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M. Francis PRAUD, MCF, Arts et Métiers Institute of Technology-Metz invité
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Résumé

Les thermoplastiques et les composites thermoplastiques renforcés de verre ont de nombreuses ap-

plications grâce à leurs solides propriétés physiques et à leur facilité de production. Aujourd’hui, ils sont

utilisés dans les équipements médicaux, les composants mécaniques des automobiles, les emballages

et de nombreuses autres industries. Compte tenu de leur large applicabilité dans plusieurs domaines,

ils sont soumis à une variété de conditions environnementales telles que l’humidité et la température,

affectant le comportement des thermoplastiques et principalement les mécanismes inélastiques non

linéaires, qui seront traités dans cette étude.

Pour prédire les réponses mécaniques, on considère la viscoélasticité, la viscoplasticité et l’endo-

mmagement ductile, qui ont déjà été intégrées dans un modèle phénoménologique basé sur le critère

de plasticité de von Mises. Cependant, en vue de la sensibilité des thermoplastiques à la pression

hydrostatique, en plus de présenter une asymétrie tension-compression, le critère de plasticité de von

Mises n’est pas satisfait dans aucun de ces deux cas. Cette étude présente un critère de plasticité

I1-J2 qui capture à la fois l’effet de la pression hydrostatique et le comportement asymétrique, sur

la base duquel une étude paramétrique est réalisée permettant d’étudier le comportement du modèle

sous chargement cyclique et multiaxial.

L’absorption d’eau influence le comportement du matériau en affectant la température de transition

vitreuse, ce qui change les réponses mécaniques de l’état vitreux à caoutchoutique. À cette fin, une

campagne expérimentale est menée pour calibrer les modèles basés sur les critères de plasticité de von

Mises et I1-J2, en tenant compte de différents niveaux d’humidité relative (HR). La base de données

expérimentale est ensuite utilisée pour étudier l’effet de l’absorption d’eau et son influence sur les

paramètres du modèle.

Le phénomène d’adoucissement est aussi observé dans les thermoplastiques quand les niveaux
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RESUME

d’endommagement sont élevés, ce qui mène à un problème mal posé dans le modèle local et, par

conséquent, à des instabilités et à la non-objectivité des modèles éléments finis. Pour résoudre ce

problème, une approche non locale est adoptée pour introduire l’échelle de longueur interne non locale

dans le modèle de continuum local. La variable non locale est alors traitée sous deux possibilités ;

dans le premier cas, elle est représentée par l’endommagement non local, dans le deuxième cas, on

considère la variable d’état d’écrouissage non local. Une étude paramétrique est mise en œuvre pour

évaluer l’efficacité des deux options dans le traitement des réponses non-objectives dans un matériau

fortement endommagé.

Une autre tâche de cette thèse est d’adopter un modèle non local pour les composites à matrice

polymère. A cette fin, la séparation d’échelle et l’application du champ non local aux échelles macro et

micro sont étudiées en étendant le modèle non local dans un cadre multi-échelles, sur lequel un cadre

d’homogénéisation Mori-Tanaka/TFA approprié est défini. Des études paramétriques révèlent que

lorsque l’échelle de longueur interne non locale est déterminée à l’échelle microscopique, les hypothèses

théoriques de base de l’homogénéisation ne sont pas satisfaites, et la localisation non-objective des

variables d’état à l’échelle macroscopique ne peut pas être prise en compte.

La conclusion principale de la présente étude est que l’application de la variable d’état d’écrouissage

non locale est plus pertinent et efficace pour traiter la localisation des variables d’état internes, et que

le cadre multi-échelles non local présenté conduit à des réponses plus stables par rapport au modèle

local lorsque le matériau est fortement endommagé.

Mots-clés : thermoplastiques renforcés de verre, approche non locale, humidité relative, analyse

multi-échelles, asymétrie tension-compression.
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Abstract

Thermoplastics and glass reinforced thermoplastic composites have a wide range of applications

thanks to their strong physical properties and ease of production. Today, they are used in medical

equipment, mechanical components in automobiles, packaging, and many other industries. Considering

their broad applicability, they are employed in a variety of environmental and loading conditions.

Thermoplastics often exhibit several nonlinear inelastic mechanisms, such as rate dependency, hygro-

thermal sensitivity, and ductile damage, to name but few. With this in mind, modeling and predicting

this complex behavior requires addressing certain challenges, some of which are presented in this

research as follows.

To predict the mechanical responses of thermoplastics, viscoelasticity, viscoplasticity, and ductile

damage are considered, which has already been developed as a phenomenological model based on the

von Mises yield function. However, thermoplastics are also pressure-sensitive materials that exhibit

tension-compression asymmetry in yield behavior, and the von Mises yield function satisfies none of

them. This study presents an I1-J2 yield function that captures both hydrostatic pressure effect and

asymmetric yield behavior, based on which a parametric study is performed and the behavior of the

model under cyclic and multi-axial loading is studied.

The water uptake influences the behavior of the material by affecting the glass transition temper-

ature, which changes the mechanical responses from rubbery to glassy. To this end, an experimental

campaign is designed to calibrate the models based on von Mises and I1-J2 yield functions, taking

into account different Relative Humidity (RH) levels. The data extracted from the mechanical tests

are used to first study experimentally the effect of water uptake and then to observe its influence on

the model parameters.

Thermoplastics exhibit softening behavior at high levels of damage leading to an ill-posed problem
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ABSTRACT

in the local continuum framework and consequent instabilities and non-objectivity in the finite element

models. To address this problem, a gradient enhanced nonlocal approach is adopted to introduce the

nonlocal length scale into the local continuum model. Two different options are introduced as nonlocal

variable: first nonlocal damage and then nonlocal hardening state variable. A parametric study is

implemented to evaluate the effectiveness of both options in treating non-objective and non-physical

responses in a severely damaged material.

Another task of this thesis is to adopt a nonlocal-type model for polymer-based composites. To

this end, the scale separation and application of the nonlocal field at macro and micro scales are in-

vestigated by extending the nonlocal model into a multi-scale framework, upon which an appropriate

Mori-Tanaka/TFA homogenization framework is defined. Parametric studies reveal that when the

nonlocal length scale is set at the microscale, the basic theoretical assumptions of homogenization are

not satisfied, and the non-objective localization of state variables at the macroscale is not addressed.

As a key conclusion from the present study, the application of the nonlocal hardening state variable

shows good efficiency in addressing the localization of internal state variables, specially plasticity and

damage, and the presented nonlocal multi-scale framework leads to more stable responses compared

to the conventional model when the material is heavily damaged.

Keywords: glass reinforced thermoplastics, nonlocal approach, relative humidity, multi-scale anal-

ysis, tension-compression asymmetry.
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1.1. PREFACE

1.1 Preface

Polymers can be reinforced using a variety of inclusions to form polymer composites with superior

thermomechanical and chemical performances. In this respect, polyamide-based composites are among

the most widely used materials in a variety of engineering industries such as aerospace, automotive,

and energy because of their durability, multi-functionality, and strength. Polyamides are considered

as semicrystalline polymers with an ordered molecular structure. One important characteristic of

polyamides is that they are quite sensitive to environmental conditions. They have a high moisture

absorption rate and their behavior can change from glassy or brittle to rubbery due to the change

in glass transition temperature. Consequently, several inelastic deformation mechanisms can occur

and interact depending on the environmental and loading conditions, based on which the numerical

model is developed to predict the mechanical responses. To this end, a nonlinear rheology must

be designed taking into account the dominant mechanisms, and then the phenomenological model

and the corresponding constitutive laws are derived. However, at high levels of damage, polymers

show material softening, resulting ill-posed problem and subsequently non-physical and non-unique

responses in the computational models. To address this, it is required to apply a nonlocal approach

and define a proper multi-scale homogenization framework to model polymer composites behaviors. In

the following sections, an overview about the mechanical responses in polymers, the available models

and approaches, and the proposed methodology in this study is presented briefly.

1.2 Nonlinear rheology in polyamides

When it comes to active mechanisms in polyamides, environmental effects, such as temperature

and humidity, are of key importance. Polyamides tend to absorb water, which strongly affects their

mechanical response through interaction with hydrogen bonds in their molecular structure changing

thereby the material behavior from glassy to rubbery state [3]. The degree or intensity of the active

mechanisms in polyamides always depends on the temperature and their water content. Thus, de-

pending on the environmental conditions, different mechanical responses are expected, on the basis of

which many physical and phenomenological models have been proposed [4–13].

There are two main theories for modeling deformation: small and large deformation theories. In

the small or infinitesimal deformation theory, the material displacement is assumed to be much smaller
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than the corresponding body, and the associated geometry remains unchanged. Under this assumption,

the corresponding equations of continuum mechanics become much simpler. On the contrary, in the

theory of large deformations or finite deformation theory, the deformation and rotation are large enough

to violate the small deformation assumptions, which requires more complicated formulations.In this

study, the framework is developed for polyamide materials, but the goal is to adopt the model in

multi-scale analyses. For fiber-reinforced composites, the deformation levels are usually small, thus it

is reasonable to develop the present nonlocal framework using small deformations/rotations hypothesis.

Under the supposed yield strength, polyamides at room temperature exhibit viscoelastic effects,

which can be observed using creep-recovery tests [14, 15]. There are a variety of rheological models

to describe the viscoelastic mechanisms [16–18]. Viscoelastic models are often obtained through two

major approaches: integral and differential forms representations [19,20]. The integral representation

requires the integration of the entire time history to describe the stress-strain relation. Green, Rivlin,

and Spencer [21], Pipkin and Rogers [22], etc., are some examples of these models using integral

formulations. On the other hand, differential representation proposes linear viscoelastic models, such

as Maxwell, Kelvin-Voigt, Burgers, and their extensions, which are modeled using rheological elements

as linear springs and dashpots. This approach allows simulating the viscoelastic mechanisms using

state variables and their corresponding conjugate variables.

Exceeding the polymers yield limit and changes in the polymer macromolecular structure result

in rate-dependent irreversible viscoplastic mechanisms leading to ductile damage. Plastic deforma-

tion and eventually necking are examples of these irreversible mechanisms that can be observed and

emphasized using creep-recovery tests [14, 15]. It is accompanied by creep and rate dependent me-

chanical effects, upon which the irreversible nonlinear mechanisms, occurring after the yield point,

can be modeled by unified or non-unified viscoplasticity theories [23, 24]. In the unified theory, the

plasticity and viscosity are considered as a single rate dependent inelastic variable in the constitutive

model [25, 26]. However, the non-unified theory proposes two separate variables for plasticity and

creep which are rate independent and rate dependent, respectively [27,28]. The non-unified theory is

efficient when the creep is dominant, which normally occurs at high temperatures [29]. In the contrary,

difficulties in finite element implementation are reported in the room temperature for material models

using non-unified theories [30].

In viscoplasticity framework, it is necessary to identify the elastic region by defining an appropriate
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yield surface considering the material type. Tresca, Mohr-Coulomb, von Mises, Drucker-Prager, and

their extensions are the most frequently used yield criteria for polymers [31–34]. The yield surfaces

are defined in terms of principal stresses or stress tensor and its deviatoric part invariants. The

first invariant of the stress tensor, I1, introduces the hydrostatic pressure effect, and the second and

third invariants of the stress deviatoric part (J2 and J3) correspond to pure shear and rotation,

respectively. Many studies have used von Mises criterion to investigate the inelastic behavior of

polymers [1, 14, 35, 36]. However, the classical von Mises yield surface is not accurate enough to

describe the material behavior under multi-axial loading. Indeed, in polymers, the yield behavior

is not only dependent on the stress deviatoric part but also on the hydrostatic pressure effect, and

the yield stress is slightly higher in compression [37–41]. From this perspective, although Drucker-

Prager has more parameters to be experimentally identified, it is more accurate for pressure-dependent

materials such as polymers and captures the tension-compression asymmetry and hydrostatic pressure

effect. In this connection, some research works have tried to extend Drucker-Prager model or combine

it with other ones to account for more mechanisms [42–44].

As mentioned above, in polymers, plastic deformation depends on environmental conditions lead-

ing to ductile damage. Modeling of damage can be conducted under different assumptions. One

may consider damage resulting from coalescing and widening of voids based on the micromechanics

framework, such as Gurson model [45], and the other one considers it based on continuum damage

mechanics (CDM) and derives damage based on Thermodynamics of Irreversible Processes (TIP) [46].

There is a great deal of studies in the open literature, in which the classical Gurson model is modified

to a semi-phenomenological model accounting for ductile damage [47–49]. In CDM models, damage is

defined as an internal state variable, and the model parameters can be simply extracted by macroscopic

mechanical tests.

1.3 Nonlocal modeling

At high levels of damage, polymers exhibit material softening, resulting in ill-posed problems in

typical continuum frameworks and, consequently, non-unique and non-physical responses in computa-

tional models. This results in the localization of internal variables in the narrowest possible area by

any mesh refinement in the thermodynamical-based models [50,51]. To address this issue, ”localization

limiters”are proposed in the literature, among which nonlocal approaches are the most popular [52,53].
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Nonlocal models are introduced in the local continuum framework in different forms. The integral type

model is the basic form of nonlocal approaches, in which the local variable is replaced by the weighted

average over the corresponding neighborhood determined by the internal length scale [54–58]. The

Taylor expansion of the nonlocal integral form equation leads to the explicit gradient-enhanced model,

from which the implicit gradient form can be derived [58–62]. There are also some other nonlocal

approaches applied to address the computational model instability in the open literature, such as

micromorphic [63], phase field [64–68], and peridynamics [69, 70]. Nonlocal micromorphic models are

also employed to implement the nonlocal analysis that is defined based on generalized continuum the-

ories and thermodynamically based micromorphic constitutive equations. [61, 71, 72]. In phase-field

approach, the discontinuous sharp crack is approximated as a smeared zone, which is originated from

the thermodynamic framework presented by Griffith and Taylor [73]. The underlying mathematical

logic of the theory relies on the energy balance between the mass energy (away from the crack) and the

energy dissipated from the crack [66]. In peridynamics approach, the internal body forces are consid-

ered as interactions within a network of springs. The behavior of the springs is described through their

length and direction. The original model is called link-based peridynamics. Some disadvantages and

limitations, such as constraining Poisson’s ratio, have led to develop another type of this theory called

state-based, on which, the forces are no longer described independently and depend on the collective

deformation of all the bonds [74].

In thermodynamically based constitutive models, implementation of the nonlocal approach requires

introducing a nonlocal field derived from the internal state variables. The corresponding nonlocal

variable is defined in terms of the material type and its corresponding mechanical response (i.e. from

rubber-like to glassy state). This directly influences the non-physical responses or spurious localization

of internal variables. The nonlocal variable for glassy polymers is often derived from the damage

[55, 75]. However, plasticity-related variable is used to introduce the nonlocal field when materials

exhibit softer mechanical responses accompanied by ductile damage. In those cases, localization of

plasticity is also expected as well as the damage non-unique responses [55,76,77].

1.4 Multi-scale analysis

All of the previous sections discuss the nonlinear inelastic mechanical responses of polymers and the

thermodynamically based models available to predict their behavior. However, this part of the present
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work aims to address the modeling limitations in the glass-reinforced polymers when undergoing high

levels of plasticity-induced damage. Generally speaking, composites display material heterogeneity and

variation in their internal structure at the microscale due to the presence of inclusions in the matrix.

Depending on the inclusions geometries and their configurations in the micro structure, the overall

material response is affected in the macroscale. To model the overall behavior of composites, the het-

erogeneous medium must be replaced by its equivalent homogeneous medium using a homogenization

approach. To this end, the Representative Volume Element (RVE) and its corresponding characteristic

size are introduced to capture the local material behavior in the microscale and estimate the overall re-

sponse using homogenization mathematical framework. In this respect, there have been many studies

conducted as innovative works [45,78–82]. Finite element based (full-field) approaches and mean-field

methods are applied to compute the effective responses of the RVE. However, mean-field methods are

less computationally expensive and more popular in multi-scale analyses notably for composites with

random or quasi-random microstructures. Eshelby solution based micromechanical methods, such as

Mori-Tanaka and self consistent, are some of the most popular mean-field approaches [2].

Generally speaking, each RVE consists of different sub-phases, some of which may exhibit locally

nonlinear behaviors. The multi-scale framework requires linking the nonlinear behaviors of the sub-

phases to the macroscale constitutive equations. To this end, three main categories of methods are

proposed in the literature: analytical, integrated, and sequential approaches. In analytical approaches,

the nonlinear behavior of sub-phases is modeled by linearizing the Eshelby problem for inclusions [83–

86]. The integrated approaches try to model the microstructure as close as possible to its real properties

and configuration without constitutive equations at the macroscale, as multi-level finite element (FEn)

and FFT-based models [87–89]. In the sequential approach, the macroscale constitutive equations rely

on a multi-scale framework derived from the unit cell decomposition into sub-phases accounting for

inelastic and nonlinear behaviors. In this respect, Dvorak presented Transformation Field Analysis

(TFA), based on which the RVE is decomposed to sub-phases, and an inelastic part of deformation is

introduced to the multi-scale model [90]. Using the TFA framework, Kruch and Chaboche presented a

multi-scale elasto-viscoplastic model with damage to analyze the nonlinear behavior of heterogeneous

materials [91]. Moreover, some more advanced models are recently presented for composites accounting

for viscoelastic viscoplastic mechanisms with damage using Mori-Tanaka/TFA approach [36,92,93].

Similar to pure polyamides, reinforced polyamide composites also undergo material softening lead-
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ing to a consequent non-physical responses in the computational models. To address this issue, as

mentioned earlier, a nonlocal approach must be implemented through a proper homogenization frame-

work. Developing the nonlocal model requires to introduce a new degree of freedom in the problem’s

formulation. An additional related equation is then required into the multi-scale model. It depends on

the nonlocal length scale and can be defined at macro or micro scale. In this regard, Bharali et al. [94]

developed a phase field model in a multi-scale framework, in which the corresponding nonlocal variable

appears only in the RVE size. In another study, Fantoni et al. [95] implemented nonlocal phase field

approach at macroscale and presented a nonlocal homogenization framework to study composites. The

challenge of the nonlocal implementation in multi-scale models and the equations solved in different

scales were also discussed in [96,97].

1.5 Aims and objectives

This study aims at developing a nonlocal multi-scale model to describe the mechanical response of

glass-reinforced polyamides by considering nonlinear inelastic mechanisms with plasticity-induced duc-

tile damage and accounting for the tension-compression asymmetry. To this end, a pressure-sensitive

I1-J2 yield function is introduced to consider the hydrostatic pressure effect and the asymmetric

yielding behavior of polyamides. However, the model parameters vary in different RH and require

calibration with different water contents. To address this, an experimental campaign is designed and

carried out using macroscopic mechanical tests. They allowed to identify the parameters models based

on von Mises and I1-J2 yield functions. Since material softening in polymers at high damage levels

leads to non-unique and non-physical responses and spurious localization of the internal state vari-

ables, the nonlocal gradient enhanced approach is adopted to control state variables localization. In

this respect, two different nonlocal variables derived from the damage and the hardening state variable

are considered and the corresponding model responses are evaluated to find the most effective option.

The nonlocal Viscoelastic Viscoplastic framework accounting for ductile damage (VEVPD) is then

extended to a multi-scale model, and an appropriate homogenization framework is adopted to study

glass-reinforced polyamide composites at a high damage level. The novelties of the present research

can be summarized as follows:

- The model parameters are identified considering nonlinear inelastic mechanisms and ductile
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damage. The water uptake effect on each parameter for two different yield functions (i.e. von

Mises and I1-J2) is studied.

- A parametric study is performed to investigate the capability of the gradient enhanced model

in yielding mesh objective and physically meaningful solutions within the highly damaged zones

under softening, which considers all inelastic mechanisms (i.e. viscoelasticity at different time

scales, VE, viscoplasticity, VP, ductile damage, D, etc.).

- The nonlocal hardening state variable is introduced to address the damage localization in a

VEVPD model, where its efficiency is justified compared to the nonlocal damage.

- A multi-scale nonlocal framework is developed to capture mechanisms such as viscoelasticity, vis-

coplasticity and ductile damage for the matrix phase and provides more stable results compared

to the local framework.

Considering the contributions mentioned above, the chapters of the thesis and their corresponding

objectives are elaborated upon hereunder.

In the second chapter, the initial limitations of the VEVPD model, including the effect of hydro-

static pressure and the tensile-compressive yield strength asymmetry, are discussed. The conventional

von Mises yield function, based on the second invariant of the deviatoric stress tensor, J2, is extended

to the I1-J2 model. In addition, the asymmetry between tensile and compressive elastic limits is

accounted for by an asymmetry ratio, m, in the yield function. Parametric studies show how the

model behaves under different types of loading. Self-heating caused by dissipative mechanisms is also

discussed.

In the third chapter, the water uptake effect on polyamide 66 is studied in an experimental-

numerical framework. First, an experimental campaign is designed using the dog bone samples, which

are conditioned at different RH, namely RH 0%, RH 25%, RH 50%, RH 65%, and RH 80%. Then, the

samples are subjected to monotonic, creep, and cyclic loading at different loading rates to calibrate and

validate the conventional VEVPD model with von Mises yield function. The obtained experimental

observation from dog bone samples along with tensile-torsion tests on diabolo samples are used to

calibrate the I1-J2 model. The parameters identified from von Mises and I1-J2 are studied where the

effect of RH is evaluated.
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In the fourth chapter, an extended thermodynamical framework based on the gradient enhanced

nonlocal model is adopted to develop nonlocal constitutive laws. To this end, the thermodynamic

potential is enhanced with nonlocal terms which subsequently appear in constitutive laws depending

on the nonlocal variable choice. In this study, nonlocal hardening state variable and nonlocal damage,

as nonlocal variable options, are considered in two different cases, and parametric investigation is

performed and their efficiency is assessed.

In the fifth chapter, the nonlocal model presented in chapter 4, is extended to a multi-scale frame-

work. To this end, the relation between the nonlocal length scale and the corresponding RVE size

is studied, and two different cases are considered: first, when the length scale is less than or compa-

rable with the RVE size; second, when the nonlocal length scale is much larger than the RVE size.

The active mechanisms and the equations used in the macro and micro scales are explored through

asymptotic expansion. Based on the above studies, a proper homogenization framework is presented,

and Mori-Tanaka/TFA is adopted to homogenize the presented nonlocal multi-scale model. Finally,

the solutions are validated with a full structure multi-layered composite and the model is evaluated

in different numerical examples.
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Viscoelastic-viscoplastic-damageable
response of thermoplastic polymers
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2.1. INTRODUCTION

2.1 Introduction

As discussed in the chapter 1, to study the mechanical responses of glass-reinforced thermoplastics,

it is first necessary to properly model the nonlinear inelastic behavior of the matrix phase. Many

reports in the literature have investigated the active mechanisms through macroscopic mechanical

tests [14, 15, 51, 98]. In this respect, viscoelastic viscoplastic models accounting for ductile damage

have been developed and presented in the literature [14,99–103].

Thermoplastics are pressure-sensitive materials exhibiting asymmetric yield behavior, in which the

yield strength is slightly higher under compression. However, conventional phenomenological models

for thermoplastics are usually based on von Mises yield function [14,103,104], in which the polymers are

assumed pressure-insensitive materials with symmetric behavior. In this regard, Ghorbel has developed

a general yield function accounting for tension-compression asymmetry and hydrostatic pressure effect

for a viscoplastic material [44]. However, the latter model does not capture viscoelasticity and damage.

In this chapter, a I1-J2 yield criterion, inspired from [44], is integrated in the VEVPD model. The

thermodynamic framework, developed in [14], is modified based on the new yield function. Then, the

corresponding constitutive laws are derived and implemented on the computational model. Using this,

a User-defined Material (UMAT) subroutine is developed to implement the model on the FE software

(ABAQUS). Using a homemade 0D solver, the model is subjected to different loading conditions, and a

basic parametric study is conducted. Then, the self-heating caused by the dissipative mechanisms and

the effect of the asymmetry parameter are studied using 3D numerical examples. The parametric study

indicates the importance of the asymmetry parameter on the model mechanical responses, particularly

under compression and multi-axial loading. Furthermore, it is found that the probable temperature

change due to self-heating under quasi-static loading conditions is quite small for a single loading cycle.

This implies that for considerable coupled thermo-mechanical effects, the number of cycles must be

high enough to affect the mechanical responses. Since no fatigue or material behavior studies under

high loading rates are planned in this study, this observation allows thermo-mechanical coupling to be

ignored for the rest of this study with good accuracy.

This chapter is structured as follows: in section 2.2, the nonlinear inelastic mechanisms of thermo-

plastics and their pressure-sensitive mechanical response are first discussed, and an appropriate I1-J2

yield function is presented, based on which the thermodynamical framework is developed and the con-
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stitutive laws are derived; in section 2.3, the model is implemented numerically using ”convex cutting

plane” return mapping algorithm, and the corresponding tangent operators are derived; in section

2.4, a parametric study is presented using a homemade 0D solver and the commercial FE program

(ABAQUS), and the effect of the asymmetry parameter and the influence of the thermo-mechanical

coupling on the mechanical responses are studied.

2.2 Theoretical background and thermodynamical framework

2.2.1 Nonlinear inelastic mechanisms and constitutive model

Many constitutive laws have been proposed to capture the nonlinear behavior of thermoplastics

using macromolecular network-based [5,11] and phenomenological approaches [10,14,20,105]. Most of

these models have been formulated within the framework of thermodynamics of irreversible processes

[106, 107]. For the polyamide 66, cyclic creep-recovery tests have been conducted in [51, 98] and have

shown that capturing the material behavior requires to assume decomposition of the total strain into

elastic, viscoelastic and viscoplastic components [108]. In the present study, a viscoelastic viscoplastic

rheological model accounting for ductile damage (VEVPD) is adopted to describe the dissipative

mechanisms involved during the deformation process of the material.

A Kelvin-Voight model is capable of capturing the viscous effects observed during the deformation

process of thermoplastics. Defining more than one Kelvin-Voigt branch allows to describe viscoelas-

ticity at several characteristic times [14] (see Figure 2.1-a,b). Each viscoelastic branch is modeled as

a combination of a linear spring and a dashpot.

Moreover, viscoplastic mechanisms can be captured based on either unified or non-unified viscoplas-

ticity theories [23]. Hereafter, the unified theory is adopted with an isotropic hardening function, R,

defined such as:

R(r) = Hm rHp , (2.1)

where r is the hardening state variable, and Hm and Hp are the model parameters. The viscoplastic

mechanism is modeled by a parallel assembly of a nonlinear spring and a nonlinear dashpot in the

rheological model (see Figure 2.1-c). In this study, reduction of the material stiffness is expressed

through ductile damage. Here, damage is defined as a scalar internal state variable, D, and introduced
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to the model through the effective stress concept, σ̃σ̃σ̃ [109–111]:

σ̃σ̃σ̃ = σσσ

1 −D
. (2.2)

Figure 2.1: Schematics of the VEVPD rheological model.

Implementing the present rheological model requires defining a proper yield surface, based on

which the plastic flow and subsequently the viscoplastic mechanism is expressed. In the following

sections, the pressure sensitivity and asymmetry in tension-compression yield strength is discussed,

and a proper yield function is introduced.

2.2.2 Hydrostatic pressure effect and tension-compression asymmetry

The hydrostatic pressure effect has an undeniable role in describing the mechanical behavior of

thermoplastics [38, 40, 41, 112, 113]. Thus, their behavior can be described using pressure-dependent

models. Since the yield stress is expected to be higher in compression compared to the tension, the

typical von Mises yield function based on J2 (stress invariant) is not accurate enough to capture the

plastic flow in thermoplastics. In this respect, there are some criteria, such as the Mohr-Coloumb and

Drucker-Prager models [42–44]. However, it is often preferred using Drucker-Prager and its extensions
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to describe the plastic surface in thermoplastics [37].

2.2.3 I1-J2 yield function

Considering an isotropic hardening function, an I1-J2 yield surface coupled with damage inspired

from [44], is considered as:

f = f∗ −R0 −R, with R = Hmr
Hp , (2.3)

and:

f∗ = C2

√︂
J̃2 + C1I1̃, C1 = m− 1

m(m+ 1) , C2 =
√

3
m
, m = σc

y/σ
t
y, (2.4)

where m is the asymmetry parameter introduced to the model as the ratio between compression and

tensile yields, and Ĩ1 and J̃2 are respectively first invariant of the effective stress and second invariant

of the effective deviatoric stress tensor, defined as:

Ĩ1 = I1
1 −D

, J2̃ = J2
(1 −D)2 , (2.5)

with I1 and J2 given by:

I1 = trace(σσσ), J2 = 1
2 σ
σσ′ : σσσ′, (2.6)

where σσσ′ denotes the deviatoric stress tensor. Figure 2.2-a shows the yield surface in the 2D field

of principle stresses. As observed, an increase in m leads to more pronounced asymmetry in the

compression zone. Also, the yield surface is plotted based on the different plastic deformations by

giving m = 1.3, which is depicted in Figure 2.2-b. To model the material plastic flow properly and

satisfy the positive dissipation, the yield criterion should be convex. The convexity of the presented

function, f , can be easily proved as:

∂f

∂σσσ
(σσσ − σσσ0) ≤ f(ξ) − f(σσσ0). (2.7)

The present yield function and the rheological model introduced in the previous sections allow

developing the constitutive laws through a thermodynamical framework, which is given in the next

section.
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Figure 2.2: a) Schematics of the yield surface in the principle stresses field and its change by increasing
the asymmetry parameter, m; b) Schematics of the yield surface in the principle stresses field and its
change by increasing the plastic deformation.

