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1.1. INDUSTRIAL CONTEXT OF QUENCHING

1.1 Industrial context of quenching

Quenching is a very important industrial application in particular in automotive,
aerospace, and nuclear industries. It is the fast cooling of a solid in the quenchant
which could be water, oil, air, or any other fluid. The importance of this process
comes with its ability to control the microtructure and the properties of the material.
In addition, it precedes all the other processes as forging, rolling, etc. Therefore, a
lack of controlling this process will impact the manufacturing chain and results in low
quality products. For that reason, it is important to understand the physics behind
this process to be able to control it. Numerical and experimental studies of physical
processes, with the help of mathematical equations, gave a better understanding
of complex problems and decreased the development costs [1–4]. In the history of
quenching, the optimization and testing were only done by large companies that
can afford large experimental tests and have the needed advanced tools or powerful
computers for large amount of calculations. Nowadays, the numerical simulations
became more accessible and enough accurate to simulate such a process.

The quenching process belongs to the family of thermal treatment of the material.
The purpose is to enhance the hardness of materials and control the microstructure
as stated before. This process prevents some low-temperature transformation to hap-
pens, by reducing their time-window which makes the microstructure with smaller
grain and better hardness. This process also involves many physical phenomena in
the solid as well as the surrounding fluid. Moreover, different parameters can be
controlled during this process as agitation, piece orientation, quenchant properties,
tank size, etc. Figure (1.1) shows real industrial applications of quenching.

Figure 1.1: Industrial quenching [5, 6]

This project is a part of the INFINITY industrial ANR chair that involves im-
portant industries in aeronautics, nuclear, and automotive fields. Their interest is a
full control of the process, to better understand and easily apply changes to their ap-
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1.2. IMPORTANCE OF COMPUTATIONAL ANALYSIS OF QUENCHING

plication. To have a full control, it is important to understand and take into account
all the physical phenomena happening in both the solid and the fluid mediums.

1.2 Importance of computational analysis of quenching

Because of the importance of this process in the industrial world, many studies
exist in the literature that works on the quenching process, in particular the fluid
behavior at the interface [4, 7–9]. These studies concentrate on the parameters that
affects the quenching process (e.g. agitation rate, fluid viscosity,...). Additionally,
it is a very complex process since it includes several physical phenomena on both
the fluid (quenchant) and the solid as mentioned before. Although these studies
are interesting and help to understand the heat transfer phenomenon, however most
of them are experimental and are still limited to some scenarios that can not be
controlled. For that reason, computational analysis became more interesting for
such an application to have a better control of the process. Numerically speaking,
this kind of application has a Computational Fluid Dynamics (CFD) problem on
the outside of the solid, and a Computational Solid Mechanics (CSM) in the solid
part.

1.3 Physics behind quenching and thesis objective

This process has two main physical events: boiling and evaporation in the quench-
nat, and changes in the solid. First, one must understand what happens when a
liquid is in contact with a hot surface. Nukiayama , studied the heat flux between a
metal surface and boiling water [10]. Figure (1.2) shows the different stages of heat
flux, and it could be divided into four stages:

1. From the beginning to point ”e” is the free convection stage. Bubbles do
not exist yet, but the density of the fluid is decreasing with an increasing
temperature.

2. Between point ”e” and ”b” is the nucleate boiling stage. The bubbles starts
to appear and form columns. Point ”b” is called the critical heat flux; at this
point it is the most efficient heat transfer.

3. Between point ”b” and ”c” is the transition boiling. At this stage the vapor
layer starts to develop and surround the material. Point ”c” is called the
Leidenfrost point.

4. From point c an beyond is the film boiling. Finally the vapor film is is created
and covers the material.

3



1.3. PHYSICS BEHIND QUENCHING AND THESIS OBJECTIVE

Figure 1.2: Surface heat flux evolution as function of the excess temperature [10].

In the quenching process, the heat transfer passes through all the stages presented
but in the other direction (from right to left). It is clear that the cooling process is
not continuous and simple, which makes it important to simulate the whole boiling
and evaporation process.

On the other side, it is important also to understand what changes the solid
passes through. Three main phenomenon occurs in the material while quenching:
heat transfer, phase transformation, and mechanical response. These three fields
interact with each other during the process as seen in figure (1.3).

Figure 1.3: Link between heat transfer, phase transformation and mechanical response

Since it is a cooling process with a high temperature difference, different phases
are created and their volume fraction changes during the process. In parallel, cooling
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rate is affected by these phases due to the latent heat they generate during the
transformation. At the same time, temperature change and phase transformation
have a significant impact on the deformation and the stresses in the part. A coupling
between phase transformation and mechanical response also exist, since new phases
cause stresses, and the stresses can trigger some new phases to appear. These three
connected fields are also dependant on the chemical composition of the alloy.

To be able to have a full understanding of the process, one must remove as many
assumptions as possible. For that reason, the main objective of this thesis, is to
achieve a full framework of the process that includes all the physics happening in
both mediums: the solid and the fluid. To summarize the physics explained in this
section, figure (1.4) is an illustration of all the different phenomena happening in
this process.

Figure 1.4: Full framework illustration

Figure (1.4) gives us the structure of this thesis where the objectives are as
follows:

1. Achieve the full coupling between the fluid and the solid.

2. Solve both systems simultaneously; phase change of the fluid at the interface,
and phase transformation with mechanical response in the material.

5
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3. Look for quality of the part in terms of residual stresses and deformation.

4. Describe numerically the full quenching mechanism, in order to control the
process.

In the following section, a global literature review on the quenching process is
presented that highlights the most important contributions on this process.

1.4 Summary of the quenching in the literature

In the literature, various efforts were proposed to deal with this process. They
can be gathered into two groups: one fluid flow model with boiling transfer coeffi-
cients, or two-fluid flow model with heat transfer coefficients for the solid part. In
the latter case, the classical approach is to combine the fluid motion with interface
tracking technique such as LevelSet [11], Phase Field [12], Volume of Fluid [13]...For
example, Garwood et al. [1] have characterized a quench tank for the heat treat-
ment of superalloys forging via simplified finite difference methods and heat transfer
coefficients. Srinivasan et al. [14] developed a specific CFD modeling procedure to
simulate particular immersion quench cooling process using boiling transfer coeffi-
cients. Engine cylinder heads have also been modeled using heat transfer coefficients
in [15].

As expected, computational fluid dynamics is now being used increasingly for
multiphase flows and in quench design. However there still considerable uncertainties
due to assumptions that must be made in particular: (i) the use of simple geometries,
(ii) the use of decoupled fluid solid resolution and finally, (iii) the use of transfer
coefficients that approximate the complex quenching environments. Moreover, the
consequences of the numerical method limitations are the set of physical model
assumptions, e.g.: incompressibility , low density ratio between phases, omission of
heat conduction in one of the phases, low fidelity for boiling phenomena, laminar
flows, etc. Most of these assumptions are justifiable for their intended applications;
however, their use remains generally limited and suffers from systematic revalidation
when facing new materials, new geometries or new thermo-mechanical conditions.

One of the good idea is to remove all assumptions which will remove all the
limitation that previous models were facing. Khalloufi et al. [16], developed a high
fidelity phase change model. This model, includes all the physical phenomena that
exist on the interface during quenching. In the context, he worked on level set to be
able to capture well the interface. In addition, he worked on an anisotropic mesh
adaptation to achieve a high-fidelity spatial resolution. Moreover, the immersed
volume method is used for two fluid modeling in the context of multiphase flows [17]
and for fluid structure interactions in the context of heat and mass transfer [18].
The coupling of both was a major enhancement of the model. Furthermore, it is
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important to mention the study on the Navier Stokes equations to better understand
the multi phase flow and the interactive of the two phases. Finally, the thermal
behavior on the surface of the material was added to include the heat transfer that
is causing boiling for a better accuracy.

This model was tested on several industrial cases with 3D modeling. First, a test
was done on a small part to compare with experimental data. Figure (1.5) shows
the boiling process during quenching, while the water is in blue and the solid is in
red. It is clear the importance of this model, specially when we can visualise the
adaptive mesh over time. As a reminder, the work in [16] used the anisotropic mesh
adaptation. In addition, it represents the comparison between the experiment and
the simulations. It is clear that a larger number of elements give more accurate
results. As a matter of fact, for 2e5 elements, the numerical solution shows a good
agreement with the experimental data.

Figure 1.5: Numerical results with visible adaptive mesh in comparison with experiments
[16]

Several other studies were conducted to investigate the quenchant behavior on
the interface. In [19] they worked also on the boiling process adding some exper-
imental observation to validate the numerical model. These studies are important
and help to understand the heat transfer that occurs at the interface and the fluid
behaviour. On the other hand, another phenomenon is happening in the solid that
is also affecting the process in particular phase transformation, stresses and defor-
mations.

Several studies in literature worked on coupling both the fluid and the solid
parts. I the work of [20], they did a simulation approach for quenching automotive

parts. The model consists of using AVL FIRE
®

for CFD coupled with DANTE
®

for CSM with phase transformation. This study works on two different materials:
Aluminum which does not have phase transformation, and steel with phase trans-
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formation. Figure (1.6) shows the computational domain of the steel gear tested in
this study, which consist of having two different codes for fluid and solid.

Figure 1.6: Computational domain for a steel gear study [20].

Subsequently, other studies can be found that work on the phase change at the
interface coupled with a partial solid study. In [21], [14], and [22] they worked on

a CFD code using AVL FIRE
®

. Moreover, another study was done in [23], which
also considers coupling of the fluid and the solid on two different softwares.

This bibliography is dedicated to contrast between the different fields that exist
during the quenching process. In table 1.1, all the studies presented previously are
summarized.

However, through all these years, the full coupling and the interaction between
the fluid and solid have never been done properly. It exist in the literature several
studies that deal with this coupling, but they study particular cases and do not
cover the full process. The last row represents the main objective of this thesis. The
aim is to create a full Eulerian framework for heat-fluid-solid treatment. This is
crucial for the control of the process where different scenario need to be studied and
have immediate impact: agitation (form, position, orientation), solid part (position,
orientation, and geometry), and many other scenarios.

Since there exist many physical phenomena in this application, in this thesis all
the physical phenomena will be presented in different chapters. The boiling and
evaporation part is already well developed in the team which will be used as a
tool in my project. The main focus will be on the changes happening in the solid,
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Model Numerical simulation Fluid Solid Coupling

Done by Khalloufi [16]
and ElKosseifi et al. [19]

Studies the boiling effect
with phase change

No coupling

Done by Aliaga [24],
Kang et al. [25], and

Simsir [26]

Studies the behavior in
the material including
phase transformation

No coupling

Done by Srinivasan et al.
[21] [14], Kopun et al.
[22], and Bahbah et al.

[23]

Studies the phase change
at the interface and the

solid part

Coupling exist but only
with the thermal

behavior (without phase
transformation)

Done by Greif et al. [20] Studies the CFD on the
interface with the solid

part

Coupling exist with
phase transformation,

but the CFD part does
not include High fidelity

phase change model
To be done in this thesis Studies the phase change

at the interface and the
phase transformation
with the mechanical

response in the material

High fidelity phase
change model coupled

with phase
transformation and
mechanical response

Table 1.1: Summary of all studies presented in this report

and the coupling between the solid and the fluid part. For that reason, chapter
2 will describe the phase transformation process in the steel, and its numerical
interpretation. Chapter 3 focuses the geometrical changes in the solid because of the
thermo-elasto-plastic stresses and strains. Since the elasticity was already developed
in the team, chapter 3 will an extension of the elasticity with the development of
the thermal and plastic parts of the deformation. Chapter 4 will be a recall of the
phase change model, with the description of the new framework and the fluid-solid
coupling. Finally, chapter 5 will be the application of the global model to industrial
applications.
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1.5 Résumé en français

La trempe est un processus de refroidissement très important adopté de nos jours
par la plupart des industries, en particulier les industries automobile, aérospatiale
et nucléaire. L’importance de ce procédé vient de sa capacité à contrôler la mi-
crostructure, à avoir de meilleures propriétés thermiques comme la dureté et la
limite d’élasticité, et à relâcher les contraintes résiduelles. Néanmoins, il s’agit d’un
processus très complexe puisqu’il comprend plusieurs phénomènes physiques à la
fois sur le fluide et sur le solide. Au niveau du liquide, du fait du contact direct avec
une surface chaude, le liquide va s’évaporer et atteindre le point d’ébullition. Au
niveau du solide, il existe des contraintes, des déformations qui modifient la forme
de la pièce et des transformations de phase qui génèrent de la chaleur latente. Un
modèle d’ébullition d’évaporation est été utilisé pour simuler ce qui se passe dans
l’environnement du solide. L’importance de ce modèle vient de sa capacité à donner
une description réelle du transfert de chaleur qui se produit entre le solide et le
fluide. Le changement de température dans le solide affectera à la fois la transfor-
mation de phase et la réponse mécanique de la pièce. Une partie bibliographique
est introduite dans ce chapitre qui résume les travaux existant dans la litérature sur
l’étude numérique de la trempe. Finalement, l’objective de la thèse est de simuler
le processus de trempe en prenant compte de toute les physiques existant dans le
soliide et dans le fluide.
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2.6 Résumé en français . . . . . . . . . . . . . . . . . . . . . . 37

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

15



2.1. INTRODUCTION

2.1 Introduction

First physical phenomena to study is phase transformation, which is one part
of the solid study as highlighted in figure (2.1). This is a thermal process that is
responsible of the microstructure of the material

Figure 2.1: Phase transformation part of the full framework

For a solid undergoing high temperature gradients and different cooling rates
in its thickness, phase transformation is a major physical phenomena that could
happen. In general, there are different types of phase transformation in metals.
Following table (2.1), these metals could be divided into three main categories: No
phase transformation, steel phase transformation, and other alloys phase transforma-
tion. Steel was differentiated from other alloys, because it has the most complicated
procedure, and it will be a main focus in this thesis.

2.2 Phase transformation in steel

2.2.1 Iron-carbon phase diagrams

Generally, the iron-carbon phase diagrams describe the phases with respect to
temperature and carbon percentage as seen in figure (2.2). Each phase can exist de-
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No phase transformation Steel phase
transformation

Other alloys phase
transformation

No latent heat
generation

Latent heat due to
transformation from
Austenite to another

phase

Latent heat due to other
type of transformation

Example: aluminum Example: steel Example: nickel,
titanium ... based alloys

Table 2.1: Metals Types

pending on the chemical composition and the temperature of the alloy. For example
for a 0.77% of carbon, the steel will be eutectoid and for a tempreature above 727oC
the phase will be austenite. When cooling this alloy, the austenite will transform
directly to pearlite phase.

In this work, steel will be the main interest because of the complication of its
phases and it is the most alloy used in industrial applications, which means the
left part of the graph in figure (2.2) where the carbon percentage is less than two.
Steels, in particular stainless steel, has several phases: pearlite phase which is a
mixture of ferrite and cementite phases, mastensite phase, and the austenite phase.
During quenching, the steel is subjected to phase transformation, and can have
different phases through time. Moreover, phases can transform depending on the
cooling rate and the chemical composition of the steel. As a matter of fact, austenite
appears at high temperatures. With a slow cooling rate, the alloy will have the same
microstructure before heating (same phases); mainly, the phases for slow cooling are
pearlite, ferrite or cementite. With a rapid cooling rate, the microstructure will
most probably be martensite [1].

2.2.2 Austenite γ to α transformations in equilibrium con-
ditions

For a better understanding of the transformations, one must know about the
γ → α transformations in the equilibrium conditions. As figure (2.2) shows, we can
divide the transformations into four categories: eutectoid, hypo-eutectoid, hyper-
eutectoid, and low carbon percentage transformations [3].
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Figure 2.2: Iron-Carbon phase diagram [2]

2.2.2.1 Low carbon percentage transformation; C % < 0.0218

This transformation begins at 912oC approximately, it can varies depending on
the carbon precentage. The first stage of transformation, some ferrite grains will
appear next to the austenite ones with a low carbon percentage. The ferrite phase
continues to grow while cooling until 727oC is reached, below that a precipitation
of cementite (Fe3C) begins. When the ambiant temperature is reached, the equi-
librium structure will be a mix of ferrite with low carbon and Fe3C precipitate
[2].

2.2.2.2 Eutectoid transformation; C % = 0.77

All this transformation happens on 727oC, which is point 3 on the graph, with
the following reaction:

Feγ(0.77%C)→ Feα(0.0218%C) + Fe3C (2.1)

This reaction is responsible of the creation of the pearlite phase, which is a
mixture of ferrite and cementite. Below 727oC, the ferrite phase will be almost
saturated because of its low percentage of carbon. Thus, the precipitation will
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continue on the form of Fe3C basically on the cementite grains already developed.
At the ambient temperature the pearlite phase will be divided as follows:

% mass of ferrite = 100 - 14.95 x C% = 88.5 % mass
% mass of cementite = 14.95 x C% = 11.5 % mass

Figure (2.3) illustrate the distribution of the pearlite phase during transforma-
tion.

Figure 2.3: Pearlite phase formation [2]

2.2.2.3 Hypo-eutectoid transformation; 0.0218 < C % < 0.77

As figure (2.2) shows, the eutectoid transformation comes after a ferritic for-
mation. The transformation begins between 910oC and 727oC (depending on the
carbon percentage); it generates ferrite grains with low carbon and keeps precipi-
tating until 727oC.

Below that temperature, an eutoctoid reaction happens as described in reac-
tion (2.1). At the ambient temperature, the material will be composed of eutectoid
aggregate with a hypo-eutectoid ferrite. The left side of figure (2.4) describes the
distribution of the phases at a 20oC temperature in function of the carbon percent-
age.
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2.2.2.4 Hyper-eutectoid transformation; 0.77 < C % < 2.11

Identically to the hypo-eutectoid, this category has a cementic formation before
the eutectoid reaction. the transformation begins between 1148oC and 727oC (de-
pending on the carbon percentage).

At the ambient temperature, the structure will be an aggregate of eutectoid with
Fe3C or cementite precipitates. The right side of figure (2.4) describes the structure
of the material at the ambient temprature.

Finally, figure (2.5) show the evolution of the microstructure during cooling in the
equilibrium conditions. The hypo-eutectoid descibed in figure (2.5.a) shows ferritic
phases with colonies of pearlite. Same for figure (2.5.b) with cementite phase. In
addition, figure (2.2) and (2.5) summarizes the three main types of steel:

1. The steel only with the eutectoid aggregate and is called ”eutectoid steel”

2. The steel that has a ferrite precipitate with the eutectoid aggregate is called
”hypo-eutectoid steel”

3. The steel with a cementite precipitate with the eutectoid aggregate which is
called ”hyper-eutectoid steel”

Figure 2.4: Different phases variation with respect to carbon percentage at 20oC [2]
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Figure 2.5: Microstructure evolution during cooling in equilibrium conditions for the a)
hypo-eutectoid and b) hyper-eutectoid [4]

2.2.3 Austenite γ to α transformations out of equilibrium
conditions

2.2.3.1 Introducing TTT diagrams

One may ask what are the equilibrium conditions in phase transformation. It
mostly means that all phases are in a chemical, mechanical and thermal equilibrium.
In real life, specifically in industrial applications, the latter case is not common. A
solid could undergo at the same time rapid cooling (on the surface) and slow cooling
(in the core). On this basis a study called ”continuous cooling” is done. The
experience shows that the results found in this study could sometimes be complex
and difficult to analyse.

For a clearer decomposition of each phenomena and for a better distinction the
effect of time from one side and the effect of temperature from the other side,
another study was done on the materials. This study analyses the transformations
with isothermal conditions on temperatures lower than the limit of the austenite
stability zone. This study is called ”isothermal conditions” and described by the
temperature time transformation (TTT) diagrams.

The kinetics of phase transformation γ → α is decribed using TTT diagrams.
Figure (2.6) is an example of a hypo-eutectoid steel of type C55. This kind of
diagram can be generated using the JMAT pro software; given any chemical compo-
sition of steel, the graph could be done with all the information needed. This graph
has a logarithmic time as horizontal axis and temperature as vertical axis. The lines
in blue corresponds to the transformation level as follows:

• The γ → α transformation begins with only ferrite phase (I)
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2.2. PHASE TRANSFORMATION IN STEEL

• The eutectoid aggregate starts to form after a small fraction of ferrite (II)

• 50% of austenite transformed (III)

• The transformation is finished (IV)

6

Figure 2.6: TTT diagram of a hypo-eutectoid steel of type C55 [2]

2.2.3.2 Transformations types in steel

The examination of the graph in figure (2.6) shows that the γ → α transformation
could happen with different conditions depending on the maintained temperatures:

• In the temperature domain between Ac3 ≈ 775oC and Ms ≈ 310oC, the
transformation happens in function of time

• However, below the Ms limit the time has no effect on the transformation, the
evolution continues with respect to temperature.

In the temperature domain between the stability limit of ferrite (Ac3) and the
ambient temperature, the experience shows that the transformation depends on
whether we put the material on the higher or the lower temperatures of the interval.
We can take the C55 example to elaborate more:
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2.3. NUMERICAL INTERPRETATION OF PHASE TRANSFORMATION

a) Between the stability limit of ferrite Ac3 and approximately 500− 550oC, the
transformation happens with a similar procedure of the one with the equilib-
rium conditions. As a matter of fact, that ferrite grains start to appear and
grow until the second limit Ac1 is reached. After that, a phase that is similar
to the eutectoid aggregate starts to appear and it is called pearlite phase. So
the first stages of transformation the austenite transform to properlitic ferrite,
and pearlite phases.

b) In a lower temperature domain, between approximately 500− 550oC and Ms,
the γ → α transformation is different than the high temperatures domain.
The transformation still includes ferrite with saturated carbon and cementite
crystals, however, the proeutectoid and eutectoid no longer exist. A new phase
here is created and called bainite that comes into two forms upper bainite and
lower bainite.

c) Finally, below the Ms limit which is the starting temperature of the martensite
phase. At this stage, the austenite transformation does not depend on time
anymore.

