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Résumé

La gestion de l’exploitation des champs pétroliers consiste à piloter un réseau de produc-
tion pétrolière - composé d’un réservoir (une formation géologique contenant des hydro-
carbures), de puits et de oléoducs reliant ces puits - afin de produire des hydrocarbures.
Une particularité de la gestion des champs pétroliers est qu’au début de l’exploitation du
réservoir, nous n’avons qu’une connaissance partielle du contenu du réservoir, à savoir une
distribution de probabilité de son état initial. Ensuite, nous obtenons des informations sur
le contenu du réservoir au fur et à mesure qu’il se vide, c’est-à-dire au fur et à mesure que
nous appliquons des contrôles. L’objectif de cette thèse est de gérer un champ pétrolier en
tenant compte de cette particularité.

Dans un premier temps, nous proposons une nouvelle formulation du problème de ges-
tion d’un réseau de production pétrolier pour le cas totalement observé. Le modèle proposé
diffère des pratiques courantes où le réservoir est approximé par des courbes de déclin ou
par des simulateurs de type boîte-noire. Nous modélisons le réservoir comme un système
dynamique contrôlé (non linéaire) en utilisant des équations de bilan de matière, en suppo-
sant que les fluides suivent un modèle de black-oil et que le réservoir a un comportement de
type “tank”. L’état du système dynamique a cinq dimensions : le volume total de pétrole,
de gaz et d’eau dans le réservoir, le volume total des pores et la pression du réservoir.
Nous utilisons un algorithme de programmation dynamique pour résoudre numériquement
le problème d’optimisation multi-étapes sur deux instances spécifiques où la dimension de
l’état peut être réduite. Plus précisément, la première application consiste à optimiser
la production d’un réservoir de gaz qui est subdivisé en deux parties, ce qui conduit à
un état bidimensionnel (une dimension par partie), tandis que la seconde application est
l’optimisation d’un réservoir de pétrole avec injection d’eau, ce qui conduit à un état bidi-
mensionnel. Le principal avantage de notre approche est qu’elle permet de traiter des cas
avec des réservoirs interconnectés et de la réinjection de fluides.

Deuxièmement, nous étudions une classe de problèmes intéressante pour la gestion
d’un problème de réseau de production pétrolière sous observation partielle, à savoir
les problèmes d’optimisation par processus de décision de Markov partiellement obser-
vés (Pomdp). Plus précisément, nous améliorons les résultats de Littman concernant une
sous-classe de Pomdps appelée Det-Pomdp. Les Det-Pomdps sont intéressants car la
taille des ensembles d’états atteignables utilisés dans les algorithmes de programmation
dynamique est bornée, que ce soit dans le cas d’un horizon fini ou infini. Nous donnons des
améliorations des limites présentées par Littman [1996]. Ensuite, en ajoutant des condi-
tions supplémentaires sur la dynamique et les observations, nous définissons une sous-classe
de Det-Pomdps dont les limites sont encore améliorées : Separated Det-Pomdp. Grâce
à cette sous-classe, nous sommes en mesure de repousser davantage la malédiction de la
dimensionnalité. Nous obtenons ainsi des problèmes partiellement observés qui sont trai-
tables par des algorithmes de programmation dynamique, alors qu’ils sont généralement
résolus par approximation des fonctions de valeur de Bellman lorsque l’on considère les
algorithmes généraux de Pomdps.
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Troisièmement, nous élargissons la formulation totalement observée du problème de ges-
tion d’un réseau de production de pétrole afin de prendre en compte l’observation partielle
du contenu du réservoir. Ceci conduit à la classe de Separated Det-Pomdp précédemment
discutée. Nous sommes donc en mesure d’utiliser la Programmation Dynamique pour trou-
ver la planification optimale de la production. Nous résolvons à nouveau numériquement
le problème d’optimisation partiellement observé sur les deux cas présentés dans le cas
totalement observé : un réservoir de gaz sec à deux réservoirs, et un réservoir de pétrole
avec injection d’eau.
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Abstract

The operation management of oil-fields consists in piloting an oil production network
– composed of a reservoir (geological formation containing hydrocarbons), wells and pipes
coupling those wells – in order to produce some hydrocarbons. A key particularity of the
management of oil-fields is that, at the beginning of the reservoir exploitation, we have
only partial knowledge of the content of the reservoir, namely a probability distribution of
its initial state. Then, we obtain more and more information on the content of the reservoir
as it depletes, i.e as we apply controls. The aim of this thesis is to manage an oil field
while taking into account this key particularity.

First, we propose a new formulation of the management of an oil production network
problem for the fully observed case. The proposed model differs from common practices
where the reservoir of the oil production network is approximated by decline curves or
by black-box simulators. We model the reservoir as a controlled (non-linear) dynamical
system by using material balance equations, under the assumption that the fluids follow a
black-oil model and that the reservoir has a tank-like behavior. The state of the dynamical
system has five dimensions: the total volume of respectively oil, gas, and water in the
reservoir; the total pore volume; and the reservoir pressure. We use a dynamic program-
ming algorithm to numerically solve the multistage optimization problem on two specific
instances of the general optimization problem where the state dimension can be reduced.
More precisely, the first numerical application consists in optimizing the production of a
dry gas reservoir which is subdivided into two tanks and which leads to a two-dimensional
state (one dimension per tank), whereas the second numerical application tackles an oil
reservoir with water injection which leads to a two-dimensional state. The key advantage
of our approach is that it handles interconnected tanks and allows for optimization beyond
first recovery of oil.

Second, we study a class of problems which is of interest for the management of an oil
production network problem under partial observation, namely Partially Observed Markov
Decision Process (Pomdp) optimization problems. More specifically, we improve on results
by Littman [1996] concerning a subclass of Pomdp called Det-Pomdp. Det-Pomdps
are of interest as the size of the sets of reachable states used in dynamic programming
algorithms are bounded, be it in the finite or infinite horizon cases. We give improvements
of the bounds presented by Littman [1996]. Then, by adding further conditions on the
dynamics and observations, we define a sub-class of Det-Pomdp whose bounds are again
improved: Separated Det-Pomdp. Through this subclass, we are able to further push back
the curse of dimensionality. We hence obtain partially observed problems that are tractable
by Dynamic Programming algorithms, whereas they are usually solved by approximating
the Bellman value functions when considering general Pomdps algorithms.

Third, we expand on the fully observed formulation of the management of an oil produc-
tion network problem in order to take into account the partial observation of the content of
the reservoir. This leads to the previously discussed Separated Det-Pomdp class. We are
therefore able to use Dynamic Programming to find the optimal production planning. We
once again numerically solve the partially observed optimization problem on the two cases
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presented in the fully observed case: a two tanks dry gas reservoir, and an oil reservoir
with water injection.
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Chapter 1

Introduction en français

Contents
1.1 Contexte de cette thèse . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Optimisation du système de production pétrolière . . . . . . . 2

1.2.1 Contexte de la conception et de la gestion de l’exploitation des
champs pétroliers . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Incertitudes dans les systèmes de production pétrolière . . . . . . 3

1.2.3 Aperçu de quelques problèmes d’optimisation des systèmes de pro-
duction pétrolière . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.4 Gestion d’un système de production pétrolière donné . . . . . . . 5

1.3 Plan de la thèse . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Contributions principales . . . . . . . . . . . . . . . . . . . . . . 6

Nous donnons d’abord dans le Paragraphe 1.1 des informations contextuelles sur cette
thèse. Ensuite, dans le Paragraphe 1.2, nous présentons le sujet de ce manuscrit : l’optimisation
des systèmes de production pétroliers en tenant compte des incertitudes. Troisièmement,
dans le Paragraphe 1.3, nous exposons la structure de ce document. Enfin, dans le Para-
graphe 1.4, nous détaillons nos principales contributions.

1.1 Contexte de cette thèse
Le sujet de cette thèse est la gestion des systèmes de production pétroliers sous incertitudes,
c’est-à-dire comment piloter la production au cours du temps d’un champ pétrolier ou
gazier afin de maximiser un critère économique en tenant compte d’incertitudes, comme par
exemple l’observation partielle des ressources présentes dans le sous-sol. Cette thèse a été
réalisée en collaboration avec l’équipe Integrated Asset Modeling (IAM) de TotalEnergies,
qui est chargée de l’intégration des modèles de simulation, du réservoir à la production,
afin d’apporter un support aussi bien sur l’évaluation que sur la conception de plans de
développement de plans de développement des champs pétrolifères. La coopération a
débuté grâce à Rémy Marmier, alors responsable de l’équipe IAM de TotalEnergies, tandis
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qu’Alejandro Rodríguez-Martínez est devenu l’interlocuteur principal, notamment pour la
validation des modèles physiques et les applications industrielles. Anna Robert, qui fait
partie de la branche R&D de TotalEnergies, faisait également partie des interlocuteurs.
Les travaux de thèse ont abouti à un dépôt de brevet impliquant l’auteur de ce manuscrit,
le laboratoire CERMICS de l’ENPC et TotalEnergies. Nous détaillons maintenant le sujet
de cette thèse, à savoir l’optimisation de systèmes de production pétroliers.

1.2 Optimisation du système de production pétrolière
Comme il devient de plus en plus complexe et coûteux d’extraire du pétrole, il devient
de plus en plus important pour les entreprises productrices d’optimiser la production les
champs pétroliers. En effet, les projets pétroliers et gaziers s’étalent sur plusieurs décennies
et impliquent des investissements massifs et une planification complexe. De plus, la gestion
des champs pétroliers est confrontée à de nombreuses incertitudes, que ce soit en raison de
la volatilité des prix du pétrole ou de l’impossibilité d’observer directement les ressources
souterraines. L’optimisation stochastique multi-étapes (en observation partielle) est donc
un outil pertinent pour optimiser la performance globale de tels projets.

La littérature sur l’optimisation des champs pétroliers tend à se concentrer sur la
manière d’améliorer la performance de ses différents composants pris séparément (par ex-
emple l’amélioration de la production d’un puits ou des performances de pompes). Une
partie beaucoup moins importante de la littérature concerne une approche holistique de
l’optimisation des champs pétroliers, et, au sein de cette approche, seule une fraction lim-
itée couvre une approche d’optimisation mathématique, qui est l’approche adoptée dans
ce document.

Dans cette thèse, nous présentons un cadre mathématique qui, premièrement, est util-
isé pour représenter la dynamique d’un système de production de pétrole et de gaz et,
deuxièmement, permet de calculer une politique de contrôle qui maximise un critère inter-
temporel. Une politique de contrôle est un ensemble de fonctions qui prennent comme
entrées des quantités disponibles à chaque instant pour un décideur non anticipatif, telles
que l’historique des observations et de la production du système de production de pétrole
et de gaz, et qui renvoient une décision (telle que la façon d’opérer le système de production
ou la liste des puits à considérer pour le prochain forage) à appliquer à cet instant donné.

Tout d’abord, dans le Paragraphe 1.2.1, nous présentons quelques éléments de con-
texte sur la gestion des champs pétroliers. Deuxièmement, dans le Paragraphe 1.2.2, nous
présentons les sources d’incertitudes présentes dans les systèmes de production pétroliers.
Troisièmement, dans le Paragraphe 2.2.3, nous présentons quelques problèmes d’optimisation
associés à la gestion des champs pétroliers. Enfin, dans le Paragraphe 2.2.4, nous spécifions
le problème qui est étudié dans cette thèse.

2



1.2. Optimisation du système de production pétrolière

1.2.1 Contexte de la conception et de la gestion de l’exploitation
des champs pétroliers

Considérons une entreprise qui dispose, grâce à un contrat avec les autorités compétentes,
des droits d’exploitation et d’extraction des hydrocarbures d’un champ pétrolier. Cette
entreprise utilise le terme “produire” pour l’extraction du pétrole, et appelle “réseau de
production” ou “système de production” l’infrastructure utilisée dans un champ pétrolier
pour extraire les hydrocarbures. Nous utilisons donc cette terminologie dans la suite du
document. Le but de l’entreprise est d’optimiser une fonction objectif (telle que la Valeur
Actualisée Nette) sur toute la durée de vie de la concession, et d’y parvenir en appliquant
certaines décisions. Nous utilisons donc le terme “décideur” pour désigner l’entreprise.

Dans un champ pétrolier donné, il peut y avoir plusieurs formations géologiques qui
contiennent certaines ressources (différents mélanges de pétrole, de gaz et d’eau). Nous
appelons ces formations des “réservoirs”. Idéalement, les ressources sont stockées dans les
pores d’un réservoir (de la même manière que l’eau peut être retenue dans une éponge) à
une pression très élevée. C’est cette pression qui permet au pétrole de s’écouler lorsque
un puits est foré. Généralement, il y a aussi une grande formation géologique qui contient
de l’eau près d’un réservoir. Cette formation est appelée “aquifère”. La présence et les
caractéristiques de l’aquifère peuvent avoir un impact important sur la gestion d’un réseau
de production, car elles peuvent conduire l’eau à pénétrer dans le réservoir et à remplacer
le pétrole produit. Cela peut être à la fois un atout et un inconvénient majeur pour le
système de production : elle peut soit améliorer le taux d’extraction en amortissant la chute
de pression dans le réservoir, soit inonder une partie des infrastructures et donc empêcher
l’utilisation future de ces dernières.

Le réseau de production est quand à lui composé d’un grand nombre d’infrastructures
différentes, telles que des puits (forages dans le sol permettant la production de pétrole
et/ou de gaz), des oléoducs (utilisés pour transporter le pétrole d’un point à un autre
du champ), des FPSO (Floating Production Storage and Offloading, navires utilisés dans
les champs offshore pour traiter et stocker le pétrole avant qu’il ne soit exporté par un
pétrolier), d’autres installations aux points de sortie, . . . Chacun de ces composants a ses
propres spécifications.

Nous détaillons maintenant les incertitudes à prendre en compte dans la gestion d’un
système de production pétrolier.

1.2.2 Incertitudes dans les systèmes de production pétrolière

La première et la plus évidente des incertitudes est la volatilité des prix du pétrole. Per-
sonne ne peut prédire avec précision le prix futur du pétrole. De plus, les prix du pétrole
dépendent fortement de la situation géopolitique: les tendances à long terme peuvent radi-
calement changer en raison de décisions politiques. La prise en compte de cette incertitude
dans un cadre d’optimisation ne pose pas, dans une certaine mesure, de difficultés par-
ticulières lorsque les distributions des prix futurs sont données. Cependant, bien que la
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recherche des distributions de probabilité pertinentes pour les prix soit un élément impor-
tant du processus, elle dépasse le cadre des problèmes d’optimisation et de leur résolution
et ne sera pas couverte par cette thèse.

La deuxième source d’incertitude provient du fait que nous ne pouvons pas observer di-
rectement un réservoir, ni son contenu. Nous ne savons pas combien il reste d’hydrocarbure
en son sein, ni sa répartition. Cependant, nous pouvons parfois avoir une bonne idée de
ce qui se trouve dans la croûte terrestre grâce à différentes techniques, comme les études
sismiques. Au final, cependant, nous avons tout au plus une vue partielle d’un réservoir. A
partir de cette observation partielle, nous ne pouvons qu’inférer des trajectoires incertaines
du contenu du réservoir car nous n’avons aucune connaissance précise de l’état initial du
réservoir. Nous considérons cependant dans cette thèse que nous avons accès à une certaine
distribution de probabilité de l’état initial.

Enfin, l’incertitude peut également prendre la forme de risques sur l’infrastructure elle-
même. La gestion d’un champ comporte certains aléas, comme l’ont malheureusement
montré les marées noires et autres accidents relatifs à la production de pétrole. De plus,
les infrastructures peuvent tomber en panne. Il est possible de faire une analyse des
risques sur le réseau de production, comme par exemple la quantité de pétrole libérée si
un oléoduc est endommagé. Cependant, nous ne couvrirons pas ce genre d’incertitudes
dans cette thèse. En effet, nous nous intéressons principalement à la manière de prendre
en compte le fait que le réservoir est partiellement observé.

Nous présentons maintenant un aperçu des problèmes d’optimisation de la gestion des
champs pétroliers.

1.2.3 Aperçu de quelques problèmes d’optimisation des systèmes
de production pétrolière

Les systèmes de production pétroliers étant des projets complexes, de multiples problèmes
d’optimisation se posent au cours des différentes phases de ces projets. En effet, la durée
de vie d’un champ est généralement décomposée en cinq phases : l’exploration, où le but
est de trouver des réservoirs contenant des hydrocarbures; l’évaluation, où l’on estime les
valeurs des champs pétroliers ; le développement, où les infrastructures sont planifiées et
installées ; la production, où les hydrocarbures sont finalement produits ; l’abandon, où
les champs cessent de produire et où les infrastructures sont mises hors service et retirées.
Des problèmes d’optimisation peuvent être formalisés pour toutes ces phases. Cependant,
selon la revue de littérature Khor et al. [2017], l’optimisation mathématique se concentre
sur les phases de développement et de production : soit pour concevoir un système de
production, soit pour le gérer.

Nous pouvons identifier trois principaux problèmes d’optimisation industrielle du sys-
tème de production pétrolière:

1 la conception d’un système de production pétrolier, c’est-à-dire l’optimisation des
décisions prises lors de la phase de développement ;

4



1.3. Plan de la thèse

2 la gestion d’un système de production pétrolier déjà donné, c’est-à-dire l’optimisation
de la phase de production ;

1+2 la conception et la gestion d’un système de production pétrolier, c’est-à-dire l’optimisation
des deux phases de développement et de production.

Nous nous concentrons dans la suite sur le deuxième problème industriel : l’optimisation
de la phase de production, que nous décrivons maintenant.

1.2.4 Gestion d’un système de production pétrolière donné

Le problème d’optimisation dont il est question dans cette thèse est la gestion d’un système
de production pétrolier donné. Étant donné un réseau de production composé de puits,
de conduites et de points de sortie, et étant donné un ensemble fini de pas de temps
T = {0, . . . , T}, nous cherchons une politique de production qui maximise un indicateur
économique tel que la Valeur Actuelle Nette tout en respectant des contraintes physiques
sur le réseau de production (telles que maintenir la pression dans une plage donnée en
certains points du réseau, le respect d’un planning de maintenance, etc.).

Lorsque l’on considère un réseau de production donné, le décideur a à sa disposition
un ensemble de contrôles ut qu’il peut appliquer sur ce système à l’instant t. Ces contrôles
sont des actions sur un réseau de production fixe : on ne peut pas changer la sélection
des puits ou modifier le réseau de canalisations, on agit uniquement sur des actionneurs
placés à l’intérieur (comme les vannes présentes sur les oléoducs qui peuvent être ouvertes
ou fermées). De plus, nous modélisons les réservoirs et le réseau de production comme des
systèmes dynamiques à l’aide d’équations physiques. Nous désignons par xt l’état de ce sys-
tème dynamique et par ut les commandes au temps t ∈ T . Nous formulons l’optimisation
de la gestion d’un système de production pétrolière donné comme un problème de contrôle
optimal qui prend la forme suivante dans le cas déterministe.

max
ut,xt

T−1∑
t=0

Lt(xt, ut) +K(xT ) (1.1a)

s.c. xt+1 = f(xt, ut) , ∀t ∈ T \ {T} , (1.1b)
ut ∈ Uad

t (xt) , ∀t ∈ T \ {T} . (1.1c)

L’objectif de cette thèse est dans un premier temps de détailler la formulation du Prob-
lème (1.1), avant d’étendre la formulation précédente pour prendre en compte l’observation
partielle de l’état.

Nous présentons maintenant la structure de ce document.

1.3 Plan de la thèse
Le manuscrit est composé des quatre chapitres suivants :

5



Chapter 1. Introduction en français

• Dans le Chapitre 3, nous présentons les différentes lois de comportements utilisée dans
la construction de la formulation de la gestion d’un système de production pétrolière.
Ces équations portent soit sur les fluides dans le réservoir et sur le comportement du
réservoir, soit sur le réseau de production lui-même.

• Dans le Chapitre 4, nous détaillons la formulation de l’optimisation d’un système de
production pétrolier donné en considérant que l’on a une observation complète du
contenu du réservoir, et que nous connaissons les prix futurs. Il s’agit donc d’une
formulation déterministe du problème d’optimisation. Nous détaillons les dérivations
nécessaires pour représenter un réservoir par un système dynamique contrôlé, avant
de présenter quelques applications numériques. Il s’agit de la transcription d’un
article accepté dans Computers & Chemical Engineering, Vessaire et al. [2022].

• Dans le Chapitre 5, nous présentons un cadre mathématique permettant de pren-
dre en compte l’observation partielle lorsqu’on considère un système dynamique
avec des fonctions d’évolution et d’observation déterministes, les Deterministic Par-
tially Observed Markov Decision Processes (Det-Pomdps, processus de décision
markovien déterministe partiellement observés). Nous approfondissons les travaux
de Littman [1996] et présentons un sous-ensemble des Det-Pomdps, les Separated
Det-Pomdps, qui possède des propriétés permettant de repousser la malédiction de
la dimensionnalité.

• Dans le Chapitre 6, nous présentons une formulation du problème de gestion pétrolier
qui prend en compte l’observation partielle du contenu du réservoir. Nous démontrons
ensuite que la formulation obtenue est équivalente à un problème d’optimisation de
type Separated Det-Pomdp, avant de présenter quelques applications numériques.

Nous détaillons maintenant nos principales contributions.

1.4 Contributions principales
• Le Chapitre 3 synthétise la littérature sur les lois de comportement physiques utilisées

dans le reste de la thèse.

• Dans le Chapitre 4, nous présentons tout d’abord un modèle physique décrivant le
comportement du réservoir au cours du temps. Il est constitué d’un système dy-
namique contrôlé qui donne l’évolution dans le temps des quantités physiques carac-
térisant le champ pétrolier exploité. Ces équations sont dérivées d’équations de bilan
de matière sur le réservoir et sous l’hypothèse que les fluides contenus dans le réservoir
suivent un modèle connu sous le nom de modèle black-oil. Deuxièmement, nous don-
nons une formulation déterministe d’un problème d’optimisation multi-étapes pour
un système de production de pétrole et de gaz, régi par le système dynamique con-
trôlé introduit dans la première partie. Enfin, des solutions numériques du problème
d’optimisation sont présentées et comparées à d’autres formulations possibles.

6



1.4. Contributions principales

Décrire l’évolution dans le temps d’un réservoir comme un système dynamique con-
trôlé et dériver les équations d’évolution à partir d’équations de bilan matière et de
modèle de black-oil n’est pas courant dans la littérature sur la gestion des champs
pétroliers. De plus, l’utilisation de la programmation dynamique pour résoudre un
problème d’optimisation multi-étape sur un système dynamique contrôlé est classique
mais soumise à la malédiction de la dimensionnalité. C’est-à-dire que lorsque l’état
du système est grand (ce qui est le cas ici puisque l’état est de dimension 5), il devient
difficile de résoudre numériquement le problème. C’est pourquoi nous présentons des
applications numériques sur des cas où la dimension de l’état se réduit à la dimension
1 (réservoir de gaz et réservoir de pétrole où la pression est maintenue constante par
l’injection d’eau).

Plus précisément, le contenu du Chapitre 4 est le suivant:

– Dans le Paragraphe 4.3, nous décrivons l’évolution du réservoir dans le temps
comme un système dynamique contrôlé. C’est-à-dire que, en désignant par xt

l’état du système et par ut les contrôles appliqués à un instant t, l’évolution de
l’état est donnée par une application f détaillé en (4.3), tel que:

xt+1 = f(xt, ut) .

Dans cette description, l’état x du système est de dimension cinq et est composé
de la quantité des trois fluides du modèle de black-oil (pétrole, gaz et eau), de
la pression du réservoir et du volume total des pores (le volume où les fluides
sont stockés), tandis que les contrôles u sont les actions applicables au réseau de
production : ouverture ou fermeture d’oléoducs, choix de la pression en tête de
puits, fonctionnement des pompes. L’expression mathématique de l’application
f est donnée dans la Proposition 4.2, p.45, et la manière de dériver cette expres-
sion à l’aide d’équations de bilan matière et de modèle de black-oil est donnée
dans l’Annexe 4.A.

– Dans le Paragraphe 4.2, nous formulons la gestion optimale système de produc-
tion pétrolier comme un problème de contrôle optimal sur un horizon fini (voir le
Problème (4.1)) en utilisant la dynamique d’état f et en supposant que l’état du
réservoir est observé dans le temps. La solution optimale du Problème (4.1) est
obtenue à l’aide d’algorithmes classiques de Programmation Dynamique (voir
Proposition 4.1 et Algorithme 1).

– Dans le Paragraphe 4.4, nous présentons des applications numériques sur deux
cas: un réservoir de gaz et un réservoir de pétrole où la pression est maintenue
constante par injection d’eau. De plus, nous comparons notre méthode avec
une approche d’optimisation standard de l’industrie pétrolière et gazière sur les
mêmes problèmes.

• Dans le Chapitre 5, nous présentons notre principale contribution théorique, con-
sacrée à l’étude des Deterministic Partially Observed Markov Decision Processes
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(Det-Pomdp). Il s’agit d’un travail préparatoire pour le Chapitre 6, car nous mon-
trons au Chapitre 6 que le problème d’optimisation d’un système de production
pétrolier en tenant compte de l’observation partielle du réservoir appartient à la classe
des Det-Pomdps. Plus généralement, la formulation d’un problème d’optimisation
dans le temps sous observation partielle de l’état avec une dynamique d’état contrôlée
et perturbée par des bruits exogènes tombe dans la classe des problèmes Pomdps.
Les Pomdps ont été largement étudiés, et des algorithmes numériques basés sur
la Programmation Dynamique ont été spécifiquement développés pour les Pomdps.
Cependant, il est bien connu qu’ils sont numériquement difficiles à résoudre car sujets
à la malédiction de la dimension. Nous présentons au Paragraphe 5.1.1 une sous-classe
connue de Pomdps appelée Det-Pomdp. Ensuite, au Paragraphe 5.2, nous présen-
tons la programmation dynamique sur les “croyances” (distributions de probabilité
sur les états) pour les Det-Pomdps avec contraintes sur les contrôles dépendant de
l’état non observé. Deuxièmement, dans le Paragraphe 5.3, nous présentons une nou-
velle représentation pour la dynamique des croyances en utilisant des mesure-image.
Troisièmement, dans le Paragraphe 5.4, nous présentons des résultats de complexité
de la Programmation Dynamique sur les croyances pour les Det-Pomdps. Qua-
trièmement, dans le Paragraphe 5.5, nous introduisons une sous-classe encore plus
simple de Det-Pomdps, les Separated Det-Pomdps.

Nous détaillons maintenant les principales contributions présentées dans le Chapitre 5.

– Dans le Paragraphe 5.2, nous étendons les équations de Programmation Dy-
namique sur les croyances de [Bertsekas and Shreve, 1978] pour les Pomdps
sans contraintes aux Det-Pomdps avec contraintes sur les contrôles dépendant
de l’état non observé. En effet, une hypothèse clé dans [Bertsekas and Shreve,
1978] pour écrire les équations de Programmation Dynamique sur les croyances
est qu’il n’y a pas de contraintes d’admissibilité sur les contrôles. Comme les
applications imposent la présence de telles contraintes, nous présentons cette ex-
tension dans la Proposition 5.2, qui nous donne les équations de Programmation
Dynamique (5.16).

– Dans le Paragraphe 5.3, nous exprimons la dynamique des croyances dans Det-
Pomdps en utilisant la notion de mesure-image, telle que présentée dans le
Lemme 5.4. Cette nouvelle représentation est la base de toutes les améliorations
des bornes sur la cardinalité de l’ensemble des croyances atteignables.

– Dans le Paragraphe 5.4, nous améliorons la limite de Littman sur la cardinalité
de l’ensemble des croyances atteignables,

∣∣BR,D
J1,T K

∣∣, pour les Det-Pomdps, de
(1 + |X|)|X|, à (1 + |X|)|supp(b0)| (voir Théorème 5.9). Notons que cette borne ne
dépend pas du nombre de pas de temps. De plus, dans le Théorème 5.10, nous
donnons une borne dépendant du temps sur la cardinalité de l’ensemble des
croyances atteignables, 1 + |supp(b0)||U||T |. Ces bornes sont intéressantes, car
la complexité bien connue de la Programmation Dynamique sur les croyances
est de O(|T ||BR,D

J1,T K(b0)||U||O|) (voir la Proposition 5.7).
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– Dans le Paragraphe 5.5, nous introduisons une sous-classe de Det-Pomdps,
les Separated Det-Pomdps. Comme le montre le Corollaire 5.16, l’intérêt des
Separated Det-Pomdps est qu’elle repousse la malédiction de la dimension
pour la Programmation Dynamique avec croyances. En effet, elle améliore la
borne de (1 + |X|)|supp(b0)| à 1+

(
2|supp(b0)| − |supp(b0)|

)
|X| (voir Corollaire 5.16).

De plus, cette borne est serrée (voir la Proposition 5.18).

• Dans le Chapitre 6, nous reformulons l’optimisation d’un système de production
de pétrole et de gaz comme un problème d’observation partielle. Nous prenons en
compte le fait que le système de production de pétrole est partiellement observé.
La dynamique contrôlée du champ de production pétrolière donnée au Chapitre 4
est la même, ainsi que le critère que nous cherchons à optimiser. Cependant, nous
ne considérons plus dans ce chapitre qu’à chaque instant t, l’état du système xt

est connu par le décideur. La stochasticité du problème est introduite par le fait
que l’état initial du système n’est pas connu, mais on suppose que l’on connaît sa
distribution de probabilité. Nous prouvons dans le Paragraphe 6.2.3 que le modèle
du réservoir présenté au Chapitre 4 combiné à une observation partielle du contenu
du réservoir conduit est équivalent à un problème d’optimisation de type Separated
Det-Pomdp. Il entre donc dans la classe étudiée au Chapitre 5.

Nous détaillons maintenant les principales contributions présentées dans le Chapitre 6:

– Dans le Paragraphe 6.2.1, nous formulons la gestion optimale d’un système de
production pétrolière partiellement observé comme un Det-Pomdp (voir le
Problème (6.1). Cette formulation est dérivée du Problème (4.1) de gestion
optimale d’un système de production pétrolière. Dans cette formulation, l’état
et les contrôles sont les mêmes que dans le Problème (4.1). Nous introduisons
également les observations du système (décrites au Paragraphe 6.2.2) qui sont
de dimension trois et se composent de la pression du réservoir, de la water-cut
(proportion d’eau produite par volume de liquide produit) et du gaz-oil ratio
(proportion de gaz produit par volume de pétrole produit). Nous supposons
que l’observation est donnée par une application h qui ne dépend que de l’état
du système. Plus précisément, en désignant par xt l’état au temps t et ot
l’observation au temps t, on a ot = h(xt).

– Au Paragraphe 6.2.3, nous prouvons dans le Lemme 6.1 et la Proposition 6.2
que, sous une hypothèse clé qui est satisfaite en pratique (à savoir que la croy-
ance initiale est compatible avec l’observation initiale), le Problème (6.1) est
équivalent à un problème d’optimisation de la classe Separated Det-Pomdp
qui partage les mêmes ensembles d’états, de contrôles, d’observations et de pas
de temps. Par conséquent, nous pouvons appliquer les résultats du Chapitre 5
au Problème (6.1). Nous pouvons donc résoudre le Problème (6.1) grâce à
l’Algorithme 4, et sa complexité est donnée par le Corollaire 5.16.
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– Dans le Paragraphe 6.3, nous présentons des applications numériques sur les
deux cas présentés dans le Chapitre 4, c’est-à-dire un réservoir de gaz et un
réservoir de pétrole où la pression est maintenue constante par l’injection d’eau.
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We first give in §2.1 contextual information for this thesis. Second, in §2.2, we present
the subject of this manuscript: the optimization of petroleum production systems taking
into account uncertainties. Third, in §2.3, we lay out the structure of this document.
Finally, in §2.4, we detail our main contributions.

2.1 Context of this thesis
This thesis started on 2019, September 1 and ended on 2022, November 30. It was the
second thesis conducted as part of a partnership between TotalEnergies and the École
Nationale des Ponts et Chaussées (ENPC). This partnership was signed in 2018, at the
initiative of Philippe Ricoux, and contains two Ph.D. subjects: stochastic optimization
for the procurement of crude oil in refineries, and stochastic optimization for petroleum
production systems.

The subject of this thesis is the management of petroleum production systems under
uncertainties, that is, how to pilot the production over time of an oil or gas field in order to
maximize profit. This thesis was made in cooperation with the Integrated Asset Modeling
(IAM) team at TotalEnergies, which is tasked with the integration of simulation models
from reservoir to process in order to support the evaluation and the design of oil-field
development plans. The cooperation first began thanks to Remy Marmier, then head of
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the IAM team, while Alejandro Rodríguez-Martínez became the main interlocutor, notably
for the validation of the physical models and the industrial applications. Anna Robert, part
of TotalEnergies’ R&D branch, was also part of the interlocutors. The cooperation between
the CERMICS laboratory at ENPC and TotalEnergies have led to a patent submission.

We now detail the subject of this thesis, namely the optimization of petroleum produc-
tion system.

2.2 Optimization of petroleum production system
Given that oil is becoming more and more expensive to extract, it becomes more and more
pressing to optimize oil-fields. Indeed, oil and gas projects span over several decades and
involve massive investments and complex planning. Moreover, the management of oil-fields
faces many uncertainties, be it due to the volatility of oil prices, or due to the inability to
directly fully observe what is trapped in the ground. Stochastic multistage optimization is
therefore a relevant tool to optimize the whole performance of such projects.

Literature on the optimization of oil-field tends to focus on how to improve the per-
formance of its different components (e.g. improving the production of one well). A far
smaller part of the literature concerns a holistic approach to the optimization of oil-fields,
and only a limited fraction covers a mathematical optimization approach, which is the
approach adopted in this document.

In this thesis, we present a mathematical framework that, first, is used to represent the
dynamics of an oil and gas production system and, second, returns a control policy which
maximizes an inter-temporal criterion. A control policy is a set of functions that take
as inputs quantities available to a non-anticipative decision maker such as the history of
observations and production of the oil gas production system, and return a decision (such
as how to operate the production system or the list of wells to consider drilling next) to
be applied at a given time.

First, in §2.2.1, we present some backgrounds on the management of oil-fields. Sec-
ond, in §2.2.2, we present the sources of uncertainties present in petroleum production
systems. Third, in §2.2.3, we present some optimization problems associated with oil-fields
management. Finally, in §2.2.4, we specify the problem which is studied in this thesis.

2.2.1 Context of oil-fields design and operation management

Let’s consider a company that has, thanks to a contract with the relevant authorities, rights
to exploit and extract oil from an oil-field. Such company uses the term “produce” for the
extraction of oil, and calls “production network” or “production system” the infrastructure
used in an oil-field to extract hydrocarbons. We therefore use that terminology in the rest
of the document. The goal of the company is to optimize an objective function (such as
the Net Present Value) over the full life of the concession, and do so by applying some
decisions. We hence use the term “decision maker” to refer to the company.
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In a given oil-field, there can be multiple geological formations that contain some re-
sources (different mixes of oil, gas and water). We call those formations “reservoirs”. Ideally,
the resources are stored in the pores of a reservoir (in the same way water can be held in
a sponge) at a very high pressure. That pressure is what allows the oil to flow out when
a well is drilled. Commonly, there is also a large geological formation that contains water
near a reservoir. That formation is called an “aquifer”. The presence and characteristics
of the aquifer may have large impacts on the management of a production network, as it
can lead to water entering the reservoir and replacing the produced oil. It can be both a
boon or a bane to the production system: it can either improve the rate of extraction by
cushioning the pressure drop in the reservoir, or it can flood part of the infrastructure and
thus prevent the use of said infrastructure afterward.

The production network is made of a lot of different infrastructures, such as wells (bores
in the earth that allows the production of oil and/or gas), pipes (used to transport oil from
one point of the field to another), FPSO (Floating Production Storage and Offloading,
ships used in offshore fields to process and store oil before it is exported through a tanker),
other exit-points facilities, etc. Each of those components has their own specifications.

We now detail the uncertainties one need to consider when managing a petroleum
production system.

2.2.2 Uncertainties in petroleum production systems

There are multiple sources of uncertainties encountered over the lifetime of a field. The first
and most obvious one is the volatility of oil prices. No one can accurately predict the future
price of oil. Moreover, oil prices are highly dependent on the geopolitical status, hence
long-term trends can drastically change due to political decisions. Taking into account
that uncertainty in an optimization framework is to a certain extent straightforward when
distributions of future prices are given. However, while finding the relevant probability
distributions for the prices is an important component of the process, it is beyond the
scope of optimization problems.

The second source of uncertainty comes from the fact that we cannot directly observe a
reservoir. We do not know how much stock is left, nor do we know where it is. However, we
can sometimes have a good picture of what is in Earth’s crust through different techniques,
such as seismic studies. In the end, however, we have at most a partial view of a reservoir.
From that partial observation, we can only infer uncertain trajectories of the content of
the reservoir as we have no accurate knowledge of the initial state of the reservoir. We
however consider that we have access to some probability distribution of the initial state.

Finally, uncertainty can also take the form of risks on the infrastructure itself. There
are some hazards in the management of a field, as has been unfortunately shown by acci-
dental oil spills. Indeed, infrastructure can fail. It is possible to do a risk analysis on the
production network, such as how much oil is released if a pipe is damaged. However, we
will not cover such these kinds of uncertainties in this thesis.
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In this thesis, we are mainly interested on how to take into account the fact that the
physical system is partially observed. We will thus not consider stochastic prices or risks
on the infrastructures.

We now present an overview of the optimization problems for the management of oil-
fields.

2.2.3 Overview of some optimization of petroleum production sys-
tem problems

As petroleum production systems are complex projects, multiple optimization problems
arise during the different phases of the projects. Indeed, the lifetime of a field is usually
decomposed into five phases: exploration, where the goals are to find reservoirs containing
hydrocarbons; appraisal, where the values of oil-fields are evaluated; development, where
the infrastructure is planned and installed; production, where hydrocarbons are finally
produced; abandonment, where the fields stop producing and infrastructure are decom-
missioned and removed. Optimization problems can be formalized for all those phases.
However, according to the survey Khor et al. [2017], mathematical optimization focuses
on the development and production phases: either to design a production system, or to
manage it.

We may identify three main industrial optimization problems of petroleum production
system:

1 the design of a petroleum production system, i.e. the optimization of the decisions
made at the development phase;

2 the management of an already given petroleum production system, i.e. the optimiza-
tion of the production phase;

1+2 the design and management of a petroleum production system, i.e. the optimization
of both the development and production phase.

We focus in the sequel on the second industrial problem: the optimization of the pro-
duction phase, which we now describe.

2.2.4 Management of a given petroleum production system

The optimization problem which is the focus of this thesis is the management of a given
petroleum production system. Given a production network composed of wells, pipe and
exit points, and given a finite set of time-steps T = {0, . . . , T}, we look for a production
policy that maximizes an economic indicator such as the Net Present Value while respecting
physical constraints, on the production network (such as having the pressure in a given
range at certain points in the network, respecting a maintenance planning, etc.).

When considering a given production network, we have a set of controls U we can
apply on that system. Those controls are actions on a fixed production network: we
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cannot change the selection of wells or modify the network of pipe, we only act on in-
place actuators (such as valves present on pipes that can be opened or closed). Moreover,
we model the reservoirs and production network as dynamical systems with the help of
physical equations. We denote by xt ∈ X the state of that dynamical system (with X the
set of states) and by ut ∈ U the controls at time t ∈ T . Its evolution is given by the
mapping f : X × U → X. We formulate the optimization of the management of a given
petroleum production system as an optimal control problem which takes the following form
in the deterministic case.

max
ut,xt

T−1∑
t=0

Lt(xt, ut) +K(xT ) (2.1a)

s.c. xt+1 = f(xt, ut) , ∀t ∈ T \ {T} , (2.1b)
ut ∈ Uad

t (xt) , ∀t ∈ T \ {T} . (2.1c)

At each time t, the controls must belong to an admissibility set that depends on the state
xt, Uad

t (xt). Moreover, we optimize an additive cost function, with the instantaneous cost
at time t ∈ T \ {T} given by the mapping Lt : X×U→ R, while the final cost is given by
the mapping K : X→ R.

The objective of this thesis is to first detail the formulation of Problem (2.1), before
extending the previous formulation in order to take into account partial observation of the
state.

We now present the structure of this document.

2.3 Outline of the thesis
The manuscript is composed of the four following chapters:

• In Chapter 3, we present an overview of the constitutive equations necessary to
build the formulation of the management of a petroleum production system. Those
equations either focus on the fluids in the reservoir and on the reservoir’s behavior,
or they focus on the production network itself.

• In Chapter 4, we detail the formulation of the optimization of a given petroleum
production system when considering that we have perfect observation of the content
of the reservoir, and we know the future prices. It is therefore a deterministic formu-
lation of the optimization problem. We detail how we can represent the reservoir as
a controlled dynamical system, before presenting some numerical applications. It is
the transcript of an article accepted in Computers & Chemical Engineering, Vessaire
et al. [2022].
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• In Chapter 5, we present a mathematical framework to take into account partial ob-
servation when considering a dynamical system with deterministic evolution and ob-
servation functions, Deterministic Partially Observed Markov Decision Process(Det-
Pomdp). We further expand works by Littman [1996], and present a subset of Det-
Pomdp, Separated Det-Pomdp, which possesses properties which further push back
the curse of dimensionality.

• In Chapter 6, we present a formulation of the management problem that takes into
account the partial observation of the content of the reservoir. We then demonstrate
that the resulting formulation is equivalent to a Separated Det-Pomdp optimization
problem, before presenting some numerical applications.

We now detail our main contributions.

2.4 Main contributions
• Chapter 3 gives some background on the physical constitutive equations used in the

rest of this thesis

• In Chapter 4, first a physical model that describes the reservoir’s behavior over time
is given. It consists of a controlled dynamical system which gives the evolution over
time of physical quantities which characterize the oil field under exploitation. These
equations are derived from material balance equations on the reservoir and under the
assumption that the fluids contained in the reservoir follow a model known under
the name of black-oil models. Second, a deterministic formulation of an optimization
problem over time for an oil and gas production system, governed by the controlled
dynamical system introduced in the first part, is given. Numerical solution of the
optimization problem are given and compared to other possible formulations.

Describing the evolution over time of a reservoir as a controlled dynamical system
and deriving the evolution equations from material balance equations and black-oil
models is not common in the oil field management community. Then, using dynamic
programming to solve an optimization problem over time for a controlled dynamical
system is classical but subject to the curse of dimensionality. That is, when the
state of the system is large (which is the case here since the state is of dimension
5) it becomes difficult to numerically solve the problem. That’s why we have made
numerical applications on cases where the state dimension boils down to dimension
1 (gas reservoir and an oil reservoir where pressure is kept constant through water
injection).

More precisely, the content of Chapter 4 is the following:

– In §4.3, we describe the reservoir evolution over time as a controlled dynamical
system. That is, denoting by xt the state of the system and by ut the controls
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applied a time t, the state evolution is given by a mapping f :

xt+1 = f(xt, ut) .

In this description, the state x of the system is of dimension five and is composed
of the amount of the three fluids of the black oil model (oil, gas and water), the
reservoir pressure and the total pore volume (the volume where the fluids are
stored) and the controls u are the possible actions on the production network:
opening or closing pipes, choosing the well-head pressure, operating pumps.
The mathematical expression for the mapping f is given in Proposition 4.2, and
the way to derive this expression using material balance equations and black-oil
models is given in Appendix 4.A.

– In §4.2, we formulate, given the state dynamics f and assuming that the state
of the reservoir is observed over time, the optimal management of a petroleum
production system as an optimal control problem over a finite horizon (see
Problem (4.1)). The optimal solution of Problem (4.1) is obtained with classical
Dynamic Programming algorithms (see Proposition 4.1 and Algorithm 1).

– In §4.4, numerical applications on two distinct cases, a gas reservoir and an
oil reservoir where pressure is kept constant through water injection, are given
together with comparisons to a standard optimization approach of the oil and
gas industry on the same problems.

• In Chapter 5, we present our main theoretical contribution, devoted to the study
of Deterministic Partially Observed Markov Decision Process (Det-Pomdp), and
is a preparation work for Chapter 6 as the oil and gas optimization problem under
partial observation is shown to belong to the Det-Pomdp class in Chapter 6. More
generally, the formulation of an optimization problem over time under partial obser-
vation of the state with controlled state dynamics perturbed by exogenous noises falls
into the class of Pomdp problems. Pomdps have been widely studied, and numeri-
cal algorithms based on Dynamic Programming have been specifically developed for
Pomdps. However, it is well-known that they are numerically difficult and subject
to the curse of dimensionality. We present in §5.1.1 a known subclass of Pomdp
called Det-Pomdp. Then §5.2, we present Dynamic Programming on beliefs for
Det-Pomdp with constraints. Second, in §5.3, we present a new representation for
the belief dynamic using pushforward measures. Third, in §5.4, we present complex-
ity bounds for Dynamic Programming on beliefs for Det-Pomdp. Fourth, in §5.5,
we introduce an even simpler subclass of Det-Pomdp, Separated Det-Pomdp.

We now detail the main contributions presented in Chapter 5.

