
HAL Id: tel-04053322
https://pastel.hal.science/tel-04053322

Submitted on 31 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine learning and combinatorial optimization
algorithms, with applications to railway planning

Guillaume Dalle

To cite this version:
Guillaume Dalle. Machine learning and combinatorial optimization algorithms, with applications to
railway planning. Optimization and Control [math.OC]. École des Ponts ParisTech, 2022. English.
�NNT : 2022ENPC0047�. �tel-04053322�

https://pastel.hal.science/tel-04053322
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
de l’École des Ponts ParisTech
Mathématiques appliquées

Machine learning and
combinatorial optimization
algorithms, with applications to
railway planning
École doctorale N°532, Mathématiques et STIC

Thèse préparée au laboratoire CERMICS
École des Ponts ParisTech, Batiment Coriolis, 6 et 8 avenue Blaise Pascal
Cité Descartes, Champs-sur-Marne, 77455 Marne-la-Vallée Cedex 2

Thèse soutenue le 16 décembre 2022 par
Guillaume DALLE

Composition du jury:

Élisabeth GASSIAT Présidente du jury
Professeure, Université Paris-Saclay

Pierre ALQUIER Rapporteur
Research scientist, RIKEN AIP

Éric MOULINES Rapporteur
Professeur, École polytechnique

Mathieu BLONDEL Examinateur
Senior research scientist, Google Research

Jérôme MALICK Examinateur
Directeur de recherche, Université Grenoble Alpes

Frédéric MEUNIER Directeur de thèse
Professeur, École des Ponts ParisTech

Yohann DE CASTRO Co-directeur de thèse
Professeur, École Centrale de Lyon

Axel PARMENTIER Co-encadrant de thèse
Chercheur, École des Ponts ParisTech

À Henri et Gérard, parce qu’ils seraient si fiers de moi.

À Val, parce que je suis si fier de toi.

Remerciements

I’m Chandler. I make jokes when I’m
uncomfortable.

Chandler Bing
Friends – S6E24

The One with the Proposal,
Part I (2000)

Avec tout le sérieux1 dont je suis capable, j’adresse mes premiers remerciements à deux encadrants
de haute volée. Axel et Yohann, chacun à votre manière, vous m’avez insufflé le goût de la recherche,
des beaux résultats et des preuves infâmes, des raisonnements rigoureux et des approximations
barbares. Vous avez surtout fait preuve d’écoute et d’humanité dans un contexte sanitaire et
personnel très compliqué pour moi. J’ai eu de la chance de vous avoir comme mentors... mais
forcément j’ai attrapé certaines de vos manies. Désormais, comme Yohann, je ferme les yeux quand
j’essaie de dire un truc malin. Et comme Axel, je gribouille rageusement au stylo rouge le moindre
papier qu’on me donne à relire. Espérons que ce soit temporaire.

Merci à Pierre Alquier et Éric Moulines d’avoir accepté de relire le présent manuscrit. Merci
également à Élisabeth Gassiat qui a présidé mon jury de soutenance, aux côtés de Mathieu Blondel
et Jérôme Malick. Vos retours sur mes résultats ont été précieux, et nos discussions lors de la
soutenance m’ont grandement intéressé. Je suis convaincu que l’Histoire oubliera les problèmes de
WiFi, pour ne retenir que l’excellent buffet (et les blagues sur les trains).

Quand je dis aux gens que je suis chercheur en mathématiques, la réaction typique est un mélange
d’admiration et de dégoût. Pourtant ce n’est pas si surprenant : depuis mon plus jeune âge, je
prends plaisir à apprendre des trucs, puis à baratiner les autres en leur déballant ce que j’ai appris.
Ça en dit sans doute long sur moi et mon environnement familial, mais aussi sur la chouette cohorte
d’enseignant·es dont j’ai bénéficié tout au long de mon parcours. Merci donc à Mesdames Cariou,
Brun, Aubelle, Velay et Dunlop, et à Messieurs Petitcolin, Troesch et Tosel. Sans vous, les sciences
auraient été bien moins fun.

Une thèse, ce n’est pas qu’un sujet, c’est aussi un endroit. Or nous sommes en 2023 après
Jésus-Christ, et toute l’intelligentsia parisienne est regroupée à Saclay. Toute ? Non ! Un petit
village, peuplé d’irréductibles matheux et matheuses, persiste encore et toujours à prendre le RER A :
bienvenue au CERMICS.

Dans le rôle d’Abraracourcix, j’ai nommé Isabelle. Affrontant sans relâche les difficultés adminis-
tratives, elle veille quotidiennement sur un cadre de travail presque aussi paisible que la campagne
armoricaine. Mais que serait le chef de village sans son fidèle druide ? Et ça tombe bien, Stéphanie
fait un excellent Panoramix. Personne ne connaît mieux qu’elles les secrets oubliés des notes de frais,
les arcanes mystérieuses des départs en mission, le langage obscur des codes de la bibliothèque.

Pour remettre l’oeuvre de Goscinny et Uderzo au goût du jour, le doyen Agecanonix est incarné
collectivement par les titulaires du labo. Ils et elles sont dépositaires d’une sagesse millénaire, et
chaque interaction permet de s’en abreuver. Je pense notamment à Frédéric, qui m’a donné ma
première opportunité d’enseigner, ou à Antoine, avec qui j’ai fréquemment parlé Julia. Les conseils
de Tony, Eric et Vincent m’ont aussi beaucoup aidé lorsque je cherchais ma voie. Je salue au passage
les autres chercheurs avec qui j’ai collaboré, principalement Thibaut Vidal et Mohamed Tarek.

1Limité

5

Ordralphabétix et Cétautomatix, le poissonnier et le forgeron, sont des allégories du conflit
éternel entre les étudiant·es du deuxième et du troisième étage. Heureusement, les membres de
chaque faction ne sont pas rancunier·es, et se retrouvent joyeusement pour le banquet quotidien à la
cantine (depuis qu’elle a rouvert). L’ambiance chaleureuse qui donne envie d’aller au bureau, c’est à
vous qu’on la doit. Je tiens tout particulièrement à rendre hommage à Louis et Léo, mes camarades
de galère face aux camions récalcitrants et aux bugs de différentiation automatique. Espérons que le
CIel ne vous tombe pas sur la tête !

Tel Obélix (dont je partage le palais raffiné et le sens du style), je m’aventurais parfois au-delà
des frontières de mon village. Lors de mes escarmouches avec l’administration romaine, j’ai trouvé
en la personne d’Élodie un parfait Idéfix, contrepoids subtil de mon approche un peu bourrue.
Notre mandat de délégué·es des doctorant·es fut l’occasion de contribuer à la bonne marche de
l’établissement, et d’en découvrir les rouages. On a beau dire, les légions de César qui en ont la
charge font du bon boulot, et je leur en suis reconnaissant.

Régulièrement, mon chemin m’a mené jusqu’à Lutèce pour y parler menhirs avec des collègues
du métier. La SNCF (Sculpture Néolithique de Cailloux Fuselés) m’a fourni l’inspiration dont j’avais
besoin, grâce à des échanges très riches que j’espère approfondir à l’avenir. Ma gratitude va donc à
Bertrand Houzel, Clément Raoux et Florian Chassagne côté Réseau, Philippe De Laharpe, Benjamin
Huteau et Claire Messner côté Voyageurs, ainsi qu’à François Ramond, David De Almeida et à
l’ensemble du cluster ORE. J’ai hâte de continuer à travailler avec vous !

En attendant, j’ai eu la chance de faire un tour en Amérique, puis de poser mes valises en Helvétie.
Lors de mon retour en Gaulle, c’est avec joie que je retrouverai l’École pour rejoindre le LVMT.
Merci à Sophie Mougard et Pierre Zembri de m’avoir accordé leur confiance.

Vous le savez sûrement : en 2019 quelqu’un a mangé du sanglier pas frais, et ensuite on a passé
un petit bout de temps à la maison. Afin d’atténuer la solitude des doctorant·es durant cette période,
un serveur Discord baptisé PhD Students a vu le jour. Dans les multiples recoins de cet endroit
merveilleux, au détour de visios studieuses ou de soirées jeux, j’ai gagné tout un tas d’ami·es que je
n’attendais pas. Petit coucou à Eva, qui m’a aidé à assumer ma vocation de barde, et à Mathieu,
que je harcèle sans remords avec des questions désagréables sur ses packages Julia.

En parlant de Julia, voilà un autre moyen de faire des rencontres sans montrer son attestation
Covid aux soldats romains. C’est une belle communauté, accueillante et inclusive, dont le seul
défaut serait sans doute... un prosélytisme excessif ? Je remercie tout spécialement Alan Edelman
de m’avoir invité au MIT, l’organisation JuliaGraphs, avec laquelle j’ai fait mes premiers pas dans
l’open source, ainsi que le comité d’organisation des JuliaCon, qui effectue chaque année un travail
exceptionnel.

Vous l’avez deviné, malgré ce village haut en couleurs, je ne serais rien sans mon Astérix. Et
ce compagnon de tous les jours, c’est l’énigmatique Godalle Marmanthier. Mathématicien émérite,
ami fidèle, fonctionnaire dévoué, memeur infatigable, grand amateur de jeux de société et de plats à
base de fromage, cet étrange groupuscule (un genre de Bourbaki des temps modernes) joue un rôle
central dans ma vie depuis moult éons. Même si Slack efface périodiquement sa mémoire, sa légende
survivra ! Clément, Éloïse, Maxime et Pierre, je vous lève haut mon verre (de jus de fruit). Mention
honorable pour Alexis, Induja, Florentin et Anne, dont les machinations éhontées sur Among Us ont
égayé bien des soirées de confinement.

Les bandes dessinées restent assez floues sur la famille d’Obélix. La mienne en revanche m’a
apporté un soutien indéniable pendant ces longues années d’études. Frère, parents, grand-parents,

6

oncles et tantes, cousins et cousines ont été tour à tour des exemples, des refuges, des supporters,
des confidents. Là encore, je me sais très chanceux d’avoir été si bien entouré.

Enfin, j’ai une pensée affectueuse pour Marine, alias Falbala, avec qui j’ai partagé toute ma vie
d’adulte. La thèse fut une période difficile, mais j’ai toujours pu compter sur toi. Espérons que
l’avenir soit plus clément pour nous deux.

7

8

Abstract (français)

Ah ! non ! c’est un peu court, jeune
homme ! On pouvait dire... Oh ! Dieu !...
bien des choses en somme...

Cyrano
Cyrano de Bergerac (1897)

Cette thèse en mathématiques appliquées mélange l’apprentissage statistique et l’optimisation
combinatoire. Elle associe des avancées théoriques à des algorithmes efficaces, introduisant au passage
plusieurs librairies open source en Julia. Grâce à une collaboration avec la SNCF, trois applications
au transport ferroviaire sont présentées : prédiction des pannes, propagation des retards et allocation
des voies.

La Partie I décrit les fondements mathématiques et l’implémentation de plusieurs ingrédients
utiles par la suite : différenciation implicite, processus ponctuels, modèles de Markov cachés, recherche
d’itinéraires multi-agent. Notre code en libre accès remplit un vide dans l’écosystème Julia, combinant
facilité d’usage et haute performance.

La Partie II contient des contributions théoriques liées aux statistiques et à la prise de déci-
sion. Notre étude d’un processus autorégressif vectoriel partiellement observé met en évidence des
bornes supérieure et inférieure cohérentes sur l’erreur d’estimation. Une exploration des couches
d’optimisation combinatoire pour l’apprentissage profond nous permet de développer le package
InferOpt.jl, qui unifie et approfondit l’état de l’art. Pour étendre ces méthodes à des couches
d’optimisation multi-objectif, nous construisons une nouvelle théorie de l’optimisation lexicographique
convexe.

La Partie III s’inspire des deux précédentes pour traiter des problèmes ferroviaires concrets.
Nous proposons un modèle hiérarchique pour les pannes de trains, une approche graphique pour la
propagation des retards, et de nouvelles perspectives pour l’allocation des voies, avec le challenge
Flatland comme terrain d’expérimentation.

Mots-clefs : apprentissage statistique, optimisation combinatoire, modèles à variables latentes,
couches différentiables d’optimisation, langage Julia, planification ferroviaire

9

Abstract

Let me explain... no, there is too much.
Let me sum up.

Inigo Montoya
The Princess Bride (1987)

This thesis investigates the frontier between machine learning and combinatorial optimization,
two active areas of applied mathematics research. We combine theoretical insights with efficient
algorithms, and develop several open source Julia libraries. Inspired by a collaboration with the
Société nationale des chemins de fer français (SNCF), we study high-impact use cases from the
railway world: train failure prediction, delay propagation, and track allocation.

In Part I, we provide mathematical background and describe software implementations for various
tools that will be needed later on: implicit differentiation, temporal point processes, Hidden Markov
Models and Multi-Agent Path Finding. Our publicly-available code fills a void in the Julia package
ecosystem, aiming at ease of use without compromising on performance.

In Part II, we highlight theoretical contributions related to both statistics and decision-making.
We consider a Vector AutoRegressive process with partial observations, and prove matching upper
and lower bounds on the estimation error. We unify and extend the state of the art for combinatorial
optimization layers in deep learning, gathering various approaches in a Julia library called Infer-
Opt.jl. We also seek to differentiate through multiobjective optimization layers, which leads to a
novel theory of lexicographic convex analysis.

In Part III, these mathematical and algorithmic foundations come together to tackle railway
problems. We design a hierarchical model of train failures, propose a graph-based framework for
delay propagation, and suggest new avenues for track allocation, with the Flatland challenge as a
testing ground.

Keywords: machine learning, combinatorial optimization, latent variable models, differentiable
optimization layers, Julia language, railway planning

10

Contents

Remerciements . 5
Abstract (français) . 9
Abstract . 10

1 Introduction (français) 15
1.1 Contexte industriel : une vue d’ensemble des opérations ferroviaires 16
1.2 Contributions scientifiques : prise de décision rapide basée sur les données 19

2 Introduction 25
2.1 Industrial context: an overview of railway operations 26
2.2 Scientific contributions: fast data-driven decision-making 29
2.3 Outline of the dissertation . 34
2.4 Notations . 34

I Algorithms and open source packages 39

3 Julia for scientific computing and automatic differentiation 41
3.1 Julia for scientific computing . 42
3.2 Automatic differentiation . 45
3.3 Implicit differentiation . 48
3.4 The package ImplicitDifferentiation.jl . 49

4 Temporal point processes & controlled Hidden Markov Models 53
4.1 Temporal point processes . 54
4.2 Hidden Markov Models with control variables . 57
4.3 The package PointProcesses.jl . 61
4.4 The package ControlledHiddenMarkovModels.jl 63
4.5 Numerical experiments . 67

11

5 Multi-Agent Path Finding 69
5.1 Mathematical formulation of the problem . 70
5.2 Review of MAPF algorithms . 73
5.3 The package MultiAgentPathFinding.jl . 75
5.4 Numerical experiments . 80

II Theoretical contributions 83

6 Minimax estimation of partially-observed vector autoregressions 85
6.1 Introduction . 86
6.2 Related work . 88
6.3 The partially-observed VAR process and its sparse estimator 89
6.4 Lower and upper bound on the estimation error . 91
6.5 Numerical experiments . 95
6.A Proof of the estimator’s convergence rate . 98
6.B Proof of the minimax lower bound . 116

7 Learning with combinatorial optimization layers: a probabilistic approach 127
7.1 Introduction . 128
7.2 Related work . 133
7.3 Probabilistic CO layers . 137
7.4 Learning by experience . 147
7.5 Learning by imitation . 150
7.6 Numerical experiments . 154

8 Convex optimization with the lexicographic order 159
8.1 Introduction . 160
8.2 Related work . 161
8.3 Lexicographic order . 163
8.4 Lexicographic convexity . 165
8.5 Lexicographic minimization . 169
8.6 Lexicographic subgradients . 171
8.7 The failure of the lexicographic subgradient method 178
8.8 More advanced optimization algorithms . 181
8.9 Application to ML . 182
8.10 Numerical experiments . 184

III Railway applications 189

9 Train failure prediction using condition monitoring systems 191
9.1 Introduction . 192
9.2 Related work . 193
9.3 Hierarchical degradation model . 194

12

10 Delay propagation on suburban railway networks 199
10.1 Introduction . 200
10.2 Related work . 201
10.3 Congestion-based delay model . 203
10.4 Numerical experiments . 207

11 Track allocation for the Flatland challenge 213
11.1 Introduction . 214
11.2 Related work . 216
11.3 Flatland as a MAPF problem . 216
11.4 Learning to solve MAPF . 218

12 Conclusion 223
12.1 Summary . 223
12.2 Perspectives . 224

Appendices 227

A Useful lemmas 229
A.1 Linear algebra . 229
A.2 Statistics . 230
A.3 Differentiation . 233

B Bibliography 235
*

13

14

1
Introduction (français)

D’accord, faisons comme ça !

Hubert Bonisseur de La Bath
OSS 117 : Rio ne répond plus (2009)

Contents
1.1 Contexte industriel : une vue d’ensemble des opérations ferroviaires . 16

1.1.1 Pourquoi étudier les chemins de fer ? . 16

1.1.2 Processus de planification et ressources . 16

1.1.3 Optimisation et apprentissage pour un système résilient 17

1.1.4 Trois problèmes ferroviaires importants . 18

1.2 Contributions scientifiques : prise de décision rapide basée sur les
données . 19

1.2.1 Apprentissage en grande dimension avec des variables cachées 20

1.2.2 Algorithmes d’optimisation dans les pipelines d’apprentissage 21

1.2.3 Qu’est-ce qu’un pipeline ? . 22

1.2.4 Logiciels open source pour une recherche reproductible 24

Cette thèse en mathématiques appliquées mélange l’apprentissage statistique et l’optimisation
combinatoire. Elle associe des avancées théoriques à des algorithmes efficaces, introduisant au
passage plusieurs librairies open source en Julia. Grâce à une collaboration avec la SNCF, plusieurs
applications au transport ferroviaire sont présentées : prédiction des pannes, propagation des retards
et allocation des voies. Cependant, notre travail peut être transposé à de nombreux autres contextes
industriels.

Dans le présent chapitre, nous motivons notre recherche par des problèmes de planification
ferroviaire, avant d’énumérer nos principales contributions mathématiques et informatiques.

15

1.1 Contexte industriel : une vue d’ensemble des opérations ferrovi-
aires

1.1.1 Pourquoi étudier les chemins de fer ?

Sécheresses. Canicules. Feux de forêt. Tempêtes. Inondations. Alors que le changement climatique
s’accélère, réduire les émissions de gaz à effet de serre doit devenir une priorité absolue, en particulier
dans les pays industrialisés. En France, l’empreinte carbone d’un individu moyen s’élève à 9 tonnes
d’équivalent CO2 par an, alors que l’objectif de neutralité pour 2050 est fixé à 2 tonnes1. Les
changements nécessaires pour atteindre cet objectif vont transformer tous les aspects de notre vie
quotidienne.

Actuellement, le secteur des transports génère à lui seul environ un tiers des émissions, essen-
tiellement à cause du transport routier et aérien. Grâce à leur grande capacité et à leur efficacité
énergétique (sans oublier une production électrique très décarbonée), les trains français rejettent
beaucoup moins de CO2 par kilomètre et par passager que les voitures ou les avions. Augmenter la
part modale du rail semble donc un objectif louable, mais comment inciter davantage de personnes
à prendre le train ? Bien sûr, une partie de la réponse réside dans les politiques publiques et les
décisions d’investissement, mais l’attrait des chemins de fer n’est pas seulement une question d’argent
et d’infrastructures. La qualité du service dépend également de la rapidité et de la résilience des
décisions, et c’est là que les mathématiques appliquées ont un rôle à jouer.

1.1.2 Processus de planification et ressources

Même si les voyageurs ne s’en rendent pas toujours compte, déplacer un train d’un point A à
un point B est loin d’être facile. En coulisses, un processus de planification complexe se déroule,
comme le décrit Schlechte (2012, Chapitre I). Ce processus fait intervenir deux acteurs principaux :
les entreprises ferroviaires (comme SNCF Voyageurs), chargées de faire rouler les trains, et les
gestionnaires d’infrastructure (comme SNCF Réseau), chargés de coordonner l’accès au réseau. Ces
acteurs s’efforcent d’organiser chaque voyage en rassemblant un certain nombre de ressources, que
nous décrivons à présent.

L’infrastructure est une ressource centrale pour le transport ferroviaire. Contrairement aux
voitures et aux avions, les trains se déplacent sur un réseau très contraint de voies et de gares. Leurs
distances de freinage étant importantes, ils doivent maintenir en permanence un grand intervalle de
sécurité pour éviter les collisions. Dès que l’on dépasse de faibles vitesses, cet intervalle de sécurité
s’étend au-delà du champ de vision humain. Par conséquent, chaque trajet doit réserver à l’avance
un itinéraire (une séquence de sections de voie), dont on doit s’assurer qu’il est exempt de conflits. Il
serait inutile de monopoliser un itinéraire complet pour toute la durée du voyage, c’est pourquoi les
sections de voie individuelles sont attribuées puis libérées au fur et à mesure du passage des trains.
Cela permet de respecter les intervalles de sécurité, tout en assurant un débit élevé.

Le matériel roulant et le personnel sont d’autres ressources essentielles. Un trajet donné ne peut
avoir lieu qu’avec un véhicule répondant à des exigences spécifiques (capacité, nombre de voitures,
type de moteur), doté d’un personnel adéquat (conducteur/conductrice, contrôleur/contrôleuse,
vendeur/vendeuse de nourriture). Enfin, et surtout, les passagers/passagères peuvent également
être considérés comme une ressource, car un train est inutile (et coûteux) s’il voyage à vide. Les

1https://www.statistiques.developpement-durable.gouv.fr/edition-numerique/chiffres-c
les-du-climat-2022/

16

https://www.statistiques.developpement-durable.gouv.fr/edition-numerique/chiffres-cles-du-climat-2022/
https://www.statistiques.developpement-durable.gouv.fr/edition-numerique/chiffres-cles-du-climat-2022/

départs sont souvent retardés pour rendre les correspondances possibles, tout comme ils peuvent
être retardés pour attendre un véhicule ou un membre d’équipage.

Network
design

Track
allocation

Real-time
management

Line
planning

Timetabling
Rolling
stock

rostering

Crew
assignment

Rescheduling

Infrastructure
manager

Railway
companies

Strategic Tactical
Operational &

real-time

Figure 1.1: Principales phases de la planification ferroviaire
Adapté d’après Schlechte (2012) avec permission de l’auteur

La planification ferroviaire s’étend à travers plusieurs échelles de temps. Au niveau stratégique
(plusieurs années à l’avance), les décisions structurelles telles que la conception du réseau et la
planification des lignes sont prises. Ensuite, au niveau tactique (plusieurs mois à l’avance), la
construction des horaires et l’allocation des voies se font en parallèle. Il s’agit d’une condition
nécessaire à la constitution des rotations de matériel roulant et à l’affectation des équipes. Ensuite,
au niveau opérationnel (plusieurs jours à l’avance), des ajustements de dernière minute sont apportés
à la grille horaire. Enfin, les perturbations du trafic en temps réel sont surveillées et traitées par des
centres de contrôle spécialisés. Ces phases sont résumées sur la Figure 1.1.

1.1.3 Optimisation et apprentissage pour un système résilient

À chaque étape de la planification, les entreprises ferroviaires et les gestionnaires d’infrastructure
doivent répondre à une question difficile : quelle est la meilleure utilisation possible de nos ressources ?
Cette décision implique de nombreuses variables à définir, plusieurs contraintes à satisfaire, ainsi
qu’une fonction de coût à minimiser, c’est pourquoi nous l’appelons un problème d’optimisation. Pour
ne rien arranger, ce problème est combinatoire : il possède un ensemble fini mais exponentiellement
grand de solutions possibles, de sorte que l’énumération exhaustive devient impossible en temps
raisonnable. Le domaine de l’optimisation combinatoire (CO) est consacré à l’étude de tels problèmes,
et il a donné lieu à de nombreux algorithmes efficaces depuis les années 1950 (Korte and Vygen
2006). Les applications de la CO aux chemins de fer sont presque aussi anciennes que le domaine
lui-même, et restent encore très pertinentes aujourd’hui (Borndörfer et al. 2018).

Cependant, les algorithmes de CO ne sont pas toujours suffisants lorsqu’ils sont utilisés tels
quels. Tout d’abord, la formulation usuelle des problèmes suppose que l’avenir ne réserve aucune
surprise, et que tout se déroule comme prévu. Pourtant, l’expérience montre que des incidents se
produisent, et nous devons donc les anticiper en amont. Deuxièmement, la plupart des algorithmes
d’optimisation sont conçus pour fonctionner sur une grande variété d’instances. Mais en réalité,
nous nous concentrons sur un cas d’usage bien précis (par exemple, un réseau ferroviaire spécifique).
Nous aimerions donc que notre solveur y soit aussi performant que possible, même si cela implique
de renoncer à la généralité. L’apprentissage automatique (ML) est la clé pour surmonter ces deux
obstacles. Il englobe une vaste famille de méthodes qui permettent d’extraire des informations à
partir de données brutes. Et heureusement, les chemins de fer génèrent beaucoup de données : des

17

heures de départ et d’arrivée à la surveillance de l’état des trains ou au comptage des passagers, les
mesures ne manquent pas. Le véritable défi consiste à leur donner du sens, avant de les exploiter au
sein d’algorithmes d’optimisation.

1.1.4 Trois problèmes ferroviaires importants

Dans cette thèse, notre objectif final est d’effectuer l’allocation des voies. Nous voulons prendre une
grille horaire en entrée, et affecter à chaque train un itinéraire réalisable à travers le réseau. Pour
générer des réseaux et des horaires réalistes, nous nous appuyons sur le simulateur du challenge
Flatland (Mohanty et al. 2020), dont un exemple est présenté sur la Figure 1.2. L’allocation des
voies pour Flatland est un cas particulier de recherche d’itinéraires multi-agent (MAPF). Dans ce
problème classique, un ensemble d’agents doit trouver des chemins mutuellement compatibles à
travers un graphe. Le but de chacun est d’atteindre sa destination le plus rapidement possible, le
tout sans causer de collisions.

Figure 1.2: Exemple de carte générée par le simulateur Flatland (voir Chapitre 11)

Le Chapitre 5 étudie cette question de manière plus détaillée. Comme nous le verrons, il s’agit
d’un problème NP-difficile, dont les principales méthodes de résolution reposent sur des techniques
de décomposition, des approximations polynomiales ou une recherche locale. Nous adaptons et
implémentons un algorithme de descente à grands voisinages, qui s’exécute rapidement sur de très
grandes instances, et nous le testons sur un jeu de benchmark. Ensuite, dans le Chapitre 11, nous
décrivons une façon d’améliorer cet algorithme en apprenant à partir de données simulées par
Flatland.

Les Chapitres 5 et 11 se concentrent sur la version déterministe de l’allocation des voies. Que se
passe-t-il si nous devons également faire face à des retards imprévisibles et stochastiques ? Nous
aurons alors besoin de modèles statistiques, pour fournir des prédictions fiables à nos algorithmes
d’optimisation.

18

Station A

Station B

Station C Station D

Figure 1.3: Deux types de retards : primaires (explosion =⇒ panne)
et secondaires (flèche =⇒ propagation)

Comme l’illustre la Figure 1.3, les retards de trains se répartissent en deux catégories : primaires
et secondaires. Les retards primaires sont exogènes : ils sont causés par des incidents tels que des
dysfonctionnements mécaniques, des intempéries ou des comportements humains inattendus. À
l’inverse, les retards secondaires sont endogènes : ils sont générés par les interactions entre les trains
sur le réseau. Pour parvenir à une allocation résiliente des voies, nous devons apprendre à prévoir
ces deux types de retards.

Les défaillances du matériel roulant sont parmi les principales causes des retards primaires,
c’est pourquoi nous étudions la prédiction des pannes dans le Chapitre 9. Sur la base des données
de surveillance d’une flotte de trains régionaux, nous essayons d’anticiper leur dégradation et de
prédire leur prochaine intervention corrective au centre de maintenance. Dans des travaux futurs,
ces informations nous aideront à identifier les véhicules les plus vulnérables, et à les affecter aux
itinéraires les plus sûrs.

L’effet papillon donnant lieu à des retards secondaires est appelé propagation des retards, et nous
l’étudions dans le Chapitre 10. Pour quantifier ce phénomène, notre méthode ne repose pas sur des
données industrielles confidentielles, mais uniquement sur les heures de départ et d’arrivée. Nous
l’appliquons aux relevés horaires d’un système de tramway suisse, et nous retrouvons des intuitions
cohérentes sur la dynamique de la congestion des voies. Dans des travaux futurs, ces informations
nous aideront à identifier les zones les plus critiques du réseau, afin d’éviter de les surcharger.

1.2 Contributions scientifiques : prise de décision rapide basée sur
les données

Avant de nous plonger dans les applications ferroviaires, nous utilisons les Chapitres 3 à 8 pour
développer des outils théoriques et algorithmiques de prise de décision data-driven. Dans l’optique
de combiner ML et CO, nous devons répondre aux questions suivantes :

1. Comment extraire des informations pertinentes de données bruitées en grande dimension ?

2. Comment utiliser ces informations pour améliorer les algorithmes d’optimisation ?

Nous énumérons maintenant nos principales contributions à chacun de ces sujets de recherche.

19

1.2.1 Apprentissage en grande dimension avec des variables cachées

Le premier thème récurrent dans nos travaux est la notion de variable cachée. Elle apparaît dans la
prédiction des pannes (Chapitre 9) pour modéliser l’état de dégradation d’un train, puis à nouveau
dans la propagation des retards (Chapitre 10) pour capturer la notion de congestion du réseau. Dans
ces deux contextes, nous travaillons avec des modèles temporels de forme générique

Xt = ft(Xt−1) et Yt = gt(Xt) (1.1)

Ici, Xt est le processus latent, auquel nous n’avons pas accès, tandis que Yt est le processus observé.
Les fonctions ft et gt sont aléatoires, appelées respectivement distributions de transition et d’émission.
Dans certains cas, trouver une forme paramétrique appropriée pour ft et gt est loin d’être évident.
Dans d’autres cas, le modèle est assez simple, mais son estimation soulève des questions statistiques
non triviales.

1.2.1.1 Modélisation de flux de données complexes

Dans le contexte de la prédiction des pannes (Chapitre 9), notre principal défi est de construire
un modèle de dégradation adéquat à partir des données qui nous sont fournies. Les journaux
d’activité des trains sont mis à disposition quotidiennement : nous les considérons comme des
variables de contrôle, qui influencent les distributions de transition et d’émission. À l’inverse, nos
observations sont un flux d’événements enregistrés en temps continu, ce qui n’est pas compatible
avec une formulation en temps discret. De plus, les événements et les contrôles sont représentés par
des vecteurs de grande dimension, dont certaines parties peuvent être inutiles ou redondantes.

Pour surmonter ces obstacles, nous nous appuyons sur les concepts introduits par le Chapitre 4
pour définir un modèle de Markov caché contrôlé avec des observations de type processus de Poisson
marqué. Ce modèle est illustré sur la Figure 1.4a : il fusionne les données en temps discret et en
temps continu, sans avoir besoin de compresser l’information. Les distributions de transition et
d’émission sont spécifiquement conçues pour refléter notre connaissance du processus de détérioration
des trains. Des hypothèses naturelles sur les dépendances stochastiques permettent de réduire le
nombre de paramètres, atténuant ainsi la malédiction de la dimension.

1.2.1.2 Obtention de garanties statistiques grâce à la parcimonie

Dans le contexte de la propagation des retards (Chapitre 10), nous introduisons un nouveau modèle
centré sur une variable de congestion Xt. Cette congestion se déplace dans le réseau, et influence les
temps de départ et d’arrivée Yt car elle rend les sections de voie plus ou moins difficiles à traverser.
Pour modéliser Xt (le processus latent) et Yt (le processus observé), nous utilisons une autorégression
vectorielle partiellement observée :

Xt = θXt−1 + εt et Yt = ΠtXt + ηt (1.2)

Dans l’Équation (1.2), εt et ηt sont des bruits blancs Gaussiens de variances respectives σ2

et ω2. La matrice Πt est un masque aléatoire qui cache chaque composante de Yt avec une
probabilité 1− p, tout en présentant d’éventuelles corrélations temporelles. Enfin, θ est une matrice
de poids parcimonieuse, qui possède au maximum s coefficients non nuls par ligne. L’estimation
de θ est essentielle pour comprendre la dynamique des retards, c’est pourquoi nous devons contrôler
l’erreur d’estimation.

20

at−1 at at+1

u1t−1 u2t−1 u1t u2t u1t+1 u2t+1

Xt−1 Xt Xt+1

Yt−1 Yt Yt+1

⋆ ▲ ■ ▲ ⋆ ■ ■ ⋆ ▲
1

1

0

0

0

0

1 1

1

1

1

1

1

1

1

1

0

0

0

0

1

(a) HMM contrôlé + processus de Poisson = modèle
hiérarchique pour la prédiction des pannes (voir

Chapitre 9)

State dimension D (with s= 5)
10⁰⋅⁹ 10¹⋅² 10¹⋅⁵

E
st

im
a
ti
o
n
 e

rr
o
r
jjµ̂
¡
µ
jj 1

10⁻¹⋅⁰

10⁻⁰⋅⁵

10⁰⋅⁰

10⁰⋅⁵ p= 0:2 (dense) j ®= 1:04

p= 1:0 (dense) j ®= 0:92

p= 0:2 (sparse) j ®= 0:26

p= 1:0 (sparse) j ®= 0:19

Log sampling probability log10(p)
-1.0 -0.8 -0.6 -0.4 -0.2

L
o
g
 t

ra
n
si

ti
o
n
 p

ro
b
a
b
il
it

y
 l
o
g

1
0
(1
¡
b)

-1.5

-1.0

-0.5

L
o
g
 e

st
im

a
ti
o
n
 e

rr
o
r

lo
g

1
0
jjµ̂
¡
µ
jj 1

-0.5

0.0

0.5

1.0

(b) L’estimation d’une autorégression vectorielle
partiellement observée est plus facile avec un petit s

et un grand p (voir Chapitre 6)

Figure 1.4: Apprentissage en grande dimension avec des variables cachées

Le Chapitre 6 fournit une analyse complète de ce modèle à espace d’états assez inhabituel. En
prouvant une nouvelle borne supérieure (Theorem 6.4.1) et la borne inférieure minimax associée
(Theorem 6.4.2), nous quantifions formellement l’erreur de l’estimateur optimal sur une séquence de
longueur T :

∥θ̂ − θ∥∞ ∝
(
1 +

ω2

σ2

)
s

p
√
T

Sans surprise, la parcimonie du modèle (petit s) facilite l’estimation, tandis que la parcimonie des
observations (petit p) rend l’estimation plus difficile. C’est ce que montre la Figure 1.4b.

1.2.2 Algorithmes d’optimisation dans les pipelines d’apprentissage

Le deuxième thème récurrent dans notre travail est le concept de pipeline d’apprentissage différen-
tiable.

21

1.2.3 Qu’est-ce qu’un pipeline ?

Ces dernières années, l’apprentissage profond a permis d’obtenir des résultats impressionnants pour
le traitement du langage naturel, la génération d’images et bien d’autres tâches autrefois considérées
comme hors de portée des machines (Goodfellow, Bengio, and Courville 2016). Les réseaux de
neurones fonctionnent en appliquant une succession d’opérations de base, telles que des combinaisons
linéaires ou des fonctions d’activation non linéaires. Ces opérations sont appelées couches. Ensemble,
elles forment un graphe de calcul (acyclique dirigé), aussi appelé pipeline :

Entrée−−−−→
x∈Rn

�
�

�

Couche 1

fonction φw1

−→
�
�

�

Couche 2

fonction χw2

−→
�
�

�

Couche 3

fonction ψw3

Sortie−−−−→
y∈Rm

Chacune des couches possède des paramètres internes, ou poids, qui doivent être calibrés durant la
phase d’entraînement. La plupart du temps, cet entraînement implique de minimiser une fonction
de perte Lw définie sur N échantillons (entrée, sortie) :

min
w

1

N

N∑
i=1

Lw(x(i), y(i)).

La fonction Lw mesure une distance entre la sortie du réseau appliqué à l’entrée x et la sortie cible y.
Elle est généralement minimisée par descente de gradient, mais le calcul manuel des dérivées devient
très fastidieux pour les pipelines complexes. C’est là que la différenciation automatique (AD) entre
en scène : celle-ci calcule des dérivées numériquement exactes pour chaque couche, sans avoir besoin
d’une formule analytique. Ensuite, l’AD combine ces dérivées (voir Chapitre 3) pour rétro-propager
les gradients de la fonction de perte vers les poids des différentes couches.

1.2.3.1 Couches différentiables d’optimisation combinatoire

La plupart des couches de ML sont des fonctions simples et explicites, faciles à différentier. Cependant,
rien ne nous empêche d’utiliser un algorithme de CO à la place :

Entrée−−−−→
x∈Rn

�
�

�

Couche 1

fonction φw1

Contraintes ou−−−−−−−−−→
objectif

Couche 2
Algorithme de CO

Solution−−−−−→
Optimale

�
�

�

Couche 3

fonction ψw3

Sortie−−−−→
y∈Rm

Comme nous l’expliquons dans le Chapitre 3, transformer une couche explicite en une couche implicite
rend le travail de l’AD beaucoup plus difficile. Et même lorsque l’AD fonctionne, la solution d’un
problème de CO est une fonction constante par morceaux, qui ne produit aucune dérivée utile.

Pour résoudre cette difficulté, nous publions un package Julia open source appelé InferOpt.jl,
que nous décrivons dans le Chapitre 7. Cette librairie accepte n’importe quel algorithme de CO
et l’approxime par une couche différentiable, ce qui assure la compatibilité avec l’écosystème AD
et ML de Julia. Nous utilisons le concept unificateur de couche CO probabiliste pour englober un
large éventail de méthodes présentes dans la littérature. Comme le montre la Figure 1.5a, une
couche CO probabiliste convertit un problème d’optimisation linéaire en une distribution sur les
sommets d’un polytope, qui varie continûment avec le vecteur objectif. Nous décrivons également
de nouvelles techniques de différentiation (Propositions 7.3.4 et 7.3.5), dont les performances sont
vérifiées empiriquement.

Ce travail est ensuite utilisé dans le Chapitre 11, où nous construisons un nouveau pipeline pour
résoudre plus efficacement le problème d’allocation des voies. L’idée est d’apprendre où et pourquoi

22

les conflits sont susceptibles de se produire, pour les prévenir à l’avance au lieu de les réparer a
posteriori.

1.2.3.2 Généralisation à des objectifs multiples : le cas lexicographique

Bien qu’InferOpt.jl se concentre sur les problèmes de CO avec un objectif linéaire et un ensemble
de solutions polyédral, ce ne sont pas les seuls problèmes intéressants. Par exemple, le Chapitre 5
montre que l’un des algorithmes les plus rapides pour le MAPF ne peut pas être formulé comme
un programme linéaire en nombre entiers (ILP) avec un seul objectif. En revanche, nous pouvons
le relier à un ILP multi-objectif, à condition de munir l’espace d’arrivée de l’ordre lexicographique.
Pour insérer cet algorithme dans un pipeline d’apprentissage différentiable, la principale leçon du
Chapitre 7 est qu’il nous faut une notion adéquate de convexité.

C’est pourquoi, dans le Chapitre 8, nous étendons la théorie de l’optimisation convexe au cadre
lexicographique. En partant d’une définition de base de la convexité par rapport à l’ordre lexi-
cographique, nous reconstruisons des objets bien connus comme les sous-gradients (Proposition 8.6.4)
et les fonctions conjuguées. Toutefois, le cône lexicographique n’est pas fermé (voir Figure 1.5b), ce
qui invalide plusieurs propriétés agréables du cas scalaire. Par exemple, les fonctions lexicographique-
ment convexes ne sont pas toujours continues (Exemple 8.4.13), et l’algorithme du sous-gradient
lexicographique ne converge pas en général. En revanche, nous introduisons un algorithme de
Jacobienne orthogonalisée (Algorithme 8.8.1) et une méthode de plans coupants lexicographiques
(Algorithme 8.8.2), qui semblent plus prometteurs dans le cas général.

(a) Couche CO probabiliste donnée par une
distribution sur les sommets d’un polytope (voir

Chapitre 7)

(b) Le cône lexicographique K = {x ∈ R2 : x≥lex 0}
n’est pas fermé (voir Chapitre 8)

Figure 1.5: Algorithmes d’optimisation dans les pipelines d’apprentissage

23

1.2.4 Logiciels open source pour une recherche reproductible

Dans la plupart des chapitres, nous réalisons des expériences numériques pour illustrer nos modèles
et nos algorithmes. A une exception près, ces expériences sont toutes implémentées dans le langage
de programmation Julia (Bezanson et al. 2017), un choix que nous justifions dans le Chapitre 3.
Lorsque c’est possible, nous tâchons d’isoler les outils susceptibles d’être réutilisés, et nous publions
un package open source les contenant.

Dans le Chapitre 9, notre modèle de prédiction des pannes est construit en empilant un HMM con-
trôlé sur un processus de Poisson. Par conséquent, nous fournissons les packages ControlledHid-
denMarkovModels.jl et PointProcesses.jl, tous deux décrits au Chapitre 4. Le challenge
Flatland du Chapitre 11 est abordé en combinant des algorithmes efficaces de recherche d’itinéraires
avec des couches différentiables. Dans ce but, nous fournissons les packages MultiAgentPathFind-
ing.jl (décrit au Chapitre 5) et InferOpt.jl (décrit au Chapitre 7). Enfin, l’une des techniques
implémentées dans InferOpt.jl exploite le théorème des fonctions implicites, pour lequel nous
avons développé le package ImplicitDifferentiation.jl (décrit au Chapitre 3).

Toutes les librairies mentionnées ci-dessus suivent les bonnes pratiques modernes en termes
de développement logiciel. Leur code est disponible sur GitHub avec une licence open source. Il
est accompagné d’une spécification claire des dépendances, et obéit à un système de versionnage
sémantique. Après chaque nouvelle version, un processus d’intégration continue avec des tests
unitaires garantit son bon fonctionnement. Mais surtout, chaque package possède une documentation
détaillée, qui comprend dans certains cas des tutoriels pédagogiques.

Nous sommes convaincus que le respect de ces bonnes pratiques rend notre code plus fiable, et
nos expériences plus facilement reproductibles. Par conséquent, les packages qui en résultent peuvent
être considérés comme des produits de nos recherches, au même titre que la théorie qui les sous-tend.

24

2
Introduction

Now, in terms of how we handle this
moving forward, obviously, Earth is
cancelled.

Judge Gen
The Good Place – S4E8

The Funeral to End All Funerals (2019)

Contents
2.1 Industrial context: an overview of railway operations 26

2.1.1 Why study railways? . 26
2.1.2 Planning process and resources . 26
2.1.3 Optimization and learning for a resilient system 27
2.1.4 Three important railway problems . 28

2.2 Scientific contributions: fast data-driven decision-making 29
2.2.1 High-dimensional learning with hidden variables 29
2.2.2 Optimization algorithms within learning pipelines 30
2.2.3 What is a pipeline? . 32
2.2.4 Open source software for reproducible research 33

2.3 Outline of the dissertation . 34
2.3.1 Main parts . 34
2.3.2 Chapter dependencies . 34
2.3.3 Experiments . 34

2.4 Notations . 34
2.4.1 Linear algebra . 35
2.4.2 Probability . 36
2.4.3 Analysis . 36
2.4.4 Frequent symbols . 37

25

This thesis investigates the frontier between machine learning and combinatorial optimization,
two active areas of applied mathematics research. We combine theoretical insights with efficient
algorithms, and develop several open source Julia libraries. Inspired by a collaboration with the
Société nationale des chemins de fer français (SNCF), we study high-impact use cases from the
railway world: train failure prediction, delay propagation, and track allocation. However, we expect
our work to be relevant in many other industrial contexts.

In the present chapter, we motivate our research with railway planning problems, before listing
our main mathematical and computational contributions.

2.1 Industrial context: an overview of railway operations

2.1.1 Why study railways?

Droughts. Heatwaves. Wildfires. Thunderstorms. Floods. As climate change is spiraling out of
control, reducing greenhouse gas emissions must become a top priority everywhere, especially in
high-income countries. In France, the average individual’s carbon footprint amounts to 9 tons
of CO2-equivalent per year, while the neutrality target for 2050 is set at 2 tons1. The changes
necessary to reach that target will transform all aspects of our daily lives.

Currently, the transportation sector alone is responsible for about a third of all emissions, with
road and air transport being the largest contributors. Thanks to their high capacity and energy
efficiency (combined with a low-carbon electricity mix), French trains release much less CO2 per
kilometer and passenger than either cars or planes. Increasing the modal share of railways thus
seems a worthy endeavor, but how can we entice more people to take the train? Of course, part
of the answer lies with public policies and investment decisions, but the appeal of railways is not
just about money and infrastructures. The quality of service also depends on fast and resilient
decision-making, which is where applied mathematics comes into play.

2.1.2 Planning process and resources

Although travelers may not always realize it, moving a train from point A to point B is far from easy.
Behind the scenes, a complex planning process unfolds, as described by Schlechte (2012, Chapter I).
This process involves two main actors: railway companies (like SNCF Voyageurs), tasked with
operating trains, and infrastructure managers (like SNCF Réseau), tasked with coordinating access
to the network. Together, they strive to gather the resources needed for every journey.

Infrastructure is the defining resource of railway transport. Unlike cars and planes, trains reside
on a very constrained network of tracks. Because braking distances are huge, they must maintain a
large safety interval at all times to avoid collisions. Beyond low speeds, the safety interval often
extends further than the driver can see. As a consequence, each trip has to book an itinerary in
advance (i.e., a timed sequence of track sections) that is provably free from conflict. Since it would
be wasteful to preempt a full itinerary for the entire duration of the journey, individual track sections
are claimed and released as trains go by. This allows safety intervals to be respected, while ensuring
high throughput.

1https://www.statistiques.developpement-durable.gouv.fr/edition-numerique/chiffres-c
les-du-climat-2022/

26

https://www.statistiques.developpement-durable.gouv.fr/edition-numerique/chiffres-cles-du-climat-2022/
https://www.statistiques.developpement-durable.gouv.fr/edition-numerique/chiffres-cles-du-climat-2022/

Rolling stock and crew are other essential resources. A given trip can only take place with a
vehicle that satisfies specific requirements (capacity, number of coaches, engine type), staffed with
adequate personnel (driver, ticket inspector, snack salesperson). Last, but not least, passengers can
also be considered a resource, since trains are useless (and costly) when traveling empty. Departures
are often delayed to make connections possible for passengers, just like they can be delayed to wait
for an available vehicle or driver.

Network
design

Track
allocation

Real-time
management

Line
planning

Timetabling
Rolling
stock

rostering

Crew
assignment

Rescheduling

Infrastructure
manager

Railway
companies

Strategic Tactical
Operational &

real-time

Figure 2.1: Main phases of railway planning
Adapted from Schlechte (2012) with kind permission from the author

Railway planning stretches over several time scales. At the strategic level (several years in
advance), structural decisions like network design and line planning are made. Then, at the tactical
level (several months in advance), timetable construction and track allocation take place in parallel.
This is a necessary condition for rolling stock rostering and crew assignment to happen. Next, at
the operational level (several days in advance), last-minute adjustments are made to the schedule.
Finally, real-time perturbations to traffic are monitored and handled by dedicated control centers.
These phases are summarized on Figure 2.1.

2.1.3 Optimization and learning for a resilient system

At each stage of the planning process, railway companies and infrastructure managers must answer a
hard question: what is the best possible use for our resources? This decision involves many variables
to set, several constraints to satisfy, as well as a cost function to minimize, which is why we call it
an optimization problem. To make matters worse, this problem is combinatorial : it has a finite but
exponentially large set of possible solutions, so that exhaustive enumeration becomes intractable.
The field of Combinatorial Optimization (CO) is dedicated to the study of such problems, and it has
given rise to many efficient algorithms since the 1950s (Korte and Vygen 2006). Applications of CO
to railways are almost as old as the field itself, and they are still very relevant today (Borndörfer
et al. 2018).

However, CO algorithms are not always sufficient when used out of the box. First, standard
problem formulations assume that the future holds no surprise, and that everything proceeds
according to plan. Yet history shows that incidents happen, so we need to anticipate them during
the scheduling phase. Second, most optimization routines are designed to work on a broad variety of
instances. But in real life, we are interested in one specific use case (say, one railway network), and
we would like our solution procedure to perform well on this use case, even if it means giving up on
generality. Machine Learning (ML) is the key to overcoming both of these hurdles. It encompasses
a large family of methods designed to extract valuable information from raw data (Murphy 2012).

27

And luckily, railways generate a lot of data: from departure and arrival times to train condition
monitoring or passenger counts, measurements abound. The real challenge lies in making sense of
this data, before exploiting it within optimization algorithms.

2.1.4 Three important railway problems

In this thesis, our ultimate goal is to perform track allocation. We want to take a timetable as input,
and construct a feasible itinerary for each train through the network. To generate realistic networks
and timetables, we rely on the simulator of the Flatland challenge (Mohanty et al. 2020), whose
output is displayed on Figure 2.2. Track allocation for Flatland is a special case of Multi-Agent Path
Finding (MAPF), where a set of agents must find non-conflicting paths through a graph and reach
their destination as fast as possible.

Figure 2.2: Example map from the Flatland challenge (see Chapter 11)

Chapter 5 discusses MAPF in more detail. As we will see, it is an NP-hard problem, whose
main solution methods rely on decomposition techniques, polynomial approximations or local search.
We adapt and implement a large neighborhood search algorithm that remains fast even on very large
instances, and we test it on a popular benchmark set. Next, in Chapter 11, we describe a way to
improve this algorithm by learning from simulated Flatland data.

Chapters 5 and 11 focus on the deterministic version of MAPF / track allocation. But what
happens if we also need to face unpredictable, stochastic delays? Then, we need statistical models to
feed our planning routines with trustworthy predictions.

As illustrated by Figure 2.3, train delays are split between two categories: primary delays and
secondary delays. Primary delays are exogenous: they are caused by incidents such as mechanical
malfunctions, bad weather or unexpected human behavior. Conversely, secondary delays are
endogenous: they are generated by interactions between trains on the network. To achieve resilient
track allocation, we must learn to predict both kinds of delays.

28

Station A

Station B

Station C Station D

Figure 2.3: Two kinds of delays: primary (explosion =⇒ failure)
and secondary (arrow =⇒ propagation)

Rolling stock failures are among the main causes of primary delays, which is why we investigate
failure prediction in Chapter 9. Based on condition monitoring data from a fleet of regional trains,
we try to anticipate their degradation and predict their next stop at the repair workshop. In future
work, this information will help us identify the most vulnerable vehicles, and assign them to the
safest itineraries.

The snowball effect giving rise to secondary delays is called delay propagation, and we study it in
Chapter 10. To quantify this phenomenon, our method does not rely on confidential industrial data,
only departure and arrival times. We apply it to actual records from a Swiss tramway system, and
recover coherent insights about the dynamics of track congestion. In future work, this information
will help us identify the most critical parts of the network, so that we can avoid putting too much
load on them.

2.2 Scientific contributions: fast data-driven decision-making

Before delving into railway applications, we use Chapters 3 through 8 to develop theoretical and
algorithmic tools for data-driven decision-making. Combining ML and CO means we face the
following challenges:

1. How to extract meaningful information from high-dimensional and noisy data?

2. How to use this information to enhance optimization algorithms?

We now list our main contributions to each of these research topics.

2.2.1 High-dimensional learning with hidden variables

The first recurring theme in our work is the notion of hidden variable. It comes up in failure
prediction (Chapter 9) to model the health state of a train, and then again in delay propagation
(Chapter 10) to capture the notion of network congestion. In both of these settings, we work with
temporal models of the generic form

Xt = ft(Xt−1) and Yt = gt(Xt) (2.1)

29

Here, Xt is the latent process, which we do not have access to, while Yt is the observation process. The
functions ft and gt are random: we call them the transition and emission distributions respectively.
In some cases, finding a suitable parametric form for ft and gt is far from obvious. In other cases,
the model is fairly simple, but its estimation raises deep statistical questions.

2.2.1.1 Modeling complex data streams

In the context of failure prediction (Chapter 9), our main challenge is to construct an adequate
degradation model from the data we are given. Train activity logs are made available once a day:
we regard them as control variables that influence the transition and emission distributions. On the
other hand, our observations consist of a stream of events recorded in continuous time, which is not
compatible with a discrete time formulation. To make things worse, both the events and the controls
are represented by high-dimensional vectors, parts of which are possibly useless or redundant.

To overcome these obstacles, we build upon the concepts reviewed in Chapter 4 to define a
controlled Hidden Markov Model with marked Poisson process observations. This model is illustrated
on Figure 2.4a: it merges processes in discrete and continuous time without needing to compress
information. The transition and emission distributions are specifically designed to reflect our
knowledge of the train deterioration process. Careful hypotheses on the stochastic dependencies
help reduce the number of learnable parameters, thus alleviating the curse of dimensionality.

2.2.1.2 Obtaining statistical guarantees from sparsity

In the context of delay propagation (Chapter 10), we introduce a novel framework centered around
the congestion variable Xt. This congestion moves through the network, influencing departure and
arrival times Yt as it makes track sections more difficult to cross. To model Xt (the latent process)
and Yt (the observation process), we use a partially-observed Vector AutoRegression:

Xt = θXt−1 + εt and Yt = ΠtXt + ηt (2.2)

In Equation (2.2), εt and ηt are white Gaussian noise processes with respective variances σ2

and ω2. Meanwhile, Πt is a random mask that hides each component of Yt with probability 1− p,
possibly displaying temporal correlations. Finally, θ is a sparse matrix of transition weights, with no
more than s non-zero coefficients per row. Estimating θ is key to understanding delay dynamics,
which is why we need to control the estimation error.

Chapter 6 provides a complete analysis of this slightly unusual state-space model. By deriving a
new upper bound (Theorem 6.4.1) and the associated minimax lower bound (Theorem 6.4.2), we
formally quantify the error of the optimal estimator on a sequence of length T :

∥θ̂ − θ∥∞ ∝
(
1 +

ω2

σ2

)
s

p
√
T

Unsurprisingly, transition sparsity (low s) makes estimation easier, while observation sparsity (low p)
makes estimation harder, as shown on Figure 2.4b.

2.2.2 Optimization algorithms within learning pipelines

The second recurring theme in our work is the concept of differentiable learning pipeline.

30

at−1 at at+1

u1t−1 u2t−1 u1t u2t u1t+1 u2t+1

Xt−1 Xt Xt+1

Yt−1 Yt Yt+1

⋆ ▲ ■ ▲ ⋆ ■ ■ ⋆ ▲
1

1

0

0

0

0

1 1

1

1

1

1

1

1

1

1

0

0

0

0

1

(a) Controlled HMM + Poisson process = a
hierarchical model for failure prediction (see

Chapter 9)

State dimension D (with s= 5)
10⁰⋅⁹ 10¹⋅² 10¹⋅⁵

E
st

im
a
ti
o
n
 e

rr
o
r
jjµ̂
¡
µ
jj 1

10⁻¹⋅⁰

10⁻⁰⋅⁵

10⁰⋅⁰

10⁰⋅⁵ p= 0:2 (dense) j ®= 1:04

p= 1:0 (dense) j ®= 0:92

p= 0:2 (sparse) j ®= 0:26

p= 1:0 (sparse) j ®= 0:19

Log sampling probability log10(p)
-1.0 -0.8 -0.6 -0.4 -0.2

L
o
g
 t

ra
n
si

ti
o
n
 p

ro
b
a
b
il
it

y
 l
o
g

1
0
(1
¡
b)

-1.5

-1.0

-0.5

L
o
g
 e

st
im

a
ti
o
n
 e

rr
o
r

lo
g

1
0
jjµ̂
¡
µ
jj 1

-0.5

0.0

0.5

1.0

(b) Estimation of a partially observed VAR is easier
with small s and large p (see Chapter 6)

Figure 2.4: High-dimensional learning with hidden variables

31

2.2.3 What is a pipeline?

These last few years, deep learning has achieved impressive results for natural language processing,
image generation, and many other tasks that were once thought to be out of reach (Goodfellow,
Bengio, and Courville 2016). Neural networks work by applying a succession of basic operations
such as linear combinations or nonlinear activation functions. These operations are called layers,
and together they form a (directed acyclic) computational graph, also called a pipeline:

Input−−−→
x∈Rn

�
�

�

Layer 1

function φw1

−→
�
�

�

Layer 2

function χw2

−→
�
�

�

Layer 3

function ψw3

Output−−−−→
y∈Rm

Each of the layers comes with internal parameters, or weights, which need to be selected during
the training phase. Most of the time, training involves minimizing a loss function Lw defined on N
(input, output) samples:

min
w

1

N

N∑
i=1

Lw(x(i), y(i)).

Typically, the loss measures the distance between the output of the network applied to input x and
the target output y. It is usually minimized with some variant of gradient descent, but working
out derivatives manually becomes very tedious for complex pipelines. That is where Automatic
Differentiation (AD) comes in: it computes numerically exact derivatives for each layer without
needing an analytical formula. Then, AD combines these derivatives with the chain rule (see
Chapter 3) to allow seamless backpropagation of loss gradients onto the layer weights.

2.2.3.1 Differentiable combinatorial layers

Most layers from ML are fairly simple and explicit functions, which are easy to differentiate. However,
nothing stops us from using a CO algorithm instead:

Input−−−→
x∈Rn

�
�

�

Layer 1

function φw1

Constraints or−−−−−−−−−→
objective

Layer 2
CO algorithm

Optimal−−−−−→
solution

�
�

�

Layer 3

function ψw3

Output−−−−→
y∈Rm

As we explain in Chapter 3, turning an explicit layer into an implicit one makes the job of AD much
more difficult. And even if AD still works, the solution of a CO problem is a piecewise constant
function, so no useful derivative information can come from it.

To address this difficulty, we publish an open source Julia package called InferOpt.jl, which
we describe in Chapter 7. Our library takes any CO algorithm and constructs an approximate
differentiable layer, making it compatible with most AD and ML frameworks in the Julia ecosystem.
We leverage the unifying concept of probabilistic CO layer to encompass a wide array of previous
methods. As displayed on Figure 2.5a, a probabilistic CO layer converts a linear optimization problem
into a distribution on the vertices of a polytope, which changes smoothly with the objective vector.
We also describe new differentiation techniques (Propositions 7.3.4 and 7.3.5), whose performance is
demonstrated empirically.

Our package is then used in Chapter 11, where we design several pipelines to solve MAPF more
efficiently. The basic idea is to learn where and why conflicts are likely to happen, so that we can
prevent them beforehand instead of repairing them afterwards.

32

2.2.3.2 Generalization to multiple objectives: the lexicographic case

While InferOpt.jl focuses on CO problems with a linear objective and polyhedral feasible set,
these are not the only problems of interest. For instance, Chapter 5 shows that one of the fastest
algorithms for MAPF cannot be formulated as a single-objective Integer Linear Program (ILP).
Instead, we can relate it to a multiobjective ILP, as long as we endow the objective space with
the lexicographic order. To insert this algorithm into a differentiable learning pipeline, the main
takeaway of Chapter 7 is that we need an adequate notion of convexity.

That is why, in Chapter 8, we extend the theory of convex optimization to the lexicographic
setting. Starting from a basic definition of convexity with respect to the lexicographic order, we
reconstruct well-known objects like convex subgradients (Proposition 8.6.4) and conjugates. But
because the lexicographic cone is not closed (see Figure 2.5b), several aspects from the real-valued
case fail to generalize. For example, lexicographically-convex functions are not always continuous
(Example 8.4.13), and the lexicographic subgradient algorithm usually fails to converge. On the
other hand, we introduce an orthogonalized Jacobian algorithm (Algorithm 8.8.1) and a method of
lexicographic cutting planes (Algorithm 8.8.2), which seem more promising in the general case.

(a) Probabilistic CO layer given by a distribution on
polytope vertices (see Chapter 7)

(b) The lexicographic cone K = {x ∈ R2 : x≥lex 0} is
not closed (see Chapter 8)

Figure 2.5: Optimization algorithms within learning pipelines

2.2.4 Open source software for reproducible research

In most chapters, we perform numerical experiments to illustrate our models and algorithms. Bar one
exception, these experiments are always implemented in the Julia programming language (Bezanson
et al. 2017), a choice we justify in Chapter 3. Whenever possible, we abstract away the parts that
can be reused by other people, and publish an open source package containing them.

Our failure prediction model from Chapter 9 is built by stacking a controlled HMM on top of

33

a Poisson process. Hence, we provide the packages ControlledHiddenMarkovModels.jl and
PointProcesses.jl, both described in Chapter 4. Tackling the Flatland challenge in Chapter 11
involves wrapping efficient MAPF algorithms inside differentiable layers. To this end, we provide the
packages MultiAgentPathFinding.jl (described in Chapter 5) and InferOpt.jl (described
in Chapter 7). Finally, one of the layers in InferOpt.jl exploits the implicit function theorem,
for which we develop the package ImplicitDifferentiation.jl (described in Chapter 3).

All the libraries mentioned above follow modern best practices in terms of software development.
Their source code is available on GitHub with a permissive open source license. They contain precise
requirement lists and follow semantic versioning. After each commit, a continuous integration process
with unit tests ensures correctness. And most importantly, they come with extensive documentation,
which includes (in some cases) pedagogic tutorials for end users.

We trust that abiding by these best practices makes our academic code more trustworthy, and our
experiments more easily reproducible. Therefore, the resulting packages can be considered valuable
outputs of our research, just as much as the theory behind them.

2.3 Outline of the dissertation

2.3.1 Main parts

The present document is divided into three parts.

• Part I describes some important algorithms and the software packages that we developed for
them. Since most of these algorithms are not new, our main contribution is a performant,
generic and reliable Julia implementation.

• Part II is the mathematical core of our work. It contains theoretical contributions related to
statistics, optimization and their interactions.

• Part III deals with railway applications. It leverages the previous chapters to make sense of
real data and improve decision-making processes.

2.3.2 Chapter dependencies

We sum up the structure of the thesis on Figure 2.6. To interpret this directed acyclic graph, just
apply the following principle recursively: one should not read a chapter until one has read every one
of its parents.

2.3.3 Experiments

All experiments (except those in Chapter 7) were performed on a Dell Precision 5530 mobile
workstation with Intel Core i7-8850H CPU (2.60GHz × 12) and 31 GiB of RAM, running under
Ubuntu 20.04.

2.4 Notations

We denote by N the set of natural numbers, by Z the set of integers, by Q the set of rational numbers,
and by R the set of real numbers. Real intervals are written [a, b), where a bracket means that the

34

Chapter 3
Julia, AD &
implicit diff.

Chapter 4
Point processes &
controlled HMMs

Chapter 5
Multi-Agent
Path Finding

Chapter 6
Partially

observed VAR

Chapter 7
Probabilistic

CO layers

Chapter 8
Lexicographic
optimization

Chapter 9
Failure

prediction

Chapter 10
Delay

propagation

Chapter 11
Track

allocation

Figure 2.6: Dependencies between chapters
Part I – Part II – Part III

bound is included, and a parenthesis means that the bound is excluded. As an example, we define
the closed real half-line R+ = [0,+∞). We also extend the real line by defining R = R ∪ {±∞}.
Integer intervals are written Ji, jK, where both bounds are always included. As a shortcut, we often
write [n] for J1, nK. Given a real number x ∈ R, we denote by |x| its absolute value. When we
write log(x), we mean the natural logarithm with base e.

2.4.1 Linear algebra

A vector x ∈ Rd with components xi is written x = (x1, . . . , xd). We denote by ∥x∥2 its Euclidean
norm, by ∥x∥1 its ℓ1 norm, by ∥x∥∞ its ℓ∞ norm, and by ∥x∥0 its number of nonzero entries. The
notation ei stands for the basis vector with a 1 at position i and zeros elsewhere, while 1 is the
vector with all components equal to 1. Integer intervals can be used to select subvectors, in which
case we shorten Ji, jK into i:j. For instance, xi:j = (xi, ..., xj). If x, y ∈ Rd, we denote by x ≤ y the
componentwise order (which is a partial order), and by x ≤lex y the lexicographic order (which is a
total order).

A real matrix M ∈ Rd×d can be defined using its coefficients M = (Mi,j)1≤i,j≤d or its
columns M =

(
M1 · · · Md

)
. We denote by M⊤ its transpose, by M−1 its inverse and by M †

its Moore-Penrose pseudo-inverse. Its trace is written Tr(M) and its determinant det(M). We
denote its singular values by ςmax(M) = ς1(M) ≥ ς2(M) ≥ · · · ≥ ςd(M) = ςmin(M). We denote its
eigenvalues by λ1(M), . . . , λd(M), and whenever they all belong to R (which is notably the case for
real symmetric matrices), we order them as λmax(M) = λ1(M) ≥ λ2(M) ≥ · · · ≥ λd(M) = λmin(M).

35

The column-wise flattening of matrix M into a vector is written vec(M).
We will need to work with several norms and related quantities. The operator ℓ1 norm ∥M∥1 =

supx ̸=0
∥Mx∥1
∥x∥1 = maxj

∑
i|Mi,j | is the maximum ℓ1 norm of a column of M . The operator ℓ∞

norm ∥M∥∞ = supx ̸=0
∥Mx∥∞
∥x∥∞ = maxi

∑
j |Mi,j | is the maximum ℓ1 norm of a row of M . The

operator ℓ2 norm ∥M∥2 = supx ̸=0
∥Mx∥2
∥x∥2 = |ςmax(M)| =

√
λmax(M⊤M) is also known as the

spectral norm. The Frobenius norm ∥M∥F = ∥vec(M)∥2 =
√
Tr(M⊤M) is the Euclidean norm of

the flattened matrix. The maximum eigenvalue of the entries ∥M∥max = ∥vec(M)∥∞ = maxi,j |Mi,j |
and the spectral radius ρ(M) = maxi|λi(M)| will also be useful.

Given two real matrices A and B with compatible sizes, we denote by AB their usual product,
by A⊙B their Hadamard (elementwise) product, and by A⊗B their Kronecker (tensor) product.
The Loewner order on symmetric matrices is defined by A ⪯ B if and only if B − A has only
nonnegative eigenvalues, it is a partial order.

We write I for the identity matrix, and Jr for the square matrix entirely filled with zeros, except
for the subdiagonal of rank r which is filled with ones. The notation diag(λ) stands for a diagonal
matrix with coefficients λ1, ..., λd. We will sometimes need to introduce block matrices, in which case
we will use the special notation M = (M[b1,b2])b1,b2 instead of M = (Mi,j)i,j . We define bdiagk(M)
as a block-diagonal matrix with k copies of M on the diagonal and zeros elsewhere.

When we want to apply a function elementwise, we often use notation that is standard for real
numbers but not for matrices: for instance,

√
M = (

√
Mi,j)i,j and 1

M = (1
Mi,j

)i,j . When we use integer
intervals to select submatrices, we mean a selection with respect to columns: Mi:j =

(
Mi · · · Mj

)
.

2.4.2 Probability

We denote by P a probability distribution or probability density function. For a random variable X,
let E[X] be its expectation. If X takes real values, we denote its variance by Var(X). If X takes
vector values, we denote its covariance matrix by Cov(X). Similarly, the covariance (matrix) between
variables X and Y is written Cov(X,Y). The notations 1E and 1{E} stand for the indicator
function of an event E. We write KL {P1 ∥ P2} for the Kullback-Leibler (KL) divergence between
two probability distributions. We often make use of several standard distributions:

• Discrete: the Bernoulli distribution B(p), the binomial distribution B(n, p), the multinomial
distributionM(p), the Poisson distribution P(λ).

• Continuous: the uniform distribution U(a, b), the exponential distribution E(λ), the Gaussian
distribution N (µ, σ2), the multivariate Gaussian distribution N (µ,Σ).

2.4.3 Analysis

We use ∆d =
{
p ∈ Rd : pi ≥ 0,

∑
i pi = 1

}
to refer to the unit simplex of dimension d, and B(x, r)

for the Euclidean ball of center x and radius r. If S ⊂ Rd is a set, we define its convex hull
as conv(S) =

{∑
i pixi : d ∈ N, x ∈ Sd, p ∈ ∆d

}
. The orthogonal projection onto a set S (when it

exists) is written projS , while the orthogonal projection onto a vector u is written proju.
If f is a real-valued function, we denote by ∇pf(x) the gradient of f with respect to parameter p

at point x, and by ∂pf(x) its convex subdifferential (set of subgradients). Its Hessian matrix
is written Hpf(x). The notation dom(f) stands for the domain of f , i.e., the set on which

36

it takes finite values. If f : Rn −→ Rm is a vector-valued function, we denote by Jpf(x) its
Jacobian matrix with respect to parameter p. The function f can be expressed using its real-valued
components fj : x ∈ Rn 7−→ fj(x). The notation f|X stands for the restriction of any function f to a
subset X of its input space.

2.4.4 Frequent symbols

Whenever possible, we try to give the following letters a coherent meaning throughout the thesis.
An undirected graph will usually be called G = (V, E), with vertices u or v and edges e. We also
use the same notation for directed graphs, even though edges e ∈ E should normally be replaced by
arcs a ∈ A (one reason is that the letter a already refers to “agents” in several chapters). Time is
always represented by letters such as t or τ . A dimension will often be called d, n or m. Parameters
(in the statistical sense) are named θ or w depending on the context. A random variable called Xt is
usually a hidden state, while Yt is an observation.

37

38

Part I

Algorithms and open source packages

39

3
Julia for scientific computing and automatic
differentiation

I am fast. To give you a reference point,
I’m somewhere between a snake and a
mongoose... and a panther.

Dwight Schrute
The Office – S3E8
The Merger (2006)

Contents
3.1 Julia for scientific computing . 42

3.1.1 Performance benchmarks . 42
3.1.2 Types and multiple dispatch . 43
3.1.3 Composability . 43
3.1.4 Generic programming . 44
3.1.5 Performance guidelines . 45

3.2 Automatic differentiation . 45
3.2.1 Numerical differentiation methods . 45
3.2.2 Forward and reverse mode AD . 46
3.2.3 Julia ecosystem . 47

3.3 Implicit differentiation . 48
3.3.1 The limits of automatic differentiation . 48
3.3.2 The implicit function theorem . 48

3.4 The package ImplicitDifferentiation.jl 49
3.4.1 Main ideas . 49
3.4.2 Implementation details . 50
3.4.3 Numerical experiments . 50

41

In this chapter, we justify our decision to use the Julia language for nearly all of our numerical
experiments. We then survey Automatic Differentiation (AD), an essential ingredient of modern
Machine Learning (ML). As learning pipelines become more complex, AD calculates and combines
derivatives without requiring user input or introducing numerical errors. It will play a crucial role in
Chapters 4 and 7. Finally, we discuss the implicit function theorem and its application to building
implicit layers around numerical solvers. A generic implementation is provided in our open source
package ImplicitDifferentiation.jl1.

The Julia package described here is the result of a collaboration with Mohamed Tarek, from Pumas
AI / University of Sydney. This chapter is partly based on a conference talk we gave at JuliaCon
2022 (D. and Tarek 2022).

3.1 Julia for scientific computing

The two-language problem is an infamous, albeit unwritten, law of scientific computing. While
programmers can easily build prototypes in high-level dynamic languages (Python, R, Matlab, etc.),
they often need to switch to low-level static languages (C, C++, Fortran, etc.) when speed becomes
an issue. This makes development of high-performance code more cumbersome and less accessible.

The Julia language is a recent addition to the scientific computing ecosystem: it was publicly
announced in 2012, and the 1.0 release only came out in 2018. It attempts to tackle the two-language
problem through careful design choices, which we review below. Our main source is the official Julia
article by Bezanson et al. (2017), as well as the technical documentation of the language2.

3.1.1 Performance benchmarks

Before delving into language technicalities, we briefly mention the Computer Language Benchmarks
Game3, an open source comparison of many modern programming languages. It is built around 10
computationally heavy tasks, ranging from differential equations (N -body problem) to linear algebra
(spectral norm) or high-precision arithmetic (digits of π). For every language, implementations were
submitted and improved by the GitHub community, before being applied to instances of various
sizes. The goal was to reach the best possible performance according to several criteria.

Here, we only consider the fastest run on the largest instance of each task. We use the CPU
time as measure of speed, and the size of the compressed source as a proxy for code complexity.
Figure 3.1 displays the geometric means of these values over all tasks, for each language. As we can
see, Julia is located on the Pareto front (bottom left), which means it strikes an interesting balance
between efficiency and simplicity.

For a deeper investigation of various performance measures, we refer the reader to Pereira et al.
(2017). In particular, the authors discuss the relative merits of programming languages with respect
to electricity consumption, which is a key aspect of sustainable scientific computing. Their latest
results include Julia4, which ranks second only to Rust in terms of energy efficiency.