2.2.4 Constitutive laws

2.2.4.1 State laws

In the thermodynamical framework, the total strain, ϵϵϵ is the observable state variable, and vis-

coelastic strains, {ϵϵϵvi}i=1,Nv , hardening state variable, r, Damage, D, and viscoplastic strain, ϵϵϵvp, are

the internal state variables. Ignoring thermal effects, the Helmholtz free energy function is divided into

elastic part, Ψe, set of viscoelastic potentials, {Ψi}i=1,Nv , and the viscoplastic free energy, Ψvp [14]:

Ψ(ϵϵϵ, ϵϵϵvi, ϵϵϵvp, r,D) = Ψe(ϵϵϵ, ϵϵϵvi, ϵϵϵvp, D) +
Nv∑︂
i=1

Ψvi(ϵϵϵvi, D) + Ψvp(r), (2.8)

with

Ψe = 1
2

(︄
ϵϵϵ−

Nv∑︂
i=1

ϵϵϵvi − ϵϵϵvp

)︄
: (1 −D)Ce :

(︄
ϵϵϵ−

Nv∑︂
i=1

ϵϵϵvi − ϵϵϵvp

)︄
,

Ψvi = 1
2ϵ
ϵϵvi : (1 −D)Cvi : ϵϵϵvi, Ψvp =

∫︂ r

0
R(α)dα,

(2.9)
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where Ce and Cvi are the elastic and viscoelastic stiffness tensors, respectively. The conjugate variables

are derived by partial derivatives of the thermodynamic potential with respect to ϵϵϵ, ϵϵϵvi, ϵϵϵvp, r, and D:

σσσ = ∂Ψ
∂ϵϵϵ

= (1 −D)Ce :
(︄
ϵϵϵ−

Nv∑︂
i=1

ϵϵϵvi − ϵϵϵvp

)︄
,

σσσvi = − ∂Ψ
∂ϵϵϵvi

= σσσ − (1 −D)Cvi : ϵϵϵvi, σσσ = − ∂Ψ
∂ϵϵϵvp

,

R(r) = ∂Ψ
∂r

, Y = −∂Ψ
∂D

= ϵϵϵe : σσσ
2(1 −D) + 1

2

Nv∑︂
i=1

ϵϵϵvi : Cvi : ϵϵϵvi.

(2.10)

2.2.4.2 Evolution laws

Based on the second principle of thermodynamics, in the form of Clausius-Duhem inequality, the

dissipated energy rate is always positive or equal to zero. It is expressed as the difference between the

deformation energy, Pm, and the stored energy, Ψ̇:

D = Pm − Ψ̇ ≥ 0

= σσσ : ϵϵϵ̇−
(︄
∂Ψ
∂ϵϵϵ

: ϵϵϵ̇+
Nv∑︂
i=1

∂Ψ
∂ϵϵϵvi

: ϵϵϵ̇vi + ∂Ψ
∂ϵϵϵvp

: ϵϵϵ̇vp + ∂Ψ
∂r

: ṙ + ∂Ψ
∂D

: Ḋ
)︄

≥ 0.
(2.11)

Taking into account the expression of the conjugate variables, the dissipation term can be expressed

as follows:

D =
Nv∑︂
i=1

σσσvi : ϵϵϵ̇vi + σσσ : ϵϵϵ̇vp −Rṙ + Y Ḋ ≥ 0. (2.12)

According to Generalized Standard Materials formalism (GSM), satisfying the Clausius-Duhem in-

equality requires defining the rate of internal state variables through dual dissipation potentials and

indicative functions [106], which are introduced in the following.

A set of sub-potentials, Ωvi, are introduced to derive the elementary viscoelastic strain rates, ϵϵϵvi,

with respect to their associated thermodynamic forces, σσσvi, such that:

Ωvi(σσσvi, D) = 1
2σ
σσvi : Vvi−1

1 −D
: σσσvi, (2.13)

where Vvi denotes the viscosity tensor of the i th viscoelastic Kelvin-Voigt branch. For each Kelvin-

Voigt branch, a characteristic time, τvi, can be identified, which corresponds to the viscous behavior

of the considered branch. A single viscoelastic branch under a sudden stress, σσσ0, at time t0 responds
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through the following equation [114]:

ϵϵϵvi(t) = ϵϵϵvi
∞

[︃
1 − exp

(︃
− t− t0

τvi

)︃]︃
, with ϵϵϵvi

∞ = Cvi−1 : σσσ0, (2.14)

with

τviI = Cvi−1 : Vvi, τvi = ηvi

Evi
, (2.15)

therein the relations between the viscoelastic model parameters are expressed. The viscoelastic strain

rates are derived through the derivation of Ωvi with respect to the viscoelastic thermodynamic force:

ϵϵϵ̇vi = ∂Ωvi

∂σσσvi
= Vvi−1

1 −D
: σσσvi. (2.16)

According to the J2-viscoplasticity theory [16], the viscoplastic evolution laws coupled with damage

are derived using the normality rule by considering the following indicative function inspired from

damage-plasticity law by Lemaitre [115]:

F = f(σσσ,D, r) + fD, (2.17)

with

fD = SD

(βD + 1)(1 −D)

(︃
Y

SD

)︃βD+1
, (2.18)

where βD and SD are damage-related parameters, and f is given in (2.3). The latter model has been

used primarily for ductile damage in metals, in which the damage grows slowly in the beginning and

very rapidly in the final stages of loading. However, the damage progression is different in polymers, for

whom the damage initiation is quite rapid at the beginning and then slowly grows thereafter [116]. For

metals, the sign of βD is positive yielding increasing damage rate with respect to plasticity. However,

for polymers, the damage behavior can be captured by considering negative sign for βD [20]. Figure

2.3 shows how the sign of βD affects the damage growth. Considering the negative βD in the present

model, the damage-related function, fD, can be negative if βD is smaller than −1, but the dissipation

sign is not affected and it stays zero or positive. In other words, thermodynamically speaking, there is

no restriction about the sign of F as long as the mechanical dissipation stays zero or positive according

to Clausius-Duhem inequality. The viscoplastic-damage evolution laws are derived as:

ṙ = λ̇, ϵϵϵ̇vp = ∂F

∂σσσ
λ̇ = ΛΛΛvpλ̇,

Ḋ = ∂F

∂Y
λ̇ =

(︃
Y

SD

)︃βD λ̇

1 −D
= ΛDλ̇.

(2.19)
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The viscoplasticilty and rate dependency in the permanent deformation zone is modeled by expressing

the rate of the hardening state variable with respect to the yield function, f :

ṙ = ⟨ f

Rvp
⟩1/Pvp

+ , (2.20)

where “⟨ . ⟩+” denotes the Macaulay brackets, and Rvp and Pvp are respectively the viscoplastic resis-

tance and exponent. Considering the above relations and the dissipation given by (2.12), it is easy

to prove that the dissipation is always non-negative: for the first term, the viscoelastic strain rates

are derived from the viscoelastic potential as (2.16), and its product with σσσvi can not be negative;

for the second and third terms, they are non-negative values derived from the normality rule of the

yield surface; for the third term, Y is always positive (see (2.10)), and the damage rate, Ḋ, is derived

from ΛD and λ̇ which is positive, so their product is always non-negative. This confirms the earlier

discussion that dissipation is always non-negative no matter what the sign of fD is.

Figure 2.3: Effect of the sign of βD on the damage growth with respect to hardening state variable.

2.3 Numerical implementation

The time discretization of the governing equations is implemented through a backward Euler

scheme, based on which an arbitrary variable Ξ is updated from the time step n into the time step

n + 1 as Ξn+1 = Ξn + ∆Ξn+1. An iterative algorithm is required so as to solve the time discretized
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equations. At the time step n+1 and the kth iteration, the iterative equations are expressed as Ξk+1
n+1 =

Ξk
n+1 + δΞk

n+1 and subsequently ∆Ξk+1
n+1 = ∆Ξk

n+1 + δ∆Ξk
n+1. As a return mapping algorithm, ”convex

cutting plane”approach is employed to integrate the constitutive laws and update the state variables at

each time step [16,117]. To this end, the rate dependent constitutive relations are integrated through

inelastic criteria whose nullity must be satisfied at time step n:

φφφvi = 1
1 −D

Vvi−1 : σσσvi = 000, (2.21a)

φvp = ṙ − ⟨ f

Rvp
⟩1/Pvp

+ = 0, (2.21b)

where σσσvi is given in (2.10), and φφφvi and φvp are respectively the viscoelastic and viscoplastic cri-

teria derived from the constitutive relations. Since the viscoelastic deformation is always activated,

its associated criteria, φφφvi, have to be always satisfied. However, the viscoplastic criterion is taken

into account when the viscoplastic deformation appears, once the equivalent effective stress exceeds

the elastic limit, R0. Hence, the return mapping algorithm works in two steps: firstly, viscoelastic

correction-prediction, and secondly, full correction.

2.3.1 Viscoelastic correction-prediction

As long as the plastic flow is not activated, the return mapping algorithm solely deals with the

viscoelastic correction-prediction, in which only the elementary viscoelastic strains, ϵϵϵvi
n+1, at the time

step n + 1, evolve, and the rest of internal variables remain constant (δrn+1 = δDn+1 = 0 and

δϵϵϵvp
n+1 = 000). The viscoelastic criteria converge to zero through the following iterative equation:

φφφ
vi(k+1)
n+1 = φφφvi(k) + δφφφ

vi(k)
n+1 = 000, with i = 1, ..., Nv. (2.22)

For simplicity, the subscripts n + 1 and superscripts k are ignored in the following equations and

the related expansions. Considering (2.21a), the viscoelastic criteria increments, δφφφvi, are properly

determined with respect to δϵϵϵvi and substituted in (2.22):

φφφvi − Avi :
Nv∑︂

j=1(j ̸=i)
δϵϵϵvj − Bvi : δϵϵϵvi = 000, with i = 1, ..., Nv, (2.23)

where the related mathematical procedure of deriving (2.23) is expressed in detail in the appendix A.

The expression (2.23) allows us to constitute a system of equations so as to update the viscoelastic
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criteria in each iteration. The iteration process stops once all equations converge to zero. Calculating

ϵϵϵvi and subsequently σσσ and σeq, the yield function sign, sgn(f), determines whether the material is

subjected to the plastic deformation or it still remains within the viscoelastic domain. In other words,

the equivalent stress, σeq, is smaller than the elastic limit, R0, gives f < 0 which means there is

no plastic flow, and the algorithm passes to the next time step. On the contrary, when f > 0, the

material exhibits viscoplastic deformation which requires full correction via enforcing both viscoelastic

and viscoplastic criteria to be zero, as expressed in the following section.

2.3.2 Full correction

In the full correction step, the variation of all internal state variable increments (δϵϵϵvi
n+1, δϵϵϵ

vp
n+1,

δrn+1) are taken into account, while the nullity of viscoelastic and viscoplastic criteria must be satisfied:

⎧⎪⎪⎨⎪⎪⎩
φφφ

vi(k+1)
n+1 = φφφ

vi(k)
n+1 + δφφφ

vi(k)
n+1 = 000, with i = 1, ..., Nv,

φ
vp(k+1)
n+1 = φ

vp(k)
n+1 + δφ

vp(k)
n+1 = 0.

(2.24)

Similar to the previous section for simplicity, k and n + 1 are ignored for the following equations.

Considering all internal variable increments, the viscoelastic and viscoplastic criteria increments are

expressed with respect to δϵϵϵvi and δr and substituted into:⎧⎪⎪⎨⎪⎪⎩
Avi :

∑︁Nv

j=1(j ̸=i) δϵϵϵ
vj + Bvi : δϵϵϵvi +BBBgiδr = 000,

AAAvp :
∑︁Nv

j=1 δϵϵϵ
vj +Bsδr,

(2.25)

where the whole mathematical procedure of deriving (2.25) is expressed in detail in the appendix A.

The internal variable increments and subsequently the inelastic deformations, ϵϵϵvp and ϵϵϵvi, are then

derived allowing to update the stress tensor for the next time step. Figure 2.4 shows the algorithm

flowchart depicting the general overview of the numerical implementation and its interaction with the

FE solver.

2.3.3 Tangent operator

The above algorithm updates the stress tensor at each time step using viscoelastic correction-

prediction and full correction. The finite element solver, however, also requires the tangent operator

to provide the new stress corresponding to the new strain. To this end, it is assumed that the nullity
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Figure 2.4: Flowchart of the numerical implementation and its interaction with the solver.

condition of viscoelastic and viscoplastic criteria is satisfied and the tangent operator updates the new

stress tensor as:

dσσσ = Tσσσ
ϵϵϵ : dϵϵϵ. (2.26)

The tangent operator, Tσσσ
ϵϵϵ , is calculated in both viscoelastic correction-prediction and full correction

algorithm steps, and its derivation is presented in the appendix A.

2.4 Parametric study

2.4.1 Mechanical responses investigation using the 0D solver

In this section, the numerical implementation procedure, presented in the previous section, is

developed as a UMAT subroutine. Here, for humid polyamide 66 conditioned at 50% Relative Humidity

(RH50), some numerical examples are provided to investigate the effect of asymmetry parameter, m,

on the model mechanical responses. These are extracted as stress-strain curves using a homemade 0D

solver. The material properties and model parameters used in this example are listed in the table.2.1,

in which 4 viscoelastic branches are considered. As discussed earlier, since damage in polymers starts

very quickly, and then progresses slowly thereafter, βD here has a negative value, which satisfies the

damage behavior in the polymers [20].
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First, the mechanical responses under monotonic strain-controlled tensile load and compression

with 0.1 s−1 are plotted as stress-strain curves and depicted in Figure 2.5. As observed, an increase in

the asymmetry parameter, m, increases the stress level. This is more pronounced under compression,

as expected. Mathematically speaking, this can be justified by the faster growth of the denominators

of the stress invariants coefficients in the yield function in presence of m, which leads to negative

yield function and plasticization at higher stress levels. To study this in a broader perspective, the

variation of m is investigated under a single cycle of loading-unloading, and the results are plotted

in Figure 2.6. A similar trend with respect to m is observed in the loading part. In the unloading

phase, the curves slopes show less damage in the larger values of m, however, the plastic deformation

is almost the same in all cases. The model is also subjected to tension-compression-unloading cycle,

and its corresponding stress-strain curves are plotted as Figure 2.7. As seen, the influence of m in

compression is more pronounced than in tensile loading. However, if the loading is reversed and starts

with compression as compression-tension-unloading, the effect of m is bigger in the tension phase (see

Figure 2.8). The above simple examples demonstrate the importance of m in tension-compression

cyclic loads, in which the mechanical responses are affected in both tensile and compression phases,

specially when the loading starts by compression.

Figure 2.5: Variation of m and its influence on the material response under monotonic loading.
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Table 2.1: Model parameters for humid polyamide 66 conditioned at RH50 and room temperature [1].

Mechanical feature parameter Value (unit)

Elastic properties:
Young’s modulus Ee 2731 (MPa)
Poisson ratio ν 0.3 (−)

Viscoelasticity:
1st branch: Ev1 9751.44 (MPa)

τv1 0.36 (s)

2nd branch: Ev2 19125.64 (MPa)
τv2 6.72 (s)

3th branch: Ev3 30855.24 (MPa)
τv3 6.38 (s)

4th branch: Ev4 6771.25 (MPa)
τv4 128.49 (s)

Viscoplasticity coupled with damage:
Elastic limit: R0 4.76 (MPa)

Hardening model: Hm 1302.71 (MPa)
Hp 0.8 (MPa)

Viscoplastic model: Rvp 45.86 (MPa .sPvp)
Pvp 0.07 (−)

Damage: SD 20.03 (MPa)
βD −0.86 (−)
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Figure 2.6: Variation of m and its influence on the material response under tension-unloading.

Figure 2.7: Variation of m and its influence on the material response under tension, compression, and
unloading.
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Figure 2.8: Variation of m and its influence on the material response under compression, tension, and
again unloading.

2.4.2 3D model examples and parametric study

In this section, the unilateral notched plate and the plate with a hole are considered as 3D examples

for the parametric study on self-heating and multi-axial loading. The model presented in the previous

sections is implemented as UMAT, and ABAQUS is used as the solver.

2.4.2.1 Investigation of self-heating due to dissipative mechanisms

A unilateral notched plate is considered with the given dimensions and boundary conditions

shown in Figure 2.9-a, which is subjected to different monotonic displacement-controlled loads with

0.3mms−1 and 3mms−1. The 3D damage and mechanical dissipation maps are extracted and shown

in Figures 2.10 and 2.11 for 0.3mms−1 and 3mms−1 (0.01 s−1 and 0.1 s−1 strain rates), respectively.

As observed, the dissipation in different damage levels and loading rates is not big enough to change

the temperature drastically through dissipative mechanisms. To verify this more precisely, the heat

equation can be used to estimate the temperature level in the current example:

ρcpṪ = −∇x∇x∇x.qqq + thermo-mechanical terms + D, (2.27)
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where ρ and cp are the density and specific heat capacity, which are taken as 1.19 × 10−3 gmm−3 and

1590 J(gK)−1, respectively [89]. Should the self-heating due to mechanical dissipation be isolated, an

approximate temperature increase due to the dissipative mechanisms can be estimated by D/(ρ cp).

Figure 2.11 shows that the maximum dissipation is 1.694 × 10−2 GPa s−1 in almost 60 % of damage

under 3mms−1 loading rate. With this in mind, the approximate temperature rate in this case can

be derived as:

Ṫ = 1.694 × 10−2 GPa s−1

1.19 × 10−3 gmm−31590 J(gK)−1 = 8.95 × 10−3 Ks−1. (2.28)

The above estimation shows that, more than 100 loading cycles, in the quasi-static condition, are

required to increase the temperature for only 1K. The cyclic response of thermoplastics is out of

scope for the present study. Thus, the thermo-mechanical coupling can be safely neglected with a

good accuracy in this study.

2.4.2.2 Asymmetric yield behavior under multi-axial loading

In this section, the effect of asymmetry parameter, m, is explored in a 3D case through the classic

example of holed plate. Thanks to its symmetric structure, only 1/4 of the geometry is sufficient for

the study of the whole structure (see Figure 2.9-b). Multi-axial displacement-controlled loading with

0.2mms−1 is imposed on the structure (compression in X-axis and tensile along Y -axis). First, it

is considered that the yield behavior is symmetric, in which m = 1, and the results are compared

when m = 1.2 and m = 1.4. Figure 2.12 demonstrates the 3D map of hardening state variable, r,

which shows how the asymmetry parameter influences on the plasticity distribution. As observed, the

hardening state variable profile is symmetric when m = 1, and it obviously becomes asymmetric for

the values more than 1 (m = {1.2, 1.4}). Moreover, it is observed that the maximum hardening state

variable is reduced by an increase in m. The same effect is seen in the damage profiles (see Figure

2.13). As seen, the damage level is decreased and asymmetry of the damage profile is enhanced by

increasing in m.

2.5 Conclusion

In this chapter, the typical von Mises yield function was extended to the I1-J2 model, taking

into account the pressure sensitivity and asymmetric yield behavior of humid polyamide 66 material.
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Figure 2.9: Dimension of the given structures with 1mm of thickness: a) unilateral notched plate, b)
1/4 of the plate with a hole (all dimensions are in mm).

The corresponding thermodynamic framework was modified using the new yield function, based on

which the constitutive laws were derived. A parametric study was carried out by conducting several

numerical examples to investigate the effect of the asymmetry parameter and dissipative mechanisms

on the mechanical responses. First, stress-strain curves obtained using the homemade 0D solver were

studied under tensile and compressive loading conditions. Then, the unilateral notched plate, as a 3D

example, was used to study dissipation under different loading rates at different damage levels, while

the classical example of plate with a hole is employed to study the asymmetry parameter impact on

the model behavior under multi-axial loading. The parametric study showed that the effect of the

asymmetry parameter is of significant importance in tension-compression loading, specially when the

loading starts with compression, and the increase of the asymmetry parameter clearly changes the

damage and plasticity profiles under multi-axial loading. Investigation of the mechanical dissipation

in the numerical examples revealed that the temperature change due to the dissipative mechanisms

is negligible and the thermo-mechanical coupling can be neglected with good accuracy for the rest of

this research work.
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Figure 2.10: Damage and dissipation profiles under displacement-controlled monotonic load with
0.3mms−1 in three different damage levels when m = 1.
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Figure 2.11: Damage and dissipation maps under displacement-controlled monotonic load with
3mms−1 in three different damage levels when m = 1.
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Figure 2.12: 3D maps of hardening state variable for 1/4 plate with a hole subjected to the multi-axial
loading when a) m = 1, b) m = 1.2, and c) m = 1.4.

Figure 2.13: 3D maps of damage for 1/4 plate with a hole subjected to the multi-axial loading when
a) m = 1, b) m = 1.2, and c) m = 1.4.
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data

Contenu

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Calibration and validation of the model based on von Mises yield function 65

3.2.1 Model parameters identification strategy . . . . . . . . . . . . . . . . . . . . . . 65

3.2.2 Experimental setup and procedure . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.3 Experimental observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.4 Model calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.5 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3 Calibration and validation of the model based on I1-J2 yield function . . . 92

3.3.1 Experimental observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.3.2 I1-J2 model calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3.3 I1-J2-based model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

63



3.1. INTRODUCTION

3.1 Introduction

In the previous chapter, a VEVPD model based on I1-J2 yield function accounting for hydrostatic

pressure effect and tension-compression asymmetry was formulated and discussed through parametric

studies. The parameters used in the numerical examples an the parametric study were considered from

those calibrated for the symmetric von Mises-based model at RH50 [1, 14]. However, as explained in

the general introduction, thermoplastics exhibit different mechanisms depending on environmental

conditions.

The chemical structure of polyamides allows them to absorb water through the presence of amide

groups up to their water saturation limit, depending on the environmental temperature. This makes

them softer and more flexible through the interaction of hydrogen bonds and water molecules [118–120].

Many studies are available in the open literature that have investigated polyamides chemical structure

and the corresponding reversible and irreversible reactions leading to change in their properties due to

water absorption [120–122]. Water content has an inverse relation with the glass transition temperature

of semi-crystalline polymers leading to a decrease it below room temperature. This leads to a change in

physical properties from glassy to more flexible and rubbery with viscous behavior [123–126]. Young’s

modulus is the mechanical property most affected by relative humidity and decrease with increasing

water content [127,128]. Increasing water content leads to a plasticizing effect, which amplifies inelastic

mechanical responses, including viscoelasticity and viscoplasticity. In other words, the higher the

relative humidity, the more plasticity plays a role in the damage mechanism. The rheological properties

and the dominant mechanisms of polymers and composites under different hygro-thermo-mechanical

states have been investigated experimentally in many studies [3,129–131], and many constitutive laws

have been presented in the literature [5, 10,11,14,20,105].

Two types of VEVPD models have been presented so far: based on the von Mises function assuming

that thermoplastics are pressure-insensitive materials and on the I1-J2 function considering the effect of

hydrostatic pressure and tension-compression asymmetry. According to our literature review, none of

these models have been experimentally calibrated for different RH. The calibration procedure, loading

types, and the corresponding sample shapes depends on the mechanisms to be identified. Thus, in the

first step, dog bone samples are subjected to different types of loading at several rates, and the results

are used to calibrate and validate the classical model based on the von Mises function, in which the
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tension-compression asymmetry of the yield stress is ignored. In the second step, specially designed

(diabolo) samples at several RH are subjected to monotonic tension-torsion tests at different rates,

from which the asymmetry of the yield behavior in PA 66 is captured. The global force-displacement

and torsion moment-rotation angle curves along with the data obtained from the dog bone samples are

used to calibrate the new I1-J2-based model, in which the asymmetry parameter, m, is identified as

a new parameter. The parameters identified in both models are studied as a function of RH, and the

related trends are explored in order to derive an evolution function of these parameters with respect

to RH.

Chapter 3 is structured as follows: in section 3.2, the designed experimental campaign is first

expressed in detail, and the sample preparation procedure is stated. Then, the experimental results

are explored and the material behavior is discussed under different RH and loading conditions. The

obtained experimental data are applied to identify the von Mises-based model parameter set for each

RH and the variation of the parameters is explored. In section 3.3, as the previous section the

experimental campaign is stated and the experimental data are explored, then they are employed to

identify and validate the I1-J2-based model.

3.2 Calibration and validation of the model based on von Mises yield
function

3.2.1 Model parameters identification strategy

The VEVPD model is firstly considered based on the conventional von Mises yield function, in

which pressure-sensitivity and yield asymmetry are neglected. In this case, three sets of parameters are

required to be identified: elastic, viscoelastic, viscoplastic, and damage-related parameters (see Table

3.1). A proper experimental campaign is designed to capture all mechanisms and identify the related

parameters at different RH, namely RH0%, RH25%, RH50%, RH65%, and RH80%. The viscoelastic

model parameters, for the i th branch, are related to each other through τvi = ηvi/Evi. This means

ηvi is derived automatically after calibrating the other two parameters, Evi and τvi. To investigate the

effect of RH, considering the correlation between the viscoelastic parameters, the model parameters

must be identified in constant viscoelastic characteristic times, τvi. For the model calibration, it is
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enough to define cost function, Cr(p), between the numerical and experimental responses:

Cr(p) =
Np∑︂
k=1

wk

[︄
mnum

k (p) −mexp
k

mexp
k

]︄2

, (3.1)

where p is the parameters values set, Np denotes the number of data compared with each other, mnum
k

and mexp
k are the numerical and experimental quantities that have to be compared, respectively, and

wk is their corresponding weight in the calibration in the k th point.

Table 3.1: Parameters of the VEVPD model based on von Mises yield function.

Mechanism Parameters

Elastic E, ν
Viscoelastic {Evi, ηvi, τ vi}i=1,4
Viscoplastic Hm, Hp, Rvp, Pvp

Damage SD, βD

3.2.2 Experimental setup and procedure

3.2.2.1 Materials and sample preparation

The material used in this study is polyamide 66 supplied by DOMO Chemicals, which commercially

known as A218 BK 34NG, and it is provided in rectangular injection-molded plates with 360mm in

length, 100mm in width, and 3mm in thickness nominal dimensions. To perform mechanical tensile

tests, dog bone samples are cut using water jet hyperbar machining process, as shown in Figure 3.1-a.

The samples dimensions are schematically displayed in Figure 3.1-b, including 96mm overall length,

14mm gauge width, and 3mm in thickness. In order to control the water uptake ratio, the samples

are placed in a conditioning chamber at temperature of 80 ◦C under dry environment to extract any

residual humidity from the samples machining process. Figure 3.2 shows water uptake evolution with

respect to time, in which a mass reduction is observed until its stabilization. The water content

eventually gets around 0.3% (as the residual value).

To recondition at different RH, the samples are placed in the hygrometric chamber, Memmert

HCP246 (Figure 3.3), at the corresponding temperature and humidity. The appropriate temperature

and humidity is adjusted depending on the target RH and is performed in two phases: first, the
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Figure 3.1: a) Dog bone sample; b) sample schematics and the corresponding dimensions (in mm).

Figure 3.2: Water loss of the samples with respect to time in the initial drying procedure.
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rapid water absorption with a higher conditioning temperature and RH to accelerate the water uptake

process, and second, stabilization and homogenization of the humidity along the thickness of the

sample to avoid any humidity concentration gradient, during which the temperature is reduced as

close as possible to the ambient temperature and the considered RH. Different mass measurements are

performed through the conditioning in order to verify the relative humidity evolution. The targeted

RH is reached once the mass evolution is constant. Mass measurements are performed using a weighing

device with a resolution of 0.1mg. The conditioned samples are kept in hermetic envelopes to keep

their water content constant. This also prevents undesirable thermomechanical effects by ensuring

that the samples are at room temperature before the test.

Figure 3.3: a) Hygrometric chamber, Memmert HCP246; b) dog bone samples in the hygrometric
chamber.

3.2.2.2 Mechanical tests

To calibrate and validate the VEVPD model based on the von Mises yield function, several me-

chanical tests are performed to capture the dominant mechanisms. To this end, time-dependent

mechanisms are captured by monotonic tensile tests with three different displacement rates. The

evolution of plasticity-induced ductile damage is identified using the loading-unloading test, and the
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viscoelastic and viscoplastic mechanisms are captured by creep-recovery tests with two different stages

of loading at 50 % and 70 % of the maximum force in the monotonic test, Fmax. The load is held for

5min in the creep phase and 5min in the recovery phase. Figure 3.4 shows the schematic diagrams

of the above mechanical tests used in the calibration phase. Calibration is performed in several steps.

In each step, the model parameters are identified and then used as initial values for the next step. In

each step, experimental data are used as follows:

• 1st step: monotonic loading tests.

• 2nd step: monotonic loading tests and loading-unloading test.

• 3th step: monotonic loading tests, loading-unloading test, and creep-recovery test at 50 %Fmax.

• 4th step: monotonic loading tests, loading-unloading test, creep-recovery test at 50 %Fmax, and

creep-recovery test at 70 %Fmax.

Figure 3.4: Schematics of the mechanical tests of the calibration phase: a) monotonic displacement-
controlled tests, b) loading-unloading test with increasing displacement, c) creep-recovery test with
70 % of Fmax, d) creep-recovery test with 50 % of Fmax.

Figure 3.5 shows the schematic diagrams of the mechanical tests used in the validation phase.
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For implementing the above mechanical tests, zwick-roell Z050, 50kN is employed. To obtain more

accurate experimental data, a sample setting tool is designed to ensure the dog bone sample is aligned

with the loading axes and there is no torsional moment (Figure 3.6). It should be mentioned that this

tool is removed before starting the test. The displacement is measured using an extensometer with the

gauge length of 25mm (Figure 3.7), based on which the corresponding strain is calculated. It should

be mentioned that engineering stress and strain are considered here. The stress is calculated based on

the original cross-section, and the strain is the displacement of the material per unit length.

Figure 3.5: Schematics of the mechanical tests of the validation phase: a) Creep-recovery test at
different steps, b) cyclic tension-tensile test, c) loading-unloading test with increasing displacement.

Since there are often some slight dimensional errors in the production process of polyamide plates

and cutting into dog bone samples, the corresponding cross-section, As, is measured for each sample.

To this end, the sample thickness, ts, and the gauge width, ws, are measured before all tests and

listed in Table 3.2 and 3.3 for calibration and validation phases, respectively, in which monotonic,

loading-unloading, and creep-recovery tests are abbreviated as ”MT”, ”L-U”, and ”C-R”.
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Figure 3.6: Sample setting tool for keeping the sample aligned with the loading axes.

Figure 3.7: Measurement of displacement of dog bone samples using extensometer.
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Table 3.2: Dog bone samples cross-section measurements at different RH in the calibration phase.

