent presque partout dans la vie quotidienne, qu’ils

soient d’origine géologique (par exemple, les roches, le sol), biologique (par exemple, les os, le bois, le

liège) ou artificielle (par exemple, les ciments, les céramiques, les polymères). Leur principale caracté-

ristique est qu’ils peuvent être décrits de différentes manières selon l’échelle à laquelle on les observe,

comme illustré dans la Fig. 1.1. Les structures du bois, de l’os, de la céramique et du feutre en fibre de

carbone sont représentées de deux façons différentes: dans la partie supérieure de la figure, ils sont re-

présentés à l’échelle à laquelle nous avons l’habitude de les voir, i.e. l’échelle macroscopique, ou échelle

du continuum; tandis que dans la partie inférieure, ils sont zoomés à l’échelle microscopique, ou échelle

des pores, où leur structure poreuse est révélée. L’interaction entre un milieu poreux perméable et

un fluide pénétrant à travers ses pores peut être décrite aux deux échelles en utilisant des simulations

numériques. Au niveau microscopique, la description est basée sur la mécanique classiques des fluides

et des solides, ce qui peut entrâıner certaines difficultés lorsqu’il s’agit de géométries complexes, mais

elles s’avèrent essentielles pour visualiser et comprendre la physique de l’interaction. Différemment,

à l’échelle macroscopique, le solide et le fluide sont homogénéisés dans un matériau continu poreux

équivalent et où les phénomènes de transfert sont décrits par des équations directrices moyennes.

Les deux échelles sont reliées entre elles par des processus de mise à l’échelle. Les plus populaires

dans le domaine des milieux poreux sont: la théorie de l’homogénéisation [14],la technique de prise

de moyenne volumique [15], et les méthodes stochastiques [16]. Différentes approches conduisent à

la formulation de modèles de continuum équivalents, à condition de considérer le même niveau d’ap-

proximations mathématiques et les mêmes hypothèses physiques [17], notamment les hypothèses de
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1.1. LES MATÉRIAUX POREUX

bois os céramique      feutre en 
fibre de carbone

Échelle Observée

échelle
macro

(continuum)

échelle
micro
(pore)

Figure 1.1 – Représentations à l’échelle micro (pores) et macro (continuum) de quatre matériaux
poreux: bois, os, céramique et feutre en fibre de carbone.

séparation d’échelle et l’existence d’un volume élémentaire représentatif (REV) 1 où les variations à

petite échelle sont atténuées. Cette situation est illustré dans la Fig. 1.2. À l’échelle du continuum, les

détails de la structure microscopique des pores et de leur interaction avec l’écoulement soient perdus.

Toutefois, les informations moyennes sont contenues dans les propriétés effectives. Des exemples de

ces dernières sont le tenseur de perméabilité, le coefficient de transfert thermique, la conductivité ther-

mique effective et le tenseur des contraintes. Compte tenu de leur importance physique, leur estimation

correcte est essentielle pour la précision du modèle. Selon les besoins et les conditions, différentes mé-

thodes de détermination peuvent être suivies. Les expérimentations sont largement utilisées dans la

littérature [18–25], cependant, bien que le domaine de la microfluidique progresse très rapidement, l’in-

fluence de la structure microscopique sur le comportement de l’interaction fluide-matériau poreux ne

peut pas encore être directement observée pour les matériaux complexes. À cette fin, des simulations

numériques sont nécessaires. La géométrie d’un milieu poreux peut être obtenue soit par une repré-

sentation mathématique idéalisée [21, 26–30] ou à partir d’une image numérique reconstruite [31–38].

Dans le premier cas, la structure des pores doit être décrite d’un point de vue statistique [39] et la

géométrie reconstruite par de petits objets primitifs dans un domaine fini [30]. Autrement, si une

image numérique est disponible, des simulations sont effectuées sur la géométrie exacte. Cela per-

met de visualiser directement le comportement des quantités de transport et des gradients dans tout

le domaine au niveau des pores et d’observer clairement comment ces derniers sont affectés par les

caractéristiques microscopiques du matériau. Les simulations numériques nécessitent un ensemble ap-

proprié de conditions aux limites, bien que cela ne soit pas toujours simple, surtout lorsqu’il s’agit de

domaines numériques qui ne sont pas assez grands pour être considérés comme REV [40,41]. Enfin, la

troisième façon de déterminer les propriétés effectives est d’utiliser les corrélations. Elles sont obtenues

par une compréhension globale de la physique, dérivée de l’analyse expérimentale ou théorique du pro-

1. En référence à la technique de prise de moyenne volumique.
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1.2. MATÉRIAUX POREUX RÉACTIFS DANS DES ÉCOULEMENTS À HAUTE
TEMPÉRATURE

Volume Élémentaire
    Représentatif 
 Volume (V)

r L

lg

ls1

ls2

1 2
L >> r >> ls , ls , lg

Matériau Continu
Poreux Équivalent

ÉCHELLE DE PORES ÉCHELLE MACROS

Figure 1.2 – Concept générique du processus de mise à l’échelle. Le processus repose sur les hypothèses
de séparation d’échelle (L >> r >> ls1, ls2, lg) et sur l’existence d’un REV où les variations à petite
échelle sont atténuées.

blème [28,34, 38, 42–44]. Leur applicabilité est généralement limitée à des géométries connues et dans

des intervalles de conditions spécifiques (tels que des intervalles de Reynolds ou de Peclet spécifiques).

1.2 Matériaux Poreux Réactifs dans des Écoulements à Haute Température

Diverses technologies et applications techniques sont basées sur les matériaux poreux. Les conver-

tisseurs catalytiques pour le traitement des eaux [45], les dispositifs de filtrage [46], les capteurs mi-

crofluidiques [47], la récupération améliorée du pétrole [48], pour ne citer que quelques exemples. Dans

ce travail, l’attention est orientée vers le sous-ensemble des matériaux poreux réactifs interagissant

avec des écoulements à haute température, un thème avec un large champ d’applications allant de la

conception d’un bouclier thermique poreux d’un véhicule spatial entrant dans une atmosphère, à la

simulation de la combustion d’une allumette. Malgré la nette différence en termes de conditions ex-

ternes, ces applications sont décrites par les mêmes phénomènes physiques d’un point de vue matériel,

comme schématisé dans la Fig. 1.3. Comme les matériaux et les conditions externes sont différents,

les gammes de température et les mécanismes chimiques ne sont pas les mêmes dans les deux cas.

Quelques exemples de ces différences sont montrés en bleu pour la combustion de l’allumette et en

rouge pour le matériau ablatif poreux en carbone/phénolique. Cependant, la même phénoménologie

générique s’applique aux deux cas. Les lois de conservation au sein des matériaux sont les mêmes

et le même modèle mathématique peut être utilisé pour décrire leurs comportements. Le sujet des
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Figure 1.3 – Illustration simplifiée des phénomènes physiques d’un point de vue matériel d’une
allumette qui brûle (bleu) et d’un matériau poreux en carbone/phénolique qui s’ablate (rouge). Le
texte en jaune et noir s’applique aux deux.

matériaux poreux réactifs interagissant avec des écoulements à haute température est d’une grande

importance, notamment pour les communautés de la biomasse, de l’espace et de la sécurité incendie.

Au cours des dernières décennies, ces communautés scientifiques ont abordé le sujet en se focalisant

sur plusieurs aspects fondamentaux. Une brève introduction aux trois communautés et un examen de

leurs principaux points forts sont maintenant présentés.

1. La communauté de la biomasse. Actuellement, les effets du changement climatique sont tout

à fait évidents (effet de serre, réchauffement global, Earth overshoot day 2) et adopter de solu-

tions vertes devient de plus en plus importante. La Fig.1.4 montre la consommation annuelle

mondiale d’énergie par source. Les données datent de 2016, mais des tendances similaires se

2. Date de l’année où la demande de l’humanité en ressources et services écologiques dépasse ce que la Terre peut
régénérer au cours de l’année.
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Figure 1.4 – Consommation mondiale d’énergie par source en 2016. Source https://www.iea.org/. La
biomasse, avec 9.4% de la consommation totale d’énergie, est la source d’énergie renouvelable la plus
utilisée.

dégagent aujourd’hui. On peut observer que la biomasse est la source d’énergie renouvelable la

plus utilisée. Le terme biomasse désigne généralement une matière d’origine végétale qui peut

être convertie thermiquement en molécules de bio-hydrocarbures de grande valeur [49, 50]. Le

phénomène thermochimique à l’origine de ce processus est pyrolyse, qui transforme les espèces

chimiques sous l’effet de la chaleur et produit des rendements différents selon les conditions impo-

sées [51,52]. L’objectif principal de la communauté de la biomasse est de développer des modèles

qui peuvent être utilisés pour améliorer les techniques (température, taux de chauffage, temps,

etc.) pour transformer la biomasse lignocellulosique en molécules de bio-hydrocarbures à haute

valeur ajoutée. Le premier modèle de pyrolyse est attribué à Bamford, Crank et Malan [53].

Selon ce modèle, la pyrolyse est modélisée comme une réaction de premier ordre suivant une loi

d’Arrhenius, et une équation différentielle ordinaire est résolue pour estimer la perte de masse en

fonction du temps. Cela permet de capturer la perte de masse de la pyrolyse à un coût de calcul

réduit. Suite à ces travaux, plusieurs modèles ont été développés au fil des années, chacun carac-

térisé par un niveau de précision différent dans la description des réactions chimiques. Le niveau

le plus simple correspond au mécanismes de réaction unique [54], dans lequel une seule réaction

de décomposition est considérée. Une plus grande précision est fournie par les modèles de réac-

tion unique à composants multiples [55], où la description tient compte de la matière première.

Plus complexes sont les modèles compétitifs [56] qui introduisent des réactions compétitives pour

prédire différentes distributions de produits en fonction des conditions de conversion. Enfin, les

modèles les plus précis sont lesmodèles compétitifs multi-composants [57,58], qui tiennent compte

efficacement de la dépendance à la charge et de l’effet de la température sur les rendements;

2. La communauté de sécurité incendie. La sécurité incendie est l’ensemble des pratiques visant

à réduire les destructions causées par le feu. Elle comprend les mesures destinées à prévenir et

à détecter un incendie non contrôlé, celles utilisées pour contenir et éteindre le développement
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1.2. MATÉRIAUX POREUX RÉACTIFS DANS DES ÉCOULEMENTS À HAUTE
TEMPÉRATURE

et les effets d’un incendie après qu’il se soit déclaré, et celles destinées à évaluer la libération

d’espèces chimiques suffocantes. Un accent particulier a été mis sur les milieux poreux, en raison

de leur utilisation fréquente dans de nombreux projets civils et aéronautiques: le bois utilisé pour

la construction de maisons, de ponts et de bâtiments génériques [59]; les matériaux composites

utilisés comme pièces structurelles dans les systèmes aéronautiques et spatiaux [60]. En raison

de la nature inflammable de ces matériaux, il est important de pouvoir prédire leur potentiel à

augmenter le risque d’incendie avec la perte conséquente de rigidité, de force et de résistance de

la structure [61,62]. Pour cette raison, plusieurs études ont tenté de définir leurs caractéristiques

de performance pendant la combustion, telles que leur retardement du feu [63], leurs propriétés

d’inflammabilité [64], et leurs émissions gazeuses [65]. Ainsi, la force de la communauté de la

sécurité incendie réside dans la capacité à coupler le matériau avec l’environnement et à décrire le

comportement du feu pour un matériau donné, y compris les processus d’allumage, de croissance

du feu, de propagation et d’extinction [66].

3. La communauté spatiale. Les missions extra-orbitales impliquent souvent l’analyse du processus

d’entrée dans les atmosphères planétaires à des vitesses hypersoniques [67]. Dans ces conditions,

un choc à haute enthalpie se forme devant le véhicule spatial et l’énergie cinétique est progres-

sivement dissipée en chaleur, qui atteignent la surface par diffusion, convection et rayonnement.

La température à la surface du matériau peut atteindre 4000 K pour des conditions d’entrée

sévères. Pour garantir l’intégrité de la structure, un système de protection thermique (TPS)

est désigné pour absorber et dissiper la chaleur par des changements de phase, des réactions

chimiques et l’enlèvement de matériaux. Les matériaux ablatifs carbonisés représentent une ap-

proche traditionnelle de la protection thermique [68,69]. Un exemple célèbre est la nouvelle classe

d’ablateurs imprégnés de phénolique (PICA [70], PICA-X, ASTERM [71]) qui consiste en une

préforme en fibre de carbone partiellement imprégnée de résine phénolique, résultant en un poids

très léger, de bons isolants et une résistance mécanique élevée.

La modélisation numérique d’un TPS doit pouvoir capturer la dégradation de la matière et la

dissipation de chaleur au sein du matériau. Dans le cas contraire, la modélisation peut conduire à

des inexactitudes dans l’estimation de l’efficacité de l’ablateur, et donc à une plus grande marge

de sécurité dans le processus de conception. Pour cette raison, la communauté spatiale s’est prin-

cipalement orientée vers la modélisation de la chimie hétérogène et des phénomènes de transport,

comme en témoigne la grande quantité de logiciels développés au fil des ans. Dans le cadre d’une

comparaison de codes effectuée dans la communauté aérospatiale [72], les modèles mis en œuvre

dans vingt-cinq codes de conception et de recherche TPS ont été examinés, comparés et classés

en trois catégories différentes: modèles de type 1, qui sont mis en œuvre dans tous les codes de

conception et décrivent les phénomènes essentiels du problème de pyrolyse-ablation. Ils sont bien

adaptés aux conditions 1D, quasi stables et d’équilibre chimique; type-2, qui augmentent leur

précision en incluant la mise en œuvre de la conservation de la quantité de mouvement pour

simuler la direction du flux de pyrolyse pour des mélanges constants d’éléments/espèces; type-3,

qui complètent la description en incluant les équations de conservation des éléments (ou des

espèces) et les modèles d’équilibre chimique (ou à taux fini) associés.

Sur la base de la littérature, un modèle générique a été proposé pour tenter d’englober les exigences
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de physique fondamentale des trois applications [73–75]. Ce modèle générique, implémenté dans le

Porous material Analysis Toolbox based in OpenFoam (PATO) publié en open source, est maintenant

utilisé par des équipes universitaires et industrielles des trois communautés. Les capacités de PATO

par rapport aux contributions et aux développements des compréhensions de chaque communauté sont

présentées dans la Fig. 1.5. Une sélection de quatre codes par communauté est présentée. Le choix

s’est porté sur les codes les plus connus, bien que la priorité ait été donnée à quelques implémentations

récentes. Le lien entre le tableau et le modèle mathématique peut être fait par la description des

termes des différentes équations de conservation (colonne 2) et par les numéros des termes dans la

colonne PATO, qui font référence aux numéros des équations et à l’ordre de ces termes dans les

équations. Par exemple, dans l’équation de conservation de la masse solide, le terme de pyrolyse est le

deuxième terme de l’Eq. (1.25). Chaque code est décrit en termes d’année de publication initiale, de

type de méthodes numériques, de dimensions, de disponibilité du code, et en termes de classification

du modèle selon les critères introduits par Lachaud et al. 2011 [72]. On peut observer que PATO

est le seul code de la communauté TPS à implémenter un modèle de type (3). Différents modèles

de type (3) ont été développés par les deux autres communautés. En particulier, ThermaKin [76],

Gpyro [77], et MoDeTheC [78] sont trois codes populaires de la communauté du feu, tandis que

SPY [52], bioSmoke [79], et les codes développés par Ratte et al, 2009 [80], et Pozzobon et al., 2018 [81],

sont les codes de la communauté de la biomasse mettant en œuvre les fonctionnalités les plus avancées à

notre connaissance. Dans de nombreux codes, la dynamique de l’eau liquide n’est pas modélisée mais un

modèle de vaporisation est implémenté. Le même choix a été fait dans PATO. Cependant, les codes de

Ratte et al, 2009 [80], et Pozzobon et al, 2018 [81], implémentent le séchage en utilisant une formulation

de Darcy généralisée. Les codes TPS et feu adoptent des modèles intégrés de couche limite réactive

comme conditions limites et supposent (à l’exception de PATO) une composition élémentaire constante

des gaz de pyrolyse et utilisent l’équilibre chimique, tandis que les modèles de biomasse considèrent

la conservation des espèces et la chimie à taux fini. PATO est le seul code qui est directement couplé

à des codes d’écoulement externes. Les capacités de mécanique solide ne sont pas prises en compte

dans la classification des codes. Cependant, des modèles thermomécaniques sont implémentés dans

Amaryllis [82], Char [83] et PATO. En plus, PATO prend en compte le retrait dû à la pyrolyse.

SPY et bioSmoke ont inclus des modèles de rétrécissement permettant de comprimer linéairement le

maillage au cours de la pyrolyse.

1.3 Objectifs de la Thèse

Deux objectifs définissent cette thèse. Le premier est de contribuer à la modélisation du com-

portement des matériaux poreux réactifs dans les écoulements à haute température, car les modèles

actuels de l’état de l’art sont encore limités dans la prédiction de toute la physique cachée derrière

l’application. À cette fin, la conservation de la quantité de mouvement, la déformation du solide et

la conservation de l’énergie sont étudiées. Ces trois aspects sont principalement renforcés par l’intro-

duction d’effets de régime de glissement, par la prise en compte de la déformation pyromécanique, et

en permettant aux phases solides et d’écoulement d’être en non-équilibre thermique local entre elles.

Deux applications multi-physiques différentes sont considérées et analysées afin de vérifier l’impact de

32



1.3. OBJECTIFS DE LA THÈSE
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Figure 1.5 – Comparaison des modèles mathématiques implémentés dans les logiciels de simulation
des trois communautés. Crédit J. Lachaud.
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ces aspects physiques sur le modèle.

Quel que soit le modèle employé à l’échelle macroscopique pour décrire l’interaction entre un matériau

poreux réactif et un écoulement à haute température, l’exactitude de la description dépend de la pré-

cision avec laquelle les propriétés effectives sont estimées sur la base de la structure et des propriétés

à micro-échelle. Leur dérivation s’avère être une tâche complexe et la littérature ne fournit pas une

méthodologie numérique complète à cet effet. Le second objectif de cette thèse est donc d’établir et de

valider des stratégies numériques pour estimer les propriétés effectives des milieux poreux anisotropes

dans le cas générique d’un volume microscopique non périodique disponible par microtomographie.

1.4 Structure de la Thèse

La mémoire est présentée sous la forme d’une compilation d’articles. Le chapitre d’introduction

est rédigé en français (Chapitre 1) et en anglais (Chapitre 2). Dans le chapitre d’introduction, la thèse

est décrite en exposant le contexte, l’état de l’art, les objectifs, les applications d’intérêt, les modèles

physiques, les principaux résultats obtenus, et la conclusion. Les articles sont placés dans six chapitres

indépendants:

1. Two-Temperature ablative material response model with application to Stardust and MSL at-

mospheric entries;

2. Simulation of wood combustion in PATO using a detailed pyrolysis model coupled to fireFoam;

3. Computation of the permeability tensor of non-periodic anisotropic porous media from 3D

images;

4. Multiscale modeling of flow in porous thermal protection systems from the continuum to the slip

regime;

5. Volumetric heat transfer coefficient: numerical evaluation and introductory analysis to anisotro-

pic effects;

6. Multi-Scale modeling of wood shrinkage during pyrolysis.

Deux parties principales sont définies en fonction de l’objectif fixé. La première partie comprend les

articles 1 et 2, tandis que les autres articles sont incorporés dans la seconde partie. Le manuscrit com-

prend une annexe présentant une dérivation des équations macroscopiques pour le transfert de masse,

de quantité de mouvement et d’énergie dans les milieux poreux avec la technique de la moyenne volu-

mique.

Une nomenclature est donnée au début de chaque chapitre. Une bibliographie complète est présentée

à la fin du manuscrit, rassemblant les citations de tous les articles.

1.5 Modèle Physique

La description numérique d’un matériau poreux interagissant avec un écoulement générique dépend

de l’échelle d’intérêt. À l’échelle du continuum, des équations moyennées sont adoptées, tandis qu’à
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l’échelle du pore, la conservation de la masse, de la quantité de mouvement et de l’énergie est résolue

par les équations de Navier-Stokes.

1.5.1 Macro-Échelle

1.5.1.1 Hypothèses et Notations

Le modèle numérique utilisé dans ce travail est basé sur le modèle générique d’équilibre thermique

local précédemment implémenté dans PATO [75]. Il suppose l’interaction entre un mélange de gaz

réactif multi-espèces (Ng espèces gazeuses) avec un matériau réactif multi-phases (Ns phases solides).

Les espèces gazeuses sont supposées être en équilibre thermique local entre elles, ainsi que les phases

solides. Cependant, le matériau et le mélange de gaz ne sont plus supposés être en équilibre thermique

local dans le travail actuel. Aucune phase liquide n’a été modélisée. Un liquide, s’il est présent (par

exemple l’eau), est modélisé comme une phase solide. Les équations du continuum sont obtenues soit

par des techniques de mise à l’échelle 3 soit définies de manière heuristique. En référence à la technique

de prise de moyenne volumique, les hypothèses fondamentales sont l’existence d’un REV (Fig. 1.2)

dans lequel les propriétés peuvent être moyennées par phase et la satisfaction de la séparation d’échelle.

La fraction volumique ϵ d’une phase donnée i est définie comme suit

⟨γi⟩ = ϵi(X, t) = 1
V

∫︂
Vi

γi(X + x, t)dx (1.1)

où la moyenne utilisée est appelée moyenne intrinsèque, V est le volume de prise des moyennes, Vi est

le volume de la phase i, γi est l’indicateur de phase, avec γi = 1 dans la phase i et γi = 0 en dehors de la

phase i,X et x désignent respectivement la coordonnée macroscopique et la coordonnée locale dans le

volume de prise des moyennes, et t est le temps. La notation ⟨ ⟩ désigne la moyenne intrinsèque. Cette

dernière s’applique à toutes les variables de phase. Comme toute la section ne concerne que l’échelle

du continuum, des notations non marquées sont employées pour simplifier la lecture des équations.

Les valeurs moyennes des variables extensives (volume, masse, énergie) dans le domaine sont obtenues

à partir de la somme pondérée des valeurs des phases superficielles. Par exemple, la densité totale ρ

est donnée par

ρ = ϵgρg +
Ns∑︂
i=1

ϵiρi (1.2)

où l’indice g identifie le mélange de gaz. Les variables intensives (pression, vitesse, température) sont

résolues par les équations moyennées et les propriétés effectives (tortuosité, perméabilité, conductivité)

doivent être déterminées par des expériences, des simulations numériques ou des corrélations.

Pour une meilleure clarté, dans tout le manuscrit, la phase solide est indiquée par l’indice s; le mélange

de gaz à l’intérieur du matériau poreux est indiqué par l’indice g; l’écoulement externe, à l’extérieur

du matériau, est indiqué par l’indice f .

3. La dérivation des équations directrices pour les matériaux non réactifs et écoulement incompressible est présentée
dans l’Annexe.
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1.5.1.2 Mélange de Gaz: Propriétés Thermodynamiques

Le gaz est supposé être un mélange de gaz thermiquement parfaits (gaz parfaits dont les chaleurs

spécifiques sont fonction de la température uniquement). La pression totale du mélange de gaz, pg, est

donnée par la loi de Dalton

pg =
Ng∑︂
i=1

pi (1.3)

Un seul gaz obéit à la loi des gaz parfaits

pivi = niRTi (1.4)

où vi, ni et Ti désignent respectivement le volume, le nombre de moles et la température du gaz i, et

R est la constante universelle des gaz. Le mélange et les différents gaz partagent la même valeur du

volume spécifique, vi = vg. De plus, les gaz sont supposés être en équilibre thermique local entre eux,

Ti = Tg. Le mélange de gaz obéit à la loi des gaz parfaits

pgvg = ngRTg (1.5)

Les propriétés thermodynamiques sont dérivées des règles de mélange: les propriétés du mélange sont

obtenues comme la somme des propriétés des espèces pondérées par la composition du mélange. La

composition du mélange peut être décrite par la fraction molaire ou la fraction massique. La fraction

molaire d’une espèce, Xi, est définie comme le rapport du nombre de moles de l’espèce ni, divisé par

le nombre de moles du mélange ng.

Xi = ni

ng
= pi

pg
(1.6)

La fraction massique d’une espèce, yi, est définie comme le rapport de la masse de l’espèce divisée par

la masse totale du mélange. La définition peut également être écrite en termes de rapport de densités

yi = ρi

ρg
(1.7)

Une fois que Xi ou yi sont connus, les règles de mélange peuvent être appliquées. Pour ne donner

que quelques exemples, la constante des gaz de mélange Rg, la masse molaire Mg, l’enthalpie absolue

spécifique hg, l’entropie spécifique sg et l’énergie interne spécifique eg sont données par

Rg =
Ng∑︂
i=1

yiRi (1.8)

Mg =
Ng∑︂
i=1

Mi

yi
(1.9)

ρghg =
Ng∑︂
i=1

ρihi (1.10)
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ρgsg =
Ng∑︂
i=1

ρi(si −RilnXi) (1.11)

ρgeg =
Ng∑︂
i=1

ρihi −
Ng∑︂
i=1

pi (1.12)

La chaleur spécifique du mélange à pression constante cp,g est estimée directement à partir de sa

définition

cp,g =
(︂∂hg

∂Tg

)︂
p

(1.13)

La connaissance de la composition du gaz et des propriétés thermodynamiques des espèces est essen-

tielle pour retrouver les propriétés du mélange. Les propriétés thermodynamiques d’une seule espèce

peuvent être évaluées (1) par des fonctions issues d’un ensemble donné de polynômes (NASA7 et

NASA9 par exemple) ou (2) par des fonctions de partition. Le cas (1) permet une évaluation directe

des propriétés. Le cas (2) nécessite l’introduction de concepts de thermodynamique statistique et cela

dépasse le cadre de ce travail. Des détails supplémentaires sont donnés dans l’étude de Scoggins et

Magin, 2014 [84]. L’évaluation de la composition du gaz suit une procédure différente selon la suppo-

sition de l’équilibre ou du non-équilibre chimique. Ceci est détaillé dans la section 1.5.1.4 et dans la

section 1.5.1.5.

1.5.1.3 Mélange de Gaz: Équations Directrices

L’équation globale de conservation de la masse, qui est déterminée par la somme des équations de

conservation des espèces, est la suivante

∂t(ϵgρg) + ∂X · (ϵgρgvg) = −
Ns∑︂
i=1

∂t(ϵiρi) = Π + Ωh (1.14)

où vg est la vitesse convective du gaz, et les termes du droit rendent compte des échanges avec les

phases solides: pyrolyse Π et réactions hétérogènes Ωh (décrites dans la section 1.5.1.9). Les équations

de conservation des éléments ou des espèces sont nécessaires dans le cas d’équilibre ou de non-équilibre

chimique. Ces équations sont abordées dans les sections respectives.

La vitesse moyenne du gaz est obtenue en résolvant l’équation de conservation de la quantité de

mouvement. Dans les milieux poreux, la conservation de la quantité de mouvement moyenne est la

suivante

vg = − 1
ϵg

[︂ 1
µg
K

(︂
1 + 1

pg
β

)︂]︂
· ∂Xpg (1.15)

où µg est la viscosité dynamique du gaz, K est le tenseur de perméabilité, et β la correction de

glissement pour prendre en compte les effets de glissement. La vitesse moyenne du gaz peut être

introduite dans la conservation de la masse du gaz. En utilisant la loi des gaz parfaits, la forme finale

de la conservation de la quantité de mouvement est la suivante

∂t

(︂ϵgMg

RTg
pg

)︂
− ∂X ·

[︂pgMg

RTg

1
µg
K

(︂
1 + 1

pg
β

)︂
· ∂Xpg

]︂
= Π + Ωh (1.16)
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Un modèle de non-équilibre thermique local est considéré pour la description énergétique du système.

Cela signifie que deux équations sont nécessaires pour décrire le mélange de gaz et les phases solides

d’un point de vue énergétique. Pour le mélange, l’équation directrice de l’énergie s’écrit

ϵgρgcp,g∂tTg +
Ng∑︂
i=1

hi∂t(ϵgρgyi) − ∂t(ϵgpg) = −∂X ·
(︂
ϵgρgvghg

)︂
+ ∂X ·

(︂
k
eff,g

· ∂XTg

)︂
+

+ ∂X ·
Ng∑︂
k=1

Qk + hv

(︂
Ts − Tg

)︂
(1.17)

où k
eff

identifie le tenseur de conductivité thermique effective, Qk modélise le transport de chaleur par

diffusion effective de l’espèce [75], et hv est le coefficient de transfert de chaleur volumétrique.

1.5.1.4 Mélange de Gaz: Chimie à l’Équilibre

Dans le cas de l’équilibre, les équations de conservation des espèces ne sont pas nécessaires, mais

des réactions chimiques peuvent se produire dans la phase gazeuse. Lorsque celles-ci se produisent, les

masses des molécules participantes ne sont pas conservées, alors que les masses des nucléi des éléments

chimiques constituant ces mêmes molécules sont conservées. Ainsi, les équations de conservation des

éléments pour chaque élément du mélange doivent être prises en compte

∂t(ϵgρgzk) + ∂X · (ϵgρgzkvg) + ∂X · Fk = πk (1.18)

où zk identifie la fraction massique de l’élément k, Fk modélise le flux de diffusion effectif [75] de

l’élément k, et le terme de droite, πk, représente le taux de production de pyrolyse de l’élément k.

La composition du mélange est explicitement définie par la minimisation de l’énergie libre de Gibbs

spécifique, g, du mélange. Cette dernière, pour une espèce i est définie comme suit [84]

gi = hi − siTg (1.19)

Pour un mélange à l’équilibre, l’énergie de Gibbs est uniquement fonction de la pression et de la

température locales. A partir de la définition de l’énergie libre de Gibbs, Eq. (1.19), la forme suivante

de la loi d’action de masse peut être dérivée [85] et appliquée à une réaction chimique générique

Nt∏︂
j=1

p
νj

j = keq (1.20)

où keq est le taux constant d’équilibre pour la réaction chimique donnée et est fonction de la tempé-

rature uniquement,
∏︁Nt

j=1 désigne la notation du produit pour tous les termes Nt réactifs et produits,

j, dans la réaction chimique; νj représente le coefficient stéchiométrique du terme j. En combinant

la loi d’action de masse pour chaque réaction dans le mélange, la loi de Dalton (Eq. (1.3)), et les

équations de conservation des éléments (Eq. (1.18)), on peut obtenir la pression partielle de chaque
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espèce. La connaissance de la pression partielle est suffisante pour retrouver la composition du mé-

lange (Eq. (1.6)), donc les propriétés thermodynamiques de la phase gazeuse. Il faut remarquer qu’à

l’équilibre, la composition chimique du mélange réactif est fonction de la pression et de la température

locales.

1.5.1.5 Mélange de Gaz: Chimie Hors Équilibre

En cas de chimie hors-équilibre, les équations de continuité des espèces doivent être résolues

∂t(ϵgρgyi) + ∂X · (ϵgρgyivg) + ∂X · F i = πi + ϵgωiMi (1.21)

où les termes sources de l’équation sont le taux de production massique de l’espèce i dû à la pyrolyse,

πi, et le taux de production des réactions chimiques de l’espèce i, ωi.

Les taux de production des espèces dues aux réactions chimiques dans le mélange doivent être estimés

afin de calculer la composition du mélange. Une réaction élémentaire générique j caractérisée par Nt

réactifs et produits, peut être écrite comme suit

Nt∑︂
i=1

ν ′
ijAi ⇌

Nt∑︂
i=1

ν ′′
ijAi (1.22)

où Ai représente le nom de l’espèce i, et ν ′
ij et ν ′′

ij sont les coefficients stœchiométriques des réactifs

et des produits respectivement. Tout type de réaction élémentaire peut être exprimé sous cette forme.

Le taux de production d’espèces de cette j-ième réaction élémentaire s’écrit

ωi,j = (ν ′′
ij − ν ′

ij)
[︂
kfw,j

Nt∏︂
i=1

[Ai]ν
′
ij − kbw,j

Nt∏︂
i=1

[Ai]ν
′′
ij

]︂
(1.23)

où kfw,j et kbw,j sont les constantes de vitesse chimique en avant et en arrière. Ces deux coefficients

sont reliés par la constante de vitesse d’équilibre keq,j comme suit

kbw,j = kfw,j

keq,j
(1.24)

La constante de vitesse à l’équilibre peut parfois être obtenue par l’expérience et peut toujours être

calculée à partir de la thermodynamique statistique [85]. Une loi de vitesse d’Arrhenius est générale-

ment utilisée pour spécifier le coefficient de vitesse de réaction directe [84]. La composition du mélange

est obtenue en résolvant l’Eq. (1.23) pour toutes les réactions chimiques.

1.5.1.6 Mélange de Gaz: Coefficients de Transport

La dérivation de la viscosité dynamique, de la conductivité thermique du mélange et des coefficients

de diffusion dépasse le cadre de cette thèse. Une librairie nommée Mutation++ est utilisée pour leur

calcul. Plus de détails à ce sujet sont disponibles dans l’étude de Scoggins and Magin, 2014 [84].
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1.5.1.7 Phase Solide: Équations Directrices

L’évolution moyenne de la masse pour chaque phase solide i est la suivante

∂t(ϵiρi) = −πi − ωh
i (1.25)

où les changements de densité pour la phase solide i sont donnés par les contributions de la pyrolyse

πi et des réactions hétérogènes ω
h
i .

Sous l’hypothèse de non-équilibre thermique local, une équation de conservation de l’énergie est né-

cessaire pour la phase solide. Cette équation est la suivante

Ns∑︂
i=1

ϵiρicp,i∂tTs +
Ns∑︂
i=1

hi∂t(ϵiρi) = ∂X ·
(︂
k
eff,s

· ∂XTs

)︂
+ hv

(︂
Tg − Ts

)︂
(1.26)

Il faut remarquer que en supposant Tg = Ts = T et en additionnant cette équation avec l’équation

énergétique respective pour le mélange de gaz (Eq. (1.17)), le modèle d’équilibre thermique local est

retrouvé.

La phase solide est libre de se déformer. Les hypothèses de petite déformation et de matériau solide

élastique linéarisé sont considérées ici. L’équation directrice est donnée par

∂t(ρs ∂t(D)) = ∂X · σ + ρf (1.27)

où les quantitésD, σ, et f désignent respectivement le champ de déplacement, le tenseur des contraintes,

et une force volumique générique. Le lien entre les tenseurs de contrainte (σ) et de déformation (ϵ) est

donné par la loi constitutive

σ = C :
(︂
ϵ− α(T − T0) − ξ(τ − τ0)

)︂
(1.28)

où C est le tenseur de rigidité du quatrième ordre [86], α et ξ sont les tenseurs des coefficients de

dilatation thermique (α) et des coefficients de retrait de pyrolyse (ξ), τ représente l’avancement total

des réactions de pyrolyse, et l’indice 0 désigne le temps initial. En supposant que le solide est isotrope,

la loi constitutive (Eq. (1.28)) se simplifie en

σ = 2µsmϵ+ λsmtr(ϵ)I − (2µsm + 3λsm) α (T − T0)I − (2µsm + 3λsm) ξ (τ − τ0)I (1.29)

où tr() désigne l’opérateur de trace, µsm et λsm sont les paramètres de Lame, et I désigne le tenseur

d’identité. L’indice sm correspond au matériau solide. Les paramètres de Lame sont exprimés en

termes de constantes d’ingénierie, notamment le module d’Young Esm et le coefficient de Poisson νsm,

par les expressions suivantes

λsm = Esm νsm

(1 + νsm)(1 − 2νsm) (1.30)

µsm = Esm

2(1 + νsm) (1.31)
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1.5.1.8 Phase Solide: Pyrolyse

Chaque phase solide Pi peut se décomposer selon plusieurs cinétiques de pyrolyse. Il est pratique

courante de diviser chaque phase i en Np,i sous-phases pour modéliser différents mécanismes de dé-

gradation. La décomposition d’une sous-phase générique j (à partir de la phase solide i) conduit à

la production de différents éléments/espèces Ak en fonction des coefficients stœchiométriques νi,j,k,

comme suit

Pi,j −→
Ng∑︂
k=1

νi,j,k Ak (1.32)

Les réactions de pyrolyse sont modélisées par des lois d’Arrhenius. Ainsi, l’avancement de la réaction

de pyrolyse χi,j de la sous-phase j dans la phase i est défini comme suit

∂tχi,j = (1 − χi,j)mi,j T
ni,j
s Ai,j exp

(︂
− Ei,j

RTs

)︂
(1.33)

où A et E sont le facteur pré-exponentiel et l’énergie d’activation de la loi d’Arrhenius, et mi,j et ni,j

sont les paramètres de la loi d’Arrhenius. L’avancement total du processus de pyrolyse, τ , est évalué

comme suit

τ =
Ns∑︂
i=1

Np,i∑︂
j=1

ϵi,0ρi,0yi,j∑︁Ns
i=1

∑︁Np,i

j=1 ϵi,0ρi,0yi,j

(1 − χi,j) (1.34)

où yi,j est la fraction massique de la sous-phase j dans la phase i. Le taux de production total de

l’espèce/élément k par décomposition du solide est donné par

πk =
Ns∑︂
i=1

Np,i∑︂
j=1

νi,j,k ϵi,0 ρi,0 yi,j ∂tχi,j (1.35)

Le taux global de production de gaz de pyrolyse est obtenu en additionnant π sur toutes les espèces

gazeuses

Π =
Ng∑︂
k=1

πk (1.36)

1.5.1.9 Phase Solide: Réactions Hétérogènes

Pour les réactions élémentaires, les taux de production des espèces sont donnés par l’Eq. (1.23).

Les réactions non élémentaires peuvent être modélisées à l’aide d’exposants de densité molaire qui ne

sont pas égaux à la molécularité, ou des termes supplémentaires peuvent être ajoutés, par exemple

pour tenir compte des réactions du troisième corps ou de la chute de pression.

Les réactions hétérogènes traitent des réactions chimiques élémentaires entre des phases solides réac-

tives et des espèces gazeuses. Une approche unifiée a été proposée pour traiter les espèces solides et

gazeuses [75]. La densité molaire effective d’une phase solide réactive i peut être modélisée de manière

pratique comme suit

Xi = SiΘi

ϵg
(1.37)
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où Si et Θi sont la surface spécifique et la densité du site actif de la phase solide réactive i. Cela

permet d’introduire des phases solides dans le mécanisme chimique homogène, de résoudre la chimie

homogène et hétérogène à taux finis de manière couplée, et de calculer les taux de réaction effectifs

avec une plus grande précision et stabilité numérique. Le taux de changement de masse total est donc

la somme de tous les taux de réaction effectifs.

Ωh =
Ns∑︂
i=1

ωh
i (1.38)

1.5.2 Micro-Échelle

Pour atteindre le second objectif, à savoir la dérivation des propriétés effectives, des simulations

numériques à l’échelle du pore sont effectuées. Seules les micro-équations pertinentes sont présentées,

la chimie, la pyrolyse et le transport de masse n’étant pas pris en compte. Les propriétés matérielles

intrinsèques sont utilisées à l’échelle du pore.

1.5.2.1 Écoulement Compressible

Aucune discontinuité (aucune onde de choc, aucune surface de contact, aucune ligne de glissement)

et aucune force volumique ne sont considérées dans le domaine. Les équations de conservation de la

masse, de la quantité de mouvement et de l’énergie sont les suivantes⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tρ+ ∂x · (ρv) = 0

∂t(ρv) + ∂x ·
(︂
ρv ⊗ v + pI

)︁
= ∂x · τ

∂t(ρe) + ∂x · (ρve) = −p∂x · v + (τ∂x) · v + ∂x ·
(︂
k∂xT

)︂ (1.39)

où la densité du flux thermique local est modélisée par la loi de Fourier et k représente le coefficient

de conductivité thermique. La conservation de l’énergie est exprimée en termes d’énergie interne spé-

cifique e, et τ est le tenseur des contraintes visqueuses. Dans l’hypothèse d’un fluide Newtonian et de

l’hypothèse de Stokes, ce tenseur est exprimé comme suit

τ = µ
[︂
∂x ⊗ v + (∂x ⊗ v)T

]︂
− 2

3µ(∂x · v) (1.40)

1.5.2.2 Écoulement Incompressible

L’hypothèse d’un écoulement incompressible est adoptée dans certains chapitres du manuscrit.

Dans ce cas, le système d’Eqs. (1.39) se réduit à⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂x · v = 0

ρ∂tv + ρv · ∂xv − µg∂
2
xv = −∂xpg

ρcp∂tT + ρcpv · ∂xT = ∂x ·
(︂
k∂xT

)︂ (1.41)
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où la dissipation visqueuse est négligée.

1.5.2.3 Déformation Solide

La phase solide est libre de se déformer. Les mêmes hypothèses et équations gouvernantes présentées

dans la Section 1.5.1.7 pour l’échelle macro s’appliquent à l’échelle du pore. Dans l’hypothèse de petites

déformations et de matériau solide élastique linéarisé, l’équation directrice est la suivante

∂t(ρs ∂t(D)) = ∂x · σ + ρf (1.42)

La loi constitutive relie les tenseurs de contrainte (σ) et de déformation (ϵ). En supposant que le solide

est isotrope, la loi constitutive est la suivante

σ = 2µsmϵ+ λsmtr(ϵ)I − (2µsm + 3λsm) α (T − T0)I − (2µsm + 3λsm) ξ (τ − τ0)I (1.43)

où les paramètres de Lame sont liés aux constantes d’ingénierie par les expressions suivantes

λsm = Esm νsm

(1 + νsm)(1 − 2νsm) (1.44)

µsm = Esm

2(1 + νsm) (1.45)

1.6 Principaux Résultats

Les principales contributions de cette thèse à la modélisation de matériaux poreux réactifs sous

des écoulements à haute enthalpie sont marquées en rouge dans la Fig. 1.6. Cette section donne un

aperçu générique de ces contributions en relation avec les deux objectifs définis dans la section 1.3. Une

présentation et une description complètes des résultats sont disponibles dans les chapitres respectifs.

1.6.1 Première Partie

La première partie du travail étudie l’importance de deux aspects physiques spécifiques dans la

description numérique. Ces deux études sont réalisées dans les Chapitres 3 et 4.

Le Chapitre 3 étudie l’hypothèse d’un équilibre thermique local (ETL) entre les phases solides et les

gaz de pyrolyse pour les matériaux ablatifs dans des conditions d’entrée typiques. Cette hypothèse est

génériquement justifiée par le fait que le nombre de Peclet thermique à l’intérieur des pores est petit.

Le nombre de Peclet thermique est un nombre adimensionnel qui quantifie le rapport entre les vitesses

des processus d’advection et de diffusion thermique.

Pe = ρg cp |⟨vg⟩|l
k

(1.46)

Pe ≪ 1 est une condition nécessaire à l’équilibre thermique dans les matériaux non réactifs. Cependant,

la validité de cette analyse peut tomber dans certaines circonstances. Le nombre de Peclet thermique
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Figure 1.6 – Contribution principale de cette thèse (en rouge) à la modélisation des matériaux poreux
réactifs sous des écoulements à haute enthalpie.

peut devenir important en raison des vitesses élevées du gaz de pyrolyse, ou des phénomènes physiques

supplémentaires non pris en compte dans l’analyse de Peclet peuvent devenir non négligeables, tels

que le changement d’enthalpie dû aux réactions chimiques. Un modèle de non-équilibre thermique

local (LTNE) est appliqué au Theoretical Ablative Composite for Open Testing (TACOT) dans un

large intervalle de conditions afin d’évaluer le véritable domaine de validité de l’hypothèse d’équilibre

thermique. Des simulations 1D sont effectuées sur les missions d’entrée dans l’atmosphère Stardust et

Mars Science Laboratory. Des modèles d’énergie d’équilibre thermique local et de non-équilibre ther-

mique local sont adoptés. La comparaison entre les deux modèles est effectuée en contrôlant l’évolution

de la température au sein du matériau, le taux de soufflage du gaz de pyrolyse, la zone de pyrolyse,

le récession de la paroi due à l’ablation, et les concentrations des espèces au sein du matériau. Les

mêmes conclusions s’appliquent aux deux cas de mission. Les résultats pour le cas Stardust sont rap-

portés dans la Fig. 1.7 pour le cas d’équilibre chimique et dans la Fig. 1.8 pour le cas de non-équilibre

chimique. Aucune déviation significative des quantités surveillées est observée dans des conditions
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Figure 1.7 – Cas Stardust. Données du thermocouple, taux de soufflage, zone de pyrolyse et récession
de la paroi dans le temps.
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Figure 1.8 – Cas Stardust. Distribution des espèces dans le matériau au temps t = 40 s. A gauche:
un zoom sur les fractions massiques près de la surface avec l’environnement externe.

d’équilibre chimique. En revanche, dans le cas d’un non-équilibre chimique, une faible différence dans

la prédiction de la température entre les deux modèles thermiques suffit à modifier l’évolution des

concentrations des espèces au sein du matériau.

La simulation numérique de la propagation du feu nécessite de capturer le couplage entre la pyrolyse

du bois, qui conduit à la production de diverses espèces gazeuses, et la combustion de ces espèces

dans la flamme, qui produit l’énergie qui entretient le processus de pyrolyse. Comme on peut le

voir sur la Fig. 1.5, à l’exception de PATO, aucun code de réponse ne prévoit un couplage direct

matériau-écoulement externe. Le Chapitre 4 propose une simulation multi-physique où les matériaux

et les écoulements externes sont directement couplés, ce qui permet au code de capturer différents

phénomènes physiques. Le cadre numérique couple le modèle de pyrolyse tridimensionnel détaillé de

PATO avec fireFoam. La capacité de l’outil de simulation est illustrée sur la combustion d’une bûche

de bois. Les résultats, qui sont partiellement rapportés dans la Fig. 1.9, mettent en évidence comment

Temps: 0.15 s Temps: 0.20 s Temps: 0.40 s

Temps: 0.60 s Temps: 0.70 sTemps: 0.50 s

Figure 1.9 – Combustion d’une bûche de bois. Six images représentant l’évolution initiale du feu sur
la bûche de bois.
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l’évolution de la flamme et de sa température pendant la simulation sont affectées par la concentration

des espèces gazeuses produites dans le matériau. L’effet de couplage affecte également la bûche de bois:

en raison de l’augmentation de la flamme et de la température, le processus de pyrolyse s’accélère et

les concentrations des espèces changent en fonction de la vitesse des réactions. La simulation est

capable de capturer l’ensemble du processus de pyrolyse, jusqu’à la carbonisation complète du bois et

l’extinction de l’incendie qui en résulte. De plus, l’effet de puffing est observé pendant l’évolution de la

simulation: le feu présente des fluctuations périodiques qui se succèdent avec une fréquence numérique

qui est approximativement la même que celle théorique.

1.6.2 Deuxième Partie

Les propriétés macroscopiques effectives jouent un rôle fondamental dans le modèle de continuum,

comme le souligne la première partie de la thèse: dans le Chapitre 3 l’analyse du modèle LTNE

est strictement liée à la valeur choisie pour le coefficient de transfert de chaleur volumétrique hv;

dans le Chapitre 4 l’avancement du processus de pyrolyse, donc le comportement de la flamme, sont

strictement liés à la valeur choisie pour le tenseur de perméabilité, K. La deuxième partie du travail

vise à établir et valider des stratégies numériques pour estimer les propriétés effectives dans le cas

générique de milieux poreux anisotropes non périodiques. À cette fin, quatre études complémentaires

sont réalisées dans les Chapitres 5, 6, 7 et 8. Le schéma conceptuel de ces études est illustré dans la

Fig. 1.10. Le Chapitre 5 est le point de départ de l’analyse, qui considère les écoulements creeping,

Kn

 (  )K

  (β)
  (hv)

Pe

déformation solide
 (             ),ξEsm,νsm,α

Chapitre 6 
Chapitre 7 

Chapitre 5 

Chapitre 8 

- Non équilibre thermique

- Raréfaction des gaz

- Perméabilité Darcian nominale

Figure 1.10 – Carte conceptuelle des études de la deuxième partie du manuscrit.

continus et isothermes interagissant avec des matrices solides rigides non réactives. Dans ces conditions,

le tenseur de perméabilité, K, est la seule propriété efficace à caractériser à l’échelle macro. A partir

de ce point de départ, les autres chapitres sont introduits en considérant des conditions plus générales

pour l’écoulement et les phases solides. Le Chapitre 6 étend l’analyse aux écoulements raréfiés dans

le régime de glissement. Un nombre adimensionnel est introduit. Le nombre de Knudsen est défini

comme le rapport du libre parcours moyen λ sur la longueur caractéristique de l’écoulement l.

Kn = λ

l
(1.47)
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Ce nombre adimensionnel représente l’importance de l’effet de raréfaction. Plus sa valeur est élevée,

plus l’effet de raréfaction est important. Dans le régime de glissement, 0.01 < Kn < 0.1, les descrip-

tions des micro et macro échelles sont légèrement modifiées. À l’échelle micro, une condition limite de

glissement pour le champ de vitesse doit être ajoutée, tandis qu’à l’échelle du continuum, le tenseur de

correction du glissement, β, doit être défini. Le Chapitre 7 considère les écoulements non isothermes.