– In §5.2, we extend [Bertsekas and Shreve, 1978] Dynamic Programming equa-
tions with beliefs for unconstrained Pomdps to Det-Pomdps with constraints.
Indeed, a key assumption in [Bertsekas and Shreve, 1978] to write Dynamic Pro-
gramming equations with beliefs is that there are no admissibility constraints
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on the controls. As the applications dictate the presence of such constraints, we
present this extension in Proposition 5.2, which gives us Dynamic Programming
Equations (5.16).

– In §5.3, we express the belief dynamics in Det-Pomdps using the notion of
pushforward (or image-measure), as presented in Lemma 5.4. This new repre-
sentation is the basis for all the improvements of the bounds on the cardinality
of the set of reachable beliefs.

– In §5.4, we improve Littman’s bound on the cardinality of the set of reachable
beliefs,

∣∣BR,D
J1,T K

∣∣, for Det-Pomdp, from (1 + |X|)|X|, to (1 + |X|)|supp(b0)| (see The-
orem 5.9). Note that this bound does not depend on the number of time steps.
Moreover, in Theorem 5.10, we give a time-dependent bound 1+ |supp(b0)||U||T |
on the cardinality of the set of reachable beliefs. Those bounds are of in-
terest, as the well-known complexity of Dynamic Programming on beliefs is
O(|T ||BR,D

J1,T K(b0)||U||O|) (see Proposition 5.7).

– In §5.5, we introduce a subclass of Det-Pomdps, Separated Det-Pomdps. As
shown in Corollary 5.16, the interest of Separated Det-Pomdps is that it pushes
back the curse of dimensionality for Dynamic Programming with beliefs. Indeed,
it improves the bound from (1 + |X|)|supp(b0)| to 1 +

(
2|supp(b0)| − |supp(b0)|

)
|X|

(see Corollary 5.16). Moreover, this bound is tight (see Proposition 5.18).

• In Chapter 6, the optimization of an oil and gas production system under partial
observation problem is addressed. We take into account the fact that the oil produc-
tion system is partially observed. The controlled dynamics of the oil production field
given in Chapter 4 are the same as is the criterion that we try to optimize. The new
fact is that we do not consider that at each time t, the state of the system xt is given
to the decision maker. Stochasticity is introduced as we suppose that the initial state
of the system is not known, but we assume that we know its probability distribution.
We prove, in §6.2.3, that the model of the reservoir presented in Chapter 4 combined
with a partial observation of the content of the reservoir leads is equivalent to a
Separated Det-Pomdp optimization problem. It thus falls into the class studied in
Chapter 5.

More precisely, the content of Chapter 6 is the following:

– In §6.2.1, we formulate the optimal management of a partially observed petroleum
production system as a Det-Pomdp (see Problem (6.1)). This formulation is
derived from the optimal management of a petroleum production system Prob-
lem (4.1). In this formulation, the state and controls are the same as in Prob-
lem (4.1). Meanwhile, the observations of the system (described in §6.2.2) are
of dimension three, and are composed of the reservoir pressure, the water-cut
(proportion of water produced per volume of liquid produced) and the gas-oil
ratio (proportion of gas produced per volume of oil produced). We assume that
the observation is given by the mapping h which only depends on the state of
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the system. That is, denoting by xt the state at time t and ot the observation
at time t,

ot = h(xt) .

– In §6.2.3, we prove in Lemma 6.1 and Proposition 6.2 that, under a key assump-
tion which is satisfied in practice, Problem (6.1) is equivalent to a Separated
Det-Pomdp optimization problem that shares the same sets of states, controls,
observations and time steps. Consequently, we can apply the results of Chap-
ter 5 to Problem (6.1). We can hence solve Problem (6.1) thanks to Algorithm 4,
and its complexity is given by Corollary 5.16.

– In §6.3, we present numerical applications on the two cases presented in Chap-
ter 4, i.e. a gas reservoir and an oil reservoir where pressure is kept constant
through water injection.
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Chapter 3

Physics for oil-field problems
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3.1 Introduction
The goal of this chapter is to present the different components needed for the formulations
of optimization problems on oil-fields. We will notably describe oil-fields. An oil-field
is a set of infrastructure made to extract a given resource (oil and/or gas). It can be
naturally decomposed in two parts: the production network (the infrastructure itself), and
the reservoir where the resource is kept. We will properly define the different sets and
variables associated with those two components, starting with the production network.

Note that, as a production network is an assembly of multiple parts, an accurate de-
scription of each one of them would be too long and too complex. In this chapter, we
will only focus on the relevant constitutive equations needed for the formulation of the
problems previously presented.
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3.2 Representing the production network as a graph
The production network is made of multiple components such as pipes, intersections, valves
or wells. Its role is to transport the resources from where they are extracted (the wells) to an
exit-point such as an FPSO (Floating Production Storage and Offloading). We represent
that network thanks to a planar graph (a graph whose vertex are in the R2 plane), as
shown in Figure 3.1. In this section, we first define how the components of the network are
modeled in the graph. Then, we specify the variables necessary to model them. Finally,
we outline the equations that link them together.

w1 w2 w3

wh1 wh2 wh3

i1

e

Figure 3.1: Representing a production network as a graph

Note that many variables can depend on time. However, we have yet to precise the
form that time takes (discrete, continuous, . . . ) in our model to accurately define them.
Therefore, time will be implicit in this section.

3.2.1 Definition of the production network graph

There are two components in a graph: nodes and arcs.

3.2.1.1 Nodes

The nodes represent pertinent positions in the network. There can be multiple components
on those positions (such as wells, intersections, exit-points, ...). We note V the set of nodes
of the graph, and we partition V as:

V = Vin ⊔ Vmid ⊔ Vout . (3.1)

The different subsets are defined in Table 3.1. They detail what components are present
on each node (each component type is given a subset). If a node is part of a subset, that
means that a corresponding component is placed on that node.

For example, in the graph presented in Figure 3.1, we have Vin = {w1, w2, w3}, Vmid =
{wh1, wh2, wh3, i1}, Vout = {e} and Vc = {wh1, wh2, wh3}. This means that well-heads are
a part of the intersection set (well-heads are particular intersections), i.e. that Vc ⊂ Vmid.
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Set Definition
Vin Set of wells (the bottom of the wells)
Vmid Set of intersections
Vout Set of exit-points
Vc Set of the well-heads

Table 3.1: Definition of the subsets of V

3.2.1.2 Arcs

In a production network, we have pipes, wells and valves. We use arcs between nodes to
represent those pipes. We note A the set of arcs: A ⊂ V2. We also define some relevant
subsets of A in Table 3.2.

Set Definition
Awell Set of well pipes
Ac Set of pipes with valves

Table 3.2: Definition of subsets of A

We notably need to differentiate wells from other pipes. Indeed, a well is a special kind
of pipe, as the physics inside it are a bit different from the rest of the pipes. We thus
need to specify them with the set Awell ⊂ A. Valves, on the other hand, allow us to pilot
the production network. We can open or close them, and thus close some pipes. We thus
create Ac ⊂ A to tell us which pipes we can control.

3.2.2 Variables in the graph

We have defined different sets of the graph, and what they represent. We will now present
the variables needed for the formulation of optimization problems.

• Position of a node.
When we design a network, we need variables representing the position of a node.
We note yv ∈ R2 the position of the node v ∈ V. Note that yv is a vector, each
component being a coordinate of the position of v.

• Construction of a pipe.
We also need a variable for the construction of a pipe. We note p(v,v′) the Boolean
that is at 1 if we build the edge (v, v′) ∈ A, and at 0 otherwise.

• Pressure.
At each point of the network, there is pressure. Pressure is thus defined on all V.
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We note Pv the pressure at the vertex v. We also consider that pressure is positive,
hence Pv ≥ 0 ∀v ∈ V

• Flow.
In each arc of the network, there can be a flow. Moreover, there can be multiple
kinds of fluids. We thus define by q(v,v′) the flow in the arc (v, v′). q(v,v′) is a vector,
each component being the flow of a given fluid. Usually, we will consider that q has
three components: oil, gas and water. We note them respectively qo, qg and qw.
Therefore, we have:

qa =

qo
a

qg
a

qw
a

 , ∀a ∈ A . (3.2)

If we need to have more components, we explicitly mention it.

• State of a pipe.
Some pipes in the network have valves that allow the oilfield management entity to
open or close a given pipe. We thus need to have a Boolean oa that is at 1 if the arc
a is open, and at 0 if it is closed. That variable is only defined on the arcs a ∈ Ac.

3.2.3 Constitutive equations and constraints for the network

We will now present two constitutive equations linking the different variables in the pro-
duction network, and two constraints.

3.2.3.1 Flow conservation at intersection

The first constitutive equation is the conservation of the flow at an intersection:∑
(v,v′),v∈Vin∪Vmid

q(v,v′) =
∑

(v′,v′′),v′′∈Vmid

q(v′,v′′) , ∀v′ ∈ Vmid . (3.3)

Thus, at every node v′ ∈ Vmid, we have conservation of the flow. This constraint does
not exist at the wells (i.e. for v ∈ Vin), as they are sources from which the flow comes
from. It does not exist at the exit points either (i.e. for v ∈ Vout), as they are the places
where the flow exits the network.

3.2.3.2 Pressure drop in pipes

The second constitutive equation is the pressure drop in a pipe. We consider that there is
a polynomial relation for the pressure drop:

Pv − Pv′ = ∆p
(v,v′)(q(v,v′)) , ∀(v, v′) ∈ A , (3.4)

24



3.2. Representing the production network as a graph

where, ∆p
(v,v′) is a polynomial function that depends on the pipe (v, v′) ∈ A. The functions

∆p depends on the length of the pipe, but also on the material used, its section, etc. We
assume that ∆p

(v,v′) is stationary, as, for now, we do not model the degradation of the pipes.

3.2.3.3 Flow capacity in pipes

The first constraint is on the flow rate in the pipes. Indeed, the flow that can pass through
a pipe is limited:

qmin
a ≤ qa ≤ qmax

a , ∀a ∈ A . (3.5)

We have qmin
a = −qmax

a , ∀(v, v′) ∈ A, and qmin is a stationary vector. A positive flow
value in arc (v, v′) means that the flow goes from v to v′. A negative flow value means that
the flow goes from v′ to v.

3.2.3.4 Pressure range

The second constraint is on the range of pressures at a given point:

Pmin
v ≤ Pv ≤ Pmax

v , ∀v ∈ V , (3.6)

where Pmin and Pmax
v are stationary parameter.

3.2.4 Wells and production functions

A well is an infrastructure which allows the extraction of oil and/or gas from underground.
We consider that it is made of two parts: the well perforations, where the fluids are flowing
in the well, and a pipe that allows the fluids to flow from the bottom of the well to the
well-head and the rest of the production network.

We consider that the production of the well w ∈ Vin is characterized by a production
mapping called “Inflow Performance Relationship”, which we denote by Iprw. It is a
mapping of the “bottom-hole pressure” (i.e. the pressure at the well perforations) and the
content of the reservoir near the well.

Let P r
w be the reservoir pressure near well w ∈ Vin, Sw

w be the saturation of water
near well w (i.e. the proportion of water), Sg

w be the saturation of gas near well w and
P bh
w be the bottom-hole pressure of well w. The flow q(w,v) in the outgoing pipe of well w,

(w, v) ∈ Awell, is given by the mapping Iprw : R2
+ × [0, 1]2 → R3

Iprw : (P bh
w , P r

w, S
w
w , S

g
w) 7→

qo
(w,v)

qg
(w,v)

qw
(w,v)

 = q(w,v) , (w, v) ∈ Awell . (3.7)

There is an extensive literature on possible mathematical expressions of the mappings
Ipr (Archer et al. [2003], Al-Rbeawi [2019]), as the possible expressions are highly de-
pendent on the type of the considered well (its geometry, position, structure) and on the
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reservoir’s characteristics (porosity of the rock). Note that, most of the time, the mathe-
matical expressions of the mappings Ipr are not “invertibles”. For example, we may have
qw
(w,v) = 0 over a range of water saturation Sw

w , even though we produce some oil qo
(w,v), or

we may also have qg
(w,v) = 0 over a range of gas saturation Sg

w.
We give below two Ipr mappings used in numerical studies in Chapter 4 (Equa-

tions (4.18) and (4.21)), but first we make a detour devoted to another representation
of the Inflow Performance Relationship, denoted by Ĩprw : R2

+ × [0, 1]× R+ → R3, which
is a function of the bottom-hole pressure P bh, the reservoir pressure P r, and of two ratios,
the water-cut wct and the gas-oil ratio gor, which we now define.

The water-cut wct
w is the proportion of water produced when we extract a volume of

liquid. If the production of liquid is not zero (i.e. if qo
(w,v) + qw

(w,v) ̸= 0), we have

wct
w =

qw
(w,v)

qw
(w,v) + qo

(w,v)

. (3.8)

We define the water-cut function Wct
w : R2

+ × [0, 1] × R+ → R3 as the function which
returns the water-cut value given the variables P bh

w , P r
w, Sw

w , Sg
w. Hence, it is given as the

composition of the function Ψwct : R3 → R, x 7→ x(3)

x(1)+x(3) with the mapping Iprw:

Wct
w = Ψwct ◦ Iprw . (3.9)

Moreover, as shown in Li and Li [2014], the water-cut function only depends on the oil
saturation So

w = 1− Sw
w − Sg

w and on the water saturation Sw
w , i.e. Wct

w : [0, 1]2 → [0, 1] .
The gas-oil ratio gor is the proportion of gas produced when we extract a volume of

oil. If the production of oil is not zero, we have

gor
w =

qg
(w,v)

qo
(w,v)

. (3.10)

We define the gas-oil ratio function Gor
w : R2

+ × [0, 1] × R+ → R3 as the function which
returns the gas-oil ratio given the variables P bh

w , P r
w, Sw

w , Sg
w. Hence, it is given as the

composition of the function Ψgor : R3 → R, x 7→ x(2)

x(1) with the mapping Iprw:

Gor
w = Ψgor ◦ Iprw . (3.11)

Moreover, as shown in Archer et al. [2003], the gas-oil function only depends on the gas
saturation Sg and on the water saturation Sw, i.e. Gor

w : [0, 1]2 → R+.
Using the water-cut function and the gas-oil ratio function, it is proved in Al-Rbeawi

[2019] that there exists a mapping Ĩprw such that for all P bh
w , P r

w, Sw
w , Sg

w we have

Ĩprw

(
P bh
w , P r

w,W
ct
w (1− Sw

w − Sg
w, S

w
w ),G

or
w (Sw

w , S
g
w)
)
= Iprw(P

bh
w , P r

w, S
w
w , S

g
w) . (3.12)
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As Wct and Gor are obtained as the compositions of functions Ψwct and Ψgor with mapping
Ipr, there is a mapping h : R3 → R× [0, 1]× R such that

h ◦ Iprw(P
bh
w , P r

w, S
w
w , S

g
w) = (P r

w,W
ct
w (1− Sw

w − Sg
w, S

w
w ),G

or
w (Sw

w , S
g
w)) .

We hence rewrite Equation (3.12) as:

Ĩprw

(
P bh
w , h ◦ Iprw(P

bh
w , P r

w, S
w
w , S

g
w)
)
= Iprw(P

bh
w , P r

w, S
w
w , S

g
w) .

The construction of the mapping Ĩpr is detailed in Al-Rbeawi [2019], where the author
expresses the multi-flow of fluids produced q(w,v) as a function of the relative permeability
of each phase depending on their saturation. The construction of the mapping Ĩpr is
possible thanks to some key properties of the Inflow Performance Relationship mappings
that we detail now.

(Ipr1) For a fixed ordered pair of water saturation and gas saturation (Sw
w , S

g
w) ∈ [0, 1]2,

the flow of oil qo
(w,v) is an increasing function of the difference between the reservoir

pressure P r
w and the bottom-hole pressure P bh

w (see [Dake, 1983, Chap. 6, Table 1]).
For the rest of the fluids (i.e. for qg

(w,v) and qw
(w,v)), they are either the null functions,

or they are increasing functions.

(Ipr2) The water-cut function Wct
w as defined in Equation (3.9) is a nondecreasing function

of the water saturation Sw
w . This point is illustrated in Li and Li [2014], where the

authors notably studied the impact of the water saturation on the recovery of oil.

(Ipr3) The gas-oil Gor
w function as defined in Equation (3.11) is a nondecreasing function of

the gas Sg
w, as illustrated by the relative permeability of gas in Archer et al. [2003].

(Ipr4) For a given pair of water-cut and the gas-oil ratio (wct, gor) ∈ [0, 1] × R+, there
is a unique difference of pressure between the reservoir pressure and the bottom-
hole pressure leading to a given flow of oil qo

(w,v). Otherwise stated, for a given tuple
(wct, gor, qo

(w,v)) ∈ [0, 1]×R+×R, there exists a unique difference of pressure ∆P ∈ R
such that the following system of equations has at least one solution (P bh

w , P r
w, S

w
w , S

g
w):

P r
w − P bh

w = ∆P ,

Ψwct ◦ Iprw(P
bh
w , P r

w, S
w
w , S

g
w) = wct ,

Ψgor ◦ Iprw(P
bh
w , P r

w, S
w
w , S

g
w) = gor ,

Iprw(P
bh
w , P r

w, S
w
w , S

g
w) = qo

(w,v) .

Indeed, the function that, for a fixed pair of water-cut and the gas-oil ratio (wct, gor) ∈
[0, 1] × R+, takes as input a difference of pressure and returns the oil production is
increasing with the difference of pressure, as illustrated in Daoud et al. [2017].

The existence of the mapping Ĩprw is derived by combining the four Points (Ipr1)-
(Ipr4). Moreover, it is established that the mapping Ĩprw(P

bh
w , ·) is invertible.
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We now present the two simplifications Iprw that we will use in the applications pre-
sented in this thesis:

• When considering a well which produces only oil and water, the function Ipr can be
simplified to a simplified Darcy’s law. Indeed, when there is no gas near the well (i.e.
Sg
w = 0), we obtain the following simplification for the production of oil and water.

We can assume that the total flow qr
(w,v) is given by

qr
(w,v) = αw(P

r
w − P bh

w ) ,

where qr
(w,v) is given by

qr
(w,v) = qo

(w,v) + qg
(w,v)︸ ︷︷ ︸
=0

+qw
(w,v) ,

with αw the productivity index of the well w and qr
(w,v) the total flow which consists

of a mix of oil and water.

The partition of the total flow between the flow of oil and water is given by the water
cut function Wct

w

• When considering a well that only produce gas, the Inflow Performance Relationship
Ipr is simplified. We hence obtain

qg
(w,v) = Iprg

w(P
r
w − P bh

w ) .

3.3 Representing the exploitation of a reservoir
A reservoir is a geological formation that contains some resources (oil and/or gas). It is
a key element of an oil-field. Thus, how we model it can have a significant impact on the
optimization of oil-fields. There are many possible models for the reservoir. In this section,
we will present two of such models: the decline curves, and a black-oil tank model. In §3.3.1
we present the decline curves model. In §3.3.2, we will present the black-oil model.

All reservoir models are time dependent, and are usually written with discrete time.
We will therefore assume that we have discrete time steps which belongs to the set T ,
defined as:

T = {1, . . . , T}
Each t ∈ T represents the time step [t, t+1). and the horizon T is the final step considered.

3.3.1 Description of the exploitation of a reservoir through decline
curves

The simplest representation of the reservoir are decline curves or oil-deliverability curves.
Usually, decline curves describe the bottom-hole pressure or gives the maximal production
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possible at a well depending on the amount of oil that has been produced. They thus
return the reservoir pressure at one well depending on what has already been produced
from it. They also return the water cut and the gas oil-ratio. Decline curves can be good
approximation of the exploitation of a reservoir when considering primary extraction (i.e.
producing hydrocarbon without re-injection in the reservoir) of a one tank reservoir. We
also note Qv,t the cumulated oil extracted at v and t, i.e.:

Qv,t =
∑
τ≤t

qv,τ , ∀(v, t) ∈ Vin × T .

With those notations, the decline curves looks like in Figure 3.2. Usually, decline-curves
are functions g that return the maximal production:

qv,t ≤ g(Qv,t) , ∀t ∈ T .

qv,t

Qv,t−1

Figure 3.2: Illustration of a decline curve for a given well v. The X-axis
represents the total amount of oil that has been produced on that well. The

Y-axis represents the resulting maximal possible production.

With this representation, we can easily describe each well as a dynamical system. The
main issue is that we naturally get one state per well. This means that we won’t be able
to use the decline curves when there are multiple wells, as we would have a state too large
for any computation.

3.3.2 Black-oil reservoir model

The second representation of a reservoir is the black-oil tank model. This model allows us
to have a simplistic, but global description of the reservoir, with interaction between wells.
We will first describe the reservoir and the assumptions for the black-oil tank-like model.
We will then write the material balance equations that result from that description.

Note that, usually, such equations are written with parameters in mass units. However,
we will use parameters in standard volume instead of mass. Since the standard volumes
are defined for a given pressure and temperature, standard volume is proportional to mass
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through density (which is a constant at the standard conditions of pressure and temper-
ature). Thus, all the following mass conservation equations will be written in standard
volume units, and not in mass units.

3.3.2.1 Reservoir description

We consider a tank-like reservoir, like in Figure 3.3. We also consider that the fluids in the
reservoir follow the black-oil model. This means that the reservoir can contain three fluids:
oil, gas and water. We consider that their physical properties are stationary (constant in
time) and are uniform in the reservoir (constant in space). We also consider that those
fluids can be divided in up to two phases in the reservoir: a liquid phase, and a gaseous
phase. In the liquid phase, we can have a mix of oil, dissolved gas and water. In the
gaseous phase, we can only have free gas.

Water-Oil Contact

Gas-Oil Contact

Liquid phase

Gas cap

Aquifer

Figure 3.3: Representation of a tank-like reservoir

The standard volume taken by those components are defined in Table 3.3. These
components are stored in the rocks’ pores, and the total pore volume is written V p.

Notation Definition
V o Standard oil volume (liquid phase)
V dg Standard dissolved gas volume (liquid phase)
V w Standard water volume (liquid phase)
V g Standard free gas volume (gaseous phase)

Table 3.3: Definitions of the volume in the reservoir

We also consider that the reservoir pressure is uniform in the reservoir, so that both
phases and all fluids will be at the same pressure, written P r. The reservoir temperature
is uniform and stationary. Temperature will therefore not appear in any constitutive equa-
tions, as it is a constant. Since we assume that we have a tank-like reservoir, we assume
that the free gas travels instantly to the gas cap. We also assume that the reservoir’s
cap-rock cannot fracture. It means that there is no “leak”, and that we can write mass
conservation equations.
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The last component of the model of the reservoir is the aquifer model. An aquifer is
a geological formation around the reservoir which contains water and not hydrocarbons.
When there is an aquifer, we consider that it is sufficiently large to be considered infinite
compared to the reservoir. We therefore won’t need to explicitly account for water in the
aquifer or for changes in it.

All the variables, V o, V g, V dg, V w, V p and P r can change over time. They will therefore
be indexed by a t ∈ T , where T is the set of time-steps.

Now that we have presented the different components of a reservoir, we can write
material balance equations to describe their evolution.

3.3.2.2 Oil material balance

The oil material conservation gives a dynamical equation for the amount of oil V o
t :

V o
t+1 = V o

t − F o
t , ∀t ∈ T , (3.13)

where F o
t the standard volume of oil extracted from the reservoir during the interval

[t, t+1). The oil material conservation equation states that the variation of the amount of
oil in the reservoir between two time-steps is equal to the oil production between the two
time-steps.

3.3.2.3 Gas material balance

We express here the mass conservation for the gas. We proceed as follows. First, during
interval [t, t + 1) a quantity F g

t of gas is extracted from the reservoir. Second, during the
same interval, the quantity of oil has evolved from V o

t to V o
t+1 (using (3.13)) and the pressure

has evolved from P r
t to P r

t+1. At any time, we assume that the quantity of dissolved gas
in the oil V dg is given by a function of the reservoir pressure P r and the amount of oil in
the reservoir V o as

V dg = δ(V o, P r) = V o ·Rs(P
r) , (3.14)

where Rs is a piece-wise linear function (represented in Figure 3.4) which returns the
solution gas dissolved in the oil.

Rs(P
r)

P r
Pb

Figure 3.4: representation of the function Rs, that returns the proportion
of gas that is dissolved in the oil for a given reservoir pressure
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Thus, the quantity of dissolved gas has evolved from V dg
t = δ(V o

t , P
r
t ) to V dg

t+1 =
δ(V o

t+1, P
r
t+1). Therefore, the quantity of liberated gas (V dg

t − V dg
t+1) must be added to the

gas mass conservation equation. Thus, we have a mass conservation equation for the free
gas that can be written:

V g
t+1 = V g

t − F g
t + (V dg

t − V dg
t+1)︸ ︷︷ ︸

liberated gas

= V g
t − F g

t +
(
V o
t ·Rs(P

r
t )− V o

t+1 ·Rs(P
r
t+1)

)
(using Equation (3.14))

= V g
t − F g

t +
(
V o
t ·Rs(P

r
t )−

(
V o
t − F o

t

)
·Rs(P

r
t+1)

)
(using Equation (3.13) to transform V o

t+1 as an expression with terms depending only on t)

Hence, we have

V g
t+1 = V g

t − F g
t +

(
V o
t ·
(
Rs(P

r
t )−Rs(P

r
t+1)

)
+ F o

t ·Rs(P
r
t+1)

)
. (3.15)

3.3.2.4 Water material balance

The water material balance gives us the dynamics equation

V w
t+1 = V w

t − Fw
t + Fwe

t , (3.16)

with Fw
t the amount of water produced during interval [t, t + 1), and Fwe

t the water
encroachment (i.e. the inflow of water from the aquifer to the reservoir) between t and
t+ 1.

The mass conservation equation states that the variation of the amount of water in the
reservoir between two time-steps is equal to the difference between the water production
and the water encroachment between the two time-steps.

3.3.2.5 Total pore volume change

In this section, we express the change in the total pore volume between two time steps.
We present two methods, which we use in different cases:

• a finite difference method, presented in Dake [1983], which can always be used but
leads to approximations;

• a solution of a differential equation, more precise, but which can only be used in
certain conditions as it often leads to transcendental equations.

We first present the finite difference method. According to Dake [1983], the change in
the total pore volume satisfies:

V p
t+1 − V p

t

V p
t

= cf (P
r
t+1 − P r

t ) , (3.17)

32



3.3. Representing the exploitation of a reservoir

where cf gives the compressibility of the rocks in the reservoir. It is assumed to be a
positive constant in the pressure range considered. Equation (3.17) express the fact that
the relative pore volume change between two time-steps is proportional to the difference
of pressure between the two time-steps.

However, Equation (3.17) is obtained by a first order Taylor approximation of the
changes of the total pore volume depending on the pressure. It may raise some problems
when used for example with a gas storage reservoir. Indeed, if we start at a volume V p

0 ,
then we first raise the pressure by ∆P at time 1, and then change it again by −∆P , then
we obtain that V p

2 ̸= V p
0 as we have a second order error:

V p
2 = V p

1 (1− cf∆P )

= V p
0 (1 + cf∆P )(1− cf∆P )

= V p
0

(
1− (cf∆P )2

)
.

This contradicts the physics which states that we should have returned to the initial volume,
i.e. V p

2 = V p
0 .

We now present the second method, based on the solution of a differential equation. In
order to reduce the number of variables necessary to describe the reservoir, we would like
a function giving the reservoir volume V p

t depending on the reservoir pressure P r
t . Indeed,

the pore volume is a function of the pressure, and it should not change depending on the
history of the reservoir. To get that function, we need to get back to the definition of cf :

cf =
1

V p

(
∂V p

∂P

)
T

,

where T is the temperature in the reservoir. Since we consider that the temperature T is
stationary (tank-like assumption), the pore volume only depends on the reservoir pressure,
and we end up with the following differential equation:

(V p)′ − cfV
p = 0 .

Since cf is assumed to be a positive constant, we obtain the following expression for
the pore volume:

V p(P r) = aecfP
r
, (3.18)

where a is a given positive constant.
The main issue with that expression is that, when combined with the other material

balance equations (i.e. with Equations (3.13)-(3.16)), it leads to a transcendental equation.
We thus cannot get an expression of the pressure in the reservoir in the general case when
considering Equation (3.18). In most cases, we will therefore use Equation (3.17) despite
the second order error.

There are three main cases where we can use Equation (3.18):

• A reservoir which only contains gas.
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• A reservoir which contains gas and water.

• A reservoir which contains oil and water but where pressure stays below the bubble
point.

3.3.2.6 Saturation conservation

We now present a conservation equation for the reservoir. First, since the reservoir is
defined by the total pore volume, we can define the saturations of each fluid contained
in the reservoir. The saturation of a given fluid correspond to the proportion of the pore
volume taken by that fluid. We must have a conservation of the saturations in the reservoir,
as there cannot be any void. Hence:

So
t + Sg

t + Sw
t = 1 , ∀t ∈ T . (3.19)

To get the saturation, we need to transform the standard volumes into volumes at
reservoir conditions. We need the functions (called factor in reservoir engineering):

Notation Definition
Bo Oil formation factor
Bg Gas formation factor
Bw Water formation factor

Those functions take the pressure of the reservoir as input and return the volume taken
by one standard cubic meter of a fluid when at that reservoir pressure. The functions are
derived from the physical properties of the fluids as they are part of the PVT (Pressure
Volume Temperature) functions, and are stationary. In the black-oil model, the functions
Bo and Bw can be approximated by piece-wise linear functions. The function Bg is inversely
proportional to the pressure until the so-called bubble point pressure Pb, beyond which
there cannot be any free gas in the reservoir.

Bo(P
r)

P r
Pb

Bw(P
r)

P r
Pb

Bg(P
r)

P r
Pb

Note that in our cases, we extend Bg beyond the bubble point with a constant value 0.
We thus obtain a function which is defined for all possible pressures and with finite values.
Note that the value of the constant used to extend the function Bg doesn’t matter as long
as it is finite, as every time this function is used, it is multiplied with a term whose value
is 0 when the pressure is higher than the bubble point Pb.
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For each phase, the saturation can be computed at each time t from the pore volume
(i.e. the available volume in the reservoir), the quantity of the phase in the reservoir and
the reservoir pressure. We have, for each fluid:

Notation Definition Formula

So
t Oil saturation

V o
t ·Bo(P

r
t )

V p
t

Sg Free gas saturation
V g
t ·Bg(P

r
t )

V p
t

Sw Water saturation
V w
t ·Bw(Pr

t )

V p
t

With the saturations, we can rewrite the saturation Equation (3.19) as:

V o
t ·Bo(P

r
t ) + V g

t ·Bg(P
r
t ) + V w

t ·Bw(P
r
t ) = V p

t , ∀t ∈ T . (3.20)

3.3.2.7 Model for the water encroachment

We now detail how we model the water encroachment (the inflow of water in the reservoir
that comes from the aquifer). In Dake [1983], it is considered that the water encroachment
Fwe (used in Equation (3.16)) is not known. There are two main methods to take the
water encroachment into account:

• We either assume that the water encroachment is governed by constitutive equations.
However, the parameters of those equations are uncertain.

• Or we assume that the water encroachment is a stochastic process governed by known
probability distributions.

The second approach is not used by oil companies. Indeed, a stochastic process for
the water encroachment might be difficult to define. Therefore, it seems difficult to get an
accurate description of the reservoir by modeling the water encroachment by a stochastic
process. We will thus only focus on the first approach.

We will describe the following models for the water encroachment:

• Pot aquifer model,

• Schilthuis’ steady-state,

• Hurst’s modified steady-state,

• The Van Everdingen-Hurst unsteady-state,

• The Carter-Tracy unsteady-state.
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Pot aquifer model. In this model, we consider that the water encroachment Fwe comes
from the expansion of the aquifer. That means that, when pressure drops in the reservoir,
the aquifer’s volume changes and some water comes into the reservoir.

This model can accurately describe a "small" aquifer, and we can then consider it to
follow the same equations as the reservoir. We then get that the total water encroachment
follows

Fwe = (caqu
w + caqu

f )V aqu,ini(P aqu,ini − P ) ,

with V aqu,ini the initial volume of the aquifer, caqu
w the water compressibility for the aquifer

water, caqu
f the aquifer pore compressibility and Fwe the total water encroachment.

We therefore get that the water encroachment between t and t+ 1 is:

Fwe
t = (caqu

w + caqu
f )V aqu,ini(P r

t − P r
t+1) . (3.21)

Schilthuis’ steady-state. In this model, we consider that the water encroachment Fwe

is governed by a Darcy’s equation, and that the flow is in a steady-state. Thus, we consider
that the aquifer pressure P aqu is stationary. We then have

Fwe
t = C(P aqu,ini − P r

t ) , (3.22)

where C is a given constant that depends on the geometry and on the type of rocks of the
aquifer-reservoir limit.

Hurst’s modified steady-state. The issue with the previous model is that the geometry
of the aquifer-reservoir contact surface may change due to the water encroachment. Indeed,
as the total water encroachment rises, the oil volume is reduced as its pressure decreases,
and the aquifer-reservoir contact surface may get smaller. The Hurst’s model’s goal is to
take that change into account. It states that

Fwe
t =

C

ln(a · t)(P
aqu,ini − P r

t ) , (3.23)

where a is a constant depending on the aquifer.

Van Everdingen-Hurst unsteady-state. Previously, we considered that the pressure
of the aquifer was uniform. Van Everdingen and Hurst proposed to take into account the
diffusion of the pressure in the aquifer. Van Everdingen and Hurst state that the pressure
of the aquifer verifies:

∂P

∂r2D
+

1

rAqu

∂P

∂rD
=

∂P

∂t
.

The pressure in the aquifer also needs to verify boundary conditions.
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Van Everdingen and Hurst proposed that the water encroachment be of the form:

∂Fwe
t

∂t
=

B

h
(
τD(t)

)(P aqu(t)− P r(t)
)
, (3.24)

where B is a parameter that is defined by the aquifer-reservoir border, and the function
τD depends on the physical properties of the water and rocks in the aquifer. Finally, h is
a function that depends on the ratio of the size of the reservoir and the size of the aquifer.

Van Everdingen and Hurst further detail those parameters depending on the geometry
of the aquifer, and more specifically if we are in an “edge” or “bottom” water-drive (two
specific form of geology of the reservoir and the aquifer, where parameters can computed
more efficiently).

The issue is that Equation (3.24) needs to be integrated between each time-step.

Carter-Tracy equations. The Carter-Tracy model was made to make the previous Van
Everdingen-Hurst model easier to compute. It states that

Fwe
t =

(
τD(t)− τD(t− 1)

) B(P r
t−1 − P r

t )− Fwe
t−1h1

(
τD(t)

)
h2

(
τD(t)

)
− τD(t− 1)h1

(
τD(t))

) , (3.25)

where h1 and h2 are functions that depend on the ratio of the size of the aquifer and the
size of the reservoir.

3.4 Conclusion
In this chapter, we have presented all the relevant constitutive equations used in the fol-
lowing chapters. The reservoir and fluids description are used to represent the reservoir
as a controlled dynamical system, as detailed in Chapter 4. Meanwhile, the constitu-
tive equations for the production network are used to define admissible control set of the
mathematical formulations of the management of a petroleum production system.
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Chapter 4. Deterministic optimization of a Petroleum Production

4.1 Introduction
Oil and gas projects usually span over several decades and involve complex planning and
decision-making. Therefore, multistage optimization is a relevant tool to address the long-
term performance of such projects. This is the focus of this paper.

The lifetime of a field usually consists of five phases: exploration, where reservoirs con-
taining hydrocarbon are found; appraisal, to give a value to a field; development, where
infrastructures are planned and installed; production, where hydrocarbon is finally pro-
duced; abandonment, where the field stops producing and infrastructures are decommis-
sioned and removed. In this paper, we focus on the production phase. We consider that
the infrastructure has already been installed in the development phase, and we thus focus
on finding a production schedule that maximizes the profit over the full production phase.

Now, we position our contribution with respect to the currently available literature.
According to the survey [Khor et al., 2017], there is extensive research on how to optimize
the production phase, with multiple approaches. The authors present three main methods
for the optimization of petroleum production systems: sensitivity analysis by employing
simulation tools, heuristic rules and mathematical optimization, the approach of this paper.
Most of the literature resorts to the first two approaches.

Regarding mathematical optimization, most works on the topic have considered black-
box simulators to describe the reservoir dynamics: Hepguler et al. [1997] consider inte-
grating both a network model and a proprietary reservoir model (a commercial simulation
software for reservoir modeling); Gerogiorgis et al. [2006] combine a proprietary reservoir
simulator with a general optimization formulation. In Sarma et al. [2006] a closed-loop
multistage optimal control approach with a simulator that can be updated with new data
from sensors is considered. It is also a standard practice to add some optimization layer
over a commercial reservoir simulator to locally improve a production planning, such as
modifying the pressure on different points of the petroleum production system to locally
improve an operational solution (see ECLIPSE by Schlumberger, or GAP and MBAL by
Petroleum Experts). In theory, such approach could be amenable to dynamic program-
ming. However, this is not done in practice due to the the computation time of a single
simulation run.

A limited fraction of the literature addresses the problem as a multistage optimization
problem, such as in Iyer et al. [1998], Gupta and Grossmann [2012], Marmier et al. [2019].
In those papers, the formulation relies on dynamical models based on decline curves (or
type curves). In short, decline curves are functions that take as input the cumulative
production and return the maximal well rate. In the context of mathematical optimization,
decline curves were first assumed to be linear, such as in Bohannon [1970], before being
assumed to be piecewise linear in Frair and Devine [1975] or polynomial in Marmier et al.
[2019], or even being assumed to be given by a set of logical relationships for shale gas
in Hong et al. [2020], when algorithms could treat those refinements. The decline curves
are generally constructed by using a foresight of the optimal solution that is looked after,
as they are usually generated by assuming a production schedule. In Satter and Iqbal
[2016], the authors write that, usually, decline curves analysis is performed under one key
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assumption: the wells produce at “constant bottom-hole pressure”. They also state that
“in reality, such a condition may not be observed”. Note that decline curves can, in some
cases, provide an accurate representation of the reservoir if the wells that constitute the oil
field are independent of each other, and when we are only considering first recovery of oil
and gas (i.e. when we are only producing fluids in the reservoir and without any injection
of gas and water in the reservoir). Despite those shortcomings, mathematical formulations
using decline curves are commonly used in oilfield development studies. For example, two
case studies, one in Brazil [Silva and Guedes Soares, 2021] and one in New Mexico [Davis,
2021] use decline curves to solve a multistage optimization problem.

Part of the literature also tries to develop a middle ground between using a black-box
reservoir simulator and using decline curves. For example, some papers use parametrized
surrogate models (also called proxy models). Parameters of the surrogate model are to
be adjusted to fit simulators output or real data (see [Caballero and Grossmann, 2008]).
Numerous applications following the methodology developed in Caballero and Grossmann
[2008] have been done, each one being characterized by a specific surrogate model: in Lei
et al. [2022], a proxy model (presented in Lei et al. [2021]) that takes into account the
decommission timing and costs in the development planning is used; whereas in Cam-
ponogara et al. [2017], the authors use MILP as a proxy model and apply it to a case in
the Santos Basin; finally, in Moolya et al. [2022], the authors also use a MILP surrogate
model combined with aggregation and disaggregation methods in well placement problems.
In Epelle and Gerogiorgis [2020], the authors compare the performances between MILP
and MINLP formulations of the surrogate model.

In this paper, we represent the reservoir as a controlled dynamical system based on
black-oil model and conservation laws (mass balance equations) for a tank-like reservoir
instead of using decline curves or surrogate models based on a reservoir simulator. Mass
balance equations belong nowadays to the folklore of petroleum engineering and have been
described many times in the reservoir modeling literature (see Dake [1983]). We formulate
the management problem as a multistage optimization problem, and we use the dynamic
programming algorithm to solve it (see Bertsekas [2000]). To the best of our knowledge,
this approach is new in the oil and gas literature. This formulation is well adapted to
first and secondary recovery of oil and gas cases. Moreover, multistage optimization and
dynamic programming are well adapted to tackle more complex formulations with uncertain
parameters and partial observations.

4.2 Formulation of the management of a petroleum pro-
duction system as a multistage optimization prob-
lem

We consider a production system composed of a reservoir and production assets (pipes,
wells, chokes). We represent the topology of the production assets as a simple graph
G = (V,A), where V is the set of vertices and A ⊂ V2 is the set of edges. Controls are
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variables indexed by either vertices or edges. We place the different production assets on
the graph, with the pipes as the edges of the graph, and the rest of the assets, such as the
well-heads, positioned on the vertices of the graph. This is illustrated in Figure 4.1. The
wells’ perforations are represented as vertices (wi in Figure 4.1) where the fluids produced
enter the graph. On the other vertices, we have assets such as the well-head chokes (whi in
Figure 4.1), or joints between different pipes (noted i1). We can also have valves to open
or close pipes. Finally, we have an export point (on the vertex e).

w1 w2 w3

wh1 wh2 wh3

i1

e

Figure 4.1: Representing a production network as a graph

All the relevant operational constraints and features - such as pressure loss on the pipes,
mass balance of the fluids at each vertex, allowed pressures, and flow rate ranges in the
different assets or unavailability due to maintenance - are modeled as constraints using
variables defined on the edges and vertices of the graph. Indeed, the graph allows us to
define the different controls we can apply to the system, such as opening or closing valves
or changing the well-head pressures. Detailed formulations on the production network can
be seen in [Gupta and Grossmann, 2012]. We will not explicit it in the general case as
this is not our main focus, and we only present numerical applications without taking into
account the production network.

As we aim to optimize the system over the whole production phase (i.e. over multiple
years), we consider multiple time steps belonging to a finite set T = {0, 1, 2, . . . , T} where
the parameter T is a natural number. Those time steps are usually monthly1, but under
certain conditions other time steps may be considered.

We propose (and are going to detail) a general formulation of the petroleum production
system optimization problem as follows

J ⋆(x0) = max
x,u

T−1∑
t=0

ρtLt(xt, ut) + ρTK(xT ) (4.1a)

s.t. x0 given , (4.1b)
xt+1 = f(xt, ut) , ∀t ∈ T \ {T} , (4.1c)
ut ∈ Uad

t (xt) , ∀t ∈ T \ {T} . (4.1d)

1Numerical applications will be done with monthly time steps and a horizon T of 15 or 20 years
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4.2. Formulation of the optimization problem

The variables in Problem (4.1) are: i) the state of the reservoir xt ∈ X ⊂ Rn (with X
the state space); ii) the controls ut ∈ U ⊂ Rp (with U the control space), which are the
decisions that can be taken at time step t (for example, the pressure Pv,t at the different
vertices v ∈ V of the graph, and the Boolean oa,t stating if a pipe a ∈ A of the graph
is opened or closed). The reservoir is defined as a controlled dynamical system, with
state xt, control ut and an evolution function f of the controlled dynamical system, whose
construction is the focus of Section 4.3. At every time step t, when the decision maker
takes decision ut, an instantaneous gain denoted by Lt(xt, ut) occurs. In the last stage,
the final state xT is valued as K(xT ). We denote by ρ the discount factor. We finally
obtain the objective function seen to the right of the max in Equation (4.1a) by adding all
terms. The known initial state of the reservoir is defined in Equation (4.1b). The controlled
dynamics of the reservoir is given in Equation (4.1c). Equation (4.1d) states that, at each
time step t, the allowed controls belong to an admissibility set that depends on xt. The
dependence is noted by Uad

t (xt), which is for each time step t a set-valued mapping that
takes a given state xt of the reservoir and returns the set of allowed controls. As far as the
petroleum application is concerned, the admissibility set notably depends on the reservoir
pressure, which constrains the different pressures in the petroleum production system. It
also depends on the production network itself: some pipes can be controlled, while others
cannot; facilities have planned or unplanned downtimes, etc. Extensive formulations of the
admissibility set of the production depending on the reservoir pressure can be seen in Iyer
et al. [1998].

The petroleum production system optimization problem, as formulated in (4.1), is a
classical deterministic discrete time optimal control problem. It is known that this problem
can be solved by dynamic programming and that the resulting optimal control at time t is
a function of the current state at time t.

In order to solve Problem (4.1), we use a family of value functions Jt : X 7→ R,
where we recall that X is the state space. We call policy µ = {µ0, . . . , µT−1} a set of
mappings µt : X → U from states x into admissible controls u. We have the following
proposition (see [Bertsekas, 2016, Chap. 1]).

Proposition 4.1. For every initial state x0 ∈ X, the optimal cost J ∗(x0) of Problem (4.1)
is equal to J0(x0), given by the last step of the following algorithm, which proceeds backward
in time from final time step T to initial time step 0:

JT (x) = ρTK(x) , ∀x ∈ X , (4.2a)

Jt(x) = max
u∈Uad

t (x)

(
ρtLt(x, u)

+ Jt+1 (f(x, u))
)
, ∀x ∈ X,∀t ∈ T \ {T} . (4.2b)

Furthermore, if u⋆ = µ⋆
t (x) maximizes the right-hand side of (4.2b) for each x and t, then

the policy µ⋆ =
{
µ⋆
0, . . . , µ

⋆
T−1
}

is optimal.
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To solve Problem (4.1), we compute J0. To do so, we use a dynamic programming
algorithm (see Algorithm 1). For that purpose, we discretize the controls, that now belong
to a finite set denoted by Ud, and the states that belong to a finite set Xd. Numerically,
we also use a multi-linear interpolation for the value functions between the states.