RH (%) Test, loading rate (mms−1) ts (mm) ws (mm) As (mm2)

0 MT, 0.01 3.28 14.38 47.17
MT, 0.1 3.33 14.37 47.85
MT, 1 3.26 14.32 46.68
L-U, 0.1 3.13 14.25 44.60
C-R, 0.1 (50 %Fmax) 2.95 14.55 42.92
C-R, 0.1 (70 %Fmax) 3.12 14.97 46.71

25 MT, 0.01 3.30 14.40 47.52
MT, 0.1 3.28 14.33 47.00
MT, 1 3.30 14.40 47.52
L-U, 0.1 3.23 14.28 46.12
C-R, 0.1 (50 %Fmax) 3.27 14.30 46.76
C-R, 0.1 (70 %Fmax) 3.32 14.30 47.48

50 MT, 0.01 3.00 14.05 42.15
MT, 0.1 3.10 14.08 43.65
MT, 1 3.12 14.58 45.49
L-U, 0.1 3.14 14.06 44.15
C-R, 0.1 (50 %Fmax) 3.12 13.98 43.62
C-R, 0.1 (70 %Fmax) 3.07 14.03 43.07

65 MT, 0.01 3.12 14.08 43.93
MT, 0.1 3.15 14.09 44.38
MT, 1 3.14 14.02 44.02
L-U, 0.1 3.14 14.09 44.24
C-R, 0.1 (50 %Fmax) 3.14 14.01 43.99
C-R, 0.1 (70 %Fmax) 3.05 13.98 42.64

80 MT, 0.01 3.22 14.88 47.91
MT, 0.1 3.27 14.83 48.49
MT, 1 3.17 14.80 46.91
L-U, 0.1 3.18 14.74 46.87
C-R, 0.1 (50 %Fmax) 3.24 14.88 48.21
C-R, 0.1 (70 %Fmax) 3.25 14.88 48.36

72



3.2. CALIBRATION AND VALIDATION OF THE MODEL BASED ON VON
MISES YIELD FUNCTION

Table 3.3: Dog bone samples cross-section measurements at different RH in the validation phase.

RH (%) Test, loading rate (mms−1) ts (mm) ws (mm) As (mm2)

0 C-R, 0.01 14.91 3.24 48.31
Cyclic, 0.1 14.78 3.12 46.11
L-U, 0.05 14.80 3.22 47.66

25 C-R, 0.01 14.33 3.26 46.71
Cyclic, 0.1 15.01 3.21 48.18
L-U, 0.05 14.35 3.3 47.35

50 C-R, 0.01 14.05 3.16 44.40
Cyclic, 0.1 14.15 3.12 44.15
L-U, 0.05 13.93 3.05 42.49

65 C-R, 0.01 14.08 3.15 44.35
Cyclic, 0.1 14.06 3.14 44.15
L-U, 0.05 13.92 3.05 42.46

80 C-R, 0.01 14.85 3.21 47.67
Cyclic, 0.1 15.36 3.27 50.23
L-U, 0.05 14.85 3.27 48.56

3.2.3 Experimental observations

In this section, the data obtained through the mechanical tests are studied, and the effect of

loading rate and RH is investigated. The monotonic tests are performed in 0.01mms−1, 0.1mms−1,

and 1mms−1 displacement rates (4 ×10−4 s−1, 4 ×10−3 s−1, and 4 ×10−2 s−1 strain rates considering

25mm gauge length), and the corresponding stress-strain curves are displayed in Figure 3.8. As

observed, the increase in RH leads to a decrease in the stress level, and the material becomes softer,

which confirms the notions in the previous sections about plasticization mechanism due to the increase

of the water content. Moreover, the rate dependent mechanical response of the material yields higher

stress level for faster loading rates (see Figure 3.8). Creep-recovery tests also shows the same behavior

regarding the RH effect. Figures 3.9 and 3.10 display stress-time and strain-time curves considering

50% of Fmax and 70% of Fmax, respectively. Since the maximum force level is reduced by increasing

the relative humidity level (see Figure 3.8), the corresponding stress in the creep-recovery tests is also

reduced, as expected (see Figure 3.9-a and 3.10-a). The strain in the creep-recovery test normally

depends on both the corresponding stress and RH level. Figure 3.9-b shows no trend in terms of total

strain and plastic strain level when the creep loading level is 50% of Fmax. However, when the creep

loading level is 70% of Fmax, the plastic strain level increases by increasing RH. The maximum total
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strain level also increases by increasing RH, except for RH80 which is at the same level as RH65. This

means that, the effect of RH is more pronounced than the stress level in the creep-recovery results with

70% of Fmax. The effect of both stress level and RH can be also observed together in the stress-strain

curves in Figures 3.11 and 3.12. Loading-unloading mechanical responses are plotted as stress-strain

curves and depicted in Figure 3.13. As observed, increasing RH decreases the stress level, as expected.

In the following section, the stress and strain values obtained from the present mechanical tests are

used to identify the model parameters of the VEVPD model based on the von Mises yield function at

different RH levels.

Figure 3.8: Stress-strain curves obtained from monotonic tensile tests on the dog bone samples.

Figure 3.9: Stress-time and strain-time curves obtained from creep-recovery tests at different RH levels
with 4 × 10−3 s−1 strain rate and 50% of Fmax.
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Figure 3.10: Stress-time and stress-time curves obtained from creep-recovery tests at different RH
levels with 4 × 10−3 s−1 strain rate and 70% of Fmax.

Figure 3.11: Stress-strain curves of creep-recovery tests at different RH levels with 4 × 10−3 s−1 strain
rate and 50% of Fmax.
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Figure 3.12: Stress-strain curves of creep-recovery tests at different RH levels with 4 × 10−3 s−1 strain
rate and 70% of Fmax.

Figure 3.13: Stress-strain curves of loading-unloading test with increasing strain when the strain rate
is 4 × 10−3 s−1.
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3.2.4 Model calibration

The experimental data and the homemade 0D solver, mentioned in chapter 2, are used to identify

the model parameters through an optimization algorithm, in which, the difference between the exper-

imental and numerical variables (stress or strain depending on the loading conditions) is minimized

to find the appropriate parameters fit to the model at the corresponding RH level. To this end, the

cost function between the experimental and numerical results is formed as a multidimensional func-

tion based on the model parameters, and Nelder-Mead method is used to find the appropriate set of

parameters minimizing it. Nelder-Mead approach operates directly by comparing the function values

and does not rely on the derivatives. In this method, for an n-dimensional function, a geometrical

shape called ”simplex” consisting of n+ 1 vertices is defined in an n-dimensional domain, as Rn, and

each vertex represents a set of parameters. For example, for n = 2, the ”simplex” is a triangle, for

n = 3, the ”simplex” is a tetrahedron, etc. After determining the initial simplex, at each iteration,

the value of the cost function at each vertex is computed, then they are sorted and replaced by new

values calculated using the steps defined by the algorithm. This process continues until the standard

deviation of the function values at the simplex vertices gets close to zero as much as possible. More

details about the algorithm and its formulations are given in [132, 133]. In this study, Nelder-Mead

numerical approach is used through a Python standard library.

Figures 3.14 to 3.28 show the comparison between the calibrated numerical results and the exper-

imental data. As observed, in the calibration procedure, it is tried to conduct the numerical results

as close as possible to the experimental responses. However, the errors are relatively larger in the

monotonic test with the highest displacement rate (1mms−1), particularly at RH50 and RH65. Fur-

thermore, in the loading-unloading tests (Figures 3.16, 3.19, 3.22, 3.25, and 3.28), the experimental

data show larger hysteresis loops compared to the numerical results. This may be due to higher dis-

sipation by viscoelastic mechanisms in the experiments [134]. The obtained identified parameters are

listed in Table 3.4 and plotted with respect to RH as shown in Figure 3.29. As seen, the viscoelastic

moduli have an aproximately decreasing trend by an increase in RH except Ev4 which increases. Some

of viscoplastic and damage-related parameters, Hp, Rvp, Pvp, and βD can be fitted with increasing or

decreasing trend lines. However, Hm, SD, and R0 does not follow any certain increasing or decreasing

trend.
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Figure 3.14: Calibration results for monotonic tests at RH0 under different loading rates: a)
0.01mms−1, b) 0.1mms−1, c) 1mms−1.

Figure 3.15: Calibration results for creep-recovery tests at RH0 under different loading levels: a) 50%
of Fmax, b) 70% of Fmax.
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Figure 3.16: Calibration results for loading-unloading test at RH0.

Figure 3.17: Calibration results for monotonic tests at RH25 under different loading rates: a)
0.01mms−1, b) 0.1mms−1, c) 1mms−1.
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Figure 3.18: Calibration results for creep-recovery tests at RH25 under different loading levels: a) 50%
of Fmax, b) 70% of Fmax.

Figure 3.19: Calibration results for loading-unloading test at RH25.
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Figure 3.20: Calibration results for monotonic tests at RH50 under different loading rates: a)
0.01mms−1, b) 0.1mms−1, c) 1mms−1.

Figure 3.21: Calibration results for creep-recovery tests at RH50 under different loading levels: a) 50%
of Fmax, b) 70% of Fmax.
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Figure 3.22: Calibration results for loading-unloading test at RH50.

Figure 3.23: Calibration results for monotonic tests at RH65 under different loading rates: a)
0.01mms−1, b) 0.1mms−1, c) 1mms−1.
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Figure 3.24: Calibration results for creep-recovery tests at RH65 under different loading levels: a) 50%
of Fmax, b) 70% of Fmax.

Figure 3.25: Calibration results for loading-unloading test at RH65.
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Figure 3.26: Calibration results for monotonic tests at RH80 under different loading rates: a)
0.01mms−1, b) 0.1mms−1, c) 1mms−1.

Figure 3.27: Calibration results for creep-recovery tests at RH80 under different loading levels: a) 50%
of Fmax, b) 70% of Fmax.
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Figure 3.28: Calibration results for loading-unloading test at RH80.

Table 3.4: Calibrated parameters for the von Mises-based model at different RH levels.

Parameters RH0 RH25 RH50 RH65 RH80

E (MPa) 3588.99 3577.91 1452.46 1088.50 918.80
ν (−) 0.3 0.3 0.3 0.3 0.3
Ev1 (MPa) 37935.58 17702.06 18025.02 12116.62 9104.26
Ev2 (MPa) 18202.36 13626.63 2350.54 2375.67 2400.77
Ev3 (MPa) 46065.55 31916.05 17975.70 16002.66 10611.56
EV 4 (MPa) 17947.79 6454.42 63073.45 67036.98 156679.06
τv1 (s) 0.8 0.8 0.8 0.8 0.8
τv2 (s) 8 8 8 8 8
τv3 (s) 80 80 80 80 80
τv4 (s) 800 800 800 800 800
Hm (MPa) 515.40 782.34 772.68 703.76 450.21
Hp (−) 0.33 0.48 0.59 0.67 0.60
Rvp(MPa.sPvp) 67.52 59.83 44.67 36.73 33.51
Pvp (−) 0.07 0.09 0.16 0.22 0.26
SD (MPa) 8.87 7.22 13.60 16.57 6.02
βD (−) −2.77 −2.09 −1.28 −1.02 −1.56
R0 (MPa) 20.20 13.89 8.77 11.86 14.08
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Figure 3.29: Model parameters variation with respect to RH.
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3.2.5 Model validation

As indicated before, validation of the model identified in the previous section is implemented

through stepped creep-recovery, cyclic, and loading-unloading tests in the small deformation zone

(less than 10%), and the results are plotted and shown in Figures 3.30 to 3.34. As observed, the

results are better validated when RH is more than 50%. However, the numerical results are closer to

the experimental data for RH50 and RH65 (Figures 3.32 and 3.33). Here, the model based on the von

Mises yield function is calibrated, and the model using the obtained parameters has been validated.

In the following section, an experimental-numerical framework is developed to identify the I1-J2-based

model parameters, presented in chapter 2.

Figure 3.30: Validation results at RH0: a) Creep-recovery test with 0.01mms−1, b) cyclic loading
with 0.1mms−1, c) loading-unloading with 0.05mms−1.
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Figure 3.31: Validation results at RH25: a) creep-recovery test at RH25 with 0.01mms−1, b) cyclic
loading with 0.1mms−1, c) loading-unloading with 0.05mms−1.
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Figure 3.32: Validation results at RH50: a) creep-recovery test with 0.01mms−1, b) cyclic loading
with 0.1mms−1, c) loading-unloading with 0.05mms−1.
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Figure 3.33: Validation results at RH65: a) creep-recovery test with 0.01mms−1, b) cyclic loading
with 0.1mms−1, c) loading-unloading with 0.05mms−1.

90



3.2. CALIBRATION AND VALIDATION OF THE MODEL BASED ON VON
MISES YIELD FUNCTION

Figure 3.34: Validation results at RH80: a) creep-recovery test with 0.01mms−1, b) cyclic loading
with 0.1mms−1, c) loading-unloading with 0.05mms−1.
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3.3 Calibration and validation of the model based on I1-J2 yield
function

Up to now, the model based on von Mises yield function has been calibrated and validated at

different RHs using the mechanical tests, expressed in the previous sections. However, the latter

model does not capture hydrostatic pressure effect and tension-compression asymmetry. To address

this, a model based on I1-J2 yield function has been presented in chapter 2, which should be calibrated

through tension-compression multi-axial tests, but imposing compressive loading on the thermoplastic

specimens is quite complicated due to the buckling occurrence. With this in mind, diabolo specimens

(Figure 3.35) are designed to perform tension-torsion tests as multi-axial loading instead of tension-

compression. To this end, as dog bone samples, diabolo samples are also reconditioned at RH0, RH25,

RH50, RH65, and RH80, and the mechanical tests are conducted using the zwick-roell hydraulic

machine. Special grips have been designed to first fit to the machine and second keep the cylindrical

shape of the specimen under tension-torsion loading (see Figure 3.36). Monotonic tension-torsion

tests are performed when the loading in two directions are imposed at the same time with the rates

of: i) 0.05mms−1 and 0.03o s−1, ii) 0.5mms−1 and 0.3o s−1, and iii) 5mms−1 and 3o s−1. The data

extracted from monotonic test with the second rate is applied in the calibration phase, and the two

others are used for validation. The tension-torsion tests along with the tests implemented on the

dog bone samples provides the experimental data for calibration and validation of the I1-J2-based

model. Tables 3.5 and 3.6 briefly demonstrate the summary of the defined experimental campaign for

calibration and validation, in which monotonic, loading-unloading, creep-recovery, and tension-torsion

tests are abbreviated as MT, L-U, C-R, and T-T, respectively.

Table 3.5: Experimental campaign for the calibration phase of the I1-J2-based model.

RH (%) Corresponding test Tensile rate (mms−1) Torsion rate (o s−1)

0, 25, 50, 65 , 80 MT 0.01 -
MT 0.1 -
MT 1 -
L-U 0.1 -
C-R (50 %Fmax) 0.1 -
C-R (70 %Fmax) 0.1 -
T-T 0.5 0.3
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Table 3.6: Experimental campaign for the validation phase of the I1-J2-based model.

RH (%) Corresponding test Tensile rate (mms−1) Torsion rate (o s−1)

0, 25, 50, 65, 80 C-R 0.01 -
Cyclic 0.1 -
L-U 0.05 -
T-T 0.05 0.03
T-T 5 3

3.3.1 Experimental observations

As discussed before, water content affects the mechanical response of the material from rubber-like

to glass-like behavior, which is confirmed through the experimental observations in previous sections.

Figure 3.37 yields a better visual observation in this regard. As observed, Figure 3.37-a shows the

brittle sample with RH0 shattered after being subjected to the tension-torsion load. However, in

Figure 3.37-b, the sample with RH50 exhibits a ductile behavior along with plastic deformation which

can be observed through white stickers before and after loading (see Figure 3.38). The monotonic

tension-torsion tests, mentioned previously, are implemented, and the results are plotted as overall

force-displacement and torsion moment-rotation angle at different RH (see Figures 3.39 and 3.40). As

expected, the samples with lower RH reach higher stress levels. Here, the results for RH0 are not

plotted due to high instability and brittle fraction as Figure 3.37-a.

(a)

(b)

Figure 3.35: a) Diabolo sample; b) sample dimensions.
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Figure 3.36: Assembly of grips and diabolo shape sample for tension-torsion tests.

Figure 3.37: a) Tension-torsion test for diabolo at RH0; b) tension-torsion test for diabolo at RH50.

Figure 3.38: Plastic deformation and ductile damage at RH50 for the sample after tension-torsion test
in comparison with the initial sample.
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Figure 3.39: Force-displacement curves for monotonic tension-torsion tests in different loading rates:
a) 5mms−1 and 3o s−1, b) 0.5mms−1 and 0.3o s−1, c) 0.05mms−1 and 0.03o s−1.
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Figure 3.40: Torsion moment-rotation angle (in o) curves for monotonic tension-torsion tests in differ-
ent loading rates: a) 5mms−1 and 3o s−1, b) 0.5mms−1 and 0.3o s−1, c) 0.05mms−1 and 0.03o s−1.
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3.3.2 I1-J2 model calibration

In this section, for the present model based on the I1-J2 yield function, the same parameters

shown in Table 3.1 plus the asymmetry parameter, m, are identified. The calibration procedure is

performed using the experimental data obtained from dog bone samples used in the calibration phase

of von Mises-based model (section 3.2) and the new data from diabolo shape samples under monotonic

tension-torsion test with 0.5mms−1 and 0.3o s−1. Similar to the previous section, the Nelder-Mead

optimization algorithm is used to minimize the cost function between the numerical and experimental

results. Since the overall force-displacement and moment-angle experimental results are used in the

optimization algorithm, it is required to use ABAQUS solver (with the implemented UMAT). To

this end, the diabolo shape structure is designed and simulated under same boundary conditions in

ABAQUS (see Figure 3.41-a). To reduce the calculation time, since the structure is symmetrical in the

circumferential direction, only one slice is sufficient to analyze the whole structure (see Figure 3.41-b).

With this in mind, a 10o slice of the whole structure is considered and cyclic boundary conditions

are set on it. The numerical results obtained on force and moment are 36 times lower than the

whole structure output, so before being used in the optimization algorithm, they must be scaled to be

comparable to the experimental data. Considering the validation results in the previous sections, the

von Mises-based VEVPD model does not fit well to the experimental data for RH0 and RH25. In other

words, the VEVPD model is not designed to predict mechanical responses at low RHs, particularly

at RH0, when the material is glassy. Therefore, it is required to model their behavior considering a

brittle damage. Thus, here, the data for RH0 and RH25 is excluded from the calibration procedure,

and the parameters are identified for RH50, RH65, and RH80. The final calibration results are plotted

as stress-strain, force-displacement, and torsion moment-rotation angle curves at RH50 and depicted

in Figures 3.42 to 3.45, from which the identified parameters are listed in Table 3.7. As observed, the

I1-J2-based model is in a good agreement with experimental results, particularly in force-displacement

and torsion moment-rotation angle curves obtained from tension-torsion tests. The numerical results

are produced using the von Mises and I1-J2 models are plotted to compare with the experiments on

diabolo samples in Figure 3.45. As seen, the I1-J2-based model is better fit to the experimental data

compared to von Mises, as expected. The asymmetry parameter, m, is identified as 1.05 for RH50,

which is in a good range compared to other polymer types [44]. In the same way, for RH65, the I1-J2-

based model is calibrated and the results are plotted and presented in Figures 3.46 to 3.49, and the
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parameters are listed in Table 3.7. For RH65, the asymmetry parameter, m, is obtained as 1.00 which

indicates that increasing RH leads to a symmetric yield behavior. Although the responses obtained

from I1-J2-based model with m = 1 should be similar to those from the von Mises-based model, Figure

3.49 shows that the I1-J2-based model yields results relatively closer to the experimental data. This

is due to the fact that for the I1-J2-based model, the experimental tension-torsion data are taken into

account in the calibration procedure. The observed incompatibility between tensile tests on the dog

bone samples and tension-torsion tests on the diabolo samples may be due to non-uniformity of water

diffusion or to structural effects in the diabolo samples. This can have more impact at higher RH

levels, particularly RH80, making it difficult to calibrate the model properly. For these latter reasons,

the calibration procedure for RH80 does not provide desirable results for the I1-J2-based model.

Figure 3.41: a) Complete diabolo; b) a sector of diabolo used in the simulation (10o or 1/36).

3.3.3 I1-J2-based model validation

In this section, the I1-J2-based model is validated using experimental data extracted from tension-

torsion tests with 0.05mms−1; 0.03o s−1 and 5mms−1; 3o s−1, plus data from the creep-recovery, cyclic,

and loading-unloading tests used in the validation phase of the von Mises-based model. The results

for RH50 and RH65 are plotted and presented in Figures 3.50 to 3.55. As observed, the numerical

results are mostly well validated by the creep-recovery, cyclic, and loading-unloading tests (Figure

3.50). However, for RH65, the cyclic test model result is relatively more distant from the experimental

results (see Figure 3.53-b). For the tension-torsion tests, the I1-J2-based model is more accurate than

the von Mises model (Figures 3.51, 3.52, 3.54, and 3.55), however, the differences are a bit higher

under loading with a lower rate in 0.03 o s−1 and 0.05mms−1. As mentioned before for the calibration

98



3.3. CALIBRATION AND VALIDATION OF THE MODEL BASED ON I1-J2
YIELD FUNCTION

Figure 3.42: Calibration results for I1-J2-based model under monotonic tests at RH50 under different
loading rates: a) 0.01mms−1, b) 0.1mms−1, c) 1mms−1.

Figure 3.43: Calibration results for I1-J2-based model under creep-recovery tests at RH50 under
different loading levels: a) 50% of Fmax, b) 70% of Fmax.
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Figure 3.44: Calibration results for I1-J2-based model under loading-unloading tests at RH50.

Figure 3.45: Calibration results for I1-J2-based model under tension-torsion test at RH50 with 0.3 o s−1

and 0.5mms−1: a) force-displacement curves, b) torsion moment-rotation angle curves.
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Figure 3.46: Calibration results for I1-J2-based model under monotonic tests at RH65 under different
loading rates: a) 0.01mms−1, b) 0.1mms−1, c) 1mms−1.

Figure 3.47: Calibration results for I1-J2-based model under creep-recovery tests at RH65 under
different loading levels: a) 50% of Fmax, b) 70% of Fmax.
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3.3. CALIBRATION AND VALIDATION OF THE MODEL BASED ON I1-J2
YIELD FUNCTION

Figure 3.48: Calibration results for I1-J2-based model under loading-unloading tests at RH65.

Figure 3.49: Calibration results for I1-J2-based model under tension-torsion test at RH65 with 0.3 o s−1

and 0.5mms−1: a) force-displacement curves, b) torsion moment-rotation angle curves.
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Table 3.7: Calibrated parameters for the I1-J2-based model at RH50 and RH65.

Parameters RH50 RH65

E (MPa) 988.95 868.12
ν (−) 0.3 0.3
Ev1 (MPa) 36396.15 12325.03
Ev2 (MPa) 5765.97 2143.08
Ev3 (MPa) 5924.76 19865.37
EV 4 (MPa) 83879.34 131788.15
τv1 (s) 0.8 0.8
τv2 (s) 8 8
τv3 (s) 80 80
τv4 (s) 800 800
m 1.05 1.00
Hm (MPa) 996.82 566.07
Hp (−) 0.76 0.71
Rvp(MPa.sPvp) 24.82 21.02
Pvp (−) 0.37 0.48
SD (MPa) 26.78 16.89
βD (−) −0.83 −0.81
R0 (MPa) 17.04 15.70

phase, the responses obtained from I1-J2-based model at RH65 (m = 1) is closer to the experimental

data than those from von Mises-based model because of the consideration of tension-torsion tests

experimental data in the calibration procedure of the I1-J2-based model.

3.4 Conclusion

In this chapter, an experimental campaign has been conducted using two types of samples: dog bone

and diaboo structure. The obtained experimental results have been discussed and implemented into a

model parameters identification process. Dog bone samples were subjected to monotonic, cyclic, and

creep-recovery mechanical tests. The effect of RH on the experimental data was studied. Increasing

RH decreases the glass transition temperature, and the material then exhibits softer behavior at room

temperature, as expected. The obtained experimental data were applied to identify the VEVPD model

based on the von Mises yield function at different RH levels. The effect of RH on the model parameters

was explored, which follows a more organized trend in the viscoelastic parameters. To capture the

asymmetry in compressive and tensile yield strength, diabolo shape specimens were subjected to
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Figure 3.50: Validation results for I1-J2-based model at RH50: a) creep-recovery test with 0.1mms−1;
b) cyclic loading with 0.1mms−1; c) loading-unloading with 0.05mms−1.

Figure 3.51: Force-displacement validation results for I1-J2-based model at RH50 under tension-torsion
tests: a) 3 o s−1 and 5mms−1, b) 0.03 o s−1 and 0.05mms−1.
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Figure 3.52: Torsion moment-rotation angle validation results for I1-J2-based model at RH50 under
tension-torsion tests: a) 3 o s−1 and 5mms−1, b) 0.03 o s−1 and 0.05mms−1.

Figure 3.53: Validation results for I1-J2-based model at RH65: a) creep-recovery test with 0.1mms−1,
b) cyclic loading with 0.1mms−1, c) loading-unloading with 0.05mms−1.
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Figure 3.54: Force-displacement validation results for I1-J2-based model at RH65 under tension-torsion
tests: a) 3 o s−1 and 5mms−1, b) 0.03 o s−1 and 0.05mms−1.

Figure 3.55: Torsion moment-rotation angle validation results for I1-J2-based model at RH65 under
tension-torsion tests: a) 3 o s−1 and 5mms−1, b) 0.03 o s−1 and 0.05mms−1.
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monotonic tension-torsion tests at different rates, and global force-displacement and moment-angle

curves were extracted. The latter data, along with those obtained with dog bone samples, were used

to identify the parameters of the VEVPD model based on the I1-J2 yield function, which also includes

the asymmetry parameter, m. The calibration and validation results of the I1-J2-based model show

that the latter model fits the tension-torsion test results better than the von Mises-based one. However,

for higher RH, particularly RH80, the experimental results of diabolo and dog bone samples are not

compatible leading to difficulties in I1-J2-based model calibration. This may be due to a non-uniform

distribution of moisture on the diabolo and the complex geometry.
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4.1. INTRODUCTION

4.1 Introduction

As discussed in previous chapters, predicting the behavior of glass-reinforced thermoplastics re-

quires developing a proper multi-scale model capturing the nonlinear inelastic behaviors of the matrix

and addressing the limitations of conventional models, namely pressure sensitivity, asymmetric yield

behavior, and non-objective results in the computational model at high damage levels. By considering

a new yield function I1-J2 in chapter 2, the effect of hydrostatic pressure and compression-tension

asymmetry are captured. Furthermore, in chapter 3, identification of the model at different RH allows

to study the effect of humidity on the model parameters and to predict the mechanical responses of

thermoplastics at different water content levels. However, the local formulation framework is not yet

capable of producing objective responses in computational models at highly damaged zones due to

material softening.

Generally speaking, softening refers to the degradation of material strength by increasing in strain,

which often occurs for polymers depending on RH and temperature. Mathematically speaking, this

physical phenomenon leads to an ill-posed problem and consequently to numerical model instability

and bifurcation in the computational models. In other words, finite element simulation models based

on conventional local continuum frameworks exhibit non-physical and non-unique responses in the

analysis of localized deformation models, and the corresponding shear band becomes increasingly

more restricted by any mesh refinement.

In this chapter, the later model limitation in predicting the behavior of thermoplastics at high

damage levels in the softening regime is discussed, for which a nonlocal framework is formulated,

and its efficiency is explored compared to the conventional local continuum model. To this end, the

constitutive model is formulated considering a gradient enhanced thermodynamic potential, function

of local and nonlocal state variables. The model is formulated based on two different options for the

nonlocal state variable: the first option considers nonlocal damage scalar, while the second considers

nonlocal hardening state variable that drives the damage. An appropriate user-defined material sub-

routine is developed so as to define and to update the stress, the state variables, and the associated

tangent moduli towards finite element structural computations. The analogy between the steady-state

heat equation and the nonlocal gradient enhanced relation enables coupling the displacement and non-

local fields within a finite element package code (i.e. ABAQUS). Structural analyses conducted on

110



4.2. THEORETICAL BACKGROUND

polyamide 66 (PA66) material are presented to assess the efficiency of the developed nonlocal model.

The capability of the model to capture efficiently the ductile damage localization and simulate the

related fields is demonstrated when using the nonlocal hardening or damage state variable. This study

for the first time combines viscoelasticity, viscoplasticity, and damage with nonlocal approaches, and

can be considered as an initial step aiming at developing a constitutive formulation towards multi-scale

analyses for polymer-based composites.

This chapter is organized as follows: in section 4.2, theoretical concepts including instability in

local models due to the material softening and nonlocal approaches are presented. In section 4.3,

the constitutive laws of the considered material are derived for both nonlocal damage and nonlocal

hardening state variable. In section 4.4, the return mapping numerical approach as well as the nonlocal

model implementation are established. In section 4.5, a parametric analysis is provided to explore the

ductile damage development and mesh objectivity of the nonlocal model based on benchmark examples.

4.2 Theoretical background

4.2.1 Instability in local models due to softening

The instability of the model arises due to different kinds of factors, such as material type, ge-

ometrical and structural reasons, etc. In this work, considering the behavior of polyamide 66 as a

semi-crystalline material, the strain softening at high damage level leads to the model instability and

non-unique responses [50,62,135]. Mathematically speaking, the local conventional continuum model is

stable until it reaches the bifurcation limit, which is defined through general bifurcation criterion [136].

The material is stable when it satisfies the inequality:

ϵ̇ij σ̇ij > 0, or ϵ̇ij C
e
ijkl ϵ̇kl > 0, (4.1)

where Ce
ijkl denotes the tensor of the corresponding tangent modulus. The above criterion, (4.1),

requires a definite fourth order positive tangent modulus. Thus, the bifurcation limit can be expressed

as:

ϵ̇ij C
e
ijkl ϵ̇kl = 0, or det(Ce) = 0. (4.2)

Beyond the bifurcation limit, tangent modulus is not positive definite anymore, and it causes non-

physical and meaningless results as zero dissipated energy and the non-unique responses in the FE
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computational models. As a matter of fact, the tendency for releasing the least amount of inelastic

stored energy during the failure leads to internal variables localization into narrowest areas [50, 51],

which leads to non-objective solutions when refining the mesh in the computational models. To address

this issue, the local model is often modified using the nonlocal framework as a form of ”localization

limiters”, in which the length scale is included so as to derive objective responses [52,53].

4.2.2 Nonlocal approaches

Different nonlocal approaches are reported in the open literature. Some authors apply the integral

form in which the local variable is replaced by its nonlocal counterpart derived by a weighted average

over the corresponding neighborhood [54–58]. In this manner, nonlocal variables depend not only on

their local positions but also on their weighted average in the whole body (see Figure 4.1).

