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Le contrôle de l’écoulement est la capacité d’adapter un écoulement à un état
différent, plus souhaité, servant un avantage technique idéalement important, comme
la réduction de la trâınée, l’augmentation de la portance, l’amélioration du mélange
ou la réduction du bruit. Il s’agit à la fois d’un domaine d’une importance sociétale
et économique considérable et d’une technologie de pointe pour les avancées en
mécanique des fluides, car la disponibilité de stratégies de contrôle pertinentes pour
les ingénieurs de conception et de production représente un avantage concurrentiel
décisif, qui peut avoir un impact considérable sur d’autres applications, voire sur
plusieurs disciplines scientifiques. Le contrôle de l’écoulement est souvent évalué
dans le contexte de la réduction de la trâınée des corps flottants, pour laquelle de
nombreuses approches ont été mises en œuvre [1], qui utilisent soit des appendices
passifs, soit des dispositifs actifs [2]. La commande d’actionnement peut être pré-
déterminée (contrôle en boucle ouverte) ou reposer sur une détection appropriée
de l’état du flux (contrôle en boucle fermée). Dans le contexte des applications
industrielles réelles, les stratégies de contrôle ont longtemps été (et le sont encore
souvent) déterminées par essais et erreurs à l’aide de campagnes expérimentales ou
numériques longues et coûteuses. Cela a motivé le développement de formalismes
mathématiques rigoureux capables de fournir une conception optimale à des coûts
réduits, qui sont généralement classés comme basés sur le gradient et sans gradi-
ent, selon que la méthode requiert des informations sur le gradient, en plus des
évaluations de fonction, pour déterminer les directions de recherche adéquates pour
de meilleures conceptions pendant les itérations d’optimisation. Les méthodes basées
sur le gradient et celles sans gradient peuvent bénéficier de modèles de substitution
peu coûteux à évaluer pour évaluer les fonctions d’objectif et de contrainte coûteuses
en calcul sans recourir systématiquement aux simulations numériques. Plusieurs ap-
proches existent pour construire de tels modèles de substitution, comme les surfaces
de réponse, les méthodes bayésiennes et les réseaux de neurones artificiels.

Malgré les efforts considérables déployés dans la théorie du contrôle de l’écoulement,
les approches ci-dessus se heurtent à des difficultés considérables lorsqu’elles tentent
de concevoir des stratégies complexes, et la plupart des études se contentent tra-
ditionnellement d’une entrée harmonique ou constante simpliste (et probablement
sous-optimale) [3]. Par conséquent, il reste nécessaire de développer des méthodes
de contrôle efficaces capables d’effectuer un contrôle complexe et de tirer pleinement
parti des possibilités d’actionnement. Une option prometteuse pour ce faire consiste
à s’appuyer sur les méthodes d’apprentissage automatique, et plus particulièrement
sur les réseaux neuronaux profonds (DNN), une famille d’outils paramétriques poly-
valents capables d’apprendre à extraire hiérarchiquement des caractéristiques infor-
matives à partir de données. Les réseaux de neurones ont atteint des niveaux de per-
formance étonnants dans divers domaines, comme la classification d’images [4], la re-
connaissance vocale [5] ou les tâches génératives [6]. L’accès généralisé aux ressources
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de calcul des GPU grâce à du matériel moins cher ou à l’informatique en nuage a per-
mis de réaliser des progrès considérables dans le domaine des techniques de prise de
décision, grâce au couplage des DNN avec des algorithmes d’apprentissage par ren-
forcement (appelé apprentissage par renforcement profond, ou DRL). Ces avancées
ont permis de lever plusieurs obstacles majeurs qui freinaient l’apprentissage par
renforcement classique, en permettant l’utilisation d’espaces d’états de haute di-
mension et en exploitant les capacités d’extraction de caractéristiques des DNN.
En retour, une efficacité sans précédent a été atteinte dans de nombreux domaines
tels que la robotique [7], le traitement du langage [8], les jeux [9], bien que le DRL
se soit également révélé utile dans des applications industrielles, par exemple les
voitures autonomes [10] ou le refroidissement des centres de données [11]. Il existe
également un grand potentiel d’application de DRL à la mécanique des fluides, pour
laquelle les efforts sont en cours mais encore à un stade précoce, avec une poignée
d’études pionnières donnant un aperçu des améliorations de performance à fournir
dans le domaine. L’engagement soutenu de la communauté de l’apprentissage au-
tomatique a permis d’élargir le champ d’application, depuis les réductions de faible
dimension, peu coûteuses en calcul, de la dynamique des fluides sous-jacente [12–
14] jusqu’aux systèmes complexes de Navier-Stokes, en passant par les montages
expérimentaux [15]. Néanmoins, seule une gamme limitée d’applications a été con-
sidérée jusqu’à présent (qui comprend, par ordre chronologique, les nageurs, la
réduction de la trâınée et l’optimisation de la forme) tandis que d’autres ont reçu
une attention marginale (microfluidique [16], transfert de chaleur par convection li-
bre [17]) ou ont été essentiellement laissées de côté (écoulements multiphasiques ou
interactions fluide-structure).

Le premier objectif de cette thèse est d’approfondir les capacités du Deep Re-
inforcement Learning (DRL) pour le contrôle en boucle fermée dans un contexte
de CFD. Les études mentionnées ci-dessus montrent le fort potentiel de cette ap-
proche sur des problèmes classiques, notamment les problèmes de réduction de la
trâınée à faible nombre de Reynolds. Néanmoins, des efforts considérables sont
nécessaires pour (i) consolider les connaissances acquises, (ii) réduire l’écart entre le
DRL et les méthodes numériques avancées pour la dynamique des fluides numérique
(CFD) multi-échelle et multi-physique, et (iii) répondre aux attentes inévitablement
soulevées par la nécessité de s’attaquer aux problèmes à l’échelle industrielle. Deux
ingrédients clés sont nécessaires pour atteindre cet objectif : un algorithme de DRL
efficace pour l’apprentissage, et un solveur CFD évolutif pour calculer avec précision
les solutions numériques coûteuses en temps de calcul à partir desquelles on peut
extraire la récompense fournie à l’agent DRL. Nous cherchons ici à coupler Proximal
policy optimization (PPO [18]) et CimLib-CFD dans un contexte de calcul haute
performance. Le premier est un nouveau venu qui s’est rapidement imposé comme
l’un des algorithmes de DRL les plus utilisés pour les problèmes de contrôle de flux,
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en raison de l’efficacité de ses données, de sa simplicité d’implémentation et de ses
performances fiables. Le second est une bibliothèque d’éléments finis C++ massive-
ment parallèle et multiphysique développée par l’équipe CFL au centre de recherche
CEMEF. L’espoir est que cela permettra de s’attaquer à des problèmes en suspens
dans divers domaines, par exemple, l’optimisation des coefficients aérodynamiques
stationnaires et instationnaires, la charge des structures, le contrôle des processus
thermiques industriels, le mélange optimal des écoulements multiphasiques, et bien
d’autres.

Un deuxième objectif découle de l’observation que, bien que les réseaux de neu-
rones soient utilisés depuis longtemps dans les problèmes d’optimisation (où la poli-
tique à apprendre est indépendante de l’état, et où une simple entrée de contrôle
harmonique ou constante est effectivement pertinente), ils sont le plus souvent ex-
ploités comme des substituts entrâınés pour la fonction objective réelle [19], mais ont
longtemps été laissés en dehors du processus d’optimisation central, à l’exception
d’une poignée d’études [20, 21]. Une prémisse de cette thèse est que les algorithmes
DRL peuvent également être utilisés comme optimiseurs efficaces en bôıte noire
pour de telles situations également pertinentes pour les problèmes de contrôle de
flux en boucle ouverte. Pour ce faire, il faut modifier un algorithme classique pour
que le réseau neuronal apprenne une correspondance simple entre un état d’entrée
constant et une action optimale en n’interagissant qu’une seule fois par épisode avec
son environnement (d’où les épisodes à une seule étape, et par extension, le DRL à
une seule étape, contrairement au DRL classique dans lequel la récompense évalue,
non pas une seule, mais une série d’actions prises au cours du même épisode, d’où
le surnom de multi-étapes). Nous mesurons ici la capacité du DRL à une seule
étape à optimiser de manière fiable les systèmes de flux complexes, cette approche
a été considérée comme ayant un fort potentiel, mais reste à être analysée en pro-
fondeur (nous n’avons pas connaissance d’autres travaux appliquant le DRL de cette
manière, bien qu’un concept similaire de ”DRL sans état” ait été ébauché dans [22] à
des fins de validation, mais n’a pas été poursuivi). Nous verrons qu’essentiellement,
les méthodes DRL à une étape héritent des algorithmes de gradient de politique
profonde dans le sens où les paramètres pertinents de la fonction de densité de
probabilité sont obtenus à partir de réseaux neuronaux entrâınés en utilisant une
perte de type gradient de politique. Pourtant, elles sont également héritières des
stratégies évolutionnaires (ES), car leurs étapes successives suivent une nomencla-
ture génération/individu, exploitant les informations des générations précédentes
afin de mettre à jour les paramètres d’une fonction de densité de probabilité.

Cette thèse est divisée en 8 chapitres, y compris la présente introduction. Le
chapitre 2 passe en revue les principaux algorithmes de DRL qui ont été utilisés
dans le contexte de la mécanique des fluides, et introduit le concept de DRL à étape
unique développé au cours de ce travail. Le chapitre 3 décrit les méthodes CFD
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utilisées pour calculer la récompense numérique fournie à l’agent de DRL. Cela com-
prend les formulations d’éléments finis stabilisés par VMS utilisées pour résoudre
les équations de Navier-Stokes et de Navier-Stokes moyennées de Reynolds, et la
méthode des volumes immergés couplée à l’adaptation du maillage de la couche lim-
ite anisotrope, utilisée pour résoudre avec précision un ensemble unique d’équations
relatives aux phases solide et fluide sur un domaine de calcul unique. Le chapitre 4
évalue la pertinence de l’approche de DRL à une seule étape en tant qu’optimiseur en
bôıte noire pour les problèmes de contrôle en boucle ouverte régis par les équations
de Navier–Stokes. Plusieurs cas laminaires et turbulents sont utilisés comme banc
d’essai pour la mise en œuvre et la validation de l’approche, avec un accent par-
ticulier sur la réduction de la trâınée. Le chapitre 5 se concentre sur le contrôle
des systèmes de transfert de chaleur conjugués régis par les équations couplées de
Navier–Stokes et de la chaleur, et présente la toute première tentative d’utilisation
de la DRL pour contrôler la convection forcée en deux et trois dimensions. Le
chapitre 6 étend le champ d’application de DRL à une étape à l’optimisation de
forme par l’optimisation directe des paramètres de forme indépendants de l’état. Le
chapitre 7 évalue la capacité de DRL multi-étapes pour la réduction active de la
trâınée et le contrôle thermique. Enfin, le chapitre conclusion fournit la conclusion
et discute l’extension possible du présent travail à des problmèmes de physique plus
complexe.



6 1.1. Flow control

1.1 Flow control

Flow control is the ability to tailor a flow into a different, more desired state serv-
ing an ideally large engineering benefit, like drag reduction, lift increase, mixing
enhancement or noise reduction. It is at once a field of tremendous societal and
economical importance, and a pacing technology for advances in fluid mechanics,
as the availability of relevant control strategies for design and production engineers
represents a decisive competitive advantage, that can greatly impact other applica-
tions or even several scientific disciplines. For instance, reducing drag by just a few
percent while maintaining lift can help reducing fossil fuel consumption and CO2
emission while saving several billion dollars annually in applications such as ocean
shipping (figure 1.1) or airline traffic [23], while thermal control using heat/cool
exchangers is key to regulate process temperatures, which in turn ensures that ma-
chinery, chemicals, water, gas, and other substances remain within safe operating
conditions, or to regulate aircraft cabin temperature and humidity under substantial
variations of the ambient conditions, which is mandatory to provide a high level of
comfort for passengers.

Flow control is often benchmarked in the context of bluff body drag reduction,
for which numerous approaches have been implemented [1], that use either passive
appendices or active devices [2]. Passive appendices are steady and require no energy
by definition, typical examples being the rods, end/splitter plates or flexible tails
placed on the rear surface or downstream of a cylinder, or the roughness elements
placed on a line parallel to the leading edge of a flat plate (figure 1.2). Active devices
requires actuators that may be driven in a time-dependent manner and require
energy, for instance sweeping jets and plasma actuators (figure 1.3). The actuation
command may be pre-determined (open-loop control) or rely on appropriate sensing
of the flow state (closed-loop control).

(a) (b)

Figure 1.1: Candidate systems for flow control and optimization. (a) ocean shipping [24]
and (b) wind turbine blade design [25].
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(a) (b)

Figure 1.2: Passive control: smoke visualization of the turbulent flow past a square cylin-
der, (a) without and (b) with a small, upstream, passive rod (in red). Adapted
from [26].

(a) (b)

Figure 1.3: Active, open-loop control: particle-image-velocimetry images of the turbulent
flow past a circular cylinder with plasma actuators (a) off and (b) on, on the
lee side of the cylinder. Adapted from [27].

1.2 Systematical approaches for flow control

In the context of real-world, industrial applications, control strategies have long
been (and often still are) determined by trial and error using extensive, costly ex-
perimental or numerical campaigns. This has motivated the development of rigorous
mathematical formalisms capable of delivering optimal design at reduced costs, that
are generally classified as gradient-based and gradient-free, depending on whether
the method requires gradient information, in addition to function evaluations, to
determine adequate search directions for better designs during optimization iter-
ations. Both gradient-based and gradient-free methods can benefit from cheap-
to-evaluate surrogate models to evaluate computationally expensive objective and
constraint functions without resorting systematically to numerical simulations [28].
Several approaches exist for building such surrogate models, such as response sur-
faces, Bayesian methods, and artificial neural networks.

Apart from being prone to being trapped in local optimal (hence a possibly high
sensitivity to the initial guess), gradient methods are effective in large optimization
spaces, especially when the gradient is computed by the adjoint method. The lat-
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ter has progressively gained prominence in a number of applications ranging from
atmospheric sciences [29] to shape optimization [30], to flow control [31], and comes
in two forms, namely continuous and discrete. In the continuous approach, control
theory is applied to the continuous form of the linearized governing partial differen-
tial equations (PDEs), which yields analytical PDEs for the adjoint variable, to be
discretized and solved. In the discrete approach, the control theory is applied to the
discrete form of the governing equations, which yields a linear system of equations
for solving the discretized adjoint variable. The main advantage of the continuous
adjoint method is that it provides a continuous analytical equation that does not
depend on the solver for the forward equation, can be solved separately, and gives
insight into the physical interpretation to be given to the adjoint numerical solu-
tions. The main disadvantage is that such adjoint equations must be deriving and
implementing manually on a case by case basis, which is time consuming and error
prone in the absence of suitable benchmark test cases. Also, difficulties have been
reported when the observed in situations where adjoint equation features sharp dis-
continuities in the source terms [32]. The discrete approach is conceptually simpler,
as a discrete adjoint operator for the Euclidian inner product is the transpose of the
matrix form of the associated linear operator. Nonetheless, the difficulty to perform
exact linearization of the underlying sophisticated numerical schemes and turbulence
models often leads to approximations or simplifications (such as the neglect of the
differentiation of artificial dissipation or the assumption of constant eddy-viscosity
in turbulent flows) that can lead to inaccurate discrete gradient of the objective func-
tion, and may in turn affect the optimization process [33]. A possibility to address
such implementation issues is to use automatic differentiation [34] to calculate all
required derivatives in an automatic manner, but this requires to provide the source
code of the original flow solver, and can yield a high computational complexity.

Gradient-free methods usually increases the likelihood of finding a global op-
timum, and does not require continuity over the design space, but can be more
complex to implement and to use than gradient-based methods. Popular gradient-
free techniques include genetic algorithms [35], a population-based optimisation
technique implementing an evolutionary loop in which each iteration corresponds
to a generation, selected upon principles derived from genetics and natural evolu-
tion mechanisms (crossing, mutation, selection), and particle swarm optimization,
a bio-inspired algorithm mimicking the movement of organisms in a bird flock or
fish school, in which a population (called a swarm) of candidate solutions (called
particles) moves around in the search-space from its own knowledge of the best-
known position, as well as the entire swarm’s best-known position (in a way such
that when improved positions are being discovered, they will then come to guide
the movements of the swarm). These methods are generally considered powerful,
general-purpose optimizers, capable of easily handling different types of variables
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and functions with no adaptation necessary [36]. Moreover, they are less sensitive
than gradient methods to the numerical noise that may be present in the compu-
tations, and high-fidelity CFD codes can be used without any modifications. The
main drawbacks associated with these algorithms are the high computational cost,
the poor ability to handle geometrical and/or operational constraints, the require-
ment for problem specific tuning and the limited number of design parameters that
can be tackled simultaneously [32].

1.3 The emergence of Deep Reinforcement learning

Despite the considerable efforts put into the theory of flow control, the above ap-
proaches face considerable difficulties when attempting to design complex strategies,
and most studies traditionally settle for simplistic (and probably suboptimal) har-
monic or constant input [3]. Therefore, there remains a need to develop efficient
control methods capable of perform complex control and to take full advantage of
actuation possibilities. A promising option for doing so is to rely on machine learn-
ing methods, and more specifically deep neural network (DNN), a family of versatile
parametric tools that can learn how to hierarchically extract informative features
from data. Neural networks have reached astonishing performance levels in vari-
ous domaines, such as image classification [4], speech recognition [5] or generative
tasks [6]. With generalized access to GPU computational resources through cheaper
hardware or cloud computing, this has yielded considerable progress in the domain
of decision-making techniques, by the coupling of DNNs with reinforcement learning
algorithms (called deep reinforcement learning, or DRL). These advances have lifted
several major obstacles that had so far hindered classical reinforcement learning, by
allowing the use of high-dimensional state spaces and exploiting the feature extrac-
tion capabilities of DNNs. In return, unprecedented efficiency has been achieved in
many domains such as robotics [7], language processing [8], games [9], although DRL
has also proven useful in industrial applications, for instance autonomous cars [10]
or data center cooling [11].

There is also great potential for applying DRL to fluid mechanics, for which
efforts are ongoing but still at an early stage, with a handful of pioneering studies
providing insight into the performance improvements to be delivered in the field.
Sustained commitment from the machine learning community has allowed expand-
ing the scope from computationally inexpensive, low-dimensional reductions of the
underlying fluid dynamics [12–14] to complex Navier–Stokes systems, all the way
to experimental set-ups [15]. Nonetheless, only a limited range of applications has
been considered so far (that includes, by chronological order, swimmers, drag reduc-
tion, and shape optimization) while others have either received marginal attention
(microfluidics [16], free convection heat transfert [17]) or been essentially left aside
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(a)

(b)

Figure 1.4: Vorticity contours for two self-propelled swimmers arranged in a leader-
follower configuration. (a) DRL-based smart-follower. (b) Uncontrolled fol-
lower (below). Adapted from [37].

(multiphase flows or fluid-structure interactions).

The control of swimmers (figure 1.4) has been a pioneering field for applying deep
reinforcement learning to fluid mechanics problems, with a couple of early publica-
tions seeking to optimize the kinematics of two self-propelled swimmers arranged
in a leader-follower configuration from 2-D and 3-D simulations of viscous incom-
pressible flows [37, 38]. Namely, the first fish (leader) swims a steady gait, while
the second fish (follower) using DRL to adapt its behavior dynamically to account
for the effects of the wake encountered. A simple reward that increasingly penalizes
the follower when it strays too far away from the leader path allows identifying an
optimal arrangement yielding up to about 30% reduction in energy expenditure for
the follower, provided it keep its position in the center of the leader’s wake, and
synchronizes its head with the vortices shed by the leader.

Since then, drag reduction has been by far the class of problems that has re-
ceived the most attention. Ten or so different papers have considered prototypal,
two-dimensional (2-D) incompressible flows past span-wise infinite cylinders, which
is mostly because the open-source diffusion of the seminal work from Rabault [39]
shown in figure 1.5 has been re-used in several follow-up works. Various control
strategies have been implemented, including zero-mass-flow-rate jets [40, 41], rotat-
ing cylinders [42, 43] or plasma actuators [44], with reported reductions by up to
20-30%. Since performing a relevant network update requires evaluating a sufficient
number of actions drawn from the current policy (which in turn requires computing
the same amount of rewards from ressource expensive numerical simulations), most
DRL agents learn at a faster pace by interacting simultaneously with multiple en-
vironments. This has become customary for DRL-based control of CFD problems,
after Rabault and Kuhnle [40] have teased an almost perfect speedup up to 20 par-
allel environments, and a decent performance improvement up to 60. Regarding
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(a)

(b)

Figure 1.5: Snapshots of the velocity magnitude (a) without and (b) with DRL-based active
flow control occurring via actuation zero-mass-flow-rate jets on the lee side of
the cylinder. Reproduced from [39].

the flow regimes, almost all contributions assume laminar conditions with Reynolds
numbers in a range of a few hundred. A weakly turbulent case at an intermediate
Reynolds number Re = 1000 is explicitly targeted in [45], but makes it harder to
achieve successful drag reduction, as evidenced by the increased number of episodes
needed to learn an efficient policy.

Shape optimization is another field inherently associated with flow control, that
can seem as a natural domain application for the DRL techniques covered above.
Nonetheless, it is worth noticing that shape optimization generally consists in deter-
mining a fixed shape meeting a set of required criteria (e.g. high lift-to-drag ratio,
low pressure loss). This is not per se the original purpose of DRL, that aims at
identifying optimal state-to-action relations (by means of a neural network) and is
thus best suited to dynamically manipulate a deformable shape. In return, all ded-
icated studies in the literature rely on incremental shape transformations, meaning
that an initial shape is incrementally modified into an optimal one [21, 46, 47].

1.4 Objectives of the thesis

The thesis is part of the MINDS project (Mines Initiative for Numeric and Data Sci-
ence), that federates 15 research centers from the Carnot M.I.N.E.S. Institute, and
is interested in the convergence of high performance computing and data science. It
thus aims at developing a joint digital research and development platform bringing
together advances in both fields. The long-term ambition is to revisit the current
design of control strategies for computationally-expensive flow problems representa-
tive of industrial applications (high Reynolds numbers, complex geometries, multiple
phases and/or non-Newtonian fluids), which requires flexible tools that can be easily
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integrated in a tuning-free, ready-to-use, near-real time optimization procedure.

The first objective is to further shape the capabilities of Deep Reinforcement
Learning (DRL) for closed-loop control in a CFD context. The aforementioned
studies tout the high potential of this approach on textbook problems, prominently
low Reynolds number drag reduction problems. Nonetheless, considerable efforts
are needed to (i) consolidate the acquired knowledge, (ii) bridge the gap between
DRL and advanced numerical methods for multiscale, multiphysics computational
fluid dynamics (CFD), and (iii) meet the expectations inevitably raised by the need
to tackle industrial scale problems. Two key ingredients are mandatory for this
purpose: an efficient DRL algorithm for learning, and a scalable CFD solver to
accurately predict the computationally expensive numerical solutions from which
to extract the reward fed to the DRL agent. We aim here at coupling Proximal
policy optimization (PPO [18]) and CimLib-CFD in a high-performance computing
context. The former is a relative newcomer that has quickly gained momentum as
one of the go-to DRL algorithms for flow control problems due to its data efficiency,
simplicity of implementation and reliable performances. The latter is a massively
parallel, multiphysics C++ finite element library developed by the CFL team at the
CEMEF research center. The expectation is that this will allow tackling pending
problems in various scopes, e.g., optimization of steady and unsteady aerodynam-
ics coefficients, load of structures, control of industrial thermic processes, optimal
mixing of multiphase flows, and many others.

A second objective stems from the observation that, while neural networks have
long been used in optimization problems (where the policy to be learnt is indepen-
dent on state, and simple harmonic or constant control input is indeed relevant),
they are most often exploited as trained surrogates for the actual objective func-
tion [19], but have long been mostly left out of the central optimization process,
with the exception of a handful of studies [20, 21]. A premise of this thesis is that
DRL algorithms can also be used as efficient black-box optimizers for such situations
also relevant to open-loop flow control problems. This requires tweaking a classical
algorithm for the neural network to learn a simple mapping from a constant input
state to an optimal action by interacting only once per episode with its environ-
ment (hence, single-step episodes, and by extension, single-step DRL, in contrast
with classical DRL in which the reward evaluates, not a single, but a series of ac-
tions taken over the course of the same episode, hence the multi-step moniker). We
gauge here the ability of single-step DRL to reliably optimize complex flow systems,
that such approach has been speculated to hold a high potential, but remains to
be analyzed in full depth (we are not aware of any other work applying DRL this
way, although a similar concept of “stateless DRL” has been early sketched in [22]
for validation purpose, but has not been further pursued). We shall see that in
essence, single-step DRL methods inherit from deep policy gradient algorithms in
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the sense that relevant probability density function parameters are obtained from
neural networks trained using a policy gradient-like loss. Yet, they also fall heir of
evolutionary strategies (ES), as their successive steps follow a generation/individual
nomenclature, exploiting informations from previous generations in order to update
the parameters of a probability density function.

1.5 Layout of the thesis

This thesis is divided into 8 chapters, including the present introduction. Chapter 2
reviews the main DRL algorithms that have been used in the context of fluid me-
chanics, and introduces the concept of single-step DRL developed over the course
of this work. Chapter 3 describes the CFD methods used to compute the numerical
reward fed to the the DRL agent. This includes the VMS-stabilized finite element
formulations used to solve the Navier–Stokes and Reynolds–averaged Navier–Stokes
equations, and the immersed volume method coupled to anisotropic boundary layer
mesh adaptation, used to solve accurately a single set equations pertaining to both
solid and fluid phases on a unique computational domain. Chapter 4 assesses rele-
vance of the single-step DRL approach as a black box optimizer for open-loop control
problems governed by the Navier–Stokes equations. Several laminar and turbulent
cases are used as testbed for implementing and validating the approach, with spe-
cial emphasis on drag reduction. Chapter 5 focuses on the control of conjugate heat
transfer systems governed by the coupled Navier–Stokes and heat equations, and
presents the very first attempt of using DRL to control two- and three-dimensional
forced convection. Chapter 6 further extends the scope of single-step DRL to shape
optimization by direct optimization of state-independent shape parameters. Chap-
ter 7 assesses the capability of multi-step DRL for active drag reduction and thermal
control. Finally, Chapter 8 provides the conclusion and discusses the possible ex-
tension of the present work to more complex flow physics.

1.6 Achievements

The coupling between state-of-the art DRL algorithms and CFD solvers (both com-
ponents developed in-house by the CFL team at the CEMEF research center) into
a unified environment, as well as their implementation, validation and assessment
in a context of high performance computing, make for the main novelty of this the-
sis. Ultimately, the emphasis has been on assessing the relevance and efficiency of
the single-step DRL methodology, with later efforts dedicated to the validation and
application of the classical multi-step approach in the context of thermal control.
The conducted work has contributed to the publications, oral communications and
prizes presented below:
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Publications

• Ghraieb, Viquerat, Larchet, Meliga & Hachem, Single-step deep reinforcement
learning for two- and three-dimensional optimal shape design, submitted to
Phys. of Fluids, 2022

• Hachem, Ghraieb, Larchet, Viquerat & Meliga, Deep reinforcement learning
for the control of conjugate heat transfer, J. Comp. Phys. 436:110317, 2021

• Ghraieb, Viquerat, Larchet, Meliga & Hachem, Single-step deep reinforcement
learning for open-loop control of laminar and turbulent flows, Phys. Rev.
Fluids 6:053902, 2021

• Viquerat, Rabault, Kuhnle, Ghraieb, Larcher & Hachem, Direct shape opti-
mization through deep reinforcement learning, J. Comp. Phys. 428:110080,
2021

Conferences

• Ghraieb, Viquerat, Larcher, Meliga & Hachem, Single-step deep reinforcement
learning for open-loop control of laminar and turbulent flows. Mechanistic
Machine Learning and Digital Twins for Computational Science, Engineering
& Technology, september 26-29, 2021, San Diego CA.

Awards

• Finalist for the fourth edition of Pierre Laffite Award, ”Couplage Mécanique
numérique et Intelligence Artificielle pour le design et l’optimisation de forme”,
October 2020.
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Ce chapitre représente une introduction simple aux concepts de l’apprentissage
par renforcement RL. Il présente la formulation générale des problèmes RL et ses
deux principales classes d’algorithmes, puis la combinaison des réseaux neuronaux
profonds DNN avec les algorithmes RL, appelée apprentissage par renforcement
profond DRL. Ensuite, il passe en revue les principaux algorithmes DRL qui ont
été utilisés dans le contexte de la mécanique des fluides et dans ce travail. Enfin,
le concept de DRL à une seule étape est décrit, y compris les deux algorithmes
développés au cours de ce travail.

This chapter represents a simple introduction to the Reinforcement learning RL
concepts. It introduces the general formulation of RL problems and its two major
classes of algorithms, followed by the combination of Deep Neural Networks DNN
with RL algorithms, called Deep Reinforcement Learning DRL. Then it reviews the
main DRL algorithms that have been used in the context of fluid mechanics and in
this work. Finally, the concept of single-step DRL is described including the two
algorithms developped over the course of this work.
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2.1 Introduction

When talking about learning, the idea to learn by trial-and-error while interact-
ing with the surrounding environment first comes to mind. For example, a young
child learns new motor skills by moving his arms and feet without any teacher, but
with a direct sensorimotor connection to his environment. Thanks to this connec-
tion, he gathers many informations about actions and their short- and long-term
consequences, and how to arrange a sequence of actions to achieve various goals.

Similarly, reinforcement learning encompasses methods able to solve sequential
decision-making problems, in which an agent interacts with an environment to max-
imize a reward signal. The environment provides observations (a partial represen-
tation of its current state) to the agent, which will, in turn, return actions that will
modify the state of the environment. For each action taken, the environment also
provides a reward value that corresponds to a measure of the quality of the said ac-
tion. With these informations, the goal of the agent is to learn to perform adequate
sequences of actions in order to maximize reward signal in the long term. Indeed,
in most cases, actions will affect the immediate reward and the following situation
and, through that, all subsequent rewards. Consequently, the Reinforcement Learn-
ing (RL) problem is formalized using the concepts of optimal control of Markov
Decision Processes (MDPs), which details will be introduced in next section.

In the course of the past decade, the coupling of DNNs with RL algorithms,
called Deep Reinforcement Learning (DRL), has resulted in significant progress in
decision-making techniques thanks to the DNNs’ feature extraction capabilities and
capacity to handle high-dimensional spaces. Several major obstacles to classical RL
have been overcome, and remarkable efficiency has been achieved in many domains
such as robotics [7], language processing [8], or games [9, 48]. Moreover, DRL has
also proven useful in many industrial applications, such as autonomous cars or data
center cooling, and recently in fluid mechanics [10, 42, 49].

In the first section, the general formulation of RL problems in the context of
MDPs is given, and the two major classes of algorithms (called value-based and
policy-based methods) are described. Then, the combination of DNN with RL algo-
rithms, called DRL, is introduced, along with a review of several well-known DRL
algorithms. As this chapter represents a simple introduction to the RL concepts,
the interested reader is referred to [50] for additional details.

2.2 Reinforcement learning framework

The general RL problem is formalized as an MDP, a classical approach for resolving
sequential decision-making problems. It consists in learning from the interaction
between an agent that makes decisions and an environment involving everything
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Figure 2.1: The agent–environment interaction in a Markov decision process [50]

outside the agent. At each time step t, the agent receives an observation of the
environment’s state, St ∈ S, and selects an action At ∈ A based on the latter (with
S and A being the sets of valid states and actions). Action At is provided to the
environment, which then returns a numerical reward, Rt+1 ∈ R (where R is the set
of valid rewards), and observations of its new state, St+1. A sketch of the process is
presented in figure (2.1). The succession of state and actions defines a trajectory τ :

τ = (S0, A0, S1, A1, ..., Sn)

In the finite MDP framework, a particular case is considered where state and
action spaces are both discrete, and Rt and St are random variables having discrete
probability distributions dependent on the previous state and action. That is, given
particular values of the preceding state s and action a at time t, the probability of
reaching the new state s′ with reward r at time t+ 1 is:

p(s′, r|s, a) = Pr{St+1 = s′, Rt+1 = r|St = s, At = a}, (2.1)

for all s′, s ⊂ S, r ⊂ R, and a ⊂ A(s). Here, p defines the dynamics of the environ-
ment, or, put differently, it characterizes the dynamics of the MDP. Therefore, the
past agent–environment interaction information must be included in the state St−1.
The latter statement implies that the considered process has the Markov property,
meaning that the process’s future only depends on the current observation, and the
agent has no interest in looking at the entire history.

Formally, the goal of the agent is to maximize the expected discounted return
E [Gt], where Gt is defined as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
T∑

k=t+1

γk−t−1Rk, (2.2)
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with γ ∈ [0, 1] being a discount factor weighting the relative importance of present
and future rewards. Beyond the agent and its environment, an RL agent includes
one or more of the following components:

• A policy π that defines the agent’s way of choosing actions given a set of states.
It may be deterministic, meaning that actions are directly obtained from the
policy as a = π(s), or stochastic, in which case the policy outputs define a
probability density function from which actions are then sampled as a ∼ π(s);

• One or multiple value functions that estimate the expected, cumulative, dis-
counted future reward, starting from a given state. In essence, the latter help
measure the goodness of each state or each state-action pair;

• A model defining the environment’s dynamic in conjunction with a planning
algorithm.

We distinguish two categories of RL methods, namely model-based and model-
free. An algorithm said to be model-based when the latter component is used,
providing the probability p(s′, r|s, a) defined in equation (2.1) to compute the esti-
mated state-transition probabilities and the expected reward for each state-action
pair. In this case, the agent does not only learn from real experience, but also
plans with simulated trajectories from the environment model. In particular, Dy-
namic programming (DP) is a class of general RL methods that assume complete
knowledge of the transition and reward models of the MDP. Given the high induced
computational cost, and the strong assumption of having a perfect model of the
environment at hand, such methods are rarely exploited in practice.

Contrarily, in model-free algorithms, the agent interacts directly with the envi-
ronment and learns from trial-and-error experience. These approaches are currently
the most commonly used within the DRL community, mainly for their ease of ap-
plication and implementation. Model-free methods are also divided into two cate-
gories: value-based and policy-based. Although both methods aim to maximize their
expected return, policy-based methods directly optimize the parameterized policy,
while value-based methods learn to estimate the expected value of a state-action
pair optimally, which specifies the best action to take in each state. In the following
sections, the concept of the value-based approaches is introduced and followed by its
two fundamental classes of algorithms, named Monte Carlo methods and Temporal
Difference Learning. Then, the basic concepts of policy-gradient methods are pre-
sented, where a parameterized policy is learned without relying on a value function
for action selection.
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2.2.1 Value-based methods

Most RL algorithms rely on the use of value functions to solve decision-making prob-
lems. The state-value function vπ(s) estimates the expected discounted cumulative
reward starting in state s, then following trajectory τ according to policy π:

vπ(s) = Eπ[Gt|St = s],

where Eπ[.] indicates the expected value of any random variable when following
policy π, and t is any time step. Similarly, the action-value function qπ(s, a) deter-
mines the expected return when starting from a given state s, taking action a, and
following the policy π:

qπ(s, a) = Eπ[Gt|St = s, At = a].

A fundamental characteristic of value functions is that they satisfy recursive
relations. The following consistency condition between the value of s and the value
of its possible successor states s′ is called the Bellman equation, and holds for any
policy π and any state s:

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)] (2.3)

Value functions also define a partial ordering over policies: simply put, π1 is
better than or equal to π2 if vπ1(s) ≥ vπ2(s) for all s ∈ S. Hence, at least one policy
is always better than or equal to all other policies, and is called the optimal policy
(although it is not necessarily unique). All optimal policies share the same optimal
state-value function v∗ and the same optimal action-value function q∗, defined as:

v∗(s) = max
π

vπ(s), ∀s ∈ S.

q∗(s, a) = max
π

qπ(s, a), ∀s ∈ S, ∀a ∈ A(s).

Thus, q∗ can be written in terms of v∗ as:

q∗(s, a) = E [Rt+1 + γv∗(St+1)|St = s, At = a] .

Given that v∗(s) is the optimal value function, it satisfies the consistency condition
(2.3) for the state value function, which is called, in this case, the Bellman optimality
equation. The latter expresses that, from state s, the state value function under an
optimal policy must equal the expected return while choosing the best action:

v∗(s) = max
a∈A(s)

∑
s′,r

p(s
′
, r|s, a)[r + γv∗(s

′)]. (2.4)
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Similarly, the Bellman optimality equation for q∗ can be expressed as:

q∗(s) =
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

q∗(s
′, a′)]. (2.5)

Finally, the Bellman optimality equation must be solved, which is not simple, as
it requires an exhaustive search over all possible actions, including their probabili-
ties and expected rewards. That is why specific algorithms are needed to find the
optimal policy in order to select the best sequence of actions for a given RL problem.
Generally, value-based RL algorithms are described as generalized policy iteration
(GPI) algorithms, referring to the idea of alternating between two main processes,
policy evaluation (also called the prediction problem), and policy improvement, in a
sequence to converge to an optimal policy:

π0
PE→ vπ0

PI→ π1...
PI→ π∗

PE→ v∗

where the policy is being continually improved based on the value function. In policy
evaluation, the value functions of the current policy πi are estimated to obtain Vπi(s)
(or Qπi(s, a)). Then, the current value function is used to generate a better policy
πi+1 in the policy improvement step, for example, by selecting actions greedily with
respect to the value function.

In the following, we consider two fundamental model-free approaches of value-
based RL algorithms: Monte Carlo (MC) methods, and temporal-difference (TD)
learning. MC updates rely on full trajectories, and therefore are not suited for step-
by-step incremental computation. Contrarily, TD algorithms are able to perform
updates using incremental updates. Hence, they present different strengths and
weaknesses and differ in their efficiency and performance.

2.2.1.1 Monte Carlo methods

The Monte Carlo (MC) methods exploit full trajectories sampled from the environ-
ment to perform updates of the agent [51]. They solve the RL problem by averaging
the returns from each state-action pair and averaging the reward for each action.
These methods are incremental in an episode-by-episode way where value estimates
(policy evaluation) and policy improvements are made only at the end. Because the
environment model is not available, it is particularly useful to predict the action-
value functions, which is why MC-based approaches usually estimate q(s, a) from
experience by averaging the returns observed after several visits to each state-action
pair. As more returns are observed, the average should converge towards the ex-
pected value. So MC methods estimate qπ(s, a) for all state-action pairs, given a set
of episodes collected following π, by averaging the returns of the doublet (s, a) at
each occurrence in the episodes.
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To approximate optimal policies, MC control algorithm follows a generalized
policy iteration GPI algorithm, which consists in alternating between the policy
evaluation step to compute each qπ(s, a) and the policy improvement step to improve
the actual policy based on the action-value function. There are two approaches for
control: the on-policy and the off-policy methods. The on-policy methods evaluate
or improve the actual policy used to make decisions. This method uses ε− greedy
policies, meaning that at each step, the agent either selects the action with the
maximal estimated action-value function (greedily) with probability 1−ε, or selects
a random action with probability ε. In contrast, a more straightforward approach is
the off-policy, where the agent learns the optimal policy using two policies: one that
is learned about and becomes the optimal policy, and one that is more exploratory
and used to produce behavior. The target policy π is being learned about, while the
behavior policy b is being used to generate behavior. A benefit of this split is that
the policy π may be deterministic (greedy), while the policy b keeps sampling all
possible actions. Usually, off-policy methods use the importance sampling approach
[52], a known technique to estimate the expected values (vπ or qπ) given samples
obtained following another policy b (b 6= π).

2.2.1.2 Temporal-difference learning

Temporal difference (TD) learning is a mixture of MC approaches and DP ap-
proaches. TD methods learn from experience without an environment model like
MC. Moreover, they make updates based on other learned value functions without
waiting for the end of episodes; in other words, they bootstrap [53].

In the policy evaluation step, MC methods must wait until the end of episodes,
then get Gt and use it as a target for the value function vπ (or qπ), as shown in the
following MC update formula:

V (St)← V (St) + α[Gt − V (St)],

where α is a constant step-size parameter (learning rate). On the other hand, TD
methods can perform updates with an arbitrary regularity. When updating at every
time step, the update formula is called the one-step TD update (noted TD(0)), and
reads:

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)]

Note that the term in brackets is an error between the estimated value of St and its
target Rt+1 + V (St+1). This quantity appears in various forms through RL, and it
is called the TD error:

δt = Rt+1 + γV (St+1)− V (St)
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As in MC methods, two approaches exist for control: on-policy and off-policy
methods. For on-policy methods, qπ is estimated using the original behavior policy π
for all state-action pairs (s, a). This step can be done using TD prediction described
previously, and the corresponding update rule is:

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)] (2.6)

Every time an update is made, this rule uses the quintuple (St, At, Rt+1, St+1, At+1),
which gave its name to the SARSA algorithm. Then, for control, it keeps estimat-
ing qπ using the behavior policy π and changing π toward new ε-greedy policies
in the policy improvement step. On the other hand, Q-learning was one of the
breakthroughs in RL as an off-policy TD algorithm [54]. It is defined by:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a
Q(St+1, a)−Q(St, At)] (2.7)

where the learned action-value function Q directly approximates the optimal
action-value function q∗ without considering the followed policy.

It must be noted that the algorithms discussed above are based on a one-step
return (TD(0), Q(0), and SARSA(0)), but variants with multi-step returns are also
commonly exploited. For example, in the n-step update, the target of the update
rule is the n-step return:

Gt:t+n = Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnVt+n−1(St+n)

2.2.2 Policy-based methods

So far, all the presented approaches belonged to the class of value-based methods,
i.e. methods where the agent learns one or multiple value functions (using tables
or approximate functions), thus implicitly defining a policy by selecting the action
of highest value. Contrarily, policy-gradient methods directly learn a parameterized
policy πθ(s, a) (with θ representing the policy parameters), and do not rely on a
value function to select actions (implying that value functions can still be used for
other purposes). Policy-based methods yield several advantages compared to value-
based methods, one of them being that they can naturally handle high dimensional
action spaces. Also, they are able to learn stochastic policies, and display better
convergence properties. These methods are based on the estimation of the gradient
of a scalar objective function, called performance measure J(θ), with respect to θ.
In the episodic tasks, the performance measure J is defined based on the expected
discounted cumulative reward or as the value function of the start state of the
episode:

J(θ) = Eπθ [Gt]. (2.8)
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The policy-based methods aim at maximizing Jθ by performing gradient ascent
updates using an approximate value of the policy gradient:

θt+1 = θt + α∇̂Jθt , (2.9)

where ∇̂Jθt ∈ Rd′ is a stochastic estimate approximating the gradient of J with
respect to θt. The estimation of ∇J(θ) is obtained thanks to the policy gradient
theorem, which provides an analytic definition for this gradient with respect to
the policy parameter (needed to approximate for the general scheme of stochastic
gradient ascent):

∇J(θ) = Eπ

[
T∑
t=0

∇ log π(At|St, θ)Gt

]
(2.10)

where the gradients are column vectors of the partial derivatives. In this way, the
stochastic gradient-ascent update formula algorithm can be obtained. Moreover, it
represents the reinforce algorithm, the base of policy gradient methods, which
includes a complete return (waits until the end of the episode as in MC methods
[55]).

2.3 Deep Reinforcement Learning

As seen in previous sections, several approaches are available for the function
approximations required in RL problems with large state or action spaces. Yet,
during the past decade, the use of deep neural networks (DNNs) as approximators
in RL algorithms (called deep reinforcement learning, or DRL) has witnessed a great
success, leading to multiple breakthroughs in the domain of active control. Among
those are the mastering of games, with trained agents displaying super-human levels
on various board and Atari games [48][56], but also applications to robotics [57],
finance [58], computer vision [59], self-driving cars [60], optimal control [61], and
recently fluid mechanics [13][39][38].

A neural network is a collection of artificial neurons, i.e. connected computa-
tional units with universal approximation capabilities, that can be trained to arbi-
trarily well approximate the mapping function between input and output spaces.
Each connection provides the output of a neuron as an input to another neuron.
Each neuron performs a weighted sum of its inputs, to assign significance to the
inputs with regard to the task the algorithm is trying to learn. It then adds a bias
to better represent the part of the output that is actually independent of the input.
Finally, it feeds a non-linear activation function that determines whether and to
what extent the computed value should affect the ultimate outcome. As sketched



Chapter 2. Methodologie - Deep Reinforcement Learning 25

x1

x2

x3

y1

y2

Figure 2.2: Fully connected neural network with two hidden layers, modeling a mapping
from R3 to R2.

in figure (2.2), a fully connected network is generally organized into layers, with the
neurons of one layer being connected solely to those of the immediately preceding
and following layers. The layer that receives the external data is the input layer, the
layer that produces the outcome is the output layer, and in between them are zero
or more hidden layers. Once a forward pass has been achieved from the input to the
output through each layer, gradients of the loss with respect to the network param-
eters are obtained using the backpropagation algorithm [62], after what a stochastic
gradient ascent algorithm is used to adjust the weights and biases of the network.
An efficient neural network design requires a relevant architecture (type of network,
depth, activation functions, etc.), adequate hyper-parameters (optimizer, learning
rate, batch size, etc.), and a sufficiently large amount of data to learn from are all
critical ingredients for success, according to the vast literature on the subject (see,
for example, [63] and the references therein).