1https://github.com/gdalle/ImplicitDifferentiation.jl
2https://docs.julialang.org/en/v1/
3https://benchmarksgame-team.pages.debian.net/benchmarksgame/
4https://sites.google.com/view/energy-efficiency-languages/updated-functional-resul

ts-2020#h.p_Ai6_HV718M7v

42

https://github.com/gdalle/ImplicitDifferentiation.jl
https://docs.julialang.org/en/v1/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://sites.google.com/view/energy-efficiency-languages/updated-functional-results-2020#h.p_Ai6_HV718M7v
https://sites.google.com/view/energy-efficiency-languages/updated-functional-results-2020#h.p_Ai6_HV718M7v

Figure 3.1: A compromise between code simplicity and efficiency (data from the Computer
Language Benchmarks Game)

3.1.2 Types and multiple dispatch

Julia’s central tenet is its type system, which works by combining specialization and abstraction.
When a chunk of code is run, the type inference algorithm determines the type of every function
input, and propagates it recursively to every function output. Then, multiple dispatch selects a
specialized method for each function and subfunction, based on inferred argument types. If this
method does not exist yet, it is compiled just-in-time. The more specialized the method, the faster
it will be, because knowing the memory layout of the data greatly improves the generated machine
code.

For instance, the built-in + function has over 200 specialized methods in the standard library,
allowing addition between various types of numbers (integer, floating point, complex, rational) but
also arrays (vectors, matrices, tensors) and even time periods. And while + works correctly for any
pair of abstract matrices, more efficient implementations exist that leverage sparsity, symmetry, or
any other structure that can be encoded in the matrix type.

3.1.3 Composability

Thanks to the type inference algorithm, type annotations are mostly optional. They are used for
code selection and do not affect performance, except in ambiguous cases. The reason behind the
name “multiple dispatch” is that the selection procedure considers every argument of a function, not
just the first one. Methods are not owned by the objects they apply to, as opposed to what happens
in object-oriented languages.

It is not uncommon for the developer of a package A to borrow a type from package B, another
one from package C, and implement a new function that takes an argument of each type. Packages

43

B and C do not need to be aware of package A for this approach to be efficient. Multiple dispatch
thus provides Julia with a high potential for composability, and also explains the fragmented nature
of the ecosystem. If we want to combine, say, neural networks with integer programming solvers,
there is no need for a single package containing both. Instead, we can blend existing packages for
deep learning and discrete optimization, using just a few lines of independent glue code. In this
specific example, the glue code would be our InferOpt.jl library (see Chapter 7).

3.1.4 Generic programming

The key requirement for composability is generic programming. When they write high-level functions,
Julia programmers are encouraged to only make minimal assumptions about the argument types.
Genericity does not impact performance, because for any given function input, a specialized method
will be compiled that relies on efficient low-level operations. On the other hand, genericity allows
downstream users to explore innovative applications of a package, which upstream developers may
not have predicted beforehand.

A classic example consists in producing code that accept any subtype of Number, not just
Float64. The Julia ecosystem has many number types, each of them with a specific purpose:

• standard single- and double-precision floating point numbers (Float32 and Float64)

• arbitrary precision floating point numbers (BigFloat)

• dual numbers for AD (see ForwardDiff.jl5)

• logarithmic-scale numbers to avoid numerical over- and underflow (see LogarithmicNum-
bers.jl6)

• quantities with units (see Unitful.jl7) or uncertainty bars (see Measurements.jl8)

• real intervals for exact floating point arithmetic (see IntervalArithmetic.jl9)

Our own Julia packages take great care to remain as generic as possible, so as not to limit the range
of possible uses. For example, ImplicitDifferentiation.jl (see below) and InferOpt.jl
both accept arbitrary callable objects to solve optimization problems, without prescribing a specific
modeling framework. PointProcesses.jl and ControlledHiddenMarkovModels.jl (see
Chapter 4) only interact with probability measures through the functions rand (for simulation) and
logdensityof (for likelihood computation). This makes them compatible with a wide variety of
distributions, and with each other. In addition, they work with arbitrary number types. Finally,
MultiAgentPathFinding.jl (see Chapter 5) is designed to accept any kind of graph object,
which means custom implementations can be plugged in for special cases like grid graphs.

5https://github.com/JuliaDiff/ForwardDiff.jl
6https://github.com/cjdoris/LogarithmicNumbers.jl
7https://github.com/PainterQubits/Unitful.jl
8https://github.com/JuliaPhysics/Measurements.jl
9https://github.com/JuliaIntervals/IntervalArithmetic.jl

44

https://github.com/JuliaDiff/ForwardDiff.jl
https://github.com/cjdoris/LogarithmicNumbers.jl
https://github.com/PainterQubits/Unitful.jl
https://github.com/JuliaPhysics/Measurements.jl
https://github.com/JuliaIntervals/IntervalArithmetic.jl

3.1.5 Performance guidelines

While Julia programs are fairly easy to write, it does take some practice to make them reach their
top speed. The main performance tips can be summed up as follows: facilitate type inference and
reduce memory allocations. When type inference fails, the compiler produces inefficient machine
code, because it has to anticipate every possible argument type instead of focusing on one. And
even within fully type-inferrable functions, memory allocation and garbage collection are significant
bottlenecks. Luckily, inference failures and excessive allocations can be diagnosed with dedicated
introspection tools like the built-in code profiler.

Our goal here is not to give detailed recipes for producing good Julia code. We only wish to
highlight that it is non-trivial, and that each one of our own packages was written, profiled and
optimized with this goal in mind. For instance, because ImplicitDifferentiation.jl and
InferOpt.jl are optimizer-agnostic, making type inference successful requires special attention.
ControlledHiddenMarkovModels.jl takes care to re-use storage and leverage efficient linear
algebra routines, while also remaining type-inferrable. MultiAgentPathFinding.jl benefits
from a reflection on the right priority queues for Dijkstra-like algorithms. These are but a few
examples, and more details will be given in the relevant chapters.

3.2 Automatic differentiation

We now move on to AD, also called algorithmic differentiation, which deduces numerically exact
derivatives from the source code of a function. A good reference on this topic is given by Griewank
and Walther (2008), while uses of AD in ML are explored by Baydin et al. (2018). Our exposition is
mostly borrowed from Margossian (2019).

3.2.1 Numerical differentiation methods

In the field of numerical optimization, we frequently need to compute derivatives of a func-
tion f : Rn −→ Rm. If we do not want to work out these derivatives by hand, we have three
main options:

• Symbolic differentiation uses computer algebra to convert a mathematical expression for f into
a mathematical expression for ∂f/∂xi.

• Finite differentiation approximates derivatives with a difference between function values at
neighboring points:

∂f(x)

∂xi
≈ f(x+ εei)− f(x)

ε

• Algorithmic differentiation re-interprets the code that computes the function f , and combines
derivatives from individual building blocks thanks to the chain rule.

Symbolic differentiation is less error-prone than manual derivation, but the number of terms in
the resulting formulas can blow up exponentially. This often happens when repeated products or
compositions are involved. Furthermore, its main focus is a class of functions given by mathematical
expressions. Conversely, finite differentiation and AD both support a wide variety of computer
programs, including those with control flow such as if statements or while loops.

45

In finite differentiation, the scale of ε dictates the precision of the Taylor expansion. Unfortunately,
numerical cancellation errors can occur when ε becomes too small. In addition, computing gradients
that way requires Θ(n) function evaluations, since we need to cycle through each basis vector ei. On
the other hand, AD provides exact derivatives wherever they exist. Even better, reverse mode AD
only requires one function call to compute a gradient. This is especially interesting for ML, where
we must often differentiate loss functions with respect to high-dimensional parameters. In the rest of
this chapter, we only focus on AD: see Baydin et al. (2018) and the references therein for details on
symbolic and finite differentiation.

3.2.2 Forward and reverse mode AD

AD comes in two flavors: forward and reverse mode. Following Margossian (2019), we illustrate
them by considering the case of a composite function with L layers:

f = fL ◦ fL−1 ◦ · · · ◦ f2 ◦ f1 : Rn −→ Rm

3.2.2.1 Chain rule and products

In both cases, the core ingredient is the chain rule of differentiation, which expresses the full
Jacobian Jf(x) as a matrix product:

J = JLJL−1 · · · J2J1 with J ℓ = Jf ℓ
[
(f ℓ−1 ◦ · · · ◦ f1)(x)

]
(3.1)

In Equation (3.1), note the difference between J , which denotes a specific matrix, and J, which
denotes the Jacobian operator. Given an input perturbation (or tangent) u ∈ Rn, forward mode AD
is concerned with computing the Jacobian-vector product Ju. It does so by accumulating products
in the forward order, from layer 1 to layer L:

Ju = JL(JL−1 · · · (J2(J1u))) (3.2)

Given an output sensitivity (or adjoint) v ∈ Rm, reverse mode AD is concerned with computing the
vector-Jacobian product v⊤J . It does so by accumulating products in the reverse order, from layer L
to layer 1:

v⊤J = (((v⊤JL)JL−1) · · · J2)J1 (3.3)

With a computation budget roughly proportional to one call of f , forward mode AD yields one
Jacobian-vector product, while reverse mode AD yields one vector-Jacobian product (Griewank
and Walther 2008, Chapter 4). Suppose we want the full Jacobian matrix instead. Forward mode
computes it column-by-column (taking u = ei for i ∈ [n]), whereas reverse mode computes it
row-by-row (taking v = ej for j ∈ [m]). The former is a good choice when n≪ m, but the latter
shines when n≫ m. In particular, real-valued functions satisfy m = 1, and we can compute their
gradient with a single vector-Jacobian product 1⊤Jf(x) = ∇f(x)⊤.

3.2.2.2 Implementation details

Each mode of AD comes with its own constraints and limitations, summed up in Table 3.1. Forward
mode AD often works by introducing dual numbers of the form x + uϵ, where ϵ is an abstract
number satisfying ϵ ≠ 0 but ϵ2 = 0. We can think of ϵ as representing an order 1 quantity in

46

Forward mode Reverse mode

Propagated quantity Input perturbation Output sensitivity
Implementation Operations on dual numbers Additional storage + backward pass
Jacobian complexity O(n) function calls O(m) function calls

Table 3.1: Comparison between forward and reverse mode AD for f : Rn −→ Rm

a Taylor expansion, so that dual numbers encode both a value and its derivative at the same
time. For this trick to work, every layer f ℓ must accept inputs of dual type, with the following
behavior: f ℓ(x+ uϵ) = f ℓ(x) + J ℓuϵ. We recover the Jacobian-vector product by feeding x+ uϵ to f
and querying the coefficient of ϵ in the final result. Importantly, as soon as a layer is applied, its
input can be safely discarded because its output contains all the necessary information. This keeps
memory requirements quite light.

Reverse mode AD is usually more complicated to implement, not least because it works in two
stages. First, a forward sweep, which serves to compute the intermediate values (f ℓ−1 ◦ · · · ◦ f1)(x)
from Equation (3.1). Second, a backward sweep, during which vector-Jacobian products are formed
and propagated, hence the name backpropagation. Reverse mode AD uses much more memory:
because the reverse sweep only starts when the forward sweep is complete, the intermediate values
must be stored in the meantime. For more complex pipelines, exploring and remembering the
directed acyclic computation graph also generates overhead. Reducing memory requirements of
reverse mode AD is the subject of ongoing research.

3.2.3 Julia ecosystem

Since the Julia programming language was designed for scientific computing, it is no surprise that AD
plays an important role in its package ecosystem. Many AD frameworks have been developed over the
years, and Schäfer et al. (2021) offer a good summary of their respective strengths and weaknesses.
Useful information can also be found on the web page of the JuliaDiff GitHub organization10.
It is essential to keep in mind that most AD frameworks fall short of supporting every single
language construct. Each project that we list comes with its own trade-offs in terms of breadth and
performance.

Regarding forward mode AD, ForwardDiff.jl11 (Revels, Lubin, and Papamarkou 2016) is as
close as it gets to a community standard. It works on any code that is generic enough to handle
inputs of abstract number type Real (which includes dual numbers). For reverse mode AD, there are
more options, such as ReverseDiff.jl12 or Zygote.jl13 (Innes 2019). Among these libraries,
a frequent limitation is the inability to differentiate code that mutates arrays. This is unfortunate,
because in-place modifications are often synonymous with reduced runtime, as we mentioned above.
Note however that the experimental project called Enzyme.jl14 (W. Moses and Churavy 2020;
W. S. Moses et al. 2021) seeks to remove this limitation.

10https://juliadiff.org/
11https://github.com/JuliaDiff/ForwardDiff.jl
12https://github.com/JuliaDiff/ReverseDiff.jl
13https://github.com/FluxML/Zygote.jl
14https://github.com/EnzymeAD/Enzyme.jl

47

https://juliadiff.org/
https://github.com/JuliaDiff/ForwardDiff.jl
https://github.com/JuliaDiff/ReverseDiff.jl
https://github.com/FluxML/Zygote.jl
https://github.com/EnzymeAD/Enzyme.jl

The ChainRules.jl15 package (White et al. 2022) aims at creating a common interface for
AD in Julia. It is built around the concept of forward and reverse rules, i.e., routines that compute
Jacobian-vector and vector-Jacobian products. Coming back to Equation (3.1), defining a forward
rule for f ℓ means writing a function u 7−→ J ℓu, while defining a reverse rule means writing a
function v 7−→ v⊤J ℓ. Once these chain rules are defined, they are compatible with many AD
frameworks (including Zygote.jl and ReverseDiff.jl). The associated functions can thus be
used as layers in most ML packages, like the Flux.jl16 library for neural networks (Innes 2018). All
it takes is for the user to define f as the composition of L layers f1, . . . , fL, and AD will seamlessly
chain individual derivatives by applying Equation (3.3).

ChainRules.jl already contains rules for most of the Julia standard library, which is more
than enough for basic applications. However, users can also provide custom rules for a function they
programmed themselves. Custom rules are useful when the function in question:

• Is not AD-compatible due to black box components (e.g., calls to an external solver): we
explore this case below.

• Is not AD-compatible due to a limitation of the AD framework (e.g., array mutation): we give
a concrete example in Chapter 4.

• May be AD-compatible but does not have useful derivatives (e.g., because it is piecewise
constant): we discuss this situation at length in Chapter 7.

We refer the reader to the ChainRules.jl documentation17 for more information on both the
mathematical and algorithmic aspects. We also mention Kochenderfer and Wheeler (2019, Chapter 2),
in which elementary Julia implementations can be found for forward mode AD.

3.3 Implicit differentiation

3.3.1 The limits of automatic differentiation

Scientific computing often deals with functions that are given by a complex iterative solver. Common
examples include differential equations, optimization problems, fixed point equations, nonlinear
systems, etc. It is natural to ask whether we can compute their derivatives easily using AD. Alas,
our solver may not be compatible with the AD library we want to use. For example, many industrial
solvers are implemented in lower-level programming languages, which Julia AD tools cannot make
sense of. And even when the solver is fully amenable to AD, differentiating through an iterative
procedure is very expensive. It requires unrolling the iterations and propagating derivatives through
each one. This can make storage requirements explode in reverse mode, because the space required
in memory is roughly proportional to the number of operations.

3.3.2 The implicit function theorem

Implicit differentiation provides a solution to this problem, by specifying what we expect from a
solution regardless of the solver we use to compute it. Our exposition is mostly drawn from Blondel,

15https://github.com/JuliaDiff/ChainRules.jl
16https://github.com/FluxML/Flux.jl
17https://juliadiff.org/ChainRulesCore.jl/stable/

48

https://github.com/JuliaDiff/ChainRules.jl
https://github.com/FluxML/Flux.jl
https://juliadiff.org/ChainRulesCore.jl/stable/

Berthet, et al. (2022), but another good resource is the tutorial by Kolter, Duvenaud, and M. Johnson
(2020). Consider a function f : x ∈ Rn 7−→ y = f(x) ∈ Rm. While the solver computing f may be a
black box, we are often able to characterize its output using a set of conditions. For instance, the
solution to an unconstrained differentiable minimization problem f(x) = argminy∈Rm g(x, y) will
always satisfy gradient stationarity ∇1g(x, f(x)) = 0. More generally, we define the conditions as a
mapping C : (x, y) ∈ Rn × Rm 7−→ C(x, y) ∈ Rm such that for all x ∈ Rn, we have

C(x, f(x)) = 0 (3.4)

Let us see what happens when we differentiate the previous equation with respect to x:

J1C(x, f(x))︸ ︷︷ ︸
B

+J2C(x, f(x))︸ ︷︷ ︸
−A

Jf(x)︸ ︷︷ ︸
J

= 0 (3.5)

We obtain a linear system linking the Jacobian Jf(x) ∈ Rm×n to the partial Jacobians A ∈ Rm×m

and B ∈ Rm×n of the conditions C. Provided that A is nonsingular, we can invert the linear system
and obtain the Jacobian Jf(x) we are interested in. This is, in essence, the meaning of the implicit
function theorem. To recap, implicit differentiation involves 3 steps:

1. Use any solver to compute f(x).

2. Apply AD on Equation (3.4) to deduce A and B.

3. Solve the system AJ = B to recover Jf(x).

3.4 The package ImplicitDifferentiation.jl

3.4.1 Main ideas

While implicit differentiation is already available in Python via the jaxopt18 package of Blondel,
Berthet, et al. (2022), Julia implementations are hard to come by. Our package ImplicitDiffer-
entiation.jl, developed with Mohamed Tarek, aims at filling this gap. It is inspired by a prior
attempt from NonconvexUtils.jl19, but strives to make the code more simple and user-friendly.

ImplicitDifferentiation.jl is designed to be fully compatible with the ChainRules.jl
specification. Users only need to define f and C as Julia functions, and wrap both of them inside an
ImplicitFunction callable object. When we call this object outside an AD pipeline, it simply
returns f(x). But when we try to differentiate through it, implicit differentiation overrides the
default unrolling of iterations thanks to custom forward and reverse rules. Our package includes
some implementation tricks to improve numerical efficiency. These ideas are already exposed by
Blondel, Berthet, et al. (2022) among others, so we did not invent anything. Instead, our main
contribution consists in finding the right design and combination of tools, which allowed us to turn
these ideas into code.

18https://github.com/google/jaxopt
19https://github.com/JuliaNonconvex/NonconvexUtils.jl

49

https://github.com/google/jaxopt
https://github.com/JuliaNonconvex/NonconvexUtils.jl

3.4.2 Implementation details

Remember from Equations (3.2) and (3.3) that we are not interested in manipulating the full
Jacobian matrix if we can avoid it. Luckily, from Equation (3.5), we can compute Jacobian-vector
products based on the observation that for any u ∈ Rn, we have A(Ju) = Bu. Thus, we only need to
solve Ap = Bu for p = Ju. On the other hand, vector-Jacobian products are obtained for any v ∈ Rm

by seeking w ∈ Rm such that A⊤w = v. It follows directly that v⊤J = w⊤AJ = w⊤B. Since we
can dispense with storing the full Jacobian matrix J , we do not want to store A and B either. The
solution is to consider them as lazy linear operators, i.e., functions v 7−→ Av and v 7−→ Bv that are
evaluated on the fly.

We use LinearOperators.jl20 (Orban and Siqueira 2019) to express A and B. Of course,
we also need a linear system solver that is compatible with lazy operators, and it turns out that
Krylov subspace methods satisfy this requirement. Therefore, we use the package Krylov.jl21

(Orban 2019) to solve linear systems within the forward and reverse rules. We select GMRES (Saad
and Schultz 1986) as the default algorithm, but the user is free to specify another one if additional
information is available on the properties of A (like symmetry).

3.4.3 Numerical experiments

Despite its recent release, downstream uses of our package are already starting to emerge. For instance,
DifferentiableFactorizations.jl22 is a lightweight toolbox which relies on ImplicitD-
ifferentiation.jl to differentiate through many types of matrix factorizations: (generalized)
eigenvalue decomposition, singular value decomposition, Cholesky factorization, LU factorization, QR
factorization. Indeed, matrix factorizations are typical cases where the solver may be complicated,
but the conditions satisfied by the output are simple.

We conclude this chapter by presenting a more sophisticated application of ImplicitDif-
ferentiation.jl to optimal transport. The reader can refer to Peyré and Cuturi (2019) for a
thorough introduction to this topic.

3.4.3.1 Optimal transport with entropic regularization

Suppose we have a distribution of mass a ∈ ∆n over points x1, . . . , xn ∈ Rp (where ∆ denotes the
probability simplex). We want to transport it to a distribution b ∈ ∆m over points y1, . . . , ym ∈
Rp. The unit moving cost from point x to point y is proportional to the squared Euclidean
distance d(x, y) = ∥x− y∥22.

A transportation plan can be described by a coupling p ∈ Π(a, b), i.e. a probability distribution
on the product space with the right marginals:

Π(a, b) = {p ∈ ∆n×m : p1 = a and p⊤1 = b}
Let D ∈ Rn×m be the distance matrix, with Dij = d(xi, yj). The basic optimization problem we
want to solve is a linear program:

p(D) = argmin
p∈Π(a,b)

n∑
i=1

m∑
j=1

pijDij

20https://github.com/JuliaSmoothOptimizers/LinearOperators.jl
21https://github.com/JuliaSmoothOptimizers/Krylov.jl
22https://github.com/mohamed82008/DifferentiableFactorizations.jl

50

https://github.com/JuliaSmoothOptimizers/LinearOperators.jl
https://github.com/JuliaSmoothOptimizers/Krylov.jl
https://github.com/mohamed82008/DifferentiableFactorizations.jl

� �
function sinkhorn(K; a, b, T)

u, v = a, b
for t in 1:T

u = a ./ (K * v)
v = b ./ (K' * u)

end
return u

end� �
Code sample 3.1: Sinkhorn algorithm

� �
function fixed_point(K, u; a, b)

v = b ./ (K' * u)
difference = u .- a ./ (K * v)
return difference

end� �
Code sample 3.2: Sinkhorn fixed point condition

� �
sinkhorn_implicit = ImplicitFunction(sinkhorn, fixed_point)

function transportation_plan(D; a, b, eps, T)
K = exp.(.-D ./ eps)
u = sinkhorn_implicit(K; a=a, b=b, T=T) # or u = sinkhorn(K; a=a, b=b, T=T)
v = b ./ (K' * u)
p = u .* K .* v'
return p

end;� �
Code sample 3.3: Using a differentiable Sinkhorn wrapper

In order to make it smoother, we add an entropic regularization term with scaling ε > 0:

pε(D) = argmin
p∈Π(a,b)

n∑
i=1

m∑
j=1

(
pijDij + εpij log

pij
aibj

)

3.4.3.2 The Sinkhorn algorithm

To solve the regularized problem, we can use the Sinkhorn fixed point algorithm. Let K ∈ Rn×m be
the matrix defined by Kij = exp(−Dij/ε). Then the optimal coupling pε(D) can be written as:

pε(D) = diag(u)K diag(v)

where u and v are the fixed points of the following Sinkhorn iteration:

ut+1 =
a

Kvt
and vt+1 =

b

K⊤ut
(3.6)

The corresponding Julia function is given by Code sample 3.1. Equation (3.6) does not only give us
an actionable algorithm: it also yields the fixed point condition that the output of said algorithm
must satisfy. We show the relevant Julia function in Code sample 3.2.

Using our package, it is straightforward to construct an ImplicitFunction object wrapping
the Sinkhorn iteration: we simply combine the function f (Code sample 3.1) with the conditions C
(Code sample 3.2). We can then use this callable and differentiable object when computing the
optimal transportation plan, as shown on Code sample 3.3.

51

(a) Implicit differentiation saves CPU time (b) Implicit differentiation saves memory

Figure 3.2: Implicit differentiation vs. iteration unrolling: the case of the Sinkhorn algorithm

3.4.3.3 Time and memory impact of implicit differentiation

Our numerical setup involves point clouds of size n = m = 10, sampled uniformly at random in the
unit hypercube with dimension p = 100, and a regularization parameter set to ε = 1. Our goal is
to highlight the performance benefits of implicit differentiation compared to naive unrolling. We
thus measure computation time and memory use for both approaches, while varying the number of
Sinkhorn iterations T from 10 to 10000.

Results are presented on Figure 3.2. As expected, the CPU time necessary for unrolling increases
linearly with T (Figure 3.2a), mainly driven by the growing storage requirements of reverse mode
AD (Figure 3.2b). On the other hand, our implicit wrapper removes the need for unrolling, and its
performance remains stable even as the number of iterations becomes large. Our experiment thus
validates the relevance of ImplicitDifferentiation.jl as a user-friendly take on the implicit
function theorem, which enables efficient derivative computations.

52

4
Temporal point processes & controlled Hidden
Markov Models

People assume that time is a strict
progression of cause to effect, but actually
– from a non-linear, non-subjective
viewpoint – it’s more like a big ball of
wibbly-wobbly... timey-wimey... stuff.

The Doctor
Doctor Who – S3E10

Blink (2007)

Contents
4.1 Temporal point processes . 54

4.1.1 Events and marks . 54
4.1.2 Intensity function . 54
4.1.3 Simulation . 55
4.1.4 Learning . 56
4.1.5 Poisson processes . 56

4.2 Hidden Markov Models with control variables 57
4.2.1 Hidden Markov Models and control variables 57
4.2.2 Statistical algorithms . 57
4.2.3 Numerical stability . 60
4.2.4 Example: controlled HMM with Poisson process emissions 61

4.3 The package PointProcesses.jl . 61
4.3.1 Structure . 61
4.3.2 Design choices . 62

4.4 The package ControlledHiddenMarkovModels.jl 63
4.4.1 Structure . 63
4.4.2 Design choices . 63

53

4.5 Numerical experiments . 67

In this chapter, we briefly review temporal point processes and controlled Hidden Markov Models
(HMMs). These stochastic processes have a wide variety of applications, but so far generic Julia
implementations have been lacking. That is why we introduce two open source Julia packages called
PointProcesses.jl1 and ControlledHiddenMarkovModels.jl2, which contain many use-
ful algorithms for modeling, simulation and learning. We will combine both packages to construct
our failure prediction framework in Chapter 9.

4.1 Temporal point processes

Point processes are probabilistic models for collections of events. Their general theory is presented in
great detail by Daley and Vere-Jones (2003). Here we restrict ourselves to point processes on the real
half-line, hence the adjective “temporal”. Our exposition is mostly borrowed from J. G. Rasmussen
(2018).

4.1.1 Events and marks

In a marked temporal point process, each event is a couple (t,m), where t ∈ R+ is the event time
and m ∈ M is the event mark (which belongs to an arbitrary set). The realization of a marked
temporal point process is a possibly infinite sequence of events y = {(tk,mk) : k ∈ N}. However, we
usually observe it on a bounded time interval [tmin, tmax), during which only a finite number K of
events occur. Figure 4.1 displays an example observation sequence.

| |
tmin tmax

tFN � N F � �FN
1

1

0

1

0

0

1

0

1 1

1

0

1

1

1

1

1

1

1

1

0

0

0

1

0

1

1

Figure 4.1: A realization of a temporal point process with mark set M = {⋆,▲,■} × {0, 1,∅}4

4.1.2 Intensity function

A marked temporal point process is defined by its conditional intensity function λ∗(t,m), which
depends on the time t ∈ R+ and the mark m ∈M. As is customary in the literature, we write λ∗

1https://github.com/gdalle/PointProcesses.jl
2https://github.com/gdalle/ControlledHiddenMarkovModels.jl

54

https://github.com/gdalle/PointProcesses.jl
https://github.com/gdalle/ControlledHiddenMarkovModels.jl

to indicate that the intensity is conditioned on the history of the process up to (but not including)
time t. The conditional intensity quantifies the instantaneous rate of occurrence of a specific event
given everything that has happened before. For a given m ∈ M, within a small time interval of
length dt around t ∈ R+, one expects to observe λ∗(t,m)dt events with mark m. The conditional
intensity can be written as a product λ∗(t,m) = λ∗g(t)p

∗(t,m), where

• the ground intensity λ∗g(t) =
∑

m∈M λ∗(t,m) is the instantaneous rate of occurrence for all
marks combined;

• the mark distribution p∗(t,m) = λ∗(t,m)/λ∗g(t) gives the probability of observing mark m,
conditioned on the fact that an event occurs at time t.

4.1.3 Simulation

To simulate marked temporal point processes, a generic method is Ogata’s modified thinning
algorithm (Ogata 1981), which is a form of rejection sampling. It uses a local upper bound B(t)
on the ground intensity, which is only valid on the interval [t, t + L(t)), to generate a candidate
next event. Then, it decides whether to keep or reject it by comparing the upper bound to the real
ground intensity. We give the pseudocode in Algorithm 1.

Algorithm 1: Simulation of a temporal point process (Ogata’s algorithm)
t← tmin, k ← 0
while t < tmax do

Compute B(t) and L(t)
Draw ∆ ∼ E(B(t))
if t+∆ > t+ L(t) then

t← t+ L(t)
else

t← t+∆
Draw U ∼ U(0, 1)
if λ∗

g(t)

B(t) < U then
k ← k + 1
Draw m ∼ p∗(t, ·)
(tk,mk)← (t,m)

end
end

end
Return {(tk,mk)}

As in rejection sampling, when the upper bound becomes looser, the simulation becomes more
costly.

55

4.1.4 Learning

The likelihood of a sequence of events y = {(tk,mk) : k ∈ [K]} on interval [tmin, tmax) is given by

P(y) =

[
K∏
k=1

λ∗(tk,mk)

]
︸ ︷︷ ︸

individual events

exp

(
−
∫ tmax

tmin

λ∗g(t) dt

)
︸ ︷︷ ︸

empty time between events

(4.1)

Which yields the following log-likelihood:

logP(y) =
K∑
k=1

log λ∗(tk,mk)−
∫ tmax

tmin

λ∗g(t) dt (4.2)

If the conditional intensity function has a parametric form, then its parameters can be estimated
by maximizing the log-likelihood. While explicit formulas exist in a few simple cases, numerical
optimization is usually necessary as soon as the conditional intensity becomes more complex.

4.1.5 Poisson processes

To simplify computations, it is tempting to assume that the intensity function is unconditional, i.e.,
that it does not depend upon the past history. This simpler model is called a Poisson process. If
we further assume that the intensity function is homogeneous (does not depend upon the current
time), then we are left with a homogeneous Poisson process, for which λ∗(t,m) = λ(m). This makes
simulation much easier and faster, as demonstrated by Algorithm 2.

Algorithm 2: Simulation of a homogeneous Poisson process
Draw K ∼ P(λg)
for k = 1, . . . ,K do

Draw tk ∼ U(tmin, tmax)
Draw mk ∼ λ(·)/λg

end
Return {(tk,mk)} (sorted by increasing tk)

In this case, Equation (4.2) boils down to

logP(y) =
K∑
k=1

log(λ(mk))− (tmax − tmin)
∑
m∈M

λ(m)

As a consequence, the Maximum Likelihood Estimator (MLE) is explicit:

λ̂(m) =
count(y,m)

duration(y)
where

{
count(y,m) = |{k ∈ [K] : mk = m}|
duration(y) = tmax − tmin

Cox processes are an extension of Poisson processes, whose intensity λ(Xt,m) depends on an
underlying stochastic process Xt. They are also known as doubly-stochastic Poisson processes. We
will give an example in a moment, when we discuss HMMs with Poisson process emissions.

56

Xt−1 Xt Xt+1

Yt−1 Yt Yt+1

(a) Standard HMM

ut−1 ut ut+1

Xt−1 Xt Xt+1

Yt−1 Yt Yt+1

(b) Controlled HMM

Figure 4.2: Graphical model structures

4.2 Hidden Markov Models with control variables

HMMs are a class of discrete-time stochastic processes with latent variables. The book by Cappé,
Moulines, and Rydén (2005) provides a thorough treatment of related models and algorithms. Here,
we mainly draw inspiration from the concise tutorial by Rabiner (1989).

4.2.1 Hidden Markov Models and control variables

A standard HMM is composed of two stochastic processes indexed by a time t ∈ N: the state Xt,
which is hidden, and the emissions Yt, which are observed. The state takes discrete values in [S] and
evolves according to a Markov chain, with transition matrix P and initial distribution p. Meanwhile,
the emission distribution is chosen according to the current value of the state. This dependency
structure is represented on Figure 4.2a, and summed up as follows:

X1 ∼ p, Xt ∼ P(Xt | Xt−1) and Yt ∼ P(Yt | Xt)

A controlled HMM comprises an additional layer of controls ut, which are assumed to be deterministic
(and therefore predictable). In our setting, control variables can influence both the evolution of
the state and the distribution of emissions. In particular, neither of these processes is stationary
anymore. This dependency structure is represented on Figure 4.2b, and summed up as follows:

X1 ∼ p, Xt ∼ P(Xt | Xt−1, ut) and Yt ∼ P(Yt | Xt, ut)

This is similar in spirit to the Input-Output HMM proposed by Bengio and Frasconi (1994), but they
assume more parameter independence than we do (between transitions and emissions, and between
each state). Note that the standard HMM is nothing but a special case with empty controls.

4.2.2 Statistical algorithms

We now describe the statistical problems related to controlled HMMs, along with their solutions.
Suppose we are given a sequence of observations y1, . . . , yT and the associated controls u1, . . . , uT .

57

Let us denote by θ a generic parameter for our model. There are three main tasks we want to
perform:

1. Inference: given θ, compute the posterior distribution of the past states X1, . . . , XT

Pθ(Xt = xt | Y1:T = y1:T , u1:T)

2. Prediction: given θ, compute the posterior distribution of the future states XT+1, . . . , XT+h

Pθ(XT+h = xT+h | Y1:T = y1:T , u1:T+h)

3. Estimation: find the parameter θ that maximizes the likelihood of the observations

θ̂ ∈ argmaxPθ(Y1:T = y1:T | u1:T)

From now on, to simplify notations, we keep the dependence on θ implicit. We also omit conditioning
on the sequence of controls ut, since it is deterministic.

4.2.2.1 Inference

The first task can be tackled using the forward-backward algorithm, initially proposed by Baum
et al. (1970). If we try to compute the posterior state distribution naively, Bayes’ formula requires
summing over all possible state trajectories x1:T . That is of course intractable, which is why the
forward-backward algorithm uses dynamic programming to compute posteriors efficiently. It exploits
the forward and backward variables, defined as follows:

αt(i) = P(Y1:t = y1:t, Xt = i) βt(i) = P(Yt+1:T = yt+1:T | Xt = i)

Let us define the vector of emission densities et ∈ [0, 1]S at time t, such that

et(i) = P(Yt = yt | Xt = i)

Then the forward and backward variables satisfy simple recursions (remember that Pt is the transition
matrix at time t):

αt+1(j) =
S∑

i=1

αt(i)Pt(i, j)et+1(j) βt(i) =
S∑

j=1

Pt(i, j)et+1(j)βt+1(j) (4.3)

This can be rewritten in matrix notation:

αt+1 = diag(et+1)P
⊤
t αt βt = Pt diag(et+1)βt+1 (4.4)

The initial values are given by

α1 = diag(e1)p βT = 1

From the forward and backward variables, one can deduce many interesting quantities. The likelihood
of the observations is obtained by summing over the states in the last forward variable:

L = P(Y1:T = y1:T) =

S∑
i=1

αT (i) (4.5)

58

The posterior state marginals are deduced by multiplying the forward and backward variables:

γt(i) = P(Xt = i | Y1:T = y1:T) =
αt(i)βt(i)∑S
i=1 αt(i)βt(i)

The posterior transition marginals can be computed similarly:

ξt(i, j) = P(Xt = i,Xt+1 = j | Y1:T = y1:T) =
αt(i)Pt(i, j)et+1(j)βt+1(j)∑S

i=1

∑S
j=1 αt(i)Pt(i, j)et+1(j)βt+1(j)

Note that if we are only interested in the posterior distribution of the current state XT , then one
forward pass is enough because γT ∝ αT .

4.2.2.2 Estimation

Traditionally, estimation in HMMs is performed using the Baum-Welch algorithm (Baum et al.
1970), which is an early incarnation of the Expectation-Maximization (EM) paradigm (Dempster,
Laird, and Rubin 1977). This algorithm alternates between two subroutines: the E step uses the
forward-backward algorithm to compute posterior marginals γ and ξ, while the M step exploits these
marginals to update parameter estimates by solving an optimization problem of the form

θ̂ ∈ argmax
θ

Q(θold, θ)

In standard HMMs without controls, the M step has an explicit solution for state parameters:

p̂(i) = γ1(i) P̂ (i, j) =

∑T
t=1 ξt(i, j)∑T
t=1 γt(i)

(4.6)

The emission parameters can also be updated easily by performing MLE. We only need to sum
sufficient statistics using the state posteriors γt(i) as sample weights. For instance, if we consider
our example of multivariate Poisson emissions, we get:

λ̂(i,m) =

∑T
t=1 γt(i) count(yt,m)∑T
t=1 γt(i) duration(yt)

Unfortunately, as soon as we add control variables, the M step no longer has explicit solutions. A
possible workaround is to apply a generalized EM algorithm. As suggested by Bengio and Frasconi
(1994), one can solve the optimization problem approximately, or even replace it with a single
gradient step performed on the auxiliary function Q(θold, θ).

Instead, we follow the path of Qin, Auerbach, and Sachs (2000) and seek to directly maxi-
mize the likelihood with a gradient-based method. Our intuition is that differentiating the log-
likelihood logL(θ) is cheaper than differentiating the auxiliary function Q(θold, θ). Indeed, it only
requires implementing a single forward pass instead of the full forward-backward procedure (as
observed by Eisner (2016), this is more or less equivalent to letting AD derive the backward pass).

According to Equation (4.5), the likelihood is a by-product of the forward sequence (αt). By
Equation (4.3), this forward sequence can be deduced from the sequence of local transition matri-
ces (Pt) and emission likelihoods (et). Both of these are obtained by combining the controls (ut) with
the parameter θ. Since all the operations we perform are amenable to AD, we can backpropagate
gradients through this computational graph (see Figure 4.3) and compute ∂(logL)/∂θ.

59

θ (ut)t

(Pt)t

(bt)t

(αt)t logL

Figure 4.3: Computational graph for controlled HMM log-likelihood

4.2.2.3 Prediction

Once we have an estimate of θ, predicting the future is not overly complicated. We start by applying
the forward recursion to deduce the posterior marginals γT of the current state XT . Then, we
compute the distribution of future states using matrix products:

P(XT+h | XT ∼ γT) = γTPTPT+1 · · ·PT+h−1

In turn, this allows us to deduce many interesting quantities, such as the expected hitting time of a
given state.

The computational graph for prediction is very similar to that of Figure 4.3. But this time, we
are more interested in computing gradients of the future state probabilities with respect to the future
controls uT+1, . . . , uT+h. This can help us adjust the behavior of the system we model: for instance,
we may tune the controls to avoid or target specific states.

4.2.3 Numerical stability

When dealing with long sequences, the values of αt and βt tend to become very small, which leads to
numerical underflow. To avoid this problem, one can rescale the forward and backward variables at
each time step (Rabiner 1989). An alternative is to work directly in the logarithmic domain (Mann
2006). If we do that, then the forward-backward recursion of Equation (4.3) becomes

logαt+1(j) = logsumexp
i∈[S]

(logαt(i) + logPt(i, j)) + log et+1(j)

log βt(i) = logsumexp
j∈[S]

(logPt(i, j) + log et+1(j) + log βt+1(j))

where the log-sum-exp function is defined as

logsumexp(v) = log
∑
i

exp(vi)

The trick is to compute this function using the following property:

logsumexp(v) = max(v) + log
∑
i

exp(vi −max(v))

60

� �
Required methods
ground_intensity(pp, t, h)
mark_distribution(pp, t, h)
ground_intensity_bound(pp, t, h)
integrated_ground_intensity(pp, h, a, b)

Optional methods
intensity(pp, m, t, h)
log_intensity(pp, m, t, h)� �

Code sample 4.1: Interface for
AbstractPointProcess

� �
Required methods
ground_intensity(pp)
mark_distribution(pp)

Optional methods
intensity(pp, m)
log_intensity(pp, m)� �

Code sample 4.2: Interface for
AbstractPoissonProcess

4.2.4 Example: controlled HMM with Poisson process emissions

We illustrate our discussion with a specific kind of controlled HMM, whose emissions are homogeneous
Poisson processes with mark set M = [M]. This goes to show that emissions are not limited to
finite-dimensional distributions (like a Gaussian). As long as we can draw samples and compute
likelihoods, emissions can be defined by probability measures on any space.

In the standard case (without controls), the parameter θ includes the state transition matrix P ∈
[0, 1]S×S , the initial state distribution p ∈ [0, 1]S and the state-specific emission parameters λ ∈ RS×M

+ .
In the controlled case, one could imagine that the transition matrix Pt and emission parameters λt
at time t are obtained by applying neural networks to the vector of controls ut, so that Pt = φ(ut)
and λt = ψ(ut). Then, in addition to the initial state distribution p, the parameters θ would include
the neural weights for both networks φ and ψ. Of course, adequate constraints must be enforced on
the output of φ (resp. ψ) to obtain valid transition matrices Pt (resp. intensity vectors λt).

4.3 The package PointProcesses.jl

We use Poisson processes in Chapter 9 to model sequences of messages sent by condition monitoring
systems. To the best of our knowledge, no other Julia package contains a generic and lightweight
implementation of temporal point processes, so we decided to create one.

4.3.1 Structure

Our package PointProcesses.jl provides two interfaces:

• AbstractPointProcess, for any temporal point process (Code sample 4.1).

• AbstractPoissonProcess, for a homogeneous Poisson process (Code sample 4.2).

It is up to user to code the concrete subtypes they need, along with the necessary methods.
Subtypes of AbstractPointProcess are compatible with Ogata’s Algorithm 1, while subtypes
of AbstractPoissonProcess support the more efficient Algorithm 2 for simulation. All are
amenable to log-likelihood computation with Equation 4.2.

We provide two examples as part of the package: MultivariatePoissonProcess (with a
finite mark set M = [M]) and MarkedPoissonProcess (with an arbitrary mark distribution).

61

� �
using Distributions

struct MultivariatePoissonProcess{R} <: AbstractPoissonProcess{Int}
λ::Vector{R}

end

function ground_intensity(pp::MultivariatePoissonProcess)
return sum(pp.λ)

end

function mark_distribution(pp::MultivariatePoissonProcess)
return Categorical(pp.λ ./ sum(pp.λ))

end� �
Code sample 4.3: Minimal source code for a multivariate Poisson process

� �
using ForwardDiff, PointProcesses

Construction
M = 5
pp = MultivariatePoissonProcess(rand(M))
Simulation
tmin, tmax = 0.0, 1000.0
history = rand(rng, pp, tmin, tmax)
Computing and differentiating the likelihood
loglikelihood(λ) = logdensityof(MultivariatePoissonProcess(λ), history)
g = ForwardDiff.gradient(loglikelihood, rand(M))
Maximum Likelihood Estimation
pp_est = fit_mle(MultivariatePoissonProcess{Float64}, history)� �

Code sample 4.4: Example use of a multivariate Poisson process

Their implementation is very simple, as demonstrated by Code sample 4.3. Code sample 4.4 gives
examples of what can be done with a MultivariatePoissonProcess.

In the general case, learning point process parameters relies on numerical maximization of the
log-likelihood, which we leave to the user in order to keep our package lightweight. However, for our
two examples of Poisson processes, direct estimation is possible. We implement it using the same
formalism as the Distributions.jl3 (Besançon, Papamarkou, et al. 2021; D. Lin et al. 2023),
which involves explicit computation of the sufficient statistics.

4.3.2 Design choices

To ensure maximum composability with other packages, we make two important design choices.
First, our approach is mostly based on interfaces, i.e., abstract types with required methods. Second,
all of our code is agnostic with respect to number types: as we have seen in Chapter 3, this is key to
allow a wide variety of uses.

3https://github.com/JuliaStats/Distributions.jl

62

https://github.com/JuliaStats/Distributions.jl

� �
Required methods
nb_states(hmm, θ)
initial_distribution(hmm, θ)
transition_matrix(hmm, θ)
emission_distribution(hmm, s, θ)� �

Code sample 4.5: Interface for
AbstractHMM

� �
Required methods
nb_states(hmm, θ)
initial_distribution(hmm, θ)
transition_matrix(hmm, u, θ)
emission_parameters(hmm, u, θ) # returns η
emission_distribution(hmm, s, η)� �

Code sample 4.6: Interface for
AbstractControlledHMM

4.4 The package ControlledHiddenMarkovModels.jl

We use controlled HMMs in Chapter 9 to model the degradation of a train as a function of its activity.
While there exist other packages for HMMs in Julia, like HMMBase.jl4, none of them boasts all the
features that were needed for this project, like control variables or arbitrary emission distributions.
The required design overhaul to HMMBase.jl would have made our new code incompatible with it
anyway, which is why we decided to start from scratch.

4.4.1 Structure

On paper, standard HMMs are a special case of controlled HMMs, but in practice, implementation
differs significantly, which is why we separate these cases. Our package ControlledHidden-
MarkovModels.jl thus revolves around two interfaces:

• AbstractHMM, for HMMs without control variables (Code sample 4.5)

• AbstractControlledHMM, for HMMs with control variables (Code sample 4.6)

As in PointProcesses.jl, we expect the user to build their own concrete subtypes. Once the
necessary methods are defined, simulation, inference of the current state, log-likelihood computation
and the full forward-backward procedure are made possible without further effort.

Code sample 4.7 shows how a standard HMM is implemented within our package. This can
serve as a blueprint for users wishing to define more sophisticated subtypes. Meanwhile, Code
sample 4.8 demonstrates the use of an HMM for simulation and learning. Since the syntax is a bit
more cumbersome, we do not show any code for controlled HMMs, but the main ideas are very
similar.

4.4.2 Design choices

Just like PointProcesses.jl, the design of ControlledHiddenMarkovModels.jl empha-
sizes composability by relying on abstract interfaces and working with arbitrary number types. We
now list the features that make our package different from its main competitor, HMMBase.jl.

4https://github.com/maxmouchet/HMMBase.jl

63

https://github.com/maxmouchet/HMMBase.jl

� �
struct HMM{R1,R2,D} <: AbstractHMM

p::Vector{R1}
P::Matrix{R2}
emissions::Vector{D}

end

nb_states(hmm::HMM, θ=nothing) = length(hmm.p)
initial_distribution(hmm::HMM, θ=nothing) = hmm.p
transition_matrix(hmm::HMM, θ=nothing) = hmm.P
emission_distribution(hmm::HMM, s, θ=nothing) = hmm.emissions[s]� �

Code sample 4.7: Source code for a standard HMM

� �
using ControlledHiddenMarkovModels, PointProcesses

Construction
p = [0.3, 0.7]
P = [0.9 0.1; 0.2 0.8]
λ = [1.0 3.0; 2.0 2.0; 3.0 1.0]
emissions = [

MultivariatePoissonProcess(λ[:, 1]),
MultivariatePoissonProcess(λ[:, 2])

]
hmm = HMM(p, P, emissions)
Simulation
T = 1000
state_sequence, obs_sequence = rand(rng, hmm, T)
Learning
hmm_init = ...
hmm_est = baum_welch([obs_sequence], hmm_init; maxiter=100)� �

Code sample 4.8: Example use of a standard HMM

64

4.4.2.1 Compatibility with arbitrary emissions

While HMMBase.jl only consider emissions defined in the Distributions.jl package, we allow
arbitrary emission objects. Our only requirement is that these objects be endowed with the rand
and logdensityof methods (respectively for simulation and log-likelihood computation). This is
crucial for our railway application in Chapter 9: without such flexibility, it would be impossible to
create a HMM with Poisson process emissions (as seen on Code sample 4.7).

4.4.2.2 Logarithmic computations

As mentioned in Section 4.2.3, numerical stability is a major issue within the forward-backward
procedure. In our implementation, densities et and forward-backward variables αt, βt are all stored
normally, as we avoid underflow through repeated scaling. While performing operations in log scale
is more expensive, it is also safer, especially when emissions are high-dimensional. Thus, the user
needs to be given a choice.

To avoid implementing two versions of forward-backward, we leverage type genericity. The
package LogarithmicNumbers.jl5 allows us to work on the log scale implicitly. It represents
positive numbers (such as probabilities) using their logarithm, and operations on these numbers are
overloaded thanks to the logsumexp function introduced earlier. Using such numbers in our vanilla
forward-backward algorithm is sufficient to avoid numerical issues. We can do that by changing the
types of the HMM parameters. For instance, if we are working with Gaussian emissions that have
very small variance, encoding σ as a LogFloat64 instead of a plain Float64 is enough to ensure
that log-densities will not underflow.

4.4.2.3 Multiple sequences

Suppose we have access to several observation sequences y(1), . . . , y(N) with lengths T (1), . . . , T (N).
Inference and prediction can be applied separately on each sequence. For estimation purposes, all
we have to do is to sum the log-likelihoods associated with each one (for gradient-based learning), or
to combine the sufficient statistics appropriately during explicit re-estimation (for the Baum-Welch
algorithm).

This option is not available in HMMBase.jl, but we provide it as part of our Baum-Welch
algorithm for standard HMMs. The only difficulty is that sufficient statistics may not exist for
emissions outside the exponential family. In such cases, the user is invited to implement a method
called fit_mle_from_multiple_sequences, which takes weighted observation sequences as
input and returns an estimator for the associated emission distribution.

4.4.2.4 Internal and external parameters

As can be seen in Code samples 4.5 and 4.6, most methods accept model parameters θ as an optional
argument. This may seem superfluous, given that we can also store θ in the fields of a concrete type
(see Code sample 4.7). While this form of storage works well for our basic HMM type, it becomes
less relevant for more complex models, for instance those with controls. As soon as neural networks
come into play, bundling model parameters inside the model itself leads to mutation during training,
which AD frameworks do not enjoy.

5https://github.com/cjdoris/LogarithmicNumbers.jl

65

https://github.com/cjdoris/LogarithmicNumbers.jl

� �
using PointProcesses

struct PoissonHMM <: AbstractHMM end

nb_states(::PoissonHMM, θ) = length(θ.p)
initial_distribution(::PoissonHMM, θ) = make_prob_vec(θ.p)
transition_matrix(::PoissonHMM, θ) = make_trans_mat(θ.P)
emission_distribution(::PoissonHMM, s, θ) = MultivariatePoissonProcess(θ.λ[:, s])� �

Code sample 4.9: Using external HMM parameters

Instead, our formulation allows the user to decouple the model structure (architecture of φ and ψ)
from the model parameters (weight values w). This functional design was inspired by the recent
Lux.jl6 library (Pal 2022), which is set to become a standard in large parts of the Julia ecosystem.
Code sample 4.9 shows how we can mimic the Poisson HMM of Code sample 4.8 using external
parameters.

4.4.2.5 Performance considerations

Since we aim for high performance, an essential caveat is the allocation of new memory (see Chapter 3).
Whenever possible, we strive to minimize the memory footprint of our code by reusing the same
arrays several times. For instance, when performing the forward pass to compute the likelihood,
since we only need the values of αT ∈ RS , we can use a single vector instead of the full forward
matrix α ∈ RT×S . Furthermore, the control variables ut force us to generate a new transition
matrix Pt at every time step, along with new parameters for the distribution of observations. To
store them, we overwrite the arrays generated at t = 1 instead of allocating new ones T times.

We also take advantage of Julia’s built-in matrix multiplication by using Equation (4.4) instead
of (4.3) for the forward and backward passes.

4.4.2.6 Automatic differentiation

Alas, while memory reuse makes our code faster, it comes with a drawback: reverse mode AD
with Zygote.jl does not support array mutation. To overcome this limitation, we would need
to implement a custom chain rule (see Chapter 3) which backpropagates log-likelihood gradients
through the recursion of Equation (4.3). For lack of time, we were not able to complete this part of
the work before handing in the present manuscript, but we expect it will be done soon.

In the meantime, log-likelihoods are computed using mutation-free forward passes. Due to
unresolved compatibility issues between LogarithmicNumbers.jl and ForwardDiff.jl /
Zygote.jl, we also implement a logarithmic version of these forward passes, which is not needed
as long as no AD is necessary.

6https://github.com/avik-pal/Lux.jl

66

https://github.com/avik-pal/Lux.jl

Figure 4.4: Benchmarking Baum-Welch implementations

4.5 Numerical experiments

We conclude this chapter with a performance comparison between ControlledHiddenMarkov-
Models.jl and the baseline package HMMBase.jl. Our test case is a standard HMM with
Gaussian emissions defined by µs = s and σs = 0.1. We simulate a single observation sequence of
length T = 1000, and define an initial model guess by µ̂s = s+ randn()

10 and σ̂s = 1. For both models,
the transition matrix P and initial distribution p are drawn at random. The three approaches we
compare are:

1. The Baum-Welch algorithm from HMMBase.jl, which uses logarithmic computations by
default

2. The Baum-Welch algorithm from our package, with normal number types

3. The Baum-Welch algorithm from our package, with a logarithmic number type for the standard
deviation σ̂s

Reassuringly, all three algorithms give rise to the exact same sequence of likelihood values, up to
numerical precision. What is more interesting is to compare the estimation runtime, as is done on
Figure 4.4.

As we can see, our default algorithm is significantly faster than the one from HMMBase.jl,
mostly thanks to a better use of memory and optimized matrix multiplications. Thus, it should be
used whenever numerical stability is not an issue. Indeed, as soon as we switch to the log scale,
we suffer a severe performance hit and end up doing worse than the baseline. The reason is that
when Julia computes a + b for two logarithmic numbers, under the hood it actually performs
logsumexp(loga, logb), which is much more expensive.

Such is the price to pay for genericity: unlike HMMBase.jl, our code is not specifically designed
for logarithmic computations. In typical Julia fashion, it just happens to work with Logarithmic-

67

Numbers.jl, without even declaring the latter as a dependency. However, if we want to speed it
up, a custom logarithmic forward-backward will probably be necessary.

68

5
Multi-Agent Path Finding

Neo, sooner or later you’re going to
realize, just as I did: there’s a difference
between knowing the path and walking
the path.

Morpheus
The Matrix (1999)

Contents
5.1 Mathematical formulation of the problem 70

5.1.1 Graph and agents . 70

5.1.2 Decision variables and objective . 71

5.1.3 Conflict constraints . 71

5.1.4 Integer Linear Program . 72

5.2 Review of MAPF algorithms . 73

5.2.1 Parallel decomposition . 73

5.2.2 Sequential approximation . 74

5.2.3 Single-agent problem . 75

5.3 The package MultiAgentPathFinding.jl 75

5.3.1 Problem and solution storage . 76

5.3.2 Solution algorithms . 77

5.4 Numerical experiments . 80

5.4.1 Benchmark instances and setting . 80

5.4.2 Results . 81

In this chapter, we present the Multi-Agent Path Finding (MAPF) problem, and propose a
generic formulation that encompasses many application settings. We then review the main MAPF

69

(a) Streets of Paris (b) Video game (c) Maze (d) Random obstacles

Figure 5.1: Examples maps from the MAPF benchmark set of Stern et al. (2019)

algorithms from the literature. Finally, we introduce our open source Julia package MultiAgent-
PathFinding.jl1, a generic toolbox for modeling and solving large scale MAPF instances. This
package will be essential when we tackle railway track allocation for the Flatland challenge in
Chapter 5.

5.1 Mathematical formulation of the problem

Broadly speaking, MAPF consists in planning trajectories for a set of agents on a network, such that
no two agents find themselves in conflict. It has numerous concrete applications, from video games to
warehouse management (see Figure 5.1). While the general principle remains the same, the specifics
of the problem, for instance the definition of a conflict, vary greatly throughout the literature (Stern
et al. 2019). Since we want to design a generic MAPF package, we start by proposing a flexible
mathematical formulation.

5.1.1 Graph and agents

An instance of MAPF is given by a weighted directed graph G = (V, E , w) and a set of A ∈ N agents.
Each agent a ∈ [A] is defined by the following features: its departure vertex vdepa ∈ V, its arrival
vertex varra ∈ V and its departure time tdepa ∈ N. The goal of agent a is to find a conflict-free path
from vdepa to varra , starting at time tdepa .

By playing with the properties of the graph G, we can authorize or forbid a wide variety of
agent behaviors. For instance, waiting in place at a vertex v ∈ V is made possible by adding a
self-loop (v, v) to E . If we want the waiting to be free of cost, we simply need to set the self-loop
weight w(v, v) to 0. Clever graph-building also allows us to take the shape or direction of an agent
into account, by adding more information to the vertices. An example is given in Chapter 11 for the
orientation of a train.

Let T ∈ N be a temporal horizon. In order to keep track of agent positions through time, we need
to build a time-expanded version G(T) = (V(T), E(T)) of the graph G = (V, E). To clarify exposition,
we will refer to elements of V(T) as temporal vertices, and to elements of E(T) as temporal edges.
The set of temporal vertices V(T) is the Cartesian product between the time axis and the vertices:

V(T) = {(t, v) : t ∈ [T], v ∈ V}.
1https://github.com/gdalle/MultiAgentPathFinding.jl

70

https://github.com/gdalle/MultiAgentPathFinding.jl

The set of temporal edges E(T) links temporal vertices to one another by assuming that each edge
requires one time step:

E(T) = {(t, u)→ (t+ 1, v) : t ∈ [T − 1], (u, v) ∈ E}

Alternately, we can express temporal edges like this:

E(T) = {(t, e) : t ∈ [T − 1], e ∈ E}

5.1.2 Decision variables and objective

In the time-expanded graph, the trajectory of an agent a ∈ [A] can be represented as a path Pa

going from the temporal vertex (tdepa , vdep
a) to any temporal vertex of the form (t, varra). We denote

by Pa the set of such temporal paths. A complete solution is therefore written P = (Pa)
A
a=1 and

belongs to P =×A
a=1 Pa. Regarding the objective, a usual choice is the flowtime, which is the sum

of path durations. More generally, here we seek to minimize the sum of path weights:

A∑
a=1

w(Pa) =
A∑

a=1

∑
(t,e)∈Pa

w(e)

5.1.3 Conflict constraints

For each vertex v ∈ V, let Iv ⊂ V denote the set of vertices that are incompatible with v. If v is
visited by an agent a at time t, then none of the vertices in Iv can be visited by another agent b at the
same time. Similarly, for each edge e ∈ E , let Ie ⊂ E denote the set of edges that are incompatible
with e. If e is crossed by an agent a at time t, then none of the edges in Ie can be crossed by another
agent b at the same time. A natural property of these sets is symmetry: if v ∈ Iu, then u ∈ Iv, and
the same goes for edges. We now explain how to express the standard conflicts listed by Stern et al.
(2019) using incompatibility sets:

• Vertex conflict : if v ∈ V cannot be visited by several agents at the same time, we take Iv = {v}.
But if the number of agents at v does not matter, then we take Iv = ∅.

• Edge conflict : if (u, v) ∈ E cannot be crossed by several agents at the same time, we take I(u,v) =
{(u, v)}.

• Swapping conflict : if the opposite edges (u, v) and (v, u) cannot be crossed at the same time,
we add (v, u) to I(u,v).

• Following conflict : if a vertex u cannot be visited by two different agents consecutively (with
one immediately occupying the place left by the other), we add (v′, u) to I(u,v).

By default, we assume that agents appear on their departure vertex at their departure time, and
that they disappear once they reach their arrival vertex. Another common hypothesis in the MAPF
literature is “stay at arrival”, but since this hypothesis seems less relevant for railway applications,
we do not consider it here. In case we want more flexibility, we can replace the departure vertex of
each agent with a dummy vertex, as illustrated on Figure 5.2. It serves as a waiting area and allows
agents to enter the main graph later than their departure time. This trick is particularly useful to
keep agents from blocking each other needlessly, and we will need it in Chapter 11 when modeling
railway stations.

71

vdepa

varra

ddepa

vdepb

varrb

ddepb

Figure 5.2: Dummy vertices as conflict-free waiting areas before departure

5.1.4 Integer Linear Program

To formulate MAPF as an Integer Linear Program (ILP), we define two sets of binary decision
variables:

• ya,t,e = 1 if and only if agent a ∈ [A] crosses temporal edge (t, e) ∈ E(T);

• za,t,v = 1 if and only if agent a ∈ [A] visits temporal vertex (t, v) ∈ V(T).

To ensure that ya represents a valid temporal path Pa ∈ Pa in the time-expanded graph G(T), we
use Kirchhoff flow constraints of the form∑

u∈δ−(v)

ya,t−1,(u,v) =
∑

u∈δ+(v)

ya,t,(v,u) ∀a, t, v /∈ {vdepa , varra }

Since these constraints are linear, we can synthesize them as Faya = fa using an incidence matrix Fa

and inflow vector fa. The standard MAPF problem then admits the following ILP formulation:

min
y,z

A∑
a=1

T−1∑
t=1

∑
e∈E

w(e)ya,t,e s.t.

∣∣∣∣∣∣∣∣∣∣∣∣∣

ya,t,e ∈ {0, 1} ∀a, t, e
za,t,v ∈ {0, 1} ∀a, t, v
Faya = fa ∀a, t∑

e∈δ−(v) ya,t,e = za,t+1,v ∀a, t, v∑A
a=1

∑
v′∈Iv za,t,v′ ≤ 1 ∀v, t∑A

a=1

∑
e′∈Ie ya,t,e′ ≤ 1 ∀e, t

(5.1)

The fourth constraint enforces coherence between vertex and edge variables. The fifth and six
constraints correspond to vertex and edge conflicts respectively.

This formulation was introduced by Yu and LaValle (2013), who highlighted the similarity with
multicommodity flows. Indeed, no-conflict constraints can be expressed as capacity bounds on the
edges (and vertices) of the flow graph. However, tackling this ILP directly with Branch & Bound is
usually not an option. That is why we now present alternative approaches.

72

5.2 Review of MAPF algorithms

Algorithms for solving MAPF were recently surveyed by Stern (2019). Since MAPF is an NP-hard
problem (Surynek 2010), even finding a feasible solution is far from obvious. When it comes to large
instances, the most successful algorithms rely on either decomposition or approximation. We only
describe their basic principles here, and refer the reader to Felner et al. (2017) for more comments
on their respective pros and cons.

5.2.1 Parallel decomposition

The first paradigm we discuss is parallel decomposition, in which shortest paths are computed
independently and simultaneously for every agent. This corresponds to the following ILP, where the
no-conflict constraints are removed, and the variable z is no longer necessary:

min
y

A∑
a=1

T−1∑
t=1

∑
e∈E

w(e)ya,t,e s.t.
∣∣∣∣ ya,t,e ∈ {0, 1} ∀a, t, eFaya = fa ∀a, t (5.2)

The solution procedure can be parallelized into A separate single-agent shortest-path queries.
Of course, if we stop there, we obtain an unfeasible solution because Equation (5.2) ignores

conflicts. As a consequence, various techniques have been proposed to repair conflicts a posteriori
and output a feasible solution. They often rely on the intuition that realistic instances involve sparse
interactions between agents. In their basic versions, algorithms from the parallel decomposition
family return optimal solutions, at the cost of exponential complexity. However, there are ways to
relax them in order to reach feasibility quicker, without pursuing provable optimality.

5.2.1.1 Independence Detection

Starting with independent shortest paths, the Independence Detection algorithm (Standley 2010)
looks for a pair of agents a and b whose paths intersect. If such a collision exists, the two agents
involved are merged into a meta-agent (a, b), whose position a pair of vertices that describe the
positions of both its members. A new shortest meta-path is then computed for this entity, and a
new conflict search is performed. This goes on until no conflicts can be found, which means the
solution is both feasible and optimal. The complexity of Independence Detection is exponential in
the size of the largest subset of conflicting agents.

5.2.1.2 Increasing Cost Tree Search

Sharon, Stern, Goldenberg, et al. (2011) introduce a hierarchical algorithm that divides the search
space based on the length of the path for each agent. The associated Increasing Cost Tree contains
nodes associated with each possible tuple of path lengths, and the root node corresponds to
independent shortest paths. This tree is explored in a breadth-first manner, and node feasibility is
determined using a joint shortest path query on all agents, with additional path length constraints.
If the algorithm is applied without further refinements, its complexity is exponential in the number
of agents.

73

5.2.1.3 Conflict-Based Search

The most prominent decomposition algorithm is probably Conflict-Based-Search, as suggested by
Sharon, Stern, Felner, et al. (2012). If two agents a and b cross paths on vertex v at time t, they
give rise to two branches of the so-called Constraint Tree: one which forbids (v, t) for agent a, and
the other which forbids it for agent b. The optimal solution has to be on one of these branches,
and so independent shortest paths are recomputed on each side with these additional constraints.
The tree search goes on in a best-first order until a conflict-free solution is discovered. Remarkably,
this algorithm only requires (constrained) single-agent shortest path queries. Numerous heuristics
and enhancements have been incorporated into Conflict-Based Search over the years. See Boyarski,
Felner, Stern, et al. (2015) for an early example and Boyarski, Felner, Bodic, et al. (2021) for some
of the latest additions.

5.2.2 Sequential approximation

The second paradigm we discuss is sequential approximation, in which agents plan their paths one
after the other, instead of all at once. The seminal algorithm in this family is Cooperative A* (Silver
2005), often referred to in the literature as Prioritized Planning. Its central ingredient is a priority
ordering on the set of agents. When its turn comes to seek a path, each agent takes care to avoid
temporal vertices or edges that are already known to be occupied by higher-ranked agents. This is
done with the help of a reservation table, which is filled by each agent after its path is chosen.

5.2.2.1 A suboptimal but fast algorithm

By treating agents sequentially and not jointly, Cooperative A* enjoys a polynomial complexity: it
only requires A individual shortest path queries with reservation constraints. Of course, this method
is not guaranteed to return an optimal solution. In some degenerate settings, it may even fail to find
an obvious feasible solution. However, if a solution is found, it is guaranteed to be conflict-free.

Recently, Cooperative A* has been applied in conjunction with Large Neighborhood Search (LNS).
To improve a feasible solution, Li, Z. Chen, Harabor, et al. (2021) propose iteratively destroying
and reconstructing paths for small subsets of agents: they call this algorithm MAPF-LNS. To repair
an infeasible solution, Li, Z. Chen, Harabor, et al. (2022) modify MAPF-LNS by minimizing the
number of conflicts during path reconstruction, instead of banning conflicts altogether: they call this
algorithm MAPF-LNS2. Search routines like these compensate the greedy aspect of Cooperative A*,
and they have proven competitive on large instances, such as those of the Flatland challenge (see
Chapter 11).

5.2.2.2 Lexicographic linear formulation

Unlike the independent and continuous approximations mentioned earlier, the sequential approach
is not easily formulated as an ILP. However, assuming that agents are ordered from 1 to A by

74

decreasing priority, we can express it as a sequence of ILPs:

for a = 1 to A, min
ya,za

T−1∑
t=1

∑
e∈E

w(e)ya,t,e s.t.

∣∣∣∣∣∣∣∣∣∣∣∣

ya,t,e ∈ {0, 1} ∀t, e
za,t,v ∈ {0, 1} ∀t, v
Faya = fa ∀t∑

e∈δ−(v) ya,t,e = za,t+1,v ∀t, v∑a
b=1

∑
v′∈Iv zb,t,v′ ≤ 1 ∀v, t∑a

b=1

∑
e′∈Ie yb,t,e′ ≤ 1 ∀e, t

(5.3)

In order words, we find the optimal path P1 for the first agent, then fix it, move on to the second
agent, find an optimal path P2 that does not intersect with P1, fix this one, etc. If instead we only
fix the objective of higher-priority agents, but allow their path to change (without getting longer) in
the following iterations, we obtain the following sequence of problems:

for a = 1 to A, min
y1:a,z1:a

T−1∑
t=1

∑
e∈E

w(e)ya,t,e s.t.

∣∣∣∣∣∣∣∣∣∣∣∣

yb,t,e ∈ {0, 1} ∀b ∈ [a], t, e
zb,t,v ∈ {0, 1} ∀b ∈ [a], v
Fbyb = fb ∀b ∈ [a], t∑

e∈δ−(v) yb,t,e = zb,t+1,v ∀b ∈ [a], t, v∑a
b=1

∑
v′∈Iv zb,t,v′ ≤ 1 ∀v, t∑a

b=1

∑
e′∈Ie yb,t,e′ ≤ 1 ∀e, t

(5.4)

The nuance is subtle, but in this second case, we end up with a lexicographic ILP, something we
revisit in Chapter 8.

5.2.3 Single-agent problem

Most of the algorithms listed above assume that we are able to construct the optimal path for a
single agent very efficiently. This can be done using a variety of well-known shortest path algorithms.
On large graphs, the most efficient one is often A* (Hart, Nilsson, and Raphael 1968), because it
exploits custom heuristics to quickly discard hopeless partial paths during enumeration. On very
large graphs such as road networks, A* may still be too slow for practical purposes. Bast et al.
(2016) discuss how to make it faster by leveraging advanced heuristics. In particular, if we must
solve a sequence of problems on the same network, preprocessing the graph structure is a good way
to improve upon naive lower bounds.

When used to provide solutions for MAPF, the A* algorithm must sometimes respect reservation
constraints of the form “do not visit vertex v at time t”. This means A* needs to run on a time-
expanded graph, with one vertex per couple (t, v). In this scenario, an admissible heuristic is given
by the length of the shortest path to the destination, computed without reservation constraints.
Note that the time-expanded graph should never be stored explicitly: instead, we can generate its
nodes and arcs on the fly during temporal loops.

5.3 The package MultiAgentPathFinding.jl

We conclude this chapter by describing our Julia package MultiAgentPathFinding.jl, which
we reuse in Chapter 11. The code we present is often modified or shortened for clarity: actual source
code can be found on the GitHub repository.

75

5.3.1 Problem and solution storage

Our package is built around three main structures:

• MAPF describes a problem instance as a tuple (G, w, I, vdep, varr, tdep) (Code sample 5.1).

• TimedPath stores a path through the temporal graph (Code sample 5.2), which means a full
Solution is a vector of TimedPath.

• Reservation contains sets of occupied temporal vertices / edges (Code sample 5.3).

Along with these structures, various utilities are provided to identify conflicts, check solution
feasibility and compute objective functions.

� �
struct MAPF

g # graph G
departures # vector a -> v_a^dep
arrivals # vector a -> v_a^arr
departure_times # vector a -> t_a^dep
vertex_conflicts # dict v -> I_v
edge_conflicts # dict (u,v) -> I_uv
edge_weights_vec # vector w
flexible_departure # true / false

end� �
Code sample 5.1: Instance storage

� �
struct TimedPath

tdep # departure time
path # vector of vertices

end� �
Code sample 5.2: Temporal path storage� �

struct Reservation
forbidden_vertices # {(t, v)}
forbidden_edges # {(t, u, v)}

end� �
Code sample 5.3: Reservation storage

To make the implementation generic, we only expect the graph object G to follow the Graphs.jl2

interface (Fairbanks et al. 2021), which is the Julia standard in this field. For instance, Code sample 5.4
shows how to quickly create an instance of MAPF on a grid graph. When left unspecified, departure
times are all set to 1, and conflict sets are given default values which only consider vertex, edge
and swapping conflicts (no following conflicts). The flexible_departure field specifies whether
departure can happen after tdep (it has a similar effect as the graph gadget of Figure 5.2).

� �
using MultiAgentPathFinding

L, A = 10, 20
g = Graphs.grid([L, L])
departures = rand(1:Lˆ2, A)
arrivals = rand(1:Lˆ2, A)
mapf = MAPF(g, departures, arrivals; flexible_departure=true)� �
Code sample 5.4: Constructing a MAPF instance from a grid graph

2https://github.com/JuliaGraphs/Graphs.jl

76

https://github.com/JuliaGraphs/Graphs.jl

5.3.2 Solution algorithms

At the moment, MultiAgentPathFinding.jl focuses on sequential approximation algorithms,
since they scale effortlessly to large instances. Note that another package with the same name3

exists, with an implementation of Conflict-Based Search. However, it is left unmaintained and was
never intended to become a general-purpose library.

5.3.2.1 Single-agent problem

Because we need to deal with reservation constraints, we cannot reuse the default A* provided
in Graphs.jl. We thus need to reimplement it, and we use this opportunity to propose some
improvements. Dijkstra’s algorithm and A* both work with a priority queue: whenever a vertex u is
visited, each neighbor v is inserted in the queue with an adequate priority value. As highlighted
by M. Chen et al. (2007), insertion can proceed in one of two ways. Option 1 is to check the
existence of v in the queue before insertion, and update its priority if the queue already contains it
(Algorithm 3) Option 2 is to insert v with a new priority every time (Algorithm 4).

Algorithm 3: Dijkstra with priority updates
Q← ∅
D[v]← +∞ for all v
insert(Q, s, 0)
while Q ̸= ∅ do

(u, d)← extract_min(Q)
D[u]← d
foreach v ∈ N (u) do

if D[u] + w[u, v] ≤ D[v] then
if D[v] = +∞ then

insert(Q, v,D[u] + w[u, v])
else

update(Q, v,D[u] + w[u, v])
end
D[v]← D[u] + w[u, v]

end
end

end

The first option is the one chosen by Graphs.jl, with a PriorityQueue taken from the
package DataStructures.jl4. The second option is the one we choose for MultiAgent-
PathFinding.jl. It makes insertion less costly and allows us to work with simpler data structures.
For instance, the PriorityQueue can be replaced with a faster BinaryHeap. However, it also
leads to more elements in the queue, which means the resulting trade-off must be evaluated carefully.