Figure 4.1: a) Schematic of the local model in a 2D spatial field; b) schematic of the nonlocal model
using the integral form formulation.

The Taylor expansion of the integral nonlocal formulation yields to gradient enhanced forms that

are more simple to implement into finite element codes compared to the integral one, and the interac-

tion between local and nonlocal variables are defined through their gradients [58–62]. In addition, other

methods based on phase field, micromorphic, and peridynamics approaches are also widely employed

in the literature, for which more detailed information is available in [63–65,69,70,137]. In reference to

what is mentioned above, there are two types of nonlocal gradient models: explicit and implicit forms.
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The first one is derived through the Taylor expansion of the nonlocal integral formulation [76, 138].

The second one is another simplification of the integral form, deduced from the explicit one, for which

solutions are often in a good agreement with the classical integral type [60,139,140].

Regarding the choice of the nonlocal variable, many approaches in the open literature consider

plastic deformation, equivalent strain, damage, etc. as nonlocal variables [54, 77, 141–143]. In this

connection, Saanouni and Hamed presented a nonlocal micromorphic model based on various nonlocal

variables and used the micromorphic damage variable to characterize the material behavior in the soft-

ening phase [63]. To ensure a proper connection between local and nonlocal variables, several options

can be adopted. Indeed, the chosen local variable can be either enforced to behave as its nonlocal

counterpart through Kuhn-Tucker conditions [140] or directly replaced by the nonlocal variable in

the constitutive laws [144]. As an efficient alternative, one can propose a thermodynamically based

extended framework, in which the free energy is enhanced with a nonlocal term including the nonlocal

variable and its gradient [62,72,135,145].

This work proposes a thermodynamically based nonlocal framework for semi-crystalline polyamides

formulated under small deformation and rotation assumption. It performs a parametric study to in-

vestigate the capability of the gradient enhanced model in yielding mesh objective and physically

meaningful solutions within the highly damaged zones under softening, which considers the nonlin-

ear rheology of the material including all inelastic mechanisms (viz. viscoelasticity at different time

scales, VE, viscoplasticity, VP, ductile damage, D, etc.). It also introduces the nonlocal hardening

state variable to address the damage localization in a VEVPD model, where its efficiency is justified

compared to the nonlocal damage. Since the framework is developed for polyamide materials, the

goal is to adopt the model in multi-scale analyses. For fiber-reinforced composites, the deformation

levels are usually small, thus it is reasonable to develop the present nonlocal framework using small

deformations/rotations hypothesis.

4.3 Gradient enhanced constitutive modeling

The I1-J2 VEVPD model presented in the first chapter is used in this chapter in a similar way.

However, since for the nonlocal model there are no experimental data yet, for more simplicity, here the

asymmetry parameter, m, in the I1-J2 model is set to one which gives the classical von Mises function.
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Although the material is considered symmetric, this does not affect the main objective, which is to

address the instability and non-uniqueness in the computational model. In this section, first the

corresponding extended thermodynamic framework is presented by introducing the nonlocal variable,

ϕnl , and the constitutive laws are expressed with new additional nonlocal terms. Considering the

dominant mechanisms, we determine the internal variable from which the nonlocal variable is derived.

4.3.1 Thermodynamically based Euler-Lagrange equations

The nonlocal variable, ϕnl, is derived from its local counterpart, ϕ, which is introduced into the

thermodynamic framework by dividing the thermodynamic potential, Ψ, into two parts: local, Ψl, and

nonlocal, Ψnl [62,72]:

Ψ(ϵϵϵ, {χi}i=2,N , ϕ, ϕ
nl,∇x∇x∇xϕ

nl) = Ψl(ϵϵϵ, {χi}i=2,N , ϕ) + Ψnl(ϕ,ϕnl,∇x∇x∇xϕ
nl), (4.3)

where ϵϵϵ is the total strain tensor, and {χi}i=2,N is the set of internal state variables which can be

scalar or tensorial. Since, two different cases with distinct nonlocal variables are considered. The

thermodynamical state of the polyamide is described by the following internal variables:

- two different options for the first two state variables are considered:

ϕ = χ1 = r, D = χ2, or ϕ = χ1 = D, r = χ2, (4.4)

- the viscoplastic deformation, ϵϵϵvp = χχχ3,

- consideringNv Kelvin-Voigt branches, the elementary viscoelastic strains are assigned as {ϵϵϵvi}i=1,Nv =

{χχχi}i=4,N .

Similar to chapter 2, the local part of the thermodynamic potential, Ψl, is divided into the elastic

part, Ψe, the set of viscoelastic potentials, {Ψvi}i=1,Nv , and viscoplastic free energy, Ψvp:

Ψl(ϵϵϵ, ϵϵϵvp, {ϵϵϵvi}i=1,Nv , r,D) = Ψe(ϵϵϵ, ϵϵϵvp, {ϵϵϵvi}i=1,Nv , D) +
Nv∑︂
i=1

Ψvi(ϵϵϵvi, D) + Ψvp(r), (4.5)

with

Ψe = 1
2

(︄
ϵϵϵ−

Nv∑︂
i=1

ϵϵϵvi − ϵϵϵvp

)︄
: (1 −D)Ce :

(︄
ϵϵϵ−

Nv∑︂
i=1

ϵϵϵvi − ϵϵϵvp

)︄
, (4.6a)
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Ψvi = 1
2ϵ
ϵϵvi : (1 −D)Cvi : ϵϵϵvi, for i = 1, Nv, (4.6b)

Ψvp =
∫︂ r

0
R(α)dα. (4.6c)

The nonlocal thermodynamic potential expressed as a function of the nonlocal variable, its spatial

gradient, and its local counterpart is defined as [72]:

Ψnl(ϕ,ϕnl,∇x∇x∇xϕ
nl) = ξnl

2

⃓⃓⃓⃓⃓⃓
∇x∇x∇xϕ

nl
⃓⃓⃓⃓⃓⃓2

+ 1
2γ

nl(ϕ− ϕnl)2, (4.7)

where the operator ”||.||” denotes the second norm (quadratic), and ξnl and γnl are the nonlocal

gradient and nonlocal interaction parameters respectively which are considered positive. The gradient

parameter ξnl determines the degree of regularization governing the nonlocal part of the free energy

and is derived from the internal length scale incorporating the microstructural effects into the model

[62, 135, 145]. The nonlocal parameter γnl is assigned to ensure that i) the local variable behaves as

closely as possible to its nonlocal counterpart, and ii) the performed analyses are mesh objective. The

nonlocal parameters implicitly introduce the nonlocal length scale, lnl, into the model, which is defined

as:

lnl =

√︄
ξnl

γnl
. (4.8)

Considering the above thermodynamic potential, the equilibrium equations are obtained using the

minimum potential energy postulate. Accordingly, the total potential energy, Π, in a reference domain,

B, is the sum of external, −Πext, and internal, Πint, potential energies:

Π = Πint − Πext =
∫︂

B
Ψ(ϵϵϵ, {χi}i=2,N , ϕ, ϕ

nl,∇x∇x∇xϕ
nl)dV −

∫︂
B
uuu · fff bdV −

∫︂
∂B
uuu · fff sdS, (4.9)

where fff b and fffs are respectively the external force per unit volume and external force per unit surface,

and uuu denotes the associated displacement field. The minimum potential energy postulate allows to

write:

{uuu, ϕnl} = arg[minuuu,ϕnl∈B(Π)]. (4.10)

Accordingly, the differential of the potential energy with respect to the displacement field, uuu, and the

nonlocal variable, ϕnl, is set to zero:

δuuuΠ =
∫︂

B

∂Ψ
∂ϵϵϵ

: ( ∂ϵ
ϵϵ

∂uuu
) dV −

∫︂
B
fff b.δuuudV −

∫︂
∂B
fffs.δuuudS = 0, (4.11a)
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δϕnlΠ =
∫︂

B

[︂
ξnl∇x∇x∇xϕ

nl.∇x∇x∇xδϕ
nl − γnl(ϕ− ϕnl)δϕnl

]︂
dV = 0. (4.11b)

Based on the small deformations assumption, the strain tensor can be replaced by the symmetrical gra-

dient of the displacement field ∇x∇x∇x
symuuu. Substituting it into (4.11a) and using the Gauss-Ostrogradski

theorem results in:

−
∫︂

B
(∇x∇x∇x · σσσ) · δuuudV +

∫︂
∂B

(σσσ ·nnn) · δuuudS −
∫︂

B
fff b · δuuudV −

∫︂
∂B
fffs · δuuudS = 0. (4.12)

Using Gauss-Ostrogradski theorem, (4.11b) is expanded as:∫︂
∂B
ξnl∇x∇x∇xϕ

nlδϕnl.nnn dS −
∫︂

B
ξnl∇x∇x∇x

2ϕnlδϕnl dV −
∫︂

B
γnl(ϕ− ϕnl)δϕnl dV = 0. (4.13)

From (4.12) and (4.13), the Euler-Lagrange equations with the associated boundary conditions are

derived:

- stress equilibrium:

∇x∇x∇x · σσσ + fff b = 0, ∀x ∈ B, σσσ ·nnn− fff s = 000, ∀x ∈ ∂B, (4.14)

- nonlocal balance equation:

ξnl∇x∇x∇x
2ϕnl + γnl(ϕ− ϕnl) = 0, ∀xxx ∈ B, ∇x∇x∇xϕ

nl ·nnn = 0 ∀xxx ∈ ∂B. (4.15)

4.3.2 State and evolution laws

The conjugate state variables, {Ai}i=1,N , can be derived from the partial derivative of the ther-

modynamic potential with respect to the internal state variables, {χi}i=1,N , as follows (given in the

2):

Ai = ∂Ψ
∂χi

, with, i = 1, ..., N. (4.16)

Aside this, the partial derivatives of the nonlocal term, ψnl, lead to the following nonlocal conjugate

state variables:

Yϕnl = ∂Ψ
∂ϕnl

, YYY∇x∇x∇xϕnl = ∂Ψ
∂∇x∇x∇xϕnl

. (4.17)

Accordingly, using the rate form of the free energy, the intrinsic mechanical dissipation inequality is

expressed by:

D = Pm − Ψ̇ ≥ 0, (4.18)
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where Pm is the sum of strain and nonlocal energy rates such that:

Pm = σσσ : ϵϵϵ̇+ Yϕnlϕ̇nl + YYY∇x∇x∇xϕnl · ∇x∇x∇xϕ̇
nl. (4.19)

According to the state laws (given in the chapter 2) and substituting into (4.18), the dissipation is

expanded to:

D = σσσ : ϵϵϵ̇+ Yϕnlϕ̇nl + YYY∇x∇x∇xϕnl · ∇x∇x∇xϕ̇
nl −

(︄
∂Ψ
∂ϵϵϵ

: ϵϵϵ̇+
N∑︂

i=1

∂Ψ
χi

: χ̇i + Yϕnl ϕ̇nl + YYY∇x∇x∇xϕnl · ∇x∇x∇xϕ̇
nl

)︄
. (4.20)

From (4.20), the nonlocal terms can be canceled out, and the dissipation is expressed as:

D =
Nv∑︂
i=1

σσσvi : ϵϵϵ̇vi + σσσ : ϵϵϵ̇vp −R ṙ + Y Ḋ ≥ 0, with − Y = ∂Ψ
∂D

. (4.21)

According to the Generalized Standard Materials formalism, GSM, the evolution laws are derived

through convex dual dissipation and indicative functions [106], which are expressed in detail in the

chapter 2.

In order to capture the damage localization and to address the mesh sensitivity during FE com-

putations, the nonlocal model is formulated based on two different nonlocal variable cases: the first

considers the nonlocal damage, Dnl, as the nonlocal variable by enhancing the damage release energy,

Y , while the second considers the nonlocal hardening state variable, rnl, by modifying the hardening

function, R. The constitutive laws related to both cases are derived in the following sections.

4.3.3 Case 1: nonlocal damage variable

Replacing ϕnl by Dnl in (4.7), the nonlocal free energy can be re-expressed as:

Ψnl(D,Dnl,∇x∇x∇xD
nl) = ξnl

2

⃓⃓⃓⃓⃓⃓
∇x∇x∇xD

nl
⃓⃓⃓⃓⃓⃓2

+ 1
2γ

nl(D −Dnl)2. (4.22)

According to the state laws, the damage release energy, Y, can be decomposed as:

−Y = ∂Ψ
∂D

= −Y l − Y nl, with − Y l = ∂Ψl

∂D
and − Y nl = ∂Ψnl

∂D
, (4.23)

where the local part, Y l, is obtained as:

Y l = 1
2

(︄
ϵϵϵ−

Nv∑︂
i=1

ϵϵϵvi − ϵϵϵvp

)︄
: Ce :

(︄
ϵϵϵ−

Nv∑︂
i=1

ϵϵϵvi − ϵϵϵvp

)︄
. (4.24)
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The nonlocal term, Y nl, is given by:

Y nl = −γnl(D −Dnl). (4.25)

Y nl is often a negative value added to the positive Y l [62]. In certain instances, the total Y becomes

negative and violates the positivity of the dissipation. This can be prevented through considering only

the positive part of Y in the damage related indicative function, fD, as follows:

fD = SD

(βD + 1)(1 −D)

(︃⟨Y ⟩+
SD

)︃βD+1 λ̇

1 −D
. (4.26)

Substituting (4.26) into the damage evolution law (given in chapter 2) yields:

Ḋ = 1 + sgn(Y )
2

(︃⟨Y ⟩+
SD

)︃βD λ̇

1 −D
, (4.27)

where ”sgn(.)” and ”⟨ . ⟩+” denote the sign function and Macaulay bracket, respectively.

4.3.4 Case 2: nonlocal hardening state variable

In the second case, the nonlocal hardening state variable, rnl, can be adopted to limit the damage

localization within the softening zones. Thus, substituting the nonlocal hardening state variable, rnl,

into the thermodynamic potential, Ψ, in (4.7) leads to:

Ψnl(r, rnl,∇x∇x∇xr
nl) = ξnl

2

⃓⃓⃓⃓⃓⃓
∇x∇x∇xr

nl
⃓⃓⃓⃓⃓⃓2

+ 1
2γ

nl(r − rnl)2. (4.28)

It is worth mentioning that since the damage evolution is derived by the evolution of the hardening

state variable, r, the nonlocal hardening state variable, rnl, also affects the ductile damage implicitly.

Substituting the above nonlocal energy (4.28) into (4.7), the hardening state function is enhanced with

the nonlocal term, Rnl, as follows:

R(r) = ∂Ψ
∂r

= Rl +Rnl, (4.29)

with:

Rl = Hm rHp , Rnl = ∂Ψnl

∂r
= γnl(r − rnl). (4.30)

As indicated above, the constitutive laws are modified by introducing the nonlocal variables in two

given cases and summarized in Table 4.1. Considering (4.29) and (4.30), if rnl gets much larger than

its local counterpart, r, then there is a possibility that the total hardening function becomes negative.

However, as the next sections show, in all the analyses performed, this has not occurred.
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Table 4.1: Modified associated variables in presence of the nonlocal variables along with the related
evolution laws.

State variables Associated variables Evolution laws

Nonlocal damage, Dnl Y = Y l + Y nl, Ḋ = ∂F

∂Y
λ̇ =

(︃
Y

SD

)︃βD λ̇

1 −D
Y nl = −γnl(D −Dnl) -

Yϕnl = ∂Ψ
∂Dnl

= γnl(D −Dnl) -

YYY∇x∇x∇xϕnl = ∂Ψ
∂∇x∇x∇xDnl

= ξnl∇x∇x∇xD
nl -

R = Rl ṙ = λ̇

Nonlocal hardening

state variable, rnl Y = Y l Ḋ = ∂F

∂Y
λ̇ =

(︃
Y

SD

)︃βD λ̇

1 −D

Yϕnl = ∂Ψ
∂rnl

= γnl(r − rnl) -

YYY∇x∇x∇xϕnl = ∂Ψ
∂∇x∇x∇xrnl

= ξnl∇x∇x∇xr
nl -

R = Rl +Rnl, ṙ = λ̇
Rnl = γnl(r − rnl)

4.4 Numerical implementation

The nonlocal constitutive laws are implemented numerically through ”convex cutting plane” return

mapping algorithm, as presented in the chapter 2. However, gradient enhanced field development

within the FE package code ABAQUS requires a nonlocal balance equation as well as the stress

equilibrium. In order to impose the additional Euler-Lagrange equation into a commercial FE code

like ABAQUS, two different ways are available: first, developing a user-defined element (UEL) [62,145],

and second, using the analogy between nonlocal and steady state heat equations when the nonlocal

variable is a scalar [135,146].

4.4.1 Finite element implementation

Under this approach, the considered UMAT employs a UEL subroutine to form a proper system

of equations in a linearized version. To do so, the equations are derived in their weak form and

linearized using the corresponding shape functions and B-matrices. In the sequel, we consider an
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isoparametric 2D element with four nodes (the geometry and displacement shape functions are equal)

whose interpolation functions are introduced as:

uuu =
n∑︂

i=1
N i

uzzz
i
u, ϵϵϵ =

n∑︂
i=1

BBBi
uzzz

i
u, ϕnl =

n∑︂
i=1

N i
ϕz

i, ∇∇∇xϕ
nl =

n∑︂
i=1

BBBi
ϕz

i
ϕ, (4.31)

and subsequently:

δuuu =
n∑︂

i=1
N i

uδzzz
i
u, δϵϵϵ =

n∑︂
i=1

BBBi
uδzzz

i
u, δϕnl =

n∑︂
i=1

N i
ϕδz

i
ϕ, ∇∇∇xδϕ

nl =
n∑︂

i=1
BBBi

ϕδz
i
ϕ, (4.32)

where zzzi
u (for n = 4: i = 1, 2, 3, 4) are the displacement nodal values; N i

u (scalar) and Bi
u (vector)

respectively denote shape functions and the B matrix. The iterative equations considering the nullity

of residuals equilibrium are constituted as:{︄
rrru + δrrru = 0
rrrϕ + δrrrϕ = 0

, (4.33)

with {︄
δrrru = Kuuδzzzu +Kuϕδzzzϕ

δrrru = Kϕuδzzzu +Kϕϕδzzzϕ

, (4.34)

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
rrru = {rrr1

u, rrr
2
u, ..., rrr

n
u}

rrrϕ = {r1
ϕ, r

2
ϕ, ..., r

n
ϕ}

zzzu = {zzz1
u, zzz

2
u, ..., zzz

n
u}

zzzϕ = {z1
ϕ, z

2
ϕ, ..., z

n
ϕ}

. (4.35)

(4.33) is written as: [︄
KKKuu KKKuϕ

KKKϕu KKKϕϕ

]︄{︄
δzzzu

δzzzϕ

}︄
= −

{︄
rrru

rϕ

}︄
, (4.36)

where the tangent operators are derived as:

KKKuu = ∂rrru

∂zzzu
, KKKuϕ = ∂rrru

∂zzzϕ
, KKKϕu = ∂rrrϕ

∂zzzu
, KKKϕϕ = ∂rrrϕ

∂zzzϕ
. (4.37)

4.4.1.1 Stress equilibrium right hand side vector

As mentioned before, in the section 4.3.1, the strong form of stress equilibrium in the absence

of surface traction, fffs, is expressed as (4.14). Based on the minimum potential energy postulate, a

minimization problem can be defined, as expressed in detail in section 4.3.1, and the weak form of the

stress equilibrium is obtained as follows:∫︂
B
σσσ : δϵϵϵdV +

∫︂
B
fff b · δuuudV = 0. (4.38)
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Substituting (4.32) into (4.38) yields:∫︂
B
σσσ :

n∑︂
i=1

BBBi
uδzzz

i
udV +

∫︂
B
fff b ·

n∑︂
i=1

N i
uδzzz

i
udV = 000, (4.39)

where can be reduced to nodal residuals as:

rrri
u =

∫︂
B

(︂
BBBi

u

)︂T
: σσσdV +

∫︂
B
fff bN

i
udV. (4.40)

One can consider the first and second terms respectively as the right hand side vector (RHS keyword

in ABAQUS) and external forces.

4.4.1.2 Nonlocal equation right hand side vector

According to (4.18), the weak form of the nonlocal balance equation is expressed as:∫︂
B

[︂
ξnl∇∇∇xϕ

nl.∇∇∇xδϕ
nl − γnl(ϕ− ϕnl)δϕnl

]︂
dV. (4.41)

Substituting (4.32) into (4.41) yields:

∫︂
B

[︄
ξnl∇∇∇xϕ

nl.
n∑︂

i=1
BBBi

ϕδz
i
ϕ − γnl(ϕ− ϕnl)

n∑︂
i=1

N i
ϕδz

i
ϕ

]︄
dV = 0. (4.42)

The nonlocal nodal residual is derived as:

ri
ϕ =

∫︂
B

[︂
(BBBi

ϕ)T .ξnl∇∇∇xϕ
nl − γnl(ϕ− ϕnl)N i

ϕ

]︂
dV, (4.43)

where yields the right hand side vector used in the UEL subroutine for the nonlocal equation.

4.4.2 Nonlocal and heat equations analogy

In this approach, the nonlocal fields are developed in a fully coupled temperature-displacement

frame without developing a special UEL. Assuming the steady state heat equation, the following

analogy is derived:

Kc∇x∇x∇x
2θ + hg = 0 � ξnl∇x∇x∇x

2ϕnl + γnl(ϕ− ϕnl) = 0, (4.44)

qqq ·nnn = 0 � ∇x∇x∇xϕ
nl ·nnn = 0, (4.45)
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where Kc denotes the heat conduction, hg is the heat sources, and qqq is the heat flux vector derived

from the Fourier’s law:

qqq = −Kc∇x∇x∇xθ. (4.46)

The thermomechanical tangent operators can be also defined within the UMAT subroutine (for

ABAQUS versions after 2020) [147]. As another option, HETVAL as an auxiliary user subroutine

is employed to allow definition of the heat flux, heat sources, and interaction between internal state

variables and the thermal field. In the present study, the HETVAL subroutine is adopted by replacing

the temperature and its associated fields with the nonlocal scalar variable and the analogous fields.

4.4.3 Tangent operators

The UMAT subroutine, within the nonlocal framework, not only requires the tangent stiffness

tensor Tσσσ
ϵϵϵ , but also the associated nonlocal tangent operators. Thus, considering the stress equilibrium,

the stress increment, ∆σσσ, is given by:

∆σσσ = Tσσσ
ϵϵϵ : ∆ϵϵϵ+ TTTσσσ

ϕnl∆ϕnl, (4.47)

where Tσσσ
ϵϵϵ denotes the nonlocal tangent modulus. The computation of the tangent stiffness tensor,

Tσσσ
ϵϵϵ , is described in appendix A. In the nonlocal formulation, (4.15), the increment of γnl(ϕ − ϕnl) is

expressed as follows:

∆
[︂
γnl(ϕ− ϕnl)

]︂
= TTT h

ϵ : ∆ϵϵϵ+ T h
ϕnl∆ϕnl, (4.48)

where TTT h
ϵϵϵ and T h

ϕnl denote the nonlocal tangent operators. Technically speaking, HETVAL subroutine,

among all nonlocal tangent operators indicated in (4.47) and (4.48), solely demands for T h
ϕnl . Also,

the same aspect can be considered for the UEL subroutine, and the other two tangent operators are

automatically approximated. Thus, besides Tσσσ
ϵϵϵ , only the derivative of γnl(ϕ−ϕnl) with respect to the

nonlocal variable is calculated as:

T h
ϕnl = −γnl. (4.49)

The return mapping algorithm including viscoelastic correction-prediction and its interactions with

the solver and HETVAL or the corresponding UEL is summarized as a flowchart depicted in Figure

4.2.
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Viscoelastic 

correction-prediction

Calculate 𝛿𝝐𝒗𝒊

Update 𝝐𝑣𝑖 and 𝝐
Define 𝝈 and 𝕋𝝐

𝝈

Full correction

Calculate 𝛿𝝐𝒗𝒊 and 𝛿𝑟
Update 𝝐𝑣𝑝,𝝐𝑣𝑖, and 𝝐

Define 𝝈 and 𝕋𝝐
𝝈

f<0

UEL or HETVAL

ABAQUS

YES

NO

UMAT

𝜑, 𝜑𝑛𝑙, 𝝈, 𝕋𝝐
𝝈, 𝑇

𝜑𝑛𝑙
ℎ 𝜑, 𝜑𝑛𝑙,𝑇

𝜑𝑛𝑙
ℎ

Figure 4.2: Flowchart of return mapping implementation on UMAT and its interaction with the FE
solver and HETVAL or UEL subroutine.

4.5 Results and discussions

In this section, first, the given methodologies (UMAT-HETVAL and UEL-UMAT) for nonlocal

framework implementation on the FE model is investigated, and then, the model is examined using a

unilaterally notched rectangular plate and an asymmetrically double notched structure, whose dimen-

sions are depicted in Figure 4.3. In all examples, the material properties are those of the polyamide

66, which have been earlier calibrated as a local VEVPD model (given in the first chapter). As already

indicated, to perform a nonlocal analysis in a ductile damage model, the nonlocal variable may be

derived from the damage variable, D, or from the hardening state variable, r. In this research, the first

step consists of the nonlocal damage variable, Dnl. The first step is formulated to investigate the uni-

laterally notched plate under monotonic displacement controlled tensile loading, then its efficiency in

controlling the damage localization is discussed. As the second step, the model derived from the non-

local hardening state variable, rnl, is applied on the structure considering the same loading conditions,

and the results are compared with the latter case (related to Dnl). Moreover, the influences of the
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nonlocal parameters, ξnl and γnl, on the damage localization are explored through a parametric study.

As another numerical example, the asymmetrically double notched structure is used so as to examine

the efficiency of the nonlocal model in a more complex geometry case. The nonlocal framework can

be switched to the local model simply by setting the nonlocal parameters ξnl and γnl, to zero, which

enables comparing the responses with those using the nonlocal model. Technically speaking, in highly

nonlinear systems, the finite element solver often requires decreasing the time increments to achieve

convergent solutions in the “unstable deformation zones”. However, in some cases, as in the present

study, instabilities in the form of material softening cause sudden changes in the stiffness tensor in

the global equilibrium equation of the computational model. In such cases, the time steps become too

small and the analysis never ends or converges. To address this issue, a viscous term is added to the

global equilibrium that damps sudden changes in the stiffness tensor, as an artificial inertia. In this

respect, the ”automatic stabilization” in the finite element solver provides a viscous term with respect

to the displacement in the global equilibrium equation, which is employed in the present work.

Figure 4.3: Dimensions of the considered structures and the given boundary conditions: a) unilaterally
notched plate, b) asymmetrically double notched plate.
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4.5.1 UMAT-HETVAL and UMAT-UEL methodologies: results and comparison

In this section, the presented nonlocal framework is implemented on the FE computational model

using UEL-UMAT and UMAT-HETVAL which are expressed in the previous sections. To this end,

the unilateral notched plate (Figure 4.3), under displacement-controlled monotonic tensile load (u̇0 =

1.5mms−1), is considered, and the nonlocal framework is based on the nonlocal hardening state

variable, rnl. For more simplicity, the 2D four nodes plane strain element type (CPE4 for UMAT-UEL

and CPE4T for UMAT-HETVAL) is employed. The results are plotted as force displacement curves

and depicted in the Figure 4.4. As seen, the responses are strongly in agreement and approximately

no difference is observable. With this in mind, UMAT-HETVAL and UEL-UMAT methodologies yield

same responses, however, using HETVAL and thermo-mechanical analogy has some advantages as:

less amount of programming, no visualization difficulties, being more computationally efficient. Hence,

in this research, it is preferred that UMAT-HETVAL approach is used for the rest of examples.

Figure 4.4: Comparison between UEL-HETVAL and UMAT-HETVAL approaches through force-
displacement curves (ξnl = 20 kN, γnl = 5GPa).
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4.5.2 Efficiency evaluation of nonlocal models based on Dnl and rnl

In this part, the unilaterally notched plate (Figure 4.3) is considered under tensile loading to

evaluate the efficiency of the nonlocal model based on two presented cases: based on Dnl and rnl.

To this end, the damage analysis is initially performed using the 4 nodes plane strain fully coupled

temperature displacement element type (CPE4T in Abaqus package) in different mesh sizes (300,

602, and 1200 elements). A reference point is set on the plate whose displacement is tied with the

upper side allowing to plot the force vs. displacement responses. This aims at extracting more precise

information regarding the hardening and softening mechanisms as well as the model behavior beyond

the material instability limits. In terms of boundary conditions, the plate is subjected to a monotonic

displacement-controlled tensile load with a rate of u̇0 = 3mms−1 from one side, and the displacement

components are set to zero at the other side (see Figure 4.3). As already indicated, firstly, the nonlocal

analysis is performed based on Dnl and is compared with the local model results. The responses are

extracted as the force-displacement curves in Figure 4.5 for the local and nonlocal models with different

values of γnl when the structure is meshed by 1200 elements. As previously mentioned, γnl controls

the interaction between D and Dnl via the nonlocal associated damage variable Y nl (see Table 4.1).

As observed, introducing nonlocal parameters in this case leads to faster failures compared to the

local model. In other words, as the level of interaction with the nonlocal variable increases, the model

becomes more unstable and fails earlier.

From the same analysis, force-displacement curves are plotted for several levels of ξnl at a constant

value of γnl in Figure 4.6. As seen, variation of ξnl almost has no influence on the material responses

because γnl is not sufficiently large to make a strong interaction between D and Dnl, and on the other

hand, for the reasons mentioned above, introducing the nonlocal parameters makes the model more

unstable than the local framework, and higher values of γnl are not feasible because the model fails

too early.

Figure 4.7 provides the damage distribution resulted from the nonlocal damage model in three

given mesh sizes, in which the damage, as expected, is localized into the crack zone restricted to a

single row of elements as the smallest possible area. Since the damage is coupled with plasticity,

and the damage rate is directly related to the hardening state variable rate, ṙ, based on the given

evolution laws, the damage localization may stem from the localization of r. Concerning this, the
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Figure 4.5: Force-displacement curves for the unilaterally notched plate and comparison between local
and nonlocal damage models responses for different values of γnl when ξnl = 2 kN under uniaxial
monotonic tensile loading with the displacement rate u̇0 = 3mms−1; the nonlocal model is based on
Dnl.