In the following section, more details on the temperature limits and phase frac-
tion will be discussed, in addition to the numerical procedure to calculate the phase
fractions and their effect on the cooling process.

2.3 Numerical interpretation of phase transformation

2.3.1 Thermal behaviour

As described before, the phase transformation is a phenomena that highly de-
pends on temperature and the cooling time. In parallel, cooling rate is affected by
these phases due to the latent heat they generate during the transformation. The
coupling between heat treatment and the phase transformation was done using fi-
nite element analysis (FEM) and can be found in [5]. This phenomenon can be
mathematically described using the convection diffusion reaction equation,

ρc
∂T

∂t
= O.(λOT )− O.(vT ) +R +Q (2.2)

where ρ, c and λ, are the density, specific heat, and the thermal conductivity
respectively. O.(λOT ) represents the diffusion, O.(vT ) the convection and R the
reaction. Q is the internal heat source (source term) caused by the latent heat gen-
erated from the phase transformation. In this case, the reaction term is considered
zero, and the convection term is removed since the velocity is zero inside the part.
Equation (2.2) reduces to:
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2.3. NUMERICAL INTERPRETATION OF PHASE TRANSFORMATION

ρc
∂T

∂t
= O.(λOT ) +Q (2.3)

ρ, c and λ are dependant on both the temperature and the phase in the material.
They are expressed by the linear rule of mixture which is the addition of each phase
properties times the phase fraction,

P (T, ξi) =
N∑
1

PiFi (2.4)

where P is the total ρ, c or λ, Pi is the thermal property of the ith phase, and Fi
is the volume fraction of the ith phase. The latent heat rate is expressed as function
of the enthalpy change of each phase,

Q̇ =
∑
i

∆HiḞi (2.5)

where ∆Hi is the enthalpy change of the iith phase. Q will be discussed in details
in the following section.

Equation (2.3) describes the heat transfer of the process, with some updated
thermal coefficients that fits with this application. In fact, if the assumption of the
heat transfer coefficient is to be hold, one must use equation (2.3). However, since
we are dealing with boiling and evaporation, the equation will change accordingly
in the following sections.

2.3.2 Temperature limits of phases

Before going into the kinetics of the phase transformation, an important step
must be done. One of the conditions for each phase to appear is to be in the
corresponding temperature range. Hence, the limits of these ranges are called the
critical temperatures and can be extracted from the TTT diagrams or calculated
analytically. There are several ways in the literature to determine these temperatures
based on the chemical composition of the material. Some of these methods uses the
thermodynamics, and some others are based on regression analyses [5].

2.3.2.1 Calculation of the ferrite critical temperature

This critical temperature has two variants, one in the equilibrium conditions Ae3,
and one out of the equilibrium conditions Ac3 (”c” stands for continuous cooling and
”e” stands for equilibrium conditions). Generally these two values are approximately
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2.3. NUMERICAL INTERPRETATION OF PHASE TRANSFORMATION

equal. The Ac3 is given by a regression analysis on almost 4000 steel grades, and
proposed by Lusk et al. [6],

Ac3(oC) = 883.49− 275.89C + 90.91C2 − 12.26Cr + 16.45CCr

− 29.96CMn+ 8.49Mo− 10.80CMo− 25.56Ni

+ 1.45MnNi+ 0.76Ni2 + 13.53Si− 3.47MnSi

(2.6)

Moreover, Kirkaldy and Barganis [7], worked on the same expression with the
addition of many other alloying elements that is not included in the previous ex-
pression,

Ae3(oC) = 912− 203C0.5 + 15.2Ni+ 44.7Si− 104V + 31.5Mo+ 13.1W

− 30Mn− 11Cr − 20Cu+ 700P + 400Al + 120As+ 400Ti
(2.7)

2.3.2.2 Calculation of the cementite critical temperature

Subsequently, the calculation of AFe3C is relatively the same as Ac3. Lusk et al.
[6] also obtained an expression for the cementite critical temperature by a regression
analysis on 20,000 steel grades,

AFe3C(oC) = 217.5 + 977.65C − 417.57C2 − 35.29Cr + 21.36CCr

− 1.50Cr2 − 0.95Mn− 1.37CMn− 2.76Mo− .377CNi

+ 30.36Si− 8.10CSi+ 2.58CrSi

(2.8)

One must note that this temperature is in out of equilibrium assumption which
approximately equal to the one in equilibrium conditions.

2.3.2.3 Calculation of the eutectoid critical temperature

This critical temperature also called Ae1 is the most complicated to describe.
The experimental value of this temperature comes between the temperature in the
equilibrium conditions and the one out of the equilibrium conditions. For that
reason, Lusk et al. [6] derived three different equations based on different alloying
elements:
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Ae1 =



726.16 + 17.27Cr − 0.39CCr − 1.97Cr2

−11.79Mn+ 3.95CrMn+ 3.76Si

−7.46CrSi− 4.64MnSi+ 18.61Si2 ; Ni=Mn=0

729.00− 15.67Mn+ 1.33CMn− 1.46Mn2

−18.56Ni− 2.13MnNi+ 1.65Ni2 + 9.15Si

−1.85MnSi+ 6.63Si2 ; Cr=Mo=0

727.37 + 13.40Cr − 1.03CCr − 16.72Mn

+0.91CMn+ 6.18CrMn− 0.64Mn2

+3.14Mo+ 1.86CrMo− 0.73MnMo

−13.66Ni+ 0.53CNi+ 1.11CrNi

−2.28MnNi− 0.24Ni2 + 6.34Si− 8.88CrSi

−2.34MnSi+ 11.98Si2 ; Mn 6= 0

(2.9)

2.3.2.4 Calculation of the bainite and martensite critical temperatures

Steven and Haynes [8] proposed a formulation for the bainite starting tempera-
ture:

Bs(
oC) = 656− 58C − 35Mn− 75Si− 15Ni− 34Cr − 41Mo (2.10)

Furthermore, an equation was proposed by Andrews [9] to martensite starting
temperature:

Ms(
oC) = 561− 474C − 35Mn− 17Ni− 17Cr − 21Mo (2.11)

Another formulation was proposed by Kirkaldy and Venugoplan [7] for the marten-
site temperature:

Ms(
oC) = 512− 453C − 16.9Ni+ 15Cr − 9.5Mo+ 217C2

− 71.5CMn− 67.6CCrx
(2.12)

2.3.3 Isothermal phase transformation models

Several models have been developed to study the isothermal transformation math-
ematically. Most of the model describe the kinetics with same basis but with some
modifications. The equation on which most of the models are based is the following:
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Fi = Ait
Bi
j (2.13)

where Fi is the fraction of he ith phase, A and B are phase transformation
parameters that depends on the time, and will be defined later. A more general
equation is introduced to take into account the decrease in the transformation rate
because of the lack of availability in the volume of nucleation:

Ḟi = (1− Fi)riBiAi (Aitj)
ni−1 (2.14)

where r is the saturation parameter that depends on the temperature and the
growth of the grains. This parameter can take different number that leads to dif-
ferent equations. The fraction of each phase is given for example by Avrami r = 1
[10] and Austin-Rickett r = 2 [11].

Fi =


1− exp

(
−AitBi

j

)
; r=1 (Avrami)

1−
(
1 + Ait

Bi
j

)−1
; r=2 (Austin-Ricket)

1− (1 + (ri − 1)Aitj)
ri−1

Bi ; r 6= 1

(2.15)

If the initial conditions are not a 100% stable austenite, the equation is corrected:

Fi(t) = F 0
i +

(
Fmax
i − F 0

i

) (
−AitBi

j

)
(2.16)

where F 0
i and Fmax

i are the initial and the equilibrium fractions.

In addition, a mathematical model of non-isothermal transformation is required
to simulate the phase transformation during quenching, where each point in the
sample has a different thermal history. For thermally activated transformations, the
thermal history of the sample determines the state of transformation. Consider the
three different thermal pathways in figure 2.7. Each path yields a different amount
of product phase, even if the paths start and end at the same temperature and time.

Therefore, both temperature and time cannot be used as state variables. For
that reason, a new state variable β that depends on the thermal path needs to be
defined for the non-isothermal process. Next, an unspecified kinetic function G (β)
is defined and the transformed part is associated with the thermal path.

Fi = Gi (β) (2.17)

G (β) can be in any form of the isothermal equation of motion shown above.
If the transformation mechanism is fixed for the region of interest, the new state
variable can be considered proportional to the number of atomic hops. Temperature
determines the mobility of atoms, and time defines the duration of the process [13].
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Figure 2.7: Different thermal passes for the same start and end [12]

β =

∫ t

0

ci(T )dt (2.18)

where ci(T ) is a rate constant that depends on temperature and can be describes
as,

ci(T ) = c0
i exp

(
− Ei
RT

)
(2.19)

where c0
i is an exponantial factor, E is the activation energy, and R is the gas

contant. Using these equations, the rate of the transformation in terms of β can be
written as,

Ḟi =
dG

dβ

dβ

dt
= c(T )

dG

dβ
(2.20)

Therefore, β, F, and T are variables of the transformation rate. This discovery
introduces the concept of ”additivity” first proposed by Scheil [14]. This concept
was later extended to solid phase transformations by Chan [15] and then Christians
[16] proposed a generalized model.

The principle of additivity has long been discussed and studied by many authors
[17–21]. The general conclusion that can be drawn from these studies is that the
traditional Scheil-Cahn-Christian additivity principle is not completely accurate in
calculating non-isothermal kinetics from isothermal kinetics data. However, some
of the cited works have improved the principle of additivity to achieve a better fit
to experimental data. Most of these methods require additional experimentation.
Alternatively, Lusk et al. [6] has developed a global non-additive motion model that

is also integrated into the DANTE
®

software.
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From this point forward, the rest of the work will be using the Johnson-Mehl-
Avrami-Kolmogrov (JMAK) equations to describe the kinetics of the phase trans-
formation with the additivity principle.

2.3.4 Kinetics of phase transformation

As described in the previous sections, the phase transformation must be stud-
ied out of the equilibrium conditions. Thus, the TTT diagrams are the graphs
that can provide every information regarding the phases and their volume fraction.
Also, there exist in the literature many mathematical equations that describes the
physics of phase transformation; the most common equations used to determine
the phase fraction during diffusion-controlled transformation is described by John-
son–Mehl–Avrami–Kolmogorov (JMAK) and given as follows:

Fi = 1− exp(−AtBj ) (2.21)

Where Fi is the volume fraction of the diffusion controlled phases, A, B, and tj
are determined with the help of the TTT diagrams.

A = − ln(1− Fθ)
θB

(2.22)

B =
ln {ln(1− Fθ)/ln(1− Fφ)}

ln(θ/φ)
(2.23)

Where Fθ (=0.005) and Fφ (= 0.995) are the fraction at the beginning (time=θ)
and the end (time=φ) of the transformation. Fθ and Fφ are calculated at each
temperature, which means A and B are dependant on the temperature.

tj = ∆tj +

{
− ln(1− F 1−j)

A

}1/B

(2.24)

Where ∆tj is the time step, and F j−1 is the fraction at the previous time step.
As discussed before, each phase has a range of temperature where the transfor-

mation could happen. Figure 2.8 shows an example of an eutectoid alloy, where
TPs is the same as Ae1, TPf is the final pearlite temperature, TMs, and TMf are the
start and finish temperature of martensite respectively. However, another condition
must be satisfied in order to the transformation begins. As seen in figure (2.8), the
cooling curve is divided into time steps, and the transformation begins when the
following condition is satisfied:

m∑
j=1

∆tj
τj

= 1 (2.25)
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Figure 2.8: TTT diagram for eutectoid steel.

Numerically speaking, at each time step θ is calculated which is the transforma-
tion starting time at a given temperature. If θ is equal to the current time of the
simulation, the transformation will begin which is known by the incubation time.
This explains the condition in equation (2.25).

In addition, the diffusion-less transformation is described by Koistinen and Mar-
burger (KM) [22] which calculates the volume fraction of the martensitic phase.

Fm = [1− exp {−0.011 (Ms − Ti)}]
(

1−
∑

Fi

)
(2.26)

Where Fm is the martensite volume fraction, Ms is the temperature of the be-
ginning of the martensite phase. Equation (2.21) and (2.26), are mainly used in the
model to predict the volume fraction during phase transformation, as most of the
studies in literature use [4, 12, 23, 24].

Having the fraction of each phase, now we can calculate the latent heat generated
by the phase transformation. Q is described as follows,

Q =
∑
i

∆Hi
∆Fi
∆t

(2.27)

Where ∆Hi is the enthalpy change of the ith phase. At each time step, ∆Fi is
calculated and multiplied by its corresponding enthalpy change. This will give us
the latent heat at each time step.

Finally, since the latent heat is calculated, it will be added to equation (2.3) as
a source term, and in addition the fraction of each phase is calculated.
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2.3.5 Algorithm for phases calculations

The flowchart below, represents the algorithm for the phase transformation calcu-
lations. As a start, the model requires a temperature field for the solid, in addition
to the updated material properties based on the temperature. The first decision the
model makes, is to make sure if it is a eutectoid steel where we only have pearlite,
bainite, and martensite phase, or not eutectoid where we have in addition a ferrite
or a cementite phase. Moreover, we have two types of cooling: fast and slow cool-
ing. The fast cooling means that the temperature drops very fast that it does not
reach any starting point of pearlite, ferrite, or bainite phase. In this case we will
only have martensite phase. The slow cooling is when the cooling curve intersects
with the TTT diagram. In fact the model will check if the temperature is within
the pearlite/ferrite range, and then the incubation time. If the temperature is in
the good range and did not reach the incubation time, (or the cooling curve did
not intersect with the TTT diagram) the pearlite or ferrite phases will not appear.
Finally when the phases are calculated, the associated latent heat will be calculated,
and added as a source term to the equation (2.3).

Algorithm 1 Phase transformation in the solid

A. Get the temperature T distribution from the Fluid-Solid domain.

B. Phase fractions calculation:

1: if T < Tps then

2: if
∑m

j=1
∆tj
τj

= 1 then

3: Calculate Fp
4: else
5: No pearlitic transformation
6: end if
7: else if Tmf < T < Tms then
8: Calculate Fm
9: end if

C. Calculate ρ, Cp, λ, E, and β with respect to the temperature and phase
fractions.

D. Calculate the latent heat generated from each transformation

E. End of time-step
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2.4 Numerical validation

2.4.1 Test case 1: 1.8-m-diameter steel 2D cylinder

First test case is a 2D cylinder of 1.8 m diameter and 3 m in length tested
in [25]. The cylinder is made of 28NCD6 steel with an initial temperature of
865oC. The surroundings is approximated by a constant heat transfer coefficient
h = 1, 500W.m−2.K−1 with temperature of 20oC. The real quenching time is 90,000
seconds with a time-step of 1 second. An unstructured mesh is used with approxi-
mately 5,700 elements and 3,000 nodes.

Figure(2.9) shows the cooling curve of the cylinder in the core and at the surface.
It is clear that in the core the cooling rate decreases at some point because of the
latent heat generated from the Austenite/Ferrite transformation. The simulation
have a good agreement with the reference. In addition, figure (2.10) shows the
final microstructure of the material from the core to the surface. The Ferrite phase
appears in a small fraction in the core, while the Bainite phase dominates between
the core and the surface. The Martensite phase appears on the surface with a
residual of the Austenite phase.

Figure 2.9: Temperature history in the core of the cylinder.

2.4.2 Test case 2: 380-mm-diameter steel 3D cylinder

In this section, a 380-mm-diameter steel cylinder as seen in figure (2.11) was
simulated based on the test case found in [26]. In this work, the algorithm used
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Figure 2.10: Phase distribution of the fractions along the cylinder radius.

is similar to the one introduced in the flowchart. The 1080 steel cylinder has a
750-mm-height and a mesh of 46,128 elements and 9,038 nodes, and has an initial
temperature of 850oC. Figure (2.11) shows the results of the simulation at different
point in the cylinder.

Figure 2.11: Temperature history of the 380-mm-cylinder.

It is clear that the pearlite phase appears as well as the latent heat generated.
This could be seen in the core of the cylinder between 1,000 and 1,500 seconds of
cooling where the latent heat affected the temperature. In addition, the simulation
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seems to be in coherence with the reference, noting that the reference is a simulation
and not an experimentation.

2.4.3 Test case 3: 38-mm-diameter steel 3D cylinder

This geometry is similar to the previous but with smaller dimensions. It refers
to the same reference [26], and it has the same conditions as the previous one. The
mesh has 43,979 elements and 8,695 nodes. Figure (2.12) shows results of the 38-
mm-Cylinder quenching simulation, with a temperature history in the core and at
the surface.

Figure 2.12: Temperature history of the 38-mm-cylinder.

Certainly the cooling of this work-piece is faster, it took 100 seconds approxi-
mately to reach the ambient temperature. The results are in good accordance with
the reference unless at some point where we could see some difference in the cooling
rate. This could be a result of some approximations done for the material properties,
since in the reference article not all the information were included. One must also
note that the thermal properties as the heat capacity, thermal conductivity and the
density depends on both the temperature, and the phase fraction. This makes the
model more complicated. The most important point is that the phase fractions are
well calculated, in addition to the latent heat generation. And one final reason is
that the solver used could have a different approach of the one used in the refer-
ence article. This makes the diffusion process for example different, but the most
important part is that the steady-state temperature is the same for both cases.

Figure (2.13) shows each fraction distribution at the end of the quenching process.
Since the cooling is very fast at the surface, most of the phase will be martensite
with a residual of austenite. Figure (2.13a) shows a maximum of 0.74 as martensite
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Figure 2.13: Phases fraction distribution at the end of the quenching process.

phase fraction while the remaining 0.26 are residual austenite. This is not the case
in the core, the cooling rate is slower which will cause a pearlite transformation as
it is clear in figure (2.13c). The intermediate phase, bainite, can be barely seen in
figure (2.13b) between the martensite and the pearlite phases.

These results confirm that the model is well calculating the phases and the latent
heat. The model also can handle different types of steel. In other words, if the steel
is not eutectoid, a ferrite fraction may appear. The generalized model was tested on
this same test case, using different material that includes ferrite in its microstructure.
This could be shown in figure (2.14) where the pearlite phase is mixed with ferrite
in the core. To note that the martensite and bainite distributions are almost the
same.

Figure 2.14: Phases fraction distribution at the end of the quenching process with ferrite.
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2.5 Conclusion

The phase transformation in steels was presented in this section. It was shown
the importance of this process in quenching, and its effect on the cooling process.
In addition, a numerical model was presented to simulate the transformation of
each phase during the quenching based on mathematical equations. Finally, 2D and
3D numerical test cases were presented to validate this model. Indeed the phase
transformation has a major effect on the cooling rate, it also affects the mechanical
response which another phenomena happening in the solid. In the following section
the thermo-elasto-plastic model is presented that decribes the mechanical behaviour
of the solid during quenching.
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2.6 Résumé en français

Le chapitre 2, portant sur l’analyse thermique avec transformation de phase, en
particulier dans les aciers inoxydables, est composé de trois parties. Les différentes
transformations de phases possibles sont d’abord décrites, en fonction du cycle ther-
mique et de la teneur en carbone. Ensuite, partant d’une formulation en température
de la loi de conservation de l’énergie, la chaleur latente dégagée par une transforma-
tion de phase est introduite comme un terme source. Dans le contexte de transfor-
mations thermiquement activées (ce qui est le cas durant la trempe), ce terme source
dépend de la fraction volumique de chaque phase impliquée dans la transformation,
évaluée le long du chemin thermique considéré. Cette cinétique de transformation
est décrite ici par un modèle de type JMAK. Enfin, trois cas tests (1 en 2D, 2 en 3D)
de simulation du refroidissement d’un cylindre avec transformation de phase sont
présentés et comparés à des simulations équivalentes de la littérature. Des profiles
de température comparables sont trouvés, ainsi qu’une répartition des phases en
cohérence avec les températures critiques établies pour chaque transformation.
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3.1. INTRODUCTION

3.1 Introduction

The second physical phenomena happening in the solid is the mechanical response
as seen in figure (3.1). Although the quenching process does not require applying
forces on the solid, the high temperature gradients cause many geometrical changes
in the solid [1]. Here comes the importance of developing a solid solver that can
handle complex industrial geometries. The deformation vector in this application
can be partitioned into different types of deformations: elastic, plastic, thermal,
and phase transformation deformations. During quenching, the solid passes through
different stages of cooling, the solid can reach very low temperatures at the surface
while still at high temperature in the core. This difference in temperature can
cause a significant thermal deformation; in addition, the plasticity limit changes
with temperature, which makes the solid in a plastic regime. Since the temperature
change, the phase transformation, and the mechanical response are all connected as
described in figure (1.3), the appearance of new phases due to temperature change
can cause in a local deformation due to that change.