To justify our choice, we benchmark Algorithm 3 (with a PriorityQueue) and Algorithm 4
(with a BinaryHeap) against the version of Dijkstra available in Graphs.jl. The task is finding
the shortest path from the top left to the bottom right corner of a grid with random weights. The

3https://github.com/Shushman/MultiAgentPathFinding.jl
4https://github.com/JuliaCollections/DataStructures.jl

77

https://github.com/Shushman/MultiAgentPathFinding.jl
https://github.com/JuliaCollections/DataStructures.jl

Algorithm 4: Dijkstra without priority updates
Q← ∅
D[v]← +∞ for all v
insert(Q, s, 0)
while Q ̸= ∅ do

(u, d)← extract_min(Q)
if d < D[u] then

D[u]← d
foreach v ∈ N (u) do

if D[u] + w[u, v] ≤ D[v] then
insert(Q, v,D[u] + w[u, v])
D[v]← D[u] + w[u, v]

end
end

end
end

results are displayed on Figure 5.3. While the version with priority updates behaves very much
like the Graphs.jl reference, we see that giving up on priority updates improves both CPU time
and memory use by a significant margin. Therefore, we adopt this method to store vertices in our
implementations of Dijkstra’s algorithm and A*.

5.3.2.2 Cooperative A*

Our take on Cooperative A* follows the original paper of Silver (2005) quite closely. As discussed,
we rely on a temporal A* with reservation constraints and a custom BinaryHeap storage for
the queue. Heuristic values for all distinct arrival vertices are computed beforehand by running
Dijkstra’s algorithm in from all arrival vertices. This choice is justified by the application to railways
in Chapter 11: since departures and arrivals are restricted to railway stations, there are very few
distinct arrival vertices. As an alternative, we could replace reverse Dijkstra with reverse resumable
A*, an idea that is described in Silver (2005).

While Cooperative A* is fast, it often fails to reach a feasible solution. This can sometimes be
improved thanks to a better permutation of agents. Ma et al. (2019) suggest searching for the best
possible permutation, while Li, Z. Chen, Harabor, et al. (2021) run Cooperative A* repeatedly with
random priority orders. We do not implement these refinements in our package, choosing to rely on
local search instead. However, the user is invited to input a permutation of agents, with J1, AK being
the default choice.

5.3.2.3 Optimality search

The greediness of Cooperative A* implies that its output still has a lot of room for improvement.
That is why we implement the MAPF-LNS algorithm of Li, Z. Chen, Harabor, et al. (2021), which
we rename to optimality search. This algorithm starts from a feasible solution P and iteratively
performs the following operations:

1. Select a subset S ⊂ [A] of agents.

78

(a) CPU time (b) Memory consumption

Figure 5.3: Comparison of priority structures for Dijkstra’s algorithm on a grid graph

2. Remove their current paths P−
S = (P−

a)a∈S .

3. Plan new conflict-free paths P+
S = (P+

a)a∈S .

4. Compare the objective values of solutions P and (P\P−
S) ∪ P+

S .

5. Keep the better of the two.

Each search iteration explores a large neighborhood, because there are many ways to complete the
partial solution P\P−

S . Instead of naive enumeration, an arbitrary MAPF algorithm can be used to
solve this subproblem. Due to its speed, Cooperative A* is the replanning routine recommended by
Li, Z. Chen, Harabor, et al. (2021). There are also many ways to choose the agent subset S. Our
package only provides a random neighborhood selection, which was shown by Li, Z. Chen, Harabor,
et al. (2021) to be “surprisingly effective” for congested instances.

5.3.2.4 Feasibility search

In addition to optimality search, we also implement a variant of the MAPF-LNS2 algorithm of Li,
Z. Chen, Harabor, et al. (2022), which we rename to feasibility search. This algorithm starts from
an infeasible solution (with conflicts between agents), and tries to improve it iteratively. Its basic
mechanism is the same as for optimality search: select some agents, remove and replan their paths,
keep the new solution if progress has been made. However, there is a key difference in the replanning
step: optimality search treats conflicts as a hard constraint, while feasibility search only penalizes
them.

• Optimality search looks for new paths P+
S which have no conflict with each other or with P\P−

S ,
and whose weight is minimal.

• Feasibility search looks for new paths P−
S whose number of conflicts with each other and

with P\P−
S is minimal, breaking ties with the weight.

When tackling this multiobjective replanning subproblem, Li, Z. Chen, Harabor, et al. (2022) observe
that temporal A* may be very inefficient. If the optimal new path has 1 conflict, then every path

79

with 0 conflict must be explored and discarded before the optimum can be found. In case there
is no upper bound on the time horizon, the search may never even terminate. To overcome this
difficulty, the original MAPF-LNS2 replaces temporal A* with Safe Interval Path Planning (Phillips
and Likhachev 2011).

However, this algorithm is rather advanced and requires careful bookkeeping, which is why we
propose a simpler alternative. Instead of minimizing the number of conflicts and then the path
weight, we minimize a weighted sum of both terms. We start by assigning a very low cost to the
conflict term, in order to boost exploration. Then, as the LNS iterations go by, we geometrically
increase the conflict cost to direct the search towards feasibility. This procedure, which is inspired by
simulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983), allows us to use temporal A* without
giving up on termination. It is the one we implement in our package.

5.3.2.5 Double search

Once we have feasibility search and optimality search at our disposal, it is tempting to combine
them. This is what our double search algorithm does: instead of initializing optimality search with a
run of Cooperative A*, it runs a feasibility search. As we will see below, this tweak performs badly
in some situations, but very well on others.

5.4 Numerical experiments

5.4.1 Benchmark instances and setting

We showcase the capabilities of MultiAgentPathFinding.jl on the set of MAPF benchmark
instances described by Stern et al. (2019). These grid maps are part of a larger suite introduced by
Sturtevant (2012), and they are all freely available on his website5. Some examples are given on
Figure 5.1. To convert instances into MAPF objects, we use two small packages of our own making:

• GridGraphs.jl6 represents graphs as grids of vertices. It can accommodate various move
structures (e.g., move like a rook or a queen on a chessboard), as well as missing cells in the
grid.

• MAPFBenchmarks.jl7 reads benchmark files and parses the appropriate GridGraph along
with the set of agents.

We use a setting similar to the one laid out by Stern et al. (2019). Vertex, edge and swapping
conflicts are forbidden, while following conflicts are permitted. Grid cells are linked with their top,
bottom, left and right neighbors (no diagonal moves), and with themselves for waiting purposes. All
agents depart at the same time, and the objective is to minimize the flowtime.

The main difference between our benchmark and theirs is the behavior of agents at departure
and arrival. First, we reject the “stay at arrival” assumption, instead allowing agents to disappear
after reaching their arrival vertex. Second, we set flexible_departure to true, thus making
it possible for agents to depart at any time after tdep. These two choices combined have a very
interesting consequence: no matter the ordering, Cooperative A* will always find a feasible solution.

5https://movingai.com/benchmarks/mapf.html
6https://github.com/gdalle/GridGraphs.jl
7https://github.com/gdalle/MAPFBenchmarks.jl

80

https://movingai.com/benchmarks/mapf.html
https://github.com/gdalle/GridGraphs.jl
https://github.com/gdalle/MAPFBenchmarks.jl

Parameter description Value

Max duration for optimality search (seconds) 5
Max duration for feasibility search (seconds) 5
Number of agents selected in a neighborhood 10
Initial cost of a conflict in feasibility search 1.0
Multiplicative rate of conflict price increase 0.1

Table 5.1: Algorithm parameters for our MAPF benchmark

Figure 5.4: Success rate of feasibility search on the MAPF benchmark set

Our goal is to demonstrate and compare four algorithms, whose parameters are summed up in
Table 5.1: cooperative A*, optimality search, feasibility search and double search. Each instance
comes with 25 scenarios of 1000 agents, but we only use the first 100 agents of each scenario.

5.4.2 Results

We were able to run our code on every instance except the largest one (orz900d.map), which caused
an out of memory error. The cause of this error will be investigated in the near future, it might have
something to do with our use of reverse Dijkstra on the full graph for heuristic computation.

Our main performance measure is the optimality gap, which measures the relative excess cost with
respect to an optimal solution. Since we do not have access to optimal solutions, we upper-bound
this gap using the flowtime of independent shortest paths as a (loose) lower bound on the optimal
value. We are also interested in the success rate, that is, the percentage of scenarios (within a given
instance) where a feasible solution is found. Results are presented on Figures 5.4 and 5.5.

81

Figure 5.5: Optimality gaps of 3 algorithms on a MAPF benchmark subset

Figure 5.4 displays the success rate of the feasibility search as a function of instance features.
The number of vertices on the grid is a proxy for instance difficulty, just like the fraction of obstacles.
Without much surprise, we observe that larger and more labyrinth-like instances make it harder
to find a feasible solution. Of course, in some cases, this could be solved by simply increasing the
maximum duration of feasibility search.

Figure 5.5 ranks all algorithms based on their optimality gap, with Cooperative A* as a baseline.
To enable fair comparison, it only shows the subset of scenarios on which feasibility search reaches a
feasible solution. Depending on the instance, we see that optimality search and feasibility search
each have their own strengths, which is why combining them usually makes a lot of sense.

82

Part II

Theoretical contributions

83

6
Minimax estimation of partially-observed vec-
tor autoregressions

It’s not who I am underneath. It’s what I
do that defines me.

Bruce Wayne
Batman Begins (2005)

Contents
6.1 Introduction . 86

6.1.1 A theoretical question . 86
6.1.2 A concrete application . 87
6.1.3 Outline . 88

6.2 Related work . 88
6.3 The partially-observed VAR process and its sparse estimator 89

6.3.1 Model definition . 89
6.3.2 Sparse estimator for the transition matrix 90

6.4 Lower and upper bound on the estimation error 91
6.4.1 Main theorems . 91
6.4.2 Influence of the problem parameters . 92
6.4.3 Extension to VAR processes of higher order 95

6.5 Numerical experiments . 95
6.5.1 Data generation . 95
6.5.2 Results . 96

6.A Proof of the estimator’s convergence rate 98
6.A.1 Overview . 98
6.A.2 Covariance matrices . 98
6.A.3 Construction of the covariance estimator . 99

85

6.A.4 Gaussian concentration, episode 1 . 101
6.A.5 Interlude: discrete concentration . 104
6.A.6 Gaussian concentration, episode 2 . 109
6.A.7 Behavior of the Dantzig selector . 112

6.B Proof of the minimax lower bound . 116
6.B.1 Overview . 116
6.B.2 Change of notations . 116
6.B.3 Covariance decomposition . 117
6.B.4 From the KL divergence to ∆Π(θ) . 117
6.B.5 From ∆Π(θ) to RΠ(θ) . 118
6.B.6 From RΠ(θ) to R(θ) . 120
6.B.7 Bounding R(θ) . 121
6.B.8 Upper bound on the KL divergence . 123
6.B.9 Application of Fano’s method . 124

This chapter corresponds to our preprint D. and de Castro (2022).

6.1 Introduction

Time series provide a natural representation for periodic measurements of a stochastic process.
In particular, those defined by linear Gaussian recursions may be the most widely used and the
easiest to study. Well-known examples include the AutoRegressive (AR) process and its multivariate
counterpart, the Vector AutoRegressive (VAR) process.

Industrial applications of these models encounter two main challenges. First, they often involve
signals in high dimension, which means sparsity assumptions play an important role. Second, the
variables of interest are rarely measured exactly or entirely. Indeed, physical constraints such as the
cost of sensors can make it impossible to capture every component of the system’s state at all times.
It is therefore natural to ask: how much harder does high-dimensional learning become when one
only observes a fraction of the relevant values?

6.1.1 A theoretical question

To answer this question, we study a state-space model where the state Xt ∈ RD follows a VAR
process of order 1 over a period of length T . Since the dimension D of Xt is high, we assume that
its transition matrix θ ∈ RD×D is s-sparse (there are no more than s non-zero coefficients in each
row). However, we do not observe the state itself: our observations Yt only involve the subset of
components Xt,d for which πt,d = 1, where πt is a vector of Bernoulli variables. To make matters
worse, this subset is corrupted with noise, which leads to the following generative procedure:

Xt = θXt−1 +N (0, σ2I) πt,d ∼ B(p) Yt = diag(πt)Xt +N (0, ω2I). (6.1)

When we write πt,d ∼ B(p), we mean that the marginals of the sampling variables are identical,
which requires that every state component be sampled with equal probability p. However, we reject
the standard independence assumption in favor of temporal dependencies between the Bernoulli
variables πt,d (see Section 6.1.2 for a practical justification).

86

To shed light on the properties of our model, we start by constructing a sparse estimator for θ,
whose non-asymptotic error we upper-bound. We complement this finding with a lower bound on
the minimax error that is independent of the choice of estimator. Upper and lower bound match
in most regards, which proves their optimality. A rough summary of our analysis is that the best
possible estimator θ̂ satisfies

∥θ̂ − θ∥∞ ≲
(
1 +

ω2

σ2

)
s
√
logD

p
√
T

(6.2)

with high probability. We observe that the error only depends logarithmically on the state dimen-
sion D: the major role is played by the sparsity s of the transition matrix. As expected, it decreases
linearly as p grows, since more information becomes available. Lastly, it is a function of ω2/σ2,
which means that precise recovery of θ is only possible when the noise is not too much larger than
the signal.

Novel features of our work include the first proof of a minimax lower bound in this setting (to
the best of our knowledge), the investigation of temporal correlations within the sampling process,
the combination of discrete and continuous concentration inequalities to obtain error estimates, as
well as detailed numerical experiments on simulated data.

6.1.2 A concrete application

Our study was inspired by concrete questions related to delay propagation on railway networks, which
came up during a collaboration with a leading railway company. When external factors (weather,
passenger behavior, mechanical failures) trigger a primary delay, resource conflicts between trains
can amplify the initial incident and send ripple effects through the whole network. Understanding
and predicting this propagation phenomenon is a crucial task for traffic management and robust
scheduling.

To model it, we construct a network graph G = (V, E) linking the railway stations, and we assume
the existence of a hidden congestion variable Xt,d that lives on the edges d ∈ E . This congestion
evolves according to a VAR process, whose transition matrix θ represents pairwise interactions
between edges. The sparsity structure of θ expresses the local nature of delay propagation, which is
why it is closely related to the adjacency structure of G. Indeed, between times t and t+ 1, edges
are expected to transmit congestion to their close neighbors, and not to regions of the network that
are very far away.

Unfortunately for us, Xt is never observed directly. The only information we have is collected by
the trains whenever they cross an edge of the network. The crossing time of a train is influenced by
the congestion, but also by other individual factors: in this sense, our observations Yt are a noisy
version of the underlying process Xt. Furthermore, the observations are limited in size: the dimension
of Xt is the number of edges D = |E|, while the dimension of Yt is linked to the number of trains on
the timetable and the length of their respective journeys. We can thus define a random variable πt,d
equal to 1 if a train crosses edge d between t and t+1, and 0 otherwise. A more realistic model would
account for the possibility of multiple trains crossing an edge in the same time step, especially if the
discretization interval is large. However, our binary assumption greatly simplifies exposition without
betraying the qualitative behavior of the system. Crucially, this sampling mechanism exhibits
temporal correlations: periods of dense traffic are likely to be followed by dense traffic, which means
that the sequence of sampling variables πt,d is not independently distributed.

We recognize the framework of Equation (6.1), and can therefore apply the theoretical result of
Equation (6.2). Such an error quantification provides useful insight on the estimation of θ, which

87

is essential to help railway operatives dimension their data sets or evaluate prediction uncertainty.
This model will be revisited in Chapter 10.

6.1.3 Outline

Section 6.2 is dedicated to a literature review on VAR processes with partial observations. In
Section 6.3, we define the generative procedure behind the partially-observed VAR process, and we
present a sparse estimator of the transition matrix. We then state both of our theoretical results in
Section 6.4: an upper-bound on the error of our specific estimator, complemented by a minimax
lower bound on the error of any estimation algorithm. Section 6.5 contains numerical experiments
demonstrating the impact of various parameters.

Appendix 6.A is dedicated to proving the convergence rate of the sparse estimator, while
Appendix 6.B contains the derivation of the minimax lower bound.

6.2 Related work

The theory of VAR processes has been known for a long time: the book of Lütkepohl (2005)
provides a detailed account. If we have full and noiseless observations of the process Xt, we can use
conditional Least Squares to estimate θ by minimizing the quadratic error

∑
t∥Xt − θXt−1∥22. This

is equivalent to solving the Yule-Walker equation Γh = θΓh−1, where we replace the autocovariance
matrix Γh = Cov[Xt+h, Xt] with its empirical counterpart Γ̂h. In the case of Gaussian innovations,
both approaches coincide with the Maximum Likelihood Estimator (MLE).

Neither of these methods was initially designed for missing or noisy data. Luckily, statistical
estimation with imprecise measurements has been thoroughly studied (Buonaccorsi 2010). The same
goes for incomplete data sets ; an extensive survey was recently published by Little and Rubin (2020).
According to their terminology, our work deals with data that is missing completely at random
(MCAR), which means that the projection πt is independent of the underlying process Xt. We also
assume to know the distribution of the missingness indicators 1− πt,d, which is not necessarily true
for other applications (e.g. clinical trials).

A principled approach to deal with missing data would require extending the MLE to partially-
observed time series, also known as state-space models (Cappé, Moulines, and Rydén 2005). Most
of the time, exact or approximate inference is achievable using some version of the Kalman filter
(Kalman 1960) or particle methods (Doucet, Godsill, and Andrieu 2000), whereas parameter
estimation typically involves the Expectation-Maximization (EM) algorithm (Shumway and D. S.
Stoffer 1982). Unfortunately, the EM algorithm is hard to analyze explicitly in terms of statistical
error, which is why other methods are sometimes preferred in theoretical studies. In particular,
plug-in methods that use covariance estimates within the Yule-Walker equation have been quite
popular in the ML community.

In this line of work, the core challenge is the high dimension D of the VAR process Xt. To
address it, many authors use sparsity-inducing penalties as a way to reduce data requirements and
computational workload. In the last ten years, the LASSO (Tibshirani 1996) has been increasingly
applied to random designs exhibiting correlations or missing data. This trend started with the
seminal work of Loh and Wainwright (2012), and numerous other papers followed (see for example
Basu and Michailidis 2015; Kock and Callot 2015; Melnyk and Banerjee 2016; Jalali and Willett
2018).

88

As an alternative to the LASSO, the Dantzig selector (Candes and Tao 2007) enforces sparsity
in the objective and data fidelity in the constraints. While the LASSO requires solving a Quadratic
Program (QP), for instance with proximal methods, the Dantzig selector gives rise to a Linear
Program (LP) which can be parallelized across dimensions. Han, Lu, and Liu (2015) studied its
application to VAR estimation, obtaining finite-sample error bounds with very natural hypotheses.
A little later, Rao et al. (2017a) extended these results to the more general scenario in which a
hidden VAR process is randomly sampled or projected, and then corrupted with noise. This last
work is quite similar to ours, but we think that the proof they present to control the non-asymptotic
error is incomplete at best1.

Another salient feature of our paper is the search for a minimax lower bound, which allows
us to prove the optimality of our convergence rates. To the best of our knowledge, this was only
attempted once for partially-observed VAR processes. Rao et al. (2017b) presented a lower bound
on the minimax error in a setting very similar to ours, but their result is less generic in several
regards. Indeed, we account for the possibility of temporal correlations within sampling, as well as
observation noise. Moreover, unlike the one proposed by Rao et al. (2017b), our proof focuses on
geometric properties and does not make use of the admissible set of transition matrices until the
very end. This makes it easy to handle many types of structured transitions without additional
work: sparse, Toeplitz, banded, etc.

Finally, the error bounds we obtain are backed up by detailed numerical experiments on simulated
data, which allow us to visualize the influence of every parameter of interest.

6.3 The partially-observed VAR process and its sparse estimator

Before stating our theoretical results, we introduce our statistical model and the estimator we use.

6.3.1 Model definition

The model we study was described approximately in the introduction. We now fill in the gaps of
the generative procedure it relies on. The underlying state X = (Xt)t∈[T] follows a stationary VAR
process of order 1. This process has dimension D and the following recursive definition:

Xt = θXt−1 + εt with εt ∼ N (0,Σ). (6.3)

Here θ ∈ RD×D is the transition matrix and Σ ∈ RD×D is the covariance matrix of the innovations
(in the introduction, we assumed Σ = σ2I). To ensure stationarity of the VAR process, we must
constrain the spectral radius of θ to satisfy ρ(θ) < 1. Throughout the paper, we actually make the
following (slightly stronger) assumption on the spectral norm of θ: there exists ϑ ∈ (0, 1) such that
for all the values of θ we consider, ∥θ∥2 ≤ ϑ < 1. Furthermore, we only study row-sparse transition
matrices, having at most s nonzero coefficients in each row. In other words, we restrict our choice of
parameters to

θ ∈ Θs where Θs = {θ ∈ RD×D : ∥θ∥2 ≤ ϑ < 1 and ∀i, ∥θi,·∥0 ≤ s}. (6.4)
1Indeed, the combination of discrete and Gaussian concentration inequalities as performed on page 2 (middle of

right column) of the supplementary material for Rao et al. (2017a) glosses over the fact that LF is itself a random
variable. As we will discover during our own proof, this introduces an additional difficulty and forces us to use a more
complex Gaussian concentration result (Lemma 6.A.6). See https://web.stanford.edu/~milind/papers/s
ystem_id_icassp_proof.pdf for the supplementary material in question.

89

https://web.stanford.edu/~milind/papers/system_id_icassp_proof.pdf
https://web.stanford.edu/~milind/papers/system_id_icassp_proof.pdf

We denote by σ2min = λmin(Σ) and σ2max = λmax(Σ) the minimum and maximum eigenvalues of the
covariance matrix Σ.

The observation mechanism we chose implies that we do not have direct access to the latent
process Xt. To construct the observations Yt, we sample a subset of state components according to
the binary vectors πt. Then, independent Gaussian noise with variance ω2 is added to these selected
components, and we observe the result. If we denote by Πt = diag(πt) the diagonal projection
matrix, we have

Yt = ΠtXt + ηt with ηt ∼ N (0, ω2I). (6.5)

An essential hypothesis we make is the mutual independence between our three sources of randomness:
the innovations εt, the projections πt and the observation noise ηt.

A major feature of the present work is the non-deterministic selection of observed state components,
that is, the fact that πt is a random sequence of Bernoulli vectors following a known distribution.
In order to sum up the amount of information available using one parameter p ∈ (0, 1), we want
this distribution to satisfy the following condition: each component Xt,d of the latent state must be
sampled with the same marginal probability p = P(πt,d = 1).

On the other hand, we also want to introduce temporal dependencies between the projections.
The simplest way to achieve that is through a Markovian hypothesis: independently along each
dimension d, time indices t are selected for observation according to a binary-valued Markov chain
with transition matrix P =

(
1−a a
b 1−b

)
. Its coefficients are chosen to make the chain stationary with

invariant measure (b
a+b ,

a
a+b) = (1− p, p). Note that when a = 1− b = p, this reduces to independent

sampling of each component with probability p. We also assume there exists a universal constant χ
such that 0 < χ ≤ a, b ≤ 1− χ < 1: this means that the chain does not transition too fast nor too
slowly.

Our data set is built from N independent realizations of this process. For the sake of simplicity
however, we will prove all convergence theorems in the case N = 1: extending those results to the
general case simply amounts to replacing T with NT in the resulting error bounds.

6.3.2 Sparse estimator for the transition matrix

The transition estimator presented here is a straightforward generalization of the one used by Rao
et al. (2017a). The lag-h covariance matrix of the VAR process Xt is given by the Yule-Walker
recursion (see Lemma 6.A.1):

Γh(θ) = Covθ[Xt+h, Xt] = θΓh−1(θ) = θhΓ0(θ) (6.6)

We can use it to define a simple two-step procedure:

1. For a given h0, build estimators Γ̂h0 and Γ̂h0+1 of the covariances Γh0 and Γh0+1.

2. Use them to approximate the transition matrix by inverting Equation (6.6).

A simple inversion technique uses the Moore-Penrose pseudoinverse (just in case Γ̂h0 is singular):

θ̂dense = Γ̂h0+1Γ̂
†
h0
. (6.7)

The problem with this procedure is that is does not guarantee sparsity of θ̂. To obtain a sparse
result, we follow Han, Lu, and Liu (2015) and cast Equation (6.6) as a soft constraint enforcing

90

proximity between Γ̂h0+1 and θ̂Γ̂h0 . This amounts to solving the following constrained optimization
problem:

θ̂ ∈ argmin
θ∈RD×D

∥vec(θ)∥1 subject to ∥θΓ̂h0 − Γ̂h0+1∥max ≤ λ. (6.8)

Here ∥vec(·)∥1 denotes the sum of the absolute values of all the coefficients of a matrix, while ∥·∥max

is the maximum of these absolute values. Given that both of these norms are piecewise linear, the
problem of Equation (6.8) can be reformulated as an LP. It can even be decomposed along each
dimension, which allows for an efficient and parallel solution procedure. The only thing left to do is
decide how to estimate the covariance matrices Γh.

The covariance estimator we use is a variant of the empirical covariance. Since Yt = ΠtXt + ηt
where ηt is zero-mean, a natural proxy for Xt is obtained by inverting the sampling operator: X̂t =
Π†

tYt. It would therefore seem logical to build an estimator of Γh by plugging this proxy into the
empirical covariance between Xt+h and Xt. However, in order for this idea to work, we must make
two small adjustments.

To account for the random sampling, the plug-in empirical covariance must be scaled elementwise
by a matrix S(h) = E[πt+hπ

⊤
t]. Intuitively, since X̂t+hX̂

⊤
t has a fraction p2 of nonzero coefficients, we

need to divide it by something close to p2 to get an unbiased covariance estimator. Furthermore, to
account for the observation noise, we must incorporate an additive correction −ω2I. This correction
becomes unnecessary for h ≥ 1 since the observation noise ηt is independent* across time.

In conclusion, we obtain the following covariance estimator:

Γ̂h =
1

S(h)
⊙ 1

T − h
T−h∑
t=1

(
Π†

t+hYt+h

)(
Π†

tYt

)⊤
− 1{h=0}ω

2I. (6.9)

The coefficients of the scaling matrix S(h) are computed in Lemma 6.A.4.

6.4 Lower and upper bound on the estimation error

We now have the necessary background to formulate our theoretical results. In all the following
statements (and their proofs), the letter c denotes a universal positive constant, which may change
from one line to the next but never depends on any varying problem parameters. More specifically,
statements involving it should always be understood as “there exists c > 0 such that”...

6.4.1 Main theorems

We start by bounding the non-asymptotic error of the estimator we just introduced.

Theorem 6.4.1 (Error upper bound). Consider the partially-observed VAR model defined in
Section 6.3.1. We use the estimator θ̂ of Section 6.3.2 with h0 = 0, and we suppose that T is “large
enough”, as specified by Equations (6.20) and (6.23). Let us define

γu(θ) =
∥θ∥∞ + 1

(1− ∥θ∥2)2
σ2max + ω2

∥Γ0(θ)−1∥−1
1

and qu = min{p, 1− b} ≤ p. (6.10)

Then there is a value of λ such that the following upper bound holds with probability at least 1− δ:

∥θ̂ − θ∥∞ ≤ c
γu(θ)s√
Tpqu

√
log(D/δ). (6.11)

91

Proof. The argument combines discrete and continuous concentration inequalities, to account for
both the Bernoulli sampling and the Gaussian noise. More precisely, we exploit a recent Chernoff
bound that applies to non-reversible Markov chains, and we plug it into a conditional version of the
Hanson-Wright inequality that we derived specifically for our purposes. See Appendix 6.A for more
details.

We now move on to a minimax lower bound which is estimator-independent, and quantifies the
intrinsic difficulty of our statistical problem. The term minimax means that we study the probability
of making an error of magnitude ζ, when we pick the best possible estimator θ̂ and nature replies by
choosing the worst possible parameter θ:

P(ζ) = inf
θ̂

sup
θ∈Θs

Pθ

[
∥θ̂ − θ∥∞ ≥ ζ

]
. (6.12)

More precisely, we want to find a threshold ζ such that the probability of exceeding it is non-negligible,
for instance P(ζ) ≥ 1

2 . The evolution of this threshold will tell us how the error behaves with respect
to the various problem parameters.

Theorem 6.4.2 (Error lower bound). Consider the partially-observed VAR model defined in Sec-
tion 6.3.1. We suppose that T is “large enough”, as specified by Equations (6.25) and (6.27). Let us
define

γℓ = (1− ϑ)3/2σ
2
min + ω2

σ2max

and qℓ = max{1− b, 2p− (1− b)} ≥ p. (6.13)

Then the following minimax lower bound holds:

inf
θ̂

sup
θ∈Θs

Pθ

[
∥θ̂ − θ∥∞ ≥ c

γℓs√
Tpqℓ

]
≥ 1

2
. (6.14)

Proof. The argument is based on an information-theoretical result known as Fano’s inequality.
To apply it, we need to upper-bound the Kullback-Leibler (KL) divergence between the distribu-
tions Pθ0(Π, Y) and Pθ1(Π, Y), where θ0 and θ1 are sufficiently far apart. See Appendix 6.B for more
details.

6.4.2 Influence of the problem parameters

Let us now compare the error bounds of Theorems 6.4.1 and 6.4.2. Our first remark is that the
sparsity s and time T play exactly the same roles in both bounds, which shows that the dependency
of the error in s/

√
T is optimal. The lower bound does not involve the state dimension D, but this

quantity shows up as
√
logD in the upper bound, so its exact influence remains unproven.

The sampling parameters appear as 1/
√
pqu in the upper bound, whereas the lower bound scales

as 1/
√
pqℓ instead. This means that we have not proven the optimality of either bound with respect

to p or b. However, it is reassuring to note that there is no conflict between them since qℓ ≥ p ≥ qu.
Furthermore, when a = 1 − b = p (that is, when Markov sampling boils down to independent
sampling), both bounds simplify into the 1/p dependency we would expect (since qu = qℓ = p). So
in the case of independent sampling, 1/p is indeed the optimal rate.

The ℓ2 norm of the transition matrix plays opposite roles on each side. In the lower bound, 1−ϑ =
1−maxθ∈Θs∥θ∥2 appears in the numerator, whereas in the upper bound, 1− ∥θ∥2 appears in the
denominator. It is likely that these dependencies are suboptimal, but at least they are compatible

92

with one another: as ∥θ∥2 → 1, that is, as the VAR process becomes unstable, the lower bound
tends to 0 and the upper bound to +∞. This is a reflection of the fact that our proofs make heavy
use of the distance between θ and the unit sphere, which means they become meaningless when θ
gets too large. Note that many previous works on VAR estimation make use of the spectral radius or
spectral norm of θ. While Simchowitz et al. (2018) is among the few exceptions, their assumptions
are much stronger than ours (no transition sparsity, full observations). They also use a different
estimator, and their bound contains some terms that ours does not need.

The variances Σ and ω2 are involved in γℓ for the lower bound, and in γu(θ) for the upper bound.
In both cases, the ratio γ tells us whether the underlying process is large enough to be detected
among the noise. Roughly speaking, the magnitude of Xt is related to the spectrum of Σ, while the
magnitude of Yt is related to the spectrum of Σ+ ω2I. If the latter is significantly larger than the
former, recovering Xt (and thus θ) is a hopeless endeavor.

To simplify the comparison, let us assume in this discussion that Σ = σ2I, and that θ commutes
with its transpose. Then we have ∥Γ−1

0 (θ)∥−1
1 =

∥∥(σ2(I − θθ⊤)−1
)−1∥∥−1

1
= σ2∥I − θθ⊤∥−1

1 , and we
can give a simpler expression of γℓ and γu(θ):

γu(θ) =
(∥θ⊤∥1 + 1)∥I − θθ⊤∥1

(1− ϑ)2
σ2 + ω2

σ2
γℓ = (1− ϑ)3/2σ

2 + ω2

σ2
.

We recognize the same dependency in both bounds, namely γ ∝ 1 + σ2

ω2 . Lemma 6.4.3 gives a
heuristic argument linking this functional form to the asymptotic behavior of the MLE.

Lemma 6.4.3 (Heuristic optimality of the signal-to-noise ratio). In the one-dimensional setting with
full observations, the dependency of the error in 1 + σ2

ω2 is “coherent” with the asymptotic behavior of
the MLE.

Proof. Let us consider the case where D = 1 and p = 1, since we are mainly interested in the role
of the parameters σ2 and ω2. In this case, Theorem 6.4.2 argues that the error of any estimator
should grow at least like γℓ = 1+ ω2

σ2 . We also note that in this simple scenario, Theorem 6.4.1 states
that γu ∝ γℓ.

We will compare this to the asymptotic error of the Maximum Likelihood Estimator (MLE) θ̂,
which (for well-behaved models) is given by the inverse of the Fisher information matrix. To make
this statement more precise, we will invoke Douc, Moulines, and D. Stoffer (2013, Proposition 2.14).
Let us verify the conditions:

• The process is stable, i.e. ρ(θ) < 1. We made sure of that by assuming ∥θ∥2 ≤ ϑ < 1.

• The sampling matrix Πt is constant across time. Although this assumption is not essential, it
is true here since p = 1 and D = 1 hence Πt = I1.

• The model has the smallest possible dimension.

• The true parameter θ is identifiable and does not lie on the boundary of Θs. Identifiability is
easily deduced from Lemma 6.A.1 by observing that θ = Γ1(θ)Γ0(θ)

−1 can be entirely deduced
from distribution moments.

Since all of these prerequisites hold here, Douc, Moulines, and D. Stoffer (2013, Proposition 2.14)
gives us a Central Limit Theorem for the MLE of linear Gaussian models:

√
T (θ̂ − θ) L−−−−→

T→∞
N (0, I∞(θ)−1) where I∞(θ) = lim

T→∞

IT (θ)
T

.

93

We only have to compute the Fisher information matrix IT (θ). The covariance matrix of Y is
given by Lemma 6.B.1, but in our case the sampling matrix is constant, and we obtain the simpler
(unconditional) result

Covθ[Y] = (σ2 + ω2)IT +R(θ),

where the residual R(θ) is of order 1 in θ. Indeed, our simplifying assumptions imply Γ0(θ) =
σ2

1−θ2

and therefore

R(θ) =
σ2

1− θ2


θ2 θ1 θ2 · · ·
θ1 θ2 θ1

θ2 θ1 θ2

...
. . .

 ∂θR(θ) = σ2


0 1 0 · · ·
1 0 1
0 1 0
...

. . .

+O(θ).

The Fisher information of Y with respect to θ has an explicit formula (Malagò and Pistone 2015,
Section 3.5):

IT (θ) =
1

2
Tr
[
Covθ[Y]−1∂θ Covθ[Y] Covθ[Y]−1∂θ Covθ[Y]

]
=

1

2
Tr

[(
I +

R(θ)

σ2 + ω2

)−1 ∂θR(θ)

σ2 + ω2

(
I +

R(θ)

σ2 + ω2

)−1 ∂θR(θ)

σ2 + ω2

]
.

If assume θ is small and perform a Taylor expansion, we get:

IT (θ) ≈
1

2(σ2 + ω2)2
Tr
[
(∂θR(θ))

2
]
.

Incidentally, we also note that at the lowest order in θ,

Tr[(∂θR(θ))
2] = ∥∂θR(θ)∥2F ≈ 2σ4(T − 1).

Which gives us an approximate information matrix for T steps:

IT (θ) ≈
Tr[(∂θR(θ))

2]

2(σ2 + ω2)2
≈ T

2

(
σ2

σ2 + ω2

)2

.

Taking the temporal limit yields:

I∞(θ) = lim
T→∞

IT (θ)
T
≈ 1

2

(
σ2

σ2 + ω2

)2

.

In conclusion, this informal analysis reveals an asymptotic error equivalent to

1√
T

√
I∞(θ)−1 ≈

√
2√
T

(
1 +

ω2

σ2

)
,

which is coherent with the dependency we identified in Theorem 6.4.2.

94

6.4.3 Extension to VAR processes of higher order

Although our results only apply to state-space models based on an underlying VAR process of
order 1, we could try to extend them to the more general case of VAR(K) processes. Just for this
Section, suppose Xt is no longer given by Equation (6.3), but instead satisfies:

Xt = θ1Xt−1 + θ2Xt−2 + ...+ θKXt−K + εt.

Then we can represent this as a VAR(1) process using augmented variables (Lütkepohl 2005). Indeed,
observe that defining X̃t =

(
Xt Xt−1 · · · Xt−K+1

)⊤ and ε̃t =
(
εt 0 · · · 0

)⊤ yields

X̃t = θ̃X̃t−1 + ε̃t with θ̃ =


θ1 θ2 · · · θK−1 θK
ID 0 · · · 0 0
0 ID 0 0
...

. . .
...

...
0 0 · · · ID 0

 .

Unfortunately, by this reasoning, the Markov sampling mechanism that generates Πt gives rise to a
new distribution for Π̃t which is no longer part of the same family. Indeed, the augmented sampling
process Π̃t is still Markovian but with a memory of size K instead of 1. Therefore, the adaptation
would require new arguments, and we leave it for future work.

6.5 Numerical experiments

We now illustrate the theory outlined above on simulated data. Our code was written in Julia
(Bezanson et al. 2017), linear optimization problems were modeled using JuMP.jl2 (Dunning,
Huchette, and Lubin 2017) and solved with the HiGHS3 solver (Huangfu and Hall 2018).

6.5.1 Data generation

Simulating a partially-observed VAR process with known transition matrix θ allows us to compute
the estimation error ∥θ̂− θ∥∞ and study the influence of parameters such as T , D, s, p, ω, etc. Real
values for θ were drawn using independent standard Gaussian distributions for each coefficient, and
then normalized to satisfy ∥θ∥2 = ϑ = 1

2 . To simplify comparison with the theoretical bounds, we
used a diagonal innovation covariance Σ = σ2I and set the sampling parameters to a = 1− b = p,
which amounts to independent sampling (except for the experiment that focuses specifically on the
influence of b). When not mentioned explicitly, all other parameters are equal to their default values
given below (we assume ω is known):

T = 10000 D = 5 σ = 1.0 ω = 0.1 p = 1.0.

Most of the simulations are run in a dense estimation scenario. For those that require the sparse
procedure, selecting a good regularization parameter λ is paramount: indeed, Theorem 6.4.1 is only
valid for a specific value of λ (which is not known in practice, but we can hope to approximate this
near-optimal choice).

2https://github.com/jump-dev/JuMP.jl
3https://github.com/ERGO-Code/HiGHS

95

https://github.com/jump-dev/JuMP.jl
https://github.com/ERGO-Code/HiGHS

A standard way to tune λ would be cross-validation. However, evaluating a choice of λ (and the
resulting estimate θ̂) requires inferring the hidden state sequence Xt from the observations Yt. If the
projection matrices Πt were deterministic, the inference could be performed with Kalman filtering
(Kalman 1960), but since they are stochastic, the distribution of (X,Y) is no longer jointly Gaussian
and the justification behind the Kalman filter breaks down. Finding an appropriate inference method
in our setting will be the topic of future studies.

In the meantime, to tune λ, we suppose that the sparsity level of the real transition matrix θ
is known. We then use this target sparsity ŝ to guide a dichotomy search on λ, until we find a
transition matrix estimate θ̂ whose row sparsity level is sufficiently close to ŝ.

6.5.2 Results

The main results are presented on Figure 6.1. All plots except Figure 6.1f have the estimation
error ∥θ̂ − θ∥∞ on their y-axis, and some parameter of interest on their x-axis. The axes are
displayed with logarithmic scaling, in order to highlight the exponent of the dependencies. Each
point corresponds to one run of the algorithm, aimed at estimating a single random value of θ. When
a straight line is added to a scatter plot, it is the result of a Theil-Sen regression (Sen 1968) applied
to the points of the same color: its slope is denoted by α in the legend.

Figure 6.1a confirms that the error decreases as 1/
√
T . This is only true because the sampling

probability p remains constant. If instead we had a limited observation budget but an increasing
temporal precision, we would have p ∝ 1/T , in which case the error would increase as

√
T instead of

decreasing.
Figure 6.1b exhibits three clearly identifiable regimes with respect to the noise variance. In the

first one, corresponding to ω/σ ≪ 1, the error remains small and constant. Then, the error increases
when ω/σ ≃ 1. In the third phase, corresponding to ω/σ ≫ 1, the error remains high and volatile.
This is consistent with the theoretical dependency in 1 + ω2/σ2.

Figure 6.1c compares the respective benefits of sparse and dense estimation by increasing the
ambient dimension D while keeping the true sparsity level s constant. The error for θ̂dense scales
linearly with D, while its sparse counterpart θ̂ achieves a much slower error growth (perhaps related
to the

√
logD term). As a side note, the fact that the error grows with D in the dense case is not

surprising. Indeed, we measure it with the ℓ∞ operator norm, which scales with the dimension of
the matrix.

Figure 6.1d takes the opposite perspective by increasing the number of nonzero coefficients in a
space of fixed dimension. In this case, the theory predicts that the error should scale linearly with s,
but the slope we observe is below 1. Our interpretation is that the function γu(θ) also depends on
the sparsity level in complicated ways through θ, especially since the real values are renormalized to
satisfy ∥θ∥2 = 1

2 .
Figure 6.1e shows that the error evolves as 1/p, which is consistent with our upper bound. It

is also informative w.r.t. the choice of h0. Choosing h0 = 0 means we need to know ω to perform
estimation. If this parameter is unknown, we can choose h0 ≥ 1, which leads to a much higher
variance of the estimator (this is not visible in our results since we wrote the proof in the case
where h0 = 0). An alternate solution would be to keep h0 = 0 and plug in a guess such as ω = 0,
effectively trading lower variance for a higher bias.

Figure 6.1f takes a closer look at the role of the Markov sampling parameter b. The white region
corresponds to values of b for which there is no a such that p = a/(a + b). On this logarithmic
heatmap, we see regularly-spaced and nearly vertical contour lines, which is consistent with a

96

Period length T
10² 10³ 10⁴ 10⁵

E
st

im
a
ti
o
n
 e

rr
o
r
jjµ̂
¡
µ
jj 1

10⁻¹

10⁰

10¹

10²
p= 0:1 j ®= ¡ 0:63

p= 0:2 j ®= ¡ 0:63

p= 0:5 j ®= ¡ 0:53

p= 1:0 j ®= ¡ 0:51

(a) Influence of T

Variance ratio !2=¾2

10⁻²⋅⁵ 10⁰⋅⁰ 10²⋅⁵

E
st

im
a
ti
o
n
 e

rr
o
r
jjµ̂
¡
µ
jj 1

10⁻¹

10⁰

10¹

10²

10³
p= 0:1

p= 0:2

p= 0:5

p= 1:0

(b) Influence of ω

State dimension D (with s= 5)
10⁰⋅⁹ 10¹⋅² 10¹⋅⁵

E
st

im
a
ti
o
n
 e

rr
o
r
jjµ̂
¡
µ
jj 1

10⁻¹⋅⁰

10⁻⁰⋅⁵

10⁰⋅⁰

10⁰⋅⁵ p= 0:2 (dense) j ®= 1:04

p= 1:0 (dense) j ®= 0:92

p= 0:2 (sparse) j ®= 0:26

p= 1:0 (sparse) j ®= 0:19

(c) Influence of D with fixed s

Transition sparsity s (with D= 50)
10⁰⋅⁸ 10¹⋅⁰ 10¹⋅² 10¹⋅⁴

E
st

im
a
ti
o
n
 e

rr
o
r
jjµ̂
¡
µ
jj 1

10⁻⁰⋅⁵

10⁰⋅⁰

10⁰⋅⁵

p= 0:1 (sparse) j ®= 0:93

p= 0:2 (sparse) j ®= 0:65

p= 0:5 (sparse) j ®= 0:54

p= 1:0 (sparse) j ®= 0:57

(d) Influence of s with fixed D

Sampling probability p
10⁻¹⋅⁰ 10⁻⁰⋅⁵ 10⁰⋅⁰

E
st

im
a
ti
o
n
 e

rr
o
r
jjµ̂
¡
µ
jj 1

10⁻¹

10⁰

10¹

10²

h₀= 1 j ®= ¡ 0:75

h₀= 0 j ®= ¡ 1:01

(e) Influence of p and h0

Log sampling probability log10(p)
-1.0 -0.8 -0.6 -0.4 -0.2

L
o
g
 t

ra
n
si

ti
o
n
 p

ro
b
a
b
il
it

y
 l
o
g

1
0
(1
¡
b)

-1.5

-1.0

-0.5

L
o
g
 e

st
im

a
ti
o
n
 e

rr
o
r

lo
g

1
0
jjµ̂
¡
µ
jj 1

-0.5

0.0

0.5

1.0

(f) Influence of (p, b)

Figure 6.1: Impact of model parameters on the estimation error

97

convergence rate of 1/p that does not depend on b. We conjecture that 1/p is the true order of
magnitude for the optimal error, and that the dependencies 1/

√
pqu and 1/

√
pqℓ from our Theorems

could be refined and brought together with a more careful theoretical analysis.

6.A Proof of the estimator’s convergence rate

Here we present the detailed proof of Theorem 6.4.1.

6.A.1 Overview

The main steps of the argument are the following:

1. Prove the Yule-Walker Equation (6.6) and deduce an expression for the covariance matrix of X
(Lemmas 6.A.1 and 6.A.2).

2. Justify the formula of Equation (6.9) for Γ̂h by showing that it defines an unbiased estimator
of Γh (Lemmas 6.A.3 and 6.A.4).

3. Fixing two indices d1 and d2, rewrite (Γ̂h − Γh)d1,d2 using quadratic forms g⊤a Ψ⊤
a LΨbgb of

standard Gaussian vectors (Lemma 6.A.5).

4. Control the deviation of the matrix L using discrete concentration inequalities (Lemmas 6.A.7,
6.A.8, 6.A.9, 6.A.10 and 6.A.11).

5. Apply a conditional version of the Hanson-Wright inequality (Lemma 6.A.6) to the quadratic
forms g⊤a Ψ⊤

a LΨbgb (Lemma 6.A.12).

6. Obtain a high-probability control on ∥Γ̂h − Γh∥max with a union bound (Lemma 6.A.14).

7. Deduce the error of θ̂ from the error of Γ̂h0 and Γ̂h0+1 by drawing inspiration from Han, Lu,
and Liu (2015) (Lemmas 6.A.15 and 6.A.16).

6.A.2 Covariance matrices

The Yule-Walker equation is a direct consequence of the VAR recursion, as can be seen from this
Lemma.

Lemma 6.A.1 (VAR covariance matrices). The autocovariance matrices of the stationary VAR
process defined by Equation (6.3) have the following expressions:

Γ0(θ) = Covθ[Xt] =

∞∑
k=0

θkΣ(θk)⊤

Γh(θ) = Covθ[Xt+h, Xt] = θhΓ0(θ).

Proof. We start by noting that according to Equation (6.3), the stacked vector X = (Xt)t∈[T] follows
a TD-dimensional centered multivariate Gaussian distribution. The covariance matrix of Xt can be
deduced from the recursion:

Γ0(θ) = Covθ[Xt] = Covθ[θXt−1 + εt] = θCovθ[Xt−1]θ
⊤ +Σ = θΓ0(θ)θ

⊤ +Σ.

98

There is a unique stationary solution:

Γ0(θ) =

∞∑
k=0

θkΣ(θk)⊤.

The covariance matrix between Xt+h and Xt is obtained similarly:

Γh(θ) = Covθ[Xt+h, Xt] = E[Xt+hX
⊤
t] = E[(θXt+h−1 + εt+h)X

⊤
t]

= θCovθ[Xt+h−1, Xt] = θhCovθ[Xt, Xt] = θhΓ0(θ).

And Covθ[Xt, Xt+h] = Covθ[Xt+h, Xt]
⊤. In other words, we just proved that

Covθ[X] =


Γ0(θ) Γ0(θ)(θ

1)⊤ Γ0(θ)(θ
2)⊤ · · · Γ0(θ)(θ

T−1)⊤

θ1Γ0(θ) Γ0(θ) Γ0(θ)(θ
1)⊤

θ2Γ0(θ) θ1Γ0(θ) Γ0(θ)
...

. . .
θT−1Γ0(θ) Γ0(θ)



The following result will come in handy later.

Lemma 6.A.2 (Norm of Γ0(θ)). The covariance matrix Γ0(θ) satisfies

∥Γ0(θ)∥2 ≤
σ2max

1− ϑ2

Proof. By Lemma 6.A.1,

∥Γ0(θ)∥2 ≤
∞∑
k=0

∥θkΣ(θk)⊤∥2 ≤
∞∑
k=0

∥θ∥k2∥Σ∥2∥θ∥k2 =
∥Σ∥2

1− ∥θ∥22
≤ σ2max

1− ϑ2 .

6.A.3 Construction of the covariance estimator

Now we justify the construction of our covariance estimator. Let h0 = 0: for most of the proof, we
fix a lag value h ∈ {h0, h0 + 1} = {0, 1}.

Lemma 6.A.3 (Bias of the covariance estimator). The estimator Γ̂h given by Equation (6.9) for
the covariance matrix Γh is unbiased.

Proof. First, let us remember that since Πt = diag(πt) is diagonal and binary, we also have Π†
t =

Π⊤
t = Πt. By Equation (6.5),

(Π†
t+hYt+h)(Π

†
tYt)

⊤ = Π†
t+h(Πt+hXt+h + ηt+h)(X

⊤
t Π⊤

t + η⊤t)(Π
†
t)

⊤

= diag(πt+h)
(
Xt+hX

⊤
t +Xt+hη

⊤
t + ηt+hX

⊤
t + ηt+hη

⊤
t

)
diag(πt).

(6.15)

99

Taking the conditional expectation and removing the cross-product terms (by independence of X
and Π), we get:

E[(Π†
t+hYt+h)(Π

†
tYt)

⊤|Π] = diag(πt+h)
(
E[Xt+hX

⊤
t] + E[ηt+hη

⊤
t]
)
diag(πt).

Since E
[
Xt+hX

⊤
t

]
= Γh and E[ηt+hηt] = 1{h=0}ω

2I, we are left with:

E[(Π†
t+hYt+h)(Π

†
tYt)

⊤|Π] = (πt+hπ
⊤
t)⊙ Γh + 1{h=0}ω

2 diag(πt)

where ⊙ is the elementwise Hadamard product. We now take the expectation w.r.t. Π:

E[(Π†
t+hYt+h)(Π

†
tYt)

⊤] = E[πt+hπ
⊤
t]⊙ Γh + 1{h=0}ω

2E[diag(πt)].

Dividing elementwise by the scaling matrix S(h) = E[πt+hπ
⊤
t], we get

E
[

1

E[πt+hπ
⊤
t]
⊙ (Π†

t+hYt+h)(Π
†
tYt)

⊤
]
= Γh + 1{h=0}ω

2E[diag(πt)]⊙
1

E[πtπ⊤t]

= Γh + 1{h=0}ω
2 diag

(
E[πt]
E[π2t]

)
= Γh + 1{h=0}ω

2I

which shows that our estimator

Γ̂h =
1

T − h
T−h∑
t=1

1

E[πt+hπ
⊤
t]
⊙ (Π†

t+hYt+h)(Π
†
tYt)

⊤ − 1{h=0}ω
2I

is unbiased.

Note that since the process (Πt) is stationary, the coefficients of S(h) do not depend on t. They
are computed in the next Lemma.

Lemma 6.A.4. The second-order moments of π are given by

S(h)d1,d2 = E [πt+h,d1πt,d2] =


p2 if d1 ̸= d2

p if d1 = d2 and h = 0

p2 + p(1− p)(1− a− b)h if d1 = d2 and h ≥ 1

In particular, every coefficient of the scaling matrix S(h) is lower-bounded by

min
d1,d2,h

S(h)d1,d2 = min{p2, p(1− b)} = pqu where qu = min{p, 1− b}.

Proof. Let i = (t + h, d1) and j = (t, d2) be two indices in [T] × [D]. We have E[πi] = E[π2i] = p.
If d1 ̸= d2, then the variables πi and πj belong to independent Markov chains, and thus E[πiπj] = p2.
Otherwise, we have i = (t+ h, d) and j = (t, d), which means these two variables are part of the
same Markov chain. Stationarity yields

E[πiπj] = P(πt,d = 1)× P(πt+h,d = 1|πt,d = 1) = p(P h)11.

100

When diagonalizing the transition matrix P , we see that the bottom-right coefficient of P h is

(P h)11 =
a+ b(1− a− b)h

a+ b
= p+ (1− p)(1− a− b)h.

Plugging this in, we get
E[πiπj] = p2 + p(1− p)(1− a− b)h.

Among all the possible values of S(h)d1,d2 , the smallest one is p2 if 1− a− b ≥ 0, and p2 + p(1−
p)(1− a− b) otherwise. But since

p+ (1− p)(1− a− b) = a

a+ b
+

b

a+ b
(1− a− b)

=
a+ b− ab− b2

a+ b
=
a(1− b) + b(1− b)

a+ b

= 1− b,
we conclude

min
d1,d2,h

S(h)d1,d2 = min{p2, p2 + p(1− p)(1− a− b)} = min{p2, p(1− b)}.

6.A.4 Gaussian concentration, episode 1

From now on, we will study the concentration of Γ̂h, coefficient by coefficient. Let us fix two indices d1
and d2: our goal is to control the deviation of (Γ̂h)d1,d2 around its mean.

Lemma 6.A.5 (Deviation of (Γ̂h)d1,d2). The deviation probability for (Γ̂h)d1,d2 can be decomposed
as follows:

P(|(Γ̂h − Γh)d1,d2 | ≥ u) ≤ P
(
|g⊤ε Ψ⊤

ε LΨεgε − E
[
g⊤ε Ψ

⊤
ε LΨεgε

]
| ≥ u/4

)
+ P

(
|g⊤η Ψ⊤

η LΨεgε − E
[
g⊤η Ψ

⊤
η LΨεgε

]
| ≥ u/4

)
+ P

(
|g⊤ε Ψ⊤

ε LΨηgη − E
[
g⊤ε Ψ

⊤
ε LΨηgη

]
| ≥ u/4

)
+ P

(
|g⊤η Ψ⊤

η LΨηgη − E
[
g⊤η Ψ

⊤
η LΨηgη

]
| ≥ u/4

)
where the random matrix L is defined in Equation (6.16), Ψε and Ψη are defined in Equation (6.18),
and gε and gη are standard Gaussian vectors.

Proof. We denote by ed the basis vector filled with zeros except for a 1 in position d. By Equation (6.9),

(Γ̂h + 1{h=0}ω
2I)d1,d2 =

1

T − h
T−h∑
t=1

(
1

S(h)
⊙ (Π†

t+hYt+h)(Π
†
tYt)

⊤
)

d1,d2

=
1

T − h
T−h∑
t=1

1

S(h)d1,d2
e⊤d1(Π

†
t+hYt+h)(Π

†
tYt)

⊤ed2

=
1

T − h
T−h∑
t=1

Tr

[
ed2e

⊤
d1

S(h)d1,d2
(Π†

t+hYt+h)(Π
†
tYt)

⊤

]

101

Equation (6.15) allows us to rewrite (Π†
t+hYt+h)(Π

†
tYt)

⊤:

(Γ̂h + 1{h=0}ω
2I)d1,d2 =

1

T − h
T−h∑
t=1

X⊤
t diag(πt)

ed2e
⊤
d1

S(h)d1,d2
diag(πt+h)Xt+h

+
1

T − h
T−h∑
t=1

η⊤t diag(πt)
ed2e

⊤
d1

S(h)d1,d2
diag(πt+h)Xt+h

+
1

T − h
T−h∑
t=1

X⊤
t diag(πt)

ed2e
⊤
d1

S(h)d1,d2
diag(πt+h)ηt+h

+
1

T − h
T−h∑
t=1

η⊤t diag(πt)
ed2e

⊤
d1

S(h)d1,d2
diag(πt+h)ηt+h

Let us denote by Pt the projection of RTD keeping only the components associated with time t, i.e.
such that Xt = PtX and ηt = Ptη. We recognize the following matrix L in all four lines of the
expression above:

L =
1

T − h
T−h∑
t=1

P⊤
t diag(πt)

ed2e
⊤
d1

S(h)d1,d2
diag(πt+h)Pt+h

=
1

T − h
T−h∑
t=1

P⊤
t

πt+h,d1πt,d2ed2e
⊤
d1

S(h)d1,d2
Pt+h

(6.16)

This leads to:
(Γ̂h + 1{h=0}ω

2I)d1,d2 = X⊤LX + η⊤LX +X⊤Lη + η⊤Lη

Since X and η both follow centered multivariate Gaussian distributions, we can express them as
linear combinations of standard Gaussian vectors gε and gη of dimension TD (indexed by the source
of randomness):

X = Ψεgε and η = Ψηgη (6.17)

where Ψε and Ψη are the square roots of the respective covariance matrices

Ψε = Cov[X]1/2 and Ψη = Cov[η]1/2 = ωI. (6.18)

We substitute X and η to get:

(Γ̂h + 1{h=0}ω
2I)d2,d1 = g⊤ε Ψ

⊤
ε LΨεgε + g⊤η Ψ

⊤
η LΨεgε + g⊤ε Ψ

⊤
ε LΨηgη + g⊤η Ψ

⊤
η LΨηgη,

which implies

(Γ̂h − Γh)d1,d2 = g⊤ε Ψ
⊤
ε LΨεgε − E[g⊤ε Ψ⊤

ε LΨεgε]

+ g⊤η Ψ
⊤
η LΨεgε − E[g⊤η Ψ⊤

η LΨεgε]

+ g⊤ε Ψ
⊤
ε LΨηgη − E[g⊤ε Ψ⊤

ε LΨηgη]

+ g⊤η Ψ
⊤
η LΨηgη − E[g⊤η Ψ⊤

η LΨηgη].

The union bound gives us the expected result.

102

Now, our goal is to apply a Gaussian concentration inequality to these deviation probabilities.
However, since L is generated by the discrete sampling process π, it is random, and so are the
products Ψ⊤

a LΨb (where a, b ∈ {ε, η}). We thus need a conditional version of the Hanson-Wright
inequality (Lemma 6.A.6), in which the following random variables will come into play:

• The spectral norm ∥Ψ⊤
a LΨb∥2

• The Frobenius norm ∥Ψ⊤
a LΨb∥2F

• The shifted trace Tr(Ψ⊤
a LΨb − E[Ψ⊤

a LΨb])

Lemma 6.A.6 (Conditional Hanson-Wright inequality). Let A be a random square matrix such
that with probability 1− δ,

∥A∥2 ≤M2 and ∥A∥2F ≤M2
F .

If X and Y are two independent standard Gaussian vectors independent of A, we have:

P
(
|X⊤AX − E[X⊤AX]| ≥ u

)
≤ δ + 2 exp

(
−cmin

{
u2

M2
F

,
u

M2

})
+ P (|Tr(A− E[A])| ≥ u/2)

P
(
|X⊤AY − E[X⊤AY]| ≥ u

)
≤ δ + 2 exp

(
−cmin

{
u2

M2
F

,
u

M2

})
.

Proof. We start with the first case. Since A is a discrete random matrix with a finite set A of
possible values,

P(|X⊤AX − E[X⊤AX]| ≥ u) =
∑
a∈A

P(|X⊤AX − E[X⊤AX]| ≥ u ∩A = a)

=
∑
a∈A

P(|X⊤aX − E[X⊤AX]| ≥ u ∩A = a).

Using independence between X and A gives us

P(|X⊤AX − E[X⊤AX]| ≥ u) =
∑
a∈A

P(|X⊤aX − E[X⊤AX]| ≥ u)P(A = a).

We now split the set of feasible values A into

A≤ = {a ∈ A : ∥a∥2F ≤M2
F } and A> = {a ∈ A : ∥a∥2F > M2

F }.

Since we assumed P(A ∈ A>) =
∑

a∈A>
P(A = a) ≤ δ, we get:

P(|X⊤AX − E[X⊤AX]| ≥ u) ≤ δ +
∑
a∈A≤

P(|X⊤aX − E[X⊤AX]| ≥ u)P(A = a).

Unfortunately, Lemma A.2.10 only lets us bound

P(|X⊤aX − E[X⊤aX]| ≥ u) and not P(|X⊤aX − E[X⊤AX]| ≥ u)

103

(notice the change inside the expectation), which means we need an additional step. For a fixed a ∈
A≤, we use independence and normality to obtain

E[X⊤aX]− E[X⊤AX] = E[Tr(X⊤(a−A)X)] = Tr(E[XX⊤(a−A)])
= Tr(E[XX⊤]E[a−A]) = Tr(a− E[A]).

We are now ready to decompose, with the help of the union bound:

P(|X⊤aX − E[X⊤AX]| ≥ u) = P
(
|X⊤aX − E[X⊤aX] + E[X⊤aX]− E[X⊤AX]| ≥ u

)
≤ P

(
|X⊤aX − E[X⊤aX]| ≥ u/2

)
+ P

(
|E[X⊤aX]− E[X⊤AX]| ≥ u/2

)
≤ 2 exp

(
−cmin

{
u2

∥a∥2F
,
u

∥a∥2

})
+ 1 {|Tr(a− E[A])| ≥ u/2} .

This implies:

P(|X⊤AX − E[X⊤AX]| ≥ u) ≤ δ +
∑
a∈A≤

P(A = a)P(|X⊤aX − E[X⊤AX]| ≥ u)

≤ δ +
∑
a∈A≤

P(A = a)× 2 exp

[
−cmin

{
u2

∥a∥2F
,
u

∥a∥2

}]
+
∑
a∈A≤

P(A = a)× 1 {|Tr(a− E[A])| ≥ u/2} .

By definition of A≤,

P(|X⊤AX − E[X⊤AX]| ≥ u) ≤ δ +
∑
a∈A≤

P(A = a)× 2 exp

(
−cmin

{
u2

M2
F

,
u

M2

})
+ P (|Tr(A− E[A])| ≥ u/2)

≤ δ + 2 exp

(
−cmin

{
u2

M2
F

,
u

M2

})
+ P (|Tr(A− E[A])| ≥ u/2) .

The proof for X⊤AY follows the same lines, except that we replace E[XX⊤] = I by E[XY ⊤] = 0,
which removes the trace term in the final expression.

6.A.5 Interlude: discrete concentration

We exploit discrete concentration results to bound the deviations of the three quantities we just
mentioned, starting with the norms.

Lemma 6.A.7 (Norm reformulation for L). The spectral and Frobenius norms of L are given by

∥L∥2 =
maxt∈[T−h] πt+h,d1πt,d2

(T − h)S(h)d1,d2
and ∥L∥2F =

1

(T − h)2S(h)d1,d2

T−h∑
t=1

πt+h,d1πt,d2 .

104

Proof. We first notice that L has a block-superdiagonal structure of rank h:

L =
1

T − h
T−h∑
t=1

P⊤
t L[t,t+h]Pt+h with L[t,t+h] =

πt+h,d1πt,d2
S(h)d1,d2

ed2e
⊤
d1 . (6.19)

The spectral and Frobenius norms of such a matrix can easily be deduced from those of its blocks.
Since ∥ed2e⊤d1∥2 = ∥ed2e⊤d1∥F = 1 and the πt are binary-valued, this leads to the following formulas:

∥L∥2 =
1

T − h max
t∈[T−h]

∥L[t,t+h]∥2 =
1

(T − h)S(h)d1,d2
max

t∈[T−h]
πt+h,d1πt,d2

∥L∥2F =
1

(T − h)2
T−h∑
t=1

∥L[t,t+h]∥2F =
1

(T − h)2S(h)2d1,d2

T−h∑
t=1

πt+h,d1πt,d2 .

We can bound the spectral norm for free.

Lemma 6.A.8 (Spectral norm bound for L). With probability 1, the spectral norm ∥L∥2 satisfies

∥L∥2 ≤
c

Tpqu

Proof. Note that S(h)d1,d2 ≥ pqu, and since h ∈ {0, 1}, we can state that T − h ≥ cT . By
Lemma 6.A.7, we deduce

∥L∥2 =
maxt∈[T−h] πt+h,d1πt,d2

(T − h)S(h)d1,d2
≤ 1

(T − h)S(h)d1,d2
≤ 1

(T − h)pqu
≤ 1

cTpqu
.

The Frobenius norm requires a little more work because of the sum it contains.

Lemma 6.A.9 (Concentration of the sampling Bernoullis). For all u ∈ [0, 1],

P

(∣∣∣∣∣ 1

T − h
T−h∑
t=1

πt+h,d1πt,d2 − S(h)d1,d2

∣∣∣∣∣ ≥ uS(h)d1,d2
)
≤ c1 exp(−c2u2TS(h)d1,d2).

Proof. We distinguish three cases:

• When d1 = d2 and h = 0, we have πt+h,d1 = πt,d2 , which is a 2-state Markov chain with
transition matrix P ⊗ I, depicted on Figure 6.2a.

• When d1 ̸= d2, the couple (πt,d2 , πt+h,d1) is a 4-state Markov chain with transition matrix P⊗P
since the chains πt+h,d1 and πt,d2 evolve along independent dimensions. It is shown on
Figure 6.2b.

• When d1 = d2 and h ≥ 1, we must study the (h + 1)-tuple (πt,d1 , πt+1,d1 , ..., πt+h,d1). It
is a 2h+1-state Markov chain with transition matrix T (h), whose non-reversible transition
diagram can be seen on Figure 6.2c.

105

(0, 0)

(1, 1)

(a) d1 = d2 & h = 0:
transition P

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(b) d1 ̸= d2: transition P ⊗ P

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(c) d1 = d2 & h = 1:
transition T (1).

Figure 6.2: State space and transitions for the Markov chains used in the discrete concentration
result

In all of these cases, our variable of interest πt+h,d1πt,d2 is a function of the underlying Markov
chain. The relevant functions are:

f1 : x 7→ x f2 : (x, y) 7→ yx f3 : (x0, ..., xh) 7→ xhx0.

We note that since χ ≤ a, b ≤ 1− χ, all the coefficients of P are greater than χ. Furthermore, all
the coefficients of P ⊗ P are greater than χ2. Finally, all the coefficients of T (h)h+1 are greater
than χh+1, because all pairs of states are connected after h+1 steps. Let us illustrate this with h = 1:

T (1) =


1− a a 0 0
0 0 b 1− b

1− a a 0 0
0 0 b 1− b

 T (1)2 =


(1− a)2 a(1− a) ab a(1− b)
(1− a)b ab (1− b)b (1− b)2
(1− a)2 a(1− a) ab a(1− b)
(1− a)b ab (1− b)b (1− b)2

 .

Subsequently, all the transition matrices R we are interested in, namely R ∈ {P, P ⊗ P, T (h)h+1},
satisfy the Doeblin condition with r = h+ 1 and δ = χh+1:

Rh+1 ≥ χh+1

1 · · · 1
...

. . .
...

1 · · · 1

 .

Since we only consider h ∈ {0, 1} and since χ is fixed for our purposes, these chains fulfill the
assumptions of Lemma A.2.8. We thus conclude:

P

(∣∣∣∣∣ 1

T − h
T−h∑
t=1

πt+h,d1πt,d2 − S(h)d1,d2

∣∣∣∣∣ ≥ uS(h)d1,d2
)
≤ c1 exp

(
−c2u2(T − h)S(h)d1,d2

)
.

We finally replace T − h with cT in the exponential, leading to the result we announced.

Based on this concentration property, we can now bound the norms of the random matrix L
with high probability.

106

Lemma 6.A.10 (Frobenious norm bound for L). For any δ such that Equation (6.20) holds, with
probability at least 1− δ, the Frobenius norm ∥L∥2F satisfies

∥L∥2F ≤
c

Tpqu
.

Proof. By Lemma 6.A.9: for all u ∈ [0, 1],

P

(
1

T − h
T−h∑
t=1

πt+h,d1πt,d2 ≥ (1 + u)S(h)d1,d2

)
≤ c1 exp(−c2u2TS(h)d1,d2).

We remember the expression of Lemma 6.A.7 for ∥L∥2F and notice that:

P
(
∥L∥2F ≥

1 + u

(T − h)S(h)d1,d2

)
= P

(
1

(T − h)S(h)d1,d2

(
1

T − h
T−h∑
t=1

πt+h,d1πt,d2
S(h)d1,d2

)
≥ 1

(T − h)S(h)d1,d2
(1 + u)

)
≤ c1 exp(−c2u2TS(h)d1,d2)

We finally recall that S(h)d1,d2 ≥ pqu and T − h ≥ cT , so that

P
(
∥L∥2F ≥

1 + u

cTpqu

)
≤ P

(
∥L∥2F ≥

1 + u

(T − h)pqu

)
≤ P

(
∥L∥2F ≥

1 + u

(T − h)S(h)d1,d2

)
≤ c1 exp

(
−c2u2TS(h)d1,d2

)
≤ c1 exp

(
−c2u2Tpqu

)
.

All we need to make sure that P
(
∥L∥2F ≥ 1+u

cTpqu

)
≤ δ is to choose u such that

c1 exp
(
−c2u2Tpqu

)
≤ δ ⇐⇒ u ≥

√
log(c1/δ)

c2Tpqu

Note that we can replace log(c1/δ) by a constant times log(1/δ) to simplify expressions: this is
possible as long as δ is chosen “small enough” (i.e. smaller than some universal constant). We will
assume this fairly often in the rest of the proof.

For Lemma 6.A.9 to apply, we must ensure that our choice of u is smaller than 1. With the
previous discussion in mind, u ≤ 1 is implied by√

log(1/δ)

Tpqu
≤ c. (6.20)

If this holds, then we have

P
(
∥L∥2F ≥

2

cTpqu

)
≤ P

(
∥L∥2F ≥

1 + u

cTpqu

)
≤ δ.

This yields the result we wanted.

107

We now move on to studying the shifted trace of Ψ⊤
a LΨb, which is the last ingredient we need

for our application of Lemma 6.A.6.

Lemma 6.A.11 (Trace bound for the L matrices). For all u ∈ [0, 1],

P(|Tr(Ψ⊤
ε LΨε − E[Ψ⊤

ε LΨε])| ≥ u) ≤ c1 exp
(
−c2u

2Tpqu
∥Γh∥22

)
P(|Tr(Ψ⊤

η LΨη − E[Ψ⊤
η LΨη])| ≥ u) ≤ c1 exp

(
−c2u

2Tpqu
ω4

)
.

Proof. We can compute an explicit formula thanks to Equation (6.19): if a ∈ {ε, η} then

Tr(Ψ⊤
a LΨa) = Tr

(
1

T − h
T−h∑
t=1

Ψ⊤
a P

⊤
t

πt+h,d1πt,d2
S(h)d1,d2

ed2e
⊤
d1Pt+hΨa

)

=
1

T − h
T−h∑
t=1

πt+h,d1πt,d2
S(h)d1,d2

Tr
(
Ψ⊤

a P
⊤
t ed2e

⊤
d1Pt+hΨa

)
=

1

T − h
T−h∑
t=1

πt+h,d1πt,d2
S(h)d1,d2

(
e⊤d1Pt+hΨaΨ

⊤
a P

⊤
t ed2

)
=

1

T − h
T−h∑
t=1

πt+h,d1πt,d2
S(h)d1,d2

(
(ΨaΨ

⊤
a)[t+h,t]

)
d1,d2

where
(
(ΨaΨ

⊤
a)[t+h,t]

)
d1,d2

denotes the (d1, d2) coefficient of the (t+ h, t) block of ΨaΨ
⊤
a . Now is

the time to look back on Equation (6.18), which tells us that both ΨεΨ
⊤
ε and ΨηΨ

⊤
η are constant

along their superdiagonal of rank h. We thus find that

Tr(Ψ⊤
ε LΨε − E[Ψ⊤

ε LΨε]) = (Γh)d1,d2

(
1

T − h
T−h∑
t=1

πt+h,d1πt,d2
S(h)d1,d2

− 1

)

Tr(Ψ⊤
η LΨη − E[Ψ⊤

η LΨη]) = (1{h=0}ω
2I)d1,d2

(
1

T − h
T−h∑
t=1

πt+h,d1πt,d2
S(h)d1,d2

− 1

)

Like before, we can apply Lemma 6.A.9: for all u ∈ [0, 1],

P

(∣∣∣∣∣ 1

T − h
T−h∑
t=1

πt+h,d1πt,d2
S(h)d1,d2

− 1

∣∣∣∣∣ ≥ u
)
≤ c1 exp(−c2u2TS(h)d1,d2) ≤ c1 exp(−c2u2Tpqu).

Since |(Γh)d1,d2 | ≤ ∥Γh∥2 and (1{h=0}ω
2I)d1,d2 ≤ ω2, we can deduce

P
(
|Tr(Ψ⊤

ε LΨε − E[Ψ⊤
ε LΨε])| ≥ u∥Γh∥2

)
≤ c1 exp(−c2u2Tpqu)

P
(
|Tr(Ψ⊤

η LΨη − E[Ψ⊤
η LΨη])| ≥ uω2

)
≤ c1 exp(−c2u2Tpqu)

which, after rescaling, yields the result we announced.

108

6.A.6 Gaussian concentration, episode 2

We are now ready to apply our conditional concentration result.