Trois propriétés effectives différentes sont introduites dans l’analyse: les tenseurs de conductivité ther-

mique du fluide et du solide, k
eff
, et le coefficient de transfert thermique volumétrique, hv. Seul ce

dernier est analysé dans cette étude et défini numériquement pour différentes valeurs du nombre de

Peclet thermique (Eq. (1.46)) comprises entre 0 et 1000. Le Chapitre 8 généralise le problème pour

les phases solides déformables. L’analyse des propriétés effectives est enrichie par le module de Young

Esm, le coefficient de Poisson νsm, le tenseur de dilatation thermique α, et le tenseur de retrait de

pyrolyse ξ. Chaque chapitre effectue une analyse approfondie des différentes méthodes numériques

pour estimer les propriétés effectives, en accordant une attention particulière aux effets des conditions

aux limites sur les résultats numériques. Dans le but d’atteindre l’objectif et de consolider l’analyse

pour les milieux poreux anisotropes non périodiques génériques, les stratégies numériques résultantes

sont appliquées aux deux images 3D à haute résolution de la micro-tomographie numérisée (CMT)

montrées à la Fig. 1.11. Le domaine (a) est un échantillon de Calcarb vierge [87], une préforme en

(a )                        (b)

bow shock

boundary layer

hypersonic flow

payload

heat
shield

boundary layer

Figure 1.11 – Images de tomographie 3D à haute résolution considérées pour la détermination des
propriétés effectives. Le domaine de Calcarb (a) est analysé dans les Chapitres 5, 6, et 7. L’échantillon
de allumette en bois dur (b) est étudié au Chapitre 8.

fibre de carbone utilisée dans les matériaux de bouclier thermique [68, 69, 88]. Le domaine (b) est un

échantillon de allumette en bois dur. Le tenseur de perméabilité du domaine (a) est déterminé au
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Chapitre 5. Écrit par rapport aux axes principaux, le tenseur est le suivant

K =

⎡⎢⎣ 1.74 10−10 0 0
0 1.49 10−10 0
0 0 1.11 10−10

⎤⎥⎦ m2 (1.48)

Une différence relative d’environ 42 % est trouvée par rapport à la prédiction obtenue par Borner et

al, 2017 [9]. Cette différence est attribuée aux différentes hypothèses de travail: alors que le Chapitre 5

détermine le tenseur complet, le travail de Borner et al, 2017 [9], suppose que le tenseur de perméabilité

est initialement aligné avec les axes principaux et caractérisé par des composantes égales dans le plan.

Le tenseur de correction du glissement du domaine (a) est déterminé dans le Chapitre 6. Écrit par

rapport aux axes principaux, le tenseur est le suivant

β =

⎡⎢⎣ 971.5 0 0
0 948.1 0
0 0 901.4

⎤⎥⎦ Pa (1.49)

Une différence relative d’environ 8 % est trouvée par rapport à la prédiction obtenue par Borner et

al, 2017 [9], où les mêmes hypothèses faites pour le tenseur de perméabilité valent pour le tenseur de

correction du glissement. Le coefficient de transfert de chaleur volumétrique du domaine (a) est déter-

miné dans le Chapitre 7 sous les mêmes conditions définies expérimentalement par Liu et al, 2022 [89].

Le coefficient est estimé à hv = 1.6 108 Wm−3K−1, alors que la valeur trouvée dans l’analyse expéri-

mentale est hv = 109 Wm−3K−1. Les deux valeurs diffèrent d’un ordre de grandeur. Plusieurs raisons

peuvent conduire à cette différence: l’ensemble de données Calcarb considéré pour la simulation nu-

mérique est trop petit et non représentatif; la valeur numérique attribuée au tenseur de conductivité

effective ne tient pas compte des effets de dispersion et de tortuosité; la valeur de hv est si élevée qu’un

équilibre thermique local est atteint entre les deux phases, ce qui rend son estimation expérimentale

assez complexe. La déformation mécanique thermoélastique-pyrolyse d’une section transversale dans

le plan xy du domaine (b) est caractérisée dans le Chapitre 8. La déformation numérique résultante

est comparée à la déformation subie expérimentalement par la même tranche après une pyrolyse com-

plète. Cette comparaison est présentée dans la Fig. 1.12. En raison de l’hypothèse d’isotropie, la forme

carrée originale est préservée. Malgré cette différence dans les formes finales, le modèle numérique est

capable de prédire la valeur de la surface finale avec une erreur relative de 4.1%.

La détermination des propriétés effectives n’est pas le seul résultat obtenu. Différentes analyses et

observations physiques sont effectuées dans la deuxième partie du manuscrit.

Le Chapitre 5 aborde la problématique de la définition d’une limite physique à la validité de l’hypothèse

du régime de creeping de l’écoulement. Cette limite est généralement mesurée en termes de nombre

de Reynolds, un nombre adimensionnel qui caractérise l’importance relative des forces d’inertie et

visqueuses dans un fluide

Re = ρg|⟨vg⟩|l
µg

(1.50)

Pour Re ≪ 1, les forces visqueuses dominent et l’écoulement est dit en régime de creeping [90, 91].

Ce critère est trop générique et il dépend de la valeur choisie pour la longueur caractéristique. Ce
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Figure 1.12 – Déformation pyro-mécanique d’une tranche 2D du domaine (b) dans le plan xy. La
déformation numérique résultante est comparée à la déformation réelle soumise expérimentalement
par la même section transversale après une pyrolyse complète.

choix n’est pas trivial car les microstructures poreuses sont très diverses et mieux caractérisées par

des longueurs différentes. Pour cette raison, le Chapitre 5 définit un nouveau critère de délimitation

du régime de creeping basé sur le champ de vorticité, ω, qui décrit la tendance d’un écoulement à

tourner

ω = ∂x × v (1.51)

Pour un écoulement incompressible, les gradients de vitesse aux frontières génèrent la vorticité, qui

se diffuse ensuite sur l’ensemble du domaine. En raison du comportement linéaire de la vitesse, la

vorticité augmente proportionnellement à la magnitude de la vitesse dans le régime de reptation.

Cependant, dès que le régime de creeping chute, des non-linéarités dans le champ de vitesse changent

cette tendance simple. Le critère consiste à garder sous observation la vorticité sans dimension, définie

comme suit

ω∗ = ω
ℓ

⟨v⟩
(1.52)

dont la valeur moyenne reste constante dans le régime rampant. Un des principaux avantages de

cette méthode est le fait qu’il est possible d’identifier dans le domaine la zone où la vorticité présente

ses valeurs maximales, c’est-à-dire, où les effets de non-linéarité affectent davantage l’écoulement.

Ce critère est appliqué pour caractériser l’image CMT de Calcarb présentée dans la Fig. 1.11. La

zone influençant le comportement de l’écoulement à l’intérieur du domaine entier est reportée dans la

Fig. 1.13. Cette zone est caractérisée par une longueur caractéristique lcl ∼ 80 µm. Ainsi, la limite

physique du régime de reptation pour l’image CMT de Calcarb est trouvée être

Recl < 0.5 −→ creeping regime

Le Chapitre 6 souligne l’importance de considérer le régime de glissement dans le cadre de la concep-

tion des TPS. Cet aspect est mis en évidence dans la Fig. 1.14, où les trajectoires d’entrée des missions
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Figure 1.13 – Domaine Calcarb caractérisé dans le Chapitre 5. La zone rouge met en évidence une
petite zone qui influence le comportement de l’écoulement dans l’ensemble du domaine.

Stardust [92] et Mars Science Laboratory [93] (MSL) sont considérées. Il est possible d’observer com-

ment, au cours de ces trajectoires d’entrée, différents régimes de raréfaction sont traversés par la

dynamique d’écoulement dans le milieu poreux. Au sein du matériau, la température du mélange

gazeux diminue jusqu’à des valeurs de l’ordre de 273 K, tandis que la pression peut être considérée

comme constante. Les deux zones surlignées (bleu pour Stardust et rouge pour MSL) donnent une

indication des régimes de raréfaction traversés par la dynamique d’écoulement dans le TPS. La figure

montre que, pour les deux missions, le régime continu (Kn < 0.01) est partiellement traversé par le

matériau lorsque les conditions de chauffage atteignent leur maximum. Une plus grande partie des

trajectoires est couverte par le régime de glissement (0.01 < Kn < 0.1). D’après la Fig. 2.14, il est

possible de conclure que l’ensemble des régimes de glissement et de continuum est capable de couvrir

entièrement la partie des trajectoires d’entrée caractérisée par les effets d’ablation.

Le Chapitre 7 propose une nouvelle définition du terme de transfert de chaleur volumétrique coefficient

capable de rendre compte de manière générique des effets anisotropes

hv = ⟨vg⟩T · h
v

· ⟨vg⟩ 1
||vg||2

(1.53)

où un tenseur de transfert de chaleur volumétrique, h
v
, est introduit. Lorsque x, y et z correspondent

aux axes principaux, h
v
se réduit à un tenseur diagonal

h
v

=

⎡⎢⎣hv,x 0 0
0 hv,y 0
0 0 hv,z

⎤⎥⎦ (1.54)

où hv,x, hv,y, et hv,z sont les coefficients de transfert de chaleur volumétrique lorsque la vitesse est

alignée sur les directions x, y, et z respectivement. Cette définition est appliquée pour caractériser les

effets anisotropes pour un réseau périodique centré sur des mailles carrées avec une porosité ϵ = 0.5.
Les résultats sont illustrés dans la Fig. 1.15, où pour différents nombres de Peclet, le vecteur vitesse

moyen est mis en rotation dans le plan xy. θ définit l’angle entre le vecteur vitesse moyenne et l’axe
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Figure 1.14 – Régimes d’écoulement raréfiés rencontrés le long des trajectoires d’entrée de Stardust
et MSL dans le milieu poreux. Les valeurs de température-pression de paroi sont prises au point de
stagnation le long des trajectoires d’entrée.

x. Dans ce cas, l’Eq. (1.53) se réduit à

hv = cos2(θ) hv,x + sin2(θ) hv,y (1.55)

Les résultats montrent que le tenseur de transfert de chaleur volumétrique est capable de capturer

la forme du comportement anisotrope, mais pas exactement son amplitude, qui semble dépendre du

nombre de Peclet. Pour Pe = 66.7, la corrélation capture parfaitement les effets anisotropes. Sur la

figure, une variation linéaire du coefficient en fonction de θ est également représentée. On constate que

la formulation tensorielle de la propriété conduit à une bonne capture des effets d’anisotropie.

Le Chapitre 8 dérive une fonction physique pyrolyse-rétrécissement pour tenir compte de la contribu-

tion de la pyrolyse sur le champ de déplacement. La dérivation de cette fonction est basée sur l’idée

d’écrire la contribution de la pyrolyse au champ de déformation sous la même forme que la contribution

thermique, puisque les deux contributions conduisent à des déformations volumétriques. La fonction

de pyrolyse-rétrécissement est définie comme suit

ξ = 1
3
V0 − Vend

V0
(1.56)

La valeur de ξ doit être définie à partir d’observations expérimentales.
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Figure 1.15 – Estimation des effets de l’anisotropie pour le cas du réseau périodique 2D de 5 cylindres.
Une porosité constante ϵ = 0.5 et différents nombres de Peclet sont considérés. Le tenseur de transfert
de chaleur volumétrique capture la forme du comportement anisotrope, mais pas son amplitude.

1.7 Conclusions et Perspectives

1.7.1 Résultats

Diverses technologies et applications techniques sont centrées sur les matériaux poreux. Dans ce

travail, l’attention est orientée vers le sous-ensemble des matériaux poreux réactifs interagissant avec

des écoulements à haute température, un thème d’une grande pertinence notamment pour les com-

munautés de la biomasse, de l’espace et de la sécurité incendie. L’objectif de ce projet de thèse a

été de contribuer au développement d’un cadre théorique et numérique générique pour évaluer et

modéliser les échanges de masse, de quantité de mouvement et de chaleur entre une structure so-

lide élastique et réactive interagissant avec un écoulement à haute température. L’étude se compose de

deux parties interdépendantes reposant sur une approche multi-échelle: (1) des simulations numériques

multi-physiques sont réalisées à l’échelle macroscopique pour étudier l’impact de certains effets phy-

siques dans la description numérique; (2) des simulations numériques directes sont réalisées à l’échelle

microscopique sur des images digitize afin de définir des stratégies numériques pour l’évaluation des

propriétés effectives.

La première partie du travail visait à étudier, à l’échelle du continuum, les effets sur les résultats numé-

riques de l’hypothèse d’équilibre thermique local et de la description découplée matériau-écoulement

externe. L’analyse ciblé sur deux applications spécifiques: la conception d’un TPS pour véhicule spatial

et la description de la propagation d’un incendie. Pour le cas des matériaux ablatifs dans des conditions

52



1.7. CONCLUSIONS ET PERSPECTIVES

d’entrée typiques, les résultats montrent qu’en équilibre chimique, le modèle d’équilibre thermique lo-

cal est capable de prédire correctement l’évolution des paramètres de conception au sein du matériau.

Cependant, en cas de non-équilibre chimique, l’hypothèse d’équilibre thermique local perd de sa préci-

sion dans la capture de la distribution des espèces au sein du matériau. Pour la deuxième application,

la combustion d’une bûche de bois était considérée. Les résultats montrent que la simulation numérique

de la propagation du feu nécessite de capturer le couplage entre la pyrolyse du bois et la combustion

de différentes espèces gazeuses. L’hypothèse d’une description découplée matériau-écoulement externe

est forte car les deux régions s’influencent fortement l’une l’autre: l’évolution de la flamme et sa tem-

pérature sont affectées par la concentration des espèces gazeuses produites dans le matériau, et en

même temps, sous l’effet de l’élévation de la flamme et de la température, le processus de pyrolyse

s’accélère et les concentrations des espèces changent en fonction de la vitesse des réactions.

La deuxième partie du travail était concentré sur la définition de stratégies numériques basées sur la

simulation numérique à l’échelle des pores (PS-NS) pour prédire avec précision les propriétés effectives.

L’importance de cette analyse réside dans le fait que l’exactitude des modèles macroscopiques dépend

de la précision avec laquelle les propriétés effectives sont déterminées, et la littérature ne fournit pas

de méthodologie numérique complète. A cette fin, une analyse approfondie était réalisée pour défi-

nir les stratégies numériques. Le terme stratégie numérique fait référence à la définition du domaine

numérique et de l’ensemble des conditions aux limites, à la sélection des équations directrices et à

la spécification de l’opération numérique pour déterminer une propriété effective spécifique. Comme

propriétés effectives, le tenseur de perméabilité, le tenseur de correction du glissement, le coefficient

de transfert de chaleur volumétrique, le module d’Young, le coefficient de Poisson et les termes de

correction de l’expansion thermique et de la pyrolyse étaient considérés. Les stratégies numériques

ont été définis sur des cas-tests simples, validées par des résultats de la littérature, et appliquées à

la caractérisation de deux images de micro-tomographie numérique (CMT) 3D à haute résolution, les

images de Calcarb et de pin blanc.

1.7.2 Perspectives

Ce travail est une contribution à l’effort continu de trois communautés pour mieux décrire les

interactions entre les matériaux pyrolysés et les écoulements à haute température. Classées selon les

thèmes abordés dans les six articles, les principales perspectives sont maintenant présentées.

Chapitre 3 aborde l’analyse du processus d’entrée dans les atmosphères planétaires. Ce travail met en

évidence un manque particulier de mécanismes chimiques fiables. Dans l’optique d’une modélisation

plus réaliste, des efforts accrus doivent être consentis pour le développement de modèles de chimie

hors équilibre.

Chapitre 4 propose l’analyse d’une combustion de bûches de bois par la mise en œuvre et l’utilisation

d’un code couplé matériau-écoulement externe. Malgré la nature avancée de la simulation, différents

aspects physiques ont été négligés. La phase solide est considérée comme rigide, le rayonnement n’est

pas pris en compte, la combustion est modélisée avec un modèle laminaire simplifié à taux finis, et le
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mécanisme de pyrolyse est décrit avec un modèle de base à réactions multi-composants.

Le Chapitre 5 étudie la proportionnalité directe entre le débit et le gradient de pression des écoule-

ments creeping et continus. Le Chapitre 6 étend l’étude à 0.1 < Kn < 0.01 < pour tenir compte des

effets raréfiés dans le régime de glissement. L’extension à des nombres de Reynolds élevés manque

pour compléter l’analyse, et notamment pour étudier comment la proportionnalité entre le débit et le

gradient de pression change à cause des effets inertiels.

Chapitre 7 se concentre sur l’évaluation du coefficient de transfert de chaleur volumétrique en fai-

sant deux hypothèses principales. Les écoulements sont supposés incompressibles,ce qui signifie que la

thermodynamique n’est pas prise en compte et que des variables constantes sont supposées dans le

domaine. Il s’agit d’une hypothèse forte par rapport aux applications d’intérêt, où les températures

peuvent atteindre des milliers de degrés et où les écoulements compressibles doivent être considérés. La

deuxième hypothèse concerne le tenseur de conductivité thermique effective. Cette propriété est définie

uniquement en termes de diffusion moléculaire, tandis que les effets de dispersion et de tortuosité sont

négligés dans l’étude. La détermination numérique du tenseur de conductivité thermique nécessite la

définition d’une nouvelle stratégie numérique.

Chapitre 8 étend l’analyse aux phases solides déformables. L’étude est basée sur les hypothèses de pe-

tite déformation, de matériau solide élastique linéarisé et de matériaux isotropes. Ces hypothèses sont

très fortes si l’on considère que l’application principale concerne la déformation du bois. L’extension

aux modèles orthotropes et aux comportements de plasticité doit maintenant être envisagée.
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Chapitre 2

Summary of the Thesis

Nomenclature

Latin Letters

A Arrhenius law pre-exponential factor [s−1]
A generic element/species
C fourth-order stiffness tensor [kg m−1 s−2]
cp specific heat at constant pressure [J kg−1 K−1]
D displacement field [m]
E Arrhenius law activation energy [J mol−1]
e specific internal energy [J kg−1]
Esm Young modulus [kg m−1 s−2]
F effective diffusion flux [kg m−2 s−1]
f generic volume force [m s−2]
g specific Gibbs free energy [J kg−1]
h specific absolute enthalpy [J kg−1]
h

v
volumetric heat transfer tensor [W m−3 K−1]

hv volumetric heat transfer coefficient [W m−3 K−1]
I identity tensor
K permeability tensor [m2]
k thermal conductivity tensor [W m−1 K−1]
k thermal conductivity coefficient [W m−1 K−1]
keq, kfw, kbw equilibrium, forward, and backward chemical rate constants
l, L characteristic lengths at the microscopic and macroscopic scales [m]
M molar mass [kg mol−1]
m,n Arrhenius law parameters
n number of moles
Ng number of gaseous species
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Nomenclature

Np,i number of sub-phases in the solid phase i
Ns number of solid phases
Nt number of reactants and products in a chemical reaction
Pi,Pi,j solid phase i and sub-phase j of solid phase i
p pressure [Pa]
Q effective diffusion heat flux [J m−2 s−1]
R universal perfect gas constant [J kg−1 K−1]
r representative elementary volume dimension [m]
R specific perfect gas constant [J mol−1 K−1]
S specific surface [m2 m−3]
s specific entropy [J kg−1 K−1]
t time [s]
T temperature [K]
v convective velocity [m s−1]
v specific volume [m3 kg−1]
V averaging volume [m3]
Vi volume of phase i [m3]
x microscopic coordinates [m]
X macroscopic coordinates [m]
X molar fraction
y species mass fraction
z element mass fraction

Greek Letters

α thermal expansion tensor [K−1]
α thermal expansion coefficient [K−1]
β slip correction tensor [Pa]
γ phase indicator
ϵ strain tensor
ϵ volume fraction
θ angle of velocity orientation
Θ active site density [mol m−3]
λ mean free path [m]
µ dynamic viscosity [Pa s]
µsm, λsm Lame’s constants [kg m−1 s−2]
ν stoichiometric coefficient
νsm Poisson ratio
ξ pyrolysis contribution tensor

ξ pyrolysis contribution coefficient
πk pyrolysis mass production rate of element/species k [kg m−3 s−1]
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Nomenclature

Π global mass production rate of the pyrolysis reactions [kg m−3 s−1]
ρ density [kg m−3]
σ stress tensor [kg m−1 s−2]
τ viscous stress tensor [N m−2]
τ total advancement of the pyrolysis reactions
χi,j advancement of the pyrolysis reaction of sub-phase j within phase i
ω vorticity [s−1]
ωi production rate of species i [mol m−3 s−1]
ωh

i heterogeneous reactions mass production rate of species i [kg m−3 s−1]
Ωh global mass production rate of the heterogeneous reactions [kg m−3 s−1]

Subscripts and Superscripts

0 initial time
bw backward
cl cluster
eff effective
eq equilibrium
f fluid
fw forward
g gas
i, j, k indexes used in the sum/product operators
s solid
sm solid material

Formalism

A second order tensor A
A vector A
A scalar A
⟨ ⟩ intrinsic average
∂t partial derivative to t
∂x gradient operator
∂x · divergence operator
tr() trace operator∑︁Nt

j=1 sum operator with index j varying from j = 1 to j = Nt∏︁Nt
j=1 product operator with index j varying from j = 1 to j = Nt

∗ non-dimensional variable

Adimensional Groups

Kn Knudsen number
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SUMMARY OF THE THESIS

Nomenclature

Pe Peclet number
Re Reynolds number

Acronyms

CMT Computed Micro-Tomography
LTE Local Thermal Equilibrium
LTNE Local Thermal Non-Equilibrium
MSL Mars Science Laboratory
PATO Porous material Analysis Toolbox based on OpenFoam
TACOT Theoretical Ablative Composite for Open Testing
TPS Thermal Protection System

2.1 Porous Materials

A porous medium consists of a solid structure, the matrix, and empty spaces, the pores. The latter

are usually filled by some fluid, such as air, water, oil or a mixture of different fluids. Porous materials

are encountered almost everywhere in daily life, having both geological (e.g. rocks, soil), biological

(e.g. bones, wood, cork), and man-made nature (e.g. cements, ceramics, polymer) origins. Their main

characteristic is that they can be described in different ways depending on the scale at which they are

looked at, as illustrated in Fig. 2.1. Wood, bone, ceramic, and carbon fiber felt structures are represen-

macro

wood bone
ceramic

(continuum)
 scale

 micro
 (pore)
 scale

source www.wood-database.com source www.chemistryworld.com source www.preciseceramic.com

Observed Scale

carbon 
fiber felt

Figure 2.1 – Micro (pore) scale and macro (continuum) scale representations of four porous materials:
wood, bone, ceramic, and carbon fiber felt.
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ted in two different ways: in the upper part of the figure they are showed at the scale at which we are

used to seeing them, i.e. the macroscopic scale, or continuum scale; while in the lower part they are

zoomed in at the microscopic scale, or pore-scale, where their porous structure is revealed. The inter-

action between a permeable porous medium and a fluid penetrating through its pores can be studied at

both scales using numerical simulations. At the microscopic level the description is based on classical

fluid-solid mechanics, which may lead to some difficulties when dealing with complex geometries, but

they prove to be essential for visualizing and understanding the physics of the interaction. Differently,

at the macroscopic scale, the solid and fluid are homogenized in an equivalent porous continuum

material and transfer phenomena are described by averaged governing equations. The two scales are

linked together by upscaling processes. The most popular ones in the field of porous media are: the

homogenization theory [14], the volume-averaging technique [15], and stochastic methods [16]. The

different approaches lead to the formulation of equivalent continuum models, provided that the same

level of mathematical approximations and the same physical hypotheses are considered [17], mainly

the assumptions of scale separation and the existence of a representative elementary volume (REV) 1

where small scale variations are smoothed. This is illustrated in Fig. 2.2. At the continuum-scale,

Representative
Elementary Volume Averaging 

Volume (V)

r L

lg

ls1

ls2

1 2
L >> r >> ls , ls , lg

PORE-SCALE MACRO-SCALE

Equivalent Porous
Continuum Material

Figure 2.2 – Generic concept of the upscaling process. The process relies on the hypotheses of scale
separation (L >> r >> ls1, ls2, lg) and the existence of a REV where the small scale variations are
smoothed.

details of the microscopic structure of the pores and their interaction with the flow are lost. However,

the average information is contained within the effective properties. Examples of the latter are the

permeability tensor, heat transfer coefficient, effective thermal conductivity and stress tensors. Given

1. With reference to the volume averaging technique.
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their physical importance, their correct estimation is essential for model accuracy. Depending on the

needs and conditions, different ways of determination can be followed. Experiments are widely used in

the literature [18–25], however, although the filed of microfluidics is progressing vert fast, the influence

of the microscopic structure on the behavior of the fluid-porous material interaction cannot yet be

directly observed for complex materials. To this end, numerical simulations are needed. The geometry

of a porous medium can be obtained either by an idealized mathematical representation [21,26–30] or

from a reconstructed digital image [31–38]. In the former case, the pore structure must be described

from a statistical point of view [39] and the geometry reconstructed by small primitive objects wi-

thin a finite domain [30]. Differently, if a digital image is available, simulations are performed on the

exact geometry. This allows direct visualisation of the behaviour of transport quantities and gradients

throughout the domain at the pore level and a clear observation of how the latter are affected by the

microscopic characteristics of the material. Numerical simulations need an appropriate set of boun-

dary conditions, although this is not always straightforward, especially when dealing with numerical

domains that are not big enough to be considered as REV [40,41]. Finally, the third way to determine

effective properties is to use correlations. They are obtained through a comprehensive understanding

of physics, derived from experimental or theoretical analysis of the problem [28, 34, 38, 42–44]. Their

applicability is usually limited to known geometries and within specific ranges of conditions (such as

specific Reynolds or Peclet intervals).

2.2 Reactive Porous Materials in High-Temperature Flows

Various technologies and engineering applications are centered on porous materials. Catalytic

converters for water treatment [45], filtering devices [46], microfluidic sensors [47], enhanced oil re-

covery [48], to name a few. In this work, attention is oriented towards the subset of reactive porous

materials interacting with high-temperature flows, a theme with a breadth of applications ranging from

the design of a porous heat shield of a space vehicle entering an atmosphere, to the simulation of the

burning of a match. Despite the clear difference in terms of external conditions, these applications are

described by the same physical phenomena from a material point of view, as schematized in Fig. 2.3.

As different materials and external conditions are considered, the temperature ranges and chemical

mechanisms are not the same for both cases. Some examples of these differences are showed in blue

for the burning match and in red for the ablative porous carbon/phenolic material. However, the same

generic phenomenology applies to both. The conservation laws within the materials are the same and

the same mathematical model may be used to describe their behaviors. The topic of reactive porous

materials interacting with high-temperature flows is of great relevance particularly for the biomass,

space, and fire-safety communities. Over the past decades, these scientific communities have addressed

the subject by targeting several fundamental aspects. A brief introduction to the three communities

and a review of their key strengths is now presented.

1. The biomass community. Nowadays, the effects of climate change are quite evident (greenhouse

effect, global warming, Earth overshoot day 2) and embracing green solutions is becoming in-

2. Calendar date of the year when the humanity’s demand for ecological resources and services exceeds what Earth
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Figure 2.3 – Simplified illustration of the physical phenomena from a material point of view of a
burning match (blue) and of a ablating porous carbon/phenolic material (red). The text in yellow and
black applies to both.

creasingly important [94, 95]. Fig.2.4 shows the world annual energy consumption by source 3.

It can be observed that biomass is the most widely used source of renewable energy. The term

biomass generally refers to a plant-derived material that can be thermally converted into high-

value bio-hydrocarbon molecules [49,50]. The thermo-chemical phenomena behind this process is

pyrolysis, which transforms substances under the effect of heat and produces different chemical

species according to the imposed conditions [51, 52]. The main objective of the biomass com-

munity is to develop models that can be used to improve the techniques (temperature, heating

rate, time, etc) to transform lignocellulosic biomass in high-value bio-hydrocarbon molecules.

The first pyrolysis model is attributed to Bamford, Crank and Malan [53]. According to this

can regenerate in that year.
3. Data are from 2016, but similar trends hold nowadays.
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Figure 2.4 – World energy consumption by source in 2016. Source https://www.iea.org/. Biomass,
with 9.4% of the total energy consumption, is the most used source of renewable energy.

model, pyrolysis is modeled as a first-order reaction following an Arrhenius law, and an ordi-

nary differential equation is solved to estimate the mass loss as a function of time. This allows

capturing the pyrolysis mass loss at a reduced computational cost. Following this work, several

models have been developed over the years, each characterized by a different level of accuracy in

describing chemical reactions. The simplest level corresponds to single reaction mechanisms [54],

in which only a single decomposition reaction is considered. Greater accuracy is provided by the

multi-component single reaction models [55], where the description accounts for the feed-stock.

At higher complexity are the competitive models [56] that introduce competitive reactions to

predict different product distributions depending on the conversion conditions. Finally, the most

accurate models are the competitive multi-component models [57, 58], which efficiently account

for feed-stock dependence and the effect of temperature on yields;

2. The fire-safety community. Fire safety is the set of practices intended to reduce the destruction

caused by fire. It includes measures to prevent and detect an uncontrolled fire, those used to

contain and extinguish the development and effects of a fire after it has broken out, and those to

assess the release of suffocating chemical species. Particular emphasis has been placed on porous

media, due to their frequent use in many civil and aeronautical projects: timber used for the

construction of houses, bridges, and generic buildings [59]; composite materials used as struc-

tural parts in aircrafts and spacecraft systems [60]. Because of the flammable nature of these

materials, it is important to be able to predict their potential in increasing fire hazard with the

consequent loss of stiffness, strength, and resistance of the structure [61,62]. For this reason, se-

veral studies have attempted to define their performance characteristics during combustion, such

as their fire retardancy [63], their flammability properties [64], and their gaseous emissions [65].

Thus, the strength of the fire safety community lies in the ability to couple the material with

the environment and describe the fire behavior for a given material, including the processes of

ignition, fire growth, propagation and extinction [66].
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3. The space community. Extra-orbital missions often involve the analysis of the entry process into

planetary atmospheres at hypersonic speeds [67]. Under these conditions, a high enthalpy curved

detached shock (bow shock) forms in front of the spacecraft and the kinetic energy is progressi-

vely dissipated into heat, which reaches the surface by diffusion, convection, and radiation. The

temperature at the surface of the material can increase up to 4000 K for severe entry conditions.

To ensure the integrity of the structure, a Thermal Protection System (TPS) is designed to

absorb and dissipate the heat through phase changes, chemical reactions, and material removal.

Charring ablative materials represent a traditional approach to thermal protection [68, 69]. A

famous example is the new class of phenolic impregnated ablators (PICA [70], PICA-X, AS-

TERM [71]) that consists of a carbon fiber preform partially impregnated with phenolic resin,

resulting in very light weight, good insulators, and high mechanical strength.

Numerical modelling of a TPS must be able to capture the material removal and the heat dis-

sipation within the material. If not, the modelling may lead to inaccuracies in the estimation of

the efficiency of the ablator, and thus to a greater margin of safety in the design process. For this

reason, the space community has turned its attention primarily to the modeling of heterogeneous

chemistry and transport phenomena, as evidenced by the vast amount of software developed over

the years. In the frame of a code comparison carried out in the aerospace community [72], the

models implemented in twenty-five TPS design and research codes were reviewed, compared,

and classified into three different categories: type-1 models, which are implemented in all design

codes and describe the core phenomena of the pyrolysis-ablation problem. They are well adapted

for 1D, quasi steady-state, and chemical equilibrium conditions; type-2 models, which increase

their accuracy by including the implementation of the momentum conservation to simulate the

direction of the pyrolysis flux for constant element/species mixtures; type-3 models, which com-

plete the description by including element (or species) conservation equations and the associated

chemical equilibrium (or finite-rate) models.

Based on the open literature, a generic model has been proposed as an attempt to encompass the

fundamental physics requirements of the three applications [73–75]. This generic model, implemented

in the Porous material Analysis Toolbox based in OpenFoam (PATO) released open source, is now

used by academia and industry teams of the three communities. The capabilities of PATO with respect

to the contributions and developments of each community understandings are presented in Fig. 2.5.

A selection of four codes per community is showed. An effort was made to select codes amongst

the most well-known, although priority was given to a couple of recent implementations. The link

between the table and the mathematical model can be made through the description of the terms of

the different conservation equation (column 2) and through the numbers of the terms in the PATO

column, which refer to the equation numbers and order of these terms in the equations. For example,

in the solid mass conservation equation, the pyrolysis term is the second term in Eq. (2.25). Each

code is described in terms of the year of the initial publication, the type of the numerical methods,

the dimensions, the availability of the code, and in terms of the model classification based on the

criterion introduced by Lachaud et al., 2011 [72]. It can be observed that PATO is the only code from

the TPS community to implement a type (3) model. Different type (3) models have been developed

by the two other communities. In particular, ThermaKin [76], Gpyro [77], and MoDeTheC [78] are
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Figure 2.5 – Comparison of the mathematical models implemented in simulation tools of the three
communities. Credit J. Lachaud.
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three popular codes of the fire community, while SPY [52], bioSmoke [79], and the codes developed

by Ratte et al., 2009 [80], and Pozzobon et al., 2018 [81], are the codes of the biomass community

implementing the most advanced features to our knowledge. In many codes, the liquid water motion is

not modeled but a vaporization model is implemented. The same choice was made in PATO. However,

the codes by Ratte et al., 2009 [80], and Pozzobon et al., 2018 [81], implement drying using a generalized

Darcy formulation. TPS and fire codes adopt integrated reactive boundary layer models as boundary

conditions and assume (with the exception of PATO) constant elemental composition of the pyrolysis

gases and use chemical equilibrium, while biomass models consider species conservation and finite-rate

chemistry. PATO is the only code that is directly coupled to external flow codes. Solid mechanics

capabilities were not considered in the code classification. However, thermo-mechanics models are

implemented in Amaryllis [82], Char [83] and PATO. In addition, PATO takes into account pyrolysis

shrinkage. SPY and bioSmoke have included shrinkage models allowing to linearly compress the mesh

as pyrolysis progresses.

2.3 Objectives of the Thesis

Two objectives define this thesis. The first is to contribute to modelling the behaviour of reactive

porous materials in high-temperature flows, as current state-of-the-art models are still limited in

predicting all the hidden physics behind the application. To this end, momentum conservation, solid

deformation, and conservation of energy are investigated. These three aspects are mainly strengthened

by the introduction of slip regime effects, by accounting for pyro-mechanical deformation, and by

allowing solid and flow phases to be in local thermal non-equilibrium between each other. Two different

multi-physics applications are considered and analyzed in order to verify the impact of these physical

aspects on the model.

Regardless of the model employed at the macroscopic scale to describe the interaction between a

reactive porous material and a high temperature flow, the accuracy of the description depends on

the precision with which the effective properties are estimated based on the micro-scale structure and

properties. Their derivation proves to be a complex task and the literature does not provide a complete

numerical methodology for such purpose. The second objective of this thesis is therefore to establish

and validate numerical strategies to estimate the effective properties of anisotropic porous media in

the generic case of a non-periodic microscopic volume available through microtomography.

2.4 Structure of the Thesis

The dissertation is presented in the form of a compilation of articles. The introductory chapter is

written in both French (Chapter 1) and English (Chapter 2). In the introductory chapter the thesis

is outlined by exposing the background, state of the art, objectives, applications of interest, physical

models, main results obtained, and the conclusion. The articles are placed in six independent chapters:

1. Two-Temperature ablative material response model with application to Stardust and MSL at-

mospheric entries;
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2. Simulation of wood combustion in PATO using a detailed pyrolysis model coupled to fireFoam;

3. Computation of the permeability tensor of non-periodic anisotropic porous media from 3D

images;

4. Multiscale modeling of flow in porous thermal protection systems from the continuum to the slip

regime;

5. Volumetric Heat Transfer Coefficient: Numerical Evaluation and Introductory Analysis to Ani-

sotropic Effects;

6. Multi-Scale modeling of wood shrinkage during pyrolysis.

Two main parts are defined according to the set objective. The first part encloses articles 1 and 2,

while the remaining articles are incorporated in the second part. The manuscript includes an Appen-

dix presenting a derivation of macroscopic equations for the mass, momentum, and energy transfer in

porous media with the volume averaging technique.

A nomenclature is given at the beginning of each chapter. A general bibliography is included at the

end of the manuscript, collecting citations of all the articles.

2.5 Physical Model

The numerical description of a porous material interacting with a generic flow relies on the scale

of interest. At the continuum-scale, volume averaged equations are adopted, while at the pore-scale,

conservation of mass, momentum, and energy is solved by the Navier-Stokes equations.

2.5.1 Macro-Scale

2.5.1.1 Assumptions and Notations

The numerical model used in this work is based on the generic local thermal equilibrium model

previously implemented in PATO [75]. It assumes the interaction between a multi-species reactive

gas mixture (Ng gaseous species) with a multi-phase reactive material (Ns solid phases). The gaseous

species are assumed to be in local thermal equilibrium among themselves, as are the solid phases.

However, the material and the gas mixture are no longer assumed to be in local thermal equilibrium in

the current worker. No liquid phase has been modeled. Any liquid, if present (e.g. water), is modeled

as a solid phase. Continuum equations are obtained either through upscaling theories 4, or defined

heuristically. With reference to the volume-averaging technique, the fundamental hypothesis are the

existence of a REV (Fig. 2.2) in which properties can be phase averaged and the satisfaction of the

scale separation. The volume fraction ϵ of a given phase i is defines as

⟨γi⟩ = ϵi(X, t) = 1
V

∫︂
Vi

γi(X + x, t)dx (2.1)

4. The derivation of the governing equations for non-reactive materials and incompressible flow is presented in the
Appendix.

66



2.5. PHYSICAL MODEL

where the average used is called intrinsic average, V is the averaging volume, Vi is the volume of

phase i within the averaging volume, γi is the phase indicator, with γi = 1 within phase i and γi = 0
outside phase i, X and x denote the macroscopic coordinate and the local coordinate within the

averaging volume, respectively, and t is the time. The ⟨ ⟩ notation denotes the intrinsic average. The

latter applies for all the phase variables. As the entire section deals only with the continuum-scale,

unmarked notations are employed to simplify the reading of the equations. The averaged values of the

extensive variables (volume, mass, energy) in the domain are obtained from the weighted sum of the

superficial phase values. For example, the total density ρ is given by

ρ = ϵgρg +
Ns∑︂
i=1

ϵiρi (2.2)

where the subscript g identifies the gas mixture. Intensive variables (pressure, velocity, temperature)

are solved by the averaged equations and effective properties (tortuosity, permeability, conductivity)

must be determined by experiments, numerical simulations, or correlations.

For further clarity, throughout the manuscript, the solid phase is indicated with the subscript s; the

gas mixture inside the porous material is indicated with the index g; the external flow, outside of the

material, is indicated with the subscript f .

2.5.1.2 Gas Mixture: Thermodynamic Properties

The gas is assumed to be a mixture of thermally perfect gases (perfect gases whose specific heats

are function of the temperature only). The total pressure of the gas mixture, pg, is given by Dalton’s

law

pg =
Ng∑︂
i=1

pi (2.3)

The single gas obeys the perfect gas law

pivi = niRTi (2.4)

where vi, ni, and Ti identify the volume, the number of moles, and temperature of the gas i, respectively,

and R is the universal gas constant. The mixture and the single gases share the same value of the

specific volume, vi = vg. Moreover, the gases are supposed to be in local thermal equilibrium among

themselves, Ti = Tg. The gas mixture obeys the perfect gas law

pgvg = ngRTg (2.5)

Thermodynamic properties are derived from the mixing rules: the properties of the mixture are obtai-

ned as the sum of the species properties weighted by the composition of the mixture. The composition

of the mixture can be described by the molar fraction or the mass fraction. The molar fraction of a

species, Xi, is defined as the ratio of the species number of moles ni, divided by the mixture number

of moles ng

Xi = ni

ng
= pi

pg
(2.6)
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The mass fraction of a species, yi, is defined as the ratio of the species mass divided by the total

mixture mass. The definition can also be written in terms of the densities ratio

yi = ρi

ρg
(2.7)

Once Xi or yi are known, the mixing rules can be applied. Just to give a few examples, the mixture gas

constant Rg, molar mass Mg, specific absolute enthalpy hg, specific entropy sg, and specific internal

energy eg are given by

Rg =
Ng∑︂
i=1

yiRi (2.8)

Mg =
Ng∑︂
i=1

Mi

yi
(2.9)

ρghg =
Ng∑︂
i=1

ρihi (2.10)

ρgsg =
Ng∑︂
i=1

ρi(si −RilnXi) (2.11)

ρgeg =
Ng∑︂
i=1

ρihi −
Ng∑︂
i=1

pi (2.12)

The mixture specific heat at constant pressure cp,g is estimated directly from its definition

cp,g =
(︂∂hg

∂Tg

)︂
p

(2.13)

The knowledge of the gas composition and species thermodynamic properties is essential to recover

the mixture properties. The thermodynamic properties of a single species can be evaluated (1) by

functions from a given set of polynomials (NASA7 and NASA9 for examples) or (2) by partition

functions. Case (1) allows a direct evaluation of the properties. Case (2) requires the introduction of

concepts of statistical thermodynamics and this is beyond the scope of this work. Further details are

given in the study of Scoggins and Magin, 2014 [84]. The evaluation of the gas composition follows

different procedure depending on whether equilibrium or chemical non-equilibrium is assumed. This

is detailed in Section 2.5.1.4 and in Section 2.5.1.5.

2.5.1.3 Gas Mixture: Governing Equations

The global mass conservation equation, which is determined by the sum of the species conservation

equations, reads

∂t(ϵgρg) + ∂X · (ϵgρgvg) = −
Ns∑︂
i=1

∂t(ϵiρi) = Π + Ωh (2.14)
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where vg is the convective gas velocity, and the terms on the second right-hand side account for

the exchanges with the solid phases: pyrolysis Π and heterogeneous reactions Ωh (described in Sec-

tion 2.5.1.9). The element or species conservation equations are needed in the case of chemical equili-

brium or non-equilibrium. These equations are addressed in the respective sections.

The average gas velocity is obtained by solving the momentum-conservation equation. In porous media,

the volume averaged momentum conservation reads

vg = − 1
ϵg

[︂ 1
µg
K

(︂
1 + 1

pg
β

)︂]︂
· ∂Xpg (2.15)

where µg is the dynamic viscosity of the gas, K is the permeability tensor, and β the slip correction

to account for slip effects. The average gas velocity can be introduced into the gas mass conservation.

By using the perfect gas law, the final form of the momentum conservation reads

∂t

(︂ϵgMg

RTg
pg

)︂
− ∂X ·

[︂pgMg

RTg

1
µg
K

(︂
1 + 1

pg
β

)︂
· ∂Xpg

]︂
= Π + Ωh (2.16)

A local thermal non-equilibrium model is considered for the energy description of the system. This

means that two equations are needed to describe the mixture and the solid phases from an energy

point of view. For the mixture, the energy governing equation writes

ϵgρgcp,g∂tTg +
Ng∑︂
i=1

hi∂t(ϵgρgyi) − ∂t(ϵgpg) = −∂X ·
(︂
ϵgρgvghg

)︂
+ ∂X ·

(︂
k
eff,g

· ∂XTg

)︂
+

+ ∂X ·
Ng∑︂
k=1

Qk + hv

(︂
Ts − Tg

)︂
(2.17)

where k
eff

identifies the effective thermal conductivity tensor, Qk models heat transport by effective

diffusion of the species [75], and hv is the volumetric heat transfer coefficient.

2.5.1.4 Gas Mixture: Equilibrium Chemistry

In the case of equilibrium, the species conservation equations are not needed, but chemical reactions

can occur in the gas phase. When these happen, the masses of the participating molecules are not

conserved, while the masses of the nuclei of the chemical elements constituting the same molecules

are conserved. Thus, the element conservation equations for each element in the mixture must be

considered

∂t(ϵgρgzk) + ∂X · (ϵgρgzkvg) + ∂X · Fk = πk (2.18)

where zk identifies the k-element mass fraction, Fk models the effective diffusion flux [75] of the k-

element, and the term on the second hand-right, πk, represents the pyrolysis production rate of the

k-element.

The composition of the mixture is explicitly defined by the minimization of the specific Gibbs free

energy, g, of the mixture. The latter, for a pure species i is defined as [84]

gi = hi − siTg (2.19)
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For an equilibrium mixture, the Gibbs energy is function of the local pressure and temperature only.

From the definition of the Gibbs free energy, Eq. (2.19), the following form of the law of mass action

can be derived [85] and applied to a generic chemical reaction

Nt∏︂
j=1

p
νj

j = keq (2.20)

where keq is the equilibrium constant rate for the given chemical reaction and is a function of the

temperature only,
∏︁Nt

j=1 denotes the product notation for all the Nt reactants and products terms, j,

in the chemical reaction; νj represents the stechiometric coefficient of the j−term. By combining the law

of mass action for each reaction in the mixture, Dalton’s law (Eq. (2.3)), and the element conservation

equations (Eq. (2.18)), the partial pressure of each species can be obtained. The knowledge of the

partial pressure is enough to recover the mixture composition (Eq. (2.6)), thus the thermodynamic

properties of the gas phase. It should be remarked that, at equilibrium, the chemical composition of

the reactive mixture is a function of local pressure and temperature.

2.5.1.5 Gas Mixture: Non-Equilibrium Chemistry

In the case of chemical non-equilibrium, the species continuity equations must be solved

∂t(ϵgρgyi) + ∂X · (ϵgρgyivg) + ∂X · F i = πi + ϵgωiMi (2.21)

where the source terms in the equation are the mass production rate of the i−species due to pyrolysis,

πi, and the production rate of the i−species chemical reactions, ωi.

The species production rates due to the chemical reactions in the mixture must be estimated in order

to compute the mixture composition. A generic elementary reaction j characterized by Nt reactants

and products, can be written as
Nt∑︂
i=1

ν ′
ijAi ⇌

Nt∑︂
i=1

ν ′′
ijAi (2.22)

where Ai represents the name of species i, and ν ′
ij and ν ′′

ij are the stoichiometric coefficients of the

reactants and products respectively. Any type of elementary reaction can be expressed in this form.

The species production rate of this j-th elementary reaction writes

ωi,j = (ν ′′
ij − ν ′

ij)
[︂
kfw,j

Nt∏︂
i=1

[Ai]ν
′
ij − kbw,j

Nt∏︂
i=1

[Ai]ν
′′
ij

]︂
(2.23)

where kfw,j and kbw,j are the forward and backward chemical rate constants. These two coefficients

are connected through the equilibrium constant rate keq,j as follows

kbw,j = kfw,j

keq,j
(2.24)

The equilibrium constant rate can sometimes be obtained from experiment and can always be cal-

culated from statistical thermodynamics [85]. An Arrhenius rate law is usually used to specify the
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forward reaction rate coefficient [84]. The mixture composition is obtained by solving Eq. (2.23) for

all chemical reactions.

2.5.1.6 Gas Mixture: Transport Coefficients

The derivation of the dynamic viscosity, mixture thermal conductivity, and the diffusion coefficients

is beyond the scope of this thesis. A library named Mutation++ is used for their computation. More

details on this are available in the study of Scoggins and Magin, 2014 [84].

2.5.1.7 Solid Phase: Governing Equations

The average mass evolution for each solid phase i reads

∂t(ϵiρi) = −πi − ωh
i (2.25)

where the changes in density for the solid phase i are given by the pyrolysis πi and heterogeneous

reactions ωh
i contributions.

Under the local thermal non-equilibrium assumption, an energy conservation equation is needed for

the solid phase. The equation is as follows

Ns∑︂
i=1

ϵiρicp,i∂tTs +
Ns∑︂
i=1

hi∂t(ϵiρi) = ∂X ·
(︂
k
eff,s

· ∂XTs

)︂
+ hv

(︂
Tg − Ts

)︂
(2.26)

It should be remarked that by assuming Tg = Ts = T and summing this equation with the respective

energy equation for the gas mixture (Eq. (2.17)), the local thermal equilibrium model is recovered.

