
HAL Id: tel-04057861
https://pastel.hal.science/tel-04057861

Submitted on 4 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A statistical view on the origin of homochirality
Gabin Laurent

To cite this version:
Gabin Laurent. A statistical view on the origin of homochirality. Organic chemistry. Université Paris
sciences et lettres, 2022. English. �NNT : 2022UPSLS043�. �tel-04057861�

https://pastel.hal.science/tel-04057861
https://hal.archives-ouvertes.fr


Préparée à l’Ecole Supérieure de Physique et de Chimie
Industrielles de la ville de Paris, au laboratoire Gulliver

A statistical view on the origin of homochirality

−
Perspectives statistiques de l’origine de l’homochiralité

Soutenue par

Gabin Laurent
Le 09 novembre 2022

École doctorale no564

Physique en Île-de-France

Spécialité
Physique

Composition du jury :

Cornelia Meinert
Directrice de recherche
Université Côte d’Azur - CNRS

Rapportrice
Présidente du jury

Jeanne Crassous
Directrice de recherche
Université de Rennes - CNRS

Rapportrice

Raphaël Plasson
Maître de conférences
Université d’Avignon

Examinateur

Farshid Jafarpour
Assistant professor
Utrecht University

Examinateur

Pierre Gaspard
Full Professor
Université Libre de Bruxelles

Examinateur

David Lacoste
Directeur de recherche
ESPCI Paris - CNRS

Directeur de thèse

Ulrich Gerland
Full Professor
Technical University of Munich

Co-encadrant de
thèse





1

Acknowledgments

Durant ces trois années de doctorat, j’ai pu rencontrer, discuter et échanger avec bon
nombre de personnes au laboratoire Gulliver, à l’ESPCI, à l’Université Technique de
Munich ou encore ailleurs, à qui je souhaite en premier lieu faire honneur. Je souhaite
donc remercier :

Cornelia Meinert et Jeanne Crassous, pour avoir accepté de prendre le temps de rap-
porter cette thèse, ainsi que les examinateurs membres du jury : Farshid Jafarpour, Pierre
Gaspard et Raphaël Plasson.

Mon directeur de thèse, David Lacoste, que j’ai rencontré en début d’année 2019 et avec
qui j’ai eu la chance de travailler pendant ces trois dernières années, pour la supervision de
mon travail de thèse. Je le remercie pour sa présence, ses conseils, sa grande bienveillance
et la confiance qu’il m’a accordé dès le début.

Ulrich Gerland, my co-advisor, who welcomed me for one and a half years in his group
in Munich with great kindness, for the freedom he gave me to carry my own project, and
for his trust, his advice, and comments on my work. I had the unique opportunity to
benefit from two complementary supervisions during those three years, and I thank you,
Uli and David, for that.

Philippe Nghe, sans qui cette thèse n’aurait jamais vu le jour.
L’Initiative de Recherches Interdisciplinaires et Stratégiques - Origines et Conditions

d’Apparition de la Vie (IRIS-OCAV) qui a financé le travail effectué au sein du laboratoire
Gulliver à l’ESPCI Paris.

The Origins Excellence Cluster which funded my Ph.D. position and my work at the
Technical University of Munich.

Pierre Gaspard une nouvelle fois, pour la chance et le grand plaisir que j’ai eu à
collaborer avec pour notre projet sur l’homochiralité.

Luca Peliti, Arthur Duprat, Marina Katava et Alex Blokhuis, pour les nombreuses
discussions scientifiques autour de mon travail.

Ludovic Jullien and Zorana Zeravcic, the two members of my thesis committee, for
their strong involvement in the smooth running of my thesis from both scientific and
human perspectives.

Hyo Jin Cho, Fée Sorrentino, David Noël et Elisa Silveira, secrétaires et gestionnaires
du laboratoire Gulliver, pour leur disponibilité et sympathie. I thank the two secretaries
of the group in Munich as well, Daniela Neufang and Claudia Öckler, for their help.

Tobias Göppel, who has been of great help during my time in Munich, and the members
of the origins of life group: Johannes, Ludwig, and Julio but also all the other members



2

of the lab.
Armand, Maitane, Yann, Claire et Paul du laboratoire Gulliver, pour les conversations

partagées autour de repas, les discussions sur les travaux de chacun qui furent toutes très
agréables ainsi que les autres doctorants et post-doctorants du laboratoire, bien trop
nombreux pour être tous nommés ici.

Mes professeurs de physique et de chimie, du lycée et de classes préparatoires : Del-
phine Cossardeaux, Catherine Brune et Jérôme Vimal pour leurs enseignements et leur
profonde humanité.

Arthur Genthon, mon ami “co-thésard”, pour sa joie de vivre contagieuse... et tous ces
rires, avec qui j’ai eu la grande chance de partager une bonne partie de mon quotidien au
laboratoire pendant ces trois années de galère.

Mes très chers amis Maxime, Etienne, Antoine et Rani, pour avoir pollué ma galerie
photo de téléphone avec quantité de memes douteux au fil du temps.

Ma mère Isabelle, mon grand-père Bernard et ma sœur Jeanne pour leur soutien.
Enfin, Iris, pour son soutien moral et tout son amour depuis plusieurs années main-

tenant, et, je l’espère, pour les nombreuses à venir.



3

Publications

Five publications were produced for the duration of this thesis. Only the work of Refs.
2, 3 and 4 is presented in details in this manuscript.

1. Gabin Laurent, Luca Peliti and David Lacoste
Survival of Self-Replicating Molecules under Transient Compartmentalization with
Natural Selection
Life, 2019, 9, 4

2. Gabin Laurent, David Lacoste and Pierre Gaspard
Emergence of Homochirality in Large Molecular Systems
Proceedings of the National Academy of Sciences, 2021, 118, 3

3. Gabin Laurent, Pierre Gaspard and David Lacoste
A Robust Transition to Homochirality in Complex Chemical Reaction Networks
Proceedings of the Royal Society A, 2022, 478, 2257

4. Gabin Laurent, Tobias Göppel, David Lacoste and Ulrich Gerland
Template-Directed Ligation: an Ideal Candidate for Homochirality Emergence?
Under writing process

5. Marina Katava, Gabin Laurent and David Lacoste
Thermodynamics of dimerization in open reactors
Under writing process



Contents

Résumé 7

1 General introduction 13
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 What is homochirality? . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.2 What we are specifically interested in . . . . . . . . . . . . . . . . . 14
1.1.3 Three different and relative conventions . . . . . . . . . . . . . . . . 15
1.1.4 The importance to be out of equilibrium . . . . . . . . . . . . . . . 17
1.1.5 Some proposed theories on homochirality . . . . . . . . . . . . . . . 19
1.1.6 Original Frank model . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 A robust transition to homochirality in large and complex chemical
networks 23
2.1 Study of the abundance of chiral species in nature . . . . . . . . . . . . . . 24

2.1.1 Previous results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.2 Analysis of the PubChem database . . . . . . . . . . . . . . . . . . 28

2.2 A general model for large reaction networks . . . . . . . . . . . . . . . . . 31
2.2.1 The continuous stirred tank reactor dynamics . . . . . . . . . . . . 32
2.2.2 About mirror symmetry . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.3 The stability of the racemic state . . . . . . . . . . . . . . . . . . . 35
2.2.4 Random matrices and the stability of dynamical systems . . . . . . 37
2.2.5 A criterion for the racemic state stability . . . . . . . . . . . . . . . 39
2.2.6 Sparse chemical networks . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.7 What about homochiral fixed points? . . . . . . . . . . . . . . . . . 43

2.3 Example: A generalization of the Frank model . . . . . . . . . . . . . . . . 44
2.3.1 The generalized model . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.2 Stability of the steady-states . . . . . . . . . . . . . . . . . . . . . . 48
2.3.3 How does the sparsity of the network affect the results? . . . . . . . 56



CONTENTS 5

2.3.4 Correlations in the Jacobian matrix . . . . . . . . . . . . . . . . . . 57
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.A Additional data from the PubChem analysis . . . . . . . . . . . . . . . . . 60
2.B Eigenvalues of a random matrix with non zero mean . . . . . . . . . . . . . 61

2.B.1 Isolated eigenvalue of a non zero mean random matrix . . . . . . . 61
2.B.2 Perturbation of other eigenvalues . . . . . . . . . . . . . . . . . . . 62

2.C Elements of the Jacobian in the homochiral state . . . . . . . . . . . . . . 63
2.D Calculation of the maximal eigenvalue of the Jacobian matrix . . . . . . . 65
2.E Compartmentalized systems with diffusive coupling . . . . . . . . . . . . . 68

3 Template-directed ligation: an ideal candidate for homochirality emer-
gence? 71
3.1 Random polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.1.1 A simple model for polymerization . . . . . . . . . . . . . . . . . . 72
3.1.2 The Gillespie algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.1.3 The incapacity of step-growth polymerization to produce a ho-

mochiral system under closed conditions . . . . . . . . . . . . . . . 75
3.2 Template-directed ligation . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.1 Hybridization and dehybridization . . . . . . . . . . . . . . . . . . . 77
3.2.2 Ligation and stalling . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.2.3 Hydrolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2.4 Temperature cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.2.5 Racemization reactions . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.2.6 Previous works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 Closed reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3.1 Quantities of interest . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3.2 Irrelevance of block energy model details . . . . . . . . . . . . . . . 85
3.3.3 System without racemization . . . . . . . . . . . . . . . . . . . . . 85
3.3.4 Simulations with racemization . . . . . . . . . . . . . . . . . . . . . 86
3.3.5 Effects of the racemization reaction speed . . . . . . . . . . . . . . 88
3.3.6 Effects of temperature cycles . . . . . . . . . . . . . . . . . . . . . . 89
3.3.7 Effects of the chiral stalling amplitude . . . . . . . . . . . . . . . . 90

3.4 Open reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.4.1 Racemic chemostat . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.4.2 Templated ligation with a biased chemostat . . . . . . . . . . . . . 92

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



6 CONTENTS

3.A Comparison of block energy models . . . . . . . . . . . . . . . . . . . . . . 97
3.B Single trajectories for closed reactors . . . . . . . . . . . . . . . . . . . . . 98
3.C Single trajectories for open reactors . . . . . . . . . . . . . . . . . . . . . . 99

4 Conclusion 101
4.A Survival of Self-Replicating Molecules under Transient Compartmentaliza-

tion with Natural Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography 117



CONTENTS 7

Résumé

L’homochiralité, encore appelée asymétrie des molécules biologiques est un phénomène
observé dans la matière vivante sur Terre et qui est à ce jour, encore inexpliqué. Les mé-
canismes sous-jacents à la vie reposent principalement sur des molécules chirales (comme
les acides aminés qui composent les protéines, ou nucléotides qui composent l’ADN ou
l’ARN, par exemple) qui sont par définition, des molécules qui ne sont pas superpos-
ables à leur image dans un miroir plan. Les deux versions, images l’une de l’autre, de
ces molécules, forment alors un couple d’énantiomères. L’homochiralité du vivant signi-
fie précisément que pour chaque molécule chirale, seulement un seul des deux possibles
énantiomères est observé alors que l’autre ne l’est pas, ou est présent seulement à l’état
de traces [Meierhenrich, 2008]. Par exemple, tous les acides aminés protéinogènes chiraux
sont observés sous la forme l, et tous les nucléotides qui forment les acides nucléiques con-
tiennent des d-riboses. D’un point de vue statistique, la synthèse chirale est en majorité
symétrique, c’est à dire qu’autant de chaque énantiomère est produit par une réaction
chimique impliquant des réactifs achiraux, ce qui semble naturellement incompatible avec
l’émergence de l’homochiralité. Il apparaît alors naturel de se demander comment et à
travers quel mécanisme biochimique ou physique, l’homochiralité du vivant est apparue,
et à quel moment dans les scénarios sur les origines de la vie.

Le degré d’homochiralité d’un système est quantifié par l’écart énantiomérique, qui
mesure l’écart normalisé de concentration entre les énantiomères d’une espèce chirale.
Les scénarios d’émergence de l’homochiralité comportent trois phases distinctes : (i)
l’apparition d’un très faible écart énantiomérique, soit provoqué par un processus physique
ou chimique particulier, soit dû à des fluctuations autour de l’état racémique (l’état
d’égales concentrations entre les deux énantiomères d’une même molécule chirale), (ii)
l’amplification de cet écart initial, jusqu’à des valeurs proches d’une homochiralité to-
tale, puis (iii) la maintenance de cet état homochiral et le transfert de cette asymétrie à
d’autres groupes de molécules. Dans ce manuscrit, nous nous intéressons principalement
à la phase d’amplification de l’écart énantiomérique initial.

Les systèmes chimiques chiraux ont une propriété particulière : la symétrie miroir.
Les deux énantiomères d’une espèce chimique chirale ont très peu de différences : ils
interagissent de la même manière dans un environnement symétrique et ont les mêmes
propriétés physiques (à l’exception de leur interaction avec de la lumière polarisée circu-
lairement), et ont aussi les mêmes propriétés chimiques dans un milieu achiral. Toutefois,
cela change en environnement chiral, et un principe actif chiral peut avoir un effet totale-
ment différent sur le corps humain dont les molécules formant les biopolymères présentent
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une homochiralité (cf. scandale lié à la Thalidomide aux Etats-Unis dans les années 60,
dont l’un des énantiomères soulage les nausées des femmes enceintes alors que l’autre a un
effet tératogène et est à l’origine de malformations chez le fœtus). Cependant, pour toute
réaction impliquant un composé chiral, une réaction miroir impliquant les énantiomères
de chaque réactif et produit existe également, et ce, avec les mêmes constantes réaction-
nelles. On appelle cela la symétrie mirroir des réseaux chimiques chiraux. Cette symétrie
a pour effet que l’état d’équilibre d’un système chimique chiral fermé est racémique. En
effet, tout système à l’équilibre vérifie le bilan détaillé qui contraint les concentrations
des espèces chimiques d’un système à l’équilibre et la symétrie chirale implique des con-
centrations égales pour chaque couple d’énantiomères. Il apparaît alors nécessaire pour
l’émergence de l’homochiralité de considérer des systèmes maintenus hors d’équilibre, soit
par des flux de matière entrante et sortante, soit par des chemostats ou un apport én-
ergétique. Dans ce manuscrit, nous présentons deux systèmes distincts et maintenus hors
d’équilibre dans lesquels l’homochiralité serait susceptible d’émerger.

Tout d’abord dans le Chapitre 1 introductif, nous présentons et précisons les points
évoqués précédemment concernant l’homochiralité et les propriétés des réseaux chimiques
chiraux. Nous présentons également brièvement quelques travaux précédemment publiés
par divers chercheurs et chercheuses sur l’origine de l’homochiralité. L’un des travaux
pionniers est le modèle de Frank [Frank, 1953], qui est un modèle simple décrivant un sys-
tème chimique contenant les deux énantiomères d’une espèce chirale ainsi qu’une espèce
achirale. Les énantiomères peuvent chacun réagir avec l’espère achirale au sein d’une réac-
tion autocatalytique et stéréosélective, et peuvent également réagir entre eux et s’inhiber.
Frank montra en 1953 que ce genre de système, maintenu hors d’équilibre, exhibait une
transition de l’état racémique à un état homochiral. Cependant, ce modèle peut-être jugé
trop simple : la réaction autocatalytique et stéréosélective qui le compose a été mise en
évidence seulement 40 après [Soai et al., 1995], et la réaction d’inhibition chirale n’est pas
non plus expérimentalement évidente à mettre en œuvre. De plus, le modèle comporte
seulement 2 espèces chimiques, alors que le système prébiotique dans lequel l’homochiralité
pourrait avoir émergé serait plutôt susceptible d’avoir une composition complexe.

Motivés par ces limitations, au cours du Chapitre 2 nous nous intéressons au cas d’un
réacteur parfaitement mélangé maintenu hors d’équilibre par des flux de matière entrante
et sortante, dans lequel des réactions chimiques se produisent. En utilisant la propriété de
symétrie mirroir d’un tel système et en effectuant une analyse de stabilité, il est possible
de montrer que l’état racémique d’un tel système perd sa stabilité lorsque le nombre
d’espèces chirales qu’il contient devient grand. Ce résultat découle de l’hypothèse que
le réseau chimique considéré est complexe et sans hypothèse spécifique sur sa structure.
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Il en résulte que le Jacobien du système peut-être considéré comme étant une matrice
aléatoire [Girko, 1985], ce qui simplifie la résolution de son spectre et donc de l’étude de
la stabilité du système qui dépend des valeurs propres de cette matrice. De cette analyse
découle que la stabilité de l’état racémique peut être brisée de deux façons : (i) soit pour
un sous-ensemble des espèces chimiques et dans des directions différentes (avec différentes
chiralités), (ii) soit pour toutes les espèces chimiques composant le système et ce dans la
même direction, et cela dépend des propriétés du système ainsi que du nombre d’espèces
chimiques chirales qui le composent. Quoi qu’il en soit, ce type de système est susceptible
de présenter une transition vers un état homochiral lorsque le nombre d’espèces chirales
augmente. De plus, le mécanisme par lequel la stabilité de l’état racémique se trouve
brisée apparaît être robuste vis à vis de la sparsité du réseau chimique ou bien de la
matrice Jacobienne, qui caractérise sa stabilité.

Ce modèle générique est ensuite illustré avec une généralisation du modèle de Frank
précédemment introduit, qui contient alors un grand nombre d’espèces chirales. En effec-
tuant un développement similaire au cas du modèle plus général, nous montrons que ce
modèle admet aussi une transition due à une brisure de symétrie d’un état racémique à un
état homochiral lorsque le nombre d’espèces chirales qu’il contient devient grand. Cette
transition est aussi possible lorsque la concentration d’espèces achirales entrant dans le
réacteur augmente, ce qui correspond à fournir de plus en plus d’énergie au réacteur, soit,
à le maintenir plus loin de l’équilibre. La transition observée pour ce modèle de Frank
généralisé montre aussi une robustesse par rapport à la sparsité du réseau chimique, ainsi
que vis à vis des corrélations dans la matrice Jacobienne, qui modifient ses propriétés spec-
trales. De plus, nous observons des synchronisations de chiralité pour le modèle général
ainsi que le modèle généralisé de Frank dans le cadre de systèmes inhomogènes à deux
compartiments, lorsque la diffusion entre les deux réacteurs est suffisamment importante.
Aussi, une propriété très importante de ces modèles est qu’ils ne sont basés sur aucune
propriété structurale des molécules, et que la chiralité de celles ci n’est qu’une étiquette,
qui peut être interchangé. Cela signifie que ces modèles n’imposent pas une seule et même
chiralité pour toutes les molécules composant l’état homochiral, ce qui serait contraire aux
observations actuelles de la matière biologique (acides aminés protéinogènes de chiralité
l et riboses de chiralité d).

Une analyse de base de données chimiques est aussi menée dans le Chapitre 2, pour
quantifier l’abondance des molécules chirales dans la nature. Il paraît logique que le
nombre de molécules chirales possibles augmente avec le nombre d’atomes lourds contenus
dans une molécule, mais une quantification exacte ou approchée n’est pas disponible dans
la littérature, hormis pour certains groupes bien définis de molécules comme les alcanes et
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les alcanes monosubstitués. Nous déterminons alors le seuil au delà duquel les molécules
chirales existent en abondance par rapport aux molécules achirales, qui a lieu pour n ' 9

atomes lourds par molécule. Il apparaît donc possible pour un système composé d’un
grand nombre d’espèce chirales d’exister dans une chimie composée de molécules qui ne
sont pas encore trop complexes.

Ensuite, dans le Chapitre 3, nous présentons un mécanisme basé sur la polymérisation
sur « template » de biopolymères tels que l’ARN. Ce mécanisme implique l’extension
de brins d’ARN par ligation avec d’autres oligomères ou monomères compatibles par
appariement par paires de base. Ce processus est par essence autocatalytique puisque
chaque brin d’ARN sert de modèle pour sa réplication. De plus, des expériences ont mis
en évidence par le passé un caractère stéréosélectif de la réplication sur template : lorsque
la chiralité des monomères au niveau du site de ligation est différente de celle du template,
la ligation se trouve ralentie entre 10 et 100 fois [Joyce et al., 1984,Bolli et al., 1997]. Ce
phénomène, qu’on appelle « chiral stalling » induit une stéréosélectivité dans le processus
de polymérisation sur template.

Dans un premier temps, nous étudions un système dans lequel des oligomères et des
monomères se lient par polymérisation classique. En utilisant des simulations numériques
stochastiques, nous montrons que la polymérisation classique ne permet pas d’induire une
brisure de symétrie chirale significative dans un système initialement racémique, même
en présence d’une influence extérieure (comme une surface telle que l’argile de Montmo-
rillonite ou une enzyme chirale) qui impliquerait un biais de sélection chirale lors de la
polymérisation de l’ARN. En effet, la polymérisation traditionnelle, même en présence
d’un biais de sélection chirale ne présente pas de comportement autocatalytique qui fa-
voriserait une des deux chiralités si un léger déséquilibre dans l’écart énantiomérique se
formait par hasard. En revanche, nous montrons qu’un système fermé, initialement in-
oculé avec des monomères et des dimères de manière racemique, montre une transition
vers un état totalement homochiral grâce à la polymérisation sur template lorsque le chi-
ral stalling est pris en compte. Ce phénomène est observé en présence de réactions de
racémisation qui interconvertissent la chiralité de nucléotides isolés, ainsi qu’en présence
de cycles de températures. En effet, l’appariement entre deux brins d’ARN devient très
stable lorsque les brins d’ARN sont longs, et les cycles de températures empêchent un
état gelé pour le système, dans lequel tous les brins seraient hybridés à un autre.

Nous étudions aussi l’effet de la rapidité des réactions de racémisation, des cycles
thermiques et de l’amplitude du chiral stalling. Il apparaît premièrement que la transition
observée dans un système fermé se produit même lorsque les réactions de racémisation
des monomères se produisent lentement. De plus, la durée entre les pics de chaleur qui
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permettent de séparer les brins d’ARN hybridés influe principalement sur les échelles
de temps de la transition, mais, pour des élévations de températures espacées par de
longs cycles, le degré d’homochiralité final semble diminuer tout en restant cependant
élevé. Enfin nous remarquons que les effets de l’amplitude du chiral stalling sont forts :
il semble exister un seuil au dessous duquel, lorsque le ralentissement de la ligation entre
deux brins n’est pas assez prononcé en présence d’incompatibilités chirales, la brisure de
symétrie ne se produit pas dans le système, ou alors pas dans un temps raisonnable.

Le cas du réacteur ouvert est également étudié pour vérifier s’il tend à exhiber le même
type de transition, mais cette fois ci sans la présence de réactions de racémisation. Ce type
de réacteur est maintenu hors d’équilibre par un chemostat, c’est à dire que le nombre de
monomères et de dimères est constant au cours du temps, et par une dégradation con-
stante des espèces chimiques. Dans le cadre d’un chemostat non biaisé, donc racémique,
le système ne semble pas atteindre un écart énantiomérique significatif dans l’état station-
naire. Cependant, un écart énantiomérique transitoire significatif peut-être observé. Dans
le cas d’un chemostat biaisé donc chiral, une amplification très prononcée de l’écart énan-
tiomérique initial est observée. Ce résultat semble important puisqu’il a déjà été démontré
par le passé la possibilité d’une production asymétrique de d-riboses en présence d’acides
aminés ou de dipeptides d’une chiralité donnée qui pourrait être à l’origine d’un biais
dans une solution de nucléotides [Pizzarello and Weber, 2004,Weber and Pizzarello, 2006].
Cette amplification, qui est impossible avec un mécanisme de polymérisation classique,
produit des écarts énantiomériques finaux jusqu’à 7 fois supérieurs à ceux du chemostat.

Ces résultats montrent que l’émergence de l’homochiralité semble possible dans un
système polymérique sujet à la polymérisation sur template, et que le chiral stalling joue
un rôle crucial ainsi que les réactions de racémisation (dans le cadre d’un système fermé
uniquement). De plus, dans le cas du système fermé, la convergence du système vers un
état totalement homochiral permet l’augmentation de la longueur moyenne des polymères
puisque le ralentissement de la ligation dû au chiral stalling ne se manifeste plus. Ce
phénomène est intéressant pour les scénarios d’origine de la vie puisque l’augmentation
de la longueur des polymères permet d’accéder à une plus grande partie de l’espace des
séquences théoriquement possible pour les brins d’ARN, et notamment facilite la probabil-
ité d’apparition de séquences fonctionnelles qui nécessite en général des brins d’au moins
100 à 150 monomères de long. Ce mécanisme d’émergence de l’homochiralité trouverait
toute sa place dans la théorie du monde ARN [Higgs and Lehman, 2015], qui propose
l’idée qu’un biopolymère comme l’ARN a un jour servi de porteur d’information ainsi que
de molécule fonctionnelle.

Enfin, le Chapitre 4 présente une conclusion générale au travail mené pendant ces trois
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années de thèse sur l’émergence de l’homochiralité, et un article publié sur l’importance
des compartiments dans les scénarios d’origine de la vie est présenté en Annexe 4.A.
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1.1 Context

1.1.1 What is homochirality?

Homochirality, also called biological asymmetry, is a long-standing problem in the origins
of life research. Life on earth relies mainly on chiral molecules, which are, by definition,
molecules not superposable to their mirror images. In a more formal way, a chiral molecule
is a molecule that does not admit any axis of improper symmetry (i.e. a combination of
a rotation and a reflection in a plane perpendicular to the rotation axis) [Collet et al.,
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2006, Harris et al., 1999]. The biological asymmetry [Meierhenrich, 2008] describes the
current observation that chiral biomolecules composing biopolymers are present under
only one of their two possible forms (d or l) in living matter. For instance, in living matter,
proteins are composed of amino acids that are - on earth - observed to be all l-chiral, and
nucleic acids such as DNA and RNA contain only nucleotides formed out of d-riboses.
Many different mechanisms have been studied to explain the emergence of homochirality
[Sallembien et al., 2022]. However, to this date, none has been estimated as a convincing
explanation by the majority of the scientific community. In a symmetric environment
or an achiral environment, the synthesis of chiral compounds is qualified as “symmetric”,
meaning that the products of a reaction involving achiral compounds are racemic (referring
to a solution with as many d-enantiomers as l-enantiomers). It is, for example, illustrated
in the Miller-Urey experiment [Miller, 1953] whose main aim was to produce the basic
building blocks of life, (e.g. amino acids) from basic compounds found in the atmosphere
under realistic prebiotic conditions. The products of these experiments were present in
essentially racemic concentrations. Obviously, considering a finite number of products
of such a symmetric reaction [Blackmond, 2010], for an odd number of molecules, the
number of d-molecules cannot equal exactly the number of l-molecules, but statistically,
this kind of synthesis is qualified symmetric, with small fluctuations about the racemate.
Homochirality is thus incompatible with symmetric environments in the absence of any
bias. Therefore, several questions emerge concerning homochirality: how did it emerge?
When? Before or after the advent of life? Since homochirality is observed in living
systems, is it a requirement for life? Or a consequence of it? This thesis will focus
on “how” and “when” it emerged. The latter questions are, however, also fundamental
issues [Brandenburg, 2021] because if homochirality came to be a consequence of life, it
could be one of its signature and could then be used to detect extraterrestrial life.