In the context of RL, DNNs can be exploited for the approximation of value
functions (v̂(s, w) or q̂(s, a, w)) and policies (π(a|s, θ)), where w and θ are the net-
work’s parameters, and the learning process updates these connection weights and
biases to reduce the well-chosen loss function. The rest of this section will briefly
present some popular DRL methods and their main features.

2.3.1 Deep Q-Network (DQN)

In 2015, a novel algorithm combining Q-learning methods with DNNs, called Deep
Q-Network (DQN), was proposed by Mnih et al. [64]. DQN offered several contribu-
tions to solve the problems of convergence instabilities, and was shown outperform
human players on a set of 49 Atari games [65]. The ingredients of DQN include a
Q-network and a target network to temper learning instabilities, as well as experi-
ence replay [66]. The loss function used to train Q-networks is obtained from the
update expressions seen in section 2.2.1.2 for the Q-learning method:
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L(θ) = E(St,At,Rt,St+1)∼D[Rt+1 + γmax
a
Q̂(St+1, a, θ

T
t )− Q̂(St, At, θt)]

2 (2.11)

where D is the set of transitions collected from the environment, and θTt are the
parameters of the target network, while θt are the Q-network parameters at step t.
Note that the target network is updated periodically.

2.3.2 Vanilla deep policy gradient

A stochastic gradient algorithm is used in policy methods to perform network up-
dates from a policy loss:

L(θ) = Eτ∼πθ

[
T∑
t=0

log π(At|St, θ)Gt

]
, (2.12)

whose gradient equals the policy gradient 2.10. The latter is computed one layer
at a time from the output to the input layer using the back-propagation algorithm
with respect to each weight and bias by the chain rule. Because the loss (2.12)
takes the form of an expected value that can be numerically computed using an
empirical average over a set of complete trajectories, this method is also known as
Monte Carlo policy gradient. However, if some low-quality actions are taken along
the path, their negative impact will be masked by the positive actions and will go
undetected. This problem can be solved using actor-critic methods, which combine
a Q function evaluation with policy optimization.

2.3.3 Advantage actor-critic (A2C)

Indeed, different strategies exist to reduce the high variance of training the agent
from (2.12), with the discounted cumulative reward being replaced by the advantage
function:

A(St, At) = Q(St, At)− V (St) (2.13)

which represents the improvement in the expected cumulative reward when taking
action a an in state s compared to the average of all possible actions taken in state
s. As a result, the loss function reads:

L(θ) = Eπ

[
T∑
0

log π(At|St, θ)Aπ(St, At)

]
(2.14)

In practice, the classical policy network (known as actor) is used in conjunction with
a second network (known as critic) that learns to predict the state-value function
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V (s). To avoid having to learn a third network to predict the state-action value
Q(s, a), the advantage function is approximated as:

A(St, At) ' R(St, At) + γV (St+1)− V (St) (2.15)

Thus, the actor-critic algorithm allows training the policy network in a temporal-
difference manner, allowing updates to be performed multiple times during an
episode.

2.3.4 Deep Deterministic Policy gradient DDPG

Policy gradient methods are widely used in problems with continuous action spaces.
The basic idea is to represent the policy by a stochastic parametric probability distri-
bution πθ(a|s). However, in 2014, a deterministic policy gradient (DPG) algorithm
was introduced, that instead considers deterministic policies a = µθ(s) [67]. This
algorithm belongs to actor-critic methods, and exploits an off-policy approach that
uses a behavior policy to learn a deterministic target policy. Moreover, in 2016, a
Deep Deterministic Policy Gradient (DDPG) [61] algorithm was implemented, ex-
tended from DQN and DPG algorithms. With actor-critic as in DPG, DDPG avoids
the optimization of action value function at every time step. Meanwhile, it makes
the learning stable and robust by deploying experience replay and an idea similar
to target network as in DQN. In DDPG, the loss function is:

L(θ) = E(St,At,Rt,St+1)∼D[Rt+1 + γQ̂T (St+1, µ
T (St+1, θ

µT

t ), θQ
T

t )− Q̂(St, At, θ
Q
t )]2

(2.16)
where D is the set of transitions collected from the environment, and µT , QT refer
to the target actor and critic, while µ,Q are the behavior actor and critic.
Finally, in order to achieve an efficient balance between exploration and exploitation,
gaussian noise is usually applied to the predicted actions.

2.3.5 Trust-region and proximal policy optimization (TRPO
and PPO)

The performance of policy gradient methods is hurt by the high sensitivity to the
learning rate, i.e., the size of the step to be taken in the gradient direction. In-
deed, as too small learning rates are detrimental to learning, too large learning rates
can also be detrimental and lead to a definitive performance collapse. To overcome
this issue, Schulman et al.[68] proposed in 2015 the trust-region policy optimiza-
tion TRPO algorithm, in which policy updates are based limited to a trust region
defined by a maximal deviation between the previous policy and the current one.
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Figure 2.3: Clipping the probability ratio rt [18]

Although efficient, the TRPO algorithm was soon overshadowed by the proximal
policy optimization PPO algorithm, also proposed by Schulman et al.[18] in 2017.
The policy updates of the PPO method are based on a clipped surrogate objective,
defined as:

Lclip(θ) = Êt
[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

]
, (2.17)

where rt(θ) is the probability ratio rt(θ) = π(At|St,θ)
π(At|St,θold)

and ε is a small clip range

parameter, usually in the range [0.1, 0.3]. In this expression, the probability ratio is
clipped to avoid rt from moving outside the interval [1−ε, 1+ε] (see figure (2.3)). Due
to its improved learning stability and its relatively robust behaviour with respect
to hyper-parameters, the PPO algorithm has received considerable attention in the
DRL community. The pseudo-algorithm is provided below, where at each iteration,
T timesteps of data (states, actions, returns, advantages...) are collected by N
parallel actors. Then the surrogate loss is constructed on these N × T timesteps of
data and optimized using a minibatch SGD for K epochs.

Algorithm 1 PPO Algorithm [18]

for iteration=1, 2,... do
for actor=1, 2, ..., N do

Run policy πθold in environment for T timesteps

Compute advantage estimates Â1, ..., ÂT

Optimize surrogate L w.r.t. θ, with K epochs and minibatch size M ≤ NT
θold ← θ
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Figure 2.4: PPO-1 [69].

2.4 Single-step Deep Reinforcement Learning

In the present manuscript, a considerable part of the applications consider the
use of a particular class of algorithms, adapted from standard DRL, and labeled
as single-step DRL. These algorithms are degenerate versions of the policy gradient
RL algorithm. Their premise is that single-step episodes are enough for the policy
to be learned in a state-independent mode as in optimization and open-loop control
problems. Indeed, single-step DRL algorithms seek the optimal parametrization
θ∗ that performs the optimal action a∗ = πθ∗(s0) maximizing the instantaneous
immediate reward instead of a discounted cumulated reward, with s0 being some
input state (usually a constant vector) constantly fed to the agent. The following
sections are devoted to the presentation of two algorithms used in this thesis. The
first one, called PPO-1, relies on the classical PPO algorithm, that has quickly gained
prominence in the DRL community, and is by far the most common algorithm
exploited in the context of DRL-based control for fluid mechanics. The second
one, called PBO, is an in-house algorithm developed by the CFL team under the
premise that convergence to the optimal can be made faster if actions are sampled
anisotropically from full covariance matrices.

2.4.1 PPO-1

The PPO-1 algorithm is a single-step version of the proximal policy optimization
(PPO) algorithm, where the optimal policy is independent of the input state, and
is therefore adapted to the optimization of open-loop control laws. In this method,
the optimal mapping from a constant input state S0 is sought, using only one action
per episode (the situation is summed up in figure (2.4)). In practice, the agent
is provided with a constant input state, and outputs the mean and variance d-
dimensional normal distribution with an isotropic covariance matrix, d being the
number of actions sent to the environment by the agent.
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Figure 2.5: Action loop for the PBO method [70].

2.4.2 Policy-Based Optimization

Another black-box optimization method called Policy-Based Optimization (PBO)
[70] has been developed for solving single-step optimization problems. It is based on
the classical DRL policy gradient algorithm, and shares similarities with evolution
strategy (ES) methods, in particular with the covariance matrix adaptation evo-
lution strategy method (CMA-ES). In the latter, the parameters of a multivariate
normal law with full covariance matrix are evolved with successive generations us-
ing pre-defined update laws, yielding a powerful and flexible optimization technique.
Similarly, the PBO method relies on a normal law with full covariance matrix being
generated from neural network outputs, the successive optimization of which using
the policy gradient loss eventually lead to an optimum of the cost function. Figure
(2.5) shows a sketch of the functioning of the PBO algorithm, where the agent draws
a population of actions from the current policy and is incentivized to update the
policy parameters for the next population of actions in order to yield larger rewards.
Note that the agent performs only a transformation from a constant input state to
a given action and not a complex state-action relation; therefore, PBO uses smaller
policy networks (compared to other DRL contributions networks in the literature).

2.4.2.1 Gradient ascent update rule

In practice, PBO generates actions using a probability density function. Three
independent neural networks are used to output a d-dimensional multivariate normal
distribution N (m,C) with mean m and full covariance matrix C as shown in figure
(2.6), with hyperbolic tangent and sigmoid activation functions on the output layers.
Actions are then clipped in [−1, 1]d before being mapped to their relevant physical
ranges ap (a step deferred to the environment as problem-specific, see figure (2.5)).
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Figure 2.6: Policy networks used in PBO to map states to policy.

Ultimately, the Adam algorithm performs stochastic gradient ascent on the policy
parameters using the modified loss:

L(θ) = E
a∼πθ

[
log πθ(a) R̂(a)

]
, with R̂(a) = max

(r(a)− µr
σr

, 0
)
. (2.18)

In the latter equality, µr (resp. σr) represents the reward average (resp. standard
deviation) over the current generation in the PBO loss, which is formally identical
to the classical PG loss (2.12), except for the discounted cumulative reward substi-
tuted with a clipped generation-wise whitened reward. Since PBO is a single-step
algorithm (single state-action pair), the discount factor can be set to γ = 1, in which
case the advantage function (in PG loss) is reduced to the reward, as explained in
[69]. In addition, the normalization to zero mean and unit standard deviation intro-
duces bias but reduces variance, and consequently the number of actions required to
estimate the expected value. Finally, when performing multiple mini-batch gradient
steps with the same data, the max allows discarding negative-advantage actions that
can destabilize learning.

2.4.2.2 Off-policy updates

Before the algorithm can proceed to update the agent parameters, it must sample
a large number of state-action-reward triplets to accurately compute the expected
value in the policy loss (2.18). At each generation, a set of actions derived from the
current policy πθ is distributed to n environments running in parallel; each computes
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and returns a reward associated with its input action. This cycle can be repeated
until the agent has a sufficient number of state-action-reward triplets. Still, because
computing the reward can be a computationally intensive task, using an enormous
value of n in many cases is not tractable, limiting the number of state-action-reward
triplets available from the current policy. Therefore, like CMA-ES, PBO improves
the loss evaluation’s reliability by incorporating data from previous generations. The
loss expression (2.18) must account for updating policy πθ with samples generated
under previous policies. So, given the off-policy πb, the loss obtained using πb’s
samples is:

Loff(θ) = E
a∼πb

[πθ(a)

πb(a)
R̂(a)

]
, (2.19)

where πθ(a)
πb(a)

is the importance term [71]. The objective function resulting gradient
is, therefore:

∇θJ(θ) = E
a∼πb

[
πθ(a)

πb(a)
∇θ log πθ(a)R̂(a)

]
, (2.20)

and the original loss is retrieved for πb = πθ. However, it was discovered that using
(2.19) resulted in unstable updates in the final steps of the optimization process, par-
ticularly in the vicinity of local or global minima, producing a significant reduction
in the algorithm’s overall performance. That is why, currently, a decay parameter
ETA is used in conjunction with loss expression (2.18) to give recent generations
more weight by exponentially decreasing the reward from previous generations. In
contrast, this issue is deferred to a future contribution for a more detailed study.
Thus, a rule of thumb for the decay factor is used in this algorithm and given by:

η = 1− e−αd, (2.21)

with α > 0 to keep a longer memory of the previous individuals as the problem
dimensionality d increases.

In practice, each network is updated for ne epochs with a learning rate of λr and
history of ng generations shuffled and organized in nb mini-batches. Finally, PBO
has the advantage of allowing all three networks to use different meta-parameters
and network architectures, which can significantly impact the convergence rate.

2.4.2.3 Generating valid covariance matrices from neural network out-
puts

To have physical significance, matrices that represent correlations between variables
must meet four basic properties: (i) all entries must be in [−1, 1], (ii) all diagonal
entries must be equal to 1, (iii) the matrix must be symmetric, and (iv) the matrix
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must be positive semi-definite (PSD). The above naive approach of directly having
a neural network outputting a set of adequate correlation parameters is doomed to
fail, as there is no guarantee that the resulting matrix will be PSD. Furthermore,
while it is theoretically possible to have the neural network output correlation co-
efficients until a PSD matrix is obtained, this quickly becomes inefficient, as the
chances of finding a valid matrix for d > 3 are meagre. PBO solves this problem
using hypersphere decomposition [72], a technique that generates valid correlation
matrices from a set of angular coordinates on a unit-radius hypersphere. We should
notice that the method parameterizes a lower triangular elementary matrix Bd with
entry:

bij =


1 for i = j = 1
cosϕij for i > 1, j = 1

cosϕij
∏j−1

k=1 sinϕik for i > 1, j < i∏j−1
k=1 sinϕik for i > 1, j = i

0 for j > i

(2.22)

from a set of so-called correlative angles ϕ ∈ [0, π]D, with D = d(d−1)
2

. For instance,
the corresponding matrix for d = 4 reads:

B4 =


1 0 0 0

cosϕ2,1 sinϕ2,1 0 0
cosϕ3,1 cosϕ3,2 sinϕ3,1 sinϕ3,2 sinϕ3,1 0
cosϕ4,1 cosϕ4,2 sinϕ4,1 cosϕ4,3 sinϕ4,2 sinϕ4,1 sinϕ4,3 sinϕ4,2 sinϕ4,1


(2.23)

Because it is symmetric and PSD by construction, the product of this matrix
with its transpose is guaranteed to be a valid correlation matrix, with all entries in
[−1, 1] (since all Bij are products of cosine and sine functions) and unit diagonal.

The following is the procedure for effectively doctoring neural network outputs
into valid parameterization of a multivariate normal distribution: using a hyperbolic
tangent activation function on the output layer, the first network outputs the mean
m in [−1, 1]d. Then, using a sigmoid activation function on the output layer, the
second network outputs the standard deviations σ in [0, 1]d. Finally, the third
network uses a sigmoid activation function on the output layer to produce a set of
coefficients ρ in [0, 1]D. These are then mapped into correlative angles ϕ = πρ and
assembled into the above elementary matrix Bd, after which the covariance matrix
is built as:

C = S
(
BBt

)
S, (2.24)

with S = diag(σ). The complete PBO pseudo-code is given below.
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Algorithm 2 PBO Algorithm [70]

Initialize πθ, ni parallel environments
for g = 0, nmax

g − 1 do

Sample ni actions/individuals ai ∈ [−1, 1]
d

from πθ
for i = 0, ni − 1 do . This loop is executed in parallel

Provide action ai to environment i
Retrieve reward ri from environment i . End of ”single-step” episode

Compute clipped normalized reward R̂g . Modified reward vector for generation g
for σ, ρ and µ networks do

for e = 0, ne − 1 do . ne can be specific to each network
Shuffle data from most recent ng generations . ng can be specific to each network
for b = 0, nb − 1 do . nb can be specific to each network

Generate mini-batch b from shuffled data
Update current network with loss (2.18) . λ can be specific to each network

2.5 Conclusion

This chapter has introduced the basic concepts of Deep Reinforcement Learning,
with a brief review of the popular value-based and policy-based methods used so far
in fluid mechanics. The algorithms selected for this thesis have then been presented
in further details, including the Proximal Policy Optimization (PPO) algorithm that
will be used in chapter 7 for closed-loop control, its tweaked, single-step version
(PPO-1) that will be used in chapters 4-5 for open-loop control, and the more
sophisticated single-step algorithm called Policy Based Optimization (PBO), used
in chapter 6 for shape optimization.
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Ce chapitre décrit les méthodes de calcul numérique de la dynamique des fluides
CFD utilisées pour calculer la récompense fournie à l’agent de DRL. Cela com-
prend les formulations d’éléments finis variationnels multi-échelles stabilisées par
VMS utilisées pour résoudre les équations de Navier-Stokes et de Navier-Stokes
moyennées de Reynolds RANS, ainsi que la méthode des volumes immergés couplée
à l’adaptation du maillage de la couche limite anisotrope, utilisée pour résoudre avec
précision un ensemble unique d’équations relatives aux phases solide et fluide sur un
domaine de calcul unique.

This chapter describes the computational fluid dynamics CFD methods used
to compute the numerical reward fed to the the DRL agent. This includes the
variational multiscale VMS-stabilized finite element formulations used to solve the
Navier-Stokes and Reynolds-Averaged Navier-Stokes RANS equations, and the im-
mersed volume method coupled to anisotropic boundary layer mesh adaptation, used
to solve accurately a single set equations pertaining to both solid and fluid phases
on a unique computational domain.
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3.1 Introduction

While the breakthrough in Computational Fluid Dynamics (CFD) has first been
made in the context of the finite difference and the finite volume methods, Finite
Element (FE) methods have grown significantly over the past decades, and are now
widely used to accurately and efficiently solve the Navier–Stokes and the Convection-
Diffusion-Reaction (CDR) equations while handling complex geometries relevant for
a wide range of engineering applications. This chapter introduces the Variational
Multiscale method (VMS) developed at CEMEF by the CFL team for solving such
CFD problems in the context of FE methods.

3.2 State of the art

The incompressible Navier–Stokes equations are used to model many important
physical phenomena, such as turbulent flow around airfoils or in cooling ducts,
arterial blood flow. Nonetheless, the classical Galerkin formulation has been found
to lack robustness to model complex flows dominated by convection. Indeed, the
stability of the discrete formulation depends on the choice of compatible Finite
Element spaces for the velocity and the pressure (this is known as the Babuska-
Brezzi inf-sup condition). In particular, using elements with continuous equal order
linear/linear interpolation, albeit efficient from a CPU cost perspective, does not
comply with the inf-sup condition, and is known to yield an unstable discretization
that manifests in uncontrollable oscillations that pollute the solution.

The need to bypass the limitations of the Galerkin approach has led a large
body of research [73–75]. Among the many different approaches that have emerged
in the literature, we consider here the Stabilized Finite Element Method (SFEM)
and the Variational Multiscale method (VMS), two closely connected methods that
both add weighted residual terms to the classical weak formulation of the problem
to improve stability while maintaining consistency, the SFEM by modifying directly
the variational formulation, and the VMS by modifying the Finite Element basis.

A survey of residual based stabilization methods, as summarized in the book by
Donea and Huerta [76] is as follows: the ground work for PSPG (Pressure Stabilized
Petrov Galerkin) methods and multiscale methods has been laid almost simultane-
ously in the 90s by Tezduyar [77] and Hugues et al. [78], respectively. Since then,
fresh developments by Codina and co-workers [79, 80] based on orthogonal subscales
and time-dependent subscales have paved the way for an application to turbulence
modeling, as evidenced by the three scale separation method presented in [81–83].
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3.3 Flow Finite Element Solver

Computing numerical flow solutions requires solving the time-dependent Navier–
Stokes equations by Direct Numerical Simulation (DNS) [84], with very fine mesh
resolutions and adequate time steps being mandatory in the context of turbulent
flows. In return, the required computing resources may not always be affordable es-
pecially when simulating complex industrial processes. This is the main reason why
most engineering computations involving turbulent flows rely on a certain degree
of turbulence modeling, with a wide range of models varying in sophistication and
ease of implementation having been developed and analyzed in the last few decades.
Those are classified here into three different categories, VMS, Large eddy simula-
tion (LES), and Reynolds-Averaged Navier–Stokes (RANS). As one progresses from
DNS (no modelling) to RANS, an increasing part of the turbulent motion is lumped
into the model, which decreases the computational resources needed to perform the
computations. This is especially convenient when dealing with industrial application
since the user may decide which method is most relevant for the considered applica-
tion, being understood that each method comes with its own trade-off between loss
of accuracy and gain in computational costs. The Finite Element implementation of
the Navier–Stokes and Convection-Diffusion-Reaction equations (ubiquitous in most
turbulent models) will be briefly described and analyzed in the following sections.

3.3.1 The incompressible Navier–Stokes equations

Let Ω ⊂ Rn be the n-dimension spatial domain and ∆ be the boundary of Ω.
Consider unsteady flows governed by the incompressible Navier–Stokes equations in
a time interval [0, T ]:

ρ(∂tu+ u · ∇u) +∇p− 2µ∇ · ε(u) =f in Ω× [0, T ], (3.1)

∇ · u =0 in Ω× [0, T ], (3.2)

with ρ the density, µ is the dynamic viscosity, u the velocity, p the pressure, f a
body force vector, and ε(u) the strain-rate tensor defined as:

ε(u) =
1

2
(∇u+∇uT ). (3.3)

A divergence-free velocity field u0(x) is imposed over Ω at t = 0, while the Dirichlet
and natural boundary conditions are:

u(x, 0) =u0(x), (3.4)

u =g on Γg × [0, T ], (3.5)

−pn+ 2µ∇ · ε(u) · n =0 on Γh × [0, T ], (3.6)
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where Γg and Γh are two complementary subsets of Γ and n is the unit outward
normal vector of Γ.

The function spaces for the velocity and the pressure are respectively defined by:

V ={u(x, t)|u(x, t) ∈ H1(Ω)n,u = g on Γg}, (3.7)

P ={p(x, t)|p(x, t) ∈ L2(Ω)}, (3.8)

while the test function space for the velocity is:

V0 = {u(x, t)|u(x, t) ∈ H1(Ω)n,u = 0 on Γg}. (3.9)

The weak form of the Navier–Stokes equations system (3.1-3.2) consists in finding
u ∈ V and p ∈ P such that:

(ρ∂tu,w)Ω + (ρu · ∇u,w)Ω

+ (2µε(u) : ε(w))Ω − (p,∇ ·w)Ω = (f ,w)Ω ∀w ∈ V0, (3.10)

(∇ · u, q)Ω = 0 ∀q ∈ P, (3.11)

where we note (a, b)Ω the canonical scalar product in L2(Ω).
In practice, Ω is decomposed into N elements K covering the entire computa-

tional domain. They are either disjoint or share a complete edge (in 2D, a complete
face in 3D). Using this partition Kh, the function spaces defined in (3.7) and (3.8)
are approached by finite-dimensional spaces spanned by continuous piecewise poly-
nomials such that:

Vh ={uh|uh ∈ C0(Ω)n,unh|K ,∀K ∈ Kh}, (3.12)

Ph ={ph|ph ∈ C0(Ω), ph|K ,∀K ∈ Kh}, (3.13)

and the Galerkin discrete problem consists thus in finding a pair uh and ph to solve
the followed mixed problem such that ∀(wh, qh) ∈ Vh,0 × Ph:

(ρ∂tuh,wh)Ω + (ρuh · ∇uh,wh)Ω

+ (2µε(uh) : ε(wh))Ω − (ph,∇ ·wh)Ω = (f ,wh)Ω, (3.14)

(∇ · uh, qh)Ω = 0. (3.15)

3.3.2 The Variational Multiscale approach (VMS)

In order to solve the above variational formulation of the Navier–Stokes equations,
Hughes [78] introduced the Variational Multiscale, that aims at numerically resolving
the largest flow scales at play, while modeling the effects of the finest scales. First,
all unknowns are split into coarse (large) and fine (small) components corresponding
to different scales of resolution. Then, the fine scales are solved in an approximate
manner and their effect on the large scale is modeled via appropriate residual-based
terms.
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3.3.2.1 Variational formulation

The solution spaces are split into Vh ⊕ V ′ and Ph ⊕ P ′, where the h subscript now
denotes the coarse Finite Element component (solved), and the prime superscript
stands for the fine, so-called subgrid-scale component (approximated). The scale
decomposition reads:

u =uh + u′ ∈ Vh ⊕ V ′ (3.16)

p =ph + p′ ∈ Ph ⊕ P ′ (3.17)

for the solution and:

w =wh +w′ ∈ Vh,0 ⊕ V ′0 (3.18)

q =qh + q′ ∈ Ph,0 ⊕ P ′0 (3.19)

for the test functions. The weak formulation of (3.14-3.15) is then:

(ρ∂t(uh + u′),wh +w′) + (ρ(uh + u′) · ∇(uh + u′),wh +w′)

+ (2µε(uh + u′), ε(wh +w′))− (ph + p′,∇ · (wh +w′)) = (f ,wh +w′)
(3.20)

(∇ · (uh + u′), qh + q′) = 0 (3.21)

Additional simplifications are necessary, that follow from the following classical
approximations:

• Quasi-static subscales are considered here (no time tracking), meaning that
the time-dependent term in the subscale equations can be omitted.

• Convection is assumed to occur at the large-scale velocity, meaning that the
non-linear term can be approximated as

(uh + u′) · ∇(uh + u′) ≈ uh · ∇(uh + u′). (3.22)

• Terms with subscales can be integrated by parts, and the subscales will be
neglected on the element boundaries.

The coarse scales equations are obtained by setting the subscale test functions
to zero in (3.20-3.21). Moreover, the it is worth mentioning that because only
linear elements are used in this work, all terms involving second derivatives can be
neglected. Ultimately, we obtain:

(ρ∂tuh,wh) + (ρuh · ∇uh,wh)

+ (2µε(uh), ε(wh))− (ph + p′,∇ ·wh) +
∑
K

(u′,−ρuh · ∇wh)K = (f ,wh)

(3.23)

(∇ · uh, qh)−
∑
K

(u′,∇qh)K = 0 (3.24)
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where
∑

K denotes the sum over all the elements of the Finite Element partition Kh
and (., .)K is the L2 product on element K.

The fine scales equations are obtained setting the coarse scales test functions to
zero in (3.20-3.21) and using the three approximations introduced above. Based on
the same analysis as in [85, 86], the subscales are expressed in each element K ∈ Kh
as:

u′ = τvΠ
′
v(Rv) p′ = τpΠ

′
p(Rp), (3.25)

where Π′v and Π′p are the projections onto V ′ and P ′, respectively, and Rv and Rp

are Finite Element residuals defined as

Rv =f − ρ∂tuh − ρuh · ∇uh −∇ph +∇ · (2µε(uh), (3.26)

Rp =−∇ · uh. (3.27)

Finally, τv and τp are stabilization parameters computed within each element as:

τv =

[(
c1µ

ρh2
K

)2

+

(
c2||uh||K
hK

)2
]−1/2

, (3.28)

τp =

[(
µ

ρ

)2

+

(
c2||uh||KhK

c1

)2
]−1/2

, (3.29)

where c1 and c2 are two algorithmic constants fixed to 4 and 2 for linear elements
(see [87]), hK is the element size and and ||uh||K is a normed measure of uh in
K. It is worth mentioning that τv often includes the time step size ∆t of the
temporal discretization as a mean to improve the algorithm convergence behavior
when dealing with nonlinear problems, but this has several conceptual drawbacks
further explained in [87, 88]. Therefore, as a mean to make τv more consistent over
the computational domain and consequently enhance the behavior of the method,
one may use:

τv =

[
1

τ 2
0

+

(
c1µ

ρh2
K

)2

+

(
c2||uh||K
hK

)2
]−1/2

, (3.30)

where τ0 is a τv reference value given by (3.28) and computed over the whole mesh,
that should relate to the time discretization time step size.
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Substituting for the subscales quantities in (3.23-3.24) yields

(ρ∂tuh,wh) + (ρuh · ∇uh,wh) + (2µε(uh), ε(wh))− (ph,∇ ·wh)

+
∑
K

τv(ρ∂tuh + ρuh · ∇uh +∇ph −∇ · (2µε(uh))− f , ρuh · ∇wh)K ,

+
∑
K

τp(∇ · uh,∇ ·wh) = (f ,wh) (3.31)

(∇ · uh, qh)−
∑
K

τv(ρ∂tuh + ρuh · ∇uh +∇ph −∇ · (2µε(uh))− f ,∇qh)K = 0.

(3.32)

Compared to the standard Galerkin approach, this formulation features additional
integrals evaluated element wise, that represent the effect of the sub-grid scales
on the coarse scale, and allow to overcome the instability in convection-dominated
regimes. Using the stabilization parameters and the residuals defined above yields
ultimately:

(ρ∂tuh,wh) + (ρuh · ∇uh,wh) + (2µε(uh), ε(wh))− (ph,∇ ·wh)

+
∑
K

(τvRv, ρuh · ∇wh)K +
∑
K

(τpRp,∇ ·wh) = (f ,wh), (3.33)

(∇ · uh, qh)−
∑
K

(τvRv,∇qh)K = 0. (3.34)

3.3.2.2 Temporal discretization

For simplicity of implementation, the time and convective derivatives in equations
(3.33-3.34) are discretized in time by a semi-implicit scheme

∂tuh + uh · ∇uh ≈
un+1
h − unh

∆t
+ unh · ∇un+1

h , (3.35)

where the n superscript refers to the solution at time tn = n∆t. The divergence
term in the continuity equation, together with the convective, viscous and pressure
terms in the momentum equations, are integrated implicitly using a backward Euler
scheme. All other terms are integrated explicitly using a forward Euler scheme. The
complete discretized formulation reads

1

∆t
(ρ(un+1

h − unh),wh) + (ρunh · ∇un+1
h ,wh) + (2µε(un+1

h ), ε(wh))− (pn+1
h ,∇ ·wh)

+
∑
K

(τnvR
n+1
v , ρunh · ∇wh)K +

∑
K

(τnp R
n+1
p ,∇ ·wh) = (fn,wh), (3.36)

(∇ · un+1
h , qh)−

∑
K

(τnvR
n+1
v ,∇qh)K = 0, (3.37)
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with stabilization parameters:

τnv =

[(
c1µ

ρh2
K

)2

+

(
c2||unh||K
hK

)2
]−1/2

, (3.38)

τnp =

[(
µ

ρ

)2

+

(
c2||unh||KhK

c1

)2
]−1/2

, (3.39)

and residuals:

Rn+1
v =

ρ

∆t
(un+1

h − unh) + ρunh · ∇un+1
h +∇pn+1

h − fn, (3.40)

Rn+1
p =∇ · un+1

h . (3.41)

The resulting linear system is generally preconditioned with a block Jacobi method
supplemented by an incomplete LU factorization, and solved with the GMRES al-
gorithm.

3.4 Turbulence modeling

Turbulence has long been considered an intriguing scientific problem ubiquitous in
many flows such as the smoke of a cigarettes or a chimney, the ripples of a stone
in water, the blood flow in an artery, etc. Turbulence occurs when fluid particles
move in a random and irregular way, leading to the formation of eddies of different
sizes. The largest eddies are unstable and break up into smaller eddies, that in
turn break up into even smaller eddies until the eddies reach the Kolmogorov scale,
below which they dissipate due to viscous effects. Turbulence has been the subject
of much experimental, theoretical, and numerical research in the past decades, with
particular emphasis put on developing cheap, yet reliable turbulence models.

In this work, the focus is on the so-called Reynolds Averaged Navier–Stokes
(RANS) approach, in which the traditional Navier–Stokes equations are averaged,
which brings out an unknown Reynolds stress tensor determined from a turbulence
model. More specifically, we are interested in the one-equation Spalart–Allmaras
(SA) model, that offers good accuracy and ease of implementation, and has become
prominent in many fields and especially for aerodynamics flows in engineering ap-
plications. This section now explains how the VMS method can be used to perform
RANS-SA numerical simulations by solving an appropriate, stabilized Convection-
Diffusion-Reaction equation. Additional derivation and implementation details can
be found in [89, 90].
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3.4.1 Reynolds Averaged Navier–Stokes (RANS)

RANS models are most often used for industrial applications, for which the cost
of turbulent scale-resolving approaches is prohibitive. While turbulent fluctuations
arise in the most general case at various scales and with varying degrees of coherence,
RANS assumes that there exist a separation of scales, between the large-scale motion
associated with the flow unsteadiness, and the small-scale motion developing in the
shear layers and responsible for the production of turbulence by amplification of
the background noise. This allows to decompose the dynamics into a stochastic
part, and a coherent part assembled by phase-averaging. For instance the velocity
is written as

u = 〈u〉+ ũ, (3.42)

where the brackets is the average, and the tilde superscript denotes a zero-average
fluctuation, so 〈〈u〉〉 = 〈u〉 and 〈ũ〉 = 0. Another key property of the averaging
operator is thus as follows:

〈u · v〉 = 〈u〉 · 〈v〉+ 〈ũ · ṽ〉. (3.43)

Applying the averaging procedure to the Navier–Stokes equations therefore yields

ρ(∂t〈u〉+〈u〉 · ∇〈u〉) +∇〈p〉 − 2µ∇ · ε(〈u〉) + ρ〈ũ · ∇ũ〉 = 〈f〉 in Ω×[0, T ],
(3.44)

∇ · 〈u〉 = 0 in Ω×[0, T ].
(3.45)

Of particular interest in these equations is the Reynolds stress tensor 〈ũ ·∇ũ〉, that
shows up due to the nonlinearity of the stochastic motion. In the literature, many
method have been proposed to compute this term for the above system of equations
to be closed, often using the Boussinesq approximation [91] to lump this term into
a turbulent eddy viscosity µt. By doing so, one obtain the RANS equations

ρ(∂t〈u〉+〈u〉 · ∇〈u〉) +∇〈p〉 − 2(µ+ µt)∇ · ε(〈u〉) = 〈f〉 in Ω×[0, T ], (3.46)

∇ · 〈u〉 = 0 in Ω×[0, T ]. (3.47)

governing the coherent velocity and pressure, that turn to be formally identical
to the Navier–Stokes equations (3.1-3.2), except that the total viscosity µ + µt is
featured instead of the sole molecular viscosity.

3.4.2 The Spalart-Allmaras SA turbulence model

RANS methods are classified according to the number of transport equations needed
to determine the turbulent viscosity, usually zero-equation models such as Baldwin–
Lomax [92] or Cebeci–Smith [93], one-equation models such as Prandtl [94] or
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Baldwin–Bart [95], and two-equations models such as k-ε [96] or k-ω [97]. The
Spalart–Allmaras (SA) model [98] used in this work is a one-equation model, that
has been found to be simpler, less computationally expensive, and more robust than
multi-equation models. It requires solving one single non-linear transport equation
to represent the evolution of a so-called SA working variable ν̃

∂tν̃ + u · ∇ν̃ − cb1(1− ft2)S̃ν̃ +
(
cw1fw1 −

cb1
κ2
ft2

)( ν̃
d

2
)

− cb2
σ
∇ν̃ · ∇ν̃ − 1

σ
∇ · [(ν + ν̃)∇ν̃] = 0, (3.48)

where κ = 0.4 is the Von Karman constant, d is the shortest distance to the wall,
the other model coefficients are:

fv1 =
χ3

χ3 + c3
v1

, χ =
ν̃

ν
, fv2 = 1− χ

1− χfv1

, ft2 = ct3e
−ct4χ2

, fw = g[
1 + x6

w3

g6 + χ6
w3

]
1
6 ,

g = r + cw2(r6 − r), r =
ν̃

S̃κ2d2
, S̃ = S +

ν̃

κ2d2
fv2, S =

√
2ε(u) : ε(u),

with

cb1 = 0.1355, cb2 = 0.622, σ =
2

3
, cv1 = 7.1, cv2 = 0.7, cv3 = 0.9,

cw1 =
cb1
k2

+
1 + cb2
σ

, cw2 = 0.3, cw3 = 2, ct3 = 1.2, ct = 0.5,

and the eddy viscosity ultimately deduces as µt = ρṽfv1.

Here, we use the negative Spalart–Allmaras model [99] meant to avoid the gen-
eration of negative turbulent viscosity without clipping (as this is detrimental to the
quality of the solution and to the convergence behavior), that consists in replacing
(3.48) when ν̃ is negative (in which case the eddy viscosity is forced to µt = 0) by:

∂tν̃ + u · ∇ν̃ − cb1(1− ct3)S̃ν̃ − cw1

(
ν̃

d

)2

− cb2
σ
∇ν̃ · ∇ν̃ − 1

σ
∇ · [(ν + fnν̃)∇ν̃] = 0, (3.49)

with

fn =
cn1 + χ3

cn1 − χ3
, (3.50)

and cn1 = 16.
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In practice, we use a semi-implicit discretization of all non-linear terms to recast
equations (3.48) and (3.49) into linear Convection-Diffusion-Reaction form

ν̃n+1 − ν̃n

∆t
+Cn · ∇ν̃n+1 −∇ · (Dn∇ν̃n+1)−Rnν̃n+1 = 0, (3.51)

where Cn, Dn and Rn are convection, diffusion, and reaction terms respectively,
that can be evaluated from knowledge of the SA working variable νn at the previous
time step, and of the current velocity un+1 calculated before solving the SA equation
at the same time step. Namely, we obtain

Cn =un+1 − cb2
σ
∇ν̃n, (3.52)

Dn =
ν + ν̃n

σ
, (3.53)

Rn =cb1(1− fnt2)S̃n − (cw1f
n
w −

cb1
k2
fnt2)

ν̃n

d2
, (3.54)

for (3.48) and

Cn =un+1 − cb2
σ
∇ν̃n, (3.55)

Dn =
ν + fnn ν̃

n

σ
, (3.56)

Rn =cb1(1− ct3)S̃n + cw1

(
ν̃n

d2

)
, (3.57)

for (3.49). The SUPG method is then used to discretize the CDR form (3.51), with
stabilized weak form for the coarse scale following from [100] as:

(
ν̃n+1
h − ν̃nh

∆t
, sh)Ω + (Cn

h · ∇ν̃n+1
h , sh)Ω − (Dn

h∇ν̃n+1
h ,∇sh)Ω − (Rn

hν̃
n+1
h , sh)Ω

+
∑
K

(τnν̃ R
n+1
ν̃ , Cn

h · ∇sh)K = 0 ∀sh ∈ Wh, (3.58)

where Rn+1
ν̃ is the residual of (3.51):

Rn+1
ν̃ =

ν̃n+1
h − ν̃nh

∆t
+Cn

h · ∇ν̃n+1
h −Rn

hν̃
n+1, (3.59)

and the stabilization parameter τnν̃ is computed as:

τnν̃ =

(
c2

hK
||Cn||K +

c1

h2
K

Dn +Rn

)−1

, (3.60)

where ||Cn||K is a normed measure of the convection term. The linear system
arising from Equation (3.58) is solved using the same numerical method as for the
Navier–Stokes equations as described in the previous section.
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3.5 Immersed volume method

Many engineering scenarios involve the detailed study of the interaction between a
solid body and the flow in which it is immersed. In fluid mechanics, this is gener-
ally done using a so-called body-fitted meshes whose boundaries coincide with the
interface of the solid body. Nonetheless, in the case of complex 3D geometries, a
body-fitted mesh is very difficult to achieve, especially if one is to consider solid
bodies in motion. One solution is to use a monolithic approach, i.e. a single compu-
tational mesh that encompasses the whole problem and in particular the solid body,
that ends up being literally immersed in the domain where the fluid flows. The solid
body is therefore discretized by mesh elements and no longer by boundaries. The
immersed volume method used in this work developed in [101] consists in identifying
the interface between the fluid and the solid body using a signed distance function,
in order to be able to solve a single system of equations with variable mechanical
properties (density, viscosity), depending on whether a given node lies in the fluid
or in the solid domain. The following sections review the main ingredients involved,
namely a level-set interface capturing method to localize the fluid/solid interface,
anisotropic mesh adaptation to achieve a high-fidelity description of said interface,
and relevant mixing laws to distribute composite mechanical properties on either
side of the interface. Such a numerical framework is especially relevant for DRL
problems in which the mesh depends on the sampled action (for instance if a neural
network is tasked with optimizing the position of a solid body, as will be done here
on several occasions), as it allows ensuring that all actions sampled by a DRL agent
are assessed with the same numerical accuracy.

3.5.1 The Level-Set Method

In the monolithic approach, a single mesh is used to describe both the fluid flow and
the solid body. The interface between these two sub-domains is identified using a
signed distance function, called levelset. In the case of simple geometries for which
an analytical function is known, the latter is used to define the solid body. In the
opposite and more general case, the geometry is first created using CAD (Com-
puter Aided Design) software, then the surface mesh (STL for stereolithography) is
exported and immersed into the monolithic domain. The levelset function is then
calculated either easily from the analytical function (when it is known), or according
to a more complex algorithm from the immersed geometry itself [102], in a way such
that the minimum distance to the interface between the fluid and the solid body
is known at each node and the interface between the fluid and the solid body is
straightforwardly described by the zero iso-value of the levelset function. In order
to discriminate between the interior and the exterior of the solid body, this distance
is signed, as it takes (by convention) positive values inside the solid, and negative
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values outside. For instance, if we let Ω be the whole domain split into fluid Ωf and
solid Ωs domain, and if we denote by Γ = Ωs ∩Ωf the fluid/solid interface, the level
set is defined at each node x of Ω as:

α(x) =


−dist(Γ, x) if x ∈ Ωf ,
0 if x on Γ,
dist(Γ, x) if x ∈ Ωs.

(3.61)

3.5.2 Anisotropic mesh adaptation

Because the level-set function is merely an implicit representation of the solid/fluid
interface, the interface can intersect the elements of the mesh arbitrarily it is not
in line with the element edges, in which case the high ratio in the material prop-
erties across the interface can yield spurious oscillations of the numerical solutions.
Mesh adaptation allows considering a regularized interface instead, meaning that
the mechanical properties are distributed smoothly over a certain thickness around
the interface. Here, we use anisotropic mesh adaptation (driven by physics-based
criteria) with highly stretched elements along the interface, as a mean to reduce to
the minimum said interface thickness (as it bears no physical relevance), which in
turn ensures maximum accuracy of the numerical solutions. As a result, we are able
to:

• Produce very good accuracy properties for high Reynolds number flows,

• Ensure accurate and oscillation free numerical solutions,

• Reduce the computational cost of assessing a single DRL action,

• Reliably assess any DRL action with the same accuracy.

We use ratios of anisotropy up to 1000:1, which requires an appropriate definition of
the stabilization parameters using the directional element diameter, as the element
size is featured in all stabilization parameter.

In short, the procedure requires building a metric, that is, a symmetric positive
defined tensor containing the information regarding the principal direction in space
and the size with respect to each direction. As an example, a simple metric, isotropic
far from the interface, with mesh size set equal to h∞ in all directions, but anisotropic
near the interface, with mesh size equal to h⊥ in the direction normal to the interface,
and to h∞ in the other directions, can be written for an intended thickness ε as

M = K(α)n⊗ n+
1

h2
∞
I with K(α) =

 0 if |α| ≥ ε/2 ,
1

h2
⊥
− 1

h2
∞

if |α| < ε/2 ,

(3.62)
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where n = ∇α/||∇α|| is the unit normal to the fluid/solid interface computed from
the level set gradient.

Exhaustive details regarding the mathematical background and the method im-
plementation in the Cimlib-CFD library can be found in [103]. Suffice it to say
here that it is an automatic procedure that relies on the a posteriori definition of
the metric driving the re-meshing procedure by minimizing the interpolation error
of the numerical solution under the constraint of a fixed number of edges in the
mesh. It is thus well suited for dynamic mesh adaptation (meaning that the mesh
can be adapted on the fly during the simulation) based on several fields of interest.
For instance the velocity norm or scalar components, the temperature field or its
gradients, the levelset, or any combination of those, can be used as multi-component
adaptation criteria, as the procedure allows building a unique metric without having
to intersect several individual metrics (which can trigger a substantial computational
cost).

3.5.3 Mixing Laws

The problem to be solved is then modeled using a single system of Navier–Stokes
equations, whose mechanical properties vary according to the subdomain in which a
given node is located. Such an approach uses the smooth Heaviside function defined
in [104], that depends on the sign of the levelset function according to:

H(α) =


1 if α(x) > ε,

1

2

(
1 +

α

ε
+

1

π
sin
(πα
ε

))
if |α(x)| ≤ ε,

0 if α < −ε.

