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Abstract

The computational costs of injection molding simulations have been increasing in the past years
due to the higher complexity of the embedded models. This is especially problematic in case of using
such simulation models for optimization routines or sensitivity analyses. One way to overcome this
challenge is by having a surrogate model, also known as a metamodel, of these high-fidelity simula-
tions, which provides a cheaper way to perform these types of analyses. These surrogate models can
play an important role in the case of the injection molding of semi-crystalline polymers to model the
flow-induced crystallization process. To date, most commercial software do not explicitly take polymer
crystallization into account leading to various errors in the fill predictions as well as the calculation of
warpage and shrinkage. This is mainly due to the common complexity of the models used to describe
crystallization and the challenging respective model parameter identification process under injection
molding conditions. To close this gap, in this thesis, the feasibility of using surrogate modeling to
identify modeling parameters is first studied. This is then followed by the implementation of a thermo-
mechanical crystallization model in order to describe the flow-induced and quiescent crystallization of
an unreinforced semi-crystalline thermoplastic material during injection molding. The crystallization
model is defined alongside crystallization-dependent viscosity, PVT and solidification models in the
commercial software Autodesk R⃝ Moldflow R⃝ Insight 2021 using the Solver API feature. The model
parameters are identified using a calibration scheme that employs three surrogate models representing
the simulated pressure results to perform a multi-objective optimization. The fill predictions as well
as the calculated pressure fields are presented using the calibrated model parameters in comparison
to those measured during the actual injection molding of a polyoxymethylene part with different pro-
cess conditions. The results show major improvements in the predictions of the pressure signals as
well as the filling status of the produced parts and the estimated skin layer thicknesses formed under
high-shear conditions. Additionally, the calibrated models are tested using various mold geometries
to assess the calibrated models’ performance.

Keywords: surrogate modeling, injection molding, crystallization, simulation, thermoplastic, model

parameter, metamodel.
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Résumé

Les coûts de calcul des simulations du procédé de moulage par injection ont augmenté au cours
des dernières années en raison de la complexité accrue des modèles intégrés. Ceci est particulière-
ment problématique pour des calculs d’optimisation de pièces ou pour les analyses de sensibilité de
paramètres. Une façon de surmonter ce problème est d’implémenter des métamodèles pour réaliser
ces simulations haute-fidélités. Ces métamodèles peuvent jouer un rôle important dans le cas du
moulage par injection de polymères semi-cristallins pour modéliser le processus de cristallisation in-
duit par l’écoulement. À ce jour, la plupart des logiciels commerciaux ne prennent pas explicitement
en compte la cristallisation des polymères, ce qui conduit à diverses erreurs dans les prédictions de
remplissage, d’évolution des champs de contraintes et dans les prédictions dimensionnelles. La faisabil-
ité de l’utilisation des métamodèles pour identifier les paramètres d’un modèle physique est d’abord
présentée. Il s’en suit la mise en œuvre d’un modèle de cristallisation thermo-mécanique afin de décrire
la cristallisation induite par l’écoulement d’un matériau thermoplastique semi-cristallin non renforcé
pendant le procédé de moulage par injection. Le modèle de cristallisation est couplé aux modèles de
viscosité et PVT dans le logiciel commercial Autodesk R⃝ Moldflow R⃝ Insight 2021 en utilisant la fonc-
tion Solver API. Les paramètres du modèle sont identifiés à l’aide d’un schéma de recalage qui utilise
trois différents métamodèles représentant les résultats de pression simulés pour effectuer une optimisa-
tion multi-objectifs. Les prédictions de remplissage ainsi que les pressions calculées sont présentées en
utilisant les paramètres du modèle calibré en comparaison avec celles mesurées pendant le moulage par
injection réel d’une pièce en polyoxyméthylène avec différentes conditions de processus. Les résultats
montrent des améliorations majeures dans les prédictions des signaux de pression ainsi que dans l’état
de remplissage des pièces produites et les épaisseurs estimées de la couche de peau formée dans des
conditions de cisaillement élevé. Les modèles recalés sont testés en utilisant différentes géométries de
moules pour évaluer leurs performances.

Mots-clés : modélisation de substitution, moulage par injection, cristallisation, simulation, ther-

moplastique, paramètre de modèle, métamodèle.
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Introduction

Injection molding is one of the main polymer processing techniques with which more than one-

third of thermoplastic materials are produced [1]. The injection molding process is cyclic and ideal

for the mass-production of complex geometries with tight tolerances [2]. In the case of part defects

during production, a change in process conditions may not be sufficient and mold modifications must

be applied to solve the problem [3]. However, this is expensive and time-consuming. Thus, it is

important to be able to foresee such issues in the design phase of the part using simulation techniques.

Therefore, to minimize such costs while guaranteeing a superior product quality, injection molding

simulation is widely used to efficiently design molds and provide a tool to determine optimal process

settings that overcome commonly observed defects such as warpage, shrinkage and short shots.

However, over the last years, the growing interest in highly accurate simulations resulted in the

increase of the complexity of the embedded models and in turn to higher computational costs. This

problem is specifically underlined when using such simulation models for optimization, sensitivity

analyses or uncertainty quantification. Surrogate modeling offers a way to overcome the limitation

of these high-fidelity simulations and to perform such analyses in a more cost- and time-efficient

way. These models are usually generated using a relatively low number of simulations obtained by

varying a specific number of input parameters and are then able to approximate the output of interest

in a matter of seconds instead of minutes or hours using the high-fidelity simulation. An example

application is presented in Figure 1 where a surrogate model is used to calibrate simulation model

parameters by performing an efficient optimization routine. In the presented case, the surrogate model

represents one output result learned from running multiple high-fidelity simulation runs and is then

used independently to obtain the optimal input parameters that best fit the experimental results.

Currently, in the field of injection molding simulation, the use of surrogate modeling in the literature

is mainly limited to the optimization of process parameters such as the mold and melt temperatures
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Figure 1 – Model parameter optimization scheme using a surrogate model [4].

[5, 6], packing and cooling times [7, 8], packing pressure [9, 10]... One recent publication by Ivan et

al. [11] stands out in which the authors use a surrogate model to identify two model parameters

that describe the fiber orientation. A similar approach could be utilized to calibrate other types of

complex material models such as a crystallization model. Due to the complexity of experimentally

identifying crystallization parameters under injection molding conditions, many commercial software

do not take it into account even when dealing with the injection of semi-crystalline materials. This

leads to inaccuracies in the fill predictions as well as in the estimation of warpage and shrinkage in

the simulation [3].

In the last decades, great efforts have been made in order to model polymer crystallization while

taking into account the flow history of the melt. A common approach utilized to describe flow-induced

crystallization, observed during injection molding, is based on the Avrami-Kolmogorov nucleation

and growth theory [12, 13] combined with Schneider’s rate equations [14]. Such method necessitates

the experimental determination of a high number of model parameters and solving of an intricate

and interdependent system of differential equations [15]. Whereas, Poitou et al. [16, 17] proposed a

thermo-mechanical approach describing both the flow-induced and quiescent crystallization with a

much smaller number of model parameters making it more attractive to use in simulation software.

The main aim of this thesis is the use of surrogate modeling in the model parameter calibration

of a crystallization model implemented in an injection molding simulation. In order to reach this

2



INTRODUCTION

goal, a feasibility study is first performed to assess the use of different surrogate modeling techniques

and design of experiments in calibrating modeling parameters in the injection molding simulation of

a polyoxymethylene thermoplastic part. This is followed by the implementation of a modified Poitou

et al.’s crystallization model along with crystallization-dependent viscosity, PVT and solidification

models in the commercial software Autodesk R⃝ Moldflow R⃝ Insight 2021 using the Solver API feature.

The models are implemented in 3D and calibrated using three surrogate models representing the

simulated pressure at different processing conditions. The ability of the calibrated models to predict

accurately the pressure, fill status and skin layer thickness is tested at different conditions using a base

mold geometry and three variations of it.
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1.1. INJECTION MOLDING PROCESS

1.1 Injection Molding Process

The injection molding process is one of the most widely used plastics manufacturing techniques in

the industry such as more than one-third of all thermoplastic materials are injection molded [1, 18].

It enables the high production volumes of complex plastic parts while having short cycle times [3]. A

cycle constitutes mainly of six phases [1, 3, 18]:

1. Mold closing: the mold is closed to obtain the cavity into which the molten material is injected.

2. Injection/Filling: the screw moves forward and forces the melt into the mold cavity.

3. Packing/Holding: the screw is held in its forward position after the mold is filled in order to

maintain a holding pressure that compensates for material shrinkage.

4. Cooling: the gate freezes and the cavity is isolated from the pressure applied by the melt, the

part cools down and solidifies until ejected.

5. Plastication and screw back: the screw rotates back while plasticating the feed for the next shot

which is now in a molten state in front of the screw.

6. Ejection: the mold opens when the part is sufficiently cooled and it is then ejected.

The total cycle time tcycle of an injection molding process is given by [1]:

tcycle = tclosing + tcooling + tejection (1.1)

where the closing time tclosing and ejection times tejection usually last less than a few seconds whereas

the cooling time tcooling dominates the process as the polymer melt is being cooled as soon as it enters

the cavity after the closing of the mold till it is ejected from it. Therefore, tcooling includes the cooling

taking place during the filling and packing phases as the mold is closed and surrounds the polymer

melt during these stages.

During the operation of an injection molding machine, plastic granules are fed through the hopper

shown in the simplified sketch in Figure 1.1. The fed material is then transported forward by the

rotating screw. The granules melt while being transported due to both the friction created by the

screw and the conduction from heating units along the barrel. The molten material is injected into

the mold by the screw typically with high flow rates and therefore high shear rates. The main heat

transfer mechanism during the filling stage is through convection of the melt in addition to some

viscous heating primarily in the runner system and the gates [3]. Heat is constantly removed by

6



1.2. INJECTION MOLDING SIMULATION

Figure 1.1 – Simple sketch of a reciprocating-screw injection molding machine, based on [18].

conduction through the mold wall to the cooling system. This leads to the formation of a frozen layer

or skin layer near the wall. During the packing stage, the flow rates are relatively low and conduction

becomes the main heat transfer mechanism leading to the increase of this frozen layer until the gate

freezes followed by the solidification of the part due to conduction until it is ejected from the mold.

1.2 Injection Molding Simulation

To ensure high product quality and minimize design/production costs, injection molding simulation

is broadly used in order to efficiently design molds and enable the identification of optimal process

settings that mitigate common defects such as warpage, shrinkage, weldline and short shots. The

simulation of the injection molding process constitutes using a numerical method with well-defined

material models to solve a set of conservation equations [3]. Many commercial and academic software

have been developed to tackle this problem which involves multiple heating mechanisms as described

in Section 1.1 in addition to a phase change and time-dependent boundary conditions at the frozen

layer during the various phases of the process. Taking into account all these complex physical phe-

nomena in the simulation is not straightforward and necessitates some simplifying assumptions and

approximations.

1.2.1 Main Approximations

These approximations are mainly needed due to the difficulties in determining some material

properties experimentally under similar conditions as the ones experienced during injection molding.
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1.2. INJECTION MOLDING SIMULATION

An overview of these assumptions is summarized in the following points with a focus on the injection

molding of an unfilled semi-crystalline thermoplastic in the commercial software Moldflow R⃝ during

the filling, packing and cooling analyses [3]:

• Heat sources: the latent heat generated during crystallization is ignored and no heat source term

is considered in the energy equation.

• Specific heat capacity: not coupled with crystallization and determined using differential scan-

ning calorimetry for much lower cooling rates than those present during processing.

• Thermal conductivity: defined as a function of temperature without taking into account any

pressure dependency.

• Solidification criterion: the use of a no-flow temperature (transition temperature) below which

the material exhibits a high viscosity and solidifies with no link between solidification and crys-

tallization.

• Pressure-Volume-Temperature (PVT) data: generated without taking into account the cooling

rate or the deformation history of the sample which affects the transition temperature.

1.2.2 Governing Equations

By taking into account the simplifications listed in Section 1.2.1, the governing equations used to

simulate the flow in the mold cavity are the three conservation equations. First, the conservation of

mass for a fluid is represented as:

∂ρ

∂t
+ ∇ · ρv = 0 (1.2)

where ρ is the polymer density, t is the time and v is the velocity vector. Second, the conservation of

momentum is given by:

ρ
∂v
∂t

+ ρv · ∇v = −∇P + ∇ · τ + ρg (1.3)

where P is the pressure, τ is the viscous stress tensor and g is the gravitational acceleration vector.

And, third, the conservation of energy is described by:

ρcp

(
∂T

∂t
+ v · ∇T

)
= ∇ · (k∇T ) + τ : ∇v + ζT

(
∂P

∂t
+ v · ∇P

)
(1.4)

where T is the temperature, k is the polymer thermal conductivity, cp is the specific heat capacity of

the melt and ζ = −1
ρ

∂ρ
∂T is the polymer expansion.
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1.3. POLYMER CRYSTALLIZATION

In the case of a 3D analysis, the above-presented equations are typically solved using the finite

element method (FEM) with the CAD of the injection molded part being meshed in tetrahedral or

hexahedral elements. For a more detailed overview of the injection molding process along with the

equations needed to define its simulation refer to Osswald and Menges [1] as well as Kennedy and

Zheng [3].

1.3 Polymer Crystallization

1.3.1 Semi-crystalline Thermoplastics

Thermoplastic polymers are divided into amorphous and semi-crystalline polymers. They can

mainly be distinguished by the molecular arrangement of their chains as the polymer melt cools down

into the solid state. For amorphous polymers, the molecules are randomly oriented and intertwined

after cooling. Whereas for semi-crystalline polymers, the molecular structures form ordered regions

called crystallites that are surrounded by amorphous regions [1,3]. The coexistence of the two phases

provides the polymer with a good balance of stiffness and toughness [19]. The properties of semi-

crystalline thermoplastics are thus dependent on the content and orientation of both the crystalline

and amorphous phases [3]. Semi-crystalline polymers are widely used in the plastic industry as both

commodity plastics (e.g. PE, PP) as well as technical and functional polymers (e.g. PEEK, PVDF,

POM) [19,20]. This is mainly due to their versatile nature; where changes in the processing conditions,

and thus the thermo-mechanical history, can lead to modifications in the final product’s properties

e.g. strength, hardness, permeability [21].

The schematic in Figure 1.2 presents the hierarchical arrangement in a semi-crystalline material

and the different crystal morphologies observed using polarized optical microscopy in injection molded

components. The randomly oriented polymer chain folds into crystal lamella which in turn stacks

together to form a lamellar stacking morphology leading to spherulites in the case of quiescent crys-

tallization under no-flow conditions. Whereas in the case of high shear flows, fully extended chains

result in extended chain crystals forming parallel to the flow direction along with lamellar crystals

forming perpendicular to the flow direction. This leads to the shish-kebab structures characteristic of

flow-induced crystallization (FIC) [22].

9



1.3. POLYMER CRYSTALLIZATION

Figure 1.2 – Scheme of the hierarchical structure of an injection molded part with a semi-crystalline
material, based on [1].

1.3.2 Crystallization from the Melt

There exist multiple types of crystallization such as crystallization from solution, crystallization

by stretching or crystallization from the melt. In this work, the main interest is studying polymer

crystallization during the injection molding process and therefore only the crystallization from the

melt is considered. This process involves two stages:

1. Nucleation: the formation of active nuclei in the liquid phase acting as starting points for the

appearance of crystals [3]. Two types of nucleation can be distinguished [23,24]:

• Homogeneous nucleation: caused by heat motion and starts within a few polymer chains

or segments (e.g. from the bulk polymer phase).

• Heterogeneous nucleation: appears on foreign substrates (e.g. nucleating agents, impurities,

fillers) or interfaces in multiphase systems.

2. Growth: the growth of the formed nuclei into semi-crystalline morphological structures. These

morphologies depend on the thermo-mechanical history experienced by the polymer melt leading

to the formation of two distinct nuclei having different growing mechanisms [3, 22]:

• Spherical nuclei: grow radially in space and form spherical structures known as spherulites,

typically seen under no-flow conditions (quiescent crystallization).

10
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• Thread-like nuclei: grow perpendicular to the thread and form the shish-kebab structures,

commonly seen under flow conditions with the presence of high strains or shears (FIC

crystallization).

The presence of flow, as commonly seen during polymer processing, affects the crystallization

process as follows [25]:

• increase of the nucleation density,

• acceleration of the crystallization kinetics,

• changes in semi-crystalline morphological structures,

• increase of the crystallization and melting temperature.

A lot of work has been done in the last few decades to better understand the physics behind polymer

crystallization whether under quiescent or flow conditions. An extensive review of the various theories

postulated is given by Zhang et al. [26]. The current understanding of this process under flow conditions

is that there exists one threshold below which no changes in crystal morphology are observed and above

which the nucleation density and growth rate are altered by the presence of flow in addition to a second

threshold where thread-like (fibrillar) morphologies start appearing [15,27]. In the following sections,

a brief overview is given of the different experimental and modeling techniques used to study both

types of crystallization.

1.3.3 Experimental Methods

In order to obtain a better understanding of the crystallization process of semi-crystalline poly-

mers, various experimental techniques are utilized in the literature. Microscopy is one of the main

methods used to gather morphological information on developed crystalline structures in a given sam-

ple. Polarized-light optical microscopy is most commonly used for these purposes [28–32] in addition

to scanning electron microscopy [28,33] and atomic force microscopy [15,34]. Light diffraction experi-

ments are utilized to gain crucial knowledge about the crystallinity and the polymer chains’ orientation.

The main analysis employed is the wide-angle X-ray diffraction (WAXD) [17,32,35]. Additionally, IR

spectroscopy is occasionally applied for the same purposes but is not able to discern between different

crystalline phases such as WAXD [20].

11
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Differential scanning calorimetry (DSC) measurements are widely performed in the literature to

provide quantitative information about the crystallization kinetics which are then used to develop

models to describe the process. In addition to DSC, a shearing hot-stage Linkam apparatus is used

in combination with optical microscopy to quantify the nucleation and growth steps of crystalliza-

tion [27, 30, 36, 37]. One major shortcoming of the before-mentioned methods is that they mainly

characterize and quantify the crystallization kinetics under quiescent conditions and are not yet fully

capable of recreating process-relevant conditions in order to fully model flow-induced crystallization.

Nevertheless, there have been some advances in that regard such as the development of fast scanning

calorimetry [38] and the use of an extrusion die in combination with optical microscopy to calculate

the critical shear rate of activation [39,40].

1.3.4 Modeling Approaches

To study the crystallization kinetics, whether quiescent or flow-induced, various theories and mod-

els have been developed in the literature. These models mainly describe the evolution of the relative

crystallinity α(t) as a function of time t and temperature T as a state model expressing α̇ as a function

of α and T. By definition, the relative crystallinity is the ratio of the crystallized volume Xc to the

ultimate crystallizable volume X∞, such as [25]:

α = Xc

X∞
. (1.5)

1.3.4.1 Quiescent Crystallization

The first modeling approach used to describe the kinetics of quiescent crystallization is based

on the Kolmogorov-Avrami-Evans (KAE) theory [12, 13, 41], developed for isothermal conditions.

Kolmogorov [13] originally used a probabilistic approach to describe the space filling by the formation

and growth of spherulites. Independently, Avrami [12] used a geometrical approach to express this

growth while taking into account the impingement of the spherulites as they grow and block the

growth of the neighboring spherulites. Later on, Evans [41] also developed the same model by analogy

to expanding circular waves in water. All three models proved to be identical and are referred to as
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the KAE theory and is given by:

dα = (1 − α)dΦ (1.6a)

α(t) = 1 − exp(−Φ(t)) (1.6b)

where Φ is a fictitious crystallinity obtained by assuming an unrestricted growth G(t) of the spherulites

which are represented as spheres. This fictitious crystallinity is defined as follows for a time interval

between s and t:

Φ = 4π
3

∫ t

0
Ṅq(s)

[∫ t

s
G(u)du

]3
ds (1.7)

where Ṅq(t) is the rate of nuclei number per unit volume. Under quiescent conditions and in the case of

instantaneous nucleation, the nuclei number density Nq(t) = N0H(t) where N0 is the constant nuclei

density also known as the number of activated nuclei, H(t) is the Heaviside unit step function such

as H(t) = 0 for t < 0 and H(t) = 1 for t ≥ 0. In turn, Ṅq(t) = N0δ(t) where δ(t) is the Dirac delta

function centered at t = 0. By integrating equation 1.7, equation 1.6b is expressed for this considered

case as:

α(t) = 1 − exp
(−4π

3 N0G
3t3
)

(1.8)

where the time exponent represents the Avrami index n which is 3 in the case of spherulitic growth

and instantaneous nucleation as shown in equation 1.8. In general, the KAE model can be represented

using the following expression:

α(t) = 1 − exp(−kAvramit
n) (1.9)

where kAvrami is the Avrami kinetic constant.

According to experimental findings by Koscher and Fulchiron [36], for instantaneous nucleation,

the nuclei number density increases when the degree of supercooling ∆T = T 0
m − T increases where

T 0
m is the equilibrium melting temperature, such as:

lnN0(T ) = aN ∆T + bN (1.10)

where aN and bN are experimentally-fitted parameters. More complex temperature dependencies can

be found in the literature given by Coppola et al. [42].

As for the temperature dependency of the spherulite growth, the Hoffman-Lauritzen theory is

widely used to describe it [43]:

G(T ) = G0 exp
(

− U⋆

R(T − T∞)

)
exp

(
− Kg

T (T 0
m − T )

)
(1.11)
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where G0 and Kg are experimentally-determined parameters, U⋆ is the activation energy for segmental

jump of polymer molecules with a universal value of 6270 J/mol, R is the gas constant and T∞

is the temperature at which no molecular displacement happens defined using the glass transition

temperature Tg as T∞ = Tg − 30.

Ozawa [44] extended the phenomenological KAE model to adhere to the non-isothermal case such

as:

α(t) = 1 − exp
(

−kOzawa

Ṫn

)
(1.12)

where kOzawa is the Ozawa kinetic constant and Ṫ is the cooling rate. However, this relation showed

some limitations as it applies to a limited range of cooling rates.

Nakamura et al. [45] introduced an isokinetic approach to describe the kinetic constant in the KAE

model under non-isothermal conditions:

α = 1 − exp
[
−
(∫ t

0
K(T )dt

)n]
(1.13)

where K(T ) is the Nakamura kinetics crystallization function and can be related to the Avrami

isothermal kinetic constant by K(T ) = kAvrami(T )1/n. The differential form of the Nakamura model

is commonly used in literature such as:

α̇(t) = K(T )n(1 − α(t))[− ln(1 − α)1− 1
n ]. (1.14)

An alternative approach for the modeling of non-isothermal crystallization is proposed by Schneider

et al. [14]. This approach uses a set of four first-order differential equations derived from the KAE

model to solve for the relative crystallinity. This is done by differentiating equation 1.7 four times

with respect to time as follows:

Φ0 = Φ = 4π
3

[∫ t

s
G(u)du

]3
dNq(s), (1.15a)

Φ1 = 1
G

Φ̇0 = 4π
[∫ t

s
G(u)du

]2
dNq(s), (1.15b)

Φ2 = 1
G

Φ̇1 = 8π
[∫ t

s
G(u)du

]
dNq(s), (1.15c)

Φ3 = 1
G

Φ̇2 = 8πNq(t). (1.15d)
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Therefore, the Schneider rate equations are defined as:

Φ̇3 = 8πṄq(t), (1.16a)

Φ̇2 = GΦ3, (1.16b)

Φ̇1 = GΦ2, (1.16c)

Φ̇0 = GΦ1, (1.16d)

The Schneider functions Φi provide morphological information concerning the formed crystalline struc-

tures such as:

• Φ0: the total volume of the undisturbed spherulites (no impingement) per unit volume,

• Φ1: the total surface area of the undisturbed spherulites per unit volume,

• Φ2: 8π times the sum of the radii of the undisturbed spherulites per unit volume,

• Φ3: 8π times the number of the undisturbed spherulites per unit volume.

The solution of the system of equations 1.16 is Φ0 which can be written in the form of equation 1.6b

to take into account the impingement of the spherulites, such as:

α(t) = 1 − exp(−Φ0(t)) (1.17a)

Φ0(t) = − ln(1 − α(t)). (1.17b)

1.3.4.2 Flow-induced Crystallization

As already mentioned in Section 1.3.2, the presence of flow greatly affects the crystallization

kinetics. This has been observed experimentally, however, the exact physics behind this phenomenon

is still not fully understood [15]. Therefore, literature works proposed different approaches to model

flow-induced crystallization. These can be clustered in two main categories according to which type

of model the work is based on:

• Nakamura’s model: the increase of crystallization kinetics is taken into account by multiplying

the kinetic functionK(T ) in equation 1.14 by an enhancement factor depending on the postulated

driving force for flow-induced crystallization (stress, strain, shear rate, melting temperature

increase). This approach neglects the changes in morphology.
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• KAE model and/or Schneider’s rate equations: the increase of crystallization kinetics is con-

nected to enhancements in the nucleation rate and/or growth rate of the crystal morphologies

as well as the volumetric free energy difference between the molten and crystalline phases used

while describing the nucleation rate.