The solid phase is free to deform. The assumptions of small strain and linearized elastic solid material

are considered here. The governing equation is given by

∂t(ρs ∂t(D)) = ∂X · σ + ρf (2.27)

where the quantitiesD, σ, and f denote the displacement field, the stress tensor, and a generic volume

force, respectively. The link between the stress (σ) and the strain (ϵ) tensors is given by the constitutive

law

σ = C :
(︂
ϵ− α(T − T0) − ξ(τ − τ0)

)︂
(2.28)

where C is the fourth order stiffness tensor [86], α and ξ are the tensors of the thermal expansion

coefficients (α) and pyrolysis shrinkage coefficients (ξ), τ stands for the total advancement of the

pyrolysis reactions, and the subscript 0 refers to the initial time. Assuming the solid to be isotropic,

the constitutive law (Eq. (2.28)) simplifies to

σ = 2µsmϵ+ λsmtr(ϵ)I − (2µsm + 3λsm) α (T − T0)I − (2µsm + 3λsm) ξ (τ − τ0)I (2.29)

where tr() denotes the trace operator, µsm and λsm are the Lame’s parameters, and I denotes the

identity tensor. The subscript sm corresponds to solid material. Lame’s parameters are expressed in
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terms of the engineering constants, i.e. the Young modulus Esm and the Poisson ratio νsm, by the

following expressions

λsm = Esm νsm

(1 + νsm)(1 − 2νsm) (2.30)

µsm = Esm

2(1 + νsm) (2.31)

2.5.1.8 Solid Phase: Pyrolysis

Each solid phase Pi may decompose following several pyrolysis kinetics. It is a common practice to

split each phase i into Np,i sub-phases to model different degradation mechanisms. The decomposition

of a generic sub-phase j (from the solid phase i) leads to the production of different element/species

Ak according to the stoichiometric coefficients νi,j,k, as follows

Pi,j −→
Ng∑︂
k=1

νi,j,k Ak (2.32)

Pyrolysis reactions are modeled by Arrhenius laws. Thus, the advancement of the pyrolysis reaction

χi,j of sub-phase j within phase i is defined as

∂tχi,j = (1 − χi,j)mi,j T
ni,j
s Ai,j exp

(︂
− Ei,j

RTs

)︂
(2.33)

where A and E are the pre-exponential factor and activation energy of the Arrhenius law, and mi,j and

ni,j are the Arrhenius law parameters. The total advancement in the pyrolysis process, τ , is evaluated

as follows

τ =
Ns∑︂
i=1

Np,i∑︂
j=1

ϵi,0ρi,0yi,j∑︁Ns
i=1

∑︁Np,i

j=1 ϵi,0ρi,0yi,j

(1 − χi,j) (2.34)

where yi,j is the mass fraction of sub-phase j within phase i. The total production rate of spe-

cies/element k by decomposition of the solid is given by

πk =
Ns∑︂
i=1

Np,i∑︂
j=1

νi,j,k ϵi,0 ρi,0 yi,j ∂tχi,j (2.35)

The overall pyrolysis-gas production rate is obtained by summing π over all gaseous species

Π =
Ng∑︂
k=1

πk (2.36)

2.5.1.9 Solid Phase: Heterogeneous Reactions

For elementary reactions, species production rates are given by Eq. (2.23). Non-elementary reac-

tions may be modeled using molar density exponents that are not equal to the molecularity, or addi-

tional terms can be added, for example to account for third body reactions or pressure drop.

72



2.5. PHYSICAL MODEL

Heterogeneous reactions deal with elementary chemical reactions between reactive solid phases and

gas species. A unified approach was proposed to deal with solid and gas species [75]. The effective

molar density of a reacting solid phase i may be conveniently modeled as

Xi = SiΘi

ϵg
(2.37)

where Si and Θi are the specific surface and active site density of the reacting solid phase i. This

allows introducing solid phases into the homogeneous chemical mechanism, solving homogeneous and

heterogeneous finite-rate chemistry in a coupled manner, and computing the effective reaction rates

with greater accuracy and numerical stability. The total mass change rate is thus the sum of all effective

reaction rates

Ωh =
Ns∑︂
i=1

ωh
i (2.38)

2.5.2 Micro-Scale

To fulfill the second objective, namely the derivation of the effective properties, pore-scale numerical

simulations are performed. Only the relevant micro-equations are presented, as chemistry, pyrolysis,

and mass transport are not taken into account. Intrinsic material properties are used at the pore-scale.

2.5.2.1 Compressible Flow

No discontinuities (no shock waves, no contact surfaces, no slip lines) and no volume forces are

considered in the domain. The mass, momentum, and energy conservation equations are the following

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tρ+ ∂x · (ρv) = 0

∂t(ρv) + ∂x ·
(︂
ρv ⊗ v + pI

)︁
= ∂x · τ

∂t(ρe) + ∂x · (ρve) = −p∂x · v + (τ∂x) · v + ∂x ·
(︂
k∂xT

)︂ (2.39)

where the local heat flux density is modeled with the Fourier law and k denoted the thermal conduc-

tivity coefficient. The energy conservation is expressed in terms of the specific internal energy e, and

τ is the viscous stress tensor. Under the assumption of Newtonian fluid and Stokes’ hypothesis, this

tensor is expressed as

τ = µ
[︂
∂x ⊗ v + (∂x ⊗ v)T

]︂
− 2

3µ(∂x · v) (2.40)
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2.5.2.2 Incompressible Flow

The assumption of incompressible flow is adopted in some chapters of the manuscript. In this case,

the system of Eqs. (2.39) reduces to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂x · v = 0

ρ∂tv + ρv · ∂xv − µg∂
2
xv = −∂xpg

ρcp∂tT + ρcpv · ∂xT = ∂x ·
(︂
k∂xT

)︂ (2.41)

where viscous dissipation is neglected.

2.5.2.3 Solid Deformation

The solid phase is free to deform. The same assumptions and governing equations presented in

Section 2.5.1.7 for the macro scale are used at the pore-scale. Under the assumption of small strain

and linearized elastic solid material, the governing equation writes

∂t(ρs ∂t(D)) = ∂x · σ + ρf (2.42)

The constitutive law links the stress (σ) and the strain (ϵ) tensors. Assuming the solid to be isotropic,

the constitutive is as follows

σ = 2µsmϵ+ λsmtr(ϵ)I − (2µsm + 3λsm) α (T − T0)I − (2µsm + 3λsm) ξ (τ − τ0)I (2.43)

where Lame’s parameters are linked to the engineering constants by the following expressions

λsm = Esm νsm

(1 + νsm)(1 − 2νsm) (2.44)

µsm = Esm

2(1 + νsm) (2.45)

2.6 Main Results

The main contribution of this thesis to the modeling of reactive porous material under high enthalpy

flows are highlighted in red in Fig. 2.6. This section provides a generic overview of these contributions

in relation to the two objectives defined in Section 2.3. A complete presentation and description of the

results can be found in the respective chapters.

2.6.1 First Part

The first part of the work studies the importance of two particular physical aspects in the nume-

rical description. The two studies are carried out in Chapters 3 and 4.
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Figure 2.6 – Main contribution of this thesis (in red) to the modeling of reactive porous material
under high enthalpy flows.

Chapter 3 investigates the assumption of Local Thermal Equilibrium (LTE) between the solid phases

and the pyrolysis gases for ablative materials under typical entry conditions. This hypothesis is generi-

cally justified by the fact that the thermal Peclet number within the pores is small. The thermal Peclet

number is a dimensionless number that quantifies the ratio of the rates of the processes of advection

and thermal diffusion

Pe = ρg cp |⟨vg⟩|l
k

(2.46)

Pe ≪ 1 is a necessary condition for thermal equilibrium in non-reactive materials. However, the va-

lidity of this analysis may fall under some circumstances. The thermal Peclet number may become

large due to high pyrolysis gas velocities, or additional physical phenomena not accounted for in the

Peclet analysis may become non-negligible, such as the change of enthalpy due to chemical reactions.

A Local Thermal Non-Equilibrium (LTNE) model is applied to the Theoretical Ablative Composite

for Open Testing (TACOT) under a wide range of conditions to assess the true range of validity of

the thermal equilibrium hypothesis. 1D simulations are performed on the Stardust and Mars Science

Laboratory atmospheric entry missions. Local thermal equilibrium and local thermal non-equilibrium

energy models are adopted. The comparison between the two models is carried out by monitoring

the temperature evolution within the material, pyrolysis gas blowing rate, pyrolysis zone, wall reces-

sion due to ablation, and the species concentrations within the material. Same conclusions hold for

both mission cases. Results for the Stardust case are reported in Fig. 2.7 for the chemical equilibrium

case and in Fig. 2.8 for the chemical non-equilibrium case. No significant deviation in the monitored

quantities is observed under chemical equilibrium conditions. In the case of chemical non-equilibrium,

instead, a small difference in the temperature prediction between the two thermal models is sufficient

to change the evolution of the species concentrations within the material.
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Figure 2.7 – Stardust case. Thermocouple data, blowing rates, pyrolysis zone, and wall recession
over time.
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Figure 2.8 – Stardust case. Species distribution within the material at time t = 40 s. At the left: a
zoom of the mass fractions near the surface with the external environment.

The numerical simulation of fire propagation requires capturing the coupling between wood pyrolysis,

which leads to the production of various gaseous species, and the combustion of these species in the

flame, which produces the energy that sustains the pyrolysis process. As can be seen in Fig. 2.5, with

the exception of PATO, no response code provides for direct material-external flow coupling. Chapter 4

proposes a multi-physical simulation where material and external flows are directly coupled, resulting

in the ability of the code to capture different physical phenomena. The numerical framework couples the

detailed three-dimensional pyrolysis model of PATO with fireFoam. The capability of the simulation

tool is illustrated on the the combustion of a wood log. Results, which are partially reported in Fig. 2.9,

highlight how the evolution of the flame and its temperature during the simulation are affected by the

concentration of the gaseous species produced in the material. The coupling effect affects the wood log

as well: due to the flame and temperature rise, the pyrolysis process accelerates and the concentrations

of species change according to the speed of the reactions. The simulation is able to capture the whole

pyrolysis process, until the complete charring of the wood and the resulting extinguishment of the

fire. Moreover, the puffing effect is observed during the evolution of the simulation: the fire exhibits

periodic fluctuations that follow each other with a numerical frequency that is approximately the same

as the theoretical one.
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Figure 2.9 – Combustion of a wood log. Six different snapshots representing the initial evolution of
the fire on the wood log.

2.6.2 Second Part

The effective macroscopic properties play a fundamental role in the continuum model, as highlighted

in the first part of the thesis: in Chapter 3 the analysis of the LTNE model is strictly related to

the value chosen for the volumetric heat transfer coefficient hv; in Chapter 4 the advancement of

the pyrolysis process, thus the behaviour of the flame, are strictly connected to the value chosen for

the permeability tensor, K. The second part of the work aims to establish and validate numerical

strategies to estimate the effective properties in the generic case of non-periodic anisotropic porous

media. To this end, four complementary studies are carried out in Chapters 5, 6, 7 and 8. The concept

map of these studies is showed in Fig. 2.10. Chapter 5 is the starting point of the analysis, which

Kn

hapter 5 (  )K

hapter 6 (β)
 hapter 7 (hv)

Pe

solid deformation
hapter 8 (             ),ξEsm,νsm,α

C
C

C

C

- Nominal Darcian permeability

- Gas rarefaction

- Thermal non-equilibrium

Figure 2.10 – Concept map of the studies in the second part of the manuscript.

considers creeping, continuum, and isothermal flows interacting with rigid non-reactive solid matrices.

Under these conditions, the permeability tensor, K, is the only effective property to characterize at the

macro-scale. From this starting point, the other chapters are introduced by considering more general
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conditions for the flow and solid phases. Chapter 6 extends the analysis for rarefied flows in the slip

regime. A dimensionless number is introduced. The Knudsen number is defined as the ratio of the

mean free path λ over the flow characteristic length l

Kn = λ

l
(2.47)

This dimensionless number represents the importance of the rarefaction effect. The higher its value,

the greater the rarefaction effect. In the slip regime, 0.01 < Kn < 0.1, the micro and macro scales

descriptions are slightly modified. At the micro-scale a slip boundary condition for the velocity field

must be added, while at the continuum scale the slip correction tensor, β, must be defined. Chapter 7

considers non-isothermal flows. Three different effective properties are introduced in the analysis: the

fluid and solid thermal conductivity tensors, k
eff
, and the volumetric heat transfer coefficient, hv. Only

the latter is investigated in the study and numerically defined for different values of the thermal Peclet

number (Eq. (2.46)) ranging from 0 to 1000. Chapter 8 generalizes the problem for deformable solid

phases. The analysis of the effective properties is enriched with the Young modulus Esm, Poisson

ratio νsm, thermal expansion tensor α, and the pyrolysis shrinkage tensor ξ. Each chapter performs

an in-depth analysis on the different numerical methods to estimate the effective properties, paying

particular attention to the effects of the boundary conditions on the numerical results. To fulfill the

objective and consolidate the analysis for generic non-periodic anisotropic porous media, the resulting

numerical strategies are applied to the two high-resolution 3D Computed Micro-Tomography (CMT)

images showed in Fig. 2.11. The domain (a) is a sample of virgin Calcarb [87], a carbon fiber preforms

(a )                        (b)

bow shock

boundary layer

hypersonic flow

payload

heat
shield

boundary layer

Figure 2.11 – High-resolution 3D tomography images considering for the determination of the effec-
tive properties. The Calcarb domain (a) is analyzed in Chapters 5, 6, and 7. The hard-wood match
domain (b) is considered in Chapter 8.

used as skeleton in heat-shield materials [68, 69, 88]. The domain (b) is a section of a hard-wood
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match. The permeability tensor of domain (a) is determined in Chapter 5. Written with respect to the

principal axes, the tensor is as follows

K =

⎡⎢⎣ 1.74 10−10 0 0
0 1.49 10−10 0
0 0 1.11 10−10

⎤⎥⎦ m2 (2.48)

A relative difference around 42 % is found with respect to the prediction obtained by Borner et al, 2017

[9]. This difference is attributed to the different working hypotheses: while Chapter 5 determines the

full tensor, the work of Borner et al, 2017 [9], assumes the permeability tensor to be initially aligned

with the principal axes and characterized by equal in-plane components. The slip correction tensor of

domain (a) is determined in Chapter 6. Written with respect to the principal axes, the tensor is as

follows

β =

⎡⎢⎣ 971.5 0 0
0 948.1 0
0 0 901.4

⎤⎥⎦ Pa (2.49)

A relative difference around 8 % is found with respect to the prediction obtained by Borner et al,

2017 [9], where the same assumptions made for the permeability tensor hold for the slip correc-

tion tensor. The volumetric heat transfer coefficient of domain (a) is determined in Chapter 7 under

the same conditions defined experimentally by Liu et al., 2022 [89]. The coefficient is found to be

hv = 1.6 108 Wm−3K−1, while the value found in the experimental analysis is hv = 109 Wm−3K−1.

The two values differ by an order of magnitude. Several reasons may lead to this difference: the Cal-

carb dataset considered for the numerical simulation is too small and not representative; the numerical

value assigned to the effective conductivity tensor is not considering for the dispersion and tortuosity

effects; the value of hv is so high that a local thermal equilibrium is achieved between the two phases,

making its experimental estimation rather complex. The thermoelastic-pyrolysis mechanical deforma-

tion of a cross section in the xy plane of domain (b) is characterized in Chapter 8. The resulting

numerical deformation is compared with the deformation undergone experimentally by the same slice

after a complete pyrolysis. This comparison is showed in Fig. 2.12. Due to the isotropic assumption,

the original square shape is preserved. Despite this difference in the final shapes, the numerical model

is able to predict the value of the final surface area with a relative error of 4.1%.

The determination of the effective properties is not the only result achieved. Different physical analysis

and observations are carried out in the second part of the manuscript.

Chapter 5 addresses the issue of defining a physical limit to the validity of the flow creeping regime

hypothesis. This limit is usually measured in terms of the Reynolds number, a dimensionless number

that characterizes the relative importance of inertial and viscous forces within a fluid

Re = ρg|⟨vg⟩|l
µg

(2.50)

For Re ≪ 1, viscous forces dominate and the flow is said to be in the creeping regime [90, 91]. This

criterion is too generic and it depends on the chosen value for the characteristic length. This choice is
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Figure 2.12 – Pyro-mechanical deformation of a 2D slice of domain (b) in the xy plane. The resulting
numerical deformation is compared with the actual deformation undergone experimentally by the same
cross section after a complete pyrolysis.

not trivial as porous micro-structures are very diverse and better characterized by different lengths.

For this reason, Chapter 5 defines a new criterion for delimiting the creeping regime based on the

vorticity field, ω, which describes the tendency of a flow to rotate

ω = ∂x × v (2.51)

For an incompressible flow, the velocity gradients at the boundaries generates the vorticity, which

then diffuses over the entire domain. Due to the linear behaviour of the velocity, the vorticity increases

proportional to the magnitude of the velocity in the creeping regime. However, as soon as the creeping

regime falls, non-linearities in the velocity field change this simple trend. The criterion consists of

keeping under observation the dimensionless vorticity, defines as

ω∗ = ω
ℓ

⟨v⟩
(2.52)

whose mean value remains constant in the creeping regime. One of the main advantages of this method

is the fact that it is possible to identify in the domain the area where the vorticity presents its maximum

values, that is, where non-linearity effects affect more the flow. This criterion is applied to characterize

the high-resolution 3D Computed Micro-Tomography (CMT) of Calcarb showed in Fig. 2.11. The area

influencing the behaviour of the flow inside the whole domain is reported in Fig. 2.13. This area is

characterized by a characteristic length lcl ∼ 80 µm. Thus, the physical limit of the creeping regime

for the Calcarb dataset is found to be

Recl < 0.5 −→ creeping regime

Chapter 6 emphasizes the importance of considering the slip regime in the framework of TPS design.

This aspect is highlighted in Fig. 2.14, where the entry trajectories of the Stardust [92] and Mars
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Lcl~80 [µm] 

flow

Figure 2.13 – Calcarb dataset characterized in Chapter 5. The red box highlights a small area
influencing the behaviour of the flow inside the whole domain.

Science Laboratory [93] (MSL) missions are considered. It is possible to observe how, during these

entry trajectories, different rarefaction regimes are crossed by the flow dynamics in the porous medium.

Within the material, the temperature of the gas mixture decreases to values around 273 K, while the

pressure can be considered constant. The two highlighted areas (blue for Stardust and red for MSL)

give an indication of the rarefaction regimes crossed by the flow dynamics within the TPS. The figure

shows that, for both missions, the continuum (Kn < 0.01) regime is partially crossed by the material

when the heating conditions reach their peak. A larger part of the trajectories is covered by the slip

regime (0.01 < Kn < 0.1). From Fig. 2.14, it is possible to conclude that the set of slip and continuum

regimes is able to fully cover the part of the entry trajectories characterized by ablation effects.

Chapter 7 proposes a new definition of the volumetric heat transfer term coefficient able to generically

account for anisotropic effects

hv = ⟨vg⟩T · h
v

· ⟨vg⟩ 1
||vg||2

(2.53)

where a volumetric heat transfer tensor, h
v
, is introduced. When x, y, and z correspond to the principal

axes, h
v
reduces to a diagonal tensor

h
v

=

⎡⎢⎣hv,x 0 0
0 hv,y 0
0 0 hv,z

⎤⎥⎦ (2.54)

where hv,x, hv,y, and hv,z are the volumetric heat transfer coefficients when the velocity is aligned with

the x, y, and z directions respectively. This definition is applied to characterize the anisotropic effects

for a periodic square cell-centered array with porosity ϵ = 0.5. Results are showed in Fig. 2.15, where

for different Peclet numbers, the averaged velocity vector is made rotating in the xy plane. θ defines

the angle between the average velocity vector and the x-axis. In this case, Eq. (2.53) reduces to

hv = cos2(θ) hv,x + sin2(θ) hv,y (2.55)

Results show that the volumetric heat transfer tensor is able to capture the shape of the anisotropic

behaviour, but not exactly its amplitude, which seems to depend on the Peclet number. For Pe =
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Figure 2.14 – Rarefied flow regimes encountered along the Stardust and MSL entry trajectories
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the entry trajectories.

66.7, the correlation perfectly captures the anisotropic effects. In the figure, a linear variation of the

coefficient as a function of θ is also represented. It can be seen that the tensorial formulation of the

property leads to a good capturing of the anisotropy effects.

Chapter 8 derives a physical pyrolysis-shrinkage function to account for the pyrolysis contribution on

the displacement field. The derivation of this function is based on the idea of writing the contribution

of pyrolysis to the deformation field in the same form as the thermal one, as both contributions lead

to volumetric deformations. The pyrolysis-shrinkage function is defined as

ξ = 1
3
V0 − Vend

V0
(2.56)

The value of ξ has to be defined from experimental observations.

2.7 Conclusions and Perspectives

2.7.1 Achievements

Various technologies and engineering applications are centered on porous materials. In this work,

attention is oriented towards the subset of reactive porous materials interacting with high-temperature

flows, a theme of great relevance particularly for the biomass, space, and fire-safety communities. The

objective of this PhD project was to contribute to the development of a generic theoretical and nu-

merical framework to assess and model mass, momentum, and heat exchanges between an elastic and

reactive solid structure interacting with a high temperature flow. The study consisted of two interre-
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lated parts relying on a multi-scale approach: (1) multi-physical numerical simulations are performed

on a macroscopic scale to investigate the impact of some physical effects in the numerical description;

(2) direct numerical simulations are carried out at the microscopic scale on digitalized images to define

numerical strategies for the evaluation of the effective properties.

The first part of the work aimed investigating, at the continuum scale, the effects on the numerical

results of the local thermal equilibrium assumption and the decoupled material-external flow descrip-

tion. The analysis focused on two specific applications: the design of a TPS for space vehicle and the

description of fire propagation. For the case of ablative materials under typical entry conditions, results

show that under chemical equilibrium, the local thermal equilibrium model is able to correctly predict

the evolution of the design parameters within the material. However, under chemical non-equilibrium,

the local thermal equilibrium assumption loses its accuracy in capturing the species distribution within

the material. For the second application, the burning of a wood log was considered. Results show that

the numerical simulation of fire propagation requires capturing the coupling between wood pyrolysis

and combustion of different gaseous species. The assumption of a decoupled material-external flow

description is strong as the two regions highly influence one another: the evolution of the flame and

its temperature are affected by the concentration of the gaseous species produced in the material, and

at the same time, due to the flame and temperature rise, the pyrolysis process accelerates and the

concentrations of species change according to the speed of the reactions.

The second part of the work focused on defining numerical strategies based on Pore-Scale Numerical

Simulation (PS-NS) to accurately predict the effective properties. The importance of this analysis lies
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in the fact that the accuracy of macroscopic models depends on the precision with which the effective

properties are determined, and the literature does not provide a complete numerical methodology.

To this end, a in-depth analysis was conducted to define numerical strategies. The term numerical

strategy refers to the definition of the numerical domain and the set of boundary conditions, the se-

lection of governing equations and the specification of the numerical operation to determine a specific

effective property. As effective properties, the permeability tensor, slip correction tensor, volumetric

heat transfer coefficient, Young modulus, Poisson’s ratio, and the thermal expansion and pyrolysis

correction terms were considered. The numerical strategies were defined on simple test-cases, valida-

ted with literature results, and applied to the characterization of two high-resolution 3D Computed

Micro-Tomography (CMT) images, the Calcarb and the white pine dataset.

2.7.2 Perspectives

This work is a contribution to the on-going effort of three communities to better describe the in-

teractions between pyrolysing materials and high-temperature flows. Ordered according to the topics

covered in the six articles, the main perspectives are now presented.

Chapter 3 addresses the analysis of the entry process into planetary atmospheres. The work highlights

a particular lack of reliable chemical mechanisms. With a view to more realistic modeling, greater

efforts must be placed on the development of non-equilibrium chemistry models.

Chapter 4 proposes the analysis of a wood log combustion by implementing and employing a coupled

material-external flow code. Despite the advanced nature of the simulation, different physical aspects

have been neglected. The solid phase is considered rigid, radiation is not taken into account, combus-

tion is modeled with a simplified laminar finite rate model, and the pyrolysis mechanism is described

with a basic multi-component single reactions model.

Chapter 5 investigates the direct proportionality between the flow rate and the pressure gradient of

creeping and continuum flows. Chapter 6 extends the study to 0.1 < Kn < 0.01 < to account for

rarefied effects in the slip regime. The extension to high Reynolds numbers is missing to complete the

analysis, i.e., to investigate how the proportionality between flow rate and pressure gradient changes

due to inertial effects.

Chapter 7 focuses on the evaluation of the volumetric heat transfer coefficient by making two main

assumptions. Incompressible flows are assumed, that is the thermodynamics is not considered and

constant variables are assumed in the domain. This is a strong assumption with respect to the appli-

cations of interest, where temperatures may reach thousands of degrees and compressible flows must

be considered. The second assumption concerns the effective thermal conductivity tensor. This pro-

perty is defined only in terms of molecular diffusion, while the effects of dispersion and tortuosity are

neglected in the study. The numerical determination of the thermal conductivity tensor requires the
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definition of a new numerical strategy.

Chapter 8 extends the analysis to deformable solid phases. The study is based on the assumptions of

small strain, linearized elastic solid material, and isotropic materials. These are very strong assump-

tions considering that the main application concerns wood deformation. The extension to orthotropic

models and plasticity behaviours must now be considered.
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Multi-Physical Simulations
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Chapitre 3

Two-Temperature Ablative Material
Response Model With Application to
Stardust and MSL Atmospheric Entries

Nomenclature

Latin Letters

A Arrhenius law pre-exponential factor [s−1]
A generic element/species
CH surface heat transfer coefficient [kg m−2 s−1]
cp specific heat at constant pressure [J kg−1 K−1]
dp mean pore diameter [m]
E Arrhenius law activation energy [J mol−1]
e specific internal energy [J kg−1]
F effective diffusion flux [kg m−2 s−1]
h specific absolute enthalpy [J kg−1]
hv volumetric heat transfer coefficient [W m−3 K−1]
k
eff

effective thermal conductivity tensor [W m−1 K−1]
K permeability tensor [m2]
M molar mass [kg mol−1]
m,n Arrhenius law parameters
Ng number of gaseous species
Np,i number of sub-phases in the solid phase i
Ns number of solid phases
Pi,Pi,j solid phase i and sub-phase j of solid phase i
p macro-scale pressure [Pa]
Q effective diffusion heat flux [J m−2 s−1]
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Nomenclature

R specific perfect gas constant [J mol−1 K−1]
t time [s]
T macro-scale temperature [K]
v macro-scale velocity [m s−1]
x position vector [m]
y, z species and element mass fraction

Greek Letters

β Klinkenberg correction tensor [Pa]
∆ relative difference
ϵ volume fraction
µ dynamic viscosity [Pa s]
ν stoichiometric coefficient
πk pyrolysis mass production rate of element/species k [kg m−3 s−1]
Π global mass production rate of the pyrolysis reactions [kg m−3 s−1]
ρ macro-scale density [kg m−3]
χi,j advancement of the pyrolysis reaction of sub-phase j within phase i

Subscripts and Superscripts

0 initial time
c, v char and virgin
eff effective
g gas
i, j, k indexes used in the sum operator
s solid
tot total
w wall

Adimensional Groups

Pe thermal Peclet number

Acronyms

LTE Local Thermal Equilibrium
LTNE Local Thermal Non-Equilibrium
MSL Mars Science Laboratory
PATO Porous material Analysis Toolbox based on OpenFoam
REV Representative Elementary Volume
TACOT Theoretical Ablative Composite for Open Testing
TPS Thermal Protection System
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Abstract

Ablative material response codes currently in use consider local thermal equilibrium between the

solid phases and the pyrolysis gases. For typical entry conditions, this hypothesis may be justified by

the fact that the thermal Peclet number within the pores is small, which is a necessary condition for

thermal equilibrium in non-reactive materials. However, the validity of this analysis may fall under

some circumstances. The thermal Peclet number may become large due to high pyrolysis gas velocities.

Additional physical phenomena not accounted for in the Peclet analysis may become non-negligible,

such as the change of enthalpy due to chemical reactions. The objective of this study is two-fold. First,

a detailed two temperature material response model for porous reactive materials is presented. This

model has been implemented and made available in the Porous material Analysis Toolbox based on

OpenFOAM (PATO). Second, the model is applied to the Theoretical Ablative Composite for Open

Testing (TACOT) in a wide range of conditions to assess the true range of validity of the thermal equi-

librium hypothesis. Simulations are carried out on the Stardust and Mars Science Laboratory (MSL)

atmospheric entries. The main design variables have been monitored and compared between the two

models: temperature evolution and species concentration within the material, pyrolysis gas blowing

rate, extension of the pyrolysis zone, and wall recession due to ablation. Results show that under che-

mical equilibrium conditions, no significant deviation in the monitored quantities are observed, while

under chemical non-equilibrium conditions there is a large impact on the species concentration.

Keywords: Local Thermal Non-Equilibrium; Chemical Non-Equilibrium; Thermal Protection System;

TACOT; Stardust and MSL missions.
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3.1 Introduction

Extra-orbital missions often involve the analysis of entry processes into planetary atmospheres at

hypersonic speeds. Under these conditions, a high enthalpy curved detached shock (bow shock) forms

in front of the spacecraft and the kinetic energy is progressively dissipated into heat. Convection of

this flow around the capsule and radiation progressively heat the material. The temperature at the

surface of the material can increase to approximately 3000 K for severe entry conditions. To ensure

the integrity of the structure, a thermal protection system (TPS) is designed to absorb and dissipate

the heat through phase changes, chemical reactions, and material removal. Charring ablative materials

represent a traditional approach to thermal protection [68, 69]. A famous example is the new class of

phenolic impregnated ablators (PICA [70], PICA-X, ASTERM [71]) that consists of a carbon fiber

preform partially impregnated with phenolic resin, resulting in very light weight, good insulation, and

high mechanical strength. When heated, the resin thermally decomposes and progressively carbonizes,

losing mass and releasing pyrolysis gases. These gases percolate and diffuse towards the surface, reac-

ting with each other (homogeneous reactions) and with the solid phases (heterogeneous reactions).

Once at the surface, the gases are blown into the flow-field boundary layer, changing its composi-

tion. The blowing also induces a blockage of the convective heat flux impinging on the surface of the

spacecraft, thus reducing the thermal load. In addition, the heat shield surface is ablated due to the

occurrence of heterogeneous chemical reactions between the gas mixture and the surface (vaporization,

sublimation, oxidation) [96].

Engineering design tools must be able to correctly predict the in-depth temperature experienced by

the internal structure of the vehicle as well as the total recession of the material. As described above,

an atmospheric entry involves a wide range of phenomena, which makes the development of these tools

challenging. This leads to the introduction of assumptions into the design models in order to simplify

the description. It is therefore important to check the accuracy of these assumptions in the assessment

of the efficiency of the ablator, to avoid unnecessarily increasing the safety margin in the design pro-

cess. In particular, two assumptions are considered: (1) Local Thermal Equilibrium (LTE) between

the gas phase and the ablative material, meaning the gas temperature accommodates to the solid one

within the pores. It follows that, from an energy point of view, only one governing equation is enough

to model the ablative material. According to Puiroux et al. [97], this assumption can generically be

considered true as long as the Peclet number for heat diffusion inside the pores is small (Pe ≪ 1).
In the case of entry flow conditions, the small pore size (dp < 100 µm) and the slow pyrolysis gas

flow (vg ∼ 1 m/s) ensure the condition to be true. However, the validity of this analysis may fall

under some circumstances. The thermal Peclet number may become large due to high pyrolysis gas

velocities, or additional physical phenomena not considered in the non-dimensional number may turn

out to be non-negligible, such as strong change of enthalpy due to chemical reactions. Under these

circumstances, a Local Thermal Non-Equilibrium (LTNE) model, i.e. two energy equations, would be

necessary to accurately characterize the temperature of the gas. The importance of this aspect lies in

the fact that the chemical reactions taking place in the mixture are strongly affected by the tempera-

ture of the gas. The use of LTE models, when inappropriate, may lead to an incorrect description of

the gas phase.
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(2) Chemical equilibrium is assumed in the gas mixture. Although this may be acceptable for the

numerical description at the surface and in the boundary layer, it is strongly believed that the as-

sumption decays for colder mixtures within the material. A first nonequilibrium mechanism has been

proposed by April and Pike, 1971 [1], after matching numerical results with experimental ones. The

mechanism features 11 species and 10 chemical reactions, strongly simplifying the reality. This may

lead to unsatisfactory results, as already observed in the literature [98]. Due to the lack of well founded

mechanism available in the literature, some authors used the reduced 22-species homogeneous finite-

rate chemical mechanism derived from the combustion database of Blanquart [99], even thought its

validation has not been proved in the context of ablative materials.

The objective of this study is two-fold. First, a detailed two temperature material response model for

reactive porous materials is detailed. This model has been implemented and made available in the Po-

rous material Analysis Toolbox based on OpenFOAM (PATO). Its numerical description is presented

in Section 3.2. Secondly, in Section 3.3, the model is applied to the Theoretical Ablative Composite

for Open Testing (TACOT) in a wide range of conditions to assess the true range of validity of the

thermal equilibrium hypothesis. Simulations are carried out on the Stardust and Mars Science La-

boratory (MSL) atmospheric entries with both chemical equilibrium and non-equilibrium conditions.

Finally, conclusions are drawn in Section 3.4.

3.2 Numerical Model

The material response code, PATO, has been implemented and validated over the last decade [73–

75]. In what follows, a short review of its main assumptions and governing equations is presented. We

invite the reader to refer to the cited articles for more details.

3.2.1 Main Assumption

The model provides the numerical description of the interaction between a multi-phase reactive

material (Ns solid phases) with a multi-species reactive gas mixture (Ng gaseous elements/species).

Any liquid phase present in the ablative material (such as water) is modelled as a solid static phase.

The numerical description is carried out at the macro-scale. The governing equations are derived from

upscaling theories [15,16,100], relying on the existence of a Representative Elementary Volume (REV)

of the domain and on the assumption of scales separation. The specific choice of the upscaling theory

is not critical, as all approaches lead to equivalent results, provided the same physical hypotheses and

level of mathematical approximations [17]. As the entire section is aimed at the macro-scale, unmarked

notations are employed to address to intrinsic phase variables [75].

3.2.2 Pyrolysis

Ns solid phases compose the material. For example, in TACOT the main components are the

carbon fiber preform and the phenolic resin, which are modeled as two phases. Each solid phase, Pi,
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may decompose following multiple pyrolysis kinetics. We deal with this aspect by splitting each phase

i into Np,i sub-phases. A generic sub-phase Pi,j undergoes a determined kinetic mechanism which

results in the production of species, or element, Ak according to the stoichiometric coefficients νi,j,k

Pi,j −→
Ng∑︂
k=1

νi,j,kAk (3.1)

The Arrhenius model is adopted to model the pyrolysis reactions. This leads to the definition of the

advancement of the pyrolysis reaction χi,j of sub-phase j within phase i as follows

∂tχi,j = (1 − χi,j)mi,jT
ni,j
s Ai,j exp

(︂
− Ei,j

R Ts

)︂
(3.2)

where m and n are the Arrhenius law parameters, A is the Arrhenius law pre-exponential factor, E
represents the Arrhenius law activation energy, R stands for the perfect gas constant, and Ts indicates

the temperature of the solid. By summing the productions of the Ns solid phases it is possible to

derive the total production rate π of species/element k

πk =
Ns∑︂
i=1

Np,i∑︂
j=1

νi,j,k ϵi,0 ρi,0 yi,j ∂tχi,j (3.3)

where ϵi,0, ρi,0, and yi,j , are respectively the initial (at t=0) volume fraction of phase i, intrinsic density

of phase i, and mass fraction of sub-phase j within phase i. The overall pyrolysis-gas production rate

Π is evaluated by summing over the elements and species in the mixture

Π =
Ng∑︂
k=1

πk (3.4)

3.2.3 Mass Conservation

Each solid phase, each species/element, and the gas mixture are characterized by a mass conser-

vation equation. No heterogeneous reactions are considered.

For a generic solid phases i, the equation reads

∂t(ϵiρi) = −πi (3.5)

where t is the time and the subscript 0 stands for the initial time (t = 0).
Depending on the chemical model used in the gas phase, elements or species are considered (elements

for equilibrium or species for finite-rate chemistry). In case of chemical equilibrium the conservation

equation for a generic element with mass fraction zk reads

∂t(ϵgρgzk) + ∂x · (ϵgρgzkvg) + ∂x · Fk = πk (3.6)

In case of finite rate chemistry, the conservation equation for a generic species with mass fraction yi

reads

∂t(ϵgρgyi) + ∂x · (ϵgρgyivg) + ∂x · F i = πi (3.7)
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where Mg is the molar mass of the gas mixture and F i and Fk [75] are the effective multicomponent

diffusion mass fluxes of the i-th species and k-th element. Mutation++ [84, 101], is used as a third

party library to compute all thermodynamics and transport properties.

For the gas mixture, the mass conservation accounts for the pyrolysis production rate Π

∂t(ϵgρg) + ∂x · (ϵgρgvg) = −
Ns∑︂
i=1

∂t(ϵiρi) = Π (3.8)

3.2.4 Momentum Conservation

The average gas velocity is obtained from the resolution of Darcy’s law [102]

vg = − 1
ϵg

[︂ 1
µg
K

(︂
1 + 1

pg
β

)︂]︂
· ∂xpg (3.9)

where pg is the gas pressure, K is the permeability tensor, and β the Klinkenberg correction introduced

to account for slip effects (at the pore scale) when the Knudsen number is not very small. This

expression for the gas velocity vector can be substituted back into the gas mass conservation law,

Eq.(3.8). Assuming a mixture of perfect gases, the following equation in pressure is found

∂t

(︂ϵgMg

RTg
pg

)︂
− ∂x ·

[︂ϵgMg

RTg

1
µg
K

(︂
1 + 1

pg
β

)︂
· ∂xpg

]︂
= Π + Ωh (3.10)

where µg is the dynamic viscosity of the gas mixture.

3.2.5 Energy Conservation

Under the assumption of LTE, the temperature of the gas mixture accommodates to the one of

the solid: Ts = Tg = T . A single conservation equation is then considered [75]

∂t(ρtotetot) + ∂x · (ϵgρghgvg) = ∂x ·
Ng∑︂
k=1

Qk + ∂x ·
(︂
k
eff

· ∂xT
)︂

(3.11)

where the subscript tot stands for total, e, h, and T denote respectively the internal energy, the

absolute enthalpy, and the temperature, Qk is the heat transport by effective diffusion of the species,

and k
eff

represents the effective thermal conductivity tensor. The terms on the left hand-side of the

equation are the ones of accumulation and advection. While, on the right hand-side there are the

terms of diffusion of the pyrolysis gases and the conduction flux. The conduction flux is described

by Fourier’s law where the effective conductivity tensor accounts for conduction in the gas and solid

phases and radiative heat transfer within the pores [74,82].

Eq. (3.11) can be further developed by expressing the total storage internal energy (ρtot etot) as the

sum of the energy of its phases

ρtotetot = ϵgρgeg +
Ns∑︂
i=1

ϵiρihi (3.12)

95



3.3. APPLICATION OF THE MODEL TO THE ABLATION CASES

By substituting this term back in Eq. (3.11) and by performing the time derivatives, the energy

conservation equation takes its final form

Ns∑︂
i=1

ϵiρicp,i∂tT + ϵgρgcp,g∂tT = ∂x ·
(︂
k
eff

· ∂xT
)︂

−
Ns∑︂
i=1

hi∂t(ϵiρi) −
Ng∑︂
j=1

hj∂t(ϵgρgyj) + ∂t(ϵgpg) +

−∂x · (ϵgρghgvg) + ∂x ·
Ng∑︂
k=1

Qk

(3.13)

where cp is the specific heat. All the accumulation terms are gathered on the left hand-side of the

equation. Whereas, on the right hand-side it is possible to find (in order) the terms related to conduc-

tion, pyrolysis, pressure, advection and species diffusion.

Under the assumption of LTNE, two energy conservation equations are needed to describe the solid

and gas phases. The two equations are

Ns∑︂
i=1

ϵiρicp,i∂tTs +
Ns∑︂
i=1

hi∂t(ϵiρi) = ∂x ·
(︂
k
eff,s

· ∂xTs

)︂
+ hv

(︂
Tg − Ts

)︂
(3.14)

and

ϵgρgcp,g∂tTg +
Ng∑︂
j=1

hj∂t(ϵgρgyj) − ∂t(ϵgpg) = −∂x ·
(︂
ϵgρgvghg

)︂
+ ∂x ·

(︂
k
eff,g

· ∂xTg

)︂
+

+ ∂x ·
Ng∑︂
k=1

Qk + hv

(︂
Ts − Tg

)︂ (3.15)

where hv is the volumetric heat transfer coefficient that identifies the heat exchanged by the two

phases. It should be mentioned, if summing the two LTNE equations (Eq. (3.14) and Eq. (3.15)), the

LTE equation (Eq. (3.13) is obtained.

3.3 Application of the Model to the Ablation Cases

In this section, the numerical model is applied in order to assess the validity of the thermal

equilibrium hypothesis for atmospheric entry applications. Two different ablation cases are considered:

Stardust and MSL missions. A subsection is dedicated to each of them. The same ablative material,

TACOT, is considered for all cases. This theoretical material is characterized by a composition and

properties that are comparable to NASA’s Phenolic Impregnated Carbon Ablator. In volume, TACOT

is made of 10% of carbon fibers (phase-1) and 10% of phenolic resin (phase-2), hence Ns = 2. It is

80% porous (phase-0: gas). During the thermal degradation process, the carbon fibers phase does not

decompose, while the phenolic resin undergoes several parallel pyrolysis mechanisms, as showed in

Table 3.1. 1D Simulations have been carried out on uniform meshes. The thickness of the geometry is

specified in each subsection. A convective thermal boundary condition involving the resolution of the

mass and energy balances at the surface [73] is enforced to the surface with the external environment.
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j Pyrolyis of phenolic matrix Peak (K) A2,j (s−1) E2,j (J/mol) m2,j n2,j

1 P2,1 −→ H2O 373 8.56 · 103 7.12 · 104 3 0

2
P2,2 −→ 0.69H2O + 0.01C6H6 + 0.01C7H8+

+0.23C6H6O 773 8.56 · 103 7.12 · 104 3 0
3 P2,3 −→ 0.09CO2 + 0.33CO + 0.58CH4 873 4.98 · 108 1.70 · 105 3 0
4 P2,4 −→ H2 1073 4.98 · 108 1.70 · 105 3 0

Table 3.1 – Pyrolysis balance equations and kinetic parameters for the phenolic matrix in TACOT.

A 600-cells mesh has been adopted following a mesh convergence analysis.

For each case, both the LTE (Eq. (3.13)) and the LTNE (Eqs. (3.14) and (3.15)) models are applied.

Results are then compared and commented. The comparison is made in terms of temperature evolution

and species concentration (non-equilibrium) within the material, pyrolysis gas blowing rate at the

surface, wall recession due to pyrolysis ablation, and identification of the pyrolysis zone. The latter is

defined as the intermediate region between two thresholds in terms of the density: virgin 98% and char

2%, defined as ρv(98%) = ρc + 0.98(ρv − ρc) and ρc(2%) = ρc + 0.02(ρv − ρc). The relative difference,

∆ between the results is defined as follows

∆ = ρv(98%)1T − ρv(98%)2T

ρv(98%)1T
100 (3.16)

where the quantity ρv(98%) is taken as example.

In order to apply the LTNE model, it is necessary to quantify the volumetric heat transfer coefficient

between the gas phase and the TACOT material. Its value has been set equal to hv = 109 Wm−3K−1,

after experimental characterization [89].

For the chemical non-equilibrium analysis, a modified April mechanism [1] has been considered for the

composition of the gas mixture. This mechanism is reported in Table 3.2.

Reaction Formula A (s−1) E (J/mol)

1 CH4 −→ 0.5 H2 + 0.5 C2H6 7.6 1014 397480
2 C2H6 −→ H2 + C2H4 3.1 1014 292880
3 C2H4 −→ C2H2 +H2 2.6 108 167360
4 C2H2 −→ 2C +H2 2.1 1010 167805
5 C + 2H2 −→ CH4 2.0 109 71128
6 C6H5OH +H2 −→ H2O + C6H6 2.0 1013 188280
7 C6H6 −→ 3 C2H2 1.4 109 246440
8 C +H2O −→ CO +H2 1.2 1012 343088
9 CO +H2O −→ H2 + CO2 1.0 1010 125520
10 C + CO −→ 2 CO 1.0 106 209200
11 2 CO −→ C + CO 1.0 10−9 255224

Table 3.2 – Modified April mechanism [1] considered for the chemical non-equilibrium analysis.
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t (s) pw (Pa) CH (kg/m2/s) he (J/kg)

0 1.5 0.00005 77926960
1 1.8 0.00006 77984280
2 2.1 0.00007 78040736
3 2.4 0.00008 78095240
4 2.6 0.00009 78146168
.. .. .. ..
50 19142.319 0.17378 61280148
51 21350.19075 0.18082 59093460
52 23558.0625 0.18786 56748968
.. .. .. ..
131 2144.746275 0.01705 95178
132 2067.8406 0.01644 89990
133 2067.8406 0.01582 84957

Table 3.3 – Stardust case. Partial summary of the environment properties. Input data are the wall
pressure and boundary layer edge enthalpy, pw, he and the surface heat transfer coefficient CH .

3.3.1 Stardust Ablation Case

The Stardust mission was a 390-kilogram robotic space probe launched by NASA on 7 February

1999. Its primary mission was to collect dust samples from the coma of the comet Wild 2, as well as

cosmic dust samples, and return these to Earth for analysis. It was the first sample-return mission of

its kind. The primary mission was successfully completed on 15 January 2006, when the sample space

probe returned to Earth.

The TPS is modeled as a 1D material composed of three layers: 5.8 cm of TACOT material, 0.14 cm

of adhesive film (HT-424), and 1.27 cm of aluminium 2024 [103]. An overview of the input data for

the convective boundary condition is given in Table 3.3. Standard air is considered for the initial gas

composition of the material and for the element composition at the boundary.

3.3.1.1 Chemical Equilibrium

Results of the thermocouple and temperature difference are showed in Fig. 3.1 Without any abrupt

change of condition, the gas temperature tends to be closer to that of the solid. Referring to the figure

on the right, it can be seen that at most, the difference between the two predictions is about 25

K. Considering that the temperatures are about 3000 K, the 25 K difference (less than 1%) can be

considered negligible. In fact, in the figure on the left, the temperature curves of the gas and the solid

are superimposed at each position. This aspect is also reflected in the comparison of other quantities

of interest. This is represented in Fig. 3.2, where the maximum relative difference, ∆ = 0.2% is related

to the prediction of the location of the virgin front.
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Figure 3.1 – Stardust case. Thermocouple data are reported on the left figure and temperature
difference on the right one.
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3.3.1.2 Chemical Non-Equilibrium

The species distribution within the material at time t = 40 s is reported in Fig. 3.3 It can be

observed that the use of LTE or LTNE strongly influences the species distribution. In particular, CO,

H2, CH4, and CO2 are the species that undergo a higher difference in the predictions. The difference

concerns both the evolution of the mass fractions in the material and at the interface with the external

environment. It follows that, depending on the model, the boundary layer will be characterized by a

different composition, hence different properties.
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Figure 3.3 – Stardust case. Species distribution within the material at time t = 40 s. At the left: a
zoom of the mass fractions near the surface with the external environment.
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Figure 3.5 – MSL case. Blowing rates, pyrolysis zone, and wall recession.

3.3.2 MSL Ablation Case

The Mars Science Laboratory mission was a robotic space probe mission to Mars launched by NASA

on November 26, 2011. It successfully landed Curiosity, a Mars rover, in Gale Crater on August 6,

2012. The overall objectives include investigating Mars’ habitability, studying its climate and geology,

and collecting data for a human mission to Mars.

The depth of the ablative material is of 4.385 cm [93]. The Mars atmosphere is considered for the initial

gas composition of the material and for the composition of the elements in the boundary layer. The

input data for the convective boundary layer are taken from the study by Meurisse et al., 2018 [93],

where 11 discrete times along the MSL trajectory are considered: 48.4, 59.1, 64.4, 69.6, 71.5, 73.9,
76.2, 80.5, 84.4, 87.5 and 100.5 s. A linear variation of the conditions is assumed in the intermediate

intervals.

3.3.2.1 Chemical Equilibrium

The thermocouple and temperature difference results are showed in Fig. 3.4. A difference of 40 K
is reached at the beginning of the simulation between the two temperatures due to the initial sharp

change of condition. After the first few seconds in which the value remains constant, the difference

gradually decreases to 3 K at 100.5 s. Nevertheless, as can be seen in Fig. 3.5, this small difference

in temperature does not lead to any discrepancy on any other quantity of interest. The maximum
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Figure 3.6 – Stardust case. Species distribution within the material at time t = 21 s.

relative error is still provided by the prediction of the virgin front location with a value of 0.2%.

3.3.2.2 Chemical Non-Equilibrium

The species distribution within the material at time t = 70 s is reported in Fig. 3.6. The figures

shows again a clear difference between the two models. However, due to the lower temperatures reached,

the difference is less marked than in the Stardust case. The species difference concerns only the internal

part of the material, and not the interface. The composition of the boundary layer between the two

models remains unaltered.

3.4 Conclusions and Perspectives

This study investigates the validity of the local thermal equilibrium assumption for ablative ma-

terial responses. To this end, a two-temperature model has been implemented and integrated in the

Porous material Analysis Toolbox based on OpenFOAM (PATO). This toolbox has been then used to

simulate the pyrolysis of the Theoretical Ablative Composite for Open Testing (TACOT) in a wide

range of conditions to assess the true range of validity of the thermal equilibrium hypothesis. 1D

simulations are performed on the Stardust and Mars Science Laboratory atmospheric entry missions.