Algorithm 1: dynamic programming algorithm used to solve Problem (4.1)
for x ∈ Xd do
JT (x) = ρTK(x);

for t = T − 1, . . . , 1 do
for x ∈ Xd do

best_value = - ∞;
best_controls = 0;
for u ∈ Ud do

current_value = ρtLt(x, u) + Jt+1

(
f
(
x, u
))

;

if current_value ≥ best_value then
best_value = current_value;
best_controls = u;

Jt(x) =best_value;
µt(x) =best_controls;

return
(
Jt, µt

)
t∈T

4.3 Formulation of the reservoir extraction as a con-
trolled dynamical system

In this section, we show how to represent the time evolution of the reservoir as a dynamical
system, that is, involving a state x, a control u and an evolution function f such that, for
each time step t, we have xt+1 = f(xt, ut). It is shown in Appendix 4.A that a possible
state - which is the one we henceforth consider, for modeling the reservoir when using the
black-oil model and conservation laws for a tank-like reservoir - is the 5-dimensional vector
xt = (V o

t , V
g
t , V

w
t , V p

t , P
r
t ). Its components are defined in Table 4.1, where Sm3 stands for

standard cubic meter (the volume taken by a fluid at standard pressure and temperature
condition: 1.01325 Bara and 15◦C), and Bara stands for absolute pressure in Bar.

More precisely, to obtain the evolution function f of the content of the reservoir between
time t and t + 1, we compute the amounts of fluids (oil, gas, water) produced during the
period [t, t+1[. We denote them by (F o

t , F
g
t , F

w
t ) and they are described in Table 4.2. We

obtain the production values with a mapping Φ = (Φ(1),Φ(2),Φ(3)) : X×U→ R3 such that
(F o

t , F
g
t , F

w
t ) = Φ(x, u). The production mapping Φ depends on the form and specifications

44



4.3. Formulation of the reservoir extraction

Symbol Definition

V o
t Amount of oil in the reservoir (Sm3) at time t

V g
t Amount of free gas in the reservoir (Sm3) at time t

V w
t Amount of water in the reservoir (Sm3) at time t
V p
t Total pore volume of the reservoir (m3) at time t

P r
t Reservoir pressure (Bara) at time t

Table 4.1: Definition of the components of the state

of the production network. We present two examples of such Φ in the numerical applications
of Section 4.4, with details in Appendix 4.A.

Symbol Definition

F o
t Volume of oil produced (Sm3) during [t, t+ 1[

F g
t Volume of gas produced (Sm3) during [t, t+ 1[

Fw
t Volume of water produced (Sm3) during [t, t+ 1[

Table 4.2: Definition of the productions

We make the following assumptions on the reservoir (as formulated in Dake [1983]):
first, the fluids contained in the reservoir follow a black-oil model; second, we consider
that we have a tank-like reservoir. Thanks to those two standards assumptions, we can
formulate the reservoir and the production system as a controlled dynamical system.

Proposition 4.2. There exists a function Ξ : X×U→ R such that the following function
f : X× U→ R5

f : (x, u) 7→



x(1) − Φ(1)(x, u)

x(2) − Φ(2)(x, u) +
[
x(1)Rs(x

(5))

−
(
x(1) − Φ(1)(x, u)

)
Rs

(
Ξ(x, u)

)]
x(3) − Φ(3)(x, u)
x(4)

(
1 + cf (Ξ(x, u)− x(5))

)
Ξ(x, u)


(4.3)

is the dynamics of the reservoir in (4.1c) (with x = (x(1), . . . , x(5)), Rs a given function of
the reservoir pressure called the solution gas function, and cf a given parameter called the
pore compressibility of the reservoir).

Proof. See Appendix 4.A.
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Chapter 4. Deterministic optimization of a Petroleum Production

4.4 Two numerical applications
We now present two numerical applications that illustrate how the material balance for-
mulation can be used. The numerical applications are done on simple reservoirs. In §4.4.1,
the first application is a gas reservoir that can be modeled with two tanks and with a con-
nection, of known transmissivity, linking them together. It illustrates how the formulation
can be applied to complex cases with multiple tanks. In §4.4.2, the second application we
consider is an oil reservoir where pressure is kept constant through water injection. This
shows how we can take into account injection to go beyond the first recovery of oil and gas.
All numerical applications were performed on a computer equipped with a Core i7-4700K
and 16 GB of memory.

4.4.1 A gas reservoir with one well

In the first application, we consider a real gas reservoir, for which production data are
available. The recorded data come from a field approaching abandonment. We only con-
sidered a sub-field of a much larger field, the sub-field being constituted of an isolated
reservoir with one well.

Our goal here is to show how simple cases can be tackled with the material balance
formulation, and that the formulation can also be applied to cases with multiple tanks. We
first present a state reduction of this case. We then present a model with one tank, and
then a model with two tanks, mimicking an evolutive construction of the reservoir model.
Indeed, when optimizing a real petroleum production system, the models are improved
as data are analyzed. Hence, reservoir models will get more complex to fit the gathered
exploitation data, such as going from a one tank model to a two tanks model. We therefore
present the models following such timetable, going from a cruder to a more refined reservoir
model.

Characteristics of the case. The geology of this particular sub-field makes it perfect
for a tank model, as proved by many years of perfectly matched production. Also, the
simplicity of the fluids with a high methane purity makes the black-oil model a very realistic
assumption. The reservoir can be modeled with either one or two tanks, while the well’s
perforations are modeled with a known stationary inflow performance relationship, noted
Iprg. The two tanks model is illustrated in Figure 4.2. We do not consider the rest of the
network, so that we will not have to take into account any vertical lift performance (VLP)
necessary to lift oil to the surface. This implies that the only control we consider is the
bottom hole flowing pressure (BHFP), Pt, resulting in the problem known as optimization
at the bottom of the well. We hence assume that there is no “pipe” necessary to move
gas from the reservoir to the surface, thus assuming that the network is only constituted
of the well-perforations which allow the production of gas. Indeed, optimizing with the
bottom hole flowing pressure makes it easier to compare the different reservoir models, as
we directly act on the reservoir. Adding the vertical lift performance only adds a layer of
complexity to the comparison of the models, while the only benefit would be to get results
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4.4. Two numerical applications

closer to an actual field production. All in all, adding the vertical lift performance only
adds more constraints on the mathematical formulation and may mask the impact of the
reservoir model. As the focus of this paper is to present a formulation with a new reservoir
model, we decided not to take into account the vertical lift performance. We also did not
try to go beyond the two tanks model.

well’s perforations
first tank

second tank

assumed
transmissivityIprg

Figure 4.2: Representation of the two tanks model

Formulation and state reduction. In this first application, we consider a reservoir
that contains only gas and water. We first assume that we only produce some gas, and
that no fluids are re-injected in the reservoir. Moreover, we assume that there is no water
production, and thus the amount of water remains stationary. Therefore, V w

t = V w
0 for all

t ∈ T , the initial amount of water V w
0 being known. We therefore only need to consider the

evolution of the amount of gas, the pressure and the total pore volume as states variables.
As shown in Appendix 4.B, we can further reduce the state, and we only need to consider
the amount of gas in the reservoir as the reservoir state. Since we do an optimization at the
bottom of the well, we only have one control to consider, the bottom-hole flowing pressure,
noted Pt. We therefore have state xt = V g

t and control ut = Pt.
The optimization problem we consider here is to maximize the revenue of the gas

production. At each time t, we sell gas at price rt, with a discount factor ρ. The general
optimization problem (4.1) after state and control reduction when considering the gas
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Chapter 4. Deterministic optimization of a Petroleum Production

reservoir and one tank is given by

max
(V g

t ,Pt,P r
t ,F

g
t )

T−1∑
t=0

ρtrtF
g
t (4.4a)

s.t. V g
0 = x0 , (4.4b)

P r
t = Ψ1T(V

g
t ) , ∀t ∈ T , (4.4c)

F g
t =

Iprg (P r
t − Pt)

Bg(P r
t )

, ∀t ∈ T \ {T} , (4.4d)

V g
t+1 = V g

t − F g
t , ∀t ∈ T \ {T} , (4.4e)

F g
t ≥ 0 , ∀t ∈ T \ {T} , (4.4f)

V g
t ≥ 0 , ∀t ∈ T , (4.4g)

Pt ≥ 0 , ∀t ∈ T \ {T} , (4.4h)

as detailed in Appendix 4.B.

4.4.1.1 One tank gas reservoir model

Fitting model to real data. We use production data from a sector of a real gas field, to
check that the reservoir model described with the Constraints (4.4c) and (4.4e) accurately
follows real measurements on the gas field after fitting the model. More precisely, we apply
a given real production schedule on a part of the field (only one well), and check that the
pressure we simulate in the reservoir is close to the corresponding measured pressure. The
historical production spans over 15 years, and we have monthly values, which is why we
consider monthly time steps for Problem (4.4).

As can be seen in Figure 4.3, the one tank model fits the observation. However, there
is a gap between the simulated and measured pressures whose relative value may exceed
10%. Since the simulated pressure tends to be higher on the first half of the production,
we start by underestimating the decline of the production. Then, during the second half of
the production, the simulated pressure is lower than the measured pressure, which means
we overestimate the decline of the production. This elastic effect is most likely due to the
simplification of removing the secondary tank in the model. Indeed, the secondary tank
act as a buffer which reacts slowly, explaining the extra pressure at the beginning and then
sustaining a better value of the pressure later on.

Optimization of the production on the one tank approximation. We use dynamic
programming (see Algorithm 1) to get an optimal production policy. We consider that the
revenue per volume of gas is the historical gas spot price of TTF (Netherlands gas market)
from 2006 to 2020, and we do not consider any operational cost.

We now present the results of the one tank model. The results are illustrated in
Figures 4.4 and 4.5, and summarized in Table 4.3. We notably remark in Figure 4.5 that
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Figure 4.3: Comparison of the simulated one tank reservoir pressure to the
historical measured pressure when applying the same (historical) production
schedule. The blue curve is the simulated pressure in the tank, whereas the
red dots are the measured pressures

the optimal production stops when prices are low as we fully take advantage of the perfect
knowledge of the future prices.

There is a massive increase in the total gains when using the optimal policy, com-
pared to the real production. We also produce far more over the optimization time period
(2,850MSm3 instead of 2,250MSm3). However, those results are not truly comparable.
We do not have access to the criteria used to choose the real production. Optimized and
real productions cannot be compared as they do not share the same objective function.
Moreover, since the considered case is a small part of a much larger production network,
we cannot compare the results to the actual production policy used for fitting the model,
which was made with the rest of the network in mind. Furthermore, our optimization is
made at the bottom of the well (BHFP). We only take into account the inflow performance
of the well, not the vertical lift necessary to bring the gas to the surface. The resulting
rates are therefore not fully realistic, reaching values closer to a multi-well development.
Finally, the historical production was made without knowing future prices, and could also
have been made with other constraints to ensure a minimal production of the field, or
having a positive cash-flow (constraints due to the field’s exploitation contract). While
not directly comparable, this gas reservoir application still illustrates one of the best-case
scenarios of the dynamic programming approach, and it shows how much could be gained
from using a multistage material balance formulation.

Since the dynamic programming algorithm uses a discretization of the state space Xd

and the control space Ud, we tried different uniform discretizations for the states and
controls spaces to prevent any side effects due to the chosen discretization. We do not
observe notable changes in the value function past a 10,000 points uniform discretization
of the state space and a 20 points discretization of the control space, which are the values
we used in this case study. Details on the effect of the discretization can be found in
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Appendix 4.C.
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Figure 4.4: Evolution of the content of the reservoir in the one tank model.
The doted blue curve is the optimal (anticipative) trajectory of the amount
of gas, while the red curve is the trajectory with the historical production
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Figure 4.5: Trajectories of the production. The dotted blue curve is the
optimal (anticipative) production in the one tank model, the red one is the
historical production, whereas the dashed green curve is the average monthly
gas price

Comparison to policy derived from decline curves. In this paragraph, we compare
the material balance formulation to those using decline curves or oil-deliverability curves,
such as in Iyer et al. [1998], Gupta and Grossmann [2012, 2014], Marmier et al. [2019].
The decline curves formulation and the way to numerically obtain decline curves are given
in Appendix 4.D. The following proposition shows that the decline curves formulation is
equivalent to the material balance formulation when considering a one-tank model.
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Proposition 4.3. The formulation using decline curves, written

max
u

T∑
t=0

ρtLt(ut) (4.5a)

s.t. F o
t ≤ g

(
t−1∑
s=0

F o
s

)
, ∀t ∈ T \ {0} (4.5b)

ut ∈ Uad
t

(
t−1∑
s=0

F o
s

)
, ∀t ∈ T , (4.5c)

is equivalent to the material balance formulation when the state of the reservoir is one-
dimensional.

Proof. See Appendix 4.D

We obtain the decline curve g used in Inequality (4.5b) by first computing the maximal
production value for the same discrete states as the ones used in the dynamic programming
approach. Then, piecewise interpolation between the computed values is used to obtain the
value of the decline curve everywhere. It is worth noting that, when using piecewise linear
approximation for the decline curves, the maximization problem (4.5) turns out to be a
MIP (Mixed Integer Problem) with linear constraints and with more than 170,000 binary
variables. We solve that MIP by using the commercial solver Gurobi 9.1. The results are
given in Table 4.3. Since the material balance formulation (4.4) uses a one-dimensional
state, we obtain similar results between the material balance formulation and the formu-
lation using a decline curve in accordance with Proposition 4.3. The two approaches thus
yield similar production policies. Note however that the dynamic programming approach
has a lower computation time than a naive implementation of the decline curve formula-
tion. One could decrease the precision on the decline curve formulation, by using fewer
points to describe the decline curve. This would improve its computation time. As this is
not the focus of this paper, we did not do such refinement of the numerical experiments
for the decline curve formulation.

CPU time (s) Value (Me)

Material Balance 653 743
Decline Curves 3,882 743

Table 4.3: Comparison with regards to CPU time and value between the
material balance and decline curve formulation for one tank
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4.4.1.2 Two tanks gas reservoir model

Fitting data. We check if the fitted two tanks reservoir model accurately follows real
measurement on the gas field. We use the same data as in the one tank case. The two
tanks model more accurately fits the observations, as is depicted in Figure 4.6 (we have a
gap of less than 5% for each measured point). Since the two tanks model is closer to the
observations, we consider that it is the reference of “truth” when comparing results of the
one tank approximation and the two tanks model.
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Figure 4.6: Comparison of the simulated two tanks reservoir pressure to
the measured pressure when applying the same production schedule. The
blue dotted curve recalls the pressure obtained using the one tank model.
The orange continuous curve is the pressure in the first tank obtained using
the two tanks model. The red dots are the measured pressure at the bottom
of the well

Optimal production with two tanks. We now present the results of the two tanks
model. The only changes compared to the one tank model are on the states and on the
dynamics of the reservoir. We use the same prices, and, again, we only do an optimization
at the bottom of the well (BHFP). Details on the obtained optimal controls and states
trajectory are given in Figure 4.7 and Figure 4.8. Once again, we observe that production
stops when prices are low, benefiting fully from anticipating the future prices. We also
note that more “pauses” are present in the productions when compared to the one tank
model (four instead of three). The “pauses” allow the second tank to replenish the first one
(see Figure 4.7). Indeed, production resumes at months 50 to 60, before stopping again for
five months. We can then observe that the amount of gas in the first tank is replenished,
before we resume production at month 65, at the same date as in the one tank model.
We end up producing some more gas than with the one tank model (2,900 Sm3 instead of
2,850 Sm3).
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Figure 4.7: Evolution of the content of the reservoirs when applying the
optimal (anticipative) policy in the two tanks model. The dotted blue curve
shows the content of the first tank (linked to the well) while the green curve
shows the content of the second tank
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Figure 4.8: Trajectory of the optimal production in the two tanks model.
The dotted blue curve is the optimal (anticipative) production, whereas the
dashed green curve is the monthly gas price
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We tried different discretizations for the state space. Notably, using more than 400
possible states per tank and 10 possible controls did not yield any significant improvement
in the computed value function. Details on the impact of the discretization are given in
Appendix 4.C.

Numerical experiments also reveal that the initial value function J0 is almost an affine
function of the sum of the states. This seems to imply that the one tank and two tanks
model should yield similar results. Such a statement does not hold true, as confirmed by
the numerical experiments described in the next paragraph.

Comparing the one tank formulation to the two tanks formulation. To compare
the results between the two tanks and one tank formulations, we consider that the two
tanks material balance model is the reference. A given sequence of controls (ut)t∈T \{T}
admissible for the one tank model is not necessarily admissible for the two tanks model.
Indeed, the admissible control set is given by Uad(xt) = [0,Ψ1T(xt)] for the one tank model
and by [0,Ψ

(1)
2T(x

(1)
t )] for the two tanks model (see Appendix 4.B.1).

Thus, given a sequence of controls (ut)t∈T \{T} admissible for the one tank model,
we produce an admissible sequence of controls for the two tanks model with the use
of a projection Π1T→2T : UT × X → UT given as follows. The sequence (ũt)t∈T \{T} =

Π1T→2T

(
(ut)t∈T \{T}, x0

)
is computed recursively for all t ∈ T \{T} by ũt = min

{
ut,Ψ

(1)
2T(x̃

(1)
t )
}
,

where x̃t is defined at time 0 by x̃0 = x0, and for all t > 0 by x̃t+1 = f2T(x̃t, ũt). We can
get a sequence of admissible controls for the two tanks model by applying the projection
Π1T→2T on a sequence of admissible controls for the one tank model.

To compare the one tank and two tank models, we project the optimal sequence of
controls returned by the dynamic programming algorithm on the one tank formulation
thanks to the projection Π1T→2T. As can be seen in Figure 4.9, the projected sequence of
controls differs from the non-projected sequence: the dotted curve, which represents the
projected sequence, is below the dashed curve, which represents the optimal sequence for
the one tank model.

As depicted in Figures 4.9 and 4.10, the production planning given by the one tank
optimization problem differs from the production planning given by the two tanks opti-
mization problem. Moreover, the production planning of the one tank model gives lower
gains than anticipated, and is worse than the optimal two tanks model planning. The one
tank optimization is thus optimistic on the optimal value of the problem when applied
with the reference model. Moreover, there is a 5% difference in value between the one tank
and two tanks models (a value of 703Me for the translated one tank production planning
against 736Me for the two tanks production planning). This discrepancy illustrates how
having a more accurate model of the reservoir can have a substantial impact on the optimal
planning, all other things being equal. It also shows that, contrarily to the assumption
presented at the end of the previous paragraph (that the two models could yield similar
results if the value function only depended on the sum of the states), the optimal value
and control cannot be found with a one tank approximation, and the optimal controls and
value functions are not functions of the sum of the states.
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Figure 4.9: Comparison of the trajectory of the production with the two
tanks model as reference. The dotted blue curve is the production planning in
the one tank model, the orange curve is for the two tanks model. The dashed
green curve is the production planning of the one tank model projected in
the two tanks model

Comparison to decline curves with two tanks. We have numerically compared the
decline curve and the material balance formulations in a context where they are known to
be equivalent, that is, the one tank formulation. We now produce numerical experiments
in a context where the equivalence is not assured: two tanks connected with a known trans-
missibility. We have generated decline curves for the two tanks formulation by following
the procedure described in Appendix 4.D. The results returned by the decline curve formu-
lation provide an admissible production in the two tanks model, as it is constrained by an
admissible production schedule. We can therefore directly compare the results obtained by
the decline curves approach and the two tanks model. The results of the optimization of
the two formulations are compiled in Table 4.4. We end up having close results, with a dif-
ference in optimal values of 0.7%, but with a large difference in computing times. However,
it appeared that such close results were due to the selected price scenario. Using different
prices by randomizing the order in which the different prices appear, the gap between the
two approaches widens from 0.5% up to 4%. This implies that the initial price considered
was an almost best-case scenario for the decline curves approach. It also shows that the
decline curves approach is far less robust to changes in the price data, and that it cannot
benefit as efficiently as the material balance formulation of some effects of the two tanks
dynamical system, such as waiting for the second tank to empty itself into the first one.

Overall, this application suggests that the material balance approach can work on
complex cases, and that dynamic programming is well suited to optimize an oil field.
Moreover, there can be differences with results from the decline curves approach, which
are likely to grow larger with the complexity of the system.
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Figure 4.10: Cumulated gains with the two tanks model as reference. The
dotted blue curve is the cumulated gains of the one tank planning in the
one tank model, the orange curve is the cumulated gains of the two tanks
planning in the two tanks model, and the dashed green curve is the cumulated
of the one tank planning projected in the two tanks model

CPU time (s) Value (Me)

Material Balance 706 736
Decline Curves 7,825 731

Table 4.4: Comparison with regards to CPU time and value between the
material balance and decline curve formulation for two tanks with the initial

prices sequence.
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4.4. Two numerical applications

4.4.2 An oil reservoir with water injection

The second application is an oil reservoir with water injection. The goal is to demonstrate
how the formulation can be used beyond primary recovery cases, on a numerically simple
case. We consider that we have one reservoir which contains both oil and water, produced
under pressure maintenance by water injection. Moreover, we consider that the initial
pressure is above the bubble-point, which eliminates the possibility of having free gas
in the reservoir. This allows us to have once again a one-dimensional state: either the
water (which we used for the numerical applications), or the oil in the reservoir. We have
xt = V w

t and u = Pt. Here, we want to maximize the revenue of the oil production. The
optimization problem (4.1) now becomes

max
(V w

t ,Pt,wct
t )

T−1∑
t=0

(
ρtrtα

P r − Pt

Bo(P r)
(1− wct

t )

− ρtctα
P r − Pt

Bw(P r)

)
(4.6a)

s.t. wct
t = Wct

(
V w
t Bw(P

r)

V p

)
, ∀t ∈ T , (4.6b)

V w
t+1 = V w

t − α
P r − Pt

Bw(P r)
(wct

t − 1) , ∀t ∈ T , (4.6c)

Fw
min ≤ α

P r − Pt

Bw(P r)
(wct

t − 1) ≤ Fw
max , ∀t ∈ T , (4.6d)

F o
min ≤ α

P r − Pt

Bo(P r)
(1− wct

t ) ≤ F o
max , ∀t ∈ T , (4.6e)

Pt ≥ 0 , ∀t ∈ T . (4.6f)

The objective function (Equation (4.6a)) is divided in two components. At time t, we
consider a discount factor ρ and the price rt of the oil, whereas injecting water costs ct per
cubic meter. The revenue is hence

T−1∑
t=0

ρt
(
rtF

o
t − ctF

wi
t

)
.

Replacing the produced oil F o
t and the injected water Fwi

t by the relevant functions of the
controls (see Equations (4.30) and (4.33)) leads to the objective function (4.6a)).

We assume that the water-cut function Wct (the amount of water produced when
extracting one cubic meter of liquid at standard conditions) is given by a piecewise linear
function. The water-cut depends on the water saturation Sw (proportion of water in the
reservoir pore volume). Since the reservoir pressure is kept constant, the total pore volume
is constant and the water saturation expression is thus Sw

t =
V w
t Bw(P r)

V p . This gives us
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constraint (4.6b).
Since we want to keep a constant pressure in the reservoir, we need to re-inject enough

water to replace the extracted oil. Replacing the oil with water gives a new dynamic for
V w
t as in Equation (4.6c). Constraints (4.6d) and (4.6e) details the oil and water produced

depending on the control Pt with their respective bounds. The details of the formulation
are given in Appendix 4.B.

We do a monthly optimization, with the historical Brent prices for years 2000–2020 as
the prices in the objective function (4.6a), and a water injection cost of 1e/m3. Details on
the resulting trajectory of the content of the reservoir can be found in Figure 4.11, whereas
details on the production can be found in Figure 4.12. As previously discussed in §4.4.1,
the optimal policy yields more production when prices are high, and stops producing when
they are low. The production goes from one bound to the other (zero production, with
Pt = P r, and full production, with Pt = 0).

The production also does not fully deplete the reservoir, which means that it is not
advantageous to completely deplete the reservoir if one wants to maximize the profit over
the optimization time frame (there is still 18.2MSm3 of oil in the reservoir at time T , as
can be seen in Figure 4.11). Indeed, production slowly diminishes with the volume of oil
V o
t in the reservoir, as can be seen in Figure 4.12. It is more advantageous to wait for

high prices instead of producing, as it would reduce the possible future production. This
leads to halting production with some reserves still in the reservoir, as we prefer to wait
for a higher price instead of producing when prices are low. As a side effect, numerical
experiments reveal that the initial value function J0 is almost linear with regards to the
state x0. However, we only considered simple constraints on the production. As more
constraints will be added to the problem, other behaviors will certainly appear. CPU time
was 1,575 s for a 100,000 discretization of the state variable, with a value of 3,376Me.
Impact of the discretization can be found in Appendix 4.C.
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Figure 4.11: Evolution of the content of the reservoir when applying the
optimal policy in the oil reservoir model. The blue curve shows the volume
of water in the reservoir, whereas the dotted red curve is the volume of oil
the reservoir. The dashed black curve represents the total pore volume
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Figure 4.12: Trajectory of the optimal production in the oil reservoir
model. The red curve is the optimal production, whereas the dashed green
curve is the monthly oil price

Overall, this application shows how we can apply the material balance approach beyond
first recovery of oil and gas, and that it can be used on different kinds of reservoirs.

4.5 Conclusion
In this paper, we have presented a mathematical formulation for the optimal management
over time of an oil production network as a multistage optimization problem. In this for-
mulation, the reservoir is modeled as a controlled (non-linear) dynamical system derived
from material balance equations and the black-oil model. The state of the derived dynamic
system is of dimension five, which is quite large for numerical resolution via dynamic pro-
gramming algorithm. However, we were able to use Dynamic Programming to numerically
solve the management optimization problem for specific cases of interest with either oil
or gas, both presenting a reduced dimensionality of the state. We have also shown that
our mathematical formulation is an improvement over decline curves formulation. First,
as predicted by the theory, we replicated results from decline curve formulations when
considering the first recovery of a one tank system (as seen in §4.4.1.1). Second, in more
complex cases with inter-connected tanks, as described in §4.4.1.2, we have shown that
we can surpass the NPV returned by the decline curve formulation. Third, we have gone
beyond the first recovery of hydrocarbons, as we have shown in §4.4.2, where we took into
account water injection.

Finally, it is to be noted that the dynamic programming algorithm can be used in a
stochastic framework. As an example, we could add uncertainties to the oil and gas prices,
instead of assuming that they are known in advance and thus deterministic. Moreover,
an even more realistic formulation with partial observation of the content of the reservoir
could also be explored. Indeed, in oil production systems, the initial state of the reservoir is
not known. Such a formulation is amenable to dynamic programming, as will be explored
in future works.
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4.A Detailed construction of the reservoir as a dynam-
ical system

In this section, we detail the construction of the reservoir as a dynamical system. This
serves as the proof of Proposition 4.2.

4.A.1 Constitutive equations assuming the black-oil model for the
fluids

The black-oil model relies on the assumption that there are at most three fluids in the
reservoir: oil, gas and water. Moreover, the fluids can be present in the reservoir in up to
two phases: a liquid phase, and a gaseous phase. A black-oil representation of a reservoir
can be seen in Figure 4.13. The three fluids, oil, gas and water, can be present in the
liquid phase and the gas in the liquid phase is denoted as dissolved gas. By contrast, it is
assumed that in the gaseous phase, only gas, denoted as free gas, can be present.

Water-Oil Contact

Gas-Oil Contact

Liquid phase

Gas cap

Aquifer

Figure 4.13: Black-oil Representation of a reservoir

Therefore, in the black-oil model, we consider the following four components

• V o, the standard volume of oil in the liquid phase,

• V g, the standard volume of free gas in the gaseous phase,

• V dg, the standard volume of dissolved gas in the liquid phase,

• V w, the standard volume of water in the liquid phase,
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where standard volume is the volume taken by a fluid at standard pressure and temperature
condition (1.01325 Bar and 15◦C), also known as stock tank conditions. The units of
standard volumes are preceded by a capital S, as in Sm3 for standard cubic meter.

There are functions in the black-oil model to convert standard volumes into in situ
volumes in the reservoir under a given pressure and temperature. The set of functions
describing the pressure, volume and temperature behavior of the fluids, under the black-oil
assumption, is call the PVT (Pressure-Volume-Temperature) model. We consider here a
simplified black-oil model, assuming that the temperature in the reservoir is stationary
and uniform, which is a common assumption for a geological formation such as a reservoir.
There are four PVT functions, one per component, which are given in Table 4.5. The
PVT functions only depend on the reservoir pressure under the stationary and uniform
temperature assumption. As an example, given the oil standard volume, V o, and the
reservoir pressure, P r, the oil volume in the reservoir is given by V o ×Bo(P

r).

Notations Description

Bo Oil formation volume factor. It is the volume in barrels occupied
in the reservoir, at the prevailing pressure and temperature, by one
stock tank barrel of oil plus its dissolved gas. (unit: rb/stb)

Bg Gas formation volume factor. It is the volume in barrels that one
standard cubic foot of gas will occupy as free gas in the reservoir at
the prevailing reservoir pressure and temperature. (unit: rb/scf)

Bw Water formation factor. It is the volume occupied in the reservoir
by one stock tank barrel of water. (unit: rb/stb)

Rs Solution (or dissolved) gas. It is the number of standard cubic feet
of gas which will dissolve in one stock tank barrel of oil when both
are taken down to the reservoir at the prevailing reservoir pressure
and temperature. (unit: scf/stb)

Table 4.5: Definition of the PVT functions

One key characteristic of the black-oil model that we use is due to [Danesh, 1998, chap
2], which states that the sum of the physical volumes in the reservoir associated with the
three components V o, V g, V w is a decreasing function

P r 7→ V o ×Bo(P
r) + V g ×Bg(P

r) + V w ×Bw(P
r) , (4.7)

of the reservoir pressure.
The last characteristic of the black-oil model concerns the dissolved gas in the oil V dg.

It is assumed in Dake [1983] that the standard volume of the dissolved gas V dg is a function
of both the standard volume of oil, V o, and the reservoir pressure, P r, as follows

V dg = δ(V o, P r) = V o ×Rs(P
r) . (4.8)
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4.A.2 Conservation law in the reservoir

We assume that the reservoir structural integrity is guaranteed, so there is no leakage of
any fluids at any time. We can therefore write mass conservation equations, which are also
named material balance equations in the oil literature, for each of the four components
introduced in §4.A.1. In order to write the material balance equations of the reservoir, we
need to consider the production volumes, F o, F g and Fw which are the standard volumes
of oil, free gas and water extracted from the reservoir.

Using material balance for the standard volume of oil in the liquid phase, we get

V o
t+1 = V o

t − F o
t ∀t ∈ T \ {T} , (4.9)

and, for the standard volume of water, we get

V w
t+1 = V w

t − Fw
t ∀t ∈ T \ {T} . (4.10)

The material balance for gas requires some more developments as it mixes the standard
volume of free gas and the standard volume of dissolved gas. As given in §4.A.1, at
any time, t ∈ T , the standard volume of dissolved gas in the liquid phase V dg

t is given
by Equation (4.8). Therefore, between time t and time t + 1, the standard volume of
dissolved gas evolves from V dg

t = δ(V o
t , P

r
t ) to V dg

t+1 = δ(V o
t+1, P

r
t+1). Hence, the quantity

(V dg
t −V dg

t+1) of liberated gas must be added to the free gas material balance equation. Thus,
for all t ∈ T \ {T}, we obtain the following mass conservation equation for the standard
volume of free gas

V g
t+1 = V g

t − F g
t + (V dg

t − V dg
t+1)

= V g
t − F g

t +
(
V o
t ×Rs(P

r
t )− V o

t+1 ×Rs(P
r
t+1)

)
(by (4.8))

= V g
t − F g

t +
(
V o
t ×Rs(P

r
t )−

(
V o
t − F o

t

)
×Rs(P

r
t+1)

)
(by (4.9))

= V g
t − F g

t +
(
V o
t ×

(
Rs(P

r
t )−Rs(P

r
t+1)

)
+ F o

t ·Rs(P
r
t+1)

)
. (4.11)

The last conservation equation is given by a physical volume constraint coming from
the fact that all four components of the reservoir are kept in the pores of the reservoir
rocks. We note V p the total pore volume of the reservoir. Following Dake [1983] and
assuming that the pore compressibility cf is constant, the total pore volume is a function
of the pressure in the reservoir given by

V p
t = V0exp(cfP

r
t ) , ∀t ∈ T , (4.12)

with V0 the asymptotic reservoir volume when pressure tends to 0.
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A linearized version of Equation (4.12) proposed in Dake [1983] is

V p
t+1 − V p

t

V p
t

= cf
(
P r
t+1 − P r

t

)
, ∀t ∈ T \ {T} , (4.13)

and is used to derive the state dynamics of the reservoir.
Now, we consider the saturations of the fluids which are the proportions of the available

pore volume taken by each of the three fluids in the reservoir. Denoting by So, Sg and Sw

the saturations of respectively the oil, free gas and water components, we obtain that the
sum of the three saturations must be equal to one over time

So
t + Sg

t + Sw
t = 1 , ∀t ∈ T . (4.14)

Since, for all t ∈ T and i ∈ {o,g,w}, we have that

Si
t =

V i
t ×Bi(P

r
t )

V p
t

,

Equation (4.14) gives

V o
t ×Bo(P

r
t ) + V g

t ×Bg(P
r
t ) + V w

t ×Bw(P
r
t ) = V p

t , ∀t ∈ T . (4.15)

4.A.3 Construction of a production function

The time evolution of the reservoir is driven by the three production volumes, F o, F g and
Fw which are the standard volumes of oil, free gas and water extracted from the reservoir.

Thus, the three production volumes may appear as possible controls on the reservoir.
However, when adding a production network to the reservoir model, the controls to be
considered are no longer production volumes, but decisions made upon the production
network, such as opening or closing a pipe, choosing the well-head or bottom hole pressure,
etc.

In the general case, we can assume that the physical model of the production network
leads to a production function Φ : X × U → R3, which relates the production volumes to
the variables of the reservoir x = (V o, V g, V w, V p, P r) (we will show that x is a possible
state of the reservoir) and to the network controls u, giving

(F o, F g, Fw) = Φ(x, u) . (4.16)

When considering only one well, a common assumption is that the production volumes
are given by the Inflow Performance Relationship Ipr, which is a function of the reservoir
pressure P r, the bottom-hole pressure P , the saturation of water Sw and the saturation of

63



Chapter 4. Deterministic optimization of a Petroleum Production

gas Sg. More precisely, we obtain, for a one well model, that

F i = Φi(x, u) =
Ipri(u, x(5), x

(3)Bw(x(5))

x(4) , x
(2)Bg(x(5))

x(4) )

Bi(x(5))
, ∀i ∈ {o,g,w} . (4.17)

In the general case, we then need to take into account pressure drop due to the flow in the
well itself through the use of a Vertical Lift Performance relationship.

In the two cases presented in Section 4.4, we can further detail the general production
function Φ as follows

• For the gas reservoir as exposed in §4.4.1, we assume that the well only produces gas,
and we hence obtain the following simplified formulation

F g
t = Φg(x, u) =

Iprg(P r
t − Pt)

Bg(P r
t )

. (4.18)

Indeed, when we only produce gas, there is no need to consider the different satura-
tions. Those saturations are necessary to find the proportion of oil, water and gas
produced when applying a difference of pressure P r − P . Having only gas implies
that the saturations have no impact on the production.

• When considering that the reservoir does not contain any free gas (i.e. V g = 0 and
Sg = 0), we obtain the following simplification for the production of oil and water.
We assume that the total production Ft follows a simplified Darcy’s law

Ft = α(P r
t − Pt) , ∀t ∈ T , (4.19)

where Ft is given by

Ft = F o
t ×Bo(P

r
t ) + F g

t ×Bg(P
r
t )︸ ︷︷ ︸

=0

+Fw
t ×Bw(P

r
t ) , (4.20)

with α the productivity index of the well, Pt the bottom-hole pressure of the well and
Ft the total production which consists of a mix of oil and water as we have assumed
that we have no free gas.

For the oil reservoir with water injection case presented in §4.4.2, the last assumption
we make is that the amount of produced water is given by

Fw
t ×Bw(P

r
t ) = α(P r

t − Pt)Wct(Sw
t ) , (4.21)

where Wct is the water-cut function and, as already seen, where the water saturation
is

Sw
t =

V w
t Bw(P

r
t )

V p
t

.
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As we do not use more complex networks, we will not look any deeper into the network
controls and their relationship with the general production Φ since those are beyond the
scope of this paper.

4.A.4 Reservoir dynamics

We can now write the reservoir time evolution as a controlled dynamical system. The state
of the controlled dynamical system is x = (V o, V g, V w, V p, P r). We also express the pro-
duction volumes thanks to the general production function, Φ, defined in Equation (4.16).

Now, we show that using Equations (4.9), (4.10), (4.11), (4.13), (4.15) and (4.16) we can
build a mapping f such that xt+1 = f(xt, ut) for all t ∈ T . We proceed as follows: we con-
sider the conservation Equation (4.15) at time t+1, and use Equations (4.9), (4.10), (4.11)
and (4.13) to obtain the equation

(V o
t − F o

t )×Bo(P
r
t+1) + (V w

t − Fw
t )×Bw(P

r
t+1)

+
[
V g
t − F g

t + V o
t ×

(
Rs(P

r
t )−Rs(P

r
t+1)

)
+ F o

t ×Rs(P
r
t+1)

]
×Bg(P

r
t+1)

= V p
t

(
1 + cf (P

r
t+1 − P r

t )
)
, (4.22)

which depends on the state and production volumes at time t and of the pressure of the
reservoir at time t+1. As recalled in §4.A.1, it is established in [Danesh, 1998, chap 2] that
the left-hand side of Equation (4.22) is a decreasing function of the reservoir pressure P r

t+1.
More precisely, the expansion of the oil when gas dissolves into it due to an increase in
pressure ∆P is less than the aggregated volume decrease of the free gas and the other fluids
due to that same ∆P . To the contrary, the right-hand side of Equation (4.22) is increasing
with the reservoir pressure. Hence, Equation (4.22) gives a function Ξ : X × U → R such
that ∀t ∈ T , P r

t+1 = Ξ(xt, ut).
Moreover, note that when the PVT functions (Bo, Bg, Bw and Rs) are piecewise

linear functions, the function Ξ can be computed efficiently. We only need to look at the
breaking points of the piecewise linear functions to know on which segment we can invert
Equation (4.22), thus getting the reservoir pressure P r.

Combining Equations (4.9), (4.10), (4.11), (4.13) and using function Ξ, we finally
obtain the expression of function f given in Equation (4.3).

4.B Material on state reduction
In this section, we detail how the general dynamics can be simplified in specific cases.

65



Chapter 4. Deterministic optimization of a Petroleum Production

4.B.1 Gas reservoir state reduction

We consider a gas reservoir with no gas injection and where there is no water production
or extraction, as used in §4.4.1, and we prove that the time evolution of the gas reservoir
can be described by a reduced state composed of the standard volume of gas xt = V g

t .
By assumption, the reservoir contains only gas and a constant volume of water. Thus,

the standard volume of water satisfies V w
t = V w

0 for all t ∈ T and the standard volume
of oil satisfies V o

t = 0 for all t ∈ T . Hence, the state dimension can be reduced from
dimension 5 to dimension 3.

Now, we show that the state dimension can be reduced to 1. First, we use Equa-
tion (4.12) in place of the linearized version (4.13) to obtain that V p

t = V0exp(cfP
r
t ) for all

t ∈ T . Second, we consider Equation (4.15) at time t together with V o
t = 0 and V w

t = V w
0

and V g
t = V g

t − F g
t to obtain

V g
t ×Bg(P

r
t ) + V w

0 ×Bw(P
r
t ) = V0exp(cfP

r
t ) , ∀t ∈ T . (4.23)

The left-hand side of Equation (4.23) is a decreasing continuous function of the pressure
(the volume of gas and the production being known) which we assume to be piecewise
linear (we assume that the PVT functions are piecewise linear), whereas the right-hand
side is an increasing and continuous function of the pressure. This implies that there can
be at most one reservoir pressure which satisfies Equation (4.23). Moreover, since the
left-hand side is piecewise linear, we can compute the reservoir pressure thanks to the W
Lambert function (the inverse relation of f(w) = wew), and since pressure is positive, we
use the W0 branch of the Lambert function. Finally, we obtain a function Ψ : R→ R such
that the pressure

P r
t = Ψ(V g

t ) , ∀t ∈ T , (4.24)

is the solution of Equation (4.23).
As the pressure, P r

t , is given as a function of V g
t and the pore volume, V p

t , is given
as a function of the pressure, P r

t , we obtain a reduced state of dimension 1 given by the
standard volume of gas V g

t .
The only thing missing in order to get formulation (4.4) is to explicit the production

function. The production of gas is given by Equation (4.18). As the reservoir pressure is
given by the function Ψ, the production of gas when considering a one tank reservoir is
given by

F g =
Iprg(Ψ(V g)− P )

Bg(Ψ(V g))
.

In the numerics, it is assumed that Iprg, the inflow performance relationship of the well,
is a piecewise linear function.

We consider two different models in §4.4.1: a one tank reservoir and a two tanks
reservoir, as illustrated by Figure 4.2. In both cases, we have only one well and, as the
optimization is done at the bottom of the well, the unique control is given by ut = Pt.
The state in the one tank case is xt = V g

t , whereas it is xt =
(
(V g

t )
(1), (V g

t )
(2)
)

for the two
tanks case.
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We denote by Ψ1T the function which returns the reservoir pressure of the one tank
case given a volume of gas in the reservoir (as defined in Equation (4.24)), and Ψ2T the
function for the producing tank pressure in the two tanks case.

The general production function Φ1T of the one tank case is hence given by

Φg
1T(xt, ut) =

Iprg (Ψ1T(xt)− ut)

Bg(Ψ1T(xt))
= F g

t . (4.25)

For the two tanks case, we consider that the well only produces gas from the first tank.
The general production function Φ2T of the two tanks case is thus given by

Φg
2T(xt, ut) =

Iprg
(
Ψ

(1)
2T(xt)− ut

)
Bg(Ψ

(1)
2T(xt))

= F g
t . (4.26)

In the Formulation (4.4) (for the one tank case), we split Φg
1T in Constraints (4.4c)

and (4.4d) to explicit the reservoir pressure and to mirror Equation (4.18).
Moreover, since we have only one well and since the Ipr function is strictly monotonous,

the production function of the well of Equation (4.4d) is injective. In the models considered
here (one tank or two tanks), we can thus pass from the controls to the production and
from the production to the controls without any ambiguity at a given state: the function
Φg(x, ·) is a bijection, hence we find the (unique) bottom-hole pressure associated with a
given production F g when in state x. Finally, we obtain the admissibility set of the gas
reservoir case. As the gas production F g

t must be nonnegative, we obtain that the control
must satisfy Pt ∈ [0, P r

t ] for all time t ∈ T , which gives the admissible control set

Uad(xt) = [0, P r
t ] = [0,Ψ1T(xt)] . (4.27)

4.B.2 Oil reservoir with water injection state reduction

Now, we consider an oil reservoir where water injection is used to keep the reservoir pressure
constant as in §4.4.2. To eliminate the possibility of having free gas in the reservoir, we
assume that the initial pressure in the reservoir is above the bubble-point. Indeed, as
we are going to keep the pressure constant, the pressure will always remain above the
bubble-point.

We assume that the produced water 2 is given by Equation (4.21).
We now prove that the standard volume of water V w

t may be used as a state for
describing the reservoir dynamics. To start with, we have that V g

t = 0, F g
t = 0 and P r

t =
P r
0 for all t ∈ T . Moreover, using Equation (4.12) in place of the linearized version (4.13)

we obtain that the pore volume is constant over time and given by V p
t = V0exp(cfP

r
0 ).

2Here, the produced water Fw is the water that is produced from the well. It should not be confused
with the net produced water, which is the difference Fw−Fwi between the water produced and the water
injected
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Hence, the state dimension can be reduced from dimension 5 to dimension 2 as V g
t , P r

t

and V p
t are known over time.

Now, using Equation (4.15) combined with the fact that V g
t = 0, we obtain that

V o
t ×Bo(P

r
0 ) + V w

t ×Bw(P
r
0 ) = V p

0 ,∀t ∈ T . (4.28)

Thus, the standard volume of oil in the reservoir is obtained as a function of the standard
volume of water as follows

V o
t =

V p
0 − V w

t ×Bw(P
r
0 )

Bo(P r
0 )

.

