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Figure 1 Schematic setup of the Sample Cartridge Assembly (SCA) inserted in the Low Gradient Furnace (LGF) on board the ISS. The LGF is sketched at its initial position with respect to the SCA. The 12 thermocouples, labeled as TC1

General Introduction

Solidification processes play the most important role in metal casting, and the ability to cast metals represents the progress of human culture in a fairly long period of history. For example, the term Bronze Age represents the time period from 4000 BC to 1200 BC, and the invention of the Bessemer process leading to the mass production of steel in liquid form is regarded as a key invention of the first industrial revolution [1]. Nowadays, solidification and its control are always remaining of major economic and industrial interest, whereas they are difficult to understand due to their multi-physical aspects: the thermal evolution is heterogeneous and varies with phase transformation in the process; the nucleation of grains is at atomic scale and involves rich physics; the solute diffusion is combined with convection induced by gravity, and convection results in macrosegregation of species; the evolution of thermodynamic phases is anisotropic… Microstructures formed during solidification processes have a large influence on the properties of cast metals and alloys. A large majority of scientific studies on solidification microstructures are concerned with a kind of very common microstructure called dendrite, including this work. Dendritic growth is driven by the repartition of atoms on both sides of the solid/liquid interface according to the thermodynamic equilibrium. Because of the anisotropy of the solid/liquid interfacial energy, dendrites have principal growth directions corresponding to specific crystal directions. This anisotropy is the reason why dendrites grow with this tree-like shape, which is the origin of their name (déndron means tree in Greek) [2].

The morphology of dendritic grains can be columnar or equiaxed. Columnar grains have significant development in one spatial direction, whereas equiaxed grains have similar dimensions in all spatial directions. These two morphologies can coexist in the same ingot, and the Columnar-to-Equiaxed Transition (CET) [3] is a common phenomenon in solidification processes. As this transition impacts the mechanical properties of material, it is necessary to control it during solidification. For example, it has to be eliminated in directional solidification of superalloys (columnar crystals or single crystals) but enhanced in welding processes [4]. The understanding of the CET of alloy can also help for the optimization of grain structures in various solidification processes [5].

In attempts to improve the understanding of the microstructures formed during solidification processes, the Columnar-to-Equiaxed Transition in SOLidification processing (CETSOL) project was launched in 1999 aiming to improve our understanding of the physics governing the formation of the CET in alloy solidification process. Experiments of solidification in the International Space Station (ISS) in microgravity as well as on earth, and different numerical models are being developed and applied for the investigation. The CETSOL project is partially funded by the European Space Agency (ESA) within the frame of its Microgravity Applications Promotion (MAP) program. To date, six phases of CETSOL project have been finished [6]. The last phase, CETSOL-6, from January 2019 to December 2021, based on Contract Change Notice CNN009, was coordinated by ACCESS e.V. and consisted of the following partners: Academic partners:

• Gerhard Zimmermann (coordinator), Laszlo Sturz, ACCESS e.V. Aachen (Germany)

• Henri Nguyen-Thi, Nathalie Mangelinck-Noel, IM2NP CNRS / Aix-Marseille University (France)

• Charles-André Gandin, Oriane Senninger, CEMEF MINES Paris PSL University (France)

• Shaun McFadden, Antony Robinson, Trinity College Dublin (Ireland)

• Nils Warnken, University of Birmingham (UK) Associated academic partners:

• Peter Voorhees, Northwestern University Evanston (USA)

• Andras Roosz, University of Miskolc (Hungary)

• Christoph Beckermann, University of Iowa (USA)

• Alain Karma, Northeastern University (USA) Non-academic partners:

• Etienne Perchat, TRANSVALOR Mougins (France)

• Gerd-Ulrich Grün, HYDRO Aluminium Rolled Products GmbH Bonn (Germany)

• Manfred Grohn, Incaal GmbH Nörvenich (Germany)

• Isabelle Poitrault, ArcelorMittal Industeel Le Creusot (France) Associated non-academic partners:

• Gabor Balazs, Arconic-Köfem Ltd. (Hungary)

• Tamas Nemeth, Nemak Györ Kft. (Hungary)

• David Toth, INOTAL Aluminiumfeldolgozo (Hungary)

In terms of experiments of the CETSOL project, the solidification of Al-7 wt.% Si samples in microgravity have been completed in the Microgravity Science Laboratory (MSL) on-board the ISS, for dissociating the effect of gravity. The experiments were performed in a Bridgman-type furnace, as shown in Figure 1. The samples were cylinders with a diameter of 7.8 mm and a length of 245 mm, put in a special sample cartridge assembly together with twelve thermocouples positioned along the sample. The samples were fixed, and melting or solidification of the alloy was achieved by moving the furnace along the axis of the sample.

These experiments provide unique data for the CET in Al-7 wt.% Si alloy for purely diffusive solidification conditions, which are helpful for improving numerical models on microstructure formation. Reference experiments were carried out on earth as well, and a notable difference in the genesis and growth of microstructures during solidification by the effect of gravity can be observed (Figure 2). Investigation of CET and equiaxed growth in Al-Cu alloys and investigation of CET in transparent alloys were also carried out. Numerical models, such as the Cellular Automaton -Finite Element (CAFE) model [9], the Concurrent Columnar Equiaxed Transition (C2ET) model [10], the Dendritic Needle Network (DNN) model [11,12], have been used for simulating the grain structure of CETSOL solidification experiments, and their predictions on the CET are in reasonable agreement with the experimental measurement.

The team CEMEF MINES Paris is specialized in the modeling of grain structure using the CAFE model that permits to simulate the grain structure during solidification processes. The three-dimensional CAFE model showed encouraging results but was limited for quantitative agreement with the experiment [7], especially due to approximations when considering solute interaction during dendritic growth. The Parabolic Thick Needle (PTN) method [13] is the method used in the DNN model for calculating dendrite tip kinetics, relevant to both steady and unsteady growth. To consider the impact of the solute interaction on dendritic growth, the CAFE model was hereby enriched by coupling the PTN method as growth law. This work was initiated in a two-dimensional model by Romain Fleurisson [14], who was a PhD student in the frame of the CETSOL-5 phase in CEMEF MINES Paris from 2015 to 2019. He implemented the two-dimensional PTN method in the finite element library cimlib, studied the influence of numerical parameters, and coupled the PTN method with the CAFE model. This coupling model showed its advantages, but also its shortcomings on huge requirement on computational resources, so its application and development are limited [15].

In the frame of the CETSOL-6 phase, my PhD work aims to improve the efficiency of the two-dimensional Cellular Automaton -Parabolic Thick Needle (CAPTN) method where the resolution of energy is not considered, apply it for investigating the microstructures under directional solidification, and develop the three-dimensional CAPTN model. Chapter 1 presents the state of the art on dendritic growth theories and numerical models. Chapter 2 firstly reviews the algorithm of the PTN method of Fleurisson [14], then present the improvements on the method and their advantages on computational efficiency. Chapter 3 studies the parameters of the PTN model. The parametric study on the two-dimensional model carried out by Fleurisson [14] is recalled, and complementary developments are presented. Then the extension to three dimensions are detailed. Chapter 4 is dedicated to the CAPTN model, concerning its improvements and three-dimensional validation. Equiaxed dendritic grains under isothermal condition are modeled, and compared with theoretical and other numerical models. Chapter 5 focuses on the application of the two-dimensional CAPTN model on investigating the dendritic spacing of a single crystal and the grain boundary of a bicrystal under directional solidification. It is in the format of an article and is to be submitted. 

Chapter 1 Dendritic growth and numerical models of dendrites and grains

Résumé en français

Cette thèse porte sur la modélisation des structures de grain dendritique. Ce premier chapitre présente une étude bibliographique des théories et phénomènes physiques sur la croissance dendritique ainsi que les modèles numériques existant pour modéliser la croissance et les structures de grains dendritiques. Le modèle CAPTN couplant les modèles d'automate cellulaire (Cellular Automaton, CA) et de réseau d'aiguilles paraboliques (Parabolic Thick Needle, PTN) est présenté en détail. Ce modèle a été développé et appliqué pour prédire la structure des grains équiaxes en deux dimensions. Cependant, ce modèle n'était pas efficace numériquement. Cette thèse a pour objectif d'améliorer l'implémentation numérique de ce modèle et de poursuivre son développement vers des applications en trois dimensions.

As the beginning of this thesis, this chapter reviews first the theories on dendritic growth that will be used in the following of the thesis, then the state of the art of the numerical models on dendritic microstructures and grain structures allowing to situate the CAPTN model among the existing models.

Theories of dendritic growth 1.Undercooling and supersaturation

Let us consider here a sample of a binary alloy of nominal composition 𝑤 0 placed in an isothermal domain at temperature 𝑇 ∞ lower than the liquidus temperature of the alloy 𝑇 L . An exothermal nucleation leads to the growth of a curved solid phase with a solid/liquid interface at temperature 𝑇 ls , solid composition 𝑤 sl and liquid composition 𝑤 ls . The driving force of solidification and the evolution of the solid/liquid interface is the temperature difference ∆𝑇 = 𝑇 L -𝑇 ls , called undercooling. In linear approximation, this undercooling can be divided into four terms [1] 

∆𝑇 = ∆𝑇 C + ∆𝑇 R + ∆𝑇 T + ∆𝑇 K (1.1)
∆𝑇 C is the chemical undercooling due to the diffusion of chemical species in the liquid (see Fig. 1.1). Its origin lies in the difference in solute solubility between the liquid and solid. If the liquidus slope is 𝑚, the chemical undercooling can be expressed as

∆𝑇 C = 𝑚(𝑤 0 -𝑤 ls ) (1.2)
∆𝑇 R is the curvature undercooling (see Fig. 1.1) due to the curvature of the solid/liquid interface. It is the product of the Gibbs-Thomson coefficient 𝛤 sl and the local curvature at the interface, i.e., ∆𝑇 R = 2𝛤 sl /𝑟 for a sphere of radius 𝑟 . ∆𝑇 T is the thermal undercooling representing the temperature difference between the liquid at solid/liquid interface and the liquid in the environment. This undercooling requires therefore to define a temperature of reference for the environment and is taken into account when latent heat is released during solidification and heats the solid/liquid interface. ∆𝑇 K is the undercooling due to the atomic attachment kinetics.

For solidification velocities lower than 10 cm/s, it can usually be assumed that the solid/liquid interface is locally in equilibrium state [16], so the kinetic undercooling is not considered. Take the Al-7 wt.% Si alloy under solidification with velocity of 0.2 mm/s (corresponding to the configuration in the CETSOL project) as an example. Its chemical undercooling is 6.11 K, its curvature undercooling is 0.25 K, and the thermal undercooling can be neglected under this velocity. In the conditions studied in this thesis, ∆𝑇 R , ∆𝑇 T , and ∆𝑇 K are all negligible compared to ∆𝑇 C . Therefore, in the method presented in this thesis, only the chemical undercooling is considered. The solute partition coefficient 𝑘 is defined as

𝑘 = 𝑤 sl 𝑤 ls (1.3)
We define the supersaturation 𝛺 at the interface by 𝛺 = 𝑤 ls -𝑤 0 𝑤 ls -𝑤 sl = 𝑤 ls -𝑤 0 (1 -𝑘)𝑤 ls ≈ ∆𝑇 -𝑚(1 -𝑘)𝑤 ls (1.4)

The supersaturation is dimensionless between 0 and 1. In the conditions where the undercooling can be approximated as the chemical undercooling, the supersaturation can be used instead of the undercooling to describe the growth conditions of the structures during solidification. 

Parameters describing the dendritic microstructure

The difference in composition between solid and liquid results in the phase transformation by the repartition of atoms on both sides of the solid/liquid interface. The nature and the behavior of the interface between the solid phase and the liquid phase during solidification processes are generally decisive in the formation of grain structures. The solid/liquid interface might be stable or unstable. Imagine there is a small disturbance caused by some physical reasons acting on the interface. The interface is considered stable if this disturbance fades, the interface is considered unstable if this disturbance amplifies, and the interface is considered marginally stable if this disturbance neither fades nor amplifies.

Analytical study [1] on a planar solid/liquid interface stability demonstrates that if the diffusion in solid is neglected, the critical wavelength 𝜆 c to instability is about 𝜆 c ≈ 2π √ 𝑑 0 𝐷 l 𝑣 ls

(1.5)

with 𝑑 0 = 𝛤 sl -𝑚(1-𝑘)𝑤 ls the solute capillary length, 𝐷 l the solute diffusion coefficient in the liquid, and 𝑣 ls the velocity of the solid/liquid interface.

Let us assume that the solid has a spherical shape in the stage of nucleation. Once disturbances to the spherical shape can grow, the solid shape starts to show preferred growth directions derived from anisotropy of the solid/liquid interfacial energy [1], which is a result of the regular atomic arrangement in crystal, leading to the growth of dendrite towards preferred directions (as Fig. 1.3). Dendrites along 〈1 0 0〉 directions take our interest in this thesis. The tip of a dendrite can be regarded as a paraboloid in three dimensions [17], and its kinetics can be described by tip radius 𝜌 tip , which is the curvature radius at the tip, and tip velocity 𝑣 tip . To determine the morphology of a dendrite, Langer and Müller-Krumbhaar proposed that the dendrite tip radius is equal to the critical wavelength yielding the destabilization of a planar interface 𝜆 c [19]. The so-called marginal stability criterion writes 𝜌 tip 2 𝑣 tip = 𝐷 l 𝑑 0 1/(2π) 2 (1.6)

This widely-used criterion does not take the anisotropy of the interfacial energy into account.

It was later replaced by the solvability condition, which was a more mathematically rigorous analysis removing some questionable assumptions in the previous analyses. Karma and Kotlia proposed the microscopic solvability theory for alloys [20], then Ben Amar and Pelcé generalized it [21]. In the small Peclet number Pe = 𝜌 tip 𝑣 tip /(2𝐷 l ) limit, the solvability condition can be expressed as

𝜌 tip 2 𝑣 tip = 𝐷 l 𝑑 0 𝜎 (1.7)
where 𝜎 is the selection parameter fixed by the strength of crystalline anisotropy.

A dendritic grain consists of a network of branches from the same initial seed. Primary dendritic arms form along preferred directions, then secondary dendritic arms appear by ramification. The primary dendrite arm spacing 𝜆 1 and the active secondary dendrite arm spacing 𝜆 2 are generally employed for characterizing the network (Fig. 1.3). Photographic illustration of the primary and secondary dendrite arm spacing 𝝀 𝟏 and 𝝀 𝟐 . The photo is of camphene (>95% purity, Merck Ltd.), from [22].

Ivantsov stationary solution

For a single dendritic branch growing at steady state in a semi-infinite domain of nominal composition 𝑤 0 imposed in the liquid under constant temperature, if the form of this branch is assumed as parabola in two dimensions or paraboloid in three dimensions, and the composition is uniform as 𝑤 ls at the solid/liquid interface, the composition field in the liquid can be described by the two-dimensional or three-dimensional Ivantsov solution [23], respectively 𝑤 2D l (𝜉) = 𝑤 0 + (1 -𝑘)𝑤 ls √πPe exp(Pe) erfc(𝜉√Pe) 𝑤 3D l (𝜉) = 𝑤 0 + (1 -𝑘)𝑤 ls Pe exp(Pe) E 1 (Pe 𝜉 2 ) (1.8)

with 𝜉 the first parabolic coordinate (see Fig. 1.4), erfc(𝑥) the complementary error function, and E 1 (𝑥) the exponential integration. The Ivantsov solution was firstly proposed for the thermal diffusion of a pure material, and it was extended later for the chemical diffusion of alloys.

The Ivantsov solution with 𝜉 = 1 is the solid/liquid interface, i.e., description of the parabolic branch. According to the definition of undercooling in Eq. (1.4), the Ivantsov solution in Eq. (1.8) can be converted into equations between undercooling and Peclet number when 𝜉 = 1 𝛺 2D = √πPe exp(Pe) erfc(√Pe) 𝛺 3D = Pe exp(Pe) E 1 (Pe) (1.9)

Eq. (1.9) can be rewritten as

𝛺 2D = √ π𝜌 tip 𝑣 tip 2𝐷 l exp ( 𝜌 tip 𝑣 tip 2𝐷 l ) erfc (√ 𝜌 tip 𝑣 tip 2𝐷 l ) 𝛺 3D = 𝜌 tip 𝑣 tip 2𝐷 l exp ( 𝜌 tip 𝑣 tip 2𝐷 l ) E 1 ( 𝜌 tip 𝑣 tip 2𝐷 l ) (1.10)
if the definition of Pe is taken. For a given supersaturation, Eq. (1.10) and the solvability condition Eq. (1.7) can be solved to get the dendrite tip radius and velocity at the steady state. This theoretical solution is called Ivantsov -Solvability solution in the following, denoted as 𝜌 tip Iv and 𝑣 tip Iv . 

Columnar dendrite, equiaxed dendrite, and Columnar-to-Equiaxed Transition (CET)

There are two typical types of dendritic growth: one is free growth which means the evolution of isolated dendrites in an isotropic infinite undercooled melt, the other is constrained growth where many dendrites grow together under an imposed temperature gradient. These two regimes generate two different morphologies of dendrites: equiaxed dendrites and columnar dendrites. Upon columnar growth dendrites are significantly more developed in one of their principal growth directions. Oppositely equiaxed dendrites grow in all their principal directions of similar dimension. Since the two types of dendrites can coexist in an ingot, the Columnar-to-Equiaxed Transition (CET) is regularly seen in solidification.

The first criterion describing this transition was proposed by Hunt [3]. This criterion is based on the mechanical blocking of the columnar dendrite front by equiaxed grains for a binary alloy. Equiaxed grains are assumed to be nucleated and then to grow in the region in front of the columnar dendrites that is undercooled. If the volume fraction of the equiaxed grains becomes greater than 0.49, the equiaxed grains will block the advancement of the columnar dendrites, yielding the CET.

Gandin [24] studied CET by experiment and numerical approach based on the resolution of the heat flow equation using a two-interface front tracking approach. Two hypotheses of CET are proposed. One is that when the temperature gradient is near zero or even slightly negative along the upward direction, the latent heat released by solidification may remelt some dendritic side branches becoming nuclei of equiaxed grains. The other is the thermal destabilization of the macroscopic interface which means that heat released by some dendrites will influence the growth of dendrite and the primary dendrite arm spacing. Gandin proposed another CET criterion based on the position of the maximum velocity of the columnar dendritic interface according to his study. It should be noticed that Gandin's criterion could only be applied in alloys where no inoculation particles are added to the melt.

Martorano et al. [25] proposed another mechanism for CET based on solutal interactions between the equiaxed grains and the advancing columnar front, rather than mechanical blocking. CET will occur if the solute rejected from the equiaxed grains is enough to dissipate the undercooling at the columnar front. They also proposed that the origin of the equiaxed grains may not be heterogeneous nucleation, but rather a breakdown or fragmentation of the columnar dendrites. Fig. 1.5 is the experimental grain structures observed in the longitudinal section of cylindrical Al-7 wt.% Si ingot obtained by directional solidification over a copper chill [24]. The columnar crystal, the equiaxed crystal, and their transition can be seen. A good understanding of the CET during solidification process is very helpful to the control of the grain structure [5] and of great industrial interest, such as in additive manufacturing [26][27][28]. The CET is the investigating subject of the CETSOL project.

Numerical models of dendrites and grains

Phase-Field (PF) method

The PF method is a microscopic computational method describing the growth of the solid phase without its shape known a priori. It takes the physics of interface (e.g., curvature and its energy) into account, and is one of the most widely used methods for simulating the evolution of microstructures. In this method, the space is divided into three zones: liquid, solid, and solid/liquid interface. The phase field variable 𝜙 is employed in order to identify the phase: it keeps constant in each phase and varies continuously at the solid/liquid interface. For example, 𝜙 = 0 in solid, 𝜙 = 1 in liquid, and 𝜙 ∈ (0, 1) at the solid/liquid interface. Thus, the solid/liquid interface confined to a narrow region becomes diffuse, and the phases turn into a continuous field [1].

The thickness of the solid/liquid interface is a crucial parameter of the PF method. Extremely fine meshes are employed here to describe its shape and calculate the evolution of phase. A larger thickness permits coarser meshes to be used in this area, so a larger domain can be simulated with the same computational cost. However, this thickness must be limited for ensuring the convergence of simulation results.

The principle of the PF method is seeking to minimize the free energy of the simulation domain with respect to time. It therefore necessitates to solve the thermal and/or solutal transport equation depending on the problem.

In spite of its good accuracy, the application of the PF method on solidification is limited on small simulation domains, due to its enormous requirement on computational resources [14]. For example, in the study of Takaki et al., dendritic microstructure is modeled by the three-dimensional PF model on supercomputer TSUBAME2.5 at Tokyo Institute of Technology with 144 GPUs. Fig. 1.6 is one of their results. The computational time for a domain less than 1 mm 3 is about 5.2 days [29]. The PF method has been applied in [START_REF] Badillo | Phase-field simulation of the columnar-to-equiaxed transition in alloy solidification[END_REF] for simulating the CET. This application is only in two dimensions with the moving-domain technique whose moving domain is about 0.004 mm 2 . The simulation results qualitatively agrees with the analytical CET criterion of Hunt [3].

Microscopic Cellular Automaton (CA) method

For the sake of a description on dendritic branches, Nastac employed the Cellular Automaton (CA) method for predicting the dendritic morphology controlled by solute diffusion [START_REF] Nastac | Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys[END_REF], named as microscopic CA method in this manuscript. Afterwards many mathematical models have emerged based on this method for modeling the growth of equiaxed dendrites, columnar dendrites, the CET, and the influence of cooling condition and melt flow, which are summarized in [START_REF] Wang | Numerical Simulation of Three-Dimensional Dendritic Growth of Alloy: Part I-Model Development and Test[END_REF].

In the microscopic CA method, the evolution of the solidification interface is governed by the solute balance. The simulation domain is discretized by regular-lattice CA cells, squares in two dimensions and cubes in three dimensions. Each CA cell holds its location information and several variables, such as the concentration, the temperature, the solid fraction, and the crystallographic orientation. A cell can be solid, liquid, or solid/liquid interface. With the growth of dendrites, the solute concentration of the liquid phase in the interface cell increases gradually and diffuses to its neighboring according to the diffusion law. When the solid fraction of the solidification interface cell is greater than unity, it becomes solid and captures the first 4 (resp. 6) nearest-neighboring cells in two dimensions (resp. three dimensions) as interface cells [START_REF] Wang | Numerical Simulation of Three-Dimensional Dendritic Growth of Alloy: Part I-Model Development and Test[END_REF]. The definition of neighboring cells can be found in Subsection 1.2.5 and in Fig. 1.13. Simultaneously, the solute diffusion continues in the entire liquid domain.

A three-dimensional microscopic CA model is applied for modeling the microstructures under directional solidification with different temperature gradients in [START_REF] Wei | Low artificial anisotropy cellular automaton model and its applications to the cell-to-dendrite transition in directional solidification[END_REF], to investigate the influence of physical parameters on the cell-to-dendrite transition in directional solidification. Its results are shown in Fig. 1.7. Each simulation takes less than one day on a personal computer without parallel computation for a simulation domain of 0.03 mm 3 . However, the results of the microscopic CA method have limited comparison with dendritic growth theories. The microscopic CA method has been applied for modeling the CET in two dimensions, in [START_REF] Wang | Numerical simulation of solute undercooling influenced columnar to equiaxed transition of Fe-C alloy with cellular automaton[END_REF]. The simulation domain is about 12 mm 2 . One of its simulation results is shown in Fig. 1.8. The CET map predicted by the microscopic CA model is consistent with the analytical result of the Hunt model [3]. One of the limits of this work is that the primary dendrite arm spacing is set as a constant, while in the actual solidification process, the primary dendrite arm spacing changes with the thermal condition. 

Dendritic Needle Network (DNN) and Parabolic Thick Needle (PTN) methods

Proposed by Tourret and Karma in [START_REF] Tourret | Multiscale dendritic needle network model of alloy solidification[END_REF], and then enriched in [11-13, 36, 37], the Dendritic Needle Network (DNN) method aims to overtake the numerical limits of the PF method. It models dendritic growth at a scale between the microscopic scale and the mesoscopic scale. Dendrites are regarded as a network of needles. The growing direction of a branch is predefined and fixed during its growth. Each dendrite tip is predefined in parabolic form. This simplified representation of dendrite tip reduces hugely the computational time, making the DNN method able to be applied for larger simulation domains than the PF method.

The method used for calculating the kinetics of a dendrite tip in the DNN method is the Parabolic Thick Needle (PTN) method. In the PTN method, a dendrite tip is represented as a parabola in two dimensions or a paraboloid in three dimensions with radius 𝜌 tip truncated by a cylinder of radius 𝑟 cyl as in Fig. 1.9. Its growing direction is the +𝑥 direction. To be simple, the word "truncating cylinder" is used for both two-dimensional and three-dimensional models. For computing the kinetics of the tip, the solute diffusion equation

𝜕𝑤 PTN l 𝜕𝑡 = 𝐷 l ∇ 2 𝑤 PTN l (1.11)
is solved in the liquid to compute the composition field in the liquid 𝑤 PTN l . It is assumed that the solid/liquid interface is at thermodynamic equilibrium. Therefore, Dirichlet condition of solid/liquid interfacial composition in the liquid side 𝑤 ls is imposed at the solid/liquid interface. One should note that the composition 𝑤 ls is imposed in the parabola as well, so there is no solute conservation in the PTN method. Neglecting the diffusion in solid, the mass conservation at the solid/liquid interface, also called Stefan condition, can be written as

𝒗 * • 𝒏 = -𝐷 l (1 -𝑘)𝑤 ls 𝛁𝑤 PTN l | ls • 𝒏 (1.12)
where 𝒗 * is the velocity vector of solid/liquid interface, 𝒏 is the normal vector of solid/liquid interface, and 𝛁𝑤 PTN l | ls is the gradient of composition field in the liquid at solid/liquid interface. Assuming that the growth of the dendritic branch is quasi-stationary, 𝒗 * • 𝒆 𝒙 = 𝑣 tip with 𝒆 𝒙 the unit vector of the growth direction [14].

In two dimensions integrating Eq. (1.12) along the contour of parabolic dendrite tip Γ ′ defined by the integration distance 𝑎 (see Fig. 1.9, 𝑎 is the distance along the axis of the branch between the dendrite tip and the farthest point on the contour Γ ′ from the dendrite tip) yields a direct relation between 𝜌 tip and 𝑣 tip ,

𝜌 tip 𝑣 tip 2 = 2𝐷 l 2 ℱ 2D 2 𝑑 0 (1.13)
ℱ 2D in Eq. (1.13), named as Flux Intensity Factor (FIF), is defined as

ℱ 2D = -1 4√𝑎 𝑑 0 ⁄ (1 -𝑘)𝑤 ls ∫ 𝛁𝑤 PTN l • 𝒏 𝚪 ′ dΓ ′ Γ ′ (1.14)
In numerical implementation (such as the finite difference method [11-13, 36, 37] and the finite element method [14]), the composition gradient on the parabola is difficult to evaluate with good precision because extremely fine meshes need to be applied to the contour Γ ′ , thus, Eq. (1.14) is transferred by the divergence theorem into

ℱ 2D = -1 4√𝑎 𝑑 0 ⁄ (1 -𝑘)𝑤 ls (∫𝛁𝑤 PTN l • 𝒏 𝚪 Γ dΓ + 1 𝐷 l ∬𝒗 𝐭𝐢𝐩 • 𝛁𝑤 PTN l dΣ Σ ) (1.15)
where Γ is the outer contour and Σ is the surface, as illustrated in Fig. 1.9.

In three dimensions integrating Eq. (1.12) along the surface of parabolic dendrite tip Γ ′ leads to 𝜌 tip 𝑣 tip = 𝐷 l ℱ 3D (1.16) with

ℱ 3D = -1 2π𝑎(1 -𝑘)𝑤 ls ∬ 𝛁𝑤 PTN l • 𝒏 𝚪 ′ dΓ ′ Γ ′
(1.17) and its form for implementation is

ℱ 3D = -1 2π𝑎(1 -𝑘)𝑤 ls (∬𝛁𝑤 PTN l • 𝒏 𝚪 dΓ Γ + 1 𝐷 l ∭𝒗 𝐭𝐢𝐩 • 𝛁𝑤 PTN l dΣ Σ ) (1.18)
Combining the solvability condition Eq. (1.7) and Eq. (1.13) or (1.16), 𝜌 tip and 𝑣 tip can be obtained. Because of its consideration on the composition field in the liquid in the vicinity of the tip, the PTN method is relevant for computing dendrite tip kinetics at both steady and unsteady state.