Lemma 6.A.12 (Applying Hanson-Wright). Let δ > 0 and u ∈ [0, 1]. Assume that Equations (6.20)
and (6.21) hold. Then the deviation probability for (Γ̂h)d1,d2 satisfies

P(|(Γ̂h − Γh)d1,d2 | ≥ u) ≤ 4δ + c1 exp

(
− c2u

2Tpqu

max
{
(∥Ψε∥22 + ω2)2, ∥Γh∥22, ω4

}) .
Proof. The conclusion we had reached before our discrete interlude is given by Lemma 6.A.5, and
we can rewrite it as

P(|(Γ̂h − Γh)d1,d2 | ≥ u) ≤ pεε + pηε + pεη + pηη,

where each pab represents a deviation probability for a specific quadratic form g⊤a Ψ
⊤
a LΨbgb. Let

us choose δ such that Equation (6.20) holds. By Lemmas 6.A.8 and 6.A.10, with probability at
least 1− δ, the following eight inequalities occur at the same time (we use Lemma A.1.4 to split the
products):

∥Ψ⊤
ε LΨε∥2F ≤

c∥Ψε∥42
Tpqu

∥Ψ⊤
ε LΨε∥2 ≤

c∥Ψε∥22
Tpqu

∥Ψ⊤
η LΨε∥2F ≤

c∥Ψη∥22∥Ψε∥22
Tpqu

∥Ψ⊤
η LΨε∥2 ≤

c∥Ψη∥2∥Ψε∥2
Tpqu

∥Ψ⊤
ε LΨη∥2F ≤

c∥Ψε∥22∥Ψη∥22
Tpqu

∥Ψ⊤
ε LΨη∥2 ≤

c∥Ψε∥2∥Ψη∥2
Tpqu

∥Ψ⊤
η LΨη∥2F ≤

c∥Ψη∥42
Tpqu

∥Ψ⊤
η LΨη∥2 ≤

c∥Ψη∥22
Tpqu

.

The spectral norm of Ψη is easily seen to equal ∥Ψη∥2 = ∥ω2I∥1/22 = ω, which allows us to lighten
these expressions. From there, Lemma 6.A.6 (applied with X = ga, Y = gb and A = Ψ⊤

a LΨb)
provides the concentration bounds we need4:

pεε ≤ δ + 2 exp

(
−cTpqumin

{
(u/4)2

∥Ψε∥42
,
(u/4)

∥Ψε∥22

})
+ P

(
|Tr(Ψ⊤

η LΨε)− E[Ψ⊤
ε LΨε])| ≥ u/8

)
pηε ≤ δ + 2 exp

(
−cTpqumin

{
(u/4)2

ω2∥Ψε∥22
,

(u/4)

ω∥Ψε∥2

})
pεη ≤ δ + 2 exp

(
−cTpqumin

{
(u/4)2

∥Ψε∥22ω2
,

(u/4)

∥Ψε∥2ω

})
pηη ≤ δ + 2 exp

(
−cTpqumin

{
(u/4)2

ω4
,
(u/4)

ω2

})
+ P

(
|Tr(Ψ⊤

η LΨη)− E[Ψ⊤
η LΨη])| ≥ u/8

)
.

The denominators inside the minima can be unified: for the left column,

max
{
∥Ψε∥42, ∥Ψε∥22ω2, ω4

}
≤
(
∥Ψε∥22 + ω2

)2
,

4The additional trace terms that appear when applying Lemma 6.A.6 (as opposed to the non-conditional version of
Lemma A.2.10) are absent from the papers by Rao et al. (2017a) and Rao et al. (2017b), which is why we think their
upper bound proofs are incomplete.

109

and for the right column,

max
{
∥Ψε∥22, ∥Ψε∥2ω, ω2

}
≤ (∥Ψε∥2 + ω)2 ≤ 2

(
∥Ψε∥22 + ω2

)
.

This means we can upper bound each of the four minima by

min

{(
u/4

∥Ψε∥22 + ω2

)2

,
u/8

∥Ψε∥22 + ω2

}
.

From now on, we additionally suppose that

u/4

∥Ψε∥22 + ω2
≤ 1

2
(6.21)

This enables us to get rid of these minima by reducing them to the (smaller) quadratic term on the
left. We end up with

pεε ≤ δ + 2 exp

(
− cu2Tpqu(
∥Ψε∥22 + ω2

)2
)

+ P
(
|Tr(Ψ⊤

ε LΨε)− E[Ψ⊤
ε LΨε])| ≥ u/8

)
pηε ≤ δ + 2 exp

(
− cu2Tpqu(
∥Ψε∥22 + ω2

)2
)

pεη ≤ δ + 2 exp

(
− cu2Tpqu(
∥Ψε∥22 + ω2

)2
)

pηη ≤ δ + 2 exp

(
− cu2Tpqu(
∥Ψε∥22 + ω2

)2
)

+ P
(
|Tr(Ψ⊤

η LΨη)− E[Ψ⊤
η LΨη])| ≥ u/8

)
.

As for the trace terms, they are taken care of by Lemma 6.A.11:

P
(
|Tr(Ψ⊤

η LΨε)− E[Ψ⊤
ε LΨε])| ≥ u/8

)
≤ c3 exp

(
−c4

(u/8)2Tpqu
∥Γh∥22

)
P
(
|Tr(Ψ⊤

η LΨη)− E[Ψ⊤
η LΨη])| ≥ u/8

)
≤ c3 exp

(
−c4

(u/8)2Tpqu
ω4

)
We plug this in and rearrange to get:

pεε + pηε + pεη + pηη ≤ 4δ + c1 exp

(
− c2u

2Tpqu

max
{
(∥Ψε∥22 + ω2)2, ∥Γh∥22, ω4

}) .

The following result will simplify the denominator inside the exponential.

Lemma 6.A.13 (Spectral norms of Ψε and Γh). The matrices Ψε and Γh satisfy:

∥Ψε∥22 ≤
σ2max

(1− ϑ)2 and ∥Γh∥2 ≤
ϑhσ2max

1− ϑ .

As a consequence,

max
{
(∥Ψε∥22 + ω2)2, ∥Γh∥22, ω4

}
≤ (σ2max + ω2)2

(1− ϑ)4

110

Proof. By Lemma 6.A.1, we can write Ψ2
ε as a sum of Kronecker products (one for each block).

Let Jt be a matrix full of zeros, except for the subdiagonal of rank t, which is full of ones. Then we
have:

Ψ2
ε = Cov[X] = I ⊗ Γ0(θ) +

T−1∑
t=1

[
Jt ⊗ θtΓ0(θ) + J⊤

t ⊗ Γ0(θ)(θ
t)⊤
]

This gives us control over its spectral norm thanks to Lemma A.1.3:

∥Ψε∥22 = ∥Ψ2
ε∥2 ≤ ∥I∥2 × ∥Γ0(θ)∥2 +

T−1∑
t=1

[
∥Jt∥2 × ∥θtΓ0(θ)∥2 + ∥J⊤

t ∥2 × ∥Γ0(θ)(θ
t)⊤∥2

]
≤ ∥Γ0(θ)∥2

(
1 + 2

T−1∑
t=1

∥θ∥t2

)
We now use Lemma 6.A.2:

∥Ψε∥22 ≤
σ2max

1− ϑ2
(
1 + 2

ϑ

1− ϑ

)
=

σ2max

(1− ϑ)2 .

We now turn to Γh with Lemmas 6.A.1 and 6.A.2:

∥Γh∥2 = ∥θhΓ0(θ)∥2 ≤
ϑhσ2max

1− ϑ2 .

In particular, we have

max
{
(∥Ψε∥22 + ω2)2, ∥Γh∥22, ω4

}
≤ max

{(
σ2max

(1− ϑ)2 + ω2

)2

,

(
ϑhσ2max

1− ϑ2
)2

, ω4

}

≤ (σ2max + ω2)2

(1− ϑ)4

We can now control the error of the covariance estimator:

Lemma 6.A.14 (Max norm convergence rate of the covariance estimator). Let δ > 0 be small
enough. Assume that Equations (6.20) and (6.23) hold. Then the covariance estimator Γ̂h from
Equation (6.9) satisfies

∥Γ̂h − Γh∥max ≤ c
σ2max + ω2

(1− ϑ)2

√
log(D/δ)√
Tpqu

= err(δ)

with probability greater than 1− δ.
Proof. Let us plug Lemma 6.A.13 into Lemma 6.A.12

P(|(Γ̂h − Γh)d1,d2 | ≥ u) ≤ 4δ + c1 exp

(
−c2(1− ϑ)

4u2Tpqu
(σ2max + ω2)2

)
.

All that is left to do is choose u such that

P(|(Γ̂h − Γh)d1,d2 | ≥ u) ≤ 8δ,

111

which will be true if

c1 exp

(
−c2(1− ϑ)

4Tpqu
(σ2max + ω2)2

u2
)
≤ 4δ ⇐⇒ u ≥

√
log(c1/4δ)(σ2max + ω2)2

c2(1− ϑ)4Tpqu
.

As long as δ is small enough, we can take

u = c

√
log(1/δ)(σ2max + ω2)

(1− ϑ)2√Tpqu
. (6.22)

For Lemma 6.A.12 to apply, we must verify that u ∈ [0, 1] and that Equation (6.21) is satisfied. In
other words, we have to ensure that

c

√
log(1/δ)(σ2max + ω2)

(1− ϑ)2√Tpqu
≤ min{1, 2(∥Ψε∥22 + ω2)}

Using Lemma 6.A.13, this is implied by the condition√
log(1/δ)max{1, (σ2max + ω2)−1}

(1− ϑ)2√Tpqu
≤ c (6.23)

Under these hypotheses, we just proved that with probability at least 1− 8δ,

|(Γ̂h − Γh)d1,d2 | ≤ c
σ2max + ω2

(1− ϑ)2

√
log(1/δ)√
Tpqu

.

We finish with a union bound, applying the previous result to all pairs (d1, d2) ∈ [D]2. With
probability greater than 1− 8D2δ, we have:

max
d1,d2
|(Γ̂h − Γh)d1,d2 | = ∥Γ̂h − Γh∥max ≤ c

σ2max + ω2

(1− ϑ)2

√
log(1/δ)√
Tpqu

.

Replacing δ with 8D2δ gives us the result we wanted: with probability greater than 1− δ,

∥Γ̂h − Γh∥max ≤ c
σ2max + ω2

(1− ϑ)2

√
log(D/δ)√
Tpqu

.

6.A.7 Behavior of the Dantzig selector

We now walk the final steps from the error on Γ̂h to the error on θ̂. In order to recover Theorem 6.4.1,
we adapt the convergence proof from Han, Lu, and Liu (2015, Appendix A.1). However, we use
our own notations and our custom concentration results for Γ̂h. To make comparison between both
papers easier, we provide a dictionary of the main notations in Table 6.1.

Our sparse transition estimator is defined as a solution to (6.8). The end goal is to control the
error ∥θ̂ − θ∥1, where θ = Γ1Γ

−1
0 is the true transition matrix. We start by choosing a specific λ

such that θ is feasible with high probability.

112

This paper Han, Lu, and Liu (2015)
VAR def Xt = θXt−1 + εt Xt = A⊤

1 Xt−1 + Zt

Covariance Γh = Cov(Xh, X0) Σi = Cov(X0, Xi)
Yule-Walker Γh = θhΓ0 Σi = Σ0A

i
1

Covariance estimate Γ̂h Si
Covariance error err(δ) ζi

Optimization constraint ∥M Γ̂0 − Γ̂1∥max ≤ λ ∥S0M − S1∥max ≤ λ
Optimization objective ∥vec(M)∥1 ∥vec(M)∥1

Threshold in proof ν λ1

Table 6.1: Notation correspondence between this paper and Han, Lu, and Liu (2015)

Lemma 6.A.15 (Feasibility of the real θ). If we select the penalization level

λ = (∥θ∥∞ + 1) err(δ),

then with probability at least 1− δ, the real θ is a feasible solution to the optimization problem (6.8).

Proof.

∥θΓ̂0 − Γ̂1∥max = ∥Γ1Γ
−1
0 Γ̂0 − Γ̂1∥max

= ∥Γ1Γ
−1
0 Γ̂0 − Γ1 + Γ1 − Γ̂1∥max

≤ ∥Γ1Γ
−1
0 Γ̂0 − Γ1Γ

−1
0 Γ0∥max + ∥Γ1 − Γ̂1∥max

= ∥θ(Γ̂0 − Γ0)∥max + ∥Γ1 − Γ̂1∥max

By Lemma A.1.5,
∥θ(Γ̂0 − Γ0)∥max ≤ ∥θ∥∞∥Γ̂0 − Γ0∥max

By Lemma 6.A.14, with probability greater than 1− 2δ,

∥Γ̂0 − Γ0∥max ≤ err(δ) and ∥Γ̂1 − Γ1∥max ≤ err(δ)

which implies
∥θΓ̂0 − Γ̂1∥max ≤ (∥θ∥∞ + 1) err(δ).

This is exactly the feasibility criterion for (6.8) if λ = (∥θ∥∞ + 1) err(δ).

Lemma 6.A.16 (Error on θ̂ in max norm). If we select λ = (∥θ∥∞ + 1) err(δ), then with probability
at least 1− δ, the max norm error of θ̂ satisfies

∥θ̂ − θ∥max ≤ 2λ∥Γ−1
0 ∥1.

Proof.

∥θ̂ − θ∥max = ∥θ̂ − Γ1Γ
−1
0 ∥max

= ∥(θ̂Γ0 − Γ1)Γ
−1
0 ∥max

= ∥(θ̂Γ0 − θ̂Γ̂0 + θ̂Γ̂0 − Γ̂1 + Γ̂1 − Γ1)Γ
−1
0 ∥max

≤ ∥(θ̂Γ0 − θ̂Γ̂0)Γ
−1
0 ∥max + ∥(θ̂Γ̂0 − Γ̂1)Γ

−1
0 ∥max + ∥(Γ̂1 − Γ1)Γ

−1
0 ∥max

113

By Lemma A.1.5,

∥θ̂ − θ∥max ≤
(
∥θ̂(Γ0 − Γ̂0)∥max + ∥θ̂Γ̂0 − Γ̂1∥max + ∥Γ̂1 − Γ1∥max

)
∥Γ−1

0 ∥1

≤
(
∥θ̂∥∞∥Γ0 − Γ̂0∥max + ∥θ̂Γ̂0 − Γ̂1∥max + ∥Γ̂1 − Γ1∥max

)
∥Γ−1

0 ∥1

We want to control ∥θ̂∥∞ using ∥θ∥∞. Let us recall that the operator ℓ∞ norm is equal to the
maximum ℓ1 norm of the rows of a matrix. To control the rows of θ̂, we notice that the optimization
problem defining θ̂, namely

min
M∈RD×D

∥vec(M)∥1 s.t. ∥M Γ̂0 − Γ̂1∥max ≤ λ

is equivalent to the row-wise minimization

∀i, min
Mi,·∈R1×D

∥Mi,·∥1 s.t. ∥Mi,·Γ̂0 − (Γ̂1)i,·∥max ≤ λ

From this, we deduce that each row of the optimum θ̂ satisfies ∥θ̂i,·∥1 ≤ ∥θi,·∥1, which implies ∥θ̂∥∞ ≤
∥θ∥∞. Going back to our error estimate, we get:

∥θ̂ − θ∥max ≤
(
∥θ∥∞∥Γ0 − Γ̂0∥max + ∥θ̂Γ̂0 − Γ̂1∥max + ∥Γ̂1 − Γ1∥max

)
∥Γ−1

0 ∥1

Note that the middle term is smaller than λ because the optimum θ̂ is a feasible solution. Meanwhile,
the first and third term are smaller than err(δ) with probability 1− δ:

∥θ̂ − θ∥max ≤ (∥θ∥∞ err(δ) + λ+ err(δ)) ∥Γ−1
0 ∥1 = 2λ∥Γ−1

0 ∥1

To complete the proof of Theorem 6.4.1, we simply need to go from the max norm to the ℓ∞
operator norm.

Proof. Let ν > 0 be a threshold (to be chosen later). We define

s1 = max
i

∑
j

min

{ |θi,j |
ν

, 1

}
and Ii = {j : |θi,j | ≥ ν}

With high probability, the following holds for any row i:

∥θ̂i,· − θi,·∥1 ≤ ∥θ̂i,Ic
i
− θi,Ic

i
∥1 + ∥θ̂i,Ii − θi,Ii∥1

≤ ∥θ̂i,Ic
i
∥1 + ∥θi,Ic

i
∥1 + ∥θ̂i,Ii − θi,Ii∥1

= (∥θ̂i,·∥1 − ∥θ̂i,Ii∥1) + ∥θi,Ic
i
∥1 + ∥θ̂i,Ii − θi,Ii∥1

≤ ∥θi,·∥1 − ∥θ̂i,Ii∥1 + ∥θi,Ic
i
∥1 + ∥θ̂i,Ii − θi,Ii∥1

= (∥θi,Ii∥1 + ∥θi,Ic
i
∥1)− ∥θ̂i,Ii∥1 + ∥θi,Ic

i
∥1 + ∥θ̂i,Ii − θi,Ii∥1

= 2∥θi,Ic
i
∥1 + (∥θi,Ii∥1 − ∥θ̂i,Ii∥1) + ∥θ̂i,Ii − θi,Ii∥1

≤ 2∥θi,Ic
i
∥1 + 2∥θ̂i,Ii − θi,Ii∥1

114

By definition of Ii, for all j ∈ Ici , |θi,j | ≤ ν, hence

∥θi,Ic
i
∥1 =

∑
j∈Ic

i

|θi,j | =
∑
j∈Ic

i

min{|θi,j |, ν} ≤
∑
j

min{|θi,j |, ν} ≤ νs1

Meanwhile, the second term satisfies

∥θ̂i,Ii − θi,Ii∥1 ≤ |Ii| × ∥θ̂ − θ∥max

And by definition of Ii, for all j ∈ Ii, |θi,j | ≥ ν, hence

|Ii| =
∑
j∈Ii

1 =
∑
j∈Ii

min

{ |θi,j |
ν

, 1

}
≤
∑
j

min

{ |θi,j |
ν

, 1

}
≤ s1

Combining all of this, we get that with high probability,

∥θ̂i,· − θi,·∥1 ≤ 2(ν + 2λ∥Γ−1
0 ∥1)s1

Judging by the last Equation, it makes sense to choose ν = 2λ∥Γ−1
0 ∥1. Furthermore, our sparsity

hypothesis on θ implies that for all but s of the coefficients of any row i, min{|θi,j |, ν} = |θi,j | = 0.
We deduce that for every i,∑

j

min {|θi,j |, ν} ≤ smax
j

min {|θi,j |, ν} ≤ νs

which directly implies
νs1 = max

i

∑
j

min {|θi,j |, ν} ≤ νs

We finally find that with high probability,

∥θ̂i,· − θi,·∥1 ≤ 4νs1 ≤ 4νs = 8λ∥Γ−1
0 ∥1s

With the help of a union bound, again with high probability,

∥θ̂ − θ∥∞ = max
i
∥θ̂i,· − θi,·∥1 ≤ 8λ∥Γ−1

0 ∥1s

We substitute the value of λ and obtain

∥θ̂ − θ∥∞ ≤ 8(∥θ∥∞ + 1) err(δ)∥Γ−1
0 ∥1s

Once we plug in the value of err(δ), the resulting high-probability error bound reads

∥θ̂ − θ∥∞ ≤ c
∥θ∥∞ + 1

∥Γ−1
0 ∥−1

1

σ2max + ω2

(1− ϑ)2
s
√
log(D/δ)√
Tpqu

Since ϑ only acted as an upper bound on ∥θ∥2 in this proof, we can define

γu(θ) =
∥θ∥∞ + 1

(1− ∥θ∥2)2
σ2max + ω2

∥Γ−1
0 ∥−1

1

to obtain the compressed expression

∥θ̂ − θ∥∞ ≤ cγu(θ)
s
√

log(D/δ)√
Tpqu

.

115

6.B Proof of the minimax lower bound

We now present the detailed proof of Theorem 6.4.2.

6.B.1 Overview

Our argument is based on Fano’s method, which we sum up in Lemma A.2.1. For a detailed
presentation, we refer the reader to Tsybakov (2009, Chapter 2). Note that Wainwright (2019,
Chapter 15) and Duchi (2019, Chapter 7) also offer good treatments of the subject.

Fano’s method relies on choosing a set of parameters θ0, θ1, ..., θM satisfying two seemingly
contradictory conditions: their induced distributions must be hard to distinguish, yet they must
lie as fart apart from one another as possible. In particular, the crucial requirement of Fano’s
method is a tight upper bound on the KL divergence between two distributions generated by different
parameters θi and θ0. Taking the latter to be 0, we actually want to bound

1

M + 1

M∑
i=1

KL {Pθi(Π, Y) ∥ P0(Π, Y)} ≤ max
i

KL {Pθi(Π, Y) ∥ P0(Π, Y)}

By Lemma A.2.2,

KL {Pθi(Π, Y) ∥ P0(Π, Y)} = KL {Pθi(Π) ∥ P0(Π)}+ EΠ [KL {Pθi(Y | Π) ∥ P0(Y | Π)}]

Since θi does not affect the distribution of the sampling process Π, the first term of the right-hand
side is zero, and we will concentrate on the second term. First, we will upper-bound the random
variable inside the expectation for a fixed realization of Π, and then we will average said bound over
all possible projections.

We now give the structure of the argument in a coherent order, along with the most important
intermediate results:

1. Compute the conditional covariance Covθ[Y | Π] and decompose it into a constant term QΠ

(corresponding to the independent case θ = 0) plus a residual RΠ(θ) (Lemma 6.B.1).

2. Upper-bound the conditional KL divergence KL {Pθ(Y | Π) ∥ P0(Y | Π)} using the “deviations
from the identity” ∆Π(θ) = Q

−1/2
Π RΠ(θ)Q

−1/2
Π (Lemma 6.B.2).

3. Control ∆Π(θ) using features of R(θ) scaled by sampling-related factors (Lemmas 6.B.3, 6.B.4
and 6.B.5).

4. Deduce an upper bound on the KL divergence EΠ[KL {Pθ(Y | Π) ∥ P0(Y | Π)}] (Lemma 6.B.6).

5. Apply Fano’s method to a set of parameters θi constructed from a pruned binary hypercube of
well-chosen radius.

6.B.2 Change of notations

For this part, we slightly modify the previous conventions: we now assume that all the rows of Πt

that contain only zeros are removed. In other words, Πt is no longer the diagonal matrix diag(πt)
but instead becomes a wide rectangular matrix with exactly one 1 per row and at most one 1 per

116

column. We thus have ΠΠ⊤ = I unless all the πt,d are zero, in which case the matrix Π is empty, and
so are the observations Y . Let us denote this very unlikely event by E, and its complement by Ec.
If Π is such that E happens, we obviously have KL {Pθi(Y | Π) ∥ P0(Y | Π)} = 0, which means that

EΠ [KL {Pθi(Y | Π) ∥ P0(Y | Π)}] = EΠ [1EcKL {Pθi(Y | Π) ∥ P0(Y | Π)}] (6.24)

For the beginning of the proof, we consider a fixed, non-empty realization of Π.

6.B.3 Covariance decomposition

As we announced in the proof sketch, our reference parameter will be θ0 = 0, which is why it makes
sense to express the conditional covariance of Y as a deviation from the case without interactions.
This is the aim of the following result.

Lemma 6.B.1 (Conditional covariance decomposition). The covariance matrix of Y given Π
decomposes as

Covθ[Y | Π] = QΠ +RΠ(θ),

where QΠ is a constant term and RΠ(θ) is a residual which vanishes as θ → 0. They are defined as
follows: the constant term is

QΠ = Π(bdiagT Σ)Π⊤ + ω2I

whereas the residual equals

RΠ(θ) = ΠR(θ)Π⊤ with R(θ) =


θΓ0(θ)θ

⊤ Γ0(θ)(θ
1)⊤ Γ0(θ)(θ

2)⊤ · · ·
θ1Γ0(θ) θΓ0(θ)θ

⊤ Γ0(θ)(θ
1)⊤

θ2Γ0(θ) θ1Γ0(θ) θΓ0(θ)θ
⊤

...
. . .

 .
Proof. We use Equation (6.5) to see that the conditional distribution Pθ(Y | Π) is a centered
multivariate Gaussian with covariance

Covθ[Y | Π] = ω2I +ΠCovθ[X]Π⊤.

We then use Lemma 6.A.1 to get an expression of Covθ[X] and deduce that its constant term (w.r.t
to θ) is a block-diagonal matrix filled with copies of Σ:

Covθ[Y | Π] = ω2I +ΠbdiagT (Σ)Π
⊤ +Π(Covθ[X]− bdiagT (Σ))Π

⊤.

Finally, we define QΠ = ω2I+ΠbdiagT (Σ)Π
⊤, R(θ) = Covθ[X]−bdiagT (Σ) and RΠ(θ) = ΠR(θ)Π⊤

to obtain the decomposition we announced. The diagonal blocks of R(θ) are easily computed by
noticing that Γ0(θ)− Σ = θΓ0(θ)θ

⊤.

6.B.4 From the KL divergence to ∆Π(θ)

Judging by Lemma 6.B.1, choosing a parameter θ close to 0 yields a conditional distribution for Y
whose covariance is close to QΠ. In the next result, we translate this into a bound on the KL
divergence between Pθ(Y | Π) and P0(Y | Π).

117

Lemma 6.B.2. Let us define the deviation from the identity:

∆Π(θ) = Q
−1/2
Π RΠ(θ)Q

−1/2
Π .

Then the conditional KL divergence is upper-bounded by:

KL {Pθ(Y | Π) ∥ P0(Y | Π)} ≤
∥∆Π(θ)∥2F

2(1 + λmin(∆Π(θ)))
.

Proof. The conditional KL divergence KL {Pθ(Y | Π) ∥ P0(Y | Π)} can be bounded with the help of
Lemma A.2.4. Indeed, both conditional distributions are Gaussian and have the same expectation,
and covariance matrices that are “close” in the following sense: by Lemma 6.B.1,

Cov0(Y | Π) = QΠ = Q
1/2
Π (Q

1/2
Π)⊤

Covθ(Y | Π) = QΠ +RΠ(θ) = Q
1/2
Π

(
I +Q

−1/2
Π RΠ(θ)Q

−1/2
Π︸ ︷︷ ︸

∆Π(θ)

)
(Q

1/2
Π)⊤.

By Lemma A.1.2, there exists a real number rmin ≥ ςmin

(
Q

1/2
Π

)2
= ςmin(QΠ) such that

λmin(Covθ(Y | Π)) = rminλmin(I +∆Π(θ)).

Since QΠ ⪰ ω2I ≻ 0, its minimum singular value satisfies ςmin(QΠ) > 0, so that rmin > 0. In
addition, Covθ(Y | Π) ⪰ ω2I ≻ 0, so that λmin(Covθ(Y | Π)) > 0. Therefore,

λmin(I +∆Π(θ)) =
λmin(Covθ(Y | Π))

rmin
> 0 and λmin(∆Π(θ)) > −1,

which means we can apply Lemma A.2.4 with P1 = Pθ(Y | Π) and P0 = P0(Y | Π).

6.B.5 From ∆Π(θ) to RΠ(θ)

Lemma 6.B.2 strongly suggests studying a certain fraction involving ∆Π(θ). In the following result,
we boil it down to a function of the residual term RΠ(θ).

Lemma 6.B.3. Assume ∥R(θ)∥2 ≤ (σ2min + ω2)/2. We have the following upper bound:

∥∆Π(θ)∥2F
2(1 + λmin(∆Π(θ)))

≤ ∥RΠ(θ)∥2F(
σ2min + ω2

)2 .
Proof. Since the quantity λmin(∆Π(θ)) in the denominator is hard to control, we will work with the
spectral norm instead. Indeed, whenever ∥∆Π(θ)∥2 < 1, we have the crude bound

1

1− λmin(∆Π(θ))
≤ 1

1− ∥∆Π(θ)∥2
.

Let us start by noticing that, thanks to Lemma A.1.4,

∥∆Π(θ)∥2F = ∥Q−1/2
Π RΠ(θ)Q

−1/2
Π ∥2F ≤ ∥Q−1/2

Π ∥42∥RΠ(θ)∥2F = ∥Q−1
Π ∥22∥RΠ(θ)∥2F

∥∆Π(θ)∥2 = ∥Q−1/2
Π ΠR(θ)Π⊤Q

−1/2
Π ∥2 ≤ ∥Q−1/2

Π Π∥22∥R(θ)∥2.

118

We will later see how the spectral and Frobenius norms of the residual R(θ) can be controlled as a
function of θ. For now, we must work to upper bound ∥Q−1

Π ∥2 and ∥Q−1
Π Π∥22.

To simplify the following proof, we write Σd = bdiagT Σ. Since Σd is block-diagonal, its spectrum
is the same as the spectrum of Σ repeated T times, hence λmin(Σd) = σ2min. And since we assumed Ec

happens (non-empty projection), we have ΠΠ⊤ = I and Π⊤Π = diag(π), which has at least one
entry equal to 1.

We start with ∥Q−1
Π ∥2. Since QΠ ⪰ ω2I ≻ 0 is non-singular and symmetric,

∥Q−1
Π ∥2 = λmax(Q

−1
Π) =

1

λmin(QΠ)
=

1

λmin(ΠΣdΠ⊤ + ω2I)
.

Remembering that Σd ⪰ σ2minI, we get

ΠΣdΠ
⊤ + ω2I ⪰ σ2minΠΠ

⊤ + ω2I = (σ2min + ω2)I

and thus
∥Q−1

Π ∥2 ≤
1

σ2min + ω2
.

We now continue with ∥Q−1/2
Π Π∥22. By definition of the spectral norm,

∥Q−1/2
Π Π∥22 = λmax

(
Π⊤Q−1

Π Π
)
= λmax

(
Π⊤(ΠΣdΠ

⊤ + ω2I)−1Π
)
.

Because matrix inversion is decreasing w.r.t. the Loewner order on positive semi-definite matrices,

(ΠΣdΠ
⊤ + ω2I)−1 ⪯ (σ2min + ω2)−1I−1

Π⊤(ΠΣdΠ
⊤ + ω2I)−1Π ⪯ 1

σ2min + ω2
Π⊤Π.

It follows that
∥Q−1/2

Π Π∥22 ≤
1

σ2min + ω2
λmax(Π

⊤Π) =
1

σ2min + ω2
.

The conclusion is within reach:

∥∆Π(θ)∥2F
1 + λmin(∆Π(θ))

≤ ∥∆Π(θ)∥2F
1− ∥∆Π(θ)∥2

≤ ∥Q−1
Π ∥22∥RΠ(θ)∥2F

1− ∥Q−1/2
Π Π∥22∥R(θ)∥2

≤

(
1

σ2
min+ω2

)2
∥RΠ(θ)∥2F

1− 1
σ2
min+ω2 ∥R(θ)∥2

≤ 2∥RΠ(θ)∥2F
(σ2min + ω2)2

The last inequality is justified by our assumption ∥R(θ)∥2 ≤ (σ2min + ω2)/2. Another consequence of
this assumption is that

∥∆Π(θ)∥2 ≤ ∥Q−1/2
Π Π∥22∥R(θ)∥2 ≤

1

σ2min + ω2

σ2min + ω2

2
=

1

2
< 1

which is sufficient for the first inequality to hold.

119

6.B.6 From RΠ(θ) to R(θ)

As the previous Lemma underlines, the last step we need to get rid of the dependency in Π is to
study the average norm of RΠ(θ).

Lemma 6.B.4. Let qℓ = max{1− b, 2p− (1− b)}. Then

EΠ

[
1Ec∥RΠ(θ)∥2F

]
≤ pTr[R(θ)⊙R(θ)] + pqℓ∥R(θ)∥2F .

Proof. We first notice that for any matrix A,

EΠ

[
1Ec∥ΠAΠ⊤∥2F

]
= EΠ

[
1Ec Tr

[
ΠAΠ⊤ΠA⊤Π⊤]]

= EΠ

[
Tr
[
diag(π)Adiag(π)A⊤]]

=
∑
i,j

EΠ[πiπj]A
2
i,j .

We can apply this to RΠ(θ) = ΠR(θ)Π⊤:

EΠ

[
1Ec∥RΠ(θ)∥2F

]
=
∑
i,j

EΠ[πiπj]R(θ)
2
i,j .

The rest of the proof consists in plugging in the moments EΠ[πiπj] from Lemma 6.A.4:

EΠ

[
∥RΠ(θ)∥2F

]
=

∑
t1,t2,d1,d2

(t1,d1)=(t2,d2)

pR(θ)2(t1,d1),(t2,d2)

+
∑

t1,t2,d1,d2
d1 ̸=d2

p2R(θ)2(t1,d1),(t2,d2)

+
∑

t1,t2,d1,d2
d1=d2,t1 ̸=t2

(p2 + p(1− p)(1− a− b)|t1−t2|)R(θ)2(t1,d1),(t2,d2).

The sum in the last term can be crudely controlled as follows:∑
t1,t2,d
t1 ̸=t2

(1− a− b)|t1−t2|R(θ)2(t1,d),(t2,d) ≤ |1− a− b|
∑
t1,t2
t1 ̸=t2

∑
d

(R(θ)[t1,t2])
2
d,d

≤ |1− a− b|
∑
t1 ̸=t2

∥R(θ)[t1,t2]∥2F

≤ |1− a− b| · ∥R(θ)∥2F
This yields a short, but probably suboptimal bound:

EΠ

[
1Ec∥RΠ(θ)∥2F

]
≤ pTr[R(θ)⊙R(θ)] + (p2 + p(1− p)|1− a− b|)∥R(θ)∥2F .

In the previous part, we already saw that

p+ (1− p)(1− a− b) = 1− b.

120

Similarly, we obtain

p+ (1− p)(a+ b− 1) =
a

a+ b
+

b

a+ b
(a+ b− 1)

=
a+ ba+ b2 − b

a+ b
=
a(1 + b)− b(1− b)

a+ b

= p(1 + b)− (1− p)(1− b) = 2p− (1− b).

As a consequence,

p+ (1− p)|1− a− b| = max{1− b, 2p− (1− b)} = qℓ,

which yields the expected result.

6.B.7 Bounding R(θ)

Lemma 6.B.4 relates the bounds involving RΠ(θ) to features of the full residual R(θ), which we now
study.

Lemma 6.B.5. The residual R(θ) satisfies the following inequalities:

∥R(θ)∥2 ≤
2σ2max

(1− ϑ)2 ∥θ∥2

∥R(θ)∥2F ≤
2Tσ4max

(1− ϑ)3 ∥θ∥
2
F

Tr[R(θ)⊙R(θ)] ≤ Tσ4max

(1− ϑ)2 ∥θ∥
2
2∥θ∥2F .

Proof. We start by giving a formula for the blocks of R(θ): by Lemma 6.B.1,

R(θ)[t,s] =


θt−sΓ0(θ) if s ∈ [1, t− 1]

θΓ0(θ)θ
⊤ if s = t

Γ0(θ)(θ
t−s)⊤ if s ∈ [t+ 1, T].

These individual blocks can be bounded using Lemmas A.1.4 and 6.A.2: if r ≥ 1, then

∥θrΓ0(θ)∥2F ≤ ∥Γ0(θ)∥22∥θr∥2F ≤ ∥Γ0(θ)∥22∥θ∥2F ∥θr−1∥22 ≤
σ4max

(1− ϑ)2 ∥θ∥
2
F ∥θ∥2(r−1)

2

∥Γ0(θ)(θ
r)⊤∥2F ≤ ∥Γ0(θ)∥22∥θr∥2F ≤ ∥Γ0(θ)∥22∥θ∥2F ∥θr−1∥22 ≤

σ4max

(1− ϑ)2 ∥θ∥
2
F ∥θ∥2(r−1)

2

∥θΓ0(θ)θ
⊤∥2F ≤ ∥θ∥22∥Γ0(θ)∥22∥θ∥2F ≤

σ4max

(1− ϑ)2 ∥θ∥
2
F ∥θ∥22.

121

Since we control the norm of each block of R(θ), we control the norm of the whole matrix:

∥R(θ)∥2F =
T∑
t=1

(
t−1∑
s=1

∥θt−sΓ0(θ)∥2F + ∥θΓ0(θ)θ∥2F +
T∑

s=t+1

∥Γ0(θ)θ
s−t∥2F

)

≤ σ4max∥θ∥2F
(1− ϑ2)2

T∑
t=1

(
t−1∑
s=1

∥θ∥2(t−s−1)
2 + ∥θ∥22 +

T∑
s=t+1

∥θ∥2(s−t−1)
2

)

≤ σ4max∥θ∥2F
(1− ϑ2)2

T∑
t=1

(
t−1∑

s=−∞
∥θ∥2(t−1−s)

2 + ∥θ∥22 +
+∞∑

s=t+1

∥θ∥2(s−1−t)
2

)

=
σ4max∥θ∥2F
(1− ϑ2)2 T

(
1

1− ∥θ∥22
+ ∥θ∥22 +

1

1− ∥θ∥22

)
We now remember our hypothesis ∥θ∥2 ≤ ϑ < 1:

∥R(θ)∥2F ≤
σ4max∥θ∥2F
(1− ϑ2)2 T

(
1

1− ϑ2 + ϑ2 +
1

1− ϑ2
)

=
σ4max∥θ∥2F
(1− ϑ2)2 T

(
2 + ϑ2(1− ϑ2)

1− ϑ2
)

≤ σ4max∥θ∥2F
(1− ϑ2)2 T

(
2 + 2ϑ

1− ϑ2
)

=
σ4max∥θ∥2F
(1− ϑ2)2 T

(
2

1− ϑ

)
= 2T

σ4max∥θ∥2F
(1− ϑ)3 .

Now that we have a handle on the Frobenius norm of R(θ), we move on to its spectral norm. Notice
that R(θ) can be written as a sum of Kronecker products with the subdiagonal matrices Jt:

R(θ) = I ⊗ θΓ0(θ)θ
⊤ +

T−1∑
t=1

[
Jt ⊗ θtΓ0(θ) + J⊤

t ⊗ Γ0(θ)(θ
t)⊤
]
.

We can use Lemma A.1.3 and write:

∥R(θ)∥2 ≤ ∥I∥2 × ∥θΓ0(θ)θ
⊤∥2 +

T−1∑
t=1

[
∥Jt∥2 × ∥θtΓ0(θ)∥2 + ∥J⊤

t ∥2 × ∥Γ0(θ)(θ
t)⊤∥2

]
≤ ∥Γ0(θ)∥2

(
∥θ∥22 + 2

T−1∑
t=1

∥θ∥t2

)
≤ σ2max

1− ϑ2
(
∥θ∥22 + 2

∥θ∥2
1− ∥θ∥2

)
≤ σ2max∥θ∥2

1− ϑ2
(
ϑ+

2

1− ϑ

)
≤ σ2max∥θ∥2

1− ϑ

(
2 + 2ϑ

1− ϑ2
)

= 2
σ2max∥θ∥2
(1− ϑ)2 .

We finish with the trace of the Hadamard product R(θ)⊙R(θ).
Tr[R(θ)⊙R(θ)] = T Tr[(θΓ0(θ)θ

⊤)⊙ (θΓ0(θ)θ
⊤)]

≤ T∥θΓ0(θ)θ
⊤∥2F ≤ Tσ4max

∥θ∥22∥θ∥2F
(1− ϑ)2 .

122

6.B.8 Upper bound on the KL divergence

We now have all the tools in hand to extract a KL divergence bound.

Lemma 6.B.6 (Final KL bound). Assume θ ∈ Θs satisfies

∥θ∥2 ≤
(1− ϑ)2(σ2min + ω2)

4σ2max

then the expected conditional KL divergence is upper-bounded as follows:

EΠ [KL {Pθ(Y | Π) ∥ P0(Y | Π)}] ≤ KLavg(∥θ∥2, ∥θ∥F)
where we defined

γℓ = (1− ϑ)3/2σ
2
min + ω2

σ2max

and KLavg(∥θ∥2, ∥θ∥F) =
2Tp(∥θ∥22 + qℓ)∥θ∥2F

γℓ
.

Proof. Let us start with Lemma 6.B.2 on the conditional KL divergence between Pθ(Y | Π) and P0(Y |
Π): for any non-empty Π,

KL {Pθ(Y | Π) ∥ P0(Y | Π)} ≤
∥∆Π(θ)∥2F

2(1 + λmin(∆Π(θ)))

We continue with Lemma 6.B.3 linking ∆Π(θ) to RΠ(θ). As long as ∥R(θ)∥2 ≤ (σ2min + ω2)/2 (we
will see to that at the end), we have

KL {Pθ(Y | Π) ∥ P0(Y | Π)} ≤
∥RΠ(θ)∥2F

(σ2min + ω2)2
.

Taking the expectation on the event Ec yields:

EΠ [1EcKL {Pθ(Y | Π) ∥ P0(Y | Π)}] ≤
EΠ

[
1Ec∥RΠ(θ)∥2F

]
(σ2min + ω2)2

We can now apply Lemma 6.B.4:

EΠ [1EcKL {Pθ(Y | Π) ∥ P0(Y | Π)}] ≤
pTr[R(θ)⊙R(θ)] + pqℓ∥R(θ)∥2F

(σ2min + ω2)2

We substitute the residual bounds from Lemma 6.B.5:

EΠ [1EcKL {Pθ(Y | Π) ∥ P0(Y | Π)}] ≤
p× Tσ4

max
(1−ϑ)2

∥θ∥22∥θ∥2F + pqℓ × 2Tσ4
max

(1−ϑ)3
∥θ∥2F

(σ2min + ω2)2

≤
(

σ2max

σ2min + ω2

)2
2Tp(∥θ∥22 + qℓ)∥θ∥2F

(1− ϑ)3

=
2Tp(∥θ∥22 + qℓ)∥θ∥2F

γℓ
.

By Equation (6.24), this is equivalent to bounding the expected KL divergence regardless of the
event E, hence the result. Note that our assumption on θ, combined with Lemma 6.B.5, implies

∥R(θ)∥2 ≤
2σ2max

(1− ϑ)2 ∥θ∥2 ≤
2σ2max

(1− ϑ)2
(1− ϑ)2(σ2min + ω2)

4σ2max

≤ σ2min + ω2

2

123

6.B.9 Application of Fano’s method

Given the KL bound we just obtained, we are finally able to prove Theorem 6.4.2.

Proof. Fano’s method requires finding M + 1 parameters θi such that θ0 = 0 and ∥θi − θj∥F ≥ 2τ
for i ≠ j (with τ to be specified), while keeping control upon the average KL divergence between the
probability distributions Pθi and P0. Judging by Lemma 6.B.6, one way to achieve this control on
the KL divergence is to bound the ∥θi∥F uniformly in i (in other words, to choose them all inside a
ball of fixed radius). We will then have to see how many 2τ -separated matrices we can fit in such a
ball.

Let us consider the set H(r) of all block-diagonal D × D matrices with coefficients in {0, r}
such that each block has size s× s (we assume s divides D). In particular, these matrices are all
row- and column-sparse, with no more than s non-zero coefficients per row or column. In terms of
dimensionality, we are dealing with the (scaled) matrix equivalent of a Ds-dimensional hypercube,
hence the notation H(r). It has cardinality 2Ds and for every θ ∈ H, we have the following norm
bounds:

∥θ∥2 ≤ rs and ∥θ∥F ≤ r
√
Ds.

The spectral norm bound on θ is obtained as the maximum spectral norm of each block, which we
in turn control using the Frobenius norm of each block.

Unfortunately, in this hypercube, not all pairs of vertices are well-separated. That is why we
need the Gilbert-Varshamov bound of Lemma A.2.9: according to this result, there exists a pruned
subset K(r) ⊂ H(r) containing 0 and such that

|K(r)| ≥ |H(r)|1/8 = 2Ds/8 and ∥vec(θi)− vec(θj)∥1≥
rDs

8

for all pairs of distinct vertices θi and θj in K(r). We choose our set of parameters θ0, θ1, ..., θM to
be exactly this pruned subset K(r), in particular M + 1 = |K(r)|.

The missing ingredient is an upper bound on the maximum average KL divergence between Pθi

and P0: we can obtain it using Lemma 6.B.6. We only need to assume

∥θi∥F ≤ r
√
Ds ≤ min

{
ϑ,

(1− ϑ)2(σ2min + ω2)

4σ2max

}
to get the upper bound

max
i

EΠ [KL {Pθi(Y | Π) ∥ Pθ0(Y | Π)}] ≤ max
i

KLavg(∥θi∥2, ∥θi∥F)

≤ KLavg(rs, r
√
Ds).

Since we must satisfy the constraint from Equation (A.1) in Fano’s method, we will choose r so that:

KLavg(rs, r
√
Ds) ≤ α log(M) = α log

(
2Ds/8 − 1

)
with α = log 3−log 2

2 log 2 . We want to solve the previous inequality for r, and for that we start by
replacing KLavg(rs, r

√
Ds) with its value from Lemma 6.B.6, replacing γℓ with γℓ to lighten notations:

KLavg(rs, r
√
Ds) ≤ α log

(
2Ds/8 − 1

)
⇐⇒ 2

γℓ
Tp
(
(rs)2 + qℓ

)
(r
√
Ds)2 ≤ cDs

⇐⇒ Ds3r4 + qℓDsr
2 − cγ

2
ℓDs

Tqℓ
≤ 0.

124

If we consider this as a degree two polynomial in the variable r2, its determinant is

∆ = q2ℓD
2s2 + 4Ds3c

γ2ℓDs

Tp
.

For β to be small enough, r2 must remain below the only positive root of the polynomial, namely

r2 ≤
−qℓDs+

√
q2ℓD

2s2 + c
γ2
ℓD

2s4

Tp

2Ds3
=

qℓ
2s2

(√
1 + c

γ2ℓ s
2

Tpq2ℓ
− 1

)
.

If we assume the quantity c γ
2
ℓ s

2

Tpq2ℓ
inside the square root is smaller than 1, i.e.

γℓs√
pqℓ
√
T
≤ c, (6.25)

then we can lower-bound
√
1 + x by its chord (

√
2− 1)x. In other words, a sufficient condition for r2

to remain small enough is given by

r2 ≤ qℓ
2s2
× (
√
2− 1)c

γ2ℓ s
2

Tpq2ℓ
= c

γ2ℓ
Tpqℓ

.

To sum up, we have three constraints on r:

rs ≤ ϑ rs ≤ (1− ϑ)2(σ2min + ω2)

4σ2max

=

√
1− ϑ
4

γℓ r ≤
√
c
γ2ℓ
Tpqℓ

.

We can therefore choose r as the largest value satisfying all three of them:

r =
1

s
min

{
ϑ,
γℓ
√
1− ϑ
4

, c
γℓs√
Tpqℓ

}
(6.26)

To reach our conclusion, we simply need to remark that the vectorized ℓ1 distance between any two
matrices in K(r) gives us a lower bound on the operator ℓ∞ distance that separates them:

∥θi − θj∥∞ = max
k∈[D]

∑
l∈[D]

|(θi − θj)|k,l ≥
1

D

∑
1≤k,l≤D

|(θi − θj)|k,l

=
1

D
∥vec(θi)− vec(θj)∥1 ≥

rDs

8D
=
rs

8

Subsequently, our parameters θi are 2τ -separated (in ℓ∞ operator distance) with τ = rs/8. As soon
as the minimum in Equation (6.26) is reached by the third value, i.e. whenever

γℓs√
Tpqℓ

≤ cmin{ϑ, γℓ
√
1− ϑ} (6.27)

we can simplify the expression of τ :
τ = c

γℓs√
Tpqℓ

.

In this case, by Lemma A.2.1, we can conclude:

inf
θ̂

sup
θ∈Θs

Pθ

[
∥θ̂ − θ∥∞ ≥ c

γℓs√
Tpqℓ

]
≥ log(M + 1)− log 2

logM
− α ≥ 1

2
.

125

126

7
Learning with combinatorial optimization lay-
ers: a probabilistic approach

You are now creating six different
timelines.

Abed Nadir
Community – S3E4

Remedial Chaos Theory (2011)

Contents
7.1 Introduction . 128

7.1.1 Motivating example . 129
7.1.2 Our setting . 129
7.1.3 Contributions . 132
7.1.4 Outline . 132

7.2 Related work . 133
7.2.1 Optimization layers in ML . 133
7.2.2 Similarities and differences with reinforcement learning 135
7.2.3 Our guiding example: shortest paths on Warcraft maps 135

7.3 Probabilistic CO layers . 137
7.3.1 The expectation of a differentiable probability distribution 137
7.3.2 Regularization as another way to define a distribution 138
7.3.3 Collection of probabilistic CO layers . 139
7.3.4 The case of inexact CO oracles . 146

7.4 Learning by experience . 147
7.4.1 Minimizing a smooth regret surrogate . 148
7.4.2 Derivatives of the regret for learning by experience 150

7.5 Learning by imitation . 150
7.5.1 A loss that takes the optimization layer into account 151

127

7.5.2 Collection of losses for learning by imitation 152
7.6 Numerical experiments . 154

7.6.1 Shortest paths on Warcraft maps . 155

This chapter corresponds to our preprint D., Baty, et al. (2022) and was presented at JuliaCon
2022 (D., Bouvier, and Baty 2022)

7.1 Introduction

ML and CO are two essential ingredients of modern industrial processes. While ML extracts
meaningful information from noisy data, CO enables decision-making in high-dimensional constrained
environments. But in many situations, combining both of these tools is necessary: for instance, we
might want to generate predictions from data, and then use those predictions to make optimized
decisions. To do that, we need pipelines that contain two types of layers : ML layers and CO layers.

Due to their many possible applications, hybrid ML-CO pipelines currently attract a lot of
research interest. The recent reviews by Bengio, Lodi, and Prouvost (2021) and Kotary et al.
(2021) are excellent resources on this topic. Unfortunately, relevant software implementations are
scattered across paper-specific repositories, with few tests, minimal documentation and sporadic code
maintenance. Not only does this make comparison and evaluation difficult for academic purposes, it
also hurts practitioners wishing to experiment with such techniques on real use cases.

Let us discuss a generic hybrid ML-CO pipeline, which includes a CO oracle amid several ML
layers:

Input x−−−−→
�� ��ML layers Objective θ−−−−−−−→ CO oracle

Solution y−−−−−−→
�� ��More ML layers Output−−−−→ (7.1)

The inference problem consists in predicting an output from a given input. It is solved online, and
requires the knowledge of the parameters for each ML layer. On the other hand, the learning problem
aims at finding parameters that lead to “good” outputs during inference. It is solved offline based on
a training set that contains several inputs, possibly complemented by target outputs.

In Equation (7.1), we use the term CO oracle to emphasize that any algorithm may be used to
solve the optimization problem, whether it relies on an existing solver or a handcrafted implementation.
Conversely, when we talk about a layer, it is implied that we can compute meaningful derivatives
using Automatic Differentiation (AD). Since it may call black box subroutines, an arbitrary CO
oracle is seldom compatible with AD. And even when it is, its derivatives are zero almost everywhere,
which gives us no exploitable slope information. Therefore, according to our terminology, a CO
oracle is not a layer (yet), and the whole point of this paper is to turn it into one.

Modern ML libraries provide a wealth of basic building blocks that allow users to assemble and
train complex pipelines. We want to leverage these libraries to create hybrid ML-CO pipelines, but
we face two main challenges. First, while ML layers are easy to construct, it is not obvious how to
transform a CO oracle into a usable layer. Second, standard ML losses are ill-suited to our setting,
because they often ignore the underlying optimization problem.

Our goal is to remove these difficulties. We introduce InferOpt.jl1, a Julia package which 1)
can turn any CO oracle into a layer with meaningful derivatives, and 2) provides structured loss
functions that work well with the resulting layers. It contains several state-of-the-art methods that

1https://github.com/axelparmentier/InferOpt.jl

128

https://github.com/axelparmentier/InferOpt.jl

�

�
	Conv. Neural

Network

Dijkstra’s
algorithm

�

�
	Loss

function

Map image Cell costs Shortest path

Figure 7.1: Pipeline for computing shortest paths on Warcraft maps
Data from Vlastelica et al. (2020)

are fully compatible with Julia’s AD and ML ecosystem, making CO layers as easy to use as any
ML layer. To describe the available methods in a coherent manner, we leverage the unifying concept
of probabilistic CO layer, hence the name of the package.

7.1.1 Motivating example

Let us start by giving an example of hybrid ML-CO pipeline. Suppose we want to find shortest paths
on a map, but we do not have access to an exact description of the underlying terrain. Instead, all
we have are images of the area, which give us a rough idea of the topography and obstacles. To solve
our problem, we need a pipeline comprising two layers of very different natures. First, an image
processing layer, which is typically implemented as a Convolutional Neural Network (CNN). The
CNN is tasked with translating the images into a weighted graph. Second, a CO layer performing
shortest path computations on said weighted graph (e.g., using Dijkstra’s algorithm).

This pipeline is exactly the one considered by Vlastelica et al. (2020) and Berthet et al. (2020)
for pathfinding on video game maps. We illustrate it on Figure 7.1, and we describe it in more detail
in Section 7.2.3. The goal is to learn appropriate weights for the CNN, so that it feeds accurate
cell costs to Dijkstra’s algorithm. This is done by minimizing a loss function, such as the distance
between the true optimal path and the one we predict.

7.1.2 Our setting

In our hybrid ML-CO pipelines, we consider CO oracles f that solve the following kind of problem:

f : θ 7−→ argmax
v∈V

θ⊤v (7.2)

Here, the input θ ∈ Rd is the objective direction. Meanwhile, V ⊂ Rd (for vertices) denotes a finite set
of feasible solutions – which may be exponentially large in d – among which the optimal solution f(θ)
shall be selected. For simplicity, we assume that f is single-valued, i.e., that the optimal solution is
unique.

The feasible set V and its dimension may depend on the instance. For instance, if Equation (7.2)
is a shortest path problem, the underlying graph may change from one input to another. If we

129

wanted to remain generic, we should therefore write V(x) ⊂ Rd(x). To keep notations simple, we
omit the dependency in x whenever it is clear from the context. Note that we could also study more
general CO oracles given by

argmax
v∈V

θ⊤g(v)

where g is any function from an arbitrary finite set V to Rd. As long as the objective is linear in θ,
the theory we present generalizes seamlessly. However, for ease of exposition, we keep g(v) = v. In
this case, Equation (7.2) is equivalent to

argmax
v∈conv(V)

θ⊤v.

Indeed, when the objective is linear in v, it makes no difference to optimize over the convex
hull conv(V) instead of optimizing on V.

7.1.2.1 From an optimization problem to an oracle

It is important to note that the formulation argmaxv∈V θ
⊤v is very generic. Any Linear Program

(LP) or Integer Linear Program (ILP) can be written this way, as long as its feasible set is bounded.
Indeed, the optimum of an LP is always reached at a vertex of the polytope, of which there are
finitely many. Similarly, the optimum of an ILP is always reached at an integral point, or even
better, at a vertex of the convex hull of the integral points. As a result, Equation (7.2) encompasses
a variety of well-known CO problems related to graphs (paths, flows, spanning trees, coloring),
resource management (knapsack, bin packing), scheduling, etc. See Korte and Vygen (2006) for an
overview of CO and its applications.

For every one of these problems, dedicated algorithms have been developed over the years, which
sometimes exploit the domain structure better than a generic ILP library (such as Gurobi or SCIP).
Thus, we have no interest in restricting the procedure used to compute an optimal solution: we
want to pick the best solver for each application. That is why the methods discussed in this paper
only need to access the CO oracle f as a black box function, without making assumptions on its
implementation.

7.1.2.2 From an oracle to a probability distribution

When using CO oracles within ML pipelines, the first challenge we face is the lack of useful
derivatives. Since training often relies on Stochastic Gradient Descent (SGD), we need to be able
to backpropagate loss gradients onto the weights of the ML layers. This requires each individual
layer to be differentiable, so that we can compute the Jacobian of its output with respect to its
input. Unfortunately, since the feasible set V of Equation (7.2) is finite, the CO oracle is a piecewise
constant mapping and its derivatives are zero almost everywhere. To recover useful slope information,
we seek approximate derivatives, which is where the probabilistic approach comes into play.

To describe it, we no longer think about a CO oracle as a function returning a single element f(θ)
from V. Instead, we use it to define a probability distribution p(·|θ) on V. The naive choice would
be the Dirac mass p(v|θ) = δf(θ)(v), but it shares the lack of differentiability of the oracle itself.
Thus, our goal is to spread out the distribution p into an approximation p̂, such that the probability
mapping θ 7−→ p̂(·|θ) becomes smooth with respect to θ. If we can do that, then the expectation

130

mapping
f̂ : θ 7−→ Ep̂(·|θ)[V] =

∑
v∈V

vp̂(v|θ), (7.3)

where it is understood that V ∼ p̂(·|θ), will be just as smooth. This expectation mapping f̂ is what
we take to be our probabilistic CO layer : see Section 7.3 for detailed examples. In what follows,
plain letters (p, f) always refer to the initial CO oracle, while letters with a hat (p̂, f̂) refer to the
probabilistic CO layer that we wrap around it.

7.1.2.3 From a probability distribution to a loss function

The presence of CO oracles in ML pipelines gives rise to a second challenge: the choice of an
appropriate loss function to learn the parameters. As highlighted by Bengio, Lodi, and Prouvost
(2021), this choice heavily depends on the data at our disposal. They distinguish two main paradigms,
which we illustrate using the pipeline of Figure 7.1.

If our dataset only contains the map images, then we are in a weakly supervised setting, which
they call learning by experience (see Section 7.4). In that case, the loss function will evaluate the
solutions computed by our pipeline using the true cell costs. On the other hand, if our dataset
happens to contain precomputed targets such as the true shortest paths, then we are in a fully
supervised setting, which they call learning by imitation (see Section 7.5). In that case, the loss
function will compare the paths computed by our pipeline with the optimal ones, hoping to minimize
the discrepancy. For both of these cases, the probabilistic perspective plays an important role in
ensuring smoothness of the loss.

7.1.2.4 Complete pipeline

The typical pipeline we will focus on is a special case of Equation (7.1), which we now describe in
more detail:

Input x−−−−→
�� ��ML layer φw

Objective θ = φw(x)−−−−−−−−−−−−→ CO oracle f
Solution y = f(θ)−−−−−−−−−−→

�� ��Loss function L (7.4)

Our pipeline starts with an ML layer φw, where w stands for the vector of parameters (or weights).
Its role is to encode the input x into an objective direction θ = φw(x), which is why we often refer to
it as the encoder. Then, the CO oracle defined in Equation (7.2) returns an optimal solution y = f(θ).
Finally, the loss function L is used during training to evaluate the quality of the solution. If our
dataset contains N input samples x(1), ..., x(N), learning involves applying SGD to the following loss
minimization problem:

min
w

1

N

N∑
i=1

L
(y(i)︷ ︸︸ ︷
f
(
φw(x

(i))︸ ︷︷ ︸
θ(i)

)
, . . .

)
. (7.5)

The dots . . . correspond to additional arguments that may be used by the loss. For instance, the loss
may depend on the input x(i) itself, or require target outputs t̄(i) for comparison (see Section 7.5).

Remark 7.1.1. Our work focuses on individual layers and loss functions. Although we present
various concrete examples, we do not give generic advice on how to build the whole pipeline for a
specific application. If the use case corresponds to a “Predict, then Optimize” setting such as the one
from Figure 7.1, then Elmachtoub and Grigas (2022) give a few useful pointers. If the goal is to

131

approximate hard optimization problems with easier ones, the reader can refer to Parmentier (2021a)
for a general methodology.

7.1.3 Contributions

Our foremost contribution is the open-source package InferOpt.jl, which is written in the Julia
programming language (Bezanson et al. 2017). Given a CO oracle provided as a callable object, our
package wraps it into a probabilistic CO layer that is compatible with Julia’s AD and ML ecosystem.
This is achieved thanks to the ChainRules.jl2 interface (White et al. 2022): see Chapter 3 for
details. Moreover, InferOpt.jl defines several structured loss functions, both for learning by
experience and for learning by imitation.

On top of that, we present theoretical insights that fill some gaps in previous works. In addition
to the framework of probabilistic CO layers, we propose:

• A new perturbation technique designed for CO oracles that only accept objective vectors with
a certain sign (such as Dijkstra’s algorithm, which fails on graphs with negative edge costs):
see Section 7.3.3.2.

• A way to differentiate through a large subclass of probabilistic CO layers (those that rely on
convex regularization) by combining the Frank-Wolfe algorithm with implicit differentiation:
see Section 7.3.3.3.

• A probabilistic regularization of the regret for learning by experience: see Section 7.4.

• A generic decomposition framework for imitation losses (similar to the cost-sensitive Fenchel-
Young losses of Blondel, Martins, and Niculae (2020)), which subsumes most of the literature
so far and suggests ways to build new loss functions: see Section 7.5.1.

Finally, we describe numerical experiments on our motivating example of Warcraft shortest paths.
In particular, we use the pipeline of Figure 7.1 for learning by experience, even though the CNN
encoder has tens of thousands of parameters. To the best of our knowledge, previous attempts
to learn hybrid ML-CO pipelines by experience were restricted to ML layers with fewer than 100
parameters.

7.1.4 Outline

In Section 7.2, we review the literature on differentiable optimization layers, before focusing on the
Warcraft example. Section 7.3 introduces the family of probabilistic CO layers by splitting it into
perturbed and regularized approaches. Then, Section 7.4 gives tools for learning by experience,
while Section 7.5 discusses loss functions for learning by imitation. An application of our package to
shortest paths on video game maps is presented in Section 7.6.

2https://github.com/JuliaDiff/ChainRules.jl

132

https://github.com/JuliaDiff/ChainRules.jl

7.2 Related work

7.2.1 Optimization layers in ML

A significant part of modern ML relies on AD: see Baydin et al. (2018) for an overview and
Griewank and Walther (2008) for an in-depth treatment. In particular, AD forms the basis of the
backpropagation algorithm used to train neural networks.

7.2.1.1 The notion of implicit layer

Standard neural architectures draw from a small collection of explicit layers (Goodfellow, Bengio,
and Courville 2016). Whatever their connection structure (dense, convolutional, recurrent, etc.) and
regardless of their activation function, these layers all correspond to input-output mappings that can
be expressed using an analytic formula. This same formula is then used by AD to compute gradients.

On the other hand, the layers defined by InferOpt.jl are of the implicit kind, which means
they can contain arbitrarily complex iterative procedures. While we focus here on optimization
algorithms, those are not the only kind of implicit layers: fixed point iterations and differential
equation solvers are also widely used, depending on the application at hand. See the tutorial by
Kolter, Duvenaud, and M. Johnson (2020) for more thorough explanations.

Due to the high memory cost of unrolling iterative procedures, efficient AD of implicit layers
often relies on the implicit function theorem. As long as we can specify a set of conditions satisfied by
the input-output pair, this theorem equates differentiation with solving a linear system of equations.
See the Python package jaxopt3 for an example implementation, and its companion paper for
theoretical details (Blondel, Berthet, et al. 2022). The recent Python package theseus4 showcases
an application of this framework to robotics and vision (Pineda et al. 2022).

7.2.1.2 Convex optimization layers

Among the early works on optimization layers for deep learning, the seminal OptNet paper by Amos
and Kolter (2017) stands out. It describes a way to differentiate through quadratic programs (QPs)
by using the Karush-Kuhn-Tucker (KKT) optimality conditions and plugging them into the implicit
function theorem.

More sophisticated tools exist for disciplined conic programs, such as the Python package
cvxpylayers5 (Agrawal, Amos, et al. 2019). The recent Julia package DiffOpt.jl6 (Sharma
et al. 2022) extends these ideas beyond the conic case to general convex programs. Note that both
libraries only accept optimization problems formulated in a domain-specific modeling language, as
opposed to arbitrary oracles.

Strong convexity makes differentiation easier because the solutions evolve smoothly as a function
of the constraints and objective parameters. In particular, this means the methods listed above
return exact derivatives and do not rely on approximations. Regrettably, this nice behavior falls
apart as soon as we enter the combinatorial world.

3https://github.com/google/jaxopt
4https://github.com/facebookresearch/theseus
5https://github.com/cvxgrp/cvxpylayers
6https://github.com/jump-dev/DiffOpt.jl

133

https://github.com/google/jaxopt
https://github.com/facebookresearch/theseus
https://github.com/cvxgrp/cvxpylayers
https://github.com/jump-dev/DiffOpt.jl

7.2.1.3 Linear optimization layers

Let us consider an LP whose feasible set is a bounded polyhedron, also called polytope. It is
well-known that for generic objective directions, the optimal solution will be unique and located at a
vertex of the polytope. Even though LPs look like continuous optimization problems, this property
shows that they are fundamentally combinatorial. Indeed, a small change in the objective direction
can cause the optimal solution to suddenly jump to another vertex, which results in a discontinuous
mapping from objectives to solutions. In fact, this mapping is piecewise constant, which means no
useful differential information can come from it: its Jacobian is undefined at the jump points and
zero everywhere else.

Therefore, when differentiating LPs with respect to their objective parameters, we need to resort
to approximations. Vlastelica et al. (2020) use interpolation to turn a piecewise constant mapping
into a piecewise linear and continuous one. However, the dominant approximation paradigm in the
literature is regularization, as formalized by Blondel, Martins, and Niculae (2020).

For instance, Wilder, Dilkina, and Tambe (2019) add a quadratic penalty to the linear objective,
which allows them to reuse the QP computations of Amos and Kolter (2017). Mandi and Guns
(2020) propose a log-barrier penalty, which lets them draw a connection with interior-point methods.
Berthet et al. (2020) suggest perturbing the optimization problem by adding stochastic noise to the
objective direction, which is a form of implicit regularization.

When LP layers are located at the end of a pipeline, a clever choice of loss function can also
simplify differentiation. This is illustrated by the Structured Support Vector Machine (S-SVM) loss
(Tsochantaridis et al. 2005), Smart “Predict, then Optimize” (SPO+) loss (Elmachtoub and Grigas
2022) and Fenchel-Young (FY) loss (Blondel, Martins, and Niculae 2020).

7.2.1.4 Integer optimization layers

In theory, the methods from the previous section still work in the presence of integer variables, that
is, for ILPs. To apply them, we only need to consider the polytope defined by the convex hull of
integral solutions. Alas, in the general case, there is no concise way to describe this convex hull. This
is why many authors decide to differentiate through the continuous relaxation of the ILP instead
(Mandi, Demirović, et al. 2020): it is an outer approximation of the integral polytope, but it can
be sufficient for learning purposes. Some suggest taking advantage of techniques specific to integer
programming, such as integrality cuts (Ferber et al. 2020) or a generalization of the notion of active
constraint (Paulus et al. 2021).

There has also been significant progress on finding gradient approximations for combinatorial
problems such as ranking (Blondel, Teboul, et al. 2020) and shortest paths (Parmentier 2021b). Yet
these techniques are problem-specific, and therefore hard to generalize, which is why we leave them
aside.

Instead, we want to allow implicit manipulation of the integral polytope itself, without making
assumptions on its structure. To achieve that, we can only afford to invoke CO oracles as black
boxes (Vlastelica et al. 2020; Berthet et al. 2020). This compatibility with arbitrary algorithms is
one of the fundamental tenets of our work. The recent Python package PyEPO7 (Tang and Khalil
2022) shares this perspective, but it only implements a subset of InferOpt.jl since it does not
address the central notion of probabilistic CO layer.

7https://github.com/khalil-research/PyEPO

134

https://github.com/khalil-research/PyEPO

7.2.2 Similarities and differences with reinforcement learning

As we will see in Section 7.4, learning by experience can be reminiscent of Reinforcement Learning
(RL), which also relies on a reward or cost signal given by the environment (Sutton and Barto 2018).
Furthermore, the encoder layer of Equation (7.4) is similar to a parametric approximation of the
value function, which forms the basis of deep RL approaches. This prompts us to discuss a few
differences between RL and the framework we study.

The standard mathematical formulation of RL is based on Markov decision processes, where
a reward and state transition are associated with each action. Usually, the available actions are
elementary decisions: pull one lever of a multi-armed bandit, cross one edge on a graph, select one
move in a board game, etc. The resulting value or policy update is local: it is specific to both the
current state and the action taken. The more reward information we gather, the more efficient
learning becomes.

In our framework, the basic step is a call to the optimizer. But combinatorial algorithms can
go beyond simple actions: they often output a structured and high-dimensional solution, which
aggregates many elementary decisions. This in turn triggers a global update in our knowledge of
the system, whereby the final reward is redistributed between all elementary decisions. In a way,
backpropagation through the optimizer enables efficient credit assignment, even for sparse reward
signals.

Another difference is related to the Bellman fixed point equation. In an RL setting, the Bellman
equation is used explicitly to derive parameter updates. In our setting, the Bellman equation is used
implicitly within optimizers such as Dijkstra’s algorithm.

To conclude, while standard RL decomposes a policy into elementary decisions, the pipelines we
study here are able to look directly for complex multistep solutions. Note that a similar concept of
option exists in hierarchical RL (Barto and Mahadevan 2003): comparing both perspectives in detail
would no doubt be fruitful, and we leave it for future work.

7.2.3 Our guiding example: shortest paths on Warcraft maps

As a way to clarify the concepts introduced in this paper, we illustrate them on the problem of Warcraft
shortest paths (Vlastelica et al. 2020; Berthet et al. 2020), which was already introduced on Figure 7.1.
The associated dataset8, assembled by Vlastelica et al. (2020), contains randomly-generated maps
similar to those from the Warcraft II video game. Each of these maps is a red-green-blue (RGB)
image of size ks× ks containing k × k square cells of side length s. Every cell has its own terrain
type (grass, forest, water, earth, etc.) which incurs a specific cost when game characters cross it.

The goal is to find the shortest path from the top left corner of the map to the bottom right
corner. At prediction time, cell costs are unknown, which means they must be approximated from
the image alone. Solving the problem of Warcraft shortest paths thus requires adapting the pipeline
of Equation (7.4) as follows:

Map image−−−−−−−−→
x∈Rks×ks×3

�

�
	Conv. Neural

Network φw

Negative cell costs−−−−−−−−−−−→
θ∈Rk×k

Dijkstra’s
algorithm

argmaxv∈Pk
θ⊤v

Shortest path−−−−−−−−→
y∈Pk

�

�
	Loss

function L (7.6)

8https://edmond.mpdl.mpg.de/dataset.xhtml?persistentId=doi:10.17617/3.YJCQ5S

135

https://edmond.mpdl.mpg.de/dataset.xhtml?persistentId=doi:10.17617/3.YJCQ5S

� �
using Flux, Metalhead, Statistics

resnet18 = ResNet(
18; pretrain=false, nclasses=1

)

warcraft_encoder = Chain(
resnet18.layers[1][1:4],
AdaptiveMaxPool((12, 12)),
x -> mean(x; dims=3),
x -> dropdims(x; dims=(3, 4)),
x -> -softplus.(x)

)� �
Code sample 7.1: CNN encoder for Warcraft

� �
using Graphs, GridGraphs, LinearAlgebra

function warcraft_maximizer(theta)
g = GridGraph(-theta)
path = grid_dijkstra(g, 1, nv(g))
y = path_to_matrix(g, path)
return y

end

function warcraft_cost(y; theta_ref)
return dot(y, theta_ref)

end� �
Code sample 7.2: Dijkstra optimizer for Warcraft

where we have defined the set of feasible paths

Pk = {v ∈ {0, 1}k×k : v represents a path from (1, 1) to (k, k)}.

Training proceeds based on the map images and (possibly) the true shortest paths or cell costs
provided in the dataset.

As suggested by Vlastelica et al. (2020), we design the CNN based on the first few layers of a
ResNet18 (He et al. 2016). We also append a negative softplus activation, in order to make sure
that all outputs are negative. The sign constraint is there to ensure that Dijkstra’s algorithm will
terminate, but it is not obvious why we require negative costs instead of positive ones. The reason
behind this sign switch is that Dijkstra’s algorithm is a minimization oracle, whereas by convention
InferOpt.jl works with maximization oracles.

We now show how to implement this pipeline in Julia. Throughout the paper, in addition
to InferOpt.jl, the following packages are used: Flux.jl9 (Innes et al. 2018; Innes 2018),
Graphs.jl10 (Fairbanks et al. 2021), GridGraphs.jl11, Metalhead.jl12 and Zygote.jl13

(Innes 2019), along with the standard libraries LinearAlgebra and Statistics. Code sample 7.1
creates the CNN encoder layer. Meanwhile, Code sample 7.2 shows how to define the Dijkstra oracle
and the true cost function.

Finally, Code sample 7.3 demonstrates the full prediction and optimization pipeline. It assumes
that we have already parsed the Warcraft dataset into three lists:

• images, whose elements are three-dimensional arrays representing map images;

• cells, whose elements are matrices representing true cell costs;

• paths, whose elements are binary matrices representing true shortest paths.

9https://github.com/FluxML/Flux.jl
10https://github.com/JuliaGraphs/Graphs.jl
11https://github.com/gdalle/GridGraphs.jl
12https://github.com/FluxML/Metalhead.jl
13https://github.com/FluxML/Zygote.jl

136

https://github.com/FluxML/Flux.jl
https://github.com/JuliaGraphs/Graphs.jl
https://github.com/gdalle/GridGraphs.jl
https://github.com/FluxML/Metalhead.jl
https://github.com/FluxML/Zygote.jl

� �
x, theta_ref, y_ref = images[1], cells[1], paths[1]
theta = warcraft_encoder(x)
y = warcraft_maximizer(theta)
c = warcraft_cost(y; theta_ref=theta_ref)� �

Code sample 7.3: Full pipeline for Warcraft shortest paths

These functions do not rely on InferOpt.jl, but they will be used throughout the paper inside
the differentiable wrappers provided by the package. Note that some snippets shown here have been
shortened for clarity. Please refer to the documentation of InferOpt.jl and satellite packages for
actual examples you can run.

