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Part I Introduction and generalities

In the context of increasingly stringent environmental standards concerning polluting emissions and fuel consumption of internal combustion engine vehicles, car manufacturers are looking for solutions to design more ecological vehicles [1]. A first step in this direction was to reduce the engine size and operating speeds, but even if this improves the situation, pollution remains too high. Cylinder deactivation, which consists of deactivating one or more cylinders of the engine when at cruising speed, allows to lower gas emissions but this is still not sufficient. This is why, in recent years, attention has turned to the use of electric engines.

Although electric vehicles are more quiet than thermal ones, sources of noise previously dominated by the noise of the combustion engine are coming to the fore. The most disturbing of these sources are the transmission errors that occur in the gearbox. These errors lead to irregularities in the transmitted torque, causing torsional vibrations in the vehicle's drivetrain that generate an unpleasant whining noise radiated by the housing of the gearbox. It is up to the automotive equipment manufacturers to propose means of attenuating torsional vibrations integrated directly into the powertrain.

The transition to electric motorisation and the resulting problems lead to new challenges for the automotive engineers who must ensure an optimum level of comfort and reliability for the consumer.

Car manufacturers are therefore asking their suppliers to propose solutions adapted to attenuate the torsional vibrations of electric vehicle powertrains. Hence, there is a need for a supplier such as Valeo Transmission to maintain a constant innovation of its products to meet the demands of its customers.

Currently, Valeo only offers solutions to filter the torsional vibrations generated by internal combustion engines. In this thesis, we will focus on one of them, the centrifugal pendulum vibration absorber (CPVA), with two main objectives:

• Adapt centrifugal pendulum systems to electric vehicles;

• Improve the centrifugal pendulums currently used in thermal vehicles. In this section, we present generalities on the excitation signal encountered in many rotating machines. The machine in question can be an element of an automotive powertrain and the excitation can be due to the acyclism of a thermal engine (cf. section 1.1.1.2), transmission errors in the gearbox of an electric vehicle (cf. section 1.1. 1.3) or the torque ripple of an electric motor (cf. section 1.1. 1.4) for instance. The torque applied on a rotating machine often takes the form of the signal presented in Fig. 1.1.

ϑ is the angular position of the machine and the torque T (ϑ) applied on it is made of a constant component T 0 and a fluctuating part T θ (ϑ), such that

T (ϑ) = T 0 + T θ (ϑ). (1.1)
T 0 sets the machine in motion while T θ (ϑ) is usually undesired because it is a source of vibrations. We can see in Fig. 1.1 that T θ (ϑ) is periodic in ϑ with a period π. The excitation order, written n e , is defined as the number of fluctuations per revolution of the machine, and the associated period is 2π/n e . Hence, in the case represented in Fig. 1.1, n e = 2 (and the period is 2π/2 = π). When working with rotating machines, we often describe periodic terms using order and angular position in place of frequency and time because the periodicity is in the position rather than the time. T (ϑ) can be where T ck and T sk are the Fourier coefficients.

It is convenient to introduce the fundamental angular frequency of the excitation ω e . To link ω e to n e , the fundamental excitation frequency f e is defined as the number of torque fluctuations per second. Furthermore, the number of cycles per second is given by ϑ ̇/2π, where we have defined (• ̇) = ∂(•)/∂t and t is the time. ϑ ̇designates the instantaneous rotational speed of the machine. We deduce the fundamental pulsation of the excitation

ω e = n e ϑ ̇, (1.3) 
which shows a proportionality relation between the excitation frequency and the instantaneous speed.

Moreover, because of the torque irregularities, the angular position of the machine fluctuates such that ϑ(t) = Ωt + θ(t), (1.4) where Ω is the mean rotational velocity of the machine and θ(t) captures its vibrations. Hence, the fundamental angular frequency ω e (t) = n e Ω + n e θ ̇(t) varies in time. However, in many applications, the fluctuations of the rotational velocity θ ̇(t) are small in front of the mean rotational velocity Ω (i.e.

θ ̇(t) ≪ Ω), such that it is assumed ϑ ̇(t) ≈ Ω [2]. This allows to rewrite the proportionality relation (1.3) using the mean rotational velocity such that ω e ≈ n e Ω. (1.5) Using this approximation, Eq. (1.2) can be written with time t and the fundamental angular frequency ω e rather than the angular position of the crankshaft ϑ and the order n e such that

T (t) ≈ T 0 + ∞ ∑︂ k=1
T ck cos(kω e t) + T sk sin(kω e t).

(1.6) Table 1.1 anticipates sections 1.1.1.2, 1.1.1.3 and 1.1.1.4 by giving orders of magnitude for n e and detailing the elements usually located by ϑ in the case of thermal engines, gear trains and electric motors. One can see in this table that the order of magnitude of n e is much larger in electric powertrains than in thermal ones.

Acyclism of internal combustion engines

In the case of an internal combustion engine, the source of vibrations is due to the explosions inside the engine. Each explosion causes one of the engine's cylinders to move, which in turn drives the crankshaft, thus setting the drivetrain in motion and making the vehicle move. The explosions cause irregularities of the torque delivered by the engine, which takes the form T (ϑ) = T 0 + T θ (ϑ) discussed in section 1.1.1.1 and generates fluctuations of the crankshaft's rotation ϑ(t).

Figure 1.1 illustrates these torque irregularities T θ (ϑ), called "acyclism", for a four-stroke, fourcylinder internal combustion engine. For such a configuration, an engine cycle is spread over two crankshaft revolutions and is divided into four phases [3]. Only during the expansion phase, which follows the explosion, does a cylinder provide a significant torque. When using four cylinders, one of them is always in its expansion phase. The successive effect of each of the four cylinders can be seen in the pattern that repeats four times in Fig. 1.1.

For an engine, the excitation order n e is usually called engine order. It corresponds to the number of strikes per revolution of the crankshaft, so it only depends on the architecture of the engine and typically takes values between 0.5 and 6 (for instance, n e = 2 in Fig. 1.1). The magnitude of the acyclic engine torque T θ (ϑ), responsible for the torsional vibrations of a thermal powertrain [3], is typically several hundreds of Nm. As shown in Fig. 1.1, the acyclic part of the torque is much larger than its constant component, at such point that the torque delivered can become negative. In the case of an electric motor, the acyclism generated by the engine is usually very low. It is

Transmission errors in the gearbox
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.3: Illustration of the transmission error of a gear train (taken from [4]). The meshing between the two gears is shown on the left-hand side and the modelling of the transmission is shown on the right-hand side. R b1 and R b2 are the base radii of the two gears and α is the pressure angle. The black line tangent to the two base circles is the line of action. On the right-hand side, the transmission is represented as a variable stiffness k(t), a viscous damping element and an imposed displacement e(t) along the line of action.

therefore not the engine that is the main source of the torsional vibrations of the drivetrain, but the transmission errors of the gear trains of the gearbox (cf. Fig. 1.2). Note that these errors also exist in thermal vehicles but their effect is negligible in front of the acyclic torque delivered by the engine. A system of two gears is represented in Fig. 1.3. If we call ϑ 1 and ϑ 2 the angular position of the gears, then, in the case of a perfect transmission,

R b1 ϑ 1 + R b2 ϑ 2 = 0, (1.7) 
where R b1 and R b2 are the base radii of the gears. However, as shown on the right-hand side of Fig. 1.3, the transmission is not perfect. It can be modelled as a time-dependent stiffness k(t), accounting for the variation of the number of teeth in contact and their deformation during the meshing process, and an imposed displacement e(t) along the line of action. A viscous damping c is usually considered in parallel of the stiffness. In this case, the usual kinematic relation between gears (1.7) is no more valid and must be replaced by

R b1 ϑ 1 + R b2 ϑ 2 = x(t) ̸ = 0, (1.8) 
where x(t) is the dynamic transmission error (DTE). In the case where the torque received by the driving gear is constant, the equation governing the DTE is [5][6][7] mx ¨+ cx ̇+ k(t)x = k(t)ϵ(t), (1.9) where ϵ(t) is the static transmission error (STE) and m is an equivalent mass depending on the 1.1. VIBRATIONS IN AUTOMOTIVE POWERTRAINS rotational inertia of the gears and their radii. As gears are excited by their own displacement, the system falls into the field of parametric oscillators [7].

If we define Z 1 the number of teeth of the driving gear and neglect the geometrical defaults of the system (i.e. e(t) = 0, ∀t), then we can say that ϵ(ϑ 1 ) and k(ϑ 1 ) fluctuate Z 1 times per revolution of the driving shaft. Hence, k(ϑ 1 ) and ϵ(ϑ 1 ) are periodic in ϑ 1 and their fundamental order is the number of teeth n e = Z 1 . Thus, from Eq. (1.9), x(ϑ 1 ) is also periodic in ϑ 1 and of order n e . By convention, we chose to look at the gear train from the input, which is why the periodic quantities are expressed in terms of the parameters of the driving gear rather than the driven one. To use the same notations as in section 1.1.1.1, we redefine the angular position of the driving gear as ϑ = ϑ 1 .

After computing x(ϑ) using for instance one of the methods proposed in [5,6], one can deduce the fluctuations of the torque transmitted by the driving gear as

T θ (ϑ) = R b1 x(ϑ). (1.10)
Of course, the gear also transmits a constant torque T 0 such that the total torque T (ϑ) provided by the driving gear has exactly the same form as the one discussed in section 1.1.1.1. Nevertheless, there are two main differences between the torques delivered by an engine (cf. section 1.1.1.2) and transmitted by a gear train:

• The torque order n e is much larger in a gear train because it corresponds to the number of teeth of the gear, which typically ranges from 15 to 60. In the present report, means to reduce vibrations up to order 20 are proposed (cf. section 8.2 and 11.3).

• The order of magnitude of the transmission error is only a few µm [5], so the torque fluctuations generated are only a few Nm, which is much smaller than in thermal engines.

Torque ripple in electric motors

Some electric motors generate a fluctuating electromagnetic torque [8] that causes noise and vibrations of the drivetrain [9]. The scientific community studying this topic calls this phenomenon "torque ripple", but this is very similar to the acyclism met in thermal engines. Torque ripple is particularly problematic in synchronous reluctance machines (SynRM), which can be used in electric vehicles due to their low cost, high robustness, high efficiency and compact size [8,10].

The principle of operation of a SynRM is as follows. Because of its geometry, the rotor provides two flux directions, one along the direct axis d and the other along the quadrature axis q (cf. Fig. 1.4).

Reluctance is smaller along axis d than axis q and inductance is larger because of the smaller air gap between the rotor and stator. The magnetic flux generated by the current flowing in the stator windings follows the path with the least reluctance. Hence, it generates an electromagnetic torque on the rotor in order to align itself with axis d. As the d axis approaches the flux direction, the stator Axes d and q are the direct and quadrature axes of the SynRM, respectively. Taken from [11].

currents are adjusted to change the flux direction, which allows to keep the rotation of the rotor going.

However, this operation principle generates a periodic torque whose main source of fluctuation is the discrete distribution or the stator windings [9].

If we write ϑ the angular position of the rotor, then the torque produced by the electric motor can be written T (ϑ) = T 0 + T θ (ϑ), where T θ (ϑ) represents the torque ripple. Hence, the torque produced by the electric motor has the same form as the one produced by a thermal engine (cf. Eq. (1.1)).

The fundamental torque order corresponds to the number of stator slots, which is usually a multiple of 6 [10,12,13]. For instance, a stator made of 12 sots is considered in [10,11,14]. The amplitude of the torque fluctuations goes from about 10% of the mean torque to more than 100% [11,12] and is typically dominated by the amplitude of the fundamental harmonic [11].

The filtering of the torque ripple is not the main aim of this thesis as the most disturbing vibrations in an electric powertrain are usually due to the transmission errors in the gearbox. Still, the adaptation of centrifugal pendulums to the high-order vibrations of gear trains might also find an application in the reduction of the torque ripple.

Specific features of the drivetrain

In the case of thermal vehicles, the powertrain is made of numerous power transmission components, such as the flywheel, the clutch, the gearbox, the transmission shafts and the wheels (cf.

Fig. 1.9). It is therefore a complex assembly with many torsional modes that are sensitive to engine acyclism. Moreover, the mass and stiffness characteristics of the drivetrain depend on the gear ratio engaged, which implies that the frequencies associated with the torsional modes also depend on it. Thus, there are many critical speeds for which the excitation frequency matches one of the natural frequencies of the drivetrain, causing a resonance of the drivetrain (cf. Fig. 1.5). During an acceleration phase, these resonances are successively excited, leading to unacceptable vibration levels and bringing discomfort.

Electric drives can have many configurations as the motor can be placed at different locations in the drivetrain and the gearboxes used can be more or less complex. Still, as with internal combustion engines, there are many torsional modes in the drivetrain that can resonate, causing the housing to vibrate and radiate a very unpleasant whining noise [15].

The centrifugal pendulum vibration absorber 1.2.1 Its function

In response to the vibration problem met in thermal powertrains, described in sections 1.1.1.2 and 1.1.2, automotive manufacturers proposed in the early 1990s the use of the centrifugal pendulum vibration absorber (CPVA), which originates from the aeronautical field. The CPVA is a passive device consisting of several pendular masses (pendulums) distributed around the circumference of a support (rotor), as illustrated in Fig. 1.6.

The operation principle of a CPVA is similar to that of a tuned mass damper (TMD), which is described first. A TMD, illustrated in Fig. 1.7, consists of attaching a resonant system to a primary structure in order to counteract its oscillations [16,17]. The tuning of the TMD is controlled through the appropriate choice of its mass and spring, which determine its natural frequency ω 0 . In order to tune the TMD on the natural frequency ω s of the primary structure, one simply has to set ω 0 = ω s .

In this configuration, when the primary structure is excited on its resonance, the TMD exerts a force on it that balances the external forcing. As a results, the primary structure remains immobile (in the absence of damping). The pendulums of a CPVA evolve in a centrifugal acceleration field due to the rotational velocity ϑ ̇(t) of the rotor. The centrifugal acceleration, proportional to ϑ ̇2(t), plays the role of a stiffness. This way, the natural frequency of the pendulums, ω p , is proportional to ϑ ̇(t). The proportionality coefficient is the tuning order n p , controlled through the shape of the pendulums' path. As the excitation frequency ω e is also proportional to the rotational velocity ϑ ̇(cf. Eq. (1.3)), we can tune Eq. (1.11) shows that a CPVA is tuned on an order, which is independent from the rotational velocity ϑ ̇. When n p = n e , the pendulums exert a torque on the rotor which has the same order (or, equivalently, frequency) and amplitude as the first harmonic of the engine torque T (ϑ), but is in phase-opposition with it. Thus, the two torques balance and the drivetrain components located after the CPVA are isolated from the fluctuating engine's torque.

Here, we saw that both the TMD and CPVA are tuned absorbers and that they reduce the vibrations of a primary structure. However, there are two main differences: (i) CPVAs are ordertuned absorbers, so that their tuning frequency varies, while TMDs are frequency-tuned absorbers.

(ii) TMDs are tuned on the natural frequency of the structure they are attached to, while CPVAs are tuned on the excitation. These differences are discussed in details in the next section.

Advantages of centrifugal pendulums over other absorption means

The number of torsional modes present in the drivetrain, their frequency shift according to the gear engaged (in the case of manual gearboxes, cf. Fig. 1.5) and the number of harmonics making up the excitation signal (cf. section 1.1.1) imply that filtering solutions must be proposed for a multitude of frequencies and rotation speeds. In this section, we compare the advantages of using CPVAs instead of other absorption means.

CPVA and TMD A CPVA has two main advantages over a TMD. First, TMDs absorb energy around a fixed drivetrain frequency, whereas CPVAs filter-out one of the frequencies of the exciting torque, which variates with the engine speed. CPVAs can therefore operate on a whole speed range.

Note that the use of multiple TMDs tuned to slightly different frequencies allows for significant vibration reduction around a small frequency band and makes the absorption of a driveline mode more robust [18]. Another advantage of a CPVA is that it filters the excitation, whereas a TMD reduces the vibrations around a single resonance. This subtle difference has significant consequences as it implies that a CPVA generates an antiresonance on every downstream driveline component. Hence, when placed right after the source of excitation, a CPVA isolates the whole driveline from torque oscillations.

Nonlinear energy sink Nonlinear energy sinks (NES) [19][20][21] can be effective over a wider frequency band than TMDs as they are more robust to mistuning. Absorption takes place via an irreversible energy transfer from the primary system to the NES. However, this transfer can only be activated for large displacement amplitudes, which prohibits the use of this type of absorber. More-1.2. THE CENTRIFUGAL PENDULUM VIBRATION ABSORBER over, NES do not generate an antiresonance of the primary structure like a TMD or a CPVA, which, in the case of low damping, makes them less efficient.

Metamaterials Metamaterials have been receiving a lot of interest these last years for their interesting properties. Their periodic design leads to the appearance of bandgaps such that any travelling wave with a frequency in this bandgap becomes evanescent. This concept was used in [22] to prevent the propagation of a torsional wave in a beam made of successive heterogeneous cells. However, the frequencies contained in the bandgap are directly related to the cells arrangement of the beam, so it does not seem possible to make this bandgap linearly dependent on the engine speed. Hence, like TMDs, this method can only be used to reduce the vibrations at a fixed drivetrain frequency.

Centrifugated beams

The main idea of the CPVA is that it evolves in the centrifugal acceleration field of the rotor, allowing for its auto-tuning (or order-tuning). Nevertheless, other centrifugated systems could exhibit the same feature, as for instance thin beams attached on a rotor. Indeed, above a given rotational velocity of the rotor, the bending stiffness of a beam becomes negligible in front of the tension stiffness, which is proportional to the velocity of the rotor [23,24]. This defines a critical speed above which the eigenfrequencies of the beam tend to be proportional to the rotor's rotational velocity.

The eigenorders (analogous to eigenfrequencies) of a centrifugated beam are derived in Appendix A in the special case of a rotor with a null radius. A possible improvement of the system is to add a mass on the beam, as proposed in [25]. However, this added mass can cause the eigenorders to diminish [26][27][28], which is detrimental to the high-order tuning required for gear systems. When the mass is large in front of the total mass of the beam, then the system is similar to a CPVA except that the masses are guided via the beam rather than the shape of rolling tracks. The facts that centrifugated beams (with or without added mass) are operational only starting from a given rotor speed and appear to be quite limited in their tuning orders are the two principal drawbacks compared to CPVAs. However, ongoing works should soon provide more details on the limitations of these systems.

Semi-passive systems Another absorption mean is to use electro-mechanical systems, as presented in [17,[29][30][31][32][33]. In these studies, the authors propose to send the mechanical energy related to the torsional vibrations in a resonant shunt circuit where it is absorbed using an electromagnetic transducer.

In addition, this shunt circuit can be used together with a passive system (a CPVA or a TMD for instance), leading to a hybrid vibration absorber. These absorbers are out of the scope of the present study, which focuses on fully mechanical absorbers. However, the use of electromagnetic absorbers is very promising as they do not seem to be limited in their tuning order. Moreover, it was theoretically shown that they can improve or even imitate the behaviour of a CPVA [30].

THE CENTRIFUGAL PENDULUM VIBRATION ABSORBER

Geometry and control of electric motors In the case of electric motors, several methods are used to reduce the torque ripple. For instance, M. O. Hamiti [9] focused on the geometry of the electric machine and the current sent in the motor. Though these methods can prove efficient, they only apply to electric motors and are out of the scope of this thesis.

As a conclusion, CPVAs appear to be excellent fully passive absorbers for the vibration problem considered due to their auto-tuning property and their filtering efficiency. Two other key features that CPVAs share with other absorbers (the NES and TMD for instance) are the small space required and the small added mass. CPVAs are generally tuned to the fundamental order of the excitation because it has the largest amplitude and therefore generates the most important vibrations. However, this tuning has a limitation: such CPVAs are unable to filter-out the higher torque harmonics, which therefore persist and can be problematic if their amplitude is large. Nevertheless, it is possible to equip a CPVA with pendulums tuned to different orders [34,35], and thus address the most troublesome higher harmonics. This interesting possibility is not investigated in this report but is left for future works.

History of centrifugal pendulums

The aircraft industry was the first to be concerned about the harmful and potentially disastrous effects of torsional vibrations. The Dragonfly radial engine designed in the UK by G. Bradshaw (ABS Motors) during World War I is a well-known example. The excitation frequency of this engine at nominal flight speed coincided with the frequency of a crankshaft torsional mode, which resulted in its lifespan being limited to only a few hours [36]. CPVAs were invented to prevent such disasters from happening again.

CPVAs can be classified into two categories: monofilar and bifilar systems. To our knowledge, it is B. C. Carter [37] (Royal Aircraft Establishment) who first proposed a monofilar pendulum, in 1929.

His design is illustrated in Fig. 1.8(a) and consists of integrating a rolling mass (of cylindrical shape) in a cavity machined directly in the crankshaft. The mass has a single suspension point, hence the name "monofilar".

Bifilar CPVAs get their name from the fact that the pendulums have two suspension points. It is the French engineer R. R. R. Sarazin (Hispano-Suiza) who patented this concept in 1931 [38], again dedicated to aeronautical applications. He proposed to integrate his system directly in the flywheel, as illustrated in Fig. 1.8(b). The modern bifilar CPVA, which would later inspire the technology adopted by the automotive industry, is the system patented in 1935 by R. Chilton [39] (Pratt & Whitney), shown in Fig. 1.8(c). Like Carter, he proposed to install the pendulums directly on the crankshaft, but in his design the pendulums are guided using two rollers (this architecture is presented in details in the [37], (b) Sarazin [38] and (c) Chilton [39]. The axis of rotation indicated is that of the rotor.

next section). From then on, the concept proposed by Chilton underwent only minor evolutions and was adapted from the 1970s onwards to helicopter rotors [40,41]. It was not until the beginning of the 1990s, with the works of Denman [42], that these systems finally appeared in automotive drivetrains.

They are generally installed in parallel with the drivetrain, often on the flywheel, as shown in Fig. 1.9. 

Bifilar pendulums

The bifilar CPVA, which is by far the most used in the industry, is now presented in details.

Figure 1.10 shows such a CPVA made of six bifilar pendulums distributed around the circumference of a rotor. The pendulums are made of two thick metal plates arranged on each side of the rotor and acting as masses, and two struts that connect the front and back plates. The movement of a pendulum is guided by two cylindrical rollers (the two suspension points, hence the name bifilar) rolling without slipping on the tracks of the rotor and the pendulum's struts. The shape of these tracks allows to impose the path followed by the centre of mass of a pendulum during its oscillations.

The CPVA shown in Fig. 1.10 is said to be "translational" because the pendulums only move in translation with respect to the rotor. More precisely, during the pendulums' motion, the frame R p (P p , x p , y p , z r ) (fixed to the pendulum at point P p ) remains constantly parallel to the frame R r (P r , x r , y r , z r ) (fixed to the rotor at point P r ). The case of pendulums having a rotational mobility is discussed in section 1.2.5. Some orders of magnitude regarding the bifilar CPVAs currently used in the automotive sector are given thereafter. The maximum amplitude of motion of a pendulums' centre of mass along its path typically varies from 10 to 15 millimetres. The number of pendulums in a CPVA typically goes from two to eight depending on the application, the performance required and the space available. The same goes for the total pendulums' mass, which typically goes from a few hundreds of grams to more than one kilogram.

Rocking pendulums

In the early developments of CPVAs, some studies considered the case of "rocking" pendulums, i.e. pendulums that rotate relatively to the rotor in addition to their translational motion [43][44][45],

as illustrated in Fig. 1.11. However, after these pioneer works, very few investigations dealing with rocking pendulums were carried out, probably because of early recommendations encouraging the use of purely translated CPVAs [46]. However, J. Mayet et al. showed less than ten years ago that the rotational motion can significantly improve the performance of a CPVA [47,48]. This is due to the contribution of the pendulums' rotational inertia, which virtually increases their mass, as will be explained in section 2.1.3. These results motivated Valeo to perform in-depth investigations of the rotation law. This was done by A.

Renault [2], who proposed original design rules to take maximum advantage of the rotational motion [49,50]. Since then, Valeo developed a new range of bifilar rocking CPVAs inspired from the concept patented by L. J. Stone in 1945 [45]. An example is shown in Fig. 1.12, where one can see that the yellow frame (attached to the pendulum) rotates relatively to the white frame (attached to the rotor) during the pendulums' motion. As for their path, the pendulums' rotation function is controlled by the shape of the rolling tracks.

In addition, rotation contributes to the pendulums' tuning order n p , as detailed in section 2.2.1.1.

Note that rocking bifilar CPVAs are sometimes called "trapezoidal" CPVAs because they can be modelled as a trapezoidal structure [51,52], as shown in Fig. 1.13.

Literature review

The study presented in this report is part of a research activity on pendulum absorbers that has been going on for nearly a century. A state of the art of the field is presented in this section.

LITERATURE REVIEW

Figure 1.13: Realistic representation of a bifilar CPVA (left) and the associated trapezoidal representation (right). This figure is taken from [52].

Fields of application CPVAs were initially dedicated to the attenuation of torsional vibrations of light aircraft [37,39,53]. The first evidence of such applications dates back to World War II [46].

Then, starting from the early 60s, it was proposed to use CPVAs to reduce the torsional vibrations generated by helicopter turbines [40,41,[54][55][56]. Actual application examples can be found in [57].

It was only as from the 90s that CPVAs appeared in the automotive sector [42,58] with the first experimental investigations dedicated to racing cars [59]. More recently, it was also suggested to use CPVAs in ships [60,61], but no real application is known to the author.

Pendulums' path

The choice of the pendulums' path is essential as it determines their proper tuning and contributes to their nonlinear response. D. E. Newland showed that circular paths, which were the first ones to be used, confer the CPVA a softening behaviour leading to jumps of the system's response [62,63]. This jump is disastrous for performance as it causes the pendulums to oscillate with a much larger amplitude than predicted by linear theory and to act as amplifiers instead of absorbers.

In 1980, J. F. Madden patented a CPVA whose pendulums' path is not a circle but a cycloid [56]. This innovation is inspired by the Huygens pendulum [64] whose cycloidal path allows the pendulum to be tautochronic in the gravity acceleration field. This very interesting property means that the pendulum's period of oscillation does not depend on its amplitude of motion. However, cycloidal paths are not the tautochronic paths in a centrifugal acceleration field, but lead to a slightly hardening behaviour. This is still beneficial compared to the circular paths as jumps are avoided, but further improvements can be done to limit the hardening behaviour. This motivated H. H. Denman to propose the epicycloidal path, which is the tautochronic path in a constant centrifugal acceleration field [42].

However, in practice the centrifugal acceleration field fluctuates because of the rotor's vibrations. Moreover, tautochronic pendulums do not allow for maximum performance and are subjected to nonlinear phenomena such as energy localisation (this is discussed further below). This is why many 1.3. LITERATURE REVIEW recent works consider paths close but not equal to the epicycloid, which allows for a nonlinear tuning of the CPVA [2,[65][66][67][68][69]. A circular, cycloidal and epicycloidal path tuned to the same order (hence leading to the same linear response, cf. section 2.1.3) are illustrated in Fig. 1. 14. One can see that tighter paths lead to more hardening behaviours.

A O rotor's edge circle cycloid epicycloid Figure 1.14: Illustration of a circular, cycloidal and epicycloidal path with the same tuning order. O is the centre of the rotor and A is the centre of curvature of the three paths at their vertex. A is also the centre of the circular path as its curvature is constant. The expression of each path can be found in section 2.1.3.

Pendulums' rotation law

It is R. Chilton who first investigated the effect of pendulum rotation on the tuning order through his study of a pendulum mass rolling without slipping on a convex surface [43]. Then, R. W. Zdanowich and T. S. Wilson [44] derived the expression of the tuning order of roller-type and ring-type rotating pendulums (note that the ring-type pendulum is a special case of the monofilar pendulum investigated in chapter 3). A similar analysis on a compound pendulum was led by R. G. Mitchiner and R. G. Leonard [START_REF] Mitchiner | Centrifugal Pendulum Vibration Absorbers-Theory and Practice[END_REF]. However, it was less than ten years ago that J. Mayet and H. Ulbrich provided the first results showing that the rotational motion can significantly improve the performance of a CPVA [47,48,68]. In-depth studies of the rotation law of the pendulums were then led by A. Renault [2] and M. A. Acar [START_REF] Acar | Design and Tuning of Centrifugal Pendulum Vibration Absorbers[END_REF]. A. Renault patented a particular nonlinear rotation law that maximises the vibration reduction over the whole torque range [49,50]. M. Cera et al. proposed to optimise the rotation of a trapezoidal CPVA to reproduce the rotation of a compound pendulum attached at the rotor's centre [START_REF] Cera | Design analysis of torsichrone centrifugal pendulum vibration absorbers[END_REF]. As shown in Fig. 1.15, this might permit the use of more voluminous pendulums when the space requirement is very demanding. Another proposition was made by X. Tan et al. [START_REF] Tan | Study of dynamics of rotational centrifugal pendulum vibration absorbers based on tautochronic design[END_REF] with the aim to limit the effect of a shock between the pendulum and the rotor. The idea is that if the direction of the force due to the shock is radial, then the associated 1.3. LITERATURE REVIEW momentum about the rotor's centre is null. J. Mayet et al. pursued their initial work by proposing a design methodology for robust and efficient rocking CPVAs [START_REF] Mayet | Effective and robust rocking centrifugal pendulum vibration absorbers[END_REF]. The present work, which includes [67,[START_REF] Mahe | Subharmonic centrifugal pendulum vibration absorbers allowing a rotational mobility[END_REF][START_REF] Mahe | Dynamic stability of centrifugal pendulum vibration absorbers allowing a rotational mobility[END_REF], also provides a greater knowledge of the effect of the pendulums' rotation, with a special focus on its nonlinear contribution. Figure 1.15: Illustration of the benefits of rocking absorbers with respect to space requirements [START_REF] Cera | Design analysis of torsichrone centrifugal pendulum vibration absorbers[END_REF].

Localisation in classical tuning

The CPVAs currently used in the industry are tuned on (or very close to) the excitation. This is referred-to as the "classical" CPVA tuning (or classical operation), in opposition to the "subharmonic" tuning, discussed in the next paragraph. In classical operation, the desired behaviour of the CPVA is a synchronous motion of the pendulums, so that they act as a single equivalent pendulum. However, due to their cyclic symmetry, CPVAs are subjected to energy localisation phenomena. These phenomena correspond to situations where the stability of the unison solution is broken, leading to a solution where one (or more) pendulums oscillate with an amplitude larger than the others and with a different phase. Energy localisation is known to occur in systems with cyclic symmetry [START_REF] Sarrouy | Global and bifurcation analysis of a structure with cyclic symmetry[END_REF][START_REF] Grolet | Free and forced vibration analysis of a nonlinear system with cyclic symmetry: Application to a simplified model[END_REF][START_REF] Fontanela | Computation of quasi-periodic localised vibrations in nonlinear cyclic and symmetric structures using harmonic balance methods[END_REF], and in the case of CPVAs it usually deteriorates the system's performance.

Localisation can be caused by an asymmetry in the system, generally due to slight disparities between the pendulums [START_REF] Alsuwaiyan | Localisation of free vibration modes in systems of nearly identical vibration absorbers[END_REF][START_REF] Alsuwaiyan | Steady-State Responses in Systems of Nearly-Identical Torsional Vibration Absorbers[END_REF][START_REF] Sarikaya | Response Sensitivity of Centrifugal Pendulum Vibration Absorbers to Symmetry-Breaking Absorber Imperfections[END_REF]. However, a localised response can also exist with identical pendulums, in which case it is due to a nonlinear phenomenon. The first studies on the nonlinear localisation of the pendulums' response, led by C.-P. Chao et al. [START_REF] Chao | Non-unisson dynamics of multiple centrifugal pendulum vibration absorbers[END_REF][START_REF] Chao | Stability of the Unison Response for a Rotating System With Multiple Tautochronic Pendulum Vibration Absorbers[END_REF], dealt with epicycloidal paths. Then, A. S.

Alsuwaiyan et al. considered the case of more general paths [65]. This study on general paths was extended by S. W. Shaw et al., who were able to develop an accurate analytical model by taking into account the main nonlinearities coming from both the path and the inertial effects [66]. Other works investigated the localised response itself [START_REF] Alsuwaiyan | Non-synchronous and Localized Responses of Systems of Identical Centrifugal Pendulum Vibration Absorbers[END_REF][START_REF] Issa | Synchronous and non-synchronous responses of systems with multiple identical nonlinear vibration absorbers[END_REF], and it was shown that this asynchronous response can become unstable, leading to quasi-periodic and even chaotic solutions [START_REF] Grolet | Energy Localisation in Periodic Structures: Application to Centrifugal Pendulum Vibration Absorber[END_REF][START_REF] Nishimura | Localization phenomena in torsional rotating shaft systems with multiple centrifugal pendulum vibration absorbers[END_REF]. Moreover, some experimental works led to the observation of localised solutions [START_REF] Nester | Experimental Investigation of a System With Multiple Nearly Identical Centrifugal Pendulum Vibration Absorbers[END_REF][START_REF] Nester | Experimental observations of centrifugal pendulum vibration absorbers[END_REF][START_REF] Shaw | Tautochronic Vibration Absorbers for Rotating Systems[END_REF]. [67,[START_REF] Mahe | Dynamic stability of centrifugal pendulum vibration absorbers allowing a rotational mobility[END_REF], which were published during this PhD and are included in the present report, also provide a greater understanding of the 1.3. LITERATURE REVIEW localisation phenomenon.

Subharmonic tuning

In 1992, Denman discussed the existence of a subharmonic solution [42] which could allow a CPVA operation different form the classical one. The study of this solution was initiated by C.-T. Lee and S. W. Shaw, who focused on a system composed of two pendulums following an epicycloidal path [START_REF] Lee | Torsional vibration reduction in internal combustion engines using centrifugal pendulums[END_REF]. First, it was shown that the desired subharmonic response corresponds to the pendulums moving in phase-opposition and oscillating at half the excitation frequency. This operation can provide excellent vibration reduction as the pendulums do not generate higher rotor harmonics, contrarily to the classical operation, and they cause a saturation of the rotor's response [START_REF] Lee | On the counteraction of periodic torques for rotating systems using centrifugally driven vibration absorbers[END_REF]. A patent was filed [START_REF] Shaw | Half-order centrifugal pendulum vibration absorber system[END_REF] and some studies followed, confirming the previous results while analysing the robustness of the solution to the addition of damping [START_REF] Lee | The non-linear dynamic response of paired centrifugal pendulum vibration absorbers[END_REF][START_REF] Lee | A Subharmonic Vibration Absorber for Rotating Machinery[END_REF] and to small modifications of the path [START_REF] Chao | The effects of imperfections on the performance of the subharmonic vibration absorber system[END_REF]. Apart from [START_REF] Mahe | Subharmonic centrifugal pendulum vibration absorbers allowing a rotational mobility[END_REF], which was published during this PhD and is included in the present document, the last work dealing in details with the subharmonic solution dates from 2000 [START_REF] Chao | The dynamic response of multiple pairs of subharmonic torsional vibration absorbers[END_REF]. It focused on the stability of the response when several pairs of pendulums are used and it was shown that this solution can be made stable through a judicious choice of the pendulums' path. The phase-opposition motion of two pendulums responding on their subharmonic was observed experimentally in [35]. Figure 1.16: Illustration of the CPVA with pendulums tuned on two orders studied by B. J. Vidmar [34,35].

CPVA designs and CPVA-related concepts

The very first CPVA designs had pendulums of the form of rollers [37,44], as shown in Fig. 1.8(a). The simplicity of roller pendulums led them to be investigated again in the first experimental study dedicated to automotive vehicles [59] and in more recent works [60,[START_REF] Wedin | Reduction of Vibrations in Engines Using Centrifugal Pendulum Vibration Absorbers[END_REF]. However, the design that received the most attention is by far the bifilar 1.3. LITERATURE REVIEW CPVA (cf. section 1.2.4), either purely translated [35,38,40,42,44,46,53,55,56,62,63,[START_REF] Nester | Experimental observations of centrifugal pendulum vibration absorbers[END_REF][START_REF] Bauchau | Modeling the Bifilar Pendulum Using Nonlinear, Flexible Multibody Dynamics[END_REF][START_REF] Monroe | Accounting for Roller Dynamics in the Design of Bifilar Torsional Vibration Absorbers[END_REF][START_REF] Geist | Precision requirements for the bifilar hinge slots of a centrifugal pendulum vibration absorber[END_REF] or with rocking pendulums [45,52,69,[START_REF] Cera | Design analysis of torsichrone centrifugal pendulum vibration absorbers[END_REF][START_REF] Tan | Study of dynamics of rotational centrifugal pendulum vibration absorbers based on tautochronic design[END_REF][START_REF] Mayet | Effective and robust rocking centrifugal pendulum vibration absorbers[END_REF][START_REF] Cera | The kinematics of curved profiles mating with a caged idle roller -higher-path curvature analysis[END_REF][START_REF] Gomez | Normal-force dependant friction in centrifugal pendulum vibration absorbers: Simulation and experimental investigations[END_REF][START_REF] Chen | Dynamic Model and Dynamic Response of Automobile Dual-Mass Flywheel with Bifilar-Type Centrifugal Pendulum Vibration Absorber[END_REF][START_REF] Cera | Design and comparison of centrifugal dampers modern architectures: The influence of roller kinematics on tuning conditions and absorbers nonlinear dynamics[END_REF][START_REF] Gomez | Torsional vibrations in heavy-truck powertrains with flywheel attached centrifugal pendulum vibration absorbers[END_REF][START_REF] Gomez | Powertrain shuffle-mode resonance suppression by means of flywheel mounted torsichrone centrifugal pendulum vibration absorbers[END_REF]. Note that a purely translated bifilar CPVA with pendulums following circular paths can be modelled using simple pendulums, explaining why several studies focused on this simple design [41,44,53,61,[START_REF] Nishimura | Localization phenomena in torsional rotating shaft systems with multiple centrifugal pendulum vibration absorbers[END_REF][START_REF] Wedin | Reduction of Vibrations in Engines Using Centrifugal Pendulum Vibration Absorbers[END_REF][START_REF] Pfabe | Reduction of Periodic Torsional Vibration using Centrifugal Pendulum Vibration Absorbers[END_REF][START_REF] Sharif-Bakhtiar | The dynamic response of a centrifugal pendulum vibration absorber with motion-limiting stops[END_REF][START_REF] Shaw | Chaotic Motions of a Torsional Vibration Absorber[END_REF][START_REF] Sharif-Bakhtiar | Effects of Nonlinearities and Damping on the Dynamic Response of a Centrifugal Pendulum Vibration Absorber[END_REF][START_REF] Shi | Vibration Modes and Natural Frequency Veering in Three-Dimensional, Cyclically Symmetric Centrifugal Pendulum Vibration Absorber Systems[END_REF][START_REF] Shi | Vibration reduction in a tilting rotor using centrifugal pendulum vibration absorbers[END_REF]. As explained in [START_REF] Newland | Developments in the design of centrifugal pendulum vibration absorbers[END_REF], a significant advantage of the bifilar CPVAs is that their mass and inertia can be controlled more easily than that of roller CPVAs. Though roller-type pendulums and compound pendulums [40,[START_REF] Nester | Experimental observations of centrifugal pendulum vibration absorbers[END_REF] are the most common type of monofilar pendulums, more advanced monofilar designs are also possible [START_REF] Mahe | Dynamic stability of centrifugal pendulum vibration absorbers allowing a rotational mobility[END_REF]. A typical issue of CPVAs in classical operation is the generation of higher rotor harmonics, which led several works to suggest the use of CPVAs with pendulums tuned at different orders [44,[START_REF] Lee | Torsional vibration reduction in internal combustion engines using centrifugal pendulums[END_REF][START_REF] Lee | On the counteraction of periodic torques for rotating systems using centrifugally driven vibration absorbers[END_REF][START_REF] Shi | Vibration reduction in a tilting rotor using centrifugal pendulum vibration absorbers[END_REF][START_REF] Ishida | Nonlinear Analysis and Experiments on Torsional Vibration of a Rotor with a Centrifugal Pendulum Vibration Absorber[END_REF][START_REF] Shi | Modal structure of centrifugal pendulum vibration absorber systems with multiple cyclically symmetric groups of absorbers[END_REF][START_REF] Shaw | Modal Properties of Rotating Shafts with Order-Tuned Absorbers[END_REF]. This special configuration was particularly studied by B. J. Vidmar [34,35], who investigated a CPVA made of pendulums tuned on the two first rotor harmonics (cf. Fig. 1.16). Another issue of CPVAs is the existence of localised responses, which led J. Mayet et al. [47] and M. Cera et al. [START_REF] Cera | Nonlinear dynamics of torsichrone CPVA with synchroringed form closure constraint[END_REF] to propose original designs involving an auxiliary body to which the pendulums are all connected and that prevents any asynchronous motion, as shown in Fig. 1.17.

The CPVAs used in cars are sometimes combined with other means of vibration reduction such as dual-mass flywheels (DMF) to further reduce the vibrations of the powertrain [START_REF] Chen | Dynamic Model and Dynamic Response of Automobile Dual-Mass Flywheel with Bifilar-Type Centrifugal Pendulum Vibration Absorber[END_REF][START_REF] Li | Study and Simulation of Isolation Performance of Torsional Vibration of DMF-CS with Centrifugal Pendulum-Type Absorber[END_REF][START_REF] Kooy | The evolution of the centrifugal pendulum-type absorber not only for DMF[END_REF][START_REF] Lee | Torsional Filtration Improvement with Centrifugal Pendulum DMF in Rear Wheel Drive System[END_REF]. A different concept of CPVA was proposed by R. W. Zdanowich and T. S. Wilson in [44] where double pendulums are used instead of the simple pendulums, allowing to reduce the rotor's vibrations at two different orders. The system proposed consisted of an absorber (pendulum 2) rolling on a pin (pendulum 1), which itself rolls on the rotor's rolling track. A similar design, shown in Fig. 1.18, was investigated experimentally by J.-G. Duh and M. Wenyong in [START_REF] Duh | Development of monofilar rotor hub vibration absorber[END_REF] with the aim to reduce the vibrations due to the blades of a helicopter rotor, which requires a filtering at two distinct orders [START_REF] Shi | Tuning of centrifugal pendulum vibration absorbers for translational and rotational vibration reduction[END_REF].

Recently, V. Manchi and C. Sujatha proposed an analytical model describing the nonlinear response of a system with double pendulums [START_REF] Manchi | Torsional vibration reduction of rotating shafts for multiple orders using centrifugal double pendulum vibration absorber[END_REF], which they called "centrifugal double pendulum vibration absorber" (CDPVA). They also presented experimental evidence of the vibration reduction with a CDPVA installed directly on the engine shaft of an automotive vehicle.

CPVAs in multi-degree-of-freedom systems Though most studies dealing with CPVAs consider only a rotor and one or several pendulums, these devices are to be used in powertrains, which can have a complex architecture. In a first approach, it can be assumed that a powertrain is made of several inertias connected together by shafts that act as torsional springs, as represented in Fig. 1.19. Some early studies considered systems made of several rotors linked through a torsional stiffness and with a CPVA installed on one of the rotors [53,62,63]. More recently, S. W. Shaw, M. A. Acar et al. pursued these works and detailed the frequency veering effect which arises when the natural frequency of the pendulums approaches a natural frequency of the drivetrain [START_REF] Shaw | Modal Properties of Rotating Shafts with Order-Tuned Absorbers[END_REF][START_REF] Acar | Nonlinear Dynamics of Flexible Rotating Shafts With Centrifugal Pendulum Vibration Absorbers[END_REF]. This frequency veering phenomenon also occurs with systems made of a single rotor equipped with blades [START_REF] Gozen | Resonance Suppression in Multi-Degree-of-Freedom Rotating Flexible Structures Using Order-Tuned Absorbers[END_REF]. K. Kadoi et al. studied the positioning of a CPVA in a system made of several rotors linked through shafts 1.3. LITERATURE REVIEW Figure 1.17: Illustration of the CPVAs enforcing a synchronous pendulums' motion proposed by J. Mayet et al. [47] (a) and by M. Cera et al. [START_REF] Cera | Nonlinear dynamics of torsichrone CPVA with synchroringed form closure constraint[END_REF] (b). represented as torsional springs and presented a test bench. Another test bench was proposed by T. Inoue et al. [START_REF] Inoue | Evaluation of Relationship Between Shape of a Rigid Body Unifilar Centrifugal Pendulum Vibration Absorber and Vibration Suppression Performance[END_REF]. In an automotive powertrain, the CPVA is usually placed as close as possible from the engine [START_REF] Gomez | Torsional vibrations in heavy-truck powertrains with flywheel attached centrifugal pendulum vibration absorbers[END_REF][START_REF] Gomez | Powertrain shuffle-mode resonance suppression by means of flywheel mounted torsichrone centrifugal pendulum vibration absorbers[END_REF][START_REF] Smith | Analysis and simulation of centrifugal pendulum vibration absorbers[END_REF] as this allows to isolate the driveline more efficiently from torque oscillations [2].

Kinematics of bifilar CPVAs

When designing a CPVA, one wants to control the path and rotation law of the pendulums. As explained in section 1.2.4 for bifilar CPVAs, this is done through an accurate design of the rolling tracks of both the pendulums and the rotor. The shape of these tracks is not trivial, and a few years ago the designers tried different shapes iteratively until a satisfactory one was obtained. However, much more efficient and time-saving methods were recently proposed by A.

Renault [2], X. Tan et al. [START_REF] Tan | Study of dynamics of rotational centrifugal pendulum vibration absorbers based on tautochronic design[END_REF] and J. Mayet et al. [START_REF] Mayet | Effective and robust rocking centrifugal pendulum vibration absorbers[END_REF]. In each case the path and rotation law are imposed and the goal is to obtain the Cartesian coordinates of the tracks in the rotor's frame, as illustrated in Fig. 1.20.

Effect of gravity

When modelling a CPVA, it is usually assumed that the centrifugal acceleration significantly dominates the gravity acceleration, so that the later is neglected (cf. section 2.2.1). T. M. Theisen studied this assumption in details and showed that gravity causes the appearance of a harmonic of order 1 in the system's response [START_REF] Theisen | Gravity's effect on centrifugal pendulum vibration absorbers[END_REF]. However, the effect of gravity is significant only at very low rotation speed, typically at idle speed. M. Mu pursued this work and focused on the gravitational parametric excitation [START_REF] Mu | Gravitation effects on centrifugal pendulum vibration absorbers linear analysis[END_REF], which can perturb the system's response when the engine 1.3. LITERATURE REVIEW Figure 1.18: Illustration of the CDPVA studied by the NASA [START_REF] Duh | Development of monofilar rotor hub vibration absorber[END_REF]. order is an integer. Recently, D. Tchokogoué et al. showed that at low speeds, gravity can cause the pendulums to respond in one or more groups, where the pendulums in each group have the same waveform but different phases [START_REF] Tchokogoué | The Effects of Gravity on the Response of Centrifugal Pendulum Vibration Absorbers[END_REF]. They also investigated in details the direct and parametric excitation arising from gravitational effects. Special care was given to the cases where the engine order

is n e = 1 and n e = 2, for which particular resonance effects arise between the gravitational excitation and the external torque.
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.20: Illustration of the method proposed by A. Renault [2] to compute the rolling tracks of a bifilar CPVA. C P 1 and C P 2 are the rolling tracks of solid P (the pendulum, cf. Fig. 1.10) whose centre of mass is G. C 01 and C 02 are the rolling tracks of solid 0 (the rotor, cf. Fig. 1.10). The aim is to determine the shape of C P 1 , C P 2 , C 01 and C 02 such that: (i) the pendulum follows the path C (ii) the pendulum rotates relatively to the rotor accordingly to the angle α(S) (iii) the rollers (solids 1 and 2) roll without slipping on the rolling tracks.

Damping Damping in CPVAs is desired to be as small as possible (cf. section 2.2.4) but it is complex and depends on many physical effects such as material damping, friction, rolling resistance, windage and squeeze film for instance [START_REF] Shaw | Tautochronic Vibration Absorbers for Rotating Systems[END_REF]. The influence of Coulomb friction was investigated in [START_REF] Dragani | The centrifugal pendulum as a non linear torsional vibration absorber[END_REF][START_REF] Vidmar | The effects of Coulomb friction on the performance of centrifugal pendulum vibration absorbers[END_REF]. B. J. Vidmar et al. [START_REF] Vidmar | The effects of Coulomb friction on the performance of centrifugal pendulum vibration absorbers[END_REF] showed experimentally and analytically that the presence of Coulomb friction in addition to viscous losses causes the appearance of a threshold torque below which the pendulums are immobile, hence decreasing the filtering efficiency at small excitation levels.

E. R. Gomez et al. conducted experimental investigations on a bifilar CPVA and showed that the damping could be represented as a combination of viscous losses and Coulomb friction [START_REF] Gomez | Normal-force dependant friction in centrifugal pendulum vibration absorbers: Simulation and experimental investigations[END_REF]. The influence of hysteretic damping was studied in [58,[START_REF] Chao | Stability of the Unison Response for a Rotating System With Multiple Tautochronic Pendulum Vibration Absorbers[END_REF].

LITERATURE REVIEW

Transient response Most studies on CPVAs consider only the steady state response. However, studying the transient response is particularly relevant in some cases, such as cylinder deactivation.

Cylinder deactivation consists in deactivating one or more of the engine's cylinder at cruising speed in order to save gas. This deactivation leads to a sudden change in the fundamental order and amplitude of the engine's torque, causing a transient response. Analyses of this response were carried out in [START_REF] Monroe | Nonlinear Transient Dynamics of Pendulum Torsional Vibration Absorbers-Part I: Theory[END_REF][START_REF] Monroe | Nonlinear Transient Dynamics of Pendulum Torsional Vibration Absorbers-Part II: Experimental Results[END_REF] where it was shown that an overshoot can occur during the transient, bringing the pendulums to their cusp. Moreover, an experimental set-up aiming for the study of transient responses was proposed by J. Mayet et al. [START_REF] Mayet | Experimental Investigation of Centrifugal Pendulum Vibration Absorbers[END_REF].

Reduction of translational and tilting rotor vibrations

CPVAs are almost exclusively used to reduce torsional vibrations of a rotor. However, another interesting feature of CPVAs investigated mainly by C. Shi and R. G. Parker is their ability to reduce translational [START_REF] Shi | Modal structure of centrifugal pendulum vibration absorber systems with multiple cyclically symmetric groups of absorbers[END_REF][START_REF] Shi | Tuning of centrifugal pendulum vibration absorbers for translational and rotational vibration reduction[END_REF][START_REF] Shi | Modal properties and stability of centrifugal pendulum vibration absorber systems with equally spaced, identical absorbers[END_REF] and outof-plane tilting vibrations [START_REF] Shi | Vibration Modes and Natural Frequency Veering in Three-Dimensional, Cyclically Symmetric Centrifugal Pendulum Vibration Absorber Systems[END_REF][START_REF] Shi | Vibration reduction in a tilting rotor using centrifugal pendulum vibration absorbers[END_REF] of the rotor. The translational mobility of the rotor was also accounted for in [58,[START_REF] Sarikaya | Response Sensitivity of Centrifugal Pendulum Vibration Absorbers to Symmetry-Breaking Absorber Imperfections[END_REF][START_REF] Bauchau | Modeling the Bifilar Pendulum Using Nonlinear, Flexible Multibody Dynamics[END_REF].

Semi-passive and active CPVAs

Studies on the active control of CPVAs, whose purpose is to change the pendulums' tuning order as a function of time, were conducted M. Hosek et al. [START_REF] Hosek | A tunable torsional vibration absorber: The centrifugal delayed resonator[END_REF] and L. Ineichen [START_REF] Ineichen | Controllable centrifugal pendulum[END_REF]. Recently, M. Auleley proposed to design a semi-passive system by coupling a CPVA with a resonant electromagnetic shunt circuit (cf. Fig. 1.21) to increase the vibration reduction efficiency [17,29,30].

large inertia (flywheel) small inertias small inertias electric motor electromagnetic transducer shafts shafts

.21: Illustration of the test bench proposed by M. Auleley [30], where an electromagnetic transducer is used to reduce the torsional vibrations of a rotating system.

Analysis methods

Most of the studies presented in the literature are based on time integrations of the equations of motion and on analytical perturbation methods, usually the averaging method [START_REF] Nayfeh | Perturbation Methods[END_REF] and on rare occasions the method of multiple scales [START_REF] Nayfeh | Perturbation Methods[END_REF]. These analytical methods offer the 1.3. LITERATURE REVIEW advantage of allowing advanced parametric studies but require assumptions and approximations that can become invalid, especially when the amplitudes of motion become large. Recently, A. Renault [2], M. A. Acar [START_REF] Acar | Design and Tuning of Centrifugal Pendulum Vibration Absorbers[END_REF][START_REF] Acar | Application of the Harmonic Balance Method to Centrifugal Pendulum Vibration Absorbers[END_REF] and A. Grolet [START_REF] Grolet | Energy Localisation in Periodic Structures: Application to Centrifugal Pendulum Vibration Absorber[END_REF] solved the system's dynamics with MANLAB [START_REF] Guillot | A Taylor series-based continuation method for solutions of dynamical systems[END_REF][START_REF] Guillot | A purely frequency based Floquet-Hill formulation for the efficient stability computation of periodic solutions of ordinary differential systems[END_REF],

which is a path-following and bifurcation analysis software making use of the numerical asymptotic method coupled with the harmonic balance method and which incorporates a bifurcation detector.

Some studies also make use of multibody dynamics software [52,69,[START_REF] Cera | Design analysis of torsichrone centrifugal pendulum vibration absorbers[END_REF][START_REF] Sarikaya | Response Sensitivity of Centrifugal Pendulum Vibration Absorbers to Symmetry-Breaking Absorber Imperfections[END_REF][START_REF] Bauchau | Modeling the Bifilar Pendulum Using Nonlinear, Flexible Multibody Dynamics[END_REF][START_REF] Cera | Nonlinear dynamics of torsichrone CPVA with synchroringed form closure constraint[END_REF] to simulate the response of a CPVA.

Experimental investigations Though early investigations of CPVAs often included experimental approaches due to the limited analytical and numerical methods, A. G. Haddow, T. M. Nester et al. were the first to present experimental studies of a CPVA with simple pendulums in a controlled environment [START_REF] Nester | Experimental observations of centrifugal pendulum vibration absorbers[END_REF][START_REF] Haddow | Torsional Vibration Absorbers: A Testing and Evaluation Apparatus[END_REF][START_REF] Nester | Experimental investigation of circular path centrifugal pendulum vibration absorbers[END_REF][START_REF] Haddow | Centrifugal Pendulum Vibration Absorbers: An Experimental and Theoretical Investigation[END_REF] and obtained results in good agreement with their theoretical predictions.

T. M. Nester, S. W. Shaw et al. pursued these works by investigating a bifilar CPVA whose pendulums follow epicycloidal paths and are guided using two steel bands wrapping along cheeks instead of two rollers [START_REF] Nester | Experimental observations of centrifugal pendulum vibration absorbers[END_REF][START_REF] Shaw | Tautochronic Vibration Absorbers for Rotating Systems[END_REF]. The acquisition of the pendulums' motion made it possible to observe the localisation of their response. B. J. Vidmar conducted experimental investigations of a CPVA with bifilar pendulums tuned on different orders [35] and obtained good agreements with his theoretical predictions. Moreover, he observed the generation of higher rotor harmonics, which is a known issue of CPVAs. He also captured the localised response and the period-doubling bifurcation leading to a subharmonic response with a CPVA made of two identical pendulums. A comparison between the localised response predicted analytically and observed experimentally was conducted in [START_REF] Mahe | Dynamic stability of centrifugal pendulum vibration absorbers allowing a rotational mobility[END_REF], which is included in the present report.

Research teams It is the automotive industry that is now driving the research activity on CPVAs. In the early 1990s, Ford collaborated with a team of American researchers, mainly S. W. Shaw (Michigan State University/Florida Tech), D. L. Cronin (Missouri University of Science & Technology) and H. H. Denman (Wayne State University). They were particularly interested in a type of centrifugal pendulum mounted directly on the crankshaft. They were soon joined by other manufacturers such as Chrysler and Honda. There was also a great deal of activity in Germany, this time under the impetus of the equipment manufacturer Luk (Shaeffler group) and the manufacturer BMW. These two research groups concentrate the majority of the studies. However, most of the academic work is published by S.

W. Shaw and his collaborators, whereas equipment manufacturers such as Luk maintain a high level of secrecy about their developments and generally publish only patents. Valeo also participates to the research through the publication of patents [49,50,[START_REF] Mahé | Réducteur pour véhicule électrique ou hybride avec au moins un dispositif d'amortissement pendulaire[END_REF][START_REF] Mahé | Stabilité dynamique des amortisseurs de vibrations à pendule centrifuge permettant une mobilité rotationelle[END_REF], works [2,[START_REF] Renault | Numerical antiresonance continuation of structural systems[END_REF], or the present report, which includes [67,[START_REF] Mahe | Subharmonic centrifugal pendulum vibration absorbers allowing a rotational mobility[END_REF][START_REF] Mahe | Dynamic stability of centrifugal pendulum vibration absorbers allowing a rotational mobility[END_REF]. In addition, a significant academic activity on CPVAs recently emerged from the Italian research team led by E. Pennestrì (University of Rome Tor Vergata).

OBJECTIVES AND CONTRIBUTIONS OF THE THESIS

Objectives and contributions of the thesis

As explained at the beginning of this chapter, one of the solutions to reduce fuel consumption in thermal vehicles is to reduce the engine size and operating speeds. However, this requires a rise of the operating pressure inside the engine to maintain the same engine power. A direct consequence of this pressure rise is the increase of the engine acyclism, causing larger vibrations of the drivetrain.

Hence, more efficient centrifugal pendulums are needed to use engines that reduce fuel consumption while maintaining the same passenger comfort and preventing fatigue of the drivetrain.

Despite the reduction of gas emission of thermal vehicles, the more and more stringent environmental standards bring the automotive industry towards electric vehicles. Though these are less noisy than thermal ones, there are sources of vibration previously masked by the engine that bring discomfort and need to be reduced. The most disturbing one is that related to the transmission errors in the gearbox. The excitation signal generated by these errors is similar to the form of the acyclic torque generated by an engine except that the excitation order is much larger and the excitation amplitude much smaller.

In this context, the main objectives of the thesis are:

1. To adapt to electric vehicles the centrifugal pendulums currently used in thermal vehicles; 2. To investigate ways to improve the efficiency of the centrifugal pendulums used in thermal vehicles Looking at the literature, it can be seen that most studies on CPVAs consider only purely translated pendulums (this was even more true in 2019, at the beginning of the thesis). However, the works of J. Mayet et al. [47,68,[START_REF] Mayet | Effective and robust rocking centrifugal pendulum vibration absorbers[END_REF], A. Renault [2] and M. A. Acar [START_REF] Acar | Design and Tuning of Centrifugal Pendulum Vibration Absorbers[END_REF] showed a few years ago that assigning a rotational mobility to the pendulums significantly improves the performance of a CPVA. There is therefore a clear interest in studying in details the effects of this additional rotational motion. The first major contribution of this thesis is thus to include in all investigations the effect of the rotation of the pendulums.

Known limitations of centrifugal pendulum vibration absorbers are instabilities of their periodic response causing jumps and localisation, the shifting of their antiresonance and the generation of higher rotor harmonics (cf. section 1.3). In this thesis, these aspects are investigated analytically, numerically and experimentally on pendulums with a rotational mobility (cf. chapters 3,4,8). The analytical approach allows to derive original design guidelines optimising the parameters of centrifugal pendulums to minimise their limitations. The numerical and experimental analyses allow to validate the analytical results and to explore phenomena that are too complicated to be captured analytically. In addition, localisation is seen as a limitation because it is thought to systematically 1.4. OBJECTIVES AND CONTRIBUTIONS OF THE THESIS reduce the efficiency of a CPVA. However, we show analytically and numerically that there are cases where localisation is actually beneficial to vibration reduction (cf. chapter 5).

The high-order tuning of centrifugal pendulums required for their operation in electric powertrains is a major difficulty (cf. section 2.2.3). In this PhD, two solutions to overcome this problem are investigated in detail. The first idea pursued is to use a subharmonic tuning (cf. section 1.3), which allows to tune the centrifugal pendulums at half the order to be filtered. In this thesis, the subharmonic CPVA operation is investigated analytically, numerically and experimentally on pendulums with a rotational mobility (cf. chapters 6, 7 and 8). The experimental study is done on an original CPVA architecture made of spherical pendulums. As for the classical operation, the subharmonic one is subjected to jumps and localisation of the response and to the shifting of the antiresonance. Original guidelines to prevent or minimise these issues are derived.

A second idea for high-order tuning is to use centrifugal double pendulum vibration absorbers. Indeed, there is more freedom in the tuning of these devices than for centrifugal pendulums, which allows to reach higher orders without flirting too much with manufacturing tolerances. Centrifugal double pendulums received very little attention until now. In this thesis, the behaviour of such systems is investigated analytically, numerically and experimentally (cf. chapters 9, 10 and 11). To our knowledge, it is the first time such an advanced analytical study is led and validated numerically and experimentally. The first difficulty met with CDPVAs is the complexity of the tuning process due to the number of parameters involved. A procedure to facilitate this process is proposed. Moreover, like CPVAs, CDPVAs are subjected to jumps and localisation of their response, a shifting of their antiresonances and the generation of higher rotor harmonics. Original guidelines to prevent or limit these issues are derived.

The contributions of the thesis are represented in Tab. 1.2 along four main themes: (i) the optimisation of linear (if it exists) and nonlinear performance, (ii) the stability analysis, (iii) the study of the localised dynamics and (iv) experimental investigations. For each theme, we consider three different systems: the centrifugal pendulum vibration absorber (CPVA) in classical tuning, the CPVA in subharmonic tuning and the centrifugal double pendulum vibration absorber (CDPVA) in classical operation.

In addition to the work directly related to pendulum absorbers, a python code making use of the SymPy library for symbolic mathematics was developed during the thesis (cf. Appendix F). It allows for an automatised implementation of the method of multiple scales (presented in section 2.5.2.1) which saved hundreds of hours of computation during this thesis. It is written in a way such that it can be used with any nonlinear system with polynomial nonlinearities. In its current version, it is able to handle systems with 1:1:...:1 internal resonance. We believe this code could be shared to facilitate the analysis of nonlinear systems.

Organisation of the report

This report is a collection of published or submitted journal articles. It is divided in four parts.

Part I is made of two chapters while parts II, III and IV are each made of three chapters, making a total of eleven chapters. The main results of parts II, III and IV are summarised at the beginning of each of these parts in a dedicated summary. In this thesis, we mainly use analytical approaches to investigate centrifugal pendulums. Hence, the structure of most of the articles is similar: an analytical model is developed, it is used to derive design guidelines, and it is verified on a case study.

Part I introduces the subject of the thesis, presents generalities on centrifugal pendulums and details some specificities of nonlinear systems. Part II focuses on the classical tuning of centrifugal pendulums while part III deals with their subharmonic tuning. Finally, part IV investigates the response of centrifugal double pendulums. The content of each part is detailed below.

Part I. Introduction and generalities

The first and present chapter allowed to introduce the vibration problem to be treated and presented the concept and advantages of centrifugal pendulums. A literature review on this subject was proposed and the objectives and contributions of the thesis were detailed.

Chapter 2 introduces generalities. A modelling of the CPVA is proposed and its equations of motion are derived. A linear study is conducted to give a better insight on its operation principle. Means to simplify the equations of motion of a CPVA to prepare their analytical resolution are proposed. The question of the coupling of a CPVA with a drivetrain is also discussed. Finally, some elements on the theory of nonlinear dynamical systems and the methods to study them are described.

Part III. The subharmonic centrifugal pendulum tuning

The subharmonic operation of a CPVA made of two pendulums is considered in chapter 6. The concept of the subharmonic filtering is explained and its close link with the Coriolis effect is detailed.

Then, a nonlinear model of the subharmonic response and its stability is developed and validated numerically. Design guidelines and performance indicators are introduced with the aim of improving the vibration reduction. Finally, the efficiency of a CPVA in subharmonic operation is compared to that of a CPVA in classical operation.

The stability of the subharmonic response in the presence of several pairs of pendulums is assessed in chapter 7. An original procedure to evaluate the stability is presented and verified numerically.

Guidelines to avoid localisation of the subharmonic response are proposed and represented in the design space. Moreover, the basin of attraction of the desired subharmonic solution is analysed numerically.

Chapter 8 presents an original CPVA architecture. A prototype is build to investigate experimentally the subharmonic response of the system. Experimental results dealing with the classical behaviour are also provided. These experiments validate several features of the models developed in 1.5. ORGANISATION OF THE REPORT chapters 4, 6 and 7. Special care is given to the analysis of the slipping of the pendulums. Then, a CPVA with the same architecture but tuned on a high order is investigated. This highlights the difficulties in realising a subharmonic CPVA to filter-out high orders.

Part IV. The centrifugal double pendulum

Chapter 9 presents the modelling and the unison response of a CDPVA. A procedure for an efficient linear tuning is described. Then, a method to assess analytically the nonlinear unison response of a CDPVA is proposed and validated numerically. Design guidelines to limit the shifting of the antiresonances are derived, which allows to maximise the performance of the system. Moreover, limitations regarding the simultaneous filtering of two orders are highlighted.

The stability of the unison response of a CDPVA is analysed in chapter 10. A numerical resolution of the system's dynamics allows to validate the analytical model and to observe quasi-periodic and chaotic solutions. A guideline to avoid instabilities is proposed and represented in the design space together with the rule from chapter 9 limiting the shifting of one of the antiresonances. This allows to identify the optimal CDPVA designs.