(3.63)

In (3.63) ε is the intended smooth interface thickness set to ε = 2him where him is
the mesh size in the normal direction computed on element K as

him = max
j,l∈K
∇α · (xl − xj) . (3.64)

For aerodynamics applications, solving a unique set of Navier–Stokes equations
on a single computational domain requires mixing the density ρ and the viscosity
µ, which is done using arithmetic means as follows:

ρ =ρfH(α) + ρs(1−H(α)), (3.65)

µ =µfH(α) + µs(1−H(α)), (3.66)

where the subscripts f and s refer to the fluid and the solid body, respectively. For
thermal problems, solving the coupled Navier–Stokes and heat equations requires
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mixing additionally the specific heat capacity Cp and the thermal conductivity λ.
This is done using

ρcp =ρfcpfH(α) + ρscps(1−H(α)), (3.67)

1

λ
=

1

λf
H(α) +

1

λs
(1−H(α)), (3.68)

i.e., we ensure continuity of the heat flux across the interface using the harmonic
mean of the conductivity, as obtained from a steady, no source, one dimensional
analysis of the heat flux when the conductivity varies stepwise from one medium to
the next [105].

3.6 Conclusion

This chapter has presented the main ingredients of the Cimlib-CFD finite elements
library used to solve the incompressible Navier–Stokes equations using the Varia-
tional Multiscale stabilization method. The extension to the Reynolds-Averaged
Navier–Stokes approach with Spalart-Allmaras turbulence model as closure is also
provided for which the stabilization proceeds from that of the Convection Diffusion
Reaction equation. Finally, we present the monolithic Immersed Volume Method
used to solve a single set of equations on a unique computational domain encom-
passing generic solid bodies immersed in a fluid domain, and the anisotropic mesh
adaptation procedure used to achieve an accurate description of the solid/fluid inter-
faces. A numerical application of this numerical framework is provided in figure 3.1
where we present several snapshot of the flow past the fluidic pinball, an equilateral
triangle arrangement of spanwise infinite cylinders immersed in a two-dimensional,
uniform flow (further studied in chapter 4) together with the corresponding meshes
adapted using several variables all at once. The left row is the result of an a-priori
adaptation procedure using the level-set of the fluid/solid interface plus an addi-
tional level-set (corresponding to a fictitious inner interface) allowing to achieve
progressive successive refinement of the background elements. The right row is the
result of a dynamic adaptation procedure (i.e., the mesh is adapted over the course
of the simulation so as to keep the number of nodes of the a-priori mesh constant)
using the level-set of the fluid/solid interface and the two components of the velocity
vector. The obtained results stress that in adaptive mode, all boundary layers are
sharply captured via extremely stretched elements, with the adaptation strategy
yielding refined meshes along the boundary layers but more generally in all shear
regions, while the elements in-between are coarser and essentially isotropic.
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(a) (b)

Figure 3.1: Results of the anisotropic mesh adaptation for the fluidic pinball test case.
Results on the left column pertain to a mesh adapted prior to simulation, made
up of 120000 elements. Results on the right column pertain to a mesh adapted
over the course of simulation under the constraint of an identical number of
nodes.
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This chapter is presented as a self-contained article published in 2021 in Phys-
ical Review Fluids [69], hence, some details (related to motivation, scope and/or
methodology) are repeated from chapters 1-3 to preserve the consistency of the whole
content.

Ce chapitre évalue la capacité des techniques d’apprentissage par renforcement
profond (DRL) à aider à l’optimisation et au contrôle des systèmes de mécanique des
fluides. Il s’appuie sur le PPO en une seule étape, une nouvelle version ”dégénérée”
de l’algorithme Proximal Policy Optimization (PPO), destinée aux situations où
la politique optimale à apprendre par un réseau neuronal ne dépend pas de l’état,
comme c’est notamment le cas dans les problèmes de contrôle en boucle ouverte. La
récompense numérique fournie au réseau neuronal est calculée à l’aide d’un environ-
nement interne d’éléments finis stabilisés mettant en œuvre la méthode variation-
nelle multi-échelle (VMS). Plusieurs écoulements en deux dimensions sont utilisés
comme banc d’essai. La méthode est d’abord appliquée à deux cas d’optimisation
relativement simples (maximisation de la portance moyenne d’un profil d’aile NACA
0012 et de la portance instantannée de deux cylindres circulaires côte à côte, tous
deux en régime laminaire) pour évaluer la convergence et la précision en les com-
parant aux données DNS internes. Le potentiel de la PPO en une seule étape pour
l’optimisation fiable en bôıte noire de systèmes de dynamique des fluides numérique
(CFD) est ensuite démontré en abordant plusieurs problèmes de contrôle en boucle
ouverte avec des espaces de paramètres suffisamment grands pour écarter le DNS.
L’approche s’avère pertinente pour cartographier les meilleures positions pour le
placement d’un petit cylindre de contrôle dans le but de réduire la trâınée dans des
écoulements cylindriques laminaires et turbulents. Tous les résultats sont cohérents
avec les données internes obtenues par la méthode adjointe, et la trâınée d’un cylin-
dre carré à des nombres de Reynolds de l’ordre de quelques milliers est réduite de
30%, ce qui correspond bien aux données expérimentales de référence disponibles
dans la littérature. La méthode réduit également avec succès la trâınée du fluidic
pinball, un arrangement en triangle équilatéral de cylindres rotatifs immergés dans
un écoulement turbulent. Conformément aux résultats de l’apprentissage automa-
tique de référence tirés de la littérature, la trâınée est réduite de près de 60% en
utilisant un actionnement composé d’un cylindre amont tournant lentement et de
deux cylindres en aval tournant dans des directions opposées de manière à réduire
l’écart d’écoulement entre eux.

This chapter gauges the ability of deep reinforcement learning (DRL) techniques
to assist the optimization and control of fluid mechanical systems. It relies on
single-step PPO, a novel, “degenerate” version of the proximal policy optimization
(PPO) algorithm, intended for situations where the optimal policy to be learnt by a
neural network does not depend on state, as is notably the case in open-loop control
problems. The numerical reward fed to the neural network is computed with an in-
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house stabilized finite elements environment implementing the variational multiscale
(VMS) method. Several prototypical separated flows in two dimensions are used as
testbed. The method is applied first to two relatively simple optimization test cases
(maximizing the mean lift of a NACA 0012 airfoil and the fluctuating lift of two
side-by-side circular cylinders, both in laminar regimes) to assess convergence and
accuracy by comparing to in-house DNS data. The potential of single-step PPO for
reliable black-box optimization of computational fluid dynamics (CFD) systems is
then showcased by tackling several problems of open-loop control with parameter
spaces large enough to dismiss DNS. The approach proves relevant to map the best
positions for placement of a small control cylinder in the attempt to reduce drag
in laminar and turbulent cylinder flows. All results are consistent with in-house
data obtained by the adjoint method, and the drag of a square cylinder at Reynolds
numbers in the range of a few thousands is reduced by 30%, which matches well
reference experimental data available from literature. The method also successfully
reduces the drag of the fluidic pinball, an equilateral triangle arrangement of rotating
cylinders immersed in a turbulent stream. Consistently with reference machine
learning results from the literature, drag is reduced by almost 60% using a so-
called boat tailing actuation made up of a slowly rotating front cylinder and two
downstream cylinders rotating in opposite directions so as to reduce the gap flow in
between them.
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4.1 Introduction

Flow control, defined as the ability to finesse a flow into a more desired state, is
a field of tremendous societal and economical importance. In applications such as
ocean shipping or airline traffic, reducing the overall drag by just a few percent
while maintaining lift can help reducing fossil fuel consumption and CO2 emission
while saving several billion dollars annually [23]. Many other scenario relevant to
fluid mechanical systems call for similarly improved engineering design, e.g., the
airline industry is greatly concerned with reducing the structural vibrations and
the radiated noise that occur under unsteady flow conditions [106, 107], while mi-
crofluidics [108] and combustion [109] both benefit from enhanced mixing (which
can be achieved by promoting unsteadiness in some appropriate manner). All such
problems fall under the purview of this line of study.

Flow control is often benchmarked in the context of bluff body drag reduc-
tion. Numerous strategies have been implemented, either open-loop with passive
appendices (e.g., end/splitter plates, small secondary cylinder, flexible tail), or open-
loop with actuating devices (e.g., plasma actuation, base bleed, rotation) or closed-
loop (e.g. transverse motion, blowing/suction, rotation, all relying on appropriate
sensing of flow variables); see the comprehensive surveys of recent developments
in [1, 2, 27, 110–115]. Nonetheless, most strategies are trial and error and rely on
extensive, costly experimental or numerical campaigns, which has motivated the
development of rigorous mathematical formalisms capable of achieving optimal de-
sign and control with minimal effort. The adjoint method is one family of such
algorithms, that has proven efficient at accurately computing the objective gradient
with respect to the control variables in large optimization spaces, and has gained
prominence in many applications ranging from atmospheric sciences [29] to aero-
dynamic design [30, 116–118], by way of fresh developments meant to reshape the
linear amplification of flow disturbances [119–124].

Another promising option for selecting optimal subsets of control parameters is
to rely on machine learning algorithms running labeled data through several layers
of artificial neural network while providing some form of corrective feedback. Neural
networks are a family of versatile parametric tools that can learn how to hierarchi-
cally extract informative features from data, and have gained traction as effective
and efficient computational processors for performing a variety of tasks, from ex-
ploratory data analysis to qualitative and quantitative predictive modeling. The in-
creased affordability of high performance hardware (together with reduced costs for
data acquisition and storage) has indeed allowed leveraging the ever-increasing vol-
ume of data generated for research and engineering purposes into novel insight and
actionable information, which in turn has reshaped entire scientific disciplines such
as image analysis [125] or robotics [64, 126]. Since neural networks have produced
most remarkable results when applied to stiff large-scale nonlinear problems [127],
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it is only natural to assume that they can successfully tackle the state-space models
arising from the high-dimensional discretization of partial differential equation sys-
tems. Machine learning has thus been making rapid inroads in fluid mechanics, with
consistent efforts aimed at solving the governing equations [128], predicting closure
terms in turbulence models [129], building reduced-order models [130], controlling
flows [131, 132], or performing flow measurements and visualization [133–135]; see
also [136] for an overview of the current developments in this field.

The focus here is on deep reinforcement learning (DRL), an advanced branch
of machine learning in which deep neural networks learn how to behave in an envi-
ronment so as to maximize some notion of long-term reward (a task compounded
by the fact that each action affects both immediate and future rewards). Several
notable works using DRL in mastering games (e.g., Go, Poker) have stood out
for attaining super-human level [48, 56], but the approach has also breakthrough
potential for practical applications such as robotics [18, 57], computer vision [59],
self-driving cars [60] or finance [58], to name a few. There is also great potential for
applying DRL to fluid mechanics, for which efforts are ongoing but still at an early
stage, with only a handful of pioneering studies providing insight into the perfor-
mance improvements to be delivered in shape optimization [21, 137, 138] and flow
control [139–141]. Nonetheless, sustained commitment from the machine learning
community has allowed expanding the scope from computationally inexpensive, low-
dimensional reductions of the underlying fluid dynamics [12–14] to complex Navier–
Stokes systems [37, 38]. Proximal policy optimization (PPO [18]) has quickly gained
momentum as one of the go-to algorithms for this purpose, as evidenced by several
recent publications assessing relevance for open- and closed-loop drag reduction in
cylinder flows at Reynolds numbers in the range of a few hundreds [39, 41, 43, 49].

This research draws on this foundation to further shape the capabilities of PPO
(still a newcomer despite its data efficiency, simplicity of implementation and re-
liable performance) for flow control, and help narrow the gap between DRL and
advanced numerical methods for multiscale, multi-physics computational fluid dy-
namics (CFD). The main novelty is the use of single-step PPO, a novel “degenerate”
algorithm intended for open-loop control problems, as the optimal policy to be learnt
is then state-independent, and it may be enough for the neural network to get only
one attempt per episode at finding the optimal. The objective is twofold: first,
to prove feasibility using several prototypical separated flows in two dimensions as
testbed. Second, to assess convergence and relevance in the context of turbulent
flows at moderately large Reynolds number (in the range of a few thousands). This
is a topic whose surface is barely scratched by the available literature, as our lit-
erature review did not reveal any other study considering DRL-based control of
turbulent flows besides [142], another research effort conducted in the same time
frame as the present work.Single-step PPO has been speculated to hold a high po-
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tential as a reliable black-box CFD optimizer [138], but we insist that it lies out
of the scope of this chapter to provide exhaustive performance comparison data
against state-of-the art optimization techniques (e.g., evolution strategies or genetic
algorithms). This would indeed require a tremendous amount of time and resources
even though the efforts for developing the method remain at an early stage (to the
best of our knowledge, no study in the literature has considered using DRL in a
similar fashion) and new algorithms cannot be expected to reach right away the
level of performance of their more established counterparts.

4.2 Methodology

4.2.1 Deep reinforcement learning

Reinforcement learning (RL) provides a consistent framework for modeling and solv-
ing decision-making problems through repeated interaction between an agent and
an environment. We consider the standard formulation in which the agent takes an
action at based on a partial observation of the current state st the environment is in.
The environment transits to the next state st+1, and the agent is fed with a reward rt
that acts as the quality assessment of the actions recently taken. This repeats until
some termination state is reached, the objective of the agent being to determine
the succession of actions maximizing its cumulative reward over an episode (this is
the reference unit for agent update, best understood as one instance of the scenario
in which it takes actions). Deep reinforcement learning (DRL) combines RL and
deep neural networks, i.e., collections of connected units or artificial neurons, that
can be trained to arbitrarily well approximate the mapping function between input
and output spaces. We consider here fully connected networks in which neurons
are stacked in layers and information propagates forward from the input layer to
the output layer via “hidden” layers. Each neuron performs a weighted sum of its
inputs to assign significance with regard to the task the algorithm is trying to learn,
adds a bias to figure out the part of the output independent of the input, and feeds
an activation function that determines whether and to what extent the computed
value should affect the outcome.

4.2.2 Proximal policy optimization

Proximal policy optimization (PPO) [18] is a model free, on-policy gradient, advan-
tage actor-critic reinforcement algorithm. The related key concepts can be summa-
rized as follows:

- model free: the agent interacts with the environment itself, not with a surrogate
model of the environment (the corollary here being that it needs no assumptions
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about the fluid dynamics underlying the control problems to be solved).

- policy gradient: the behavior of the agent is entirely defined by a probability
distribution π(s, a) over actions given states, optimized by gradient ascent. In DRL,
the policy is represented by a neural network. The free parameters learnt from data
are the network weights and biases, with respect to which the gradient is computed
backwards from the output to the input layer according to the chain rule, one layer
at the time, using the back-propagation algorithm [62].

- on-policy: the algorithm improves the policy used to generate the training data
(in contrast to off-policy methods that also learn from data generated with other
policies).

- advantage: the policy gradient is approximated by that of the policy loss

Eτ∼π

[
T∑
t=0

log (π(at|st)) Âπ(s, a)

]
, (4.1)

where τ = (s0, a0, . . . , sT , aT ) is a trajectory of state and actions with horizon T , Aπ

is the advantage function measuring the gain associated with taking action a in state
s, compared to taking the average over all possible actions, and Âπ is some biased
estimator of the advantage, here its normalization to zero mean and unit variance.

- actor-critic: the learning performance is improved by updating two different
networks, a first one called actor that controls the actions taken by the agent, and
a second one called critic, that estimates the advantage as

Aπ(st, at) = rt + γV (st+1)− V (st) , (4.2)

where V (s) is the expected value of the return of the policy in state s and γ ∈ [0, 1]
is a discount factor adjusting the trade-off between immediate and future rewards.

PPO uses conservative policy updates to alleviate the issue of performance col-
lapse affecting standard policy gradient implementations1. We use here PPO-clip2

1Large policy updates can cause the agent to fall off the cliff and to restart from a poorly
performing state with a locally bad policy, which is all the more harmful as the step size for policy
updating cannot be tuned locally (an above average value can speed up learning in regions of the
parameter space where the policy loss is relatively flat, but trigger exploding updates in sharper
variation regions).

2As opposed to PPO-Penalty, a variant relying on a penalization on the average Kullback–
Leibler divergence between the current and new policies, but that tends to perform less well in
practice.
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to optimize the surrogate loss

E(s,a)∼π

[
min

(
π(a|s)
πold(a|s)

, 1 + εsgn(Âπ(s, a))

)
Âπ(s, a)

]
, (4.3)

where ε is the clipping range defining how far away the new policy is allowed to
go from the old. The general picture is that a positive (resp. negative) advantage
increases (resp. decreases) the probability of taking action a in state s, but always
by a proportion smaller than ε, otherwise the min kicks in (4.3) and its argument
hits a ceiling of 1 + ε (resp. a floor of 1 − ε). This prevents stepping too far
away from the current policy, and ensures that the new policy will behave similarly.
There exist more sophisticated PPO algorithms (e.g., Trust region PPO [143], that
determines first a maximum step size relevant for exploration, then adaptively ad-
justs the clipping range to find the optimal within this trust region), but standard
PPO has simple and effective heuristics. It is computationally inexpensive, easy to
implement (as it involves only the first-order gradient of the policy log probabil-
ity), and remains regarded as one of the most successful RL algorithms, achieving
state-of-the-art performance across a wide range of challenging tasks, including flow
control [39].

4.2.3 Single-step PPO

We now come to single-step PPO (hereafter denoted by PPO-1 to ease the read-
ing), a “degenerate” version of PPO introduced in [138] and intended for situations
where the optimal policy to be learnt by the neural network is state-independent,
as is notably the case in open-loop control problems (closed-loop control problems
conversely require state-dependent policies for which standard PPO is best suited).
The main difference between standard and single-step PPO can be summed up
as follows: where standard PPO seeks the optimal set of actions aopt yielding the
largest possible reward, single-step PPO seeks the optimal mapping fθopt such that
aopt = fθopt(s0), where θ denotes the network free parameters and s0 is some input
state (usually a vector of zeros) consistently fed to the agent for the optimal policy
to eventually embody the transformation from s0 to aopt. The agent initially imple-
ments a random state-action mapping fθ0 from s0 to an initial policy determined by
the free parameters initialization θ0, after which it gets only one attempt per learn-
ing episode at finding the optimal (i.e., it interacts with the environment only once
per episode). This is illustrated in figure 4.1 showing the agent draw a population of
actions at = fθt(s0) from the current policy, and being returned incentives from the
associated rewards to update the free parameters for the next population of actions
at+1 = fθt+1(s0) to yield larger rewards.

In practice, the agent outputs a policy parameterized by the mean and variance of
the probability density function of a d-dimensional multivariate normal distribution,
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Figure 4.1: Action loop for single-step PPO. At each episode, the same input state s0 is
provided to the agent, which in turn provides n actions to n parallel environ-
ments. The latter return n rewards, that evaluate the quality of each action
taken. Once all the rewards are collected, an update of the agent parameters
is made using the PPO loss (4.3). The process is repeated until convergence.

with d the dimension of the action required by the environment. Actions drawn
in [−1, 1]d are then mapped into relevant physical ranges, a step deferred to the
environment as being problem-specific. The resolution essentially follows the process
described in section 4.2.2, only the surrogate loss reads

Ea∼π
[
min

(
π(a)

πold(a)
, 1 + εsgn(Âπ(a))

)
Âπ(a)

]
, (4.4)

and the advantage Aπ reduces to the whitened reward rt. This is because the
trajectory consists of a single state-action pair, so the discount factor can be set to
γ = 1 with no loss of generality. In return, the two rightmost terms cancel each
other out in (4.2), meaning that single-step PPO can do without the value-function
evaluations of the critic network (and is thus not actually actor-critic).

4.2.4 Computational fluid dynamics environment

The CFD resolution framework relies on the in-house, parallel, finite element library
CimLIB CFD [103], whose main ingredients are as follows:

- the variational multiscale approach (VMS) is used to solve a stabilized weak form of
the governing equations using linear approximations (P1 elements) for all variables,
which otherwise breaks the Babuska–Brezzi condition. The approach relies on an a
priori decomposition of the solution into coarse and fine scale components [79, 144,
145]. Only the large scales are fully represented and resolved at the discrete level.
The effect of the small scales is encompassed by consistently derived source terms
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(a) (b)

Figure 4.2: Details of (a) the boundary layer mesh and (b) successive refinement steps of
the background mesh for the flow past a tandem arrangement of two circular
cylinders. The blue line in (a) indicates the zero iso-contour of the level set
function.

proportional to the residual of the resolved scale solution, hence ad-hoc stabilization
parameters comparable to local coefficients of proportionality.

- in laminar regimes, velocity and pressure come as solutions to the Navier–Stokes
equations. In turbulent regimes, the focus is on phase-averaged velocity and pres-
sure modeled after the unsteady Reynolds averaged Navier–Stokes (uRANS) equa-
tions. In order to avoid transient negative turbulent viscosities, negative Spalart–
Allmaras [99] is used as turbulence model, whose stabilization proceeds from that
of the convection-diffusion-reaction equation [100, 146].

- the immersed volume method (IVM) is used to immerse and represent all geome-
tries inside a unique mesh. The approach combines level-set functions to localize the
solid/fluid interface, and anisotropic mesh adaptation to refine the mesh interface
under the constraint of a fixed, number of edges. This ensures that the quality of
all actions taken over the course of a PPO optimization is equally assessed, even
though the interface can depend on the action.

Substantial evidence of the flexibility, accuracy and reliability of this numerical
framework is documented in several papers to which the reader is referred for ex-
haustive details regarding the level-set and mesh adaptation algorithms [102, 103],
the VMS formulations, stabilization parameters and discretization schemes used in
laminar and turbulent regimes [89, 90, 147, 148], and the mathematical formulation
of the IVM in the context of finite element VMS methods [149, 150].
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4.2.5 Numerical implementation

In practice, actions are distributed to multiple environments running in parallel,
each of which executes a self-contained MPI-parallel CFD simulation and feeds data
to the DRL algorithm (hence, two levels of parallelism related to the environment
and the computing architecture). Here, all CFD simulations are performed on 12
cores of a workstation of Intel Xeon E5-2640 processors. The algorithm waits for
the simulations running in all parallel environments to be completed, then shuffles
and splits the rewards data set collected from all environments into several buffers
(or mini-batches) used sequentially to compute the loss and perform a network
update. The process repeats for several epochs, i.e., several full passes of the training
algorithm over the entire data set, which ultimately makes the algorithm slightly off-
policy (since the policy network ends up being trained on samples generated by older
policies, which is customary in standard PPO operation). This simple parallelization
technique is key to use DRL in the context of CFD applications, as a sufficient
number of actions drawn from the current policy must be evaluated to accurately
estimate the policy gradient. This comes at the expense of computing the same
amount of reward evaluations, and yields a substantial computational cost for high-
dimensional fluid dynamics problems (typically from a few to several hundred CFD
simulations for the cases considered herein). In the same vein, it should be noted
that the common practice in DRL studies to gain insight into the performances of
the selected algorithm by averaging results over multiple independent training runs
with different random seeds is not tractable, as it would trigger a prohibitively large
computational burden. The same random seeds have thus been deliberately used
over the whole course of study to ensure a minimal level of performance comparison
between cases. The remainder of the practical implementation details are as follows:

- the environment consists of CFD simulations of two-dimensional (2-D) flows de-
scribed in a Cartesian coordinate system with drag positive in the +x direction. All
equations are discretized on rectangular grids whose side lengths documented in the
coming sections have been checked to be large enough not to have a discernible influ-
ence on the results (with the exception of the square cylinder flow in section 4.4.1.3
and the fluidic pinball in section 4.4.2, for which we use respectively the values rec-
ommended in [151] and the same values as in [132]). Open flow conditions are used,
that consist of a uniform inflow in the x direction, together with symmetric lateral,
advective outflow and no-slip interface conditions. In turbulent regime, the ambient
value of the Spalart–Allmaras variable is three times the molecular viscosity, as rec-
ommended to lead to immediate transition. Typical adapted meshes of the interface
and wake regions are shown in figure 4.2, the latter also being accurately captured
via successive refinement of the background elements.
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Neural network

2 Nb. hidden layers
4 Nb. neurons/layer

TBS Nb. epochs
TBS Nb. environments
TBS Size of mini-batches

PPO

5× 10−3 Learning rate
0.3 Clipping range

1 Discount factor

Table 4.1: Details of the network architecture and PPO hyper parameters. The number
of epochs, environments and the size of the mini-batches are provided on a
case-by-case basis in sections 4.3 and 4.4.

- the instant reward is (up to a plus/minus sign) either the time-averaged or the
root mean square (rms) value of the force coefficient (drag or lift per unit span
length), to consider either the mean or fluctuating force acting on the immersed
body. Instantaneous values are computed with a variational approach featuring only
volume integral terms, reportedly less sensitive to the approximation of the body
interface than their surface counterparts [152, 153]. Time averages are performed
over an interval [ti; tf ] with edges large enough to dismiss the initial transient and
achieve convergence to statistical equilibrium. Moving average rewards and actions
are also computed as the sliding average over the 50 latest values (or the whole
sample if it has insufficient size).

- the agent is a fully connected network with 2 hidden layers, each of which holds
4 neurons with hyperbolic tangent activation functions. We use the default online
PPO implementation of Stable Baselines, a toolset of reinforcement learning algo-
rithms dedicated to the research community and industry [154], for which a custom
OpenAI environment has been designed with the Gym library [155]. Unlike other
RL algorithms, PPO does not generally require significant tuning of the hyper pa-
rameters (i.e., parameters that are not estimated from data). Nonetheless, all values
used in this study are documented in table 4.1 to ease reproducibility, including the
learning rate (the size of the step taken in the gradient direction for policy update),
the PPO clipping range (set to the upper edge of the recommended range) and the
discount factor (set to the default PPO-1 value).
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(a) (b)

(c) (d)

Figure 4.3: Flow past a NACA 0012 - (a) Schematic diagram of the configuration. (b)
Mean lift against the angle of attack computed by DNS at Re = 100. The VS
label indicates the angles for which the flow exhibits unsteadiness in the form
of periodic vortex formation and shedding. The blue lines and symbols mark
the optimal. The red symbol is the average over the 5 latest single-step PPO
episodes, and the red lines delimit the corresponding variance intervals. (c-d)
Instantaneous vorticity fields computed at Re = 100, for values marked by the
circle symbols in (b), namely (c) α = 25 and (d) α = 40.

4.3 Application to flow optimization

4.3.1 Flow past a NACA 0012 airfoil

We consider first a NACA 0012 airfoil placed at incidence in a uniform stream, as
depicted in figure 4.3(a). The origin of the coordinate system is at the airfoil pivot-
point, set at quarter chord length from the leading edge. A laminar, time-dependent
case at Reynolds number Re = U∞c/ν = 100 is modeled after the Navier–Stokes
equations, where U∞ is the inflow velocity, c the straight chord distance and ν the
kinematic viscosity. The objective is to maximize the mean lift cy, for which the
sole control parameter is the angle of attack α measuring the incidence relative to
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(a) (b)

Figure 4.4: Flow past a NACA 0012 at Re = 100 - (a) Evolution per episode for the
instant (black line) and moving average (over episodes, orange line) values
of the mean lift (over time). The corresponding number of CFD simulations
(obtained multiplying by the number of environments) is displayed on the sec-
ondary horizontal axis. (b) Same as (a) for the angle of attack. The blue lines
mark the DNS optimal.

the chord (in degrees and with the convention that α > 0 for the airfoil to generate
positive lift. Also, we keep in mind that α is rather a state parameter than an
adjustable control parameter in practical situations, but the methodology carries
over to related optimization problems such as the design of multi-element high-lift
systems). This is a problem simple enough to allow direct comparisons between
PPO-1 and DNS (actually VMS, but the difference is clear from context), all the
more so as lift varies smoothly with the incidence. This is evidenced in figure 4.3(b)
showing reference data obtained from 15 DNS runs computing the mean lift to
an accuracy of 3% with the simulation parameters documented in table 4.2. The
distribution changes slope near α ∼ 30◦ (because the system bifurcates from a steady
to a time-periodic vortex-shedding regime; see figure 4.3(c-d) showing instantaneous
vorticity fields computed on either side of the threshold) but otherwise exhibits a
well-defined, smooth maximum at α? = 50.6, associated with cy

? = 0.94.
For each PPO-1 learning episode, the network outputs a single value ξ in [−1; 1]

mapped into

α = ξαmax , (4.5)

for the angle of attack to vary in [−αmax;αmax] with αmax = 90◦. The reward r = cy
is then computed using the same simulation parameters, after which the network is
updated for 32 epochs using 8 environments and 4 steps mini-batches. 20 episodes
have been run for this case, which represents 160 simulations, each of which lasts
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∼ 25mn using 12 cores,3 hence ∼ 65h of total CPU cost (equivalently, ∼ 8h of
resolution time). We show in figure 4.4(a) the evolution of the reward collected over
the course of the optimization. The moving average increases almost monotonically
and reaches a plateau after about 15 episodes, and the optimal lift computed as the
average over the 5 latest episodes is cy

? = 0.93± 0.01 (the variations are computed
from the rms of the moving average over the same interval, which is a simple yet
robust criterion to assess qualitatively convergence a posteriori). The associated
angle α? = 50.2◦ ± 1.2◦ varies by a larger factor, which is because lift is relatively
insensitive to the exact incidence in the vicinity of the optimal. This is perfectly
in line with the DNS, as illustrated by the red lines in figure 4.3(b) showing the
limits of the so-computed variance intervals. Nonetheless, PPO-1 turns to be rather
inefficient at finding the optimal, because it must span continuous ranges of angles
while the one-dimensionality of the control space and the smoothness of the optimal
allow DNS to test only a few discrete values (hence it can converge within ∼ 1h
using the same level of CFD parallelization).

4.3.2 Flow past an arrangement of two side-by-side circular
cylinders

We examine now the side-by-side tandem arrangement of two identical circular cylin-
ders in a uniform stream, whose configuration is sketched in figure 4.5(a). The origin
of the coordinate system is at the center of the main cylinder, where we refer to the
upstream and downstream cylinders as “main” and “surrounding”, respectively. A
laminar, time-dependent case at Re = U∞D/ν = 300 is modeled after the Navier–
Stokes equations, where D is the diameter of either cylinder. The objective is to
maximize the rms lift cy,rms of the two-cylinder system (for instance, to increase
the amount of energy available for harnessing from fluid-structure interactions) for
which the sole control parameter is the gap spacing G, i.e., the side-to-side dis-
tance between the two cylinders. On paper, this is another problem simple enough
to allow direct comparisons between PPO-1 and DNS. In practice, the results are
not so unequivocal, as evidenced in figure 4.5(b) showing reference data obtained
from 30 DNS runs computing the rms lift to an accuracy of 5% with the simulation
parameters documented in table 4.2. A steep global maximum lies at G? = 2.35,
associated with c ?y,rms = 1.99, but there is a smoother local maximum at G?? = 6.25,
associated with c ??y,rms = 1.36, which reflects the high sensitivity of the pattern of flow
unsteadiness to the center distance. Namely without going into too much detail (as

3This is the time needed to compute periodic vortex shedding solutions. It takes less than
10mn to march the solution to steady state, but this barely affects the total CPU cost, as the
time needed to complete an episode is that of completing its longest simulation (so only the cost
of those episodes exclusively computing steady state solutions is reduced by a few minutes).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Flow past the tandem arrangement of two circular cylinders - (a) Schematic
diagram of the configuration. (b) Fluctuating (rms) lift against the gap spacing
computed by DNS at Re = 300. The red symbol is the average over the 5 latest
single-step PPO episodes, and the red lines delimit the corresponding variance
intervals. (c-f) Instantaneous vorticity fields computed at Re = 300, for values
marked by the circle symbols in (b), namely (c) G = 1, (d) G = 2, (d) G = 4,
and (e) G = 6.
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(a) (b)

Figure 4.6: Flow past the tandem arrangement of two circular cylinders at Re = 300 - (a)
Evolution per episode for the instant (black line) and moving average (over
episodes, orange line) values of the rms lift. (b) Same as (a) for the gap
spacing. The light (resp. dark) blue lines mark the DNS global (resp. local)
maximum. The circles are high reward parameters close to the DNS global
maximum.

this has been extensively discussed in the literature [156–159]), the instantaneous
vorticity field computed for G = 1 in figure 4.5(c) shows that the gap flow between
the two cylinders is initially steady, while the shear layers separating from the main
cylinder engulf those of the surrounding cylinder and trigger vortex shedding in the
far wake. For G = 2 (close to the global maximum), the gap flow is unsteady, but
the gap vortices are not fully developed by the time they impinge on the surrounding
cylinder, hence a single vortex street in the far wake; see figure 4.5(d). For G = 4,
one pair of gap vortices fully develops, then impinges on the surrounding cylinder,
which triggers a complex interaction in the near wake before a vortex street even-
tually forms further downstream; see figure 4.5(e). Finally for G = 6 (close to the
local maximum) the wake of the surrounding cylinder is unsteady again, and both
cylinders shed synchronized vortices close to anti-phase; see figure 4.5(f).

For each PPO-1 learning episode, the network outputs a single value ξ in [−1; 1]
mapped into

G =
1 + ξ

2
Gmax , (4.6)

for the gap to vary in [0;Gmax] withGmax = 10. This enables contact between the two
cylinders and keeps the computational cost affordable, as pushing the surrounding
cylinder further downstream would require extending the computational domain
and increasing the numbers of grid points accordingly (all the more so as we do not
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(a) (b)

Figure 4.7: Flow past the tandem arrangement of two circular cylinders at Re = 300 -
Time history of lift computed by DNS for gap spacings (a) G = 2 (close to the
DNS global maximum) and (b) G = 8.

anticipate such large distances to be relevant from the standpoint of optimization
because the interaction between both cylinders will weaken increasingly at some
point, although it can take up to several tens of diameters to do so). The reward
r = cy,rms is then computed using the same simulation parameters, after which
the network is updated for 32 epochs using 16 environments and 4 steps mini-
batches. Another 20 episodes have been run for this case. This represents 320
simulations, each of which lasts ∼ 60mn on 12 cores (much longer than in the
NACA case due to the increased simulation time), hence ∼ 320h of total CPU cost
(equivalently, ∼ 20h of resolution time), still much more than by DNS because DRL
keeps spanning continuous ranges of distances while DNS can settle for only a few
discrete values despite the sharpness of the global maximum (hence it can converge
within ∼ 3h using the same level of CFD parallelization).Figure 4.6(a) shows a
plateau in the moving average reward after about 15 episodes. The optimal lift
computed as the average over the 5 latest episodes is c ?y,rms = 1.34±0.02, associated
with G? = 6.31 ± 0.04, meaning that the agent misses the global maximum, but
converges to a value close to the local maximum; see the red lines in figure 4.5(b)
indicating the limits of the computed variance intervals.

This half-failure can be explained by the steepness of the reward gradients with
respect to the control variable in the vicinity of the global maximum. This is due
to the existence of a secondary instability mechanism at play in a narrow range of
center distances, as illustrated in figure 4.7(a) showing that for G ∼ 2, the flow
settles to a first time-periodic solution, then bifurcates to a second time-periodic
solution associated with increased lift oscillations (hence the large values of ti used
for this case). Actually, DRL does identify high reward positions close to G = 2
(circle symbols in figure 4.6), whose value cy,rms ∼ 2 is consistent with the global
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cy α cy,rms G

0.93 50.2◦ PPO-
1

1.34 6.31 PPO-
1 Optimal

0.94 50.6◦ DNS 1.99 2.35
DNS

1.36 6.25

CFD

100 300 Reynolds number
0.125 � Time-step

[50; 150] [200; 300] Averaging time span
[−15; 40]× [−15; 15] � Mesh dimensions

115000 125000 Nb. mesh elements
0.001 � Interface ⊥ mesh size

12 � Nb. Cores

PPO-1

20 � Nb. DRL episodes
8 16 Nb. Environments

32 � Nb. Epochs
4 � Size of mini-batches

60h 320h CPU time
7.5h 20h Resolution time

Table 4.2: Simulation parameters and convergence data for the flow past a NACA 0012 at
Re = 100 and the flow past the tandem arrangement of two circular cylinders
at Re = 300. NACA 0012: the interface mesh size yields ∼ 20 grid points in
the boundary-layer at mid-chord, under zero incidence, and the averaging time-
span represents ∼ 15−20 shedding cycles, depending on the incidence. Tandem
arrangement of two circular cylinders: the interface mesh size yields ∼ 20 grid
points in the boundary-layer of the main cylinder, just prior to separation, and
the averaging time-span represents ∼ 20 shedding cycles.

maximum, but there are very few times where the global maximum is met during the
exploration phase (compared to its local counterpart, again because of the topology
of the reward function). Because PPO voluntarily dismisses large policy updates to
avoid performance collapse, the clipped policy updates only lead to limited explo-
ration and trap the optimization process into a local maximum. Low to moderate
Reynolds numbers are likely required for such instability cascade scenario to occur,
so such results do not cast doubt on the applicability of single-step PPO to prac-
tically meaningful high Reynolds flows. They do stress, however, that the method
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(a) (b)

(c) (d)

Figure 4.8: Open-loop control of the circular cylinder flow by a small control cylinder of
diameter d = 0.1 - (a) Schematic diagram of the configuration. (b-d) Iso-
contours of the vorticity field computed at Re = 3900 for representative posi-
tions (xc, yc) of the control cylinder, namely (b) (0.61, 1.13), (c) (−2.10, 0.00)
and (d) (1.56, 0.41).

can benefit from carefully tuning the trade-off between exploration and exploitation,
which will be addressed in future work.

4.4 Application to open-loop flow control

4.4.1 Optimal cylinder drag reduction using a smaller con-
trol cylinder

The relevance of single-step PPO is now showcased by tackling various open-loop
control problems. The first one is that of a cylinder in a uniform stream, controlled
open-loop by a much smaller circular cylinder. Figure 4.8(a) presents a sketch of
the configuration pertaining to a circular geometry of the main cylinder, where
we refer to the large and small cylinders as “main” and “control”, respectively,
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but section 4.4.1.4 also considers a square geometry. The origin of the coordinate
system is at the center of the main cylinder. The objective is to minimize the mean
drag cx of the two-cylinder system, which requires reducing the drag of the main
cylinder sufficiently to compensate for the fact that the control cylinder itself is a
source of drag. Several laminar and turbulent Reynolds numbers Re = U∞D/ν
are considered, where D is the diameter of the main cylinder. The diameter of the
control cylinder is set to d = 0.1, therefore the sole control parameter is the 2-D
position of the control cylinder center, measured by the gap distance G between
the two cylinders and the azimuthal position θ with respect to the rear stagnation
point. This may not seem overly complicated on paper, but the parameter space
is actually large enough to dismiss mapping the best positions for placement of the
control cylinder by DNS, as tens of thousands of runs are required to cover merely
a few diameters around the main cylinder. In the following, single-step PPO is thus
compared to theoretical predictions obtained by the adjoint method. The latter
has proven fruitful to gain insight into the most efficient region from the linear
sensitivity of the uncontrolled flow (i.e., the flow past the main cylinder), without
ever calculating the controlled states, using instead a simple model of the force
exerted by the control cylinder on the flow. We shall not go into the technicalities
of how to derive the related adjoint equations, as the line of thought here is to
take the output sensitivity as a given to assess relevance of PPO-1. Suffice it to
say here that we rely on various levels of adjoint modeling whose key assumptions
are reviewed in appendix 4.6. The reader interested in more details is directed
to the original literature on this topic [124, 160, 161], where in-depth technical and
mathematical information, together with extensive discussions regarding the validity
of the approximations are available. From the numerical standpoint, all calculations
are performed with the mixed finite elements adjoint solver presented and validated
in [124].

On the CFD side, one of the challenges lies in the fact that the control cylinder
acts as a small local disturbance redistributing the vorticity in the separated shear
layers; see figures 4.8(b-d) showing instantaneous vorticity fields computed for rep-
resentative positions of the control cylinder. Accurate numerical methods are thus
mandatory to capture the small drag variations induced by the control. Several
values of the Reynolds number are investigated : a laminar, steady case at Re = 40,
for which the flow remains steady-state regardless of the position of the control
cylinder, a laminar, time-dependent case at Re = 100, for which vortex shedding
consistently develops from the main cylinder but the flow past the control cylinder
remains steady, and two turbulent cases at Re = 3900 and at Re = 22000 (hence
modeled after the uRANS equations with negative Spalart–Allmaras as turbulence
model), for which vortex shedding develops from both cylinders. This is because
the Reynolds number in the wake of the control cylinder must be scaled by the ratio
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of the cylinder diameters, which yields values below (resp. above) the instability
threshold at Re = 100 (resp. Re = 3900 and Re = 22000).

For each PPO-1 episode, the network outputs two values ξ1,2 in [−1; 1]2 mapped
into

G =
1 + ξ1

2
Gmax , θ =

1 + ξ2

2
θmax , (4.7)

for the gap to vary in [0;Gmax] with Gmax = 3, and the azimuthal position to vary
in [0; θmax] with θmax = 180◦. This enables contact between the two cylinders, and
allows taking advantage of the problem symmetry, as it amounts to moving the
control cylinder in the upper half of a torus bounded by the surface of the main
cylinder and the user-defined exterior radius Gmax. In the following, the center
position is conveniently presented in terms of the Cartesian coordinates xc = ρ cos θ
and yc = ρ sin θ, where we note ρ = G+(1+d)/2. Since the aim is to minimize drag,
the reward r = −D is then computed using the simulation parameters documented
in table 4.3, after which the network is updated for 32 epochs using 8 environments
and 2 steps mini-batches (note the zero averaging span in table 4.3 for Re = 40,
as this is a steady case for which the steady asymptotic value of total drag can be
evaluated at the final time tf , provided it is large enough for the solution to relax
to steady-state).

4.4.1.1 Laminar steady regime and circular geometry at Re=40

For this first case, 100 episodes have been run, which represents 800 simulations, each
of which lasts ∼ 35mn on 12 cores, hence ∼ 480h of total CPU cost (equivalently,
∼ 60h of resolution time). The moving average value of drag reaches a plateau
after about 60 episodes in figure 4.9(a), with the optimal value cx

? = 1.53 ± 0.01
computed as the average over the 5 latest episodes representing a reduction by
roughly 2% with respect to the uncontrolled value 1.56 (in good agreement with the
reference 1.54 from the literature [162, 163]). Meanwhile, the instant value of drag
actually keeps oscillating over the next 40 episodes with small but finite amplitude,
which is further evidenced in figure 4.9(b-c) showing the instant and moving average
center positions of the control cylinder. On the one hand, yc

? quickly settles to zero,
i.e., the control cylinder converges to the horizontal centerline. On the other hand,
xc keeps exchanging positions between two regions distributed almost symmetrically
on either side of the main cylinder, an upstream region associated with cx ∼ 1.51 and
a slightly less efficient downstream region associated with cx ∼ 1.54, which suggests
that the drag functional has global and local minima located in valleys of comparable
depth. Confirmation comes from the theoretical drag variations computed (in steady
mode) from the baseline adjoint method described in appendix 4.6, whose negative
iso-values (associated to drag reduction) are mapped in figure 4.9(d). The latter
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(a) (b)

(c) (d)

Figure 4.9: Open-loop control of the circular cylinder flow by a small control cylinder of
diameter d = 0.1 at Re = 40 - (a) Evolution per episode for the instant
(black line) and moving average (over episodes, orange line) values of the
mean drag (over time). The uncontrolled drag is at the bottom of the grey
shaded area. (b-c) Same as (a) for the xc and (c) yc positions of the control
cylinder center. (d) Theoretical mean drag variation computed by a steady
adjoint method modeling the presence of the control cylinder by a pointwise
reacting force localized at the same location where the control cylinder is placed
(only the negative iso-contours are reported for clarity). The grey circles are
the positions investigated by the DRL. The light red circles are high reward
positions spanned over the course of optimization. The dark red circles are
those high reward positions spanned over the last 5 episodes. The white circles
are the median values reported in the summarizing table 4.3.

unveil two regions nestled against either side of the main cylinder and achieving
similar drag reduction by ∼ 2%, a first one extending upstream over approximately
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1 diameter, and a second one, slightly less efficient and extending downstream and
along the outer boundary of the recirculation over 3 diameters. DRL manages to
find high-reward positions in both, which is best seen from the various symbols
in figure 4.9(d) showing the complete set of PPO-1 positions investigated over the
course of optimization (grey circles) together with those positions achieving optimal
drag reduction within 5% (light red circles), including a few non-centerline positions
along the edge of both drag reduction regions. Nonetheless, the algorithm ultimately
converges to almost symmetrical core positions, as evidenced by the dark red circles
in figure 4.9(d) showing the positions spanned over the 5 latest episodes. Despite
limited discrepancies regarding the exact position of the upstream region (slightly
shifted upstream in the present approach), this is consistent with the adjoint-based
results and clearly assesses the ability of single-step PPO to identify both regions of
interest and to accurately predict the drag reduction achieved in these regions.