Figure 3.1: Mechanical response part of the full framework

At the macroscopic scale, we assimilate quenched metals, occupying a finite do-
main, to a continuous and homogeneous medium. The mathematical model of the

42



3.2. ELASTICITY

problem is therefore based on the fundamental equations of the mechanics of contin-
uous mediums, namely the mass conservation equation and the dynamic equilibrium
equation. For the problem to be correctly posed, equations relating to the boundary
conditions are introduced. Finally, in order to model the mechanisms governing
the thermo-elasto-plastic strain along with the phase transformation in the mate-
rial, constitutive law equations are also added. These allow for example to link the
stresses to the deformation rates during the flow of the material.

In the following sections we will introduce first the elastic model, and then we
introduce the plasticity to this model. Afterwards, the thermal and the phase trans-
formation deformations will be added to the model. Numerical examples and bench-
marks will be added to validate every step of the model.

3.2 Elasticity

A solid under a deforming force, passes through different stages of deformation.
The first stage is the elastic deformation, where the solid is not permanently de-
formed, if the force is removed then it will go back to its initial state. Such solver
is important for many applications as the electrical wire behavior [2], the dynamics
of the elastic shock in materials [3], or bio-medical applications that usually include
complex shapes.

A general solid solver with the displacement as an unknown field, and all other
quantities as stress, strain, pressure ... are calculated with post-processing approach
[4, 5]. However, this model has a poor performance for material near the incom-
pressibility limit. Some problems appears when dealing with such method as locking,
unstable pressure fields, and weak performance in bending applications [6].

This subject has seen a significant portion of development aimed at relaxing or
removing the above restrictions. For ease of implementation, selective and reduced
integral methods such as B-bar [6–8], F-bar [9–12], and mean expansion finite ele-
ment method [13] are used. These methods avoid the numerical instability of the
inf-sup or Ladyzhenskaya-Babuska-Brezzi (LBB) conditions by reducing the incom-
pressible order at the quadrature point [14]. These proposed solutions are accurate
for structured quadrilateral and hexahedral meshes that requires a two times higher
computing time than the unstructured tetrahedral elements [15].

Considering the case of static and incompressible elasticity, we get an elliptic
equation similar to the Stokes problem of fluid mechanics, but in the transient
case, that is, elastic dynamics is a hyperbolic equation. Given the similarity of the
equations, it is common to extend the velocitiy/pressure mixed/coupled formulation
of the Stokes problem [16], to the displacement/pressure mixed formulation of the
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3.2. ELASTICITY

static elasticity [17]. This development acts as a link between the various methods
already implemented in fluid mechanics and the field of solids mechanics.

A steady-state incompressible linear elastic solid was modeled in [18] using a
displacement/pressure mixed formulation with the Orthogonal Sub Scale approach
(OSS) [19], showed high capabilities in the incompressible limit. In [20, 21], incon-
pressible non-linear materials were also modeled using the OSS method. This work
shows the potential of a strain/displacement or stress/displacement mixed formula-
tion. However, there is an agreement between the accuracy and the computational
cost. Also, a three unknown formulation (displacement/strain/pressure) was tested
in [22] and found to be accurate and effective in the region near the incompressible
limit.

Most of the previous formulations were established for a steady-state problems,
and it was mentioned that the transient elasto-dynamics is an elliptic problem in-
stead of a parabolic one because of the second order displacement derivative of the
momentum equations. This issue was focused on in different works in the literature.

Part of this work involves [23–26], where the finite strain non-linear solid dynam-
ics solver is based on a new form of linear equations in the Lagrange framework. This
procedure consists of introducing a new variable F that stands for the deformation
gradient, and Lagrange multiplier for the angular momentum conservation if needed.
The results shows a second order accuracy in stress. Furthermore, a new variable J
was introduced in the bending related and in the incompressibility problems, which
represents the Jacobian determinant of the deformation gradient [27, 28]. In recent
studies [29–31], H = cof : F is added, which is a nodel co-factor tensor. This
method, like the other methods in the F node interpolation-based method family,
is inherently unstable. Therefore, a streamline Upwind/Petrov-Galerkin (SUPG)
stabilization method with penalties on the deformation gradient was used. Testing
demonstrates the ability of this methodology to solve the problem of incompressible
limits, but it is expensive because of the number of unknown per node.

Subsequently, a velocity/pressure mixed formulation is presented in [15, 32]
where the displacement field is calculated from the velocity discretization. The
authors argue that the Variational Multi-Scale (VMS) method is inadequate to sta-
bilize the transient part of the problem. They solved the problem using a pressure
rate equation, which they called the Dynamic Variational Multi-Scale (D-VMS).
The tests have also proven to be robust and accurate. In [33], a mixed displace-
ment/pressure formulation in a total Lagragian framework was presented in several
variations of the VMS approach. This method has also proven to be accurate and
robust.

The work in [34] presents the displacement/pressure finite elements formulation
for nearly incompressible materials. Variational Multi-scale with two types of error
estimators were used, and the formula was examined in various numerical conver-
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3.2. ELASTICITY

gence tests.
In the following sections, a new non-linear elastodynamic model developed in [35]

will be presented and used for the advancement of this work. This model can solve
elasticity for unstructured terahedral mesh with complex shapes and an acceptable
computational cost. This proposed displacement/pressure mixed formulation is used
with the split of the stress tensor into a deviatoric and a volumetric parts [36]. The
momentum equation is supplemented by the constitutive pressure equation. Also
this model proposes a fully implicit mixed displacement/pressure formulation in an
updated Lagrangian framework. The resulting set of equations is susceptible to
unstable pressure fields. The variational Multi-Scale (VMS) stabilization method
was implemented to this model to ensure a high fidelity solver. The framework
is combined with the moving mesh method, so the mesh follows the body of the
updated Lagrange framework. In addition, this model will be extended to solve
plastic, thermal, and phase transformation deformation and stresses.

More details on the governing equations and the stabilization method with nu-
merical validation will be presented in the following sections of this chapter.

3.2.1 Solid dynamics in Lagrange space

The Lagrangian solid dynamics equations governs the changing rate of density
and the displacement of solid. The inital and current domains Ω0 and Ω respectively
are two open sets in Rd with Lipshitz boundaries, where d is the spatial dimension.
Γ denotes the boundary of the problem, and split into two sets Γ = ∂Ωu ∪ ∂Ωt and
∂Ωu ∩ ∂Ωt = ∅, where Ω is the Dirichlet boundary condition for the displacement,
and Ωt is the Nuemann boundary condition for the traction force. The motion of a
body under deformation is given by:

φ : Ω0 → Ω = φ (Ω0) , (3.1)

φ : Γ0 → Γ = φ (Γ0) , (3.2)

X 7→ x = φ (X, t) . (3.3)

This represents a material coordinate mapping X in the total Lagrangian frame-
work of the infinitesimal solid particle, to x, the same particle coordinate but in
updated Lagragian framework. φ is considered invertible and smooth. J = detF
and F = ∇Xφ are the Jacobian and the deformation gradient respectively, and the
solid displacement is given by: u = x−X.

The governing are given by:

ρü−∇.σ = f in Ω, (3.4)
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3.2. ELASTICITY

ρJ = ρ0 on ∂Ωu (3.5)

where ρ0 and ρ are the initial and current body density respectively, f is the
forcing term, σ is the symmetric Cauchy-stress tensor, ü is the material second
derivative for the displacement, and also the acceleration.

This mixed formulation of displacement/pressure with the decomposition of the
stress tensor into a deviatoric and a volumetric part describe how the model works.
The decomposition of the stress tensor is essential especially when we are working
with nearly incompressible or fully incompressible materials. Also, this decompo-
sition is done only because the material is considered isotropic. Hence, the stress
tensor is given by:

σ = pI + dev [σ] (3.6)

where I is the identity matrix.
To complete the system of equations, initial and boundary conditions are neces-

sary. We assume first that the body had no displacement at the beginning of the
simulation which makes u (X, 0) = u0 = 0. This leads to φ (X, 0) = X,F |t=0 = I,
and J |t=0 = 1. A stress free assumption is considered at t = 0. Below are the
boundary conditions:

u|Γu = ud (x, t) , (3.7)

σn|Γt = t (x, t) (3.8)

where n is the outward normal on Γ.

3.2.2 Linear elastic equations

Assuming very small body displacement, Hook’s law can be applied to describe
the elastic behavior. The solid is considered as a spring with a linear correlation
between the stress and strain while the slope is the Young’s modulus of the material.
First, the steady-state interpretation will be presented, and then the transient one
is developed.

3.2.2.1 Steady-state interpretation

The steady-state formulation is a development of the Stokes equations with u as
a leading variable instead of the velocity. This change in equations will be a better
explanation to the stabilization technique that will be used. For a linear elastic
problem, x ≈ X, Ω0 ≈ Ω, ∇X ≈ ∇x, and ρ0 = ρ. As mentioned before this model
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is based on the decomposition of the stress tensor, and this was done using the two
unknown variable of the problem: the displacement u and the hydro-static pressure
p. So the stress tensor becomes:

σ = pI + 2µdev [∇su] , (3.9)

p = Kεv, (3.10)

εv = ∇.u. (3.11)

Where εv is the volumetric strain, and ∇s is the symmetrical gradient operator
given by:

∇s =
1

2

(
∇+∇T

)
(3.12)

Also µ is one of the Lamé constants, which is also called shear modulus of the
material and K is the bulk modulus which is also called modulus of volumetric
compressibility and they both are expressed by:

µ =
E

2 (1 + ν)
, (3.13)

K =
1

3

E

(1− 2ν)
. (3.14)

Having all the expression needed as the stress tensor and the boundary condi-
tions, the system of equations for the steady-state problem can be written as follows:

−∇p− 2µ∇.dev [∇su] = f in Ω,

∇u− 1

K
p = 0 in Ω,

σ.n = t on ∂Ωt,

u = 0 on ∂Ωu,

ρJ = ρ0 in Ω.

(3.15)

This set of equation can interpret both compressible and incompressible materi-
als. With K →∞ and a constant density, the material will be incompressible, and
the second equation in 3.15 becomes:

∇.u = 0 in Ω. (3.16)

It can also be interpreted as an isohoric phenomena by implying εv = 0 which
gives the same results.
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The variational form of these equations is given by:

a (u,w) + (p,∇.w) = L (w)∀w ∈ W0 ⊂
[
H1

0

]d
, (3.17)

(∇.u, q)−
(

1

K
p, q

)
= 0∀q ∈ Q ⊂ L2∫

=0 (3.18)

where a (u,w) and L (w) are given by:

a (u,w) =

∫
Ω

2µdev [∇su] : ∇swdΩ, (3.19)

L (w) =

∫
Ω

f .wdΩ +

∫
∂Ωt

w.tdΓ, (3.20)

Where (., .) is the L2 inner product. Thus, the discrete formulation of the equa-
tions is:

a (uh,wh) + (ph,∇.wh) = L (wh)∀wh ∈ Wh,0, (3.21)

(∇.uh, qh)−
(

1

K
ph, qh

)
= 0∀qh ∈ Qh, (3.22)

where the subscript h indicate the discrete form of the variable.
When using the Babuska-Brezzi stability, which is also called inf-sup [14], the in-

terpolation relation between the two fields is constrained, hence compelling different
interpolations for p and u. For that reason, having equal order of interpolation for
both fields shows a poor performance since the condition is not respected. Since in
this application P1/P1 elements were used, various stabilization types exists. The
Variational Multi-Scale method (VMS) is one of stabilization method that enables
the same order interpolation. Some of the works in the literature used the VMS
with equal order interpolation and they showed a proof of convergence with stabil-
ity, as in [16] the VMS was applied to the Stokes equations. Later it was used for
Navier-Stokes equation as in [37], as well as in linear elastic model as in [17, 38].
The VMS approach consists of applying an orthogonal decomposition of the fields
(pressure and displacement) which gives a natural stabilization. This decomposition
of the solution spaces is described below:

W0 = Wh,0 +W ′
0, (3.23)

W = Wh +W ′, (3.24)
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Q = Qh +Q′, (3.25)

As described in [19] there are two scale components: fine and coarse scale for the
pressure and the displacement and they are given by:

u = uh + u′, (3.26)

p = ph + p′. (3.27)

The same decomposition is also applied on the weighing functions:

w = wh + w′, (3.28)

q = qh + q′. (3.29)

Two sets division was made on equations (3.21) and (3.22): the course and the
fine scale. The unresolved fine scales are modeled with respect to the residual based
terms. they are solved in an approximate matter with static condensation, and
re-added in the coarse scale equations. Hence, additional terms will appear which
they are corrected by a local stabilization parameter. The enhancement of stability,
the reduction of oscillation in the pressure field, and the increase in accuracy of the
standard Galerkin formulation come from these additional terms. The fine scale
problem is solved and it is represented on the sum of the interior of the elements
[39], with a formulation with respect to the transient coarse scale variables. The
fine scale variables are given by:

u′ =
∑
Th

(τuP
′
u (Ru)) , (3.30)

p′ =
∑
Tc

(τcP
′
c (Rc)) , (3.31)

where Ru and Rc are the residuals from the finite element resolution, P ′u and P ′c
are the projection operators, and τu and τc the tuning parameters.

As mentioned before, the fine scale parameters will be added to the coarse scale
problem, which gives us a new variational form of the problem with the coarse scale:

a ((uh + u′) ,wh) + ((ph + p′) ,∇.wh) = L (wh)∀wh ∈ Wh,0, (3.32)

(∇. (uh + u′) , qh)−
(

1

K
(ph + p′) , qh

)
= 0∀qh ∈ Qh, (3.33)
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and the variational form of the fine scale:

a ((uh + u′) ,w′) + (p′,∇.w′) = L (w′)∀w′ ∈ W ′
0, (3.34)

(∇. (uh + u′) , q′)−
(

1

K
ph, q

′
)

= 0∀q′ ∈ Q′. (3.35)

Assuming that the sub-scale are quasi static, and solving the fine scale equation
with respect to the initial residual, and re-integrating in the coarse scale equation,
we can finally get the set of coarse scale equations with the stabilization term for
the pressure in the linear elastic problem. The equations are described below:

a (uh,wh) + (ph,∇.wh) +
∑
K∈Th

(τcRc,∇x.wh) = L (wh)∀wh ∈ Wh,0, (3.36)

(∇.uh, qh)−
(

1

K
ph, qh

)
−
∑
K∈Th

(τuR (uh) ,∇qh) = 0∀qh ∈ Qh, (3.37)

R (uh) = f +∇ph + 2µ∇.dev [∇suh] . (3.38)

Rc =
1

K
ph −∇xu. (3.39)

where R (uh) is the finite elements residual, and τu is a parameter coming from
the study of stabilization parameters response that come from Fourier study of the
problem for the sub-scales [20].

If we compare the standard equations with the stabilized ones we can see ad-
ditional integrals that are evaluated element-wise. These integrals are the sub-grid
scales representation, and they help to get a more stable solution, and less oscilla-
tions in the pressure field.

3.2.2.2 Transient interpretation

At this point, we can see the first difference between the transient linear elasticity
equations and the Stokes equations. As a matter of fact, in Stokes equations the
velocity is the primary unknown which requires a first order derivative to get the
inertia term. However, the primary unknown for transient linear elastic equation is
the displacement u which requires a double derivative to solve the transient problem.
The transient form of the Stokes equation is parabolic, while in the linear elastic
equations the transient form is hyperbolic in nature [15, 32]. This is specifically

50



3.2. ELASTICITY

the case when we deal with solids near the incompressibility limit. In addition, the
pressure is considered a Lagrange multiplier and it is essential for the divergence-
free constraint of u. The governing equations for the transient linear elasticity is
expressed as follows:

ρü−∇p− 2µ∇.dev [∇su] = f in Ω,

∇u− 1

K
p = 0 in Ω,

σ.n = t on ∂Ωt,

u = 0 on ∂Ωu.

(3.40)

Because of the Courant-Friedrichs-Lewy (CFL) condition, the time-step should
have a small value for better results, especially for explicit time integrator. Consider
t ∈ [0, T ] which is the time interval, and a division into N time-steps of equal intervals
∆t. This work adopted a Backward differential formula (BDF). The first and second
order accurate BDFs are adopted and given by:

an+1 ≈ 1

∆t2
(
un+1 − 2un + un−1

)
+O (∆t) , (3.41)

an+1 ≈ 1

∆t2
(
2un+1 − 5un + 4un−1 − un−2

)
+O

(
∆t2
)
. (3.42)

where a is the acceleration. The BDFs are common for high frequency dissipa-
tion, which is responsible of removing oscillations.

Finally the discrete-stabilized-variational formulation of the transient linear elas-
tic equations, following the same procedure in the previous section [16, 38], is given
by:

(ρü,wh) + a (uh,wh) + (ph,∇.wh) +
∑
K∈Th

(τcRc,∇x.wh) = L (wh)∀wh ∈ Wh,0,

(3.43)

(∇.uh, qh)−
(

1

K
ph, qh

)
−
∑
K∈Th

(τuR (uh) ,∇qh) = 0∀qh ∈ Qh, (3.44)

R (uh) = f − ρü +∇ph + 2µ∇.dev [∇suh] . (3.45)

Where R (uh) is the updated finite element residual. The additional parameters
that damp out the oscillation are the same as the previous equations.

51



3.2. ELASTICITY

3.2.3 Lagrange formulation for non-linear transient elastic-
ity

3.2.3.1 Hyper-elastic model

For a near real life behavior, it is better to model the elasticity with a non-linear
formulation. Considering a non-linear solid with the Helmholtz free or the strain
energy Ψ (C) function, with C being the right Cauchy-Green strain tensor given
by: C = F TF . F is the gradient of deformation: Fij = xi,j = ∂xi

∂Xj
. We also have

the Piola-Kirchhoff stress tensor given by: S = JF−1σF−T with J the Jacobian
determinant of F , which is a derivative of Ψ (C) with respect to C:

S = 2∂CΨ (C) . (3.46)

As it is done before, Ψ (C) will be decomposed into a volumetric and a deviatoric
part to take into account the compressibility and the incompressibility:

Ψ (C) = U (J) + W
(
C̄
)
. (3.47)

with C̄ being the deviatoric-volume-preserving part of C, and J =
√
detC.

The Helmholtz free energy for isotropic hyper-elastic models is given with respect
to the strain invariant. If we consider a Neo-Hookean elastic solid, with a Simo-
Taylor volumetric model [40]:

U (J) =
1

4
κ
(
J2 − 1

)
− 1

2
κlnJ, (3.48)

W
(
C̄
)

=
1

2
µ
(
trC̄ − 3

)
=

1

2
µ
(
Ī1 − 3

)
. (3.49)

where κ and µ are material properties, and I1 = trC̄. If we consider small
displacement, µ and κ are the shear and bulk modulus of the material, and the
model will be linear. We can also split the stress tensor into a volumetric and
deviatoric part:

p = 2J−1F
∂U (J)

∂C
F T = U ′ (J) =

1

2
κ
(
J + J−1

)
, (3.50)

dev [σ] = 2J−1F
∂W

(
C̄
)

∂C
F T = µJ−

5
3dev

[
FF T

]
. (3.51)

We recall that F is the gradient of deformation and given by F = ∇Xu + I,
hence:

FF T = ∇Xu +∇T
Xu +∇Xu∇T

Xu + I. (3.52)
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As a reminder, all the previously presented equation were solved in an updated
Lagrangian regime, while these equation are in the Total Lagragian framework. If
we consider the following relation:

∇Xu = (I −∇u)−1 − I, (3.53)

and we also consider a very small increment in the deformation field noted as
δu, we can assume that (I −∇u)−1 = I +∇u, and we get:

FF T = (I −∇u)−1 − I +
(
(I −∇u)−1 − I

)T
+
(
(I −∇u)−1 − I

) (
(I −∇u)−1 − I

)T
+ I + 2∇s (δu) +∇δu (∇δu)T +∇δu (∇u)T + (∇u) (∇δu)T .

(3.54)
Finally, the system of equations is given by:

ρü−∇xp−∇x.dev [σ] = f in Ω,

∇xu−
1

K
p = g in Ω,

σ.n = t on ∂Ωt,

u = 0 on ∂Ωu.

ρJ = ρ0 in Ω.

(3.55)

Where ü is acceleration and also called the material derivative of u, and given
by:

a = v̇ = ü =
∂v

∂t
+∇x (v) . (v − vdomain) =

∂2u

∂t2
+∇x

(
u− u−

∆t

)
. (v − vdomain) .

(3.56)
If we substitute in the first equation in (3.55), we get:

ρ

(
∂2u

∂t2
+∇x

(
u− u−

∆t

)
. (v − vdomain)

)
−∇xp−∇x.dev [σ] = f in Ω. (3.57)

3.2.3.2 Variational Multi-scale stabilization method

For the hyper-elastic equations, the VMS stabilization method was also applied
with the same Orthogonal Sub-Scale decomposition of spaces as done in (3.23) (3.24)
(3.25). Also, the resovable coarse and the unresolved fine scale decomposition was
made as in (3.26) (3.27), and the same for the weighing functions as in (3.28) (3.29).
Hence, the transient mixed formulation of the hyper-elastic solution is described in
the following equations:
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Coarse Scale

(
ρ
∂2 (u + u′)

∂t2
,wh

)
+ a ((u + u′) ,wh) + (ph + p′,∇x.wh) = L (wh)∀wh ∈ Wh,0,

(3.58)

(∇x. (uh + u′) , qh)−
(

1

K
(ph + p′) , qh

)
= (g, qh)∀qh ∈ Qh, (3.59)

Fine Scale

(
ρ
∂2 (u + u′)

∂t2
,w′
)

+a ((u + u′) ,w′)+(ph + p′,∇x.w
′) = L (w′)∀w′ ∈ W ′, (3.60)

(∇x. (uh + u′) , q′)−
(

1

K
(ph + p′) , q′

)
= (g, q′)∀q′ ∈ Q′, (3.61)

The same procedure done before, where the fine scale are resolved and re-injected
in the coarse scale equation, is also done here. An essential remark to take into
consideration is that the sub-scales are not followed in time, this interpretation is
detailed in [41]. Besides, there is a quasi-dependence on time for the sub-scales
because of the time dependency of the large scale residual. More information can
be found in [42]. Thus, the coarse scale equations are as follows:

(
ρ
∂2u

∂t2
,wh

)
+ a′ (u,wh) + (ph,∇x.wh) +

∑
K∈Th

(p′,∇x.wh) = L (wh)∀wh ∈ Wh,0,

(3.62)

(∇x.uh, qh)−
(

1

K
ph, qh

)
−
∑
K∈Th

(
1

K
p′, qh

)
−
∑
K∈Th

(u′,∇xqh) = (g, qh)∀qh ∈ Qh.