Table 1.1 presents an overview of the literature in the field of modeling the FIC categorized according

to the two approaches presented previously in addition to the proposed driving force used to describe

the effect of the flow on the crystallization kinetics. These two approaches are not strictly separate as

some of the functions used to describe the driving force proposed by the authors using the Nakamura

model can be easily used to obtain morphological information using a modified form of the Schneider

rate equations. In the following, an example of that is shown, starting first by using an enhancement

function derived by Eder et al. [57] followed by one proposed by Tanner et al. [49].

In the presence of flow, the total nuclei number density can be expressed as:

N(t) = Nq(t) +Nf (t) (1.18)

where Nq is the number of existing nuclei at the beginning of the process equivalent to those present

under quiescent conditions with a temperature dependence given in equation 1.10 and Nf is the flow-

induced nuclei number density. Eder et al. [57] proposed the following differential equation to represent

the flow-induced nucleation:

Ṅf + 1
λN

Nf = Υ (1.19)

where λN is a temperature-dependent relaxation time and Υ is a function dependent on flow variables

and temperature. This function represents the main driving force that enhances nucleation in the

presence of flow. Eder et al. [57] postulated that the shear rate is that driving force and defined this

function as:

Υ = gn

(
γ̇

γ̇n

)2
(1.20)

where γ̇ is the shear rate, γ̇n is the critical shear rate of activation and gn is a factor. By assuming that

each shish-kebab is represented as a cylinder, it is possible to modify the Schneider rate equations to

describe the evolution of these crystals in the presence of flow using the enhanced nucleation expression
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Table 1.1 – Overview of the literature in the field of modeling the flow-induced crystallization during
polymer processing, based on [15].

Crystallization model based
on

Effect of flow on crystalliza-
tion kinetics using

Author(s)

Nakamura’s model [45] Multiplying factor function of
the extra stress tensor

Doufas et al. [46], Zinet [47]

Multiplying factor function of
the strain and the shear rate

Kulkarni et al. [48], Tanner et
al. [49], Brahmia [50], Mu et al.
[37,51]

Melting temperature increase
function of stress

Haas and Maxwell [52], Tito-
manlio et al. [53], Guo and Narh
[54]

Melting temperature increase
function of molecular strain

Titomanlio and Lamberti [55],
Kim et al. [56], Pantani et al.
[27,34]

Irreversible thermodynamics
based on the standard material
formalism

Poitou et al. [16,17]

KAE model [12, 13, 41],
Schneider’s rate equations
[14] (Nucleation and growth
models)

Enhancement of nucleation rate Eder et al. [57], Zuidema et al.
[29], Koscher and Fuchiron [36],
Roozermond et al. [35], Kim et
al. [58]

Enhancement of growth rate van Meerveld et al. [59], Zinet et
al. [60], Roozemond et al. [61],
Troisi and Arntz [32]

Enhancement function of the
free energy contribution affect-
ing the nucleation rate

Acierno et al. [62], Zheng and
Kennedy [63], Zheng et al. [30],
Laschet et al. [64], Schrank et
al. [65]
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given in equation 1.19 such as:

Φ̇3,f + Φ3,f

λN
= 8π

(
γ̇

γ̇n

)2
gn, (1.21a)

Φ̇2,f + Φ2,f

λl
= Φ3,f

(
γ̇

γ̇n

)2
gl, (1.21b)

Φ̇1,f = GΦ2,f , (1.21c)

Φ̇0,f = GΦ1,f , (1.21d)

where λl is the temperature and shish length dependent relaxation time during axial growth and gl is a

factor for the axial growth of the shish. As for the crystal growth G, Eder assumed that it still follows

the Hoffman-Lauritzen theory presented in equation 1.11. Additionally, the flow-induced Schneider

functions represent the following:

• Φ0,f : the total volume of the undisturbed shish-kebabs (no impingement) per unit volume,

• Φ1,f : the total surface area of the undisturbed shish-kebabs per unit volume,

• Φ2,f : 8π times the total length of the shish per unit volume,

• Φ3,f : 8π times the number of the undisturbed flow-induced nuclei Nf per unit volume.

To take into account impingement and the fact that typically both spherulite and shish-kebab mor-

phologies are present during polymer processing, the relative crystallinity evolution can be represented

by including both the quiescent undisturbed volume Φ0 and that of the flow-induced Φ0,f :

α(t) = 1 − exp(−Φ0(t) − Φ0,f (t)) (1.22a)

Φ0(t) + Φ0,f (t) = − ln(1 − α(t)). (1.22b)

The equation system given by equations 1.21 and 1.22 is presented using the function Υ as defined

by Eder et al. [57]. However, this can be easily generalized by using:

Φ̇3,f =8πṄf (1.23a)

Φ3,f =8πNf . (1.23b)

Equations 1.23a and 1.23b provide a way to couple the work done by the different authors presented in

Table 1.1. For example, Tanner et al. [49] proposed a relation connecting the flow-induced nucleation

rate Ṅf to both shear rate and shear strain by:

Ṅf = A|γ̇(t)|p(γ̇t) (1.24)
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where |γ̇(t)|p describes the effect of the chain relaxation, A and p are material parameters. Tanner’s

nucleation rate expression can be used in equation 1.23a in order to obtain a modified Schneider

equation system such as the one presented in equation 1.21 making it possible to obtain morphological

information.

A different approach based on thermodynamics is used by Poitou et al. [17] to describe the flow-

induced crystallization in the framework of generalized standard materials. The standard material

formalism is commonly used in solid mechanics to describe various coupled phenomena. It necessitates

two potentials, a thermodynamic potential and a pseudo-potential, in order to describe the behavior

of a material. The first potential helps in quantifying the capability of the material to store energy

whereas the second potential quantifies the capability of the material to dissipate energy [17]. In this

case, Poitou et al. [17] used the free energy Ψ as the thermodynamic potential, defined as:

Ψ(T, α) = αX∞Ψc(T ) + (1 − αX∞)Ψa(T ) (1.25)

where Ψc and Ψa correspond to the free energy of the crystalline and amorphous phases, respectively.

By using the standard material formalism, it is therefore possible to fully describe a coupled phenomena

such as the flow-induced crystallization since the mechanical parameters are dependent on the degree of

crystallinity. The coupling is taken into account by adding up the potential representing the quiescent

kinetics given by the Nakamura model [45] and the potential referring to the mechanical constitutive

behavior [17]. By assuming that the material is a Newtonian fluid, this mechanical dissipation potential

is thus approximated using a simple relation between the strain rate tensor and the viscosity. For more

detailed information concerning the derivation of this model, refer to [16,17]. The model is given by:

α̇(t) = (1 − α)
[
− 1
β(T )

∂η

∂α
trD2 + n

χ(T ) (− ln(1 − α))1− 1
n

]
, (1.26)

where D is the strain rate tensor, β(T ) is a function taking into account the temperature-dependency of

the flow-induced crystallization and ∂η
∂α is the viscosity derivative in respect to the relative crystallinity

α. χ(T ) is the temperature-dependent kinetic function as defined by Hieber [66]. The first term in

equation 1.26 is the contribution of the flow to the relative crystallinity evolution whereas the second

term is the original Nakamura model given in equation 1.14 with χ(T ) = 1/K(T ).
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Table 1.2 – List of the commonly used models to couple the viscosity and the crystallization using a
normalized rheological function Γ = η/η0.

Author(s) Equation Approach

Kitano et al. [67], Metzner [68] Γ = 1/ (1 − α/b1)−2 Suspension

Ziabicki [69] Γ = 1/ (1 − α/b1)b2 Empirical, based on suspension

Zuidema et al. [29], Doufas et al.
[46]

Γ = exp
(
b1α+ b2α

b3
)

Empirical

Titomanlio et al. [53], Guo and
Narh [40]

Γ = 1 + b1 exp
(
−b2/α

b3
)

Empirical

Tanner [70] Γ = 1 + b1α+ b2α
2 Empirical, based on suspension

Zheng et al. [30] Γ = 1 + (α/b1)b2 / (1 − α/b1)b3 Empirical

1.3.5 Effect on Other Material Properties

During processing, the development and evolution of the different crystal structures influence other

material properties such as viscosity, specific volume, thermal capacity and thermal conductivity.

Therefore, in the last two decades, various efforts have been made to develop models that describe

the effect of crystallization on these material properties. In the following, some of these models are

presented for describing viscosity and specific volume. For a more detailed look into the effect of

crystallization on the thermal capacity and the thermal conductivity refer to [3].

1.3.5.1 Viscosity

For semi-crystalline materials, an accurate prediction of the solidification of the material during

processing is imperative to achieving precise simulation results. However, as the solidification is mainly

due to crystallization in such materials, specifying a single no-flow temperature is highly inaccurate

especially since the crystallization is affected by both the thermal and flow history [3]. An alternative

way to determine when solidification happens is by using a solidification criterion based on the viscosity.

For that, it is then important to couple the viscosity and the relative crystallinity of the material to

obtain more realistic results.

As it is difficult to measure the viscosity and the crystallinity simultaneously, separate testing

methodologies are typically performed to couple these two phenomena. Rheological measurements are

done to describe the viscosity evolution as a function of temperature and shear rate. Whereas, DSC
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measurements are carried out to obtain the crystallinity evolution with temperature. Special care is

taken to assure that these measurements experience the same thermal histories [71]. The experimen-

tal data obtained from the previously mentioned methods are used to obtain models describing the

viscosity enhancement due to crystallization. These models or coupling functions are mainly based on

two different approaches:

• derived from models developed in the field of suspension rheology,

• empirical equations recreating the abrupt increase in viscosity due to crystallization.

Table 1.2 presents some of the commonly used models to couple the viscosity and the crystallization

using the following normalized rheological function:

Γ(α) = η

η0
(1.27)

where η is the melt viscosity and η0 is the zero-shear-rate viscosity. The list is not comprehensive,

refer to [15] and [71] for more details concerning this subject.

1.3.5.2 Specific volume

During polymer processing, the specific volume is mainly affected by the temperature, pressure

and flow history of the material which in turn influences the produced part’s shrinkage behavior [22].

For semi-crystalline polymers, the specific volume is additionally dependent on the cooling rate and

the crystallinity evolution as they affect the shifting of the transition zone. This is represented in

Figure 1.3 using a self-produced plot by showing the difference in the specific volume predictions using

a cooling rate or crystallization dependent pressure-volume-temperature (PVT) model in comparison

to the widely used Tait model. As the cooling rate changes between 1 and 50 ◦C/min, the modified

Tait model predicts different transition zone depending on the cooling rate whereas the Tait model

estimates the same specific volume profile for all cooling rates.

Therefore, it is essential to model accurately the specific volume using PVT models that take these

dependencies into account. Some efforts have been made in this regard by Luyé et al. [72], Fulchiron

et al. [73], Zheng et al. [30] and Zhao et al. [74]. They included the relative crystallinity into the

calculation of the specific volume v by assuming a simple mixing rule of the molten and solidified

phases’ specific volumes, represented respectively as vm and vs. This law is written as:

v = αvs + (1 − α)vm. (1.28)
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Figure 1.3 – An illustrative example plot of the specific volume as a function of temperature at a fixed
pressure using a crystallinity-dependent Tait model for five different cooling rates Ṫ = 1, 5, 10, 20, 50
◦C/min (solid lines) in comparison to using the Tait model (dashed line).

The specific volumes vm and vs are described using the empirical Tait equation, such as:

Vx(T, P ) = v0(T )
[
1 − C ln

(
1 + P

B(T )

)]
(1.29)

with x ∈ m, s. In equation 1.29, C is a universal constant equal to 0.0894, v0(T ) is the specific volume

at zero gauge pressure and B(T ) describes the pressure sensitivity of the studied material. These

temperature-dependent functions are defined as follows:

v0(T ) = b1x + b2x(T − b5), (1.30)

B(T ) = b3x exp (−b4x(T − b5)) (1.31)

where b1x, b2x, b3x, b4x and b5 are data-fitted coefficients usually obtained using dilatometry measure-

ments [32,60,61].

Another approach to improve the specific volume predictions is to include the cooling rate Ṫ into

the PVT model as well as the transition temperature calculations, as developed by Cook et al. [75],

such as:

Tt(P, Ṫ ) = b5 + b6P + c log
(
Ṫ

Ṫ0

)
(1.32)

where b6 and c are material parameters and Ṫ0 is a low cooling rate for which the polymer maintains

an equilibrium state. Other authors such as Wang et al. [76] and Hopmann et al. [77] proposed more

complex cooling rate dependencies for the PVT modeling, for more details refer to [76,77].
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1.4 Surrogate Modeling

Currently, in science and engineering, there still exists a large number of physical problems that

high performance modern computing is not able to accurately solve despite the advances made in

modeling, numerical and discretization techniques [78]. This is mainly due to the high complexity

and multi-dimensionality of such physical models [79]. Therefore, in the last couple of decades, there

has been a growing interest in surrogate modeling techniques in order to address these challenges.

Such methods approximate the response of complex models using a surrogate model also known as

a metamodel after being trained with a limited number of input and output results. This makes

surrogate models cheaper to run and are thus used instead of the complex model in various fields such

as engineering design optimization, uncertainty quantification, sensitivity analysis ...

1.4.1 General Overview

The construction of a surrogate model consists of multiple steps. The basic process can be sum-

marized as follows [80–82]:

1. Design Variables Choice: Selection of variables, which presumably have a non-negligible impact

on the model output, this choice is usually supported by preliminary experiments, whether

physical or numerical experiments.

2. Design Space Sampling : Definition of a sampling plan also referred to as design of experiments

and evaluation of the respective design points by means of a high-fidelity simulation or actual

experiments.

3. Surrogate Model Generation: Selection of a type of surrogate model in accordance with the

problem at hand and the construction of the model by fitting the data obtained at the chosen

points in the design space.

4. Model Validation: Checking the accuracy of the generated model according to a predefined

statistical criteria, in case of unsatisfactory results, identification of new design points for further

model enrichment.

5. (Optional) Model Updating : Building an updated surrogate model using additional design points

along with the previous ones.

6. Model Exploitation: Use of the generated surrogate model for further analyses such as parameter
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Figure 1.4 – Overview of the most commonly used methods during the generation of a surrogate
model [6, 83].

sensitivity analysis, optimizations or uncertainty quantification.

Figure 1.4 provides a more detailed look into the most commonly used techniques to perform the

second and third steps in the surrogate model generation process presented above. After defining the

design space, an additional optional step is to perform a model order reduction on the output result(s)

needing to be approximated by the surrogate model. Following this, the surrogate model is chosen

along with the appropriate fitting method. In the following sections, a closer look is taken into each

of the four steps shown in Figure 1.4.

1.4.2 Design of Experiments

Design of experiments (DoE) or sampling plan are terms used to represent the physical or compu-

tational experiments needed to be run in order to capture the behavior of an underlying system over

a limited number of variables [81,84]. To build a surrogate model of a system, it is crucial to cleverly

select the design points in order to cover the complete design space using the least possible number of

samples. There exist two main categories of DoEs:

• Classical DoE methods: used typically for physical experiments since these experiments are non-

repetitive due to the presence of random error sources (full/fractional factorial, Box-Behnken,

24
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central composite...)

• Modern DoE methods: applied to deterministic computer experiments where systematic errors

are mostly involved (Taguchi method, Latin hypercube, uniform designs, Monte Carlo...).

There exists a high number of DoE methods present in literature, however, in this thesis, Latin

Hypercube sampling and Quasi-Monte Carlo sampling are used and are presented in detail in the

following sections. For more information concerning the other DoE techniques, refer to [9, 83,85].

1.4.2.1 Latin Hypercube Sampling

The Latin hypercube sampling (LHS) technique is widely used in computational applications as

it can work with any sample size which gives the user the freedom to choose the number of samples

according to the available computational resources [85, 86]. LHS is a space-filling method, as it tries

to find a design that fills the design space given a specific number of samples. To demonstrate the

technique, let us consider a 2-dimensional design space Ω = [0, 1]2 with variables having uniform

probability distribution functions. If the desired number of sample points is, for example, N = 4,

then the design space is divided into 42 equally sized cells. Next, values from 1 through N are placed

in each row so that no two columns have an integer repeating, similar to Sudoku [85, 86]. Figure 1.5

shows two of the many possible arrangements. Next, a random integer between 1 and N is selected to

specify the N cells in which a sample point is randomly picked. In the examples shown in Figure 1.5,

the chosen integer is 2 such as the shaded cells representing the sampling sites.

The Latin square presented in Figure 1.5 generalizes to a Latin hypercube for higher dimensional

(n > 2) design spaces. For instance, a design space with n = p design variables requiring N sample

points will form Np hypercubes [86]. It is also worth noting that there can exist some cases, such as

diagonal arrangements, for which the chosen sample sites are not optimally positioned and do not fill

the design space. One way to eliminate such an arrangement is by introducing additional conditions

to check the minimum distance between the design points and selecting the largest one [86].

1.4.2.2 Quasi-Monte Carlo Sampling

Quasi-Monte Carlo (QMC) sampling is the deterministic counterpart of the classical Monte Carlo

(MC) sampling method [87]. In classical MC, sample points are randomly selected in the design

space for a given interval which can lead to having some regions of the design space unexplored [88].

25



1.4. SURROGATE MODELING

(a) LHS example arrangement 1 (b) LHS example arrangement 2

Figure 1.5 – Latin Hypercube sampling in a 2-dimensional design space Ω = [0, 1]2 with a set of
sampling sites denoted by integers from which the shaded cells are the selected sampling sites.

Therefore, to overcome this shortcoming, QMC methods were developed to provide deterministic

sample points with the optimal spread over the design space. These methods are also known as low-

discrepancy sequences since they fill the space with some uniformity in order not to leave big gaps [86].

There exist various numbers of such sequences such as the Halton sequence [89], the Niederreiter

sequence [90], the Sobol sequence [91]...

Many of the mentioned sequences are based on the van der Corput one, which is the simplest

one-dimensional low-discrepancy sequence. One can refer to [92] for a detailed explanation concerning

this sequence and its generalizations. For this work, the Sobol sequence is mainly used to obtain

quasi-random DoE samples. In this type of sequence, the prime number 2 is used as the base for all

the dimensions of the sequence. The first dimension is the van der Corput sequence with a base of

2 and the higher dimensions are permutations of this first dimension [86, 91]. Figure 1.6a shows an

example of 1000 sample points obtained using QMC with the Sobol sequencing method in comparison

to those gotten using LHS in Figure 1.6b for a 2-dimensional design space Ω = [0, 1]2 with variables

having uniform probability distribution functions.

1.4.3 Model Order Reduction

Model order reduction (MOR) techniques provide a way to reduce the complexity of high-fidelity

models by representing them in a reduced form. This allows for a more efficient model evaluation
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Figure 1.6 – Comparison of 2-dimensional design spaces Ω = [0, 1]2 with 1000 sample points obtained
using (a) QMC, (b) LHS.

for offline and online applications. MOR methods work on the discretization of a state equation’s

dimensionality instead of on its design space which differentiates them from data fitting methods [82].

There exist multiple MOR techniques in the literature such as Proper Orthogonal Decomposition

(POD), Proper Generalized Decomposition (PGD), Krylov subspace methods... In the following, the

discussion is limited to describing the POD method for the case of a time-dependent problem. For

this discussion, let us consider Y to be one model output and X = (X1, · · · , Xp) the set of input

parameters defined in the design space DXi such as:

Y = f(X) = f(X1, · · · , Xp) ≈ F (X1, · · · , Xp) (1.33)

where the function f(X) represents the system or simulation output that is being approximated using

a surrogate model F (X) and p the parameter space design size. These notations are used to describe

the methods presented in the following sections for the case of one output result which can be extended

to the multi-output case.
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1.4.3.1 Proper Orthogonal Decomposition

The POD technique is one of the most commonly used model order reduction method. It is known

by different names such as the Karhumen-Loève (KL) expansion as well as Principle Component

Analysis (PCA) and an extension of the Singular Value Decomposition [93]. POD is a mathematical

procedure that provides orthonormal basis functions, known as empirical eigenvectors, in order to

obtain a simplified representation of a set of data or a state’s evolution [82, 94]. These obtained

eigenvectors correspond to the highest eigenvalues and they represent the basis functions that are able

to describe the main modes or events involved in a certain state evolution [94]. Let M be a model

state variable considered in a specific system. The variable can be represented at specific time steps

and for the different nodes present using a matrix AM such as:

AM =

⎛⎜⎜⎜⎜⎝
M1

1 M2
1 · · · Mκ

1
M1

2 M2
2 · · · Mκ

2
...

...
...

...
M1

ν M2
ν · · · Mκ

ν

⎞⎟⎟⎟⎟⎠ (1.34)

where κ is the number of time steps and ν is the number of nodes. The main objective of the POD

technique is to find a set of orthogonal basis functions φi (i = 1, · · · , κ) able to describe the deviation

M̂i of the model variables from their mean M̄i.

These basis functions can be represented through a linear relation with the deviation of the model

variables as follows:

φ =
κ∑

i=1
aiM̂i. (1.35)

To obtain the POD basis vectors, also known as POD modes, the following eigenproblem needs be

solved to obtain a subspace with a low dimension m able to provide a good approximation of the true

data:

AATφ = λiφ (1.36)

with λi as the eigenvalues. The state variable M can be then represented using a linear combination

of the calculated POD basis functions with the following relation:

M(x, t) = M̄ +
m∑

i=1
αi(t)φi(x) (1.37)

where αi(t) are the POD coefficients [95]. More in-depth information concerning POD and model

order reduction can be found in [82,93,95].
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The POD model by itself is unable to approximate the state variable at sites not included in the

original data set [82]. Therefore, the next step is to generate a surrogate model to predict the POD

coefficients. For this, the calculated coefficients are used to train a surrogate model. This is done by

first choosing a model to fit the POD parameters such as Kriging, radial basis functions, polynomial

functions then use an appropriate fitting method to determine the surrogate model’s coefficients. As

such, one can obtain a POD-based surrogate model.

1.4.4 Surrogate Modeling Methods

The first approximation methods such as polynomial response surface models and neural net-

works appeared prior to 1990 and were mainly applied to structural design problems [96]. Later on

in the 1990’s, interest in such surrogate modeling and approximation techniques increasingly grew.

Researchers started investigating additional methods such as higher order response surface models,

polynomial models [96]. At the beginning of the 21st century, alternative surrogate modeling tech-

niques emerged such as Kriging, splines, radial basis functions, support vector machine, polynomial

chaos expansions...

Response surface methodology (RSM) represents the high-fidelity model response as:

Y = g(X) + ϵ (1.38)

where ϵ is the normally distributed random error with zero mean and standard deviation [97] and

g(X) is a polynomial function used to approximate the response. Typically low-order polynomials are

used to express g(X) [83].

Kriging is an interpolation-based method derived from statistical theory [98]. A Kriging surrogate

model is defined as a combination of a polynomial part and a random error part such as:

Y = g(X) + Z(X) (1.39)

where Z(X) is a normally distributed Gaussian random process with a zero mean, variance σ2 and a

nonzero covariance [6,83]. The function g(X) is similarly to RSM defined using a polynomial expression

of the design variables X.

Radial basis functions (RBF) provide an approximation F (X) for an output response such as:

F (X) =
p∑

i=1
wiϱ(∥ X −Xi ∥) (1.40)
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where wi is a weight coefficient, ϱ is a nonlinear basis function and ∥ · ∥ represents the Euclidean

distance [7].

Artificial neural networks (ANN) constitute a special architecture of neurons that are each defined

by linear regression models along with a nonlinear transform to approximate Y [83]. They learn the

output response through the training process while adjusting their weights until an error threshold is

reached [99].

Simpson et al. [83] as well as Wang and Shan [80] provide additional details on the various surrogate

modeling methods available in the literature. In the following section, the polynomial chaos expansions

are presented more in detail.

1.4.4.1 Polynomial Chaos Expansion

Polynomial chaos expansions (PCE) are surrogate modeling techniques that expand Y = f(X)

using a series of multivariate basis functions orthogonal to the probability density function gXi of an

input variable Xi [100]. In general, polynomial chaos expansions can be considered as a special case

of KL or PCA since orthogonal polynomial families are used to describe the basis functions instead of

eigenvectors. The resulting random model response Y is assumed to have a finite variance and thus

belonging to the so-called Hilbert space, allowing for the following spectral representation [101]:

Y =
∞∑

j=0
cjψj . (1.41)

The random variable Y is an infinite series, where {ψj}∞
j=0 are a set of countable random variables

forming the basis of the Hilbert space and {cj}∞
j=0 are the coefficients representing the coordinates of

Y in this basis [101]. With the assumption that the input variables are independent, an inner product

can be defined for each variable Xi with any two functions ϕ1, ϕ2 such as:

⟨ϕ1, ϕ2⟩i =
∫

DXi

ϕ1(x)ϕ2(x)gXi(x)dx. (1.42)

When replacing the arbitrary functions in equation 1.42 with orthogonal polynomials P
(i)
k :

⟨P (i)
j , P

(i)
k ⟩i =

∫
DXi

P
(i)
j (x)P (i)

k (x)gXi(x)dx = a
(i)
j δjk (1.43)

where k is the polynomial degree and δjk is the Kronecker symbol equal to 1 for j = k and 0 otherwise.