An original CDPVA architecture is presented in chapter 11. A prototype is build and tested experimentally, allowing to validate several features of the models developed in chapters 9 and 10.

Then, a CDPVA tuned on a high order is proposed and the difficulties in the practical realisation of such a system are highlighted.

Publications

The work presented in this documents led to the publication of three journal articles [67,[START_REF] Mahe | Subharmonic centrifugal pendulum vibration absorbers allowing a rotational mobility[END_REF][START_REF] Mahe | Dynamic stability of centrifugal pendulum vibration absorbers allowing a rotational mobility[END_REF],

whose details are given below:

• V. Mahé In addition, five journal articles are about to be submitted [START_REF] Mahé | Experimental investigation of the direct and subharmonic responses of a new design of centrifugal pendulum vibration absorber[END_REF][152][153][154][155]:

• V. Mahé, A. Renault, R. Verhoog, H. Mahé, O. Thomas, "Réducteur pour véhicule électrique ou hybride avec au moins un dispositif d'amortissement pendulaire", FR2101547,

• V. Mahé, A. Renault, A. Grolet, H. Mahé, O. Thomas, "Stabilité dynamique des amortisseurs de vibrations à pendule centrifuge permettant une mobilité rotationnelle", FR2100397.

MODELLING OF A CENTRIFUGAL PENDULUM VIBRATION ABSORBER

Modelling of a centrifugal pendulum vibration absorber

Modelling

The aim of the current section is to present the mathematical modelling of CPVAs. In the following, we assume that the rotor and pendulums are rigid bodies. In addition, the pendulum architectures investigated in this report (cf. chapters 3 and 8) are made of a single body, so the rollers of bifilar CPVAs are not accounted for in the modelling. However, their effect is usually negligible [66], so the modelling proposed still allows an accurate representation of bifilar CPVAs. For the consideration of rollers in the dynamics of bifilar CPVAs, the reader may refer to [42,47,69,[START_REF] Mayet | Effective and robust rocking centrifugal pendulum vibration absorbers[END_REF][START_REF] Monroe | Accounting for Roller Dynamics in the Design of Bifilar Torsional Vibration Absorbers[END_REF][START_REF] Gomez | Normal-force dependant friction in centrifugal pendulum vibration absorbers: Simulation and experimental investigations[END_REF][START_REF] Cera | Design and comparison of centrifugal dampers modern architectures: The influence of roller kinematics on tuning conditions and absorbers nonlinear dynamics[END_REF].

Moreover, it is assumed that the centrifugal acceleration field in which the pendulums evolve is much larger than the acceleration of gravity [START_REF] Chao | Stability of the Unison Response for a Rotating System With Multiple Tautochronic Pendulum Vibration Absorbers[END_REF], so the effect of the later is negligible. For the consideration of gravity, the reader is invited to consult [START_REF] Theisen | Gravity's effect on centrifugal pendulum vibration absorbers[END_REF][START_REF] Mu | Gravitation effects on centrifugal pendulum vibration absorbers linear analysis[END_REF]. In addition, the system is considered with cyclic symmetry, so that all pendulum related properties are identical. Finally, the only dampings considered are viscous dampings.

T (ϑ) C S i G i A ϕ ( S i ) R ( S i ) α ( S i ) β ( S i ) r R 0 i th pendulum m, I O Ωt θ ϑ rotor J r x 0 y 0 z 0 x r y r x pi y pi u i v i t i n i Figure 2
.1: Illustration of a CPVA showing the parametrisation of the rotor and the i th pendulum.
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The parametrisation of a CPVA is shown in Fig. 2.1. A rotor of inertia J r rotates about its centre O. The rotating frame R r (O, x r , y r , z 0 ) is attached to the rotor at point O. The rotation of this frame with respect to the Galilean frame R 0 (O, x 0 , y 0 ,

z 0 ) is ϑ(t) = Ωt + θ(t)
where Ω is the mean rotational velocity and θ(t) corresponds to the fluctuating part of the rotation.

N pendulums of mass m and inertia I about their centre of mass G i oscillate on their path C . The position of G i along C is located through the curvilinear abscissa S i whose origin is taken at the vertex of C . The centre of curvature of C at S i = 0, denoted A, is located at a distance r from O, and the associated radius of curvature is ℓ. R 0 = r + ℓ indicates the distance at rest OG i (S i = 0).

R uvi (G i , u i , v i , z 0 ) is an orthonormal frame such that v i points from G i to O. R tni (G i , t i , n i , z 0 ) is
an orthonormal frame such that t i and n i are vectors tangent and normal to C at abscissa S i . The shape of C can be parametrised relatively to the rotor through the path functions R(S i ) and φ(S i ).

Indeed, is we use the relations v i = -sin φ(S i )x r + cos φ(S i )y r , then the curve C can be described by

C : {G i , OG i = -R(S i )[-sin φ(S i )x r + cos φ(S i )y r ]}. (2.1)
However, in practice, it is much more convenient to introduce the path functions

X(S i ) = R(S i ) 2 , Z(S i ) = R(S i ) 2 ⃓ ⃓ ⃓ ⃓ dφ(S i ) dS i ⃓ ⃓ ⃓ ⃓ = √︄ X(S i ) - 1 4 (︃ dX(S i ) dS i )︃ 2 , ( 2.2a) (2.2b) 
which can be used to locate G i using the local frame R tni such that

OG i = 1 2 dX(S i ) dS i t i -Z(S i )n i . (2.3)
Indeed, the path functions Z, R, φ and β can all be expressed in terms of X (cf. Appendices A.3 and A.4 of the paper included in section 8.1). Hence, the shape of C can be controlled using only X.

More details on function X are provided in section 2.1.3. The frame R pi (G i , x pi , y pi , z 0 ) is attached to the i th pendulum at point G i and its rotation with respect to R r is α(S i ). A linear viscous damping coefficient b is used to model the damping of the pendulums in their motion relative to the rotor.

A torque T (ϑ) = T 0 + T θ (ϑ) is applied to the rotor where T 0 is a constant component and T θ (ϑ) is periodic with fundamental order of excitation n e . n e is a constant depending on the architecture of the exciting system.

Equations of motion

Dimensional equations of motion

In this section we set up the equations of motion for a system composed of a rotor and N pendulums.

To this end, the Euler-Lagrange equation are used. One therefore needs to first compute the kinetic and potential energies and the generalized forces applied on the system.
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The kinetic energy of the system is

T = 1 2 J r ϑ ̇2 + 1 2 N ∑︂ i=1 [︂ m (︂ S ̇2 i + X i (S i )ϑ ̇2 + 2ϑ ̇S ̇iZ i (S i ) )︂ + I(ϑ ̇+ S ̇iΓ(S i )) 2 ]︂ , ( 2.4) 
where we have introduced the rotation function

Γ(S i ) = dα(S i ) dS i . (2.5)
As gravity is neglected, the potential energy is U = 0 so that the Lagrangian is simply L = T . There are three external loads applied on the system:

• A torque T (ϑ)z 0 is applied on the rotor. It is the external forcing.

• A resistive torque -b r ϑ ̇z0 is applied on the rotor. It represents the damping between the rotor and the ground.

• A resistive force -bS ̇it i is applied on the center of mass of the i th pendulum, where t i is the vector tangent to the path C at abscissa S i . It represents the damping of the i th pendulum in the rotor's frame.

Using the Euler-Lagrange equations, one obtains the equations of motion for the rotor and pendulum i:

[︄ J r + N ∑︂ i=1 (I + mX(S i )) ]︄ ⏞ ⏟⏟ ⏞ equivalent inertia ϑ ¨+ N ∑︂ i=1 (mZ(S i ) + IΓ(S i )) S ¨i + m dZ(S i ) dS i S ̇2 i ⏞ ⏟⏟ ⏞
torque exerted by inertial forces

+ I dΓ(S i ) dS i S ̇2 i ⏞ ⏟⏟ ⏞
torque exerted during the accelerated rotation

+ m dX(S i ) dS i ϑ ̇S ̇i ⏞ ⏟⏟ ⏞ Coriolis effect + b r ϑ ⏞⏟⏟⏞ damping = T (ϑ) ⏞ ⏟⏟ ⏞ external torque , (mZ(S i ) + IΓ(S i )) ϑ ⏞ ⏟⏟ ⏞ inertial force + (︂ m + IΓ(S i ) 2 )︂ ⏞ ⏟⏟ ⏞ equivalent mass S ¨i + IΓ(S i ) dΓ(S i ) dS i S ̇2 i ⏞ ⏟⏟ ⏞ force along the path - 1 2 m dX(S i ) dS i ϑ ̇2 ⏞ ⏟⏟ ⏞ centripetal force + bS ̇i ⏞⏟⏟⏞ damping = 0. (2.6a) (2.6b)
Eq. (2.6a) governs the motion of the rotor while the N Eqs. (2.6b) govern the motion of the pendulums.

In Eq. (2.6a), the term J r + ∑︁ N i=1 (I + mX(S i )) represents an equivalent inertia of the rotor, due to the fact that it supports all the pendulums. The terms (mZ(S i ) + IΓ(S i ))S ¨i and mdZ(S i )/dS i S ̇2 i represent the torque produced on the rotor by the inertial forces of the pendulums. IdΓ(S i )/dS i S ̇2 i corresponds to the torque exerted on the rotor by a pendulum during its accelerated rotation around its centre of mass. Finally, the term mdX(S i )/dS i ϑ ̇S ̇i represents the torque generated via the Coriolis effect. It is interesting to note that evaluating Eq. (2.6a) at equilibrium (i.e. T θ (ϑ) = 0 ∀ϑ, such that ϑ ̇= Ω and

S i = 0, i = 1, ..., N ) leads to b r Ω = T 0 , ( 2.7) 
meaning that the viscous torque exerted on the rotor balances with the constant component of the exciting torque, thus fixing the average rotation speed Ω.

Each of the pendulums' equations (2.6b) involves only the i th pendulum, meaning that the pendulums are only coupled through the rotor (indeed, every pendulum appears in Eq. (2.6a)). In equation (2.6b), the term (mZ(S i ) + IΓ(S i ))ϑ ¨corresponds to the inertial force of the rotor on the pendulum.

mdX(S i )/dS i ϑ 2 results from the action of the centripetal force on the pendulum. It is a force that opposes its movement and tends to bring it back to its rest position, so that it plays the role of a restoring force. The term m + IΓ(S i ) 2 corresponds to an equivalent mass of the pendulum. It

shows that the rotation of a pendulum virtually increases its mass, which is the reason why rocking pendulums received an increased interest in the past few years (cf. section 1.2.4). Finally, the term IΓ(S i )dΓ(S i )/dS i S ̇2 i represents a nonlinear force applied along the path of the pendulum during its accelerated rotation.

Note that in several studies [65,[START_REF] Tan | Study of dynamics of rotational centrifugal pendulum vibration absorbers based on tautochronic design[END_REF][START_REF] Chao | Non-unisson dynamics of multiple centrifugal pendulum vibration absorbers[END_REF], it is considered that the pendulums' damping causes a force bS ̇it i applied on the rotor at point G i . This generates a resistive torque OG i × bS ̇it i = bZ(S i )S ̇iz 0 on the rotor which adds up to the exciting torque. However, this is not accounted for in the modelling proposed in this report as the pendulums' damping is represented as external resistive forces affecting only the pendulums, without any action on the rotor. Moreover, for pendulums following circular paths, the pendulums' damping is introduced as a resistive torque so it does not generate any additional term in the rotor's equation [START_REF] Vidmar | The effects of Coulomb friction on the performance of centrifugal pendulum vibration absorbers[END_REF]. Furthermore, the resistive torque bZ(S i )S ̇iz 0 is very small such that it is negligible in practice and is not considered in several studies [START_REF] Alsuwaiyan | Non-synchronous and Localized Responses of Systems of Identical Centrifugal Pendulum Vibration Absorbers[END_REF][START_REF] Grolet | Energy Localisation in Periodic Structures: Application to Centrifugal Pendulum Vibration Absorber[END_REF][START_REF] Theisen | Gravity's effect on centrifugal pendulum vibration absorbers[END_REF]. Hence, both representations of the damping are almost equivalent.

Dimensionless equations of motion

In the aim of performing analytical studies, is is convenient to reduce the number of parameters by rewriting the equation of motion under a dimensionless form. To do so, we can introduce the
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s i = S i R 0 , τ = Ωt, η = I mR 2 0 , µ = N mR 2 0 J r + N I , b ¯= b mΩ , b ¯r = b r (J r + N I)Ω , T ¯(ϑ) = T ¯0 + T ¯θ(ϑ) = T (ϑ) (J r + N I)Ω 2 , x(s i ) = X(R 0 s i ) R 2 0 , z(s i ) = √︄ x(s i ) - 1 4 (︃ dx(s i ) ds i )︃ 2 , α(s i ) = α(R 0 s i ), γ(s i ) = dα(s i ) ds i .
(2.8)

The s i are the dimensionless curvilinear abscissa of the pendulums on their paths. τ is a dimensionless time. η is the ratio of a pendulum's rotational inertia over its geometric inertia at rest about O. µ is the ratio of the pendulums' geometric inertias at rest about O over the rotational inertia of the whole system. It is small in practice as J r is large in front of the pendulums' geometric inertia mR 2 0 . b ¯and b ¯r are dimensionless damping constants and T ¯(ϑ) is the dimensionless torque applied on the rotor. x(s i ) and z(s i ) are dimensionless path functions while α(s i ) and γ(s i ) are dimensionless rotation functions.

Introducing these dimensionless quantities in Eqs. (2.6a) and (2.6b), using the chain rule

∂(•) ∂t = Ω ∂(•) ∂τ , ( 2.9) 
and defining (•) ′ = ∂(•)/∂τ , we obtain the dimensionless equations for the rotor and the i th pendulum

1

N [︄ N ∑︂ i=1 (N + µx(s i ))ϑ ′′ + µ (z(s i ) + ηγ(s i )) s i ′′ + µs ′ i (︃ dx(s i ) ds i ϑ ′ + dz(s i ) ds i s ′ i + η dγ(s i ) ds i s ′ i )︃ ]︄ + b ¯rϑ ′ = T ¯(ϑ), (z(s i ) + ηγ(s i )) ϑ ′′ + (︂ 1 + ηγ(s i ) 2 )︂ s ′′ i + ηγ(s i ) dγ(s i ) ds i s ′ i 2 - 1 2 dx(s i ) ds i ϑ 2 + b ¯s′ i = 0, (2.10a) 
(2.10b)

It is interesting to note that the inertia ratio µ, present only in the rotor's equation (2.10a), governs the coupling between the pendulums and the rotor. If the rotor's inertia is much larger than the pendulums', then their effect is negligible. This is well-seen through the limit case µ = 0, corresponding to uncoupled pendulums.

It is important to note that in Eq. (2.10a), the exciting torque does not appear as an external forcing term but as a nonlinear term because of its dependence on ϑ. To tackle this issue, two solutions are possible. They are presented thereafter.

First method to transform the torque into a periodic forcing term A way of transforming the torque into a periodic forcing term, used for instance in [2,[START_REF] Issa | Synchronous and non-synchronous responses of systems with multiple identical nonlinear vibration absorbers[END_REF], is to assume θ ≪ τ (or equivalently, θ ̇≪ Ω) such that we can approximate ϑ ≈ τ . The assumption θ ≪ τ makes sense as the aim of the pendulums is to reduce θ to make it as small as possible. The approximation allows to write T θ (ϑ) ≈ T θ (τ ), so that the external torque is now a periodic forcing term.

Second method to transform the torque into a periodic forcing term Another possibility to transform the torque into a periodic forcing term, is to use the change of variables τ → ϑ initially proposed by S. W. Shaw and S. Wiggins [START_REF] Shaw | Chaotic dynamics of a whirling pendulum[END_REF]. This change of variables is possible as, in practice, the fluctuations of θ are small such that ϑ increases monotonically. Now that ϑ is the independent variable, T θ (ϑ) is a periodic forcing term. However, one now needs to rewrite the other terms of Eqs.

(2.10a) and (2.10b) with ϑ as the independent variable

To introduce the change of variable τ → ϑ in Eqs. (2.10a) and (2.10b), it is convenient to redefine (•) ′ = ∂(•)/∂ϑ, to introduce the dimensionless rotor's rotational velocity

y = ϑ Ω = 1 + θ Ω (2.11)
and to use the chain rule

(•) ̇= Ωy(•) ′ , (•) ¨= Ω 2 yy ′ (•) ′ + Ω 2 y 2 (•) ′′ .
(2.12)

Note that with these notations, the rotor acceleration is now θ ¨= Ω 2 yy ′ . Introducing the above in Eqs. (2.10a) and (2.10b) and dividing the latter by y, one obtains

1

N [︄ N ∑︂ i=1 (N + µx(s i ))yy ′ + µ (z(s i ) + ηγ(s i )) (yy ′ s ′ i + y 2 s ′′ i ) + µy 2 s ′ i (︃ dx(s i ) ds i + dz(s i ) ds i s ′ i + η dγ(s i ) ds i s ′ i )︃ ]︄ + b ¯ry = T ¯(ϑ), [z(s i ) + ηγ(s i )] y ′ + [︂ 1 + ηγ(s i ) 2 ]︂ (y ′ s ′ i + ys ′′ i ) + ηγ(s i ) dγ(s i ) ds i ys ′ i 2 - 1 2 dx(s i ) ds i y + b ¯s′ i = 0. (2.13a) (2.13b)
Eqs. (2.13a) and (2.13b) are equivalent to Eqs. (2.10a) and (2.10b), but the independent variable is ϑ rather than τ , which allows to express the torque as a periodic forcing term without any approximation. However, this is done at the expanse of complexity as the change a variable introduced several additional nonlinear terms. 

ρ 2 (S) = ℓ 2 -λ 2 S 2 , (2.14)
where ℓ is the radius of curvature at the vertex of the path (cf. Fig. 2.1) and λ is a parameter taking values between 0 and 1. Equation (2.14) has the advantage to allow for a simple representation of the most common paths. Indeed, the circular, epicycloidal and cycloidal paths simply correspond to

λ circ = 0, λ epi = √︂ n 2 t /(n 2 t + 1), λ cyc = 1
, where the parameter n t designates the order of the path. It is defined by

n t = √︃ r ℓ , ( 2.15) 
with r = R 0 -ℓ (cf. Fig. 2.1). Note that index "t" stands for "trajectory". In the case where the pendulums do not rotate about their centre of mass or their inertia is neglected, n t also corresponds to the natural order of the pendulums (cf. section 2.2.1.1).

Despite the convenience of ρ(S), solving the equations of motion (2.6a) and (2.6b) requires a welldefined form of X(S). It can be derived from ρ(S) [42], but the expression then obtained is very complex in the general case. This is why, in this report, it is chosen to represent the path directly through the function X. The expressions of X(S) corresponding to an epicycloid, a circle (centred on A, cf. Fig. 2.1) and a cycloid are given by

X(S) = R 2 0 -n 2 t S 2 , X(S) = r 2 + ℓ 2 + 2ℓr cos (︃ S ℓ )︃ , X(S) = (r + ℓ) 2 - (︃ r ℓ + 3 4 
)︃ S 2 + ℓ 2 4 arcsin (︃ S ℓ )︃ ⎛ ⎝ arcsin (︃ S ℓ )︃ + 2 S ℓ √︄ 1 - S 2 ℓ 2 ⎞ ⎠ , (2.16a) (2.16b) (2.16c)
respectively [2,42]. In order to highlight the similarities between the three paths described in Eq.

(2.16), we propose to use Taylor series of X(S i ) in S i to obtain a polynomial representation of these paths. Doing so and using the relation (2.8) between X(S) and x(s), the expression of the dimensionless path function x(s) for the epicycloid, the circle and the cycloid becomes [2] x

(s) = 1 -n 2 t s 2 , x(s) = 1 -n 2 t s 2 + n 2 t (1 + n 2 t ) 2 12 s 4 + O(s 6 ), x(s) = 1 -n 2 t s 2 - (1 + n 2 t ) 2 12 s 4 + O(s 6 ), (2.17a) 
(2.17b)

(2.17c)
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respectively. The expression for the epicycloid is exact as its full expression is already a polynomial in s (cf. Eq. (2.16a)). However, the circle and the cycloid appear as an epicycloid perturbed by higher even powers of s i . We conclude that every path of interest can be represented as a perturbed epicycloid. This is why, in this report, we choose to represent x(s) as

x(s) = 1 -n 2 t s 2 + Nx ∑︂ k=3 x [k] s k . (2.18)
In practice the paths are symmetric, meaning that x(s) is an even function with only even power monomials. It is also important to note that the paths described by Eq. (2.18) are not defined for all values of s as the dimensionless distance z(s) (cf. Eq. (2.8)) must remain real. Hence, the cusp of a path is given by z(s cusp ) = 0, which, in the case of the epicycloid, leads to

s cusp = 1 √︂ n 2 t (1 + n 2 t ) . (2.19)
Finally, note that there are other ways to parametrise a path, for instance using curvature ratios [52,69,[START_REF] Cera | Design analysis of torsichrone centrifugal pendulum vibration absorbers[END_REF][START_REF] Cera | The kinematics of curved profiles mating with a caged idle roller -higher-path curvature analysis[END_REF][START_REF] Cera | Nonlinear dynamics of torsichrone CPVA with synchroringed form closure constraint[END_REF]. However, in the author's opinion, the use of x(s) is much more convenient and provides a provides a clearer explanation of the results.

The rotation function can also be represented as a polynomial such that

α(s) = Nα ∑︂ k=0 α [k] s k . (2.20)
In practice the rotation is antisymmetric, meaning that α(s) is an odd function with only odd power monomials.

Interpretation

In order to interpret the different terms composing the path and rotation functions (2.18) and

(2.20), we can consider the generic case

x(s) = 1 -n 2 t s 2 + x [4] s 4 , α(s) = α [1] s + α [3] s 3 . (2.21a) (2.21b)
s is typically small because R 0 is usually much larger than S (cf. Eq. (2.8)), and because it is limited by the cusp of the path (cf. Eq. (2.19)). Hence, it is relevant to limit x(s) to s 4 and α(s) to s 3 in order to capture the dominant phenomena. After inserting Eq. (2.21) into Eq. (2.10b) and considering a CPVA made of a single pendulum, a conservative system and a uniform centrifugal acceleration field (i.e. N = 1, b ¯= 0, ϑ ′ = 1), the pendulum's equation becomes

(︂ 1 + ηα 2 [1]
)︂

s ′′ + n 2 t s -2x [4] s 3 + 6ηα [1] α [3]
(︂

s 2 s ′′ + ss ′2 )︂ + O(s 5 ) = 0. (2.22)
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From Eq. (2.22), one can see that ηα 2 [1] increases the equivalent mass of the pendulum and that n 2 t plays a role of linear stiffness. x [4] and α [3] determine the nonlinear behaviour of the pendulum at first order. x [4] is a cubic nonlinearity coefficient, showing similarities between pendulums and a Duffing oscillator [161]. The nonlinearity arising from the rotation is more complex as it involves several inertial terms, but it is also cubic.

Pendulums with x [4] = α [3] = 0 are said to be tautochronic because their period of oscillation does not depend on their amplitude. x [4] = 0 corresponds to the epicycloid, which is thus the tautochronic path of a pendulum in a uniform centrifugal acceleration field [42]. Hence, it is not surprising that

x [4] , which represents a perturbation of the epicycloid, is the only source of path nonlinearity in Eq.

(2.22).

-0. In order to provide another interpretation of x(s), we propose to consider for an instant that the pendulum is in pure translation. First, we evaluate again Eq. (2.10b) with a single undamped pendulum evolving in a uniform centrifugal acceleration field. Then, we multiply this equation by s ′ and integrate it over s [START_REF] Lee | On the counteraction of periodic torques for rotating systems using centrifugally driven vibration absorbers[END_REF], leading to

1 2 s ′2 - x(s) 2 = κ, (2.23)
where κ is an integration constant. Equation (2.23) is typical of a particle evolving in a potential well [START_REF] Strogatz | Nonlinear Dynamics and Chaos: With Applications to Physics[END_REF]. This allows to see -x(s)/2 as a potential function (this is illustrated in Fig. 2.2) whose quadratic term dictates the linear behaviour of the pendulums while higher order terms determine its nonlinear behaviour [65].

Linear analysis of a centrifugal pendulum vibration absorber

The aim of this section is to give some insights on the use of a CPVA by presenting its linear modes, its linear response and some linear performance indicators. It is crucial to have a good understanding of these features before studying the nonlinear response.

Introducing the expressions of the path (2.18) and rotation (2.20) functions in the equations of motion (2.10a) and (2.10b), making use of Eq. (2.7) and assuming ϑ ≈ τ in order to express

T ¯θ(ϑ) ≈ T ¯θ(τ ) (cf. section 2.1.2.
2), we obtain, after linearisation, the linear equations

(1 + µ)θ ′′ + µΛ c N N ∑︂ i=1 s ′′ i + b ¯rθ ′ = T ¯θ(τ ), Λ c θ ′′ + Λ m s ′′ i + n 2 t s i + b ¯s′ i = 0, i = 1, ..., N.
(2.24a)

(2.24b)
Here, we have introduced the constants Λ m and Λ c , which represent the equivalent mass of a pendulum and the linear coupling term between a pendulum and the rotor. They are given by

Λ m = 1 + ηα 2 [1] , Λ c = 1 + ηα [1] , (2.25a) (2.25b)
where we remind that α [1] is the linear rotation coefficient (cf. Eqs. (2.20) and (2.21)).

Modal analysis

The uncoupled pendulums

To better understand pendulum systems, it is interesting to evaluate the pendulums' linear equation (2.24b) in the conservative case and for a uniform centrifugal acceleration field (i.e. b ¯= θ = 0). This configuration is often termed "uncoupled pendulums" as the rotor is no longer a degree-of-freedom so that there is no coupling between the pendulums and the rotor, nor between the pendulums. Dividing this uncoupled pendulums' equation by Λ m , we obtain

s ′′ i + n 2 p s i = 0, (2.26) 
where n p is the pendulums' natural order, which we will later call the pendulums' tuning order, and whose expression is

n p = n t √ Λ m . (2.27)
The associated natural frequency is ω p = n p Ω. In the special case where the pendulums are purely translated, this reduces to ω p = √︁ rΩ 2 /ℓ. It is interesting to compare this result to the well-known natural frequency of a simple pendulum of length ℓ in the gravity field, given by ω g = √︁ g/ℓ [START_REF] Baker | The Pendulum: A Case Study in Physics[END_REF], as it allows to draw the parallel between the centrifugal acceleration rΩ 2 and the gravity acceleration g.
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In the present report the effect of gravity is neglected, meaning that we always assume rΩ 2 ≫ g. The differences between a point-mass (or purely translated) pendulum evolving in a gravity field and in a uniform centrifugal acceleration field are summarised in Tab. 2.1. acceleration constant pendulum's natural frequency Uniform centrifugal acceleration field

rΩ 2 ω p = Ω √︁ r/ℓ Gravity field g ω g = √︁ g/ℓ
Table 2.1: Differences between a point-mass (or purely translated) pendulum evolving in the gravity field and a uniform centrifugal acceleration field.

Coupled system (CPVA)

A modal analysis of a CPVA is now presented. The free, conservative equations associated to system (2.24) can be written as

M q ¨+ Kq = 0, (2.28) 
where q, M and K are the vector containing the degrees of freedom and the mass and stiffness matrices, respectively. They are given by

q = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ θ s 1 . . . s N ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , M = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ N 1+µ µ Λ c • • • • • • Λ c Λ c Λ m 0 • • • 0 . . . 0 . . . . . . . . . . . . . . . . . . . . . 0 Λ c 0 • • • 0 Λ m ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , K = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 0 n 2 t (0) . . . (0) n 2 t ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ . (2.29)
The associated eigenvalue problem is

[K -n 2 M ]ϕ = 0, (2.30) 
whose solutions, composed of an eigenorder n and and eigenshape ϕ, are the modes of the system.

Note that n can be seen as a dimensionless frequency. [K -n 2 M ] is an arrowhead matrix as it is full of zeros except for its first row, first column and its diagonal. In addition, every term on its diagonal are the same except for the first one. As explained in [START_REF] Shen | Bounds for Eigenvalues of Arrowhead Matrices and Their Applications to Hub Matrices and Wireless Communications[END_REF], the eigenvalues of such a matrix are those of a reduced 2 × 2 matrix (whose computation is trivial) together with the identical terms of the diagonal. Using this procedure, one can easily compute the N + 1 linear modes (n 00 , ϕ 00 ), (n 10 , ϕ 10 1 ), ...,

(︂ n 10 , ϕ 10 N -1
)︂

, (n 20 , ϕ 20 ), whose eigenorders and mode shapes are

n 00 = 0, ϕ 00 = [1, 0, ..., 0] ⊺ , n 10 = n p , ϕ 10 1 = [0, 1, -1, 0..., 0] ⊺ , ..., ϕ 10 N -1 = [0, 0, ...0, 1, -1] ⊺ , n 20 = n p ⌜ ⃓ ⃓ ⎷ 1 + µ 1 + µ (︂ 1 -Λ 2 c Λm )︂ , ϕ 20 = [︃ - µΛ c 1 + µ , 1, ..., 1 ]︃ ⊺ , ( 2.31) 
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where superscript ⊺ indicates the transpose. These modes are illustrated in Fig. 2.3 for a CPVA made of N = 2 pendulums. (n 00 , ϕ 00 ) is a rigid body mode for which only the rotor is excited. (n 10 , ϕ 10 i )

are N -1 degenerated modes for which only two pendulums are moving in phase-opposition, the others remaining immobile. Their eigenvalue n 10 = n p has multiplicity N -1 and the rotor is a node of these modes. For a CPVA made of only two pendulums, (n 10 , ϕ 10 ) is not degenerated and simply represents a phase-opposition motion of the pendulums. (n 20 , ϕ 20 ) is a mode for which the pendulums move in unison but in phase-opposition with respect to the rotor (provided that Λ c > 0, which is the case for reasonable parameters). It will be referred-to as the "unison mode" or "mode 2". More details on the modes of a CPVA with more than two pendulums are provided in the paper included in chapter 7. 

Linear forced response and tuning of a centrifugal pendulum

In this section, we assume that the torque applied on the rotor contains only the fundamental harmonic such that T ¯θ(τ ) = T ¯1 cos(nτ ) and we analyse the linear forced response of the system. Note that in practice, n = n e is fixed, but it is convenient to make it vary in order to better understand the dynamics of a CPVA by obtaining a curve that can be interpreted as a frequency response function.

The computation of the forced CPVA response is detailed in Appendix B and leads to solutions of the form

θ ′′ = h 1 cos(nτ -ψ 1 ), s i = s = a cos(nτ -ξ), i = 1, ..., N, (2.32) 
where h 1 , ψ 1 , a and ξ are the amplitudes and phases of the rotor's acceleration and the pendulums' motion, respectively.

We show in Appendix B that the pendulums generate an antiresonance on the rotor at order n AR = n p (in the conservative case). This antiresonance is visible in Fig. 2.4(a), which represents the amplitude of the rotor as a function of the excitation order. As the objective is to reduce as much as possible the amplitude of the fluctuations θ at the operating point n = n e (we recall that in a real system, the excitation is done at a fixed order n e , cf. section 1.1.1.1), it is judicious to choose to tune the pendulums such that n p = n e , hence the name "tuning order" attributed to n p . Furthermore, if n p = n e such that the rotor is excited on its antiresonance for all rotation speeds, it is recommended to minimise the damping in the system as much as possible to have almost zero rotor vibrations. In Fig. 2.4(a), the rotor's response is compared to the case with fixed pendulums. Comparing with fixed pendulums allows to account for their added inertia, so it is more relevant than comparing to the case without pendulums.

In Fig. 2.4(b), one can see that the pendulums respond only on the unison mode (indeed, there is no resonance peak close to the natural order n = n 10 ). This is because the rotor is a node of modes 1, so that these modes are not excited by the external torque (cf. section 2.2.1.2). Looking at Fig. 2.4(a) and (c), one can see that the pendulums reduce the rotor's vibrations when they are in phase-opposition with respect to the external torque (i.e. before the resonance), but they act as amplifiers when they are in phase with it (i.e. after the resonance).

Note that in the presence of relatively small mistuning among the pendulums, the ideal picture of
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a unison motion is destroyed and the system's response can be quite complex, as shown in [START_REF] Alsuwaiyan | Localisation of free vibration modes in systems of nearly identical vibration absorbers[END_REF][START_REF] Alsuwaiyan | Steady-State Responses in Systems of Nearly-Identical Torsional Vibration Absorbers[END_REF].

The sources of mistuning can be manufacturing tolerances, different lubrication or wear for instance.

Nevertheless, as mentioned in section 2.1.1, it is considered in this report that the mistuning among the pendulums is small enough to be neglected.

Difficulties of the high-order tuning

We explained in section 1. The values of r and ℓ are computed using the definition of n t (2.15) and the fact that R 0 = r + ℓ (cf.

Fig. 2.1

). An error of only 1 [µm] on ℓ would lead to n t = 20 ± 0.08, which is not acceptable for an accurate tuning. This would get worse for a rocking CPVA as achieving n p = 20 requires n t > 20 (cf.

Eq. (2.27)).

Moreover, the nonlinear tuning requires a thinner control of the path. Indeed, from the linear point of view, the epicycloidal, circular and cycloid paths are all the same (cf. section 2.1.3), but their nonlinear response is completely different (cf. section 1.3). For these reasons, we can see that the high-order tuning of a CPVA is very demanding. It is why, in this report, we investigate the subharmonic operation, which allows to divide the tuning order by 2 (cf. chapters 6, 7 and 8), and the use of double pendulums, which provide mores flexibility in the tuning (cf. chapters 9, 10 and 11).

Linear performance indicators

It is of primary interest to assess the performance of a CPVA as a function of its parameters. To do so, three performance indicators are introduced:

G θ = h 1 h 1f ⃓ ⃓ ⃓ ⃓ ⃓ n=np , ∆n = n 20 -n p , G s = a T ¯1 ⃓ ⃓ ⃓ ⃓ n=np , (2.34a) (2.34b) (2.34c)
where h 1 and h 1f are the amplitudes of the rotor's acceleration with operating and fixed pendulums, respectively, a is the pendulums' amplitude (cf. Fig. 2.4) and T ¯1 is the forcing level. G θ evaluates the reduction of the rotor's vibrations at the operating point. ∆n, illustrated in Fig. 2.4, measures the distance between the resonance at n 20 and the antiresonance at n p . It is a measure of robustness
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as large values of ∆n mean that the antiresonance valley is wide such that a small error on n p does not affect the response much. G s is related to the torque capacity of the CPVA. Indeed, because the pendulums' path is finite (cf. section 2.1.3), there is a critical torque level starting from which the pendulums hit their cusp, causing undesirable noise and preventing the proper operation of the system. This level defines the torque capacity of the CPVA. It is desired to be as large as possible so that the CPVA can filter large torque levels. For a given torque level, the smaller a (hence the smaller G s ), the larger the torque capacity.

The analysis of the linear performance as a function of the system parameters (damping, tuning order n p , inertia ratio µ, equivalent pendulums' mass Λ m and coupling term Λ c ) is detailed in Appendix B.2 and a summary is proposed below:

• The best configuration is that with the smallest dampings;

• Performance increases with n p ;

• Increasing µ increases the performance;

• Increasing Λ m does not affect G θ and G s but deteriorates ∆n;

• Increasing the linear coupling term Λ c , which corresponds to choosing positive values of α [1] ,

improves all performance indicators.

As a significant contribution of this thesis is to account for the pendulums' rotation, it is also insightful to assess the evolution of the performance indicators as a function of the linear rotation coefficient α [1] , which influences the values of both Λ m and Λ c (cf. Eqs. (2.25a) and (2.25b)). The computation details of this analysis are given in Appendix B.2 and the evolution of the performance indicators is illustrated in Fig. 2.5.

One can see that using negative values of α [1] leads to a poor linear performance of the system. The worst value is α [1] = -1/η, for which the pendulums are uncoupled from the rotor (Λ c = 0), so that they do not filter the torque at all ( G θ | α [1] =-1/η = 1). Decreasing α [1] below this value improves slightly the situation but requires the use of large negative values of α [1] , which is difficult to achieve in practice due to design constraints.

On the contrary, using positive values of α [1] leads to significant improvements of the linear response.

For α [1] ∈ [1, 2 1-η ], all performance indicators are improved compared to the case of purely translated pendulums. The particular value α [1] = 1, already proposed in [2,[START_REF] Cera | Design analysis of torsichrone centrifugal pendulum vibration absorbers[END_REF], is interesting as it maximises ∆n. However, one could also choose larger values of α [1] to further improve G θ and G s . For instance, α [1] = 2/(1 -η) is interesting as it improves G θ and G s compared to the case α [1] = 1 and it does not deteriorate ∆n compared to the case of purely translated pendulums. 
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Simplified centrifugal pendulum models amenable to nonlinear analytical analysis

One of the main contributions of this thesis is the development of nonlinear analytical models from which design guidelines optimising the efficiency of centrifugal pendulums are obtained. Indeed, CPVAs are subjected to many nonlinearities, so that the linear analysis led in section 2.2 is not sufficient to accurately describe their response. However, the complexity of the equations of motion of a CPVA (cf. Eqs. (2.10a) and (2.10b)) prevents the computation of analytical solutions. Hence, there is a need to simplify these equations in order to derive approximate analytical solutions (using for instance the method of multiple scales presented in section 2.5.2.1).

Two simplification methods are described in sections 2.3.1 and 2.3.2. Both of them make use of a small parameter ϵ to scale the parameters and variables according to some remarks and assumptions.

For instance, if λ is a parameter of the system that is small in practice, one can introduce the scaled parameter λ ˜such that λ = ϵ q λ ˜, where q is a scaling coefficient. The scaling allows to express explicitly the "smallness" of some quantities. Once this scaling is done, following the procedure of classical perturbation methods, one can neglect the higher powers of ϵ in the equations of motion (cf. Eqs.
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(2.10a) and (2.10b)) to obtain simplified equations.

Two scaling choices are investigated, leading to two different simplified models described in the following subsection. The first scaling choice leads to a "simple" model (discussed in section 2.3.1)

while the second scaling choice leads to an "accurate" model (discussed in section 2.3.1). As their names indicate, the second model is more accurate than the first one, but it is also more complex.

With the first model, we can use either τ or ϑ as the independent variable. However, with the accurate model, the scaling chosen imposes to use ϑ as the independent variable.

The application of analytical methods requires that the path and rotation functions x and α (cf.

section 2.1.3) be specified explicitly. In the following, we will consider that for i = 1, . . . , N , we have

x(s i ) = 1 -n 2 t s 2 i + x [4] s 4 i , α(s i ) = α [1] s i + α [3] s 3 i . (2.35a) (2.35b)
As explained in section 2.1.3.2, the s i are typically small so it is relevant to consider only the first nonlinear contribution of x(s i ) and α(s i ). The application of analytical methods also requires to use Taylor series in s i for the path function z(s i ) defined in Eq. (2.8) (in the following, we will use Taylor series up to s 3 i ). Furthermore, we consider that the excitation signal contains a single harmonic such that T ¯θ(ϑ) = T 1 cos(nϑ) where n is the excitation order. As explained in section 2.2.2, in practice, n = n e is fixed, but it is convenient to make it vary in order to better understand the dynamics of a CPVA. Note that the excitation signals presented in section 1.1.1 all contain several harmonics. Nevertheless, they are dominated by their first harmonic, so in most cases it is an acceptable assumption to consider a single-harmonic torque.

A first simplified model (simple model)

Here, we present a first way of simplifying Eqs. (2.10a) and (2.10b) using a specific scaling of the parameters and variables of the CPVA. The following assumptions and remarks will govern the scaling:

• The optimum system configuration is that with small damping (i.e. b ¯and b ¯r are small) so that the rotor's amplitude at its antiresonance is small (cf. section 2.2.4);

• The fluctuating torque T θ (ϑ) is small compared to the rotor's kinetic energy (which is J r Ω 2 /2 at equilibrium), so that T ¯1 is small (cf. Eq. (2.8)).

• The total pendulums' geometric inertia about point O, N mR 2 0 , is small compared to the total rotational inertia of the system, J r + N I, so that µ is small (cf. Eq. (2.8)); 63
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• The rotor's inertia being significant, the fluctuating rotational speed θ ̇is small compared to the mean rotational speed Ω, so that θ ′ is small (cf. Eq. (2.9));

• The pendulums' amplitude of motion is small compared to their distance from the centre of rotation O so that the s i are small (this was already discussed in section 2.1.3.2);

• The path function is close from an epicycloid so that x [4] is small (cf. section 2.1.3);

• The rotation function is close from linear, so that α [3] is small (cf. section 2.1.3). This allows to scale several quantities using a small parameter ϵ such that

b ¯= ϵ ℓ b ˜, b ¯r = ϵ h b ˜r, T ¯1 = ϵ r T ˜1, µ = ϵ ϕ µ ˜, θ = ϵ w θ ˜, s i = ϵ ν s ˜i, x [4] = ϵ p x ˜[4] , α [3] = ϵ q α ˜[3] , ( 2.36) 
where ℓ, h, r, ϕ, w, ν, p and q are scaling coefficients to be determined. Note that in order to give a physical meaning to ϵ, one can choose to set ϵ = µ [65]. When substituting the scaled parameters (2.36) in the equations of motion (2.10a) and (2.10b), we obtain terms scaled by different powers of ϵ. These powers are linear combinations of the scaling coefficients, which are chosen to keep some terms at leading orders while discarding others. In this procedure, we would like to keep the effect of the pendulums' damping, the nonlinear contribution of their path and rotation, and the external forcing. We also want to uncouple the pendulums' equation from the rotor's motion as this significantly simplifies the problem (for instance, it allows to take advantage of symmetry properties). To do so, we can choose the set of scaling coefficients

ϕ = ℓ = 1, ν = 1/2, r = w = ϕ + ν = 3/2, p = q = 0, h > 0.
(2.37)

Noting that

T ˜1 cos(nϑ) = T ˜1 cos[n(τ + θ)] = T ˜1 cos(nτ ) + O(ϵ w ) (2.38)
and keeping only the lowest powers of ϵ, we obtain the simplified equations of motion for the rotor and the i th pendulum ). This substitution is also the reason why the coupling between the pendulums and the external forcing appear explicitly. Eq. (2.39b) contains cubic terms in s ˜i related to the nonlinear contribution of both x(s ˜i) and α(s ˜i).

θ ˜′′ = T ˜1 cos(nτ ) ⏞ ⏟⏟ ⏞ external torque + n 2 p µ ˜Λc N N ∑︂ i=1 s ˜i ⏞ ⏟⏟ ⏞ torque exerted by inertial forces +ϵ 1/2 2µ ˜n2 t N N ∑︂ i=1 s ˜is ˜′ i ⏞ ⏟⏟ ⏞ Coriolis effect , s ˜′′ i + n 2 p s ˜i = - ϵ Λ m [︄ n 2 p µ ˜Λ2 c N N ∑︂ j=1 s ˜j ⏞ ⏟⏟ ⏞ coupling between the pendulums + b ˜s ˜′ i ⏞⏟⏟⏞ damping -2x ˜[4] s ˜3 i ⏞ ⏟⏟ ⏞ path nonlinearity + 6ηα [1] α ˜[3] (s ˜2 i s ˜′′ i + s ˜is ˜′2 i ) ⏞ ⏟⏟ ⏞ rotation nonlinearity + Λ c T ˜1 cos(nτ ) ⏞ ⏟⏟ ⏞ external forcing ]︄ . ( 2 
Note that this first simplified model could also be written using ϑ as the independent variable rather than τ . Indeed, the changes that come out from this change of variable are negligible at the order retained (cf. chapter 3).

A second simplified model (accurate model)

To develop the second simplified model, we start from the equations of motion (2.13a) and (2.13b), which are expressed with ϑ as the independent variable rather than τ (cf. section 2.1.2.2). It is mandatory to use ϑ as the independent variable with the scaling proposed here. Indeed, it is the only way of uncoupling the rotor's dynamics from the pendulums' equations while keeping the effect of the nonlinear coupling between the rotor and the pendulums. We remind that with ϑ as the independent variable, it is convenient to define (•) ′ = ∂(•)/∂ϑ and to introduce the dimensionless rotor's velocity y(ϑ) (cf. Eq. (2.11)), which we can express

y(ϑ) = 1 + y θ (ϑ), (2.40) 
where y θ (ϑ) captures the fluctuations of the velocity.

The scaling employed in this second simplified model is governed by the same assumptions and remarks as those listed in the first simplified model. However, in the present case, we choose to define the scaled parameters as

b ¯= ϵb ˜, b ¯r = ϵb ˜r, T ¯1 = ϵT ˜1, µ = ϵµ ˜, y θ = ϵy ˜θ, θ ′ = ϵθ ˜′, x [4] = ϵx ˜[4] , α [3] = ϵα ˜[3] , (2.41)
where ϵ is a small parameter. This scaling is different from the one proposed in section 2.3.1 because every small term is scaled by ϵ and the pendulums' motion s i , i = 1, ..., N , is not scaled. Note that if we had chosen this scaling in the first simplified model instead of the choice (2.37), the pendulums' equation would not be uncoupled from the rotor's motion. Furthermore, at first order in ϵ we have

1 + θ ′ ≈ y, θ ′′ ≈ yy ′ ≈ y ′ ≈ y ′ /y. (2.42)

SIMPLIFIED CENTRIFUGAL PENDULUM MODELS AMENABLE TO NONLINEAR ANALYTICAL ANALYSIS

Hence, at the order retained in this simplified model, we can represent the rotor's acceleration using

θ ′′ instead of y ′ .
Substituting the scaled quantities (2.41) in the equations of motion (2.13a) and (2.13b), keeping only the lowest powers of ϵ and using Taylor series in s i for z(s i ), one obtains simplified equations for the rotor and the i th pendulum

θ ˜′′ = µ Ñ [︄ N ∑︂ i=1 n 2 p Λ c s i ⏞ ⏟⏟ ⏞ linear torque exerted by inertial forces + 2n 2 t s i s ′ i ⏞ ⏟⏟ ⏞ Coriolis effect + n 2 t (1 + n 2 t ) (︄ s i s ′ i 2 - n 2 p 2 s 3 i )︄ ⏞ ⏟⏟ ⏞ nonlinear (cubic) torque exerted by inertial forces ]︄ + T ˜1 cos(nθ) ⏞ ⏟⏟ ⏞ external torque , s ′′ i + n 2 p s i = - ϵ Λ m {︄ Λ 2 c µ Ñ N ∑︂ j=1 n 2 p s j ⏞ ⏟⏟ ⏞ linear coupling between the pendulums + b ˜s′ i ⏞⏟⏟⏞ damping + µ ˜n2 t Λ c N ⎡ ⎣ N ∑︂ j=1 s j (2s ′ j + s ′ i ) ⎤ ⎦ ⏞ ⏟⏟ ⏞ nonlinear (quadratic) coupling between the pendulums + µ ˜n2 t N [︄ N ∑︂ j=1 (1 + n 2 t )Λ c (︄ s j s ′ j 2 - n 2 p 2 (s 3 j + s j s 2 i ) )︄ + 2Λ m s j s ′ j s ′ i ]︄ ⏞ ⏟⏟ ⏞ nonlinear (cubic) coupling between the pendulums -2x ˜[4] s 3 i ⏞ ⏟⏟ ⏞ path nonlinearity + 6ηα [1] α ˜[3] (s i s ′ i 2 + s 2 i s ′′ i ) ⏞ ⏟⏟ ⏞ rotation nonlinearity + (︄ Λ c + Λ m s ′ i - n 2 t (1 + n 2 t ) 2 s 2 i )︄ T ˜1 cos(nϑ) ⏞ ⏟⏟ ⏞
external forcing (direct and parametric) }︄ .

(2.43a)

(2.43b)
Like the first simplified model, this accurate model expresses the rotor's acceleration in terms of the external forcing, the linear torque produced by the pendulums and the torque related to the Coriolis effect (cf. Eq. (2.43a)). However, it also accounts the nonlinear torque exerted by the pendulums, which is missed in the first simplified model. This additional nonlinearity allows to capture the generation of the third rotor harmonic (cf. chapter 4).

Like Eq. (2.39b), Eq. (2.43b) expresses the motion of the i th pendulum as a function of every pendulum and the external torque. However, it accounts for the nonlinear coupling (both quadratic and cubic) between the pendulums, which is missed in the first simplified model. In addition, this second simplified model allows to capture the parametric forcing (combination of s i or its derivatives and T ˜1 cos(nϑ)) exerted on the pendulums.

Clearly, the second simplified model is more accurate than the first one as it accounts for more phenomena. However, it is also significantly more complicated as the equations of motion contain a lot more terms. Note that the additional terms in Eqs. (2.43a) and (2.43b) are all proportional to n q t , q ≥ 2. Hence, it seems that these terms are negligible at low tuning orders, in which case one can get accurate results using the first simplified model. However, for moderate tuning orders (typically n p > 1), one must use the second simplified model. This is discussed further in chapter 4.

Coupling of a centrifugal pendulum with a drivetrain

Positioning of a centrifugal pendulum in a drivetrain

In thermal vehicles, it is known that the CPVA should be positioned as close as possible from the engine [2]. Indeed, it filters the acyclic torque, so placing it right after the excitation allows to isolate all the driveline components from the torque fluctuations. This way, the antiresonance generated by the pendulums exists on every drivetrain components located after the CPVA [29]. The same reasoning applies to the filtering of the torque ripple generated by an electric motor. However, as explained in section 1.1.1, the main source of excitation in electric vehicles does not come from the motor but the meshing of gears. In that case, the positioning of CPVAs in an electric powertrain is an open question.

Recommendations and observations are provided below.

Minimising the tuning order

The aim of the gearbox is to adjust the torque and speed of rotation transmitted by the motor to the wheels. Electric motors can spin at very large speeds (up to about 20000 [rpm]), so the gear trains have to reduce the rotational velocity at the gearbox output. This requires driving gears with less teeth than the driven gears. We explained in section 1.1.1.3 that the number of teeth determines the excitation order, and it is known that tuning pendulums at high orders is difficult due to demanding manufacturing tolerances (cf. [START_REF] Geist | Precision requirements for the bifilar hinge slots of a centrifugal pendulum vibration absorber[END_REF] and section 2.2.3). Hence, it seems that the best option is to position the CPVA on the driving gear (or on the shaft supporting it), as illustrated in Fig. 2.6. In this report, the aim is to filter order 20, which is the order of magnitude for the number of teeth of a driving gear in the gearbox of an electric motor. Minimising the pendular mass Another point to consider is the pendular mass required for an efficient filtering. The driving gear has a smaller radius than the driven one, so the torque generated by the transmission errors is smaller (cf. Eq. (1.10)). Hence, lighter CPVAs, which have a smaller torque capacity, can be used on the driving gear. Moreover, we saw in section 2.2.4 that the performance of
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a CPVA increases when the inertia ratio µ increases. Considering that the connections between the driveline components are perfectly rigid (which is a strong approximation), the rotor's inertia can be replaced by the rotational inertia of the whole drivetrain weighted by the gear ratios and evaluated on the shaft where the CPVA is installed. It is shown in Appendix C that the equivalent inertia of the drivetrain is smaller at the input, where its order of magnitude is only a few [g.m 2 ]. Hence, less pendulum mass is required at the input to achieve a satisfactory performance.

Considerations on the space available

The space available for a CPVA is obviously a major concern. As many different architectures of electric powertrains exist, it is difficult to provide systematic recommendations in this regard. However, the tendency is that there is less space available at the input than at the output of the drivetrain, which could be problematic as it goes against the recommendation of positioning the CPVA at the input. In this report, we consider that the space available on the input shaft does not exceed an external diameter of 120 [mm].

Possible use of several CPVAs

Finally, as is visible in Fig. 1.2, a gearbox can contain several gears trains (usually two or three), meaning that there are several sources of vibrations (one per gear train). Thus, introducing a CPVA near the driving gear of the engine shaft would reduce the vibrations caused by the associated gear train, but vibrations due to the other gear trains might require the use of several CPVAs. Nevertheless, for each gear train, the driving gear seems to be the best suited for supporting a CPVA.

As a conclusion, it appears that the best positioning of a CPVA in a gear train is on the driving shaft, as illustrated in Fig. 2.6. Indeed, this allows to minimise the tuning order and the mass of the pendulums. The drawback of this positioning is that, in some cases, there is less room available on the driving shaft than on the driven one. In addition, several CPVAs might need to be used in a gearbox if there are several gear trains.

Modelling of a centrifugal pendulum coupled with a drivetrain

The modelling of a CPVA presented in section 2.1.1 does not account for the complexity of the drivetrain as a single rotor is considered in the model. This simple configuration allows to investigate the intrinsic efficiency of the CPVA, which is useful for the design process. To account for the effect of the full drivetrain, one can use a series of punctual inertias (modelling the massive rotating parts) coupled through torsional springs and dampers (modelling the shafts). This is illustrated in Fig. 2.7

for a thermal powertrain.

In that case, the driveline possesses modes at fixed frequencies. With the introduction of the CPVA, the modal frequencies become dependent on the rotational velocity. Indeed, there is a fre-Figure 2.7: Modelling of a drivetrain equipped with a CPVA (taken from [2]). R 0 is a Galilean frame. R Ω is a frame rotating with an angular velocity Ω with respect to R 0 . The fluctuating part of the torque delivered by the engine is T ˜(t) where t is the time. Inertias J 1 , J 2 , J 3 and J 4 represent the crankshaft plus the flywheel, the clutch disk, the gearbox and the wheels, respectively. The fluctuation of their angular position is θ ˜1, θ ˜2, θ ˜3 and θ ˜4, respectively. The shafts linking these elements are represented through torsional springs and dampers. In the system represented here, the CPVA is mounted directly on the clutch disk.

quency veering effect (cf. Fig. 2.8) that prevents the excitation frequency to coincide with a modal frequency, hence avoiding resonances.

In addition, as explained in section 1.2.2, the pendulums filter the excitation to isolate every downstream driveline component. Thus, not only resonances are avoided but an antiresonance is generated on the inertia carrying the pendulums and every inertias that follow [2].

In this report, we only focus on the intrinsic performance of a CPVA, so we do not consider the additional difficulties related to its coupling with a drivetrain (this is left for future work). However, we list some of these difficulties below, which were identified in [2] for a thermal powertrain.

• Due to space requirements, there are situations where the CPVA cannot be placed right after the source of excitation (this is illustrated in Fig. 2.7 where the CPVA is placed on the clutch disk). In that case, the CPVA has no effect on the upstream driveline components (cf. section 2.4.1).

• In the presence of several rotors, there are situations where it is not possible to avoid every resonances using the frequency veering effect. This is illustrated in Fig. 2.9, where the natural frequency ω * 4 is repelled by ω * 5 . Because of this, ω * 4 intersects with the excitation frequency ω e , leading to a resonance. Nevertheless, if the pendulums' mistuning is small enough, the response Figure 2.8: Evolution of the natural frequencies with the rotational velocity for a system made of two rotors linked through a torsional spring and with a pendulum attached to the first rotor (taken from [2]). This illustrates the frequency veering effect. Two configurations are represented: the pendulum is uncoupled (on the left) and coupled (on the right) to the rotor. On the right, the natural frequencies corresponding to three different pendulum masses, leading to three different inertia ratios µ (cf. Eq. (2.8)), are represented. ω 0 is the natural frequency of the pendulum (written ω p previously in this report). ω 1 and ω 2 are the natural frequency of the two-rotor system. ω 1 , ω * 2 and ω * 3 are the natural frequencies of the coupled system. of the driveline on this resonance remains acceptable [2].

• The design recommendations derived from the nonlinear study of a CPVA (with a single rotor) are not completely transposable to a realistic drivetrain of a thermal vehicle [2]. There are two main reasons for this. The first one is the effect of the drivetrain on the CPVA, which is ignored in the study of an uncoupled CPVA. The second one is the shape of the excitation signal.

Usually, to simplify the analysis, the works dealing with CPVAs consider an external torque of the form T (ϑ) = T 0 + T 1 cos(nϑ) (as in section 2.3 for instance). However, in practice, the torque contains several harmonics (cf. section 1.1.1) whose amplitude depends on the mean rotational velocity Ω [2].

Nonlinear dynamics and stability

A large contribution of the thesis deals with the nonlinear behaviour of pendulum absorbers. In this section, we present specificities of nonlinear dynamical systems and methods available to analyse their response. Figure 2.9: Evolution of the natural frequencies of the system represented in Fig. 2.7 as a function of the rotational velocity (taken from [2]). On the left, one can see the natural frequencies ω i , = 1, ..., 4 of the drivetrain uncoupled from the CPVA, and the natural frequency ω 0 corresponding of the pendulum uncoupled from the drivetrain. The diagram shown on the right corresponds to the coupled system. The natural frequencies ω * i , i = 3, 4, 5 are those subjected to the frequency veering effect.

Theory of nonlinear dynamical systems

A typical example: the Duffing oscillator

A famous nonlinear system is the Duffing oscillator [161], whose harmonically forced equation of motion is

x ¨+ cx ̇+ ω 2 0 x + γx 3 = F cos(ωt), (2.44) 
where x, c, ω 0 , γ and F cos(ωt) are the oscillator's displacement, the viscous damping coefficient, the natural frequency of the oscillator, the cubic nonlinear coefficient and the forcing, respectively.

Nonlinear systems are defined as systems in which the change in the output is not proportional to the change in the input. A simple manifestation of this definition is the fact that if x(t) is the solution for an excitation F cos(ωt), then 2x(t) will not be a solution for an excitation 2F cos(ωt). There are a lot more consequences to nonlinearity, some of which are listed below (and discussed further thereafter):

• Nonlinear systems are subjected to harmonic distortion. This means that their response contains higher (and possibly lower) harmonics even when the forcing is harmonic.

• The frequency of free oscillations of a nonlinear system evolves as a function of its amplitude of motion.

• A forced nonlinear systems can possess multiple solutions at the same excitation frequency.

• The response (free of forced) of a nonlinear system might be subjected to instabilities.

• The modes of a nonlinear system can be subjected to internal resonances. This occurs when two modal frequencies are close to integer multiples. These internal resonances lead to nonlinear responses that are completely missed by the linear theory.

• Nonlinear systems might exhibit quasi-periodic responses.

• Nonlinear systems might exhibit chaotic responses. In those cases, the response after a time t is extremely dependent on the initial state of the system. A typical forced response of a Duffing oscillator is represented in Fig. 2.10. It depicts the amplitude of the motion x(t) as a function of the excitation frequency ω and is computed using the method of multiple scales, which is described in section 2.5.2.1. The response is shown for three different forcing levels. For low forcing, the behaviour is almost linear with a resonance near ω 0 . However, as the forcing is increased, the response bends to the right and the resonance shifts towards higher frequencies. This bending indicates a hardening behaviour of the system as the frequency of free oscillations, represented by the backbone curve, increases with the amplitude of motion. If the response was to bend to the left, the behaviour would be softening.

Instabilities of the periodic solution appear at moderate forcing amplitudes, when the response enters into the instability zone (blue area). Each intersection between this area and the response corresponds to a saddle-node bifurcation, causing a jump of the response when realising a sweep in ω.
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These jumps are a source of hysteresis as the oscillator's response is different whether we are sweeping up or down in ω. More details on the stability and bifurcations are provided in the next section.

Fixed points, periodic solutions and their stability

Fixed points Let us consider a free, autonomous nonlinear dynamical system x ̇= f (x).

(2.45)

x is called the state vector. The system is autonomous because f (x) does not depend explicitly on time. It is generally trivial to express dynamical systems in the form of Eq. (2.45). For instance, Eq.

(2.44) can be rewritten in this form by introducing y = x ̇such that the state vector be x = [x, y] ⊺ .

The phase space is the space in which x evolves [START_REF] Nayfeh | Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods[END_REF]. In the particular case x = [x, y] ⊺ , the phase space corresponds to the representation of the system's dynamics in the coordinate system (x, y). The

solutions x * of f (x * ) = 0 (2.46)
are called fixed points of the phase space and correspond to static equilibrium points of the system [START_REF] Nayfeh | Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods[END_REF].

Stability of fixed points

Near a fixed point x * , x can be expressed through a small perturbation u such that

x = x * + u, ∥u∥ ≪ ∥x∥, ⇒ u ̇= x ̇-x ̇ * ⏞⏟⏟⏞ =0 = x ̇= f (x) = f (x * + u). (2.47)
Using a Taylor series of f (x * + u) around the fixed point, we obtain

u ̇= f (x * ) ⏞ ⏟⏟ ⏞ =0 +u ∂f (x) ∂x ⃓ ⃓ ⃓ ⃓ x * + O(∥u∥ 2 ). (2.48)
Hence, the evolution of the perturbation can be approximated at first order using the Jacobian matrix J in order to write

u ̇≈ J u, where J = ∂f (x) ∂x ⃓ ⃓ ⃓ ⃓ x * (2.49)
The general solution of Eq. (2.49) takes the form

u = N ∑︂ i=1 κ i ϕ i e λ i t , (2.50)
where N is the dimension of x, κ i , i = 1, ..., N are constants and (λ i , ϕ i ) are the eigenvalues and eigenvectors of J . If the real part of at least one of the eigenvalues is positive, then u increases exponentially in time. This means that the initially small perturbation grows such that x departs from x * . In this situation, the fixed point is unstable. Contrarily, if both eigenvalues have negative real parts, then the fixed point is stable. Changes of the stability state occur through bifurcations. Some of the most common bifurcation types are described thereafter.

Periodic solutions A periodic solution x(t) with period T of the dynamical system (2.45) is such that x(t + T ) = x(t) and x(t + τ ) ̸ = x(t), ∀τ ∈]0, T [. Unlike equilibrium solutions (i.e. fixed points), periodic ones are characterised by time-varying states. In the state space, a periodic solution is a closed orbit (or equivalently a closed trajectory). It is now convenient to discuss Poincaré maps, which allow to draw a parallel between periodic solutions and fixed points [START_REF] Nayfeh | Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods[END_REF]. In their simplest application, these maps consist in looking at the system's state at time intervals spaced by T . The plot of the points thus obtained in the phase space is a Poincaré section. Because of the definition

x(t + T ) = x(t)
, a periodic solution is a fixed point of the Poincaré map.

Stability of periodic solutions

Previously, we assessed the stability of a fixed point by looking at the effect of a perturbation of the system around this fixed point. We can use the same procedure to study the stability of a periodic solution of a dynamical system. Let us consider the non-autonomous dynamical system

x ̇= f (x, t) (2.51)
where x ∈ R N . It is non-autonomous because f (x, t) depends explicitly on t. Let x 0 (t) be a periodic solution of the system and u(t) a perturbation around this solution such that x(t) = x 0 (t) + u(t).

(2.52)

Then, using first order Taylor series, we can express [START_REF] Nayfeh | Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods[END_REF] u ̇(t) ≈ J (t)u(t) where

J (t) = ∂f (x) ∂x ⃓ ⃓ ⃓ ⃓ x 0 (t)
.

(2.53)

Note that in this case, the Jacobian J (t) is evaluated on the periodic solution x 0 (t), so that it is itself periodic. As a consequence, Eq. (2.53) is a linear differential equation with periodic coefficients, which can be studied using Floquet theory [START_REF] Floquet | Sur les équations différentielles linéaires à coefficients périodiques[END_REF][START_REF] Lazarus | A harmonic-based method for computing the stability of periodic solutions of dynamical systems[END_REF]. The solution of this equation takes the form

y(t) = N ∑︂ n=1 y n (t), y n (t) = p n (t)e αnt , ( 2.54) 
where the α n are the Floquet exponents and the p n (t) are periodic vector functions. If the real part of one of these exponents is positive, the periodic solution is unstable. As illustrated in Fig. 2.11, the way the Floquet exponents cross the imaginary axis during a change of stability determines the type of bifurcation [START_REF] Nayfeh | Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods[END_REF]. Several types of bifurcation are represented in this figure and they are detailed in the subsequent section.

Note that the stability of a periodic solution can also be determined by examining the stability of the fixed point of an associated map [START_REF] Nayfeh | Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods[END_REF] (typically, the Poincaré map). 

Bifurcations

A bifurcation indicates a qualitative change in the features of a system under the variation of one or more control parameters [START_REF] Nayfeh | Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods[END_REF]. In practice, a bifurcation point separates a stable part of a solution from an unstable part. Some common types of bifurcation are described briefly thereafter.

Saddle-node bifurcation

When a saddle-node bifurcation occurs on a specific branch of solution, its stability changes (from stable to unstable or the opposite). The number of solutions near the bifurcation changes as a function of the control parameter. It goes from two (one stable, one unstable) to zero, which often causes a jump in the response when sweeping in the control parameter. This is illustrated in Fig. 2.10 where the control parameter is ω.

Pitchfork bifurcations When a pitchfork bifurcation occurs, the system transitions from a single periodic solution to three (or more) [START_REF] Kuznetsov | Elements of Applied Bifurcation Theory[END_REF]. These bifurcations can either be supercritical or subcritical, as shown in Fig. 2.12. In the supercritical case, we have a stable solution branch on one side of the bifurcation and three (two stable, one unstable) solution branches on the other side. In the subcritical case, we have three solutions on one side of the bifurcation (one stable, two unstable) and one unstable solution on the other side.

Neimark-Sacker bifurcations

When a Neimark-Sacker bifurcation occurs, the periodic solution is replaced by a quasi-periodic one at the crossing of the bifurcation point, with the creation of a new frequency.

Period-doubling bifurcations

A period-doubling bifurcation is similar to a pitchfork one except that the top and bottom solutions represented in Fig. 2.12 have a period twice larger than the one of the response before the bifurcation. Like pitchfork bifurcations, period-doubling ones can be super- or subcritical.