(3.63)
The residual from the finite elements is given by:

R (u) = f − ρü +∇xph +∇x.dev [σ] , (3.64)

R (ph) = g −∇xu +
1

K
ph. (3.65)

Finally, as in equations (3.34) (3.34), the fine scales are modeled and we get:
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(
ρ
∂2u

∂t2
,wh

)
+ a (u,wh) + (ph,∇x.wh) +

∑
K∈Th

(
τc

(
g −∇x.uh +

1

K
ph

)
,∇x.wh

)
= L (wh)∀wh ∈ Wh,0,

(3.66)

(∇x.uh, qh)−
(

1

K
ph, qh

)
+
∑
K∈Th

(
τc
K

(
∇x.uh −

1

K
ph − g

)
, qh

)
+
∑
K∈Th

(τu (ρüh −∇xph −∇x.dev [σ]− f) ,∇xqh) = (g, qh)∀qh ∈ Qh.
(3.67)

If we compare the standard equations (Galerkin), and the previous stabilized
equation, with the ones above, we can see additional integrals that are evaluated
element-wise. These integrals are the sub-grid scales representation, and they also
help to get a more stable solution, and less oscillations in the pressure field. In
addition, they take into account both incompressible and compressible problems. In
[43, 44] a general definition of these parameters is presented, and they are given by:

τu (K) =

((
ρ

(c0∆t)2

)2

+

(
2µ

c1h2
k

)2
)− 1

2

, (3.68)

τc (K) =
(
(2c2µ)2)− 1

2 , (3.69)

where hk is the characteristic length of the elements, and c0, c1, and c2 are
parameters to be determined.

3.3 Plasticity

Unlike elasticity, plasticity is the state in the material where the deformation
becomes permanent with a irreversible change of shape. Normally, plasticity is
achieved when a load is constantly added to a material until it reaches its plasticity
limit or what we call the yield strength. However, when it comes to high changes in
temperature and phases transformation in the material, the yield strength changes
accordingly. Numerically speaking, it is a complicated non-linear process, and it
is found in the literature with several variations. In general, the return mapping
algorithm is adopted in most of the works with some differences. In this section,
we will understand the physics behind plasticity and explain the return mapping
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algorithm in details. But first, it is important to present an overview on the devel-
opment of elasto-plasticity in the last decades. In fact, the linear elasticity has had
more interest in community than the plasticity in the last three decades.

As discussed in the previous section, in [16, 38] a stabilized stokes equations were
developed, where later in [17] it was extended to incompressible elasticity equations.
In [45–49] these ideas were extended to a visco-elasto-plasticity with non linear
equations. Yet, the equations were not robust in terms of stabilization over all
elastic/plastic spectrum.

In a recent works [50–52], a bubble function stabilization was used to avoid
stabiliation tuning, which later in [12] the work was extended to a VMS hyper-
elasticity.

Besides, in [18, 53, 54] incomressible hyper-elasticity and elasto-plasticity were
studied using the orthogonal sub-scale (OSS) decomposition method. This work was
later extended in [55] to a nearly incompresible plasticity with large deformation.
An interesting feature of this work is the modification of the stabilization operator
with subgrid-scale shear modulus. In [56], a nodal finite element spaces were added
for the strains and the displacement, in both static and dynamic cases. This was
done using the Drucker-Prager and Mohr-Coulomb models for plasticity. All these
works only presented static computations except for the work in [56].

The works presented above and in the previous section, brings this field into
the current state of practice. In the previous section, the elasticity and hyper-
elasticity were presented and showed accurate and stable results with a simple linear
tetrahedral elements for transient and static cases [35]. As a recall, in this work the
OSS decomposition with the VMS stabilization method were used. For that reason,
the plasticity will be added to this work to have an elasto-plastic and hyper-elasto-
plastic models . In the rest of this section, we will see what are the governing
equations and the specification of plasticity, and how it will be added to the elastic
model using the return mapping algorithm.

3.3.1 Elasto-plasticity criterion

3.3.1.1 Total strain tensor decomposition

Since the we are dealing with a small increment of displacement, one can decom-
pose the total strain using the Pradtl-Reus definition:

ε = εel + εpl, (3.70)

where ε, εel, and εpl are the total strain, elastic strain, and the plastic strain
tensors respectively. The elastic strain tensor can be written using the symmetric
gradient operator as described in the previous section εel = 1

2

(
∇u+∇uT

)
. And

equation (3.70) can be written as:
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εel = ε− εpl. (3.71)

3.3.1.2 Stress tensor definition

Using the Hook’s law, and equation (3.71) we can write the stress response as
follow:

σ = C :
(
ε− εpl

)
, (3.72)

Where C is a fourth-order tensor that describe the elastic moduli. As mentioned
before, we are working with isotropic materials, so the stress tensor can be split into
a deviatoric and a volumetric part:

σ = σ̃ + pI, (3.73)

σ̃ = Cdev : (ε− εp) = 2µ (ε̃− ε̃p) (3.74)

p = κ tr (ε− εp) (3.75)

where σ̃ is the deviatoric part of σ, and Cdev is the deviatoric part of the elastic
moduli. For simplicity, strating from this section the diacritic tilde designate the
deviatoric part.

3.3.1.3 Yield function

General properties definition

We seek to generalize the notion of flow threshold plastic observed in the one-
dimensional case of the test of traction. In this case, the set of possible uniaxial
stresses σ checks the scalar relation:

σ − σ0 6 0 (3.76)

The stresses σ 6 σ0 correspond to those where the material remains elastic and
the case where σ = σ0 defines the stress allowing the plastic deformation.

We must therefore define all the states of stress likely to cause plastic deforma-
tion. For this we introduce a scalar function f of the stress tensor components σ
and having the following properties:{

f(σ) 6 0 Elastic Domain

f(σ) > 0 Not allowed (Plastic Domain)
(3.77)
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For a general case and to fit in the elasto-plastic model, the function f called
the Yield function, is expressed with respect to the deviatoric stress tensor, and the
hardening rule that will be discussed in the following section.

In the principal stress space, the plastic domain f = 0 defines a surface. The
assumptions made previously make it possible to specify the characteristics of this
surface called “yield surface”:

The assumption of invariance of the plastic behavior, when the hydro-
static pressure varies, means that:

∀σ f (σI + σ,σII + σ,σIII + σ) = f (σI ,σII ,σIII) (3.78)

Geometrically, this implies that the surface is invariant in any vector translation
parallel to I(1/

√
3, 1/
√

3, 1/
√

3). It is therefore a cylinder of generatrices that are
parallel to I and its shape is characterized by its cross section C through the plane
(π) normal to I, passing through the origin and with equation σI+σII+σIII = 0: on
this plane, the three coordinate axes project along three axes at 120o 0σ′I , 0σ

′
II , 0σ

′
III

and it contains the coordinate vectors (sI , sII , sIII) (figure (3.2))

The isotropy hypothesis makes it possible to assert that f is invariant when
any permutation of the principal stresses happen: the surface is therefore invariant
in a symmetry with respect to the planes bisectors of those containing the principal
axes and its section line admits 0σ′I , 0σ

′
II , 0σ

′
III as axes of symmetry.

The assumption of behavioral invariance, when we change the sign of σ,
implies that C also admits as axes of symmetry the bisectors A1, A2 and A3 of the
axes 0σ′I , 0σ

′
II , 0σ

′
III (figure (3.2)).

A simple geometric calculation shows that the six points Qii (i = 1− 6) of C,
located on the axes 0σ′I , 0σ

′
II , 0σ

′
III and which all represent the equivalent loads

(within a hydrostatic pressure) to a uni-axial loading, are at a distance from the
point O.

Finally, the hypothesis of obedience to Hill’s principle [57] implies that
the flow boundary and C are convex, which means they are located above any chord
and below any tangent (or the opposite). We deduce that C is between the two
regular hexagons H1 and HT admitting respectively for midpoints sides, or vertices,
the points Qii (i = 1− 6) (figure (3.2)).

We can therefore see that the hypotheses made considerably restrict the choice of
possible criteria. The hexagon HT and the circle passing through the points Qi are
two possible cases corresponding, respectively, to the Tresca and von Mises criteria,
as we shall see.
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Figure 3.2: Cross section by the plane (π) σI + σII + σIII = 0 of the flow boundary [58]

Figure 3.3: Mohr representation of the state of stress in one point M (when the facet
describes all the orientations of space, the end of the stress vector T describes
the hatched area between the three semicircles) [58]

Tresca plasticity criterion

This is, historically, the first criterion of plasticity proposed. He assumes that
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plastic deformation is possible at point M when that the maximum fission at M
reaches a critical value k. Given the representation of Mohr in figure (3.3), this
condition is easily expressed by introducing the principal stresses σI , I = 1− 3:

f = MaxJ,K (σJ − σK)− 2k (3.79)

It is the equation of a prism with six faces of generatrices parallel to I as seen in
figure (3.4) and admitting the regular hexagon HT for cross section by the plane π
(figure (3.2)).

By considering the uniaxial traction, one deduces from figure (3.3) that, for the
Tresca criterion, the maximum shear is equal to:

k =
σ0

2
Tresca criterion (3.80)

The section of the flow surface by the plane σIII = 0 corresponds to the case of
the plane stress where the boundary flow area is a non-regular hexagon with parallel
sides to the axes, in the 1st and 3rd sectors, and on sides parallel to the first bisector,
in the other two (figure (3.4b)).

von Mises plasticity criterion

It corresponds to the cylinder of revolution of axis I (figure (3.5a)) in which
the prism of the Tresca criterion fits and whose cross section is the circle passing
through the points Qi (figure (3.2)).

As the plane π contains the vectors (sI , sII , sIII), we deduce that in principal
axes, f is written:

f = 3
(
s2
I + s2

II + s2
III

)
− 2σ2

0 (3.81)

It is easy to show that an equivalent form is:

f = (σI − σII)2 + (σII − σIII)2 + (σIII − σI)2 − 2σ2
0 (3.82)

We deduce that in plane stress and main axes where σIII = 0, the criterion is
written:

f = 2
(
σ2
I − σIσII + σII − σ2

0

)
(3.83)

In the plane (σ, σII), it is the equation of an ellipse where is inscribed the hexagon
of the Tresca criterion (figure (3.5b)).

It is shown that it can then be expressed in the two equivalent forms:

f = (σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6σ2
12 + 6σ2

23 + σ2
13 − 2σ2

0 (3.84)
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f = 3
(
s2

11 + s2
22 + s2

33 + 2s2
12 + 2s2

23 + s2
13

)
− 2σ2

0 = 3s : s− 2σ2
0 (3.85)

From a physical point of view, the material being assumed to be isotropic, the
relevance of these expressions corresponds to the mathematical fact that the two
previous expressions are invariants of the tensors σ and σ̃, which means that they
keep the same value, regardless of the choice of reference frame.

From equation (3.84), we deduce that, for the von Mises criterion, the maximum
split is equal to:

k =
σ0√

3
von Mises criterion (3.86)

which gives a value approximately 15% greater than the value according to the
Tresca criterion.

One of the major interests of the von Mises criterion is that, contrary to the
Tresca criterion, it has a simple analytical form with arbitrary axes. For that reason,
we will adopt the von Mises criterion for the rest of the work.

Figure 3.4: Geometrical representation of the Tresca plasticity criterion [58]
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Figure 3.5: Geometrical representation of the von Mises plasticity criterion[58]

3.3.1.4 Hardening law

The work hardening of the material is induced by the multiplication in the ma-
terial of the dislocations generated by the stress field to accommodate the plastic
deformation and which modify the flow boundary, that is to say the stress states
allowing the continuation of the plastic deformation. In the yield function, two main
terms exist, the yield surface and the hardening rule:

f (σ̃, ε̄) = ||σ̃||+H (ε̄) , (3.87)

where ||σ̃|| is the equivalent von Mises stress given by ||σ̃|| =
√

3
2
σ̃ : σ̃, and

H (ε̄) the hardening rule. In tension, this leads at least, initially, to an increase in
the plastic yield stress. We are going to specify the two main classes of models used
to describe this evolution and generalize relation (3.87) relating to a very specific
history of deformation.

Isotropic Hardening

The state of hardening of the material evolving only because of its plastic de-
formation, one naturally generalizes the definition of the speed of generalized defor-
mation, by allocating it to the plastic component of the speeds of deformation, and
we then define the generalized deformation as its integral, throughout the history of
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the element of matter between the initial moment u = 0 and the current moment
u = t:

˙̄ε =

(
2

3
ε̇plij ε̇

p
ijl

) 1
2

and ε̄ =

∫ t

0

˙̄ε (u) du (3.88)

The integral is done throughout the trajectory of the material element and the
generalized strain rate is therefore the particle derivative of the generalized strain.
One thus obtains, at any point of the flow, a positive and non-decreasing scalar,
independent of the choice of the reference and which extends to any history of
deformation the concept of plastic deformation εpl define in the tensile test.

The simplest generalization of the tensile results is to assume that the plastic
yield stress σ0 evolves like the tensile stress and depends only on ε̄. As an example,
the equation (3.87) with H (ε̄) = −2σ2

0 (ε̄).

Geometrically, this means that at each point of the flow, the flow boundary
undergoes homothety and therefore expands isotropically in all directions: the cross
section remains a circle centered on the origin and of proportionally increasing radius
to σ0 (ε̄) (figure (3.6a)). Thus, for example, for the forming of sheets in plane stress,
the flow boundary of the main stresses remains an ellipse centered on the origin of
the stresses and whose axes expand, the ratio of their length remaining constant
(figure (3.7)) .

A direct consequence of this assumption of behavior is that, if the metal passes
from a traction to a compression, the stress threshold in compression is the opposite
of the final tensile stress. The material is said to have no Bauschinger effect.

Figure 3.6: Representation of the isotropic hardening with a von Mises criterion. [58]
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Figure 3.7: Evolution of the yield surface in isotropic hardening. [58]

General Hardening: including the kinemtic hardening

The hypothesis of isotropic work hardening is not always completely satisfactory,
in particular in the case where the strain rate strongly changes direction.

A simple case is that of a mechanical test where the sign of the stress is changed:
traction-compression, for example. It is then observed that, after returning to the
elastic range, the elastic limit in compression is lower in absolute value than the
final stress observed just before unloading: this is one of the Bauschinger effects as
seen in figure (3.8a).

Physically, this phenomenon corresponds to the fact that the deformation orients
the population of dislocations stored in the material, this orientation being mainly
opposed to the continuation of the deformation in the same direction.

From a mechanical point of view, the simplest modeling of this phenomenon,
due to Prager [59], consists in assuming that, at each point of the flow and at each
instant, the flow boundary tends to move in a direction determined by the strain
rate. So that after a finite deformation, the border is no longer symmetrical with
respect to the origin of the stresses: its center is translated by the vector X as
illustrated in figure (3.8b). This displacement is called “kinematic work hardening”.

Prager developed a purely kinematic work hardening model, that is to say that
the flow boundary, at each point of the flow, undergoes only one translation without
changing shape.

A more general and relatively simple model has been proposed by Hughes [60]. It
consists in assuming, at the same time, an isotropic expansion of the flow boundary
and a displacement of its center (figure (3.8b))
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This model thus supposes that the total hardening is a linear combination of
kinematic hardening and isotropic hardening. It is used by Aliaga [61] in the context
of the numerical simulation of quenching operations of steel forgings. The tensor X,
whose trace is zero, is called “kinematic tensor”. One then generalizes the criterion
of plasticity of von Mises and the generalized constraint in the form:

f (σ̃, ε̄) =

√
3

2
(σ̃ −X) : (σ̃ −X)− 2σ2

0 (ε̄) , (3.89)

The plastic strain rate is obtained by derivation from f or ||σ̃|| with respect to
σ̃. In such a formulation, one dissociates the concept of stress from plastic flow
σ0 (ε̄), defining the radius of the cross section of the cylinder of flow from the tensile
stress σ (ε̄) which one supposes of the form:

σ (ε̄) = Re +H (ε̄) (3.90)

The equations governing the evolution of the kinematic vector and of the isotropic
component of work hardening, starting from the evolution of the tensile stress are
the following ones:


σ0(ε̄) = Re + (1− β)H(ε̄)

0 6 β 6 1

Ẋ = 2
3
β dH

dε̄
ε̇p

(3.91)

This model depends on a scalar and dimensionless coefficient β between 0 and
1, which is the weighting coefficient of the “kinematic work hardening”. For 0 or 1,
work hardening is purely isotropic or kinematic; in between, it is mixed.

One can simply visualize the effect of the parameter β by applying equations
(3.89)-(3.91) to the case of a tensile test until deformation ε̄1 followed by compres-
sion. Simple calculations then show that the stress σ (ε̄) and the non-zero compo-
nents of X are worth:

{
σ = Re +H(ε̄)

X11 = −2X22 = −2X33 = 2β
3
H(ε̄)

0 < ε̄ < ε̄1(Traction){
σ = −Re −H(ε̄) + 2βH (ε̄1)

X11 = −2X22 = −2X33 = 2β
3

(2H (ε̄1)−H(ε̄))
ε̄ > ε̄1(Compression)

(3.92)
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Figure 3.8: Representation of the kinematic work hardening with a general von Mises cri-
terion. [58]

Figure 3.9: Uni-axial tension/compression hardening curves, according to the Hughes
mixed hardening model for different values of the coefficient β [58]
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Figure (3.9) clearly illustrates the effect of the choice of the parameter β which
can only be identified by reversing the direction of the deformation. Thus, micro-
bending-unfolding tests on sheets for stamping, where the maximum deformation
after bending reaches 40%, show that the behavior of steel and aluminum alloy
sheets can be represented with β ∼ 0, 13 and 0.18 respectively [62], which shows
that the isotropic component of hardening is dominant.

Nevertheless, taking this component into account seems essential to obtain a
good stress forecast residual after shaping. For that reason, and for the nature
of our application, only the isotropic hardening will be taken into account. Several
types of isotropic hardening exists, first we have the perfect plasticity where there
is no hardening, and then we can have linear isotropic hardening, and the general
case non-linear isotropic hardening. In the following sections we will see several
types of hardening depending on the application.

3.3.1.5 Flow rule

It is assumed that, at any time and at any point in the material, the strain rate
is the sum of an elastic strain rate and a plastic strain rate, according to equation
(3.70).

Expressing in the deformation rate poses some problems, since it requires writing
the derivative of the stress tensor or the deviatoric stress tensor and this derivative
must be objective, that is to say independent the choice of reference frame [63]. This
difficulty is discussed in detail, for example in [64].

We will give here a possible formulation [64]. To the velocity field, we associate
the tensor of the velocities of rotation Ṙij of the element of the material by the
formula:

Ṙij =
1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
= −Ṙji i = 1− 3; j = 1− 3 (3.93)

By construction, this tensor is antisymmetric (its transposed matrix is equal
to its opposite −Ṙij) and the terms of the diagonal are zero. One defines, in all
generality, the elastic component of the deformation by the relations in speed [58]: θ̇e = − ṗ

Ke

ėe = 1
2G

dJs
dt

ou ε̇e =
1 + v

E

dJσ

dt
− v

E
(σ̇ii) 1 (3.94)

with ds

dt
= ṡ−R.s+ s · Ṙ dσ

dt
= σ̇ −R · σ + σ · Ṙ

The derivative of s, thus introduced, is called the ”derivative of Jauman”. The
elastic domain is defined by the plasticity criterion f (σ̃) < 0. The plastic strain
rate then verifies:
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ε̇p =

 0 if

{
f(σ̃) < 0
f(σ̃) = 0

and ∂f
∂σ̃

: ˙̃σ < 0

γ ∂f
∂σ̃

γ > 0 if f(σ̃) = 0 and ∂f
∂σ̃

: ˙̃σ > 0
(3.95)

where γ is a positive consistency parameter. It can only occur if the criterion is
satisfied: f (σ̃) = 0 and if the stress velocity is directed towards the outside of the
elastic domain.

3.3.2 Return mapping algorithm

The general idea of the return mapping algorithm is to correct the deviatoric
stress tensor. At the beginning of the increment, it is considered as only elastic
behavior, where the elastic predictor σ̃trial is computed. Using this predictor, we
can identify if the behavior is plastic or elastic by computing the yield function f trial.
The deviatoric stress tensor is then corrected only if the material is in the plastic
zone. In this section, the return mapping algorithm is decribed in details.