The DNN method is implemented by the finite difference method [11][12][13][START_REF] Tourret | Multiscale dendritic needle network model of alloy solidification[END_REF][START_REF] Tourret | Multiscale dendritic needle network model of alloy solidification with fluid flow[END_REF][START_REF] Isensee | Convective effects on columnar dendritic solidification -A multiscale dendritic needle network study[END_REF], so as the PTN method. Parametric studies [13,[START_REF] Tourret | Comparing mesoscopic models for dendritic growth[END_REF] have shown that the kinetics is dependent with the integration distance and the mesh size. To date, the simulation domain of the DNN method can reach up to 100 mm 3 . The three-dimensional DNN model has been applied for simulating the CET of the experiments under microgravity on-board the International Space Station in the framework of CETSOL project. However, the solid fraction generated during the growth is not modeled and so the coupling of the microstructure evolution with resolution of energy is currently not possible. In the DNN simulation, the temperature field is imposed as the temperature measured from the CETSOL experiments. Fig. 1.10 is one of its results, demonstrating that the columnar front is completely blocked by the growth of equiaxed grains from inoculant particles. The start, the end, and the length of the CET are predicted accurately with the three-dimensional DNN model [12]. 

Grain Envelope method

Also named as the "mesoscopic phase-field" method, the grain envelope method was initially proposed by Steinbach et al. in [START_REF] Steinbach | Three-dimensional modeling of equiaxed dendritic growth on a mesoscopic scale[END_REF] and then improved in [START_REF] Steinbach | Transient growth and interaction of equiaxed dendrites[END_REF]. It describes the dendritic grain by its envelope but not its solid/liquid interface in order to save computational resources.

The envelope of a grain is a virtual smooth surface connecting all its active dendrite tips, so the envelope growth kinetics can be calculated from the kinetics of dendrite tips. A confocal envelope is defined with a distance from the principal envelope, as schematized by Fig. 1.11. The stagnant film is defined by the liquid between the grain envelope and the confocal grain envelope. The composition field in the stagnant film is regarded as Ivantsovlike composition field, under the assumption that the theory determining dendritic growth is valid for all orders' tips and the interactions at the tip scale is independent of the interactions at grain scale. The growth of the dendrite tips is determined by the solvability theory and the local supersaturation in the vicinity of the envelope. The solute mass balance is resolved over the entire domain. Within the envelope, the solid/liquid interface is assumed at thermodynamic equilibrium [START_REF] Viardin | Mesoscopic modeling of spacing and grain selection in columnar dendritic solidification: Envelope versus phase-field model[END_REF]. The grain envelope model was recently enriched with the volume-average fluid flow equation in two dimensions, and the columnar and equiaxed dendritic growth under the influence of flow was investigated [START_REF] Viardin | Mesoscopic modeling of spacing and grain selection in columnar dendritic solidification: Envelope versus phase-field model[END_REF]. The computational cost of the grain envelope simulations is about two orders of magnitude lower than that of PF [START_REF] Viardin | Mesoscopic modeling of equiaxed and columnar solidification microstructures under forced flow and buoyancy-driven flow in hypergravity: Envelope versus phase-field model[END_REF]. Three-dimensional grain envelope model has also been developed, while its simulation domain is generally in the order of 1 mm 3 [START_REF] Olmedilla | Quantitative 3D mesoscopic modeling of grain interactions during equiaxed dendritic solidification in a thin sample[END_REF]. Fig. 1.12 is an example of three-dimensional grain envelope simulation during equiaxed solidification in a thin sample.

To our knowledge, the grain envelope method has not been applied for modeling the CET. 

Cellular Automaton -Finite Element (CAFE) method

Initially introduced by Rappaz and Gandin [START_REF] Rappaz | Probabilistic modelling of microstructure formation in solidification processes[END_REF], the mesoscopic CA method is used for the prediction of the grain structure by modeling the grain envelopes on a cellular grid. This method is able to simulate the grain structure evolution during solidification processes at the scale of 1000 cm 3 [START_REF] Carozzani | Développement d'un modèle 3D Automate Cellulaire-Éléments Finis (CAFE) parallèle pour la prédiction de structures de grains lors de la solidification d'alliages métalliques[END_REF]. In the rest of this thesis, only this mesoscopic CA method is concerned, so it is simply called the CA method.

The simulation domain is covered by equal-size CA cells, usually squares in two dimensions and cubes in three dimensions, and they are aligned as grid. Their edge length is called CA cell size, denoted as 𝑙 CA . Each cell has its neighbors that are the cells having common point, common edge, or common surface with it. Consider a cell 𝜈, which is with black solid contours in Fig. 1.13. In two dimensions, the cells having a common edge with cell 𝜈 are its first nearest cells, as the red cells in Fig. 1.13a, and the cells having a common point with cell 𝜈 are its second nearest cells, as the green cells in Fig. 1.13a; in three dimensions, the cells having a common surface with cell 𝜈 are its first nearest cells, as the red cells in Fig. 1.13b, the cells having a common edge with cell 𝜈 are its second nearest cells, as the green cells in Fig. 1.13b, and the cells having a common point with cell 𝜈 are its third nearest cells, as the yellow cells in Fig. 1.13b. There are two commonly used neighborhoods. Von Neumann neighborhood is composed by the first nearest cells (4 cells in two dimensions, 6 cells in three dimensions); Moore neighborhood is composed by the first and second nearest cells in two dimensions (8 cells) and first, second, and third nearest cells in three dimensions (26 cells) [START_REF] Mitchell | Computation in Cellular Automata: A Selected Review | Santa Fe Institute[END_REF]. In the following of this thesis, Moore neighborhood is adopted. The evolution of grain structure in the solidification process is modeled by the transition of CA cell state. There are three different cell states: liquid, mushy, and solid. A CA cell in mushy state has a growing envelope. During the solidification process, the envelope captures neighboring cells in liquid state, then these captured cells turn into mushy state and bear their own envelopes (Fig. 1.14). A CA cell will turn into solid state if all its neighbors are in mushy state or solid state (Fig. 1.15). In this way, the propagation of grain is modeled. The grain envelope is an orthodiagonal quadrilateral in two dimensions (Fig. 1.14) and an orthodiagonal octahedron in three dimensions, i.e., diagonals are perpendicular to each other. The growth of the envelope is determined by analytical laws calculating the velocity of its apices, such as the Ivantsov -Solvability solution, depending on the temperature at the apices (when the temperature field is non-uniform, the apices of an envelope may have different velocities, so the envelope can be an irregular quadrilateral or octahedron). These analytical growth laws are under strong assumptions such as growth at steady state [23]. Therefore, the CA method does not consider solute interactions between grains unless macrosegregation is accounted for [9]. However, in this configuration, solute interaction remains very approximate. Fig. 1.14 illustrates the capture process of the CA method. The red quadrilateral is the envelope of the red cell in mushy state in Fig. 1.14a, and all its white neighboring cells are in liquid state. At a moment the center of the right cell (colored in blue in Fig. 1.14b) is contained within the red envelope, so it is captured by the red envelope and becomes mushy. This capture induced the creation of the blue envelope associated to the blue cell, which is homothetic to the red envelope, linked to the same grain and retaining its preferred growing directions, as shown in Fig. 1.14b. The size of the newly born blue envelope is determined by the CA cell size and the length of the capturing edge of the red envelope at the moment of capture [START_REF] Ch | A 3D Cellular Automaton algorithm for the prediction of dendritic grain growth[END_REF].

With the implementation of the microsegregation laws for computing the solid fraction generated during grain growth, the CA method has been coupled with the Finite Element (FE) resolution of energy and solute mass in the simulation domain, as the Cellular Automaton -Finite Element (CAFE) method, for taking thermal and solutal evolution during the solidification process into account. As the continuity of the initial work [START_REF] Ch | A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes[END_REF], the thermal coupling was introduced in [START_REF] Ch | A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures[END_REF], the macrosegregation was introduced in [START_REF] Guillemot | Interaction between single grain solidification and macrosegregation: Application of a cellular automaton-Finite element model[END_REF], and Wang-Beckermann microsegregation model was introduced in [START_REF] Ch | Experimental and numerical modeling of equiaxed solidification in metallic alloys[END_REF]. The two-dimensional and threedimensional CAFE models have been developed and implemented in the CEMEF finite element library cimlib [START_REF] Carozzani | Développement d'un modèle 3D Automate Cellulaire-Éléments Finis (CAFE) parallèle pour la prédiction de structures de grains lors de la solidification d'alliages métalliques[END_REF]. Fig. 1.16a is the simulation result of the three-dimensional CAFE model on the solidification grain structure of one sample of CETSOL project, and Fig. 1.16b is the experimental grain structure of the sample observed in a longitudinal metallographic cross section. The Gaussian nucleation law is applied in the entire domain, with nuclei density 5 × 10 10 m -3 , and mean (4 K) and standard deviation (0.5 K) of nucleation undercooling. Qualitative comparison between the CAFE simulation and experimental observation is reached, while there is still some deviation at the CET position [7]. Possible reasons are that the grains are only considered as envelopes, and the CAFE model is poor at describing dendrite kinetics at unsteady state for its use of analytical growth laws on grain envelopes. 

Cellular Automaton -Parabolic Thick Needle (CAPTN) coupling method

Since the PTN method is relevant to calculating dendritic growth at unsteady state by the composition field in the vicinity of the tip, and the CA method is relevant to modeling grain structures and can be coupled with resolution of energy, their complementary advantages have motivated their coupling in the so-called Cellular Automaton -Parabolic Thick Needle (CAPTN) method. This method was initiated in the thesis of Fleurisson [14] at CEMEF in two dimensions for binary alloys. Its principle is to associate a parabola with radius of curvature 𝜌 tip to each growing branch of the envelopes of the CA model and to calculate the tip velocity 𝑣 tip of the branches by the PTN method on these parabolas. A review of this coupling will be found in Section 4. 1 Fleurisson has implemented the PTN method in the CEMEF finite element library cimlib. The description of the integration area as a circle by the integration distance 𝑎 of the DNN method [START_REF] Tourret | Multiscale dendritic needle network model of alloy solidification with fluid flow[END_REF] has been maintained in this implementation. Same as the finite difference implementation in the DNN method, this finite element implementation of the PTN method requires a fine mesh size at least in the vicinity of the parabola tips, so an adaptive heterogeneous mesh, called PTN mesh, is used [14]. But a major limitation of this strategy is that it costs a large amount of computational time for very frequent reconstruction of mesh to maintain the fine mesh at the solid/liquid interface [15]. Section 2.1 is a summary of this implementation and its computational cost. A parametric study analyzing the convergence of the PTN model to the Ivantsov -Solvability solution as a function of the minimum mesh size and the integration distance has also been carried out [14]. This study is summarized at the beginning of Chapter 3. Fleurisson has adapted the CA method to the CAPTN coupling, in particular on how to capture adjacent cells (see Section 4.1). This CAPTN model can be coupled to a resolution of mass and heat transfer over the resolution domain in the same way as the CAFE model. A two-dimensional CAPTN -FE simulation of the growth of an equiaxed grain in a circular domain was performed and compared to its corresponding CAFE simulation [15]. It has been shown that if the thermal evolutions of the two models are consistent, the kinetics of the primary branches of the grain are different. In particular, the solute interaction of the branches with the edge of the domain is observed in the CAPTN -FE simulation, while it is not considered in the CAFE simulation. Fig. 1.17 shows the simulation results at four different times of the growth of an equiaxed dendritic grain by the coupling CAPTN -FE method on the (a) PTN, (b) CA, and (c) FE meshes.

In spite of its encouraging first results, this method necessitates numerical improvements. It is too costly in terms of computational resources. Neither the CAPTN method nor the CAPTN -FE method has been developed in three dimensions [15].

Remark: to our knowledge, among the models for dendrites and grain structures mentioned above, the PF method and the microscopic CA method have been applied for modeling the CET in two dimensions, the DNN method and the CAFE method have been applied for modeling the CET in three dimensions. Some other models not aiming at predicting individual grain envelopes can also predict the CET, such as the volume averaging method [START_REF] Sachi | Coupling solidification model with CALPHAD data for the prediction of macrosegregation and solidification structures[END_REF][START_REF] Ettroudi | Modélisation numérique multi-échelle des structures de solidification, de la macroségrégation et de la Transition Colonnaire-Equiaxe[END_REF]. These models are not introduced in details since the numerical models studied in this thesis aim to predict the grain structures. 

Conclusion

Solidification processes involve many physical phenomena, and the microstructures formed during solidification processes have large influence on the properties of casting metals and alloys. Dendrite, as a very common microstructure, is studied in this thesis. Some physical theories and phenomena on dendritic growth as well as numerical models for dendrites and dendritic grain structures were reviewed in this chapter. Table 1.1 is a summary of the numerical models on the application on modeling the CET. Fleurisson [14] implemented the PTN method in the finite element library and initiated the multi-scale coupling CAPTN model. The CAPTN model has been applied for predicting the structure of the equiaxed grains and has shown encouraging results. However, the CAPTN model was only two-dimensional, not computationally efficient. Furthermore, even though the CAPTN model has been compared with the CAFE model at mesoscopic scale [15], some evaluations on dendritic microstructures are still missing.

In the following of this thesis, first the PTN model will be improved in particular on computational efficiency; then the PTN model will be developed into three dimensions and its parameters will be studied; next the CAPTN model will be improved, developed into three dimensions, and evaluated by other microscopic numerical models; finally, the twodimensional CAPTN model will be applied for investigating the microstructures produced under directional solidification. This chapter is dedicated to the PTN finite element implementation. The original PTN implementation [14] before this thesis is reviewed, and its shortcomings on computation efficiency are pointed out. As improvements, a new adaptive meshing strategy is proposed, and the octree structure and the orthogonal query method involve into the implementation. The effects of the improvements are shown in the end.

Review on the finite element implementation of the PTN method

PTN algorithms

To illustrate the two-dimensional finite element implementation of the PTN method [14], it is applied here for simulating the growth of a single dendritic branch (see Fig. 2.1). The simulation domain is a square with edge length 𝐿 D along 𝑥 and 𝑦 axes. The origin of the coordinate locates at the left-down corner of the domain. A single dendritic branch grows from left to right (in +𝑥 direction). Its root stays at (0, 𝐿 D /2). The position of the tip is (𝐿 init , 𝐿 D /2) initially and then evolves to (𝑥 tip , 𝐿 D /2) with time. Its tip radius and tip velocity are 𝜌 tip and 𝑣 tip , respectively. The parabolic form of the branch can be described mathematically using a formula by tip position, root position, and tip radius: (𝑦 -𝐿 D /2) 2 + 2𝜌 tip (𝑥 -𝑥 tip ) = 0. This method is implemented by the finite element method on an unstructured finite element mesh of simplex (triangle in two dimensions), as shown in Fig. 2.1. This mesh is called "PTN mesh" in the following part of the thesis. A nodal field 𝛿 ∈parabola is employed for indicating whether a node belongs to the parabola or to the liquid: 𝛿 ∈parabola = 0 for nodes in the liquid, and 𝛿 ∈parabola = 1 for nodes belonging to the parabola 1 . The algorithm for calculating this field will be introduced in the Dirichlet Condition module. The elements having some nodes belonging to the parabola and some nodes belonging to the liquid are regarded as the solid/liquid interface (colored in yellow in Fig. 2.1).

An adaptive heterogeneous meshing strategy was proposed in [14] for a good description of the composition field near the dendrite tip and the computation efficiency, as shown in Fig. 2.1. Nodes of the elements at the solid/liquid interface are equipped with isotropic mesh with minimum mesh size ℎ min (nodes in yellow elements in Fig. 2.1); nodes belonging to the parabola are equipped with isotropic mesh with mesh size ℎ solid (nodes in red elements in Fig. 2.1). ℎ solid is greater than ℎ min for reducing the number of elements. An anisotropic mesh is generated for liquid nodes (nodes in cyan elements in Fig. 2.1) by an anisotropic metric based on the composition field using a geometric error estimator [START_REF] Hamide | Modélisation numérique du soudage à l'arc des aciers[END_REF] 

𝛬 𝑘 = min (max ( 𝑐 𝜖 |𝜆 𝑘 |, 1 ℎ max 2 ) , 1 ℎ min 2 ) (2.1)
In the framework of the eigenvectors of the Hessian of composition field, the diagonal values 𝛬 𝑘 of the metric are functions of eigenvalues 𝜆 𝑘 of the Hessian of composition field, of the minimum mesh size ℎ min and maximum mesh size ℎ max , of the maximum estimated interpolation error accepted 𝜖, and of the geometric parameter 𝑐 = with 𝑑𝑖𝑚 the spatial dimension of the problem (2 or 3) [14]. Thus, the mesh size in the liquid is between ℎ min and ℎ max , and is smaller where the magnitude of composition gradient is greater.

The two physical fields used in the PTN method are the temperature field 𝑇 and the liquid composition field 𝑤 PTN l . These fields are implemented as nodal fields. As for the DNN method, the composition on nodes belonging to the parabola is imposed to the liquidus composition of the tip 𝑤 ls (as described in the Dirichlet Condition). Therefore, there is no solute conservation in the PTN method. 𝑤 PTN l is imposed to the nodes with 𝛿 ∈parabola = 1 as a Dirichlet condition.

The algorithm of the PTN method can be briefly presented by the flow chart in Fig. 2.2.

Initialization is the module at the very beginning of the method. In this module the initial values of fields and parameters are set. Composition Dirichlet condition is imposed to the nodes belonging to the parabola, which will be detailed in the module Dirichlet Condition. The temperature field is uniform. The initial tip radius is the one of Ivantsov -Solvability solution, and the initial tip velocity is 0. The initial composition field in the liquid can be either uniform or Ivantsov solution. Remeshing judges whether the current mesh needs to be reconstructed based on some remeshing criteria, and if so, a remeshing operation will be launched on the PTN mesh, and the fields of the old mesh will be interpolated to the new mesh. Since the anisotropy of the mesh corresponds to the composition field in the liquid and the position of the parabola, as the dendrite grows a certain distance, a new heterogeneous mesh adapting to the new composition field and the parabola should be constructed. The remeshing criteria are as follows. Once at least one of them is satisfied, Remeshing will be carried out.

Resolution of Solute Diffusion

• The tip of a parabola has passed more than one element of size ℎ min since last Remeshing.

• A parabola is calculated by the PTN method for the first time.1 

• 25 time steps have passed since last Remeshing. Calculation of Tip Radius and Velocity calculates first the Flux Intensity Factor by integration, then the tip radius and velocity at time 𝑡 + ∆𝑡. In order to identify the elements on which an integration should be carried out, all elements of the PTN mesh are gone through, and the distance from each node to the tip of the parabola is calculated. According to this, an elementary field indicating that an element belongs to the integration surface Σ or integration contour Γ is deduced. An element is considered to belong to the contour Γ if at least one node of this element is contained in the integration circle, whose radius is determined by the integration distance 𝑎 and tip radius, and at least one other node of this element is not in the circle. Besides, any node contained in the parabola is not considered as in the circle. An element belongs to the surface Σ if all its nodes are contained in the integration circle but not contained in the parabola. Definitions for 𝑎, Γ, and Σ are illustrated in Fig. 1.9. The gradient of composition on the elements belonging to Γ and Σ is computed based on 𝑤 PTN l . The area of element dΣ, the length of the arc of the integration circle contained in the element dΓ, as well as unit outside normal vector 𝒏 Γ are calculated. Then the contribution to the Flux Intensity Factor of related elements are calculated, as in Eq. (1.15). Once the Flux Intensity Factor is known by summing all contribution, the tip radius and tip velocity can be deduced from Eq. (1.7) and Eq. (1.13).

Growth of Parabola gets the position and shape of parabola at time 𝑡 + ∆𝑡 based on its tip radius and velocity at time 𝑡 + ∆𝑡 and its position at time 𝑡.

Dirichlet Condition tags the nodes inside the parabolas (nodes in the red area in Fig. 2.1) at 𝑡 + ∆𝑡 with the Boolean 𝛿 ∈parabola 𝑡+∆𝑡 = 1, and imposes the liquidus composition 𝑤 ls on these nodes. This becomes a part of the boundary condition in Resolution of Solute Diffusion. To identify the nodes belonging to the parabola, all elements of the PTN mesh are gone through for computing the distance from each node to the middle of the root and the tip of the parabola (Point M in Fig. 2.12). For each node with distance not greater than √2𝜌 tip 𝐿 + 𝐿 2 /4 (𝐿 is the distance between the root and the tip of the parabola, as in Fig. 2.12), its coordinates are used for verifying if the node is in the parabola or not. Since the composition in the solid has no influence on the composition in the liquid, for the simplicity of implementation, all nodes belonging to the parabola are given 𝑤 ls = (𝑇 -𝑇 M )/𝑚 as composition Dirichlet condition, with 𝑇 the temperature of the tip of the parabola, 𝑇 M the melting point, and 𝑚 the liquidus slope.

A Time Ending criterion is applied to stop the loop: if the simulation time exceeds 𝑡 end , the loop will stop and go to the end.

The algorithm mentioned here (detailed in [14]) is called original algorithm in the following. The integration distance 𝑎 is a fixed model parameter. Parametric studies on 𝑎 and minimum mesh size ℎ min have been carried out by Fleurisson [14], which will be summarized at the beginning of Section 3.1.

Computational time

A two-dimensional PTN simulation of Al-7 wt.% Si alloy for 𝛺 = 0.1 by the original algorithm is launched on 2 CPU cores. The CPUs used in this thesis are of type Intel ® Xeon ® E5-2680V4 2.40GHz. The composition in liquid is initialized as the Ivantsov solution.

Material properties are listed in Table 2.1; simulation parameters are listed in Table 2.2. Under this supersaturation, the tip radius and tip velocity from the Ivantsov -Solvability solution are 𝜌 tip Iv = 2.45 × 10 -2 mm and 𝑣 tip Iv = 8.90 × 10 -4 mm/s , respectively. The simulation domain is a square whose edge length is 135 mm, about 40𝐷 l /𝑣 tip Iv , so that the simulation could correspond to the growth in a semi-infinite space. The initial length of the branch is 20 mm, giving a tip initial position at (6𝐷 l /𝑣 tip Iv , 20𝐷 l /𝑣 tip Iv ). The maximum mesh size is around 0.6𝐷 l /𝑣 tip Iv . All these parameters are chosen as in the thesis of Fleurisson [14]. In this test, the simulation time is 5100 s. During this period, the tip moves forward about 1.35𝐷 l /𝑣 tip Iv , and the final tip radius and velocity at 5100 s are 𝜌 tip = 2.55 × 10 -2 mm and 𝑣 tip = 8.23 × 10 -4 mm/s. The accumulated computational time of each PTN module is depicted in Fig. 2.3, and the total computational time, i.e., the sum of the computational time of these five modules, is 2756 s. Remeshing consumes 70.5% of the total computational time, because mesh building is a time-costing process and it is too frequent: in this simulation of 5100 time steps there are 197 times of Remeshing. To raise the computational efficiency, an indispensable step is to reduce the frequency of Remeshing. A new adaptive meshing strategy will be introduced in the next section. In the PTN implementation, it is necessary to find the nodes locating in the parabola or the integration area. All nodes are scanned for the queries, which is not efficient.

The query on nodes will also be used in the new meshing strategy. In order to avoid a systematic scan over all nodes or elements in the simulation domain, the octree structure and orthogonal query method will be employed. They will be introduced in Subsection 2.2.1 and their applications on Remeshing, Dirichlet Condition, and Calculation of Tip Radius and Velocity will be presented in Subsection 2.2.2, 2.2.3, and 2.2.4, respectively. The evaluation of the improvements will be presented in Subsection 2.2.5.

Fig. 2.3

Accumulated computational time for each PTN module of the original algorithm for a two-dimensional PTN simulation on 2 CPU cores. Remeshing consumes 𝟕𝟎. 𝟓% of the total computational time.

Octree and orthogonal query 2.2.1 Theory

Orthogonal query [START_REF] Berg | Computational Geometry: Algorithms and Applications[END_REF] is a quick-query algorithm to report quickly the points in a range that is a d-dimensional axis-parallel box. This range is named as orthogonal query range. This query algorithm is efficient because it is based on a tree data structure. In the PTN model, the octree data structure is applied to divide the mesh domain.

An octree [START_REF] Meagher | Geometric modeling using octree encoding[END_REF] is a tree data structure where each internal child has eight children. A three-dimensional space can be recursively subdivided into eight octants, so an octree is often used to represent this kind of partition. Each child represents a space and its eight octants. The subdivided region may be a cuboid or a sphere, or an arbitrary shape.

A quadtree [START_REF] Berg | Computational Geometry: Algorithms and Applications[END_REF], shown in Fig. 2.4, is the two-dimensional analog of octree. Each of its internal child has four children and corresponds to a two-dimensional space and its four quadrants. In our current two-dimensional case, a quadtree structure is applied; but to be simple on words, here these kinds of structure are also called "octree".

There are two parameters used for creating an octree structure: its maximum number of levels and the threshold of element number in a child for subdivision (in general, it is not satisfactory to subdivide a child with only small number of elements). Fig. 2.4 is an octree with 4 levels and the subdivision is carried out only on children with at least 16 elements. The numbers in each block is the number of elements of each block. Green blocks in the third level will not be divided since they each have less than 16 elements. Red blocks in the fourth level will not be divided either since the fourth level is its deepest division. Because the Cartesian coordinate system is used, the subdivided region of the octree is chosen as a rectangle. The edges of all rectangles are axis-parallel, so a rectangle can be defined by two characteristic vertices: vertex inferior 𝑉 inf (𝑥 inf , 𝑦 inf ) and vertex superior 𝑉 sup (𝑥 sup , 𝑦 sup ), as in Fig. For the orthogonal query, the relative position of two rectangles needs to be analyzed, hence two functions are employed: intersection and inclusion. Rectangle A is intersected with Rectangle B if they have common area or common segment or common point. Rectangle A is included in Rectangle B if Rectangle A is entirely a part of Rectangle B. If Rectangle A is intersected with Rectangle B, then Rectangle B is intersected with Rectangle A; vice versa. If Rectangle A is included in Rectangle B, then they are definitely intersected with each other. In all the four cases in Fig. 2.6, Rectangle A and Rectangle B are intersected with each other; in particular, in Fig. 2.6a Rectangle A is included in Rectangle B, and in Fig. 2.6c Rectangle B is included in Rectangle A.

An arbitrary shape can be included in an axis-parallel rectangle. The minimum 𝑥 and 𝑦 coordinate and the maximum 𝑥 and 𝑦 coordinate of the shape are denoted as 𝑥 min , 𝑦 min , 𝑥 max , 𝑦 max , respectively. If the vertex inferior 𝑉 inf and the vertex superior 𝑉 sup of an axis-parallel rectangle are defined by (𝑥 min , 𝑦 min ) and (𝑥 max , 𝑦 max ), then this rectangle includes the shape. However, some points or edges of the shape will locate exactly on the edge of this rectangle.

To ensure that all of the shape is fully located inside this rectangle (but not on the edge of this rectangle), an extension factor 𝑓 ext is applied on the rectangle

𝑥 inf = 𝑥 min -𝑓 ext • (𝑥 max -𝑥 min ) 𝑦 inf = 𝑦 min -𝑓 ext • (𝑦 max -𝑦 min ) 𝑥 sup = 𝑥 max + 𝑓 ext • (𝑥 max -𝑥 min ) 𝑦 sup = 𝑦 max + 𝑓 ext • (𝑦 max -𝑦 min )
This rectangle is called the containing rectangle of the shape, as in Fig. 2.5. Now the octree is applied to the PTN mesh. A mesh will be constructed with an octree once it is created. The total mesh area has its containing rectangle that is the first level of the octree. The content of a child of the octree is a set of simplexes (in the two-dimensional case, a simplex is a triangle; in the three-dimensional case, a simplex is a tetrahedron) of this mesh whose containing rectangles are intersected with the region corresponding to the child. One should note that a simplex is regarded intersected with a rectangular region if the containing rectangle of the simplex is intersected with the rectangular region.

In order to guarantee that all the nodes of the mesh locate inside at least one of the deepest-level rectangular region of the octree, the extension factor 𝑓 ext is also applied in the construction of subdivided regions, i.e., for any subdivision of the octree, the region of a child is a bit larger than a quarter of the region of the parent.