As for the term a
(i)
j , it is the squared norm of P

(i)
j and is equal to 1 for orthonormal polynomials:

a
(i)
j = ||P (i)

j ||2i = ⟨P (i)
j , P

(i)
j ⟩i. (1.44)
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The family of orthonormal polynomials {ψ(i)
j } is obtained by normalizing the P

(i)
j functions :

ψ
(i)
j = P

(i)
j /

√
a

(i)
j , i = 1, 2, · · · , p. (1.45)

Depending on the distribution of the input variables, there exist well-known orthogonal polynomial

families. For example, if Xi has a uniform distribution, the corresponding family is the Legendre

polynomials or if Xi has a Beta distribution then the Jacobi polynomials constitute the basis functions

for PCE [102].

In order to estimate the polynomial chaos coefficients, there exists various intrusive (Galerkin

projection) and non-intrusive methods. Popular non-intrusive techniques are error minimization ones

which solve a least squares (LS) or least angle regression (LAR) problem [86]. For a more detailed

description concerning PCE, the reader is advised to refer to [100–102].

1.4.5 Fitting Techniques

The different methods presented in Sections 1.4.3 and 1.4.4 provide a way to approximate a model’s

response through various mathematical relations. To be able to use these equations to calculate this

approximated response, the parameters or bases need to be determined. This is done by a variety of

fitting techniques some of which are listed in Figure 1.4.

A commonly used fitting technique for polynomial functions is the least-squares method with which

the needed parameters are obtained by minimizing the difference between the approximated response

and the high-fidelity one [97]. Another highly utilized method is back-propagation usually used to fit

data for an ANN. Whereas, when generating a model using Kriging, the best linear unbiased predictor

is typically used [83].

1.4.6 Some Applications

1.4.6.1 Variance-Based Sensitivity Analysis

A surrogate model can be easily utilized to efficiently perform sensitivity analysis on the chosen

design variables. One type of such analyses is variance-based ones which are used to quantify the

variance contribution of an input parameter to the unconditional variance of the model output [103].

A commonly utilized method in this field is the Sobol method [104]. An attractive feature of this

technique is its ability to not only measure the amount of variance caused by one input but also the
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interaction of two or more inputs and their contribution to the output. These are known as the Sobol

sensitivity indices. The method utilizes approximate Monte Carlo integration to calculate the different

indices [105].

The Sobol approach decomposes the function f into terms of increasing dimensionality [103]

f(X) = f0 +
p∑

i=1
fi(Xi) +

p∑
i=1

p∑
j=i+1

fij(Xi, Xj) + · · · + f1,··· ,p(X1, · · · , Xp) (1.46)

such as each successive term represents the increasing degrees of interactions between the various pa-

rameters. The total variance V (Y ) can be then defined using the sum of the partial variances through

a similar decomposition to equation 1.46 with the assumption that the parameters are mutually or-

thogonal:

V (Y ) =
p∑

i=1
Vi +

p−1∑
i=1

p∑
j=i+1

Vij + · · · + V1,··· ,p. (1.47)

As such, the Sobol sensitivity indices can be formulated as follows:

Si = Vi

V
(1.48)

for the first order sensitivity indices and

Sij = Vij

V
(1.49)

for the second order sensitivity indices.

1.4.6.2 Optimization

Many engineering problems revolve around optimization routines whether it is to obtain a better

geometrical design for a part or to improve the production of that part by finding the optimal pro-

cess parameters or to better predict the production process using a simulation with accurate model

parameters... Surrogate models provide a means to perform these optimizations in the order of sec-

onds instead of hours or even days. A typical surrogate model based optimization problem can be

represented as:

min f̃(X)

s.t. m̃i(X) ≤ 0 (i = 1, ..., p)

X ∈ [XL,XU ]
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where the tilde symbol signifies the surrogate model of a function, XL and XU are the lower and upper

bounds of the design variables, respectively [80].

1.4.6.3 Uncertainty Quantification

In every numerical simulation, there exist uncertainties in the input. These can be anything

from dimensional errors, constitutive material properties to parameter uncertainties [86]. Uncertainty

quantification (UQ) is the study of how these uncertainties affect the simulation output. To perform

such a study, it is necessary to run a high number of simulations while varying the selected quantities of

interest (QoI). This step is highly challenging since it is computationally very expensive. To overcome

this challenge, surrogate modeling is used to represent the simulation output using the chosen QoI.

The generated surrogate model is then used to study the propagation of the input uncertainties to the

simulation results using various statistical methods.

1.5 Surrogate Modeling in Injection Molding Simulation

In the last two decades, the use of surrogate models to approximate outputs from the injection

molding simulation has been growing steadily especially in the field of process parameter optimization

to enhance product quality and molding efficiency. Gao and Wang [5] employed a Kriging approxi-

mation model along with an adaptive optimization technique to minimize the warpage in produced

parts by varying process parameters such as the mold and melt temperature, injection time as well

as the holding pressure and time. Similar works were performed by Chen et al. [6], Wang et al. [106]

and Kang et al. [107]. Others used radial basis function [2, 7, 108], artificial neural networks [8, 10],

Gaussian process [109] as surrogate modeling technique to optimize process parameters for controlling

shrinkage and warpage in the final part. Additional applications for surrogate models seen in the

literature were used for the optimization of cycle time [108] and part weight [110].

All of the above-mentioned publications use a surrogate model to perform an optimization to

determine optimal process parameters. However, another interesting utilization of surrogate modeling

in injection molding was recently published by Ivan et al. [11] where the surrogate model is used

to identify two fiber orientation model parameters. The authors used experimental fiber orientation

data obtained by micro-computed tomography to calibrate the fiber orientation model defined in
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their injection molding simulation. This was done by generating an ANN-based surrogate model

representing the fiber orientation evolution result while varying the two model parameters using a full

factorial design space.

Table 1.3 provides an overview of some of the literature available in the field of surrogate modeling

in injection molding simulation. More comprehensive reviews can be found in [8, 9].
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1.6. SUMMARY AND THESIS STRUCTURE

1.6 Summary and Thesis Structure

As already stated in Section 1.2, injection molding simulation provides a cost-efficient means to

design and improve part quality before producing a mold as well as to identify optimal process settings

for the production. However, to be able to achieve that, simulations have to be highly accurate and

include less and less approximations. In the case of semi-crystalline thermoplastics, this means taking

into account the complex crystallization process taking place during the processing of the material

along with its effect on other properties such as viscosity and specific volume. Additionally, in order to

improve the overall fill predictions as well as the warpage and shrinkage estimations, the solidification

criterion needs to be coupled to the crystallization instead of using a constant no-flow temperature

value to determine solidification. Nevertheless, as seen in Section 1.3, the crystallization process

under flow conditions is complex and the physics behind it is still not yet fully understood making this

problem not straightforward to solve. Also, most of the available models are phenomenological ones

with a high number of parameters that are difficult to determine experimentally due to the inability

of recreating the extreme conditions experienced during the injection molding process using current

experimental devices. One way to overcome this drawback is by using a surrogate model to represent

a simulation output which can be measured experimentally on the injection molding machine and

using it to identify the model parameters such as Ivan et al. [11] did for the fiber orientation model

parameters.

Therefore, in this thesis, the main aim is to implement a crystallization model into a 3D injection

simulation routine while taking into consideration the effect of crystallization on the viscosity, PVT

and solidification models. In order to identify the experimentally-challenging-to-determine parame-

ters, surrogate models are generated to represent the pressure results obtained by the simulation and

to perform a calibration using experimental pressure signal measurements obtained during injection

molding trials.

To reach this goal, the theory and the current state of the art in the field of injection molding,

polymer crystallization and surrogate modeling were first presented in this chapter. Chapter 1 finished

off by introducing some works from the literature that utilized surrogate modeling to represent injection

molding simulation results similar to what will be presented in this work.

Following this, the material characterization along with the performed injection molding trials are
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1.6. SUMMARY AND THESIS STRUCTURE

described in Chapter 2. Additionally, in this chapter, some of the experimental pressure signals are

analyzed for the different geometries considered in this thesis as well as some micrographs produced

to observe the crytalline morphology along the thickness of the produced parts.

In Chapter 3, a feasibility study is performed to test the use of surrogate modeling for the purpose

of calibrating some modeling parameters in the injection molding simulation. This study compares

three different surrogate modeling approaches and tests the effect of the number of training simulations

on the accuracy of the predicted pressure results.

And, finally, in Chapter 4, the implementation of a thermo-mechanical based crystallization

model is described along with crystallization-dependent viscosity, PVT and solidification models in

Moldflow R⃝ to simulate the injection molding of an unreinforced thermoplastic material. Five modeling

parameters are identified using three generated surrogate models by a multi-objective optimization

routine. The simulation results using the calibrated models are then analyzed for different processing

conditions and mold geometries.
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2.1. MATERIAL DESCRIPTION

2.1 Material Description

The polymer material used in this work is an industrial grade of an unreinforced polyoxymethylene

(POM) homopolymer (—CH2—O—)n in its granular form with a density of 1.42 g/cm3. The polymer

is also known as polyacetal and is an engineering semi-crytalline thermoplastic material widely used

in the automotive industry due to its high stiffness, low friction and excellent anti-wear properties

[21, 113]. Additionally, in comparison to other semi-crystalline polymers, POM presents with a high

degree of crystallinity around 75 to 85 % [21,114].

2.2 Differential Scanning Calorimetry

2.2.1 Technique Overview

Differential scanning calorimetry (DSC) is a thermal analysis technique used to measure a thermo-

physical property of a material as a function of temperature [115]. A studied sample along with a

reference are subjected to a predetermined temperature profile during which the difference in heat in-

put between the samples is measured [116]. From these measurements, various physical characteristics

of the polymer can be quantified, such as the melting enthalpy and the melting temperature... Addi-

tionally, the measured enthalpy changes can be utilized to evaluate the relative crystallinity evolution

as a function of temperature and time then crystallization kinetics.

2.2.2 Experimental Set-up

The DSC measurements are performed using a TA Instruments, Inc. DSC Q1000 machine with

nitrogen as purge gas with a flow rate of 50 mL/min. The granular form of POM is used for the

experiments. The prepared samples are encapsulated in Aluminum pans and lids after being weighed.

Ten runs are performed with five different applied cooling rates (1, 3, 5, 10, 40 ◦C/min) as summarized

in Table 2.1. As can be seen in Table 2.1, the sample weights vary for the different cooling rates. This

is done as a compromise between the heat flux measurement sensitivity and the low temperature

gradient in the samples. Before starting the measurement runs, the DSC machine is calibrated using

an Indium sample having a weight of 10.36 mg. In total, three calibration runs are performed:

1. at 1 ◦C/min for the measurement run with a cooling rate of 1 ◦C/min,
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2.2. DIFFERENTIAL SCANNING CALORIMETRY

2. at 10 ◦C/min for the measurement runs with cooling rates of 3, 5, 10 ◦C/min,

3. at 40 ◦C/min for the measurement run with a cooling rate of 40 ◦C/min.

To set-up the different runs, the following steps are followed:

1. Equilibrate at 25 ◦C.

2. Isothermal for 2 min.

3. Ramp 10 ◦C/min to 220 ◦C.

4. Isothermal for 2 min.

5. Ramp x ◦C/min to 25 ◦C with x = 1, 3, 5, 10, 40 ◦C/min.

Table 2.1 – Overview of the DSC measurement runs and the studied samples’ weight.

Run Cooling rate Ṫ (◦C/min) Sample weight m (mg)

1
1

20.67
2 20.74
3

3
10.34

4 10.93
5

5
10.99

6 9.38
7

10
5.06

8 5.93
9

40
3.79

10 3.69

2.2.3 Results

The measured heat flows of the DSC runs summarized in Table 2.1 are analyzed in order to quantify

important physical and kinetic characteristics of the crystallization of the studied POM material.

Figure 2.1 shows the DSC thermograms that were obtained for the five different cooling rates. The

main focus of the performed DSC experiments is to study the crystallization of the polymer and

determine the evolution of the crystallinity as a function of time and temperature. Therefore, Figure

2.2 presents the crystallization peaks for the different cooling rates evaluated. It can be seen that as the

cooling rate increases the peak and area underneath it increase while shifting to lower temperatures.

From the peaks shown in Figure 2.2, it is possible to determine the crystallization temperature (Tc),

the crystallization onset temperature (Tc,onset) and the crystallization enthalpy (∆Hc). Additionally,
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Figure 2.1 – DSC thermograms using five differ-
ent cooling rates.
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Figure 2.2 – Crystallization peaks of the different
DSC measurements.

from the heating cycles of the DSC measurements, the melting temperature (Tm) of the material is

determined. Table 2.2 summarizes these quantities obtained from the DSC data. In practice, the

crystallization onset temperature depends linearly to the logarithm of its corresponding cooling rate.

Therefore, in Figure 2.3, the mean onset temperature of each studied cooling rate (Ṫ ) is plotted

as a function of ln(Ṫ ). However, as can be seen in this figure, the Linear fit 1 used to fit all five

data points is not optimal as that of Linear fit 2 which fits only the first four points. This shows the

possibility of having inaccurate DSC results especially with the 40 ◦C/min cooling rate run. Therefore,

to determine the crystallization temperature and enthalpy of the studied POM material, Runs 9 and

10 are not taken into consideration as they showed the previously described deviation. Whereas for

the determination of the melting temperature, all runs are considered as the heating rate was constant

at 10 ◦C/min for all of the performed runs.

To get the relative crystallinity evolution from the DSC runs, it is imperative to determine an

accurate baseline from which the area under the crystallization peak is calculated. This is done using

a MATLAB R2019b code with an example illustration presented in Figure 2.4. After running the

MATLAB script, the user is asked to specify four points; two before and two after the crystallization

peak (turquoise crosses in Figures 2.4a and 2.4b). These points are used to fit two different lines before

and after the peak (pink dotted lines). The user is then asked to specify the start and end of the

peak (purple circles). In between these two points, a first approximation of the relative crystallinity

is calculated and used to correct the purple baseline by the turquoise one in Figure 2.4 below the

42



2.2. DIFFERENTIAL SCANNING CALORIMETRY

Table 2.2 – Overview of the material characteristics of the studied POM determined using the DSC
measurements.

Run Ṫ (◦C/min) Tc,onset (◦C) Tc (◦C) Tm (◦C) ∆Hc (J/g)

1
1

154.1 152.3 184.0 158.0
2 154.1 152.7 183.3 152.6
3

3
152.6 149.8 180.9 152.1

4 152.2 149.5 180.3 155.9
5

5
151.7 148.2 178.4 155.9

6 151.8 148.9 177.8 158.4
7

10
149.8 147.4 176.9 153.5

8 149.9 146.9 176.9 156.4
9

40
144.0 139.7 174.9 164.8

10 144.1 140.3 175.4 165.6

0 1 2 3 4
144

146

148

150

152
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156

T
c,

on
se

t (
°C

)

DSC data
Linear fit 1
Linear fit 2

Figure 2.3 – The dependency of the crystallization onset temperature Tc,onset as a function of the
different cooling rates Ṫ along with two linear fits, Linear fit 1: data from Ṫ = 1, 3, 5, 10, 40 ◦C/min,
Linear fit 2: data from Ṫ = 1, 3, 5, 10 ◦C/min.
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(a) DSC thermogram for a cooling rate of 10 ◦C/min (Run
8) after running the MATLAB script.
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(b) Closer look at the crystallization peak and the baseline
determination technique.

Figure 2.4 – DSC thermogram obtained for POM using a cooling rate of 10 ◦C/min showing the
4-points baseline determination technique used to calculate the relative crystallinity evolution.

crystallization peak.

To compute the relative crystallinity evolution for the different cooling rates, one run is chosen

to represent each cooling rate since the error between the different runs at the same cooling rate was

considered negligible. The relative crystallinity α is computed using the corrected baseline by:

α(t or T ) = Area below the curve at t or T

Total area below the curve
. (2.1)

Figures 2.5 and 2.6 show the relative crystallinity evolution for the performed DSC measurements

versus temperature and time, respectively. These α results are used in Chapter 4 to determine some

parameters to describe the quiescent crystallization kinetics of POM.

2.3 Dynamic Temperature Ramp Tests

2.3.1 Technique Overview

Dynamic temperature ramp tests are rheological measurements used to study the behavior of a

viscoelastic material undergoing a temperature change. A constant strain and frequency are specified

and the material’s response is measured in order to determine its temperature dependence under these

conditions.
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Figure 2.5 – The calculated relative crystallinity
α versus temperature for the five cooling rates
used in the DSC measurements.
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Figure 2.6 – The calculated relative crystallinity
α versus time for the five cooling rates used in
the DSC measurements.

2.3.2 Experimental Set-up

The dynamic temperature ramp tests are performed using an ARES rheometer from TA Instru-

ments, Inc. with a plate-plate geometry. Two ramp tests are carried out one with a constant frequency

of 1 rad/s and a 0.3 % strain and another with a frequency of 3 rad/s and a 0.03 % strain. The heat-

ing/cooling rate used is 3 ◦C/min. To set-up the test, the following steps are followed:

1. Heat up the apparatus to 210 ◦C.

2. Set the zero gap between the plates.

3. Open the furnace, increase the gap and place the POM granules on the lower plate.

4. Reheat the apparatus.

5. Decrease the gap to 0.7 mm and clean-up in case of polymer overflow.

6. Run the test using the software interface.

2.3.3 Results

Figure 2.7 presents the results of the dynamic temperature ramp tests described in the previous

section. By observing the two curves, it is apparent that as the samples cool down from 210 ◦C until the

onset of crystallization their viscosity gradually increases. Whereas, after the start of crystallization,

a singularity appears and the viscosity increases more than two orders of magnitudes between 152
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Figure 2.7 – The complex viscosity measured
during two dynamic temperature ramp tests as
a function of temperature under constant fre-
quency specified in rad/s and constant strain
given in %.

Figure 2.8 – The mold produced to carry out the
injection molding trials.

◦C and 147 ◦C. Since these measurements were performed with a cooling rate of 3 ◦C/min, the

crystallization onset temperature can be deduced from the DSC measurements done at this cooling

rate and as summarized in Table 2.2, this temperature is around 152.4 ◦C. These rheological data are

used in Chapter 4 to identify the parameters of the viscosity model utilized in the simulation.

2.4 Injection Molding Experiments

2.4.1 Mold Description

A simple mold geometry is used to perform injection molding trials to obtain experimental data

that are needed to calibrate model parameters in the injection molding simulation presented in the

next chapters. The mold is designed to fulfill the following requirements:

• a long curved channel with the possibility of producing short shots,

• two different mold thicknesses (3 mm & 1.5 mm) and lengths.

To obtain the final design, numerical DoEs are carried out in Moldflow R⃝ where results such as the

freezing time of the gate and the pressure at multiple locations are compared and deemed acceptable

for the presented design. The produced mold is shown in Figure 2.8 whereas Figure 2.9 shows a sketch
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2.4. INJECTION MOLDING EXPERIMENTS

Figure 2.9 – Sketch of the injection-molded part including some characteristic dimensions in mm and
the location of the three pressure and temperature combination sensors (p-T-sensors) as well as the
insert’s location.
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2.4. INJECTION MOLDING EXPERIMENTS

Figure 2.10 – 3D-view of the full length 3 mm
thick part.

Figure 2.11 – 3D-view of the half length 3 mm
thick part.

of it with the design dimensions. In order to meet the requirements listed above, two mold cavities are

produced; one with a 3 mm thickness and another with 1.5 mm. Additionally, an insert is produced in

order to produce parts with half of the channel’s length. The insert’s position is represented in Figure

2.9 by the dotted gray line. As for the gray circles in Figure 2.9, they represent the four p-T-sensors

used to measure the pressure and temperature signals during the injection molding process. A 3D-view

of the 3 mm thick parts that can be produced by the presented mold are presented in Figures 2.10

and 2.11, showing the full length geometry and the half length one, respectively.

2.4.2 Filling and Packing Studies

Before starting the official experimental runs, filling and packing studies are performed on the four

different geometries of the produced mold. A filling study is done to determine the shot volume for

each geometry by trying to fill the cavity up to 99% without applying any holding pressure. Whereas a

packing study, it is used to find the appropriate holding time by specifying a suitable packing pressure

and varying the holding time until the weight of the part becomes constant indicating the freezing of

the gate.

For this work, the studies are made on an electrical injection molding machine (ENGEL E-Motion

440/220 T) with a material melt temperature of 220 ◦C. For the filling studies, a mold temperature of

80 ◦C is specified and for the packing studies the mold temperature is set at 110 ◦C and the holding

pressure at 80 MPa. A summary of the determined values is given in Table 2.3. One important thing
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Table 2.3 – Determined shot volumes and holding times from the performed filling and packing studies.

Geometry (abbrev.) Shot Volume (cm3) Holding time (s)

Full length, 3 mm thick (FL3) 42.0 16
Half length, 3 mm thick (HL3) 28.3 16
Full length, 1.5 mm thick (FL15) - 10
Half length, 1.5 mm thick (HL15) 26.8 10

to note is that for the full length part with a 1.5 mm thickness, it is not possible to fill the cavity

completely with the studied POM material under the recommended processing conditions. Therefore,

for this geometry a shot volume of 32 cm3 is used for the trials but it does not represent the cavity’s

volume.

2.4.3 Design of Experiments

The same electrical injection molding machine is used to run the experiments used in this work.

For all the performed runs, a melt temperature of 220 ◦C is chosen and the switch-over condition is

set by a volume of 10 cm3. The mold temperature, the injection velocity and the holding pressure

are varied in these runs. The upper and lower bounds of these process settings are different for the

four available mold geometries. This is due to the geometrical changes affecting the injection pressure

and solidification of the material. Table 2.4 summarizes the bounds of these variables. A design of

experiments (DoE) is defined for each geometry where the process settings are varied between their

upper and lower bounds as well as the middle values. These DoE are presented in Tables 2.5 to 2.8.

Fewer runs are performed for the 3 mm full length part due to the small injection velocity range (5

to 15 cm3/s) for which the injection process can happen without crossing the machine’s maximum

pressure limit of 240 MPa.

2.4.4 Pressure Signals

As mentioned in Section 2.4.1, pressure and temperature sensors are located at four different

positions in the mold. In this work, the main focus is on the pressure signal results measuring the

pressure in the cavity before the gate (P1), after the gate (P2), before half the length of the channel

(P3) and near the end of the channel (P4). Figures 2.12, 2.13 and 2.14 show some example pressure
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Table 2.4 – The upper and lower bounds of the variable process settings used in the injection molding
trials.

Process Settings Lower Bound Upper Bound

FL3 HL3 FL15 HL15 FL3 HL3 FL15 HL15

Injection Velocity, Vinj (cm3/s) 5 10 10 10 15 50 50 50
Mold Temperature, Tmold (◦C) 80 80 80 80 110 110 110 110
Holding Pressure, Phold (MPa) 80 20 50 50 110 80 110 110

Table 2.5 – DoE of the injection molding experi-
ments for the full length 3 mm thick part.

DoE Tmold (◦C) Vinj (cm3/s) Phold (MPa)

S1 80 5 80
S2 80 15 110
S3 95 5 80
S4 95 15 110
S5 110 5 80
S6 110 15 110

Table 2.6 – DoE of the injection molding experi-
ments for the half length 3 mm thick part.

DoE Tmold (◦C) Vinj (cm3/s) Phold (MPa)

V1 80 10 20
V2 80 30 20
V3 80 50 20
V4 80 10 50
V5 80 30 50
V6 80 50 50
V7 80 10 80
V8 80 30 80
V9 80 50 80
V10 95 10 20
V11 95 30 20
V12 95 50 20
V13 95 10 50
V14 95 30 50
V15 95 50 50
V16 95 10 80
V17 95 30 80
V18 95 50 80
V19 110 10 20
V20 110 30 20
V21 110 50 20
V22 110 10 50
V23 110 30 50
V24 110 50 50
V25 110 10 80
V26 110 30 80
V27 110 50 80
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Table 2.7 – DoE of the injection molding experi-
ments for the full length 1.5 mm thick part.

DoE Tmold (◦C) Vinj (cm3/s) Phold (MPa)

W1 80 10 50
W2 80 30 50
W3 80 50 50
W4 80 10 80
W5 80 30 80
W6 80 50 80
W7 80 10 110
W8 80 30 110
W9 80 50 110
W10 95 10 50
W11 95 30 50
W12 95 50 50
W13 95 10 80
W14 95 30 80
W15 95 50 80
W16 95 10 110
W17 95 30 110
W18 95 50 110
W19 110 10 50
W20 110 30 50
W21 110 50 50
W22 110 10 80
W23 110 30 80
W24 110 50 80
W25 110 10 110
W26 110 30 110
W27 110 50 110

Table 2.8 – DoE of the injection molding experi-
ments for the half length 1.5 mm thick part.