Moreover, using Equation (4.19) and Equation (4.21), for all time t ∈ T , we have that

Fw
t = Φw(V w

t , Pt) (4.29a)

with Φw(V w, P ) =
α(P r

0 − P )Wct
(

V w

V p
0
Bw(P

r
0 )
)

Bw(P r
0 )

, (4.29b)

and

F o
t = Φo(V w

t , Pt) (4.30a)

with Φo(V w, P ) =

α(P r
0 − P )

(
1−Wct

(
V w

V p
0
Bw(P

r
0 )
))

Bo(P r
0 )

. (4.30b)

Now, we turn to the time evolution of the standard volume of water. Equation (4.10)
must be changed as we need to introduce the injected water Fwi

t at time t to obtain

V w
t+1 = V w

t − Fw
t + Fwi

t , ∀t ∈ T . (4.31)

It remains to show that the water injection can be deduced from the previous equations.
Using Equation (4.15) at time t+ 1 combined with Equation (4.31) and Equation (4.9)
gives

(V w
t − Fw

t + Fwi
t )×Bw (P r

0 ) +
(
V o
t − F o

t

)
×Bo(P

r
0 ) = V p

0 , (4.32)

which, using Equation (4.28), (4.29b) and (4.30b), gives

Fwi
t = Fw

t + F o
t ×

Bo(P
r
0 )

Bw (P r
0 )

=
α(P r

0 − Pt)

Bw(P r
0 )

. (4.33)

We conclude that we obtain a state dynamics with a one dimensional state xt = V w
t , a one

dimensional control ut = Pt, and state dynamics given by

V w
t+1 = V w

t −
α(P r

0 − Pt)
(
Wct(V w

t Bw(P
r
0 )/V

p
0

)
− 1
)

Bw(P r
0 )

. (4.34)
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4.C Details on the impact of the states and controls
discretizations

One tank gas reservoir. In the application of §4.4.1.1, we tried different discretization
values for the state and control spaces. Results get better each time we increase the
number of states or controls used in the loops of Algorithm 1. The optimal values and CPU
times are compiled in Table 4.6. Discretization of the control space has less impact than
discretization of the state space (there is no significant improvement when using more than
10 possible controls). We used 50 possible controls for the rest of the state discretization
analysis to ensure we do not have any issues due to the control space. Moreover, the
computation time grows linearly with the number of controls, hence we only got penalized
by a factor of 5 for the computation time compared to being at the most efficient level for
the discretization of the controls. We can also remark that going beyond 10,000 points for
the state discretization yields no discernible improvement (less than 0.2%). However, the
computation time grows exponentially with the state discretization. We hence used 10,000
points for the states and 20 controls for the results presented in §4.4.1.1.

State discretization Value (Me) CPU time (s)

100 602 1.25
200 689 1.45
500 725 2.50

1,000 736 7.50
2,000 740 25.20
5,000 742 110.00

10,000 743 653.00
20,000 743 2,288.00
50,000 743 8,142.00

Table 4.6: Summary of the impact of the discretization of the state space
on the one tank formulation, with 50 possible controls

Two tanks gas reservoir. We tried different discretization values for the two reservoirs
problem of §4.4.1.2: 200×200 (i.e. the two reservoirs are discretized with 200 points each),
400× 400, 600× 600 and 1,000× 1,000. Results are summarized in Table 4.7, which shows
the computation time of the optimization and the optimal value obtained. As can be seen,
the computation time grows exponentially with the discretization, as we need to handle
more and more values when we get a finer discretization. However, performance remains
reasonable for the number of time steps considered. We can also remark that going past a
200× 200 discretization of the states of the reservoir does not improve the optimal value.
A very small impact is observed from the discretization of the controls. Indeed, almost no
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improvement is obtained above 10 possible controls (we hence used 50 possible controls in
Table 4.7 to ensure the discretization of the controls will not influence the analysis of the
discretization of the states). All the results of §4.4.1.2 were therefore computed with the
400× 400 discretization for the states, and 20 for the controls.

State discretization CPU time (s) Value (Me)

50× 50 5.1 730
100× 100 28.3 735
200× 200 115.3 736
400× 400 706.0 736
600× 600 3,893.0 736
1000× 1000 18,089.0 736

Table 4.7: Impact of the discretization of the state space on the two tanks
model, with 50 possible controls

Oil reservoir with water injection. We tried different values for the discretization
of the state space of the problem described in §4.4.2. However, the discretization of the
controls had no impact, as the controls only took two different values: either no production,
or production at the maximal rate. We therefore chose 10 possible controls to ensure we do
not missed another behavior during the analysis on the impact of the discretization of the
states. Table 4.8 compiles the time to solve and the associated results of the optimization
depending on the number of points considered for the discretization of the states space.
We note that there is not a lot of gain from going from 10,000 points to 100,000 points in
the discretization, whereas computation time grows by more than 100 times.

Discretization Time steps CPU time (s) Value (Me)

1,000 240 0.35 3182
10,000 240 12.05 3358
100,000 240 1575 3376

Table 4.8: Summary of the dynamic programming results for the oil reser-
voir with water injection
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4.D Additional material on the decline curves formula-
tion

Usually, formulations using decline curves, as can be seen in the works of Iyer et al. [1998],
are of the form:

max
u

T∑
t=0

ρtLt(ut) (4.35a)

s.t. F o
t ≤ g

(
t−1∑
s=0

F o
s

)
, ∀t ∈ T \ {0} , (4.35b)

ut ∈ Uad
t

(
t−1∑
s=0

F o
s

)
, ∀t ∈ T . (4.35c)

Using decline curves, or oil deliverability curves, means using Equation (4.35b) to predict
the reservoir’s behavior. It states that the maximal rate at time t only depends on the oil
cumulated production until time t. In the general case, there is no reason to believe that
there is an equivalence between a material balance model for the reservoir and a decline
curve represented with a function g.

However, when the state of the material balance formulation can be reduced to a one
dimensional state (such as a reservoir which only contains gas), there can be an equiva-
lence between the decline curve and the material balance formulations, as was stated in
Proposition 4.3.

Proof of Proposition 4.3. Let us consider the component Φg : X×U→ R of the production
mapping Φ : X× U→ R3 such that

F g
t = Φg (xt, ut) . (4.36)

Therefore, we have
F g
t ≤ max

u
Φg (xt, u) . (4.37)

Moreover, having a one-dimensional state greatly simplifies the dynamics, as we only need
to consider one fluid. The dynamics thus simplifies to

xt+1 = f (xt, ut) = xt − F g
t . (4.38)

By propagating the simplified dynamics (4.38) and by re-injecting it in Equation (4.37),
we get:

F g
t ≤ max

u
Φg

(
x0 −

t−1∑
s=0

F g
s , u

)
︸ ︷︷ ︸

g(
∑t−1

s=0 F
g
s )

. (4.39)
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Hence, Equation (4.39) defines the function g. The equivalence exists when the state is
reduced to one dimension (as similar reasoning can be applied to the other one-dimensional
cases).

However, when considering more complex cases, such as a reservoir with both oil and
gas, or when there is water encroachment (influx of water in the reservoir from the aquifer),
we cannot have a reduction to a one-dimensional state. Decline curves, or oil deliverability
curves, will not be equivalent to the material balance system, as they can only represent a
one dimensional dynamical system, where the state is the cumulated production.

Even if we have a state that cannot be reduced to one dimension, we can still propagate
the dynamics in Equation (4.36):

F g
t = Φg(xt, ut)

= Φg (f (f (. . . f (x0, u0) , . . . ) , ut−1) , ut) .

However, there is no reason to believe that there exists a function g depending on the sum
of productions in the general case, contrarily to the one-dimensional case. This is why those
functions are generated with a given production planning, i.e. a series of controls applied to
the reservoir. Given a series of admissible controls Ũ = (ũ0, . . . , ũT ), one can create an oil-
deliverability curve, that takes as argument the total cumulated production and returns the
maximal possible production. It however depends on the underlying production planning
Ũ . We can create such function g̃Ũ through the Algorithm 2.

Algorithm 2: Finding the points of the piecewise linear function g̃Ũ

control_to_apply = Ũ ;
current_state = x0;
cumulated_production = 0;
max_production = maxuΦ

g(current_state, u);
list_of_points = {(cumulated_production, max_production)};
for t from 1 to T do

ũ = control_to_apply[t];
production = Φg(current_state, ũ);
cumulated_production = cumulated_production + production;
current_state = f(current_state, ũ);
max_production = maxu Φ

g( current_state, u);
push(list_of_points, (cumulated_production, max_production));

end
return list_of_points

Once we have a list of points of g̃Ũ , we consider a linear interpolation between those
points as the decline curve we use in the optimization problem (4.5).

In [Iyer et al., 1998, Marmier et al., 2019], the authors use decline curves, i.e. oil-
deliverability curves with natural depletion at the maximal rate. This means that there
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is no injection, and the production planning consists of maximal production rates. We
can generate those decline curves with a tweaked version of the previous procedure (see
Algorithm 3).

Algorithm 3: Finding the points of the piecewise linear function g

current_state = x0;
cumulated_production = 0;
max_production = maxuΦ

g(current_state, u);
list_of_points = {(cumulated_production, max_production)};
for t from 1 to T do

ũ = argmaxuΦ
g( current_state, u);

production = Φg(current_state, ũ);
cumulated_production = cumulated_production + production;
current_state = f(current_state, ũ);
max_production = maxu Φ

g(current_state, u);
push(list_of_points, (cumulated_production, max_production));

end
return list_of_points
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5.1 Introduction
In this chapter, we introduce a new subclass of Partially Observed Markov Decision Pro-
cesses (Pomdp) which we call Separated Deterministic Partially Observed Markov Decision
Processes (Separated Det-Pomdp). The subclass Separated Det-Pomdp, which is in-
cluded in the Deterministic Partially Observed Markov Decision Processes (Det-Pomdp)
class, presented in [Bonet, 2009], is of interest for the optimization of oil and gas production.
In contrast to general Pomdp, this subclass of problem can be numerically tractable. The
scope of this chapter is on the definitions, the mathematical tools, and the formulations of
Pomdps optimization problems. We will present applications of Separated Det-Pomdp
to the oil and gas production case in Chapter 6.

To optimize controlled dynamical systems under partial observation, one often uses the
formalism of Partially Observed Markov Decision Processes. An extensive literature exists
on Pomdps, most of which focuses on the infinite horizon case. Pomdps can be applied to
numerous fields, from medical models (such as in [Steimle et al., 2021]) to robotics (such as
in [Pajarinen and Kyrki, 2017]) to name a few. Algorithms based on Dynamic Programming
([Bellman, 1957]) have been designed to exploit specific structures in Pomdps in order to
solve this difficult class of problems. They do so by first reformulating the problem through
the use of beliefs (probability distributions over the state space), such as in [Smallwood
and Sondik, 1973]. One such algorithm is SARSOP, described in [Kurniawati et al., 2008].
However, Pomdps are often untractable in the general case. Indeed, working with beliefs
implies working on the space of distributions over the state space, which is, by nature,
an infinite space. Instead of focusing on the general Pomdps, we present a subclass that
is relevant for the oil and gas production case, namely, Det-Pomdps. That subclass of
problems has been studied by [Littman, 1996] and [Bonet, 2009]. It was first considered as
a limit case of Pomdps for Littman, mainly used to illustrate the complexity of Pomdps
when considering as few sources of uncertainties as possible. For Bonet, Det-Pomdps
became of interest after some applications were found. He presented some examples in
[Bonet, 2009, §2], such as the navigation of a robot in a partially observed terrain. We
introduce and study an even simpler class: Separated Det-Pomdps. Indeed, that new
class of problems uses a property of the dynamics and observation to push back the curse
of dimensionality.

First, in §5.1.1, we define Det-Pomdps. Second, in §5.1.2, we present how the chapter
is organized and present our main contributions.
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5.1.1 Formulation of Deterministic Partially Observed Markov De-
cision Processes

A Det-Pomdp is a restricted case of Pomdps, itself an extension of Markov Decision
Processes (Mdps). Backgrounds on Mdps can be found in Appendix 5.A.1, whereas back-
grounds on Pomdps can be found in Appendix 5.A.2. As with Mdps, the model consists
of a dynamical system, defined thanks to states, controls (also called actions), transitions
and time steps. At each time-step, the decision maker (also called the agent) chooses a
given action, which generates a random reward depending on the state of the system and
on the time. The state then transits to its next random value. However, in the case of
Det-Pomdp (and Pomdp), the decision maker has only partial knowledge of the state of
the dynamical system. Instead, he has access to a function of the state and controls: the
observations. For Det-Pomdp, the transitions and observations are given by deterministic
evolution and observation functions.

First, we present some notations regarding sets. Second, we present the ingredients of a
Det-Pomdp. Third, we present the formulation of a Det-Pomdp optimization problem.

Notations for sets.

• Let t and t′ be two integers, with t′ ≥ t. The set {t, t+ 1, . . . , t′} is denoted by Jt, t′K.

• We denote by R the extended real numbers, that is

R = R ∪ {−∞,+∞} ,

equipped with the extended (upper) addition that extends the usual addition with
(+∞) + (−∞) = (−∞) + (+∞) = +∞ and the extended (lower) multiplication
0× (+∞) = 0× (−∞) = 0, following conventions as in [Bertsekas and Shreve, 1978].
Note that these conventions are tailored to minimization problems.1

• The cardinality of a finite set is the number of its elements and is denoted by | · |.

Ingredients of a Det-Pomdp A Det-Pomdp is defined by the tuple

D =
(
T ,U,O,X, {Lt}t∈T \{T}, {ft}t∈T \{T}, {Uad

t }t∈T \{T}, {ht}t∈T
)
, (5.1)

which we now detail.

• T = J0, T K is the set of time-steps, where T ∈ N \ {0} is colloquially known as the
horizon.

• U is the set of controls the decision maker can choose from.
1In the case of maximization problems, we take the opposite convention considering the (lower) addi-

tion: (+∞) + (−∞) = (−∞) + (+∞) = −∞, while we keep the same convention regarding the (lower)
multiplication 0× (+∞) = 0× (−∞) = 0
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• O is the set of observations available to the decision maker.

• X is the set of states.

• {Lt}t∈T \{T} is the collection of instantaneous costs functions: for all time t ∈ T \{T},
Lt : X × U → R ∪ {+∞}. Moreover, the final cost function LT is by convention
denoted by K : X→ R ∪ {+∞}.

• {ft}t∈T \{T} is the collection of evolution functions: for all time t ∈ T \ {T},
ft : X× U→ X. They define the transitions of the dynamical system.

• {Uad
t }t∈T \{T} is the collection of admissibility constraints: for all time t ∈ T \ {T},

Uad
t : X ⇒ U is a set-valued mapping from X to U, that is, for all state x ∈ X, Uad

t (x)
is a subset on U.

• {ht}t∈T is the collection of observation functions. The initial observation is given by
the mapping h0 : X→ O, whereas for all time t ∈ T \{0}, the observations are given
by the mappings ht : X× U→ O.

Let (Ω,F,P) be a probability space, where Ω is the set of possible outcomes, F is a
σ-field and P is a probability measure on Ω. We denote by E the mathematical expectation
operator.

In this chapter, we only consider Det-Pomdp which satisfies the following finite sets
assumption.

Assumption 5.1 (Finite sets assumption). The sets of possible outcomes Ω, of states X,
of controls U, and observations O have finite cardinality. Moreover, we consider a finite
number of timesteps, i.e. the horizon is finite: T < +∞.

As we consider finite sets, we introduce a notation for the set of probability distributions
on finite sets:

• Let Y be a finite set. We denote by ∆(Y) the set of probability distributions on Y.
The set ∆(Y) is in bijection with the simplex ∆|Y| of dimension |Y|.

We now present the formulation of the optimization problem which we study in this
chapter.
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Formulation of a Det-Pomdp optimization problem A finite-horizon Det-Pomdp op-
timization problem is formulated as follows

V⋆(b0) = min
X,O,U

E
[T−1∑
t=0

Lt(Xt,Ut) +K(XT )
]

(5.2a)

s.t. PX0 = b0 , (5.2b)
Xt+1 = ft(Xt,Ut) , ∀t ∈ T \ {T} , (5.2c)
O0 = h0(X0) , (5.2d)
Ot+1 = ht+1(Xt+1,Ut) , ∀t ∈ T \ {T} , (5.2e)
Ut ∈ Uad

t (Xt) , ∀t ∈ T \ {T} , (5.2f)
σ(Ut) ⊂ σ(O0, . . . ,Ot,U0, . . . ,Ut−1) , ∀t ∈ T \ {T} , (5.2g)

where we denote by V⋆(b0) the optimal value of Problem (5.2), that is, the optimal value
of the Det-Pomdp optimization problem when the initial probability distribution of the
state is given by the initial belief b0 ∈ ∆(X). In Problem (5.2), there are three processes
X =

{
Xt

}
t∈T , U =

{
Ut

}
t∈T \{T} and O =

{
Ot

}
t∈T . For all time t ∈ T , Xt : Ω→ X and

Ot : Ω → O are random variables representing respectively the state and the observation
variables of the system at time t, and for all time t ∈ T \ {T}, Ut : Ω → U are random
variables representing the controls at time t.

The optimization criterion of Problem (5.2) is given by Equation (5.2a). In this chapter,
we only consider the minimization of the expected value in the finite horizon case.

We now detail the constraints of the optimization Problem (5.2).
First, Equation (5.2b) is the initialization constraint. As the initial state is not fully
known, we instead use the probability distribution b0 of the initial state of the system for
the initialization.
Second, Equation (5.2c) is called the state evolution equation of the system. It is defined
thanks to the dynamics which describe the evolution of the states of the controlled dynam-
ical system.
Third, Equations (5.2d) and (5.2e) define the observations evolution functions of the sys-
tem available at each time step.
Fourth, Equation (5.2f) is called the admissibility constraints : it defines which controls
can be applied at each time step. Note that the proper formulation of the admissibility
constraints is

Ut(ω) ∈ Uad
t (Xt(ω)) , ∀ω ∈ Ω, ∀t ∈ T \ {T} .

However, for the remainder of this chapter, we instead use a more compact notation by
omitting the ω ∈ Ω:

∀t ∈ T \ {T} , Ut ∈ Uad
t (Xt) .

Finally, Equation (5.2g) is the non-anticipativity constraint: it defines the information
available to the decision maker before choosing a control at each time step. It states that,
at time t ∈ T \ {T}, the decision maker has access to an information vector It, defined by
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the recursion

I0 = (O0) , and, ∀t ∈ T \ {T} , It+1 = (It,Ut,Ot+1) . (5.3)

As all sets Ω, X, U and O are assumed to be finite by Assumption 5.1, the optimization
Problem (5.2) is well defined.

To summarize, a Det-Pomdp is a Pomdp with the following characteristics:

• There are no exogenous uncertainties for the state transition and the observations.
The transitions are given by the evolution mappings ft : X×U→ X while the obser-
vation are given by the observation mappings ht : X × U → O. This contrasts with
general Pomdp where exogenous uncertainties may enter the evolution mappings
and the observation mappings.

• The initial state x0 is only known through its probability distribution, the initial
belief b0.

5.1.2 Main contributions

The chapter is organized as follows. First, in §5.2, we present Dynamic Programming on
beliefs for Det-Pomdp with constraints. Second, in §5.3, we present a new representation
for the belief dynamic using pushforward measures. Third, in §5.4, we present complex-
ity bounds for Dynamic Programming on beliefs for Det-Pomdp. Fourth, in §5.5, we
introduce a subclass of Det-Pomdp, Separated Det-Pomdp. Finally, in §5.6 we illus-
trate Separated Det-Pomdp with a toy problem: emptying a tank containing water when
considering partial observation of the level of water in the tank.

We also present backgrounds on Mdp and Pomdp in Appendix 5.A.1 and 5.A.2. Then,
in Appendix 5.A.3, we detail the proof of Dynamic Programming on beliefs for Det-
Pomdp with constraints. In Appendix 5.A.4, we present technical lemmata and consider-
ations on pushforward measures. Finally, in Appendix 5.A.5, we present some complements
on Separated Det-Pomdps.

We now detail our main contributions.

• In §5.2, we extend [Bertsekas and Shreve, 1978] Dynamic Programming equations
with beliefs for unconstrained Pomdps to Det-Pomdps with constraints. Indeed,
a key assumption in [Bertsekas and Shreve, 1978] to write Dynamic Programming
equations with beliefs is that there are no admissibility constraints on the controls.
As the applications dictate the presence of such constraints, we present this extension
in Proposition 5.2, which gives us Dynamic Programming Equations (5.16).

• In §5.3, we express the belief dynamics in Det-Pomdps using the notion of push-
forward (or image-measure), as presented in Lemma 5.4. This new representation
is the basis for all the improvements of the bounds on the cardinality of the set of
reachable beliefs.
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5.2. Dynamic Programming for Det-Pomdp with constraints

• In §5.4, we improve Littman [1996] bound on the cardinality of the set of reachable
beliefs,

∣∣BR,D
J1,T K

∣∣, for Det-Pomdp, from (1 + |X|)|X|, to (1 + |X|)|supp(b0)| (see The-
orem 5.9). Note that this bound does not depend on the number of time steps.
Moreover, in Theorem 5.10, we give a time-dependent bound 1 + |supp(b0)||U||T | on
the cardinality of the set of reachable beliefs. Those bounds are of interest, as the
well-known complexity of Dynamic Programming on beliefs is O(|T ||BR,D

J1,T K(b0)||U||O|)
(see Proposition 5.7).

• In §5.5, we introduce a subclass of Det-Pomdps, Separated Det-Pomdps. As
shown in Corollary 5.16, the interest of Separated Det-Pomdps is that it pushes
back the curse of dimensionality for Dynamic Programming with beliefs. Indeed,
it improves the bound from (1 + |X|)|supp(b0)| to 1 +

(
2|supp(b0)| − |supp(b0)|

)
|X| (see

Corollary 5.16). Moreover, this last bound is tight (see Proposition 5.18).

We now present Dynamic Programming Equations with beliefs.

5.2 Dynamic Programming for Det-Pomdp with
constraints

In this section, we present Dynamic Programming Equations with beliefs for Problem (5.2).
As a Det-Pomdp is a Pomdp, all the results and numerical methods that apply to
Pomdps are carried over to Det-Pomdps. Notably, it is possible to write Dynamic
Programming equations for a finite horizon problem associated with a Pomdp (see Ap-
pendix 5.A.2 for more background on Pomdps). In the general case, those Dynamic
Programming equations take as input the information vector.

As stated in §5.A.2.3, Dynamic Programming on the information vector It, defined in
Equation (5.3), is in practice untractable as the dimension of the information vector grows
with time. However, under some assumptions detailed in [Bertsekas and Shreve, 1978],
we instead create a belief-Mdp where the state is a probability distribution over the state
space called beliefs. Here, we detail this methodology for the specific Det-Pomdp case,
and extend it to tackle cases with admissibility constraints on the controls.

First, in §5.2.1, we formally define sets and mappings which are necessary for the
formulation of the belief-Mdp. Second, in §5.2.2, we present the Dynamic Programming
equations on the resulting belief-Mdp.

5.2.1 Beliefs in Det-Pomdp

First, as beliefs are probability distributions, we present some notations for probability
distributions on finite sets, and for partial mappings. Second, we present the set of beliefs.
Finally, we present the mappings necessary for the formulation of the belief-Mdp, notably
the beliefs dynamics.
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Chapter 5. Deterministic Partially Observed Markov Decision Processes

Notations for probability distributions and measures on finite sets and for par-
tial mappings. In this chapter, we only work with probability distributions on finite
sets.

• Let b ∈ ∆(Y), and let y ∈ Y. By convention, we denote by b(y) the measure of the
set {y} for the probability b:

b(y) = b
(
{y}
)
. (5.4a)

Thus, for Y ⊂ Y, we have, using Equation (5.4a),

b(Y ) =
∑
y∈Y

b(y) . (5.4b)

• For any nonnegative measure µ on the finite set Y, we denote by supp(µ) ⊂ Y the
support of the measure µ

supp(µ) =
{
y ∈ Y

∣∣µ({y}) > 0
}
. (5.5)

We also present a notation for partial mappings.

• Let A, D, F (and G) be sets. Let g : A × D → F, (a, d) 7→ g(a, d). We denote by gd

the mapping
gd : A→ F, a 7→ g(a, d) , (5.6)

i.e. the mapping g(·, d) obtained from g by setting its second variable to a fixed value
d ∈ D. When considering mappings with n inputs, we extend this notation to the
last n− 1 inputs using a Cartesian product over the last n− 1 sets.

For example, let g : A × D × F → G. We denote by g(d,f) = g(·, d, f) the mapping
g(d,f) : A→ G, a 7→ g(a, d, f).

• We now present some notations for the composition of functions with fixed variables.
Let n be a positive integer, let

(
gi
)
i∈J1,nK be n mappings such that, for all i ∈ J1, nK,

gi : Ai × Di → Ai+1, and let d1:n ∈
∏

i∈J1,nK Di be an element of the product space of
Di. We denote by gd1:n1:n the composition mapping

gd1:n1:n : A1 → An+1 , gd1:n1:n = gdnn ◦ gdn−1

n−1 ◦ · · · ◦ gd11 . (5.7)

We illustrate this notation in the case where we have two mappings. Let g1 : A1 ×
D1 → A2 and g2 : A2 × D2 → A3, and let (d1, d2) ∈ D1 × D2:

∀a1 ∈ A1 , gd1:21:2 (a1) = gd22 ◦ gd11 (a1) = g2
(
g1(a1, d1), d2

)
.

We now present the sets necessary for the definition of beliefs.
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5.2. Dynamic Programming for Det-Pomdp with constraints

Sets for the beliefs. The dynamic programming equation for Det-Pomdps is formu-
lated using states in the set ∆(X), the probability distributions over the “initial” state
space X, which are called beliefs. However, the beliefs dynamics as described later in
Equation (5.14) may lead to a null measure over the space X when considering some com-
bination of observations and controls which are in contradiction with each other. As we
want to be able to compose belief dynamics, we combine ∆(X) and the null measure over
X as follows.

We introduce an extended state set X, obtained as the union of the original set X with
an extra element denoted by ∂:

X = X ∪ {∂} . (5.8)

We denote by B the subset of ∆(X) defined by

B = ∆(X) ∪ {δ∂} , (5.9)

where we identify the set ∆(X) with {µ ∈ ∆(X) | supp(µ) ⊂ X} and where δ∂ ∈ ∆(X) is the
discrete probability measure on X concentrated on ∂, that is δ∂({∂}) = 1, and where the
mapping “supp” is the support of a nonnegative measure as defined in Equation (5.5). The
probability measure δ∂ can be called the cemetery belief as we will see in Equation (5.14)
that the belief dynamics, when reaching the belief state δ∂, remains in δ∂ forever. A
probability measure ν ∈ ∆(X) are represented in some equations by the ordered pair(
ν|X , ν(∂)

)
, where ν|X is a nonnegative measures on the set X and ν(∂) ∈ R+.

Now that the set of beliefs B is defined, we present the beliefs dynamics.

Beliefs dynamics. In order to define the beliefs dynamics, we introduce for each t ∈
T \ {T} two mappings, Qt+1 : B× U×O→ [0, 1] and τt : B× U×O→ B.

The mapping Qt+1 gives the probability of observing o at time t + 1 when applying
control u on the dynamical system when considering belief b at time t, and is given by

∀t ∈ T \ {T} , Qt+1 : (b, u, o) ∋ B× U×O 7→ b
(
(hu

t+1 ◦ fu
t )
−1(o)

)
, (5.10)

where fu
t (·) and hu

t (·) are partial mapping that follow the notation defined in Equation (5.6):

∀u ∈ U, fu
t : X→ X , x 7→ ft(x, u) , (5.11)

∀u ∈ U, hu
t : X→ O , x 7→ ht(x, u) , (5.12)

and where b
(
(hu

t+1 ◦ fu
t )
−1(o)

)
is the probability of the set (hu

t+1 ◦ fu
t )
−1(o) with respect to

the probability distribution b, following Notation (5.4b). Note that, we always have that

Qt+1(δ∂, u, o) = δ∂
(
(hu

t+1 ◦ fu
t )
−1(o)

)
= 0 , (5.13)

as (hu
t+1 ◦ fu

t )
−1(o) is always a subset of X and thus has a null intersection with {∂}.
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Chapter 5. Deterministic Partially Observed Markov Decision Processes

For all time t ∈ T \{T}, the mapping τt gives the evolution of the beliefs when applying
control u on the dynamical system when considering belief b at time t and observing o at
time t+ 1, and is given by

• for all y ∈ X,

τt(b, u, o)(y) =


b
(
(fu

t )
−1(y)

)
Qt+1(b, u, o)

if Qt+1(b, u, o) ̸= 0, and y ∈
(
hu
t+1

)−1
(o) ,

0 otherwise,
(5.14)

• for y = ∂,
τt(b, u, o)(∂) = 1− τt(b, u, o)(X) . (5.15)

Hence, δ∂ is used as a last resort belief, which appears when it is not possible to observe
o after applying control u to any state of the support of belief b. Under an admissible
sequence of controls and observations, it should not be possible to attain such belief δ∂.
Indeed, δ∂ is used to ensure that the mappings τt are well defined for all beliefs, controls
and observations.

Lemma 5.1. We assume that the finite set Assumption 5.1 holds. For all time t ∈ T \{T},
the belief dynamics mapping τt given by Equation (5.14) takes its values in the set B =
∆(X) ∪ {δ∂}.

Proof. Let time t ∈ T \ {T}, control u ∈ U and observation o ∈ O be fixed. First,
suppose that b = δ∂. Using Equation (5.13), we have that Qt+1(δ∂, u, o) = 0 and using
Equation (5.14), we obtain that τt(δ∂, u, o) = δ∂ ∈ B.

Second, suppose that b ∈ ∆(X). If Qt+1(b, u, o) = 0, we obtain by (5.14) that
τt(b, u, o)(y) = 0 for all y ∈ X. Therefore, τt(b, u, o) = δ∂ ∈ B. Else, if Qt+1(b, u, o) ̸= 0,
then we have∑

y∈X

τt(b, u, o)(y) =
∑

y∈(hu
t+1)

−1(o)

b
(
(fu

t )
−1(y)

)
Qt+1(b, u, o)

(by definition of τt in Equation (5.14))

=
b
(
⊔y∈(hu

t+1)
−1(o)(f

u
t )
−1(y)

)
Qt+1(b, u, o)

(probability of a two by two disjoint union ⊔)

=
b
(
(fu

t )
−1((hu

t+1)
−1(o)

))
Qt+1(b, u, o)

(as f−1(A) = ∪a∈Af−1
(
{a}
)
)

=
b
(
(hu

t+1 ◦ fu
t )
−1(o)

)
Qt+1(b, u, o)

= 1 . (as b
(
(hu

t+1 ◦ fu
t )
−1(o)

)
= Qt+1(b, u, o) by (5.10))
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5.2. Dynamic Programming for Det-Pomdp with constraints

Hence as τt(b, u, o)(X) = 1, we have by Equation (5.15) that τt(b, u, o)(∂) = 0, and we
obtain by Equations (5.13), (5.14) and (5.15) that τt(b, u, o) ∈ ∆(X) ⊂ B.
This ends the proof.

Using the sequences of mappings {Qt}t∈T \{0} and {τt}t∈T \{T}, we have a properly defined
belief-Mdp, which can be solved by Dynamic Programming.

5.2.2 Dynamic Programming Equations for Det-Pomdps with
constraints

We now show that Dynamic Programming equations on the belief-Mdp solve Problem (5.2).
In the case of Pomdp (without constraints on the controls), Dynamic Programming equa-
tions with beliefs as new states were first given in [Åström, 1965]. More general cases (still
without constraints on the controls) are treated in Bertsekas and Shreve [1978, Chapter 10]
and in Bertsekas [2000, Chapter 4]. Dynamic Programming Equations for Det-Pomdp
can be obtained as a special case of Dynamic Programming for Pomdp. They are given
in Equations (5.16a) and (5.16b) together with the expression of the beliefs dynamics
{τt}t∈T \{T} (see Equation (5.14)) in the case where there are no constraints on the controls
in [Littman, 1996]. As stated in §5.A.2.3, in [Bertsekas and Shreve, 1978] the proof that
beliefs are statistics sufficient for controls was made for Pomdps without any admissibil-
ity constraint. We thus cannot directly apply this result on Problem (5.2), as it contains
Constraint (5.2f). As it is natural to consider such constraints for Mdps, Pomdps and
Det-Pomdps, our first contribution is to extend classical results by [Bertsekas and Shreve,
1978] in order to tackle such constraints. This is the purpose of Proposition 5.2, where we
identify an admissibility set for beliefs of the form Ub(b) =

⋂
x∈supp(b) Uad(x). Note that,

as far as we know, the first Dynamic Programming equations using such sets Ub(b) were
given in [Geffner and Bonet, 1998, §5] with no explicit proof.

Proposition 5.2. Consider a Det-Pomdp optimization problem given by Problem (5.2)
which satisfies the finite sets Assumption 5.1. Let B = ∆(X) ∪ {δ∂}, as defined in Equa-
tion (5.9) and consider the sequence of value functions (Vt : B→ R ∪ {+∞})t∈T defined by
the following backward induction. First, for all t ∈ T , we have that Vt(δ∂) = 0. Second,
we have that

VT : b ∈ ∆(X) 7→
∑
x∈X

b(x)K(x) , (5.16a)

Vt : b ∈ ∆(X) 7→ min
u∈Ub

t (b)

(
Ct(b, u) +

∑
o∈O

Qt+1(b, u, o)Vt+1

(
τt(b, u, o)

))
, (5.16b)

where
Ct(b, u) =

∑
x∈X

b(x)Lt(x, u) , (5.16c)
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and
Ub
t (b) =

⋂
x∈supp(b)

Uad
t (x) . (5.16d)

Then, the optimal value of Problem (5.2) and the value of the function V0 at the initial
belief b = b0 are equal, that is, V⋆(b0) = V0(b0). Moreover, a policy π = (π0, . . . , πT−1),
defined by a sequence of mappings πt : B → U, which minimizes the right-hand side of
Equation (5.16b) for each b and t is an optimal policy of Problem (5.2): the controls given
by Ut = πt(Bt) (where Bt is computed thanks to the recursion Bt+1 = τt(Bt,Ut,Ot+1),
with B0 = b0) are optimal controls of Problem (5.2).

Proof. The details of the proof are given in Appendix 5.A.3. The proof follows the structure
presented in Figure 5.1, where Dynamic Programming is abbreviated to DP.

1. First, we rewrite Problem (5.2) as an equivalent problem, Problem (5.68), without
constraint (5.2f) by adding characteristic functions of the constraints to the instan-
taneous costs. By Lemma 5.19, the two problems are indeed equivalent, and Prob-
lem (5.68) follows the framework of [Bertsekas and Shreve, 1978].

2. Second, we apply the results of [Bertsekas and Shreve, 1978] to the reformulated
Problem (5.68), and obtain associated Dynamic Programming equations.

3. Third, by Lemma 5.20, the Dynamic Programming equations which solve Prob-
lem (5.68) are equivalent to Equations (5.16) presented in Proposition 5.2, thus con-
cluding that Equations (5.16) give the solution of Problem (5.2) as formulated in
Proposition 5.2.

Det-Pomdp
with constraints

Pomdp
in Bertsekas-Schreve

formalism

DP
for Pomdp

DP
for Det-Pomdp
with constraints

Lemma 5.19

Proposition 10.3 and
Proposition 10.4, p.256-257
[Bertsekas and Shreve, 1978]

Lemma 5.20

Proposition 5.2

Figure 5.1: Illustration of the sketch of proof of Proposition 5.2, where
Dynamic Programming is abbreviated to DP.

Now that we have presented Dynamic Programming equations on beliefs, we present a
new representation of the belief dynamics using pushforward measures.
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5.3 Belief dynamics as pushforward measures
Here, we expose another representation of the beliefs evolution functions {τt}t∈T \{T} defined
in Equation (5.14). First, we recall the notion of pushforward measures when considering
finite sets. Second, we introduce the mappings necessary for the new representations.
We then present in Lemma 5.4 the representation of the belief dynamics as pushforward
measures.

Definition 5.3. Consider two finite sets A and D and a mapping h : A → D. The
pushforward measure (or the image-measure) of a probability measure µ ∈ ∆(A) on the
set A by the mapping h is the probability measure h⋆µ ∈ ∆(D) on the set D defined by

∀d ∈ D , (h⋆µ)(d) = µ
(
h−1(d)

)
=

∑
a∈A,h(a)=d

µ(a) . (5.17)

We also denote by h⋆ the mapping from ∆(A) to ∆(D) such that h⋆(µ) = h⋆µ.

Before presenting Lemma 5.4, we first introduce two mappings: F u,o
t , and R.

For each pair (u, o) ∈ U×O, and each t ∈ T \{T}, we denote by F u,o
t the self-mapping

on the extended state set X = X ∪ {∂} (defined in Equation (5.8)), and defined by:

F u,o
t : X→ X , x 7→

{
fu
t (x) if x ̸= ∂ and fu

t (x) ∈
(
hu
t+1

)−1
(o) ,

∂ otherwise.
(5.18)

The mapping F u,o
t hence applies the dynamics ft given control u, and only keeps the result-

ing state if it is consistent with observation o. Meanwhile, the renormalization mapping
R : ∆(X)→ ∆(X) is defined by

R : ν ∈ ∆(X) 7→
{(

1
ν(X)ν|X , 0

)
if ν(X) ̸= 0 ,

δ∂ if ν(X) = 0 .
(5.19)

We now express the belief dynamics as pushforward measures.

Lemma 5.4. Let (u, o) ∈ U×O be given, and let t ∈ T \ {T}. We have

∀b ∈ B , τt(b, u, o) = R ◦ (F u,o
t )⋆(b) , (5.20)

where the pushforward (F u,o
t )⋆(b) follows Notation (5.17).

Proof. The proof is detailed in Appendix 5.A.4.

This new representation is of interest as for all time t ∈ T \ {T}, the composition of
belief dynamics τt is given by the pushforward measure of the composition of mappings
F u,o
t for the relevant pairs (u, o) ∈ U×O.
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∆(X)
b

B = ∆(X) ∪ {δ∂}
τu,ot

∆(X) ∆(X)

(b, 0)

(
F u,o
t

)
⋆

R
(
(b′|X, b

′(∂)︸︷︷︸
∈R

)
)

Figure 5.2: Illustration of the beliefs dynamics as pushforward measures

Corollary 5.5. Let (u, u′, o, o′) ∈ U2 ×O2 be given, and let t ∈ T \ {T − 1, T}. We have

∀b ∈ B , τu
′,o′

t+1 ◦ τu,ot (b) = R ◦ (F u′,o′

t+1 ◦ F u,o
t )⋆(b) . (5.21)

Proof. Corollary 5.5 is a direct consequence of Lemma 5.4 and Lemma 5.23 found in
Appendix 5.A.4.

∆(X)
b

B = ∆(X) ∪ {δ∂}
τu

′,o′

t+1 ◦ τu,ot

∆(X) ∆(X) ∆(X)(
F u,o
t

)
⋆

(
F u′,o′

t+1

)
⋆

R

=
(
F u′,o′

t+1 ◦ F u,o
t︸ ︷︷ ︸

∈XX

)
⋆

Figure 5.3: Illustration of the composition of belief dynamics as pushfor-
ward measures.

There is therefore an equivalence between studying the composition for time t ∈ T \{T}
of the belief dynamics τt and the composition, for the relevant pairs (u, o) ∈ U × O, of
the mappings F u,o

t . Notably, we use this representation to bound the cardinality of the
set of reachable beliefs, and thus study the complexity of Dynamic Programming for Det-
Pomdp.
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5.4 Dynamic Programming complexity for Det-Pomdp

In §5.2, we presented Dynamic Programming for Det-Pomdp. We now study its complex-
ity, i.e. the number of operations necessary to solve Problem (5.2), using the representation
of beliefs as pushforward measures presented in §5.3.

According to Proposition 5.2, we can solve Problem (5.2) by computing V0(b0) by means
of Equations (5.16). Solving Dynamic Programming Equations (5.16) implies that we are
able to numerically evaluate the value functions at each reachable belief starting from
b0. Thus, we introduce the subsets of reachable beliefs starting from b0. The section is
organized as follows. We first define the set of reachable beliefs in §5.4.1, and we detail a
Dynamic Programming algorithm that solves Problem (5.2). Second, in §5.4.2, we present
new bounds on the cardinality of the set of reachable beliefs.

5.4.1 Reachable beliefs and Dynamic Programming complexity

We start by formally defining the set of reachable beliefs, before we present a Dynamic
Programming algorithm and give our first complexity result.

5.4.1.1 Set of reachable beliefs

The set of reachable beliefs is defined as follows.

Definition 5.6. Let b0 ∈ ∆(X) be given and consider the sequence of subsets of the beliefs
B defined by the induction:

BR,D
0 (b0) = {b0} and ∀t ∈ T \ {T} , BR,D

t+1 (b0) = τt
(
BR,D

t (b0),U,O
)
, (5.22)

where τt is defined in Equation (5.14). For any t ∈ T , the subset BR,D
t (b0) ⊂ B is called

the set of reachable beliefs a time t starting from initial belief b0.
Moreover, we denote by BR,D

J1,tK(b0) the union for t′ in the time interval J1, tK of the
reachable beliefs at time t′ starting from the initial belief b0 ∈ ∆(X), that is,

∀t ∈ T \ {0} , BR,D
J1,tK(b0) =

t⋃
t′=1

BR,D
t′ (b0) . (5.23)

The set BR,D
J1,tK is called the set of reachable beliefs.

We also denote by BR,D
J0,tK(b0) the union starting from time 0, i.e.

BR,D
J0,tK(b0) =

t⋃
t′=0

BR,D
t′ (b) = {b0} ∪ BR,D

J1,tK(b0) . (5.24)

Note that under Assumption 5.1, the set BR,D
J1,T K(b0) is finite. Note also that we use the

upper index D to recall that we consider the set of reachable beliefs of a Det-Pomdp
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defined by the data tuple D defined in Equation (5.1), whereas the upper index R stands
for reachable.

We now write a Dynamic Programming algorithm over the set of reachable beliefs.

5.4.1.2 Dynamic Programming Algorithm for Det-Pomdps

Here, the initial probability distribution b0 is fixed. We present a Dynamic Programming
algorithm and give our first complexity results.

Proposition 5.7. Consider a Det-Pomdp optimization problem given by Problem (5.2)
which satisfies the finite sets Assumption 5.1. Let b0 ∈ ∆(X). Then, Algorithm 4 (numer-
ically) solves Problem (5.2) by Dynamic Programming and its complexity is
O(|T ||BR,D

J1,T K(b0)||U||O|), where the set of reachable beliefs BR,D
J1,T K(b0) is defined in Equa-

tion (5.23).

Proof. First, note that as we consider that Assumption 5.1 holds, BR,D
J1,T K(b0) is finite and

all the loops in Algorithm 4 are finite (all the sets are finite). As there is no recursive
calls to functions in the Algorithm, only unitary functions of the problem, Algorithm 4
ends, and its complexity is given by the multiplications of the number of operations in
each loop. Moreover, as we have for all time t ∈ T , t > 0, BR,D

t (b0) ⊂ BR,D
J1,T K(b0), we

have |BR,D
t (b0)| ≤ |BR,D

J1,T K(b0)|. We also have BR,D
J1,T K(b0) ̸= ∅2 and BR,D

0 (b0) = {b0}, hence
|BR,D

0 (b0)| ≤ |BR,D
J1,T K(b0)|.

Thus, the complexity of Algorithm 4 is O(|T ||BR,D
J1,T K(b0)||U||O|).

We now prove that Algorithm 4 indeed yields the optimal value and an optimal policy
of Problem (5.2).

First, as Assumption 5.1 holds, we can apply Proposition 5.2 on Problem (5.2). We
can hence solve Problem (5.2) by computing value functions given by Equations (5.16).

Second, by using the definition of the set of reachable beliefs (see Definition 5.6), we
obtain that, when we consider the value functions Vt defined in Equations (5.16), at each
time t ∈ T , we only need to compute the value functions at beliefs that belong to BR,D

t (b0)
in order to get to V0(b0). Indeed, by Definition 5.6, all the beliefs at time t ∈ T that can
be reached when starting at belief b0 are, by definition, in BR,D

t (b0), hence we get to V0(b0)
through the Bellman equation (in Equation (5.16b)).

Third, the loops on the controls u and observations o return, for a given belief, the
value functions defined in Equations (5.16). As the first loop proceeds backward in time,
Algorithm 4 indeed returns the values of the value functions presented in Proposition 5.2.
Thus, we can indeed solve Problem (5.2) thanks to Algorithm 4.

In order to apply Proposition 5.7 on Problem (5.2) and to get complexity bounds on
Algorithm 4, we now study the set of reachable beliefs BR,D

J1,T K(b0), more specifically, we give
bounds on its cardinality.

2There is always at least one belief in BR,D
1 (b0), as for a given control u ∈ U and an observation o ∈ O,

τ0(b0, u, o) ∈ BR,D
1 (b0) ⊂ BR,D

J1,T K(b0)
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Algorithm 4: Computation of the value functions and policies Vt, πt

for b ∈ BR,D
T (b0) do

VT (b) =
∑

x∈X b(x)K(x) ;
end
for t = T − 1, . . . , 0 do

for b ∈ BR,D
t (b0) do

best_value = + ∞;
best_controls = ∅ ;
for u ∈ Ub

t (b) do
current_value = Ct(b, u) ;
future_value = 0;
for o ∈ ht+1(supp(b), u) do

future_value += Qt+1(b, u, o) * Vt+1(τt(b, u, o));
end
current_value += future_value;
if current_value < best_value then

best_value = current_value;
best_controls = u;

end
end
Vt(b) = best_value;
πt(b) = best_controls;

end
end
return

(
Vt, πt

)
t∈T
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5.4.2 Bounds on the cardinality of the set of reachable beliefs

Under the finite sets Assumption 5.1, the set of reachable beliefs BR,D
J1,T K(b0), defined in

Equation (5.23), is finite. Here, we present new bounds on its cardinality.