Operating regimes

Periodic regime

The periodic regime was already discussed in section 2.5.1.2. Here, we simply remind that it corresponds to a system oscillating with a period T , which implies x(t + T ) = x(t), and the associated fundamental frequency of the oscillations is ω.

Quasi-periodic regime

The quasi-periodic regime corresponds to a situation where a periodic signal of frequency ω is modulated by one or more frequencies. The Poincaré map, defined in section 2.5.1.2, is an interesting tool to verify if the response of a system is quasi-periodic. Indeed, because a quasi-periodic signal is a periodically modulated periodic signal, its representation in a Poincaré section takes the form of an orbit [START_REF] Nayfeh | Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods[END_REF], as illustrated in Fig. 2.13(a). 
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Chaotic regime

In chaotic regime, the system's response at time t is extremely dependent on the initial state of the system. One often looks at the Lyapunov exponent to determine whether the response is chaotic or not [START_REF] Nayfeh | Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods[END_REF]. This exponent quantifies how dependent on the initial conditions the response is. Another way to verify if a response is chaotic is to look at the Poincaré section. Indeed, if the response is chaotic, its representation takes the form of a densely filled closed shape [START_REF] Nayfeh | Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods[END_REF], as represented in Fig. 2.13(b).

Tools for the study of nonlinear systems

Analytical methods

There are several analytical methods that allow to derive approximate solutions of nonlinear systems, like the harmonic balance method or the averaging method [START_REF] Nayfeh | Perturbation Methods[END_REF]. In this thesis, we choose to use the method of multiple scales (MMS) [START_REF] Nayfeh | Perturbation Methods[END_REF], which is a perturbation method allowing to replace a nonlinear system by a cascade of linear systems which can be solved successively. Some details on the MMS are provided below.

Let us consider a nonlinear dynamical system of the form

x ¨+ ω 2 0 x = ϵf (x, t), (2.55) 
where ϵ is a small parameter and f (x, t) is a nonlinear function. This is a very general equation of motion for a weakly damped, weakly forced and weakly nonlinear system. The MMS consists in introducing several independent time scales

t 0 = t, t 1 = ϵt, ... t n = ϵ n t, ( 2.56) 
and looking for an approximated solution for x(t) of the form of an asymptotic expansion such that

x(t) ≈ x 0 (t 0 , ..., t n ) + ϵx 1 (t 0 , ..., t n ) + ... + ϵ n x n (t 0 , ..., t n ). (2.57)
n is the order of the expansion. t 0 is a fast time scale, in opposition to the t i , i > 0, which are slow time scales. Note that the use of several time scales is relevant as a dynamical system typically evolves on different scales: a fast time scale, due to its oscillations, and slower scales, for instance related to the decrease of the oscillation amplitude with time due to damping.

Introducing the time scales (2.56) and the expansion (2.57) in Eq. (2.55) and grouping terms by powers of ϵ, one obtains a set of n linear equations that can be solved successively to express the x i , i > 0, as a function of x 0 . If the oscillator is subjected to a forcing of frequency ω ≈ kω 0 , k ∈ N * , the general solution for x 0 takes the form

x 0 (t 0 , ..., t n ) = a(t 1 , ..., t n ) cos (︃ ω k t 0 -ξ(t 1 , ..., t n ) )︃ , ( 2.58) 
where a and ξ are the amplitude and the relative phase of x 0 (i.e. the phase between x 0 and the forcing). Notice that a and ξ only depend on the slow time scales. The MMS allows to derive a system governing a and ξ such that, after recombining the slow time scales using their definition (2.56), one obtains

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ da dt = f a (a, ξ), a dξ dt = f ξ (a, ξ).
(2.59a)

(2.59b)
f a (a, ξ) and f ξ (a, ξ) are known functions. System (2.59) is a slow time system because a and ξ are slow time variables (cf. Eq. (2.58)). The periodic solutions of the oscillator correspond to the fixed points of the slow times system, so they must satisfy

{︄ f a (a, ξ) = 0, f ξ (a, ξ) = 0, (2.60a) 
(2.60b)

and the stability of these periodic solutions can be assessed through the computation of the Jacobian associated to the slow time system (2.59), as described in section 2.5.1.2.

As an example, the MMS is applied to a Duffing oscillator in Appendix D.

Time integration

Sometimes, analytical solutions of nonlinear differential systems cannot be found or require too many approximations. In that case, numerical methods must be used. Here, we present the use of finite differences, which allow to derive solutions using an approach in the time domain.

Let us consider the initial value problem (IVP)

x ̇= f (x, t),

x(t = 0) = x 0 , (2.61a) (2.61b)
where x is a state vector. The basic idea to solve this IVP on the time interval [0, t N ] is to discretise time using time steps ∆t such that t 0 = 0, . . . , t n = n∆t, . . . , t N = N ∆t, and to use a finite difference scheme to represent the derivatives. The simplest (but least accurate) scheme is the 2-points Euler forward, which makes use of the simplest definition of the derivative of a function x(t):

x

̇(t) = lim ∆t→0 x(t + ∆t) -x(t) ∆t . (2.62)
The associated finite-difference scheme is (with ∆t small)

x ̇(t) ≈ Dx(t) = x(t + ∆t) -x(t) ∆t .
(2.63)

NONLINEAR DYNAMICS AND STABILITY

Discretising this scheme and defining x(t n ) = x n , we obtain

Dx n = x n+1 -x n ∆t . (2.64)
Introducing this in Eq. (2.61), multiplying by ∆t and rearranging leads to

x n+1 = x n + ∆tf (x n , t n ), x 0 = x 0 .
( One must be aware that the approximation in Eq. (2.64) generates a truncation error that causes an error in the numerical solution. Indeed, using Taylor series for x(t + ∆t), we can write

x(t + ∆t) = x(t) + ∆tx ̇(t) + ∆t 2 2 x ¨(t) + O(∆t 3 ), (2.66) 
and introducing this in the scheme (2.63), we get

Dx(t) = x ̇(t) ⏞⏟⏟⏞ exact solution + 1 2 ∆tx ¨(t)
⏞ ⏟⏟ ⏞ leading-order error +O(∆t 2 ).

(2.67)

Here, the numerical error is proportional to powers of ∆t [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF]. There are much more accurate schemes than the 2-point Euler forward, such as the Runge-Kutta ones for instance [171], for which the truncation error is proportional to ∆t p , p > 1. Numerical routines of efficient schemes are already implemented in the solve_ivp function from the Python sub-package scipy.integrate.

Suppose the function f (x, t) from Eq. (2.61) includes a harmonic forcing term F cos(ωt) on one of its components. In that case, it is often desired to obtain the steady state amplitude and phase of the harmonics of x(t) as a function of ω and F . This can be done as follows:

• Choose a finite difference scheme;

• Integrate in time until the steady state is reached to obtain a discrete representation of x(t);

• Use Fourier series to compute the amplitude and phase of the harmonics of x(t);

• Repeat this process for all desired values of ω or F .

Computing a frequency response using finite differences can be time-consuming for several reasons:

• To obtain an accurate numerical solution, one needs a small time step ∆t, which implies a large number of time intervals to reach the final time t N .

• The steady state can take a long time to be reached, especially when a bifurcation occurs. This requires integrating up to a large time t N .

• Time integrations are required for every desired values of ω (or F ). Hence, many integrations must be done to obtain a frequency response with many points.

In addition, time integration does not allow the computation of unstable solutions, which are useful for a batter understanding of the dynamics of a system. For these reasons, numerical methods in the frequency domain are more adapted to the investigation of the steady state solutions of nonlinear systems. One a these methods is presented below.

Numerical continuation methods

Several numerical continuation methods exist and allow for a resolution of a system's dynamics in the frequency domain. Some famous software/packages allowing to perform numerical continuation are AUTO [START_REF] Doedel | AUTO 97: Continuation And Bifurcation Software For Ordinary Differential Equations (with HomCont)[END_REF] and MATCONT [START_REF] Dhooge | MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs[END_REF]. In this report, we will use MANLAB, which is an interactive path-following and bifurcation analysis software implemented in MATLAB environment to compute periodic solutions of a nonlinear dynamical system in the frequency domain [START_REF] Guillot | A Taylor series-based continuation method for solutions of dynamical systems[END_REF][START_REF] Guillot | A purely frequency based Floquet-Hill formulation for the efficient stability computation of periodic solutions of ordinary differential systems[END_REF]. It is developed by the Laboratoire de Mécanique et d'Acoustique (LMA) in Marseille (France) and is based on the harmonic balance method (HBM) coupled with the asymptotic numerical method (ANM, or MAN in french). These two methods are briefly presented below.

Consider the nonlinear dynamical system

x ¨= f nl (x, x ̇) + F cos(ωt), (2.68) 
where x ∈ R N . If looking for periodic solutions, we can express x using Fourier series up to harmonic

H such that x(t) = x 0 + H ∑︂ i=1 x ci cos(iωt) + x si sin(iωt), (2.69) 
where x 0 , x ci and x si , i = 1, ..., H, are N -dimensional vectors containing the Fourier coefficients.

Introducing this in Eq. (2.68), ignoring the terms oscillating with a frequency larger than Hω and grouping the constant terms and the factors of cos(iωt) and sin(iωt), i = 1, ..., H, we obtain a system of N (2H + 1) algebraic equations where the N (2H + 1) unknowns are the Fourier coefficients. This is the basic idea of the HBM. The system of N (2H + 1) equations can be written

R(U ) = 0, (2.70) 
where U is the vector containing the N (2H + 1) Fourier coefficients.

We now present the ANM, which is used to compute the solutions of an algebraic system of the form

R ¯(U , λ) = 0, (2.71) 
where λ is the continuation parameter, U is the vector of unknowns and R ¯: R N × R → R N is the function governing U . In practice, we can use ω or F as the continuation parameter. We want to find a solution branch U (λ) for several values of λ. However, these curves can have a complex shape, they can be subjected to bifurcations and there might be values of λ for which several solutions U coexist [START_REF] Thomas | Dynamique linéaire et non linéaire de structures élastiques et piézoélectriques[END_REF]. This is illustrated in Fig. 2.10 where the control parameter is ω. To overcome these difficulties, it was proposed to re-parametrise the system as a function of a parameter a, which is related to the curvilinear of the solution curve. This way, system (2.71) can be increased and rewritten

R ˜(U (a), λ(a)) = 0, (2.72) 
where the additional equation in R ˜(U (a), λ(a), a) compared to R ¯(U , λ) is the definition of a. There are several possible definitions, such as the arc-length or pseudo arc-length ones [START_REF] Seydel | Practical Bifurcation and Stability Analysis[END_REF]. The ANM consists in looking for the curve (U (a), λ(a)) using the high-order asymptotic expansion in a

U (a) = U 0 + aU 1 + ... + a n U n , λ(a) = λ 0 + aλ 1 + ... + a n λ n . (2.73)
Introducing Eq. (2.73) in system (2.72) and solving leads to an analytic solution for the curve (U (a), λ(a)) on the interval [0, a max ], where a max is the maximum value of a for which the norm of R ˜(U (a), λ(a), a) remains lower than a given tolerance. Hence, the curve (U , λ) is known analytically piecewise. More details on the ANM and its implementation in MANLAB can be found in [START_REF] Guillot | De l'intérêt d'un Formalisme Quadratique Pour La Continuation Des Solutions d'un Système Dynamique et de Leurs Bifurcations -Application Aux Instruments à Anche[END_REF].

Conclusion

We saw that the excitation signal in a thermal powertrain is a periodic torque of the form T (ϑ),

where ϑ is the angular position of the crankshaft. The fundamental frequency of the torque is

ω e = n e ϑ ̇,
where n e is the engine's order. The modes of the drivetrain are at fixed frequencies, so that they will successively be excited by the engine's torque during an acceleration phase. In an electric powertrain, the problem is very similar except that the fluctuating torque mainly comes from transmission errors in the gear train. In that case, the excitation order n e corresponds to the number of teeth of the gear considered and ϑ is the angular position of that gear. n e is typically much larger in electric vehicles than in thermal ones.

CONCLUSION

The CPVA was presented in sections 2.1 and 2.2. The natural frequency of an uncoupled centrifugated pendulum is ω p = n p ϑ ̇, where n p is the pendulums' tuning order. This dependency of ω p on ϑ ȧllows the pendulums to remain tuned on the excitation at all speeds if one chooses n p = n e . In this configuration, the pendulums filter the torque to isolate every downstream driveline component. It is this characteristic that makes the CPVA the best-suited passive absorber to reduce the vibrations of a rotating machine. Simplified CPVA models amenable to nonlinear analysis techniques were presented in section 2.3. The question of the positioning of a CPVA in a drivetrain and their coupling were discussed in section 2.4.

Some elements on the theory of nonlinear dynamical systems were described in section 2.5. This section also presented analytical and numerical methods to study the response of nonlinear dynamical systems. These are helpful to understand the content of the following chapters.

Part II The classical centrifugal pendulum tuning

Summary of part II

This summary presents a synthesis of the main results of the following three chapters, constituting part II of this report. In this part the system considered is the centrifugal pendulum vibration absorber (CPVA) described in chapters 1 and 2. For the sake of completeness, a brief description of the system is recalled here. It is constituted of a rotor on which are attached N pendulums oscillating along their path and rotating about their centre of mass, as illustrated in Fig. II.1. The system is excited by a torque containing a constant and a periodic part. To simplify the analysis, we consider that the fluctuating torque contains a single harmonic of amplitude T ¯1 and order n. Though in this summary we consider a system made of N = 2 pendulums for the sake of simplicity, most of the results derived in part II are valid regardless of the number of pendulums. The pendulums' path and rotation law are governed by functions

x(s i ) = 1 -n 2 t s 2 i + x [4] s 4 i , α(s i ) = α [1] s i + α [3] s 3 i , (II.1a) (II.1b)
where s i represents the curvilinear abscissa of the i th pendulum (cf. Fig. II.1), n t , x [4] are path parameters and α [1] , α [3] are rotation parameters. It turns out that the behaviour of the system can be controlled using only two parameters: the pendulums' tuning order n p and the nonlinear tuning parameter c p (cf. chapter 4). These two tuning parameters depend on the path and rotation parameters and on the dimensionless pendulums' inertia η such that

n p = n t √︂ 1 + ηα 2 [1]
, c p = 3(x [4] + 2n 2 p ηα [1] α [3] ).

(II.2)

In the following, we will present the response of CPVAs tuned in different ways in order to highlight the richness of their dynamics.

In part II, we focus on the classical CPVA tuning, which refers to cases where the excitation order is close from the tuning order, i.e. n ≈ n p . The classical tuning is the one currently used in automotive vehicles but it still needs improvements (cf. chapter 1).

Recall that the system possesses three modes, illustrated in We proposed in chapter 2 to simplify the full equations of motion of a CPVA in order to investigate analytically its nonlinear behaviour. Two different simplification processes were suggested, leading to two different simplified models: one termed "simple" model (used in chapters 3 and 5), and the other termed "accurate" (used in chapter 4). There are three main differences between these models:

• The nonlinearities affecting the pendulums in the simple model are only related to their path and their rotation law. However, the accurate model also accounts for the nonlinear coupling between the pendulums, related to inertial effects.

• In the simple model, the pendulums are excited directly (here, directly means "non-parametrically")

by the external torque. The accurate model accounts for both the direct and parametric forcing of the pendulums by the external torque.

• The simple model allows to compute analytically the two first rotor harmonics whereas the accurate one allows to derive its three first harmonics.

The two models are used in the literature (without the contribution of the rotation, see [65,66,[START_REF] Issa | Synchronous and non-synchronous responses of systems with multiple identical nonlinear vibration absorbers[END_REF] for instance), but they are not compared. A comparison is proposed in chapter 4 and shows that the accurate model should be used in most cases. Nevertheless, there are still cases where the simple model is useful:

• Though the simple model has a much smaller range of validity than the accurate one, it is less complex and provides a proper estimation of the CPVA's behaviour for low values of the tuning order n p . This is verified in chapter 3.

• The simple model allows to investigate the coupled-mode solution of the system (i.e. the pendulums respond simultaneously on the unison and phase-opposition modes) while the accurate one does not. Indeed, its larger complexity does not allow to derive an analytical solution for the coupled-mode solution consistent with the solution on the unison mode. The simple model is used in chapter 5 to study the coupled-mode solution. In practice, the excitation order n is fixed, so one would typically tune the pendulums such that n p = n for the rotor to be excited on its antiresonance, thus reducing its vibrations as much as possible. However, this ideal behaviour is perturbed by nonlinear effects that deteriorate the efficiency of CPVAs.

These undesired effects are listed below and discussed in details thereafter:

• The unison response is subjected to several instabilities. This is visible in • Because of nonlinear effects, an increase in the amplitude of the external torque causes the classical antiresonance order to shift and depart from n p . We call this the nonlinear detuning of the antiresonance. In this case, and because in practice the excitation order n is fixed, the rotor is not excited on the minimum of its response over the whole torque range. Hence, the nonlinear detuning of the antiresonance prevents an optimal reduction of the rotor's vibrations.

In part II, we investigate the unison and localised responses using mainly analytical methods. The analysis of the unison response led to the derivation of original design guidelines allowing to prevent the apparition of instabilities and to limit the shifting of the classical antiresonance. The study of the localised response allowed to gain a better understanding of this phenomenon and to show that, in some cases, it is not detrimental to the filtering efficiency of the CPVA. These points are detailed thereafter.

The development of many of the results discussed in this summary requires elaborate algebraic manipulations, detailed in chapters 3, 4 and 5. Here, we report only the main results of part II, described from a physical point of view.

Stability of the unison solution and localised pendulums' response [chap.

3,

If one now considers that the excitation order n is fixed and that the control parameter is the torque amplitude T ¯1, the typical results from chapters 3, 4 and 5 can be summarised in The difference between the two CPVAs is their nonlinear tuning c p , which is controlled through the path and rotation of the pendulums (cf. Eq. (II.2)).

We first discuss the response of the CPVA represented in increasing torque sweep (which occurs often in practice, when the car driver accelerates for instance), the amplitude of the pendulums and rotor increases until it reaches the lower SN bifurcation. At this moment, a sudden jump of the response occurs. After this jump, the rotor's oscillations are much larger than if the pendulums were locked. This is because the phase of the pendulums' oscillations changed by π such that the torque they generate on the rotor now adds-up to the external torque instead of balancing it. This situation must absolutely be avoided in practice to prevent the failure of some driveline components. rotor increase until they reach the PF bifurcation. At larger torque levels, the unison response is unstable and the pendulums oscillate with different amplitudes. The energy is localised on the pendulum oscillating with the largest amplitude, hence the name "localised solution". Increasing further the torque amplitude, one can see that localisation causes the pendulums to reach their cusp at a torque level much lower than if they were oscillating at unison. The associated torque level defines the torque capacity, and its reduction is the main drawback of localisation. One could think that localisation also lowers the filtering efficiency of the CPVA, but it is not necessarily the case. This can be seen in Fig. II.4(d), where the amplitude of the first rotor harmonic is slightly lower with localised pendulums (blue curve) than with a unison motion (green curve). In chapter 5, we even show that in some particular cases localisation does not reduce the torque capacity and lowers the rotor's vibrations, so that it improves the efficiency of the CPVA. Nevertheless, these are unusual scenarios and a common recommendation is that localisation should be avoided.

The cause of the existence of localised solutions, discussed in details in chapter 5, can be understood from the following modal expansion (we consider a CPVA made of N = 2 pendulums for simplicity) ̸ = 0), the pendulums move at unison. This is the most expected scenario as the phase-opposition mode is not directly excited by the external torque (cf. section 2.2). However, because the eigenorders of the unison and phase-opposition modes are close, these modes are in 1:1 internal resonance (cf. chapter 5). Hence, there can be energy exchanges between them, and as a consequence the phase-opposition mode can contribute to the pendulums' response (i.e. ζ 1 ̸ = 0, ζ 2 ̸ = 0). This nonlinear phenomenon causes the pendulums to oscillate differently as

[︄ s 1 s 2 ]︄ = ζ 1 [︄ 1 -1 ]︄ ⏞ ⏟⏟ ⏞ phase-opposition mode + ζ 2 [︄ 1 
s 1 = ζ 1 + ζ 2 ̸ = s 2 = -ζ 1 + ζ 2 (cf.
Eq. (II.3)), leading to energy localisation. The analytical investigation of the localised solution and its stability in chapter 5 greatly facilitated the numerical observation of quasi-periodic and chaotic CPVA responses. In addition, the experimental analysis presented in chapter 3 allowed to observe localisation where predicted by the analytical model. The red and blue areas are instability zones. PF and SN bifurcations, which cause localisation and jumps of the response, respectively, are located at the intersections of these zones with the unison response. Hence, to enforce a stable unison motion, one should avoid these intersections. This can be done via a specific linear and nonlinear tuning of the CPVA, which affects both the hardening/softening behaviour of the response (visible through the bending of the response in Fig. II.5) and the locus of the instability zones. For instance, the tuning of CPVAs 1 and 3 (cf. 

Shifting of the antiresonance and performance [chap. 4]

Due to the nonlinear nature of the system, the order of the rotor's classical antiresonance depends on the amplitude of the variables, which in turn depends on the amplitude of the forcing torque. as the torque level increases. The pink curve, passing through every antiresonance, is the result of an analytical antiresonance tracking procedure proposed in chapter 4. For the antiresonance to be locked at n = n p , one needs this pink curve to be a straight vertical line. This is used to derive design guidelines and is discussed further thereafter. Figure II.6(c) shows that locking the antiresonance lowers the amplitude of the rotor's first harmonic compared to the tautochronic case. This highlights the benefit of locking the antiresonance to reduce the vibrations of the rotor. In Fig. II.6(b) we can see that locking the antiresonance increases slightly the pendulums' amplitude at unison compared to the tautochronic case. However, the tautochronic pendulums are subjected to localisation (due to the presence of the PF bifurcation) way before their cusp, which might significantly decrease their torque capacity. The pendulums locking the antiresonance are not subjected to instabilities before reaching their cusp. Hence, the design rule limiting the shifting of the antiresonance is compatible with the avoidance of instabilities discussed previously.

In Fig. II.6(d) we can see the amplitude of the three first rotor harmonics of the CPVA tuned to lock the antiresonance. The reduction of the first harmonic brings to the fore the contribution of higher rotor harmonics generated because of the nonlinearities introduced by the pendulums. Indeed, near the cusp, the amplitudes of rotor harmonics 2 (in blue) and 3 (in orange) are about 9 and 6 times larger than the amplitude of the fundamental harmonic (in green), respectively. This might be problematic but it can be avoided using for instance a CPVA in subharmonic operation, which is the subject of part III of this report.

Representation in the design space and optimisation [chap. 3,4] In order to carry out a design optimisation of the system, it is proposed in chapters 3 and 4 to represent the design guidelines and the stability state of the unison response in the design space. The coordinates of that space are the parameters of the CPVA. This representation provides an overview of the stability of a range of CPVA designs and indicates which ones satisfy some given characteristics.

Thus, one can simultaneously assess the efficiency of these CPVA designs.

Figure II.7 represents the stability information (green-stable, red-unstable and blue-unstable) in a design space with the linear and nonlinear CPVA tuning parameters n p and c p as coordinates (which are related to the pendulums' path and rotation function, cf. Eq. (II.2)). It also represents the Chapter 3

A simple nonlinear model for the unison response of centrifugal pendulums and its stability

This chapter is made of a paper published in the Journal of Sound and Vibrations [START_REF] Mahe | Dynamic stability of centrifugal pendulum vibration absorbers allowing a rotational mobility[END_REF]. It focuses on the analytical prediction of the instabilities causing jumps and localisation of the unison response of a centrifugal pendulum vibration absorber (CPVA). Note that the title of the chapter makes reference to a "simple" model because the developments are based on the simplified model described in section 2.3.1, which is less advanced than the simplified model from section 2.3.2, used in chapter 4.

Sections 1 to 4 repeat information from chapters 1 and 2. They present the context of the study, the modelling of a CPVA (cf. section 2.1.1), a linear analysis (cf. section 2.2) and the simplification of the equations of motion (cf. section 2.3). The reader might want to skip these four first sections of the article if he already read chapters 1 and 2.

The novelty of the article starts in section 5, where the nonlinear unison response and its stability are computed analytically using the method of multiple scales (cf. section 2.5.2.1). These results are applied to case studies in section 6 and compared to numerical resolutions of the system's dynamics.

The CPVAs studied have a particularly low tuning order (n p = 0.5), so it is not relevant for a use in a gear train. Nevertheless, the manufacturing of CPVAs with low tuning orders is of current interest because of the increasing use of cylinder deactivation in thermal engines, which is a mean to reduce fuel consumption. For instance, for four-cylinder, four-stroke engines, which are the most used in the automotive industry, the nominal engine order is n = 2 but lowers to n = 0.5 if three cylinders are deactivated. The model is seen to match well with the numerical solutions and design guidelines are provided in section 7. In section 8, an experimental investigation on a monofilar CPVA tuned at n p = 0.5 allows to observe localisation where expected.

Introduction

In the frame of reduction of polluting emissions and fuel consumption of vehicles using thermal engines, automotive manufacturers try to reduce the cylinder capacity and engine speed of rotation. These evolutions lead to a significant increase of rotation irregularities called ''acyclisms", mainly due to higher combustion pressure. One of the main characteristics of these reciprocating engines is the linear dependence of the acyclism frequency to the mean engine speed of rotation. The coefficient of proportionality is called the engine (or firing) order and only depends on the architecture of the engine. For four strokes engines, the engine order is half the number of cylinders. During acceleration phase, the engine sweeps a wide frequency range containing some driveline torsional modes. This situation may lead to significant noise and vibration levels into the passenger compartment and premature wear of the driveline components. Centrifugal pendulum vibration absorbers (CPVA) have been used for many years to minimise acyclisms of automotive powertrains at the engine order. These passive devices consist of oscillating masses (pendulums) moving along particular paths relative to a primary inertia (rotor) as shown in Fig. 1. The operation principle of the CPVA is that of a tuned mass damper whose stiffness is proportional to the mean engine speed. This enables it to remain tuned on the engine order to reduce torsional vibrations of the rotor.

CPVA exhibit strong non-linearities: geometric non-linearities due to the large amplitude of motion, and inertial non-linearities, for instance due to Coriolis effect. The non-linear response of a CPVA is strongly affected by the choice of the pendulums' trajectory. D. E. Newland observed early on that circular trajectories may exhibit unstable periodic responses, leading to jumps of the V. Mahe et al. response [1]. Since the works of H. H. Denman, the preferred trajectories are epicycloids because they are almost tautochronic [2]. Due to their cyclic symmetry, CPVA are subject to non-linear energy localisation phenomena. Such situations, which might decrease the efficiency of the absorbers, have been studied by S. Shaw et al. [3][4][5][6][7], A. Grolet et al. [8] and K. Nishimura et al. [9] in the case of translated pendulums, i.e. pendulums that do not rotate relatively to the rotor. Until recent times, such pendulums were the only ones used in the industry. However, A. Renault and M. A. Acar showed that adding a rotational mobility of the pendulums may lead to a significant increase of mitigation performances [10][11][12][13]. This increase in performance was also observed by J. Mayet and H. Ulbrich [14]. Recent works by M. Cirelli, M. Cera et al. [15][16][17][18][19] confirmed the interest for pendulums with a rotational mobility and introduced a new way a representing the trajectory, using curvature ratios instead of the polynomial coefficients used in most studies (see [4] for instance). M. Cirelli et al. also used a Cartesian representation of the trajectory to derive tuning recommendations consistent with known results of the literature [20]. J. Mayet and H. Ulbrich [21] used Hamilton's formalism to compute the stability of a CPVA with rotating pendulums and gave guidelines regarding the tuning of the system. X. Tan et al. considered a CPVA made of a single pendulum obeying a non-linear rotation law and gave guidelines for the choice of this law [22]. E. R. Gomez et al. investigated theoretically and experimentally the friction losses in a CPVA with rotating pendulums [23]. A new type of CPVA, made of a double pendulum, was studied by V. Manchi and C. Sujatha [24]. The use of CPVA to damp multidegrees-of-freedom systems was considered by K. Kadoi et al. [25]. B. Geist et al. [26] studied the precision requirements and sources of errors associated with the manufacturing process of a bifilar CPVA.

The motivation of this paper is to investigate the stability of CPVA whose pendulums rotate relatively to the rotor. Unlike previous studies [16,18,21], the authors chose to describe the trajectory and rotation functions of a pendulum using polynomials (in [16,18], curvature ratios and a rolling radius are used to describe the trajectory and rotation law, respectively, whilst in [21] the trajectory and rotation are not defined explicitly). This way, the non-linear parts of the trajectory and rotation will appear clearly in the results, allowing for an easier understanding of their impact on the dynamics. To facilitate further this understanding, a tool representing the stability as a function of the trajectory and rotation functions is introduced. New design guidelines are derived from these analysis. Finally, experimental observations of the localised response are used to validate the analytical model. To our knowledge, it is the first time that the analytical prediction of the localisation is compared to experimental results (localisation was observed unexpectedly in [27] and not compared to analytical predictions in [28]).

This paper is organised as follows: Section 2 describes the modelling of the CPVA. Section 3 presents a linear study of the CPVA, setting the basis of the non-linear analysis. This non-linear analysis starts in Section 4 where the simplified pendulums' equation is established. This equation is solved in Section 5 and its stability is assessed. Section 6 presents a case study of the former developments. A numerical validation of the model is shown and an original visualisation of the stability in the design space is introduced. Design rules are proposed in Section 7 and an experimental validation is lead in Section 8. Finally, this paper ends with a conclusion in Section 9.

Modelling

The system studied is shown in Fig. 1. It is made of a rotor of inertia 𝐽 𝑟 rotating about its centre 𝑂. Its total angular position is 𝜗(𝑡) = 𝛺𝑡 + 𝜃(𝑡) where 𝑡 is the time, 𝛺 is the mean rotation velocity and 𝜃 corresponds to the fluctuating part of the rotation.

V. Mahe et al.

A torque 𝑇 (𝜗) is applied to this rotor. It can be decomposed into a constant torque 𝑇 0 and a periodic one 𝑇 𝜃 (𝜗). The constant torque balances the torque arising from the rotor's damping, thus setting the mean rotation speed 𝛺. In the model, an equivalent linear viscous damping 𝑏 𝑟 is used for the rotor. 𝑁 pendulums of mass 𝑚 𝑖 and inertia 𝐼 𝑖 (about their centre of gravity) oscillate on their trajectory 𝒞 𝑖 . The position of their centre of gravity on these trajectories is given by the curvilinear abscissa 𝑆 𝑖 (𝑡) and their distance from the centre of rotation of the rotor is 𝑅 𝑖 (𝑆 𝑖 ). The characteristic dimension 𝑅 0 𝑖 = 𝑅 𝑖 (𝑆 𝑖 = 0) represents the position of the pendulums at rest (when 𝑇 𝜃 = 0 such that they are perfectly centrifugated). In addition to the traditional translation motion, the present study considers that the pendulums rotate relatively to the rotor according to the rotation function 𝛼 𝑖 (𝑆 𝑖 ). As for the rotor, an equivalent linear viscous damping 𝑏 𝑖 is used to model the damping between the rotor and the i th pendulum. In the later, pendulums and their associated trajectory and rotation functions will be considered identical so that subscript ''𝑖" will be dropped when addressing pendulums' parameters. Using the relation between the mean torque, the rotor's damping and the mean rotation speed, 𝑇 0 = 𝑏 𝑟 𝛺, and introducing the non-dimensional parameters and variables 2 , 𝜏 = 𝛺𝑡, the equations of motion can be written as

𝑠 𝑖 = 𝑆 𝑖 ∕𝑅 0 , 𝜂 = 𝐼∕𝑚𝑅 2 0 , b = 𝑏∕𝑚𝛺, 𝑥(𝑠 𝑖 ) = 𝑅(𝑅 0 𝑠 𝑖 ) 2 ∕𝑅 2 0 , 𝑧(𝑠 𝑖 ) = √ 𝑥(𝑠 𝑖 ) -(𝑑𝑥(𝑠 𝑖 )∕𝑑𝑠 𝑖 ) 2 ∕4, 𝛾(𝑠 𝑖 ) = 𝑅 0 𝑑𝛼(𝑅 0 𝑠 𝑖 )∕𝑑(𝑅 0 𝑠 𝑖 ), 𝜇 = 𝑁𝑚𝑅 2 0 ∕(𝐽 𝑟 + 𝑁𝐼), b𝑟 = 𝑏 𝑟 ∕(𝐽 𝑟 + 𝑁𝐼)𝛺, T0 = 𝑇 0 ∕(𝐽 𝑟 + 𝑁𝐼)𝛺 2 , T𝜃 = 𝑇 𝜃 ∕(𝐽 𝑟 + 𝑁𝐼)𝛺
1 𝑁 [ 𝑁 ∑ 𝑖=1 (𝑁 + 𝜇𝑥(𝑠 𝑖 ))𝜃 ′′ + 𝜇 ( 𝑧(𝑠 𝑖 ) + 𝜂𝛾(𝑠 𝑖 ) ) 𝑠 𝑖 ′′ + 𝜇𝑠 ′ 𝑖 ( 𝑑𝑥(𝑠 𝑖 ) 𝑑𝑠 𝑖 (1 + 𝜃 ′ ) + 𝑑𝑧(𝑠 𝑖 ) 𝑑𝑠 𝑖 𝑠 ′ 𝑖 + 𝜂 𝑑𝛾(𝑠 𝑖 ) 𝑑𝑠 𝑖 𝑠 ′ 𝑖 ) ] + b𝑟 𝜃 ′ = T𝜃 (𝜏 + 𝜃), ( 1a 
) ( 𝑧(𝑠 𝑖 ) + 𝜂𝛾(𝑠 𝑖 ) ) 𝜃 ′′ + ( 1 + 𝜂𝛾(𝑠 𝑖 ) 2 ) 𝑠 ′′ 𝑖 + 𝜂𝛾(𝑠 𝑖 ) 𝑑𝛾(𝑠 𝑖 ) 𝑑𝑠 𝑖 𝑠 ′ 𝑖 2 - 1 2 
𝑑𝑥(𝑠 𝑖 ) 𝑑𝑠 𝑖 ( 1 + 𝜃 ′ ) 2 + b𝑠 ′ 𝑖 = 0, 𝑖 = 1, … , 𝑁 (1b) 
where (•) ′ denotes derivation with respect to 𝜏. Eq. ( 1a) is related to the motion of the rotor and the 𝑁 Eqs. (1b) represent the motion of the pendulums. It is chosen to express the trajectory and rotation functions as polynomials such that

𝑥(𝑠 𝑖 ) = 1 -𝑛 2 𝑡 𝑠 2 𝑖 + ∞ ∑ 𝑘=3 𝑥 [𝑘] 𝑠 𝑘 𝑖 , 𝛼(𝑠 𝑖 ) = ∞ ∑ 𝑘=0 𝛼 [𝑘] 𝑠 𝑘 𝑖 (2)
where 𝑛 𝑡 is called the trajectory order of the pendulums and 𝑥 [𝑘] , 𝛼 [𝑘] are trajectory and rotation coefficients. Note that in the case 𝑥 [𝑘] = 0 ∀𝑘, the pendulums' trajectories are epicycloids, which corresponds to the tautochronic trajectory for 𝜃 = 0 [2].

From now on, it is assumed that the fluctuating torque applied to the rotor contains only one harmonic. This is justified by the fact that in reciprocating engines, the fundamental harmonic typically dominates the fluctuating torque. The non-dimensional form of the fundamental torque harmonic is T1 cos[𝑛(𝜏 + 𝜃)] where 𝑛 is the engine order. For a car thermal engine, 𝑛 corresponds to the number of strikes per revolution of the crankshaft. At this stage, T1 cos[𝑛(𝜏 + 𝜃)] is not a periodic forcing term but a non-linear term as it depends on 𝜃. In the following, two methods are proposed to transform it into a periodic forcing term. Method 1. One can use the change of independent variable 𝜏 → 𝜏 + 𝜃 proposed by S. Shaw et al. [29] to directly transform T1 cos[𝑛(𝜏 + 𝜃)] into a periodic forcing term. This choice is motivated by the fact that the explosions of a car engine do not depend on time but on the angular position of the crankshaft (which is the same as that of the rotor). Though it adds non-linearities to the system, this method is interesting as it does not require any hypothesis, thus keeping the equations exact. Method 2. Another method is to express the fluctuating torque as a function of 𝜏 to write T1 cos((𝜔∕𝛺)𝜏) where 𝜔 is the angular frequency of the acyclism. For a car engine, the excitation frequency must correspond to the number of strikes per second, leading to 𝜔 = 𝑛(𝛺 + θ) where (•) refers to a derivation with respect to time. It can be assumed that the fluctuating rotation velocity of the crankshaft is much smaller than the mean rotation speed, i.e. θ ≪ 𝛺. It follows that 𝜔∕𝛺 ≈ 𝑛, leading to a trivial transformation of the torque into a periodic forcing term.

Linear vibrations of the system

In this section, a linear analysis of the system is led. After transforming the external torque into a periodic forcing term using Method 2 (cf. Section 2), one can linearise Eqs. (1a) and (1b) and then use a property of arrowhead matrices [30] to find that the eigenorders and eigenvectors of the system are

𝑛 00 = 0, 𝑛 10 = 𝑛 𝑝 , 𝑛 20 = 𝑛 𝑝 √ √ √ √ √ 1 + 𝜇 1 + 𝜇 ( 1 - 𝛬 2 𝑐 𝛬 𝑚 ) , 𝝓 𝟎𝟎 = [1, 0, … , 0] 𝑇 , 𝝓 𝟐𝟎 = [ - 𝜇𝛬 𝑐 1 + 𝜇 , 1, … , 1 ] 𝑇 , 𝝓 𝟏𝟎 𝒊 [𝑖 + 1] = -𝝓 𝟏𝟎 𝒊 [𝑖 + 2] = 1, 𝝓 𝟏𝟎 𝒊 [𝑗 ≠ {𝑖 + 1, 𝑖 + 2}] = 0, 𝑖 = 1, … , 𝑁 -1. (3) 
Superscript 𝑇 denotes the transpose. 𝛬 𝑚 and 𝛬 𝑐 are constants representing the equivalent mass of a pendulum and the linear coupling term between a pendulum and the rotor, respectively. They are given by

𝛬 𝑚 = 1 + 𝜂𝛼 2 [1] , 𝛬 𝑐 = 1 + 𝜂𝛼 [1] (4) 
where 𝛼 [1] is the linear rotation coefficient. 𝑛 𝑝 is the eigenorder of the pendulums when the rotor is spinning at constant speed.

Considering the case 𝜃 = 0 and linearising Eqs. (1b), one finds that 𝑛 𝑝 is related to 𝑛 𝑡 such that

𝑛 𝑝 = 𝑛 𝑡 𝛬 -1∕2 𝑚 . ( 5 
)
V. Mahe et al.

When a fluctuating torque is applied on the rotor, pendulums generate an antiresonance at order 𝑛 𝑝 (in the conservative case). Thus, for a fluctuating torque of order 𝑛, one must choose 𝑛 𝑝 = 𝑛 to minimise the vibrations of the rotor (this can be extended to the non-conservative case as damping is small). For this reason, 𝑛 𝑝 is called the tuning order of the pendulums. It is interesting to note that if 𝛼 [1] ≠ 0, then 𝛬 𝑚 > 1, leading to 𝑛 𝑡 > 𝑛 𝑝 (cf. Eqs. ( 4) and ( 5)). This means that the relative rotation of the pendulums imposes an over-tuning of the trajectory order compared to the case of purely translated pendulums (for which 𝑛 𝑡 = 𝑛 𝑝 ). 𝝓 𝟎𝟎 is a rigid body mode for which only the rotor is excited. 𝝓 𝟏𝟎 𝒊 are 𝑁 -1 degenerated modes for which pendulums 𝑖 and 𝑖 + 1 are out of phase while other pendulums are immobile (𝑖 = 1, … , 𝑁 -1). They are associated to the eigenvalue 𝑛 10 , which has a multiplicity 𝑁 -1 and the rotor is a node of these modes. Note that in the case 𝑁 = 2, 𝝓 𝟏𝟎 is not degenerated and simply corresponds to an out-of-phase motion of the pendulums. 𝝓 𝟐𝟎 is a mode for which pendulums move in unison but in phase-opposition with respect to the rotor (provided that 𝛬 𝑐 > 0, which is the case in practice).

This section offers a linear analysis of the CPVA. However, it can be seen from Eqs. (1a) and (1b) that the dynamics of the system is subject to several sources of non-linearity. In the following, an analytical model allowing the visualisation and prediction of non-linear phenomena will be derived.

Simplification of the equations

Following S. Shaw et al. [4,7,31], the construction of the model starts with a scaling of the parameters, allowing a simplification of the equations of motion such that the dynamics of the pendulums becomes uncoupled from that of the rotor. Since the displacement of the pendulums will be considered small, the trajectory and rotation functions (2) are truncated so that

𝑥(𝑠 𝑖 ) = 1 -𝑛 2 𝑡 𝑠 2 𝑖 + 𝑥 [4] 𝑠 4 𝑖 + (𝑠 6 𝑖 ), 𝛼(𝑠 𝑖 ) = 𝛼 [1] 𝑠 𝑖 + 𝛼 [3] 𝑠 3 𝑖 + (𝑠 5 𝑖 ) (6) 
will be used in the following computations. There are no odd powers of 𝑠 𝑖 in 𝑥(𝑠 𝑖 ) and no even powers in 𝛼(𝑠 𝑖 ) so that these two functions are symmetric (anti-symmetric, respectively) about 𝑠 𝑖 = 0. It is the case in practice due to design constraints. The fluctuating rotor's rotation is a priori made of several harmonics such that it can be expanded as 𝜃 = 𝜃 (1) + 𝜃 (2) + 𝐻𝑂𝑇 (7) where 𝜃 (1) and 𝜃 (2) are the first and second harmonics, respectively, and 𝐻𝑂𝑇 refers to Higher Order Terms.

Scaling

In this subsection, the aim is to scale the weight of some parameters and variables so as to capture the desired physical phenomena. The following hypothesis and remarks will govern the scaling:

• The optimum system configuration is that with small damping (both rotor's and pendulums' dampings). This way, the vibration amplitude of the rotor at its antiresonance is very small. • The fluctuating torque 𝑇 𝜃 is small compared to the rotor's kinetic energy (which is 𝐽 𝑟 𝛺 2 ∕2 at equilibrium). This implies that T1 is small.

• The total pendulums' geometric inertia about point 𝑂, 𝑁𝑚𝑅 2 0 , is considered small compared to the inertia of the total rotating system, 𝐽 𝑟 + 𝑁𝐼, such that 𝜇 is small. • The rotor's inertia being significant, the fluctuating rotation speed θ is small compared to the mean rotation speed. Note that this hypothesis was already done in Section 3 to transform the external torque into a periodic excitation. • The pendulums' amplitude of motion is small compared to their distance from the centre of rotation 𝑂 such that 𝑠 𝑖 are small. • The trajectory function chosen (cf. Eq. ( 6)) is an epicycloid perturbed by 𝑥 [4] 𝑠 4 𝑖 . Considering the perturbation is small, 𝑥 [4] is a priori small. • The rotation function chosen (cf. Eq. ( 6)) differs from a linear rotation by the term 𝛼 [3] 𝑠 3 𝑖 . Considering rotation is mainly linear, 𝛼 [3] is a priori small. Accordingly to the above and introducing the small parameter 𝜖, the following scaled parameters are introduced b = 𝜖 𝓁 b, b𝑟 = 𝜖 ℎ b𝑟 , T1 = 𝜖 𝑟 T1 , 𝜇 = 𝜖 𝜙 μ, 𝜃 (1) = 𝜖 𝑤 1 θ(1) , 𝜃 (2) = 𝜖 𝑤 2 θ(2) , 𝑠 𝑖 = 𝜖 𝜈 s𝑖 , 𝑥 [4] = 𝜖 𝑝 x [4] , 𝛼 [3] = 𝜖 𝑞 α [3] (

) 8 
where 𝓁, ℎ, 𝑟, 𝜙, 𝑤 1 , 𝑤 2 , 𝜈, 𝑝 and 𝑞 are scaling coefficients to be determined. In order to give a physical meaning to 𝜖, one can choose to set 𝜖 = 𝜇 [4].

Rotor's dynamics

The aim here is to obtain an equation governing the rotor's dynamics as a function of the pendulums' and the external torque. Introducing the trajectory and rotation functions (6), the expanded form of 𝜃 (7) and the scaled parameters (8) in the rotor's Eq. (1a) and setting 𝑟 = 𝜙 + 𝜈, one can write

𝜖 𝑤 1 θ(1)′′ + 𝜖 𝑤 2 θ(2)′′ = 𝜖 𝑟 [ T1 cos(𝑛𝜏) + 𝑛 2 𝑝 μ𝛬 𝑐 𝑁 𝑁 ∑ 𝑖=1 s𝑖 ] + 𝜖 𝑟+𝜈 2 μ𝑛 2 𝑡 𝑁 𝑁 ∑ 𝑖=1 s𝑖 s′ 𝑖 + (𝜖 𝜙+𝑤 1 , 𝜖 ℎ+𝑤 1 , 𝜖 𝜙+3𝜈 ). (9) 
V. Mahe et al. Note that the external torque was transformed into a periodic forcing term using Method 2 (cf. Section 2). Eq. ( 9) uses the pendulums' equation at first order s′′ 𝑖 = -𝑛 2 𝑝 s𝑖 (assuming 𝜈 < 𝑤 1 ). Eq. ( 9) is similar to that obtained if the change of independent variable 𝑡 → 𝜏 + 𝛺 had been used. The two differences would be that (•) ′ would denote derivation with respect to 𝜏 + 𝜃 and the torque term which would be T1 cos[𝑛(𝜏 + 𝜃)]. However, using the chain rule, one can observe

𝜕 𝜕𝜏 = 𝜕 𝜕(𝜏 + 𝜃) + (𝜖 𝑤 1 ), 𝜕 2 𝜕𝜏 2 = 𝜕 2 𝜕(𝜏 + 𝜃) 2 + (𝜖 𝑤 1 ) (10) 
so that at the order retained in Eq. ( 9), derivatives with respect to 𝜏 and 𝜏 + 𝜃 are equivalent. Moreover, expanding the torque term, one can notice

T1 cos[𝑛(𝜏 + 𝜃)] = T1 cos(𝑛𝜏) + (𝜖 𝑟+𝑤 1 ). (11) 
This means that at the order retained in Eq. ( 9) and assuming 𝑤 2 < 𝑟 + 𝑤 1 , it is equivalent to transform the torque into a periodic forcing term using the change of independent variables 𝑡 → 𝜏 + 𝜃 (cf. Method 1 in Section 2) or assuming 𝜔∕𝛺 ≈ 𝑛 (cf. Method 2 in Section 2).

Pendulums' dynamics

The aim here is to uncouple the pendulums' dynamics from the rotor's. To do so, the rotor's simplified Eq. ( 9) is introduced in the pendulums' Eq. (1b). Then, using the trajectory and rotation functions (6) and choosing the set of scaling coefficients

𝜙 = 𝓁 = 1, 𝜈 = 1∕2, 𝑝 = 𝑞 = 0, 𝑟 = 3∕2, (12) 
the pendulums' equation reduces to

s′′ 𝑖 + 𝑛 2 𝑝 s𝑖 = -𝜖𝛬 -1 𝑚 [ -2 x[4] s3 𝑖 + 6𝜂𝛼 [1] α[3] ( s2 𝑖 s′′ 𝑖 + s𝑖 s′2 𝑖 ) + b s′ 𝑖 + 𝛬 𝑐 ( T1 cos(𝑛𝜏) + 𝑛 2 𝑝 μ𝛬 𝑐 𝑁 𝑁 ∑ 𝑗=1 s𝑗 )] + 𝐻𝑂𝑇 . ( 13 
)
The set of scaling parameters was chosen to uncouple the pendulums' equation from the rotor's dynamics while keeping the effect of the non-linearities coming from both the trajectory and rotation functions. Eq. ( 13) contains the influence of the external torque, the coupling between pendulums through the sum over 𝑁, and non-linearities coming from both the trajectory and the rotation. It is also interesting to note that because pendulums are identical and coupled, the system exhibits 1:1 internal resonances [32][33][34]. Eqs. (13) are weakly coupled because pendulums are coupled indirectly through the rotor and their effect on the rotor is small as their relative inertia is small [31]. Moreover, these equations are weakly non-linear because 𝑠 𝑖 were assumed small and the trajectory and rotation functions chosen (cf. Eq. ( 6)) are close to an epicycloid and a linear rotation, which render a linear behaviour for small fluctuations of the rotational speed. Note that the hypothesis and choice of scaling parameters of this study allows to investigate exclusively the effect of non-linearities due to the trajectory and rotation functions. Other sources of non-linearities, such as those arising from the coupling between the rotor and the pendulums, are missed in the present study. To account for those, other hypothesis can be made, as it is done in [3,5].

Solving the simplified equations and stability analysis

Application of the method of multiple scales

In the present study, the choice is made to solve the pendulums' simplified equations using the method of multiple scales [35]. Two time scales are introduced, 𝜏 0 = 𝜏 and 𝜏 1 = 𝜖𝜏. As it was done previously for the rotor, the pendulums' displacement is expanded such that s𝑖 (𝜏) = s (1) 𝑖 (𝜏 0 , 𝜏 1 ) + 𝜖 s(3) 𝑖 (𝜏 0 , 𝜏 1 ) + 𝐻𝑂𝑇 (14) where s(1) 𝑖 and s(3) 𝑖 represent the first and third harmonics, respectively. Inserting Eq. ( 14) in Eq. ( 13) yields a solution for s(1) 𝑖 of the form s (1) 𝑖 = 𝑎 𝑖 (𝜏 1 ) cos

( 𝑛𝜏 0 -𝜉 𝑖 (𝜏 1 ) ) (15) 
where amplitudes 𝑎 𝑖 and relative phases 𝜉 𝑖 are governed by the 2𝑁 equations system 

{
𝑓 𝜉 𝑖 (𝒂, 𝝃) = 𝜎𝑎 𝑖 - 1 2𝛬 𝑚 𝑛 𝑝 ⎡ ⎢ ⎢ ⎢ ⎣ 𝛬 𝑐 T1 cos(𝜉 𝑖 ) + 𝛬 2 𝑐 𝑛 2 𝑝 μ 𝑁 ⎛ ⎜ ⎜ ⎜ ⎝ 𝑎 𝑖 + 𝑁 ∑ 𝑗=1 𝑗≠𝑖 𝑎 𝑗 cos(𝜉 𝑖 -𝜉 𝑗 ) ⎞ ⎟ ⎟ ⎟ ⎠ - 𝑐 𝑝 2 𝑎 3 𝑖 ⎤ ⎥ ⎥ ⎥ ⎦ , ( 17b 
)
where 𝜎 is a detuning term such that 𝑛 = 𝑛 𝑝 + 𝜖𝜎 and 𝑐 𝑝 is a non-linear coefficient related to the perturbation of the trajectory and rotation functions. It is defined as

𝑐 𝑝 = 3( x[4] + 2𝑛 2 𝑝 𝜂𝛼 [1] α[3] ). (18) 
In the frame of the study led in this paper, only the steady-state regime is considered. This implies that the pendulums' amplitude and their phase relative to the excitation is time-invariant, such that

𝐷 1 𝑎 𝑖 = 0, 𝐷 1 𝜉 𝑖 = 0. (19) 
Introducing Eq. ( 19) in Eq. ( 16) leads to the system

{ 0 = 𝑓 𝑎 𝑖 (𝒂, 𝝃), (a) 0 = 𝑓 𝜉 𝑖 (𝒂, 𝝃), (b) (20) 
which is to be solved to determine the pendulums' response.

Reduction to a single mode

It was observed in Section 3 that, in a linear regime, a single mode participates to the pendulums' response. This linear mode, 𝝓 𝟐𝟎 , can be called ''unison mode'' as it describes a motion for which all pendulums have the same amplitude and phase. As the behaviour considered in this section is weakly non-linear, it can be expected that pendulums will move at unison. Thus, it is assumed that

𝑎 𝑖 = 𝑎, 𝜉 𝑖 = 𝜉. ( 21 
)
Introducing Eq. ( 21) in Eq. ( 20), one can find the following order response of pendulums at unison

𝜎 = 1 2𝛬 𝑚 𝑛 𝑝 ⎡ ⎢ ⎢ ⎣ 𝛬 2 𝑐 𝑛 2 𝑝 μ - 𝑐 𝑝 2 𝑎 2 ± √ 𝛬 2 𝑐 T 2 1 𝑎 2 -𝑛 2 𝑝 b2 ⎤ ⎥ ⎥ ⎦ . ( 22 
)
The backbone of the non-linear unison mode can be deduced from Eq. ( 22) as 𝑛 2 = 𝑛 𝑝 + 𝜖 𝜎| T1 = b=0 . It is interesting to note that the hardening or softening behaviour of the pendulums is governed by the sign of 𝑐 𝑝 . This property will later be used to specify design rules (cf. Section 7). Introducing Eq. ( 21) in Eq. (20), one can also find the following torque response

T1 = 𝑎 𝛬 𝑐 [ 𝑐 2 𝑝 4 𝑎 4 + 2𝑐 𝑝 𝑛 𝑝 ( 𝛬 𝑚 𝜎 - 𝛬 2 𝑐 2 μ𝑛 𝑝 ) 𝑎 2 + 4𝛬 2 𝑚 𝑛 2 𝑝 𝜎 2 + 𝑛 2 𝑝 b2 -𝑛 3 𝑝 μ𝛬 2 𝑐 ( 4𝛬 𝑚 𝜎 -𝛬 2 𝑐 𝑛 𝑝 μ) ] 1∕2 . ( 23 
)
Computing the amplitude response allows accessing the phase response, given by

tan(𝜉) = -2𝑛 𝑝 b [ 4𝛬 𝑚 𝑛 𝑝 𝜎 -2𝛬 2 𝑐 𝑛 2 𝑝 μ + 𝑐 𝑝 𝑎 2 ] -1 . ( 24 
)
Then, using the results for 𝑎 and 𝜉 and the rotor's simplified Eq. ( 9), one can compute the amplitude of the two first harmonics of the rotor, given by

| | | θ(1)′′ | | | = √ T 2 1 + 𝑛 4 𝑝 μ2 𝛬 2 𝑐 𝑎 2 + 2 T1 𝑛 2 𝑝 μ𝛬 𝑐 𝑎 cos(𝜉), (25) 
| | | θ(2)′′ | | | = μ𝑛𝑛 2 𝑡 𝑎 2 . ( 26 
)
Eq. ( 26) highlights that non-linear effects induced by the pendulums generate higher order harmonics of the rotor (at the order retained, only the 2 nd harmonic, related to Coriolis effects, is present).

Stability analysis

The stability of the response is now assessed. First, system (16) can be rewritten as

{ 𝐷 1 𝑎 𝑖 = 𝑓 𝑎 𝑖 (𝒂, 𝝃), (a) 𝐷 1 𝜉 𝑖 = 𝑓 * 𝜉 𝑖 (𝒂, 𝝃), (b) (27) 
with 𝑓 * 𝜉 𝑖 (𝒂, 𝝃) = 𝑓 𝜉 𝑖 (𝒂, 𝝃)∕𝑎 𝑖 . Then, the Jacobian of system ( 27) is computed and evaluated on the unison solution at steady state, yielding a 2𝑁 × 2𝑁 block circulant matrix such that

𝑱 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 𝑱 𝟏 𝑱 𝟐 ⋯ 𝑱 𝟐 𝑱 𝟐 ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ 𝑱 𝟐 𝑱 𝟐 ⋯ 𝑱 𝟐 𝑱 𝟏 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , 𝑱 𝟏 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 𝜕𝑓 𝑎 𝑖 𝜕𝑎 𝑖 𝜕𝑓 𝑎 𝑖 𝜕𝜉 𝑖 𝜕𝑓 * 𝜉 𝑖 𝜕𝑎 𝑖 𝜕𝑓 * 𝜉 𝑖 𝜕𝜉 𝑖 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , 𝑱 𝟐 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 𝜕𝑓 𝑎 𝑖 𝜕𝑎 𝑗 𝜕𝑓 𝑎 𝑖 𝜕𝜉 𝑗 𝜕𝑓 * 𝜉 𝑖 𝜕𝑎 𝑗 𝜕𝑓 * 𝜉 𝑖 𝜕𝜉 𝑗 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ . ( 28 
)
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𝑱 𝟏 represents the effect of a perturbation of the 𝑖th pendulum on itself while 𝑱 𝟐 represents the effect that a perturbation of the 𝑗th pendulums has on the 𝑖th one (with 𝑗 ≠ 𝑖). The 2𝑁 eigenvalues of 𝑱 are given by the 2 eigenvalues of [𝑱 𝟏 + (𝑁 -1)𝑱 𝟐 ] and the 2 eigenvalues of [𝑱 𝟏 -𝑱 𝟐 ] with multiplicity 𝑁 -1 [36]. Instabilities appear when the real part of at least one of the eigenvalues of 𝑱 changes sign. The limits of the instabilities are given by det[𝑱 𝟏 + (𝑁 -1)𝑱 𝟐 ] = 0, (29a)

det[𝑱 𝟏 -𝑱 𝟐 ] = 0, (29b) 
and because the trace of [𝑱 𝟏 +(𝑁 -1)𝑱 𝟐 ] and [𝑱 𝟏 -𝑱 𝟐 ] is always negative, the solution is unstable when at least one of the determinants in Eq. ( 29) is negative.

The determinants in Eq. ( 29) indicate instabilities of different nature. Consider just for a moment that there is only one pendulum, i.e. 𝑁 = 1. Then, condition (29a) reduces to det[𝑱 𝟏 ] = 0 and condition (29b) is undefined as 𝑱 𝟐 is undefined (𝑱 𝟐 exists only when 𝑁 > 1). For a given excitation amplitude, det[𝑱 𝟏 ] = 0 corresponds to a pair of saddle-node bifurcations between which the periodic solution is unstable. This is analogous to a classic Duffing-like bent resonance with jump phenomena [37]. By continuity, when 𝑁 > 1, condition (29a) still indicates saddle-node bifurcations. Instabilities associated to condition (29b) arise only when several

√ √ √ √ √ -8𝜎𝛬 𝑚 𝑛 𝑝 + 4𝛬 2 𝑐 𝑛 2 𝑝 μ ± 2𝑛 𝑝 √ ( 2𝜎𝛬 𝑚 -𝑛 𝑝 𝛬 2 𝑐 μ) 2 -3 b2 3𝑐 𝑝 . ( 30 
)
Similarly, the critical pendulums' amplitudes corresponding to pitchfork bifurcations are the solutions of condition (29b) and are given by

𝑎 𝑝𝑓 = √ √ √ √ √ -8𝜎𝛬 𝑚 𝑛 𝑝 ± 2𝑛 𝑝 √ 4𝜎 2 𝛬 2 𝑚 -3 b2 3𝑐 𝑝 . ( 31 
)
These critical amplitudes are depicted in Fig. 3. It is interesting to note that the critical amplitudes 𝑎 𝑠𝑛 and 𝑎 𝑝𝑓 tend to infinity as 𝑐 𝑝 tends to zero. This observation will come useful in Section 7. Moreover, the critical amplitudes are independent of the forcing amplitude T1 .

Limits of the model

It is of importance to bear in mind that the previous analytical computations involve assumptions that limit the range of validity of the model. One of the approximations of the non-linear model is exposed in details below and an order of magnitude of the non-dimensional parameters that can be used in the model is given. The backbone of the unison mode (cf. Section 5.2) evaluated for zero pendulums' displacement is a Taylor expansion of the linear eigenvalue 𝑛 20 (cf. Eq. ( 3)) with respect to 𝜇 such that

𝑛 20 = 𝑛 𝑝 + 𝜇 𝑛 𝑝 𝛬 2 𝑐 2𝛬 𝑚 ⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟ backbone at 𝑎=0 +𝜇 2 𝑛 𝑝 8 𝛬 2 𝑐 𝛬 𝑚 ( 3 𝛬 2 𝑐 𝛬 𝑚 - 4 
) + (𝜇 3 ), (32) 
where the backbone contains only the two first terms. For the analytical model to be accurate, one needs the third term to be negligible. Eq. ( 32) allows to write an approximated condition on 𝜇 such that the relative error on the backbone at 𝑎 = 0 does not exceed 100𝜒 %. It is given by

𝜇 < 𝜒 + √ 𝜒 2 + 8𝜒 | | | | | 3 4 - 𝛬 𝑚 𝛬 2 𝑐 | | | | | 2 | | | | | 3𝛬 2 𝑐 4𝛬 𝑚 -1 | | | | | . ( 33 
)
In Section 4.1, 𝜇 was proposed as the small perturbation parameter of the perturbation analysis. Thus, one can chose 𝜇 = 𝜖, yielding an order of magnitude not to be overpassed for every small parameter.

Case study and numerical validation

The former developments are now applied on a system of two pendulums. The aim is to present the main assets of the analytical model and to compare them with an exact (numerical) resolution of the equations of motion (1a) and (1b) as a first validation. To perform the numerical resolution, the change of independent variable 𝜏 → 𝜏 + 𝜃 is introduced in Eqs. (1a) and (1b) to transform the torque into a periodic forcing term while keeping the equations exact (cf. Method 1 in Section 2). Two different numerical resolutions are used in this paper: • The equations are integrated numerically using a Runge-Kutta algorithm until the steady state is reached. Then, the signals' amplitudes are obtained through a decomposition into Fourier series. • The equations are solved with MANLAB, which is a path-following and bifurcation analysis software [38].

The CPVA studied in this section is represented in Fig. 2 and its parameters are given in Table 1. Its low tuning order (𝑛 𝑝 = 0.5) makes it well suited for filtering out vibrations arising from cylinders deactivation. The CPVA is made of two monofilar pendulums (only one is represented in Fig. 2). The profile of a pendulum rolls without slipping on a roller of radius 𝑟 1 (fixed on the rotor). The shape of the profile allows to control the trajectory followed by the pendulum's centre of mass. For such pendulums, the rotation function 𝛼(𝑠 𝑖 ) is governed by the functional geometry. The two first rotation coefficients are

𝛼 [1] = 𝑅 0 𝑅 0 -𝑅 𝑂 1 + 𝑟 1 , ( 34 
)
𝛼 [3] = 𝛼 [1] 𝑅 𝑂 1 ( 1 + 𝑛 2 𝑡 ) 2 -𝑅 0 𝑛 2 𝑡 ( 1 + 𝑛 2 𝑡 ) -𝛼 [1] 𝑅 𝑂 1 ( 1 + 𝑛 2 𝑡 ) + 𝛼 [1] 𝑅 0 𝑛 2 𝑡 6 ( 𝑅 𝑂 1 -𝑅 0 + 𝛼 [1] 𝑅 -1 0 ( ( 𝑅 0 -𝑅 𝑂 1 ) 2 -𝑟 2 1 
)) .

(35)

Evaluation of the stability as function of mistuning

In practice, the excitation order is fixed such that 𝑛 = 𝑐𝑡𝑒. However, pendulums may not be tuned exactly to the excitation. This mistuning can be intentional or may arise from material imperfections. Either way, varying the excitation order is similar to introducing mistuning (provided that pendulums are equally mistuned) and is therefore relevant for studying the effect of mistuning on the system's response [8]. The order response of pendulums at unison and their stability is shown in Fig. 3 for several torque amplitudes. The bending of the response indicates that pendulums exhibit a hardening behaviour. The bifurcation zones (unstable unison in red and unstable periodic response in blue), delimited by the bifurcation curves (30) and (31), are shown. The zone corresponding to simultaneous unstable unison and unstable periodic responses is represented in purple while stable responses are represented in green. The same colour code will be used throughout this paper. For small torque amplitudes, the response is almost linear so that no stability changes will occur. As the torque amplitude is increased, the unison response crosses the bifurcation curves, leading to a different stability state.

Visualisation of the stability in the design space

An original visualisation of the pendulums' stability in the design space is now presented. This space allows to assess the stability of pendulums of the same type but with different sets of parameters (𝑥 [4] , 𝛼 [1] , 𝛼 [3] ). In the general case, it is thus a 3D space. However, Fig. 4. Representation of the stability in the design space (𝛼 [1] , 𝑥 [4] ). The colour code is the same as that used in Fig. 3, so that areas corresponding to stable unison, unstable unison and unstable periodic responses are represented in green, red and blue, respectively. Areas where both the unison and the periodic response are unstable are represented in purple. The black dot corresponds to the design represented in Fig. 3 for the CPVA presented in Fig. 2, the rotation is imposed by the functional geometry causing 𝛼 [3] to be related to 𝛼 [1] . Moreover, due to space constraints, it is convenient to evaluate designs for a fixed value of the ratio 𝑅 𝑂 1 ∕𝑅 0 . Thus, using Eqs. (34) and (35), one can get 𝛼 [3] as a function of 𝛼 [1] , which reduces the design space to a 2D space. This method is used to represent the stability of pendulums of the same type as that depicted in Fig. 2 under the form of maps, shown in Fig. 4. Each map is represented for a given amplitude and a given excitation order. Colours represent the stability (the colour code is the same as that used previously). The black line represents designs for which the values of 𝑥 [4] , 𝛼 [1] and 𝛼 [3] render the system linear (cf. Section 7). The meaning of the hatched regions will be defined later. The black dot corresponds to the design shown in Fig. 3 so that it is fixed in the design space. This specific design passes through several stability states as the amplitude of motion increases. This could already be observed looking at Fig. 3 for 𝑛 = 0.63. The purpose of the representation in the design space is to identify designs which are likely or not to exhibit instabilities. For instance, the upper central region delimited by the black curve on the maps remains stable over the amplitude range represented. This remark will be further discussed in Section 7. Note that there seems to be an artefact on the maps around 𝛼 [1] = 1.7. However, this simply corresponds to a value of 𝛼 [1] for which 𝑟 1 tends to zero, causing 𝛼 [3] to tend to ∞. Above this threshold value of 𝛼 [1] , 𝑟 1 is negative, which is non-physical (remind that 𝑟 1 is a radius so that it should not be negative). Similarly, 𝑟 1 is negative for 𝛼 [1] < 0. The hatched regions thus correspond to non-achievable designs.