7.3 Probabilistic CO layers

In this section, we focus on the CO oracle f defined in Equation (7.2), which is piecewise constant.
By adopting a probabilistic point of view, we construct several smooth approximations f̂ , which can
be computed and differentiated based solely on calls to f .

7.3.1 The expectation of a differentiable probability distribution

As announced in Section 7.1.2.2, a probabilistic CO layer works in two steps. First, it constructs a
probability distribution p̂(·|θ) ∈ ∆V . Second, it returns the expectation f̂(θ) = Ep̂(·|θ)[V] ∈ conv(V).
Figure 7.2 illustrates this behavior on a two-dimensional polytope, with a maximization problem
defined by the vector θ (black arrow). While the CO oracle outputs a single optimal vertex (red
square), the probabilistic CO layer defines a distribution on all the vertices (light blue circles). Its
output (dark blue hexagon) is a convex combination of the vertices with nonzero weights, which
belongs to the convex hull of V (gray surface).

For such a layer to be useful in our setting, we impose several conditions. First, all computations
must only require calls to the CO oracle f . Second, the expectation Ep̂(·|θ)[V] must be tractable
(whether it is with an explicit formula, Monte-Carlo sampling, variational inference, etc.). Third,
the mapping θ 7−→ p̂(·|θ) must be differentiable. If these conditions are satisfied, then the Jacobian
of f̂ is easily deduced from Equation (7.3):

Jθf̂(θ) = JθEp̂(·|θ)[V] =
∑
v∈V

v∇θp̂(v|θ)⊤ (7.7)

Let us give an example where analytic formulas exist. If V = {e1, ..., ed} is the set of basis vectors,
then its convex hull conv(V) = ∆d is the unit simplex of dimension d. Given an objective direction θ,
solving argmaxv∈V θ

⊤v yields the basis vector f(θ) = ei where i is the index maximizing θi.
We want a probability distribution that evolves smoothly with θ, so we need to spread out

the naive Dirac mass δf(θ)(·) by putting weight on several vertices instead of just one. Let us
assign to each vertex a probability that depends on its level of optimality in the optimization
problem argmaxv∈V θ

⊤v, that is, on its inner product with θ. The Boltzmann distribution is a
natural candidate, leading to p̂(ei|θ) ∝ eθ⊤ei = eθi . Computing the expectation reveals a well-known

137

Figure 7.2: Effect of a probabilistic CO layer

operation:

f̂(θ) = Ep̂(·|θ)[V] =
d∑

i=1

eθi∑d
j=1 e

θj
ei = softmax(θ)

Unlike the “hardmax” function f , the softmax function f̂ is differentiable, which justifies its frequent
use as an activation function in classification tasks.

While the Boltzmann distribution can be used for specific sets V, in the general case, it has an
intractable normalizing constant. This means we would need MCMC methods to compute derivatives,
which undermines the simplicity we are looking for. Fortunately, Sections 7.3.3.1 and 7.3.3.2 present
other probability distributions which can be easily approximated through sampling.

7.3.2 Regularization as another way to define a distribution

Although this probabilistic point of view was recently put forward by Berthet et al. (2020), the most
popular paradigm in the literature remains regularization (Blondel, Martins, and Niculae 2020).
Instead of using the CO oracle (7.2), regularization solves a different problem:

f̂Ω : θ 7−→ argmax
µ∈dom(Ω)

θ⊤µ− Ω(µ) (7.8)

where Ω : Rd → R is a smooth and convex function that penalizes the output µ. Usually, Ω is chosen
to enforce Ω(µ) = +∞ whenever µ /∈ conv(V), which means dom(Ω) ⊆ conv(V). Remember that
since V is finite, conv(V) is a polytope whose vertices form a subset of V.

The change of notation from v to µ stresses the fact that v is an element of V, while µ belongs
to dom(Ω) ⊆ conv(V). By definition of the convex hull, any feasible µ is the expectation of some

138

Layer Notations Probability p̂(·|θ) Regularization

PerturbedAdditive p̂+ε , f̂+ε Explicit: f(θ + εZ) Implicit: Fenchel conjugate
PerturbedMultiplicative p̂⊙ε , f̂⊙ε Explicit: f(θ ⊙ eεZ−ε21/2) Implicit: Fenchel conjugate

RegularizedGeneric p̂FW
Ω , f̂FW

Ω Implicit: Frank-Wolfe weights Explicit: function Ω

Table 7.1: Probabilistic CO layers and their defining features

distribution over V , hence our choice of letter. This means we can write f̂Ω(θ) as a convex combination
of the elements of V, whose weights are then interpreted as probabilities p̂Ω(·|θ). In other words,
the two perspectives are not opposed: regularization is just another way to define a probability
distribution.

For instance, if we go back to the concrete example from Section 7.3.1 and select Ω(µ) =∑
i µi logµi (the negative Shannon entropy), we find once again that f̂Ω(θ) = softmax(θ). But the

case of the unit simplex is very peculiar, because for any µ ∈ conv(V), the convex decomposition
of µ onto the vertices V is unique. In other words, the correspondence between a regularization Ω
and a probability mapping p̂Ω is one-to-one.

This does not hold for arbitrary polytopes. As a result, we need to be more specific in how we
choose the convex decomposition. In particular, we need the weights to be differentiable, in order to
compute the Jacobian with Equation (7.7). Section 7.3.3.3 describes one possible approach, which
relies on the Frank-Wolfe algorithm and implicit differentiation.

Conversely, the probability distributions given in Sections 7.3.3.1 and 7.3.3.2 also give rise to
an implicit regularization, which can be expressed using Fenchel conjugates. This point of view is
especially useful when we want to combine these layers with Fenchel-Young losses (Section 7.5.2.3).
In essence, we claim that probabilistic CO layers and regularization are two sides of the same coin.

7.3.3 Collection of probabilistic CO layers

Our package implements various flavors of probabilistic CO layers, which are summed up in Table 7.1.
Code sample 7.4 displays the operations they all support.

Remark 7.3.1. We also implement an Interpolation layer, corresponding to the piecewise linear
interpolation of Vlastelica et al. (2020). However, to the best of our knowledge it cannot be cast
as a probabilistic CO layer, so it does not support as many operations, and we only mention it for
benchmarking purposes.

We now present each row of Table 7.1 in more detail. The main goal of Sections 7.3.3.1, 7.3.3.2
and 7.3.3.3 is to explain how p̂(·|θ) and f̂(θ) are computed, as well as their derivatives. We also
draw connections with the regularization paradigm, which ease the introduction of Fenchel-Young
losses in Section 7.5.2.3. A hasty reader can safely skip to Section 7.4.

7.3.3.1 Additive perturbation

A natural way to define a distribution on V is to solve (7.2) with a stochastic perturbation of the
objective direction θ. Berthet et al. (2020) suggest the following additive perturbation mechanism:

f̂+ε (θ) = E
[
argmax

v∈V
(θ + εZ)⊤v

]
= E [f(θ + εZ)] (7.9)

139

� �
using InferOpt, Zygote

p = compute_probability_distribution(layer, theta)
rand(p)
compute_expectation(p)

y = layer(theta) # equal to the expectation of p
Zygote.jacobian(layer, theta)� �
Code sample 7.4: Supported operations for a probabilistic CO layer

where ε > 0 controls the amplitude of the perturbation, Z ∼ N (0, I) is a standard Gaussian
vector and the expectation is taken with respect to Z unless otherwise specified. Choosing ε is a
trade-off between smoothness (large ε) and accuracy of the approximation (small ε). The associated
probability distribution on V can be described explicitly:

f̂+ε (θ) =
∑
v∈V

vp̂+ε (v|θ) with p̂+ε (v|θ) = P (f(θ + εZ) = v) . (7.10)

Although the expectations cannot be expressed in closed form, they can be estimated using M
Monte-Carlo samples Z1, ..., ZM ∼ N (0, I). Increasing M yields smoother approximations but makes
the complexity grow linearly.

The proofs of Proposition 7.3.2 and 7.3.3 are already given by Berthet et al. (2020), but we
include them for comparison with the multiplicative case.

Proposition 7.3.2 (Differentiating through an additive perturbation (Berthet et al. 2020)). We
have:

∇θp̂
+
ε (v|θ) =

1

ε
E [1{f(θ + εZ) = v}Z]

Jθf̂
+
ε (θ) =

1

ε
E
[
f(θ + εZ)Z⊤

]
Proof. In all of our proofs, the dominated convergence theorem is used implicitly to justify any
differentiation under the integral sign. When dealing with polyhedral functions such as θ 7−→
maxv∈V θ

⊤v, we often write ∇θ for simplicity even though they are only subdifferentiable, because
the set of non-differentiability has measure zero.

The following change of variable is a diffeomorphism:

u = θ + εz ⇐⇒ u− θ
ε

= z.

We apply it to the definition of p̂+ε (v|θ).

p̂+ε (v|θ) =
∫
Rd

1{f(θ + εz) = v} ν(z) dz

=

∫
Rd

1{f(u) = v} ν
(
u− θ
ε

)
du

εd
.

140

We now differentiate with respect to θ before applying the reverse change of variable:

∇θp̂
+
ε (v|θ) =

∫
Rd

1{f(u) = v}
(−1
ε
∇ν
(
u− θ
ε

))
du

εd

=
−1
ε

∫
Rd

1{f(θ + εz) = v} ∇ν(z) dz

=
1

ε

∫
Rd

1{f(θ + εz) = v} zν(z) dz.

The last equality holds because the standard Gaussian density satisfies ∇ν(z) = −zν(z). From there,
we deduce the Jacobian of f̂+ε (θ):

Jθf̂
+
ε (θ) =

∑
v∈V

v∇θp̂
+
ε (θ, y)

⊤

=
1

ε

∫
Rd

(∑
v∈V

v 1{f(θ + εz) = v}
)

︸ ︷︷ ︸
f(θ+εz)

z⊤ν(z) dz

We arrive at the following simple expression, which was already given by Berthet et al. (2020):

Jθf̂
+
ε (θ) =

1

ε
E
[
f(θ + εZ)Z⊤

]

In order to recover the regularization associated with p+ε , we leverage convex conjugation. Let F+
ε

be the function defined by

F+
ε (θ) = E

[
max
v∈V

(θ + εZ)⊤v

]
and let Ω+

ε = (F+
ε)∗ denote its Fenchel conjugate.

Proposition 7.3.3 (Regularization associated with an additive perturbation (Berthet et al. 2020)).
The function Ω+

ε is convex, it satisfies dom(Ω+
ε) ⊂ conv(V) and

f̂+ε (θ) = argmax
µ∈conv(V)

θ⊤µ− Ω+
ε (µ) = f̂Ω+

ε
(θ).

Proof. Because Ω+
ε = (F+

ε)∗ is a Fenchel conjugate, it is automatically convex. Furthermore,

Ω+
ε (µ) = sup

θ∈Rd

{
θ⊤µ− F+

ε (θ)
}

= sup
θ∈Rd

{
θ⊤µ− E

[
max
v∈V

(θ + εZ)⊤v

]}
.

We consider µ /∈ conv(V). By convex separation, there exists θ̃ ∈ Rd and α > 0 such that θ̃⊤µ ≥
α+ θ̃⊤v for all v ∈ V. This implies that, for all t > 0,

Ω+
ε (µ) ≥ tθ̃⊤µ− E

[
max
v∈V

(
tθ̃ + εZ

)⊤
v

]
≥ tθ̃⊤µ− tE

[
max
v∈V

θ̃⊤v

]
− εE

[
max
v∈V

Z⊤v

]
≥ tα− εE

[
max
v∈V

Z⊤v

]
−−−−→
t→+∞

+∞

141

We have shown that µ /∈ dom(Ω+
ε), and therefore dom(Ω+

ε) ⊂ conv(V). We define

fZ(θ, v) = (θ + εZ)⊤v so that F+
ε (θ) = E

[
max
v∈V

fZ(θ, v)

]
.

Danskin’s theorem (Lemma A.3.1) helps us compute the gradient of F+
ε :

∇θF
+
ε (θ) = E

[
∇θ

(
max
v∈V

fZ(θ, v)

)]
= E

[
∇1fZ

(
θ, argmax

v∈V
fZ(θ, v)

)]
= E

[
argmax

v∈V
fZ(θ, v)

]
= E

[
argmax

v∈V
(θ + εZ)⊤v

]
= f̂+ε (θ).

As shown by Berthet et al. (2020, Proposition 2.2), the function Ω+
ε is a Legendre type function,

which means that
∇θF

+
ε = ∇θ(Ω

+
ε)

∗ = (∇θΩ
+
ε)

−1.

From this, we deduce

∇θF
+
ε (θ) = argmax

µ∈Rd

{
θ⊤µ− Ω+

ε (µ)
}

= argmax
µ∈dom(Ω+

ε)

{
θ⊤µ− Ω+

ε (µ)
}
= f̂Ω+

ε
(θ).

Hence, we can conclude:

f̂+ε (θ) = ∇θF
+
ε (θ) = argmax

µ∈dom(Ω+
ε)

{θ⊤µ− Ω+
ε (µ)} = f̂Ω+

ε
(θ).

To recover the formula given in Proposition 7.3.3, we simply remember that dom(Ω+
ε) ⊆ conv(V).

Code sample 7.5 shows how this translates into InferOpt.jl syntax.

7.3.3.2 Multiplicative perturbation

Since the Gaussian distribution puts mass on all of Rd, it can happen that some components of θ+εZ
switch their sign with respect to θ. This may cause problems whenever the CO oracle for f has
sign-dependent behavior. For instance, Dijkstra’s algorithm for shortest paths requires all the edges
of a graph to have a positive cost. In those cases, we need a sign-preserving kind of perturbation.
Changing the distribution of Z to make it positive almost surely is not the right answer because it
would bias the pipeline, leading to E[θ + εZ] > θ for the componentwise order. So instead of being
additive, the perturbation becomes multiplicative:

f̂⊙ε (θ) = E
[
argmax

v∈V

(
θ ⊙ eεZ−ε21/2

)⊤
v

]
= E

[
f
(
θ ⊙ eεZ−ε21/2

)]
(7.11)

142

Here, ⊙ denotes the Hadamard product, and the exponential is taken componentwise. Since E[eεZ] =
eε

21/2 ≠ 1, we add a correction term in the exponent to remove any bias: E[θ ⊙ eεZ−ε21/2] = θ. As
before, the associated probability distribution is easy to describe:

f̂⊙ε (θ) =
∑
v∈V

vp̂⊙ε (v|θ) with p̂⊙ε (v|θ) = P
(
f
(
θ ⊙ eεZ−ε21/2

)
= v
)
. (7.12)

And Proposition 7.3.4 provides differentiation formulas that are very similar to the additive case.

Proposition 7.3.4 (Differentiating through a multiplicative perturbation). We have:

∇θp̂
⊙
ε (v|θ) =

1

εθ
⊙ E

[
1

{
f
(
θ ⊙ eεZ−ε21/2

)
= v
}
Z
]

Jθf̂
⊙
ε (θ) =

1

εθ
⊙ E

[
f
(
θ ⊙ eεZ−ε21/2

)
Z⊤
]

Proof. Suppose θ ∈ Rd only has positive components. Then the following change of variable is a
diffeomorphism:

u = θ ⊙ eεz−ε21/2 ⇐⇒ log(u)− log(θ)

ε
+
ε1

2
= z

We apply it to the definition of p̂⊙ε (v|θ).

p̂⊙ε (θ, y) =

∫
Rd

1

{
f
(
θ ⊙ eεz−ε21/2

)
= v
}
ν(z) dz

=

∫
(0,+∞)d

1{f(u) = v} ν
(
log(u)− log(θ)

ε
+
ε1

2

)
du

εd
∏

i ui
.

We now differentiate with respect to θ before applying the reverse change of variable:

∇θp̂
⊙
ε (θ, y) =

∫
(0,+∞)d

1{f(u) = v}
(−1
εθ
⊙∇ν

(
log(u)− log(θ)

ε
+
ε1

2

))
du

εd
∏

i ui

=
−1
εθ
⊙
∫
Rd

1

{
f
(
θ ⊙ eεz−ε21/2

)
= v
}
∇ν(z) dz

=
1

εθ
⊙
∫
Rd

1

{
f
(
θ ⊙ eεz−ε21/2

)
= v
}
zν(z) dz.

From there, we deduce the Jacobian of f̂⊙ε (θ):

Jθf̂
⊙
ε (θ) =

∑
v∈V

v∇θp̂
⊙
ε (θ, y)

⊤

=
1

εθ
⊙
∫
Rd

(∑
v∈V

v 1
{
f
(
θ ⊙ eεz−ε21/2

)
= v
})

︸ ︷︷ ︸
f(θ⊙eεz−ε21/2)

z⊤ν(z) dz

We arrive at a simple variant of the previous expression:

Jθf̂
⊙
ε (θ) =

1

εθ
⊙ E

[
f
(
θ ⊙ eεz−ε21/2

)
Z⊤
]

143

As far as regularization is concerned, we need a slight tweak compared to the additive case.
Let F⊙

ε be the function defined by

F⊙
ε (θ) = E

[
max
v∈V

(
θ ⊙ eεZ−ε21/2

)⊤
v

]
and let Ω⊙

ε = (F⊙
ε)∗ denote its Fenchel conjugate. We define

f̂⊙scaled
ε (θ) = E

[
eεZ−ε21/2 ⊙ f

(
θ ⊙ eεZ−ε21/2

)]
Proposition 7.3.5 (Regularization associated with a multiplicative perturbation). The function Ω⊙

ε

is convex and satisfies

f̂⊙scaled
ε (θ) = argmax

µ∈dom(Ω⊙
ε)

θ⊤µ− Ω⊙
ε (µ) = f̂Ω⊙

ε
(θ).

Unlike in the additive case, it is not f̂⊙ε itself that can be viewed as the product of regularization
with Ω⊙

ε . Furthermore, this time we have dom(Ω⊙
ε) ̸⊆ conv(V).

Proof. Because Ω⊙
ε = (F⊙

ε)∗ is a Fenchel conjugate, it is automatically convex. Furthermore,

Ω⊙
ε (µ) = sup

θ∈Rd

{
θ⊤µ− F⊙

ε (θ)
}

= sup
θ∈Rd

{
θ⊤µ− E

[
max
v∈V

(
θ ⊙ eεZ−ε21/2

)⊤
v

]}
= sup

θ∈Rd

{
θ⊤µ− E

[
max
v∈V

θ⊤
(
v ⊙ eεZ−ε21/2

)]}
.

This last expression shows why we don’t have dom(Ω⊙
ε) ⊂ conv(V) (unlike in the additive case).

Indeed, even when µ /∈ conv(V), the multiplicative scaling of v might allow it to compensate the
inner product θ⊤µ and stop Ω⊙

ε (µ) from going to +∞. We define

fZ(θ, v) =
(
θ ⊙ eεZ−ε21/2

)⊤
v so that F⊙

ε (θ) = E
[
max
v∈V

fZ(θ, v)

]
.

Danskin’s theorem (Lemma A.3.1) helps us compute the gradient of F⊙
ε :

∇θF
⊙
ε (θ) = E

[
∇θ

(
max
v∈V

fZ(θ, v)

)]
= E

[
∇1fZ

(
θ, argmax

v∈V
fZ(θ, v)

)]
= E

[
eεZ−ε21/2 ⊙ argmax

v∈V
fZ(θ, v)

]
= E

[
eεZ−ε21/2 ⊙ argmax

v∈V

(
θ ⊙ eεZ−ε21/2

)⊤
v

]
= f̂⊙scaled

ε (θ) ̸= f̂⊙ε (θ)

144

We could prove in a way similar to Berthet et al. (2020, Proposition 2.2) that Ω⊙
ε is a Legendre type

function, which means that
∇θF

⊙
ε = ∇θ(Ω

⊙
ε)

∗ = (∇θΩ
⊙
ε)

−1.

From this, we deduce

∇θF
⊙
ε (θ) = argmax

µ∈Rd

{
θ⊤µ− Ω⊙

ε (µ)
}

= argmax
µ∈dom(Ω⊙

ε)

{
θ⊤µ− Ω⊙

ε (µ)
}
= f̂Ω⊙

ε
(θ).

This time we cannot replace dom(Ω⊙
ε) by conv(V), but we still obtain a similar conclusion:

f̂⊙scaled
ε (θ) = ∇θF

⊙
ε (θ) = argmax

µ∈dom(Ω⊙
ε)

{θ⊤µ− Ω⊙
ε (µ)} = f̂Ω⊙

ε
(θ).

Code sample 7.5 shows how this translates into InferOpt.jl syntax.

7.3.3.3 Generic regularization

We now switch our focus to the case of an explicit regularization Ω. Provided the regularization
is convex and smooth, approximate computation of f̂Ω(θ) is made possible by the Frank-Wolfe
algorithm (Frank and Wolfe 1956). This algorithm is interesting for two reasons. First, it only
requires access to the CO oracle f and the gradient of Ω. Second, its output is expressed as a
convex combination of only a few polytope vertices (Jaggi 2013). In other words, the Frank-Wolfe
algorithm does not just return a single point f̂Ω(θ) ∈ conv(V): it also defines a sparse probability
distribution p̂FW

Ω (·|θ) over the vertices V such that

f̂Ω(θ) =
∑
v∈V

vp̂FW
Ω (v|θ).

This distribution is called sparse because most of the weights are actually zero. Note that p̂FW
Ω (·|θ)

is not uniquely specified by the regularization Ω, but instead depends on the precise implementation
of the Frank-Wolfe algorithm (initialization, step size, convergence criterion, etc.). In particular, the
number of atoms in the distribution is upper-bounded by the number of Frank-Wolfe iterations.

As pointed out by Blondel, Berthet, et al. (2022, Appendix C), there exists a function g(p, θ)
defined on ∆V × Rd such that p̂FW

Ω (·|θ) is a fixed point of its projected gradient operator p 7−→
proj∆V (p−∇pg(p, θ)). Since the orthogonal projection onto the simplex ∆V is itself differentiable
(Martins and Astudillo 2016), we can apply the implicit function theorem to this fixed point equation.
Doing so yields gradients ∇θp̂Ω(v|θ) that we use to compute a Jacobian for f̂Ω(θ). Again, by sparsity,
this sum only has a few non-zero terms, which makes it tractable:

Jθf̂Ω(θ) =
∑
v∈V

v∇θp̂
FW
Ω (v|θ)⊤. (7.13)

145

� �
using InferOpt

perturbed_add = PerturbedAdditive(
warcraft_maximizer;
epsilon=0.5, nb_samples=10

)

perturbed_mult = PerturbedMultiplicative(
warcraft_maximizer;
epsilon=0.5, nb_samples=10

)� �
Code sample 7.5: Probabilistic CO layers defined by

perturbation

� �
using InferOpt

regularized = RegularizedGeneric(
warcraft_maximizer;
omega=y -> 0.5 * sum(y .ˆ 2),
omega_grad=y -> y

)� �
Code sample 7.6: Probabilistic CO layer

defined by regularization

Among all the possible functions Ω, the quadratic penalty Ω(µ) = 1
2∥µ∥2 is particularly interesting.

It gives rise to the SparseMAP method (Niculae et al. 2018), whose name comes from the sparsity of
the Euclidean projection onto a polytope:

f̂Ω(θ) = argmax
µ∈conv(V)

{
θ⊤µ− 1

2
∥µ∥2

}
= argmin

µ∈conv(V)
∥µ− θ∥2.

This is the one we used for the example of Code sample 7.6. Our implementation relies on the recent
package FrankWolfe.jl14 (Besançon, Carderera, and Pokutta 2022).

Remark 7.3.6. Blondel, Martins, and Niculae (2020) also suggest distribution regularization,
whereby Ω(µ) is defined through a generalized entropy H(p) on ∆V :

Ω(µ) = − max
p∈∆V

H(p) s.t. Ep[V] = µ.

Distribution regularization can only be computed explicitly for certain entropies H (Shannon entropy,
Gini index) and certain polytopes conv(V) (unit simplex, spanning trees, etc.). In each case, a custom
combinatorial algorithm is required. Since we aim for a generic approach, we only consider mean
regularization, which is defined directly on the expectation µ.

7.3.4 The case of inexact CO oracles

In our discussion so far, an implicit assumption was that the CO oracle f returns an exact solution
to Equation (7.2). For most polynomial problems (as well as some NP-hard problems which are
tractable in practice), this is perfectly reasonable. But in some cases, exact solutions are too
expensive to compute. Then, our CO oracle may only be able to return an inexact solution, for
instance because branch & bound has to be interrupted before the whole tree can be explored. What
kind of impact does this have on the precision of the computed Jacobian?

Let us denote by f a hypothetical exact oracle, and by g an inexact oracle.

14https://github.com/ZIB-IOL/FrankWolfe.jl

146

https://github.com/ZIB-IOL/FrankWolfe.jl

Proposition 7.3.7 (Jacobian precision for inexact oracles – perturbed case). Suppose we use g
instead of f with additive (resp. multiplicative) perturbation. Then the error on the Jacobian of the
probabilistic CO layer satisfies:∥∥∥Jθĝ+ε (θ)− Jθf̂

+
ε (θ)

∥∥∥2 ≤ √d
ε
∥g − f∥∞∥∥∥Jθĝ⊙ε (θ)− Jθf̂

⊙
ε (θ)

∥∥∥2 ≤ √
d

εmini|θi|
∥g − f∥∞.

While requiring the inexact oracle g to be uniformly close to f is quite restrictive, this result
does provide heuristic justification for the use of inexact oracles in practice.

Proof. We start with additive perturbation. By Proposition 7.3.2, we have:

Jθĝ
+
ε (θ)− Jθf̂

+
ε (θ) =

1

ε
E
[
g(θ + εZ)Z⊤

]
− 1

ε
E
[
f(θ + εZ)Z⊤

]
=

1

ε
E
[
(g(θ + εZ)− f(θ + εZ))Z⊤

]
.

We bound the spectral norm of the error using Jensen’s inequality:∥∥∥Jθĝ+ε (θ)− Jθf̂
+
ε (θ)

∥∥∥2 ≤ 1

ε2
E
∥∥∥(g(θ + εZ)− f(θ + εZ))Z⊤

∥∥∥2
=

1

ε2
E
[
∥g(θ + εZ)− f(θ + εZ)∥2∥Z∥2

]
≤ 1

ε2
∥g − f∥2∞E

[
∥Z∥2

]
=

d

ε2
∥g − f∥2∞.

We now move on to multiplicative perturbation. For multiplicative perturbation, following the same
proof starting from Proposition 7.3.4 yields a similar inequality:∥∥∥Jθĝ⊙ε (θ)− Jθf̂

⊙
ε (θ)

∥∥∥2 ≤ d

ε2mini|θi|2
∥g − f∥2∞.

As for generic regularization, Jacobian precision guarantees are given by Theorem 1 of Blondel,
Berthet, et al. (2022).

7.4 Learning by experience

Now that we have seen several ways to construct probabilistic CO layers, we turn to the definition
of an appropriate loss function. Let us start with learning by experience, which takes place when we
only have access to input samples without target outputs. In that case, Equation (7.5) simplifies as

min
w

1

N

N∑
i=1

L
(
f
(
φw(x

(i))
))
. (7.14)

147

As we will see below, the regret, which is the natural choice of loss, does not yield interesting gradients.
That is why we propose a family of smooth regret surrogates derived from our probabilistic CO layers,
and explain how to differentiate them. While similar losses have been hinted at in previous works,
to the best of our knowledge, our general point of view is new.

To make notations lighter, we restrict ourselves to a single input x. Furthermore, we write losses
as functions of θ instead of w. Indeed, our losses do not just rely on y = f(θ): they use f as an
ingredient internally. In practice, we leave it to AD to exploit the relation θ = φw(x) in order to
compute gradients with respect to w.

7.4.1 Minimizing a smooth regret surrogate

When we learn by experience, the problem statement usually includes a cost function c : V → R,
and we want our pipeline to generate solutions that are as cheap as possible. Internally, this cost
function may use parameters that are unknown to us at prediction time: typically, it may assess the
quality of our solution using the true objective direction θ̄. It may be useful to think about c as the
feedback provided by an outside evaluator, rather than a function we implement ourselves.

The natural loss to minimize is the cost incurred by our prediction pipeline, also called regret:

R(θ) = c(f(θ)). (7.15)

This function relies on the CO oracle f , which is piecewise constant. Our spontaneous impulse
would be to replace the CO oracle f with a probabilistic CO layer f̂ , thus minimizing c(f̂(θ)).
Unfortunately, the cost function c is not necessarily smooth either. To make matters worse, c may
only be defined on vertices v ∈ V, and not on general convex combinations µ ∈ conv(V).

The solution we propose relies on the pushforward measure (also called image measure) of p̂(·|θ)
with respect to the function c. Recall that a probabilistic CO layer is defined by f̂(θ) = Ep̂(·|θ)[V]. To
compose it with an arbitrary cost, instead of applying c outside the expectation, we apply it inside
the expectation. In other words, we first push the measure p̂(·|θ) forward through the function c,
before taking the expectation. This gives rise to the notion of expected regret :

Rp̂(θ) = Ep̂(·|θ)[c(V)] (7.16)

By integration, this loss is just as smooth as the probability mapping θ 7−→ p̂(·|θ), which means we
can compute its gradient easily. We therefore suggest using the expected regret Rp̂ that stems from
the probabilistic CO layers p̂+ε , p̂⊙ε , and p̂FWΩ defined in Section 7.3.

Note that if c is linear and defined on all of conv(V), then Ep̂(·|θ)[c(V)] = c
(
Ep̂(·|θ)[V]

)
and the

two quantities coincide. Furthermore, if c is convex, then Ep̂(·|θ)[c(V)] ≥ c
(
Ep̂(·|θ)[V]

)
by Jensen’s

inequality, which means the expected regret is an upper bound.

Code sample 7.7 demonstrates how to define an expected regret from probabilistic CO layers,
while Code sample 7.8 shows that we can compute and differentiate it automatically. Finally, Code
sample 7.9 displays a complete program for learning by experience. The rest of this section explains
how to compute derivatives of the expected regret Rp̂ and can be skipped without danger.

Remark 7.4.1. Since the learning problem is non-convex, we may also try to minimize the (non-
smooth) regret R using global optimization algorithms such as DIRECT (Jones, Perttunen, and
Stuckman 1993). Perhaps surprisingly, this has been shown to yield good results when φw is a
generalized linear model and the dimension of the weights w is not too large, i.e., non greater that 100
(Parmentier 2021a). When the ML layer φw is a large neural network, we cannot use this approach
anymore.

148

� �
using InferOpt

regret_pert = Pushforward(
perturbed_add, warcraft_cost

)
regret_reg = Pushforward(

regularized, warcraft_cost
)� �

Code sample 7.7: Expected regrets associated
with probabilistic CO layers

� �
using Zygote

R = regret(theta)
Zygote.gradient(regret, theta)� �

Code sample 7.8: Supported operations for an
expected regret

� �
using Flux, InferOpt

gradient_optimizer = ADAM()
parameters = Flux.params(warcraft_encoder)
data = images

function pipeline_loss(x)
theta = warcraft_encoder(x)
return regret(theta)

end

for epoch in 1:1000
train!(pipeline_loss, parameters, data, gradient_optimizer)

end� �
Code sample 7.9: Learning with an expected regret

149

7.4.2 Derivatives of the regret for learning by experience

When p̂ comes from a random perturbation, we can formulate the gradient of the expected regret as
an expectation too, and approximate it with Monte-Carlo samples.

Proposition 7.4.2 (Gradient of the expected regret, perturbation setting). We have:

∇θRp̂+ε
(θ) =

1

ε
E [(c ◦ f)(θ + εZ)Z]

∇θRp̂⊙ε
(θ) =

1

εθ
⊙ E

[
(c ◦ f)

(
θ ⊙ eεZ−ε21/2

)
Z
]
.

Proof. For the additive perturbation, it is a consequence of Proposition 7.3.2. For the multiplicative
perturbation, it is a consequence of Proposition 7.3.4.

These gradients obey a simple logic: the more the perturbation Z increases the cost of a solution,
the more positive weight it gets, and vice versa. To see it, we remember that E[Z] = 0 for a standard
Gaussian, and rewrite the regret gradients as follows:

∇θRp̂+ε
(θ) =

1

ε
E [(c ◦ f)(θ + εZ)Z − (c ◦ f)(θ)Z]

∇θRp̂⊙ε
(θ) =

1

εθ
⊙ E

[
(c ◦ f)

(
θ ⊙ eεZ−ε21/2

)
Z − (c ◦ f)(θ)Z

]
.

On the other hand, when p̂ is derived from an explicit regularization Ω, the expected regret is
amenable to implicit differentiation of the Frank-Wolfe algorithm. Once more, the sparsity property
makes exact computation tractable by reducing the number of terms in the sum:

∇θRp̂FW
Ω

(θ) =
∑
v∈V

c(v)∇θp̂
FW
Ω (v|θ)

Remark 7.4.3. Although the previous discussion focuses on a scalar-valued cost, it actually applies
to any pushforward function c, even with vector values. The formulas for the generic Jacobian are
given below:

JθEp̂+ε (·|θ)[c(V)] =
1

ε
E
[
(c ◦ f)(θ + εZ)Z⊤

]
JθEp̂⊙ε (·|θ)[c(V)] =

1

εθ
⊙ E

[
(c ◦ f)

(
θ ⊙ eεZ−ε21/2

)
Z⊤
]

JθEp̂FW
Ω (·|θ)[c(V)] =

∑
v∈V

c(v)∇θp̂
FW
Ω (v|θ)⊤

At the moment, InferOpt.jl only handles the case where c is a fully-defined function without free
parameters. In the near future, we will add support for the case where c is itself an ML layer with
learnable weights.

7.5 Learning by imitation

We now move on to learning by imitation, where additional information is used to guide the training
procedure. For each input sample x(i), we assume we have access to a target t̄(i). In that case,

150

Equation (7.5) simplifies as

min
w

1

N

N∑
i=1

L
(
f
(
φw(x

(i))
)
, t̄(i)

)
, (7.17)

and we can see that the loss takes the target as an additional argument. In this section, we introduce
imitation losses that are well-suited to hybrid ML-CO pipelines (similar to the cost-sensitive Fenchel-
Young losses of Blondel, Martins, and Niculae (2020)), and explain how to compute their gradients.
As in Section 7.4, we only consider a single input x, and we write losses as L(θ, t̄).

7.5.1 A loss that takes the optimization layer into account

There are two main kinds of target. The first one is a good quality solution t̄ = ȳ. The second one is
the true objective direction θ̄, from which we can also deduce ȳ = f(θ̄), so that t̄ = (θ̄, ȳ). When
learning by imitation, it is tempting to focus only on reproducing the targets, but this would be
misguided. To explain why, we revisit the pipeline of Equation (7.4).

Remember that we may have access to the true objective direction θ̄ during training, but at
prediction time, the CO oracle f is applied to the encoder output θ = φw(x) instead. Minimizing a
naive square loss like ∥φw(x)− θ̄∥2 completely neglects the asymmetric impacts of the prediction
errors on θ: for example, overestimating or underestimating θ may have very different consequences
on the quality of the downstream solution. That is why, according to Elmachtoub and Grigas (2022),
we need a loss function that takes the optimization step into account. The same holds true when we
have access to a precomputed solution ȳ. Berthet et al. (2020) present experiments showing that the
naive square loss ∥f̂(φw(x))− ȳ∥2 performs poorly compared with more refined approaches. Our
own numerical findings (Section 7.6) support their conclusion.

To sum up, we want a loss that does not neglect the optimization step. Let y temporarily denote
the output of our pipeline. When surveying the literature, we realized that most flavors of imitation
learning use losses that combine the same components:

Laux(θ, t̄, y) = ℓ(y, t̄)︸ ︷︷ ︸
base loss

+ θ⊤(y − ȳ)︸ ︷︷ ︸
gap between

y and ȳ for the
CO problem (7.2)

− (Ω(y)− Ω(ȳ))︸ ︷︷ ︸
regularization term

(7.18)

Here is another way to write it:

Laux(θ, t̄, y) = ℓ(y, t̄)︸ ︷︷ ︸
base loss

+
(
θ⊤y − Ω(y)

)
−
(
θ⊤ȳ − Ω(ȳ)

)
︸ ︷︷ ︸

gap between y and ȳ
for the regularized CO problem (7.8)

The base loss ℓ(y, t̄) is similar in spirit to the cost function c(y) from Section 7.4. But it is the gap
term that truly makes it possible for the optimization problem to play a role in the loss. Indeed,
minimizing the gap encourages the (regularized) CO problem to output a solution y that is close to
the target ȳ.

Putting these components together yields a linear function of θ, and we can remove the dependency
in y by maximizing over y:

Lgen(θ, t̄) = max
y∈dom(Ω)

Laux(θ, t̄, y) = max
y∈dom(Ω)

[
ℓ(y, t̄) + θ⊤(y − ȳ)− (Ω(y)− Ω(ȳ))

]
. (7.19)

The following result justifies why this is an interesting loss.

151

Method Notation Target Base loss Regul. Loss formula

S-SVM LS-SVM
ℓ ȳ ℓ(y, ȳ) No max

y
ℓ(y, ȳ) + θ⊤(y − ȳ)

SPO+ LSPO+ (θ̄, ȳ) θ̄⊤(ȳ − y) No max
y

θ̄⊤(ȳ − y) + 2θ⊤(y − ȳ)
FY LFY

Ω ȳ 0 Yes max
y

θ⊤(y − ȳ)− (Ω(y)− Ω(ȳ))

Generic Lgen t̄ ℓ(y, t̄) Yes max
y

ℓ(y, t̄) + θ⊤(y − ȳ)− (Ω(y)− Ω(ȳ))

Table 7.2: A common decomposition for loss functions in imitation learning

Proposition 7.5.1 (Properties of the generic loss for learning by imitation). The function Lgen(θ, t̄)
is convex with respect to θ, and a subgradient is given by(

argmax
y∈dom(Ω)

Laux(θ, t̄, y)
)
− ȳ ∈ ∂θLgen(θ, t̄). (7.20)

Proof. As a pointwise maximum of affine functions, θ 7−→ L(θ, t̄) is convex. Its subgradient is
obtained using Danskin’s theorem (Lemma A.3.1).

The idea is that solving argmaxy∈dom(Ω) Laux(θ, t̄, y) should not be much harder than the regu-
larized CO problem (7.8). Therefore, using such a loss function dispenses us from differentiating
through the probabilistic CO layer: most of the time, we only need to compute the layer output in
order to obtain a loss subgradient for free.

Our formulation is slightly different from the cost-sensitive Fenchel-Young losses of Blondel,
Martins, and Niculae (2020) because the cost ℓ(y, t̄) can include generic targets such as θ̄, making it
a generalization of SPO+ as well (see below).

7.5.2 Collection of losses for learning by imitation

Several prominent loss functions from the literature are special cases of our decomposition (7.19):
we gather them in Table 7.2. Code sample 7.10 clarifies their construction, while Code sample 7.11
displays supported operations. Finally, the entire program necessary for learning by imitation is
shown on Code sample 7.12.

In Sections 7.5.2.1, 7.5.2.2, 7.5.2.3 and 7.5.2.4, we go over these special cases to explain how to
compute each loss and its subgradient using Equation (7.20). They can be skipped without danger.

Remark 7.5.2. While the S-SVM and SPO+ losses do not fall within the framework of probabilistic
CO layers (due to the absence of regularization), we still include them for benchmarking purposes.

7.5.2.1 Structured support vector machines

The S-SVM was among the first methods introduced for learning in structured spaces (Tsochantaridis
et al. 2005). Given a target solution ȳ and an underlying distance function ℓ(y, ȳ) on V , the S-SVM
loss is computed as follows:

LS-SVM
ℓ (θ, ȳ) = max

y∈V
{ℓ(y, ȳ) + θ⊤(y − ȳ)}. (7.21)

152

� �
using InferOpt

fyl_pert = FenchelYoungLoss(perturbed_add)
fyl_reg = FenchelYoungLoss(regularized)
spol = SPOPlusLoss(warcraft_maximizer)� �
Code sample 7.10: Example imitation losses

� �
using Zygote

L = loss(theta, y_ref)
Zygote.gradient(loss, theta, y_ref)� �

Code sample 7.11: Supported operations for
an imitation loss

� �
using Flux, InferOpt

gradient_optimizer = ADAM()
parameters = Flux.params(warcraft_encoder)
data = zip(images, paths)

function pipeline_loss(x, y)
theta = warcraft_encoder(x)
return loss(theta, y)

end

for epoch in 1:1000
train!(pipeline_loss, parameters, data, gradient_optimizer)

end� �
Code sample 7.12: Learning with an imitation loss

The subgradient formula (7.20) becomes

argmax
y∈V

{ℓ(y, ȳ) + θ⊤(y − ȳ)} − ȳ ∈ ∂θLS-SVM
ℓ .

Note that due to the presence of ℓ, computing a subgradient requires an auxiliary solver that is
different from the linear oracle f . This is why we do not illustrate the S-SVM with a code sample.
In InferOpt.jl, we only implement this auxiliary solver for the unit simplex, in the case where ℓ
is the Hamming distance. However, we also provide a generic layer where the user can plug in the
relevant auxiliary solver.

7.5.2.2 Smart “predict, then optimize”

The SPO paradigm is applicable when the true objective direction θ̄ is known (remember that in this
case, we have ȳ = f(θ̄)). Elmachtoub and Grigas (2022) define the SPO+ loss function as follows:

LSPO+(θ, θ̄) = (2θ − θ̄)⊤f(2θ − θ̄) + (θ̄ − 2θ)⊤ȳ (7.22)

= max
y∈V

{
θ̄⊤(ȳ − y) + 2θ⊤(y − ȳ)

}
.

It can be seen as a special case of S-SVM. But this time, computing the loss and its subgradient
only requires calling f twice:

2f(2θ − θ̄)− 2ȳ ∈ ∂θLSPO+(θ, θ̄).

153

7.5.2.3 Fenchel-Young losses

The framework of Fenchel-Young losses is built on the theory of convex conjugates, in particular the
Fenchel-Young inequality (Blondel, Martins, and Niculae 2020). Starting from a target solution ȳ
and a regularization Ω, a loss is constructed as follows:

LFY
Ω (θ, ȳ) = Ω∗(θ) + Ω(ȳ)− θ⊤ȳ (7.23)

= max
y∈conv(V)

(
θ⊤y − Ω(y)

)
−
(
θ⊤ȳ − Ω(ȳ)

)
This time, the loss and subgradient require access to f̂Ω:

f̂Ω(θ)− ȳ ∈ ∂θLFY
Ω (θ, ȳ).

As can be inferred from the expression above, there are deep connections between Fenchel-Young
losses and the regularization paradigm of Section 7.3.2. In particular, it is also possible to use
implicit regularization by perturbation (Berthet et al. 2020). The fact that we cannot compute Ω+

ε (y)
or Ω⊙

ε (y) is not a real obstacle: since those terms do not depend on θ, we can just drop them from
the loss during training. We end up with the following estimators for the loss and its subgradient:

LFY
Ω+

ε
(θ, ȳ) = F+

ε (θ)− θ⊤ȳ f̂+ε (θ)− ȳ ∈ ∂θLFY
Ω+

ε
(θ, ȳ)

LFY
Ω⊙

ε
(θ, ȳ) = F⊙

ε (θ)− θ⊤ȳ f̂⊙scaled
ε (θ)− ȳ ∈ ∂θLFY

Ω⊙
ε
(θ, ȳ)

7.5.2.4 Generic imitation loss

Of course, it is tempting to fill in the blanks of Table 7.2 by combining every single term of the loss
decomposition (7.19). To the best of our knowledge, this has not been done before in the literature,
but there is no theoretical obstacle.

If we use this generic loss together with regularization, then it is interesting to remark that L(θ, t̄)
acts as a convex upper bound on the base loss ℓ(f̂Ω(θ), t̄). Indeed, since ȳ is a worse solution
than f̂Ω(θ) for (7.8), we have

ℓ(f̂Ω(θ), t̄) ≤ ℓ(f̂Ω(θ), t̄) +
[
θ⊤f̂Ω(θ)− Ω(f̂Ω(θ))

]
−
[
θ⊤ȳ − Ω(ȳ)

]
≤ max

y∈conv(V)

(
ℓ(y, t̄) + θ⊤(y − ȳ)− (Ω(y)− Ω(ȳ))

)
= L(θ, t̄).

Therefore, our generic loss can be seen as a crossover between the Fenchel-Young loss and a problem-
specific base loss. It is not yet implemented in InferOpt.jl, and we leave its thorough testing for
future work.

7.6 Numerical experiments

In this first version of the paper, we only present one application of our InferOpt.jl package:
Warcraft shortest paths. Experiments on other concrete problems will be added to the final version.

154

Hyperparameter Description

epsilon Scale of the noise for perturbation.
nb_samples Number of noise samples M for perturbation.
batch_size Size of the batches to compute gradients.
lr_start Starting learning rate.

Table 7.3: Hyperparameters for learning Warcraft shortest paths.

7.6.1 Shortest paths on Warcraft maps

We come back to our guiding example of Section 7.2.3. Our aim is to illustrate the various learning
settings introduced in this paper, and to evaluate their relative performance. We do so with two
kinds of shortest path (SP) oracles. The first one uses Dijkstra’s algorithm. The second one uses the
Ford-Bellman algorithm with a bounded number of iterations.

7.6.1.1 Experimental setting

In every experiment presented here, we only consider a sub-dataset, made up of 1% of the original
Warcraft dataset from Vlastelica et al. (2020). It contains 200 samples, which we split into 80 training
samples, 100 validation samples (for hyperparameter tuning) and 20 test samples (for performance
evaluation). The train, test and validation sets are the same for each learning setting. Our motivation
for reducing the dataset is to show that we can still obtain convincing results with a limited amount
of computation.

We use the Metalhead.jl package to build a truncated ResNet18 CNN, Flux.jl to train
our pipelines with the Adam optimizer (Kingma and Ba 2015), and GridGraphs.jl to compute
shortest paths. Our code will soon be made available in the WarcraftShortestPaths.jl15

repository (which is still private at the time of writing). For each learning setting, we tune a subset
of the hyperparameters stated in Table 7.3. The experiments are conducted on a MacBook Pro with
2,3 GHz Intel Core i9, 8 cores and 16 Go 2667 MHz DDR4 RAM.

To obtain a precise learning setting, we need to define:

1. The combinatorial problem we need to solve, along with an appropriate oracle.

2. The probabilistic CO layer used to wrap said oracle.

3. The data we have at our disposal to train our pipeline.

4. The loss function we want to minimize.

No matter the setting, the data always contains a list of RGB map images. When we learn by
experience, we also have access to a black box cost function, which evaluates paths based on the
true cell costs (see the beginning of Section 7.4). On the other hand, when we learn by imitation,
we add targets to the maps (as defined in Section 7.5). The target in our case always includes the
optimal path, with or without the true cell costs.

All those ingredients are detailed in Table 7.4 for each setting we consider. The names of the
first column are reused in the legends of Figure 7.3. Most of the probabilistic CO layers considered

15https://github.com/LouisBouvier/WarcraftShortestPaths.jl

155

https://github.com/LouisBouvier/WarcraftShortestPaths.jl

Name CO problem
(CO oracle) Probabilistic CO layer Exp./Imit.

Target Loss

Cost perturbed
multiplicative noise

SP with non-negative costs
(Dijkstra)

Multiplicative
perturbation

Experience
No target Perturbed cost

Cost perturbed
additive noise

SP on an extended acyclic graph
(Ford-Bellman)

Additive
perturbation

Experience
No target Perturbed cost

Cost regularized
half square norm

SP on an extended acyclic graph
(Ford-Bellman) Half square norm Experience

No target Regularized cost

SPO+ SP on an extended acyclic graph
(Ford-Bellman) No regularization Imitation

Cost and path SPO+ loss

MSE perturbed
multiplicative noise

SP with non-negative costs
(Dijkstra)

Multiplicative
perturbation

Imitation
Path Mean squared error

MSE regularized
half square norm

SP on an extended acyclic graph
(Ford-Bellman) Half square norm Imitation

Path Mean squared error

Fenchel-Young
perturbed multiplicative noise

SP with non-negative costs
(Dijkstra)

Multiplicative
perturbation

Imitation
Path Fenchel-Young

Fenchel-Young
perturbed additive noise

SP on an extended acyclic graph
(Ford-Bellman)

Additive
perturbation

Imitation
Path Fenchel-Young

Fenchel-Young
regularized half square norm

SP on an extended acyclic graph
(Ford-Bellman) Half square norm Imitation

Path Fenchel-Young

Table 7.4: Learning settings for Warcraft shortest paths.

in this paper do not prevent the objective vector θ from changing its sign, and the same goes for the
losses. As a result, we need oracles able to accommodate negative cell costs. That is why we use the
Ford-Bellman algorithm, while limiting the number of iterations to the number of nodes in the grid
graph (to ensure termination even with negative cycles). Our multiplicative perturbation is the only
approach that preserves non-negative costs. It enables us to apply Dijkstra’s algorithm, which has a
smaller time and space complexity.

7.6.1.2 Results

In Figure 7.3, we show the average train (Figure 7.3a) and test (Figure 7.3b) optimality gaps,
computed using the true cell costs. We compare all the settings detailed in Table 7.4, except MSE
base loss + additive noise (we could not get satisfactory results using only 80 training samples).
To quantify training effort, instead of counting epochs (i.e., passes through the dataset), we use
the number of optimizer calls, because these calls are the truly time-consuming part. This aims at
comparing learning settings which involve different amounts of computation per gradient step. For
instance, using SPO+, we need 2 optimizer calls to compute the loss gradient for one sample. On
the other hand, we need M optimizer calls if we choose Fenchel-Young perturbed additive noise.

When learning by imitation, SPO+ reaches almost zero average gap both on train and test sets
after very few optimizer calls, even though we only kept 1% of the initial dataset. This impressive
result can be understood since, with SPO+, we have access to the true cell costs during training,
and we leverage the problem structure within the loss.

Assuming we only have access to target paths, we obtain better results with Fenchel-Young losses
than with MSE losses. The train and test average gaps are lower than 5% with the former, and we
observe good generalization performance. This may be explained by the use of the optimization
problem in the Fenchel-Young loss definition. On the contrary, in the MSE setting, although we
have access to target paths, we only seek to imitate them without truly accounting for solution cost.

156

Perhaps surprisingly, we also manage to learn by experience with our small sub-dataset. Indeed,
using the techniques introduced in Section 7.4, we reach 7% average test gaps in the cost perturbed
multiplicative noise setting, which is better than learning by imitation with an MSE loss. To the
best of our knowledge, it is the first time that learning by experience (as defined in Section 7.4) is
combined with CNNs.

157

0 25000 50000 75000 100000 125000 150000 175000 200000
Optimizer calls

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ga
p

wi
th

 re
sp

ec
t t

o
th

e
tru

e
m

ax
im

ize
r

Average train cost gap during training by experience
Cost perturbed multiplicative noise
Cost perturbed additive noise
Cost regularized half square norm

0 25000 50000 75000 100000 125000 150000 175000 200000
Optimizer calls

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ga
p

wi
th

 re
sp

ec
t t

o
th

e
tru

e
m

ax
im

ize
r

Average train cost gap during training by imitation
SPO+
MSE perturbed multiplicative noise
MSE regularized half square norm
Fenchel-Young perturbed multiplicative noise
Fenchel-Young perturbed additive noise
Fenchel-Young regularized half square norm

(a) Average train gap

0 25000 50000 75000 100000 125000 150000 175000 200000
Optimizer calls

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ga
p

wi
th

 re
sp

ec
t t

o
th

e
tru

e
m

ax
im

ize
r

Average test cost gap during training by experience
Cost perturbed multiplicative noise
Cost perturbed additive noise
Cost regularized half square norm

0 25000 50000 75000 100000 125000 150000 175000 200000
Optimizer calls

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ga
p

wi
th

 re
sp

ec
t t

o
th

e
tru

e
m

ax
im

ize
r

Average test cost gap during training by imitation
SPO+
MSE perturbed multiplicative noise
MSE regularized half square norm
Fenchel-Young perturbed multiplicative noise
Fenchel-Young perturbed additive noise
Fenchel-Young regularized half square norm

(b) Average test gap

Figure 7.3: Train and test optimality gaps along training in the Warcraft application

158

8
Convex optimization with the lexicographic
order

It’s very simple. Look, scissors cuts paper.
Paper covers rock. Rock crushes lizard.
Lizard poisons Spock. Spock smashes
scissors. Scissors decapitates lizard.
Lizard eats paper. Paper disproves Spock.
Spock vaporizes rock. And as it always
has, rock crushes scissors.

Sheldon Cooper
The Big Bang Theory – S2E8

The Lizard-Spock Expansion (2008)

Contents
8.1 Introduction . 160

8.1.1 Multiobjective optimization . 160
8.1.2 Lexicographic optimization . 161
8.1.3 Outline . 161

8.2 Related work . 161
8.2.1 Algorithms for multiobjective optimization 161
8.2.2 Algorithms for lexicographic optimization 162

8.3 Lexicographic order . 163
8.3.1 Definitions and basic properties . 163
8.3.2 Link with orthogonalization . 164
8.3.3 Lexicographic lower bounds . 164

8.4 Lexicographic convexity . 165
8.4.1 Lexicographic epigraph . 165
8.4.2 Examples and composition rules . 166
8.4.3 Coarser than componentwise convexity . 168

159

8.5 Lexicographic minimization . 169
8.5.1 Lexicographic coercivity and strong convexity 169
8.5.2 Existence and uniqueness of a minimizer . 170
8.5.3 Approximate minimization . 171

8.6 Lexicographic subgradients . 171
8.6.1 Characterization and existence . 171
8.6.2 Examples and composition rules . 174
8.6.3 Link with differentiability . 175
8.6.4 Lexicographic conjugation . 177

8.7 The failure of the lexicographic subgradient method 178
8.7.1 Lex-minimizing a local linear surrogate . 178
8.7.2 Naive lex-subgradient method . 179

8.8 More advanced optimization algorithms 181
8.8.1 Orthogonalized Jacobian method . 181
8.8.2 Lexicographic cutting planes algorithm . 181

8.9 Application to ML . 182
8.9.1 Lexicographic Fenchel-Young losses . 183
8.9.2 Limitations . 184

8.10 Numerical experiments . 184
8.10.1 Simple function . 184
8.10.2 Neural network . 188

8.1 Introduction

Chapter 7 explained how to insert CO layers into ML pipelines, with a focus on problems that
can be expressed as Linear Programs (LPs). Thanks to the regularization paradigm, we saw that
convexifying a linear objective is key to obtaining meaningful derivatives.

While standard LPs cover a broad range of applications, they are sometimes insufficient for
practical purposes. For instance, multiobjective LPs are very common in industrial applications,
where several criteria might coexist.

8.1.1 Multiobjective optimization

The framework we focus on is a special case of vector optimization, also called multiobjective or
multi-criteria optimization (Miettinen 1999; Ehrgott 2005). For lack of a natural order on the output
space Rm, vector optimization is usually concerned with finding one or several Pareto efficient
solutions: these are solutions that cannot be strictly improved with respect to objective fi without
worsening some other objective fj . More generally, one can be interested in minimizing f with
respect to the order induced by a convex cone K (Bot, Grad, and Wanka 2009; Jahn 2010):

x ≤K y ⇐⇒ y − x ∈ K

We call this paradigm conic multiobjective optimization. Pareto efficiency corresponds to the
componentwise partial order x ≤ y, which is induced by the nonnegative orthant K = Rm

+ .

160

8.1.2 Lexicographic optimization

In situations where the decision-maker can prioritize objectives explicitly, the lexicographic order ≤lex

provides a more suitable definition of optimal solution than Pareto efficiency. For instance, when
routing several trains through a railway network, one may define an importance ranking between
them, specifying that the journey duration of train j matters more than that of train j + 1. If x1:j
denotes the subvector (x1, ..., xj) with components 1 through j, then the lexicographic order is
defined as follows:

x≤lex y ⇐⇒ x = y or ∃j ∈ [m], x1:j−1 = y1:j−1 and xj < yj .

Its strict counterpart excludes the equality case:

x<lex y ⇐⇒ ∃j ∈ [m], x1:j−1 = y1:j−1 and xj < yj .

Here we study a lexicographic optimization problem: our goal is to find

f⋆ = lexmin
x∈Rn

f(x) and x⋆ ∈ lexargmin
x∈Rn

f(x),

where the optimal solution is selected according to the lexicographic order. If we look back to
Chapter 5, we remember that the sequential approximation to MAPF can almost be thought of as a
lexicographic optimization problem (5.4). This was the initial motivation for the present study.

8.1.3 Outline

In this chapter, we seek to generalize the theory of convex optimization (Boyd and Vandenberghe
2004) to vector-valued functions f : Rn −→ Rm by endowing the output space with the lexicographic
order. A crucial ingredient is the class of lexicographically convex functions, which is much wider
than that of componentwise convex functions. We prove several useful results on this family of
functions, and we design an optimization algorithm for lexicographic convex problems that does not
require solving constrained convex problems. We also introduce lexicographic Fenchel-Young losses
as a principled way to insert lexicographic LPs within ML pipelines.

In convex analysis, it is standard to work with extended real-valued functions. That way,
constrained and unconstrained optimization share the same formalism. Similarly, we choose to work
with extended vector-valued functions f : Rn −→ Rm, where R = R ∪ {±∞} is the completed real
line. Note that the lexicographic order naturally extends to Rm.

8.2 Related work

The reader interested in recent overviews of multiobjective optimization can refer to the surveys by
Wiecek, Ehrgott, and Engau (2016) or Eichfelder (2021).

8.2.1 Algorithms for multiobjective optimization

Since the seminal work of Geoffrion (1968), many approaches to vector optimization rely on
scalarization, for instance using the weighted sum method. By combining all objectives into a single
quantity, it permits the use of any scalar optimization algorithm with basically no modification.

161

Under additional convexity assumptions, it even recovers the entire Pareto front. However, the
weighted sum method puts a lot of emphasis on the careful choice of objective weights, which can
sometimes seem arbitrary.

Therefore, many authors seek to generalize standard algorithms to the multiobjective setting
without resorting to scalarization. Multiobjective linear and combinatorial optimization problems
in particular attract a lot of attention (Ehrgott 2005; Luc 2016). In the smooth case, numerous
local search paradigms now have multiobjective counterparts: steepest descent (Fliege and Svaiter
2000; L. M. G. Drummond and Svaiter 2005), projected gradient (L. G. Drummond and A. Iusem
2004), proximal algorithms (Bonnel, A. N. Iusem, and Svaiter 2005), Newton’s method (Fliege,
L. M. G. Drummond, and Svaiter 2009) and so on. In the non-smooth case, subgradient algorithms
(Da Cruz Neto et al. 2013; Gebken and Peitz 2021) and bundle methods also possess natural
extensions.

8.2.2 Algorithms for lexicographic optimization

Given that the lexicographic order is a total order, all solutions are comparable with one another.
Thus, any lexicographically optimal solution is also Pareto efficient. However, the converse is not
true, which means the algorithms from Section 8.2.1, when applied with K = Rm, will not necessarily
find a lexicographically optimal solution. Meanwhile, most algorithms from conic multiobjective
optimization (Bot, Grad, and Wanka 2009; Jahn 2010) are designed to output a diverse set of
Pareto-efficient solutions, because generic convex cones K do not give rise to a total order. In our
case, this is overkill, because one solution is all we are looking for. Besides, several of the results
from this theory expect a closed convex cone, which the lexicographic cone is not.

We thus need algorithms that are tailored specifically to the lexicographic setting. A natural idea
would be lexicographic scalarization (Sherali and Soyster 1983; Zarepisheh and Khorram 2011), which
involves putting a lot more weight on the first objective than on the second, and so on. But when
there are many objectives, it often leads to numerical issues because the weights can span several
orders of magnitude. Instead, the standard algorithm for lexicographic optimization is sequential
(Ehrgott 2005, Algorithm 5.1):

Algorithm 8.2.1 (Sequential lexicographic optimization). For each j going from 1 to m, solve the
constrained optimization problem

f⋆j = min
x∈Rn

fj(x) s.t. ∀i < j, fi(x) ≤ f⋆i . (8.1)

While the constraint fi(x) ≤ f⋆i is easy to enforce in the linear case (where fi(x) = c⊤i x), it can
make optimization harder as soon as non-linearities appear. We hope to circumvent this difficulty
by considering all the objectives simultaneously instead of sequentially.

For linear optimization, Isermann (1982) paves the way by showing that the simplex algorithm
can solve lexicographic LPs directly in the lexicographic space. Tellache, Meunier, and Parmentier
(2022) extend his results to tackle challenging MILPs. For convex optimization, some authors exhibit
lexicographic versions of the Karush-Kuhn-Tucker conditions or duality theory (Ben-Tal and Zlobec
1977; Ben-Tal 1980; Martinez-Legaz 1988; Rentmeesters, Tsai, and K.-J. Lin 1996). Yet, to the best
of our knowledge, most solution methods still rely on the sequential Algorithm 8.2.1. Furthermore,
nearly all previous works make the assumption that f has convex components fj , which is (as we
will discover) a restrictive assumption. In fact, the natural class of functions to which we want to
apply lexicographic minimization even contains discontinuous functions.

162

Figure 8.1: Lexicographic cone in dimension 2

8.3 Lexicographic order

Let us start by recalling some facts about our main object of interest.

8.3.1 Definitions and basic properties

Proposition 8.3.1 (Order induced by a convex cone). Let K ⊂ Rm be a pointed convex cone.
Then K induces a partial order ≤K on Rm:

x ≤K y ⇐⇒ y − x ∈ K.
This partial order is compatible with the vector space operations of Rm.

Proof. See Bot, Grad, and Wanka (2009, Section 2.1.1).

Definition 8.3.2 (Lexicographic cone). The lexicographic cone Klex ⊂ Rm is defined by

Klex = {0} ∪ {x ∈ Rm : ∃j ∈ [m], x1:j−1 = 0 and xj > 0}.
It is not hard to verify that Klex is pointed and convex, but not closed. Indeed, (ε,−1) ∈ Klex

for all ε > 0, but (0,−1) /∈ Klex. This can be seen on Figure 8.1.

Definition 8.3.3 (Lexicographic order). The lexicographic order relation ≤lex is the order induced
by the lexicographic cone Klex on Rm.

The extension of ≤lex to Rm is natural. Since Klex is not closed, the lexicographic order is not
preserved when taking limits, which will be the source of numerous problems.

Proposition 8.3.4 (Properties of the lexicographic order). Let x, y ∈ Rm.

1. If x, y≥lex 0 and α, β ≥ 0, then αx+ βy≥lex 0.

2. If x≥lex 0, then for any j ∈ [m], we also have x1:j ≥lex 0.

3. If x ≥ 0 then x≥lex 0.

Proof. Easily deduced from the definition of Klex.

163

8.3.2 Link with orthogonalization

Let us recall a well-known orthogonalization algorithm.

Algorithm 8.3.5 (Gram-Schmidt orthogonalization). Given a matrix A =
(
A1 · · · Am

)
∈ Rn×m,

output the matrix Q =
(
Q1 · · · Qm

)
∈ Rn×m defined recursively by

∀j ∈ [m], Qj = Aj −
j−1∑
i=1

projQi
(Aj).

where projQi
denotes the orthogonal projection on the span of the column Qi.

We present an interesting property of the lexicographic order with respect to orthogonalization.

Proposition 8.3.6 (Stability of the lexicographic order by orthogonalization). Let A ∈ Rn×m

and Q = GramSchmidt(A). For any h ∈ Rn, if A⊤h≥lex 0, then Q⊤h≥lex 0.

Proof. Let j ∈ [m] and suppose that Q⊤
1:j−1h = 0, we will show that Q⊤

j h ≥ 0. Since Q⊤
1:j−1h = 0,

we have h⊥ span(Q1, ..., Qj−1). The Gram-Schmidt algorithm preserves the span of each subfamily,
so that span(Q1, ..., Qj−1) = span(A1, ..., Aj−1). Therefore, h⊥ span(A1, ..., Aj−1) and A⊤

1:j−1h = 0.
Our hypothesis A⊤h≥lex 0 thus implies A⊤

j h ≥ 0. The Gram-Schmidt algorithm ensures that Aj =

αQj+R where α ≥ 0 and R ∈ span(A1, ..., Aj−1). We can conclude A⊤
j h = αQ⊤

j h+R
⊤h = αQ⊤

j h ≥
0.

8.3.3 Lexicographic lower bounds

Because the lexicographic order is a complete order (any two vectors are comparable), the following
definitions are natural.

Definition 8.3.7 (Lex-lower bound, lex-minimum, lex-infimum). Let X ⊆ Rm and v ∈ Rm.

• If v satisfies v≤lex x for all x ∈ X , we say that v is a lex-lower bound of X .

• If v is a lex-lower bound of X and v belongs to X , we say that v is the lex-minimum of X , and
we write v = lexmin(X).

• If v is the lex-maximum of all lex-lower bounds of X , we say that v is the lex-infimum of X ,
and we write v = lexinf(X).

Similar definitions apply for the concepts of lex-upper bound, lex-maximum and lex-supremum.

If either the lex-minimum or the lex-infimum exists, it is unique. But even for bounded sets,
lex-extrema can be infinite.

Example 8.3.8 (Infinite lex-extremum). Let X = {x ∈ R2 : 0 < x1 ≤ 1, x2 = 0}. This set is bounded
in the usual sense. It is also lex-lower-bounded: the set of its lex-lower bounds is {v ∈ R2 : v1 ≤ 0}.
Among these lex-lower bounds, the lex-maximum is (0,+∞) = lexinf(X).

In addition to boundedness, we can leverage an assumption of closedness to ensure the existence
of a finite lex-infimum (which then becomes a lex-minimum).

164

Proposition 8.3.9 (Finite lex-minimum with compactness). Let C ⊆ Rm be a non-empty compact
set. Then C admits a finite lex-minimum.

Proof. Let πj : x ∈ Rm 7−→ xj ∈ R denote the orthogonal projection on component j. We define a
sequence Cj of subsets of C as follows:

C0 = C and ∀j ∈ [m], Cj = {x ∈ Cj−1 : πj(x) = minπj(Cj−1)}.

Suppose that Cj−1 is non-empty and compact. Then, by continuity of πj , the minimum of πj on Cj−1

(in the usual sense) exists: say it is reached at y ∈ Cj−1. From this, we deduce that the set Cj is itself
non-empty (because it contains y), closed (as the pre-image of {minπj(Cj−1)} by the continuous
function πj) and bounded (as a subset of Cj−1). We deduce that Cj is non-empty and compact as
well. By recursion, this holds for all j, especially for j = m.

Let us conclude by proving that Cm is exactly the set of lex-minima of C. To see that, consider x ∈
Cm and any other y ∈ C. If y ∈ Cj−1\Cj for some j ∈ [m], then since Cm ⊆ Cj , we have x1:j−1 = y1:j−1

and xj < yj . In other words, x<lex y. Else, y ∈ Cm, which means that x1:m = y1:m, i.e., x = y.
Therefore, C has at least one lex-minimum, and it can have only one. This lex-minimum is finite.

8.4 Lexicographic convexity

We now describe a natural concept of convexity with respect to the lexicographic order. It is a
special case of convexity with respect to the partial order defined by a cone K (Bot, Grad, and
Wanka 2009), but we think the case of Klex is so unique that it deserves its own study.

Definition 8.4.1 (Lex-convexity). A function f : Rn −→ Rm is said to be lex-convex if, for
all x, y ∈ Rn and all λ ∈ [0, 1],

f(λx+ (1− λ)y)≤lex λf(x) + (1− λ)f(y).

If the inequality is strict for all x ̸= y whenever λ ∈ (0, 1), we say that f is strictly lex-convex.

Definition 8.4.2 (Domain, properness). The domain of a function f : Rn −→ Rm is the subset
of Rn where all of its components take finite values:

dom(f) = {x ∈ Rn : ∀j ∈ [m], −∞ < fj(x) < +∞}

Furthermore, f is said to be proper if none of its components ever takes the value −∞, and if its
domain is non-empty.

In the following, every lex-convex function we consider is assumed to be proper unless otherwise
specified.

8.4.1 Lexicographic epigraph

As in the scalar case, there is a strong connection between lex-convex functions and convex sets.

Definition 8.4.3 (Lex-epigraph). The lex-epigraph of a function f : Rn −→ Rm is defined by

lexepi(f) = {(x, v) ∈ Rn × Rm
: f(x)≤lex v} ⊆ Rm

.

165

Proposition 8.4.4 (Lex-convexity and lex-epigraph). A function f : Rn −→ Rm is lex-convex if
and only if its lex-epigraph is a convex set.

Proof. First, suppose that f is lex-convex. Let (x, u) and (y, v) be two elements of lexepi(f),
and λ ∈ [0, 1]. By lex-convexity of f , we know that

f(λx+ (1− λ)y)≤lex λf(x) + (1− λ)f(y).

And because (x, u) ∈ lexepi(f) (resp. (y, v) ∈ lexepi(f)), we have f(x)≤lex u (resp. f(y)≤lex v).
Therefore,

f(λx+ (1− λ)y)≤lex λu+ (1− λ)v,
which amounts to (

λx+ (1− λ)y
λu+ (1− λ)v

)
∈ lexepi(f).

In other words, lexepi(f) is a convex set.

Conversely, suppose that lexepi(f) is a convex set. Let x, y ∈ Rn and λ ∈ [0, 1]. We define u =
f(x) and v = f(y), so that (x, u) and (y, v) belong to lexepi(f). By convexity of lexepi(f), we get(

λx+ (1− λ)y
λu+ (1− λ)v

)
∈ lexepi(f).

We deduce
f(λx+ (1− λ)y) ≤ λu+ (1− λ)v = λf(x) + (1− λ)f(y).

In other words, f is lex-convex.

8.4.2 Examples and composition rules

Here we outline several ways to build lex-convex functions, as well as some caveats associated with
this very wide class.

Proposition 8.4.5 (Lex-convex subfunction). Let f : Rn −→ Rm be a lex-convex function. Then
for any j ∈ [m], the subfunction f1:j : Rn −→ Rj is also lex-convex.

Proof. Direct consequence of Proposition 8.3.4.

Proposition 8.4.6 (Componentwise convex function). Let f : Rn −→ Rm be a function whose
components fj : Rn −→ R are all convex. Then f is lex-convex.

Proof. The following inequality holds componentwise:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

By Proposition 8.3.4, it also holds in a lexicographic sense. This means f is lex-convex.

Proposition 8.4.7 (Affine function). Let f : Rn −→ Rm be an affine function. Then f is lex-convex.

Proof. Direct consequence of Proposition 8.4.6.

166

Proposition 8.4.8 (Affine composition). Let f : Rn −→ Rm be a lex-convex function and ψ : x ∈
Rp 7−→ Ax+ b ∈ Rn be an affine function. Then f ◦ ψ : Rp −→ Rm is lex-convex.

Proof. By lex-convexity of f ,

(f ◦ ψ)(λx+ (1− λ)y) = f (A(λx+ (1− λ)y) + b)

= f (λ(Ax+ b) + (1− λ)(Ay + b))

≤lex λf(Ax+ b) + (1− λ)f(Ay + b)

= λ(f ◦ ψ)(x) + (1− λ)(f ◦ ψ)(y).

This means f ◦ ψ is lex-convex.

Proposition 8.4.9 (Convex function times vector). Let ψ : Rn −→ R be a real-valued function,
and v ∈ Rm be a vector. If ψ is convex and v≥lex 0, then f : x ∈ Rn 7−→ ψ(x)v ∈ Rm is lex-convex.

Proof. By convexity of ψ, for all x, y ∈ Rn and all λ ∈ [0, 1],

a = [λψ(x) + (1− λ)ψ(y)]− ψ(λx+ (1− λ)y) ≥ 0.

Since v≥lex 0, we also have av≥lex 0, which shows that

[λf(x) + (1− λ)f(y)]− f(λx+ (1− λ)y)≥lex 0.

Therefore, f is lex-convex.

Proposition 8.4.10 (Sum of lex-convex functions). Let f1, f2 be two lex-convex functions from Rn

to Rm, and let α, β ≥ 0 be two real numbers. Then the weighted sum αf1 + βf2 is also lex-convex.

Proof. By Proposition 8.3.1, the lexicographic order is compatible with the vector space operations
of Rm. Nonnegative scaling and addition do not give rise to ambiguous quantities of the form∞−∞,
so this result extends to Rm.

Proposition 8.4.11 (Lexmax of lex-convex functions). Let (fk)k∈K be a (possibly uncountable)
family of lex-convex functions from Rn to Rm. Then their pointwise lex-maximum f : x ∈ Rn 7−→
lexmaxk∈K f

k(x) ∈ Rm is also lex-convex.