DoE Tmold (◦C) Vinj (cm3/s) Phold (MPa)

T1 80 10 50
T2 80 20 50
T3 80 30 50
T4 80 10 80
T5 80 20 80
T6 80 30 80
T7 80 10 110
T8 80 20 110
T9 80 30 110
T10 95 10 50
T11 95 30 50
T12 95 50 50
T13 95 10 80
T14 95 30 80
T15 95 50 80
T16 95 10 110
T17 95 30 110
T18 95 50 110
T19 110 10 50
T20 110 30 50
T21 110 50 50
T22 110 10 80
T23 110 30 80
T24 110 50 80
T25 110 10 110
T26 110 30 110
T27 110 50 110
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signals measured during the injection molding trials using the four different geometries. By observing

these plots, one can distinguish four different phases taking place during the injection molding process

by some characteristic pressure responses:

1. Velocity-controlled filling phase: the pressure increases linearly until the switch-over condition

is reached.

2. Pressure-controlled filling phase: a sudden pressure drop due to the usually smaller specified

holding pressure than the one experienced during the velocity-controlled filling phase.

3. Packing phase: a gradual increase of pressure as the packing starts, followed by a constant

pressure observed before the gate whereas after the gate a gradual decrease is observed as the

material solidifies.

4. End of packing phase: a sudden decrease in pressure before the gate due to a partially solidified

material followed by a gradual decrease to reach zero pressure as seen also after the gate.

Figures 2.12a and 2.12b show two example pressure signals measured during the injection of the

full length 3 mm thick cavity under the conditions S3 and S6 (refer to Table 2.5), respectively. It is

apparent that the low injection velocity of 5 cm3/s for the S3 run presented in Figure 2.12a led to

a long part filling time of around 9 s. Additionally, for the S3 run, the pressure plateau seen after

the switch-over highlights that the part was not fully filled before switching to the pressure-controlled

phase and therefore the holding pressure is first used to complete the filling and afterward for the

packing. This behavior is not observed in the S6 run presented in Figure 2.12b where the injection

velocity is higher at 15 cm3/s and the filling is nearly finished before switching over. In both examples,

there is an expected 20 MPa pressure drop at P1 from the set holding pressure.

Figure 2.13 shows four representative results of the pressure signals observed during the injection

of the half length 3 mm thick part. Figure 2.13a presents the pressure signals of the V1 run (refer

to Table 2.6) for which the part shorted e.g. not filled fully. The resultant parts are presented in

Figure 2.15a as well as another example of a short shot produced using the V11 process settings in

Figure 2.15b. These short shots are due to the early freezing of the gate which takes place after the

switch-over. The low holding pressure of 20 MPa which is applied after the switch-over to finish the

filling of the part is not sufficient to produce a complete part. Figure 2.13b shows the pressure signals

for the V9 run which produced a full part. An interesting phenomenon is observed in the presented V9
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(b) S6

Figure 2.12 – The pressure signals measured during the injection molding of the full length 3 mm thick
mold cavity for two different processing conditions: (a) S3, (b) S6.

signals around 10 s where the slope changes of the pressure drop in P2 and P3 could be an indication

of a partial remelting of the gate leading more material to enter the cavity. Additionally, near the

end of the packing phase, a slight increase in the P1 signal is observed in all example plots in Figure

2.13 affecting in turn the pressure decay slope in P2 and P3. This behavior can be explained by an

over-compacting before the end of the packing phase. Similarly as seen in Figure 2.12, since we use

a fixed switch-over condition for all experimental runs, a low injection velocity leads to having a less

than fully filled part before switching and therefore the pressure plateau seen in Figure 2.13d for V22

in comparison to the smooth switch-over seen in Figure 2.13c for V15.

As already mentioned in Section 2.4.2, it is not possible to produce fully filled parts using the full

length mold cavity with a 1.5 mm thickness. Therefore, all runs performed with this geometry under

the conditions presented in Table 2.7 created short shoted U-shaped channels. One example pressure

signal result is given in Figure 2.14a obtained during the W3 run. In this plot, P0 represents the

specific injection pressure and as can be seen it reaches the machine’s maximum injection pressure of

240 MPa without being able to fill the part. However, when using the insert to cut the channel length

by half, it became possible to fill the cavity for most of the process settings summarized in Table 2.8.

One representative result is presented in Figure 2.14b for the T20 run. One can observe the immense

loss of pressure in the cavity by observing the P3 signal. This is due to the thinness of the cavity

leading to faster polymer solidification.
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(b) V9
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(c) V15
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(d) V22

Figure 2.13 – The pressure signals measured during the injection molding of the half length 3 mm
thick mold cavity for four different processing conditions: (a) V1, (b) V9, (c) V15, (d) V22.
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Figure 2.14 – The pressure signals measured during the injection molding of the 1.5 mm thick mold
cavity: (a) using the full length geometry for condition W3, (b) using the half length geometry for
condition T20.

(a) V1 (b) V11

Figure 2.15 – Short shoted parts produced during the injection molding of the c mold cavity under
two processing conditions: (a) V1, (b) V11.
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(a) V3 (b) V19

Figure 2.16 – The location of the microtome cuts used to observe the crystal morphology using po-
larized optical microscopy in the half length 3 mm thick parts: (a) in the case of a short shoted part,
(b) in the case of a fully filled part.

2.4.5 Polarized Optical Microscopy

In order to visualize the different crystal morphologies that developed during the injection molding

process, microtome cuts are made at the sensor locations from four produced samples and analyzed

by polarized optical microscopy. The samples are taken from the injection of the half length 3 mm

thick cavity having V1, V3, V19 and V21 as process settings (refer to Table 2.6). Figure 2.16a shows

the location of the microtome cuts in the case of a fully filled part. Whereas, in the case of a short

shot such as for V1 and V19, the third cut is made near the end of the part as shown in Figure 2.16b

and annotated as Cut 3.

Figure 2.17 shows the results for V1 at the second pressure sensor located after the gate (P2) for

three different magnifications (Figure 2.17a: 25x, Figure 2.17b: 50x, Figure 2.17c: 100x). As a first

observation, it is apparent that as we move away from the wall to the core of the part the spherulites’

size increases since the crystals have time to form and grow under no shear conditions. Another

observation is the presence of a translucent skin layer indicating that the crystallites in this region are

smaller than the wavelength of the utilized light. These small crystallites in this layer are postulated

to have been formed under high shear conditions during the filling stage. In Figure 2.17, this layer’s

thickness is around 0.2 to 0.3 mm. Table 2.9 presents a summary of the approximately measured

thicknesses for the different samples and cuts.

In addition to having Table 2.9, Figures 2.18, 2.19 and 2.20 present the micrographs of all mi-
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(a) 25x (b) 50x (c) 100x

Figure 2.17 – Micrographs of the microtome cut made at the second pressure sensor located after the
gate (Cut 2) for the V1 processing condition under three different magnifications.

Table 2.9 – The measured skin layer thickness obtained from analyzing the micrographs from the
polarized optical microscope.

Skin Layer Thickness (mm)

V1 V3 V19 V21

Cut 1 0.2-0.4 0.1-0.2 0.14-0.2 0.06-0.16
Cut 2 0.2-0.3 0.11-0.13 0.12 0.09
Cut 3 0.1 0.07-0.09 - 0.04
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(a) V1 (b) V3 (c) V19 (d) V21

Figure 2.18 – Micrographs of Cut 1 using the same magnification of 25x for the four studied processing
conditions: (a) V1, (b) V3, (c) V19, (d) V21.

(a) V1 (b) V3 (c) V19 (d) V21

Figure 2.19 – Micrographs of Cut 2 using the same magnification of 25x for the four studied processing
conditions: (a) V1, (b) V3, (c) V19, (d) V21.

crotome cuts with a magnification of 25x. By analyzing the figures and the data in the table, it is

possible to study the effect of the mold temperature and the injection velocity on the thickness of

the skin layer. As the mold temperature increases from 80 ◦C in V1 and V3 to 110 ◦C in V19 and

V21, the skin layer is slimmer. This is to be expected as a higher mold temperature leads to a slower

solidification of the polymer melt and therefore a smaller skin layer. Similarly, increasing the injection

velocity from 10 cm3/s in V1 and V19 to 50 cm3/s in V3 and V21 leads to a thinner skin layer as the

molten material has less time to fully crystallize and solidify near the mold surface. Additionally, the

skin layer thickness becomes thinner the further it is from the injection location. This is highlighted

by comparing the different cuts made at the same process condition. The cuts made before the gate

shown in Figure 2.18 have a skin layer around two times thicker than the ones made near the end of

the part presented in Figure 2.20.
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(a) V1 (b) V3 (c) V19 (d) V21

Figure 2.20 – Micrographs of Cut 3 using the same magnification of 25x for the four studied processing
conditions: (a) V1, (b) V3, (c) V19, (d) V21.

2.5 Conclusion

In this chapter, the material used in this work was presented along with two types of material

characterization experiments. The first type was the DSC measurements which provided information

about the material’s crystallization behavior under different cooling rates. This made it possible to

determine the melting temperature of the material at 178.88 ◦C and the crystallization enthalpy of

155.35 J/g. The relative crystallinity evolution with temperature and time under the various cooling

rates was also determined and will be used to quantify the crystallization kinetics of POM in Chapter 4.

The second type of experiment is a dynamic temperature ramp test used to identify the temperature-

dependency of the viscosity and observe its behavior after the onset of crystallization. This data will

similarly be used to determine the viscosity model parameters later on in the work.

A mold was designed to provide the possibility to produce four different geometries varying by

length and/or thickness in addition to measuring the pressure signals during the injection molding

process at four locations in the cavity. To set-up the injection molding trials, filling and packing

studies were performed followed by the official trials where for each geometry three process settings

are varied. The variable settings are the mold temperature, the injection velocity and the holding

pressure. Some characteristic pressure signals were analyzed in this chapter to give an overview of the

obtained results that are used in this work for the calibration of model parameters.

Some of the injection molded samples were studied using a polarized optical microscope to get

a deeper insight into the crystal morphologies and the different layers that form during the process.

Microtome cuts were made at the sensor locations for different process settings to study the effect of

mold temperature and injection velocity on the morphology and skin layer thickness. By observing
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the various micrographs, it became apparent that the higher the mold temperature and the injection

velocity the thinner the skin layer is.
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3.1 Introduction

In this chapter, the feasibility of using surrogate modeling to calibrate parameters in an injection

molding simulation is studied. Three modeling parameters are chosen for the calibration in this study.

These are the heat transfer coefficients during filling and packing as well as the pressure-dependency

coefficient in the Cross-WLF viscosity model [117,118]. The before-mentioned parameters are known

to affect the pressure results in the simulation and their experimental determination is challenging

and time-consuming [119–121]. For this calibration, the half length 3 mm thick geometry presented

in Figure 2.11 is utilized and the three modeling parameters are calibrated using the experimental P2

pressure sensor data (refer to Figure 2.9).

In this feasibility study, the accuracy of three regression-based surrogate modeling techniques and

two design of experiment methods in their ability to approximate the pressure signal at a single node

in the simulation is studied. The proposed modeling approaches are the following:

1. a non-linear regression model of proper orthogonal decomposition coefficients trained using a

fixed Latin Hypercube sampling (POD-NLR),

2. a polynomial chaos expansion model fitted with a least-squares optimization technique using the

same fixed Latin Hypercube sampling points (Regular-PCE-LS), and

3. a polynomial chaos expansion model fitted with a least-squares optimization technique but using

an adaptive DoE that is enriched while generating the model (Adaptive-PCE-LS).

The models are trained using 30, 60 and 120 simulation runs and their predictions are assessed

accordingly. The three models are built by varying a total of six input parameters, including process

settings and modeling variables. The process parameters are the injection velocity, coolant inlet tem-

perature, holding pressure and the modeling parameters, as already mentioned, are the heat transfer

coefficients during filling and packing as well as the pressure-dependent coefficient in the Cross-WLF

viscosity model. After obtaining the surrogate models, a sensitivity analysis is performed to study

the contribution of each varied parameter to the pressure signal as well as their interaction with each

other. Finally, using the measured experimental pressure data and one of the generated surrogate

models, the modeling parameters are calibrated and the error between the optimized simulation and

the default one is compared.
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3.2 Software Tools

3.2.1 Injection Molding Simulation

The injection molding simulations are performed using AutodeskR⃝ Moldflow R⃝ Insight 2021.1

(AMI2021.1). The simulations are automated with the help of the three command line control func-

tions. This set of utilities allow the use of third-party software in tandem with the simulation runs

in order to automatize extensive studies such as optimizations and sensitivity analyses... The main

functions are editing, running, and retrieving results from a user-customized Moldflow R⃝ analysis au-

tomatically through a command line interface. The following are the available utilities:

1. studymod : This command generates a modified simulation study from a base study using an

XML format modifier file (modified geometry, boundary condition, process/model parameters).

2. runstudy : This command launches a new simulation analysis.

3. studyrlt : This command extracts simulation results from a finalized analysis in simple text or

XML file format.

3.2.2 Python Uncertainty Quantification Library

The Python Uncertainty Quantification (pyUQ) library is a Bosch proprietary Python tool pro-

viding the user the ability to perform uncertainty quantification (UQ) on simulation models using

state-of-the-art UQ models and methods. The methods cover the design of experiments, surrogate

modeling, sensitivity analysis and statistical analysis. The pyUQ module provides functions that can

be modified or extended to act as an interface between simulation tools and UQ methods. Parameter

uncertainties are defined in this tool using standard distributions (uniform, normal, Gamma, Beta)

by stating the parameter’s upper and lower limits. The module offers four basic modern DoEs such

as Standard-Monte Carlo, Quasi-Monte Carlo, Latin Hypercube sampling and more refined sparse

grid experimental methods like Non-Intrusive Spectral Projection. There are five different surrogate

modeling techniques that this library supports:

1. Polynomial Chaos Expansion (PCE) using least square (LS) as optimization methods,

2. PCE using least angle regression (LAR) as optimization method,

3. Gaussian Process Regression (GPR),
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4. Pseudo Spectral Projection method (PSP),

5. Stochastic Collocation method.

The simulation results are stored in a Hierarchical Data Format (HDF5) to be able to efficiently

perform statistical analysis or surrogate model generation using this tool. HDF5 is a folder-like storage

structure, which saves data in compressed format and allows data slicing leading to efficient memory

usage. Apart from these features, the main highlight of this tool is its active learning algorithm with

an adaptive DoE generation which is one of the methods evaluated in this work.

3.2.3 MATLAB

The POD model order reduction and the non-linear regression of the respective POD-based co-

efficients are implemented in MATLAB R2019b. The fmincon built-in function of the optimization

toolbox is used for the optimization of the POD-based surrogate model.

3.3 Simulation Environment

The 3D high-fidelity simulation model is set-up in AMI2021.1 using the respective POM material

card given in the Moldflow R⃝ database. The simulations are recreating the injection molding experi-

ments for the half length 3 mm thick part presented in Section 2.4 along with example pressure signals

in Figure 2.13. The simulation consists of a cooling, fill and pack analyses. Therefore, the simulation

model included cooling channels meshed as beam elements and the part as well as the feed system

(nozzle & flange) meshed using tetrahedral elements with 24 layers through the thickness. The feed

system is defined as hot runner in the simulation model. Lateral and top views from the meshed model

are shown in Figure 3.1a and Figure 3.1b, respectively. The process settings of the base simulation

are defined according to imported data from the ENGEL sim link software tool. These include the

filling and packing profiles along with the switch-over ram position and the machine settings. A single

simulation requires around 75 minutes to be completed on a workstation with a 4.10 GHz processor

and 32 GB RAM.

The various surrogate models are obtained by modifying six parameters in the simulation. Three

of which are the process parameters changed during the experimental trials as presented in Table 2.4

for the half length 3 mm thick part (HL3). Since a cooling analysis is performed in the simulations,
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(a) Lateral view (b) Top view

Figure 3.1 – The meshed simulation model including the part (dark green), runner and sprue (light
green), cooling channels (blue) and feed system (red).

Table 3.1 – Varied parameters in the simulation runs used to generate the surrogate models along with
their upper and lower bounds.

Surrogate Model Variables Lower
Bound

Upper
Bound

Injection Velocity, Vinj (cm3/s) 10 50
Coolant Inlet Temperature, Tc,in (◦C) 84 114
Holding Pressure, Phold (MPa) 20 80
Heat transfer coefficient (filling), HTCfilling (W/m2◦C) 5000 10000
Heat transfer coefficient (packing), HTCpacking (W/m2◦C) 1000 5000
Viscosity model parameter, D3 (K/MPa) 0 0.4

the inlet cooling temperature Tc,in is varied such as Tc,in = Tmold + 4 of the Tmold set experimentally.

The other three varied parameters are the heat transfer coefficient during filling (HTCfilling) and

during packing (HTCpacking) as well as the pressure-dependency coefficient (D3) of the Cross-WLF

viscosity model (refer to Appendix A). Table 3.1 summarizes the surrogate models’ variables and their

bounds. The HTC ranges are chosen in reference to the default Moldflow R⃝ values (HTCfilling = 5000

W/m2◦C, HTCpacking = 2500 W/m2◦C). As for the pressure-dependent viscosity model parameter,

the variation range goes from 0 up to 0.4 K/MPa in order to cover the actual behavior of POM and

other typical semi-crystalline thermoplastics such as PP [122].
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Table 3.2 – Definition of the testing simulations for evaluating the performance of the surrogate models.

DoE
Name

Vinj

(cm3/s)
Tc,in (◦C) Phold

(MPa)
HTCfilling

(W/m2◦C)
HTCpacking

(W/m2◦C)
D3
(K/MPa)

Test 1 36.0 98.2 55.1 5175 4522 0.33
Test 2 15.5 87.3 74.7 9751 2143 0.07
Test 3 45.6 109.4 47.5 8092 3945 0.21
Test 4 27.2 106.2 25.9 7338 1640 0.12

3.4 Proposed DoE and Surrogate Modeling Techniques

In this study, three different combinations of DoEs and surrogate modeling methods are used

in order to compare their performance in predicting the pressure signal results at one surface node

corresponding to the location of the second sensor in Figure 2.9. Additionally, the total number of

simulations used for the training phase is varied such as 30, 60 and 120 simulation runs are considered

and their performance is tested using four additional runs. The testing simulations are summarized

in Table 3.2.

3.4.1 POD-NLR

The POD-based surrogate model whose parameters are fitted using non-linear regression (NLR)

is referred to as POD-NLR. To generate this model, LHS is used to obtain the DoEs according to the

needed total number of training simulations S. The obtaining of the final model requires the following

steps after running all the simulations according to the DoE:

1. Pre-processing : the various nodal pressure results Pi (i = 1, · · · , S) are pre-processed by shifting

all corresponding time series by tstart so that all non-zero signals start at t0 = 0 s and followed

by the resampling of the pressure data using a common time vector from 0 to 50 s with 0.02 s

time steps. This step is important given that the different simulation settings lead to different

times at which the flow front reaches the sensor node and produces a non-zero pressure signal.

2. Model order reduction: the POD basis functions φ are calculated by solving the eigenvalue

problem PP TV = λV where the eigenvectors V corresponding to the most influential eigenvalues

66



3.4. PROPOSED DOE AND SURROGATE MODELING TECHNIQUES

λ constitute the basis functions able to reconstruct the pressure signal by:

P
(s)
reconstructed =

n∑
i=1

Γ(s)
n φn (3.1)

where s is the simulation number, n is the number of modes or basis obtained according to a

specified error value and Γ(s)
n is the POD parameter for a specific mode n and simulation s. The

truncation criterion is done according to an error value of ϵ = 10−3 which only selects the modes

corresponding to eigenvalues that fulfill the condition λ
λmax

≥ ϵ.

3. Model fitting : a least-squares regression of a second-order polynomial is used to train a model

to predict the POD parameters Γ and the time shift value tstart as follows:

Γ(s)
n = a(n) + b

(n)
i X

(s)
i + c

(n)
ij X

(s)
i X

(s)
j (3.2)

t
(s)
start = d+ eiX

(s)
i + fijX

(s)
i X

(s)
j (3.3)

where Xi and Xj are the surrogate model input variables with i ̸= j representing the number

of variables (1, · · · , 6) and a, b, c, d, e, f are the surrogate parameters. In equations 3.2 and 3.3

the implicit Einstein summation convention is used for indexes i and j. This implementation is

restricted to bilinear regression in order to mitigate overfitting the data.

3.4.2 Regular-PCE-LS

The same LHS DoEs used to train the POD-NLR model are employed as inputs to a second-order

PCE-based surrogate model. The model parameters are trained using least-squares regression and

thus referred to as regular-PCE-LS since the DoE is fully predefined. The PCE model is generated

using the pyUQ library using the following steps:

1. Pre-processing : similar to POD-NLR, a resampling step is performed to have a unique time

index starting with t0 = 0 s and spanning to 50 s with 0.02 s time steps.

2. Polynomial chaos expansion: since the surrogate model input variables have a uniform dis-

tribution, after applying the Gram-Schmidt orthogonalization to equation 1.43, the Legendre

polynomial family is obtained and thus used as basis functions to represent the pressure signal

results from the simulation. A hyperbolic truncation of 1 is utilized to generate the model which
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signifies that all interaction effects are considered in the PCE basis. Additionally, the PCE re-

gression order is estimated by pyUQ using heuristics and in this case a second-order regression

is used.

3. Model fitting : the algorithm uses the pressure time-dependent training data to solve an optimiza-

tion problem which minimizes the squared residuals between the simulation’s pressure signals

and the predicted output of the PCE model. The solution of the least-squares optimization

problem is the vector containing the polynomial coefficients.

3.4.3 Adaptive-PCE-LS

A sequential design of experiment (SDOE) is used to build iteratively a DoE from a big candidate

DoE obtained with QMC according to the importance of the input variables. The surrogate model

utilizes PCE and is trained using least-squares regression. This model is generated using the pyUQ

library and is referred to as adaptive-PCE-LS since its DoE is enriched as the model is being generated

making it an adaptive approach. Therefore, given a sample set, the surrogate model generation follows

the same steps presented in regular-PCE-LS. The main difference between the two methods lies in the

iterative steps needed to build the whole surrogate model by updating the DoE.

The algorithm starts with an initial small LHS DoE of 10 simulations and is enriched after each

iteration with 5 additional sample points from a large QMC candidate DoE (1000 samples). The

enrichment is done via the bootstrap method [123] which calculates the local variances of the surrogate

model and chooses the new sample points that lead to the maximum variance. In other words, it

performs a UQ analysis on the simulation results to estimate which parameters contribute most to the

statistical fluctuations. This process is repeated until convergence in terms of maximum simulations

S of 120 or a global error threshold E of 10−2 is achieved.

The surrogate model is assessed by cross-validation using the training data set with the leave-

one-out error method such as the model is generated from S − 1 simulations and evaluated on the

remaining one simulation result. The standard error metric used to evaluate the surrogate model after

each iteration is its global error. This error value is an average of a scalar model output predefined

by the user. In this work, the selected scalar quantity corresponds to the mean value of the pressure

vector at the studied node.
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Figure 3.2 – Workflow for generating an adaptive surrogate model using the pyUQ active learning
algorithm.

Table 3.3 – An overview of the proposed DoE and surrogate modeling techniques.

Surrogate model
Acronym

DoE Technique Surrogate model
Technique

Fitting Method

POD-NLR Latin Hypercube Proper orthogonal
decomposition

Least-squares re-
gression

Regular-PCE-LS Latin Hypercube Polynomial chaos
expansion

Least-squares re-
gression

Adaptive-PCE-LS Sequential DoE
(LHS & QMC)

Polynomial chaos
expansion

Least-squares re-
gression

The flowchart in Figure 3.2 presents a summary of the steps followed while generating the adaptive-

PCE-LS surrogate model using an active learning/adaptive approach.

For the sake of clarity, the characteristics of the three studied surrogate models are summarized

in Table 3.3.

3.5 Evaluation Strategy

To evaluate and compare the various surrogate models, the root mean squared error (RMSE) is

used. Let the surrogate model response and the true values of the high-fidelity simulation model or

experiment be represented by Ŷ and Y , respectively. Using these notations, the RMSE is computed

by evaluating the surrogate model pointwise on a given test data set, such as:

RMSE(Y, Ŷ ) =

√ 1
n

n∑
i=1

(Y i − Ŷ i)2 (3.4)
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where n is the total number of data points. In this work, this error is normalized using the min-max

normalization method to be able to compare the various surrogate modeling techniques:

Normalized RMSE(Y, Ŷ ) = RMSE(Y, Ŷ )
Ymax − Ymin

. (3.5)

3.6 Optimization

In this feasibility study, an optimization routine is performed to identify the uncertain simulation

model parameters: HTCfilling, HTCpacking and D3. For these purposes, the sensor data from the 27

experimental runs presented in Table 2.6 are utilized. The optimization problem aims at minimizing

the difference between the experimental results Y exp and the surrogate model predictions Ŷ by varying

the respective uncertain input parameters of the surrogate model. It can be represented as follows:

find V ar = (HTCfilling, HTCpacking, D3),

argmin
27∑

i=1
∥Y exp

i (V) − Ŷi(X)∥,

with V = (Vinj , Tc,in, Phold),

X = (Vinj , Tc,in, Phold, HTCfilling, HTCpacking, D3),

s.t. 5000 ≤ HTCfilling ≤ 10000 (W/m2◦C),

1000 ≤ HTCpacking ≤ 5000 (W/m2◦C),

0 ≤ D3 ≤ 0.40 (K/MPa).