Comparison with a numerical model

In this section, the analytical model is compared with an exact resolution of Eqs. (1a) and (1b). The pendulums' response obtained through the analytical and numerical models is presented in Fig. 5(a). Like what was observed in the case of absorbers with a pure translation motion [8], the unison mode looses its stability through a pitchfork bifurcation in favour of a localised response. The bifurcation point, theoretically located at the intersection of the black curve and the unison response, is accurately predicted by the model. After this bifurcation, the response divides into two branches so that energy is localised on one of the two pendulums. The pendulum located on the upper branch has a larger amplitude of motion than that predicted by the unison mode, which can be an issue as the maximum amplitude is limited by the nature of the trajectory chosen. This being said, one can see in Fig. 5(a) that the upper branch is close to the (unstable) unison response. Thus, in the case considered here, the risk of reaching the maximum amplitude is not significantly increased by the localisation. The jump located at 𝑛 ≈ 0.65 is also well predicted by the model. The amplitude of the stable solution is very well predicted by the analytical model. However, comparing with the MANLAB results, one can see that the analytical model overestimates the unstable solution. Similarly, the bifurcation points located on the unstable solution are not well predicted (especially the saddle-node bifurcation, which is theoretically located at the right intersection of the grey curve and the unison response, around 𝑛 ≈ 0.69). The reason for those discrepancies is that the amplitude on the unstable solution is rather large, so that some of the non-linear terms that were dropped in the analytical model have a non-negligible effect. Moreover, the analytical solution is based on a perturbation method around 𝑛 = 𝑛 𝑝 (cf. Section 5.1), so that less accuracy can be expected as 𝑛 departs from 𝑛 𝑝 . This being said, an accurate prediction of the stable solution and the two bifurcation points at 𝑛 ≈ 0.54 and 𝑛 ≈ 0.65 is the most important point, as only those will be observed in practice. The difference both in phase and amplitude of the pendulums' localised responses is visible on the temporal signals given in Fig. 6(a).

Fig. 5(b) shows a comparison of the rotor's response obtained through the analytical and numerical models. Again, the analytical model allows an accurate prediction of the rotor's response on its stable (green) portions. Surprisingly, portions for which pendulums are not in unison are also well predicted by the model, even though the model uses only the unison mode. This is an interesting point, as it tends to show that localisation does not necessarily impact the rotor's dynamics. Looking at the response of 𝜃 (1) , one can see that the non-linearity shifted the antiresonance so that it does not correspond to the linear tuning order 𝑛 𝑝 . This problem is considered in [39]. The distortion of 𝜃 ′′ coming from the presence of 𝜃 (2) (and in a smaller amount, higher harmonics), can be seen in Fig. 6(b).

V. Mahe et al. Other sets of system parameters can lead to solutions more complicated than the ones presented in Fig. 5. For instance, Fig. 7 shows the pendulums' response for a smaller damping than previous simulations, but unchanged other parameters. As in Fig. 5, the response divides into branches through a pitchfork bifurcation. In Fig. 7, those branches are broken into three parts. Localised responses might be subject to instabilities such as jumps of the response [6,7], which explains the discontinuity observed around 𝑛 = 0.55. Between 𝑛 ≈ 0.59 and 𝑛 ≈ 0.65, no numerical results are shown because the corresponding time signals are not periodic.

Two of those temporal signals are represented in Fig. 8. Fig. 8(a) shows a solution for which energy localisation is visible but the amplitude of the two pendulums is modulated. Such quasi-periodic solutions appear through Neimark-Sacker bifurcations [8]. The limits of the bifurcation zones in the undamped case are represented with dashed lines. T1 = 0.01 and system parameters are given in Table 1. The colour code is the same as that used in Fig. 3. The black and grey dots indicate the points corresponding to 𝑛 (𝑣) 𝑑 and 𝑛 (𝑣) 𝑗 , respectively. The black and grey diamonds indicate the points corresponding to 𝑛 (ℎ) 𝑑 and 𝑛 (ℎ) 𝑗 , respectively.

The quasi-periodic solution represented in Fig. 8(b) seems to highlight energy exchanges between the two pendulums, causing the response to be localised successively on each pendulum.

Design rules

As discussed in the previous sections, the expected unison motion of pendulums can be broken in favour of more complex regimes. When it arises, desynchronisation leads to an undesired behaviour where one or more pendulums oscillate with an amplitude larger than if they were at unison. This might decrease the efficiency of the vibration absorption and it can lead to impact noise issues if the pendulums hit their cusp point. Additionally, impact non-linearities would greatly change the dynamics of the system. This section proposes several design rules allowing to avoid instabilities of the system.

As seen in Section 5.2, the hardening or softening behaviour of the pendulums is governed by the sign of 𝑐 𝑝 . Setting this coefficient to zero renders the pendulums' response linear (cf. Eqs. ( 22) and ( 23)) so that the limits of the instability zones tend towards infinity (cf. Eqs. ( 30) and ( 31)). Thus, the design rule

𝑐 𝑝 = 0 ⇔ 𝑥 [4] = -2𝜂𝛼 [1] 𝛼 [3] 𝑛 2 𝑝 (36)
is proposed. Physically, this rule means that the non-linearities coming from the trajectory and rotation counterbalance to render the system almost linear. The only non-linearity remaining is that related to Coriolis effects in the rotor's Eq. ( 9) which generates 𝜃 (2) [40]. Note that the special case 𝑥 [4] = 𝛼 [3] = 0 is that studied in Section 3: it corresponds to an epicycloidal trajectory and a linear rotation function.

Relation (36) is represented by a black line in the maps of Figs. 4 and 10. The inner region delimited by this line corresponds to softening behaviours whilst the outer region corresponds to hardening ones. For large amplitudes of motion, the instability regions tend to embrace the black curve. This interesting remark will be discussed later in this section. Eq. ( 36) is also represented in Fig. 9, along with other values of 𝑥 [4] yielding softening and hardening behaviours.

If Eq. ( 36) cannot be fulfilled, other recommendations can be proposed. These recommendations use the vertical and horizontal tangents of the bifurcation curves (30) and (31), whose corresponding orders are given by

𝑛 (𝑣) 𝑗 = 𝑛 2 | |𝑎=0 ± b√ 3 2𝛬 𝑚 , 𝑛 (ℎ) 𝑗 = 𝑛 2 | |𝑎=0 ± b 𝛬 𝑚 , 𝑛 (𝑣) 𝑑 = 𝑛 𝑝 ± b√ 3 2𝛬 𝑚 , 𝑛 (ℎ) 𝑑 = 𝑛 𝑝 ± b 𝛬 𝑚 . ( 37 
)
Subscripts 𝑗 and 𝑑 are related to the jumps and the desynchronisation of the response, respectively. Superscripts 𝑣 and ℎ indicate a vertical and horizontal tangent, respectively. + andsolutions correspond to hardening and softening behaviours, respectively. 𝑛 2 | |𝑎=0 is the backbone of the unison mode evaluated for zero pendulums' displacement (cf. Eq. ( 22)). Points corresponding to Eq. ( 37)
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Fig. 10.

Representation of the stability in the design space (𝛼 [1] , 𝑥 [4] ) for three different tuning levels: 𝑛 = 0.4 (over-tuning), 𝑛 = 0.6 (under-tuning) and 𝑛 = 0.5 (perfect tuning). The other system parameters are given in Table 1. The colour code is the same as that used in Fig. are represented with black and grey dots and diamonds in Fig. 9. Vertical tangents indicate the minimum level of mistuning for the response to become unstable whilst horizontal tangents indicate the minimum amplitude for which the response enters into an instability zone. Note that the torque level corresponding to these tangents can be obtained using Eqs. ( 37), ( 30), (31), and ( 23).

Looking at the vertical tangents, one can see that in the hardening case, 𝑛 𝑝 < 𝑛 (𝑣) 𝑑 < 𝑛 (𝑣) 𝑗 , whilst in the softening case, 𝑛 (𝑣) 𝑑 < 𝑛 𝑝 < 𝑛 (𝑣)

𝑗

or 𝑛 (𝑣) 𝑑 < 𝑛 (𝑣) 𝑗 < 𝑛 𝑝 . This means that hardening pendulums do not exhibit instabilities as long as 𝑛 ≤ 𝑛 𝑝 (i.e. they are perfectly tuned or over-tuned). Similarly, softening pendulums do not exhibit unison instabilities as long as 𝑛 ≥ 𝑛 𝑝 (i.e. they are perfectly tuned or under-tuned). These softening pendulums are however very likely to be subject to jumps even if they are perfectly tuned or under-tuned. This happens if 𝑛 (𝑣) 𝑗 > 𝑛 𝑝 , which is the case in general as damping is small. These remarks are illustrated in Fig. 9 where one can see that the limit of the non-unison zones (black curves) do not cross the vertical line 𝑛 = 𝑛 𝑝 , whilst the limit of the unstable periodic response (grey curves) crosses it in the softening case. These results are consistent with those obtained considering purely translated undamped pendulums [7]. Moreover, one can see from Eq. ( 37) that 𝑛 (𝑣) 𝑑 and 𝑛 (ℎ) 𝑑 tend to 𝑛 𝑝 as damping is reduced. In other words, the small-damping configuration is the most critical one as a very small level of mistuning can lead to a loss of unison. Similarly, 𝑛 (𝑣) 𝑗 and 𝑛 (ℎ) 𝑗 tend to 𝑛 2 | |𝑎=0 as damping is reduced. This is visible in Fig. 9, where the limit of the instability zones corresponding to the undamped case are represented with dashed lines.

As remarked previously, the maps presented in Fig. 4 show that the instability regions tend to embrace the black line corresponding to Eq. ( 36) without crossing it. The situation depicted in those maps corresponds to 𝑛 𝑝 < 𝑛, with 𝑛 sufficiently large so that only hardening pendulums exhibit instabilities, which explains why the instability regions are contained in the outer zone delimited by the black line. Moreover, the instability regions tend towards the black line because, for large amplitudes of motion, the response can be unstable only if the critical amplitudes described by Eqs. (30) and (31) are large. These critical amplitudes get higher as the non-linearity reduces, thus explaining why the instability regions approach the black line at large amplitudes of motion. Indeed, one can see that as 𝑐 𝑝 → 0, the critical amplitudes 𝑎 𝑝𝑓 and 𝑎 𝑠𝑛 (cf. Eqs. ( 30) and ( 31)) tend to infinity.

Three different tuning levels (over-tuning, under-tuning and perfect tuning of the pendulums) are represented in the design space in Fig. 10 to illustrate the former developments. For over-tuned pendulums, the instability regions are contained in the inner zone delimited by the black curve. For largely under-tuned pendulums, these instability zones are limited to the outer region delimited by the black curve. Finally, for a perfect tuning, only softening pendulums can be subject to jumps.

Experimental validation

An experimental study on the CPVA displayed in Fig. 11 was led to assess the accuracy of the analytical and numerical results. This CPVA is that presented in Fig. 2. It is composed of two identical monofilar pendulums designed especially to exhibit energy localisation. The expanded shape of the pendulums aims at increasing their inertia, thus increasing the impact of rotation. The experimental setup is shown in Fig. 12. The rotor is fixed on a bench of inertia 𝐽 𝑏 using an adaptation system of inertia 𝐽 𝑎 . Thus, 𝐽 𝑟 has to be replaced by the equivalent inertia 𝐽 𝑒𝑞 = 𝐽 𝑟 + 𝐽 𝑏 + 𝐽 𝑎 in the previous developments. The pendulums' amplitude of motion was obtained experimentally as follows:

1. Markers are placed at the pendulums' mass centres. 2. The CPVA is centrifugated and an oscillating torque is applied through the actuator while a fast camera records a movie of the rotating system. 3. The movie recorded is decomposed into frames and each frame is rotated by the opposite of the rotor's angular position. As a consequence, those rotated frames form a movie in which the rotor's position is fixed. 4. A point-tracking algorithm is used to find the position of the pendulums' mass centres. Repeating this operation for each rotated frame yields two time signals corresponding to the two pendulums' positions. 5. The time signals are decomposed into Fourier series to extract the pendulums' amplitudes. This procedure was repeated for four torque amplitudes, 𝑇 1 = {3, 6, 10, 12} [Nm], and for 𝑛 = 0.568 and 𝛺 = 1500 [rpm]. The damping coefficients of the CPVA are found experimentally. The parameters of the system are given in Table 2.

A comparison of the experimental results with the analytical and numerical models is shown in Fig. 13. For 𝑇 1 = {3, 6} [Nm], the pendulums' amplitudes obtained experimentally are significantly different. This indicates energy localisation, in accordance with the analytical and numerical solutions. The accuracy of the localised branches obtained numerically is not extremely good as the diamonds do not superimpose on the circles. Regarding the upper branch, the difference between the experimental and numerical points almost falls within the measurement errors. However, the difference between numerical and experimental points on the lower branch is rather large. This is mainly due to the fact that, for very small amplitudes, the records of the pendulums' time signals had a low signal to noise ratio, so that the decomposition into Fourier series was inaccurate. This is the reason why no uncertainties along

| | | 𝑆 (1) 𝑖 | | |
are shown for the two lower points. The discontinuities on the localised branches observed around 𝑇 1 = 5.3 [Nm] and 𝑇 1 = 6.5 [Nm] is due to a jump of the response, as observed previously in Fig. 7. The measurement points at 𝑇 1 = {10, 12} [Nm] agree well with the numerical results. The slight difference of amplitude on the last measurement point is not attributed to a non-linear phenomenon but to measurement errors coming from different sources. The main sources of errors of the experimental results are listed below:

• The torque and speed regulation of the bench do not allow for an exact control of 𝑇 1 and 𝛺. Thus, their values are always slightly different from the prescribed ones. • Because of manufacturing tolerances and material defects, the geometry of the system cannot perfectly match the prescribed one. Thus, the effective parameters of the system are not exactly those given in Table 2 and the two pendulums are not rigorously identical. • The point-tracking algorithm requires bright images to accurately find the pendulums' mass centres. Despite the use of spotlights, the images obtained were rather dark. • The markers used by the point-tracking algorithm are stickers placed by hand as closely as possible to the pendulums' mass centres shown in Fig. 11. The point-tracking algorithm looks for the centre of the markers, which are unlikely to perfectly overlap the mass centres. • The expected motion is a rolling without slipping of the pendulum profile on the roller. However, because of the almostflat shape of the middle of the pendulums' profile (see Fig. 2), the odds of slipping when the 𝑆 𝑖 pass through zero are not insignificant. • The steady-state regime can take some time to be reached, especially when one expects non-linear behaviours such as localisation. It is possible that some movies were recorded before the steady-state is completely established.

The analytical model, though giving very good qualitative results (localisation is found where expected), slightly overestimates the amplitude at unison and predicts both bifurcation points too early. This highlights limits of the model, which were discussed in Sections 5.4 and 6.3 .

Conclusion

The study presented in this paper deals with the stability of centrifugal pendulum vibration absorbers (CPVA) allowing a rotational mobility. Stabilities of two different natures are considered. The instability of the unison response leads to a response localised on one of the pendulums. The instability of the periodic solution leads to a jump of the response. An analytical model V. Mahe et al. allowing for the prediction of these instabilities was build using a scaling of the parameters, the method of multiple scales and a reduction to a single mode. This model was validated with both numerical and experimental results. An original visualisation of the stability in the design space was presented. This allowed a simultaneous stability assessment of pendulum designs. Moreover, a design rule rendering the pendulums' behaviour linear was proposed. In case this rule cannot be applied, other recommendations were advised. These dealt with the largest mistuning levels leaving the response free of instabilities. Results were interpreted dividing the pendulums in two categories: those exhibiting hardening behaviours and those exhibiting softening ones. Hardening pendulums are stable if they are perfectly or over-tuned. Regarding softening pendulums, the stability of the unison response is preserved as long as they are perfectly or under-tuned. However, jumps can occur whether they are over or under-tuned. Finally, increasing the damping enlarges the range of mistuning for which instabilities are avoided. 
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Chapter 4

An accurate nonlinear model for the stability and performance of the unison response of centrifugal pendulums

This chapter is made of a paper published in the Journal of Sound and Vibrations [67]. It focuses on the unison response of a centrifugal pendulum vibration absorber (CPVA) through the analytical study of its stability and the optimisation of its performance. The aim is to provide a better understanding of the nonlinear response of a CPVA in order to be able to control it more easily. Note that the title of the chapter makes reference to an "accurate" model because the developments are based on the simplified model described in section 2.3.2, which is more advanced than the simplified model from section 2.3.1, used in chapter 3.

Sections 1 to 3.1 repeat information from chapters 1 and 2. They present the context of the study, the modelling of a CPVA (cf. section 2.1.1), a linear analysis (cf. section 2.2) and the simplification of the equations of motion (cf. section 2.3). The reader might want to skip these sections of the article if he already read chapters 1 and 2.

The novelty of the article starts in sections 3.2 and 3.3, where the nonlinear unison response and its stability are computed analytically using the method of multiple scales (cf. section 2.5.2.1). It is shown that these results are more general than the ones obtained in chapter 3, especially at high orders, because the model used is more accurate (cf. section 2.3). The results are applied to case studies in section 4 and compared to numerical resolutions of the system's dynamics. Design guidelines allowing to limit the nonlinear detuning of the rotor's antiresonance (hence maximising the performance) while avoiding instabilities are provided.

Introduction

In the frame of reducing polluting emissions and fuel consumption of vehicles using thermal engines, automotive manufacturers try to reduce the cylinder capacity and engine speed of rotation. These evolutions lead to a significant increase of rotation irregularities called acyclisms, mainly due to higher combustion pressure. One of the main characteristics of these reciprocating engines is the linear dependence of the acyclism frequency to the engine speed of rotation. The coefficient of proportionality is the engine order and only depends on the architecture of the engine. During an acceleration phase, the engine sweeps a wide frequency range containing some driveline torsional modes. This situation may lead to significant noise and vibration levels into the passenger compartment and premature wear of the driveline components. Centrifugal pendulum vibration absorbers (CPVAs) have been used for many years to minimise acyclisms of automotive powertrains at the engine order [1][2][3]. These passive devices consist of oscillating masses (pendulums) moving along particular paths relative to a primary inertia (rotor) as shown in Fig. 1. Because the pendulums are driven by the centrifugal acceleration field resulting from the rotation of the CPVA, their natural frequency is proportional to the engine speed of rotation. Hence, the CPVA acts like a classical dynamic vibration absorber [4] except that the antiresonance generated on the rotor is located at a fixed 1 order, so that the antiresonance frequency is changing linearly with the engine speed. This allows for a reduction of the vibrations over the whole engine speed range.

CPVAs exhibit nonlinearities of different natures: geometric nonlinearities due to the large amplitude of motion of the pendulums, and inertial nonlinearities, for instance due to Coriolis effects. The pendulums' path plays a key role in the nonlinear response of a CPVA. D. E. Newland showed that circular paths give the CPVA a softening behaviour, which can lead to jumps of the system's response [5]. To avoid this jump issue, J. F. Madden recommended the use of a cycloidal path, which confers the CPVA a hardening behaviour [6]. Since the works of H. H. Denman [7], the preferred paths are epicycloids because they are the tautochronic paths of the uncoupled pendulums. The pendulums are uncoupled from the rotor when there are no acyclisms so that the rotor spins at a constant velocity and is not a degree of freedom. However, in the presence of acyclisms, the coupling between the rotor and the pendulums introduces inertial nonlinearities that play an important role in the softening/hardening behaviour of the CPVA, so that jumps of the response can still occur with an epicycloidal path [8].

Moreover, CPVAs are cyclically symmetric structures subject to nonlinear energy localisation phenomena [9,10]. This other kind of instability leads to pendulums oscillating with different phases and/or amplitudes, and it is undesired for two reasons. First, it can decrease the efficiency of the vibration reduction. Secondly, the pendulums' amplitude is limited by the cusp of their path, so that amplitude localisation can reduce the maximum torque amplitude the CPVA can filter-out. The first studies on the localisation of the pendulums' response, led by C.-P. Chao et al. [11,12], dealt with epicycloidal paths. Then, A. S. Alsuwaiyan et al. considered the case of more general paths [13]. This study on general paths was extended by S. Shaw et al., who were able to develop an accurate analytical model by taking into account the main nonlinearities coming from both the trajectory and the inertial effects [8]. B. J. Vidmar et al. investigated localisation in a CPVA made of pendulums tuned at different orders [14]. It was shown in [15][16][17] that the localised solutions are subjects to saddle-node bifurcations, causing jumps and Hopf bifurcations, leading to quasi-periodic solutions. K. Nishimura et al. showed that the localised response can also bifurcate towards chaotic solutions [18].

In addition to the jumps and the localisation of the response, CPVAs are subject to period-doubling bifurcations leading to a subharmonic solution [19][20][21][22]. However, those occur for excitation orders close to twice the CPVA tuning order, so they are not of interest here as this paper focuses on the response near the tuning order.

All the contributions cited above consider purely translated pendulums, probably because early works recommended to use such systems [23]. To the authors' knowledge, it is R. Chilton who first investigated the effect of pendulum rotation on the tuning order through his study of a pendulum mass rolling without slipping on a convex surface [24]. Then, R. W. Zdanowich and T. S. Wilson [25] derived the expression of the tuning order of roller-type and ring-type rotating pendulums (note that the ring-type pendulum is a special case of the monofilar pendulum investigated in [26]). A similar analysis on a pendulum linked to the rotor through a pivot was led by R. G. Mitchiner and R. G. Leonard [27]. However, it was less than ten years ago that J. Mayet and H. Ulbrich provided the first results showing that the rotational motion can significantly improve the performance of a CPVA [28][29][30]. In-depth studies of the rotation law of the pendulums were also led by A. Renault [31][32][33] and M. A. Acar [34]. Recent works by M. Cirelli, M. Cera et al. [35][36][37][38][39] confirmed the interest for pendulums with a rotational mobility and introduced a new way of representing the path, using curvature ratios instead of the polynomial functions used in most studies (see [13] for instance). They called ''trapezoidal CPVA'' systems with rotating pendulums, in opposition to ''parallel CPVA'', for which the pendulums' motion is a pure relative translation with respect to the rotor. X. Tan et al. considered a CPVA made of a single pendulum obeying a nonlinear rotation law and gave guidelines for the choice of this law [40]. E. R. Gomez et al. investigated theoretically and experimentally the friction losses in a CPVA with rotating pendulums [41]. In addition, they studied numerically and experimentally the behaviour of such a CPVA installed in a detailed powertrain [42]. The filtering of torsional vibrations in multi-degree-of-freedom systems using a CPVA was also investigated by K. Kadoi et al., who dealt with purely translated pendulums [43]. C. Shi et al. showed that CPVAs could be used to reduce translational vibrations and tilting in addition to torsional vibrations [44][45][46][47][48]. V. Mahe et al. considered the effect of rotation on a subharmonic CPVA [49,50] and on a regular CPVA [26]. Some design guidelines were given to choose the path and rotation law in order to avoid instabilities. The authors also studied the filtering effect of the pendulums responding on a localised solution and the stability of that solution [51]. Recently, J. Mayet et al. used a general framework to show how pendulums' relative rotation can increase the performance of a CPVA [52]. They assumed a unison motion of the pendulums and gave guidelines to maximise vibration reduction while avoiding jumps of the response. Other new topics of research dealing with CPVAs include precision requirement in the manufacturing process [53] and the use of double pendulums, which allows to simultaneously filter-out two orders [54].

The motivation of this paper is to investigate the dynamic stability and efficiency of a CPVA with rotating pendulums using analytical perturbation methods. The stability and performance of such systems was investigated in [29,52] without specifying a particular path nor rotation law, and in [36,38], where curvature ratios and a rolling radius were used to describe the path and rotation law. In the present paper, it is chosen to represent the path and rotation law using polynomial functions of the pendulums' positions, like in [26,[31][32][33][34]. This representation gives a clear physical meaning to the coefficients of those polynomials, which are the parameters that control the linear and nonlinear tuning of the CPVA. In addition, this representation allows designers to easily adjust the tuning in practice as one simply has to change the value of the polynomial coefficients. The analytical model developed in this paper uses different assumptions than those of [26], which allows to capture the nonlinearities arising from inertial terms, hence making the model more accurate. The efficiency of a CPVA is closely related to the features of the antiresonance generated by the pendulums on the rotor. If the rotor's amplitude at the antiresonance is low and the antiresonance order does not shift much as the torque amplitude is increased, the CPVA will significantly reduce the vibrations over the whole torque range. D. E. Newland observed early on that the antiresonance order generated by bifilar pendulums following a circular path diminishes as the torque amplitude is increased [55]. This shifting of the operating point for circular path pendulums was also studied by M. Sharif-Bakhtiar et al. [56] and observed experimentally by A. G. Haddow [57]. Over-tuning the pendulums was recommended to minimise the decrease in performance due to the antiresonance shifting, but it is limited by the occurrence of jumps of the system's response [55,56]. A. Renault proposed a procedure to track the locus of the antiresonance and applied his method to Euler's pendulum [58]. He observed that the antiresonance does not necessarily shift in the same direction as the resonance of the system. This is of great importance for CPVAs and will be investigated in this paper. This paper is organised as follows. Section 2 describes the modelling of the CPVA and presents a linear analysis. The response of a CPVA and its stability are derived in Section 3. Case studies and design guidelines allowing to reduce the shifting of the antiresonance and to avoid instabilities are presented in Section 4. This paper ends with a conclusion in Section 5.

Modelling and linear analysis

Modelling

The system studied is shown in Fig. 1. A rotor of inertia 𝐽 𝑟 rotates about its centre 𝑂. Its total angular position is 𝜗(𝑡) = 𝛺𝑡 + 𝜃(𝑡) where 𝑡 is the time, 𝛺 is the mean rotational velocity and 𝜃(𝑡) corresponds to the fluctuating part of the rotation. A torque 𝑇 (𝜗) = 𝑇 0 + 𝑇 𝜃 (𝜗) is applied to the rotor where 𝑇 0 is its constant part and 𝑇 𝜃 (𝜗) is periodic. At equilibrium, 𝑇 0 = 𝑏 𝑟 𝛺 where 𝑏 𝑟 is the linear viscous damping coefficient of the rotor, such that the constant torque balances with the damping to set the mean rotational speed 𝛺. 𝑁 pendulums of mass 𝑚 𝑖 and inertia 𝐼 𝑖 (about their centre of mass) oscillate on their path 𝒞 𝑖 . Their position on these paths is given by the curvilinear abscissa 𝑆 𝑖 (𝑡) and their distance from 𝑂 is 𝑅 𝑖 (𝑆 𝑖 ). The characteristic dimension 𝑅 0𝑖 = 𝑅 𝑖 (𝑆 𝑖 = 0) is the distance between 𝑂 and the vertex of the path. In addition to the traditional translation motion, the present study considers that the pendulums rotate about their centre of mass according to the rotation function 𝛼 𝑖 (𝑆 𝑖 ). As for the rotor, an equivalent linear viscous damping coefficient 𝑏 𝑖 is used to model the damping between the ith pendulum and the rotor. In the later, pendulums and their associated path and rotation functions will be considered identical so that subscript ''𝑖'' will be dropped when addressing pendulums' parameters.

In order to write the equations of motion in a non-dimensional form, the following parameters and variables are introduced:

𝑠 𝑖 = 𝑆 𝑖 𝑅 0 , 𝑦 = θ 𝛺 = 1 + θ 𝛺 , 𝜂 = 𝐼 𝑚𝑅 2 0 , 𝜇 = 𝑁𝑚𝑅 2 0 𝐽 𝑟 + 𝑁𝐼 , b = 𝑏 𝑚𝛺 , b𝑟 = 𝑏 𝑟 (𝐽 𝑟 + 𝑁𝐼)𝛺 , T (𝜗) = T0 + T𝜃 (𝜗) = 𝑇 (𝜗) (𝐽 𝑟 + 𝑁𝐼)𝛺 2 , 𝑥(𝑠 𝑖 ) = 𝑅(𝑅 0 𝑠 𝑖 ) 2 𝑅 2 0 , 𝑧(𝑠 𝑖 ) = √ 𝑥(𝑠 𝑖 ) - 1 4 
( 𝑑𝑥(𝑠 𝑖 ) 𝑑𝑠 𝑖 ) 2 , 𝛼(𝑠 𝑖 ) = 𝛼(𝑅 0 𝑠 𝑖 ), 𝛾(𝑠 𝑖 ) = 𝑑𝛼(𝑠 𝑖 ) 𝑑𝑠 𝑖 , (1) 
where (•) = 𝜕(•)∕𝜕𝑡. The 𝑠 𝑖 and 𝑦 are the 𝑁 + 1 degree-of-freedom of the system. They correspond to the dimensionless relative position of the pendulums and rotational velocity of the rotor, respectively. 𝜂 and 𝜇 are inertia ratios, b and b𝑟 are non-dimensional damping constants and T (𝜗) is the non-dimensional torque applied on the rotor. 𝑥(𝑠 𝑖 ) and 𝑧(𝑠 𝑖 ) are path functions while 𝛼(𝑠 𝑖 ) and 𝛾(𝑠 𝑖 ) are rotation functions. In this paper, 𝑥(𝑠 𝑖 ) and 𝛼(𝑠 𝑖 ) are written as polynomials in the curvilinear abscissa 𝑠 𝑖 such that

𝑥(𝑠 𝑖 ) = 1 -𝑛 2 𝑡 𝑠 2 𝑖 + 𝑁 𝑥 ∑ 𝑘=3 𝑥 [𝑘] 𝑠 𝑘 𝑖 , 𝛼(𝑠 𝑖 ) = 𝑁 𝛼 ∑ 𝑘=0 𝛼 [𝑘] 𝑠 𝑘 𝑖 , (2) 
where 𝑛 𝑡 is the order of the pendulums' path and 𝑥 [𝑘] , 𝛼 [𝑘] are path and rotation coefficients. In the special case 𝑥 [𝑘] = 0, ∀𝑘, the pendulums' path are epicycloids of order 𝑛 𝑡 , which are the tautochronic paths when the rotor spins at a constant speed [7]. Note that paths defined as in Eq. ( 2) have a cusp point [7]. For small 𝑥 [𝑘] , ∀𝑘, the cusp point can be approximated by the cusp of the epicycloid, given by

𝑠 cusp = 1 𝑛 𝑡 √ 1 + 𝑛 2 𝑡 . (3) 
In order to give T (𝜗) the meaning of an external forcing term, we replace the independent variable 𝑡 by the rotor's position 𝜗 [59], which can be seen as a non-dimensional time. Using the chain rule, one can show that

(•) = 𝛺𝑦(•) ′ , ( •) = 𝛺 2 𝑦𝑦 ′ (•) ′ + 𝛺 2 𝑦 2 (•) ′′ , ( 4 
)
where (•) ′ = 𝜕(•)∕𝜕𝜗 (the details can be found in [49]). Hence, the non-dimensional rotor's acceleration is now θ∕𝛺 2 = ẏ∕𝛺 = 𝑦𝑦 ′ . Using the non-dimensional quantities (1) and the chain rule (4), one can write the equations of motion as

1 𝑁 [ 𝑁 ∑ 𝑖=1 (𝑁 + 𝜇𝑥(𝑠 𝑖 ))𝑦𝑦 ′ + 𝜇 ( 𝑧(𝑠 𝑖 ) + 𝜂𝛾(𝑠 𝑖 ) ) (𝑦𝑦 ′ 𝑠 ′ 𝑖 + 𝑦 2 𝑠 ′′ 𝑖 ) + 𝜇𝑦 2 𝑠 ′ 𝑖 ( 𝑑𝑥(𝑠 𝑖 ) 𝑑𝑠 𝑖 + 𝑑𝑧(𝑠 𝑖 ) 𝑑𝑠 𝑖 𝑠 ′ 𝑖 + 𝜂 𝑑𝛾(𝑠 𝑖 ) 𝑑𝑠 𝑖 𝑠 ′ 𝑖 ) ] + b𝑟 𝑦 = T (𝜗), (5a) 
[ 𝑧(𝑠 𝑖 ) + 𝜂𝛾(𝑠 𝑖 ) ] 𝑦 ′ + [ 1 + 𝜂𝛾(𝑠 𝑖 ) 2 ] (𝑦 ′ 𝑠 ′ 𝑖 + 𝑦𝑠 ′′ 𝑖 ) + 𝜂𝛾(𝑠 𝑖 ) 𝑑𝛾(𝑠 𝑖 ) 𝑑𝑠 𝑖 𝑦𝑠 ′ 𝑖 2 - 1 2 
𝑑𝑥(𝑠 𝑖 ) 𝑑𝑠 𝑖 𝑦 + b𝑠 ′ 𝑖 = 0, 𝑖 = 1, … , 𝑁. ( 5b 
)
Computation details can be found in [49]. Eq. (5a) governs the motion of the rotor while the 𝑁 Eqs. (5b) govern the motion of the pendulums.

From now on, it is assumed that the fluctuating torque applied on the rotor contains only one harmonic whose non-dimensional form is T1 cos(𝑛𝜗), where 𝑛 is the excitation order. For a car engine, 𝑛 corresponds to the number of strikes per revolution of the crankshaft.

Linear analysis

First of all, one can use Eq. ( 4) to show that, at first order, 1 + 𝜃 ′ ≈ 𝑦 and 𝜃 ′′ ≈ 𝑦𝑦 ′ ≈ 𝑦 ′ (the demonstration can be found in [49]). Hence, it is possible to represent the motion of the rotor with position 𝜃 instead of velocity 𝑦. This way, all the degree-of-freedom of the system are positions, which facilitates the representation of the mode shapes. Using 𝜃 instead of 𝑦 and the balance between the constant torque and the damping b𝑟 = T0 (cf. Section 2.1), one can linearise Eqs. (5a) and (5b). This leads to the free, conservative, linear equations

(1 + 𝜇)𝜃 ′′ + 𝜇𝛬 𝑐 𝑁 𝑁 ∑ 𝑖=1 𝑠 ′′ 𝑖 = 0, ( 6a 
)
𝛬 𝑐 𝜃 ′′ + 𝛬 𝑚 𝑠 ′′ 𝑖 + 𝑛 2 𝑡 𝑠 𝑖 = 0, 𝑖 = 1, … , 𝑁. ( 6b 
)
𝛬 𝑚 and 𝛬 𝑐 are constants representing the equivalent mass of a pendulum due to the effect of the rotatory inertia and the linear coupling term between a pendulum and the rotor, respectively. They are given by

𝛬 𝑚 = 1 + 𝜂𝛼 2 [1] , 𝛬 𝑐 = 1 + 𝜂𝛼 [1] , (7) 
where 𝛼 [1] is the linear rotation coefficient (cf. Eq. ( 2)).

The linearised equations of motions ( 6) can be written as a matrix equation. Solving the associated eigenvalue problem requires to find the eigenvalues of an arrowhead matrix whose diagonal terms are all identical except for the first one. As explained in [60], the eigenvalues of such a matrix are those of a reduced 2 × 2 matrix together with the identical terms of the diagonal. Applying this procedure, one can find that the eigenorders and mode shapes of the system are

𝑛 00 = 0, 𝑛 10 = 𝑛 𝑝 , 𝑛 20 = 𝑛 𝑝 √ √ √ √ √ 1 + 𝜇 1 + 𝜇 ( 1 - 𝛬 2 𝑐 𝛬 𝑚
)

𝝓 𝟎𝟎 = [1, 0, … , 0] ⊺ , 𝝓 𝟐𝟎 = [ - 𝜇𝛬 𝑐 1 + 𝜇 , 1, … , 1 ] ⊺ , 𝝓 𝟏𝟎 𝒊 [𝑖 + 1] = -𝝓 𝟏𝟎 𝒊 [𝑖 + 2] = 1, 𝝓 𝟏𝟎 𝒊 [𝑗 ≠ {𝑖 + 1, 𝑖 + 2}] = 0, 𝑖 = 1, … , 𝑁 -1. (8) 
The eigenorders can be seen as non-dimensional eigenfrequencies and superscript ⊺ indicates the transpose. 𝑛 𝑝 is the pendulums' tuning order, which is related to the path order 𝑛 𝑡 such that

𝑛 𝑝 = 𝑛 𝑡 √ 𝛬 𝑚 , ( 9 
)
and it corresponds to the eigenorder of the pendulums when they are uncoupled from the rotor. The value inside the brackets after 𝝓 𝟏𝟎 𝒊 is used to refer to one of its components.

V. Mahé ( 𝑛 20 , 𝝓 𝟐𝟎 ) is a mode for which the pendulums move in unison but in phase-opposition with respect to the rotor (provided that 𝛬 𝑐 > 0, which is the case for reasonable parameters). It will be referred-to as the ''unison mode'' or ''mode 2''. To filter-out a fluctuating torque, one typically chooses 𝑛 𝑝 ≈ 𝑛 to generate an antiresonance on the rotor at 𝑛 𝐴𝑅 ≈ 𝑛 𝑝 using the unison mode.

Note that in the case of a real automotive driveline (a simple model of which consists in successive rotors linked through torsional springs [61]), the CPVA should be placed as close as possible from the source of excitation (i.e. the engine). Doing so, the antiresonance generated by the pendulums exists on every driveline components located after the CPVA [62], which allows to isolate the whole driveline from the torque fluctuations.

Response and stability of the CPVA

Scaling and simplification of the equations

The first step to derive approximate analytical solutions of Eqs. (5a) and (5b) is to simplify those equations. The full procedure is detailed in [49], so only the main steps are reminded here. The path and rotation functions followed by the pendulums, whose general form are given by Eq. ( 2), are chosen to be

𝑥(𝑠 𝑖 ) = 1 -𝑛 2 𝑡 𝑠 2 𝑖 + 𝑥 [4] 𝑠 4 𝑖 , 𝛼(𝑠 𝑖 ) = 𝛼 [1] 𝑠 𝑖 + 𝛼 [3] 𝑠 3 𝑖 , ( 10 
)
and the rotor's rotational velocity is expanded such that

𝑦(𝜗) = 1 + 𝑦 𝜃 (𝜗). (11) 
Following S. Shaw et al. [8], we assume small damping, small fluctuations of the rotor's rotational velocity, small external torque amplitudes, small ratio of the pendulums' geometric inertia over the CPVA's inertia and a path close to an epicycloid. In addition, we assume a rotational law close from a linear one. Hence, we can scale the parameters such that

b = 𝜖 b, b𝑟 = 𝜖 b𝑟 , T1 = 𝜖 T1 , 𝜇 = 𝜖 μ, 𝑦 𝜃 = 𝜖 ỹ𝜃 , 𝜃 ′ = 𝜖 θ′ , 𝑥 [4] = 𝜖 x[4] , 𝛼 [3] = 𝜖 α[3] , ( 12 
)
where 𝜖 is a small parameter that can for instance be chosen to be 𝜇. In the following, only first-order terms will be retained in the rotor's equation. Hence, like in Section 2.2, the approximation θ′ ≈ ỹ𝜃 can be used in order to represent the degree-of-freedom of the rotor through its position rather than its velocity [49]. Using Eqs. ( 10), ( 11) and ( 12) and Taylor series for 𝑧(𝑠 𝑖 ), Eqs. (5a) and (5b) can be simplified such that

θ′′ = μ 𝑁 [ 𝑁 ∑ 𝑖=1 𝑛 2 𝑝 𝛬 𝑐 𝑠 𝑖 + 2𝑛 2 𝑡 𝑠 𝑖 𝑠 ′ 𝑖 + 𝑛 2 𝑡 (1 + 𝑛 2 𝑡 ) ( 𝑠 𝑖 𝑠 ′ 𝑖 2 - 𝑛 2 𝑝 2 𝑠 3 𝑖 )] + T1 cos(𝑛𝜃), (13a) 
𝑠 ′′ 𝑖 + 𝑛 2 𝑝 𝑠 𝑖 = -𝜖𝛬 -1 𝑚 { 𝛬 2 𝑐 μ 𝑁 𝑁 ∑ 𝑗=1 𝑛 2 𝑝 𝑠 𝑗 + b𝑠 ′ 𝑖 + μ𝑛 2 𝑡 𝛬 𝑐 𝑁 [ 𝑁 ∑ 𝑗=1 𝑠 𝑗 (2𝑠 ′ 𝑗 + 𝑠 ′ 𝑖 ) ] + μ𝑛 2 𝑡 𝑁 [ 𝑁 ∑ 𝑗=1 (1 + 𝑛 2 𝑡 )𝛬 𝑐 ( 𝑠 𝑗 𝑠 ′ 𝑗 2 - 𝑛 2 𝑝 2 (𝑠 3 𝑗 + 𝑠 𝑗 𝑠 2 𝑖 ) ) + 2𝛬 𝑚 𝑠 𝑗 𝑠 ′ 𝑗 𝑠 ′ 𝑖 ] + 6𝜂𝛼 [1] α[3] (𝑠 𝑖 𝑠 ′ 𝑖 2 + 𝑠 2 𝑖 𝑠 ′′ 𝑖 ) -2 x[4] 𝑠 3 𝑖 + ( 𝛬 𝑐 + 𝛬 𝑚 𝑠 ′ 𝑖 - 𝑛 2 𝑡 (1 + 𝑛 2 𝑡 ) 2 𝑠 2 𝑖 ) T1 cos(𝑛𝜗) } , 𝑖 = 1, … , 𝑁. (13b) 
Eq. (13a) expresses the rotor's acceleration as a function of the pendulums' motion. The first, second and third terms are linear, quadratic and cubic in 𝑠 𝑖 , respectively. The pendulums' equations (13b) are uncoupled from the rotor's dynamics, so that one can solve them to obtain the 𝑠 𝑖 and then inject the results in Eq. (13a) to retrieve the rotor's response. Eqs. (13b) contain the effect of the external torque, the damping, the coupling between pendulums (both linear and nonlinear) through the sums over 𝑁, and the perturbations of the path and rotation functions. Eqs. (13b) are weakly coupled because pendulums are coupled indirectly through the rotor and their effect on the rotor is small as their relative inertia is small [21]. These equations are also weakly nonlinear because the path and rotation functions chosen are close to an epicycloid and a linear rotation (indeed, 𝑥 [4] and 𝛼 [3] were assumed to be of order 𝜖, cf. Eq. ( 12)), which render a quasi-linear behaviour for small fluctuations of the rotational speed.

Solutions of the simplified equations

The method of multiple scales [63] is used to find the solutions of Eqs. (13b). Two rotation scales are introduced, 𝜗 0 = 𝜗 and 𝜗 1 = 𝜖𝜗, and pendulums coordinates are expanded such that

𝑠 𝑖 (𝜗) = 𝑠 𝑖1 (𝜗 0 , 𝜗 1 ) + 𝜖𝑠 𝑖2 (𝜗 0 , 𝜗 1 ). ( 14 
)
As the excitation order 𝑛 is close from 𝑛 𝑝 , it is convenient to define the detuning term 𝜎 as

𝑛 = 𝑛 𝑝 + 𝜖𝜎. ( 15 
)
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Fig. 2.

Evolution of the nonlinear coefficients 𝑐 𝑐 , 𝑐 𝑡 and 𝑐 𝑝 as a function of the tuning order 𝑛 𝑝 . The other parameters are given in Table 1.

𝜎 > 0 and 𝜎 < 0 correspond to under-tuned and over-tuned pendulums, respectively. Applying the method of multiple scales yields first-order solutions of the form

𝑠 𝑖1 (𝜗 0 , 𝜗 1 ) = 𝑎 𝑖 (𝜗 1 ) cos ( 𝑛𝜗 0 -𝜉 𝑖 (𝜗 1 ) ) . ( 16 
)
Amplitudes 𝑎 𝑖 and phases 𝜉 𝑖 are governed by the system

{ 𝐷 1 𝑎 𝑖 = 𝑓 𝑎 𝑖 (𝒂, 𝝃), (a) 𝑎 𝑖 𝐷 1 𝜉 𝑖 = 𝑓 𝜉 𝑖 (𝒂, 𝝃), (b) (17) 
where 𝐷 1 (•) = 𝜕(•)∕𝜕𝜗 1 and 𝒂, 𝝃 are vectors containing the 𝑎 𝑖 and 𝜉 𝑖 , respectively. Functions 𝑓 𝑎 𝑖 and 𝑓 𝜉 𝑖 are given in Appendix A. The solutions sought are those at steady-state, meaning that the amplitudes and phases are invariant with 𝜗 such that

𝐷 1 𝑎 𝑖 = 𝐷 1 𝜉 𝑖 = 0, ∀𝑖. (18) 
Moreover, we look for a response of the pendulums on the unison mode, which implies

𝑎 𝑖 = 𝑎, 𝜉 𝑖 = 𝜉, ∀𝑖. (19) 
The pendulums' response is obtained by introducing the steady-state (18) and unison (19) conditions in system (17) and solving for 𝜎, T1 and 𝜉. The solutions obtained are given in Appendix B. For readability, it is convenient to introduce the nonlinear coefficients

𝑐 2 = -𝑐 𝑐 + 2𝑐 𝑡 + 𝑐 𝑝 , 𝑐 𝑐 = μ𝑛 4 𝑡 , 𝑐 𝑡 = 𝛬 𝑐 2 μ𝑛 2 𝑝 𝑛 2 𝑡 (1 + 𝑛 2 𝑡 ), 𝑐 𝑝 = 3( x[4] + 2𝑛 2 𝑝 𝜂𝛼 [1] α[3] ). ( 20 
)
𝑐 2 is the nonlinear coefficient governing the hardening/softening behaviour of mode 2 (i.e. the unison mode). 𝑐 𝑐 , 𝑐 𝑡 and 𝑐 𝑝 are nonlinear coefficients related to Coriolis effects, the large displacements along the path, and the perturbation of the path and rotation functions, respectively. The backbone curve of the unison mode is obtained by cancelling the damping and forcing in the forced order response (cf. Eq. (B.1a)), leading to

𝑛 2 = 𝑛 𝑝 + 𝛬 2 𝑐 𝑛 2 𝑝 𝜇 2𝛬 𝑚 𝑛 𝑝 -𝜖 𝑐 2 4𝛬 𝑚 𝑛 𝑝 𝑎 2 . ( 21 
)
𝑛 2 is the resonance order of mode 2. It is interesting to note that even with an epicycloidal path and a linear rotation law (i.e. 𝑐 𝑝 = 0), the behaviour of mode 2 is hardening or softening, depending on the sign of 𝑐 𝑐 -2𝑐 𝑡 (cf. Eq. ( 20)). These two coefficients are due to the nonlinear coupling between the rotor and pendulums, and their presence shows that the epicycloid is the tautochronic path of the pendulums only if they are uncoupled from the rotor. This was previously remarked by H. H. Denman [7]. Moreover, for reasonable parameters and tuning orders larger than 1, we have 2𝑐 𝑡 > 𝑐 𝑐 > 0 (cf. Fig. 2), so that the unison mode is typically softening. One can choose 𝑐 𝑝 to increase (decrease) this softening behaviour, resulting in softened (hardened) pendulums. Hence, 𝑐 𝑝 can be seen as the nonlinear tuning parameter of the CPVA while 𝑛 𝑝 is the linear tuning parameter. Note that 𝑐 𝑐 and 𝑐 𝑡 depend linearly on 𝜇. Hence, for small values of 𝜇, 𝑐 𝑝 dominates so that only small negative 𝑐 𝑝 values yield a hardening behaviour. 𝑐 𝑐 , 𝑐 𝑡 and 𝑐 𝑝 also depend on 𝑛 𝑝 , as illustrated in Fig. 2. It is very interesting to realise that for small 𝑛 𝑝 values, the contribution of 𝑐 𝑐 and 𝑐 𝑡 is negligible, even for reasonable 𝜇 values. Small 𝑛 𝑝 values can be encountered when dealing with cylinder deactivation, in which case a model simpler than the one presented in this paper can be used [26].

The response of the first three harmonics of the rotor's acceleration are obtained by substituting the pendulums' solutions in Eq. (13a). Their amplitude and phase are given in Appendix B.
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Stability analysis

The procedure to determine the stability is the same as that used in [26], so only the main steps are reminded here. First, system (17) is rewritten as

{ 𝐷 1 𝑎 𝑖 = 𝑓 𝑎 𝑖 (𝒂, 𝝃), (a) 𝐷 1 𝜉 𝑖 = 𝑓 * 𝜉 𝑖 (𝒂, 𝝃), (b) (22) 
where we define 𝑓 *

𝜉 𝑖

= 𝑓 𝜉 𝑖 ∕𝑎 𝑖 . Then, the Jacobian 𝑱 of system ( 22) is computed and evaluated on the unison solution at steady state. 𝑱 is a block-circulant matrix of size 2𝑁 × 2𝑁 such that

𝑱 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝑱 𝟏 𝑱 𝟐 ⋯ 𝑱 𝟐 𝑱 𝟐 ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ 𝑱 𝟐 𝑱 𝟐 ⋯ 𝑱 𝟐 𝑱 𝟏 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , 𝑱 𝟏 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 𝜕𝑓 𝑎 𝑖 𝜕𝑎 𝑖 𝜕𝑓 𝑎 𝑖 𝜕𝜉 𝑖 𝜕𝑓 * 𝜉 𝑖 𝜕𝑎 𝑖 𝜕𝑓 * 𝜉 𝑖 𝜕𝜉 𝑖 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , 𝑱 𝟐 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 𝜕𝑓 𝑎 𝑖 𝜕𝑎 𝑗 𝜕𝑓 𝑎 𝑖 𝜕𝜉 𝑗 𝜕𝑓 * 𝜉 𝑖 𝜕𝑎 𝑗 𝜕𝑓 * 𝜉 𝑖 𝜕𝜉 𝑗 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ . ( 23 
)
𝑱 𝟏 represents the effect of a perturbation of the 𝑖th pendulum on itself, while 𝑱 𝟐 represents the effect of a perturbation of the 𝑗th pendulum on the 𝑖th one with 𝑖 ≠ 𝑗. The unison solution is subjected to a jump of the response if det[𝑱 𝟏 + (𝑁 -1)𝑱 𝟐 ] < 0, and it is subjected to localisation if det[𝑱 𝟏 -𝑱 𝟐 ] < 0 [26,64]. The limits of those instability regions define two bifurcation curves, which represent the bifurcation points of the unison solution for every forcing amplitude. The bifurcations leading to a jump are saddle-node bifurcations, hence the associated bifurcation curve is called 𝑎 𝑠𝑛 . The other curve is called 𝑎 𝑝𝑓 as localisation arises through a pitchfork bifurcation. Each crossing between 𝑎 and 𝑎 𝑠𝑛 or 𝑎 𝑝𝑓 leads to a change of stability of the unison solution. The expression of the bifurcation curves is given in Appendix C under the form 𝜎 𝑠𝑛 (𝑎) and 𝜎 𝑝𝑓 (𝑎).

Case studies and design guidelines

The aim here is to present the main assets of the analytical model and to assess the accuracy of this model by comparing it to numerical resolutions of the initial equations of motion (5a) and (5b). These equations will be solved numerically using MANLAB, which is a path-following and bifurcation analysis software [65,66].

Response of the CPVA as a function of linear mistuning

In practice, the excitation order is fixed such that 𝑛 is a constant. However, pendulums may not be tuned exactly to the excitation. This mistuning can be intentional or may arise from material imperfections. Either way, varying the excitation order is similar to introducing mistuning (provided that pendulums are equally mistuned) and is therefore relevant for studying the effect of mistuning on the system's response [17].

The order response of pendulums at unison and their stability is shown in Fig. 3 for several torque amplitudes. The bending of the response to the left indicates that pendulums exhibit a softening behaviour. The unison response computed analytically (green curves) fits quite well with the numerical results (green lines with square markers). There are however discrepancies at large amplitudes and at the resonance. At large amplitudes, the behaviour is more hardening than expected for 𝑛 < 1.56 and more softening for 𝑛 > 1.56. The amplitude at the resonance is not well estimated, but this was to be expected for two reasons. First, the analytical method uses a perturbation around 𝑛 = 𝑛 𝑝 , which is not close from the resonance. Secondly, the system has very small damping, making the amplitude at the resonance difficult to predict accurately. Note that the analytical solutions above 𝑠 cusp exist only because of the use of Taylor series to approximate 𝑧(𝑠 𝑖 ) in Section 3.1, so they are not physically relevant. The unstable zones leading to localisation (red) and jumps (blue) are shown. Each crossing between the unison solution and the limit of those zones leads to a change of stability. This is verified by MANLAB results, which indicate stability changes with red and blue stars. The position of the unstable zones is quite accurate as their limits fit well with the stars. Finally, note that Eq. ( 3) is a good approximation of the cusp of the path as it almost corresponds to the maximum amplitude that can be computed with numerical methods.

Fig. 4 displays the rotor's response associated to the pendulums' response shown in Fig. 3. Again, the overall response and its stability are well predicted, though discrepancies arise at large amplitudes. The strange shape of the response around the resonance for T1 > 0.005 can simply be ignored as it occurs for pendulums way above their cusp, which is non-physical. The zoom included in the figure allows to better see the evolution of the antiresonance with T1 . For low torque amplitudes, the antiresonance order is 𝑛 𝐴𝑅 ≈ 𝑛 𝑝 , but as T1 is increased, 𝑛 𝐴𝑅 shifts to the right. It is interesting to note that contrarily to the antiresonance, the resonance is shifting to the left, so the softening/hardening behaviour of the antiresonance is completely different from that of the resonance. This was previously observed for Euler's pendulum by A. Renault et al. [58] and is investigated further in the next section. One can see in the zoom in Fig. 4 that the antiresonance gets narrower as T1 is increased (this is because the amplitude at the antiresonance remains very small over the whole torque range, while the rest of the response considerably increase with T1 ). This makes 𝑛 𝐴𝑅 harder to predict for large T1 values, as seen in the zoom in Fig. 4 for T1 = 0.075.
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Fig. 3.

Order response of the pendulums for several torque amplitudes. The analytical results representing the pendulums' response at unison are represented as green lines. The darker the line the larger the associated torque amplitude. For each analytical response there is an associated numerical result, computed with MANLAB, shown as a green line with square markers. Dashed lines indicate unstable solutions. The unstable zones obtained analytically are coloured in red (associated to localisation) and blue (associated to the jumps). Bifurcation points are also computed with MANLAB. Pitchfork and saddle-node bifurcations are represented as red and blue stars, respectively. The cusp of the path, approximated using Eq. ( 3), is shown as a black dashed line. The backbone curve of the unison mode is the black dotted line. The parameters of the CPVA are given in Table 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) Fig. 4. Order response of the rotor for several torque amplitudes. The associated pendulums' response is given in Fig. 3 (however, for clarity, the curve corresponding to T1 = 0.09 is not shown in the present figure). The analytical results representing the pendulums' response at unison are represented as green lines. The darker the line the larger the associated torque amplitude. For each analytical response there is an associated numerical result, computed with MANLAB, shown as a green line with square markers. Dashed lines indicate unstable solutions. Pitchfork and saddle-node bifurcations computed with MANLAB are represented as red and blue stars, respectively. The value of ℎ 1 for which the pendulums reach their cusp is shown as a black dashed line. It is computed using Eqs. ( 3), (B.1b) and (B.2a). The backbone curve of the unison mode is the black dotted line. A zoom around the antiresonance is included in the figure. The parameters of the CPVA are given in Table 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 1

Parameters of the CPVA studied in this section.

𝑁

𝑛 𝑝 𝜂 𝜇 𝑥 [4] 𝛼 [1] 𝛼 [3] b b𝑟 2 1.5 0.5 0.1 -0.2 0.5 -0.1 0.005 0.008

Antiresonance locking

The filtering is optimal if the excitation order 𝑛 coincides with the antiresonance order 𝑛 𝐴𝑅 over the whole torque range. However, as seen in the previous section, nonlinear effects cause 𝑛 𝐴𝑅 to be amplitude-dependent, so it is crucial to assess its evolution to ensure the CPVA achieves good performance over the whole torque range. The analytical model can be used to obtain a design rule minimising the shift of the antiresonance so it remains close from 𝑛 𝑝 . The procedure is described below.

The rotor's acceleration can be approximated by

𝜃 ′′ = ℎ 1 cos(𝑛𝜗 -𝜓 1 ) + ℎ 2 cos(2𝑛𝜗 -𝜓 2 ) + ℎ 3 cos(3𝑛𝜗 -𝜓 3 ), (24) 
where the harmonics' amplitudes ℎ 𝑖 and phases 𝜓 𝑖 (𝑖 = 1, 2, 3) are given in Appendix B. Neglecting the effect of damping and considering excitation orders smaller than the order at resonance, the pendulums are in phase-opposition with the external torque so that cos(𝜉) = -1. Using this in Eq. (B.2a) leads to the expression of the amplitude of the rotor's first harmonic

ℎ 1 = | | | | | | T1 -𝜇𝑛 2 𝑝 𝛬 𝑐 𝑎 - 𝜇(2𝑛 2 -3𝑛 2 𝑝 )𝑛 2 𝑡 (1 + 𝑛 2 𝑡 ) 8 𝑎 3 | | | | | | . ( 25 
)
Using Eq. (B.1b) to perform a Taylor series of T1 in 𝑎 leads to

T1 = 𝑎 | | | | | | 𝛬 𝑐 μ𝑛 2 𝑝 - 2𝛬 𝑚 𝑛 𝑝 𝜎 𝛬 𝑐 + ( 3𝑐 𝑡 -2𝑐 2 4𝛬 𝑐 - 3𝛬 𝑚 𝑛 𝑝 𝑐 𝑓 𝜎 4𝛬 2 𝑐 ) 𝑎 2 | | | | | | + (𝑎 4 ), (26) 
where 𝑐 𝑓 is a nonlinear coefficient representing the nonlinear forcing on the pendulums (cf. Appendix A). It is defined as

𝑐 𝑓 = 𝑛 2 𝑡 (1 + 𝑛 2 𝑡 ). (27) 
In Eq. ( 26), the term inside the absolute value can fairly be assumed positive as 𝜇𝛬 𝑐 𝑛 2 𝑝 is positive for reasonable parameters, 𝑎 2 is negligible for small values of 𝑎, 𝜎 is assumed small and T1 increases monotonically with 𝑎 if there is no jump. Introducing Eq. ( 26) in Eq. ( 25) leads to

ℎ 1 = 𝑎 2𝛬 𝑐 | | | | | 4𝛬 𝑚 𝑛 𝑝 𝜎 + ( 3𝛬 𝑚 𝑛 𝑝 𝑐 𝑓 𝜎 2𝛬 𝑐 + 𝑐 2 -2𝑐 𝑡 ) 𝑎 2 | | | | | . ( 28 
)
Because there is no damping in our reasoning, the amplitude of the rotor's first harmonic must be null at the antiresonance. Hence, the antiresonance locus is obtained by solving ℎ 1 = 0 for 𝜎, leading to

𝑛 𝐴𝑅 = 𝑛 𝑝 + 𝜖 𝑐 𝑐 -𝑐 𝑝 4𝛬 𝑚 𝑛 𝑝 𝑎 2 + (𝑎 4 ). (29) 
Thus, the condition to lock the antiresonance at 𝑛 𝑝 is

𝑐 𝑝 = 𝑐 𝑐 > 0. (30) 
It is of great importance to note that rule (30) is different from the one rendering a tautochronic response of the pendulums. Indeed, one can see from Eq. ( 21) that the condition yielding a constant value of 𝑛 2 is

𝑐 2 = 0 ⇔ 𝑐 𝑝 = 𝑐 𝑐 -2𝑐 𝑡 . ( 31 
)
Rule ( 30) also requires the pendulums' path not to be the tautochronic path of the uncoupled system (this would correspond to 𝑐 𝑝 = 0, cf. Appendix D). Hence, despite the large focus on tautochronic designs [28,38,67,68], these are not the preferred ones. This highlights the importance of studying the antiresonance locus and not only the pendulums' response. Fig. 5 shows the response of a CPVA tuned to fulfil condition (30). The rotor's response (b) is very well predicted by the model up to T1 = 0.03. For T1 = 0.05, the analytical model predicts a small shift of the antiresonance to the left while MANLAB shows that it actually shifts to the right. This shifting is amplified for T1 = 0.075, which highlights limits of the analytical model.

Looking at the pendulums' response (a), one can clearly see the softening behaviour for T1 = 0.03, with a jump at 𝑛 = 1.544. However, at higher torque amplitudes, the MANLAB solutions show that the behaviour becomes less softening. Moreover, for T1 = 0.075, there are two pitchfork bifurcations that are not predicted by the analytical model. This confirms that the accuracy of the model is limited to small torque amplitudes. Note also that even though rule (30) requires a softening behaviour, it is much less softening than for a circular path. Indeed, in the case presented in Fig. 5, 𝑥 [4] = 0.3261, while for the same parameters but a circular path, 𝑥 [4] = 2.6303 [13]. Moreover, values of 𝜂𝛼 [1] 𝛼 [3] larger than those given in Table 1 would require smaller values of 𝑥 [4] to fulfil rule (30).
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Fig. 5.

Order response of the pendulums (a) and the rotor (b) for several torque amplitudes. The pendulums are tuned to lock the antiresonance at 𝑛 𝑝 . The unison response is represented in green and its unstable parts are dashed. The darker the line the larger the torque amplitude. The red and blue areas are the instability regions related to localisation and jumps, respectively. MANLAB solutions are represented as thin lines with square markers. The red stars indicate the pitchfork bifurcations obtained with MANLAB. The vertical brown line indicates 𝑛 𝑝 . T1 = {0.0005, 0.005, 0.015, 0.03, 0.05, 0.075} and the other parameters are given in Table 1 except for 𝑥 [4] = 0.3261. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) Fig. 6. Evolution of the antiresonance order as a function of the torque amplitude for four different designs. The parameters of the three CPVAs are given in Table 1 expect for 𝑥 [4] = {0.3261, 0.3460, 0, -0.5119} for CPVAs 1, 2, 3 and 4, respectively, and 𝛼 [3] = 0 for CPVA 3. The dashed lines represent the analytical approximation of 𝑛 𝐴𝑅 obtained using Eq. ( 29), while the solid lines correspond to the antiresonance continuation procedure implemented in MANLAB [58].

Another rule limiting the shifting of the antiresonance was proposed by A. Renault [31][32][33]. It is derived from a regular perturbation solution of Eqs. (5a) and (5b) without damping, as presented in Appendix E, and leads to the recommendation

𝑐 𝑝 = 3𝛬 𝑚 3(1 + 𝜇)𝛬 𝑚 -4𝜇𝛬 2 𝑐 𝑐 𝑐 . ( 32 
)
V. Mahé et al. 1 expect for 𝑥 [4] = {0.3261, 0, 0}, 𝛼 [3] = {-0.1, 0, 0} and 𝛼 [1] = {0.5, 0.5, 0} for CPVAs 1, 2 and 3, respectively.

It is interesting to note that the design rule (30) is the same as Eq. ( 32) where the contribution of 𝜇 is neglected. These two rules are compared by computing the antiresonance order as a function of the excitation amplitude, as shown in Fig. 6. This computation is performed using MANLAB together with an antiresonance continuation procedure [58]. For comparison purposes, Fig. 6 also represents 𝑛 𝐴𝑅 ( T1 ) for a CPVA tuned accordingly to rule (31) and for a reference CPVA for which no nonlinear mistuning is introduced (i.e. 𝑥 [4] = 𝛼 [3] = 0, so that the rotation law is linear and the pendulums follow an epicycloidal path). We can see that rules (30) and ( 32) both limit efficiently the shifting of the antiresonance. Rule ( 32) is slightly more effective as it is the one keeping 𝑛 𝐴𝑅 closest from 𝑛 𝑝 . In the case of the CPVA with no nonlinear mistuning, the antiresonance is largely shifting to the right, which shows that the antiresonance naturally has a hardening behaviour. The case of the CPVA with pendulums following the tautochronic path of the coupled system leads to the worst results. This is logical as the antiresonance is initially shifting to the right, and rule (31) increases even more this hardening behaviour. The analytical prediction of 𝑛 𝐴𝑅 fits well with the numerical results for small torque amplitudes (around T1 = 0.03). For larger amplitudes the differences become significant, especially for designs that limit well the shifting of the antiresonance.

A torque response at 𝑛 = 𝑛 𝑝 of three different CPVAs is shown in Fig. 7.

• CPVA 1 is tuned using rule (30),

• The pendulums of CPVA 2 follow an epicycloid and a linear rotation law,

• The pendulums of CPVA 3 follow an epicycloid and do not rotate.