4.4.1.2 Laminar time-dependent regime and circular geometry at Re=100

For this case, 40 episodes have been run, which represents 320 simulations, each
of which lasts ∼ 1h on 12 cores, hence ∼ 320h of total CPU cost (equivalently,
∼ 40h of resolution time). The moving average reward plateaus after about 25
episodes in figure 4.10(a), with the optimal drag cx

? = 1.30 ± 0.01 computed as
the average over the 5 latest episodes representing a reduction by roughly 5% with
respect to the uncontrolled value 1.37 (close to the reference 1.35 from the literature
[163]). Unlike the previous steady case at Re = 40, the center position of the
control cylinder exhibits a similarly converging behavior in figure 4.10(b-c) with
xc
? = 1.76±0.03 and yc

? = 0, which suggests that the drag functional now has a well-
defined global minimum. Confirmation comes from the theoretical drag variations
computed (in unsteady mode) from the baseline adjoint method, whose negative iso-
values mapped in figure 4.10(d) are reproduced from [164]. The latter unveil again
two regions nestled against either side of the main cylinder, a first one extending
upstream over approximately 2 diameter (more than at Re = 40), and a second
one extending downstream and along the outer boundary of the mean recirculation
over 2 diameters (less than at Re = 40). Drag is reduced by roughly 2% upstream,
but almost 8% downstream, meaning that the drag functional has global and local
minima in valleys of different depth, in line with the DRL results. Again, DRL
finds high-reward positions in both regions, as evidenced in figure 4.10(d) by the
complete set of PPO-1 positions investigated over the course of optimization (small
grey circles) and the positions achieving optimal drag reduction within 5% (light
red circles), including a few centerline upstream positions. The algorithm however
quickly settles for the most efficient downstream region, as the positions spanned
over the 5 latest episodes (dark red circles) all lie in the core of the mean recirculation
region, in striking agreement with the adjoint-based results.
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(a) (b)

(c) (d)

Figure 4.10: Open-loop control of the circular cylinder flow by a small control cylinder
of diameter d = 0.1 at Re = 100 - Same as figure 4.9, only the theoretical
variations in (d) have been computed by the time-varying adjoint method
presented in [124].

4.4.1.3 Turbulent regime and circular geometry at Re=3900

Another 40 episodes have been run for this case, which represents 320 simulations,
each of which lasts ∼ 2h30 on 12 cores (much longer than at Re = 100 due to the
halved time step), hence∼ 800h of total CPU cost (equivalently, ∼ 100h of resolution
time). After about 20 episodes, the moving average reward in figure 4.11(a) con-
verges to cx

? = 1.50±0.01, which represents a reduction of drag by 9% with respect
to the uncontrolled value 1.65 (in good agreement with reference 2-D RANS data
from the literature [166]). The center position of the control cylinder however keeps
oscillating over the next 15 episodes in figure 4.11(b-c), as yc

? goes to zero but xc
exchanges positions between two regions located on either side of the main cylinder,
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(a) (b)

(c) (d)

Figure 4.11: Open-loop control of the circular cylinder flow by a small control cylinder of
diameter d = 0.1 at Re = 3900 - Same as figure 4.9, only the theoretical
variations in (d) have been computed by the (steady) simplified mean-flow
adjoint method presented in [124]. The green dashed circle in (d) indicates
the range of center positions spanned experimentally in [165], with the green
triangles marking the sets of positions found to optimally reduce the drag of
the main cylinder only.

an upstream region associated with cx ∼ 1.52 and a downstream region associated
with cx ∼ 1.46. This suggests that the drag functional has global and local minima
in valleys of comparable depth, which is reminiscent of the steady case at Re = 40,
only the deepest valley is now downstream, not upstream. Interestingly, Ref. [165]
determines experimentally different optimal positions (G, θ) = (0.14−0.16, 60◦) and
(0.06 − 0.14, 115◦), shown as the green triangles in figure 4.11(d). Additional DNS
runs have thus been carried out to confirm sub-optimality for our case, although
the algorithm does identify a couple of high-reward positions in the vicinity of the
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downstream experimental region. This probably stems from the noticeable differ-
ences between both studies, as the Reynolds number in [165] is larger by one order
of magnitude (Re = 65000), the control cylinder is almost twice as small (d = 0.06),
and the experiments focus on the drag of the main cylinder (not the total drag)
while spanning a much smaller range of center positions (indicated by the green
dashed circle in figure 4.11(d)).

The DRL results are conversely qualitatively in line with the negative iso-values
of the adjoint-based drag variations shown in figure 4.11(d). Those indicate that
drag is reduced in two distinct regions nestled against either side of the main cylin-
der, a first narrow one extending upstream along the centerline over approximately
2 diameters, and a second one extending downstream over a half-diameter and in
the vicinity of the mean separation points. Nonetheless, the agreement is not quan-
titative, as the theoretical variations are by a mere 1% upstream (and even lower
downstream). This is most likely because all theoretical variations have been mod-
eled after a simplified adjoint method intended to guide near-optimal design with
marginal computational effort (as it requires knowledge of the sole mean uncon-
trolled solution, as explained in appendix 4.6), that ends up miscalculating the
effect of the control cylinder because of an insufficient level of sophistication. On
the one hand, the marginal size of the downstream region (as well as the marginal
drag reduction predicted in this region) is ascribed to the fact that the approach has
been shown to possibly miss out on sensitivity regions involving strong interactions
of the mean and fluctuating solution components via the formation of Reynolds
stresses [164]: the mean recirculation is one such region where reducing the drag
of the main cylinder, even by a small amount, suffices to reduce the total drag be-
cause the x velocity is negative and the control cylinder is thus a source of thrust,
not drag. On the other hand, the outcome in the upstream region is sensitive to
the force model used to mimic the effect of the control cylinder, as it turns out its
drag balances almost exactly the amount by which it reduces the drag of the main
cylinder. The weak upstream control efficiency may thus be due to the fact that the
simplified adjoint method considers only the mean component of the force acting
on the control cylinder, but overlooks the potential for additional drag reduction
via the fluctuating component. Moreover, this is a region where the control cylin-
der likely induces strong mean flow modifications because the local inhomogeneity
length scale becomes smaller than the diameter of the control cylinder, which in turn
may invalidate the linear assumption inherent to the adjoint method (the retained
diameter d = 0.1 is a compromise between smallness and cost control, as implement-
ing a smaller control cylinder would require increasing the number of grid points and
decreasing the time-step to capture properly the wake of the control cylinder).
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(a) (b)

(c) (d)

Figure 4.12: Same as figure 4.11 for the open-loop control of the square cylinder flow
by a small control cylinder of diameter d = 0.1 at Re = 22000. In (d),
the grey symbols circled in red are downstream sub-optimal position. The
dark circles are dismissed positions for which the control and main cylinders
intersect, and the green triangle marks the experimental position found in [26]
to optimally reduce the drag of the two-cylinder system at Re = 32000.

4.4.1.4 Turbulent regime and square geometry at Re=22000

In order to push the comparison further, additional calculations have been under-
taken for a square geometry of the main cylinder, whose larger upstream sensi-
tivity yields more clear-cut control efficiency, as can be inferred from the results
in [124, 164]. This is because the blunt square geometry strengthens the upstream
pressure gradient (compared to its bluff circular shape). In return, the gap flow
velocity between the two cylinders decreases and so does the drag of the control
cylinder, hence a boost in efficiency that helps mitigate the issue of sensitivity to
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the force model.
Another 40 episodes have been run for this case, which represents 320 simula-

tions, each of which lasts ∼ 3h20 on 12 cores, hence ∼ 1020h of total CPU cost
(equivalently, ∼ 130h of resolution time). One difficulty for this case is that the
main and control cylinders can intersect each other under mapping (4.7), in which
case it has been found relevant to simply discard the CFD and force the reward to
its uncontrolled value. The moving average reward plateaus after about 30 episodes
in figure 4.12(a), with the optimal drag cx

? = 1.49± 0.01 computed as the average
over the 5 latest episodes representing a reduction by 30% with respect to the un-
controlled value 2.16 (close to the reference 2.1− 2.2 from the literature [167, 168]).
The center position of the control cylinder exhibits a similarly converging behavior
in figures 4.12(b-c) with xc

? = −2.04 ± 0.02, and yc
? = 0, which suggests that the

drag functional has a well-defined global minimum. This is in excellent agreement
with [26] reporting experimental reduction of the total drag by 30% inserting control
cylinders of comparable sizes upstream of the main cylinder at a slightly different
Reynolds number Re = 32000 (the optimal reported position for d = 0.1 being
xc
? ∼ −2.0). This is also in line with the theoretical drag variations computed from

the same simplified adjoint method as in section 4.4.1.3, whose negative iso-values
mapped in figure 4.12(d) are reproduced from [124]. The latter unveil a main region
of interest, that extends upstream over approximately 4 diameters, and in which drag
is reduced by almost 20%, which represents a satisfactory qualitative and quantita-
tive compliance with the present PPO-1 results. Drag is also reduced in a second
region originating from the separation points (pinned here at the front edges), that
extends downstream and along the outer boundary of the mean recirculation over
1 diameter (similar to what has been found using a circular geometry of the main
cylinder). It is worth noticing that the algorithm does identify sub-optimal posi-
tions in this region (shown in figure 4.12(d) as the grey symbols circled in red). Also,
a couple of other low-efficiency PPO-1 positions lie further downstream, which is
consistent with the idea that the simplified adjoint method may miss on additional
drag reduction occurring via the formation of Reynolds stresses (this is not true
of the upstream drag reduction region, whose flow is essentially steady, except for
low-amplitude oscillations in the gap flow between the two cylinders).
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4.4.2 Optimal drag reduction of a triangular bluff-body us-
ing rotating cylinders

The second control problem presented in figure 4.13(a) is the fluidic pinball [169],
an equilateral triangle arrangement of three identical circular cylinders oriented
against a uniform stream (i.e., the leftmost triangle vertex points upstream, and
the rightmost side is orthogonal to the on-coming flow), controlled open-loop via
user-defined angular velocities. The origin of the coordinate system is between the
top and bottom cylinders, where we refer to the upstream and downstream cylinders
as “front”, “top”, and “bottom”, respectively (also labeled 1, 2 and 3 to ease the
notation). The gap spacing G = 1.5 between cylinders yields a master cross-section
of 2.5. A turbulent case at Re = U∞D/ν = 2200 is modeled after the negative
Spalart–Allmaras uRANS equations, where D is the diameter of either cylinder.
The objective is to minimize the mean drag D of the three-cylinder system, using
the cylinders individual angular velocities Ω1−3 as control parameters (with the
convention that Ωk < 0 for clockwise rotation). This is a versatile experiment well
suited to challenge the single-step approach, as the requirement to span large ranges
of control parameters emulating a variety of steady and unsteady actuation (e.g.,
base bleed, suction) under turbulent conditions makes it especially challenging to
rely on the adjoint method (as further discussed in section 4.5), not to mention DNS.

4.4.2.1 Steady actuation

First, constant angular velocities are applied to each cylinder to alter the vorticity
flux fed to the wake, as evidenced in figure 4.13(b-d) showing instantaneous vor-
ticity fields computed under several control configurations. Drag is optimized by
minimizing the compound reward function

r = −D − β
3∑

k=1

|Ωk|3 , (4.8)

where the leftmost term is the power of the drag force and is thus associated to
performance, the rightmost term estimates the power to be supplied to the rotat-
ing cylinders and is thus associated to cost, and β is a weighting coefficient set
empirically to β = 0.025 (a value found to be large enough for cost considerations
to impact the optimization procedure, but not so large as to dominate the reward
signal, in which case actuating is meaningless). For each PPO-1 learning episode,
the network outputs three values ξ1−3 in [−1; 1]3 mapped into

Ωk = ξkΩmax , (4.9)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13: Open-loop control of a fluid pinball - (a) Schematic diagram of the config-
uration. (b-f) Iso-contours of the vorticity field computed at Re = 2200
for steady angular velocities (Ω1,Ω2,Ω3) of the individual cylinders, namely
(b) (3.09,−1.05, 5.00), (c) (1.46,−0.62,−2.75) (d) (−5.00,−2.74, 0.81), (e)
(3.70, 3.00, 0.61) and (f) (−3.48,−1.04, 5.00). The rotation directions are
marked by the various arrows whose length is proportional to the angular
velocity.
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(a) (b)

(c) (d)

Figure 4.14: Open-loop control of a fluid pinball at Re = 2200 - (a) Evolution per episode
for the instant (black line) and moving average (over episodes, light orange
line) values of the mean drag (over time), together with related cost (light
grey/dark orange) and reward (dark grey/orange) information computed un-
der steady actuation for β = 0.025. The uncontrolled drag is at the bottom
of the grey shaded area. (b) Same as (a) for the angular velocities of the
front (blak/light orange), top (dark grey/orange) and bottom cylinders (light
grey/dark orange). (c) Iso-contours of the vorticity field computed under the
optimal velocities (Ω1

?,Ω2
?,Ω3

?) = (0.34,−2.49, 2.44). (d) Time history of
drag computed under the sub-optimal velocities (Ω1,Ω2,Ω3) = (0,−2.47, 2.47)
(black lines), whose cost is identical to that of the optimal (red lines). The
thick lines denote the drag of the three-cylinder system. The thin lines pertain
to the front (dashed lines), top (solid lines) and bottom cylinders (dash-dotted
lines).

for the non-dimensional angular velocities to vary in [−Ωmax; Ωmax] with Ωmax = 5.
The reward defined in (4.8) is computed using the simulation parameters docu-
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mented in table 4.4, after which the network is updated for 32 epochs using 8
environments and 2 steps mini-batches. Note, rotation is actually ramped up over
a time-span [tΩi ; tΩf ] to smooth out the transient, using effective rates

Ω̃k(t) =
min(max(t, tΩi), tΩf )− tΩi

tΩf − tΩi
Ωk , (4.10)

forced to zero on [0, tΩi ], to Ωk on [tΩf ; tf ], and linearly increasing in between.
For this case, 120 episodes have been run, which represents 960 simulations, each

of which lasts ∼ 3h20 on 12 cores, hence ∼ 3200h of total CPU cost (equivalently,
∼ 400h of resolution time). The moving average reward reaches a plateau after about
80 episodes in figure 4.14(a), where the relevance of the weighing coefficient value
β = 0.025 shows through the fact that the performance and cost components of the
reward are of the same order of magnitude. The optimal value of drag cx

? = 1.17±
0.01 computed as the average over the 5 latest episodes represents a tremendous
reduction by almost 60% with respect to the uncontrolled value 2.91. The associated
angular velocities whose evolution is depicted in figure 4.14(b) correspond to a boat
tail-like arrangement, i.e., the top cylinder rotates clockwise (Ω2

? = −2.49± 0.01),
the bottom cylinder rotates counter-clockwise and almost symmetrically (Ω3

? =
2.44± 0.01), and the front cylinder rotates more slowly and also counter-clockwise
(Ω1

? = 0.34 ± 0.01). The net rotation is thus in the same direction as the front
cylinder, and we show in figure 4.14(c) that the tilting of the shear layers to the
centerline alleviates the secondary flow from the gap between the two downstream
cylinders, which is found to eventually suppress vortex shedding. Interestingly,
an experimentally implemented machine learning approach using genetic algorithms
yields similar optimal arrangements in [132]. For two different values of the weighing
parameter, the authors therein report optimal angular velocities (0.68,−2.26, 2.56)
and (1.40,-1.70,2.04) and optimal drag reductions by 78% and 49%, respectively, but
it is uneasy to push further the comparison because the latter study uses a different
reward function in which drag is approximated from a small, discrete number of
sensors distributed in the wake.

For the purpose of reducing drag, the above asymmetrical boat tailing actua-
tion turns to be more efficient than its pure, symmetrical counterpart emulated by
(Ω1,Ω2,Ω3) = (0,−|Ω|, |Ω|).4 This is illustrated in figure 4.14(d) comparing the
optimal drag to its symmetrical value computed with |Ω| = 2.47 (to maintain the
same cost efficiency, the associated drag reduction being by ∼ 58%). Pure boat
tailing is insufficient to inhibit vortex shedding, as the symmetrical drag of all three
individual cylinders is seen to exhibit small but finite-amplitude oscillations. More-
over, the drag of the downstream cylinders turns to be roughly identical on average.

4At least if β is large enough for cost to matter in the optimization procedure, otherwise the al-
gorithm has been found to converge to the symmetrical boat tailing configuration (0,−Ωmax,Ωmax),
and the reverse flow is completely suppressed (not shown here).
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(a) (b)

Figure 4.15: Open-loop control of a fluid pinball at Re = 2200 - (a) Iso-contours of the
vorticity field and (b) time history of drag computed under periodic actua-
tion (4.11) with angular velocity Ω = 2.47 and frequency f = 4f0. The thick
and fine lines in (b) denote the controlled and uncontrolled values, respec-
tively.

This suggests that the edge of asymmetrical over symmetrical boat tailing lies in its
ability to reduce the drag of the front cylinder, an effect similar to that of suppress-
ing vortex development and reducing drag by creating circulation around a single
rotating bluff body [170]. Asymmetrical boat tailing is also more efficient than base
bleed, another method widely used to reduce drag by blowing fluid directly into
the wake, and that can be emulated by (Ω1,Ω2,Ω3) = (0, |Ω|,−|Ω|) for the reverse
rotation of the downstream cylinders to conversely enhance the gap flow in between
them (not shown here).

4.4.2.2 Periodic actuation

Periodic actuation at frequency f has also been considered using a simplified con-
figuration

Ω1 = 0 , Ω2 = −Ω3 = Ω sin(2πft) , (4.11)

whose front cylinder is fixed, and whose downstream cylinders are periodically and
symmetrically driven with maximum angular velocity Ω. Such a control oscillates
between symmetrical boat tailing (found to be nearly-optimal under steady actu-
ation) and base-bleed, and we assess the extent to which an additional degree of
freedom (the oscillation frequency) creates room to improve the performance. The
optimization relies on the compound reward

r = −D − 2β|Ω|3 , (4.12)
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computed using the same weighing parameter β = 0.025 as before. For each PPO-1
learning episode, the network outputs two values ξ1,2 in [−1; 1]2 mapped into

Ω =
1 + ξ1

2
Ωmax ,

f

f0

=
1− ξ2

2
λmin +

1 + ξ2

2
λmax , (4.13)

where f0 = 0.16 is the dominant frequency of vortex shedding computed in the ab-
sence of control. The angular velocity therefore varies in [0; Ωmax] with Ωmax = 5 (the
case Ω < 0 is covered by periodicity) and the frequency ratio varies in [λmin;λmax]
with λmin = 0.5 and λmax = 4. This is a compromise between size of the parameter
space and cost control, as investigating smaller frequencies would require to increase
the averaging time-span, and resolving accurately larger frequencies would require
to decrease the time-step. We shall not go into the details of the obtained results,
because the frequency ratio ends up oscillating randomly in [λmin;λmax], while the
angular velocity converges to Ω? = 0. It is definitively possible to reduce drag un-
der the considered periodic actuation, as we show for instance in figure 4.15 that
a velocity Ω = 2.47 (identical to that used previously to compare asymmetrical
and symmetrical boat tailing) and a frequency ratio λ = 4 reduce drag by 20%,
but the cost of doing so is too large, as the associated reward actually increases
by 5% (note the period doubling bifurcation phenomenon in figure 4.15(b): drag is
found to exhibit sub-harmonic oscillations at half the forcing frequency, which is a
classical dynamical responses of harmonically forced nonlinear oscillators). These
are only preliminary results intended to compare the efficiency of steady and peri-
odic strategies using identical reward functions. We therefore defer to future work
the computation of non-trivial periodic optimal distributions, for which it may be
necessary to modify the reward function and/or to reduce the cost (by adequately
decreasing the weighing parameter).
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4.5 Discussion

This section is intended to provide insight into the efficiency of the single-step PPO
algorithm compared to that of other well-established methods. We skip voluntar-
ily DNS, as systematical optimization procedures are useless if a problem is simple
enough that a small number of numerical simulations suffices to find the optimal.
This is true of the optimization cases documented in section 4.3, although the results
remain valuable to assess accuracy and highlight the limit of applying conservative
policy updates to optimize sharp reward functions (that are common occurrence in
low to moderate-Reynolds-number-fluid mechanical systems sustaining linear insta-
bilities).

4.5.1 Adjoint methods

We begin with the adjoint method used in section 4.4.1 for systematic validation
purposes. As explained in appendix 4.6, this is an approach intended to compute
the drag of a control-induced disturbance modeled after the linearized governing
equations forced by small-amplitude momentum source δf and wall velocity δuw,
without ever computing the disturbance itself. The main assumptions and limita-
tions at various levels of sophistication are reviewed in the appendix, so the line of
though is to describe only the specifics of the control problems considered herein.
The general picture is that the baseline adjoint method is accurate and fairly efficient
in terms of CPU cost, but demanding in terms of storage and increasingly difficult
to apply rigorously when turbulence sets in (this is discussed in appendix 4.6). On
the other hand, the frozen Reynolds stresses approximation has marginal CPU and
storage costs, it carries over to any turbulence modeling under the so-called frozen
viscosity assumption, but accuracy must be assessed on a case-by-case basis (see
appendix 4.6).

4.5.1.1 Open-loop control by a small control cylinder

Open-loop control by a small control cylinder is a favorable case in the sense that
only the center position of the control cylinder (not its shape, nor its size) is opti-
mized, hence the adjoint problem needs be solved only once. Nonetheless, it comes
with a substantial modeling component, as the source term δf used in the adjoint
calculations must adequately represent the effect of a true control cylinder. We use
here the pointwise reacting force proposed in [124], equal and opposite to the force
felt by a control cylinder of same diameter in a uniform flow at the local, mean
velocity. The latter is carefully crafted to reference data, but there are inherent
approximations associated with overlooking the lift component of the force induced
by the local velocity gradient (since the control cylinder, albeit small, has finite size)
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and inertia (for the model force at each time instant to be the force that would act
if the upstream flow at the same instant was a steady one). This can hurt accuracy
and undermine the results in flow regions where the control cylinder drag is close to
balancing the decrease in the drag of the main cylinder, all the more so in turbu-
lent regimes where additional simplifications are needed to allow implementing the
adjoint method itself (e.g., frozen eddy viscosity and/or Reynolds stresses).

In terms of pure performance, the baseline adjoint method is beyond compare for
the laminar, steady case at Re = 40, because it merely requires solving a couple of
steady solutions (one nonlinear, one linear), and PPO-1 would need converge in less
than two episodes to approach that cost. Regarding the laminar, time-dependent
case at Re = 100, the results reported herein rely on a naive implementation of
the adjoint method: all time steps of the uncontrolled solution are written to disk,
the adjoint equations are solved over the same time interval and with the same
time step, and meaningful time averages of the adjoint-based integrands are com-
puting after discarding the early and late time steps (corresponding to transients
of the uncontrolled and adjoint solutions). In practice, this takes 45 Gb of stor-
age. The cost of tackling similarly a three-dimensional (3-D) case with 40 points
distributed in the span-wise direction would thus be about 2 Tb (as estimated by
simple cross-multiplication), which is close to intractable without sophisticated in-
tegration, interpolation and/or checkpointing schemes. Meanwhile, the storage cost
of PPO-1 is barely a few hundred Mb overall, and is expected to jump to a few
ten Gb in 3-D without any additional development. As for CPU cost, the adjoint
method amounts to roughly 7-8 episodes, which is about thrice as less as the number
of episodes needed to achieve convergence with PPO-1 (this is an estimation for two
numerical simulations oversized by the repeated IO calls, although an exact com-
parison is difficult because our DRL and adjoint results have been obtained using
a different finite element codes on different hardware resources). Finally, for the
turbulent cases at Re = 3900 and Re = 22000, the cost of the adjoint method is
again marginal, as we relied on the frozen Reynolds stresses formulation for which it
suffices to compute a nonlinear uncontrolled mean flow and a linear steady adjoint
solution. PPO-1 would need to converge in one single episode to match the cost,
but we believe the case at Re = 3900 to provide clear evidence that the simplifying
assumptions can make it intricate to compare both qualitatively and quantitatively.

4.5.1.2 Open-loop control of a fluidic pinball

The adjoint modeling of the fluidic pinball is straightforward, since the wall velocity
δuw is simply the cylinder linear velocity. The challenge for this case rather lies
in the large value of the optimal angular velocities (found to induce velocities close
to the ambient velocity in the vicinity of the downstream cylinders), that suffice to
invalidate the linearity assumption inherent to the adjoint method. On paper, this
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problem can still be tackled with a nonlinear steepest descent algorithm recursively
solving an adjoint problem and modifying the control parameters in the direction of
the negative gradient. While it usually takes about ten iterations for fluid mechanical
systems to converge (provided relevant update strategy and descent step are used),
we did not attempt to do so, as it would magnify the limitations of the adjoint
method underlined in the appendix. Namely, the storage cost would increase (even
a simple conjugate gradient algorithm would require availability of multiple time
histories of adjoint solutions) and convergence could be weakened or even sapped if
the simplifications made in turbulent regimes yield inaccurate gradient evaluations.

4.5.2 Evolution strategies

Evolution strategies (ES) are another popular family of division of population-based
algorithms performing black-box optimization in continuous search spaces without
computing directly the gradient of the target function. ES imitate principles of or-
ganic evolution processes as rules for optimum seeking procedures, using repeated
interplay of variation (via recombination and mutation) and selection in popula-
tions of candidate solutions. They rely on a stochastic description of the variables
to optimize, i.e., they consider probability density functions instead of deterministic
variables. At each generation (or iteration) new candidate solutions are sampled
isotropically by variation of the current parental individuals according to a multi-
variate normal distribution. After applying recombination and mutation transfor-
mations (respectively amounting to selecting a new mean for the distribution, and to
adding a random perturbation with zero mean), the individuals with the highest cost
function are then selected to become the parents in the next generation. Improved
variants include the covariance matrix adaptation evolution strategy (CMA-ES),
that also updates its full covariance matrix to accelerate convergence toward the op-
timum (which amounts to learning a second-order model of the underlying objective
function).

As has been said for introductory purposes, it lies out of the scope of this chapter
to provide exhaustive performance comparison data against state-of-the art evolu-
tion algorithms. The efforts for developing single-step PPO remain at an early stage,
so we do not expect the method to be able to compete right away. Nonetheless, we
do not expect it to be utterly outmatched either, as genetic algorithms5 have been
shown capable to learn optimal open- and closed-loop control strategies within a few
hundreds to a few thousands test runs (see [171] and the references therein), and

5Another class of evolutionary algorithms with slightly different implementation details.
Namely, most parameters in genetic algorithms (GA) are exogenous, i.e., set by the practitioner,
while ES features endogenous parameters associated with individuals, that evolve together with
them. Also, only the fittest individuals are selected to become parents in GA, while parents are
selected randomly in ES and the fittest offsprings are selected and inserted in the next generation.
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it takes a few hundred (resp. less than one thousand) simulations for single-step
PPO to learn the optimal open-loop strategy for control by a small cylinder (resp.
for control of the fluidic pinball). In present form, the method can be thought as
an evolutionary-like algorithm with simpler heuristics (i.e., without an evolutionary
update strategy, since the optimal model parameters are learnt via gradient ascent).
Its performance should thus be comparable to that of standard ES methods with
isotropic covariance matrix, meaning that further characterization and fine-tuning,
as well as pre-trained deep learning models (as is done in transfer learning) are likely
required to outperform more advanced methods.

4.6 Conclusion

Open-loop control of laminar and turbulent flow past bluff bodies is achieved here
training a fully connected network with a novel single-step PPO deep reinforcement
algorithm, in which it gets only one attempt per learning episode at finding the
optimal. The numerical reward fed to the network is computed with a finite elements
CFD environment solving stabilized weak forms of the governing equations (Navier–
Stokes, otherwise uRANS with negative Spalart–Allmaras as turbulence model) with
a combination of variational multiscale approach, immersed volume method and
anisotropic mesh adaptation.

Convergence and accuracy are assessed from two optimization cases (maximizing
the mean lift of a NACA 0012 airfoil and the fluctuating lift of two side-by-side
circular cylinders, both in laminar regimes). Those are simple enough to allow
comparison to in-house DNS data, yet they stress that the occurrence of instability
yields sharp reward functions for which the conservative policy updates specific
to PPO can trap the optimization process into local optima. The method is also
applied to two open-loop control problems whose parameter spaces are large enough
to dismiss DNS. Single-step PPO is found to successfully reduce the drag of laminar
and turbulent cylinder flows by mapping the best positions for placement of a small
control cylinder in good agreement with reference data obtained by the adjoint
method. The achieved reduction ranges from 2% using a circular geometry of the
main cylinder at Re = 40, up to 30% using a square geometry at Re = 22000.
Second, the method proves fruitful to reduce the drag of the fluidic pinball, an
arrangement of three identical, rotating circular cylinders immersed in a turbulent
stream. An optimal reduction by almost 60% (consistent with that recently obtained
using genetic algorithms) is reported using a boat tailing actuation made up of a
slowly rotating front cylinder and two downstream cylinders rotating in opposite
directions so as to reduce the gap flow in between them. For both cases, convergence
is reached after a few ten episodes, which represents a few hundreds CFD runs.
Exhaustive computational efficiency data are reported with the hope to foster future
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comparisons, but it is worth emphasizing that we did not seek to optimize said
efficiency, neither by optimizing the hyper parameters, nor by using pre-trained
deep learning models.

Fluid dynamicists have just begun to gauge the relevance of deep reinforcement
learning techniques to assist the design of optimal flow control strategies. This re-
search weighs in on this issue and shows that the proposed single-step PPO holds
a high potential as a reliable, go-to black-box optimizer for complex CFD prob-
lems. The one advantages here are scope and applicability, as the storage cost of
an episode is simply that of a CFD run (times the number of environments), and
there is no prerequisite beyond the ability to compute accurate numerical solutions
(which behoves the CFD solver, not the RL algorithm). Consequently, we would not
anticipate any additional numerical developments before tackling a 3-D turbulent
flow with the same CFD environment, even with a more sophisticated turbulence
modeling (since the built-in small-scale component of the VMS solution also acts as
an implicit LES). Despite these achievements, further development, characterization
and fine-tuning are needed to consolidate the acquired knowledge, whether it be via
an improved balance between exploration and exploitation to deal with steep global
maxima (for instance using Trust Region-Guided PPO, as it effectively encourages
the policy to explore more on the potential valuable actions, no matter whether they
were preferred by the previous policies or not), via non-normal probability density
functions to deal with multiple global maxima, or via coupling with a surrogate
model trained on-the-fly.

Appendix: A quick survey of adjoint-based optimization

We briefly review here the various adjoint frameworks used in section 4.4.1 for
systematic validation purposes of the PPO-1 results. The starting point is a so-
called uncontrolled solution (u, p) to the non-linear equations of motion (Navier–
Stokes, unless specified otherwise) forced by a momentum source f and a velocity
uw distributed over all solid surfaces Γw in the computational domain (although it
is possible to restrict to a subset).

A. Baseline adjoint method

The adjoint method computes the change in drag induced by small variations (δf, δuw)
of these control parameters as

δcx =

∫
Ω

u† · δf ds+

∫
Γw

(σ†(−p†,u†) · n) · δuw dl , (4.14)
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where n is the unit outward normal to Γw annd we note σ†(−p†,u†) = p†I+ 1
Re
∇u†.

Finally, (u†, p†) are adjoint velocity and pressure fields solution to

∇ · u† = 0 , −(∂tu
† +∇u† · u) +∇uT · u† +∇ · σ†(−p†,u†) = 0 , (4.15)

forced at Γw by a velocity equal to twice the ambient velocity (the factor of 2 stems
from the definition of dynamic pressure), as obtained multiplying u† and p† onto
the linearized momentum and continuity equations, using the divergence theorem to
integrate by parts over the computational domain, and integrating in time over the
span of the simulation. In essence, this amounts to computing the drag of the control
induced disturbance modeled after the forced, linearized Navier–Stokes equations,
without ever computing the disturbance itself.

A typical implementation consists of two sequential numerical simulations (for
the uncontrolled and adjoint solutions, respectively) plus a series of vector dot prod-
ucts, to give the drag variation at each grid point. This is simple on paper, but the
method has some limitations :

- the adjoint equations are problem-specific and must be derived and implemented
manually on a case-by-case basis.

- the cost is marginal in steady flow regimes, because the time-independence of
the uncontrolled solution makes the adjoint problem purely linear. Otherwise, the
entire time history of uncontrolled solutions must be available at every adjoint time
step because of the reversal of space-time directionality; see the minus sign ahead
of the material derivative term in eqs. (4.15). This is very demanding in terms
of storage (the repeated IO also increases the computational burden compared to a
classical CFD run with identical simulation parameters) but these issues can be mit-
igated using checkpointing [172] and high-order time-integration and interpolation
schemes [173].

- not all cost functions are admissible due to the need for consistent adjoint bound-
ary conditions, although this can be overcome with augmented Lagrangian methods
based on auxiliary boundary equations [174].

- applicability to high-fidelity turbulence modeling is uncertain because the noise-
induced sensitivity to initial conditions (the “butterfly effect”) is expected to yield
exponentially diverging solutions if the length of the adjoint simulation exceeds the
predictability time scale. Possible solutions include averaging over a large number of
ensemble calculations [175] (which increases significantly the computational cost and
decreases the attractiveness of the method) or invoking sophisticated shadowing and
space-split techniques sampling on selected flow trajectories [176, 177] (which comes
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at the cost of ease of implementation). Moreover, the literature somehow oddly
reports several cases of turbulent adjoint solution blowing up in 2-D [178, 179] and
3-D [180], but also several instances in 3-D where no blow-up is observed [181–183].

- applicability to RANS simulations is conversely generally acknowledged. How-
ever, discarding the linearization and adjointization of even the simplest turbulence
models (using the so-called frozen eddy-viscosity approximation) to avoid massive
debugging and validation efforts has somehow become standard lore, even though
completeness and exactness are required to ensure numerical accuracy and avoid
diverging adjoint solutions due to error propagation and amplification.

B. Frozen Reynolds stresses approximation

A simple adjoint formalism has been proposed in [124] to provide insight into the
reliability of adjoint-based predictions in practical situations where no complete
history of time and space-accurate solutions is available. The approach is closely
related to existing studies considering the mean flow an admissible solution for linear
stability analysis, as it simply dismisses the way the control-induced modification
to the fluctuating uncontrolled solution feeds back onto the mean (hence the frozen
Reynolds stress moniker to echo the above frozen eddy viscosity). In doing so, (4.14)
can be shown to reduce to

δcx =

∫
Ω

u† · δf ds+

∫
Γs

(σ†(p†,u†) · n) · δuw dl , (4.16)

where the double overline denotes approximations to the true time-averaged quan-
tities, and the adjoint velocity and pressure fields are solution to

∇ · u† = 0 , −∇u† · u+∇uT · u† +∇ · σ(−p†,u†) = 0 , (4.17)

forced at Γw by the same velocity equal to twice the ambient velocity. The strength
of the approach lies in the fact that once the mean uncontrolled solution is known,
computing the approximated adjoint solution merely requires solving a single linear
problem. Accuracy must be assessed on a case-by-case basis, but the computational
and storage costs of doing so are marginal, and the approach carries over to any
turbulence modeling method under the frozen viscosity assumption.
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This chapter is presented as a self-contained article published in 2021 in the
Journal of Computational Physics [184], hence, some details (related to motivation,
scope and/or methodology) are repeated from chapters 1-3 to preserve the consistency
of the whole content.

Ce chapitre évalue la capacité des techniques d’apprentissage par renforcement
profond ( DRL) à aider au contrôle des systèmes de transfert de chaleur conjugués
régis par les équations couplées de Navier–Stokes et de la chaleur. Il utilise une
nouvelle version ”dégénérée” de l’algorithme Proximal Policy Optimization (PPO),
destinée aux situations où la politique optimale à apprendre par un réseau neu-
ronal ne dépend pas de l’état, comme c’est notamment le cas dans les problèmes
d’optimisation et de contrôle en boucle ouverte. La récompense fournie au réseau
neuronal est calculée à l’aide d’un environnement interne d’éléments finis stabilisés
combinant une modélisation multi-échelle variationnelle (VMS) des équations gou-
vernantes, une méthode de volume immergé et une adaptation de maillage anisotrope
multi-composant. Plusieurs cas d’essai de convection naturelle et forcée en deux et
trois dimensions sont utilisés comme banc d’essai pour développer la méthodologie.
L’approche atténue avec succès l’augmentation du transfert de chaleur induite par la
convection naturelle dans une cavité carrée bidimensionnelle à chauffage différentiel
contrôlée par des fluctuations constantes par morceaux de la température de la paroi
latérale. Elle s’avère également capable d’améliorer l’homogénéité de la température
à la surface de pièces chaudes bidimensionnelles et tridimensionnelles sous refroidisse-
ment par impact. Divers cas sont abordés, dans lesquels la position de plusieurs
injecteurs d’air froid est optimisée par rapport à une position fixe de la pièce. La
flexibilité du cadre numérique permet de résoudre également le problème inverse,
c’est-à-dire d’optimiser la position de la pièce par rapport à une distribution fixe
des injecteurs. Les résultats obtenus montrent le potentiel de la méthode pour
l’optimisation en bôıte noire de systèmes de transfert de chaleur conjugués en dy-
namique des fluides numérique (CFD). De manière plus significative, ils soulignent
comment la méthode DRL peut révéler des solutions ou des relations de paramètres
non anticipées (comme la position optimale de la pièce sous actionnement symétrique
qui s’avère être décalée de l’axe de symétrie), en plus d’être un outil pour optimiser
les recherches dans de grands espaces de paramètres.

This chapter gauges the ability of deep reinforcement learning (DRL) techniques
to assist the control of conjugate heat transfer systems governed by the coupled
Navier–Stokes and heat equations. It uses a novel, “degenerate” version of the proxi-
mal policy optimization (PPO) algorithm, intended for situations where the optimal
policy to be learnt by a neural network does not depend on state, as is notably the
case in optimization and open-loop control problems. The numerical reward fed to
the neural network is computed with an in-house stabilized finite elements environ-
ment combining variational multi-scale (VMS) modeling of the governing equations,
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immerse volume method, and multi-component anisotropic mesh adaptation. Sev-
eral test cases of natural and forced convection in two and three dimensions are used
as testbed for developing the methodology. The approach successfully alleviates the
natural convection induced enhancement of heat transfer in a two-dimensional, dif-
ferentially heated square cavity controlled by piece-wise constant fluctuations of
the sidewall temperature. It also proves capable of improving the homogeneity of
temperature across the surface of two and three-dimensional hot workpieces under
impingement cooling. Various cases are tackled, in which the position of multiple
cold air injectors is optimized relative to a fixed workpiece position. The flexibility
of the numerical framework makes it tractable to solve also the inverse problem,
i.e., to optimize the workpiece position relative to a fixed injector distribution. The
obtained results showcase the potential of the method for black-box optimization of
practically meaningful computational fluid dynamics (CFD) conjugate heat transfer
systems. More significantly, they stress how DRL can reveal unanticipated solutions
or parameter relations (as the optimal workpiece position under symmetrical actu-
ation turns to be offset from the symmetry axis), in addition to being a tool for
optimizing searches in large parameter spaces.
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5.1 Introduction

Thermal control, defined as the ability to finesse the thermal properties of a vol-
ume of fluid (and of the solid objects inside) into a certain desired state, is a field of
tremendous societal and economical importance. For instance, heat/cool exchangers
are used in a broad range of industrial applications to regulate process temperatures
by heat or cool transfer between fluid media, which in turn ensures that machinery,
chemicals, water, gas, and other substances remain within safe operating conditions.
Green building engineering is another field whose focus is on regulating indoor ther-
mal conditions (temperature, humidity) under substantial variations of the ambi-
ent conditions to provide high-quality living and working environments. In many
manufacturing processes, thermal conditioning is also intended to improve the final
mechanical (e.g., hardness, toughness, resistance), electrical, or optical properties of
the product, the general picture being that high temperature gradients are useful to
speed up the process but generally harm the quality of the outcome because of heat
transfer inhomogeneities caused by the increased convection by the fluid particles.
All such problems fall under the purview of this line of study.

Numerous strategies have been implemented to control fluid mechanical sys-
tems (including conjugate heat transfer systems combining thermal conduction in
the solid and convective transfer in the fluid), either open-loop with passive ap-
pendices (e.g., end plate, splitter plate, small secondary cylinder, or flexible tail),
or open-loop with actuating devices (e.g., plasma actuation, boundary tempera-
tures, steady or unsteady base bleeding, rotation) or closed-loop (e.g. via transverse
motion, perturbations of the thermal boundary layer, blowing/suction, rotation,
all relying on an appropriate sensing of flow variables). Nonetheless, many of the
proposed strategies are trial and error, and therefore require extensive and costly
experimental or numerical campaigns. This has motivated the development of ana-
lytical methods and numerical algorithms for the optimal control of Navier–Stokes
systems [116, 118, 185], and the maturing of mathematical methods in flow control
and discrete concepts for PDE constrained optimization. Applications to the heat
equation [186] and the coupled Navier–Stokes and heat equations [187–190] have
also been considered, including fresh developments meant to alter the linear ampli-
fication of flow disturbances [191], but the general picture remains that the optimal
control of conducting-convecting (possibly radiating) fluids has not been extensively
studied.

The premise of this research is that the related task of selecting an optimal subset
of control parameters can alternatively be assisted by machine learning algorithms.
Indeed, the introduction of the back-propagation algorithm [62] has progressively
turned Artificial Neural Networks (ANN) into a family of versatile parametric tools
that can be trained to hierarchically extract informative features from data and to
provide qualitative and quantitative modeling predictions. Together with the in-
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creased affordability of high-performance computational hardware, this has allowed
leveraging the ever-increasing volume of data generated for research and engineering
purposes into novel insight and actionable information, which in turn has entirely
transformed scientific disciplines, such as robotics [64, 126] or image analysis [125].
Owing to the ability of neural networks to handle stiff, large-scale nonlinear prob-
lems [127], machine learning algorithms have also been making rapid inroads in fluid
mechanics, as a mean to solve the Navier–Stokes equations [128] or to predict closure
terms in turbulence models [129]; see also Ref. [136] for an overview of the current
developments and opportunities.

Neural networks can also be used to solve decision-making problems, which is
the purpose of Deep Reinforcement Learning (DRL, where the deep terminology
generally weighs on the sizable depth of the network), an advanced branch of ma-
chine learning. Simply put, a neural network trains in finding out which actions or
succession of actions maximize a numerical reward signal, with the possibility for a
given action to affect not only the immediate but also the future rewards. Success-
ful applications of DRL range from AlphaGo, the well-known ANN that defeated
the top-level human player at the game of Go [48] to the real-word deployment of
legged robots [57], to breakthroughs in computer vision (e.g., filtering, or extracting
image features) [59] and optimal control problems [18, 61]. There is also great po-
tential for applying DRL to fluid mechanics, for which efforts are ongoing but still
at an early stage. Sustained commitment from the machine learning community has
allowed expanding the scope from computationally inexpensive, low-dimensional
reductions of the underlying fluid dynamics [12–14] to complex Navier–Stokes sys-
tems [37, 38], with a handful of pioneering studies providing insight into the perfor-
mance improvements to be delivered in shape optimization [21, 138, 192] and flow
control [39, 41, 43, 49, 139–141], including recent advances assessing experimentally
the effectiveness of reinforcement learning control strategies [15]. The literature on
thermal control is even more scarce, as our literature review did not reveal any other
study considering DRL-based control of conjugate heat transfer aside from [17], an-
other research effort conducted in the same time frame as the present work that
will be discussed further on, plus a few other publications relying on dealing with
energy efficiency in civil engineering from low-dimensional thermodynamic models
basically unrelated to the equations of fluid dynamics [193, 194].

This research assesses the feasibility of using proximal policy optimization (PPO [18])
for control and optimization purposes of conjugate heat transfer systems, as gov-
erned by the coupled Navier–Stokes and heat equations. The objective here is to
keep shaping the capabilities of the method (PPO is still a relatively newcomer that
has quickly emerged as the go-to DRL algorithm due to its data efficiency, simplicity
of implementation and reliable performance) and to narrow the gap between DRL
and advanced numerical methods for multi-scale, multi-physics computational fluid
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dynamics (CFD). We investigate more specifically the “degenerate” single-step PPO
algorithm introduced in [138] for optimization and open-loop control problems, as
the optimal policy to be learnt is then state-independent, and it may be enough
for the neural network to get only one attempt per episode at finding the optimal.
Several problems of conjugate heat transfer in two and three dimensions are used as
testbed to push forward the development of this novel approach, whose potential for
reliable black-box optimization of computational fluid dynamics (CFD) systems has
been recently assessed for open-loop drag reduction in cylinder flows at Reynolds
numbers ranging from a few hundreds to a few ten thousands [69]. To the best
of the authors knowledge, this constitutes the first attempt to achieve DRL-based
control of conjugate forced convection heat transfer, while [17] is the first attempt
to achieve DRL control of conjugate natural convection heat transfer.