The orthogonal query range is an axis-parallel rectangle, denoted as Rectangle R. The objective of orthogonal query is to find all simplexes in the query range R. The algorithm of orthogonal query is demonstrated in Fig. 2.7. For the parent without child (Line 3), if the rectangular region of this parent is intersected with Rectangle R (Line 4), then all simplexes in this parent will be reported (Line 5). For the parent of octree with children (Line 6), for each of its child (Line 7), if the rectangular region of this child is included in Rectangle R (Line 9), then all simplexes related to this child will be reported (Line 10); if the rectangular region of this child is intersected with but not included in Rectangle R (Line 8, 11), then do the same thing on its each child as on the parent (Line 12), recursively. After all queries, a list of simplex numbers will be reported, after sorting and deleting repeated ones (Line 13, 14). All simplexes in the query range are reported. However, some other simplexes not in the query range are also reported because they are in the last-level child of the octree.

Fig. 2.7

Recursive algorithm of the orthogonal query method.

Fig. 2.8a is an illustration of orthogonal query on mesh. The rectangle with black solid edges is the orthogonal query range. The mesh has a five-level octree structure, and the color dashed lines represent the subdivisions (here only the subdivisions related to the orthogonal query are drawn). The mesh itself is the first level, and the dark red (magenta, green, blue, resp.) represents the first (second, third, fourth, resp.) level. For the sake of clarity, the children of octree are named by 0, 1, 2, 3 in each level, and a number is added behind for each subdivision, as shown in Fig. 2.8b. The orthogonal query processes are as follows.

(i) The orthogonal query range is included in the mesh. Orthogonal query is launched on its children: Children 0, 1, 2, 3.

(ii) Only Child 0 is intersected with the orthogonal query range, so another orthogonal query is launched on its children: Children 00, 01, 02, 03.

(iii) Children 00, 01, 02, 03 are all intersected with the orthogonal query range, so another orthogonal query is launched on their children.

(iv) Children 001, 003, 010, 011, 012, 013, 021, 030, 031 are intersected with the orthogonal query range; in particular, Child 012 is included in the orthogonal query range. So, another orthogonal query is launched on all their children except for Child 012. All elements in Child 012 are reported.

(v) Children 0013, 0031, 0033, 0102, 0103, 0112, 0130, 0132, 0211, 0300, 0301, 0310 are intersected with the orthogonal query range. Since this is the last level of the octree structure, all elements in these children are reported.

As its result, all elements in the gray zone are reported. The above example does not account for the extension of the subdivision, explaining the absence of the repetitive simplexes found (Line 14 in Fig. 2.7).

New adaptive meshing strategy

To guarantee that the mesh follows the form of the dendritic branch, the original algorithm needs to rebuild the mesh nearly every two time steps, which costs enormous computational time. In order to save computational time, it is indispensable to reduce the frequency of Remeshing. Since in the PTN method a branch has a known trajectory, the part of mesh used for computing its kinetics can also be predefined. Based on this, a new adaptive meshing strategy is proposed: the idea is to place a box with minimum mesh size ℎ min in front of the tip, along its growth direction, as the rectangle with blue dashed edges in Fig. 2.9. This permits to compute the Flux Intensity Factor with a good precision at every time step in certain duration while not proceeding with remeshing.

The integration area is a part of circle, drawn in yellow and red in Fig. 2.9. Its radius at the creation time of the fine-mesh box, denoted as 𝑅 integ c , is determined by the integration distance 𝑎, which is a constant in the current code, and tip radius at this time

𝜌 tip c 𝑅 integ c = √𝑎 2 + 2𝜌 tip c 𝑎 (2.
2)

The distance from the dendrite tip to the back edge of the fine-mesh box is 𝑙 b , and the distance from the dendrite tip to the center of the fine-mesh box tip is 𝑙. Hence, the length of the fine-mesh box is 2(𝑙 + 𝑙 b ). This length impacts the frequency of Remeshing: the greater the length is, the less frequently the reconstruction of mesh occurs. However, in order to limit the number of elements, the fine-mesh box should not be too long. Half of its height, denoted as 𝐻, is greater than the radius of integration area at this time. Meshes in the solid (resp. liquid) are homogeneous with mesh size ℎ solid (resp. ℎ max ). To have good transition between different mesh sizes, two transitional areas TA1 and TA2 are defined based on the distance of nodes to the walls of the fine-mesh box. These transitional areas are also helpful to the reconstruction of the mesh, which will be detailed in Subsection 3.1.1. Meshes in these two transitional areas are isotropic and homogeneous with different mesh sizes, ℎ 1 and ℎ 2 , respectively. If mesh belongs to different areas with different sizes, its size is determined by the smallest one.

The integration area for calculating the Flux Intensity Factor of the tip must always stay in the fine-mesh box, so this heterogeneous PTN mesh needs to be reconstructed if at least one of the following criteria is satisfied:

• A parabola employs the PTN method for the first time.

• The tip of a parabola has passed more than a distance 𝑙 R since last remeshing1 .

• The radius of integration area, which varies with tip radius, is greater than 0.95𝐻.

These criteria are only suitable for the simulation with a single branch. Its generalization for multi-branch cases will be discussed in Subsection 4.3.2. A nodal field 𝛿 ∈fine-mesh box indicating the nodes belonging to the fine-mesh box is defined. The orthogonal query is employed for finding nodes in the fine-mesh box. In general cases, the fine-mesh box is oriented with the axis of the dendritic branch and thus not aligned with the frame axes, so an orthogonal query range must be determined. In Fig. 2.10 the blue box is the fine-mesh box determined above. Point A and B are the midpoints of the two edges respectively. 𝐴𝐵 ⃗⃗⃗⃗⃗ is the growing direction of the dendrite. A simple way to determine the orthogonal query range is to first draw a circle at the center of the blue box whose diameter equals to the length of the diagonal of the blue box (i.e., the red circle in Fig. 2.10), then determine the square along axes at the same center circumscribing around the circle (i.e., the black square in Fig. 2.10). This square is its orthogonal query range. The algorithm for determining 𝛿 ∈fine-mesh box is shown in Fig. 2.11. The orthogonal query reports quickly all nodes belonging to it (Line 5 in Fig. 2.11). Then for each of these nodes, its distance to line AB is calculated (Line 8 in Fig. 2.11). For a node N, if its distance to line AB is not greater than the half height of the blue box, 𝐻 (Line 9 in Fig. 2.11), and both 𝐴𝑁 ⃗⃗⃗⃗⃗⃗ ⋅ 𝐴𝐵 ⃗⃗⃗⃗⃗ ≥ 0 and 𝐵𝑁 ⃗⃗⃗⃗⃗⃗ ⋅ 𝐴𝐵 ⃗⃗⃗⃗⃗ ≤ 0 are satisfied (Line 12 in Fig. 2.11), this node is in the blue box. Although all illustrations are two-dimensional here, this algorithm is suitable for threedimensional model as well, with two-dimensional box and circle replaced by threedimensional cylinder and sphere. The efficiency of this improved adaptive meshing strategy will be presented in Subsection 2.2.5.

Application to Dirichlet Condition

The essential step in the algorithm of Dirichlet Condition is to identify the nodes belonging to the parabolas. In the original algorithm, all elements need to be scanned for calculating distance from their nodes to the middle of the root and the tip of the parabola (Point M in Fig. 2.12), called "the middle of the parabolic branch"). The calculation on the elements very far from the parabola is a waste of time. The orthogonal query method is now used for raising computational efficiency by reducing the number of elements involved in the calculation. The orthogonal query range is determined similarly as before: it is an axis-parallel square whose center locates on the middle of the parabolic branch and whose edge length is 2√2𝜌 tip 𝐿 + 𝐿 2 /4 with 𝜌 tip and 𝐿 respectively the tip radius and the length of the parabolic branch, as shown in Fig. 2.12. If the parabola is truncated, the circle and square do not change. The black square that is the axis-parallel circumscribing square of the blue circle is the orthogonal query range. If the parabola is truncated, the circle and the square do not change.

The improved algorithm of Dirichlet Condition by using the orthogonal query method is shown in Fig. 2.13. As inputs, 𝑇 is the nodal temperature field on the PTN mesh, and "parabolas" means the tip coordinates, root coordinates, and tip radius of each parabola. As outputs, 𝛿 ∈parabola is a nodal field identifying nodes belonging to parabolas, and 𝑤 PTN ls is the composition of nodes belonging to parabolas. For each parabola, the matrix of changing lab framework to the framework of this parabola is computed. With the help of the orthogonal query method, the number of elements considered is reduced. A list of elements will be reported by orthogonal query (Line 6 in Fig. 2.13). For each element in the list, each node is tested if it locates in a circle of center given by the middle of the parabolic branch and of radius given by √2𝜌 tip 𝐿 + 𝐿 2 /4 (Line 13, 14). If a node is in this circle (the blue circle in Fig. 2.12), its coordinates in the coordinate framework associated with the parabola are calculated (Line 15 in Fig. 2.13) for judging whether it is inside the parabola. For a node inside the parabola, the value of 𝛿 ∈parabola is given as the index of the parabola (Line 17 in Fig. 2.13).

The temperature of the dendrite tip is obtained by locating the element containing the tip and interpolating the temperature field. The interfacial composition in liquid calculated from the tip temperature and a linearized phase diagram is given to the nodes belonging to this branch. Fig. 2.14 shows the elements reported by the orthogonal query (in green and red) and elements belonging to the parabola (in red). In this example the maximum number of levels of the octree structure is limited to 12 and subdivision is carried out only on children with at least 256 elements. The mesh near the dendrite tip is finer. Because of the threshold of element number in a child for subdivision, the number of levels of subdivision near the tip is greater than that far away the tip, and the regions of the children at the last level of the octree near the dendrite tip are smaller in area. Therefore, the regions reported by the orthogonal query are not the same in area. This yields that the reported shape is not a rectangle. 34184 elements are reported by the orthogonal query, whereas in the total simulation domain there are 78523 elements: only 43.5% of the elements go into the loop from Line 7 to Line 17 in Fig. 2.13. The efficiency of this improvement will be presented in Subsection 2.2.5.

One has to note that this Dirichlet Condition algorithm is only suitable for the PTN and CAPTN model when the temperature field is uniform. If the temperature is non-uniform, this algorithm is no longer relevant, and its generalization will be discussed in Subsection 4.3.1. 

Application to Calculation of Tip Radius and Velocity

The calculation of dendrite tip kinetics necessitates computing the Flux Intensity Factor in the integration area. The algorithm of Calculation of Tip Radius and Velocity is improved as well with the employment of the orthogonal query method in a similar way. Its query range is chosen as an axis-parallel square whose center is at the tip of the parabola and whose edge length equals 2𝑅 integ , where

𝑅 integ = √2𝜌 tip 𝑎 + 𝑎 2 (2.3)
is the radius of its integration area for Flux Intensity Factor, so the integration area is entirely included in this query range, as shown in Fig. 2.15.

The improved algorithm of Calculation of Tip Radius and Velocity is shown in Fig. 2. 16.

Here the arguments are for the current time step 𝑡 by default, and to be simple, their superscript 𝑡 is omitted; on the contrary, arguments for the previous time step are noted by superscript 𝑡 -∆𝑡. As inputs, 𝛿 ∈parabola is a nodal field identifying that nodes belong to parabolas, 𝑤 PTN l is the composition field composition, 𝑇 is the nodal temperature field on the PTN mesh, and "parabolas" means the tip coordinates, root coordinates, and radius of each parabola. As outputs, 𝜌 tip and 𝑣 tip are the tip radius and velocity of each branch.

For each parabola, the matrix of changing lab framework to the framework of this parabola is computed (Line 4 in Fig. 2.16). The orthogonal query method reports the elements located in the query range (Line 5 in Fig. 2.16) that will be browsed in the following. If none of the nodes of the element is in liquid area (a node is in liquid area at 𝑡 -∆𝑡 if 𝛿 ∈parabola 𝑡-∆𝑡 = 0), this element will be passed out. The distance of each node to the tip of the parabola is calculated (Line 10 in Fig. 2.16), if none of the nodes locates in the integration area, i.e., its distance to the tip of the parabola is greater than the radius of integration area, this element will be passed out; else, this element donates its contribution to the Flux Intensity Factor. For an element contributing to the calculation of Flux Intensity Factor, its composition gradient will be calculated if it is unknown (Line 13 in Fig. 2.16). Then it is distinguished whether the element is on the boundary Γ of the integration area or in the surface Σ (as defined in Fig. 1.9), by regarding if at least one of its nodes are out of the integration area (Line 14 in Fig. 2.16). In the two-dimensional model, for the simplicity of implementation, the integration in Eq. (1.15) is modified as

ℱ ′ = -1 4√𝑎(1 -𝑘)𝑤 ls (∫𝛁𝑤 PTN l • 𝒏 𝚪 Γ dΓ + 1 𝐷 l ∬𝒗 𝐭𝐢𝐩 • 𝛁𝑤 PTN l dΣ Σ ) = 1 √𝑑 0 ℱ (2.4)
The contributions of the elements to this modified Flux Intensity Factor ℱ′ of parabola 𝑗 are accumulated as ℱ 𝑗 ′ . The temperature of the tip of parabola is interpolated with the help of a logarithmic locator, which is able to find the element of PTN mesh containing the tip of the parabola (Line 20 in Fig. 2.16). This logarithmic locator is also based on the octree discussed above while it is an application of point query. After calculating the interfacial composition of the tip in the liquid 𝑤 tip and the capillary distance 𝑑 0 , the new tip radius and velocity can be obtained by combining the Solvability condition (Eq. (1.7)). Fig. 2.17 shows the elements reported by the orthogonal query (in green, yellow, and red) and elements belonging to the integration area (in yellow and red). In this example the number of levels of the octree structure is limited as no larger than 12 and subdivision is carried out only on children with at least 256 elements as well. 2144 elements are reported by the orthogonal query, whereas in the total simulation domain there are 78523 elements: only 2.7% elements go into the loop from Line 6 to Line 18 in Fig. 2.16. The efficiency of this improvement will be presented in Subsection 2.2.5. 

Reduction on computational time

The same simulation as Section 2.1 is redone on 2 cores with improved algorithms employing the orthogonal query method on Remeshing, Dirichlet Condition, and Calculation of Tip Radius and Velocity. Its simulation parameters are listed in Table 2.3, keeping the same minimum mesh size, mesh size in the solid, maximum mesh size, integration distance, time step, and simulation time. The tip radius and tip velocity from the Ivantsov The final tip radius and velocity at 5100 s calculated by the improved PTN algorithm are 𝜌 tip = 2.52 × 10 -2 mm and 𝑣 tip = 8.46 × 10 -4 mm/s. The computational time for each PTN module of the improved algorithm is depicted in Fig. 2.18 with dashed curves, in comparison with the computational time of the original algorithm with solid curves. The curves of original algorithm are just those in Fig. 2.3. The numbers of elements of the two algorithms are not too different: 93148 and 85060 elements at the last time step for the original and improved algorithm, respectively. Even so, the reducing on computational time is dramatic. The improved Remeshing consumes only 53 s, saving 97.3% time of the original Remeshing, because it is only launched 4 times in 5100 time steps. The employment of orthogonal query helps Dirichlet Condition and Calculation of Tip Radius and Velocity to save 41.2% and 50.4% of its computational time, respectively. There is no algorithmic improvement on Resolution of Solute Diffusion or Growth of Parabola. The computational time of Growth of Parabola does not change; however, the computational time of Resolution of Solute Diffusion decreases a little. This decrease of time can be explained by the fact that the number of elements of the improved algorithm is a little smaller than that of the original algorithm, so the time for solving diffusion equation on the mesh is saved a little. In total, for this simulation, the original algorithm consumes 2756 s while the improved algorithm consumes only 768 s : 72.1% of the computational time is saved. This great improvement on computational efficiency will permit the model to be applied for more complicated twodimensional and three-dimensional cases. It should be emphasized that all these improvements on algorithm are suitable for the three-dimensional model as well, only with changes in dimension, for example: the rectangular box with minimum mesh size becomes a cylinder, the circle and axis-parallel square become a sphere and axis-parallel cube.

Besides of the computational time, kinetics obtained by the original and improved algorithm at 5100 s are comparative. Further analyses on the kinetics will be discussed in Section 3.1. 

Conclusion

The original algorithm and implementation of the PTN method [14] were reviewed briefly at the beginning of this chapter, and the computational time of each module was analyzed. Remeshing consumed enormous time. To raise the computation efficiency, the octree structure and orthogonal query method have been employed in Remeshing, Dirichlet Condition, and Calculation of Tip Radius and Velocity for seeking the nodes in a certain domain quickly, and a new adaptive meshing strategy aiming to decrease the frequency of Remeshing have been proposed. The improved algorithm saves huge amount of computational time in the two-dimensional as-example simulation. This satisfactory result encourages the application of the CAPTN method and its three-dimensional development.

Algorithmic improvements in this chapter does not change the simulation results on kinetics. The kinetics of the original and improved algorithms will be further compared in the next chapter. 

Résumé en français

La cinétique calculée par l'algorithme amélioré du modèle PTN et celle calculée par l'algorithme original sont quasiment identiques en deux dimensions, attestant que l'algorithme amélioré n'influence pas la cinétique. La longueur de diffusion d'une branche dendritique sous la solution d'Ivantsov est définie. Celle-ci est utilisée pour dimensionner la distance d'intégration et la dimension de la boîte des mailles fines dans la suite de cette thèse. On observe que lorsque la distance d'intégration est trop grande, la cinétique calculée est divergente. Ce phénomène est expliqué mathématiquement. Les paramètres numériques du modèle PTN sont ensuite étudiés en trois dimensions. Dans une certaine gamme de valeurs, une distance d'intégration plus grande et une taille de maille minimale plus petite améliorent la précision de la cinétique. Le pas de temps a une toute petite influence sur la cinétique en régime permanent, et le cylindre tronquant la parabole ne doit pas croiser la zone d'intégration pour ne pas influencer la cinétique des branches dendritiques.

This chapter shows the studies on PTN method parameters. The calculated kinetics of the improved and original two-dimensional PTN methods are compared. A new observation that the kinetics will be divergent when the integration distance is too large is explained mathematically. The parametric studies on the two-dimensional PTN method are extended to the three-dimensional PTN method.

Two-dimensional PTN parameters in isothermal condition

Fleurisson has analyzed the influence of the parameters, including the minimum mesh size ℎ min , integration distance 𝑎, and radius of truncating cylinder 𝑟 cyl , on the results of the two-dimensional PTN method [14]. A single dendritic branch of Al-7 wt.% Si alloy growing under constant supersaturation in a large simulation domain is modeled with the twodimensional PTN method. The initial composition field 𝑤 PTN l in the liquid is taken equal to the Ivantsov solution. In these conditions, the dendrite tip kinetics evolves towards a steady state that should theoretically correspond to the Ivantsov -Solvability solution, introduced in Subsection 1.1.3.

As shown in Fig. 3.1, it is observed that steady-state tip radius and tip velocity converge towards the Ivantsov -Solvability solution for small ℎ min /𝜌 tip Iv and large 𝑎/ℎ min . The smaller ℎ min /𝜌 tip Iv and the larger 𝑎/ℎ min are, the smaller difference between the calculated results at steady state and the Ivantsov -Solvability solution is, and the higher its computational cost is. In terms of 𝑟 cyl , if the truncating cylinder intersects with the integration area, it does influence the results; otherwise, it does not have noticeable impact on the results. Fleurisson has also demonstrated that the prediction on kinetics becomes less precise when the supersaturation increases [15]. These studies are regarded as a reliable reference for the PTN model. The improved algorithm does not change the method of calculating the kinetics, therefore the kinetics from the improved algorithm should be the same as that from the original algorithm. This is validated by comparing the PTN simulation results from two algorithms for a case mentioned in [14].

Comparison on kinetics between the original and improved algorithm

The same simulations for a single dendritic branch of Al-7 wt.% Si alloy growing under constant supersaturation 𝛺 = 0.1 as Subsection 2.1.2 and 2.2.5 are used for comparing the kinetics calculated by the original and improved algorithm. The simulation domain is a square of 135 mm × 135 mm. The branch is rooted at the middle of the left domain edge and grows towards the right. Its initial length is 20 mm.The composition in the liquid is initialized as the Ivantsov solution. In this case, the tip radius, tip velocity, and diffusion length at dendrite tip from Ivantsov -Solvability solution (to see Subsection 3.1.2) are 𝜌 tip Iv = 2.4 × 10 -2 mm, 𝑣 tip Iv = 8.9 × 10 -4 mm/s, and 𝛿 d Iv = 0.67 mm, respectively. The simulation time is 5100 s.

The kinetics computed by the simulation using the original algorithm and the improved algorithm are compared. The normalized tip radius and tip velocity at every time step are plotted in Fig. 3.2: (a) is from the original algorithm, and (b) is from the improved algorithm. The normalization is achieved by dividing the Ivantsov -Solvability solution under the same supersaturation. At the first time step, the kinetics is initialized by the Ivantsov -Solvability solution, so the dimensionless kinetics equals to 1. The composition field in the liquid is initialized as the Ivantsov solution, so the kinetics is close to its steady state from the beginning. The PTN method is employed as the growth law just from the second time step. The improved algorithm gives very similar kinetics to the original algorithm, indicating that the improved algorithm keeps the same precision on results. Thus, the studies on parameters in [15] are valid for the improved algorithm as well. Vertical dotted lines in Fig. 3.2b are the moments when the mesh is reconstructed in the improved algorithm. The moments of reconstructing the mesh in the original algorithm are not plotted in the Fig. 3.2a because there are 197 times of Remeshing, too many to present in the figure. The mesh with branch, integration area, iso-composition contours, and the definition of fine-mesh box at the time step just before (𝑡 = 3071 s) and after (𝑡 = 3072 s) Remeshing are shown in Fig. 3.3a and Fig. 3.3b, respectively. The areas with minimum mesh size are not exact rectangles, especially on the right side, for the reason that their definition is based on the coarse mesh of the last time step. The transitional areas (introduced in Subsection 2.2.2, and the larger transitional area TA2 in Fig. 3.3a is shown by the round corner rectangle with dark green dashed edges) can partly solve this problem, besides ensure good transition between minimum mesh size and maximum mesh size. If the elements with the maximum mesh size are involved in the description of the blue box, which is not the current case, the mesh will no doubt become much worse.

Supposing at steady state the tip radius remains as 𝜌 tip Iv and the radius of the integration area 𝑅 integ is such that 𝑅 integ < 0.95𝐻. In this case the integration area will go out of the fine-mesh box if the tip has passed

𝑙 R max = 2𝑙 + 𝑙 b -𝑅 integ (3.1)
since last Remeshing. With the parameters in Table 2.3, 𝑙 R max ≈ 2.04𝑙. In the simulation 𝑙 R = 1.9𝑙 < 𝑙 R max is used so as to reconstruct the mesh before the integration area enters the poorly defined zone near the right boundary of the blue box. If the integration area always stays in the area with minimum mesh size, the influences of Remeshing on the composition field and kinetics will be negligible. In Fig. 3.2b, there is little extra fluctuation at the moments when Remeshing occurs.

The mesh sizes in the transitional areas, ℎ 1 and ℎ 2 , hardly influence the calculation on kinetics if their values are reasonably chosen. This will be manifested in Section 4.5, by the comparison of the kinetics calculated by the adaptive heterogeneous mesh and the kinetics calculated by the homogeneous mesh (all mesh sizes are equal to ℎ min ).

Diffusion length under Ivantsov -Solvability solution

As mentioned above, Fleurisson uses the minimum mesh size ℎ min to nondimensionalize the integration distance 𝑎. However, the integration area used for calculating the solute flux is rather linked with the composition field, so it is better to use a physical length related to the composition for nondimensionalizing the integration distance.

The diffusion length at a parabolic tip under Ivantsov solution is proposed. It is denoted as 𝛿 d Iv , as firstly mentioned in Subsection 2.2.5. Suppose that a single dendritic branch grows in a semi-infinite domain. The form of the branch is assumed as a parabola. At steady state, the composition field in the liquid follows Ivantsov solution as Eq. (1.8). In two dimensions, the tip of the parabolic branch is at (𝑥, 𝑦) = (𝜌 tip Iv /2, 0) , and the relation of parabolic coordinate and Cartesian coordinate is (as shown in Fig. 1.4)

𝜌 tip Iv 𝜉 2 = 𝑥 + √𝑥 2 + 𝑦 2 , 𝜌 tip Iv 𝜂 2 = -𝑥 + √𝑥 2 + 𝑦 2
At 𝑥 axis, 𝑦 = 0, 𝜉 = √ 2𝑥/𝜌 tip Iv , so

𝑤 2D l (𝑥) = 𝑤 0 + (1 -𝑘)𝑤 ls √πPe exp(Pe) erfc (√Pe • 2𝑥/𝜌 tip Iv ) (3.2)
Referring to the definition of the diffusion length of a planar front, the diffusion length at the dendrite tip along its growing direction is defined as twice of the intersection of the tangent of the composition along the 𝑥 axis at the solid/liquid interface and the nominal composition, as shown in Fig. 3 

𝛿 d Iv = 𝑤 0 -𝑤 ls -2(1 -𝑘)𝑤 ls Pe/𝜌 tip Iv × 2 = 2𝛺𝐷 l 𝑣 tip Iv (3.4)
For the three-dimensional case, even if the composition field is different from that of two dimensions, the diffusion length takes the same formula as Eq. (3.4). Fig. 3.5 demonstrates the evolution of two-dimensional and three-dimensional diffusion length and tip radius of a dendrite tip of Al-7 wt.% Si alloy at steady state with supersaturation 𝛺. For 𝛺 ≤ 0.5 in two dimensions and 𝛺 ≤ 0.3 in three dimensions, which are satisfied by all the studies in this thesis, 𝛿 d Iv > 𝜌 tip Iv always stands. Under the same supersaturation, the three-dimensional characteristic lengths are much smaller than the two-dimensional ones, and the ratio of 𝛿 d Iv to 𝜌 tip Iv in three dimensions is smaller than in two dimensions. 

Integration distance and convergence on kinetics

Observation of convergence limit

The influence of the integration distance 𝑎 on kinetics has been investigated in [15], and a general conclusion is that the greater the integration distance is, the more accurate the kinetics is. However, in our study, it is observed that, as shown below, if the integration distance is too large, the kinetics may be divergent and not physical. Other parameters are the same as Table 2.3. 

Theoretical explanation

The divergence of kinetics for very large integration distance can be explained by the following deduction. By combining Eq. (1.7) and Eq. (1.15), an expression of the tip velocity can be obtained

𝑣 tip = 𝐷 l ( 4𝜎 𝑑 0 (- 1 (1 -𝑘)𝑤 ls • 1 4√𝑎 (∫𝛁𝑤 PTN l • 𝒏 𝚪 dΓ Γ + 𝑣 tip 𝐷 l ∬𝒆 𝒙 • 𝛁𝑤 PTN l dΣ Σ )) 4 ) 1 3 
(3.5)

To be simple, Eq. (3.5) is noted as 𝑣 tip = 𝑓(𝑣 tip ). This is also the explicit formula used in the 

𝑓 ′ (𝑣 tip s ) ≈ ∆𝑣 L ∆𝑣 R (3.8)
The derivative of 𝑓, i.e., the right-hand side of Eq.(3.5), at 𝑣 tip = 𝑣 tip s can be calculated under the assumption that all other parameters are independent with 𝑣 tip , so

𝑓 ′ (𝑣 tip s ) = - √2 3(1 -𝑘)𝑤 ls √ 𝑎𝜌 tip s ∬𝒆 𝒙 • 𝛁𝑤 PTN l dΣ Σ (3.9) 
with 𝜌 tip s the tip radius at steady state. Eq. (3.9) is regarded a function of 𝑎, denoted as 𝐶(𝑎),

indicating the convergence of the explicit formula.

𝐶(𝑎) = 𝑓 ′ (𝑣 tip s ) ≈ ∆𝑣 L ∆𝑣 R (3.10)
Theoretically, if 𝐶(𝑎) is greater than 1, an error on the velocity on the right-hand side will lead to a greater error on the velocity on the left-hand side in Eq. (3.6), then the calculated velocity will go further and further away from the correct solution, meaning that this formula is divergent.

If the composition field in the liquid at steady state is equal to the Ivantsov solution (see Subsection 1.1.3), and the steady-state tip radius and velocity are just 𝜌 tip Iv and 𝑣 tip Iv , then the integrated part of Eq. (3.9) can be calculated mathematically Eq. (3.9) can be converted as

𝒆 𝒙 • 𝛁𝑤 = ∂𝑤 ∂𝑥 = ∂𝑤 ∂𝜉 ∂𝜉 ∂𝑥 = - ( 1 
𝐶(𝑎) = √2 Pe exp (Pe) 3𝜌 tip Iv √𝑎 ∬ exp (- Pe(𝑥 + √𝑥 2 + 𝑦 2 ) 𝜌 tip Iv ) ( 𝑥 + √𝑥 2 + 𝑦 2 𝑥 2 + 𝑦 2 ) 1 2 d𝑥d𝑦 Σ (3.11)
where the upper half of the integration surface can be expressed as and the lower half of the integration surface can be expressed as with 𝑅 integ = √𝑎 2 + 2𝜌 tip Iv 𝑎. See Fig. 3.9 for illustration. unity, the kinetics is also convergent. This might be because in the deduction of Eq. (3.11) the composition field is regarded as Ivantsov solution and the tip radius and tip velocity are regarded as Ivantsov -Solvability condition, but in the reality, they are not. For 𝑎/𝛿 d Iv ∈ {25, 30}, 𝐶(𝑎) gets further from unity, so the kinetics becomes divergent.