Note that no CPVA tuned accordingly to rule ( 32) is shown as it results in a response very close from that of CPVA 1 and the stability information is not provided by the analytical procedure detailed in Appendix E. The torque for which the pendulums reach their cusp is indicated for the three CPVAs. The pendulums of CPVA 3 cannot filter-out large torque amplitudes because localisation leads to a significant increase in amplitude, brining one of the pendulums to its cusp at T1 ≈ 0.0632. A similar situation occurs for CPVA 2, with one of the pendulums reaching its cusp at T1 ≈ 0.0693. The torque range of CPVA 1 is much larger than that of CPVAs 2 and 3. It is limited by the appearance of a subcritical pitchfork bifurcation, leading to a jump of the pendulums that brings them to their cusp. At small torque amplitudes, the gain on ℎ 1 is the same for CPVAs 1 and 2, but it is larger for CPVA 3. This highlights the benefit of the added rotational motion of the pendulums. Starting from T1 ≈ 0.0265, the gain for CPVAs 2 and 3 increases significantly compared to that of CPVA 1. In spite of the pendulums responding on a localised solution starting from T1 = 0.0385, CPVA 2 leads to a satisfying vibration reduction, with a gain of 6.4% when the pendulums reach their cusp. Still, one should be careful about the localised solution since a larger number of pendulums would likely reduce even more the torque (c), respectively, while the other parameters are given in Table 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

V. Mahé et al.
range [11]. The filtering with CPVA 3 is rather poor, with a gain exceeding 10% starting from as soon as T1 = 0.0610. Despite the small shift of the antiresonance visible in Figs. 5(b) and 6, the filtering of the 1st harmonic is extremely satisfying with CPVA 1. Indeed, Fig. 7(b) shows that the gain on most of the torque range is of 2.4%, and it does not exceed 6.4%. Though the pendulums are efficient in filtering the harmonic excitation, they generate higher rotor harmonics. Fig. 7(c) shows that this effect is absolutely not negligible as the amplitude of the 2nd and 3rd harmonics equals up to 12.4 and 7 times ℎ 1 , respectively, for CPVA 1. This issue is less visible for CPVAs 2 and 3, mostly because ℎ 1 is larger. A possibility to limit the apparition of higher harmonics is to use pendulums tuned at different orders [14]. Another solution is to use another filtering principle of the CPVA, based on a subharmonic response [49,50,69]. Finally, the analytical model predicts accurately most of the response even though it indicates a shifting of the antiresonance in the wrong direction (cf. Fig. 5(b)). This is because the shifting predicted by the analytical model is roughly the opposite of the actual shifting.

Avoidance of the instabilities

As explained in Section 1, instabilities of the unison solution are to be avoided as they reduce the torque range of the CPVA and might decrease the vibration reduction. Hence, it is interesting to have a simple information on the position of the instability zones to know how to avoid them. This can be done by neglecting the damping and using Taylor series in 𝑎 in the expression of 𝜎 𝑠𝑛 (𝑎) and 𝜎 𝑝𝑓 (𝑎), leading to

𝜎 𝑠𝑛 = 𝛬 2 𝑐 μ𝑛 𝑝 2𝛬 𝑚 + -2𝑐 2 ± 𝑐 2 4𝛬 𝑚 𝑛 𝑝 𝑎 2 + (𝑎 4 ), (33a) 
𝜎 𝑝𝑓 = -2𝑐 𝑝 ± |𝑐 2 -2𝑐 𝑡 | 4𝛬 𝑚 𝑛 𝑝 𝑎 2 + (𝑎 4 ) = -2𝑐 𝑝 ± |𝑐 𝑝 -𝑐 𝑐 | 4𝛬 𝑚 𝑛 𝑝 𝑎 2 + (𝑎 4 ) (33b) 
There are important remarks to be done about Eqs. (33a) and (33b):

• The bifurcation curve related to saddle-node bifurcations emanates from 𝜎 = 𝛬 2 𝑐 μ𝑛 𝑝 ∕2𝛬 𝑚 , which corresponds to 𝑛 = 𝑛 20 > 𝑛 𝑝 . However, the bifurcation curve related to pitchfork bifurcations emanates from 𝜎 = 0, which corresponds to 𝑛 = 𝑛 𝑝 .

• 𝜎 𝑠𝑛 increases with the amplitude if 𝑐 2 < 0 and decreases if 𝑐 2 > 0. It is logical that this bifurcation curve follows the sign of 𝑐 2 as jumps are due to the hardening/softening behaviour, and 𝑐 2 is the parameter that controls this behaviour (cf. Eq. ( 21)).

• 𝜎 𝑝𝑓 increases with the amplitude if -2𝑐 𝑝 -|𝑐 𝑝 -𝑐 𝑐 | > 0 and decreases if -2𝑐 𝑝 + |𝑐 𝑝 -𝑐 𝑐 | < 0. The case -2𝑐 𝑝 -|𝑐 𝑝 -𝑐 𝑐 | < 0 < -2𝑐 𝑝 + |𝑐 𝑝 -𝑐 𝑐 |
is highly undesired as 𝜎 𝑝𝑓 would remain around 0, causing the instability zone to exist at the operating point 𝑛 ≈ 𝑛 𝑝 . This is illustrated in Fig. 8.
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In order to avoid instabilities while keeping 𝑛 𝑝 ≈ 𝑛, the best options are to choose

2𝑐 𝑝 > |𝑐 𝑝 -𝑐 𝑐 | ⇔ 𝑐 𝑝 > 𝑐 𝑐 ∕3 and 𝑛 𝑝 < 𝑛, or (34a) 
2𝑐 𝑝 < -|𝑐 𝑝 -𝑐 𝑐 | ⇔ 𝑐 𝑝 < -𝑐 𝑐 and 𝑛 𝑝 > 𝑛. (34b)
Conditions (34a) and (34b) correspond to the part of Fig. 8(a) where 𝑛 > 𝑛 𝑝 and to the part of Fig. 8(c) where 𝑛 < 𝑛 𝑝 , respectively. Because of damping, the localisation zone does not start from 𝑛 = 𝑛 𝑝 , so one can still use conditions (34a) and (34b) with 𝑛 𝑝 = 𝑛.

In [29], linear over-tuning together with a hardening behaviour was recommended to avoid localisation. This is in agreement with condition (34b). In [8], which considered purely translated pendulums, it was proposed to use an over-tuned epicycloidal trajectory in order to keep the unison solution stable. The disadvantage of this method is that the level of detuning must be chosen depending on the maximum pendulums' amplitude desired, whereas conditions (34) prevent the appearance of a localised solution no matter the pendulums' amplitude. Moreover, the linear over-tuning required in [8] is relatively large, which decreases the efficiency of the vibration reduction (cf. Section 4.2). Finally, note that in the special case 𝑐 𝑝 = 𝑐 𝑐 (which is recommended to keep the antiresonance locked, cf. Section 4.2), condition (34a) can be satisfied but not condition (34b). Hence, recommendation (34a) is compatible with recommendations ( 30) and (32).

In order to avoid the jumps up to the cusp, one must ensure that

𝜎 < min[𝜎 𝑠𝑛 (𝑠 cusp )]. (35) 

Visualisation of the preferred design in the design space

Fig. 9 represents the stability of the unison solution at a given excitation order and as a function of the linear and nonlinear tuning parameters, 𝑛 𝑝 and c𝑝 , where the later is simply the unscaled version of 𝑐 𝑝 , i.e.

c𝑝 = 3(𝑥 [4] + 2𝑛 2 𝑝 𝜂𝛼 [1] 𝛼 [3] ). (36) 
For convenience, we also introduce the unscaled coefficient c𝑐 = 𝜇𝑛 4 𝑡 . Fig. 9 contains four maps, all corresponding to a different pendulums' amplitude. Each set (𝑛 𝑝 , c𝑝 ) corresponds to a given design, making the maps useful to assess simultaneously the stability of different designs. The designs subjected to jumps (localisation) at amplitude 𝑎 are shown in blue (red). The stable designs are shown in green. The guidelines limiting the shifting of the antiresonance (30) and preventing the appearance of localisation (34) are also represented, so one can see the designs that allow performance and stability. The hatched areas indicate the designs for which the pendulums have reached their cusp, so the instability zones should be avoided until the design becomes hatched. The black dot corresponds to the design presented in Figs. 5 and7 (CPVA 1 in Fig. 7).

The designs leading to the best vibration reduction are those located around the brown line and close to 𝑛 𝑝 = 𝑛. Fig. 9 shows that a small over-tuning could lead to localisation while a small under-tuning might cause a jump. Moreover, as explained in Section 4.3, the lower the damping the closer the instability zone is from 𝑛 𝑝 . Hence, to have an efficient and robust CPVA, the best choice is to choose c𝑝 ≈ c𝑐 and 𝑛 𝑝 equal or very slightly smaller than 𝑛.

Conclusion

This paper deals with the filtering efficiency of CPVAs and their dynamic stability. To consider modern CPVA designs, the 𝑁 identical pendulums are allowed to rotate relatively to the rotor. The dynamic response of the system and its stability are computed using a perturbation method, and the validity of this analytical model is validated through comparisons with numerical solutions. Because the system is nonlinear, the resonance and antiresonance orders can increase/decrease with the excitation amplitude. We showed that in the case of pendulums following an epicycloidal path and a linear rotation law, the resonance order tends to diminish with the exciting torque amplitude, revealing a softening behaviour. This softening is due to nonlinearities arising through the coupling between the rotor and the pendulums. However, contrarily to the resonance, the antiresonance order increases with the excitation amplitude. Hence, to design an efficient CPVA, it is not sufficient to assess only the behaviour of the pendulums, which does not contain information regarding the evolution of the antiresonance order. In this paper, we derived design guidelines that allow to minimise the shifting of the antiresonance, thus leading to a maximised filtering over the whole torque range. These guidelines require the use of paths/rotation laws that slightly soften the system's response compared to the case of an epicycloid and a linear rotation. The accuracy of these guidelines was assessed using an antiresonance tracking procedure and a torque sweep confirmed the efficiency of such nonlinear tunings. This torque sweep also highlighted that the amplitude of higher rotor harmonics is not negligible at the operating point. Then, two other design guidelines preventing the apparition of localised solutions were proposed. One of them is highly relevant as it is compatible with the rule locking the antiresonance. Finally, a representation of the stability and design rules in the design space allowed to identify the CPVA tuning parameters leading to a stable response and a maximum vibration reduction. (30), locking the antiresonance. The grey line shows the limit between the hardening and softening behaviour of the unison mode. Designs below this line are hardening. The hatched areas indicate the designs for which amplitude 𝑎 is larger than 𝑠 cusp . 𝑛 = 1.5 and the parameters that are not varied are given in Table 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Appendix A. System obtained through the method of multiple scales

The system of equations obtained through the application of the method of multiple scales is given by Eq. ( 17) where functions 𝑓 𝑎 𝑖 and 𝑓 𝜉 𝑖 are

𝑓 𝑎 𝑖 (𝒂, 𝝃) = [ -2𝑛 𝑝 b𝑎 𝑖 + 2𝛬 2 𝑐 𝑛 2 𝑝 μ 𝑁 𝑁 ∑ 𝑗=1 𝑎 𝑗 sin(𝛥𝜉 𝑖𝑗 ) + 1 𝑁 𝑁 ∑ 𝑗=1 [ 𝑐 𝑐 𝑎 𝑖 𝑎 2 𝑗 sin(2𝛥𝜉 𝑖𝑗 ) - 𝑐 𝑡 2 (𝑎 3 𝑗 + 𝑎 𝑗 𝑎 2 𝑖 ) sin(𝛥𝜉 𝑖𝑗 ) ] - ( 2𝛬 𝑐 - 𝑐 𝑓 4 𝑎 2 𝑖 ) T1 sin(𝜉 𝑖 ) ] [ 4𝛬 𝑚 𝑛 𝑝 ] -1 , (A.1) 𝑓 𝜉 𝑖 (𝒂, 𝝃) =𝜎𝑎 𝑖 - [ 2𝛬 2 𝑐 𝑛 2 𝑝 μ 𝑁 𝑁 ∑ 𝑗=1 𝑎 𝑗 cos(𝛥𝜉 𝑖𝑗 ) -𝑐 𝑝 𝑎 3 𝑖 + 1 𝑁 𝑁 ∑ 𝑗=1 [ 𝑐 𝑐 𝑎 𝑖 𝑎 2 𝑗 cos(2𝛥𝜉 𝑖𝑗 ) - 𝑐 𝑡 2 (𝑎 3 𝑗 + 3𝑎 𝑗 𝑎 2 𝑖 ) cos(𝛥𝜉 𝑖𝑗 ) ] + ( 2𝛬 𝑐 - 3𝑐 𝑓 4 𝑎 2 𝑖 ) T1 cos(𝜉 𝑖 ) ] [ 4𝛬 𝑚 𝑛 𝑝 ] -1 . (A.2) V. Mahé et al.
Constants 𝑐 𝑝 , 𝑐 𝑐 , 𝑐 𝑡 and 𝑐 𝑓 are defined in Eqs. ( 20) and ( 27) and 𝛥𝜉 𝑖𝑗 is defined as

𝛥𝜉 𝑖𝑗 = 𝜉 𝑗 -𝜉 𝑖 . (A.3)

Appendix B. Response of the systems with pendulums at unison

The amplitude and phase response of the pendulums at unison is given by

𝜎 = 2𝛬 2 𝑐 𝑛 2 𝑝 μ -𝑐 2 𝑎 2 4𝛬 𝑚 𝑛 𝑝 ± 8𝛬 𝑐 -3𝑐 𝑓 𝑎 2 16𝛬 𝑚 𝑛 𝑝 √ √ √ √ T 2 1 𝑎 2 - 64𝑛 2 𝑝 b2 (8𝛬 𝑐 -𝑐 𝑓 𝑎 2 ) 2 , (B.1a) T1 =4𝑎 [ ( 2𝑛 𝑝 (2𝛬 𝑚 𝜎 -𝛬 2 𝑐 𝑛 𝑝 μ) + 𝑐 2 𝑎 2 ) 2 ( 8𝛬 𝑐 -3𝑐 𝑓 𝑎 2 ) 2 + 4𝑛 2 𝑝 b2 ( 8𝛬 𝑐 -𝑐 𝑓 𝑎 2 ) 2 ] 1∕2 , (B.1b) tan(𝜉) = - 2𝑛 𝑝 b 4𝛬 𝑚 𝑛 𝑝 𝜎 -2𝛬 2 𝑐 𝑛 2 𝑝 μ + 𝑐 2 𝑎 2 8𝛬 𝑐 -3𝑐 𝑓 𝑎 2 8𝛬 𝑐 -𝑐 𝑓 𝑎 2 . (B.1c)
Eqs. (B.1a) and (B.1b) are used to compute the amplitude response as a function of the excitation order and excitation amplitude, respectively. The rotor's response can be approximated by Eq. ( 24). The amplitudes ℎ 𝑖 and phases 𝜓 𝑖 (𝑖 = 1, 2, 3) of its harmonics are given by

ℎ 2 1 = T 2 1 + 𝜇 T1 𝑎 cos(𝜉) ( 2𝑛 2 𝑝 𝛬 𝑐 + 𝑛 2 𝑡 (1 + 𝑛 2 𝑡 ) 4 (2𝑛 2 -3𝑛 2 𝑝 )𝑎 2 ) + 𝜇 2 𝑎 2 4 ( 2𝑛 2 𝑝 𝛬 𝑐 + 𝑛 2 𝑡 (1 + 𝑛 2 𝑡 ) 4 (2𝑛 2 -3𝑛 2 𝑝 )𝑎 2 ) 2 , (B.2a) tan(𝜓 1 ) = 𝜇𝑎 ( 8𝑛 2 𝑝 𝛬 𝑐 + 𝑛 2 𝑡 (1 + 𝑛 2 𝑡 )(2𝑛 2 -3𝑛 2 𝑝 )𝑎 2 ) sin(𝜉) 𝜇𝑎 ( 8𝑛 2 𝑝 𝛬 𝑐 + 𝑛 2 𝑡 (1 + 𝑛 2 𝑡 )(2𝑛 2 -3𝑛 2 𝑝 )𝑎 2 ) cos(𝜉) + 8 T1 , (B.2b) ℎ 2 =𝜇𝑛𝑛 2 𝑡 𝑎 2 , (B.2c) tan(𝜓 2 ) = -cos(2𝜉) sin(2𝜉) , (B.2d) ℎ 3 = 𝑛 2 𝑡 (1 + 𝑛 2 𝑡 ) 8 (𝑛 2 𝑝 + 2𝑛 2 )𝜇𝑎 3 , (B.2e) tan(𝜓 3 ) = -sin(3𝜉) -cos(3𝜉) . (B.2f)

Appendix C. Expression of the bifurcation curves

The bifurcation curves 𝑎 𝑠𝑛 (𝜎) and 𝑎 𝑝𝑓 (𝜎) can be written as 𝜎 𝑠𝑛 (𝑎) and 𝜎 𝑝𝑓 (𝑎) such that

𝜎 𝑠𝑛 = 1 4𝛬 𝑚 𝑛 𝑝 (8𝛬 𝑐 + 3𝑐 𝑓 𝑎 2 ) [ 𝜛 𝑠𝑛 1 ± √ 𝜛 𝑠𝑛 2 (-8𝛬 𝑐 + 𝑐 𝑓 𝑎 2 ) 3 ] , (C.1a) 𝜎 𝑝𝑓 = 1 4𝛬 𝑚 𝑛 𝑝 (8𝛬 𝑐 + 3𝑐 𝑓 𝑎 2 )(-8𝛬 𝑐 + 𝑐 𝑓 𝑎 2 ) [ 𝜛 𝑝𝑓 1 ± √ 𝜛 𝑝𝑓 2 (-8𝛬 𝑐 + 𝑐 𝑓 𝑎 2 ) 2 ] , (C.1b) with 𝜛 𝑠𝑛 1 =12𝛬 𝑐 𝑐 𝑡 𝑎 2 + 16𝛬 𝑐 (𝛬 2 𝑐 𝑛 2 𝑝 μ -𝑐 2 𝑎 2 ), (C.2a) 𝜛 𝑠𝑛 2 =(-8𝛬 𝑐 + 𝑐 𝑓 𝑎 2 ) 3 (-8𝛬 𝑐 + 3𝑐 𝑓 𝑎 2 ) 2 [ 𝑐 𝑓 𝑎 2 ( -4𝑛 2 𝑝 b2 (9𝑐 𝑓 (8𝛬 𝑐 + 𝑐 𝑓 𝑎 2 )𝑎 2 -64𝛬 2 𝑐 ) + 𝑐 2 2 𝑎 4 ( (-24𝛬 𝑐 + 𝑐 𝑓 𝑎 2 )𝑐 𝑓 𝑎 2 + 192𝛬 2 𝑐 ) ) +512𝛬 3 𝑐 (2𝑛 𝑝 b + 𝑐 2 𝑎 2 )(2𝑛 𝑝 b -𝑐 2 𝑎 2 )
] ,

(C.2b)

𝜛 𝑝𝑓 1 = -𝑐 𝑓 ( 6𝑐 𝑓 𝑐 𝑐 𝑎 6 + 16𝛬 𝑐 (𝑐 𝑡 + 2𝑐 𝑝 -𝑐 2 )𝑎 4 ) + 128𝛬 2 𝑐 𝑐 𝑝 𝑎 2 , (C.2c) 𝜛 𝑝𝑓 2 =(-8𝛬 𝑐 + 𝑐 𝑓 𝑎 2 ) 3 (-8𝛬 𝑐 + 3𝑐 𝑓 𝑎 2 ) 2 [ 𝑐 𝑓 𝑎 2 [ 𝑐 𝑓 𝑎 2 [ 𝑐 𝑓 𝑎 2 ( (3𝑐 𝑐 -𝑐 𝑡 + 𝑐 𝑝 ) 2 𝑎 4 -36𝑛 2 𝑝 b2 ) -8𝛬 𝑐 (36𝑛 2 𝑝 b2 + (𝑐 𝑐 -𝑐 𝑡 + 3𝑐 𝑝 )(3𝑐 𝑐 -𝑐 𝑡 + 𝑐 𝑝 )𝑎 4 ) ] -64𝛬 2 𝑐 ( -4𝑛 2 𝑝 b2 + (9𝑐 𝑐 𝑐 𝑡 -5𝑐 𝑐 𝑐 2 -2𝑐 2 𝑡 + 7𝑐 𝑡 𝑐 𝑝 + 𝑐 𝑡 𝑐 2 -3𝑐 𝑝 𝑐 2 )𝑎 4 ) ] -512𝛬 3 𝑐 (2𝑐 𝑡 -𝑐 2 ) 2 𝑎 4 + 2048𝛬 3 𝑐 𝑛 2 𝑝 b2
] .

(C.2d)
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Appendix D. Study of the uncoupled system

In this section, we focus on the case of where no fluctuating torque is applied on the rotor so that is spins at a constant speed. Hence, it is not a degree-of-freedom and the pendulums are uncoupled from the rotor. Setting 𝑦 = 1, 𝑦 ′ = 0 in Eq. (5b) and ignoring the damping leads to

[ 1 + 𝜂𝛾(𝑠 𝑖 ) 2 ] 𝑠 ′′ 𝑖 + 𝜂𝛾(𝑠 𝑖 ) 𝑑𝛾(𝑠 𝑖 ) 𝑑𝑠 𝑖 𝑠 ′ 𝑖 2 - 1 2 
𝑑𝑥(𝑠 𝑖 ) 𝑑𝑠 𝑖 = 0, 𝑖 = 1, … , 𝑁. (D.1)
Considering that the paths and rotation functions are given by Eq. ( 10), Eq. (D.1) can be rewritten as

𝛬 𝑚 𝑠 ′′ 𝑖 + 𝑛 2 𝑡 𝑠 𝑖 -2𝑥 [4] 𝑠 3 𝑖 + 6𝜂𝛼 [1] 𝛼 [3] ( 𝑠 2 𝑖 𝑠 ′′ 𝑖 + 𝑠 𝑖 𝑠 ′ 𝑖 2 ) + 9𝜂𝛼 2 [3] ( 𝑠 4 𝑖 𝑠 ′′ 𝑖 + 2𝑠 3 𝑖 𝑠 ′ 𝑖 2 ) = 0, 𝑖 = 1, … , 𝑁. (D.2)
In the special case 𝑥 [4] = 𝛼 [3] = 0, Eq. (D.2) becomes a linear equation, meaning that the configuration 𝑥 [4] = 𝛼 [3] = 0 yields a tautochronic behaviour of the pendulums. In the following, we look for other sets (𝑥 [4] , 𝛼 [3] ) that approximately lead to a tautochronic behaviour. Like in Section 3, this is done using the scaling 𝑥 [4] = 𝜖 x [4] , 𝛼 [3] = 𝜖 α [3] and the method of multiple scales with the fast time 𝜗 0 = 𝜗 and the slow one 𝜗 1 = 𝜖𝜗. Using the expansion ( 14) and the steady state condition (18), one finds that the backbone curve of the ith uncoupled pendulum is

𝑛 𝑢𝑐 = 𝑛 𝑝 - 𝑐 𝑝 4𝛬 𝑚 𝑛 𝑝 𝑎 2 . (D.3)
Hence, for the period of oscillation of the pendulums to be independent on their amplitude, one must have

𝑐 𝑝 = 0. (D.4)
Note that Eq. (D.3) can also be retrieved by setting 𝜇 = 0 in the backbone curve of the unison mode (21).

Appendix E. Application of a regular perturbation method on the equations of motion

Here we present the application of a regular perturbation method on Eqs. (5a) and (5b) without damping. Only one pendulum is considered, but the procedure is exactly the same with 𝑁 pendulums. First, variables 𝑦 and 𝑠 are expanded such that

𝑠 = 𝜖𝑠 1 + 𝜖 2 𝑠 2 + 𝜖 3 𝑠 3 + (𝜖 4 ), (E.1a) 𝑦 = 1 + 𝜖𝑦 𝜃1 + 𝜖 2 𝑦 𝜃2 + 𝜖 3 𝑦 𝜃3 + (𝜖 4 ). (E.1b)
Note that because damping is neglected, the constant part of the torque must not be considered. Indeed, in practice it balances with the rotor's damping such that b𝑟 = T0 (cf. Section 2.1). Introducing the expansions in the equations of motion leads to three systems of two equations, the ith system appearing at order 𝜖 𝑖 . These systems are given by

{ (1 + 𝜇)𝑦 ′ 𝜃1 + 𝜇𝛬 𝑐 𝑠 ′′ 1 = T1 cos(𝑛𝜗), (a) 
𝛬 𝑐 𝑦 ′ 𝜃1 + 𝛬 𝑚 𝑠 ′′ 1 + 𝑛 2 𝑡 𝑠 1 = 0 (b) { (1 + 𝜇)𝑦 ′ 𝜃2 + 𝜇𝛬 𝑐 𝑠 ′′ 2 = 𝑓 𝜃2 (𝑦 𝜃1 , 𝑠 1 ), (c) 
𝛬 𝑐 𝑦 ′ 𝜃2 + 𝛬 𝑚 𝑠 ′′ 2 + 𝑛 2 𝑡 𝑠 2 = 𝑓 𝑠2 (𝑦 𝜃1 , 𝑠 1 ), (d) 
{ (1 + 𝜇)𝑦 ′ 𝜃3 + 𝜇𝛬 𝑐 𝑠 ′′ 3 = 𝑓 𝜃3 (𝑦 𝜃1 , 𝑠 1 , 𝑦 𝜃2 , 𝑠 2 ), (e) 
𝛬 𝑐 𝑦 ′ 𝜃3 + 𝛬 𝑚 𝑠 ′′ 3 + 𝑛 2 𝑡 𝑠 3 = 𝑓 𝑠3 (𝑦 𝜃1 , 𝑠 1 , 𝑦 𝜃2 , 𝑠 2 ), (f) (E.2) 
with

𝑓 𝜃2 (𝑦 𝜃1 , 𝑠 1 ) = -𝜇[𝛬 𝑐 𝑦 ′ 𝜃1 𝑠 ′ 1 -2𝑛 2 𝑡 𝑠 1 𝑠 ′ 1 + (2𝛬 𝑐 𝑠 ′′ 1 + 𝑦 ′ 𝜃1 )𝑦 𝜃1 ] -𝑦 𝜃1 𝑦 ′ 𝜃1 , (E.3a) 𝑓 𝑠2 (𝑦 𝜃1 , 𝑠 1 ) = -𝛬 𝑚 (𝑦 ′ 𝜃1 𝑠 ′ 1 + 𝑦 𝜃1 𝑠 ′′ 1 ) -𝑛 2 𝑡 𝑦 𝜃1 𝑠 1 (E.3b) 𝑓 𝜃3 (𝑦 𝜃1 , 𝑠 1 , 𝑦 𝜃2 , 𝑠 2 ) = -𝜇 [ ( 𝛬 𝑐 𝑦 2 𝜃1 + 2𝛬 𝑐 𝑦 𝜃2 ) 𝑠 ′′ 1 + ( 𝛬 𝑐 𝑦 ′ 𝜃2 -2𝑛 2 𝑡 𝑠 2 ) 𝑠 ′ 1 + ( 3𝛼 [3] 𝜂𝑠 ′′ 1 - 𝑛 2 𝑡 (1 + 𝑛 2 𝑡 ) 2 𝑠 ′′ 1 ) 𝑠 2 1 + ( 𝛬 𝑐 𝑠 ′ 2 -𝑛 2 𝑡 𝑠 2 1 + 𝑦 𝜃2 ) 𝑦 ′ 𝜃1 + ( 6𝛼 [3] 𝜂𝑠 ′ 1 2 -𝑛 2 𝑡 (1 + 𝑛 2 𝑡 )𝑠 ′ 1 2 -2𝑛 2 𝑡 𝑠 ′ 2 ) 𝑠 1 + ( 2𝛬 𝑐 𝑠 ′′ 2 -4𝑛 2 𝑡 𝑠 1 𝑠 ′ 1 + 𝛬 𝑐 𝑦 ′ 𝜃1 𝑠 ′ 1 + 𝑦 ′ 𝜃2 ) 𝑦 𝜃1 ] -𝑦 𝜃1 𝑦 ′ 𝜃2 -𝑦 𝜃2 𝑦 ′ 𝜃1 , (E.3c) 𝑓 𝑠3 (𝑦 𝜃1 , 𝑠 1 , 𝑦 𝜃2 , 𝑠 2 ) = -6𝛼 [1] 𝛼 [3] 𝜂𝑠 2 1 𝑠 ′′ 1 + 2𝑥 [4] 𝑠 3 1 -𝛬 𝑚 𝑦 𝜃2 𝑠 ′′ 1 -𝛬 𝑚 𝑦 ′ 𝜃2 𝑠 ′ 1 - ( 6𝛼 [1] 𝛼 [3] 𝜂𝑠 ′ 1 2 + 𝑛 2 𝑡 𝑦 𝜃2 ) 𝑠 1 - ( 𝛬 𝑚 𝑠 ′ 2 + ( 3𝛼 [3] 𝜂 - 𝑛 2 𝑡 (1 + 𝑛 2 𝑡 ) 2 ) 𝑠 2 1 ) 𝑦 ′ 𝜃1 - ( 𝛬 𝑚 𝑠 ′′ 2 + 𝑛 2 𝑡 𝑠 2 ) 𝑦 𝜃1 .
(E.3d)

V. Mahé et al.
Looking at the nature of the forcing terms in the three systems of equations, it makes sense to look for solutions of the form

𝑦 𝜃1 = ℜ[ ĥ1(1) 𝑒 𝑗𝑛𝜗 ], 𝑠 1 = ℜ[ â1(1) 𝑒 𝑗𝑛𝜗 ], (E.4a) 𝑦 𝜃2 = ℜ[ ĥ2(2) 𝑒 2𝑗𝑛𝜗 ], 𝑠 2 = 𝑎 2(0) + ℜ[ â2(2) 𝑒 2𝑗𝑛𝜗 ], (E.4b) 𝑦 𝜃3 = ℜ[ ĥ3(1) 𝑒 𝑗𝑛𝜗 ] + ℜ[ ĥ3(3) 𝑒 3𝑗𝑛𝜗 ], 𝑠 3 = ℜ[ â3(1) 𝑒 𝑗𝑛𝜗 ] + ℜ[ â3(3) 𝑒 3𝑗𝑛𝜗 ], (E.4c)
where • denotes a complex quantity and the index in brackets refers to the number of the harmonic. Inserting these general forms of solution in the three systems of equations and assuming 𝑛 = 𝑛 𝑝 leads to

ĥ1(1) = 0, â1(1) = -T1 𝜇𝛬 𝑐 𝑛 2 𝑝 , (E.5a) ĥ2(2) = 3𝜇𝛬 2 𝑚 𝑛 2 𝑝 â2 1(1) 2(3(1 + 𝜇)𝛬 𝑚 ) -4𝜇𝛬 2 𝑐 , â2(2) = -𝑗 𝜇𝛬 𝑚 𝛬 𝑐 𝑛 𝑝 â2 1(1) 3(1 + 𝜇)𝛬 𝑚 -4𝜇𝛬 2 𝑐 , (E.5b) ĥ3(1) = 𝑗 2𝑛 3 𝑝 𝛬 𝑚 ĥ2(2) -3𝑛 𝑝 (𝑥 [4] + 2𝑛 2 𝑝 𝜂𝛼 [1] 𝛼 [3] ) â2 1(1) 2𝛬 𝑐 𝑛 2 𝑝 . (E.5c)
The expressions for ĥ3(3) , â3(1) and â3 (3) are not necessary to study the position of the antiresonance. As ĥ1(1) = 0, the condition to lock the antiresonance at 𝑛 𝑝 is ĥ3(1) = 0. Solving this leads to condition (32).

Chapter 5

The localised response of centrifugal pendulums

This chapter is made of a paper about to be submitted to Nonlinear Dynamics [152]. It focuses on predicting the localised response of a centrifugal pendulum vibration absorber (CPVA) which arises through instabilities of the classical CPVA operation. The aim to provide a better understanding of this localised behaviour. This study makes use of the simplified CPVA model described in section 2.3.1.

Sections 1 to 3.1 repeat information from chapters 1 and 2. They present the context of the study, the modelling of a CPVA (cf. section 2.1.1), a linear analysis (cf. section 2.2) and the simplification of the equations of motion (cf. section 2.3). The reader might want to skip these sections of the article if he already read chapters 1 and 2.

The novelty of the article starts in section 3.2, where the simplified equations of a CPVA (cf. section 2.3.1) are projected on the modal basis. In section 4, the modal responses are computed and the stability of the coupled-mode solution is assessed using the method of multiple scales (cf. section 2.5.2.1). The modal approach highlights that the localised response is due to this coupledmode response for which both the unison and phase-opposition modes contribute to the pendulums' response, causing them to oscillate differently. The results are applied to case studies in section 5 and verified using numerical resolutions of the system's dynamics. Bifurcations towards quasi-periodic solutions are captured both analytically and numerically. The numerical investigation of these quasiperiodic solutions showed that they can also become unstable and lead to chaotic responses of the CPVA. We also show that, in some particular cases, the localisation does not limit the torque capacity of the system and improves the vibration reduction. In such situations, localisation is beneficial to the performance of the CPVA.
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Abstract

Rotating machines are often subjected to fluctuating torques, leading to vibrations of the rotor and finally to premature fatigue and noise pollution. These vibrations can be reduced using centrifugal pendulum vibration absorbers (CPVA). These passive devices are made of several masses (pendulums) oscillating along a given trajectory and rotating relatively to the rotor. Previous studies showed that the dynamics of these devices is subject to instabilities leading to localisation of the motion of the masses. In this paper, the localised behaviour of a CPVA made of two pendulums allowed to rotate about their center of mass is investigated. To this aim, a dynamical model based on an analytic perturbation method is established. The aim of this model is to highlight some special features of the localised response, such as the appearance of quasi-periodic regimes. The case studies showed that in some special cases, localisation can improve the filtration as compared to a unison motion. The validity of the model was confirmed through a comparison with a numerical resolution of the system's dynamics.

Introduction

Centrifugal pendulum vibration absorbers (CPVAs) are passive devices that have been used for many years to reduce the torsional vibrations of rotating machines [1][2][3]. They consist of oscillating masses (pendulums) moving along particular paths relative to a primary inertia (rotor), as shown in Fig. 1.

Contrarily to tuned mass damper systems (TMD) [4,5], CPVAs are tuned to an order1 , not a frequency. This enables CPVAs to reduce the vibrations at every rotational speed while a TMD can operate only around a resonance of the rotating machine [6].

CPVAs exhibit strong nonlinearities: geometric nonlinearities due to the large amplitude of motion, and inertial nonlinearities, for instance due to Coriolis effect. The nonlinear response of a CPVA is strongly affected by the choice of the pendulums' trajectory. D. E. Newland observed early on that circular trajectories yield a softening response of the system, leading to jumps of the response [2]. J. F. Madden proposed to use cycloidal trajectories [7], which were earlier shown by C. Huygens to be the tautochronic trajectories of pendulums oscillating in the gravity field [8]. However, cycloids confer a hardening behaviour to the response of centrifugal pendulums. Still, this has the benefit of preventing the jumps of the response. It is H. H. Denman who demonstrated that the tautochronic trajectory of pendulums oscillating in a constant centrifugal acceleration field is an epicycloid [9]. Nevertheless, in the case of a CPVA, there are additional nonlinearities coming from the coupling between the rotor and the pendulums [10][11][12] so that epicycloidal trajectories no longer yield a tautochronic response [13]. Less than ten years ago, J. Mayet and H. Ulbrich showed that pendulums allowed to rotate about their center of mass could reduce the vibrations more efficiently thanks to the contribution of their rotational inertia [14]. Since this work, many studies on CPVAs consider the rotation of the pendulums [15][16][17][18][19]. A. Renault [20][21][22] and M. A. Acar [23] were the first to investigate in details the effect of rotation on the linear and nonlinear response of the system. Since their works, new studies on rotation law were led by M. Cirelli et al. [24], M. Cera et al. [25], X. Tan et al. [26], J. Mayet et al. [27] and V. Mahé et al. [13,[28][29][30][31].

Due to their cyclic symmetry, CPVAs are subjected to nonlinear energy localisation phenomena, causing the pendulums to oscillate with different phases and amplitudes. The first studies on such instabilities of the unison response were led by C.-P. Chao et al. [10], who considered pendulums following an epicycloidal path. The case of more general paths was then investigated by A. S. Alsuwaiyan et al. [32], S. Shaw et al. [12] and A. Grolet et al. [33]. The localisation phenomenon was also observed in several experimental studies [28,[34][35][36]. Localisation in the presence of rotating pendulums was studied in [13,25,37]. V. Mahé et al. showed that the rotation law can be chosen such that the nonlinearities it generates balance with those coming from the trajectory, resulting in a linear pendulums' response and preventing the apparition of instabilities [28]. Furthermore, several papers focused on the localised solution itself. Symmetric bifurcation theory was used in [11] to study N perfectly-tuned pendulums riding along an epicycloidal path. The case of mistuned pendulums following more general trajectories was investigated in [38,39]. [40] focused on simple pendulums (thus following a circular path) with a torsional stiffness at their pivot point. Localised solutions were computed using numerical methods and bifurcations leading to quasi-periodic and chaotic responses were observed.

The motivation of this paper is to present an analytical procedure to compute the localised solution of a CPVA and to assess its stability. The CPVA considered in this paper is made of two pendulums following a general path and allowed to rotate relatively to the rotor. To our knowledge, the only analytical study of the localised solution considered purely translated pendulums following an epicycloidal path [11], and the case of other trajectories was investigated solely numerically [38][39][40][41]. Analytic computations allow for easier (though less accurate) simulations than numerical methods, making them well-suited to explore the large particularities the localised solution. The non-unison response is usually undesired for two reasons. Firstly, it is believed to decrease the filtration performances, though some studies revealed a slight increase of performance due to localisation [40,41]. Secondly, localisation causes one (or more) pendulum to oscillate with a larger amplitude than if it were responding at unison. Because the trajectories are limited by a cusp point, this increase of amplitude is problematic as it reduces the torque capacity of the system. In this paper, we will show that localisation can lead to a large increase in performance while not affecting the torque capacity. Finally, in addition to the saddle-node bifurcations of the localised solution, we use the Routh-Hurwitz criterion to find analytically Neimark-Sacker bifurcations leading to quasi-period regimes. This paper is organised as follows: section 2 describes the modelling of the CPVA and presents its linear characteristics. The complete equations of motion are simplified in section 3 and the modal equations are derived. Analytical solutions of the modal and physical coordinates together with their stability are derived in section 4. Case studies are presented in section 5 and the paper ends with a conclusion in section 6.

Modelling and linear analysis 2.1 Modelling

O Si C i R i ( S i ) R 0i ϑ = Ω t + θ T ( ϑ ) rotor J r i th pendulum m i , I i j th pendulum αj ( Sj )
Figure 1: Representation of the system studied for N = 2 pendulums.

The system studied is shown in Fig. 1. It is made of a rotor of inertia J r rotating about its centre O. Its total angular position is ϑ(t) = Ωt + θ(t) where t is the time, Ω is the mean rotational velocity and θ(t) corresponds to the fluctuating part of the rotation. A torque T (ϑ) = T 0 + T θ (ϑ) is applied to the rotor where T 0 is its constant part and T θ (ϑ) is periodic. At equilibrium, T 0 = b r Ω where b r is the linear viscous damping coefficient of the rotor, such that the constant torque balances with the damping to set the mean rotational speed Ω. N pendulums of mass m i and inertia I i (about their centre of gravity) oscillate on their trajectory C i . The position of their center of gravity on these trajectories is given by the curvilinear abscissa S i (t) and their distance from O is R i (S i ). The characteristic dimension R 0i = R i (S i = 0) is the distance between O and the vertex of the trajectory. In addition to the traditional translation motion, the present study considers that the pendulums rotate about their centre of mass according to the rotation function α i (S i ). As for the rotor, an equivalent linear viscous damping b i is used to model the damping between the rotor and the i th pendulum. In the later, pendulums and their associated trajectory and rotation functions will be considered identical so that subscript "i" will be dropped when addressing pendulums' parameters.

In order to write the equations of motion in a non-dimensional form, the following parameters and variables are introduced:

s i = S i R 0 , η = I mR 2 0 , µ = N mR 2 0 J r + N I , b = b mΩ , br = b r (J r + N I)Ω , T (ϑ) = T0 + Tθ (ϑ) = T (ϑ) (J r + N I)Ω 2 , x(s i ) = R(R 0 s i ) 2 R 2 0 , z(s i ) = x(s i ) - 1 4 dx(s i ) ds i 2 , α(s i ) = α(R 0 s i ), γ(s i ) = dα(s i ) ds i , τ = Ωt, ( 1 
)
where τ is a dimensionless time. Moreover, it is chosen to express the trajectory and rotation functions as polynomials such that

x(s i ) = 1 -n 2 t s 2 i + ∞ k=3 x [k] s k i , α(s i ) = ∞ k=1 α [k] s k i , (2) 
where n t is the order of the pendulums' trajectory (also called geometric tuning order [17]), and x [k] and α [k] are trajectory and rotation coefficients. In the case x [k] = 0, ∀k, the pendulums' trajectories are epicycloids, which are the tautochronic trajectories when the rotor spins at a constant speed [9]. Hence, for k > 1, x [k] and α [k] represent the deviation from an epicycloid and a linear rotation law, respectively. In case the x [k] are small ∀k, the cusp of the trajectory can be approximated by the cusp of the epicycloid, given by [9] s cusp = 1

n t 1 + n 2 t . (3) 
Using the dimensionless quantities (1), the equations of motion can be written as [29] 1

N N i=1 (N + µx(s i ))θ + µ (z(s i ) + ηγ(s i )) s i + µs i dx(s i ) ds i (1 + θ ) + dz(s i ) ds i s i + η dγ(s i ) ds i s i + br θ = Tθ (ϑ), (z(s i ) + ηγ(s i )) θ + 1 + ηγ(s i ) 2 s i + ηγ(s i ) dγ(s i ) ds i s i 2 - 1 2 dx(s i ) ds i (1 + θ ) 2 + bs i = 0, i = 1, ..., N, (4a) (4b) 
where (•) = ∂(•)/∂τ . Equation (4a) is related to the motion of the rotor and the N Eqs. (4b) represent the motion of the pendulums. From now on, it is assumed that the fluctuating torque applied to the rotor contains only one harmonic. Its non-dimensional form is T1 cos(nϑ) where n is the engine order.

To transform this torque into a periodic forcing term, one can simply assume ϑ ≈ τ [28]. Moreover, this paper focuses on the analysis of a CPVA made of two pendulums, so that N = 2 in the following.

Linear vibrations of the system

In this section, a linear analysis of the system is led. One can linearise Eqs. (4a) and (4b) to find that the eigenorders1 and eigenvectors of the system are

n 00 = 0, n 10 = n p , n 20 = n p 1 + µ 1 + µ 1 - Λ 2 c Λ m φ 0 = [1, 0, 0] , φ 1 = [0, 1, -1] , φ 2 = - µΛ c 1 + µ , 1, 1 . (5) 
Superscript denotes the transpose. Λ m and Λ c are constants representing the equivalent mass of a pendulum and the linear coupling term between a pendulum and the rotor, respectively. They are given by

Λ m = 1 + ηα 2 [1] , Λ c = 1 + ηα [1] , (6) 
where α [1] is the linear rotation coefficient. n p is the tuning order of the pendulums and corresponds to their eigenorder when they are uncoupled from the rotor (i.e. the rotor is spinning at constant speed and is no longer a degree of freedom). Considering the case θ = 0 and linearising Eqs. (4b), one finds that n p is related to n t such that

n p = n t / Λ m . (7) 
(n 00 , φ 0 ), (n 10 , φ 1 ) and (n 20 , φ 2 ) will be referred-to as modes 0, 1 and 2, respectively. They are represented in Fig. 2. Mode 0 is a rigid body mode for which only the rotor is excited. Mode 1 corresponds to an phase-opposition motion of the pendulums and the rotor is a node of this mode. Mode 2 is a mode for which pendulums move in unison and in phase-opposition with respect to the rotor (provided that Λ c > 0, which is the case in practice). When a fluctuating torque is applied, the pendulums respond on mode 2 and generate an antiresonance on the rotor at order n p . Thus, for a fluctuating torque of order n, one typically chooses n p ≈ n to minimise the vibrations of the rotor. However, nonlinear effects can cause mode 1 to participate to the response. If n ≈ 2n p , a subharmonic response of mode 1 exists [29,30,42], but this is out of the scope of this paper as we will focus on n ≈ n p . In this case, the contribution of mode 1 to the systems' response is manifested through the apparition of a localised solution.

Simplified equations

Following S. Shaw et al. [32], the construction of the model starts with a scaling of the parameters, allowing a simplification of the equations of motion such that the dynamics of the pendulums becomes uncoupled from that of the rotor. The beginning of the procedure is detailed in [28], so only the main steps are reminded here. Then, simplified modal equations will be derived. The trajectory and rotation functions followed by the pendulums, whose general form is given by Eq. ( 2), are chosen to be

x(s i ) = 1 -n 2 t s 2 i + x [4] s 4 i , α(s i ) = α [1] s i + α [3] s 3 i . (8) 
There are no odd powers of s i in x(s i ) and no even powers in α(s i ) so that these two functions are symmetric (anti-symmetric, respectively) about s i = 0. It is the case in practice due to design constraints. In addition, we only consider low powers of s i in x(s i ) and α(s i ) as s i will be considered small in the following (cf. section 3.1). The fluctuating rotor's rotation can be expanded as

θ = θ 1 + θ 2 + HOT, (9) 
where θ 1 and θ 2 have different orders of magnitude (cf. section 3.1), and HOT refers to Higher Order Terms.

Scaling and simplified physical equations

According to relevant remarks and assumptions [28], the parameters and variables can be scaled as

b = b, br = h br , T1 = r T1 , µ = φ μ, θ 1 = w 1 θ1 , θ 2 = w 2 θ2 , s i = ν si , x [4] = p x[4] , α [3] = q α[3] , (10) 
where , h, r, φ, w 1 , w 2 , ν, p and q are scaling coefficients to be determined and is a small parameter. Then, the simplified equations of the rotor and the pendulums are obtained using the trajectory and rotation functions (8), the expanded form of θ (9), the scaled parameters (10), and choosing the set of scaling coefficients

φ = = 1, ν = 1/2, p = q = 0, r = w 1 = 3/2, w 2 = 2, h > ν. ( 11 
)
This set was chosen to match the assumptions while uncoupling the pendulums' equation from the rotor's dynamics and keeping the desired terms at first order. The same scaling was used in [32,38,39,43,44] for purely translated pendulums. The rotor's and pendulums' simplified equations are

θ 1 + 1/2 θ 2 = T1 cos(nτ ) + n 2 p μΛ c N N i=1 si + 1/2 2μn 2 t N N i=1 si s i + HOT, s i + n 2 p si = -Λ -1 m -2x [4] s3 i + 6ηα [1] α[3] (s 2 i s i + si s 2 i ) + bs i + Λ c T1 cos(nτ ) + n 2 p μΛ 2 c N N j=1 sj + HOT, i = 1, 2, (12a) (12b) 
respectively. At the order retained in the rotor's equation (12a), only linear and quadratic terms in s i are present. The pendulums' equations (12b) contain the influence of the external torque, the pendulums' damping, the coupling between pendulums through the sum over N , and nonlinearities coming from both the trajectory and the rotation. Equations (12b) are weakly coupled because pendulums are coupled indirectly through the rotor and their effect on the rotor is small as their relative inertia is small [45]. Moreover, these equations are weakly nonlinear because s i were assumed small and the trajectory and rotation functions chosen are close to an epicycloid and a linear rotation, which render a linear behaviour for small fluctuations of the rotational speed. Note that at the order retained, the nonlinearities coming from the coupling between the rotor and the pendulums are missed [10,12,13,29], so that the only nonlinearities of the system are due to the perturbation of the trajectory and rotation functions.

Simplified modal equations

Equations (12b) can be written in matrix form using the vector of unknowns

q = [s 1 , s2 ] = 2 k=1 ζ k ψ k , (13) 
where ψ k are the reduced eigenvectors

ψ 1 = [1, -1], ψ 2 = [1, 1]. ( 14 
)
They simply correspond to the eigenvectors of the full system without the rotor's component (cf. Eq. ( 5)). It is possible to use only those two modes because mode 0 is a rigid body mode that does not affect the pendulums' response (cf. section 2.2). ζ 1 and ζ 2 are the modal coordinates associated to the reduced modes (n 10 , ψ 10 ) and (n 20 , ψ 20 ), respectively. Projecting the pendulums' matrix equation on the reduced modes leads to the two modal equations

ζ 1 + n 2 p ζ 1 = f 1 (ζ 1 , ζ 2 , τ ), ζ 2 + n 2 p ζ 2 = f 2 (ζ 1 , ζ 2 , τ ). (15a) 
(15b) where functions f 1 and f 2 are given by

f 1 (ζ 1 , ζ 2 , τ ) = -Λ -1 m bζ 1 -2x [4] (ζ 3 1 + 3ζ 1 ζ 2 2 ) + 6ηα [1] α[3] (ζ 1 ζ 1 2 + 2ζ 2 ζ 1 ζ 2 + ζ 1 ζ 2 2 + ζ 2 1 ζ 1 + 2ζ 1 ζ 2 ζ 2 + ζ 2 2 ζ 1 ) , f 2 (ζ 1 , ζ 2 , τ ) = -Λ -1 m bζ 2 -2x [4] (ζ 3 2 + 3ζ 2 1 ζ 2 ) + 6ηα [1] α[3] (ζ 2 ζ 2 2 + 2ζ 1 ζ 1 ζ 2 + ζ 2 ζ 1 2 + ζ 2 2 ζ 2 + 2ζ 1 ζ 2 ζ 1 + ζ 2 1 ζ 2 ) + Λ c T1 cos(nτ ) + n 2 p μΛ c ζ 2 . (16a) (16b) 
One can see that the external torque only appears in f 2 , which is consistent with pendulums oscillating at unison in the linear regime. However, nonlinearities induce a strong modal coupling such that ζ 2 can exchange energy with ζ 1 through a 1:1 internal resonance [46,47]. This situation results in a coupled-mode solution leading to energy localisation on a pendulum. Indeed, the pendulums' coordinates are

s1 = ζ 2 + ζ 1 , s2 = ζ 2 -ζ 1 , (17a) (17b) 
and one can see that when ζ 1 = 0, the pendulums oscillate with different amplitudes and/or phases.

Modal and physical solutions and stability analysis 4.1 Application of the method of multiple scales

Now, the simplified modal equations are solved using the method of multiple scales [48]. Two time scales are introduced, τ 0 = τ and τ 1 = τ , and the modal coordinates are expanded such that

ζ 1 (τ ) = ζ 11 (τ 0 , τ 1 ) + ζ 12 (τ 0 , τ 1 ), ζ 2 (τ ) = ζ 21 (τ 0 , τ 1 ) + ζ 22 (τ 0 , τ 1 ). ( 18a 
) (18b)
Applying the method of multiple scales yields solutions of the form

ζ 11 (τ 0 , τ 1 ) = u 1 (τ 1 ) cos(nτ 0 -β 1 (τ 1 )), ζ 21 (τ 0 , τ 1 ) = u 2 (τ 1 ) cos(nτ 0 -β 2 (τ 1 )). (19a) (19b) 
Amplitudes u 1 , u 2 and phases β 1 , β 2 are governed by the system

           D 1 u 1 = f u 1 (u, β), u 1 D 1 β 1 = f β 1 (u, β), D 1 u 2 = f u 2 (u, β), u 2 D 1 β 2 = f β 2 (u, β), (20a) (20b) (20c) (20d) 
where

D 1 (•) = ∂(•)/∂τ 1 , u = [u 1 , u 2 ] and β = [β 1 , β 2 ] . Functions f u 1 , f β 1 , f u 2 and f β 2 are given in Appendix A.
The solutions sought are those at steady state, which corresponds to

D 1 u 1 = D 1 u 2 = D 1 β 1 = D 1 β 2 = 0. ( 21 
)
The form of system (20) can lead to two types of solutions :

• (u 1 = 0, u 2 = 0) corresponds to the unison solution for which all pendulums move in a synchronous motion. • (u 1 = 0, u 2 = 0) corresponds to the coupled-mode solution leading to localisation on a pendulum.

Unison solution

The unison solution is obtained by solving Eqs. (20c) and (20d) for u 1 = 0. This leads to

σ = 1 2Λ m n p   Λ 2 c n 2 p μ - c p 2 u 2 2 ± Λ 2 c T 2 1 u 2 2 -n 2 p b2   , T1 = u 2 Λ c c p 2 u 2 2 + 2Λ m n p σ -n 2 p μΛ 2 c 2 + n 2 p b2 1/2 , tan(β 2 ) = -2n p b 4Λ m n p σ -2Λ 2 c n 2 p μ + c p u 2 2 -1 , (22a) (22b) (22c) 
where σ and c p are a detuning term and a nonlinear coefficient related to the perturbations of the trajectory and rotation law, respectively. They are defined as

n = n p + σ, (23) 
c p = 3(x [4] + 2n 2 p ηα [1] α [3] ). ( 24 
)
The backbone curve of mode 2 is obtained by setting b = T1 = 0 in Eq. (22a), leading to

n 2 = n p - c p 4Λ m n p u 2 2 . (25) 
Equation (25) shows that the hardening/softening behaviour of mode 2 is governed by c p . As c p can be controlled through the values of x [4] and α [3] , it can be seen as the nonlinear tuning parameter of the system.

The stability of the unison solution is not easy to assess with the current coordinates. To compute it, one should first rewrite system (20) using cartesian coordinates, as done in [29]. Then, the stability can be assessed by computing the Jacobian of the cartesian system and evaluating the sign of the real part of its eigenvalues. An easier way is to analyse the Jacobian of the system of physical coordinates. This was done in [28] and led to the bifurcation curves

u 2sn = -8σΛ m n p + 4Λ 2 c n 2 p μ ± 2n p (2σΛ m -n p Λ 2 c μ) 2 -3 b2 3c p (26) 
and

u 2pf = -8σΛ m n p ± 2n p 4σ 2 Λ 2 m -3 b2 3c p . ( 27 
)
u 2sn and u 2pf define the saddle-node and pitchfork bifurcations of the unison solution for every torque amplitude T1 . In other words, each crossing between u 2sn and u 2 leads to a jump of the response, while the crossings between u 2pf and u 2 lead to the localised solution.

Localised solution

To start the computation of the localised solution, one needs to express the response of mode 1 in terms of mode 2 using Eqs. (20a) and (20b). This leads to

u 1 = - 4n p Λ m σ + 2c p u 2 2 ± c 2 p u 4 2 -4n 2 p b2 c p , sin(2∆β) = 2n p b c p u 2 2 , cos(2∆β) = ±sign(c p ) 1 - 4n 2 p b2 c 2 p u 4 2 , (28a) (28b) 
where the phase difference ∆β is defined as

∆β = β 1 -β 2 . ( 29 
)
Now, a solution for mode 2 in terms of the excitation parameters is sought.

As u 1 depends on σ, one has to introduce Eq. (28a) in Eqs. (20c) and (20d) to find σ(u 2 ). This leads to

σ = -2μn 2 p Λ 2 c -5c p u 2 2 ∓ 3 c 2 p u 4 2 -4n 2 p b2 + 2n p b sin(2∆β) 1 + cos(2∆β) ± √ 2 1 + cos(2∆β) 4 T 2 1 u 2 2 Λ 2 c -n 2 p b2 (1 + cos(2∆β)) + sin 2 (2∆β) 4n 2 p b2 -2n 4 p μ2 Λ 4 c -2n 2 p μΛ 2 c + c p u 2 2 c p u 2 2 ± c 2 p u 4 2 -4n 2 p b2 -n p b 2n 2 p μΛ 2 c + c p u 2 2 ± c 2 p u 4 2 -4n 2 p b2 (2 sin(2∆β) + sin(4∆β)) 1/2 [8n p Λ m ] -1 . (30) 
In the contrary, as u 1 is independent on T1 , one can just use Eqs. (20c) and (20d) to obtain T1 (u 2 ). This leads to

T 2 1 = u 2 2 Λ 2 c c p 2 u 2 2 + 2Λ m n p σ -n 2 p μΛ 2 c 2 + n 2 p b2 + u 2 1 c p n p b sin(2∆β) + u 2 2 c p + 4n p σΛ m -2n 2 p μΛ 2 c 1 + cos(2∆β) 2 + u 2 1 c p cos(2∆β) + 5 4 . (31) 
Finally, the phase of mode 2 is given by

tan(β 2 ) = c p u 2 1 sin(-2∆β) -2n p b 4n p Λ m σ + c p (2u 2 1 + u 2 2 + u 2 1 cos(2∆β)) -2μn 2 p Λ 2 c . (32) 
The stability of this localised solution is assessed in section 4.4.

Stability of the localised solution

On the localised solution, u 1 = 0 and u 2 = 0 so that system (20) can be rewritten as

           D 1 u 1 = f u 1 (u, β), D 1 β 1 = f * β 1 (u, β), D 1 u 2 = f u 2 (u, β), D 1 β 2 = f * β 2 (u, β), (33a) (33b) (33c) (33d) 
where f * β 1 and f * β 2 simply correspond to f β 1 /u 1 and f β 2 /u 2 , respectively. Next, the Jacobian J of system ( 33) is computed and evaluated on the localised solution. Looking for a change in the sign of det[J ] indicates a change in the sign of the real part of one of its eigenvalues, hence a change of stability. However, these instabilities are only related to saddle-node bifurcations. In order to obtain the Neimark-Sacker bifurcations as well, one needs to analyse the characteristic polynomial of J , written as

P (λ) = k 4 λ 4 + k 3 λ 3 + k 2 λ 2 + k 1 λ + k 0 . (34) 
The roots λ i , i = 1, ...4 of P (λ) are the eigenvalues of J and coefficients k i are given in B.1. The stability state depends on the form of the eigenvalues:

• If (λ i ) < 0, ∀i, the localised solution is stable.

• If (λ i ) > 0 for at least one i ∈ {1, ..., 4}, the localised solution is unstable. The instability at stake here is that arising through saddle-node bifurcations and leading to a jump a the system's response.

• If λ i = λ *
j and (λ i ) = 0 for at least one i, j ∈ {1, ..., 4}, i = j, where * indicates the complex conjugate, a Neimark-Sacker bifurcation occurs and leads to a quasi-periodic solution.

There are no closed-form solutions for the roots of P (λ) but one can analyse them using the Routh-Hurwitz criterion [49] and conclude on the stability state. The full procedure is presented in B.

Physical solutions

The pendulums' response at first order can be written si = a i cos(nτ

-ξ i ), i = 1, 2, ( 35 
)
where the scaled amplitudes a i and the phases ξ i are obtained in terms of u 1 , u 2 and β 1 , β 2 through Eqs. ( 17) and ( 19) evaluated at steady state. This leads to

a 1 = u 2 1 + u 2 2 + 2u 1 u 2 cos(∆β), a 2 = u 2 1 + u 2 2 -2u 1 u 2 cos(∆β), tan ξ 1 = u 1 sin β 1 + u 2 sin β 2 u 1 cos β 1 + u 2 cos β 2 , tan ξ 2 = -u 1 sin β 1 + u 2 sin β 2 -u 1 cos β 1 + u 2 cos β 2 . ( 36a 
) (36b) (36c) (36d) 
Using Eqs. ( 35) and (36) in Eq. (12a), one obtains the unscaled amplitude of the first two rotors harmonics, written

h 1 = |θ 1 | and h 2 = |θ 2 |, h 2 1 = 2 μ2 n 4 p Λ 2 c 4 a 2 1 + a 2 2 + 2a 1 a 2 cos(ξ 1 -ξ 2 ) + μn 2 p Λ c T1 (a 1 cos ξ 1 + a 2 cos ξ 2 ) + T 2 1 , h 2 2 = 3 μ2 n 2 n 4 t 4 a 2 1 sin 2ξ 1 + a 2 2 sin 2ξ 2 2 + a 2 1 cos 2ξ 1 + a 2 2 cos 2ξ 2 2 . ( 37a 
) (37b)
5 Case studies

The aim of this section is to visualise some interesting features of the localised solution and to compare the analytical results with numerical ones in order to validate the model. Two different numerical resolutions are used in this paper:

• Eqs. (4a) and (4b) are integrated numerically using a Runge-Kutta algorithm until the steady state is reached. Then, the signals' amplitudes are obtained through a decomposition into Fourier series. • Eqs. (4a) and (4b) are solved with MANLAB, which is a path-following and bifurcation analysis software [50,51].

For convenience, the dimensionless pendulums' amplitudes āi are introduced. They simply correspond to the unscaled version of a i , i.e. āi = 1/2 a i . Similarly, we introduce the unscaled modal amplitudes ūi = 1/2 u i .

Modal and physical response

In practice, the excitation order is fixed such that n is a constant. However, pendulums may not be tuned exactly to the excitation. This mistuning can be intentional or may arise from material imperfections. Either way, varying the excitation order is similar to introducing mistuning (provided that pendulums are equally mistuned) and is therefore relevant for studying the effect of mistuning on the system's response [33,52].

Figure 3 represents the order response of modes 1 and 2 as a function of the excitation order n. The green curve corresponds to the response on mode 2 only (i.e. the unison response), while the brown and pink curves represent the coupled response of modes 1 and 2 (i.e. the localised response). The blue and red are the unstable zones delimited by the bifurcation curves u 2sn and u 2pf . We can see that when the green curve enters into the red zone, mode 1 starts responding and the response of mode 2 is no longer that of unison.

Figure 4 represents the pendulums' amplitude and phase response associated to the modal response depicted in Fig. 3. The comparison between the numerical and experimental results is in good agreement, both for the unison and the localised solutions. The discrepancies are larger at large amplitudes, which was to be expected from the assumptions used to simplify the equations (cf. section 3.1). The time required to reach the steady state during the temporal integrations was very long near the bifurcation points. The small differences between the time integration and MANLAB results are due to the steady state not yet established.

A time signal reconstructed from the analytical model is compared to that obtained through time integration in Fig. 5. As expected, the signals match almost perfectly.

Figure 6 shows the amplitude response of the two first rotor harmonics. Again, the predictions of the analytical model are quite good, though less accurate that in the case of the pendulums, especially for harmonic 1. This is due to the fact only the linear pendulums' contribution was taken into account in h 1 (cf. Eq. (12a)). Interestingly, we can see that the amplitude of the first two rotor harmonics is lower on the localised solution than on the unison one. Further discussion on that matter is provided in section 5.3. 

N n p η µ x [4] α [1] α [3] b br 2 0.5 1 0.02 -2 1 0.1 0.025 0.0015
Table 1: Parameters of the CPVA studied in this section.

Non-periodic solutions

Figure 7 shows the amplitude and phase response of the pendulums of a CPVA whose parameters are given in Tab. 2. The response undergoes Neimark-Sacker bifurcations leading to a quasi-periodic response. The range of orders for which the numerical solution is not periodic was assessed by looking at the time integration signals at different orders, as shown in Fig. 8. This range of nonperiodic solutions fits very well with the Neimark-Sacker bifurcations obtained analytically (red stars). Fig. 9 shows the Poincare sections associated to the signals given in Fig. 8(b) and (c). From Fig. 9(a), we can see that the signal in Fig. 8(b) is quasi-periodic. However, from Fig. 9(b), it seems that the quasiperiodic solution at n = 0.5265 is unstable and bifurcates towards a chaotic solution [53]. Bifurcations from the localised solution leading to a chaotic response was also observed in [40]. Chaotic motions can also appear in CPVAs made of a single pendulum (in which case localisation cannot occur), as shown in [54,55].

N n p η µ x [4] α [1] α [3] b br 2 0.5 1 0.02 -1 1 0.1 0.0075 0.0015
Table 2: Parameters of the CPVA studied in this section.

Filtration improvement

Though some studies showed that localisation can improve the filtration performance [40,41], it is not desired as it generally decreases the torque capacity. In this section, it is shown that one can use localisation to increase the filtration will not decreasing the torque capacity. In other words, localisation can improve the efficiency of the filtration as compared to the unison solution.

Figure 10 shows an amplitude response of the pendulums and the two first rotor harmonics as a function of the torque amplitude and for an order very slightly above the tuning order. Both analytical and MANLAB results are shown. The solutions match well for small torque amplitudes but they become more different as the amplitude is increased. It is not surprising to observe differences in the solutions as the analytical model assumed small pendulums amplitudes, whereas they are certainly not small. Indeed, one of the pendulums reaches an amplitude close from 1. Though the analytical prediction is not perfect, it describes well the shape of the localised solution. Figure 10(a) shows that the pendulums do not hit their cusp because of localisation, hence the torque range is the same as if localisation did not occur. Moreover, looking at Fig. 10(b) and (c), one can see that there is a significant torque range over which the localised solution leads to a smaller amplitude of the two first rotor harmonic than the unison solution. The MANLAB results show that above T1 ≈ 0.006, the filtration of harmonic 1 achieved through the localised solution is less efficient than predicted. However, the filtration of the 2 nd harmonic is better than expected. Overall, localisation reduces the amplitude of the rotor's two first harmonics, and as it does not reduce the torque capacity, it provides a better filtration than the unison solution. Hence, one should not systematically aim to avoid the localised solution. Instead, it should be investigated to determine whether it decreases the efficiency of the CPVA or not.

Finally, an interesting feature of the unison response shown in Fig. 10(b) is that between the two pitchfork bifurcations h 1 diminishes as T1 increases. It is shown in C that the local maximum at T1 ≈ 0.0036 and the local minimum at T1 ≈ 0.0084 indeed correspond to pitchfork bifurcations. In addition, it is also shown that the antiresonance locus is For the CPVA shown in Fig. 10,c p < 0 so that the antiresonance shifts to the right as T1 increases. As the excitation order is n = 0.504 > n p , the antiresonance gets closer from the excitation order until n = n AR , which corresponds to the local minimum. 

n AR = n p - c p 4Λ m n p a 2 . (38) 
N n p η µ x [4] α [1] α [3] b br 2 0.

Conclusion

This paper deals with the nonlinear dynamics of CPVAs made of two identical pendulums that are allowed to rotate relatively to the rotor. Analytical procedures to compute the localised solution and assess its stability are proposed. The stability analysis allows the prediction of saddle-node bifurcations, leading to jumps of the response, and Neimark-Sacker bifurcations, leading to non-periodic solutions. Numerical resolutions of the systems' dynamics validated the accuracy of the analytical predictions and allowed to visualise quasi-periodic and chaotic solutions. Finally, it was shown that the localised response can provide a better filtration than the unison one while not affecting the torque range. Hence, one should not systematically aim to avoid localisation.