Both Local Thermal Equilibrium (LTE) and Local Thermal Non-Equilibrium (LTNE) energy models

have been adopted. The comparison between the two models has been carried out by monitoring the

temperature evolution and species concentration (non-equilibrium) inside the material, the pyrolysis

gas blowing rate, the pyrolysis zone, and the wall recession due to ablation. Results show that the gas

temperature does not perfectly match that of the solid at the surface, especially when a sudden change

in conditions occurs. Nevertheless, the temperature difference does not lead to a significant deviation

in the monitored quantities (the maximum relative difference in the results has been found to be about

∆ = 1.4%) under chemical equilibrium assumption. The relative difference values are possible sources

of uncertainty to include in the design analysis. The same conclusion does not hold for the case of

chemical non-equilibrium. In this case, especially in the Stardust case where higher temperatures are

reached, the species distribution prediction is strongly influenced by the use of LTE or LTNE models.
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In particular, the difference concerns both the evolution of the mass fractions of the species in the

material and at the interface with the external environment. It follows that, depending on the model,

the boundary layer will be characterized by a different composition, hence different properties.

Results obtained in this study must be considered with caution. As the main purpose of the work is to

estimate possible differences resulting from the use of LTE or LTNE models, no effort has been directed

towards the description of chemical mechanisms. The April mechanism has been employed, despite

knowing its inaccuracy. In the perspective of a more realistic modelling, greater efforts must be placed

on the description of the chemical mechanisms and in particular on the estimation of the enthalpy

variations of individual reactions. An acknowledgement of this problem can be seen in Fig. 3.7, where

the pyrolysis gas enthalpies profiles within the material, at equilibrium and finite rate, are reported for

the ablative test case #1. It can be observed how the two are significantly different, thus underlining

a fundamental problem in the treatment of the pyrolysis mechanism.
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Chapitre 4

Simulation of Wood Combustion in PATO
Using a Detailed Pyrolysis Model Coupled
to fireFoam

Nomenclature

Latin Letters

A Arrhenius law pre-exponential factor [s−1]
a1, .., a7 Janaf coefficients
A generic species
cp specific heat at constant pressure [J kg−1 K−1]
C1, C2 Sutherland coefficients
CB1, CB2 Boussinesq approximation coefficients
D mass diffusivity [m2 s−1]
E Arrhenius law activation energy [J mol−1]
F effective diffusion flux [kg m−2 s−1]
f puffing frequency [Hz]
g gravitational field [m s−2]
h specific absolute enthalpy [J kg−1]
I identity tensor
K permeability tensor [m2]
k thermal conductivity tensor [W m−1 K−1]
kfw, kbw forward and backward chemical rate constants
ksgs sub-grid scale turbulent kinetic energy [J ]
l, L microscopic and macroscopic characteristic lengths [m]
M molar mass [kg mol−1]
m,n Arrhenius law parameters
n surface normal

103



Nomenclature

Ng number of gaseous species
Np,i number of sub-phases in the solid phase i
Ns number of solid phases
Nt number of reactants and products in a chemical reaction
Pi,Pi,j solid phase i and sub-phase j of solid phase i
p macro-scale pressure [Pa]
Q effective diffusion heat flux [J m−2 s−1]
Qcomb heat generated by combustion [J ]
qr thermal radiation flux [J m−1 s−1]
R specific perfect gas constant [J mol−1 K−1]
S

sgs
sub-grid strain rate tensor [s−1]

T time period [s]
t time [s]
T macro-scale temperature [K]
v macro-scale velocity [m s−1]
x position vector [m]
y species mass fraction

Greek Letters

α thermal diffusivity [m2 s−1]
∆ local filter cutoff width
ϵ volume fraction
µ dynamic viscosity [Pa s]
ν stoichiometric coefficient
πk pyrolysis mass production rate of element/species k [kg m−3 s−1]
Π global mass production rate of the pyrolysis reactions [kg m−3 s−1]
ρ macro-scale density [kg m−3]
τ

sgs
sub-grid scale stress tensor [J kg m−3]

τ total advancement of the pyrolysis reactions
Φ generic variable
χi,j advancement of the pyrolysis reaction of sub-phase j within phase i
ω chemical reaction rate k [kg m−3 s−1]

Subscripts and Superscripts

0 initial time
bw backward
comb combustion
eff effective
f external flow
fw forward
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Nomenclature

g gas
i, j, k, z indexes used in the sum operator
m modified
pl power law
ref reference
s solid
sgs sub-grid scale
sim simulation
w wood

Notation

Φ filtered variable

Φ̃ filtered density-weighted variable

Acronyms

LES Large Eddy Simulation
LTE Local Thermal Equilibrium
PATO Porous material Analysis Toolbox based on OpenFoam
REV Representative Elementary Volume

Preamble
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4.1. INTRODUCTION

Abstract

The numerical simulation of fire propagation requires capturing the coupling between wood pyro-

lysis, which leads to the production of various gaseous species, and the combustion of these species in

the flame, which produces the energy that sustains the pyrolysis process. Experimental and numerical

works of the fire community are targeted towards improving the description of the pyrolysis process

to better predict the rate of production and the chemical nature of the pyrolysis gases. We know

that wood pyrolysis leads to the production of a large variety of chemical species: water, methane,

propane, carbon monoxide and dioxide, phenol, cresol, hydrogen, etc. With the idea of being able to

capitalize on such developments to study more accurately the physics of fire propagation, we have

developed a numerical framework that couples a detailed three-dimensional pyrolysis model and fire-

Foam. In this article, we illustrate the capability of the simulation tool by treating the combustion

of a wood log. Wood is considered to be composed of 3 phases (cellulose, hemicellulose and lignin),

each undergoing parallel degradation processes leading to the production of methane and hydrogen.

We chose to simplify the gas mixture for this first proof of concept of the coupling of a multi-species

pyrolysis process and a flame. In the flame, we consider two separate finite-rate combustion reactions

for methane and hydrogen. The flame evolves during the simulation according to the concentration

of the two gaseous species produced from the material. It appears clearly that introducing different

pyrolysis species impacts the temperature and behavior of the flame.

4.1 Introduction

Charring materials (timber and composite materials) are widely used in many civil [59] and ae-

ronautical [104] applications. On the one hand this leads to a sustainable development with lower

energy requirements and less pollution, but on the other hand, this may lead to fire hazards. These

materials have a flammable nature, and this makes necessary the prediction of a fire potential with

the consequent loss of stiffness, strength, and resistance of a structure [61, 62]. In the recent few de-

cades, different studies approached the topic and aimed to characterize the performance of charred

materials under combustion. Fire retardancy [63], flammability properties [64], and gaseous emissions

[65] are just a few examples of the main properties that have been studied. The main strength of

this fire community lies in its ability to describe how a fire behaves for a given material, including

the description of ignition, fire growing, propagation and extinction processes [66]. Different numerical

simulation programs have been developed for such purposes. One of the most successful is fireFoam

[105], an opensource code to simulate and visualize the fire behaviour in a defined geometry. Different

application cases can be found in the literature [106–108].

In a numerical simulation, modeling the flame is not enough. A description of the charred material

degradation process in the absence of oxygen (the pyrolysis), as well as the coupling between material

and environment, are fundamental aspects that need to be captured. Pyrolysis leads to the production

of a large variety of chemical species: water, methane, propane, carbon monoxide and dioxide, phenol,

cresol, hydrogen, etc. The production of these species and their concentration is strongly affected by

the imposed conditions [51, 52]. This would not affect only the material, but even the combustion
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process. The gaseous species, once produced, will percolate in the material and eventually reach the

external environment. Many of these species are fuels, therefore the correct prediction of their for-

mation could change the outcome of the simulation. Different pyrolysis models have been developed

during the years, each characterized by a different level of accuracy in the description of the chemical

reactions. The simplest one is the single reaction mechanism [54] in which only a single decomposi-

tion reaction is considered. A next step is done with the multi-component single reaction model [55]

where the description becomes sensible to the feed-stock. With an increase in complexity, there is the

competitive model [56] that introduces competitive reactions to predict different product distributions

depending on the conversion conditions, such as heating rate and pressure. Finally, there are the com-

petitive multi-component models [57,58] which represent efficiently the dependence on the feed-stock

as well as the temperature effect on the yields.

Pyrolysis is not the only process to model in charring materials. Mass, momentum, and energy of

the material need to be conserved, and the transport of gaseous species also need to be taken also

into account. A generic combustion problem with a charring material is schematized in Fig. 4.1. The

environment region
        fireFoam

        material region
detailed pyrolysis model

interface between
    the two regions

Figure 4.1 – A generic combustion problem. Two different regions are present: the environment,
where combustion happens, and the material, characterized by pyrolysis.

problem may be split in two regions: the environment, where combustion happens, and the material,

characterized by a thermal degradation process, the pyrolysis. Two different models are required for

the numerical resolution. We chose to couple fireFoam with a detailed pyrolysis model. The latter

enters in the type-3 models classification proposed by Lachaud et al., 2011 [72], and it has already

been applied to different applications, like ablative heat-shield design and pyrolysis of lignocellulosic

biomass [73–75].

The main objective of this paper is to propose for the first time a numerical framework that couples

a detailed three-dimensional pyrolysis model and fireFoam. The numerical framework with the des-

cription of the two numerical models is given in the next sections: Section 4.2 presents the detailed

pyrolysis model and Section 4.3 presents the combustion process. The coupling conditions between the

two models are given in Section 4.4. The capabilities of the solver are showed in Section 4.5, where

two different applications are considered. The first one aims to show how the introduction of different

pyrolysis species impacts the temperature and the behavior of the flame. The second application is

a 2D simulation of a wood log combustion. Here, we chose to simplify the gas mixture for this first
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4.2. NUMERICAL MODEL: MATERIAL REGION

proof of concept of coupling of a multi-species pyrolysis process and a flame. Results show a perfect

coupling between the two models and highlight the impact of the species, whose concentration change

in time, on the fire behaviour. Finally, conclusions are drawn in Section 4.6.

4.2 Numerical Model: Material Region

The model to describe the material region is presented in this section. It consists of a generic

pyrolysis model that allows the description of the interaction between several solid phases and a gas

phase [75]. A summary of the governing equations of the solid phases, gas and species are presented

in the following subsections.

4.2.1 Main Assumptions

The model considers the interaction between a multi-phase reactive material (Ns solid phases)

with a multi-species reactive gas mixture (Ng gaseous elements/species). No liquid phase is modeled.

Any liquid present in the material (water) is modeled as a solid phase. The description is done at

the macroscopic scale, where the governing equations can be derived from upscaling theories. Their

derivation relies on the existence of a representative elementary volume (REV) of the domain and on

the assumption of scales separation, as illustrated in Fig. 4.2. As the entire section is aimed at the

macroscopic scale: equivalent

porous continuum material

L l
L  >> l

Figure 4.2 – Illustration of the problem: interaction between a multi-phase reactive material with
a multi-species reactive gas mixture. The model characterizes this problem at the macroscopic scale
under the assumption of scale separation (L >> l).

macro-scale, unmarked notations are employed to address to intrinsic phase variables [75].
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4.2.2 Pyrolysis

The material is assumed to be composed of Ns solid phases. For example, in the wood-cell walls

the main components are cellulose, hemicellulose, and lignin, which are modeled as three phases. Each

solid phase Pi may decompose following several pyrolysis kinetics in the absence of oxygen. For this

reason, each phase i is split into Np,i sub-phases to model the different degradation mechanisms. A

generic decomposition of a sub-phase j (from solid phase i) leads to the production of species Ak

according to the stoichiometric coefficients νi,j,k as follows

Pi,j −→
Ng∑︂
k=1

νi,j,kAk (4.1)

where Ng is the total number of the gaseous species accounted for in the gas mixture. Pyrolysis

reactions are modeled by Arrhenius laws. In this way, the advancement of the pyrolysis reaction χi,j

of sub-phase j within phase i can be defined as

∂tχi,j = (1 − χi,j)mi,jT
ni,j
s Ai,jexp

(︂
− Ei,j

RTs

)︂
(4.2)

where R is the perfect gas constant, Ts the temperature of the solid phases, A the Arrhenius law pre-

exponential factor, E the Arrhenius law activation energy, and m and n the Arrhenius law parameters.

The total advancement in the pyrolysis process, τ , is evaluated as follows

τ =
Ns∑︂
i=1

Np,i∑︂
j=1

ϵi,0ρi,0yi,j∑︁Ns
i=1

∑︁Np,i

j=1 ϵi,0ρi,0yi,j

(1 − χi,j) (4.3)

where ϵi, ρi, and yi,j denote respectively the volume fraction of phase i, the density of phase i, and

the mass fraction of sub-phase j within phase i. The subscript 0 indicates the initial time (t = 0).
The total production rate of species πk is given by

πk =
Ns∑︂
i=1

Np,i∑︂
j=1

νi,j,kϵi,0ρi,0yi,j∂tχi,j (4.4)

By summing all the contributions in the gas mixture, it is possible to obtain the overall pyrolysis-gas

production rate

Π =
Ng∑︂
k=1

πk (4.5)

4.2.3 Mass Conservation

We assume no heterogeneous reactions between the gaseous species and the solid phase. The only

production terms come from the pyrolysis.

All the solid phases, the species, and the gas mixture should be taken into account. Each of them is

characterized by a different mass conservation equation. For the solid phases, the equation reads
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4.2. NUMERICAL MODEL: MATERIAL REGION

∂t(ϵiρi) = −πi (4.6)

For a generic specie with mass fraction yi, the conservation equation is

∂t(ϵgρgyi) + ∂x · (ϵgρgyivg) + ∂x · F i = πi (4.7)

where F i models the effective diffusion flux. For the gas phase, the mass conservation needs to take

into account the pyrolysis production rate. The term is added on the right hand-side

∂t(ϵgρg) + ∂x · (ϵgρgvg) = −
Ns∑︂
i=1

∂t(ϵiρi) = Π (4.8)

where vg is the macro-scaled gas velocity.

4.2.4 Momentum Conservation

The macro-scale gas velocity is obtained from Darcy’s law

vg = − 1
ϵgµg

K · ∂xpg (4.9)

where K is the permeability tensor, pg the gas pressure, and µg the dynamic viscosity of the mixture.

This expression for the velocity can be substituted back into the gas mass conservation law, Eq.(4.8).

By assuming the gas obeys the perfect gas, the overall equation becomes

∂t

(︂ϵgMg

RTg
pg

)︂
− ∂x ·

(︂pgMg

RTg

1
µg
K · ∂xpg

)︂
= Π (4.10)

where Mg is the molar mass of the gas mixture. This equation in pressure is directly solved instead

of handling the mass conservation law (Eq.(4.8)), the momentum equation (Eq.(4.9)), and the perfect

gas law.

4.2.5 Energy Conservation

The Local Thermal Equilibrium (LTE) condition is assumed between the phases: Ts = Tg = T . A

single energy conservation is then necessary

Ns∑︂
i=1

[(ϵiρicp,i)∂tT ] + ϵgρgcp,g∂tT = ∂x · (k
eff

· ∂xT ) −
Ns∑︂
i=1

hi∂t(ϵiρi) −
Ng∑︂
j=1

hj∂t(ϵgρgyj) + ∂t(ϵgρg)+

−∂x · (ϵgρghgvg) + ∂x ·
Ng∑︂
k=1

Qk (4.11)

where cp is the heat capacity at constant pressure, k
eff

is the effective thermal conductivity tensor, h

is the specific absolute enthalpy, and Qk is the heat transport by effective diffusion of the species.
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4.3 Numerical Model: Environment Region

The model to describe the environment region is now presented. The governing equations are

derived from the Navier-Stokes equations after applying the LES filtering process and using the Favre

mean variables [109]. By considering a generic Φ variable, the following notations are introduced: Φ
the filtered variable over a time period T

Φ = 1
T

∫︂
T

Φ(t)dt (4.12)

and the filtered density-weighted variable Φ̃

Φ̃ = ρΦ
Φ (4.13)

4.3.1 Continuity Equation

The continuity equation reads

∂tρf + ∂x · (ρf ṽf ) = 0 (4.14)

where the subscript f refers to the external flow.

4.3.2 Momentum Conservation

By considering Newtonian fluids the equation takes the following form

∂tρf ṽf + ∂x · (ρf ṽf ṽf ) = −∂xpm − (g · x)∂xρf + ∂x ·
[︂
µeff,f

(︁
∂xṽf + (∂xṽf )T − 2

3(∂x · ṽf )I
)︁]︂

(4.15)

where g stands for the gravitational field, I represents the identity tensor, and pm is the modified

pressure, introduced to improve the effectiveness of the numerical solution [110]. It is defined from the

thermodynamic pressure as pm = pf − ρf g · x. The isotropic part of the sub-grid scale stress tensor

is neglected since in this work small Mach number are considered [111].

4.3.3 Energy Conservation

The equation is solved in terms of the enthalpy h̃

∂t(ρf h̃f ) + ∂x · (ρf ṽf h̃f ) =
Dpf

Dt
+ ∂x · (ρf αeff,f ∂xh̃f ) +Qcomb − ∂x · qr (4.16)

where αeff,f is the effective thermal diffusivity, defined as the sum of the flow mixture thermal diffu-

sivity αf with the sub-grid scale thermal diffusivity αsgs. Qcomb is the heat generated by combustion

and qr the thermal radiation flux.
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4.3.4 Species Transport Equations

The gas is a mixture of different species. In order to determine its composition, a transport equation

for each specie is needed

∂t(ρfyk̃) + ∂x · (ρfvf̃yk̃) = ∂x · (ρfDeff,f∂xyk̃) + ωi (4.17)

where Deff,f is the effective mass diffusivity, defined as the sum of the flow diffusion coefficient Df

with the sub-grid scale mass diffusivity Dsgs. ωk is the rate of reaction of the species k.

4.3.5 Ideal Gas

The flow mixture is assumed ideal. The following equations of state are considered

ρf =
pf Mf

RT̃ f

, Mf =
[︂ Ng∑︂

k=1

yk̃

Mk

]︂−1
(4.18)

h̃f =
Ng∑︂
k=1

yk̃hk(T̃ ), hs,k(T̃ ) = hrefk +
∫︂ T̃

T̃
ref
cp,kdT (4.19)

where the Janaf model is used to evaluate the specific heat at constant pressure

cp,f (T̃ ) = R
[︂ a1

T̃
2 + a2

T̃
+ a3 + a4T̃ + a5T̃

2 + a6T̃
3 + a7T̃

4]︂
(4.20)

where a1, .., a7 are the Janaf coefficients given as input.

The dynamic viscosity µf is calculated by the Sutherland viscosity law

µf =
C1T̃

3/2
f

T̃ f + C2
(4.21)

where C1 and C2 are the Sutherland coefficients [112].

The thermal conductivity is determined from the modified Eucken approximation [113]. The thermal

diffusivity, αf , is given by

αf = kf

ρfcp,f
, cp,f =

Ng∑︂
k=1

yk̃cp,k(T̃ ) (4.22)

4.3.6 Combustion Model

Combustion is a high-temperature exothermic chemical reaction between a fuel and an oxidant

(oxygen in this case). It is modeled with a laminar finite rate model. The effect of turbulent fluctuations

is ignored and the reaction rates are determined by Arrhenius kinetic expressions. This model is then
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generally inaccurate for turbulent flames and exact for laminar ones.

The chemical reaction z can be written as

Nt∑︂
k=1

νfw
kz A

fw
k ⇌

Nt∑︂
k=1

νbw
kz A

bw
k (4.23)

where the superscripts fw and bw distinguish between the forward and backward hand-sides and Nt

is the number of reactants and products in the chemical reaction. The overall reaction rate of this

chemical reaction is

ωz = kfw
z

∏︂
k

[Afw]νfw

k − kbw
z

∏︂
k

[Abw]νbw

k (4.24)

whereas the reaction rate of the specie is

ωk,z = d[Abw
k ]
dt

=
∑︂

z

ωz(νfw
k,z − νbw

k,z) (4.25)

The forward and backward reaction rate constant kfw and kbw are needed in order to evaluate the

reaction rates. Their calculation is done again by the Arrhenius law.

Finally, the heat generated by the reaction is

Qcomb,z = δhz ωz (4.26)

where δhz is enthalpy variation in reaction z.

4.3.7 Turbulence Model

Turbulence is modeled through the Large Eddy Simulation (LES) method. The one-equation eddy

viscosity model has been used to model the sub-grid scale stress tensor. The following conservation

equation for the turbulent kinetic energy is solved

∂t(ρfksgs) + ∂x · (ρf ṽfksgs) = ∂x · (µeff,f∂xksgs) − ρfτ sgs
: S

sgs
˜ − CB,1 ρ

k1.5
sgs

∆ (4.27)

where ∆ is the local filter cutoff width, calculated by taking the cubic root of the grid cell volume,

S
sgs

and τ
sgs

are the sub-grid strain rate and stress tensors, CB,1 is a constant which value is usually

set equal to 1.048 [114]. The Boussinesq approximation is considered to model the sub-grid scale stress

tensor and dynamic viscosity

τ
sgs

= −2µsgs
1
2[∂xṽf + (∂xṽf )T ] + 2

3ρfksgsI (4.28)

µsgs = ρ CB,2∆k0.5
sgs (4.29)

where the constant CB,2 is usually set equal to 0.094 [114] and ksgs is the sub-grid scale turbulent

kinetic energy.
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4.3.8 Radiation Model

In this work no radiation model has been considered. The model is kept as simple as possible in

order to prove the feasibility of the numerical tool. Moreover, for the simulations considered, the fire

is so small that the radiation contribution may be negligible.

4.4 Numerical Model: Interface

The coupling between the two regions is schematized in Fig. 4.3. As it can be seen, at the interface

vf = vg

pg = pf Tf =Tg

kf∇Tf = kg∇Tg

[yk,g]=[yk,f]

[yk,f]=[yk,g]

[yk,g]=
[yk,f]

n

if  v.n >0  

if  v.n <0

interface

interface

~

~ ~

~

~
~

Figure 4.3 – Illustration of the numerical boundary conditions for the coupling between the two
regions. Conditions for the velocity, temperature, pressure, and species concentration need to be im-
posed.

the flow updates its velocity with the one of the gas, whereas for the pressure, it is the other way around.

From the thermal point of view, the coupling is done by imposing the equality of the temperatures and

the normal heat fluxes at the interface. Finally, for the species concentrations, the coupling depends

on the flux direction. If the flux is coming from the flow to the porous material, then the concentration

of the species inside the porous domain are taken equal to the ones in the flow. In the opposite case,

it is the concentration of the species in the flow which are taken equal to the ones of the gas in the

porous material.

4.5 Results

Two test cases have been considered to illustrate the capability of the simulation tool. All the

details are presented in the next subsections.
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A (s−1) E (J mol−1)

CH4 5.2 e16 14906

H2 4.74 e12 10064

Table 4.1 – Kinetics parameters of the two combustion reactions. CH4 indicates the combustion of
the methane, whereas H2 the combustion of the hydrogen.

4.5.1 Hydrogen vs Methane Flames

The first case considers the combustion of two gaseous species in the same domain. Two separate

finite-rate combustion reactions have been considered

CH4 + 2O2 → CO2 + 2H2O (4.30)

2H2 + O2 → 2H2O (4.31)

The first reaction describe the combustion reaction for methane, CH4, where O2, CO2, and H2O indi-

cate respectively the oxygen, carbon dioxide, and the water. The second reaction is the combustion of

hydrogen, H2. The kinetics of the two reactions has been modeled with an Arrhenius type formulation.

The relative input parameters are showed in Table 4.1. The test case is schematized in Fig. 4.4.

H2 CH4

AIR
21% O2 

79% N2

y

x

Figure 4.4 – Illustration of the test case: methane and hydrogen are introduced, at initial time, at
high temperature inside a domain of air. The combustion reactions for both species are implemented.

The domain corresponds entirely to the environment region. Air is considered as fluid. Air is initially

composed of 21% of O2 and 79% of N2. At time t = 0, methane and hydrogen are injected in the

domain at two different positions at temperature 500K. This temperature is high enough to trigger

the two combustion reactions. Two flames propagate in the domain as showed in Fig. 4.5.

Different time intervals are considered. For each of them the flames are coloured based on the tempera-

ture. The two flames are different. The one on the left, that is the one due to the hydrogen combustion,

is smaller and generates more energy than the one due to the combustion of methane. This is just a

confirmation of what is known from the theory [115]. The hydrogen mixture burns faster than the one

of methane and reaches higher temperatures (2500 K against 2100 K).

This simple case proves the importance of introducing different pyrolysis species in the overall problem.

The flame, and so the overall simulation, strongly depends on the species taken into account.
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Figure 4.5 – Temperature description in the domain. Three different time steps are considered. The
figures show on the left the flame generated by the hydrogen combustion and on the right the one
generated by the methane combustion. The two flames are different from each other. They differ both
in terms of temperature and in terms of size.

4.5.2 Wood Log Combustion

The second case aims to simulate the combustion of a wood log. The computational domain is

schematized in Fig. 4.6.

air
21% O2

79% N2

wood 18% lignin
44% cellulose

28% hemicellulose

10% water
(εw=0.5)

Figure 4.6 – Numerical domain for the simulation of the burning of a wood log. A generic hardwood
composition has been considered for the log. Air, with simplified composition, has been taken as flow.

A wood log with a porosity ϵw = 0.5 is placed at the bottom of the domain. It is modeled as being

composed of 4 phases: hemicellulose, lignin, cellulose, and water. The phases composition reflects a

generic hardwood. Air, with the same composition as in the previous case, is surrounding it. At time

t = 0 the bottom part of the log is heated up by a Dirichlet condition at 800K. Due to the heat,

different pyrolysis reactions are triggered. A list of them with the considered kinetic parameters can

be found in Table 4.2.

All the phases undergo different pyrolysis reactions, each characterized by different parameters. The

species, once produced, percolate through the material and eventually reach the external environment.

At time t = 0.15 s, 2 sparks are simulated at the two sides of the log. These sparks have the purpose of
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j Hemicellulose y1,j A1,j(s−1) E1,j (J mol−1) m1,j n1,j

1 P1,1 −→ 0.4H2 + 0.4CO + 0.1CO2 + 0.05CH4 + 0.05N2 0.40 7.94e16 195000 1 0
2 P1,2 −→ 0.4H2 + 0.4CO + 0.1CO2 + 0.05CH4 + 0.05N2 0.30 1.26e7 106000 1 0

Cellulose

1 P2,1 −→ 0.4H2 + 0.4CO + 0.1CO2 + 0.05CH4 + 0.05N2 0.75 7.94e18 202650 1 0
2 P2,2 −→ 0.4H2 + 0.4CO + 0.1CO2 + 0.05CH4 + 0.05N2 0.16 1.26e7 245000 1 0

Lignin

1 P3,1 −→ 0.4H2 + 0.4CO + 0.1CO2 + 0.05CH4 + 0.05N2 0.66 6.0e7 120000 1 0

Water

1 P4,1 −→ H2O 1 5.13e6 86000 1 0

Table 4.2 – Pyrolysis reactions and kinetic parameters. The four species (hemicellulose, cellulose,
lignin, and water) undergo different degradation processes according to the chemical reactions listed
in this table.

triggering the combustion. Methane and hydrogen start to burn and the fire evolves according to the

concentration of the species in the air. Some snapshots of the first physical second of the simulation

are collected in Fig. 4.7.

At around 30 s of physical time, the wood log is completely pyrolysed. At around 50 s of physical

time, the fire is turned off due to the lack of fuel. Results in terms of H2 and CH4 concentration are

showed in Fig. 4.8.

In the figure it can be appreciated how the concentrations of the gaseous species change in time and

depend on the pyrolysis activity in the material region. The latter is captured by the parameter τ

(Eq.(4.3)), that describes the advancement of the overall pyrolysis process. When τ = 1, no chemical

reaction has yet occurred. When τ = 0 all the pyrolysis mechanisms have taken place and only char

is left in the material. Some snapshots of the evolution of this parameter during the simulation are

showed in Fig. 4.9.

Four different time steps have been captured, and each of them focuses on the material region. It

can be appreciated how the log evolves from the initial state to the final one, where only char is

left. At around 30 s of physical time, all the pyrolysis reactions are completed and gas is no longer

produced. Once the flame in the environment region has consumed all the fuels (CH4 and H2), the fire

extinguishes.

A particular effect that is captured in this simulation is the so called ”puffing phenomenon”. It is

an instability effect of the fire due to gravity, which results in a pulsation behaviour. These periodic

fluctuations of the fire are repeated in time with a frequency f . In Fig. 4.7 the effect can be observed

by looking the time laps t = 0.5 s and t = 0.7 s. The two snapshots both represent the end of the

respective pulsation and they are quite similar. We can deduce that for the numerical simulation, the

frequency of the puffing effect is about fsim ≈ 5 Hz. Different studies attempted to study this effect

and to try to correlate it with physical dimensions [116–118]. A power law has been defined to fit the

data
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Figure 4.7 – Starting of the fire. Six different snapshots to represent the initial evolution of the fire.
At time t = 0.15 s two sparks are generated on the side of the wood log to trigger the combustion.
A fire is generated and start propagating in the domain. By comparing the time t = 0.50 s with the
time t = 0.70 s it is possible to observe a periodic behaviour of the flame, the puffing effect.

s

s

s

s s

s

0.0 0.05

0.0 0.05

Time: 0.4 sTime: 0.1 s Time: 50 s

Time: 0.4 sTime: 0.1 s Time: 50 s

Figure 4.8 – Concentration of hydrogen and methane in the simulation. It can be observed how their
concentration is time dependent. At time t = 0.1 s the concentration of the gases in the environment
region is close to zero. With time, thanks to the advancement of pyrolysis, their concentration increases.
For the two gases different values of concentration are reached. At time t = 50 s it can be see how the
fire has consumed the two species and their concentration is again nearly zero.
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τ

s s s s

0.57 1.0

Figure 4.9 – Advancement of pyrolysis of the wood log during the simulation. When τ = 1, no
chemical reactions has still occurred. When τ = 0 all the pyrolysis mechanisms have taken place and
only char is left in the material. At time t = 0.5 s it can be seen how the pyrolysis process starts from
the bottom of the material and at time t = 30 s how all the material has been pyrolysed.

fpl = 1.5 1√
L

(4.32)

where L in this case is the burner diameter. By considering the diameter of the fire at the base as the

measure of L, it is possible to find out that this correlation gives us fpl ≈ 7 Hz. The two measures of

the puffing frequency are approximately the same.

4.6 Conclusions

This study proposes a new numerical framework to investigate the combustion of pyrolysis mate-

rials. A detailed three-dimensional pyrolysis model is coupled with fireFoam, a numerical solver for

combustion processes. The pyrolysis model captures the physics in the material region and describes

the interaction between a multi-phase reactive material with a multi-species reactive gas mixture. The

description is done at the macroscopic scale, where the governing equations are derived from upscaling

theories. FireFoam is used to describe the environment region. Its governing equations are derived

from the Navier-Stokes equations after applying the LES filtering process and using the Favre mean

variables. The two models are coupled at the material-environment interface, where specific condi-

tions for velocity, pressure, temperature, and species concentration are imposed. Two applications are

considered to illustrate the capabilities of the tool. The first one considers the combustion of two

different gaseous species with the implementation of two separate finite-rate combustion reactions.

Results show how the two generated flames differ between each other in terms of temperature and

reaction times. The behaviour of the flames is strongly influenced by the pyrolysis species considered

in the model. The second case illustrates the combustion of a wood log. Results illustrate how gaseous

species are produced with time through the pyrolysis of the wood log and how these species enter in

the environmental region to start and sustain the flame. Thanks to the flame and to the temperature

increase, the pyrolysis processes speed up and the species concentrations continuously change in time

according to the rate of reactions. Once the wood is fully pyrolysed, the fire consumes all the fuels and

extinguishes by itself. The puffing effect can be observed during the evolution of the simulation: the fire

exhibits periodic fluctuations that follow each other with a numerical frequency that is approximately

the same as the theoretical one.
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The numerical framework that was developed during this study is available in the Porous material

Analysis Toolbox based on OpenFoam (PATO) released Open Source by NASA (www.pato.ac).
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Contribution to the Numerical Estimation
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Chapitre 5

Computation of the Permeability Tensor of
Non-Periodic Anisotropic Porous Media
from 3D Images

Nomenclature

Latin Letters

c artificial compressibility coefficient [m1/2s−1/2]
d velocity deviation tensor [m s−1]
e pressure deviation term [Pa]
I identity tensor
K permeability tensor [m2]
l size of the periodic domain
ℓ reference length [m]
N total number of values predicted by the strategies
p pore-scale pressure [Pa]
r position vector [m]
S interface area [m2]
v pore-scale velocity [m s−1]
V volume of the domain [m3]
w pore-scale vorticity [s−1]
x pore-scale coordinates [m]

Greek Letters

δ thickness of the lateral fluid layer [m]
ϵ porosity of the medium
θ rotation angle
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µ dynamic viscosity [Pa s]
ρ pore-scale density [kg m−3]

Symbols

∗ non-dimensional variable
⟨⟩ intrinsic average
⟨⟩g phase average
∼ deviation term

Subscripts and Superscripts

art artificial
avg average
cl cluster
dg diagonal
g gas
s solid

Adimensional Groups

Re Reynolds number

Acronyms

CMT Computed Micro-Tomography
PATO Porous material Analysis Toolbox based on OpenFoam
REV Representative Elementary Volume
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5.1. INTRODUCTION

Abstract

The direct proportionality between the flow rate and the pressure gradient of creeping flows was

experimentally discovered by H. Darcy in the 19th century and theoretically justified a couple of

decades ago using upscaling methods such as volume averaging or homogenisation. X-ray computed

micro-tomography (CMT) and pore-scale numerical simulations are increasingly being used to esti-

mate the permeability of porous media. However, the most general case of non-periodic anisotropic

porous media still needs to be completely numerically defined. Pore-scale numerical methods can be

split into two families. The first family is based on a direct resolution of the flow solving the Navier-

Stokes equations under the assumption of creeping flow. The second one relies on the resolution of

an indirect problem - such as the closure problem derived from the volume averaging theory. They

are known to provide the same results in the case of periodic isotropic media or when dealing with

representative element volumes (REV). To address the most general case of non-periodic anisotropic

porous media, we have identified four possible numerical approaches for the first family and two for the

second. We have compared and analyzed them on three-dimensional generated geometries of increa-

sing complexity, based on sphere and cylinder arrangements. Only one, belonging to the first family,

has been proved to remain rigorously correct in the most general case. This has been successfully

applied to a high-resolution 3D CMT of Carcarb, a carbon fiber preform used in the thermal pro-

tection systems of space vehicles. The study concludes with a detailed analysis of the flow behaviour

(streamlines and vorticity). A quantitative technique based on a vorticity criterion to determine the

characteristic length of the material is proposed. Once the characterized length is known, the critical

Reynolds number can be estimated and the physical limit of the creeping regime identified.

Keywords: Porous media; Permeability tensor; Pore-scale numerical simulations; Micro-CT image;

Calcarb; Characteristic length scale

5.1 Introduction

At the pore scale, the flow of a Newtonian and incompressible fluid in a solid porous medium is

described by the Navier-Stokes equations. Under the assumption of steady-state flow and negligible

volume forces, these equations become⎧⎪⎪⎨⎪⎪⎩
∂x · v = 0
∂x · (ρv ⊗ v) − ∂x · (µ ∂xv) = −∂xp
BC : v = 0 at Sgs

(5.1)

where ρ and µ denote the density and the dynamic viscosity of the fluid, v and p the pore-scale velocity

and pressure, and Sgs the fluid-solid area interface. The above system of equations may be written

in a non-dimensional form by introducing the dimensionless variables reported in Table 5.1. In order
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quantity dimensionless variable

length r∗ = r/ℓ and ∂x∗ = ℓ∂x
velocity v∗ = v/⟨v⟩
pressure p∗ = pℓ/(µ⟨v⟩)

Table 5.1 – Non-dimensional variables for making Eq. (5.1) dimensionless.

to completely define them, three reference values need to be chosen. In porous media, the reference

velocity is taken as the magnitude of the average velocity in the domain, ⟨v⟩ [90]. For the reference

length, ℓ, the choice is not trivial as porous micro-structures are very diverse and better characterized

by different lengths. The most widely adopted in the modern literature is the porous medium grain

diameter [119]. Once the dimensionless variables have been introduced, Eq. (5.1) can be written as⎧⎪⎪⎨⎪⎪⎩
∂x∗ · v∗ = 0
Re ∂x∗ · (v∗ ⊗ v∗) − ∂∗2

x v
∗ = − ∂x∗p∗

BC : v∗ = 0 at Sgs

(5.2)

where Re is the Reynolds number defined as

Re = ρ ⟨v⟩ ℓ
µ

(5.3)

The Reynolds number characterizes the relative importance of inertial and viscous forces within a

fluid. For Re ≪ 1, viscous forces dominate and the flow is said to be in the creeping regime, also

known as the Darcy regime. In this regime, a generalized form of Darcy’s law finds its validity at the

macroscopic scale and the system of Eq. (5.2) becomes [102]⎧⎪⎨⎪⎩
∂x · ⟨v⟩ = 0

⟨v⟩ = − 1
µ
K · ∂x⟨p⟩g

(5.4)

where ⟨p⟩g and ⟨v⟩ are the macroscopic pressure and velocity (see Appendix A (Section 5.6)) and K is

the permeability tensor. However, when increasing the Reynolds number inertial forces are no longer

negligible and Darcy’s law loses its validity. Extensions to Darcy’s law have been proposed to capture

the physics of inertial [120–122], transition (unsteady laminar) [90], and turbulence regimes [119].

For most engineering applications related to transport processes in porous media, macroscopic models

are used to evaluate the macroscopic pressure and velocity fields [75,123–128]. In this way the physics

of the problem are greatly simplified as showed in Fig. 5.1. Simplifications come from the introduction

of macroscopic properties, such as the permeability tensor, that enclose information about the micro-

scopic interactions between the flow and the material. The counterpart is a loss of information: the

pore-scale approach provides the detailed velocity and pressure fields from the direct resolution of Eq.

(5.1) whereas the macro-scale one only provides averaged (macroscopic) values of these two fields from

the resolution of macroscopic models, such as the Darcy model presented in Eq. (5.4). One important
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Figure 5.1 – Pore-scale and macro-scale descriptions of the transport problem in porous media.

advantage that emerges from the micro-scale studies is the possibility of visualizing the flow behaviour

in digital images. The study of streamlines and pressure gradients throughout the domain brings very

rich insight. This quantitative microscopic information can be used to better define the characteristic

length ℓ as well as to introduce physical parameters as transition criterion, such as the maximum local

vorticity. This quantity will be used in this article to derive a new criterion for the validity of Darcy’s

law.

The objective of this work is to establish and validate a numerical strategy to estimate the anisotropic

permeability tensor. This tensor is an essential input to the macroscopic models. It can be determined

in several ways. Obviously, experiments can be performed to infer the effective properties. To-date,

this remains the most reliable and preferred way [18, 23, 129–131]. With the generalization of super-

computers during the last two decades, on the one hand the developing of pore-network models and

the possibility to perform lightweight simulations on common laptop, on the other hand numerical

simulations have progressively gained popularity for the computation of effective properties [132–

135]. They are particularly useful to study conditions not accessible in the laboratory [9]. Digitalized

geometries of porous media can be obtained either by an idealized mathematical representation or by

a reconstructed digital image. In the first case the pore structure is described from a statistical point

of view [39] and then reconstructed with small primitive objects within a finite domain [30]. Finally,

numerical simulations can be performed in order to obtain approximation of the effective properties

[27–30,136]. In the second case actual digital images are obtained, typically by X-ray CMT [137,138],

and simulations can be performed on the precise geometries. Porous ceramic [31,34,139], metal foams

[35, 36], fibrous materials [9, 140], and rock samples [37, 38], are just some examples of the materials

that have already been analyzed using this approach.
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Regardless of the method used to produce the digital image, pore-scale numerical simulations need

to be defined in terms of computational domains and boundary conditions. In this article, we denote

as strategy a generic numerical setting in terms of the considered domain (sample) and the boundary

conditions of a pore-scale simulation. It is a well-known fact [40, 41, 141] that the latter need to be

chosen carefully as they strongly impact the results if the sample scale is not a representative element

volume (REV). The strategies proposed in the literature are presented in Fig. 5.2 where computational

domains are represented in two dimensions for an easier comprehension. Different comments on the

strategies may be made:

— The strategies can be split into two families: strategies A [34, 142–144], B [40], C, and D1 [39,

40,145,146], which aim to determine the permeability tensor from Darcy’s law where pressure

and velocity terms are obtained by solving the Navier-Stokes equations with Re ≪ 1 and then

properly averaged; strategies D2 [40] and E [39, 40, 146] which aim to determine the tensor by

solving the closure problem derived from upscaling techniques [102,147];

— In strategies B, C, D1/2, and E, periodic boundary conditions are imposed on the pressure

deviation (see Aappendix A (Section 5.6)) and on the velocity field [40];

— In strategies A, B, and C, the effective domain is enclosed between two buffer domains in order

to avoid inlet/outlet boundary effects. The averaging of the flow properties is performed only

inside the effective domain;

— In strategies B, D1, and D2, a layer of pure fluid of a thickness δ is added between the effective

domain and the boundaries in order to enforce periodic boundary conditions. The thickness, δ,

should be large enough to make the domain periodic, but small enough to avoid any possible

influence on the problem. To be noticed that for periodic domains δ could also be set equal to

zero.

— In strategy E, the domain is made periodic by three symmetry operations (one for each axis);

in strategy C, the domain is made symmetric on the direction orthogonal to the flow (in the

figure, planes with normal vectors in the y and z directions).

The choice of the strategy to adopt depends on the studied porous medium. This aspect has been high-

lighted numerous times in the literature. Pickup et al, 1994 [141], investigated the impact of several

flow models on the calculation of the permeability tensors for sedimentary structures. They demons-

trated that periodic boundary conditions are reliable in the example problems considered and that

in many cases the differences between the various methods were slight. However, periodic boundary

conditions can be considered only for periodic media or when dealing with volumes large enough to

be considered as REV. For the other cases, a non-periodic strategy needs to be defined. Manwart et

al, 2002 [148], analyzed and compared the accuracy of two different numerical algorithms (one based

on the lattice-Boltzmann method and the other on finite-difference techniques) for computing the

permeability of three-dimensional porous media. They argued in favour of the finite difference code

for different reasons. A relevant study on the estimation of the effects of the boundary conditions on

the numerical simulations has been proposed by Guibert et al, 2016 [40]. They selected strategy A

with fixed pressure boundary conditions as the most suitable one in the case of 2D periodic synthetic

porous media. A further step in this analysis has been proposed by Gerke et al, 2019 [41], where they

investigated possible strategies to capture the tensorial nature of the permeability tensor when dealing
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Figure 5.2 – 2D sketches of the computational domains of the six selected strategies between the
most used in the literature.
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with periodic stochastic reconstructions of porous media. They came to the conclusion that strategy

D was the only way to obtain symmetric permeability tensor that preserved traversal fluxes.

The main objective of this work is to define for the first time a complete numerical procedure to

estimate the permeability tensor of non-periodic anisotropic porous media when dealing with volumes

not large enough to be considered as REV. A mathematical description of the two families of approaches

presented in the introduction is given in Section 5.2. In Section 5.3, the six possible strategies are fully

described and down-selected thanks to comparisons against well-known elementary test cases, such as

beds of spheres and cylinders. Actually, only strategy A was found to provide correct predictions in

the most general case of anisotropic non-periodic porous media. In Section 5.4, this strategy is applied

to estimate the permeability tensor of a carbon fiber preform, called Calcarb, and compared with data

from the literature. This section also introduces, verifies, and applies a microscopic criterion based

on the vorticity to estimate the limit of validity of the creeping regime. We show that the study of

the vorticity at the pore scale also helps to identify the proper characteristic length of the domain.

Conclusions of the work are finally presented in Section 5.5.

5.2 Mathematical Description of the Two Families of Approaches

As introduced before, there are two families of approaches that can be used to estimate the per-

meability tensor.

The first family relies on direct simulations at the pore-scale using Eq. (5.1). Pressure gradients and

velocity components are then averaged at the macroscopic scale and substituted into Darcy’s law. The

latter is conveniently decomposed into the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨v⟩x = − 1
µ

(︁
Kxx∂x⟨p⟩g

x +Kxy∂x⟨p⟩g
y +Kxz∂x⟨p⟩g

z

)︁
⟨v⟩y = − 1

µ

(︁
Kyx∂x⟨p⟩g

x +Kyy∂x⟨p⟩g
y +Kyz∂x⟨p⟩g

z

)︁
⟨v⟩z = − 1

µ

(︁
Kzx∂x⟨p⟩g

x +Kzy∂x⟨p⟩g
y +Kzz∂x⟨p⟩g

z

)︁
(5.5)

Following the pore-scale simulations, the components of the macroscopic velocity, ⟨v⟩x, ⟨v⟩y, ⟨v⟩z are

obtained as averaged values over the domain and the components of the pressure gradients across the

material, ∂x⟨p⟩g
x, ∂x⟨p⟩g

y, ∂x⟨p⟩g
z, are obtained from the averaged pressure values over the boundaries

and the domain sizes in the x, y, z directions. The remaining unknowns of the system are the nine

permeability components, namely Kxx,Kxy, ...,Kzz. Therefore, in order to have a closed system, it is

necessary to perform a total of three simulations by considering three different flow directions. In this

way a global system of nine equations can be defined such as showed in Eq. (5.6), where the exponents

1, 2, 3 refer to the first, second, and third numerical simulations. For simplicity those simulations can

be done such that the inlet flow is aligned with the x, y and finally z directions. Once K is determined

from this system, the symmetry conditions [149] on the extra-diagonal components need to be applied

in order to enforce the equality of two components which may differ slightly from each other. To be
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(5.6)

noted that even if the real unknowns of the tensor are six, three simulations are required to fully

compute them. In order to solve Eq. (5.6), the matrix of the pressure gradients should be invertible,

that is, its determinant should be different from zero. In the creeping regime, an equivalent condition

for that is (︁
⟨v⟩1 × ⟨v⟩2)︁

· ⟨v⟩3 ̸= 0 (5.7)

The second family of strategies is based on upscaling theories to evaluate the permeability. As long

as the same physical hypotheses are used, results coming from the different techniques are the same

[17,150]. In this work we have chosen to adopt the volume averaging theory. The method leads to the

definition of the following closure problem [102,147]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂xe− ∂2

xd = I in V

∂x · d = 0 in V

BC1 : d = 0 at Sgs

BC2 : d(r + l) = d(r), e(r + l) = e(r)

(5.8)

where e is the pressure deviation term (see Appendix A (Section 5.6)) and d the velocity deviation

tensor. BC2 enforces periodic boundary conditions for the two deviation components, being l the size

of the periodic domain. The permeability tensor is a function of the velocity deviation tensor as follows

K = − ϵ
1
V

∫︂
V
d dV (5.9)

where ϵ is the porosity of the medium and V the volume of the domain.

In this work, both volume averaging upscaling and direct simulations at the pore-scale are addressed

using OpenFoam [151] for the simulations and Paraview [152] for the post-processing. Navier-Stokes

equations are solved with SIMPLE [153,154], a steady-state solver for incompressible flow. The closure

problem (Eq. (5.8)) is solved with KclosureSolver (more information in Appendix B (Section 5.7)),

a solver that we have implemented and that is released in the Open Source in the Porous material

Analysis Toolbox based on OpenFOAM (PATO) [73,155].
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Figure 5.3 – Six basic test cases with increasing complexity used to apply, compare, and select the
most suitable strategy.

5.3 Down-Selection of the numerical strategy

We have implemented the six different strategies showed in Fig. 5.2 with the objective of verifying

their validity on simple test cases to select the most suitable one. The simple test cases considered

are showed in Fig. 5.3 and presented in the following sections. Reference values are available in the

literature for configurations (a), (b) and (c) [7,8]. We have chosen simple domains with increasing com-

plexity thus allowing us to progressively discard inaccurate strategies. Strategies needed to be defined

in terms of boundary conditions for pressure and velocity. Different combinations may be considered.

Therefore, to be as thorough as possible seven sub-strategies have been defined in order to take all

combinations into account. They are summarized in Table 5.2.

In the following sections, strategies are compared between each other and to reference solutions. For

such purpose, the following relative error is defined

relative error = 1
N

N∑︂
n

Kref,n −Kn

Kref,n
100 (5.10)

where Kn is a generic permeability value resulted from the simulation and N is the total number

of values predicted by the strategies. As generic indication, strategies will be discarded when their

relative error is higher than 25%.
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fixedValue periodic slip no-slip zero gradient linear gradient
/

v p v or d p or e v p v p v p v p

inlet aaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
outlet

buffer wall
S A1

effective wall

inlet
outlet

buffer wall
S A2

effective wall

inlet
outlet

buffer wall
S A3

effective wall

inlet
outlet

buffer wall
S A4

effective wall

inlet
outlet

buffer wall
S A5

effective wall

inlet
outlet

buffer wall
S A6

effective wall

inlet
outlet

buffer wall
S A7

effective wall

inlet
outlet

buffer wall
S B

effective wall

inlet
outletS C

effective wall

inlet
outletS D1

effective wall

inlet
outletS D2

effective wall

inlet
outletS E

effective wall

Table 5.2 – List of all the strategies considered determining the permeability. Velocity and pressure
settings are indicated respectively in blue and red. For the pressure, zero gradient means that the
pressure gradient normal to the wall is set to zero. For the velocity, the slip condition preserves the
velocity tangential to the wall and sets to zero the normal component.
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5.3.1 Periodic Cubic Arrangement of Spheres: 1-Sphere Unit Cell

The unit cell of this domain consists of a solid sphere and a cubic fluid zone (Fig. 5.3a) thus leading

to an isotropic porous medium for which the permeability tensor reduces to a diagonal tensor with

equal components (K = Kxx = Kyy = Kzz). Four cases are considered, each one characterized by a

different sphere radius, hence a different porosity.