In summary, 𝐶(𝑎) deduced from Ivantsov solution is fairly consistent with the divergence of kinetics observed in the simulations, while the criterion 𝐶(𝑎) < 1 is a little bit stricter than the reality due to the strong assumption in the mathematical deduction. It can be used as an advance test on the choice of integration distance 𝑎: with 𝐶(𝑎) ≥ 1 there is risk of divergence on kinetics, and 𝑎 might be too large. In terms of the three-dimensional model, the same convergence-to-divergence phenomena are observed as the integration distance 𝑎 increases, and its theoretical explanation follows the same logic, except that Eq. (3.5) should match with the three-dimensional equations

𝑣 tip = 𝐷 l 𝜎 𝑑 0 ( -1 2π𝑎(1 -𝑘)𝑤 ls ) 2 (∬𝛁𝑤 PTN l • 𝒏 𝚪 dΓ Γ + 𝑣 tip 𝐷 l ∭𝒆 𝒙 • 𝛁𝑤 PTN l dΣ Σ ) 2 (3.12)
It is assumed that all other parameters are independent with 𝑣 tip and the branch grows at steady state with velocity 𝑣 tip s . 𝑣 tip s = 𝑓(𝑣 tip s ) stands. The influence of disturbance can be expressed as 𝑣 tip s + ∆𝑣 L = 𝑓(𝑣 tip s + ∆𝑣 R ). So

∆𝑣 L ∆𝑣 R ≈ 𝑓 ′ (𝑣 tip s ) = 𝐶(𝑎) = - 1 π𝑎𝜌 tip (1 -𝑘)𝑤 ls ∭𝒆 𝒙 • 𝛁𝑤 PTN l dΣ Σ (3.13)
Suppose that the composition field in the liquid at steady state is equal to the Ivantsov solution, and the steady-state tip radius and velocity are just 𝜌 tip Iv and 𝑣 tip Iv . Taking the threedimensional form of Eq. (1.8) into Eq. (3.13) yields

𝐶(𝑎) = Pe exp (Pe) π𝑎𝜌 tip Iv ∭ exp (- Pe(𝑥 + √𝑥 2 + 𝑟 2 ) 𝜌 tip Iv ) • (√𝑥 2 + 𝑟 2 ) - 1 2 • 2π𝑟d𝑟d𝑥 Σ (3.14)
where the integration zone can be expressed as The curve of three-dimensional 𝐶(𝑎) for Al-7 wt.% Si alloy with 𝛺 = 0.1 is plotted in Fig. 3 decreases with 𝛺 , indicating that at high supersaturation the choice of 𝑎 is more limited. Besides, in both two-dimensional and threedimensional models, large integration distance means large consumption on computational resource, therefore in the real simulation it is rare to use a large integration distance. In the following simulations the choice of 𝑎 guarantees the convergence of kinetics. 

Three-dimensional PTN parameters in isothermal condition

The three-dimensional PTN model has also been developed. Its parameters are to be investigated as the same way as the two-dimensional model. For this, the growth of a single dendritic branch of Al-7 wt.% Si alloy under constant temperature with supersaturation 𝛺 = 0.062 is studied. The velocity of Ivantsov -Solvability solution at this temperature is 0.02 mm/s , corresponding to the minimum pulling velocity in the CETSOL project experiments. Physical parameters from Ivantsov -Solvability solution are given in Table 3.1. The initial length of the branch is 15𝛿 d Iv , long enough for any integration distance investigated. The initial composition in the liquid is the nominal composition 𝑤 0 = 7 wt. %, leading to a long transient to arrive at its steady-state growth 1 . The simulation domain is a cube, and the branch grows from its bottom. In this section we are only interested in its steady-state kinetics that will be compared with the Ivantsov -Solvability solution, so the length of the cube must be large enough for the branch arriving at steady state: it is hereby chosen as 3 mm ≈ 160𝛿 d Iv . The simulation time is set as 140 s. The integration distance 𝑎, the minimum mesh size ℎ min , the time step ∆𝑡, and the radius of truncating cylinder 𝑟 cyl are the parameters investigated in this section. The integration distance is nondimensionalized by the diffusion length of a parabolic branch under Ivantsov -Solvability solution. The minimum mesh size is nondimensionalized by the tip radius of Ivantsov -Solvability solution, and the time step is nondimensionalized by the quotient of the minimum mesh size divided by the tip velocity of Ivantsov For the sake of precision on kinetics, the truncating cylinder should not intersect with the integration area [14], so a minimum applicable radius of truncating cylinder at steady state 𝑟 cyl min is defined as the distance from the intersection of the circle contour of the integration area with the parabola to the axis of the branch, under the assumption that its growth follows the Ivantsov -Solvability solution:

𝑟 cyl min = √ 2𝑎𝜌 tip Iv (3.18)
𝑟 cyl is then nondimensionalized by 𝑟 cyl min , hence introducing the parameter 𝛽:

𝑟 cyl = 𝛽𝑟 cyl min (3.19)
Simulation parameters are given in Table 3.2. 

Three-dimensional PTN simulation results and computational time

The dendrite tip radius and tip velocity of the simulation with parameters 𝛼 = 1/3, 𝛾 = 0.5, 𝜏 = 0.5, and 𝛽 = ∞ (the branch is not truncated by the cylinder), normalized by the Ivantsov -Solvability solution, are shown in Fig. 3.12, where the kinetics is plotted every 10 time steps. At the first time step, the tip is given radius and velocity of Ivantsov -Solvability solution for initialization, so the normalized kinetics is unity. In the following time steps its kinetics is calculated by the PTN method. At the beginning its growth is unsteady: large composition gradient near the solid/liquid interface in the vicinity of the tip yields large solute flux, so the tip velocity is large and tip radius is small. The growth closely approaches steady state gradually. At the end of simulation, the tip is near the boundary, which has considerable effect on the composition field in liquid in the vicinity of the tip, so the tip velocity gets smaller and the tip radius gets greater. There is fluctuation on the kinetics for numerical reasons. The dotted vertical lines are the moments when Remeshing occurs, and there is tiny extra fluctuation at these Remeshing moments. Since the evolution of kinetics is smooth overall, the tiny extra fluctuation is considered acceptable, as well as the current Remeshing strategy.

The composition field on the cross section at (1.5 mm, 1.5 mm, 1.5 mm) with +𝑥 direction, in the above-mentioned simulation at 𝑡 = 100 s, is depicted by wireframe in Fig. 3.13a. Dirichlet condition is imposed to all nodes belonging to the paraboloid. Finer meshes are employed near the tip. Fig. 3.13b is an enlargement of the meshes in the rectangle with black dashed edges, where the branch (in green) and the integration area (in yellow and red) are overlapped. The integration area locates in the fine-mesh box with minimum mesh size ℎ min . The meshes for transitional areas, solid, and liquid can be easily identified. It demonstrates the aptness of the improved meshing strategy for three-dimensional PTN model. The accumulated computational time of each PTN module of this simulation, launched on 32 CPU cores, is plotted by curves in Fig. 3.14. The total computational time of the five modules is 57730 s. Remeshing consumes 88% of the total computational time, Resolution of Solute Diffusion consumes 10% of the total computational time, Calculation of Tip Radius and Velocity and Dirichlet Condition both consume 1% of the total computational time, and Growth of Parabola hardly consumes computational time. This is the same conclusion as the two-dimensional PTN model. 

Influence of the integration distance and minimum mesh size

In a first part, the integration distance 𝑎 and the minimum mesh size ℎ min are studied. The branch is not truncated by the cylinder, i.e., 𝛽 = ∞. The dimensionless time step is fixed as 𝜏 = 0.5. Since three-dimensional simulation consumes lots of computational resource, the investigating ranges of 𝛼 and 𝛾 are not as large as two-dimensional ones, but they are still sufficient to reveal their influence. Two series of simulations are launched on 32 CPU cores. For Series I, 𝛾 = 0.5, and for Series II, 𝛾 = 1. Their parameters, computational time, and number of elements at 𝑡 = 100 s are listed in Table 3.3. The Series I, 𝛾 = 0.5, 𝛼 = 1/3 is the simulation discussed in Subsection 3.3.1, but its computational time in the Table 3.3, 1086 minutes, is larger than the sum of the accumulated computational time of the five PTN modules in Fig. 3.14 because the computational time listed in the Table 3.3 includes other modules of the simulation such as loading and partitioning of the mesh.

Kinetics closely approaches steady state between 60 s and 100 s for all the simulations reported in Table 3.3. The mean value and standard deviation of 𝜌 tip /𝜌 tip Iv and 𝑣 tip /𝑣 tip Iv in this period are computed for all the simulations, and they are plotted in Fig. 3.15 as solid curves for Series I and dashed curves for Series II. The same conclusion as the study of twodimensional model [14] is obtained: larger integration distance and smaller minimum mesh size will bring steady-state results closer to Ivantsov -Solvability solution and smaller fluctuation, with higher computational cost. One should note that the difference between the steady-state kinetics and the Ivantsov -Solvability solution is larger in three dimensions than in two dimensions. For example, the two-dimensional steady-state velocity with 𝛼 = 1 and 𝛾 = 1 is about 94%𝑣 tip Iv [15], whereas the three-dimensional steady-state velocity with 𝛼 = 1 and 𝛾 = 1 is about 77%𝑣 tip Iv . This may be because that the ratio 𝛿 d Iv /𝜌 tip Iv is smaller in three dimensions than in two dimensions, as shown in Fig. 3.5. Since ℎ min = 𝜌 tip Iv , the composition field is worse described by the mesh in three dimensions. It has to be noted that although Series I and II have the same dimensionless time step 𝜏, they do not have the same time step. Since the minimum mesh size of Series II is twice of the minimum mesh size of Series I, according to the definition of 𝜏, the time step of Series II is also twice of the time step of Series I. For the same simulation time, Series I have twice loop numbers than Series II. Nevertheless, the times of Remeshing are the same because Remeshing does not depend on loop numbers, and its computational time almost determines the total computational time, it is therefore reasonable to compare the total computational time of the two series.

Since both increasing the integration distance 𝑎 and decreasing the minimum mesh size ℎ min are able to improve the precision on kinetics, it is interesting to compare their consumption on computational resources. From the steady-state kinetics depicted in Fig. 3.15, and information in Table 3.3, Series I with 𝛼 = 1 and Series II with 𝛼 = 1/5 have very similar steady-state kinetics, whereas the former consumes more computational resources; Series I with 𝛼 = 1/2 and Series II with 𝛼 = 1/7 consumes similar computational resources, whereas the former has better kinetics. There is not a universal conclusion on this subject. However, it is clear that even for a single dendritic branch, the three-dimensional PTN simulation can be resource-costing. A trade-off between accuracy and computational cost must be considered for three-dimensional CAPTN simulations with many dendritic branches, as shown in Chapter 4. 

Influence of the time step

Simulations with different time steps, 𝛼 = 1/3, 𝛽 = ∞, 𝛾 = 0.5, 𝜏 ∈ {0.5, 1, 2, 10, 50} are launched for investigating the influence of time step. Their steady-state kinetics are plotted in Fig. 3.16. The time step has very small influence on the steady-state kinetics. This is because at steady state, the composition field remains stable in the parabolic frame of dendrite, and in the PTN algorithm (Fig. 2.2) the composition field is solved before calculating dendritic kinetics. However, the tip velocity increases and tip radius decreases slightly with the time step, indicating that the composition fields under different time steps have small difference with each other. Moreover, for describing the dendritic growth at unsteady state, the time step should be small enough for good temporal discretization.

Influence of the radius of truncating cylinder

Using a cylinder for truncating the parabolic branch permits to avoid the branches with non-physical thickness, and in the simulations of solidification, the employment of the truncating cylinder is indispensable [14]. It is therefore important to study the influence of the radius of truncating cylinder 𝑟 cyl on kinetics for the following developments. This kind of study has been done in two dimensions [14], so now we focus on three dimensions.

The previous simulation with parameters 𝛼 = 1 3 , 𝛾 = 0.5 , and 𝜏 = 0.5 is reused for studying the influence of the radius of truncating cylinder, whereas the radius of truncating cylinder is imposed as 𝛽 = 0.5, 2.0, and 5.0, respectively. Fig. 3.17 shows the relation of truncating cylinder and integration area at steady state in the simulation with (a) 𝛽 = 0.5 and (b) 𝛽 = 2. At steady state, if 𝛽 < 1 , the truncating cylinder will intersect with the integration area. Their steady-state kinetics are depicted in Fig. 3.18 with error bars representing standard deviations. 𝛽 = ∞ means there is no truncating cylinder. Same as two-dimensional cases, 𝛽 < 1 yields bad calculation on kinetics and 𝛽 > 1 hardly influences the dendritic kinetics. However, even though 𝛽 > 1, the composition Dirichlet condition changes with 𝛽, so the composition field may have small change. This explains the small difference on kinetics between 𝛽 = 2, 5, and ∞. In the following simulations, 𝑟 cyl = 2𝑟 cyl min is chosen. 

Conclusion

This chapter was dedicated to the parametric study of the PTN model. The kinetics calculated by the improved algorithm has been compared with the kinetics calculated by the original algorithm in two dimensions. They are almost the same, attesting that the improved algorithm does not influence the kinetics. Thus, the parametric study of two-dimensional PTN model [14] is valid to the improved algorithm as well. The diffusion length of a dendritic branch under Ivantsov solution has been defined. It is used for nondimensionalizing the integration distance and the dimension of the fine-mesh box in the rest of this thesis. It is observed that when the integration distance is too large the kinetics will be divergent. This phenomenon has been explained by mathematical deduction. For the three-dimensional PTN model, parametric studies on integration distance, minimum mesh size, time step, and radius of truncating cylinder have been carried out. These studies are equivalent to the twodimensional parametric studies [14], and the conclusion is similar to that of two-dimensional model: in certain range, larger integration distance and smaller minimum mesh size improve the kinetics precision, time step has tiny influence on steady-state kinetics, and the truncating cylinder should not intersect with the integration area. These studies are important reference for parameters in the following studies. 

Chapter 4 Improvements and evaluations of the CAPTN model

Résumé en français

La première implémentation du modèle CAPTN a été faite avant cette thèse. Des améliorations algorithmiques ont été réalisées au cours de cette thèse. Ces améliorations permettent de choisir une loi de croissance de la pointe appropriée en fonction de la longueur de la branche physique, d'éliminer les branches tertiaires superposant sa branche primaire, d'activer un pourcentage de branches latérales, d'imposer une condition de Dirichlet de la composition en fonction de la température locale du noeud, et d'appliquer la stratégie de maillage adaptatif hétérogène pour la méthode PTN. Toutes ces améliorations sont valables en deux dimensions et trois dimensions. Le modèle tridimensionnel CAPTN est évalué en modélisant un grain équiaxe croissant à une sursaturation constante. La cinétique obtenue par ce modèle est en bon accord avec celle obtenue par le modèle PF (Phase-Field) et le modèle DNN (Dendritic Needle Network). En particulier, pour un domaine de simulation de même taille, le modèle CAPTN prend moins de temps que le modèle DNN.

Since the PTN method is developed to describe dendritic growth and the Cellular Automaton (CA) method aims at modeling grain structures and can be coupled with large scale solution for heat and mass transfers, their complementary advantages have motivated their coupling in the so-called Cellular Automaton -Parabolic Thick Needle (CAPTN) method. This coupling was firstly proposed by Fleurisson in his thesis [14]. Section 4.1 is a recall of it. Section 4.2 and 4.3 will focus on the adaptations of the CA and PTN methods for building the CAPTN method. Then the validation of the three-dimensional method will be presented in Sections 4.4 and 4.5.

Review on the coupling of the PTN and the CA methods

The CA method adapted to the PTN coupling

In the CA method, dendritic grains are approximated as orthodiagonal quadrilaterals in two dimensions or orthodiagonal octahedrons in three dimensions, called envelopes, at the scale of automaton cells (see Fig. For an envelope associated to a CA cell, its center 𝐶 and apices 𝑆 𝑖 , 𝑖 ∈ [0, 3] consist of the principal growing directions of the grain. The segments between the center and the apex 𝐶𝑆 𝑖 , 𝑖 ∈ [0, 3] are called envelope branches. The orientations of the branches correspond to the crystallographic directions 〈1 0〉. Grain growth is thus modeled by the growth of envelope branches that eventually capture neighboring cells. In the classical CA method, a CA cell in the liquid state will be captured if its cell center is contained within an envelope (mentioned in Subsection 1.2.5). In the CAPTN method, however, this rule has been adjusted. Many parabolas are not created (for example, the branches towards the solid do not associate parabolas. This will be mentioned in Subsection 4.1.2), therefore the envelope will not grow in all directions. It will be impossible to contain the centers of all its adjacent cells in the liquid state within the envelope. Moreover, with the strong solute interaction added by the PTN method, the advance of the apices in the adjacent cells may be more constrained, such as the secondary branches with slower growth. To limit these problems, the capture is facilitated: in the two-dimensional CAPTN model, a CA cell in liquid state will be captured if its circumscribed circle is intersected by the envelope. The capture method is illustrated in Fig. 4.2. In Fig. 4.2a, a red envelope associated to the red cell grows. Other white cells are in liquid state. As it grows, the envelope will intersect with the blue circle that circumscribes the blue cell located above the red cell (Fig. 4.2b). The blue cell is then captured, inducing the creation of its own envelope with the same orientation of the branches as the capturing envelope. Then the two envelopes continue to grow (Fig. 4.2b). Later, the red envelope also reaches the green circle, hence capturing the green cell located on its right, and a similar state change of the green cell and initialization of a green envelope take place (Fig. 4.2c). A CA cell can be captured only once. Even later the blue envelope enters into the green circle but will not capture the green cell again. The way that the capturing envelope enters in the circumscribed circle permits to identify a capturing branch (𝑆 0 for the blue envelope and 𝑆 3 for the green envelope in Fig. 4.2c), which is propagated by the new envelope. The corresponding branch of the new envelope is called "principal branch". Its opposite branch is called "opposite branch" and the other branches are called "side branches". The positions of side branches are imposed by the capture methodology. Take the green envelope in Fig. 4.2c as an example. Imagine that this is the moment when the green cell is captured and the green envelope is created. The length of its principal branch, which is the rightward branch, denoted as 𝐿 0 , is equal to half of the length of the edge 𝑆 1 𝑆 3 of the red envelope [15]. One has to note that the envelope center can be out of its corresponding cell, such as the blue and green envelopes in Fig. 4.2c.

Branches growth velocity

The principle of the CAPTN method is to compute the growth velocity of envelope branches by using the PTN method. Fig. 4.1 is an illustration in two dimensions. This CA cell is in mushy state, so it has a growing envelope. Envelope branches are regarded as dendritic arms. Each envelope branch associates a parabola (maybe truncated, according to the thickness of the parabola, such as the upward branch in Fig. 4.1): the branch is just the axis of its parabola, and the branch and the parabola (maybe truncated) have the same length. The tip of the parabola is at the apex of the envelope. Thus, the description of the morphology of a parabola necessitates the center of the envelope, the apex of the envelope, and its tip radius.

The CA method stores all the information about envelopes, such as coordinates of centers and apices. The PTN method owns tip radius and velocity for each parabola. The envelope information is transferred to the PTN method for building parabolas on the PTN mesh for all branches growing on the CA grid. Dirichlet condition is imposed to them in order to compute the composition field in the liquid. Then the velocity of each tip is calculated from solute flux in the PTN method. This velocity returns to the CA method as the growing velocity of its corresponding apex.

For envelopes created by the capture of a cell, the principal branch is the continuity of the already existing capturing branch. As the opposite branch is towards the existing capturing branch, it cannot grow. Thus, no parabola is associated to this branch and its growth velocity is imposed to zero. The initial length of side branches is limited to the thickness of the principal branch parabola. In order to avoid perturbation of the growth of the principal branch due to the growth of side branches, the growth of the side branches is allowed only when the principal branch reaches a sufficient length. This length will be defined later in Subsection 4.2.1.

Deactivation of parabolas

As the grain propagates on the CA grid, the number of parabolas will become large. This will increase the complexity of computation, especially in the current PTN meshing strategy because a fine-mesh box is used for each parabola. It is certain that all these parabolas are not useful for calculation. As mentioned before, the opposite branch of an envelope is never built. Due to the facilitation on the capture, a geometric estimation of the maximum length that a branch will definitively capture neighboring cell is selected. Branches are limited to this maximal length: if the length of a branch exceeds twice of the diagonal of the CA cell (2√2𝑙 CA in two dimensions, 2√3𝑙 CA in three dimensions), this branch is stopped so no more parabola is associated to it. Moreover, once a CA cell is deallocated for all its neighboring cells are captured, its envelope information will be discarded, hence any parabola will no longer be associated with it.

Improvements on the CA method for adapting to the CAPTN method

For the coupling of the CA method and the PTN method, some basic managements on both methods have been done by Fleurisson [14]. Nevertheless, further investigations and applications showed shortcomings. The CA method is improved as follows for better adapting to the CAPTN method.

Activation of side branches

Let's consider the two envelopes in Fig. 4 and 𝑆 0 𝜇 are defined by the same apex, and their associated parabolas have the same tip radius and tip velocity. 𝑆 1 𝜈 is the opposite branch, so it has no associated parabola. 𝑆 2 𝜈 and 𝑆 3 𝜈 are side branches. They could be regarded as tertiary branches of the primary branches 𝑆 2 𝜇 and 𝑆 3 𝜇 . The growth of tertiary branches is allowed only when the distance from them to their primary branch is greater than 2𝑟 cyl . 𝑆 2 𝜈 and 𝑆 3 𝜈 will thus be eliminated if the distance from them to 𝑆 2 𝜇 and 𝑆 3 𝜇 , denoted as 𝑑 in Fig. 4.3, is not greater than 2𝑟 cyl (𝑟 cyl is the radius of truncating cylinder). This is achieved in order to avoid that the branch along 𝑆 2 𝜈 (or 𝑆 3 𝜈 ) will overlap the branch along 𝑆 2 𝜇 (or 𝑆 3 𝜇 ) unphysically in the future. This is also illustrated in Fig. 4.2c. Other side branches are permitted to grow with some delay after the time of capture, because on the one hand the formation of secondary branches behind the primary tip only occurs from a sufficient distance to have enough supersaturation due to the solute rejected by the primary tip [18,[START_REF] Couder | Side-branch growth in two-dimensional dendrites. I. Experiments[END_REF], and on the other hand this avoid hindering the growth of the principal branch. In the CAPTN model, when the length of the principal branch is greater than 3𝑟 cyl or the maximal length (twice of the diagonal of the CA cell), side branches may start to grow. As illustrated in Fig. 4.3, the length of the principal branch of the green envelope is denoted as 𝐿 0 𝜈 . If 𝐿 0 𝜈 > min(3𝑟 cyl , 2√2𝑙 CA ) in two dimensions or 𝐿 0 𝜈 > min(3𝑟 cyl , 2√3𝑙 CA ) in three dimensions, 𝑆 2 𝜈 and 𝑆 3 𝜈 may start to grow.

It is also possible to allow only part of the side branches to grow, with the help of a random number in the current code. Each side branch is associated with a random number between 0 and 1. If its random number is smaller than a chosen threshold 𝑠𝑏1 , then this side branch will grow when the length of its principal branch satisfies the condition; otherwise it never grows. In this way, 𝑠𝑏% or so of the side branches will grow in the simulation. This part activation of the side branches operation saves computational resources by reducing the number of branches. This will be demonstrated in Subsection 4.4.2.

One should note that the CAPTN model does not aim at simulating the secondary dendrite arm spacing but only the primary dendrite arm spacing, so the number of secondary branches must be large enough to simulate branching.

Selection of growth law based on the physical length of branch

As mentioned above, the PTN method necessitates an integration area for calculating the solute flux. Thus, a branch must be at least longer than its integration distance 𝑎 (currently it is a constant) to employ the PTN method as its growth law. In the CAPTN simulations there may be branches shorter than 𝑎 , such as seeds or new-born side branches. To select appropriate growth law for a certain branch, a first idea is to test its length. If a branch is longer than 1.3𝑎, it will employ the PTN method as growth law; otherwise, it will grow following another growth law (e.g., the Ivantsov -Solvability solution).

At the beginning of this thesis, the only available length for describing a branch was the envelope branch length that is the distance from the apex to the center of the envelope. This length is however not relevant to be used for the test. Indeed, a dendritic branch may be described by several super-imposed envelope branches due to the discretization of CA cells and the capture algorithm. This is found in Fig. 4.2b when considering the upward branches. Envelopes with associated upward parabolas are illustrated in Fig. 4.4. The blue envelope was born from capture. According to the definition of envelope branch in the CAPTN method, the blue envelope has its own upward branch, called "blue branch". The upward branch of the red envelope is called "red branch". These two branches share the same tip position, the same growing direction, and the same radius. They differ by their lengths (because their roots are different). Evidently the blue branch that does not exist physically is a part of the red branch. and tip velocity for growing, until their physical lengths exceed 1.3𝑎. Then the PTN method is employed as the growth law.

• For an envelope born from capture, when side branches start to grow, their tip radii and tip velocities are initialized by those of the principal branch at this time, and their tip positions are just at the solid/liquid interface of the principal branch. They keep this kinetics for growing until their physical lengths exceed 1.3𝑎, then the PTN method is used.

In both cases, once a dendritic branch starts to grow, its associated parabola will be created, and composition Dirichlet boundary condition will be imposed to the parabola. During its growth before the employment of the PTN method, the composition field in the liquid of its surroundings evolves as well, ensuring the composition field in the vicinity of the tip will be derivable when the PTN method is used for the first time.

Improvements on the PTN algorithm for adapting to the CAPTN method

The CAPTN method can be applied for modeling more complex cases than the PTN method (presented in Chapter 2 and Chapter 3), such as dendritic growth with side branches under non-uniform temperature. Non-uniform temperature field will complicate the composition Dirichlet condition on branches. More branches will challenge the remeshing strategy mentioned above that is valid for a single branch. In attempts to adapt the PTN method to the CA method for modeling these cases, its algorithms necessitate adjustments.

Dirichlet Condition using local temperature

The Dirichlet Condition algorithm introduced in Subsection 2.2.3 determines the solid/liquid interfacial composition by the temperature of the tip and impose it to all nodes belonging to the corresponding branch. It is suitable for CAPTN simulation under isothermal condition. For the CAPTN simulations under non-isothermal condition, this algorithm is not relevant.

A dendritic branch may contain several same-direction envelope branches due to the capture algorithm, as illustrated in Fig. 4.4. Moreover, non-growing envelopes can remain in the simulation because of the fact that all its neighboring cells are not captured. Since in the previous algorithm (Fig. 2.13) the interfacial composition is determined by the tip temperature, this yields discontinuous solid/liquid interfacial composition along the growing direction of the branch. Fig. 4.5a is the composition field of a single branch of succinonitrile-0.4 wt.% acetone under upward temperature gradient. The white grid is the CA grid, and the thicker white contour is the branch depicted by the PTN mesh. The discontinuity of composition in the solid is not physical and, as Dirichlet boundary condition, will influence the composition field in the liquid.

To solve this problem, the Dirichlet Condition algorithm is improved for the CAPTN method: the solid/liquid interfacial composition at each node in the solid is determined by the local temperature of the node. There is already a nodal temperature field on the PTN mesh, so this improvement does not bring in extra complicated implementation work. In addition, there is no more need to interpolate the temperature at the tip position. The improved algorithm is explained in Fig. 4.6. Here the length of parabola 𝑗, denoted as 𝐿 𝑗 , is the length of the envelope branch. The difference with the algorithm in Fig. 2.13 starts at Line 18. 

Remeshing criteria for multi-branch dendritic grain

In the CAPTN simulation there are generally more than one dendritic branch, so the remeshing criteria for a single branch proposed in Subsection 2.2.2 must be generalized.

If a branch is created for the first time, for example a side branch is determined to grow, then the mesh near this branch will be reconstructed locally. This operation is performed by the local remeshing function equipped in the finite element library, which allows the mesh generator to act on part of the mesh. The local remeshing area is defined the same way as the fine-mesh box but with different arguments. It includes the transitional areas of this branch, so the fine-mesh box and transitional areas of this branch will be reconstructed during local remeshing.