1.1.2 What we are specifically interested in

The emergence of homochirality is a three-step process: (i) first, a minute imbalance
appears in the enantiomeric excess (e.e.) of a chiral system. The enantiomeric excess is
defined as

e.e. =
|cD − cL|
cD + cL

, (1.1)

where cD (resp. cL) is the concentration of d-enantiomers (resp. l-enantiomers) and
is the fundamental quantity that characterizes the degree of homochirality of a chiral
system. Then, (ii) the imbalance is amplified over time, until the e.e. converges to unity.
Finally, (iii) homochirality is maintained over time and transferred to other groups of
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Figure 1.1: Graphical representation of a transition from a system with a slight deviation
from the racemic state to a homochiral state. Red and grey molecules represent two
enantiomers of a given chiral species. The transparent blue frame highlights the step of
the mechanism which are studied in this manuscript.

molecules. A graphical representation of such transition is depicted in Figure 1.1. In
general, mechanisms that seek to explain the initial imbalance are distinct from those that
aim to explain the amplification process. This manuscript will focus on the amplification
mechanism and its maintenance, irrespective of the phenomenon that produces an initial
imbalance.

1.1.3 Three different and relative conventions

In 1848, Pasteur discovered [Pasteur, 1848, Vantomme and Crassous, 2021] that salts
of synthetic tartaric acids contained two types of crystals, which are mirror images of
each other. He observed that the two different types of crystal rotated linearly polarized
light in opposite directions, and from this observation, the optical activity became an
important method to measure the chirality of a given solution. Substances are called
dextrorotary and denoted d(+) if the rotation angle is clockwise, and called levorotary
and denoted l(-) if the rotation angle is anti-clockwise. Although this classification has
an important place in history, three major hurdles arise: (i) it is not straigthforward to
determine the optical activity of a chiral compound by looking at its chemical formula, (ii)
the optical activity of a substance depends on the solvent of the solution, and (iii) when
multiple chiral centers are present in a chiral molecule, the determination of the chirality
by the measurement of the optical rotation becomes inaccurate (however, an additive
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Figure 1.2: Two enantiomers of a given chiral species.

rule exists to obtain the optical rotation of a solution in which different enantiomers
coexist in the absence of the Horeau effect [Collet et al., 2006,Horeau and Guetté, 1974]).
The only direct link between optical activity and chirality is established for molecules
with only a single chirocenter, such as amino acids or simple sugars. A second common
convention uses the R/S descriptors for stereocenters, in which R (resp. S) stands for
Rectus (resp. Sinister), which, in Latin, means right-handed (resp. left-handed). This
convention consists of ordering the groups attached to a stereocenter based on their atomic
number, according to a set of priority rules introduced by Cahn, Ingold, and Prelog
in 1966 [Cahn et al., 1966]. After assigning the priority to each molecular group, the
molecule is oriented such that the lowest priority group points away from the observer,
and the rotation direction of the molecule is dictated by the sense of rotation of the
trajectory that goes through groups from the lowest to the highest priority. If the rotation
is clockwise, the chiral center is denoted R, and if it is anti-clockwise, S (see Figure 1.2).
This description has the advantage of being deduced directly from the three-dimensional
structure of the molecule. If several stereocenters are present, the isomer is described by
the full list of R/S descriptors for each chiral center of the molecule. We add, however,
two remarks: first, there is no correlation between the R/S convention and the optical
activity of a molecule. Also, this description is not invariant for given functional groups:
it is, for example, the case for proteinogenic amino acids that are all l-molecules. l-
alanine is also the S-alanine while l-cysteine is also named R-cysteine. Finally, the third
convention is the d/l convention where d (resp. l) stands for Dexter (resp. Laevus), the
Latin for right (resp. left) and which is also known as the Fisher-Rosanoff convention.
Fisher introduced a planar representation for sugars based on their carbon chain, and
in 1906, Rosanoff chose the glyceraldehyde (which is a monosaccharide) as the reference
for the stereochemistry of carbohydrates and other chiral molecules [Rosanoff, 1906]. He
then arbitrarily assigned the descriptor d (resp. l) to the (+)-glyceraldehyde (resp. (-
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)-glyceraldehyde). This notation has been universally accepted and used to obtain the
relative configuration of chiral molecules. It allows the division of chiral molecules such
as amino acids and carbohydrates into two families, the l and the d series, which are
separately conserved for functional groups of molecules forming biopolymers such as amino
acids. However, once again, no correlations are observed with the optical activity of chiral
molecules or the R/S convention. Those three different conventions aimed to measure
chirality are arbitrary. Throughout this manuscript, we will use the d/l convention to
denote the enantiomers of chiral species. As stated previously, in the d/l convention,
all proteinogenic amino acids are l-oriented, and sugars are d-oriented in biopolymers.
Looking at the R/S convention, most amino acids have an S chiral center, but there are
some exceptions, such as R-cysteine. Depending on the initial choice for each convention,
the descriptor could be the opposite. The fact that conventions are arbitrary implies that
the only meaning of homochirality is the dominance of one enantiomer over the other
one, for a given chiral species, independently of what happens for the other chiral species.
Some models in the literature studied how a group of molecules can become collectively
homochiral in which all molecules adopt the same sign (e.g. polymeric systems [Liu,
2020, Li et al., 2021]). However, it does not follow from the definition of homochirality
that all chiral biomolecules should have the same sign. Understanding the relative signs
of different groups of molecules (e.g. the opposite signs of amino acids and nucleic acids)
is still an open question.

1.1.4 The importance to be out of equilibrium

There are a few fundamental differences between two enantiomers of a given chiral species.
They interact similarly in a symmetric environment and have the same physical proper-
ties (except for their interaction with circularly polarized light). They also have the same
chemical properties within achiral media, with the same rate constants for reactions with
achiral molecules. For reactions involving chiral reactants, a mirror-image reaction in-
volves enantiomers of the reactants and products of the first reaction, with the same rate
constant. It means that, considering the following reaction involving species Xk that can
be, or not, chiral species ∑

k∈{reactants}

ν+
r,kXk 


∑
k∈{products}

ν−r,kXk , (1.2)

of forward (resp. backward) rate constant k+r (resp. k−r), where ν+
r,k (resp. ν−r,k) is the

stoichiometric coefficient of species k for the reaction r in the forward (resp. backward)
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reaction direction, the mirror reaction∑
k∈{reactants}

ν+
r,kXk 


∑
k∈{products}

ν−r,kXk , (1.3)

exists. Here, Xk is the opposite enantiomer if species Xk is chiral (and Xk = Xk if the
species is achiral), and the rate constants in both reaction directions are the same for
the two mirror reactions. This property of chiral reaction networks is called the mirror
symmetry and has an important consequence for their dynamics within a closed system. In
a closed system, the concentrations of the chemical species converge towards a stationary
equilibrium solution. At a stationary point, the sum of the production flux for a given
chemical species equals the sum of the degradation fluxes through chemical reactions. In
other words, at a stationary state,∑

r

ν−r,aw−r,a(c∗) =
∑
r

ν+
r,aw+r,a(c∗) , (1.4)

for every species a. Here, the index r span over all the reactions in which species a is
involved, w−r,a (resp. w+r,a) is the rate at which species a is produced (resp. consumed)
through reaction r, and c∗ is the stationary concentration vector of all the species in
the system on which depend the rates. However, at equilibrium, due to microscopic
reversibility, the detailed balance holds, and thus every individual reaction of the network
is at thermodynamic equilibrium, i.e.

w−r,a(ceq) = w+r,a(ceq) , (1.5)

for every species a and every reaction r, where ceq is the equilibrium concentration vector.
Assuming mass-action law, this implies compatibility conditions on rate constants

k−r
k+r

=

∏
i∈{reactants}[Xi]

ν+r,i
eq∏

i∈{products}[Xi]
ν−r,i
eq

, (1.6)

where k+r (resp. k−r) is the forward (resp. backward) constant rate of reaction r, and
[Xi]eq the equilibrium concentration of the species Xi. The same condition holds for the
mirrored reaction involving enantiomers Xi. Thus∏

i∈{reactants}[Xi]
νir
eq∏

i∈{products}[Xi]
νir
eq

=

∏
i∈{reactants}[Xi]

νir
eq∏

i∈{products}[Xi]
νir
eq

, (1.7)
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for every reaction r. A consequence of relations (1.7) and conservation laws for a closed
system is that the equilibrium state is always racemic (when conditions are symmetric).
It appears now that closed systems are not particularly interesting in the origins of ho-
mochirality research, and it explains why we will be interested in dissipative systems that
are driven out of equilibrium in this thesis.

1.1.5 Some proposed theories on homochirality

There are multiple scenarios which seek to explain the emergence of homochirality in the
literature. Some of them involve deterministic processes, while other theories are based on
random ones. Some scenarios occur in a prebiotic environment, or during the apparition
of life or even after the advent of life. Some seek to explain how a first imbalance between
the enantiomeric populations could have appeared: for instance, due to the interaction
with a mineral surface [Ernst, 2013], due to a difference in thermodynamic properties
between two enantiomers caused by the parity violation of the weak force [Quack, 2002],
or ionization by cosmic rays [Globus and Blandford, 2020,Globus et al., 2021]. However
enantiomeric excesses produced via those physical mechanisms are in general low and
cannot explain the ones observed in meteorites: an outer space explanation for an initial
enantiomeric excess has also been popular, after the fall of the Murchison meteorite in
Australia in 1969 in which amino acids as well as purine and pyrimidine nucleobases
where observed. First measurements showed an excess of l-Alanine [Engel and Nagy,
1982], but a post-arrival contamination of the meteorite was considered highly probable.
This changed when measurements of an excess of l-Isovaline [Cronin and Pizzarello,
1997, Pizzarello and Cronin, 2000], an isomer of l-Valine, but which is not one of the
22 proteinogenic amino acids, reinforced the idea of an initial excess being brought from
outer space. One possible explanation of such enantiomeric enrichment among the amino
acids observed on meteorites such as the Murchison one is the asymmetric synthesis of
amino acids due to an exposure to circularly polarized ultraviolet light [de Marcellus et al.,
2011,Meinert et al., 2011].

The chiral transfer between molecular groups has also been studied, and it could
be shown for example that the synthesis of tetroses and pentoses is asymmetric when
catalyzed by amino acids exhibiting an enantiomeric excess [Pizzarello and Weber, 2004,
Weber and Pizzarello, 2006]. The influence of alanine and isovaline (found in significant
amount on meteorites) were specifically studied, and the same researchers could also
show significant excesses in the formation of d-riboses from ll-dipeptide catalysis. A
chiral transfer could also be imagined due to higher dimensional chiral structures that
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would dictate the chirality of their constituting elements, as suggested recently through
DFT computations of helices stability [Liu, 2020,Li et al., 2021]

Other approaches, focused on the amplification of the enantiomeric excess showed
that a wide class of models of out of equilibrium reaction networks exhibit a transition to
homochirality thanks to a chiral symmetry breaking [Frank, 1953,Kondepudi and Nelson,
1983,Plasson et al., 2004,Plasson et al., 2007] where, for instance, an autocatalytic reaction
scheme with stochasticity can converge towards a non-deterministic homochiral fixed point
without the need for nonlinear interactions such as chiral inhibition reactions [Jafarpour
et al., 2015].

Among theories based on amplification processes, step-growth and chain-growth poly-
merization scenarios were extensively studied [Brandenburg and Multamäki, 2004,Bran-
denburg et al., 2005a, Brandenburg et al., 2005b,Blanco and Hochberg, 2011, Saito and
Hyuga, 2005,Gleiser and Walker, 2008]. They showed that homochirality could emerge
in the presence of chiral inhibition during polymerization [Sandars, 2003] or in the pres-
ence of emerging homochiral ribozymes that catalyze the production of monomers of the
same handedness [Wu et al., 2012] at the polymer level under given conditions. However,
some central hypothesis used in these works, e.g. enantiomeric cross-inhibition in chain-
growth polymerization, are not generally compatible with common biopolymers such as
RNA, and the suggested convergence toward homochirality most often relies on enzymes
or ribozymes, which suppose either complex chemistry or long biopolymers to allow for
functional properties. Recently, Tupper et al. [Tupper et al., 2017] and Chen et al. [Chen
and Ma, 2020] explored template-directed polymerization mechanisms through coarse-
grained numerical simulations and showed promising results regarding its capability to
drive an RNA system to full homochirality during polymerization. The main advantage
of template-directed synthesis over chain-growth polymerization is its natural autocat-
alytic behavior, as RNA strands act as model for their own replication, as well as its
enantiomeric cross-inhibition process which has been experimentally observed. Those two
aspects of template-directed ligation were already considered as key parameters in one of
the first physical model seeking to explain the emergence of homochirality, namely the
Frank model.

1.1.6 Original Frank model

In 1953, Frank proposed a simple model to solve the homochirality problem [Frank, 1953].
It is composed of two autocatalytic and enantioselective reactions involving both enan-
tiomers of a chiral species plus an achiral species acting as a fuel and an inhibition reaction
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that suppressed chiral species. The mechanism can be described by the three following
reactions

A + D → 2D , (1.8)

A + L → 2L , (1.9)

D + L → 2A , (1.10)

with D and L the enantiomers of the chiral species and A the achiral species. Auto-
catalytic reactions given by equations (1.8) and (1.9) occur with a rate constant ka and
the inhibition reaction (1.10) with a rate ki. The dynamics of such a system is simply
described by the set of differential equations

dD

dt
= kaAD − kiDL , (1.11)

dL

dt
= kaAL− kiDL , (1.12)

dA

dt
= −kaA(D + L) + 2kiDL , (1.13)

where A, D and L denote the concentrations of achiral and chiral species. Considering
an oriented enantiomeric excess

w =
D − L
D + L

, (1.14)

its time evolution is given by

dw

dt
= kiw

1− w2

2
(D + L) . (1.15)

It thus appears that the system has three fixed points: a racemic one (w = 0), which is
unstable, and two stable homochiral ones (w = ±1). This model, yet well-known, can be
seen as too simple. In the first place, the autocatalytic enantioselective reactions used in
the reaction scheme are, in fact, not common in nature. It took chemists forty years to find
an experimental system to illustrate it. The first demonstration was done by Soai, who
could observe experimentally such a reaction scheme [Soai et al., 1995] but with chemical
compounds which do not have relevance for prebiotic chemistry [Blackmond, 2004]. It is
also not clear how to implement the inhibition reaction (1.10) experimentally. We also
argue that the scheme is too simple because it involves only two species (three if we count
the two enantiomers as “different species”). The prebiotic system in which homochirality
probably emerged is more likely to have been messy and of a complex composition, with
many different achiral and chiral species rather than two well-defined species. Those
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limitations of the Frank model are the starting point of our work.

1.2 Outline

The thesis is mainly divided into two research chapters in which we present two distinct
scenarios that could explain the emergence of homochirality. Firstly, we study in Chapter 2
how complex chiral chemical networks can converge to homochirality when the number of
chiral compounds they contain becomes large. We consider the case of an open chemical
reactor driven out of equilibrium by and inflow and an outflow of matter which exhibits
basic chiral properties. We base our study on random matrix properties which are used
to determine the stability of the racemic state of such a system and we show that they
are susceptible to undergo a transition from a racemic state to a homochiral state due
to a symmetry breaking when the number of chiral compounds they contain becomes
large. We then illustrate our model with a specific generalization of the Frank model
described previously in the introduction chapter, and show it agrees well with the general
prediction. An additional database analysis evaluating the threshold above which chiral
species become numerous compared to achiral ones is carried out to contextualize our
model. Then, in Chapter 3 we develop another possible scenario based on template-
directed ligation of biopolymers such as RNA. After highlighting the difficultes for step-
growth polymerization to generate any significant enantiomeric excess in a polymeric
system, we investigate the propensity of racemic pools of nucleotides to converge towards
homochirality in the presence of racemization reactions and temperature cycles through
templated polymerization. Closed system and open reactor with chemostated species and
constant degradation are both studied. We show that homochirality can be achieved
in closed reactors provided racemization reactions occur in the system, and provided
the chiral stalling is sufficiently strong. We also show that open reactors exhibit transient
significant enantiomeric excesses in an initially racemic system, and that template-directed
ligation can also strongly amplify a bias already present in the chemostat, even when it
is weak, without racemization reactions. Finally, a conclusion is given in Chapter 4.
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In this section, we study the propensity of large chiral chemical systems driven out
of equilibrium to spontaneously transition from a racemic state towards a homochiral
one. We first lead an analysis of chemical databases to study the distribution of chiral
compounds as a function of molecule sizes to quantify the threshold above which chiral
molecules can be qualified numerous. Then, we study a general out of equilibrium chemical
system and show, under some assumption, that it is likely to become homochiral when it
contains a large number of chiral species. Finally, we build a generalized modified Frank
model with the expected dynamical properties.

2.1 Study of the abundance of chiral species in nature

The idea that the number of chiral species increases with the size of molecules seems triv-
ial to most chemists. Chirality is rare among small molecules, and the number of possible
chiral stereoisomers multiplies as the number of atoms in molecules increases, since the
bigger the molecule, the greater the possibility of having one, or several asymmetric cen-
ters. However, no precise estimation is available in the literature about when, or in other
words, for which typical size of a molecule, the number of chiral compounds overcomes
the number of achiral ones in nature. In this section, we study first the crossover (see
Figure 2.1) between a world of small molecules dominated by achiral species and a world
dominated by chiral species. In a second step in Section 2.2, we will demonstrate that a
large non-equilibrium chemical network is likely to become homochiral by a spontaneous
symmetry breaking. In order to answer the first question, we investigate the fractions
of achiral and chiral species as functions of the number of heavy atoms (i.e. all atoms
except hydrogen) in each molecule. Such fractions can be defined in two different fashions,
depending on whether we count each pair of enantiomers once or twice. The number of
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Figure 2.1: A three-dimensional schematic representation of the fractions of possible
achiral and chiral molecules as function of their number of atoms. Every chiral molecule
appears as mirror-reflected d- and l-enantiomers.

achiral and chiral species with n heavy atoms being respectively denoted An and Cn, the
fraction of achiral species and the fraction of chiral species defined by counting once each
pairs of enantiomers are given by

f (A)
n ≡ An

An + Cn
and f (C)

n ≡ Cn
An + Cn

, (2.1)

such that f (A)
n + f

(C)
n = 1, in which case, the crossover happens for n1 atoms in the

molecule such that
An1 = Cn1 . (2.2)

The fractions defined by counting twice the pairs of enantiomers are given by

f̃ (A)
n ≡ An

An + 2Cn
and f̃ (C)

n ≡ 2Cn
An + 2Cn

, (2.3)

such that f̃ (A)
n + f̃

(C)
n = 1 in which other case, the crossover happens for n2 atoms in the

molecule such that
An2 = 2Cn2 . (2.4)

With these definitions, we should expect that n2 < n1.

2.1.1 Previous results

Even though no precise estimation of n1 and n2 is to be found in the literature, some
analysis for specific families of chemical compounds have been carried out in the past, in
particular for basic species such as alkanes and monosubstituted alkanes.
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Figure 2.2: Fractions of achiral and chiral stereoisomers of monosubstituted alkanes versus
the number k of carbon atoms in the molecule, counting (A) once and (B) twice the pairs
of enantiomers. The data are from [Fujita, 2007b].

Monosubstituted alkane stereoisomers

Achiral and chiral monosubstituted alkanes CkH2k+1X have been enumerated using graph
theory and combinatorics [Fujita, 2007b]. Table 1 of [Fujita, 2007b] gives the numbers
of achiral Ak and chiral Ck stereoisomers of monosubstituted alkanes versus the number
k of carbon atoms they contain (up to k = 100). The fractions of achiral and chiral
stereoisomers, computed from these data are shown in Figure 2.2 by counting once or
twice the enantiomeric pairs. We observe that in this particular case, the crossover occurs
at k1 ' 5.7 or k2 ' 4.7, depending on whether the pairs of enantiomers are counted once
or twice. As stated earlier, we have that k2 < k1. In this case, the crossover happens for
a relatively small number of carbon atoms. Here, the carbon atoms and the substituted
atom X determine the geometry of the molecule. Fujita also showed that the numbers of
chiral Ck and achiral Ak species are growing exponentially with their number k of carbon
atoms according to

Ck ∼ Λk and Ak ∼ Λk/2 with Λ ' 3.3 (2.5)

for k � 1. As a consequence, chiral molecules become overwhelmingly dominant for a
large enough number of atoms for alkanes and monosubstituted alkanes.
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Figure 2.3: Fractions of achiral and chiral stereoisomers of alkanes versus the number k of
carbon atoms in the molecule, counting (A) once and (B) twice the pairs of enantiomers.
The data are from [Fujita, 2007a].

Alkane stereoisomers

The stereoisomers of alkanes CkH2k+2 have also been studied and the enumeration of
achiral and chiral alkanes is given in [Fujita, 2007a]. Table 3 of [Fujita, 2007a] gives
the numbers of achiral Ak and chiral Ck stereoisomers of alkanes versus the number k of
carbon atoms they contain (up to k = 100 again). The fractions of achiral and chiral
stereoisomers obtained with these data are plotted in Figure 2.3. Here, we see that the
crossover occurs at k1 ' 9.5 if the pairs of enantiomers are counted once and at k2 ' 8.4

if they are counted twice. Again, the crossover happens for a relatively small number
of carbon atoms, which are atoms usually constituting the backbone of the molecule.
The crossover happens for somewhat larger molecules than for monosubstituted alkanes
because alkanes have molecular structures that are more symmetric than in the presence
of one substitution, thus delaying the crossover as the number of atoms in the molecule
increases.

Generated chemical universe

Finally, in their search for new drugs for pharmaceutical purposes, Fink and Reymond [Fink
and Reymond, 2007], have generated all the possible molecules up to 11 atoms of Car-
bon, Nitrogen, Oxygen, and Fluor by considering valency, steric effects, chemical stability,
and synthetic feasibility rules, and collected them in a database containing 26.4 million
molecules and 110.9 million stereoisomers. The Figure 2.4 extracted from [Fink and Rey-
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Figure 2.4: Fractions of achiral and chiral compounds as functions of the number of heavy
atoms in molecules in the GDB database i.e. the database of compounds generated by
Fink and Reymond. The figure is extracted from [Fink and Reymond, 2007].

mond, 2007] shows the fractions of achiral and chiral molecules in the database as a
function of their size characterized by the number of heavy atoms. Here, the crossover
happens for n1 ' 8.5 ± 0.1. This exploration of the virtual chemical universe clearly
demonstrates the prevalence of chirality for large enough molecules.

2.1.2 Analysis of the PubChem database

From our perspective, it was important to study crossovers in very different databases to
reduce statistical biases due to a specific database. One drawback of the GDB database
is that the molecules are virtual while the origin of homochirality (or the origin of life)
has no reason to be restricted to a well designed chemical system. To carry out a study
of real existing molecules in nature, and estimate n1 and n2, we carried out an analysis
of the free access PubChem database self-defined as “[...] the world’s largest collection
of freely accessible chemical information.”. It contains (in late 2019, when the analysis
has been carried out) 139 million of chemical species and we restricted the analysis to
species containing less than 20 heavy atoms. There are two reasons for this choice, on one
hand the statistics becomes more limited for molecules longer than 20 heavy atoms, and
on the other hand, there is a discontinuity in the number of achiral and chiral molecules
in the PubChem database as shown in Figure 2.12a of Appendix 2.A. After discussion
with the curators of the database, there is currently no information available about the
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origin of this discontinuity, but it has perhaps to do with the fact that PubChem is itself
a patchwork of sub-databases. In any case, we hope to avoid any perturbation from this
discontinuity in data by considering only molecules with n ≤ 20 heavy atoms.

Raw data

From the complete dataset downloaded from PubChem, 91.6 million molecules were ana-
lyzed after rejection of compounds with isotopic elements, multiple components (such as
complexes) or incomplete data on bond structure. From the 33.6 million molecules with
less than 21 heavy atoms, 18.7 million molecules (55.7 %) are chiral, and 1.4 million chiral
molecules have no stereocenters (7.4 % of the chiral molecules with less than 21 heavy
atoms) thus for these molecules their chirality arise only from their non planar geometry.
As shown in Figure 2.12b of Appendix 2.A, the analysis of the 33.6 million molecules with
less than 21 heavy atoms of the database in terms of their fraction of chiral and non-chiral
species shows a crossover around nraw ' 9.4. A crossover in this region is coherent with
an increase in the number of stereoisomers per molecule for molecules of this length.

Chirality detection

Chiral species in the PubChem database were detected using the chiral flag present in
the SDF file which contains the information about the structure of a given molecule in
the database. SDF files have a specific format including the MDL Molfile which is a file
format in which information about atoms, their relative positions, the different bonds and
the information about the molecule’s chirality are stored in chemical databases. We did
not detect chirality using the sometimes available geometry of the molecule as it would
require more complex algorithms, and we assumed the information about the chirality
was correct (knowing however the database would contain errors). The entire numerical
treatment and analysis depicted in the current Section 2.1.2 have been carried out using
Python 3.