Figure 4.6: Force-displacement curves for the unilaterally notched plate and comparison between local
and nonlocal models responses for different values of ξnl when γnl = 2MPa under uniaxial monotonic
tensile loading with the displacement rate u̇0 = 3mms−1; the nonlocal model is based on Dnl.
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distribution of r, for the nonlocal damage model (ξnl = 2 kN, γnl = 2MPa), is extracted and depicted

as Figure 4.8. As shown, the hardening state variable is localized into the crack and exhibits mesh

sensitivity by refining the mesh, which consequently leads to damage localization. Regarding this, it

can be concluded that the nonlocal variable deriving from r may properly address the damage mesh

sensitivity in the FE computations, which is discussed as follows.

Figure 4.7: Damage distribution of the unilaterally notched plate using the nonlocal damage model
(ξnl = 2 kN, γnl = 2MPa) under uniaxial monotonic tensile loading with the displacement rate
u̇0 = 3mms−1 (three mesh refinements, NE = {300; 602 or 1200}); the nonlocal model is based on
Dnl.

As the second option, the nonlocal variable is derived from r, and the nonlocal free energy dictates

the nonlocal term Rnl into the hardening function, R, as indicated in (4.28) and (4.29). The model is

implemented on the considered geometry under same loading and boundary conditions, with the first

option. To observe the interaction between local and nonlocal variables (r and rnl), the unilaterally

notched structure under tensile load with u̇0 = 3mms−1 is analyzed, then considering the localization

time in the local model, the 2D maps of the hardening state variable using the local and nonlocal

models (based on rnl) are compared with the distribution of the nonlocal variable in the same time

increment (Figure 4.9). As seen, r is localized in the local model (Figure 4.9-a) while r and rnl on

the nonlocal model show no localization or shear band at this stage (Figure 4.9-b,c). The responses

are also exported with respect to γnl as force-displacement curves in Figure 4.10. As observed, the

softening zone in the nonlocal responses is more extended compared to those predicted by the local
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Figure 4.8: Distribution of the hardening state variable, r, in the unilaterally notched plate using the
nonlocal damage model (ξnl = 2 kN, γnl = 2MPa) under uniaxial monotonic tensile loading with the
displacement rate u̇0 = 3mms−1 (three mesh refinements, NE = {300; 602 or 1200}); the nonlocal
model is based on Dnl.

model and subsequently they drop more smoothly. However, after a certain level of the γnl, its increase

does not yield a significant variation in responses nor in the failure points.

The damage distribution contours show a clearer view of the influence of γnl on the damage profile

(Figure 4.11). As shown, the bigger the value of γnl is, the wider damaged area evolves surrounding the

crack zone. The model is also examined for different ξnl in a constant level of interaction (γnl = 5GPa)

and is depicted in Figure 4.12. The mesh sensitivity is decreased by an increase in ξnl, and the softening

zone becomes smoother, which leads to failure in higher deformation levels. The aforementioned notion

is confirmed with the damage distribution contours in three different mesh sizes NE = {300; 602 or

1200} for several values of ξnl (see Figure 4.13). In the local model contour, as seen also earlier, the

damage is localized into a single row of elements and shows mesh sensitivity by changing the mesh

size. This issue is addressed by introducing the nonlocal parameters into the model. The damage in

the vicinity of the crack is progressively evolved by an increase in ξnl, and the damage profile remains

identical for different mesh sizes in the higher level of γnl.

In order to investigate how the nonlocal model affects and governs the damage development within

the structure prior and after the force peak, three spots are taken into consideration: I) the first spot

at 90% of the peak prior to it, II) the second spot at the peak, and III) the third one at its 80%
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Figure 4.9: Local and nonlocal variables 2D maps under monotonic tensile loading: a) hardening state
variable distribution using the local model, b) hardening state variable distribution using the nonlocal
model when γnl = 5GPa and ξnl = 6 kN, and c) nonlocal variable using the nonlocal model when
γnl = 5GPa and ξnl = 6 kN; the nonlocal model is based on rnl.

Figure 4.10: Force-displacement curves for the unilaterally notched plate and comparison between
local and nonlocal models responses for different values of γnl when NE = 1200 , ξnl = 6 kN, and
u̇0 = 3mms−1; the nonlocal model is based on rnl.
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Figure 4.11: Damage distribution in the unilaterally notched plate under tensile loading (u̇0 =
3mms−1) with 1200 elements using: a) nonlocal model when ξnl = 6 kN and γnl = 3GPa, b) nonlocal
model when ξnl = 6 kN and γnl = 4GPa, and c) nonlocal model when ξnl = 6 kN and γnl = 5GPa;
the nonlocal model is based on rnl.

Figure 4.12: Force-displacement curves for unilaterally notched plate and comparison between local
and nonlocal models responses for different values of ξnl when NE = {602, 1200}, γnl = 5GPa, and
u̇0 = 3mms−1. By increasing the value of ξnl, the analysis converges better for different mesh sizes;
the nonlocal model is based on rnl.
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a) Nonlocal b) Nonlocal
ξnl = 2kN, γnl = 5GPa ξnl = 4kN γnl = 5GPa

c) Nonlocal
ξnl = 6kN γnl = 5GPa d) Local

Figure 4.13: Damage distribution in the unilaterally notched plate meshed by 300, 602, and 1200
elements using nonlocal model with γnl = 5GPa and a) ξnl = 2 kN, b) ξnl = 4 kN, c) ξnl = 6 kN, and
comparison with d) local model; the nonlocal model is based on rnl.
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after the peak, at which the damage distributions are compared for the local and nonlocal models and

illustrated in the Figure 4.14 and Figure 4.15. As observed, as the material approaches the instability

region, the discrepancies in damage distributions between the local and nonlocal models become more

pronounced, particularly after the force peak.

Figure 4.14: Damage distribution using the local model: I) before the maximum force and at 90
percent of the peak, II) at the maximum force, III) after the maximum force and at 80 percent of the
peak.

As the material is defined through the VEVPD rheological model, the change in the loading rate

necessarily affects the material behavior and the related damage distribution. Following this, the

structure is subjected to different loading rates and the force-displacement curves are explored for
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Figure 4.15: Damage distribution using the nonlocal model with ξnl = 6 kN and γnl = 5GPa : I)
before the maximum force and at 90 percent of the peak, II) at the maximum force, III) after the
maximum force and at 80 percent of the peak; the nonlocal model is based on rnl.

134



4.5. RESULTS AND DISCUSSIONS

local and nonlocal models in the Figure 4.16 and Figure 4.17. As observed, the curves obtained from

the local case are mostly affected by the loading rate in the hardening zone, and their failure point

is slightly shifted forward by an increase in the rate (see Figure 4.16). However, the rate effect is

more significant in the nonlocal model, particularly at the failure points, where the higher rate yields

sharper softening regions and subsequent earlier failures (see Figure 4.17). The damage distribution

is extracted for u̇0 = 2, 5mm s−1 and presented in the Figure 4.18. As seen, for the local model,

no difference is observable under given loading rates. However, in the nonlocal model, the damaged

region surrounding the crack is slightly reduced and localized toward the crack by an increase in the

displacement rate.

Figure 4.16: Force-displacement curves obtained from the local model for unilaterally notched plate
under different loading rates.

In order to capture the effects of transverse deformation in the thickness direction, the unilaterally

notched structure is studied in a 3D setup considering a thickness of 1mm. The structure is meshed

using the 8 nodes thermally coupled brick element type (C3D8T). In terms of the boundary conditions,

all displacement components are bounded at the bottom, and a monotonic tensile load (u̇0 = 3mms−1)

is set to the top. The damage analysis results are extracted as contours and depicted in Figure 4.19.

As observed, the crack inclination is decreased compared to the plane strain case, which it is reduced
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Figure 4.17: Force-displacement curves obtained from the nonlocal model (with ξnl = 6 kN and γnl =
5GPa) for the unilaterally notched plate under different loading rates; the nonlocal model is based on
rnl.

Figure 4.18: Damage distribution in the unilaterally notched plate with 1200 elements using nonlocal
model when ξnl = 6 kN and γnl = 5GPa under the displacement rates: a) u̇0 = 2mms−1, b) u̇0 =
5mms−1 and using the local model under displacement rates: c) u̇0 = 2mms−1, d) u̇0 = 5mms−1;
the nonlocal model is based on rnl.
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more drastically for the nonlocal model (see Figure 4.19-a).

a) Nonlocal

b) Local

Figure 4.19: Damage distribution in the unilaterally notched plate with 300, 602, and 5625 elements
using: a) nonlocal model when ξnl = 6 kN and γnl = 5GPa, b) local model; the nonlocal model is
based on rnl.

4.5.3 Asymmetrically double notched rectangular plate

Based on the results and discussions in the previous section, the nonlocal model employing rnl

works more efficiently than the first option using Dnl. In fact, based on the VEVPD constitutive laws,

the damage is induced by plasticity, and not inverse. With this in mind, the nonlocal damage, Dnl, does

not address the plasticity localization and subsequently the non-unique and non-physical responses.
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Thus, here, the use of rnl is preferred to implement as the nonlocal model on the asymmetrically double

notched structure (Figure 4.3). For the 2D case, the structure is meshed via 3 and 4 nodes plane strain

temperature-displacement elements (CPE3T, CPE4T) in two mesh sizes (NE = 1555, 6346). The plate

is subjected to the monotonic uniaxial tensile load with u̇0 = 3mms−1 from the right side, and the

displacement at the left side is bounded to zero. The damage contours are extracted for the local

and nonlocal models with ξnl = {4 kN, 6 kN} and displayed in Figure 4.20 As seen, an increase in ξnl

leads to change in the damage profile and thicken the shear band (Figure 4.20-a and Figure 4.20-b).

While, for the local case (Figure 4.20-c), the damage is mostly localized into the crack zone and shows

the tendency to occupy the minimum possible area. The aforementioned structure with a thickness of

1mm, under the same loading and boundary conditions, is examined through the 3D element, C3D8T.

The damage distribution is provided for the local and nonlocal model (ξnl = 6 kN,γnl = 3GPa) and

shown in the Figure 4.21. In the 3D case, the damage localization is well addressed. In comparison

with the 2D case, since the damage profile is also distributed in thickness, it affects the damage growth

in other directions, and the corresponding profile seems less diffused with a narrower crack zone in the

X-Y plane.

4.6 Conclusion

A gradient enhanced thermodynamically based framework was proposed towards investigating the

PA66 mechanical behavior in the highly damaged levels and address the spurious damage localization

leading to the macroscopic failure as well as the consequent mesh sensitivity in the FE computa-

tions. To this end, the Thermodynamics of Irreversible Processes (TIP) and the Generalized Standard

Materials (GSM) formalism were employed to derive the constitutive equations. A specific nonlocal

formulation for the thermodynamic potential was considered and then enhanced based on two cases

regarding the nonlocal state variable: nonlocal damage, and nonlocal hardening state variable. The

constitutive laws were integrated through the ”convex cutting plane” as a return mapping algorithm

and implemented within the finite element framework through a user-defined material subroutine.

Two methodologies have been studied to implement the nonlocal model: UEL-UMAT and HETVAL-

UMAT. In the first approach, the appropriate system of equations was defined by the UEL subroutine,

and in the second approach, the analogy between the steady state heat equation and the nonlocal for-

mulation allowed to introduce the nonlocal equation implicitly in the FE solver. The responses are
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Figure 4.20: Damage distribution in the asymmetrically double notched plate under uniaxial tensile
load with the displacement rate u̇0 = 10mms−1 meshed by 1555 and 6346 elements using the nonlocal
model with γnl = 3GPa and a) ξnl = 4 kN, b) ξnl = 6 kN and comparison with c) local model; the
nonlocal model is based on rnl.
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Figure 4.21: Damage distribution in the asymmetrically double notched plate under uniaxial tensile
load with the displacement rate u̇0 = 10mms−1 meshed by 6444 elements using a) Local model, and
b) Nonlocal model with γnl = 3GPa and ξnl = 6 kN; the nonlocal model is based on rnl.

identical in both implementation methodologies, but the use of the steady state heat equation analogy

is cheaper computationally, particularly when the nonlocal variable is scalar. Considering two nonlocal

variable cases, numerical examples were presented to perform a parametric study and examine the

nonlocal model efficiency in controlling the damage localization. Investigation of the numerical exam-

ples revealed that employing Dnl as the nonlocal variable does not enable the model to control the

damage localization while a spurious plasticity localization appears during the material softening. In

fact, due to the formulations of the VEVPD constitutive model, damage is induced by plasticity, and

the plasticity localization leads to the damage localization. With this in mind, the nonlocal damage is

not able to address the plasticity localization, but the opposite is possible. It implies that the nonlocal

hardening state variable addresses non-unique mesh sensitive results in both the damage and plastic-

ity. The nonlocal model based on rnl yielded mesh objective responses and exhibited the capability of

investigating the material behavior in higher levels of damage during material softening stages. The

mesh objectivity of the results is improved for the higher values of the nonlocal parameters γnl and

ξnl. However, beyond a certain level of nonlocal parameters, no significant effect on the solutions is

observed, which is due to the size of structure.
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Nonlocal multi-scale framework for
glass reinforced thermoplastics
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5.1 Introduction

In the previous chapters, the VEVPD model based on von Mises yield function was modified to a

I1-J2 model accounting for the effect of hydrostatic pressure and tension-compression asymmetry. The

effect of RH was also studied experimentally, and the model parameters were identified which allow

modeling the mechanical responses of thermoplastics with different water contents. Furthermore,

non-physical model responses in modeling of severely damaged material were addressed using the

nonlocal gradient enhanced framework. However, the main objective of this research is to develop a

proper multi-scale framework for glass reinforced thermoplastics capturing the nonlocal phenomena

and addressing the computational instability due to the localization of internal state variables. The

overall behavior of glass reinforced thermoplastics at the macroscopic scale is affected by the matrix

phase at microscale which exhibits nonlinear viscoelastic viscoplastic rheology with plasticity-induced

ductile damage. Softening of the matrix phase due to the high level damage leads to the localization of

the internal state variable and, consequently, structural instability and difficulties in the computational

model. To address this problem, one may propose to extend the nonlocal gradient enhanced framework

to a multi-scale model, in which an appropriate homogenization framework is developed to conduct

unique overall mechanical responses in composites.

This chapter utilizes the nonlocal model, presented in chapter 4, into the multi-scale framework

aimed at predicting the mechanical response of long glass fiber reinforced polyamide composites. To

treat numerically material instabilities at severe damage levels, an internal length scale is introduced

within the model through a gradient enhanced framework that controls the non-physical localization

of state variables and the consequent early model failures. To do so, a viscoelastic viscoplastic phe-

nomenological model is adopted to capture the matrix phase nonlinear response at the microscale,

then an appropriate homogenization approach is considered to provide the overall response of the

composite, in which the gradient enhanced framework is formulated at the macroscale. As a result, a

consistent homogenization model capable of capturing nonlocal phenomena is introduced and imple-

mented into a commercial finite element software, which addresses the non-physical responses of the

local model and exhibits higher stability.

This chapter is structured as follows: in section 5.2, the theoretical framework is presented.

First, the nonlinear inelastic behavior of the matrix phase and the corresponding constitutive laws
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are discussed, and then an appropriate multi-scale scheme is introduced, based on which the Mori-

Tanaka/TFA homogenization framework is applied and formulated. In section 5.3, the model is first

validated with a multi-layered structure, then the application of the framework is justified with a

numerical example, and finally, several examples are investigated as parametric studies.

5.2 Theoretical background

5.2.1 Multi-scale homogenization

To investigate the global mechanical behavior of composite structures, it is necessary to model them

as homogeneous materials based on multi-scale homogenization theories [77,89,148–162]. Multi-scale

homogenization framework addresses the composite behavior at both the macro and micro scales. It

considers the mechanisms of the composite constituents as well as their geometry characteristics and

configurations in the microstructure, based on which the overall mechanical behavior of the composite

is interpreted as a homogeneous material at the macroscale. In this connection, many finite element

based homogenization and mean field approaches are proposed in the literature. From a technical

prospect, mean field models are computationally less expensive than finite element-based approaches,

which has made their application more popular. Mori-Tanaka approach is among the most widely used

of mean field techniques and was first applied to elastic models [163], and then extended to investigate

nonlinear inelastic mechanisms [2,148,164–167].

5.2.1.1 Mori-Tanaka approach

Considering a heterogeneous material, the different inclusions in the matrix have interactions

with each other depending on their material type, size, shape and orientation. The communication

between the inclusions is established by the strain and stress corresponding to the matrix around them.

According to Mori-Tanaka, while the physical properties may change in the material, the surrounding

average strain, ϵϵϵ0, and stress, σσσ0, can give a good approximation in the considered field, when the

number of inhomogeneities is large enough. This concept is illustrated schematically in Figure 5.1 , in

which the average strain is approximated for an arbitrary inclusion with elastic stiffness, Lr and its

surrounding matrix with elastic stiffness, L0. With this in mind, it can be also assumed that replacing

only one inclusion by the matrix phase with a large number of inclusions does not affect the overall
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elastic behavior. Thus, the r th inhomogeneity can be considered as an elipsoidal inclusion in a uniform

matrix subjected to σσσ0 and ϵϵϵ0. Hence, the strain of r th inhomogeneity can be derived as [168]:

ϵϵϵr = Tr : ϵϵϵ0, with Tr = [I + Sr : L−1
0 : [Lr − L0]]−1, (5.1)

where Tr denotes the interaction tensor, Sr is the Eshelby tensor based on the inclusion shape (aspects

ratios), and L0 and Lr denote the elastic stiffness tensors of matrix and r th inclusion, respectively.

Considering the volume fractions of matrix, V f
0 , and the r th inclusion, V r

f , the following can be derived

for the overall strain, ϵϵϵ̄:

ϵϵϵ̄ =
[︄
V f

0 I +
N∑︂

r=1
V f

r Tr

]︄
: ϵϵϵ0 or ϵϵϵ0 =

[︄
V f

0 I +
N∑︂

r=1
V f

r Tr

]︄−1

: ϵϵϵ̄. (5.2)

Considering the above equation, the r th inclusion strain is derived as:

ϵϵϵr = Ar : ϵϵϵ̄, with Ar = Tr :
[︄
V f

0 I +
N∑︂

r=1
V f

r Tr

]︄−1

, (5.3)

where Ar is the concentration tensor of the r th inclusion.

Figure 5.1: Schematics for Mori-Tanaka assumptions [2].

Many researchers extended this framework to also obtain the global stiffness using the material

properties of the constituents [168–170]. For the nonlinear materials, Transformation Field Analysis

(TFA) allows estimating the overall behavior of the composite when the matrix phase exhibits inelastic

mechanisms. However, some shortcomings have been reported in the literature regarding the classical

model, related to stiff predicted response due to inability to capture properly the inelastic strains,
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especially in the matrix phase. To resolve this issue, several techniques have been proposed in the

literature, among them the isotropization technique [104], a method involving the Linear Comparison

Composite (LCC) [171] and an approach considering a coating layer with increased inelastic strains

[36,92]. However, typical multi-scale models are incapable of providing accurate results at high damage

levels; numerical instabilities in small zones appear as non-physical responses leading to early numerical

model failure. To this end, nonlocal approaches are proposed to capture the mechanical behavior in

severely damaged regions. Thus, prior to any multi-scale development, the relationship between the

nonlocal length scale, lnl, and the RVE size, lε, as well as its impact on the microscopic and macroscopic

response should be investigated. This is the topic of the following section.

5.2.2 Multi-scale modeling

This section discusses the nonlocal multi-scale framework for the aforementioned composite. In a

composite medium exhibiting nonlocal phenomena, three sizes are of great importance: the global size

of the structure, L, the RVE size, lε, and the nonlocal length scale, lnl, of the matrix phase. Assuming

that the RVE size is always much smaller than the actual size of the structure (L ≫ lε), two different

cases will be examined:

- first, when the RVE size is sufficiently larger or comparable with the nonlocal length scale

(lnl ≤ lε or lnl in the same order with lε),

- second, when the length scale is much bigger than the RVE size (lnl ≫ lε), but lnl is still less

that L.

To illustrate the differences between the two cases in terms of homogenized response, several examples

of a fiber composite medium will be discussed. For this composite, the RVE is periodic and appears

in two different settings: first, as a single periodic unit cell, and second, as a group of periodic unit

cells (Figure 5.2). The fibers are assumed long, unidirectional, elastic, and made of glass, while the

matrix phase is of the PA 66 material, whose constitutive law has been described in chapters 2 and 4.

For each case, the damage behavior is studied and the analysis is performed using a commercial finite

element tool. Quadratic tetrahedral elements are used in the finite element models, and the numerical

implementation of the nonlocal model is expressed in the following sections. For computational reasons,

both the matrix and the fibers are assumed to have the same ξnl, but the γnl parameter of the fibers is
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considered zero. The latter hypothesis ensures that the nonlocal field does not present jumps inside the

fiber, but also it does not affect its response. The FE size for all these studied cases is approximately

0.05mm, whereas the RVE size is 1mm × 1mm × 0.1mm.

Figure 5.2: Loading conditions (u̇ = 0.1mms−1) and the dimensions corresponding to: a) single long
fiber reinforced RVE, b) a group of RVEs (dimensions are based on mm); the thickness for both cases
is 0.1mm.

5.2.2.1 Case 1: lnl ≤ lε or lnl in the same order with lε

In this case, the nonlocal length scale, lnl, is assumed to be smaller than or in the same order with

the RVE size, lε. This assumption implies that the nonlocal length scale is not present explicitly at

the macroscale and only appears at the microscale. Accordingly, the multi-scale system of equations

can be derived using asymptotic expansion as:

- macroscale:
∂σ̄ij

∂x̄i
= 0 with ⟨σ(0)

ij ⟩ = σ̄ij , (5.4)

- microscale: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂σ
(0)
ij

∂xi
= 0,

ξnl ∂

∂xi

(︄
∂rnl

∂xi

)︄
+ γnl

(︂
r − rnl

)︂
= 0,

(5.5)

where the symbols, ”.̄” and ”⟨.⟩”, are the macroscopic variable and the average on the microscopic

unit cell volume respectively, and ”.(0)” denotes the zero order terms of the corresponding asymptotic
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expansion. The deriving procedure is fully expressed in appendix B where besides the zero order

terms, higher order terms are also introduced. It is noted that such case may be problematic from a

homogenization point of view, as reported in the literature [95].

As a first example, the periodic boundary conditions are applied on a single RVE and a group

of RVEs when lnl = 0.01 lε, and the resulting damage profiles are extracted in Figure 5.3. As seen,

the damage profiles are not identical and uniform in the RVEs set, and it is not clear which one

illustrates the true damage behavior, arising questions whether the RVE is representative. As the

second example, the same analysis is performed when lnl = 0.1 lε, and the 3D maps of damage are

depicted in Figure 5.4. As observed, by increasing the ratio of lnl/lε, the damage profiles become

almost uniform in the RVEs group, and the damage stays within the RVE and concentrates around

the fiber.

Figure 5.3: Damage profile under 0.1mms−1 monotonic loading rate when lnl = 0.01 lε (lnl < lε): a)
single long fiber reinforced RVE, b) a group of RVEs. Element size is set to 0.05mm.

5.2.2.2 Case 2: lnl ≫ lε

As the second case, the nonlocal length scale is assumed to be much larger than the RVE size.

Therefore, the nonlocal equation does not appear at the micro level and passes through the macroscale.

Based on the asymptotic expansion given in appendix B, it is shown that the scale separation has a

more ”classical” formalism, and the governing equations at the macro and micro scales are expressed

as follows:
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Figure 5.4: Damage profile under 0.1mms−1 monotonic loading rate when lnl = 0.1 lε (lnl < lε): a)
single long fiber reinforced RVE, b) a group of RVEs. Element size is set to 0.05mm.

- macroscale:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂σ̄ij

∂x̄i
= 0 with ⟨σ(0)

ij ⟩ = σ̄ij ,

ξnl ∂

∂x̄i

(︄
∂rnl(0)

∂x̄i

)︄
+ ⟨γnlr(0)⟩ − ⟨γnl⟩rnl(0) = 0,

(5.6)

- microscale

σ
(0)
ij

∂xi
= 0. (5.7)

Similar example with the previous one, considering this time lnl = 100 lε, allows to study the damage

growth within the RVEs (see Figure 5.5). As observed, the RVEs damage profiles are identical, so the

RVE is representative.

According to the above results, it can be concluded that the second case (lnl ≫ lε) is more

compatible with the multi-scale framework than the first one because the RVE is representative, and

it satisfies the periodicity assumption and the classical scale separation formalism. Furthermore, this

assumption allows the nonlocal variable to be identical throughout the RVE, whereas smaller length

scales lead to non-uniform nonlocal variable, rnl, at the microscale. This fact is confirmed through 3D

maps of the nonlocal variable, rnl, depicted in Figure 5.6. Uniform nonlocal variable within the RVE

makes the model compatible with the mean field homogenization frameworks, in which the material

properties in the RVE vary by phase. In addition, the second case is more acceptable physically
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Figure 5.5: Damage profile under 0.1mms−1 monotonic loading rate when lnl = 100 lε (lnl ≫ lε): a)
single long fiber reinforced RVE, b) a group of RVEs. Element size is set to 0.05mm.

because the localization of state variables, particularly damage, is a problem often observed at the

macroscale failure.

Figure 5.6: Nonlocal variable, rnl, profile under periodic boundary conditions when: a) lnl = 100 lε,
b) lnl = 0.1 lε.

It is worth mentioning that, according to nonlocal analyses standards [140, 147], for lnl = 0.1 lε

and lnl = 100 lε, the FE size is sufficiently small compared to the length scales. However, for the

lowest lnl case, this FE size is relatively large. An additional analysis with much finer mesh leads to

qualitatively similar results, confirming thus the derived conclusions of the study.
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5.2.3 Mori-Tanaka/TFA framework

Since the focus of this research is the failure at the macrostructure, the second case (i.e. lnl ≫ łε) is

considered in the sequel of this chapter to develop the multi-scale framework. The conclusions reached

from the asymptotic expansion homogenization approach, specially with regard to the macroscale

and microscale problems, can be adopted for other micromechanics schemes. Mori-Tanaka/TFA ho-

mogenization approach is used here to model overall mechanical responses of glass fiber reinforced

polyamide 66. Since the current work is an attempt to establish a general framework and there is

no experimental comparison, the classical Mori-Tanaka/TFA framework without inelasticity related

modifications is adopted here. The proposed theory can be easily extended to adopt a correction on

the plastic strains level. Mori-Tanaka/TFA method suggests splitting the total macroscopic stress into

two parts, elastic and inelastic [36,90]:

σσσ̄ = σσσ̄r + σσσ̄in = C̄sec : ϵϵϵ̄+ σσσ̄in, (5.8)

where C̄sec
is the 4th order overall secant tensor, and the superscripts ”.e” and ”.in” respectively denote

the elastic and inelastic parts of the variable. Based on the extended Eshelby’s problem the inclusion

deformation, ϵϵϵ1 is defined as [172]:

ϵϵϵ1 = T1 : ϵϵϵ0 + Tp
1 : σσσin

0 − Tp
1 : σσσin

1 , (5.9)

with

T1 = [I + P : (Csec
1 − Csec

0 )]−1 , Tp
1 = T1 : P, P = S (Csec

0 ) : Csec
0

−1, (5.10)

where S and P are the 4th order Eshelby and polarization tensors, respectively; here, the subscripts,

”.0” and ”.1”, denote the matrix and inclusion variables, and T1 and Tp
1 are the elastic and inelastic

interaction tensors, respectively. The macroscopic strain, ϵϵϵ̄, for a composite material whose RVE

constitutes from the matrix phase and one single inclusion is expressed as:

ϵϵϵ̄ = V f
0 ϵϵϵ0 + V f

1 ϵϵϵ1, (5.11)
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where V f
0 and V f

1 are the matrix and inclusion volume fractions respectively. Substituting 5.9 into

5.11 yields:

ϵϵϵ̄ = V f
0 ϵϵϵ0 + V f

1

(︂
T1 : ϵϵϵ0 + Tp

1 : σσσin
0 − Tp

1 : σσσin
1

)︂
, (5.12)

where it can be rewritten as:

ϵϵϵ̄ =
(︂
V f

0 I + V f
1 T1

)︂
: ϵϵϵ0 + V f

1

(︂
Tp

1 : σσσin
0 − Tp

1 : σσσin
1

)︂
. (5.13)

Thus, the matrix deformation can be expressed as:

ϵϵϵ0 = A0 : ϵϵϵ̄+ Ap
0 : σσσin

0 + Ap
1 : σσσin

1 , (5.14)

with the concentration tensors being given by the formulas:

A0 =
[︂
V f

0 I + V f
1 T1

]︂−1
, Ap

0 = −V f
1 A0 : Tp

1, Ap
1 = A0 : V f

1 Tp
1. (5.15)

The inclusion deformation is also derived by substituting 5.14 into 5.9:

ϵϵϵ1 = A1 : ϵϵϵ̄+ Af
0 : σσσin

0 + Af
1 : σσσin

1 , (5.16)

with

A1 = T1 : A0, Af
0 = T1 : Ap

0 + Tp
1, Af

1 = T1 : Ap
1 − Tp

1. (5.17)

The overall stiffness for the present two phase composite is defined as [90]:

C̄sec = V f
0 Csec

0 : A0 + V f
1 Csec

1 : A1. (5.18)

Since the glass fibers are considered elastic, σσσin
1 = 000, and the Ap

1 and Af
1 concentration tensors can

be omitted in the computational procedure. Moreover, the secant modulus, Csec
1 , coincides with the

elastic modulus of the reinforcement.

The next section deals with the numerical implementation of the present multi-scale model, com-

bining the VEVPD matrix phase, the homogenization scheme, and the nonlocal framework.
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5.3 Numerical implementation

The numerical implementation consists of three different stages: first, the microscale inelastic

mechanisms in the matrix phase are computed and updated using a VEVPD subroutine, second, the

micromechanical model subroutine providing the global stress tensor and secant modulus, and third,

the nonlocal part implemented at the macroscopic scale using the analogy between heat and nonlocal

equations through HETVAL subroutine. The interaction between the stages mentioned above and the

associated inputs and outputs are briefly presented as a flowchart in Figure 5.7. The following sections

discuss each part of the implementation procedure in more detail.