Statements and declarations

Appendix B Stability analysis of the localised solution B.1 Coefficients of P (λ)

The coefficients of the characteristic polynomial given in Eq. ( 34) are

k 0 = -u 2 1 -32n 4 p (u 2 1 + u 2 2 ) b4 -4n 2 p c p u 2 2 b2 4n p (2Λ m σ -Λ 2 c n p μ)(-u 2 1 + u 2 2 cos(2∆β) + 2u 2 2 ) + c p -u 4 1 cos(2∆β) -4u 4 1 + 4u 2 1 u 2 2 cos 2 (2∆β) + 12u 2 1 u 2 2 cos(2∆β) + 6u 2 1 u 2 2 + 2u 4 2 cos 2 (2∆β) + 5u 4 2 cos(2∆β) + 4u 4 2 + c 2 p u 6 2 (4Λ m n p σ -2Λ 2 c n 2 p μ + c p u 2 1 cos(2∆β) + 2c p u 2 1 + c p u 2 2 ) (4Λ m n p σ -2Λ 2 c n 2 p μ + c p u 2 1 cos(2∆β) + 2c p u 2 1 -2c p u 2 2 cos 2 (2∆β) -8c p u 2 2 cos(2∆β) -5c p u 2 2 ) cos(2∆β) 8Λ 2 m n 2 p u 2 2 -2 , k 1 = b -4n 2 p b2 (u 4 1 -8u 2 1 u 2 2 -u 4 2 ) + u 4 2 4n 2 p (2Λ m σ -Λ 2 c n p μ) 2 + 8c p n p (u 2 1 + u 2 2 )(2Λ m σ -Λ 2 c n p μ) + c 2 p (-u 4 1 cos 2 (2∆β) + 4u 4 1 + 8u 2 1 u 2 2 cos 2 (2∆β) + 10u 2 1 u 2 2 cos(2∆β) + 8u 2 1 u 2 2 + 3u 4 2 ) 16Λ 3 m n 2 p u 4 2 -1 , k 2 =k 1 Λ m b + b2 Λ 2 m , k 3 = 2 b Λ m , k 4 =1. (B5) (B6) (B7) (B8) (B9)

B.2 The Routh table

The use of the Routh-Hurwitz criterion requires the construction of a Routh 

r 40 = k 4 , r 41 = k 2 , r 42 = k 0 , r 30 = k 3 , r 31 = k 1 , r 20 = k 1 k 3 + k 2 3 4 , r 21 = k 0 , r 10 = (k 1 + k 3 3 /4)k 1 -k 0 k 2 3 k 1 + k 3 3 /4 , r 00 = k 0 . (B10)
The stability state of the system is obtained by analysing Tab. B1. Cases of interest are briefly presented below and other special cases can be found in [56].

• The number of roots with positive real parts equals the number of sign changes in the first column of Tab. B1 (provided that none of the coefficients in this column are null). • There is at least one pair of complex conjugate eigenvalues if a row R i , i > 0, is full of zeros. In this case, one has to recompute the coefficients of the Routh 

B.3 Application of the Routh-Hurwitz criterion

To apply the Routh-Hurwitz criterion to the CPVA, it is first useful to note that

k 3 > 0, k 4 > 0 ⇒ r 30 > 0, r 40 > 0. (B11)
Thus, there are never sign changes between rows R 4 and R 3 , which indicates that there is always at least one eigenvalue with a negative real part. Moreover, Eq. (B11) implies that R 4 and R 3 are never full of zeros. Then, there are three cases to consider.

Case 1: no rows are full of zeros

There are no Neimark-Sacker bifurcations and the response is unstable if the r i0 , i = 0, ..., 3 do not all have the same sign.

Case 2: row R 2 is full of zeros

The Routh table has to be modified as explained in [56], leading to Tab. B2. The fact that the zero row is even means that P (λ) has a zero root. This root does not need to be studied, which explains why Tab. B2 has one row less than Tab. B1. The expression of the modified elements rij is r20 = 2r 30 , r10 = r 31 .

(B12)

The real part of the pair of complex conjugate roots is analysed by looking at the sign changes in the first column from R 3 to R 1 .

• There are no sign changes if k 1 > 0. In that case, P (λ) has a pair of purely imaginary complex conjugate roots. This is the condition for a Neimark-Sacker bifurcation to occur. The other two eigenvalues are 0 and a complex number with a negative real part, so that the Neimark-Sacker bifurcation occurs on a stable part of the localised response. • There is one change of sign if k 1 < 0, so that P (λ) has two negative roots, a zero root and a positive root. Hence, the response is unstable. 

Row R 4 r 40 r 41 r 42 Row R 3 r 30 r 31 0 Row R 2 r20 0 0 Row R 1 r10 0 0
The sign of the real part of one of the eigenvalues is assessed by analysing the first column of rows R 3 and R 2 .

• There is no change of sign if r 20 > 0. In this case, P (λ) has at least a second root with a negative real part. • There is a change of sign if r 20 < 0. In this case, P (λ) has at least one root with a positive real part, meaning that the solution is unstable.

The real part of the pair of complex conjugate roots is analysed by looking at the sign changes in the first column from R 2 to R 0 .

• There are no sign changes if sign(r 20 ) = sign(r 21 ), so that P (λ) has a pair of purely imaginary complex conjugate roots. This is the condition for a Neimark-Sacker bifurcation to occur. • There is one change of sign if sign(r 20 ) = sign(r 21 ), so that the pair of complex conjugate roots is not purely imaginary.

Row R 4 r 40 r 41 r 42 Row R 3 r 30 r 31 0 Row R 2 r 20 r 21 0 Row R 1 r10 0 0 Row R 0 r00 0 0 Table B3: Routh table if R 1 is full of zeros.
The r ij are the same elements as in Tab. B1 and the rij are the modified elements.

Appendix C Analysis of the local minimum and maximum of the rotor's torque response

Neglecting the damping and assuming the excitation order is below n 2 , the pendulums' response at unison is in phase-opposition with the exciting torque such that cos(β 2 ) = -1. Hence, the amplitude of the first harmonic of mode 2 and the rotor is

T1 = u 2 Λ c n 2 p μΛ 2 c - c p 2 u 2 2 -2Λ m n p σ , h 1 = 3/2 T1 -n 2 p μΛ c u 2 . (C14a) (C14b) 
We can assume n 2 p μΛ 2 c > c p u 2 2 /2 + 2Λ m n p σ when σ is small as u 2 2 is negligible for small values of u 2 and T1 increases monotonically with u 2 if there is no jump. Hence, one can write

T1 = u 2 Λ c n 2 p μΛ 2 c - c p 2 u 2 2 -2Λ m n p σ , h 1 = 3/2 c p 2 u 2 2 + 2Λ m n p σ . (C15a) (C15b)

Local minimum

The antiresonance locus is obtained by solving Eq. (C15b) for σ, leading to

n AR = n p - c p 4Λ m n p u 2 2 . (C16)
Note that this corresponds to the eigenorder of the uncoupled pendulums [13].

If c p = 0, the amplitude at the antiresonance is given by

u 2AR = -4Λ m n p σ c p , (C17) 
which is equal to the upper branch of u 2pf (cf. Eq. ( 27)). Hence, in the absence of damping, there is always a pitchfork bifurcation at the antiresonance.

Local maximum

The amplitude of mode 2 at the local maximum is obtained by solving ∂h 1 /∂u 2 = 0 for u 2 , leading to

u 2 = -4Λ m n p σ 3c p . ( C18 
)
This corresponds to the lower branch of u 2pf (cf. Eq. ( 27)), so that in the absence of damping there is always a pitchfork bifurcation at the local maximum.

Part III The subharmonic centrifugal pendulum tuning

Summary of part III

This summary presents a synthesis of the main results of the following three chapters, constituting part III of this report. In this part the system considered is the centrifugal pendulum vibration absorber (CPVA) described in chapters 1 and 2. For the sake of completeness, a brief description of the system is recalled here. It is constituted of a rotor on which are attached N pendulums oscillating along their path and rotating about their centre of mass, as illustrated in Fig. III.1. The system is excited by a torque containing a constant and a periodic part. To simplify the analysis, we consider that the fluctuating torque contains a single harmonic of amplitude T ¯1 and order n. The pendulums' path and rotation law are governed by functions

x(s i ) = 1 -n 2 t s 2 i + x [4] s 4 i , α(s i ) = α [1] s i + α [3] s 3 i , (III.1a) (III.1b)
where s i represents the curvilinear abscissa of the i th pendulum (cf. Fig. III.1), n t , x [4] are path parameters and α [1] , α [3] are rotation parameters. It turns out that the behaviour of the system can be controlled by the pendulums' tuning order n p and the nonlinear tuning parameter c p (cf. chapter 7).

These two tuning parameters depend on the path and rotation parameters and on the dimensionless pendulums' inertia η such that

n p = n t √︂ 1 + ηα 2 [1]
, c p = 3(x [4] + 2n 2 p ηα [1] α [3] ). (III.2)

In the following, we will present the behaviour of CPVAs tuned in different ways in order to highlight the richness of their dynamics.

Recall that for N = 2 pendulums, the system possesses three modes, illustrated in Fig.

III.2.
Mode 0 is a rigid body mode for which the pendulums are immobile. The phase-opposition mode corresponds to a phase-opposition motion of the pendulums and the rotor is a node of this mode.

The associated eigenorder (analogous to an eigenfrequency) is the tuning order n p of the CPVA. The In this part, we focus on the subharmonic CPVA tuning, which refers to cases where the excitation order is close from twice the tuning order, i.e. n ≈ 2n p . This tuning condition can be realised only due to the nonlinear nature of the system. Indeed, it will be shown that the solution with pendulums oscillating at unison presents a period-doubling bifurcation, which allows the pendulums to vibrate at half the excitation order.

This factor two between the tuning and the excitation allows to filter the high-order torques encountered in electric vehicles (cf. section 1.1.1.3) without tuning the pendulums at such high orders. This is convenient as high-order tuning is difficult to achieve in practice due to manufacturing tolerances (cf. section 2.2.3).

Chapter 6 deals with the computation of the subharmonic response and its stability for a CPVA made of N = 2 pendulums. In the case N even but larger than 2, the phase-opposition mode illustrated in In practice, the excitation order n is fixed, so one could tune the pendulums such that n p = n/2

for the rotor to be excited on its nonlinear antiresonance, thus reducing its vibrations as much as possible. However, this ideal behaviour is perturbed by nonlinear effects that deteriorate the efficiency of the subharmonic CPVA operation. These undesired effects are listed below and discussed in details thereafter:

• Because of nonlinear effects, an increase in the amplitude of the external torque causes the nonlinear antiresonance order to shift and depart from 2n p . In this case, and because in practice the excitation order n is fixed, the rotor is not excited on the minimum of its response over the whole torque range. Hence, the nonlinear detuning of the antiresonance prevents an optimal reduction of the rotor's vibrations.

• The subharmonic response is subjected to several sources of instabilities. The most concerning one is related to the pitchfork (PF) bifurcation (red star) which is located exactly on the nonlinear antiresonance (cf. In part III, we investigate the subharmonic response using mainly analytical methods. This allowed to gain a better understanding of this particular solution. It also led to the derivation of original design guidelines allowing to prevent the apparition of instabilities and to limit the shifting of the nonlinear antiresonance. These points, which maximise the efficiency of the CPVA, are detailed thereafter.

The development of many of the results discussed in this summary requires elaborate algebraic manipulations, detailed in chapters 6, 7 and 8. Here, we report only the main results of part III, described from a physical point of view.

Basics of the subharmonic response [chap. 6]

For a CPVA made of two absorbers, the desired subharmonic operation is a pendulums' response on the subharmonic of the phase-opposition mode such that they oscillate at half the torque order and with opposite phases. Taking into account this phase-opposition motion, the rotor's acceleration can be expressed at first order as (cf. chapter 6)

θ ′′ ⏞⏟⏟⏞ acceleration of the rotor = T ¯1 cos(nϑ) ⏞ ⏟⏟ ⏞ external torque + µn 2 t (︁ s 1 s ′ 1 + s 2 s ′ 2 )︁ ⏞ ⏟⏟ ⏞ Coriolis effect = T ¯1 cos(nϑ) + 2µn 2 t ss ′ , s = s 1 = -s 2 , (III.3)
where s 1 and s 2 are the coordinates of pendulums 1 and 2, respectively, and µ and n t are an inertia ratio and the order of the pendulums' path (cf. sections 2.1.2.2 and 2.1.3). The only term balancing the external torque in Eq. (III.3) is due to the Coriolis effect and has a quadratic nonlinearity. A consequence of this nonlinearity is that the term ss ′ oscillates at twice the frequency of s. This explains how subharmonic pendulums' oscillations at n p = n/2 generate a torque of order n that can reduce the rotor's vibrations. Moreover, no higher rotor harmonics are generated by the subharmonic operation because every term in the rotor's acceleration (III.3) oscillates at order n. This is a significant advantage compared to the classical operation.

A typical subharmonic response for a CPVA made of N = 2 pendulums is shown in Fig.

III.4.
This CPVA is said to be "perfectly tuned" because the path and rotation functions of the pendulums are an epicycloid and a linear rotation, so they do not generate additional nonlinearities in the system (cf. section 2.1.3). its antiresonance for three different torque levels. In this figure, the unstable and stable branches of the response overlap, so they cannot be distinguished. In addition, the responses associated to the three torque levels represented (each taking birth at two PD bifurcations) overlap so only the one corresponding to the largest forcing, shown in dark blue, is visible. The fact that the responses are overlapped means that the antiresonance (AR) does not move with the forcing, which illustrates the saturation phenomenon. Furthermore, the subharmonic response is subjected to several instabilities. The PD bifurcations can be subcritical (PD-) (cf. section 2.5.1.3), in which case they give birth to unstable subharmonic solutions. These unstable solutions are located in the grey area in Stability of the subharmonic solution in the presence of several pairs of pendulums and nonlinear mistuning [chap. 6,7] In a CPVA made of several pairs of pendulums, the phase-opposition mode is degenerated, and the desired subharmonic solution, denoted "SH1", corresponds to particular combinations of these degenerated modes (cf. chapter 7). These combinations should be such that the N pendulums oscillate with the same amplitude, but N/2 pendulums are in phase-opposition with the other N/2. The PF bifurcations, located at the intersections of SH1 and the instability zone, give birth to localised subharmonic solutions. In such a case, the pendulums have different motions and at least one of them oscillates with an amplitude larger than SH1. Hence, when the torque increases, it reaches its cusp at forcing level smaller than expected, which reduces the torque capacity of the CPVA. In addition, this localised subharmonic solution usually leads to an increase in the rotor's vibrations (cf. chapter A design guidelines allowing to avoid these instabilities is proposed in chapter 7. This is a major contribution to the study of centrifugal pendulums in subharmonic operation.

Let us first look at

One of these configurations is illustrated in

In Fig. III.6(a), the red instability zone is located at n ≥ 2n p because the nonlinear CPVA mistuning is chosen to harden SH1 (i.e. to make the response more hardening than with perfect tuning). If the nonlinear mistuning was chosen to soften SH1, the instability zone would be located at n ≤ 2n p .

Perfect tuning never happens in practice, due to manufacturing tolerances for instance. Hence, to know where the instability zone is located and be able to avoid it, one has to use a minimum level of nonlinear mistuning. However, this causes the antiresonance to shift as the torque level increases, . Nevertheless, for a given application, the use of a subharmonic CPVA tuning leads to a much lower torque capacity than a classical tuning (cf. chapter 6). This is one of the main drawbacks of the subharmonic operation.

Finally, it is important to note that there is an infinity of possible combinations of the degenerated phase-opposition modes that take birth at the PD bifurcations. However, we want the pendulums to respond on an SH1 combination (we recall that there are several equivalent configurations, cf. chapter 7, as for instance the one illustrated in Fig. III.5). This is why we verified numerically in chapter 7 that the basin of attraction of SH1 is large enough for the PD bifurcations to lead the pendulums to respond on SH1. This was verified for a hardened overtuned CPVA, which is the configuration recommended previously to render SH1 stable while maximising the torque capacity.

Experimental investigation of an original centrifugal pendulum design [chap. 8]

The theoretical results obtained in this thesis are based on very general CPVA models. This way, these results can be used to design any architecture of CPVA. Nevertheless, it must be kept in mind that the main goal of the thesis is to propose solutions to adapt pendulum absorber systems to electric vehicles, which requires the filtering of high orders (cf. section 1.1.1.3). This is why an original CPVA design, dedicated to high-order tuning, is proposed and investigated in this thesis. This design, A CPVA prototype tuned at order 10 is proposed in chapter 8 to filter order 20 when in subharmonic operation. However, the nonlinear tuning of such a high-order CPVA requires too demanding manufacturing tolerances. In addition, the reduced torque capacity due to the slipping of the pendulums is too detrimental for a satisfactory performance. For these reasons, the subharmonic tuning does not seem sufficient to adapt centrifugal pendulums to electric powertrains.

Introduction

In the frame of reducing polluting emissions and fuel consumption of vehicles using thermal engines, automotive manufacturers try to reduce the cylinder capacity and engine speed of rotation. These evolutions lead to a significant increase of rotation irregularities called ''acyclisms'', mainly due to higher combustion pressure. One of the main characteristics of these reciprocating engines is the linear dependence of the acyclism frequency to the mean engine speed of rotation. The coefficient of proportionality is called the engine order and only depends on the architecture of the engine. For four strokes engines, the engine order is half the number of cylinders. During an acceleration phase, the engine sweeps a wide frequency range containing some driveline torsional modes. This situation may lead to significant noise and vibration levels into the passenger compartment and premature wear of the driveline components. Centrifugal pendulum vibration absorbers (CPVAs) have been used for many years to minimise acyclisms of automotive powertrains at the engine order [1][2][3]. These passive devices consist of oscillating masses (pendulums) moving along particular paths relative to a primary inertia (rotor) as shown in Fig. 1. Because the pendulums are driven by the centrifugal acceleration field resulting from the rotation of the CPVA, their natural frequency is proportional to the mean engine speed of rotation. The coefficient of proportionality is the pendulums' tuning order, which can be chosen to filter out vibrations at the engine order.
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The classical way of choosing the pendulums' tuning order, used in industrial solutions, is to tune the pendulums at the engine order. Similarly to usual dynamic vibration absorbers [4], this tuning generates an antiresonance of the rotor at the engine order, allowing for significant vibration reduction. However, CPVAs are non-linear systems that include geometric and inertial nonlinearities. At large excitation amplitudes, this can lead to jumps of the response [5], localisation of the pendulums' response [6][7][8][9][10][11][12][13][14][15][16][17], a shift of the antiresonance [18] and the generation of higher rotor harmonics [19][20][21][22][23][24].

Another tuning possibility is to set the pendulums' tuning order to half the engine order. To our knowledge, this was first mentioned in [25], but studies on this topic were led by S. Shaw et al. [19,[26][27][28][29][30]. With such a tuning, the pendulums oscillate at half the engine order so that the solution is a subharmonic of order 2. The study of subharmonic oscillations has many fields of application, such as energy harvesting [31,32], the creation of models for the design of pedestrian structures [33], and, of interest here, vibration reduction [28]. In two degree-of-freedom systems with quadratic non-linearities, solutions with one mode oscillating at half the frequency of the other one can lead to a saturation phenomenon where the amplitude of the higher mode becomes independent of the forcing amplitude [34]. This phenomenon, due to a 2:1 internal resonance, can be an efficient way to reduce vibrations. It is for instance used in [35,36] to reduce the vibrations of a beam through a nonlinear piezoelectric shunt. In the case of a CPVA with two pendulums, quadratic non-linearity exists through Coriolis effects and the pendulums' phase-opposition mode is in a 2:1 resonance relation with respect to the excitation [29]. This allows a pair of pendulums oscillating in phase-opposition at half the engine frequency to generate a saturation of the rotor's response [28]. The stability of that response and the effects of pendulums mistuning are addressed in [29]. If the CPVA comprises 𝑁 pendulums (with 𝑁 even), the desired behaviour is that where two groups of 𝑁∕2 in phase pendulums are moving in phase-opposition, so that each group acts as an equivalent pendulum. Such a system is subject to additional instabilities [30]. Contrarily to the classical tuning, the subharmonic one does not generate higher rotor harmonics [19], which is a significant advantage. In addition, the subharmonic tuning allows for a saturation of the rotor's response while in classical CPVAs the rotor's amplitude increases with the torque amplitude. Another benefit of subharmonic CPVAs is that tuning pendulums at lower orders results in wider trajectories that require less demanding manufacturing tolerances [37].

Studies dealing with subharmonic CPVAs are restricted to the case of translated pendulums, i.e. pendulums that do not rotate relatively to the rotor. This is probably due to the fact that early works recommended the use of purely translated pendulums [38]. However, A. Renault [39][40][41] and M. A. Acar [42] recently showed that adding a rotational mobility of the pendulums leads to a significant increase of mitigation performances. This increase in performance was also observed in [43] and the effect of rotation is a current topic of research [15][16][17][44][45][46][47]. The motivation of this paper is to investigate the subharmonic response of CPVAs with two pendulums that are allowed to rotate relatively to the rotor. Two tools aiming at helping designing subharmonic CPVAs are introduced. They allow to visualise the evolution of the torque capacity 1 and the efficiency of the absorption as a function of the linear and non-linear tunings. Additionally, a new design guideline intended to improve the efficiency of the filtration is given. Finally, to the author's knowledge, this paper presents the first comparison between the classical and subharmonic tunings.

This paper is organised as follows. Section 2 describes the modelling of the CPVA and a linear analysis is led in Section 3. The basic mechanisms of the subharmonic filtration are exposed in Section 4. The construction of the analytical model starts in Section 5 with the simplification of the equations of motion and their expansion on the modal basis. The modal and physical solutions along with their stability are derived in Section 6. Case studies and design guidelines are presented in Section 7 and the subharmonic filtration is compared to the classical one in Section 8.

Modelling

The system studied is shown in Fig. 1. A rotor of inertia 𝐽 𝑟 rotates about its centre 𝑂. Its total angular position is 𝜗(𝑡) = 𝛺𝑡 + 𝜃(𝑡) where 𝑡 is the time, 𝛺 is the mean rotation velocity and 𝜃 corresponds to the fluctuating part of the rotation. A torque 𝑇 (𝜗) = 𝑇 0 +𝑇 𝜃 (𝜗) is applied to the rotor where 𝑇 0 is its constant part and 𝑇 𝜃 (𝜗) is periodic. The constant torque balances the damping, thus setting the mean rotational speed 𝛺 such that 𝑇 0 = 𝑏 𝑟 𝛺, where 𝑏 𝑟 is the linear viscous damping coefficient of the rotor. 𝑁 pendulums of mass 𝑚 𝑖 and inertia 𝐼 𝑖 (about their centre of mass) oscillate on their trajectory 𝒞 𝑖 . Their position on these trajectories is given by the curvilinear abscissa 𝑆 𝑖 and their distance from 𝑂 is 𝑅 𝑖 (𝑆 𝑖 ). The characteristic dimension 𝑅 0𝑖 = 𝑅 𝑖 (𝑆 𝑖 = 0) represents the position of the pendulums at rest (when 𝑇 𝜃 = 0 such that they are perfectly centrifugated). In addition to the traditional translation motion, the present study considers that the pendulums rotate about their centre of mass according to the angle 𝛼 𝑖 (𝑆 𝑖 ). This function can be chosen by the designer, just like the trajectory 𝒞 𝑖 . As for the rotor, an equivalent linear viscous damping coefficient 𝑏 𝑖 is used to model the damping between the rotor and the ith pendulum. In the later, pendulums and their associated trajectory and rotation functions will be considered identical so that subscript ''𝑖'' will be dropped when addressing pendulums' parameters.

In order to write the equations of motion in a non-dimensional form, the following parameters and variables are introduced:

𝑠 𝑖 = 𝑆 𝑖 𝑅 0 , 𝑦 = θ 𝛺 = 1 + θ 𝛺 , 𝜂 = 𝐼 𝑚𝑅 2 0 , 𝜇 = 𝑁𝑚𝑅 2 0 (𝐽 𝑟 + 𝑁𝐼) , 𝑥(𝑠 𝑖 ) = 𝑅(𝑅 0 𝑠 𝑖 ) 2 𝑅 2 0 , 𝑧(𝑠 𝑖 ) = √ 𝑥(𝑠 𝑖 ) - 1 4 
( 𝑑𝑥(𝑠 𝑖 ) 𝑑𝑠 𝑖 ) 2 , 𝛾(𝑠 𝑖 ) = 𝑑𝛼(𝑠 𝑖 ) 𝑑𝑠 𝑖 , b = 𝑏 𝑚𝛺 , b𝑟 = 𝑏 𝑟 (𝐽 𝑟 + 𝑁𝐼)𝛺 , T (𝜗) = T0 + T𝜃 (𝜗) = 𝑇 (𝜗) (𝐽 𝑟 + 𝑁𝐼)𝛺 2 , ( 1 
)
where (•) = 𝜕(•)∕𝜕𝑡. The 𝑠 𝑖 and 𝑦 are the 𝑁 + 1 degree-of-freedom of the system. They correspond to the relative position of the pendulums and the non-dimensional rotation velocity of the rotor, respectively. 𝜂 is the ratio of the pendulums' inertia about their 1 The torque capacity is the maximum level of torque applied on the rotor for which the system can operate as desired.

V. Mahe et al. centre of mass over their geometric inertia about 𝑂. 𝜇 is the ratio of all the pendulums' geometric inertias about 𝑂 over the rotatory inertia of the whole system about 𝑂. 𝑥(𝑠 𝑖 ) and 𝑧(𝑠 𝑖 ) are trajectory functions while 𝛼(𝑠 𝑖 ) and 𝛾(𝑠 𝑖 ) are rotation functions. In this paper, 𝑥(𝑠 𝑖 ) and 𝛼(𝑠 𝑖 ) are written as polynomials in the curvilinear abscissa 𝑠 𝑖 such that

𝑥(𝑠 𝑖 ) = 1 -𝑛 2 𝑡 𝑠 2 𝑖 + ∞ ∑ 𝑘=3 𝑥 [𝑘] 𝑠 𝑘 𝑖 , 𝛼(𝑠 𝑖 ) = ∞ ∑ 𝑘=0 𝛼 [𝑘] 𝑠 𝑘 𝑖 , (2) 
where 𝑛 𝑡 is the order of the pendulums' trajectory (called geometric tuning order in [45]) and 𝑥 [𝑘] , 𝛼 [𝑘] are trajectory and rotation coefficients. Note that in the case 𝑥 [𝑘] = 0, ∀𝑘, the pendulums' trajectories are epicycloids, which corresponds to the tautochronic trajectory for 𝜃 = 0 [25]. b and b𝑟 are non-dimensional damping constants and T (𝜗) is the non-dimensional torque applied on the rotor.

In order to give T (𝜗) the meaning of an external forcing term, we replace the independent variable 𝑡 by the rotor's position 𝜗 [48], which can be seen as a non-dimensional time. Using the chain rule, one can show that

(•) = 𝛺𝑦(•) ′ , ( •) = 𝛺 2 𝑦𝑦 ′ (•) ′ + 𝛺 2 𝑦 2 (•) ′′ , (3) 
where (•) ′ = 𝜕(•)∕𝜕𝜗 (computation details are given in Appendix A). Hence, the non-dimensional rotor's acceleration is now θ∕𝛺 2 = ẏ∕𝛺 = 𝑦𝑦 ′ . Using the non-dimensional quantities (1) and the chain rule (3), one can write the equations of motion as

1 𝑁 [ 𝑁 ∑ 𝑖=1 (𝑁 + 𝜇𝑥(𝑠 𝑖 ))𝑦𝑦 ′ + 𝜇 ( 𝑧(𝑠 𝑖 ) + 𝜂𝛾(𝑠 𝑖 ) ) (𝑦𝑦 ′ 𝑠 ′ 𝑖 + 𝑦 2 𝑠 ′′ 𝑖 ) + 𝜇𝑦 2 𝑠 ′ 𝑖 ( 𝑑𝑥(𝑠 𝑖 ) 𝑑𝑠 𝑖 + 𝑑𝑧(𝑠 𝑖 ) 𝑑𝑠 𝑖 𝑠 ′ 𝑖 + 𝜂 𝑑𝛾(𝑠 𝑖 ) 𝑑𝑠 𝑖 𝑠 ′ 𝑖 ) ] + b𝑟 𝑦 = T (𝜗), (4a) 
[ 𝑧(𝑠 𝑖 ) + 𝜂𝛾(𝑠 𝑖 ) ] 𝑦 ′ + [ 1 + 𝜂𝛾(𝑠 𝑖 ) 2 ] (𝑦 ′ 𝑠 ′ 𝑖 + 𝑦𝑠 ′′ 𝑖 ) + 𝜂𝛾(𝑠 𝑖 ) 𝑑𝛾(𝑠 𝑖 ) 𝑑𝑠 𝑖 𝑦𝑠 ′ 𝑖 2 - 1 2 
𝑑𝑥(𝑠 𝑖 ) 𝑑𝑠 𝑖 𝑦 + b𝑠 ′ 𝑖 = 0, 𝑖 = 1, … , 𝑁. ( 4b 
)
Computation details are given in Appendix B. Eq. (4a) governs the motion of the rotor while the 𝑁 Eqs. (4b) govern the motion of the pendulums. These equations are difficult to interpret at this stage as one cannot distinguish the linear and non-linear terms that are hidden in functions 𝑥(𝑠 𝑖 ), 𝑧(𝑠 𝑖 ) and 𝛾(𝑠 𝑖 ) and in variable 𝑦.

From now on, it is assumed that the fluctuating torque applied to the rotor contains only one harmonic whose non-dimensional form is T1 cos(𝑛𝜗) where 𝑛 is the engine order. For a car engine, 𝑛 corresponds to the number of strikes per revolution of the crankshaft.

Linear analysis of the system

In this section, a linear analysis of the system with 𝑁 = 2 pendulums is led. First of all, one can use Eq. (3) to show that, at first order,

1 + 𝜃 ′ ≈ 𝑦, 𝜃 ′′ ≈ 𝑦𝑦 ′ ≈ 𝑦 ′ . ( 5 
)
The demonstration is provided in Appendix C. Relations (5) allow to represent the motion of the rotor with position 𝜃 instead of velocity 𝑦. This way, all the degree-of-freedom of the system are positions, which facilitates the representation of the mode shapes.
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In addition, the balance between the constant torque and the mean rotational velocity (cf. Section 2) can be written in terms of the non-dimensional variables such that

T0 = b𝑟 . ( 6 
)
Using relations ( 5) and ( 6), one can linearise Eqs. (4a) and (4b) to obtain

(1 + 𝜇)𝜃 ′′ + 𝜇𝛬 𝑐 𝑁 𝑁 ∑ 𝑖=1 𝑠 ′′ 𝑖 + b𝑟 𝜃 ′ = T𝜃 (𝜗), (7a) 
𝛬 𝑐 𝜃 ′′ + 𝛬 𝑚 𝑠 ′′ 𝑖 + 𝑛 2 𝑡 𝑠 𝑖 + b𝑠 ′ 𝑖 = 0, (7b) 
where 𝛬 𝑚 and 𝛬 𝑐 are constants representing the equivalent mass of a pendulum due to the effect of the rotatory inertia and the linear coupling term between a pendulum and the rotor, respectively. They are given by

𝛬 𝑚 = 1 + 𝜂𝛼 2 [1] , 𝛬 𝑐 = 1 + 𝜂𝛼 [1] , (8) 
where 𝛼 [1] is the linear rotation coefficient (cf. Eq. ( 2)). The eigenorders and mode shapes of the conservative system are

𝑛 00 = 0, 𝑛 10 = 𝑛 𝑝 , 𝑛 20 = 𝑛 𝑝 √ √ √ √ √ 1 + 𝜇 1 + 𝜇 ( 1 - 𝛬 2 𝑐 𝛬 𝑚 ) ( 9a 
)
𝝓 𝟎𝟎 = [1, 0, 0] 𝑇 , 𝝓 𝟏𝟎 = [0, 1, -1] 𝑇 , 𝝓 𝟐𝟎 = [ - 𝜇𝛬 𝑐 1 + 𝜇 , 1, 1 ] 𝑇 . ( 9b 
)
The eigenorders can be seen as non-dimensional eigenfrequencies and the three components of the eigenvectors correspond to 𝜃, 𝑠 1 and 𝑠 2 , respectively. 𝑛 𝑝 is the pendulums' tuning order, which is related to the trajectory order 𝑛 𝑡 such that

𝑛 𝑝 = 𝑛 𝑡 √ 𝛬 𝑚 , ( 10 
)
and it corresponds to the eigenorder of the pendulums when they are uncoupled from the rotor. Superscript ''𝑇 '' denotes the transpose.

𝝓 𝟎𝟎 is a rigid-body mode for which only the rotor is excited. 𝝓 𝟏𝟎 represents a phase-opposition motion of the pendulums with an immobile rotor. As the rotor is a node of 𝝓 𝟏𝟎 , this mode does not respond in the linear regime. 𝝓 𝟐𝟎 describes a mode for which pendulums move in unison but in phase-opposition with respect to the rotor. Modes associated to 𝝓 𝟎𝟎 , 𝝓 𝟏𝟎 and 𝝓 𝟐𝟎 will be called mode 0, 1 and 2, respectively.

When a fluctuating torque is applied, the pendulums respond on mode 2 and generate an antiresonance on the rotor at order 𝑛 𝑝 (in the conservative case). Thus, for a fluctuating torque of order 𝑛, one typically chooses 𝑛 𝑝 ≈ 𝑛 to minimise the vibrations of the rotor. Note that 𝑛 𝑝 is not strictly equal to 𝑛 as mistuning is usually desired to increase the torque range of the system and/or to prevent the apparition of instabilities [8,10,17]. In the case of a real automotive driveline (a simple model of which consists in successive rotors linked through torsional springs [49]), the CPVA should be placed as close as possible from the source of excitation (i.e. the engine). Doing so, the antiresonance generated by the pendulums exists on every driveline components located after the CPVA [50], which allows to isolate the whole driveline from the torque fluctuations.

Although classical CPVAs are currently the only ones used by the industry, there exists another mean of reducing the rotor's vibrations using a non-linear subharmonic response of the pendulums [28]. This is explained in the next section.

Basis of the subharmonic filtration

Filtration principle

The aim here is to show that there exists a solution to filter out the vibrations of the rotor other than the classical one with 𝑛 𝑝 ≈ 𝑛 and pendulums oscillating in unison. To do so, the simple case of a CPVA with two undamped pendulums following epicycloidal trajectories and with a linear rotation law is considered. Moreover, the solution sought is that of perfect filtration so that the rotor spins at a constant speed (i.e. 𝑦 = 1, 𝑦 ′ = 0).

One can see that if the pendulums are in phase-opposition (i.e. 𝑠 1 = 𝑠 = -𝑠 2 ), most of the non-linearities they generate on the rotor will balance each other as 𝑥(𝑠) = 𝑥(-𝑠), 𝑧(𝑠) = 𝑧(-𝑠) and 𝛾(𝑠) = 𝛾(-𝑠). Thus, Eqs. (4a) and (4b) simplify to

-2𝜇𝑛 2 𝑡 𝑠𝑠 ′ = T1 cos(𝑛𝜗), (11a) 
𝑠 ′′ -𝑛 2 𝑝 𝑠 = 0. (11b) 
These equations have an exact solution, given by

𝑠 = 1 𝑛 𝑡 √ T1 𝜇𝑛 𝑝 cos(𝑛 𝑝 𝜗 + 𝜑), 𝑛 𝑝 = 𝑛∕2, 𝜑 = 𝜋 4 or 𝜋 4 + 𝜋. ( 12 
)
V. Mahe et al. Eq. ( 12) represents a motion of the pendulums (we remind that 𝑠 1 = 𝑠 = -𝑠 2 ) such that they perfectly counterbalance the external torque to eliminate the vibrations of the rotor. The fact that 𝑛 𝑝 = 𝑛∕2 shows that the desired pendulums' response is a subharmonic of order 2 as they oscillate at half the excitation order. The reason why a subharmonic oscillation of order 2 is needed is that the term balancing the external torque in Eq. (11a) is quadratic. Thus, if 𝑠 is harmonic and oscillating at 𝑛∕2, 𝑠𝑠 ′ will generate a purely harmonic torque oscillating at 𝑛 that can cancel the external torque. The fact that 𝑠𝑠 ′ is purely harmonic implies that the pendulums counterbalance the external torque without producing higher rotor harmonics, contrarily to the classical tuning (this was already pointed out in [19]).

It is interesting to see how the pendulums can generate a torque on the rotor even though they are in phase-opposition. In Eq. (11a), the term balancing the external torque arises from Coriolis effects. One can compute the Coriolis acceleration of the 𝑖th pendulum and the associated force 𝑭 𝒄 𝒊 to find

𝑭 𝒄 𝒊 = -2 θ𝑚 Ṡ𝑖 𝒏 𝒊 , ( 13 
)
where 𝒏 𝒊 is the normal to the 𝑖th pendulum's trajectory at abscissa 𝑆 𝑖 . The torque produced by 𝑭 𝒄 𝒊 on the rotor is given by 𝑪 𝒄 𝒊 = -𝑅 𝑖 𝒗 𝒊 × 𝑭 𝒄 𝒊 where 𝒗 𝒊 is a unitary vector pointing from the 𝑖th pendulum's centre of mass to the rotor's. Using geometric relations, one can show that the Coriolis torque arising from the 𝑖th pendulum is given by

𝑪 𝒄 𝒊 = -θ𝑚 Ṡ𝑖 𝑑𝑋(𝑆 𝑖 ) 𝑑𝑆 𝑖 𝒛 𝟎 , ( 14 
)
where 𝑋(𝑆 𝑖 ) = 𝑅 2 0 𝑥(𝑆 𝑖 ∕𝑅 0 ) is a dimensional trajectory function and 𝒛 𝟎 is such that (𝒖 𝒊 , 𝒗 𝒊 , 𝒛 𝟎 ) forms a right-handed orthonormal basis (cf. Fig. 2). Assuming 𝑋(𝑆 𝑖 ) is even (it is the case in practice due to design constraints), the Coriolis torques produced by the two pendulums add up even though they are in phase-opposition. This is illustrated in Fig. 2.

Typical response of a subharmonic CPVA

A typical response of a subharmonic CPVA is depicted in Fig. 3. It corresponds to approximate analytical solutions of Eqs. (4a) and (4b) (cf. Sections 5 and 6.3). Fig. 3 represents the fundamental harmonic of the rotor's acceleration in (a) and (b) and the subharmonic motion of the pendulums in (c) and (d). An order response of the CPVA is shown in (a) and (c) while a torque response is shown in (b) and (d). Green curves represent the system's response for immobile pendulums while blue curves correspond to the pendulums' subharmonic solution and the associated rotor's response. Dashed lines indicate unstable solutions.

Fig. 3(a) shows the non-linear antiresonance generated by the pendulums on the rotor. In Fig. 3(b), one can see that the amplitude at the antiresonance is independent from the forcing amplitude, thus leading to a saturation phenomenon. This saturation is effective starting from a threshold torque amplitude and up to a maximum torque. This upper torque limit exists because the pendulums' trajectory has a cusp that pendulums cannot overpass.

Fig. 3 depicts some essential features of the subharmonic filtration, but considers only purely translated pendulums following an epicycloidal trajectory. In the following, an analytical model allowing for the study of more general CPVAs is developed. It takes into account the rotation of the pendulums and perturbations of the epicycloidal trajectory.

Simplified modal equations

Following Chao et al. [29], the first step in the construction of an analytical model is to scale the parameters. This allows to simplify the equations of motion such that the dynamics of the pendulums becomes uncoupled from that of the rotor. These simplified equations of motion will then be projected on a modal basis to obtain modal equations.

Since the displacement of the pendulums will be considered small (cf. Section 5.2), higher orders of 𝑥(𝑠 𝑖 ) and 𝛼(𝑠 𝑖 ) have a negligible effect. Thus, it is relevant to keep only their first non-linear contributions such that

𝑥(𝑠 𝑖 ) = 1 -𝑛 2 𝑡 𝑠 2 𝑖 + 𝑥 [4] 𝑠 4 𝑖 , 𝛼(𝑠 𝑖 ) = 𝛼 [1] 𝑠 𝑖 + 𝛼 [3] 𝑠 3 𝑖 . ( 15 
)
These functions are taken to be symmetric (respectively anti-symmetric) about 𝑠 𝑖 = 0 as it is the case in practice due to design constraints [40,41]. Like what was done previously for the torque, the non-dimensional rotor's velocity can be split into a constant term 1 and fluctuating component 𝑦 𝜃 (𝜗) such that

𝑦(𝜗) = 1 + 𝑦 𝜃 (𝜗). (16) 

Scaling

In this subsection, the aim is to scale the weight of some parameters and variables so as to capture the desired physical phenomena. The following remarks will govern the scaling:
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• The optimum system configuration is that with small damping. In Section 4, it was shown that the absence of damping could lead to a perfect filtration. • The fluctuating torque 𝑇 𝜃 is small compared to the rotor's kinetic energy (which is 𝐽 𝑟 𝛺 2 ∕2 at equilibrium). This implies that T1 is small.

• The total pendulums' geometric inertia about point 𝑂, 𝑁𝑚𝑅 2 0 , is considered small compared to the total inertia of the rotating system about 𝑂, 𝐽 𝑟 + 𝑁𝐼, such that 𝜇 is small.

• The rotor's inertia being significant, the fluctuating rotational speed 𝑦 𝜃 is small against 1. This means that 𝜃 ′ is small as, at first order, 𝑦 𝜃 ≈ 𝜃 ′ (cf. Appendix C). • The trajectory and rotation functions chosen (cf. Eq. ( 15)) are an epicycloid perturbed by 𝑥 [4] and a linear law perturbed by 𝛼 [3] , respectively. Considering those perturbations are small, 𝑥 [4] and 𝛼 [3] are small.

In accordance with those remarks and introducing the small parameter 𝜖, the following scaled parameters are introduced:

b = 𝜖 b, b𝑟 = 𝜖 b𝑟 , T1 = 𝜖 T1 , 𝜇 = 𝜖 μ, 𝑦 𝜃 = 𝜖 ỹ𝜃 , 𝜃 ′ = 𝜖 θ′ , 𝑥 [4] = 𝜖 x[4] , 𝛼 [3] = 𝜖 α[3] . ( 17 
)
In order to give a physical meaning to 𝜖, one can choose to set 𝜖 = 𝜇 [8]. Moreover, in the following, only first order terms will be retained in the rotor's equation (cf. Section 5.2). Hence, one can use the first order approximations (5) to express the rotor's dynamics using the scaled position θ instead of the scaled rotational velocity ỹ𝜃 . Approximations ( 5) can be written in terms of those scaled variables, leading to

ỹ𝜃 ≈ θ′ , ỹ′ 𝜃 ≈ θ′′ . ( 18 
)

Simplified physical equations

The aim here is to obtain an equation governing the rotor's dynamics as a function of the pendulums' motion and the external torque while uncoupling the pendulums' dynamics from the rotor's. Introducing Eqs. ( 15), ( 16) and (17) in the equations of motion (4a) and (4b) and using Taylor series for 𝑧(𝑠 𝑖 ), one obtains

θ′′ = μ 𝑁 [ 𝑁 ∑ 𝑖=1 𝑛 2 𝑝 𝛬 𝑐 𝑠 𝑖 + 2𝑛 2 𝑡 𝑠 𝑖 𝑠 ′ 𝑖 + 𝑛 2 𝑡 (1 + 𝑛 2 𝑡 ) ( 𝑠 𝑖 𝑠 ′ 𝑖 2 - 𝑛 2 𝑝 2 𝑠 3 𝑖 )] + T1 cos(𝑛𝜃), (19a) 
𝑠 ′′ 𝑖 + 𝑛 2 𝑝 𝑠 𝑖 = -𝜖𝛬 -1 𝑚 { 𝛬 2 𝑐 μ 𝑁 𝑁 ∑ 𝑗=1 𝑛 2 𝑝 𝑠 𝑗 + b𝑠 ′ 𝑖 + μ𝑛 2 𝑡 𝛬 𝑐 𝑁 [ 𝑁 ∑ 𝑗=1 𝑠 𝑗 (2𝑠 ′ 𝑗 + 𝑠 ′ 𝑖 ) ] + μ𝑛 2 𝑡 𝑁 [ 𝑁 ∑ 𝑗=1 (1 + 𝑛 2 𝑡 )𝛬 𝑐 ( 𝑠 𝑗 𝑠 ′ 𝑗 2 - 𝑛 2 𝑝 2 (𝑠 3 𝑗 + 𝑠 𝑗 𝑠 2 𝑖 )
)

+2𝛬 𝑚 𝑠 𝑗 𝑠 ′ 𝑗 𝑠 ′ 𝑖 ] +6𝜂𝛼 [1] α[3] (𝑠 𝑖 𝑠 ′ 𝑖 2 + 𝑠 2 𝑖 𝑠 ′′ 𝑖 ) -2 x[4] 𝑠 3 𝑖 + ( 𝛬 𝑐 + 𝛬 𝑚 𝑠 ′ 𝑖 - 𝑛 2 𝑡 (1 + 𝑛 2 𝑡 ) 2 𝑠 2 𝑖 ) T1 cos(𝑛𝜗) } +𝐻𝑂𝑇 , 𝑖 = 1, … , 𝑁. (19b) 
Eq. (19a) expresses the rotor's acceleration as a function of the pendulums' motion. It makes use of the pendulums' equation at first order 𝑠 ′′ 𝑖 = -𝑛 2 𝑝 𝑠 𝑖 . The rotor's acceleration contains linear, quadratic and cubic terms. As seen in Section 4, the quadratic term is the one responsible of the subharmonic filtration.

The 𝑁 coupled Eqs. (19b) govern the pendulums' motion. They are uncoupled from the rotor's dynamics and contain the effect of the external torque, the damping, the coupling between pendulums (both linear and non-linear) through the sums over 𝑁, and the perturbations of the trajectory and rotation functions (i.e. x [4] and α [3] ). These 𝑁 equations are weakly non-linear because the trajectory and rotation functions chosen (cf. Eq. ( 15)) are close to an epicycloid and a linear rotation, which render a quasi-linear behaviour for small fluctuations of the rotational speed. The external torque appears under three different forms in Eqs. (19b). T1 cos(𝑛𝜗) alone has the meaning of a direct forcing while 𝑠 ′ 𝑖 T1 cos(𝑛𝜗) is a parametric forcing, which can be interpreted as a variable damping. The torque also appears as a non-linear term through 𝑠 2 𝑖 T1 cos(𝑛𝜗). As stated previously, Taylor series of 𝑧(𝑠 𝑖 ) were used to obtain the simplified equations. This is relevant as the trajectory has a cusp that pendulums cannot overpass, so their motions 𝑠 𝑖 are restricted to be small. In the special case of the epicycloid (i.e. 𝑥 [4] = 0), the amplitude at the cusp is

𝑠 cusp = 1 √ 𝑛 2 𝑡 (1 + 𝑛 2 𝑡 ) . ( 20 
)

Modal equations

The aim here is to derive the modal equations. From now on, we consider that the system is made of 𝑁 = 2 pendulums. Eqs. (19a) and (19b) can be written in matrix form using the vector of unknowns

𝒒 = [ θ, 𝑠 1 , 𝑠 2 ] 𝑇 = 2 ∑ 𝑘=0 𝜁 𝑘 𝝓 𝒌𝟎 , ( 21 
)
where 𝜁 0 , 𝜁 1 and 𝜁 2 are the modal coordinates associated to modes 0, 1 and 2, respectively. The matrix equation obtained can then be projected on the modes of the system, leading to the following three modal equations:

𝜁 ′′ 0 = 𝑓 0 (𝜁 1 , 𝜁 2 , 𝜗), ( 22a 
) V. Mahe et al. 𝜁 ′′ 1 + 𝑛 2 𝑝 𝜁 1 = 𝑓 1 (𝜁 1 , 𝜁 2 , 𝜗), ( 22b 
)
𝜁 ′′ 2 + 𝑛 2 𝑝 𝜁 2 = 𝑓 2 (𝜁 1 , 𝜁 2 , 𝜗). (22c)
The full form of functions 𝑓 0 , 𝑓 1 and 𝑓 2 is given in Appendix D. It is of importance to note that only 𝜁 1 and 𝜁 2 appear in Eqs. (22b) and (22c). This means that modes 1 and 2 are uncoupled from mode 0. The reason for this is that those two modes are due to the presence of the pendulums, whose equations were uncoupled from the rotor's dynamics (cf. Section 5.2). We remind that the desired situation for the subharmonic filtration is that with pendulums oscillating in phase-opposition, which corresponds to 𝜁 1 ≠ 0, 𝜁 2 = 0. In that case, Eqs. (22a) and (22b) become

𝜁 ′′ 0 = 2 μ𝑛 2 𝑡 𝜁 1 𝜁 ′ 1 + T1 cos(𝑛𝜗), (23a) 
𝜁 ′′ 1 + 𝑛 2 𝑝 𝜁 1 = -𝜖𝛬 -1 𝑚 [ 𝛬 𝑚 𝜁 ′ 1 T1 cos(𝑛𝜗) + 2 μ𝑛 2 𝑡 𝛬 𝑚 𝜁 1 𝜁 ′ 1 2 + 6𝜂𝛼 [1] α[3] (𝜁 1 𝜁 ′ 1 2 + 𝜁 2 1 𝜁 ′′ 1 ) -2 x[4] 𝜁 3 1 + b𝜁 ′ 1 ] , ( 23b 
)
and mode 0 exactly corresponds to the rotor's motion as 𝜁 ′′ 0 = θ′′ . It is clear from Eq. (23a) that there is an energy transfer between the rigid-body mode (i.e. the rotor) and the phase-opposition mode (i.e. the pendulums). In Eq. (23b), 𝑓 1 captures the parametric excitation, the damping and cubic non-linearities arising from Coriolis effects and perturbations of the trajectory and rotation functions.

Modal and physical solutions

Application of the method of multiple scales

The method of multiple scales [51] is now used to solve Eqs. (22b) and (22c). Two rotation scales are introduced, 𝜗 0 = 𝜗 and 𝜗 1 = 𝜖𝜗. Modal coordinates are expanded such that

𝜁 1 (𝜗) = 𝜁 11 (𝜗 0 , 𝜗 1 ) + 𝜖𝜁 12 (𝜗 0 , 𝜗 1 ), ( 24a 
)
𝜁 2 (𝜗) = 𝜁 21 (𝜗 0 , 𝜗 1 ) + 𝜖𝜁 22 (𝜗 0 , 𝜗 1 ). (24b) 
Because the solution sought is a subharmonic of order 2, it is convenient to introduce the detuning term 𝜎 such that

𝑛 = 2𝑛 𝑝 + 𝜖𝜎. ( 25 
)
𝜎 > 0 and 𝜎 < 0 correspond to under-tuned and over-tuned pendulums, respectively. Applying the method of multiple scales yields first order solutions of the form 𝜁 11 (𝜗 0 , 𝜗 1 ) = 𝑢 1 (𝜗 1 ) cos

( 𝑛𝜗 0 -𝛽 1 (𝜗 1 ) 2 
) , ( 26a 
)
𝜁 21 (𝜗 0 , 𝜗 1 ) = 𝑢 2 (𝜗 1 ) cos

( 𝑛𝜗 0 -𝛽 2 (𝜗 1 ) 2 
) . ( 26b 
)
Amplitudes 𝑢 1 , 𝑢 2 and phases 𝛽 1 , 𝛽 2 are governed by the system

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝐷 1 𝑢 1 = 𝑓 𝑢 1 (𝒖, 𝜷), (a) 𝑢 1 𝐷 1 𝛽 1 = 𝑓 𝛽 1 (𝒖, 𝜷), (b) 𝐷 1 𝑢 2 = 𝑓 𝑢 2 (𝒖, 𝜷), (c) 𝑢 2 𝐷 1 𝛽 2 = 𝑓 𝛽 2 (𝒖, 𝜷), (d) (27)
where 𝐷 1 (•) = 𝜕(•)∕𝜕𝜗 1 and 𝒖, 𝜷 are vectors containing 𝑢 1 , 𝑢 2 and 𝛽 1 , 𝛽 2 , respectively. Functions 𝑓 𝑢 1 , 𝑓 𝛽 1 , 𝑓 𝑢 2 and 𝑓 𝛽 2 are given in Appendix E.

The solutions sought are those at steady-state, meaning that the amplitudes and phases are invariant with 𝜗 such that

𝐷 1 𝑢 1 = 𝐷 1 𝑢 2 = 𝐷 1 𝛽 1 = 𝐷 1 𝛽 2 = 0. ( 28 
)
Four types of solutions are possible for system (27):

• (𝑢 1 = 𝑢 2 = 0) corresponds to the trivial solution for which pendulums are immobile.

• (𝑢 1 ≠ 0, 𝑢 2 = 0) corresponds to the desired behaviour as pendulums respond only on mode 1. This solution will be called ''SH1'' where ''SH'' stands for ''subharmonic''. • (𝑢 1 = 0, 𝑢 2 ≠ 0) corresponds to a solution with in phase pendulums and will be called ''SH2''.

• (𝑢 1 ≠ 0, 𝑢 2 ≠ 0) corresponds to coupled-mode solutions that will be called ''SH12''.

Stability of the trivial solution

The trivial solution simply corresponds to immobile pendulums. It is interesting to assess its stability as bifurcations will lead to one of the non-linear solutions. As the equations of system (27) are singular when either 𝑢 1 or 𝑢 2 is zero, it is convenient to use a change from polar to Cartesian coordinates [29]. To this aim, the new variables

𝑝 1 = 𝑢 1 cos ( 𝛽 1 2 
) , 𝑞 1 = 𝑢 1 sin ( 𝛽 1 2 
) , 𝑝 2 = 𝑢 2 cos ( 𝛽 2 2 
) , 𝑞 2 = 𝑢 2 sin ( 𝛽 2 2 
) ( 29 
)
are defined and system ( 27) is rewritten under the form

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝐷 1 𝑝 1 = 𝑓 𝑝 1 (𝒑, 𝒒), (a) 𝐷 1 𝑞 1 = 𝑓 𝑞 1 (𝒑, 𝒒), (b) 𝐷 1 𝑝 2 = 𝑓 𝑝 2 (𝒑, 𝒒), (c) 𝐷 1 𝑞 2 = 𝑓 𝑞 2 (𝒑, 𝒒). (d) (30) 
𝒑 and 𝒒 are vectors containing 𝑝 1 , 𝑝 2 and 𝑞 1 , 𝑞 2 , respectively. 𝑓 𝑝 1 , 𝑓 𝑞 1 , 𝑓 𝑝 2 and 𝑓 𝑞 2 are functions given in Appendix G. The Jacobian of system (30) evaluated on the trivial response has the special form

𝑱 = [ 𝑨 𝟎 𝟎 𝑩 ] , 𝑨 = ⎡ ⎢ ⎢ ⎣ 𝜕𝑓 𝑝 1 𝜕𝑝 1 𝜕𝑓 𝑝 1 𝜕𝑞 1 𝜕𝑓 𝑞 1 𝜕𝑝 1 𝜕𝑓 𝑞 1 𝜕𝑞 1 ⎤ ⎥ ⎥ ⎦ , 𝑩 = ⎡ ⎢ ⎢ ⎣ 𝜕𝑓 𝑝 2 𝜕𝑝 2 𝜕𝑓 𝑝 2 𝜕𝑞 2 𝜕𝑓 𝑞 2 𝜕𝑝 2 𝜕𝑓 𝑞 2 𝜕𝑞 2 ⎤ ⎥ ⎥ ⎦ , ( 31 
)
so that the eigenvalues of 𝑱 are the eigenvalues of 𝑨 and 𝑩. 𝑨 and 𝑩 represent the effect of a perturbation of modes 1 and 2 on the system, respectively. Thus, if the real part of one of the eigenvalues of 𝑨 (𝑩) becomes positive, the system's response bifurcates to SH1 (SH2). The eigenvalues of 𝑨 and 𝑩 are given by

𝜆 1,2 = - 2 b ± 𝛬 𝑚 √ T 2 1 -4𝜎 2 4𝛬 𝑚 , ( 32a 
)
𝜆 3,4 = - 2 b ± √ T 2 1 𝛬 2 𝑚 -4(𝛬 𝑚 𝜎 -𝛬 2 𝑐 𝑛 𝑝 μ) 2 4𝛬 𝑚 , ( 32b 
)
respectively. From Eq. ( 32), one can conclude that the trivial solution is unstable if

T 2 1 - 4 b2 𝛬 2 𝑚 -4𝜎 2 > 0, or (33a) 
T 2 1 - 4 b2 𝛬 2 𝑚 - 4 
( 𝜎 -𝑛 𝑝 μ 𝛬 2 𝑐 𝛬 𝑚 ) 2 > 0. (33b) 
Conditions (33a) and (33b) are associated to a pitchfork bifurcation2 towards SH1 and SH2, respectively. The bifurcation sets of the trivial solution are shown in Fig. 4.
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Solution on the phase-opposition mode

Pendulums in phase-opposition is the desired behaviour of the system. Using Eqs. (27a) and (27b) with 𝑢 2 = 0, one can find that SH1 is given by

𝑢 2 1 = 𝑛 𝑝 2𝛬 𝑚 𝜎 ± √ 𝛬 2 𝑚 T 2 1 -4 b2 𝑐 𝑐 -𝑐 𝑝 , ( 34a 
)
tan 𝛽 1 = ∓ √ 𝛬 2 𝑚 T 2 1 4 b2 -1. ( 34b 
)
𝑐 𝑐 and 𝑐 𝑝 are non-linear coefficients related to Coriolis effects and to the perturbations of the trajectory and rotation functions, respectively. They are defined as

𝑐 𝑐 = μ𝑛 4 𝑡 , 𝑐 𝑝 = 3( x[4] + 2𝑛 2 𝑝 𝜂𝛼 [1] α[3] ). (35) 
The backbone curve of SH1 is

𝑛 (𝑆𝐻) 1 = 2𝑛 𝑝 + 𝜖 𝑐 𝑐 -𝑐 𝑝 2𝑛 𝑝 𝛬 𝑚 𝑢 2 1 , (36) 
so that for reasonable values of 𝑐 𝑝 , mode 1 is hardening. SH1 is not defined for every parameter as 𝑢 1 must be real. Evaluating Eq. (34a) for 𝑢 1 = 0, one finds that the torque or order at the bifurcation are

T * 2 1 = 4𝜎 2 + 4 b2 𝛬 2 𝑚 , 𝑛 * 1,2 = 2𝑛 𝑝 ± 1 2 √ T 2 1 - 4 b2 𝛬 2 𝑚 . ( 37 
)
Superscript * indicates that the quantity is that at the bifurcation. Eq. (37) corresponds to the limit of condition (33a), thus confirming that this condition is associated to SH1. One typically wants T * 1 to be as small as possible for SH1 to exist at small torque amplitudes. This would correspond to a configuration with small damping, small mistuning and maximum equivalent mass.

The stability information of SH1 is given by the eigenvalues of the Jacobian of system (30) evaluated on SH1. It has the same form as shown in Eq. ( 31), but matrices 𝑨 and 𝑩 have a slightly different meaning. As 𝑱 is evaluated on SH1, 𝑨 represents the effect of a perturbation of mode 1 on itself. Thus, stability changes computed from 𝑨 indicate saddle-node bifurcations, leading to a jump of the response. 𝑩 represents the effect of a perturbation of mode 2 on mode 1. Hence, stability changes computed from 𝑩 indicate pitchfork bifurcations leading to SH12. The eigenvalues of 𝑨 and 𝑩 are given by

𝜆 1,2 = - 𝑛 𝑝 b ± √ 2𝑛 𝑝 𝛬 𝑚 (𝑐 𝑐 -𝑐 𝑝 )𝜎𝑢 2 1 + 𝑛 2 𝑝 b2 -(𝑐 𝑐 -𝑐 𝑝 ) 2 𝑢 4 1 2𝑛 𝑝 𝛬 𝑚 , ( 38a 
)
𝜆 3,4 = - 1 2𝛬 𝑚 𝑛 𝑝 [ 𝑛 𝑝 b ± √ ( 𝛬 2 𝑐 𝑛 2 𝑝 μ -(𝑐 𝑝 + 3𝑐 𝑡 ∕2)𝑢 2 1 ) ( 2𝛬 𝑚 𝑛 𝑝 𝜎 -𝛬 2 𝑐 𝑛 2 𝑝 μ + (𝑐 𝑝 + 𝑐 𝑡 ∕2)𝑢 2 1 ) + 𝑛 2 𝑝 b2 ] , (38b) 
respectively. Instabilities occur when the real part of at least one of the eigenvalues becomes positive. The limit case ℜ[𝜆 2 ] = 0 corresponds exactly to the backbone of SH1 (cf. Eq. ( 36)), while ℜ[𝜆 4 ] = 0 leads to

𝑢 2 1𝑎 = 𝑛 2 𝑝 μ𝛬 2 𝑐 -2𝑛 𝑝 𝛬 𝑚 𝜎 𝑐 𝑝 + 𝑐 𝑡 ∕2 , ( 39a 
)
𝑢 2 1𝑏 = 𝑛 2 𝑝 μ𝛬 2 𝑐 𝑐 𝑝 + 3𝑐 𝑡 ∕2 . ( 39b 
)
Eqs. (39a) and (39b) correspond to the limit of stability regions and will be called ''bifurcation curves''. Each crossing between one of those curves and SH1 leads to a change of stability. This is illustrated in Fig. 5, where the order response of SH1 and its stability are presented. 𝑢 1𝑎 is shown in black in Fig. 5 while 𝑢 1𝑏 does not exist for the set of parameters used. The crossings between the black curve and SH1 lead to pitchfork bifurcations, indicated by code names PF. The instability zones are the coloured red (for the bifurcations to SH12) and blue (for the saddle-node bifurcations) areas. The purple area corresponds to the superposition of the two instabilities. Unstable parts of the response are shown as dashed-lines. The trivial solution is represented in green. SH2 is not shown in this figure. Note that the part of the response above 𝑠 cusp can help understanding the solution but is not physically relevant as it exists only because of approximations (cf. Section 5.2). A numerical response, obtained with the MANLAB3 software [52,53], is shown as thin blue lines with dot markers. It is almost superimposed with the analytical computations, which exhibits the accuracy of the model. The pitchfork bifurcation obtained numerically (red star) is not exactly the same as that predicted analytically (PF), but it is close.
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Table 1

Parameters of the CPVA presented in this section. These parameters are chosen to favour the apparition of instabilities.

𝑁 𝑛 𝑝 𝜂 𝜇 𝑥 [4] 𝛼 [1] 𝛼 [3] b b𝑟 2 1.5 1 0.025 -0.2 -0.1 0.1 0.002 0.002

Solution on the unison mode

Solution SH2 is now analysed. Using Eqs. (27c) and (27d) with 𝑢 1 = 0, one can find that SH2 is given by

𝑢 2 2 = 𝑛 𝑝 2𝛬 𝑚 𝜎 -2𝑛 𝑝 μ𝛬 2 𝑐 ± √ 𝛬 2 𝑚 T 2 1 -4 b2 𝑐 𝑐 -𝑐 𝑝 -2𝑐 𝑡 , ( 40a 
)
tan 𝛽 2 = ∓ √ 𝛬 2 𝑚 T 2 1 4 b2 -1. ( 40b 
)
𝑐 𝑡 is a non-linear coefficient related to large pendulums displacements along their trajectories. It is defined as

𝑐 𝑡 = 𝛬 𝑐 2 μ𝑛 2 𝑝 𝑛 2 𝑡 (1 + 𝑛 2 𝑡 ). (41) 
The backbone curve of SH2 is

𝑛 (𝑆𝐻) 2 = 2𝑛 𝑝 + 𝜖𝑛 𝑝 μ 𝛬 2 𝑐 𝛬 𝑚 + 𝜖 𝑐 𝑐 -𝑐 𝑝 -2𝑐 𝑡 2𝑛 𝑝 𝛬 𝑚 𝑢 2 2 . ( 42 
)
Because of the term -2𝑐 𝑡 , mode 2 is more softening than mode 1 (provided 𝛬 𝑐 > 0, which is the case for reasonable parameters).