Simple methods of generation of stereoisomers and enantiomers

The chirality analysis was not restricted to the available species present in the database
as for some species, only one of the two possible enantiomers or one of the many possible
stereoisomers were present. We thus generated numerically all those absent stereoiso-
mers to account for their possible presence in nature. The generation of enantiomers and
stereoisomers is based on SMILES (Simplified Molecular Input Line Entry Specification)
strings that describe the structure of a molecule in a compact fashion. For instance, the



30 CHAPTER 2. A ROBUST TRANSITION TO HOMOCHIRALITY IN LARGE . . .

SMILES string of glyceraldehyde is C(C(C = O)O)O. Stereocenters appear in SMILES
strings called non-canonical SMILES through the @ or @@ descriptor as in the two enan-
tiomers

C[C@](CC1CC = C(C(= C1)O)O)(C(= O)O)N)

and
C[C@@](CC1CC = C(C(= C1)O)O)(C(= O)O)N) ,

where @ refers to the S and @@ the R configuration of the chiral center (or the other way
around). However, only stereocenters for which the substituents are different at the first
order (i.e. the first neighbors) are indicated in the SMILES strings from the PubChem
databank. Thus it makes it impossible to distinguish two diastereomers or enantiomers
in which a stereocenter is bounded to the same element twice, which also is a source of
errors. Note that contrarily to non-canonical SMILES, canonical SMILES do not carry
the chirality marker.

For the generation of enantiomers, a list of non-canonical SMILES strings was built,
and for each chiral molecule with an available SMILES string, we generated its mirrored
version, and then searched it in the list. If it was not found, then it was added to the list
in the expanded database. However, for chiral centers that do not explicitly appear in
SMILES strings, one cannot find them and reverse them with a simple method and this
creates an uncertainty in the final number of chiral molecules due to missed generated
enantiomers. Thus a fraction of enantiomers cannot be generated due to incomplete data
in the PubChem database.

For the generation of stereoisomers, we looked whether the database contained the
theoretical maximum number of stereoisomers for a given species, which can be evalu-
ated from the number of stereocenters. If all the stereoisomers are not present, which is
frequent for molecules containing several stereocenters, the set of chemical species from
the database is expanded so that each chiral species has the maximum possible number
of stereoisomers (i.e., 2ns with ns the number of stereocenters in the molecule). How-
ever, this procedure does not count properly the meso forms, which should be labeled
as achiral although they contain stereocenters due to an internal symmetry. Once the
stereoisomers have been generated using the procedure described previously, 47 million
stereoisomers were added to complete the PubChem dataset to the 33 million present
before the expansion of the database. In this case, the intersection occurs (see Figure 2.5)
at n2 ' 6.4 if both enantiomers are considered and n1 ' 8.1 if only one enantiomer is con-
sidered. Plots for the raw data (Figure 2.12) and the completed database with generated
enantiomers (Figure 2.13) are shown in Appendix 2.A. Other databases were analyzed as
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Figure 2.5: A two-dimensional representation of the fractions of achiral (circles) and chiral
(squares) molecules in an expanded PubChem database containing all the stereoisomers
of molecules with at most n ≤ 20 heavy atoms. Filled symbols correspond to counting
stereoisomers twice, while empty symbols correspond to counting them once in the frac-
tions. Error bars are smaller than symbol sizes and the crossover occurs at n2 ' 6.4 and
n1 ' 8.1 depending on which counting is considered.

well, namely DrugBank and ChemSpider, however they contained much less compounds
leading to poor statistics. Also databases such as DrugBank, focused on drug data might
be biased toward chiral compounds, which is another reason not to use their data. All
the data from the previous work carried out by Fujita, Fink and Reymond alongside our
analysis of the PubChem database are gathered in Table 2.1. Remarkably, irrespective of
the precise procedure to generate and analyze the database and regardless of the precise
composition of the molecules, the crossover between the achiral and chiral worlds occurs
for a number of heavy atoms of the order of about 9. This indicates that there is no need
to have a hundred or a thousand atoms in the molecule for chiral molecules to become
dominant. The main consequence of this crossover is that the stereoisomer distribution
goes from unimodal (with a maximum for achiral molecules) to bimodal (with maxima
for opposite enantiomers) as the length of molecules increases and gets bigger than n ' 9.
This emerging bimodality is potentially susceptible to induce a chiral symmetry breaking
in a system driven out of equilibrium as we show in the next section.

2.2 A general model for large reaction networks

In this section, we develop a simple description of a reaction network involving a large
number of chiral species. As stated in the introduction of this chapter, we will show that
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Data n1 n2

monosubstituted alkanes stereoisomers 5.7 4.7
alkanes stereoisomers 9.5 8.4
Chemical Universe 8.5 −
PubChem database using raw data 9.4* −
PubChem database using generated enantiomers 12.7 6.7
PubChem database using generated stereoisomers 8.1 6.4

Table 2.1: Positions of the crossover n1 and n2, measured in terms of number of carbon
atoms, in the study of alkanes and monosubstituted alkanes, or in terms of number of
heavy atoms in the other studies. The estimate n1 (resp. n2) is obtained by counting
once (resp. twice) the pairs of enantiomers. ∗ The crossover for PubChem raw data
occurs between n1 and n2 because not all enantiomers of a given species are present in
the database.

large out of equilibrium chiral molecular systems are likely to undergo a transition from a
racemic state to a homochiral one as the number of chiral species contained in it becomes
large.

2.2.1 The continuous stirred tank reactor dynamics

We first consider our chemical system to be open, and ruled by the Continuous Stirred
Tank Reactor (CSTR) dynamics. The system is thus assumed to be homogeneous because
well mixed, and driven out of equilibrium by an influx of species. The dynamics of the
system is thus described by the following CSTR equation

dc

dt
= F(c) +

1

τ
(c0 − c) , (2.6)

where c is the concentration vector for all species in the system, c0 is the concentration
vector for species supplied into the system by the environment at a rate 1/τ , τ is the
residence time of species inside the reactor and F(c) is a function describing the gains
and losses of chemical compounds through the reactions occurring in the system. It reads

F(c) = ννν ·w(c) , (2.7)

where ννν is the matrix of stoichiometric coefficients, and w(c) is the vector of net reaction
rates, which do not need to obey mass-action law, for all the possible reactions in the
system. For a given reaction r,

wr(c) = w+r(c)− w−r(c) . (2.8)
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The trajectories of the dissipative dynamical system described by equation (2.6) are in
general converging towards an attractor, which may be a steady state, a limit cycle cor-
responding to periodic oscillations, or a strange attractor sustaining chaotic oscillations.
In the present context, the attractors may be assumed to be stationary and they may
undergo bifurcations leading to multi-stability. In this kinetics framework, we consider
that the concentration vector associated to a system containing chiral and achiral species
reads

c =

cD

cA

cL

 (2.9)

where cD (resp. cL) denotes the concentration vector for d-enantiomers (resp. l-enan-
tiomers), and cA the concentration vector of achiral species. The number of chiral species
is denoted NC and the number of achiral species, NA, for a total number of species in the
system being NS = NA + 2NC. The particular case of the closed system is reached in the
limit τ →∞.

2.2.2 About mirror symmetry

One particular property of chiral systems is that they admit a mirror symmetry: all
the reactions undergone by the i−th d-enantiomer also occurs for the i−th l-enantiomer
with the same rate constant, but for mirrored species. The mirror symmetry of the system
corresponds to the following exchange of concentrations of d- and l-enantiomers,

Sc · c =

 0 0 I

0 I 0

I 0 0

 ·
 cD

cA

cL

 =

 cL

cA

cD

 , (2.10)

written in terms of the NS×NS matrix such that S2
c = I, where I denotes the corresponding

identity matrix. Since the rate constants take equal values for mirror-symmetric reactions,
the reaction rates have the symmetry

w(Sc · c) = Sw ·w(c) (2.11)

with some NR×NR matrix satisfying S2
w = I, where NR is the number of reactions in the

system. As a consequence of the mirror symmetry, the NS ×NR matrix of stoichiometric
coefficients obeys the following symmetry relation

Sc · ννν · Sw = ννν . (2.12)
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The kinetic equation (2.6) can be rewritten as three different equations

dcD

dt
= FD(cD, cA, cL) +

1

τ
(cD0 − cD) , (2.13)

dcA

dt
= FA(cD, cA, cL) +

1

τ
(cA0 − cA) , (2.14)

dcL

dt
= FL(cD, cA, cL) +

1

τ
(cL0 − cL) . (2.15)

In this case, FD, FA and FL are expressed as

FD(cD, cA, cL) = νννD ·w(cD, cA, cL) (2.16)

FA(cD, cA, cL) = νννA ·w(cD, cA, cL) (2.17)

FL(cD, cA, cL) = νννL ·w(cD, cA, cL) (2.18)

with νννD (resp. νννL) being the NC × NR submatrix relatives to d-enantiomers (resp. l-
enantiomers), and νννA the NA × NR submatrix relatives to achiral species. Within this
formalism, the mirror symmetry is expressed as

FD(x,y, z) = FL(z,y,x) and FA(x,y, z) = FA(z,y,x) . (2.19)

We note that the concentration vector c0, which is controlling the supply of species in
the reactor, may or may not satisfy the symmetry condition Sc · c0 = c0. The chiral
symmetry breaking may happen spontaneously in the former case and explicitly by the
external control in the latter case. If the kinetic equation (2.6) admits a stationary solution
cs , it will be either a racemic mixture if Sc · cs = cs , or a steady state with some non-
vanishing enantiomeric excess if Sc · cs 6= cs. The symmetry can be explicitly broken by
input concentrations such that Sc · c0 6= c0. However, the equations remain symmetric if
the condition Sc · c0 = c0 holds. In the case of a racemic steady-state Sc · cs = cs, the
racemic mixture characterized by equal concentrations of d- and l-enantiomers,

cD = cL , (2.20)

is maintained during the time evolution of the reaction network, if the dynamics

dcA

dt
= FA(cD, cA, cD) +

1

τ
(cA0 − cA) , (2.21)

dcD

dt
= FD(cD, cA, cD) +

1

τ
(cD0 − cD) , (2.22)
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A B

Figure 2.6: Example of a reaction network containing two (resp. nine) achiral (resp.
chiral) species. Ai represents achiral species andDi (resp. Li) represents the d-enantiomer
(resp. l-enantiomer) of the ith chiral species. Solid lines connect random species involved
in the same reaction. (A) Illustration of the mirror symmetry, according to which each
chiral species linked by a random reaction is involved in the same - but mirrored - reaction
involving mirrored species (enantiomers) with identical rate constants. As a result, the
reaction network admits an axis of symmetry going through achiral species, here A1 and
A2. (B) Illustration of the broken symmetry of a homochiral state. Dotted circles represent
species that are no longer present in the system (or at extremely low concentrations) and
dotted lines represent the reactions in which they were participating. Here, the simple
case of a system undergoing a global symmetry breaking for all chiral species is depicted.

is stable in the racemic subspace described by equation (2.20). The mirror symmetry
is depicted in Figure 2.6 which shows that the mirror symmetry is present in the initial
racemic state of the reaction network (Figure 2.6a), while the symmetry gets broken in
the homochiral state (Figure 2.6b).

2.2.3 The stability of the racemic state

Assuming the system possesses at least one racemic fixed point, we introduce the following
parameter, which describes the deviations from the racemate

x =
1

2
(cD − cL) . (2.23)

The time evolution of an infinitesimal perturbation from the racemate thus reads

dδx

dt
=

1

2

d

dt
(cD − cL) . (2.24)
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Denoting c∗ the concentration vector of the racemic fixed point such that cD = c∗ − δx
and cL = c∗ + δx,

dδx

dt
=

1

2

[
FL(c∗ − δx, cA, c∗ + δx) +

1

τ
(c0 + δx0 − c− δx)

−FD(c∗ − δx, cA, c∗ + δx)− 1

τ
(c0 − δx0 − c + δx)

]
, (2.25)

and a Taylor expansion at first order about the racemic fixed point gives

dδx

dt
=

1

2

[
FL(c∗, cA, c∗) +

∂FL

∂cL

∣∣∣∣
c∗

· δx− ∂FL

∂cD

∣∣∣∣
c∗

· δx

−FD(c∗, cA, c∗)−
∂FD

∂cL

∣∣∣∣
c∗

· δx +
∂FD

∂cD

∣∣∣∣
c∗

· δx
]

+
1

τ
(δx0 − δx) . (2.26)

where |c∗ means evaluated at c∗. From the mirror symmetry relations equation (2.19), it
is straightforward to show that the equality

FL(c∗, cA, c∗) = FD(c∗, cA, c∗) (2.27)

holds. The relations
∂FD

∂cD

∣∣∣∣
c∗

=
∂FL

∂cL

∣∣∣∣
c∗

(2.28)

and
∂FD

∂cL

∣∣∣∣
c∗

=
∂FL

∂cD

∣∣∣∣
c∗

(2.29)

also arise from the mirror symmetry. Using relations given by equations (2.27)-(2.29), we
obtain

dδx

dt
= (JDD − JDL) · δx +

1

τ
(δx0 − δx) , (2.30)

where
JDD ≡

∂FD

∂cD

∣∣∣∣
c∗

=
∂FL

∂cL

∣∣∣∣
c∗

(2.31)

and
JDL ≡

∂FD

∂cL

∣∣∣∣
c∗

=
∂FL

∂cD

∣∣∣∣
c∗

. (2.32)

Without loss of generality, we assume that δx0 = 0 meaning that we have a racemic
influx of matter in the reactor since we do not want to break the symmetry explicitly.
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Equation (2.30) thus reduces to

dδx

dt
=

(
J− 1

τ
I

)
· δx , (2.33)

where J = JDD − JDL and I is the identity matrix. Here, J is an effective Jacobian
matrix evaluated at the racemic fixed point c∗. According to stability analysis theory
and equation (2.33), the racemic state is stable when all the eigenvalues of the matrix
J− 1

τ
I (which in general are complex numbers) have a negative real part [Strogatz, 1994].

Reciprocally, as soon as one of those eigenvalues gets a positive real part, the racemic state
becomes unstable to any perturbation, meaning that any infinitesimal deviation from the
racemic state will be amplified exponentially fast.

2.2.4 Random matrices and the stability of dynamical systems

A random matrix (RM) is simply defined as an n × m matrix, with n,m ∈ N∗, whose
entries are random variables. They first appeared in the literature in 1928 [Wishart,
1928] as null models for covariance matrices in statistics, and soon their use spread to
many different research fields [Potters and Bouchaud, 2020]. The main interest in those
matrices is to solve eigenvalues problems i.e. to determine their spectrum depending on
conditions on the entries of the RM. Some of the most famous results are the Wigner
semicircle law [Wigner, 1955,Wigner, 1958] which holds for entries distribution in the
Gaussian Orthogonal Ensemble (GOE), in the Gaussian Unitary Ensemble (GUE) or for
Wigner RM, and the Marchenko-Pastur distribution [Marchenko and Pastur, 1967] for
Wishart RM. In 1965, Ginibre considered real, complex and quaternionic valued matrices
and showed, inter alia, that for an n× n complex RM, M, with no orthogonal or unitary
constraints but still having Gaussian distributed entries with zero mean [Ginibre, 1965],
its eigenvalues were uniformly distributed in the complex plane in a disk of radius

R = σ
√
n , (2.34)

centered around the origin of the complex plane, where σ is the standard deviation of the
matrixM elements, in the limit n→∞. Twenty years later, Girko got free of the Gaussian
distribution constraint, and generalized the same result [Girko, 1985] to the spectrum of
an n×n random matrix whose entries are independent and identically distributed (i.i.d.)
according to an arbitrary distribution of variance σ2 and zero mean.

In 1970, Gardner and Ashby got interested in the stability of connected dynamical
graphs. Those graphs could represent many different systems such as the traffic in an
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airport, slum areas with a high number of inhabitants or neurons in interaction, as they
stated in their work [Gardner and Ashby, 1970]. They proposed a simple linearly inter-
acting model described by the dynamical equation

dx

dt
= A · x , (2.35)

where x is the vector of n dynamical variables (such as population vector for ecological
models) and A an n× n interaction matrix whose element aij describes how the variable
xj interacts with and affects the variable xi, n being the number of dynamical variables
in the system. To avoid relying on a specific structure of the interaction matrix, they
assumed all entries of A were distributed evenly in the interval [−1, 1] at random and
diagonal elements (self-interaction terms) would be all negatives and evenly distributed
in the interval [−1,−0.1] to ensure stability for every variable taken independently. They
observed with computer simulations that the probability of stability of the system (equiv-
alent to the probability to have a maximal eigenvalue of A whose real part is negative)
decreased with the increase of the number of variables in the system n, and with the
increase of connectance, C, of the system, which characterizes the probability for an A

element aij to be non zero (i.e. “zero” meaning species j does not affect species i). Two
years later, May, interested in the stability of large ecosystems, looked at this problem
with an analytical approach [May, 1972], extending it to non-linear systems with equa-
tion (2.35) representing a linearization about a steady-state. A elements were also drawn
randomly from a statistical distribution with zero mean and standard deviation σ (equiv-
alent here to an average interaction strength) with an additional -1 terms for diagonal
elements to ensure individual stability for species. With this choice, the matrix A could
be written as

A = B− I , (2.36)

where B is a random matrix and I the identity matrix. Using results from the Wigner
semicircle law, although similar arguments would work for more general RM using the
Girko circle law [Girko, 1985], May showed that such systems are likely to be stable if

σ <
1√
n
, (2.37)

and almost certainly unstable if

σ >
1√
n
, (2.38)

in the limit n � 1. For sparse RM, where some entries of A matrix were equal to
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zero, meaning some species would not interact, the result would change with n→ nC in
equations (2.37) and (2.38), where C is the connectance, i.e. the percentage of non-zero
elements in A. Those results were in agreements with ecological studies which suggested
that large ecosystems are not stable, and the larger are ecosystems, the weaker the inter-
actions strength has to be for stability to remain. Those two papers had a large impact in
dynamical studies as they show that random matrix theory had produced enough results
on spectral properties of RM to now be applicable to a wide range of large and complex
dynamical systems even though May’s approach first required some time to be recognized
by the scientific community.

2.2.5 A criterion for the racemic state stability

Going back to our model for chemical networks, the elements of the Jacobian matrix
J consist of products of rate constants, stoichiometric coefficients, and concentrations.
We will assume, for solving the stability of our system, that J can be considered as a
random matrix. Here the randomness of the elements of the Jacobian matrix comes
primarily from the randomness of the rate constants and to a lesser extent from that of
concentrations. For instance, in the specific case of enzymatic reactions, it has been shown
that rate constants are distributed according to a log-normal distribution [Davidi et al.,
2018]. The general observation is that, in known reaction networks such as the Belousov-
Zhabotinsky system, the rate constants may take very different values without regularity
between them among the different reactions of the network. It is important to note that
we do not assume the stoichiometric matrix ννν to be a random matrix. The network has a
structure ruled by the mirror symmetry which is required to derive equation (2.33). Once
one accepts the idea of treating the Jacobian matrix J as a random matrix of size NC×NC,
the simplest possibility is to also assume that the elements of this matrix are independent
and identically distributed (i.i.d.) random variables (but not necessarily Gaussian) of
mean value µ and variance σ2. Gaussian entries are not necessary in principle to deduce
spectral properties of the matrix J since the circle law of Girko holds for an arbitrary
distribution of elements in the RM [Girko, 1985] as stated in the previous section. Since
the Jacobian matrix J depends on the concentrations of the racemic steady state, we note
that both µ and σ2 may vary with the mean residence time τ , which controls the steady
state of equation (2.6). As explained at the end of Section 2.2.3, we have to compute the
spectrum of J− 1

τ
I to determine the stability of the racemic state. It is first trivial that

S (J− 1

τ
I) = S (J)− 1

τ
, (2.39)
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where S (M) denotes the spectrum of a matrix M, since the spectrum of the diagonal
matrix 1

τ
I is composed of the eigenvalue 1/τ NC-fold degenerated. We thus focus now on

the matrix J.

The zero mean case (µ = 0)

When µ = 0, based on Girko’s circle law, the complex eigenvalues of J are uniformly
distributed in a disk of radius σ

√
NC in the limit of large values of NC. In this scenario, the

real part of the largest eigenvalue λmax scales as the border of the circle, <(λmax) ∼ σ
√
NC,

meaning that, using equation (2.39), the stability of the racemic state is conserved as long
as

σ
√
NC −

1

τ
< 0 , (2.40)

i.e. as long a the number of chiral species verifies

NC <
1

(στ)2
. (2.41)

When this inequality is no longer verified, the system is susceptible to converge towards
a homochiral steady-state. It is also noticeable that the eigenvector associated to this
eigenvalue is a random vector. However, having a zero mean for J entries is a particular
case that has no reason to be verified. In this case, the Girko’s circle law gets modified
slightly.

The non-zero mean case (µ 6= 0)

When µ 6= 0, it is possible to show that one eigenvalue of the matrix J gets isolated
from the rest of the spectrum (which still verifies Girko’s circle law) and is equal to
λiso = µNC and the corresponding eigenvector has uniform components to dominant
order (see Appendix 2.B for a demonstration). In the case where λiso is greater than the
maximum eigenvalue from the Girko circle, the stability of the racemic state holds as long
as

µNC −
1

τ
< 0 , (2.42)

i.e. as long as the number of chiral species verifies

NC <
1

µτ
. (2.43)
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As for the previous case where µ = 0, when this inequality does not hold anymore (e.g.
when NC grows), the stability of the racemic state is broken and the system is susceptible
to converge towards a homochiral state. Two possible mechanisms for the instability of
the racemic state then emerge for large NC. Either (i) it occurs due to an eigenvalue
located on the edge of the circle (which may be real or complex valued) otherwise (ii)
the instability occurs due to the isolated eigenvalue. It follows from the two criteria in
equations (2.41) and (2.43) that when

(σ/µ)2 ≥ NC ≥ 1/(τσ)2 , (2.44)

the system becomes unstable by the first (i) mechanism and in this case only a subpart of
all the species become unstable with random directions at the transition. Indeed, in the
vicinity of the racemic fixed point, δx will be oriented in the same direction as the random
eigenvector associated to the leading eigenvalue of the edge of the disk. And when µ > 0

and
NC ≥ max{1/(τµ), (σ/µ)2} , (2.45)

the system becomes unstable by the second (ii) mechanism where all species become
simultaneously unstable in the same direction, as the eigenvector associated to this eigen-
value is a homogeneous vector. In such cases, random matrix theory predicts that as
NC becomes large, these mechanisms of instability become more and more likely. The
two mechanisms are graphically represented in Figure 2.7. Figures 2.7a-c represent the
first criterion where the stability is broken by the edge of Girko’s circle, and Figs. 2.7d-f
describe the second mechanism where the stability of the racemic state is broken by the
isolated eigenvalue. Instability probabilities are also depicted in Figure 2.7g. There is
however no fundamental reason to assume that the elements of the Jacobian matrix J of
a reaction network should be in general i.i.d. random variables. In fact, we will observe in
Section 2.3 that there can be correlations in the Jacobian matrix J of a generalized Frank
model, which arise from the difference between the diagonal and non-diagonal elements
of the matrix. In that model, eigenvalues do not fill a Girko circle but fill a domain of
different shape, closer to an ellipse.

2.2.6 Sparse chemical networks

Another interesting aspect of the random matrix approach is that it can describe im-
portant features of the network such as its sparsity (meaning some elements are zero)
as mentioned before. The sparsity of the matrix J could originate from the sparsity of
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A B C

D E F

G

Figure 2.7: Distribution of eigenvalues and corresponding instability criterion. Subfigures
(A), (B) and (C) represent the eigenvalues of the random matrix M with Gaussian entries
with µ = 0, σ = 1 and τ = 1/

√
2000, where the instability mechanism (i) occurs as

NC increases, i.e. the edge of the Girko’s circle densely filled by eigenvalues crosses the
zero real axis. Subfigures (D), (E) and (F) depict the mechanism (ii) where the zero real
axis is crossed by an isolated eigenvalue. In this case, the matrix M is a random matrix
with Gaussian entries of parameters µ = 1/

√
2000, σ = 0.7 and τ = 1/

√
2000. Grey

colored area represents the positive real part zone of the complex plane, i.e. the area in
which an eigenvalue causes the instability. Sizes of random matrices M are NC = 1500
for subfigures (A) and (D), NC = 2000 for subfigures (B) and (E) and NC = 2500 for
subfigures (C) and (F). Subfigure (G) represents the probability for the racemic state of the
chemical system to be unstable as a function of NC. Black curve represents the mechanism
(ii) for a Gaussian random matrix M with µ = 1/

√
100, σ = 0.7 and τ = 1/

√
100.

Magenta curve represents the mechanism (i) for a Gaussian random matrix M with µ = 0,
σ = 1 and τ = 1/

√
100. Grey colored area represents the theoretical instability area,

which is N > 100 for both mechanisms here, given the choice of parameters µ, σ and
τ . The statistics has been carried out over 100, 000 realizations of random matrices.
Note also that the two curves in subfigure (G) for the two mechanisms, were drawn for
different parameters µ and σ. The determination of the spectrum of random matrices was
performed using linear algebra functions of the Python library Numpy.
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the stoichiometric matrix ννν, which has already been observed in studies of metabolism
of living systems, and which results from the low connectivity of certain species to the
rest of the network. A second origin to sparsity lies in the fact that in a typical chemical
system, the various rate constants span many orders of magnitude, resulting in certain
matrix elements becoming negligible compared to other ones. A third origin to sparsity
may be due to the variability of concentrations of species in the network, which could be
large (specially if the system is not well mixed). Whatever its origin, the sparsity of the
Jacobian matrix J can be accounted for by the theoretical treatment of the previous sec-
tion because it only affects the radius of the disk in which the eigenvalues are distributed
in. More precisely, this radius which is σ

√
NC for a non-sparse network becomes σ

√
αNC

in a sparse matrix, where α ∈ [0, 1] measures the percentage of non-zero elements in J.
Moreover, in the case where µ 6= 0, the isolated eigenvalue is approximately changed to
µNC → αµNC. These two changes imply that the criterion for the system to be unstable
by the first mechanism becomes

(σ/µ
√
α)2 ≥ NC ≥ 1/(στ

√
α)2 , (2.46)

and by the second mechanism,

NC ≥ max{1/(ατµ), (σ/µ
√
α)2} . (2.47)

In other words, the sparser the matrix J, the higher the number of chiral species needed
for the chiral symmetry breaking to occur in a system with given µ, σ, and τ . In the
end, if the number of chiral species is sufficiently high, the results remain unchanged. An
interesting consequence of that observation is that the sparsity coefficient of J is a tuning
parameter to control the homochiral transition at a fixed number of chiral species NC

(provided that NC is in a range that allow the system to be unstable) similarly to what
May proved for the stability of ecological systems [May, 1972].