The organization is as follows: section 5.2 outlines the main features of the finite
element CFD environment used to compute the numerical reward fed to the neural
network, that combines variational multi-scale (VMS) modeling of the governing
equations, immerse volume method, and multi-component anisotropic mesh adap-
tation. The baseline principles and assumptions of DRL and PPO are presented
in section 5.3, together with the specifics of the single-step PPO algorithm. Sec-
tion 5.4 revisits the natural convection case of [17] for the purpose of validation and
assessment part of the method capabilities. In section 5.5, DRL is used to control
conjugate heat transfer in a model setup of two-dimensional workpiece cooling by
impingement of a fluid. An extension to three-dimensional workpieces is proposed
in section 5.6.

5.2 Computational fluid dynamics

The focus of this research is on conjugate heat transfer and laminar, incompressible
fluid flow problems in two and three-dimensions, for which the conservation of mass,
momentum and energy is described by the nonlinear, coupled Navier–Stokes and
heat equations

∇ · u = 0 , (5.1)

ρ(∂tu+ u · ∇u) = ∇ · (−pI + 2µε(u)) +ψ , (5.2)

ρcp(∂tT + u · ∇T ) = ∇ · (λ∇T ) + χ , (5.3)

where u is the velocity field, p is the pressure, T is the temperature, ε(u) = (∇u+
∇uT )/2 is the rate of deformation tensor, ψ and χ are source terms (modeling, e.g.,
buoyancy or radiative heat transfer), and we assume here constant fluid density ρ,
dynamic viscosity µ, thermal conductivity λ, and specific heat cp.
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5.2.1 The immersed volume method

The numerical modeling of conjugate heat transfer mostly depends upon a heat
transfer coefficient to ensure that the proper amount of heat is exchanged at the
fluid/solid interface via thermal boundary conditions. Computing said coefficient is
no small task (as it requires solving an inverse problem to assimilate relevant ex-
perimental data, which in turn requires such data to be available), and is generally
acknowledged to be a limiting issue for practical applications where one must vary,
e.g., the shape, number and position of the solid, or the fluid and/or solid material
properties. We thus rather use here the immerse volume method (IVM) to combine
both the fluid and solid phases into a single fluid with variable material properties.
Simply put, we solve equations formally identical to (5.1)-(5.3) on a unique compu-
tational domain Ω, but with variable density, dynamic viscosity, conductivity, and
specific heat, which removes the need for a heat transfer coefficient since the amount
of heat exchanged at the interface then proceeds solely from the individual mate-
rial properties on either side of it. In order to ensure numerical accuracy, such an
approach must combine three key ingredients, that are briefly reviewed in the next
paragraphs: an interface capturing method, anisotropic mesh adaptation to achieve
a high-fidelity description of said interface, and relevant mixing laws to describe the
properties of the composite fluid. One point worth mentioning is that the interface
here is static, although the same numerical framework can be used to dynamically
track moving interfaces, and thus to encompass the effect of solid displacements.
This is because the solid is fixed once an action has been taken by the PPO agent,
although not fixed over the course of optimization, as the solid position can very
well be the quantity subjected to optimization, as illustrated in section 5.5.3.4.

- Level set method The level set approach is used to localize the fluid/solid
interface by the zero iso-value of a smooth function. In practice, a signed distance
function φ is used to localize the interface and initialize the material properties on
both either side of it, with the convention that φ > 0 (resp. φ < 0) in the fluid
(resp. the solid).

- Anisotropic mesh adaptation The interface may intersect arbitrarily the mesh
elements if it is not aligned with the element edges, in which case discontinuous ma-
terial properties across the interface can yield oscillations of the numerical solutions.
We thus use the anisotropic mesh adaptation technique presented in [103] to ensure
that the material properties are distributed as accurately and smoothly as possible
over the smallest possible thickness around the interface. This is done comput-
ing modified distances from a symmetric positive defined tensor (the metric) whose
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eigenvectors define preferential directions along which mesh sizes can be prescribed
from the related eigenvalues. The metric used here is isotropic far from the interface,
with mesh size set equal to h∞ in all directions, but anisotropic near the interface,
with mesh size equal to h⊥ in the direction normal to the interface, and to h∞ in
the other directions. This is written for an intended thickness δ as

M = K(φ)n⊗ n+
1

h2
∞
I with K(φ) =

 0 if |φ| ≥ δ/2 ,
1

h2
⊥
− 1

h2
∞

if |φ| < δ/2 ,

(5.4)

where n = ∇φ/||∇φ|| is the unit normal to the fluid/solid interface computed from
the level set gradient. A posteriori anisotropic error estimator is then used to mini-
mize the interpolation error under the constraint of a fixed number of edges in the
mesh. A unique metric can be built from multi-component error vectors [103],which
is especially relevant for conjugate heat transfer optimization, as it allows each learn-
ing episode to use an equally accurate mesh adapted from the velocity vector and
magnitude, the temperature field, and the level set.

- Mixing laws The composite density, dynamic viscosity and specific heat fea-
tured in equations (5.1)-(5.3) are computed as the arithmetic means of the fluid and
solid values, for instance the composite density is

ρ = ρfHε(φ) + ρs(1−Hε(φ)) , (5.5)

where Hε is the smoothed Heaviside function defined as

Hε(φ) =


0 if φ < −ε ,
1

2
(1 +

φ

ε
+

1

π
sin(π

φ

ε
)) if |φ| ≤ ε ,

1 if φ > ε ,

(5.6)

and ε is a regularization parameter proportional to the mesh size in the normal
direction to the interface, set here to ε = 2h⊥. In order to ensure continuity of the
heat flux across the interface, the thermal conductivity is computed as the harmonic
mean

1

λ
=

1

λf
Hε(φ) +

1

λs
(1−Hε(φ)) , (5.7)

as obtained from a steady, no source, one dimensional analysis of the heat flux when
the conductivity varies stepwise from one medium to the next; see [105] for detailed
derivation and analysis, and [195] for proof of the gain in numerical accuracy (with
respect to the arithmetic mean model) by comparison with analytical solutions.
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5.2.2 Variational multi-scale approach (VMS)

In the context of finite element methods (that remain widely used to simulate en-
gineering CFD systems due to their ability to handle complex geometries), direct
numerical simulation (DNS) solves the weak form of (5.1)-(5.3), obtained by inte-
grating by parts the pressure, viscous and conductive terms, to give

(ρ(∂tu+ u · ∇u) , w) + (2µε(u) , ε(w))− (p , ∇ ·w) + (∇ · u , q) = (ψ , w) ,
(5.8)

(ρcp(∂tT + u · ∇T ) , s) + (λ∇T , ∇s) = (χ , s) , (5.9)

where ( , ) is the L2 inner product on the computational domain, w, q and s are
relevant test functions for the velocity, pressure and temperature variables, and all
fluid properties are those mixed with the smoothed Heaviside function (5.6).

We use here the variational multi-scale (VMS) approach [79, 144, 145] to solve
a stabilized formulation of (5.8)-(5.9), which allows circumventing the Babuska—
Brezzi condition (that otherwise imposes that different interpolation orders be used
to discretize the velocity and pressure variables, while we use here simple continuous
piecewise linear P1 elements for all variables) and prevents numerical instabilities in
convection regimes at high Reynolds numbers. We shall not go into the extensive
details about the derivation of the stabilized formulations, for which the reader is
referred to [101, 147]. Suffice it to say here that the flow quantities are split into
coarse and fine scale components, that correspond to different levels of resolution.
The fine scales are solved in an approximate manner to allow modeling their effect
into the large-scale equations. This gives rise to additional terms in the right-hand
side of (5.8)-(5.9), and yields the following weak forms for the large scale

(ρ(∂tu+ u · ∇u) , w) + (2µε(u) , ε(w))− (p , ∇ ·w) + (∇ · u , q) = (ψ , w)

+
∑
K∈Th

[(τ1RM , u · ∇w)K + (τ1RM , ∇q)K + (τ2RC , ∇ ·w)K ] , (5.10)

(ρcp(∂tT + u · ∇T ) , s) + (λ∇T , ∇s) = (χ , s)

+
∑
K∈Th

[(τ3RT , u · ∇s)K + (τ4RT , ζ∇T · ∇s)K ] , (5.11)

where ( , )K is the inner product on element K, we denote by ζ = u · ∇T/||∇T ||2
the (normalized) velocity projected along the direction of the temperature gradient,
and the R terms are the governing equations residuals

−RC = ∇ · u , −RM = ρ(∂tu+ u · ∇u) +∇p−ψ
−RT = ρcp(∂tT + u · ∇T )− χ , (5.12)



Chapter 5. DRL for the control of conjugate heat transfer 107

x1

x2

x3

y1

y2

Figure 5.1: Fully connected neural network with two hidden layers, modeling a mapping
from R3 to R2.

whose second derivatives vanish since we use linear interpolation functions. In (5.10),
τ1,2 are ad-hoc mesh-dependent stabilization parameters defined in [150, 196]. Con-
versely, in (5.11), τ3,4 are mesh-independent stabilization parameters acting both in
the direction of the solution and of its gradient, that proceed from the stabilization
of the ubiquitous convection-diffusion-reaction equation [100, 146], whose definition
is given in [197, 198].

We solve the above equations sequentially (i.e. , we solve first (5.10), then use the
resulting fluid velocity to solve (5.11)) with an in-house VMS solver whose flexibility,
accuracy and reliability is assessed in a series of previous papers to which the reader
is referred for further information, see in particular [149, 150] for the detailed math-
ematical formulation of the IVM in the context of finite element VMS methods. The
ability of the IVM to handle the abrupt conductivity change across the fluid/solid
interface is documented in [101, 149, 199]. Excellent agreement with reference so-
lutions available from the literature and in-house data obtained enforcing proper
thermal conditions at the boundary of body-fitted meshes is reported for several
time-dependent conjugate heat transfer test cases (e.g., mixed convection in a plane
channel flow, combined convection in square enclosures and conduction/radiation
heat transfer, all in two dimensions). Ref. [149] also reports favorable agreement
between the IVM and in-house experimental data pertaining to a three-dimensional
test case representative of an industrial cooling system, which provides strong evi-
dence of relevance for the intended application.
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5.3 Deep reinforcement learning and proximal policy opti-
mization

5.3.1 Neural networks

A neural network (NN) is a collection of artificial neurons, i.e., connected computa-
tional units that can be trained to arbitrarily well approximate the mapping function
between input and output spaces. Each connection provides the output of a neuron
as an input to another neuron. Each neuron performs a weighted sum of its inputs,
to assign significance to the inputs with regard to the task the algorithm is trying to
learn. It then adds a bias to better represent the part of the output that is actually
independent of the input. Finally, it feeds an activation function that determines
whether and to what extent the computed value should affect the outcome. As
sketched in figure 5.1, a fully connected network is generally organized into layers,
with the neurons of one layer being connected solely to those of the immediately
preceding and following layers. The layer that receives the external data is the input
layer, the layer that produces the outcome is the output layer, and in between them
are zero or more hidden layers.

The design of an efficient neural network requires a proper optimization of the
weights and biases, together with a relevant nonlinear activation function. The
abundant literature available on this topic points to a relevant network architecture
(e.g., type of network, depth, width of each layer), finely tuned hyper parameters
(i.e., parameters whose value cannot be estimated from data, e.g., optimizer, learning
rate, batch size) and a sufficiently large amount of data to learn from as being the
key ingredients for success; see, e.g., Ref. [63] and the references therein.

5.3.2 Deep reinforcement learning

Deep reinforcement learning (DRL) is an advanced branch of machine learning in
which deep neural networks train in solving sequential decision-making problems.
It is a natural extension of reinforcement learning (RL), in which an agent (the
neural network) is taught how to behave in an environment by taking actions and
by receiving feedback from it under the form of a reward (to measure how good
or bad the action was) and information (to gauge how the action has affected the
environment). This can be formulated as a Markov Decision Process, for which a
typical execution goes as follows (see also figure 5.2):

• assume the environment is in state st ∈ S at iteration t, where S is a set of
states,

• the agent uses wt, an observation of the current environment state (and pos-
sibly a partial subset of st) to take action at ∈ A, where A is a set of actions,
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st 7→ st+1
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Figure 5.2: RL agent and its interactions with its environment.

• the environment reacts to the action and transitions from st to state st+1 ∈ S,

• the agent is fed with a reward rt ∈ R, where R is a set of rewards, and a new
observation wt+1,

This repeats until some termination state is reached, the succession of states and
actions defining a trajectory τ =

(
s0, a0, s1, a1, ...

)
. In any given state, the objective

of the agent is to determine the action maximizing its cumulative reward over an
episode, i.e., over one instance of the scenario in which the agent takes actions. Most
often, the quantity of interest is the discounted cumulative reward along a trajectory
defined as

R(τ) =
T∑
t=0

γtrt , (5.13)

where T is the horizon of the trajectory, and γ ∈ [0, 1] is a discount factor that weighs
the relative importance of present and future rewards (the agent being short-sighted
in the limit where γ → 0, since it then cares solely about the first reward, and
far-sighted in the limit where γ → 1, since it then cares equally about all rewards).

There exist two main types of RL algorithms, namely model-based methods, in
which the agent tries to build a model of how the environment works to make pre-
dictions about what the next state and reward will be before taking any action, and
model-free methods, in which the agent conversely interacts with the environment
without trying to understand it, and are prominent in the DRL community. An-
other important distinction to be made within model-free algorithms is that between
value-based methods, in which the agent learns to predict the future reward of tak-
ing an action when provided a given state, then selects the maximum action based
on these estimates, and policy-based methods, in which it optimizes the expected
reward of a decision policy mapping states to actions. Many of the most successful
algorithms in DRL (including proximal policy optimization, whose assessment for
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flow control and optimization purposes is the primary motivation for this research)
proceed from policy gradient methods, in which gradient ascent is used to optimize
a parameterized policy with respect to the expected return, as further explained
in the next section. The reader interested in a more thorough introduction to the
zoology of RL methods (together with their respective pros and cons) is referred to
Ref. [50].

5.3.3 From policy methods to Proximal policy optimization

This section intended for the non-specialist reader briefly reviews the basic princi-
ples and assumptions of policy gradient methods, together with the various steps
taken for improvement.

- Policy methods A policy method maximizes the expected discounted cumula-
tive reward of a decision policy mapping states to actions. It resorts not to a value
function, but to a probability distribution over actions given states, that fully de-
fines the behavior of the agent. Since policies are most often stochastic, the following
notations are introduced:

• π(s, a) is the probability of taking action a in state s under policy π,

• Qπ(s, a) is the expected value of the return of the policy after taking action a
in state s (also termed state-action value function or Q-function)

Qπ(s, a) = Eπ
[
R(τ)|s, a

]
, (5.14)

where we use Eπ for the expected value E under policy π.

• V π(s) is the expected value of the return of the policy in state s (also termed
value function or V-function)

V π(s) = Eπ
[
R(τ)|s

]
. (5.15)

The V and Q functions are therefore such that

V π(s) =
∑
a

π(s, a)Qπ(s, a) , (5.16)

so V π(s) can also be understood as the probability-weighted average of dis-
counted cumulated rewards over all possible actions in state s.
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- Policy gradient methods A policy gradient method aims at optimizing a
parametrized policy πθ, where θ denotes the free parameters whose value can be
learnt from data (as opposed to the hyper parameters). In practice, one defines an
objective function based on the expected discounted cumulative reward

J(θ) = Eπθ
[
R(τ)

]
, (5.17)

and seeks the parameterization θ∗ maximizing J(θ), hence such that

θ∗ = arg max
θ

Eπθ
[
R(τ)

]
, (5.18)

which can be done on paper by plugging an estimator of the policy gradient ∇θJ(θ)
into a gradient ascent algorithm. This is no small task as one is looking for the
gradient with respect to the policy parameters, in a context where the effects of
policy changes on the state distribution are unknown (since modifying the policy
will most likely modify the set of visited states, which will in turn affect performance
in some indefinite manner). One commonly used estimator, derived in [50] using the
log-probability trick, reads

∇θJ(θ) = Eπθ

[
T∑
t=0

∇θ log (πθ(st, at))R(τ)

]
∼ Eπθ

[
T∑
t=0

∇θ log (πθ(st, at)) Â
π(st, at)

]
,

(5.19)

where Âπ is some biased estimator (here its normalization to zero mean and unit
variance) of the advantage function

Aπ(s, a) = Qπ(s, a)− V π(s) , (5.20)

that measures the improvement (if Aπ > 0, otherwise the lack thereof) associated
with taking action a in state s compared to taking the average over all possible
actions. This is because the value function does not depend on θ, so taking it off
changes neither the expected value, nor the gradient, but it does reduce the variance,
and speeds up the training. Furthermore, when the policy πθ is represented by a
neural network (in which case θ simply denotes the network weights and biases to
be optimized), the focus is rather on the policy loss defined as

L(θ) = Eπθ

[
T∑
t=0

log (πθ(at|st)) Â(st, at)

]
, (5.21)

whose gradient is equal to the (approximated) policy gradient (5.19) (since the gradi-
ent operator acts only on the log-policy term, not on the advantage) and is computed
with respect to each weight and bias by the chain rule, one layer at the time, using
the back-propagation algorithm [62].
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Figure 5.3: Agent network example used to map states to policy. The input state s0, here
of size 2, is mapped to a mean µ and a standard deviation σ vectors, each
of size 2. All activation functions are ReLu, except for that of the last layer,
which are linear for the µ output, and softplus for the σ output. Orthogonal
weights initialization is used throughout the network.

- Trust regions The performance of policy gradient methods is hurt by the high
sensitivity to the learning rate, i.e., the size of the step to be taken in the gradi-
ent direction. Indeed, small learning rates are detrimental to learning, but large
learning rates can lead to a performance collapse if the agent falls off the cliff and
restarts from a poorly performing state with a locally bad policy. This is all the
more harmful as the learning rate cannot be tuned locally, meaning that an above
average learning rate will speed up learning in some regions of the parameter space
where the policy loss is relatively flat, but will possibly trigger an exploding policy
update in other regions exhibiting sharper variations. One way to ensure continuous
improvement is by imposing a trust region constraint to limit the difference between
the current and updated policies, which can be done by determining first a maxi-
mum step size relevant for exploration, then by locating the optimal point within
this trust region. We will not dwell on the intricate details of the many algorithms
developed to solve such trust region optimization problems, e.g., natural policy gra-
dient (NPG [200]), or trust region policy optimization (TRPO [68]). Suffice it to
say that they use the minorize-maximization algorithm to maximize iteratively a
surrogate policy loss (i.e. a lower bound approximating locally the actual loss at the
current policy), but are difficult to implement and can be computationally expensive,
as they rely on an estimate of the second-order gradient of the policy log probability.

- Proximal policy optimization Proximal policy optimization (PPO) is an-
other approach with simple and effective heuristics, that uses a probability ratio
between the two policies to maximize improvement without the risk of performance



Chapter 5. DRL for the control of conjugate heat transfer 113

collapse [18]. The focus here is on the PPO-clip algorithm1, that optimizes the
surrogate loss

L(θ) = Eπθ

[
min

(
πθ(a|s)
πθold(a|s)

, g(ε, Âπ(s, a))

)
Âπ(s, a)

]
, (5.22)

where

g(ε, A) =

{
1 + ε A ≥ 0 ,

1− ε A < 0 ,
(5.23)

and ε ∈ [0.1, 0.3] is the clipping range, a small hyper parameter defining how far
away the new policy is allowed to go from the old. The general picture is that a
positive (resp. negative) advantage increases (resp. decreases) the probability of
taking action a in state s, but always by a proportion smaller than ε, otherwise the
min kicks in (5.22) and its argument hits a ceiling of 1 + ε (resp. a floor of 1 − ε).
This prevents stepping too far away from the current policy, and ensures that the
new policy will behave similarly.

There exist more sophisticated PPO algorithms (e.g., Trust region PPO [143],
that determines first a maximum step size relevant for exploration, then adaptively
adjusts the clipping range to find the optimal within this trust region), but standard
PPO has simple and effective heuristics. Namely, it is computationally inexpensive,
easy to implement (as only the first-order gradient of the policy log probability is
needed to calculate the clipped surrogate), and remains regarded as one of the most
successful RL algorithms, achieving state-of-the-art performance across a wide range
of challenging tasks.

5.3.4 Single-step PPO

We now come to single-step PPO, a “degenerate” version of PPO introduced in [138]
and intended for situations where the optimal policy to be learnt by the neural net-
work is state-independent, as is notably the case in optimization and open-loop
control problems (closed-loop control problems conversely require state-dependent
policies for which standard PPO is best suited). The main difference between stan-
dard and single-step PPO can be summed up as follows: where standard PPO seeks
the optimal set of actions a? yielding the largest possible reward, single-step PPO
seeks the optimal mapping fθ? such that a? = fθ?(s0), where θ denotes the network
free parameters and s0 is some input state (usually a vector of zeros) consistently fed
to the agent for the optimal policy to eventually embody the transformation from

1There is also a PPO-Penalty variant which uses a penalization on the average Kullback–Leibler
divergence between the current and new policies, but PPO-clip performs better in practice.
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Figure 5.4: Action loop for single-step PPO. At each episode, the input state s0 is provided
to the agent, which in turn provides n actions to n parallel environments. The
latter return n rewards, that evaluate the quality of each action taken. Once
all the rewards are collected, an update of the agent parameters is made using
the PPO loss (5.22).

s0 to a?. The agent initially implements a random state-action mapping fθ0 from s0

to an initial policy determined by the free parameters initialization θ0, after which
it gets only one attempt per learning episode at finding the optimal (i.e., it interacts
with the environment only once per episode). This is illustrated in figure 5.4 show-
ing the agent draw a population of actions at = fθt(s0) from the current policy, and
being returned incentives from the associated rewards to update the free parameters
for the next population of actions at+1 = fθt+1(s0) to yield larger rewards.

In practice, the agent outputs a policy parameterized by the mean and variance of
the probability density function of a d-dimensional multivariate normal distribution,
with d the dimension of the action required by the environment. Actions drawn
in [−1, 1]d are then mapped into relevant physical ranges, a step deferred to the
environment as being problem-specific. The resolution essentially follows the process
described in section 5.3.3, only a normalized averaged reward substitutes for the
advantage function. This is because classical PPO is actor-critic, i.e., it improves
the learning performance by updating two different networks, a first one called actor
that controls the actions taken by the agent, and a second one called critic, that
learns to estimate the advantage from the value function as

A(st, at) = rt + γV (st+1)− V (st) . (5.24)

In single-step PPO, the trajectory consists of a single state-action pair, so the dis-
count factor can be set to γ = 1 with no loss of generality. In return, the advantage
reduces to the whitened reward since the two rightmost terms cancel each other
out in (5.24). This means that the approach can do without the value-function
evaluations of the critic network, i.e., it is not actually actor-critic.
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5.3.5 Numerical implementation

The present workflow relies on the online PPO implementation of Stable Baselines,
a toolset of reinforcement learning algorithms dedicated to the research community
and industry [154], for which a custom OpenAI environment has been designed using
the Gym library [155]. Hyperbolic tangent is used as default activation function.
The instant reward rt used to train the neural network is simply the quantity sub-
jected to optimization (modulo a plus or minus sign to tackle both maximization
and minimization problems). A moving average reward is also computed on the fly
as the sliding average over the 100 latest values of rt (or the whole sample if it has
insufficient size). All other relevant hyper parameters are documented in the next
sections, with the exception of the discount factor (set to γ = 1).

In practice, actions are distributed to multiple environments running in parallel,
each of which executes a self-contained MPI-parallel CFD simulation and feeds data
to the DRL algorithm (hence, two levels of parallelism related to the environment
and the computing architecture). The algorithm waits for the simulations running
in all parallel environments to be completed, then shuffles and splits the rewards
data set collected from all environments into several buffers (or mini-batches) used
sequentially to compute the loss and perform a network update. The process repeats
for several epochs, i.e., several full passes of the training algorithm over the entire
data set (so the policy network ends up being trained on samples generated by older
policies, which is customary in standard PPO operation). This simple parallelization
technique is key to use DRL in the context of CFD applications, as a sufficient
number of actions drawn from the current policy must be evaluated to accurately
estimate the policy gradient. This comes at the expense of computing the same
amount of reward evaluations, and yields a substantial computational cost for high-
dimensional fluid dynamics problems (typically from a few tens to several thousand
hours for the steady-state optimization problems considered herein). In the same
vein, it should be noted that the common practice in DRL studies to gain insight
into the performances of the selected algorithm by averaging results over multiple
independent training runs with different random seeds is not tractable, as it would
trigger a prohibitively large computational burden. The same random seeds have
thus been deliberately used over the whole course of study to ensure a minimal level
of performance comparison between cases.

5.4 Control of natural convection in 2-D closed cavity

5.4.1 Case description

We address first the control of natural convection in the two-dimensional differ-
entially heated square cavity schematically illustrated in figure 5.5(a). This is a
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Figure 5.5: Schematic of the two-dimensional Rayleigh–Bénard set-up.

widely studied benchmark system for thermally-driven flows, relevant in nature and
technical applications (e.g., ocean and atmospheric convection, materials process-
ing, metallurgy), that is thus suitable to validate and compare numerical solution
algorithms while enriching the knowledge base for future projects in this field. A
Cartesian coordinate system is used with origin at the lower-left edge, horizontal x-
axis, and vertical y-axis. The cavity has side L, its top and bottom horizontal walls
are perfectly insulated from the outside, and the vertical sidewalls are isothermal.
Namely, the right sidewall is kept at a constant, homogeneous “cold” temperature
Tc, and the left sidewall is entirely controllable via a constant in time, varying in
space “hot” distribution Th(y) such that

〈Th〉 > Tc , (5.25)

where the brackets denote the average over space (here over the vertical position
along the sidewall).

In the following, we neglect radiative heat transfer (χ = 0) and consider a Boussi-
nesq system driven by buoyancy, hence

ψ = ρ0β(T − Tc)gey , (5.26)

where g is the gravitational acceleration parallel to the sidewalls, β is the thermal ex-
pansion coefficient, and we use the cold sidewall temperature as Boussinesq reference
temperature. By doing so, the pressure featured in the momentum equation (5.2)
and related weak forms must be understood as the pressure correction representing
the deviation from hydrostatic equilibrium. The governing equations are solved with
no-slip conditions u = 0 on ∂Ω and temperature boundary conditions

∂yT (x, 0, t) = ∂yT (x, L, t) = 0 , T (0, y, t) = 〈Th〉+ T̃h(y) , T (L, y, t) = Tc ,
(5.27)
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(a) (b) (c)

Figure 5.6: Iso-contours of the uncontrolled steady state (a) temperature and (b) velocity
magnitude. (c) Adapted mesh. The circle symbols in (b) mark the positions
of the maximum horizontal and vertical velocity along the centerlines reported
in table 5.1.

where T̃h is a zero-mean (in the sense of the average over space) distribution of hot
temperature fluctuations subjected to optimization, whose magnitude is bounded
by some constant ∆Tmax according to

|T̃h(y)| ≤ ∆Tmax , (5.28)

to avoid extreme and nonphysical temperature gradients. All results are made non-
dimensional using the cavity side, the heat conductivity time, and the well-defined,
constant in time difference between the averaged sidewall temperatures. The re-
tained fluid properties yield values of the Rayleigh and Prandtl numbers

Ra =
gβ(〈Th〉 − Tc)L3

να
= 104 , Pr =

ν

α
= 0.71 , (5.29)

where α = λ/(ρcp) is the thermal diffusivity.
In order to assess the accuracy of the numerical framework, the uncontrolled

solution has been computed by performing 60 iterations with time step ∆t = 0.5
to march the initial solution (consisting of zero velocity and uniform temperature,
except at the hot sidewall) to steady state. At each time step, an initially isotropic
mesh is adapted under the constraint of a fixed number of elements nel = 4000
using a multiple-component criterion featuring velocity and temperature, but no
level-set. This is because the case is heat transfer but not conjugate heat transfer,
as the solid is solely at the boundary ∂Ω of the computational domain, where either
the temperature is known, or the heat flux is zero. It is thus implemented without
the IVM and without a level set (although accurate IVM numerical solutions have
been obtained in [101] using thick sidewalls with high thermal conductivity). The
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Present Ref. [201] Ref. [202] Ref. [203] Ref. [204] Ref. [205]

Ra = 104

Nu 2.267 2.238 2.245 2.201 2.245 2.245
maxu(0.5, y) 16.048 16.178 16.179 – 16.262 16.178

ymax 0.823 0.823 0.824 0.832 0.818 0.827
max v(x, 0.5) 19.067 19.617 19.619 – 19.717 19.633

xmax 0.120 0.119 0.121 0.113 0.119 0.123

Table 5.1: Comparison of the present numerical results in the absence of control with ref-
erence benchmark solutions from the literature.

solution shown in figure 5.6(a,b) features a centered roll confined by the cavity walls,
consistently with the fact that Ra exceeds the critical value Rac ∼ 920 for the onset
of convection (as extrapolated from the near-critical benchmark data in [201]) by
one order of magnitude, and heat transfer is thus driven by both conduction and
convection. This shows in the Nusselt number, i.e., the non-dimensional temperature
gradient averaged over the hot sidewall

Nu = −〈∂xT 〉 , (5.30)

whose present value Nu = 2.27 (as computed from 68 points uniformly distributed
along the sidewall) exceeds that Nu = 1 of the purely conductive solution, and
exhibits excellent agreement with benchmark results from the literature. This is
evidenced in table 5.1 where we also report the magnitude and position of the
maximum horizontal velocity u (resp. the vertical velocity v) along the vertical
centerline (resp. the horizontal centerline). The corresponding adapted mesh shown
in figure 5.6(c) stresses that all boundary layers are sharply captured via extremely
stretched elements, and that the adaptation strategy yields refined meshes near high
temperature gradients and close to the side walls. Note however, the mesh refinement
is not only along the boundary layers but also close to the recirculation regions near
the cavity center, while the elements in-between are coarse and essentially isotropic.

5.4.2 Control

The question now being raised is whether DRL can be used to find a distribution
of temperature fluctuations T̃h capable of alleviating convective heat transfer. To
do so, we follow [17] and train a DRL agent in selecting piece-wise constant tem-
perature distributions over ns identical segments, each of which allows only two
pre-determined states referred to as hot or cold. This is intended to reduce the
complexity and the computational resources, as large/continuous action spaces are
known to be challenging for the convergence of RL methods [192, 206]. Simply put,
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the network action output consists of ns values T̂hk∈{1...ns} = ±∆Tmax, mapped into
the actual fluctuations according to

T̃hk =
T̂hk − 〈T̂hk〉

maxl{1,
|T̂hl − 〈T̂hl〉|

∆Tmax
}
, (5.31)

to fulfill the zero-mean and upper bound constraints.2 Ultimately, the agent receives
the reward rt = −Nu to minimize the space averaged heat flux at the hot sidewall.

All results reported herein are for ∆Tmax = 0.75 (so the hot temperature varies
in the range [0.25; 1.75]) and ns = 10 segments, as [17] report that ns = 20 was
computationally too demanding for their case, and that ns = 5 yielded poor control
efficiency. The agent is a fully-connected network with two hidden layers, each
holding 2 neurons. The resolution process uses 8 environments and 2 steps mini-
batches to update the network for 32 epochs, with learning rate 5× 10−3, and PPO
loss clipping range ε = 0.2.

5.4.3 Results

For this case, 120 episodes have been run, each of which follows the exact same
procedure as above and performs 60 iterations with time step ∆t = 0.5 to march
the zero-initial condition to steady state. This represents 960 simulations, each of
which is performed on 4 cores and lasts 20s, hence 5h of total CPU cost. We present
in figure 5.7 representative iso-contours of the steady-state temperature and velocity
magnitude computed over the course of the optimization. The latter exhibit strong
temperature gradients at the hot sidewall, together with a robust steady roll-shaped
pattern accompanied by a small corner eddy at the upper-left edge of the cavity,
whose size and position depends on the specifics of the temperature distribution.
The corresponding meshes are displayed in figure 5.7(c) to stress the ability of the
adaptation procedure to handle well the anisotropy of the solution caused by the
intrinsic flow dynamics and the discontinuous boundary conditions.

We show in figure 5.8 the evolution of the controlled averaged Nusselt number,
whose moving average decreases monotonically and reaches a plateau after about
90 episodes, although we notice that sub-optimal distributions keep being explored
occasionally. The optimal computed by averaging over the 10 latest episodes (hence

2Another possible approach would have been to penalize the reward passed to the DRL for
those temperature distributions deemed non-admissible (either because the average temperature is
non-zero or the temperature magnitude is beyond the threshold). However, this would have made
returning admissible solutions part of the tasks the network is trained on (not to mention that
non-zero average temperatures amount to a change in the Rayleigh number), which would likely
have slowed down learning substantially.
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(a) (b) (c)

Figure 5.7: (a,b) Steady-state (a) temperature and (b) velocity magnitude against zero-
mean temperature distributed at the left sidewall. (c) Adapted meshes.
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Figure 5.8: Evolution per learning episode of the instant (in grey) and moving average
(in black) Nusselt number. The horizontal dashed line marks the uncontrolled
value.

(a) (b) (c)

Figure 5.9: (a,b) Steady-state (a) temperature and (b) velocity magnitude for the optimal
zero-mean temperature distribution. (c) Adapted mesh.

the 800 latest instant values) is 〈Nu〉? ∼ 0.57, with variations ±0.01 computed
from the root-mean-square of the moving average over the same interval (which
is a simple yet robust criterion to assess qualitatively convergence a posteriori).
Interestingly, the optimized Nusselt number is almost twice as small as the purely
conductive value (Nu = 1), meaning that the approach successfully alleviates the
heat transfer enhancement generated by the onset of convection, although it does
not alleviate convection itself, as evidenced by the consistent roll-shaped pattern in
figure 5.9. Similar results are reported in [17], for a different set-up in which the
horizontal cavity walls are isothermal and control is applied at the bottom at the
cavity (hence a different physics because of buoyancy), albeit with lower numerical
and control efficiency since the authors report an optimal Nusselt number Nu ∼ 1
using up to 512 DRL environments with learning rate of 2.5 × 10−4. The reason



122 5.5. Control of forced convection in 2-D open cavity

for such discrepancies probably lies in different ways of achieving and assessing
control, as we use single-step PPO to optimize the steady-state Nusselt number via a
time-independent control, which requires choosing a sidewall temperature, marching
the controlled solution to steady state, then computing the reward. The problem
considered in [17] is more intricate, as classical PPO is used to optimize the reward
accumulated over time via a time-dependent control temperature updated with a
certain period scaling with the convection time in the cavity (the so-determined
optimal control being ultimately time-independent for the considered value of Ra,
but truly time-dependent for Rayleigh numbers above ∼ 105).

5.5 Control of forced convection in 2-D open cavity

5.5.1 Case description

This second test case addresses the control of actual conjugate heat transfer in a
model setup for the cooling of a hot solid by impingement of a fluid; see figure 5.10(a).
A Cartesian coordinate system is used with origin at the center of mass of the solid,
horizontal x-axis, and vertical y-axis. The solid has rectangular shape with height
h and aspect ratio 2:1, and is initially at the hot temperature Th. It is fixed at
the center of a rectangular cavity with height H and aspect ratio 4:1, whose walls
are isothermal and kept at temperature Tw. The top cavity side is flush with nj
identical holes of width ei whose distribution is subjected to optimization, each
of which models the exit plane of an injector blowing cold air at velocity Vi and
temperature Tc, and is identified by the horizontal position of its center xk∈{1...nj}.
Hot air is released through the cavity sidewalls, blown with two identical exhaust
areas of height eo, and identified by the vertical position of their center (e0 −H)/2.

For this case, both buoyancy and radiative heat transfer are neglected (ψ = 0
and χ = 0), meaning that temperature evolves as a passive scalar, similar to the mass
fraction of a reactant in a chemical reaction. All relevant parameters are provided
in Table 5.2, including the material properties used to model the composite fluid,
that yield fluid values of the Reynolds and Prandtl numbers

Re =
ρVie

µ
= 200 , Pr = 2 . (5.32)

Note the very high value of the solid to fluid viscosity ratio, that ensures that
the velocity is zero in the solid domain and that the no-slip interface condition is
satisfied. By doing so, the convective terms drop out in the energy equation, that
reduces to the pure conduction equation for the solid. The governing equations are
solved with no-slip isothermal conditions u = 0 and T = Tw on ∂Ω, except at the
injection exit planes (u = −Viey, T = Tc), and at the exhaust areas, where a zero-
pressure outflow condition is imposed (p = ∂xu = ∂xT = 0). No thermal condition is
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(a) (b)

Figure 5.10: (a) Schematic of the 2-D forced convection set-up. (b) Sensors positions in
the solid domain.

H h ei e0 Vi Tw Tc Th µ ρ λ cp

1 0.2 0.2 0.2 1 10 10 150
0.001 1 0.5 1000 Fluid

1000 100 15 300 Solid

Table 5.2: Numerical parameters used in the 2-D forced convection problem. All values in
SI units, with the exception of temperatures given in Celsius.

imposed at the interface, where heat exchange is implicitly driven by the difference
in the individual material properties.

5.5.2 Control

The quantity being optimized is the distribution of the injectors center positions
xk∈{1...nj}. Several control strategies are assessed in the following, whose ability to
manage increasing design complexity translates into less constrained operation when
it comes to optimizing a practically meaningful device. In practice, each injector is
forced to sit in an interval [x−k ;x+

k ] whose edge values are determined beforehand of
recomputed on the fly (depending on the control strategy), and bounded according
to

|x±k | ≤ xm , (5.33)

where we set xm = 2H − 0.75ei to avoid numerical issues at the upper cavity edges.
The network action output therefore consists of nj values x̂ ∈ [−1; 1], mapped into
the actual positions according to

xk =
x+
k (x̂k + 1)− x−k (x̂k − 1)

2
. (5.34)

In order to compute the reward passed to the DRL, we distribute uniformly 15
probes in the solid domain, into nx = 5 columns and ny = 3 rows with resolutions
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∆x = 0.09 and ∆y = 0.075, respectively; see figure 5.10(b). Selected tests have been
carried out to check that the outcome of the learning process does not change using
ny = 5 rows of nx = 5 probes (not shown here). The magnitude of the tangential
heat flux is estimated by averaging the norm of the temperature gradient over all
columns and rows, i.e., i-th column (resp. the j-th row) as

〈||∇‖T ||〉i =
2

ny − 1
|
∑
j 6=0

sgn(j)||∇T ||ij| , 〈||∇‖T ||〉j =
2

nx − 1
|
∑
i 6=0

sgn(i)||∇T ||ij| ,

(5.35)

where subscripts i, j and ij denote quantities evaluated at x = i∆x, y = j∆y and
(x, y) = (i∆x, j∆y), respectively, and symmetrical numbering is used for the center
probe to sit at the intersection of the zero-th column and row. The numerical reward
rt = −〈||∇‖T ||〉 fed to the DRL agent deduces ultimately by averaging over all rows
and columns, to give

〈||∇‖T ||〉 =
1

nx + ny

∑
i,j

〈||∇‖T ||〉i + 〈||∇‖T ||〉j , (5.36)

which especially yields rt = 0 for a perfectly homogeneous cooling.
All results reported in the following are for nj = 3 injectors. The agent is a fully-

connected network with two hidden layers, each holding 2 neurons. The resolution
process uses 8 environments and 2 steps mini-batches to update the network for 32
epochs, with learning rate set to 5× 10−3, and PPO loss clipping range to ε = 0.3.

5.5.3 Results

5.5.3.1 Fixed domain decomposition strategy

We consider first the so-called fixed domain decomposition strategy S1 in which the
top cavity wall is split into nj equal subdomains, and each injector is forced to sit
in a different subdomain (a somehow heavily constrained optimization problem if
nj is not to small, relevant for cases where the design is rigid and the practitioner
has limited freedom to act). The edge values for the position xk of the k-th injector
read

x−k = −xm + (k − 1)
2xm + ei

nj
, x+

k = x−k +
2xm − (nj − 1)ei

nj
. (5.37)

It can be checked that x−k = x+
k−1 + ei, so, it is possible to end up with two side-

by-side injectors, which is numerically equivalent to having nj − 1 injectors, nj − 2
of width ei plus one of width 2ei. For this case, 60 episodes have been run, each of
which performs 1500 iterations with time step ∆t = 0.1 to march the same initial
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(b)(a)

Figure 5.11: (a) Steady-state temperature against arrangements of 3 injectors, with ad-
missible values under the fixed domain decomposition strategy S1 delimited
by the dashed lines. (b) Adapted meshes colored by the magnitude of velocity.

(b)(a)

Figure 5.12: (a) Evolution per learning episode of the instant (in grey) and moving av-
erage (in black) rewards under the fixed domain decomposition strategy S1.
(b) Same as (a) for the injectors center positions, with admissible values
delimited by the dashed lines.

condition (consisting of zero velocity and uniform temperature, except in the solid
domain) to steady state, using the level set, velocity and temperature as multiple-
component criterion to adapt the mesh (initially pre-adapted using the sole level set)
every 5 time steps under the constraint of a fixed number of elements nel = 15000.
This represents 480 simulations, each of which is performed on 8 cores and lasts
10mn, hence 80h of total CPU cost.
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(b)(a)

Figure 5.13: Same as figure 5.11 for the optimal arrangement of 3 injectors under the
fixed domain decomposition strategy S1.

It is out of the scope of this work to analyze in details the many flow patterns that
develop when the blown fluid travels through the cavity. Suffice it to say that the
outcome depends dramatically on the injectors arrangement, and features complex
rebound phenomena (either fluid/solid, when a jet impinges on the cavity walls or
on the workpiece itself, or fluid/fluid, when a deflected jet meets the crossflow of
another jet), leading to the formation of multiple recirculation varying in number,
position and size. Several such cases are illustrated in figure 5.11 via iso-contours of
the steady-state temperature distributions, together with the corresponding adapted
meshes colored by the magnitude of velocity to illustrate the ability of the numerical
framework to capture accurately all boundary layers and shear regions via extremely
stretched elements.

One point worth mentioning is that the individual position signals are best suited
to draw robust quantitative conclusion, as there is noise in the reward signal shown
in figure 5.12(a). We believe the issue to be twofold: on the one hand, the reward
is approximated from point-wise temperature data (similar to experimental mea-
surements) that are more sensitive to small numerical errors (e.g., the interpolation
error at the probes position) than an integral quantity. On the other hand, the
mesh adaptation procedure is not a deterministic process, as the outcome depends
on the processors and number of processors used, and any initial difference prop-
agates over the course of the simulation because the meshes keep being adapted
dynamically. In return, two exact same control parameters can thus yield different
rewards on behalf of different interpolation errors at the probes position. This likely
slows down learning and convergence, but we show in figure 5.12(b) that the mov-
ing average distribution does converge to an optimal arrangement after roughly 25
episodes. The latter consists of an injector at the right-end of the left subdomain
(x1

? = −0.75) and two side-by-side injectors sitting astride the center and right
subdomains (x2

? = 0.55 and x3
? = 0.75), that enclose the workpiece in a double-cell

recirculation; see figure 5.13. These values have been computed by averaging the
instant positions of each injector over the 10 latest episodes, with variations ±0.002
computed from the root-mean-square of the moving average over the same inter-
val, a procedure that will be used consistently to assess convergence for all cases
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(b)(a)

Figure 5.14: (a) Steady-state temperature against arrangements of 3 injectors, with ad-
missible values under the follow-up strategy S2 delimited by the dashed lines.
(b) Adapted meshes colored by the magnitude of velocity.

(c)(b)(a)

Figure 5.15: Evolution per learning episode of the instant (in grey) and moving average
(in black) injectors center positions under the follow-up strategy S2, with
admissible values delimited by the dashed lines.

reported in the following. The efficiency of the control itself is estimated by com-
puting the magnitude of tangential heat flux averaged over the same interval, found
to be 〈||∇‖T ||〉? ∼ 8.3. Note, the position x2

? is actually obtained by averaging the
absolute value of the instant position x2 (although the true, signed value is depicted
in the figure), as the center injector keeps oscillating between two end positions
±0.55 on behalf of reflectional symmetry with respect to the vertical centerline.

5.5.3.2 Follow-up strategy

A less constrained problem is considered here using the so-called follow-up strategy
S2, in which all injectors are distributed sequentially the ones with respect to the
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(b)(a)

Figure 5.16: Same as figure 5.14 for the optimal arrangement of 3 injectors under the
follow-up strategy S2.

others. The corresponding edge values

x−1 = −xm , x+
1 = xm − (nj − 1)ei , (5.38)

x−k = x+
k−1 + ei , x+

k = xm − (nj − k)ei , (5.39)

readily express that the k-th injector is forced to sit between the k−1-th one and the
upper-right cavity edge while leaving enough space to distribute the remaining nj−k
injectors, which increases the size of the control parameter space while again leaving
the possibility for side-by-side injectors (since x−k = x+

k−1 + ei by construction). 75
episodes have been run for this case following the exact same procedure as above,
i.e., marching the zero-initial condition in time up to t = 150 with ∆t = 0.1, hence
600 simulations, each of which is performed on 8 cores and lasts 10mn, hence 100h
of total CPU cost.