Like SH1, SH2 is not defined for every parameter as 𝑢 2 must be real. Evaluating Eq. (40a) for 𝑢 2 = 0, one finds that the torque or order at the bifurcation are

T * 2 1 = 4 ( 𝜎 -𝑛 𝑝 μ 𝛬 2 𝑐 𝛬 𝑚 ) 2 + 4 b2 𝛬 2 𝑚 , 𝑛 * 1,2 = 𝑛 (𝑆𝐻) 2 | | | 𝑢 2 =0 ± 1 2 √ T 2 1 - 4 b2 𝛬 2 𝑚 . ( 43 
)
Eq. ( 43) corresponds to the limit of condition (33b), thus confirming that this condition is associated to SH2. Comparing Eqs. (37) and (43), one can see that there is a difference on T * 1 between SH1 and SH2. This difference is due to the presence of 𝑛 𝑝 μ𝛬 2 𝑐 ∕𝛬 𝑚 , which is directly related to the fact that the linear resonance of mode 2 is higher than that of mode 1 (cf. Eq. ( 9)). For small mistunings, this difference implies that the system will bifurcate to SH1 before SH2, thus achieving the desired behaviour. Levels of mistuning for which the system would bifurcate to SH2 before SH1 are relatively large. Corresponding orders must be greater 1.

than the critical order 𝑛 𝑐𝑟 , given by

𝑛 𝑐𝑟 = 𝑛 𝑝 ( 2 + 𝜇 𝛬 2 𝑐 2𝛬 𝑚 ) ≈ 𝑛 10 + 𝑛 20 . ( 44 
)
The stability of SH2 is determined in the same way as that of SH1. The eigenvalues of the Jacobian of system (30) evaluated on SH2 are

𝜆 1,2 = - 1 2𝛬 𝑚 𝑛 𝑝 [ 𝑛 𝑝 b ± √ - ( 𝛬 2 𝑐 𝑛 2 𝑝 μ + ( 𝑐 1 + 𝑐 𝑡 ∕2 ) 𝑢 2 2 ) ( 2𝛬 𝑚 𝑛 𝑝 𝜎 -𝛬 2 𝑐 𝑛 2 𝑝 μ + ( 𝑐 𝑝 + 3𝑐 𝑡 ∕2 ) 𝑢 2 2 ) + 𝑛 2 𝑝 b2 ] , ( 45a 
)
𝜆 3,4 = - 1 2𝛬 𝑚 𝑛 𝑝 [ 𝑛 𝑝 b ± √ 2𝑛 𝑝 𝛬 𝑚 (𝜎 -𝑛 𝑝 μ𝛬 2 𝑐 ∕𝛬 𝑚 )(𝑐 𝑐 -𝑐 𝑝 -2𝑐 𝑡 )𝑢 2 2 -(𝑐 𝑐 -𝑐 𝑝 -2𝑐 𝑡 ) 2 𝑢 4 2 + 𝑛 2 𝑝 b2 ] . (45b) ℜ[𝜆 2 ]
is related to a bifurcation towards SH12 while ℜ[𝜆 4 ] is related to jumps of the response. The limit case ℜ[𝜆 4 ] = 0 corresponds exactly to the backbone of SH2 (cf. Eq. ( 42)), while ℜ[𝜆 2 ] = 0 leads to the bifurcation curves defined as

𝑢 2 2𝑎 = 𝑛 2 𝑝 μ𝛬 2 𝑐 -2𝑛 𝑝 𝛬 𝑚 𝜎 𝑐 𝑝 + 3𝑐 𝑡 ∕2 , ( 46a 
)
𝑢 2 2𝑏 = - 𝑛 2 𝑝 μ𝛬 2 𝑐 𝑐 𝑝 + 𝑐 𝑡 ∕2 . ( 46b 
)
This is illustrated in Fig. 6, where the bifurcation curves are shown as grey lines and the instability zones are indicated with the same colour code as in Fig. 5. Crossings between the grey curves and SH2 lead to pitchfork bifurcations. Unstable parts of the response are shown as dashed-lines. The trivial solution is represented in green. SH1 is not shown in this figure . A numerical response is shown as thin orange lines with dot markers. As for SH1, it is almost superimposed with the analytical computations. The pitchfork bifurcations obtained numerically (red stars) are close to those predicted analytically (PF).

Coupled mode solution

The coupled-mode solutions are now investigated. The forced solutions cannot be computed analytically without additional assumptions. Chao et al. [29] computed them for pendulums that do not rotate relatively to the rotor and assuming a special phase relation between modes 1 and 2. In this paper, the backbones of the SH12 solutions are computed.

Using system (27) with b = T1 = 0, one can find two free responses for SH12. The first one, called ''SH12a'', corresponds to the case where modes 1 and 2 are in phase-quadrature. It is given by

𝑢 2 1 = 2𝛬 𝑚 𝑛 𝑝 𝜎 + (𝑐 𝑝 + 𝑐 𝑡 + 𝑐 𝑐 )𝑢 2 2 𝑐 𝑐 -𝑐 𝑝 , ( 47a 
)
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sin(𝛽 1 -𝛽 2 ) = 0, cos(𝛽 1 -𝛽 2 ) = -1, (47b) 
𝑢 2 2 = 2𝑛 𝑝 𝑛 𝑝 μ𝛬 2 𝑐 (𝑐 𝑐 -𝑐 𝑝 ) -𝛬 𝑚 𝜎(2𝑐 𝑐 + 𝑐 𝑡 ) 4𝑐 𝑝 𝑐 𝑐 + 𝑐 2 𝑡 + 4𝑐 𝑐 𝑐 𝑡 . ( 47c 
)
The second solution, called ''SH12b'', corresponds to the case where modes 1 and 2 are in phase or in phase-opposition. Whether these modes are in phase or in phase-opposition will not change the pendulums' response. SH12b is given by

𝑢 2 1 = 2𝛬 𝑚 𝑛 𝑝 𝜎 + (3𝑐 𝑝 + 3𝑐 𝑡 -𝑐 𝑐 )𝑢 2 2 𝑐 𝑐 -𝑐 𝑝 , ( 48a 
)
sin(𝛽 1 -𝛽 2 ) = 0, cos(𝛽 1 -𝛽 2 ) = 1, ( 48b 
)
𝑢 2 2 = 2𝑛 𝑝 𝑛 𝑝 μ𝛬 2 𝑐 (𝑐 𝑐 -𝑐 𝑝 ) -𝛬 𝑚 𝜎(2𝑐 𝑝 + 3𝑐 𝑡 ) 8𝑐 2 𝑝 + 16𝑐 𝑝 𝑐 𝑡 -4𝑐 𝑝 𝑐 𝑐 + 9𝑐 2 𝑡 -4𝑐 𝑡 𝑐 𝑐 . ( 48c 
)
SH12a and SH12b can arise through pitchfork bifurcations either from SH1 or SH2, as shown in Fig. 7 for free responses.

Physical solutions

Trivial solution. As stated earlier, the trivial solution at first order corresponds to immobile pendulums, i.e. 𝑠

(1∕2) 1 = 𝑠 (1∕2) 2
= 0, where superscripts in brackets indicate the number of the harmonic considered. Using Eq. (19a), one simply finds

| | | θ(1) ′′ | | | = T1 . ( 49 
)
It is interesting to note that if one goes up to the second order in the multiple scales developments, the trivial solution corresponds to pendulums responding linearly to the excitation (this is shown in Appendix F). In that case, they act as amplifiers and will slightly increase the amplitude of θ(1) . This was also observed in [28].

Phase-opposition solution. If pendulums respond on SH1, then 𝑠

(1∕2) 1 = 𝜁 1 = -𝑠 (1∕2) 2
, leading to

| | | θ(1) ′′ | | | 2 = T 2 1 + μ2 𝑛 4 𝑡 𝑛 2 𝑢 4 1 4 + T1 μ𝑛 2 𝑡 𝑛𝑢 2 1 sin 𝛽 1 . ( 50 
)
Replacing 𝑢 1 and 𝛽 1 with their expressions in the case of perfect tuning (i.e. 𝜎 = 𝑐 𝑝 = 0, cf. Section 7.1), Eq. ( 50) reduces to

| | | θ(1) ′′ | | | = 2 b 𝛬 𝑚 . ( 51 
)
This corresponds to a saturation of the rotor's response as it is independent of the forcing amplitude. The saturation level is desired to be as small as possible, which corresponds to a configuration with small damping and maximum equivalent mass. As damping is difficult to control in practice, designers should aim at maximising the equivalent mass, which implies to maximise the pendulums' inertia and their linear rotation rate (cf. Eq. ( 8)). Note that it does not matter whether this linear rotation rate is positive or negative.
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Table 2

Parameters of the hardened-CPVA.

𝑛 𝑝 𝜂 𝜇 𝑥 [4] 𝛼 [1] 𝛼 [3] b b𝑟

1.5 1 0.1 -0.2 -0.1 0.1 0.002 0.002
In phase solution. If pendulums respond on SH2, then 𝑠

(1∕2) 1 = 𝜁 2 = 𝑠 (1∕2) 2
, leading to

| | | θ(1∕2) ′′ | | | = μ ( 𝑛 2 𝑝 𝛬 𝑐 + (𝑛 2 -6𝑛 2 𝑝 )𝑛 2 𝑡 (1 + 𝑛 2 𝑡 ) 16 𝑢 2 2 ) 𝑢 2 , ( 52a 
) | | | θ(1) ′′ | | | 2 = T 2 1 + μ2 𝑛 4 𝑡 𝑛 2 𝑢 4 2 4 + T1 μ𝑛 2 𝑡 𝑛𝑢 2 2 sin 𝛽 2 , ( 52b 
) | | | θ(3∕2) 𝑃 𝑟𝑖𝑚𝑒 | | | = μ𝑛 2 𝑡 (1 + 𝑛 2 𝑡 )(2𝑛 2 𝑝 + 𝑛 2 )𝑢 3 2 16 . ( 52c 
)
From Eq. ( 52), one can see that pendulums generate 1/2 and 3/2 rotor harmonics whose amplitudes do not seem negligible, especially at high orders. This is problematic as pendulums will, at best, shift the vibration issues to orders 𝑛∕2 and 3𝑛∕2. Moreover, there is no set of parameters 𝜎 and 𝑐 𝑝 for which

| | | θ(1) ′′ | | |
perfectly saturates. For those reasons, pendulums responding on mode 2 is undesired.

Coupled solution.

If the two pendulums respond on SH12a, then their free responses are given by

𝑎 1 = 𝑎 2 = √ 𝑢 2 1 + 𝑢 2 2 . ( 53 
)
Thus, SH12a corresponds to a solution for which the pendulums oscillate with the same amplitudes. If the pendulums respond on SH12b, their free responses are

𝑎 1 = 𝑢 1 + 𝑢 2 , 𝑎 2 = |𝑢 1 -𝑢 2 |, (54) 
respectively. Thus, SH12b leads to a response localised on one of the pendulums.

Case studies and design guidelines

Effect of linear and non-linear mistunings

As explained in Section 3, 𝑛 𝑝 is the tuning order of the pendulums and the linear eigenorder of mode 1, so it can be seen as the linear tuning parameter of the CPVA. Moreover, Eq. (36) shows that the subharmonic response of mode 1 is hardening but can be hardened even more or softened a little using 𝑐 𝑝 . Hence, 𝑐 𝑝 can be seen as the non-linear tuning parameter, and 𝑐 𝑝 < 0 and 𝑐 𝑝 > 0 correspond to hardened and softened tunings, respectively. The special case 𝑛 𝑝 = 𝑛∕2 and 𝑐 𝑝 = 0 is called the ''perfectly-tuned case''. In practice, one can choose the value of the trajectory order 𝑛 𝑡 and the linear rotation coefficient 𝛼 [1] to set 𝑛 𝑝 (cf. Eq. ( 10)).

Similarly, 𝑐 𝑝 is set by choosing the value of the perturbation coefficients of the trajectory and the rotation functions, that is 𝑥 [4] and 𝛼 [3] , respectively (cf. Eq. ( 35)).

The former developments are now applied to a CPVA whose parameters are given in Table 2. It has a hardened behaviour as 𝑐 𝑝 < 0. That CPVA will be compared to a reference-CPVA corresponding to the perfectly-tuned case. The parameters of that perfectly-tuned CPVA are the same except for 𝑥 [4] = 0.045, which renders 𝑐 𝑝 = 0.

Fig. 8 shows an order response of the two CPVAs for three torque amplitudes. In practice, the excitation order is a constant, but varying it is an efficient way to study the pendulums' linear mistuning, provided that all pendulums are equally mistuned [14]. The subharmonic and trivial responses are depicted as blue and green lines, respectively. The darker the line the higher the associated torque amplitude. Dashed lines indicate unstable responses and stars with code names PF indicate pitchfork bifurcations.

V. Mahe et al. 2 except for 𝑛 𝑝 , 𝑥 [4] and 𝛼 [3] . 𝑛 𝑝 = {1.498, 1.5, 1.502}, 𝑥 [4] = {-0.037, 0, 0.0556} and 𝛼 [3] = {0.02, 0, 0.02} in cases 1, 2 and 3, respectively.

Control of the detuning

It is interesting to study how

| | | θ(1) ′′ | | |
evolves in the presence of mistuning. It reaches a minimum (corresponding to the non-linear antiresonance) equal to the perfectly-tuned case (cf. Eq. ( 51)) for a specific value of 𝜎, given by

𝜎 𝐴𝑅 = - 𝑐 𝑝 𝑐 𝑐 √ √ √ √ T 2 1 4 - b2 𝛬 2 𝑚 . ( 55 
)
Eq. ( 55) is an interesting relation as it allows one to select 𝜎 and 𝑐 𝑝 to minimise the rotor's vibrations at a given torque level. Of course, it is possible to choose 𝜎 = 𝑐 𝑝 = 0 for the rotor to perfectly saturate, but this choice cannot be achieved exactly in practice due to manufacturing tolerances, and it can lead to instabilities when the system is made of more than two pendulums [30]. Relation ( 55) is illustrated in Fig. 9 with three different cases, all aiming to minimise the rotor's amplitude at T1 = 0.03. Those cases correspond to CPVAs whose parameters are the same as those of Table 2, except for the values of 𝑛 𝑝 , 𝑥 [4] and 𝛼 [3] . Here are the characteristics of the three cases considered:

• case 1: 𝑛 𝑝 < 𝑛∕2, 𝑐 𝑝 < 0, where 𝑛 = 3 is the order corresponding to the torque response depicted in Fig. 9. This is the under-tuned, hardened case. • case 2: 𝑛 𝑝 = 𝑛∕2, 𝑐 𝑝 = 0. This is the perfectly-tuned case.

• case 3: 𝑛 𝑝 > 𝑛∕2, 𝑐 𝑝 > 0. This is the over-tuned, softened case. Fig. 9(b) clearly shows that it is possible to minimise the rotor's amplitude for a desired torque, and that minimum corresponds to the perfectly-tuned case. It is interesting to note that the amplitude of the pendulums at T1 = 0.03 is the same in all three cases. Before and after that T1 value, the filtration is not optimal as the excitation order does not coincide with the antiresonance order (cf. Fig. 8). This being said, the overall rotor's amplitude in case 1 is not too far from the perfectly-tuned case, thus allowing for a good filtration over the whole torque range.

Fig. 9(a) shows that the pendulums hit their cusp point at different values, thus changing the torque range. This is also observed in Fig. 9(b) where the cusp amplitude of cases 1, 2 and 3 is represented by points A, B and C, respectively. The torque range of case 1 is larger than for the two other cases, which is an advantage. This is discussed in details in Section 7.3. 2.

Torque capacity

It is important to have an information on the torque capacity of pendulums responding on SH1. The maximum torque is limited either by pendulums reaching their cusp or by SH1 becoming unstable. A good approximation of the torque driving the pendulums to their cusp is obtained by equating the amplitude on SH1 (cf. Eq. (34a)) with the cusp point of an epicycloid (cf. Eq. ( 20)), leading to

T 2 1 cusp = ( 2𝜎 - 𝑐 𝑐 -𝑐 𝑝 2𝑐 𝑡 𝑛 𝑝 μ 𝛬 𝑐 𝛬 𝑚 ) 2 + 4 b2 𝛬 2 𝑚 . ( 56 
)
The torque at which SH1 bifurcates to SH12 is obtained by equating the amplitude on SH1 with one of the bifurcation curves given by Eqs. (39a) and (39b). In the case where those bifurcation curves exist and cross SH1, the torques leading to a bifurcation towards SH12a and SH12b are given by

T 2 1 𝑎 = ( 2𝜎 - 𝑐 𝑐 -𝑐 𝑝 𝑐 𝑝 + 𝑐 𝑡 ∕2 ( 𝑛 𝑝 μ 𝛬 2 𝑐 𝛬 𝑚 -2𝜎 )) 2 + 4 b2 𝛬 2 𝑚 , ( 57a 
)
T 2 1 𝑏 = ( 2𝜎 - 𝑐 𝑐 -𝑐 𝑝 𝑐 𝑝 + 3𝑐 𝑡 ∕2 𝑛 𝑝 μ 𝛬 2 𝑐 𝛬 𝑚 ) 2 + 4 b2 𝛬 2 𝑚 , (57b) 
respectively. The torque capacity is T1 max = min [ T1 cusp , T1 𝑎 , T1 𝑏 ] , and from Eqs. ( 56) and ( 57) it is clear that T1 max is affected by the tuning parameters 𝜎 and 𝑐 𝑝 .
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The torque capacity is shown in Fig. 10 for an excitation order 𝑛 = 3 and as a function of the tuning parameters 𝑛 𝑝 and c𝑝 . c𝑝 is the unscaled equivalent of 𝑐 𝑝 , i.e.

c𝑝 = 𝜖𝑐 𝑝 = 3(𝑥 [4] + 2𝑛 2

𝑝 𝜂𝛼 [1] 𝛼 [3] ).

It is compared to a reference torque T1 ref , which simply corresponds to the torque capacity for perfectly-tuned pendulums (i.e.

T1 ref = T1 max | | |𝜎=𝑐 𝑝 =0
). Fig. 10 contains four maps representing the torque capacity and additional information. On every of those maps, the areas coloured in red represent sets of tuning parameters that increase the torque capacity in comparison to perfectly-tuned pendulums. On the contrary, blue areas represent sets of parameters that diminish the torque capacity. In Fig. 10(a), the hatched area corresponds to undesirable values of 𝑛 𝑝 for which the trivial solution will bifurcate to SH2 instead of SH1. The limit value of 𝑛 𝑝 is given in Appendix I.

In Fig. 10(b), the hatched areas correspond to sets (𝑛 𝑝 , c𝑝 ) for which the torque at bifurcation is larger than the maximum torque. This highly undesirable situation occurs when pendulums are subject to a large jump at the bifurcation point. In those cases, the pendulums directly hit their cusp point or respond on SH12 when the trivial solution becomes unstable (cf. 56) or (57) with Eq. ( 37) (more details are given in Appendix I). Note that the issue discussed here deals only with under-tuned pendulums if SH1 has a hardening behaviour, which is the case for reasonable parameters.

In Fig. 10(c), the hatched areas correspond to parameters that prevent the minimisation of

| | | θ(1) ′′ | | |
at a given torque amplitude using relation (55). Those hatched regions are not as undesirable as those depicted in Figs. 10(a) and (b) as they do not prevent the system from responding on SH1 (this is why those regions are represented in grey rather than black). However, it was shown in Fig. 9 that relation (55) can come very useful in minimising the rotor's vibrations over the whole torque range. Three coloured curves are shown in Fig. 10(c). Each of them corresponds to sets (𝑛 𝑝 , c𝑝 ) that minimise the rotor's vibrations for three different torque amplitudes. The purple curve represents situations where the torque at minimum is smaller than T1 max . Three such examples were depicted in Fig. 9 and are shown here as light, regular and dark blue dots along the purple curve. The orange (green) curve corresponds to situations where the torque minimising the rotor's vibrations is equal to (larger than) the torque capacity of perfectlytuned pendulums. This means that the minimum seen at T1 = 0.03 in Fig. 9 would be shifted to T1 = 0.046 ( T1 = 0.062). These situations do not allow for a good use of the minimisation of

| | | θ(1) ′′ | | |
as the torque at minimum is close to or larger than the torque capacity.

Finally, the undesirable areas described in Figs. 10(a), (b) and (c) are superimposed in Fig. 10(d). This reduces the parameters choice to the three zones delimited by thick red lines. Zone 3 does not seem to be a good choice as it reduces the torque capacity. The red part of zone 2 might seem acceptable but it was explained previously that it does not allow for a good use of relation (55). This makes zone 1 the most suitable one, so that under-tuned, hardened pendulums should be preferred to other configurations.

Global vibration reduction

Section 7.3 introduced several guidelines about how to choose the tuning parameters for optimal performance. Different criteria were considered, including the possibility to use relation (55) because it is assumed from the observations of Fig. 9 that this relation can reduce the overall vibrations of the rotor. The aim of the present section is to validate this assumption.

Computing the area below

| | | θ(1) ′′ | | | between T * 1 | | |𝜎=𝑐 𝑝 =0
and T1 max is a good indicator of the overall vibration level. Small areas should indicate a small overall vibration. However, one also needs to take into account the size of the torque range in the assessment of the overall vibration as small torque ranges will necessarily lead to a small area below the curve. Thus, the global vibration reduction indicator 𝐺 is defined as

𝐺 = ( T1 ref -T * 1 | | |𝜎=0 ) 2 𝐴 ref × ⎧ ⎪ ⎨ ⎪ ⎩ 𝐴 ( T1 max -T * 1 | | |𝜎=0 ) 2 if T1 max > T * 1 𝐴 ( T * 1 -T * 1 | | |𝜎=0 ) 2 if T1 max < T * 1 ( 59 
)
𝐴 is the area below

| | | θ(1) ′′ | | | 2 between T * 1 | | |𝜎=0
and T1 max or T * 1 . If two stable solutions exist simultaneously on a part of that interval, the average area is considered. Finally, 𝐴 ref is just 𝐴 for perfectly-tuned pendulums.

𝐺 is represented in Fig. 11 as a function of the tuning parameters. The smaller 𝐺, the better the filtration. The hatched areas, their limits and the three zones of Fig. 10 are also shown, together with the purple curve of Fig. 10(c). It is interesting to see that the smallest values of 𝐺 are located along this purple curve. This confirms that relation (55) is useful in reducing the rotor's vibrations over the whole torque range. Moreover, Fig. 11 indicates that designs from zone 1 (which were recommended in Section 7.3) are efficient in reducing the overall vibrations.

Figs. 10 and 11 form a powerful design tool that helps choosing wisely the tuning parameters of a CPVA to maximise the torque range while keeping the overall vibrations of the rotor as small as possible.

Avoidance of the SH12 solutions

As stated in Section 7.3, bifurcations from SH1 to SH12a or SH12b should be avoided in order to increase the torque range. The aim of this section is to provide guidelines regarding the choice of the tuning parameters in order to avoid those bifurcations. 55) for T1 = 0.03. The three zones delimited by thick black lines represent parameter sets that are a priori not undesirable. System parameters that are not varied are given in Table 2.

Avoidance of SH12a. Using the definition of 𝜎 (25), the bifurcation curve (39a) can be rearranged such that

𝑛 1𝑎 = 2𝑛 𝑝 + 𝜇𝑛 𝑝 𝛬 2 𝑐 2𝛬 𝑚 -𝜖 𝑐 𝑝 + 𝑐 𝑡 ∕2 2𝛬 𝑚 𝑛 𝑝 𝑢 2 1 . ( 60 
)
To avoid bifurcations, one should have 𝑛 < 𝑛 1𝑎 over the whole torque range, that is up to 𝑢 1 = 𝑠 cusp . This is satisfied if

𝑛 𝑝 > 𝑛 ( 2 + 𝜇 𝛬 2 𝑐 2𝛬 𝑚
) -1 and (61a)

𝑐 𝑝 < -2𝛬 𝑚 𝑛 𝑝 𝑛 2 𝑡 (1 + 𝑛 2 𝑡 )𝜎 + ( 2𝛬 𝑐 - 1 2 
) 𝑐 𝑡 . ( 61b 
)
Note that condition (61a) was already mandatory to prevent the trivial solution from bifurcating to SH2 instead of SH1 (see Eq. ( 44)).

Avoidance of SH12b.

As the bifurcation curve (39b) is independent of 𝜎, it is easier to treat. This curve should either not exist (i.e. be imaginary) or be above 𝑠 cusp . This is satisfied if

𝑐 𝑝 < ( - 3 2 + 2𝛬 𝑐 ) 𝑐 𝑡 . ( 62 
)
If conditions ( 61) and ( 62) are fulfilled, one ensures that the SH1 solution will not bifurcate to one of the SH12 solutions before it reaches its cusp.

Comparison of the subharmonic filtration with a standard filtration

The subharmonic filtration is now compared to the classical one that uses 𝑛 𝑝 ≈ 𝑛. To this aim, two different CPVAs are considered. Their parameters are given in Table 3. The subharmonic CPVA corresponds to the case 1 shown in Fig. 9, while the classical CPVA is slightly over-tuned to avoid pendulums' localisation [17].

Fig. 12 shows a torque response of the two CPVAs for 𝑛 = 3, computed with MANLAB [52,53]. Solutions related to the subharmonic and classical CPVAs are shown as lines with dot and cross markers, respectively. Harmonics 1/2, 1, 2 and 3 are depicted in red, blue, orange and pink, respectively. Dashed lines represent unstable responses. 3.

From Fig. 12(a), one can see that the classical pendulums reach their cusp at a much larger torque than the subharmonic ones (the cusp point of the classical pendulums is not visible in Fig. 12(a), it is around T1 = 0.192). This is the main drawback of subharmonic CPVAs, as it means that their torque range is smaller than that of classical ones. It is possible to use more than one pair of pendulums to increase the torque range, but one has to be careful about the additional instabilities that might appear [30].

In Fig. 12(b), one can see that pendulums with a classical tuning generate higher order rotor harmonics (only higher harmonics 2 and 3 are shown here). This is a known issue [19] that limits the efficiency of the system as it generates vibration problems at higher orders. On the contrary, pendulums with a subharmonic tuning do not generate higher order harmonics, which is a clear advantage. In addition, the zoom in Fig. 12(b) shows that above T1 = 0.026, the subharmonic CPVA allows for a better filtration of 𝜃 (1) ′′ than the classical one. However, for small torque amplitudes, the filtration from the classical CPVA is superior.

Another advantage of the subharmonic CPVA over the classical one is that lower tuning orders require less demanding manufacturing tolerances [37].

Conclusion

The study presented in this paper deals with the subharmonic response of CPVAs made of two pendulums allowing a rotational mobility. First, the physical origin of the subharmonic filtration was explained. Next, an analytical model allowing for the prediction of this non-linear response and its stability was build using a scaling of the parameters, a modal decomposition and the method of multiple scales. The validity of the model was verified numerically and design guidelines were presented. First, it was advised to maximise the inertia and linear rotation of the pendulums to minimise the vibrations of the rotor. Then, a special relation between the pendulums' tuning parameters was introduced. It allows to minimise the rotor's amplitude for a desired torque amplitude. This relation increases the robustness of the CPVA as perfect tuning is impossible to achieve due to manufacturing tolerances. Moreover, it can be used to increase the torque range. Then, two design tools were introduced. They take the form of maps where two performance criteria and additional information are shown as a function of the tuning parameters. These two criteria represent the torque range and the global vibration level of the rotor over that torque range. The additional information are related to the proper operation of the CPVA. From the design tools it was observed that under-tuned pendulums with a hardened behaviour provide the best compromise between a large torque range and a satisfying vibration reduction. Additional guidelines were given regarding the choice of the tuning parameters so that the subharmonic solution remains stable over the whole operating range of V. Mahe et al. the CPVA. Finally, it was shown that the subharmonic tuning can provide a better filtration than the classical tuning for medium torque amplitudes, but at the cost of a reduced torque range. This enhanced filtration is rendered possible by the saturation of the rotor's first harmonic and the non-generation of higher nor lower rotor harmonics.
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𝜕 2 (•) 𝜕𝑡 2 = 𝜕 𝜕𝑡 ( 𝜕(•) 𝜕𝑡 ) = 𝜕 𝜕𝑡 ( 𝜕𝜗 𝜕𝑡 𝜕(•) 𝜕𝜗 ) = 𝜕 𝜕𝑡 ( 𝜕𝜗 𝜕𝑡 ) 𝜕(•) 𝜕𝜗 + 𝜕𝜗 𝜕𝑡 𝜕 𝜕𝑡 ( 𝜕(•) 𝜕𝜗) ) = 𝜕𝜗 𝜕𝑡 𝜕 𝜕𝜗 ( 𝜕𝜗 𝜕𝑡 ) 𝜕(•) 𝜕𝜗 + 𝜕𝜗 𝜕𝑡 𝜕𝜗 𝜕𝑡 𝜕 𝜕𝜗 ( 𝜕(•) 𝜕𝜗 ) = 𝜕𝜗 𝜕𝑡 𝜕 𝜕𝜗 ( 𝜕𝜗 𝜕𝑡 ) 𝜕(•) 𝜕𝜗 + ( 𝜕𝜗 𝜕𝑡 ) 2 𝜕 2 (•) 𝜕𝜗 2 . (A.2)
Using the definition of 𝑦 (1) and the notations (•) = 𝜕(•)∕𝜕𝑡, (•) ′ = 𝜕(•)∕𝜕𝜗, Eqs. (A.1) and (A.2) can be written as Eq. ( 3).

Appendix B. Details on the computation of the equations of motion

The kinetic energy of the system represented in Fig. 1 is

 = 1 2 𝐽 𝑟 θ2 + 1 2 𝑁 ∑ 𝑖=1 [ 𝑚 𝑖 Ṡ2 𝑖 + 𝑚 𝑖 𝑋 𝑖 (𝑆 𝑖 ) θ2 + 2𝑚 𝑖 θ Ṡ𝑖 𝑍 𝑖 (𝑆 𝑖 ) + 𝐼 𝑖 ( θ + α𝑖 (𝑆 𝑖 )) 2 ] (B.1)
and the potential energy  is neglected as the gravitational acceleration is assumed negligible in front of the centrifugal acceleration. Hence, the Lagrangian is  =  . There are three external loads applied on the system:

• A torque 𝑇 (𝜗)𝒛 𝟎 is applied on the rotor, where 𝒛 𝟎 is the out-of-plane unit vector (cf. Fig. 2). It is the external forcing.

• A resistive torque -𝑏 𝑟 θ𝒛 𝟎 is applied on the rotor. It represents the damping between the rotor and the ground.

• A resistive force -𝑏 𝑖 Ṡ𝑖 𝒕 𝒊 is applied on the centre of mass of the 𝑖th pendulum, where 𝒕 𝒊 is the vector tangent to the trajectory  𝑖 at abscissa 𝑆 𝑖 . It represents the damping between the rotor and the 𝑖th pendulum.

Using the Euler-Lagrange equations together with the principle of virtual power, one obtains the equations of motion

[ 𝐽 𝑟 + 𝑁 ∑ 𝑖=1 𝐼 𝑖 + 𝑚 𝑖 𝑋 𝑖 (𝑆 𝑖 ) ] θ + 𝑁 ∑ 𝑖=1 ( 𝑚 𝑖 𝑍 𝑖 (𝑆 𝑖 ) + 𝐼 𝑖 𝛤 𝑖 (𝑆 𝑖 ) ) S𝑖 + Ṡ𝑖 [ 𝐼 𝑖 𝛤 𝑖 (𝑆 𝑖 ) 𝑑𝑆 𝑖 Ṡ𝑖 + 𝑚 𝑖 ( 𝑑𝑋 𝑖 (𝑆 𝑖 ) 𝑑𝑆 𝑖 θ + 𝑑𝑍 𝑖 (𝑆 𝑖 ) 𝑑𝑆 𝑖 Ṡ𝑖 )] + 𝑏 𝑟 θ = 𝑇 (𝜗), (B.2a) ( 𝑚 𝑖 𝑍 𝑖 (𝑆 𝑖 ) + 𝐼 𝑖 𝛤 𝑖 (𝑆 𝑖 ) ) θ + ( 𝑚 𝑖 + 𝐼 𝑖 𝛤 𝑖 (𝑆 𝑖 ) 2 ) S𝑖 + 𝐼 𝑖 𝛤 𝑖 (𝑆 𝑖 ) 𝑑𝛤 𝑖 (𝑆 𝑖 ) 𝑑𝑆 𝑖 Ṡ2 𝑖 - 1 2 𝑚 𝑖 𝑑𝑋 𝑖 (𝑆 𝑖 ) 𝑑𝑆 𝑖 θ2 + 𝑏 𝑖 Ṡ𝑖 = 0, 𝑖 = 1, … , 𝑁. (B.2b)
Eq. (B.2a) governs the motion of the rotor while the 𝑁 Eqs. (B.2b) govern the motion of the pendulums. Those equations can be written in a non-dimensional form using the non-dimensional parameters and variables (1) and the chain rule (3). In addition, if the pendulums are assumed identical, one obtains Eqs. (4a) and (4b).

Appendix C. Relations between coordinates 𝒚 and 𝜽

From Section 2, we have

𝑦 = θ 𝛺 = 1 𝛺 𝜕(𝛺𝑡 + 𝜃) 𝜕𝑡 = 1 + θ 𝛺 , (C.1a) 𝑦𝑦 ′ = θ 𝛺 2 = 1 𝛺 2 𝜕 2 (𝛺𝑡 + 𝜃) 𝜕𝑡 2 = θ 𝛺 2 . (C.1b) V. Mahe et al.
Using Eq. ( 3) at first order, we can write

θ 𝛺 = 𝑦𝜃 ′ ≈ 𝜃 ′ , (C.2a) θ 𝛺 2 = 𝑦𝑦 ′ 𝜃 ′ + 𝑦 2 𝜃 ′′ ≈ 𝜃 ′′ . (C.2b)
From Eqs. (C.1) and (C.2), we have the first order relations

𝜃 ′ = 𝑦 -1, (C.3a) 𝜃 ′′ = 𝑦𝑦 ′ . (C.3b)

Appendix D. Expression of the simplified modal equations

The system of modal Eqs. ( 22) uses functions 𝑓 0 , 𝑓 1 and 𝑓 2 , which are given by

𝑓 0 (𝜁 1 , 𝜁 2 , 𝜗) = μ𝛬 𝑐 1 + μ 𝜁 ′′ 2 + μ𝑛 2 𝑝 ( 𝛬 𝑐 𝜁 2 - 𝑛 2 𝑡 (1 + 𝑛 2 𝑡 ) 2 (3𝜁 2 1 𝜁 2 + 𝜁 3 2 ) ) + 2 μ𝑛 2 𝑡 (𝜁 1 𝜁 ′ 1 + 𝜁 2 𝜁 ′ 2 ) + μ𝑛 2 𝑡 (1 + 𝑛 2 𝑡 )(2𝜁 1 𝜁 ′ 1 𝜁 ′ 2 + 𝜁 2 𝜁 ′ 1 2 + 𝜁 2 𝜁 ′ 2 
2 ) + T1 cos(𝑛𝜗), (D.1)

𝑓 1 (𝜁 1 , 𝜁 2 , 𝜗) = -𝜖𝛬 -1 𝑚 [ (𝛬 𝑚 𝜁 ′ 1 -𝑛 2 𝑡 (1 + 𝑛 2 𝑡 )𝜁 1 𝜁 2 )( μ𝑛 2 𝑝 𝛬 𝑐 𝜁 2 + T1 cos(𝑛𝜗)) + 2 μ𝑛 2 𝑡 𝛬 𝑚 𝜁 ′ 1 (𝜁 1 𝜁 ′ 1 + 𝜁 2 𝜁 ′ 2 ) + 6𝜂𝛼 [1] α[3] (𝜁 1 𝜁 ′ 1 2 + 2𝜁 2 𝜁 ′ 1 𝜁 ′ 2 + 𝜁 1 𝜁 ′ 2 2 + 𝜁 2 1 𝜁 ′′ 1 + 2𝜁 1 𝜁 2 𝜁 ′′ 2 + 𝜁 2 2 𝜁 ′′ 1 ) -2 x[4] (𝜁 3 1 + 3𝜁 1 𝜁 2 2 ) + b𝜁 ′ 1 ] , (D.2) 𝑓 2 (𝜁 1 , 𝜁 2 , 𝜗) = -𝜖𝛬 -1 𝑚 [ ( 𝛬 𝑐 + 𝛬 𝑚 𝜁 ′ 2 - 𝑛 2 𝑡 (1 + 𝑛 2 𝑡 ) 2 (𝜁 2 1 + 𝜁 2 2 ) ) ( μ𝑛 2 𝑝 𝛬 𝑐 𝜁 2 + T1 cos(𝑛𝜗)) + 2 μ𝑛 2 𝑡 (𝛬 𝑐 + 𝛬 𝑚 𝜁 ′ 2 )(𝜁 1 𝜁 ′ 1 + 𝜁 2 𝜁 ′ 2 ) -𝛬 𝑐 μ𝑛 2 𝑝 𝑛 2 𝑡 (1 + 𝑛 2 𝑡 ) 2 (3𝜁 2 1 𝜁 2 + 𝜁 3 2 ) + 𝛬 𝑐 μ𝑛 2 𝑡 (1 + 𝑛 2 𝑡 )(2𝜁 1 𝜁 ′ 1 𝜁 ′ 2 + 𝜁 2 𝜁 ′ 1 2 + 𝜁 2 𝜁 ′ 2 2 ) + 6𝜂𝛼 [1] α[3] (2𝜁 1 𝜁 ′ 1 𝜁 ′ 2 + 𝜁 2 𝜁 ′ 1 2 + 𝜁 2 𝜁 ′ 2 2 + 2𝜁 1 𝜁 ′′ 1 𝜁 2 + 𝜁 ′′ 2 𝜁 2 1 + 𝜁 ′′ 2 𝜁 2 2 ) -2 x[4] (3𝜁 2 1 𝜁 2 + 𝜁 3 2 ) + b𝜁 ′ 2 ] . (D.3)

Appendix E. System obtained through the method of multiple scales

The system of equations obtained through the application of the method of multiple scales is given by Eq. ( 27) where functions 𝑓 𝑢 

𝑓 𝛽 1 (𝒖, 𝜷) = 𝑢 1 𝜎 -2 [ -(𝑐 𝑝 -𝑐 𝑐 + 𝑐 𝑡 )𝑢 1 𝑢 2 2 cos(𝛽 1 -𝛽 2 ) -(𝑐 𝑝 -𝑐 𝑐 )𝑢 3 1 -2(𝑐 𝑝 + 𝑐 𝑡 )𝑢 1 𝑢 2 2 + 𝑛 𝑝 𝛬 𝑚 𝑢 1 T1 sin(𝛽 1 ) ] [4𝑛 𝑝 𝛬 𝑚 ] -1 , (E.2) 𝑓 𝑢 2 (𝒖, 𝜷) = [ (𝑐 𝑝 -𝑐 𝑐 + 𝑐 𝑡 )𝑢 2 1 𝑢 2 sin(𝛽 2 -𝛽 1 ) + 𝑛 𝑝 𝛬 𝑚 𝑢 2 T1 cos(𝛽 2 ) -2𝑛 𝑝 b𝑢 2 ] [4𝑛 𝑝 𝛬 𝑚 ] -1 , (E.3) 𝑓 𝛽 2 (𝒖, 𝜷) = 𝑢 2 𝜎 -2 [ -(𝑐 𝑝 -𝑐 𝑐 + 𝑐 𝑡 )𝑢 2 1 𝑢 2 cos(𝛽 2 -𝛽 1 ) -(𝑐 𝑝 -𝑐 𝑐 + 2𝑐 𝑡 )𝑢 3 2 -2(𝑐 𝑝 + 𝑐 𝑡 )𝑢 2 1 𝑢 2 + 𝑛 𝑝 𝛬 𝑚 𝑢 2 T1 sin(𝛽 2 ) + 2𝑛 2 𝑝 μ𝛬 2 𝑐 𝑢 2 ] [4𝑛 𝑝 𝛬 𝑚 ] -1 . (E.4)
Constants 𝑐 𝑝 , 𝑐 𝑐 and 𝑐 𝑡 are defined in Eqs. ( 35) and (41).

Appendix F. Details on the trivial solution

The application of the method of multiple scales to Eqs. (22b) and (22c) yields two equations of order 1, governing 𝜁 11 and 𝜁 21 , and two equations of order 𝜖, governing 𝜁 12 and 𝜁 22 . The trivial solution at second order is given by 𝜁 22 and 𝜁 12 . Introducing the expansion (24a) in the modal Eqs. (22b) and (22c) and evaluating this on the trivial solution (i.e. for 𝜁 11 = 𝜁 21 = 0), one finds that 𝜁 12 = 0, (F.1a)

𝜁 22 = 𝛬 𝑐 3𝛬 𝑚 𝑛 2 𝑝 T1 cos 𝑛𝜗. (F.1b)
The associated pendulums' motion is

𝑠 1 = 𝑠 2 = 𝜖𝜁 22 = 𝛬 𝑐 3𝛬 𝑚 𝑛 2 𝑝 T1 cos 𝑛𝜗. (F.2) V. Mahe et al.
Solving the linear system (7), one can show that Eq. (F.2) corresponds to the linear solution at 𝑛 = 2𝑛 𝑝 when the contributions of 𝜇 and the damping are neglected. Hence, the trivial solution at second order is an approximation of the pendulums' linear response. It is possible to determine the trivial response of the rotor at order 2 by introducing the pendulums' solution (F.2) in the simplified rotor's Eq. (19a). Neglecting terms of order higher than 𝜖 and the damping, one finds

θ′′ = ( 1 + 𝜇 𝛬 2 𝑐 3𝛬 𝑚 ) T1 cos 𝑛𝜗. (F.3)
This indicates that pendulums generate a torque on the rotor that adds up with the external torque, so that they do not act as absorbers but as amplifiers. Hence, they slightly increase the rotor's amplitude compared to the case of immobile pendulums. Eq. (F.3) corresponds to the results found in [28] if one considers purely translated pendulums and neglects higher order terms in 𝜇. Note that the amplification effect of the pendulums diminishes as 𝛬 𝑐 diminishes, so that the use of negative linear rotation rates limits the amplification effect (cf. Eq. ( 8)). This makes sense as 𝛬 𝑐 is related to the linear coupling between the pendulums and the rotor, so reducing this coupling diminishes the action of the pendulums on the rotor.

Appendix G. System from the method of multiple scales with Cartesian coordinates

The Cartesian form of the system obtained from the method of multiple scales is given by Eq. ( 30) where functions 𝑓 𝑝 1 , 𝑓 𝑞 1 , 𝑓 𝑝 2 and 𝑓 𝑞 2 are

𝑓 𝑝 1 (𝒑, 𝒒) = [ -2𝑛 𝑝 b𝑝 1 -(𝑐 𝑝 -𝑐 𝑐 )(𝑝 2 1 + 𝑞 2 1 )𝑞 1 -2(𝑐 𝑝 + 𝑐 𝑡 )(𝑝 2 2 + 𝑞 2 2 )𝑞 1 + (𝑐 𝑝 -𝑐 𝑐 + 𝑐 𝑡 ) ( 𝑞 1 (𝑝 2 2 -𝑞 2 2 ) -2𝑝 1 𝑝 2 𝑞 2 ) +𝑛 𝑝 𝛬 𝑚 T1 𝑝 1 -2𝑛 𝑝 𝛬 𝑚 𝜎𝑞 1 ] [4𝑛 𝑝 𝛬 𝑚 ] -1 , (G.1) 𝑓 𝑞 1 (𝒑, 𝒒) = [ -2𝑛 𝑝 b𝑞 1 + (𝑐 𝑝 -𝑐 𝑐 )(𝑝 2 1 + 𝑞 2 1 )𝑝 1 + 2(𝑐 𝑝 + 𝑐 𝑡 )(𝑝 2 2 + 𝑞 2 2 )𝑝 1 + (𝑐 𝑝 -𝑐 𝑐 + 𝑐 𝑡 ) ( 𝑝 1 (𝑝 2 2 -𝑞 2 2 ) + 2𝑞 1 𝑝 2 𝑞 2 ) -𝑛 𝑝 𝛬 𝑚 T1 𝑞 1 + 2𝑛 𝑝 𝛬 𝑚 𝜎𝑝 1 ] [4𝑛 𝑝 𝛬 𝑚 ] -1 , (G.2) 𝑓 𝑝 2 (𝒑, 𝒒) = [ -2𝑛 𝑝 b𝑝 2 -(𝑐 𝑝 -𝑐 𝑐 + 2𝑐 𝑡 )(𝑝 2 2 + 𝑞 2 2 )𝑞 2 -2(𝑐 𝑝 + 𝑐 𝑡 )(𝑝 2 1 + 𝑞 2 1 )𝑞 2 + 2𝑛 2 𝑝 μ𝛬 2 𝑐 𝑞 2 -(𝑐 𝑝 -𝑐 𝑐 + 𝑐 𝑡 ) ( 2𝑝 1 𝑞 1 𝑝 2 -𝑞 2 (𝑝 2 1 -𝑞 2 1 )
)

+𝑛 𝑝 𝛬 𝑚 T1 𝑝 2 -2𝑛 𝑝 𝛬 𝑚 𝜎𝑞 2 ] [4𝑛 𝑝 𝛬 𝑚 ] -1 , (G.3) 𝑓 𝑞 2 (𝒑, 𝒒) = [ -2𝑛 𝑝 b𝑞 2 + (𝑐 𝑝 -𝑐 𝑐 + 2𝑐 𝑡 )(𝑝 2 2 + 𝑞 2 2 )𝑝 2 + 2(𝑐 𝑝 + 𝑐 𝑡 )(𝑝 2 1 + 𝑞 2 1 )𝑝 2 -2𝑛 2 𝑝 μ𝛬 2 𝑐 𝑝 2 + (𝑐 𝑝 -𝑐 𝑐 + 𝑐 𝑡 ) ( 2𝑝 1 𝑞 1 𝑞 2 + 𝑝 2 (𝑝 2 1 -𝑞 2 1 )
) From (a) and (b), one can see that the pendulums' amplitude at a given torque and order is always larger for the softened-CPVA. Hence, it has a smaller torque capacity compared to the perfectly-tuned CPVA. The other important feature, visible in (d), is that the antiresonance shift to the left as the torque amplitude is increased. This is opposite to hardened-CPVAs for which the antiresonance shifts to the right (cf. Fig. 8).

-𝑛 𝑝 𝛬 𝑚 T1 𝑞 2 + 2𝑛 𝑝 𝛬 𝑚 𝜎𝑝 2 ] [4𝑛 𝑝 𝛬 𝑚 ] -1 . (G.4)

Appendix H. Effect of a softened behaviour on SH1

Appendix I. Additional information regarding the torque capacity

As explained in Section 7.3, there are some sets of parameters that are undesired as they do not allow for a desired operation of the CPVA.

In Fig. 10(a), the hatched area corresponds to values of 𝑛 𝑝 for which the trivial solution bifurcates to SH2 instead of SH1. The corresponding limit value of 𝑛 𝑝 , computed using Eq. ( 44), is

𝑛 𝑝 = 𝑛 ( 2 + 𝜇 𝛬 2 𝑐 2𝛬 𝑚 ) -1 . (I.1)
In Fig. 10 

𝑐 𝑝 = [ -6𝜎𝑐 𝑡 + 𝑐 𝑐 𝑛 𝑝 μ𝛬 2 𝑐 𝛬 𝑚 ] ( 4𝜎 + 𝑛 𝑝 μ𝛬 2 𝑐 𝛬 𝑚 ) -1 if T1 max = T1 𝑏 , (I.2d) V. Mahe et al. 𝑛 𝑝 = 𝑛 ( 2 + 𝜇 𝛬 2 𝑐 2𝛬 𝑚 ) -1 if T1 max = T1 𝑎 . (I.2e)
Note that condition (I.2a) corresponds to SH1 being neither hardening nor softening (cf. Eq. ( 36)). In that case, the backbone curve of SH1 is a vertical line and when the trivial solution bifurcates to SH1, the pendulums' amplitude tends to infinity.

Chapter 7

Stability of the subharmonic response of centrifugal pendulums

This chapter is made of a paper about to be submitted to Nonlinear Dynamics [154]. It focuses on the stability of the subharmonic response of a centrifugal pendulum vibration absorber (CPVA) made of several pairs of pendulums. More specifically, it aims to predict analytically the apparition of localised subharmonic responses and to provide guidelines to avoid them using the simplified CPVA model detailed in section 2.3.2. It is the logical continuity of chapter 6, which investigated the subharmonic response of a CPVA made of a single pair of pendulums. Hence, like chapter 6, the present chapter can prove useful in the adaptation of CPVAs to electric vehicles.

Sections 1 and 2 repeat information from chapters 1 and 2. They present the context of the study, the modelling of a CPVA (cf. section 2.1.1) and a linear analysis (cf. section 2.2). In addition, section 3.2 repeats the derivation of simplified CPVA equations, which was already detailed in section 2.3.2 of chapter 2. The reader might want to skip these sections of the article if he already read chapters 1 and 2.

The novelty of the article starts in section 3.1, where the desired subharmonic solution in the presence of several pairs of pendulums is detailed. This desired solution corresponds to pendulums moving with the same amplitude, but with half of them in phase-opposition with the other half. Thus, they act as two equivalent pendulums in phase-opposition. This special solution is discussed further in the rest of section 3, which is a summary of the results from chapter 6. Hence, the reader might want to skip sections 3.2, 3.3 and 3.4 if he already read chapter 6. The stability of the desired solution is evaluated in section 4 using the method of multiple scales (cf. section 2.5.2.1) and an original procedure. It is found that great care must be taken in the tuning of the pendulums as localisation might easily occur. The analytical results are applied to case studies in section 5 and validated through comparisons with numerical resolutions of the system's dynamics. Guidelines to enforce a bifurcation towards the desired response and to make this response stable are proposed.
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Abstract

Centrifugal pendulum vibration absorbers (CPVAs) are passive devices used to reduce torsional vibrations in rotating machines. Previous works showed that a CPVA configuration with two pendulums oscillating in phase-opposition and at half the excitation frequency is efficient in reducing the rotor's vibrations. This paper deals with a new generation of CPVAs, in which the pendulums admit a rotational motion relative to the rotor in addition to the traditional translational motion. The aim of this study is to assess the dynamic stability of a particular subharmonic solution of CPVAs composed of several pairs of pendulum. To do so, a new method based on an analytical perturbation technique is proposed. It leads to more general conclusions than previous studies as the results are derived for CPVAs with any even number of pendulums. The validity of the analytical model is confirmed through a comparison with a numerical resolution of the system's dynamics, and new design guidelines are proposed.

Introduction

In the frame of reducing polluting emissions and fuel consumption of vehicles using thermal engines, automotive manufacturers try to reduce the cylinder capacity and engine speed of rotation. These evolutions lead to a significant increase of rotation irregularities called "acyclisms", mainly due to higher combustion pressure. One of the main characteristics of these reciprocating engines is the linear dependence of the acyclism frequency to the engine mean speed of rotation. The coefficient of proportionality is called the engine order and only depends on the architecture of the engine. During an acceleration phase, the engine sweeps a wide frequency range containing some driveline torsional modes. This situation may lead to significant noise and vibration levels into the passenger compartment and premature wear of the driveline components. Centrifugal pendulum vibration absorbers (CPVAs) have been used for many years to minimise acyclisms of automotive powertrains at the engine order [1][2][3]. These passive devices consist of oscillating masses (pendulums) moving along particular paths relative to a primary inertia (rotor) as shown in Fig. 1. Because the pendulums move in the centrifugal acceleration field resulting from the rotation of the CPVA, their natural frequency is proportional to the mean engine speed of rotation. The coefficient of proportionality is the pendulums' tuning order, which can be chosen to filter out vibrations at the engine order.

There are two ways of choosing the pendulums' tuning order. The "classical" way, used in industrial solutions, is to tune the pendulums on the engine order. This generates an antiresonance of the rotor at the engine order, allowing for significant vibration reduction. However, because of non-linearities inherent to CPVA systems, several dysfunctions occur at large excitation amplitudes, such as jumps of the response [4], localisation of the pendulums' response [5][6][7][8][9][10][11][12][13][14][15][16][17], a shift of the antiresonance [17,18] and the generation of higher rotor harmonics [17,[19][20][21][22][23][24]. An alternative tuning, studied by S. Shaw et al. [19,[25][26][27][28][29] and V. Mahé et al. [30], is to set the pendulums' tuning order to half the engine order. In this case, the pendulums oscillate at half the engine order so that the solution is a subharmonic of order 2 [31]. This generates a non-linear antiresonance of the rotor at the engine order. Moreover, in the case of perfect-tuning, the amplitude at the antiresonance is saturated, which allows for an efficient reduction of the rotor's vibrations [27]. This saturation effect is a known consequence of subharmonic solutions and proved useful in other fields of application (see e.g. [32,33] and references therein).

Most studies dealing with CPVAs consider purely translated pendulums, i.e. pendulums that do not rotate relatively to the rotor. However, several works recently showed that adding a rotational mobility to the pendulums can significantly increase the efficiency of the CPVA [34][35][36][37][38]. These works encouraged researchers to investigate the impacts of rotation [14,15,[39][40][41][42][43], including the authors of the present paper [16,17,30], who extended former results on the subharmonic solution by considering pendulums that can rotate relatively to the rotor.

In [19,[25][26][27][28]30], the subharmonic solution is studied for CPVAs made of only two pendulums. If the CPVA is made of several pairs of pendulums, the ideal solution is obtained when half of these pendulums are in phase opposition with the other half. Hence, the two half act as equivalent pendulums. However, C.-P. Chao et al. showed that the presence of several pairs of pendulums leads to additional instabilities [29]. The motivation of this paper is to investigate the stability of the subharmonic response of CPVAs made of N pendulums (N even) that are allowed to rotate relatively to the rotor. In [29], concepts from group theory and symmetric bifurcation theory were used to assess the stability of CPVAs made of 4 and 6 pendulums. Though giving very interesting results, the method used gets more complex as one considers CPVAs with larger numbers of pendulums. In the present study, an alternative method is proposed. It leads to more general conclusions as the results obtained are valid for any even value of N . In addition, this new method allows to derive an analytical expression for the limits of the instability zones, resulting in more accurate design guidelines. Another major contribution of the present paper is that the rotational motion of the pendulums is taken into account. This paper is organised as follows. The modelling and a linear analysis of a CPVA are conducted in section 2. The subharmonic solution of interest is computed in section 3 and its stability is assessed in section 4. Case studies and design guidelines are presented in section 5.

Modelling and linear analysis 2.1 Modelling

The system studied is shown in Fig. 1. A rotor of inertia J r rotates about its centre O. Its total angular position is ϑ(t) = Ωt + θ(t) where t is the time, Ω is the mean rotational velocity and θ(t) corresponds to the fluctuating part of the rotation (with zero mean). A torque T (ϑ) = T 0 + T θ (ϑ) is applied to the rotor where T 0 is its constant part and T θ (ϑ) is periodic (with zero mean). For constant torque and constant rotation speed, one has T 0 = b r Ω where b r is the linear viscous damping coefficient of the rotor, such that the constant torque balances with the damping to set the mean rotation speed Ω. N pendulums of mass m i and inertia I i (about their centre of mass) oscillate on their path C i . Their position on these paths is given by the curvilinear

O Si C i R i ( S i ) R 0i ϑ = Ω t + θ T ( ϑ ) rotor J r i th pendulum m i , I i j th pendulum αj ( Sj )
Figure 1: Representation of the system studied with N = 2 pendulums.

abscissa S i (t) and their distance from O is R i (S i ). The characteristic dimension R 0i = R i (S i = 0) is the distance between O and the vertex of the path.

In addition to the traditional translation motion, the present study considers that the pendulums rotate about their centre of mass according to the rotation function α i (S i ). As for the rotor, an equivalent linear viscous damping coefficient b i is used to model the damping between the i th pendulum and the rotor. In the later, pendulums and their associated path and rotation functions will be considered identical so that subscript "i" will be dropped when addressing pendulums' parameters.

In order to write the equations of motion in a non-dimensional form, the following parameters and variables are introduced:

s i = S i R 0 , y = θ Ω = 1 + θ Ω , η = I mR 2 0 , µ = N mR 2 0 (J r + N I) , x(s i ) = R(R 0 s i ) 2 R 2 0 , z(s i ) = x(s i ) - 1 4 dx(s i ) ds i 2 , α(s i ) = α(R 0 s i ), γ(s i ) = dα(s i ) ds i , b = b mΩ , br = b r (J r + N I)Ω , T (ϑ) = T0 + Tθ (ϑ) = T (ϑ) (J r + N I)Ω 2 , (1) 
where (•) = ∂(•)/∂t. The s i and y are the N + 1 degrees of freedom of the system. They correspond to the relative position of the pendulums and the non-dimensional rotation velocity of the rotor, respectively. η and µ are inertia ratios and x(s i ) and z(s i ) are path functions while α(s i ) and γ(s i ) are rotation functions. In this paper, x(s i ) and α(s i ) are written as polynomials in the curvilinear abscissa s i such that

x(s i ) = 1 -n 2 t s 2 i + ∞ k=3 x [k] s k i , α(s i ) = ∞ k=0 α [k] s k i , (2) 
where n t is the order of the pendulums' path and x [k] , α [k] are path and rotation coefficients. Note that in the case x [k] = 0, ∀k, the pendulums' paths are epicycloids, which corresponds to the tautochronic path when the rotor spins at a constant speed [44]. b and br are non-dimensional damping constants and T (ϑ) is the non-dimensional torque applied on the rotor.

In order to give T (ϑ) the meaning of an external forcing term, we replace the independent variable t by the rotor's position ϑ [45], which can be seen as a non-dimensional time. The condition to use this change of variables is that ϑ be strictly monotonic, which is the case in practice. Using the chain rule, one can show that

(•) = Ωy(•) , ( •) = Ω 2 yy (•) + Ω 2 y 2 (•) , (3) 
where (•) = ∂(•)/∂ϑ (the demonstration can be found in [30]). Hence, the non-dimensional rotor's acceleration is now θ/Ω 2 = ẏ/Ω = yy . Using the nondimensional quantities (1) and the chain rule (3), one can write the equations of motion as

1 N N i=1 (N + µx(s i ))yy + µ (z(s i ) + ηγ(s i )) (yy s i + y 2 s i ) + µy 2 s i dx(s i ) ds i + dz(s i ) ds i s i + η dγ(s i ) ds i s i + br y = T (ϑ), [z(s i ) + ηγ(s i )] y + 1 + ηγ(s i ) 2 (y s i + ys i ) + ηγ(s i ) dγ(s i ) ds i ys i 2 - 1 2 dx(s i ) ds i y + bs i = 0, i = 1, ..., N. (4a) (4b) 
Computation details can be found in [30]. Equation (4a) governs the motion of the rotor while the N Eqs. (4b) govern the motion of the pendulums.

From now on, it is assumed that the fluctuating torque applied on the rotor contains only one harmonic whose non-dimensional form is T1 cos(nϑ), where n is the excitation order. For a car engine, n corresponds to the number of strikes per revolution of the crankshaft.

Linear analysis

First of all, one can use Eq. ( 3) to show that, at first order, 1 + θ ≈ y and θ ≈ yy ≈ y (the demonstration can be found in [30]). Hence, it is possible to represent the motion of the rotor with position θ instead of velocity y. This way, all the degrees of freedom of the system are positions, which facilitates the representation of the mode shapes. Using θ instead of y and the balance between the constant torque and the damping (cf. section 2.1), one can linearise Eqs. (4a) and (4b). This leads to the free, conservative, linear, matrix equation

M q + Kq = 0, (5) 
where q, M and K are the vector containing the degrees of freedom and the mass and stiffness matrices, respectively. They are given by

q =      θ s 1 . . . s N      , M =         N 1+µ µ Λ c • • • • • • Λ c Λ c Λ m 0 • • • 0 . . . 0 . . . . . . . . . . . . . . . . . . . . . 0 Λ c 0 • • • 0 Λ m         , K =      0 n 2 t . . . n 2 t      . (6) 
Λ m and Λ c are constants representing the equivalent mass of a pendulum due to the effect of the rotatory inertia and the linear coupling term between a pendulum and the rotor, respectively. They are given by

Λ m = 1 + ηα 2 [1] , Λ c = 1 + ηα [1] , (7) 
where α [1] is the linear rotation coefficient (cf. Eq. ( 2)).

The eigenvalue problem [Kn 2 M ]φ = 0 can be solved using a property of arrowhead matrices [46], leading to the eigenorders 1 and mode shapes of 1 Eigenorders can be seen as nondimensional eigenfrequencies.

the system. These are given by

n 00 = 0, n 10 = n p , n 20 = n p 1 + µ 1 + µ 1 - Λ 2 c Λ m φ 00 = [1, 0, ..., 0] , φ 20 = - µΛ c 1 + µ , 1, ..., 1 , 
φ 10 i [i + 1] = -φ 10 i [i + 2] = 1, φ 10 i [j = {i + 1, i + 2}] = 0, i = 1, ..., N -1. (8) 
Superscript indicates the transpose and φ 10 i [j] refers to the j th component of φ 10 i . n p is the pendulums' tuning order, which is related to the path order n t such that

n p = n t √ Λ m . (9) 
It corresponds to the eingenorder of the pendulums when they are uncoupled from the rotor.

(n 00 , φ 00 ) , (n 10 , φ 10 i ) and (n 20 , φ 20 ) will be referred to as modes 0, 1 i and 2, respectively. For simplicity, modes 1 will refer to the set containing all modes 1 i . The modes are illustrated in Fig. 2 for a CPVA made of N = 4 pendulums. Mode 0 is a rigid body mode for which only the rotor is excited. Modes 1 are N -1 degenerated modes for which two pendulums are moving in phaseopposition. Their eigenvalue n 10 has a multiplicity N -1 and the rotor is a node of these modes. For a CPVA made of only two pendulums, mode 1 is not degenerated and simply represents a phase-opposition motion of the pendulums. Note that there are many ways to write modes 1 (they are not unique), the only conditions being that

• the rotor's component is null,

• the sum of all the components is null,

• modes 0, 1 and 2 form a complete basis of R N +1 .

More details on this matter are presented in Appendix A. Mode 2 is a mode for which pendulums move in unison but in phase-opposition with respect to the rotor (provided that Λ c > 0, which is the case for reasonable parameters).

When a fluctuating torque is applied, one can choose to tune the pendulums such that n p ≈ n or n p ≈ n/2 to filter-out the rotor's vibrations using mode 2 or modes 1, respectively.

3 The desired subharmonic solution

The undamped, perfectly-tuned case

The aim here is to show that the solution with half the pendulums oscillating in unison and in phase-opposition with the other half allows for an efficient reduction of the rotor's vibrations (note that the special case of N = 2 pendulums was already treated in [30]). To do so, the case of a CPVA with undamped pendulums following epicycloidal paths and with a linear rotation law α(s i ) = α [1] s i is considered. Moreover, the solution sought is that of perfect filtration, i.e. with y = 0, y = 1 so that the rotor spins at a constant speed. In this case, the pendulums' response is of the form

s i = a i cos(n p ϑ + ϕ i ), i = 1, ..., N. (10) 
The pendulums can be split into two groups by introducing the sets of integers 

These sets are chosen to be of the same size so that the N pendulums split into two groups of N/2 pendulums, each group acting as an equivalent pendulum with mass N m/2 and inertia N I/2. It is now assumed that the pendulums in G 1 oscillate in phase, but their amplitudes are not necessarily the same. Pendulums in G 2 oscillate with the same amplitudes as those in G 1 but in phase-opposition. Under these assumptions, the rotor's equation (4a

) reduces to 2n 2 t n p µ N N/2 i=1 a 2 i cos [2(n p ϑ + ϕ i ) -π/2] = T1 cos(nϑ), (12) 
and is verified under the conditions

n p = n/2, ϕ i = π/4, i ∈ G 1 , ϕ i = π/4 + π, i ∈ G 2 , N/2 i=1 a 2 i = N T1 2n 2 t n p µ . (13a) (13b) 
Because of condition (13b), there is an infinity of solutions for the pendulums' responses. However, in addition to the efficiency of the filtration, one should keep in mind that CPVAs have a limited torque range due to the nature of the pendulums' path. Indeed, the paths have a cusp that pendulums cannot overpass. For instance, the cusp of an epicycloid is

s cusp = 1 n 2 t (1 + n 2 t ) . ( 14 
)
In order to maximise the torque range, one should aim for the solution minimising the amplitude of all the absorbers. From Eq. (13b), it can be seen that this is achieved when all the absorbers oscillate with the same amplitude (i.e. a i = a ∀i), which corresponds to a particular solution, called "SH1" 1 . This special solution corresponds to a combination of modes 1 such that

φ SH1 = N/2 i=1 iφ 10 i + N -1 i=N/2+1 (N -i)φ 10 i = [0, 1, ..., 1 N/2
, -1, ..., -1

N/2 ] . (15) 
SH1 allows for a complete filtration of the rotor's vibrations while maximising the torque range, which makes it the desired subharmonic solution.

Notations from group theory [47] define S M as a group with symmetry M , that is to say a set that is invariant under any permutation of its M elements. In the case of a CPVA, S M refers to a solution for which a subgroup of M absorbers have the exact same motion, so that any permutation of these M absorbers results in the same response. Hence, SH1 can be seen as a special S N/2 × S N/2 solution where the amplitudes in the two S N/2 groups are equal but the phases are shifted by π.

Discussion on the mode shapes obtained through combinations of modes 1

Modes 1 are degenerated modes, so they are all in 1:1:...:1 internal resonance (cf. Eq. ( 8)) [48]. Hence, any combination of these modes can also be seen as a mode of the system (it could actually have been defined as a mode in place of one of the modes 1 i , cf. section 2.2). In section 3.1, we discussed SH1, defined as the ideal combination of modes 1 to filter the rotor's torsional vibrations while minimising the pendulums' amplitude of motion. However, this is not the only optimal combination of modes 1. Indeed, instead of defining G 1 and G 2 as the sets containing the first and last N/2 pendulums, respectively, we could have defined them as G 1 = {2, 3, ..., N/2 + 1} and G 2 = {1, N/2 + 2, N/2 + 3, ..., N }.

Then, if we make the same assumptions as in section 3.1 (the pendulums all have the same amplitude but those in G 1 are in phase-opposition with those

1 "SH" stands for "subharmonic" and "1" refers to the response being on modes 1.

in G 2 ), we obtain a mode shape SHR of the form SHR : [0, -1, 1, ..., 1

N/2
, -1, ..., -1

N/2-1 ] . (16) 
Note that SHR is just a rotation by 1 of SH1. As the pendulums are identical, their response on SHR leads to the same rotor's response as SH1. Moreover, the pendulums' responses are also identical except for that of the first and last pendulums which are swapped. There are N -1 rotations of SH1, and instead of studying them all it is relevant to study only SH1.