2.2.7 What about homochiral fixed points?

One of the first critic one could make about the previous derivation is that it is very
general and it would also apply to any fixed points of the system, including homochiral
fixed points. One could then conclude that they are all unstable under the same criterions.
This argument is in fact wrong, as one can not construct the same kind of Jacobian matrix
as previously done when considering a homochiral fixed point. In the case of a homochiral
fixed point (or a non racemic fixed point), one would have to determine the spectrum of
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the complete (2NC +NA)× (2NC +NA) Jacobian Jcomp which reads

Jcomp =

∂cDFD ∂cAFD ∂cLFD

∂cDFA ∂cAFA ∂cLFA

∂cDFL ∂cAFL ∂cLFL

 , (2.48)

evaluated at the homochiral fixed point, associated to the linear dynamical system

dc

dt
=

(
Jcomp −

1

τ
I

)
· c , (2.49)

to determine the stability of the fixed point. In this case, the RM treatment performed
for racemic fixed points is not expected to work. An example of resolution of this issue
for a particular chemical network is shown in the next section using a generalized version
of the Frank model.

2.3 Example: A generalization of the Frank model

In this section, we develop an alternative version of the well known Frank model general-
ized to an arbitrary number of chiral and achiral species. This serves as an example for
the general model developed in the previous section.

2.3.1 The generalized model

In order to test the random matrix scenario, we introduce a generalization of the Frank
model [Frank, 1953], in which the numbers of chiral and achiral species are significantly
increased and we assume an arbitrary assignation l or d to each enantiomer. Reverse
reactions are also included in order to guarantee the compatibility with the existence of
an equilibrium state even though the system is driven out of equilibrium by an inflow of
matter. It is essential that the system is driven out of equilibrium in order for a chiral
bias to be maintained. We thus assume that the system is thermodynamically open, due
to fluxes of matter in and out of the system. In this generalized model, we also suppose
that species entering the autocatalytic system are achiral but of high free energy, while
the achiral species produced by the reactions involving the two d- and l-enantiomers have
a lower free energy and are not supplied to the system (it is just a particular case of a
racemic inflow where Di0 = Li0 = 0 ∀i if Di0 (resp. Li0) denotes the inflow concentration
of the i-th d-enantiomer (resp. l-enantiomer)). In this regard, the achiral species {Aa}NA

a=1

are of high free energy, and the achiral species {Ãa}ÑA
a=1 of low free energy. The reaction
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networks are given by the following reactions:

Aa + Ei 
 Ej + Ek , (2.50)

Aa + Ēi 
 Ēj + Ēk , (2.51)

Ei + Ēj 
 Ãb + Ãc , (2.52)

where the enantiomer species are either Em = Dm and Ēm = Lm, or Em = Lm and
Ēm = Dm for each enantiomeric pair m = i, j, k = 1, 2, . . . , NC. The achiral species are
labeled with a = 1, 2, . . . , NA; and b, c = 1, 2, . . . , ÑA. Equations (2.50)-(2.52) define a
total of 2NC−1 nonequivalent reaction networks differing by the permutations of d- and
l-enantiomers for some enantiomeric pairs. For given reaction rates, all these networks
manifest similar dynamical behaviors. Among them, the network with Em = Dm and
Ēm = Lm for all the pairs m = 1, 2, . . . , NC is the direct generalization of Frank model,
considered below. Here the reactions (2.50)-(2.52) all have some degree of enantioselectiv-
ity as in the original Frank model [Frank, 1953]. The dynamics of the system is described
by the following set of equations

Ȧd = −
∑
aijk
j≤k

δdaw
(D)
aijk −

∑
aijk
j≤k

δdaw
(L)
aijk +

1

τ
(A0d − Ad) , (2.53)

Ḋm =
∑
aijk
j≤k

νm,ijk w
(D)
aijk −

∑
bcij
b≤c

δmi w̃bcij −
1

τ
Dm , (2.54)

L̇m =
∑
aijk
j≤k

νm,ijk w
(L)
aijk −

∑
bcij
b≤c

δmj w̃bcij −
1

τ
Lm , (2.55)

˙̃Ae =
∑
bcij
b≤c

(δeb + δec) w̃bcij −
1

τ
Ãe , (2.56)

where
νm,ijk ≡ −δmi + δmj + δmk (2.57)

and the rates w read, assuming mass-action law,

w
(D)
aijk = k+aijkAaDi − k−aijkDjDk with j ≤ k , (2.58)

w
(L)
aijk = k+aijkAaLi − k−aijkLjLk with j ≤ k , (2.59)

w̃bcij = k̃−bcijDiLj − k̃+bcijÃbÃc with b ≤ c , (2.60)
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where the positive sign in the subscripts of the rate constants refers to the direction
of the reaction. We note that k̃±bcij = k̃±bcji because of the mirror symmetry. The re-
versible generalized Frank model described by reactions (2.50)-(2.52) undergoes relaxation
to racemic equilibrium in a closed system, corresponding to an infinite mean residence
time τ =∞ in equation (2.6). Here, we consider the generalized Frank model under far-
from-equilibrium conditions where a bifurcation towards homochirality happens beyond
a threshold in the nonequilibrium driving due to injection of the high free-energy achiral
species {Aa}NA

a=1 with respect to ejected low free-energy ones {Ãa}ÑA
a=1. In such far-from-

equilibrium regimes, the reversed reactions are often playing a negligible role, which can
be described by assuming that their reaction rate constants are arbitrarily small (a proof
that this assumption is compatible with the existence of an equilibrium state is available
in Appendix C of [Laurent et al., 2022]). With this assumption, and assuming that only
one achiral species of high free energy and one achiral species of low free energy are present
in the system, the reaction scheme we study in the following simplifies as

A + Di → Dj + Dk , (2.61)

A + Li → Lj + Lk , (2.62)

Di + Lj → 2Ã , (2.63)

with k+ijk (resp. k−ij) the rate constant associated with reactions (2.61) and (2.62) (resp.
reaction (2.63)). In this case, the 2 + 2NC kinetics equations are

Ȧ = −
∑
ijk
j≤k

k+ijk ADi −
∑
ijk
j≤k

k+ijk ALi +
1

τ
(A0 − A) , (2.64)

Ḋm = −
∑
ij
i≤j

k+mij ADm +
∑
ij

m≤j

k+imj ADi +
∑
ij

j≤m

k+ijmADi −
∑
i

k̃−miDm Li −
1

τ
Dm ,

L̇m = −
∑
ij
i≤j

k+mij ALm +
∑
ij

m≤j

k+imj ALi +
∑
ij

j≤m

k+ijmALi −
∑
i

k̃−imDi Lm −
1

τ
Lm ,

˙̃A = 2
∑
ij

k̃−ij Di Lj −
1

τ
Ã .

Using a Runge-Kutta algorithm of second order, one can numerically solve the set of
equations (2.64) and observe in Figure 2.8 different behaviors for different inflow con-
centrations of achiral species for a fixed number of chiral species NC. The numerical
integration of the kinetic equations has been performed by setting τ = 1, meaning that
we take τ as the time unit. All the simulations of the generalized Frank model were
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performed using C programming language. At the initial time, we assume that there is a
very small imbalance between the two enantiomers of given species, characterized by the
small parameter ε, which is homogeneous among all of the species. The rate constants
are all supposed to be randomly distributed according to a log-normal distribution whose
average and standard deviation are specified in the caption. We can directly observe that
depending on whether the inflow concentration A0 of achiral species of high free energy
is low or large, we end up in a racemic or a homochiral state (it is also illustrated in the
phase diagram of Figure 2.10a). At NC fixed, an increase of A0 can be seen as an increase
of energy supplied to the reactor. Here, the more we drive the system far from equilib-
rium, the more it seems to converge towards a homochiral steady-state. To study further

A B

Figure 2.8: Dynamical simulations of the autocatalytic network (2.61)-(2.62)-(2.63). Typ-
ical time evolution of two species contained in the autocatalytic network as a function of
time (A) above the threshold concentration A∗0 from equation (2.83) and (B) below it. The
solid lines represent one of the two enantiomers for a given species and the dashed line, the
other enantiomer. Both simulations were carried out with an initial enantiomeric excess
ε = 10−2 and d- and l-enantiomers concentrations of all chiral species were initialized at
D0 = 2 + ε and L0 = 2− ε. The inactivated achiral specie was initialized at Ã0 = 0 and
the activated one at A0 = 80 in (A) and A0 = 45 in (B). All the constants k+ijk and k̃−ij
follow a log-normal distribution of parameters µ = −10.02 and σ = 1.27 (i.e., correspond-
ing to a log-normal distribution with 〈k+〉 = 〈k̃−〉 = 10−4 and σk+ = σk̃− = 2 × 10−4),
with k̃ij = k̃ji to satisfy the mirror symmetry. The number of chiral species was set up to
NC = 20.

the dynamics of this system, the stability of the stationary states can be determined by
solving equations (2.64) analytically using a similar random matrix treatment as for the
general model of Section 2.2.
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2.3.2 Stability of the steady-states

We introduce the variables D = {Di}NC
i=1 and L = {Li}NC

i=1 which are concentration vectors
for d- and l-enantiomers.

Racemic stationary states

Following the same recipe as for the general model of open reactor, and using mirror
symmetry, we focus our analysis on the dynamics of infinitesimal deviations from the
racemic state

δX =
1

2
(L−D) , (2.65)

which are ruled by the following set of linear equations

d

dt
δX = M · δX , (2.66)

where the NC ×NC matrix M is given by

M =
∂Ḋ

∂D

∣∣∣∣∣
c∗

− ∂Ḋ

∂L

∣∣∣∣∣
c∗

, (2.67)

knowing that the mirror symmetry implies that

∂Ḋ

∂D

∣∣∣∣∣
c∗

=
∂L̇

∂L

∣∣∣∣∣
c∗

, (2.68)

and
∂Ḋ

∂L

∣∣∣∣∣
c∗

=
∂L̇

∂D

∣∣∣∣∣
c∗

, (2.69)

where c∗ denotes a racemic steady-state. Deriving the equation for Ḋm in the equation
set (2.64) with respect to Ḋn and L̇n we obtain the matrix elements of M:

Mmn =
∂Ḋm

∂Dn

− ∂Ḋm

∂Ln
, (2.70)
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which read

Mmn =
∑

i
m≤i

k+nmiA+
∑

i
i≤m

k+nimA+ k̃−mnDm − δmn

∑
ij
i≤j

k+nij A+
∑
i

k̃−mi Li +
1

τ

 ,

(2.71)
where A and Di = Li are the concentrations of the stationary racemic solution. Since
the rate constants are supposed to be statistically distributed, this is also the case for
the stationary concentrations {Di}Ni=1 and {Li}Ni=1 and thus for the matrix elements. The
inverse time residence once again appears only on diagonal elements of M having the
effect of shifting its spectrum towards negative values of the complex plane. We can thus
decompose M as

M = J− 1

τ
I . (2.72)

The statistical distribution of the matrix elements Jmn depends on the reaction network
and may be complicated, but they could be decomposed as explained in Appendix 2.B
into a mean value and fluctuations of root mean square. We consider now the particular
case of the racemic fixed point where Di = Li = Ã = 0 for all species i and A = A0 which
we call the trivial racemic fixed point. The elements of the matrix M thus become

Mmn = A0

∑
i

m≤i

k+nmi +
∑

i
i≤m

k+nim

− δmn
A0

∑
ij
i≤j

k+nij +
1

τ

 . (2.73)

We observe in equations (2.71) and (2.73) that not only the inverse residence time appears
only on diagonal element but also a second term depending on A0 and a sum of rate
constants. We thus separate the matrix M in three contributions

M = A0Q− A0R−
1

τ
I , (2.74)

where Q is a matrix whose elements are given by

Qmn =
∑

i
m≤i

k+nmi +
∑

i
i≤m

k+nim , (2.75)

and R a diagonal matrix whose elements are given by

Rnn =
∑
ij
i≤j

k+nij . (2.76)
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The matrix elements of Q are sums of NC +1 random variables whose mean and standard
deviation are respectively 〈k+〉 and σk+ . Using the central limit theorem (CLT), we deduce
that the elements of Q are distributed according to a Gaussian distribution of mean
µQ = 〈k+〉(NC + 1) and standard deviation σQ = σk+

√
NC + 1. From the construction of

the matrix R we deduce that its diagonal elements are also randomly distributed following
another Gaussian distribution of mean µR = 〈k+〉NC(NC + 1)/2 and standard deviation
σR = σk+

√
NC(NC + 1)/2. The spectrum of M cannot be determined simply by summing

the spectrums of Q and R as they have no reason to be diagonal in the same basis.
However, we can decompose the matrix Q as an average term plus small deviations:

Q = µQ1 + σQG , (2.77)

where 1 is a matrix full of ones, and G is a matrix whose entries are distributed according
to a Gaussian statistics of mean zero and unit variance. The matrix R can also be
decomposed into two distinct contributions

R = µRI + H , (2.78)

where H is a diagonal matrix with subdominant terms as compared to µR (this follows
from the law of large numbers). Using decompositions of equations (2.77) and (2.78), the
matrix M can be rewritten as

M = P + A0σQG− A0H , (2.79)

where
P = A0µQ1− (A0µR +

1

τ
)I . (2.80)

The largest eigenvalue of P thus of M, if we neglect the contributions from the subdomi-
nant terms, is given by

λMmax = A0〈k+〉
NC(NC + 1)

2
− 1

τ
, (2.81)

recalling that 〈k+〉 > 0 as we supposed that all k+ijk, with i, j, k ∈ [1, NC] are distributed
according to a log-normal law. For the trivial racemic state to be unstable, the dominant
eigenvalue λMmax must be positive, thus the threshold above which this state loses its
stability is

A0 > A∗0 , (2.82)
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where
A∗0 =

2

NC(NC + 1)〈k+〉τ
. (2.83)

This result holds and numerical simulations do not show deviations from the theoretical
prediction as long as the standard deviation σk+ remains low compared to 〈k+〉, as it is
shown in Figure 2.9.

Symmetry properties of the Jacobian matrix

We remark that the permutation Dm ↔ Lm for an enantiomeric pair m implies that
the corresponding enantiomeric excess changes sign δXm → −δXm, and that the eigen-
values of the matrix M remain unchanged under such transformations. We denote u

an eigenvector (associated to the eigenvalue λ) of the matrix M, and u′ (associated to
the eigenvalue p′) the new eigenvector of the transformed matrix M′ obtained after a
permutation Dm ↔ Lm, so that ∑

j

Mijuj = pui , (2.84)

and ∑
j

M ′
iju
′
j = p′u′i . (2.85)

The permutation of the enantiomers means that δX ′i = (−1)siδXi, with si = 1 if the i-th
enantiomers are permuted and si = 0 otherwise. Using equation (2.66), we obtain that
M ′

ij = (−1)si+sjMij. It follows from this that the eigenvectors transform as u′i = (−1)siui

with the eigenvalue conserved in the permutation p′ = p. Thus, the result regarding
the transition to homochirality holds for the 2NC−1 models considered with the reaction
scheme described by equations (2.50)-(2.52). This invariance property is important for
the discussion on chiral signs of different groups of molecule in Section 1.1.3. It shows
that incompatibilities in the different definitions of chirality are not an issue, nor the fact
that different groups of molecules do not share the same chirality.

Existence of a homochiral stationary state

It is also possible to show that the loss of stability for the trivial racemic state coincides
with the gain of stability for a homochiral state. As stated in the Section 2.2.7, homochiral
fixed points do no have the same symmetry relations than racemic states. Therefore a
similar treatment as done previously is not possible and we have to consider a standard
approach of the Jacobian to solve their stability. A first observation we can make is that
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Figure 2.9: Comparison between the ob-
served control parameter value A0 at the
transition with the theoretical prediction
given by equation (2.83) (blue solid line)
after averaging over 100 realizations of the
rate constants for different standard de-
viation σk+ and σk̃− of rate constants :
σk+ = σk̃− = 10−3 (red), σk+ = σk̃− = 10−2

(purple), while 〈k+〉 = 〈k̃−〉 = 10−4.

the set of equations (2.64) is compatible with a homochiral steady state since the condition
L̇m = 0 is verified when Li = 0 for every species i (or the same condition for d-species
in the opposite homochiral state). We first obtain an expression for the concentration of
the activated achiral species A in the steady state, using the condition that Di 6= 0 and
Li = 0 for all species i:

A =
A0

τ
∑

ijk
j≤k

k+ijkDi + 1
. (2.86)

The sum in the denominator can be simplified using the central limit theorem (CLT) :

∑
ijk
j≤k

k+ijkDi = 〈k+〉
NC(NC + 1)

2

∑
i

Di , (2.87)

which tells us that the concentration A of achiral species in the steady state reads

A =
A0

τ〈k+〉NC(NC+1)
2

∑
iDi + 1

. (2.88)

Summing the second equation in (2.64) over m, in the steady state, we find that

−A
∑
m

Dm

∑
ij
i≤j

k+mij + A
∑
i

Di

∑
mj
m≤j

k+imj + A
∑
i

Di

∑
mj
j≤m

k+ijm −
1

τ

∑
m

Dm = 0 , (2.89)

from which, using the CLT to compute the sums, and the property that all Di should be
non zero and positive concentrations, we deduce an alternative expression for A denoted
A∗0 in the steady state:

A =
2

τ〈k+〉NC(NC + 1)
. (2.90)
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Looking back at equation (2.83), we recognize the threshold for the stability of the racemic
state A∗0, so the previous equation is equivalent to

A = A∗0 . (2.91)

Combining the two expressions for A, namely (2.88) and (2.90), we obtain an expression
for
∑

iDi in the steady state

∑
i

Di = A0 −
2

τ〈k+〉NC(NC + 1)
. (2.92)

A solution where
∑

iDi < 0 has no physical meaning here as Dis are concentrations.
Therefore a full homochiral state exists only if A0 > A∗0. This makes sense because
this is precisely the condition for the racemic state to lose its stability we derived in
equation (2.82). So far in this derivation, we have used only the global condition

∑
iDi >

0, which does not ensure that Di > 0, ∀ i which is also required. Going back to equation
set (2.64) and using once again the CLT, one finds that in the steady state,

Dm =
A
∑

iDi

(∑
j

m≤j
k+imj +

∑
j

j≤m
k+ijm

)
A
∑

ij
i≤j

k+mij + 1
τ

, (2.93)

thus
Dm =

A〈k+〉(NC + 1)
∑

iDi

ANC(NC + 1)〈k+〉/2 + 1/τ
> 0 , (2.94)

which shows that allDi’s are positive and approximately equal to each other since
∑

iDi >

0 if A0 > A∗0. With a mean-field approximation, we can also deduce from equation (2.92)
that

D =
A0 − A∗0
NC

. (2.95)

So far, we have characterized the homochiral steady state. Now we have to study its
stability to show that this state becomes an attractor of the dynamics when the trivial
racemic states loses its stability.

Stability of the homochiral fixed point

As stated earlier, this section serves to show how different the study of stability of the
homochiral state is, which helps to understand the specificity of the result regarding the
stability of the racemic state in equation (2.66). Here we have to consider the (2NC +
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1)× (2NC + 1) Jacobian matrix N given by

N =



∂Ȧ
∂A

∂Ȧ
∂D

∂Ȧ
∂L

∂Ḋ
∂A

∂Ḋ
∂D

∂Ḋ
∂L

∂L̇
∂A

∂L̇
∂D

∂L̇
∂L

 . (2.96)

The details of the computation are written in Appendix 2.D but the main ideas are set
up here. Especially, all the elements of the matrix N are given in Appendix 2.C. Since
∂L̇/∂A and ∂L̇/∂D are respectively a null vector and a null matrix in this homochiral
state, the characteristic determinant of N can be decomposed into a determinant product
of two diagonal square blocks

det
(
N− λI

)
= det


∂Ȧ
∂A
− λ ∂Ȧ

∂D

∂Ḋ
∂A

∂Ḋ
∂D
− λI

 det
(
∂L̇
∂L
− λI

)
. (2.97)

The spectrum of N is thus determined by the eigenvalues of its upper-left block and its
lower-right block. The spectrum of the block ∂L̇/∂L and its maximal eigenvalue are given
in Appendix 2.C. The spectrum of the upper-left block of matrix N is determined in
Appendix 2.D. The analysis shows that the spectrum of the latter submatrix is given
by NC − 1 unperturbed negative eigenvalues of ∂Ḋ/∂D lying into Girko’s circle plus two
eigenvalues given by

λ+ = −1

τ
, and λ− =

1

τ

(
1− A0

A∗0

)
. (2.98)

The first eigenvalue λ+ is always negative. The second one λ− is negative when A0 >

A∗0, i.e., when the racemic state becomes unstable and at the same time, a physically
acceptable homochiral state withDi > 0, ∀i becomes possible. As shown in Appendix 2.C,
the maximal eigenvalue of the matrix ∂L̇/∂L is

λLmax = −NCD〈k̃−〉 (2.99)

in the large NC limit, where 〈k̃−〉 is the mean value of chiral inhibition rate constants.
Furthermore, in the mean-field approximation, we have D = (A0 − A∗0)/NC by equa-
tion (2.95). Thus, in the regime of the homochiral state (i.e., when A0 > A∗0), this state is
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BA

Figure 2.10: Phase diagram showing the border between the racemic and homochiral
phases in the (A0, NC) plane for the generalized Frank model. A0 is the inflow concen-
tration of achiral species and NC the number of chiral species in the reaction network.
(A) In the lower domain of the diagram, the racemic state is stable against small pertur-
bations. In the upper domain, the racemic state loses its stability while the homochiral
state has gained stability. (B) Phase diagram showing the border between the racemic
and homochiral phases for various sparsity coefficient γ. Below each solid line, the racemic
phase is stable whereas above it it is unstable and instead the homochiral phase becomes
stable. Simulations were performed for 100 realizations of the rate constants k+. Triangles
represent simulations and solid lines the theory for both figures. The thresholds for both
figures were computed by analyzing the stability of the racemic state of the system with
simulations using the programming language C.

stable because λLmax < 0. When A0 > A∗0 the racemic state is unstable but the homochiral
state is an attractor of the dynamics. Conversely, when A0 < A∗0, the nonphysical condi-
tion D < 0 which is obtained means that there can be no stable homochiral state and in
that case, the system should converge towards the racemic state as it is an attractor of
the dynamics. The presence of the mean value of chiral inhibition rate constants in λLmax

underlines its key role in the stability of the homochiral state. Several reaction schemes
were studied, and the only ones that admit stable and fully homochiral states seem to
be the ones which possess chiral inhibition reactions. This whole stability analysis shows
that for this model they are two ways to break the stability of the racemic state: either
by increasing the number of chiral species in the system NC, as proposed in the general
model for chiral chemical networks, or by increasing A0, the inflow concentration of achiral
species of high free energy, which is equivalent to increase the amount of energy supplied
to the system and thus driving the system further out of equilibrium. A phase diagram
summing up those ideas is shown in Figure 2.10.
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2.3.3 How does the sparsity of the network affect the results?

As stated in Section 2.2.6, different mechanisms could be responsible for making the Ja-
cobian matrix sparse, but random matrix results although modified, still hold under such
conditions. Instead of only looking at sparsity of the global set of reactions, we introduce
a new parameter γ ∈ [0, 1] which quantifies the probability of autocatalytic reactions (re-
actions (2.61) and (2.62)) to be present in the system, meaning that every autocatalytic
reaction has the chance 1− γ to have a zero rate constant. In this case, the criterion for
the stability of the racemic state to be broken becomes A0 > A∗0/γ, meaning that we need
to increase the energy supply or the number of chiral species to achieve homochirality in
a sparser chemical system. This result, which goes in the same direction as the general
model, is however not straightforwardly linked to the sparsity described in Section 2.2.6.
For the general model the sparsity coefficient described the global sparsity of the Jacobian
matrix while here, γ accounts for autocatalytic reactions only, and not directly the spar-
sity of M. The dependence of the threshold on γ is illustrated in Figure 2.10. In addition,
we also introduce the parameter β ∈ [0, 1] which quantifies the probability of chiral inhi-
bition reactions (reactions (2.63)) to be present in the system. It appears that this kind of
sparsity, characterized by β, does not affect the stability of the homochiral state as long
as every species (together with its enantiomer) is involved in at least one chiral inhibition
reaction. It makes sense as inhibition plays a key role in the Frank model to mimic a
competition between species. However if β does not affect the stability of the system to
some extent, it affects its dynamics. Indeed, one can show that the characteristic time tc
to reach the homochiral state when A0 > A∗0/γ becomes

tc ∝
1

β(A∗0/γ − A0)
, (2.100)

provided
β >

γ

τA∗0〈k̃−〉
, (2.101)

and
tc ∝ 1− γA0

A∗0
, (2.102)

otherwise. Note that there is also a critical slowing down as A0 approaches the threshold
value A∗0/γ , which was already present in non-sparse networks. In the end, even though
the stability might be affected, and the dynamics changed, results still hold but with a
higher threshold for the required number of chiral species to obtain a homochiral state.
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Figure 2.11: Close-up of the non-dominant eigenvalues of the Jacobian matrix M of the
generalized Frank model, which do no fill the Ginibre circle. Here, the matrix M char-
acterizes a system of NC = 1000 chiral species, with rate constants distributed according
to a log-normal distribution of parameters 〈k+〉 = 10−4 and σk+ = 2 × 10−4 and τ = 1.
The parameter A0 = 25, is far beyond the instability threshold for the trivial racemic
state. The dominant eigenvalue is around 250 and lies outside the field of view for these
parameters. The red circle is the unit circle, and the normalization factor 1/σ

√
NC is

expressed in term of σ = A0σQ with σQ = σk+
√
NC + 1, which is the standard deviation

of the matrix Q elements in the decomposition of the matrix M in equation (2.74).