The permeabilities computed with strategies A (including the 7 sub-strategies), B, D1, and D2 are

plotted in Fig. 5.4. Strategies C and E are not necessary here as the domain is already symmetric.

Figure 5.4 – Dimensionless permeability estimations for the periodic cubic arrangement of spheres
obtained by applying the different strategies defined in Table 5.1, compared to the reference values [7,8].
One-sphere unit cell has been considered with increasing radius, thus with different porosity values.
Permeability values have been made non-dimensional by the square of the unit cube dimension.

Permeability values are conveniently made dimensionless with the square of the unit cube dimension.

Mesh refinement has been selected after a convergence analysis (see Appendix C (Section 5.8)). Several

observations can be made:

• Since the domain is symmetric, strategies B, D1, and D2 have been set with δ = 0. Moreover,

always because of the symmetry of the domain, strategies C and E are identical to B and D2

respectively;

• The relative error between the reference and strategy D1 and D2 is less than 1%;

• Results from strategies A1 and A2 differ by less than 0.01%. The only difference between them

is that strategy A2 displays a longer convergence time (doubled). For this reason strategy A2 is

discarded in what follows;

• Boundary conditions defined for strategies A3, A5, and A7 are not able to provide accurate

predictions in terms of permeability (relative error higher than 25%). They are then discarded;
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5.3.2 Periodic Array of Parallel Cylinders With a Face-Centered Square Arrangement

The unit cell of this periodic orthotropic structure is presented in Fig. 5.3b. In this case the

permeability tensor is characterized by two different values, Kxx = Kyy and Kzz, whereas all the

extra-diagonal components are equal to zero. Ten different cases are defined, each characterized by a

different value of porosity. The permeability components are estimated using strategies A1, A4, A6, B,

D1, and D2. After being made dimensionless by the square of unit cube dimension, they are compared

with the reference values in Fig. 5.5. The domain is symmetric, so strategies C and E are not considered
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Figure 5.5 – Dimensionless permeability estimation for the array of parallel cylinders with face-
centered square arrangement as a function of the domain porosity: a) Kxx=Kyy, b) Kzz.

and δ = 0 for strategies B, D1 and D2. Strategies D1 and D2 lead again to a similar description of

the problem. Their results differ by 0.1% and that is why we decided to group them under the generic

name of Strategy D. Results from strategy D are very accurate, the relative error with the reference is

always lower than 5%. Due to its boundary conditions and in particular to the forcing of the periodicity

in one direction only, strategy B is not able to accurately capture the orthotropic tensor (relative error

around 30%). For this reason it has been discarded.

5.3.3 Periodic Cubic Arrangement of Spheres: Multiple-Sphere Unit Cell

This arrangement of spheres is produced by cloning several times the single-sphere unit cell along

each direction. Theoretically, the permeability of the domain is the same regardless of the number

of single-spheres considered. However, due to the effects of the boundary conditions the estimated

permeability values differ as it has been observed above. Indeed, by increasing the domain size, hence

the number of spheres, the effect of the boundaries should reduce and the difference between the true

and the estimated permeability should tend to zero.

The porosity of each unit is constant and equal to ϵ = 0.875, closer to the porosities expected for

the applications we are targeting. Different cases are analyzed, each defined by a different number of

unit cells along each direction. In order to make a reasonable comparison, the mesh discretization of a

single cell is kept the same regardless of the total number of cells. This makes the size of the mesh to
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exponentially increase every time a unit cell added and we have stopped after 6 unit cells per direction

because of the computational cost. Strategies A1, A4, A6, and D (with δ = 0) are used to estimate

the permeability. Once made dimensionless with the square of the unit cube dimension, the results

are plotted in Fig. 5.6. Strategies C and E are not considered since the domain is symmetric. Different

K
*

1e-2

Strategy A1

Strategy A4

Strategy A6

Strategy D

Unit Cell Number Per Dimension
1 2 3 4 5 6

1.1

1.2

1.3

1.4

1.5

Figure 5.6 – Dimensionless permeability estimations for the periodic cubic arrangement of spheres
as a function of the number of spheres inside one unit cell.

observations on the results can be made:

• Strategy D provides constant results with increasing unit-cell numbers, as expected;

• As expected, strategies A1, A4, and A6 have the tendency to converge to the results of strategy

D, with relative errors given in Table 5.3;

1-Cell 2-Cells 3-Cells 4-Cells 5-Cells 6-Cells

STRATEGY A1 4.8 % 1.3 % 0.22 % 0.31 % 0.45 % 0.48 %
STRATEGY A4 1.17 % 16.3 % 22.8 % 16.4 % 18.0 % 10.4 %
STRATEGY A6 36.5 % 26.5 % 19.6 % 13.9 % 10.4 % 8.1 %

Table 5.3 – Relative errors between strategies A with respect to strategy D for the periodic cubic
arrangement of spheres by increasing the number of unit cells. By increasing the number of unit cells
the relative errors for the different strategies decrease.

• Strategy A4 has a non-monotonous converging rate. A possible explanation is that this boundary

condition forces the flow to be aligned to the inlet-outlet axis leading to a wrong velocity field,

thus wrong results [39]. By increasing the unit cells in the domain the effects of the boundaries

start to affect less the field and the estimated permeability converges to the correct value. This

strategy has been discarded.

• Strategy A1 has the fastest convergence. This strategy is the one that less affects the simulations

and hence the results.
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5.3.4 Periodic Cubic Arrangement of Tilted Cylinders

The unit cell of the periodic porous medium, Fig. 5.3d, consists of a solid cylinder placed in the

middle of the unit cube. It is progressively tilted along the y axes until a full rotation of 90 degrees. It

is the simplest periodic test case capable of providing extra-diagonal terms in the permeability tensor.

Indeed, the latter is characterized by the three diagonal terms plus the extra-diagonal Kxz = Kzx

components.

Ten different cases are defined, each characterized by a different rotation angle θ. The dimensionless

tensors inferred from strategies A1 and A6 have been plotted and compared in Fig. 5.7. Results

from the closure problem (strategy D with δ = 0) are considered here as reference results. Different
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Figure 5.7 – Dimensionless permeability estimation of the periodic cubic arrangement of tilted cy-
linders as a function of the orientation angle (θ) for the unit cell of Fig. 5.3d estimated by different
strategies and compared with results of strategy D.

observations can be made:

• All the strategies correctly predict (error below 10%) the constant values of the Kyy component

during the rotations;

• Strategy A1 predicts diagonal components with a maximum error of 5% and extra-diagonal

terms within 10% of error. The error has been observed to remain almost constant for all the
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rotation angles.

• Strategy A6 correctly predicts the extra-diagonal term (error less than 1%) but not the diagonal

ones (higher relative errors with respect of A1). The symmetric condition for the velocity field

on the lateral boundaries strongly reduces the anisotropy features inside the domain;

• Strategies C and E lead to a good prediction of the three diagonal components (especially

strategy E), but they completely cancel the non-diagonal term: by construction both of them

annihilate the transverse flow and kill any anisotropy features inside the domain. So, the use of

symmetry operations allow us to use the periodic boundary conditions but at the price of losing

the ability to predict extra-diagonal components. For this reason these two strategies have been

discarded.

5.3.5 Non-Periodic Cubic Arrangement of Tilted Cylinders

The last basic test case consists of a non-periodic cubic arrangement of tilted solid cylinders, Fig.

5.3e. The case is similar to the previous one, with the only difference that now the domain is non-

periodic for most of the values of θ, thus, it has been possible to check the strategies on a non-periodic

domain in order to be relevant for fibrous media.

As in the previous case, ten different values of the rotation angle are considered and dimensionless

permeability results are plotted and compared in Fig. 5.8. Strategies A1 and A6 are considered and

results are verified by strategy D with δ = 0 only for those angles that make the domain periodic:

θ = 0◦, 45◦, and 90◦. The generic strategy D with δ ̸= 0 is found to be unsuitable in this study. When

having small domains (as in this article) the value of δ to make it periodic becomes too big with

respect to the domain size to avoid any influence on the results. This strategy has to be discarded for

non-periodic media. Again, strategy A1 leads to a prediction with less than 5% of error in the three

periodic cases, while the other two lead to errors above 40%.

Thanks to these six cases it has been possible to compare the different strategies. Strategy A1 has

been proved to be the only suitable one for generic non-periodic porous materials. It is the only one

to predict with a good accuracy both diagonal and extra-diagonal terms of the permeability tensor.

The boundary conditions used in this strategy are the ones that less affect the numerical simulations.

5.4 Selected Strategy Applied to an Anistropic Non-Periodic Medium

Now that strategy A1 has been selected to estimate the permeability tensor, let’s apply it to a

real case. The geometry considered is a sample of virgin Calcarb, illustrated in Fig. 5.9. Carbon fiber

preforms, such as Calcarb [87], are used as skeleton in heat-shield materials [68, 69, 88] with average

porosities higher than 85 %. Its micro-structure is generally characterized by fibers preferentially

aligned at about ± 15 degrees with one of the planes and this gives transverse isotropic properties

to the material. The digital representation of its micro-structure has been acquired at the Advanced

Light Source at Lawrence Berkeley National Laboratory and more details can be found in Borner
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Figure 5.8 – Dimensionless permeability estimation of the non-periodic cubic arrangement of tilted
cylinders as a function of the orientation angle (θ) for the unit cell of Fig. 5.3e estimated by strategies
A1 and A6, while strategy D is used as reference only for the three periodic cases θ = 0◦, 45◦, and 90◦.

et al, 2017 [9]. The resulting dataset (Fig. 5.9) has a resolution of 200 X 200 X 200 voxels, with a

voxel size of 2.6 µm. Moreover, the dataset has been characterized in terms of volume fraction as a

function of the pore-size in the through-thickness direction, computed using a granulometry method

in Geodict. Fig. 5.10 shows the results of this analysis and in particular the average pore-size in the

through-thickness direction for the domain can be estimated to be equal to ℓavg = 135 µm. We can

conclude that the Calcarb dataset analyzed in this paper (Fig. 5.9) is too small to be a REV of the

material: the size of 520 µm leads to an average of 4 pores for each direction, not enough to guarantee

the domain to be representative.

5.4.1 Mesh Convergence Analysis

The mesh has been created with the OpenFoam utility snappyHexMesh. This tool can be considered

as a mesh sculptor since it requires an already existing base mesh (usually created with the blockMesh

utility) to chisel it into the desired mesh. The quality of the resultant mesh strongly depends on the

tuning of different parameters. For the purpose of this simulation, the parameters are tuned in order

to produce a good quality mesh (small values of skewness and non-orthogonality, and aspect ratio

close to one) and to define a mesh as homogeneous as possible. Once the parameter configuration

process is over, a convergence analysis is required in order to check that the defined mesh does not

influence the results. In order to do that, the behaviour of a physical quantity should be monitored

by repeating pore-scale numerical simulations with increasingly fine meshes. The pressure difference

between the inlet and the outlet is considered as an appropriate criterion to study the convergence,

since this quantity is strictly related to the permeability estimation. At this stage these cases will be

distinguished by the value of the input velocity and Re values will not be given. A further analysis will

139



5.4. SELECTED STRATEGY APPLIED TO AN ANISTROPIC NON-PERIODIC
MEDIUM

Figure 5.9 – Volume rendering of the CMT of Calcarb.

allow the proper choice of the characteristic length for the definition of the Reynolds number. Three

different inlet velocity values (corresponding to three different Reynolds numbers) are considered in

order to include in the mesh analysis both the creeping and the inertial regimes. Indeed, to detect the

limit of validity of Darcy’s law we need a good mesh in both regimes. The mesh convergence study

has been made with pressure residuals lower than 10−6 and velocity residuals lower than 10−8. The

results of this study are showed in Figs. 5.11 and 5.12. In figure 5.11 it is possible to observe how

the monitored quantity converges by refining the mesh. Moreover, for small velocities, cases a) and

b), a creeping flow regime is expected thus, the pressure difference results are similar and just scaled

between the two different velocities due to the linearity of the Stokes problem. However, as the velocity

increases, case c), the appearance of inertial effect leads to different pressure difference relationships,

thus scaling the value is no longer sufficient (see detailed investigation for numerous inlet velocities

in the Section 5.4.2). Simulations a) and b) capture the creeping regime; simulations c) captures the

inertial regime. The mesh convergence analysis is then performed for both regimes. Figure 5.12 shows

the behaviour of the numerical error between two consecutive simulations

error =
∆⟨p⟩g

n+1 − ∆⟨p⟩g
n

∆⟨p⟩g
n+1

(5.11)

where the index n + 1 indicates the numerical simulation with more mesh refinement. In the figure

the green lines have first order slopes. The numerical methods is then first order with respect to the

discretization. The errors decay until they stabilize around 10−3 and 10−4 when the grid-size reaches

the image resolution (2.6 µm). Based on this observation we have decided to select the 25 million

cells-mesh to proceed with the computation of the permeability tensor. Some details of the meshed

geometry are showed in Fig. 5.13
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Figure 5.10 – Granulometry analysis done in Geodict [9]. The average pore-size in the through-
thickness direction for the domain can be estimated to be equal to ℓavg = 135 µm.

5.4.2 Permeability Tensor

The objectives of this section are two-fold: compute the permeability tensor of the Calcarb sample

and investigate the validity of Darcy’s law corresponding to the creeping regime at the pore-scale. The

strategy has been applied for different values of the inlet velocity. A chosen from the analysis detailed in

Sections 5.2 and 5.3. The computed permeability components are presented in Fig. 5.14. It is possible

to notice that when the inlet velocities are higher than 0.1 m/s, the components of the permeability

start to decrease. This is due to the appearance of non-linearity effects. As said in Section 5.1, in

order to take those effects into account at the macroscopic scale, the Forchheimer correction should

be considered. However, for velocities lower than 0.1 m/s, the flow is in the creeping regime and the

predicted tensor is constant and equal to

K =

⎡⎢⎣ 1.56 10−10 1.39 10−11 1.02 10−11

1.39 10−11 1.63 10−10 −5.4 10−12

1.02 10−11 −5.4 10−12 1.15 10−10

⎤⎥⎦ m2 (5.12)

where the average of the extra-diagonal terms (
Kxy+Kyx

2 , Kxz+Kzx
2 , and

Kzy+Kyz

2 ) have been considered

to force tensor symmetry. The obtained permeability tensor characterizes just the domain considered

and not the whole material and this makes really difficult to check the results. However, this domain

has already been studied by Borner et al, 2017 [9], by using a different approach 1 and by making several

simplifications, reducing the tensor to just two scalars: in-plane and through-thickness components.

In order to compare results of Eq. (5.12) a diagonalization procedure is required in order to write the

tensor aligned to the principal axes of rotation

K
dg

=

⎡⎢⎣ 1.74 10−10 0 0
0 1.49 10−10 0
0 0 1.11 10−10

⎤⎥⎦ m2 (5.13)

1. The computation of the permeability is based on Monte Carlo simulations.
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Figure 5.11 – Mesh convergence analysis of the digitalized Calcarb domain Fig. 5.9 characterized by
three different inlet velocity values. The pressure difference between the inlet and the outlet is studied
as the number of cells within the domain increases. Due to a different scaling in the pressure difference,
cases a) and b) correspond to the creeping regime, whereas case c) to the inertial one.

and results have a relative difference around 42% with respect to the prediction obtained by Borner

et al, 2017 [9].

5.4.3 Characteristic Length of the Domain

As seen before, the relative importance between inertial and viscous forces within a fluid is cha-

racterized by the Reynolds number (Eq. (5.3)). Once defined, this parameter allows the determination

of the flow regime hence which equations must be considered for its resolution. The problem is that a

characteristic length ℓ needs to be defined and this choice is not trivial [119]. Both macroscopic and

microscopic information can be considered for its determination and in this article we propose a new

method based on the latter. This new technique is based on the vorticity vector, which is defined as

ω = ∂x × v (5.14)

It describes the tendency of a flow to rotate. For an incompressible flow this field is governed by the

following equation 2

Dω

Dt
= (ω · ∂x)v + µ

ρ
∂2
xω (5.15)

Vorticity is therefore generated close to boundaries where velocity gradients contribute to the stret-

ching/tilting term (the first source term at the second-hand side). Once generated, the vorticity diffuses

into the entire domain due to the diffusion term. Due to the linear behaviour of the velocity, the vor-

ticity increases proportional to the magnitude of the velocity in the creeping regime since the source

term remains the same. However, as soon as the creeping regime falls, non-linearities in the velocity

field change this simple trend. So, a simple way to check the validity of the creeping regime is to keep

2. The vorticity equation has been derived by taking the curl of the transient momentum equation.
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Figure 5.12 – Relative error convergence analysis of the digitalized Calcarb domain Fig. 5.9 cha-
racterized by three different inlet velocity values. Cases a) and b) correspond to the creeping regime,
whereas case c) to the inertial one. Lines with first order slopes have been plotted to show the conver-
gence order of the numerical method.

under observation the mean value of the vorticity over the whole domain. To investigate the loss of

proportionality of the velocity (linear dependence on velocity) which exists in the creeping regime, it

is possible to consider the dimensionless vorticity, defined as

ω∗ = ω
ℓ

⟨v⟩
(5.16)

whose mean value remains constant in the creeping regime.

In order to illustrate this concept, let’s apply it to the 1-sphere unit cell case showed in Fig. 5.3a with a

high porosity value (ϵ = 0.875) to simulate the case of flow around a sphere. This is a well-known case

and according to a Reynolds number computed with respect to the diameter of the sphere, the limit for

the creeping regime is usually set between 0.1 and 0.5 according to different authors [156–158]. As done

in Section 5.4 for the Calcarb geometry, let’s first evaluate the permeability value of the high porosity

1-sphere porous medium for different Reynolds numbers. Then, based on those values, a limit for the

creeping regime can be indirectly estimated by plotting the evolution of the estimated permeability or

of the drag. A change in the slope indicates the appearance of inertial effect [156–158]. The limit can

be inferred by directly evaluating for each simulation the mean vorticity value in the domain. This

technique has the additional advantage of requiring fewer simulations. Results are showed in Table

5.4, where the diameter of the sphere has been considered as the characteristic length of the domain

for the Reynolds numbers. As it is possible to see, both the permeability and vorticity start to change

for Re = 0.1, but a significant variation can be really appreciated after Re = 1. So, depending on

the precision desired, the creeping regime limit could be set at different Reynolds. One of the main

advantages of this method is the fact that it is possible to identify in the domain the area where

the vorticity presents its maximum values, that is, where non-linearity effects affect more the flow. In

other words, it points to the area of the domain that is first subject to a transition to a different flow

behaviour. This area could be considered as the physics-based characteristic length of the domain. In
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Figure 5.13 – Some details of the meshed geometry. The final mesh accounts about 25 million cells.

Re
K∗

∆K∗

|w∗|
∆|w∗|

0.001 0.01 0.1 0.5 1 10 100
0.09911 0.09911 0.09912 0.09918 0.09939 0.11471 0.17641

/ 0.00 % 0.010 % 0.071 % 0.283 % 15.74 % 77.99 %
3.985e+06 3.985e+06 3.985e+06 3.984e+06 3.982e+06 3.801e+06 3.2116e+06

/ 0.00 % 0.003 % 0.025 % 0.070 % 4.63 % 19.42 %

Table 5.4 – Results for the high porosity 1-sphere porous medium case (Fig. 5.3a) with different
Reynolds number in terms of permeability and mean vorticity over the domain. The ∆ values refer to
the quantity difference with respect to the lowest inlet Reynolds case.

this case of the high porosity 1-sphere porous medium, the vorticity technique identifies the sphere

area, leading to a characteristic length equal to the sphere diameter, as expected.

Let’s now apply the same method to the Calcarb geometry. Results are showed in Table 5.5. The

average pore-size length presented in Section 5.4, ℓavg = 135 µm, has been considered as the cha-

racteristic length for the computed Reynolds number denoted Reavg. In the table ∆ is taken as the

difference of the quantity between a given simulation and the lowest Reynolds case. Based on the ∆
values it is possible to set the limit for the creeping regime as Reavg between 1 and 5, depending on

the acceptable tolerance. As previously done, the vorticity can be now used to locate the portions of

the domain where non-linearities effects are dominant. By progressively increasing the velocity in the

domain it is possible to observe that the dimensionless vorticity field assumes its maximum values

mainly inside a specific area in the domain 3. This area is showed in Fig. 5.15 where on the right it is

3. For the moment the method is based on a qualitative analysis of the vorticity field. More analysis with different
geometries should be performed to make the analysis more rigorous.
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Figure 5.14 – Permeability components of the digitalized Calcarb domain by varying the inlet velo-
city.

Reavg
∆K∗

∆|w|∗

0.01 0.05 0.1 0.5 1 5 10 50 100
/ 0.00 0.005 % 0.008 % 0.1 % 1.2 % 3.52 % 24.0 % 47.1 %
/ 0.00 0.005 % 0.009 % 0.11 % 0.65 % 0.97 % 3.93 % 7.51 %

Table 5.5 – Permeability and mean vorticity variation for the Calcarb geometry as function of
different inlet magnitude velocities. The ∆ values refer to the quantity difference with respect to the
lowest inlet Reynolds case.

enlarged and the first obstacle found in the upwind direction is highlighted in red: a cluster of fibers

with diameter ℓcl ∼ 80 µm.

A verification on the vorticity analysis is given by a direct observation of the flow behaviour. By

referring to the left of Fig. 5.15, let’s assume a flow is coming along the x direction. About halfway

through the domain, the flow faces the big cluster of fibers highlighted in red in Fig. 5.15. When

velocities are small enough, the flow overtakes the cluster without any particular problem and there-

fore continues towards the outlet; with the increase of velocities, a part of the flow close to the right

boundary (Y = 0) starts to move towards the center of the domain. This behaviour becomes more and

more marked with increasing Reynolds as showed in Fig. 5.16; when Reavg ∼ 10, two counter-rotating

vortices are formed in the area downstream of the cluster. So, the flow close to the right boundary,

first overtakes the cluster, then feeds the vortices, and finally spreads towards the center of the do-

main; by further increasing Reynolds, the high-vorticity flow from the back of the cluster spreads the

non-linearity effects all over the domain and this leads to the formation of different vortices. Therefore,

the area downstream of the cluster is found to trigger the transition to inertial regime for the whole

domain. This cluster of fibers is the same found through the vorticity field analysis, with a diameter

of ℓcl ∼ 80 µm. By recalling the average pore-size length ℓavg = 135 µm presented in Section 5.4, it

can be easily noticed that the red box is characterized by a cluster size that is nearly half of the pore

domain average.

This analysis allows taking into account the real arrangement of the fibres inside the domain, however,

it is limited to a specific case and with a different sample all the procedure should be repeated.
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Lcl~80 [µm] 

flow

Figure 5.15 – Calcarb dataset characterized in this article, with a red box to highlight a small area
that influences the behaviour of the flow inside the whole domain.

The Reynolds number can be defined by using ℓcl and thus the limits of the creeping regime [90, 91]

expressed as

Recl < 0.5 −→ creeping regime

It should be remarked that this technique investigates the limit of the creeping regime, that is the

weak inertial regime [90] where flows are no longer fully viscous but still steady. Thanks to it, we are

able to provide a physical limit to the applicability of this study in the estimation of the permeability

tensor. Future analysis and developing on this technique are however necessary.

5.5 Conclusions

In this work, a numerical strategy has been defined in order to characterize the dynamic interaction

between a flow and a generic anistoropic non-periodic porous material. Specific attention was paid to

the definition of the computational domain and the boundary conditions by defining different strategies

and comparing their results on simple test cases. Both periodic and non-periodic geometries were

considered in order to be as generic as possible. The selected strategy is based on the direct resolution

of the Navier-Stokes equations under the assumption of creeping flow in order to estimate the physical

quantities that appear in Darcy’s law and leave the permeability tensor as the only unknown. In order

to close the system and obtain all the components of the tensor three pore-scale numerical simulations

need to be considered. Pore-scale simulations in the real geometry bring numerous information such

as pressure gradients and velocity fields. All this information has been used in this article to introduce

a criterion for delimiting the creeping regime with the onset of the inertial regime. This criterion is

based on the vorticity field and it has been verified and applied to the high porosity 1-sphere porous

medium and to the Calcarb dataset. As showed in the results, the limit strongly depends on the error

tolerance chosen to be acceptable. The analysis of vorticity was also adopted to define a physics-based

characteristic length in the domain which has been used to define the Reynolds number and its value

corresponding to the onset of the inertial regime. This criterion can be used to train deep learning
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Figure 5.16 – Streamlines visualization in the domain and zoom on the characteristic area of the
domain with flow behaviour at different Reynolds number. Streamlines are colored based on the velocity
magnitude.
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techniques in the process of automatic identification of the physics-based characteristic length in a

generic domain. The numerical framework that has been developed during this study is available in

the Porous material Analysis Toolbox based on OpenFoam (PATO) released Open Source by NASA

(www.pato.ac).
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5.6 Appendix A. Remarks on the Volume Averaging Method

This appendix has the only purpose to introduce the concepts of the volume averaging method

used in this article. Further details can be found in the literature [15].

The volume averaging is a technique used to derive continuum-macroscopic equations for multiphase

systems. In this way the complexity of a porous medium is replaced with an equivalent porous-

continuum model in which each point is characterized by the properties of a representative elementary

volume (REV) centered on it. Within this REV variables can be averaged. Two different definitions

of averages have been adopted: the phase average which in this article has been used for the pressure

term

⟨p⟩g = 1
Vf

∫︂
Vf

pdV (5.17)

and the intrinsic average, used for the velocity field

⟨v⟩ = 1
VREV

∫︂
Vf

v dV (5.18)

Inside the REV each variable can be decomposed using Gray’s decomposition [159]) as the sum of its

average plus a deviation contribution. For the pressure field this decomposition is as follows

p = ⟨p⟩g + p̃ (5.19)

5.7 Appendix B. KclosureSolver

KclosureSolver is a solver implemented in PATO to solve the closure problem Eq. (5.8). By following

the work of Anguy and Bernanrd, (1994) [160], transients terms have been added to the system to

improve its stability. The desired solution is taken at the steady-state. An artificial compressibility, c,

and an artificial viscosity coefficient, µart, are also introduced. The modified transient problem is as

follows ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂td+ ∂xe− ∂2

x(µart d) = I in V

∂te+ c2∂x · d = 0 in V

BC1 : d = 0 at Sgs

BC2 : d(r + li) = d(r), e(r + li) = e(r) i = 1, 2, 3

(5.20)
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The two equations are solved sequentially. Each equation can be iterated in a loop. The time integration

is carried out through an implicit scheme.

5.8 Appendix C. Mesh Convergence Test Cases

In section 3, numerical simulations on six test cases are presented. The mesh refinement has been

selected after a convergence analysis. By considering the 1-sphere unit cell with porosity ϵ = 0.55,
results of the convergence study with strategy A1 are presented in Table 5.6. The error% is evaluated

N Cells 2414 11795 34099 74352 138911 233039 362489 533190
Error % 2.72 1.37 1.02 0.66 0.56 0.01 0.01 /
Vratio 5.431 e-4 6.8 e-5 2.0 e-5 8.5e-6 4.3 e-6 2.5 e-6 1.6 e-6 1.1 e-6

Table 5.6 – Mesh Convergence analysis with strategy A1 for the 1-sphere unit cell case defined in
Section 3 with constant porosity ϵ = 0.55. The error% is evaluated with respect to the result of the
finer mesh. Vratio is the ratio between the volume of the biggest finite-volume cell in the domain and
the domain itself.

taking into account the permeability estimation of two consecutive simulations as follows

error% = 100 |KFiner Mesh −KCoarser Mesh|
KFiner Mesh

(5.21)

The quantity Vratio is the ratio between the volume of the biggest cell in the domain and the domain

itself. From the results in the table we can see that the convergence of the mesh is immediately achie-

ved since the error is always decreasing by increasing the refinement. This trend, however, should stop

when the tolerances of the simulation are reached. That is what happens in the table for the most

refined meshes. The resolution of the mesh with 233039-cells can be then selected for the analysis in

section 3.
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Chapitre 6

Multiscale modeling of flow in porous
thermal protection systems from the
continuum to the slip regime

Nomenclature

Latin Letters

d gas kinetic diameter [m]
dp mean pore diameter [m]
K corrected permeability tensor [m2]
K0 permeability tensor in the limit of continuum flow [m2]
kb Boltzmann constant m2 kg s−2 K−1]
n surface normal
p pore-scale pressure [Pa]
QN flow rate [kg s−1]
r radius of the cylinder [m]
S interface area [m2]
T micro-scale temperature [K]
v pore-scale velocity [m s−1]
V volume of the domain [m3]
x pore-scale coordinates [m]

Greek Letters

αs generic function of σv

β slip correction tensor [Pa]
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Nomenclature

λ mean free path [m]
µ dynamic viscosity [Pa s]
ρ pore-scale density [kg m−3]
σp first order velocity slip coefficient
σv tangential momentum accommodation coefficient

Symbols

∗ non-dimensional variable
∼ deviation term
⟨⟩ intrinsic average
⟨⟩g phase average

Subscripts and Superscripts

g gas
s solid
sl slip
w wall

Adimensional Groups

Kn Knudsen number

Acronyms

CFD Computational Fluid Dynamics
CMT Computed Micro-Tomography
DSMC Direct Simulation Monte Carlo
MSL Mars Science Laboratory
PICA Phenolic Impregnated Carbon Ablator
PS-NS Pore-Scale Numerical Simulations
TPS Thermal Protection System

Preamble
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Affiliations: Arts et Métiers Institute of Technology, Univ. Bordeaux, CNRS, Bordeaux INP, I2M,

UMR 5295, F-33400 Talence, France;

Published: No;

Conference: No;
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Abstract

By analysing the pressure and temperature profiles during atmospheric entry of the Stardust and

MSL space missions, it can be observed that a large and important (peak heating) portion of the

entry trajectory occurs when the gas dynamic within the porous medium is in the continuum and

slip regimes. An extension of CFD methods to account for rarefied slip gas effects would allow a large

computational gain over the use of DSMC methods. To this end, the corrected permeability tensor

must be characterized. However, the most general case of non-periodic anisotropic porous media still

needs to be completely numerically defined. In this article we propose a pore-scale numerical tech-

nique to estimate the effective tensor when addressing the most most general case of non-periodic

anisotropic porous media. The Navier-Stokes equations are used in combination with a partial slip

boundary condition on the fluid-solid interface. Results are averaged and substituted in the macro-

scopic Darcy-Klinkenberg model, leaving the effective tensor as the only unknown. Verification by

comparison with direct simulation Monte Carlo (DSMC) is performed on a square array of cylinders.

The CFD confirms its ability to infer the full effective tensor and it leads to a gain in simulation time.

The method is applied to the analysis of a 3D X-ray computed micro-tomography (CMT) of Calcarb, a

porous carbon fiber material used in the thermal protection systems of space vehicles. Results are com-

pared with literature data derived from DSMC methods and a relative difference of around 8% is found.

Keywords: Porous media; Permeability tensor; Slip Regime; Pore-scale numerical simulations; Micro-

CT image; Calcarb.

6.1 Introduction

During hypersonic entry into a planetary atmosphere, a space vehicle is subjected to high aero-

thermodynamic heating from the surrounding free-stream plasma. The spacecraft surface can reach

a temperature of about 3000 K for severe entry conditions. Thermal Protection System (TPS) are

adopted to dissipate the heat and protect the integrity of the structure. For very high entry speeds,

ablators are the current option as TPS materials. They are designed to absorb and dissipate heat

through phase changes, chemical reactions, and material removal. An example of this class of TPS

material is the Phenolic Impregnated Carbon Ablator (PICA) [70], a carbon fiber preform partially

impregnated with phenolic resin, resulting in very light weight, good insulators, and high mechanical

strength. This material was used for the Stardust [92] and Mars Science Laboratory [93] (MSL) mis-

sions. During the entry trajectories of these missions, different rarefaction regimes were crossed by the

flow dynamics within the porous medium. The different regimes are classified in terms of the Knudsen

number. In porous media, the Knudsen number is defined as the ratio of the mean free path λ to the
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mean pore diameter dp

Kn = λ

dp
(6.1)

For PICA-like materials, the mean pore diameter of the carbon preform can be considered to be around

dp = 50 µm [9]. The mean free path of the gas mixture is given by the kinetic theory

λ = kbTg√︁
(2)πd2pg

(6.2)

where kb is the Boltzmann constant, T and p are the micro-scale temperature and pressure of the

gas, and d indicates the kinetic diameter of the gas. We can consider the gas mixture inside the

material to be composed by pyrolysis gases. Estimating the kinetic diameter results to be a complex

task for two main reasons. First, the composition of the mixture is a function of local temperature

and pressure; second, the value of the kinetic diameter depends on the gas pair being considered. We

decide to take the lowest value in the mixture as it relates to the first molecules entering the slip

regime. For pyrolysis gases, this value corresponds to hydrogen molecules colliding with each other:

d = 289 10−12m [161]. Given the wall temperature-pressure values at the stagnation point along

the entry trajectories, the flow dynamics of the MSL and Stardust missions are showed in Fig. 6.1.

Within the material, the temperature of the gas decreases to values around 273 K, while the pressure
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Figure 6.1 – Rarefied flow regimes encountered along the Stardust and MSL entry trajectories within
a porous medium of mean pore diameter 50 µm [9]. Wall temperature-pressure values are taken at the
stagnation point along the entry trajectories.

can be considered constant. The two highlighted areas (blue for Stardust and red for MSL) give an

indication of the rarefaction regimes crossed by the flow dynamics within the TPS. A change of regime

implies that the mass transport at the pore scale has to be solved using different mathematical models

(Boltzmann equation [162], Burnett equation [163], Navier-Stokes equations). The figure shows that,
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for both missions, the continuum (Kn < 0.01) regime is partially crossed when the heating conditions

reach their peak. A larger part of the trajectories, especially when ablation effects are significant, is

covered by the slip regime (0.01 < Kn < 0.1). In this regime, the continuum assumption is still valid

within the fluid bulk, but non-equilibrium effects dominate near the solid walls. CFD methods can still

be used with allowance for discontinuities in velocity and temperature at solid boundaries [164]. The

importance of this extension is twofold. Firstly, numerical methods for solving the Boltzmann equation

are time consuming when reducing the Knudsen number [165]; secondly, CFD methods would thus be

able to describe a large and important portion of the Stardust and MSL mission trajectories (Fig.6.1).

In order to understand how this extension occurs, the micro-scale and macro-scale descriptions of the

problem must be introduced.

The generic problem of interest is schematized in Fig. 6.2. At the micro-scale, under the assumption of

x

z

r

<p>inlet 

Macro-Scale

Pore-Scale

px px+dx

v

<p>outlet 

vsl

vsl

<v>g g

Figure 6.2 – Pore-scale and macro-scale descriptions of the generic transport problem in porous
media considered in this article. At the microscopic scale the Navier-Stokes equations with slip velocity
condition at the fluid-solid interface (Eq. 6.3) are considered. At the macroscopic scale, the system of
Eq. 6.7 is solved.

a Newtonian, isothermal, creeping, steady-state, and incompressible fluid, a rigid solid porous medium,

and negligible volume forces, the pore-scale governing equations reduce to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂x · vg = 0
∂x · (µg ∂xvg) = ∂xpg

for Kn < 0.01 : BC vg = vw at Sgs

for Kn < 0.1 : BC vg = vsl at Sgs

(6.3)

where µg denotes the dynamic viscosity of the fluid, vg and pg are the pore-scale velocity and pressure,

and Sgs represents the gas-solid area interface. At the boundaries, the velocity accommodates to the
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one of the wall, vw, in the continuum regime and to the slip velocity, vsl, in the slip regime. In this

article, the first-order Maxwell model [10] is used to express the slip condition

vsl = vw + σpλ
(︂
∂nvsl

)︂
w

+ 3
4
µg

ρgTg

(︂
∂nTg

)︂
w

(6.4)

where σp is the first order velocity slip coefficient, λ represents the mean free path, w stands for wall,

n is the normal vector to the wall, ρg is the micro-scale density of the gas. As isothermal condition

are assumed, the term with the temperature contribution is neglected. The dimensionless form of this

expression is [165]

v∗
sl = v∗

w + σp Kn
(︂
∂n∗v∗

sl

)︂
w

(6.5)

where the role of the Knudsen number is highlighted. In the continuum regime, Kn << 1 thus the

discontinuous term can be neglected and the non-slip boundary condition applied. As reviewed by

Zhang et al., 2012 [10], different models have been developed to express the slip condition, however, as

long as small Knudsen number are considered (Kn < 0.1), the models differ by negligible amounts [10].

The velocity slip coefficient, σp, unitary in Maxwell’s model [166], is empirically defined as

σp = αs
2 − σv

σv
(6.6)

where σv is the tangential momentum accommodation coefficient and αs represents a generic function

of σv. The tangential momentum accommodation coefficient coefficient indicates the fraction of the

molecules reflected diffusively from the walls. For σv = 0, the molecules reflect specularly; for σv = 1
the molecules reflect diffusively. The tangential momentum accommodation coefficient depends on the

surface roughness, the gas temperature and pressure. Many studies have investigated this coefficient,

proposing different methods of determination. These are reviewed, discussed, and compared in the

work of Zhang et al., 2012 [10], where the authors, in Fig. 6.3, compared the non-dimensional flow

rate QN as a function of the Knudsen number Kn predicted for various slip models. As showed, small

Figure 6.3 – Comparison of the non-dimensional flow rate QN as a function of the Knudsen number
Kn for various slip models. Reference to the work of Zhang et al., 2012 [10].

discrepancies characterize the models when Kn < 0.1. Thus, any model can be then selected for the
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purpose of this work. For simplicity, the unitary Maxwell model is adopted in this work.

At the macro-scale, under the same assumptions, the system of Eq. 6.3 becomes⎧⎪⎪⎨⎪⎪⎩
∂x · ⟨vg⟩ = 0

⟨vg⟩ = − 1
µg

K · ∂x⟨pg⟩g
(6.7)

where ⟨p⟩g and ⟨vg⟩ are the macroscopic average pressure and velocity fields 1, and K is the corrected

permeability tensor. The latter is expressed via the Klinkenberg model [167–169]

K = K0

(︂
1 +

β

⟨pg⟩g

)︂
(6.8)

where K0 is the permeability tensor in the limit of continuum flow and β the slip correction tensor.

While K0 depends on the microstructure of the material only, β is also a function of the temperature

and gas composition.

Now that the microscopic and macroscopic models have been introduced, it is easy to see that exten-

ding the use of CFD models to the slip regime requires the knowledge of the corrected permeability

tensor. When dealing with TPS materials, the knowledge of this effective property is not immediate.

In fact, the microscopic structure appears to be anisotropic and non-periodic. A few studies on the

subject can be found in the literature. The DSMC technique proves to be the primary method used to

determine the targeted effective properties of porous materials under rarefied flow conditions. White

et al., 2016 [170], investigated numerically rarefied effects using micro-CT scans of ablative material

samples and validated the method by comparison with experimental results. Both the virgin and

pyrolysed states have been considered and, as expected, the pyrolysed material samples were found

to be more permeable due to their higher porosity values. The article concludes on the importance

of choosing a representative gas when performing permeability studies that include rarefied gases. A

similar study has been performed by Borner et al., 2017 [9], where they computed the permeabili-

ties of four X-ray microtomographies of carbon fiber materials submitted to high temperature gases.

Results were in good agreement with experimental data published in the literature. The study shows

that the corrected permeability is strongly dependant on the porosity of the material and on the pore

size distribution. Kalarakis et al., 2012 [171], investigated with both DSMC and a modified Lattice

Boltzmann method the behaviour of the corrected permeability in a two-dimensional reconstructed

porous medium for Knudsen numbers varying in the range 0.1 − 10. They noticed a good accuracy of

the modified LBM predictions, which makes the method quite attractive to compute the permeability

owing to the considerable saving in computational time and memory requirements compared to the

DSMC method. For more examples concerning the use of the DSMC in determining the correct per-

meability tensor, we invite the reader to consult the following articles [12, 172–174], where different

materials and applications are considered: catalytic converters and fuel cells [172], shale gas [173], and

TPS materials [12, 174]. CFD techniques are also adopted to investigate the variation of the effective

phenomena due to rarefied effects. Hosseini and Tafreshi, 2010 [175], studied the effect of slip flow on

the permeability of 3-D virtual geometries of fibrous materials that reproduce the microstructure of a

1. See Appendix A (Section 6.6).
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nano-fiber material. With the use of Stokes equation and partial slip boundary conditions, they infer-

red the permeability in one direction and found a good agreement with empirical correlations of the

literature. Krakowska et al, 2019 [176], determined the corrected permeability tensor, still assumed as

a spherical tensor, on computed X-ray tomography images of rock samples. They combined the results

fluid flow simulations with laboratory measurement to investigated the impact of the accommodation

coefficient on the volumetric flow rate and on the permeability. A similar study has been made by

Madejski et al., 2019 [177], who studied a 3D X-ray tomography of tight rock samples. They observed

that the corrected permeability can be up to 1.68 times greater considering the slip phenomenon. No-

joomizadeh et al., 2018 [178], worked with nano-fluids and they observed the influence of the velocity

and temperature jumps conditions for Knudsen varying from 0.001 to 0.1 and were able to observe that

an increase in the slip coefficient, thus of the Knudsen number, leads to an increase of the temperature

jump at the wall.

The main objective of this work is to determine the corrected permeability tensor using PS-NS, a

subject of great importance for the space community. For the first time, a complete numerical proce-

dure is defined to estimate the slip correction tensor of non-periodic anisotropic porous media. The

article is structured as follows. The numerical method for the estimation of the effective properties is

described in Section 6.2. In Section 6.3 the numerical method is verified by comparison to literature

data for a square array of cylinders. In Section 6.4, the effective properties of the material of the study,

a carbon fiber preform called Calcarb, are derived for Knudsen varying from 0.001 to 0.1. Conclusions
are drawn in Section 6.5.

6.2 Numerical Method

This section introduces the numerical method to evaluate the effective transport properties from the

continuum to the slip regime. PS-NS on generic non-periodic anisotropic porous media are considered.

The numerical procedure to determine the permeability tensor (K0) for non-periodic anisotropic porous

media, has been introduced by Scandelli et al., 2021 [11]. In this study, the authors define a particular

set of boundary conditions, schematized in Fig. 6.4, in order to estimate the desired tensor. This

estimation is done directly from Darcy’s law [179], which is conveniently decomposed into the following

system ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨vg,x⟩ = − 1
µg

(︂
K0,xx∇⟨pg,x⟩ +K0,xy∇⟨pg,y⟩ +K0,xz∇⟨pg,z⟩

)︂
⟨vg,y⟩ = − 1

µg

(︂
K0,yx∇⟨pg,x⟩ +K0,yy∇⟨pg,y⟩ +K0,yz∇⟨pg,z⟩

)︂
⟨vg,z⟩ = − 1

µg

(︂
K0,zx∇⟨pg,x⟩ +K0,zy∇⟨pg,y⟩ +K0,zz∇⟨pg,z⟩

)︂
(6.9)

The average macroscopic velocity components ⟨vg,x⟩, ⟨vg,y⟩, ⟨vg,z⟩ and pressure fields ∇⟨pg,x⟩, ∇⟨pg,y⟩,
∇⟨pg,z⟩ are derived from the results of PS-NS. The remaining unknowns of the system are the nine

permeability components, namely K0,xx,K0,xy, ...,K0,zz. To close the system, a total of three simula-

tions has to be performed by considering three different flow directions. For simplicity, the inlet flow
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x
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inlet / outlet
wall boundary

v p

     slip condition for v
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Figure 6.4 – Representation of a generic numerical domain to estimate the permeability tensor for
non-periodic anisotropic media. The full numerical procedure is presented in [11].

can be aligned with the x, y and z directions in the different simulations. A global system of nine

equations can be defined such as showed in Eq. (6.10), where the exponents 1, 2, 3 refer to the first,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨v1
g,x⟩

⟨v1
g,y⟩

⟨v1
g,z⟩

⟨v2
g,x⟩

⟨v2
g,y⟩

⟨v2
g,z⟩

⟨v3
g,x⟩

⟨v3
g,y⟩

⟨v3
g,z⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= − 1

µg

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇⟨p1
g,x⟩ ∇⟨p1

g,y⟩ ∇⟨p1
g,z⟩ 0 0 0 0 0 0

0 0 0 ∇⟨p1
g,x⟩ ∇⟨p1

g,y⟩ ∇⟨p1
g,z⟩ 0 0 0

0 0 0 0 0 0 ∇⟨p1
g,x⟩ ∇⟨p1

g,y⟩ ∇⟨p1
g,z⟩

∇⟨pg,x⟩2 ∇⟨pg,y⟩2 ∇⟨pg,z⟩2 0 0 0 0 0 0
0 0 0 ∇⟨pg,x⟩2 ∇⟨pg,y⟩2 ∇⟨pg,z⟩2 0 0 0
0 0 0 0 0 0 ∇⟨pg,x⟩2 ∇⟨pg,y⟩2 ∇⟨pg,z⟩2

∇⟨pg,x⟩3 ∇⟨pg,y⟩3 ∇⟨pg,z⟩3 0 0 0 0 0 0
0 0 0 ∇⟨pg,x⟩3 ∇⟨pg,y⟩3 ∇⟨pg,z⟩3 0 0 0
0 0 0 0 0 0 ∇⟨pg,x⟩3 ∇⟨pg,y⟩3 ∇⟨pg,z⟩3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K0,xx

K0,xy

K0,xz

K0,yx

K0,yy

K0,yz

K0,zx

K0,zy

K0,zz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.10)

second, and third numerical simulations.

The same numerical procedure can be repeated to retrieve the slip correction tensor. In Eqs. 6.9 and

6.10, the corrected permeability tensor K is considered instead of K0. Once K0 and K are known, the

slip tensor β can be retrieved directly from Eq. (6.8).

6.3 Corrected Permeability of Square Arrays of Cylinders

We study in this section a flow through a square array of cylinders. The purpose is to validate

our numerical method to compute the corrected permeability tensor. This problem has already been

investigated experimentally, numerically and theoretically by several authors [9,12,13,180]. Moreover,

to extend the reference database in the slip regime, DSMC simulations have been conducted with the

OpenFoam DSMC solver [181]. The infinite array of parallel cylinders is modeled as a two dimensional

problem and two cylinders in the direction of the flow are considered, as chosen by Stern et al.,

2015 [12], and by Borner et al., 2017 [9]. The computational domain is schematized in Fig. 6.5. To

comply with the references, the radius of the cylinders is taken as characteristic length. The only
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effective domainbuffer zone buffer zone

x
y

inlet outlet

Figure 6.5 – Flow through a square array of cylinders. The array is modeled as a two dimensional
problem and two cylinders (as considered in the references [9, 12]) are considered in the direction of
the flow.

difference between this work and the one in the references is on the choice of the boundary conditions.

In the literature, periodic boundary conditions are considered in the direction of the flow, whereas in

this work we consider the numerical configuration showed in Fig. 6.4: imposed velocity field at the inlet

and pressure at the outlet, with the addition of two buffer zones to limit the effects of these boundary

conditions in the effective domain. The reason is that we want to validate the method even for generic

non-periodic materials. Different porosities are considered by increasing its value, ϵ, from 0.69 to 0.95.
The porosity is changed by modifying the cylinder diameter. Argon is used as the carrier gas. Eight

different values of the mean free path hence of the Knudsen number are studied. All rarefaction regimes

are covered by at least one value, with the exception of the slip regime that is characterized by five

different values. For this isotropic case, the corrected permeability reduces to a spherical tensor with

only one component, K.