The computed flow patterns closely resemble those obtained under the previous
fixed domain decomposition strategy, although figure 5.14 exhibits increased dis-
symmetry when two or more injectors move simultaneously to the same side of the
cavity. We show in figure 5.15 that the moving average distribution converges after
roughly 60 episodes, with the optimal arrangement consisting of one injector roughly
midway between the left cavity sidewall and the workpiece (x1

? = −0.96), and two
side-by-side injectors at the right end of the cavity (x2

? = 1.65 and x3
? = 1.85).

The variations over the same interval are by ±0.006; see also figure 5.16 for the
corresponding flow pattern. Convergence here is much slower than under S1, as
the search for an optimal is complicated by the fact that all injector positions are
interdependent the ones on the others and it is up to the network to figure out
exactly how. Another contingent matter is that the agent initially spans a fraction
of the control parameter space because the large values of x1 considered limit the
space available to distribute the other two injectors. This is all the more so as
such configurations turn to be far from optimality, for instance the magnitude of
tangential heat flux is 〈||∇‖T ||〉 ∼ 41.3 for x1 = 1.45, x2 = 1.65 and x3 = 1.85,
but 〈||∇‖T ||〉? ∼ 6.3 at optimality. The latter value is smaller than the optimal
achieved under S1, consistently with the fact that all positions spanned under S1

are admissible under S2, hence the S1 optimal is expected to be a S2 sub-optimal.
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(b)(a)

Figure 5.17: (a) Steady-state temperature against arrangements of 3 injectors, with ad-
missible values under the free strategy S3 delimited by the dashed lines and
overlaps marked by the dark grey shade. (b) Adapted meshes colored by the
magnitude of velocity.

(c)(b)(a)

Figure 5.18: Evolution per learning episode of the instant (in grey) and moving average (in
black) injectors center positions under the free strategy S3, with admissible
values delimited by the dashed lines.

5.5.3.3 Free strategy

We examine now a third strategy S3 referred to as the free strategy, in which all
injectors are independent and free to move along the top cavity wall (a mildly
constrained optimization problem, relevant for cases where the design is flexible and
the practitioner has great freedom to act). The edge values for the position xk of
the k-th injector read

x−k = −xm , x+
k = xm , (5.40)

so two injectors can end up side-by side and even overlapping one another if |xl −
xm| < ei. If so, we implement a single injector of width ei + |xl − xm| and maintain
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(b)(a)

Figure 5.19: Same as figure 5.17 for the optimal arrangement of 3 injectors under the free
strategy S3.

the blowing velocity (not the flow rate) for the purpose of automating the set-up
design process, meaning that having nj injectors, two of which overlap exactly (i.e.,
|xl − xm| = 0) is rigorously equivalent to having nj − 1 injectors. 60 episodes have
been run for this case following the exact same procedure as above.

All flow patterns are reminiscent of those obtained under the previous fix de-
composition S1 and follow-up S2 strategies, even when two injectors overlap; see
figure 5.17. Other than that, we show in figures 5.18 that the moving average dis-
tribution converges to an optimal consisting of two injectors almost perfectly over-
lapping one another at the left end of the cavity (x1

? = −1.85 and x2
? = −1.82),

and a third injector at the right end of the cavity (x3
? = 1.85). The variations

over the same interval are by ±0.007, and the associated flow pattern shown in fig-
ure 5.19 is symmetrical and features two large recirculation regions on either side
of the workpiece. Convergence occurs after roughly 40 episodes, i.e., faster than
under S2 (consistently with the fact that there is no need to learn anymore about
how the network outputs depend the ones on the others) but slower than under S1

(consistently with the fact that the size of the control parameter space has increased
substantially). It is worth noticing that the system is invariant by permutations of
the network outputs, meaning that there exist 2nj − 2 distributions (hence 6 for
nj = 3) associated with the same reward. Nonetheless, a single optimal is selected,
which is essentially fortuitous since the agent does not learn about symmetries un-
der the optimization process (otherwise S1 would have similarly selected a single
optimal). The magnitude of tangential heat flux is 〈||∇‖T ||〉? ∼ 11.2 at optimality,
i.e., larger than that achieved under S2. This can seem surprising at first, because
all positions spanned under S2 are admissible under S3, and the S2 optimal is thus
expected to be a S3 sub-optimal. However, the argument does not hold here because
the overlap in the S3 optimal reduces the flow rate to that of a two-injectors set-up,
so the comparison should be with the S2 optimal with nj = 2.
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(b)(a)

Figure 5.20: (a) Steady-state temperature against solid center of mass position, with ad-
missible domains under the inverse strategy S4 marked by the dashed lines.
(b) Adapted meshes colored by the norm of velocity.

Figure 5.21: Evolution per learning episode of the instant (in grey) and moving average (in
black) center of mass positions under the inverse strategy S4, with admissible
values delimited by the dashed lines.
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(b)(a)

Figure 5.22: Same as figure 5.20 for the optimal center of mass position under the inverse
strategy S4.

5.5.3.4 Inverse strategy

Finally, we propose here to make the most of the numerical framework flexibility
to solve a different optimization problem consisting in selecting first an injector
distribution, then in finding the position x0 of the solid center of mass minimizing the
magnitude of tangential heat flux (which is relevant for cases where the practitioner
simply cannot act on the design). The so-called inverse strategy S4 considered herein
features two injectors at each end of the cavity (x1 = −1.85 and x2 = 1.85), identical
to the optimal arrangement of 3 injectors under the free strategy S3. The center
of mass can take any value in [−x0m;x0m] where we set x0m = 2(H − h) to avoid
numerical issues at the sidewalls. The same coordinate system as above is used, but
with reference frame attached to the cavity, not the moving solid (hence all results
obtained under the previous strategies pertain to x0 = 0 in the new system).

A total of 60 episodes have been run for this case using the exact same DRL
agent, the only difference being in the network action output, now made up of a
single value x̂0 ∈ [−1; 1], mapped into the actual position using

x0 = x0mx̂0 . (5.41)

A large variety of flow patterns is obtained by doing so, that closely resemble those
computed under the previous strategies, only the outcome is now also altered by
the width of the gap between the cavity sidewalls and the workpiece, as illustrated
in figure 5.20. We show in figure 5.21 that the position of the solid center of mass
converges to an optimal x0

? = 0.42 (the variations over the same interval being by
±0.005), the associated magnitude of tangential heat flux 〈||∇‖T ||〉? ∼ 4.1, being
smaller than that achieved under S3 using a centered workpiece. The fact that
the optimal position is offset from the vertical centerline is a little surprising at
first, because intuition suggests that the simplest way to achieve homogeneous heat
transfer is by having symmetrically distributed injectors. Nonetheless, examining
carefully the norm of the temperature gradient in the solid domain shows that x0 = 0
achieves close to perfect horizontal symmetry but vertical asymmetry, owing to the
formation of two large-scale, small velocity end vortices entraining heat laterally
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(c) (d)

(a) (b)

Figure 5.23: (a,b) Norm of the temperature gradient in the solid domain with superimposed
streamlines of the underlying velocity field, as computed for (a) x0 = 0, and
(b) x0

? = 0.45, i.e., the optimal position selected under the inverse strategy
S4. (c) Cuts along the two leftmost columns of probes. The solid and dashed
lines refer to x0 = 0 and x0

? = 0.42, respectively, and the symbols mark the
probe values. (d) Same as (c) for cuts along the lower and upper rows of
columns.

downwards; see figure 5.23(a). Conversely, for x ∼ x0
?, the workpiece it almost

at the core of the closest recirculation region, hence the surrounding fluid particles
have small velocities and wrap almost perfectly around its surface, as illustrated in
figure 5.23(b). This restores excellent vertical symmetry, as evidenced by relevant
cuts along the two leftmost columns of probes in figure 5.23(c), and along the lower
and upper rows in figure 5.23(d), which explains the improved the reward.

5.5.4 Discussion

Figure 5.24 reproduces the optimal temperature distributions computed under the
various strategies considered above. For benchmarking purposes, we also provide



134 5.5. Control of forced convection in 2-D open cavity

(b)(a)

(d)(c)

Figure 5.24: (a-c) Optimal arrangements of 3 injectors under the (a) fixed decomposition
domain strategy S1, (b) follow-up strategy S2 and (c) free strategy S3. (b)
Optimal position of the workpiece under the inverse strategy S4.

nj nep x0 x1 x2 x3 〈||∇‖T ||〉
S1 3 60 0 −0.75 ±0.55 0.75 8.3
S2 3 75 0 −0.96 1.65 1.85 6.3
S3 3 60 0 −1.85 −1.82 1.85 11.2
S4 2 60 0.42 −1.85 1.85 – 4.1

Table 5.3: Numerical data for the optimal arrangements computed under strategies S1−4.
All values computed by averaging the instant signal over the 10 latest learning
episodes.

in table 5.3 relevant convergence data computed over the 10 latest episodes. To
recap, the most homogeneous cooling is achieved under the follow-up strategy S2,
but the DRL agent seems more easily trained under the fixed decomposition domain
strategy S1 and the free strategy S3. Another interesting point is the extent to which
the workpiece is actually cooled, for which S2 seems more relevant, on behalf of the
dissymmetry in the left and right flow rates that creates order one velocities at the
bottom of the cavity. This stresses S2 as a possible compromise to achieve efficient
and homogeneous cooling, although a true optimal with this regard can be computed
rigorously by applying the same approach to compound functionals weighing, e.g.,
the magnitude of the tangential heat flux and the solid center temperature (which
we defer to future work).

These results provide a basis for future self-assessment of the method and iden-
tifies potential for improvement regarding the convergence efficiency. The approach
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Figure 5.25: Schematic of the 3-D forced convection set-up.

can certainly benefit from a fine tuning of the reward computation, as having suffi-
cient spatial resolution on the relevant state of the system is an obvious requirement
to allow a successful control. Adjusting the trade-off between exploration and ex-
ploitation is also worth consideration to better handle the existence of multiple
global optima (whether they stem from symmetries of from the topology of the
reward itself) which could be done using non-normal probability density functions.

5.6 Extension to 3-D forced convection

5.6.1 Case description

The model cooling set up considered in section 5.5 is extended here to 3-D to assess
the extent to which the approach carries over to three-dimensional conjugate heat
transfer. The main differences between 2-D and 3-D are as follows: a Cartesian
coordinate system is used with origin at the center of mass of the solid, horizontal
x-axis, vertical y-axis, and the z-axis completes the direct triad; see figure 5.25. The
solid is a rectangular prism with aspect ratio 2:1:1, and is fixed at the center of a
rectangular cavity with height H and aspect ratio 4:1:1. We consider nj circular-
shaped injectors with diameter di, whose exit planes are forced to be symmetrical
with respect to z = 0, hence each injector is identified by the horizontal position
of its center xk∈{1...nj}. We also use circular-shaped exhaust areas with diameter
do, offset by a distance δo from the bottom of the cavity, and whose exit planes
are also symmetrical with respect to z = 0, hence each exhaust area is identified
by the vertical position of its center (d0 + δo −H)/2. The governing equations are
solved with the exact same boundary conditions as in section 5.5. All parameters are
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H h di d0 δ0 Vi Tw Tc Th µ ρ λ cp

1 0.2 0.2 0.24 0.16 1 10 10 150
0.01 1 0.5 1000 Fluid

1000 100 15 300 Solid

Table 5.4: Numerical parameters used in the 3-D forced convection problem. All values in
SI units, with the exception of temperatures given in Celsius.

provided in Table 5.4, including the material properties used to model the composite
fluid, that yield fluid values of the Reynolds and Prandtl numbers

Re =
ρVidi
µ

= 20 , Pr = 20 . (5.42)

5.6.2 Control strategy

We keep here the same control objective and compute the reward fed to the DRL
from 45 probes arranged symmetrically into nz = 3 transverse layers with resolution
∆z = 0.075, each of which distributes uniformly 15 probes into nx = 5 columns
and ny = 3 rows with resolutions ∆x = 0.09 and ∆y = 0.075. In practice, the 3-D
reward is simply the average over z of the 2-D reward defined in section 5.5, hence
rt = −〈||∇‖T ||〉 with

〈||∇‖T ||〉 =
1

(nx + ny)nz

∑
i,j,k

〈||∇‖T ||〉ik + 〈||∇‖T ||〉jk , (5.43)

with

〈||∇‖T ||〉ik =
2

ny − 1
|
∑
j 6=0

sgn(j)||∇T ||ijk| , 〈||∇‖T ||〉jk =
2

nx − 1
|
∑
i 6=0

sgn(i)||∇T ||ijk| ,

(5.44)

and the subscripts ik, jk and ijk denote quantities evaluated at (x, z) = (i∆x, k∆z),
(y, z) = (j∆y, k∆z) and (x, y, z) = (i∆x, j∆y, k∆z), respectively.

All results reported in the following are for nj = 3 injectors. The edge values
needed to map the network action output into the actual injectors positions deduce
straightforwardly from (5.37)-(5.40) substituting the diameter di of the 3-D injectors
for the length ei of the 2-D injectors. The same DRL agent is used, that consists
of two hidden layers, each holding 2 neurons, and the resolution process uses 8
environments and 2 steps mini-batches to update the network for 32 epochs. Each
environment performs 1250 iterations with time step ∆t = 0.1 to march the same
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Figure 5.26: Representative steady-state temperature distributions at the solid/fluid inter-
face together with 3-D streamlines colored by the magnitude of velocity.
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Figure 5.27: Evolution per learning episode of the instant (in grey) and moving average
(in black) injectors center positions under the three-dimensional fixed domain
decomposition strategy S1, with admissible values delimited by the dashed
lines.

initial condition (consisting of zero velocity and uniform temperature, except in
the solid domain) to steady state, using the level set, velocity and temperature as
multiple-component criterion to adapt the mesh (initially pre-adapted using the sole
level set) every 10 time steps under the constraint of a fixed number of elements
nel = 120000. This is likely insufficient to claim true numerical accuracy, but given
the numerical cost (320 3-D simulations per strategy, each of which is performed on
8 cores and lasts 2h30, hence 800h of total CPU cost), we believe this is a reasonable
compromise to assess feasibility while producing qualitative results to build on.

5.6.3 Results

Only the fixed domain decomposition S1 strategy (in which the top cavity wall is split
into nj equal subdomains and each injector is forced to sit in a different subdomain)
and the free S3 strategy (in which the injectors are entirely independent and free to
move along the top cavity wall) are considered here to save computational resources,
as learning has been seen to be slower in 2-D under the follow-up S2 strategy.

A total of 60 episodes have been run under the fixed domain decomposition
strategy S1. Several representative flow patterns computed over the course of opti-
mization are shown in figure 5.26 via iso-contours of the steady-state temperature
at the fluid-solid interface and 3-D streamlines colored by the magnitude of veloc-
ity, to put special emphasis on transverse inhomogeneities and display the increased
degree of complexity due to the formation of large-scale horseshoe vortices wrapped
around the nozzle jets. We show in figure 5.27 that the distribution slowly con-
verges to an optimal arrangement consisting of one injector at the left end of the
left subdomain (x1

? = −1.63), another one at the left end of the center subdomain
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Figure 5.28: Optimal 3 injector arrangement under the three-dimensional fixed decompo-
sition domain strategy S1.

(x2
? = −0.55), and a third one at the left end of the right subdomain (x3

? = 0.87),
as has been determined by averaging the instant positions of each injector over the
latest 10 learning episodes, with variations by roughly ±0.04 computed from the
root-mean-square of the moving average over the same interval. This is larger by
one order of magnitude than the variations reported in 2-D, as the agent keeps
exploring slightly sub-optimal positions of the lateral injectors, which likely simply
reflects the challenging nature of performing three-dimensional optimal control. The
3-D S1 optimal somehow resemble its 2-D counterpart, namely the center injector
is at the exact same position, while the lateral injectors (especially the leftmost
one) have been pushed towards the cavity sidewalls. The associated flow pattern
is reported in figure 5.28. The associated optimal reward computed over the same
interval is 〈||∇‖T ||〉? ∼ 19.5, i.e. twice as large than in 2-D, although it is difficult
to compare further because of the difference in the Reynolds and Prandtl number.

Another 40 episodes have been run under the free strategy S3, for which the
results are almost identical to their 2-D counterparts, as the distribution converges
in figure 5.29 to an optimal arrangement consisting of two overlapping injectors at
the left end of the cavity (x1

? = −1.83 and x2
? = −1.82), and a third injector at

the right end (x3
? = 1.83), with variations by with ±0.01 for the lateral injectors,

but ±0.03 for the center injector, for which the agent keeps occasionally explor-
ing sub-optimal positions. The corresponding flow pattern shown in figure 5.30 is
thus again symmetrical with two large, 3-D recirculation regions on either side of
the workpiece. The associated optimal reward computed over the same interval is
〈||∇‖T ||〉? ∼ 4.7 substantially smaller than that achieved under the 3-D S1 strat-
egy, which again demonstrates the feasibility to improve performances by allowing
overlaps. All relevant numerical data are reported in table 5.5 for the sake of com-
pleteness.
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(c)(b)(a)

Figure 5.29: Evolution per learning episode of the instant (in grey) and moving average
(in black) injectors center positions under the three-dimensional free strategy
S3, with admissible values delimited by the dashed lines.

Figure 5.30: Optimal 3 injector arrangement under the three-dimensional free strategy S3.

nj nep x0 x1 x2 x3 〈||∇‖T ||〉
S1 3 60 0 −1.63 −0.55 0.87 19.5
S3 3 40 0 −1.83 −1.82 1.83 4.7

Table 5.5: Numerical data for the optimal arrangements computed in three-dimensions
under strategies S1 and S3. All values computed by averaging the instant signal
over the 10 latest learning episodes.

5.7 Conclusion

Optimization of conjugate natural and forced heat transfer systems is achieved here
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training a fully connected network with a novel single-step PPO deep reinforcement
algorithm, in which it gets only one attempt per learning episode at finding the
optimal. The numerical reward fed to the network is computed with a finite elements
CFD environment solving stabilized weak forms of the coupled Navier–Stokes and
heat equations with a combination of variational multi-scale modeling, immerse
volume method, and multi-component anisotropic mesh adaptation.

Convergence is assessed by alleviating the natural convection induced enhance-
ment of heat transfer in a two-dimensional, differentially heated square cavity con-
trolled by piece-wise constant fluctuations of the sidewall temperature. The ap-
proach is also relevant to forced convection problems, as single-step PPO shows
capable of improving the homogeneity of temperature across the surface of two
and three-dimensional hot workpieces under impingement cooling. Several control
strategies are considered, in which the position of multiple cold air injectors is opti-
mized relative to a fixed workpiece position, each of which mimics a different levels
of design constraint. The flexibility of the numerical framework also allows solv-
ing the inverse problem, i.e., optimizing the workpiece position relative to a fixed
injector distribution, which is relevant in situations where the design cannot be
changed. The approach is beneficial in two important respects: first, it is efficient,
even though the parameter spaces are large and it may be costly to identify optimal
control parameters from simple parametric searches. Second, and more significantly,
it is capable of determining additional optimal configurations, as the results of the
inverse problem under symmetrical actuation indicate that the workpiece is best
positioned offset from the symmetry axis, which had not been anticipated. Such
results clearly stress that single-step PPO (and DRL in general) can be effective to
explore and discover new solutions from unforeseen parameter combinations.

Fluid dynamicists have just begun to gauge the ability of DRL to design opti-
mal control strategies. The efforts for developing single-step PPO are ongoing and
remain at an early stage, so we do not expect the approach to compete right away
with more established methods, for instance Evolution strategies (ES), a popular
class of algorithms imitating principles of organic evolution processes as rules for
black-box optimum seeking. ES rely on a stochastic description of the variables to
optimize, i.e., they consider probability density functions, not deterministic vari-
ables. Simply put, at each generation (or iteration) new candidate solutions are
sampled isotropically by variation of the current parental individuals according to
a multivariate normal distribution. Recombination and mutation transformations
are applied (that amount respectively to changing the mean and adding a random,
zero-mean perturbation), after which the individuals with the highest cost function
are selected to become the parents in the next generation. Improved variants in-
clude the covariance matrix adaptation evolution strategy (CMA-ES), that speeds
up convergence by updating its full covariance matrix (which amounts to learning
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a second-order model of the objective function). In present form, single-step PPO
can be thought as an evolutionary-like algorithm with simpler heuristics (i.e., with-
out an evolutionary update strategy, as the optimal model parameters are learnt
via gradient ascent), so it is our guess that the performance should be comparable
to that of standard ES algorithms with isotropic covariance matrix. Besides con-
solidating the acquired knowledge, future research should thus aim at improving
efficiency (by fine-tuning the hyper parameters, or using pre-trained deep learning
models) and convergence (by coupling with a surrogate model trained on-the-fly,
using non-normal probability density functions, or modifying the balance between
exploration and exploitation, as PPO prevents large updates of the policy to avoid
the issue of performance collapse).For complex configurations representative of in-
dustrial applications, the implementation of properly designed numerical rewards
(under partial state information) and noise reduction techniques is another issue
that deserves consideration, as pointed out in [15].

Scope is another key ingredient to keep pushing forward the state of the art.
The next step is to tackle more complex test cases exhibiting flow unsteadiness
and turbulence, which the CFD environment is perfectly suited to do via a com-
bination of Reynolds-averaged Navier–Stokes modeling [89, 90] and second-order,
semi-implicit time discretization [207]. We believe that this will highlight even more
clearly the relevance of the methodology, as [69] speculates that DRL should be
able to handle chaotic systems without suffering from the shortcomings and lim-
itations of the adjoint method, and it is shown in [17] to outperform a canonical
linear proportional-derivative controller in controlling turbulent natural convection.
The long-term objective would be to enrich the description of the test cases using
multi-physics modeling (e.g., radiative heat transfer, phase transformation) in order
to pave the way toward flexible, ready-to-use control of industrially relevant appli-
cations, such as thermal comfort for building design or manufacturing processes.
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This chapter is presented as a self-contained article submitted in 2022 to Physics
of Fluids, hence, some details (related to motivation, scope and/or methodology) are
repeated from chapters 1-3 to preserve the consistency of the whole content.

Ce chapitre évalue les capacités des techniques d’apprentissage par renforcement
profond (DRL) pour la conception optimale directe de formes dans les systèmes
de dynamique des fluides numérique (CFD). Il utilise Policy Based Optimization
(PBO), un algorithme d’apprentissage par renforcement profond en une seule étape
destiné aux situations où la politique optimale à apprendre par un réseau neuronal ne
dépend pas de l’état. La récompense fournie au réseau neuronal est calculée à l’aide
d’un environnement interne d’éléments finis stabilisés combinant une modélisation
variationnelle multi-échelle (VMS) des équations gouvernantes, une méthode de vol-
ume immergé et une adaptation de maillage anisotrope multi-composant. Plusieurs
cas sont abordés en deux et trois dimensions, pour lesquels des formes avec une ligne
de cambrure, un angle d’attaque et une section transversale fixes sont générées en
faisant varier une longueur de corde et une distribution symétrique de l’épaisseur (et
éventuellement en extrudant dans la direction hors du corps). À incidence nulle, le
cadre DRL-CFD proposé réduit avec succès la trâınée du cylindre équivalent (c’est-
à-dire le cylindre de même surface de section transversale) de 48% à un nombre de
Reynolds de l’ordre de quelques centaines. Pour une incidence de 30◦, il augmente
le rapport portance/trâınée de l’ellipse équivalente de 13% en deux dimensions et de
5% en trois dimensions à un nombre de Reynolds de l’ordre de quelques milliers. Bien
que le faible nombre de degrés de liberté limite inévitablement l’éventail des formes
réalisables, on constate systématiquement que la forme optimale est aussi perfor-
mante qu’un profil aérodynamique conventionnel, bien que le DRL parte de zéro et
n’ait aucune connaissance préalable des concepts aérodynamiques. De tels résultats
démontrent le potentiel de la méthode pour l’optimisation de forme en bôıte noire
de systèmes CFD significatifs en pratique. Comme le processus de résolution est
agnostique aux détails de la dynamique des fluides sous-jacente, il ouvre également
la voie à une évolution générale des stratégies d’optimisation des formes de référence
pour la mécanique des fluides et tout autre domaine où une fonction de récompense
pertinente peut être définie.

This chapter gauges the capabilities of deep reinforcement learning (DRL) tech-
niques for direct optimal shape design in computational fluid dynamics (CFD) sys-
tems. It uses Policy Based Optimization, a single-step DRL algorithm intended
for situations where the optimal policy to be learnt by a neural network does not
depend on state. The numerical reward fed to the neural network is computed with
an in-house stabilized finite elements environment combining variational multi-scale
(VMS) modeling of the governing equations, immerse volume method, and multi-
component anisotropic mesh adaptation. Several cases are tackled in two and three
dimensions, for which shapes with fixed camber line, angle of attack and cross-
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sectional area are generated by varying a chord length and a symmetric thickness
distribution (and possibly extruding in the off-body direction). At zero incidence,
the proposed DRL-CFD framework successfully reduces the drag of the equivalent
cylinder (i.e. the cylinder of same cross-sectional area) by 48% at a Reynolds num-
bers in the range of a few hundreds. At an incidence of 30◦, it increases the lift
to drag ratio of the equivalent ellipse by 13% in two dimensions and 5% in three
dimensions at a chord Reynolds numbers in the range of a few thousands. Although
the low number of degrees of freedom inevitably constrains the range of attainable
shapes, the optimal is systematically found to perform just as well as a conventional
airfoil, despite DRL starting from the ground up and having no priori knowledge
of aerodynamic concepts. Such results showcase the potential of the method for
black-box shape optimization of practically meaningful CFD systems. Since the res-
olution process is agnostic to details of the underlying fluid dynamics, they also pave
the way for a general evolution of reference shape optimization strategies for fluid
mechanics and any other domain where a relevant reward function can be defined.
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6.1 Introduction

Shape optimization is ubiquitous in engineering applications ranging from magne-
tostatics [208], acoustics [209], image restoration and segmentation [210], composite
material identification [211] to nano-optics [212], just to name a few. Shape opti-
mization in fluid mechanics dates back to the pioneering work of Pironneau on the
minimization of energy loss in Stokes and Navier–Stokes flows [213, 214]. Since then,
it has become an increasingly important research topic in the attempt to enhance
drag reduction capabilities, which is due to the ever growing concerns on aerody-
namic energy efficiency (to give a taste, reducing the overall drag by just a few
percent while maintaining lift can help reducing fossil fuel consumption and CO2
emission while saving several billion dollars annually in ocean shipping or airline
traffic [23]). In the following, the focus is essentially on airfoil shape optimization,
a key component of aircraft flight mechanics that has come into prominence in a
variety of other applications such as acoustic noise reduction [215] or energy har-
vesting [216]. One of the major challenges in the field is that the majority of flows
of engineering interest are time-dependent and even turbulent (e.g. fluttering, buf-
feting, dynamic stall), and therefore require sophisticated unsteady methods and
optimization techniques, thus drastically increasing the computational cost.

Shape optimization has historically been tackled by two main classes of ap-
proaches, namely gradient-based and gradient-free methods. Gradient-based meth-
ods rely on the evaluation of the gradient of the objective function with respect
to the design parameters. They have proven effective in large optimization spaces
when said gradient is computed by the adjoint method [29, 117, 118], whose cost
is comparable to that of solving the governing equation (unlike more computation-
ally expensive alternatives such as variance-based and regression-based methods, in
which the governing equations need to be solved repeatedly, up to a hundred times).
Nonetheless, gradient-based algorithms are easily trapped in local optima, meaning
that the solution optimality can be very sensitive to the initial guess, all the more
so when applied to stiff nonlinear problems [32]. Gradient-free methods are better
equipped in this regard, but can be more complex to implement and to use. Among
the available methods, genetic algorithms [217], particle swarm optimization [218] or
metropolis algorithms [219] feature good global optimization capabilities, but they
can be highly sensitive to heuristically chosen meta-parameters, plus their cost is
usually higher and can easily exceed the available computational budget, thus lim-
iting the number of design parameters [36]. It should be noted that both classes of
methods can make use of cheap-to-evaluate surrogate models to approximate expen-
sive objective and constraint functions without resorting systematically to numerical
simulations [220]. Several approaches exist for building such surrogate models, e.g.
polynomial response surfaces, radial basis functions, kriging, or supervised artificial
neural networks [19], for which geometric parametrization plays a determinant role,
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in terms of both the attainable geometries and the tractability of the optimization
process [221].

The premise of this research is that the related task of selecting an optimal
subset of design parameters can alternatively be assisted using deep reinforcement
learning (DRL). DRL is the advanced branch of machine learning that couples deep
neural networks (DNNs, a family of versatile parametric tools that can learn how to
hierarchically extract informative features from data, and have gained traction as ef-
ficient computational processors for performing a variety of tasks, from exploratory
data analysis to qualitative and quantitative predictive modeling) and reinforce-
ment learning, a class of decision-making algorithms that can autonomously learn
effective policies for sequential decision problems. In practice, DRL involves DNNs
learning how to behave in an environment so as to maximize some notion of long-
term reward, a task compounded by the fact that each action taken affects both
immediate and future rewards. The feature extraction capabilities of DNNs, as well
as their ability to handle quasi-arbitrary nonlinear input/output mappings, have
lifted several major obstacles that hindered classical reinforcement learning and has
led unprecedented efficiency in the context of nonlinear optimal control problems
with high-dimensional state spaces. Several notable works using DRL in mastering
games (e.g., Go, Poker) have stood out for attaining super-human level [48, 56],
but the approach has also breakthrough potential for practical applications such as
robotics [18, 57], computer vision [59], finance [58], autonomous cars [10, 222], or
data center cooling [11].

The efforts for applying DRL to fluid mechanics are ongoing but still at an
early stage, as recently reviewed in [223]. Nonetheless, the domain has undergone
a large inflow of contributions with clear focus on drag reduction problems [39–
45, 49, 69, 141, 224–226]. This enthusiasm is likely due to the increasing number
of open-source initiatives [12, 39, 138], that has led to an accelerated diffusion of
the methods in the community, and to the sustained commitment from the machine
learning community, that has allowed concurrently expanding the scope from compu-
tationally inexpensive, low-dimensional reductions of the underlying fluid dynamics
to complex Navier–Stokes systems [37, 38], all the way to experimental set-ups [15].
A handful of studies have recently provided insight into the performance improve-
ments to be delivered in shape optimization, but it is worth emphasizing that figuring
out a fixed shape that best meets a set of required criteria (e.g. high lift-to-drag
ratio, low pressure loss) requires optimizing state-independent parameters, which is
not per se the original purpose of DRL. Nonetheless, two main classes of methods
have emerged in the community, namely the direct and incremental approaches. The
incremental approach uses the state-to-action mapping as a way to incrementally
modify an initial shape into an optimal one [21, 46, 47, 227], which exploits the
capabilities of the DRL paradigm (in which network updates are performed after
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multi-step episodes) in performing active flow control. The direct approach [138]
conversely relies on single-step DRL, a subset of DRL in which network updates are
performed after one-step episodes (hence the stateless moniker), and builds on recent
efforts to assess the relevance of DRL in the context of open-loop control [69, 184].

This research is a follow-up on to our contribution showcasing the first applica-
tion of DRL to direct shape optimization [138]. It uses Policy Based Optimization
(PBO [70]), a novel single-step algorithm developed in-house, that improves the
convergence rate of the previously used single-step Proximal Policy Optimization
(PPO [18]) algorithm by adopting several key heuristics from the covariance matrix
adaptation evolution strategy (CMA-ES). In short, PBO learns the mean, variance
and correlation parameters of a multivariate normal search distribution from three
separate neural networks, while single-step PPO updates the mean and variance
(the same for all variables) from a single network, which can prematurely shrink the
exploration variance. The objective is twofold: first, to further shape the capabilities
of PBO for fluid mechanics applications (as it has so far been limited to textbook
problems of analytic functions minimization), to help narrow the gap between DRL
and advanced numerical methods for multi-scale, multi-physics computational fluid
dynamics (CFD). Second, to gauge the feasibility of learning optimal designs from a
low, yet suitable number of design parameters, for which Bézier curves, B-splines and
NURBS are good candidates. We believe this is chief to mitigate the computational
burden without deteriorating the geometric accuracy, since the parametrization in
the direct approach provides a complete description of the shape itself, not that of a
perturbation to a reference shape. The PBO agent is trained on high-fidelity CFD
simulations, in contrast to most aforementioned studies about incremental shape
optimization, in which a pre-trained surrogate or a simplified model is used for full
agent training, or to perform an initial learning phase before re-training on a CFD
environment using transfer learning. This is because the uncertainty of surrogate
models cannot be quantified during optimization, which may misguide policy up-
dating. We insist that it lies out of the scope of this paper to provide exhaustive
performance comparison data against state-of-the art optimization techniques (e.g.,
evolution strategies or genetic algorithms). This would indeed require a tremendous
amount of time and resources even though the efforts for developing the method
remain at an early stage. Nonetheless, it is worth mentioning that PBO is shown
in [70] to compare well against standard CMA-ES and to significantly outperform
our previous PPO-based single-step algorithm, even though new algorithms cannot
be expected to reach right away the level of performance of their more established
counterparts.

The organization is as follows: section 6.2 introduces PBO (together with the
baseline principles of DRL and single-step DRL), and outlines the main features of
the finite element CFD environment used to compute the numerical reward fed to
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the neural networks. Section 6.3 revisits the classical problem of finding the two-
dimensional shapes minimizing drag in a uniform flow for the purpose of validation
and assessment part of the method capabilities. In section 6.4, PBO is applied to
more meaningful aerodynamic optimization problems consisting of finding the two-
dimensional shapes maximizing the lift to drag ratio in the context of turbulent flows
at moderately large Reynolds number (in the range of a few thousands). Finally, an
extension to three-dimensional shapes is proposed in section 6.5.

6.2 Methodology

6.2.1 Deep reinforcement learning

Reinforcement learning (RL) is a process by which an agent learns to earn rewards
through trial-and-error interaction with its environment. At each turn, the agent
observes the state st of the environment and takes an action at, that prompts both
the transition to the next state st+1 and the reward received rt. This repeats until
some termination state is reached, the core objective of the agent being to learn the
succession of actions maximizing its cumulative reward over an episode (this is the
reference unit for agent update, best understood as one instance of the scenario in
which it takes actions). In a deep reinforcement learning context (deep RL or DRL),
the agent is a deep neural network (DNN) patterned after the neural circuits formed
by neurons in human brains. The most general form of neural network architecture
is the fully connected DNN, in which the processing units (the artificial neurons)
are stacked in layers and information propagates forward from the input layer to
the output layer via “hidden” layers. Each neuron performs a weighted sum of its
inputs to assign significance with regard to the task the algorithm is trying to learn,
adds a bias to figure out the part of the output independent of the input, and feeds
an activation function that determines whether and to what extent the computed
value should affect the outcome. The neural network learns to represent the relation
between input (action) and output (reward) data by repeatedly adjusting the weights
and biases by back-propagation, from the output layer back through the hidden
layers to the input layer (a process known as training).

6.2.2 Single-step deep reinforcement learning

Single-step DRL is a subset of DRL that has recently emerged from the premise that
tweaked versions of regular DRL algorithms can be used as black-box optimizers.
The underlying idea is that it may be enough for the agent to interact only once
per episode with its environment (hence, single-step episodes, and by extension,
single-step DRL) if the optimal behavior to be learnt is independent of state, as
is notably the case in optimization and open-loop control problems. The novelty



150 6.2. Methodology

Figure 6.1: Policy networks used in PBO to map states to policy. Three networks trained
separately are used for the prediction of mean, standard deviation, and cor-
relation parameters. Orthogonal weights initialization is used throughout the
networks, with a unit gain for all layers except the output layers, for which
the gain is set to 10−2.

of the approach can be summed up as follows: in DRL, a DNN learns the optimal
set of observation-based actions a? yielding the largest possible reward. In single-
step DRL, it learns instead the optimal mapping fθ? such that a? = fθ?(s0), where
s0 is some input state (usually a constant vector) repeatedly fed to the agent for
the optimal policy to eventually embody the transformation from s0 to a?. A di-
rect consequence is that single-step DRL algorithms can use much smaller networks
(compared to the usual agent architecture used in other DRL contributions), be-
cause the agent is not required to learn a complex state-action relation, but only a
transformation from a constant input state to a given action.

6.2.3 Policy based optimization

The present research relies on policy-based optimization (PBO) a single-step, model
free, off-policy gradient RL algorithm whose key features are summarized as follows:

• the agent interacts with the environment itself, not a surrogate model of the
environment (model free, hence no assumptions about the fluid dynamics of
the problems to be solved),

• its behavior is modeled after a parametrized probability distribution of actions
πθ(a), optimized by gradient ascent (policy gradient),
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• the agent is not required to sample the training data with the current policy
(off-policy),

PBO draws actions from a d-dimensional multivariate normal distribution (with
d the dimension of the action required by the environment). A full co-variance
matrix is used to improve the balance between exploration and exploitation (the
single-step PPO algorithm used in [138] conversely assumes all variables to have the
same variance and to be uncorrelated, which can prematurely shrink the exploration
variance). The co-variance matrix also accelerates convergence to the optimum
by aligning the contour of the sampling distribution with the contour lines of the
objective function and thereby the direction of steepest ascent.

As shown in figure 6.1, three independent neural networks output the neces-
sary mean, standard deviation, and correlation information, using hypersphere de-
composition [72, 228] to generate valid symmetric, positive semidefinite covariance
matrices. Different meta-parameters and architectures can be used for each net-
work, which is shown in [70] to substantially impact the convergence rate. Actions
drawn in [−1; 1]d are then mapped into relevant physical ranges, a step deferred to
the environment as being problem-specific. Finally, the Adam algorithm [229] runs
stochastic gradient ascent by computing adaptive learning rates (i.e. the step sizes
to be taken in the gradient direction) for each policy parameter, using the gradient
of the loss function

L(θ) = E
a∼πθ

[
max(r̃, 0) log πθ(a)

]
. (6.1)

In (6.1), r̃ is the whitened reward normalized to zero mean and unit variance, con-
sidered a suitable advantage estimator. The rationale for this choice is as follows:
as is customary in DRL, the discounted cumulative reward is approximated by the
advantage function, that measures the improvement (if positive, otherwise the lack
thereof) associated with taking action a in state s compared to taking the aver-
age over all possible actions. Because a single-step trajectory consists of a unique
state-action pair, the discount factor adjusting the trade-off between immediate and
future rewards can be set to unity, in which case the advantage reduces to the re-
ward; see [69]. Substituting the whitened reward for r introduces bias but reduces
variance, and thus the number of actions needed to estimate the expected value.
Finally, the max allows discarding negative-advantage actions, that may destabilize
learning when performing multiple mini-batch gradient steps using the same data
(as each step drives the policy further away from the sampled actions).

6.2.4 Computational fluid dynamics environment

At the core of the CFD resolution framework is the in-house, CimLIB CFD parallel
finite element library [103], whose main ingredients are as follows:



152 6.2. Methodology

- the variational multiscale approach (VMS) is used to solve a stabilized weak form of
the governing equations using linear approximations (P1 elements) for all variables,
which otherwise breaks the Babuska–Brezzi condition. The approach relies on an a
priori decomposition of the solution into coarse and fine scale components [79, 144,
145]. Only the large scales are fully represented and resolved at the discrete level.
The effect of the small scales is encompassed by consistently derived source terms
proportional to the residual of the resolved scale solution, hence ad-hoc stabilization
parameters comparable to local coefficients of proportionality.

- in laminar regimes, velocity and pressure come as solutions to the Navier–Stokes
equations. In turbulent regimes, the focus is on phase-averaged velocity and pres-
sure modeled after the unsteady Reynolds averaged Navier–Stokes (uRANS) equa-
tions. In order to avoid transient negative turbulent viscosities, negative Spalart–
Allmaras [99] is used as turbulence model, whose stabilization proceeds from that
of the convection-diffusion-reaction equation [100, 146].

- two-dimensional airfoil sections with fixed camber line are generated by varying
a chord length and a thickness distribution. The chord direction is constant, just
as the angle of attack measuring the incidence relative to the oncoming flow. The
upper (suction/leeward) and lower (pressure/windward) sides are discretized into np
control points equally spaced in the camber line direction. All shapes are closed and
symmetrical with respect to the chord line, as achieved forcing zero thickness at the
edges and identical (half)-thicknesses at each forward and rearward facing points.
Consecutive points are connected by a cubic Bézier curve using local position and
curvature information. The final step consists of sampling all Bézier curves and in
exporting a closed loop, to be either used as an immersed mesh in a two-dimensional
(2-D) environment, or extruded in the off-body direction to serve as an immersed
mesh in a three-dimensional (3-D) environment.

- the immersed volume method (IVM) is used to immerse and represent all ge-
ometries inside a unique mesh. The approach combines level-set functions, using
the zero-iso value of a signed distance function to localize the solid/fluid interface,
and anisotropic mesh adaptation, to align the mesh element edges with the interface
and refine the mesh interface under the constraint of a fixed, number of edges. This
ensures that the quality of all actions taken over the course of a DRL optimization
is equally assessed, even though the interface is action-dependent.

Substantial evidence of the flexibility, accuracy and reliability of the numerical
framework for the intended ammplication is documented in several papers to which
the reader is referred for exhaustive details regarding the shape generation using
Bézier curves [138, 230], the level-set and mesh adaptation algorithms [102, 103],
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(a) (b)

Figure 6.2: Details of (a) an anisotropic adapted mesh and (b) successive refinement steps
of the background mesh. The blue line in (a) indicates the zero iso-contour of
the level set function.

the VMS formulations, stabilization parameters and discretization schemes used in
laminar and turbulent regimes [89, 90, 147, 148], and the mathematical formulation
of the IVM in the context of finite element VMS methods [149, 150].

6.2.5 Numerical implementation

At each episode, actions drawn from the current policy are distributed to nenv envi-
ronments running in parallel, each of which executes a self-contained MPI-parallel
numerical simulation (here, all simulations are performed on a few tens of cores on a
workstation of Intel Xeon E5-2640 processors) and feeds the reward associated to its
input action to the DRL algorithm. There are thus two levels of parallelism related
to the environment and the computing architecture. This simple parallelization
technique is key to use DRL in the context of CFD applications, as a large number
of actions drawn from the current policy must be evaluated to accurately compute
the expected value of the policy loss (6.1). Even though, the high CPU cost of per-
forming massive, unsteady numerical simulations involving hundreds of thousands
(even millions) of degrees of freedom caps the number of environments that can
efficiently run in parallel, and thus the number of state-action-reward triplets that
can be sampled from the current policy (which also makes intractable the common
practice in DRL studies to gain insight into the performances of the selected algo-
rithm by averaging results over multiple independent training runs with different
random seeds, as it would trigger a prohibitively large computational burden. The
same random seeds are thus used for all computations to ensure a minimal level of
performance comparison between cases.) PBO therefore improves the reliability of
the loss evaluation by incorporating the reward data available from several previ-
ous episodes, using an empirical decay parameter that exponentially decreases the
advantage history (to give recent episodes more weight) while retaining a longer
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Mean Variance Correlation Neural network

5× 10−3 � 10−3 Learning rate
128 8 � Nb. epochs
1 8 16 Nb. learning episodes
1 4 8 Nb. mini-batches

[2,2,2] � � Architecture

Table 6.1: Details of the PBO meta-parameters and network architectures. For the ar-
chitectures, only the sizes of the hidden layers are provided.

memory of the previous episodes as the problem dimensionality increases (in ac-
cordance with the idea that more state-action-triplets are then needed to build a
coherent covariance matrix). The remainder of the practical implementation details
are as follows:

- the environment consists of CFD simulations of incompressible flows described in
a Cartesian coordinate system with drag (resp. lift) positive in the +x (resp. +y)
direction. All equations are discretized on 2-D and 3-D rectangular grids whose side
lengths documented in the coming sections have been checked to be large enough
not to have a discernible influence on the results (with the exception of the 3-D case
in section 6.5, for which we favor computing all numerical solutions at affordable
CPU cost using a limited transverse dimension). Open flow conditions are used,
that consist of a uniform inflow in the x direction, together with symmetric lateral,
advective outflow and no-slip interface conditions. In turbulent regime, the ambient
value of the Spalart–Allmaras variable is three times the molecular viscosity, as rec-
ommended to lead to immediate transition. Typical adapted meshes of the interface
and wake regions are shown in figure 6.2, the latter also being accurately captured
via successive refinement of the background elements.