2.3.4 Correlations in the Jacobian matrix

In general, it appears that we cannot really suppose the elements of J from equations (2.33)
or (2.66) to be perfect independent and identically distributed random variables. For
many reasons (due to the structure of the reaction network) some correlations could
appear in J and in M = J − I/τ , affecting their spectrum and thus the stability of
the racemic state. This effect on the spectrum can be observed in Figure 2.11, which
display the eigenvalues of the matrix M in the case NC = 1000 for the generalized Frank
model. In this case the eigenvalues appear to be distributed in an ellipse rather than
in a simple disk. Recently, stucture dependent interaction matrices were studied for
ecological system stability [Allesina and Tang, 2012, Allesina and Tang, 2015] and it
has been found that interactions can distort the spectrum of the Jacobian matrix into
ellipses. For instance, predator-prey interactions in ecological models imply new symmetry
relations for matrix elements of the interaction matrix, leading to transformed eigenvalues
and thus modified stability criterion than those presented in Section 2.2.4 (it is to be noted
that structure dependance of the spectrum of RM has also been studied by mathematicians
[Sommers et al., 1988, Aceituno et al., 2019]). However, even if Girko’s circle law is
affected, we observe in Figure 2.11 that the stability of the racemic state is still lost
as before. The scaling of the isolated eigenvalue appears to be robust as it does not
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get affected significantly by correlations of the Jacobian matrix. This also explains why,
in our study of the generalized Frank model, we never observed mechanism (i) but only
mechanism (ii). This example shows that the elements of Jacobian matrices are in general
correlated, but we proved that nevertheless certain features remain. In particular, if the
matrix elements are statistically correlated, the non-dominant eigenvalues may have a
different distribution, but the isolated eigenvalue behaves similarly. This means that the
scenario (ii) is expected to be robust.

2.4 Discussion

In this chapter, we showed that even when they are sparse, chiral molecular systems are
susceptible to undergo a general and robust transition to homochirality when the number
of chiral species becomes large. It is general in that the details of the reaction network
should not matter, to some extent, according to the developments of Section 2.3. Its
robustness comes from the fact that the results, when rescaled, still hold when sparsity
is added to the model, and from the RM treatment which shows that results still hold
in the presence of correlations in the Jacobian matrix, coming from particular structural
properties of the reaction networks. Moreover, the argument does not rely specifically
on the well-mixed property of the CSTR that implies the homogeneity of the concen-
trations of species in the system: non well-mixed systems also induce sparsity in Jaco-
bian matrices and the simple case of two diffusively linked compartments also exhibits a
transition to homochirality as demonstrated in Appendix 2.E. There, we show that the
dominant chiralities in each compartment synchronize or not depending on whether the
exchanges due to the diffusion between the compartments are strong or not. The rel-
evance of compartments in origins of life scenarios and prebiotic chemistry has already
been appreciated [Matsumara et al., 2016,Bansho et al., 2016,Blokhuis et al., 2018, Fu-
rubayashi and Ichihashi, 2018, Laurent et al., 2019] thus we regard as essential that the
results still hold for compartmentalized systems. Moreover, our model differs significantly
from previous models described in the introduction, because it incorporates a crucial in-
variance with respect to permutation in the designation d/l of any member of a pair of
enantiomers. Thus, the model agrees with the possibility that different groups of chiral
molecules adopt different signs of chirality as observed in modern biology and not a global
sign for all biomolecules.

It is also important to recall that the model should be considered far from equilibrium.
A critique one could make to our model would be that in the infinite residence time limit
τ → ∞, corresponding to the limit of a closed system, the instability criterion holds
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under any conditions, which would mean that the racemic state is always unstable. This
would be a major problem for closed chemical chiral systems, because in those systems, an
equilibrium state is reached for long times and is always racemic. We address this criticism
in two points: on one hand, the elements of the matrix J depend on τ , since the stationary
concentrations c∗ are given by equation (2.6) under the assumption of stationarity. This
result could change the behavior of J elements once τ →∞. On the other hand, it should
be understood that the model is relevant only out of equilibrium because this is the regime
we expect to be most relevant for homochirality transition. Living beings are dissipative
systems that remain living as long as they avoid thermodynamic equilibrium, or in other
words, “Living matter evades the decay to equilibrium.” [Schrödinger, 1944]. It is the
same for homochirality, which appears to be also characteristic of living systems: closed
systems are not relevant since a transition to homochirality is not physically possible in
them; thus, our model is to be considered in a far-from-equilibrium regime only. We
believe that the general model proposed in this chapter in Section 2.3 is a strong result
because it shows a universal behavior: any chiral system whose racemate deviations δx
verifies equation (2.33) and whose Jacobian J verifies the RM assumption should undergo
a transition to homochirality given a similar criterion. This idea is illustrated with the
generalization of the Frank model, whose stability was analyzed in Section 2.3. This model
exhibited similar behavior for NC � 1 or when a sufficient supply of energy is provided
to the system, even for sparse networks, which is somehow related to the strength of
interaction between chemical species through their concentrations (interaction strength
and sparsity have also been identified as a control parameter for the stability of ecosystems
[Ratzke et al., 2020]) as long as a minimal number of chiral inhibition reactions are present
in the system. Chiral inhibition reactions have been thought to play a crucial role, along
with autocatalytic behavior, for homochirality emergence, as a way to connect and to
establish a competition between the two families of enantiomers in a chiral system. They
also play a fundamental role in scenarios involving the polymerization of monomers such
as nucleic or ribonucleic acids, as shown in the next chapter. Finally, from the chemical
database analysis, we found that the crossover between the chiral and the achiral world
occurs around 9 heavy atoms per molecule, which indicates that the transition presented
in this section could already occur for prebiotic systems involving not too complex or too
long molecules.
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Appendix 2.A Additional data from the PubChem anal-

ysis

A B

Figure 2.12: (A) Total number of achiral and chiral species in the raw PubChem database
containing about 139 million of species. (B) Fractions of chiral and achiral molecules
containing n ≤ 20 heavy atoms. In this case, only 34 million molecules with n ≤ 20
heavy atoms were analyzed after the specific selection. The figure on the right shows an
intersection at nraw ' 9.4.
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Figure 2.13: Analysis of the database ex-
panded in enantiomers, with 50 million
molecules in data (i.e., 17 million enan-
tiomers were generated) with n ≤ 20 heavy
atoms. The intersection occurs at n2 ' 6.7
for if both enantiomers are considered and
n1 ' 12.7 if only one enantiomer is consid-
ered.
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Appendix 2.B Eigenvalues of a randommatrix with non

zero mean

In this appendix, we show that the perturbed spectrum of an N × N random matrix
whose entries are i.i.d. with a mean µ 6= 0 and a variance σ2 is the same as the case with
µ = 0 but with one isolated eigenvalue λiso = µN .

2.B.1 Isolated eigenvalue of a non zero mean random matrix

Let us suppose M is a random matrix, with independent and identically distributed
elements mij (i, j ∈ [1, N ]) with mean µ and variance σ2. We can separate the mean
from its fluctuations and rewrite M = µ1 + σF, with 1 a matrix full of ones (and not the
unity matrix I). The spectrum of 1 is constituted by the single top eigenvalue N and N−1

times degenerated eigenvalue 0. The eigenvalue N is associated with the eigenvector |1〉.
The eigenvalues 0 are associated with eigenvectors (−1, 1, 0, ..., 0, 0)T, (−1, 0, 1, ..., 0, 0)T,
..., (−1, 0, 0, ..., 0, 1)T. Using perturbation theory with the normalized eigenvector 1√

N
|1〉,

we find that the first-order perturbed single eigenvalue is

λiso = µN +
σ

N
〈1|F |1〉 . (2.103)

The perturbation term on the right hand side reads

σ

N
〈1|F |1〉 =

σ

N

∑
ij

fij , (2.104)

and using the Central Limit Theorem,

σ

N
〈1|F |1〉 =

σ

N
N2µF +

σ

N
O(σFN) , (2.105)

and knowing that µF = 0 and σF = 1,

σ

N
〈1|F |1〉 = O(σ) , (2.106)

we obtain that
λiso = µN +O(σ) . (2.107)

Thus, in the limit σ/µN � 1, the isolated eigenvalue of M is µN .
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2.B.2 Perturbation of other eigenvalues

The other eigenvalues are also perturbed. Their perturbation can also be determined
by perturbation theory. Let us consider the vector |k〉 = (1,−1, 0, ..., 0)T. Using the
normalized vector |k〉 → 1√

2
|k〉, we find that the perturbation of the associated eigenvalue

is given by
σ

2
〈k|F |k〉 = O(σ) , (2.108)

because fij are i.i.d. random variables with mean 0 and variance 1. Thus, the isolated
eigenvalue is also the top eigenvalue (or the lower one if µ < 0), provided σ/µN � 1.
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Appendix 2.C Elements of the Jacobian in the homochi-

ral state

The elements of the Jacobian matrix N, evaluated in the fully homochiral state where
Li = 0, ∀i read

∂Ȧ

∂A
= −

∑
ijk
j≤k

k+ijkDi −
1

τ
, (2.109)

∂Ȧ

∂Dn

= −
∑
jk
j≤k

k+njk A , (2.110)

∂Ȧ

∂Ln
= −

∑
jk
j≤k

k+njk A , (2.111)

∂Ḋm

∂A
= −

∑
ij
i≤j

k+mij Dm +
∑
ij

m≤j

k+imj Di +
∑
ij

j≤m

k+ijmDi , (2.112)

∂L̇m
∂A

= 0 , (2.113)

∂Ḋm

∂Dn

=
∑

i
m≤i

k+nmiA+
∑

i
i≤m

k+nimA− δnm
(
A
∑
ij
i≤j

k+mij +
1

τ

)
, (2.114)

∂Ḋm

∂Ln
= −k̃−mnDm , (2.115)

∂L̇m
∂Dn

= 0 , (2.116)

∂L̇m
∂Ln

=
∑

i
m≤i

k+nmiA+
∑

i
i≤m

k+nimA− δnm
(
A
∑
ij
i≤j

k+mij +
∑
i

k̃−imDi +
1

τ

)
.(2.117)

Let us denote as λD (resp. λL) the eigenvalues of the matrix ∂Ḋ
∂D

(resp. ∂L̇
∂L
), and as

λDmax (resp. λLmax) the corresponding maximal eigenvalue. Using methods introduced in
Section 2.3.2, we obtain from equations (2.114) and (2.117)

λDmax = A〈k+〉
NC(NC + 1)

2
− 1

τ
, (2.118)

and
λLmax = A〈k+〉

NC(NC + 1)

2
− 1

τ
+ S , (2.119)
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where S is defined as S = −DNC〈k̃−〉 and is due to the term −∑i k̃−imDi in equa-
tion (2.117) for the mth diagonal element. Using the mean-field expression for D derived
in equation (2.95), and the expression for A from equation (2.90) we obtain

λDmax = 0 , λLmax = S = −NCD〈k̃−〉 (2.120)

with 〈k̃−〉 the mean value of chiral inhibition reaction constants.
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Appendix 2.D Calculation of the maximal eigenvalue

of the Jacobian matrix

We first define the upper-left block submatrix of the matrix N as H,

H =

(
a vT

u K

)
, (2.121)

where

a =
∂Ȧ

∂A
, (vT)n =

∂Ȧ

∂Dn

, (u)m =
∂Ḋm

∂A
, (K)mn =

∂Ḋm

∂Dn

. (2.122)

In the large NC limit, the vector u converges towards a constant vector. Its elements are
given by, according to equation (2.112),

(u)m =
NC→∞

DNC
NC + 1

2
〈k+〉 , (2.123)

thus using equation (2.95),

(u)m =
NC→∞

(A0 − A∗0)
NC + 1

2
〈k+〉 . (2.124)

All the elements of u converge to the same value given by the previous equation. We can
do the same evaluation for vT defined by equation (2.122) using equation (2.90):

(vT)n =
NC→∞

−ANC
NC + 1

2
〈k+〉 , (2.125)

thus
(vT)n =

NC→∞
−1

τ
. (2.126)

Finally, we can compute the value of the scalar element a defined by equation (2.122) in
the NC →∞ limit:

a =
NC→∞

−D〈k+〉N2
C

NC + 1

2
− 1

τ
, (2.127)

thus
a =
NC→∞

− A0

A∗0τ
. (2.128)

after simplification with equations (2.90) and (2.95). The characteristic determinant of
the matrix H can be written using the Schur complement of the block a, with λ a com-



66 CHAPTER 2. A ROBUST TRANSITION TO HOMOCHIRALITY IN LARGE . . .

plex variable such that λ /∈ σK = {λ1, λ2, . . . , λNC
}, a condition which guarantees the

invertibility of K− λI:

det(H− λI) = [a− λ− vT · (K− λI)−1 · u] det(K− λI) , (2.129)

with I the identity matrix. At this point, it is important to recall that, in the large NC

limit, the isolated eigenvalue of the matrix K = ∂Ḋ
∂D

, which we here denote λ1, is associated
to the eigenvector (1, . . . , 1)T. Therefore we see that u and vT are eigenvectors of matrix
K associated to λ1, i.e., K · u = λ1u, thus

(K− λI)−1 · u =
1

λ1 − λ
u . (2.130)

A similar development could be done by considering vT as a left-eigenvector of K. Sub-
stituting this relation into equation (2.129), we get

det(H− λI) =

(
a− λ− vT · u

λ1 − λ

)
det(K− λI) , (2.131)

thus
det(H− λI) =

(a− λ)(λ1 − λ)− vT · u
λ1 − λ

det(K− λI) . (2.132)

We use the decomposition of det(K−λI) as a polynomial function of roots σK = {λ1, λ2, . . . , λNC
}

(i.e., the eigenvalues of K) to find

det(H− λI) = [(a− λ)(λ1 − λ)− vT · u] (λ2 − λ)× · · · × (λNC
− λ) . (2.133)

By continuity (since initially we had assumed that λ /∈ σK), we deduce from equa-
tion (2.133) that the spectrum of matrix H is given by the NC − 1 eigenvalues of K

distributed in the circle (from Girko’s theorem), and two eigenvalues solutions of (a −
λ)(λ1 − λ) − vT · u = 0. As a result, the isolated eigenvalue λ1 is modified and becomes
one of the two solutions of the previous equation to solve. From equation (2.120), the iso-
lated eigenvalue λ1 should be identified with the largest eigenvalue λDmax. This means that
λ1 → 0 in the large NC limit. The equation that remains to be solved to fully determine
the spectrum of H is then

λ2 − aλ− vT · u = 0 . (2.134)
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Using the expressions (2.124) and (2.126) for u and vT, as well as equations (2.90), we
determine their dot product

vT · u = −A0 − A∗0
τ

NC
NC + 1

2
〈k+〉 , (2.135)

or simply

vT · u = −A0 − A∗0
τ 2A∗0

, (2.136)

where the additional NC factor comes from the summation. With equation (2.128), the
discriminant of equation (2.134) can thus be written

∆ = a2 + 4 vT · u =
1

τ 2

(
A0

A∗0
− 2

)2

. (2.137)

We observe that ∆ > 0 when A0 > A∗0, but ∆ = 0 in the particular case where A0 = 2A∗0.
When A0 6= 2A∗0, the two real solutions of equation (2.134) are

λ+ =
1

2

[
− A0

A∗0τ
+

1

τ

(
A0

A∗0
− 2

)]
= −1

τ
, (2.138)

and
λ− =

1

2

[
− A0

A∗0τ
− 1

τ

(
A0

A∗0
− 2

)]
=

1

τ

(
1− A0

A∗0

)
. (2.139)

Finally, in the particular case where A0 = 2A∗0, there is a unique solution,

λ+ = λ− = −1/τ . (2.140)
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Appendix 2.E Compartmentalized systems with diffu-

sive coupling

In this appendix, we study the case of two diffusively coupled compartments for the general
model developed in Section 2.3. In this case, species are exchanged through compartments
with a diffusion coefficient κ such that the set of equations (2.13)-(2.15) becomes

dcD,i

dt
= FD(cD,i, cA,i, cL,i) +

1

τ
(cD0,i − cD,i) + κ(cD,j − cD,i) , (2.141)

dcA,i

dt
= FA(cD,i, cA,i, cL,i) +

1

τ
(cA0,i − cA,i) + κ(cA,j − cA,i) , (2.142)

dcL,i

dt
= FL(cD,i, cA,i, cL,i) +

1

τ
(cL0,i − cL,i) + κ(cL,j − cL,i) , (2.143)

where (i, j) = (1, 2) or (2, 1) are the indices referring to compartments 1 and 2. Linearizing
the time evolution of infinitesimal deviations from the racemate in compartment i,

dδxi
dt

=
1

2

d

dt
(cD,i − cL,i) , (2.144)

we obtain the equivalent of equation (2.33) for each compartment

dδxi
dt

=

(
Ji −

1

τ
I− κI

)
· δxi + κ · δxj , (2.145)

provided δx0,i = 0 for each compartment, meaning that the inflow of species in both
compartments is racemic, where Ji is given by

Ji =
∂FD

∂cD

∣∣∣∣
c∗,i

− ∂FD

∂cL

∣∣∣∣
c∗,i

, (2.146)

and depends only on the racemic state considered in the compartment i, as the structure
of the reaction network is the same in both compartments. In the special case where
the same racemic state is considered in both compartments c∗,1 = c∗,2, we deduce from
equation (2.145) that the deviations of the whole system are described by the linear set
of equations

d

dt

(
δx0,1

δx0,2

)
=

(
M− κI κI

κI M− κI

)
·
(
δx0,1

δx0,2

)
, (2.147)

where M = J − 1
τ
I and J = J1 = J2. In the limit of small κ, we can treat the effect of

diffusion as a small perturbation. This perturbation will introduce a correction of the order
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of κ on the eigenvalues of the uncoupled case (κ = 0). Since the dominant eigenvalues in
the uncoupled case are of the order of

√
NC or NC, depending on whether the scenario (i)

or (ii) is relevant, this correction should have a small effect on the threshold of instability.
Let us call u the eigenvector of the matrix M and the corresponding eigenvalue λ.

A simple calculation provides the eigenvectors u′ and the eigenvalues λ′ of the matrix L

as function of u and λ. In the case where the dominant eigenvalue of M is the isolated
eigenvalue λ = µNC − 1/τ +O(σ), one finds that the dominant contribution to λ′ equals
either µNC − 1/τ or µNC − 1/τ − 2κ. The corresponding dominant eigenvectors have
respectively uniform components across both compartments: u′ = (1, . . . , 1)T or opposite
components on each compartment: v′ = (1, . . . , 1,−1, . . . ,−1)T. If opposite deviations in
each compartment emerge, the synchronization towards a global homochiral state occurs
when the contribution of u′ wins over that of v′ on long times. For weak couplings κ→ 0,
the contribution of the top two egeinvalues are similar and in the vicinity of the racemic
state, the vector (δx0,1 , δx0,2)T is aligned with a linear combination of eigenvectors u′

and v′, depending on the initial deviation. However, when κ increases, the gap between
the two eigenvalues grows, and the contribution of the eigenvector u′ becomes strongly
dominant, indicating a synchronization of the deviations from the racemic state between
the two compartments, thus a synchronization of the directions of homochirality in both
compartments. This is observed numerically with the Generalized Frank model. When
diffusion is weak for κ→ 0, we recover the previous scenario for a transition to homochi-
rality, separately holding in each compartment in a well-mixed system. As κ increases, so
does the coupling between the two compartments. If there is a small bias present which
is the same in the two compartments (favoring l-species for instance), then one ends up
with a global homochiral state (which is l-oriented in that case). The interesting case
is therefore when the two compartments are intially given opposite small biases. Then,
as shown in Figure 2.14, we find that as κ increases, we go from a global racemic state
at small values of κ towards a global homochiral state when the coupling is sufficiently
strong. The threshold of instability is found not to be significantly changed as compared
to the well-mixed case in agreement with the theoretical argument given above.
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Figure 2.14: Probability to have two homochiral compartments of the same chirality on
long times (either both are d or both are l) as function of the transition probability of
transfer of molecules between the two compartments κ. The initial condition is such that
there is an opposite chiral bias in both compartments, so that in the absence of diffusion
coupling, the global state will be racemic. For one realization of the rate constants, the
parameter κ is varied; then this procedure is repeated for different realizations of the rate
constants. The curve has been done for a value of the driving force which is above the
instability threshold. Simulations were carried out with an initial enantiomeric excess
ε1 = 10−2 and d- and l-enantiomers concentrations of all chiral species were initialized at
D0 = 2+ε1 and L0 = 2−ε1 in the first compartment and with ε2 = 1.5×10−2 in the second
compartment but favoring l-enantiomers. The inactivated achiral specie was initialized
at Ã0 = 0 and the activated one at A0 = 80, far above the homochirality threshold in
each compartment. All the constants k+ijk and k̃−ij follow a log-normal distribution of
parameters µ = −10.02 and σ = 1.27 (i.e., corresponding to a log-normal distribution
with 〈k+〉 = 〈k̃−〉 = 10−4 and σk+ = σk̃− = 2× 10−4), with k̃ij = k̃ji to satisfy the mirror
symmetry. The number of chiral species was set up to NC = 20.
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In this section, we study how homochirality could emerge through template-directed
polymerization of nucleic acids like RNA or prebiotic equivalents. In the case of RNA,
template-directed synthesis of polymers consists in the extension of an RNA polymer by
ligation with another polymer or monomer while being attached to a template strand
through base paring. In modern biology, as stated in the introduction, riboses and de-
oxyriboses, hence all nucleotides are d-oriented. Based upon experimental evidences that
template-directed synthesis of RNA admits some degree of chiroselectivity, we explore
here the propensity of a racemic pool of nucleotides to converge toward a homochiral pool
of RNA strands in the presence, or not, of racemization reactions. Two kind of systems
and their effects are studied in this chapter: (i) closed systems with a conserved number
of RNA monomers and (ii) open reactors where species are being degraded over time and
some are being chemostated.

3.1 Random polymerization

3.1.1 A simple model for polymerization

RNA strands are chains of ribonucleotides attached to each other through phosphodiester
bonds, which are covalent bonds between a phosphate group and a carbon of two different
nucleotides. Ribonucleotides are themselves composed of three different structures: a
nucleobase which can be either a purine (adenine or guanine) or a pyrimidine (cytosine or
uracile), a ribose (i.e. a 5 carbon simple sugar) and a phosphate group. Ribonucleotides
get their chirality from the ribose which contains three different stereocenters. Recent
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studies established prebiotic plausible pathways for the synthesis of purines and pyrimidine
[Powner et al., 2009,Becker et al., 2019].

We first consider a system in which ribonucleotides undergo step-growth polymerization
as depicted in Figure 3.1.a, i.e. template free polymerization, to see if this simple mech-
anism can already exhibit any transition to a homochiral state. The system is initially
composed of two enantiomeric families of activated monomers that go through polymer-
ization events with a rate constant klig, therefore it is a binary system where we do not
consider any chemical differences between the four standard ribonucleotides AGCU but
their two possible chiralities. The two possible monomers are therefore denoted d and l,
referring to their respective chirality. Those strands can be cleaved by hydrolysis with a
rate constant kcut for every phosphodiester bond in the polymer (i.e. a strand of length
l has the rate (l − 1)kcut to be cleaved at one of its bonds). This is described by the
following mechanism

Si + Sj

klig−−⇀↽−−
kcut

Si+j , (3.1)

where Si is a strand of length i, with i, j > 0. There is no evidence for a chiroselective be-
havior during step-growth polymerization of RNA. Therefore, RNA polymerization from
a racemic pool of monomers produces strands composed of nucleotides of a random chi-
rality. However, it has been shown experimentally that this process become chiroselective
through specific chiral ribozyme catalysis or when performed on a mineral surface such as
montmorillonite clays [Joshi et al., 2006, Joshi et al., 2011]. In this case, the addition of
a monomer with a different chirality than at the 3’ end of the extended strand is slowed
by a factor α < 1, i.e. the ligation rate becomes k′lig = αklig as depicted in Figure 3.1.c.

3.1.2 The Gillespie algorithm

Deterministic rate equations, often used to model biochemical system are in fact only
valid under the assumption that the system contains a very large number of molecules
of each species (or in other words, it works for large concentrations). When modelling
biochemical systems with low number of particles, one cannot neglect the stochasticity
of the collisions and thus the chemical reaction process become stochastic. In this case,
deterministic equations give a poor description of the dynamics of the system. One should
then solve the dynamics using the Gillespie algorithm [Gillespie, 1976] which is an exact
implementation of the master equation. This stochastic algorithm, introduced by Gillespie
in 1977 [Gillespie, 1977,Gillespie, 2007] allows to simulate chemical systems with a few
reactants since every reaction involving two species is explicitly simulated. The direct
Gillespie algorithm works as follow:
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A B

C D

Figure 3.1: Polymerization schemes. Grey and red colors represent the two d and l
chiralities. (A) Step-growth polymerization of a single-stranded polymer in a chiral closed
system. (B) Template-directed ligation of activated nucleotides. The arrow with four
ends depicts the four possibilities for the dimer to bind to the longer template. (C) Step-
growth polymerization of a single-stranded polymer is slowed during the incorporation of
a monomer of the wrong chirality in the presence of a chiroselective ribozyme or a mineral
surface such as Montmorillonite clay. (D) The ligation of two strands on a template is
stalled if, at the ligation site, there is a chirality mismatch between one of the two ligated
strands and the template.
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1. Set the initial copy number for all species and set time to t = 0.

2. Compute the propensity for all reactions of the system, and the total propensity
of the system (it is the sum of propensities for all reactions in the system). The
propensity of a reaction is a rescaled rate, whose scaling depends on its molecularity,
i.e. whether the reaction is monomolecular (an outflow or a cleavage) or bimolec-
ular (e.g. A + B → C) reaction. The propensity for a given reaction controls its
probability to occur between two Gillespie steps.

3. Draw dt the time interval during which a reaction will occur, from an exponential
distribution, whose mean is the inverse of the sum of propensities.

4. Draw the next reaction that occurs in the system at random. Each possible reaction
has a chance proportional to its propensity to be the chosen one.

5. Update the number of particles depending on which reaction occurred in the system,
and update the new simulation time t = t+dt. The simulation stops when it reaches
the maximum time limit.