Horizon-independent bounds on the cardinality of the set of reachable beliefs.
In Theorem 5.9, we give a bound on the cardinality of the set BR,D

J0,tK(b0) = BR,D
0 (b0)∪BR,D

J1,tK(b0)

which is independent of time t ∈ T (the bound would be the same when considering an
infinite horizon) and which improves a previous result recalled in Remark 5.8.

Remark 5.8. Littman presents in [Littman, 1996, Lemma 6.1] a bound on the set of
reachable beliefs starting from belief b0 ∈ ∆(X):

∀t ∈ T ,
∣∣BR,D

J0,tK(b0)
∣∣ ≤ (1 + |X|)|X| . (5.25)

We now present in Equation (5.26) an improvement on the bound given in Equa-
tion (5.25) which takes into account the support of the initial belief b0: indeed, as b0 ∈ ∆(X)
and |supp(b0)| ≤ |X|, Equation (5.26) is tighter than Equation (5.25).

Theorem 5.9. Consider a Det-Pomdp optimization problem given by Problem (5.2)
which satisfies the finite sets Assumption 5.1. For any initial belief b0 ∈ ∆(X), the cardi-
nality of the set of reachable beliefs starting from b0, defined in Equation (5.23), satisfies
the following bound:

∀t ∈ T ,
∣∣BR,D

J0,tK(b0)
∣∣ ≤ (1 + |X|)|supp(b0)| . (5.26)

Proof. With the help of the representation of the beliefs evolution mappings given by
Lemma 5.4, the proof of Theorem 5.9 is a simple application of Lemma 5.24, given in
Appendix 5.A.4, that we detail now.

First, we present some notations regarding sets and mappings.

Notation for sets and mappings. For any given sets Y and V we denote by L(Y;V) =
VY the set of mappings from Y to V.

• For all G ⊂ L(Y;V), Y ⊂ Y, B ⊂ ∆(Y) and b ∈ ∆(Y) we introduce the notations
G(Y ), and G⋆(B), and G⋆(b) for the sets defined by

G(Y ) =
{
g(y)

∣∣ y ∈ Y and g ∈ G
}
⊂ V , (5.27a)

G⋆(B) =
{
g⋆b
∣∣ b ∈ B and g ∈ G

}
⊂ ∆(V) , (5.27b)

G⋆(b) = G⋆({b}) ⊂ ∆(V) . (5.27c)

• Given two subsets G′ and G′′ of L(Y;Y) we introduce the subset G′ ◦G′′ ⊂ L(Y;Y)
defined by

G′ ◦G′′ =
{
g′ ◦ g′′

∣∣ g′ ∈ G′ and g′′ ∈ G′′
}
. (5.27d)

92



5.4. Dynamic Programming complexity for Det-Pomdp

• For any sequence {Gk}k∈N, with Gk ⊂ L(Y;Y) for all k ∈ N, we introduce for any
k ∈ N the subsets G0:k of L(Y;Y) defined by

G0:k = Gk ◦Gk−1 ◦ · · · ◦G0 , ∀k ∈ N . (5.27e)

We now return to the proof. For a fixed value of u ∈ U, and o ∈ O, for all t ∈ T \{T}, we
have obtained in Lemma 5.4 that τt(·, u, o) = R◦ (F u,o

t )⋆. Now, for each t ∈ T , introducing
the sets

TDt =
{
τt(·, u, o)

∣∣u ∈ U, o ∈ O
}
⊂ L(B;B) , (5.28)

FDt =
{
F u,o
t

∣∣u ∈ U, o ∈ O
}
⊂ L(X;X) , (5.29)

FD =
⋃

t∈T \{T}

FD0:t (5.30)

where the composition of sets of mapping is given by Notation (5.27d) and (5.27e). Note
that FD0:t ̸= FDJ0,tK: FD0:t is the set of compositions of mappings F u,o

t′ from time t′ = 0 to time
t′ = t for all controls u ∈ U and observation o ∈ O, while the set FDJ0,tK is the set of all
mappings F u,o

t between time 0 and time t.
Using Lemma 5.4 and Notation (5.27b), we obtain that TDt = R ◦ (FDt )⋆. Moreover, in

order to account for BR,D
0 (b0), we introduce sets TD−1 = {τ−1} and FD−1 = {F−1}, where τ−1

and F−1 are given by the identity mappings on B and X:

τ−1 : B→ B , b 7→ b and F−1 : X→ X , x 7→ x . (5.31)

Then, using the definition of BR,D
t (b0) in Equation (5.22), we have that, for all time

t ∈ T ,
BR,D

t (b0) = TDt−1 ◦ TDt−2 ◦ · · · ◦ TD0 ◦ TD−1(b0) = TD(−1):(t−1)(b0) , (5.32)

where the composition of sets of mapping is given by Notation (5.27d).
Note that, as TD−1 is the set that only contains the identity function, we also have for

all time t ∈ T , t > 0,

BR,D
t (b0) = TDt−1 ◦ TDt−2 ◦ · · · ◦ TD0 (b0) = TD0:t−1(b0) . (5.33)

Finally, we obtain

∀t ∈ T \ {0} , |BR,D
J0,tK(b0)|

(5.24)
=
∣∣∣ t⋃
i=0

BR,D
i (b0)

∣∣∣ (5.32)
=
∣∣∣ t−1⋃
i=−1

TD−1:i(b0)
∣∣∣ (5.96)

≤ (1 + |X|)|supp(b0)| .

The last inequality is given by Equation (5.96), obtained by applying Lemma 5.24. As all
the elements of FDt are of the form given in Equation (5.18), and FD−1 is a

(−→
X
)
-mappings

set (F−1 is the identity function on X, hence a X-forward mapping), the two sequences
{FDt }t∈J−1,T K and {TDt }t∈J−1,T K satisfy the assumptions of Lemma 5.24 where the role of
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{Φk}k∈N is taken by {TDt }t∈J−1,T K and the role of {Gk}k∈N is taken by {FDt }t∈J−1,T K (the

proof of Lemma 5.4, in Appendix 5.A.4 states that set FDt is a
(−→
X
)
-mappings set).

The number of reachable beliefs of a Det-Pomdp is therefore finite even when con-
sidering the case of an infinite horizon. This might look counter-intuitive at first, but
since there is no uncertainty beyond the distribution of the initial state, and since we
consider finite sets X, U, O under Assumption 5.1, there is a finite number of possible
pushforward measures of the initial belief, hence a finite number of reachable beliefs, time
notwithstanding.

We now present another bound that takes into account the time horizon.

Horizon-dependent bounds on the cardinality of the set of reachable beliefs.
We previously exposed in Theorem 5.9 a bound on the cardinality of the set of reachable
beliefs that does not depend on the horizon of the optimization. We now present a bound
that depends on the time span of the Det-Pomdp.

Theorem 5.10. Consider a Det-Pomdp optimization problem given by Problem (5.2)
which satisfies the finite sets Assumption 5.1, and such that |U| > 1. For all initial be-
lief b0 ∈ ∆(X), the cardinality of the set of reachable beliefs starting from b0, defined in
Equation (5.23), satisfies the following bound∣∣BR,D

J1,T K(b0)
∣∣ ≤ min

(
(1 + |X|)|supp(b0)| , 1 + |supp(b0)||U||T |

)
. (5.34)

Proof. Let b0 ∈ ∆(X) be given. Using Theorem 5.9 and Equation (5.26), we already have
the inequality |BR,D

J1,T K(b0)| ≤ (1 + |X|)|supp(b0)|. Thus, it is enough to prove that we have∣∣BR,D
J1,T K(b0)

∣∣ ≤ 1 + |supp(b0)||U||T | , (5.35)

in order to obtain Inequality (5.34). With the help of the representation of the beliefs
evolution mappings given by Lemma 5.4, Inequality (5.35) is obtained as an application of
Lemma 5.27, given in Appendix 5.A.4, that we detail now.

For a fixed value of t ∈ T \ {T}, u ∈ U, and o ∈ O, we have obtained in Lemma 5.4
that τt(·, u, o) = R ◦ (F u,o

t )⋆, where R is defined in Equation (5.19), and the pushforward
measure (F u,o

t )⋆ uses Notation (5.17). Now, for each t ∈ T \ {T} and each ut ∈ U we
introduce the sets

TD,ut
t =

{
τt(·, ut, o)

∣∣ o ∈ O
}
, and FD,ut

t =
{
F ut,o
t

∣∣ o ∈ O
}
.

Using set notations described in Equations (5.27) we obtain that TD,ut
t = R ◦ (FD,ut

t )⋆.
Then, using the definition of BR,D

t (b0) in Equation (5.22) we have that, for all time t ∈ T ,
t > 0,

BR,D
t (b0) =

⋃
u0:t−1∈U0:t−1

TD,ut−1

t−1 ◦ TD,ut−2

t−2 ◦ · · · ◦ TD,u0

0 (b0) =
⋃

u0:t−1∈U0:t−1

TD,u0:t−1

0:t−1 (b0) . (5.36)
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For a fixed sequence of controls u0:t ∈ U0:t, the associated sequences of mappings {TD,ut
t }t∈T

and {FD,ut
t }t∈T satisfy the assumptions of Lemma 5.27, where the role of {Φk}k∈N is taken by

{TD,ut
t }t∈J−1,T K, the role of {Gk}k∈N is taken by {FD,ut

t }t∈J−1,T K and the role of the family of
disjoint sets {Xk

i }i∈Ik is taken by the family {(hu
t )
−1(o)}o∈O,t∈J−1,T K (the proof of Lemma 5.4,

in Appendix 5.A.4 states that set FDt is a
(−→
X
)
-mappings set). We hence get

∀t ∈ T \ {T} ,
∣∣TD,u0:t

0:t(b0) \ {δ∂}
∣∣ ≤ |supp(b0)| . (5.37)

Finally, we obtain

∣∣BR,D
J1,T K(b0)

∣∣ = ∣∣∣ T⋃
t=1

(
BR,D

t (b0)
)∣∣∣ (using Equation (5.23))

≤ 1 +
∣∣∣ T⋃
t=1

(
BR,D

t (b0) \ {δ∂}
)∣∣∣ (by removing δ∂ from BR,D

t (b0) for all t)

= 1 +
∣∣∣ T−1⋃
t=0

⋃
u0:t∈U0:t

(
TD,u0:t

0:t (b0) \ {δ∂}
)∣∣∣ (using Equation (5.36))

≤ 1 +
T−1∑
t=0

∑
u0:t∈U0:t

∣∣(TD,u0:t

0:t (b0) \ {δ∂}
)∣∣ (as |A ∪B| ≤ |A|+ |B|)

≤ 1 +
T−1∑
t=0

∑
u0:t∈U0:t

|supp(b0)| (using Equation (5.37))

≤ 1 +
T−1∑
t=0

|U|t+1|supp(b0)| (as U0:t = Ut+1)

≤ 1 + |U|
( |U|T − 1

|U| − 1

)
|supp(b0)| (as

∑N
i=0 x

i = xN+1−1
x−1 for x ̸= 1)

≤ 1 + |U||T ||supp(b0)| . (as |T | = T + 1 and |U| ≥ 2)

We have established the Inequality (5.35) and this concludes the proof.

A direct consequence of Proposition 5.7 and Theorem 5.10 is that the complexity of
Algorithm 4 is O

(
|BR,D

J1,T K||T ||U||O|
)
, i.e.

in O
(
min

(
(1 + |X|)|supp(b0)| , 1 + |supp(b0)||U||T |

)
|T ||U||O|

)
.

As a side note, we can remark that we could also use Theorem 5.10 to characterize
the complexity of general Pomdp. Indeed, we can reformulate any finite Pomdp with
independent noises on the dynamics {wt}t∈T \{T} and independent noises on the observations
{vt}t∈T and admissibility constraints of the form Uad : X ⇒ U as a finite Det-Pomdp.
To do so, we expand the state of the Pomdp with the realization of all noises, i.e., X′ =
X×VT+1×WT , or x′ = (x, v0, . . . vT , w0, . . . , wT−1). We model the problem as though the
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realization of the noises are predetermined, but the decision maker does not know the noises
in advance. For all time t ∈ T \ {T}, the new evolution functions are then f ′t : X′ × U→
X′, (x′, u) 7→

(
ft(x, u, wt), x

′
|VT+1×WT

)
, while for all time t ∈ T the observation functions

are h′t : X′ × U → O, (x′, u) 7→ ht(x, u, vt). We can hence obtain a Det-Pomdp, with
states X′, controls U and observations O, with evolution functions {f ′t}t∈T \{T}, observation
functions {h′t}t∈T and the same admissibility constraints {Uad

t }t∈T \{T} as the initial Pomdp.
However, such reformulation leads to a drastic increase in the dimension of the states set
and the cardinality of the initial belief. Indeed, the initial belief contains all possible
realizations of the initial state and all the possible noises, i.e. its cardinality is multiplied
by a factor |V|T+1 × |W|T . Hence, we are doubly penalized when considering the bound
presented in Theorem 5.10: we both increase |X| and |supp(b0)|. This reinforces the point
on the difficulty of solving Pomdp as even ones with simple structures are far more difficult
than Det-Pomdp.

We now present the subclass Separated Det-Pomdp, which is simpler than Det-
Pomdp.

5.5 Separated Deterministic Partially Observed Markov
Decision Processes

In this section, we introduce a subclass of Det-Pomdps: Separated Det-Pomdps. First,
we define this subclass in §5.5.1. Second, in §5.5.2, we present an improved bound on
the cardinality of the set of reachable beliefs for Separated Det-Pomdps compared to
Det-Pomdps.

5.5.1 Definition of (∂)-separated mapping set and Separated Det-
Pomdp

Let us first define separated mapping sets.

Definition 5.11. Let Y1 and Y2 be two given sets. A set G ⊂ L(Y1;Y2) of mappings from
Y1 to Y2 is called a separated mapping set if

∀(g1, g2) ∈ G2 , ∀y ∈ Y1 ,
(
g1(y) = g2(y)⇒ g1 = g2

)
.

A separated mapping set G ⊂ L(Y1;Y2) is hence a set of mappings where all pairs
of mappings are either different everywhere, or equal everywhere. Otherwise stated, the
evaluation mappings on set G (i.e. the mappings G → Y2, g 7→ g(y), for y ∈ Y1) are
injective. For example, let Y1 = J1, nK and Y2 = R. Then, G is identified with G ⊂ Rn. G
is a Separated mapping set if and only if the projections of G along each axis are injective.

In the special case where Y1 = Y2 = X, with the extended set X = X ∪ {∂} defined
in Equation (5.8), we want to extend this notion of separated mapping set to tackle the
added point ∂ differently.
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We thus introduce the notion of (∂)-separation for a pair of self-mappings on the set X
and the notion of (∂)-separated mapping set.

Definition 5.12. Let X = X ∪ {∂}. A pair (g1, g2) ∈ L(X;X) of self-mappings on the
set X is (∂)-separated if the restriction of the pair (g1, g2) to the set g−11 (X) ∩ (g2)

−1(X)
is separated. Moreover, a set G of self-mappings on the set X is called a (∂)-separated
mapping set if all pairs of mappings (g1, g2) ∈ G2 are (∂)-separated.

Definition 5.13. A Separated Det-Pomdp is a Det-Pomdp such that the set of map-
pings FD defined in Equation (5.30) is a (∂)-separated mapping set.

Otherwise stated, for a Separated Det-Pomdp, if two sequences of controls lead to
the same state when starting in state x, then applying the two sequences of controls to
another state x′ either leads to the same state, or at least one sequence of controls leads to
the cemetery point ∂. This is illustrated in Figure 5.4 which represents a pair F (in blue)
and F ′ (in red and dashed) of (∂)-separated mapping. Indeed, for a given state x ∈ X,
there are four possibilities:

• F (x) = F ′(x), when x ∈ X1,

• F (x) = ∂ and F ′(x) ̸= ∂, when x ∈ X2,

• F (x) ̸= ∂ and F ′(x) = ∂, when x ∈ X3,

• F (x) = F ′(x) = ∂, when x ∈ X4.

We now present a link between the notion of separated mapping set and the notion of
Separated Det-Pomdp. This allows us to propose a sufficient condition in order to ensure
that a Det-Pomdp is a Separated Det-Pomdp.

Proposition 5.14. If the set
⋃

t∈T \{T} f
Ut+1

0:t = {fu0:t
0:t | ∀t ∈ T \ {T},∀u0:t ∈ Ut+1} of the

composition of the evolution functions of Problem (5.2) is a separated mapping set, then
Problem (5.2) is a Separated Det-Pomdp.

Proof. The proof of Proposition 5.14 is a direct consequence of Corollary 5.30. The detailed
proof is found in Appendix 5.A.5.

Now that we have defined the subclass Separated Det-Pomdps, we present a bound
on the cardinality of the set of reachable beliefs for this particular subclass.

5.5.2 Bound on the cardinality of the set of reachable beliefs for
Separated Det-Pomdps

We now present the main interest of Separated Det-Pomdp compared to Det-Pomdp,
namely that the bound on cardinality of the set of reachable beliefs is lowered from
(1 + |X|)|supp(b0)| to 1 +

(
2|supp(b0)| − |supp(b0)|

)
|X|
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x1 x′1

∂ ∂

x2

x′2

x3
x′3

X1

X2

X3

X4

X

Figure 5.4: Illustration of two (∂)-separated mappings. The arrows repre-
sent two different mappings F (in blue) and F ′ (in red and dashed). On the
subset X1 ⊂ X, F and F ′ coincide. On the subset X2, we have F (X2) = {∂}.
On the subset X3, we have F ′(X3) = {∂}, and finally, on subset X4, we have

F (X4) = F ′(X4) = {∂}.

Theorem 5.15. Consider a Separated Det-Pomdp optimization problem given by Prob-
lem (5.2) which satisfies the finite sets Assumption 5.1. For all initial belief b0 ∈ ∆(X), the
cardinality of the set BR,D

J1,T K(b0) of reachable beliefs starting from b0 satisfies the following
bound ∣∣BR,D

J1,T K(b0)
∣∣ ≤ 1 +

(
2|supp(b0)| − |supp(b0)|

)
|X| . (5.38)

Proof. We start by giving preliminary bounds on
∣∣∣(R ◦ (FDX→X)⋆

)
(b0) \ {δ∂}

∣∣∣, where FDX→X

is defined by Equation (5.113) (in Appendix 5.A.5.1), i.e.

FDX→X =
{
F ∈ FD

∣∣F−1(X) = X,F (X) ⊂ X
}
,

where FD is defined in Equation (5.29). We consider three cases depending on the cardi-
nality of the subset X:

1. When |X| = 0, we have that X = ∅ and
(
R ◦ (FD∅→X)⋆

)
(b0) \ {δ∂} = ∅, and thus∣∣∣(R ◦ (FDX→X)⋆

)
(b0) \ {δ∂}

∣∣∣ = 0 . (5.39a)

2. When |X| = 1, we have that
(
R ◦ (FDX→X)⋆

)
(b0) \ {δ∂} ⊂

{
δx
∣∣x ∈ X

}
, as the only

probability distributions of ∆(X) which support is of cardinality at most 1 are the
vertices of the simplex ∆(X), and thus∣∣∣(R ◦ (FDX→X)⋆

)
(b0) \ {δ∂}

∣∣∣ ≤ ∣∣{δx ∣∣x ∈ X
}∣∣ = |X| . (5.39b)
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3. For |X| ≥ 2 we have by Lemma 5.32 in Appendix 5.A.4, applied with G = F (as F is
a (∂)-separated mapping set) that∣∣∣(R ◦ (FDX→X)⋆

)
(b0) \ {δ∂}

∣∣∣ ≤ ∣∣(FDX→X)⋆
∣∣ ≤ |X| . (5.39c)

Now consider the set TD defined by

TD =
⋃

t∈T \{T}

TD0:t = R ◦ (FD)⋆ . (5.40)

We have ∣∣BR,D
J1,T K(b0)

∣∣ (5.23)
=
∣∣∣ T⋃
t=1

BR,D
t (b0)

∣∣∣ (5.33)
=
∣∣ T−1⋃
t=0

TD0:t(b0)
∣∣ (5.40)

= |TD(b0)|

We now detail the cardinality of TD(b0):∣∣TD(b0) \ {δ∂}∣∣ = ∣∣(R ◦ (FD)⋆)(b0) \ {δ∂}∣∣
=
∣∣∣(R ◦ ( ⋃

X⊂X

FDX→X

)
⋆

)
(b0) \ {δ∂}

∣∣∣ (as
⋃

X⊂X FDX→X = FD)

=
∣∣∣ ⋃
X⊂X

(
R ◦ (FDX→X)⋆

)
(b0) \ {δ∂}

∣∣∣
as ∀(F, F ′) ∈

(
FD
)2, R ◦ (F ∪ F ′

)
= R ◦ F ∪R ◦ F ′,

(5.41)

=
∣∣∣ ⋃
X⊂supp(b0)

(
R ◦ (FDX→X)⋆

)
(b0) \ {δ∂}

∣∣∣
as
(
R ◦ (FDX∩supp(b0)→X)⋆

)
(b0) =

(
R ◦ (FDX→X)⋆

)
(b0) by Equation (5.89) in Lemma 5.22,

≤
∑

X⊂supp(b0)

∣∣∣(R ◦ (FDX→X)⋆
)
(b0) \ {δ∂}

∣∣∣
=
∑
k≥0

∑
X⊂supp(b0)
|X|=k

∣∣∣(R ◦ (FDX→X)⋆
)
(b0) \ {δ∂}

∣∣∣ (5.42)

≤ |X|+
∑

X⊂supp(b0)
|X|≥2

|X| (by Equations (5.39))

= |X|+
(
2|supp(b0)| − |supp(b0)| − 1

)
|X| , (5.43)
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where the last equality comes from the fact that
∣∣{X ⊂ supp(b0) | |X| ≥ 2}

∣∣ is given by∣∣{X ⊂ supp(b0) | |X| ≥ 2}
∣∣ = ∣∣{X ⊂ X

∣∣X ⊂ supp(b0)
}∣∣︸ ︷︷ ︸

2|supp(b0)|

−

∣∣{X ⊂ supp(b0)
∣∣ |X| = 1

}∣∣︸ ︷︷ ︸
=|supp(b0)|

−

∣∣{X ⊂ supp(b0)
∣∣ |X| = 0

}∣∣︸ ︷︷ ︸
=1

.

We hence obtain that∣∣BR,D
J1,T K(b0)

∣∣ (5.40)
= |TD(b0)|

(5.43)

≤ 1 +
(
2|supp(b0)| − |supp(b0)|

)
|X| .

This ends the proof.

We have therefore improved the complexity of Algorithm 4 for Separated Det-Pomdp.

Corollary 5.16. Consider a Separated Det-Pomdp optimization problem given by Prob-
lem (5.2) which satisfies the finite sets Assumption 5.1. Then Algorithm 4 numerically
solves Problem (5.2) by Dynamic Programming and its complexity is

O
(
min

(
1 +

(
2|supp(b0)| − |supp(b0)|

)
|X|, 1 + |supp(b0)||U||T |

)
|T ||U||O|

)
.

Proof. By Proposition 5.7, Algorithm 4 solves Problem (5.2)and its complexity is
O
(
|T||BR,D

J1,T K(b0)||U||O|
)
. Then, by Theorem 5.15, we have∣∣BR,D

J1,T K(b0)
∣∣ ≤ 1 +

(
2|supp(b0)| − |supp(b0)|

)
|X|, and by Theorem 5.10 we have,∣∣BR,D

J1,T K(b0)
∣∣ ≤ 1 + |supp(b0)||U||T | .

As the bound presented in Theorem 5.15 depends on the states that can be reached
when starting from states in the support of the initial belief, we can obviously improve
the bound when the support of the belief belongs to a subset of X stable by the dynamics
{ft}t∈T .

Corollary 5.17. Assuming that Problem (5.2) is a Separated Det-Pomdp, that Assump-
tion 5.1 holds, that |supp(b0)| > 1, that the evolution functions {ft}t∈T \{T} of Problem (5.2)
satisfy the property that there exists a subset A ⊂ X such that for all time t ∈ T \ {T},
ft(A,U) ⊂ A. Assume that supp(b0) ⊂ A. Then the bound presented in Theorem 5.15 can
be improved as ∣∣BR,D

J1,T K(b0)
∣∣ ≤ 1 +

(
2|supp(b0)| − |supp(b0)|

)
|A| . (5.44)
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Proof. Let’s assume that there exists A ⊂ X such that for all time t ∈ T \{T}, ft(A,U) ⊂ A,
and that supp(b0) ⊂ A.

Then, for all time t ∈ T \ {T}, for all sequence of controls (u0:t) ∈ Ut+1, we have that
fu0:t
0:t (supp(b0)) ⊂ A.

Thus,
∀b ∈ BR,D

J1,T K(b0) , supp(b) ⊂ A . (5.45)

We can therefore consider a new Det-Pomdp, where the set of states is restricted to
A, all other things being equal to the initial Det-Pomdp. In other words, we consider a
Det-Pomdp defined by the tuple D|A , given by

D|A =
(
T ,U,O, A, {Lt}t∈T , {ft|A}t∈T , {U

ad
t|A}t∈T , {ht|A}t∈T

)
.

We denote by BR,D′
(b0|A) the set of reachable beliefs of this new Det-Pomdp.

By Equation (5.45), there exists a bijection between BR,D
J1,T K(b0) and BR,D|A

J1,T K (b0|A). We
hence have

|BR,D
J1,T K(b0)| = |B

R,D|A
J1,T K (b0|A)| .

Moreover, the new Det-Pomdp (defined by D|A) is also a Separated Det-Pomdp as the
dynamics and observation functions stayed the same as in D (up to a restriction to subset
A). As the new Det-Pomdp is also a Separated Det-Pomdp, by applying Theorem 5.15,
we have ∣∣BR,D

J1,T K(b0)
∣∣ = ∣∣BR,D|A

J1,T K

∣∣ ≤ 1 +
(
2|supp(b0)| − |supp(b0)|

)(
|A|
)
.

Now that we have a better bound than with non-separated Det-Pomdp, the question
is whether it can be reached or not. We now show that it can.

5.5.3 Existence of Separated Det-Pomdp where the bound is
reached

In Theorem 5.15, we have given an improved bound on the cardinality of the set of reachable
beliefs for Separated Det-Pomdp. We now prove that the bound can be tight.

Proposition 5.18. There exist Separated Det-Pomdps such that equality is obtained in
Equation (5.38), that is,∣∣BR,D

J1,T K(b0)
∣∣ = 1 +

(
2|supp(b0)| − |supp(b0)|

)
|X| . (5.46)

Proof. We exhibit a simple Separated Det-Pomdp for which the set of reachable beliefs
BR,D

J1,T K(b0) satisfies Equation (5.46). Following the framework of §5.1.1, let:

• X = {x1, x2, x3} three distinct states,

• O = {ō1, ō2} two distinct observations,
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• U = {ū1, ū2} two distinct controls,

• ∀x ∈ X , f(x, ū1) = x,

• ∀i ∈ {1, 2, 3} , f(xi, ū2) = xmod(i,3)+1, where mod(i, 3) is the remainder of the eu-
clidean division of i by 3,

• h(x, u) =

{
ō2 if x = x3 and u = ū1 ,

ō1 otherwise .

We illustrate the mappings F (u,o) defined in Equation (5.18) for this simple case in
Figure 5.5, and we illustrate the dynamics and observation functions in Figure 5.6.

F ū1,ō1

x1

x2

x3

∂

x1

x2

x3

∂

F ū1,ō2

x1

x2

x3

∂

x1

x2

x3

∂

F ū2,ō1

x1

x2

x3

∂

x1

x2

x3

∂

F ū2,ō2

x1

x2

x3

∂

x1

x2

x3

∂

Figure 5.5: Representation of the F (u,o) functions in the simple case of
§5.5.3

ū1

x1

x2

x3

x1

x2

x3

ō1

ō2

ū2

x1

x2

x3

x1

x2

x3

ō1

Figure 5.6: Representation of the dynamics and the observations depending
on the control of the simple case of §5.5.3

By adding a given cost function L, an horizon T > 0 and admissibility constraints
Uad : x ⇒ U, the resulting problem has all the ingredients of a Det-Pomdp (as presented
in §5.1.1), where Assumption 5.1 holds.

We now prove that the resulting problem is a Separated Det-Pomdp. For that purpose,
we enumerate all the possible results of the dynamics before applying Proposition 5.14.
For this purpose, let us consider a sequence of controls (u1, . . . , ut) ∈ Ut. By using the
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composition notation presented in Equation (5.7) on the dynamics (i.e. fu1:t(x) = fut ◦
· · · ◦ fu1(x)), we have

∀i ∈ J1, 3K , fu1:t(xi) = xmod(i+γ(u1:t)−1,3)+1 ,

where γ is the function that counts the number of times ū2 appears in a sequence of
controls. The function γ is defined as

γ : Ut → N , u1:t 7→
∣∣{ui, i ∈ J1, tK |ui = ū2}

∣∣ .
The set {fu1:t |u1:t ∈ Ut} is thus such that, for all sequences of controls (u1:t, u

′
1:t′) ∈

Ut × Ut′ , if there is a state x ∈ X such that fu1:t(x) = fu′
1:t′ (x), then for any state

x′ ∈ X, fu1:t(x′) = fu′
1:t′ (x′). Hence, the set ∪t∈T \{T}fUt+1

0:t is a separated mapping set. By
Proposition 5.14, the optimization problem is hence a Separated Det-Pomdp.

We now present an initial state and the resulting reachable beliefs, and compare its
cardinality to the bound of Equation (5.38). Let us consider supp(b0) = {x1, x2}. We can
apply Theorem 5.15 with such initial belief. Therefore, according to Equation (5.38), there
can be at most 7 reachable beliefs (including δ∂). We now enumerate the possible supports
of the reachable beliefs when starting with b0:

• {x1, x2}, obtained after applying u1 and observing o1 on belief b0:

supp
((

F ū1,ō1
)
⋆
(b0)
)
= {x1, x2} .

• {x2, x3}, obtained after applying u2 and observing o1 on belief b0:

supp
((

F ū2,ō1
)
⋆
(b0)
)
= {x2, x3} .

• {x3, x1}, obtained after applying u2 and observing o1 twice on belief b0:

supp
((

F ū2,ō1 ◦ F ū2,ō1
)
⋆
(b0)
)
= {x3, x1} .

• {x3}, obtained after applying u2 and observing o1, then applying u1 and observing
o2 on belief b0:

supp
((

F ū1,ō2 ◦ F ū2,ō1
)
⋆
(b0)
)
= {x3} .

• {x1}, obtained after applying u2 and observing o1, applying u1 and observing o2,
then applying u2 and observing o1 on belief b0:

supp
((

F ū2,ō1 ◦ F ū1,ō2 ◦ F ū2,ō1
)
⋆
(b0)
)
= {x1} .
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• {x2}, obtained after applying u2 and observing o1, applying u1 and observing o2,
then applying u2 and observing o1 twice on belief b0:

supp
((

F ū2,ō1 ◦ F ū2,ō1 ◦ F ū1,ō2 ◦ F ū2,ō1
)
⋆
(b0)
)
= {x2} .

• {∂}, obtained after applying u1 and observing o2 on belief b0:

supp
((

F ū1,ō2
)
⋆
(b0)
)
= {∂} .

We have therefore 7 different supports for the reachable beliefs, hence at least 7 beliefs
in the set of reachable beliefs starting from b0. As Equation (5.38) states that there can
be at most 7 reachable beliefs, we obtain that we have exactly 7 reachable beliefs and thus
Equation (5.46) is obtained.

Now that we have presented the subclass Separated Det-Pomdp, we give a numerical
illustration of this subclass.

5.6 An example of Separated Det-Pomdp

In this section, we present a simple one-dimensional illustration of Separated Det-Pomdp.
We consider that we empty a tank while minimizing an associated cost, as illustrated in
Figure 5.7. The state is one-dimensional and consists in the volume of water present in
the tank. The control is also one-dimensional and is the amount of water that the decision
maker removes during one time step. The decision maker has access at time t to partial
observation. He/she only knows that the volume of water in the tank is between two
quantized levels.

o(2)

o(3)

o(1)

Figure 5.7: Illustration of the water tank “quantum” of observation
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5.6.1 A partially observed tank as a Separated Det-Pomdp

More precisely, the problem is the following.

• The state x consists of a discrete volume of water in the tank, with
x ∈ X = {x(1), x(2), . . . , x(n)} ⊂ R+ of finite cardinality.

• The observation o consists of a discrete level of water in the tank, with
o ∈ O = {o(1), o(2), . . . , o(m)} ⊂ R+ of finite cardinality.

• The controls u consists of a discrete volume of water to be removed, with
u ∈ U = {u(1), u(2), . . . , u(d)} ⊂ R+ of finite cardinality.

• The unitary price of water at each time t ∈ T \ {T} is given by ct ∈ R.

Optimization problem. We now adapt the Problem (5.2) to the tank case presented
above:

min
X,U ,O

E
[T−1∑
t=0

ctUt

]
(5.47a)

s.t. PX0 = b0 , (5.47b)
Xt+1 = Xt −Ut , ∀t ∈ T \ {T} , (5.47c)

Ut ∈ {u(i) ∈ U |u(i) ≤Xt} , ∀t ∈ T \ {T} , (5.47d)

Ot = max{o(j) ∈ O |Xt ≥ o(j)} , ∀t ∈ T , (5.47e)
σ(Ut) ⊂ σ (O0, . . . ,Ot,U0, . . . ,Ut−1) , ∀t ∈ T \ {T} . (5.47f)

Equation (5.47a) represents the objective function of the tank problem, i.e. the imple-
mentation of Equation (5.2a) of Problem (5.2). The instantaneous cost function at time t
is defined as Lt(ut) = ctut, and hence only depends on the controls.

The evolution function corresponds to emptying the tank and is given by f : (x, u) 7→
x− u, which gives Equation (5.47c).

The observation function h is given by a piecewise constant function which does not
depend on the controls u: h(x) = max{o(i) |x ≥ o(i)}. We note [o, o], (o, o) ∈ O2, the
interval such that the states are compatible with the observations ot, i.e.

[o, o] = {x ∈ X |h(x) = o} . (5.48)

This leads to equation (5.47e), which is the implementation of (5.2e).
The admissibility set of the tank problem is given by Uad(Xt) = [0,Xt] (see Equa-

tion (5.47d)). It ensures that we cannot remove more water than what is in the tank. Note
that this could be a problem as we do not observe Xt.

Problem (5.47) has the same form as Problem (5.2). It is therefore a Det-Pomdp and
all the relevant results presented in §5.2 hence apply.
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Associated beliefs dynamics τ . Let (b, u, o) ∈ B × U × O, with B = ∆(X) ∪ {δ∂},
as defined in Equation (5.9). As the evolution functions and observation functions are
stationary, the belief dynamics are also stationary.

By Equation (5.47c), we have (fu)−1(y) = y + u. Moreover, we have by the definition
of o and o, in Equation (5.48), that

(
hu
)−1

(o) = [o, o]. Hence, the function Q in (5.10) is
here

Q : B× U×O→ [0, 1] , (b, u, o) 7→
∑

x∈[o−u,o−u]

b(x) ,

and Equation (5.14) gives

τ(b, u, o)(y) =


b(y + u)∑

x′∈[o−u,o−u]

b(x′)
if y ∈ [o, o] ,

0 if y ̸∈ [o, o]

.

(where o and o are defined in Equation (5.48).)

Bellman equations for the partially observed tank problem. As Problem (5.47)
is a Det-Pomdp and the finite sets Assumption 5.1 holds, we can apply Proposition 5.2.
Equations (5.16a) and (5.16b) are here

VT : BR,D
T (b0)→ R , b 7→ 0 (5.49a)

Vt : BR,D
t (b0)→ R , b 7→ min

u≤minx∈supp(b) x

(
ctu+

∑
o∈O

∑
x−u∈[o,o]

b(x)Vt+1

(
τ(b, u, o)

))
. (5.49b)

Indeed, the intersection Ub
t (b) =

⋂
x∈supp(b) Uad

t (x) defined in Equation (5.16d) is

{u(i) ∈ U |u ≤ min
x∈supp(b)

x} ,

as the admissibility set is given by Equation (5.47d), and

{u(i) ∈ U |u(i) ≤ x(j)} ∩ {u(i) ∈ U |u(i) ≤ x(k)} = {u(i) ∈ U |u(i) ≤ min
(
x(j), x(k)

)
} .

The partially observed tank problem as a Separated Det-Pomdp. The tank
Det-Pomdp is a Separated Det-Pomdp, as a direct consequence of Corollary 5.33,
present in Appendix 5.A.5. Indeed, Corollary 5.33 states that if the evolution functions ft
of a Det-Pomdp are linear, then it is a Separated Det-Pomdp. As the evolution func-
tion f of the partially observed tank is indeed linear, the tank Det-Pomdp is a Separated
Det-Pomdp.

5.6.2 Numerical applications

We now present some numerical results for the tank problem described by Problem (5.47).
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Presentation of the instances We made a numerical application with the following
parameters:

• X = J0, 300K,

• U = J0, 9K,

• O = {0, 1, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300},

• T = J0, 100K,

• supp(b0) = J260, 300K, with a randomly generated probability distribution over that
support. The distribution used is detailed in Figure 5.8.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

x

b 0
(x
)

Figure 5.8: Probability distribution used as the initial belief b0 for the
numerical applications

When considering the initial belief b0 presented in Figure 5.8 and a “true” (unknown)
initial state of x0 = 290 (used to simulate the observation process depending on the policy),
we obtain the tank water volume represented in Figure 5.9.

Moreover, we have a set of reachable beliefs BR,D
J0,100K such that |BR,D

J0,100K| = 64, 400. We
therefore do not display value functions, as they are defined on sets with large cardinality.

We also made a second numerical application where the observation O is changed to:

• O = {1, 6, 11, 51, 101, 151, 201, 251}
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Figure 5.9: Representation of a trajectory of the volume of water in the
tank when applying the optimal controls when considering the first set of
observations. A vertical slice at time t of the red area represents the support
of the belief held at time t, the dotted blue curve represents the trajectory
of the “true” state, the piecewise constant green curve is the observation we
have access to at time t, and the dashed orange curve represents the periodic
prices
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Figure 5.10: Representation of a trajectory of the volume of water in the
tank when applying the optimal controls when considering the second set of
observations. A vertical slice at time t of the red area represents the support
of the belief held at time t, the dotted blue curve represents the trajectory
of the “true” state, the piecewise constant green curve is the observation we
have access to at time t, and the dashed orange curve represents the periodic
prices
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When considering the same initial belief and initial state, we obtained a trajectory
represented in Figure 5.10.

Figures 5.9 and 5.10 both illustrate some properties of Det-Pomdps. First, in both
cases, we see that the support of the beliefs decreases with time.
Second, we remark that such a decrease is due to the observations. Indeed, in Prob-
lem (5.47), the observation function ensures that the support of the beliefs must belong to
intervals [ot, ot] when we observe ot (see Equation (5.48)). Thus, the supports of the beliefs
are reduced along the limit of those intervals, as is more easily seen in Figure 5.10 between
time t = 1 to t = 6 (we apply a control, i.e. removing some water, and we see that the
lower part of the support remains at the observation value until time t = 7, which is when
we change observation and we see that the upper bound of the support gets just beneath
the previous observation, i.e. at x = 249).
Third, we remark that, as could be expected, the policy consists of removing water when
prices are high, and stopping when prices are low.
Fourth, we remark that, despite having fewer observations in the second case, the optimal
trajectory in the second case reaches a deterministic belief (i.e. such that |supp(b)| = 1)
much sooner in Figure 5.10 compared to Figure 5.9 (at time t = 33 for the second case
and time t = 53 for the first case). Having more observations hence does not guarantee to
remove ambiguities at a faster rate.

We now present the computation time of Algorithm 4 and compare it to another algo-
rithm, SARSOP.

Comparison with SARSOP. In this paragraph, we focus on the comparison with
SARSOP, first introduced in [Kurniawati et al., 2008]. We used the Julia implementation
of this algorithm, with the POMDPs package API. The following results were performed
on a computer equipped with a Core i7-8665U and 32 GB of memory, using Julia v1.7.3,
POMDPs v0.9.3 and SARSOP v0.5.5.

However, we must first warn the reader that SARSOP is an algorithm that solves
an infinite horizon Pomdp. We hence reformulate the finite horizon Det-Pomdp as an
infinite time Pomdp by extending the state with the time variable. Such reformulation
leads to a much bigger problem in terms of data and size of the state space, which heavily
penalizes SARSOP. Hence, the reformulation prevents any fair comparison of computation
times. We still present some computation time in Table 5.1.

Note that, for each instance where the computation did not stop (i.e. those without a >
symbol in the computation time column) due to hitting the memory limit of the computer,
SARSOP and Algorithm 4 found the same value, hence SARSOP indeed converged toward
the optimal solution of Problem (5.47).
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|X| |U| |O| |supp(b0)| T SARSOP Algorithm 4
computation time (s) computation time (s)

11 2 3 2 20 0.376 0.002
21 2 5 2 25 0.16 0.003
51 5 5 2 100 24.9 0.20
51 5 5 4 100 27.2 1.20
51 5 5 6 100 29.4 3.03
101 5 5 2 200 359 0.96
101 5 5 10 200 1930 32.2
101 10 5 10 200 1069 78.2
201 5 5 10 200 3506 62.1
201 10 5 10 200 15618 309
201 5 5 20 200 3652 225
201 10 6 20 200 33562 497
301 5 6 10 200 4638 86.8
301 10 6 10 300 > 38000 762

(> 19217s of iterations)

Table 5.1: Computation time of different instances of both SARSOP and
Algorithm 4

5.7 Conclusion
In this chapter, we have presented a subclass of Pomdps, Separated Det-Pomdps, which
has properties that contribute to push back the curse of dimensionality for Dynamic Pro-
gramming. Indeed, the conditions on the dynamics for Separated Det-Pomdp improve
the bound on the cardinality of the set of the reachable beliefs: the bound is reduced
from

(
1 + |X|

)|supp(b0)| (in the case of Det-Pomdp, see Theorem 5.9) to 2|supp(b0)||X| (The-
orem 5.15), as presented in Tables 5.2 and 5.3. This tighter bound allows Dynamic Pro-
gramming algorithms to efficiently solve Separated Det-Pomdp problems, especially when
considering small supports of the initial state distributions. Moreover, the bound is tight
(see Proposition 5.18).

The Separated Det-Pomdp class of problem is, therefore, an interesting framework
for some problems as only a fraction of the number of beliefs needs to be considered, in
comparison with Det-Pomdp or Pomdp. The Separated Det-Pomdps are therefore
tractable with larger instances than regular Pomdps or Det-Pomdps.
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Class Infinite horizon bound

Det-Pomdp (1 + |X|)|X|
[Littman, 1996]

Det-Pomdp (1 + |X|)|supp(b0)|
improved bounds Theorem 5.9

Separated 1 +
(
2|supp(b0)| − |supp(b0)|

)
|X|

Det-Pomdp Theorem 5.15

Table 5.2: Summary of the bounds depending on the class of problem for
infinite horizon problems

Class Finite horizon bound

Det-Pomdp min
(
(1 + |X|)|X| ,

(
|U||O|

)|T |)
Det-Pomdp min

(
(1 + |X|)|supp(b0)| , 1 + |supp(b0)||U||T |

)
improved bounds Theorem 5.10

Separated min
(
1 +

(
2|supp(b0)| − |supp(b0)|

)
|X|, 1 + |supp(b0)||U||T |

)
Det-Pomdp Corollary 5.16

Table 5.3: Summary of the bounds depending on the class of problem

5.A Appendix
First, in §5.A.1, we present background on Markov Decision Processes. Second, in §5.A.2,
we present background on Partially Observed Markov Decision Processes. Third, in §5.A.3,
we present lemmata used in the proof of Proposition 5.2 for applying Dynamic Program-
ming for Det-Pomdp with constraints. Fourth, in §5.A.4, we present some technical
lemmata used to present bounds on the cardinality of the sets of reachable beliefs. Finally,
in §5.A.5, we present complementary results on (∂)-separated mappings sets.

5.A.1 Background on Markov Decision Processes

In this subsection, we present background on Markov Decision Processes (Mdps). First,
in §5.A.1.1, we present the general formulation of a Mdp. Second, in §5.A.1.2 we present
more specifically the formulation of a discrete time stochastic control problem, i.e. an
optimization problem associated with a Mdp. Third, in §5.A.1.3, we present how we can
use Dynamic Programming to solve the discrete time stochastic control problem.
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5.A.1.1 Formulation of Mdps

Mdps, also commonly referred to as stochastic dynamic programs, are models commonly
used for numerous applications, some of which are registered in the survey White [1993].
There is an extensive literature on Mdps, notably Puterman [1994] and Bertsekas [2000]. In
Mdps, we model how a decision maker can sequentially act upon a controlled dynamical
system and get some rewards. The Mdp model consists of sets of states, actions, time
steps, rewards, and probability transitions. When in a given state and at a given time, the
decision maker’s action generates a reward and determines the state at the next time step
according to the probability transition function.