First, Having the data on the previous time-step: the displacement un, the strain
rate ε̇n, the plastic strain ε̇pln , the deviatoric stress tensor σ̃n and and the hardening
parameter αn. A linear hardening rule is considered in this section, and the extension
to more complicated hardening rules is straightforward [65]. The hardening rule is

given by
√

2
3

(σY +Kα), where σY is the yield strength, and K is the hardening

modulus.
The second step is to solve the elasticity equations, and update the parameters

as there is no plasticity. We get the new displacement vector un+1 and strain tensor
εn+1. Afterwards, we compute the deviatoric trial stress given by:

σ̃trialn+1 = 2µ
(
εn+1 − εpln

)
. (3.96)

This form of the stress tensor, is as it is called a trial form, where the plastic
strain is preserved from the previous time-step and subtracted from the total strain
on the current time-step. This is only used to check the elastic/plastic regime of the
element in the solid. Having this parameter we can now compute the yield function
that defines the state of the material as described in (3.77). f is given by:

f trialn+1 =
∥∥σ̃trialn+1

∥∥−√2

3
(σY +Kα) (3.97)

If f trialn+1 6 0 the material is still in the elastic state which means that every trial
parameter is the actual parameter: (•)n+1 = (•)trialn+1 . However, f is not allowed
to be positive because it means that we are outside the yield surface which is not
physical. Accordingly, the deviatoric trial stress should be corrected to return back
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to the yield surface (here comes the name of the return mapping algorithm). To
return to the allowed conditions, f (σ̃n+1, ε̄n+1) should be zero. Thus, we get:

f(σ̃n+1, αn+1) = ‖σ̃n+1‖ −
√

2
3

(σY + k(αn+1)) = 0

σ̃n+1

n
−
√

2
3

(σY +Kαn+1) = 0

σ̃trial
n+1 −2µ∆γn

n
−
√

2
3

(
σY +K

(
αn +

√
2
3
∆γ
))

= 0

2µ∆γ (1 +K/3µ) = f trialn+1

∆γ =
f trialn+1 /2µ

1+K/3µ
,

(3.98)

where n is the direction tensor found from the flow rule in (3.95) and given by:

n =
σ̃

‖σ̃‖
. (3.99)

In addition, the hardening parameter α is updated as follows:

αn+1 = αn +

√
2

3
∆γ, (3.100)

where ∆γ is the equivalent plastic strain increment. Finally we can correct the
deviatoric trial stress and update the plastic strain:

σ̃n+1 = σ̃trialn+1 − 2µ∆γn (3.101)

εpln+1 = εpln + ∆γn. (3.102)

The described algorithm is summarized in the following chart:
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Algorithm 2 Return mapping algorithm

A. Data at the increment n are known: ε̇n, ε̇
pl
n , σ̃n, andαn.

B. Update εn+1 = εn + ∆εn

C. Calculate the elastic predictor: σ̃trialn+1 = 2µ(εn+1 − εpln )

D. Compute the yield function: f trialn+1 =
∥∥σ̃trialn+1

∥∥−√2
3

(σY +Kα)

1: if f trialn+1 ≤ 0 then

2: Purely elastic behavior,

3: Set (•)n+1 = (•)trialn+1

4: else if f trialn+1 > 0 then

5: Elasto-plastic behavior,

6: Compute ∆γ =
f trialn+1 /2µ

1+K/3µ

7: and n =
σ̃trial
n+1

‖σ̃trial
n+1 ‖

8: Correct the deviatoric tensor:

9: σ̃n+1 = σ̃trialn+1 − 2µ∆γn

10: Update the hardening parameter:

11: αn+1 = αn +
√

2
3
∆γ

12: Update the plastic strain:

13: εpln+1 = εpln + ∆γn

14: end if

Remark

For a non-linear hardening rule as k(α) = Kα + (K∞ − σY )
(
1− e−δα

)
, the

solution becomes as seen in equation (3.103):

In that case, the equation must be linearized or solved by a numerical approach
as Newton-Raphson method.
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f(σ̃n+1, αn+1) = ‖σ̃n+1‖ −
√

2
3

(σY + k(αn+1)) = 0

σ̃n+1

n
−
√

2
3

(
σY +Kαn+1 + (K∞ − σY )

(
1− e−δαn+1

))
= 0

σ̃trial
n+1 −2µ∆γn

n
−
√

2
3

(
σY +K

(
αn +

√
2
3
∆γ
)

+ (K∞ − σY )

(
1− e−δ

(
αn+
√

2
3

∆γ
)))

= 0

2µ∆γ +
√

2
3

(
σY +K

(
αn +

√
2
3
∆γ
)

+ (K∞ − σY )

(
1− e−δ

(
αn+
√

2
3

∆γ
)))

−
∥∥σ̃trialn+1

∥∥ = 0,

(3.103)

3.3.3 Return mapping algorithm for large displacement

In this section the return mapping algorithm will be explained for large displace-
ment, or the hyper-elasto plasticity. As stated before, the first step is to get the data
at the previous time-step: the displacement un, the strain rate ε̇n, the plastic strain
ε̇pln , the deviatoric stress tensor σ̃n and and the hardening parameter αn. Note that
also in this section, the same linear hardening rule is used. Elasticity is then solved
without taking plasticity into account to get the new displacement vector un+1 and
strain tensor εn+1. The deviatoric trial stress is expressed differently in that case. As
explained in the hyper-elasticity the deviatoric part of the stress tensor is expressed
as follow:

dev [σ] = µJ−
5
3dev

[
FF T

]
. (3.104)

With FF T is given by equation (3.52). The diviatoric trial stress is given by:

σ̃trialn+1 = µJ−
5
3

[
(Fe)

trial
n+1

] [
(Fe)

trial
n+1

]T
, (3.105)

where (Fe)
trial
n+1 is given by:

(Fe)
trial
n+1 = (Fn+1) (F p

n )−1 , (3.106)

where F p
n is the plastic deformation gradient and is updated at each time step

using the equation below:

F p
n+1 = exp (∆γn)F p

n . (3.107)
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From this step, the procedure stays the same as before. For that reason equations
(3.97), (3.98), (3.99), (3.100), (3.101), and (3.102) remains the same but with a

different deviatoric stress tensor, and the Lame coefficient is multiplied by J−
5
3 .

Finally the algorithm becomes as follows:

Algorithm 3 Return mapping algorithm for large displacement

A. Data at the increment n are known: ε̇n, ε̇
pl
n , σ̃n, andαn.

B. Update εn+1 = εn + ∆εn

C. Calculate the elastic predictor: σ̃trialn+1 = µJ−
5
3

[
(Fe)

trial
n+1

] [
(Fe)

trial
n+1

]T
With (Fe)

trial
n+1 = (Fn+1) (F p

n )−1

And F = (I −∇u)−1

D. Compute the yield function: f trialn+1 =
∥∥σ̃trialn+1

∥∥−√2
3

(σY +Kα)

1: if f trialn+1 ≤ 0 then
2: Purely elastic behavior,
3: Set (•)n+1 = (•)trialn+1

4: else if f trialn+1 > 0 then
5: Elasto-plastic behavior,

6: Compute ∆γ =
f trialn+1 /2µJ

− 5
3

1+K/3µJ−
5
3

7: and n =
σ̃trial
n+1

‖σ̃trial
n+1 ‖

8: Correct the deviatoric tensor:
9: σ̃n+1 = σ̃trialn+1 − 2µJ−

5
3 ∆γn

10: Update the hardening parameter:

11: αn+1 = αn +
√

2
3
∆γ

12: Update the plastic strain and deformation gradient:
13: εpln+1 = εpln + ∆γn
14: F p

n+1 = exp (∆γn)F p
n

15: end if

3.3.4 Variational form with VMS stabilization

As described in the aforementioned algorithm, the plasticity is sort of correction of
the deviatoric stress tensor that exceeds the yield surface. For that reason, the vari-
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ational formulation does not change compared to the elastic one (3.36)(3.37)(3.38)
with some small modification:

a′′ (uh,wh) + (ph,∇.wh) +
∑
K∈Th

(τcRc,∇x.wh) = L (wh)∀wh ∈ Wh,0, (3.108)

(∇.uh, qh)−
(

1

K
ph, qh

)
−
∑
K∈Th

(τ ′uR (uh) ,∇qh) = 0∀qh ∈ Qh, (3.109)

R (uh) = f +∇ph +∇.σ̃′. (3.110)

where σ̃′ is the modified deviatoric stress tensor corrected as described in equa-
tion (3.101), which makes a modified as follows:

a′′ (uh,wh) =

∫
Ω

σ̃′ : ∇swdΩ. (3.111)

In addition, τ ′u is the modified stabilization parameter as follows:

τu (K)′ =

((
ρ

(c0∆t)2

)2

+

(
2µeff

c1h2
k

)2
)− 1

2

, (3.112)

where µeff = βµ, with β =

(
1− 2µ∆γ

‖σ̃trial‖

)
.

The idea of having an effective viscosity is that we are considering the plastic area
as weaker regions. In other words, when the material is under a plastic behavior,
the lame coefficient can be considered as lower than the actual one. This parameter
is added to the stabilization term, and it is originated from the corrected deviatoric
stress tensor equaition:

σ̃n+1 = σ̃trialn+1 − 2µ∆γn, (3.113)

Having n = σ̃trialn+1 /
∥∥σ̃trialn+1

∥∥, equation (3.113) becomes

σ̃n+1 =

(
1− 2µ∆γ∥∥σ̃trialn+1

∥∥
)
σ̃trialn+1 . (3.114)

Thus we can define µeff,n+1 as

µeff,n+1 =

(
1− 2µ∆γ

‖σ̃trial‖

)
µ, (3.115)
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3.4 The Moving Mesh Method (MMM)

As an adaptive strategy, the R-method is used for vdomain [66]. This adaptive
method is done by the relocation of the nodes making sure the node concentration
is in high gradients regions. The procedure is done with a mapping from the domain
that is not deformed in a parameter space Ωc, to the deformed one in the physi-
cal space Ω. This mapping ensures provide the physical domain coverage with a
computational mesh. There are three main criterion to take into account:

1. Mesh equations

2. Monitor Function

3. Interpolation

The choice of an appropriate mesh equation for a specific application with an
efficient resolution is very important for this method. In this work, the solid dy-
namics equations are the ones who guide the mesh. To guide the redistribution of
the mesh, a monitor function is essential. This functions depends on the arc-length
of the solutions in 1D, the curvature, and post-defined errors if needed. In addition,
a smoothing is required in practice. The interpolation to the new mesh of the de-
pendant variables is not always needed unless the mesh equations are independent
on time and solved apart from the PDE.

In the case where there is no interpolation, as the the moving finite element
method proposed in [67, 68], the mesh equations is solved simultaneously with the
PDE. The main criterion of this method are:

1. Equidistribution principle

2. Mesh equations

3. The method of lines (MOL) approach.

The first use of the equidistribution principle was to solve Boundary value prob-
lems (BVP) for ordinary differential equations (ODE), and it was proposed by [69].
It consists of selecting nodes so that specific measurements that represent the error
in the solution are adjusted at each subinterval. The MOL approach is used usually
in most of the codes of the moving mesh method, which may give a stiff equation,
hence a very small time-step is needed for convergence. In this work, a moving mesh
finite elements approach is used, where the mesh equations are dependent on the
solid dynamics equation, with the application of the equidistribution principle on
the finite element residual of the PDE. This method has various advantages:
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Figure 3.10: Illustration of the moving mesh with a varying volume [35].

1. Interpolation free method.

2. Detects, track and resolve moving boundaries.

3. The method of lines (MOL) approach

Subsequently, to overcome the stiffness of the equations, the use of an implicit
time scheme is essential. Figure (3.10) shows the displacement of an elements
by a displacement vector that can activate a volume change if needed. There-
fore, adopting this method, the mesh is moved with the velocity of the solid.
v = vdomain ⇒ v − vdomain = 0. Finally the variational form the problem becomes:

(
ρ
∂2u

∂t2
,wh

)
+ a′ (uh,wh) + (ph,∇ ·wh) +

∑
K∈Th

(τcRc,∇x.wh) = L (wh)∀wh ∈ Wh,0,

(∇ · uh, qh)−
(

1

K
ph, qh

)
= (g, qh)∀qh ∈ Qh,

(3.116)
where a′ is given by:

a′ (uh,wh) =

∫
Ω

µ dev[σ] : ∇swdΩ (3.117)

3.5 A global thermo-elasto-plastic model

Figure (1.3) explains well the connection between the mechanical behaviour and
the other phenomena. It is clear that the mechanical behaviour affects both phase
transformation and the temperature, however their effect is negligible. This could
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be seen in many research projects in the literature, that they neglect the effect of
the mechanical behavior.

On the other side, the mechanical response is highly affected by temperature and
phase transformation. This could be seen in figure (3.11) from [1], where throughout
the cooling process the shape of the cylinder is changing. This change is due to many
stresses caused by the temperature change and the phase transformation.

Figure 3.11: Temperature distribution and deformed shape at 2.0, 5.0, 15.0, and 100.0
seconds [1].

As anextention to the Pradtl-Reuss rule [1] [70], the total strain during the
cooling process is given by

εij = εeij + εpij + εthij + εphij + εtpij (3.118)

where dεeij, dε
p
ij, dε

th
ij , dεphij , and dεtpij are the elastic, plastic, thermal, phase trans-

formation, and transformation-induced plasticity strain increments respectively. The
elastic and plastic deformation are described in the previous section, in this section
the three additional deformations will be described.

3.5.1 Thermal strain

The thermal deformation is only considered a volumetric deformation and ex-
pressed by the following expression:

εth = β (T − Tref ) with β = 3αL (3.119)

Where β, αL, T , and Tref are the volumetric and linear expansion terms, the
temperature and the reference temperature respectively.

76



3.5. A GLOBAL THERMO-ELASTO-PLASTIC MODEL

3.5.2 Phase transformation strain

This part of the phase transformation deformation is also considered volumetric.
It is caused by the volume fraction change of each phase. This type of strain is
similar to the thermal one, it is responsible of local deformation and it is expressed
by:

ε̇ph =
∑
i→j

1

3

ρi − ρj
ρj

Ḟi→jI (3.120)

where ρi and ρj are the density of the initial and final phase respectively, Ḟi→j
is the fraction rate change from phase i to phase j.

3.5.3 Transformation-induced plasticity

Due to the change of the microstructure, stress is created between transformed re-
gions and neighbor regions. This stress creates a deformation called transformation-
induced plasticity strain and it is decribed as follows:

ε̇tp =
∑
i→j

3

2
Ki→jfi→j(Fj)Ḟi→jdev[σ] = 〈κ〉 dev[σ] (3.121)

where f is a phase transformation function and f(F ) = F for pearlite and ferrite,
and f(F ) = (2 − F )F for martensite and bainite. 〈κ〉 is a coefficient relates the
transformation-induced plasticity strain to the deviatoric stress. To include this
strain in the model, a term is added to the Lame equation (3.13) as follows:

µ′n+1 =
En+1

2 (1 + νn+1) (1 + 2µn 〈κ〉)
(3.122)

where (n+ 1) and (n) are the current and the previous time-step respectively.

3.5.4 Hardening rule for quenching

For the quenching application, the general Johnson-Cook hardening model will
be used as follows:

σ0 = σ00 +K. ˙̄εm +H.ε̄n1, (3.123)

where σ00, M, N, m, and n1 are plasticity parameters that are given with the
material properties. These parameters depends on the temperature and the phase,
hence equation (3.123) becomes:

σ0 =
∑
i

Fi.
[
σ00i (T ) +Ki (T ) . ˙̄εmi(T ) +Hi (T ) .ε̄n1i(T )

]
. (3.124)
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3.6 Numerical validation

Now that we have presented the equations of the elasticity and elasto-plasticity,
with the return mapping algorithm, it is time to present some numerical test cases.
First, we will show some elastic and hyper-elastic benchmarks to validate the elas-
ticity model, and then we will proceed with elasto-plastic benchmarks.

3.6.1 Elasticity and hyper-elasticity

In this section, a 2D and 3D test cases will be presented to validate the elasticity
model presented in section (3.2). These test cases are done in [35].

3.6.1.1 Static Cook’s membrane test

The Cook’s membrane problem is a common test that normally gives a polluted
pressure field [71]. Figure (3.12) shows the structured and unstructured meshes with
P1/P1 elements for the displacement and pressure fields. A linear elastic behavior is
considered with the material’s properties the following: Young’s modulus E = 250,
poisson’s ratio ν = 0.5, and the density ρ = 1. The displacement is imposed as zero
in all directions on the left side, and free to move on the top and bottom sides. A
vertical traction force of 6.25 is applied on the right side.

The standard Galerkin P1/P1 elements mixed formulation gives oscillations in
the pressure field when no stabilization is applied. In this case, the VMS stabilization
is used which gives a cleaner and stable pressure field. The pressure field for different
meshes is presented in figures (3.14). In addition, the tip displacement shows a good
convergence on relatively coarse meshes as seen in figure (3.13). An important note
is that the results are similar for unstructured tetrahedral meshes.

3.6.1.2 Transient Cook’s membrane test

The transient version of the aforementioned Cook’s test case is presented here. This
test case is considered bending-dominant problem. For this case the hyper-elasticity
model is applied, even though the final result converged to the linear elastic results.
The simulation time is 7s with a time-step of 0.025s. All the properties presented
previously, along with the initial and boundary conditions remain the same. The
geometry in this case is the one presented in figure (3.12) with a 0.1 scale factor.
The mesh used is a unstructured and fixed one with approximately 6000 elements.

As we can see in figures (3.15) and (3.16), the y displacement of the tip A evo-
lution with time for two different time integration schemes. The solution oscillates
around the steady state solution for both cases. Moreover, figure (3.17) shows a
clean and stable pressure field at different time steps. We can conclude from figure

78



3.6. NUMERICAL VALIDATION

(3.15) and (3.16) that the BDF1 time scheme highly dissipating with a first order
accuracy, while the second time scheme (BDF2) is less dissipating with a second
order accuracy. This can be seen from the higher amplitude in the BDF2 scheme,
and the slower energy dissipation with time.

3.6.1.3 3D bending beam

A 3D square cylinder of dimensions of 1× 1× 6m is tested in this section. A 5.2
degree rotation with respect to the z axis is applied to the beam to avoid symmetry.
As initial conditions, the beam is stress free with a zero displacement. The initial
velocity is given by:

v(x, 0) = v(x, y, z, 0) =

(
5z

3
, 0, 0

)T
m/s y ∈ [0, 6]m. (3.125)

The coordinates system origin is located at (0.5, 0.5, 0). The material is consid-
ered Neo-Hookean with the following properties: ρ0 = 1, 100kg/m3, E = 17MPa,
and ν = 0.5.

Zero displacement Dirichlet boundary condition in all direction is imposed on
the bottom of the cylinder. All other surfaces are considered traction free. The final
time of the simulation is 2 seconds. Three different refined meshes were tested for
a mesh convergence study, and to achieve convergence for very fine meshes. Such
formulations are more devoted to divergence for refined meshes. Figures (3.18a),
(3.18b), and (3.18c) shows the three different levels of refinement with number of
elements equal to 1,790, 11,660, and 81,018 respectively.

Figure (3.19) shows the pressure field for three different meshes, while figure
(3.20) shows the pressure field at different time-steps. Figure (3.20) also illustrates
the MMM method described previously, where the mesh is moved with the domain
at each time step, for a consistency with the formulation.

Figure (3.21) shows the x component of the displacement for the three different
meshes, along with the reference solution. It is clear that the convergence is fast
even with a coarse mesh. This proves the capability of the presented formation for
relatively coarse unstructured meshes. Figure (3.22) shows the Z displacement of
the tip A with respect to time, it is added to have a complete study.
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Figure 3.12: Geometrical presentation, structured and unstructured meshes for the Cook’s
membrane. [35]
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Figure 3.13: Mesh convergence study for the steady state Cook’s membrane test and com-
parison with that from Scovazzi et. al [15]
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Figure 3.14: Pressure field for different meshes. [35]
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Figure 3.15: Y displacement of tip A versus time for first order time discretization and
comparison with that from Castanar et. al [33].
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Figure 3.16: Y displacement of tip A versus time for second order time discretization and
comparison with that from Castanar et. al [33].

Figure 3.17: Pressure field at 1, 3, 5, and 7 seconds. [35]

82



3.6. NUMERICAL VALIDATION

Figure 3.18: Three different levels of refinement of unstructured meshes. [35]

Figure 3.19: 3D Bending Beam mesh convergence study. [35]
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Figure 3.20: Pressure contours of the beam at 0.5, 1, 1.5, and 2 seconds. [35]
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Figure 3.21: X displacement of tip versus time and comparison with that from Scovazzi
et. al [15] [35]

0 0.5 1 1.5 2

−1

−0.5

0

time (s)

Z
d

is
p

la
ce

m
en

t
o
f

ti
p

Mesh 1

Mesh 2

Mesh 3

Figure 3.22: Z displacement of tip versus time. [35]

3.6.2 Elasto-plasticity and hyper-elasto-plasticity

In this section, the return mapping algorithm is applied to 2D and 3D test cases to
validate the elasto-plastic model presented in section (3.3).
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3.6.2.1 Tensile test on a rectangular plate with perfect plasticity.

Figure (3.23) describe the geometry used for this test case. The lower plane is
fixed, and the upper plane is subjected to a total displacement of 0.1 mm, while
the other sides are free to move. The material properties are: the Lamé coefficient
µ = 76.92 GPa, the bulk modulus κ = 166.66 GPa, and the yield strength σy =
200 MPa. For this case, an unstructured uniform mesh that has approximately
22,000 elements and 4,000 nodes has been used. The results will be compared to
analytical results of the problem.