3.1.3 The incapacity of step-growth polymerization to produce a

homochiral system under closed conditions

Numerical simulations of the previously described system were performed using a Gille-
spie algorithm coded in C++, considering the case of a closed reactor. The distribution
of homochiral strands as a function of the length of the strand produced in the reactor
shows a deviation from the random case in the presence of a chiroselective enzyme (see
Figure 3.2a). With no chiroselection, each monomer within a strand has an equal proba-
bility to be of d- or l-chirality. Therefore the probability for a strand of a given length k
to be homochiral is 21−k because there are two possibilities for homochiral strands (either
full d or full l). The system reaches a state where all strands taken individually are
homochiral in the case of perfect chiral selection (α → 0), while the pool remains gen-
erally racemic. If we now introduce a racemization reaction (racemization reactions will
be specified in Section 3.2.5) at the free monomer level, which is here assumed very fast
(the pool at the free monomer level is racemic at any time), we observe in Figure 3.2.b a
bias in the enantiomeric excess (e.e.) at the monomer level (all monomers of the system,
polymerized and non-polymerized ones). The enantiomeric excess is defined here as

e.e. =
|Dm − Lm|
Dm + Lm

, (3.2)
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A B

Figure 3.2: Stochastic simulations of step-growth polymerization. (A) Fraction of ho-
mochiral strands as a function of their length k in the steady state, without any racem-
ization reactions. The white curve is the theoretical prediction for unbiased homochiral
and heterochiral ligation. In this case, the fraction of homochiral strands is 21−k. (B)
Time evolution of the enantiomeric excess at the monomer level. The simulations were
performed with instantaneous racemization reactions for monomers that are not polymer-
ized. α is the ligation chiral bias α = k′lig/klig. Data are averaged over 100 independent
numerical realizations starting from an initial racemic pool composed of 2500 d- and 2500
l-monomers. Parameter set is : klig = 5.27× 10−9, kcut = 10−10 and V = 4.69× 10−4µm3.

where Dm (resp. Lm) is the total number of d-monomers (resp. l-monomers) in the
system. We observe convergence to a non-racemic steady-state but at a small e.e. without
chiroselective bias (e.e. ∼ 1%). With an effective chiral selection, the system ends up in a
steady state with a slightly larger e.e. but which hardly go beyond 2% even with perfect
chiral selection. In this case, this increase of e.e. depends on the chiroselective effect but
saturates for value of α > 0.1. Also, if the catalyst would disappear from the system at
some point, the e.e. would relax to the non-biased steady-state value.

Eventhough catalyzed step-growth polymerization can favor homochiral strands, no
significant imbalance appears in the system due to the lack of autocatalytic dynamics, and
further production of biased homochiral strands relies entirely on an external factor such as
chiral enzymes or mineral surfaces. Here, even though it is closed, the system never reaches
a racemic equilibrium because racemization drives it out of equilibrium. Equivalently,
racemization breaks the conservation law between d- and l-monomers. Basically, even
with chiroselection and racemization reactions, simple RNA step-growth fails to produce
any significant e.e. in a closed system. The main reason here is that no autocatalytic
behavior emerges from step-growth polymerization that would select only one chirality
and amplify it, at the expense of the other.
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3.2 Template-directed ligation

We now consider a chemical system where, starting from a pool of nucleotides, template-
directed ligation involving RNA polymers and monomers occurs, as represented in Fig-
ure 3.1.b. RNA strands have the ability to attach to each other through base pairing,
a mechanism in which face to face nucleobases contained in two attached RNA strands
link through hydrogen bonding, resulting in a RNA duplex. For simplicity we once again
consider a binary model composed of two ribonucleotides of different chiralities d and l,
which can self-pair. One of the requirements for ligation to occur is that the phosphate
group of nucleotides is activated, as the formation of a covalent bond during ligation
requires energy provided by the environment. Thus, an activation chemistry is assumed
to be supplied in a sufficient amount to assume that all nucleotides are always activated
(exemple of activation chemistry are given in [Kervio et al., 2016,Walton and Szostak,
2017, Sosson and Richert, 2018]). Activation reactions are not modeled explicitly in this
work.

3.2.1 Hybridization and dehybridization

Hybridization and dehybridization of two strands are assumed to be single-step processes.
Two complexes collide with a rate kcoll and hybridize with equal probabilities for all the
possible binding configurations. The rates of those two reactions, namely kon and koff , are
constrained by the thermodynamic relation

koff

kon

= (V NAc
◦) · exp

(
∆Ghyb

kBT

)
, (3.3)

where V is the reactor volume, NA the Avogadro number, c◦ = 1 mol.L−1 the reference
concentration, kB the Boltzmann constant, T the temperature, here fixed at T = 37◦C,
and ∆Ghyb the hybridization energy associated with the part of sequence which is hy-
bridized. The hybridization rate kon between two strands for one specific combination is
related to the constant collision rate kcoll through the relation

kon =
1

θ
kcoll , (3.4)

where θ is the number of possible duplex combinations they can form. Two strands of
length l1 and l2 have θ = l1 + l2 − 1 possible ways to attach to each other through base
paring. This expression changes if one of the strands is already part of a complex, but
the total rate for the hybridization of two strands still sum up to kcoll. The computation
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of ∆Ghyb depends of the choice of an energy model for the stability of complexes. In the
first place, it is important to note that ∆Ghyb does not just depend on the length of the
hybrized part within a complex. As base pair mismatches in DNA and RNA destabilize a
complex, chiral mismatches also destabilize [Damha et al., 1991,Damha et al., 1994,Urata
et al., 2003,Kawakami et al., 2005,Hauser et al., 2006, Szabat et al., 2016] heterochiral
DNA and RNA complexes.

Naive pairwise energy model

A straightforward way to construct the hybridization energy of a complex is to sum up
contributions to hybridization energy for all base pairs in the duplex (a duplex being a
complex composed of two hybridized strands). We consider in a first approximation that
base pairs consisting of two monomers of the same chirality in a complex (i.e. homochiral
base pairs) contribute negatively to the free energy (hence stabilizing the complex). In
contrast, heterochiral base pairs interact in a way that destabilizes the complex and
contributes positively to the hybridization energy (see Fig 3.3). The hybridization energy

Figure 3.3: The four different possible base pairs.

of a given complex would result in the sum over all of its base pairs

∆Ghyb =
∑

i∈{pairs}

δGp
i , (3.5)

where δGp
i is the energy contribution of the i-th base pair in the complex. Even though

this energy model could produce interesting results, it does not properly describe how
heterochiral internal bonding affects complexes’ stability. It is crucial to consider neighbor
interactions within each complex strand [Liu, 2020] as it will disrupt the helix rotation
of the complex. For instance, with a base-pair model, a purely alternating duplex with
homochiral base pairs

5′− D L D L D L D L

3′− D L D L D L D L
or

5′− L D L D L D L D

3′− L D L D L D L D
, (3.6)
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would have the same stability as the associated fully homochiral duplex

5′− D D D D D D D D

3′− D D D D D D D D
or

5′− L L L L L L L L

3′− L L L L L L L L
, (3.7)

which has been disproved experimentally [Hauser et al., 2006] for DNA for instance.
Therefore a block-wise model instead of a pair-wise energy model [Turner and Mathews,
2009] appears more relevant for our study.

Block-wise energy model

The block-wise energy model considers the contributions of blocks of two base pairs rather
than individual base pairs. It accounts for base pairs and lateral interactions within each
strand, when a duplex structure is formed during hybridization. The total hybridization
energy is summed up over all blocks in the complex

∆Ghyb =
∑

i∈{blocks}

δGb
i , (3.8)

where δGb
i is the free energy contribution of the i-th block. Turner and SantaLucia [San-

taLucia and Hicks, 2004,Turner and Mathews, 2009] already measured all hybridization
block energy contributions for every possible base pair combination for d-DNA or d-RNA
in a duplex. The same values would be measured in theory for l-DNA and l-RNA, but
unfortunately, block energies have not been measured extensively for DNA/RNA com-
plexes of mixed chiralities. One can however circumvent the lack of experimental data
by building a minimal model to describe heterochiral interactions within a block of four
monomers (see Figure 3.4). We denote δG1 = E < 0 the hybridization block energy as-
sociated with a fully homochiral block (the other hybridization block energies are defined
graphically on Figure 3.4). Averaging over all blocks from the 2004 Turner library (for
RNA), we set E = −1.59 kcal.mol−1. We denote u the vertical penalty associated with
a mismatch of chiralities in a base pair, and v is the lateral penalty associated with het-
erochiral patterns in one of the strands of the complex (u and v are positive quantities).
The block energies are thus ordered in amplitude as follows

δG1 <

{
δG2

δG3

}
≤ δG5 ≤

{
δG3

δG2

}
< δG4. (3.9)
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Figure 3.4: The five different kinds of 4-monomers blocks and their associated free energies
as a function of the basal free energy of a fully homochiral block, E, and the vertical and
lateral penalties u and v due to chiral mispairing or heterochiral patterns within the two
distinct strands.

The double diagonal mismatch destabilizes the most the complex due to an incorrect
base pairing and incompatible rotational twists in the duplex that is supposed to form a
helix. We differenciate three different cases depending on the relative values of u and v
(namely u < v, v < u, u ∼ v) describing the strengh of a lateral or a vertical mismatch
penalty. From the experimental litterature [Urata et al., 2003], we finally deduce an
approximate value for u + v amplitude, u + v ∼ 1.26 kcal.mol−1. The three different
couples of values for (u, v) will be 1. (0.42, 0.84) kcal.mol−1, 2. (0.84, 0.42) kcal.mol−1 and
3. (0.63, 0.63) kcal.mol−1. For the case of terminal blocks formed out of three monomers
instead of four, when the end of a strand does not coincide with the end of the template
in a complex, we use the same model but with a different energy for the homochiral
three-monomers block: E3−block = −0.47 kcal.mol−1 (this value is also the result of an
average of the data from the 2004 Turner library for RNA). In the simulations, all the
block energies and penalties are rescaled by a factor 0.49 for optimization purposes.

3.2.2 Ligation and stalling

In this model, we neglect random ligation, i.e. ligation occurring without templates, as it
is slower than templated one. Two strands can ligate on a template if they share a common
ligation site (see Figure 3.1b), with the rate constant klig. During the template-directed
ligation of RNA, the ligation speed depends on the chiral configuration near the ligation
site. Experiments have shown [Joyce et al., 1984, Bolli et al., 1997] that the ligation of
two strands on a template is slowed when the chirality of the nucleotide at the ligated
end of a strand does not match the chirality of the template (see Figure 3.1.d). The am-
plitude of the stalling slows the ligation from one up to two orders of magnitude. Indeed,
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in 1984, a key experiment [Joyce et al., 1984] where G-ribonucleotides were polymerized
onto a poly(CD) template (an oligomer composed of d-cytosine nucleobases) showed such
a chiroselective behaviour. Joyce et al. noted first that GD (which are activated d-guano-
sine nucleobases) were incorporated more readily during templating onto the poly(CD)
oligomer than GL ribonucleotides, and that GL acted as chain terminator that prevents
further extension of the elongated poly(G) strand, describing both a chiral selection and
a perfect chiral cross-inhibition. They still observed GL ribonucleotides at non-terminal
posititions indicating that there is still the possibility to incorpore GD nucleotides after a
chiral mismatch. The cross-inhibition is thus strong, but definitely not perfect. In 1997,
other experiments [Bolli et al., 1997] were performed using pyranosyl-RNA instead of
furanosyl-RNA (which result in a 4’-2’ phosphodiester bonding between ribonucleotides
of a given polymer rather that 5’-3’ bonding) for templated ligation. It could be observed
that the ligation speed was reduced to 10% its basal speed (i.e. when no chiral mis-
matches are present at the ligation site) when a chiral mismatch involving a purine was
present at a ligation site. For chiral mismatches involving pyrimidines, the ligation speed
was reduced up to two order of magnitudes. All in all, when chiral mismatches between
a template and an elongated strand appears at a ligation site, the ligation is stalled. For
homochiral binding sites, the ligation occurs at its basal rate, klig = λ. Therefore, the
ligation rate for a given complex reads

klig =


λσ2 if C−1

S 6= C−1
T and C+1

S 6= C+1
T

λσ if C±1
S 6= C±1

T and C∓1
S = C∓1

T

λ otherwise.
(3.10)

where Ci
S (resp. Ci

T ) describe the chirality of the i-th monomer of a strand participating
in a ligation event (resp. the template strand), which can be either d or l and σ ≤ 1

the stalling factor which we introduce here to quantifity the effect of the stalling observed
in [Joyce et al., 1984, Bolli et al., 1997]. Monomers on both sides of the ligation site
are labeled −1 and +1. This phenomenon induces a powerful chiroselective effect during
template-assisted RNA ligation that will reduce chirality errors during its replication.

3.2.3 Hydrolysis

RNA strands can be cleaved by hydrolysis, during which a phosphodiester bond of their
backbone is broken. The cleavage rate is denoted kcut and is the same for all phosphodi-
ester bonds in the system. Therefore any strand of length l is susceptible to be cleaved
at one of its junctions with a rate (l − 1)kcut resulting in two shorter strands. However
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we note that hydrolysis does not occur when strands are part of a duplex.

3.2.4 Temperature cycles

From the thermodynamic relation of equation (3.3), it appears that the hybridization en-
ergy of long complexes becomes arbitrarily large in negative values and results in frozen
complexes that do not dehybridize in a finite time. To circumvent this well known issue,
known as product inhibition, which would lead to frozen dynamics in which all strands
would be part of highly stable complexes, we impose thermal cycling to the system that
melts the complexes periodically [Mast and Braun, 2010, Salditt et al., 2020]. Instanta-
neous temperature peaks with a given frequency 1/τcycle periodically split all complexes
apart. We assume here that these temperature changes are quick enough not to affect
the other processes in the system, eventhough, in theory, all chemical process should be
affected by the temperature change. Another possibility to force the melting of the com-
plexes would be pH changes or increases of salts concentration [Tkachenko and Maslov,
2015,Keil et al., 2017,Mariani et al., 2018, Ianeselli et al., 2019]. The dynamics of these
cycles is not described in details in the model but it is essential to solve the issue of
product inhibition.

3.2.5 Racemization reactions

In simulations where it is explicitly stated, we will consider that a racemization reaction
occurs in the system. We assume that this racemization occurs only for unpolymerized
monomers and that it is a one-step process that can convert d-monomers into l-monomers
and vice versa. Experimentally, racemization could occur as the result of the production
of achiral free radicals from riboses’ chiral centers when exposed to UV light for instance.

3.2.6 Previous works

Two different works [Tupper et al., 2017, Chen and Ma, 2020] studied so far templated
replication of RNA as a proxy for homochirality emergence. In 2017, Tupper et al.,
performed numerical simulations of a pool of monomers undergoing templated polymer-
ization. They assumed that RNA polymers could elongate through step-growth poly-
merization, be cleaved by hydrolysis and also could ligate once bounded on a template.
The two short strands that would hybridize onto the template should have a uniform
sequence and an exact chiral compatibility with the template. In other words, no chiral
mismatches were allowed during hybridization. There was also no description of the sta-
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bility of duplexes formed through RNA hybridization as no description of duplexes was
really carried out. In this context, they assumed that duplexes would dehybridize directly
after the ligation of the two elongated strands. Note that we do not seek to judge the de-
cisions taken by the authors here. They themselves stated in their work that they aimed
for a simple model to describe template-directed ligation, and we will see that such a
simple description could already give satisfying results. Considering only closed reactors,
a racemization reaction could interconvert single monomers into the other chirality. With
this set of assumptions, they could observe a symmetry breaking in the dynamics of the
enantiomeric excess for sufficiently large values of the ligation rate between two strands
sitting next to each other on a template. In 2020, Chen and Ma also performed numerical
simulations of a similar ribonucleic system. Here only monomers of the same chirality as
the template could be incorporated into the extended hybridized chain. This assumption
was further relaxed in their work but still, the incorporation of a monomer from the op-
posite chirality acted as a terminator of the template-directed synthesis. As for Tupper
et al. their model does not propose any thermodynamic description of the RNA duplexes
formed by hybridization. They were also able to show with their model that such a closed
system undergoes a symmetry breaking leading to the convergence of the enantiomeric
excess to values close to one in presence of racemization reactions for single monomers.
The main differences with our present model is first, the thermodynamic description of
RNA hybridization we propose and that we allow any feasible hybridization, and second,
the fact that chiral mismatches are possible and do not formally stop the ligation process
but only stall it as observed experimentally. Also we come up with a physical explanation
for RNA duplex melting with periodic heat peaks that separate all the RNA complexes.

3.3 Closed reactor

We focus now on the results of the model of template-directed ligation described in Sec-
tion 3.2. The model is also numerically simulated with a Gillespie algorithm in a well-
mixed system using a modified version of the numerical toolbox developped in C++ by
Gerland’s group in Munich [Rosenberger et al., 2021,Göppel et al., 2022]. The system is
initially inoculated with a total of 5,000 nucleotides distributed in 4,920 monomers (2,460
d- and 2,460 l-monomers) and 40 dimers (10 dd-, 10 ll-, 10 dl- and 10 ld-dimers) in a
racemic fashion. Chiral biases will emerge naturally in those stochastic simulations. All
parameters used for the simulations are given in Table 3.1.
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reaction type parameter expression value (in kcoll units)
collision kcoll 1 1
hybridization kon

1
θ
kcoll

ligation klig 1.5× 10−4

temperature cycle 1/τcycle kcoll · exp(δG1Lcycle) 1.8× 10−3

racemization krac

hydrolysis kcut 10−10

outflow kout 10−8

chiral inhibition σ [0.05, 1]

Table 3.1: Parameters set used in the simulations. Parameters are specified if differents
values are used. Note that σ has no units. τ is parametrized with Lcycle which is defined
in Section 3.3.6 in equation (3.14).

3.3.1 Quantities of interest

Without racemization of the system at the free monomer level, the two enantiomeric
populations remain constant over time. As a consequence, there is no interest in looking
at the overall e.e. for such systems. Therefore, we introduce the chirality parameter χ,
which describes the chirality of a given strand

χ = 2fD − 1 , (3.11)

where fD is the fraction of d-monomers in a given strand. With this, χ = 0 describes a
strand with half its monomers being d-chiral and the second half, l-chiral (the e.e. of such
a strand equals 0), and χ = 1 characterizes a homochiral strand of d-monomers while
χ = −1 a homochiral strand of l-monomers. We also introduce a second parameter, that
is, the fraction of homochiral motifs in the strand i, ξi such that

ξi =
hi

li − 1
, (3.12)

where hi is the number of homochiral motifs (dd or ll) in the strand i of length li. The
fraction of homochiral motifs in the system Ξ thus reads

Ξ =

∑
i ξi(li − 1)∑
i(li − 1)

. (3.13)

A system composed of strands with only homochiral motifs will be characterized by a
parameter Ξ = 1 and Ξ = 0 in the case of heterochiral motifs only.
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3.3.2 Irrelevance of block energy model details

In the first place, simulations data indicate that there is no fundamental difference of
dynamics between the three different parameter sets for the block energy model (u <

v, v < u or u ∼ v), assuming u > 0 and v > 0. For every quantity studied here, the
dynamics are similar (see Appendix 3.A), indicating the details of the block energy model
do not matter as long as there is a stability difference between fully homochiral blocks and
heterochiral ones. The simulations presented throughout this section will be carried out
in the case u ∼ v from now on (meaning that base pair mismatches in chirality destabilize
duplex formation as much as chirality alternation inside a strand during hybridization).

3.3.3 System without racemization

Without racemization reactions, the system reaches a steady state after a transient regime
of exponential growth (Figure 3.5a) which is necessarily racemic regarding its general com-
position. The number of monomers of both chiralities is conserved over time. However,
patterns can still emerge, and we could end up with a system composed of two mirrored
populations of homochiral strands. Looking at Figure 3.5b, we observe in the case with
no kinetic stalling (σ = 1) that there seems to be almost no bias in the steady state of
the system (the fraction of homochiral motif Ξ has a value close to 0.55 which describes
a system with almost as many heterochiral motifs than homochiral ones). Even though
the bias emerging from the thermodynamics of RNA hybridization is only mild, when we
include the stalling in the simulation (σ = 0.05 here), we observe a final steady state that
is strongly biased and contains an important fraction of homochiral motifs (Ξ ∼ 75%).
This observation first demonstrates that the thermodynamical bias in the energy model
cannot alone induce a significant bias in the final composition of the system. It needs the
presence of kinetic stalling to do so (as illustrated and explained in detail in [Göppel et al.,
2022]). As it will also be shown in the simulations with racemization, the stalling effect is
a crucial component for homochirality emergence in such systems where template-directed
ligation takes place.

The nonmonotonous shape of Ξ is explained by multiple-step growth in the sys-
tem. There is first a slight growth phase where dimers will be elongated with dimers
or monomers that will consume most of the free monomers initially present in the system.
Thermodynamic discrimination is intense for complexes involving short strands (such as
monomers and dimers), and therefore, mainly homochiral bonds will be formed during
this phase. The fraction of homochiral motifs in the system, Ξ, reaches its maximal value.
Once almost all monomers have been consumed in the system, the ligation will occur
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with longer strands, and the average length of the system will significantly grow. As
strands become longer, the thermodynamic discrimination of complexes involving chiral
mismatches will be weakened by the long hybridized interface stabilizing complexes, and
replication with mismatches is eased, increasing the number of heterochiral motifs in the
system. Eventually, the system reaches a steady state ruled by ligation and hydrolysis
events.

Looking at the distribution of the chiral component χ in the steady state (Figure 3.5c),
we observe that it is mainly centered around χ = 0. Two peaks indicate a significant
number of homochiral strands (either d or l), but only short strands contribute to these
peaks. Indeed, they are only present in the blue histogram that describes the whole
system and disappear within the red histogram taking into account only strands that
are 20−monomers long and more. Therefore, the natural thermodynamic bias plus the
inherent stalling of template-directed ligation of RNA are not sufficient to produce a pool
of homochiral polymers only, even though a significant portion of short strands presents
a chiral bias with an e.e. ≥ 50%.

3.3.4 Simulations with racemization

We now include a fast racemization reaction in the simulation. At any time, the system
is racemized at the monomer level. In this case, a second growth phase is observed for
the average length when σ = 0.05, i.e. when we have an effective kinetic stalling during
ligation events (Figure 3.5d). The mean length reaches first a transient plateau (corre-
sponding to the steady-state of the experiment without racemization) and then undergoes
a second growth phase towards a final stationary state. This second growth phase is ex-
plained by the increase of one enantiomer population while the other decreases. Thus more
monomers are available for non-stalled ligation. Indeed, the e.e. (Figure 3.5f) increases
significantly in the racemized experiment and eventually reaches e.e. ∼ 100%, which
characterizes a complete homochiral system. While the system is converging towards a
single chirality state, ligation events are less and less stalled since chiral mismatches at
ligation sites are less likely to occur as the chiral homogeneity of the system grows. We
believe that this second growth could have major relevance for the origins of life, as it will
be discussed in Section 3.5. Comparing experiments with and without racemization, we
observe that the case without chiral stalling (σ = 1) gives similar results. With racemiza-
tion but no stalling, the system reaches a e.e. ∼ 4− 5% due only to the thermodynamic
discrimination of heterochiral phosphodiester bonds or base pairs during strand hybridiza-
tion. In the case of chiral stalling (observed experimentally by Bolli, Joyce and al. [Bolli



3.3. CLOSED REACTOR 87

A

B

C

D

E

F

Figure 3.5: Simulations of template-directed ligation in a closed reactor. Panels (A), (B),
and (C) are data from simulations performed without any racemization reaction, while
panels (D), (E), and (F) are extracted from simulations with fast racemization. (A) Av-
erage strand length as a function of simulation time (without racemization). (B) Fraction
of homochiral motifs in the system as a function of time (without racemization). (C)
Histograms of the fraction of strands in the system as a function of the chiral parameter
χ. This data is extracted from a single snapshot at a time step located in the steady
state. Blue histogram considers all strands in the system. The red histogram only con-
siders strands with a length L > 20 monomers. (D) Average strand length as a function
of simulation time in simulations, including fast racemization. (E) Fraction of homochiral
motifs in the system as a function of time (with racemization). (F) Enantiomeric excess
(e.e.) at the monomer level (and not only the free monomers level) as a function of time.
All data shown here are averaged over 20 independent realizations.
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et al., 1997,Joyce et al., 1984]) adding racemization induces a convergence towards a total
homochiral system. In this case, the fraction of homochiral motifs converges to Ξ = 1

(Figure 3.5e).

3.3.5 Effects of the racemization reaction speed

To ensure that the observed results are not specific to the particuliar case of instantaneous
racemization for non-polymerized monomers, we investigated the effects of the racemiza-
tion reaction speed on the e.e. dynamics. We model this reaction assuming mass-action
law, i.e. with kracD1 (resp. kracL1) being the reaction rate to convert d-monomers into
l-monomers (resp. l-monomers into d-monomers), where D1 (resp. L1) is the concentra-
tion of d-monomers (resp. l-monomers). Figure 3.6 shows first that the e.e. saturates to
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Figure 3.6: Enantiomeric excess as a function time in a template-directed ligating closed
system in the presence of chiral stalling σ = 0.05. The enantiomeric excess is computed
over all polymerized monomers, thus excluding non-polymerized monomers. Simulations
were carried out with kcut = 10−10, however, for computational time purposes, brown and
pink curves were simulated with kcut = 10−9 (which explains the difference in timescales
for the transition to occur). Data shown here are averaged over 20 independent realizations
starting from an initial racemic pool of 5,000 nucleotides.

a limit value when the racemization rate constant exceeds krac = 10−7 and also that the
system always converges towards a homochiral state, even when krac < kcut, which means
that the racemization reaction has the lowest rate constant of the system. However, we
observe that the timescale for the system to converge increases as the racemization damp-
ens, and it also affects the height of the transient plateau in the simulation. This makes
sense as for rapid racemization, a slight imbalance of polymerized nucleotides appears
stochastically and gets amplified, while the system is racemized at the non-polymerized
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monomers level. When racemization slows down, non-polymerized monomers are less
racemized, and strands are formed out of the chirality that dominates free monomers.
Looking at the e.e. for polymerized monomers only, this effect tends to decrease the chiral
asymmetry before racemization reactions start to occur.