If the radius of integration area of a branch is greater than 0.95𝐻 (𝐻 is the half-height of the fine-mesh box), then the local remeshing will also be applied for this branch: its fine-mesh box and transitional areas will be reconstructed based on its current position and morphology.

During the simulation, at each time step, the maximum velocity among all tips is stored as max(𝑣 𝑡𝑖𝑝 ). The mesh will be totally reconstructed (called total remeshing) if the accumulated distance of max(𝑣 𝑡𝑖𝑝 ) ∆𝑡 since last total remeshing is greater than 𝑙 R ( 𝑙 R is a parameter defined in the simulation. It is introduced in Subsection 2.2.2). This criterion is stricter than the one of the PTN method; it is adopted for the simplicity of implementation because max(𝑣 𝑡𝑖𝑝 ) is an already existing output. It is however less economical on computation. A potential improvement might be to introduce a variable for each branch to record the distance passed since its last local remeshing. If this distance is greater than 𝑙 R , the local remeshing around this branch will be launched.

Application of the three-dimensional CAPTN model at steady state

The first application of the three-dimensional CAPTN model aims at modeling an equiaxed dendritic Al-7 wt.% Si alloy grain growing in a melt maintained at constant temperature with supersaturation 𝛺 = 0.062 (the same thermal condition as that of a single branch in the PTN model in Section 3.3). The tip radius, tip velocity, and diffusion length of Ivantsov -Solvability condition are 𝜌 tip Iv = 5.27 × 10 -3 m, 𝑣 tip Iv = 2 × 10 -2 mm/s, and 𝛿 d Iv = 1.87 × 10 -2 mm, respectively. This dendritic grain has six primary branches, and may be with or without side branches. Simulations are run on 64 CPU cores. The cubic simulation domain is of 6 3 mm 3 ≈ (320𝛿 d Iv ) 3 with minimum coordinates (0, 0, 0) mm and maximum coordinates (6, 6, 6) mm. The simulation time is set to 100 s. The CA cell size is 0.2 mm. The CA grid is aligned with the domain and begins from (0, 0, 0) mm, therefore the center of the domain, (3, 3, 3) mm, is just at the corner of the CA cells. The grain with six branches of 0.02 mm ≈ 1.07𝛿 d Iv initial length is placed at position (3.1, 3.1, 3.1) mm. The grain does not locate in the center of the domain because it should not be on the face or corner of the CA cell in this model. The initial composition in the liquid is the nominal composition 𝑤 0 = 7 wt. %.

Other simulation parameters are listed in Table 4.1. The velocities of the primary branches at steady state are investigated. They are normalized by the Ivantsov -Solvability solution. 

Equiaxed grain without side branches

First only the six primary branches are allowed to grow and any other side branch does not grow, controlled by letting 𝑠𝑏 = 0. In this case the CA cell size does not influence the steady-state kinetics. The minimum mesh size is set equal to the tip radius of the Ivantsov -Solvability solution ℎ min = 𝜌 tip Iv . The orientation of the grain is defined by Euler angles.

First the Euler angles are equal to (0°, 0°, 0°). This simulation takes 308 minutes. Fig. 4.7a is the computed structure at 𝑡 = 100 s. Branches are presented by red elements contained in the truncated parabola using cylinder of radius 𝑟 cyl . The solid part near the tips is depicted by elements with minimum mesh size ℎ min . The other solid part is depicted by elements with larger mesh size ℎ solid , so its description is less precise. Captured CA cells are shown by yellow wireframe. Primary branches are denoted by their crystal directions

[1 0 0], [1 ̅ 0 0], [0 1 0], [0 1 ̅ 0], [0 0 1], and [0 0 1 ̅ ].
The composition field on the crystal plane (1 0 0) at the same time is shown in Fig. 4.7b by wireframe. It can be observed clearly that there is a finemesh box near each tip. The normalized velocities of the six primary branches are plotted in Fig. 4.8a. The six primary branches have nearly the same velocity due to the symmetry of the system. Fig. 4.8b displays the minimum and maximum velocities among the six primary branches at each time step, which are indeed the envelope of the curves in Fig. 4.8a. The black dashed line with the gray zone is the average with standard deviation of the dimensionless velocity of a single dendritic branch growing under the same condition calculated by the PTN method with the same parameters in Table 4.1, between 60 s and 100 s, corresponding to the results in Fig. 3.15. As mentioned above, the dimensionless velocity equals unity for initialization. The initial length of branch is about 0.37𝑎, so its velocity remains 𝑣 tip Iv until its physical branch length 𝐿 phy exceeds 1.3𝑎 . At 𝑡 = 2.75s 𝐿 phy > 1.3𝑎 , the PTN method begins to be used. The composition field in the vicinity of a tip is influenced by other branches, so its velocity falls down. As the branches grow, the influence of other primary branches becomes weaker and weaker. After some time the velocities tend towards steady state. The velocity between 60 s and 100 s of this six-branch CAPTN simulation is nearly the same as the velocity between 60 s and 100 s of the single-branch PTN simulation. This shows that the three-dimensional CAPTN model retrieves expected results for the growth conditions, with the same deviation from the Ivantsov -Solvability solution.

The influence of the orientation of the grain is then investigated. An equiaxed grain with a misorientation of (20°, 20°, 20°) in Euler angles is modeled. Fig. 4.9a shows its branches (in red) and captured CA cells (in yellow wireframe) at 𝑡 = 100 s. Primary branches are also denoted by crystal directions. The composition field on the crystal plane (1 0 0) at the same time is depicted in Fig. 4.9b by wireframe. Normalized velocities of the six primary branches and their extreme values at every time step are plotted in Fig. 4.10. Compared with Fig. 4.8, there is no noticeable difference on the velocities of primary branches, demonstrating that the CAPTN model is good at computing dendritic growth of any orientation. However, the number of captured CA cells in the simulation with misorientation is greater compared with the number of captured CA cells without misorientation, as illustrated in Fig. 4.7a and Fig. 4.9a. In terms of computational time, the simulation with misorientation takes 328 minutes, only a little (6.5%) longer than the simulation without misorientation. 

Equiaxed grain growth with side branches

In this part, the simulation of an equiaxed dendritic Al-7 wt.% Si alloy grain growing with supersaturation 𝛺 = 0.062 presented previously in Subsection 4.4.1 is retaken but the growth of side branches is allowed. The minimum mesh size is set to 1.5𝜌 tip Iv for the sake of a tradeoff between precision and consumption of computational resource. The percentage of activated side branches is set to 𝑠𝑏% ∈ {0%, 20%, 50%, 100%}.

The dendritic microstructure and the composition field on the crystal plane (1 0 0) at 𝑡 = 100 s are exhibited in Fig. 4.11 and Fig. 4.12, respectively. When no side branch is activated, i.e., 𝑠𝑏% = 0%, as shown in Fig. 4.11a, the branches are not fully depicted by red elements. Compared to Fig. 4.7a, part of the primary branches is vanished because larger mesh size is used. This effect can be also seen in Fig. 4.12a. The solid part near the tips is well depicted, guaranteeing the calculation of kinetics. When more side branches are activated, the description of branches becomes better, and more CA cells are captured (yellow wireframe in Fig. 4.11). When all side branches are activated, i.e., 𝑠𝑏% = 100%, there is discontinuity of description of branches by red elements in the center of the grain in Fig. 4.11d. This is due to the deallocation of CA cells. Fig. 4.13 is the two-dimensional view of CA cells on the crystal plane (1 0 0) at 𝑡 = 100 s. Blue CA cells are in liquid state. Red CA cells are in mushy state. White CA cells are in solid state and deallocated since all their neighboring cells are captured by other branches and in mushy or solid state. One should note that the three-dimensional Moore neighborhood (see Subsection 1.2.5) is applied for deallocation. In the twodimensional view it seems that some red cells should be deallocated, but all their neighboring cells are not captured in the three-dimensional view.

The computational time and number of elements at 𝑡 = 100 s for simulations with different 𝑠𝑏% are listed in Table 4.2. The requiring computational resources increase with the number of activated side branches. The composition field in the liquid evolves with the number of activated side branches. As shown in Fig. 4.12, the more side branches are activated, the weaker the gradient is in the vicinity of the tip of the primary branches. This evolution yields an evolution of kinetics of the primary branches. The normalized velocities of the six primary branches and their maximum and minimum values at each time step of these simulations are plotted in Fig. 4.14. It is observed that there is slight decrease on the velocity between 60 s and 100 s with the increase of the activated side branches, which is consistent with the fact that side branches may slow down the growth of the primary branches by influencing the composition field at their surroundings. The influence of the orientation of the grain is investigated as well. An equiaxed grain with 100% side branches and orientation (20°, 20°, 20°) in Euler angles is modeled. Simulation parameters are the same as those in Table 4.1 with ℎ min = 1.5𝜌 tip Iv . Fig. 4.15a

shows its branches (in red) and captured CA cells (in yellow wireframe) at 𝑡 = 100 s . Primary branches are also denoted by crystal directions. The composition field on the crystal plane (1 0 0) at the same time is depicted in Fig. 4.15b by wireframe. Normalized velocities of the six primary branches and their extreme values at every time step are plotted in Fig. 4.16. The kinetics of the six branches are very similar. There is no noticeable difference on the steady-state velocities of primary branches between Fig. 4.14h and Fig. 4.16b, demonstrating once again that the CAPTN model is relevant to computing dendritic growth of any orientation due to its finite element implementation with unstructured tetrahedral mesh. However, there are more captured CA cells in the misoriented case than in the welloriented case, leading to an increase of side branches since each captured CA cell may produce a set of (4 in three dimensions) side branches. At 𝑡 = 100 s, there are 989 active branches that have non-zero velocity in the misoriented simulation, whereas 370 active branches in the well-oriented simulation. The computational time is of large difference: the misoriented simulation takes 12617 minutes and the well-oriented simulation takes 5064 minutes for running while using the same hardware.

Application of the three-dimensional CAPTN model at unsteady state

The CAPTN model is now evaluated by comparing its prediction of equiaxed grain growth to the DNN simulations and PF simulations [START_REF] Isensee | Benchmark simulations of multiscale models for dendritic growth in alloys under isothermal and directional conditions[END_REF]. Both the DNN model and the PF model are implemented by the finite difference method on an isotropic homogeneous cubic grid.

In the DNN and PF simulations, an equiaxed dendritic grain grows under supersaturation of 0.05 and 0.25 in a cubic domain with nominal composition in the liquid. Its growth is unsteady at the beginning, then reaches or closely approaches steady state, and becomes unsteady at the end with smaller velocity due to the effect of the boundary of the simulation domain. Parameters are all nondimensionalized by physical parameters such as 𝜌 tip Iv and 𝑣 tip Iv . The solvability constant 𝜎 used in the DNN model is obtained from the PF studies: 𝜎 = 0.0165 for 𝛺 = 0.05 and 𝜎 = 0.0135 for 𝛺 = 0.25. In the DNN simulations, the growth of side branches is not allowed. The DNN and PF results were shared by Thomas Isensee and Damien Tourret.

The CAPTN model is employed for modeling the same cases. An equiaxed grain with six primary branches without side branches is placed at the center of a cubic domain along domain edges. The temperature is uniform and fixed, corresponding to the supersaturation. The initial branch lengths in the DNN simulations are not identical for different mesh sizes for a given supersaturation; in the CAPTN simulations the initial branch length is imposed identically as the largest initial branch length in the DNN simulations for the same supersaturation. It satisfies 𝐿 phy > 1.3𝑎 and allows the PTN method to be used from the first time step. The initial composition in the liquid is the nominal composition 𝑤 0 = 7%. The CA cell size does not influence the kinetics. It is chosen as 0.3 mm for 𝛺 = 0.05 and 0.01 mm for 𝛺 = 0.25. The CAPTN model employs the adaptive heterogeneous meshing strategy, so its mesh size is characterized by the minimum mesh size ℎ min . The same dimensionless parameters for the DNN model are used except for the edge length of the simulation domain. The PF and DNN simulations model only 1/8 of the domain with symmetric boundary condition on the three faces comprising the grain center and non-flux boundary condition on the other three faces, whereas the CAPTN simulations model the entire domain with only non-flux boundary condition on its six faces, so the edge length of the CAPTN simulation domain 𝐿 D is twice the edge length of PF and DNN simulation domains. In the CAPTN simulation the six branches have very similar kinetics, so in the following analyses only the branch of +𝑥 direction is investigated.

The material properties of Al-7 wt.% Si alloy are used for defining all dimensional parameters in the CAPTN simulations. For 𝛺 = 0.05, parameters are listed in Table 4.3. The evolution of tip velocity with tip length is plotted in Fig. 4.17. The tip velocity is always normalized by 𝑣 tip Iv , the tip velocity of Ivantsov -Solvability condition, under the same supersaturation. The tip position is normalized by half the domain edge length of the CAPTN model. PF results are identical in all subfigures. Fig. 4.17a (Fig. 4.17b, Fig. 4.17c, resp.) shows the DNN results with mesh size equal to 0.35𝜌 tip Iv (0.55𝜌 tip Iv , 𝜌 tip Iv , resp.) and the CAPTN results using adaptive heterogeneous mesh with minimum mesh size equal to 0.35𝜌 tip Iv (0.55𝜌 tip Iv , 𝜌 tip Iv , resp.). Vertical dotted lines indicate the moments when the adaptive heterogeneous mesh is reconstructed in the CAPTN model. The impact of reconstructing the mesh on tip velocity is observed to be very small. The CAPTN results are in good agreement with the DNN results, and they both reproduce similar kinetics with the PF result when their characteristic mesh size is equal to 0.35𝜌 tip Iv or 0.55𝜌 tip Iv . For mesh size equal to 𝜌 tip Iv , the CAPTN and DNN results are more fluctuating than those with smaller mesh size. They follow the tendency of the PF result but are significantly smaller than it. One should note that the transient kinetics at the early-stage growth and the solute interaction in the end are well predicted by all the models. With the classical CA model this is unfeasible: the tip velocity will keep 𝑣 tip Iv during the simulation. To demonstrate the effect of the adaptive heterogeneous meshing strategy on improving computational efficiency, another CAPTN simulation using isotropic homogeneous mesh with mesh size equal to 𝜌 tip Iv is accomplished as well. Its result is presented by green hollow circles in Fig. 4.17d. The PTN mesh does not need to be reconstructed during the simulation. There is no significant difference from the CAPTN results using adaptive mesh (Fig. 4.17c). The composition fields at 𝑡 = 75 s on the cross section passing the grain center for the two meshes are shown by wireframe in Fig. 4.18. Fields are similar but their numbers of elements are not in the same order of magnitude. Computational time and number of elements for different CAPTN simulations are listed in Table 4. 4. They are all launched on a CPU with 32 cores. It is exciting that the computational time of the CAPTN simulation with adaptive heterogeneous meshing strategy is less than 1% of that of the CAPTN simulation with isotropic homogeneous mesh 1 .

The CAPTN simulations with adaptive heterogeneous meshing strategy take 13 minutes for ℎ min = 𝜌 tip Iv and 60 minutes for ℎ min = 0.55𝜌 tip Iv . As comparison, the DNN simulation with constant mesh size equal to 𝜌 tip Iv takes less than 4 minutes, and the one with constant mesh size equal to 0.55𝜌 tip Iv takes 50 minutes, on a single GPU GeForce RTX 2080 Ti with 4352 cores. One should remind that the simulation domains of the CAPTN simulations are eight times bigger than the simulation domains of the DNN simulations. So in short, the CAPTN simulation with ℎ min = 𝜌 tip Iv takes 13/(8 × 4) = 41% of the computational time of the DNN simulation, and the CAPTN simulation with ℎ min = 0.55𝜌 tip Iv takes 60/ (8 × 50) = 15% of the computational time of the DNN simulation. The simulations for Ω = 0.25 are analyzed in a similar way. Parameters are listed in Table 4.5. Fig. 4.19a exhibits the DNN results with mesh size equal to 0.2𝜌 tip Iv and the CAPTN results using adaptive heterogeneous mesh with minimum mesh size equal to 0.2𝜌 tip Iv . Fig. 4.19b exhibits the DNN results with mesh size equal to 0.3𝜌 tip Iv and the CAPTN results using adaptive heterogeneous mesh with minimum mesh size equal to 0.3𝜌 tip Iv .Vertical dotted lines indicate the moments when the adaptive heterogeneous mesh is reconstructed in the CAPTN model. The PF result is regarded as reference. It is observed that the CAPTN model and the DNN model both reproduce better kinetics with smaller mesh size. Although the CAPTN model and the DNN model have similar method for calculating the kinetics, the CAPTN model gives slightly less precise results than the DNN model. This may be caused by their differences on mesh simplex. Indeed, the CAPTN model employs linear tetrahedral elements while the DNN model employs linear hexahedral elements. It is known from literature that linear tetrahedral elements yield less precise results than linear hexahedral elements of the same mesh size [START_REF] Wang | Comparison of hexahedral, tetrahedral and polyhedral cells for reproducing the wind field around an isolated building by LES[END_REF][START_REF] Cifuentes | A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis[END_REF][START_REF] Karimi | Analysis of the effects of finite element type within a 3D biomechanical model of a human optic nerve head and posterior pole[END_REF][START_REF] Tadepalli | Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear[END_REF]. 

Conclusion

This chapter is dedicated to the multi-scale coupling CAPTN model and its application to three-dimensional configurations of dendritic growth. The first-time implementation of this model by Fleurisson [14] was reviewed. In this thesis, the adaptation of both the CA method and the PTN method to the CAPTN method has been improved. The CAPTN method has been actually able to choose appropriate tip growth law depending on the physical branch length, to eliminate tertiary branches overlapping its primary branch, to activate a percentage of side branches, to impose composition Dirichlet condition depending on node's local temperature, and to apply the adaptive heterogeneous PTN meshing strategy mentioned in Subsection 2.2.2. All of these improvements are usable in both two dimensions and three dimensions.

The three-dimensional CAPTN model has been evaluated by modeling an equiaxed alloy grain growing at constant supersaturation, at steady state with the PTN method, and at unsteady state with the DNN method and the PF method. Thanks to the finite element implementation of the PTN method, grain orientation does not affect the kinetics of primary branches. Side branches do have small impact on the kinetics of primary branches. For the simulation domain with the same size, the CAPTN model takes less time than the DNN model.

Until now the evaluation of the CAPTN model under isothermal condition has been accomplished. In the next chapter the two-dimensional CAPTN model will be applied on predicting columnar dendritic grain structures under temperature gradient.

Chapter 5 Application of the two-dimensional CAPTN model

This chapter focuses on the application of the two-dimensional CAPTN model on investigating the primary dendrite arm spacing of a single crystal and the grain boundary orientation of a bi-crystal under directional solidification. It is in the format of an article and is to be submitted. 

Résumé en français

Introduction

The numerical prediction of the dendritic grain structure developed in solidification 10 processes is of scientific and industrial interest [1]. To be predictive, models have to reproduce physical phenomena involved in dendritic grain growth on wide range of spatial scale. However, such detailed models require heavy computation resources and are limited to small simulation domains.

The Dendritic Needle Network (DNN) and the Parabolic Thick Needle (PTN) methods aim to overtake these numerical limits by approximating dendritic branches to parabolas truncated by cylinders [2,3,4]. Solute diffusion and convection are solved in the liquid phase and dendrite tip growth velocities are computed from the integration of the solute composition gradient in the vicinity of dendrite tips. With the original methodologies, the DNN method is implemented on Graphics Processing Units (GPUs) using the finite difference method. Simulation domains can reach up to 100 mm 3 [5]. However, the solid fraction generated during grain growth was not modeled with this method and so the coupling of the microstructure evolution with thermal resolution was not achieved. The Cellular Automaton (CA) method goes a step further in the approximation by limiting the modeling to the grain envelopes [6,7]. The simulation domain is covered by a regular lattice of cubic cells named CA grid. The grain envelopes develop on the CA grid. Within each CA cell, the dendritic microstructure is simplified by an orthodiagonal quadrilateral (orthodiagonal octahedron in 3D), with half diagonals representing the length of the dendrite arms. Their lengths are aligned with the < 1 0 > (resp. < 1 0 0 >) in 2D (resp. 3D) directions [8]. The growth is computed using analytical laws and the local temperature and composition fields, based on theoretical stationary dendrite tip kinetics models. This approach therefore does not consider solute interactions between grains. The implementation of microsegregation laws in the model permits to compute the solid fraction generated during grain growth and so to couple the modeling of the microstructure evolution to Finite Element (FE) resolution of the energy on the simulation domain [7,9,10]. This coupling is called the CAFE method and permits the modeling of grain structures developed in several liters components [9].

The complementary advantages of the CA and PTN methods have motivated their coupling in the so called CAPTN model [11]. The PTN method is used to compute the dendrite tip velocity at the apices of the polygons (polyhedrons in 3D) located in each CA cell. A first coupling has been performed with a FE implementation of the PTN model using adaptive mesh. It has been shown that this CAPTN method gives a description of equiaxed grain growth with a higher precision than the classical CAFE model. However, the strategy developed for the PTN implementation requires much heavier computational resources.

In this article, a new strategy is presented in Section 2 that limits the frequency of remeshing and so reduces drastically the computation time of the CAPTN model. A parametric study is performed in Section 3.1 to analyze the convergence of the model toward the theoretical kinetics in stationary state for an isolated dendrite tip. The model is then evaluated on its ability to reproduce two physical quantities developed during directional growth in a constant temperature gradient with a constant isotherm velocity: the primary dendrite arm spacing in Section 3.2 and the grain boundary orientation angle between two grains of different orientations in Section 3.3. Results are compared with CA simulations and with Phase-Field (PF) results [12].

Model description

The CAPTN model uses a FE implementation of the PTN method with an adaptive mesh keeping track of the growing parabolic dendrite tips. However, this mesh is updated very frequently, which is numerically time consuming. In this paper, a new remeshing strategy is proposed. It is described in Section 2.1.2. The CAPTN model is first applied using a frozen temperature approximation. Section 2.2 presents the coupling between the CA and PTN methods and its improvements compared to the previous implementation.

PTN finite element implementation

PTN theory and implementation

The PTN method [2,3] is based on the approximation of dendrite branches as parabolas of curvature radius ρ tip truncated by cylinders of radius r cyl (represented in light green in Fig 1). To compute the growth velocity of tips, v tip , solute diffusion is solved in the liquid around tips to obtain the liquid composition field, w l P T N . For this, the composition at solid/liquid interfaces is imposed to the liquid composition w ls corresponding to the temperature of the tip, T tip , i.e., w ls = (T tip -T M )/m, where T M is the melting temperature for the solvent, and m is the liquidus slope.

Equations (1a) and (1b) give the relations between ρ tip and v tip :

ρ 2 tip v tip = D l d 0 σ (1a) ρ tip v 2 tip = 2 D l2 F 2 d 0 (1b)
where D l is the interdiffusion coefficient in the liquid, d 0 = -Γ ls /m(1 -k)w ls is the solute capillary length, Γ ls is the Gibbs-Thomson coefficient of the interface, and k is the segre- parameter a, which is the distance along the axis of the branch between the dendrite tip and the intersection of the contour Γ with the parabola, is defined in front of the tip. This integration area is a disk truncated by the parabola with its tip located at the center of the disk. Its radius R integ is therefore R integ = a 2 + 2 ρ tip a. The FIF is thus computed at each time step using Eq. ( 2) where v tip in the equation is taken at previous time step.

F ≈ -1 4 a/d 0 (1 -k)w ls Γ ∇w l P T N • ndΓ + 1 D l Σ v tip • ∇w l P T N dΣ (2) 
Values of integration parameter a are discussed in Section 3.1. A first FE implementation with adaptive mesh (called PTN mesh) has been described in Ref [11]. In this implementation, a minimum mesh size h min was imposed at the solid/liquid interface, and the mesh in the liquid was adapted to the solute composition gradient. This meshing strategy is efficient to compute (ρ tip , v tip ) while limiting the number of elements in the mesh.

However, it necessitates to remesh very frequently, which is numerical time consuming (see section 3.1). In this article, a new mesh strategy is proposed to limit the remeshing frequency without degrading the precision on the growth velocity.

Finite element metric and improved remeshing strategy

As for the first finite element implementation [11], the mesh size in the liquid far from parabolas is set to a maximum value h max , because there is no need to compute the composition gradient ∇w l P T N with high resolution in this region. In addition, the mesh size in areas corresponding to the internal part of parabolas is set to a value h solid (see Fig 1). In order to limit the remeshing frequency and to ensure a fine mesh in the integration area at each time step, a rectangular box is defined in front of each parabola using the orthogonal query method [13,14]. This box, which is aligned with the predefined parabola trajectory, will be crossed by the growing branch and recreated as soon as the integration area reaches its edge. Parameters defining the dimensions and position of the box (halfheight H, minimum length behind the tip l b , total box length 2l + 2l b ) are reported in Fig 1 . These parameters are defined according to the dimensions of the integration area of the parabola at the time of creation of the box, identified by a c exponent in the followings. In simulations presented in Section 3, these parameters are scaled as H = 1.5R c integ , l b = 1.2a c , and l = 10δ d Iv where δ d Iv is the diffusion length along the growth direction at stationary state. The definition of δ d Iv is given in Appendix 4. The mesh in this box has minimum mesh size h min .

To facilitate the transitional from h max to h min at the creation of the box, two transition areas TA1 and TA2 of thickness e 1 and e 2 and mesh size h 1 and h 2 are defined (Fig 1). The choice of values of mesh size in the various regions of the simulation domain (h min , h max , h solid , h 1 and h 2 ) is a compromise between the precision and the necessity to limit the number of elements in the simulation domain. This study will be detailed in Section 3 as part of a convergence study.

CAPTN method

This section is a recall of the CAPTN coupling and the adaptation of the CA model to this coupling [11]. Some improvements are also presented.

CA model adapted to the PTN coupling

The CA model aims at predicting the grain structure generated during solidification processes. This method is based on the approximation of dendritic grains as orthodiagonal quadrilaterals (resp. orthodiagonal octahedrons) in 2D (resp. in 3D) at the scale of CA cells (see Fig 2). The diagonals of the polygon are aligned with the dendrite branches. Grain growth is thus modeled by the growth of the branches which eventually capture neighboring cells by entering in their circumscribed circle. A new polygon attached to the captured cell is therefore created with the same diagonal orientation as the capturing polygon. The way the capturing polygon enters in the circumscribed circle of the captured neighboring cell permits to identify a capturing branch (S µ 0 for the green cell ν and S µ 2 for the blue cell ζ in Fig 2 ), which is propagated by the new polygon. This branch of the new polygon is called "principal branch" (S ν 0 for the green envelope, and S ζ 0 for the blue envelope). The branch opposite to this branch is called "opposite branch" (S ν 1 for the green envelope, and S ζ 1 for the blue envelope) and the two other branches are called "side branches" (S ν 2 and S ν 3 for the green envelope, and S ζ 2 and S ζ 3 for the blue envelope). One should note that the center of the polygon can be out of its corresponding cell.

Branches growth velocity

The principle of the CAPTN model is to compute the growth velocity of polygon branches by using the PTN method. A parabola truncated by a cylinder is thus defined on the PTN mesh for each branch growing on the CA grid (see Fig 2). For polygons created by the capture of a cell, the principal branch is the continuity of the already existing capturing branch. Therefore, its parabola is the same as the one of the capturing branch. Opposite branches are towards the existing branches, they can not grow, hence there is no parabola associated to the opposite branches. The initial length of side branches is limited to the thickness of the principal branch parabola. As shown in Fig 2 , for the green polygon, the initial length of S ν 2 and S ν 3 are limited to the thickness of S ν 0 . In order to avoid perturbation of the growth of the principal branch due to the growth of side branches, the growth of side branches is permitted only when the length of the principal branch

L ν 0 is such that L ν 0 > min(3 r cyl , 2 √ 2 l CA )
. Their initial velocity is set to the velocity of the principal branch at this time. However, the PTN method can be applied to compute the growth velocity of a branch only if this branch is longer than the integration distance a. In this model, the PTN method is used to compute the velocity of a branch if its length is greater than 1.3 a. Before this, its kinetics is equal to the one at last time step. Nevertheless, this methodology can lead to the creation of branches which are very close

Analyze of numerical parameters

As seen in Section 2.1, the FE implementation of the PTN model necessitates to calibrate numerical variables. Simulations presented in Sections 3.2 and 3.3 analyse the growth of columnar dendritic grains. In theory, the steady state of an isolated dendrite tip aligned with the temperature gradient is such that its velocity is equal to v L and its curvature radius corresponds to the solution of Eq. (1a) with w ls corresponding to the Ivantsov solution w ls Iv [18,11]. In this configuration, the radius of curvature is written as ρ tip Iv and the tip undercooling ∆T tip is equal to ∆T Iv = -m(w ls Iv -w 0 ). In order to calibrate numerical parameters for simulations, a single parabolic branch is placed in a box of 20 × 20 mm 2 . It is aligned with a temperature gradient G = 0.475 K • mm -1 and a constant isotherm velocity v L = 0.086 mm • s -1 . In these conditions, the theoretical curvature radius and undercooling of the tip are given in Table 2 for three values of the velocity. The Numerical parameters influencing the kinetics of the tip and analyzed in this section are the integration parameter a, the minimum mesh size h min and the time step ∆t. Other parameters are scaled using parameters given in Table 3. The integration parameter a has to be big enough to compute the solute gradient in front of the tip with a good precision. It is therefore scaled as a = δ d Iv α where α is a dimensionless constant and

δ d Iv = 2Ω D l /v L (3) 
the diffusion length along the growth direction of the Ivanstov solution. Ω is the supersaturation, defined as Ω = [w ls Iv -w 0 ]/[(1 -k)w ls Iv ]. The minimum mesh size h min has to be small enough to describe the parabolic branch tip and the solute composition field around the tip. Similarly, the time step ∆t has to be small enough to keep track of the solute composition field. These quantities are thus scaled such that h min = γ ρ tip Iv and ∆t = τ h min v L with γ and τ being dimensionless parameters. influence on results, the variation of the minimum mesh size with γ has a large effect on the precision of the simulation. It is also observed that numerical parameters have a higher influence on the precision of the undercooling than on the curvature radius.