Here, we focus on finite horizon finite-Mdps. As stated in Puterman [1994, chapter 2],
a finite horizon finite-Mdp can be described by a tuple(

T = J0, T K,X, {Uad
t }t∈T \{T}, {pt}t∈T \{T}, {Lt}t∈T \{T},K

)
3 ,

where

• T = J0, T K is the set of time steps for the optimization, with T ∈ N the horizon,

• X is the set of states of the Mdp (which has a finite cardinality for finite Mdp),

• {Uad
t }t∈T \{T} is the sets of admissible controls: for all time t ∈ T \{T}, the set-valued

mappings Uad
t : X ⇒ U (where U is set of controls, with finite cardinality) provides

Uad
t (x), the set of admissible controls at time t when in state x,

• {pt}t∈T \{T} is the set of discrete transitions kernels: for all times t ∈ T \ {T},
pt : X × U × X → [0, 1], (x, u, x′) 7→ pt(x

′|x, u) is the transition kernel that gives
the probability of being in state x′ at time t + 1 when applying action u on state x
at time t,

• {Lt}t∈T is the set of reward functions: for all time t ∈ T , Lt : X×U→ R∪{+∞} is
the reward function which defines the reward obtained when applying control u on
state x at time t,

• K : X→ R ∪ {+∞} is the final reward, i.e. the reward at time T .

Here, we focus on the formulation of discrete time stochastic control problem.

5.A.1.2 Discrete time stochastic control formulation

We now present the formulation of a discrete time stochastic control problem. When
considering an Mdp, one should recall that decisions are taken sequentially. Thus, when

3Here, we have presented the tuple with the notations used in this chapter. However, in Puterman
[1994], the tuple is written

(
T, S,As, pt(·|s, a), rt(s, a)

)
, with T the horizon of the Mdp, rt(s, a) the reward

functions and pt(·|s, a) the conditional probability function that determines the probability of transitioning
to states s′ at time t+ 1 when applying action a on state s at time t.
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defining an optimization problem, we need to specify the non-anticipativity constraint:

σ(Ut) ⊂ σ(X0, . . . ,Xt,U0, . . . ,Ut−1) , ∀t ∈ T \ {T} . (5.50)

This constraint is used in conjunction with the admissibility constraints defined through
the set {Uad

t }t∈T \{T}:

∀t ∈ T \ {T} , Ut ∈ Uad(Xt) P− a.s. (5.51)

We also need the initialization constraint which fixes the initial state x0:

X0 = x0 . (5.52)

Finally, in order to define an optimization problem, we need to consider an optimization
criterion. The most common criterion used is the minimization of the expected value:

min
{Xt,Ut}t∈T

E
[ ∑
t∈T \{T}

Lt(Xt,Ut) +K(XT )
]
, (5.53)

which is measurable as Ω is finite. Other criteria can be used, such as optimizing the cost
for the worst case scenario4 (for example in Bonet and Geffner [2000]), the conditional
value at risk (see Chow et al. [2015]) or even a chance constrained optimization of an Mdp
(see Delage and Mannor [2010]).

Here, we focus on the minimization of the expected value as defined in Equation (5.53).
Moreover, although there are formulations of Mdps with continuous time, we focus on the
finite horizon finite-Mdp.

Note that the above Mdp formulation involves state transition kernels. When consid-
ering the discrete time stochastic control problem, we instead take the point of view of
random processes where the evolutions are given by noisy evolution functions affected by
exogenous noises. In that formulation, we consider a set of evolution functions {ft}t∈T \{T}
and a set of noises W, with distributions given by the stochastic kernels {Pw,t}t∈T \{T}. In
that second formulation, we have that for all time t ∈ T \ {T}, ft : X × U ×W → X are
the evolution functions such that

∀t ∈ T \ {T} , Xt+1 = ft(Xt,Ut,Wt) , (5.54)

(i.e. they return the state at time t+1 when applying controls u on state x with noise w),
while Pw,t : X × U ×W → [0, 1], (x, u, w) 7→ Pw,t(w|x, u) are the conditional probability
that the realization of the noise is w when applying control u on state x at time t. This
formulation still follows the framework of an Mdp, as presented in §5.A.1.1.

In the rest of this document, we use the formulation based on random variables and
Equation (5.54). The optimization problem of minimizing the expected value for the finite

4The optimization of the worst-case scenario is also called robust optimization
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horizon and finite-Mdp is then:

min
{Xt,Ut,Wt}t∈T

E
[ ∑
t∈T \{T}

Lt(Xt,Ut) +K(XT )
]

(5.55a)

s.t. (5.54), (5.50), (5.51) and (5.52) .

5.A.1.3 Dynamic Programming for Mdps

Once given an optimization criterion (in our case the minimization of the expected value),
we can define an optimization problem from a given Mdp. The optimization is done over
policies, i.e. rules for choosing the controls ut for each time t and each possible sequence
of controls and states up to time t. More formally, we define for each time t ∈ T a history
vector ht associated with a sequence of state and controls:

h0 = x0 , and ∀t ∈ T \ {0} , ht = (x0, u0, . . . , xt−1, ut−1, xt) = (ht−1, ut−1, xt) .

We denote by {Ht}t∈T the sets of history vector at time t, recursively defined as

H0 = X0 , and ∀t ∈ T \ {T} , Ht+1 = Ht × Ut−1 × Xt , where Xt = X and Ut = U .

We hence have, for all time t ∈ T , ht ∈ Ht.
A policy π = {πt}t∈T \{T} is a set of mappings such that, for all t ∈ T \{T}, πt : Ht → U.

Moreover, an admissible policy π is a policy that satisfies the admissibility constraints,
i.e. for all t ∈ T \ {T}, for all ht ∈ Ht, the control at time t, ut = πt(ht) (where
ht = (ht−1, ut−1, xt)), satisfies the admissibility constraint, i.e. ut ∈ Uad

t (xt). Note that, as
policies are set of mappings which for each time t ∈ T \{T} go from Ht to U, their output are
random variables that satisfy the non-anticipativity constraints defined in Equation (5.50)
by construction.

We can solve Problem (5.55) thanks to a Dynamic Programming algorithm which con-
sists in recursively computing mappings called value functions, {Vt}t∈T , where for all time
t ∈ T , Vt is a function from Ht to R. We compute those value functions thanks to back-
ward induction. Without an additional assumption on the objective function, we need to
compute those value functions for each possible realization of a history vector, which is in
practice untractable as the dimension of the history vector increases with time, which is
colloquially known as one version of the curse of dimensionality.

However, it is possible to compute optimal value functions {Vt}t∈T for policies {πt}t∈T \{T}
from X to U under the condition that the optimization criterion is additive in time. An
optimization criterion is additive in time if the cost incurred at time t accumulates over
time, and if it only depends on the state at time t. Let min g

(
(xt, ut)t∈T

)
be the optimiza-

tion criterion (with g : XT × UT → R the objective function). In order to apply Dynamic
Programming with value functions from X to R, we suppose that there exists a sequence
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of functions {gt : Xt × Ut → R}t∈T such that

g
(
(xt, ut)t∈T

)
=
∑
t∈T

gt(xt, ut) .

This condition is satisfied for the minimization of the expected value, i.e. the objective
function presented in Equation (5.53).

Under that condition, it is proven in [Puterman, 1994, Theorem 4.4.2, p.89] that there
exists an optimal policy such that at time t it only depends on xt, that is the last element of
ht = (ht1 , ut−1, xt). Hence, optimal policies contain state feedbacks policies π = {π⋆

t }t∈T \{T}
are such that, for all t ∈ T \ {T}, π⋆

t : X→ U. Moreover, those policies can be computed
thanks to a Dynamic Programming algorithm (see [Puterman, 1994, Theorem 4.5.1, p.92],
or [Bertsekas, 2000, Theorem 1]), i.e. by computing the values functions {Vt}t∈T :

VT : X→ R, x 7→ K(x) , (5.56)

∀t ∈ T \ {T}, Vt : X→ R, x 7→ min
u∈Uad

t (x)
Lt(x, u) +

∑
x′∈X

pt(x
′|x, u)Vt+1(x

′) . (5.57)

The optimal state feedbacks are then given by the controls which minimize the right-hand
side of Equation (5.57), for each state x and time t.

5.A.2 Background on Partially Observed Markov Decision Pro-
cesses

In this subsection, we present some on Pomdp. First, in §5.A.2.1, we present the formu-
lation of a Pomdp. Second, in §5.A.2.2, we present more specifically the formulation of a
partially observed discrete time stochastic control problem, i.e. an optimization problem
associated with a Pomdp. Third, in §5.A.2.3, we present how we can apply Dynamic
Programming on a finite horizon optimization problem associated to a Pomdp.

5.A.2.1 Formulation of Pomdps

A Pomdp is an extension of Mdp, where actions are taken without having full knowledge of
the state of the dynamic system. The agent does not fully know the state of the dynamical
system, but he has access to some information on the state of the system, the observations.
In Bertsekas and Shreve [1978], it is assumed that a Pomdp is defined by the following
elements

(A1) Sets of states X, controls U and observations O, all non-empty Borel spaces5.

(A2) A horizon T , which is a positive integer or +∞.
5A Borel space is a measurable space which is homeomorphic with a Borel subset of the standard Borel

space associated to a Polish space: see [Bertsekas and Shreve, 1978, Definition 7.7, p118]
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(A3) A discount factor α ∈ [0, 1], with the added constraint that the value α = 1 is only
possible when considering finite horizon.

(A4) Instantaneous costs Lt : X × U → R. In the case of a finite horizon, we denote by
K : X→ R the final reward, i.e. the reward at the time horizon T .

(A5) {pt}t∈T \{T} is the set of Borel-measurable state transition kernels: for all time t ∈
T \ {T}, pt : X × U × B(X) → [0, 1], (x, u,X ′) 7→ pt(X

′|x, u), where B(X) denotes
the Borel σ-field of X. The quantity pt(X

′|x, u) is the probability that the state at
time t + 1 is in the subset X ′ ⊂ X given that the state and control at time t are
respectively x and u. By a slight abuse of notation, we will write the transition kernel
pt(dx

′|x, u).

(A6) A set of controls constraints U I
t , for each time t ∈ T \ {T}. They are defined for

t ∈ T \ {T}, and take as input the information vector It, defined as:

I0 = o0 , and ∀t ∈ T , t > 0 , It = (o0, u0, . . . , ut−1, ot) .

We denote by It = O0×U0×O1 · · ·×Ut−1×Ot the sets of information vectors at time
t, where for all time t ∈ T , Ot = O and Ut = U. Thus, U I

t is a set-valued mapping
from It to Ut. At time t ∈ T \ {T}, the controls ut must belong to the set U I

t (It).

(A7) An initial observation kernel po,0 : X×B(O)→ [0, 1], (x,O) 7→ po,0(O|x), which gives
the probability that the observation at time 0 is in the subset O ⊂ O0 if the initial
state is x. Once again, we also write the kernel po,0(do|x).

(A8) {po,t}t∈T \{0} is the set of Borel-measurable observation kernels: for all time t ∈ T \
{T}, po,t : X × U × B(O) → [0, 1], (x, u,O) 7→ po,t(O|x, u) , which is the probability
that the observation at time t belongs to the subset O ⊂ Ot if the system is in state
x at time t after the agent chose control u at time t − 1. We also write this kernel
po,t(do|x, u).

In the following, we will focus on finite Pomdp, i.e. Pomdp where sets X, U, O and T
have finite cardinality. We now present an optimization problem associated with a Pomdp.

5.A.2.2 Partially observed discrete time stochastic control formulation

We now present the formulation of a partially observed discrete time stochastic control
problem. It is very similar to Problem (5.55). Statement (A6) defines admissibility con-
straints of the form

∀t ∈ T \ {T} , Ut ∈ Uad
t (It) P− a.s. (5.58)

As the agent does not know the initial state, we only suppose that

PX0 = b0 , (5.59)
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where b0 is the probability distribution of the initial state of the system.
Finally, as with Mdp, we also have a non-anticipativity constraint. However, it differs

from Equation (5.50) as the agent does not fully know the state of the system. Instead,
the agent has access to the information vector. Thus, the non-anticipativity constraints
for Pomdp are:

σ(Ut) ⊂ σ(O0, . . . ,Ot,U0, . . . ,Ut−1︸ ︷︷ ︸
=It

) , ∀t ∈ T \ {T} . (5.60)

The last ingredient necessary to properly define an optimization problem is an opti-
mization criterion. Once again, we focus on the minimization of the expected value in the
finite horizon case:

min
{Xt,Ut,Ot}t∈T

E
[ ∑
t∈T \{T}

αtLt(Xt,Ut) + αTK(XT ) .
]

(5.61)

Other criteria also exist, such as minimizing the worst-case scenario (see once again Bonet
and Geffner [2000]).

Note that Statement (A5), which defines the transition kernels is similar to the transi-
tion kernels presented in §5.A.1. Thus, the same remark applies, and we can use evolution
functions {ft}t∈T with noises, thus leading to Equation (5.54). We can also apply the same
reasoning to the observation kernel: Statements (A7) and (A8) are equivalent to another
formulation, where we consider a set of observation functions {ht}t∈T and a set of obser-
vation noises V, with distributions given by the stochastic kernels {Pv,t}t∈T \{T}. In that
second formulation, we have that, for all time t ∈ T \ {T}, ht : X × U × V → O are the
evolution functions such that

O0 = h0(X0,V0) , and ∀t ∈ T \ {T} , Ot+1 = ht(Xt+1,Ut,Vt+1) , (5.62)

while Pv,t : X×U×V→ [0, 1], (x, u, w) 7→ Pv,t(v|x, u) are the conditional probability that
the realization of the noise at time t + 1 is v after obtaining state x at time t + 1 when
applying control u at time t.

We use this second formulation based on random variables and Equations (5.54) (for
the dynamics) and (5.62) (for the observations). The optimization problem of minimizing
the expected value for the finite horizon and finite-Pomdp is then:

min
{Xt,Ut,Ot}t∈T

E
[ ∑
t∈T \{T}

αtLt(Xt,Ut) + αTK(XT )
]

(5.63a)

s.t. (5.54)(5.62), (5.58), (5.59) and (5.60) .
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5.A.2.3 Dynamic Programming for Pomdps

As with Mdp, solution of Problem (5.63) are policies. However, in the case of Pomdp, the
policies take as input a probability distribution over the set of states and the information
vector, and not the history vector as the agent does not know the state of the system. Hence,
a policy is a set of mappings {πt}t∈T \{T}, where for all time t ∈ T \{T}, πt : ∆(X)×It → U.
Moreover, an admissible policy is such that for all time t ∈ T \ {T}, for a given initial
probability b0 and for all possible information vector It ∈ It, πt(b0, It) ∈ U I

t (It).
As with Mdp and the history vector, it is possible to solve an optimization prob-

lem associated with a Pomdp which follows Statements (A1)-(A8) presented in §5.A.2.1
by applying Dynamic Programming when the optimization criterion is additive in time.
However, in order to do so, we need some technical assumptions to guarantee the mea-
surability of the value functions. Those assumptions (called F+ and F− in Bertsekas and
Shreve [1978]) are satisfied as long as either the positive or negative part of the instan-
taneous cost functions are finite (i.e. for all t ∈ T \ {T}, Lt : X × U → R ∪ {+∞} or
Lt : X × U → R ∪ {−∞}). Using [Bertsekas and Shreve, 1978, Proposition 10.3 and
Proposition 10.6] (or Equations (4.4)-(4.5) of Bertsekas [2000]), we hence obtain Dynamic
Programming equations:

VT : ∆(X)× IT → R ,

(b0, IT ) 7→ E
[
K(XT )|b0, IT

]
(5.64)

∀t ∈ T \ {T} , Vt : ∆(X)× It → R ,

(b0, It) 7→ min
u∈U I

t (It)
E
[
Lt(Xt, u) + Vt+1

(
b0, (It, u,Ot)

)
|b0, It, u

]
.

(5.65)

Theoretically, it is possible to solve a Pomdp by computing the value functions pre-
sented in Equations (5.64) and (5.65). But, since the information vector grows with each
time step, such a method is not tractable in practice. However, it may happen that there
exists some statistics sufficient for controls in order to compress the information necessary
for the decision-maker to act optimally. Such statistics are mappings of the information
vectors which should allow the definition of admissible policies. A formal definition of
statistics sufficient for controls can be found in [Bertsekas and Shreve, 1978, Definition
10.6]. Statistics sufficient for controls with a lower dimension than the information vector
are called a reduced statistics sufficient for controls.

Reduced statistics sufficient for controls are described in Åström [1965], where Åström
propose a reformulation of a Pomdp as a fully observed Mdp with probability distributions
on the set X as the new states. This new state represents the belief of the decision-maker
has of which is the true state of the system and is hence colloquially known as belief. Indeed,
obtaining a reduced sufficient statistics requires extra assumptions. The first assumption
is that the Pomdp not only satisfies Statement (A6), but it must satisfy the following
stronger statement
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(A′6) for all time t ∈ T \ {T}, for all It ∈ It, U I
t (It) = U.

The Pomdp must also satisfy some technical assumptions (F̂+ or F̂− in Bertsekas and
Shreve [1978]). A detailed proof of this reformulation can be found in Bertsekas and Shreve
[1978]. We then define a belief-Mdp, as a Mdp, the states of which are beliefs. Once again,
under some technical assumptions (F̂+ or F̂− in Bertsekas and Shreve [1978]), we can apply
Dynamic Programming on the optimization problem derived from the belief-Mdp, and the
resulting optimal policies of the belief-Mdp are also optimal for the optimization problem
derived from the Pomdp.

It should be noted that the main issue with the belief-Mdp reformulation is that the
set of beliefs is not finite, as it is the set of probability distribution over the set X. Thus,
Dynamic Programming suffers from the curse of dimensionality if we cannot restrict the
beliefs to a finite subset of ∆(X). Therefore, heuristics were developed in order to solve
Pomdp for either the finite or infinite horizon cases. We can mention some algorithms such
as SARSOP, presented in Kurniawati et al. [2008], POMCP, presented in Silver and Veness
[2010], or DESPOT, presented in Somani et al. [2013]. SARSOP is based on sampling the
bellman value functions on a subset of the belief space. To do so, it computes a subset
of the reachable belief space, and add cuts in order to converge towards the subset of
belief points reachable from the initial belief b0 ∈ B under optimal sequences of controls.
POMCP is an extension of the Monte-Carlo tree search algorithm to Pomdps. It both
samples states from a given belief b ∈ B and samples histories using a black-box simulator
of the Pomdp. DESPOT is another extension of the Monte-Carlo tree search. However, it
samples the reachable belief sets on K scenarios, and then apply Dynamic Programming
on the sampled reachable belief sets.

5.A.3 Complementary results on Dynamic Programming for Det-
Pomdp

In this Appendix, we present the detailed proof of Proposition 5.2. The structure of the
proof was presented in Figure 5.1, reproduced here in Figure 5.11.

First, we rewrite Problem (5.2) by removing the Constraints (5.2f). To do so, we
modify the instantaneous cost functions (as defined in Statement (A4)) by adding them
characteristic functions.

We denote by χ
Y
: Y→ R the characteristic function of a subset Y of Y:

χ
Y
(y) =

{
0 if y ∈ Y ,

+∞ otherwise .
(5.66)

For all time t ∈ T \ {T}, we introduce the function Lt defined by

Lt : X× U→ R, (x, u) 7→ Lt(x, u) + χ
Uad
t (x)

(u) , (5.67)

where χ
Uad
t (x)

is the characteristic function of the admissibility set.
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Det-Pomdp
with constraints

Pomdp
in Bertsekas-Schreve

formalism

Dynamic Programming
for Pomdp

Dynamic Programming
for Det-Pomdp
with constraints

Lemma 5.19

Proposition 10.3 and
Proposition 10.4, p.256-257
Bertsekas and Shreve [1978]

Lemma 5.20

Proposition 5.2

Figure 5.11: Illustration of the sketch of proof of Proposition 5.2

We obtain the following optimization Problem:

V⋆
(b0) = min

X,O,U
E
[T−1∑
t=0

Lt(Xt,Ut) +K(XT )
]

(5.68)

s.t. Equations (5.2b), (5.2c), (5.2d), (5.2e), (5.2g)

Now, we present the Lemma 5.19.

Lemma 5.19. Under the finite sets Assumption 5.1, Problem (5.2) and Problem (5.68)
are equivalent.
Moreover, Problem (5.68) satisfies all the conditions necessary to apply [Bertsekas and
Shreve, 1978, Proposition 10.5, p.262] and [Bertsekas and Shreve, 1978, Proposition 10.3,
Proposition 10.4, p.256-257]

Proof. First, we prove that Problem (5.2) and Problem (5.68) are equivalent.
It is standard to reformulate an optimization problem by adding a characteristic func-

tion in order to remove a constraint. Here, we need to justify that almost sure constraints
can be moved inside the expectation of the sum of the cost functions.

This was already presented in Rockafellar and Wets [1978]. Indeed, in order to prove
Theorem 1, Rockafellar and Wets move almost sure constraints in the expectation of the
cost functions of the optimization problem. Doing so keeps the cost function as normal
convex intergrand. Details on normal convex intergrands can be seen in [Rockafellar and
Wets, 1998, Chapter 14, §D]. In the case of Problem (5.2) and Problem (5.68), Assump-
tion 5.1 ensures that the costs functions are normal convex intergrand, and that if the
optimal value of Problem (5.2) is finite, optimal policies of Problem (5.2) are also optimal
for Problem (5.68), and the reciprocate also holds true.

We now prove that Problem (5.68) follows the framework presented in Bertsekas and
Shreve [1978]. In Bertsekas and Shreve [1978], a Pomdp satisfies 8 Statements, State-
ments (A1)-(A8).
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• Statements (A1) and (A2) refer to the definition of sets X, U, O and T and are thus
satisfied in Problem (5.68).

• Statements (A3) and (A4) refer to the definition of the costs functions and a discount
factor. The formulation of Problem (5.68) uses a simplified expression equivalent to a
discount factor α = 1. As T < +∞ by the finite sets Assumption 5.1, Problem (5.68)
satisfies the Statement (A3) regarding the discount factor. Moreover, for all time
t ∈ T , the costs Lt satisfy Statement (A4).

• Statement (A5) refers to the definition of state transitions kernels. In Problem (5.68),
this role is taken for all time t ∈ T by the deterministic evolution functions ft. We
can hence define deterministic transition kernels which satisfy Statement (A5).

• Statements (A6) and (A′6) refer to the definition (and absence) of admissibility con-
straints on the controls, and are both satisfied in Problem (5.68), as we removed any
admissibility constraints on the controls.

• Statements (A7) and (A8) refer to the definition of the observations kernels. In
Problem (5.68), this role is taken for all time t ∈ T by the deterministic observation
functions ht. We can hence define deterministic observation kernels which satisfy
Statements (A7) and (A8).

As Problem (5.68) satisfies Statements (A1)-(A8) and Statement (A′6), it satisfies all
the assumptions of [Bertsekas and Shreve, 1978, Proposition 10.5, p.262].

The last assumption necessary to apply [Bertsekas and Shreve, 1978, Proposition 10.3,
Proposition 10.4, p.256-257] is a couple of technical assumptions (defined as the couples
F− and F̂−, and F+ and F̂+). In the case of Problem (5.68), we show that it satisfies the
couple (F+, F̂+).

Before introducing the couple of assumptions, (F+, F̂+), we first introduce the positive
and negative parts of real numbers and functions. For any extended real number y ∈ R,
we denote by y+ and y− the positive and negative part of y, that is,

y+ = max
{
0, y
}
, and y− = max

{
0, (−y)

}
. (5.69)

By extension, for any function g : Y → R, we denote by g+ and g− the positive and
negative parts of g, i.e.

g+ : Y→ R, y 7→ max
{
0, g(y)

}
, g− : Y→ R, y 7→ max

{
0,−g(y)

}
. (5.70)

We now define the couple of assumption (F+, F̂+). The condition (F+, F̂+) (see [Bert-
sekas and Shreve, 1978, Definition 10.5, p.249]) is satisfied if, for all admissible policy π
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(and π̂ when using b) and initial state distribution b0,

E
[T−1∑
t=0

L−t
(
Xt, πt(b0, It)

)
+K−(XT )

]
<∞ , and (5.71)

E
[T−1∑
t=0

L−t
(
X̂t, π̂t(Bt)

)
+K−(XT )

]
<∞ , (5.72)

where for all time t ∈ T , the random variables Xt and X̂t are computed thanks to
the recursion Xt+1 = ft(Xt, πt(b0, It)), with PX0 = b0 for Equation (5.71); and X̂t+1 =
ft(X̂t, π̂t(Bt)), with Bt+1 = τt(Bt, π̂t(Bt),Ot+1) for Equations (5.72).

Since for all time t, the cost functions Lt take value in R ∪ {+∞} and not R, Prob-
lem (5.68) indeed satisfies condition (F+, F̂+), and hence satisfies all the conditions of [Bert-
sekas and Shreve, 1978, Proposition 10.3, Proposition 10.4].

This ends the proof.

Now, by Lemma 5.19, we can apply [Bertsekas and Shreve, 1978, Proposition 10.5,
p.262] on Problem (5.68). The beliefs b ∈ B are hence statistics sufficient for controls.
Thus, Dynamic Programming can be applied to the belief-Mdp (by Lemma 5.19, we can
apply [Bertsekas and Shreve, 1978, Proposition 10.3, Proposition 10.4, p.256-257], and
the Dynamic Programming Equations are given by Equations (46-47), p.259). We thus
obtain the following Bellman value functions presented in Bertsekas [2000, Chapter 4] for
Problem (5.68):

V T : B→ R , b 7→
∑
x∈X

b(x)K(x) , (5.73a)

V t : B→ R , b 7→ min
u∈U

(
Ct(b, u) +

∑
o∈O,Qt+1(b,u,o) ̸=0

Qt+1(b, u, o)V t+1

(
τt(b, u, o)

))
, (5.73b)

where the product of 0 and +∞ is to be computed according to the extended arithmetic
convention 0 ∗ (+∞) = 0.

We now present Lemma 5.20, which allow us to return to the Dynamic Programming
Equations (5.16) presented in Proposition 5.2.

Lemma 5.20. Under the finite sets Assumption 5.1, the Dynamic Programming Equations
of Problem (5.68), Equations (5.73) are equivalent to the Dynamic Programming Equations
presented in Proposition 5.2, i.e. Equations (5.16).

Proof. The proof of Lemma 5.20 is technical, as it involves a number of steps, but is
otherwise straightforward and does not present any major difficulty.
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We first rewrite Equation (5.73b). We have∑
o∈O

Qt+1(b, u, o)V t+1

(
τt(b, u, o)

)
=

∑
o∈O,Qt+1(b,u,o) ̸=0

Qt+1(b, u, o)V t+1

(
τt(b, u, o)

)
+

∑
o∈O,Qt+1(b,u,o)=0

0× V t+1

(
τt(b, u, o)

)
︸ ︷︷ ︸

=0 by the convention 0×(+∞)=0

=
∑

o∈O,Qt+1(b,u,o) ̸=0

Qt+1(b, u, o)V t+1

(
τt(b, u, o)

)
.

We thus rewrite Equation (5.73b) as

V t : B→ R , b 7→ min
u∈U

(
Ct(b, u) +

∑
o∈O

Qt+1(b, u, o)V t+1

(
τt(b, u, o)

))
. (5.74)

We now prove that the value functions defined in Equations (5.16) coincide with the
value functions V t, defined in Equation (5.74) (and used to solve Problem (5.68)).

For the sake of clarity, we note

F t+1 : (b, u, o) 7→ Qt+1(b, u, o)V t+1

(
τt(b, u, o)

)
. (5.75)

Let t ∈ T \ {T}. We start by rewriting the right-hand side of Equation (5.74), with
the aim of using C instead of C:

min
u∈U

(
Ct(b, u) +

∑
o∈O

F t+1(b, u, o)
)
= min

u∈U

(∑
x∈X

b(x)Lt(x, u) +
∑
o∈O

F t+1(b, u, o)
)

(using Equation (5.16c))

= min
u∈U

(∑
x∈X

b(x)
[
Lt(x, u) + χ

Uad
t (x)

(u)
]
+
∑
o∈O

F t+1(b, u, o)
)

(using Equation (5.67))

= min
u∈U

( ∑
x∈supp(b)

b(x)χ
Uad
t (x)

(u) +
∑
x∈X

b(x)Lt(x, u) +
∑
o∈O

F t+1(b, u, o)
)

(using the convention 0×(+∞) = 0 to only keep the characteristic functions on the support
of the belief instead of the whole set X)

= min
u∈U

( ∑
x∈supp(b)

χ
Uad
t (x)

(u) +
∑
x∈X

b(x)Lt(x, u) +
∑
o∈O

F t+1(b, u, o)
)
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(as for all λ > 0 and subset Y , λχ
Y
= χ

Y
)

= min
u∈U

(
χ⋂

x∈supp(b) Uad
t (x)

(u) +
∑
x∈X

b(x)Lt(x, u) +
∑
o∈O

F t+1(b, u, o)

)

(as χ
U1
(u) + χ

U2
(u) = χ

U1∩U2
(u))

= min
u∈U

(
χ

Ub
t (b)

(u) +
∑
x∈X

b(x)Lt(x, u) +
∑
o∈O

F t+1(b, u, o)
)

(using the definition (5.16d) of Ub
t (b))

= min
u∈Ub

t (b)

(∑
x∈X

b(x)Lt(x, u) +
∑
o∈O

F t+1(b, u, o)
)

(as minu∈U
(
g(u) + χ

U
(u)
)
= minu∈U g(u) for all U ⊂ U). Hence, we have obtained that

min
u∈U

(
Ct(b, u) +

∑
o∈O

F t+1(b, u, o)
)
= min

u∈Ub
t (b)

(∑
x∈X

b(x)Lt(x, u) +
∑
o∈O

F t+1(b, u, o)
)
, (5.76)

and, as a consequence, that

V t(b) = min
u∈U

(
Ct(b, u) +

∑
o∈O

Qt+1(b, u, o)V t+1

(
τt(b, u, o)

))
= min

u∈Ub
t (b)

(
Ct(b, u) +

∑
o∈O

Qt+1(b, u, o)V t+1

(
τt(b, u, o)

))
(5.77)

(using Equations (5.74), (5.75) and (5.76)).
Moreover, we obtain, by using Equations (5.16a) and (5.73a), that

∀b ∈ B , V T (b) =
∑
x∈X

b(x)K(x) = VT (b) . (5.78)

As V T = VT (Equation (5.78)), and since we have the same expression for the backward
induction in Equations (5.16b) and (5.77) for both Vt and V t, then by backward induction,
we get that

∀t ∈ T , V t = Vt . (5.79)

Moreover, the controls u that minimize the right-hand side of Equation (5.73) also minimize
the right-hand side of Equation (5.16). Equations (5.16) and (5.73) hence share the same
values and controls.
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We have now detailed all the steps of the proof of Proposition 5.2, as presented in
Figure 5.11.

5.A.4 Technical Lemmata

In this subsection, we present technical lemmata used in the proofs of Theorems 5.9
and 5.10. We first present in §5.A.4.1 notations used in the rest of this subsection and
introduce the notions of forward and backward mappings. Second, in §5.A.4.2, we present
properties on the composition and pushforward measures by those forward and backward
mapping. Third, in §5.A.4.3, we present properties on the cardinality of sets of forward
and backward mappings used notably in the proof of Theorems 5.9 and 5.10.

We show the logical relationships between the different lemmata and theorems in Fig-
ure 5.12.

Lemma 5.23 Lemma 5.25 Lemma 5.22 Lemma 5.26 Lemma 5.28

Lemma 5.24 Lemma 5.4 Lemma 5.27

Theorem 5.9

Theorem 5.10

Figure 5.12: Diagram of the logical relationships between the different lem-
mata and theorems of §5.4 and §5.A.4. An arrow between two propositions

A→ B states that proposition A is used to prove proposition B.

5.A.4.1 Notations

In §5.A.4, we use the notations presented in §5.2 and §5.3. For the sake of completeness,
we first recall the main notations on sets and mapping we use in §5.A.4 and §5.A.5, before
defining forward and backward mappings.

Let X be a finite set. We introduce an extended state set X, obtained as the union of
the original set X with an extra element denoted by ∂:

X = X ∪ {∂} . (5.80)

We denote by B the subset of ∆(X) defined by

B = ∆(X) ∪ {δ∂} , (5.81)
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where we identify the set of probability distributions ∆(X) on X with the subset
{µ ∈ ∆(X) | supp(µ) ⊂ X} ⊂ ∆(X) and where δ∂ ∈ ∆(X) is the discrete probability mea-
sure on X concentrated on the extra point ∂, that is δ∂({δ}) = 1. A probability measure
ν ∈ ∆(X) will be represented by an ordered pair (ν|X , ν(∂)).

We define a “renormalization” mapping R : ∆(X)→ ∆(X) defined by

R : ν ∈ ∆(X) 7→
{(

1
ν(X)ν|X , 0

)
if ν(X) ̸= 0 ,

δ∂ if ν(X) = 0 .
(5.82)

It is straightforward to check that the image of the mapping R is the set B = ∆(X)∪{δ∂}
and that we have R−1(δ∂) = δ∂.

We now introduce the notion of X-forward and X-backward mappings for any subset
X ⊂ X. Given a mapping h : X → X and a subset X ⊂ X, we define a mapping
h−→
X
: X→ X, called a X-forward mapping, as follows

h−→
X
: x ∈ X 7→

{
h(x) if x ∈ X and h(x) ∈ X ,

∂ if x = ∂ or h(x) ̸∈ X .
(5.83)

We call h−→
X

: X → X a X-forward mapping as we have h−→
X
(X) ⊂ X ∪ {∂}. X-forward

implies a constraint on the codomain (set of destinations): we only keep the values that
belong to X, whereas the others are sent to ∂. The set X is thus a subset of the codomain
of h.

We also introduce the X-backward mapping h←−
X
: X→ X, defined by

h←−
X
: x ∈ X 7→

{
h(x) if x ∈ X ,

∂ otherwise.
(5.84)

We call h←−
X

: X → X a X-backward mapping as we have h←−
X
(X) ⊂ X, and h←−

X

(
X \X

)
=

{∂}. X-backward implies a constraint on the domain (set of departures): we only keep the
values whose inputs are in X, whereas the others are sent to ∂. The set X is thus a subset
of the domain of h.

It is straightforward to check that we have

∀X ⊂ X , h−→
X
= h←−−−−−

h−1(X)
, (5.85a)

∀X ⊂ X , h−→
X
= h−−−−−−→

X∩Im(h)
, (5.85b)

where Im is the image of a mapping, that is Im(h) = (h)(X). A forward mapping can
hence be rewritten as a backward mapping. The reverse is not true, as we have

h←−
X
= h−−−→

h(X)
⇔ h−1

(
h(X)

)
= X
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5.A.4.2 Results on pushforward measures by forward and backward mappings
sets

We now present properties of the composition of pushforward measures of forward and
backward mappings.

Definition 5.21. Let M ⊂ L(X;X) be a subset of self mappings on the set X. We say that
G ⊂ L(X;X) is a

(
M,
←−
X
)
-mappings set (resp. a

(
M,
−→
X
)
-mappings set) if it satisfies the

following property

G ⊂
{
h←−
X

∣∣h ∈M and X ⊂ X
}
, (5.86a)(

resp. G ⊂
{
h−→
X

∣∣h ∈M and X ⊂ X
})

, (5.86b)

where h←−
X

(resp. h−→
X

) is defined in Equation (5.84) (resp. Equation (5.83)). When
M = L(X;X), a

(
M,
←−
X
)
-mappings set (resp. a

(
M,
−→
X
)
-mappings set) is just named a(←−

X
)
-mappings set (resp. a

(−→
X
)
-mappings set).

We obtain the following properties.

• If G is a
(
M,
−→
X
)
-mappings set, then G is a

(
M,
←−
X
)
-mappings set (using Equal-

ity (5.85a)).

•
(←−
X
)
-mappings sets are stable by composition, as we easily obtain that

h′←−
X′ ◦ h←−X = (h′ ◦ h)←−−−−−−−−

X∩h−1(X′)
. (5.87)

• Let G be a
(←−
X
)
-mappings set and consider, for any X ⊂ X, the subset G←−

X
of G

defined by
G←−

X
=
{
g ∈ G

∣∣ ∃h ∈ L(X;X), g = h←−
X

}
. (5.88)

Then, for any belief b0 ∈ ∆(X), we have(
R ◦ (G←−−−−−−−−

X∩supp(b0)
)⋆
)
(b0) =

(
R ◦ (G←−

X
)⋆
)
(b0) . (5.89)

The Equation (5.89) is a consequence of the following Lemma 5.22. Indeed, assum-
ing Lemma 5.22, the expression of

(
R ◦ (G←−

X
)⋆
)
(b0) given by Equation (5.90b) only

depends on the restriction of the measure b0 to the subset X which coincides with
the restriction of the measure b0 to the subset X ∩ supp(b0) as the measure b0 is null
outside its support.

Lemma 5.22. Let X be a subset of X. The mappings R ◦ (h←−
X
)⋆ and R ◦ (h−→

X
)⋆ in

L(∆(X);B), where the pushforward measure is defined in Equation (5.17), and the mapping
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R is defined in Equation (5.82), have the following expressions for all ν ∈ ∆(X):

(
R ◦ (h−→

X
)⋆
)
(ν) =


[
x ∈ X 7→ ν

(
h−1(x)

)
1X(x)

ν
(
h−1(X)

) ]
if ν

(
h−1(X)

)
̸= 0 ,

δ∂ otherwise,
(5.90a)

and

(
R ◦ (h←−

X
)⋆
)
(ν) =


[
x ∈ X 7→ ν

(
h−1(x) ∩X

)
ν
(
h−1(X) ∩X

)] if ν
(
h−1(X) ∩X

)
̸= 0 ,

δ∂ otherwise.
(5.90b)

Proof. For any probability measure ν on the finite set X, it is straightforward, using the
definition of pushforward measure in Equation (5.17), to obtain that the pushforward of
the measure ν through the mapping h−→

X
, as defined in Equation (5.83), is given by

(h−→
X
)⋆ν : X→ R+

y 7→ ν
(
(h−→

X
)−1(y)

)
=


ν
(
h−1(y)

)
if y ∈ X ,(

1− ν
(
h−1(X)

))
if y = ∂ ,

0 if y ̸= ∂ and y ̸∈ X .

(5.91)

Thus, we obtain that

∀x ∈ X ,
(
(h−→

X
)⋆ν
)
|X
(x) = ν

(
h−1(x)

)
1X(x) , (5.92)

and that (
(h−→

X
)⋆ν
)
(X) =

∑
y∈X

ν
(
h−1(x)

)
1X(x) = ν

(
h−1(X)

)
. (5.93)

Hence, using the definition ofR in Equation (5.82), the result follows from Equation (5.90a).
The proof of Equation (5.90b) is very similar and left to the reader.

The composition of self-mappings of the form R◦ (h−→
X
)⋆ can also be written without re-

sorting to multiple renormalizations. Instead, we only need to renormalize the composition
of the pushforward measures.

Lemma 5.23. Assume that h and h′ are self-mappings on the finite set X. Then, for any
subsets X and X ′ of X, we have the following composition equalities

R ◦ (h−→
X
)⋆ ◦ R ◦ (h′−→X′)⋆ = R ◦ (h−→X ◦ h

′−→
X′)⋆ , (5.94a)

R ◦ (h←−
X
)⋆ ◦ R ◦ (h′←−X′)⋆ = R ◦ (h←−X ◦ h

′←−
X′)⋆ . (5.94b)
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Proof. We just prove Equation (5.94a) as the proof follows the same lines for Equa-
tion (5.94b). As a preliminary, we remark that the mapping R ◦ (h−→

X
)⋆ is defined on

the nonnegative measures on the set X and not just on probability measures. Now, given
µ ∈ ∆(X), we consider the nonnegative measure µ′ = (µ|X , 0). The two nonnegative
measures µ and µ′ coincide on the set X. Thus using the expression of R◦ (h−→

X
)⋆ in Equa-

tion (5.90a) and the fact that X ⊂ X, we obtain that R ◦ (h−→
X
)⋆(µ) = R ◦ (h−→X )⋆(µ|X , 0).

Now, let ν ∈ ∆(X) be given. We denote by ν ′ ∈ ∆(X) the probability measure ν ′ =
(h′−→

X′)⋆ν. We consider two cases: either ν ′(X) ̸= 0, or ν ′(X) = 0.
First case. We assume that ν ′(X) ̸= 0. Then, we successively have

R ◦ (h−→
X
)⋆ ◦ R ◦ (h′−→X′)⋆ν

= R ◦ (h−→
X
)⋆ ◦ R(ν ′) (by replacing (h′−→

X′)⋆ν by ν ′)

= R ◦ (h−→
X
)⋆
( 1

ν ′(X)
ν ′|X , 0

)
(using R definition in (5.82), with ν ′(X) ̸= 0)

= R ◦ (h−→
X
)⋆
( 1

ν ′(X)
(ν ′|X , 0)

)
(factorizing by 1

ν′(X))

= R
( 1

ν ′(X)
(h−→

X
)⋆
(
ν ′|X , 0

))
(as (h−→

X
)⋆ is 1-positively homogeneous)

= R
(
(h−→

X
)⋆
(
ν ′|X , 0

))
(as R is 0-positively homogeneous)

= R
(
(h−→

X
)⋆(ν

′)
)

(using the preliminary part)
= R ◦ (h−→

X
)⋆ ◦ (h′−→X′)⋆ν (as ν ′ = (h′−→

X′)⋆ν)

= R ◦ (h−→
X
◦ h′−→

X′)⋆(ν) . (as f⋆ ◦ h⋆ = (f ◦ h)⋆)

Second case. We assume that ν ′(X) = 0. Then, we have that ν ′ = δ∂ and we obtain

R ◦ (h−→
X
)⋆ ◦ R ◦ (h′−→X′)⋆ν = R ◦ (h−→

X
)⋆ ◦ R(δ∂) (by replacing (h′−→

X′)⋆ν by ν ′ = δ∂)

= R ◦ (h−→
X
)⋆(δ∂) (as R(δ∂) = δ∂)

= R ◦ (h−→
X
)⋆ ◦ (h′−→X′)⋆ν (by replacing δ∂ = ν ′ by (h′−→

X′)⋆ν)

= R ◦ (h−→
X
◦ h′−→

X′)⋆(ν) .

Hence, in both cases, we obtain Equation (5.94a).

Now that we have exposed technical lemmata on the composition and renormalization
of
(−→
X
)
-mappings and

(←−
X
)
-mappings, we present lemmata on the cardinality of sets of

pushforward measures, notably the cardinality of pushforward measures by
(−→
X
)
-mappings

and
(←−
X
)
-mappings.

5.A.4.3 Results on the cardinality of sets of pushforward measures

We now present results on the cardinality of sets of forward and backward mappings.
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Lemma 5.24. Let {Gk}k∈N be a given sequence where, for each k ∈ N, the set Gk ⊂
L(X;X) is a finite set of self-mappings on the set X. The Gk sets, for each k ∈ N, are
assumed to be either all

(−→
X
)
-mappings sets or all

(←−
X
)
-mappings sets. We define the

sequence {Φk}k∈N, where, for each k ∈ N, the set Φk ⊂ L(∆(X);∆(X)) is a finite set of
self-mappings on the set X given by

∀k ∈ N , Φk = R ◦ (Gk)⋆ . (5.95)

Then, for any b0 ∈ ∆(X), we have the following bound

∀n ∈ N ,
∣∣∣ n⋃
k=0

Φ0:k(b0)
∣∣∣ ≤ (1 + |X|)|supp(b0)| , (5.96)

where Φ0:k = Φk ◦ · · · ◦ Φ0 is defined in Equation (5.27).

Proof. For all k ∈ N, we have

Φ0:k(b0) = (Φk ◦ Φk−1 ◦ · · · ◦ Φ0)(b0) (by Equation (5.27))
=
(
R ◦ (Gk)⋆ ◦ R ◦ (Gk−1)⋆ ◦ · · · ◦ R ◦ (G0)⋆

)
(b0) (by Equation (5.95))

=
(
R ◦ (Gk)⋆ ◦ (Gk−1)⋆ ◦ · · · ◦ (G0)⋆

)
(b0)

(by Lemma (5.23), as the sets Gk are, by assumption, either all
(−→
X
)
-mappings sets or all(←−

X
)
-mappings sets.)

=
(
R ◦ (Gk ◦Gk−1 ◦ · · · ◦G0)⋆

)
(b0) (as f⋆ ◦ h⋆ = (f ◦ h)⋆)

= R
(
(G0:k)⋆(b0)

)
.

Thus we have, for all n ∈ N,∣∣∣ n⋃
k=0

Φ0:k(b0)
∣∣∣ ≤ ∣∣∣( n⋃

k=0

G0:k

)
⋆
(b0)
∣∣∣ ,

and the conclusion follows from the postponed Lemma 5.25 with J =
⋃n

k=0G0:k, Y = V =
X, and µ = b0.