3.3.6 Effects of temperature cycles

The influence of the period of temperature cycles on the dynamics of the systems has also
been studied. Temperature cycles are characterized by the time period τ parametrized
by the length Lcycle such that

τ =
1

kcoll

exp(−δG1Lcycle) . (3.14)

This choice of parametrization means that on average, duplexes formed by strands of
length l < Lcycle will have time to dehybridize between two temperature peaks while
duplexes formed by strands of length l > Lcycle will not and are for the most part, melted
during the temperature elevation, i.e. the higher Lcycle, the longer the time for duplexes
to be dehybridized. This phenomenon can be observed in Figure 3.7, where the dynamics
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Figure 3.7: Enantiomeric excess as a function time in a template-directed ligating closed
system in the presence of chiral stalling σ = 0.05 for different temperature cycles. The
enantiomeric excess is computed over polymerized monomers only. Data shown here are
averaged over 20 independent realizations starting from an initial racemic pool of 5,000
nucleotides with instantaneous racemization for non polymerized monomers.

spans over more orders of magnitude of time as the length Lcycle increases and thus the
time τ between two temperature peaks, increase (note that δG1 < 0). With the increase
of τ the dynamics slows down but the system still end up in a homochiral state in the
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end. However, we notice that for typical lengths Lcycle > 7, the degree of homochirality of
the steady state starts to slightly decrease. This could be due to the fact that hybridized
strands are protected against cleavage as hydrolysis is only possible for free RNA strands.
This induces that remaining monomers of the disappearing chirality are protected against
the conversion mechanism that would require first the hydrolysis of a strand resulting in
the production of a free monomer that ends up converted to the other chirality, because
strands remain hybridzed for longer times as Lcycles increases. Eventually in the limit
Lcycle →∞ and thus τ →∞, the dynamics would end up frozen before any state with a
significant e.e. would appear, as duplexes formed by long strands would be highly stable
(see equation (3.3)) and the typical time to separate the duplex would be too large to see
the system evolve on a reasonable timescale.

3.3.7 Effects of the chiral stalling amplitude

In this chapter, we generally used the reference value σ = 0.05 for the chiral stalling as
it corresponds to a reduction between one and two order of magnitude of the ligation
speed when chiral mismatches occur around ligation sites. We investigated the effect of
changes in the chiral stalling amplitude and found out that it affects both the timescales
of the dynamics and also the final stationary state. Indeed, Figure 3.8 shows that for
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Figure 3.8: Enantiomeric excess as a function time in a template-directed ligating closed
system for different kinetic stallings. The enantiomeric excess is computed over poly-
merized monomers only. Data shown here are averaged over 20 independent realizations
starting from an initial racemic pool of 5,000 nucleotides with instantaneous racemization
for non-polymerized monomers.

chiral stalling with values above 0.2, the system do not end up in a full homochiral state
but into a partial one, with enantiomeric excesses that decreases as σ gets closer to 1.
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Eventually, for σ = 1 the system reaches an almost racemic steady-state (see Figure 3.5f).
Looking at the graph, it is unclear if these partially homochiral stationary states are really
steady states or if it is just that the time required for the changes in the e.e. gets longer
for high values of σ. However it is important to notice that the log scale compresses the
right part of the plot associated with long times t. With a closer look, we observe that the
simulations indeed reach steady states (except for σ = 0.8 which did not have the time
to converge). In any case, we observe that there seems to be a threshold above which no
significant enantiomeric excess can appear in a reasonable time. We also can be confident
with the value σ = 0.05 used in our study as the stalling observed by Joyce and Bolli was
strong in both cases. Also the case σ = 0.2 gives similar results to the ones found earlier,
and it corresponds to a 80% reduction of the ligation speed.

3.4 Open reactor

3.4.1 Racemic chemostat

Open reactors have already been studied in the context of homochirality, as they can
be easily driven out of equilibrium by an inflow of matter to avoid relaxation towards
an equilibrium racemic state [Laurent et al., 2021]. Here we consider an open system
chemostated with monomers and dimers, meaning their particle numbers remain constant
over time, and where species can be depleted due to an outflow of rate φ. The chemostat is
racemic, so the symmetry of the system is not broken explicitly. The system is inoculated
with a total of 2,800 nucleotides distributed in 2,000 monomers (1,000 d- and 1,000 l-
monomers) and 400 dimers (100 dd-, 100 ll-, 100 dl- and 100 ld-dimers) in a racemic
fashion. In this experiment, we investigate whether we can free the system from the
racemization constraint to reach a homochiral state. It appears first that the steady state
reached by the system is not homochiral (Figure 3.9.a). In the case with chiral stalling,
the final e.e. is low (∼ 4 − 5%). The fraction of homochiral motifs reaches a stationary
value of Ξ ∼ 75%; however, it does not mean much about the chiral parameter of a given
strand. Indeed, a strand composed of 50% of d-monomers and 50% of l-monomers can
have only one heterochiral motif while being perfectly heterochiral (χ = 0). Initially, due
to statistical fluctuations, slightly more shorts strands of one chirality will be produced,
then they will start to produce more of their kind autocatalytically, and thus one of the
two populations will reach longer and longer strands. This explains the increase in the
e.e. observed in Figure 3.9a. Unlike the closed reactor case, there is no conservation law
for monomers that would slow the growth of the strands. Strands mainly composed of one



92 CHAPTER 3. TEMPLATE-DIRECTED LIGATION: AN IDEAL CANDIDATE . . .

chirality will then quickly reach a steady state for their average length. As no racemization
is present in the system, there is no real negative interaction between monomers of different
chirality (except during hybridization and ligation), so the two populations are in some
ways independent. Therefore, strands composed of the dominated chirality will start to
grow, and their concentration will exhibit a similar but retarded growth phase as the
dominant chirality. Eventually, the initially dominated population will catch up with the
dominant one, inducing the vanishing of the enantiomeric excess. However, the fraction of
homochiral motifs in the system remains high (Figure 3.9b) in the steady state. Looking
at the distribution of the chiral parameter χ in Figure 3.9c, we see, as in the situation
of the closed reactor without racemization reactions, that homochiral strands are mainly
short strands. And that long strands are not that homochiral. However, if we focus on
the transient behavior of the system, and more specifically at the time where the e.e. is
at its maximum, the distribution is shifted towards homochiral strands composed of the
dominant species in the system. Indeed, if we define the chiral parameter of the dominant
species in a given strand, χE as

χE = 2fE − 1 , (3.15)

with fE, the fraction of monomers of the dominant chirality (equals to fD or fL) in a
strand, we see in Figure 3.9d that during the transient state where the e.e. is significant
(e.e. ∼ 20%), a lot of long strands are built from almost only one chirality in the system.

3.4.2 Templated ligation with a biased chemostat

So far, we only studied initially racemic systems because a minute imbalance can arise from
statistical fluctuations due to the stochasticity of the polymerization process. However,
there is also the possibility that the initial system is not racemic in the first place if
the synthesis of riboses, thus nucleotides, was not symmetric. It has been shown, for
instance, that the synthesis of pentoses catalyzed by homochiral ll-dipeptides in prebiotic
conditions is not symmetric and produced in particular a greater amount of d-ribose than
its enantiomer [Pizzarello and Weber, 2004,Weber and Pizzarello, 2006, Pizzarello and
Weber, 2010]. In a closed reactor, as demonstrated in Section 3.3, initially racemic systems
converge towards a homochiral state. Hence there is no interest in investigating a biased
system as it will favor one chirality in the homochiral state. In the case of the open reactor
without racemization reactions, however, we saw that even though a transient state with
a significant e.e. is achieved, the steady-state lies around the racemic state. Therefore,
we simulated initially biased open reactors to study whether significant amplification of
the small bias present in the chemostat is possible. It turns out, as one could expect that
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Figure 3.9: Template-directed ligation in a chemostated open reactor with outflow. Sim-
ulations are carried out without any racemization reaction. (A) e.e. at the monomer level
as a function of time. Inset: average length in the system over time. (B) Fraction of
homochiral motifs Ξ in the system as a function of time. (C) Histograms of the fraction
of strands in the system as a function of the chiral parameter χ. This data is extracted
from a single snapshot at a time step located in the steady state. (D) Histograms of the
fraction of strands in the system as a function of the chiral parameter χE. This data is
extracted from a single snapshot at the time where for each realization, the e.e. is at its
maximum value. Blue histogram considers all strands in the system. The red histogram
only considers strands with a length of L > 20 monomers.
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Figure 3.10: Final enantiomeric excess as a function of the initial imbalance, for an
open system. The simulations were carried out with a chemostat formed out of 2,800
nucleotides except for the standard step-growth simulations where 700 nucleotides are
chemostated. Chiral stalling is set to σ = 0.05 in the template-directed experiment.
The enantioselective experiment has a bias α = 10−10, and the standard one no bias.
The outflow rate is kout = 10−8 and ligation rate for the step-growth polymerization is
klig = 5.27×10−9. Each data point results from the average of 20 independent trajectories.

unbiased step-growth polymerization conserves the enantiomeric excess of the chemostat.
The bias is amplified in the case of a perfectly chiroselective step-growth process. Still,
this mechanism’s lack of autocatalytic property keeps the amplification low compared
to the case of templated ligation. Indeed, template-directed ligation in the presence of
chiral stalling (here σ = 0.05) amplifies best the bias of the chemostat, especially at
low chemostat bias where a bias of e.e. = 10% can be boosted up to values as high as
e.e. = 75% without the need of any racemization reactions. These results, depicted in
Figure 3.10, might change depending on the concentration of the chemostat or ligation
rates and should be considered indicative only. Still, it is to be noted that the selective
step-growth polymerization results do not vary much when changing the concentration of
the chemostat or the ligation rate.

3.5 Discussion

The main result of the closed reactor experiment is that RNA template-directed synthesis
in the presence of racemization reactions, starting from a racemic pool of monomers and
dimers, can converge toward a homochiral system of RNA polymers. The cross-inhibition
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(in practice, the chiral stalling) during the ligation observed by Joyce et al. is a crucial
component of the mechanism because, without it, the system remains closed to the racemic
state (Figure 3.5.b). In addition, this transition appears robust and does not require fast
racemization. Even in the case of slow racemization, the results still hold. A second
significant result concerns the length of the strands in the transition to homochirality.
During this process, one of the two chirality will be washed out from the system. The
disappearing chirality is random: a minute imbalance due to the stochasticity of chemical
reactions, or to other causes, will amplify. The fact that one chirality disappears from
the system can be seen as reducing the sequence space. Indeed, in the final homochiral
steady-state, heterochiral strands and homochiral strands of the chirality that has been
erased are no longer formed. A reduction of the phase space could be seen a disadvantage:
a smaller variety of sequences will be explored, and thus fewer functional sequences might
be discovered. However, as discussed in Section 3.3.4, the disappearance of one chirality
increases the average strand length in the homochiral steady state (Figure 3.5.d). It occurs
naturally as more nucleotides from the dominant chirality become available to join in
template-directed events which are not stalled anymore. This phenomenon has significant
consequences: reducing the sequence space during the transition to homochirality benefits
the length of the strands in the system, which is a crucial parameter as the longer the
strands, the higher the chances of reaching a first functional catalytic sequence in the
system. This idea is depicted in Figure 3.11 and could be significant in the context of the
origins of life. The length of polymers that can be replicated without loss of information
is fundamentally limited by the error threshold [Eigen, 1971,Smith and Szathmáry, 1995]
which constrains scenarios on origin of life. Recent studies show that this threshold can
be relaxed with template-directed polymerization [Matsubara et al., 2021]. Our studies
seem to confirm this since our mechanism can favor the formation of longer polymers.

Regarding the open reactor experiment with chiral stalling, even though no significant
e.e. is reached during the steady state, we observe an interesting transient behavior when
the e.e. reaches its maximum value. At this point, one chirality is much more present in
the system, and a large part of the system is composed of monomers of this dominant
chirality. Plus a large proportion of those strands have an e.e. > 50%. From this transient
state could emerge a first ribozyme composed of the dominant chirality, accelerating the
replication of its kind and thus amplifying definitely the enantiomeric excess and even-
tually driving the system towards a homochiral system. In addition, template-directed
synthesis appears to be a good amplification mechanism of pre-existing chemostat bias in
open systems, especially when initial biases are low. The amplification of the bias allows
one enantiomeric population to explore a much wider variety of sequences for strands of
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Figure 3.11: Graphical representation of the reduction of the sequence space during the
transition toward a homochiral closed system. The reduction of the sequence space re-
sulting in the inaccessibility to heterochiral RNA polymers also results in the widening of
the sequence space of the chirality that is now dominating.

their chirality, making it easier for the first functional sequences to appear in solution and
thus helping the system to transition eventually to complete homochirality.

In this chapter, we showed that a closed system initially inoculated with a racemic
mixture of RNA monomers and dimers, performing template-directed ligation converges
towards a homochiral state in the presence of racemization reactions. This mechanism
is robust because there is no dependence on external factors, and the self-replication
and chiral selectivity components are inherent to RNA template-directed synthesis, apart
from the racemization reactions whose speed does not matter. This idea is satisfying
and is compatible with the RNA-world scenario [Higgs and Lehman, 2015]. We also
understand here the emergence of homochirality as a progressive reduction of the RNA
sequence space in early life that allows longer RNA strands to emerge and facilitate
reaching the first functional sequences. Our detailed study reinforces recent studies [Chen
and Ma, 2020,Tupper et al., 2017] that homochirality could have emerged alongside the
first functional polymers thanks to template-directed polymerization.
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Appendix 3.A Comparison of block energy models

A

B

C

D

E

Figure 3.12: Template-directed ligation in a closed reactor simulations for different values
of the block energy model. Panels (A) and (B) are data from simulations performed
without any racemization reaction, while panels (C), (D) and (E) are extracted from
simulations with fast racemization. (A) Average strand length as a function of simulation
time (without racemization). (B) Fraction of homochiral motifs in the system as a function
of time (without racemization). (C) Average strand length as a function of simulation
time in simulations including fast racemization. (D) Fraction of homochiral motifs in the
system as a function of time (with racemization). (E) Enantiomeric excess (e.e.) at the
monomer level (and not only the free monomers level) as a function of time. All data
shown here are averaged over 20 independent realizations.
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Appendix 3.B Single trajectories for closed reactors

A B

C D

Figure 3.13: Single trajectories for template-directed polymerization in a closed reactor.
Panels (A) and (B) show 20 single trajectories which were averaged to obtain the curve
of Figure 3.5f, i.e., simulations performed in the presence of racemization reactions and
with σ = 0.05. Panels (C) and (D) show 20 single trajectories of simulations performed
in the same conditions but with σ = 1. Panels (A) and (C) shows an oriented version
of the enantiomeric excess, in which the numerator does not have an absolute value. We
observe in both cases that trajectories goes in favor either of the d- or l-configuration
randomly, due to stochastic fluctuations.
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Appendix 3.C Single trajectories for open reactors

A B

C D

Figure 3.14: Single trajectories for template-directed polymerization in an open reactor.
Panels (A) and (B) show 100 single trajectories which were averaged to obtain the curve of
Figure 3.9a, i.e., simulations performed without racemization reactions and with σ = 0.05.
Panels (C) and (D) show 20 single trajectories of simulations performed in the presence
of an initial enantiomeric excess e.e. = 10%, and with σ = 0.05. These trajectories have
been used to construct Figure 3.10. Panels (A) and (C) shows an oriented version of
the enantiomeric excess, in which the numerator does not have an absolute value. We
observe in subfigure (A) that trajectories goes in favor either of d- or l-configuration
randomly, due to stochastic fluctuations. In the case of the subfigure (C) however, almost
all trajectories goes in the same direction, imposed by the initial enantiomeric excess of
the chemostat. We however observe than one trajectory goes in the opposite direction for
early times, and eventually join the other curve as the chemostat is biased.





CHAPTER 4

Conclusion

In this thesis, we proposed two distinct scenarios involving out of equilibrium physical
systems in which homochirality could have emerged. The first scenario involves large
chemical systems. We showed, based on results of random matrix theory, that chiral
chemical networks in an open reactor (CSTR) are susceptible to undergo a symmetry
breaking transition from a racemic state to a homochiral steady state when the number
of chiral species in the system becomes large. The likelihood of this transition increases
as the number of chiral species involved in the chemical network increases. The stability
of the racemic state can be broken into two different fashions, depending on the spectral
properties of the Jacobian of the system: the symmetry can be broken for all the species
in the same direction or in different directions for a random subset of species. One major
advantage of this scenario is that the model does not use any physical or chemical property
of enantiomer pairs except for the mirror symmetry, which is a fundamental characteristic
of chiral reaction networks. It has the consequence that d and l assignations are totally
arbitrary and they just play the role of labels here. We do not rely on and do not use any
structural property of d- and l-enantiomers to show the transition. It also means that
when we say the symmetry is broken in the same direction for all species, the consequence
is not that all dominant species will be part of the d-series or the l-series. The system
adopts no collective sign in the homochiral state, which is consistent with the current
observation that functional groups do not have the same sign in biology. Moreover, the
mechanism has proven to be robust and applicable to sparse chemical networks. To
illustrate this general argument, which as described in Section 2.4, should be considered
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as a generic and universal model, we introduced a generalization of the Frank model.
The generalization includes an arbitrary number of chiral species, which take part in
autocatalytic and enantioselective reactions. It also includes chiral inhibition reactions,
and exhibits a transition to a homochiral stationary state when (i) the number of chiral
species becomes sufficiently large or when (ii) the inflow concentration of achiral species
(which act as food) of high free energy becomes sufficiently large, which corresponds to
an increase of the supply of energy in the dissipative system. Finally, using an analysis
of large chemical databases, we could quantify a threshold above which chiral species
become abundant and dominate achiral species in nature. This threshold occurs for a
number of heavy atoms n ' 9, indicating that the previous transition could occur in a
system including rather small molecules.

The second scenario is based on template-directed ligation of RNA, a particular form
of polymerization which occurs through the ligation of two RNA strands hybridized onto
a third one that acts as a template. Using detailed stochastic simulations, we first put in
evidence the difficulties for a system undergoing step-growth polymerization to produce
any significant enantiomeric excess starting from a racemic pool of activated nucleotides.
We then demonstrated that a similar system with template-directed ligation can instead
converge towards homochirality assuming racemization reactions at the level of free nu-
cleotides and temperature cycles to impose a periodic melting of RNA complexes. We
analyzed the effect of temperature cycles and chiral stalling to confirm that the former
does not affect too much the final stationary state (despite the slight decrease of the
enantiomeric excess observed) but affects the dynamics, while chiral stalling needs to be
sufficiently strong for the system to undergo a symmetry breaking. We also ensure that
the symmetry breaking was not just an artifact of the fast racemization at the single nu-
cleotide level by showing that results are conserved even for extremely slow racemization
of the system. In addition to the convergence towards a homochiral polymeric system, we
also observe an increase in the average polymer length as the enantiomeric excess grows
in the system. This logical observation could have major importance for origins of life
research as the accessibility to longer biopolymers allows the exploration of functional
sequences more easily. In a second time, open chemostated reactors have also been stud-
ied, exhibiting a transient increase in the enantiomeric excess without the need for any
racemization reactions. Initially biased systems were also analyzed and showed a strong
amplification of the initial bias in an open and chemostated reactor, which is unachievable
with step-growth polymerization (for instance, a final e.e. of 75% starting from an initial
excess of 10% has been observed in silico). Template-directed ligation appears again to
be a key mechanism in the origins of life research. It was recently shown for RNA that
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it allows for sequence selection in enzyme-free out of equilibrium reactors [Göppel et al.,
2022], and has also been demonstrated as a mechanism for chiroselective self-replication
of peptides [Saghatelian et al., 2001] even though proteins usually do not polymerize
through templating. We hope, with this work, to have contributed to the research on the
emergence of homochirality but also to possibly inspire researchers to pursue the use of
random matrix theory for studies of the stability of chemical networks. The next natu-
ral step of these works would be to test the scenarios with experimental setups. In the
introduction of this thesis, we raised several open questions regarding the emergence of
homochirality, and specifically “when did homochirality emerge?”. By construction, the
model developed in the first scenario seems well suited for messy and complex prebiotic
chemical networks. The second mechanism, however, based on templating, could take
place alongside the emergence of the first functional RNA sequences, in the RNA world.
The chiral stalling, inherent to RNA template-directed ligation, which tends to inhibit
the growth of RNA polymers, plus the possibility for a polymeric system, to increase its
average length through its transition to a homochiral steady-state, strongly suggest that
homochirality should have appeared at the latest, alongside life.
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Appendix 4.A Survival of Self-Replicating Molecules un-

der Transient Compartmentalization with

Natural Selection

In this appendix, we present the publication of a work on the effect of transient compart-
mentalization on the persistence of self-replicating systems subject to competition with
fast-replicating parasites.
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Abstract: The problem of the emergence and survival of self-replicating molecules in origin-of-life
scenarios is plagued by the error catastrophe, which is usually escaped by considering effects of
compartmentalization, as in the stochastic corrector model. By addressing the problem in a simple
system composed of a self-replicating molecule (a replicase) and a parasite molecule that needs
the replicase for copying itself, we show that transient (rather than permanent) compartmentalization
is sufficient to the task. We also exhibit a regime in which the concentrations of the two kinds of
molecules undergo sustained oscillations. Our model should be relevant not only for origin-of-life
scenarios but also for describing directed evolution experiments, which increasingly rely on transient
compartmentalization with pooling and natural selection.

Keywords: origin of life; error catastrophe; parasites

1. Introduction

Research on the origins of life is plagued by several chicken-and-egg problems [1]. One central
problem concerns the emergence of functional self-replicating molecules. To be a functional replicator,
a molecule must be long enough to carry sufficient information, but if it is too long it cannot be
replicated accurately, because shorter non-functional molecules called parasites may replicate faster
and take over the system. This was experimentally observed many years ago by Spiegelman [2].
This observation was then rationalized using the notion of error threshold [3], which plays a key role
in research on the origins of life [4].

Several theoretical solutions have been proposed to address this issue, among which the stochastic
corrector model [5,6] is prominent. In this model, small groups of replicating molecules grow
in compartments, to a fixed final size called the carrying capacity. Then, the compartments are divided
and their contents are stochastically partitioned between the two daughter compartments. Thanks to
the variability introduced by this stochastic division, and to the selection acting on the compartments,
functional replicators can be maintained in the presence of parasites.

For a long time, these theoretical ideas have lacked an experimental illustration. This changed
in 2016 thanks to progresses in the manipulation of in vitro molecular systems. That year using
such systems, Matsumura et al. demonstrated that transient compartmentalization is indeed
able to maintain RNA replicators despite the presence of RNA parasites [7], as predicted by
the Stochastic corrector model. Then, Bansho et al. built an in vitro molecular ecosystem, based
on a different compartmentalized RNA, which was able to display host-parasite oscillatory dynamics
and evolution [8].

Life 2019, 9, 78; doi:10.3390/life9040078 www.mdpi.com/journal/life
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Inspired by the work of S. Matsumura, we recently explored general scenarios of transient
compartmentalization that are also able to maintain information in replicating systems [9,10].
We proposed a transient compartmentalization dynamics with no cell division, which should be
achievable when only prebiotic chemistry is available. In our framework, there are no specific
requirements regarding the chemical composition or the topology of the compartment boundaries:
transient compartmentalization can result from environment fluctuations due to day-night cycles [11],
tides cycles [12] or cycles of confinement and release of chemicals from pores [13].

In this paper, we extend the framework in [10] to the case of transient compartmentalization
of self-replicating molecules. The main new element in this extension is that the selective pressures
acting on this system are not externally imposed, as in our previous work, but stem from the system
intrinsic dynamics acting as a form of natural selection. Therefore, the assumptions of this new
model are agnostic about the environment and its interaction with the system, which is a desirable
feature for scenarios on the origins of life. Besides, this extension may be also pertinent for certain
in vitro evolution experiments [14]. Indeed, in vitro evolution experiments based on external selection
are often more difficult and cumbersome to carry out than those based on natural evolution, which
we consider here.

In one version of our model, we find oscillatory behavior in the population size of replicators.
These oscillations are different from the ones observed with bulk hypercycles [15], because they
only exist due to the transient compartmentalization dynamics. The oscillations present in our
model are similar to the ones which have been observed in the molecular ecosystems mentioned
above [8]. In the Section 4 we compare the predictions of our model to these experiments and to
the theoretical model [16] developed to analyze them. While our framework is applicable to such
experimental systems, it is important to appreciate that it has a wide generality. It could equally
well describe many other forms of compartmentalized hypercycles or coupled autocatalytic sets,
because the self-replicating molecules which we consider need not be RNA replicases.

2. Materials and Methods

Here, we introduce two models describing a transient compartmentalization process in which
self-replicating molecules (the replicase) may coexist with non-self replicating ones (the parasites)
which may be replicated by the first ones. These models are amenable to mathematical analysis.
In Section 1, we describe a model of transient compartmentalization where the compartments are
populated at each round with an inoculum which has a fixed average size λ as shown in Figure 1a.
In Section 2, the size of the inoculum λ(t) is allowed to vary in time as a result of successive dilution
steps as shown in Figure 1b.

Inoculation

Maturation
Pooling

Inoculation

Maturation
Dilution

Pooling

a. b.

Figure 1. (a) Transient compartmentalization at fixed average number of molecules per compartment,
and (b) with a variable average number of molecules. In (a), the cycle splits into steps of inoculation,
with a fixed average number of molecules per compartment λ, maturation and then pooling, while in
(b) the inoculation step is done with a variable average number of molecules per compartment λ(t)
because the cycle contains in addition a dilution step. The green and red circles represent the replicators
and their parasites, respectively.
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2.1. Transient Compartmentalization with a Fixed Inoculum Size

In this subsection, we describe the behavior of a compartmentalized self-replicating system
made of two species: self-replicating molecules (replicases) and parasites. Replicases can make
copies of themselves and of other parasite molecules, while the parasites can only be copied by
the replicases. This is a different case from that discussed in [10], where both the molecules of interests
(in that case, the ribozymes) and the parasites could be replicated by externally provided enzymes.
In further contrast, in the present case, there is no externally applied selection. Thus, the main steps of
the replicating cycle in this case are as shown in Figure 1a:

• Inoculate the compartments.
• Maturate the compartments.
• Pool compartment contents.