3.7 Results and Discussion

3.7.1 Comparison of Surrogate Models

The performance of the three surrogate model techniques is assessed by their ability to predict

the pressure signal at a surface node in simulations unseen by the model. In this work, those test

simulations are presented in Table 3.2. Although the total simulated time is around 48 s, the main

focus is on the pressure signal between 0 and 22 s. This interval includes the filling phase between 0

and ∼2 s, the packing phase till ∼18 s and the start of the cooling phase until the pressure goes to 0

MPa before 22 s. Therefore, all the error metrics and plots consider only this time interval.
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Figure 3.3 – Predicted pressure signals by the three proposed surrogate models after training with 30
simulations in comparison to the true high-fidelity simulation results for four test cases.
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Figure 3.4 – RMSE of the three studied surrogate modeling methods after training with 30 simulation
runs.

Figure 3.3 presents the models’ predictions obtained after using 30 training simulation runs in

comparison to the true high-fidelity simulation results. At first glance, it seems that all three surrogate

models are able to capture the main features of the pressure signal after only 30 training simulations.

However, one can distinguish some particular discrepancies such as the inability of the POD-based

model to predict the tstart for Test 2 and error of the adaptive-PCE for estimating the pressure at the

end of packing in Tests 3 and 4. Additionally, there are deviations by predicting the pressure peak at

the end of the filling phase for all surrogate models.

A quantitative analysis of the performance of the different surrogate models is given in Figure 3.4,

where the normalized RMSE is plotted for the four test simulations. The average normalized RMSEs

of 0.084, 0.093 and 0.119 for POD-NLR, regular-PCE-LS and adaptive-PCE-LS, respectively, show

that the POD-based surrogate model is slightly more accurate in recreating the simulation results

after training with 30 high-fidelity simulations than the PCE-based models.

Looking to increase the prediction capability, the number of simulations used to train the surrogate

models is doubled to 60. Overall, this increase in training simulations led to noticeable improvements

in the pressure signal predictions of the test runs as shown in Figure 3.5. For example, by comparing

Figures 3.3b and 3.5b, the POD-based model is now able to better predict the tstart for Test 2 as

well as both PCE-based models can estimate the pressure result more accurately during the packing

phase. In general, there is still room for improvements when estimating the pressure for Test 4 as well

as predicting the pressure peak at the end of filling and the time at which the pressure goes to zero

72



3.7. RESULTS AND DISCUSSION

at the start of the cooling phase.

Figures 3.6 shows the normalized RMSE and for the three studied surrogate modeling methods

after training them with 60 simulation runs. The increase in training points improved the accuracy

of all models as shown by the average normalized RMSE of of 0.076, 0.082 and 0.10 for POD-NLR,

regular-PCE-LS and adaptive-PCE-LS, respectively. Unexpectedly the RMSE for the POD-NLR and

regular-PCE-LS in the Test 4 increased from 3.7 % to 9.2 % and from 5.5 % to 12.1 %, respectively,

when increasing the number of training simulations. This could be due to a slight overfitting.

As final attempt to improve the surrogate models’ performance
”
especially for the case of Test 4,

120 simulations are used to train them. Figure 3.7 presents the pressure evolution as a function of

time for all four test simulations. By comparing with Figure 3.3, it turns out that the performance of

all surrogate models improved after 120 training simulations and they appear to converge to the same

result. The models still struggle to predict the early pressure drop at the end of the packing phase in

Test 1 and Test 2 as shown in Figures 3.7a and 3.7b, respectively. Additionally, the estimation of the

pressure peak in the filling phase is a problematic location for all models and especially highlighted

in Test 4 as seen in Figure 3.7d. The normalized RMSE is presented in Figure 3.8. The error of all

surrogate models is lower than 8 % after training with 120 high-fidelity simulation runs. The model

based on PCE-LS using an adaptive DoE exhibits the lowest average error of 5.8 %.

Based on the previous results, all three surrogate modeling methods improved gradually their

performance with the increase of the number of training simulations. This fact is depicted in Figure

3.9, in which the average normalized RMSE of each model is plotted versus the number of simulations

used to train it. Both the POD-NLR and regular-PCE-LS surrogate models reached an average RMSE

below 10 % already after training with 30 simulations. Whereas the adaptive-PCE-LS model showed

the highest average error after 30 training runs and only reached comparable low errors to the other

two surrogate modeling techniques after 120 training simulations. For the two models using a fixed

DoE, increasing the number of training simulations from 30 to 120 led to a relatively small decrement

of the prediction error from 8.4 % to 6.3 % for the POD-based model and from 9.3 % to 6.3 % for the

PCE-based one. As for the adaptive-PCE-LS model, the average RMSE decreased significantly from

11.9 % to 5.8 % after training with 120 runs leading to much improved predictions.

By comparing the results of the two surrogate models based on PCE-LS, it appears that not only

the number of training simulations but the choice of DoE play an important role in determining the
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(d) Test 4

Figure 3.5 – Predicted pressure signals by the three proposed surrogate models after training with 60
simulations in comparison to the true high-fidelity simulation results for four test cases.
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Figure 3.6 – RMSE of the three studied surrogate modeling methods after training with 60 simulation
runs.

model performance. An adaptive DoE only leads to a better surrogate model performance when using

a relatively high number of training runs in comparison to another which uses a fixed random DoE. In

this particular work, running 120 high-fidelity simulations necessitates around 6 days and represents

an acceptable computational cost for gaining higher accuracy in front of a surrogate model generated

with a fixed random DoE. However, in case of a low number of available training simulation, a pre-

defined DoE is a pertinent alternative for surrogate model generation as corroborated by the results

of the POD- and PCE-based models with a fixed random DoE. In terms of global performance, the

POD-based model is slightly more accurate than the PCE-based models when using low number of

training simulations but as this number increases the difference between the two techniques becomes

negligible.

3.7.2 Sensitivity Analysis

A Sobol sensitivity analysis is performed using the generated adaptive-PCE-LS surrogate model

trained with 120 simulation runs. Figures 3.10 and 3.11 show the resultant first order and some of the

second order sensitivity indices, respectively.

The first order indices underline the contribution of a certain surrogate model parameter to the

variance of the pressure output as explained in Section 1.4.6.1. The sensitivity of the different process

settings shown in Figure 3.10a are in agreement with the common understanding of the injection

molding process. The injection velocity is the more sensitive factor during the filling stage because
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Figure 3.7 – Predicted pressure signals by the three proposed surrogate models after training with 120
simulations in comparison to the true high-fidelity simulation results for four test cases.
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Figure 3.8 – RMSE of the three studied surrogate modeling methods after training with 120 simulation
runs.
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Figure 3.9 – Average normalized RMSE over the five test runs for each surrogate model generated as
a function of the number of training simulations used.
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Figure 3.10 – The first order Sobol sensitivity indices obtained using the generated adaptive-PCE-LS
surrogate model trained with 120 simulation runs.

it determines directly the pressure need. On the other hand, the holding pressure is naturally the

more sensitive parameter during the packing phase, just after the switch-over till the time when the

gate is completely solidified. After which the contribution of the coolant inlet temperature is the

main driver of part shrinkage and therefore pressure development. The sensitivity of the HTC values

and the pressure-dependent viscosity coefficient is presented in Figure 3.10b. During the filling and

the beginning of the packing phase, the pressure signal is highly sensitive to changes of the pressure-

dependent viscosity coefficient D3, which is in principle an expected result given the natural impact

of the viscosity model in the simulation of the filing stage. As for HTCpacking, it appears to affect the

pressure output mainly at the time in which the gate freezes during the packing phase. Finally, it turns

out that the HTCfilling has no effect on the pressure results during the filling phase. The sensitivity

of HTCfilling after 20 s is certainly an artifact of the surrogate model, because this parameter should

not play any role at this time in the high-fidelity simulation.

Figure 3.11 presents some of the second order sensitivity indices representing the most important

interactions between the surrogate model parameters as a function of time in relation to their combined

contribution to the output pressure. During the filling phase, the main interaction is given by the

injection velocity and D3. As for the beginning of the packing phase, the most important interactions

are given by the holding pressure along with both the injection velocity and D3. Whereas, along

the packing phase, it turns out that there is not significant two-parameter relations affecting the
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Figure 3.11 – The second order Sobol sensitivity indices obtained using the generated adaptive-PCE-LS
surrogate model trained with 120 simulation runs.

pressure development. Interestingly, at the time when pressure strongly drops during the packing

phase, probably associated to the freezing of the gate, pressure development is controlled by the

interaction between the holding pressure and the coolant inlet temperature. The interaction between

HTCpacking and D3 after 20 s is difficult to explain in terms of polymer physics, but eventually reveals

some subtleties caught in the complexity of the simulated phenomena.

In general, such sensitivity analyses are helpful in understanding the effect of parameters on spe-

cific output results. One way they can play an important role in surrogate model generation is by

pinpointing the most influential parameters at the regions in which the model exhibits the large errors.

For example, at the end of the filling phase, the models are not fully capable to predict the correct

pressure drop, as can be seen in Figures 3.7c and 3.7d . A possible way to improve these predictions

is by adding DoE points where we mainly vary the injection velocity, holding pressure and D3 as their

first and second order sensitivity indices show their high contribution to the output in this region.

3.7.3 Modeling Parameter Calibration

All three models performed similarly after training with 120 high-fidelity simulations as shown in

Figure 3.9. The POD-based surrogate model is used for the parameter optimization as the coupling

of this particular model implementation with the optimization algorithm presented in Section 3.6

was straightforward in comparison with the other surrogate model implementations. The goal of this

calibration is to identify the optimal uncertain simulation model parameters: HTCfilling, HTCpacking
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Table 3.4 – The model and boundary condition parameters used in the default simulation and the
ones obtained in the optimization use case.

Simulation HTCfilling

(W/m2◦C)
HTCpacking

(W/m2◦C)
D3 (K/MPa)

Default 5000 2500 0.076
Optimization 9520 3520 0.400

and D3. The optimized parameters are summarized in Table 3.4 along with the default Moldflow R⃝

values for the HTCfilling and HTCpacking as well as the pressure-dependent viscosity parameter given

in the Moldflow R⃝ material card (D3) for the utilized POM material.

One of the main objectives of this optimization is the identification of material parameters or

boundary conditions for enabling a more accurate estimation of the pressure field in a high-fidelity

injection molding simulation. To show the impact of this parameter calibration, the experimental

DoE is simulated using both the optimized parameters and the default parameters given in Table 3.4.

The simulated pressure signals at the sensor location (taken from a surface node) are compared to the

experimental pressure signals at that position. Four example DoEs are shown in Figure 3.12. In all

cases, the simulation using the optimized parameters is closer to the experimental data than using the

default parameters. The experimental setting showed in Figure 3.12a corresponds to V1 (refer to Table

2.6), for which the cavity was not filled completely (short shot) as seen in Figure 2.15a and both default

and optimized simulations were not able to predict this event. This failure in the simulation can be

related to the default solidification criterion, which defines the melt-to-solid transition at a constant

temperature and oversimplifies the crystallization phenomena occurring in a wide range of cooling

rates. In any case, the simulation results using the optimized parameters show more accurate pressure

estimations during the packing phase as seen in Figures 3.12b and 3.12d. However, the estimation of

the filling time and maximum pressure at the end of filling are less accurate than those obtained with

default parameters. This issue is certainly due to the high value of the optimized pressure-dependent

viscosity coefficient, which leads to higher viscosities and thus longer filling times. The prediction

of the time when the pressure goes to zero is also prone to further improvement for both default

and optimized simulations. This shortcoming should be also strongly related to the current simple

solidification criterion.
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Figure 3.12 – Comparison between the experimental pressure signals and those obtained by the simula-
tion using the default HTCfilling, HTCpacking and D3 values (Simulation: Default) and the optimized
ones (Simulation: Optimization) for four example DoEs.
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Figure 3.13 – RMSE of the simulated pressure results obtained using the default HTCfilling,
HTCpacking and D3 values (Simulation: Default) and the optimized ones (Simulation: Optimization)
for the 27 experimental DoEs.

The normalized RMSE comparing the pressure predictions using the default and optimized param-

eters for all 27 experimental DoEs are given in Figure 3.13. The use of the optimized parameters led

to a huge decrease in the RMSE over all considered DoE cases. The simulation using default values

exhibited for some cases errors around 40 % which are decreased by more than half while using the

optimized parameters. However, both simulations are unable to recreate the short shots that were

observed experimentally for the molding trials with a low injection velocity of 10 cm3/s and a holding

pressure of 20 MPa, as seen in Figure 3.12a. Since the optimized value for pressure-dependent viscosity

parameter D3 is found at the upper bound of the surrogate model generation range, it can indicate

that the chosen intervals are insufficient or that the implemented models are intrinsically limited to

mimic all physical phenomena during the injection molding process.

3.8 Conclusion

Surrogate models of high-fidelity simulations, where the variables are material-dependent param-

eters, offer an alternative to standard experimental identification methods, as shown for the case of

injection molding in this feasibility study. The main aim of the method is the generation of an accurate

surrogate model, which enables the reverse engineering of the material-dependent parameters using

optimization techniques. Considering six independent variables, the POD-NLR and the regular-PCE-

LS surrogate models exhibit basically the same performance especially when using a low number of
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training data. By increasing the number of training data, the adaptive-PCE-LS technique improves

steadily the accuracy of the surrogate model and reaches a comparable performance with the fixed-

DoE techniques for 120 training simulations. The advantages of the adaptive-PCE-LS should appear

more evident when having a high number of variables.

Based on a Sobol sensitivity analysis using the generated surrogate model, we found that the

heat transfer coefficient during filling has a low impact on the pressure evolution at a sensor node

in front of the heat transfer coefficient during packing or the pressure-dependent viscosity coefficient.

By optimizing the HTCfilling, HTCpacking and the pressure-dependent viscosity model parameter D3

using measured pressure signals, it was feasible to calibrate the high-fidelity simulation in order to

decrease the deviations in the pressure estimation when compared to those obtained using default

simulation values. However, there is still a gap for getting an accurate estimation of the pressure fields

in injection molding, which could be closed with this methodology by including additional simulation

model parameters in addition to a refinement of the models implemented in the simulation as shown

in the next chapter by implementing a flow-induced crystallization model along with crystallization-

dependent PVT, viscosity and solidification criterion for semi-crystalline thermoplastic polymers.

83



3.8. CONCLUSION

84



Chapter 4

Use of Surrogate Modeling for
Calibrating a Flow-induced
Crystallization Model in Moldflow

Content

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Description of the Implemented Models . . . . . . . . . . . . . . . . . . . . . 86

4.2.1 Crystallization Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.2 Viscosity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.3 PVT Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.4 Solidification Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Implementation in Moldflow using Solver API . . . . . . . . . . . . . . . . . 93

4.3.1 Solver API Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.2 Implementation Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.3 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Surrogate Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.1 Input Variables and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.2 Generation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5 Calibration Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6.1 Surrogate Models Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6.2 Modeling Parameters Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6.3 Calibrated Models Used in Other Geometries . . . . . . . . . . . . . . . . . . . 114

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

85



4.1. INTRODUCTION

4.1 Introduction

In the previous chapter, the feasibility of using surrogate modeling to identify three modeling

parameters was studied. The study showed that it is possible to optimize these parameters using

experimental pressure results with the help of a surrogate model representing the simulated pressure

results at one surface node. Therefore, in this chapter, a similar methodology is followed in order

to calibrate a flow-induced crystallization model along with crystallization-dependent PVT, viscosity

and solidification models. These models are implemented in Moldflow R⃝ with the help of a user code.

In total, three surrogate models are used to identify the five uncertain modeling parameters and these

surrogates are generated using an analogous POD-NLR method as the one presented in Chapter 3.

Such as the pressure signals are first reduced using the proper orthogonal decomposition technique

followed by a least-squares regression of a second-order polynomial. This methodology is chosen as

it exhibited a good performance when using a low number of training data and a low number of

input parameters. After obtaining the optimized modeling parameters, the simulation performance is

assessed by studying how well it is able to predict the pressure signals, filling status and skin layer

thickness using the user-defined models in comparison to the experimental results. Additionally, the

calibrated models are tested using three various mold geometries in order to check the generality of

the identified parameters.

4.2 Description of the Implemented Models

4.2.1 Crystallization Model

The implemented crystallization model is a thermo-mechanical based model developed by Poitou

et al. [17] in the framework of irreversible thermodynamics given by equation 1.26. This model is

chosen since it takes into account both the flow-induced and quiescent crystallization in addition to

having a limited number of parameters to identify. In Poitou et al.’s model [17], the crystallization’s

kinetics are modeled using a temperature-dependent function χ(T ) defined by Hieber [66]. However,

in this work, this relation is substituted by the Avrami kinetic constant which is proportional to the

Avrami growth rate such as kAvrami ∝ G3 making it possible to be described using the Hoffman-

Lauritzen model and related to the previous function by χ(T ) = 1/kAvrami(T )1/n. Additionally, the

β is considered a constant value to be determined and not dependent on temperature as presented in
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the original model. The crystallization model only applies for temperatures lower than the material’s

melting temperature Tm(P ) and can be rewritten as follows for T < Tm(P ):

α̇(t) = (1 − α)
[
− 1
β

∂η

∂α
trD2 + nkAvrami(T )

1
n (− ln(1 − α))1− 1

n

]
, (4.1)

kAvrami(T ) = K0 exp
(

− 3Kg

T (T 0
m(P ) − T )

)
exp

(
− 3U⋆

R(T − T∞(P ))

)
(4.2)

where β, n, K0 and Kg are data-fitted parameters, D is the strain rate tensor, T 0
m(P ) is the pressure-

dependent equilibrium melting temperature, U⋆ is the activation energy for segmental jump of polymer

molecules with a universal value of 6270 J/mol, R is the gas constant and T∞ = Tg(P )−30 with Tg(P )

as the pressure-dependent glass transition temperature. The first term in equation 4.1 represents the

contribution of the flow-induced crystallization to the relative crystallinity evolution α̇ by computing

the viscosity derivative in respect to the relative crystallinity α represented by ∂η
∂α . Whereas the second

term in equation 4.1 is the contribution of the quiescent crystallization to α̇.

In order to reduce the number of model parameters, a linear relation is deduced between the kinetic

constants of the Hoffman-Lauritzen equation for the used POM material such as:

Kg = 6732 ln(K0) + 11296. (4.3)

This dependency is obtained by fitting equation 4.2 to the Avrami kinetic constant calculated using

the Avrami-Ozawa relation which relates the kinetic constants of both models using:

kAvrami(T ) =
[
− d

dT

(
kOzawa(T )1/n

)]n

(4.4)

where n is the Avrami exponent with a typical value of 3 representing instantaneous nucleation, same

parameter as in equation 4.1. In this work, since the DSC measurements presented in Section 2.2

are performed under non-isothermal conditions, kOzawa is first calculated under these conditions and

following that the kAvrami is obtained using equation 4.4.

Additionally, the pressure dependencies of the temperatures are defined by:

Tm(P ) = Tm(0) + b6P, (4.5)

T 0
m(P ) = T 0

m(0) + aP, (4.6)
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Figure 4.1 – Fitting surface relating the different pressure dependencies of the melting temperature
(b6), equilibrium melting temperature (a) and glass transition temperature (b).

Tg(P ) = Tg(0) + bP (4.7)

where b6, a and b are usually experimentally-determined parameters. The pressure dependency of

the melting temperature b6 is typically obtained from PVT measurements. However, the two other

dependencies are harder to determine experimentally for semi-crystalline materials. Therefore, for this

work, a relation between the three parameters is proposed by computing the crystal growth curves

as function of temperature for different pressure levels using the Hoffman-Lauritzen model given in

equation 4.2. For various combinations of a and b, the maximal growth rate is determined for the

different pressures and the corresponding temperatures are used to calculate b6. Figure 4.1 shows the

surface representing the relation between the dependencies such as:

b6 = f · a+ g · b (4.8)

where f = 0.629 and g = 0.4015 are the obtained fitted parameters. The melting temperature and

the equilibrium melting temperature are assumed to have the same pressure dependency such as

b6 = a = 0.175 K/MPa (value obtained from material’s supplier). As for the dependence of the glass

transition temperature, it can be deduced using equation 4.8 and found to be b = 0.161 K/MPa.
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Table 4.1 – The model parameters of the implemented crystallization model.

Model Parameter Value (units)

n 3 (-)

U⋆ 6270 (J/mol)

T 0
m(0) 199.7 (◦C) [124]

Tm(0) 178.9 (◦C)

Tg(0) -73.0 (◦C) [113]

b6 0.175 (K/MPa)

a 0.175 (K/MPa)

b 0.161 (K/MPa)

Table 4.2 – Material characteristics of the studied POM homopolymer obtained from the DSC mea-
surements.

Melting Temperature, Tm(0) Crystallization Enthalpy, ∆Hc

178.9 ◦C 155.35 J/g

4.2.1.1 Heat Source

As the polymer experiences a phase change while crystallizing, heat is released into the system,

otherwise known as the latent heat of crystallization. Therefore, an additional heat source is defined

that expresses the temperature increment ∆T as a function of crystallization such as:

∆T = α̇(t)∆t∆Hc

cp
(4.9)

where ∆t is the time step, ∆Hc is the crystallization enthalpy and cp is the specific heat. If the

temperature of the melt is higher than the material’s melting temperature (T > Tm(P )), remelting of

the crystals takes place leading to a negative ∆T = −α∆Hc

cp
.

The crystallization enthalpy is given in Table 4.2. As for the specific heat, it is typically defined

using Moldflow R⃝ material cards as a function of temperature including a crystallization peak. However,

since in this implementation a crystallization-dependent a heat source is included, the specific heat is

defined using a linear relation of the values presented in Table 4.3.
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Table 4.3 – The specific heat data used in the Moldflow simulations along with self-defined models.

Temperature (◦C) Specific Heat (J kg−1 K−1)

32 1286

220 1932

4.2.2 Viscosity Model

A modified Cross-WLF model is used to describe the viscosity in this implementation. This model

takes into account the crystallization dependency in addition to the temperature, shear rate and

pressure dependencies of the viscosity. The melt viscosity η is given by:

η(T, P, α, γ̇) = η0(T, P, α)
1 + (η0(T,P,α)γ̇

τ⋆ )1−λv

(4.10)

where γ̇ is the shear rate, τ⋆ is the critical stress level at the transition to shear thinning, λv is the

power law index in the high shear rate regime and η0 is the zero shear viscosity defined as:

η0(T, P, α) = D1 exp
(

−A1(T − Tref )
A2 + (T − Tref )

)
ϑ(α) (4.11)

where Tref = Tg(P ) with a pressure-dependency defined in equation 4.7 and D1, A1 and A2 are

data-fitted coefficients. As for ϑ(α), it is a function describing the crystallization-dependency of the

viscosity and is an extension of Kitano et al.’s relation [67] for concentrated suspension of particles.

This function is defined as:

ϑ(α) = 1
(1 − α

A)B
(4.12)

where A represents the maximum relative crystallinity reached by the material before it solidifies and

B is a data-fitted exponent. This coupling function differs from the one defined in equation 1.27 since

the function ϑ(α) = η0(T, P, α)/η0(T, P ). This choice is made to increase the effect of crystallization

on viscosity at low shear rates as done by Pantani et al. [15].

By excluding the crystallization-dependency ϑ(α), this Cross-WLF model still differs from the one

implemented by default in Moldflow R⃝, shown in Appendix A, since the A2 coefficient is not dependent

on pressure in this implementation. Including this dependency as done in default Moldflow R⃝ leads to

a linear relation between η0 and P for all temperatures. However, Rudolph et al. [125] showed a non-

linear dependency between them for low temperatures approaching the glass transition temperature
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Table 4.4 – The model parameters of the implemented viscosity model.

Model Parameter Value (units)

λv 0.1608 (-)

τ⋆ 398 000 (Pa)

D1 5.55 × 1013 (Pa.s)

A1 26.596 (-)

A2 28.875 (K)

of a polycarbonate material. Therefore, in this work, the main connection between the viscosity and

pressure is modeled using the glass transition temperature’s dependency.