Proof. By definition of the lex-epigraph,

lexepi(f) = {(x, v) ∈ Rn × Rm
: lexmax

k∈K
fk(x)≤lex v}

= {(x, v) ∈ Rn × Rm
: ∀k ∈ K, fk(x)≤lex v}

=
⋂
k∈K

lexepi(fk)

By Proposition 8.4.4, since each fk is lex-convex, its lex-epigraph is a convex set. Therefore, the
intersection of these epigraphs is a convex set as well. Using Proposition 8.4.4 again in the opposite
direction, we conclude that f is lex-convex.

167

8.4.3 Coarser than componentwise convexity

We proceed to show that the family of lex-convex functions includes componentwise convex functions,
but not only. We give two counterexamples.

Example 8.4.12 (Lex-convex function which is not componentwise convex). The function f : x ∈
R 7−→ (x2,−x2) is lex-convex. To see it, apply Proposition 8.4.9 with v = (1,−1)>lex 0. However,
its second component is strictly concave and hence not convex.

Example 8.4.13 (Lex-convex function which is not continuous). Consider the two affine functions

f1 : (x1, x2) 7−→ (x1, 0) and f2 : (x1, x2) 7−→ (0, x2).

By Proposition 8.4.7, they are both lex-convex, and by Proposition 8.4.11 their pointwise lex-
maximum f = lexmax{f1, f2} is lex-convex as well. However, h is not continuous:

f(ε, 1) = (ε, 0) −−−→
ε−→0

(0, 0) ̸= (0, 1) = f(0, 1)

The following result can be seen as a partial converse to Proposition 8.4.6.

Proposition 8.4.14 (Restricted convexity of the last component). Let f : Rn −→ Rm be a lex-
convex function and j ∈ [m]. Suppose that f1:j−1 is lex-lower-bounded by v ∈ Rj−1 on Rn: for
all x ∈ Rn, we have f1:j−1(x)≥lex v. We define Xj as the set of inputs where this lex-lower bound is
tight: Xj = {x ∈ Rn : f1:j−1(x) = v}. Then Xj is a convex set and the component fj is convex on Xj

Proof. Let x and y be two elements of Xj , and λ ∈ [0, 1]. By Proposition 8.4.5, since f is lex-
convex, f1:j and f1:j−1 are also lex-convex. By lex-convexity of f1:j−1,

v ≤ f1:j−1(λx+ (1− λ)y)≤lex λf1:j−1(x) + (1− λ)f1:j−1(y) = λv + (1− λ)v = v.

As a result, λx+ (1− λ)y ∈ Xj , and so Xj is a convex set. Furthermore, by lex-convexity of f1:j ,(
f1:j−1(λx+ (1− λ)y)
fj(λx+ (1− λ)y)

)
≤lex λ

(
f1:j−1(x)
fj(x)

)
+ (1− λ)

(
f1:j−1(y)
fj(y)

)
.

But since x, y and λx+ (1− λ)y all belong to Xj , the value of f1:j−1 at these three points is the
same: (

v
fj(λx+ (1− λ)y)

)
≤lex λ

(
v

fj(x)

)
+ (1− λ)

(
v

fj(y)

)
.

By definition of the lexicographic order, we have the following constraint on fj :

fj(λx+ (1− λ)y) ≤ λfj(x) + (1− λ)fj(y).

In other words, fj is convex on Xj .

This has important consequences for the sequential Algorithm 8.2.1.

Theorem 8.4.15 (Sequential minimization works for lex-convex functions). When applied to a lex-
convex function, the sequential Algorithm 8.2.1 solves a sequence of constrained convex minimization
problems.

Proof. Directly implied by Proposition 8.4.14.

168

8.5 Lexicographic minimization

As we will see later on, lex-convex functions can appear naturally in some optimization problems. It
thus makes sense to ask whether they always have a (unique) minimizer.

8.5.1 Lexicographic coercivity and strong convexity

The usual notion of coercivity has a natural counterpart in the lexicographic setting.

Definition 8.5.1 (Lex-coercivity). A function f : Rn −→ Rm is said to be lex-coercive if for
all v ∈ Rm, there is a radius r ∈ [0,+∞) such that ∥x∥ ≥ r implies f(x)≥lex v.

Proposition 8.5.2 (Existence of a lex-minimizer for lex-coercive functions). Let f : Rn −→ Rm

be a proper, continuous and lex-coercive function. Then the lexicographic optimization prob-
lem lexminx∈Rn f(x) has at least one optimal solution.

Proof. Since f is proper, there is an x0 ∈ Rn such that f(x0) is finite. By lex-coercivity, there is
a radius r ∈ [0,∞) such that ∥x∥ ≥ r implies f(x)≥lex f(x

0). We define X = B(x0, r), which is
a non-empty compact set, and C = f(X). By continuity of f , the set C is also non-empty and
compact. By Proposition 8.3.9, C has a lex-minimum v. Since C = f(X), there is an x ∈ X
such that f(x) = v. For all y ∈ X , we have f(y)≥lex v = f(x). And for all y ∈ Rn\X , we
have f(y)≥lex f(x

0)≥lex v = f(x) (remember that x0 ∈ X). Hence, x is an optimal solution to the
lexicographic optimization problem lexminx∈Rn f(x).

To generalize γ-strong convexity, we need to replace the curvature parameter γ > 0 with a
curvature vector v >lex 0.

Definition 8.5.3 (Strong lex-convexity). Let v ∈ Rm be such that v >lex 0. A function f : Rn −→ Rm

is said to be v-strongly lex-convex if for all x, y ∈ Rn, for all λ ∈ [0, 1],

f(λx+ (1− λ)y)≤lex λf(x) + (1− λ)f(y)− λ(1− λ)
2

∥x− y∥2v.

Proposition 8.5.4 (Strong lex-convexity implies strict lex-convexity). Let f : Rn −→ Rm be v-
strongly lex-convex for some v >lex 0. Then f is also strictly lex-convex.

Proof. Whenever λ ∈ (0, 1) and x ̸= y, since v >lex 0 we have λ(1−λ)
2 ∥x− y∥2v >lex 0. Plugging this

into the inequality defining v-strong lex-convexity implies

f(λx+ (1− λ)y)<lex λf(x) + (1− λ)f(y).

Proposition 8.5.5 (Strong lex-convexity implies lex-coercivity). Let f : Rn −→ Rm be proper,
continuous and v-strongly lex-convex for some v >lex 0. Then f is also lex-coercive.

Proof. Since f is proper and continuous, there is an x0 ∈ Rn such that f(x0) is finite. By continuity,
there is a radius r ∈ (0,+∞) such that f remains finite on the ball B(x0, r). Without loss of

169

generality, we can take x0 = 0 and r = 1 to simplify. Given x ∈ Rn, we write the v-strong
lex-convexity condition with λ = 1/∥x∥ and y = 0:

f

(
1

∥x∥x
)
≤lex

1

∥x∥f(x) +
(
1− 1

∥x∥

)
f(0)−

1
∥x∥

(
1− 1

∥x∥

)
2

∥x∥2v.

Since f is continuous and finite on B(0, 1), we know that |f |(B(0, 1)) is also non-empty and compact.
By Proposition 8.3.9, this image ball admits a lex-maximum z. We can therefore write:

f(x)≥lex∥x∥f
(

1

∥x∥x
)
− (∥x∥ − 1)f(0) +

1

2

(
1− 1

∥x∥

)
∥x∥2v

≥lex−2∥x∥z +
1

4
∥x∥2v.

Since v >lex 0, the function x 7−→ −2∥x∥z + 1
4∥x∥2v is lex-coercive, and so is f .

Proposition 8.5.6 (Convex function times vector – strong lex-convexity). Consider the setting of
Proposition 8.4.9. If ψ is γ-strongly convex and v >lex 0, then f(x) = ψ(x)v is γv-strongly lex-convex.

Proof. Since ψ is γ-strongly convex,

a =

[
λψ(x) + (1− λ)ψ(y)− λ(1− λ)

2
∥x− y∥2γ

]
− ψ(λx+ (1− λ)y) ≥ 0.

Using the fact that v≥lex 0, we obtain av≥lex 0, which shows that f is γv-strongly lex-convex.

8.5.2 Existence and uniqueness of a minimizer

We now have all the tools we need to ensure that lexicographic optimization problems are well-defined.

Proposition 8.5.7 (Strict lex-convexity implies minimizer uniqueness). Let f : Rn −→ Rm be
strictly lex-convex. If the optimal solution to the problem lexminx∈Rn f(x) exists, then it is unique.

Proof. Suppose x and y are distinct lex-minimizers of f on Rn. By strict lex-convexity, we would
have

f

(
x+ y

2

)
<lex

f(x) + f(y)

2
,

which is impossible.

Theorem 8.5.8 (Minimization of lex-convex functions). Let f : Rn −→ Rm be a proper, continuous,
lex-coercive and strictly lex-convex function. Then the problem lexminx∈Rn f(x) has an optimal
solution, and this solution is unique.

Proof. By Proposition 8.5.2, the minimizer exists. By Proposition 8.5.7, the minimizer is unique.

Proposition 8.5.9 (Minimization of strongly lex-convex functions). Let f : Rn −→ Rm be a proper,
continuous and strongly lex-convex function. Then the problem lexminx∈Rn f(x) has an optimal
solution, and this solution is unique.

Proof. Combine Propositions 8.5.4 and 8.5.5 with Theorem 8.5.8.

170

8.5.3 Approximate minimization

In linear optimization, the simplex algorithm returns a combinatorial object called a basis, which
encodes the optimal solution in an exact manner. On the other hand, convex optimization is
approximate: there will always be some numerical error keeping us from reaching the exact optimum.
This means that when running the sequential Algorithm 8.2.1, the constraint fi(x) = f⋆i cannot be
enforced with infinite precision. As a result, we need a notion of approximate optimality to analyze
the convergence of our algorithms.

Definition 8.5.10 (Approximate lex-minimizer). Let f : Rn −→ Rm be a function with lex-
minimum f⋆. A vector x ∈ Rn is an ε-approximate lex-minimizer if it satisfies f(x) ≤ f⋆ + ε1.

We stress that the inequality in the previous definition must hold componentwise.

8.6 Lexicographic subgradients

Now that we have discussed the existence of a lex-minimizer, we ask how to compute it. Let us start
by generalizing the standard notion of subgradient.

Definition 8.6.1 (Lex-subgradient). Let f : Rn −→ Rm be a proper function. A matrix G ∈ Rn×m

is a lex-subgradient of f at x ∈ dom(f) if, for all y ∈ Rn,

f(y)− f(x)≥lexG
⊤(y − x).

We denote by ∂lexf(x) the lex-subdifferential of f at x, which is the set of its lex-subgradients.

Note the major difference with the real-valued case: while usual subgradients are just vectors,
lex-subgradients are matrices. The lex-subdifferential is always a convex set, but it may not be
closed nor bounded (see Example 8.6.13). And for optimization purposes, it is of particular interest
to know whether it contains 0.

Proposition 8.6.2 (Unconstrained lex-optimality condition). Let f : Rn −→ Rm be a proper
lex-convex function. Then x ∈ dom(f) is a global lex-minimizer of f if and only if 0 ∈ ∂lexf(x).

Proof. We have the following equivalence relations:

x is a global lex-minimizer of f ⇐⇒ ∀y ∈ Rn, f(y)≥lex f(x)

⇐⇒ ∀y ∈ Rn, f(y)− f(x)≥lex 0
⊤(y − x)

⇐⇒ 0 ∈ ∂lexf(x)

8.6.1 Characterization and existence

Proposition 8.6.3 (Columns of a lex-subgradient). Let f : Rn −→ Rm be a proper lex-convex
function. Let x ∈ dom(f) and G =

(
G1 · · · Gm

)
∈ Rn×m For all j ∈ [m], we define

Yj = {y ∈ Rn : f1:j−1(y)− f1:j−1(x) = G⊤
1:j−1(y − x)}.

Then the following two statements are equivalent:

171

1. The matrix G is a lex-subgradient of f at x

2. For all j ∈ [m],

(a) the set Yj is convex

(b) the function fj is convex on Yj
(c) the column Gj is a subgradient of fj |Yj

at x.

Proof. We start by noting that for all j ∈ [m], the vector x belongs to Yj .

1 =⇒ 2: Let G ∈ ∂lexf(x): the function y 7−→ f(y)−G⊤y is lex-convex. We fix j ∈ [m].

By Proposition 8.3.4, G1:j−1 ∈ ∂lexf1:j−1(x). Therefore, y 7−→ f1:j−1(y)−G⊤
1:j−1y is lex-lower-

bounded by v = f1:j−1(x)−G1:j−1(x) on Rn. Since Yj is the set where this lex-lower bound is
tight, by Proposition 8.4.14, it is a convex set and y 7−→ fj(y)−G⊤

j y is convex on Yj . This
also implies that fj is convex on Yj .
By Proposition 8.3.4, G1:j ∈ ∂lexf1:j(x). Therefore, for every y ∈ Rn,(

f1:j−1(y)− f1:j−1(x)
fj(y)− fj(x)

)
= f1:j(y)− f1:j(x)≥lexG

⊤
1:j(y − x) =

(
G⊤

1:j−1(y − x)
G⊤

j (y − x)

)
,

which we can rewrite as(
f1:j−1(y)− f1:j−1(x)−G⊤

1:j−1(y − x)
fj(y)− fj(x)−G⊤

j (y − x)

)
≥lex 0.

By definition of Yj , the first block is zero for all y ∈ Yj . In order for the whole vector to
be ≥lex 0, the last component must satisfy

fj(y)− fj(x)−G⊤
j (y − x) ≥ 0.

This proves that Gj is a subgradient of fj |Yj
at x.

2 =⇒ 1: We prove this implication by recursion on m. The initialization m = 1 is obvious. Suppose
the result is true for m− 1, and let G ∈ Rn×m be such that Yj is convex, fj is convex on Yj
and Gj ∈ ∂fj |Yj

(x) for every j ∈ [m].

Using our recursion hypothesis, we find that G1:m−1 ∈ ∂lexf1:m−1(x): for all y ∈ Rn,

f1:m−1(y)− f1:m−1(x)≥lexG
⊤
1:m−1(y − x).

By assumption, we also know that Gm ∈ ∂fm|Ym
(x): for all y ∈ Ym,

fm(y)− fm(x)≥lexG
⊤
m(y − x).

So for a given y ∈ Rn, one of two things happens:

• If y ∈ Ym, then f1:m−1(y)− f1:m−1(x) = G⊤
1:m−1(y− x) and fm(y)− fm(x) ≥ G⊤

m(y− x).
• If y /∈ Ym, then f1:m−1(y)− f1:m−1(x)>lexG

⊤
1:m−1(y − x).

172

In both cases, we have

f(y)− f(x) =
(
f1:m−1(y)− f1:m−1(y)

fm(y)− fm(x)

)
≥lex

(
G⊤

1:m−1(y − x)
G⊤

m(y − x)

)
= G⊤(y − x).

This proves that the matrix G is a lex-subgradient of f at x.

For real-valued functions, convexity implies the existence of subgradients at every point. It is
reassuring to see that this extends to the lexicographic case.

Proposition 8.6.4 (Existence of a lex-subgradient). Let f : Rn −→ Rm be a proper lex-convex
function. For every x ∈ dom(f), the subdifferential ∂lexf(x) is non-empty.

Proof. We prove this by recursion on m. The scalar case m = 1 is well-known (Bubeck 2015,
Proposition 1.1). Suppose the result is true for m−1, and let f : Rn −→ Rm be a lex-convex function.
Thanks to Proposition 8.3.4, we know that f1:m−1 is also lex-convex. Our recursion hypothesis
implies the existence of a lex-subgradient G1:m−1 ∈ ∂lexf1:m−1(x). For all y ∈ Rn,

f1:m−1(y)− f1:m−1(x)≥lexG
⊤
1:m−1(y − x).

Let us denote by Ym the set of inputs where this lex-lower bound is tight:

Ym = {y ∈ Rn : f1:m−1(y)− f1:m−1(x) = G⊤
1:m−1(y − x)}.

The function

y 7−→ f(y)−
(
G1:m−1 0

)⊤
y =

(
f1:m−1(y)−G⊤

1:m−1y
fm(y)− 0⊤y

)
is lex-convex, and its first block is lex-lower-bounded by v = f1:m−1(x) − G⊤

1:m−1x on Rn. Thus,
by Proposition 8.4.14, the set Ym is convex and the last component fm is convex on Ym. Using
the result for m = 1 once again, we find that the function fm|Ym

admits a subgradient g at x: for
all y ∈ Ym,

fm(y)− fm(x) ≥ g⊤(y − x).

We now construct the matrix
G =

(
G1:m−1 g

)
∈ Rn×m.

By Proposition 8.6.3 (1 =⇒ 2), we know that Gj ∈ ∂fj |Yj
(x) for all j ∈ [m − 1], where Yj is

defined similarly to Ym. But we have just seen that g = Gm ∈ ∂fm|Ym
(x) too. So we can apply

Proposition 8.6.3 (2 =⇒ 1) and conclude that G is a lex-subgradient of f at x.

The previous result outlines a procedure for finding a lex-subgradient, and by Proposition 8.6.3,
every lex-subgradient can be constructed in this way. However, it is not very practical, which is why
lex-subgradients are easier to compute using composition rules such as the ones given below.

173

8.6.2 Examples and composition rules

We now cycle through Section 8.4.2 and present ways to compute a lex-subgradient for each function
given there. Note however that we do not provide the full lex-subdifferential.

Proposition 8.6.5 (Lex-convex subfunction – lex-subgradient). Let f : Rn −→ Rm be a proper
lex-convex function, and let G ∈ ∂lexf(x) for some x ∈ dom(f). Then for any j ∈ [m], we
have G1:j ∈ ∂lexf1:j(x).

Proof. We know from Proposition 8.4.5 that f is convex. Proposition 8.3.4 implies that G ∈
∂lexf(x).

Proposition 8.6.6 (Componentwise convex function – lex-subgradient). Let f : Rn −→ Rm be
a function whose components fj : Rn −→ R are all proper and convex. For some x ∈ dom(f),
let gj ∈ ∂fj(x) for all j ∈ [m]. Then G =

(
g1 · · · gm

)
∈ ∂lexf(x).

Proof. We know from Proposition 8.4.6 that f is convex. The following inequality holds component-
wise:

f(y)− f(x) ≥ G⊤(y − x).
Proposition 8.3.4 implies that G ∈ ∂lexf(x).

Proposition 8.6.7 (Affine function – lex-subgradient). Let f : x ∈ Rn 7−→ Ax+ b ∈ Rm be an affine
function. Then A⊤ ∈ ∂lexf(x) for all x ∈ Rn.

Proof. We know from Proposition 8.4.7 that f is lex-convex. Proposition 8.6.6 implies that A⊤ ∈
∂lexf(x).

Proposition 8.6.8 (Affine composition – lex-subgradient). Let f : Rn −→ Rm be a proper lex-
convex function and ψ : x ∈ Rp 7−→ Ax + b ∈ Rn be an affine function. For x ∈ ψ−1(dom(f)),
let G ∈ ∂lexf(ψ(x)). Then A⊤G ∈ ∂lex(f ◦ ψ)(x).

Proof. We know from Proposition 8.4.8 that f ◦ ψ is lex-convex. Furthermore,

(f ◦ ψ)(y)− (f ◦ ψ)(x) = f(Ay + b)− f(Ax+ b)≥lexG
⊤(Ay −Ax) = (A⊤G)⊤(y − x)

This means that A⊤G ∈ ∂lex(f ◦ ψ)(x).

Proposition 8.6.9 (Convex function times vector – lex-subgradient). Let ψ : Rn −→ R be a proper
convex function, and v ∈ Rm be such that v≥lex 0, If g is a subgradient of ψ at some x ∈ dom(ψ),
then G = gv⊤ is a lex-subgradient of f at x.

Proof. We know from Proposition 8.4.9 that f is lex-convex. For all y ∈ Rn,

ψ(y)− ψ(x) ≥ g⊤(y − x).

As a consequence,
f(y)− f(x)≥lex(g

⊤(y − x))v.
It is easily seen that[

(g⊤(y − x))v
]
j
=

(∑
i

gi(yi − xi)
)
vj =

∑
i

(givj) (yi − xi) = [(vg⊤)(y − x)]j .

174

Therefore, we have
f(y)− f(x)≥lexG

⊤(y − x) with G = gv⊤,

and G = gv⊤ ∈ Rn×m is a lex-subgradient of f at x.

Proposition 8.6.10 (Sum of lex-convex functions – lex-subgradient). Let f1, f2 be two proper
lex-convex functions from Rn to Rm, and let α, β be two nonnegative real numbers. For some x ∈
dom(f1)∩dom(f2), let G1 ∈ ∂lexf1(x) and G2 ∈ ∂lexf2(x). Then αG1+βG2 ∈ ∂lex(αf1+βf2)(x).

Proof. We know from Proposition 8.4.10 that αf1 + βf2 is lex-convex. For any y ∈ Rn,

(αf1 + βf2)(y)− (αf1 + βf2)(x)≥lex(αG
1 + βG2)⊤(y − x),

which shows that αG1 + βG2 ∈ ∂lex(αf1 + βf2)(x).

Proposition 8.6.11 (Lexmax of lex-convex functions – lex-subgradient). Let (fk)k∈K be a (pos-
sibly uncountable) family of proper lex-convex functions from Rn to Rm. Let f : x ∈ Rn 7−→
lexmaxk∈K f

k(x) denote their pointwise lex-maximum. For some x ∈ dom(f), let k ∈ K be such
that fk(x) = f(x). If Gk ∈ ∂lexfk(x), then Gk ∈ ∂lexf(x).

Proof. We know from Proposition 8.4.11 that f is lex-convex. Suppose fk(x) = f(x). For any y ∈ Rn,
it holds that

f(y)− f(x) = f(y)− fk(x)≥lex f
k(y)− fk(x)≥lex(G

k)⊤(y − x)
which proves that Gk ∈ ∂lexf(x).

8.6.3 Link with differentiability

When f is differentiable, some of the lex-subgradients given above can be recovered using the
Jacobian matrix.

Proposition 8.6.12 (The case of differentiable lex-convex functions). Let f : Rn −→ Rm be a proper
differentiable lex-convex function. Then for all x ∈ dom(f), we have Jf(x)⊤ ∈ ∂lexf(x).

Proof. By definition of the Jacobian matrix,

G = Jf(x)⊤ =
(
∇f1(x) · · · ∇fm(x)

)
.

For all j ∈ [m], we define

Yj = {y ∈ Rn : f1:j−1(y)− f1:j−1(x) = G⊤
1:j−1(y − x)}.

By an argument similar to the proof of Proposition 8.6.4, we deduce from Proposition 8.4.14
that the set Yj is convex and that fj is convex on Yj . Since fj is differentiable on dom(f), its
gradient Gj = ∇fj(x) is also a subgradient of fj |Yj

at x ∈ Yj : for all y ∈ Yj ,

fj(y)− fj(x) ≥ ∇fj(x)⊤(y − x).

Therefore, G = Jf(x)⊤ satisfies condition 2 of Proposition 8.6.3: it is a lex-subgradient of f at x.

175

However, we cannot obtain the reverse inclusion so easily: indeed, let G ∈ ∂lexf(x). For
all h ∈ Rn,

f(x+ εh)− f(x)
ε

≥lexG
⊤h.

The standard argument would have us take the limit as ε −→ 0, but lexicographic inequalities are
not preserved when taking limits. Example 8.6.13 actually shows that there can be a lot of other
elements in ∂lexf(x).

Example 8.6.13 (Complete lex-subdifferential of the quadratic function). We instantiate Propo-
sition 8.4.9 by considering f : x ∈ Rn 7−→ 1

2∥x− g∥2v ∈ Rm, with v >lex 0. Let j0 = min{j ∈ [m] :
vj > 0}. For any matrix M =

(
M1 · · · Mm

)
, we have

G = (x− g)v⊤ +M ∈ ∂lexf(x) ⇐⇒ M1 =M2 = · · · =Mj0 = 0.

Proof. We seek a characterization of the lex-subgradients of f :

G ∈ ∂lexf(x) ⇐⇒ ∀h, f(x+ h)− f(h)≥lexG
⊤h

⇐⇒ ∀h,
(
∥x+ h− g∥2 − ∥x− g∥2

) v
2
≥lexG

⊤h

⇐⇒ ∀h,
(
∥h∥2 + 2(x− g)⊤h

) v
2
≥lexG

⊤h

If we decompose G = (x− g)v⊤ +M , this condition simplifies into

G ∈ ∂lexf(x) ⇐⇒ ∀h, ∥h∥
2v

2
≥lexM

⊤h.

We use the columns of M =
(
M1 · · · Mm

)
and the components of v = (v1, · · · , vm) to reformulate

it as:

∀h, ∥h∥
2v

2
−M⊤h =

1

2


∥h∥22v1
∥h∥22v2

...
∥h∥22vn

−

M⊤

1 h
M⊤

2 h
...

M⊤
n h

≥lex 0. (8.2)

The key insight is that if Mj ̸= 0, by taking h = εMj with small enough ε > 0, we can obtain a
negative j-th component. Let us study the different scenarios that may arise:

• If v1 < 0: Not possible since v≥lex 0

• If v1 > 0: Imposing M1 = 0 is necessary and sufficient for Equation (8.2) to hold

• If v1 = 0: Imposing M1 =M2 = 0 is necessary but not always sufficient depending on v2.

◦ If v2 < 0: Not possible since v≥lex 0 and v1 = 0

◦ If v2 > 0: Imposing M1 =M2 = 0 is necessary and sufficient for Equation (8.2) to hold
◦ If v2 = 0: Imposing M1 =M2 =M3 = 0 is necessary but not always sufficient depending

on v3...

It keeps going like this, and we end up with the following criterion. Let j0 = min{j ∈ [m] : vj > 0}
be the index of the first positive component in v. Then

G = (x− g)v⊤ +M ∈ ∂lexf(x) ⇐⇒ M1 =M2 = · · · =Mj0 = 0.

176

8.6.4 Lexicographic conjugation

Adapting the definition of the Fenchel conjugate is straightforward.

Definition 8.6.14 (Lex-conjugate). Let f : Rn −→ Rm be a proper function. Its lex-conjugate is
the function f lex∗ : Rn×m −→ Rm defined by

∀G ∈ Rn×m, f lex*(G) = lexmax
x∈Rn

(
G⊤x− f(x)

)
∈ Rm

.

Proposition 8.6.15 (Convexity of the lex-conjugate). Let f : Rn −→ Rm be a proper function.
Then its lex-conjugate f lex∗ is a proper lex-convex function. Since dom(f) ̸= ∅, we deduce that f lex∗

is proper.

Proof. The lex-conjugate is a lex-maximum of affine functions of G. By Propositions 8.4.7 and 8.4.11,
it is lex-convex.

Proposition 8.6.16 (Lex-Fenchel-Young inequality). Let f : Rn −→ Rm be a proper function. For
any x ∈ dom(f) and G ∈ dom(f lex∗), we have

f(x) + f lex∗(G)≥lexG
⊤x.

Proof. By definition of the lex-conjugate, for any y ∈ dom(f),

f lex∗(G)≥lexG
⊤y − f(y).

In particular, this is true for y = x.

Proposition 8.6.17 (Fenchel-Young condition for lex-subgradient). Let f : Rn −→ Rm be a proper
function. For any x ∈ dom(f) and G ∈ dom(f lex∗), we have

f(x) + f lex∗(G) = G⊤x ⇐⇒ G ∈ ∂lexf(x)
Proof. We adapt the proof from Udell (2017). First, suppose that f(x) + f lex∗(G) = G⊤x. By
Proposition 8.6.16, for any y ∈ Rn,

f(y)≥lexG
⊤y − f lex∗(G)

= G⊤y −
(
G⊤x− f(x)

)
= f(x) +G⊤(y − x).

Now suppose that G ∈ ∂lexf(x). By definition of a lex-subgradient, for any y ∈ Rn,

f(y)≥lex f(x) +G⊤(y − x)
G⊤x− f(x)≥lexG

⊤y − f(y).
Taking the lex-maximum over y yields

G⊤x− f(x)≥lex lexmax
y∈Rn

(
G⊤y − f(y)

)
= f lex∗(G).

By Proposition 8.6.16, this necessarily implies

G⊤x− f(x) = f lex∗(G).

177

Proposition 8.6.18 (Lex-subgradient of the lex-conjugate). Let f : Rn −→ Rm be a proper function.
For any x ∈ dom(f) and G ∈ dom(f lex∗), we have

f(x) + f lex∗(G) = G⊤x =⇒ x ∈ ∂lexf lex∗(G)
This result relies on a notational trick. Strictly speaking, a lex-subgradient of f lex∗ : Rn×m −→ Rm

should be a linear map from Rn×m to Rm, or (equivalently) a 3-dimensional tensor in Rn×m×m. But
since x ∈ dom(f) ⊆ Rn is just a vector, when we say x ∈ ∂lexf lex∗(G), what we really mean is that
the linear map G 7−→ G⊤x is a lex-subgradient of f lex∗ at G.

Proof. Suppose G ∈ ∂lexf(x). For any H ∈ Rn×m, we have

f lex∗(H) = lexmax
y∈Rn

(
H⊤y − f(y)

)
≥lexH

⊤x− f(x)

= H⊤x−G⊤x+ (G⊤x− f(x))
= (H −G)⊤x+ f lex∗(G).

In standard convex analysis, the reverse implication would be true for closed convex functions,
as a consequence of the Fenchel-Moreau biconjugation theorem (Borwein and Lewis 2010, Theorem
4.2.1). But in the lexicographic setting, closed functions are hard to come by. Indeed, even the
lex-epigraph of the zero function is lexepi(0) = Rn ×Klex, which is not closed.

8.7 The failure of the lexicographic subgradient method

Since a lex-subgradient G ∈ Rn×m is a matrix and not a vector, it does not live in the same space as
the input variable x ∈ Rn. Hence, it is not obvious how to translate standard subgradient algorithms
for optimization to the lexicographic setting.

8.7.1 Lex-minimizing a local linear surrogate

An interesting remark is that the lex-subgradient can be useful for local search. Suppose we want to
find a step h such that f(x+h) is lex-smaller than f(x). Lex-minimizing h 7−→ f(x+h) is hard, but
since f(x+ h)≥lex f(x) +G⊤h, we can try to lex-minimize the linear surrogate h 7−→ G⊤h instead.
This is the goal of the following proposition.

Proposition 8.7.1 (Lex-minimizing a linear function). Let G =
(
G1 · · · Gm

)
∈ Rn×m. The

lexicographic minimization problem

lexmin
h∈Rn

G⊤h s.t. ∥h∥ ≤ 1

has the following optimal solution:

h⋆ = − Gj0

∥Gj0∥
where j0 = min{j ∈ [m] : Gj ̸= 0}.

Proof. We first note that G⊤h = (G⊤
1 h, ..., G

⊤
mh). If H1 ̸= 0, the best way to lex-minimize G⊤h is

to focus on its first component and make it as small as possible. This amounts to choosing h =
−G1/∥G1∥. On the other hand, if G1 = 0 and G2 ̸= 0, we cannot change the first component of G⊤h,
and so we should choose h = −G2/∥G2∥ to minimize its second component. The same reasoning
works for all Gj , which yields the expected result.

178

8.7.2 Naive lex-subgradient method

Proposition 8.7.1 tells us in which direction we should look if we are given a starting point. We can
use this insight to adapt the standard subgradient method to our setting.

Algorithm 8.7.2 (Naive lex-subgradient method). Start from an initial guess x1 ∈ Rn. Then, for
every iteration k ∈ N until a stopping criterion is met, repeat the following steps:

Step 1: Compute a lex-subgradient Gk =
(
Gk

1 · · · Gk
m

)
∈ ∂lexf(xk).

Step 2: Find the index jk0 = min{j ∈ [m] : Gk
j ̸= 0} of its first nonzero column and define gk = Gk

jk0
.

Step 3: Perform the update xk+1 = xk − αk
gk

∥gk∥ , where αk is a positive step size.

Theorem 8.7.3 (Convergence of the naive lex-subgradient method). Let f : Rn −→ Rm be a proper
lex-convex function which admits a lex-minimizer. We apply Algorithm 8.7.2 while assuming that:

1. The lex-subgradient norms are uniformly bounded: ∀j ∈ [m], ∃Lj > 0,∀k ∈ N, ∥Gk
j ∥ ≤ Lj.

2. The step sizes are square summable but not summable:
∑∞

k=1 αk = +∞ and
∑∞

k=1 α
2
k < +∞.

3. The lex-subgradient uses component m often enough (in terms of total step size):
∑

k∈M αk =
+∞, where M = {k ∈ N : jk0 = m}.

Then, for every ε > 0, there is an index k such that xk is an ε-approximate lex-minimizer of f .

Before delving into the proof, let us note that this result is not actionable: there is no practical
way to check whether

∑
k∈M αk = +∞, no matter how far we look. To detect these situations, we

suggest a heuristic convergence criterion: monitor the partial sums of
∑

k∈M αk, and if they stop
growing, something probably went wrong.

Proof. We adapt the proof from the real-valued case, mixing ideas from Bonnans et al. (2006,
Theorem 9.3) and Pilanci and Boyd (2021–2022).

First, we exhibit a minimum-approaching direction. Let X ⋆ denote the set of lex-minimizers of f ,
and let x⋆ ∈ X ⋆ be any one of them. Using the recursion equation and expanding the square norm,
we get:

∥xk+1 − x⋆∥2 =
∥∥∥xk − αk

gk

∥gk∥ − x
⋆
∥∥∥2 = ∥xk − x⋆∥2 + α2

k − 2
αk

∥gk∥(g
k)⊤(xk − x⋆) (8.3)

Since G1:jk0−1 = 0, by Proposition 8.6.2, the vector xk lex-minimizes f1:jk0−1 on Rn. Of course, so
does x⋆ as a lex-minimizer of f . Subsequently, both vectors belong to the level set

Yjk0 = {y ∈ Rn : f1:jk0−1(y)− f1:jk0−1(x
k) = (Gk

1:jk0−1
)⊤(y − xk) = 0}.

By Proposition 8.6.3, this means that gk = Gk
jk0

is a subgradient at xk of fjk0 on Yjk0 . Combining this

with the knowledge that f1:jk0 (x
⋆)≤lex f1:jk0

(xk), we get:

0 ≥ fjk0 (x
⋆)− fjk0 (x

k) ≥ (gk)⊤(x⋆ − xk). (8.4)

179

Plugging this into Equation (8.3) yields

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 + α2
k − 2

αk

∥gk∥(fjk0 (x
k)− fjk0 (x

⋆)).

We remember that ∥gk∥ = ∥Gk
jk0
∥ ≤ Ljk0

≤ maxj Lj =: Lmax and we conclude

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 + α2
k − 2

αk

Lmax
(fjk0

(xk)− fjk0 (x
⋆)). (8.5)

Second, we prove the boundedness of the iterates. An easy consequence of Equations (8.4) and
(8.6.4) is that

∥xk+1 − x⋆∥2 − ∥xk − x⋆∥2 ≤ α2
k.

Summing these inequalities over l ∈ [k − 1] gives us

∥xk − x⋆∥2 − ∥x1 − x⋆∥2 ≤
∑
l<k

α2
l .

Because
∑∞

l=1 α
2
l < +∞, we conclude that the sequence

(
∥xk − x⋆∥2

)
is bounded. It follows that

the sequence (xk) is bounded too.
Third, let us look for a subsequence minimizing the last component. We sum the full Equation

(8.5) over l ∈ [k − 1]:

∥xk − x⋆∥2 − ∥x1 − x⋆∥2 ≤
∑
l<k

α2
l +

2

Lmax

∑
l<k

αl(fjl0
(xl)− fjl0(x

⋆))

Bounding ∥xk − x⋆∥ ≥ 0 gives us

2

Lmax

∑
l<k

αl(fjl0
(xl)− fjl0(x

⋆)) ≤ r2 − 0 +
∑
l<k

α2
l ,

where r = d(x1,X ⋆) is the Euclidean distance between x1 and the set of lex-minimizers of f . Every
term of the sum on the left is nonnegative by Equation (8.4), so we can lower-bound the sum using
only the subsetM of indices such that jl0 = m:∑

l<k

αl(fjl0
(xl)− fjl0(x

⋆)) ≥
∑

l<k,l∈M
αl(fm(xl)− fm(x⋆))

≥
(∑

l<k,l∈M
αl

)
min

l<k,l∈M
(fm(xl)− fm(x⋆)).

We thus have

0 ≤ min
l<k,l∈M

(fm(xl)− fm(x⋆)) ≤ Lmax

2

r2 +
∑

l<k α
2
l∑

l<k,l∈M αl
.

By hypothesis,
∑

l∈M αl = +∞ and
∑

l∈N α
2
l < +∞, so that when k −→ +∞,

min
l<k,k∈M

(fm(xl)− fm(x⋆)) −→ 0.

Fourth and last, we find an approximate lex-minimizer. For every ε > 0, there is an index k ∈M
such that fm(xk) ≤ fm(x⋆) + ε. But recall that since k ∈ M, we have Gk

1:m−1 = 0, so that xk

lex-minimizes f1:m−1 on Rn (by Proposition 8.6.2). This shows that f(xk) ≤ f(x⋆) + εem: in other
words, xk is an ε-approximate lex-minimizer of f .

180

Theorem 8.7.3 and its proof underline the pitfalls of this naive algorithm: there are cases
where jk0 = m will never (or rarely) happen, so that the optimization does not succeed. One
obvious reason is that, in practice, checking whether gkj ̸= 0 does not make much numerical
sense. But that is easily fixable if we replace this equality condition with a norm threshold ε, and
use jkε = min{j ∈ [m] : ∥Gk

j ∥ ≥ ε} instead of jk0 .
The deeper issue is that taking a step to improve the second objective may actually set us back

with respect to the first, so that we have to go back and fix the optimality that we destroyed. To
correct this behavior, we need a way to make sure that steps taken to improve fj will not degrade
any fi for i < j.

8.8 More advanced optimization algorithms

In this section, we propose two alternative algorithms, whose convergence is only conjectured. We
leave their detailed investigation for future work, but Section 8.10 displays promising numerical
experiments.

8.8.1 Orthogonalized Jacobian method

To overcome the weaknesses of Algorithm 8.7.2, we suggest orthogonalizing the lex-subgradient
matrix. This would ensure that steps taken to decrease low-priority objectives do not increase high-
priority objectives. But to be sure that a step orthogonal to Gk

1 improves f2 without worsening f1,
we cannot just pick any lex-subgradient column Gk

1. We need to pick the gradient of f1, so that
steps orthogonal to it only result in perturbations of order 2 for f1. This justifies the use of the
Jacobian matrix in the following algorithm.

Algorithm 8.8.1 (Orthogonalized Jacobian method). Start from an initial guess x1 ∈ Rn. Then,
for every iteration k ∈ N until a stopping criterion is met, repeat the following steps:

Step 1: Compute the transposed Jacobian matrix Gk = Jf(xk)⊤.

Step 2: Orthogonalize it to get Qk = GramSchmidt(Gk), and define gk = 1
m

∑m
j=1Q

k
j .

Step 3: Perform the update xk+1 = xk − αk
gk

∥gk∥ , where αk is a positive step size.

Note that this orthogonalization trick could also be used for non-convex lexicographic minimiza-
tion. Alas, Algorithm 8.8.1 does not seem to work on non-differentiable functions. For such cases,
we might need a different approach.

8.8.2 Lexicographic cutting planes algorithm

Instead of performing local search with (orthogonalized) gradient steps, we can use cutting planes to
construct a polyhedral surrogate objective. Let C ⊂ Rn be a polytope (typically a hyperrectangle)
known to contain at least one lex-minimizer of f . Now that we have a working notion of lex-
subgradient, generalizing cutting planes to the lexicographic setting is straightforward.

Algorithm 8.8.2 (Method of lex-cutting planes). Start from an initial guess x1 ∈ C. Then, for
every iteration k ∈ N until a stopping criterion is met, repeat the following steps:

181

Step 1: Compute the objective value f(xk) and a lex-subgradient Gk ∈ ∂lexf(xk).

Step 2: Update the approximation ℓk : y ∈ C 7−→ lexmax
l∈[k

(
f(xl) + (Gl)⊤(y − xl)

)
.

Step 3: Find its lex-minimizer xk+1 ∈ lexargmin
y∈C

ℓk(y).

The variant we presented is Kelley’s basic cutting plane algorithm, but more sophisticated bundle
methods can be adapted as well. While we were not able to prove convergence to an approximate
lex-minimizer, we did manage to exhibit interesting properties of this method.

Proposition 8.8.3. The function ℓk is a lex-lower approximation of f . For every l ∈ [k], it
satisfies f(xl) = ℓk(xl) and Gl ∈ ∂lexℓk(xl).

Proof. Let y ∈ Rn. For every l ∈ [k], by choice of Gl ∈ ∂lexf(xl), we have f(y)≥lex f(x
l)+(Gl)⊤(y−

xl). By lex-maximizing over l′ ∈ [k], we get

f(y)≥lex lexmax
l′∈[k

(
f(xl

′
) + (Gl′)⊤(y − xl′)

)
= ℓk(y)≥lex f(x

l) + (Gl)⊤(y − xl),

where equality holds for y = xl.

Proposition 8.8.4. The sequence of functions (ℓk) is lex-increasing and each ℓk is lex-convex.

Proof. Since ℓk is defined as the lex-maximum of a growing family of affine functions, the sequence
is increasing. Moreover, Propositions 8.4.7 and 8.4.11 imply that each ℓk is lex-convex.

Proposition 8.8.5. We can compute a lex-minimizer xk+1 of ℓk by solving m standard LPs.
Furthermore, this lex-minimizer satisfies ℓk(xk+1)≤lex f

⋆.

Proof. A lex-minimizer xk+1 can be obtained as the solution to a lexicographically-constrained LP:

lexmin
(y,v)∈C×Rm

v s.t. ∀l ∈ [k], v≥lex f(x
l) + (Gl)⊤(y − xl).

We can solve it using the sequential Algorithm 8.2.1, which amounts to a sequence of standard LPs:

∀j ∈ [m], v⋆j = min
(y,vj)∈C×R

vj s.t.

{
v⋆i ≥ fi(xl) + (Gl

i)
⊤(y − xl) ∀i ∈ [j − 1], l ∈ [k]

vj ≥ fj(xl) + (Gl
j)

⊤(y − xl) ∀l ∈ [k]

Furthermore, by Proposition 8.8.3, we have ℓk(xk+1)≤lex ℓ
k(y)≤lex f(y) for every y ∈ Rn. In

particular, ℓk(xk+1)≤lex f
⋆.

8.9 Application to ML

We finally have all the tools we need to integrate lexicographic optimization into ML pipelines.

182

8.9.1 Lexicographic Fenchel-Young losses

A key ingredient is the framework of Fenchel-Young losses introduced by Blondel, Martins, and
Niculae (2020). We follow their exposition very closely to make comparison easier.

Definition 8.9.1 (Regularized lexicographic prediction function). Let Ω : Rn −→ Rm be a proper lex-
convex regularization function. Let Θ ∈ Rn×m be an objective matrix. The lexicographic prediction
function regularized by Ω is defined by

ŷΩ(Θ) = lexargmax
µ∈Rn

(
Θ⊤µ− Ω(µ)

)
.

Computing ŷΩ amounts to solving a lex-concave maximization problem. Whenever Ω is smooth
enough, all the algorithms mentioned so far (except the naive lex-subgradient algorithm) can be
applied to that problem.

Definition 8.9.2 (Lex-Fenchel-Young loss). Let Ω : Rn −→ Rm be a proper lex-convex regularization
function. Let Θ ∈ Rn×m be an objective matrix and ȳ ∈ Rn be a ground truth label. The lex-Fenchel-
Young loss generated by Ω is

LlexΩ (Θ, ȳ) = Ωlex∗(Θ) + Ω(ȳ)−Θ⊤ȳ

=
[
Θ⊤ŷΩ(Θ)− Ω(ŷΩ(Θ))

]
−
[
Θ⊤ȳ − Ω(ȳ)

]
.

The properties listed below show why this loss is well suited to regularized lex-optimization
problems.

Proposition 8.9.3 (Properties of the lex-Fenchel-Young loss). The lex-Fenchel-Young loss satisfies:

1. Lex-non-negativity: LlexΩ (Θ, ȳ)≥lex 0 for any Ω ∈ Rn×m and ȳ ∈ Rn

2. Lex-optimality of regularized prediction: LlexΩ (Θ, ŷΩ(Θ)) = 0.

3. Lex-convexity: LlexΩ (Θ, ȳ) is convex in Θ

4. Lex-subgradient: ŷΩ(Θ)− ȳ ∈ ∂lexΘ LlexΩ (Θ, ȳ).

Proof. These properties mainly stem from the definitions of lex-conjugates and lex-subgradients:

1. This is implied by Proposition 8.6.16.

2. This is implied by Proposition 8.6.15.

3. This is implied by the second expression of the lex-Fenchel-Young loss.

4. By item 1, ŷΩ(Θ) achieves equality in the lexicographic Fenchel-Young inequality:

Ωlex∗(Θ) + Ω(ŷΩ(Θ))−Θ⊤ŷΩ(Θ) = 0.

By Proposition 8.6.18, this implies ŷΩ(Θ) ∈ ∂lexΩlex∗(Θ).

Lastly, by Proposition 8.6.10, we conclude that ŷΩ(Θ)− y ∈ ∂lexΘ LlexΩ (Θ, y).

183

8.9.2 Limitations

Since the lex-Fenchel-Young loss is constructed from a lex-conjugate, which relies on lex-maximization,
it has no reason to be continuous (remember Example 8.4.13), let alone differentiable. For that
reason, we should be wary of using the orthogonal Jacobian method (Algorithm 8.8.1) to minimize
the loss. Our remaining options are lex-cutting planes (Algorithm 8.8.2) or the sequential approach
(Algorithm 8.2.1), neither of which seems compatible with an ML pipeline trained using gradient
backpropagation.

Thus, in spite of our efforts, we have not found a principled algorithm that allows training ML
pipelines with lexicographic LP layers. The only exception is when the lexicographic LP is preceded
by a very simple neural network, namely an affine function, in which case lex-cutting planes can be
applied.

But even though the orthogonalized Jacobian require differentiability, we can hope that the
lex-Fenchel-Young loss is differentiable almost everywhere (even though it is discontinuous). In this
case, using orthogonalized Jacobian steps seems like a reasonable heuristic to try. This hypothesis
will be tested in future work.

8.10 Numerical experiments

8.10.1 Simple function

We first illustrate the behavior of our algorithms on a simple test function:

f :

(
x1
x2

)
∈ R2 7−→

 (x1 − 1)2

−(x1 − 2)2 − 1
(x2 + 1)2 − 4

 ∈ R3.

It has a unique lexicographic minimum:

x⋆ =

(
1
−1

)
and f⋆ = f(x⋆) =

 0
−2
−4

 .

First, we use naive lex-subgradients (Algorithm 8.7.2): the results are displayed on Figure 8.2. As
we can see, the solution component x2 never moves. Indeed, the first two objective components (x1−
1)2 and −(x1− 2)2− 1 are busy fighting each other for attention. Since every step that improves the
latter worsens the former, we can never focus on the third objective component (x2 + 1)2 − 4. This
is very clear on Figure 8.2d: every time jk0 = 2, the next few iterations go back to jk0 = 1 to make
things right. Meanwhile, jk0 = 3 never happens, so that the hypotheses of Theorem 8.7.3 are not
satisfied. As a result, the optimization is doomed to fail.

Now we move on to the orthogonalized Jacobian method (Algorithm 8.8.1): : the results are
displayed on Figure 8.3. Orthogonalization glosses over the conflict between f1 and f2 and starts
improving f3 right from the start. Since we are in a differentiable setting, optimization succeeds as
planned.

Finally, we turn to lex-cutting planes (Algorithm 8.8.2): the results are displayed on Figure 8.4.
Again, all objectives are considered simultaneously, and optimization succeeds. Note that while
lex-cutting planes seem to converge in fewer iteration than orthogonal lex-subgradients, each iteration
is far more costly because it involves solving several LPs.

184

(a) Solution components (b) Objective components

(c) Lex-optimality gap (d) Indices jk0 chosen from the lex-subgradient

Figure 8.2: Convergence failure of the naive lex-subgradient algorithm

185

(a) Solution components (b) Objective components

(c) Lex-optimality gap

Figure 8.3: Convergence of the orthogonalized Jacobian algorithm

186

(a) Solution components (b) Objective components

(c) Lex-optimality gap

Figure 8.4: Convergence of the lex-cutting planes algorithm

187

8.10.2 Neural network

We now focus on a more complicated example: a small 3-layer neural network f = ℓ3 ◦ ℓ2 ◦ ℓ1 where

ℓ1 = Dense(1, 3, r) ℓ2 = Dense(3, 3, r) ℓ3 = Dense(3, 2, id)

and r is a leaky Rectified Linear Unit (ReLU) activation function. We want to lex-minimize the
output of the network, but unlike the simple function we used previously, this new objective is not
lex-convex. It is not differentiable either, due to the leaky ReLU activations.

But when we compare the lex-subgradient and orthogonalized Jacobian algorithms, we observe
the same behavior as before: convergence fails for the former, and succeeds for the latter. This gives
us hope that our orthogonalization trick might be useful beyond simple convex settings.

(a) Objective components (b) Lex-optimality gap

Figure 8.5: Convergence failure of the naive lex-subgradient algorithm (neural network)

(a) Objective components (b) Lex-optimality gap

Figure 8.6: Convergence of the orthogonalized Jacobian algorithm (neural network)

188

Part III

Railway applications

189

9
Train failure prediction using condition moni-
toring systems

Oogway: There are no accidents.
Shifu: Yes, I know. You’ve already said
that twice.
Oogway: That was no accident either.
Shifu: Thrice.

Master Oogway & Master Shifu
Kung Fu Panda (2008)

Contents
9.1 Introduction . 192

9.1.1 Predictive maintenance . 192

9.1.2 Industrial problem . 192

9.2 Related work . 193

9.2.1 Stochastic failure prediction . 193

9.2.2 Influence of exogenous variables . 193

9.2.3 Previous railway-related theses . 194

9.3 Hierarchical degradation model . 194

9.3.1 Observations . 194

9.3.2 States . 196

9.3.3 Controls . 197

9.3.4 Summary . 197

In this chapter, we propose a model for train failure prediction based on a peculiar stream of
condition monitoring data.

191

9.1 Introduction

Efficient and timely maintenance of the rolling stock is a core challenge for railway companies.
Indeed, keeping trains in a functional state is not only essential to guarantee passenger safety, but
also to ensure continuity of service.

9.1.1 Predictive maintenance

Jardine, D. Lin, and Banjevic (2006) distinguish several maintenance strategies:

• Corrective maintenance, which consists in reacting to breakdowns once they occur.

• Preventive maintenance, which involves planning repairs at regular time intervals.

• Predictive maintenance, which adapts the repair schedule based on the current and forecasted
condition of the system.

While corrective and preventive maintenance are easier to apply, they also have severe drawbacks.
On the one hand, relying solely on corrective interventions means that disruptions are bound to
happen. On the other hand, periodic repairs may be excessive (and expensive) for a healthy system,
but still insufficient for a more vulnerable one. As monitoring data becomes more common and
detailed, predictive maintenance is finally within reach, allowing many industries to strike the right
balance between maintenance costs and reliability requirements.

9.1.2 Industrial problem

The end goal of our project is being able to answer questions like “what is the probability that
this train unit will fail within the next week?” Such information can then be used to optimize the
maintenance schedule in near real time, but here we focus on the predictive aspect. To achieve that
goal, we were given access to several sources of data over a period of 2 years (2019 – 2021).

Message logs gather the messages sent by each train during and between trips. While some
of these messages are fairly normal (e.g., “the engine turned on”), others indicate more or less
critical malfunctions (e.g., “the engine only turned on after the second try”). To help with their
interpretation, messages are accompanied by context variables, a series of categorical or quantitative
values that specify the state of various components within the train. We highlight the fact that these
messages are recorded continuously, with timestamps that are precise to the second.

Repair logs give us an approximation of the dates at which failures occurred. Indeed, not every
failure triggers an event code, which means we may not receive a live warning as it happens. In fact,
even specifying what we mean by failure is difficult, because train systems are designed with many
duplicated parts in order to keep running safely. For the purposes of this work, we define a failure as
something that causes an (unplanned) corrective repair.

Daily activity summaries contain information on the trips performed by a train. In particular,
they tell us about the time spent driving, the number of kilometers traveled, and several other
features of the train’s missions. These help us quantify the amount of stress that each train was
subjected to.

Let us stress that the data we work with has a high dimension. We consider a fleet of about 200
train units, and even for the small subsystem we study, they generate more than 10 million messages
over the two-year period. Each message has about 50 context variables, and each activity summary

192

contains around 150 columns. At the same time, our prediction targets are limited in size, with
slightly less than 2500 repairs in total. This justifies our search for a model that is both statistically
efficient (reasonable number of parameters) and computationally efficient (reasonable CPU and
memory footprint).

9.2 Related work

The literature on failure prediction techniques is plentiful and spans several decades. Depending on
the field, this topic may appear under several aliases. In engineering, the following keywords are
frequently encountered: machine health diagnostics / prognostics, reliability analysis, degradation
modeling, estimation of remaining useful life / time to failure, fault detection, etc. In healthcare,
the notions of survival analysis or longitudinal modeling are more usual.

9.2.1 Stochastic failure prediction

According to Peng, Dong, and Zuo (2010), failure prediction models can either rely on physical
models (e.g., differential equations), expert knowledge (translated as a series of “if-then-else” rules)
or data-driven approaches. When it comes to complex systems with many components, accurate
physical equations do not always exist, and expert knowledge is expensive to acquire and maintain.
As a result, here we focus on data-driven approaches.

Salfner, Lenk, and Malek (2010) give a thorough review of data-driven failure prediction, covering
both discriminative and generative models. While discriminative models only seek to provide accurate
predictions, generative models are concerned with explaining how the system behaves as a whole. In
our industrial context, interpretability is a key requirement, which is why we adopt a generative
paradigm.

Among the generative family, we can distinguish between deterministic and stochastic models.
The latter are of particular interest to us: see Si et al. (2011) for a survey. Treating the system’s
state as a random variable is a principled way to account for uncertainty, thus avoiding overconfident
predictions. In some cases, we have complete observations, which include direct measurements of an
appropriate health indicator. But in most cases, the available information is partial, and the state of
the system remains hidden. This is the setting we consider here, since message and repair logs do
not obviously translate into a measure of degradation.

As underlined by Si et al. (2011), Markovian models play a prominent role in degradation analysis.
They make the assumption that knowing the present is enough to predict the future, which simplifies
both inference and learning. For the rest of this chapter, we exploit the framework of HMMs,
described in Chapter 4.

9.2.2 Influence of exogenous variables

A defining aspect of our railway application is the role played by daily activity summaries, which
can be interpreted as exogenous control variables. The literature on survival analysis offers many
ways to take these control variables (or covariates) into account: see Klein et al. (2013) for a broad
reference. For instance, in the Proportional Hazards model (Cox 1972), the event intensity for each
individual is proportional to a population baseline. The individual scaling factor is then expressed
using a linear combination of the covariates. Another source of inspiration for us is the Accelerated
Failure Time model (Wei 1992), in which covariates modulate the speed at which time flows for each

193

individual. While standard HMMs do not involve control variables, we have seen in Chapter 4 how
to define controlled HMMs that do.

9.2.3 Previous railway-related theses

To conclude this literature review, we mention some doctoral dissertations that focus on failure
prediction for railway rolling stock. They were the result of partnerships between SNCF / Alstom
and academic labs.

Lair (2011) exploits Piecewise-Deterministic Markov Processes to model degradation for multiple
interacting components. He presents an application to air-conditioning units of French regional trains.
Sammouri (2014) extracts association rules from message logs sent by Alstom pendolino trains. Dib
(2021) explores pattern mining and classical ML to predict failure events from message logs, with
applications to French suburban and high-speed trains. The last two theses involve datasets that
are very close to the one we study. Both highlight the difficulty of working with real data, and the
significant preprocessing work that is necessary. However, to the best of our understanding, neither
of them introduces a generative model for the train degradation process.

9.3 Hierarchical degradation model

In this section, we propose a hierarchical model for rolling stock degradation, which leverages all the
data we have at our disposal. It is synthesized on Figure 9.1, where arrows represent probabilistic
dependencies. Our model is structured like a controlled HMM in discrete time, but the emission
distribution is a marked Poisson process in continuous time. This allows us to reconcile the discrete
nature of activity summaries with the continuous stream of messages and repair events.

Henceforth, t ∈ N corresponds to a calendar day, while τ ∈ R+ is a continuous timestamp. At
time t, let ut denote the controls (train activity), Xt denote the state (health index) and Yt denote
the emissions (event sequence). We now describe each of those layers in more detail, starting from
the bottom.

9.3.1 Observations

The bottom layer of our model contains the emissions, or observations. We obtain those by combining
messages and repairs, both of which are sequences of events in continuous time. In addition to its
timestamp τ ∈ R+, each event carries a mark m ∈M. For us, marks are tuples m = (e, c) composed
of an event type e ∈ [E] and a vector of contexts c ∈ RD of dimension D (which is empty for repair
events). To simplify, we restrict all context values to be categorical and belong to the same finite
set [C]. Typically, C = 3 and we will only allow context values to equal 1, 0 or missing.

There are several ways to encode an event sequence into a fixed-size observation vector: the
simplest one is to count the number of events of each type within a day. However, the presence of
contexts gives rise to many questions. Should we record the average context value? The maximum
value? A full histogram? And what about (event, context) pairs? To circumvent these questions, we
give up on representing observations as fixed-size vectors. Instead, we consider Yt as a realization of
a marked Poisson process on the interval [t, t+ 1). Keeping the whole sequence of events, regardless
of its length, allows us to avoid compressing the available information.

To fully specify the marked Poisson process for a given state, we need an intensity value λ(m)
for each mark m = (e, c). This value is obtained by combining:

194

at−1 at at+1

u1t−1 u2t−1 u1t u2t u1t+1 u2t+1

Xt−1 Xt Xt+1

Yt−1 Yt Yt+1

⋆ ▲ ■ ▲ ⋆ ■ ■ ⋆ ▲
1

1

0

0

0

0

1 1

1

1

1

1

1

1

1

1

0

0

0

0

1

Figure 9.1: Controlled HMM for train failure prediction

195

• a ground intensity λ ∈ R+;

• a multinomial distributionM(r0) for the event type e, where r0 ∈ [0, 1]E ;

• for each d ∈ [D], a multinomial distributionM(rd) for the context value cd, where rd ∈ [0, 1]C .

We further assume that the multinomial distributions are mutually independent, which yields the
following expression for the intensity of m:

λ(m) = λ r0(e)

D∏
d=1

rd(cd). (9.1)

In the actual railway system we study, the dimension of the context vector c and its possible values
depend upon the event type e. Our independence hypothesis simplifies estimation by heavily reducing
the number of parameters.

9.3.2 States

The middle layer of our model is related to the health state of the train. We consider a discrete
state Xt taking integer values s ∈ [S], where 1 is as healthy as possible (the nominal state) and S is
as degraded as possible (the failure state). The evolution of Xt is a Markov chain is parameterized
by the transition matrix P ∈ [0, 1]S×S and the initial distribution p ∈ [0, 1]S .

As announced, the observations Yt do not always have the same distribution: the emission
parameters listed above actually depend upon the current stateXt of the system. Thus, Equation (9.1)
becomes

λ(m | s) = λ(s) r0(e | s)
D∏

d=1

rd(cd | s). (9.2)

In order for our model to capture the notion of degradation, we also have to introduce structural
constraints. First, the transition matrix must have a specific sparsity pattern that is compatible
with a degradation process. A typical example would be

P =


• • 0 0 0
0 • • 0 0
0 0 • • 0
0 0 0 • •
• 0 0 0 •


where • stands for a nonzero coefficient. This structure only allows stationary transitions from
state s to itself, degradation transitions from state s to s+1, and a single recovery transition from S
to 1. Additionally, we want repair events to be correlated with the health of the system. To that
end, we assume that repairs can only occur in the failure state S:

r0(repair | s) = 0 for all s < S.

Interestingly, repairs do not have to occur right away when Xt = S. Just like in real life, there can
be a lapse of time between entering the failure state and undergoing a repair.

196

9.3.3 Controls

We finally reach the top layer of our model, which deals with the controls. Those are represented as
vectors ut ∈ RU and considered deterministic. Indeed, given the temporal scale of our predictions (a
couple of days), it is reasonable to expect that the rolling stock rotations are known for the near
future. Since controls come from daily activity summaries, our intuition here is similar to that
of the Accelerated Failure Time model. The more active a train is, the faster time flows from its
perspective, and the quicker it will be to degrade. So the question becomes: how should we express
this acceleration?

Again, interpretability and efficiency requirements invite us to keep the number of parameters
as low as possible. For instance, if we allow each control dimension to influence each transition
probability, we obtain a number of parameters that scales as U × S2. Conversely, if we mediate the
influence of all control dimensions through a single scalar quantity at, then the number of parameters
will only scale as U +S2. As its name suggests, the quantity at is meant to represent the acceleration
of time caused by controls ut. The case at = 1 corresponds to the usual flow of time. When at > 1,
the train experiences unusual stress and degrades faster. When at < 1, the train is unusually idle
and degrades slower.

A possible expression for at is the following one, inspired by the Proportional Hazards model: at =
exp(w⊤ut), where w is a vector of weights. More generally, one can express at = φw(ut), where φw

is a neural network with weights w and nonnegative output.

Once we have computed the acceleration, we need to decide how it modifies the behavior of the
state process Xt and observations Yt. For observations, accelerating time by at is tantamount to
multiplying the ground intensity by at: this yields λ(s, at) = atλ(s). For state transitions however,
we need an additional idea, which comes from the theory of Markov jump processes (Shelton and
Ciardo 2014).

A Markov jump process is the continuous-time equivalent of a Markov chain. It is defined by
a matrix Q ∈ RS×S of transition rates: for i ̸= j, the coefficient Qij represents the instantaneous
rate at which a jump occurs from state i to state j. Meanwhile, we have Qii = −

∑
j ̸= iQij . If Zt

follows a Markov jump process, then its marginal distribution satisfies the following differential
equation:

dP(Zt)
⊤

dt
= P(Zt)

⊤Q =⇒ P(Zt+τ)
⊤ = P(Zt) exp(τQ)

That is why we suggest the following form for the controlled transition matrix: P (at) = exp(atQ),
where Q is the transition rates matrix associated with a one-day interval. Unfortunately, the matrix
exponential implies that even if Q forbids certain transitions, P (at) might allow them. Indeed, as
soon as Q is irreducible, all coefficients of exp(τQ) will be nonzero. However, provided that the
mixing time is long enough, this should not affect the ability of P (at) to model a degradation process.

9.3.4 Summary

We wrap up this section with a recap of all the steps in our hierarchical model:

1. The controls ut are transformed by a neural network φw to define a time acceleration at:

at = φw(ut)

197

2. The acceleration at helps deduce a transition matrix P (ut) from a transition rates matrix Q:

P (ut) = exp(atQ)

3. The transition matrix P (ut) generates a new state Xt from the previous state Xt−1:

P(Xt = s | Xt−1 = s′, ut) = [P (ut)]s′s

4. The acceleration at and the state Xt = s are combined to compute a new ground intensity λ(s |
at):

λ(s | ut) = atλ(s)

5. The ground intensity λ(s | ut) and probabilities p define a marked Poisson process for the
observation Yt on [t, t+ 1). If y = {(τk,mk) : k ∈ [K]}, then by Equation (4.1),

P(Yt = y | Xt = s, ut) =

K∏
k=1

(
λ(s | ut)r0(ek|s)

D∏
d=1

rd(c
k
d|s)

)
exp(−λ(s | ut))

The parameters we want to learn are

θ = (w, p,Q, λ, p) with



w ∈ RW
+ neural network weights

p ∈ [0, 1]S initial state distribution
Q ∈ RS×S

+ Markov transition rates
λ ∈ RS

+ event rates per state
r ∈ [0, 1](E+D×C)×S context probabilities per state

These parameters can be estimated with the gradient descent scheme described in Chapter 4. Our
package ControlledHiddenMarkovModels.jl makes this task much easier, and we plan to use
it to retrieve useful insights on the mechanisms behind train failures.

198

10
Delay propagation on suburban railway net-
works

A wizard is never late, Frodo Baggins.
Nor is he early. He arrives precisely when
he means to.

Gandalf the Grey
The Lord of the Rings:

The Fellowship of the Ring (2001)

Contents
10.1 Introduction . 200

10.1.1 Delay propagation mechanisms . 200
10.1.2 Industrial problem . 200

10.2 Related work . 201
10.2.1 Methods based on the temporal event graph 201
10.2.2 Parametric regression and other methods 202

10.3 Congestion-based delay model . 203
10.3.1 Qualitative overview . 203
10.3.2 Quantitative formulation . 204
10.3.3 Link with Partially-Observed Vector AutoRegression 205
10.3.4 Statistical estimation . 206

10.4 Numerical experiments . 207
10.4.1 Data description and reprocessing . 207
10.4.2 Results . 209

In this chapter, we propose a new model for train delay propagation, discuss its statistical
properties and apply it to real data from the Swiss railway.

This chapter is based upon my unpublished master’s thesis, as well as the first version of our
paper D. and de Castro (2022).

199

10.1 Introduction

Railway delays come in two forms: primary and secondary delays. While primary delays are
exogenous, and therefore unpredictable, secondary delays are endogenous, caused by interactions
between the trips themselves. Indeed, since trips share the same resources, they often share delays
too, a phenomenon we call delay propagation. This phenomenon is grasped qualitatively by railway
experts, but here we seek to quantify it through mathematical modeling.

10.1.1 Delay propagation mechanisms

At its core, delay propagation is about resources. If two trips require the same resource and cannot
use it at the same time, then one of them will have to wait until the other has finished. The most
important of these resources is infrastructure (track sections, switches, platforms), but rolling stock,
crew and passengers also play a significant role. See Chapter 2 for more details.

Aside from resource conflicts, delay propagation is influenced by several other factors. For
instance, schedule slack (i.e., the margins incorporated into the train schedule) can contribute to
delay absorption. First, at the level of an individual train, travel times are slightly overestimated to
help neutralize small perturbations. Second, the buffer interval between trains are also important to
prevent delays from propagating endlessly through the schedule. During peak hours on a suburban
network, trains follow one another at near maximal frequency. This makes delay absorption difficult,
unless some trains are cancelled or rerouted to reduce the load on the network. Conversely, since
very few operations take place at night, delays are almost always reset from one day to the next.

Traffic regulators adapt the schedule in real time when something goes wrong. For a suburban
network in a densely populated area, the priority is not really punctuality but rather regularity.
Thus, the schedule can be significantly modified to minimize delay propagation. Such is the task of
the regulators, who have several tools at their disposal: changing the order of trains, the allocation
of tracks, cancelling some stops, or even rerouting the trains.

Signals are traffic lights that warn train drivers when another train occupies the track section in
front of them, giving them enough time to brake if necessary. However, some drivers may be overly
careful and slow down more than they have to. This can amplify delay propagation and induce
artificial slowdowns, even long after the primary delay has dissipated.

10.1.2 Industrial problem

Our goal is to design a model with minimal data requirements, which can then be used in various
settings. With this in mind, we can only rely on data that is reasonably easy to acquire, namely
departure and arrival times at stations (or other checkpoints along the tracks). The theoretical
timetable is usually available on the website of the railway company. Realized event times are slightly
less accessible, but they can often be queried from a real-time API. On the other hand, obtaining
more refined information like GPS feeds is much harder, when it is possible at all.

Since we only work with measurements at stations, we cannot precisely locate a train that does
not move. If a train stands still, we will not know where it is nor how late it is until the next station
is reached. Given that the distance between stations ranges from a few hundred meters to several
tens of kilometers, this can give rise to large positional uncertainties. It also means we do not know
what is happening at the microscopic level of track sections and switches. The platform assignment
in stations is a black box too.

200

Because incidents prompt regulators to modify the schedule in real time, there are many
inconsistencies between the theoretical timetable and its empirical counterpart. If a train was
supposed to stop at a station but was actually cancelled, we will see a database entry with a
scheduled arrival and departure time, but no mention of the realized times. The reverse holds for
trains that stop where they were not supposed to.

Finally, the lack of information about driver and rolling stock assignments means our knowledge
of resource conflicts is very limited. As we will see below, this scarce data is the main motivation for
the new approach we introduce. Indeed, existing methods from the literature require a much more
detailed knowledge of the system than we possess.

10.2 Related work

In practice, the most basic prediction method used by railway operators is extrapolation. Whenever
a train is running 5 minutes late, extrapolation assumes that it will remain 5 minutes late at every
stop of its journey. While simple to implement, extrapolation completely overlooks interactions
between trains. We now try to give a brief overview of approaches that do take such interactions
into account. For a more extensive survey, the reader can refer to Spanninger et al. (2022).

10.2.1 Methods based on the temporal event graph

Many studies on delay prediction rely on a graphical representation of the schedule, which we will
call the temporal event graph (Kecman and Goverde 2015). Its nodes correspond to train events
such as arrivals or departures, and its arcs to precedence relations between events. These precedence
relations arise mainly from resource conflicts. Every arc of the event graph is therefore associated
with a fixed duration, which acts as a minimum time interval between the two events.

For instance, consider an arc linking the arrival of a train k at a station to its departure from
the same station. This arc will have a duration equal to the prescribed dwell time on the platform.
Similarly, consider another arc linking the departure of train k1 from a station to the arrival of the
next train k2 at the same station. This other arc will have a duration depending on the minimum
headway time between both trains.

10.2.1.1 Deterministic delay prediction

Let us assume that the temporal event graph describes the schedule perfectly, and that no perturba-
tions occur. Then, starting from a known state of the network, we can compute future event times
exactly: all it takes is to consider the event nodes in topological order. For each node, its event time
will be the maximum of its scheduled time and all the event times of parent nodes (augmented with
the associated arc duration). In simpler terms, an event cannot happen before its scheduled time,
and it cannot happen before all its predecessor events have happened and the minimum waiting
times have elapsed.

The seminal paper by Goverde (2007) uses max-plus algebra and spectral analysis to analyze the
stability of a periodic train schedule. Burdett and Kozan (2014) draw from mathematical scheduling
theory to identify the operations affected by a single delay, and thus quantify schedule robustness.
The temporal event graph method is generalized by Kecman and Goverde (2015), insofar as running
times and dwell times are no longer fixed but computed dynamically using previously-calibrated
prediction models.

201

However, deterministic modeling of the railway system is a very strong assumption which we do
not want to make, especially while studying a suburban network where perturbations are the norm.
This justifies the addition of stochastic elements to the model, in order to better quantify noise and
uncertainty.

10.2.1.2 Stochastic delay prediction

Some papers try to uncover families of probability distributions that are compatible with the delay
operations induced by the temporal event graph: sums, maxima and thresholding. The idea is to
explicitly compute distributions for future event times. Examples include phase-type distributions
(Meester and Muns 2007) or θ-exponential distributions (Büker and Seybold 2012).

Yet, in order to propagate these distributions exactly through the temporal event graph, their
number of parameters needs to grow, which often makes approximations necessary. Therefore, a
more interesting approach could be to give up on exact formulas and instead rely on established
tools for inference in probabilistic graphical models (Koller and Friedman 2009). An illustration of
this idea is provided by Corman and Kecman (2018), who interpret the temporal event graph as a
linear Gaussian Bayesian Network.

Unfortunately, the previous methods assume that the structure of the temporal event graph is
known precisely. As we noted in Section 10.1.2, this assumption is not realistic in our case. The
precedence relations arising from logistics (driver, rolling stock) are completely unknown, and even
those related to infrastructure use would require more microscopic information than we have. To
make matters worse, the temporal event graph changes in real time as the regulators modify the
order of trains.

Even Kecman, Corman, and Meng (2015) (authors of numerous studies using the temporal
event graph) concede that in the absence of reliable data on resource use, modeling interactions
between trains becomes complicated. This is why, on a limited dataset similar to ours, they resort
to an independence assumption between trains. Our goal will be to enrich their Markov model by
re-introducing interactions in a novel way.

To be fair, automated dependency detection is indeed possible, as demonstrated by Flier et
al. (2009). However, their technique relies on a large and consistent dataset for every correlated
pair of events. In a suburban network dataset, with strong variability between days and frequent
interventions from regulators, it does not seem to apply.

10.2.2 Parametric regression and other methods

Another category of methods uses regression techniques from statistics or ML to build delay prediction
systems. Instead of being embedded in a temporal event graph, the interactions between trains can be
represented through various input features in a complex parametric model. For their study on freight
traffic, Barbour et al. (2018) build a Support Vector Regression model for each origin-destination
pair. To predict the arrival time of a specific train, they use the train’s individual features but also
interaction terms such as its relative priority (compared to other neighboring trains) and various
traffic counts (along the route, but also near the origin and destination). Oneto et al. (2018) use one
neural network for each train-origin-destination triplet. The input is composed of calendar features,
previous delays and event times for the train in question, but also for the other trains that have
recently crossed the same section of the network. Arthaud, Lecoeur, and Pierre (2021) combine

202

the recent Transformer architecture with a graph embedding to allow for massively parallel delay
prediction on the whole French railway network.