VEVPD subroutine
Update:

𝝐0, 𝜒𝑖 𝑖=1,𝑁, 𝝈0, 𝝈0
𝑖𝑛

Micromechanics UMAT
subroutine

ഥ𝝈,𝕋𝝐
𝝈

HETVAL subroutine

Solver

Updated 𝝈0
𝑖𝑛, 𝑟0𝝐0

𝑇
𝑟𝑛𝑙
ℎ , ҧ𝑟, 𝑟𝑛𝑙

ത𝝐, Δത𝝐

Figure 5.7: Flowchart of the numerical implementation in ABAQUS FE software for a composite
structure. It should be mentioned that the HETVAL subroutine only needs T rnl

h , as the associated
nonlocal tangent operator.

5.3.1 VEVPD model numerical implementation

As already expressed in chapter 2, the VEVPD numerical model is discretized in time based

on an implicit backward Euler scheme compatible with the FE solver inputs in time steps. The

associated subroutine takes the total deformation of the matrix phase, ϵϵϵ0, at the time step n, and the

corresponding deformation variation, ∆ϵϵϵ0, at the time step n+ 1, as inputs and produces the inelastic

stress, σσσin
0 , and the secant modulus of the matrix phase, Csec

0 , as outputs. For updating the internal
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state variables and calculating the inelastic stress, an iterative process is designed based on the ”convex

cutting plane” return mapping algorithm [16, 117]. As an efficient method, the algorithm is divided

into two steps: viscoelastic correction-prediction and full correction. At the first stage, no plasticity

or damage is taken into account, and the deformation is governed by viscoelasticity. Therefore, only

the total strain and viscoelastic strain elements vary under deformation. Once the equivalent stress,

σeq, exceeds the material elastic limit, R0 (f > 0), the viscoplasticity and the related ductile damage

are activated, and a full correction is required to update the state variables including viscoplastic

strain, hardening state variables, and viscoelastic strains. More detailed description of the numerical

implementation of the VEVPD model can be found in [14].

5.3.2 Micromechanics model algorithm

The objective of the micromechanical model is to provide the solver with the overall stress and

secant modulus tensors in macroscopic scale. To this end, the micromechanical subroutine passes the

matrix phase strain tensor, ϵϵϵ0 and its corresponding variation, ∆ϵϵϵ0, to the VEVPD tool which yields

the inelastic stress tensor, σσσin
0 . Since the matrix deformation depends on the inelastic mechanisms

(equation (5.14)), an iterative algorithm is adopted to calculate the inelastic stress tensor. Table 5.1

provides the detailed description of the numerical micromechanical UMAT as an algorithm box. Also,

Figure 5.7 illustrates how the numerical tools are inter-connected.

5.3.3 Nonlocal model setup within the ABAQUS FE software

As mentioned in the previous sections, the nonlocal phenomena appear and are integrated at the

macroscopic scale. In this regard, the nonlocal strategy uses ξnl and ⟨γnl⟩ as nonlocal parameters.

Also, it passes as inputs to the solver: the average local quantity, ⟨γnl r⟩, and the nonlocal variable,

rnl, as well as the associated tangent operators. In this respect, since the present gradient enhanced

model contains the nonlocal balance equation as well as the stress equilibrium, an additional degree of

freedom must be defined as the nonlocal field. To this end, similar to chapter 4 HETVAL subroutine

is used to introduce the nonlocal field to the FE model.
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Table 5.1: Algorithm box: Micromechanics iteration algorithm

1- Recover stress and state variables at the time step, n:

ϵϵϵ
vp(n)
0 , ϵϵϵ

vi(n)
0 , Dn

0 , r
n
0 , ϵϵϵ

n
0 , ϵϵϵ

n
1 ,σσσ

n
0 ,σσσ

in(n)
0 with (i = 1, .., Nv).

2- Calculate secant modulus tensors:
Csec

0 , Csec
1 .

3- Calculate concentration tensors based on Csec
0 , Csec

1 :
A0, Ap

0, A1.
5- Compute ∆ϵϵϵ0 using concentration tensors:

∆ϵϵϵ0 = ϵϵϵn+1
0 − ϵϵϵn0 = A0 : (ϵϵϵ̄+ ∆ϵϵϵ̄) + Ap

0 : σσσin
0 − ϵϵϵn0 .

Start iterative process.
6- Run VEVPD subroutine and update:

ϵϵϵ
vp(n)
0 , ϵϵϵ

vi(n)
0 , Dn

0 , r
n
0 , ϵϵϵ

n
0 , ϵϵϵ

n
1 ,σσσ

n
0 ,σσσ

in(n)
0 with (i = 1, .., Nv).

7- Update secant modulus tensor, Csec
0 , and concentration tensors:

A0, Ap
0, A1.

8- Update ∆ϵϵϵ0 and ∆ϵϵϵ1 corresponding to iteration step k + 1:
∆ϵϵϵk+1

0 = ϵϵϵn+1
0 − ϵϵϵn0 = A0 : (ϵϵϵ̄+ ∆ϵϵϵ̄) + Ap

0 : σσσin
0 − ϵϵϵn0 ,

∆ϵϵϵk+1
1 = (∆ϵϵϵ̄− V f

0 ∆ϵϵϵ0)/V f
1 .

9- Update concentration tensors.

10- if
⃓⃓⃓
|∆ϵϵϵk+1

0 − ∆ϵϵϵk0|
⃓⃓⃓
+
⃓⃓⃓
|∆ϵϵϵk+1

1 − ∆ϵϵϵk1|
⃓⃓⃓

≤ Rtol,

update ϵϵϵ0, ϵϵϵ1, σσσ0, σσσ1, σσσ̄, and continue at 11,
else set k = k + 1 and return to 6,
11- Compute the tangent modulus (stiffness tensors) of each phase,
12- Calculate concentration tensors using the tangent moduli of the phases,
13- Compute the overall stiffness tensor using (5.18). For the next step (n+1), continue at 1.
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5.3.4 Tangent operators

Based on the governing equations (5.6), the increment of the overall stress and the associated

nonlocal term is expressed as:

∆σσσ̄ = Tσσσ
ϵϵϵ : ∆ϵϵϵ̄+ TTTσσσ

rnl ∆rnl, (5.19a)

∆
[︂
⟨γnlr⟩ − ⟨γnl⟩rnl

]︂
= TTT h

ϵ : ∆ϵϵϵ̄+ T h
rnl ∆rnl, (5.19b)

with

∆
[︂
⟨γnlr⟩ − ⟨γnl⟩rnl

]︂
= V f

0 γ
nl
0

(︂
∆r − ∆rnl

)︂
, (5.20)

where Tσσσ
ε denotes the overall stiffness tensor computed using (5.18) by substituting the phases tangent

moduli and the corresponding concentration tensors, and it is passed to the solver through the UMAT

subroutine. In terms of nonlocal parameters in the inclusion phase, since the inclusion is considered

elastic, the parameter γnl
1 is considered zero in the nonlocal equation, however ξnl term is assumed

to be uniform in whole of the RVE. Here, TTTσσσ
rnl , TTT

h
ϵ , and T h

rnl are the associated nonlocal tangent

operators, of which only T h
rnl is required by HETVAL, and simply derived as:

T h
rnl = −⟨γnl⟩ = −(V f

0 γ
nl
0 + V f

1 �
�✒

0
γnl

1 ) = −V f
0 γ

nl
0 . (5.21)

5.4 Results and discussion

In this section, the overall mechanical responses of the proposed multi-scale model are studied

under small deformation assumption (up to 10%). The matrix phase material properties given in [1],

and the inclusions are made of glass (elastic phase) with Young’s modulus, Eg = 72000MPa, and

Poisson’s ratio, νg = 0.22. Since, there is no experimental data yet, the model is first validated by

a multi-layered structure (unilateral notched body) then is examined for a long glass fiber reinforced

composite structure (notched plate). Finally, the influences of different parameters are explored as a

parametric study for an asymmetrically double notched structure.

155



5.4. RESULTS AND DISCUSSION

5.4.1 Preliminary validation of the nonlocal model against full-structure solution
for multi-layered composite

The validity of the suggested Mori-Tanaka/TFA framework can be investigated using a multi-

layered model [173]. In this respect, a unilateral notched body is considered (Figure 5.8-a). Initially,

the proposed homogenization scheme is implemented on the structure subjected to a monotonic load

on the external surfaces normal to Y -axis, then the obtained results are compared to a complete

structural model without homogenization (Figure 5.9-a), consisting of 100 RVEs. In terms of boundary

conditions, the base of the structure is fixed and the monotonic load is imposed from above (Figure

5.8-a). Each RVE is constituted from a polymer layer in the middle and two glass layers at the sides, in

which the glass volume fraction is set as 20 percent (see Figure 5.9). The number of layers determines

the size of RVE which should be much smaller than the considered length scale as discussed in the past

sections. Here, the nonlocal parameters are given as γnl = 5GPa (for the matrix) and ξnl = 600 kN

(lnl2 = ξnl/γnl), while the ratio between length scale and the RVE size is derived based on the number

of RVEs in the structure which means lnl/lε ≈ 36.51. Figure 5.10 shows the distribution of von Mises

stress and damage in the multi-layered structure and exhibits how the combination of the glass and PA

66 layers responds under loading. The responses of both models under the same boundary conditions

are extracted as displacement-force curves in Figure 5.11. As observed, there is a good agreement

between the two analyses.

Figure 5.8: Geometrical dimensions and the corresponding boundary conditions of: a) unilateral
notched plate, b) plate with a long notch, c) asymmetrically double notched structure.
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Figure 5.9: a) Multi-layered unilateral structure; b) zoom view and configuration of each RVE. The
element type is the coupled temperature-displacement brick element (C3D8T)

.
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(a) von Mises stress 3D map (b) Damage 3D map

Figure 5.10: 3D maps of von Mises stress and damage under 5mms−1 monotonic loading rate in
the multi-layered structure when lnl/lε ≈ 36.51. The element type is the coupled temperature-
displacement brick element (C3D8T).

Figure 5.11: Force-displacement curve under 1.5mms−1 monotonic tensile loading for multi-layered
and homogenized unilateral notched structure using the nonlocal framework when lnl/lε ≈ 36.51,
ξnl = 600 kN, and γnl = 5GPa.
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5.4.2 Comparison of local and nonlocal models for long glass fiber reinforced struc-
ture

In this section, a composite notched plate is subjected to a monotonic tensile test, whose dimensions

are given in Figure 5.8-b. The composite is considered as unidirectional long glass fiber reinforced

polyamide 66 with the RVE given in Figure 5.2, and its overall mechanical behavior is estimated

using the latter homogenization framework based on single fiber RVEs, oriented in Z-direction. The

given structure is pulled from the upper side and fixed at the bottom, and the displacement controlled

loading rate is assigned to 5mms−1 (5.8-b). Based on the present specified boundary conditions, local

and nonlocal models are implemented on a commercial finite element software, and the mechanical

responses are investigated. Figure 5.12 compares the force-displacement curves between local and

nonlocal models. As shown, after some point, the nonlinear part of the curves in the local and

nonlocal continuum models diverge, and the local model fails at a lower force level while the nonlocal

model keeps evolving in a more stable way. Figure 5.13 shows the 3D maps of the matrix damage for

the local and nonlocal models. As observed, in local models, the damage is localized in the crack zone

passing through the structure. However in the nonlocal model, the damage remains around the notch

region. In other words, the nonlocal model yields more stable responses in the small deformation zone

compared the local framework. The notched plate is considered under the same boundary conditions,

and the subsequent analysis is performed with different values of the nonlocal parameters when the

nonlocal length scale is held constant. The resulting 3D damage maps are presented in Figure 5.14

for four sets of nonlocal parameters. As observed, changing the nonlocal parameters can invert the

damage patterns. Consequently, the proposed model can lead to different damage profiles. Verification

of the correct nonlocal parameters can be achieved through proper calibration against experimental

data.

5.4.3 Parametric study

In this section, a parametric study is conducted to explore the effect of nonlocal parameters, volume

fraction, and loading rates. To this end, an asymmetrically double notched structure is considered,

whose dimensions are given in Figure 5.8-c. The boundary conditions are imposed on the external

surfaces normal to X-axis. The displacement field is set to zero on one side, and a displacement

controlled load is applied on the other side (Figure 5.8-c). As the previous section, the homogenization
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Figure 5.12: Force-displacement curves for the composite notched plate under 5mms−1 monotonic
tensile loading using local and nonlocal models with ξnl = 80 kN and γnl = 5GPa when V f

1 = 2%,

V f
1 = 5%, and V f

1 = 10%. The element type is the coupled temperature-displacement brick element
(C3D8T).

Figure 5.13: Matrix damage distribution in the notched plate under 5mms−1 monotonic tensile loading
using local and nonlocal models with ξnl = 80 kN and γnl = 5GPa when V f

1 = 2%, V f
1 = 5%, and

V f
1 = 10%.
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Figure 5.14: Matrix damage profile under 5mms−1 monotonic tensile loading using the nonlocal model
with different ξnl and γnl when the length scale is constant (lnl = 4mm). The element type is the
coupled temperature-displacement brick element (C3D8T).

framework is implemented based on the RVEs containing unidirectional long glass fibers, parallel to

Z-axis, and the responses are conducted in different cases and compared with each other. Figure 5.15

shows the force-displacement curves in the different glass fiber volume fractions under the loading

rate of 5mm s−1 (γnl = 5GPa, ξnl = 80 kN). As expected, the higher the volume fraction of glass

fibers, the stiffer the structure becomes. Figure 5.16 shows more clearly how the volume fraction

affects the stress level in the structure. As seen, for higher volume fractions, higher von Mises stress

values are observed, and there is a stress concentration around the notches. For the latter analysis,

the matrix damage profile also is shown in Figure 5.17, and the damage is mostly localized around the

notches. Since the matrix phase is a viscoelastic viscoplastic material, the loading rate influences the

material responses. In this respect, results at different loading rates are extracted for the composite

with 10 percent glass fiber volume fraction, and the nonlocal parameters are given as γnl = 5GPa and

ξnl = 80 kN (see Figure 5.18). As observed, higher loading rates lead to higher slope curves and stiffer

material behavior. However, the loading rate effect is more pronounced when the rate is increased to

50mms−1. Figures 5.15, 5.16, 5.17, and 5.18 imply that the impact of inclusion volume fraction and

the loading rate on the composite mechanical behavior conforms to the expectations, and the present

nonlocal framework does not violate them.

As discussed in the previous section, the nonlocal approach addresses early model failures and

provides more stable results. The efficiency of the nonlocal scheme depends on the considered length

scale controlled by the nonlocal parameters, γnl and ξnl. To study the influence of γnl, several analyses

under 5mms−1 loading rate for different values of γnl are performed when ξnl is maintained constant
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Figure 5.15: Force-displacement curves for the asymmetrically notched composite structure under 5
mms−1 loading rate in different glass volume fractions (γnl = 5GPa, ξnl = 80 kN).

Figure 5.16: Von Mises stress distribution under 5 mms−1 loading rate for the asymetrically notched
structure with γnl = 5GPa and ξnl = 80 kN when V f

1 = 10%, V f
1 = 20%, and V f

1 = 30%.
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Figure 5.17: Matrix damage distribution under 5mms−1 loading rate for the asymetrically notched
structure with γnl = 5GPa and ξnl = 80 kN when V f

1 = 10%, V f
1 = 20%, and V f

1 = 30%.

Figure 5.18: Force-displacement curves for the asymmetrically notched composite structure with γnl =
5GPa and ξnl = 80 kN when V f

1 = 10%.
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at 80 kN, and the results are extracted as force-displacement curves in Figure 5.19. One can see that

the effect of γnl is much smaller in its higher values. In other words, beyond a certain level of γnl,

the differences in the curves become negligible. Figure 5.20 shows the effect of γnl in three different

volume fractions, and as shown, its impact in all volume fractions is similar. By keeping γnl = 5GPa,

the influence of ξnl is studied through several analyses under the same boundary conditions. Figure

5.21 provides the force-displacement curves in several values of ξnl for three different volume fractions

of glass fiber. As observed, for larger values of ξnl the model is stiffer and its impact does not change

by increasing the glass fiber volume fraction.

Figure 5.19: Force-displacement curves for the asymmetrically notched composite structure under 5
mms−1 loading rate in different γnl with ξnl = 80 kN when V f

1 = 10%.

5.5 Conclusion

In this chapter, the shortcoming of the conventional multi-scale models regarding the physical

characterization of composites undergoing high level damage was addressed by a gradient enhanced

nonlocal approach. In the microscale, the matrix phase constitutive laws have been derived using the

thermodynamics of irreversible processes and the generalized standard material formalism. To provide

an appropriate multi-scale framework, the relationship between the nonlocal length scale and RVE size

has been discussed, and the Mori-Tanaka/TFA approach has been implemented for homogenization

when lnl ≫ lε, based on which the nonlocal approach is implemented at the macroscale. To develop
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Figure 5.20: Force-displacement curves for the asymmetrically notched composite structure under 5
mms−1 loading rate in different γnl with ξnl = 80 kN when V f

1 = 10%, V f
1 = 20%, and V f

1 = 30%.

Figure 5.21: Force-displacement curves for the asymmetrically notched composite structure under 5
mms−1 loading rate in different ξnl with γnl = 5GPa when V f

1 = 10%, V f
1 = 20%, and V f

1 = 30%.
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the nonlocal field within the FE tool, an analogy between the steady state heat flux equation and

the gradient enhanced relationship was considered, which allowed using the fully coupled temperature

displacement package in ABAQUS. The numerical examples presented in this study express the ca-

pability of the nonlocal model to fully characterize the composite material behavior in high damage

levels under small deformation assumption. The resulting responses imply the good performance of the

gradient enhanced thermodynamic model as a nonlocal approach in glass reinforced semi-crystalline

polymers.
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Chapter 6

Conclusions and perspectives

6.1 Conclusions

The scope of the thesis was to study the nonlinear behavior of polyamide 66 and its related com-

posites, taking into account environmental conditions, pressure-sensitive behavior, and damage. In

these materials, high level of damage is accompanied by softening leading to ill-posed problems and

non-unique results in the computational models. Moreover, they exhibit tension-compression asym-

metry when undergoing non-proportional loading and high sensitivity to environmental conditions,

particularly humidity. In the present work, a viscoelastic viscoplastic damageable model (VEVPD)

was presented, in which the hydrostatic pressure effect and tension-compression asymmetry is in-

cluded. An experimental campaign was designed to study the dominant mechanisms and identify the

parameters of the proposed framework. Then, the model was improved using the nonlocal gradient

enhanced approach to obtain unique responses for the heavily damaged material. This was extended

to a multi-scale framework for modeling the composite behavior. In the following, the outcomes are

briefly listed for each chapter.

First, in chapter 2, the phenomenological VEVPD model developed in our group by Praud et

al. [14] was extended to a more advanced model accounting for tension-compression asymmetry and

hydrostatic pressure effect characterizing semi-crystalline polymers. A parametric study using 0D and

3D solvers was performed, and the effect of the tension-compression asymmetry parameter, m, on the

stress-strain curves and damage profiles under different boundary conditions was investigated. The

parametric study revealed that the asymmetry parameter effect is more significant when the material

undergoes multi-axial or cyclic tension-compression loading. This leads to asymmetric profiles of the
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internal state variables, such as damage or plasticity, and increase of asymmetry in the stress-strain

curves under cyclic loading.

In chapter 3, an experimental campaign was designed and performed, in which dog bone samples

with different water contents were subjected to mechanical tests including monotonic load, loading-

unloading, and creep-recovery. This allowed investigating the variation of the mechanical response

from rubbery-like to glassy-like by reconditioning the polyamide 66 material at different Relative

Humidity (RH) conditions. The mechanical tests showed time-dependent strain along with creep,

and ductile damage depending on the sample water uptake represented by different RH conditioning

levels. The experimental data obtained from dog bone samples was employed to identify the von

Mises-based model. Indeed, prior to this study, the von Mises-based VEVPD model had only been

calibrated and validated for PA66 at RH50 [14]. In this study, for the first time the VEVPD model

based on von Mises yield function was calibrated and validated for PA66 with RH0, RH25, RH65, and

RH80. The validation results reveal that the VEVPD model provides accurate predictions for high

RH level namely: RH50, RH65, RH80. In addition to capture the tension-compression asymmetry,

tension-torsion tests were implemented on the diabolo-type specimens. The obtained global force-

displacement and moment-angle curves were used to calibrate the I1-J2-based model. The asymmetry

parameter identified in RH50 (m = 1.05) indicates that the compressive yield strength is slightly

higher than the tensile yield strength. However, for RH65, the asymmetry parameter was identified

as m = 1.00, which can be interpreted as symmetric behavior. This main result confirmed that the

polyamide 66 response is highly depend on the RH.

To address the non-physical responses in high levels of damage, chapter 4 presented an extension

of the local continuum model to a nonlocal framework through the gradient enhanced approach. In

terms of nonlocal variable, two options were investigated: nonlocal damage and nonlocal hardening

state variable that is driving the damage accumulation. Parametric studies show that the nonlocal

damage model does not yield the desired physical results because the plasticity-related localization is

not addressed. However, the gradient enhanced model based on the nonlocal hardening state variable

is more efficient and leads to unique responses, as it implicitly accounts for the damage localization.

Thus, the limitation of the local continuum model in characterizing the material behavior exhibiting

severe damaged areas was addressed by using the gradient enhanced model with the nonlocal variable

derived from the hardening state variable. Moreover, both UMAT-UEL and UMAT-HETVAL tools
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were used to implement the nonlocal framework on the computational model, and they conducted same

responses. However, UMAT-HETVAL is less computationally expensive when the nonlocal fields are

scalar variables, as in the present study.

In chapter 5, the nonlocal model was extended to a multi-scale framework. The multi-scale model

in different cases was investigated, and the magnitude of the nonlocal length scale versus the RVE

size for nonlocal regularization was discussed. The investigations revealed that the homogenization

becomes complex and the RVE is not representative when the length scale is comparable or smaller

than the RVE size. Considering the length scale much larger than the RVE size, a proper nonlocal Mori-

Tanaka/TFA framework was formulated for the first time. The multi-scale model was validated with

a full-structure multi-layered composite finite element model, and a parametric study was performed

to investigate its efficiency. For different types of composite structures, the results of the parametric

study demonstrate that the responses of the nonlocal model were found more stable at a high damage

level compared to the local model, as expected.

6.2 Perspectives

Until now, hydrostatic pressure and tension-compression asymmetry have been taken into ac-

count in modeling the behavior of thermoplastics as pressure-sensitive materials through the I1-J2

yield function. In addition, multi-axial mechanical tension-torsion tests were performed in chapter 3,

which allowed calibration of the model accounting for the asymmetric yield behavior. However, as

shown through the parametric analysis presented in chapter 2, the model subjected to cyclic tension-

compression loading exhibits more pronounced asymmetric responses, whereas the experimental data

obtained in chapter 3 are extracted from monotonic multi-axial loading. Thus, the present VEVPD

based on the I1-J2 function should be calibrated for more general cases by designing performing addi-

tional experimental test configurations including multi-axial cyclic tests. Moreover, since the present

model also captures the hydrostatic pressure, it can be better evaluated through mechanical tests under

internal hydrostatic pressure, such as water-filled cylindrical samples. In that sense, tension-torsion-

internal pressure would be an appropriate test configuration to enrich the experimental database for

the identification.

Although the local model has been calibrated and validated at different RHs, it does not provide
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sufficient agreement with experiments for RH0 and RH25. In other words, the model does not take

into account certain active mechanisms at low RH, such as brittle damage or almost rate-independent

response of thermoplastics at low extent of water content. This can be addressed by developing an

elasto-viscoplastic model with brittle damage decoupled from plasticity [143,174,175]. In addition, the

nonlocal framework has not yet been calibrated, and the nonlocal parameters and subsequently the

length scale are still unknown. Therefore, nonlocal phenomena in thermoplastics and composites and

the effect of RH on their behavior under high damage levels are the issues that have not been sufficiently

investigated. To this end, a mixed numerical-experimental framework should be designed to identify

the nonlocal length scale at different RH, for which local average measurements and compact tension

tests are proposed in the literature depending on the active mechanisms in the material [141,176].

In the present work, the nonlocal multi-scale model was developed for composites with unidi-

rectional long fiber inclusions, and its effectiveness in addressing nonlocal phenomena was evaluated

through a parametric study. The orientation and shape of the inclusions in the composites can be

accounted for in the model through micromechanical or finite element-based multi-scale models. An

experimental study on reconditioned composites at different RH would also provide useful information

about active and dominant mechanisms, based on which the multi-scale model can be modified and

extended. Although there have been some experimental studies about the RH effect on PA66 com-

posites in the literature [177], this can be a novel research to also study the effect of RH on nonlocal

parameters and length scale in comparison with experimental data.

To predict the long-term mechanical responses of composites, a variety of environmental factors

must be considered based on operating conditions, such as contact with water or chemical solvents,

exposure to high or low temperatures, etc. For example, glass-reinforced thermoplastics used in the

automotive industry are in permanent contact with chemical solvents, such as antifreeze (a mixture

of water and ethylene glycol), which affects their mechanical behavior, and the nonlinear inelastic

mechanisms are strongly affected, resulting in glassy to rubbery and less or more time-dependent

behavior [178]. These operating conditions are often along with high temperature, such as the com-

posites used in the cooling radiators [179]. Thus, the model needs to include more environmental

factors and extended to chemico-mechanical coupling. To calibrate such a comprehensive model, the

experimental data can be extracted from the mechanical tests implemented on samples reconditioned

under different temperatures and aging conditions (glycol, water, etc.).
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In this work, the VEVPD model has been validated and calibrated for different RH levels. In a

more general context, it is possible to design and calibrate data-driven models that can lead to com-

putationally less expensive predictions of the material behavior. [180,181]. Generating a large enough

database using the identified constitutive law, the physical based model can be replaced by a data-

driven framework. The latter should be capable of providing the mechanical responses at arbitrary

loading conditions and RH. The developed model using data-driven framework can be employed in

Virtual/Augmented Reality (VR/AR) solutions to conduct real time responses in a digital, virtual,

and hybrid twin [182].
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[54] G. Pijaudier-cabot et Z. Bažant, “Nonlocal damage theory,” Journal of Engineering Mechanics,

vol. 113, no. 10, p. 1512–1533, 10 1987.
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Mécanique, vol. 14, p. 39–63, 1975.

[107] P. Germain, P. Suquet et Q. Nguyen, “Continuum thermomechanics,”ASME Transactions Series

E Journal of Applied Mechanics, vol. 50, p. 1010–1020, 1983.

[108] M. Gudimetla et I. Doghri, “A finite strain thermodynamically-based constitutive framework

coupling viscoelasticity and viscoplasticity with application to glassy polymers,” International

Journal of Plasticity, vol. 98, p. 197–216, 11 2017.

[109] L. Kachanov, “Time of the rupture process under creep conditions. izvestiia akademii nauk sssr,

otdelenie teckhnicheskikh nauk,” vol. 8, p. 26–31, 1958.

[110] Y. Rabotnov, Creep rupture. Springer Berlin Heidelberg, 1968, p. 342–349.

183



BIBLIOGRAPHY

[111] J. L. Chaboche, “Thermodynamic formulation of constitutive equations and application to the

viscoplasticity and viscoelasticity of metals and polymers,” International Journal of Solids and

Structures, vol. 34, no. 18, p. 2239–2254, 6 1997.

[112] I. Ward, “Review: The yield behaviour of polymers,” Journal of Materials Science, vol. 6, no. 11,

p. 1397–1417, 11 1971.

[113] K. Pae et S. Bhateja, “The effects of hydrostatic pressure on the mechanical behavior of poly-

mers,” Journal of Macromolecular Science, Part C, vol. 13, no. 1, p. 1–75, 1 1975.

[114] N. S. Ottosen et M. Ristinmaa, The mechanics of constitutive modeling. Elsevier, 2005.

[115] J. Lemaitre, “Coupled elasto-plasticity and damage constitutive equations,” Computer methods

in applied mechanics and engineering, vol. 51, no. 1-3, p. 31–49, 1985.

[116] F. Detrez, S. Cantournet et R. Seguela, “Plasticity/damage coupling in semi-crystalline polymers

prior to yielding: Micromechanisms and damage law identification,” Polymer, vol. 52, no. 9, p.

1998–2008, 2011.

[117] M. Qidwai et D. Lagoudas, “Numerical implementation of a shape memory alloy thermomechan-

ical constitutive model using return mapping algorithms,” International Journal for Numerical

Methods in Engineering, vol. 47, no. 6, p. 1123–1168, 2 2000.

[118] A. Ishisaka, et M. Kawagoe, “Examination of the time–water content superposition on the dy-

namic viscoelasticity of moistened polyamide 6 and epoxy,” Journal of Applied Polymer Science,

vol. 93, no. 2, p. 560–567, 2004.

[119] V. Bellenger, A. Tcharkhtchi et P. Castaing, “Thermal and mechanical fatigue of a pa66/glass

fibers composite material,” International journal of Fatigue, vol. 28, no. 10, p. 1348–1352, 2006.

[120] V. Venoor, J. H. Park, D. O. Kazmer et M. J. Sobkowicz, “Understanding the effect of water in

polyamides: a review,” Polymer Reviews, vol. 61, no. 3, p. 598–645, 2021.

[121] G. B. Kauffman, “Wallace hume carothers and nylon, the first completely synthetic fiber,” Jour-

nal of Chemical Education, vol. 65, no. 9, p. 803, 1988.

[122] J. Brydson, Polyamides and polyimides. Butterworth-Heinemann Oxford, 1999.

184



BIBLIOGRAPHY

[123] A. Apinis, A. Y. Galvanovskii et al., “The effect of the moisture content on the transition

temperatures of polycaproamide,” Polymer Science USSR, vol. 17, no. 1, p. 46–51, 1975.

[124] K. Pramoda et T. Liu, “Effect of moisture on the dynamic mechanical relaxation of polyamide-

6/clay nanocomposites,” Journal of Polymer Science Part B: Polymer Physics, vol. 42, no. 10,

p. 1823–1830, 2004.

[125] M. Broudin, P.-Y. Le Gac, V. Le Saux, C. Champy, G. Robert, P. Charrier et Y. Marco, “Water

diffusivity in pa66: Experimental characterization and modeling based on free volume theory,”

European Polymer Journal, vol. 67, p. 326–334, 2015.