Note that we could extend previous Lemma 5.24 to cases with sequences {Gk}k∈N of
mixes

(−→
X
)
-mappings sets and

(←−
X
)
-mappings sets. Indeed, forward mappings are also

backward mappings by Equation (5.85a). We can hence write the sequence {Gk}k∈N as a
sequence of only

(←−
X
)
-mappings sets. In the rest of this chapter, we consider sequences of

only
(−→
X
)
-mappings sets or only

(←−
X
)
-mappings sets, and thus only need Lemma 5.24.
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We can bound the cardinality of the set of pushforward of a given nonnegative measure
thanks to the following Lemma 5.25 (which was previously postponed in the proof of
Lemma 5.24).

Lemma 5.25. Let J ⊂ L(V;Y) be a set of mappings from the set V to the set Y. Assume
that the sets V and Y are both finite. Then, for any nonnegative measure µ on the set V,
we have that

|J⋆µ| ≤ |Y||supp(µ)| , (5.97)

where we recall that |J⋆µ| denote the set
∣∣{j⋆µ | j ∈ J}

∣∣ as exposed in Equation (5.27b).

Proof. Let µ be a given nonnegative measure on V. For any j ∈ J we denote by j|supp(µ)
the restriction of the mapping j to the subset supp(µ) ⊂ V. For all y ∈ Y we have that

j⋆µ(y) = µ
(
j−1(y)

)
(by the definition of pushforward measures, in (5.17))

= µ
((

j−1(y) ∩ supp(µ)
)
∪
(
j−1(y) ∩ (supp(µ))c

))
= µ

(
j−1(y) ∩ supp(µ)

)
+ µ
(
j−1(y) ∩ (supp(µ))c

)︸ ︷︷ ︸
=0

= µ
(
j−1|supp(µ)(y)

)
=
(
j|supp(µ)

)
⋆
µ(y) . (by (5.17))

Thus, considering J|supp(µ) = {j|supp(µ) | j ∈ J}, we get that

|{j⋆µ | j ∈ J}| = |{(j|supp(µ))⋆µ | j ∈ J}| ≤ |J|supp(µ)| ≤ |Ysupp(µ)| = |Y||supp(µ)| .

This ends the proof.

We now present a lemma on the conservation of the cardinality of the support of
a measure through a composition of sets of mappings, if we have conservation of the
cardinality for each individual set.

Lemma 5.26. Let {Φk}k∈N be a sequence of self-mappings on the set B and assume that,
for all k ∈ N, we have that

∀b ∈ B ,
∑
h∈Φk

|supp
(
h(b)|X

)
| ≤ |supp(b|X)| . (5.98)

Then, for any b0 ∈ ∆(X), we have the following bound

∀k ∈ N ,
∣∣Φ0:k(b0) \ {δ∂}

∣∣ ≤ |supp(b0)| , (5.99)

where Φ0:k(b0) = Φk ◦ · · · ◦ Φ0(b0) is defined in Equation (5.27e).
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Proof. Let b0 ∈ ∆(X) be given. As a preliminary result we prove, by forward induction on
the parameter k ∈ N, that

∀k ∈ N ,
∑

b∈Φ0:k(b0)

∣∣supp(b|X)∣∣ ≤ |supp(b0)| . (5.100)

First, we consider the case k = 0. As Φ0:0 = Φ0 the result follows from Equation (5.98)
used for k = 0 and b = b0. Second, we consider 0 < k, and, assuming that Equation (5.100)
is satisfied for k, we prove that it is also satisfied for k+1 as follows:∑

b∈Φ0:k+1(b0)

∣∣supp(b|X)∣∣ = ∑
h∈Φ0:k+1

∣∣supp((h(b0))|X)∣∣ (by (5.27))

=
∑

h′∈Φk+1,h′′∈Φ0:k

∣∣∣supp((h′(h′′(b0)))|X)∣∣∣ (as Φ0:k+1 = Φk+1 ◦ Φ0:k)

=
∑

h′′∈Φ0:k

( ∑
h′∈Φk+1

∣∣∣supp((h′(h′′(b0)))|X)∣∣∣)
≤

∑
h′′∈Φ0:k

∣∣∣supp((h′′(b0))|X)∣∣∣
(using Equation (5.98) for k and b = h′′(b0))

=
∑

b∈Φ0:k(b0)

∣∣supp(b|X)∣∣ (by (5.27))

≤ |supp(b0)| . (by induction assumption on k)

We conclude that Equation (5.100) is satisfied for all k ∈ N.
Now, we turn to the proof of Equation (5.99). We make the following observation: if

b ∈ ∆(X), then we have that |supp(b|X)| ≥ 1 and if b = δ∂ then |supp(b|X)| = 0. Thus, we
have that

|Φ0:k(b0) \ {δ∂}| =
∑

b∈Φ0:k(b0)\{δ∂}

1 (5.101)

≤
∑

b∈Φ0:k(b0)\{δ∂}

|supp(b|X)| (as |supp(b|X)| ≥ 1 for b ∈ Φ0:k(b0) \ {δ∂})

=
∑

b∈Φ0:k(b0)

|supp(b|X)| (as |supp(δ∂ |X)| = 0)

≤ |supp(b0)| , (by (5.100))

which gives Equation (5.99). That concludes the proof.

Lemma 5.27. Let {hk}k∈N be a given sequence of self-mappings on the set X, and for all
k ∈ N, let {Xk

i }i∈Ik be a finite family of two by two disjoints subset of X . Let {Gk}k∈N be
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a given sequence of self-mappings on the set X, of the following form

∀k ∈ N , Gk =
{
hk−→

Xk
i

∣∣ i ∈ Ik
}
⊂ XX

, (5.102)

where hk−→
Xk

i

: X → X are built following Equation (5.83). Consider the sequence {Φk}k∈N
of self-mappings on the set B, given, for all k ∈ N, by Φk = R ◦ (Gk)⋆ and the associated
sequence (Φ0:k)k∈N as defined in Equation (5.27). Then, given b0 ∈ ∆(X), we have

∀k ∈ N ,
∣∣Φ0:k(b0) \ {δ∂}

∣∣ ≤ |supp(b0)| . (5.103)

Proof. The proof relies on postponed Lemma 5.28 from which we obtain that the sets Φk

satisfy Equation (5.98) for all k ∈ N, and on Lemma 5.26.
First, as a preliminary fact, we have that, for all µ ∈ ∆(X), supp

((
R(µ)

)
|X

)
=

supp(µ|X). Indeed, by (5.82), if µ(X) = 0, then

supp
((
R(µ)

)
|X

)
= supp

(
(δ∂)|X

)
= ∅ = supp

(
µ|X
)
,

whereas if µ(X) ̸= 0, then we have

supp
((
R(µ)

)
|X

)
= supp

(
(
µ|X
µ(X)

, 0)|X
)
= supp

( µ|X
µ(X)

)
= supp(µ|X) .

Second, we show that the sets Φk satisfy Equation (5.98) for all k ∈ N. For that
purpose, we fix k ∈ N, and b ∈ B and we successively have∑

h∈Φk

∣∣supp(h(b)|X)∣∣ =∑
i∈Ik

∣∣∣supp(((R ◦ (hk−→
Xk

i

)⋆
)
(b)
)
|X

)∣∣∣ (by definition of Φk and Gk)

=
∑
i∈Ik

∣∣supp(((hk−→
Xk

i

)⋆(b)
)
|X

)∣∣
(as, by the preliminary, ∀µ ∈ ∆(X), supp

((
R(µ)

)
|X

)
= supp(µ|X))

≤
∣∣supp(b|

h−1(⊔i∈Ik
Xk

i
)

)∣∣
(by (5.106) in Lemma 5.28, applied with Y = V = X and V = X, Vi = Xk

i for i ∈ I = Ik)

≤
∣∣supp(b|X)∣∣ . (as h−1(⊔i∈IkXk

i ) ⊂ X)

Third, as the assumption given in Equation (5.98) is satisfied, the result follows by
Lemma 5.26.

We now present the postponed technical Lemma 5.28.
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Lemma 5.28. Let h ∈ L(Y;V) be a mapping from the set Y to the set V and assume that
the sets Y and V are both finite. Let V ⊂ V be a given subset of V. We define the mapping
hV : Y→ V ∪ {∂V}6 taking values in the extended set V = V ∪ {∂V} as follows

hV : y ∈ Y 7→
{
h(y) if h(y) ∈ V ,

∂V elsewhere .
(5.104)

Then, for any nonnegative measure µ on the set Y, we have that∣∣∣supp(((hV )⋆µ
)
|V

)∣∣∣ ≤ ∣∣supp(µ|h−1(V )

)∣∣ . (5.105)

Moreover, let {Vi}i∈I be a finite family of pairwise disjoints subsets of V. Then, we have
that ∑

i∈I

∣∣∣supp(((hVi
)⋆µ
)
|V

)∣∣∣ ≤ ∣∣supp(µ|h−1(⊔i∈IVi)

)∣∣ . (5.106)

Proof. We prove Equation (5.105). Let µ ∈ ∆(Y) be given. First, we note that, if the set
supp

((
(hV )⋆µ

)
|V

)
is empty, the result is obvious. Second, we assume that supp

((
(hV )⋆µ

)
|V

)
̸=

∅ and consider v ∈ supp
((
(hV )⋆µ

)
|V

)
. Thus, v is restricted to belong to V and, by definition

of a pushforward measure, it must satisfy µ
(
h−1V (v)

)
̸= 0. This implies that h−1V (v) ̸= ∅

and, using the definition of hV (in Equation (5.104)), we obtain that v must belong to
V . We conclude that there must exist y ∈ h−1V (v) such that µ(y) ̸= 0 which, combined
with the fact that the mapping h−1V coincides with the mapping h−1 on V , gives that
y ∈ h−1(v) ∩ supp(µ). Now, consider the set-valued mapping

Γ : supp
((
(hV )⋆µ

)
|V

)
⇒ Y

y 7→ h−1(v) ∩ supp(µ) .

By construction, the set-valued mapping Γ takes values in the subsets of supp(µY ) with
the notation µY = µ|h−1(V )

, and we have just proved that it takes values in the nonempty
subsets of supp(µY ). Moreover, the set-valued mapping Γ is injective, as for all pairs of
distinct elements (v′, v′′) ∈ V 2, v′ ̸= v′′, we must have that h−1(v′) ∩ h−1(v′′) = ∅, as
otherwise there would exist an element y ∈ Y such that h(y) = v′ and h(y) = v′′ which is
not possible. Thus, the image of Γ is a partition of a subset of supp(µV ) and we conclude
that ∣∣supp(((hV )⋆µ

)
|V

)∣∣ = ∣∣Γ(supp(((hV )⋆µ
)
|V

))∣∣ ≤ |supp(µ|h−1(V )
)| ,

which gives Equation (5.105).
6Note that the mapping hV is slightly different from h−→

V
. Indeed h−→

V
are defined for self-mappings,

whereas hV is defined for an extended codomain (set of destinations).
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Now, we turn to the proof of Inequality (5.106). We successively have∑
i∈I

∣∣∣supp(((hVi
)⋆µ
)
|V

)∣∣∣ ≤∑
i∈I

∣∣supp(µ|h−1(Vi)

)∣∣ (by (5.105) for each i ∈ I)

=
∣∣supp(µ|⊔i∈Ih

−1(Vi)

)∣∣
(as the family of subsets {h−1(Vi)}i∈I is composed of pairwise disjoints subsets as it was
the case for the family {Vi}i∈I)

=
∣∣supp(µ|h−1(⊔i∈IVi)

)∣∣ , (as h−1(⊔i∈IVi) = ⊔i∈Ih
−1(Vi))

which concludes the proof.

This technical Lemma 5.28 shows that the cardinality of the support of a measure
decreases when the measure is transported by a pushforward measure induced by a mapping
of the form given by Equation (5.104). A similar result

∀t ∈ T , ∀b ∈ B , ∀u ∈ U ,
∑
o∈O

∣∣supp(τt(b, u, o))∣∣ ≤ ∣∣supp(b)∣∣ ,
is given in [Littman, 1996, Lemma 6.2] but only for the mappings (τt)t∈T , defined in
Equation (5.14) and with a proof not explicitly connected to pushforward measures.

We now present the postponed proof of Lemma 5.4, presented in page 87.

Proof of Lemma 5.4. Fix (u, o) ∈ U × O, t ∈ T \ {T}, and b ∈ B and denote by X ⊂ X
the subset X =

(
hu
t+1

)−1
(o).

We need to prove that we have

τt(b, u, o) = R ◦ (F u,o
t )⋆(b) . (5.107)

Using Equation (5.10), we have that

Qt+1(b, u, o) = b
(
(hu

t+1 ◦ fu
t )
−1(o)

)
= b
(
(fu

t )
−1(X)

)
. (5.108)

Now, using the expression of τt in Equation (5.14) combined with Equation (5.108) and
the definition of X we obtain, for all x ∈ X, that

τt(b, u, o)(x) =


b
(
(fu

t )
−1(x)

)
1X(x)

b
(
(fu

t )
−1(X)

) if b
(
(fu

t )
−1(X)

)
̸= 0 ,

0 otherwise .

(5.109)
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Then, Equation (5.107) follows from Lemma 5.22 applied with the mapping h = fu
t and

with the subset X =
(
hu
t+1

)−1
(o), as we have

F u,o
t = fu

t
−−−−−−−−→
(hu

t+1)
−1(o)

, (5.110)

where fu
t
−−−−−−−−→
(hu

t+1)
−1(o)

is defined in Equation (5.83).
This ends the proof.

5.A.5 Complementary result on (∂)-separated mapping sets

In this subsection, we present complementary results on (∂)-separated mapping sets by
applying the framework presented in Appendix 5.A.4. We notably apply the notion of
forward and backward mapping, presented in Equations (5.83) and (5.84), and the notion
of pushforward measure, defined in §5.3 in Equation (5.17).

First, in §5.A.5.1, we present the lemmata used in the proofs of §5.5. Second, in
§5.A.5.2, we present a few examples of Separated Det-Pomdps. Third, in §5.A.5.3, we
present a necessary condition in order to have tight bounds in Theorem 5.15.

5.A.5.1 Properties of (∂)-separated mapping set

Lemma 5.29. Let G be a
(
M,
←−
X
)
-mappings set as defined in Definition 5.21. If M is a

separated mapping set, then G is a (∂)-separated mapping set.

Proof. Let g1 and g2 be two mappings in G. In order to prove that G is a (∂)-separated
mapping set, using Definition 5.12, we need to prove that the restrictions of the two
mappings g1 and g2 on the subset A = g−11 (X)∩ g−12 (X) are separated. Using the property
of the set G, there exist m1 ∈ M (resp. m2 ∈ M) and X1 ⊂ X (resp. X2 ⊂ X) such that
g1 = m1←−

X1
(resp. g2 = m2←−

X2
). Combined with the definition of m1←−

X1
in Equation (5.84),

this gives that g−11 (X) = (m1)−1(X1) (resp. g−12 (X) = (m2)−1(X2)). We therefore obtain
the equality A = (m1)−1(X1) ∩ (m2)−1(X2).

First, if the set A is empty, it is immediate to prove that g1 and g2 are (∂)-separated.
Second, assuming that A is not empty and using again the fact that g1 = m1←−

X1
, we obtain

that g1 coincides with m1 on the set A, and in the same way we obtain that g2 coincides
with m2 on the set A.

Now, as m1 and m2 belong to a separated mapping set, they are separated mappings,
and therefore their restrictions to A are also separated. We conclude that the restrictions
of g1 and g2 on the subset A = g−11 (X) ∩ g2

−1(X) are separated. This ends the proof.

A direct consequence of Lemma 5.29 is the following Corollary 5.30.

Corollary 5.30. Let {Mk}k∈N be a given sequence of sets of self-mappings on the set X.
Let {Gk}k∈N be a sequence of sets of self-mappings on the set X, such that, for all k ∈ N,
Gk is a

(
Mk,
←−
X
)
-mappings set. If the set ∪k∈N

(
Mk ◦Mk−1 ◦ · · · ◦M0

)
of mappings is a
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separated mapping set, then the set ∪k∈N
(
Gk ◦Gk−1 ◦ · · · ◦G0

)
is a (∂)-separated mapping

set.

Proof. Let G1 and G2 be respectively a
(
M1,
←−
X
)
-mappings set and a

(
M2,
←−
X
)
-mappings

set. Then, we have that

G1 ◦G2 =
{
g1 ◦ g2

∣∣ g1 ∈ G1 and g2 ∈ G2

}
(by Notation (5.27d))

⊂
{
m1←−

X1
◦m2←−

X2

∣∣m1 ∈M1 , m2 ∈M2 , X1 ⊂ X , X2 ⊂ X
}

(by (5.86))

⊂
{
(m1 ◦m2)←−−−−−−−−−−−−

X2∩(m2)−1(X1)

∣∣m1 ∈M1 , m2 ∈M2 , X1 ⊂ X , X2 ⊂ X
}

(by (5.87))

⊂
{
mX

∣∣m ∈M1 ◦M2 and X ⊂ X
}
.

We have obtained that G1 ◦ G2 is a
(
M1 ◦M2,

←−
X
)
-mappings set. Thus, if M1 ◦ M2 is

a separated mapping set, then the set G1 ◦ G2 is a (∂)-separated mapping set by using
Lemma 5.29. The end of the proof follows by induction on the number of compositions of
sets, and by straightforward arguments when considering unions of

(←−
X
)
-mappings set.

Before presenting bounds on the cardinality of a (∂)-separated mapping set, we present
Lemma 5.31.

Lemma 5.31. Let J ⊂ L(X;Y) be a set of mappings from the finite set X to the finite
set Y. Assume that for all pairs of mappings (j, j′) ∈ J2, if there exists x ∈ X such that
j(x) = j′(x), then j = j′. Then, we have that

|J| ≤ |Y| . (5.111)

Proof. Fix x ∈ X and consider the evaluation mapping γx : J→ Y defined by γx(j) = j(x)
for all j ∈ J. The image γx(J) of the set J by the mapping γx is indeed the subset
{j(x) | j ∈ J} of Y. First, the codomain of the mapping γx being the finite set Y, we
immediately have that ∣∣γx(J)∣∣ ≤ |Y| . (5.112)

Second, the mapping γx is injective. Indeed, using the assumption on the set J, two
distinct mappings j and j′ in the set J must satisfy γx(j) = j(x) ̸= j′(x) = γx(j

′). Thus,
we must have the equality |J| =

∣∣γx(J)∣∣ which, combined with Equation (5.112), gives
Inequality (5.111), and concludes the proof.

We now use the previous Lemma 5.31 to bound the cardinality of a (∂)-separated
mapping set.

Lemma 5.32. Let X = X ∪ {∂}, and a (∂)-separated mapping set G of self-mappings on
the set X. Moreover, assume that, for all g ∈ G, g(∂) = ∂. For any subsets X and X ′ of
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the set X, we define GX→X′ as follows

GX→X′ =
{
g ∈ G

∣∣ g−1(X) = X, g(X) ⊂ X ′
}
. (5.113)

Then, we have ∣∣GX→X′
∣∣{≤ |X ′| if X ⊂ X ,

= 0 if X ∩ {∂} ≠ ∅ . (5.114)

Proof. Fix X ⊂ X and X ′ ⊂ X. First, we consider the case where X ∩ {∂} ≠ ∅. As we
have assumed that g(∂) = ∂, for all g ∈ G, we obtain that g−1(X) ∩ {∂} = ∅. Thus, we
conclude that |GX→X′ | = |∅| = 0. Second, we consider the case where X ⊂ X and consider
the mapping

Γ : GX→X′ → X ′
X
, g 7→ g|X . (5.115)

The mapping Γ is injective. Indeed, if two mappings in GX→X′ have the same restriction
on X, they coincide on X as they are both constant on the set X \ X with value ∂. We
therefore obtain that ∣∣GX→X′

∣∣ = ∣∣Γ(GX→X′)
∣∣ . (5.116)

Now, the set G′ = Γ(GX→X′) is a subset of mappings from X to X ′. As G is a (∂)-
separated mapping set, we obtain that G′ is a separated set of mappings from X to X ′.
Indeed, consider a pair of mappings (g′1, g′2) ∈ G′2 and assume that there exists x ∈ X such
that g′1(x) = g′2(x). Using the definition of G′, we have that g′1(x) and g′2(x) are both non
equal to ∂. Moreover, there exists g1 and g2 in GX→X′ such that g′1 = Γ(g1) and g′2 = Γ(g2).
Using again the definition of G′ = Γ(GX→X′) we obtain that g1(x) = g2(x) ̸= ∂. Now, as
G is a (∂)-separated mapping set, we obtain that the two mappings g1 and g2 coincide on
X since they both do not take the value ∂ on X. We conclude that their restrictions on X,
the mappings g′1 and g′2, coincide. Using Lemma 5.31 in Subsection 5.A.5 we obtain that∣∣Γ(GX→X′)

∣∣ ≤ |X ′| , (5.117)

which, combined with Equation (5.116), gives Equation (5.114). This concludes the proof.

We now present the postponed proof of Proposition 5.14, presented in page 97.

Proof of Proposition 5.14. The proof of Proposition 5.14 is a direct consequence of Corol-
lary 5.30.

We assume that the set
⋃

t∈T f
Ut+1

0:t = {fu0:t
0:t | ∀t ∈ T \ {T},∀u0:t ∈ Ut+1} of the compo-

sition of the evolution functions of Problem (5.2) is a separated mapping set. We then
prove that Problem (5.2) is a Separated Det-Pomdp.

First, for all time t, for all pair (u, o) ∈ U × O, we have F u,o
t = fu

t
−−−−−−−−→
(hu

t+1)
−1(o)

(see

Equation (5.110)). Thus, by Equation (5.85a), there exists X ⊂ X such that F u,o
t = fu

t
←−
X

.
Hence, FDt is of the same form as in Equation (5.102), with the role of set Φk taken by
{fU

t }.
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We hence have that FD =
⋃

t∈T FD0:t is a (∂)-separated mapping set by Corollary 5.30,
where the role of {Gk}k∈N is taken by {FDt }t∈T \{T} and the role of {Φk}k∈N is taken by
{fU

t }t∈T \{T}.
Therefore, as FD is a (∂)-separated mapping set, Problem (5.2) is a Separated Det-

Pomdp.

We now present examples of Separated Det-Pomdps.

5.A.5.2 Examples of Separated Det-Pomdps

In this part, we present examples of Separated Det-Pomdps. Indeed, a direct consequence
of Proposition 5.14 is that, if the evolution functions of a Det-Pomdp belong to a separated
mapping set, then the Det-Pomdp is a Separated Det-Pomdp. We now present examples
of such evolution functions.

Corollary 5.33. Consider a Det-Pomdp optimization problem given by Problem (5.2)
which satisfies the finite sets Assumption 5.1. The notations are those of Problem (5.2).
Assuming that, for all time t ∈ T \ {T}, there exist mappings gt such that, for all states
x ∈ X,

ft(x, u) = x+ gt(u) , (5.118)

then Problem (5.2) is a Separated Det-Pomdp.

Proof. This corollary is a direct result of Proposition 5.14. Indeed, we only need to prove
that ∪t∈T

(
fUt+1

0:t

)
is a separated mapping set.

Let t1 ≤ t′1 and t2 ≤ t′2 be such that Jt1, t′1K ⊂ T and Jt2, t′2K ⊂ T . Let ut1:t′1
∈ Ut′1−t1+1

and u′t2:t′2
∈ Ut′2−t2+1 be two sequences of controls. We have, by using Equation (5.118),

f
ut1:t

′
1

t1:t′1
: X→ X, x 7→ x+

∑
t∈Jt1,t′1K

gt(ut) ,

and
f
u′
t2:t

′
2

t2:t′2
: X→ X, x 7→ x+

∑
t∈Jt2,t′2K

gt(u
′
t) .

If there exists a state x ∈ X such that f
ut1:t

′
1

t1:t′1
(x) = f

u′
t2:t

′
2

t2:t′2
(x), we hence have∑

t∈Jt1,t′1K

gt(ut) =
∑

t∈Jt2,t′2K

gt(u
′
t) .

Thus f
ut1:t

′
1

t1:t′1
(x) = f

u′
t2:t

′
2

t2:t′2
(x)⇒ f

ut1:t
′
1

t1:t′1
= f

u′
t2:t

′
2

t2:t′2
. Therefore, the set

∪t∈T
(
fUt+1

0:t

)
= {fu0:t

0:t | ∀t ∈ T \ {T},∀u0:t ∈ Ut+1} of composition of the evolution functions
is a separated mapping set. We conclude by Proposition 5.14 that Problem (5.2) is a
Separated Det-Pomdp.
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Corollary 5.34. Consider a Det-Pomdp optimization problem given by Problem (5.2)
which satisfies the finite sets Assumption 5.1. The notations are those of Problem (5.2).
Assuming that, for all time t ∈ T \ {T}, there exist mappings gt such that for all states
x ∈ X,

ft(x, u) = x× gt(u) , (5.119)

and assuming that 0 /∈ X, then Problem (5.2) is a Separated Det-Pomdp.

Proof. Let t1 ≤ t′1 and t2 ≤ t′2 such that Jt1, t′1K ⊂ T and Jt2, t′2K ⊂ T . Let ut1:t′1
∈ Ut′1−t1+1

and u′t2:t′2
∈ Ut′2−t2+1 be two sequences of controls . We have, by using Equation (5.119),

f
ut1:t

′
1

t1:t′1
: X→ X, x 7→ x×

∏
t∈Jt1,t′1K

gt(ut) ,

and
f
u′
t2:t

′
2

t2:t′2
: X→ X, x 7→ x×

∏
t∈Jt2,t′2K

gt(u
′
t) .

If there exists state x ∈ X such that f
ut1:t

′
1

t1:t′1
(x) = f

u′
t2:t

′
2

t2:t′2
(x), we hence have, as x ̸= 0,∏

t∈Jt1,t′1K

gt(ut) =
∏

t∈Jt2,t′2K

gt(u
′
t) .

Thus f
ut1:t

′
1

t1:t′1
(x) = f

u′
t2:t

′
2

t2:t′2
(x) ⇒ f

ut1:t
′
1

t1:t′1
= f

u′
t2:t

′
2

t2:t′2
. Therefore, the set of compositions of

the evolution functions ∪t∈T
(
fUt+1

0:t

)
= {fu0:t

0:t | ∀t ∈ T \ {T},∀u0:t ∈ Ut+1} is a separated
mapping set.

5.A.5.3 Necessary condition to attain the bound of the cardinality of the set
of reachable beliefs

The problem presented in §5.5.3 achieves the bound on the cardinality of the set of reachable
beliefs because of one key property: there is a circulation allowed by the dynamics. That
property is a necessary condition in order to achieve the bound.

Proposition 5.35. Assume that Problem (5.2) is a Separated Det-Pomdp, that As-
sumption 5.1 holds, that |supp(b0)| > 1 and that the evolution functions {ft}t∈T \{T} of
Problem (5.2) satisfy the following property: there exists a strict subset A ⊊ X such that
for all time t ∈ T \ {T}, ft : A × U → A. Then, the bound in Equation (5.38) presented
in Theorem 5.15 cannot be attained, i.e.∣∣BR,D

1:T (b0)
∣∣ < 1 +

(
2|supp(b0)| − |supp(b0)|

)
|X| . (5.120)

Proof. We assume that there exists a subset A ⊊ X such that, for all time t ∈ T \ {T},
ft : A× U→ A.
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Note that, due to Corollary 5.17, we now need to prove Proposition 5.35 only for the case
where supp(b0) ̸⊂ A. Indeed, if supp(b0) ⊂ A, by Corollary 5.17, we have Equation (5.44),
i.e. ∣∣BR,D

1:T (b0)
∣∣ ≤ 1 +

(
2|supp(b0)| − |supp(b0)|

)
|A| ,

hence we have Equation (5.120) as |A| < |X|.
Let X ⊂ A a given subset of A. Moreover, recall that FDX→X′ is defined as

FDX→X′ =
{
F ∈ FD

∣∣F−1(X) = X,F (X) ⊂ X ′
}
. (by (5.113))

We now prove that we have FDX→X = FDX→A.
Indeed, due to the assumption, for all time t ∈ T \{T}, ft : A×U→ A. Moreover, recall

that due to Equation (5.18), for all time t and pair (u, o) ∈ U×O, F u,o
t (X) ⊂ fu

t (X)∪{∂}.
As X ⊂ A, we have fu

t (X) ⊂ A. Hence for all F ∈ FDX→X, A ∩ F (X) = ∅, i.e. F (X) ⊂ A.
Thus, for all F ∈ FDX→X, F ∈ FDX→A as we have F−1(X) = X (as F ∈ FDX→X), and
F (X) ⊂ A. We hence have FDX→X ⊂ FDX→A. Combined with the inclusion FDX→A ⊂ FDX→X
(indeed, F (X) ⊂ A implies F (X) ⊂ X, hence for all F ∈ FDX→A, F ∈ FDX→X ), we indeed
obtain

FDX→X = FDX→A .

Moreover, by Lemma 5.32 applied with G = FD, X = X and X ′ = A, we have

|FDX→A| ≤ |A| .

Hence, we have
∀X ⊂ A , |FDX→X| = |FDX→A| ≤ |A| (5.121)

Now, we have∣∣TD(b0) \ {δ∂}∣∣ ≤∑
k≥0

∑
X⊂supp(b0)
|X|=k

∣∣∣(R ◦ (FDX→X)⋆
)
(b0) \ {δ∂}

∣∣∣ (by (5.42))

≤ |X|+
∑
k≥2

( ∑
X⊂supp(b0)

|X|=k and X ̸⊂A

|X|+
∑

X⊂supp(b0)
|X|=k and X⊂A

|A|
)

(by Equations (5.39) and (5.121))

< |X|+
∑
k≥2

∑
X⊂supp(b0)
|X|=k

|X|

= |X|+
(
2|supp(b0)| − |supp(b0)| − 1

)
|X| . (5.122)
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Finally, we have

∣∣BR,D
1:T (b0)

∣∣ (5.23)
=
∣∣∣ T⋃
t=1

BR,D
t (b0)

∣∣∣ (5.33)
=
∣∣ T−1⋃
t=0

TD0:t(b0)
∣∣ (5.40)

= |TD(b0)|
(5.122)
< 1+

(
2|supp(b0)| − |supp(b0)|

)
|X| ,

which ends the proof
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Chapter 6

Multistage optimization of a partially
observed petroleum production system
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6.1 Introduction
Chapter 4 was devoted to the formulation and numerical resolution of a deterministic
optimization problem for the management of an oil and gas production system (see Prob-
lem (4.1)). In that formulation, we considered that oil prices were known in advance
(deterministic oil prices) and that the state of the dynamical system modeling the reser-
voir dynamics was fully observed (i.e. the optimization problem was formulated under a
complete observation assumption).
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Relaxing the deterministic assumption for prices and assuming that prices are stochas-
tic could be taken into account by dynamic programming. Indeed, it is possible to apply
dynamic programming when prices are assumed to be stagewise independent. More com-
plex dynamical models for prices can also be accounted for, as long as those models do not
lead to an extended state which is too large. Indeed, dynamic programming is subject to
the curse of dimensionality, and extending the state can render the problem untractable.

However, assuming a full observation of the state is often a too demanding assumption.
Indeed, the state variables to consider depend on the model structure of the oil reservoir
(which is a geological formation that contains some hydrocarbons): it has 5 dimensions
per tank in the reservoir (see Table 4.1), although, as was shown in Chapter 4, it could
be reduced to a one dimensional state in specific cases. However, it is not perfectly known
when starting to exploit the oil and gas production network: for example, we have only
estimates of the initial reserve of hydrocarbons and of the size of each tank. We are
therefore led to reformulate the optimization Problem (4.1) in order to take into account
partial observation. We proceed as follows. To start with, we assume that the initial
state of the reservoir is not known, but that we have state partial information given by a
probability distribution at the initial time. Therefore, at each time step, the evolution of
the state is known through probability distribution evolutions driven by observations and
controls (which must be functions of the observations). This leads to Problem (6.1).

This chapter is organized as follows. In §6.2, we reformulate the deterministic opti-
mization Problem (4.1) of an oil and gas production network, studied in Chapter 4, in
order to take into account the partial observation of the state. This new formulation leads
to an optimization problem Problem (6.1) which is a Det-Pomdp optimization problem
(see Chapter 5). We show in Lemma 6.1 and Proposition 6.2 that it is equivalent to a
Separated Det-Pomdp optimization problem. Then, in §6.3, following the same steps as
in Chapter 4, we present two numerical applications. First, a gas reservoir with two tanks,
and second, an oil reservoir where the pressure is kept constant through water injection.

6.2 Management of a partially observed petroleum pro-
duction system as a Separated Det-Pomdp opti-
mization problem

In this section, we present a problem of optimal management of an oil and gas production
network under partial observation. It is derived from the petroleum production system
optimization problem, presented in Chapter 4 as Problem (4.1). First, in §6.2.1, we present
the formulation of the management of a partially observed petroleum production system
as Det-Pomdp optimization problem as Problem (6.1). Second, in §6.2.2, we detail the
observations we have access to in a petroleum production system. Third, in §6.2.3, we
show that there exists a Separated Det-Pomdp optimization Problem (6.3) equivalent to
optimization Problem (6.1).
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6.2.1 General formulation as a Det-Pomdp

Let (Ω,F,P) be a probability space, where Ω is the set of possible outcomes, F is a σ-
field and P is a probability measure on Ω. We denote by E the mathematical expectation
operator.

We reformulate Problem (4.1) to take into account partial observation of the state:

V⋆(b0) = max
X,O,U

E
[T−1∑
t=0

Lt(Xt,Ut) +K(XT )
]

(6.1a)

s.t. PX0 = b0 , (6.1b)
Xt+1 = f(Xt,Ut) , ∀t ∈ T \ {T} , (6.1c)
Ot = h(Xt) , ∀t ∈ T , (6.1d)
Ut ∈ Uad

t (Xt) , ∀t ∈ T \ {T} , (6.1e)
σ(Ut) ⊂ σ(O0, . . . ,Ot,U0, . . . ,Ut−1) , ∀t ∈ T \ {T} . (6.1f)

The sets of time-steps, T , states, X, and controls, U, are the same in both Problem (6.1)
and Problem (4.1). Problem (6.1) requires an additional set, the set O of observation (which
is the focus of §6.2.2).

Now, as we have partial observation of the state of the dynamical system in Prob-
lem (6.1), there are now three stochastic processes in the formulation: X =

{
Xt

}
t∈T ,

U =
{
Ut

}
t∈T \{T} and O =

{
Ot

}
t∈T . For all time t ∈ T , Xt : Ω→ X and Ot : Ω→ O are

random variables representing respectively the state and the observation of the system at
time t, and for all time t ∈ T \ {T}, Ut : Ω → U are random variables representing the
controls at time t.

We now detail the constraints of Problem (6.1).
First, as Problem (6.1) is derived from Problem (4.1), they have equations in common.
Indeed, the objective functions (Equations (6.1a) and (4.1a), up to an expectation), the
system dynamics (Equations (6.1c) and (4.1c)) and the admissibility constraints (Equa-
tions (6.1e) and (4.1d)) are shared by the two problems.
Second, we do not know the initial state of the reservoir, but we assume that we know its
distribution, b0 (a probability distribution over the state space), which we call the initial
belief. This leads to Equation (6.1b).
Third, the observations of the system are given by Equation (6.1d) as a function of the
state. There is an observation function h : X → O such that the observation at time
t ∈ T , when the system is in state x, is given by h(x). Contrarily to general Det-Pomdp
optimization Problem (5.2), the observation function does not depends on the controls.
Fourth, we have a measurability constraint on the controls in Equation (6.1f), which takes
into account that the controls are constrained to depend only on past observations and
past controls (the controls are non-anticipative).
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As Problem (6.1) has the similar form as Problem (5.2), it is hence a Det-Pomdp
optimization problem.

We now detail the observation sets and functions in the case of management of the
petroleum production system.

6.2.2 Observations sets and observation functions of the petroleum
production system

In §6.2.2.1, we first make some recalls on petroleum production systems. Second, in
§6.2.2.2, we derive the associated observation sets and observation functions.

6.2.2.1 Recalls on petroleum production systems

As stated in Chapter 4, a petroleum production system is composed of two components: a
reservoir, and production assets. From the physical reservoir models, we obtain a dynamical
system that describes the reservoir time evolution, and whose controls are derived from
the models of the production assets.

The reservoir is modeled as a set of possibly interconnected tanks. Each tank is modeled
as a dynamical system, with a 5 dimensional state, (V o, V g, V w, V p, P r), whose compo-
nents are respectively the standard volume of oil, gas, and water in the tank, the tank’s
total pore volume, and the tank’s pressure. In some specific cases, the dimension of the
state can be reduced, as was shown in the applications of Chapter 4. Moreover, tanks can
be interconnected, and the (constant) transmissivity of the connections can be considered
to be only known through a probability distribution. In that case, the transmissivity also
becomes a component of the state.

There are three main production assets: wells, chokes, and pipes. Fluids leave a tank
through a well, and then flow in a pipe unless a choke closes the pipe. The fluids exit
the production system through the exit point, and they are then sold. We represent the
production network with a graph G = (V,A), where V is the set of vertices, and A ⊂ V2

is the set of arcs (see Figure 4.1 in Chapter 4). The control u is the opening or closing of
pipes oa, a ∈ A, and the choice of the well-head pressure Pw, w ∈ Vin ⊂ V.

From the wells models, we derive a production function Φ : X × U → R3 (see Equa-
tion (4.16), §4.A), which is used in the cost function and the dynamics of the system (see
Equation (4.3)). The admissibility set presented in Equation (6.1e) is derived thanks to
the models of the pipes and chokes assets.

6.2.2.2 Observations sets and functions of the petroleum production system

The state of the reservoir is not observed. However, we obtain information about the state
as we produce hydrocarbons. Indeed, we assume that the production rates are known and
that we know the gains at each time step. More specifically, we assume that, at each time
step t ∈ T \ {T}, the decision maker knows the resulting production values of each well
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of any admissible control u ∈ U at the time of choosing the said control. We assume that
this is the only new information the decision maker has access to at time t.

Following this assumption, we only have observations for tanks connected to wells. We
have no observation regarding unconnected tanks, nor regarding transmissivity. As an
example, we now detail the observation for the case with one well and one tank. More
general cases can easily be deduced by increasing the dimensions of the observation and
state.

The production mapping for a case with one well and one tank has been given in §4.A.
It is given by a mapping Φ : X× U→ R3 detailed in Equation (4.17), and given by

F i = Φi(x, u) =
Ipri(u, x(5), x

(3)Bw(x(5))

x(4) , x
(2)Bg(x(5))

x(4) )

Bi(x(5))
, ∀i ∈ {o,g,w} ,

where Ipr stands for Inflow Performance Relationship of the well, defined in §3.2.4. The
values of the production mapping over time are observed and constitute what we call the
natural observation. We show now that it exists another equivalent observation function.

For that purpose, we recall that, as described in Equation (3.12), the Inflow Performance
Relationship Ipr used to define the production mapping can be reformulated as a mapping
Ĩpr. This second mapping takes as input two functions, Wct : X → R and Gor : X → R
which return respectively the water-cut – proportion of water produced when we extract a
volume of liquid (see Equation (3.8)) – and the gas-oil ratio – proportion of gas produced
when we extract a volume of oil (see Equation (3.10)). Moreover, it is assumed that the
two ratios only depend on the state. Thus, there exists a mapping Φ̃ : R3 × U → R3,
defined thanks to the mappings Ĩpr (following Equation (4.17)), such that

Φ(x, u) = Φ̃
(
PRes(x),Wct(x),Gor(x), u

)
, ∀(x, u) ∈ X× U ,

with PRes : X → R, x 7→ x(5). Moreover, for a given bottom-hole pressure P bh (i.e. for
a given control u), Ĩpr(P bh, ·) is invertible (see §3.2.4), hence Φ̃(·, u) (using the partial
mapping notation (5.6)) is invertible.

Thus, while the natural observations are given by the production function, we instead
use as observations the vector (P r, wct, gor). The observation function h is given by

h : X→ O, x 7→

PRes(x)
Wct (x)
Gor (x)

 . (6.2)

Now that we have specified the observations, we study whether Problem (6.1) is a
Separated Det-Pomdp optimization problem or not.
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6.2.3 Management of a partially observed petroleum production
system and Separated Det-Pomdp

Problem (6.1) is a Det-Pomdp optimization problem, but is not necessarily a Separated
Det-Pomdp optimization problem. Fortunately, by adding a key assumption that is
satisfied in practice, there exists a Separated Det-Pomdp optimization problem which is
equivalent to Problem (6.1).

Assumption 6.1 (Initial consistence assumption). We assume that the initial belief b0 ∈
B is consistent: all the states x ∈ X which belong to the support of b0 share the same
observation, i.e.

∃o ∈ O , such that h
(
supp(b0)

)
= {o} ,

where supp is the support function, defined in Equation (5.5).

Under the initial consistence assumption, the observation O0 = h(X0) at initial time
is a constant random variable, as, using Constraints (6.1b) and (6.1d), we have that O0 ∈
h
(
supp(PX0)

)
= h

(
supp(b0)

)
and the set h

(
supp(b0)

)
is a singleton. Moreover, the decision

maker has at his disposal at the initial time an initial belief b0 and a first observation o0
resulting from geo-physicists measures. The observation o0 implies that the unknown
(deterministic) initial state must belong to the set h−1(o0) and it is thus “reasonable” for
the decision maker to replace his initial belief b0 with the new belief (b0)|h−1(o0)/b0(h

−1(o0))
that is the conditional probability of X0 knowing that X0 ∈ h−1(o0). Indeed, this operation
is not possible if b0(h−1(o0)) ̸= 0, but this would mean that the decision maker’s initial
belief and initial observation are incompatible. Then, the new belief satisfies the initial
consistence assumption.

First, we present Problem (6.3). It has the same form as Problem (6.8), found in
Appendix 6.A:

J ⋆(b0, o0) = min
X,O,U

E
[T−1∑
t=0

Lt(Xt,Ut) +K(XT )
]

(6.3a)

s.t. PX0 = b0 , (6.3b)
Xt+1 = f(Xt,Ut) , ∀t ∈ T \ {T} , (6.3c)
O0 = o0 (6.3d)
supp(b0) ⊂ h−1(o0) (6.3e)
Ot = h(Xt) , ∀t ∈ T \ {0, T} , (6.3f)
Ut ∈ Uad

t (Xt) , ∀t ∈ T \ {T} , (6.3g)
σ(Ut) ⊂ σ(O0, . . . ,Ot,U0, . . . ,Ut−1) , ∀t ∈ T \ {T} . (6.3h)

Note that when Constraint (6.3e) is not satisfied, then Problem (6.3) takes the value +∞.
Moreover, Problem (6.3) shares most of its constraints and its objective function with Prob-
lem (6.1). Indeed, the only change is that Constraint (6.1d) at time t = 0 in Problem (6.1)
is replaced with Constraints (6.3d) and (6.3e) in Problem (6.3).
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Lemma 6.1. Assume that the initial belief b0 satisfies the initial consistence Assump-
tion 6.1. Then, the value of Problem (6.3), J ⋆(b0, o0), equals +∞ if the set h

(
supp(b0)

)
–

which is a singleton by Assumption 6.1 – is not the singleton {o0}. If the observation o0
in Constraint (6.3d) satisfies {o0} = h

(
supp(b0)

)
, then Problem (6.1) and Problem (6.3)

are equivalent. That is, Problem (6.1) and Problem (6.3) share the same sets of reachable
beliefs, and V⋆(b0) = J ⋆(b0, o0).

Proof. First, if the observation o0 and initial belief b0 are such that h
(
supp(b0)

)
̸= {o0},

then Constraint (6.3e) of Problem (6.3) is not satisfied. Problem (6.3) is therefore not
feasible, and its value is hence equal by convention to +∞.

Second, we prove that if h
(
supp(b0)

)
= {o0}, Problem (6.1) and Problem (6.3) are

equivalent. As Problem (6.1) and Problem (6.3) share the same evolution functions and,
for all time t > 0, the same observation functions, they share the same belief dynamics
{ft}t∈T \{T}. Indeed the sequence of mappings {τt}t∈T \{T}, defined in Equation (5.14), does
not depend on the observation function at time 0 but only depends on the sequences of
mappings {ft}t∈T \{T} and {ht}t∈T \{0}. As the sets of reachable beliefs are constructed by
applying the belief dynamics {ft}t∈T \{T} on the initial belief b0 (see the definition of BR,D

t

in Equation (5.22)), Problem (6.1) and Problem (6.3) thus share the same sets of reachable
beliefs as they apply the same belief dynamics {ft}t∈T \{T} to the same initial belief b0.

Under the initial consistence Assumption 6.1, we have that {o0} = h(supp(b0)). Hence,
for that observation o0 and initial belief b0, Constraints (6.3d) and (6.3e) are satisfied in
Problem (6.3), and we have O0 = o0 in Problem (6.3). Furthermore, by Constraint (6.1b),
which gives the probability distribution of the initial state, and Constraint (6.1d) at time
t = 0, which gives the observation as a function of the state, we also have O0 = o0 in
Problem (6.1). As the rest of the constraints and the objective functions are shared by
Problem (6.1) and Problem (6.3), and since the stochastic processes X and O have the
same initialization in both problems, we have V⋆(b0) = J ⋆(b0, o0).