Taking the same simulation domain and parameters α = 0.5, γ = 1 and τ = 1, the simulation using the PTN mesh described in Ref [11] takes 14 hours on 8 CPU processors to displace the tip by 9.25 mm, with 2714 times of remeshing, whereas it only takes 2 hours for the same number of processors to displace it by the same distance with the new meshing strategy, with only 93 times of remeshing. The simulation time is therefore drastically reduced with the new mesh strategy.

For a balance between accuracy and the efficiency of computation, dimensionless parameters are set to α = 0.5, γ = 1.5 and τ = 1 for simulations in Sections 3.2 and 3.3. The undercooling of this selection of parameters is 1.928 K in average with standard deviation 6.551×10 -4 K, and the curvature radius of this selection of parameters is 1.775×10 -3 mm in average with standard deviation 2.484 × 10 -5 mm. These results are the same as the results of α = 0.5, γ = 1.5 and τ = 0.5 in Fig 3, which are 1.924 K in average with standard deviation 4.972 × 10 -4 K for undercooling, and 1.776 × 10 -3 mm in average with standard deviation 2.624 × 10 -5 mm for radius curvature. Other numerical parameters are set to values given in Table 3. The minimum value of the steady state radius of truncating cylinder is r min cyl = 2 a ρ tip Iv . If the radius of truncating cylinder r cyl is greater than r min cyl , the kinetics of the branch is not influenced by the truncation [3,11]. Thus, in our application, r cyl is fixed as r cyl = 2 r min cyl .

Primary dendritic arm spacing for a single crystal

The spacing developed between primary branches during directional growth is a complex phenomenon. Experimental studies on various alloys [16,19,20] have shown that for a given temperature gradient and isotherms velocity, this spacing is not unique and can vary along the solidification front, giving a λ 1 distribution limited by two values λ min . This result has been retrieved in simulations using cellular automaton [21] and DNN methods [22]. This possible range of λ 1 values has been proved theoretically by Warren and Langer [23] who have shown that the spacing between primary branches is history dependent. Analytical studies using more restrictive assumptions [24,25] predict 2. For each curve, only one parameter is varied, while the others are maintained to their minimum value, 0.5. that for isotherms velocities higher than a transition rate v tr = GD l /[(1/k -1)mw 0 ], the primary spacing should evolve as

λ 1 ∝ v -1/4 L G -1/2 . In experimental studies, dependencies according to λ 1 ∝ v -b L G -c
with scattered values of coefficients b and c have been found. The CAPTN model is now used to demonstrate its capability to model the branching of dendrites and the solute interaction between dendrite branches, hence yielding a stable selection of the primary dendrite arm spacing during directional growth. To analyze this, a single seed with 5 µm branch length aligned with the temperature gradient is placed at the bottom center of a box of 10×17 mm 2 in width and height. During the simulation, the grain captures neighboring CA cells and propagates on the whole width of the domain, forming a network of dendrite branches which then grow vertically, leading to a selection of primary branches. An example of the dendrite network generated during a CAPTN simulation is presented in Fig 4 . The spreading of the grain on the simulation domain through secondary branches can clearly be observed on the bottom part of the domain. Elimination and creation of tertiary branches can also be spotted during grain growth.

Fig 5 shows the solidification front at t = 135 s for the same simulation. CA cells containing a growing polygon, i.e., with at least one liquid neighboring cell, are presented in white empty squares and the solute composition field is presented as wireframe on the PTN mesh. The area with fine mesh defined in Section 2.1 can be observed in front of each parabolic tip with a liquid composition close to the alloy nominal composition (in blue). Inside branches, the composition is imposed by the Dirichlet condition to the liquidus composition corresponding to the local temperature. One can also observe the coarse mesh on the lower part of the image, as CA cells are deallocated.

To measure primary dendrite arm spacing in simulations, a thickness δy of the solidification front is defined from the position of the highest primary branch. This thickness is taken as δy = 1/2 λ1 , where λ1 is the average value of λ 1 measured in the simulation.

The spacing between branches with tip aligned with the gradient located in this thickness is then measured. This measurement is recursive until the λ1 used for δy is the same as the λ1 measured at this time. a distribution with an average value λ1 around 0.26 mm with the decrease of cell size. As this value is lower than 0.4, it seems logical that the simulation using l CA = 0.4 mm is not capable to predict this spacing as the spacing between branches is artificially constrained with this parameter value. It can be observed that the average value of λ 1 tends to decrease with both G and v L . Moreover, theoretical laws proportional to G -1/2 and v -1/4 L are respectively reported in Figures 7 (b) and(c). It can be observed that whereas the v -1/4 L dependency fits quite well the evolution of λ1 with v L , the G -1/2 dependency seems to overestimate the variation of λ1 with the temperature gradient. It is also observed that the variation of temperature gradient has a stronger effect on the range of λ 1 values compared to the velocity, with an enhanced variation between λ max 

Diverging grain boundary orientation angle for a bi-crystal

The inclination of the grain boundary between two grains with different inclinations growing in a constant temperature gradient G with a constant isotherm velocity v L has been studied using PF and CA methods [7,12,26,27,28]. It has been shown that the value of the angle of the grain boundary is contained between two theoretical limits: the Favorably Oriented Grain (FOG) [12,28,29] and the Geometrical Limit (GL) [12,28]. The angle θ D of the grain boundary formed by the diverging primary directions of two grains with inclinations α 1 = 30 • for the left grain and α 2 = 10 • for the right grain with the direction of temperature gradient has been analyzed in more details using PF and CA simulations [12]. In , and (East) G = 1.9 K • mm -1 . The angle given by the PF method (dashed line) is constant, with a reported variation only for the center configuration (gray window), G = 0.475 K • mm -1 . The angle given by the CA model (purple dots) varies continuously from the GL to the FOG value as cell size increases. This result has been explained by the fact that angle θ D is linked to the secondary dendrite arm spacing preceding tertiary branching forming the grain boundary Λ. Therefore, whereas this distance is correctly reproduced in PF simulations, it is cell size dependant in CA simulations, and values given by CA simulations are equal to the ones obtained with PF simulations if the cell size is equal to this physical spacing.

Simulations are reproduced using the CAPTN model. For this, two seeds with 5 µm initial branch length are placed at the bottom of a rectangular domain, the [1 0] branch of the left one (resp. right one) making an angle α 1 = 30 • with the temperature gradient (resp. α 2 = 10 • ). Fig 9 shows the solidification front at a given time for G = 0.475 K • mm -1 , v L = 0.086 mm • s -1 and a cell size l CA = 0.2 mm. The solute composition field in the liquid is presented as wireframe on the PTN mesh. As for Fig 5, a rectangular zone with fine mesh can be observed in front of each parabolic tip with an inclination corresponding to the growth direction of the tip. A coarser mesh is observed in the liquid located far from the solidification front and in the area where cells have been deallocated, i.e., with no remaining liquid neighboring cell. CA cells containing a growing polygon appear as black squares for the left grain and red squares for the right grain. is observed that, contrary to CA simulations, the angle θ D computed with the CAPTN model is not dependent on cell size, even for l CA much higher than the one corresponding to the secondary dendrite arm spacing preceding tertiary branching. It is however observed that if cell size is too large to correctly reproduce solute interactions between branches, the CAPTN model retrieves the FOG limit (see Fig 8 Center). For cell size lower than this upper limit, values obtained are in good agreement with the one of the PF method no matter the value of l CA . This result indicates that the CAPTN model reproduces the Λ spacing, even for CA cell values much higher than this spacing. The minimum and maximum values of θ D for a cell size lower than the Λ spacing are in excellent agreement with the range of values predicted by the PF simulations as they coincide with the range of the gray window. In addition, both models predict a decrease of θ D as the temperature gradient increases for v L = 0.086 mm • s -1 . This is verified in 

θ D -θ F OG θ GL -θ F OG ∝ exp(-β G v L ) (4) 
where θ GL and θ F OG are the GL and FOG limits, respectively, and β > 0. The value β = 0.183 is used in Fig 11 (a). The step between stationary primary dendrite tips of two grains at steady state, δ st , was identified as a main parameter for the control of the grain boundary orientation in Ref [28]. However, it can be observed on ). Therefore, it seems that θ D is a function of G/v L rather than an function of δ st , explaining the form chosen for Eq. 4. Possible relations between θ D and Λ should be the topic of further investigations, following the findings reported in Ref [12].

Conclusions

This article presents advances on the CAPTN model which couples the cellular automation (CA) and the Parabolic Thick Needle (PTN) methods. Optimizations on the meshing strategy are presented which permit to reduce drastically computation time. A numerical parametric study is performed which shows that the model converges toward theoretical growth solutions as the thinness of the mesh and the size of the integration area are increased. This optimized CAPTN model is then evaluated on its ability to reproduce two physical quantities developed during directional growth in a constant temperature gradient G with a constant isotherm velocity v L : the primary dendrite arm spacing λ 1 and the diverging grain boundary orientation angle θ D between two grains of different orientations. The grain selection between primary branches and creation of new branches from secondary and tertiary branches is well simulated as long as cell size is sufficiently small to model solute interactions between branches. In these conditions, simulations converge toward a distribution of primary branches which depends on the history of dendrite branches. This result is in agreement with the theory of Warren and Langer [23] and experimental results. Gradient and velocity dependencies on average values of these distributions have been compared with Hunt [24] and Kurz-Fisher [25] theories and are coherent with G -b and v -c L power laws. The study on the grain boundary orientation angle has revealed that, contrary to the classical CA model, the angle obtained in CAPTN 355 simulations does not depend on cell size for a large range of cell size. This angle has been computed for various gradients and isotherm velocities and is in good agreement with previous phase field studies [12]. Moreover, the diverging grain boundary orientation angle is found to be a monotonously decreasing function of the ratio G/v L , and the trend can integration distance is too large the kinetics is divergent. This phenomenon has been explained by mathematical deduction. For the three-dimensional PTN model, parametric studies on integration distance, minimum mesh size, time step, and radius of truncating cylinder have been carried out as well. Their conclusion is similar to that of two-dimensional model: in certain range, larger integration distance and smaller minimum mesh size improve the kinetics precision, time step has tiny influence on steady-state kinetics, and the truncating cylinder should not intersect with the integration area.

Thirdly, the CAPTN model has been improved and the three-dimensional CAPTN model has been evaluated in both steady and unsteady regimes. The improvements on the CAPTN model have acted on two aspects. In terms of the CA method, the activation of side branches has become more physical and more flexible: tertiary branches overlapping its primary branch have been eliminated, and it is possible to active a percentage of side branches. The physical branch length has been introduced into the CA method for selecting appropriate dendritic growth law. In terms of the PTN method, the interfacial liquidus composition in Dirichlet condition now depends on the local temperature of the node, and the criteria for reconstructing the mesh have been generalized for cases with multi-branches. The threedimensional CAPTN model has been used to model an equiaxed grain growing at constant supersaturation. Grain orientation has no noticeable impact on the kinetics of primary branches. Side branches do have small impact on the kinetics of primary branches. The increase on the number of side branches yields larger requirement on computation resources and longer computational time. The three-dimensional CAPTN model has been evaluated by comparing its results with the results from the PTN method, the Dendritic Needle Network (DNN) method, and the Phase-Field (PF) method. For the simulation domain of the same size, the CAPTN model takes less time than the DNN model.

Fourthly, the two-dimensional CAPTN model has been applied for investigating the primary dendrite arm spacing of a single crystal and the grain boundary of bi-crystal under directional solidification with a constant temperature gradient 𝐺 and a constant isotherm velocity 𝑣 iso . It has been shown that the CAPTN model can reproduce the grain selection between primary branches and creation of new branches from tertiary branches as long as the CA cell size is sufficiently small to model solute interactions between branches. For the single crystal, the CAPTN model has reproduced a distribution of primary dendrite arm spacing depending on the history of dendritic branches, and the average values of these distributions are coherent with the 𝐺 -𝑏 𝑣 iso -𝑐 theoretical law. For the bi-crystal, for a large range of CA cell size, the diverging grain boundary orientation angles obtained by the CAPTN model are less dependent on the CA cell size than the classical CA method, and are in good agreement with previous PF studies [START_REF] Dorari | Growth competition between columnar dendritic grains -The role of microstructural length scales[END_REF]. It has also been found that this angle decreases with 𝐺/𝑣 iso .

Despite the various efforts performed during the thesis to improve and optimize the twodimensional and three-dimensional implementations of the CAPTN model, some difficulties remain to allow the prediction on grain structures of experiments of the CETSOL project and to study the CET.

• The orthogonal query could be more efficiency in the PTN method by reducing the orthogonal query range. Now the orthogonal query range is a square in two dimensions or a cube in three dimensions. Its creation is with the help of a circle in two dimensions or a sphere in three dimensions. Because a circle or a sphere is isotropic, it is simple to define its axis-parallel circumscribing square or cube as the orthogonal query range. The orthogonal query range can be certainly reduced to a more compact axis-parallel rectangle or cuboid by optimizing the algorithm, then less nodes will be reported as the results of orthogonal query, and the efficiency will be improved further.

• The criteria for reconstructing the PTN mesh (the finite element mesh used for the PTN method) could be optimized in the CAPTN method. There are two types of PTN mesh reconstruction. Local remeshing means to reconstruct only the mesh near the branch; total remeshing means to reconstruct the entire mesh of the domain. The idea is to use more local remeshings instead of total remeshings. In the multi-branch case, branches have different growing velocities. A variable could be introduced to each branch for recording the distance passed since its last local remeshing. If this distance is greater than a certain threshold, the local remeshing around this branch will be performed.

• In the PTN finite element implementation, the minimum mesh size ℎ min , the integration distance 𝑎, and the radius of truncating cylinder 𝑟 cyl are all fixed for all branches. In the CAPTN model, branches have different morphologies and kinetics, and the difference may become greater in the cases with temperature gradient. It will be more relevant if the above-mentioned parameters are linked with physical characteristics. For example, ℎ min can be calculated based on the tip radius of each branch, which ensures good accuracy for calculation and avoids the use of very fine mesh for all branches. In this thesis, the integration distance is defined by the diffusion length at dendrite tip under Ivantsov solution, with the supersaturation corresponding to the steady-state growth. More generally, the integration distance could be defined by the diffusion length at dendrite tip under Ivantsov solution of the supersaturation of the tip. The definition of 𝑟 cyl is related to tip radius and integration distance, so it could be calculated for each branch as well.

With the technical improvements mentioned above, the CAPTN model can be further evaluated.

• The evaluation of the three-dimensional CAPTN model could be extended to columnar grains. The three-dimensional PF and DNN methods have produced results on columnar growth [START_REF] Isensee | Benchmark simulations of multiscale models for dendritic growth in alloys under isothermal and directional conditions[END_REF], which could be used as benchmarks.

• A first coupling of the two-dimensional CAPTN model to the resolution of energy and mass solute (called the CAPTN -FE model) has been performed [14,15] before the improvements and developments presented in this thesis. This coupling should therefore be updated to take these improvements and developments into account. In particular, a three-dimensional CAPTN -FE model is still to be developed in order to quantitatively predict the CET position in the samples solidified in the CETSOL project.

In spite of these limitations, we have shown that the CAPTN model is relevant to predicting dendritic grain structures both in two and three dimensions. The improvements in this thesis on the CAPTN method are encouraging for its further developments.

ABSTRACT

Numerical methods for modeling microstructures formed during solidification are of great academic and industrial interest. The Cellular Automaton -Parabolic Thick Needle (CAPTN) method is a multiscale numerical method, which couples the Cellular Automaton (CA) and the Parabolic Thick Needle (PTN) methods, to simulate the growth of dendritic grains while accounting for non-steady diffusion fields. This thesis presents advances and computing optimizations on the multiscale CAPTN method. An adaptive heterogeneous meshing strategy and the orthogonal query method with the octree structure are therefore employed on the finite element implementation of the PTN method for increasing computational efficiency. The three-dimensional implementation of the PTN method is performed and evaluated through the analyses of convergence of simulation results to theoretical solutions depending on numerical parameters. Algorithmic improvements on the PTN method and the CAPTN coupling are also performed. The optimized three-dimensional CAPTN model is evaluated by modeling an equiaxed grain growing under constant supersaturation. The kinetics obtained by the CAPTN model is in good agreement with the kinetics obtained by Phase-Field (PF) and Dendritic Needle Network (DNN) methods. The optimized two-dimensional CAPTN model is evaluated on its ability to reproduce two physical quantities developed during directional growth in a constant temperature gradient with constant isotherm velocity: the primary dendritic arm spacing and the grain boundary orientation angle between two grains of different orientations. Simulations converge toward a distribution of primary branches which depends on the history of the branching events, in agreement with experimental results and theory. Contrary to the classical CA model, the grain boundary orientation angle obtained in CAPTN simulations is stable with cell size and in good agreement with previous PF studies for various temperature gradients.

MOTS CLÉS

Solidification, modélisation, multi-échelle, automate cellulaire, réseau d'aiguilles paraboliques, microstructure dendritique RÉSUMÉ Les méthodes numériques de modélisation des microstructures formées lors de la solidification présentent un grand intérêt pour la recherche et les industries. La méthode Cellular Automaton -Parabolic Thick Needle (CAPTN) est une méthode numérique multi-échelle, qui couple la méthode automate cellulaire (CA) et la méthode Parabolic Thick Needle (PTN), pour simuler la croissance des grains dendritiques tout en tenant compte du champ de diffusion non stationnaire. Cette thèse présente des avancées et des optimisations sur la méthode CAPTN. Une stratégie de maillage hétérogène adaptatif et la méthode de requête orthogonale avec la structure octree sont employées sur l'implémentation d'éléments finis de la méthode PTN pour augmenter l'efficacité de calcul. L'implémentation tridimensionnelle de la méthode PTN est réalisée et évaluée à travers les analyses de convergence des résultats de simulation vers des solutions théoriques en fonction de paramètres numériques. Les algorithmes de la méthode PTN et du couplage CAPTN sont aussi améliorés. Le modèle CAPTN tridimensionnel optimisé est évalué en modélisant un grain équiaxe croissant dans un domaine à une sursaturation constante. La cinétique obtenue par le modèle CAPTN est en bon accord avec la cinétique obtenue par le modèle Phase-Field (PF) et le modèle Dendritic Needle Network (DNN). Le modèle CAPTN bidimensionnel optimisé est évalué sur sa capacité à reproduire l'espacement des bras dendritiques primaires et l'angle d'orientation des joints de grains entre deux grains d'orientations différentes, développés en croissance directionnelle dans un gradient de température constant et une vitesse isotherme constante. Les simulations convergent vers une distribution des branches primaires qui dépend de l'histoire des branches dendritiques, en accord avec les observations expérimentales et la théorie. Contrairement au modèle CA classique, l'angle d'orientation des joints de grains obtenu dans les simulations CAPTN est stable avec la taille des cellules et en bon accord avec les études PF précédentes pour différents gradients de température. 

Figure 2

 2 Figure 2 Microstructure from an optical polarized light microscope (OM) of Al-7 wt.% Si alloys along longitudinal sections in the region of the transition from stage I to stage II for: (a1) the GM (Ground Module) sample from solidification experiment on earth and (b1) the FM (Flight Module) sample from solidification experiment on-board the ISS. Stages I and II are two different stages of solidification with different experimental conditions. During Stage I, the pulling velocity of the sample is 𝟎. 𝟎𝟏 𝐦𝐦/𝐬 and the initial temperature gradient is about 𝟎. 𝟗 𝐊/𝐦𝐦 . During Stage II the pulling velocity is identical to Stage I while the temperature gradient decreases continuously due to a cooling down of the hot zone at a cooling rate of 𝟎. 𝟎𝟔𝟕 𝐊/𝐬. (a2) and (b2) are the corresponding eutectic percentage (E%) distribution maps for both samples. The white dashed lines represent the highest position of the columnar grains issued from the initial dendritic zone. The yellow dashed line represents the position defining the CET inception in the GM sample. From [8].
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Fig. 1 . 1

 11 Fig. 1.1 Linear phase diagram for a binary alloy at constant pressure. ∆𝑻 𝐂 is the chemical undercooling, ∆𝑻 𝐑 is the curvature undercooling, and ∆𝑻 𝐓 is the thermal undercooling. 𝒘 𝟎 is the nominal composition of the solute in the alloy, 𝒘 𝐥𝐬 is the solid/liquid interfacial composition in the liquid phase, and 𝒘 𝐬𝐥 is the solid/liquid interfacial composition in the solid phase. 𝑻 𝐌 is the melting temperature for the solvent, 𝑻 𝐋 is the liquidus temperature, and 𝑻 𝐥𝐬 is the temperature at the solid/liquid interface. Redrawn based on [16].

Fig. 1 . 2 A

 12 Fig. 1.2 A dendrite of transparent succinonitrile-acetone alloy observed by the high-resolution camera. Its tip is like a paraboloid. From [18].

Fig. 1 . 3

 13 Fig. 1.3 Photographic illustration of the primary and secondary dendrite arm spacing 𝝀 𝟏 and 𝝀 𝟐 . The photo is of camphene (>95% purity, Merck Ltd.), from [22].

Fig. 1 . 4

 14 Fig. 1.4 Parabolic and Cartesian coordinate system. Two sets of parabolas are confocal. The origin of the Cartesian coordinate is at their focus. In Ivantsov solution the solid/liquid interface corresponds to 𝝃 = 𝟏. The dendrite tip radius and tip velocity are marked.
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 15 Fig. 1.5 Experimental grain structures observed in the longitudinal section of Al-7 wt.% Si ingot obtained by directional solidification. From [24].

Fig. 1 . 6

 16 Fig. 1.6 Illustration of three-dimensional PF simulation results of dendritic grains. From [29].

Fig. 1 . 7

 17 Fig. 1.7 Three-dimensional microscopic CA model simulations of directional solidification: (a) dendritic microstructure at low temperature gradient, (b) cellular microstructure at high temperature gradient. The computational domain is 𝟎. 𝟏𝟗𝟐 𝐦𝐦 × 𝟎. 𝟏𝟗𝟐 𝐦𝐦 × 𝟎. 𝟕𝟔𝟖 𝐦𝐦. From [33].
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 18 Fig. 1.8 Solidification process of the Fe-0.82C alloy during unidirectional solidification. The temperature gradient is 𝟑 𝐊/𝐦𝐦 and the cooling rate is 𝟎. 𝟓 𝐊/𝐬. From [34].
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 19 Fig. 1.9 Two-dimensional illustration of the integration contours and area defined by 𝒂, used in the calculation of the Flux Intensity Factor, and truncating cylinder. The integration on green contour 𝚪′ is converted to integration on yellow surface 𝚺 and red contour 𝚪. Thus, 𝚺 and 𝚪 compose the integration area for calculating the Flux Intensity Factor. Redrawn according to [14].
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 1 Fig. 1.10 Illustration of the three-dimensional DNN simulation under imposed temperature field for investigating the CET. Snapshots at (a) 𝒕 = 𝟖𝟑𝟎 𝐬 and (b) 𝒕 = 𝟐𝟏𝟓𝟎 𝐬 of threedimensional DNN simulation results for one sample of CETSOL experiments in microgravity. From [12].

Fig. 1 .

 1 Fig. 1.11 Illustration of the grain envelope defined by active dendrite tips, the stagnant film, and the confocal grain envelope in the grain envelope method. From [39].

Fig. 1 .

 1 Fig. 1.12 Three-dimensional snapshots of the grain envelope simulation of 15 equiaxed grains during equiaxed solidification in a thin sample at three different times. The color map indicates the normal growth velocity of the envelopes, 𝑽 𝐧 . From [43].

Fig. 1 .

 1 Fig. 1.13 Illustration of two-dimensional and three-dimensional CA cell and its neighbors. For the cell 𝝂 with black solid contours, (a) in two dimensions, the red cells having a common edge with it are its first nearest cells, and the greem cells having a common point with its are its second nearest cells; (b) in three dimensions, the red cells having a common surface with it are its first nearest cells, the green cells having a common edge with it are its second nearest cells, and the yellow cells having a common point with it are its third nearest cells.

Fig. 1 .

 1 Fig. 1.14 Illustration of capture process in the two-dimensional CA method. The red cell is in mushy state, and its envelope is the red quadrilateral. (a) All its neighboring cells are in liquid state. (b) At this moment the center of the blue cell is included within the red envelope, so this blue cell is captured by the red envelope, leading to the creation of the blue envelope.

Fig. 1 .

 1 Fig. 1.15 Illustration of transition into solid state of a CA cell in two dimensions. The gray envelope belongs to the gray cell at center. At this moment, all its neighbors are captured (Moore neighborhood is adopted), so the gray cell is turned into solid state, and its envelope is no longer needed.

Fig. 1 .

 1 Fig. 1.16 Three-dimensional CAFE simulation of the solidification grain structure of one sample from the CETSOL experiment between thermocouples TC5 (𝟏𝟏𝟐. 𝟓 𝐦𝐦) and TC12 (𝟏𝟖𝟐. 𝟓 𝐦𝐦). A quarter of the cylinder was removed by postprocessing to offer an exploded view at (a) the equiaxed structure forming at 𝒕 = 𝟐𝟒𝟎𝟎 𝐬. The position of the CET favorably compares with the (b) experimental grain structure observed in a longitudinal metallographic cross section. From [7].

Fig. 1 .

 1 Fig. 1.17 Two-dimensional CAPTN -FE simulation for an equiaxed dendritic grain. Evolution of the (a) PTN composition field 𝒘 𝐏𝐓𝐍 𝒍 , (b) CA mush fraction 𝒈 + 𝒎 and cell state, with deallocated cells (white parts) and (c) FE volume fraction of solid 𝒈 𝒔 at four different times. From [15].

Fig. 2 . 1

 21 Fig. 2.1 Illustration of the adaptive heterogeneous PTN mesh used by Fleurisson [14]. On the right the mesh is represented by wireframe. On the left is the enlargement of the box with black dashed contours, and the mesh is represented by surface with edges. The nodes in yellow elements with minimum mesh size 𝒉 𝐦𝐢𝐧 are at solid/liquid interface; the nodes in red elements with mesh size 𝒉 𝐬𝐨𝐥𝐢𝐝 are in the solid. The mesh is heterogeneous in the cyan liquid area, and its size is smaller where the magnitude of composition gradient is larger.

  solves the diffusion equation Eq. (1.11), with boundary conditions to calculate the composition field in the liquid at time 𝑡. The composition boundary conditions are no-flux boundary condition at the simulation domain edges and Dirichlet boundary condition given by Initialization for the first time step or by Dirichlet Condition at time 𝑡 -∆𝑡 for other time steps.
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 2 

Fig. 2 . 2

 22 Fig. 2.2Algorithm modules of the PTN method. The modules in the temporal loop take our interest in the following.

Fig. 2 . 4

 24 Fig. 2.4Illustration of the two-dimensional octree (quadtree) data structure. This tree has 4 levels. The subdivision only acts on the blocks with at least 16 elements. The number in each block is the number of elements of each block. Green blocks in the third level will not be divided since they each have less than 16 elements. Red blocks in the fourth level will not be divided either since the fourth level is its deepest division.

2 . 5 .