[126] P. Y. Le Gac, M. Arhant, M. Le Gall et P. Davies, “Yield stress changes induced by water in

polyamide 6: Characterization and modeling,” Polymer Degradation and Stability, vol. 137, p.

272–280, 2017.

[127] H. Reimschuessel, “Relationships on the effect of water on glass transition temperature and

young’s modulus of nylon 6,” Journal of Polymer Science: Polymer Chemistry Edition, vol. 16,

no. 6, p. 1229–1236, 1978.
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A.1. TIME DISCRETIZATION

Technically speaking, the implementation of the model on the commercial finite element software

(ABAQUS) requires developing a User-defined Material (UMAT) subroutine. At each time step, the

strain, ϵϵϵ, and the strain increment, ∆ϵϵϵ, are passed into the UMAT, and the stress and tangent operator

must be calculated. To this end, the model needs to be discretized in time, and at each time step, the

corresponding increments of the internal state variable have to be derived using an iterative algorithm,

from which the stress and tangent modulus are obtained. To implement this process, a return mapping

algorithm is required. With this in mind, the model presented in chapter 2 is first discretized in time

using an implicit backward Euler time algorithm, and then linearized using ” convex cutting plane” as

the return mapping algorithm.

A.1 Time discretization

An implicit backward Euler scheme is imposed on the governing equations, particularly on the

nullity conditions ϕvp and ϕvi, so as to discretize them into n time steps, ∆t:

ϕvi
n+1 = 1

1 −Dn+1

(︂
Vvi
)︂−1

: σσσvi
n+1 − ∆ϵϵϵvi

∆t , with∆ϵϵϵvi = ϵϵϵvi
n+1 − ϵϵϵvi

n (A.1)

ϕvp
n+1 = ⟨fn+1

Rvp
⟩P −1

vp

+ − ∆r
∆t , with δr = rn+1 − rn, (A.2)

fn+1 =
σσσeq

n+1
1 −Dn+1

−Rn+1 −R0 (A.3)

σσσn+1 = (1 −Dn+1)Ce :
(︄
ϵϵϵn+1 − ϵϵϵvp −

Nv∑︂
i=1

ϵϵϵvi
n+1

)︄
(A.4)

σσσvi
n+1 = σσσn+1 − (1 −Dn+1)Cvi : ϵϵϵvi

n+1 (A.5)

A.2 Linearization according to the convex cutting plane approach

In this section, in order to solve the time discretized relations, the return mapping algorithm is

implemented on the constitutive equations, in which the gradients of the flow are ignored for more
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APPROACH

simplicity [183]. The flow equations can be linearized based on the given evolution laws:

δϵϵϵ = ΛΛΛvpδr, δD = ΛDδr, (A.6)

where, from now on, the indices n and k are ignored. The linearization of the stress, the viscoelastic

conjugate state variable, the yield function, and the viscoelastic and viscoplastic criteria are derived

as:

- stress tensor linearization:

δσσσ = ∂σσσ

∂D
δD + ∂σσσ

∂ϵϵϵ
: δϵϵϵ+ ∂σσσ

∂ϵϵϵvp
: δϵϵϵvp + ∂σσσ

∂ϵϵϵvi
: δϵϵϵvi

= BBBeδD + Bd : δϵϵϵvp − Bd :
Nv∑︂
j=1

δϵϵϵvj

= BBBeΛDδr + Bd : ΛΛΛvpδr − Bd :
Nv∑︂
j=1

δϵϵϵvj

= BBBpδr + Bd : δϵϵϵ− Bd :
NV∑︂
j=1

ϵϵϵvj

(A.7)

with

BBBe = −Ce :

⎛⎝ϵϵϵ− ϵϵϵvp −
Nv∑︂
j=1

ϵϵϵvj

⎞⎠ (A.8)

Bd = (1 −D)Ce (A.9)

BBBp = BBBeΛD − Bd : ΛΛΛvp (A.10)

- viscoelastic conjugate state variable linearization:

δσσσvi = ∂σσσvi

∂σσσ
: δσσσ + ∂σσσvi

∂ϵϵϵvi
: ϵϵϵvi + ∂σσσvi

∂D
δD

= δσσσ − (1 −D)Cvi : δϵϵϵvi + Cvi : ϵϵϵviδD

= Bpδr + Bd : δϵϵϵ− Bd :
Nv∑︂
j=1

δϵϵϵvj − (1 −D)Cvi : δϵϵϵvi + Cvi : ϵϵϵviΛDδr

= Bdδϵϵϵ+BBBwi − Bh : δϵϵϵvi − Bd :
Nv∑︂

j=1(j ̸=i)
δϵϵϵvj

(A.11)

with

BBBwi = BBBp + Cvi + ϵϵϵviΛD (A.12)
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Bh = Bd + (1 −D)Cvi (A.13)

- yield function linearization:

δf = ∂f

∂σσσ
: δσσσ + ∂f

∂r
δr + ∂f

∂D
δD

= fσσσ : δσσσ + frδr + fDδD

(A.14)

with

fσσσ = ΛΛΛvp = ∂f

∂σσσ
=

√
3σσσ′

2(1 −D)
√
J2

(A.15)

fr = ∂f

∂r
= HpHm rHp−1 (A.16)

fD = ∂f

∂D
= σeq

(1 −D)2 (A.17)

Substituting (A.7) into (A.14) yields:

δf = ΛΛΛvp :

⎛⎝BBBpδr + Bd : δϵϵϵ− Bd :
Nv∑︂
j=1

ϵϵϵvj

⎞⎠+ frδr + fDΛDδr

= ΛΛΛvp :

⎛⎝Bd : δϵϵϵ− Bd :
Nv∑︂
j=1

δϵϵϵvj

⎞⎠+Bmδr

(A.18)

with

Bm = ΛΛΛvp : BBBp + fDΛD + fr (A.19)

- viscoelastic criterion linearization:

δφφφvi = ∂φvi

∂σσσvi
: δσσσvi + ∂φvi

∂ϵϵϵvi
: δϵϵϵvi + ∂φφφvi

∂D
δD

= 1
1 −D

Vvi−1 : δσσσvi − 1
∆tδϵ

ϵϵvi + 1
(1 −D)2V

vi−1 : σσσviδD
(A.20)

Substituting (A.11) into the above equation yields:

δφφφvi = 1
1 −D

Vvi−1 :

⎛⎝Bd : δϵϵϵ+BBBwiδr − Bh : δϵϵϵvi − Bd :
Nv∑︂

j=1(j ̸=i)
δϵϵϵvi

⎞⎠
− 1

∆tδϵ
ϵϵvi + 1

(1 −D)2V
vi−1 : σσσviΛDδr

= 1
1 −D

Vvi−1 :

⎛⎝Bd : δϵϵϵ− Bd :
Nv∑︂

j=1(j ̸=i)
δϵϵϵvj

⎞⎠− Bvi : δϵϵϵvi −BBBgi

(A.21)
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with

Bvi = 1
1 −D

Vvi−1 : Bh + 1
∆tI (A.22)

BBBgi = −1
1 −D

Vvi−1 : BBBwi − 1
(1 −D)2V

vi−1 : σσσviΛD (A.23)

- viscoplastic criterion linearization:

δφvp = ∂φvp

∂f
δf + ∂φvp

δr
δr

= Ω∗δf − δr

∆t

(A.24)

with

Ω∗ = 1
Pvp

(︄
f + |f |
2Rvp

)︄P −1
vp −1 1 + sgn(f)

2Rvp
(A.25)

Substituting (A.18) into (A.24) yields:

δφvp = Ω∗

⎡⎣ΛΛΛvp :

⎛⎝Bd : δϵϵϵ− Bd :
Nv∑︂
j=1

δϵϵϵvj

⎞⎠+Bmδr

⎤⎦− δr

∆t (A.26)

A.3 Viscoelastic prediction-correction

In this algorithm, the total strain is considered constant (δϵϵϵ = 000). Only the viscoelastic strains

increments, δϵϵϵvi, are activated and the remaining internal variables are assumed to be constant:

δr = δD, δϵϵϵvp = 000 (A.27)

According to (2.22), the iterative viscoelastic equation is expressed as:

−δφvi = φvi (A.28)

Considering (A.21) and (A.27), the above equation is obtained as:

Avi :
Nv∑︂

j=1(j ̸=i)
δϵϵϵvj + Bvi : δϵϵϵvi = ϕvi (A.29)

with

Avi = 1
1 −D

Vvi−1 : Bd (A.30)
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where can be shown more clearly as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bv1 Av1 Av1 . . . Av1

Av2 Bv2 Av2 . . . Av2

Av3 Av3 Bv3 . . . Av3

. . . . . . .

. . . . . . .

. . . . . . .
Av Nv Av Nv Av Nv . . . Bv Nv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δϵϵϵv1

δϵϵϵv2

δϵϵϵv3

.

.

.
δϵϵϵv Nv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φφφv1

φφφv2

φφφv3

.

.

.
φφφv NV

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.31)

A.4 Full correction

Once f ≥ 0, the viscoplastic deformation coupled with damage is activated. In order to implement

the return mapping, full correction algorithm proposes an iterative algorithm where the damage and

hardening state variable increments are also taken into account. However, the total strain is constant

at each time step, and its increment δϵϵϵ is set to zero. The iterative equations are derived as:

{︄
−δφvi = φvi

−δφvp = φvp
(A.32)

where, using (A.21) and (A.26), it is expanded to:⎧⎨⎩Avi :
∑︁Nv

j=1(j ̸=i) δϵϵϵ
vj + Bvi : δϵϵϵvi +BBBgiδr = φφφvi

AAAvp :
∑︁Nv

j=1 δϵϵϵ
vj +Bsδr = φvp

(A.33)

with

Avp = Ω∗ΛΛΛvp : Bd (A.34)

Bs = −
(︃

Ω∗Bm − 1
∆t

)︃
(A.35)

(A.33) is expanded to its tensorial form as:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bv1 Av1 Av1 . . . Av1 BBBg1

Av2 Bv2 Av2 . . . Av2 BBBg2

Av3 Av3 Bv3 . . . Av3 BBBg3

. . . . . . .

. . . . . . .

. . . . . . .
Av Nv Av Nv Av Nv . . . Bv Nv

AAAvp AAAvp AAAvp . . . Bs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δϵϵϵv1

δϵϵϵv2

δϵϵϵv3

.

.

.
δϵϵϵv Nv

δr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φvp

φvp

φvp

.

.

.
φvp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.36)
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A.5 Tangent operators

Before plastic flow activation, the tangent stiffness tensor, Tσσσ
ϵϵϵ , is defined as the viscoelastic tangent

operator by ignoring ∆ r, and after exceeding the yield surface, the full tangent operator is requested,

in which ∆ r is taken into account. In this sense, it is assumed that the nullity of the criteria is

satisfied, then the criteria increments are derived as:

∆φφφvi = 1
1 −D

Vvi−1 : ∆σσσvi − 1
∆t∆ϵ

ϵϵvi 1
∆t∆ϵ

ϵϵvi + 1
(1 −D)2V

vi−1 : σσσvi∆D = 000 (A.37)

∆φvp = Ω∗∆f − ∆r
∆t = Ω∗ (ΛΛΛvp : ∆σσσ + fr∆r + fD∆D∆D) − ∆r

∆t = 0 (A.38)

Substituting (A.11) and (A.7) into (A.37) and (A.38) respectively yields:

∆φφφvi = K6(i) : ∆ϵϵϵ+
Nv∑︂
j=1

K8(ij) : ∆ϵϵϵvj +KKK7(i)∆r = 000 (A.39)

∆φvp = KKK9 : ∆ϵϵϵ+
Nv∑︂
j=1

KKK10 : ∆ϵϵϵvj +K11∆r = 0 (A.40)

with

K1(i) = 1
1 −D

Vvi−1
(A.41)

K2(i) = Vvi−1 : Cvi − I
∆t (A.42)

KKK3(i) = 1
1 −D

Vvi−1 : Cvi : ϵϵϵviΛD + 1
(1 −D)2V

vi−1 : σσσviΛD (A.43)

KKK4 = Ω∗ΛΛΛvp (A.44)

K5 = Ω∗ fr + Ω∗ fDΛD − 1
∆t (A.45)

K6(i) = K1(i) : Bd (A.46)

KKK7(i) = Kp
1(i):BBB +KKK3(i) (A.47)
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A.6. VISCOELASTIC TANGENT OPERATOR

Nv∑︂
j=1

K8(ij) : ∆ϵϵϵvj = K2(i) : ∆ϵϵϵvi − K1(i) : Bd :
Nv∑︂
j=1

∆ϵϵϵvj (A.48)

KKK9 = KKK4 : Bd (A.49)

KKK10 = −KKK9 (A.50)

K11 = KKK4 : BBBp +K5 (A.51)

A.6 Viscoelastic tangent operator

In order to derive the viscoelastic tangent modulus, ∆ r is ignored in (A.39), then ∆ ϵϵϵvi with respect

to ∆ϵϵϵ is given as:

∆ϵϵϵvi = Kv
T : ∆ϵϵϵ (A.52)

with

Kv
T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K8(11) K8(12) K8(13) . . . K8(1 Nv)
K8(21) K8(22) K8(23) . . . K8(2 Nv)
K8(31) K8(32) K8(33) . . . K8(3 Nv)
. . . . . . .
. . . . . . .
. . . . . . .

K8(Nv Nv) K8(Nv Nv) K8(Nv Nv) . . . K8(3 Nv)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K6(1)
K6(2)
K6(3)
.
.
.

K6(1Nv)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.53)

The stress increment, ∆σσσ, without plastic deformation is given as:

∆σσσ = (1 −D)Ce :
(︄

∆ϵϵϵ−
Nv∑︂
i=1

∆ϵϵϵvi

)︄
(A.54)

Substituting (A.52) into (A.54) results in:

∆σσσ = (1 −D)
(︄
Ce −

Nv∑︂
i=1

Kv
T

)︄
: ∆ϵϵϵ (A.55)

A.7 Full tangent operator

∆ r and ∆ϵϵϵvi with respect to ∆ϵϵϵ can be extracted from (A.39) and (A.40) as:[︄
∆ϵϵϵvi

∆ r

]︄
=
[︄
XXXvi

XXXr

]︄
∆ϵϵϵ (A.56)
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where⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

XXXv1

XXXv2

XXXv3

.

.

.
XXXv Nv

XXXr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K8(11) K8(12) K8(13) . . . K8(1 Nv) KKK7(1)
K8(21) K8(22) K8(23) . . . K8(2 Nv) KKK7(2)
K8(31) K8(32) K8(33) . . . K8(3 Nv) KKK7(3)
. . . . . . .
. . . . . . .
. . . . . . .

K8(Nv Nv) K8(Nv Nv) K8(Nv Nv) . . . K8(3 Nv) KKK7(Nv)
KKK10 KKK10 KKK10 . . . KKK10 K11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K6(1)
K6(2)
K6(3)
.
.
.

K6(1Nv)
KKK9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.57)

Substituting (??) into (A.7) yields:

∆σσσ =

⎛⎝BBBp ⊗XXXr + Bd :
Nv∑︂
j=1

XXXvj

⎞⎠ : ∆ϵϵϵ (A.58)

201



A.7. FULL TANGENT OPERATOR

202



Appendix B

Nonlocal multi-scale framework
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B.1. ASYMPTOTIC EXPANSION OF THE LOCAL AND NONLOCAL
VARIABLES

B.1 Asymptotic expansion of the local and nonlocal variables

To investigate composites, material behaviors are expressed at two scales: micro and macro. The

microscopic scale allows understanding the mechanisms considering the different material constituents

and their geometrical characteristics in the microstructure. However, the macroscopic scale specifies

the global response of the body as a homogeneous medium. The global volume of the body is considered

as V̄ on the spatial domain B̄ bounded by the surface ∂B̄ with unit vector n̄i. The microscale is defined

through the unit cell volume,V within the spatial domain B bounded by the surface ∂B identified by

the normal vector ni. The micro and macro coordinate systems are respectively identified by xi and

x̄i and related through the characteristic length, ε:

xi = x̄i/ε. (B.1)

The global composite coordinate system is expressed as xε
i , and the related derivatives are derived

based on the chain rule:

∂

∂xε
i

= ∂

∂x̄i
+ 1
ε

∂

∂xi
. (B.2)

Asymptotic expansion of the displacement vector, uε
i is defined as [156,184,185]:

uϵ
i = u

(0)
i (x̄k, xk) + εu(1)(x̄k, xk) + . . . (B.3)

Based on the small deformation theory, the strain and stress tensors are considered as:

ϵεij = 1
2

(︄
∂uε

i

∂xε
j

+
∂uε

j

∂xε
i

)︄
, σε

ij = Csc
ijklϵ

ε
kl. (B.4)

Substituting (B.3 ) into (B.4) yields:

ϵεij =1
2

⎛⎝∂u(0)
i

∂x̄j
+ ε−1∂u

(0)
i

∂xj
+
∂u

(0)
j

∂x̄i
+ ε−1∂u

(0)
j

∂xi

⎞⎠
+ 1

2ε

⎛⎝∂u(1)
i

∂x̄j
+ ε−1∂u

(1)
i

∂xj
+
∂u

(1)
j

∂x̄i
+ ε−1∂u

(1)
j

∂xi

⎞⎠+ . . . ,

(B.5)
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where can be reduced as:

ϵεij = ε−1ϵ
(−1)
ij (x̄k, xk) + ϵ

(0)
ij (x̄k, xk) + εϵ

(1)
ij (x̄k, xk) + . . . , (B.6)

with

ϵ
(−1)
ij = 1

2

⎛⎝∂u(0)
i

∂xj
+
∂u

(0)
j

∂xi

⎞⎠ , (B.7a)

ϵ
(k)
ij = 1

2

⎛⎝∂u(k)
i

∂x̄j
+
∂u

(k)
j

∂x̄i
+ ∂u

(k+1)
i

∂xj
+
∂u

(k+1)
j

∂xi

⎞⎠ , k = 0, 1, 2, . . . (B.7b)

Using (B.4) and (B.6), the global stress tensor, σσσε, can be derived as:

σε
ij = ε−1Csc

ijklϵ
(−1)
kl + Csc

ijklϵ
(0)
kl + εCsc

ijklϵ
(1)
kl + . . . , (B.8)

where can be reduced as:

σε
ij(xε

k) = ε−1σ
(−1)
ij (x̄k, xk) + σ

(0)
ij (x̄k, xk) + εσ

(1)
ij (x̄k, xk) + . . . , (B.9)

with

σ
(m)
ij (x̄k, xk) = Csc

ijklϵ
(m)
kl , m = −1, 0, 1, . . . (B.10)

The stress equilibrium in absence of the body forces in the global composite coordinate is given as:

∂σε
ij

∂xε
j

= 0. (B.11)

Considering (B.2), it yields:

∂σε
ij

∂xε
j

=
∂σε

ij

∂x̄j
+ 1
ε

∂σε
ij

∂xj
. (B.12)

Substituting (B.10) into (B.12) results in:

ε−2∂σ
(−1)
ij

∂xj
+ ε−1∂σ

(−1)
ij

∂x̄j
+ ε−1∂σ

(0)
ij

∂xj
+
∂σ

(0)
ij

∂x̄j
+ ... = 0. (B.13)

The sum of the terms with the same power of ε can be taken as zero. For ε−2, the following can be

deduced:

∂σ
(−1)
ij

∂xj
= 0. (B.14)
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Multiplying (B.14) in u
(0)
i (x, x̄j) and integrating over the RVE yields:

∫︂
Ω
u

(0)
i (xj , x̄j)

∂σ
(−1)
ij

∂xj
dV = 0. (B.15)

Using the divergence theorem:

∫︂
∂Ω
u

(0)
i (xj , x̄j)σ(−1)

ij njdS −
∫︂

Ω

∂u
(0)
i (xj , x̄j)
∂xj

σ
(−1)
ij dV = 0. (B.16)

Considering the anti-periodic term σ
(−1)
ij nj in (B.16), the surface integral is automatically zero, and

the volume integral results in:

∂u
(0)
i (xj , x̄j)
∂xj

= 0. (B.17)

It means that u
(0)
i does not depend on the microscopic position vector, xi. Accordingly asymptotic

expansion of the displacement can be written as:

uϵ
i(x̄k, xk) = u

(0)
i (x̄k) + ϵu(1)(x̄k, xk) + . . . (B.18)

In a similar way and using the nonlocal equation, (4.15), for the nonlocal variable, rnl, the following

asymptotic expansion can be derived:

rnlε(x̄k, xk) = rnl(0)(x̄k) + εrnl(1)(x̄k, xk) + ε2rnl(2)(x̄k, xk) + . . . (B.19)

Accordingly, the asymptotic expansions can be written in summary as:

uϵ
i(x̄k, xk) = u

(0)
i (x̄k) + εu(1)(x̄k, xk) + . . . , (B.20a)

ϵεij(x̄k, xk) = ϵ
(0)
ij (x̄k, xk) + εϵ

(1)
ij (x̄k, xk) + . . . , (B.20b)

σϵ
ij(x̄k, xk) = σ

(0)
ij (x̄k, xk) + εσ

(1)
ij (x̄k, xk) + . . . , (B.20c)

rε(x̄k, xk) = r(0)(x̄k, xk) + εr(1)(x̄k, xk) + ε2r(2)(x̄k, xk) + . . . , (B.20d)
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B.2 Stress equilibrium multi-scale model

B.2.1 Stress equilibrium in the microscale

By substituting (B.20c) into the stress equilibrium in absence of the body forces, one obtains:

∂σε
ij

∂xε
j

= 0, (B.21)

where is expanded as:
∂

∂xε
j

(︂
σ

(0)
ij + εσ

(1)
ij + . . .

)︂
= 0. (B.22)

Considering the chain rule, the above equation gives:

∂σ
(0)
ij

∂xī
+ ε−1σ

(0)

∂xi
+ ε

⎛⎝∂σ(1)
ij

∂xī
+ ε−1σ

(1)
ij

∂xi

⎞⎠+ · · · = 0. (B.23)

Taking the terms with the same power of ε, it is rewritten as:

ε−1σ
(0)
ij

∂xi
+

⎛⎝∂σ(0)
ij

∂x̄i
+
σ

(1)
ij

∂xi

⎞⎠+ ε

⎛⎝∂σ(1)
ij

∂x̄i
+
σ

(2)
ij

∂xi

⎞⎠+ · · · = 0. (B.24)

Considering the term multiplied by ε−1, one obtains the following equation:

σ
(0)
ij

∂xi
= 0. (B.25)

B.2.2 Stress equilibrium in the macro scale

Averaging the term multiplied by ε0 in (B.24) gives:

⟨
∂σ

(0)
ij

∂x̄i
⟩ + ⟨

∂σ
(1)
ij

∂xi
⟩ = 0, (B.26)

where ”⟨.⟩” denotes the average operator defined as an integral over V :

⟨.⟩ = 1
V

∫︂
V
. dV (B.27)

Accordingly,(B.26) can be expanded as:

∂⟨σ(0)
ij ⟩

∂x̄i
+ 1
V

∫︂
V

∂σ
(1)
ij

∂xi
dV = 0. (B.28)

207



B.3. NONLOCAL EQUATION MULTI-SCALE MODEL

Using the divergence theorem, the above equation can be rewritten as following:

∂⟨σ(0)
ij ⟩

∂x̄i
+ 1
V

∫︂
∂V
σ

(1)
ij njdS = 0. (B.29)

Due to the anti-periodicity of σ
(1)
ij , the second term in the (B.29) vanishes:

∂⟨σ(0)
ij ⟩

∂x̄i
= 0, (B.30)

or:
∂σ̄ij

∂x̄i
= 0 with ⟨σ(0)

ij ⟩ = σ̄ij . (B.31)

B.3 Nonlocal equation multi-scale model

B.3.1 Nonlocal equation in the microscale

Nonlocal equation in the global composite coordinate system is expressed as:

ξnl ∂

∂xε
i

(︄
∂rnlε

∂xε
i

)︄
+ γnl

(︂
rε − rnlε

)︂
= 0 (B.32)

The first derivative of the rnlε can be defined as:

wnlε
i = ∂rnlε

∂xε
i

= ∂rnlε

∂x̄i
+ 1
ε

∂rnlε

∂xi
(B.33)

Substituting asymptotic expansion of rnlε into (B.33) yields:

wnlε
i (x̄k, xk) = ∂

∂x̄i

(︂
rnl(0)(x̄k, xk) + εrnl(1)(x̄k, xk) + ...

)︂
+ 1
ε

∂

∂xi

(︂
rnl(0)(x̄k, xk) + εrnl(1)(x̄k, xk) + ...

)︂
.

(B.34)

where it is expanded to:

wnlε
i = ∂rnl(0)

∂x̄i
+ ε

∂rnl(1)

∂x̄i
+ ...+ ε−1∂r

nl(0)

∂xi
+ ∂rnl(1)

∂xi
+ ..., (B.35)

where it can be rewritten as:

wnlε
i = ε−1∂r

nl(0)

∂xi
+
(︄
∂rnl(0)

∂x̄i
+ ∂rnl(1)

∂xi

)︄
+ ε

(︄
∂rnl(1)

∂x̄i
+ ∂rnl(2)

∂xi

)︄
+ ... (B.36)
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Accordingly, (B.33) can be reduced to its asymptotic expansion form as:

wnlε
i = ε−1w

nl(−1)
i + w

nl(0)
i + εw

nl(1)
i + ..., (B.37)

with

w
nl(−1)
i = ∂rnl(0)

∂xi
= 0, (B.38a)

w
nl(0)
i = ∂rnl(0)

∂x̄i
+ ∂rnl(1)

∂xi
, (B.38b)

w
nl(1)
i = ∂rnl(1)

∂x̄i
+ ∂rnl(2)

∂xi
. (B.38c)

Inserting (B.36) into (B.32) yields:

ξnl ∂w
nlε
i

∂xε
i

+ γnl(r(0) − rnl(0)) + εγnl(r(1) − rnl(1)) + ... = 0, (B.39)

where it is expanded as:

ξnl

(︄
∂wnlε

i

∂x̄i
+ 1
ε

∂wnlε
i

∂xi

)︄
+ γnl(r(0) − rnl(0)) + εγnl(r(1) − rnl(1)) + ... = 0. (B.40)

Substituting (B.37) into (B.40) yields:

ξnl

(︄
∂w

nl(0)
i

∂x̄i
+ ε

∂w
nl(1)
i

∂x̄i
+ ...+ ε−2∂w

nl(−1)
i

∂xi
+ ε−1∂w

nl(0)
i

∂xi
+ ∂w

nl(1)
i

∂xi
+ ...

)︄
+ γnl(r(0) − rnl(0)) + εγnl(r(1) − rnl(1)) + ... = 0.

(B.41)

where it is reduced to:

ε−1ξnl ∂w
nl(0)
i

∂xi
+
[︄
ξnl ∂w

nl(0)
i

∂x̄i
+ ξnl ∂w

nl(1)
i

∂xi
+ γnl

(︂
r(0) − rnl(0)

)︂]︄
+ ... = 0. (B.42)

The next sections discuss two probable cases concerning the relationship between the RVE size, lε,

and the nonlocal length scale, lnl: first, lnl ≤ łε or lnl comparable to lε , and second, lnl ≫ lε.

B.3.1.1 Nonlocal equation in the microscale in case 1: lnl ≤ lε or lnl comparable to lε

In this case, the length scale is less than or comparable to the RVE size. In other words, if

lε → 0 then lnl → 0, and the second term of (B.42) tends to become trivial when lε → 0. Thus,

209



B.3. NONLOCAL EQUATION MULTI-SCALE MODEL

the whole nonlocal equation (B.32) is present exclusively on the microscale and disappears from the

macroscale. It has been shown in the literature that such case may cause issues on the homogenization

framework [95].

B.3.1.2 Nonlocal equation in the microscale in case 2: lnl ≫ lε

In this case, it is assumed that lnl ≫ lε. With this in mind, the nonlocal variable, rnl, stays

uniform inside the RVE. Therefore,(B.42) is written as:

∂w
nl(0)
i

∂xi
= ∂

∂xi

(︄
∂rnl(0)

∂x̄i
+ ∂rnl(1)

∂xi

)︄
= 0. (B.43)

(B.43) is the nonlocal equation in the microscale when lnl ≫ lε.

The first derivative of rnl(1) in the microscopic level can be assumed as:

∂rnl(1)

∂xi
= ∂Nj

∂xi

∂rnl(0)

∂x̄j
. (B.44)

Substituting (B.44) into (B.43) yields:

∂

∂xi

(︄
∂rnl(0)

∂x̄j
δij + ∂Nj

∂xi

∂rnl(0)

∂x̄j

)︄
= 0, (B.45)

where it is reduced to:

∂

∂xi

(︃
δij + ∂Nj

∂xi

)︃
= 0. (B.46)

where it means that ∂Nj/∂xi is an arbitrary unknown constant, which can be taken zero. Hence,

w
nl(0)
i can be derived as:

w
nl(0)
i =

(︃
δij + ∂Nj

∂xi

)︃
∂rnl(0)

∂x̄j
= ∂rnl(0)

∂x̄i
, (B.47)

where its average is obtained as:

⟨wnl(0)
i ⟩ = ∂rnl(0)

∂x̄j
. (B.48)
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B.3. NONLOCAL EQUATION MULTI-SCALE MODEL

B.3.2 Nonlocal equation in the macroscale in case 2: lnl ≫ lε

Averaging the second term of (B.42) and considering lε → 0, the macroscale equation is obtained

as:

⟨ξnl ∂w
nl(0)
i

∂x̄i
+ ξnl ∂w

nl(1)
i

∂xi
+ γnl(r(0) − rnl(0))⟩ = 0. (B.49)

Considering the periodicity of w
nl(1)
i in xi, the second term vanishes:

ξnl ∂⟨wnl(0)
i ⟩
∂x̄i

+ ⟨γnlr(0)⟩ − ⟨γnl⟩rnl(0) = 0. (B.50)

Substituting (B.48) into (B.50) yields:

ξnl ∂

∂x̄i

(︄
∂rnl(0)

∂x̄i

)︄
+ ⟨γnlr(0)⟩ − ⟨γnl⟩rnl(0) = 0. (B.51)
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Résumé étendu



1 Préface

Les polymères peuvent être renforcés à l’aide de différents types d’inclusions pour former des

composites polymères aux performances thermomécaniques et chimiques supérieures. Les compo-

sites à base de polyamide sont parmi les matériaux les plus utilisés dans de nombreuses industries

d’ingénierie telles que l’aérospatiale, l’automobile et l’énergie en raison de leur durabilité, de leur

multifonctionnalité et de leur résistance. Les polyamides sont considérés comme des polymères

semi-cristallins avec une structure moléculaire ordonnée. Une caractéristique importante des po-

lyamides est leur sensibilité aux conditions environnementales. Ils ont un fort taux d’absorption

d’humidité et leur comportement peut passer de vitreux à caoutchouteux en raison du changement

de la température de transition vitreuse. Par conséquent, plusieurs mécanismes de déformation

inélastique peuvent se produire en fonction des conditions environnementales et de chargement.