- optimal surface shapes subject to a target cross-sectional area Sref are determined
by maximizing a compound reward function

r = J − β|S − Sref | , (6.2)

where J is the objective function associated to performance, S is the cross-sectional
area (also abbreviated as CSA in the following) of the shape, the overline indicates
time-averaging, and β is a weighting coefficient that increasingly penalizes the shape
when its area strays away from the target value. In practice, the cross-sectional area
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is computed as

S =
1

L

∫
Ω

Hε(φ) dΩ (6.3)

where Hε is the smoothed Heaviside function introduced in [231], and L is the extru-
sion length in the off-body direction (hence equal to unity in 2-D). Moving average
rewards and actions are also computed as the sliding average over the 50 latest val-
ues (or the whole sample if it has insufficient size). Time averages are performed
over an interval [ti; tf ] with edges large enough to dismiss the initial transient and
achieve convergence to statistical equilibrium. In the following, we take J to be a
function of the drag and lift coefficients per unit span in the transverse direction,
denoted by D and L, respectively, whose instantaneous values are computed with a
variational approach featuring only volume integral terms, reportedly less sensitive
to the approximation of the body interface than their surface counterparts [152, 153].

- the agent consists of three identical fully connected networks with 3 hidden layers,
each of which holds 2 neurons (this is by design, as we recall that the PBO networks
can theoretically use different architectures). The only difference lies in the activa-
tion function applied to the output layer, namely the first network uses hyperbolic
tangent to output the mean of the d-dimensional multivariate normal distribution
in [−1; 1]d, the second network uses sigmoid to output the standard deviations in
[0; 1]d, and the third network also uses sigmoid to output a set of coefficients in
[0, 1]d, eventually assembled into a full correlation matrix by hypersphere decompo-
sition [72, 228]. As to the meta-parameters, the number of parallel environments
used to collect rewards before performing the network updates is set from the well-
established heuristics of CMA-ES (that similarly relies on full co-variance matrices
and uses an evolution path to add information about correlations across consecutive
generations [232] to

nenv = b4 + 3 ln dc , (6.4)

where b·c denotes the floor function. Each network is updated for ne epochs (the
number of full passes of the algorithm over the entire data set) using a learning
rate λ (the size of the step taken in the gradient direction for policy update) and a
history of nep episodes, shuffled and organized in nb mini-batches (whose sizes are
in multiples of nenv). The values used in this study are documented in table 6.1 to
ease reproducibility.
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Figure 6.3: Schematic diagram of the minimum drag test case. The DRL agent optimizes
the chord length, the curvature radius at the edge control points marked in
yellow, and the thickness at the inner control points marked in blue. The
thickness at the inner control points marked in grey deduces by symmetry.

6.3 Validation

6.3.1 Test case description

We assess first the relevance of the proposed numerical framework by revisiting the
classical problem of finding the 2-D shape minimizing the drag force induced by a
surrounding uniform flow at zero incidence. A sketch of the configuration is provided
in figure 6.3. The origin of the coordinate system is at the half chord length. Several
laminar cases at Reynolds number Re = U∞

√
Sref/ν are modeled after the Navier–

Stokes equations, where U∞ is the inflow velocity, ν the kinematic viscosity, and we
have used the square root of the target cross-sectional area (set to Sref = 1 in our
implementation) as reference length. The objective function is simply

J = −D , (6.5)

and the weighing coefficient is set empirically to β = 8. All CFD environments
use the simulation parameters documented in table 6.2, found to offer a good com-
promise between numerical accuracy and computational effort since numerical tests
carried out at two other grid resolutions and spatial extents yield limited variations
within 2%− 3%.

The control points used to parametrize the shape are labeled clockwise from 0
at the leading edge. All inner (i.e. non-end) curvature radii are set to 0.4 to provide
sufficient smoothness (as this is a tad below the value 0.5 required for maximal
smoothness). This leaves np + 1 independent design variables, the chord length c,
two end curvature radii ρj∈{0,np−1} and np − 2 inner thicknesses ek∈{1,...,np−2}. The
network action output consists accordingly of values (ĉ, ρ̂j, êk) in [−1; 1]np+1, mapped
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into the actual physical quantities using

c =
1− ĉ

2
cmin +

1 + ĉ

2
cmax, ρj =

1− ρ̂j
2

ρmin +
1 + ρ̂j

2
ρmax ek = ek,max −

1− ê
2

δe ,

(6.6)

for the chord to vary in [cmin; cmax] with cmin = 1 and cmax = 4, the curvature
radii to vary in [ρmin; ρmax] with ρmin = 0.1 and ρmax = 0.4, and the thickness to
vary in [ek,max− δe; ek,max] with δe = 0.4 and ek,max a maximum value tuned locally
for each problem. At each episode, the position of the inner points is adjusted
to the current chord length to maintain equal spacing. Unless specified otherwise,
all results documented hereafter are for np = 5, for which DRL evolves six design
parameters, the chord length, two end curvature radii and three inner thicknesses.
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Case setup

1 20 50 100 Reynolds number
5 � � � Nb. points
6 � � � Nb. design variables

CFD

2 � � � Dimensionality
0.2 � 0.125 � Time-step

[50;50] � � � Averaging time span
8 � � � Penalty coeff.

[−10; 20]×[−10; 10] � � � Mesh dimensions
100000 � 110000 � Nb. mesh elements
0.0005 � � � Interface ⊥ mesh size

PBO

100 120 115 � Nb. episodes
10 12 11 � Nb. environments

3mn 3mn 5mn 10mn CPU time† ‡

5h 6h 10h 18h Resolution time‡

Parameter ranges

[1;4] � � � Chord length
[0.1;0.4] � � � LE curv. radius

[0.072;0.472] � � �

[0.152;0.552] � � � Thickness
[0.072;0.472] � � �

[0.1;0.4] � � � TE curv. radius

Optimal

1.95 2.41 2.64 2.46 Chord length
0.309 0.300 0.186 0.344 LE curv. radius
0.297 0.246 0.223 0.290
0.362 0.273 0.270 0.267 Thickness
0.299 0.227 0.199 0.166
0.115 0.366 0.258 0.395 TE curv. radius
1.000 1.000 1.000 1.001 Ratio of actual to target CSA
13.1 1.83 1.10 0.71 Drag (present)

12.10 1.81 1.10 0.76 Drag [233]

Table 6.2: Case setup, simulation parameters and convergence data for the drag mini-
mization problem, computed by averaging over the 10 latest learning episodes.
Leading-edge (front end) and trailing edge (rear end) data are labeled LE and
TE, respectively. † CPU times provided per episode and per environment. ‡
Values obtained averaging over 5 independent runs using 12 cores.
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6.3.2 Results

Several Reynolds numbers have been considered up to Re = 100, for which random
shapes collected over the course of the optimization, are presented in figures 6.4-
6.7, together with their respective iso-contours of vorticity. Because the aspect
ratio (as defined from the ratio of the maximum thickness to the chord length)
barely exceeds unity, all solutions at Re . 50 relax to steady state regardless of
the DRL action (hence we do not report a proper averaging span for these cases
in table 6.2, as we simply evaluate reward at a final time chosen large enough to
flush out the transient behavior). Meanwhile, a small number of shapes with aspect
ratio close to unity have been found to exhibit vortex shedding at Re = 100, for
which we pay attention to performing the necessary time averages. Figures 6.4-6.7
also provide exhaustive convergence history for the reward, the objective function,
the ratio of actual to target CSA and the design parameters. The moving average
reward especially decreases almost monotonically and reaches a plateau after a few
ten episodes. At this point, the optimal CSA exhibits near-perfect agreement with
the target value, hence evidencing the relevance of the reward penalty approach.

At Re = 1, the minimum drag body in figure 6.4 is that of a perfectly front-rear
symmetric rugby ball, with chord length 1.95± 0.6% and aspect ratio 0.369± 1.1%.
These values have been obtained by averaging over the 10 latest episodes (with asso-
ciated variance interval computed from the root-mean-square over the same interval,
a simple yet robust criterion that will be used systematically to assess convergence
for all cases reported in the following). They are close to the creeping flow opti-
mal, whose chord length (relative to a unit target surface) and aspect ratio derived
analytically in [234] are 1.88 and 0.40, respectively. The only noticeable difference
lies in the fact that the DRL optimal has a pointed rear end with wedge angle
about 90◦, and a slightly more rounded front end with wedge angle ∼ 120◦, while
the creeping flow optimal has two pointed ends with wedge angle about 100◦. As
the Reynolds number increases, the optimal chord length increases but the thick-
ness decreases, hence the aspect ratio of the optimal body decreases (likely because
the increasing adverse pressure gradient at the front needs to be counterbalance to
avoid flow separation). At Re = 20, the optimal shape in figure 6.5 has chord length
2.40±0.8% and aspect ratio 0.228±1.5%, and remains almost front-rear symmetric,
although the rear section is slightly more streamlined. Similar results are obtained
at Re = 50 (figure 6.6), with chord length 2.65±0.7% and aspect ratio 0.204±1.0%.
At Re = 100, the front-rear symmetry is lost as we obtain a streamlined shape with
chord length 2.46± 0.4% and aspect ratio 0.235± 0.8%; see figure 6.7. At Re = 1,
the optimal drag (13.10± 0.02%) cuts down that of the equivalent cylinder (i.e. the
cylinder of diameter 2

√
Sref/π, for the area to be equal to Sref ) by 6%, which is

small but simply reflects that the ratio of drags on any two bodies tends to 1 in the
limit where the Reynolds number tends to 0. In comparison, the achieved reduction
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.4: Maximum lift to drag ratio test case at Re = 1 under constant area constraint
Sref = 1. (a) Evolution per episode of the instant (black line) and moving
average (over episodes, light orange line) reward (in absolute value). (b-f)
Same as (a) for the (b) averaged (over time) drag, (c) ratio of the actual to
target cross-sectional areas, (d) chord, (e) edge curvature radii and (f) inner
thicknesses. All labels in (e-f) are ordered clockwise from the leading edge.
The horizontal dashed lines in (d-f) mark the admissible values. (g) Shapes
generated over the course of optimization for random episodes marked by the
circle symbols in (a-c), together with corresponding iso-contours of vorticity.
The last three shapes pertain to episodes 40, 70 and 100, respectively.
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is by 22% at Re = 20 (optimal drag 1.83± 0.04%), 24% at Re = 50 (1.10± 0.05%),
and 48% at Re = 100 (0.71± 4%).

Other than that, it is difficult to accurately validate the results because, although
the search for optimal profiles of minimum drag in Navier–Stokes flows having re-
ceived substantial interest in the literature, there is a wide variability in the problem
formulation, especially in terms of design constraints (some authors specify a target
surface, others impose only a lower bound, plus the values can vary from one refer-
ence to another), and the exact geometrical properties of the optimal (e.g. length,
aspect ratio) are rarely documented. The closest study to our work is from Kondoh
et al. [233], who tackle similar drag minimization problems via topology optimiza-
tion, using a body force to model the effect of classical no-slip boundary conditions
at the fluid/solid interface. It has not been possible to assess the convergence rate
of DRL in the absence of any reference information in this regard, and it is not
entirely clear whether the exact same optimization problem is solved due to in-
consistent statements in the study regarding the nature of the design constraint,
but even so, the reported optimal shapes and drags turn to be in good agreement
with the present DRL results. One minor difference is that the shapes look pointed
in [233] (but the blending of the interface makes it difficut to see in the original
images), while the present ones are generally rounded at both ends, with little to no
effect on the reward. On this point, we note that the end radii can vary substan-
tially even after the reward has converged (as is the case for instance in figure 6.6(d)
at Re = 50), which evidences a general lack of sensitivity to these specific design
parameters). At Re = 1, the optimal drags differ by approximately 7%, which may
seem large at first sight but is actually fair given the high sensitivity of drag to
small changes in the Reynolds number in this regime. The drags and chord lengths
are nearly identical at Re = 20 and 50, as we find the ratio of the chord length at
the current Reynolds number to its Re = 1 counterpart to be 1.24 at Re = 20 and
1.35 at Re = 50 using DRL, while extracting data from the reference figures using a
graph digitizer software yields values of 1.26 at Re = 20 and 1.33 at Re = 50 (it has
not been possible to similarly extract the aspect ratio due to blurred and/or mixed
pixels). At Re = 100, the shapes somewhat differ as the optimal in [233] is more
elongated and less streamlined in the rear section. Meanwhile the optimal drags
differ by only 6%, which raises the possibility that the objective function has either
a unique flat minimum, or several nearly equivalent minima. Figure 6.7 constitutes
a favorable presumption in this regard, as the objective function exhibits surpris-
ingly low variations over the course of optimization, and most shapes in figure 6.7(b)
actually are within the 6% variance interval marked by the grey shade.
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6.3.3 Discussion

We believe the above results assess the relevance of the proposed DRL-CFD frame-
work for optimal shape design. Relying on low-dimensional parametrization of the
body shape is one key parameter in this regard, as it improves the tractability of
the optimization process and avoids the oscillations between points that have been
found to occur when using a larger (about 10) number of control points. Nonethe-
less, we believe important to discuss the impact on robustness, and the extent to
which decreasing the number of control points exaggerates (or not) the sensitivity
to the curvature radii. This is because using different curvature radii to connect the
same set of control points can yield two slightly different cross-sectional areas, that
in turn can earn two substantially different reward via the penalization term (this
is not on the Bézier parametrization itself, though, only on the need to smoothly
connect a discrete set of control points. For instance, one must also specify tangency
at both endpoints of a spline).

As a first insight into this issue, we report here results obtained at Re = 1 using
three alternative parametrizations:

• a case with np = 7 control points evolving the chord length, five inner thick-
nesses and two end curvature radii (which amounts to replicating the above
reference case, but with two additional inner thicknesses, hence 8 independent
design parameters),

• a case with np = 5 points evolving the chord length, three inner thicknesses,
two end curvature radii, plus an additional radius common to all inner con-
trol points (which amounts to replicating the reference case, but with one
additional inner curvature radius, hence 7 independent design parameters),

• a case with np = 7 points whose thickness distribution is frozen, as obtained
interpolating from the reference np = 5 optimal (for which it suffices to sample
the connecting Bezier curves at the relevant positions), after which a dedicated
DRL agent restores the proper cross-sectional area by evolving two end curva-
ture radii, plus an additional radius common to all inner control points (hence,
3 independent design parameters) with reward

r = −|S − Sref | , (6.7)

formally identical to (6.2) with J = 0 and β = 1.

The results reported in table 6.3 exhibit limited discrepancy with respect to the
reference (reproduced from table 6.2 in the first column), as the maximum deviation
on the chord and the inner thicknesses is by 4%. All runs converge to similar
curvature radii at the front. The value at the rear is noticeably different, but with
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Case setup

5 5 7 7 Nb. points
× X × X Inner curv. radius
6 7 8 3 Dimensionality

Optimal

1.95 1.96 1.87 1.95 Chord length
0.4 0.332 0.4 0.398 Inner curv. radius

0.309 0.359 0.310 0.394 LE curv. radius
0.297 0.284 0.233 0.206
0.362 0.367 0.340 0.324 Thickness
0.299 0.303 0.369 0.359

- - 0.341 0.331
- - 0.258 0.227

0.115 0.159 0.392 0.389 TE curv. radius
1.00 1.00 1.00 1.00 Ratio of actual to target CSA

13.10 13.09 13.09 13.09 Drag

Table 6.3: Sensitivity of the drag minimization problem at Re = 1 to the discretization
parameters. Leading-edge (front end) and trailing edge (rear end) data are
labeled LE and TE, respectively. The first column is reproduced from table 6.2.
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little to no effect on the reward and the objective function, which simply reflects
the smallness of the reward gradients with respect to the control variables in the
vicinity of the optimal. Although the impact needs to be assessed on a case to case
basis, this suggests that the method ability to provide robust optima may not be
strained by the use of low-end geometrical parametrizations.

6.4 Application to optimal aerodynamic design

6.4.1 Test case description

We apply now the method to more meaningful aerodynamic shape optimization
problems, as we seek the shape maximizing the lift to drag ratio (used as an indicator
of the aerodynamic efficiency) induced by a surrounding uniform flow at angle of
attack of α = 30◦. A sketch of the configuration is provided in figure 6.9. A Cartesian
coordinate system is used with origin at quarter chord length from the leading edge.
The target cross-sectional area is set to Sref = 0.0822, which corresponds to the
CSA of a NACA (National Advisory Committee for Aeronautics) 0012 airfoil. The
objective function is

J =
L

D
, (6.8)

and the weighing coefficient is set to β = 100. Two time-dependent flow regimes
are modeled after either the Navier–Stokes or the uRANS equations, for which all
CFD environments use the numerical simulation parameters provided in table 6.4.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.5: Maximum lift to drag ratio test case at Re = 20 under constant area constraint
Sref = 1. (a) Evolution per episode of the instant (black line) and moving
average (over episodes, light orange line) reward (in absolute value). (b-f)
Same as (a) for the (b) averaged (over time) drag, (c) ratio of the actual to
target cross-sectional areas, (d) chord, (e) edge curvature radii and (f) inner
thicknesses. All labels in (e-f) are ordered clockwise from the leading edge.
The horizontal dashed lines in (d-f) mark the admissible values. (g) Shapes
generated over the course of optimization for random episodes marked by the
circle symbols in (a-c), together with corresponding iso-contours of vorticity.
The last three shapes pertain to episodes 40, 80 and 120, respectively.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.6: Maximum lift to drag ratio test case at Re = 50 under constant area constraint
Sref = 1. (a) Evolution per episode of the instant (black line) and moving
average (over episodes, light orange line) reward (in absolute value). (b-f)
Same as (a) for the (b) averaged (over time) drag, (c) ratio of the actual to
target cross-sectional areas, (d) chord, (e) edge curvature radii and (f) inner
thicknesses. All labels in (e-f) are ordered clockwise from the leading edge.
The horizontal dashed lines in (d-f) mark the admissible values. (g) Shapes
generated over the course of optimization for random episodes marked by the
circle symbols in (a-c), together with corresponding iso-contours of vorticity.
The last three shapes pertain to episodes 40, 70 and 120, respectively.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.7: Maximum lift to drag ratio test case at Re = 100 under constant area constraint
Sref = 1. (a) Evolution per episode of the instant (black line) and moving
average (over episodes, light orange line) reward (in absolute value). (b-f)
Same as (a) for the (b) averaged (over time) drag, (c) ratio of the actual
to target cross-sectional areas, (d) chord, (e) edge curvature radii and (f)
inner thicknesses. The grey shade in (b) marks the 6% variance interval with
respect to the average over the 10 latest learning episodes. All labels in (e-
f) are ordered clockwise from the leading edge. The horizontal dashed lines
in (d-f) mark the admissible values. (g) Shapes generated over the course
of optimization for random episodes marked by the circle symbols in (a-c),
together with corresponding iso-contours of vorticity. The last three shapes
pertain to episodes 40, 70 and 120, respectively.
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(a) (b) (c)

Figure 6.8: (a) Reference optimal shape for the minimum drag test case at Re = 1 with
np = 5 control points and fixed inner curvature radius. (b) Same as (a) with
np = 7 control points and fixed inner curvature radius. (c) Same as (a) with
np = 5 control points and variable inner curvature radius. (d) Reference
optimal shape discretized with np = 7 control points, after DRL has adjusted
the end and inner curvature radii to restore the proper cross-sectional area.

Figure 6.9: Schematic diagram of the maximum lift to drag ratio test case.
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Case setup

250 5000 � Reynolds number
5 � � Nb. points
5 � 3 Nb. design variables

CFD

2 � 3 Dimensionality
- RANS � Turb. model

0.125 0.05 � Time-step
[100;150] [150;200] [100;150] Averaging time span

100 � 90 Penalty coeff.
[−10; 20]×[−10; 10] [−6; 15]×[−7; 7] [−5; 10]×[−5; 5]×[0; 5] Mesh dimensions

100000 120000 500000 Nb. mesh elements
0.0005 � 0.001 Interface ⊥ mesh size

PBO

100 100 80 Nb. episodes
14 14 12 Nb. environments

20mn 2h45mn 9h30mn CPU time†

35h 275h 760h Resolution time†

Parameter ranges

- - - Chord length
[0.1;0.4] � - LE curv. radius

[0.024;0.084] � �

[0.03;0.09] � � Thickness
[0.024;0.084] � �

[0.1;0.4] � - TE curv. radius

Optimal

1 1 1 Chord length
0.394 0.398 0.3 LE curv. radius

0.0638 0.0549 0.0420
0.0514 0.0627 0.0536 Thickness
0.0253 0.0252 0.0454
0.156 0.104 0.1 TE curv. radius
1.00 1.00 0.996 Ratio of actual to target CSA
1.24 1.54 1.34 Lift to drag ratio

Table 6.4: Case setup, simulation parameters and convergence data for the lift to drag
ratio maximization problem, as computed by averaging over the 10 latest learn-
ing episodes. † All CPU times provided per episode and per environment. ‡
All values obtained averaging over 5 independent runs using 12 cores.
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As has been done for the drag minimization test case, we simplify the parametriza-
tion by setting all inner curvature radii to 0.4. Additionally, we fix the chord length
to c = 1 for the chord Reynolds number Re = U∞c/ν to remain constant over the
course of optimization (which we believe is necessary to meaningfully compare the
performances). This leaves np independent design variables, two end curvature radii
ρj∈{0,np−1} and np − 2 inner thicknesses ek∈{1,...,np−2}. The network action output
consists accordingly of values (ρ̂j, êk) in [−1; 1]np , converted into the actual physi-
cal quantities using the same mapping (6.6), only we set δe = 0.03 to account for
the smaller target CSA. All results in the following are for np = 5, for which DRL
evolves five design parameters, two end curvature radii and three inner thicknesses.

6.4.2 Laminar regime at Re = 250

We consider first a 2-D laminar case at Re = 250 modeled after the Navier–Stokes
equations, for which the dimensions of the computational domain provided in ta-
ble 6.4 yield a blockage ratio of 2.5%. All mesh adaptations are performed under the
constraint of a fixed total number of elements nel = 100000. A total of 100 episodes
has been run for this case, that yield the variety of shapes illustrated in figure 6.10,
together with their respective iso-contours of (instantaneous) vorticity. The general
picture is that all shapes exhibit an oscillating pattern of leading- and trailing-edge
vortex shedding following the shedding of the initial leading-edge vortex. This stems
from the interaction between the (lower) negative vorticity sheet, that separates at
the leading edge and then rolls up into a large clockwise vortex, and the (upper)
positive vorticity sheet, that remains attached to the windward side and rolls up
counter-clockwise from the trailing edge (in average, this yields a massive separa-
tion originating at the leading edge and extending on the leeward side, all the way
to the trailing edge; not shown here). The Strouhal number for vortex shedding fre-
quency built from the windward width is St = fc sinα/u∞ ∼ 0.13 (regardless of the
shape), which is identical to experimental measurements performed on a high-aspect
ratio NACA 0012 airfoil under the same incidence at Re = 100 [235].

The moving reward in figure 6.10(a) increases almost monotonically and reaches
a plateau after about 40 episodes. The optimal lift to drag ratio computed as the
average over the 10 latest episodes is 1.24± 1.0%, at which point the cross-sectional
area is equal to its target value down to the fifth decimal place. We note that 40
episodes is actually the number of episodes needed for the end radii to converge, as
the thickness distribution exhibits excellent convergence after as little as 20 episodes.
Interestingly, the agent has generated a wing-like optimal shape representative of a
high-lift configuration without any priori knowledge of aerodynamic concepts: the
optimal features a rounded leading edge to help maintain a smooth airflow (with
curvature radius 0.394 ± 0.01% close to maximum) and a sharp trailing edge to
generate lift (with curvature radius 0.156 ± 0.02 close to minimum). The optimal
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lift to drag ratio exceeds that of the equivalent ellipse (i.e. of major diameter c
and minor diameter 2Sref/πc, for the area to be equal to Sref ) by 6% and that
of a NACA 0012 airfoil by 1%, as has been estimated from dedicated in-house
calculations. This is small but consistent with the overall lack of sensitivity, as the
objective function in figure 6.10(c) actually remains within 3% of the optimal over
the course of optimization, as indicated by the grey shade delimiting the related
variance interval.

6.4.3 Turbulent (transitional) regime at Re = 5000

We consider now a case at Re = 5000 corresponding to the ultra-low Reynolds num-
ber regime, that has assumed greater significance in the last few decades due to rele-
vance for micro air vehicles and micro-turbines [236, 237]. We believe this constitues
a valuable first step towards applying the method to more prototypal aerodynamic
applications in which airfoils operate at Reynolds numbers of ∼ 106 and exhibit
some degree of stochastic dynamics (as they carry turbulent energy distributed over
a wide range of scales with varying degrees of spatial and temporal coherence), which
might lead to high variance gradient estimates and hamper learning. Here, at the
high value of angle of attack considered, the flow is expected to be transitional, for
instance, transition in the wake of a NACA 0012 has been shown to occur in the sep-
arated shear-layer, shortly after the leading edge, at a location strongly dependent
on the level of external noise [238]. This has been confirmed vetting preliminary
Navier–Stokes simulations for which the built-in small-scale component of the VMS
solution acts as an implicit large eddy simulation. While the solutions (not reported
here for the sake of conciseness) are dominated by the large-scale component, with
small-scale turbulence noticeably absent downstream, intermittent small-scale fluc-
tuations develop on the leeward side, that prompt asymmetric vortex street (at least
is the trailing edge is not too sharp for the separation point to be free to move) with
vortices convected downstream along an axis inclined upward with respect to the
streamwise direction, similar to the behavior observed in 2-D LES simulations of
the transitional flow past a circular cylinder [239].

Accordingly, the case is modeled here after the uRANS equations, using nega-
tive Spalart–Allmaras as turbulence model. Such an approach is not without short-
comings (namely RANS is inherently designed to damp out the small-scales, and
Spalart–Allmaras assumes fully turbulent behavior), but given the cost of accurately
resolving the complex, unsteady vortex interaction described above, we believe the
deficiencies are more than offset by the tremendous gain in computational efficiency
derived from the relatively coarse meshes necessary to predict the most important
large scale features of the flow. In practice, a scaled-down computational domain
is used, whose dimensions reported in table 6.4 yield a blockage ratio of 3.5%. All
mesh adaptations are performed under the constraint of a fixed total number of
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elements nel = 120000. A total of 100 episodes has been run, for which the selected
iso-contours of vorticity documented in figure 6.11 are reminiscent of their lami-
nar counterparts, with in-line vortex shedding (since the effect of the intermittent
small-scale fluctuations has been lumped into the eddy viscosity model) and robust
shedding frequency St = 0.15.

The moving average reward in figure 6.11(a) is seen to converges within about
50 episodes but the thickness distribution again converges faster (within roughly 40
episodes). As was already the case at Re = 250, the optimal resembles the airfoil of
an airplane wing, with a rounded leading edge and a sharp trailing edge. The end
radii are nearly identical to their laminar counterparts, but the shape is streamlined
differently, namely it is a tad thinner in the front (0.0549 ± 0.2% at Re = 5000
vs. 0.0638 ± 0.2% at Re = 250) but slightly thicker in the center (0.0627 ± 0.4%
at Re = 5000 vs. 0.0514 ± 0.25% at Re = 250). The optimal lift to drag ratio
(1.54 ± 0.3%) exceeds that of the equivalent ellipse by 13% but is ultimately iden-
tical to that of a NACA 0012, despite the objective function exhibiting substantial
variations in figure 6.11(b). The inability to outperform a conventional airfoil should
not be interpreted as failure of the method, though, as aerodynamic shape design
classically requires fine-tuning of the local geometry for a gain that often adds up
to a few percent. This is not manageable here because the low number of degrees of
freedom inevitably constrains the underlying space of shapes, and the expected gain
is comparable to the typical convergence threshold of a DRL run. We believe the re-
sults should rather be considered proof that DRL can start from the ground up and
generate shapes that perform just as well as a conventional airfoil. Actually, there
is ample room for improvement if the optimization is to be tailored to airfoil shape
optimization problems (which it is not here for the sake of generality), one may seek
for instance to locally refine the DRL optimal by repeating the same analysis, but
clustering the control points in specific regions of interest (e.g. the leading-edge, or
the rear-end of the leeward side), or to rely on alternative parametrizations better
suited to airfoils, such as CST [240].

6.5 Extension to 3-D shape optimization.

The ultra low-Reynolds number case at Re = 5000 is extended here to 3-D to
assess the extent to which the approach carries over to three-dimensional shape
optimization. All shapes generated over the course of optimization are unswept,
rectangular wings, whose cross-section is set up from the DRL outputs following
the exact same process as in sections 6.3 and 6.4. The span aspect ratio (relative
to the chord length) is set to 3 in our implementation. A Cartesian coordinate
system is used with origin in the mid-span plane, at quarter chord length from the
leading edge. The number of control points remains set to np = 5, but we force the
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leading and trailing edge curvature radii to 0.3 (round edge) and 0.1 (sharp edge)
to keep the computational cost manageable, which leaves np − 2 = 3 independent
design variables corresponding to the inner thicknesses. In practice, only a half-
span wing body is simulated with symmetry boundary condition prescribed at the
mid-span. The computational domain shown in figure 6.12 is a rectangular prism,
whose dimensions reported in table 6.4 yield a blockage ratio of 5%. All mesh
adaptations are performed under the constraint of a fixed total number of elements
nel = 500000. This is likely insufficient to claim true numerical accuracy, but given
the numerical cost (960 3-D simulations total, each of which is performed on 12 cores
and lasts about 10h, hence 9600h of total CPU cost), we believe this is a reasonable
compromise to assess feasibility while producing qualitative results to build on.

A total of 80 episodes has been run for this case, using a slighly lower weighing
coefficient β = 90 (to take into account that the coarser mesh yields a small loss
in accuracy in the computation of the cross-sectional area). Several representative
flow patterns computed over the course of optimization are illustrated in figure 6.13
to display the increased degree of complexity due to transverse inhomogeneities.
All solutions exhibit vortex shedding, which is because the span aspect ratio is
large enough for the tip vortex to remain relatively steady. Conversely, preliminary
simulations carried out at lower aspect ratios of order 1 systematically relaxed to
steady-state, due to the strong tip-vortex induced downwash over the entire span
(the same behavior has been reported in laminar flows at Reynolds numbers of about
in the range of a few hundreds [241], and is ascribed here to the RANS damping of the
small-scale transverse motion, that should otherwise strengthen the unsteadiness).
The moving averager reward in figure 6.13 plateaus after about 35 episodes. The
3-D distribution is almost front-rear symmetric but the shape itself surprisingly
slightly thinner in the front than in the rear, although the rear is ultimately more
streamlined due to the smaller trailing edge curvature radius. Compared to its 2-D
counterpart, the 3-D optimal is thinner in the front and in the center, but much
thicker in the rear. The optimal lift to drag ratio (1.34± 0.5%) exceeds that of the
equivalent ellipse by 5% and is identical to that of a NACA 0012. This is consistent
with the above findings, in the sense that the DRL optimal performs at the level of a
conventional airfoil, and that the limited improvement with respect to the equivalent
ellipse should not be taken as an indictment of the method, just a consequence of the
flow regime considered (precisely because a similar improvement is achieved using a
NACA 0012).

6.6 Conclusion

Shape optimization in computational fluid dynamics systems is achieved here train-
ing fully connected networks with PBO, a recently introduced deep reinforcement al-
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gorithm at the crossroad of policy gradient methods and evolution strategies. PBO is
single-step, meaning that the DRL agent gets only one attempt per learning episode
at finding the optimal. The numerical reward fed to the PBO agent is computed
with a finite elements CFD environment solving stabilized weak forms of the govern-
ing equations (Navier–Stokes, otherwise uRANS with negative Spalart–Allmaras as
turbulence model) with a combination of variational multiscale approach, immersed
volume method and anisotropic mesh adaptation.

Several cases are documented, for which shapes with fixed camber line, angle
of attack and cross-sectional area are generated by varying a chord length and a
symmetric thickness distribution (and possibly extruding in the off-body direction),
connecting consecutive points by a cubic Bézier curve using local position and cur-
vature information. The classical problem of finding the 2-D shape of minimum drag
in a uniform flow is revisited first to validate and assess the method capabilities. The
method is also applied to the more practically meaningful problem of finding the
shape of maximum lift to drag ratio (in 2-D or 3-D) at an incidence of 30◦ and under
constant chord Reynolds number. The DRL optimal increases the performance the
equivalent ellipse (i.e. the ellipse of same cross-sectional area) by 13% in 2-D and
5% in 3-D. It is systematically found to perform just as well as a conventional airfoil,
despite DRL starting from the ground up and having no priori knowledge of aerody-
namic concepts. Exhaustive convergence and efficiency data are reported here with
the hope to foster future comparisons, but it is worth emphasizing that we did not
seek to optimize said effciency, neither by optimizing the PBO meta-parameters,
nor by using pre-trained deep learning models (as is done in transfer learning).

Fluid dynamicists have just begun to gauge the relevance of DRL and its appli-
cation to optimal shape design. This research weighs in on this issue and shows that
the proposed single-step method holds a high potential as a reliable, go-to black-box
optimizer for complex CFD problems. Moreover, the optimization process is entirely
domain-agnostic, meaning that the proposed framework allows for easy application
to any domain in which shape optimization may be beneficial. We believe further
work should now focus on the challenges specific to fluid mechanics that still pre-
vent DRL capabilities from meeting the requirements for practical deployment, e.g.
stochasticity, sampling efficiency (CFD environments are resource expensive as they
routinely involve numerical simulations with tens or hundreds of millions of degrees
of freedom, while classical RL methods have low sample efficiency, i.e. many trials
are required for the agent to learn a purposive behavior), the need to leverage ex-
perience from multiple agents learning concurrently (multi-agent DRL) or to train
an agent in reasoning about several weighted objectives (multi-objective reward).
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Appendix

Shape generation using Bézier curves

This section describes the process followed to generate shapes from a set of np
control points. Once the position has been reconstructed from the agent outputs,
the angles between consecutive points are computed. An average angle is then
computed around each point (see Fig. 6.14(b)) as

θ∗i = rθi−1,i + (1− r)θi,i+1 , (6.9)

where r ∈ [0; 1] is the curvature radius that control the local sharpness of the curve.
Then, each pair of points is joined using a cubic Bézier curve, defined by four points:
the first and last points, pi and pi+1 belong to the curve, while the second and third
ones, p∗i and p∗∗i , are supplemental control points that define the tangent of the curve
at pi and pi+1. The tangents atpi and pi+1 are respectively controlled by θiand θi+1

(Fig. 6.14(b)). A final sampling of the successive Bézier curves leads to a boundary
description of the shape (Fig. 6.14(c)). Using this method, a wide variety of shapes
can be attained.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.10: Maximum lift to drag ratio test case at Re = 250 under constant area con-
straint Sref = 0.0822. (a) Evolution per episode of the instant (black line)
and moving average (over episodes, light orange line) reward. (b-f) Same as
(a) for the (b) averaged (over time) lift to drag ratio, (c) ratio of the ac-
tual to target cross-sectional areas, (d) chord (fixed), (e) edge curvature radii
and (f) inner thicknesses. The grey shade in (b) marks the 3% variance in-
terval with respect to the average over the 10 latest learning episodes. All
labels in (e-f) are ordered clockwise from the leading edge. The horizontal
dashed lines in (e-f) mark the admissible values. (g) Shapes generated over
the course of optimization for random episodes marked by the circle symbols
in (a-c), together with corresponding iso-contours of vorticity. The last three
shapes pertain respectively to episodes 40, 70 and 100.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.11: Maximum lift to drag ratio test case at Re = 5000 with negative Spalart–
Allmaras turbulence model, under constant area constraint Sref = 0.0822.
(a) Evolution per episode of the instant (black line) and moving average (over
episodes, light orange line) reward. (b-f) Same as (a) for the (b) averaged
(over time) lift to drag ratio, (c) ratio of the actual to target cross-sectional
areas, (d) chord (fixed), (e) edge curvature radii and (f) inner thicknesses.
All labels in (e-f) are ordered clockwise from the leading edge. The horizontal
dashed lines in (d-f) mark the admissible values. (g) Shapes generated over
the course of optimization for random episodes marked by the circle symbols
in (a-c), together with corresponding iso-contours of vorticity. The last three
shapes pertain respectively to episodes 40, 70 and 100.
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Figure 6.12: Anisotropic adapted mesh around an immersed three-dimensional unswept,
rectangular wing.



Chapter 6. Single-step DRL for two- and three-dimensional optimal shape design 179

(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.13: Maximum lift to drag ratio test case in 3-D at Re = 5000 with negative
Spalart–Allmaras turbulence model, under constant area constraint Sref =
0.0822. (a) Evolution per episode of the instant (black line) and moving av-
erage (over episodes, light orange line) reward. (b-f) Same as (a) for the
(b) averaged (over time) lift to drag ratio, (c) ratio of the actual to target
cross-sectional areas, (d) chord (fixed over the course of optimization), (e)
edge curvature radii (also fixed) and (f) inner thicknesses. (g) Shapes gener-
ated over the course of optimization for random episodes marked by the circle
symbols in (a-c), together with corresponding iso-contours of vorticity. The
last three shapes pertain respectively to episodes 40, 70 and 100.
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(a) (b) (c)

Figure 6.14: Shape generation using cubic Bézier curves. Each subfigure illustrates one of
the consecutive steps used in the process. (a) Compute angles between points
and compute an average angle θ∗i around each point. (b) Compute supple-
mental control points coordinates from averaged angles and generate cubic
Bézier curve. (d) Sample all Bézier lines and export for mesh immersion.
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Ce chapitre évalue la capacité des méthodes classiques de DRL multi-étapes à
réaliser des problèmes de contrôle en boucle fermée, où l’agent optimise une re-
lation état-action complète pour laquelle l’entrée de contrôle dépend de certaines
mesures de champs d’écoulement. La récompense est calculée à l’aide d’un environ-
nement interne d’éléments finis stabilisés combinant la modélisation variationnelle
multi-échelle (VMS) des équations gouvernantes, la méthode des volumes immergés
et l’adaptation du maillage anisotrope multi-composant. Deux problèmes ont été
abordés en utilisant l’algorithme proximal policy optimization PPO, un premier
problème de transfert de chaleur conjugué en régime permanent dont l’optimum est
en boucle ouverte, et un second problème dépendant du temps dont l’optimum est
en boucle fermée. Des résultats prometteurs ont également été obtenus sur le second
problème de réduction active de la trâınée autour d’un cylindre circulaire où une
réduction de la trâınée de 8% a été obtenue.

This chapter assesses the capability of classical multi-step DRL methods to per-
form closed-loop control problems, where the agent optimizes a complete state-action
relation for which the control input depends on some flow fields measurements. The
numerical reward is computed using an in-house stabilized finite elements environ-
ment combining variational multi-scale (VMS) modeling of the governing equations,
immersed volume method, and multi-component anisotropic mesh adaptation. Two
problems have been tackled using the proximal policy optimization PPO algorithm,
a first steady-state conjugate heat transfer problem whose optimal is open-loop, and
a second time-dependent problem whose optimal is closed-loop. Promising results
have been also obtained on the second problem of active drag reduction around a
circular cylinder where a drag reduction of 8% has been achieved.
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7.1 Introduction

So far, the presented applications have focused on optimization and open-loop
control problems, for which the policy to be learnt by the DRL agent does not
depend on state. Such problems have been tackled using in-house, tweaked DRL
algorithms with single-step learning episodes (i.e., the agent gets one attempt per
episode at finding the optimal), which in turn has allowed the use of extremely small
networks (basically, 2 hidden layers with 2 up to 4 neurons per layer), as the agent is
then not required to learn a complex state-action relation, but only a transformation
from a constant input state to a given action. In this chapter, we conversely assess
the feasibility to use DRL to perform closed-loop control problems, for which the
control input depends on some appropriate measure of the flow. This amounts to
say that the policy to be learnt by the DRL agent does depend on state, which adds
several layers of complexity to the problem:

• In fluid flows, classical states are easily prohibitively large for policy learning,
as tens or hundreds of millions of degrees of freedom are routinely involved in
numerical simulations. This is not troublesome in single-step DRL where state
is prescribed, meaning that the agent can operate with perfect state knowledge
as a result of a single numerical simulation. Otherwise, the agent must learn
under partially observable environments, meaning that the performance of a
multi-step DRL algorithm can highly depend on the quality and relevance of
the data available for observation (in practice, the number and position of
velocity and/or pressure sensors positioned in the flow to provide feedback
observations). The very same issue is also encountered in data-driven model
reduction techniques for large scale dynamical systems, that usually require
using measures of observability as an information quality metric [242].

• A multi-step learning episode consists of a series of actions drawn by the DRL
agent under the current policy. If we denote by ∆tact the action time step
between the sampling of two consecutive actions (so the agent provides new
actions to the environment with a frequency 1/∆tact), by ∆t the time step
used in each environment to perform the numerical simulations, and by ∆tphys
a characteristic time scale of the physical process to be controlled (for instance
a vortex shedding period in the context of wakes), then it can be inferred that
∆t < ∆tact < ∆tphys for the agent to be able to observe the effects of its actions
on the environment (∆t < ∆tact), and for the actions to be able to significantly
alter the flow dynamics (∆tact < ∆tphys). The user has entire control to adjust
the action time step within these two bounds, but because a sufficient number
of actions must be sampled over a given episode, one must either perform very
long learning episodes, or put a cap on the simulation time step regardless
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of numerical stability considerations, which in both cases can considerably
increase the CPU cost (at least with respect to the single-step approach). In
most contributions of the literature, the ratio of the physical time scale to the
action time step is about a few tens (so a few tens of actions are sampled over
a characteristic time interval) but the ratio of the action to the simulation
time-steps varies considerably from a few tens to a few hundreds [42, 49, 224].

• One must take into account the existence of delays that can hinder the ac-
curacy of the reward estimation and prevent learning. This is because each
action generates a perturbation, and there is always a certain time between
the moment an action is applied, and the moment it efficiently reaches the
current state (depending on the ability of the said perturbation to grow and
saturate).

• Computing relevant estimates of the policy loss gradient (for relevant network
update) is no small task because the effects of policy changes on the state
distribution are unknown (since modifying the policy will most likely modify
the set of visited states, which will in turn affect the performance in some
indefinite manner).

The following sections present two test cases in two dimensions, used as testbed
for implementing and validating the multi-step approach. In order to echo the
scientific approach followed in the previous chapters, the first one is a steady-state
conjugate heat transfer problem whose optimal is time-independent, for which we
validate the implementation by comparison with single-step DRL. The second one
is the drag reduction problem proposed by Rabault et al. [39], and is intended to
serve as demonstrator of the high potential of the approach in the context of active-
control of time-dependent flow control. Both problems are tackled with the go-to
Proximal Policy Optimization (PPO) algorithm, using the native Stable Baselines
implementation and a custom OpenAI environment designed using the Gym library.

7.2 Conjugate heat transfer control for homogeneous cool-
ing

The first test case is that of a two-dimensional hot workpiece under impingement
cooling, designed after those considered in Chapter 5. Without anticipating on the
results, this is a steady-state conjugate forced convection problem, whose solutions
(both uncontrolled and controlled), ultimately settle down to a time-independent
regime. It is not per se in the scope of multi-step DRL (as the optimal control also
is expected to be time-independent, that is, open-loop, while multi-step DRL seeks
optimal time-dependent state-to-action relations, and is thus best applied to control
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(a) (b)

Figure 7.1: (a) Schematic of the two-dimensional forced convection set-up. (b) Probe array
in the solid domain.

H h ei Tw Tc Th µ ρ λ cp

1 0.2 0.2 10 10 150
0.001 1 0.5 1000 Fluid

1000 100 15 300 Solid

Table 7.1: Simulation parameters. All values in SI units, with the exception of tempera-
tures given in Celsius.

time-dependent conjugate heat transfer problems [17]), but it does carry value for
validation purposes as it allows comparing to dedicated single-step results.

The set-up sketched in figure 7.1 features a similar rectangular solid with height
h and aspect ratio of 2 : 1, initially at the (hot) temperature Th. A Cartesian
coordinate system is used with origin at the center of mass of the solid. The latter
is fixed and at the center of a rectangular cavity of height H and aspect ratio of
4 : 1, with isothermal walls at temperature Tw. The top cavity side is flush with
two identical holes of width e for two injectors to blow cold air at possibly different
velocities V1 and V2, but same (cold) temperature Tc. The horizontal position of the
injector centers is set to x1 = −1.1 and x2 = 0.9, respectively, slightly asymmetrical
with respect to the centerline of the domain in the x direction. Hot air is released
through the cavity sidewalls by two identical exhaust areas of height e0, whose center
is at the vertical position (e0 −H)/2.