This ends the proof.

Moreover, Problem (6.3) is a Separated Det-Pomdp optimization problem, as we show
below.

Proposition 6.2. For all ordered pairs (b0, o0) ∈ B × O in the effective domain of J ⋆,
Problem (6.3) is a Separated Det-Pomdp optimization problem.

Proof. The proof is organized as follows. First, we detail the form of the mappings F for
the oil and gas case. Second, we prove that Problem (6.3) is a Separated Det-Pomdp
optimization problem thanks to Lemma 6.8 proved in Appendix 6.A.

We detail the mappings F as defined in the proof of Theorem 5.9. We consider an
extended state space X = X ∪ {∂}, and define, for all pair of controls and observations
(u, o) ∈ U×O, a new mapping F u,o by

F u,o : X→ X, x 7→
{
f(x, u) if h(f(x, u)) = o,

∂ otherwise.
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We recall that the expression of the mapping f was given in Equation (4.3), using the
mapping Φ. We instead use the mapping Φ̃ : O×U→ R3, presented in §6.2.2.2. Moreover,
we have x(5) = h(1)(x) for all x ∈ X. Hence, for all pairs of states and controls (x, u) ∈ X×U,
we have that f (5)(x, u) = h(1)

(
f(x, u)

)
.

For all pairs of controls and observations (u, o) ∈ U × O, the mapping F u,o is hence
given by:

F u,o : x 7→





x(1) − Φ̃(1)(h(x), u)

x(2) − Φ̃(2)(h(x), u) + x(1)Rs(x
(5))−(

x(1) − Φ̃(1)(h(x), u)
)
Rs

(
o(1)
)

x(3) − Φ̃(3)(h(x), u)

x(4)
(
1 + cf (o

(1) − x(5))
)

o(1)


if h(f(x, u)) = o,

∂ otherwise.

(6.4)

Hence, by Lemma 6.8 (where the roles of g1, g2 and g3 are taken by −Φ̃(1), −Φ̃(2) and
−Φ̃(3) respectively, m by Rs, and a by cf ), Problem (6.3) is indeed a Separated Det-Pomdp
optimization problem.

6.3 Numerical applications
We now present two numerical applications, derived from the applications presented in
Chapter 4. The first application, in §6.3.1, is a gas reservoir that can be modeled with two
interconnected tanks. The second application, in §6.3.2, is an oil reservoir where pressure
is kept constant through water injection.

In the following, we assume that the finite set Assumption 5.1 and the initial consistence
Assumption 6.1 hold true for all the numerical applications. By Proposition 5.7, we use
Algorithm 4 to solve the numerical applications. The following results were performed on
a computer equipped with a Core i7-12700KF and 64GB of memory, using Julia v1.7.3.

6.3.1 First application: a gas reservoir with one well

We consider the case of a gas reservoir with one well and two tanks, as illustrated in
Figure 6.1. The deterministic version of that problem was treated in §4.4.1. We now
consider that we do not know the initial content of the reservoir, nor do we know the
transmissivity between the two tanks.

Formulation First, we recall that the control of the gas reservoir case is the bottom-hole
pressure P of the well. Second, as we only produce gas, the observation is the pressure in
the tank connected to the well, i.e. the pressure P r,1T in the first tank.
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well’s perforations
first tank

second tank

unknown
transmissivityIprg

Figure 6.1: Representation of the gas reservoir

Third, the state has 5 dimensions: x = (V g,1T, V g,2T, V p,1T
0 , V p,2T

0 , T s), with V g,1T

and V g,2T the total volume of gas in each of the two tanks, V p,1T
0 and V p,2T

0 the initial
pore volume in each of the two tanks, and Ts the transmissivity parameter. Indeed, we
recall that, when the content of the reservoir is known, the state can be reduced to two
dimensions: the total volume of gas in each of the two tanks, (V g,1T, V g,2T), and, as
presented in §4.B, there exist two mappings Ψ1T and Ψ2T such that the pressure in the
two tanks is given by P r,1T = Ψ1T(V

g,1T) and P r,2T = Ψ2T(V
g,2T) (see Equation (4.24)).

However, those mappings depend on the unknown initial pore volume of each tank, V p,1T
0

and V p,2T
0 , which is why we instead need to use mappings Ψ̃1T : R2 → R and Ψ̃2T : R2 → R,

such that P r,1T = Ψ1T(V
g,1T, V p,1T

0 ) and P r,2T = Ψ2T(V
g,2T, V p,2T

0 ). Finally, the evolution
functions take into account exchanges between the two tanks using mapping Θ : R3 → R,
which takes as input the reservoir pressure in the two tanks P r,1T and P r,2T, and the
unknown transmissivity parameter Ts. We hence extend the state with three stationary
values in the partially observed case: V p,1T, V p,2T and Ts.

Fourth, the observation function h : X → O is the projection on the first component,
i.e. h : (P r,1T, V g,2T, V p,1T, V p,2T, T s) 7→ P r,1T.
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The full formulation follows

max E

[
T−1∑
t=0

ρtrtF
g
t

]
(6.5a)

s.t. P(V g,1T
0 ,V g,2T

0 ,V p,1T
0 ,V p,2T

0 ,Ts0) = b0 , (6.5b)

P r,1T
t = Ψ̃1T(V

g,1T
t ,V p,1T

0 ) , ∀t ∈ T , (6.5c)

P r,2T
t = Ψ̃2T(V

g,2T
t ,V p,2T

0 ) , ∀t ∈ T , (6.5d)

Ot = h(P r,1T
t ,V g,2T

t ,V p,1T
0 ,V p,2T

0 ,Ts0) , ∀t ∈ T , (6.5e)

F g
t =

Iprg (Ot − Pt)

Bg(Ot)
, ∀t ∈ T \ {T} , (6.5f)

F r
t = Θ(P r,1T

t ,P r,2T
t ,Ts0) , ∀t ∈ T \ {T} , (6.5g)

V g,1T
t+1 = V g,1T

t − F g
t + F r

t , ∀t ∈ T \ {T} , (6.5h)

V g,2T
t+1 = V g,2T

t − F r
t , ∀t ∈ T \ {T} , (6.5i)

F g
t ≥ 0 , ∀t ∈ T \ {T} , (6.5j)

Pt ≥ 0 , ∀t ∈ T \ {T} , (6.5k)
σ(Pt) ⊂ σ(O0, . . . ,Ot,P0, . . . ,Pt−1) , ∀t ∈ T \ {T} . (6.5l)

Characteristic of the gas reservoir application. Once again, we consider that, as in
§4.4.1, the revenue per volume of gas is the historical gas spot price of TTF (Netherlands
gas market) from 2006 to 2020, and we do not consider any operational costs.

We now detail the rest of the data.

• The possible controls are u ∈ {0, 100, 200, 300, 400, 460} (in Bar).

• The possible observations are o ∈ {o(i) | o(i) = 10× i, i ∈ J0, 46K} (in Bar).

• There are 173 monthly time steps.

• We consider that there are 27 possible initial states, with three possible values of the
initial pore volume for each tank and three possible values for the transmissivity, while
the volume of gas in each tank is such that the reservoir pressure in the two tanks
is of 480Bar, i.e. V g,1T

0 =
(
Ψ̃

V p,1T
0

1T

)−1
(480) and V g,2T

0 =
(
Ψ̃

V p,2T
0

2T

)−1
(480) (using the

partial mapping notation (5.6), the mappings Ψ̃V p,iT

iT are strictly increasing on R+,
hence invertible).

• The values of the transmissivity are Ts ∈ {1.87, 18.71, 112.26} (in m3/Bar/months),
with a finite probability distribution p = [0.1, 0.8, 0.1]. The distribution of the trans-
missivity is LTs =

∑
i∈J1,3K piδTsi
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• The values of the initial pore volume of the first tank are V p,1T ∈ {1200, 1600, 2000}
(in Mm3), with a finite probability distribution p = [0.1, 0.8, 0.1]. The distribution
of the initial pore volume of the first tank is LV p,1T =

∑
i∈J1,3K piδV p,1T

i

• The values of the initial pore volume of the second tank are V p,2T ∈ {1181.25, 1575,
1968.75} ( in Mm3), with a finite probability distribution p = [0.1, 0.8, 0.1]. The
distribution of the initial pore volume of the second tank is LV p,2T =

∑
i∈J1,3K piδV p,2T

i

• We consider that there are 200 possible values of the volume of gas in each tank for
each value of the initial pore volume, corresponding to pressure ranging from 0Bar
to 480Bar.

The distribution of the initial state is the product of the law of each of its components,
as we assume they are independent, i.e. LX0 = LV p,1T ⊗ LV p,2T ⊗ LTs.

Optimization of the production We use Algorithm 4 to solve Problem (6.5). We hence
obtain an optimal policy {π⋆

t : B→ U}t∈T \{T}. As it is not possible to have a descriptive
drawing of the policy on the set of reachable beliefs, we instead computed the trajectories
for each of the possible initial states x0 consistent with the initial belief (i.e. such that
x0 ∈ supp(b0)). Indeed, the evolution of the beliefs depends on the sequence of observations
{ot}T . In order to simulate the observation process {ot}t∈T \{T}, we compute the evolution
of the state process when applying the optimal policy. A trajectory is thus computed by
the following induction. First, we take a pair (b0, x0), with x0 ∈ supp(b0). Then, for all
time t ∈ T \ {T}, we get

bt+1 = τ

(
bt, π

⋆
t (bt), h

(
f
(
xt, π

⋆
t (bt)

)))
,

xt+1 = f
(
xt, π

⋆
t (bt)

)
.

Note that this method could also be applied with an initial state x0 /∈ supp(b0). However,
there is no guarantee that the evolution of the observation would be consistent with the
belief: we would then attain the cemetery state δ∂, and be unable to compute a new
control. In this section, we only study cases where the initial state is consistent with the
initial belief.

We represent the evolution over time of relevant parameters along the trajectories of
each of the possible initial states as listed in Equation (6.6) in Figures 6.2, 6.3, 6.4, 6.5,
6.6 and 6.7, where the states x0,n correspond to

x0,i+3×(j−1)+9×(k−1) =
((

Ψ̃
V p,1T
k

1T

)−1
(480),

(
Ψ̃

V p,2T
j

2T

)−1
(480), V p,1T

k , V p,2T
j , T si

)
. (6.6)

First, in Figure 6.2, we draw the evolution over time of the observation process (that
is, the pressure in the first tank) for each of the possible initial states as listed in Equa-
tion (6.6). Note that no possible initial state is distinguishable from the others thanks to
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Figure 6.2: Evolution over time of the observation (i.e. the pressure in the
first tank) when applying the optimal policy for all the possible initial states
as listed in Equation (6.6). Each color represents a given initial state
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the observation until the 9th month, as all observations curves coincide. Moreover, all pairs
of observation curves have separated at least once by the 50th month, thus all initial states
have been distinguished thanks to the observation at that date. Hence, by the middle of
the optimization horizon, we have obtained enough information to identify the initial state.
This is consistent with experience feedback from real production networks.
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Figure 6.3: Evolution over time of the production (i.e. the control) when
applying the optimal policy for all the possible initial states as listed in Equa-
tion (6.6), with the price curve in dark green. Each other color represents a
given initial state

Second, in Figure 6.3, we draw the evolution over time of the production (that is, an
image of the controls) for each of the possible initial states as listed in Equation (6.6). Note
that there is a small production at the beginning in order to obtain information (before
the 8th month) even though prices are less interesting than at a later date. The rest of the
policy is more similar to the deterministic case (see §4.4.1.2), as we tend to produce more
when prices are high.

Third, in Figure 6.4, we draw the evolution over time of the pressure in the two tanks
(i.e. an image of the states which is more comparable between the initial states) for each
of the possible initial states as listed in Equation (6.6). It illustrates how the second tank
replenishes the first tank.

Fourth, in Figure 6.5, we draw the evolution over time of the cumulated production
and the total volume of gas present in the reservoir for each of the possible initial states as
listed in Equation (6.6). It illustrates how the trajectory of the cumulated production may
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Figure 6.4: Evolution over time of the pressure when applying the optimal
policy for all the possible initial states as listed in Equation (6.6). The
pressures in the first tank are represented by the colored dashed curves,
while the pressures in the second tank are represented by the colored dotted
curves. Each color represents a given initial state
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Figure 6.5: Evolution over time of the cumulative production and the total
volume of in place gas when applying the optimal policy for all the possible
initial states as listed in Equation (6.6). The cumulative productions are
represented by the colored dashed curves, while the total gas in place are
represented by the colored dotted curves. Each color represents a given
initial state
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vary depending on the belief, notably that, in certain cases, we slow down the production
between the 20th and 50th months, whereas we do not in other cases.
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Figure 6.6: Evolution over time of the cumulative gains when applying the
optimal policy for all the possible initial states. Each color represents a given
initial state

Finally, in Figures 6.6 and 6.7, we draw the evolution over time of the cumulated gain
and the recovery factor (i.e. the proportion of gas produced compared to the total volume
of initial gas in place). Notably, and intuitively, for a given transmissivity, a higher volume
of initial gas in place leads to a higher final cumulated gain. Moreover, for a given volume
of initial gas in place, a higher transmissivity also leads to a higher final cumulated gain.
However, for a given volume of initial gas in place, a higher transmissivity does not lead
to a higher final recovery factor, as we optimize the Net Present Value, not the total
production.

We then compare the trajectory of the cumulated gains and the recovery factor to the
optimal trajectory of the fully observed case, as presented in Figures 6.8 and 6.9. Note that
the final cumulated gains are higher in the fully observed case (between 0.2% and 4%).
However, the final recovery factors of the fully observed cases tend to be lower (between
0.2% and 3%). We would hence be able to more efficiently pilot the reservoir if we had
more information on the initial state of the reservoir. The results are compiled in Table 6.1.

We also study the computation time and the number of reachable beliefs depending
on the number of states and the cardinality of the support of the initial belief, as seen in
Table 6.2. Note that, until a certain point, it is faster to apply Dynamic Programming (i.e.
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Figure 6.7: Evolution over time of the recovery factor when applying the
optimal policy for all the possible initial states. Each color represents a given
initial state

CPU time (h) Value (Me)
∣∣BR,D

J0,T K(b0)
∣∣

Partially observed 172 683 11,518,532
Fully Observed 0.5 699 26,830

Table 6.1: Comparison with regards to CPU time, values, and number of
reachable beliefs between the partially observed and the fully observed two

tanks problem
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Figure 6.8: Trajectory of the cumulative gains when applying the optimal
policy for all the possible initial states, compared with applying the optimal
policy of the fully observed case. Each color represents a given initial state.
The dotted curves represent the fully observed cases, while the dashed curves
represent the partially observed case
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Figure 6.9: Trajectory of the recovery factor when applying the optimal
policy for all the possible initial states, compared with applying the optimal
policy of the fully observed case. Each color represents a given initial state.
The dotted curves represent the fully observed cases, while the dashed curves
represent the partially observed case
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Algorithm 4) than it is to compute the reachable beliefs. Indeed, at a certain point, the
problem became too big for the RAM of the system, hence we used the computer memory
on disk to hold part of the problem.∣∣X∣∣ ∣∣supp(b0)∣∣ CPU time

∣∣BR,D
J0,T K(b0)

∣∣ CPU time
(generation) (h) (DP) (h)

100× 100× 1× 1× 3 3 1 27,038 0.5
200× 200× 1× 1× 3 3 1.5 88,284 0.8
400× 400× 1× 1× 3 3 4 423,204 1.5
100× 100× 3× 3× 1 9 1 85,243 1
200× 200× 3× 3× 1 9 5 1,294,860 4
400× 400× 3× 3× 1 9 32 9,025,697 1

100× 100× 3× 3× 2 18 1.5 682,106 1
200× 200× 3× 3× 2 18 8 2,254,659 8
100× 100× 3× 3× 3 27 7.5 853,569 6
150× 150× 3× 3× 3 27 36 3,157,322 32
200× 200× 3× 3× 3 27 62 11,518,532 110

Table 6.2: Evolution of the CPU time and number of reachable beliefs
depending on the number of states and the cardinality of the support of the
initial belief. “CPU time (generation)” correspond to the time to compute
the sets of reachable beliefs, while “ CPU time (DP)” is the computation

time of Algorithm 4

6.3.2 Second application: oil reservoir with water injection

We consider the case of an oil reservoir where the pressure is kept constant by re-injecting
water in the reservoir. The deterministic version of that problem was treated in §4.4.2. We
now add a partial observation of the content of the reservoir.

The state is reduced to the vector x = (V w, V p), whereas the control is the bottom-hole
pressure u = P . We inject enough water to keep the pressure constant, hence the amount
of water injected is not a control itself, but is deduced from the bottom-hole pressure P .

The observation is the water-cut wct.
1Algorithm 4 was not launched for this instance.
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Full formulation

max
(V w

t ,Pt,wct
t )

E

[
T−1∑
t=0

[
ρtrtα

P r − Pt

Bo(P r)

[
1−wct

t

]
− ρtctα

P r − Pt

Bw(P r)

]]
(6.7a)

s.t. PV w
0 ,V p

0
= b0 , (6.7b)

wct
t = Wct

(
V w

t Bw(P
r)

V p
0

)
, ∀t ∈ T , (6.7c)

V w
t+1 = V w

t − α
P r − Pt

Bw(P r)

[
wct

t − 1
]
, ∀t ∈ T , (6.7d)

Fw
min ≤ α

P r − Pt

Bw(P r)
wct

t ≤ Fw
max , ∀t ∈ T , (6.7e)

F o
min ≤ α

P r − Pt

Bo(P r)
[1−wct

t ] ≤ F o
max , ∀t ∈ T , (6.7f)

Pt ≥ 0 , ∀t ∈ T , (6.7g)
σ(Pt) ∈ σ(wct

0 , . . . ,wct
t ,P0, . . . ,Pt−1) , ∀t ∈ T . (6.7h)

Optimization of the production When considering |X| = 55,885, |U| = 10, |O| = 10,
|supp(b0)| = 10, T = 100, we obtain Table 6.3. The bounds we obtain with Theorems 5.9
and 5.15 are, respectively, 2.9× 1047 and 57.2× 106. We are therefore far lower than any
of the two bounds presented (by a factor of 1041 for the general Det-Pomdp bound, and
of around 50 for the Separated Det-Pomdp bound).

The size of the problem is such that it is solved in a reasonable time: the computation
of the reachable beliefs of the problem was made in 3200 seconds, while the solution time
was of 4200 seconds (applying Algorithm 4).

Set considered Cardinal of the set

X 55,885
B 809,665

Table 6.3: Size of the sets of the oil reservoir with water injection

6.4 Conclusion
In this chapter, we have formulated the management of a petroleum production system
under partial observation as Problem (6.1), which is a Det-Pomdp optimization problem.
Moreover, if the initial consistent Assumption 6.1 is satisfied, Problem (6.1) is equivalent,
by Proposition 6.2, to a Separated Det-Pomdp optimization problem. We therefore apply
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the results of Chapter 5 to Problem (6.1). Notably, under the finite set Assumption 5.1,
we use Algorithm 4 to solve Problem (6.1).

We have presented in §6.3 two numerical applications: a gas reservoir with two tanks;
an oil reservoir where pressure is kept constant through water injection. We have managed
to solve these problems with an initial belief with a support containing 27 elements (in
§6.3.1), although it took a large amount of time (around a week) as predicted by the
exponential bounds we have obtained in Chapter 5. This demonstrates that the method
can be used in real cases, and has the potential to be used in complex cases. Of course,
for substantial real cases, one has to improve the code, notably the memory management.
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6.A Technical lemmata on Separated Det-Pomdp for
the oil and gas case

In this section, we present technical lemmata that are useful to prove that there is a Sep-
arated Det-Pomdp optimization problem equivalent to Problem (6.1). For this purpose,
we define a Det-Pomdp optimization problem:

J ⋆(b0, o0) = min
X,O,U

E
[T−1∑
t=0

Lt(Xt,Ut) +K(XT )
]

(6.8a)

s.t. PX0 = b0 , (6.8b)
Xt+1 = f(Xt,Ut) , ∀t ∈ T \ {T} , (6.8c)
O0 = o0 , (6.8d)
supp(b0) ⊂ h−1(o0) , (6.8e)
Ot = h(Xt) , ∀t ∈ T \ {0, T} , (6.8f)
Ut ∈ Uad

t (Xt) , ∀t ∈ T \ {T} , (6.8g)
σ(Ut) ⊂ σ(O0, . . . ,Ot,U0, . . . ,Ut−1) , ∀t ∈ T \ {T} . (6.8h)

Note that this problem is quite similar to a standard Det-Pomdp optimization problem
(defined as Problem (5.2)), with a few distinctions. First, for all time t > 0, the evolution
functions and observation functions are stationary (i.e. they are not time-dependent).
Second, the observation function only depends on the state of the dynamical system, and
not on the controls previously applied. Third, we have an added admissibility constraint,
Equation (6.8e), which ensures that the support of the initial belief is consistent with the
initial observation.

6.A.1 Notations

Here, we recall some of the notations previously used in Chapter 5. First, we recall how
we represent the dynamics of a Det-Pomdp as pushforward measures. Indeed, we have
defined mappings F and R (respectively in Equations (5.18) and (5.19)) which give, thanks
to Lemma 5.4,

τt(b, u, o) = R ◦ (F u,o
t )⋆(b) .

Now, in the case of Problem (6.8), we obtain the following expressions for the mappings
F and F0 (which take into account constraint (6.8e)):

F u,o : X→ X , x 7→
{
fu(x) if x ̸= ∂ and fu(x) ∈ h−1(o) ,

∂ otherwise .
(6.9)

167



Chapter 6. Multistage optimization of a partially observed petroleum production system

and

F u,o
0 : X→ X , x 7→

{
F u,o(x) if x ∈ h−1(o0) ,

∂ otherwise .
(6.10)

We also recall that we denote, for any time t ∈ T \ {T}, by FDt the set of mappings
F u,o
t for all pairs (u, o) ∈ U×O, and by FD the set of the composition of mappings F , i.e.

FDt =
{
F u,o
t

∣∣u ∈ U, o ∈ O
}
⊂ L(X;X) , (6.11)

FD =
⋃

t∈T \{T}

FD0:t ⊂ L(X;X) . (6.12)

Now, we recall that a Separated Det-Pomdp is a Det-Pomdp such that the set of
mappings FD is a (∂)-separated mapping set (see Definition 5.13 for the definition of a
Separated Det-Pomdp, and Definition 5.12 for the definition of a (∂)-Separated Mapping
Set).

6.A.2 Evolution functions and Separated Det-Pomdp

Here, we present conditions such that Problem (6.8) is a Separated Det-Pomdp. We first
present a general result true for any Det-Pomdp (i.e. for Problem (5.2)), hence also true
for Problem (6.8).

Lemma 6.3. Let t > 0. Let {ui}i∈J0,t−1K ∈ Ut and {oi}i∈J1,tK ∈ Ot be two sequences of t
controls and observations. For all state x ∈ X, either:

• F
u0:t−1,o1:t
0:t−1 (x) = ∂, or

• for all time t′ ∈ J1, tK, ht′
(
f
u0:t′−1

0:t′−1 (x), ut′−1
)
= ot′.

Proof. We prove this lemma by induction on t.
Initialization. Let t = 1. Let u0 ∈ U and o1 ∈ O. For all state x ∈ X, we have, by

the definition of F u0,o1
0 (see Equation (5.18)) that,

• either F u0,o1
0 (x) = ∂,

• or h1

(
fu0
0 (x), u0

)
= o1.

Induction step. We assume that the result holds up to time t > 0. Let us prove it
also holds true for time t + 1. Let {ui}i∈J0,tK ∈ Ut+1 and {oi}i∈J1,t+1K ∈ Ot+1 be fixed be
fixed. We have

F
u0:t,o1:t+1

0:t = F
ut,ot+1

t ◦ F u0:t−1,o1:t
0:t−1 .

Thus, for all state x ∈ X such that F
u0:t,o1:t+1

0:t (x) ̸= ∂, we have

ht+1

(
fu0:t
0:t (x), ut

)
= ot+1 , (using the Definition of F ut,ot+1

t in Equation (5.18)) (6.13)
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and, as F
ut,ot+1

t (∂) = ∂, that
F

u0:t−1,o1:t
0:t−1 (x) ̸= ∂ . (6.14)

Thanks to Equation (6.14), we can apply the induction assumption at time t; thus, for all
time t′ ∈ J1, tK, ht′

(
f
u0:t′−1

0:t′−1 (x), ut′−1
)
= ot′ . Combined with Equation (6.13), it hence holds

true for all time t′ ∈ J1, t+ 1K. This ends the proof.

Now, we present lemmata regarding the (∂)-separation. Note that – instead of the
framework presented in Chapter 5, where we showed that a problem is a Separated Det-
Pomdp optimization problem if its evolution functions form a separated mapping set– we
directly study the sets FD, and check that they are indeed (∂)-separated mappings sets.

Lemma 6.4. Let X1 and X2 be two given sets, and let G1 ⊂ L(X1;X1) and G2 ⊂ L(X2;X2)
be two (∂)-separated mappings sets. Then, the set of mappings

G =

{
g ∈ L((X1 × X2) ∪ {∂}; (X1 × X2) ∪ {∂})

∣∣∣∣∣
∃(g1, g2) ∈ G1 ×G2, g(x1, x2) =

{
(g1(x1), g2(x2)) if g1(x1) ̸= ∂ and g2(x2) ̸= ∂

∂ otherwise

}
(6.15)

is a (∂)-separated mappings sets.

Proof. Let (g, g′) ∈ G2. By Equation (6.15), there exists (g1, g
′
1) ∈ G2

1 and (g2, g
′
2) ∈ G2

2

such that

g(x1, x2) =

{
(g1(x1), g2(x2)) if g1(x1) ̸= ∂ and g2(x2) ̸= ∂

or ∂
,

and

g′(x1, x2) =

{
(g′1(x1), g

′
2(x2)) if g′1(x1) ̸= ∂ and g′2(x2) ̸= ∂

or ∂
.

Let us assume that there exists x = (x1, x2) ∈ X1 × X2 such that g(x) = g′(x) ̸= ∂.
Then, for all x′ = (x′1, x

′
2) ∈ X1×X2, we have either g(x′) = ∂, or g′(x′) = ∂, or, as G1 and

G2 are (∂)-separated mappings sets,

g(x′) =
(
g1(x

′
1), g2(x

′
2)
)
=
(
g′1(x

′
1), g

′
2(x
′
2)
)
= g′(x′) ̸= ∂ .

Hence, by Definition 5.12, G is (∂)-separated.

We now present lemmata that link the mathematical expression of the mappings F to
the (∂)-separation of the set FD.
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Lemma 6.5. Assume that there exists g : O × U → X such that, for all pairs of controls
and observation (u, o) ∈ U×O, the mappings F u,o are given by

F u,o : X→ X , x 7→
{
x+ g

(
h(x), u

)
if x ̸= ∂ and

(
x+ g

(
h(x), u

))
∈ h−1(o) ,

∂ otherwise .
(6.16)

Then, the set FD is a (∂)-separated mapping set.

Proof. In order to prove that the set FD is a (∂)-separated mapping set, we need to prove
that all pairs of mappings (F, F ′) ∈ (FD)2 are (∂)-separated.

First, we explicit the form of the mappings F . As FD is given by FD = ∪t∈T \{T}
(
FD0:t
)

(see Equation (6.12)), for all elements F of FD, there exists t > 0 and two sequences
of controls and observations u0:t−1 and o1:t such that F = F

u0:t−1,o1:t
0:t−1 . To compute the

composition of the mappings Ft′ given by Equation (6.16) (for t′ > 0) and Equation (6.10)
(for t′ = 0), we need to determine the observation at time t′ (i.e. the value of h(x) in
Equation (6.16)). But it is known thanks to the sequence o0:t: by Lemma 6.3, either
we attain ∂; or, for all time t′ ∈ J1, tK, the observation at time t′ is ot′ , and at time 0,
Equation (6.10) states that the observation is o0.

Hence, combined with Equation (6.16), we obtain that (without specifying the condi-
tions such that we do not attain the cemetery state ∂)

F
u0:t−1,o1:t
0:t−1 : X→ X , x 7→

{
x+

∑t−1
t′=0 g

(
ot′ , ut′

)
,

or ∂ .
(6.17)

Second, let
(
F

u0:t−1,o1:t
0:t−1 , F

u′
0:t′−1

,o′
1:t′

0:t′−1
)
∈ (FD)2. In order to prove that the pair(

F
u0:t−1,o1:t
0:t−1 , F

u′
0:t′−1

,o′
1:t′

0:t′−1
)

is (∂)-separated, we need to consider two cases.

1. For all state x ∈ X, we have either F u0:t−1,o1:t
0:t−1 (x) = ∂, or F u0:t−1,o1:t

0:t−1 (x) ̸= F
u′
0:t′−1

,o′
1:t′

0:t′−1 (x).

Then, the pair
(
F

u0:t−1,o1:t
0:t−1 , F

u′
0:t′−1

,o′
1:t′

0:t′−1
)

is (∂)-separated.

2. There exists a state x ∈ X such that F
u0:t−1,o1:t
0:t−1 (x) = F

u′
0:t′−1

,o′
1:t′

0:t′−1 (x) ̸= ∂. Thus, we
have by Equation (6.17)

x+
t−1∑
i=0

g
(
oi, ui

)
= x+

t′−1∑
i=0

g
(
o′i, u

′
i

)
,

i.e.
t−1∑
i=0

g
(
oi, ui

)
=

t′−1∑
i=0

g
(
o′i, u

′
i

)
.
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Hence, for all states x′ ∈ X, either

F
u0:t−1,o1:t
0:t−1 (x′) = F

u′
0:t′−1

,o′
1:t′

0:t′−1 (x′) = x′ +
t−1∑
i=0

g
(
oi, ui

)
̸= ∂ , or F

u0:t−1,o1:t
0:t−1 (x′) = ∂ ,

or F
u′
0:t′−1

,o′
1:t′

0:t′−1 (x′) = ∂. Hence, the pair is (∂)-separated.

In both cases, the pair is (∂)-separated. As this holds true for all pairs of the set FD, the
set FD is a (∂)-separated mapping set.

Lemma 6.6. Assuming that 0 does not belong to set the X ⊂ R and that there exists a ∈ R
such that, for all pairs of controls and observation (u, o) ∈ U × O, O ⊂ R, the mappings
F u,o are given by

F u,o : X→ X , x 7→

x×
(
1 + a

(
h(x)− o

))
if x ̸= ∂ and

(
x×

(
1 + a

(
h(x)− o

)))
∈ h−1(o)

∂ otherwise ,

(6.18)
then the set FD is a (∂)-separated mapping set.

Proof. The proof is similar to the proof of Lemma 6.5: we prove that all pairs of mappings
(F, F ′) ∈ (FD)2 are (∂)-separated.

First, for all elements F of FD, there exists t > 0 and two sequences of controls and
observations u0:t−1 and o1:t such that F = F

u0:t−1,o1:t
0:t−1 . Moreover, by Lemma 6.3, either

we attain ∂, or, for all time t′ ∈ J1, tK, the observation at time t is ot′ , and at time 0
Equation (6.10) states that the observation is o0.

Hence, by combining this with Equation (6.18) the expression of the composition of
mappings F

u0:t−1,o1:t
0:t−1 is given by (without specifying the conditions such that we do not

attain the cemetery state ∂)

F
u0:t−1,o1:t
0:t−1 : X→ X , x 7→

{
x×∏t−1

t′=0

(
1 + a(ot′ − ot′+1)

)
,

or ∂ .
(6.19)

Second, let
(
F

u0:t−1,o1:t
0:t−1 , F

u′
0:t′−1

,o′
1:t′

0:t′−1
)
∈ (FD)2. In order to prove that the pair(

F
u0:t−1,o1:t
0:t−1 , F

u′
0:t′−1

,o′
1:t′

0:t′−1
)

is (∂)-separated, we consider two cases.

1. For all state x ∈ X, we have either F u0:t−1,o1:t
0:t−1 (x) = ∂, or F u0:t−1,o1:t

0:t−1 (x) ̸= F
u′
0:t′−1

,o′
1:t′

0:t′−1 (x).

Then, the pair
(
F

u0:t−1,o1:t
0:t−1 , F

u′
0:t′−1

,o′
1:t′

0:t′−1
)

is (∂)-separated.
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2. There exists a state x ∈ X such that F
u0:t−1,o1:t
0:t−1 (x) = F

u′
0:t′−1

,o′
1:t′

0:t′−1 (x) ̸= ∂. Thus, we
have by Equation (6.19)

x×
t−1∏
i=0

(
1 + a(oi − oi+1)

)
+

t′−1∑
i=0

g
(
oi, ui

)
= x×

t′−1∏
i=0

(
1 + a(o′i − o′i+1)

)
,

which leads to, as x ̸= 0,

t−1∏
i=0

(
1 + a(oi − oi+1)

)
=

t′−1∏
i=0

(
1 + a(o′i − o′i+1)

)
.

Hence, for all states x′ ∈ X, either

F
u0:t−1,o1:t
0:t−1 (x′) = F

u′
0:t′−1

,o′
1:t′

0:t′−1 (x′) = x′ ×
t−1∏
t′=0

(
1 + a(ot′ − ot′+1)

)
̸= ∂ , or

F
u0:t−1,o1:t
0:t−1 (x′) = ∂ , or F

u′
0:t′−1

,o′
1:t′

0:t′−1 (x′) = ∂ .

Hence, the pair is (∂)-separated.

In both cases, the pair is (∂)-separated. As this holds true for all pair of set FD, set FD is
a (∂)-separated mapping set.

Lemma 6.7. Assume that the set X = X1 × X2, and that there exists three mappings
g1 : O × U → X1, g2 : O × U → X2, and m : O → X2, such that, for all pairs of controls
observation (u, o) ∈ U×O, the mappings F u,o are given by

Fu,o : X→ X , x 7→





x(1) + g1(h(x), u)

x(2) + g2(h(x), u)+

m(o)×
(
x(1) + g1(h(x), u)

)
−m

(
h(x)

)
× x(1)


if x ̸= ∂ and



x(1) + g1(h(x), u)

x(2) + g2(h(x), u)+

m(o)×
(
x(1) + g1(h(x), u)

)
−m

(
h(x)

)
× x(1)


∈ h−1(o) ,

∂ otherwise .

(6.20)

Then, the set FD is a (∂)-separated mapping set.

Proof. First, for all elements F of FD, there exists t > 0 and two sequences of controls
and observations u0:t−1 and o1:t such that F = F

u0:t−1,o1:t
0:t−1 . Moreover, by Lemma 6.3, either

we attain ∂ or, for all time t′ ∈ J1, tK, the observation at time t is ot′ , and at time 0
Equation (6.10) states that the observation is o0.

Hence, by combining this with Equation (6.20) the expression of the composition of
mappings F

u0:t−1,o1:t
0:t−1 is given by (without specifying the conditions such that we do not
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attain the cemetery ∂)

F
u0:t−1,o1:t
0:t−1 : X→ X , x 7→





x(1) +
∑t−1

i=0 g1
(
oi, ui

)

x(2) +
t−1∑
i=0

g2(oi, ui) +m
(
oi+1

)
(x(1) +

i∑
j=0

{
g1(oj , uj)

}
)−

m(oi)
(
x(1) +

i−1∑
j=0

g1(oj , uj)
)


,

or ∂ ,

which can be simplified to

F
u0:t−1,o1:t
0:t−1 : x 7→


(

x(1) +
∑t−1

i=0 g1
(
oi, ui

)
x(2) +

∑t−1
i=0 {g2(oi, ui)}+m

(
ot
)
(x(1) +

∑t−1
j=0

{
g1(oj , uj)

}
)−m(o0)

(
x(1)

)) ,

or ∂ .

(6.21)
According to Lemma 6.5, the first component of F u0:t−1,o1:t

0:t−1 is (∂)-separated, as it is of
the form x + g(h(x), u). By Lemma 6.4, we hence we only need to check that the second
coordinate is also (∂)-separated. Let

(
F

u0:t−1,o1:t
0:t−1 , F

u′
0:t′−1

,o′
1:t′

0:t′−1
)
∈ (FD)2. In order to prove

that the pair
(
F

u0:t−1,o1:t
0:t−1 , F

u′
0:t′−1

,o′
1:t′

0:t′−1
)

is (∂)-separated, we consider two cases.

1. For all state x ∈ X, we have either F u0:t−1,o1:t
0:t−1 (x) = ∂, or F u0:t−1,o1:t

0:t−1 (x) ̸= F
u′
0:t′−1

,o′
1:t′

0:t′−1 (x).

Then the pair
(
F

u0:t−1,o1:t
0:t−1 , F

u′
0:t′−1

,o′
1:t′

0:t′−1
)

is (∂)-separated.

2. There exists a state x ∈ X such that F
u0:t−1,o1:t
0:t−1 (x) = F

u′
0:t′−1

,o′
1:t′

0:t′−1 (x) ̸= ∂. Thus, we
have, by Equation (6.19), that

x(2) +
t−1∑
i=0

{g2(oi, ui)}+m
(
ot
)
(x(1) +

t−1∑
j=0

{
g1(oj, uj)

}
)−m(o0)

(
x(1)
)
=

x(2) +
t′−1∑
i=0

{g2(o′i, u′i)}+m
(
o′t′
)
(x(1) +

t′−1∑
j=0

{
g1(o

′
j, u
′
j)
}
)−m(o0)

(
x(1)
)
.

Moreover, in order to have F
u0:t−1,o1:t
0:t−1 (x) = F

u′
0:t′−1

,o′
1:t′

0:t′−1 (x) ̸= ∂, we need to have ot =

o′t′ (as we must have ot = h
(
F

u0:t−1,o1:t
0:t−1 (x)

)
= h

(
F

u′
0:t′−1

,o′
1:t′

0:t′−1 (x)
)
= o′t′). Combined

with
∑t−1

i=0 g
(
oi, ui

)
=
∑t′−1

i=0 g
(
o′i, u

′
i

)
(see proof of Lemma 6.5), this leads to

t−1∑
i=0

{g2(oi, ui)} =
t′−1∑
i=0

{g2(o′i, u′i)} .
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Hence, for all state x′ ∈ X, either

F
u0:t−1,o1:t
0:t−1 (x′) = F

u′
0:t′−1

,o′
1:t′

0:t′−1 (x′) =

x(2) +
t−1∑
i=0

{g2(oi, ui)}+m
(
ot
)
(x(1) +

t−1∑
j=0

{
g1(oj, uj)

}
)−m(o0)

(
x(1)
)
̸= ∂ ,

or F
u0:t−1,o1:t
0:t−1 (x′) = ∂ , or F

u′
0:t′−1

,o′
1:t′

0:t′−1 (x′) = ∂. Hence, the pair is (∂)-separated.

In both cases, the pair is (∂)-separated. As this holds true for all pairs of the set FD, the
set FD is a (∂)-separated mapping set.

We now present a lemma based on the previous four lemmata 6.4 to 6.7.

Lemma 6.8. Assume that the set X =
∏

i∈J1,5K Xi ⊂ R5, and that there exists a ∈ R and
four mappings g1 : O×U→ X1, g2 : O×U→ X2, g3 : O×U→ X3,and m : O→ X2, such
that, for all pairs of controls observation (u, o) ∈ U×O, the mappings F u,o are given by

F u,o,X→ X , x 7→





x(1) + g1(h(x), u)

x(2) + g2(h(x), u)+

m
(
o
)
(x(1) + g1(h(x), u))−m(h(x))x(1)

x(3) + g3(h(x), u)

x(4)
(
1 + a(o− h(x))

)
o(1)


if h(f(x, u)) = o ,

∂ otherwise .

Then, the set FD is a (∂)-separated mapping set.

Proof. We can apply Lemma 6.5 on the first and third components (they are of the form
x + g(h(x), u)), which means that we indeed obtain a (∂)-separated mapping set when
considering a restriction to those components. Similarly, we can also apply Lemma 6.6 on
the fourth component. Finally, we can apply Lemma 6.7 on the first and second component.
By Lemma 6.4, since all components are (∂)-separated mapping set, then the set FD is a
(∂)-separated mapping set.
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As a conclusion, we summarize our main contributions in §7.1, before outlining some
possible extensions of our work in §7.2.

7.1 Main contributions
In this dissertation, we have first presented in Chapter 4 a mathematical formulation for
the optimal management over time of an oil production network as a multistage optimiza-
tion problem. In this formulation, the reservoir is modeled as a controlled (non-linear)
dynamical system derived from material balance equations and the black-oil model. In the
resulting dynamic system, the state is of dimension five, which is quite large for numerical
resolution via Dynamic Programming algorithm. However, we were able to use Dynamic
Programming to numerically solve the management optimization problem for specific cases
of interest with either oil or gas, both presenting a reduced dimensionality of the state. We
have also shown that our mathematical formulation is an improvement over decline curves
formulation. First, as predicted by the theory, we replicated results from decline curve
formulations when considering the first recovery of a one tank system (as seen in §4.4.1.1).
Second, in more complex cases with inter-connected tanks, as described in §4.4.1.2, we
have shown that we can surpass the Net Present Value returned by the decline curve for-
mulation. Third, we have gone beyond the first recovery of hydrocarbons (as seen in §4.4.2,
where we studied a case with water injection, hence studied secondary oil recovery).

Second, in Chapter 5 we made a theoretical detour and studied a class of problem that
is of interest for taking into account the partial observation of the reservoir: Pomdp. More
specifically, we studied a subclass of Pomdps, that we named Separated Det-Pomdps,
which has properties that contribute to push back the curse of dimensionality for Dynamic
Programming. Indeed, the conditions on the dynamics for Separated Det-Pomdp im-
prove the bound on the cardinality of the set of reachable beliefs: the bound is reduced
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from
(
1 + |X|

)|supp(b0)| (in the case of Det-Pomdp, see theorem 5.9) to 2|supp(b0)||X| (theo-
rem 5.15). In the case of Separated Det-Pomdp, more specifically, the improvement of the
bounds on the cardinality of the set of reachable beliefs are derived using a new representa-
tion of the beliefs dynamics using the notion of push-forward. We enumerated the number
of mappings used in the push-forwards in order to get bounds on the cardinality of the set
of reachable beliefs. Indeed, there cannot be more reachable beliefs than mappings used in
the representation of the beliefs dynamics as push-forward. Then, the tighter bound allows
Dynamic Programming algorithms to efficiently solve Separated Det-Pomdp problems,
especially when the supports of the initial state distributions are assumed to be of small
cardinality. Moreover, we have shown that the bound is tight (see proposition 5.18). We
thus validated that the Separated Det-Pomdp class of problems is indeed an interesting
framework for oil and gas applications, which motivated this theoretical detour.

Third, we applied in Chapter 6 the theoretical framework presented in Chapter 5 to
the management of a petroleum production system under partial observation. Indeed, we
have formulated the management of a petroleum production system under partial obser-
vation as Problem (6.1), which is a Det-Pomdp optimization problem. Moreover, if the
initial consistent Assumption 6.1 is satisfied, i.e. if the initial belief considered in Prob-
lem (6.1) is consistent with the initial observation, then Problem (6.1) is equivalent, by
Proposition 6.2, to a Separated Det-Pomdp optimization problem. We therefore apply
the results of Chapter 5 to Problem (6.1). Notably, under the finite set Assumption 5.1,
we use Algorithm 4 to solve Problem (6.1).

Finally, we illustrated our works on two numerical applications presented in both Chap-
ter 4 and Chapter 6: a gas reservoir with two tanks; an oil reservoir where pressure is kept
constant through water injection. Those cases were studied with perfect and partial state
observations, in Chapter 4 and 6. Notably, as shown in Chapter 6, we have managed to
solve these problems with an initial belief with a support containing 27 elements (in §6.3.1),
although it took a large amount of time (around a week) as predicted by the exponential
bounds we have obtained in Chapter 5. This demonstrates that the method can be used
in real cases, and has the potential to be used in complex cases.

This thesis led to the publication of one paper, Vessaire et al. [2022], of which Chapter 4
is a transcript. Moreover, it also led to the submission of a patent. An article based on
Chapter 5 is currently being finalized.

We now present possible extensions of the present thesis.

7.2 Perspectives
The first possible extension to this thesis would be to add uncertainties on prices to both
Problem 4.1 and Problem 6.1. Indeed, we assumed that oil prices are known in advance.
This is obviously false, but reflect accurately real industrial studies on petroleum produc-
tion systems made with fixed (known) prices. Adding stochastic prices could add flexibility
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to future industrial studies. Indeed, some prices models preserving the use of Dynamic Pro-
gramming algorithm (leading thus to Stochastic Dynamic Programming) could be taken
into account to extend both Problem 4.1 and Problem 6.1.

The second possible extension regards Det-Pomdps. Indeed, as shown in Chapter 5,
we can find improved complexity bounds for sub-classes of Det-Pomdps when the result-
ing set of mappings used in the representation of the belief dynamics as push-forward is
smaller than general sets of mappings on the state space. Thus, finding how more charac-
teristics of the dynamics and observations influence the cardinality of that set of mappings,
hence on the set of reachable beliefs, could be a new avenue for future applied problems
belonging to the class Det-Pomdp. This was only partially done in this thesis, as we fo-
cused on the oil and gas applications presented in Chapter 6. This method could certainly
be used on other Det-Pomdps applications.
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