In the inoculation step, as in [10], one chooses a number n of molecules from the pool, where n is
Poisson distributed with average λ. The resulting inoculum then contains m replicases and y = n−m
parasites, which are distributed according to a Binomial distribution of parameter x, where x is the
initial fraction of replicases in the pool. We denote by Pλ(n, m, x) the resulting probability distribution.
This follows closely the corresponding steps in [10]. However, the dynamics of the maturation step is
different and is described by the following equations:

ṁ(t) = α m(t)2 ,

ẏ(t) = γ m(t) y(t) ,
(1)

where m(t) and y(t) are, respectively, the self-replicating and the parasitic species populations at time
t, while α and γ are their respective replication rates. The analytical solution described in Appendix A
yields the compartment composition (m(T), y(T)) at the stopping time T as a function of the initial
composition, denoted by (m = m(0), y = y(0)). The stopping time T is itself fixed by the condition

m(T) + y(T) = K + n, (2)

where n = m + y denotes the initial number of molecules in the compartment and K is a parameter
that represents the number of new strands that can be created during the replication process, due to
the finite amount of nutrients present in the compartment. We call it the carrying capacity. We use in
the following the shorthands: m̄ = m(T) and n̄ = m(T) + y(T). Moreover, the ratio Λ = γ/α of the
replicating constants of both species is another important parameter of the dynamics.

After the maturation step, the contents of the compartments are pooled. The fraction x′

of replicases in the pool is expressed in terms of its value x at the beginning of the round by
the following equation:

x′(x, λ) =
〈m̄〉
〈n̄〉 =

∑n,m m̄(n, m)Pλ(n, m, x)
∑n,m n̄(n, m)Pλ(n, m, x)

, (3)

where 〈· · · 〉 denotes the average with respect to the probability distribution Pλ(n, m, x). Note that
the number of molecules in the compartments at the end of the maturation step is not uniform
(in particular, compartments which are pure in parasites contain at the end the same number of
molecules as in the beginning). Thus, we cannot directly average x over the compartments as done
in [10].

In Appendix B, we show that, in the limit Λ� 1 where the parasites are much more aggressive
than the self-replicating molecules, the recursion equation (3) can be simplified, yielding

x′(λ, x) =
λx + Ke−λ(eλx − 1)

λ + K(1− e−λx)
. (4)

The behavior of this model is described in Section 3.1.
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2.2. Transient Compartmentalization with Variable Inoculum Size

We now consider a model of transient compartmentalization with a variable inoculum size λ.
In experiments based on serial transfers, a fraction of the solution is transferred into a new fresh
medium repeatedly [17]. This can be described theoretically by adding a dilution step in the replicating
cycle, as shown in Figure 1b. Then, λ can change because a given amount of the pooling solution
can contain a variable number of replicating molecules, depending on their average concentration.
The dynamics is now described by a pair of equations for the evolution of the fraction x and of
the parameter λ:

x′ =
〈m̄〉
〈n̄〉 , λ′ =

〈n̄〉
d

. (5)

where d is the dilution factor and m̄, n̄ are given by the same equations as above, evaluated with
the current value of λ.

Using the same approximations used to derive Equation (4), we obtain the following set of
equations, valid for Λ� 1:

x′(λ, x) =
λx + Ke−λ(eλx − 1)

λ + K(1− e−λx)
,

λ′(λ, x) =
λ + K(1− e−λx)

d
.

(6)

These equations can be more easily manipulated than the corresponding equations for the global
compartmentalization process.

The behavior of this model is described in Section 3.2.

3. Results

We first describe the results of the model with fixed inoculum size (Figure 1a, Section 2.1), and then
those of the variable inoculum-size model (Figure 1b, Section 2.2).

3.1. Fixed Inoculum Size

By studying the stability of the fixed points of the recursion of Equation (4), we obtain the phase
diagram shown in Figure 2, which represent the compositions that are accessible to the system on
long times. In contrast to the phase diagram obtained in [10], we find a large region of coexistence
between the self-replicating molecules and the parasites and no pure parasite phase. The absence of
the pure parasite phase is expected, since parasites can not grow without replicators. Thus, there are
only two phases: a pure replicator phase and a coexistence phase, in which compartments remain
of mixed composition. Although the coexistence region appears large, in fact, in the main part of
it, self-replicating molecules are maintained at a very small concentration, as shown by the color
scale in Figure 2. Therefore, to maintain replicators at a significant concentration, one can not escape
the condition that the average size of compartments be of the order of one molecule per compartment.

By evaluating the derivative of x′ with respect to x at x = 1, one obtains the equation of the vertical
asymptote of the phase diagram separating the pure replicator phase and the coexistence region, which
is given by λ = 1. The same condition used at x = 0 shows that this fixed point is always unstable
at finite value of λ, which confirms that there is no pure parasite phase. In the coexistence region,
a family of vertical asymptotes can be obtained by solving the equation x′(λ, x) = x for 0 < x < 1
in terms of λ. No simple expression has been found for the equations of the corresponding horizontal
asymptotes, which separate the pure replicator phase and the coexistence region when λ→ ∞.
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Figure 2. Contour map of the fraction x of replicators as a function of (λ, Λ), for a carrying capacity
K = 100, where λ denotes the average number of molecules per compartment and Λ the relative
growth rates of the parasites with respect to the host. The dotted line is the contour of x = 1, which
marks the border of the pure replicators phase (the red region). Above this line, a coexistence region
exists between the two species at a fraction of replicators indicated by the color scale.

3.2. Variable Inoculum Size

The most striking feature of the model with variable inoculum size, described by Equation (5),
is the appearance of oscillations in both x and λ. They are similar to the ones observed in experiments
with host-parasite RNAs [8] and modeled numerically in [16].

When the value of K and of d are not too large, this system exhibits oscillations in the populations
of replicators and parasites shown in Figure 3a. These oscillations can also be seen when representing
the fraction x of replicators as function of the average compartment size λ, as shown in Figure 3b.
This behavior can be explained as follows: after the first inoculation, parasites are being replicated
quickly by replicators, and the dilution does not counterbalance this increase in population. At some
point, the fraction of parasites in the population is so high that there are not enough self-replicators
to contribute to their replication. Then, the dilution has an important effect, since it decreases
the population per compartment λ, until its average reaches values around λ = 1 (see Figure 3b).
At this point, compartments contain on average only a single molecule, which can be either a parasite or
a self-replicator. The population in empty compartments or compartments containing a single parasite
molecule does not grow, therefore only compartments containing a single replicator or containing one
replicator and one parasite will contribute substantially to the next round. At this point, the replicator
population increases, and starts replicating parasites for several rounds, triggering the process again.
Note that the mechanism producing these oscillations is different from the Lotka–Volterra one,
where the competition between the two species is the main ingredient [18]; instead, here, transient
compartmentalization plays an essential role.
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Figure 3. Oscillations in the average amount of self-replicating and parasite molecules per compartment
as a function of the round number for d = 19, K = 60, and Λ = 5. (a) Average population size 〈m̄〉 of
replicators and 〈n̄− m̄〉 of parasites after the growth step plotted vs. round number. (b) Fraction x of
replicators and average λ of inoculum size. Notice that the oscillations rebound close to the line λ = 1.

To delve deeper in the analysis of these oscillations, let us proceed with the equations in
Equation (6), which are valid in the limit Λ � 1. In a simulation of these equations at a given
value of K, we observe an abrupt transition when varying the dilution factor. Indeed, when K = 60
and d = 18, the two average populations oscillate steadily, as shown in Figure 4a, while when
d = 22, oscillations quickly die out as shown in Figure 4b. This abrupt transition is the sign of a
bifurcation, which we identify as a supercritical Hopf bifurcation (see Appendix C for more details).
The bifurcation occurs at d = 20.74 given that K = 60. Below this value, the system shows unstable
spirals and converges to a limit cycle, while above this value, the system shows stable spirals which
converge towards a fixed point (cf. [19], Section 8.2).
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Figure 4. Oscillations in the average amount of self-replicating and parasites molecules per
compartment as a function of the round number for K = 60 and Λ � 1. (a) Steady oscillations
at d = 18 (unstable spirals), and (b) damped oscillations at d = 22 (stable spirals). Note the beating
pattern in the oscillations visible in (a).

When the parameter d is further increased still keeping K fixed, we find a second transition
at d = 37.15. At this point, the system no longer oscillates or spirals around a fixed point,
but instead converges towards this fixed point monotonically, a case identified as stable node in
the literature ([19], p. 128).

Another interesting feature in these oscillations is the beating pattern which is visible on Figure 4a
as a modulation in the amplitude of the oscillations. This pattern results from the interplay between two
frequencies, the sampling frequency fixed by the duration of a single round, and the intrinsic frequency
of the oscillations. By changing the sampling frequency, the beating pattern is accordingly modified.

To summarize all these results, we build the phase diagram in the plane (K, d) shown in Figure 5a.
As can be seen in this figure, there are three phases in this diagram, which are separated by line
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boundaries in the plane (K, d). The upper region corresponds to a phase of unstable spirals [19], where
steady oscillations are present; an intermediate region of stable spirals [19], where damped oscillations
are present; and the lower region of stable node [19], where oscillations are absent. The presence
of these line boundaries can be understood from the following argument. For large values of K,
the equations which determine the fixed point coordinates (x∗, λ∗) deduced from Equation (6) can be
simplified to yield :

x∗ =
e−λ∗(eλ∗x∗ − 1)

1− e−λ∗x∗ ,

λ∗ =
K(1− e−λ∗x∗)

d
.

(7)

The second equation above can be written as

K
d
=

λ∗

1− e−λ∗x∗ , (8)

which shows that the coordinates of the fixed point (x∗, λ∗) only depend on the ratio K/d in this large
K limit. It follows that the boundary between the region of unstable and stable spirals, where the Hopf
bifurcation occurs is a straight line as shown in Figure 5a. A similar argument holds for the boundary
between the stable spirals and the stable node, which is also a straight line in this diagram.

Figure 5. (a) Phase diagram in the plane (K, d) in the limit Λ� 1 containing three regions: unstable
spirals (with an inset representing steady oscillations), stable spirals (with an inset representing damped
oscillations) and stable node (with an inset representing a curve with no oscillations); and (b) evolution
of the fixed point coordinates (x∗, λ∗) as a function of K, on the Hopf bifurcation (solid line) and on the
transition line between the stable node and stable spirals (dashed line).

To confirm this interpretation, we show in Figure 5b the values of (x∗, λ∗) as a function of K,
evaluated either on the boundary of the Hopf bifurcation and denoted with the subscript “hopf”,
or on the stable node-stable spirals boundary and denoted with the subscript “osc”. When reporting
the asymptotic values of (x∗, λ∗) obtained for large K in Equation (8), one recovers the values of
the slopes of two lines in Figure 5a.

4. Discussion

We studied a simple system composed of a self-replicating molecule (a replicase) and a parasite
molecule that needs the replicase for copying itself. In the case of a fixed inoculum size (i.e., for a
fixed value of the parameter λ), we found that this system is able to maintain the replicase molecules
against the take-over of parasites in the absence of artificial selection. Although the phase diagram
contains a large coexistence region, only in a small part of it, when λ is close to one, are the replicase
molecules maintained at a significant concentration. This may explain why experiments on directed
evolution using compartmentalized self-replicating molecules such as DNA or RNA are usually carried
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out in this regime for these molecules, while all other required chemical species (nucleotides, other
intermediates, etc.) are typically in excess.

The theoretical framework we developed for the case of a variable inoculum size has many
similarities with the model proposed in [16] to explain experiments on host-parasite RNAs [8]. There
are however some differences: we consider an infinite number of compartments instead of a finite one,
we do not include mutations which could turn the replicase into a parasite, and we do not include
local mixing, which means that our model corresponds to the infinite mixing limit of ref [16]. Despite
these differences, we also find a regime of values of the parameters (in particular for the dilution factor
or the carrying capacity) in which sustained oscillations are possible in agreement with Furubayashi
and Ichihashi [16]. In [8], the ratio of catalysis rate constants of the parasite with respect to host, which
we denote Λ, was about 5: this can be obtained by extracting, from Table I in that reference, values of
α = 0.29, γ = 1.5 and using Λ = γ/α ' 5. We find that oscillations are indeed present in our model in
this range of the parameters, and oscillation periods comparable to the value reported in [8] can be
recovered from this estimate. These similarities suggest that our assumptions of an infinite number of
compartments may be reasonable and that other differences related to local mixing and pooling may
not be essential. To test these points more precisely, it would be useful to redo experiments similar to
the ones of Bansho et al. [8] but with a pooling step done as in [7].

It appears that, for both fixed and variable inoculum sizes, the regime of pure compartments
(one molecule per compartment on average) has a particular importance: for a fixed inoculum size, only
in this regime can a significant average fraction of self-replicating molecules be maintained, and for
a variable inoculum size, only in this regime can a rebound occur in the populations of molecules,
allowing oscillations. We surmise that this regime could have a specific significance for the origin
of life. To elaborate a bit on this point, we recall that the emergence of special molecules bearing
the genetic information is an essential step in the origin of life as emphasized in the RNA world. These
molecules are typically found in minority with respect to other species, yet this minority has control
of the entire cell [20]. This is a form of information control, which is thought to be one of the key
parameters in the origins of life [21]. Fluctuations of this minority species therefore have a special
role due to their small number. In contrast, many other chemical species, which are not information
carriers, are found in large numbers, with fluctuations statistically obeying the law of large numbers.
In our model, we see a clear illustration of this mechanism: the replicase behaves as a genome-like
molecule, present at the lowest non-zero possible concentration of one molecule per compartment,
while all other molecules, which depend on the genome molecules for their own making, are available
in the protocell in large concentration.

5. Conclusions

Without considering complex chemistry, we have proposed a model which is able to capture
important features for origins of life research, such as the ability to maintain self-replicating molecules
using transient compartmentalization and natural selection. An interesting feature of the model with
constant inoculum size is the maintenance of the self-replicating molecule by a form of information
control, at the critical level of one molecule per compartment. A striking feature of the model with
variable inoculum size is the appearance of oscillations, which are similar to the ones observed
in experiments with compartmentalized self-replicating RNAs [8].

Naturally, Bansho et al. [8] presented much more than the mere observation of these oscillations.
By studying the sequence information of the replicase and its parasites, they suggested that parasites
can take an active part in the evolution of their host and not just in their own. Different sub-populations
of parasites can appear, forming an ecosystem [22], which accelerates evolution. Future studies are
needed to quantify these co-evolutionary mechanisms, and perhaps our model could help in that task.

Another important direction for future work would be to consider a large number of interacting
chemical species, a situation frequently encountered in statistical physics [23]. In this case, we expect
that the basic unit of description may no longer be that of single chemical species, but could become
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collective excitations of the composition, similar to quasi-species [24] or composomes [25]. A general
theory of non-equilibrium chemical networks, constrained by conservation laws and symmetries,
has recently been put forward [26,27]. One attractive feature of such a framework for describing
complex chemical systems is that it relies mainly on stoichiometry; therefore, the explicit knowledge of
the kinetics, which is often missing, is not needed [17].

New types of emergent behaviors could arise by enlarging further the dynamics of
compartmentalization. One possibility would be to consider loose compartments [28] or a continuous
automated in vitro evolution [29], which will require introducing spatially dependent parameters
in our transient compartmentalization dynamics. Besides the relevance for the origins of life, we hope
that our work could trigger new research directions on applications of transient compartmentalization
for chemistry or biochemistry. Perhaps, these new research directions could help overcome practical
and fundamental hurdles associated with the synthesis of complex molecules, and facilitate the making
of new catalysts or artificial cells [30].
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Appendix A. Exact Solution of the Maturation Equations

The maturation Equation (1) can be solved analytically to give

m(t) =
m

1− αtm
,

y(t) =
y

(1− αtm)Λ ,
(A1)

where m and y are the initial population sizes of both species, n their sum, t the time, and Λ = γ/α

the ratio of the two replicating constants. The dynamics of these equations is hyper-exponential,
and exhibits finite-time divergences. However, these divergences are not relevant for the model, since
the carrying capacity cut this dynamics off at finite values of m and y, given the stopping condition
given by Equation (2). Introducing the quantity u = 1− αtm, we express the stopping condition in
Equation (2) as follows:

m
u
+

(n−m)

uΛ = K + n. (A2)

We can then solve this equation in terms of u to obtain the final population sizes denoted by
m̄ and n̄.

Appendix B. Derivation of the Equations in the Λ� 1 Limit

The expression of x′ in the Λ � 1 limit is evaluated by splitting averages in multiple parts.
The denominator 〈n̄〉 of the recursion in Equation (3) is given by

∑
n,m

n̄Pλ(n, m, x) = ∑
n

n̄Pλ(n, 0, x) + ∑
n>0 , m>0

n̄Pλ(n, m, x), (A3)
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where the first sum of the right hand side corresponds to compartments without self-replicators
(m = 0) and the second one corresponds to all other compartments containing replicases. Their final
populations remain equal to n molecules after the maturation in the former compartments without
replicators and grow to K + n molecules in compartment containing replicases. Thus, 〈n̄〉 can be
expressed by

〈n̄〉 = ∑
n

nPλ(n, 0, x) + ∑
n>0 , m>0

(K + n)Pλ(n, m, x), (A4)

and, using the definition of Pλ(n, m, x) introduced in Section 2.1, yields the exact equation

〈n̄〉 = λ + K(1− e−λx). (A5)

The numerator 〈m̄〉 is evaluated in a similar way, starting by splitting the average to give

∑
n,m

m̄Pλ(n, m, x) = ∑
n>0

m̄Pλ(n, n, x) + ∑
n>0 , 0<m<n

m̄Pλ(n, m, x), (A6)

where the first sum of the right hand side corresponds to compartments with only self-replicating
molecules (m = n), and the second sum corresponds to compartments with mixed populations.
Empty and pure parasitic compartments do not contribute to the average because in them m̄ = 0.
In the former case, the final self-replicator population verifies m̄ = K + n. In the latter case, with mixed
population, no exact solution for m̄ can be determined. We assume that self-replicators do not have
the time to replicate during the maturation in presence of aggressive parasites, i.e., that m̄ = m if
Λ� 1. Equation (A6) can thus be rewritten

〈m̄〉 = ∑
n>0

(K + n)Pλ(n, n, x) + ∑
n>0 , 0<m<n

mPλ(n, m, x), (A7)

and gives after similar derivations as for Equation (A5),

〈m̄〉 = Ke−λ(eλx − 1) + λx, (A8)

as long as Λ � 1. Finally, by combining Equations (A5) and (A8), one obtains the following
approximate expression, valid for Λ� 1, of the recursion Equation (3):

x′(λ, x) =
λx + Ke−λ(eλx − 1)

λ + K(1− e−λx)
. (A9)

The approximate expression of Equation (5) straightforwardly follows.

Appendix C. Analysis of The Bifurcation

To analyze the nature of the bifurcation, one could a priori use either the coordinates (〈m̄〉, 〈ȳ〉) or
the coordinates (x, λ), since there exists a simple bijection between the two sets of coordinates defined
by Equation (5). In the following, we study numerically the Jacobian of the system of equations in the
coordinates (x, λ) given by Equation (6). We denote the two eigenvalues of this Jacobian by φk with
k = 1, 2. The behavior of these quantities is shown in Figure A1. By evaluating the two eigenvalues at
the fixed point (x∗, λ∗), we observe that their modulus moves from above to below 1 as d changes from
d < 20.74 to d > 20.74. This means that the fixed point (x∗, λ∗) with 0 < x∗ < 1, which is unstable
for d < 20.74, becomes stable as d increases beyond this value. At the transition point for d = 20.74,
the eigenvalues are complex, which is the indication of a Hopf bifurcation. Below d < 20.74, the system
spirals up from the unstable fixed point to a stable limit cycle, which encloses the fixed point, while for
d > 20.74, the system spirals down towards the stable fixed point. We checked that the amplitude of
the oscillations decreases smoothly to zero as the bifurcation point is approached, and that therefore
the bifurcation is supercritical. There is a second transition at d = 37.15, where the imaginary parts of
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the eigenvalues vanish. This means that the system no longer oscillates or spirals around the fixed
point, but instead converges to it monotonically. In this regime, the fixed point is therefore a stable
node ([19], p. 128).

Figure A1. Maximal modulus and maximal imaginary part of eigenvalues of the Jacobian
corresponding to Equation (6) for a carrying capacity K = 60.
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MOTS CLÉS

Homochiralité, physique statistique, physique hors d’équilibre, matrices aléatoires, polymérisation sur template, origines

de la vie

RÉSUMÉ

Les systèmes vivants sur Terre sont homochiraux. Cela signifie que pour chaque espèce chimique chirale qu’ils contiennent,
la fraction d’un des deux énantiomères est très largement supérieure à celle de l’autre énantiomère. Depuis la découverte de
la chiralité par Pasteur, l’homochiralité reste un mystère puisque aucun mécanisme jugé entièrement satisfaisant justifiant son
émergence n’a été proposé à ce jour et que l’on ne sait pas non plus si l’homochiralité est un prérequis ou bien une conséquence
de la vie. Dans cette thèse, nous proposons deux scénarios physiques au sein desquels l’homochiralité pourrait avoir émergé
avant ou bien conjointement avec la vie. Dans un premier temps, nous montrons que les grands réseaux chimiques chiraux
complexes sont susceptibles de subir une transition d’un état racémique à un état homochiral due à une brisure de symétrie
spontanée, lorsque le nombre d’espèces chirales qu’ils contiennent devient important. Ce mécanisme robuste repose sur les
propriétés mathématiques de grandes matrices aléatoires et n’impose que peu de contraintes sur le réseau chimique. Nous
illustrons ce mécanisme avec une généralisation du modèle de Frank, avec un grand nombre d’espèces chimiques. Enfin, nous
évaluons quantitativement l’abondance des molécules chirales dans la nature ainsi que le seuil au-delà duquel les espèces
chirales dominent en nombre celles achirales à l’aide d’une analyse de bases de données moléculaires. Dans un second temps,
nous présentons un mécanisme basé sur la polymérisation sur « template » de biopolymères tels que l’ARN, qui implique
l’extension de brins d’ARN par ligature avec d’autres oligomères ou monomères compatibles par appariement par paire de base.
Ce processus est autocatalytique et montre une inhibition chirale, qui sont tous deux des éléments clés pour induire une brisure
de symétrie provoquant une transition vers un état homochiral. A l’aide de simulations stochastiques détaillées de polymérisation
sur « template » dans des systèmes de polymères chiraux, nous étudions la propension de systèmes initialement composés
d’un mélange racémique de monomères à évoluer vers des systèmes homochiraux de polymères en présence de réactions de
racémisation. Deux types de réacteurs chimiques sous différentes conditions sont étudiés dans ce travail : d’abord des réacteurs
fermés mais maintenus hors d’équilibre, avec un nombre constant de monomères, puis des réacteurs ouverts dans lesquels les
espèces sont dégradées et certaines sont chémostatées. Nous supposons aussi que les systèmes sont soumis à des cycles
de températures dans les deux cas. Nous trouvons qu’un état parfaitement homochiral est atteint par les systèmes fermés en
présence de réactions de racémisation grâce au « chiral stalling » qui ralentit la ligature entre deux brins d’ARN lorsque deux
monomères de chiralités opposées sont appariés proche de la position de la ligature. Il apparaît que cette transition homochirale
permet au système d’atteindre une longueur moyenne plus élevée de polymères qui le composent, ce qui est difficile en général
pour la polymérisation non-enzymatique. Enfin, les simulations de réacteurs ouverts montrent que seul un écart énantiomérique
partiel et transitoire peut être atteint mais sans que des réactions de racémisation soient nécessaires. Le travail présenté dans
cette thèse se focalise principalement sur le processus d’amplification d’un faible écart énantiomérique initial produit soit par un
phénomène physique ou chimique particulier, soit simplement par des fluctuations statistiques.

ABSTRACT

Living systems on earth are homochiral. This means that for every chiral species they contain, one of the two possible enan-
tiomers is present in much higher fraction than its mirrored counterpart. Homochirality has continuously puzzled scientists ever
since the discovery of chirality by Pasteur, because a mechanism for its emergence is not yet solved, nor is the question of
whether homochirality is a prerequisite or a consequence of life. In this thesis, we propose two physical scenarios in which
homochirality could have emerged prior to or alongside life. We first show that large and complex chiral chemical networks are
subject to a symmetry breaking transition from a racemic state to a homochiral one as the number of chiral compounds they con-
tain becomes large. This robust mechanism relies on properties of large random matrices and requires only a few constraints on
the chemical network. It is illustrated with a generalization of the famous Frank model which contains a large number of chemical
species. We also quantify how abundant chiral molecules are in nature through an analysis of molecular databanks which shows
a threshold above which chiral compounds dominate achiral ones. In a second part, we present a scenario based on template-
directed ligation of biopolymers such as RNA, which involves the extension of RNA polymers by ligation with other oligomers or
monomer compatible with base paring. This process presents autocatalysis and chiral inhibition which are two key ingredients for
a symmetry breaking transition leading to a homochiral state. Using detailed stochastic simulations of template-directed ligation
of chiral polymeric systems, we thus investigate the propensity of systems inoculated initially with a racemic mixture of RNA
monomers to evolve towards a homochiral polymer system in the presence of racemization reactions. Two kinds of reactors and
their different conditions are studied in this work: closed out-of-equilibrium reactors with a conserved number of RNA monomers
and open reactors in which species are being degraded over time and some are chemostated. In addition, temperature cycles
or dry-wet cycles are assumed to be present in both cases. We find that full homochirality is reached for closed systems in
presence of racemization reactions due to chiral stalling, which slows ligation when opposite chiralities are paired closed to the
ligation site. Remarkably, the homochirality transition helps the system to reach longer average polymer length, which is typically
difficult in non-enzymatic polymerization. Open reactor simulations can only reach partial and transient enantiomeric excesses
but without the need of racemization reactions. The work presented in this thesis focuses on the amplification process of a
small initial enantiomeric excess imbalance generated by a particular physical or chemical phenomenon or simply by statistical
fluctuations.

KEYWORDS

Homochirality, statistical physics, out of equilibrium physics, random matrices, template-directed polymerization, origins

of life
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