This is a perfect plasticity case where there is no hardening. Figure (3.24) shows
the load vs displacement of the problem. When the material enters the plastic zone,
the load remains constant with the deformation since there is no hardening. In
addition, the results are in accordance with the analytical solution. Figures (3.25)
and (3.26) shows the equivalent plastic strain and the equivalent Von Mises stress
respectively.

Figure 3.23: Geometrical representation of the rectangular block with the boundary condi-
tions.
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Figure 3.24: Load displacement curve for the tensile test on the rectangular bar.

Figure 3.25: Equivalent plastic strain distribution.
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Figure 3.26: Von Mises stress distribution.

3.6.2.2 Tensile test on a rectangular plate with linear plasticity.

This test case is the same as the previous one represented in figure (3.23). The dif-
ference is that instead of prefect plasticity, a linear isotropic hardening rule reduced
from the Hansel-Spittel hardening rule is considered and given by:

σ0 = σy (ε0 + ε̄p) , (3.126)

where ε0 = 0.03 is a regularization coefficient,, and ε̄p is the equivalent plastic
strain. The yield strength is given by σy = 700 MPa, and the Lamé coefficient and
the bulk modulus are the same as before.

Unlike the previous case, the hardening rule is linear. For that reason, we can see
in figure (3.27) a linear increase in the force with respect to deformation when the
material is in the plastic zone. The equivalent Von Mises stress and equivalent strain
are presented in figures (3.29) and (3.28) respectively, shows a different distribution
from the previous test case because of a different hardening rule.
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Figure 3.27: Load displacement curve for the tensile test on the rectangular bar.

Figure 3.28: Equivalent plastic strain distribution.
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Figure 3.29: Von Mises stress distribution.

3.6.2.3 Tensile test on a rectangular plate with a hole with linear plas-
ticity.

This test case is also similar to the rectangular plates represented before, but
with a hole in the middle of the plate. The mesh is fine near the hole, and coarse
elsewhere and it consists of approximately 17,000 elements and 8,500 nodes. The
geometry and the mesh are represented in figures (3.30) and (3.32) respectively. The

hardening rule is given by
√

3
2

(σy + kα) which is the same as presented in the return

mapping algorithm (2). The material properties are: K = 0.7 MPa, σy = 0.3 MPa,
µ = 76.92 MPa, and κ = 166.67 MPa. A dirichlet boundary condition is applied
on the top of the square with a total displacement of 0.006m, while the bottom is
fixed. The right and the left side of the square are free to move. This test case is
compared to the one presented in [72]. Figure (3.31) shows the pressure field for
the current work and the reference. The results shows a good accordance with the
reference.
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Figure 3.30: Geometrical representation of the plate with a hole with the boundary condi-
tions.

Figure 3.31: Pressure field for the current work and the reference [72]
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Figure 3.32: Mesh representation of the problem.

3.6.2.4 Static Cook’s membrane test for large displacement plasticity

This test case is the same as the one describe in figure (3.12). To be able to test the
large deformation plasticity, the cook’s membrane is one of the best benchmark to
compare with. The test has the same boundary conditions as before with a different
traction force of 0.3125, and it is tested on different meshes for a mesh convergence
study. The lame coefficient is µ = 80.1938 with the bulk modulus κ = 164.21. A
non-linear isotropic hardening rule is used and given by:

k(α) = Kα + (K∞ − σY ) [1− exp(δα)], (3.127)

where K, K∞, and δ, are material constants given by: K = 0.12924, K∞ = 0.715,
and δ = 16.93.

Figure (3.33) represents the mesh convergence study. It is in coherence with the
reference especially on larger meshes.
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Figure 3.33: Mesh convergence study for the steady state Cook’s membrane in the plasticity
regime test and comparison with that from Abboud et. al [72].

3.7 Conclusion

In this section, the mechanical response was presented. The deformation during
quenching comes into different parts: elastic, plastic, thermal, and phase transfor-
mation deformation. Each of these types of deformation was described numerically.
The contribution of this thesis is the plastic, thermal and phase transformation de-
formation that were added to the already developed elastic solver. Numerical test
cases and benchmarks were presented to validate this model. So far, the major
phenomena happening in the solid were presented. It was shown that the phase
transformation not only affect the temperature, but also the mechanical response.
In addition, the temperature change affects the mechanical properties of the mate-
rial which lead to stresses and deformations. In the following section, the boiling
and evaporation model will be presented. This process will be responsible of the
heat transfer between the solid and the fluid, with the mechanical behavior of the
fluid.
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3.8. RÉSUMÉ EN FRANÇAIS

3.8 Résumé en français

Le chapitre 3 détaille la partie mécanique du solide de ce travail en proposant un
modèle élastoplastique dans un formalisme de déformations lagrangien réactualisé.
Les équations de la mécanique (traduisant conservation de la quantité de mouve-
ment et de la masse) sont formulées en déplacements – pression, puis résolues par
une méthode de type éléments finis sur un maillage simplicial avec une approxima-
tion linéaire pour les deux champs. La formulation discrète est enfin stabilisée par
une technique de type VMS. Cinq types de déformations sont prises en compte :
élastique, plastique, thermique, induite par les transformations de phases, et plas-
tique de transformation. Le comportement élastique choisi est celui d’un matériau
hyper-élastique de type néohookéen. Ce choix ainsi que la formulation du problème,
sont repris d’un travail récent fait au laboratoire. L’apport de ce travail de thèse,
sur ce chapitre, est donc l’introduction du comportement plastique, avec des lois
d’écrouissage associées, d’abord dans un cadre petites déformations puis grandes
déformations, et son implémentation effective dans un code de calcul (dérivée de
Jaumann pour calculer la vitesse de déformation, algorithme du retour radial et
stabilisation VMS notamment). Cette implémentation est ensuite validée sur un cas
de traction d’une plaque, d’abord sans écrouissage puis avec un écrouissage linéaire,
permettant d’avoir une solution analytique, puis, sous cette même condition, sur un
cas de traction d’une plaque trouée. Les résultats sont alors comparés à la littérature.
Enfin, une étude de convergence en fonction de la taille de maille est menée sur une
membrane de Cook avec un écrouissage isotrope non-linéaire.
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4.1. INTRODUCTION

4.1 Introduction

The previous two chapters described the physical phenomena happening in the
solid. This is an important study in the quenching context however the study of
the fluid part is also important (figure(4.1)). As expected, computational fluid dy-
namics is now being used increasingly for multiphase flows and in quench design.
However there still considerable uncertainties due to assumptions that must be made
in particular: (i) the use of simple geometries, (ii) the use of decoupled fluid solid
resolution and finally, (iii) the use of transfer coefficients that approximate the com-
plex quenching environments. Moreover, the consequences of the numerical method
limitations are the set of physical model assumptions, e.g.: incompressibility , low
density ratio between phases, omission of heat conduction in one of the phases,
low fidelity for boiling phenomena, laminar flows, etc. Most of these assumptions
are justifiable for their intended applications; however, their use remains generally
limited and suffers from systematic revalidation when facing new materials, new
geometries or new thermomechanical conditions.

Figure 4.1: Heat transfer, boiling and evaporation parts of the full framework

One of the good idea is to remove all assumptions which will remove all the
limitation that previous models were facing. Khalloufi et al. [1], developed a high
fidelity phase change model. This model, includes all the physical phenomena that
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4.2. LEVEL-SET APPROACH FOR INTERFACE CAPTURING

exist on the interface during quenching. In the context, he worked on level set to be
able to capture well the interface. In addition, he worked on an anisotropic mesh
adaptation to achieve a high-fidelity spatial resolution. Moreover, the immersed
volume method is used for two fluid modeling in the context of multiphase flows
[2] and for fluid structure interactions in the context of heat and mass transfer [3].
The coupling of both was a major enhancement of the model. Furthermore, it is
important to mention the study on the Navier Stokes equations to better understand
the multi phase flow and the interactive of the two phases. Finally, the thermal
behavior on the surface of the material was added to include the heat transfer that
is causing boiling for a better accuracy.

In the following sections of this chapter, the level-set approach will be explained
with the anisotropic mesh adaptation adopted for this work, then the phase change
model developed will be presented, and finally the fluid-stucture interaction with the
immersed body method will be explained. Numerical test case are also presented to
validate this model.

4.2 Level-set approach for interface capturing

The first use of the level-set methods is the computer graphics context to restore
images [4]. It was later developed in [5] to apply these methods to incompressible
flows. This method is used nowadays in many physical applications as two-fluid flows
[6], phase change and boiling [7, 8], fluid-structure interaction [9], and many more
applications. One must note that if the solid has simple geometries as a sphere or a
square, a simple analytical functions can be solved that defines the solid with their
corresponding meshes. However, this is not the case when we deal with complex
geometries on an industrial level. In this case, a surface mesh is performed on the
solid and then embedded in the main computational domain to have one fluid/solid
domain.

4.2.1 Standard level-set approach

Let Ω be the global domain, Ωs and Ωf are the solid and the fluid domains
respectively. The level-set function is a signed distance function where it is zero on
the interface Γ = Ωf ∩ Ωs and defined at each node in the domain as follows:

α(X) =


−dist(X,Γ) if X ∈ Ωf ,
0 if X ∈ Γ,
dist(X,Γ) if X ∈ Ωs.

(4.1)

The time evolution of this function is expressed using a transport equation as
follows:
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d

dt
α(x, t) =

∂α

∂t
+ v · ∇α = 0 (4.2)

Figure (4.2) represents the level set function on a circle solid in a fluid domain.
This function satisfies this conditions: ‖∇α‖ = 1. This condition is lost once the we
have a convected interface by a velocity, for that reason this property needs to be
reloaded for a recovery. This is done by solving the Hamilton-Jacobi equation [6]:

∂α

∂τ
+ s(α)(‖∇α‖ − 1) = 0 (4.3)

where τ is a ficticious time-step and s (α) is the sign of α. When the level set
gradient recovers its value, we can say that the steady-state is reached. Hence, the
solution of equation (4.3) is a distance function from the interface with the same
zero isovalue. By doing this procedure, finding explicitly the zero isovalue is avoided.

Figure 4.2: Level-set representation of a multi-domain problem.

This is a very important property since all the properties at the interface will be
distributed using the level-set. To demonstrate this phenomena, a 2D simulation of
a rising bubble in a tank of water is performed. Figure (4.3a) shows the level-set
at the beginning of the simulation. If the function is not reinitialized with time,
the isovalues drift away from the interface as seen in figure (4.3b). That means
that it is not a distance function anymore, which will give an inaccuracy in the
properties distribution and that will change in the physics of the problem. Besides,
figure (4.3c) the level set is properly reinitialized, thus the problem solved remains
physically correct. Also, the difference in the height of the bubble in figures (4.3b)
and (4.3c) shows the reinitialization effect on the physics of the problem. However,
since the Hamiltion-Jacobi procedure is iterative can cause a high computational cost
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for larger meshes and more complicated geometries. Another method was proposed
in [10] that avoids this problem and it is called the convected level-set method.

Figure 4.3: 2D rising bubble. The zero isovalue is in red, and the levelset isovalues are in
black. (a) Initial time, (b) result after 3 seconds with no reinitialization of the
levelset, (c) result after 3 seconds with reinitialization of the levelset

4.2.2 Convected Level-set method

To proceed with this method, the level-set function must be truncated as follows:

α̃ = Etanh
(α
E

)
(4.4)

where E is the truncation thickness.
An important thing that features this method is that the level-set defined by

equation (4.4) is bounded, which makes it possible to impose Dirichlet boundary
conditions. Moreover, the gradient of this equation tends to zero far from the inter-
face. This feature reduces the computational time, and avoids singularities on sharp
edges and corners, which suits well the mesh adaptation procedure. The condition
that the level-set satisfy is now in this form:

‖∇α̃‖ = 1−
(
α̃

E

)2

(4.5)

For notation simplicity, we remove the tilde and α will refer to the truncated
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level-set. A linearization is applied to the gradient in order to express it with respect
to the old level-set (at the previous time-step):

‖∇α‖ ≈ ∇α−

‖∇α−‖
∇α (4.6)

Subsequently, the correction of the Hamilton-Jacobi to the convective form gives:

∂α

∂τ
+ s(α)

∇α−

‖∇α−‖
∇α = s(α)

(
1−

(α
E

)2
)

(4.7)

If we define V = s (α) ∇α−
‖∇α−‖ as the reinitialization velocity, and we combine it

with equation (4.7) as it is done in [10] we get:

∂α

∂t
+ v · ∇α + λs(α)

(
‖∇α‖ −

(
1−

(α
E

)2
))

= 0 (4.8)

where λ is a constant proportional to the velocity. This equation ensures the
initial nature of the level-set function: a signed distance function. Finally, the
equation can be written as follows:

∂α

∂t
+ (v + λV ) · ∇α = λs(α)

(
1−

(α
E

)2
)

(4.9)

This method is proved to reduce the computational time, with an enhanced mass
conservation than the conventional level set method [10–12].

4.2.3 Mixing laws

In this work, most of the simulations are done in a single domain, specifically
when dealing with boiling and evaporation, different phases are all immersed in one
domain. Using the aforementioned level-set method, all the thermal and material
properties will be distributed in space. To prevent singularities and to have a smooth
distribution near the interface, a mixing law should be introduced. The Heavyside
function gives a smooth distribution and is given by:

H(α) =


1 if α > ε
1
2

(
1 + α

ε
+ 1

π
sin
(
πα
ε

))
if |α| ≤ ε

0 if α < −ε
(4.10)

where α is the level-set function, ε is the interface thickness and expressed in
function of the mesh size in the normal direction of the interface: ε = O (hlim). In
the interface proximity, the mesh size can be computed using the following equation:
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hlim = max
j,l∈K
∇α.xjl, (4.11)

where xjl = xl − xj and K is the considered mesh element. While solving the
PDE’s, the whole domain is considered as ”one phase”, and the set of equations
is solved on the whole domain. By the help of the Heavyside function, the prop-
erties distribution will be continuous and heterogeneous, and with the help of the
anisotropic mesh adaptation the transition thickness will be small. The thermal
properties as the density ρ, the heat capacity cp, the dynamic viscosity µ, and the
temperature at the beginning are expressed using the Heavyside equation as follows:

ρ = ρfH(α) + ρs(1−H(α))

µ = µfH(α) + µs(1−H(α))

ρCp = (ρfCpfH(α) + ρsCps(1−H(α)))

ρCpT = ρfCpfTfH(α) + ρsCpsTs(1−H(α))

(4.12)

The equations above are linear mixing laws; however, when it comes to linear
conductivity λ the linear mixing gives inaccurate results. A harmonic mixing law
was proposed in [13] to maintain the heat flux conservation:

k =

(
H (α)

kf
+

1−H (α)

ks

)−1

(4.13)

The proposed method for immersion only needs the material properties with-
out the use of the heat transfer coefficient. By solving the PDE’s with the mixed
properties the heat transfer will be taken into consideration naturally.

4.3 Anisotropic mesh adaptation

Since we are dealing with immersed solids, one must properly define the object
and material properties must be properly dispersed to provide an accurate com-
position of physical problems. The mesh around the interface needs to be fine for
accurate calculations in multiphase framework. In fact, adapting the mesh to physi-
cal behavior or the phenomenon under investigation is a way to improve the accuracy
of numerical results. However, discontinuities in the properties between the solid
and the liquid can cause problems. In fact, if the discontinuities randomly intersect
the mesh elements, they will not be detected properly and may reduce the accuracy.
Therefore, the goal is to combine the level set approach with a local mesh refinement
around the zero isovalue of the level set function to achieve an accurate capture of
the fluid-solid interface with little computational effort. The key to these aspects
is the anisotropic mesh adaptation. This produces highly stretched, well-positioned
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elements that allow you to properly capture sharp gradients. This means that the
element can be stretched in a particular direction depending on the capabilities of
the solution. Several approaches to constructing anisotropic adaptive mesh are de-
scribed in the literature, often depends on local modifications of the existing mesh
[14–16]. These primarily require extension of the length measurement path in the
spatial direction and can be done using metric fields to redefine geometric distances.
Mesh fitting techniques based on post-error estimation have also been well developed
[17], leading to a standardized fitting process. In this project, the mesh adaptation
technique developed in [18, 19] will be used, where the the anisotropic mesh adap-
tation is driven by directional error estimator. The mesh adapts dynamically to the
solution depending on interface position and the velocity. The goal is to improve
the discretization of the region where the field of the solution is predominantly non-
linear. Improvements affect both the density of the element and its shape. These
shapes are anisotropically adjusted and stretched along the direction in which the
solution fields considered are linear. The mesh is locally refined around the zero
isovalue of the level set function. This allows you to clearly define the interface and
reduce a large number of elements compared to traditional isotropic refinements. To
do this, first perform an error analysis on the mesh. Next, a metric field is defined to
correlate the error with the geometry. The anisotropy error indicator is defined from
this metric field and is used as a function of the remeshing optimization problem.

4.3.1 Edge-based error estimator

The P1 element approximation uh is obtained by the Lagrange interpolation on
the regular function u ∈ C2 (Ω). Each vertex i of the grid has V i = v (xi) = vh (xi)
(where xi is the coordinate of vertex i). As shown in Figure (4.4), let Γ (i) be the
“patch” associated with the vertex xi of the mesh, define it as a set of nodes that
share an edge with xi, and let xij represent the edge connecting xi and xj. Since
the gradient ∇vh.xij on the edge xij is continuous, it can be written as:

V j = V i +∇vh · xij, (4.14)

which give us

∇uh · xij = V j − V i . (4.15)
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Figure 4.4: Patch associated with node xi

Based on the work in [19], post-error estimation based on edge-based error anal-
ysis associated with the length distribution tensor approach is defined:

|| ∇vh · xij −∇v
(
xi
)
· xij ||≤ max

y∈|xi,xj |
| xij ·Hv (y) · xij |, (4.16)

with Hv is the hessian of v. To calculate the gradient gi of v restored on node
xi, we use the following:

∇gh · xij = gj − gi . (4.17)

The Hessian projection based on the edge gradient at the extremities is obtained
as follows:

(
∇gh · xij

)
· xij =

(
gj − gi

)
· xij, (4.18)(

Hv · xij
)
· xij = gij · xij, (4.19)

where gij = gj − gi. The error on the edges is expressed with:

eij =| gij · xij | . (4.20)

This error sample is an accurate interpolation error along the edge and can
evaluate global L2 errors. Equation (4.20) can only be evaluated if the gradient
of u is known and is continuous at the nodes, hence recovery methods need to be
considered.

4.3.2 Gradient recovery procedure

In this work the gradient operator used for recovery is expressed as:

Gi = argmin
G

∑
j∈Γ(i)

| (G−∇vh) · xij |2
 , (4.21)
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Denoting X i the length distribution tensor at node i, and using the tensor prod-
uct we get:

X i =
1

| Γ(i) |

∑
j∈Γ(i)

xij ⊗ xij
 . (4.22)

The role of X i is to represent the average of the edges distribution in the patch.
If we combine equations (4.21) and (4.22), we get:

Gi = (X i)−1
∑
j∈Γ(i)

U ijxij . (4.23)

Hence, the error estimator is written as:

eij = Gij.xij (4.24)

At this stage, it is important to relate eij to a metric that fits the mesh adaptation
technique.

4.3.3 Metric construction

The neighboring nodes should be considered so that the best average representa-
tion is the metric defined for each node [18].The metric can be considered as a tensor
where its eigenvalues are connected to the mesh sizes, and its eigenvectors define the
directions of the applied sizes. The metric M is a positive symmetric definite tensor
that represents a local base that modifies the computation of the distance from the
Euclidean space to the metric space, therefore it is expressed as:

M̃ i = (X̃ i)−1, (4.25)

where

X̃ i =
1

| Γ(i) |

∑
j∈Γ(i)

sij ⊗ sij
 . (4.26)

where sij is the stretching factor of the ijth edge. This factor is chosen making
sure that global number of nodes stays the same. It is considered as the ratio
between the length of the adapted edge and the original edge. More details can be
found in [20].
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4.3.4 Mesh adaptation criterion

When simulating complex physics with turbulence and heat transfer, such as
quenching processes, capturing accurately all the properties of the problem is highly
desirable , such as flow fields, temperature changes, and liquid-solid interfaces. Ac-
cordingly, various fields can be used as criteria for mesh adaptation: it takes into
account the change in velocity direction, its magnitude, the level set function, and
the temperature field.

The usual technique for deriving a single metric on each node in the mesh is to
consider multiple fields of interest, calculate the metric for each sensor field, and
perform a metric crossing operation [21]. This work simplifies this process and uses
one metric that describes different variables. Thus, based on the aforementioned
theory, the extension to account for different source of errors is possible, and the it
is expressed as follows:

v
(
xi
)

=

{
Vi∣∣ Vi
∣∣ , |Vi|

maxj
∣∣ Vj

∣∣ , Ti

Tmax

,
φ

max(φ)

}
(4.27)

Since all the fields are normalized (the components of the velocity vx ,vy and
vz by the local velocity norm, and the level set function by their respective global
maximum), all variables vary fairly with no dominance in a field that is much higher
in absolute value. In the framework of the immersed volume method, the goal is
to provide a good representation of the fluid/solid interfaces for a fixed number of
nodes in the mesh.

4.4 Phase change model

A pseudo-compressible model is described in this section taking into account the
mass transfer that happens on the interface. A finite difference method was used to
derive this model in [22].