 25 𝑥 inf and 𝑦 inf are the minimum of 𝑥 and 𝑦 coordinates of the vertices of the rectangle; 𝑥 sup and 𝑦 sup are the maximum of 𝑥 and 𝑦 coordinates of the vertices of the rectangle.

Fig. 2 . 5

 25 Fig. 2.5 Illustration of an axis-parallel containing rectangle of a triangle with extension. The red axis-parallel rectangle contains the triangle with black solid edges. The rectangle with light blue dashed edges is created based on the red rectangle with extension. It is the containing rectangle of the triangle. This rectangle with light blue dashed edges is defined by vertex inferior 𝑽 𝐢𝐧𝐟 and vertex superior 𝑽 𝐬𝐮𝐩 .

Fig. 2 . 6

 26 Fig. 2.6 Illustration of the two relations of location: intersection and inclusion. In all these four cases, Rectangle A is intersected with Rectangle B, and Rectangle B is intersected with Rectangle A as well. In particular, in (a) Rectangle A is included in Rectangle B, and in (c) Rectangle B is included in Rectangle A. In (b) and (d) there is only intersection not inclusion.

Fig. 2

 2 Fig. 2.8 (a) Illustration of orthogonal query on a meshing domain. The rectangle with black solid edges is the orthogonal query range. Dark red, magenta, green, and blue dashed lines represent the first, second, third, and fourth subdivision, respectively. Only the ones involving into this orthogonal query are drawn. The gray zone is the orthogonal query result based on this octree. It is larger than the orthogonal query range. All simplexes in this gray zone are reported as result. (b) Nomenclature of the octree structure used in this thesis. The children of the octree are named by 0, 1, 2, and 3 for the top left, top right, bottom left, and bottom right in each level, and a number is added behind for each new subdivision.

Fig. 2 . 9

 29 Fig. 2.9 New adaptive heterogeneous PTN mesh. The dendritic branch with its integration area is represented by green solid line and yellow area with red solid contour. Magenta lines are the iso-composition lines in the liquid. At this moment the adaptive mesh is constructed. Meshes in the fine-mesh box with blue dashed edges have minimum mesh size 𝒉 𝐦𝐢𝐧 for calculating the kinetics of the tip. The distance from the dendrite tip to the back edge of the fine-mesh box is 𝒍 𝐛 , and the distance from the dendrite tip to the center of the fine-mesh box tip is 𝒍. Its half height is 𝑯. Meshes in the solid have homogeneous mesh size 𝒉 𝐬𝐨𝐥𝐢𝐝 , and meshes in the liquid have homogeneous mesh size 𝒉 𝐦𝐚𝐱 . Transitional Area 1 (TA1) is in the smaller round corner rectangle with dark green dashed edges and outside the fine-mesh box. Its thickness is 𝒆 𝟏 . Meshes in it are isotropic and homogeneous with mesh size 𝒉 𝟏 . Transitional Area 2 (TA2) has a thickness of 𝒆 𝟐 from TA1, i.e., the area between the two round corner rectangles with dark green dashed edges. Meshes in it are isotropic and homogeneous with mesh size 𝒉 𝟐 .

Fig. 2 .

 2 Fig. 2.10 Illustration of the algorithm on finding nodes in the blue box with the help of orthogonal query. The green branch is the dendritic branch. This blue box represents the fine-mesh box mentioned above, i.e., the rectangle with blue dashed edges in Fig. 2.9. Point A and B are the midpoints of the two edges and 𝑨𝑩 ⃗⃗⃗⃗⃗⃗ is the growing direction of the dendrite. The red circle is at the center of the blue box and its diameter equals to the length of the diagonal of the blue box. The square with black solid edges is the axisparallel circumscribing square of the red circle. This square is the orthogonal query range. For a node N, if its distance to line AB is not greater than the mid height of the blue box, 𝑯, and both 𝑨𝑵 ⃗⃗⃗⃗⃗⃗ ⋅ 𝑨𝑩 ⃗⃗⃗⃗⃗⃗ ≥ 𝟎 and 𝑩𝑵 ⃗⃗⃗⃗⃗⃗ ⋅ 𝑨𝑩 ⃗⃗⃗⃗⃗⃗ ≤ 𝟎 are satisfied, this node locates in the blue box.

Fig. 2 .

 2 Fig. 2.11 Algorithm of finding nodes in the fine-mesh box with minimum mesh size.

Fig. 2 .

 2 Fig. 2.12 Illustration of the orthogonal query range in Dirichlet Condition. Point 𝑴 is the midpoint at the growing axis. The blue circle is centered at 𝑴 and passes through the farthest edge points of the non-truncated parabola (so its radius equals √𝟐𝝆 𝐭𝐢𝐩 𝑳 + 𝑳 𝟐 /𝟒).

Fig. 2 .

 2 Fig. 2.13 Improve algorithm of Dirichlet Condition for the PTN method.

Fig. 2 .

 2 Fig. 2.14 Elements of orthogonal query results and parabola. The green and red zones are the elements reported by the orthogonal query; the red parabola contains the elements whose nodes are imposed to Dirichlet condition. In the simulation domain there are 78523 elements. The number of levels of the octree structure is limited to 12 and subdivision is carried out only on children with at least 256 elements. 34184 elements are reported by the orthogonal query.

Fig. 2 .

 2 Fig. 2.15 Illustration of the orthogonal query range in Calculation of Tip Radius and Velocity.The dendrite tip is drawn with its integration area, i.e., the partial circle in yellow and its red arc. The axis-parallel square with black solid edges outside the integration area is the orthogonal query range. Its center is at the tip of parabola and its edge length is the diameter of the partial circle, i.e. 𝟐𝑹 𝐢𝐧𝐭𝐞𝐠 .

Fig. 2 .

 2 Fig. 2.16 Improve algorithm of two-dimensional Calculation of Tip Radius and Velocity.

Fig. 2 .

 2 Fig. 2.17 Elements of orthogonal query results and integration area. The green, yellow, and red zones are the elements reported by the orthogonal query; the yellow area and red contour correspond to integration area 𝚺 and 𝚪 defined in Fig. 1.9 respectively. In the simulation domain there are 78523 elements. The number of levels of the octree structure is limited to 12 and subdivision is carried out only on children with at least 256 elements. 2144 elements are reported by the orthogonal query. On the left is an enlargement of the corresponding part on the right.

Fig. 2 .

 2 Fig. 2.18 Accumulated computational time of PTN modules for original (solid curves) and improved (dashed curves) algorithms. The curves of original algorithm are just those in Fig. 2.3. The original Remeshing (the green solid curve) consumes 𝟐𝟕𝟓𝟔 𝐬, out of the scale limit of this figure. The improved Remeshing consumes only 𝟓𝟑 𝐬: 𝟐. 𝟕% of the original. The employment of orthogonal query helps Dirichlet Condition (black curves) to save 𝟒𝟏. 𝟐% of its computational time, and Calculation of Tip Radius and Velocity (red curves) to save 𝟓𝟎. 𝟒% of its computational time.
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 31 Fig. 3.1 Evolution of the steady-state dimensionless kinetics (a) 𝝆 𝐭𝐢𝐩 /𝝆 𝐭𝐢𝐩 𝐈𝐯 and (b) 𝒗 𝐭𝐢𝐩 /𝒗 𝐭𝐢𝐩 𝐈𝐯 of a dendrite tip of Al-7 wt.% Si alloy in two dimensions under supersaturation 𝜴 = 𝟎. 𝟏 with 𝒂/𝒉 𝐦𝐢𝐧 for various values of 𝒉 𝐦𝐢𝐧 /𝝆 𝐭𝐢𝐩 𝐈𝐯 . From [15]. The notations 𝝆 𝐈𝐯 and 𝒗 𝐈𝐯 in the figure correspond to 𝝆 𝐭𝐢𝐩 𝐈𝐯 and 𝒗 𝐭𝐢𝐩 𝐈𝐯 in this thesis.

Fig. 3 . 2

 32 Fig. 3.2 Tip radius and velocity normalized by the Ivantsov -Solvability solution, computed in the simulations by the (a) original and (b) improved algorithm. Vertical dotted lines in (b) are the moments when the mesh is reconstructed in the improved algorithm. The kinetics is initialized by the Ivantsov -Solvability solution and the composition field is initialized by the Ivantsov solution. The improved algorithm gives very similar kinetics to the original algorithm. In 5100 seconds, the kinetics have not arrived at steady state.

Fig. 3 . 3

 33 Fig. 3.3 Mesh with dendritic branch, integration area, and iso-composition contours before and after Remeshing, for the two-dimensional PTN simulation of a single dendritic branch of Al-7 wt.% Si alloy with supersaturation 𝜴 = 𝟎. 𝟏. (a) is at 𝒕 = 𝟑𝟎𝟕𝟏 s, the last time step before Remeshing, and (b) is at 𝒕 = 𝟑𝟎𝟕𝟐 s, the first time step after Remeshing. The dendritic branch is in green; the integration area is in yellow and its contour is in red; the iso-composition contours are in magenta, from 7.10 wt.% Si to 7.65 wt.% Si, every 0.05 wt.% Si. The blue rectangle is the theoretical position of the fine-mesh box with minimum mesh size at the moment of constructing the mesh in (b). The round corner rectangle with dark green dashed edges in (a) is the larger transitional area (TA2) before Remeshing.
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 4221 The derivative of the composition at the dendrite tip along 𝑥 axis is 𝑘)𝑤 ls Pe/𝜌 tip Iv(3.3) so the diffusion length is
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 3435 Fig. 3.4 Two-dimensional illustration of the definition of diffusion length at steady state for Al-7 wt.% Si alloy with supersaturation 𝜴 = 𝟎. 𝟏. The intersection of the tangent of the composition at the dendrite tip along the 𝒙 axis and the nominal composition is half of its diffusion length, 𝜹 𝐝 𝐈𝐯 /𝟐.

  PTN simulations for Al-7 wt.% Si alloy with supersaturation 𝛺 = 0.1 have been carried out with different integration distance: 𝑎/𝛿 d Iv ∈ {0.1, 0.2, 0.5, 1, 2, 5, 20, 25, 30} . Fig. 3.6 illustrates the branch and integration area of (a) 𝑎 = 𝛿 d Iv , (b) 𝑎 = 5𝛿 d Iv , and (c) 𝑎 = 25𝛿 d Iv .

Fig. 3 . 6

 36 Fig. 3.6 Illustration of the dendritic branch with its integration area in PTN simulations for a single dendrite tip with integration distance (a) 𝒂 = 𝜹 𝐝 𝐈𝐯 , (b) 𝒂 = 𝟓𝜹 𝐝 𝐈𝐯 , (c) 𝒂 = 𝟐𝟓𝜹 𝐝 𝐈𝐯 . Branches are green, integration areas are yellow in the surface and red on the contour (to see the enlarging figures). The tiny red elements can be seen in the enlargements.

Fig. 3 .

 3 Fig. 3.7 shows the evolution of kinetics at steady state with integration distance for 𝑎/𝛿 d Iv ≤ 20 . The tip radius and velocity are normalized by the Ivantsov -Solvability solution, their standard deviations are represented by error bars, and the integration distance is normalized by the diffusion length at steady state. In this range, the kinetics keeps improving as 𝑎 increases. However, for 𝑎/𝛿 d Iv ∈ {25, 30} there is not any steady state for the kinetics: the kinetics becomes divergent. Fig. 3.8 demonstrates (a) the convergent kinetics of the simulation with 𝑎 = 5𝛿 d Iv and (b) the divergent kinetics of the simulation with 𝑎 = 25𝛿 d Iv .In the divergent case, although the initial kinetics and composition field are the same as the theoretical steady-state solution, the tip velocity drops dramatically, then increases slightly, finally increases dramatically. This interesting phenomenon will be explained in the next subsection.
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 3738 Fig. 3.7 Evolution of dimensionless kinetics of a dendrite tip of Al-7 wt.% Si alloy in two dimensions under supersaturation 𝜴 = 𝟎. 𝟏 with integration distance 𝒂 , for 𝒂 ≤ 𝟐𝟎𝜹 𝐝 𝐈𝐯 . The tip radius and velocity are normalized by the Ivantsov -Solvability solution, the error bars are their standard deviation, and the integration distance is normalized by the diffusion length at steady state. In this range, that greater the integration distance is, the more precise the kinetics is.

Fig. 3 . 9

 39 Fig. 3.9 Illustration of the integration surface 𝚺. The yellow integration surface is divided into upper half part and lower half part by the 𝒙 axis. Tip coordinate is ( 𝝆 𝐭𝐢𝐩 𝐈𝐯 𝟐 , 𝟎). Formulas

Fig. 3 .

 3 Fig. 3.10 Evolution of the convergence of kinetics with 𝒂 under Ivantsov -Solvability solution for Al-7 wt.% Si alloy with supersaturation 𝜴 = 𝟎. 𝟏, by mathematical deduction, in (a) two dimensions and (b) three dimensions. 𝑪(𝒂) is monotonic increase with 𝒂. 𝑪(𝒂) > 𝟏 has risk of divergence.

  .10b. The same as in two dimensions, 𝐶(𝑎) increases from 0 to more than 1 with the increase of 𝑎/𝛿 d Iv . In our further observation of three-dimensional simulations (not shown here), the simulations with 𝑎/𝛿 d Iv ∈ {1, 2, 5, 7} have convergent results, whereas the simulation with 𝑎/𝛿 d Iv = 10 has divergent results. This observation corresponds well to the explanation: results are convergent if 𝐶(𝑎) < 1; results are divergent if 𝐶(𝑎) > 1. The evolutions of 𝑎/𝛿 d Iv with 𝛺 at 𝐶(𝑎) = 1 in two-dimensional and three-dimensional models are drawn in Fig. 3.11. 𝑎/𝛿 d Iv | 𝐶(𝑎)=1

Fig. 3 .

 3 Fig. 3.11 Evolution of the value of 𝒂/𝜹 𝐝 𝐈𝐯 with 𝜴 at 𝑪(𝒂) = 𝟏, in two-dimensional and threedimensional models.

Fig. 3 .Fig. 3 .

 33 Fig. 3.12 Evolution of normalized tip radius and tip velocity for the three-dimensional PTN simulation of Al-7 wt.% Si alloy with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐, with parameters 𝜶 = 𝟏/𝟑, 𝜸 = 𝟎. 𝟓, 𝝉 = 𝟎. 𝟓, and 𝜷 = ∞. Vertical dotted lines are the moments when the mesh is reconstructed. The kinetics is plotted every 10 time steps.

Fig. 3 .

 3 Fig. 3.14 Accumulated computational time of each PTN module in the three-dimensional PTN simulation mentioned in Subsection 3.3.1, launched on 32 CPU cores. Remeshing consumes most of the computational time.

Fig. 3 .

 3 Fig. 3.15 Steady-state dimensionless kinetics of three-dimensional PTN simulations of a single dendritic branch of Al-7 wt.% Si alloy with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐, with different integration distance and minimum mesh size. The 𝜶 axis is in log scale. There are two series of simulations: Series I represented by solid curves for 𝜸 = 𝟎. 𝟓 and Series II represented by dashed curves for 𝜸 = 𝟏 . Error bars represent their standard deviations.

Fig. 3 .

 3 Fig. 3.16 Steady-state dimensionless kinetics of three-dimensional PTN simulations of a single dendritic branch of Al-7 wt.% Si alloy with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐, with different time step. Error bars represent their standard deviations.

Fig. 3 .

 3 Fig. 3.17 Simulation outputs of (a) 𝜷 = 𝟎. 𝟓 and (b) 𝜷 = 𝟐 at steady state. Dendritic branches are in green, integration areas are in yellow and red. For 𝜷 < 𝟏, the truncating cylinder intersects with its integration area.

Fig. 3 .

 3 Fig. 3.18 Steady-state dimensionless kinetics of three-dimensional PTN simulations of a single dendritic branch of Al-7 wt.% Si alloy with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐, with different radius of truncating cylinder. 𝜷 axis is in log scale. 𝜷 = ∞ means there is no truncating cylinder. Error bars represent their standard deviations.
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Fig. 4 . 1

 41 Fig. 4.1 Illustration of the principle of the CAPTN method. The red orthodiagonal quadrilateral is the envelope associated to the square edge CA cell. Its center is denoted as 𝑪, and its four apices are denoted as 𝑺 𝟎 , 𝑺 𝟏 , 𝑺 𝟐 , and 𝑺 𝟑 . Suppose it is created by upward capture. 𝑪𝑺 𝟎 is its principal branch, 𝑪𝑺 𝟏 is its opposite branch, and 𝑪𝑺 𝟐 and 𝑪𝑺 𝟑 are its side branches. The principal branch associates a truncated parabola in blue.The opposite branch has a gray parabola but never grows. Side branches have green parabolas.

Fig. 4 . 2

 42 Fig. 4.2 Illustration of the capture algorithm, the state change, and the selection of side branches in the CAPTN method. Cells in colors are in mushy state, and cells in white are in liquid state. (a) At the beginning the red cell in mushy state has its envelope drawn in red. (b) The red envelope grows and intersect with the blue circle, so the blue cell is captured, inducing the blue envelope. (c) The red and blue envelopes continue to grow. The red envelope first reaches the green circle, therefore the green cell is captured by it. The four envelope branches of the red envelope are named from 𝑺 𝟎 to 𝑺 𝟑 . 𝑺 𝟎 and 𝑺 𝟑 are the capturing branches for the blue and green envelope, respectively.The distance between the upward branch of the red and green envelope is defined as 𝒅.The length of the rightward branch of the green envelope is defined as 𝑳 𝟎 .

Fig. 4 . 3

 43 Fig. 4.3 Illustration of two envelopes associated with parabolas in the CAPTN method. The red envelope belongs to CA Cell 𝝁, and its apices are named as 𝑺 𝟎 𝝁 , 𝑺 𝟏 𝝁 , 𝑺 𝟐 𝝁 , and 𝑺 𝟑 𝝁 . Each branch is associated with a red parabola (maybe truncated). This envelope captured the CA Cell 𝝂, inducing the creation of the green envelope belonging to Cell 𝝂. The apices of the green envelope are named as 𝑺 𝟎 𝝂 , 𝑺 𝟏 𝝂 , 𝑺 𝟐 𝝂 , and 𝑺 𝟑 𝝂 . 𝑺 𝟎 𝝂 and 𝑺 𝟎 𝝁 are the same point, and their associated parabolas have the same tip radius and tip velocity. 𝑺 𝟏 𝝂 is the opposite branch, so it has no associated parabola. 𝑺 𝟐 𝝂 and 𝑺 𝟑 𝝂 are side branches, associating their own parabola. The distance between 𝑺 𝟐 𝝁 (or 𝑺 𝟑 𝝁 ) and 𝑺 𝟐 𝝂 (or 𝑺 𝟑 𝝂 ) is denoted as 𝒅. The length of 𝑺 𝟎 𝝂 is denoted as 𝑳 𝟎 𝝂 .

Fig. 4 . 5

 45 Fig. 4.5 Composition field in the solid and liquid in a two-dimensional CAPTN simulation of a single branch of succinonitrile-0.4 wt.% acetone growing under upward temperature gradient. The white grid is the CA grid. The truncated parabola is enclosed by the thicker white contour. Its nodes are imposed to interfacial composition by (a) the previous Dirichlet Condition algorithm using tip temperature and (b) the new Dirichlet Condition algorithm using local temperature.

Fig. 4 .

 4 Fig. 4.5b presents the composition field of the same case calculated by the new Dirichlet Condition algorithm. The composition field in the solid (the part enclosed by thicker white curve) is now continuous. The composition field in the liquid is better calculated.

Fig. 4 . 6 Improved

 46 Fig. 4.6 Improved Dirichlet Condition algorithm using local temperature. As inputs, 𝑻 is the nodal temperature field on the PTN mesh, and "parabolas" means the tip coordinates, root coordinates, and radius of each parabola. As outputs, 𝜹 ∈𝐩𝐚𝐫𝐚𝐛𝐨𝐥𝐚 is a nodal field identifying that nodes belong to parabolas, and 𝒘 𝐏𝐓𝐍 𝐥𝐬 is the composition of nodes belonging to parabolas. From Line 18, it is different from the algorithm in Fig. 2.13 where the solid/liquid interfacial composition is computed by tip temperature: now the local temperature of nodes in the solid is involved for computing its solid/liquid interfacial composition directly. See Fig. 2.12 for schematic illustration.

Fig. 4

 4 Fig. 4.7 (a) Three-dimensional view of dendritic microstructure and (b) composition field on the cross section for three-dimensional CAPTN simulation of an equiaxed Al-7 wt.% Si alloy grain with Euler angles (𝟎°, 𝟎°, 𝟎°) growing under constant temperature with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐, at 𝒕 = 𝟏𝟎𝟎 𝐬. Simulation parameters are 𝜶 = 𝟏/𝟑, 𝜷 = 𝟐, 𝜸 = 𝟏, and 𝝉 = 𝟏. In (a) the dendritic branches are presented by red elements and the captured CA cells are presented by yellow wireframe. Primary branches are denoted by crystal directions [𝟏 𝟎 𝟎], [𝟏 ̅ 𝟎 𝟎], [𝟎 𝟏 𝟎], [𝟎 𝟏 ̅ 𝟎], [𝟎 𝟎 𝟏], and [𝟎 𝟎 𝟏 ̅ ]. (b) is the composition field by wireframe on the crystal plane (𝟏 𝟎 𝟎).

Fig. 4 . 8

 48 Fig. 4.8 Dimensionless velocities of the six primary branches of an equiaxed Al-7 wt.% Si alloy grain with Euler angles (𝟎°, 𝟎°, 𝟎°) growing under constant temperature with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐. Simulation parameters are 𝜶 = 𝟏/𝟑, 𝜷 = 𝟐, 𝜸 = 𝟏, and 𝝉 = 𝟏 . (a) Velocities of six primary branches are plotted. (b) The maximum and minimum velocity of each time step among the six primary branches are plotted. The velocity between 𝟔𝟎 𝐬 and 𝟏𝟎𝟎 𝐬 of a single branch growing in the same condition with the same simulation parameters is also plotted: the black dashed line is its mean value and the gray zone represents its standard deviation, corresponding to the results in Fig. 3.15.

Fig. 4

 4 Fig. 4.9 (a) Three-dimensional view of dendritic microstructure and (b) composition field on the cross section for three-dimensional CAPTN simulation of an equiaxed Al-7 wt.% Si alloy grain with a misorientation of (𝟐𝟎°, 𝟐𝟎°, 𝟐𝟎°) in Euler angles growing under constant temperature with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐 , at 𝒕 = 𝟏𝟎𝟎 𝐬 . Simulation parameters are 𝜶 = 𝟏/𝟑, 𝜷 = 𝟐, 𝜸 = 𝟏, and 𝝉 = 𝟏. In (a) the dendritic branches are presented by red elements and the captured CA cells are presented by yellow wireframe. Primary branches are denoted by crystal directions [𝟏 𝟎 𝟎], [𝟏 ̅ 𝟎 𝟎], [𝟎 𝟏 𝟎], [𝟎 𝟏 ̅ 𝟎], [𝟎 𝟎 𝟏], and [𝟎 𝟎 𝟏 ̅ ]. (b) is the composition field by wireframe on the crystal plane (𝟏 𝟎 𝟎).

Fig. 4 .

 4 Fig. 4.10 Dimensionless velocities of primary branches of an equiaxed Al-7 wt.% Si alloy grain with a misorientation of (𝟐𝟎°, 𝟐𝟎°, 𝟐𝟎°) in Euler angles with cellular grids growing under constant temperature with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐. Simulation parameters are 𝜶 = 𝟏/𝟑 , 𝜷 = 𝟐 , 𝜸 = 𝟏 , and 𝝉 = 𝟏 . (a) Velocities of six primary branches are plotted. (b) The maximum and minimum velocity of each time step among the six primary branches are plotted. The velocity between 𝟔𝟎 𝐬 and 𝟏𝟎𝟎 𝐬 of a single branch growing in the same condition with the same simulation parameters is also plotted: the black dashed line is its mean value and the gray zone represents its standard deviation, corresponding to the results in Fig. 3.15.

Fig. 4 .

 4 Fig. 4.11 Three-dimensional view of dendritic microstructure for three-dimensional CAPTN simulation of an equiaxed Al-7 wt.% Si alloy grain with Euler angles (𝟎°, 𝟎°, 𝟎°) growing under constant temperature with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐, at 𝒕 = 𝟏𝟎𝟎 𝐬, with different percentage of side branches activated: (a) 𝒔𝒃% = 𝟎%, (b) 𝒔𝒃% = 𝟐𝟎%, (c) 𝒔𝒃% = 𝟓𝟎%, (d) 𝒔𝒃% = 𝟏𝟎𝟎%. Simulation parameters are 𝜶 = 𝟏/𝟑, 𝜷 = 𝟐, 𝜸 = 𝟏. 𝟓, and 𝝉 = 𝟏. The dendritic branches are presented by red elements and the captured CA cells are presented by yellow wireframe. Primary branches are denoted by crystal directions [𝟏 𝟎 𝟎], [𝟏 ̅ 𝟎 𝟎], [𝟎 𝟏 𝟎], [𝟎 𝟏 ̅ 𝟎], [𝟎 𝟎 𝟏], and [𝟎 𝟎 𝟏 ̅ ].

Fig. 4 .

 4 Fig. 4.12 Composition field by wireframe on the crystal plane (𝟏 𝟎 𝟎) for three-dimensional CAPTN simulation of an equiaxed Al-7 wt.% Si alloy grain with Euler angles (𝟎°, 𝟎°, 𝟎°) growing under constant temperature with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐, at 𝒕 = 𝟏𝟎𝟎 𝐬, with different percentage of side branches activated: (a) 𝒔𝒃% = 𝟎%, (b) 𝒔𝒃% = 𝟐𝟎%, (c) 𝒔𝒃% = 𝟓𝟎%, (d) 𝒔𝒃% = 𝟏𝟎𝟎%. Simulation parameters are 𝜶 = 𝟏/𝟑, 𝜷 = 𝟐, 𝜸 = 𝟏. 𝟓, and 𝝉 = 𝟏.

Fig. 4 .

 4 Fig. 4.13 CA cells on the crystal plane (𝟏 𝟎 𝟎) for three-dimensional CAPTN simulation of an equiaxed Al-7 wt.% Si alloy grain with Euler angles (𝟎°, 𝟎°, 𝟎°) growing under constant temperature with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐, at 𝒕 = 𝟏𝟎𝟎 𝐬 , with all side branches activated (𝒔𝒃% = 𝟏𝟎𝟎%). Simulation parameters are 𝜶 = 𝟏/𝟑, 𝜷 = 𝟐, 𝜸 = 𝟏. 𝟓, and 𝝉 = 𝟏. Corresponding to Fig. 4.11d and Fig. 4.12d. Blue CA cells are in liquid state. Red CA cells are in mushy state. White CA cells in the center are in solid state and deallocated, so no envelope or parabola is associated with them.

Fig. 4 .

 4 Fig. 4.14 Dimensionless velocities of primary branches of an equiaxed Al-7 wt.% Si alloy grain with Euler angles (𝟎°, 𝟎°, 𝟎°) growing under constant temperature with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐, with different percentage of side branches activated: (a, b) 𝒔𝒃% = 𝟎%, (c, d) 𝒔𝒃% = 𝟐𝟎%, (e, f) 𝒔𝒃% = 𝟓𝟎%, (g, h) 𝒔𝒃% = 𝟏𝟎𝟎%. Simulation parameters are 𝜶 = 𝟏/𝟑, 𝜷 = 𝟐, 𝜸 = 𝟏. 𝟓, and 𝝉 = 𝟏. In the left figures (a, c, e, g) velocities of six primary branches are plotted. In the right figures (b, d, f, h) the maximum and minimum velocity of each time step among the six primary branches are plotted, which are the envelopes of the curves in their corresponding left figures.

Fig. 4 .

 4 Fig. 4.15 (a) Three-dimensional view of dendritic microstructure and (b) composition field on the cross section for three-dimensional CAPTN simulation of an equiaxed Al-7 wt.% Si alloy grain with a misorientation of (𝟐𝟎°, 𝟐𝟎°, 𝟐𝟎°) in Euler angles, whose side branches are all activated, growing under constant temperature with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐, at 𝒕 = 𝟏𝟎𝟎 𝐬. Simulation parameters are 𝜶 = 𝟏/𝟑, 𝜷 = 𝟐, 𝜸 = 𝟏. 𝟓, and 𝝉 = 𝟏. In (a) the dendritic branches are presented by red elements and the captured CA cells are presented by yellow wireframe. Primary branches are denoted by crystal directions [𝟏 𝟎 𝟎], [𝟏 ̅ 𝟎 𝟎], [𝟎 𝟏 𝟎], [𝟎 𝟏 ̅ 𝟎], [𝟎 𝟎 𝟏], and [𝟎 𝟎 𝟏 ̅ ]. (b) is the composition field by wireframe on the crystal plane (𝟏 𝟎 𝟎).