Results are showed in Fig. 6.6, where permeability values are made non-dimensional using the cylinder

radius. Two plots compose the figure. In plot (a), a range of Knudsen numbers from 0.001 to 1

is considered. As expected, it can be observed that permeability increases with both porosity and

Knudsen number. In particular, for Kn < 0.01, the effective property remains constant and equal

to the material permeability in the limit of the continuum regime. For higher Knudsen numbers, the

rarefied effects change its value as represented in the figure. Given a porosity value and the Knudsen

number, the difference between the corrected permeability and the material permeability is directly

linked to the slip correction tensor via Eq. (6.8). The reference database is composed by results from

our DSMC, from the study of Borner et al., 2017 [9], and from the one of Shou et al., 2011 [13], where

the following analytical solution is derived

K/r2 = −0.5 ln(1 − ϵ) + 0.25 − ϵ− 0.25(1 − ϵ)2 + 2Kn (−0.5 ln(1 − ϵ) − 0.25 + 0.25(1 − ϵ)2)
4 (1 − ϵ)(1 + 2Kn)

(6.11)

to expresses the non-dimensional permeability as a function of the porosity and the Knudsen number

for a flow perpendicular to a 1D fibrous medium. This equation was derived using a unit cell method

from Stokes equation with a first-order slip boundary condition, thus limiting its validity to Kn < 0.1.
DSMC results, both from this work and from Borner et al., 2017 [9], are taken as reference as valid

also for high Knudsen values. The following average relative error in terms of K can be defined at a
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Borner DSMC - Kn = 0.001
Borner DSMC - Kn = 0.01
Borner DSMC - Kn = 0.2
Borner DSMC - Kn = 1
Shou analytical - Kn = 0.001
Shou analytical - Kn = 0.01
Shou analytical - Kn = 0.2
Shou analytical - Kn = 1

Porosity

K
/r2

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

10-1

100

101

This work PS-DNS - Kn = 0.001
This work PS-DNS - Kn = 0.01
This work PS-DNS - Kn = 0.2
This work PS-DNS - Kn = 1

This work PS-DNS - Kn = 0.01

This work DSMC - Kn = 0.01
This work DSMC - Kn = 0.025
This work DSMC - Kn = 0.05
This work DSMC - Kn = 0.075

This work PS-DNS - Kn = 0.025
This work PS-DNS - Kn = 0.05
This work PS-DNS - Kn = 0.075
This work PS-DNS - Kn = 0.1

This work DSMC - Kn = 0.1

Porosity

K
/r2

0.65 0.75 0.8 0.85 0.9 0.95 1

10-1

100

101

Borner DSMC - Kn = 0.2
Borner DSMC - Kn = 1

This work DSMC - Kn = 0.2
This work DSMC - Kn = 1

(a)

(b)

Borner DSMC - Kn = 0.01

Figure 6.6 – Adimensional permeability behaviour for the flow through a square array of cylinders.
Different porosity values and Knudsen numbers are considered. In plot (a), a range of Knudsen numbers
from 0.001 to 1 is showed; in plot (b) a range of Knudsen numbers from 0.01 to 0.1 is highlighted. The
reference database is composed by results from our DSMC, from the study of Borner et al., 2017 [9],
and from the one of Shou et al., 2011 [13].
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Kn = 0.001 Kn = 0.01 Kn = 0.2 Kn = 1

0.5% 0.9% 26.3% 39.8%

Table 6.1 – Relative average errors in terms of K of our CFD results with the reference database.

Kn = 0.01 Kn = 0.025 Kn = 0.05 Kn = 0.075 Kn = 0.1

0.9% 1.7% 3.0% 4.5% 6.1%

Table 6.2 – Relative average errors in terms of K of our CFD results with the reference database,
with emphasis on the slip regime.

fixed Knudsen number

error (%) =
N∑︂

i=1

Ki,ref −Ki,P S−NS

Ki,ref
100 (6.12)

where i is the index to take into account the N porosity values, the subscript ref and PS −NS refer

respectively to the reference and our work. Errors are presented in Table 6.1. A good agreement is

observed for small Knudsen numbers, that is when the flow is in the continuum regime and permeability

values are nearly constants. The partial slip boundary condition (Eq. (6.4)) is a correct approximation

when rarefied effects are not important. For Knudsen number Kn = 0.2 and higher, our results diverge

form the reference ones. This is also expected: for this range of Knudsen number the flow is beyond

the slip regime and Eq. 6.3. The comparison for the slip regime is done in plot (b) of Fig. 6.6, where

a more specific range of Knudsen numbers from 0.01 to 0.1 is considered. Errors are presented in

Table 6.2. Results lead to the desired validation: the partial slip boundary condition (Eq. (6.4)) allows

the extension of the PS-NS method up to the slip regime.

6.4 Permeability of Calcarb

In this section, the PS-NS method is applied to the 3D X-ray computed-tomography segmented

image of Calcarb showed in Fig. 6.7. Calcarb [87] is a carbon fiber preforms used as skeleton in heat-

shield materials [68, 69, 88] with average porosities higher than 85 %. Its micro-structure is generally

characterized by fibers preferentially aligned at about ± 15 degrees with one of the planes and this

gives transverse isotropic properties to the material. The digital representation of its micro-structure

has been acquired at the Advanced Light Source at Lawrence Berkeley National Laboratory and more

details can be found in Borner et al, 2017 [9]. The resulting dataset (Fig. 6.7) has a resolution of 200

X 200 X 200 voxels, with a voxel size of 2.6 µm. This particular dataset has already been analyzed

in the literature. Scandelli et al., 2022 [11], have determined its permeability tensor using PS-NS in

the continuum regime; Borner et al, 2017 [9], have analyzed its permeability in rarefied conditions

(Kn < 0.1).
The discretization of the domain is performed with the OpenFoam utility snappyHexMesh. For the

purpose of this simulation, a good-quality (small values of skewness and non-orthogonality, and aspect
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A
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C

D

A

B C

D

Figure 6.7 – On the left-hand side, volume rendering of the CMT of Calcarb. The dataset has a
resolution of 200 X 200 X 200 voxels, with a voxel size of 2.6 µm; on the right-hand side, some details
of the meshed geometry. The mesh accounts about 25 million cells.

ratio close to one) and homogeneous (as much as possible) mesh is targeted. A convergence analysis

is conducted by monitoring the pressure difference between the inlet and the outlet of the domain by

repeating pore-scale numerical simulations with increasingly fine meshes. The same conclusions as in

the analysis of Scandelli et al., 2022 [11], are drawn: a 25 million cells-mesh is considered to proceed

with the computation of the effective properties. Some details of the meshed geometry are given in

Fig. 6.7. The permeability tensor is first computed in the limit of the continuum regime by considering

the numerical method described in Section 6.2. A Knudsen number Kn = 0.00001 has been adopted.

The resultant tensor, written with respect to the principal axes of rotation, is equal to

K0 =

⎡⎢⎣ 1.74 10−10 0 0
0 1.49 10−10 0
0 0 1.11 10−10

⎤⎥⎦ m2 (6.13)

that is the same result found in Scandelli et al., 2022 [11]. With the aim of adopting representative

conditions to the entry trajectories of space missions (Fig. 6.1), pyrolysis gases are considered at a

constant temperature of 1000K and for pressure values to vary the Knudsen number in the continuity

and flow regimes: Kn = 0.0001, Kn = 0.001, Kn = 0.01, Kn = 0.025, Kn = 0.050, Kn = 0.075,
Kn = 0.1. For each value, the corrected permeability tensor (K) has been evaluated and written with

respect to the principal axes of rotation. The behaviour of the three components of the tensor as

functions of the Knudsen number is showed in Fig. 6.8. As expected, the three components increase in

magnitude as the Knudsen number increases. The highest Knudsen number considered in the analysis

is Kn = 0.1, since, as found in Section 6.3, this is the upper limit of validation of the partial slip model

(Eq. (6.4)). Extrapolated results from Borner et al., 2017 [9], are also showed. A similar behaviour is

observed with the Knudsen number, although they result to be shifted to higher permeability values.

This is due to a different prediction of K0: as outlined in Scandelli et al., 2022 [11], the adopted

numerical procedure leads to an underestimation with respect to Borner et al., 2017 [9], of the effective
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Figure 6.8 – Corrected permeability tensor components as function of the Knudsen number. Kn =
0.0001, Kn = 0.001, Kn = 0.01, Kn = 0.025, Kn = 0.050, Kn = 0.075, Kn = 0.1 are considered. It
is possible to observe how rarefied effects lead to an increase of the three components. Extrapolated
results from Borner et al., 2017 [9], are also showed.

property by a factor of 42%.

The knowledge of K and K0 allows the determination of the effective slip correction tensor (from

Eq. (6.8)). The average of the different values is taken. The tensor, written with respect to the principal

axes, is as follows

β =

⎡⎢⎣ 971.5 0 0
0 948.1 0
0 0 901.4

⎤⎥⎦ Pa (6.14)

results have a relative difference around 8% with respect to the value predicted by Borner et al.,

2017 [9].

6.5 Conclusions

In this work, a pore-scale numerical simulation is defined to characterize the dynamic interaction

between a flow and a generic anistoropic non-periodic porous material when considering the effects

of rarefied flow gas. In particular, the numerical method allows the determination of the corrected

permeability tensor. This allows CFD methods to be extended to the slip regime and, as a result, a

large computational gain over the use of DSMC methods. The numerical method is first presented

and then verified by comparison to literature data for a square array of cylinders. Results are in good

agreement with the reference database obtained from direct simulations with Monte Carlo methods,

provided that the continuum or slip regime is considered. At this point, the method is applied to

the characterization of a carbon fiber preform material called Calcarb. With the aim of adopting

164



6.6. APPENDIX A. REMARKS ON THE VOLUME AVERAGING METHOD

representative conditions to the entry trajectories of space missions, the corrected permeability tensor

has been computed for different values of the Knudsen number: Kn = 0.0001, Kn = 0.001, Kn = 0.01,
Kn = 0.025, Kn = 0.075, Kn = 0.1. Based on the results, the slip correction tensor is evaluated.

Results are in good agreement with literature data derived from DSMC methods. As future work,

the analysis needs to be extended for non-isothermal flow conditions with the purpose to investigate

possible variations of the effective thermal properties (effective conductivity tensor and heat transfer

coefficient) in the slip regime. In this case, a temperature jump condition needs to be enforced to

account for the thermal accomodation at the gas-solid boundary.

6.6 Appendix A. Remarks on the Volume Averaging Method

This appendix introduces the concepts of the volume averaging method are introduced. Further

details can be found in the work of Whitaker, 2013 [15].

The volume averaging is a technique used to derive continuum-macroscopic equations for multiphase

systems. In this way the complexity of a porous medium is replaced with an equivalent porous-

continuum model in which each point is characterized by the properties of a representative elementary

volume (REV) centered on it. Within this REV variables can be averaged. Two different definitions

of averages have been adopted: the phase average which in this article has been used for the pressure

term

⟨p⟩g = 1
Vg

∫︂
Vg

pdV (6.15)

and the intrinsic average, used for the velocity field

⟨v⟩ = 1
V

∫︂
Vg

v dV (6.16)

Inside the REV each variable can be decomposed using Gray’s decomposition [159]) as the sum of its

average plus a deviation contribution. For the pressure field this decomposition is as follows

p = ⟨p⟩g + p̃ (6.17)
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Chapitre 7

Volumetric Heat Transfer Coefficient:
Numerical Evaluation and Introductory
Analysis to Anisotropic Effects

Nomenclature

Latin Letters

b first mapping variable for the temperature deviation [m]
cp specific heat at constant pressure [J kg−1 K−1]
cf coefficients in the Nu-Pe correlation
hv volumetric heat transfer tensor [W m−3 K−1]
hv volumetric heat transfer coefficient [W m−3 K−1]
I identity tensor

I thermal inertia [J m−2 K−1 s−1/2]
j transport coefficient vector [W m−1 K−1]
K permeability tensor [m2]
k
eff

effective thermal conductivity tensor [W m−1 K−1]
k thermal conductivity coefficient [W m−1 K−1]
l size of the periodic domain
L reference length [m]
n surface normal
N total number of values predicted by the strategies
p pore-scale pressure [Pa]
r position vector [m]
s second mapping variable for the temperature deviation
S surface interface [m2]
T pore-scale temperature [K]
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Nomenclature

v pore-scale velocity [m s−1]
V volume of the domain [m3]
x pore-scale coordinates [m]

Greek Letters

α angle between the averaged velocity direction and the x-axis
δ Dirac distribution function
δ thickness of the buffer zone [m]
ϵ porosity of the medium
θ angle of velocity orientation
µ dynamic viscosity [Pa s]
ξ arbitrary function
ρ pore-scale density [kg m−3]
ψ generic field

Subscripts and Superscripts

0 change of variable
cnt center
g gas
in inlet
long longitudinal
n generic value
out outlet
ref reference
s solid
transv transversal

Special Symbols

∗ non-dimensional variable
∼ deviation term
⟨ ⟩ phase average
⟨ ⟩f intrinsic average

Adimensional Groups

Bi Biot number
Nu Nusselt number
Pe thermal Peclet number
Pr Prandtl number
Re Reynolds number
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Nomenclature

Acronyms

CMT Computed Micro-Tomography
LTE Local Thermal Equilibrium
LTNE Local Thermal Non-Equilibrium
REV Representative Elementary Volume

Preamble
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Abstract

In porous media, the direct proportionality between the heat flux and the fluid-solid temperature

difference is driven by the heat transfer coefficient. This effective property, originally introduced in a

heuristic way, has been theoretically justified a couple of decades ago using upscaling methods such

as volume averaging and homogenization. Many parameters affect its value, mainly the Reynolds and

Prandtl numbers, the porosity and the micro-structure of the material, and the velocity direction. The

objective of this work is to define a new formulation of the heat transfer coefficient able to generically

account for anisotropic effects. To this end, it is first necessary to define a numerical strategy for its de-

termination. Two families of methods have been developed. (1) When dealing with periodic materials

or with Representative Elementary Volume (REV), the effective property can be obtained by solving

the associated closure problem derived from upscaling methods. (2) From microscopic numerical simu-

lations, the heat transfer coefficient can be evaluated directly from its definition: the ratio between the

heat flux at the solid-fluid interface and the difference of the averaged temperatures of the two phases.

Family (2) can be applied to any type of geometry, but must be supplemented by the definition of

appropriate boundary conditions. Deduced from the literature, or defined in this work, different set of

boundary conditions have been tested on simple geometry cases. Only one set, defined in this work,

proved to be able to correctly predict the heat transfer coefficient for small Peclet numbers. The latter

has been applied to the characterization of a 3D computed microtomography (CMT) of Calcarb and
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good agreement are found with experimental results. Finally, anisotropic effects are investigated. It

will be showed that a tensorial form of the heat exchange between the two phases is able to perfectly

accounts for anisotropic effects under certain conditions.

Keywords: Porous media; Volumetric Heat Transfer Coefficient; Closure Problem; Pore-scale numerical

simulations; Boundary conditions; Calcarb CMT; Anisotropic Effects

7.1 Introduction

The subject of porous materials submitted to high temperatures is of great relevance for a wide

range of engineering applications: design of ablative heat shields of space vehicles [74, 182, 183], pre-

diction of fire propagation in a closed environment [59,60], thermal conversion of biomass into biofuel

[52, 184], thermal insulation [185], cracking of hot gases passing through a porous material [186, 187],

and many others. The numerical description of these applications is, however, a very complex topic.

It can be faced either at the pore-scale or at the macro-scale. The former approach implies to si-

multaneously deal with heat and mass transfer phenomena and complex pore geometries; the latter

simplifies the description by averaging the local variations and focusing on the macroscopic behavior,

which is often sufficient to analyze a system. Both approaches are now presented.

At the pore scale, the flow of a Newtonian, incompressible, steady-state, and isotropic fluid in a ri-

gid porous medium is described by the Navier-Stokes equations coupled with the energy conservation

equation for non-isothermal problems. Under the assumptions of negligible volume forces, constant

properties, and solid phase at a fixed temperature Ts
1, these equations become

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂x · vg = 0
ρg ∂x · (vg ⊗ vg) − µg∂

2
xvg = −∂xpg

ρg cp vg · ∂xTg = k∂2
xTg

BC1 : vg = 0 at Sgs

BC2 : Tg = Ts at Sgs

(7.1)

where vg, pg, and Tg represent the velocity, pressure, and temperature, while ρg, cp, and k denote the

density, specific heat at constant pressure, and thermal conductivity of the gas. Sgs is the area of the

gas-solid interface.

These equations can be written in a non-dimensional form by introducing the dimensionless variables

reported in Table 7.1. References values for the velocity, pressure, and temperature are commonly

taken as the field averages in the domain 2. The mean porous medium grain diameter can be chosen as

reference value for the length [188], L. The non-dimensional form of the governing equations is given

1. See Appendix A (Section 7.7).
2. See Appendix B (Section 7.8).
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quantity dimensionless variable

temperature T ∗
g = Tg/⟨Tg⟩

pressure p∗
g = pgL/(µg|⟨vg⟩|)

velocity v∗
g = vg/|⟨vg⟩|

length r∗ = r/L and ∂x∗ = L∂x

Table 7.1 – Non-dimensional variables to introduce in order to obtain the non-dimensional form of
the Eq.(7.1).

by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x∗ · v∗
g = 0

Re ∂x∗ · (v∗
g ⊗ v∗

g) − ∂2
x∗v∗

g = −∂x∗p∗
g

ρ∗
gv

∗
g · ∂x∗T ∗

g = 1
Pe

∂x∗ · (∂x∗T ∗
g )

BC1 : v∗
g = 0 at Sgs

BC2 : T ∗
g = Ts/⟨Tg⟩ at Sgs

(7.2)

Two dimensionless groups arise from this analysis. The Reynolds Re and the thermal Peclet Pe

numbers, defined as follows

Re = ρg |⟨vg⟩|L
µg

(7.3)

Pe = ρg cp |⟨vg⟩|L
k

(7.4)

The Reynolds number characterizes the relative importance of inertial and viscous forces within a

fluid. In this study we suppose Re ≪ 1, that is, the flow is in the creeping regime where non-linear

effects are negligible. The thermal Peclet number is the ratio of the rates of the processes of advection(︂ |⟨vg⟩|
L

)︂
and thermal diffusion

(︂ k

ρg cpL2

)︂
. No assumption is made on this number.

The thermal problem is assumed to be in Local Thermal Non-Equilibrium (LTNE). At the macroscopic

scale, the averaged governing equations [179,189] can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x · ⟨vg⟩ = 0

⟨vg⟩ = − 1
µg

K · ∂x⟨pg⟩

ρg cp⟨vg⟩ · ∂x⟨Tg⟩ = ∂x · k
eff

· ∂x⟨Tg⟩ + hv(Ts − ⟨Tg⟩)
BC1 : ⟨vg⟩ = 0 at Sgs

BC2 : ⟨Tg⟩ = Ts at Sgs

(7.5)

where K is the permeability tensor, k
eff

the effective conductivity tensor of the fluid phase, and hv

the volumetric heat transfer coefficient. This dual description of the problem can be observed in

Fig.7.1. The average macroscopic results arising from solving the direct pore-scale problem (Eq. (7.1))

and from solving the averaged macroscopic problem (Eq. (7.5)) are equivalent, provided that the

Representative Elementary Volume (REV) [190] is carefully chosen and the macroscopic properties
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Figure 7.1 – Pore-scale and macro-scale representations of the heat-transport problem in porous
media.

are correctly derived. In particular, for this problem, three properties need to be determined: K, k
eff
,

and hv. The macroscopic energy equation in the system of Eq.(7.5) has originally been introduced in

a heuristic way by Vortmeyer et al, 1974 [189] and since then it has been widely used and improved in

the literature [191, 192]. This equation can be also derived from a theoretical basis. From the volume

averaging theory [193], the following equation can be obtained

ρg cp⟨vg⟩ ·∂x⟨Tg⟩+ρg cp∂x · ⟨vg̃T̃ g⟩ = ∂x ·
[︂
ϵk ∂x⟨Tg⟩+ 1

V

∫︂
Sgs

kTgngsdS
]︂

+ 1
V

∫︂
Sgs

k∂xTg ·ngsdS (7.6)

Where ϵ identifies the porosity of the medium and ngs the normal at the interface from the fluid phase

to the solid one. By comparing the two macroscopic descriptions, which are equivalent as long as the

correct effective properties are considered, the following relationships can be inferred

k
eff

· ⟨Tg⟩ = ϵk ∂x⟨Tg⟩⏞ ⏟⏟ ⏞
thermal diffusion

+ 1
V

∫︂
Sgs

kTgngsdS⏞ ⏟⏟ ⏞
Tortuosity

− ρg cp∂x · ⟨vg̃T̃ g⟩⏞ ⏟⏟ ⏞
Dispersion

(7.7)

hv =
1
V

∫︁
Sgs

k∂xTg · ngsdS

Ts − ⟨Tg⟩
(7.8)

Three different terms contribute to the effective conductivity tensor: the thermal molecular diffusion,

the tortuosity, and the dispersion. Due to the complexity in their determination, the tortuosity and

dispersion terms are often neglected (which is correct if Pe < 1 [193]) or obtained with correlations

[192].
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The energy conservation of the system can be otherwise characterized by Local Thermal Equilibrium

(LTE) models, which assume the fluid and solid temperatures to rapidly reach an equilibrium tempera-

ture value: ⟨Tg⟩ = ⟨Ts⟩ = ⟨T ⟩. The LTE assumption simplifies the modeling but its validity is strongly

affected by several parameters, like the thermal diffusion properties of the phases and the geometrical

characteristics of the material [194–197]. Quintard and Whitaker, 1993 [198] identifies several physical

situations in which the local thermal equilibrium fails. These include processes in which the convective

transport is important, transient processes when short time are considered, and transient diffusion

processes in which the solid and fluid phases are characterized by different values of thermal conduc-

tivity (the greatest departure from local equilibrium is observed for ks/kg = 100). The analysis of the

validity of LTE models was further developed by Dorea and De Lemos, 2010 [199], who simulated an

impinging jet on a flat plate covered with a layer of a porous material and showed how the two models

led to different results when varying the microstructure. In particular, they observed that the diffe-

rences between the two models were more pronounced for higher values of porosity, permeability, and

the ratio between the solid and the flow phases thermal conductivities; similar results were observed

by [200] for metal foams and by [201] for geothermal systems. Quintard, 1997 [193], argued that as

the temperature difference between the two phases cannot be easily estimated, assessing the validity

of the local thermal equilibrium hypothesis is not a simple task. He suggested that the use of a LTNE

model is a possible solution to the problem. This solution has been increasingly used over the years

and further developments have been proposed by Saito and Lemos, 2010 [202] to deal with turbulent

flows, by Gao et al., 2017 [203] to study flow with phase changes, by Jiang and Ren, 2001 [204] to

analyze forced convection, and by Wang et al., 2019 [205] to deal with unsteady heat transfer.

The use of the LTNE model given in the system of Eq. (7.5) necessitates the knowledge of the effective

properties. In this work, the permeability and the effective conductivity tensors are assumed to be

known, while the volumetric heat transfer coefficient needs to be evaluated. Three families of methods

have been identified from the literature: the Closure Method, which can be applied for Representative

Elementary Volumes (REV) or periodic media and consists in solving a closure problem [193]; the

Integral Method, which can be adopted for any volume of a generic porous media, even those that are

not periodic or non-representative. This method consists in performing direct numerical simulations

of the coupled heat and mass transfer problem (Eq. (7.1)) and then using Eq. (7.8) to derive the heat

transfer coefficient; the Trivial Method, introduced by Cimmino et al, 2017 [206], where the interface

heat flux is defined from a simplified version of the macroscopic heuristic model

hv = (ρgcp) ϵ ∂t⟨Tg⟩
⟨Ts⟩ − ⟨Tg⟩

(7.9)

This third method is strongly dependant on the LTNE model considered and the values chosen for the

permeability and effective conductivity tensors. As the latter are not evaluated directly in this work,

this third method will not be further analyzed.

The heat transfer coefficient is a function of different parameters in the problem, such as Reynolds

and Prandtl numbers [193, 207], porosity [192, 208], geometry of the problem [209], and the velocity

direction [210], to cite some of them. This last dependency characterizes only anisotropic media and
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Nakayama et al., 2002 [210], proposed a correlation to account for this effect

Nu = cf1cos
2(α) + cf2sin

2(α) + c0.3
f3Re

0.6Pr1/3 (7.10)

where Pr and Nu are respectively the Prandtl and Nusselt numbers, two non-dimensional groups

defined as follows

Pr = µgcp

k
(7.11)

Nu = hv l

k
(7.12)

and α is the angle between the averaged velocity direction and the x-axis. It can be seen that when

the Reynolds and Prandtl numbers are constant, the Nusselt number may vary due the variation

of α. However, this correlation is not generic. The coefficients cf1, cf2, and cf3 are functions of the

geometry and of the Reynolds and Prandtl numbers. Their values can highly change every time a new

problem is tackled. The objective of this article is to define a new formulation of the heat transfer

coefficient that generically accounts for anisotropy effects without the need of any correlation. To

this end, it is first necessary to define a numerical strategy for its determination. The mathematical

description of the closure and integral methods is presented in Section 7.2. The methods need to be

implemented, completed with appropriate set of boundary conditions, and validated. This is done

in Section 7.3, where simple geometry cases are considered. Section 7.4 investigates the anisotropic

effects and proposes a new formulation to characterize the heat exchange between the two phases.

In Section 7.5, the volumetric heat transfer coefficient of a carbon fiber preform, named Calcarb, is

estimated and compared with experimental results. Conclusions are finally drawn in Section 7.6.

7.2 Mathematical Description of the Two Families of Approaches

This section presents the mathematical description of the two families of numerical methods used

in this work to estimate the volumetric heat transfer coefficient.

7.2.1 The Closure Method

The closure method can be applied to periodic unit cells or to sufficiently large volume domains to

take into account all the characteristics of the pore structure (REV). For the case of a solid phase at

constant temperature, the related closure problem has never been derived. This is proposed in what

follows through the volume average theory.

The starting point is the thermal governing equations at the pore-scale, which can be averaged as⟨︂
ρg cp vg · ∂xTg

⟩︂
=

⟨︂
∂x · (k∂xTg)

⟩︂
(7.13)

The two terms can be developed by making extensive use of the divergence and scalar product pro-

perties, and of the averaging theorems [211]

⟨∂xψg⟩ = ∂x⟨ψg⟩ + 1
V

∫︂
Sgs

ψgngsdS (7.14)
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⟨∂x ·ψg⟩ = ∂x · ⟨ψg⟩ + 1
V

∫︂
Sgs

ngs ·ψg dS (7.15)

where ψg is a generic field. The averaged thermal equation takes the following form

ρg cp ⟨vg⟩·∂x⟨Tg⟩+ρg cp ⟨vg̃ ·∂xT̃ g⟩ = ∂x ·
[︂
k

(︁
ϵ∂x⟨Tg⟩+ 1

V

∫︂
Sgs

T̃ gngsdS
)︁]︂

+ 1
V

∫︂
Sgs

k∂xT̃ g ·ngsdS (7.16)

A boundary value problem for the spatial deviation temperature T̃ g must be developed to obtain

a closed form of the thermal equation. For such purpose, Eq. (7.16) is first divided by ϵ and then

subtracted to the pore-scale thermal equation (Eq.(7.1)). The following system is obtained⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρg cp vg̃ · ∂x⟨Tg⟩ + ρg cp vg · ∂xT̃ = ∂x · (k∂xT̃ g)+

−ϵ−1∂x ·
(︂
k

1
V

∫︁
Sgs

T̃ gngsdS
)︂

− ϵ−1k
1
V

∫︁
Sgs

∂xT̃ g · ngs dS, in Vg

BC : T̃ g = Ts − ⟨Tg⟩ at Sgs

(7.17)

The system is characterized by two independent variables Tg and T̃ g. Since the problem is linear, it is

possible to express a generic linear dependence of the deviation variable (T̃ g) on the source terms of

Eq.(7.17): ∂x⟨Tg⟩ and (⟨Tg⟩ − Ts). In addition, due to the scale separation assumption, a quasi-steady

relationship 3 can be introduced. Based on these observations, the following generic relation can be

assumed

T̃ g = b · ∂x⟨Tg⟩ − s(⟨Tg⟩ − Ts) + ξ (7.18)

where ξ is an arbitrary function, and b and s are the mapping variables. The contribution of the

arbitrary function to the temperature deviation field has been proved [193, 198] to be negligible with

respect to the contribution of the mapping variables. Hence, ξ can be neglected from the equation.

Eq. (7.18) is substituted into Eq.(7.16), which becomes

ρg cp ⟨vg⟩ · ∂x⟨Tg⟩ + ρg cp

⟨︂
vg̃ · ∂x

[︁
b · ∂x⟨Tg⟩ − s(⟨Tg⟩ − Ts)

]︁⟩︂
= ∂x ·

[︂
k

(︁
ϵ∂x⟨Tg⟩ + 1

V

∫︂
Sgs

[︁
b · ∂x⟨Tg⟩

−s(⟨Tg⟩ − Ts)
]︁
ngsdS

)︁]︂
+ 1
V

∫︂
Sgs

k∂x
[︁
b · ∂x⟨Tg⟩ − s(⟨Tg⟩ − Ts)

]︁
· ngsdS (7.19)

The equation can be written in a more compact form

ρg cp ⟨vg⟩ · ∂x⟨Tg⟩ − jgs · ∂x⟨Tg⟩ = ∂x · (k
eff

· ∂x⟨Tg⟩) − hv(⟨Tg⟩ − Ts) (7.20)

by introducing the transport coefficient vector jgs, the conductivity tensor k
eff
, and the heat transfer

coefficient hv, defined as follows

k
eff

= k(ϵI + ⟨ngsbδgs⟩) − ρg cp ⟨ṽb⟩ (7.21)

3. The quasi-steady relationship implies the averaged field to be time-dependant, while the deviation field is stationary.
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jgs = ⟨ngs · k∂xbδgs⟩ − k⟨ngssδgs⟩ + ρg cp ⟨ṽs⟩ (7.22)

hv = ⟨ngs · k∂xsδgs⟩ (7.23)

where I is the identity tensor and δgs the Dirac distribution associated with the interface Sgs.

The goal of developing a boundary value problem for the spatial deviation temperature T̃ g is converged

into finding a set of boundary value problems for the mapping variables b and s. Thanks to the

introduction of the arbitrary function ξ in the generic relation for T̃ g (Eq.(7.18)), even if negligible,

the closure problems can be specified in any way. In particular, an expression similar to the system

of Eq.(7.17) is looked for. For the purpose of this work, only the closure problem for the mapping

variable s is presented. The latter, by assuming the domain to be periodic, is defined as follows⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ρg cp vg · ∂xs = k∂2

xs− ϵ−1hv , in Vg

BC : s = 1 , at Sgs

s(r + l) = s(r)
⟨s⟩ = 0

(7.24)

where l represents the size of the periodic domain and in the first equation of the system it is possible

to observe the presence, as a source term, of the integral term of the mapping variable (hv). In order

to solve the closure problem, the following change of variable has to be introduced

s = hvs
0 − 1 (7.25)

The closure problem for s0 is found to be⎧⎪⎪⎨⎪⎪⎩
ρg cp vg · ∂xs0 = k∂2

xs
0 − ϵ−1 , in Vg

BC : s0 = 0 , at Sgs

s0(r + l) = s0(r)
(7.26)

where the volumetric exchange coefficient is given by

hv = − 1
⟨s0⟩

(7.27)

An in-house solver, hvClosureSolver, has been developed to solve the closure problem for s0 (Eq. (7.26)).

To improve its stability (especially at high Peclet numbers) a transient term has been added in the

equation. The time integration is carried out through an implicit scheme. Once the solver converges,

the volumetric heat transfer coefficient is evaluated via Eq. (7.27).

7.2.2 The Integral Method

The integral method can be applied to any type of geometry. The numerical approach relies on

direct numerical simulations on the pore-scale structure and computation of the heat transfer coefficient
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using Eq. (7.8). For the numerical implementation, the momentum and energy equations have been

decoupled as the flow is assumed to be incompressible. This allows the velocity field to be obtained

first and used as input to the energy equation. In particular, the simpleFoam [153,154] solver has been

adopted to solve the momentum equation, and a dedicated solver has been implemented to solve the

heat transfer problem. Once the temperature field was obtained, the hv coefficient has been evaluated

from the temperature field distribution within the thermal boundary layer (Eq. (7.8)).

7.3 Selection of the Numerical Strategy

The numerical methods need to be defined in terms of computational domains and boundary condi-

tions. In this work, we denote as strategy a generic numerical setting in terms of the considered domain

(sample) and the boundary conditions of a pore-scale simulation. While for the closure method only a

possible computational domain and set of boundary conditions can be considered, different strategies

can be applied for the integral method. All the strategies explored in this section are schematized in

Fig. 7.2 Strategies A, C, D, and E were found in the literature, whereas strategies B, F, G, and H

have been defined in this work. Some comments on the strategies can be made:

— Strategy A is based on the closure method derived in Section 7.2;

— Strategies B, C, D, E, F, G, and H are based on the integral method;

— For strategies A and B periodic boundary conditions are considered. The flow is driven by

pressure and thermal gradients. When media are not periodic, a layer of fluid δ is added outside

the effective domain in order to adopt periodic boundary conditions;

— Strategy C has been defined in this work to imitate Strategy B without the use of periodic

boundary conditions;

— For the integral method, Strategies D [35,209, 212, 213], E [207, 208, 214–216], and H [36] have

been defined in the literature;

— Strategy E aims to obtain a periodic profile for the velocity field and a similar profile for the

temperature field by repeating the simulations several times. Each time the dimensionless tem-

perature at the output is used to set the inlet profile for the next simulation, until convergence

of the results;

— Strategies F and G have been defined in this work to obtain a non-uniform inlet temperature

profile.

Once implemented, the strategies have been applied and compared to the four cases showed in Fig. 7.3.

The geometries are the following: (a) periodic square array of cylinders with 1-sphere unit cell; (b)

periodic square array of cylinders with 100-unit cells; (c) periodic cell-centered array of cylinders

with 1-unit cells; (d) periodic cell-centered array of cylinders with 100-unit cells. All the cases are

two-dimensional and for all of them two different porosity values have been considered: ϵ = 0.38 and

ϵ = 0.92. Uniform meshes have been generated with surface refinements close to the solid cylinders.

A mesh convergence analysis has been performed for the different cases by monitoring the convective

heat transfer coefficient. Different Peclet values have been considered in a range from 0.1 to 1000.
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Figure 7.2 – 2D sketches of the numerical strategies explored in this work. Strategy A makes use of
the closure method. Strategies B, C, D, E, F, G, and H are based on the integral method.

Strategies are compared between themselves by defining the following relative error

relative error = 1
N

N∑︂
n

Nuref,n −Nun

Nuref,n
100 (7.28)

where Nun is a generic Nusselt value resulted from the simulation, Nuref is the reference strategy, and

N is the total number of values predicted by the strategies.

Results are showed in terms of the Nusselt number, where the dimension of the unit cell, L, is considered

as the characteristic length. Results for the case (a) with ϵ = 0.38 are showed in Fig. 7.4. All the

strategies have been applied and the following observations can be made:

— Strategies A and B have been applied with δ = 0 since the domain is periodic. Their results are

perfectly overlapped, expect for high Peclet number (Pe > 100) where values start to deviate

slightly (1% of relative difference). The reason is due to the thickness of the thermal boundary

layer which reduces as the Peclet number increases. So, at high Peclet numbers, a refinement

of the mesh closer to the surfaces is needed to correctly capture the physics in the thermal

boundary layers. In what follows, results from strategy A will be considered as the reference
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ε=0.38

ε=0.93

1

x

y

(a) (b) (c) (d)

Figure 7.3 – The strategies defined in Fig. 7.2 have been applied to these cases in order to define the
most suitable one in case on generic porous media.

case for the comparison between strategies;

— Strategies D, E, F, G, and H lead to completely wrong predictions, both at small and high

Peclet values. In particular, it can be observed that Strategy E completely misses the trend

of the Nusselt variation, by predicting a constant value up to Pe = 60. Same can be said

for Strategies D, F, G, and H, which underestimate the results for the entire range of Peclet

numbers. These strategies, are immediately discarded;

— Strategy C gives exact solutions for Pe < 1. The relative errors increase up to 5% for Pe < 10,
and up to 30% for Pe ∼ 100. Since many practical applications are characterized by small

Peclet numbers and the analysis at high Peclet values is mostly theoretical, Strategy C is

further investigated;

— Results from strategy C depend on the size of the buffer zone. This can be directly observed

in Table 7.2, where for a constant Pe = 1, the Nusselt values are showed to be a function of

δ/L 0.0 0.1 0.25 0.5 1.0 1.5 2.0 5.0

Nu 51.78 43.90 42.34 41.90 41.88 41.86 41.85 41.85

Table 7.2 – Analysis on the influence of the size of the buffer zone for strategy C. A constant Pe = 1
has been considered. The thickness should be at least the half of the domain size to avoid any inlet
boundary effects.

the buffer size (δ). In this case, the value of δ should be at least the half of the domain size to

avoid any inlet boundary effects. Same conclusion has been found for the analysis at different

Peclet numbers.

Results for cases (a) with ϵ = 0.93, (b), (c), and (d) are given in Fig. 7.5. Strategies A, B, and C are

applied. The same generic observations as above apply: Strategies A and B give overlapped results,
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Figure 7.4 – Nusselt vs Peclet numbers for the test case (a) (Fig. 7.3) with porosity ϵ = 0.38.
Strategies A, B, C, D, E, F, G, and H are adopted. Strategies A and B give the same predictions.
Strategies D, E, F, G, and H lead to completely wrong results and are discarded. Strategy C gives
good predictions (relative error lower than 5% for Pe < 10).

while Strategy C leads to correct results only for small Peclet number. In the figure, it can be obser-

ved how the effects of the boundary conditions decrease as the domains become bigger. For all cases,

results of Strategy C are accurate up to Pe ∼ 10. However, for case (d), that is when the domain is

bigger, this range extends to higher values of the Peclet number.

To conclude, Strategies A and B can be applied on representative or periodic domains. For non-periodic

and non-representative volumes, Strategy C is the only alternative. For non-periodic and representa-

tive domains, Strategies A and B can be applied by adding a buffer layer, δ > 0. To characterize the

effects of this buffer zone on the numerical solution, case (a) (Fig. 7.3) is considered and Strategy B

applied. The change of the heat exchange coefficient with the increase of the thickness of the buffer

layer, δ, is reported in Table 7.3. δ has been made increasing progressively to 0.5%, 1%, 2%, and 3%
of the size of the unit cube domain. It can be seen that already with a 1% of increase, results start to

diverge from the reference solution (δ = 0) with a maximum of 6.37% of error. The thickness of the

buffer zone should be selected according to the targetted Peclet number.

7.4 Anisotropic Effects

In this section we investigate the anisotropy effects on the heat transfer coefficient. For such

purpose, we consider a periodic square cell-centered array. The unit cube geometry is showed in
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Figure 7.5 – Nusselt vs Peclet numbers for the cases (a) with ϵ = 0.93, (b), (c), and (d) (Fig. 7.3).
Strategies A, B, and C are applied. Strategies A and B give the same predictions. Strategy C correctly
predicts the volumetric heat transfer coefficient for small Peclet numbers.

Fig. 7.6. We want to investigate if the volumetric heat transfer coefficient is affected by the anisotropy

of the geometry. Different simulations have been then performed with a constant and small Reynolds

number Re ≪ 1. What varies are the porosity, the Peclet values, and the velocity direction. The

averaged velocity vector has been always kept inside the xy plane. Different rotations (θ) with respect

to the x-axis are performed on the averaged velocity: when θ = 0, the velocity is aligned in the

x-direction; when θ = π/4, the velocity is aligned in the y-direction. Strategy B has been adopted

and the velocity direction is changed by acting on the applied pressure gradient. Results are given in

Fig. 7.7. where it can be observed that hv is a function of θ. This dependency becomes very marked

at high Peclet numbers and low porosity values. The heat transfer coefficient can change up to 50%
of its θ = 0 - value. Up to our knowledge, the only correlation that tries to capture this dependency

is the one proposed by Nakayama et al., 2002 [210]

Nu = cf1cos
2(α) + cf2sin

2(α) + c0.3
f3Re

0.6Pr1/3 (7.29)

The coefficients (cf1, cf2, cf3) result to be highly dependent on the geometry and on the Peclet number.

A new formulation of the heat transfer coefficient is needed to capture the anisotropy effects

hv = ⟨vg⟩T · h
v

· ⟨vg⟩ 1
||vg||2

(7.30)
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δ = 0.005L δ = 0.01L δ = 0.02L δ = 0.03L

Pe = 0.1 0.09 % 0.23 % 0.69 % 0.93 %
Pe = 1 0.12 % 0.29 % 0.79 % 1.01 %
Pe = 10 0.65 % 2.48 % 4.45 % 5.99 %
Pe = 100 2.76 % 4.80 % 8.58 % 11.07 %
Pe = 1000 3.49 % 6.37 % 11.00 % 13.26 %

Table 7.3 – Analysis on the effects of the thickness of the buffer zone, δ, for strategy A and B. δ has
been made increasing progressively to the 0.5%, 1%, 2%, and 3% of the size of the unit cube domain.
Different Peclet numbers have been considered. Results indicate the relative error with respect to the
δ = 0 case.

Figure 7.6 – Periodic array of 5-cylinders. Geometry considered for the investigation on the anisotropy
effects.

where a volumetric heat transfer tensor, h
v
, is introduced. When x, y, and z correspond to the principal

axes, h
v
reduces to a diagonal tensor

h
v

=

⎡⎢⎣hv,x 0 0
0 hv,y 0
0 0 hv,z

⎤⎥⎦ (7.31)

where hv,x, hv,y, and hv,z are the volumetric heat transfer coefficients when the velocity is aligned with

the x, y, and z directions respectively. In the previous simulations, Fig. 7.7, the anisotropic effects have

been investigated in the xy plane. In this case, Eq. (7.30) reduces to

hv = cos2(θ) hv,x + sin2(θ) hv,y (7.32)

Fig. 7.8 shows the predictions of the correlation given by Eq.(7.32) for the case with porosity ϵ = 0.5
at different Peclet numbers. The volumetric heat transfer tensor is able to capture the shape of the
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Figure 7.7 – Volumetric heat transfer coefficient as a function of the averaged velocity direction
direction for the periodic array with 5-cylinders geometry (Fig. 7.6). Strategy B has been applied.
Different porosities and Peclet numbers have been investigated.

anisotropic behaviour, but not exactly its amplitude, which seems to depend on the Peclet number. For

Pe = 66.7, the correlation perfectly captures the anisotropic effects. In the figure, a linear variation

of the coefficient as a function of θ is also represented. It can be seen that the tensorial formulation

of the property leads to a good capturing of the anisotropy effects. Further analysis are needed. In

particular, a theoretical derivation of the formulation needs to be developed.

7.5 Application to Calcarb

This section aims to evaluate the volumetric heat transfer coefficient of the digital sample of virgin

Calcarb illustrated in Fig. 7.9. Calcarb is a carbon fiber preforms material with an average porosity of

more than 85%. The digital representation in Fig. 7.9 has been acquired at the Advanced Light Source

at Lawrence Berkeley National Laboratory and more details can be found in Borner et al, 2017 [9]).

This domain has already been analyzed in the literature [9, 89, 188] in terms of permeability tensor,

slip correction tensor, and volumetric heat transfer coefficient. As already observed [188], this domain

is not representative of Calcarb and Strategies A and B can not be applied. Therefore, strategy C is

considered and results are compared with those obtained by Liu et al., 2022 [89].

The same conditions as in the experimental study are adopted: a flow of nitrogen with an inlet velocity

|vin| = 0.5 ms−1 is considered; a temperature difference of about ∆T ∼ 50 K is applied between the

inlet flow and the material at the initial time step. The problem results in Reynolds and Peclet num-
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Figure 7.8 – Estimation of the anisotropy effects for the 2D periodic array of 5-cylinders case. A
constant porosity ϵ = 0.5 and different Peclet numbers are considered. The volumetric heat transfer
tensor is able capture the shape of the anisotropic behaviour, but not exactly its amplitude, which
seems to depend on the Peclet value. For Pe = 66.7, the correlation perfectly captures the anisotropic
effects.

bers close to unity 4. As small values of velocity and small variations in pressure and temperature flow

are observed experimentally, the assumption of incompressibility and the the hypothesis of constant

properties can be considered valid.

A mesh convergence of the domain is performed. Results are showed in Fig. 7.10. Both the conver-

gence of the Nusselt number and the relative error are showed. The latter is evaluated between two

consecutive simulations as follows

error = Nun+1 −Nun

Nun+1
(7.33)

where the index n+ 1 indicates the numerical simulation with more mesh refinement. The numerical

methods result to be first-order with respect to the space discretization, as indicate by the first-order

slope line. Based on these results, a mesh of about 23 million cells has been considered (a similar

conclusion to that found by Scandelli et al., 2021 [188], for the momentum problem). Some details of

the mesh are showed in Fig. 7.9.

Results of the temperature field distribution are reported in Fig. 7.11. The temperature of the fluid

phase reaches a condition of thermal equilibrium with the solid phase almost at the entrance of the

domain. Under these conditions, LTNE models are not necessary. The numerical volumetric heat

4. For the characteristic length of the domain, the average pore-size in the through-thickness direction of the domain
is considered [9]: L = 135 µgm

184



7.6. CONCLUSIONS
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Figure 7.9 – On the left-hand side, volume rendering of the CMT of Calcarb. The dataset has a
resolution of 200 X 200 X 200 voxels, with a voxel size of 2.6 µgm; on the right-hand side, some details
of the meshed geometry. The mesh accounts about 23 million cells.

transfer coefficient is found to be hv = 1.6e8 Wm−3K−1. The value found by experimental analysis

is hv = 1e9 Wm−3K−1. The two values differ by an order of magnitude. Several reasons may lead to

this difference: first, the Calcarb dataset considered for the numerical simulation is too small and not

representative; second, dispersion and tortuosity effects have been neglected in the effective conduc-

tivity; third, the value of hv is so high that a local thermal equilibrium is achieved between the two

phases. This makes its accurate estimation rather complex, especially from an experimental point of

view.

7.6 Conclusions

This work aims to define a new formulation of the heat transfer coefficient able to generically

account for anisotropic effects. First, however, it was first necessary to define a numerical method for

its determination. Both integral and closure methods were considered. Specific attention was paid to the

definition of the computational domain and the boundary conditions, defining different strategies and

comparing their results on simple test cases. Results showed that only strategies that adopt periodic

boundary conditions were able to provide correct predictions of the heat transfer coefficient for any

Peclet number. However, the applicability of these strategies is limited to periodic or representative

domains. For generic non-representative geometries, only one strategy was found to provide correct

predictions of the coefficient, but only for small Peclet numbers (Pe < 10). This strategy was applied

to the characterization of the heat transfer coefficient of a digital sample of virgin Calcarb and results

are in agreement with experimental observations. Finally, the analysis of anisotropic effects on the

volumetric heat transfer coefficient was conducted. It was observed that a tensorial formulation of the

heat exchange between the two phases were able to capture the shape of the anisotropic behaviour,

but not its amplitude, which seemed to depend on the Peclet number. THus, only at a precise Peclet
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7.7. APPENDIX A. PHYSICAL MEANING OF THE SOLID PHASE AT FIXED
TEMPERATURE TS
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Figure 7.10 – Mesh convergence analysis performed on the Calcarb geometry (Fig. 7.9). A flow of
Nitrogen with an inlet velocity |vin| = 0.5 ms−1 is considered. The pore-scale equations (Eq. (7.1)) are
solved for different mesh sizes. Results show how the relative error between two consecutive simulations
reduces with order 1.

number the tensorial formulation was able to perfectly capture the anisotropic effects. Further analysis

are needed, in particular, a theoretical derivation of the formulation must be developed The numerical

framework developed during this study will be made available in the Porous material Analysis Toolbox

based on OpenFoam (PATO) released Open Source by NASA (www.pato.ac).

7.7 Appendix A. Physical Meaning of the Solid Phase at Fixed Temperature

Ts

In this work we assume the solid phase to be at a constant temperature. To understand the meaning

of this assumption, we first need to introduce two quantities. The first one is the Biot number, Bi, a

dimensionless number related to the ratio of the heat transfer resistances inside and at the surface of

a body

Bi = hLs

ks
(7.34)

where h is the heat transfer coefficient. This non-dimensional quantity indicates whether the tempe-

rature field inside a body may vary significantly in space when a thermal gradient is applied at its

surface. When Bi ≪ 1, the temperature field inside the body remains homogeneous, that is, constant

in space but not in time.

The second quantity is the thermal inertia I

Is =
√︂
ksρscp,s (7.35)

The higher this value, the slower the material reaches steady-state. By considering two phases only,

when Is ≫ Ig, the thermal time scales of the phases are different by some orders of magnitude. The
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Figure 7.11 – Temperature field distribution inside the domain. Peclet and Reynolds numbers close
to the unity. The flow and the solid phase are in local thermal equilibrium.

thermal transient effects of a gas phase is short compared to a solid phase, that can be considered to

be in steady-state.

In conclusion, Bi ≪ 1 implies a homogeneous temperature field and Is ≫ Ig implies a constant

temperature field of the solid phase within the time scale of the gas temperature evolution.

7.8 Appendix B. Remarks on the Volume Averaging Method

This appendix introduces the concepts of the volume averaging theory used in this article. Further

details on the topic can be found in the literature [15].

The volume averaging is a technique used to derive continuum-macroscopic equations for multiphase

systems. In this way the complexity of a porous medium is replaced with an equivalent porous-

continuum model in which each point is characterized by the properties of a REV centered on it.