To identify the parameters of the WLF model, the dynamic temperature ramp test performed at

a constant frequency of 3 rad/s and a 0.03 % strain with a heating/cooling rate of 3 ◦C/min shown in

Figure 2.7 is used. The viscosity results before the onset of crystallization at 152.4 ◦C are utilized to

determine the temperature dependency of the viscosity by fitting the following linear relation:

1
ln(η⋆/D1) = −A2

A1

1
(T − Tref ) − 1

A1
(4.13)

where η⋆ is the measured complex viscosity from the rheological test. Additionally, to describe the

shear rate dependency of the viscosity using the Cross model given in equation 4.10, Moldflow R⃝’s

material database is used. The model parameters for the Cross-WLF model are summarized in Table

4.4.

4.2.3 PVT Model

Since this work deals with a semi-crystalline thermoplastic material, the Pressure-Volume-Tempera-

ture (PVT) model is defined in relation to the relative crystallinity α. For these purposes, a simple

two-phase system is assumed. This makes it possible to describe the specific volume v using a mixing

law of the molten and solidified phases’ specific volumes, represented respectively as vm and vs. This

law is written as:

v = αvs + (1 − α)vm. (4.14)

The specific volumes vm and vs are described using the empirical Tait equation given in equations 1.29

to 1.31. The PVT model parameters are taken from Moldflow R⃝’s material database for POM and are
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Table 4.5 – The model parameters of the implemented PVT model.

Model Parameter Value (units)

b1m 8.452 × 10−4 (m3/kg)

b2m 5.65 × 10−7 (m3/kgK)

b3m 1.570 79 × 108 (Pa)

b4m 7.667 × 10−3 (1/K)

b5 448.15 (K)

b1s 7.446 × 10−4 (m3/kg)

b2s 2.944 × 10−7 (m3/kgK)

b3s 2.876 63 × 108 (Pa)

b4s 4.784 × 10−3 (1/K)

summarized in Table 4.5.

4.2.4 Solidification Model

A solidification criterion is used in an injection molding simulation to determine whether the

polymer is solidified or still flowing. This is usually defined by a no-flow temperature characteristic

to a material. However, the solidification of the material is highly dependent on the crystallization

degree present in it. Therefore, in this implementation, a crystallization-dependent solidification model

is utilized such as:

• if (α > A): solidified polymer

• if (α < A): flowing polymer

where A is the same parameter used to describe the dependency of the viscosity on crystallization

using the function given in equation 4.12.

Table 4.6 presents a summary of the implemented models in comparison to the ones used by the

default Moldflow R⃝ solver.

92



4.3. IMPLEMENTATION IN MOLDFLOW USING SOLVER API

Table 4.6 – Comparison between the implemented models and the ones used by default in a Moldflow
simulation for the injection molding of a semi-crystalline thermoplastic material.

Modeling Default MoldflowR⃝ Proposed Implementation

Crystallization Not included Poitou et al. [17] thermo-mechanical
model: FIC & quiescent crystallization

Viscosity Cross-WLF model without crystalliza-
tion dependency and a linear pressure
dependency

Modified Cross-WLF model with crys-
tallization coupling and a non-linear
pressure dependency

PVT 2-domain Tait model with a transition
temperature linearly dependent on pres-
sure

Tait model coupled with crystallization
and pressure

Heat Source Not included Heat created due to crystallization and
removed due to remelting of crystals

4.3 Implementation in Moldflow using Solver API

4.3.1 Solver API Feature

The Solver Application Programming Interface (API) in Moldflow R⃝ enables the user to create

their own C++ functions which the solver can call to calculate a property during an analysis. In

AMI2021.1, this feature allows user-defined models for viscosity, PVT, core shift, solidification and

fiber orientation. Additionally, due to the newly-introduced Advection API functionality, it is possible

to define material derivatives that are solved in time and space by the solver while providing the user’s

code access to the solution of the derivative(s).

To be able to use the Solver API feature, a shared library object needs to be compiled and copied

into the binary directory of the AMI installation folder. The project should be compiled with all

the header and C++ files needed to get a successful run when the Solver API option is enabled

in Moldflow R⃝. Most importantly, this should include the header files defining the user and utility

functions which represent the main link between Moldflow R⃝’s solver and the user’s code:

• Utility functions are functions that are already defined inside the Moldflow R⃝ solver which can

be called by the user’s code. They are used in order to gain access to information available to
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the solver during an analysis or to perform specific actions.

• User functions are defined by the user’s own code and are called by the solver during an analysis

when needed. Function calls depend on the options selected in the Solver API window in the

process settings of the current running study. Called functions need to be defined in the compiled

shared library file or the solver will exit with failure.

4.3.2 Implementation Code

The models presented in Section 4.2 are implemented using a C++ code in a Visual Studio project.

This project file includes a class for each user-defined model in which the class member functions are

used by the main source file to calculate the viscosity, crystallization and specific volume. The main

source file plays a major role in the implementation of the various models using the Solver API feature

as it defines the user functions called by the solver during an analysis. The structure of this file

resembles any other source file, it begins with #include directives which are read and interpreted

by the preprocessor when the Visual Studio project is compiled. In this work, the following C++

Standard Library headers are used:

• input/output library: <iostream>, <sstream>, <fstream>,

• error handling: <cassert>,

• numerics library: <cmath>, <math.h>.

To be able to obtain the relative crystallinity α at a specific node in the simulation at time t, the

crystallization model equation given by equation 4.1 needs to be solved in time and space. This is

possible using the new Solver API advection functionality through the new user functions recognized

as UserNodeFields. The user’s code can access the integration results of the defined equation using

the GetUserNodeField utility function.

In total, five main user functions are defined in the C++ code to compute:

• relative crystallinity: SolverUserHb3dUserNodeFieldsEvolution,

• viscosity: SolverUserHb3dViscosityAtNode,

• specific volume: SolverUserHb3dSpecificVolumeAtNode,

• heat generation/loss: SolverUserHb3dTemperatureIncrementAtNode,
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• solidification criterion: SolverUserHb3dSolidificationAtNode.

These functions necessitate access to the model parameters, this is done by defining the path of the text

files containing these parameters in the Moldflow R⃝ simulation. Example codes for these functions can

be found in the installed directory folder of Moldflow R⃝ Insight and code explanations on the Autodesk

website [126].

To sum up, the flowchart presented in Figure 4.2 is provided as an overview of the implemented

code which is compiled to a shared library file in the form of a dynamic-link library (DLL) to be used

during the various Moldflow R⃝ simulation runs presented in this chapter.

4.3.3 Simulation Environment

Similarly to the simulation model used in Chapter 3, the half length 3 mm thick geometry is again

used to perform the simulation runs in this implementation. The 3D meshed model along with the

feed system and cooling channels are presented in Figure 3.1. For the material data, the POM material

card from Moldflow R⃝’s database is edited to have a linear specific heat relation with temperature as

given in Table 4.3. The process settings of the base simulation are similarly defined using imported

data from the ENGEL sim link software tool.

Additionally, since in this work multiple user-defined models are implemented, the Solver API

option should be enabled as well as selecting a user-defined viscosity, PVT and solidification models.

Since the crystallization model is defined using the Advection functionality, it does not have its own

drop-down option but if the SolverUserHb3dUserNodeFieldsEvolution user function is compiled in the

code it will be taken into account. For the model parameters, text file paths need to be provided by

the user in the parameter text strings in Process Settings > Advanced options... > Solver API window

in Moldflow R⃝.

In this implementation, a single simulation requires around 110 minutes to be completed on a

workstation with a 4.10 GHz processor and 32 GB RAM. In order to generate the different surrogate

models, the automation utilities available in Moldflow R⃝ are utilized to run efficiently the multiple

simulations needed, refer to Section 3.2.1 for more information concerning this topic.
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Figure 4.2 – Flowchart representing the link between the Moldflow solver (turquoise nodes) and the
implemented C++ code used to define the user models (gray nodes), DLL=Dynamic-link library.
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Table 4.7 – The process settings used in the basis simulations for the three generated surrogate models.

Experimental
DoE Name

Surrogate
Model Name

Tc,in (◦C) Vinj (cm3/s) Phold (MPa)

V6 SM1 84 50 50
V14 SM2 99 30 50
V27 SM3 114 50 80

Table 4.8 – The surrogate model variables with their upper and lower bounds.

Surrogate Model Variables (units) Lower Bound Upper Bound

β (Pa−1 s−1) −1012 −1010

ln(K0) (-) 23 83
A (-) 0.3 0.6
B (-) 2 5
HTCp (W m−2 ◦C−1) 500 5000

4.4 Surrogate Models

4.4.1 Input Variables and Output

A total of three surrogate models are generated for three different processing conditions corre-

sponding to the ones used during the experimental injection molding runs. These process settings are

presented in Table 4.7 along with the surrogate model’s name according to which experimental DoE

it represents. For each surrogate model, five input parameters are varied: two crystallization model

parameters (β,K0), two viscosity model parameters (A,B) and the heat transfer coefficient (HTCp)

used during the packing analysis. These inputs are summarized in Table 4.8 along with their lower

and upper limits.

Some of these ranges were determined with the help of heuristics while others are based on exper-

imental results. For K0, the DSC data obtained from the measurements presented in Section 2.2 are

used. Since only a couple of cooling rates were utilized for these measurements, the temperature range

covered is limited making it difficult to obtain one constant value for K0. Therefore, it is part of the

surrogate model variables and the range fits the six data points calculated using the Avrami-Ozawa

relation given in equation 4.4 and is centralized at ln(K0) = 53; a value determined by Plummer
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and Kausch [127] for POM. As for the solidification criterion A, in the case of B = 2, the viscosity

coupling is analogous to the one given by Metzner [68] where he specified A = 0.68 for smooth spheres

and A ≈ 0.44 for rough compact crystals. Therefore, for this implementation, since there should

exist spherical and thread-like morphologies during injection molding, we postulate a rough ±0.15 to

the value given for compact crystals. As for the B viscosity exponent parameter, Kitano [67] and

Metzner [68] defined it to be equal to 2 according to suspension theory. However, the B is varied

between 2 and 5 in order to take into account the sudden increase in the POM viscosity as it starts

to crystallize as already seen in Figure 2.7 during the dynamic temperature ramp tests.

The β parameter has a strong effect on the contribution of the flow-induced crystallization to

the total relative crystallinity in the part, therefore, this parameter interval was not straightforward

to define as its high value can lead to short shots due to the fast solidification of the thin gate.

Nevertheless, the β interval was assumed after performing multiple sensitivity studies and generating

some test surrogate models in order to obtain a DoE that produces a representative amount of short

shots and fully filled parts in order to efficiently calibrate the parameters later on using the optimization

routine.

The output result used to train the surrogate models is the pressure signal at a surface node

corresponding to the location of the second sensor P2 located directly after the gate shown in Figure

2.9.

4.4.2 Generation Methodology

A Latin Hypercube sampling method is chosen to generate the surrogate models. The number of

runs chosen for the training of the models is 132 simulations and for the testing is 20 simulations.

This choice is postulated to be appropriate as five parameters are being varied in this implementation

in comparison to the six parameters changed in the feasibility study performed in Chapter 3 where it

was shown that the pressure predictions are highly accurate using 120 training simulations.

The generation of the three surrogate models is done in MATLAB R2019b using an analogous

POD-NLR methodology to that presented in Section 3.4.1. However, in this implementation, the

following differences exist:

1. Pre-processing : the pressure results Pi (i = 1, · · · , S) are differently pre-processed as in Section
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3.4.1. In this implementation, the original time series are normalized between 0 and 1 according

to the determined tstart and tend by:

tnorm = toriginal − tstart

tend
(4.15)

where toriginal is the imported unprocessed simulation time, tstart represents the time at which

the flow front reaches the sensor node and produces a non-zero pressure signal and tend is the

time at which the pressure signal goes to zero at the end of the packing stage. This normalization

step is followed by the resampling of the pressure data using a common time vector from 0 to 1

s with 0.001 s time steps.

2. Model order reduction: the POD basis functions φ are calculated similarly as in Section 3.4.1

using equation 3.1. The only difference is that in this study a truncation error value of ϵ =

5 × 10−4 is used.

3. Model fitting : a least-squares regression of a second-order polynomial is used to train a model to

predict the POD parameters Γ, the time shift values tstart and tend. The first two are determined

using equations 3.2 and 3.3, respectively, with i = j. Whereas, tend is determined as follows:

t
(s)
end = g + hiX

(s)
i + zijX

(s)
i X

(s)
j (4.16)

where Xi and Xj are the surrogate model input variables with i = j representing the number of

variables (1, · · · , 5) and g, h, z are additional surrogate parameters to those present in equations

3.2 and 3.3. The implicit Einstein summation convention is used for indexes i and j in equation

4.16.

4.5 Calibration Algorithm

To identify the five modeling parameters presented in Table 4.8, a multi-objective optimization

routine is performed using the lsqnonlin built-in MATLAB function from the optimization toolbox.

The experimental pressure signals are used as reference results. The performed optimization utilizes
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Table 4.9 – The experimentally-determined parameters used to define the six objective functions used
in the optimization routine to identify the modeling parameters.

k Y exp,k
max (MPa) texp,k

end (s)

6 38.09 12.8
14 35.25 15.2
27 63.65 20.47

all three surrogate models to obtain one set of optimized parameters using the following formulation:

find V = (β,K0, A,B,HTCp)

argmin |Ŷ l
max − Y exp,k

max | (l = 1, 2, 3 & k = 6, 14, 27)

|t̂lend − texp,k
end |

s.t. −1012 ≤ β ≤ −1010,

23 ≤ ln(K0) ≤ 83,

0.3 ≤ A ≤ 0.6,

2 ≤ B ≤ 5,

500 ≤ HTCp ≤ 5000.

In total, the optimization consists of six objective functions. Three of them are minimizing the

difference between the maximum pressure value obtained experimentally Y exp,k
max where k = 6, 14, 27

represents the experimental DoE number (V6, V14, V27) and that predicted by the corresponding

surrogate model Ŷ l
max with l = 1, 2, 3 the number of the surrogate model (SM1, SM2, SM3). The

other three objective functions are minimizing the difference between the predicted t̂lend defined using

equation 4.16 and the experimentally-determined texp,k
end . This value is obtained by fitting a tangent

line to the decreasing pressure slope during the end of packing and checking the intercept with the

x-axis of that line. This method is used to not take into account the probable over-compacting that

was observed experimentally in Figure 2.13 at the end of packing and discussed in Section 2.4.4 since

in the simulation it was not possible to recreate this. Table 4.9 summarizes the experimental values

used to define the six objective functions.

100



4.6. RESULTS AND DISCUSSION

4.6 Results and Discussion

4.6.1 Surrogate Models Performance

The performance of each generated surrogate model is assessed according to how well it is able to

recreate the full pressure signal results of the high-fidelity simulation at one sensor location. Therefore,

in this section, we present some example predicted pressure results from both the training and testing

DoE sets as well as the error metrics of the POD parameters and time shifts obtained using the trained

surrogate model, in other words, using the fitted polynomials defined by equations 3.2, 3.3 and 4.16.

The error metrics presented in this chapter are the normalized RMSE defined in equation 3.5 and

the coefficient of determination also known as the R2 score. It is a statistical measure that indicates

how well the data fit the regression model and how well the unseen samples are likely to be predicted

by the model. The best score is 1.0 and has a range between −∞ < R2 ≤ 1. A value far from 1 means

that the surrogate model response Ŷ is unable to predict accurately the true output results Y . R2 is

calculated as follows:

R2(Y, Ŷ ) = 1 −
∑n

i=1(Y i − Ŷ i)2∑n
i=1(Y i − Ȳ )2 (4.17)

where Ȳ = 1
n

∑n
i=1 Y

i is the mean value of Y .

In order to support the presentation of the previously-mentioned results, the POD basis functions

of each surrogate model are presented in Figure 4.3. The SM1 and SM2 models are reduced using five

basis functions whereas the SM3 model is reduced using only three. The reason behind this difference

is the use of the same truncation error ϵ for all models. Additionally, since the pressure signal for the

V27 process settings is less complex than the one for V6 and V14, the SM3 model necessitates less

basis functions to represent it.

Starting off by the SM1 surrogate model, Figure 4.4a presents the pressure results of four training

simulations and the approximated results for these same simulations obtained by the model after its

training. Even though the model is trained using these simulations, there still exists some discrepancy

between the model predictions and that of the simulation especially in the case of the green curve.

These differences are expected since a non-interpolation technique is used to train the model as the

signal is first reduced using POD and then its parameters are fitted to generate the final model. It is

also clear that the form of the pressure result in the case of the green curve is different than the other
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Figure 4.3 – The POD basis functions of the three generated surrogate models.
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Figure 4.4 – Comparison between the pressure predictions using the SM1 surrogate model and those
obtained by four example high-fidelity simulations used for the model’s (a) training and (b) testing.
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Figure 4.5 – The error metrics of the calculated POD parameters Γ and time shifts tstart and tend

using the SM1 surrogate model when using input data from the training and testing sets.

three curves making it more challenging to obtain a well-fitted model. Figure 4.4b shows the pressure

signals of four simulations used to test the model in comparison to the pressure results obtained by

the fitted model. It is apparent that the model is able to recreate the form of the pressure signal.

However, it still struggles for some cases to accurately predict the time shift tend as seen in the curve

represented in dark blue.

Since it is difficult to compare visually all the training and testing prediction results, the error

metrics for the five POD Γ parameters and time shift parameters are calculated and presented in

Figure 4.5. Figures 4.5a and 4.5b show the RMSE and R2 score, respectively, of these parameters

obtained during the training and testing steps of the SM1 surrogate model. The parameter errors for

the training set are, as expected, lower than those obtained for the testing set. Using unseen input

data on the trained SM1 model doubles the RMSE of the POD parameter Γ1 and Γ4 as well as the

time shift tstart. Overall, the surrogate model’s parameters are predicted with a RMSE lower than 26

% which is considered for these purposes as acceptable. By analyzing the coefficient of determination

results, the calculated Γ3 and Γ4 parameters by the fitted surrogate model produce a negative R2 score

for the testing set pointing that the chosen regression is not a good fit for the parameters in question.

Moving on to the SM2 model, Figure 4.6 provides four examples of the pressure predictions using

the SM2 model in comparison to those obtained by the high fidelity simulation from both the training

and testing sets. At the first glance, there is some minor differences between the predictions and the
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Figure 4.6 – Comparison between the pressure predictions using the SM2 surrogate model and those
obtained by four example high-fidelity simulations used for the model’s (a) training and (b) testing.

reference simulation results. For the training simulations, the amplitude of the pressure during packing

in the turquoise curve is under-predicted whereas for the time shift tend in the green and pink curves

is over-predicted. As for the testing simulations, it seems that the SM2 model is performing very well

on the four presented examples in Figure 4.6b. This is confirmed by analyzing the error metrics given

by Figure 4.7 where the overall RMSE for all parameters is lower than 0.2. Additionally, there is very

minimal difference between the model’s ability in predicting seen and unseen data when comparing

the error between the training and testing results.

As for the SM3 model, Figures 4.8a and 4.8b present some example pressure results using the

generated model in comparison to those obtained using the high-fidelity simulations with training

input data and testing ones, respectively. The shown examples highlight a good model accuracy

in general. The maximum pressure during packing in the two training simulations represented in

green and turquoise in Figure 4.8a is under-predicted by the model. Whereas, the presented testing

simulations are well predicted. For this model, it was sufficient to reduce the pressure signals with only

three POD modes to satisfy the truncation error of ϵ = 5 × 10−4 as shown in Figure 4.3c. Therefore,

the error metrics given by Figure 4.9 include three Γ POD parameters. The model seems to perform

very well in recreating the training data as the RMSE is lower than 12 % for all parameters. However,

it is apparent that the third POD parameter Γ3 is inaccurately represented by the fitted polynomial
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Figure 4.7 – The error metrics of the calculated POD parameters Γ and time shifts tstart and tend

using the SM2 surrogate model when using input data from the training and testing sets.
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Figure 4.8 – Comparison between the pressure predictions using the SM3 surrogate model and those
obtained by four example high-fidelity simulations used for the model’s (a) training and (b) testing.
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Figure 4.9 – The error metrics of the calculated POD parameters Γ and time shifts tstart and tend

using the SM3 surrogate model when using input data from the training and testing sets.

function representing the surrogate model as it performs badly using unseen input data during testing.

This is also highlighted by the negative R2 for Γ3 as well as for tstart.

4.6.2 Modeling Parameters Calibration

The three generated surrogate models are used to calibrate the implemented material models in

Moldflow R⃝ by identifying the five parameters β,K0, A,B,HTCp using the algorithm described in

Section 3.6. The optimization routine necessitated 15 iterations to reach a local minimum with a

residuals norm of 11.72 as shown in Figure 4.10. In order to check if there exist other local minima for

this multi-objective optimization and to find the global minimum, the built-in MultiStart MATLAB

function is used to find the possible other local solutions to the optimization problem by starting from

various initial points. This resulted in finding the same combination of parameters suggesting that

the found local minimum is in fact the global one. The final optimized parameters are given in Table

4.10.

Starting by the optimized viscosity parameters, the identified solidification criterion parameter

A = 0.35 seems reasonable since it is a parameter that takes into account the geometrical effects of the

crystallites. According to Kennedy and Zheng [3] and Metzner [68], the criterion is approximately equal

to 0.44 for rough compact crystals and since during injection molding non-spherical crystals develop due

to shear, an A < 0.44 is expected. As for the exponent parameter B, the optimized value is nearly equal
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Figure 4.10 – The norm of the residuals as a function of the number of iterations performed by lsqnonlin
during the optimization routine.

Table 4.10 – The identified modeling parameters from the multi-objective optimization algorithm.

Modeling Parameters (units) Identified Value

β (Pa−1 s−1) −1011.37

ln(K0) (-) 83.00
A (-) 0.35
B (-) 4.96
HTCp (W m−2 ◦C−1) 500
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to the upper interval bound of B = 5 which underlines the high coupling between the crystallization

and viscosity. This correlates well with the observations made during the rheological tests presented

in Figure 2.7 where the viscosity increases rapidly after the onset of crystallization. Moving on to the

crystallization parameters, the FIC parameter β is not straightforward to assess but an exponent value

of 11.37 translates into a lower contribution of FIC on the total relative crystallinity as compared to

the interval midpoint β exponent value of 11. As for the identified quiescent crystallization parameter

ln(K0), it lies on the upper bound of the considered interval leading to high contribution of the

quiescent crystallization on the α results. This can be reasonable as POM crystallizes rapidly leading

to fast crystallization kinetics, however, the value is much greater than the one determined by Plummer

and Kausch [127,128] equal to 53. Finally, the heat transfer coefficient during packing lies on the lower

bound of its corresponding interval at 500 W m−2 ◦C−1. This indicates that the heat exchange between

the mold cavity and the material is on the lower end. This value played an important role in the

optimization since it directly affected the temperature profile which in turn affected the crystallization

and the solidification of the material leading to a fully filled part or a short shot. As a reference, the

default Moldflow R⃝ value is 2500 W m−2 ◦C−1.

In the next sections, the identified parameters are used in the Moldflow R⃝ implementation proposed

in Section 4.2 and its results are compared to the default Moldflow R⃝ simulation that does not take

crystallization explicitly into account.

4.6.2.1 Pressure Results

As shown in Table 4.7, each surrogate model is based on one experimental DoE. Additionally, the

optimization used the experimental pressure signals at the sensor located after the gate (P2) to identify

the modeling parameters given in Table 4.10. Therefore, to assess the proposed implementation’s

results, the pressure signals obtained using the simulation with the calibrated models (Simulation:

Optimization) are plotted in comparison to the ones obtained by the default Moldflow R⃝ simulation

(Simulation: Default) and as a reference the experimental results (Experimental). The plots presented

in Figures 4.11, 4.12 and 4.13 correspond to the previously-mentioned results for the three processing

conditions V6, V14 and V27, respectively and they show these predictions at the three sensor locations

P1, P2 and P3 (refer to Figure 2.9).

By observing these comparison plots, it is clear that the simulation that takes into account polymer
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Figure 4.11 – The pressure signals for the V6 processing condition obtained using the simulation
with the calibrated models (Simulation: Optimization) in comparison to the ones obtained by the
default Moldflow simulation (Simulation: Default) along with the corresponding experimental results
(Experimental) for this condition.
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Figure 4.12 – The pressure signals for the V14 processing condition obtained using the simulation
with the calibrated models (Simulation: Optimization) in comparison to the ones obtained by the
default Moldflow simulation (Simulation: Default) along with the corresponding experimental results
(Experimental) for this condition.
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Figure 4.13 – The pressure signals for the V27 processing condition obtained using the simulation
with the calibrated models (Simulation: Optimization) in comparison to the ones obtained by the
default Moldflow simulation (Simulation: Default) along with the corresponding experimental results
(Experimental) for this condition.
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Figure 4.14 – The RMSE of the pressure predictions using the simulation with the calibrated models
(Optimization) and the one using the default Moldflow models (Default) for each of the three processing
conditions used to generate a surrogate model.

crystallization is performing much better than the one with the default models. For all three conditions,

the pressure predictions improved drastically at the three sensor locations using the proposed method

especially at P2 and P3. The estimations are following the same trend as the experimental results

using the optimized parameters which is not the case while using the default settings. One interesting

observation is the ability of the proposed models to recreate the constant pressure seen after the

switch-over in Figures 4.12a and 4.12b at P1 and P2, respectively, which leads to a delay in the signal

reaching P3 as predicted in Figure 4.12c for the V14 condition.