While they may provide accurate predictions, such black-box techniques lack interpretability
due to their complexity. In the present study, our goal is to build a generative model for a physical
phenomenon, which is why we will not go down the same path. Furthermore, since the regulation and
delay prediction culture at SNCF strongly relies on human expertise, making the model accessible
and understandable is a very important part of our work.

A research team at SNCF puts forward a nonparametric delay prediction tool (Chandesris and
Chapuis 2018). For any given train, their algorithm considers the event times on the beginning of its
journey (up to the present time). Then, the algorithm parses the historical data, looking for other
trains with similar journey beginnings. A delay prediction is finally obtained using a weighted mean
of the futures of these past trains. The authors mention the similarity measure can be extended to
other context elements, which might allow for delay propagation to be included. Nonetheless, their
nonparametric approach, does not provide much insight on the generative process behind the delays,
which is why we discard it as well.

Finally, we point to an article using disease spreading models to study train delays (Monechi et al.
2018). Without knowledge of the microscopic structure, the authors postulate simple infection rules
and recover qualitative properties of the railway system, such as the empirical delay distribution
or the emergence of large congested areas. However, their method does not yield quantitative
predictions, which makes it ill-suited for our purposes.

10.3 Congestion-based delay model

We now describe our own approach to tackle delay propagation, which was already sketched in the
introduction of Chapter 6. It was fuelled by numerous conversations with SNCF railway experts, as
well as a two-day observation period in a traffic regulation center near Paris Montparnasse station.
To make exposition clearer, we distinguish between the lateness of a train, which is an instantaneous
measurement (as in “the train is late”), and the notion of delay, which is a progressive variation in
lateness (as in “the train was delayed”).

10.3.1 Qualitative overview

As we will see, our model is based on an analogy with road traffic jams, which seems reasonable
given the high frequency of suburban railway traffic.

10.3.1.1 The static event graph

We start by introducing an alternative to the temporal event graph, which we call static event graph
and denote by G = (V, E). It can either be constructed by hand, or automatically derived from a
historical dataset. Unlike vertices of the temporal event graph, which are associated to a single train
at a given point in time, vertices v of the static event graph are shared between all trains and have
no temporal aspect.

Each vertex is defined by a tuple (line, direction, station, event type), where the event type
can be either departure, arrival or passage. Meanwhile, the edges e do not stand for precedence
constraints: they simply represent possible transitions between vertices. The line information is
needed when we consider a multi-line network with separate tracks for each. The same goes for

203

the direction information if both directions have their own track. On the other hand, whenever the
infrastructure is shared, we can drop these components from the vertex definition.

The journey of a train can be represented as a path through the static event graph. We measure
the lateness at each vertex, and this lateness evolves due to delays encountered along the edges.
Importantly, not every edge corresponds to a physical movement. An edge from departure to arrival
corresponds to a trip between stations, but an edge from arrival to departure corresponds to a train
dwelling at a station. Both types of edges can give rise to delays, through different mechanisms.

10.3.1.2 The notion of congestion

To capture delay propagation, we do not focus on the lateness measured at each vertex (i.e., for
each event). Instead, we model the delay suffered along each edge (i.e., between two consecutive
events). Our model decomposes this delay into two parts:

• A collective part, which affects several trains and propagates through time and space: we call
it the congestion.

• An individual part, which affects only one train at a specific instant and location: we call
it the noise. It can include factors such as driver decisions, passenger behavior, mechanical
breakdowns, etc.

Note that causality does not play a role in the previous decomposition: whether a given train creates
or just experiences the congestion is irrelevant to us.

To understand congestion, picture it as some kind of viscous substance residing on the tracks (or
on the station platforms). Depending on how much of it there is, edges of the static event graph are
more or less easy to cross. Like a traffic jam or a sound wave, this viscous substance can also move
across the network. But crucially, the congestion is a hidden variable: we never observe it directly.
The only information we have comes from the trains that go through it. The time they need to cross
each edge can be considered a noisy version of the underlying congestion.

10.3.2 Quantitative formulation

For every single day n of observations, let us define the following quantities:

• Z
n
k,v is the scheduled event time for train k at vertex v.

• Zn
k,v is the realized event time of train n at vertex v.

• Xn
t,e is the congestion on edge e at time t.

• ηnk,e is the noise on edge e at time t for train k.

All trains may not have the same number of events, and all days may not have the same number of
trains, but that is perfectly normal.

204

10.3.2.1 Delay decomposition

Our delay decomposition is expressed as follows: for any train k crossing edge e = (u, v) at time t,

Zn
k,v − Zn

k,u︸ ︷︷ ︸
realized duration

of edge e

= Z
n
k,v − Z

n
k,u︸ ︷︷ ︸

scheduled duration
of edge e

+ Xn
t,e︸︷︷︸

congestion

+ ηnk,e︸︷︷︸
noise

with t = Zn
k,u

We can reformulate this equation in terms of lateness:

(Zn
k,v − Z

n
k,v)︸ ︷︷ ︸

lateness at
vertex v

= (Zn
k,u − Z

n
k,u)︸ ︷︷ ︸

lateness at
vertex u

+ Xn
t,e︸︷︷︸

congestion

+ ηnk,e︸︷︷︸
noise

with t = Zn
k,u

Finally, if we define Y n
k,e as the delay suffered by train k when crossing edge e at time t, we have:

Y n
k,e = (Zn

k,v − Z
n
k,v)− (Zn

k,u − Z
n
k,u) = Xn

t,e + ηnk,e with t = Zn
k,u (10.1)

An essential feature of Equation (10.1) above is the choice of t. The temporal index of the relevant
congestion Xn

t,e is selected independently of the train number, based solely on the time when the
train arrives at the edge.

In Equation (10.1), the noise ηnk,e plays an important role, since the congestion is a collective
average which does not account for individual phenomena. The simplest way to model it is as a
Gaussian:

ηnk,e
i.i.d.∼ N

(
νe, ω

2
e

)
. (10.2)

The mean parameter νe can be interpreted as systematic delay along edge e, for instance due to an
ill-conceived schedule requiring that trains travel faster than they actually can.

As a trivial but important special case, we get the lateness extrapolation model by taking Xn = 0
and ηn = 0: from the present onward, every train keeps its current lateness without adding to it.

10.3.2.2 Evolution of the congestion

The interesting part of our model is the congestion Xn, because it is responsible for delay propagation.
Ideally, since the temporal index t from Equation (10.1) can take arbitrary values, we would like Xn

t

to evolve in continuous time. However, to simplify statistical analysis, we work in discrete time, and
we assume that Xn follows a Vector AutoRegressive (VAR) process with weights matrix θ ∈ RE×E .
In other words, for every t ∈ N, we have

Xn
t = θXn

t−1 + εnt with εnt,e
i.i.d.∼ N (0, σ2eI) (10.3)

With this approach, it is likely that the discrete time indices t are not on the same scale (expressed
in the same unit) as the numerical values of Xn

t,e and Zn
k,v. Indeed, we can decide to update the

congestion every ∆ = 10 minutes, while the event times and delays themselves are expressed with
arbitrary precision. Then, we need to choose t = ⌊Zn

k,u/∆⌋ in Equation (10.1), and the total number
of steps necessary evolves as 1/∆.

10.3.3 Link with Partially-Observed Vector AutoRegression

When we combine Equations (10.1), (10.2) and (10.3), we obtain a latent variable model that is very
close to the Partially-Observed Vector AutoRegression (POVAR) from Chapter 6. We now explain
why the central assumptions we made in that chapter hold here too.

205

10.3.3.1 Sparse dependencies

If two edges e1 and e2 are such that θe1,e2 ≠ 0, then the congestion value Xt−1,e1 influences the
congestion value Xt,e2 . At this point, we should stress that the congestion propagates at a finite
speed, and that its spread is dictated by the structure of the static event graph. In particular, if the
step duration ∆ is not too large, we expect the interactions between steps t − 1 and t to remain
local, i.e., to happen only between edges that are geographically close. This means that the matrix
of weights θ is sparse, and that its sparsity pattern is closely related to the adjacency matrix of G.
For large networks, sparsity unlocks significant statistical and computational gains, as we saw in
Chapter 6.

10.3.3.2 Random observations

In our delay model, the main challenge for estimation is the limited size of the observations. The
only congestion values Xn

t,e that are directly linked to observations Y n
k,e are those for which at least

one train crosses edge e at time t. Subsequently, the number of observed components Xn
t,e is directly

related to the number of trains circulating on the network, and will represent only a fraction p ∈ (0, 1)
of the complete set [T] × E of possible couples. This observation pattern can be stored inside a
projection matrix Πn with random binary entries, such that Y n = ΠnXn + ηn. The projection
matrix contains one row per couple (k, e): on this row, the coefficient in column (t = ⌊Zn

k,u/∆⌋, e)
is 1, and all the other coefficients are 0.

Importantly, a single congestion value Xn
e,t can be observed multiple times by different trains,

hence with different noise values. The larger the step duration ∆, the more trains will cross the same
edge during a time step, and the more precise our averaged estimate of the latent congestion will be.

To further justify the link with Chapter 6, we claim that the selection of the observed com-
ponents Xn

t,e can reasonably be considered random. First, railway timetables are often large and
complex, potentially varying from day to day and subject to last-minute modifications. Therefore, it
makes sense to assume that the spatio-temporal locations (t, e) of the observations are randomly
sampled.

But more importantly, travel times themselves are not deterministic. If train k reaches edge e
slightly later than usual one day, it may face a different congestion value, say Xn

t+1,e instead of Xn
t,e.

And because of this, the distribution of Πn is even influenced by the values of Xn itself, since train k’s
unusual delay at edge e may have been caused by a traffic jam on edge e − 1. We capture this
phenomenon heuristically, by assuming that the projection matrix Πn exhibits spatial and temporal
correlations.

10.3.3.3 Influence of step duration

In light of all we have said, we summarize the various effects of the step duration ∆ in Table 10.1.

10.3.4 Statistical estimation

Since we have shown that our delay model is a special case of POVAR, we can apply the estimation
algorithm of Chapter 6. Back then, we assumed that each component of Xn was observed at most
once in Y n. Thanks to the use of the Moore-Penrose pseudoinverse, our estimator still works when
multiple observations are tied to the same latent variable. The only modification necessary is related
to the covariance scaling in Equation (6.9).

206

Small ∆ Large ∆

Number of time steps T Large Small
Structure of the weights θ Sparse Dense
Congestion averaging Rough Precise

Table 10.1: Effects of the step duration ∆ in our delay model

Although we do not provide the proof here, Theorem 6.11 also generalizes to this case, which
means we have an upper bound on the estimation error for θ. Roughly speaking, this bound has the
following form (if we neglect the logarithmic term):

∥θ̂ − θ∥∞ ≤ c
(
1 +

ω2

σ2

)
s

p
√
T

To make sense of this bound, we recall that σ is the scale of the congestion process, while ω is the
scale of the noise. The discrete temporal horizon is denoted by T , so we only need reasonable values
for the sparsity level s and the (uniform) observation probability p. Let K be the number of trains
in a day, and let L be the average number of edges on a train’s path in the static event graph. Then
a good approximation for the observation probability p would be dim(Y n)

dim(Xn) , that is,

p ≈ KL

TE

As for the sparsity level s, it counts the number of edges to which congestion can spread in an interval
of duration ∆, starting from a single edge. Let v be the propagation velocity of the congestion,
expressed in number edges crossed per time unit. We take d to be the average degree of an edge in
the static event graph G. A crude formula for s would be:

s ≈ dv∆

10.4 Numerical experiments

Unlike those of the other chapters, the following experiments were implemented in Python. Data
preparation was performed using pandas (Wes McKinney 2010; Reback et al. 2021), graph structures
were represented within networkx (Hagberg, Schult, and Swart 2008) while linear optimization
problems were modeled using cvxpy (Diamond and Boyd 2016; Agrawal, Verschueren, et al. 2018)
and solved with the ECOS solver (Domahidi, Chu, and Boyd 2013).

10.4.1 Data description and reprocessing

Public transport agencies often make their theoretical transportation plan available (for instance
using the General Transit Feed Specification format developed by Google), and many also provide
an Application Programming Interface to query real-time traffic information. However, it is much
harder to find large historical archives of realized event times. One such data set is available on the
open data platform Mobility Switzerland1.

1https://opentransportdata.swiss/en/dataset

207

https://opentransportdata.swiss/en/data set

0 5 10 15 20 25
Months since Jan 2018

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Nb

 o
f o

bs
er

va
tio

ns
1e6

1 2 3 4 5 6 7
Weekday

0.0

0.2

0.4

0.6

0.8

1.0

Nb
 o

f o
bs

er
va

tio
ns

1e7

0 5 10 15 20 25
Hour of day

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Nb
 o

f o
bs

er
va

tio
ns

1e6

Figure 10.1: Number of observations for each month, weekday and hour on the Zürich tram data set

Starting in January 2018, an increasing number of train arrival and departure times were pulled
from the customer information systems of railway companies operating in Switzerland. These event
times were then stored into daily CSV files, along with other useful information regarding each
train2: company, line, trip and stop ID, possible perturbations (like cancelled trips or skipped stops).

Our intuition tells us that a congestion model such as ours best applies to a dense network with
frequent trips, for instance that of a large urban or suburban area. As a consequence, we choose to
focus on the tramway network of Zürich, operated by Verkehrsbetriebe Zürich3. We further restrict
ourselves to the years 2018 and 2019, since data before 2018 is incomplete and data from 2020
onwards is likely to be affected by the ongoing Covid-19 crisis.

Figure 10.1 gives an overview of the quantity of data available for these two years: these
visualizations are important to prepare a homogeneous data set in terms of data quantity. Indeed, if
trains are less frequent on a significant portion of the period we study, the congestion will propagate
differently and our estimation procedure will be biased.

We notice that apart from July 2020, the months are relatively similar to one another. As for
the weekdays, Saturdays and Sundays have fewer observations, which is why we exclude them from
analysis. Finally, train frequency is zero at night but otherwise relatively constant through the day.
Still, we choose to focus on what would be the evening “peak hour” in a typical urban network, that
is from 5 PM to 8 PM.

Beyond this initial filtering, we apply a few more preprocessing steps. First, we remove skipped
stops, unplanned and cancelled trips. We then remove departures to keep only arrival events. An
important step consists in detecting outliers by imposing limits on the minimum and maximum
values for edge durations, arrival delays and additional edge delays. This is illustrated on Figure 10.2.
It may seem strange to keep slightly negative edge durations or delay values. We made this decision
because the planned arrival times are rounded to the minute, while the actual event times are
recorded with second-level precision. As a consequence, a train could appear to be a few tens of
seconds late or early simply due to rounding phenomena.

The final preprocessing step is to center the data at expectation by removing additional delay
averages for each edge. Indeed, for the real process, we suspect that the noise η may not be zero-mean,
so this is our way to standardize it.

Then, we need to construct the graph representation G of our data set, with one vertex per stop
and edges corresponding to railway tracks. We could use a network map, but since we want the
process to be automated, we seek to build the graph directly from our event data.

2https://opentransportdata.swiss/en/dataset/istdaten
3https://www.stadt-zuerich.ch/vbz/en/index.html

208

https://opentransportdata.swiss/en/data set/istdaten
https://www.stadt-zuerich.ch/vbz/en/index.html

50 0 50 100 150 200
Event delay

101

102

103

104

105

106

107

Oc
cu

rre
nc

es

(a) Histogram of measured arrival delays before
cleaning

10 5 0 5 10 15 20 25 30
Event delay

102

103

104

105

106

Oc
cu

rre
nc

es

(b) Histogram of measured arrival delays after
cleaning

Figure 10.2: Effect of outlier filtering

To each arrival event, we map the next event for the same train journey, which gives us a
collection of station couples, also known as directed edges. Some of these edges are crossed frequently,
whereas others are only used a few times over the two-year period. Since the precision of estimation
relies on a good approximation of the congestion Xt,e on each edge e, we must get rid of these
infrequent edges. Indeed, keeping every single edge we obtain (there are over 2500) would result in a
much higher dimension for the underlying process, but without sufficient data to exploit it.

Our pruning method consists in selecting the 200 most frequently crossed edges in the complete
network, and then retrieving the largest connected component of the resulting subgraph. This
component has |V| = 78 nodes and |E| = 163 edges. A graphical representation is given on
Figure 10.3a (some edges are denser because of superposition), while the real map can be seen on
Figure 10.3b.

10.4.2 Results

As we mentioned in Chapter 6, cross-validation is difficult to achieve here due to the lack of a
standard inference algorithm for hidden congestion values. Given that we don’t have access to
the sparsity level of the “true” θ here, we test several values of the regularization parameter λ and
plot the behavior of the resulting estimator θ̂λ. The main features of interest are presented on
Figure 10.4. As expected, the first graph shows the fraction of non-zero coefficients in θ̂λ decreasing
as the penalization λ increases.

The second graph is more interesting: it depicts the evolution of a quantity characterizing the
typical distance at which edges seem to interact, based on the estimated transition matrix. This
quantity is computed as a weighted average of distances dGe1,e2 between edge couples, each distance
being weighed by the absolute value |θ̂λe1,e2 | of the relevant transition coefficient. In other words, our
“average interaction distance” is given by the formula

AID =

∑
e1,e2
|θ̂λe1,e2 |dGe1,e2∑

e1,e2
|θ̂λe1,e2 |

.

Since graph distances are only defined between vertices, we need to specify what we mean with dGe1,e2 .

209

8.50 8.51 8.52 8.53 8.54 8.55 8.56 8.57
Longitude

47.36

47.37

47.38

47.39

47.40

47.41

La
tit

ud
e

(a) Map of the Zürich tram network generated from
consecutive events

Bahnhof
Enge

Bürkliplatz

Stockerstrasse

Tunnelstrasse

Bahnhof
Selnau

Goldbrunnen-
platz

Talwiesen-
strasse

Heuried

Schaufelberg-
strasse

Lochergut

Zypressenstrasse

Albisriederplatz

Krematorium
Sihlfeld

Hubertus

Siemens

Albisrieden

Letzigrund

Freihofstrasse

Kappeli

Grimselstrasse

Bachmattstrasse

Bahnhofplatz / HB

Bahnhofstrasse / HB

Central

Wildbachstrasse

Kreuzplatz

Signaustrasse

Hegibachplatz

Hedwigsteig

Wetlistrasse

Burgwies

Balgrist

Friedhof
Enzenbühl

Rehalp

Central
Polybahn

ETH Polyterasse

Seilbahn
Rigiblick

Kinkelstrasse

Milchbuck

Escher-Wyss-
Platz

Förrlibuck-
strasse

Fischerweg

Bernoullihäuser

Hardturm

Hardhof

Tüffenwies

Grünaustrasse

Bändliweg

Werdhölzli

Lindenplatz

Goldauer-
strasse

Hadlaub-
strasse

Germania-
strasse

Rigiblick

Industriegleis

Schiffbau

Technopark

2•3

Anschlussgleis

8

8

Saalsporthalle

Industriegleis

Usteristrasse

nur Linie 21

Mo.-So. 5-12

Mo.-Sa. 6-24
So. 8-11, 18-245

So. 12-185

[5
]•

6

Mo.-So. 5-16

Mo.-So. 5-113

Mo.-So. 5-113

Mo.-Fr. 7-19
Sa. 8-14

Dolderbahn
Zahnradbahn | rack railway

Mo.-So. 6-23

Mo.-So. 5-1

Seilbahn Rigiblick
Standseilbahn | funicular railway

Bahnhof
Altstetten

Seidelhof

Mo.-Sa. 5-2010

Hungerbergstrasse

Zehntenhausplatz

Einfangstrasse

H
ön

gg
e

rs
tr.

Waidfussweg

Haltestelle bis Juli 2014.

Helmhaus

2•5•8•9•11

Har
db

rü
ck

e

11•12

12

10
•1

4

11

9•10

9•
10

9•
10

6•
9

6•
7•

10
•1

5

11
•1

4
4•

15
•[

21
]>

3•10•14•17•<[21]

4•6•137

7•
[1

0]
•1

1•
13

•<
[2

1]

5•
9

5•6

5

2•
8•

9•
11

•<
[2

1]

7
[5

]•
7•

[1
0]

7•8•[10]•13

9•14

3

10
•1

2

5•
9

8

2•
4

7

2

Limmat

Li
m

m
at

Lim
m

at

Schanzengraben

Sihl

A
lb

is
st

ra
ss

e

S
ee

st
ra

ss
e

Gen
er

al-
Guis

an
-Q

ua
i

B
ah

nh
of

st
ra

ss
e

Blei
ch

er
weg

Badenerstr.

Birmensdorferstrasse

Birmensdorferstrasse

Stauffacherstrasse

Lö
w

en
st

ra
ss

e

Li
m

m
at

qu
ai

Räm
ist

ra
ss

e

R
äm

is
tr

as
se

Gloriastrasse

W
ei

nb
er

gs
tr.

Hof
wies

en
str

as
se

S
ch

af
fh

au
se

rs
tr

as
se

W
in

te
rt

hu
re

rs
tr

as
se

U
ni

ve
rs

itä
ts

st
ra

ss
e

Güggelfelderstr.

T
hu

rg
au

er
st

r.

S
ch

af
fh

au
se

rs
tr

as
se

Schwamendingen

Oerlikon

Frankental

Höngg

Altstetten

Albisrieden

Wollishofen

Albisgütli

Triemli

Fluntern

Hirslanden

V
B

Z
 V

B
G

VBZ FB (Forchbahn)

Wallisellen

Opfikon

Kloten

Har
db

rü
ck

e

13

Hardturm
str.

6•8

Hardturm
str.

Bändlistr.

Bellevue

Bahnhof
Stadelhofen

Opernhaus

2•5•8•9•11•[21]>

2•
4•

8•
11

•1
5•

[2
1]

4•
15

•[
21

]>

5•9

Rämistrasse

2•
4

8•11•S18•[21]

Har
ds

tr.
 /

Har
db

rü
ck

e

Pfingstweidstr.

Toni-Areal

Sportweg

Aargauerstrasse
Würzgraben

Bahnhof
Altstetten
Nord

F
re

ya
st

r.

Badenerstr.
Bezirksgebäude

Kalkbreite

2•3

Badenerstr.

E
lis

ab
et

he
ns

tr.

Kalkbreitestr.

Studackerstr.

Bahnhof
Wallisellen

Zentrum Glatt

Neugut

Giessen

Ringwiesen

Bahnhof
Stettbach

12

12

R
in

gs
tr

a
ss

e

V
B

Z
 V

B
G

Düben-
dorf

Glatt

7

12

7

2Badenerstr.

Badenerstr.

Albisriederstr.Fellenbergstrasse

600 VDC 1200 VDC

Forchstr.

Kreuzbühlstr.

11•S18

Forchstr.

11•S18•[21]

Klusplatz

3

8

23

45

67

89

1

9•14

Werd

Bahnhof
Wiedikon

Schmiede
WiedikonTriemli

Stauffacher

Helvetiaplatz

Hohlstrasse

Güterbahnhof

Bäckeranlage

Sihlstrasse

2•9

Talacker

Parade-
platz

S
to

ck
er

st
r.

8

7•
[1

0]
•1

3

5

S
ee

st
r.

Museum Rietberg

Brunaustrasse

Post
Wollishofen

Bahnhof
Wollishofen

Billoweg

Albisstr.

Morgental

Butzenstrasse

7

Wollishoferplatz

Bed
er

str
.

[5
]•[

10
]•1

3

Bahnhof Enge/
Bederstrasse

Waffenplatzstrasse

Sihlcity Nord

Giesshübelstr.

Laubegg

[5]•[10]•13

U
et

lib
er

gs
tr.

[1
0]

•1
3

Uetlihof

Strassenverkehrsamt

Albisgütli

3•
14

Kas
er

ne
ns

tr.

Löwen-
platz

G
es

sn
er

al
le

e

Sihlpost

Rennweg

Bahnhof-
quai / HB

Rudolf-Brun-
Brücke

Rathaus

Börsenstrasse

Rentenanstalt

Kunst-
haus

5•
9

H
irschengraben
3

Neumarkt

S
eilergraben

3

W
ei

nb
er

gs
tr.

Haldenegg

Leonhardstr.

6•10

Tannenstr.
ETH/
Universitätsspital

Kantonsschule

Hottingerstr.

3

Hottingerplatz

Römerhof

8

Titlisstrasse

Waldhaus Dolder Dolder

Klos
ba

ch
str

as
se

Englischviertelstrasse

Asylstr.

Hölderlinstrasse

3•8•15

Kreuzstrasse

S
ee

fe
ld

st
r.

Feldeggstrasse

Höschgasse

Fröhlichstrasse

Bahnhof
Tiefenbrunnen

Platte

Voltastrasse

Toblerplatz

Kirche
Fluntern

K
ra

fts
tr.

Krähbühlstr.

Zürichberg-
strasse

Susenberg-
strasse

Zoo

B
ah

nh
of

qu
ai

Museumstrasse

Museum für
Gestaltung

Sihlquai /
HB

Lim
m

atstr.

Limmatplatz

Quellenstrasse

4•6•13

Löwenbräu

Wipkingerplatz

13
Lim

m
attalstr.

Eschergutweg

Alte Trotte

Schwert

Meierhofplatz

13

Zwielplatz

Wartau

Lim
m

attalstr.

Depot
Wartau

Winzerstrasse

13

Frankental

N
eu

m
ü

hl
eq

ua
i

W
al

ch
es

tr.

Stampfen-
bachplatz

Beckenhof

S
ta

m
pf

en
ba

ch
st

r.

Kronenstrasse

Schaffhauserplatz

11
•1

4

7•15

Röslistrasse

Ottikerstrasse

Sonneggstrasse

Haldenbach

Winkelriedstrasse

Letzistrasse

Langmauerstrasse

Universität
Irchel

IrchelstrasseSch
af

fh
au

se
rs

tr.

Guggachstrasse
7•

14

Tierspital
7•9

Schörlistrasse

Waldgarten
Berninaplatz

Hirschwiesen-
strasse

Salersteig

Tramstrasse

10
•1

4

Sternen
Oerlikon

Bahnhof
Oerlikon

O
hm

st
r.

Hofwiesenstr.

Regensbergbrücke

Bad Allenmoos

Radiostudio

W
ehntalerstrasse

Birchdörfli

Neuaffoltern

Glaubtenstrasse

W
ehntalerstrasse

Holzerhurd
Im

 Holzerhurd

Bucheggplatz

11•15Hofwiesenstrasse

Laubiweg

11
•1

5

Messe/
Hallenstadion

11

10
•1

4

Bahnhof
Oerlikon Ost

Wallisellenstr.

10

11

10
•1

1

VBZ VBG

Felsenrainstrasse

14

Seebacherplatz

Sch
af

fh
au

se
rs

tra
ss

e
Seebach

Leutschenbach

Oerlikerhus

10
•1

2
Lindberghplatz

Glattpark

Thu
rg

au
er

str
.

Glattbrug
Bahnhof

Bäuler

Unterriet

Flug
ho

fst
r.

Balsberg
Bahnhof

Zürich Flughafen

Flughafen Fracht

Fernseh-
studio

Auzelg Herti

Weststr.

Belair

Schwamendingerplatz

Probstei

7•9

7

Roswiesen

Dübendorfstr.

Glattwiesen

Mattenhof

Heerenwiesen

9

Luegisland

W
int

er
th

ur
er

str
. Luchswiesen

Altried

Hirzenbach

4

4

Wipkingen

Aussersihl

Wiedikon

Enge

Altstadt

Seefeld

Tiefenbrunnen

Hottingen

Oberstrass

Unterstrass

Seebach

Rümlang

11

11

10

Bahnhof
Oerlikon

O
hm

st
r.

Nansenstr.

(10)>•11>

11

Nansenstr.

Hardplatz

Bahnhof Hardbrücke

Mo.-So. 5-13

Mo.-So. 5-13

Mo.-So. 5-14

Mo.-So. 5-14

Mo.-Sa. 6-215

Mo.-So. 5-16

Mo.-So. 5-17

Mo.-So. 5-24 7

Mo.-So. 5-1 8

Mo.-So. 5-1 8

Mo.-Fr. 5-8, 16-199 Mo.-Fr. 9-16, 19-1
Sa.-So. 5-1 9

Mo.-Sa. 5-1
So. 6-19

Mo.-So. 5-2410
Mo.-So. 6-2412

Mo.-So. 5-2412

Mo.-So. 5-111

Mo.-So. 5-111

Mo.-So. 5-114

Mo.-So. 5-114

Mo.-So. 5-2415

Mo.-So. 6-2415

letzter Sa. & So. im Monat
12-1621

Ankunft / arrival: Bahnhofplatz
Abfahrt / departure: Usteristrasse

letzter Sa. & So. im Monat
12-1621

nur Linie 21

Ankunft / arrival: Bahnhofplatz
Abfahrt / departure: Löwenplatz

Mo.-Sa. 20-24
So. 5-2410

For
ch

str
.

Waldburg

Spital Zollikerberg

Zollikerberg

Waltikon

Zumikon

Maiacher

Zum
iker Tunnel (1758 m

)

Neue Forch

Alte Forchstrasse

Forch

Depot Forch
Forchbahn

Scheuren

Forchtunnel (282 m)

Neuhaus

Hinteregg

Egg

Langwies

Emmat

Esslingen
13,06

12,20

11,48

10,75

10,09

9,00

7,41

6,40

5,59

5,02

4,25

3,45

1,99

1,48

1,08

0,0

Forchstrasse

Tram-Museum Zürich
S��ung Tram-Museum Zürich

Depot 7 Irchel
VBZ

Depot 8 Oerlikon
VBZ

Depot 2 Wollishofen
VBZ

Depot 4 Kalkbreite
VBZ

Zentralwerksta�
VBZ

Depot 5 Hard
VBZ

Zollikon

Zumikon

Küsnacht

Egg

Maur

Forch

S18

S18

S18

S18

S18

Mo.-So. 6-24S18

Mo.-So. 5-24S18

Mo.-Fr.
7-8, 15-18S18

Schnellzüge der Linie S18
halten nicht zwischen
Rehalp und Forch.
Express trains of line S18
won't stop between
Rehalp and Forch.

1

23

UBS Polybahn
Standseilbahn | funicular railway

key
tramtrack, track gauge 1000 mm
electrified with overhead wiring (600 VDC)

railwaytrack, track gauge 1000 mm

railwaytrack, track gauge 1435 mm

rack railway, track gauge 1000 mm
electrified with overhead wiring (600 VDC)

funicular railway, track gauge 1000 mm

non-electrified track

abandoned track, in place (selection)

abandoned track, removed (selection)

track without passenger service

track under construction

reserved track / private right of way

track on the street (shared with other traffic)

track on the street (reserved, co-use by bus)

reserved track, co-use by bus

track in pedestrian area

track with railway-style right of way

track in tunnel

high-level-platform

low-level-platform

boarding at ground-level or kerbside

boarding on the street

platform partly low-level

access to platform not disability-friendly

platform without scheduled passenger traffic

platform under construction

alighting only / boarding only

change of ownership

system change

no stop of definite line

connections to local / national trains

depot / yard with building

terminus with operation times

intermediate terminus

route number daytime / at certain times only

muncipal boundary

4

Straßenbahngleis, Spurweite 1000 mm
elektrifiziert mit Oberleitung (600 VDC)

Eisenbahngleis, Spurweite 1000 mm

Eisenbahngleis, Spurweite 1435 mm

Gleis der Zahnradbahn, Spurweite 1000 mm
elektrifiziert mit Oberleitung (600 VDC)

Gleis der Standseilbahn, Spurweite 1000 mm

nicht elektrifiziertes Gleis

stillgelegtes Gleis, vorhanden (in Auswahl)

stillgelegtes Gleis, abgebaut (in Auswahl)

Gleis ohne Linienverkehr

Gleis in Bau

Gleis auf eigener Trasse

Gleis auf der Straße

Gleis auf eigener Spur, teilw. Busmitbenutzung

Gleis auf eigener Trasse, Mitbenutzung durch Bus

Gleis in der Fußgängerzone

Gleis vollständig vom Individualverkehr getrennt

Gleis im Tunnel

Hochflurbahnsteig

Niederflurbahnsteig

Zustieg ebenerdig oder über Bordsteinkante

Zustieg auf der Straße

Bahnsteig teilweise niederflurig

Bahnsteig oder Zugang nicht barrierefrei

Bahnsteig ohne Linienverkehr

Bahnsteig in Bau

nur Ausstieg / nur Einsteig

Eigentumsgrenze

Systemwechsel

kein Halt einzelner Linien

Umsteigemöglichkeit zu Regional- / Fernverkehr

Betriebsgelände mit Gebäude

Endhaltestelle mit Betriebszeiten

Zwischenendhaltestelle

Linienverlauf / nur zeitweise

Stadtgrenze

Zeichenerklärung

*

* bei Einsatz von Niederflurfahrzeugen:
Alle Fahrten der Linien 6, 7, 10, 12, jede zweite Fahrt der Linien 2, 3, 4, 9, 11, 13, 14, S18
* by service with low-floor-trams only:
All rides of lines: 6, 7, 10, 12, every other ride of lines: 2, 3, 4, 9, 11, 13, 14, S18

1

[4]

<5E•6

1 Mo.-Fr.
Sa. 8-24

*

*

Aargauerstr.

Hohlstr.

Limmattalbahn

BDWM

Reitmen

Lim
m

at
ta

lba
hn

VBZ

Farbhof

Micafil

Schlieren

Mülligen

Gasometer-
brücke

Wagonsfabrik

Zürcherstrasse

Schlieren
Zentrum / Bahnhof

Bachstr.

Geissweid

Kesslerplatz

Badenerstr.

Färberhüslitunnel
(260 m)

Spital
Limmattal

Luberzen

Urdorf

In der Luberzen

Herweg

A3/A4

Birmensdorfer-
strasse

Zürcherstr.

Schäflibach

Bahnhof Dietikon

Die�kon

P
os

ts
tr.

Tr
am

st
r.

Bremgarten-Dietikon-Bahn nach Wohlen.
Im Zuge der Bauarbeiten wird die
Strecke zweigleisig ausgebaut.
Bremgarten-Dietikon-railway to Wohlen.
As part of the construction the line
becomes double tracked.

Zentralstrasse

B
re

m
ga

rtn
er

st
r.

R
ep

pi
sc

h

Badenerstr.

Oetwilerstrasse

Maienweg

Niderfeld

Spreitenbach

Industriestr.

1

3

5

7

9
8

6

4

2

Depot

1
2
3-9

Unterhalt
Waschanlage
Abstellanlage
14 Bahnen

maintenance
tram wash
sindings
14 trams

Kreuzäcker

Grabäcker

SCS / Tivoli

Spreitenbach
West

Furttalstrasse
 Zürcherstr.

Bahnhof
Killwangen-Spreitenbach

600 VDC

1200 VDC

Limma�albahn
Eröffnung 2022
Inaugura�on 2022

Killwangen

8

Endhaltestelle bis Juli 2019

terminal un�l July 2019

Farbhof

Mo.-So. 5-12

2

2

Mo.-Sa. HVZ10

Affoltern

Tram Affoltern
Neubaustrecke geplant.
Proposed new line.

Depot Hardt
Umbau bis Ende 2025.
Reconstruction until end 2025.

Bitte beachten:

Dieser Plan wurde privat erstellt und ist kein offizielles Dokument der Streckeneigentümer oder -betreiber. Der
Plan dient lediglich der Information. Eine Verwendung zu Planungs- oder Betriebszwecken ist nicht zulässig.

Please note:

This map was made by private and is no official document of the railway-owner or -operator. The map is just for
information. Any use for engineering or railway operation is not allowed.

Impressum / legal notice
Autor / author: Christian Stade
Letzte Änderung / last change: 04/2021
Fahrplandaten / timetable data: 11/2019

Diese Zeichnung unterliegt dem Urheberrecht. Eine Weiternutzung ist unter Beachtung der Creative-
Commons-Lizenz by-nc-sa möglich. Die Lizenz kann unter www.creativecommons.org eingesehen werden.

Quelle / source: www.Gleisplanweb.de

This drawing is protected by copyright. A further use of it is possible by application of the Creative-
Commons-license by-nc-sa. The license is available at www.creativecommons.org.

(b) Actual map of the Zürich tram networka

ahttps://www.gleisplanweb.eu/Maps/Zueri
ch.pdf

If e1 = (u1, v1) and e2 = (u2, v2), we define it as dGe1,e2 = min{dGu1,u2
, dGu2,u1

}. It makes sense because
we use the first vertex u of an edge to determine the time step at which a train reaches it. Since G
is chosen to be connected, at least one of those two distances dGu1,u2

and dGu2,u1
will be finite. And

since we use mean edge durations as weights, the resulting interaction distance will be expressed in
minutes. One could say it measures the distance traveled by the congestion signal during a period
of ∆, except that the distance is expressed in minutes (using the average train speed) instead of
kilometers.

Our initial intuition for this propagation model is that the network congestion should propagate
locally, from one edge to its neighbors, as time flows. And there is one clue on Figure 10.4 that
supports this intuition: the fact that interaction distance decreases as the penalization becomes
stronger. For small values of λ, the average interaction distance stabilizes around a high value, which
is close to the unweighted average of the distances between all pairs of edges (e1, e2) (circa 12.5 min).
In other words, no signal is captured. But as λ rises, we see that the average interaction distance
decreases, which suggests that local effects start to prevail. This behavior would not be observed if
the transition matrix θ were completely independent of the graph structure G.

In addition, when we pick a sufficiently small interval ∆, the average interaction distance seems
to stabilize at the end of the curve, whereas it quickly drops to zero for larger intervals. This suggests
that picking ∆ close to the typical duration of an edge (1.5 min in our data set) may be a good idea.

Of course, there are still things we do not understand, such as the increasing behavior of the
curve for ∆ = 5 min, or the sudden jump at the end of the one for ∆ = 7 min. We assume these
must be due to outliers in the data that only appear at a specific sampling frequency. We are also
unsure how to compare these curves with one another quantitatively, since each of them captures
interactions at a different timescale. If the “true model” was the one with ∆ = 1, then each of these
curves would roughly correspond to an estimation of θ∆.

210

https://www.gleisplanweb.eu/Maps/Zuerich.pdf
https://www.gleisplanweb.eu/Maps/Zuerich.pdf

10 2

10 1

100

101

102

M
ea

n
sp

ar
sit

y
le

ve
l s

 o
f t

he
 ro

ws
 o

f

t = 1 min
t = 2 min
t = 3 min
t = 5 min
t = 7 min
t = 10 min
t = 15 min

10 2 10 1 100

Regularization parameter 0

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e

in
te

ra
ct

io
n

di
st

an
ce

 [m
in

]

mean inter-edge dist
t = 1 min
t = 2 min
t = 3 min
t = 5 min
t = 7 min
t = 10 min
t = 15 min

Figure 10.4: Effect of regularization and time discretization interval on some features of the
estimate θ̂

211

At any rate, we should keep in mind that our procedure is still just a linear Gaussian model,
with very little fine-tuning for this specific use case. The fact that we recover a real-world intuition
from railway experts is very encouraging, and suggests that we may be on the right path. However,
building a more sophisticated predictor that takes into account more network and timetable features
would undoubtedly lead to a better understanding of the delay propagation phenomenon.

212

11
Track allocation for the Flatland challenge

Parts of the plan were unplanned. That’s
the plan. I mean, you don’t want to
overplan a plan.

Count Olaf
A Series of Unfortunate Events – S2E6

The Vile Village, Part II (2018)

Contents
11.1 Introduction . 214

11.1.1 A challenge for traffic management . 214

11.2 Related work . 216

11.3 Flatland as a MAPF problem . 216

11.3.1 Graph building . 216

11.3.2 Objective . 218

11.4 Learning to solve MAPF . 218

11.4.1 Feature generation . 218

11.4.2 Pipeline based on parallel decomposition . 220

11.4.3 Learning by experience or imitation . 220

11.4.4 Extension to the stochastic setting . 220

In this last chapter, we introduce the Flatland challenge and our approach to solving it. Many of
the topics that we previously discussed will make an appearance here, as we design an algorithm
that draws from both ML and CO.

Parts of this chapter were presented in two talks, one at ROADEF 2022 (D. and Parmentier
2022) and one at Journées SMAI-MODE 2022 (D. 2022).

213

Figure 11.1: Example map generated by the Flatland simulator

11.1 Introduction

In large transportation networks, real-time traffic management is essential to minimize disruptions
and maximize punctuality. This is especially true for railway systems, where delays can easily
propagate from one train to the next due to very strict infrastructure constraints (see Chapter 10).

11.1.1 A challenge for traffic management

To foster research on this topic, AICrowd launched the Flatland challenge1 (Mohanty et al. 2020),
an international competition centered around a simple railway simulator. This challenge is now
organized yearly with the support of Schweizerische BundesBahnen, Deutsche Bahn and SNCF –
its third iteration was just completed. The goal of Flatland is to route multiple trains through a
railway network as fast as possible, which requires coordination to prevent unnecessary slowdowns
or even deadlocks. The need for real-time rescheduling is justified by stochastic perturbations, which
mimic mechanical breakdowns and force other trains to adapt their trajectory.

11.1.1.1 Environment

The Flatland environment is described in detail by its creators (Mohanty et al. 2020). It consists
in a two-dimensional grid world of dimension I × J , where each square cell c is located by its
Cartesian coordinates (i, j). A cell can either be empty, or it can contain one of several possible
rail configurations: straight line, right or left turn, switches. These configurations define the
legal transitions from each cell to its neighbors, which also depend on the direction d ∈ D =
{North,East,South,West} of the train. Figure 11.1 displays an example with 8 railway stations.

1https://www.aicrowd.com/challenges/flatland-3

214

https://www.aicrowd.com/challenges/flatland-3

Let C be the set of nonempty cells. We denote by D−
c the directions available for a train arriving

at cell c ∈ C, and by D+
c the directions available for a train leaving cell c ∈ C. We denote by Nc,d the

set of couples (c′, d′) that are reachable from (c, d) with a legal transition, that is, the outneighbors
of (c, d) – note that this relation is not symmetric. Finally, we also define a smaller subset S ⊂ C of
railway station cells.

11.1.1.2 Agents

The environment is populated with a set of A agents which evolve in discrete time during episodes
of fixed duration T . At every step t ∈ [T], we have complete information about the current state of
the environment, and all the agents in it. Each agent a ∈ [A] corresponds to a train, and its trip is
defined by the following features:

• its departure cell cdepa (the railway station where the train enters the network);

• its departure direction ddepa (the direction with which it appears);

• its arrival cell carra (the railway station where the train exits the network, no matter the
direction);

• its earliest departure tmin
a (the train cannot enter the network before that time);

• its latest arrival tmax
a (the train should not exist the network after that time, otherwise it will

be considered late).

When entering a new cell, an agent must choose one of five available actions: do nothing, move left,
move forward, move right, or stop moving. The chosen action defines whether the agent stays in
place or moves to a neighboring cell.

Agents with a speed sa = 1 are able to execute their action directly. On the other hand, agents
with a speed sa < 1 must spend ⌈1/sa⌉ time steps in the cell before being able to execute the chosen
action, if it is still feasible by then. In what follows, we assume that sa = 1 for all agents.

Malfunctions occur following a discrete-time Poisson process with rate λ. Every failure stops an
agent for a random duration τ ∼ U(τmin, τmax) ; this duration is known as soon as the failure occurs
(it can be thought of as the time needed for repairs). In what follows, we neglect failures and focus
on the deterministic version of the problem.

11.1.1.3 Costs

In a given episode, the objective is to minimize a sum of costs associated with each agent. If the
agent reaches its destination on time, the cost is 0 for this agent. On the other hand, if the agent
reaches its destination too late, the cost corresponds to the observed delay. If the agent doesn’t reach
its destination before the end of the horizon T , we replace the observed delay with the predicted
delay (assuming the agent keeps going along its shortest path to the destination, and neglecting
interactions). Finally, if the agent never even departs, the previous cost is multiplied by a high
penalty. This is meant to discourage train cancellation: otherwise, the easiest way to remove delays
would be to cancel all the trains.

215

11.1.1.4 Evaluation setting

The Flatland challenge is designed to imitate actual railway decision-making, where a lot of time
can be allotted to offline planning, whereas online adjustments should happen very quickly. This
is reflected in the evaluation method. Every code submission is run for 2 hours on the AICrowd
servers, during which the proposed algorithm should complete as many episodes as possible. In each
episode, we are granted several minutes of CPU time before the simulation starts, and then a few
seconds per time step to indicate the next actions for every agent. An episode ends as soon as one of
three conditions is satisfied: (a) all agents have arrived at their destination, (b) the horizon T is
reached or (c) one of the agents fails to choose an action in time.

Although our code was not (yet) submitted for evaluation, this protocol helped define our number
one criterion for a solution algorithm: the speed of execution.

11.2 Related work

Real-time rescheduling is a common theme in railway research: see Cacchiani et al. (2014) for
an overview. However, the Flatland environment provides a very simple approximation of train
dynamics, which means the more sophisticated methods from the railway literature may be quite
inadequate. The underlying problem is in fact closer to generic Multi-Agent Path Finding, which
we surveyed in Chapter 5. Thus, it is not surprising that algorithms designed by MAPF specialists
have consistently topped the leaderboard so far (Laurent et al. 2021). In particular, the 2021 and
2022 gold medals were claimed by the team of Li, Z. Chen, Zheng, et al. (2021), competing under
the nickname An_Old_Driver. Their winning algorithm relies on Sequential MAPF with Large
Neighborhood Search. It also involves careful tuning to make the best possible use of the available
computation time.

As highlighted by Laurent et al. (2021), RL-based approaches show promise, but they struggle
to handle coordination between agents and avoid deadlocks. This is why mixing ML with traditional
CO seems like a promising solution: we investigate it now.

11.3 Flatland as a MAPF problem

We now show that the Flatland challenge is a special case of the MAPF framework described in
Chapter 5.

11.3.1 Graph building

Let us start by defining the network graph G = (V, E) on which agents live.

11.3.1.1 Vertices

To construct its vertex set, we combine real vertices and dummy vertices associated with departures
or arrivals:

V = Vreal ∪ Vdep ∪ Varr

Real vertices v = (c, d) correspond to the combination of a cell c ∈ C and an incoming direction d ∈
D−

c :
Vreal = {(c, d) : c ∈ C, d ∈ D−

c }.

216

Departure vertices have the same format, but they are only defined for railway cells:

Vdep = {(c, d)dep : c ∈ S, d ∈ D−
c }.

Finally, arrival vertices are like departure vertices but without a specific direction:

Varr = {(c, ∅)arr : c ∈ S}.

Unsurprisingly, we choose the departure and arrival vertices for agent a as follows:

vdepa = (cdepa , ddepa)dep ∈ Vdep and varra = (carra , ∅)arr ∈ Varr

The reason we single out departure and arrival vertices is because we do not know for sure when
each agent a will depart or arrive. We only know that departure (resp. arrival) happens at a certain
time tdepa ≥ tmin

a (resp. tarra ≤ tmax
a). Remember that trains are not yet on the network when they

are waiting for departure. Furthermore, they disappear from the network immediately after arrival.
During the two intervals Jtmin

a , tdepa − 1K and Jtarra + 1, tmax
a K, we thus need to store agent a in a place

where conflicts do not matter.
This justifies the following definitions for incompatibility sets. If a real vertex v = (c, d) ∈ Vreal

is occupied, then no other vertex from the same cell can be:

Iv = {v′ = (c′, d′) ∈ Vreal : c′ = c}

Meanwhile, dummy departure and arrival vertices v ∈ Vdep ∪ Varr are oblivious to conflicts: we
set Iv = ∅ in both cases.

11.3.1.2 Edges

We now construct edges similarly:

E = Ereal ∪ Edep ∪ Earr

Real edges link real vertices to each other or to themselves (since staying in place is always an
option):

Ereal = {(c1, d1)→ (c2, d2) : c1 ∈ C, d1 ∈ D−
c1 , (c2, d2) ∈ Nc1,d1 or (c2, d2) = (c1, d1)}

Note that when an agent goes from (c1, d1) to (c2, d2), it can change directions on the cell c1 by
switching from its incoming direction d1 ∈ D−

c1 to an outgoing direction d+1 ∈ D+
c1 . For the transition

to be allowed, d+1 must be equal to the incoming direction d2 ∈ D−
c2 on the next cell.

Meanwhile, dummy edges link departure and arrival vertices to themselves and to their real
counterparts:

Edep = {(c, d)dep → (c, d)dep : c ∈ S, d ∈ N−
d } ∪ {(c, d)dep → (c, d) : c ∈ S, d ∈ N−

d }
Earr = {(c, ∅)arr → (c, ∅)arr : c ∈ S, d ∈ N−

d } ∪ {(c, d)→ (c, ∅)arr : c ∈ S, d ∈ N−
d }

We now turn to edge incompatibility sets. When an agent crosses edge e, other agents cannot
cross it at the same time, but that is already enforced by vertex incompatibilities. What we
really need to forbid is other agents crossing the reverse edge (the so-called swapping conflict).
If e = (c1, d1)→ (c2, d2), then rev(e) = (c2, rev(d2))→ (c1, rev(d1)), and we define Ie = {rev(e)}.

217

However, we may want to avoid working with edge incompatibilities, since they require additional
bookkeeping. In this case, we can express the same constraint using clever vertex incompatibilities.
Given a cell c ∈ C and a direction d ∈ D, we write c+ d for the neighbor of c reached after one step
along d. The key observation is that a vertex v ∈ G in the Flatland graph is associated to a mirror
vertex mirror(v) = (c+ rev(d), rev(d)), which is located “back-to-back” from it. Swapping conflicts
are prevented by simply adding mirror(v) to the incompatibility set Iv.

11.3.2 Objective

As for the objective function, the one from the Flatland challenge is quite complex and involves
several cases. To simplify it, we suppose that the horizon T is long enough to let all agents reach
their destination. We also put simple weights on the arcs to distinguish those that actually count
towards journey duration:

∀e ∈ E ,
{
w(e) = 1 if e ∈ Ereal
w(e) = 0 if e ∈ Edeparture ∪ Earrival

This leads us to minimizing the following function:

A∑
a=1

[w(Pa)− (tmax
a − tmin

a)]+

where (·)+ denotes the positive part and w(Pa) =
∑

e∈Pa
w(e) is the total weight of temporal path Pa.

Although this function can be easily linearized, to improve readability we will replace it with the
flowtime

∑A
a=1w(Pa).

11.4 Learning to solve MAPF

We move on to the construction of a hybrid ML-CO pipeline for MAPF, following the blueprint laid
out in Chapter 7.

11.4.1 Feature generation

For instance embedding, we draw inspiration from Parmentier (2021a), who suggests a generic and
scalable approach. His method relies on identifying relevant “substructures” in our problem, for
which we define a set of handcrafted features. These features are then combined using the same
weights for each substructure of a given type. Pooling weights like this significantly increases the
amount of data per learnable parameter. Of course, using Graph Neural Networks (GNNs) (Chami
et al. 2022) for the embedding would also make a lot of sense. However, the coupling of network
weights between all substructures would require much more data for training, which may make this
approach less practical on small datasets.

In the MAPF case, the most relevant substructures are graph edges and agents. We therefore
describe features for each of these types. As stated by several authors (Bengio, Lodi, and Prouvost
2021; Parmentier 2021a), features that stem from the solution of simple optimization problems can
be of great interest. In particular, we use independent shortest paths (which are easy to compute)
as a basis to construct many relevant indicators.

218

11.4.1.1 Agent-related features

We propose a first set of features that can be computed for agent a directly:

• Earliest departure and latest arrival of a

• Number of agents departing shortly before or after a

We also propose a second set of features that are based on a set of independent shortest paths:

• Length of the path of a

• Average time step of this path

• Number of waiting steps on this path

• Number of nontrivial switch cells on this path

• Number of conflicts encountered by a

• Number of other agents b crossing its path before/after a

• Total time spent by other agents b on its path before/after a

11.4.1.2 Edge-related features

We propose a first set of features that can be computed for edge e = (u, v) directly:

• Degree of e

• Switch type of the cell containing e

• Existence of the reverse edge

• Existence of parallel edges

We also propose a second set of features that are based on a set of independent shortest paths:

• Number of conflicts encountered on e, u and v

• Number of agents involved in the worst conflict

• Number of agents a whose path includes e, u or v

• Average time step of all crossings of e, u and v

219

11.4.2 Pipeline based on parallel decomposition

Now that we have an instance embedding, let us turn to the construction of the learning pipeline.
Again, we take advice from Parmentier (2021b) as we seek to approximate a hard problem with an
easier one. As we saw in Chapter 5, there are two main families of algorithms for MAPF: parallel
decomposition and sequential approximation. Alas, the sequential approach cannot be formulated as
a standard ILP, and Chapter 8 has shown that lexicographic ILPs are not as easy to differentiate
through. That is why we focus on the parallel approach, with the following pipeline:

MAPF−−−−−−→
instance x

�� ��Encoder Edge−−−−−→
weights θ

Independent
shortest paths

Conflicting−−−−−−→
paths P

�

�
	Feasibility

search
Feasible−−−−−→
solution

(11.1)

In Equation (11.1), we use the encoder to compute our handcrafted features and combine them into
modified edge weights θ. These edge weights are then fed to Dijkstra’s algorithm, which computes
shortest paths for each agent in parallel. Our hope is that finding paths with these new weights will
discourage agents from colliding on network bottlenecks. Still, we are likely to encounter conflicts,
which is why we need to include a repair procedure. A good candidate is the feasibility search from
Chapter 5.

11.4.3 Learning by experience or imitation

As discussed in Chapter 7, there are two ways to learn the encoder parameters: by experience or
by imitation. Learning by experience is simpler, because it only requires an evaluator for the cost
function (in this case the flowtime).

Learning by imitation is slightly more involved, because we need to precompute good quality
solutions to use as targets. A good way to do this would be the double search algorithm from
Chapter 5. But since this precomputation happens offline, our CPU budget is virtually unlimited,
which means exact algorithms can also be used. Once we have our target paths P , they can be
compared with the paths P created by our pipeline (before the repair step, which is non-differentiable).
The applicable loss in this scenario would be the Fenchel-Young loss.

Another approach would be to precompute optimal edge weights θ∗ and use them as targets
for θ. To achieve this, we turn to standard solution methods for multicommodity flows (Ahuja,
Magnanti, and Orlin 1993). One of them is Lagragian relaxation, which basically replaces the
no-conflict constraint with a penalization for each edge e in the objective function. The optimal
multipliers θ∗e are then learned using subgradient ascent, and they provide a reasonable target for the
edge weights θe we want to learn. Indeed, strong duality for LPs tells us that solving independent
single-commodity flows with these penalizations yields the same objective value as solving the initial
multicommodity flow. Training can then proceed with the SPO+ loss, instead of the Fenchel-Young
loss. This idea of learning dual variables was recently leveraged by Dinitz et al. (2021) to speed up
graph matching algorithms.

11.4.4 Extension to the stochastic setting

The method described above is still being tested, and preliminary results suggest we will probably
need to enrich our set of features. Once we reach satisfying performance, we plan to focus on the
stochastic setting, in which train failures are no longer discarded from the simulation.

220

Parmentier (2021b) tackles a very similar problem in air transport, for which he suggests replacing
the deterministic embedding with quantiles of features computed across random simulations. If we
have further information on the individual trains and their vulnerability to failures (see Chapter 9),
we can also take advantage of that. When put together, these two ideas might suffice to generate
resilient schedules, and thus contribute to delay reduction despite unpredictable incidents.

221

222

12
Conclusion

Hurray. Good job, guys. Let’s just not
come in tomorrow. Let’s just take a day.
Have you ever tried shawarma?

Tony Stark
Avengers (2012)

Contents
12.1 Summary . 223

12.2 Perspectives . 224

12.1 Summary

The initial motivation for this thesis was to tackle railway planning with data-driven methods.
Failure prediction, delay propagation and track allocation are all challenging problems that every
railway company must solve efficiently and repeatedly. We thus set out to design new models and
algorithms for these tasks, inspired by the latest research in machine learning and combinatorial
optimization. However, we soon realized that some key ingredients were missing, both theoretical
and numerical.

On the theoretical side, we investigated latent variable processes with randomized observation
mechanisms. This made it possible to control the estimation error in our delay propagation
framework, based on a few meaningful parameters. We also unified and improved the state of the art
for differentiable combinatorial optimization layers. Such layers can be used for structured learning
in many scenarios, and we described an application to the Flatland challenge. Finally, our study of
lexicographic convex optimization yielded novel insights on an important variant of multiobjective
optimization.

On the numerical side, we released 5 Julia packages: ImplicitDifferentiation.jl,
InferOpt.jl, PointProcesses.jl, ControlledHiddenMarkovModels.jl and Multi-
AgentPathFinding.jl (plus a number of smaller utilities that we did not describe here, such

223

as GridGraphs.jl, MAPFBenchmarks.jl and Flatland.jl). Our libraries allow for an easy
translation of mathematical ideas into code, and they provide efficient implementations for several
important algorithms. We strongly believe that making academic software open source is an essential
aspect of ethical and reproducible science.

12.2 Perspectives

For the near future, my research perspectives include writing high performance Julia libraries, as
well as investigating further mathematical questions that were raised by the present work. The Julia
ecosystem is evolving rapidly, and I intend to contribute to several key areas:

• Stochastic modeling. After discussing my work on HMMs, the creator of the reference package
HMMBase.jl thought I would be the best person to take over its development and maintenance.
I plan to extend the breadth of this package, and investigate possible interactions with
probabilistic programming frameworks like Turing.jl1 (Ge, Xu, and Ghahramani 2018) or
MeasureTheory.jl2 (Scherrer and Schauer 2022).

• Combinatorial optimization. The JuliaGraphs organization recruited me to its core development
team about a year ago, and there is a lot of work to be done on our flagship package Graphs.jl3

(Fairbanks et al. 2021). On the performance side, it is already a serious competitor to Python’s
networkx4 (Hagberg, Schult, and Swart 2008), which is why improving it further5 would
bring substantial benefits to the academic community.

• Automatic differentiation. The work we initiated on InferOpt.jl and ImplicitDiffer-
entiation.jl continues, with exciting new applications on the horizon. My invited research
stay at the MIT JuliaLab (fall 2022) will also give me the opportunity to set up collaborations
on innovative AD approaches.

On the other hand, the theoretical chapters of this thesis still leave some questions unanswered.
Regarding latent variable processes, switching to continuous time would make a lot of sense to
model railway congestion and other related phenomena. Gaussian processes (C. E. Rasmussen and
Williams 2006) seem like an adequate tool, but it is unclear whether they exhibit the same error
bounds as their discrete counterparts. Even more uncertain is what happens when the observation
mask is entangled with the latent process itself, as is the case for delay propagation. This could give
rise to exciting research avenues in high-dimensional statistics.

Regarding combinatorial optimization layers, our probabilistic point of view gives rise to ap-
proximations which are not easy to quantify. Can we control the behavior of the relaxed discrete
solvers, even when they do not reach an optimal solution? Does our approach generalize well to
nonlinear optimization problems, which Blondel, Llinares-López, et al. (2022) have recently started
to investigate? How should we tackle other sources of non-differentiability in deep learning? These
optimization-related questions will surely fuel several collaborations in the years to come, starting
with my MIT colleagues.

1https://github.com/TuringLang/Turing.jl
2https://github.com/cscherrer/MeasureTheory.jl
3https://github.com/JuliaGraphs/Graphs.jl
4https://github.com/networkx/networkx
5https://github.com/JuliaGraphs/Graphs.jl/issues/128

224

https://github.com/TuringLang/Turing.jl
https://github.com/cscherrer/MeasureTheory.jl
https://github.com/JuliaGraphs/Graphs.jl
https://github.com/networkx/networkx
https://github.com/JuliaGraphs/Graphs.jl/issues/128

Finally, my upcoming postdoctoral position at EPFL will focus on epidemic diffusion processes in
random graphs. Our goal is to uncover phase transitions using methods from statistical physics and
network science. For instance, the feasibility / tractability of source identification probably depends
on the connectivity of the graph and the spreading mechanism. Once again, this topic straddles the
frontier between machine learning and combinatorial optimization, which is right where I want to be.

225

226

Appendices

227

A
Useful lemmas

Sometimes, to solve a case, one must first
solve another.

Sherlock Holmes
Sherlock – S4E0

The Abominable Bride (2016)

A.1 Linear algebra

The following set of results will sometimes be used in matrix calculations without explicit justifications.

Lemma A.1.1 (Weyl’s inequality). Let A and B be two n× n symmetric matrices. Then for all i
we have:

λi(A) + λn(B) ≤ λi(A+B) ≤ λi(A) + λ1(B).

In particular,
λmin(A) + λmin(B) ≤ λmin(A+B).

Proof. See Horn and C. R. Johnson (2012, Theorem 4.3.1).

Lemma A.1.2 (Ostrowski). Let S and A be two n× n matrices with S symmetric. For all i, there
is a real number ri ∈ [ςmin(A)

2, ςmax(A)
2] such that λi(ASA′) = riλi(S), where ςmin (resp. ςmax)

denotes the minimum (resp. maximum) singular value.

Proof. See Horn and C. R. Johnson (2012, Theorem 4.5.9 and Corollary 4.5.11)

Lemma A.1.3 (Singular values of the Kronecker product). Let A and B be two matrices. Then

∥A⊗B∥2 ≤ ∥A∥2∥B∥2.

Proof. See Horn and C. R. Johnson (1991, Theorem 4.2.15).

Lemma A.1.4. For any two matrices A and B, we have:

∥AB∥F ≤ min {∥A∥2∥B∥F , ∥A∥F ∥B∥2}

229

Proof. The Loewner order on symmetric matrices satisfies the following properties:

∀(P,Q) ∈ Sn(R),∀R, P ⪯ Q =⇒ R′PR ⪯ R′QR

∀(P,Q) ∈ Sn(R), P ⪯ Q =⇒ Tr(P) ≤ Tr(Q).

The first inequality is true because if x is a vector, x′R′(Q− P)Rx = (Rx)′(Q− P)(Rx) ≥ 0 due to
the Loewner positivity of Q− P . The second inequality can be directly deduced from the relation
between the spectra of P and Q. Therefore, since A′A is symmetric,

B′A′AB ≤ λmax(A
′A)B′B

which implies
∥AB∥2F = Tr(B′A′AB) ≤ λmax(AA

′) Tr(B′B) = ∥A∥22∥B∥2F .
The proof for the other inequality is identical.

Lemma A.1.5. Let A and B be two matrices with compatible sizes: then

∥AB∥max ≤ min{∥A∥∞∥B∥max, ∥A∥max∥B∥1}.

Proof.

∥AB∥max = max
i,j
|(AB)i,j | = max

i,j

∣∣∣∣∣∑
k

Ai,kBk,j

∣∣∣∣∣
We easily deduce:

∥AB∥max ≤ max
i

∣∣∣∣∣∑
k

Ai,k

∣∣∣∣∣× ∥B∥max = ∥A∥∞∥B∥max

∥AB∥max ≤ ∥A∥max ×max
j

∣∣∣∣∣∑
k

Bk,j

∣∣∣∣∣ = ∥A∥max∥B∥1

A.2 Statistics

Lemma A.2.1 (Fano’s method). Let θ0, ..., θM be M + 1 parameters that are 2τ -separated w.r.t. a
distance d

∀i ̸= j, d(θi, θj) ≥ 2τ

and such that the average KL divergence between Pθi and Pθ0 is small enough

1

M + 1

M∑
i=1

KL {Pθi ∥ Pθ0} ≤ α logM with 0 < α < 1 (A.1)

Then the minimax probability of an error at threshold τ satisfies:

inf
θ̂

sup
θ∈Θs

Pθ

[
d
(
θ̂, θ
)
≥ τ

]
≥ log(M + 1)− log 2

logM
− α.

230

Proof. See Tsybakov (2009, Section 2.2 + Corollary 2.6). In particular, since M 7→ log(M+1)−log 2
logM

is increasing, setting α = log(3)−log(2)
2 log(2) ≥ 1/2 is enough to obtain a minimax risk greater than α, as

soon as M ≥ 3.

Lemma A.2.2 (Chain rule for KL divergence). If P0 and P1 are probability densities on a product
space X × Y with X discrete, then:

KL {P0[X,Y] ∥ P1[X,Y]} = KL {P0[X] ∥ P1[X]}+ EX [KL {P0[Y |X] ∥ P1[Y |X]}] .
Proof. See Cover and Thomas (2006, Theorem 2.5.3).

Lemma A.2.3 (KL divergence between Gaussians). The KL divergence between two multivariate
Gaussian distributions P0 = N (µ0,Σ0) and P1 = N (µ1,Σ1) of dimension n is

KL {P0 ∥ P1} =
1

2

(
Tr(Σ0Σ

−1
1) + (µ1 − µ0)′Σ−1

1 (µ1 − µ0)− n+ logdet(Σ1Σ
−1
0)
)
.

Proof. See Duchi (2007, page 13).

Lemma A.2.4 (KL divergence between close Gaussians). Let ∆ be a symmetric matrix of size n
such that λmin(∆) > −1, and let M be a rectangular matrix such that MM ′ ≻ 0. Then the KL
divergence between

P1 = N (µ,M(I +∆)M ′) and P0 = N (µ,MM ′)

satisfies

KL {P1 ∥ P0} ≤
∥∆∥2F

2(1 + λmin(∆))
.

Proof. From Lemma A.2.3 (beware of the switch between P0 and P1) we get:

KL {P1 ∥ P0} =
1

2

(
Tr(Σ1Σ

−1
0) + (µ0 − µ1)′Σ−1

0 (µ0 − µ1)− n+ logdet(Σ0Σ
−1
1)
)

=
1

2

(
Tr(M(I +∆)M−1)− n− logdet(M(I +∆)M−1)

)
=

1

2
(Tr(∆)− logdet(I +∆)) .

As it happens, for small deviations from the identity, the log-determinant is almost equal to the
trace. Indeed, since

∀x > −1, log(1 + x) ≥ x

1 + x
,

we have

Tr(∆)− logdet(I +∆) =
n∑

k=1

λk(∆)−
n∑

k=1

log(1 + λk(∆))

≤
n∑

k=1

λk(∆)−
n∑

k=1

λk(∆)

1 + λk(∆)

=
n∑

k=1

λk(∆)2

1 + λk(∆)
≤ 1

mink(1 + λk(∆))

n∑
k=1

λk(∆)2

=
∥∆∥2F

1 + λmin(∆)
.

231

Lemma A.2.5 (Chernoff inequality for Bernoulli variables). Let (Xt) be sequence of independent B(p)
variables. Their average satisfies

∀u ∈ [0, 1], P

(∣∣∣∣∣ 1T
T∑
t=1

Xt − p
∣∣∣∣∣ ≥ up

)
≤ c1 exp

(
−c2u2Tp

)
.

Proof. See Dubhashi and Panconesi (2009, Theorem 1.1).

Lemma A.2.6 (Doeblin condition and mixing time). Let (Xt) be an irreducible aperiodic Markov
chain with state space X , transition matrix P and stationary distribution µ. Suppose that (Xt)
satisfies the Doeblin condition:

∃r ∈ N, ∃δ > 0,∀(x, y) ∈ X 2, P r(x, y) ≥ δµ(y).

Then the mixing time of Xt, defined as

tmix(ϵ) = min

{
t ∈ N : max

x∈X

∥∥P t(x, ·)− µ
∥∥
TV
≤ ϵ
}
,

satisfies:

tmix(ϵ) ≥ r
(
1 +

log 1
ϵ

log 1
1−δ

)
.

Proof. The proof of Levin et al. (2017, Theorem 5.4) shows that with our assumptions,

∀x ∈ X ,
∥∥P t(x, ·)− µ

∥∥
TV
≤ (1− δ)⌊t/r⌋.

From which we can deduce a sufficient condition for ϵ-mixing:

(1− δ)⌊t/r⌋ ≤ ϵ ⇐⇒
⌊
t

r

⌋
≥ log(ϵ)

log(1− δ) ⇐= t

r
− 1 ≥ log 1

ϵ

log 1
1−δ

.

The result follows easily.

Lemma A.2.7 (Chernoff inequality for Markov chains). Let (Xt) be an ergodic stationary Markov
chain with finite state space X . We consider a function f : X → R such that E[f(Xt)] = µ. Then

∀u ∈ [0, 1], P

(∣∣∣∣∣ 1T
T∑
t=1

Xt − µ
∣∣∣∣∣ ≥ uµ

)
≤ c1 exp

(
−c2

u2Tµ

tmix(1/8)

)
Proof. See Chung et al. (2012, Theorem 3)

Lemma A.2.8 (Chernoff inequality for Markov chains under Doeblin condition). Under the hy-
potheses of the previous two Lemmas (A.2.6 and A.2.7), if the parameters r and δ in the Doeblin
condition are constants, then we have:

∀u ∈ [0, 1], P

(∣∣∣∣∣ 1T
T∑
t=1

Xt − µ
∣∣∣∣∣ ≥ uµ

)
≤ c1 exp

(
−c2u2Tµ

)
232

Proof. By Lemma A.2.6, since r and δ are constants, the 1
8 -mixing time of (Xt) can be bounded by

a constant

tmix(1/8) ≤ r
(
1 +

log(8)

log 1
1−δ

)
≤ c3,

which we merge with the c2 inside the exponential of Lemma A.2.7.

Lemma A.2.9 (Gilbert-Varshamov). Let H = {0, 1}d be the d-dimensional binary hypercube.
If d ≥ 8, there exists a pruned subset K ⊂ H such that

∀(x, y) ∈ K, ∥x− y∥1 ≥
d

8
and |K| ≥ 2d/8.

Proof. See Tsybakov (2009, Lemma 2.9)

Lemma A.2.10 (Hanson-Wright inequality: Gaussian case). Let A be a square matrix. If X and Y
are two independent standard Gaussian vectors, we have:

P
(
|X ′AX − E[X ′AX]| ≥ u

)
≤ 2 exp

(
−cmin

{
u2

∥A∥2F
,

u

∥A∥2

})
P
(
|X ′AY − E[X ′AY]| ≥ u

)
≤ 2 exp

(
−cmin

{
u2

∥A∥2F
,

u

∥A∥2

})
.

Proof. See Vershynin (2018, Theorem 6.2.1) for the first inequality. We will see that it implies the
second one. Let us define

Ã =

[
0 A
0 0

]
and X̃ =

[
X
Y

]
.

We note that ∥Ã∥F= ∥A∥F and ∥Ã∥2= ∥A∥2. Applying the first inequality to X̃ ′ÃX̃ = X ′AY yields
the expected result.

A.3 Differentiation

Lemma A.3.1 (Danskin-Bertsekas). Let φ : Rn×Rm −→ (−∞,+∞] be a function, and let Y ⊂ Rm

be a compact set such that φ(·, y) is closed proper convex for every y ∈ Y. We consider the partial
maximization

f : x ∈ Rn 7−→ max
y∈Y

φ(x, y)

If X = int(dom(f)) ̸= ∅ and φ is continuous on X × Y, then for every x ∈ X , we have

∂f(x) = conv{∂φ(x, ȳ) : ȳ ∈ argmin
y∈Y

φ(x, y)}

Proof. See Danskin (1967) and Bertsekas (1971, Proposition A.22).

233

234

B
Bibliography

Because that’s what Hermione does.
When in doubt, go to the library.

Ron Weasley
Harry Potter and the

Chamber of Secrets (2002)

Agrawal, A., B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z. Kolter (2019). “Differentiable
Convex Optimization Layers”. In: Advances in Neural Information Processing Systems. Vol. 32.
Curran Associates, Inc. (cit. on p. 133).

Agrawal, A., R. Verschueren, S. Diamond, and S. Boyd (2018). “A Rewriting System for Convex
Optimization Problems”. In: Journal of Control and Decision 5.1, pp. 42–60. doi: 10/ggkj28
(cit. on p. 207).

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin (1993). Network Flows: Theory, Algorithms, and
Applications. Anglais. Englewood Cliffs, N.J: Pearson. 864 pp. isbn: 978-0-13-617549-0 (cit. on
p. 220).

Amos, B. and J. Z. Kolter (2017). “OptNet: Differentiable Optimization as a Layer in Neural Networks”.
en. In: Proceedings of the 34th International Conference on Machine Learning. International
Conference on Machine Learning. PMLR, pp. 136–145 (cit. on pp. 133, 134).

Arthaud, F., G. Lecoeur, and A. Pierre (2021). Transformers à Grande Vitesse. url: http:
//arxiv.org/abs/2105.08526. preprint (cit. on p. 202).

Barbour, W., J. C. Martinez Mori, S. Kuppa, and D. B. Work (2018). “Prediction of Arrival Times
of Freight Traffic on US Railroads Using Support Vector Regression”. In: Transportation Research
Part C: Emerging Technologies 93, pp. 211–227. issn: 0968-090X. doi: 10.1016/j.trc.2018.
05.019 (cit. on p. 202).

Barto, A. G. and S. Mahadevan (2003). “Recent Advances in Hierarchical Reinforcement Learning”.
en. In: Discrete Event Dynamic Systems 13.1, pp. 41–77. issn: 1573-7594. doi: 10.1023/A:
1022140919877 (cit. on p. 135).