4.4.1 Phase change governing equations

As a reminder here below the Navier-Stokes equations:

ρ(∂tv + v · ∇v)−∇ · (2µε(v)) +∇p = fST + f, (4.28)

∂ρ

∂t
+∇ · (ρv) = 0, (4.29)

where v is the velocity, p the pressure, ρ the density, µ the dynamic viscosity, fST
the surface tension, and f an additional source term of the momentum equation.
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This model depends on the mixing law and the Heavyside function described in
equations (4.12) and (4.10), used for the density distribution in space. The mass
conservation in Ω is given by:

∂ρ

∂t
+∇ · (ρv) = 0. (4.30)

The mass transfer rate ṁ[kg.m−2.s−1] between the vapor and liquid phases is
given by:

∂

∂t
(ρvpH(α)) +∇ · (ρvpH(α)v) = ṁ|∇α|δ(α), (4.31)

∂

∂t
((1−H(α))ρl) +∇ · (ρl(1−H(α))v) = −ṁ|∇α|δ(α), (4.32)

where δ is a Dirac function. By expanding equations (4.31) and (4.32), we will
get:

ρvp
∂H(α)

∂t
+ ρvpH(α)∇ · v + ρvpv · ∇H(α) = ṁ|∇α|δ(α), (4.33)

−ρl
∂H(α)

∂t
+ ρl(1−H(α))∇ · v − ρlv · ∇H(α) = −ṁ|∇α|δ(α). (4.34)

If we divide equations (4.33) and (4.34) by their respective density and we sum
them, we obtain the updated mass conservation equation

∇ · v = ṁ

(
1

ρvp
− 1

ρl

)
|∇α|δ(α). (4.35)

Since the mass transfer happens at the vapor/liquid interface, the velocity is not
divergence free. Summing equations (4.33) and (4.34) and dividing by (ρvp − ρl)
gives us:

∂H(α)

∂t
+ v · ∇H(α) =

ρ

ρl − ρvp
∇ · v. (4.36)

Having the time and space derivative of the Heavyside function ∂H(α)
∂t

= ∂H(α)
∂α

∂α
∂t

=
δ(α)∂α

∂t
and ∇H(α) = δ(α)∇α, we get:

δ(α)
∂α

∂t
+ δ(α)v · ∇α =

ρ

ρl − ρvp
∇ · v. (4.37)

Combining equations (4.37) by (4.35) leads to
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δ(α)
∂α

∂t
+ δ(α)v · ∇α =

ρ

ρl − ρvp
ṁ

(
1

ρvp
− 1

ρl

)
|∇α|δ(α). (4.38)

We extend the equation to the whole domain and simplify it leads to

∂α

∂t
+ v · ∇α =

ρ

ρlρvp
ṁ|∇α|. (4.39)

The level set equation is now given by:

∂α

∂t
+

[
v − ρ

ρlρvp
ṁ
∇α
|∇α|

]
· ∇α = 0. (4.40)

Finally, by neglecting the heat from the capillary and the viscosity forces, the
energy equation becomes:

ρcp

(
∂T

∂t
+ v · ∇T

)
−∇ · (k∇T ) = −

(
L+ (cvpp − clp)(T − Tsat)

)
ṁδ(α)|∇α| ρ

2

ρvpρl
.

(4.41)

where T , Tsat, cp, c
vp
p , clp, and k are the temperature, saturation temperature,

the global specific heat, the vapor specific heat, the liquid specific heat and k is the
thermal conductivity respectively.

This formulation is naturally realted to the interface thickness. In what follows
in this section, the mass transfer rate ṁ existing in equation (4.41) will be defined.

4.4.2 Surface mass transfer rate

The vaporized liquid between t and t+dt releases a heat defined by an elementray
volume dV as seen in figure (4.5). This heat is used to resolve the mass transfer
rate by considering a domain composed of both liquid and vapor (figure 4.5). The
interface position at the time t is defined by α(t) the level set at time t, dS the
corresponding elementary surface and n its normal pointing in the vapor direction.
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Figure 4.5: Volume dV that has vaporized between t and t+ dt

dQ is the heat released by the volume dV the vaporized liquid during the elapsed
time between t and t+ dt and is given by:

dQ = ρlLdV (4.42)

where L is the vaporization enthalpy [J.kg−1]. The heat fluxes are respectively
defined in the liquid and the vapor by φl = −kl∇Tl and φvp = −kvp∇Tvp where kl and
kvp are the liquid and vapor thermal conductivity respectively. The condensation
and vaporization occurs when the change of fluxes across the interface [[φ]] = [φvp −
φl]|α=0.n is negative and positive respectively. Thus dQ is given by:

dQ =

t+dt∫
t′=t

[[φ]]dSdt′. (4.43)

By differentiating and taking the limit when dt tends to zero we get:

lim
dt→0

ρlL
α(t+ dt)− α(t)

dt
= lim

dt→0

1

dt

t+dt∫
t′=t

(−kvp∇Tvp + kl∇Tl)|α=0 .ndt
′ . (4.44)

We get the surface mass transfer rate, which is called the Stefan condition,

ṁ = ρlL
dα

dt
= (−kvp∇Tvp + kl∇Tl)|α=0 .n . (4.45)

The fluxes balance evaluation is required at the interface to complete equation
(4.45). It is not a straightforward evaluation when an implicit definition is used at
the interface. For that reason, a delta formulation is used by approximating integral
of the surface by a delta Dirac function on every elementary volume as follows:
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∫
Si

(−kvp∇Tvp + kl∇Tl)|α=0 .ndSi =

∫
Ωi

δ(α) (−kvp∇Tvp + kl∇Tl) .ndΩi . (4.46)

Finally, we integrate (4.45) on Ωi to get the surface mass transfer expression:

ṁ =

∫
Ωi
δ(α) (−kvp∇Tvp + kl∇Tl) · n dΩi∫

Ωi
δ(α)dΩi

. (4.47)

4.4.3 Implicit surface tension

The continuum surface force model is used to include the surface tension to the
Navier-Stokes equations [23]. First the surface force is written as a volume as follows:

fST = −γκδn . (4.48)

where γ is the surface tension coefficient, δ is a Dirac function, κ is the mean
curvature and n is the normal to the interface. Then equation (4.48) is inserted as
a source term in equation (4.29). However, an explicit implementation imposes the
following severe restriction on the time step [23]:

∆t < (∆x)
3
2

√
ρl + ρvp

4πγ
. (4.49)

On one hand, if we do not respect this restriction, spurious oscillations can
happen to the solution that destabilize the interface. On the other hand, it impose
a penalty on the computational cost of the simulation because it is lower than the
time-step restriction of a CFL condition in almost two order of magnitude. For
that reason, a new implicit surface tension implementation is developed in [24] to
overcome this restriction, which is also used in [2, 25, 26]. With the use of differential
geometry, the Laplacian of the surface ∆sIΓ of an identity function is given by −κn.
The time evolution of an interface is given by In+1

Γ = InΓ +vn+1∆t; on which we apply
the Laplacian operator ∆S. In addition, we can decompose the surface Laplacian
into a standard Laplacian ∇2v − ∂2v

∂n2 − κ ∂v∂n
. If we multiply by the surface tension

coefficient gives us a new surface tension expression:

fST = −γκδn− γδ∆t
(
∂2v

∂n2
+ κ

∂v

∂n
−∇2vn+1

)
. (4.50)

The initial term of the surface tension force −γκδn comes now with additional
terms proportional to the time step. These terms act as an isotropic diffusion with
the subtraction of a diffusion term in the normal direction of the interface. More
details can be found in [2].
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4.4.4 Variational MultiScale method for the Navier-Stokes
equations

After all the developments done in the previous sections, we can write the Navier-
Stokes equations in a general form:

ρ(∂tv + v · ∇v)−∇ · (2µε(v)) +∇p = fST + f, (4.51)

∇ · v = fc, (4.52)

The stabilization of the Navier-Stokes formulation depends on the choice of el-
ement type in spaces for the pressure and the velocity. The standard Galerkin
mixed elements equal order continuous linear/linear interpolation does not give sta-
ble discretization and generates uncontrollable oscillations that give poor results.
The Variational MultiScale method (VMS), proposed by [27, 28], suggest a general
framework that has new variant of mixed variational form [29–33]. This stabilization
is also used for the elasto-plastic solver presented in the previous section. A brief
recall of the steps is presented here.

We first decompose the velocity and the pressure fields into resolvable coarse-
scale and unresolved fine-scale:

v = vh + ṽ, (4.53)

p = ph + p̃, (4.54)

This decomposition is also made on the weighting functions. The fine-scales are
mainly calculated using the residual based terms derived consistently. The fine-
scale are then embedded in the large-scale problem as additional terms, and they
are tuned by stabilization parameters. This approach gives a better stability and
accuracy of the standard Galerkin formulation.

Second, the fine-scale problem is modeled, which is defined on the sum of element
interiors and expressed with respect to the time-dependent large-scale parameters.
It is then substituted in the coarse-scale problem, and the approximation of the
fine-scale solution within each element is given by:

ṽ =
∑
Th

τvP̃u(Ru), (4.55)

p̃ =
∑
Tc

τcP̃c(Rc), (4.56)
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where Ru and Rc are the finite element residuals. P̃v and P̃p are projection
operators. τv and τc are stabilization parameters used for tuning. Hence, the fine-
scale explicit appearance is eliminated while still taking their effects into account.
More details can be found in [2, 34].

For a simpler notation, fm and fc are used as the source terms in equations (4.51)
and (4.52), with the addition of the explicit terms of equation (4.50) into fm. By
inserting the subscales expression, we can finally write the stabilized finite element
problem. The coarse-scale variational formulation is now written as:


(ρ∂t(vh + ṽ), wh) + (ρ(vh + ṽ) · ∇(vh + ṽ), wh)− (ph + p̃,∇ · wh)
+ (2µε(vh) : ε(wh)) + (γδ∆t∇(vh + ṽ) : ∇wh) = (fm, wh) ∀wh ∈ Wh,0,

(∇ · (vh + ṽ), qh) = (fc, qh) ∀qh ∈ Qh,
(4.57)

and the fine scale one:


(ρ∂t(vh + ṽ), w̃) + (ρ(vh + ṽ) · ∇(vh + ṽ), w̃)− (ph + p̃,∇ · w̃)

+ (2µε(ṽ) : ε(w̃)) + (γδ∆t∇(vh + ṽ) : ∇w̃) = (fm, w̃) ∀w̃ ∈ W̃ ,

(∇ · (vh + ṽ), q̃) = (fc, q̃) ∀q̃ ∈ Q̃.

(4.58)

At this stage, one can make two assumptions for the sake of simplifying the
resolution of the fine-scale equation. First we consider the subscales as quasi-static
and second we approximate the convection by (vh + ṽ).∇(vh + ṽ) ≈ vch.∇(vh + ṽ).
Then, we formulate the expression of ṽ and p̃ by replacing them into the coarse-scales
equation, and we apply the integration by parts, finally the system of equations to
solve becomes:



(ρ∂tvh, wh) + (ρvch · ∇vh, wh)− (ph,∇ · wh) + (2µε(vh) : ε(wh)) + (γδ∆t∇vh : ∇wh)

−
∑
K∈Th

(τvRv , ρvch · ∇wh)−
∑
K∈Th

(τcRc,∇ · wh) = (fm, wh) ∀wh ∈ Wh,0,

(∇ · vh, qh)−
∑
K∈Th

(τvRv,∇qh) = (fc, qh) ∀qh ∈ Qh,

(4.59)

where Ru and Rc are the finite element residuals defined by

Rv = fm − ρ∂tvh − ρvch · ∇vh −∇ph,
Rc = fc −∇ · vh.

(4.60)
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In the strongly anisotropic meshes case with widely stretched elements, the sta-
bilization parameters definition remains an open problem and has an important
role in the stabilization coefficients design. In this work, a particular choice of the
stabilization parameters proposed in [2] will be adopted.

If we compare the previously described stabilization with the standard Galerkin
method, additional terms evaluated on the elements are involved. These terms,
obtained by the substitution of ũ and p̃ into the large-scale equation, represent the
sub-grid scales effects and importantly they account for the reshaped surface tension
terms. They consistent way to introduce them to the Galerkin formulation in order
to overcome the instabilities of the standard formulation specifically in convection
dominated flows and to deal with spurious oscillations in the pressure field.[35].

4.5 Fluid-structure interaction framework

It exists in the literature different types of fluid-solid coupling. Some of the works
consists of solving the fluid physics alone and then transferring the data to another
domain to solve the solid physics in a different software. In the previous sections,
the boiling and evaporation model consists of having one domain with immersion to
solve all the physics in one meshed domain. In this work, a novel fluid-solid coupling
will be presented and called adaptive immersion method. As we can see in figure
(4.6), this method consists on working in two different domains simultaneously, with
only one software.

Figure (4.6) represents a one time-step procedure. First, the Navier-Stokes equa-
tion are solved with the convection diffusion reaction (CDR) equation to simulate
the boiling and evaporation with the heat transfer between the solid and the fluid.
This part was explained in this chapter (chapter 4). This is done in a fluid-solid
domain where the solid is immersed in the fluid domain using the level function
described above. Afterwards, the temperature distribution is transferred to a solid
mesh alone to prevent solving the solid physics in the fluid domain which is a un-
necessary computational cost. In the solid domain alone, the phase transformation
calculations are done as described in chapter (2). Subsequently, the mechanical re-
sponse in solved as described in chapter (3) and the shape of the solid in updated
using the moving mesh method (MMM) presented previously. Finally, the solid is
re-immersed in the fluid-solid domain by the techniques presented in this chapter,
to proceed to the next time-step.

By doing so, the computational cost is reduced since the solid solvers are only
solving on a solid mesh. In addition, this procedure makes the user to have more
control on the solution, since one can choose different meshes for the solid an the
fluid, different time-steps, and be more accurate in each domain.
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Figure 4.6: Fluid-solid coupling representation

4.6 Thermo-hydrodynamic framework

Another framework was proposed in [36] for very large test cases. Generally the
industrial test cases of the quenching process can consist of large and complex solid
parts which takes sometimes 30 hours of quenching. For that reason to reduce the
computation cost, a new framework is proposed that divides the direct simulation
into two parts: the Thermo-hydrodynamic part to compute the properties of the
boiling part, and the thermal part of the solid. This method works as follows:

• The thermo-hydrodynamic part:
This part is the boiling and evaportation with a contant temperature on the
solid for few seconds of the quenching. After a steady state is achieved, the
heat flux is averaged locally (on each node) over this time. This process is
applied using the same equations described in this chapter (chapter 4). Once
the the heat transfer coefficient (HTC) is calculated, it is transferred to the
solid mesh alone.

• Thermal Simulation:
This part consists of simulating the solid alone with the HTC transferred
from the whole domain. Navier-stokes equations are not solved in this part,
which makes the simulation faster specifically for large industrial applications.
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The work presented in chapter (2) and (3) will be applied in this part of the
simulation.

For more information about this model refer to the thesis of in [36].

4.7 Numerical validation

In this section, 2D and 3D simulations will be performed showing all the physi-
cal phenomena happening in the quenching process, with the presented fluid-solid
coupling.

4.7.1 Quenching of a 2D rectangular bar

The rectangular piece with 8x2cm2 dimensions, was initially at 780oC, and the
surrounding is at 20oC. The fluid-solid domain has approximately 21000 elements
and 10000 nodes while the solid domain has 4000 elements and 2000 nodes. The
material and thermal properties are all temperature and phase dependent. The
calculations start with a Navier-Stokes study and CDR coupling for the fluid and
solid together. And then at the time step, as seen in figure (4.6), the temperature
is transferred to a solid domain alone to do a phase transformation and mechanical
analysis. Finally the latent heat calculated will be transferred to the fluid-solid
domain with the immersion of the new solid shape to proceed with the next time-
step.

As results, figure (4.8) shows the anisotropic mesh adaptation described in the
chapter, where the mesh is adapted to the fluid-solid interface, to the vapor bubbles.
In addition, figure (4.7) represents the solution in both domains at the same time-
step. We can notice the shape change in the solid domain is transferred to the
fluid-solid domain. In figure (4.9) we can see the deformation of the piece during
the cooling process. It is important to note that this deformation is magnified in
order to visualize the shape change, but in general the deformation is small.

Figure (4.10) represents the core temperature history throughout the quenching
process with and without the phase transformation effect. It is clear the phase
transformation affects the cooling process at some point in the quenching. Because
of the latent heat generated, we can see the decrease in the cooling speed around
50 seconds. Finally, concerning the fraction distribution, figures (4.14) describe
the martensite and the pearlite fraction distribution. The difference between the
fraction distribution seen here and in simulations with a heat transfer coefficient
(HTC) assumption, is that the distribution is not uniform. This is an important
point to stop on, since with the HTC the boundary conditions are uniform on all the
piece, while here it depends on the boiling structure. For example, in figure (4.8)
it is clear that the vapor bubbles are not uniform all along the piece. This explains
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why in figure 4.11 the martensite does not exist on all the boundary line. Same for
figure 4.12, the pearlite transformation is faster from the top than the bottom. This
also explains the importance of the piece orientation during quenching, which gives
different microstructure distribution.

Figure 4.7: The rectangular piece at the final stages of quenching in both domains

Figure 4.8: Mesh adaptation on the solid and vapor bubbles

124



4.7. NUMERICAL VALIDATION

Figure 4.9: The deformation in the Y direction of the steel piece

Figure 4.10: Temperature history in the piece, with and without phase transformation
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Figure 4.11: Martensite Fraction Distribution at the end of the quenching.

Figure 4.12: Pearlite Fraction Distribution half way of the quenching.

Figure 4.13: Pearlite Fraction Distribution at the end of the quenching.

Figure 4.14: Phases distribution

4.7.2 Quenching of a 3D cylinder

A 1080 steel cylinder with 380 mm diameter and 750 mm height is simulated based
on the test case found in [37]. The mesh have approximately 3,000,000 elements and
500,000 nodes for the fluid-solid domain, and 700,000 elements and 120,000 nodes
for the solid domain. The initial temperature of the cylinder is 850oC and 20oC for
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the surrounding.

Figure (4.15) represents the cylinder during quenching with the vapor bubbles.
As mentioned before, the heat transfer while considering boiling and evaporation,
will not be uniform at the piece interface. The piece orientation can play a major
role in the cooling process since the gravity is taken into account. Some of the
vapor bubbles can be stuck and work as thermal insulators. Before any comparison
one must note that the sensor here is in the core but shifted downward in the z
direction. This is because of aforementioned uneven cooling, and this could be
clearly seen in figure (4.17) where the phase fractions are clearly not uniform. The
effect of the latent heat on the cooling is clear even in this test case. Nevertheless, the
temperature difference seen in this test case in comparison with the others is because
of first the difference in the sensor place, and second the different heat transfer
procedure while it includes boiling and evaporation. Finally, figure (4.18) shows
the shape change of the cylinder during cooling including the elasticity, plasticity,
thermal, and phase transformation stresses and deformations.

Figure 4.15: Cylinder quenching.
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Figure 4.16: Temperature history in the cylinder.

Figure 4.17: Phases fraction distribution in the cross section of the cylinder (at 30s of
quenching).
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Figure 4.18: Cylinder deformation at 0, 10, 20, and 30s (magnification by 10).

4.8 Conclusion

The boiling and evaporation model was presented in this chapter. This model
was already developed and used as a tool for this thesis for the completeness of the
process. In addition, a new fluid-structure framework was presented that allows the
coupling of this model with the solid modeling presented in the previous sections.

To conclude, at this stage the process could be fully simulated. What was pre-
sented in this chapter is responsible for the heat transfer and the behaviour hap-
pening in the water. This model was not enough to cover all the process, for that
reason a framework was presented that couples the work of this chapter with the
ones presented in chapter (2) and (3). This framework allows a full simulation tak-
ing into account all the physics happening in the quenching process while using only
one software.

This model was tested on 2D and 3D simulation and validated. However, the
presented test cases were simple geometries. In the following section, the whole
framework will be applied on industrial examples with complex geometries.
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4.9 Résumé en français

Le chapitre 4 présente la stratégie générale, en terme de modélisation et de mise
en œuvre numérique, permettant de simuler une trempe avec transformations de
phases dans le solide. Plus précisément, deux maillages distincts sont utilisés: l’un
dans lequel le solide est immergé dans le fluide à l’aide d’une méthodologie level-
set combinée à de l’adaptation anisotrope de maillage, l’autre représentant le solide
seul, permettant d’effectuer les calcul de transformations de phase et de mécanique
du solide décrits dans les deux chapitres précédents. Sur le premier maillage, les
équations de Navier-Stokes puis l’équation de conservation de l’énergie sont résolues
par une méthode éléments finis, stabilisée, pour Navier-Stokes, par une technique
VMS similaire à celle présentée pour la mécanique du solide. Cependant, l’originalité
de cette partie réside dans la prise en compte d’un changement de phase liquide –
vapeur à l’interface solide – fluide. Ce changement, décrit rigoureusement dans le
cadre level-set, se modélise par deux termes sources, l’un dans l’équation de transport
de la fonction level-set, l’autre dans l’équation de la chaleur. Ces termes dépendent
d’un taux de transfert surfacique de masse dont une expression est dérivée, ne faisant
donc pas apparâıtre de coefficients de transferts issus de résultats expérimentaux.
Navier-Stokes et la thermique résolues, le champ de température est projeté sur
la maillage solide, lequel est réactualisé une fois les transformations de phases et le
déplacement calculés. Le solide est alors réimmergé dans le milieu fluide, et la chaleur
latente transférée à son tour du maillage solide au maillage global. Ce chapitre se
termine par deux simulations de trempe, l’une en 2D l’autre en 3D, mettant en
avant la prise en compte de la chaleur latente, et donnant une comparaison avec la
littérature.
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5.1. INTRODUCTION

5.1 Introduction

All the numerical tools developed and describe in previous chapters will applied
on an industrial scale in this chapter. In other terms, this chapter aims to test the
potential of the full eularian framework for fluid and thermo-elasto-plastic treat-
ment on complex 3D geometries. As a reminder, the industrial application we are
simulating is the quenching process. This work is part of the INFINITY ANR chair
with several industrial partners that provides experimental data on the quenching
process.