To quantify the improvement in pressure predictions, the normalized RMSE are calculated for the

simulations using the default models and the ones using the proposed models. Figures 4.14a, 4.14b and

4.14c present the obtained results for the three processing conditions V6, V14 and V27, respectively.
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Figure 4.15 – The averaged normalized RMSE of the pressure predictions at P2 using the simulation
with the calibrated models (Optimization) and the one using the default Moldflow models (Default)
for all 27 experimental processing conditions for the half length 3 mm thick geometry.

As expected, the prediction error has significantly decreased by including the crystallization model

along with the crystallization-dependent viscosity, PVT and solidification models with their identified

parameters. Major improvement is apparent in the pressure estimation of P2 and P3 for conditions V6

and V14 where the error decreases three folds in the case of P2 and four times for P3. These sensors are

located in the part cavity and therefore predicting the pressure at these locations more accurately can

lead to more accurate shrinkage and warpage predictions. In the case of the V27 processing condition,

the pressure predictions became closer to reality as seen in Figure 4.13, however, quantitatively, the

error decreased by less than 5 %.

The above-discussed results seem quite promising, however, since the optimization is based on

the three presented experimental results, it is still not yet certain that the identified parameters

are able to predict other experimental conditions as well as the previously-shown ones. Therefore,

Figure 4.15 presents the averaged normalized RMSE at P2 for all experimental processing conditions

(Experimental DoE) summarized in Table 2.6 while using Moldflow R⃝ with default models or with the

calibrated models of this work.

By observing Figure 4.15, for the majority of the different DoEs, the prediction error is decreased

by more than half from the default results. The only exceptions are seen for the experimental DoEs V7,

V8 and V9. To analyze the probable reasons behind this discrepancy, Figure 4.16 presents the pressure
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Figure 4.16 – The P2 pressure signals for three processing condition obtained using the simulation
with the calibrated models (Simulation: Optimization) in comparison to the ones obtained by the
default Moldflow simulation (Simulation: Default) along with the corresponding experimental results
(Experimental) for these conditions.

signals at P2 obtained experimentally in comparison to the ones predicted by the default simulation and

by the simulation using the proposed models with the optimized parameters for the three conditions

in consideration. By observing the presented results, it is apparent that both simulations are not able

to recreate the experimental signals as the latter is more complex than the ones used to calibrate the

material models. In the experimental data, during the packing phase around 10 s, the pressure signal

changes slopes creating a second bump in the signal. This was hypothesized in Section 2.4.4 to be

due to a probable partial remelting of the gate leading to additional polymer melt entering the cavity.

Even though the model includes the effect of remelting, the current calibrated models are not able to

recreate the shown bump in pressure. This shows the possibility that some model assumptions need

to be revised or that the model is not fully calibrated yet. In Figure 4.16b, a slight change of slope is

seen at around 7 s but not as prominent as in reality. As a final remark on this topic, the calibrated

models are able to better predict the maximum pressure needed during filling as observed in Figure

4.16 and they predict the first bump in the pressure curve during packing more accurately than the

default simulation.

4.6.2.2 Fill Predictions

As briefly mentioned in Section 2.4.4, some experimental DoEs for the HL3 part did not produce

a fully filled part therefore a short shot was produced. Figure 4.17a summarizes the filling status

of the 27 experimental DoEs. One of the main goals of implementing a crystallization model and

crystallization-dependent material models is to be able to predict accurately when a part is fully filled
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(a) Experimental (b) Simulation: Default (c) Simulation: Optimization

Figure 4.17 – The experimental fill results (a) in comparison to the ones predicted using the (b) default
simulation, (b) simulation with the calibrated models.

and when not. Using the default Moldflow R⃝ simulation, it is not possible to predict the short shots as

seen in Figure 4.17b. However, by using the proposed models in the Moldflow R⃝ simulation, it became

possible to predict most of these short shots as shown in Figure 4.17c. In total, four out of the five

short shots are identified along one wrongly predicted slight short shot for V3 (≈ 4 mm not filled)

and one wrongly estimated full fill for V19 which shorted around 7 mm experimentally. The flow

length are accurate up to ±15 mm, such as for example for V10, it was not possible to fill the last

10 mm of the mold experimentally whereas in the simulation the leftover unfilled length was around

5 mm. In general, this is considered a huge advance in the topic of fill predictions and underlines the

importance of implementing a crystallization model in injection molding simulations and the use of

crystallization-dependent solidification criterion instead of one constant no-flow temperature.

4.6.2.3 Skin Layer Thickness

Since the proposed simulation approach includes a crystallization model, one of the simulation

results is the relative crystallinity evolution. Therefore, this result is used to determine the skin layer

thickness that is solidified during the filling phase and compacting under shear strain. As mentioned

by Pantani et al. [15, 27], there exists a critical shear rate value above which the nucleation density

and growth rate are affected due to flow. Since this critical value is hard to determine experimentally,

a threshold value of 50 s−1 is postulated in this work below which the flow-induced crystallization

is considered minimal. This value is obtained by analyzing the simulation results after switch-over
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Table 4.11 – The skin layer thicknesses determined using the simulation utilizing the calibrated models
across the thickness at the three sensor locations for four processing conditions (V1, V3, V19, V21).

Simulated Skin Layer Thickness (mm)

V1 V3 V19 V21

Cross-section P1 0.40-0.68 0.21 0.23 0.10-0.21
Cross-section P2 0.35 0.08 0.17 0.02
Cross-section P3 0.20 0.08 0.09 -

where the shear rate decreases by two orders of magnitude to reach this threshold value. To determine

the skin layer thickness solidified under the high shear conditions, the time at which the shear rate

through the thickness at the sensor locations is below this threshold is first determined. Then the

relative crystallinity result α is plotted at that time along the thickness of the part at the three sensor

locations P1, P2 and P3 specified in Figure 2.9. Following this, the thickness where α > A is read from

the plot. The simulation results are summarized in Table 4.11 and compared to the ones obtained

using optical microscopy (refer to Section 2.4.5) in Figure 4.18.

By comparing the thicknesses determined experimentally and those from the simulation, it is

important to keep in mind that both results are prone to errors and uncertainties. The experimental

values could include some observational errors whereas the simulation ones are based on the assumption

that the skin layer does not grow further when the shear rate is lower than 50 s−1. Nevertheless,

the simulation predictions are quite accurate with a mean absolute error of 7.5 % and give a good

approximation of the skin layer thickness obtained using optical microscopy. Some discrepancies are

present, however, the trend of the results is correct such as the thickness is bigger at the cross-section of

P1 and it becomes smaller as we move further to P2 and P3. This is consistent with the experimental

results.

4.6.3 Calibrated Models Used in Other Geometries

In this section, the calibrated parameters are tested on the three other geometries that are possible

to produce with the same mold presented in Figure 2.9. The simulation results obtained using the

default Moldflow R⃝ models are compared to the ones obtained from the implemented models along

with the identified parameters.
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Figure 4.18 – The comparison between the skin layer thicknesses determined experimentally and those
obtained using the optimized simulation along the part thickness of the three sensor locations.
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4.6.3.1 Half Length 1.5 mm Thick Geometry

The first geometry considered is the one with the same cavity length as the main geometry (HL3)

but with half of its thickness with 1.5 mm. This geometry is referred to as HL15. Figure 4.19 presents

two experimental pressure results in comparison to the two different simulation results at P1 and P3

for the two processing conditions T2 and T25. At the P1 sensor location seen in Figures 4.19a and

4.19c, both simulation results are nearly the same and seem to recreate accurately the experimental

pressure signal at P1. However, it is important to remember that the models behind these simulations

are quite different and it is not expected that they produce the same result. This highlights that the

implemented models with the crystallization-dependent solidification criterion performs similarly to

the no-flow temperature criterion before the gate where the same runner system is used for both the

HL3 and HL15 geometries. This shows that the proposed models are able to reproduce the no-flow

temperature criterion for some special cases such as in this case where the incomplete solidification of

the runner due to a lower cooling time led to the same pressure results for both simulations.

At the P3 sensor location seen in Figures 4.19b and 4.19d, the pressure prediction similarities

of the two simulations is not anymore observed and the material solidifies earlier using the no-flow

condition than using the crystallization-dependent criterion. Nevertheless, as shown in Figure 4.19b,

the experimental P3 signal is zero for the T2 condition which signifies a shorted part. However, both

simulations are not able to reproduce this result. Even when no short shot is produced experimentally

such as it is the case for T25 shown in Figure 4.19d, both simulations are unable to predict the signal

accurately. For this geometry, the pressure signals in the part along with the fill predictions are not

as well-predicted as the ones in the main HL3 geometry. This is due to the under-prediction of the

crystallization evolution which could result form multiple sources. One possible explanation is the low

identified value of the HTCp at 500 W m−2 ◦C−1. As the mold thickness decreases, the heat exchange

between the metal and the polymer melt is more prominent. This can directly relate to the bad

prediction of short shots as the temperature profile is probably wrongly predicted leading to a more

delayed solidification than observed experimentally. To summarize, the parameters calibrated using

the HL3 geometry are unable to estimate the pressure signals correctly in the part cavity as well as

the final filling status of the half length 1.5 mm thick geometry.
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Figure 4.19 – Two example P1 and P3 pressure predictions for two processing conditions T2 and T25
injected with the half length 1.5 mm thick geometry using the simulation with the calibrated models
(Simulation: Optimization) and the one with the default models (Simulation: Default) in comparison
to the experimental results (Experimental).
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4.6.3.2 Full Length 3 mm Thick Geometry

The second geometry considered is the one with the same cavity thickness as the main geometry

(HL3) but with the whole length in order to make a U-shaped part. This geometry is referred to

as FL3. Figure 4.20 presents two experimental pressure results in comparison to the two different

simulation results at P1 and P3 for the two processing conditions S1 and S5. At the first glance, it

is apparent that both simulations are unable to predict accurately the experimental pressure results

especially during the packing phase of the process. By focusing on the simulation predictions using

the implemented models with the optimized parameters presented in Table 4.10, it is clear that the

filling phase is well-predicted but due to the early solidification of the gate the packing pressure is not

delivered to the part cavity. This phenomenon is observed due to the prolonged shearing experienced

along the 1 mm thick gate leading to higher flow-induced crystallization and therefore solidification

followed by the restriction of the gate’s cross-section. It is important to point that the injection velocity

used for S1 and S5 is 5 cm3/s which is slightly outside the bounds of the process settings of the HL3

geometry. With such a low velocity, the filling of the FL3 geometry takes four times longer than when

using the lowest velocity of 10 cm3/s for the HL3 geometry. The calibration using the HL3 geometry

seems to be sensitive to the various complex physical phenomena happening at the gate leading to

early solidification due to the fast FIC kinetics.

As for the filling predictions for this geometry, the simulation using the calibrated model predicted

two short shots for the S2 and S4 conditions, however, experimentally no short shots were produced

for all six conditions given in Table 2.5.

4.6.3.3 Full Length 1.5 mm Thick Geometry

The third and final geometry considered is the one with the full length U-shaped cavity having a

1.5 mm thickness. This geometry is referred to as FL15. For all experimental conditions presented

in Table 2.7, the part produced was a short shot and the machine reached the maximum injection

pressure of 240 MPa during the filling phase. Figure 4.21 presents two experimental pressure results in

comparison to the two different simulation results at P1 and P3 for the two processing conditions W2

and W10. Both of the simulation pressure predictions at P1 for the W2 condition seen in Figure 4.21a

predict correctly the short shot. However, after the machine maximum pressure is reached in both

simulations around 0.5 s, the filling is switched to being pressure-controlled. In both these cases, there
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Figure 4.20 – Two example P1 and P3 pressure predictions for two processing conditions S1 and S5
injected with the full length 3 mm thick geometry using the simulation with the calibrated models
(Simulation: Optimization) and the one with the default models (Simulation: Default) in comparison
to the experimental results (Experimental).
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is a relatively high average volume of around 14 V% of material already solidified and the switching to

pressure-control filling may have led to a change of pressure distribution in the mold cavity that can

explain the discontinuity seen in Figure 4.21a around 0.5 s. However, at the end of the filling stage,

both simulations’ pressure drops to zero following a linear line without applying the holding pressure

of 50 MPa. This behavior and the previous observation can also be due to an artifact in Moldflow R⃝

and since it appears in both the default and optimized results, it indicates that it is not due to the

user’s code.

This behavior at P1 is encountered only in the optimized simulation for the W10 condition leading

to a short shot unlike using the default simulation which predicts incorrectly a completely filled part

as seen in Figure 4.21c. An interesting observation is the shape of the pressure signal in the default

simulation which resembles the one measured experimentally but does a poor job in correctly recreating

the end of the filling phase. As for the pressure predictions at the P3 sensor location for these two

conditions presented in Figures 4.21b and 4.21d, the simulation using the proposed models along with

the optimized parameters seems to estimate the experimental signals more accurately than the default

simulation. Additionally, the simulation using the optimized parameters is able to correctly predict

24 out of the 27 short shots observed experimentally.

In general, the results for this geometry seem to be unreliable making it hard to assess the per-

formance of the simulation using the calibrated model parameters. Therefore, they are not taken into

account in the final assessment given in the following section.

4.7 Conclusion

In this chapter, the implementation of a crystallization model along with PVT, viscosity and

solidification models is performed in Moldflow R⃝. To calibrate the implemented models, three surrogate

models are generated using model order reduction and least-squares regression. After studying the

performance of the generated surrogates, it became apparent that the fitting method using the same

second-order polynomial for all POD parameters and time shifts is not optimal. However, the generated

surrogate models were still able to predict the pressure signals with high accuracy. Therefore, a multi-

objective optimization scheme is performed to identify the five uncertain model parameters and the

calibrated models are then tested in the simulation in comparison to the default Moldflow R⃝ simulation
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Figure 4.21 – Two example P1 and P3 pressure predictions for two processing conditions W2 and W10
injected with the full length 1.5 mm thick geometry using the simulation with the calibrated models
(Simulation: Optimization) and the one with the default models (Simulation: Default) in comparison
to the experimental results (Experimental).
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results for the half length 3 mm thick part.

This comparison showed great improvements in the ability of the simulation using the calibrated

models to predict the pressure signals more accurately where the prediction error decreased by more

than half from the default simulation for the majority of the studied DoEs. Using the simulation with

user-defined models, it became possible to predict short shots produced during processing whereas

this was not possible with the default simulation. Additionally, to determine the skin layer thickness

developed during the filling phase and compacting stage, a threshold shear rate is assumed under

which the FIC is considered minimal. The determined thicknesses showed a good agreement with the

ones measured experimentally and presented in Chapter 2.

Following this, the calibrated models are tested with the three other available mold geometries. The

pressure signals are observed for a couple of processing settings and the simulation predictions using

the user models and default ones are compared. As a general observation, for all three geometries, both

simulation results performed poorly. By focusing only on the simulation with user-defined models,

the HL15 geometry shed the light on a possible low heat transfer coefficient when the mold thickness

is divided by half. Whereas the FL3 geometry suffered from fast FIC kinetics leading to early gate

solidification which indicates a possible under-estimation of the β exponent parameter. But it can

also underline the complexity of the physical phenomena happening in the gate making the original

calibration scheme in the HL3 geometry highly sensitive to them and leading to non-generalized model

parameters. As the FL15 geometry showed probable Moldflow R⃝ artifacts, it is not taken into account

in this final discussion.
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In this thesis, after having proved the feasibility of using surrogate modeling to identify model-

ing parameters by a simple optimization scheme, three surrogate models are used to calibrate user-

defined models implemented in an injection molding simulation. The commercial software Autodesk R⃝

Moldflow R⃝ Insight 2021 is used to simulate the injection molding of a semi-crystalline thermoplastic

material. In Moldflow R⃝, four user models are defined; a crystallization model describing both the

flow-induced and quiescent crystallization along with crystallization-dependent viscosity, PVT and

solidification models. These models are implemented in order to take into account the crystalliza-

tion process happening during the processing of the material as it affects the flow solution as well as

the predictions of warpage and shrinkage in the simulation. A multi-objective optimization is then

performed to identify the model parameters using the generated surrogate models with the help of

experimentally-measured pressure signals.

The simulation using the proposed models along with their identified parameters showed major

improvements in the predictions of pressure signals in various conditions for the base mold geometry.

One of the crucial advances made by using this implementation was the ability of the simulation to

accurately predict the filling status of the produced parts (short shot or fully filled) . Additionally,

due to the inclusion of a crystallization model, it became possible to observe the relative crystallinity

evolution along the different phases of the injection molding process which helped in estimating the

skin layer thicknesses formed under high-shear conditions.

The performance of the calibrated models is additionally assessed using three variations of the

base mold geometry. The pressure predictions for these geometries using the calibrated models were

not satisfactory. This highlighted different shortcomings of the implemented models along with their

identified parameters. By changing the mold’s thickness, it was not anymore possible to accurately

predict the short shots. Whereas, by having a longer channel with the same base thickness, it became
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difficult to predict full filled parts. These behaviors could be due to various reasons. One of them is

the use of global heat transfer coefficients for the filling and packing phases instead of local ones. This

can lead to inaccurate temperature profile predictions affecting the whole heat balance calculations

and in turn the crystallization and solidification predictions. Another reason could be that the chosen

parameter intervals, for which the surrogate models are generated, are not big enough since some of

the optimized parameters lied on the extremities of these intervals. An additional explanation could

be that the calibration process was limited by the gate geometry and the complex physical phenomena

happening in it such as early solidification due to high shears and fast cooling.

For future works, the redesign of the mold can be considered in which the gate is removed and the

experimental runs are performed using a pressure-controlled filling. This could mitigate the probable

errors contributed by the inclusion of the gate during the calibration of the models. Additionally, in

the case of short shots, the flow length could be included as an extra output result and used in the

models’ calibration as it can give important information concerning the material solidification.

In the presented work, the measured pressure signal during the injection molding process is used

to calibrate the models as it is accurately and easily measured during processing and can be directly

related to the simulated pressure. The temperature measurements, on the other hand, are not as

straightforward as the previous ones such as in the best case scenario the temperature sensors measure

the mold surface temperature. However, this does not correlate well with the simulated temperature.

Therefore, it would be interesting to use machine learning to bridge the gap between these two results

in order to be able to use such measured data in a similar application as presented in this thesis.

As an outlook into the topic of surrogate modeling in the field of injection molding simulation,

the present work can be extended to include a full time and space model. This could be used to

visualize and assess solutions instantaneously while varying the input parameters. Such surrogate

models provide the key to performing uncertainty quantification and efficient sensitivity analyses.

Another interesting application is the creation of a digital twin of the injection molding process using

these methodologies.
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5.1. INTRODUCTION

5.1 Introduction

Le moulage par injection est l’une des principales techniques de transformation des polymères avec

laquelle plus d’un tiers des matériaux thermoplastiques sont produits [1]. Le processus de moulage par

injection est cyclique et idéal pour la production en série de géométries complexes avec des tolérances

serrées [2]. En cas de défauts de la pièce pendant la production, un changement des conditions du

processus peut ne pas être suffisant et des modifications du moule doivent être appliquées pour résoudre

le problème [3]. Cependant, cette démarche est coûteuse et prend du temps. Il est donc important

de pouvoir prévoir ces problèmes dès la phase de conception de la pièce à l’aide de techniques de

simulation. Par conséquent, pour minimiser ces coûts tout en garantissant une qualité supérieure du

produit, la simulation du moulage par injection est largement utilisée pour concevoir efficacement les

moules et fournir un outil pour déterminer les paramètres optimaux du processus qui permettent de

surmonter les défauts couramment observés tels que le gauchissement, le rétrécissement.

Toutefois, au cours des dernières années, l’intérêt croissant pour les simulations de haute précision

a entrâıné une augmentation de la complexité des modèles intégrés et, par conséquent, une hausse

des coûts de calcul. Ce problème est particulièrement souligné lors de l’utilisation de tels modèles

de simulation pour l’optimisation, les analyses de sensibilité ou la quantification des incertitudes. La

modélisation de substitution offre un moyen de surmonter les limites de ces simulations haute-fidélité

et de réaliser de telles analyses de manière plus économique et plus rapide. Ces modèles sont générale-

ment générés à l’aide d’un nombre relativement faible de simulations obtenues en faisant varier un

nombre spécifique de paramètres d’entrée et sont ensuite capables d’approcher la sortie d’intérêt en

quelques secondes au lieu de minutes ou d’heures en utilisant la simulation haute-fidélité. Un exemple

d’application est présenté dans la figure 5.1 où un modèle de substitution est utilisé pour calibrer les

paramètres du modèle de simulation en exécutant une routine d’optimisation efficace. Dans le cas

présenté, le modèle de substitution représente un résultat de sortie appris à partir de l’exécution de

plusieurs simulations haute-fidélité et est ensuite utilisé indépendamment pour obtenir les paramètres

d’entrée optimaux qui correspondent le mieux aux résultats expérimentaux. Actuellement, dans le do-

maine de la simulation du moulage par injection, l’utilisation de la modélisation de substitution dans

la littérature se limite principalement à l’optimisation des paramètres du processus tels que les tem-

pératures du moule et de la matière fondue [5,6], les temps de remplissage et de refroidissement [7,8],
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Figure 5.1 – Schéma d’optimisation des paramètres du modèle utilisant un modèle de substitution [4].

la pression de post-remplissage [9, 10]... Une publication récente d’Ivan et al. [11] utilise un mod-

èle de substitution pour identifier deux paramètres de modèle qui décrivent l’orientation des fibres.

Une approche similaire pourrait être utilisée pour calibrer d’autres types de modèles de matériaux

complexes tels qu’un modèle de cristallisation. En raison de la complexité de l’identification expéri-

mentale des paramètres de cristallisation dans des conditions de moulage par injection, de nombreux

logiciels commerciaux n’en tiennent pas compte, même lorsqu’ils traitent de l’injection de matériaux

semi-cristallins. Cela conduit à des inexactitudes dans les prédictions de remplissage ainsi que dans

l’estimation du gauchissement et du rétrécissement dans la simulation [3].

Au cours des dernières décennies, de grands efforts ont été faits pour modéliser la cristallisation

des polymères en tenant compte de l’histoire de l’écoulement de la matière fondue. Une approche com-

mune utilisée pour décrire la cristallisation induite par l’écoulement, observée pendant le moulage par

injection, est basée sur la théorie de nucléation et de croissance d’Avrami-Kolmogorov [12,13] combinée

aux équations de vitesse de Schneider [14]. Cette méthode nécessite la détermination expérimentale

d’un grand nombre de paramètres du modèle et la résolution d’un système complexe et interdépendant

d’équations différentielles [15]. En revanche, Poitou et al. [16,17] ont proposé une approche thermomé-

canique décrivant à la fois la cristallisation induite par l’écoulement et la cristallisation naturelle avec

un nombre beaucoup plus faible de paramètres de modèle, ce qui rend son utilisation plus attrayante

dans les logiciels de simulation.

127



5.2. CONTENU ET STRUCTURE DE LA THÈSE

L’objectif principal de cette thèse est l’utilisation de la modélisation de substitution dans la cal-

ibration des paramètres d’un modèle de cristallisation implémenté dans une simulation de moulage

par injection. Afin d’atteindre cet objectif, une étude de faisabilité est d’abord réalisée pour évaluer

l’utilisation de différentes techniques de modélisation de substitution et de plans d’expériences dans

la calibration des paramètres de modélisation dans la simulation de moulage par injection d’une pièce

thermoplastique en polyoxyméthylène. Cette étape est suivie de l’implémentation d’un modèle de

cristallisation modifié de Poitou et al. ainsi que de modèles de viscosité, de PVT et de solidification

dépendant de la cristallisation dans le logiciel commercial AutodeskR⃝ Moldflow R⃝ Insight 2021 en

utilisant la fonction Solver API. Les modèles sont mis en œuvre en 3D et calibrés à l’aide de trois

modèles de substitution représentant la pression simulée dans différentes conditions de traitement. La

capacité des modèles calibrés à prédire avec précision la pression, l’état de remplissage et l’épaisseur

de la couche cristalline est testée dans différentes conditions en utilisant une géométrie de moule de

base et trois variations de celle-ci.