Bast, H., D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders, D. Wagner, and R. F.
Werneck (2016). “Route Planning in Transportation Networks”. en. In: Algorithm Engineering:

235

https://doi.org/10/ggkj28
http://arxiv.org/abs/2105.08526
http://arxiv.org/abs/2105.08526
https://doi.org/10.1016/j.trc.2018.05.019
https://doi.org/10.1016/j.trc.2018.05.019
https://doi.org/10.1023/A:1022140919877
https://doi.org/10.1023/A:1022140919877

Selected Results and Surveys. Ed. by L. Kliemann and P. Sanders. Lecture Notes in Computer
Science. Cham: Springer International Publishing, pp. 19–80. isbn: 978-3-319-49487-6. doi:
10.1007/978-3-319-49487-6_2 (cit. on p. 75).

Basu, S. and G. Michailidis (2015). “Regularized Estimation in Sparse High-Dimensional Time
Series Models”. In: The Annals of Statistics 43.4. issn: 0090-5364. doi: 10.1214/15-AOS1315
(cit. on p. 88).

Baum, L. E., T. Petrie, G. Soules, and N. Weiss (1970). “A Maximization Technique Occurring in the
Statistical Analysis of Probabilistic Functions of Markov Chains”. In: The Annals of Mathematical
Statistics 41.1, pp. 164–171. issn: 0003-4851, 2168-8990. doi: 10.1214/aoms/1177697196
(cit. on pp. 58, 59).

Baydin, A. G., B. A. Pearlmutter, A. A. Radul, and J. M. Siskind (2018). “Automatic Differentiation
in Machine Learning: A Survey”. In: Journal of Machine Learning Research 18.153, pp. 1–43.
issn: 1533-7928 (cit. on pp. 45, 46, 133).

Ben-Tal, A. (1980). “Characterization of Pareto and Lexicographic Optimal Solutions”. en. In:
Multiple Criteria Decision Making Theory and Application. Ed. by G. Fandel and T. Gal. Lecture
Notes in Economics and Mathematical Systems. Berlin, Heidelberg: Springer, pp. 1–11. isbn:
978-3-642-48782-8. doi: 10.1007/978-3-642-48782-8_1 (cit. on p. 162).

Ben-Tal, A. and S. Zlobec (1977). “Convex Programming and the Lexicographic Multicriteria
Problem”. In: Mathematische Operationsforschung und Statistik. Series Optimization 8.1, pp. 61–
73. issn: 0323-3898. doi: 10.1080/02331937708842406 (cit. on p. 162).

Bengio, Y. and P. Frasconi (1994). “An Input Output HMM Architecture”. In: Advances in Neural
Information Processing Systems. Vol. 7. MIT Press (cit. on pp. 57, 59).

Bengio, Y., A. Lodi, and A. Prouvost (2021). “Machine Learning for Combinatorial Optimization:
A Methodological Tour d’horizon”. en. In: European Journal of Operational Research 290.2,
pp. 405–421. issn: 03772217. doi: 10.1016/j.ejor.2020.07.063 (cit. on pp. 128, 131,
218).

Berthet, Q., M. Blondel, O. Teboul, M. Cuturi, J.-P. Vert, and F. Bach (2020). “Learning with
Differentiable Perturbed Optimizers”. In: Advances in Neural Information Processing Systems.
Vol. 33. Curran Associates, Inc., pp. 9508–9519 (cit. on pp. 129, 134, 135, 138–142, 145, 151,
154).

Bertsekas, D. P. (1971). “Control of Uncertain Systems with a Set-Membership Description of the
Uncertainty.” eng. PhD thesis. Massachusetts Institute of Technology (cit. on p. 233).

Besançon, M., A. Carderera, and S. Pokutta (2022). “FrankWolfe.jl: A High-Performance and Flexible
Toolbox for Frank–Wolfe Algorithms and Conditional Gradients”. en. In: INFORMS Journal
on Computing, ijoc.2022.1191. issn: 1091-9856, 1526-5528. doi: 10.1287/ijoc.2022.1191
(cit. on p. 146).

Besançon, M., T. Papamarkou, D. Anthoff, A. Arslan, S. Byrne, D. Lin, and J. Pearson (2021).
“Distributions.jl: Definition and Modeling of Probability Distributions in the JuliaStats Ecosys-
tem”. en. In: Journal of Statistical Software 98, pp. 1–30. issn: 1548-7660. doi: 10.18637/jss.
v098.i16 (cit. on p. 62).

Bezanson, J., A. Edelman, S. Karpinski, and V. B. Shah (2017). “Julia: A Fresh Approach to
Numerical Computing”. en. In: SIAM Review 59.1, pp. 65–98. issn: 0036-1445, 1095-7200. doi:
10.1137/141000671 (cit. on pp. 24, 33, 42, 95, 132).

236

https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.1214/15-AOS1315
https://doi.org/10.1214/aoms/1177697196
https://doi.org/10.1007/978-3-642-48782-8_1
https://doi.org/10.1080/02331937708842406
https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1287/ijoc.2022.1191
https://doi.org/10.18637/jss.v098.i16
https://doi.org/10.18637/jss.v098.i16
https://doi.org/10.1137/141000671

Blondel, M., Q. Berthet, M. Cuturi, R. Frostig, S. Hoyer, F. Llinares-López, F. Pedregosa, and
J.-P. Vert (2022). “Efficient and Modular Implicit Differentiation”. en. In: Advances in Neural
Information Processing Systems (cit. on pp. 48, 49, 133, 145, 147).

Blondel, M., F. Llinares-López, R. Dadashi, L. Hussenot, and M. Geist (2022). “Learning Energy
Networks with Generalized Fenchel-Young Losses”. en. In: Advances in Neural Information
Processing Systems (cit. on p. 224).

Blondel, M., A. F. T. Martins, and V. Niculae (2020). “Learning with Fenchel-Young Losses”. In:
Journal of Machine Learning Research 21.35, pp. 1–69. issn: 1533-7928 (cit. on pp. 132, 134,
138, 146, 151, 152, 154, 183).

Blondel, M., O. Teboul, Q. Berthet, and J. Djolonga (2020). “Fast Differentiable Sorting and Ranking”.
en. In: Proceedings of the 37th International Conference on Machine Learning. International
Conference on Machine Learning. PMLR, pp. 950–959 (cit. on p. 134).

Bonnans, J.-F., J. C. Gilbert, C. Lemarechal, and C. A. Sagastizábal (2006). Numerical Optimization:
Theoretical and Practical Aspects. en. Springer Science & Business Media. 492 pp. isbn: 978-3-
540-35447-5 (cit. on p. 179).

Bonnel, H., A. N. Iusem, and B. F. Svaiter (2005). “Proximal Methods in Vector Optimiza-
tion”. In: SIAM Journal on Optimization 15.4, pp. 953–970. issn: 1052-6234. doi: 10.1137/
S1052623403429093 (cit. on p. 162).

Borndörfer, R., T. Klug, L. Lamorgese, C. Mannino, M. Reuther, and T. Schlechte, eds. (2018).
Handbook of Optimization in the Railway Industry. en. International Series in Operations Research
& Management Science. Springer International Publishing. isbn: 978-3-319-72152-1. doi: 10.
1007/978-3-319-72153-8 (cit. on pp. 17, 27).

Borwein, J. and A. S. Lewis (2010). Convex Analysis and Nonlinear Optimization: Theory and
Examples. en. Springer Science & Business Media. 316 pp. isbn: 978-0-387-31256-9 (cit. on
p. 178).

Bot, R. I., S.-M. Grad, and G. Wanka (2009). Duality in Vector Optimization. en. Springer Science
& Business Media. 408 pp. isbn: 978-3-642-02886-1 (cit. on pp. 160, 162, 163, 165).

Boyarski, E., A. Felner, P. L. Bodic, D. D. Harabor, P. J. Stuckey, and S. Koenig (2021). “Further
Improved Heuristics For Conflict-Based Search”. en. In: Proceedings of the International Sympo-
sium on Combinatorial Search 12.1 (1), pp. 213–215. issn: 2832-9163. doi: 10.1609/socs.
v12i1.18587 (cit. on p. 74).

Boyarski, E., A. Felner, R. Stern, G. Sharon, D. Tolpin, O. Betzalel, and E. Shimony (2015). “ICBS:
Improved Conflict-Based Search Algorithm for Multi-Agent Pathfinding”. en. In: Twenty-Fourth
International Joint Conference on Artificial Intelligence. isbn: 978-1-57735-738-4 (cit. on p. 74).

Boyd, S. and L. Vandenberghe (2004). Convex Optimization. en. Cambridge University Press. 744 pp.
isbn: 978-0-521-83378-3 (cit. on p. 161).

Bubeck, S. (2015). “Convex Optimization: Algorithms and Complexity”. English. In: Foundations and
Trends in Machine Learning 8.3-4, pp. 231–357. issn: 1935-8237, 1935-8245. doi: 10/gc7rf3
(cit. on p. 173).

Büker, T. and B. Seybold (2012). “Stochastic Modelling of Delay Propagation in Large Networks”.
In: Journal of Rail Transport Planning & Management 2.1, pp. 34–50. issn: 2210-9706. doi:
10.1016/j.jrtpm.2012.10.001 (cit. on p. 202).

Buonaccorsi, J. P. (2010). Measurement Error: Models, Methods, and Applications. New York:
Chapman and Hall/CRC. 464 pp. isbn: 978-0-429-15035-7. doi: 10.1201/9781420066586
(cit. on p. 88).

237

https://doi.org/10.1137/S1052623403429093
https://doi.org/10.1137/S1052623403429093
https://doi.org/10.1007/978-3-319-72153-8
https://doi.org/10.1007/978-3-319-72153-8
https://doi.org/10.1609/socs.v12i1.18587
https://doi.org/10.1609/socs.v12i1.18587
https://doi.org/10/gc7rf3
https://doi.org/10.1016/j.jrtpm.2012.10.001
https://doi.org/10.1201/9781420066586

Burdett, R. and E. Kozan (2014). “Determining Operations Affected by Delay in Predictive Train
Timetables”. In: Computers & Operations Research 41, pp. 150–166. issn: 0305-0548. doi:
10.1016/j.cor.2013.08.011 (cit. on p. 201).

Cacchiani, V., D. Huisman, M. Kidd, L. Kroon, P. Toth, L. Veelenturf, and J. Wagenaar (2014).
“An Overview of Recovery Models and Algorithms for Real-Time Railway Rescheduling”. In:
Transportation Research Part B: Methodological 63, pp. 15–37. issn: 0191-2615. doi: 10.1016/
j.trb.2014.01.009 (cit. on p. 216).

Candes, E. and T. Tao (2007). “The Dantzig Selector: Statistical Estimation When p Is Much Larger
than n”. In: The Annals of Statistics 35.6. issn: 0090-5364. doi: 10.1214/009053606000001523
(cit. on p. 89).

Cappé, O., E. Moulines, and T. Rydén (2005). Inference in Hidden Markov Models. en. Springer Series
in Statistics. New York, NY: Springer New York. isbn: 978-0-387-40264-2 978-0-387-28982-3.
doi: 10.1007/0-387-28982-8 (cit. on pp. 57, 88).

Chami, I., S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy (2022). “Machine Learning on Graphs:
A Model and Comprehensive Taxonomy”. In: Journal of Machine Learning Research 23.89,
pp. 1–64. issn: 1533-7928 (cit. on p. 218).

Chandesris, M. and X. Chapuis (2018). “Non-Parametric Approach for Real Time Prediction”. en.
In: Conference on Advanced Systems in Public Transport and TransitData, p. 14 (cit. on p. 203).

Chen, M., R. A. Chowdhury, V. Ramachandran, D. L. Roche, and L. Tong (2007). Priority Queues
and Dijkstra’s Algorithm. en. UTCS Technical Report TR-07-54. University of Texas Austin,
p. 25 (cit. on p. 77).

Chung, K.-M., H. Lam, Z. Liu, and M. Mitzenmacher (2012). “Chernoff-Hoeffding Bounds for Markov
Chains: Generalized and Simplified”. In: 29th International Symposium on Theoretical Aspects of
Computer Science (STACS 2012). Ed. by C. Dürr and T. Wilke. Vol. 14. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, pp. 124–135. isbn: 978-3-939897-35-4. doi: 10.4230/LIPIcs.STACS.2012.124
(cit. on p. 232).

Corman, F. and P. Kecman (2018). “Stochastic Prediction of Train Delays in Real-Time Using
Bayesian Networks”. In: Transportation Research Part C: Emerging Technologies 95, pp. 599–615.
issn: 0968-090X. doi: 10.1016/j.trc.2018.08.003 (cit. on p. 202).

Cover, T. M. and J. A. Thomas (2006). Elements of Information Theory. 2nd ed. Hoboken, N.J:
Wiley-Interscience. 748 pp. isbn: 978-0-471-24195-9 (cit. on p. 231).

Cox, D. R. (1972). “Regression Models and Life-Tables”. en. In: Journal of the Royal Statistical
Society: Series B (Methodological) 34.2, pp. 187–202. issn: 2517-6161. doi: 10.1111/j.2517-
6161.1972.tb00899.x (cit. on p. 193).

D., G. (2022). “Recherche d’itinéraires dans un réseau ferroviaire : apprendre à mieux optimiser”.
French. Journées SMAI MODE 2022 (Limoges) (cit. on p. 213).

D., G., L. Baty, L. Bouvier, and A. Parmentier (2022). Learning with Combinatorial Optimization
Layers: A Probabilistic Approach. doi: 10.48550/arXiv.2207.13513. url: http://
arxiv.org/abs/2207.13513. preprint (cit. on p. 128).

D., G., L. Bouvier, and L. Baty (2022). “InferOpt.jl: Combinatorial Optimization in ML Pipelines”.
en. Conference talk. JuliaCon 2022 (cit. on p. 128).

D., G. and Y. de Castro (2022). Minimax Estimation of Partially-Observed Vector AutoRegressions.
doi: 10.48550/arXiv.2106.09327. url: http://arxiv.org/abs/2106.09327.
preprint (cit. on pp. 86, 199).

238

https://doi.org/10.1016/j.cor.2013.08.011
https://doi.org/10.1016/j.trb.2014.01.009
https://doi.org/10.1016/j.trb.2014.01.009
https://doi.org/10.1214/009053606000001523
https://doi.org/10.1007/0-387-28982-8
https://doi.org/10.4230/LIPIcs.STACS.2012.124
https://doi.org/10.1016/j.trc.2018.08.003
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.48550/arXiv.2207.13513
http://arxiv.org/abs/2207.13513
http://arxiv.org/abs/2207.13513
https://doi.org/10.48550/arXiv.2106.09327
http://arxiv.org/abs/2106.09327

D., G. and A. Parmentier (2022). “Learning to Solve Stochastic Multi-Agent Path Finding”. English.
23ème Congrès Annuel de La Société Française de Recherche Opérationnelle et d’Aide à La
Décision (Villeurbanne - Lyon, France) (cit. on p. 213).

D., G. and M. Tarek (2022). “ImplicitDifferentiation.jl: Differentiating Implicit Functions”. en.
Conference talk. JuliaCon 2022 (cit. on p. 42).

Da Cruz Neto, J. X., G. J. P. Da Silva, O. P. Ferreira, and J. O. Lopes (2013). “A Subgradient
Method for Multiobjective Optimization”. en. In: Computational Optimization and Applications
54.3, pp. 461–472. issn: 1573-2894. doi: 10.1007/s10589-012-9494-7 (cit. on p. 162).

Daley, D. J. and D. Vere-Jones (2003). An Introduction to the Theory of Point Processes: Volume I:
Elementary Theory and Methods. en. 2nd ed. Probability and Its Applications, An Introduction
to the Theory of Point Processes. New York: Springer-Verlag. isbn: 978-0-387-95541-4. doi:
10.1007/b97277 (cit. on p. 54).

Danskin, J. M. (1967). The Theory of Max-Min and Its Application to Weapons Allocation Problems.
Red. by M. Beckmann, R. Henn, A. Jaeger, W. Krelle, H. P. Künzi, K. Wenke, and Ph. Wolfe.
Vol. 5. Ökonometrie Und Unternehmensforschung / Econometrics and Operations Research.
Berlin, Heidelberg: Springer Berlin Heidelberg. isbn: 978-3-642-46094-4 978-3-642-46092-0. doi:
10.1007/978-3-642-46092-0 (cit. on p. 233).

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). “Maximum Likelihood from Incomplete Data
Via the EM Algorithm”. en. In: Journal of the Royal Statistical Society: Series B (Methodological)
39.1, pp. 1–22. issn: 2517-6161. doi: 10.1111/j.2517-6161.1977.tb01600.x (cit. on
p. 59).

Diamond, S. and S. Boyd (2016). “CVXPY: A Python-Embedded Modeling Language for Convex
Optimization”. In: Journal of Machine Learning Research 17.83, pp. 1–5. issn: 1533-7928 (cit. on
p. 207).

Dib, A. (2021). “High Dimensional Pattern Learning Applied to Symbolic Time-Series”. PhD thesis.
Université Paris-Saclay (cit. on p. 194).

Dinitz, M., S. Im, T. Lavastida, B. Moseley, and S. Vassilvitskii (2021). “Faster Matchings via Learned
Duals”. In: Advances in Neural Information Processing Systems. Vol. 34. Curran Associates, Inc.,
pp. 10393–10406 (cit. on p. 220).

Domahidi, A., E. Chu, and S. Boyd (2013). “ECOS: An SOCP Solver for Embedded Systems”. In: 2013
European Control Conference (ECC), pp. 3071–3076. doi: 10.23919/ECC.2013.6669541
(cit. on p. 207).

Douc, R., E. Moulines, and D. Stoffer (2013). Nonlinear Time Series: Theory, Methods and Applica-
tions with R Examples. New York: Chapman and Hall/CRC. 551 pp. isbn: 978-0-429-11263-8.
doi: 10.1201/b16331 (cit. on p. 93).

Doucet, A., S. Godsill, and C. Andrieu (2000). “On Sequential Monte Carlo Sampling Methods for
Bayesian Filtering”. en. In: Statistics and Computing 10.3, pp. 197–208. issn: 1573-1375. doi:
10.1023/A:1008935410038 (cit. on p. 88).

Drummond, L. M. G. and B. F. Svaiter (2005). “A Steepest Descent Method for Vector Optimization”.
en. In: Journal of Computational and Applied Mathematics 175.2, pp. 395–414. issn: 0377-0427.
doi: 10.1016/j.cam.2004.06.018 (cit. on p. 162).

Drummond, L. G. and A. Iusem (2004). “A Projected Gradient Method for Vector Optimization
Problems”. en. In: Computational Optimization and Applications 28.1, pp. 5–29. issn: 1573-2894.
doi: 10.1023/B:COAP.0000018877.86161.8b (cit. on p. 162).

239

https://doi.org/10.1007/s10589-012-9494-7
https://doi.org/10.1007/b97277
https://doi.org/10.1007/978-3-642-46092-0
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.23919/ECC.2013.6669541
https://doi.org/10.1201/b16331
https://doi.org/10.1023/A:1008935410038
https://doi.org/10.1016/j.cam.2004.06.018
https://doi.org/10.1023/B:COAP.0000018877.86161.8b

Dubhashi, D. P. and A. Panconesi (2009). Concentration of Measure for the Analysis of Randomized
Algorithms. Cambridge: Cambridge University Press. isbn: 978-0-521-88427-3. doi: 10.1017/
CBO9780511581274 (cit. on p. 232).

Duchi, J. (2007). “Derivations for Linear Algebra and Optimization” (cit. on p. 231).
— (2019). “Information Theory and Statistics”. Course notes for Statistics 311/Electrical Engineering

377. Stanford University (cit. on p. 116).
Dunning, I., J. Huchette, and M. Lubin (2017). “JuMP: A Modeling Language for Mathematical

Optimization”. In: SIAM Review 59.2, pp. 295–320. issn: 0036-1445. doi: 10/gftshn (cit. on
p. 95).

Ehrgott, M. (2005). Multicriteria Optimization. en. Springer Science & Business Media. 329 pp. isbn:
978-3-540-21398-7 (cit. on pp. 160, 162).

Eichfelder, G. (2021). “Twenty Years of Continuous Multiobjective Optimization in the Twenty-First
Century”. en. In: EURO Journal on Computational Optimization 9, p. 100014. issn: 2192-4406.
doi: 10.1016/j.ejco.2021.100014 (cit. on p. 161).

Eisner, J. (2016). “Inside-Outside and Forward-Backward Algorithms Are Just Backprop (Tuto-
rial Paper)”. In: Proceedings of the Workshop on Structured Prediction for NLP. Austin, TX:
Association for Computational Linguistics, pp. 1–17. doi: 10.18653/v1/W16-5901 (cit. on
p. 59).

Elmachtoub, A. N. and P. Grigas (2022). “Smart “Predict, Then Optimize””. en. In: Management
Science 68.1, pp. 9–26. issn: 0025-1909, 1526-5501. doi: 10.1287/mnsc.2020.3922 (cit. on
pp. 131, 134, 151, 153).

Fairbanks, J., M. Besançon, S. Simon, J. Hoffiman, N. Eubank, and S. Karpinski (2021). JuliaGraph-
s/Graphs.jl: An Optimized Graphs Package for the Julia Programming Language (cit. on pp. 76,
136, 224).

Felner, A., R. Stern, S. Shimony, E. Boyarski, M. Goldenberg, G. Sharon, N. Sturtevant, G. Wagner,
and P. Surynek (2017). “Search-Based Optimal Solvers for the Multi-Agent Pathfinding Problem:
Summary and Challenges”. en. In: Proceedings of the International Symposium on Combinatorial
Search 8.1 (1), pp. 29–37. issn: 2832-9163. doi: 10.1609/socs.v8i1.18423 (cit. on p. 73).

Ferber, A., B. Wilder, B. Dilkina, and M. Tambe (2020). “MIPaaL: Mixed Integer Program as a
Layer”. In: Proceedings of the AAAI Conference on Artificial Intelligence 34.02, pp. 1504–1511.
issn: 2374-3468, 2159-5399. doi: 10.1609/aaai.v34i02.5509 (cit. on p. 134).

Fliege, J., L. M. G. Drummond, and B. F. Svaiter (2009). “Newton’s Method for Multiobjective
Optimization”. In: SIAM Journal on Optimization 20.2, pp. 602–626. issn: 1052-6234. doi:
10.1137/08071692X (cit. on p. 162).

Fliege, J. and B. F. Svaiter (2000). “Steepest Descent Methods for Multicriteria Optimization”.
en. In: Mathematical Methods of Operations Research 51.3, pp. 479–494. issn: 1432-5217. doi:
10.1007/s001860000043 (cit. on p. 162).

Flier, H., R. Gelashvili, T. Graffagnino, and M. Nunkesser (2009). “Mining Railway Delay Dependen-
cies in Large-Scale Real-World Delay Data”. en. In: Robust and Online Large-Scale Optimization:
Models and Techniques for Transportation Systems. Ed. by R. K. Ahuja, R. H. Möhring, and C. D.
Zaroliagis. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 354–368. isbn: 978-3-642-05465-5. doi: 10.1007/978-3-642-05465-5_15 (cit. on
p. 202).

240

https://doi.org/10.1017/CBO9780511581274
https://doi.org/10.1017/CBO9780511581274
https://doi.org/10/gftshn
https://doi.org/10.1016/j.ejco.2021.100014
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.1287/mnsc.2020.3922
https://doi.org/10.1609/socs.v8i1.18423
https://doi.org/10.1609/aaai.v34i02.5509
https://doi.org/10.1137/08071692X
https://doi.org/10.1007/s001860000043
https://doi.org/10.1007/978-3-642-05465-5_15

Frank, M. and P. Wolfe (1956). “An Algorithm for Quadratic Programming”. en. In: Naval Research Lo-
gistics Quarterly 3.1-2, pp. 95–110. issn: 00281441, 19319193. doi: 10.1002/nav.3800030109
(cit. on p. 145).

Ge, H., K. Xu, and Z. Ghahramani (2018). “Turing: A Language for Flexible Probabilistic Inference”.
en. In: Proceedings of the Twenty-First International Conference on Artificial Intelligence and
Statistics. International Conference on Artificial Intelligence and Statistics. PMLR, pp. 1682–1690
(cit. on p. 224).

Gebken, B. and S. Peitz (2021). “An Efficient Descent Method for Locally Lipschitz Multiobjective
Optimization Problems”. en. In: Journal of Optimization Theory and Applications 188.3, pp. 696–
723. issn: 1573-2878. doi: 10.1007/s10957-020-01803-w (cit. on p. 162).

Geoffrion, A. M. (1968). “Proper Efficiency and the Theory of Vector Maximization”. en. In:
Journal of Mathematical Analysis and Applications 22.3, pp. 618–630. issn: 0022-247X. doi:
10.1016/0022-247X(68)90201-1 (cit. on p. 161).

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. eng. Cambridge, Massachusetts:
The MIT Press. isbn: 978-0-262-33737-3 (cit. on pp. 22, 32, 133).

Goverde, R. M. P. (2007). “Railway Timetable Stability Analysis Using Max-plus System Theory”.
In: Transportation Research Part B: Methodological. Advanced Modelling of Train Operations in
Stations and Networks 41.2, pp. 179–201. issn: 0191-2615. doi: 10.1016/j.trb.2006.02.
003 (cit. on p. 201).

Griewank, A. and A. Walther (2008). Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. 2nd ed. Philadelphia, PA: Society for Industrial and Applied Mathematics. 438 pp.
isbn: 978-0-89871-659-7 (cit. on pp. 45, 46, 133).

Hagberg, A. A., D. A. Schult, and P. J. Swart (2008). “Exploring Network Structure, Dynamics,
and Function Using NetworkX”. In: Proceedings of the 7th Python in Science Conference. Ed. by
G. Varoquaux, T. Vaught, and J. Millman. Pasadena, CA USA, pp. 11–15 (cit. on pp. 207, 224).

Han, F., H. Lu, and H. Liu (2015). “A Direct Estimation of High Dimensional Stationary Vector
Autoregressions”. In: Journal of Machine Learning Research 16.97, pp. 3115–3150. issn: 1533-7928
(cit. on pp. 89, 90, 98, 112, 113).

Hart, P. E., N. J. Nilsson, and B. Raphael (1968). “A Formal Basis for the Heuristic Determination of
Minimum Cost Paths”. In: IEEE Transactions on Systems Science and Cybernetics 4.2, pp. 100–
107. issn: 2168-2887. doi: 10/c9zgc4 (cit. on p. 75).

He, K., X. Zhang, S. Ren, and J. Sun (2016). “Deep Residual Learning for Image Recognition”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
(cit. on p. 136).

Horn, R. A. and C. R. Johnson (1991). Topics in Matrix Analysis. Cambridge: Cambridge University
Press. isbn: 978-0-521-46713-1. doi: 10.1017/CBO9780511840371 (cit. on p. 229).

— (2012). Matrix Analysis. 2nd ed. Cambridge: Cambridge University Press. isbn: 978-0-521-83940-2
978-1-139-02041-1 978-0-521-54823-6. doi: 10.1017/CBO9781139020411 (cit. on p. 229).

Huangfu, Q. and J. A. J. Hall (2018). “Parallelizing the Dual Revised Simplex Method”. en. In:
Mathematical Programming Computation 10.1, pp. 119–142. issn: 1867-2957. doi: 10.1007/
s12532-017-0130-5 (cit. on p. 95).

Innes, M. (2019). Don’t Unroll Adjoint: Differentiating SSA-Form Programs. url: http://arxiv.
org/abs/1810.07951. preprint (cit. on pp. 47, 136).

241

https://doi.org/10.1002/nav.3800030109
https://doi.org/10.1007/s10957-020-01803-w
https://doi.org/10.1016/0022-247X(68)90201-1
https://doi.org/10.1016/j.trb.2006.02.003
https://doi.org/10.1016/j.trb.2006.02.003
https://doi.org/10/c9zgc4
https://doi.org/10.1017/CBO9780511840371
https://doi.org/10.1017/CBO9781139020411
https://doi.org/10.1007/s12532-017-0130-5
https://doi.org/10.1007/s12532-017-0130-5
http://arxiv.org/abs/1810.07951
http://arxiv.org/abs/1810.07951

Innes, M., E. Saba, K. Fischer, D. Gandhi, M. C. Rudilosso, N. M. Joy, T. Karmali, A. Pal, and V.
Shah (2018). Fashionable Modelling with Flux. url: http://arxiv.org/abs/1811.01457.
preprint (cit. on p. 136).

Innes, M. (2018). “Flux: Elegant Machine Learning with Julia”. In: Journal of Open Source Software
3.25, p. 602. issn: 2475-9066. doi: 10.21105/joss.00602 (cit. on pp. 48, 136).

Isermann, H. (1982). “Linear Lexicographic Optimization”. en. In: Operations-Research-Spektrum
4.4, pp. 223–228. issn: 1436-6304. doi: 10/fvqk7b (cit. on p. 162).

Jaggi, M. (2013). “Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization”. en. In:
Proceedings of the 30th International Conference on Machine Learning. International Conference
on Machine Learning. PMLR, pp. 427–435 (cit. on p. 145).

Jahn, J. (2010). Vector Optimization: Theory, Applications, and Extensions. en. Springer Science &
Business Media. 490 pp. isbn: 978-3-642-17005-8 (cit. on pp. 160, 162).

Jalali, A. and R. Willett (2018). Missing Data in Sparse Transition Matrix Estimation for Sub-
Gaussian Vector Autoregressive Processes. doi: 10.48550/arXiv.1802.09511. url: http:
//arxiv.org/abs/1802.09511. preprint (cit. on p. 88).

Jardine, A. K. S., D. Lin, and D. Banjevic (2006). “A Review on Machinery Diagnostics and
Prognostics Implementing Condition-Based Maintenance”. In: Mechanical Systems and Signal
Processing 20.7, pp. 1483–1510. issn: 0888-3270. doi: 10.1016/j.ymssp.2005.09.012
(cit. on p. 192).

Jones, D. R., C. D. Perttunen, and B. E. Stuckman (1993). “Lipschitzian Optimization without the
Lipschitz Constant”. en. In: Journal of Optimization Theory and Applications 79.1, pp. 157–181.
issn: 0022-3239, 1573-2878. doi: 10.1007/BF00941892 (cit. on p. 148).

Kalman, R. E. (1960). “A New Approach to Linear Filtering and Prediction Problems”. en. In:
Journal of Basic Engineering 82.1, pp. 35–45. issn: 0021-9223. doi: 10.1115/1.3662552
(cit. on pp. 88, 96).

Kecman, P. and R. M. P. Goverde (2015). “Online Data-Driven Adaptive Prediction of Train Event
Times”. In: IEEE Transactions on Intelligent Transportation Systems 16.1, pp. 465–474. issn:
1524-9050. doi: 10.1109/TITS.2014.2347136 (cit. on p. 201).

Kecman, P., F. Corman, and L. Meng (2015). “Train Delay Evolution as a Stochastic Process”. en.
In: 6th International Conference on Railway Operations Modelling and Analysis (RailTokyo2015).
IVT, ETH Zurich; Orange Labs. doi: 10.3929/ethz-b-000183322 (cit. on p. 202).

Kingma, D. P. and J. Ba (2015). “Adam: A Method for Stochastic Optimization”. In: 3rd International
Conference on Learning Representations. Ed. by Y. Bengio and Y. LeCun. San Diego, California,
United States (cit. on p. 155).

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983). “Optimization by Simulated Annealing”. In:
Science 220.4598, pp. 671–680. doi: 10.1126/science.220.4598.671 (cit. on p. 80).

Klein, J. P., H. C. van Houwelingen, J. G. Ibrahim, and T. H. Scheike (2013). Handbook of Survival
Analysis. CRC Press. isbn: 1-4665-5566-1 (cit. on p. 193).

Kochenderfer, M. J. and T. A. Wheeler (2019). Algorithms for Optimization. Anglais. Cambridge,
Massachusetts: The MIT Press. 520 pp. isbn: 978-0-262-03942-0 (cit. on p. 48).

Kock, A. B. and L. Callot (2015). “Oracle Inequalities for High Dimensional Vector Autoregressions”.
en. In: Journal of Econometrics. High Dimensional Problems in Econometrics 186.2, pp. 325–344.
issn: 0304-4076. doi: 10.1016/j.jeconom.2015.02.013 (cit. on p. 88).

Koller, D. and N. Friedman (2009). Probabilistic Graphical Models: Principles and Techniques. en.
MIT Press. 1268 pp. isbn: 978-0-262-01319-2 (cit. on p. 202).

242

http://arxiv.org/abs/1811.01457
https://doi.org/10.21105/joss.00602
https://doi.org/10/fvqk7b
https://doi.org/10.48550/arXiv.1802.09511
http://arxiv.org/abs/1802.09511
http://arxiv.org/abs/1802.09511
https://doi.org/10.1016/j.ymssp.2005.09.012
https://doi.org/10.1007/BF00941892
https://doi.org/10.1115/1.3662552
https://doi.org/10.1109/TITS.2014.2347136
https://doi.org/10.3929/ethz-b-000183322
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1016/j.jeconom.2015.02.013

Kolter, J. Z., D. Duvenaud, and M. Johnson (2020). Deep Implicit Layers - Neural ODEs, Deep
Equilibirum Models, and Beyond. en. url: http://implicit-layers-tutorial.org/
(cit. on pp. 49, 133).

Korte, B. and J. Vygen (2006). Combinatorial Optimization: Theory and Algorithms. eng. 3rd edition.
Algorithms and Combinatorics 21. Berlin: Springer. isbn: 978-3-540-29297-5 (cit. on pp. 17, 27,
130).

Kotary, J., F. Fioretto, P. V. Hentenryck, and B. Wilder (2021). “End-to-End Constrained Opti-
mization Learning: A Survey”. en. In: Twenty-Ninth International Joint Conference on Artificial
Intelligence. Vol. 5, pp. 4475–4482. doi: 10.24963/ijcai.2021/610 (cit. on p. 128).

Lair, W. (2011). “Modélisation Dynamique de Systèmes Complexes Pour Le Calcul de Grandeurs
Fiabilistes et l’optimisation de La Maintenance”. PhD thesis. Université de Pau et des Pays de
l’Adour (cit. on p. 194).

Laurent, F., M. Schneider, C. Scheller, J. Watson, J. Li, Z. Chen, Y. Zheng, S.-H. Chan, K. Makhnev,
O. Svidchenko, V. Egorov, D. Ivanov, A. Shpilman, E. Spirovska, O. Tanevski, A. Nikov, R.
Grunder, D. Galevski, J. Mitrovski, G. Sartoretti, Z. Luo, M. Damani, N. Bhattacharya, S.
Agarwal, A. Egli, E. Nygren, and S. Mohanty (2021). Flatland Competition 2020: MAPF and
MARL for Efficient Train Coordination on a Grid World. url: http://arxiv.org/abs/
2103.16511. preprint (cit. on p. 216).

Levin, D. A., Y. Peres, E. L. Wilmer, J. Propp, and D. B. Wilson (2017). Markov Chains and Mixing
Times. Second edition. Providence, Rhode Island: American Mathematical Society. 447 pp. isbn:
978-1-4704-2962-1 (cit. on p. 232).

Li, J., Z. Chen, D. Harabor, P. J. Stuckey, and S. Koenig (2021). “Anytime Multi-Agent Path
Finding via Large Neighborhood Search”. en. In: Twenty-Ninth International Joint Conference
on Artificial Intelligence. Vol. 4, pp. 4127–4135. doi: 10.24963/ijcai.2021/568 (cit. on
pp. 74, 78, 79).

— (2022). “MAPF-LNS2: Fast Repairing for Multi-Agent Path Finding via Large Neighborhood
Search”. en. In: Proceedings of the AAAI Conference on Artificial Intelligence 36.9 (9), pp. 10256–
10265. issn: 2374-3468. doi: 10.1609/aaai.v36i9.21266 (cit. on pp. 74, 79).

Li, J., Z. Chen, Y. Zheng, S.-H. Chan, D. Harabor, P. J. Stuckey, H. Ma, and S. Koenig (2021).
“Scalable Rail Planning and Replanning: Winning the 2020 Flatland Challenge”. en. In: Proceedings
of the International Conference on Automated Planning and Scheduling 31, pp. 477–485. issn:
2334-0843 (cit. on p. 216).

Lin, D., S. Byrne, J. M. White, D. Widmann, A. Noack, M. Besançon, D. Bates, J. Pearson, J. Zito,
A. Arslan, M. Schauer, K. Squire, D. Anthoff, T. Papamarkou, J. Drugowitsch, B. Deonovic,
A. Sengupta, G. Ragusa, G. Moynihan, B. J. Smith, M. O’Leary, Michael, M. Tarek, M. J. Innes,
C. Dann, G. Lacerda, I. Dunning, J. Weidner, and J. Chen (2023). JuliaStats/Distributions.Jl:
V0.25.86. Zenodo. doi: 10.5281/zenodo.7695673 (cit. on p. 62).

Little, R. J. A. and D. B. Rubin (2020). Statistical Analysis with Missing Data. 3rd ed. Wiley Series
in Probability and Statistics. Hoboken, NJ: Wiley. 1 p. isbn: 978-1-118-59601-2 978-0-470-52679-8
(cit. on p. 88).

Loh, P.-L. and M. J. Wainwright (2012). “High-Dimensional Regression with Noisy and Missing
Data: Provable Guarantees with Nonconvexity”. In: The Annals of Statistics 40.3, pp. 1637–1664.
issn: 0090-5364, 2168-8966. doi: 10/ggx5bj (cit. on p. 88).

243

http://implicit-layers-tutorial.org/
https://doi.org/10.24963/ijcai.2021/610
http://arxiv.org/abs/2103.16511
http://arxiv.org/abs/2103.16511
https://doi.org/10.24963/ijcai.2021/568
https://doi.org/10.1609/aaai.v36i9.21266
https://doi.org/10.5281/zenodo.7695673
https://doi.org/10/ggx5bj

Luc, D. T. (2016). Multiobjective Linear Programming. en. Cham: Springer International Publishing.
isbn: 978-3-319-21090-2 978-3-319-21091-9. doi: 10.1007/978-3-319-21091-9 (cit. on
p. 162).

Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. en. Berlin, Heidelberg:
Springer Berlin Heidelberg. isbn: 978-3-540-40172-8 978-3-540-27752-1. doi: 10.1007/978-3-
540-27752-1 (cit. on pp. 88, 95).

Ma, H., D. Harabor, P. J. Stuckey, J. Li, and S. Koenig (2019). “Searching with Consistent Prioriti-
zation for Multi-Agent Path Finding”. en. In: Proceedings of the AAAI Conference on Artificial
Intelligence 33.01 (01), pp. 7643–7650. issn: 2374-3468. doi: 10/ghkkbz (cit. on p. 78).

Malagò, L. and G. Pistone (2015). “Information Geometry of the Gaussian Distribution in View of
Stochastic Optimization”. en. In: Proceedings of the 2015 ACM Conference on Foundations of
Genetic Algorithms XIII. FOGA’15: Foundations of Genetic Algorithms XIII. Aberystwyth United
Kingdom: ACM, pp. 150–162. isbn: 978-1-4503-3434-1. doi: 10.1145/2725494.2725510
(cit. on p. 94).

Mandi, J., E. Demirović, P. J. Stuckey, and T. Guns (2020). “Smart Predict-and-Optimize for Hard
Combinatorial Optimization Problems”. In: Proceedings of the AAAI Conference on Artificial
Intelligence 34.02, pp. 1603–1610. issn: 2374-3468, 2159-5399. doi: 10.1609/aaai.v34i02.
5521 (cit. on p. 134).

Mandi, J. and T. Guns (2020). “Interior Point Solving for LP-based Prediction+optimisation”. In:
Advances in Neural Information Processing Systems. Vol. 33. Curran Associates, Inc., pp. 7272–
7282 (cit. on p. 134).

Mann, T. P. (2006). “Numerically Stable Hidden Markov Model Implementation” (cit. on p. 60).
Margossian, C. C. (2019). “A Review of Automatic Differentiation and Its Efficient Implementation”.

en. In: WIREs Data Mining and Knowledge Discovery 9.4, e1305. issn: 1942-4795. doi: 10.
1002/widm.1305 (cit. on pp. 45, 46).

Martinez-Legaz, J. E. (1988). “Lexicographical Order and Duality in Multiobjective Programming”.
en. In: European Journal of Operational Research 33.3, pp. 342–348. issn: 0377-2217. doi:
10.1016/0377-2217(88)90178-6 (cit. on p. 162).

Martins, A. F. T. and R. Astudillo (2016). “From Softmax to Sparsemax: A Sparse Model of Attention
and Multi-Label Classification”. en. In: Proceedings of The 33rd International Conference on
Machine Learning. International Conference on Machine Learning. PMLR, pp. 1614–1623 (cit. on
p. 145).

Meester, L. E. and S. Muns (2007). “Stochastic Delay Propagation in Railway Networks and Phase-
Type Distributions”. In: Transportation Research Part B: Methodological. Advanced Modelling of
Train Operations in Stations and Networks 41.2, pp. 218–230. issn: 0191-2615. doi: 10.1016/
j.trb.2006.02.007 (cit. on p. 202).

Melnyk, I. and A. Banerjee (2016). “Estimating Structured Vector Autoregressive Models”. en. In:
Proceedings of The 33rd International Conference on Machine Learning. International Conference
on Machine Learning. PMLR, pp. 830–839 (cit. on p. 88).

Miettinen, K. (1999). Nonlinear Multiobjective Optimization. en. Springer Science & Business Media.
324 pp. isbn: 978-0-7923-8278-2 (cit. on p. 160).

Mohanty, S., E. Nygren, F. Laurent, M. Schneider, C. Scheller, N. Bhattacharya, J. Watson, A. Egli,
C. Eichenberger, C. Baumberger, G. Vienken, I. Sturm, G. Sartoretti, and G. Spigler (2020).
Flatland-RL : Multi-Agent Reinforcement Learning on Trains. url: http://arxiv.org/abs/
2012.05893. preprint (cit. on pp. 18, 28, 214).

244

https://doi.org/10.1007/978-3-319-21091-9
https://doi.org/10.1007/978-3-540-27752-1
https://doi.org/10.1007/978-3-540-27752-1
https://doi.org/10/ghkkbz
https://doi.org/10.1145/2725494.2725510
https://doi.org/10.1609/aaai.v34i02.5521
https://doi.org/10.1609/aaai.v34i02.5521
https://doi.org/10.1002/widm.1305
https://doi.org/10.1002/widm.1305
https://doi.org/10.1016/0377-2217(88)90178-6
https://doi.org/10.1016/j.trb.2006.02.007
https://doi.org/10.1016/j.trb.2006.02.007
http://arxiv.org/abs/2012.05893
http://arxiv.org/abs/2012.05893

Monechi, B., P. Gravino, R. Di Clemente, and V. D. P. Servedio (2018). “Complex Delay Dynamics
on Railway Networks from Universal Laws to Realistic Modelling”. en. In: EPJ Data Science 7.1,
p. 35. issn: 2193-1127. doi: 10.1140/epjds/s13688-018-0160-x (cit. on p. 203).

Moses, W. and V. Churavy (2020). “Instead of Rewriting Foreign Code for Machine Learning,
Automatically Synthesize Fast Gradients”. In: Advances in Neural Information Processing Systems.
Vol. 33. Curran Associates, Inc., pp. 12472–12485 (cit. on p. 47).

Moses, W. S., V. Churavy, L. Paehler, J. Hückelheim, S. H. K. Narayanan, M. Schanen, and J.
Doerfert (2021). “Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels
via Enzyme”. In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. SC ’21. New York, NY, USA: Association for Computing
Machinery, pp. 1–16. isbn: 978-1-4503-8442-1. doi: 10.1145/3458817.3476165 (cit. on
p. 47).

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. Adaptive Computation and
Machine Learning Series. Cambridge, MA: MIT Press. 1067 pp. isbn: 978-0-262-01802-9 (cit. on
p. 27).

Niculae, V., A. F. T. Martins, M. Blondel, and C. Cardie (2018). “SparseMAP: Differentiable Sparse
Structured Inference”. en. In: Proceedings of the 35th International Conference on Machine
Learning. International Conference on Machine Learning. PMLR, pp. 3799–3808 (cit. on p. 146).

Ogata, Y. (1981). “On Lewis’ Simulation Method for Point Processes”. In: IEEE Transactions on
Information Theory 27.1, pp. 23–31. issn: 1557-9654. doi: 10.1109/TIT.1981.1056305
(cit. on p. 55).

Oneto, L., E. Fumeo, G. Clerico, R. Canepa, F. Papa, C. Dambra, N. Mazzino, and D. Anguita (2018).
“Train Delay Prediction Systems: A Big Data Analytics Perspective”. In: Big Data Research.
Selected Papers from the 2nd INNS Conference on Big Data: Big Data & Neural Networks 11,
pp. 54–64. issn: 2214-5796. doi: 10.1016/j.bdr.2017.05.002 (cit. on p. 202).

Orban, D. (2019). Krylov.jl. Zenodo. doi: 10.5281/zenodo.6916375 (cit. on p. 50).
Orban, D. and A. S. Siqueira (2019). LinearOperators.jl. Zenodo. doi: 10.5281/zenodo.6569329

(cit. on p. 50).
Pal, A. (2022). Lux: Explicit Parameterization of Deep Neural Networks in Julia (cit. on p. 66).
Parmentier, A. (2021a). Learning Structured Approximations of Operations Research Problems. url:

http://arxiv.org/abs/2107.04323. preprint (cit. on pp. 132, 148, 218).
— (2021b). “Learning to Approximate Industrial Problems by Operations Research Classic Problems”.

en. In: Operations Research 70.1, pp. 606–623. issn: 0030-364X, 1526-5463. doi: 10.1287/
opre.2020.2094 (cit. on pp. 134, 220, 221).

Paulus, A., M. Rolinek, V. Musil, B. Amos, and G. Martius (2021). “CombOptNet: Fit the Right
NP-Hard Problem by Learning Integer Programming Constraints”. en. In: Proceedings of the 38th
International Conference on Machine Learning. International Conference on Machine Learning.
PMLR, pp. 8443–8453 (cit. on p. 134).

Peng, Y., M. Dong, and M. J. Zuo (2010). “Current Status of Machine Prognostics in Condition-
Based Maintenance: A Review”. en. In: The International Journal of Advanced Manufacturing
Technology 50.1, pp. 297–313. issn: 1433-3015. doi: 10.1007/s00170-009-2482-0 (cit. on
p. 193).

Pereira, R., M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes, and J. Saraiva (2017).
“Energy Efficiency across Programming Languages: How Do Energy, Time, and Memory Relate?”
In: Proceedings of the 10th ACM SIGPLAN International Conference on Software Language

245

https://doi.org/10.1140/epjds/s13688-018-0160-x
https://doi.org/10.1145/3458817.3476165
https://doi.org/10.1109/TIT.1981.1056305
https://doi.org/10.1016/j.bdr.2017.05.002
https://doi.org/10.5281/zenodo.6916375
https://doi.org/10.5281/zenodo.6569329
http://arxiv.org/abs/2107.04323
https://doi.org/10.1287/opre.2020.2094
https://doi.org/10.1287/opre.2020.2094
https://doi.org/10.1007/s00170-009-2482-0

Engineering. SLE 2017. New York, NY, USA: Association for Computing Machinery, pp. 256–267.
isbn: 978-1-4503-5525-4. doi: 10.1145/3136014.3136031 (cit. on p. 42).

Peyré, G. and M. Cuturi (2019). “Computational Optimal Transport: With Applications to Data
Science”. English. In: Foundations and Trends in Machine Learning 11.5-6, pp. 355–607. issn:
1935-8237, 1935-8245. doi: 10.1561/2200000073 (cit. on p. 50).

Phillips, M. and M. Likhachev (2011). “SIPP: Safe Interval Path Planning for Dynamic Environments”.
In: 2011 IEEE International Conference on Robotics and Automation. 2011 IEEE International
Conference on Robotics and Automation, pp. 5628–5635. doi: 10/dz35tb (cit. on p. 80).

Pilanci, M. and S. Boyd (2021–2022). EE364b - Convex Optimization II. url: https://stanford.
edu/class/ee364b/index.html (cit. on p. 179).

Pineda, L., T. Fan, M. Monge, S. Venkataraman, P. Sodhi, R. Chen, J. Ortiz, D. DeTone, A. Wang,
S. Anderson, J. Dong, B. Amos, and M. Mukadam (2022). Theseus: A Library for Differentiable
Nonlinear Optimization. url: http://arxiv.org/abs/2207.09442. preprint (cit. on
p. 133).

Qin, F., A. Auerbach, and F. Sachs (2000). “A Direct Optimization Approach to Hidden Markov
Modeling for Single Channel Kinetics”. en. In: Biophysical Journal 79.4, pp. 1915–1927. issn:
0006-3495. doi: 10.1016/S0006-3495(00)76441-1 (cit. on p. 59).

Rabiner, L. (1989). “A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition”. In: Proceedings of the IEEE 77.2, pp. 257–286. issn: 1558-2256. doi: 10/cswph2
(cit. on pp. 57, 60).

Rao, M., T. Javidi, Y. C. Eldar, and A. Goldsmith (2017a). “Estimation in Autoregressive Processes
with Partial Observations”. In: 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 4212–4216. doi: 10.1109/ICASSP.2017.7952950 (cit. on
pp. 89, 90, 109).

— (2017b). “Fundamental Estimation Limits in Autoregressive Processes with Compressive Measure-
ments”. In: 2017 IEEE International Symposium on Information Theory (ISIT), pp. 2895–2899.
doi: 10.1109/ISIT.2017.8007059 (cit. on pp. 89, 109).

Rasmussen, C. E. and C. K. I. Williams (2006). Gaussian Processes for Machine Learning. Adaptive
Computation and Machine Learning. Cambridge, Mass: MIT Press. 248 pp. isbn: 978-0-262-
18253-9 (cit. on p. 224).

Rasmussen, J. G. (2018). Lecture Notes: Temporal Point Processes and the Conditional Intensity
Function. url: http://arxiv.org/abs/1806.00221. preprint (cit. on p. 54).

Reback, J., W. McKinney, jbrockmendel, J. V. den Bossche, T. Augspurger, P. Cloud, S. Hawkins,
gfyoung, Sinhrks, M. Roeschke, A. Klein, T. Petersen, J. Tratner, C. She, W. Ayd, S. Naveh,
patrick, M. Garcia, J. Schendel, A. Hayden, D. Saxton, V. Jancauskas, M. Gorelli, R. Shadrach, A.
McMaster, P. Battiston, S. Seabold, K. Dong, chris-b1, and h-vetinari (2021). Pandas-Dev/Pandas:
Pandas 1.2.4. Zenodo. doi: 10.5281/zenodo.4681666 (cit. on p. 207).

Rentmeesters, M., W. Tsai, and K.-J. Lin (1996). “A Theory of Lexicographic Multi-Criteria
Optimization”. In: ICECCS ’96: 2nd IEEE International Conference on Engineering of Complex
Computer Systems (Held Jointly with 6th CSESAW and 4th IEEE RTAW), pp. 76–79. doi:
10.1109/ICECCS.1996.558386 (cit. on p. 162).

Revels, J., M. Lubin, and T. Papamarkou (2016). Forward-Mode Automatic Differentiation in Julia.
doi: 10.48550/arXiv.1607.07892. url: http://arxiv.org/abs/1607.07892.
preprint (cit. on p. 47).

246

https://doi.org/10.1145/3136014.3136031
https://doi.org/10.1561/2200000073
https://doi.org/10/dz35tb
https://stanford.edu/class/ee364b/index.html
https://stanford.edu/class/ee364b/index.html
http://arxiv.org/abs/2207.09442
https://doi.org/10.1016/S0006-3495(00)76441-1
https://doi.org/10/cswph2
https://doi.org/10.1109/ICASSP.2017.7952950
https://doi.org/10.1109/ISIT.2017.8007059
http://arxiv.org/abs/1806.00221
https://doi.org/10.5281/zenodo.4681666
https://doi.org/10.1109/ICECCS.1996.558386
https://doi.org/10.48550/arXiv.1607.07892
http://arxiv.org/abs/1607.07892

Saad, Y. and M. H. Schultz (1986). “GMRES: A Generalized Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems”. In: SIAM Journal on Scientific and Statistical Computing 7.3,
pp. 856–869. issn: 0196-5204. doi: 10.1137/0907058 (cit. on p. 50).

Salfner, F., M. Lenk, and M. Malek (2010). “A Survey of Online Failure Prediction Methods”. In:
ACM Comput. Surv. 42.3, 10:1–10:42. issn: 0360-0300. doi: 10.1145/1670679.1670680
(cit. on p. 193).

Sammouri, W. (2014). “Data Mining of Temporal Sequences for the Prediction of Infrequent Failure
Events : Application on Floating Train Data for Predictive Maintenance”. PhD thesis. Université
Paris Est (cit. on p. 194).

Schäfer, F., M. Tarek, L. White, and C. Rackauckas (2021). AbstractDifferentiation.jl: Backend-
Agnostic Differentiable Programming in Julia. url: http://arxiv.org/abs/2109.12449.
preprint (cit. on p. 47).

Scherrer, C. and M. Schauer (2022). “Applied Measure Theory for Probabilistic Modeling”. en. In:
Proceedings of the JuliaCon Conferences 1.1, p. 92. issn: 2642-4029. doi: 10.21105/jcon.
00092 (cit. on p. 224).

Schlechte, T. (2012). “Railway Track Allocation: Models and Algorithms”. en. PhD thesis. Technische
Universität Berlin (cit. on pp. 16, 17, 26, 27).

Sen, P. K. (1968). “Estimates of the Regression Coefficient Based on Kendall’s Tau”. In: Journal of
the American Statistical Association 63.324, pp. 1379–1389. issn: 0162-1459. doi: 10/gfxz87
(cit. on p. 96).

Sharma, A., M. Besançon, J. D. Garcia, and B. Legat (2022). Flexible Differentiable Optimization
via Model Transformations. url: http://arxiv.org/abs/2206.06135. preprint (cit. on
p. 133).

Sharon, G., R. Stern, A. Felner, and N. Sturtevant (2012). “Conflict-Based Search For Optimal
Multi-Agent Path Finding”. en. In: Proceedings of the AAAI Conference on Artificial Intelligence
26.1 (1), pp. 563–569. issn: 2374-3468. doi: 10.1609/aaai.v26i1.8140 (cit. on p. 74).

Sharon, G., R. Stern, M. Goldenberg, and A. Felner (2011). “The Increasing Cost Tree Search for
Optimal Multi-Agent Pathfinding”. en. In: Twenty-Second International Joint Conference on
Artificial Intelligence (cit. on p. 73).

Shelton, C. R. and G. Ciardo (2014). “Tutorial on Structured Continuous-Time Markov Processes”.
en. In: Journal of Artificial Intelligence Research 51, pp. 725–778. issn: 1076-9757. doi: 10.
1613/jair.4415 (cit. on p. 197).

Sherali, H. D. and A. L. Soyster (1983). “Preemptive and Nonpreemptive Multi-Objective Pro-
gramming: Relationship and Counterexamples”. en. In: Journal of Optimization Theory and
Applications 39.2, pp. 173–186. issn: 1573-2878. doi: 10.1007/BF00934527 (cit. on p. 162).

Shumway, R. H. and D. S. Stoffer (1982). “An Approach to Time Series Smoothing and Forecasting
Using the EM Algorithm”. en. In: Journal of Time Series Analysis 3.4, pp. 253–264. issn:
1467-9892. doi: 10.1111/j.1467-9892.1982.tb00349.x (cit. on p. 88).

Si, X.-S., W. Wang, C.-H. Hu, and D.-H. Zhou (2011). “Remaining Useful Life Estimation – A Review
on the Statistical Data Driven Approaches”. In: European Journal of Operational Research 213.1,
pp. 1–14. issn: 0377-2217. doi: 10.1016/j.ejor.2010.11.018 (cit. on p. 193).

Silver, D. (2005). “Cooperative Pathfinding”. en. In: Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment 1.1 (1), pp. 117–122. issn: 2334-0924. doi:
10.1609/aiide.v1i1.18726 (cit. on pp. 74, 78).

247

https://doi.org/10.1137/0907058
https://doi.org/10.1145/1670679.1670680
http://arxiv.org/abs/2109.12449
https://doi.org/10.21105/jcon.00092
https://doi.org/10.21105/jcon.00092
https://doi.org/10/gfxz87
http://arxiv.org/abs/2206.06135
https://doi.org/10.1609/aaai.v26i1.8140
https://doi.org/10.1613/jair.4415
https://doi.org/10.1613/jair.4415
https://doi.org/10.1007/BF00934527
https://doi.org/10.1111/j.1467-9892.1982.tb00349.x
https://doi.org/10.1016/j.ejor.2010.11.018
https://doi.org/10.1609/aiide.v1i1.18726

Simchowitz, M., H. Mania, S. Tu, M. I. Jordan, and B. Recht (2018). “Learning Without Mixing:
Towards A Sharp Analysis of Linear System Identification”. en. In: Proceedings of the 31st
Conference On Learning Theory. Conference On Learning Theory. PMLR, pp. 439–473 (cit. on
p. 93).

Spanninger, T., A. Trivella, B. Büchel, and F. Corman (2022). “A Review of Train Delay Prediction
Approaches”. en. In: Journal of Rail Transport Planning & Management 22, p. 100312. issn:
2210-9706. doi: 10.1016/j.jrtpm.2022.100312 (cit. on p. 201).

Standley, T. (2010). “Finding Optimal Solutions to Cooperative Pathfinding Problems”. en. In:
Proceedings of the AAAI Conference on Artificial Intelligence 24.1 (1), pp. 173–178. issn: 2374-
3468. doi: 10.1609/aaai.v24i1.7564 (cit. on p. 73).

Stern, R. (2019). “Multi-Agent Path Finding – An Overview”. en. In: Artificial Intelligence: 5th RAAI
Summer School, Dolgoprudny, Russia, July 4–7, 2019, Tutorial Lectures. Ed. by G. S. Osipov, A. I.
Panov, and K. S. Yakovlev. Lecture Notes in Computer Science. Cham: Springer International
Publishing, pp. 96–115. isbn: 978-3-030-33274-7. doi: 10.1007/978-3-030-33274-7_6
(cit. on p. 73).

Stern, R., N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li, D. Atzmon, L. Cohen,
T. K. Kumar, R. Barták, and E. Boyarski (2019). “Multi-Agent Pathfinding: Definitions, Variants,
and Benchmarks”. en. In: Proceedings of the International Symposium on Combinatorial Search
10.1 (1), pp. 151–158. issn: 2832-9163. doi: 10.1609/socs.v10i1.18510 (cit. on pp. 70, 71,
80).

Sturtevant, N. R. (2012). “Benchmarks for Grid-Based Pathfinding”. In: IEEE Transactions on
Computational Intelligence and AI in Games 4.2, pp. 144–148. issn: 1943-0698. doi: 10.1109/
TCIAIG.2012.2197681 (cit. on p. 80).

Surynek, P. (2010). “An Optimization Variant of Multi-Robot Path Planning Is Intractable”. en.
In: Proceedings of the AAAI Conference on Artificial Intelligence 24.1 (1), pp. 1261–1263. issn:
2374-3468 (cit. on p. 73).

Sutton, R. S. and A. G. Barto (2018). Reinforcement Learning: An Introduction. Second edition.
Adaptive Computation and Machine Learning Series. Cambridge, Massachusetts: The MIT Press.
526 pp. isbn: 978-0-262-03924-6 (cit. on p. 135).

Tang, B. and E. B. Khalil (2022). PyEPO: A PyTorch-based End-to-End Predict-then-Optimize
Library for Linear and Integer Programming. url: http://arxiv.org/abs/2206.14234.
preprint (cit. on p. 134).

Tellache, N. E. H., F. Meunier, and A. Parmentier (2022). Linear Lexicographic Optimization and
Preferential Bidding System. url: http://arxiv.org/abs/2201.08907. preprint (cit. on
p. 162).

Tibshirani, R. (1996). “Regression Shrinkage and Selection Via the Lasso”. en. In: Journal of the
Royal Statistical Society: Series B (Methodological) 58.1, pp. 267–288. issn: 00359246. doi:
10.1111/j.2517-6161.1996.tb02080.x (cit. on p. 88).

Tsochantaridis, I., T. Joachims, T. Hofmann, and Y. Altun (2005). “Large Margin Methods for
Structured and Interdependent Output Variables”. In: Journal of Machine Learning Research
6.50, pp. 1453–1484. issn: 1533-7928 (cit. on pp. 134, 152).

Tsybakov, A. B. (2009). Introduction to Nonparametric Estimation. en. Springer Series in Statistics.
New York, NY: Springer New York. isbn: 978-0-387-79051-0 978-0-387-79052-7. doi: 10.1007/
b13794 (cit. on pp. 116, 231, 233).

248

https://doi.org/10.1016/j.jrtpm.2022.100312
https://doi.org/10.1609/aaai.v24i1.7564
https://doi.org/10.1007/978-3-030-33274-7_6
https://doi.org/10.1609/socs.v10i1.18510
https://doi.org/10.1109/TCIAIG.2012.2197681
https://doi.org/10.1109/TCIAIG.2012.2197681
http://arxiv.org/abs/2206.14234
http://arxiv.org/abs/2201.08907
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1007/b13794
https://doi.org/10.1007/b13794

Udell, M. (2017). ORIE 6326: Convex Optimization. url: https://people.orie.cornell.
edu/mru8/orie6326/syllabus.html (cit. on p. 177).

Vershynin, R. (2018). High-Dimensional Probability: An Introduction with Applications in Data
Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge
University Press. isbn: 978-1-108-41519-4. doi: 10.1017/9781108231596 (cit. on p. 233).

Vlastelica, M., A. Paulus, V. Musil, G. Martius, and M. Rolinek (2020). “Differentiation of Blackbox
Combinatorial Solvers”. en. In: 8th International Conference on Learning Representations (cit. on
pp. 129, 134–136, 139, 155).

Wainwright, M. J. (2019). High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press.
isbn: 978-1-108-49802-9. doi: 10.1017/9781108627771 (cit. on p. 116).

Wei, L. J. (1992). “The Accelerated Failure Time Model: A Useful Alternative to the Cox Regression
Model in Survival Analysis”. en. In: Statistics in Medicine 11.14-15, pp. 1871–1879. issn: 1097-0258.
doi: 10.1002/sim.4780111409 (cit. on p. 193).

Wes McKinney (2010). “Data Structures for Statistical Computing in Python”. In: Proceedings of
the 9th Python in Science Conference. Ed. by S. van der Walt and Jarrod Millman. Vol. 445,
pp. 56–61. doi: 10/ggr6q3 (cit. on p. 207).

White, F. C., M. Abbott, M. Zgubic, J. Revels, S. Axen, A. Arslan, S. Schaub, N. Robinson, Y. Ma, G.
Dhingra, W. Tebbutt, N. Heim, D. Widmann, A. D. W. Rosemberg, N. Schmitz, C. Rackauckas,
R. Heintzmann, Frankschae, A. Noack, C. Lucibello, K. Fischer, A. Robson, Cossio, J. Ling,
MattBrzezinski, R. Finnegan, A. Zhabinski, D. Wennberg, M. Besançon, and P. Vertechi (2022).
JuliaDiff/ChainRules.jl: V1.44.7. Version v1.44.7. Zenodo. doi: 10.5281/ZENODO.4754896
(cit. on pp. 48, 132).

Wiecek, M. M., M. Ehrgott, and A. Engau (2016). “Continuous Multiobjective Programming”. en. In:
Multiple Criteria Decision Analysis: State of the Art Surveys. Ed. by S. Greco, M. Ehrgott, and
J. R. Figueira. International Series in Operations Research & Management Science. New York,
NY: Springer, pp. 739–815. isbn: 978-1-4939-3094-4. doi: 10.1007/978-1-4939-3094-4_18
(cit. on p. 161).

Wilder, B., B. Dilkina, and M. Tambe (2019). “Melding the Data-Decisions Pipeline: Decision-Focused
Learning for Combinatorial Optimization”. In: Proceedings of the AAAI Conference on Artificial
Intelligence 33, pp. 1658–1665. issn: 2374-3468, 2159-5399. doi: 10.1609/aaai.v33i01.
33011658 (cit. on p. 134).

Yu, J. and S. M. LaValle (2013). “Planning Optimal Paths for Multiple Robots on Graphs”. In:
2013 IEEE International Conference on Robotics and Automation. 2013 IEEE International
Conference on Robotics and Automation, pp. 3612–3617. doi: 10/gf3bxz (cit. on p. 72).

Zarepisheh, M. and E. Khorram (2011). “On the Transformation of Lexicographic Nonlinear Multi-
objective Programs to Single Objective Programs”. en. In: Mathematical Methods of Operations
Research 74.2, pp. 217–231. issn: 1432-5217. doi: 10.1007/s00186-011-0360-7 (cit. on
p. 162).

249

https://people.orie.cornell.edu/mru8/orie6326/syllabus.html
https://people.orie.cornell.edu/mru8/orie6326/syllabus.html
https://doi.org/10.1017/9781108231596
https://doi.org/10.1017/9781108627771
https://doi.org/10.1002/sim.4780111409
https://doi.org/10/ggr6q3
https://doi.org/10.5281/ZENODO.4754896
https://doi.org/10.1007/978-1-4939-3094-4_18
https://doi.org/10.1609/aaai.v33i01.33011658
https://doi.org/10.1609/aaai.v33i01.33011658
https://doi.org/10/gf3bxz
https://doi.org/10.1007/s00186-011-0360-7

	Preamble
	Remerciements
	Abstract (français)
	Abstract
	Contents

	Introduction (français)
	Contexte industriel : une vue d'ensemble des opérations ferroviaires
	Pourquoi étudier les chemins de fer ?
	Processus de planification et ressources
	Optimisation et apprentissage pour un système résilient
	Trois problèmes ferroviaires importants

	Contributions scientifiques : prise de décision rapide basée sur les données
	Apprentissage en grande dimension avec des variables cachées
	Modélisation de flux de données complexes
	Obtention de garanties statistiques grâce à la parcimonie

	Algorithmes d'optimisation dans les pipelines d'apprentissage
	Qu'est-ce qu'un pipeline ?
	Couches différentiables d'optimisation combinatoire
	Généralisation à des objectifs multiples : le cas lexicographique

	Logiciels open source pour une recherche reproductible

	Introduction
	Industrial context: an overview of railway operations
	Why study railways?
	Planning process and resources
	Optimization and learning for a resilient system
	Three important railway problems

	Scientific contributions: fast data-driven decision-making
	High-dimensional learning with hidden variables
	Modeling complex data streams
	Obtaining statistical guarantees from sparsity

	Optimization algorithms within learning pipelines
	What is a pipeline?
	Differentiable combinatorial layers
	Generalization to multiple objectives: the lexicographic case

	Open source software for reproducible research

	Outline of the dissertation
	Main parts
	Chapter dependencies
	Experiments

	Notations
	Linear algebra
	Probability
	Analysis
	Frequent symbols

	I Algorithms and open source packages
	Julia for scientific computing and automatic differentiation
	Julia for scientific computing
	Performance benchmarks
	Types and multiple dispatch
	Composability
	Generic programming
	Performance guidelines

	Automatic differentiation
	Numerical differentiation methods
	Forward and reverse mode AD
	Chain rule and products
	Implementation details

	Julia ecosystem

	Implicit differentiation
	The limits of automatic differentiation
	The implicit function theorem

	The package ImplicitDifferentiation.jl
	Main ideas
	Implementation details
	Numerical experiments
	Optimal transport with entropic regularization
	The Sinkhorn algorithm
	Time and memory impact of implicit differentiation

	Temporal point processes & controlled Hidden Markov Models
	Temporal point processes
	Events and marks
	Intensity function
	Simulation
	Learning
	Poisson processes

	Hidden Markov Models with control variables
	Hidden Markov Models and control variables
	Statistical algorithms
	Inference
	Estimation
	Prediction

	Numerical stability
	Example: controlled HMM with Poisson process emissions

	The package PointProcesses.jl
	Structure
	Design choices

	The package ControlledHiddenMarkovModels.jl
	Structure
	Design choices
	Compatibility with arbitrary emissions
	Logarithmic computations
	Multiple sequences
	Internal and external parameters
	Performance considerations
	Automatic differentiation

	Numerical experiments

	Multi-Agent Path Finding
	Mathematical formulation of the problem
	Graph and agents
	Decision variables and objective
	Conflict constraints
	Integer Linear Program

	Review of MAPF algorithms
	Parallel decomposition
	Independence Detection
	Increasing Cost Tree Search
	Conflict-Based Search

	Sequential approximation
	A suboptimal but fast algorithm
	Lexicographic linear formulation

	Single-agent problem

	The package MultiAgentPathFinding.jl
	Problem and solution storage
	Solution algorithms
	Single-agent problem
	Cooperative A*
	Optimality search
	Feasibility search
	Double search

	Numerical experiments
	Benchmark instances and setting
	Results

	II Theoretical contributions
	Minimax estimation of partially-observed vector autoregressions
	Introduction
	A theoretical question
	A concrete application
	Outline

	Related work
	The partially-observed VAR process and its sparse estimator
	Model definition
	Sparse estimator for the transition matrix

	Lower and upper bound on the estimation error
	Main theorems
	Influence of the problem parameters
	Extension to VAR processes of higher order

	Numerical experiments
	Data generation
	Results

	Proof of the estimator's convergence rate
	Overview
	Covariance matrices
	Construction of the covariance estimator
	Gaussian concentration, episode 1
	Interlude: discrete concentration
	Gaussian concentration, episode 2
	Behavior of the Dantzig selector

	Proof of the minimax lower bound
	Overview
	Change of notations
	Covariance decomposition
	From the KL divergence to Delta
	From Delta to the projection of R(theta)
	From the projection of R(theta) to R(theta)
	Bounding R(theta)
	Upper bound on the KL divergence
	Application of Fano's method

	Learning with combinatorial optimization layers: a probabilistic approach
	Introduction
	Motivating example
	Our setting
	From an optimization problem to an oracle
	From an oracle to a probability distribution
	From a probability distribution to a loss function
	Complete pipeline

	Contributions
	Outline

	Related work
	Optimization layers in ML
	The notion of implicit layer
	Convex optimization layers
	Linear optimization layers
	Integer optimization layers

	Similarities and differences with reinforcement learning
	Our guiding example: shortest paths on Warcraft maps

	Probabilistic CO layers
	The expectation of a differentiable probability distribution
	Regularization as another way to define a distribution
	Collection of probabilistic CO layers
	Additive perturbation
	Multiplicative perturbation
	Generic regularization

	The case of inexact CO oracles

	Learning by experience
	Minimizing a smooth regret surrogate
	Derivatives of the regret for learning by experience

	Learning by imitation
	A loss that takes the optimization layer into account
	Collection of losses for learning by imitation
	Structured support vector machines
	Smart "predict, then optimize"
	Fenchel-Young losses
	Generic imitation loss

	Numerical experiments
	Shortest paths on Warcraft maps
	Experimental setting
	Results

	Convex optimization with the lexicographic order
	Introduction
	Multiobjective optimization
	Lexicographic optimization
	Outline

	Related work
	Algorithms for multiobjective optimization
	Algorithms for lexicographic optimization

	Lexicographic order
	Definitions and basic properties
	Link with orthogonalization
	Lexicographic lower bounds

	Lexicographic convexity
	Lexicographic epigraph
	Examples and composition rules
	Coarser than componentwise convexity

	Lexicographic minimization
	Lexicographic coercivity and strong convexity
	Existence and uniqueness of a minimizer
	Approximate minimization

	Lexicographic subgradients
	Characterization and existence
	Examples and composition rules
	Link with differentiability
	Lexicographic conjugation

	The failure of the lexicographic subgradient method
	Lex-minimizing a local linear surrogate
	Naive lex-subgradient method

	More advanced optimization algorithms
	Orthogonalized Jacobian method
	Lexicographic cutting planes algorithm

	Application to ML
	Lexicographic Fenchel-Young losses
	Limitations

	Numerical experiments
	Simple function
	Neural network

	III Railway applications
	Train failure prediction using condition monitoring systems
	Introduction
	Predictive maintenance
	Industrial problem

	Related work
	Stochastic failure prediction
	Influence of exogenous variables
	Previous railway-related theses

	Hierarchical degradation model
	Observations
	States
	Controls
	Summary

	Delay propagation on suburban railway networks
	Introduction
	Delay propagation mechanisms
	Industrial problem

	Related work
	Methods based on the temporal event graph
	Deterministic delay prediction
	Stochastic delay prediction

	Parametric regression and other methods

	Congestion-based delay model
	Qualitative overview
	The static event graph
	The notion of congestion

	Quantitative formulation
	Delay decomposition
	Evolution of the congestion

	Link with Partially-Observed Vector AutoRegression
	Sparse dependencies
	Random observations
	Influence of step duration

	Statistical estimation

	Numerical experiments
	Data description and reprocessing
	Results

	Track allocation for the Flatland challenge
	Introduction
	A challenge for traffic management
	Environment
	Agents
	Costs
	Evaluation setting

	Related work
	Flatland as a MAPF problem
	Graph building
	Vertices
	Edges

	Objective

	Learning to solve MAPF
	Feature generation
	Agent-related features
	Edge-related features

	Pipeline based on parallel decomposition
	Learning by experience or imitation
	Extension to the stochastic setting

	Conclusion
	Summary
	Perspectives

	Appendices
	Useful lemmas
	Linear algebra
	Statistics
	Differentiation

	Bibliography