Fig. 4 .

 4 Fig. 4.16 Dimensionless velocities of primary branches of an equiaxed Al-7 wt.% Si alloy grain with a misorientation of (𝟐𝟎°, 𝟐𝟎°, 𝟐𝟎°) in Euler angles, whose side branches are all activated, growing under constant temperature with supersaturation 𝜴 = 𝟎. 𝟎𝟔𝟐 . Simulation parameters are 𝜶 = 𝟏/𝟑, 𝜷 = 𝟐, 𝜸 = 𝟏. 𝟓, and 𝝉 = 𝟏. (a) Velocities of six primary branches are plotted. (b) The maximum and minimum velocity of each time step among the six primary branches are plotted.

Fig. 4 .

 4 Fig. 4.17 Evolution of tip velocity with tip position for an equiaxed grain growing under supersaturation 𝜴 = 𝟎. 𝟎𝟓 from the PF, DNN, and CAPTN models. The tip velocity is normalized by 𝒗 𝐭𝐢𝐩 𝐈𝐯 . The tip position is normalized by half of the domain edge length of the CAPTN model. PF results in the four figures are the same, while DNN and CAPTN results are from different meshes. The mesh size in the DNN model and the minimum mesh size in the CAPTN model equal (a) 𝟎. 𝟑𝟓𝝆 𝐭𝐢𝐩 𝐈𝐯 , (b) 𝟎. 𝟓𝟓𝝆 𝐭𝐢𝐩 𝐈𝐯 , and (c) 𝝆 𝐭𝐢𝐩 𝐈𝐯 . Vertical dotted lines indicate the moments when the adaptive heterogeneous mesh is reconstructed in the CAPTN model. In (d) the CAPTN model uses an homogeneous mesh, whose mesh size is the same as the mesh size in the DNN model, equal to 𝝆 𝐭𝐢𝐩 𝐈𝐯 .

Fig. 4 .Table 4 . 4 1 .71 × 10 6 2 . 53 × 10 5

 444162535 Fig. 4.18 Composition field on the center cross section presented by wireframe, for the threedimensional CAPTN simulation of an equiaxed grain without side branches growing under supersaturation 𝜴 = 𝟎. 𝟎𝟓 , by using (a) adaptive heterogeneous mesh with 𝒉 𝐦𝐢𝐧 = 𝝆 𝐭𝐢𝐩 𝐈𝐯 and (b) isotropic homogeneous mesh with mesh size 𝒉 = 𝝆 𝐭𝐢𝐩 𝐈𝐯 . Their results are the blue hollow circles in Fig. 4.17c and Fig. 4.17d.

Fig. 4 .

 4 Fig. 4.19 Evolution of tip velocity with tip position for an equiaxed grain growing under supersaturation 𝜴 = 𝟎. 𝟐𝟓 from the PF, DNN, and CAPTN models. The tip velocity is normalized by 𝒗 𝐭𝐢𝐩 𝐈𝐯 . The tip position is normalized by half of the domain edge length of the CAPTN model. PF results in the two figures are the same, while DNN and CAPTN results are from different meshes. The mesh size in the DNN model and the minimum mesh size in the CAPTN model equal (a) 𝟎. 𝟐𝝆 𝐭𝐢𝐩 𝐈𝐯 and (b) 𝟎. 𝟑𝝆 𝐭𝐢𝐩 𝐈𝐯 . Vertical dotted lines indicate the moments when the adaptive heterogeneous mesh is reconstructed in the CAPTN model.

Figure 1 :

 1 Figure1: Sketch of the FE implementation of the PTN method. The truncated parabola (light green) moves in a liquid with solute isocomposition lines in pink. The integration area (surface Σ in yellow with its contour Γ in red) is a truncated disk of radius R integ defined by the a parameter. The adaptive mesh generated for this branch is presented as a gray wireframe. The minimum mesh area with its dimensional parameters (l b , l, and H) is delimited by the blue dashed box. The edge of the two transitional areas TA1 and TA2 of parameters e 1 and e 2 is marked with green dashed lines. The mesh size parameters h min , h solid , h 1 , h 2 , and h max in each zone are written in black.

Fig 3

 3 Fig 3 presents the average undercooling ∆T tip and curvature radius ρ tip computed at steady state for different values of parameters α, γ and τ . Error bars represent the standard deviation of ∆T tip and ρ tip at steady state. For each curve, other parameters are set to the value 0.5. It is observed that whereas the parameter τ has almost no
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Figure 3 :

 3 Figure 3: Evolution of steady state quantities (a) ∆T tip and ∆T tip /∆T Iv and (b) ρ tip Iv and ρ tip /ρ tip Iv according to numerical parameters (red) α, (blue) γ, and (green) τ for a single parabolic branch aligned with a constant temperature gradient G = 0.475 K • mm -1 and a constant isotherm velocity v L = 0.086 mm • s -1 . Black dashed lines correspond to Ivantsov solutions presented in Table2. For each curve, only one parameter is varied, while the others are maintained to their minimum value, 0.5.

Figure 4 :

 4 Figure 4: Dendrite needle network at different times (t = 75 s, t = 90 s, t = 105 s, and t = 135 s) in a CAPTN simulation for G = 0.475 K • mm -1 , v L = 0.086 mm • s -1 and l CA = 0.1 mm. The domain width is 10 mm.

Figure 5 :

 5 Figure 5: Wireframe of solute composition field in the liquid phase at the solidification front at t = 135 s in a CAPTN simulation for G = 0.475 K • mm -1 , v L = 0.086 mm • s -1 and l CA = 0.1 mm. CA cells containing a growing polygon are represented as white squares. The domain width is 10 mm.

  Fig 6 (a) shows the distribution of measured λ 1 for various cell size and Fig 7 (a) shows the evolution of the average λ 1 , and of the maximum and minimum value of λ 1 with l CA for G = 0.475 K • mm -1 and v L = 0.086 mm • s -1 . It can be observed on Figures 4 and 5 for l CA = 0.1 mm that the primary spacing around the central branch corresponding to the initial position of the seed is quite large. This spacing is the highest measured value in Fig 6 (a). This large spacing can be related to the solute distribution around secondary branches in Fig 5 at the beginning of the simulation preventing the growth of tertiary branches and so limiting the filling by new tertiary branches. Furthermore, the spacing between primary branches far from the center of the simulation domain (edge branches set apart) is quite small and close to λ 1 ≈ 0.2 mm. These side areas have similar histories with almost no elimination of branches during growth. It is observed in Fig 6 (a) and Fig 7 (a) that the distribution of λ 1 converges toward

Figures 6 (

 6 b) and (c) show the evolution of the distribution of λ 1 with the temperature gradient and isotherm velocity respectively. In addition, Figures7 (b) and (c) present the evolution of λ min 1 , λ1 and λ max 1 according to these two values. These studies use a CA cell size l CA = 0.1 mm.

Figure 6 :

 6 Figure 6: Distribution of λ 1 according to (a) cell size for G = 0.475 K • mm -1 and v L = 0.086 mm • s -1 , (b) temperature gradient for l CA = 0.1 mm and v L = 0.086 mm • s -1 (c) isotherm velocity for l CA = 0.1 mm and G = 0.475 K • mm -1

1 and λ min 1 at

 1 low G compared to high G.

  280

Figure 7 : λ min 1 ,

 71 Figure 7: λ min 1 , λ1 and λ max 1 according to (a) cell size for G = 0.475 K • mm -1 and v L = 0.086 mm • s -1 , (b) temperature gradient for l CA = 0.1 mm and v L = 0.086 mm • s -1 (c) isotherm velocity for l CA = 0.1 mm and G = 0.475 K • mm -1 . Black lines are theoretical laws with G -0.5 (b) and v -1/4 L

  Fig 8 the blue line corresponds to the value given by the GL model and the red line corresponds to the value given by the FOG model. The central line of Figures 8 (West, Center and East) present the diverging grain boundary angle obtained with these two numerical methods as a function of the CA cell size and for v L = 0.086 mm • s -1 and three values of the temperature gradient: (West) G = 0.2375 K • mm -1 , (Center) G = 0.475 K • mm -1

  Fig 10 shows the needle network formed at the end of this simulation (a) and the corresponding cell structure (b). Black (resp. red) lines and cells are associated to the left grain (resp. right grain). The distance between highest tips of the two grains is

Figure 8 :

 8 Figure 8: Evolution of the diverging grain boundary orientation angle θ D according to l CA . The blue and red lines are respectively the GL and the FOG models. Results of CAPTN simulations are presented as green squares and CA results [12] are presented as purple circles. The black dashed line is the phase field result, with variations reported as a gray zone [12]. The dashed orange line corresponds to the secondary dendrite arm spacing preceding tertiary branching. (Center) G = 0.475 K • mm -1 and v L = 0.086 mm • s -1 (West) G = 0.2375 K • mm -1 and v L = 0.086 mm • s -1 (East) G = 1.9 K • mm -1 and v L = 0.086 mm • s -1 (North) G = 0.475 K • mm -1 and v L = 0.043 mm • s -1 (South) G = 0.475 K • mm -1 and v L = 0.172 mm • s -1 .

Figure 9 :

 9 Figure 9: Wireframe of solute composition field in the liquid phase at the solidification front t = 300 s for the bi-crystal CAPTN simulation with G = 0.475 K • mm -1 , v L = 0.086 mm • s -1 and l CA = 0.2 mm. CA cells containing a growing polygon are represented as black squares for the left grain and red squares for the right grain. The domain width is 10 mm.

Figure 10 :

 10 Figure 10: (a) Needle Network and (b) cell structure at the end of the CAPTN simulation t = 300 s for G = 0.475 K • mm -1 , v L = 0.086 mm • s -1 and l CA = 0.2 mm. The width of the domain is 10 mm. The black color is associated to the left grain and the red color to the right grain. The CA cells containing a growing polygon, drawn in Fig 9, are represented in full opacity, and other CA cells at the grain and domain boundaries are represented in lower opacity. The white area contained within the contour defined by the black (resp. red) cell belong to the left (resp. right) grain, while the white area at the top of the domain is liquid. In (a), the branches belonging to the CA cells containing a growing polygon are drawn in full opacity, and other branches are drawn in lower opacity.

Fig 8

 8 West, Center, and East. CAPTN simulations also predict an increase of θ D as the isotherm velocity increases, as shown in Fig 8 North, Center, and South. These two tendencies lead to the profile of θ D according to G/v L displayed in Fig 11 (a) where the average θ D value decreases from θ D ≃ 15 • at low G/v L values to reach the FOG limit at G/v L ≃ 10 K • s • mm -2 . The relation between θ D and G/v L can be approximated as

  Fig 11 (a) that two identical values of G/v L give similar values of θ D but different values of δ st (see Fig 11 (b)

Figure 11 :

 11 Figure 11: Evolution of (a) θ D computed in CAPTN simulations and (b) δ st computed by the Ivantsov growth law with G/v L . In (a), the GL and FOG limits are indicated as blue and red lines respectively. The trend of θ D is fitted by the mathematical formula (θ D -θ F OG )/(θ GL -θ F OG ) ∝ exp(-β G/v L ), where θ GL and θ F OG are the GL and FOG limits, respectively, and β > 0.
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Table 1 .1 Numerical models and their application on the modeling of the CET. The individual grain envelope means the model has description on dendrites or grains. The maximum domain size as well as the reference is for the application on the CET, so for the models without application on the CET, these two items are blank.

 1 

	Model	Individual grain envelope	Application on the CET	Maximum domain size Reference
	PF	✓	✓	0.004 mm 2	[30]
	Microscopic CA	✓	✓	12 mm 2	[34]
	Grain envelope	✓			
	DNN	✓	✓	192 mm 3	[12]
	CAFE	✓	✓	3345 mm 3	[7]
	CAPTN (-FE)	✓			
	Volume averaging		✓	1.27 × 10 8 mm 3	[53]

Chapter 2 Improvements on the PTN finite element implementation

  Octree and orthogonal query ......................................................................... 34 2.2.1 Theory ...................................................................................................... 34 2.2.2 New adaptive meshing strategy ............................................................... 39 2.2.3 Application to Dirichlet Condition .......................................................... 42 2.2.4 Application to Calculation of Tip Radius and Velocity ........................... 44 2.2.5 Reduction on computational time ............................................................ 47 2.3 Conclusion ..................................................................................................... 49

	2.1 Review on the finite element implementation of the PTN method ............... 29
	2.1.1 PTN algorithms ........................................................................................ 29
	2.1.2 Computational time .................................................................................. 32
	2.2 Résumé en français
	Le temps de calcul de chaque module de l'algorithme original du modèle PTN est
	analysé. Le remaillage prend la majorité du temps de calcul. Pour augmenter l'efficacité du
	calcul, une nouvelle stratégie de maillage adaptatif visant à diminuer la fréquence de
	remaillage est proposée. Cette stratégie se fonde sur la structure octree et la méthode de
	requête orthogonale pour trouver rapidement les noeuds appartenant à un certain domaine.
	L'algorithme amélioré permet d'économiser énormément de temps de calcul dans la
	simulation bidimensionnelle.

Ce résultat satisfaisant encourage l'application de la méthode CAPTN et son développement en trois dimensions.

  

Table 2 .1 Material properties of Al-7 wt.% Si [16].

 2 

	Variable	Name	Unit	Value
	Nominal composition in Al	𝑤 0	wt. % Si	7
	Diffusion coefficient	𝐷 l	mm 2 • s -1	3 × 10 -3
	Partition coefficient	𝑘		0.13
	Liquidus slope	𝑚	K • wt. % -1	-6.5
	Melting temperature	𝑇 M	K	933.6
	Gibbs Thomson coefficient	𝛤 sl	K • mm	1.96 × 10 -4
	Marginal stability coefficient	𝜎		1/(4π 2 )

Table 2 .2 Simulation parameters used for the original algorithm, for Al-7 wt.% Si alloy with supersaturation

 2 

	Variable

𝜴 = 𝟎. 𝟏.

Table 2 .3 Simulation parameters for the improved algorithm, for Al-7 wt.% Si alloy with supersaturation

 2 𝜴 = 𝟎. 𝟏.Distance

	Variable

from the tip to the center of the rectangle with ℎ min at its creation 𝑙 𝛿 d Iv 1

Distance from the tip to the back boundary of the rectangle with ℎ min at its creation

  Suppose that the branch grows at steady state with velocity 𝑣 tip s . Then 𝑣 tip 𝑡 = 𝑣 tip 𝑡-∆𝑡 = 𝑣 tip s , and 𝑣 tip s = 𝑓(𝑣 tip s ) stands. If there is a small error ∆𝑣 R on the velocity on the right-hand side, then there will be an error ∆𝑣 L on the left-hand side as well, i.e.,

	𝑣 tip s + ∆𝑣 L = 𝑓(𝑣 tip s + ∆𝑣 R )	(3.6)
	By Taylor's theorem,	
	𝑓(𝑣 tip s + ∆𝑣 R ) ≈ 𝑓(𝑣 tip s ) + 𝑓 ′ (𝑣 tip s )∆𝑣 R	(3.7)
	From Eq. (3.6) and Eq. (3.7), there is	
	𝑣 tip 𝑡 = 𝑓(𝑣 tip 𝑡-∆𝑡 )	

current model for calculating the tip velocity of time 𝑡 based on the tip velocity of time 𝑡 -∆𝑡

Table 3 .1 Physical parameters from Ivantsov -Solvability solution, for Al-7 wt.% Si alloy with supersaturation

 3 𝜴 = 𝟎. 𝟎𝟔𝟐.

	Variable	Name	Unit	Value
	Tip radius	𝜌 tip Iv	mm	5.27 × 10 -3
	Tip velocity	𝑣 tip Iv	mm • s -1	2 × 10 -2
	Diffusion length	𝛿 d Iv	mm	1.87 × 10 -2

  -Solvability solution, hence introducing the parameters 𝛼, 𝛾, and 𝜏

	𝑎 =	1 𝛼	𝛿 d Iv	(3.15)
	ℎ min = 𝛾𝜌 tip Iv	(3.16)
	∆𝑡 = 𝜏	ℎ min 𝑣 tip Iv	(3.17)

Table 3 .2 Simulation parameters of three-dimensional PTN simulation for Al-7 wt.% Si alloy with supersaturation

 3 𝜴 = 𝟎. 𝟎𝟔𝟐.

	Variable

Table 3 .3 Parameters (various

 3 𝜶 and 𝜸 , with 𝝉 = 𝟎. 𝟓 and 𝜷 = ∞ ), computational time, and number of elements at 𝒕 = 𝟏𝟎𝟎 𝐬 for

three-dimensional PTN simulation of a single dendritic branch of Al-7 wt.% Si alloy with supersaturation

  𝜴 = 𝟎. 𝟎𝟔𝟐 .

These simulations are run on 32 CPU cores.

  

		Parameters		
	Series			Computational time (min)	Number of elements
		𝛾	𝛼		
			1/5	3052	2.62 × 10 7
			1/3	1086	1.07 × 10 7
	I	0.5	1/2	499	6.42 × 10 6
			1	305	3.95 × 10 6
			2	174	3.17 × 10 6
			1/7	492	6.41 × 10 6
			1/5	212	3.10 × 10 6
	II	1	1/3	79	1.25 × 10 6
			1/2	52	7.33 × 10 5
			1	36	4.23 × 10 5

  .3. The red envelope belongs to Cell 𝜇, and its branches are named as 𝑆 0 𝜇 , 𝑆 1 𝜇 , 𝑆 2 𝜇 , and 𝑆 3 𝜇 . Each branch is associated with a parabola (maybe truncated). This envelope captured Cell 𝜈 , inducing the creation of the green envelope belonging to Cell 𝜈. The branches of the green envelope are named as 𝑆 0 𝜈 , 𝑆 1 𝜈 , 𝑆 2 𝜈 , and 𝑆 3 𝜈 . 𝑆 0 𝜈

Table 4 .1 Simulation parameters of three-dimensional CAPTN simulation for Al-7 wt.% Si alloy equiaxed grain with supersaturation

 4 𝜴 = 𝟎. 𝟎𝟔𝟐. Distance from the tip to the center of the box with ℎ min at its creation 𝑙 𝛿 d Iv 10Distance from the tip to the end of the box with ℎ min at its creation

	Variable

Table 4 .2 Computational time and number of elements at 𝒕 = 𝟏𝟎𝟎 𝐬 for three-dimensional CAPTN simulation of an equiaxed Al-7 wt.% Si alloy grain along cellular grids growing under constant temperature with supersaturation

 4 𝜴 = 𝟎. 𝟎𝟔𝟐,

with different percentage of side branches activated (𝒔𝒃%). Simulations are run on 64 CPU cores.

  

	𝑠𝑏%	Computational time (min)	Number of elements
	0%	91	2.20 × 10 6
	20%	1470	2.07 × 10 7
	50%	3995	3.30 × 10 7
	100%	5064	5.76 × 10 7

Table 4 .3 Parameters of simulation of an equiaxed grain without side branch growing under constant temperature with supersaturation

 4 𝛀 = 𝟎. 𝟎𝟓.

	Variable

Table 4 .5 Parameters of simulation of an equiaxed grain without side branch growing under constant temperature with supersaturation

 4 𝛀 = 𝟎. 𝟐𝟓.

	Variable

  Ce chapitre est rédigé sous la forme d'un article qui a été soumis à un journal pour publication. Cet article présente les avancées et les optimisations de calcul sur le modèle CAPTN qui couple les méthodes de l'automate cellulaire (CA) et de réseau d'aiguilles paraboliques (PTN). Ce modèle CAPTN bidimensionnel optimisé est évalué sur sa capacité à reproduire l'espacement des bras dendritiques primaires et l'angle d'orientation des joints de grains entre deux grains d'orientations différentes, développés dans la croissance directionnelle avec un gradient de la température constant 𝐺 et une vitesse isotherme constante 𝑣 𝐿 . Il est montré que le modèle CAPTN peut reproduire la sélection de grains entre les branches primaires et la création de nouvelles branches à partir des branches tertiaires tant que la taille des cellules est suffisamment petite pour modéliser les interactions de soluté entre les branches. Dans ces conditions, les simulations convergent vers une distribution desbranches primaires qui dépend de l'histoire des branches dendritiques, en accord avec les résultats expérimentaux et la théorie. Contrairement au modèle CA classique, l'angle d'orientation des joints de grains obtenu dans les simulations CAPTN est stable avec la taille des cellules et en bon accord avec les études PF précédentes pour différents gradients de la température. De plus, l'angle d'orientation des joints de grains suit une loi exponentielle avec le rapport 𝐺/𝑣 𝐿 .

Table 2 :

 2 Ivantsov solutions for different isotherm velocities using the material parameters listed in

Table 1 v

 1 L (mm • s -1 ) Ω ρ tip Iv (mm) δ d Iv (mm) ∆T

	Iv (K)

Table 3 :

 3 Simulation parameters used in Sections 3.2 and 3.3

	Variable	Name	Unit	Value
	Minimum PTN mesh size	h min	ρ tip Iv	1.5
	PTN mesh size in TA1	h 1	h min	3
	PTN mesh size in TA2	h 2	h min	10
	PTN mesh size in solid	h solid	h min	10
	Maximum PTN mesh size	h max	h min	50
	Integration distance	a	δ d Iv	2
	Distance from the tip to the center of the fine mesh rectangle at its creation	l	δ d Iv	10
	Distance from the tip to the end of the fine mesh rectangle at its creation	l b	a	1.2
	Half height of the fine mesh rectangle	H	R c integ	1.5
	TA1 thickness	e 1	l	1
	TA2 thickness	e 2	l	1

For the cases with more than one branch in the simulation, 𝛿 ∈parabola = 𝑗 where 𝑗 is the number of the branch and 𝑗 ∈ {1,

2, 3, … }.

In the PTN simulation presented in this chapter, Remeshing is carried out at the beginning of the simulation.

25 is a quite arbitrary number aiming at the branch with decreasing velocity and increasing radius. In the PTN simulation presented in this chapter, this criterion is not reached.

The selection of the value of 𝑙 R will be discussed in Subsection 3.1.1.

We remind that for the above two-dimensional simulations the initial composition field was set to the Ivantsov solution.

𝑠𝑏 ∈ [0, 1], so in the following 𝑠𝑏% ∈ [0, 100].

The homogeneous mesh is prepared before the simulation, so the mesh preparation time is not included in the computational time.
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The envelope branch length of the blue branch is 𝐿 1 and the envelope branch length of the red branch is 𝐿 2 . If they are used for selecting the growth law, there might be a conflict. Suppose that 𝐿 1 > 1.3𝑎 and 𝐿 2 < 1.3𝑎. The kinetics of the red branch will be calculated by the PTN method whereas the kinetics of the blue branch will be calculated by another law, hence the two physically same tips will have different radii and velocities! In order to reconcile this conflict, a new parameter 𝐿 phy is introduced. It is the physical length of a branch, i.e., the distance from the tip to the root of a physical branch. The blue branch and the red branch therefore have the same physical length 𝐿 phy . In Fig. 4.4, if the red envelope is a seed, then 𝐿 phy will just be 𝐿 1 . In terms of implementation, during the capture, 𝐿 phy of the principal branch is inherited from that of the capturing branch. Now the selection criterion for the PTN method can be established with the help of 𝐿 phy :

for a dendritic branch in the CAPTN method, if 𝐿 phy > 1.3𝑎 , the PTN method will be employed as its growth law; otherwise it is a short branch and there are two cases.

• For a new seed, such as an equiaxed grain, all its branches can grow. to already existing branches growing in the same direction (an example is given in Fig 2

with branches identified by the distance d). In order to avoid such non-physical events, branches at a distance lower than 2 r cyl from an already existing branch growing in the same direction are not allowed to grow. In When a polygon associated to a cell has captured all its neighboring cells, the polygon associated to the cell is suppressed. In this case, the PTN mesh is coarsened to a mesh size equal to h max .

Applications

The capacity of the CAPTN model to capture physical quantities of the columnar growth of dendrites is studied. For this, the growth of dendritic grains in a constant temperature gradient G = G • ẑ with isotherms moving at constant velocity v L = v L • ẑ is modeled, where ẑ is the unit vector in the vertical direction. As the model precision depends on the choice of numerical parameters, in particular those involved in the FE implementation of the PTN model, this section starts with a study of the convergence of the PTN model to theoretical kinetics in Section 3.1. The CAPTN model is then evaluated on its ability to reproduce primary dendrite arm spacing in Section 3.2 and grain boundary orientation angle in Section 3.3. This study is performed on a succinonitrile -1.3wt.% acetone alloy whose properties are given in Table 1. For all simulations, the initial temperature at the bottom of the simulation domain is equal to the liquidus temperature T L (Table 1). At any time t and position z, the temperature is computed as

, with z 0 and t 0 the lowest coordinate of the simulation domain and the initial time, respectively. be expressed by an exponential law. These promising validations and mesh optimizations A parabola of radius ρ tip and velocity v tip moves at steady state in the x direction in an infinite 2D domain. Cartesian (x, y) coordinates are defined in Fig A .12 along with (ξ, η) parabolic coordinates. The relations between these two systems of coordinates is the following:

In these steady state conditions, the composition field in the liquid is given by the Ivantsov solution [18]:

with Pe =ρ tip v tip /2D l .

The diffusion length at the dendrite tip along its growing direction is defined as twice the intersection of the tangent of the composition along the x axis at the solid/liquid interface and the nominal composition w 0 . From Eq. (A.2), the expression of the composition field on the x axis is derived:

From Eq. (A.3), it is deduced that:

Therefore, the diffusion length becomes

using the definition of the supersaturation Ω given in section 3.1, we obtain

Conclusion and perspective

Due to the influence of the microstructure on the properties of materials, numerical models aiming at predicting microstructures formed during solidification processes are always of academic and industrial interest and under development. The Columnar-to-Equiaxed Transition in SOLidification processing (CETSOL) project, which was launched in 1999, has for objective to improve our understanding of the Columnar-to-Equiaxed Transition (CET) in directionally solidified alloys under microgravity [6].

The Cellular Automaton -Finite Element (CAFE) model [START_REF] Ch | A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes[END_REF] was developed to predict the grain structure during solidification process in consideration of the resolution of energy and solute mass. However, it has appeared that as solute interaction between dendritic branches is approximate, the CAFE model is limited to qualitative prediction on the CET position in samples [7]. Therefore, its prediction on competitive dendritic growth should be improved [START_REF] Pineau | Growth competition between columnar dendritic grains -Cellular automaton versus phase field modeling[END_REF][START_REF] Dorari | Growth competition between columnar dendritic grains -The role of microstructural length scales[END_REF].

To overcome this limitation, in the frame of the CETSOL-5 phase, the coupling Cellular Automaton -Parabolic Thick Needle (CAPTN) method with resolution of energy and solute mass was performed by Fleurisson [14,15] relying on the CAFE method [START_REF] Carozzani | Développement d'un modèle 3D Automate Cellulaire-Éléments Finis (CAFE) parallèle pour la prédiction de structures de grains lors de la solidification d'alliages métalliques[END_REF]. The Parabolic Thick Needle (PTN) method [13] models the tip of a dendritic branch as a parabola in two dimensions or a paraboloid in three dimensions and calculates its morphology and kinetics based on the composition field in its vicinity and the solvability condition [20,21]. It is relevant to predicting dendritic growth at both steady and unsteady state. The twodimensional PTN method was implemented in a finite element library, and studies were dedicated to the influence of the PTN method parameters, as well as coupling the PTN method with the CAFE model [14,15].

In the frame of the CETSOL-6 phase, this thesis aims to improve the efficiency of the CAPTN method, apply it for investigating the microstructures under directional solidification, and develop the three-dimensional CAPTN method.

Firstly, the computation efficiency of the PTN finite element implementation has been improved greatly. A new adaptive heterogeneous meshing strategy has been proposed for reducing the frequency of reconstruction of the mesh. The octree structure and orthogonal query method have been employed for seeking the nodes of mesh in a certain domain in an efficient way during the simulation. These numerical methods have been applied to the construction of the mesh, the setting of Dirichlet condition on the composition field, and the calculation of tip radius and velocity. The improved algorithms save tremendous amount of computational time, encouraging the application of the CAPTN method and its threedimensional development.

Secondly, parametric studies on the PTN model have been carried out. By comparing the dendrite tip kinetics calculated by the original algorithms and the kinetics calculated by the improved algorithms in two dimensions, it has been proved that the improved PTN algorithms have no influence on the calculation of kinetics. It has however been observed that when the