5.2 Contenu et Structure de la Thèse

La simulation du moulage par injection constitue un moyen rentable de concevoir et d’améliorer

la qualité des pièces avant de produire un moule, ainsi que d’identifier les paramètres optimaux du

processus pour la production. Toutefois, pour y parvenir, les simulations doivent être très précises

et comporter de moins en moins d’approximations. Dans le cas des thermoplastiques semi-cristallins,

cela signifie qu’il faut prendre en compte le processus complexe de cristallisation qui a lieu pendant le

traitement du matériau, ainsi que son effet sur d’autres propriétés telles que la viscosité et le volume

spécifique. De plus, afin d’améliorer les prédictions de remplissage global ainsi que les estimations

de gauchissement et de retrait, le critère de solidification doit être couplé à la cristallisation au lieu

d’utiliser une valeur de température constante sans écoulement pour déterminer la solidification. Néan-

moins, comme nous l’avons vu dans la section 1.3, le processus de cristallisation dans des conditions

d’écoulement est complexe et la physique qui le sous-tend n’est pas encore totalement comprise, ce

qui rend ce problème difficile à résoudre. De plus, la plupart des modèles disponibles sont des modèles

phénoménologiques avec un grand nombre de paramètres qui sont difficiles à déterminer expérimentale-

ment en raison de l’impossibilité de recréer les conditions extrêmes rencontrées pendant le processus

de moulage par injection en utilisant les dispositifs expérimentaux actuels. Une façon de surmonter
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cet inconvénient est d’utiliser un modèle de substitution pour représenter un résultat de simulation

qui peut être mesuré expérimentalement sur la machine de moulage par injection et de l’utiliser pour

identifier les paramètres du modèle comme Ivan et al. [11] l’ont fait pour les paramètres du modèle

d’orientation des fibres.

Par conséquent, dans cette thèse, l’objectif principal est d’implémenter un modèle de cristallisation

dans une routine de simulation d’injection 3D tout en prenant en considération l’effet de la cristallisa-

tion sur les modèles de viscosité, PVT et solidification. Afin d’identifier les paramètres expérimentaux

difficiles à déterminer, des modèles de substitution sont générés pour représenter les résultats de pres-

sion obtenus par la simulation et pour effectuer une calibration à l’aide de mesures expérimentales de

signaux de pression obtenues lors d’essais de moulage par injection.

Pour atteindre cet objectif, la théorie et l’état actuel de l’art dans le domaine du moulage par

injection, de la cristallisation des polymères et de la modélisation de substitution ont d’abord été

présentés dans ce chapitre. Le chapitre 1 se termine par la présentation de quelques travaux de la

littérature qui ont utilisé la modélisation de substitution pour représenter des résultats de simulation

de moulage par injection similaires à ceux qui seront présentés dans ce travail.

Ensuite, la caractérisation du matériau ainsi que les essais de moulage par injection réalisés sont

décrits dans le chapitre 2. De plus, dans ce chapitre, certains des signaux de pression expérimen-

taux sont analysés pour les différentes géométries considérées dans cette thèse ainsi que certaines

micrographies produites pour observer la morphologie cristalline dans l’épaisseur des pièces produites.

Dans le chapitre 3, une étude de faisabilité est réalisée pour tester l’utilisation de la modélisation de

substitution dans le but de calibrer certains paramètres de modélisation dans la simulation de moulage

par injection. Cette étude compare trois approches différentes de modélisation de substitution et teste

l’effet du nombre de simulations d’entrâınement sur la précision des résultats de pression prédits.

Enfin, dans le chapitre 4, l’implémentation d’un modèle de cristallisation basé sur la thermomé-

canique est décrite ainsi que les modèles de viscosité, de PVT et de solidification dépendant de la

cristallisation dans Moldflow R⃝ pour simuler le moulage par injection d’un matériau thermoplastique

non renforcé. Cinq paramètres de modélisation sont identifiés à l’aide de trois modèles de substitu-

tion générés par une routine d’optimisation multi-objectifs. Les résultats de la simulation utilisant

les modèles calibrés sont ensuite analysés pour différentes conditions de traitement et géométries de
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moule.

5.3 Caractérisation des Matériaux et Essais de Moulage par Injec-
tion

Le matériau polymère utilisé dans ce travail est un homopolymère de polyoxyméthylène (POM)

non renforcé de qualité industrielle sous sa forme granulaire. Ce polymère, également connu sous

le nom de polyacétal, est un matériau thermoplastique semi-cristallin d’ingénierie largement utilisé

dans l’industrie automobile en raison de sa grande rigidité, de sa faible friction et de ses excellentes

propriétés anti-usure [21,113].

Deux types d’expériences sont réalisées afin de caractériser le matériau utilisé. Le premier type était

les mesures DSC qui ont fourni des informations sur le comportement de cristallisation du matériau

sous différentes vitesses de refroidissement. Ceci a permis de déterminer la température de fusion

du matériau à 178,88 ◦C et l’enthalpie de cristallisation de 155,35 J/g. L’évolution de la cristallinité

relative avec la température et le temps sous les différents taux de refroidissement a également été

déterminée et sera utilisée pour quantifier la cinétique de cristallisation du POM dans le chapitre 4.

Le deuxième type d’expérience est un test dynamique de rampe de température utilisé pour identifier

la dépendance de la viscosité à la température et observer son comportement après le début de la

cristallisation. Ces données seront également utilisées pour déterminer les paramètres du modèle de

viscosité plus tard dans le travail.

Un moule a été conçu pour permettre la production de quatre géométries différentes variant en

longueur et/ou en épaisseur, ainsi que la mesure des signaux de pression pendant le processus de

moulage par injection à quatre endroits de la cavité. Pour mettre en place les essais de moulage par

injection, des études de remplissage et d’emballage ont été réalisées, suivies des essais officiels où,

pour chaque géométrie, trois paramètres du processus sont modifiés. Les paramètres variables sont la

température du moule, la vitesse d’injection et la pression de maintien. Certains signaux de pression

caractéristiques ont été analysés dans ce chapitre pour donner un aperçu des résultats obtenus qui

sont utilisés dans ce travail pour la calibration des paramètres du modèle.

Certains des échantillons moulés par injection ont été étudiés à l’aide d’un microscope optique

polarisé afin de mieux comprendre les morphologies des cristaux et les différentes couches qui se
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forment au cours du processus. Des coupes au microtome ont été réalisées à l’emplacement des

capteurs pour différents paramètres du processus afin d’étudier l’effet de la température du moule

et de la vitesse d’injection sur la morphologie et l’épaisseur de la couche de peau. En observant les

différentes micrographies, il est apparu que plus la température du moule et la vitesse d’injection sont

élevées, plus la couche cristalline est fine.

5.4 Étude de Faisabilité : Utilisation de la Modélisation de Substi-
tution pour la Calibration des Paramètres de Modélisation

La faisabilité de l’utilisation de la modélisation de substitution pour calibrer les paramètres dans

une simulation de moulage par injection est étudiée. Trois paramètres de modélisation sont choisis pour

la calibration dans cette étude. Il s’agit des coefficients de transfert de chaleur pendant le remplissage

et le compactage ainsi que du coefficient de dépendance à la pression dans le modèle de viscosité Cross-

WLF [117,118]. Les paramètres susmentionnés sont connus pour affecter les résultats de pression dans

la simulation et leur détermination expérimentale est difficile et prend du temps [119–121]. Pour cette

calibration, la géométrie de la demi-longueur de 3 mm d’épaisseur présentée sur la figure 2.11 est

utilisée et les trois paramètres de modélisation sont étalonnés à l’aide des données expérimentales du

capteur de pression P2 (voir la figure 2.9).

Dans cette étude de faisabilité, on étudie la précision de trois techniques de modélisation de sub-

stitution basées sur la régression et de deux méthodes de plan d’expérience dans leur capacité à

approximer le signal de pression à un seul nœud de la simulation. Les approches de modélisation

proposées sont les suivantes :

1. un modèle de régression non linéaire des coefficients de la décomposition orthogonale propre

entrâıné à l’aide d’un échantillonnage fixe de l’Hypercube latin (POD-NLR),

2. un modèle de polynomial chaos expension ajusté par une technique d’optimisation des moindres

carrés utilisant les mêmes points d’échantillonnage fixes de l’Hypercube latin (Regular-PCE-LS),

et

3. un modèle de polynomial chaos expension ajusté par une technique d’optimisation des moindres

carrés, mais utilisant une DoE adaptative qui est enrichie pendant la génération du modèle

(Adaptive-PCE-LS).
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Les modèles sont entrâınés à l’aide de 30, 60 et 120 cycles de simulation et leurs prédictions sont

évaluées en conséquence. Les trois modèles sont construits en faisant varier un total de six paramètres

d’entrée, y compris les paramètres du processus et les variables de modélisation. Les paramètres

du processus sont la vitesse d’injection, la température d’entrée du liquide de refroidissement, la

pression de maintien et les paramètres de modélisation, comme déjà mentionné, sont les coefficients

de transfert de chaleur pendant le remplissage et le conditionnement ainsi que le coefficient dépendant

de la pression dans le modèle de viscosité Cross-WLF. Après avoir obtenu les modèles de substitution,

une analyse de sensibilité est effectuée pour étudier la contribution de chaque paramètre varié au signal

de pression ainsi que leur interaction les uns avec les autres. Enfin, en utilisant les données de pression

expérimentales mesurées et l’un des modèles de substitution générés, les paramètres de modélisation

sont calibrés et l’erreur entre la simulation optimisée et la simulation par défaut est comparée.

Cette étude a montré que le modèle de substitution POD-NLR et le modèle de substitution PCE-

LS régulier présentent fondamentalement les mêmes performances, en particulier lorsque le nombre

de données d’entrâınement est faible. En augmentant le nombre de données d’entrâınement, la tech-

nique PCE-LS adaptative améliore régulièrement la précision du modèle de substitution et atteint une

performance comparable à celle des techniques à DoE fixe pour 120 simulations d’entrâınement. Les

avantages de la technique adaptive-PCE-LS devraient apparâıtre plus clairement lorsque le nombre de

variables est élevé.

Sur la base d’une analyse de sensibilité ’Sobol’ utilisant le modèle de substitution généré, nous

avons constaté que le coefficient de transfert de chaleur pendant le remplissage a un faible impact sur

l’évolution de la pression au niveau d’un nœud de capteur devant le coefficient de transfert de chaleur

pendant le conditionnement ou le coefficient de viscosité dépendant de la pression. En optimisant les

paramètresHTCfilling, HTCpacking et le paramètreD3 du modèle de viscosité dépendant de la pression

à l’aide des signaux de pression mesurés, il a été possible de calibrer la simulation haute-fidélité afin

de diminuer les déviations dans l’estimation de la pression par rapport à celles obtenues en utilisant

les valeurs de simulation par défaut. Cependant, il existe encore une lacune dans l’obtention d’une

estimation précise des champs de pression dans le moulage par injection, qui pourrait être comblée

avec cette méthodologie en incluant des paramètres de modèle de simulation supplémentaires en plus

d’un raffinement des modèles mis en œuvre dans la simulation, comme le montre le chapitre suivant

en mettant en œuvre un modèle de cristallisation induite par l’écoulement ainsi qu’un diagramme
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PVT, de la viscosité et le critère de solidification dépendant de la cristallisation pour les polymères

thermoplastiques semi-cristallins.

5.5 Utilisation de la Modélisation de Substitution pour Calibrer un

Modèle de Cristallisation Induite par l’Écoulement dans Mold-
flow

L’étude de faisabilité a montré qu’il est possible d’optimiser ces paramètres en utilisant les résultats

de pression expérimentale à l’aide d’un modèle de substitution représentant les résultats de pression

simulée à un nœud de surface. Par conséquent, dans ce chapitre, une méthodologie similaire est suivie

afin de calibrer un modèle de cristallisation induit par l’écoulement ainsi que des modèles PVT, de

la viscosité et de solidification dépendant de la cristallisation. Ces modèles sont implémentés dans

Moldflow R⃝ à l’aide d’un code utilisateur. Au total, trois modèles de substitution sont utilisés pour

identifier les cinq paramètres de modélisation incertains et ces substituts sont générés à l’aide d’une

méthode POD-NLR analogue à celle présentée au chapitre 3. Par exemple, les signaux de pression

sont d’abord réduits à l’aide de la technique de décomposition orthogonale appropriée, suivie d’une

régression des moindres carrés d’un polynôme du second ordre. Cette méthodologie a été choisie car

elle a montré une bonne performance en utilisant un faible nombre de données d’apprentissage et un

faible nombre de paramètres d’entrée. Après avoir obtenu les paramètres de modélisation optimisés, les

performances de la simulation sont évaluées en étudiant la capacité à prédire les signaux de pression,

l’état de remplissage et l’épaisseur de la couche de peau à l’aide des modèles définis par l’utilisateur

par rapport aux résultats expérimentaux. En outre, les modèles calibrés sont testés en utilisant trois

géométries de moule différentes afin de vérifier la généralité des paramètres identifiés.

Après avoir étudié les performances des modèles de substitution générés, il est apparu que la

méthode d’ajustement utilisant le même polynôme du second ordre pour tous les paramètres POD et

les décalages temporels n’est pas optimale. Cependant, les modèles de substitution générés étaient

toujours capables de prédire les signaux de pression avec une grande précision. Par conséquent, un

schéma d’optimisation multi-objectif est exécuté pour identifier les cinq paramètres incertains du

modèle et les modèles calibrés sont ensuite testés dans la simulation en comparaison avec les résultats

de simulation par défaut de Moldflow R⃝ pour la demi-longueur de la pièce de 3 mm d’épaisseur.

Cette comparaison a montré de grandes améliorations dans la capacité de la simulation utilisant
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les modèles calibrés à prédire les signaux de pression avec plus de précision où l’erreur de prédiction a

diminué de plus de la moitié par rapport à la simulation par défaut pour la majorité des DoEs étudiées.

En utilisant la simulation avec des modèles définis par l’utilisateur, il est devenu possible de prédire

les coups courts produits pendant le traitement alors que cela n’était pas possible avec la simulation

par défaut. En outre, pour déterminer l’épaisseur de la couche cristalline développée pendant la phase

de remplissage et l’étape de compactage, on suppose un taux de cisaillement seuil en dessous duquel le

FIC est considéré comme minimal. Les épaisseurs déterminées ont montré un bon accord avec celles

mesurées expérimentalement et présentées dans le chapitre 2.

Ensuite, les modèles calibrés sont testés avec les trois autres géométries de moule disponibles.

Les signaux de pression sont observés pour quelques paramètres de traitement et les prédictions de

simulation utilisant les modèles de l’utilisateur et ceux par défaut sont comparés. D’une manière

générale, pour les trois géométries, les deux résultats de simulation ont donné de mauvais résultats.

En se concentrant uniquement sur la simulation avec les modèles définis par l’utilisateur, la géométrie

HL15 a mis en lumière un possible faible coefficient de transfert de chaleur lorsque l’épaisseur du

moule est divisée par deux. La géométrie FL3, quant à elle, a souffert d’une cinétique FIC rapide

conduisant à une solidification précoce de l’entrée, ce qui indique une possible sous-estimation du

paramètre exposant β. Mais cela peut également souligner la complexité des phénomènes physiques

qui se produisent dans la grille, rendant le schéma de calibration original dans la géométrie HL3 très

sensible à ces phénomènes et conduisant à des paramètres de modèle non généralisés. Comme la

géométrie FL15 a montré de probables artefacts Moldflow R⃝, elle n’est pas prise en compte dans cette

discussion finale.

5.6 Conclusions et Perspectives

Dans cette thèse, après avoir prouvé la faisabilité de l’utilisation de modèles de substitution pour

identifier les paramètres de modélisation par un schéma d’optimisation simple, trois modèles de sub-

stitution sont utilisés pour calibrer des modèles définis par l’utilisateur et implémentés dans une simu-

lation de moulage par injection. Le logiciel commercial Autodesk R⃝ Moldflow R⃝ Insight 2021 est utilisé

pour simuler le moulage par injection d’un matériau thermoplastique semi-cristallin. Dans Moldflow,

quatre modèles utilisateur sont définis : un modèle de cristallisation décrivant à la fois la cristallisation

induite par l’écoulement et la cristallisation naturelle, ainsi que des modèles de viscosité, de PVT et
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de solidification dépendant de la cristallisation. Ces modèles sont mis en œuvre afin de prendre en

compte le processus de cristallisation qui se produit pendant le traitement du matériau et qui affecte la

solution d’écoulement ainsi que les prédictions de déformation et de rétraction dans la simulation. Une

optimisation multi-objectifs est ensuite réalisée pour identifier les paramètres du modèle en utilisant

les modèles de substitution générés avec l’aide de signaux de pression mesurés expérimentalement.

La simulation utilisant les modèles proposés avec leurs paramètres identifiés a montré des améliora-

tions majeures dans les prédictions des signaux de pression dans diverses conditions pour la géométrie

du moule de base. L’un des progrès cruciaux réalisés grâce à cette mise en œuvre est la capacité de

la simulation à prédire avec précision l’état de remplissage des pièces produites (remplissage partiel

ou remplissage complet). En outre, grâce à l’inclusion d’un modèle de cristallisation, il est devenu

possible d’observer l’évolution de la cristallinité relative au cours des différentes phases du processus

de moulage par injection, ce qui a permis d’estimer l’épaisseur des couches cristallines formées dans

des conditions de cisaillement élevé.

La performance des modèles calibrés est également évaluée en utilisant trois variations de la

géométrie du moule de base. Les prédictions de pression pour ces géométries utilisant les modèles

calibrés n’étaient pas satisfaisantes. Cela a mis en évidence différentes lacunes des modèles mis en

œuvre ainsi que leurs paramètres identifiés. En modifiant l’épaisseur du moule, il n’était plus possible

de prédire avec précision le remplissage partiel. En revanche, en ayant un canal plus long avec la même

épaisseur de base, il est devenu difficile de prédire les pièces entièrement remplies. Ces comportements

peuvent être dus à diverses raisons. L’une d’entre elles est l’utilisation de coefficients de transfert de

chaleur globaux pour les phases de remplissage et de post-remplissage au lieu de coefficients locaux.

Cela peut conduire à des prédictions de profil de température inexactes qui affectent l’ensemble des

calculs de bilan thermique et, par conséquent, les prédictions de cristallisation et de solidification. Une

autre raison pourrait être que les intervalles de paramètres choisis, pour lesquels les modèles de sub-

stitution sont générés, ne sont pas assez grands puisque certains des paramètres optimisés se situent

aux extrémités de ces intervalles. Une autre explication pourrait être que le processus de calibration

a été limité par la géométrie de la porte et les phénomènes physiques complexes qui s’y produisent,

comme la solidification précoce due à des cisaillements élevés et à un refroidissement rapide.

Pour les travaux futurs, on peut envisager de revoir la conception du moule en supprimant le seuil

d’injection et en effectuant les essais expérimentaux avec un remplissage contrôlé par la pression. Cela
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pourrait atténuer les erreurs probables dues à l’inclusion du seuil lors de la calibration des modèles.

En outre, dans le cas de remplissages partiels, la longueur d’écoulement pourrait être incluse comme

un résultat de sortie supplémentaire et utilisée dans la calibration des modèles, car elle peut donner

des informations importantes sur la solidification du matériau.

Dans le travail présenté, le signal de pression mesuré pendant le processus de moulage par injection

est utilisé pour calibrer les modèles car il est mesuré avec précision et facilement pendant le traitement

et peut être directement relié à la pression simulée. Les mesures de température, en revanche, ne

sont pas aussi simples que les précédentes. Dans le meilleur des cas, les capteurs de température

mesurent la température de surface du moule. Cependant, cette mesure n’est pas bien corrélée avec la

température simulée. Par conséquent, il serait intéressant d’utiliser l’apprentissage machines basés sur

les données pour combler l’écart entre ces deux résultats afin de pouvoir utiliser ces données mesurées

dans une application similaire à celle présentée dans cette thèse.

En guise de perspective sur le sujet de la modélisation de substitution dans le domaine de la sim-

ulation du moulage par injection, le présent travail peut être étendu pour inclure un modèle temporel

et spatial complet. Celui-ci pourrait être utilisé pour visualiser et évaluer les solutions instantanément

tout en faisant varier les paramètres d’entrée. De tels modèles de substitution fournissent la clé pour

effectuer la quantification des incertitudes et des analyses de sensibilité efficaces. Une autre application

intéressante est la création d’un jumeau numérique du processus de moulage par injection à l’aide de

ces méthodologies.
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Appendix A

Cross-WLF Viscosity Model

The Cross-WLF viscosity model [117] describes the temperature, shear rate, and pressure depen-

dency of the viscosity for thermoplastic materials. This model is used in Autodesk Moldflow Insight

2021.1 to calculate the viscosity of the polymer during its injection molding.

η = η0

1 + (η0γ̇
τ∗ )1−n

(A.1)

where:

• η is the viscosity of the melt,

• η0 is the zero shear viscosity,

• γ̇ is the shear rate,

• τ∗ is the critical stress at the transition to shear thinning,

• n is the power law index in the high shear rate regime.

The zero shear viscosity parameter, η0, in the above equation is given by the WLF model [118]:

η0 = D1 exp
[
− A1(T − T ∗)
A2 + (T − T ∗)

]
(A.2)

where:

• T is the temperature,

• T ∗ = D2 +D3P is the glass transition temperature,
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• A2 = A3 +D3P ,

• P is the pressure,

• A1, A2, D1, D2 and D3 are data-fitted coefficients.
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Sandra Saad

Towards the use of surrogate modeling
in model parameter calibration in

injection molding process simulation

Résumé : Les coûts de calcul des simulations du procédé de moulage par injection ont augmenté au cours des dernières
années en raison de la complexité accrue des modèles intégrés. Ceci est particulièrement problématique pour des cal-
culs d’optimisation de pièces ou pour les analyses de sensibilité de paramètres. Une façon de surmonter ce problème est
d’implémenter des métamodèles pour réaliser ces simulations haute-fidélités. Ces métamodèles peuvent jouer un rôle impor-
tant dans le cas du moulage par injection de polymères semi-cristallins pour modéliser le processus de cristallisation induit
par l’écoulement. À ce jour, la plupart des logiciels commerciaux ne prennent pas explicitement en compte la cristallisation
des polymères, ce qui conduit à diverses erreurs dans les prédictions de remplissage, d’évolution des champs de contraintes
et dans les prédictions dimensionnelles. La faisabilité de l’utilisation des métamodèles pour identifier les paramètres d’un
modèle physique est d’abord présentée. Il s’en suit la mise en œuvre d’un modèle de cristallisation thermo-mécanique afin
de décrire la cristallisation induite par l’écoulement d’un matériau thermoplastique semi-cristallin non renforcé pendant le
procédé de moulage par injection. Le modèle de cristallisation est couplé aux modèles de viscosité et PVT dans le logiciel
commercial AutodeskR⃝ MoldflowR⃝ Insight 2021 en utilisant la fonction Solver API. Les paramètres du modèle sont identifiés
à l’aide d’un schéma de recalage qui utilise trois différents métamodèles représentant les résultats de pression simulés pour
effectuer une optimisation multi-objectifs. Les prédictions de remplissage ainsi que les pressions calculées sont présentées en
utilisant les paramètres du modèle calibré en comparaison avec celles mesurées pendant le moulage par injection réel d’une
pièce en polyoxyméthylène avec différentes conditions de processus. Les résultats montrent des améliorations majeures dans
les prédictions des signaux de pression ainsi que dans l’état de remplissage des pièces produites et les épaisseurs estimées de
la couche de peau formée dans des conditions de cisaillement élevé. Les modèles recalés sont testés en utilisant différentes
géométries de moules pour évaluer leurs performances.
Mots clés : modélisation de substitution, moulage par injection, cristallisation, simulation, thermoplastique, paramètre de
modèle, métamodèle.

Abstract: The computational costs of injection molding simulations have been increasing in the past years due to the
higher complexity of the embedded models. This is especially problematic in case of using such simulation models for
optimization routines or sensitivity analyses. One way to overcome this challenge is by having a surrogate model, also
known as a metamodel, of these high-fidelity simulations, which provides a cheaper way to perform these types of analyses.
These surrogate models can play an important role in the case of the injection molding of semi-crystalline polymers to model
the flow-induced crystallization process. To date, most commercial software do not explicitly take polymer crystallization
into account leading to various errors in the fill predictions as well as the calculation of warpage and shrinkage. This is mainly
due to the common complexity of the models used to describe crystallization and the challenging respective model parameter
identification process under injection molding conditions. To close this gap, in this thesis, the feasibility of using surrogate
modeling to identify modeling parameters is first studied. This is then followed by the implementation of a thermo-mechanical
crystallization model in order to describe the flow-induced and quiescent crystallization of an unreinforced semi-crystalline
thermoplastic material during injection molding. The crystallization model is defined alongside crystallization-dependent
viscosity, PVT and solidification models in the commercial software AutodeskR⃝ MoldflowR⃝ Insight 2021 using the Solver API
feature. The model parameters are identified using a calibration scheme that employs three surrogate models representing
the simulated pressure results to perform a multi-objective optimization. The fill predictions as well as the calculated
pressure fields are presented using the calibrated model parameters in comparison to those measured during the actual
injection molding of a polyoxymethylene part with different process conditions. The results show major improvements in the
predictions of the pressure signals as well as the filling status of the produced parts and the estimated skin layer thicknesses
formed under high-shear conditions. Additionally, the calibrated models are tested using various mold geometries to assess
the calibrated models’ performance.
Keywords: surrogate modeling, injection molding, crystallization, simulation, thermoplastic, model parameter, metamodel.
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