Within the latter, variables can be averaged. Two different definitions of the average have been adop-

ted: the phase average, used in this article for the pressure

⟨pg⟩g = 1
Vg

∫︂
Vg

pg dV (7.36)

and the intrinsic average, used for the velocity and temperature fields

⟨vg⟩ = 1
V

∫︂
Vg

vg dV (7.37)

⟨Tg⟩ = 1
V

∫︂
Vg

Tg dV (7.38)
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LREV 25 50 100 150 200 250 300 350 400

ϵ 0.741 0.988 0.955 0.998 0.927 0.933 0.932 0.930 0.929

Nu 0.316 0.887 0.588 0.914 0.63 0.579 0.584 0.669 0.631

Table 7.4 – REV analysis: porosity and Nusselt values by increasing the size of the cube volume
placed at the center of the geometry. Lc is expressed in mm.

being Vg and V the volumes of the fluid phase and of the representative element volume. Inside the

REV each variable can be decomposed using Gray’s decomposition [159] as the sum of its average and

a deviation. For the pressure field this decomposition writes

pg = ⟨pg⟩g + pg̃ (7.39)

7.9 Appendix C. Numerical Methods on Non-Periodic Media

This appendix aims to numerically validate the upscaling process. To this end, the following pro-

cedure is followed: generate the geometry, find a REV, evaluate the hv coefficient of the REV, solve

the thermal problem for the overall geometry with both the scale models, compare the temperature

predictions.

A random packed sphere porous material has been generated with the software PUMA [217]. Details

of the geometry are showed in Fig. 7.12. Spheres are allowed to overlap and the overall porosity has

1200 mm

400

400 mm

L = 10 mm

ε=0.93

mm

Figure 7.12 – Random packed sphere geometry.

been set to ϵ = 0.93. The REV is looked for by considered a cube in the center of the geometry, with

its dimension, (LREV ), gradually increased. At each value of LREV , the pore-scale problem (Eq. (7.1))

has been solved. The following conditions have been considered: k = 0.01 Wm−1K−1; µg = 10−5 Pa s;

Pr = 10; L = 10 mm; Re = 10−3. Strategy B has been applied. Both the porosity and the Nusselt

number have been monitored during the simulations, as showed in Table 7.4. Following a trade-off

between accuracy of the results and computational cost, the cube with dimensions LREV = 200 mm
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xcnt 100 200 300 400 500 600 700 800 900 1000 1100

ϵ 0.938 0.926 0.926 0.937 0.933 0.927 0.928 0.928 0.927 0.934 0.935

Nu 0.570 0.642 0.643 0.577 0.599 0.652 0.660 0.659 0.652 0.592 0.589

Table 7.5 – REV analysis: evolution of the porosity and Nusselt for the selected cube along the x
axis of the geometry. xcnt is expressed in mm.

Pe 0.1 1 5 10 25 50 100 250

Nu 0.56 0.40 0.47 0.54 0.72 0.93 1.23 1.84

Table 7.6 – Nusselt vs Peclet characterization of the REV.

has been selected as REV of the geometry. For a further investigation of the REV, the cube has been

displaced along the x-axis of the geometry to monitor the evolution of porosity and Nusselt. Results

are showed in Table 7.5. The overall geometry is characterized by a porosity ϵ = 0.93 and a Nusselt

number Nu = 0.631. Based on the results of Table 7.4, both the porosities and the Nusselt numbers

of the displaced cubes stay in a range ±10% with respect to the overall domain values.

The REV has been characterized in terms of the Nusselt number for different Peclet values. The Pe-

clet number is changed by acting on the cp coefficient. Results of this characterization are showed in

Table 7.6.

The thermal problem is then solved in the whole geometry with the pore-scale equations (Eq. 7.1).

Some details of the mesh are given in Fig. 7.13. Eight simulations have been considered to vary the

Figure 7.13 – Some details of the meshed geometry of Fig. 7.12.

Peclet number from 0.1 up to 1000. The same physical properties used for the REV analysis have

been adopted. The same procedure is repeated for the equivalent continuum volume. The macroscopic

model defined by the system of Eq. (7.5) has been used. The permeability tensor of the domain is com-

puted by following the numerical strategy defined by Scandelli et al., 2021 [188]. The transverse and

longitudinal components of the effective thermal conductivity tensor are evaluated with the correlation
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7.9. APPENDIX C. NUMERICAL METHODS ON NON-PERIODIC MEDIA

proposed by Kuwahara et al., 1996 [214]

(keff,long)/kg = 2.1 Pe

(1 − ϵ)0.1 (7.40)

(keff,transv)/kg = 0.052 (1 − ϵ)0.5Pe (7.41)

The volumetric heat transfer coefficients resulting from the REV analysis (Table 7.6) have been used.

The temperature fields predicted by the two scales are finally compared. The comparison is done by

averaging the fields in the yz plane of the geometry and plotting th averages in the x-direction. Results

are showed in Fig. 7.14. The pore-scale and macro-scale predictions match for the whole range of the
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Figure 7.14 – Temperature fields comparison between the pore and macro-scale predictions. The
fields are averaged in the yz plane of the geometry and plotting along the x-direction. Different Peclet
values are considered.

Peclet number, and this validates the upscaling process.
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Chapitre 8

Multi-Scale Modeling of Wood Shrinkage
During Pyrolysis

Nomenclature

Latin Letters

C fourth-order stiffness tensor [kg m−1 s−2]
D pore-scale displacement field [m]
E Young modulus [kg m−1 s−2]
f generic body force [m s−2]
I identity tensor
l length of the honeycomb wall [m]
n surface normal
T imposed traction force [kg m−1 s−2]
t time [s]
T pore-scale temperature [K]
V domain volume [m3]
w thickness of the honeycomb wall [m]
x pore-scale coordinates [m]

Greek Letters

α thermal expansion tensor [K−1]
α thermal expansion coefficient [K−1]
β coefficient of volume expansion [K−1]
Γ0 boundary
∆ relative difference
ϵ pore-scale strain tensor
ϵ material porosity
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Nomenclature

µ, λ Lame’s constant [kg m−1 s−2]
ν Poisson ratio
ξ pyrolysis contribution tensor

ξ pyrolysis contribution coefficient
ρ pore-scale density [kg m−3]
σ pore-scale stress tensor [kg m−1 s−2]
τ total advancement of the pyrolysis
ψ generic quantity

Subscripts and Superscripts

0 initial time
D Dirichlet type boundary
eff effective
N Neumann type boundary
s solid

Special Symbols

∼ imposed boundary condition
tr() trace operator
⟨ ⟩ intrinsic average

Acronyms

CMT Computed Micro-Tomography
PATO Porous material Analysis Toolbox based on OpenFoam
PS-NS Pore-Scale Numerical Simulation
REV Representative Elementary Volume

Preamble
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8.1. INTRODUCTION

Abstract

This paper deals with numerical homogenization in reactive porous media for the prediction of

the effective thermo-elastic properties. While at the micro-scale these properties are usually known,

a procedure for their derivation at the macro-scale is required. Experimental analysis, analytical re-

sults, pore-scale numerical simulations (PS-NS), are all possible alternatives for the same purpose. In

this work, focus is put upon wood with an analysis through PS-NS. At first, the wood structure is

simplified as a regular hexagonal honeycomb core. A solid mechanics model is adopted for its descrip-

tion. The numerical procedures to retrieve the effective thermoelastic properties are implemented and

validated. Comparison with literature data is reported. The main contribution of this work is in the

derivation of an additional term to account for the deformation due to pyrolysis. For this purpose,

a pyrolysis-shrinkage function is defined. The numerical procedure to recover the effective pyrolysis

contribution terms is presented and applied to the honeycomb structures. Results underline the im-

portance of accounting for pyrolysis shrinkage in the solid mechanics model. Finally, a 2D computed

micro-tomography (CMT) image of a wood sample is considered. The thermoelastic-pyrolysis solid

mechanical problem is solved. The resulting numerical deformation shows to be qualitatively compa-

rable with the actual deformation undergone by the sample following a complete pyrolysis process.

Keywords: Homogenization; Solid Mechanics Properties; Pyrolysis Shrinkage; micro-scale Numerical

Simulations; Wood; Honeycomb Structure; Computed Micro-Tomography.

8.1 Introduction

Flows in rigid and deformable porous media are of great relevance to a wide range of engineering and

environmental processes: reservoir engineering [218,219], groundwater flow [220], filtering devices [46],

microfluidic sensors [47], catalytic converters [45], cracking of hot gases [185, 186], heat shield for

atmospheric entry [221, 222], and many others. This breadth of topics has been the focus of many

researchers for longer than a century. A first relevant contribution must be attributed to Darcy,

1856 [179], who derived the macroscopic governing equation of a creeping flow through a rigid skeleton

from experimental observations. Over the years, several studies have contributed to the derivation and

generalization of the macroscopic governing equations based on the microscopic scale problem, leading

to established Homogenization theories [17]. In particular, the analysis has been extended to cover

more general cases, such as inertial [120–122], transient [90, 223], and turbulent flows [119], flows of

generalized Newtonian fluids [224], or flows in slip regime [225]. The extension to deformable porous

media has proved to be more complicated [226], and remains an active research topic.

In this work we address a specific application of deformable and organic porous media: the deformation

of wood under pyrolysis. Our main objective is to capture the full mechanical deformation of a cross-

section of the virgin material as it is heated to high temperature. The cross-section is extracted from

a two-dimensional (2D) slice of the digitalized computed micro-tomography (CMT) image showed in

the left of Fig. 8.1. To fulfill the objective, the resulting numerical deformation is compared with the
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equivalent cross-section extracted from the CMT image of the charred state showed in the right of

Fig. 8.1. The two digital images are originated from a sample of Pinus Strobus, also known as white

pinewood, resolved in a voxellized volume with 1.277 microns/pixel, able to capture the microstructure

characteristics of the material. As a first approximation, its micro structure is modelled as a regular

Figure 8.1 – Digitalized CMT sample of Pinus Strobus, also known as white pinewood. Resolution
of 1.277 microns/pixel. The virgin state is showed on the left and the charred state on the right.

honeycomb structure in the transversal (xy) plane [227] elongated in the third (z) direction. In the

transversal plane, the deformation at the micro-scale is described by the following governing equation

and boundary conditions ⎧⎪⎪⎨⎪⎪⎩
∂t(ρs ∂t(Ds)) = ∂x · σ + ρsf

BC1 : Ds = D̃ at ΓD
0

BC2 : σ · n = T̃ at ΓN
0

(8.1)

where the quantities ρs, Ds, σ, and f characterize the solid skeleton and denote the density, the

displacement field, the stress tensor, and a generic body force, respectively; t is the time and n the

normal vector to the surface; D̃ and T̃ are the imposed solid displacement field and traction force on

the Dirichlet boundary (ΓD
0 ) and on the Neumann boundary (ΓN

0 ). This governing equation is valid

under the assumptions of infinitesimal strain (ϵ) [86]

ϵ = 1
2(∂xDs + ∂xD

T
s ) (8.2)

and of linearized elastic solid material

σ = C :
(︂
ϵ− α(Ts − T0) − ξ(τs − τ0)

)︂
(8.3)

where C is the fourth order stiffness tensor [86], α and ξ are the tensors of the thermal expansion

coefficients (α) and of the pyrolysis contribution terms (ξ), Ts and τs are the solid temperature and

the total advancement of the pyrolysis reactions, and the subscript 0 refers to the initial time. Eq (8.3)
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is the constitutive law of the solid (or the generalized Hooke’s law) with the addition of an extra term

to account for the pyrolysis contribution in the overall structure deformation.

In the case of a regular honeycomb structure, the isotropic model can be adopted. The constitutive

law (Eq. (8.3)) simplifies to

σ = 2µϵ+ λtr(ϵ)I − (2µ+ 3λ) α (Ts − T0)I − (2µ+ 3λ) ξ (τs − τ0)I (8.4)

where tr() stands for the trace operator, I indicates the identity tensor, and µ and λ are the Lame’s

parameters. The latter are linked to the engineering constants (the Young modulus E and the Poisson

ratio ν) by the following expressions

λ = Eν

(1 + ν)(1 − 2ν) (8.5)

µ = E

2(1 + ν) (8.6)

We assume the pyrolysis contribution of Eq. (8.4) to vary linearly with the degradation of the solid,

neglecting any possible cracking or fragmentation. This contribution is expressed through the pyrolysis-

shrinkage function

ξ = 1
3
V − V0
V0

(8.7)

where V is the volume of the solid. More information about its derivation are given in Appendix A

(Section 8.7). We implemented this deformation model in the Porous material Analysis Toolbox ba-

sed on OpenFoam (PATO) [75, 155]. PATO provides a full detailed description of the pyrolysis pro-

cesses which we extended to include the thermoelastic-pyrolysis solid mechanical model presented in

Eqs. (8.1) and (8.4). Experiments showed that wood may undergo a total volume loss up to 70% of

its initial value [6, 52]. Only a few studies accounted for the contribution of pyrolysis deformation to

model deformable porous media. Besides empirical correlations [228,229], a first integration of a solid

deformation equation inside a simple pyrolysis model has been proposed by Sreekanth et al., 2008 [230].

In their model, a deformation due to pyrolysis has been defined as an input parameter to calibrate

with experimental results. A different technique to account for pyrolysis deformation has been propo-

sed by Gentile et al., 2017 [79]. In their work, they defined a biomass pyrolysis model featuring mesh

displacement of the boundary in order to capture the shrinkage effect. In this way, without solving

any solid mechanics equation, the desired deformation effect has been obtained by setting the velocity

of the boundary as a function of the mass loss due to pyrolysis.

With regard to the macro-scale aspect of the problem, there exists a wide range of models that can

be taken into account [231]. They can be derived either in a semi-empirical way, where adaptive

coefficients are fitted on the basis of experiments, or from homogenization approaches, which mainly

depend on the assumptions made at the interface solid-flow. Iliev et al., 2007 [232], provided a complete

description of the latter group, by classifying the models into three categories: (1) linear poroelasticity,

characterized by infinitesimal strains in the solid and small displacement; (2) non-linear poroelasticity,

where the displacements are decomposed into a rigid body motion and small extra displacements; (3)
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PROPERTIES

non-linear Darcy, featuring a finite displacement for the interface. In this paper we do not address

the full poroelasticity problem. Thus, the same solid mechanics governing equation defined for the

micro-scale (Eq. (8.1)), is also used at the macro-scale [233], with two adjustments⎧⎪⎪⎨⎪⎪⎩
∂t(ρs ∂t(⟨Ds⟩)) = ∂x · ⟨σ⟩ + ρsf

BC1 : ⟨Ds⟩ = D̃ at ΓD
0

BC2 : ⟨σ⟩ · n = T̃ at ΓN
0

(8.8)

First, the fields (⟨Ds⟩ and ⟨σ⟩) are averaged (intrinsic average) [15] over the domain (V ). Second, the
(effective) thermoelastic properties (µeff, λeff, Eeff, νeff, αeff, ξeff) have to be derived from homogeniza-

tion procedures. Three different procedures can be followed for the derivation of the effective Young

modulus and Poisson ratio. The first one is based upscaling theories. An example of this approach

is the recent work by Arabnejad and Pasini, 2013 [4], where asymptotic homogenization is used to

derive the macro-scale effective properties. The second approach is based on analytical homogeniza-

tion. The work of Gibson and Ashby, 1982 [2], is one of the first studies where the full set of elastic

properties of a honeycomb core with constant wall thickness was determined by the standard beam

theory [234]. This technique is limited to high-porosity structures and only accounts for bending de-

formation. Follow up works have further investigated the analytical problem and derived with more

generic solutions [235–238]. The third procedure is based on Pore-Scale Numerical Simulations (PS-

NS). In this case, the effective properties are determined by using the strain energy homogenisation

technique of periodic media [239]. This method has been already adopted by Catapano and Monte-

murro, 2014 [240], to determine the effective properties of a honeycomb structure. With regard to

the derivation of the effective thermal expansion coefficient, one can use analytical and semi-empirical

formulas [241–247]. Alternatively, PS-NS need to be considered. The works of Karch, 2014 [248], and

Delucia et al., 2019 [249], provide a detailed description of the latter, by considering its application to

a carbon fibre composite and a cork-based agglomerate, respectively. The main objective of this work

is to present for the first time a detailed pyrolysis model (PATO [73,75]) that takes into account solid

deformation (Eq. (8.1) and Eq. (8.4)), to define and validate the numerical procedures to retrieve the

effective properties, and to apply the model to the numerical characterization of the solid deformation

of a digital 2D TMC of wood. The article is structured as follows: the numerical procedures to de-

termine the effective properties are detailed in Section 8.2. In Section 8.3, honeycomb structures with

different porosity values are considered as simplified wood geometries. First, the thermoelastic effective

properties are computed and compared with results from the literature. Then, the deformation process

resulting from pyrolysis is presented. In Section 8.4, the full (thermoelastic-pyrolysis) solid mechanics

problem is solved on a 2D slice of the virgin digital TMC image showed in the left of Fig. 8.1. The

resulting numerical deformation is qualitatively compared with the actual deformation undergone by

the same 2D slice following a complete pyrolysis process. Conclusions are drawn in Section 8.5.

8.2 Numerical Homogenization of the Thermoelastic-Pyrolysis Properties

This section presents the numerical techniques to derive the effective properties for the solid mecha-

nics problem with PS-NS. The analysis is addressed to regular 2D honeycomb structures characterized
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by different porosity values. The porosity (ϵ) of a regular honeycomb structure can be expressed as

ϵ = 1 − 2√︁
(3)

w

l
(8.9)

where w and l are respectively the thickness and the length of the cell wall. The case with porosity ϵ =
0.9 is reported in Fig. 8.2. The figure shows the periodicity of the structure as well its Representative
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Figure 8.2 – A regular honeycomb structure. This periodic geometry is characterized by a REV with
two planes of symmetry. This feature allows only one fourth of the representative unit cell to be taken
into account during simulations.

Elementary Volume (REV). The latter features two planes of symmetry and this allow a further

simplification of the structure: only one fourth of the representative unit cell can be considered if

appropriate symmetric boundary conditions are applied. In what follows, the numerical procedures

are described under the limitation of 2D, isotropic, and symmetric structures. Their generalization to

the 3D orthotropic case can be found in Barbero, 2007 [239], and in Karch, 2014 [248].

8.2.1 Elastic Properties

Two PS-NS [239] are required to retrieve the effective Young modulus (E) and Poisson ratio (ν).

They are outlined in Fig. 8.3. The numerical domain is composed of two phases: the honeycomb

structure and the elastic air. The latter is introduced as a ”numerical artifact” [239] to apply the strain

energy homogenisation technique. At the honeycomb-air interface, the continuity of the displacement

and traction (σ ·n) fields are provided [250]. On the external boundaries, a mixed condition is enforced:

a fixed displacement condition for the normal component and a stress free condition for the tangential

one. This forces the steady-state average strain tensor to have only one non-zero component: ϵxx = 1
for simulation (1) and ϵyy = 1 for simulation (2). Constant temperature conditions are considered.
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Figure 8.3 – The two PS-NS needed to retrieve the effective Young modulus and Poisson ratio are
illustrated here. On the boundaries, a mixed condition has to be considered: a fixed displacement
component for the normal component and a stress free condition for the tangential one. This combi-
nation of boundary conditions forces the average steady-state strain tensor to have only one non-zero
component different from zero: ϵxx = 1 for simulation (1) and ϵyy = 1 for simulation (2).

Under the 2D plane strain assumption, Eq. (8.3), related to simulation (1), reduces to⎡⎢⎣ ⟨σxx⟩
⟨σyy⟩
⟨σxy⟩

⎤⎥⎦ =

⎡⎢⎣ C11 C12 C13
C21 C22 C23
C31 C32 C33

⎤⎥⎦
⎡⎢⎣ 1

0
0

⎤⎥⎦ (8.10)

It follows that C11 = ⟨σxx⟩ and C21 = ⟨σyy⟩. Due to the isotropic assumption, C31 = 0. Similar

expressions can be deduced for simulation (2) and for the second column of the stiffness tensor:

C12 = ⟨σxx⟩, C22 = ⟨σyy⟩, and C32 = 0. Due to the symmetry of the tensor, the results should lead to

C12 = C21. The knowledge of these terms is enough to evaluate the effective elastic properties in the

isotropic plane [239]

ν = C12
C12 + C22

(8.11)

E = C12(1 + ν)(1 − 2ν)
ν

(8.12)

The Lame’s coefficients can be derived from Eq. (8.5) and Eq. (8.6). The third column of the stiffness

tensor can be filled without the need of a third simulation. Indeed, C31 = C13 = C32 = C23 = 0 and

C33 = E

1 + ν
.

8.2.2 Thermal Expansion Tensor

Owing to the isotropy of the geometry, the effective thermal expansion tensor is characterized by

only one coefficient, α = αI. We assume homogenized temperature for the honeycomb structure inside

the REV, such that no radiation effects take place between adjacent walls. In addition, we consider

infinitely fast thermal dynamics, so that the temperature of the domain accommodates instantaneously
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to that imposed at the boundary. Only one PS-NS [248,249] is required and it is schematized in Fig. 8.4.

The set of boundary conditions lead at the steady-state to an average strain tensor identically equal

x
y

ELASTIC AIR

X: Dx = 0 [m] 
Y: free stress

X: Dx = 0 [m] 
Y: free stress

X: free stress
Y: Dy = 0 [m] 

X: free stress
Y: Dy = 0 [m] 

T = 301 [K]

T = 301 [K]

T0 = 300 [K]
T = 301 [K]

T = 301 [K]
X
Y

X
Y

X
Y

X
Y

Figure 8.4 – One PS-NS is needed to retrieve the effective thermal expansion coefficient. The boun-
dary conditions are chosen such that the steady-state average strain tensor is identically equal to zero,
⟨ϵ⟩ = 0. A uniform temperature load is applied.

to zero, ⟨ϵ⟩ = 0. A uniform temperature load is applied and no pyrolysis effects are considered. From

Eq. (8.3), we can derive a direct expression for the thermal expansion tensor

α = − 1
T − T0

[C]−1⟨σ⟩ (8.13)

This effective property results to be strictly related to the effective elastic properties.

8.2.3 Pyrolysis Tensor

We propose a first procedure to retrieve the effective pyrolysis tensor. The same considerations

made in Section 8.2.2 for the thermal description are still valid.

Like for the thermal expansion tensor, the pyrolysis tensor is spherical and therefore characterized by

only one component, ξ. For its prediction, one PS-NS is needed. The same boundary conditions for

the displacement field reported in Fig. 8.4 have to be considered. The enforced temperature at the

boundary is progressively increased, up to the complete pyrolysation of the solid phase. No thermal

expansion effects are considered, α = 0. From Eq. (8.3), we can derive the following equation

ξ = − 1
τs − τ0

[C]−1⟨σ⟩ (8.14)

Again, the equation highlights a direct dependence on the effective elastic properties.

8.3 Honeycomb Structures Homogenization

In this section, the deformation behaviour of the honeycomb structure (Fig. 8.2) is analyzed. The

reduced (one fourth) symmetric representative elementary unit cell is considered. Porosity values ran-

ging from 1 to 0 are considered (Eq. (8.9)). To this end, different geometries are defined with constant
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E [GPa] ν ρs [kg/m3] α [1/K] ξ

structure 70 0.33 600 1e-5 0.1667
elastic air 1e-3 0.00 1 0 0.0

Table 8.1 – micro-scale physical parameters considered for the two phases defined in the geometry:
the honeycomb structure and the elastic air. The values are taken from the literature [2–6].

cell wall length l = 1 mm and varying wall thickness. The porosity value is given by Eq. (8.9). Litera-

ture data [2–6] are considered for the choice of the micro-scale physical properties of the two phases,

summarized in Table 8.1, for the comparison, and for verification of the numerical procedure. The sym-

metric geometries are generated in openFoam, using the blockMesh and snappyHexMesh utilities [251].

Additional details on the mesh are given in Appendix B (Section 8.8).

8.3.1 Elastic Effective Properties

Results of the numerical homogenization are presented in Figs. 8.5 and 8.6. Fig. 8.5 illustrates the

PRESENT WORK

PRESENT WORK

Figure 8.5 – Comparison of the effective elastic properties as a function of the solid fraction (1 − ϵ).
High porosities (ϵ > 0.7) cases are considered. On the left (A), the behaviour of the effective Young
modulus, normalized with the micro-scale value, is reported; on the right (B), the behaviour of the
effective Poisson ratio, normalized with the micro-scale value, is showed. Comparison data are taken
from the literature [2–5].

behaviour of the two dimensionless effective elastic properties (Eeff/E and νeff/ν) as porosity changes

between 1 and 0.7. Results are compared with several works from the literature [2–5]. It should be

remarked that, Gibson, 1982 [2], Vigliotti and Pasini, 2012 [3], and Malek and Gibson, 2015 [5], adopted

analytical homogenization techniques, whose validity is limited to high porosity values. Arabnejad and

Pasini, 2013 [4], instead used asymptotic homogenization theory to derive the macro-scale effective

properties, subject therefore to no restrictions in terms of porosity. The figure highlights how, as the

porosity decreases, the effective Young’s modulus increases slightly while the Poisson’s ratio decreases

more markedly. These trends can be physically explained by the fact that as the porosity decreases,

the solid part increases in volume, thus favouring greater structural rigidity in the porous medium.

It is worth noting that our calculations are in good agreement with the literature. The only major

200



8.3. HONEYCOMB STRUCTURES HOMOGENIZATION

PRESENT WORK

PRESENT WORK

Figure 8.6 – Comparison of the effective elastic properties as a function of the solid fraction (1 − ϵ).
The whole porosity range is considered. On the left (A), the behaviour of the effective Young modulus,
normalized with the micro-scale value, is reported; on the right (B), the behaviour of the effective
Poisson ratio, normalized with the micro-scale value, is showed. Comparison data are taken from the
literature [4].

discrepancy is noted with respect to the Poisson ratio predicted by Gibson et al., 1982 [2], where the

axial and shear deformation of the cell wall were neglected, thus making the property independent of

porosity.

Fig. 8.6 completes the description of the two effective elastic properties across the entire porosity

range. Only fewer data [4] is available from the literature for this wide range of porosity. The figure

completes the trends observed in Fig. 8.5 for the two effective properties, converging to an asymptotic

equality between the homogeneous and micro-scale values in the limit in which the porosity tends

to zero, ϵ → 0. Again, we can observe a good agreement between of our results with the work of

Arabnejad and Pasini, 2013 [4].

8.3.2 Thermal Expansion Coefficient

Results from Section 8.3.1 allow the characterization of the full stiffness tensor for each geometry

case. The thermoelastic simulations are now performed to evaluate the steady-state average stress

tensor required in Eq. (8.13). Results indicate that for the entire porosity range, the effective thermal

expansion coefficient is equal to that of the micro-scale structure. This is in agreement with the

literature [2]. Indeed, the value of the thermal expansion coefficient should remain the same as long

as regular honeycomb structures at uniform temperature are considered.

8.3.3 Pyrolysis Coefficient

For the homogenization of the pyrolysis contribution terms, we have considered the temperature

values as a function of time given in Table 8.2. The pyrolysis model presented by Lachaud et al.,

2017 [75], is adopted in this work. Results of the homogenization are reported in Table 8.3. It can be

observed that, as the porosity increases, and thus as the solid volume decreases, the effective pyrolysis

contribution term decreases. At a porosity of ϵ = 0.70, the effective contribution accounts for only 1%

201



8.4. HOMOGENIZATION OF REAL WOOD STRUCTURE

time [s] 0 10 20 30 40 50
temperature [K] 300 400 500 600 700 800

Table 8.2 – Increase of the temperature values in the domain as a function of time.

1 − ϵ 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

ξeff/ξ 0.00067 0.0017 0.0029 0.0042 0.0070 0.021 0.065 0.097 0.21 0.41 0.65 0.93 1.00

Table 8.3 – Effective pyrolysis contribution term as a function of the solid fraction (1 − ϵ).

of its micro-scale value.

For a better understanding of the effects of pyrolysis on deformation, we have performed a simulation

with mesh movement driven by the displacement field. The one fourth REV structure with porosity

ϵ = 0.80 has been considered. Its change of shape during the pyrolysis evolution can be appreciated

in Fig. 8.7. The overall advancement of the pyrolysis reactions is described by τs: when τs = 1 the
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Figure 8.7 – Change of shape of the one fourth REV structure with porosity ϵ = 0.80 due to pyrolysis
effects. At the initial time step, t = 0 s, the structure is fully virgin, τs = 1. At the final time step,
t = 40 s, the structure is fully pyrolyzed, τs = 0. The magnitude of the displacement field is showed.

structure is virgin, whereas τs = 0 indicated a completely pyrolyzed structure. At the initial time step,

t = 0 s, the structure is fully virgin. As the simulation progresses, the temperature of the domain

increases and triggers the pyrolysis reactions. The latter contribute to the stress tensor (Eq. (8.4)),

thus to deformation. At the final time step, t = 40 s, the structure is completely pyrolyzed, τs = 0,
and an overall shrinkage effect can be appreciated. The shape of the structure remains preserved, as

a consequence of the set of boundary conditions applied on the displacement field (Fig 8.3).

8.4 Homogenization of Real Wood Structure

The homogenization techniques are now applied to a slice of the virgin wood sample reported on

the left of Fig. 8.1 taken in the transversal plane (Fig. 8.8). As a first approximation, the domain is

simplified in two independent regions (represented by the boxes in Fig. 8.8) featuring two different

porosity values. This layering arises from the fact that the sample contains growth rings corresponding

to wood produced in two different seasons. The figure shows also two cracks propagating from the
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εD = 0.67

εE = 0.55

Figure 8.8 – Slice of the virgin wood sample (Fig. 8.1) in the transversal (xy) plane. The geometry
shows two different regions featuring two different porosity values. In the red dashed domain, the
two-step approach is tested. In the two blue continuous domains, the homogenization techniques are
applied.

bottom part of the domain, which are neglected in the analysis by artificially sealing the void spaces.

Each region (blue box) features a a bi-modal porosity distribution, with to prevalent pore scales of

3.82 and 14.2 microns characteristic scale, respectively. A two-step approach is defined to simplify the

numerical characterization: in a first step, only the small pores are homogenized; the residual geometry

is then treated in a second step. As a general rule, we denote as small pores, all the pores featuring an

area lower than 10% of the maximum pore area in the domain. To verify the validity of this two-step

approach, the red dashed square domain is considered. With reference to Fig. 8.9, the validation of the

approach is done by comparing the results of the homogenization process applied to the full domain

(A) with the results of the two-step approach: the domain (C) is homogenized and its results are used

as the thermoelastic property values of the honeycomb phase (dark red zone) in the domain (B). The

homogenized porosity of the domain (B) takes into account the porosity of the domain (C) as follows

ϵeffB = (1 − ϵB)ϵC + ϵB (8.15)
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Figure 8.9 – Verification of the two-step approach on the domain in the red dashed square in Fig. 8.8.
The homogenization results obtained from the domain (A) are compared with the ones obtained from
domain (B), where a small pores are substituted from homogenization results obtained from domain
(C).

ϵ Eeff/E νeff/ν αeff/α ξeff/ξ

domain (C) 0.36 0.1864 1.23 1.21 0.052

domain (B) 0.66 0.0424 1.69 1.17 0.36
domain (A) 0.65 0.0402 1.73 1.16 0.37

∆% 1.5 5.1 2.3 0.9 2.7

Table 8.4 – Results of the thermoelastic mechanic characterization of the domains showed in Fig. 8.9.
Based on the relative difference between the predictions of domains (A) and (B), we can validate the
two-step approach for the homogenization, knowing that this will lead to errors around 2 − 5%.

More details on the mesh used to characterize the domain (A) are given in Appendix B (Section 8.8).

The homogenization is carried out with the numerical procedures described in Section 8.3. Results

are showed in Table 8.4. To compare the results from domains (A) and (B), the following relative

difference has been defined for any generic quantity ψ

∆% =
ψdomain(A) − ψdomain(B)

ψdomain(A)
100 (8.16)

The maximum difference is observed for the effective Young modulus, where the value goes up to

5%. We consider this error acceptable given the notable simplification that the technique brings to

numerical description.

With the two-step approach being validated, we proceed to the characterization of the two blue conti-

nuous rectangles (Fig. 8.8), which are illustrated in Fig. 8.10 after the application of the first homoge-

nization step. With reference to Fig. 8.8, the upper domain is denoted (D) and the lower one (E). More

details on the mesh discretization of domain (D) are given in Appendix B (Section 8.8). Results of the

second homogenization step for the two domains, with their differences, are reported in Table 8.5. The

difference between the effective Young modulus of the two domains is up to 88.9%. As expected, the

204



8.4. HOMOGENIZATION OF REAL WOOD STRUCTURE

Figure 8.10 – Blue continuous domains of Fig. 8.8 after the first homogenization step. The small
pores are homogenized and the results are taken as the thermoelastic properties of the matrix phase.
With reference to Fig. 8.8, the upper domain is denoted (D) and the lower one (E).

two domains are characterized by different effective properties and they define two different structures.

To fulfill the objective of this work, the deformation of the virgin cross section (Fig.8.8) resulting

form the thermoelastic-pyrolsysis solid mechanical problem is compared with the actual deformation

undergone by the equivalent cross section extracted from the charred sample. The numerical analysis

is simplified by considering homogeneous properties in the cross section: the effective properties are

obtained from a mathematical average of the ones of domains (D) and (E) (Table8.5). Only one fourth

of the slice is considered. The numerical domain, domain (F), and results are represented in Fig. 8.11.

Symmetric conditions are imposed on the symmetric axes, and the domain is left free to deform on the

ϵ Eeff/E νeff/ν αeff/α ξeff/ξ

domain D 0.67 0.0471 1.90 1.20 0.38
domain E 0.55 0.0890 1.41 1.28 0.16

∆% 17.9 88.9 34.7 6.67 64.7

Table 8.5 – Results of the solid mechanics homogenization of domains D and E defined in Fig. 8.10.
Their ∆% values are also reported. Results indicate two different structures characterized by different
effective parameters.
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free deformation

free deform
ation

Domain (F)

Figure 8.11 – One fourth of the slice of the virgin sample (Fig. 8.8) is considered. The Domain
(F) is defined. Symmetric conditions are imposed on the symmetric axes, and the domain is left free
to deform on the other boundaries. A uniform temperature load up to 800 K is applied. The final
domain is reconstructed by exploiting the axes of symmetry and overlapped to the actual deformation
undergone by the equivalent cross section from the charred sample.

other boundaries. A uniform temperature load up to 800 K is applied. Once the simulation converges,

the entire domain is reconstructed by exploiting the axes of symmetry. The final domain is overlapped

to the actual deformation undergone by the equivalent cross section from the charred sample. It can

be observed that, due to the isotropic model, the deformation of Domain (F) results to be equal in

the two directions. The original square shape is preserved. Despite the assumptions of isotropic and

homogeneity of the domain, the model is able to predict the value of the final surface area with a

relative error of 4.1 %.

8.5 Conclusions

In this work, the numerical homogenization process in reactive porous media has been investi-

gated with micro-scale direct numerical simulations. The analysis focuses on a 2D computed micro-

tomography image of a wood sample. At first, the geometry has been simplified as a honeycomb

structure. The thermoelastic effective properties have been derived from numerical homogenization

and compared with literature results. Wood has been then allowed to react and a pyrolysis-shrinkage

function has been defined to account for the pyrolysis contribution on the displacement field. After

having defined and applied the homogenization procedure for this new property, the effects of pyrolysis

deformation are observed on the shrinkage of a honeycomb structure.

A slice of the wood sample has been then considered. As a first approximation, the domain is simplified

in two independent regions featuring two different porosity values. A two-steps homogenization proce-

206



8.6. ACKNOWLEDGMENTS

dure has been introduced in order to reduce the computational time for the numerical characterization.

Once the two independent regions have been characterized in terms of their effective properties, the

simplified domain is deformed and solved at both the macro and micro scales. A good agreement in the

results is observed, underlying that, in the case of wood, a generic macroscopic description should ac-

count for the presence of the growth rings by dividing the domain into regions: the effective properties

of each region must be determined at the microscopic level. Finally, the full (thermoelastic-pyrolysis)

solid mechanics problem is solved on a 2D slice of the virgin digital TMC image. The main objective

of the work is fulfilled by comparing the resulting numerical deformation to the actual deformation

undergone by the same 2D slice following a complete pyrolysis process.
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8.7 Appendix A. The Pyrolysis-Shrinkage Function

The derivation of the pyrolysis-shrinkage function is based on the idea of writing the contribution

of pyrolysis to the deformation field in the same form as the thermal one. The reason is that both

contributions lead to volumetric deformations. In this analogy, the pyrolysis contribution term, ξ,

should be defined in a similar way to the thermal expansion coefficient, α.

The change of volume of the material due to thermal expansion is linked to the coefficient of volume

expansion, β, defined as

β = 1
V

(︂∂V
∂T

)︂
(8.17)

The linear thermal expansion coefficient is defined as the change of length of a material due to thermal

expansion

α = 1
L

(︂∂L
∂T

)︂
(8.18)

For isotropic materials, when considering small variation of temperature and neglecting high order

terms in volume expansion expression, the two coefficients α and β are related as follows

α = 1
3β (8.19)

A similar relationship can be found for the pyrolysis expansion term, ξ, by assuming small volume

variations. In this case the parameter that leads to a variation of volume is τ , the total advancement

of the pyrolysis process. As a first order model, this term is supposed to be a linear function of τ

τ(t) = V (t) − Vend

V0 − Vend
(8.20)
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where Vend is the final volume of the material. The variation of the material volume at a certain time

step t

∆V = V (t) − V0 (8.21)

Eq. (8.20) can be substitute in Eq. (8.21) to express V (t) and V0 as a function of τs. This leads to

∆V
V0

= V0 − Vend

V0
τ (8.22)

The volume fraction term
V0 − Vend

V0
has the same proportionality role as β in Eq. (8.17). So, by taking

reference to Eq.(8.19), the pyrolysis-shrinkage function has been defined as

ξ = 1
3
V0 − Vend

V0
(8.23)

The value of ξ has to be defined from experimental observations.

8.8 Appendix B. Details on the Meshes

Further details on the meshing of the geometries are given in this appendix. For the homogenization

of the honeycomb structures, in Section 8.3, mesh sizes of about 90000 cells have been considered for

the different porosity values. This discretization results from a steady-state convergence analysis of the

displacement field. The discretized geometry for the case of porosity ϵ = 0.80 is reported in Fig. 8.12.

On the right part of the figure, a corner of the geometry is zoomed to highlight the discretization of
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Figure 8.12 – Discretized geometry used for the homogenization of the honeycomb structure with
porosity epsilon = 0.80. Approximately 90000 cells are considered. The material parameter allows
the identification of the two different regions. material=0 denotes the honeycomb structure, whereas
material=1 indicates the elastic air.

the mesh. The material parameter allows the identification of the two different regions. material=0

denotes the honeycomb structure, whereas material=1 indicates the elastic air.

For the homogenization of the red dashed square in Fig. 8.8, Section 8.4, a mesh size of about 180000

cells has been considered after a convergence study. The discretized geometry is showed in Fig. 8.13.
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Figure 8.13 – Discretized geometry used for the domain (B) (8.9). Approximately 180000 cells are
considered. In the right part of the figure, a corner of the geometry is zoomed in order to highlight
the mesh discretization.

In the right part of the figure, a corner of the geometry is zoomed in order to highlight the mesh

discretization. The material parameter allows the distinction between the two phases.

For the homogenization of the domain (D) in Fig. 8.10, Section 8.4, a mesh with approximately 320000

cells has been considered. This discretization is enough to guarantee the convergence of the simula-

tion. The discretized geometry is showed in Fig. 8.13. In the right part of the figure, a corner of the
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Figure 8.14 – Discretized geometry used for the domain (D) (8.10). Approximately 320000 cells are
considered. In the right part of the figure, a corner of the geometry is zoomed in order to highlight
the mesh discretization.

geometry is zoomed in order to highlight the mesh discretization. The material parameter allows the

distinction between the two phases.

8.9 Appendix C. Validation of the Upscaling Method

The upscaling method is validated in this appendix by solving the domain (D) at both the micro-

scale and macro-scale and comparing the results in terms of the average displacement fields. For the

macro-scale, the homogeneous domain characterized by the effective properties of Table 8.5 is consi-

dered. The numerical domains and results are presented in Fig. 8.15. The same boundary conditions

are applied to both domains: the domains are fixed on the left boundary and free to move elsewhere.
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Figure 8.15 – Comparison of the displacement fields resulting from the pore and macro scale des-
criptions of the domain (D). The domain is fixed on the left boundary and free to move elsewhere. A
uniform temperature load up to 800 K is enforced. The resulting displacement fields are averaged in
the y direction and are plotted as function of x on the right side of Fig. 8.15. A good agreement in the
micro and macro scales is observed.

A uniform temperature load up to 800 K is enforced. The resulting displacement fields are averaged

in the y direction and are plotted as function of x on the right side of Fig. 8.15. A good agreement in

the micro and macro scales is observed.
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Annexe A

Derivation of the Porous Media
Macroscopic Equations by the Volume
Averaging Technique

Nomenclature

Latin Letters

av specific surface m2 m−3

B mapping tensor
bσσ, bβσ, bσβ, bββ mapping vectors
C tensor defined in the development of the closure problem
cp specific heat at constant pressure [J kg−1 K−1]
cσσ, cβσ, cσβ, cββ transport vectors defined in the development of the closure problem
G function to deal with the the boundary condition
g gravitational field [m s−2]
h heat transfer coefficient [W m−2 K−1]
hv volumetric heat transfer coefficient [W m−3 K−1]
K permeability tensor [m2]
k

σσ
, k

βσ
, k

σβ
, k

ββ
thermal conductivity tensors

k thermal conductivity coefficient [W m−1 K−1]
l, L microscopic and macroscopic scales characteristic lengths [m]
n surface normal
p pressure [Pa]
r representative element volume dimension [m]
S interface area [m2]
t time [s]
T time scale [s]
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ANNEXE

Nomenclature

T temperature [K]
v convective velocity [m s−1]
vσσ,vβσ,vσβ,vββ transport vectors
V averaging volume [m3]
w interface velocity [m s−1]

Greek Letters

δ Dirac distribution function
ϵ volume fraction
µ dynamic viscosity [Pa s]
ξ arbitrary function
ρ density [kg m−3]
ψ generic variable
Φβ,Φσ, Ωβσ functions defined in the development of the closure problem
ψ arbitrary function

Subscripts and Superscripts

0 change of variable
β fluid phase
σ solid phase

Notation

∂V boundary of the domain
⟨⟩ intrinsic average
⟨⟩β phase average
∼ deviation term

Adimensional Groups

Kn Knudsen number
Re Reynolds number

Acronyms

REV Representative Elementary Volume

The purpose of this appendix is to derive the macroscopic equations for porous media using the

volume averaging technique. A single-phase incompressible flow (β-phase) interacting with a rigid, non
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reactive porous medium (σ-phase) is considered. This problem is represented in Fig. A.1.

σ-phase

β-phase

Figure A.1 – Averaging problem considered. A single-phase incompressible flow (β-phase) interacting
with a rigid, non reactive porous medium (σ-phase) is considered. The volume averaging technique is
applied.

The method of volume averaging is a technique used to derive continuum equations for multiphase

systems. This means that equations valid within a particular phase can be spatially smoothed and

lead to equations valid everywhere. In this way, the description of the problem moves from a pore-scale

level, with all the complexity of geometry and boundary conditions, to a macro-scale level described by

locally averaged equations. This concept is schematized in Fig. A.2. In the macroscopic description,

the properties of a generic point are the averaged of the properties of a REV centered on it. The

volume, to be representative, must be characterized by a characteristic length r such that

lσ, lβ ≪ r ≪ L (A.1)

where lβ and lσ are the characteristic lengths of the β and σ phases, and L is the characteristic lenght

of the macroscopic domain. This inequality is nothing more than a convenient restriction that is often

satisfied by many systems of practical importance.

Some definitions and theorems need to be introduced. There are two types of volume averaging. The

first is the phase average, defined as

⟨ψβ⟩ = 1
V

∫︂
Vβ

ψβ dV (A.2)

where ψβ is a generic variable of the β phase and Vβ represents the volume of the β-phase contained

within the averaging volume V . In the case ψβ is a constant within the domain, the phase average

⟨ψβ⟩ differs to ψβ. For this reason, it is often more convenient to use the intrinsic phase average

⟨ψβ⟩β = 1
Vβ

∫︂
Vβ

ψβ dV (A.3)
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Macro-Scale

Pore-Scale

Flow

Averaging 
Volume (V)

r

L

lβ

lσ

Figure A.2 – Pore and macro scales of the problem. At the macro-scale, the properties of a generic
point are the averaged of the properties of a REV centered on it.

which is more representative of the conditions in the β-phase. The two averages are related by the

following relationship

⟨ψβ⟩ = ϵβ ⟨ψβ⟩β (A.4)

where ϵβ is the volume fraction of the related phase: ϵβ = Vβ/V . In the case of two phases, solid and

flow, the volume fraction of the flow phase is defined as the porosity of the medium.