As mentioned previously, the aim of this thesis is to achieve a full model to
simulate the fluid and the solid part at the same time. It is important to recall that
prior to this work, stabilized finite elements solvers were developed in the CFL team
that simulates multi-phase flows, and the elasticity. However, the metallurgic and
mechanical parts were still missing, specifically the plastic deformation of the solid.
So the first objective in this work was to add the phase transformation happening
in the steel during the quenching. This is an important physical phenomena as
described before, since the purpose of quenching is controlling the microstructure
and also it affects the cooling process. In addition, steel is the most used metal
in most of the industrial application, with the most complicated microstructure
evolution. The second objective was to simulate the geometrical change in the part.
The non-homogeneous cooling with the metallurgical phases variation at different
points in the solid during quenching, lead to thermal and plastic stresses that could
affect the shape of the solid at the end of the process. In the industrial context, this
is an important part to prevent events as cracking and significant deformation in
the end product. The full model is a coupling between all the physical phenomena
described in the previous chapters. It consists of solving the heat exchange between
the fluid and the solid with the boiling and evaporation effect, and the metallurgical
and mechanical physics in the solid simultaneously.

The importance of this model comes in the control of the process. An accurate
model helps the industrial partner to simulate the process without doing experimen-
tal tests that are costly. Moreover, it is easy to add more details to the model that
helps the quenching process: agitators, stirring devices, etc. Also it give a flexibility
to choose different types of fluids and solids, tanks size, position and orientation of
the solid.

In the next sections, two industrial test cases given from FAURECIA will be
presented. All the setup and the process will be described in the industrial and
numerical contexts. Results will be compared to the experimental results provided
by the industrial partner.
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5.2 Provided data from the industrial

For every simulation, the setting of the problem is given with the needed data:

1. The solid geometry, mainly an .STL file that gives the surface mesh.

2. The size of the tank, and the position of the solid in the tank.

3. The initial solid and fluid conditions (Temperature, stresses, metallurgical
phases)

4. The material properties (density, heat capacity, thermal conductivity, young’s
modulus ...)

5. The Temperature Time Transformation (TTT) diagrams for the phase frac-
tions calculations.

6. Experimental results that serves as a comparison at the end of the simulation.

These data are enough to set the simulation and to validate the model by com-
paring the numerical results to the experimental ones.

5.2.1 Thermal and mechanical properties

For each material used, the thermal and the mechanical properties given are tem-
perature dependant. Since the properties change with temperature, it is important
to update them at each time-step. In addition, since we are taking the phase trans-
formation into consideration, the properties are given for each phase at different
temperature. Using the JMAT PRO software, all the mechanical and thermal mate-
rials can be retrieved by giving the chemical composition of the material used. Table
(5.1) is an example of some of the given material properties for two different phases
(noting that not all the material details can be given for confidentiality reasons).

Given the temperature distribution of the solid, the properties of each phase can
be retrieved at each point of the solid. As a recall, a linear mixture rule is used to
define the properties at each point with respect to phase fractions and temperature:

P (T, ξi) =
N∑
1

PiFi (5.1)

where P is the total thermal or mechanical property, Pi is the thermal or the
mechanical property of the ith phase at the given temperature, and Fi is the volume
fraction of the ith phase.
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Austenite Pearlite
T (oC) ρ

(
kg/m3

)
Cp (J/kg/C) E (GPa) T (oC) ρ

(
kg/m3

)
Cp (J/kg/C) E (GPa)

25 8112.46 452.26 198.93 25 7844.77 450.18 210.45
50 8097.18 460.44 196.72 50 7837.49 460.77 209.39
100 8066.79 474.24 192.27 100 7822.66 480.42 207.11
150 8036.62 485.85 187.79 150 7807.46 499.51 204.44
. . . . . . . . . . . . . . . . . . . . . . . .
1000 7553.22 624.63 106.38 1000 7479.80 714.46 95.90

Table 5.1: Some of the tabulated materials for two different phases.

5.2.2 Metallurgical data

As described in chapter 2, we are using the temperature time transformation
(TTT) diagrams to calculate the phase fractions during the quenching process. Us-
ing the same software (JMAT PRO) the TTT diagrams can be given in a tabulated
form for each percentage of each phase. In general we only need two states of each
phase, the starting state (0.1%) and the ending state (99.9%). The table below is
an example of different phases diagrams.

The ”−1” in the table designate the range where the phase could not transform,
it can be seen in figure (5.1). Tps, Tpf , Tbs, and Tbf are the starting and the final
temperatures for the pearlite and bainite phases respectively. At each time-step, we
can find the starting and ending time of each phase at a given temperature, which is
enough information to calculate the phase fractions. In addition to the table given,
the martensite starting (Ms) and ending (Mf ) temperatures are given.

Figure 5.1: TTT diagrams for the given data in table (5.2).
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Figure 5.2: Solid geometry and mesh.

Pearline Bainite
0.1 % 99.9 % 0.1 % 99.9 %

T (oC) t(s) T (oC) t(s) T (oC) t(s) T (oC) t(s)

450.0 8.471 450.0 0.241 450.0 105.511 450.0 8.427
460.0 7.118 460.0 0.207 460.0 88.656 460.0 7.240
470.0 6.065 470.0 0.180 470.0 75.536 470.0 6.303
480.0 5.239 480.0 0.159 480.0 65.251 480.0 5.564
490.0 4.588 490.0 0.142 490.0 57.146 490.0 4.984
500.0 4.074 500.0 0.129 500.0 50.744 500.0 4.533
. . . . . . . . . . . . . . . . . . . . . . . .
700.0 175.021 700.0 -1 700.0 2179.74 700.0 -1
710.0 2145.85 710.0 -1 710.0 26724.9 710.0 -1
720.0 -1 720.0 -1 720.0 -1 720.0 -1

Table 5.2: TTT diagrams in a tabulated form.

5.3 Quenching of a steel part: Test case 1

The first test case is a steel part that has a denture section as seen in the CAD
representation in figure (5.2).

The part passes through different stages, first the area of the denture is heated,
then it passes through a forging process to get the denture. The piece is then
quenched directly after the forging process. Therefore, the initial conditions of the
quenching process are not evident, the temperature distribution on the piece is not
homogeneous, and the phase fractions as pearlite and martensite are not zero. For

that reason, a forging simulation is done on FORGE® where one can retrieve the
temperature and the phase fractions distribution after the denture is made. In
addition, the final mesh could be also retrieved as seen in figure (5.2). The solid
mesh is then immersed in whole domain which is the quenching tank. The solid is
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Figure 5.3: Initial temperature distribution of the solid

approximately 15 cm long with thickness of 5 mm, and the whole domain has a size
of 0.6× 0.6× 0.3m3.

5.3.1 Simulation Set-up

The part is made of steel and all the properties are given in a tabulated form as
described before. The initial temperature distribution of the solid is given in figure
(5.3), while the water temperature is Tw = 22.5oC with the physical parameters of
the water and the vapor described in table (5.3). The quenching time is 4 seconds and
is divided in an equal time interval of 0.01 seconds. An anisotropic mesh was made
with approximately 6,000,000 elements and 1,000,000 nodes, while the solid mesh is
approximately made of 1,000,000 elements and 200,000 nodes. For this simulation,
the mesh adaptation was not used to reduce the computational cost. Instead, the
mesh is done to have very fine elements near the interface with a gradually coarser
mesh away from the interface as seen in figure (5.4).

In the whole domain, the Navier-Stokes equations coupled with the convection
diffusion reaction equation are solved taking into account the boiling and evaporation
as described in chapter 4. In the solid domain, both phase transformation equations
and the elasto-plasticity one are solved to get the fraction distributions with the
latent heat, and the geometrical change of the solid (chapter 2 and 3).
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Figure 5.4: Immersed solid in the whole domain

µ (Pa.s) ρ (kg/m3) cp (J/kg/C) k (W/m/K)
Water 1.0.10−3 1000 4185 0.6
Vapor 1.2.10−5 1.0 2010 0.025

Table 5.3: Physical parameters of the water and vapor.
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5.3.2 Results and discussions

The liquid/vapor phase evolution can be found in figure (5.5). The temperature
difference between the solid and the water is so high that the vaporization happens
directly at the interface. That can be seen in the first picture of figure (5.5) at 0.5
seconds. When the simulation continues the bubble starts to form and solid surface.

Figure 5.5: Vapor/liquid phase evolution during the boiling at times t= 0.1, 0.5, 0.7, 1,
1.5 and 2 seconds

In addition figure (5.6) show the pearlite, ferrite, and martensite phase fraction
distribution after 2 seconds of quenching.

Figure 5.6: Pearlite, ferrite, and martensite fractions distribution
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This was the first version of this test case, the full piece was simulated with the

mesh extracted from FORGE®. In the next section, a newer version of the piece
will be presented with a comparison with experimental results.

5.4 Quenching of a steel part: Test case 1 prime

In this section, the same piece simulated previously will be presented. The same
initial conditions and properties still applies for this test case. However, this time

a different mesh will be used. Since retrieving the mesh directly from FORGE®
causes some problems in the mesh (overlapping surfaces, not a smooth mesh on
the sharp edged...) that leads to a high computational cost, a cleaner one will be
used. Figure (5.7) shows the difference between the previous and the current mesh.
In addition, to reduce more the computational cost, and by the help of the piece
symmetry, half of the piece will be simulated. The mesh in figure (5.8) is done
using the same procedure as before. The mesh consists of approximately 4,000,000
elements and 400,000 nodes for the fluid-solid domain, and 90,000 elements and
20,000 nodes.

Figure 5.7: Difference between the previous mesh and the clean mesh.
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Figure 5.8: Solid geometry and mesh immersed in the whole domain.

5.4.1 Results and discussions

Figure (5.9) shows the temperature evolution in the teeth of the part with and
without phase transformation. It is clear that with phase transformation, the cool-
ing rate changes at some point because of the latent heat. Moreover, the simulations
seem different from the experimental that is because of the difference in the assump-
tions made. In fact, the reference is a reverse engineering process, where the heat
transfer coefficient is retrieved from the experimental results and then used to sim-
ulate the cooling process. While the simulation done in this work is direct boiling
simulation which gives different results in the cooling process, but the same steady-
state temperature. In addition, the real application comes with agitating the piece
during quenching, while the simulation is made with static state of the piece. Figure
(5.10) shows the martensite fraction in one of the teeth. Most of the micostructure is
composed of martensite, which give good hardness in the teeth. Figure (5.11) shows
the boiling process in the thermo-hydrodynamic framework during the quenching
process. Finally, figure (5.12) shows the deformation of the piece at the end of the
process. The deformation is so small that it can not be seen, for that reason a
magnification of 1000 to visualize the deformation.

144



5.4. QUENCHING OF A STEEL PART: TEST CASE 1 PRIME

Figure 5.9: Temperature vs time in the teeth of the part.

Figure 5.10: Martensite distribution in the teeth of the part.
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Figure 5.11: Boiling in the thermo-hydrodynamics framework.

Figure 5.12: Deformation of the part after quenching. The right figure is a magnification
of the deformation by 1000.

5.5 Conclusion

To conclude, the full framework of the quenching process was tested on more
complicated cases at an industrial level. The simulations shows good results with
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big meshes and complex shapes. Although the results showed a little difference with
the simulation, but this is only because some assumptions are still be made as the
agitation of the piece which it has a major effect on the piece. However, we can say
that at this stage the model is ready to be used on industrial cases to simulate real
life applications.
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5.6 Résumé en français

Le dernier chapitre de ce manuscrit présente une application industrielle fournie par
la société Faurecia. La simulation de la trempe est précédée d’une simulation du
forgeage de la pièce effectuée avec le logiciel Forge et permettant de fournir le champ
de température et les fractions de phase (perlite et martensite) en fin de forgeage
et donc en début de trempe. Cette simulation est présentée dans deux versions,
l’une où le maillage découlant de l’étape de forgeage est utilisé tel quel, l’autre util-
isant un maillage ”lissé” et prenant en compte certaine symétries géométriques. Les
résultats montrent l’évolution des phases liquide et vapeur, les distributions obtenues
en perlite, ferrite et martensite, la pièce déformée, ou encore une comparaison avec
l’expérience de l’évolution de température.
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6.1 Conclusions

In this thesis a complete framework for the quenching process was presented.
All the physical phenomena happening in is process were presented throughout the
chapters with numerical methods and physical modeling. The main focus in this
work was on the physics happening in the solid and the coupling with the fluid
behavior.

It was shown that in the literature many researcher has worked on this process.
Their work was either on the fluid or on the solid alone, while some of the works
included the coupling between the solid and the fluid but with some assumptions.
In this work, we used finite elements models already developed in the research team
with the addition of more models to have a complete framework. The focus of the
team was on the fluid part of the process, for that reason this thesis was dedicated
for the solid behavior.

We have seen that the physical phenomena happening in the solid affect each
other, and they are affected by the fluid behavior. The boiling and evaporation
define the cooling process of the solid, thus the metallurgical change in the solid is
affected. Both the temperature and the metallurgical change in the solid affects the
stresses and the deformation of the solid. Throughout the chapters, each physical
phenomena is presented and modeled, with 2D and 3D test cases for validation.

In chapter 2, the phase transformation in steel is presented, with all its physical
background. A finite element numerical model was developed in the software of this
research team to simulate the creation of every phase during the quenching process.
It was shows that this process affects the cooling rate of the solid and it is important
to include it the framework. This model was tested and validated by test cases, and
it was the first contribution of the thesis.

In chapter 3, the mechanical response of the solid was modeled. This process was
shown to be affected by the temperature change and the phase transformation. The
changes in the temperature leads to thermal expansion or shrinking, in addition
to plastic deformation due to low plastic limits because of the high temperature.
The phase transformation creates some discontinuity between two different phases
which also leads to deformation and stresses. First we presented the elastic solver
already developed in this team, where it model the basics of all deformations in the
solid. The contribution of this thesis was to add the thermal, plastic, and phase
transformation parts of the deformation. The plastic deformation includes highly
non-linear resolution of equation that were presented in a return mapping algorithm.
All these contribution were tested in benchmark test cases to validate the model.
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At this stage, all the physics happening in the solid were modeled and coupled
as seen in figure (1.3). In chapter 4 the fluid part is presented with a phase change
model. In the research team, a high fidelity phase change model was developed
that simulated the boiling and evaporation process. This model has shown very
good results in many applications. In addition, many other powerful tools exists
in the software as the level-set approach, anisotropic mesh adaptation, and a VMS
stabilized Navier-Stokes model that was used to have a rigorous model. In this
thesis, all these models were used and coupled with the solid behavior with a new
framework. This is the third thesis contribution, a novel hybrid fluid-structure
interaction framework that works simultaneously on both the solid and the fluid-
solid domains. This method shown faster resolution since all of the physics are
solved in only one software. Furthermore, it helped manipulate each domain alone:
different time-steps, different mesh ...

After each part was tested and validated, and the whole model was working on
benchmark test cases, it was interesting to test this model on industrial applications.
This project is in the scope of the INFINITY chair that groups many industrial
partners. In chapter 5, several quenching process done in FAURECIA were tested
with this model and has shown good results compared to the experimental ones
provided by the industrial. It confirms the rigorousness of the model and its ability
to tackle large scale problems with complex shapes.

6.2 Perspectives

Although this model shown good results especially on industrial and complex
applications, some of modifications and enhancement could be done to have a better
model. The aim is to create an industrial software with a friendly user interface for
an easier use of the model. Some challenges still exist to improve this work.

First, concerning the solid resolution, the phase transformation model is only
limited to steel applications, it could be extended to deal with other types of alloys.
Moreover, the plasticity added in this model is a first version and could be enhanced.
For instance, the non-linearity existing in the plasticity resolution can be model
differently to give better and faster results.

Second, some of the quenching setting were not taken into account, for example:
agitation, solid motion, fluid alimentation. These features also help to be more close
to the reality.

151



6.2. PERSPECTIVES

Third, the computational time can still be large for very big test cases since
some of the applications involves very complex shapes and long quenching time as
30 hours. The new thermo-hydrodynamic framework presented in chapter 4 was a
major enhancement on the computational time, however a faster solver could still
be done. One of the of the enhancement that could be done is to couple this model
with the artificial intelligence (AI) technology. AI has been interfering with finite
elements simulations lately to guide the model to have more precise solutions in
faster calculation times.

Finally, also with the help of AI specifically deep reinforced learning, some of the
process settings can be defined. For example the piece orientation, the initial tem-
peratures, the agitation rates, etc. could be optimized using the deep reinforcement
technique. This way we can have a better quality in the resulting quenched solid.
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6.3 Résumé en français

Ce chapitre conclusive résume chaque chapitre seul avec les contrubutions ajoutées.
Dans le premier chapitre, la physique de la transformation de phase dans les aciers
est introduite, et implémenté numériquement avec des cas tests de validation. Le
deuxième chapitre porte la physique de changement de forme de la pièce à cause des
déformations elastique, plastique, thermique, et de transformation de phase. En fait
la partie elastique existait dans l’équipe bien que les autre types de déformations ont
été ajoutés et testés pas des cas tests 2D et 3D. Finalement les deux dernier chapitres
decrivent le framework globale de la trempe industrielle numerique en prenant en
compte toutes les physiques existant. Ce framework est appliqué sur des géométries
simples et compliqué au niveau industriel. En addition, quelques perspectives ont
été proposés pour avoir un modèle plus général et compatible avec des problèmes
non linéaires. En plus, ce modèle peu être couplé avec l’intelligence artificielle pour
avoir des solutions plus rapides et précises.
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MOTS CLÉS

Couplage fluide-structure, Ebullution et évaporation, Transformation de phase, Elasticité, Plasticité, Con-
traintes thermo-élasto-plastique.

RÉSUMÉ

La trempe est un processus de refroidissement très important adopté de nos jours par la plupart des industries, en
particulier les industries automobile, aérospatiale et nucléaire. L’importance de ce procédé vient de sa capacité à contrôler
la microstructure, à avoir de meilleures propriétés thermiques comme la dureté et la limite d’élasticité, et à relâcher les
contraintes résiduelles. Néanmoins, il s’agit d’un processus très complexe puisqu’il comprend plusieurs phénomènes
physiques à la fois sur le fluide et sur le solide. Au niveau du liquide, du fait du contact direct avec une surface chaude, le
liquide va s’évaporer et atteindre le point d’ébullition. Au niveau du solide, il existe des contraintes, des déformations qui
modifient la forme de la pièce et des transformations de phase qui génèrent de la chaleur latente. Un modèle d’ébullition
d’évaporation est été utilisé pour simuler ce qui se passe dans l’environnement du solide. L’importance de ce modèle
vient de sa capacité à donner une description réelle du transfert de chaleur qui se produit entre le solide et le fluide.
Le changement de température dans le solide affectera à la fois la transformation de phase et la réponse mécanique
de la pièce. Dans ce projet, un modèle hybride est développé pour résoudre à la fois l’ébullition et l’évaporation, les
paramètres de transformation de phase et la réponse mécanique. Dans un domaine Fluide-Solide, Navier-Stokes couplé
avec l’équation de la chaleur est résolu pour donner une distribution de température dans le solide. Dans un domaine
Solide uniquement, les paramètres de transformation de phase ainsi que les contraintes et les déformations, à l’aide d’un
solveur thermo-élasto-plastique, sont calculés en fonction de la distribution de température transportée depuis le domaine
Fluide-Solide. La nouveauté de ce modèle est sa capacité à travailler sur deux domaines différents simultanément, et
à donner une meilleure résolution sur chaque domaine, en plus de sa complétude pour simuler toute la physique se
produisant dans le processus de trempe.

ABSTRACT

Quenching is a very important cooling process adopted nowadays by most of the industries, in particular automotive,
aerospace and nuclear industries. The importance of this process comes from its ability to control the microstructure,
to have better thermal properties as hardness and yield strength, and to release residual stresses. Nevertheless, it is a
very complex process since it includes several physical phenomena on both the fluid (quenchant) and the solid. On the
fluid level, because of the direct contact with a hot surface, the fluid will evaporate and reach the boiling point. On the
solid level it exists stresses, deformations that changes the piece shape, and phase transformation which will generate
latent heat. A boiling and evaporation was used to simulate what is happening in the surrounding of the solid. The
importance of this model comes with its ability to give a real description of the heat transfer happening between the
solid and the fluid. The temperature change in the solid will affect both the phase transformation and the mechanical
response of the piece. In this project, a hybrid model is developed to solve the boiling and evaporation, at the same time
phase transformation parameters and the mechanical response. In a Fluid-Solid domain, Navier-Stokes coupled with the
heat equation is solved to give a temperature distribution in the solid. In a Solid domain only, the phase transformation
parameters along with the stresses and deformations, using a thermo-elasto-plastic solver, are calculated based on the
temperature distribution transported from the Fluid-Solid domain. The novelty of this model is its ability to work on two
different domains simultaneously, and to give a better resolution on each domain, in addition to its completeness to
simulate all the physics happening in the quenching process.

KEYWORDS

Fluid-structure interaction, Boiling and evaporation, Phase transformation, Elasticity, Plasticity, Thermo-
elasto-plastic stresses.
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