The governing equations are the coupled Navier–Stokes and heat equations.
Those are solved with zero buoyancy and radiative heat transfer (so the temperature
ultimately behaves as a passive scalar) and no-slip isothermal conditions (u = 0 and
T = Tw), except at the injection exit planes (u = −V1,2ey and T = Tc) and at the
exhaust areas (zero pressure and velocity/temperature gradients). No thermal con-
dition is imposed at the interface for heat exchange arise from the difference in the
individual material properties provided in Table 7.1, that yield a Prandtl number
Pr = 2 and a Reynolds number Re1,2 = 200V1,2.
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In the context of flow control, the quantities being optimized are the injector
velocities V1 and V2 in the attempt to achieve both efficient and homogeneous cooling
(i.e. this is a multi-objective test case, unlike those in chapter 5 that focused solely
on homogeneous cooling, then proceeded to assess efficiency a posteriori). To this
end, we distribute uniformly 15 probes in the solid domain, into nx = 5 columns
and ny = 3 rows with resolutions ∆x = 0.09 and ∆y = 0.075. We then compute an
efficiency estimator as the normalized, temperature

rT =
1

nxny

1

Th

∑
i,j

Tij , (7.1)

averaged over all probes, where we use subscripts i, j and ij to denote quantities
evaluated at x = i∆x, y = j∆y and (x, y) = (i∆x, j∆y), respectively, and symmet-
rical numbering is used for the center probe to sit at the intersection of the zero-th
column and row. Similarly, a homogeneity indicator is computed as

r∇T =
1

nx + ny

∑
i,j

〈||∇‖T ||〉i + 〈||∇‖T ||〉j , (7.2)

where 〈||∇‖T ||〉i (resp. 〈||∇‖T ||〉j) is the norm of the temperature gradient averaged
over the i-th column (resp. the j-th row), defined as

〈||∇‖T ||〉i =
2

ny − 1

1

Th
|
∑
j 6=0

sgn(j)||∇T ||ij , (7.3)

〈||∇‖T ||〉j =
2

nx − 1

1

Th
|
∑
i 6=0

sgn(i)||∇T ||ij . (7.4)

In this regards, the asymmetry in the injectors distribution generates an artificial
inhomogeneity that the agent must account for by relevantly selecting asymmetrical
blowing velocities. Finally, the numerical reward fed to the DRL agent is

r = −w1rT − w2r∇T , (7.5)

where w1 = 0.2 and w2 = 4 are weighs set empirically for both components of the
reward to be of the same order of magnitude.

In practice, all solutions are computed by marching in time the same initial guess
(consisting of zero velocity and uniform temperature, except at the hot sidewall)
with time step ∆ = 0.1, and the mesh is updated every 5 time steps under the
constraint of a fixed number of elements nel = 20000 using the level set, velocity,
and temperature fields as multiple-component criterion. The temperature fields at
the final simulation time tf = 200 is used to compute the rewards (7.1-7.2). As
will be seen in the following, the latter has not been chosen so as to yield accurate
convergence to steady state, only to mimic a real cooling device (whose operating
time is often used-defined) while putting a cap on the CPU cost.
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(a) (b)

Figure 7.2: (a) Time evolution of the uncontrolled numerical reward with injectors velocity
set to V1 = V2 = 1. (b) Same as (a) for the temperature (in black) and
homogeneity (in gray) components of the reward.

(a) (b)

Figure 7.3: (a) Iso-contours of baseline temperature at the final time t = 200. (b) Same as
(a) for the solid temperature normalized to maxx,y T = 1, with superimposed
streamlines of the underlying velocity field.

7.2.1 Uncontrolled flow

We characterize first the uncontrolled flow for which the injectors velocity is set
to V1 = V2 = 1. The reward shown in figure 7.2(a) is seen to decrease over the
first 50 time units, then increases steadily to reach |r| = 0.35 at the end of the
simulation (this is the baseline reward to which the control results shall be com-
pared in the following). The homogeneity component w2|r∇T | shown in figure 7.2(b)
displays a similar behavior to reach 0.20, meaning that the cooling becomes more
homogenous over time. Meanwhile, the (weighted) temperature component w1|rT |
decreases over time (which reflects the workpiece cooling) down to the value 0.143



188 7.2. Conjugate heat transfer control for homogeneous cooling

Mean Variance Correlation Neural network

5× 10−3 � 10−3 Learning rate
128 8 � Nb. epochs
1 8 16 Nb. learning episodes
1 4 8 Nb. mini-batches

[2,2,2] � � Architecture (hidden layers)

Table 7.2: Details of the PBO meta-parameters and network architectures.

reported in figure 7.2(b), that corresponds to a solid temperature 107◦. The iso-
contours of temperature shown in figure 7.3 shows that the baseline configuration
achieves asymmetrical vertical cooling, owing to the formation of two large-scale,
small velocity end vortices entraining heat laterally downwards. It also achieves
asymmetrical horizontal cooling, as the strength of both vortices is different due to
the asymmetrical injectors position with respect to the centerline of the domain.

7.2.2 Open-loop control using single-step DRL

For validation purposes, we report first reference results pertaining to the single-step
control problem, for which we use the PBO algorithm; see chapter 2. We recall that
PBO learns the mean, variance and correlation parameters of a multivariate normal
search distribution from three separate neural networks, whose meta-parameters
(number of epochs and of mini-batches, learning rate, history of learning episode for
off-policy update) are provided in table 7.2.

A total of 150 episodes has been run with 7 parallel environments, each of which
computes 200 time units with time step ∆t = 0.1 to march the initial condition to
steady state. This represents 1050 simulations, each of which lasts 12 mn using 12
cores, hence 30h of CPU cost. The network action output consists of two values
ξj=1,2 in [−1; 1]2, mapped into

Vj =
1− ξ̂j

2
Vmin +

1 + ξ̂j
2

Vmax , (7.6)

for each blowing velocity to vary in [Vmin;Vmax] with Vmin = 0.5 and Vmax = 1.5
(hence, the Reynolds number in the exit plane of an injector is between 100 and
300). In practice, the blowing velocities remain set to their uncontrolled values
V1 = V2 = 1 over the first 50 time units, then ramped up to the DRL value over 3
time units.

We show in figure 7.4(a) the evolution of the controlled reward, whose moving av-
erage (computed over the 50 latest episodes, equivalently the 50 latest values, or the
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(a) (b)

(c) (d)

Figure 7.4: Single-step DRL control using PBO. (a) Evolution per episode for the instant
(black line) and moving average (over episodes, light orange line) reward. (b-
d) Same as (a) for the injector velocities, the (c) temperature and (d) the
homogeneity components of the reward.

whole sample if it has insufficient size) increases monotonically and reaches a plateau
after about 30 episodes, corresponding to |r?| = 0.29, at which point the control ve-
locities in figure 7.4(b) are V ?

1 = 0.60 and V ?
2 = 1.12. The same trends carry over to

the homogeneity component of the reward, that reaches w2|r?∇T | = 0.176 in 7.4(c).
The temperature reward in figure 7.4(d) exhibits very limited variations, which may
suggest at first sight that the control primarily act by improving homogeneity but
fails at improving the efficiency. Nonetheless, the optimal value w1|r?T | = 0.133
corresponds to a final temperature of 100◦, which is still lower than the uncon-
trolled value by 6%. Another unplanned consequence of the control is best seen in
figure 7.6 is that optimally controlled reward reaches its maximum much quicker,
since all compound and individual rewards at t = 150 (that is, 100 time units after
the control has been switched on) have improved over their uncontrolled values at
t = 200. In short, the optimal control selected by PBO yields a more efficient and



190 7.2. Conjugate heat transfer control for homogeneous cooling

(a) (b)

Figure 7.5: Same as figure 7.3 for the optimal single-step PBO temperature.

(a) (b)

Figure 7.6: (a) Time evolution of the instantaneous reward over the course of an optimal
PBO single-step learning episode The controlled (resp. uncontrolled) values
are shown as the solid (resp. dashed) lines. The dark gray shade mark the
initial time interval during which control is forced to zero. (b) Same as (a)
for the temperature and homogeneity components of the reward.

homogeneous cooling and reduces the time needed to do so by nearly 25%. As evi-
denced by the focus on the normalized temperature in figure 7.5, PBO has restored
a near-perfect horizontal and vertical symmetry, as the workpiece is now at the core
of a close recirculation that wrap almost perfectly around its surface, albeit itself
asymmetric.

7.2.3 Closed-loop control using multistep-step DRL

The same problem is now revisited using the classical PPO algorithm to assess and
validate the multi-step DRL/CFD implementation. The control strategy proceeds



Chapter 7. Multi-step Deep Reinforcement Learning 191

(a) (b)

(c) (d)

Figure 7.7: Multi-step DRL control using PPO. (a) Evolution per episode for the instant
(black line) and moving average (over episodes, light orange line) reward. (b-
d) Same as (a) for the injector velocities, the (c) temperature and (d) the
homogeneity components of the reward.

here from multi-step learning episodes during which the network outputs a series
of blowing velocities. The PPO agent is a fully connected network with two dense
hidden layers, each with 128 neurons, with learning rate set to 2.5× 10−4 and PPO
loss clipping range to 0.2. The discount factor weighing the relative importance
of present and future rewards is set to 0.99, meaning that the agent cares almost
equally about all rewards along the current succession of states and actions. Tem-
perature and temperature gradient information is extracted from the simulation and
provided to the neural network from the 15 probes distributed in the solid (no ve-
locity/pressure state is extracted, hence, the agent knows only about the thermal
state, not the flow state). A total of 800 episodes has been run using 8 parallel
environments. Each episode computes 200 time units with time step ∆t = 0.1, with
the first 50 time units simulated without any control, after which the network out-
puts a series of 50 actions over 150 time units, and the network is updated for 16
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(a) (b)

Figure 7.8: Same as figure 7.3 for the optimal multi-step PPO temperature.

epochs using 8 steps mini-batches. This yields an action time ∆tact = 3 and a ratio
of the action to the simulation time-steps of 30 (i.e., each action is evaluated over
30 numerical time steps), very much in line with the values found in the literature.

For each action, the agent outputs two values ξj=1,2 in [−1; 1]2, mapped into
[Vmin = 0.5;Vmax = 1.5] using (7.6). In order to to avoid abrupt control changes
in the environment (as this may cause numerical instabilities), the control is made
continuous over time using

Ṽj;k+1 = Ṽj;k + α(Vj − Ṽj;k) , (7.7)

where Ṽj;k is the effective blowing velocity for the j-th injector considered at the
previous numerical time step, Ṽj;k+1 is the new control, and Vj is the target action set
by the PPO agent for the current 30 time steps. Finally, α is a numerical parameter
set to 0.3 for Ṽj;k reaches 0.99Vj;k within 20 numerical time steps (equivalently 2
time units), before the network samples a new action. The numerical reward fed to
the PPO agent is computed every ∆tact from the current temperature field, once a
given action has been fully assessed.

The moving average reward in figure 7.7(a) computed over the 4 latest episodes
(equivalently the 200 latest values) reaches a plateau after about 400 episodes, that
correspond to |r?| = 0.53, which is less than the uncontrolled value. This is true
also of the homogeneity (w2|r?∇T | = 0.39), and thermal component (w1|r?T | = 0.148),
which we believe is due to the presence of exploration noise, that makes the control
less efficient than its deterministic counterpart. Meanwhile the optimal blowing
velocities in figure 7.7(d) are V ?

1 = 0.70 and V ?
2 = 1.45, quite close to their PBO

counterparts. Also, the time-evolution of the reward under optimal PPO actuation
shown in figure 7.9 yields results reminiscent of PBO, with the main difference due
to the homogeneity indicator, as the thermal indicators in figure 7.9(b) are nearly
indistinguishable. At this stage, we believe these results can provide a first element of
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(a) (b)

(c) (d)

Figure 7.9: a) Time evolution of the instantaneous reward over the course of an optimal
multi-step episode The controlled (resp. uncontrolled) values are shown as
the solid (resp. dashed) lines. The single-step PBO values reproduced from
figure 7.6(a) are shown as the dash-dotted line. The dark gray shade mark the
initial time interval during which control is forced to zero. (b-c) Same as (a)
for the (b) temperature and (c) homogeneity reward components of the reward.
(d) Same as (a) for the injector velocities.

validation of implemented PPO/CFD coupling, and that most discrepancies simply
reflect the difficulty of learning a rigorously time-independent sequence of actions
using an intrinsically time-dependent theoretical framework. Moreover, we expect
closer results to be obtained by picking up the most likely action of the optimal
policy from the mean of the multivariate normal search distribution (i.e., setting the
variance to zero to remove the exploration noise, meaning that the neural network
is used in full exploitation mode), which has not yet been undertaken due to a lack
of time. Even though, it is worth noticing that the solid temperature shown in
figure 7.8 is especially close to the single-step distributions, with maximum value
of 101◦, and improved horizontal and vertical symmetry. Also, as has been found
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Figure 7.10: Schematic diagram of the two-dimensional drag reduction set-up.

using single-step DRL, the control yields a quicker cooling (with better efficiency
and comparable homogeneity compared to the uncontrolled case) as the optimal
reward converges much faster (by roughly 25%) to its maximum.

7.3 Drag reduction in the flow past a circular cylinder

The second test case is the two-dimensional drag reduction problem proposed by
Rabault et al. [39] (that has subsequently been further analyzed in [40, 49]), that
is best suited to check the implementation of multi-step DRL, due to the time-
dependent, vortex-shedding behavior of all solutions. As sketched in figure 7.10, the
case features a circular cylinder of diameter D confined between two parallel channel
walls separated by a distance H = 4.1D, and is adapted from the CFD benchmark
in [243]. The environment consists of CFD simulations in a Cartesian coordinate
system with drag positive in the +x direction. A laminar, time-dependent case at
Reynolds number Re = U0D/ν = 100 is modeled after the Navier–Stokes equations,
where U0 is the mean inflow velocity and ν the kinematic viscosity. The governing
equations are discretized on a rectangular grid of dimensions [−2; 20] × [−2, 2.1].
Open flow conditions are used, that consist of a parabolic inflow

Uin(y) = 1.5
(

1 +
y

2

)(
1− y

2.1

)
, (7.8)

in the x direction, together with no-slip conditions at the walls (cylinder surface and
parallel walls) and a stress-free outflow condition. The cylinder center is at (0, 0),
slightly off the centerline of the domain in the y direction to speed up the onset of
vortex shedding.
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Figure 7.11: Iso-contours of the uncontrolled vorticity field in the time-periodic regime.

7.3.1 Uncontrolled flow

Unsteady computations are performed using a constant time step ∆t = 0.005, as
in [39]. The retained mesh is composed of 22000 elements and has been refined
at the cylinder wall using a minimum mesh size h = 0.004. We have computed
first a total of 100 time units of the uncontrolled solution, denoted in the following
as the baseline flow, that follows the well-documented limit cycle associated with
vortex shedding.illustrated in figure 7.11. The shedding frequency is found to be
approximately 0.30, in good agreement with the value reported in [39]. A similar
agreement is found for the mean drag coefficient, as the value D̄ = 3.20 computed
by averaging over the 25 last time units (which represents about 7.5 shedding cycles)
is within 1% of the reference value [243]. It is worth noticing that larger time-steps
up to ∆t = 0.02 have produced mean drag values identical within 2%, but have not
been further considered to allow using the same action time step ∆tact as in [39].

7.3.2 Open-loop control using single-step DRL

In the context of flow control, and as shown in figure 7.12, injection or suction is
achieved through two jets of width ∆θ = 10◦ located at the on the cylinder’s poles
(that is, at angles θ0 = 90◦ and 270◦ relative to the flow direction). The objective
is to minimize the (time-averaged) mean drag by minimizing the compound reward
function

r = −D̄ − β|L̄| , (7.9)

whose rightmost term is a penalization that prevents the network from achieving
efficient drag reduction at the cost of a large induced lift, as it is damageable in
many practical applications (we use here the same value β = 0.2 as in [39]). A
given jet velocity is normal to the cylinder wall (to ensure that the observed drag
reduction does not simply result from a mere injection of momentum) and follows
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Figure 7.12: Synthetic jets configuration used for control purposes.

(a) (b)

Figure 7.13: Single-step DRL control using PPO-1. (a) Evolution per episode for the
instant (black line) and moving average (over episodes, light orange line)
reward. (b) Same as (a) for the mass flow rate of the upper actuator.

the parabolic-like distribution going to zero at the edges of the jet

W =
Qπ

∆θ
cos

π

∆θ
(θ − θ0) , (7.10)

where Q is the mass flow rate. A synthetic jets setting is used in which the two
jets act reciprocally, i.e., the mass flow rate are Q for the top jet, and −Q for the
bottom, meaning that there is only one single control parameter and the instanta-
neous net mass flow rate is zero for each action (as this is more realistic than adding
or substracting mass from the flow, and has been found useful to avoid numerical
issues [39]).

We report first results pertaining to the single-step control problem, for which
we use the PPO-1 algorithm introduced in chapter 2. We recall that PPO-1 learns
the mean and variance of a multivariate normal search distribution from a single
network, under the assumption that all variables have the same variance and are
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Figure 7.14: Evolution of the numerical reward against the mass flow rate, as obtained by
direct numerical simulation.

uncorrelated. The agent is a fully-connected network with two hidden layers, each
holding 2 neurons, with learning rate set to 2.5× 10−3 and PPO loss clipping range
to 0.2. A total of 200 episodes has been run using 8 parallel environments, each of
which follows the exact same procedure as in the uncontrolled case, and computes
100 time units with time step ∆t = 0.005 to march the initial condition to time-
periodic state (in practice, the final baseline state is used as restart condition for
all learning episodes). This represents 1600 simulations, each of which is performed
on 12 cores and lasts 25mn, hence 85h of total CPU cost. The network outputs a
single value ξ̂ ∈ [−1, 1], mapped into

Q = ξ̂Qmax , (7.11)

for the mass flow rate to vary [0;Qmax] with Qmax = 0.08 to prevent unphysically
large actuation and associated numerical issues (the associated maximum centerline
velocity is then Wmax(θ = 0) = 1.45). The mean drag and lift are computed by
averaging over the 25 last time units, as has been done for the uncontrolled flow,
after which the network is updated for 16 epochs using 4 steps mini-batches.

The main results are provided in figure 7.13 in terms of the instant reward and
mass flow rate, together with their moving average computed over the 50 latest
episodes (equivalently the 50 latest values) Although the moving average reward
increases monotonically and reaches a plateau after about 80 episodes, the opti-
mal mass flow rate converges to a close to zero value Q? ∼ 0.001. In return, the
optimal reward is |r?| = 3.22, with drag D̄? = 3.2 equal to the baseline, and lift
weakly fluctuating around zero (not shown here). This is not ascribed to a failure
of the method, though, as it only reflects the inability of the retained approach
to reduce drag. Indeed, performing a series of numerical simulations with various
control amplitudes yields the curve in figure 7.14 showing that the reward decreases
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monotonically with Q (hence the baseline solution is somehow the optimal searched
for by the PPO-1 agent).

7.3.3 Closed-loop control using multi-step DRL

In this section, we tackle the closed-loop problem using the classical PPO algorithm
to design an efficient control strategy from multi-step learning episodes during which
the network shall output a series of actions (not a single action). Here, the control
objective is to minimize the mean drag by minimizing the compound reward function

r = −〈D〉V S − β|〈L〉V S| , (7.12)

where 〈·〉V S denotes the moving average over one shedding cycle of the baseline
solution (hence 〈D0〉V S = D̄0 = 3.20, where the 0 superscript indicates a baseline
quantity), and we use the same penalization parameter β = 0.2 as in section 7.3.2.
Compared to using the instantaneous values of drag and lift, averaging over a shed-
ding cycle allows reducing the variability in the value of the reward function, which
has been found in [39] to improve learning.

The PPO agent is a fully connected network with two dense hidden layers, each
holding 512 neurons, with learning rate set to 2.5×10−4, PPO loss clipping range to
0.2, and discount factor to 0.99. Note the substantially increased size of the network
with respect to the single-step agent, as the number of neurons in the hidden layers
has been increased by a factor of 256, as a result of the multi-step agent being
tasked with learning a complex state-action relation, not a simple mapping from a
constant input state to a given action. The agent operates under partial knowledge
of the state, with pressure information extracted from the simulation and provided
to the neural network from 156 probes distributed on the structured grid shown in
figure 7.15. As has been mentioned at the beginning of this chapter, the number
and location of this probes, as well as the quality of the information they collect,
are key for the network to understand and find a possible control strategy of the
vortex shedding pattern. The sensitivity of the learned control strategy to the
probes distribution has been studied briefly in [39] and more thoroughly in [41].
The general picture for this case is that a relevant arrangement must feature of a
sufficient number of probes distributed in the vicinity of the cylinder as well as in
its wake region (this has been confirmed by preliminary DRL runs in which probes
clustered in the vicinity of the cylinder ultimately yielded poor control efficiency).
Meanwhile, the details of said arrangement (the exact number, or the exact nature
of the collected information, for instance velocity rather than pressure) have only
a limited impact on the learning performance. One difficulty is to appropriately
distribute the wake probes, as no learning could be obtained in preliminary runs
where the probes spanned only the very near wake, but it is reported in [41] that the
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Figure 7.15: Probe array for observation collection in the context of multi-step drag reduc-
tion. The background field in the uncontrolled pressure field associated with
the vorticity distribution shwon in figure 7.11.

information provided by probes positioned too far downstream has little relevance
(likely because, by observing the flow closely downstream of the cylinder, the agent is
able to observe the consequences of its actions right after they were taken, while more
distant probes provide a delayed feedback that can be more difficult to interpret).

As in the single-step case, the final baseline state is used as consistent restart
condition for all learning episode. Each episode computes 25 time units with time
step ∆t = 0.005, with the first 5 time units simulated without any control, after
which the network outputs a series of 80 actions over 20 time units (about 6.5
baseline shedding cycles) and the network is updated for 16 epochs using 8 steps
mini-batches. This yields an action time step ∆tact = 0.25 and a ratio of the action
to the simulation time-steps of 50 (i.e., each action is evaluated over 50 numerical
time steps). For each action, the agent outputs a single value ξ̂j ∈ [−1, 1], mapped

into Qj = ξ̂jQmax with Qmax = 0.08. In order to avoid discontinuities in the pressure
and velocity fields every time a new action is sampled, the control is made continuous
over time using

Q̃j;k+1 = Q̃j;k + α(Qj − Q̃j;k) , (7.13)

where Q̃j;k is the effective control considered at the previous numerical time step,
Q̃j;k+1 is the new control, and Qj is the target action set by the PPO agent for
the current 50 time steps. Finally, α is a numerical parameter set to 0.1, which
guarantees that Q̃j reaches 0.99Qj within 45 numerical time steps (equivalently
0.225 time units), before the network samples a new action. The numerical reward
fed to the PPO agent is computed every ∆tact once a given action has been fully
assessed, by averaging over the latest vortex shedding period (hence it assesses the
effect of the latest 12 actions).

A total of 500 episodes has been run using one single environment. This rep-
resents 500 simulations, each of which is performed on 12 cores and lasts 20mn,
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(a) (b)

Figure 7.16: Multi-step DRL control using PPO-1. (a) Evolution per episode for the in-
stant (black line) and moving average (over episodes, light orange line) re-
ward. (b) Same as (a) for the drag components of the reward.

Figure 7.17: Iso-contours of the vorticity field optimally controlled using PPO multi-step
DRL control. The snapshot corresponds to the established pseudo-periodic
modified regime, attained after the initial transient control.

hence 165h of total CPU cost. As illustrated in figure 7.16 showing the evolution
per episode of the numerical reward, a robust learning is achieved after 250 episodes.
The moving average reward computed over the 10 latest episodes (equivalently the
800 latest values) slowly decreases to reach the optimum |r?| = 3.16, with some
noises due to the exploration characteristic. The corresponding drag coefficient is
〈D〉?V S = 3.05 (meaning that the lift component of the reward is not zero), but the
instant value reaches a minimum of 2.96 representing a drag reduction of about 8%.
These values, as well as the associated flow field shown in figure 7.17 are very con-
sistent with those reported in [39] and assess the validity of the present PPO/CFD
implementation. The evolution of drag under optimal PPO actuation shown in fig-
ure 7.18(a) shows that the controlled value decreases to 〈D〉?V S within roughly 5
time units, which represents a series of 20 actions, out of the 80 actions sampled
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(a) (b)

(c) (d)

Figure 7.18: (a) Time evolution of the instantaneous reward over the course of an optimal
PPO multi-step episode The controlled (resp. uncontrolled) values are shown
as the solid (resp. dashed) lines. The dark gray shade mark the initial time
interval during which control is forced to zero. (b) Evolution of drag per DRL
action along the learning episode represented in (a). (c-d) Same as (a) for
the (c) gain in power drag, and (d) actuation power of a single jet.

by the agent over the course of the episode. At this point, the average value over
a shedding period used to determine remains essentially constant, as evidenced in
figure 7.18(b).

Another important indicator of the performance of the control is the energy
required for drag reduction, defined as

PC =
1

4

∫ ∆θ
2

−∆θ
2

W 2|W |dθ , (7.14)

and whose evolution against time is reported for a single jet in figure 7.18(d). The
actuation power averaged in time over the second half of the optimal PPO episode
(to get rid of the initial transient) is PC = 0.018, which is only 8% of the time-
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averaged baseline flow drag power

PD0 =
1

2

∫ 1
2

− 1
2

UinD̄0 dy =
1

2
QinD̄0 =

3

4

(
1− 1

3H2

)
D̄0 , (7.15)

where Qin is the reference mass flow rate intercepting the cylinder. Another inter-
esting indicator is the power Saving Ratio (PSR) introduced by [244], defined as the
ratio of the gain in drag power (figure 7.18(c)) to the control power, hence

PSR =
3

4

(
1− 1

3H2

)
D̄ − D̄0

PC
. (7.16)

We obtain here a PSR of 6, meaning that the control, albeit efficient, is not highly
energy-efficient. This is because the PPO agent selects rather high actuation am-
plitudes, as the mass flow rate regularly peaks at its maximum allowed value (not
shown here). This contrasts with the results reported in [39], whose actuation am-
plitude is indeed large during the initial transient, but then drops to small values
representing only about 10% percent of the maximum value (a similar behavior is
documented in [41], albeit on a different case without the lateral channel walls). The
reasons for the observed differences are unclear at the time being, as we still need to
consolidate our results by removing the exploration noise and by running the neural
network in full exploitation mode. A possible explanation may lie in the maximum
allowed actuation amplitude itself, as the latter varies from study to study (with
sometimes different and intricate definitions), which hinders reproducibility. For
instance, the maximum energy allowed for drag reduction is 0.057 in the present
case, but 0.21 in [41], and allowing for larger overall actuation amplitudes during
may ultimately help save actuation power if more energy is spent to bring the flow
in low-drag state, but less energy is required to have it stay on it. Even though,
we believe these results assess at the same time the high potential of multi-step
DRL to improve the control performance by resorting to closed-loop actuation, and
the need for additional fine tuning in order to consistently outperform the current
reference methods. To this end, it should however be kept in mind that efficiency
comparisons between different actuation techniques should be performed carefully,
as [245] use cylinder rotation to achieve an extremely energy-efficient control that
outperforms the present study (and all other related studies) in terms of PSR and
net drag reduction, but do not consider the inertia of the rotating cylinder for their
power-based comparisons.

7.4 Conclusion

This chapter has focused on the coupling of Cimlib-CFD with the multi-step DRL
approach that is widely used in the literature. The approach is relevant to closed-
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loop flow control, as the agent is then tasked to optimize a complete state-action re-
lation, not just a mapping from constant state to optimal action. Two validation test
cases have been implemented and studied with the PPO algorithm, a first steady-
state thermal problem whose optimal is open-loop, and a second time-dependent
problem whose optimal is closed-loop. Promising results have been obtained, with
the drag reduction achieved on the second test-case problem fully consistent with
that reported in the literature, but further investigations are needed to assess the
impact of using the agent in full exploration mode instead of exploitation, as this
may ultimately substantially hinder the energetic efficiency of the optimal control.
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8.1 Summary

The objective of this thesis was to implement a massively parallel numerical platform
bringing together the recent advances achieved at the CEMEF research center in the
fields of Computational Fluid Dynamics (CFD) and Deep Reinforcement Learning
(DRL). It should been considered as a first step towards the long-term ambition to
revisit the current design of control strategies for computationally-expensive flow
problems representative of industrial applications. The first objective was to further
shape the capabilities of Deep Reinforcement Learning (DRL) for closed-loop con-
trol, essentially by adding novel control cases of upscaled complexity compared to
the existing literature. The second objective was to gauge the ability of a neural net-
work to be used as an efficient black-box optimizer for open-loop control problems,
by having it interact only once per episode with its environment to learn the map-
ping from a constant input state to an optimal action (hence, single-step episodes,
and by extension, single-step DRL).

Below is a summary of the work undertaken during the thesis. The latter has
taken advantage of previous and current developments by the Computing & Flu-
ids group of CEMEF, regarding both the CFD solver (the in-house Cimlib-CFD
finite elements library) and the DRL algorithms (in-house implementation of classi-
cal algorithms: PPO, as well as in-house algorithms: PPO-1, PBO). Recent efforts
have allowed to apply the multi-step approach to closed-loop thermal control, which
indeed represents a novelty with respect to the existing literature (although a sim-
plified steady-state case has been considered for validation purposes). Nonetheless,
most of the work has ultimately been devoted to developing the single-step approach,
as it has led to promising early results and the scope of applications that can be
tackled is extremely wide, as evidenced by the many projects currently underway at
CEMEF using the methodology.

Chapter 2: we introduce the basic concepts of Deep Reinforcement Learning, the
advanced branch of machine learning that train neural networks in solving decision-
making problems. The most represented value-based and policy-based methods used
so far in fluid mechanics are briefly reviewed, after which the algorithms selected for
this thesis are presented in further details. This includes the celebrated Proximal
Policy Optimization (PPO) algorithm, used in chapter 7 for closed-loop control, its
tweaked, single-step version called PPO-1, used in chapters 4-5 for open-loop control,
and a refined single-step algorithm called Policy Based Optimization (PBO), used
in chapter 6 for shape optimization. The main difference between PPO-1 and PBO
is that PPO-1 proceeds from the standard PPO algorithm and therefore uses trust
regions while sampling actions isotropically from scalar covariance matrices, while
PBO uses a variant of the vanilla policy gradient method while sampling actions
anisotropically from full covariance matrices.
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Chapter 3 we describe the Cimlib-CFD finite elements library used to solve the
incompressible Navier–Stokes equations. The latter is based on the Variational
Multiscale (VMS) method, that introduces an a priori decomposition of the unknown
variables into coarse and fine components, that correspond to different scales of
resolution. Only the large scales of the flow field are fully solved at the discrete
levels, while the effect of the small scale is represented by consistently derived source
terms proportional to the residual of the large scale solution. The extension to
the Reynolds-Averaged Navier–Stokes approach with Spalart-Allmaras turbulence
model as closure is also provided for which the stabilization proceeds from that of the
Convection Diffusion Reaction (CDR) equation. Finally, we present the monolithic
Immersed Volume Method (IVM) used to solve a single set of equations on a unique
computational domain encompassing generic solid bodies immersed in the domain
where the fluid flows, and the anisotropic mesh adaptation procedure used to ensure
that all solid/fluid interfaces are accurately represented. This is of great importance
for DRL problems in which the mesh depends on the sampled action (for instance
if a neural network is tasked with optimizing the position of a solid body, as is done
here on several occasions), as it allows ensuring that all actions are assessed with
comparable accuracy.

Chapter 4: we assess the relevance of single-step DRL for cases where the policy
to be learnt by a neural network is independent of state. The PPO-1 algorithm
is applied to several open-loop control problems whose parameter spaces are large
enough to dismiss forward optimization by direct numerical simulation. It is found to
successfully reduces the drag of laminar and turbulent cylinder flows by identifying
the best positions for placement of a small rod, the achieved reduction ranging from
2% at Re = 40 using a circular main cylinder, up to 30% at Re=22000 using a
square main cylinder . The method also reduces the drag of the fluidic pinball, a
more complex arrangement of three rotating circular cylinders in a turbulent stream,
for which the optimal reduction is by almost 60%.

Chapter 5: the scope of the single-step approach is extended to the control of con-
jugate heat transfer systems governed by the coupled Navier–Stokes and heat equa-
tions. The approach is found capable of improving the homogeneity of temperature
across the surface of two and three-dimensional hot workpieces under impingement
cooling. Several control strategies are compared, for which the position of multiple
cold air injectors is optimized relative to a fixed workpiece position. The flexibility
of the numerical framework also allows optimizing the workpiece position relative
to a fixed, symmetrical actuation injector distribution. The optimal position turns
to be offset from the symmetry axis, which had not been anticipated, and stresses
that PPO-1 (and DRL in general) can effectively explore and discover new solutions
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from unforeseen parameter combinations.

Chapter 6: single-step DRL is applied to aerodynamic shape optimization prob-
lems. Several cases are documented, for which two- and three-dimensional shapes
are generated by varying a chord length and a symmetric thickness distribution (and
possibly extruding in the off-body direction) at a discrete set of control points con-
nected by cubic Bézier curves from local position and curvature information. The
PBO algorithm is used to find the shapes maximizing the lift-to-drag ratio under
constant incidence of 30◦ and constant chord length. By doing so, the performance
of the equivalent ellipse (that is, the ellipse of same cross-sectional area) is increased
by 13% in 2-D and 5% in 3-D. Moreover, the optimal is found to perform just as
well as a conventional airfoil, despite DRL starting from scratch and having no priori
knowledge of aerodynamic concepts.

Chapter 7: we ultimately return to multi-step DRL, i.e., the one approach that
has been used in all the literature available on this topic. The main difference is that
single-step DRL optimizes a transformation from a constant input state to a given
action, which allows using very small networks consisting (here, 2 up to 4 neurons per
hidden layer), while multi-step DRL optimizes a complex state-action relation more
relevant to closed-loop control problems, but one that requires much larger networks
(here, 512 neurons per hidden layers). Two problems are tackled with the PPO algo-
rithm: the first one is an original thermal control problem intended for comparison
with dedicated single-step results, for which we successfully improve the homogene-
ity and final temperature across the surface of two-dimensional hot workpiece under
slightly asymmetrical impingement cooling (although further investigation is needed
to truely assess the level performance by removing the exploration noise). The sec-
ond one is the classical drag reduction problem introduced by Rabault et al. [39],
for which we report a comparable reduction by 8% after a few hundreds episodes,
each of which assesses a series of 80 actions.

8.2 Perspectives

Many perspectives can be drawn from this work, as fluid dynamicists have just
begun to assess the relevance of DRL to assist the design of optimal flow control
strategies. The one advantage of DRL is the scope and applicability, as the only
prerequisite is the ability to compute accurate numerical solutions. Obviously, this
is up to the CFD solver, not the RL algorithm. Cimlib-CFD is currently success-
fully coupled with state-of-the-art multi-step and single-step DRL algorithms, and
computations can be run on various architectures ranging from small-scale, local
installations (180 cores) to large-scale, high performance computing clusters (2176



Chapter 8. Conclusion 209

cores). Therefore, we would not anticipate any additional numerical developments
(besides some adjustments to fully benefit from massively parallel architectures) be-
fore tackling more complex flow problems already in the scope of the CFD solver,
such as non-newtonian and/or multiphase flows, or fluid-structure interaction prob-
lems.

Despite these achievements, further development, characterization and fine-tuning
are needed to consolidate the acquired knowledge. The one challenge to overcome
in the future is improving the sampling efficiency, that is, reducing the number of
calls to the CFD solver necessary to achieve learning, as it represents the most
time-consuming part of the method (CFD environments routinely involve tens or
hundreds of millions of degrees of freedom and are thus very resource expensive).
Meanwhile, classical reinforcement learning methods are known to have low sample
efficiency, i.e. many attempts are required for an agent to learn the desired behavior.
This is likely a huge reason why complex problems involving time-dependent, three-
dimensional solutions have received little to no interest so far. Particular attention
should thus be paid to reducing the amount of calls to the CFD solver necessary to
achieve learning, as it represents the most time-consuming part of the method. A
detailed comparison between off-policy and on-policy algorithms would be helpful
in this regards, as on-policy methods (including the PPO algorithm used in this
work) are supposed to have lower sample efficiency in the context of CPU-expensive
environments, which is not supported by the available results.

Transfer learning, defined as the ability to use pre-trained deep learning models,
is another emerging concept that may lead to substantial performance improvement.
Promising results in this regards have been reported in the literature, for instance
it has been shown possible in [49] to achieve robust drag reduction by training
simultaneously a single agent at four different Reynolds numbers distributed between
100 and 400. After training, the agent efficiently reduces drag regardless of the
Reynolds numbers in the range from 60 to 400, although the performance for a
given Reynolds number is a tad below that of an agent specifically trained at this
value of Re. Nonetheless, such an approach remains limited to cases with similar
dynamics, as the use the pre-trained agent failed to reduce drag at Re = 1000 due
to too different flow patterns.
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networks trained through deep reinforcement learning discover control strate-
gies for active flow control, Journal of fluid mechanics 865 (2019) 281–302. 10,
11, 24, 57, 60, 102, 147, 184, 194, 195, 196, 198, 200, 202, 208

[40] J. Rabault, A. Kuhnle, Accelerating deep reinforcement learning strategies of
flow control through a multi-environment approach, Phys. Fluids 31 (2019)
094105. 10, 194

[41] R. Paris, R. Beneddine, J. Dandois, Robust flow control and optimal sensor
placement using deep reinforcement learning, arXiv preprint arXiv:2006.11005.
10, 57, 102, 198, 202

[42] M. Tokarev, E. Palkin, R. Mullyadzhanov, Deep reinforcement learning control
of cylinder flow using rotary oscillations at low reynolds number, Energies
13 (22) (2020) 5920. 10, 17, 184

[43] H. Xu, W. Zhang, J. Deng, J. Rabault, Active flow control with rotating cylin-
ders by an artificial neural network trained by deep reinforcement learning, J.
Hydrodynam. 32 (2020) 254–258. 10, 57, 102



Chapter 8. Conclusion 215

[44] M. A. Elhawary, Deep reinforcement learning for active flow control around
a circular cylinder using unsteady-mode plasma actuators, arXiv preprint
arXiv:2012.10165. 10

[45] F. Ren, J. Rabault, H. Tang, Applying deep reinforcement learning to active
flow control in weakly turbulent conditions, Physics of Fluids 33 (3) (2021)
037121. 11, 147

[46] R. Li, Y. Zhang, H. Chen, Learning the aerodynamic design of supercritical
airfoils through deep reinforcement learning, AIAA Journal 59 (10) (2021)
3988–4001. 11, 147

[47] S. Qin, S. Wang, L. Wang, C. Wang, G. Sun, Y. Zhong, Multi-objective opti-
mization of cascade blade profile based on reinforcement learning, Appl. Sci.
11 (2021) 106. 11, 147

[48] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, et al., Mastering the game of go
without human knowledge, nature 550 (7676) (2017) 354–359. 17, 24, 57, 102,
147

[49] H. Tang, J. Rabault, A. Kuhnle, Y. Wang, T. Wang, Robust active flow
control over a range of reynolds numbers using an artificial neural network
trained through deep reinforcement learning, Physics of Fluids 32 (5) (2020)
053605. 17, 57, 102, 147, 184, 194, 209

[50] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction, MIT
press, 2018. 17, 18, 110, 111

[51] M. H. Kalos, P. A. Whitlock, Monte carlo methods, John Wiley & Sons, 2009.
21

[52] D. Precup, Eligibility traces for off-policy policy evaluation, Computer Science
Department Faculty Publication Series (2000) 80. 22

[53] R. S. Sutton, Learning to predict by the methods of temporal differences,
Machine learning 3 (1) (1988) 9–44. 22

[54] C. J. Watkins, P. Dayan, Q-learning, Machine learning 8 (3-4) (1992) 279–292.
23

[55] R. J. Williams, Simple statistical gradient-following algorithms for connection-
ist reinforcement learning, Machine learning 8 (3) (1992) 229–256. 24



216 8.2. Perspectives
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[243] M. Schäfer, S. Turek, F. Durst, E. Krause, R. Rannacher, Benchmark com-
putations of laminar flow around a cylinder, in: Flow simulation with high-
performance computers II, Springer, 1996, pp. 547–566. 194, 195

[244] B. Protas, J. E. Wesfreid, Drag force in the open-loop control of the cylinder
wake in the laminar regime, Physics of Fluids 14 (2) (2002) 810–826. 202



232 8.2. Perspectives

[245] B. Protas, A. Styczek, Optimal rotary control of the cylinder wake in the
laminar regime, Physics of Fluids 14 (7) (2002) 2073–2087. 202



Chapter 8. Conclusion 233







MOTS CLÉS

Apprentissage par Renforcement Profond; Réseaux de neurones; Mécanique des fluides numérique;
Éléments finis stabilisés VMS; Contrôle d’écoulements; Réduction de traı̂née; Contrôle thermique.

RÉSUMÉ

Cette thèse évalue la pertinence des techniques d’apprentissage par renforcement profond (DRL) pour le contrôle optimal
en mécaniques des fluides. L’apprentissage par renforcement (RL) est le processus par lequel un agent apprend par
essai et erreur les actions à prendre de façon à optimiser une récompense quantitative au cours du temps. Dans un
contexte d’apprentissage par renforcement profond (deep RL ou DRL), l’agent est un réseau de neurones profond imitant
les circuits formés par les neurones du cerveau humain. Le couplage entre les algorithmes de DRL et les codes de
mécanique des fluides numérique (CFD) à la pointe de l’état de l’art, ainsi que leur implémentation dans un contexte
de calcul haute performance, constituent les nouveautés et l’objectif principal de la thèse. L’environnement CFD utilisé
pour calculer la récompense fournie au DRL est basé sur la méthode des éléments finis stabilisés multi-échelles de type
Variational Multiscale (VMS), dans laquelle la solution est décomposée a priori en une grande échelle résolue et une petite
échelle modélisée au travers de termes sources proportionnels aux résidus des équations du problème grande échelle.
En ce qui concerne les algorithmes DRL, deux approches différentes sont considérées. La première, dans laquelle l’agent
interagit avec son environnement une fois par épisode dans le but d’apprendre le mapping d’un état d’entrée constant
à une action optimale (single-step DRL), vise les problèmes de contrôle en boucle ouverte, dans lesquels une quantité
est optimisée via des paramètres d’actuation pré-définis (par exemple, une vitesse d’entrée constante). La seconde,
dans laquelle l’agent interagit plusieurs fois par épisode afin d’apprendre une relation état-action plus complexe (multi-
step DRL), est plus pertinente pour les problèmes de contrôle en boucle fermée, où des mesures de l’écoulement sont
utilisées afin d’ajuster en permanence les paramètres d’actuation. Plusieurs cas-tests en deux et trois dimensions (en
régime d’écoulement laminaire et turbulent) sont présentés afin d’évaluer la pertinence, la précision et les performances
de ces méthodes, en particulier pour les problèmes de réduction de traı̂née et de contrôle thermique. Les résultats
obtenus soulignent le potentiel élevé de l’approche DRL-CFD devraient permettre d’accélérer le développement du DRL
et son application à des problématiques concrètes d’intérêt industriel.

ABSTRACT

This thesis gauges the relevance of deep reinforcement learning (DRL) techniques for the optimal control of fluid mechan-
ical systems. Reinforcement learning (RL) is the process by which an agent learns by trial and error interactions with its
environment the succession of actions maximizing its cumulative reward over time. In a deep reinforcement learning con-
text (deep RL or DRL), the agent is a deep neural network based on the neural circuits formed by neurons in the human
brain. The coupling between state-of-the-art DRL algorithms and computational fluid dynamics (CFD) solvers and their
implementation in a high performance computing context make for the novelties and main objective of the thesis. The CFD
resolution framework used to compute the reward provided to the DRL agent relies on the Variational Multiscale (VMS)
stabilized finite element method. The latter introduces an a priori decomposition of the numerical solution into large and
small-scale components, the general picture being that only the large scales and resolved at the discrete level, while the
effect of the small scales is modeled after consistently derived source terms proportional to the residual of the large scale
solution. Regarding the DRL algorithms, two different frameworks are considered. The first one has the agent interact
only once per episode with its environment to learn the mapping from a constant input state to an optimal action (hence,
single-step episodes, and by extension, single-step DRL), and is thus relevant to open-loop control, where a desired
output is optimized under pre-determined actuation parameters (for instance, a constant inlet velocity). The second one
has the agent interact multiple time per episode to learn a more complex state-action relation (hence, multi-step DRL) and
is more relevant to closed-loop control, where the output is optimized by continuously adjusting the design parameters
to flow measurements. Several test-cases in two and three dimensions (both in laminar and turbulent flow regimes) are
successfully tackled and presented to assess the relevance, accuracy and performance of the proposed methodologies,
with particular emphasis put on drag reduction and thermal control applications. The obtained results emphasize the high
potential of the DRL-CFD framework, and are expected to contribute to further progress towards improved and faster
design and control of industrial fluid mechanical systems.

KEYWORDS

Deep Reinforcement Learning; Neural networks; Computational fluid dynamics; VMS stabilized finite ele-
ments; Flow control; Drag reduction; Thermal control.
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