The development of the volume averaging method is based on three averaging theorems. The first

one is an application of the generic Reynolds transport theorem [211] and it is used to move the

temporal derivation out of the spatial averaging. By considering a generic field ψ

⟨︂
∂tψβ

⟩︂
= ∂t⟨ψβ⟩ − 1

V

∫︂
Sβσ

ψβwβσ · nβσdS (A.5)

where wβσ denotes the velocity of the interface. Since the solid phase is assumed to be rigid, wβσ = 0,
and the theorem can be rewritten as ⟨︂

∂tψβ

⟩︂
= ∂t⟨ψβ⟩ (A.6)
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The second theorem moves the gradient operator out of the spatial averaging [252]

⟨∂xψβ⟩ = ∂x⟨ψβ⟩ + 1
V

∫︂
Sβσ

ψβnβσdS (A.7)

The third theorem moves the divergence operator out of the spatial averaging [252]

⟨∂x ·ψβ⟩ = ∂x · ⟨ψβ⟩ + 1
V

∫︂
Sβσ

nβσ ·ψβ dS (A.8)

The last theorem to mention is the Gray’s decomposition [159], which allows a generic variable to be

decomposed as the sum of its mean plus a deviation contribution

ψβ = ⟨ψβ⟩β + ψβ̃ (A.9)

In the problem of interest, an incompressible, continuum (Kn ≪ 1) and creeping (Re ≪ 1) flow is

considered interacting with a rigid and non-reactive solid. At the pore-scale, within volume V, the

following system solves the problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x · vβ = 0 in Vβ

ρβ∂tvβ − µβ∂
2
xvβ = −∂xpβ + ρβg in Vβ

ρβ cp,β∂tTβ + ρβ cp,βvβ · ∂xTβ = ∂x · (kβ∂xTβ) in Vβ

ρσ cp,σ∂tTσ = ∂x · (kσ∂xTσ) in Vβ

BC1 : vβ = 0 at Sβσ

BC2 : vβ = v1(x, t) at ∂Vβ

BC3 : Tβ = Tσ at Sβσ

BC4 : nβσ · kβ∂xTβ = nβσ · kσ∂xTσ at Sβσ

BC5 : Tβ = Tβ,1(x, t) at ∂Vβ

BC6 : Tσ = Tσ,1(x, t) at ∂Vσ

iC1 : v(t = 0) = vt=0(x) in Vβ

iC2 : Tβ(t = 0) = Tβ,0 in Vβ

iC3 : Tσ(t = 0) = Tσ,0 in Vσ

(A.10)
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A.1 Continuity Averaged Equation

From Eq. (A.10), the pore-scale continuity equation and the respective boundary condition are

extracted ⎧⎪⎨⎪⎩
∂x · vβ = 0

BC1 : vβ = 0 at Sβσ

(A.11)

The first step of the technique involves the application of the averaging operator

⟨∂x · vβ⟩ = 0 (A.12)

Then, the terms in the equation are developed. In this case, the averaging theorem for the divergence

operator Eq. (A.8) is applied

∂x · ⟨vβ⟩ +
�����������1
V

∫︂
Sβσ

ρβvβ · nβσdS = 0 (A.13)

where the term cancels due to BC1 of Eq. (A.11). The averaged continuity equation results as follows

∂x · ⟨vβ⟩ = 0 (A.14)

A.2 Momentum Equation

From Eq. (A.10), the pore-scale momentum equation and the respective boundary conditions are

extracted ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρβ∂tvβ − µβ∂
2
xvβ = −∂xpβ + ρβg in Vβ

BC1 : vβ = 0 at Sβσ

BC2 : vβ = v1(x, t) at ∂Vβ

iC1 : vβ(t = 0) = vt=0(x) in Vβ

(A.15)

The equation is averaged ⟨︂
ρβ∂tvβ − µβ∂

2
xvβ

⟩︂
= ⟨−∂xpβ + ρβg⟩ (A.16)

Due to the linearity property of the integral operator, the average of the sums is the sum of the

averages ⟨︂
ρβ∂tvβ

⟩︂
− ⟨µβ∂

2
xvβ⟩ = −⟨∂xpβ⟩ + ⟨ρβg⟩ (A.17)

Each term must be developed. The density inside the REV is assumed homogeneous. The averaging

theorem of the time derivative, Eq. (A.6), is applied to the transient term⟨︂
ρβ∂tvβ

⟩︂
= ρβ

⟨︂
∂tvβ

⟩︂
= ρβ∂t⟨vβ⟩ (A.18)
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The averaged theorems Eq. (A.7) and Eq. (A.8) are applied to the second term of Eq. (A.17),

⟨µβ∂
2
xvβ⟩ = µβ

[︂
∂x · ⟨∂xvβ⟩ + 1

V

∫︂
Sβσ

nβσ · ∂xvβ dS
]︂

= µβ

[︂
∂2
x⟨vβ⟩+

+ 1
V

∫︂
Sβσ

nβσ · ∂xvβ dS +
���������1
V

∫︂
Sβσ

vβnβσdS
]︂

(A.19)

where the viscosity is assumed to be uniform inside the REV and BC1 of Eq. (A.15) has been consi-

dered. Gravity is assumed to be an uniform vector. Thus, the body force term in Eq. (A.17) simplifies

to

⟨ρβg⟩ = ρβg⟨1⟩ = ρβg
1
V

∫︂
Vβ

1dV = ρβg
Vβ

V
= ρβϵβg (A.20)

The averaging theorem of the gradient, Eq. (A.7), is applied to the pressure term

⟨∂xpβ⟩ = ∂x⟨pβ⟩ + 1
V

∫︂
Sβσ

pβnβσdS = ϵβ∂x⟨pβ⟩β + ⟨pβ⟩β∂xϵβ + 1
V

∫︂
Sβσ

pβnβσdS (A.21)

All the terms, once developed, are substituted back in the averaged momentum equation, Eq. (A.17)

ρβ∂t⟨vβ⟩ − µβ

[︂
∂2
x⟨vβ⟩ + 1

V

∫︂
Sβσ

nβσ · ∂xṽβdS
]︂

= −ϵβ∂x⟨pβ⟩β − ⟨pβ⟩β∂xϵβ+

− 1
V

∫︂
Sβσ

pβnβσdS + ϵβρβg (A.22)

The Gray’s decomposition, Eq. (A.9), of the pressure field reads

pβ = ⟨pβ⟩β + p̃β (A.23)

This decomposition is applied to the integral term on the second-hand side of Eq. (A.22)

1
V

∫︂
Sβσ

pβnβσdS = 1
V

∫︂
Sβσ

⟨pβ⟩βnβσdS + 1
V

∫︂
Sβσ

p̃βnβσdS (A.24)

The average of the pressure, ⟨pβ⟩β, is a constant quantity with respect to the integration over the

interface are Sβσ. It can be then moved out from the integral under the assumption of scales separation

(Eq. (A.1)) inside the domain (see Section A.4)

1
V

∫︂
Sβσ

⟨pβ⟩βnβσdS = ⟨pβ⟩β 1
V

∫︂
Sβσ

nβσdS (A.25)

The developed term is substituted back into Eq. (A.24)

1
V

∫︂
Sβσ

pβnβσdS = ⟨pβ⟩β 1
V

∫︂
Sβσ

nβσdS + 1
V

∫︂
Sβσ

p̃βnβσ (A.26)

An expression is required to proceed with the development of Eq. (A.26). When ψ = 1, the mediation

theorem related to the gradient, Eq. (A.7), writes

���⟨∂x1⟩ = ∂x⟨1⟩ + 1
V

∫︂
Sβσ

1nβσdS (A.27)
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”1” is a constant and it is moved out from the averaging term

0 = ∂xϵβ + 1
V

∫︂
Sβσ

nβσdS (A.28)

This expression is used in the development of Eq. (A.26)

1
V

∫︂
Sβσ

pβnβσdS = −⟨pβ⟩β∂xϵβ + 1
V

∫︂
Sβσ

p̃βnβσdS (A.29)

This term is substituted back in the averaged momentum equation Eq. (A.22)

ρβ∂t⟨vβ⟩ − µβ

[︂
∂2
x⟨vβ⟩ + 1

V

∫︂
Sβσ

nβσ · ∂xṽβdS
]︂

= −ϵβ∂x⟨pβ⟩β − 1
V

∫︂
Sβσ

p̃βnβσdS + ϵβρβg (A.30)

The Grey’s decomposition, Eq. (A.9), of the velocity field reads

vβ = ⟨vβ⟩β + ṽβ (A.31)

This decomposition is applied to the velocity field inside the integral term on the first-hand side of

Eq. (A.30)
1
V

∫︂
Sβσ

∂xnβσ · vβdS = −∂xϵβ · ∂x⟨vβ⟩β + 1
V

∫︂
Sβσ

nβσ · ∂xṽβdS (A.32)

At the pore-scale level, the ∂x⟨vβ⟩β term is constant and it moves out from the integral. The integral

term becomes
1
V

∫︂
Sβσ

∂xnβσ · vβdS = 1
ϵβ

⟨vβ⟩β∂2
xϵβ − 1

ϵβ
∂xϵβ · ∂x⟨vβ⟩β (A.33)

The term is substituted back into the averaged momentum equation Eq. (A.30)

ρβ∂t⟨vβ⟩β − µβ

˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂[︂
∂2
x⟨vβ⟩β + 1

ϵβ
⟨vβ⟩β∂2

xϵβ − 1
ϵβ
∂xϵβ · ∂x⟨vβ⟩β

]︂
= −∂x⟨pβ⟩β − 1

Vβ

∫︂
Sβσ

p̃βnβσdS+

+ρβg + µβ

Vβ

∫︂
Sβσ

nβσ · ∂xṽβdS (A.34)

The terms inside the square brackets are negligible under the assumption of scales separation (see

Section A.4). The averaged momentum equation simplifies to

ρβ∂t⟨vβ⟩β = −∂x⟨pβ⟩β + ρβg − 1
Vβ

∫︂
Sβσ

p̃βnβσdS + µβ

Vβ

∫︂
Sβσ

nβσ · ∂xṽβdS (A.35)

A.2.1 Closure Problem

To close the problem, the deviation terms p̃β and ṽβ must be determined in terms of the dependent

variables ⟨pβ⟩β and ⟨vβ⟩β, that is, some governing differential equations must be derived for both p̃β

and ṽβ.

The length scale separation assumption (A.1) implies that the time scale associated with the pore-

scale equations (T = (lβ, lσ)/|v|) is much smaller than the time scale associated with the averaged
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equations (⟨T ⟩ = L/|⟨v⟩|). A quasi-stationary representation of the deviation fields as a function of

the mean fields is introduced.

The Gray’s decomposition, Eq. (A.9), is applied to the velocity and pressure fields in the pore-scale

governing equations, Eq (A.15)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x · ṽβ = −∂x · ⟨vβ⟩β

−∂xp̃β + µβ∂
2
xṽβ = ∂x⟨pβ⟩β − ρβg − µβ∂

2
x⟨vβ⟩β

BC1 ṽβ = −⟨vβ⟩β at Sβσ

BC2 ṽβ = v1(x, t) − ⟨vβ⟩β at ∂Vβ

(A.36)

All transient terms are neglected since the aim is to express the deviation terms (faster dynamic) as a

function of the averaged ones (slower dynamic). This system of equations represents a boundary value

problem for p̃β and ṽβ where the averaged quantities ⟨pβ⟩β and ⟨vβ⟩β are the source terms.

This system is further developed. The source term in the continuity equation for ṽβ (see Section A.4)

is neglected. Thus

∂x · ṽβ = 0 (A.37)

The momentum equation of the deviation system is averaged

1
V

∫︂
Vβ

[︁
− ∂xp̃β + µβ∂

2
xṽβ

]︁
dV = 1

V

∫︂
Vβ

[︁
∂x⟨pβ⟩β − ρβg − µβ∂

2
x⟨vβ⟩β]︁

(A.38)

By multiplying all the terms for the volume V and by moving out of the integral the terms on the

second-hand side, the momentum equations becomes

1
Vβ

∫︂
Vβ

[︁
− ∂xp̃β + µβ∂

2
xṽβ

]︁
dV = ∂x⟨pβ⟩β − ρβg − µβ∂

2
x⟨vβ⟩β (A.39)

By comparing this equation to the momentum equation defined in the system of Eqs. (A.36)

−∂xp̃β + µβ∂
2
xṽβ = 1

Vβ

∫︂
Vβ

[︁
− ∂xp̃β + µβ∂

2
xṽβ

]︁
dV (A.40)

The system of Eqs. (A.36) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x · ṽβ = 0

−∂xp̃β + µβ∂
2
xṽβ = 1

Vβ

∫︁
Vβ

(︂
− ∂xp̃β + µβ∂

2
xṽβ

)︂
dV

BC1 ṽβ = −⟨vβ⟩β at Sβσ

BC2 ṽβ = G · ⟨vβ⟩β at ∂Vβ

⟨ṽβ⟩ = ⟨p̃β⟩ = 0

(A.41)
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Where BC2 is rewritten by introducing the function G and two conditions on the deviation terms are

introduced. They derive from the average of the Gray’s decomposition: ⟨v⟩ = ⟨⟨v⟩⟩ + ⟨ṽ⟩ ⇒ ⟨ṽ⟩ = 0
and ⟨p⟩ = ⟨⟨p⟩⟩ + ⟨p̃⟩ ⇒ ⟨p̃⟩ = 0. In this way, BC2 with the two conditions on the deviation terms

provide a formulation equivalent to that of Eq. (A.36), as the function G can maps the values of ⟨vβ⟩β

such that G · ⟨vβ⟩β = v1(x, t) − ⟨vβ⟩β.

The system of equations is linear, so its solutions (the perturbation fields) are linear functions of

the independent variables (the averaged fields). Furthermore, the independent variables influence the

system through the boundary conditions. In particular, only the averaged velocity ⟨vβ⟩β affects the

problem. Based on these observations, the following generic solution for the system is proposed

ṽβ = B · ⟨vβ⟩β +ψ (A.42)

p̃β = µβb · ⟨vβ⟩β + µβξ (A.43)

where ψ and ξ are two completely arbitrary functions and the viscosity term is added to simplify

the next steps. Thanks to the arbitrary functions, the mapping functions B and b can be specified in

any way. The classic way is by defining the same boundary value problem as for the deviation terms

Eq. (A.41): b takes the place of p̃β and B the place of ṽβ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x ·B = 0

−∂xb+ ∂2
xB = 1

Vβ

∫︁
Vβ

[︁
− ∂xb+ ∂2

xB
]︁
dV

BC1 B = −I at Sβσ

BC2 B = G at ∂Vβ

⟨B⟩β = ⟨b⟩β = 0

(A.44)

To close the problem, the functions ψ and ξ need to be defined. Their boundary value problem is ob-

tained from the boundary value problem for the deviation terms Eq. (A.41) by considering Eqs. (A.42)

and (A.43). The continuity equation reads

∂x · ṽβ = ∂x · (B · ⟨vβ⟩β +ψ) = ∂x · (B · ⟨vβ⟩β) + ∂x ·ψ = 0 (A.45)

The following vectorial property can be used

∂x · (B · ⟨vβ⟩β) = ˂˂˂˂˂˂˂˂⟨vβ⟩β · (∂x ·B) +BT · ∂x⟨vβ⟩β (A.46)

where the term on the second-hand side neglects due to the choice of the closure problem of B,

Eq. (A.44). Thus, the continuity equation (Eq. (A.45)) becomes

∂x ·ψ = −BT · ∂x⟨vβ⟩β (A.47)

The momentum equation reads

−∂x(µβb · ⟨vβ⟩β) − ∂x(µβξ) + µβ∂
2
x(B · ⟨vβ⟩β) + µβ∂

2
xψ = 1

Vβ

∫︂
Vβ

[︁
− ∂x(µβb · ⟨vβ⟩β)+
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−∂x(µβξ) + µβ∂
2
x(B · ⟨vβ⟩β) + µβ∂

2
xψ]dV (A.48)

Two vectorial identities are needed

∂x(b · ⟨vβ⟩β) = ∂xb · ⟨vβ⟩β + ∂x⟨vβ⟩β · b (A.49)

∂2
x(B · ⟨vβ⟩β) = B · ∂2

x⟨vβ⟩β + 2∂xBT (∂x⟨vβ⟩β)T + ⟨vβ⟩β · ∂2
xB (A.50)

by dividing everything for the viscosity coefficient, µ, the momentum equation (Eq. (A.48)) develops

as

−∂xb · ⟨vβ⟩β − ∂x⟨vβ⟩β · b− ∂xξ +B · ∂2
x⟨vβ⟩β + 2∂xBT (∂x⟨vβ⟩β)T + ⟨vβ⟩β · ∂2

xB + ∂2
xψ =

= 1
Vβ

∫︂
Vβ

[︂
−∂xb·⟨vβ⟩β −∂x⟨vβ⟩β ·b−∂xξ+B ·∂2

x⟨vβ⟩β +2∂xBT (∂x⟨vβ⟩β)T +⟨vβ⟩β ·∂2
xB+∂2

xψ
]︂
(A.51)

This equation can be rearranged as

∂2
xψ − ∂xξ = 1

Vβ

∫︂
Vβ

[︂
∂2
xψ − ∂xξ

]︂
+ ∂x⟨vβ⟩β · b+ (∂xb− ∂2

xB) · ⟨vβ⟩β − 2∂xBT (∂x⟨vβ⟩β)T +

−B · ∂2
x⟨vβ⟩β − 1

Vβ

∫︂
Vβ

[︂
(∂xb− ∂2

xB) · ⟨vβ⟩β
]︂

+ 1
Vβ

∫︂
Vβ

[︂
2∂xBT (∂x⟨vβ⟩β)T − ∂x⟨vβ⟩β · b+B · ∂2

x⟨vβ⟩β
]︂

(A.52)

where different terms neglect and the equation can be further simplified by considering the closure

problem of the mapping functions B and b Eq. (A.44). Finally, the boundary value problem for ψ and

ξ writes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x ·ψ = −BT · ∂x⟨vβ⟩β

∂2
xψ − ∂xξ = 1

Vβ

∫︁
Vβ

[︂
∂2
xψ − ∂xξ

]︂
+ ∂x⟨vβ⟩β · b− 2(∂x⟨vβ⟩β)T

[︂
∂xB

T − ⟨∂xBT ⟩β
]︂

−B · ∂2
x⟨vβ⟩β

BC1 ψ = 0 at Sβσ

BC2 ψ = 0 at ∂Vβ

⟨ξ⟩β = ⟨ψ⟩β = 0
(A.53)

A magnitude analysis (see Section A.4) shows that the terms ψ and ξ are negligible compared to the

mapping terms. Thus, the velocity and pressure perturbations can be expressed as

ṽβ = B · ⟨vβ⟩β (A.54)
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p̃β = µβb · ⟨vβ⟩β (A.55)

The permeability tensor is derived from the boundary values problem of B and b, Eq. (A.44). For such

purpose, the velocity and pressure perturbation terms are substitutes inside the averaged momentum

equation, Eq. (A.35), leading to

ρβ∂t⟨vβ⟩β = −∂x⟨pβ⟩β + ρβg − 1
Vβ

∫︂
Sβσ

(µβb · ⟨vβ⟩β)nβσdS + µβ

Vβ

∫︂
Sβσ

nβσ · ∂x(B · ⟨vβ⟩β)dS (A.56)

The two integral terms are developed by considering an uniform averaged velocity field. The first

integral term becomes

1
Vβ

∫︂
Sβσ

nβσb · ⟨vβ⟩βdS =
[︂ 1
Vβ

∫︂
Sβσ

bnβσdS
]︂

· ⟨vβ⟩β = 0 (A.57)

The second integral term develops

1
Vβ

∫︂
Sβσ

nβσ · ∂x(B · ⟨vβ⟩β)dS = 1
Vβ

∫︂
Sβσ

[︂
nβσ · ∂xB · ⟨vβ⟩β +˂˂˂˂˂˂˂˂˂

nβσ ·B · ∂x⟨vβ⟩β
]︂
dS =

=
[︂ 1
Vβ

∫︂
Sβσ

nβσ · ∂xBdS
]︂

· ⟨vβ⟩β (A.58)

Eq. (A.56) is rearranged as follows

ρβ∂t⟨vβ⟩β = −∂x⟨pβ⟩β + ρβg +
[︂µβ

Vβ

∫︂
Sβσ

nβσ · (∂xB − Ib)dS
]︂

· ⟨vβ⟩β (A.59)

The integral term can be defined as

C = − 1
Vβ

∫︂
Sβσ

nβσ · (∂xB − Ib)dS (A.60)

The averaged momentum equation becomes

ρβ∂t⟨vβ⟩β = −∂x⟨pβ⟩β + ρβg − µβC · ⟨vβ⟩β (A.61)

and can be rearranged as

ρβ

ϵβµβ
K∂t⟨vβ⟩ + ⟨vβ⟩ = −

K

µβ
·
[︂
∂x⟨pβ⟩β − ρβg

]︂
(A.62)

where K = ϵβC
−1. By considering a steady-state flow, Darcy’s law is achieved

⟨vβ⟩ = −
K

µβ
·
[︂
∂x⟨pβ⟩β − ρβg

]︂
(A.63)
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A.2.2 Periodic Domain

The values of the mapping variables are obtained by solving the closure problem of Eq. (A.44).

Once known, the permeability tensor can be deduced from Eq. (A.60). Thus, theoretically the problem

is solved, but in practice there is still the issue arising from the boundary condition BC2: the mapping

variable B is set to be equal to a certain function G representing the perturbation velocity at the

inlet and outlet of the domain. This function is not known, so the problem can not be solved. The

only way to proceed is by making the further assumption of periodic domain. The boundary problem,

Eq. (A.44), becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x ·B = 0

−∂xb+ ∂2
xB = 1

Vβ

∫︁
Vβ

[︁
− ∂xb+ ∂2

xB
]︁
dV

BC1 B = −I at Sβσ

BC2 B(r + li) = B(r) b(r + li) = b(r) i = 1, 2, 3 at ∂Vβ

⟨B⟩β = ⟨b⟩β = 0

(A.64)

The integral term on the second-hand side of the momentum equation is developed as∫︂
Vβ

[︁
− ∂xb+ ∂2

xB
]︁
dV =

∫︂
Vβ

∂x ·
[︁

− bI + ∂xB
]︁
dV =

∫︂
Sσβ

[︁
− bI + ∂xB

]︁
· nσβdS = VβϵβK

−1 (A.65)

The following transformation is introduced

d = ϵ−1
β b ·K , D = ϵ−1

β (B + I) ·K (A.66)

As highlighted in Eq. (A.60), the permeability tensor derives from an averaging operation within the

volume. It is therefore a uniform averaged quantity representing the volume of interest. Its gradient

within the volume is equal to zero. With this in mind, the following relationships can be stated

∂x ·D = 0 (A.67)

∂xd = ϵ−1∂xb ·K (A.68)

B = ϵD ·K−1 (A.69)

∂2
xB = ϵ∂2

xD ·K−1 (A.70)
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The periodic closure problem Eq. (A.64) is further developed as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x ·D = 0

−∂xd+ ∂2
xD + I = 0

BC1 D = 0 at Sβσ

BC2 D(r + li) = D(r) d(r + li) = d(r) i = 1, 2, 3 at ∂Vβ

⟨D⟩β = ϵ−1
β K

(A.71)

The solution of this system can be carried out with any numerical code capable of solving the Stokes

equations.

A.3 Energy Equation

From Eq. (A.10), the pore-scale energy equations and the respective boundary conditions are

extracted ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ρcp)β∂tTβ + (ρcp)βvβ · ∂xTβ = ∂x · (kβ∂xTβ) in Vβ

(ρcp)σ∂tTσ = ∂x · (kσ∂xTσ) in Vσ

BC1 : Tβ = Tσ at Sβσ

BC2 : nβσ · kβ∂xTβ = nβσ · kσ∂xTσ at Sβσ

(A.72)

In the following development, only the equation for the β phase is showed. The same conclusions apply

to the σ phase.

The procedure starts with the averaging of the equation⟨︂
(ρcp)β∂tTβ

⟩︂
+

⟨︂
(ρcp)βvβ · ∂xTβ

⟩︂
=

⟨︂
∂x · (kβ∂xTβ)

⟩︂
(A.73)

Each term is now developed. The averaging theorem related to time derivative, Eq. (A.6), is applied

to the transient term ⟨︂
(ρcp)β∂tTβ

⟩︂
= (ρcp)β∂t⟨Tβ⟩ = ϵβ(ρcp)β∂t⟨Tβ⟩β (A.74)

The second term of the averaged energy equation, Eq. (A.73), is now considered⟨︂
(ρcp)βvβ · ∂xTβ

⟩︂
= (ρcp)β

⟨︂
vβ · ∂xTβ

⟩︂
(A.75)

The scalar product between the velocity and the temperature gradient is rewritten by considering the

properties of the divergence operator

vβ · ∂xTβ = ∂x · (Tβvβ) −�����
Tβ ∂x · vβ = ∂x · (Tβvβ) (A.76)
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where the incompressibility constraint (∂x · vβ = 0) is taken into account. The averaging theorem of

the divergence, Eq. (A.8), is applied to the term

(ρcp)β

⟨︂
vβ · ∂xTβ

⟩︂
= (ρcp)β

[︂
∂x · ⟨Tβvβ⟩ +

�����������1
V

∫︂
Sβσ

Tβvβ · nβσdS
]︂

(A.77)

where the last term is equal to zero since the flow is assumed to be in the continuum regime, thus

no-slip conditions apply at the boundaries. The Grays’ decomposition, Eq. (A.9), is applied to the

temperature field

∂x · ⟨Tβvβ⟩ = ∂x ·
[︁
⟨⟨Tβ⟩β⟨vβ⟩β⟩ + ⟨⟨Tβ⟩βvβ̃⟩ + ⟨Tβ̃⟨vβ⟩β⟩ + ⟨Tβ̃vβ̃⟩

]︁
(A.78)

From a magnitude analysis it follows that the deviation quantities scale down as 1/lβ, while the

averaged quantities scale down as 1/L. Due to the assumption of scales separation, the deviation

quantities are neglected. Moreover, the averaging quantities can be moved out of the averaging operator

∂x · ⟨Tβvβ⟩ = ∂x ·
[︁
⟨Tβ⟩β⟨vβ⟩β⟨1⟩ + ⟨Tβ⟩β⟨vβ̃⟩ + ⟨Tβ̃⟩⟨vβ⟩β + ⟨Tβ̃vβ̃⟩

]︁
(A.79)

where ⟨1⟩ is by definition: ⟨1⟩ = 1
V

∫︁
Vβ
dV = ϵβ. The average of the spatial deviation, under the scale

separation assumption, is set equal to zero ⟨ψβ̃⟩ = 0. In this way, the divergence term becomes

∂x · ⟨Tβvβ⟩ = ∂x ·
[︁
ϵβ⟨Tβ⟩β⟨vβ⟩β +⟨Tβ̃vβ̃⟩

]︁
= ϵβ

[︁
˂˂˂˂˂˂˂⟨Tβ⟩β∂x · ⟨vβ⟩β +⟨vβ⟩β ·∂x⟨Tβ⟩β]︁

+∂x · ⟨Tβ̃vβ̃⟩ (A.80)

where the properties of the divergence operator are used and the averaged incompressibility constraint

considered. The second term of Eq. (A.73) results as follows⟨︂
(ρcp)βvβ · ∂xTβ

⟩︂
= (ρcp)β

[︁
⟨vβ⟩ · ∂x⟨Tβ⟩β + ∂x · ⟨Tβ̃vβ̃⟩

]︁
(A.81)

The averaging theorem related to the divergence, Eq. (A.8), is applied to the divergence term of the

second hand-side of the equation

∂x · ⟨Tβ̃vβ̃⟩ =
⟨︁
∂x ·

(︂
Tβ̃vβ̃

)︂⟩︁
= ⟨vβ̃ · ∂xTβ̃⟩ (A.82)

since the velocity deviation and its divergence are equal to zero at the boundary.

The last term of the averaged energy equation, Eq. (A.73), is now considered. The averaging theorem

for the divergence, Eq. (A.8), is applied twice. The first time the equation reads⟨︂
∂x · (kβ∂xTβ)

⟩︂
= ∂x ·

(︂
kβ⟨∂xTβ⟩

)︂
+ 1
V

∫︂
Sβσ

kβ∂xTβ · nβσdS (A.83)

and the second time⟨︂
∂x · (kβ∂xTβ)

⟩︂
= ∂x ·

[︂
kβ

(︂
∂x⟨Tβ⟩ + 1

V

∫︂
Sβσ

TβnβσdS
)︂]︂

+ 1
V

∫︂
Sβσ

kβ∂xTβ · nβσdS (A.84)

The Grey’s decomposition, Eq. (A.9), is introduced for the temperature field. The gradient of the

temperature is equal to zero at the interface (BC1 of Eq. (A.72)) and the gradient of the averaged

temperature is equal to zero in the domain. The development of the term proceeds as follows⟨︂
∂x · (kβ∂xTβ)

⟩︂
= ∂x ·

[︂
kβ

(︂
ϵβ∂x⟨Tβ⟩β + 1

V

∫︂
Sβσ

Tβ̃nβσdS
)︂]︂

+ 1
V

∫︂
Sβσ

kβ∂xTβ̃ · nβσdS (A.85)
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All the terms of the averaged energy equation, Eq. (A.73), are completely developed and are now

replaced in the starting equation

ϵβ(ρcp)β∂t⟨Tβ⟩β + (ρcp)β ⟨vβ⟩ · ∂x⟨Tβ⟩β + (ρcp)β ⟨vβ̃ · ∂xTβ̃⟩ =

= ∂x ·
[︂
kβ

(︂
ϵβ∂x⟨Tβ⟩β + 1

V

∫︂
Sβσ

Tβ̃nβσdS
)︂]︂

+ 1
V

∫︂
Sβσ

kβ∂xTβ̃ · nβσdS (A.86)

A boundary value problem for the spatial deviation temperatures Tβ̃ must be developed to obtain a

closed form for the energy equation. For such purpose, Eq. (A.86) is divided by ϵβ and subtracted to

the pore-scale system of equations (Eq. (A.72)). Similar steps are done for the σ phase. The following

system is obtained⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ρcp)β∂tTβ̃ + (ρcp)βvβ̃ · ∂x⟨Tβ⟩β + (ρcp)βvβ · ∂xTβ̃ = ∂x · (kβ∂xTβ̃)+

−ϵ−1
β ∂x ·

(︂
kβ

1
V

∫︁
Sβσ

Tβ̃nβσdS
)︂

− ϵ−1
β kβ

1
V

∫︁
Sβσ

∂xTβ̃ · nβσdS

(ρcp)σ∂tTσ̃ = ∂x · (kσ∂xTσ̃) − ϵ−1
σ ∂x ·

(︂
kσ

1
V

∫︁
Sσβ

Tσ̃nσβdS
)︂

− ϵ−1
β kσ

1
V

∫︁
Sσβ

∂xTσ̃ · nσβdS

BC1 : Tβ̃ = Tσ̃ − (⟨Tβ̃⟩β − ⟨Tσ̃⟩σ) at Sβσ

BC2 : nβσ · kβ∂xTβ̃ + nβσ · kβ∂x⟨Tβ⟩β = nβσ · kσ∂xTσ̃ + nβσ · kσ∂x⟨Tσ⟩σ at Sβσ

(A.87)

A.3.1 Closure Variable

In order to close the problem, the deviation variables (Tβ̃, Tσ̃) must be determined in terms of

the independent ones (⟨Tβ⟩, ⟨Tσ⟩). The problem is linear, so it is possible to express a generic linear

dependence of the deviation variables as a function of the averaged ones. Moreover, both variables

depend on the averaged variables and their gradient. Furthermore, due to the scale separation assump-

tion, a quasi-steady relationships (the averaged fields are time-dependant, while the deviation fields

are stationary) can be introduced. Based on these observations, the following generic expressions can

be introduced

Tβ̃ = bββ · ∂x⟨Tβ⟩β + bβσ · ∂x⟨Tσ⟩σ − sβ(⟨Tβ⟩β − ⟨Tσ⟩σ) + ξβ0 (A.88)

Tσ̃ = bσβ · ∂x⟨Tβ⟩β + bσσ · ∂x⟨Tσ⟩σ + sσ(⟨Tσ⟩σ − ⟨Tβ⟩β) + ξσ (A.89)

where ξβ and ξσ are two arbitrary functions and bσσ, bββ , bσβ, and bβσ are the mapping variables.

Both the mapping variables and arbitrary functions must be closed in terms of a plausible set of

boundary value problems. Assuming the domain to be periodic and substituting the two expressions

of the deviation terms (without the arbitrary functions since, as discussed later, they can be neglected)

within Eq. (A.86), it is possible to obtain

ϵβ(ρcp)β∂t⟨Tβ⟩β + (ρcp)β ⟨vβ⟩ · ∂x⟨Tβ⟩β + (ρcp)β

⟨︂
vβ̃ · ∂x

[︁
bββ · ∂x⟨Tβ⟩β + bβσ · ∂x⟨Tσ⟩σ+
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−sβ(⟨Tβ⟩β − ⟨Tσ⟩σ)
]︁⟩︂

= ∂x ·
[︂
kβ

(︂
ϵβ∂x⟨Tβ⟩β + 1

V

∫︂
Sβσ

[︁
bββ · ∂x⟨Tβ⟩β + bβσ · ∂x⟨Tσ⟩σ+

−sβ(⟨Tβ⟩β − ⟨Tσ⟩σ)
]︁
nβσdS

)︂]︂
+ 1
V

∫︂
Sβσ

kβ∂x
[︁
bββ · ∂x⟨Tβ⟩β + bβσ · ∂x⟨Tσ⟩σ+

−sβ(⟨Tβ⟩β − ⟨Tσ⟩σ)
]︁

· nβσdS (A.90)

This equation can be reorganised and written in a more compact form as follows

ϵβ(ρcp)β∂t⟨Tβ⟩β + (ρcp)β ⟨vβ⟩ · ∂x⟨Tβ⟩β − vββ · ∂x⟨Tβ⟩β − vβσ · ∂x⟨Tσ⟩σ =

= ∂x · (K
ββ

· ∂x⟨Tβ⟩β +K
βσ

· ∂x⟨Tσ⟩σ) − avh(⟨Tβ⟩β − ⟨Tσ⟩σ) (A.91)

Analogously, for the σ phase

ϵσ(ρcp)σ∂t⟨Tσ⟩σ − vσβ · ∂x⟨Tβ⟩β − vσσ · ∂x⟨Tσ⟩σ =

= ∂x · (K
σβ

· ∂x⟨Tβ⟩β −K
σσ

· ∂x⟨Tσ⟩σ) − avh(⟨Tσ⟩σ − ⟨Tβ⟩β) (A.92)

Where the transport coefficients vβσ, vββ , vσβ, and vσσ, the conductivity tensors K
ββ
, K

βσ
, K

σβ
,

and K
σσ
, and the heat transfer coefficient h, are determined by the mapping variables

K
ββ

= kβ(ϵβI + ⟨nβσbββδβσ⟩) − (ρcp)β⟨ṽβbββ⟩ (A.93)

K
βσ

= kβ⟨nβσbβσδβσ⟩ − (ρcp)β⟨ṽβbβσ⟩ (A.94)

K
σβ

= kσ⟨nσβbσβδβσ⟩ (A.95)

K
σσ

= kσ(ϵσI + ⟨nσβbσσδβσ⟩) (A.96)

vββ = cββ − kβ⟨nβσsβδβσ⟩ + (ρcp)β⟨ṽβsβ⟩ (A.97)

vβσ = cβσ + kβ⟨nβσsβδβσ⟩ − (ρcp)β⟨ṽβsβ⟩ (A.98)

vσβ = cσβ − kσ⟨nσβsσδβσ⟩ (A.99)

vσσ = cσσ − kσ⟨nσβsσδβσ⟩ (A.100)

hβ = hσ = ⟨nβσ · kβ∂xsβδβσ⟩ = avh (A.101)
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where:

cββ = ⟨nβσ · kβ∂xbββδβσ⟩ (A.102)

cσβ = ⟨nσβ · kσ∂xbσβδβσ⟩ (A.103)

cβσ = ⟨nβσ · kβ∂xbβσδβσ⟩ (A.104)

cσσ = ⟨nσβ · kσ∂xbσσδβσ⟩ (A.105)

The mapping variables require the definition of some closure problems. Thanks to the arbitrary func-

tions, the closure problems for the mapping variables can be specified in any way. The classic way is

by defining the same boundary value problems as for the variation terms (Eq. (A.87)). For bββ and

bσβ the closure problem is defined as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ρcp)βṽβ + (ρcp)βvβ · ∂xbββ = kβ∂
2
xbββ − ϵ−1

β cββ , in Vβ

B.C.1 nβσ · kβ∂xbββ + nβσkβ = nβσ · kσ∂xbσβ , at Sβσ

B.C.2 bββ = bσβ , at Sβσ

0 = kσ∂
2
xbσβ − ϵ−1

σ cσβ , in Vσ

bββ(r + li) = bββ(r)
bσβ(r + li) = bσβ(r) , i = 1, 2, 3
⟨bββ⟩ = 0 , ⟨bσβ⟩ = 0
cββ = ⟨nβσ · kβ∂xbββδβσ⟩
cσβ = ⟨nβσ · kσ∂xbσβδβσ⟩ = −cββ

(A.106)

where δ is the Dirac distribution associated with the interface Sβδ. For bβσ and bσσ the closure problem

reads ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ρcp)βvβ · ∂xbβσ = kβ∂
2
xbβσ − ϵ−1

β cβσ , in Vβ

B.C.1 nβσ · kβ∂xbβσ = nβσ · kσ∂xbσσ + nβσkσ , at Sβσ

B.C.2 bβσ = bσσ , at Sβσ

0 = kσ∂
2
xbσσ − ϵ−1

σ cσσ , in Vσ

bβσ(r + li) = bβσ(r)
bσσ(r + li) = bσσ(r) , i = 1, 2, 3
⟨bβσ⟩ = 0 , ⟨bσσ⟩ = 0
cβσ = ⟨nβσ · kβ∂xbβσδβσ⟩
cσσ = ⟨nσβ · kσ∂xbσσδβσ⟩ = −cβσ

(A.107)
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The closure problem for the two scalar fields sβ and sσ is as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ρcp)βvβ · ∂xsβ = kβ∂
2
xsβ − ϵ−1

β hβ , in Vβ

B.C.1 nβσ · kβ∂xsβ = nβσ · kσ∂xsβ , at Sβσ

B.C.2 sβ = 1 + sσ , at Sβσ

0 = kσ∂
2
xsβ + ϵ−1

σ hσ , in Vσ

sβ(r + li) = sβ(r) , sσ(r + li) = sσ(r) , i = 1, 2, 3
⟨sβ⟩ = 0 , ⟨sσ⟩ = 0

(A.108)

The two arbitrary functions ξβ and ξσ have to be defined. The two equations for the spatial deviation

temperatures (Eqs. (A.88) and (A.89)) are substituted into the boundary value problem for the spatial

deviation temperature T̃ β (Eq. (A.87)). The following closure is defined⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
kβ∂

2
xξβ = ϵ−1

β ⟨nβσkβ · ∂xξβδβσ⟩ + Φβ

B.C.1 nβσ · kβ∂xξβ = nβσ · kσξσ + Ωβσ , at Sβσ

B.C.2 ξβ = ξσ , at Sβσ

kσ∂
2
xξσ = ϵ−1

σ ⟨nσβkβ · ∂xξσδβσ⟩ + Φσ

(A.109)

where Φβ, Φσ, and Ωβσ are three functions that depend on the mapping variables, geometry, thermal

properties, and temperature fields. However, it is possible to show [15] that the contribution of the two

arbitrary functions to the temperature deviation fields is negligible with respect to the contribution

of the mapping variables. Hence, ξβ and ξσ can be neglected in the equations.

It should be remarked that the quasi-steady assumption for the deviation terms holds as long as the

time dependent mechanisms are not important. Otherwise, additional source terms in the temperature

deviation equations must be included. This two-equations model is fully compatible with the one-

equation model, in which: ⟨Tσ⟩σ = ⟨Tβ⟩β = ⟨T ⟩ and K
eff

= K
ββ

+K
βσ

+K
σβ

+K
σσ
.

All the mapping variables must be determined before solving the macroscopic equations. However,

this implies solving the three closure problems involving the integrals of the solution as source terms.

Although this is not a problem when solving the closure problems on one-dimensional unit cells, a

special procedure can be adapted to avoid such integro-differential equations in the general case. A

change of variables is required. For the first closure problem, the following variables are introduced

bββ = b0
Iβ +B

Iβ
cσβ ; bσβ = b0

Iσ +B
Iσ
cσβ (A.110)

b0
Iβ and b0

Iσ satisfy the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ρcp)βṽβ + (ρcp)βvβ · ∂xb0
Iβ = kβ∂

2
xb

0
Iβ , in Vβ

B.C.1 nβσ · kβ∂xb
0
Iβ + nβσkβ = nβσ · kσ∂xb

0
Iβ , at Sβσ

B.C.2 b0
Iβ = b0

Iσ , at Sβσ

0 = kσ∂
2
xb

0
Iσ , in Vσ

b0
Iβ(r + li) = b0

Iβ(r) , b0
Iσ(r + li) = b0

Iσ(r) , i = 1, 2, 3
⟨b0

Iβ⟩ + ⟨b0
Iσ⟩ = 0

(A.111)
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B
Iβ

and B
Iσ

satisfy the following problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ρcp)βvβ · ∂xBIβ
= kβ∂

2
xBIβ

+ ϵ−1
β , in Vβ

B.C.1 nβσ · kβ∂xBIβ
= nβσ · kσ∂xBIσ

, at Sβσ

B.C.2 B
Iβ

= B
Iσ
, at Sβσ

0 = kσ∂
2
xBIσ

− ϵ−1
σ , in Vσ

B
Iβ

(r + li) = B
Iβ

(r) , B
Iσ

(r + li) = B
Iσ

(r) , i = 1, 2, 3
⟨B

Iβ
⟩ + ⟨B

Iσ
⟩ = 0

(A.112)

And:

cσβ = −
⟨b0

Iβ⟩β

⟨B
Iβ

⟩β
(A.113)

The mapping variables can thus be evaluated without solving integro-differential equations. Similar

variables are introduced for the second closure problem

bβσ = b0
IIβ +B

IIβ
cβσ ; bσσ = b0

IIσ +B
IIσ
cβσ (A.114)

b0
IIβ and b0

IIσ satisfy the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ρcp)βvβ · ∂xb0
IIβ = kβ∂

2
xb

0
IIβ , in Vβ

B.C.1 nβσ · kβ∂xb
0
IIβ = nβσ · kσ∂xb

0
IIβ + nβσkσ , at Sβσ

B.C.2 b0
IIβ = b0

IIσ , at Sβσ

0 = kσ∂
2
xb

0
IIσ , in Vσ

b0
IIβ(r + li) = b0

IIβ(r) , b0
IIσ(r + li) = b0

IIσ(r) , i = 1, 2, 3
⟨b0

IIβ⟩ + ⟨b0
IIσ⟩ = 0

B
IIβ

and B
IIσ

satisfy the following problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ρcp)βvβ · ∂xBIIβ
= kβ∂

2
xBIIβ

+ ϵ−1
β , in Vβ

B.C.1 nβσ · kβ∂xBIIβ
= nβσ · kσ∂xBIIσ

, at Sβσ

B.C.2 B
IIβ

= B
IIσ

, at Sβσ

0 = kσ∂
2
xBIIσ

− ϵ−1
σ , in Vσ

B
IIβ

(r + li) = B
IIβ

(r) , B
IIσ

(r + li) = B
IIσ

(r) , i = 1, 2, 3
⟨B

IIβ
⟩ + ⟨B

IIσ
⟩ = 0

(A.115)

and

cβσ = −
⟨b0

IIβ⟩β

⟨B
IIβ

⟩β
(A.116)

For the third problem, the following variables are introduced

sβ = avhs
0
β ; sσ = −1 + avhs

0
σ (A.117)
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sβ and sσ are associated with the following problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ρcp)βvβ · ∂xs0
β = kβ∂

2
xs

0
β , in Vβ

B.C.1 nβσ · kβ∂xs
0
β = nβσ · kσ∂xs

0
β , at Sβσ

B.C.2 s0
β = s0

σ , at Sβσ

0 = kσ∂
2
xs

0
β + ϵ−1

σ , in Vσ

s0
β(r + li) = s0

β(r) , s0
σ(r + li) = s0

σ(r) , i = 1, 2, 3
⟨s0

β⟩β = 0

(A.118)

where the volumetric exchange coefficient is given by

hv = avh = 1
⟨s0

σ⟩β
(A.119)

A.4 Remarks: Magnitude Analysis for the Derivation of the Momentum

Averaged Equation

The assumption of scale separation has been used several times in the derivation of the averaged

equations to simplify certain terms. More details on this are given in this section.

The main concept to consider is that it is possible to associate the length scale of the averaged quanti-

ties, ϵβ, ⟨pβ⟩β, and ⟨vβ⟩β, to the macroscopic length scale L (see Fig. A.2); while the non-averaged and

the deviation quantities, p̃β and ṽβ have to be associated to the phase scale lβ (or lσ) (see Fig. A.2).

In this way, a magnitude analysis can be performed. The analysis is here performed in a qualitative

way. A more detailed analysis can be found in the literature [15,194].

The magnitude analysis is introduced four times in the derivation of the averaged momentum equa-

tion. Each case is now explained.

1) Each time an averaged quantity is moved out from the averaging operator. This operation is

performed several times during the development. A generic case is the following

1
V

∫︂
Sβσ

⟨pβ⟩βnβσdS = ⟨pβ⟩β 1
V

∫︂
Sβσ

nβσdS

The integral term considers the average pressure field at each point of the interface area between the

two phases. In other words, a REV is centered on each point on the interface to measure the average

pressure field. The REV is characterized by a lenght scale L, so the averaged pressure scales down

with L. The interface area is characterized by a scale length l. Thus, conceptually, several points at

a scale length l are considered to measure a field that scales down with L. The averaged pressure is

therefore uniform, provided the assumption of scale separation holds.
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2) Eq. (A.34) reads

−∂x⟨pβ⟩β + ρβg + µβ

[︂
∂2
x⟨vβ⟩β + 1

ϵβ
⟨vβ⟩β∂2

xϵβ − 1
ϵβ
∂xϵβ · ∂x⟨vβ⟩β

]︂
− 1
Vβ

∫︂
Sβσ

p̃βnβσdS+

+µβ

Vβ

∫︂
Sβσ

∂xṽβ · nβσdS = 0

Four viscous terms characterize this equation. From a magnitude analysis, it can be showed that three

of them are negligible in relation to the fourth. The terms enclosed in the square brackets scale down

by the same quantity

µβ∂
2
x⟨vβ⟩β = O

(︂
µβ⟨vβ⟩β/L2

)︂
1
ϵβ
µβ⟨vβ⟩β∂2

xϵβ = O
(︂
µβ⟨vβ⟩β/L2

)︂
1
ϵβ
µβ∂xϵβ · ∂x⟨vβ⟩β = O

(︂
µβ⟨vβ⟩β/L2

)︂
The fourth viscous term scale down by a different quantity

µβ

Vβ

∫︂
Sβσ

∂xṽβ · nβσdS = O
(︂Sβσ

Vβ
µβ⟨ṽβ⟩β/lβ

)︂
= O

(︂
µβ⟨ṽβ⟩β/(lβ ∗ lr)

)︂
Based on the assumption of scale separation, Eq. (A.1), the ratio of the two scaling quantities leads

to (︂
µβ⟨vβ⟩β/L2

)︂
(︂
µβ⟨ṽβ⟩β/(lβ ∗ lr)

)︂ ≈

(︂
lβ ∗ lr

)︂
(︂
L2

)︂ ≈ 0

As a consequence of this, the three viscous terms in the square brackets in Eq. (A.34) are neglected

3) The second equation of Eq. (A.36) reads

∂x · ṽβ = −∂x · ⟨vβ⟩β

The magnitude analysis of the two terms leads to

∂x · ṽβ = O
(︂
⟨ṽβ⟩β/lβ

)︂

∂x · ⟨vβ⟩β = O
(︂
⟨vβ⟩β/L

)︂
Under the assumption of scale separation, the source term becomes negligible in the continuity equa-

tion for ṽβ.
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4) The boundary value problem of the arbitrary functions ψ and ξ, Eq. (A.53), reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x ·ψ = −BT · ∂x⟨vβ⟩β

∂2
xψ − ∂xξ = 1

Vβ

∫︁
Vβ

[︂
∂2
xψ − ∂xξ

]︂
+ ∂x⟨vβ⟩β · b− 2(∂x⟨vβ⟩β)T

[︂
∂xB

T − ⟨∂xBT ⟩β
]︂

−B · ∂2
x⟨vβ⟩β

BC1 ψ = 0 at Sβσ

BC2 ψ = 0 at ∂Vβ

⟨ξ⟩β = ⟨ψ⟩β = 0
(A.120)

Their magnitude can be estimated as follows

O
(︂ψ
lβ

)︂
= O

(︂B · ⟨vβ⟩β

L

)︂
⇒ O

(︂
ψ

)︂
= O

(︂
B · ⟨vβ⟩β lβ

L

)︂

O
(︂ψ
l2β
,
ξ

lβ

)︂
= O

(︂B · ⟨vβ⟩β

lβL
,
b · ⟨vβ⟩β

L
,
B · ⟨vβ⟩β

L2

)︂
⇒

⇒ O
(︂
ψ

)︂
= O

(︂
B · ⟨vβ⟩β lβ

L
, b · ⟨vβ⟩β

l2β
L
,B · ⟨vβ⟩β

l2β
L2

)︂
;

⇒ O
(︂
ξ
)︂

= O
(︂
B · ⟨vβ⟩β 1

L
, b · ⟨vβ⟩β lβ

L
,B · ⟨vβ⟩β lβ

L2

)︂
These arbitrary functions are introduced to generalize the mapping of the deviation fields ṽβ and p̃β

(Eq. (A.42) and Eq. (A.43)), defined as

ṽβ = B · ⟨vβ⟩β +ψ

p̃β = µβb · ⟨vβ⟩β + µβξ

A magnitude analysis of these equations results in

ṽβ = O
(︂B · ⟨vβ⟩β

lβ

)︂
+O

(︂
ψ

)︂

p̃β = O
(︂µβb · ⟨vβ⟩β

lβ

)︂
+O

(︂
µβξ

)︂
For the velocity deviation, the first term scales down as 1/lβ and the second one scales down as lβ/L,

at its best. For the pressure deviation, the first term scales down as 1/lβ and the second term scales

down as 1/L, at its best. The contribution of the arbitrary functions to the deviation terms can be

neglected, provided the scale separation assumption holds.
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Hermes SCANDELLI

Multiscale modeling of reactive porous materials interacting with

high-temperature flows in support of the biomass, space, and fire

communities

Résumé: De nombreuses technologies en développement reposent sur des matériaux poreux : échangeurs de chaleur pour

les concentrateurs solaires, processus de production de biocarburants, stockage d’énergie de nouvelle génération comme les

piles à combustible et les supercondensateurs, boucliers thermiques des véhicules spatiaux, etc. Les ingénieurs chimistes et les

chercheurs à l’avant-garde de leur propre domaine et à la pointe de l’innovation du 21e siècle bénéficieraient grandement de

développements fondamentaux en matière de transfert de chaleur et de masse pour renforcer les modèles phénoménologiques

spécifiques aux applications. L’objectif de ce projet de thèse est de contribuer au développement d’un cadre théorique et

numérique générique pour évaluer et modéliser les échanges de masse, de quantité de mouvement, et de chaleur entre une

structure solide élastique et réactive interagissant avec un environnement à haute température. Les principales applications

ciblées sont la conversion thermique de la biomasse en biocarburant, la prédiction du comportement du feu dans un

environnement fermé, et la conception de boucliers thermiques pour les véhicules d’entrée. L’étude se compose de deux

parties interdépendantes reposant sur une approche multi-échelle: (1) des simulations numériques sont effectuées à l’échelle

macroscopique pour aborder les applications ciblées où la description du matériau est couplée à l’environnement externe; (2)

des simulations numériques directes sont effectuées à l’échelle microscopique sur des images numérisées afin de définir des

stratégies numériques pour l’évaluation des propriétés effectives.

Les contributions théorique et les fonctionnalités numériques développées au cours de la thèse ont été intégrées dans le logiciel

Porous material Analysis Toolbox based on OpenFoam (PATO) distribué sous licence open source NASA.

Mots clés: Matériaux poreux, Simulation CFD, Propriétés macroscopiques, Conversion de biomasse, Bouclier ther-

mique, Sécurité incendie.

Abstract: Numerous technologies in development rely on porous materials: heat exchangers for solar concentrators, biofuel

production processes, new generation energy storage as fuel cells and supercapacitors, space vehicle heat shields, etc. Chemical

engineers and researchers at the forefront of their own fields and leading 21st century innovation would greatly benefit from

fundamental developments in heat and mass transfer to reinforce application-specific phenomenological models. The objective

of this PhD project is to contribute to the development of a generic theoretical and numerical framework to assess and model

mass, momentum, and heat exchanges between an elastic and reactive solid structure interacting with a high temperature

environment. The primary applications targeted are the thermal conversion of biomass into biofuel, the prediction of fire

behavior in a closed environment, and the design of heat shield for atmospheric entry vehicles. The study consists of two

interrelated parts relying on a multi-scale approach: (1) numerical simulations are performed on a macroscopic scale to address

the targetted applications where the material description is coupled with the external environment; (2) direct numerical

simulations are carried out at the microscopic scale on digitalized images to define numerical strategies for the evaluation of

the effective properties.

The theoretical and numerical contributions of the PhD have been implemented in the Porous material Analysis Toolbox

based on OpenFoam (PATO) released open source by NASA.

Keywords: Porous media, CFD simulation, Macroscopic properties, Biomass conversion, Heat shield, Fire safety.
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