Le modèle numérique doit tenir compte de ces aspects pour obtenir une prédiction plus précise. À

cette fin, une rhéologie non linéaire doit être conçue en tenant compte des mécanismes dominants,

puis le modèle phénoménologique et les lois constitutives correspondantes sont dérivés. Cependant,

à des niveaux élevés d’endommagement, les polymères présentent un adoucissement du matériau,

ce qui conduit à des problèmes mal posés et, par conséquent, à des réponses non uniques. Afin de

résoudre ce problème, il est nécessaire d’appliquer une approche non locale et de définir un modèle

d’homogénéisation multi-échelle approprié pour modéliser le comportement des composites poly-

mères. Dans les sections suivantes, une vue d’ensemble des réponses mécaniques des polymères,

les modèles et les approches actuels, la méthodologie proposée et une partie des résultats et des

conclusions de cette étude sont brièvement présentés.

2 Comportement des thermoplastiques avec sensibilité à la
pression et asymétrie tension-compression

Pour étudier les réponses mécaniques des thermoplastiques renforcés de verre, il est d’abord

nécessaire de modéliser correctement le comportement inélastique non linéaire de la phase ma-

trice. De nombreux rapports dans la littérature ont étudié les mécanismes actifs à travers des

tests mécaniques macroscopiques [1–4]. De nombreuses lois constitutives ont été proposées pour le

comportement non linéaire des thermoplastiques en utilisant des approches basées sur les réseaux

macromoléculaires [5, 6] et des approches phénoménologiques [1, 7–9].

La plupart de ces modèles ont été formulés dans le cadre de la thermodynamique des processus

irréversibles [10, 11]. Dans la présente étude, un modèle rhéologique viscoélastique viscoplastique
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(VEVP) est adopté pour décrire les mécanismes dissipatifs impliqués pendant le processus de

déformation du matériau. L’endommagement est défini comme une variable d’état interne scalaire,

et introduit dans le modèle par le concept de contrainte effective [12–14]. La mise en œuvre du

présent modèle rhéologique nécessite la définition d’une fonction d’élasticité appropriée. Dans ce

qui suit, la sensibilité à la pression et l’asymétrie en tension-compression sont discutées, et une

fonction de limite d’élasticité appropriée est introduite.

Les thermoplastiques sont des matériaux sensibles à la pression qui présentent un comportement

d’élasticité asymétrique, dans lequel la limite d’élasticité est légèrement supérieure en compression.

Cependant, les modèles phénoménologiques classiques pour les thermoplastiques sont généralement

basés sur la fonction de von Mises, basée sur J2 (invariant de contrainte), [1, 15, 16], dans laquelle

les polymères sont considérés comme des matériaux insensibles à la pression avec un comportement

symétrique. Ainsi, elle n’est pas assez précise pour capturer la plasticité des thermoplastiques. À

ce propos, Ghorbel a développé une fonction d’élasticité générale qui prend en compte l’asymétrie

traction-compression et l’effet de la pression hydrostatique pour un matériau viscoplastique [17].

Cependant, ce modèle ne capture pas la viscoélasticité et l’endommagement. Dans cette recherche,

une fonction d’élasticité I1-J2, inspirée de [17], est intégrée dans le modèle VEVPD. Le modèle

thermodynamique, développé dans [1], est modifié par la nouvelle fonction d’élasticité. Ensuite, les

lois constitutives correspondantes sont dérivées et implémentées sur le modèle de calcul.

2.1 Étude paramétrique du modèle I1-J2

Le modèle de I1-J2 est implémenté sur un modèle numérique en utilisant l’algorithme du ”convex

cutting plane”, pour lequel un subroutine UMAT est développé. Le polyamide 66 conditionné à

50% d’humidité relative (HR50) est considéré, et une étude paramétrique est réalisée à travers

des exemples numériques pour étudier l’effet du paramètre d’asymétrie (le ratio entre les limites

d’élasticité en compression et en traction) sur les réponses mécaniques du modèle. À cette fin, un

outil 0D est utilisé, et les réponses mécaniques sont obtenues comme des courbes de contrainte-

déformation sous charge de traction et de compression dans la figure 1. Comme observé, une

augmentation du paramètre d’asymétrie augmente le niveau de contrainte. Ce phénomène est plus

marqué en compression, comme prévu.

3 Identification des paramètres et validation du modèle

Deux modèles VEVPD ont été présentés : avec la fonction de von Mises supposant un comporte-

ment insensible à la pression et avec la fonction I1-J2 considérant l’effet de la pression hydrostatique
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Figure 1 – Variation de m et son influence sur la réponse du matériau sous chargement monotone.

et de l’asymétrie traction-compression. Aucun de ces modèles n’a été calibré expérimentalement

pour différentes HR dans la littérature. La procédure de calibration, les types de chargement et la

forme des éprouvettes dépendent des mécanismes à identifier. Ainsi, la première étape consiste à

soumettre les éprouvettes de dog bone à différents types de chargement à plusieurs vitesses et les

résultats sont utilisés pour calibrer et valider le modèle classique basé sur la fonction de von Mises,

dans lequel l’asymétrie traction-compression est ignorée. Pour le modèle de I1-J2, les éprouvettes

spécialement conçus (diabolo) sont soumis à des essais de traction-torsion monotones à différentes

vitesses et l’asymétrie de la limite d’élasticité du PA 66 est capturée. Les courbes force-déplacement

et moment-angle globales ainsi que les données obtenues avec les éprouvettes de dog bone sont uti-

lisées pour calibrer le modèle de I1-J2, dans lequel le paramètre d’asymétrie est identifié comme

un nouveau paramètre.

3.1 Calibration et validation du modèle von Mises

Comme indiqué précédemment, une campagne expérimentale appropriée est conçue pour cap-

turer tous les mécanismes et identifier les paramètres associés à différentes HR (HR0%, HR25%,

HR50%, HR65% et HR80%). Afin de contrôler le taux d’absorption d’eau, les éprouvettes sont

placées dans une chambre de conditionnement dans un environnement sec pour extraire toute hu-

midité résiduelle du processus d’usinage. Pour reconditionner à différentes HR, ils sont placés dans

la chambre hygrométrique à la température et à l’humidité correspondantes.

Pour calibrer et valider le modèle VEVPD basé sur la fonction de von Mises, plusieurs tests
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mécaniques sont effectués pour capturer les mécanismes dominants. À cette fin, les mécanismes

dépendants du temps sont capturés par des tests de traction monotones avec différents taux de

déplacement. L’évolution de l’endommagement ductile est identifiée en utilisant le test de charge-

décharge et les mécanismes viscoélastiques et viscoplastiques sont capturés par des tests de fluage-

récupération. Les données expérimentales et un solveur 0D sont utilisés pour identifier les para-

mètres du modèle par un algorithme d’optimisation (Nelder-Mead). Les paramètres identifiés sont

représentés en fonction de l’humidité relative et sont illustrés sur la figure 2. Les modules viscoélas-

tiques ont une tendance décroissante avec l’augmentation de l’humidité relative sauf un d’entre eux

qui augmente. Certains des paramètres viscoplastiques et d’endommagement peuvent être adaptés

avec des lignes de tendance croissantes ou décroissantes. La validation du modèle de von Mises est

réalisée par des essais de fluage-récupération, des essais cycliques et des essais de charge-décharge.

Une partie des résultats des essais de charge-décharge est présentée sur la figure 3. Comme ob-

servé, les résultats sont mieux validés lorsque l’humidité relative est supérieure à 50%. Cependant,

les résultats numériques sont plus proches des données expérimentales pour HR50 et HR65.

3.2 Calibration et validation du modèle I1-J2

Le modèle de I1-J2 est calibré par des essais multiaxiaux de traction-compression, mais imposer

une charge de compression aux éprouvettes thermoplastiques est très compliqué en raison du risque

de flambement. Les éprouvettes diabolo sont donc conçues pour effectuer des essais de traction-

torsion en tant que chargement multiaxial au lieu de la traction-compression. À cette fin, comme

les éprouvettes de dog bone, les éprouvettes de diabolo sont également reconditionnées à HR0,

HR25, HR50, HR65 et HR80 et les essais de traction-torsion monotones sont effectués à différents

taux de chargement. Comme discuté précédemment, la quantité d’eau affecte la réponse mécanique

du matériau, du caoutchouteux au vitreux. La figure 4 confirme ce fait. Comme dans la section

précédente, l’algorithme d’optimisation de Nelder-Mead est utilisé pour identifier les paramètres

du modèle, mais ici le paramètre d’asymétrie est également calibré. Pour inclure les nouveaux tests

de traction-torsion sur les diabolos dans la procédure de calibration, il est nécessaire d’utiliser le

solveur ABAQUS (avec l’UMAT implémenté). Selon les résultats de calibration et de validation du

modèle de von Mises, le modèle rhéologique est plus compatible avec le matériau à un niveau élevé

de HR. Donc, pour le modèle de I1-J2, l’identification des paramètres est effectuée uniquement à HR

égal ou supérieur à 50%. Les résultats de la calibration révèlent que le matériau a un comportement

asymétrique à HR50 mais présente un comportement symétrique à HR65. Cela peut être dû à la

diffusion non uniforme de l’eau dans l’échantillon en raison de la géométrie complexe du diabolo.

Le modèle de I1-J2 est validé en utilisant les données expérimentales des essais de traction-torsion
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Figure 2 – Variation des paramètres du modèle en fonction de l’humidité relative.
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a) HR0 b) HR25

c) HR50 d) HR65

e) HR80

Figure 3 – Résultats de validation en utilisant des tests de charge-décharge à : a) HR0, b) HR25,
c) HR50, d) HR65, e) HR80.
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et les données des essais de fluage-récupération, cycliques et de charge-décharge utilisés dans la

phase de validation du modèle de von Mises. Une partie des résultats est présentée pour HR50 sur

la figure 5. Comme observé, le modèle de I1-J2 fournit des réponses qui sont mieux adaptées aux

données expérimentales que celles du modèle de von Mises.

Figure 4 – a) Essai de traction-torsion pour le diabolo à HR0 ; b) Essai de traction-torsion pour
le diabolo à HR50.

Figure 5 – Validation des résultats force-déplacement pour le modèle de I1-J2 à HR50 sous des
tests de traction-torsion avec différents taux de chargement : a) 3 o s−1 and 5mms−1, b) 0.03 o s−1

et 0.05mms−1.
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4 Modèle non local

Comme discuté dans les sections précédentes, la prédiction du comportement des thermoplas-

tiques renforcés de verre nécessite le développement d’un modèle multi-échelle approprié. Ce modèle

doit capturer les comportements inélastiques non linéaires de la matrice et traiter les limitations des

modèles classiques, comme la sensibilité à la pression, le comportement asymétrique et les résultats

non uniques à des niveaux d’endommagement élevés. En considérant la fonction de I1-J2, l’effet

de la pression hydrostatique et l’asymétrie compression-traction sont capturés. De plus, l’identi-

fication du modèle à différentes HR permet d’étudier l’effet de l’humidité sur les paramètres du

modèle et de prédire les réponses mécaniques des thermoplastiques à différents niveaux d’humidité

relative. Cependant, la formulation locale n’est pas capable de produire des réponses physiques et

uniques dans les modèles de calcul dans les zones très endommagées en raison du adoucissement

du matériau.

En général, l’adoucissement signifie la dégradation du matériau par l’augmentation de la défor-

mation, ce qui se produit souvent pour les polymères par rapport à l’humidité et la température. Ce

phénomène physique conduit à un problème mal posé et par conséquent à l’instabilité du modèle

numérique. La limitation du modèle à des niveaux élevés d’endommagement est traitée en utilisant

un modèle non local. À cette fin, le modèle constitutif est formulé en considérant un potentiel

thermodynamique renforcé par un gradient, qui est la fonction de variables d’état locales et non

locales.

Différentes approches non locales sont rapportées dans la littérature. Certains auteurs ap-

pliquent la forme intégrale dans laquelle la variable locale est remplacée par sa variante non locale

dérivée d’une moyenne pondérée sur le voisinage correspondant [18–22]. Selon cette méthode, les

variables non locales dépendent non seulement de leurs positions locales mais aussi de leur moyenne

pondérée dans le corps entier (figure 6). L’expansion de Taylor de la formulation non locale intégrale

conduit à des formes à gradient qui sont plus simples à implémenter dans les logiciels d’éléments

finis que la formulation intégrale [22–26]. De plus, d’autres méthodes basées sur des approches de

champ de phase, micromorphiques et péridynamiques sont également employées largement dans la

littérature, pour lesquelles des informations plus détaillées sont disponibles dans [27–32]. Ce travail

propose une approche thermodynamique non locale pour les polyamides semi-cristallins formulée

sous l’hypothèse de petites déformations et rotations.

Le modèle thermodynamique étendu est proposé en présentant la variable non locale et la lon-

gueur interne non locale (lnl =
√︁

ξnl/γnl) et les lois constitutives sont exprimées avec les nouveaux

termes nonlocaux supplémentaires. Le paramètre non local, ξnl, détermine le degré de régularisation
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Figure 6 – a) Schéma du modèle local dans un champ spatial 2D ; b) Schéma du modèle non local
dans un champ spatial 2D.

non locale et γnl ajuste l’interaction entre la variable locale et la variable non locale. La variable

non locale est choisie en considérant les mécanismes dominants. Pour capturer la localisation de

l’endommagement et traiter la sensibilité du maillage dans les calculs par éléments finis, le modèle

non local est formulé dans deux cas différents : le premier considère l’endommagement non local

et le deuxième considère la variable d’état de durcissement non locale.

4.1 Implémentation numérique

Les lois constitutives non locales sont implémentées numériquement à travers le ”convex cutting

plane”. Cependant, le développement d’un modèle non local dans le code EF de ABAQUS nécessite

une équation non locale ainsi que l’équation d’équilibre des contraintes. Afin d’imposer l’équation

non locale dans un code EF commercial comme ABAQUS, trois méthodes différentes sont dis-

ponibles : premièrement, le développement d’un élément défini par l’utilisateur (UEL) [26, 33] et

deuxièmement, en utilisant l’analogie entre l’équation non locale et l’équation de la chaleur quand

la variable non locale est un scalaire [34,35]. Dans cette étude, grâce à l’endommagement scalaire,

l’analogie entre l’équation non locale et l’équation de la chaleur est utilisée pour l’étude paramé-

trique. À cette fin, le subroutine HETVAL est employé pour résoudre l’équation non locale.

4.2 Étude paramétrique du modèle non local

Comme déjà indiqué, la variable non locale peut être dérivée de la variable d’endommagement

ou de la variable d’état de durcissement. Dans la première étape, l’efficacité du modèle d’endomma-
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gement non local pour contrôler la localisation de l’endommagement est étudiée puis comparée au

modèle dérivé de la variable d’état de durcissement non local. La plaque pré-entaillée est considérée

sous une charge de traction et l’analyse de l’endommagement est effectuée dans différentes tailles de

maillage. Les courbes force-déplacement globales pour les modèles local et non local avec différents

paramètres non locaux sont tracées dans la figure 7. Comme observé, l’introduction des paramètres

non locaux dans ce cas conduit à des défaillances plus rapides par rapport au modèle local. De plus,

le profil de l’endommagement montre toujours la localisation dans différentes tailles de maillage

et le problème des réponses non uniques n’est pas traité (figure 8). Le même comportement est

également observé dans les profils de la variable d’état de durcissement, qui se localise dans une

zone plus étroite à chaque raffinement du maillage (figure 9). Puisque dans le présent modèle, la

viscoplasticité conduit à l’endommagement, une variable non locale basée sur la variable d’état de

durcissement peut contrôler la localisation de l’endommagement.

(a) (b)

Figure 7 – Courbes force-déplacement pour la plaque pré-entaillée sous une charge de traction
monotone uniaxiale quand le modèle non local est basé sur un l’endommagement non local : a)
différentes valeurs de γnl, b) différentes valeurs de ξnl.

Dans la deuxième option, la variable non locale est dérivée de la variable d’état de durcisse-

ment. Le modèle est implémenté sur le même exemple. Les réponses sont présentées sous forme

de courbes force-déplacement dans la figure 10. Comme observé, la zone d’adoucissement dans les

réponses non locales est plus étendue par rapport à celles du modèle local et elles diminuent plus

doucement (figure 10-a). De plus, les réponses montrent que la dépendance au maillage diminue

en augmentant les paramètres non locaux (figure 10-b) et la figure 11 le confirme clairement à

travers les profils d’endommagement uniques dans différentes tailles de maillage. Comme observé,

les endommagements sont plus diffus par rapport au modèle local et les réponses mécaniques sont
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Figure 8 – Distribution de l’endommagement de la plaque pré-entaillée en utilisant le modèle
d’endommagement non local sous une charge de traction monotone uniaxiale.

Figure 9 – Distribution de la variable d’état de durcissement dans la plaque pré-entaillée en
utilisant le modèle d’endommagement non local sous une charge de traction monotone uniaxiale.
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uniques.

(a) (b)

Figure 10 – Courbes force-déplacement pour la plaque pré-entaillée sous une charge de traction
monotone uniaxiale lorsque le modèle non local est basé sur la variable d’état de durcissement non
local : a) différentes valeurs de γnl, b) différentes valeurs de ξnl.

Figure 11 – Distribution de l’endommagement dans la plaque pré-entaillée en utilisant la variable
d’état de durcissement non local sous une charge de traction monotone uniaxiale.
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5 Modèle multi-échelle non local pour les thermoplastiques
renforcés de verre

Le modèle non local, présenté dans la section précédente, est utilisé dans le modèle multi-échelle

visant à prédire la réponse mécanique du polyamide renforcé de verre. À cette fin, le modèle phé-

noménologique viscoélastique viscoplastique est adopté pour capturer la réponse non linéaire de

la phase de matrice. Ensuite, une approche d’homogénéisation appropriée en combinaison avec le

modèle non local est considérée pour obtenir la réponse globale du composite. Le modèle d’ho-

mogénéisation multi-échelle traite du comportement des composites à la fois à l’échelle macro et

micro. Il considère les mécanismes des constituants du composite ainsi que leurs caractéristiques

géométriques et leurs configurations dans la microstructure. A ce sujet, de nombreuses approches

d’homogénéisation par éléments finis et par champ moyen sont proposées dans la littérature [36–52].

5.1 Modélisation multi-échelle

Dans le présent modèle composite, trois tailles sont très importantes : la taille globale de la

structure, L, la taille du VER, lε, et la longueur interne non locale, lnl, de la phase matricielle. En

supposant que la taille de VER est toujours beaucoup plus petite que la taille réelle de la structure

(L ≫ lε), deux cas différents sont examinés :

- premièrement, lorsque la taille du VER est suffisamment grande ou comparable à la longueur

interne (lnl ≤ lε or lnl dans le même ordre que lε),

- deuxièmement, lorsque la longueur interne est beaucoup plus grande que la taille VER

(lnl ≫ lε), mais lnl est toujours inférieure à L.

Pour illustrer les différences entre les deux cas, l’expansion asymptotique de l’équilibre des contraintes

et de l’équation non locale est étudiée. Pour le premier cas (longueur interne inférieure ou du

même ordre que la taille du VER), l’équation non locale n’apparâıt qu’à l’échelle microscopique,

et il provoque des difficultés d’homogénéisation et de séparation d’échelle, comme indiqué dans la

littérature [53]. Pour le second cas (longueur interne beaucoup plus grande que la taille du VER),

l’équation non locale apparâıt à l’échelle macroscopique, et la séparation d’échelle a un formalisme

plus ”classique”.

Pour étudier le comportement du modèle à l’échelle microscopique, plusieurs exemples sont

examinés : une cellule unitaire périodique et un groupe de cellules unitaires périodiques constituées

de fibres longues unidirectionnelles et d’une matrice PA 66. Pour chaque cas, l’analyse est réalisée

en utilisant ABAQUS et l’endommagement est étudié. Pour le premier cas, les profils d’endom-

magement sont illustrés sur la figure 12. Les profils d’endommagement ne sont pas identiques et
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uniformes dans l’ensemble des VERs et il n’est pas clair lequel illustre le véritable endommage-

ment, donc le VER n’est pas représentatif. Pour le second cas, un exemple similaire est étudié. La

figure13 montre que les profils d’endommagement des VER sont identiques, donc le VER est repré-

sentatif. Selon les résultats ci-dessus, on conclut que le deuxième cas (longueur interne beaucoup

plus grande que la taille du VER) est plus compatible avec le modèle multi-échelle que le premier

parce que le VER est représentatif et il satisfait l’hypothèse de périodicité et le formalisme classique

de séparation d’échelle. Considérant cette hypothèse, une approche Mori-Tanaka/TFA [54–56] est

utilisée comme approche d’homogénéisation du champ moyen.

Figure 12 – Profil d’endommagement sous chargement monotone quand lnl = 0.01 lε (lnl < lε) :
a) un seul VER renforcé par des fibres longues, b) un groupe des VERs.

5.2 Implémentation numérique du modèle multi-échelle non local

Selon la discussion précédente, la longueur interne est considérée être beaucoup plus grande que

la taille du VER et l’équation non locale est résolue à l’échelle macroscopique. L’implémentation

numérique se compose de trois étapes différentes : premièrement, les mécanismes inélastiques à

l’échelle microscopique dans la matrice sont calculés en utilisant le subroutine VEVPD, deuxième-

ment, le subroutine du modèle micromécanique fournit le tenseur de contrainte global et le module

sécant, et troisièmement, l’équation non locale est résolue à l’échelle macroscopique en utilisant

l’analogie entre l’équation de chaleur et l’équation non locale. L’interaction entre ces étapes et les

entrées et sorties associées sont brièvement présentées dans la figure 14.
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Figure 13 – Profil d’endommagement sous chargement monotone quand lnl = 100 lε (lnl ≫ lε) :
a) un seul VER renforcé par des fibres longues, b) un groupe des VERs.

Subroutine VEVPD
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Solveur
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Figure 14 – Schéma de l’implémentation numérique du modèle multi-échelle non local dans le
logiciel EF.
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5.3 Validation du modèle multi-échelle et étude paramétrique

La validité du modèle Mori-Tanaka/TFA proposé peut être étudiée en utilisant un modèle

composite multicouche [57]. L’homogénéisation proposée est réalisée sur la structure soumise à une

charge monotone, puis les résultats obtenus sont comparés à un modèle structurel complet sans

homogénéisation. Les réponses des deux modèles sous les mêmes conditions limites sont tracées

comme des courbes force-déplacement dans la figure 15. Comme observé, il y a un bon accord

entre les deux analyses.

Figure 15 – Courbe force-déplacement sous une charge de traction monotone et comparaison entre
le modèle de structure complète et le modèle d’homogénéisation Mori-Tanaka/TFA.

Pour comparer les modèles local et non local, une plaque composite pré-entaillée (avec une

longue entaille) est soumise à une charge de traction monotone et étudiée par les modèles local et

non local. La figure 16 compare les courbes force-déplacement. Comme observé, la force ultime est

plus faible dans le modèle local et le modèle non local est relativement plus stable. La figure 17

montre la distribution 3D de l’endommagement de la matrice pour les modèles local et non local.

Dans le modèle local, l’endommagement est localisé dans la zone de fissure traversant la structure.

Cependant, dans le modèle non local, l’endommagement reste autour de la région de l’entaille.

En d’autres termes, le modèle non local fournit des réponses plus stables dans la zone de petite

déformation par rapport au modèle local.
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Figure 16 – Courbes force-déplacement pour la plaque composite pré-entaillée sous une charge de
traction monotone en utilisant les modèles local et non local.

Figure 17 – Distribution de l’endommagement de la matrice dans la plaque pré-entaillée sous une
charge de traction monotone en utilisant les modèles local et non local.
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6 Conclusions

Le but de cette recherche est d’étudier le comportement non linéaire du polyamide 66 et du

polyamide 66 renforcé de verre en considérant les conditions environnementales (humidité rela-

tive), la sensibilité à la pression et l’asymétrie traction-compression. Ces matériaux présentent une

asymétrie traction-compression lorsqu’ils subissent une charge non proportionnelle et une grande

sensibilité aux conditions environnementales, notamment à l’humidité. De plus, un niveau élevé

d’endommagement en eux est accompagné d’un adoucissement qui conduit à des problèmes mal

posés et à des résultats non uniques dans les modèles de calcul. Dans le présent travail, un modèle

viscoélastique viscoplastique avec l’endommagement ductile (VEVPD) a été présenté, dans lequel

l’effet de pression hydrostatique et l’asymétrie traction-compression sont inclus. Une campagne

expérimentale a été conçue pour étudier les mécanismes dominants et identifier les paramètres du

modèle proposé. Ensuite, le modèle a été amélioré en utilisant l’approche non locale à gradient pour

obtenir des réponses physiques et uniques pour le matériau fortement endommagé. Cette approche

a été étendue à un modèle multi-échelle afin de modéliser le comportement des composites. Dans

la suite, les conclusions sont brièvement présentés.

- Le modèle VEVPD développé par Praud et al. [1] a été étendu à un modèle plus avancé

tenant compte de l’asymétrie traction-compression et de l’effet de la pression hydrostatique.

L’étude paramétrique a révélé que l’effet du paramètre d’asymétrie est plus important quand

le matériau subit un chargement multi-axial ou cyclique en traction-compression.

- Une campagne expérimentale a été conçue et réalisée. Elle a permis d’étudier la variation de

la réponse mécanique de caoutchouteuse à vitreuse en reconditionnant le matériau polyamide

66 à différentes conditions d’Humidité Relative (HR). Avant cette étude, le modèle VEVPD

basé sur von Mises n’avait été calibré et validé que pour le PA66 à HR50 [1]. Pour la première

fois, le modèle VEVPD basé sur la fonction de von Mises a été calibré et validé pour le PA66

avec HR0, HR25, HR65, et HR80. Afin de capturer l’asymétrie traction-compression, des

tests de traction-torsion ont été réalisés sur des éprouvettes de diabolo. Les courbes force-

déplacement et moment-angle globales obtenues ont été utilisées pour calibrer le modèle

basé sur I1-J2. Le paramètre d’asymétrie identifié dans HR50 (m = 1.05) indique que la li-

mite d’élasticité en compression est légèrement supérieure à la limite d’élasticité en traction.

- Pour traiter les réponses non physiques à des niveaux élevés d’endommagement, une ap-

proche de gradient non local a été présentée. Pour la variable non-locale, deux options ont
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été étudiées : l’endommagement non local et la variable d’état de durcissement non local.

Les études paramétriques montrent que le modèle d’endommagement non local ne fournit

pas les résultats souhaités, parce que la localisation de la viscoplasticité n’est pas prise en

compte. Cependant, le modèle non local à gradient basé sur la variable d’état de durcisse-

ment non local est plus efficace et conduit à des réponses uniques.

- Le modèle non local a été étendu à un modèle multi-échelle. En considérant la longueur

interne non locale beaucoup plus grande que la taille du VER, un modèle non local Mori-

Tanaka/TFA approprié a été formulé pour la première fois. Le modèle multi-échelle a été

validé avec un modèle d’éléments finis composite multicouche à structure complète et une

étude paramétrique a été réalisée pour examiner son efficacité. Les résultats de l’étude

paramétrique montrent que les réponses du modèle non local sont plus stables à un haut

niveau d’endommagement que celles du modèle local.
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Références

[1] F. Praud, G. Chatzigeorgiou, J. Bikard, and F. Meraghni, “Phenomenological multi-

mechanisms constitutive modelling for thermoplastic polymers, implicit implementation and

experimental validation,”Mechanics of Materials, vol. 114, pp. 9–29, 11 2017.

[2] A. Benaarbia, A. Chrysochoos, and G. Robert, “Kinetics of stored and dissipated energies

associated with cyclic loadings of dry polyamide 6.6 specimens,” Polymer Testing, vol. 34,

pp. 155–167, 4 2014.

[3] A. Benaarbia, A. Chrysochoos, and G. Robert, “Influence of relative humidity and loading

frequency on the pa6.6 cyclic thermomechanical behavior : part i. mechanical and thermal

aspects,” Polymer Testing, vol. 40, pp. 290–298, 12 2014.

[4] A. Benaarbia, A. Chrysochoos, and G. Robert, “Thermomechanical analysis of the onset of

strain concentration zones in wet polyamide 6.6 subjected to cyclic loading,” Mechanics of

Materials, vol. 99, pp. 9–25, 8 2016.

[5] E. Arruda and M. Boyce,“A three-dimensional constitutive model for the large stretch behavior

of rubber elastic materials,” Journal of The Mechanics and Physics of Solids, vol. 41, no. 2,

pp. 389–412, 1993.

[6] N. Billon, “New constitutive modeling for time-dependent mechanical behavior of polymers

close to glass transition : Fundamentals and experimental validation,” Journal of Applied

Polymer Science, vol. 125, pp. 4390–4401, 3 2012.

[7] A. Launay, M. Maitournam, Y. Marco, I. Raoult, and F. Szmytka, “Cyclic behaviour of short

glass fibre reinforced polyamide : Experimental study and constitutive equations,” Internatio-

nal Journal of Plasticity, vol. 27, pp. 1267–1293, 8 2011.

[8] A. Krairi and I. Doghri, “A thermodynamically-based constitutive model for thermoplastic

polymers coupling viscoelasticity, viscoplasticity and ductile damage,” International Journal

of Plasticity, vol. 60, pp. 163–181, 2014.

[9] A. Benaarbia, Y. Rae, and W. Sun, “Unified viscoplasticity modelling and its application to

fatigue-creep behaviour of gas turbine rotor,” International Journal of Mechanical Sciences,

vol. 136, pp. 36–49, 2 2018.

[10] B. Halphen and Q. Nguyen, “On the generalized standards materials (in french),” Journal de
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