There are also combinations of modes 1 that satisfy "all pendulums oscillate with the same amplitude but half of them are in phase opposition with the other half" while not being rotations of SH1. For instance, this is the case of the mode shape SHX :

[0, 1, -1, 1, -1, ..., 1, -1 N ] , (17) 
obtained by defining G 1 = {1, 3, 5, ..., N -1} and G 2 = {2, 4, 6, ..., N }. Again, as the pendulums are all identical, their response on SHX leads to the same rotor's response as SH1. The pendulums' responses are also the same as with SH1 except that they are swapped. There is however a difference between mode shapes of the form of SHR, which are rotations of SH1, and those like SHX, which are not. Indeed, the pendulums' distribution does not affect the torque they generate on the rotor, but it affects the resulting force they apply on it. This is illustrated in Appendix B, where one can see that SH1 and its rotations generate shaking forces on the rotor while SHX does not. This is of small importance in the present study as the translational mobility of the rotor is not taken into account, so these shaking forces are of no consequence. However, if this mobility was to be accounted for, the shaking forces would be a source of translational rotor vibrations. Such vibrations are investigated in [49][50][51][52][53][54][55][56] but are out of the scope of this paper.

Dropping the assumption that all pendulums have the same amplitude (this was assumed in section 3.1 to maximise the torque capacity of the CPVA), one can generate mode shapes different from the ones discussed above. Among these different-amplitude mode shapes, one can find all modes 1 but also combinations such as [0, 1, 1, -1, -1, 0, ..., 0

N -4
] and [0, 3, -1, -1, -1, 0, ..., 0

N -4 ] (18) 
for instance. Though such solutions are not desired as they decrease the torque capacity and might not allow for an efficient filtering of the rotor's vibrations, they exist and it will be shown thereafter (cf. section 5 and Appendices A, G and H) that they significantly complicate the dynamics of the system.

To conclude this brief discussion on the different combinations of modes 1, one has to be aware that:

• SH1 is not the only optimal pendulums' response.

• Every optimal pendulums' response leads to a system's response very similar to SH1 (provided that the rotor does not have a translational mobility), so it is sufficient to study only SH1. • Non-ideal pendulums' responses exist and complicate the dynamics of the system.

Scaling and simplification of the equations

Now that SH1 has been identified as (one of) the desired response, it is essential to study it further by taking into account the damping and considering more general path and rotation functions. To do so, the first step is to simplify Eqs. (4a) and (4b) in order to obtain equations of motion that can be solved analytically. The full procedure is detailed in [30], so only the main steps are reminded here. The path and rotation functions followed by the pendulums are chosen to be

x(s i ) = 1 -n 2 t s 2 i + x [4] s 4 i , α(s i ) = α [1] s i + α [3] s 3 i , (19) 
and the rotor's rotational velocity is expanded such that

y(ϑ) = 1 + y θ (ϑ). ( 20 
)
According to physically relevant assumptions [17,30], some parameters and variables are scaled such that b = b, br = br , T1 = T1 , µ = μ,

y θ = ỹθ , θ = θ , x [4] = x[4] , α [3] = α[3] , (21) 
where is a small parameter. In order to give it a physical meaning, one can choose = µ [7]. In the following, only first-order terms will be retained in the rotor's equation. Hence, like in section 2.2, the approximation θ ≈ ỹθ can be used in order to represent the degree of freedom of the rotor through its position rather than its velocity.

Using Eqs. ( 19), ( 20) and ( 21) and using Taylor series for z(s i ), Eqs. (4a) and (4b) can be simplified such that

θ = μ N N i=1 n 2 p Λ c s i + 2n 2 t s i s i + n 2 t (1 + n 2 t ) s i s i 2 - n 2 p 2 s 3 i + T1 cos(nθ), s i + n 2 p s i = -Λ -1 m Λ 2 c μ N N j=1 n 2 p s j + bs i + μn 2 t Λ c N N j=1 s j (2s j + s i ) + μn 2 t N N j=1 (1 + n 2 t )Λ c s j s j 2 - n 2 p 2 (s 3 j + s j s 2 i ) + 2Λ m s j s j s i + 6ηα [1] α[3] (s i s i 2 + s 2 i s i ) -2x [4] s 3 i + Λ c + Λ m s i - n 2 t (1 + n 2 t ) 2 s 2 i T1 cos(nϑ) , i = 1, ..., N. (22a) (22b) 
Equation (22a) expresses the rotor's acceleration as a function of the pendulums' motion. As seen in section 3.1, the quadratic terms s i s i are the ones responsible of the subharmonic filtration. The pendulums' equations (22b) are uncoupled from the rotor's dynamics, so that one can solve them to obtain the s i and then inject the results in Eq. (22a) to retrieve the rotor's response. Equations (22b) contain the effect of the external torque, the damping, the coupling between pendulums (both linear and non-linear) through the sums over N , and the perturbations of the path and rotation functions. Equations (22b) are weakly coupled because pendulums are coupled indirectly through the rotor and their effect on the rotor is small as their relative inertia is small [28]. These equations are also weakly non-linear because the path and rotation functions chosen are close to an epicycloid and a linear rotation, which render a quasi-linear behaviour for small fluctuations of the rotational speed.

The subharmonic solutions

The method of multiple scales [57] is used to find the subharmonic solutions of Eqs. (22b). Two rotation scales are introduced, ϑ 0 = ϑ and ϑ 1 = ϑ and pendulums coordinates are expanded such that

s i (ϑ) = s i1 (ϑ 0 , ϑ 1 ) + s i2 (ϑ 0 , ϑ 1 ). ( 23 
)
Because the solution sought is a subharmonic of order 2, it is convenient to define the detuning term σ as

n = 2n p + σ. (24) 
σ > 0 and σ < 0 correspond to under-tuned and over-tuned pendulums, respectively. Applying the method of multiple scales to Eq. (22b) yields firstorder solutions of the form

s i1 (ϑ 0 , ϑ 1 ) = a i (ϑ 1 ) cos nϑ 0 -ξ i (ϑ 1 ) 2 , i = 1, ..., N (25) 
Amplitudes a i and phases ξ i are governed by the system

D 1 a i = f a i (a, ξ), i = 1, ..., N a i D 1 ξ i = f ξ i (a, ξ), i = 1, ..., N, (26a) (26b) 
where D 1 (•) = ∂(•)/∂ϑ 1 and a, ξ are vectors containing the a i and ξ i , respectively. Functions f a i and f ξ i are given in Appendix C. The solutions sought are those at steady-state, meaning that the amplitudes and phases are invariant with ϑ such that

D 1 a i = D 1 ξ i = 0, ∀i. (27) 

Phase-opposition solution

The desired solution SH1 corresponds to

a i = a j = a, ξ i = ξ, ξ j = ξ + 2π, ∀i ∈ G 1 , ∀j ∈ G 2 . ( 28 
)
Introducing Eqs. ( 27) and (28) in system (26) and solving for a and ξ leads to

a 2 = n p 2Λ m σ ± Λ 2 m T 2 1 -4 b2 c c -c p , tan(ξ) = ∓ Λ 2 m T 2 1 4 b2 -1. (29a) (29b) 
c c and c p are non-linear coefficients related to Coriolis effects and to the perturbations of the path and rotation functions, respectively. They are defined as

c c = μn 4 t , c p = 3(x [4] + 2n 2 p ηα [1] α[3] ). ( 30 
)
As expected, Eqs. ( 29) have exactly the same form as the results obtained in [30], where only two pendulums were considered. The fact that there are more than two pendulums appears only through the increase of μ, which is involved in c c (cf. Eqs. ( 30), ( 21) and ( 1)). The backbone of SH1 is given by

n (SH) 1 = 2n p + c c -c p 2n p Λ m a 2 , (31) 
so that in the special case c p = 0, SH1 is hardening. One can choose c p to increase (decrease, respectively) this hardening behaviour, resulting in hardened (softened) pendulums. Hence, c p can be seen as the non-linear tuning parameter.

Introducing Eqs. ( 25) and ( 29) in Eq. (22a) leads to the rotor's response

θ (1) 2 = T 2 1 + µ 2 n 4 t n 2 a 4 4 + T1 µn 2 t na 2 sin ξ. (32) 
Superscripts in brackets indicate the number of the harmonic considered so that Eq. ( 32) represents the amplitude of the first harmonic of the rotor's acceleration. At the order retained here, all the other rotor harmonics are null.

In the case of perfect-tuning (i.e. n p = n/2 and c p = 0), Eq. ( 32) reduces to

θ (1) = 2 b Λ m , (33) 
which highlights the saturation phenomenon as the rotor's amplitude is independent from the forcing amplitude T1 .

Trivial solution

System (26) also has a trivial solution (TS) for which pendulums are immobile, i.e. a i = 0, ∀i. The associated rotor's response is simply

θ (1) = T1 , (34) 
and the conditions under which TS is unstable (cf. [30]) are

T 2 1 - 4 b2 Λ 2 m -4σ 2 > 0, or T 2 1 - 4 b2 Λ 2 m -4 σ -n p μ Λ 2 c Λ m 2 > 0. (35a) (35b) 
Conditions (35a) and (35b) are associated to period-doubling bifurcations towards modes 1 (a single mode or a combination of modes, like SH1), and mode 2, respectively [30].

Other solutions

System (26) allows many other solutions than the two discussed previously. A response on mode 2 and a coupled-mode solution involving modes 1 and 2 were studied in [30]. Solutions on a single mode 1 i and combinations of modes 1 different from SH1 are also possible. Some of them are derived in Appendix A. A typical response of a subharmonic CPVA is depicted in Fig. 3. Its parameters are chosen such that c p = 0, which corresponds to perfect nonlinear tuning. Figure 3 shows an order response1 (left) and a torque response2 (right) at and excitation order such that n = 2n p . The fundamental harmonic of the rotor's acceleration is given in (a) and (b) and the subharmonic motion of the pendulums is given in (c) and (d). Green and blue curves represent the trivial and SH1 solutions, respectively. Dashed lines indicate unstable solutions (the stability of SH1 is evaluated in section 4). PD+ and PD-indicate supercritical and subcritical period-doubling bifurcations, respectively. Note that in (a), the unstable part of the rotor's response almost overlaps with the part of the stable response located on the right of the PD-bifurcation. This is why the unstable branch is not clearly visible in (a). Figure 3(a) shows the non-linear antiresonance generated by the pendulums on the rotor. In Fig. 3(b), one can see that the amplitude at the antiresonance is independent from the forcing amplitude, thus leading to a saturation phenomenon. This saturation is effective starting from a threshold torque amplitude and up to a maximum torque. This upper torque limit exists because of the cusp of the pendulums' path (cf. Eq. ( 14)).

The saturation visible in Fig. 3(b) is perfect (i.e. the amplitude is rigorously constant) because the CPVA has perfect non-linear tuning. In the case c p = 0, the antiresonance shifts as the forcing is increased, leading to imperfect saturation [30]. This is illustrated in Fig. 4 on a CPVA for which c p < 0, so that SH1 is hardened, causing a shift of the antiresonance towards higher orders. The red line indicates the rotor's amplitude at a given order (here n = 2n p ). The increase of the amplitude with T1 on the red line shows that the rotor does not perfectly saturates.

Stability analysis 4.1 Jacobian of the system

The first step to evaluate the stability of SH1 is to compute the Jacobian of system D 1 a i = f a i (a, ξ),

D 1 ξ i = f * ξ i (a, ξ), (36a) (36b) 
and to evaluate this Jacobian on SH1. System (36) simply corresponds to system (26) with Eq. (26b) divided through by a i (f * ξ i is defined as f ξ i /a i ). The Jacobian J evaluated on SH1 has the form where U and H are block-circulant matrices given by

J = U H H U , (37) 
U =       J 1 J 2 a • • • J 2 a J 2 a . . . . . . . . . . . . . . . . . . J 2 a J 2 a • • • J 2 a J 1       , H =      J 2 b J 2 b • • • J 2 b J 2 b J 2 b • • • J 2 b . . . . . . . . . . . . J 2 b J 2 b • • • J 2 b      , (38) 
and matrices J 1 , J 2 a and J 2 b are

J 1 =    ∂f a i ∂a i ∂f a i ∂ξ i ∂f * ξ i ∂a i ∂f * ξ i ∂ξ i    , J 2 a =     ∂f a i ∂a j ∂f a i ∂ξ j ∂f * ξ i ∂a j ∂f * ξ i ∂ξ j     , i, j ∈ G 1 or i, j ∈ G 2 J 2 b =     ∂f a i ∂a j ∂f a i ∂ξ j ∂f * ξ i ∂a j ∂f * ξ i ∂ξ j     , i ∈ G 1 , j ∈ G 2 or i ∈ G 2 , j ∈ G 1 . (39)
This makes J a block-circulant matrix whose blocks are themselves blockcirculant matrices. Block U is related to the effect that absorbers from the same group have on each other, while block H is related to the effect that absorbers from one group have on the other group. More specifically:

• J 1 represents the effect of a perturbation of absorber i on itself, • J 2 a represents the effect of a perturbation of an absorber j on absorber i, provided these two are in the same group, • J 2 b represents the effect of a perturbation of an absorber j on absorber i, provided these two are in different groups.

Determinant of the Jacobian

As in [58,59], the Schur determinant formula

U H H U I 0 -U -1 H I = U -HU -1 H H 0 U (40) 
can be used to express the determinant of J as

det(J ) = det(U ) det(U -HU -1 H) = det(U ) det(G), (41) 
where I and 0 are the identity and zero matrices of the appropriate size and

G = U -HU -1 H (42) 
is the Schur complement of U in J [60]. det(U ) can be easily computed using properties of block-circulant matrices [47], so the difficulty is to compute det(G), which involves U -1 . The procedure to invert a block-circulant matrix is explained in [61]. It involves product of block matrices, which is trivial as all the matrices involved here are comfortably partitioned [62]. The procedure to compute U -1 also requires to invert a sum of matrices, which was studied in [63]. Using results from those papers together with some properties about the roots of unity (see Appendix D), it is possible, after lengthy computations, to obtain matrix U -1 . It is a block-circulant matrix that has the same shape as U . It is useful to note that H is a special block-circulant matrix as its blocks are all the same. Thus, the blocks of HU -1 H are all the same, and because U is block-circulant, G will also be block-circulant such that

G =       G 1 G 2 • • • G 2 G 2 . . . . . . . . . . . . . . . . . . G 2 G 2 • • • G 2 G 1       , (43) 
where G 1 and G 2 are 2 × 2 blocks. Finally, the determinant of the Jacobian can be computed using results from [47]. It is given by

det(J ) = det(U ) det(G) = det(A U ) det(B U ) N 2 -1 det(A G ) det(B G ) N 2 -1 , (44) 
where matrices A U , B U , A G and B G are defined as

A U = J 1 + N 2 -1 J 2 a , B U = J 1 -J 2 a , A G = G 1 + N 2 -1 G 2 , B G = G 1 -G 2 . (45) 
Since those four matrices are 2 × 2, the computation of det(J ) becomes trivial. Moreover, matrices B U and B G are the same, so that B = B U = B G will be used in the following, and one can write

det(J ) = det(A U ) det(A G ) det(B) N -2 . ( 46 
)

Instability zones

SH1 is unstable when at least one eigenvalue λ i of J has a positive real part. Changes in sign( [λ i ]) occur either when det(J ) changes sign (that is, det(A U ) or det(A G ) changes sign) or when det(J ) passes singularly through zero without becoming negative (that is, det(B) changes sign or det(A U ) and det(A G ) change sign simultaneously). det(J ) < 0 always indicate unstable solutions as it means that the number of eigenvalues with negative real part is not even (hence it is not 2N ). It is however not possible to conclude on the stability state when det(J ) > 0. Indeed, these situations could correspond to any even number of eigenvalues with a positive real part (including 0). Finally, instabilities arising from Neimark-Sacker bifurcations do not correspond to det(J ) = 0, so they cannot be captured through the analysis led in this paper. This being said, numerical resolutions of Eqs. (4a) and (4b) never revealed quasi-periodic solutions.

The determinants of matrices A U , A G and B are given in Appendix E. One can solve det(A U ) = 0, det(A G ) = 0 and det(G) = 0 for a to find the limits of the instability regions. This yields bifurcation curves, that is to say curves defining the bifurcation points for any forcing amplitude [16]. Each crossing between one of those curves and SH1 leads to a change of stability. Excluding the curves equal to zero, the bifurcation curves are

a 2 pf 1 = Λ 2 c μn 2 p -2Λ m n p σ c p + c t 2 , a 2 pf 2 = Λ 2 c μn 2 p c p + 3c t 2 , a 2 sn = 2Λ m n p σ c c -c p , a 2 pf 3 = - 2Λ m σn p c p , a 2 pf 4 = Λ 2 c μn 2 p -4Λ m n p σ -c c + 2c p + c t 2 , a 2 pf 5 = Λ 2 c μn 2 p -c c + 2c p + 3c t 2 . ( 47a 
) (47b) (47c) (47d) (47e) (47f) 
c t is a non-linear coefficient related to large pendulums displacements along their paths and is defined as

c t = Λ c 2 μn 2 p n 2 t (1 + n 2 t ). (48) 
Indices "pf " and "sn" stand for "pitchfork" and "saddle-node" bifurcations, respectively. a pf 1 , a pf 2 and a sn are associated to det(A G ) = 0 and are exactly the same bifurcation curves as those obtained for a CPVA with two pendulums [30]. In this former work, a pf 1 and a pf 2 defined pitchfork bifurcations leading to a coupled-mode solution in which modes 1 (not degenerated) and 2 responded simultaneously. By extension, in the presence of N pendulums, those bifurcations lead to a coupled-mode solution involving SH1 and mode 2. a sn defines saddle-node bifurcations leading to a jump of the response. As noticed in [30], this bifurcation curve is equal to the backbone curve of SH1. a pf 3 , a pf 4 and a pf 5 arise when the CPVA is made of several pairs of pendulums. They define pitchfork bifurcations leading to combinations of modes 1 different from SH1. a pf 3 corresponds to det(B) = 0 while a pf 4 and a pf 5 are associated to det(A U ) = 0 and det(A G ) → ±∞.

All the bifurcation curves are shown in Fig. 5 together with the pendulums' response. SH1 and TS are shown in blue and green, respectively. Pitchfork bifurcations are indicated by a blue star with code name "PF". Note that the part of the response above s cusp can help understanding the solution but is not physically relevant as it exists only because of the approximation of the path function z(s i ) [30]. The red areas correspond to unstable regions. Figure 5 shows that the bifurcation curve a pf 3 is the most dangerous one as it is very close to the operating point n ≈ 2n p .

Case study and design guidelines

The aim of this section is to compare the analytical results with numerical ones in order to validate the model and to provide design guidelines. Two different numerical resolutions are used in this paper:

• Equations (4a) and (4b) are integrated numerically using a Runge-Kutta algorithm until the steady state is reached. Then, the signals' amplitudes are obtained through a decomposition into Fourier series. • Equations (4a) and (4b) are solved with MANLAB, which is a path-following and bifurcation analysis software [64,65]. 

N n p η µ x [4] α [1] α [3] b br 4 1.5 1 0.1 0 0.5 -0.2 0.002 0.002
Table 1: Parameters of the CPVA studied in this section.

Order response for a CPVA made of 4 pendulums

Figure 6 shows the response of a CPVA made of N = 4 pendulums near the operating point, i.e. for n ≈ 2n p . Analytical results for SH1 and TS are shown in blue and green, respectively. The MANLAB results are shown as thin dark lines with square markers while time integration results are the coloured circles. The red star represents the pitchfork bifurcation determined using MANLAB. The area coloured in red corresponds to the instability zone delimited by a pf 3 .

The analytical model predicts well SH1 as the results obtained through MANLAB and time integration (when SH1 is stable) are close to the analytical ones. The bifurcation point is very accurately predicted by the model as the intersection of a pf 3 and SH1 is superimposed with the red star, located at n ≈ 3.008. This bifurcation point also fits very well with time integration results as the pendulums' amplitudes start to differ at n ≈ 3.008. A reason for this accurate prediction could be that the analytical model is based on a perturbation method around n = 2n p , which is very close to the order at the bifurcation. Another reason is that the parameters of the CPVA match well with the assumption of small parameters (cf. Eq. ( 21)). After the pitchfork bifurcation, the pendulums respond on a 1 st localised solution (SHL11 ), where two pendulums oscillate at the same amplitude while the other two oscillate at a slightly lower one. Increasing further n, the system reaches a saddle-node bifurcation of SHL1, causing a jump (around n = 3.01) leading to a 2 nd localised solution (SHL2). On this new solution, three pendulums oscillate at the same small amplitude while the fourth pendulum oscillates with an amplitude quite larger than SH1. Hence, this solution is highly undesired as it significantly reduces the torque range. If one performs a decreasing sweep starting from n > 3.01, the pendulums start responding on SHL2. Then, at n ≈ 3, they jump on SH1. Finally, for n < 2.994, the pendulums stop oscillating as they reach the trivial solution.

In order to show that the analytical results remain valid for large numbers of pendulums, another comparison with numerical results is given in Appendix F for a CPVA made of 8 absorbers. Moreover, the case of a softened CPVA is presented in Appendix G. In addition, for readability reasons, only four different subharmonic solutions are shown in Fig. 6. More solutions are represented in Appendix H. Figure 7 depicts the rotor's response associated to the pendulums' response shown in Fig. 6. The overall response is well predicted by the analytical model, though the amplitude is underestimated everywhere but at the antiresonance. The locus of the bifurcation point is very well predicted by the model. Figure 7 shows that the localised solutions decrease the efficiency of the filtration of θ (1) around the operating point (i.e. near n = 2n p ), but they increase it at larger orders. Indeed, the response on SHL2 generates an antiresonance around n = 3.02. However, it also generates lower and higher harmonics, which are undesired. It is interesting to note that the bifurcation point seems to be on the antiresonance. To investigate this further, one can look for the order of the bifurcation point by equating the bifurcation curve a pf 3 (cf. Eq. ( 47)) and the pendulums' amplitude on SH1 (cf. Eq. ( 29)) and solving for σ. This leads to

σ pf 3 = -χ c p c c T 2 1 4 - b2 Λ 2 m , (49) 
where χ = ±1. Moreover, a pf 3 bends to the right if c p < 0 and to the left if c p > 0, which implies χ = +1. Hence, σ pf 3 = σ AR , where σ AR is the position of the antiresonance, derived in [30]. This means that the bifurcation point will always be located on the antiresonance.

θ (1/2) , θ (1) 
Figs. 6 and 7 highlight the complexity of the response. Close from the operating point, SH1 is unstable and several localised solutions exist, some of them being simultaneously stable (more details on those localised solutions are given in Appendix H). Guidelines are given in the next section in order to avoid instabilities of SH1.

Avoidance of localisation

As explained in section 4.3 and observed in section 5.1, the bifurcation curve a pf 3 should be analysed carefully as it is very close to the operating point. As remarked previously, a pf 3 bends to the right (left, respectively) if c p < 0 (c p > 0, respectively), and the instability zone delimited by a pf 3 is located between this curve and a = 0. Hence, if a pf 3 bends to the left, it is the part of SH1 located to the left of a pf 3 that will be unstable (this situation is the opposite to that depicted in Fig. 6 and is represented in Fig. G4). Thus, to avoid localisation, one should always have 2n p > n and c p < 0 or 2n p < n and c p > 0.

In other words, hardened pendulums should be over-tuned while softened pendulums should be under-tuned. The first configuration (with hardened over-tuned pendulums) should be favoured as it increases the torque range [30]. Note that if n = 2n p , a pf 3 is undefined, but this situation is hazardous as SH1 might be unstable and it never occurs in practice due to manufacturing tolerances.

Though a pf 3 is the bifurcation curve to be treated with the most care, it is important to ensure that the other bifurcations are also avoided. Guidelines were given in [30] regarding the avoidance of intersections between SH1 and a pf 1 and a pf 2 , so that in the following we will focus only on a pf 4 and a pf 5 . To find a condition allowing to avoid intersections between a pf 4 and SH1, we remind that in practice the excitation order n is fixed (equivalently, σ is fixed, cf. Eq. ( 24)). In addition, a pf 4 can be rearranged as

σ pf 4 = μ Λ 2 c n p 4Λ m - 1 4Λ m n p -c c + 2c p + c t 2 a 2 . ( 51 
)
To avoid localisation, one should have σ < σ pf 4 up to the cusp. This requirement is satisfied when

n p > n 2 + µ Λ 2 c 4Λ m -1
and

c p < Λ c - 1 4 c t + c c 2 -2Λ m n p n 2 t (1 + n 2 t )σ. ( 52a 
) (52b)
As a pf 5 is constant, intersections between this curve and SH1 are avoided up to the cusp by choosing the CPVA's parameters such that a pf 5 does not exist or is located above s cusp . Those two requirements are satisfied if

c p < c c 2 + Λ c - 3 4 c t . ( 53 
)
Satisfying Eqs. ( 50), ( 52) and ( 53) allows to avoid the localisation due to the presence of several pairs of pendulums. Hence, fulfilling those conditions maximises the torque capacity of the CPVA. and four different pendulums' amplitudes. The blue and brown curves are the bifurcation curves a sn and a pf 3 , respectively. Grey and red areas correspond to instabilities leading to a jump of SH1 and to a localised response, respectively. The dark red area includes those two type of instabilities. The black dot corresponds to the design represented in Fig. 6. The map with the smallest amplitude gives information on the stability of SH1 just after its appearance.

Representation of the stability in the design space

The one with the largest amplitude gives information on the stability near the cusp. The parameters that are not varied in this figure are given in Tab. 1.

simply the unscaled version of c p , i.e.

cp = 3(x [4] + 2n 2 p ηα [1] α [3] ). ( 54 
)
Figure 8 contains four maps, all corresponding to a different pendulums' amplitude. The black dot corresponds to the design presented in Fig. 6. The unstable zones represented in grey and red correspond to instabilities leading to a jump of SH1 and to a localised response, respectively. These zones are moving with the amplitude as a given design can be stable at a given amplitude but unstable at another one. Figure 8 illustrates the design rule (50). Indeed, over-tuned hardened and under-tuned softened CPVAs are not subject to localisation. Under-tuned softened CPVAs are subject to jumps of the response, but this is not an issue if the jump is small. However, large jumps should absolutely be avoided [30]. Regardless of this jump issue, over-tuned hardened CPVAs should be preferred as they have a larger torque range than under-tuned softened ones [30].

Basin of attraction of SH1

Several solutions emerge from TS at the period-doubling bifurcation points. An illustration of three of those solutions is given in Appendix H. It must be reminded that modes 1 are in 1:1:...:1 internal resonance (cf. section 2.2). Hence, any combination of modes 1 branches from the period-doubling bifurcation, and as there is an infinity of possible combinations of modes 1 (cf. Appendix A), there is an infinity of solutions emerging from the bifurcation.

For this reason, it is crucial to ensure that the basin of attraction of SH1 is large enough so that bifurcations from TS lead to this particular combination of modes 1 rather than another one. The basin of attraction of SH1 is very difficult to assess as it depends on the initial positions and velocities of N pendulums and the rotor (the smallest number of pendulums for which there are several pairs is N = 4, which already implies 10 independent parameters in the initial conditions). Hence, an alternative method is proposed below to verify that TS bifurcates towards SH1.

Figure 9 represents the torque response of over-tuned hardened pendulums, for which SH1 is stable (cf. sections 5.2 and 5.3). Time integrations are performed for different torque amplitudes and the initial conditions used (black squares) correspond to the trivial solution. It is important to have in mind that in practice, bifurcations to SH1 take some time (cf. Fig. 10), so the CPVA will always go through TS before going to SH1. The coloured circles correspond to the time integration results after the steady-state is established. The full timesignals are given in Fig. 10. During the transient, the pendulums can reach a large amplitude, which is why no integrations were performed for T1 > 0.04 (in those cases, one of the pendulums reached its cusp during the transient). Figure 9 shows that for all the initial conditions tested, TS bifurcates to SH1, which implies that the basin of attraction of SH1 is larger than that of other solutions for the case considered here. The same results were observed for every over-tuned hardened CPVA investigated, from what we can reasonably assume that TS bifurcates to SH1 for such CPVAs. Time integrations with initial conditions slightly different from TS are proposed in Appendix I. Like for the TS initial conditions, the steady state solution obtained is SH1, which shows that the bifurcation from TS to SH1 is relatively robust to small perturbations of the trivial solution.

Looking in details at the time signals shown in Fig. 10, it is interesting to note that the smaller the torque amplitude, the longer it takes to reach the steady state.

Conclusion

This paper deals with the subharmonic response of CPVAs and its stability. Several pairs of pendulums are considered that admit a rotational motion relative to the rotor in addition to the traditional translational motion. First, a linear analysis showed that the system contains highly degenerated modes. Next, it was shown that the ideal subharmonic solution is associated with a specific motion of the system such that half of the pendulums move in unison and in phase opposition with the other half. Then, this subharmonic solution was computed using an analytical perturbation technique. Afterwards, a new method was used to assess the stability of this solution. It has the advantage of being valid for CPVAs made of any even number of pendulums. Moreover, it allowed to derive analytical expressions of the limit of instability zones. This led to new, accurate, design guidelines so that the system's parameters can be set to prevent the appearance of instabilities. Afterwards, the analytical developments were applied to case studies and compared to numerical resolutions of the system's dynamics. This validated the analytical model and highlighted the complexity of the problem. A representation of the stability in the tuning parameters' space allowed to visualise the efficiency of the design guidelines proposed. Finally, it was verified that CPVA designs fulfilling the new guidelines do bifurcate to the desired subharmonic solution.

Statements and declarations

mode shapes can for instance be written as

φ 10 1 =              0 1 -(1 + p 1 + p 2 ) p 1 p 2 0 . . . 0              , φ 10 2 =                0 0 1 -(1 + p 1 + p 2 ) p 1 p 2 0 . . . 0                , • • • φ 10 N -1 =              0 p 2 p 1 0 . . . 0 1 -(1 + p 1 + p 2 )              , p 1 , p 2 ∈ R. (A3)
As p 1 , p 2 ∈ R, there is an infinite way of expressing the degenerated modes. The special case p 1 = p 2 = 0 corresponds to the mode shapes given in Eq. ( 8).

A.2 Response of a given degenerated mode

First of all, as the pendulums' equation can be uncoupled from the rotor's dynamics (cf. section 3.3), it is convenient to introduce the reduced mode shapes ψ 10 i . They simply correspond to the mode shapes φ 10 i in which the rotor's component is omitted (hence, they have size N ). For a CPVA made of 4 pendulums, the reduced mode shapes of the degenerated modes are

ψ 10 1 =     1 -(1 + p 1 + p 2 ) p 1 p 2     , ψ 10 2 =     p 2 1 -(1 + p 1 + p 2 ) p 1     , ψ 10 3 =     p 2 p 1 1 -(1 + p 1 + p 2 )     . (A4)
Assume the pendulums respond on mode ψ 10 1 , whose amplitude and phase are u and β/2. Hence, the pendulums' amplitudes and phases are

a = u     1 |1 + p 1 + p 2 | |p 1 | |p 2 |     , ξ =           β β if -(1 + p 1 + p 2 ) > 0 β + 2π if -(1 + p 1 + p 2 ) < 0 β if p 1 > 0 β + 2π if p 1 < 0 β if p 2 > 0 β + 2π if p 2 < 0           . ( A5 
)
This can be inserted in Eqs. ( C10a) and (C10b), resulting in 8 equations. These equations can be solved for u and β using the same procedure as in section 3.4. This yields four solutions for u but only one for β (see below). Two (three) solutions are the same if two (three) components of ψ 10 1 are equal, and the i th solution should be ignored if the i th component of ψ 10 1 is null. The i th pendulum's amplitude is simply obtained by multiplying the i th solution on u by the absolute value of the i th component of ψ 10 1 . After introducing the notations

q c = 1 + p 1 + p 2 + p 1 p 2 + p 2 1 + p 2 2 , q t = (1 + p 1 )(1 + p 2 )(p 1 + p 2 ), (A6)
the four solutions on u can be written as

u 2 1 = n p 2Λ m σ ± T 2 1 Λ 2 m -4 b2 2 N c c q c -c p + 3 2N c t q t , u 2 2 = n p 2Λ m σ ± T 2 1 Λ 2 m -4 b2 2 N c c q c -c p (1 + p 1 + p 2 ) 2 -3 2N c t q t (1+p 1 +p 2 ) , u 2 3 = n p 2Λ m σ ± T 2 1 Λ 2 m -4 b2 2 N c c q c -c p p 2 1 + 3 2N c t q t p 1 , u 2 4 = n p 2Λ m σ ± T 2 1 Λ 2 m -4 b2 2 N c c q c -c p p 2 2 + 3 2N c t q t p 2 . ( A7a 
) (A7b) (A7c) (A7d)
There is only one solution for the phase, given by

tan(β) = ∓ T 2 1 Λ 2 m 4 b2 -1. (A8)
Note that this is the same phase as SH1 (cf. Eq. ( 29b)). Thus, it seems that every combination of the degenerated modes responds with the same phase and integers q, k ∈ Z. Then one has

ν qn+k = ν k , ν k * = ν n-k , ν n-kq = ν k(n-q) , ν (n-k)(n-q) = ν kq , n-1 k=1 ν qk = n-1 k=1 ν q(n-k) = n -1 if q = 0, -1 if q > 0. (D13) (D14) (D15) (D16) (D17)
Superscript * indicate the complex conjugate.

Appendix E determinants of matrices A U , A G and B

The determinants of matrices A U , A G and B are det

(A U ) = Λ 2 c μn 2 p + c c -2c p - 3c t 2 a 2 Λ 2 c μn 2 p -4Λ m σn p + c c -2c p - c t 2 a 2 , det(B) =4c p a 2 2Λ m σn p + c p a 2 det(A G ) =16(c c -c p )a 2 -Λ 2 c μn 2 p + c p + 3c t 2 a 2 , -2Λ m σn p + (c c -c p )a 2 -Λ 2 c μn 2 p + 2Λ m σn p + c p + c t 2 a 2 / det(A U ). (E18a) (E18b) (E18c)
Appendix F Numerical validation of the model with a large number of pendulums The analytical model predicts well SH1 as the MANLAB results are close to the analytical ones, especially on the upper branch. Moreover, the bifurcation point is very well predicted by the analytical model as the intersection of a pf 3 and SH1 is superimposed with the red star, located at n ≈ 3.0004. Results from time integration show the dynamics of the pendulums before and after the bifurcation. The small discrepancies between time integration and MANLAB results are probably due to the fact that the time integrations were stopped before the steady state was completely established. The zoom included in Fig. F2 offers a better view of the dynamics on the localised solution, which is quite complex. One can notice that around n = 3.0012, the solution is so localised that only two pendulums are moving. They oscillate with a much larger amplitude than SH1, which brings them to their cusp for n ≈ 3.0015 instead of n ≈ 3.017 if SH1 was stable.

Figure F3 shows two time signals of the pendulums: one before the localisation (a) and one after (b). Before the localisation, pendulums act as expected: they form two groups oscillating with the same amplitudes but in phase-opposition. After the bifurcation, the amplitudes among the groups are no more equal. Appendix G Numerical validation of the model with a softened CPVA Figure G4 shows an order response of the pendulums of a softened CPVA.

Starting on a stable part of SH1 and performing a decreasing sweep leads to a pitchfork bifurcation, located theoretically at the intersection between SH1 and a pf 3 , around n = 2.9990. However, it is observed on the time integration results around n = 2.9985. This small difference might be due to a steadystate not reached when performing the time integrations. As the bifurcation is subcritical, the localised solution emerging from this point is unstable. This is why there is a jump. After performing several time integrations near the bifurcation point, we observed that SH1 can jump on two different localised solutions. The 1 st localised solution (SHL1) corresponds to three pendulums oscillating in phase with the same small amplitude while the other pendulum oscillates in phase opposition and with a large amplitude. The 2 nd localised solution (SHL2) corresponds to two pendulums oscillating in phase-opposition and with the same amplitude while the other two pendulums are immobile. SHL2 is stable down to n ≈ 2.9967, at which points it jumps on SHL1. SHL1 is stable down to n ≈ 2.9940. For lower orders, the pendulums respond on the trivial solution. 

Appendix H Details on the order response of a hardened-CPVA made of 4 pendulums

The complexity of the response depicted in Fig. 6 is furthered detailed in Fig. H5, which contains additional information. It includes

• A 3 rd localised solution (SHL3) for which two amplitudes oscillate with the same amplitude and in phase-opposition while the other two are immobile. • The pitchfork bifurcation of SHL1 leading to SHL3 (red star obtained with MANLAB). • Analytical solutions for SHL2 (green and orange curves) and SHL3 (red curve). Like SH1, these two localised solutions are combinations of modes 1 but could have been introduced as degenerated modes of the system. The associated mode shapes would be Only the upper branch of SHL2 and SHL3 are shown in Fig. H5(a) and the associated stability is not assessed analytically. The computation details of these two solutions are given in Appendix A. • The phase on every solution.

SHL2 : [0, 3, -1, -1, -1] , SHL3 : [0, 1, -1, 0, 0] . ( H19 
a i s cusp SHL1: S 1 × S 1 × S 1 × S 1 SHL1: S 1 × S 1 × S 1 × S 1 SHL2: S 3 × S 1 SHL2: S 3 × S 1 SHL3: S 1 × S 1 × S 2 SHL3: S 1 × S 1 × S 2 SH1: S 2 × S 2 SH1: S 2 × S 2
• The symmetry groups composing the solutions.

Note that there might be other solutions that were not captured in Fig. H5, and that the number of possible solutions increases with the number of pendulums.

Appendix I Time integrations with initial conditions slightly different from the trivial solution

Figure I6 represents time integration results of the CPVA studied in section 5.4 with four different initial conditions but the same excitation parameters.

The initial conditions correspond to perturbations of the trivial solution. The aim is to verify that despite these perturbations, the system bifurcates towards SH1 (or another combination of modes 1 similar to SH1, cf. section 3.2), like in section 5.4. Looking at Fig. I6, one can see that all four initial conditions tested lead to a desired solution, for which all pendulums oscillate with the same amplitude but half of them are in phase-opposition with the other half. This shows a robustness of the bifurcation towards SH1 or a similar configuration for the hardened CPVA investigated here. This chapter is divided in two parts. Section 8.1 is made of a paper about to be submitted to the Journal of Sound and Vibration [START_REF] Mahé | Experimental investigation of the direct and subharmonic responses of a new design of centrifugal pendulum vibration absorber[END_REF]. It presents an original centrifugal pendulum vibration absorber (CPVA) design and provides experimental results on its classical and subharmonic operations. In section 8.2, we make use of the results presented in the paper to propose a CPVA tuned to filter order 20.

Regarding the paper, sections 1 to 3 repeat information from chapters 1, 2, 4, 6 and 7. They present the context of the study, the modelling of a CPVA (cf. section 2.1.1), a linear analysis (cf. section 2.2) and theoretical background related to the classic and subharmonic CPVA operations (cf. The novelty of the article starts in section 4, where an original CPVA architecture, made of spherical pendulums, is presented. Experimental results are provided in section 5 and validate several features of the analytical models developed in chapters 4, 6 and 7. The CPVA is seen to significantly reduce the vibrations both in classical and subharmonic operations, but its torque capacity is significantly limited by the slipping of the pendulums.

In section 8.2, the results from the paper are used to propose a CPVA tuned at order 10, hence filtering order 20 when in subharmonic operation. The slipping of the pendulums is found to be a significant issue that can hardly be overcome with the design proposed. Moreover, it is shown that a satisfying nonlinear tuning is not possible because of too demanding manufacturing tolerances.

Experimental investigation of the direct and subharmonic responses of a new design of centrifugal pendulum vibration absorber

Introduction

In the frame of reducing polluting emissions and fuel consumption of vehicles using thermal engines, automotive manufacturers try to reduce the cylinder capacity and engine speed of rotation. These evolutions lead to a significant
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Preprint submitted to Journal of L A T E X Templates November 22, 2022 increase of rotation irregularities called acyclisms, mainly due to higher combustion pressure. One of the main characteristics of these reciprocating engines is the linear dependence of the acyclism frequency to the engine speed of rotation. The coefficient of proportionality is the engine order and only depends on the architecture of the engine. During an acceleration phase, the engine sweeps a wide frequency range containing some driveline torsional modes. This situation may lead to significant noise and vibration levels into the passenger compartment and premature wear of the driveline components. Centrifugal pendulum vibration absorbers (CPVAs) have been used for many years to minimise acyclisms of automotive powertrains at the engine order [1][2][3]. These passive devices consist of oscillating masses (pendulums) moving along particular paths relative to a primary inertia (rotor) as shown in Fig. 1. In most CPVA designs, the pendulums' motion is a pure translation with respect to the rotor. However, many recent studies demonstrated that adding a rotational motion relative to the rotor can significantly improve the performance of a CPVA [4][5][6][7][8][9][10][11][12][13][14]. Because the pendulums are driven by the centrifugal acceleration field resulting from the rotation of the CPVA, their natural frequency is proportional to the engine speed of rotation. Hence, the CPVA acts like a classical dynamic vibration absorber [15] except that the antiresonance generated on the rotor is located at a fixed1 order, so that the antiresonance frequency is changing linearly with the engine speed. This allows for a reduction of the vibrations over the whole engine speed range.

There are two ways of choosing the pendulums' tuning order. The "classical" way, used in industrial solutions, is to tune the pendulums on the engine order.

This generates an antiresonance of the rotor at the engine order, allowing for significant vibration reduction. However, because of non-linearities inherent to CPVA systems, several dysfunctions occur at large excitation amplitudes, such as jumps of the response [16], localisation of the pendulums' response [9,[17][18][19][20][21][22][23][24][25][26][27][28],

a shift of the antiresonance [9,29] and the generation of higher rotor harmonics [9,[30][31][32][33][34][35].

An alternative tuning, first studied by S. Shaw et al. [30,[36][37][38][39][40], is to set the pendulums' tuning order to half the engine order. In this case, the pendulums oscillate at half the engine order and generate a non-linear antiresonance of the rotor at the engine order. Moreover, in the case of perfect-tuning, the amplitude at the antiresonance is saturated, which allows for an efficient reduction of the rotor's vibrations [38]. This saturation effect is a known consequence of subharmonic solutions and proved useful in other fields of application (see e.g. [41,42] and references therein). The investigations on the subharmonic operation were pursued by the authors of the current paper, who included the rotational motion of the pendulums [10] and proposed an original method to assess the stability of the response in the presence of N/2 pairs of pendulums [43].

Since the early studies on CPVAs, there has been several experimental investigations. M. A. Wachs [44] and M. Albright et al. [45] showed experimentally the reduction of vibrations due to the use of CPVAs in helicopters and racing cars, respectively. T. M. Nester [46] and A. G. Haddow et al. [47] were the first to compare a nonlinear analytical model of the unison motion (similar to the one presented in [19]) to experimental results. They both considered monofilar pendulums following circular paths. The first experiments dealing with purely translated pendulums following epicycloidal paths were performed by S. Shaw et al. [20]. Roller-type pendulums following a circular path were investigated by Y. Ishida et al. [32]. B. J. Vidmar performed several measurements on CPVAs made of pendulums tuned to several orders [48], leading to the validation of the associated analytical model [33]. He also looked at the response of the first the vibration of the driveline components at several orders [54].

The motivation of this paper is to provide new experimental results about the classical and subharmonic responses of a CPVA. Regarding the classical operation, a focus on the antiresonance allows to observe the antiresonance-shifting and to verify with a great accuracy the linear and nonlinear tuning parameters of the CPVA. In addition, like in [33], it is shown that the rotor's response contains higher harmonics whose amplitude is not negligible. These measurements validate the analytical model predicting the classical response of a CPVA with rotating pendulums [9]. Regarding the subharmonic operation, a forced response of the system confirms the saturation of the rotor's response. This validates the analytical predictions derived in [10]. Like in [33], time signals of the pendulums are also provided. In all the forced responses (in classical and subharmonic regimes), there is a torque level starting from which the measurements depart significantly from the analytical models. As these measurements are performed in stables regions, these discrepancies are not attributed to a nonlinear phenomenon but are assumed to be related to the slipping of the pendulums. This is investigated in depth both experimentally and analytically. These analysis lead to a method to assess the adherence coefficient of the pendulums on the rotor's tracks. In turn, this can be used to estimate the effective torque capacity of the CPVA, which is reduced because of slipping. To the author's knowledge, this paper provides the first experimental study of the antiresonance-shifting and the saturation of the rotor's response. It is also the first assessment of system limitations due to the slipping of the pendulums. Moreover, this study deals with a new CPVA design in which the six pendulums have a spherical shape. This simple design allows to limit friction sources, thus maximising the performance.

This paper is organised as follows. Section 2 describes the modelling of the CPVA and presents a linear analysis. Theoretical background about the classical and subharmonic operations is provided in section 3. The CPVA investigated and the experimental set-up are described in section 4 and the experimental results are given in section 5. This paper ends with a conclusion in section 6.

Modelling and linear analysis

Modelling

The system studied is shown in Fig. 1. A rotor of inertia J r rotates about its centre O. Its total angular position is ϑ(t) = Ωt + θ(t) where t is the time, Ω is the mean rotational velocity and θ(t) corresponds to the fluctuating part of the rotation. A torque T (ϑ) = T 0 + T θ (ϑ) is applied to the rotor where T 0 is its constant part and T θ (ϑ) is periodic. At equilibrium, T 0 = b r Ω where b r is the linear viscous damping coefficient of the rotor, such that the constant torque balances with the damping to set the mean rotational speed Ω. N pendulums of mass m i and inertia I i (about their centre of mass) oscillate on their trajectory C i . Their position on these trajectories is given by the curvilinear abscissa S i (t) and their distance from O is R i (S i ). The characteristic dimension

R 0i = R i (S i = 0
) is the distance between O and the vertex of the trajectory. In addition to the traditional translation motion, the present study considers that the pendulums rotate about their centre of mass according to the rotation func- tion α i (S i ). As for the rotor, an equivalent linear viscous damping coefficient b i is used to model the damping between the i th pendulum and the rotor. In 125 the later, pendulums and their associated trajectory and rotation functions will be considered identical so that subscript "i" will be dropped when addressing pendulums' parameters.

O Si C i R i ( S i ) R 0i ϑ = Ω t + θ T ( ϑ ) rotor J r i th pendulum m i , I i j th pendulum αj ( Sj )
In order to write the equations of motion in a non-dimensional form, the following parameters and variables are introduced:

s i = S i R 0 , y = θ Ω = 1 + θ Ω , η = I mR 2 0 , µ = N mR 2 0 J r + N I , b = b mΩ , br = b r (J r + N I)Ω , T (ϑ) = T0 + Tθ (ϑ) = T (ϑ) (J r + N I)Ω 2 , x(s i ) = R(R 0 s i ) 2 R 2 0 , z(s i ) = x(s i ) - 1 4 dx(s i ) ds i 2 , α(s i ) = α(R 0 s i ), γ(s i ) = dα(s i ) ds i , (1) 
where (•) = ∂(•)/∂t. The s i and y are the N +1 degree-of-freedom of the system.

They correspond to the dimensionless relative position of the pendulums and rotational velocity of the rotor, respectively. η and µ are inertia ratios, b and br are non-dimensional damping constants and T (ϑ) is the non-dimensional torque applied on the rotor. x(s i ) and z(s i ) are trajectory functions while α(s i ) and γ(s i ) are rotation functions. In this paper, x(s i ) and α(s i ) are written as polynomials in the curvilinear abscissa s i such that

x(s i ) = 1 -n 2 t s 2 i + Nx k=3 x [k] s k i , α(s i ) = Nα k=0 α [k] s k i , (2) 
where n t is the order of the pendulums' trajectory and x [k] , α [k] are trajectory and rotation coefficients. In the special case x [k] = 0, ∀k, the pendulums' trajectories are epicycloids of order n t , which are the tautochronic trajectories when the rotor spins at a constant speed [55]. Note that trajectories defined as in Eq. ( 2) have a cusp point [55]. For small x [k] , ∀k, the cusp point can be approximated by the cusp of the epicycloid, given by

s cusp = 1 n t 1 + n 2 t . (3) 
In order to give T (ϑ) the meaning of an external forcing term, we replace the independent variable t by the rotor's position ϑ [56], which can be seen as a non-dimensional time. Using the chain rule, one can show that

(•) = Ωy(•) , ( •) = Ω 2 yy (•) + Ω 2 y 2 (•) , (4) 
where (•) = ∂(•)/∂ϑ (the details can be found in [10]). Hence, the nondimensional rotor's acceleration is now θ/Ω 2 = ẏ/Ω = yy . Using the nondimensional quantities (1) and the chain rule (4), one can write the equations of motion as

1 N N i=1 (N + µx(s i ))yy + µ (z(s i ) + ηγ(s i )) (yy s i + y 2 s i ) + µy 2 s i dx(s i ) ds i + dz(s i ) ds i s i + η dγ(s i ) ds i s i + br y = T (ϑ), [z(s i ) + ηγ(s i )] y + 1 + ηγ(s i ) 2 (y s i + ys i ) + ηγ(s i ) dγ(s i ) ds i ys i 2 - 1 2 
dx(s i ) ds i y + bs i = 0, i = 1, ..., N. (5a) (5b) 
Computation details can be found in [10]. Equation (5a) governs the motion of 130 the rotor while the N Eqs. (5b) govern the motion of the pendulums.

From now on, it is assumed that the fluctuating torque applied on the rotor contains only one harmonic whose non-dimensional form is T1 cos(nϑ), where n is the excitation order. For a car engine, n corresponds to the number of strikes 135 per revolution of the crankshaft.

Linear analysis

First of all, one can use Eq. ( 4) to show that, at first order, 1 + θ ≈ y and θ ≈ yy ≈ y (the demonstration can be found in [10]). Hence, it is possible to represent the motion of the rotor with position θ instead of velocity y. This way, all the degree-of-freedom of the system are positions, which facilitates the representation of the mode shapes. Using θ instead of y and the balance between the constant torque and the damping br = T0 (cf. section 2.1), one can linearise Eqs. (5a) and (5b). This leads to the free, conservative, linear equations

(1 + µ)θ + µΛ c N N i=1 s i = 0, Λ c θ + Λ m s i + n 2 t s i = 0, i = 1, ..., N. (6a) (6b) 
Λ m and Λ c are constants representing the equivalent mass of a pendulum due to the effect of the rotatory inertia and the linear coupling term between a pendulum and the rotor, respectively. They are given by

Λ m = 1 + ηα 2 [1] , Λ c = 1 + ηα [1] , (7) 
where α [1] is the linear rotation coefficient (cf. Eq. ( 2)).

The linearised equations of motions ( 6) can be written as a matrix equation.

Doing so, one can find that the eigenorders and mode shapes of the system are [9,57] n 00 = 0,

n 10 = n p , n 20 = n p 1 + µ 1 + µ 1 - Λ 2 c Λm φ 00 = [1, 0, ..., 0] , φ 20 = - µΛ c 1 + µ , 1, ..., 1 , φ 10i [i + 1] = -φ 10i [i + 2] = 1, φ 10i [j = {i + 1, i + 2}] = 0, i = 1, ..., N -1. ( 8 
)
The eigenorders can be seen as non-dimensional eigenfrequencies, superscript indicates the transpose and φ 10i [j] refers to the j th component of φ 10i . n p is the pendulums' tuning order, which is related to the trajectory order n t such that

n p = n t √ Λ m , (9) 
and it corresponds to the eingenorder of the pendulums when they are uncoupled from the rotor.

(n 00 , φ 00 ) is a rigid body mode for which only the rotor is excited. (n 10 , φ 10i ) are N -1 degenerated modes for which two pendulums are moving in phaseopposition. Their eigenvalue n 10 has multiplicity N -1 and the rotor is a node of these modes. For a CPVA made of only two pendulums, (n 10 , φ 10 ) is not degenerated and simply represents a phase-opposition motion of the pendulums. The group {(n 10 , φ 10i ) |i ∈ {1, ..., N -1}} will be referred-to as "modes 1". (n 20 , φ 20 ) is a mode for which the pendulums move in unison but in phaseopposition with respect to the rotor (provided that Λ c > 0, which is the case for reasonable parameters). It will be referred-to as the "unison mode" or "mode 2". To filter-out a fluctuating torque, one typically chooses n p ≈ n to generate an antiresonance on the rotor at n AR ≈ n p using the unison mode.

Note that in the case of a real automotive driveline (a simple model of which consists in successive rotors linked through torsional springs [58]), the CPVA should be placed as close as possible from the source of excitation (i.e. the engine). Doing so, the antiresonance generated by the pendulums exists on every driveline components located after the CPVA [59], which allows to isolate the whole driveline from the torque fluctuations.

Theoretical background

Many analytical investigations of CPVAs were carried out using a simplification of the initial equations of motion ( 5) accordingly to realistic assumptions [9,10,19,21,22,28,39,43]. This requires to specify the trajectory and rotation functions, and in this paper we choose to express them as

x(s i ) = 1 -n 2 t s 2 i + x [4] s 4 i , α(s i ) = α [1] s i + α [3] s 3 i . ( 10 
)
This way of expressing x(s i ) and α(s i ) has the advantage to be easy to use in practice. Indeed, Eq. ( 9) shows that one can control the linear tuning through n t and Λ m , which is related to α [1] . In addition, we will show later in this section that the nonlinear tuning of the CPVA can be controlled through x [4] and α [3] . After the simplification procedure, the resulting simplified equations can be solved analytically using for instance the method of multiple scales [60].

Previous results [9] showed that the pendulums' response on mode 2 takes the form

s i (ϑ) = a cos(nϑ -ξ), ∀i, (11) 
where a and ξ are the amplitude and phase of the response, respectively. Their expression as a function of the system's parameters can be found in [9].

The other solution of interest is the subharmonic response of the pendulums on a combination of modes 1 called SH11 such that, for an even number of pendulum, their response takes the form

s i (ϑ) = a cos n 2 ϑ -ξ , ∀i ∈ {1, ..., N/2}, s j (ϑ) = -a cos n 2 ϑ -ξ , ∀j ∈ {N/2 + 1, ..., N }. ( 12 
)
Hence, half the pendulums are in phase opposition with the other half. Other subharmonic solutions involving only modes 1 exist [40,43] but they are out of the scope of this paper. The expression of a and ξ as a function of the system's parameters can be found in [10,43]. The rotor's acceleration can be written as

θ = h 1 cos(nϑ -ψ 1 ) + h 2 cos(2nϑ -ψ 2 ) + h 3 cos(3nϑ -ψ 3 ), ( 13 
)
where h i and ψ i , i = {1, 2, 3}, are the amplitudes and phases of the three first harmonics. Their expression as a function of the system's parameters can be 170 found in [9,10,43]. Note that only the first three harmonics are retained as these are typically the dominant ones when the pendulums respond on mode 2 [21,48]. In addition, a great advantage of the subharmonic response SH1 is that the rotor's response is harmonic, i.e. h i = 0, ∀i > 1 [10,30,43].

A typical CPVA response is shown in Fig. 2. The classical (green) and subhar-175 monic (blue) operations are described in details below.

The classical operation

In the case of the classical response, shown in details in Fig. 3, the pendulums respond on mode 2 and generate an antiresonance on the rotor' first harmonic around n p . One of the main drawbacks of this operation principle is the generation of higher harmonics, shown in blue and orange in Fig. 3(b). The classical response is subjected to instabilities. Indeed, there are saddle-node (SN) bifurcations leading to jumps of the response and pitchfork (PF) bifurcations leading to coupled-mode solutions [61]. Details on the stability can be represented by the analytical model (however this is of no importance as it is associated to a pendulums' amplitude larger than the cusp, which is not physical). T1 = 0.0442 and the parameters of the CPVA are given in Tab. 1 except for b = 0.0042.

found in [9]. One can see that the classical response is softening as the resonance bends to the left. The expression of the backbone curve is given by [9] 

n 2 = n p + Λ 2 c n 2 p µ 2Λ m n p - 2c t -c c + c p 4Λ m n p a 2 , ( 14 
)
where n 2 is the eigenorder of mode 2. c c , c t and c p are nonlinear coefficients related to Coriolis effects, the large displacements along the trajectory, and the perturbation of the trajectory and rotation functions, respectively. They are given by The value of c p is easily controlled by choosing x [4] and α [3] , so it can be seen as a nonlinear tuning parameter. It is visible in Fig. 3 that because of nonlinear effects, the antiresonance order varies with the excitation amplitude. A good approximation of the antiresonance locus is given by [9] n (CL)

c c = µn 4 t , c t = Λ c 2 µn 2 p n 2 t (1 + n 2 t ), c p = 3(x [4] + 2n 2 p ηα [1] α [3] ). ( 15 
AR = n p + c c -c p 4Λ m n p a 2 . ( 16 
)
Superscript "(CL)" indicates that this is the antiresonance related to the classical operation. A limitation of the analytical model causes the rotor's response to have a strange shape around the resonance in Fig. 2. However, this can sim-180 ply be ignored as it corresponds to a situation where the pendulums oscillate beyond the cusp of their trajectory, which is non-physical. The subharmonic response of the CPVA is displayed in blue in Figs. 2 and4. Contrarily to the classical response, it is hardening as the resonance bends to the right. The backbone curve of SH1 is given by [10] n

The subharmonic operation

(SH) 1 = 2n p + c c -c p 2n p Λ m a 2 . ( 17 
)
The subharmonic response appears through period-doubling bifurcations (PD) from the classical response and generates a nonlinear antiresonance on the rotor around 2n p . The subharmonic response is also subjected to instabilities, as can be seen from the pitchfork bifurcation that leads to a response on a combination of modes 1 different from SH1 [43]. Details on the stability can be found in [10,43]. As for the classical response, nonlinear effects cause the antiresonance order to shift as the excitation amplitude is increased. Its evolution is given by [10] n

(SH) AR = n p - c p c c T 2 1 4 - b2 Λ 2 m . (18) 
Superscript "(SH)" indicates that this is the antiresonance related to the subharmonic operation. An interesting feature of the nonlinear antiresonance is that the rotor's amplitude at n (SH) AR is independent from the excitation amplitude. Hence, if one chooses c p = 0 such that n (SH) AR is fixed (cf. Eq. ( 18)), the rotor's response saturates. This saturation phenomenon can lead to an efficient reduction of the rotor's vibrations. However, small negative c p values should be preferred to avoid instabilities [43]. More details about the subharmonic response of a CPVA with c p < 0 are given in Fig. 4. Fig. 4(a) indicates that with c p < 0, there is an unstable zone located at n > 2n p . In order to avoid these instabilities, the torque response shown in Fig. 4(b) and (d) is given for n < 2n p .

In Fig. 4(c), one can see that the antiresonance is shifting to the right and the rotor's amplitude at the antiresonance is fixed. There are no subharmonic responses for T1 = 0.002 as the torque is not large enough. The fact that there is a torque threshold to trigger the subharmonic response is a drawback compared to the classical response as there will be no filtration for small torques. The torque threshold is given by [10] T

* 1 = 4(n -2n p ) 2 + 4 b2 Λ 2 m . ( 19 
)
To lower the threshold one can decrease |n -2n p |, but care should be taken as n > 2n p is located in an unstable zone for c p < 0. Another way of decreasing the threshold is to maximise the equivalent mass Λ m by maximising the pendulums' rotatory inertia η and the magnitude of their linear rotation rate α [1] (cf. Eq. ( 7)). Finally, as for the classical operation, one should aim for small damping.

In Fig. 4(b), (d), the torque response of the CPVA with c p < 0 is compared to that of a CPVA with c p = 0. As c p = 0 locks the antiresonance (cf. Eq. ( 17)), this configuration leads to the best filtration performances. However, choosing c p < 0 still leads to significant filtration and increases the torque range as the pendulums hit their cusp for larger T1 . Finally, it must be noted that it is not possible in practice to have c p = 0 due to manufacturing tolerances. Further, if c p > 0, the unstable zones would no longer be located at n > 2n p but at n < 2n p [43], so one must ensure that the sign of c p will not change because of manufacturing tolerances.

Presentation of the experimental system

CPVA with spherical pendulums

The CPVA studied experimentally in this paper is shown in Fig. 5. It is made of a rotor and six spherical pendulums (balls) rolling on v-shaped tracks (cf. Fig. 7(a)). This simple design has several benefits. Contrarily to the usual bifilar pendulums [2] there are no rollers, so there are less sources of friction [52] and the system is easier to manufacture. In addition, an imperfect rollers' alignment in a bifilar CPVA could lead to contacts between the pendulums and the rotor, hence generating noise and additional friction, which are both undesirable. Indeed, each pendulum of a bifilar CPVA is usually made of two steel plates located on each side of the rotor and rigidly linked together [62,63].

Each pendulum oscillates relatively to the rotor thanks to two rollers that roll on pendulums pendulums pendulums pendulums pendulums pendulums rotor 

Perfect rollers' alignment

Error in the rollers' alignment tracks designed on the rotor and on the pendulum's plates. If the rollers move slightly out of the rotor's plane, as illustrated in Fig. 6, they might drive the pendulums' plates into contact with the rotor, hence causing noise and friction.

As spherical pendulums limit friction issues, they are likely to be less damped than bifilar CPVAs. It is for this reason and because of their simple architecture 215 that it was chosen in this paper to investigate a CPVA with spherical pendulums. A side-view representation of one of the pendulums is given in Fig. 7(a).

R r (O, x r , y r , z r ) is a frame attached to the rotor at point O. θ t is the angle of the v-shaped tracks with respect to z r . This track shape prevents the pendulums from moving along z r . A pendulum is a ball of center of mass G and radius r p .

It is in contact with the rotor's track at points I rp1 and I rp2 . It is convenient to introduce the virtual contact point I * rp lying on a line D passing through I rp1 and I rp2 such that I rp1 I * rp = I rp2 I * rp . Distance GI * rp defines the virtual radius of the ball, r * p , related to the real radius r p such that

r * p = r p cos θ t . ( 20 
)
Figure 7(b) gives a detailed front view representation of a pendulum. R 0 , α, C and S were already described in Fig. 1. n and t are vectors normal and tangent to C at abscissa S, respectively. The angle between t and x r is β.

R p (G, x p , y p , z r ) is a frame attached to the pendulum at point G. Its angular position with respect to R r is α. C * r is the virtual rolling track of the rotor, defined as the successive positions of I * rp . j is a unitary vector whose direction is that of GI * rp . The angle between -y r and j is φ * . Determining the form of α is necessary to use the analytical model presented in section 3. This is done in Appendix A and leads to the linear rotation law

α(S) = - 1 r * p S ⇒ α [1] = - R 0 r * p . ( 21 
)
The shape of C * r that produces the desired trajectory C is computed in Appendix A. The dimensionless parameters of the CPVA investigated experimentally in this paper are given in Tab. 1.

220 N n p η µ x [4] α [1] α [3]
6 1.5 0.01 0.13 -0.2 -6.4 0

Table 1: Parameters of the CPVA attached on the bench.

Experimental set-up and protocol

The experimental setup is shown in Fig. 8. The rotor is fixed on a bench of inertia J b using an adaptation system of inertia J a , so that J r has to be replaced by the equivalent inertia J eq = J r + J b + J a in the previous developments.

The stroboscope was used to detect when the subharmonic response was acti-225 vated. Indeed, even though the classical response is unstable around n = 2n p , bifurcations towards the subharmonic regime can take some time [43]. In practice, it took from a few seconds to tens of seconds for the pendulums to start responding. As expected from [43], the bifurcation time was shorter for larger torque levels. This is why the torque sweeps performed in subharmonic regime 230 were always started from large torque levels. All the sweeps were done slowly so that it is fair to assume the response is a succession of steady states. The amplitude of the rotor was retrieved using a sliding discrete Fourier transform.

The fast camera was used to have access to the pendulums' motion. The full procedure is detailed below:

1. The CPVA is centrifugated and an oscillating torque is applied through the actuator.

2. When the steady-state is reached, a movie of the rotating system is recorded using the fast camera. 9. As the phase of the torque signal T (ϑ) is not known, the procedure described above does not allow to retrieve the relative phase ξ i . Hence, a phase shift was applied to the measured pendulums' phases so that the phase of pendulum 3 matches the phase of the analytical model. Any pendulum could have been chosen as a reference. Nevertheless, it was preferable not to chose the first pendulum nor the fourth one as these sometimes oscillated differently from the others (cf. section 5). the analytical ones, except around the resonance. The difference around the resonance is due to the torque instruction that cannot be enforced because the pendulums reached their cusp. The amplitude at the antiresonance is very low (h 1 ≈ 0.00076), which highlights the high performance of this CPVA. This is largely due to the architecture that limits the sources of friction, thus leading to a low equivalent viscous damping coefficient. To quantify this performance, one can use the approximation h 1 ≈ T1 for locked pendulums [9] and compute the gain. At the antiresonance, the gain is only 3.8%, meaning that the rotor's amplitude was divided by a factor 26. This corresponds to an attenuation of 28

Experimental results

Verification of the linear and nonlinear tunings

[dB].

Figure 10 shows the rotor's amplitude for order sweeps close from the antiresonance at different torque levels. This allows to identify accurately the tuning order n p and to assess the evolution of the antiresonance order n

(CL)
AR as T1 is increased. For the lowest torque amplitude the antiresonance is located at AR might seem like a problem that could have been using an appropriate design rule [9]. However, the prototype studied here was not design for classical operation but to investigate the subharminic response. Note that the analytical and experimental results for T1 = 0.05 do not match well starting from n ≈ 1.502. This was to be expected as the analytical model predicts a pitchfork bifurcation at n ≈ 1.500. Hence, the measured response after n ≈ 1.502 probably corresponds to a non-unison motion of the pendulums. There are two explanations for the difference between the pitchfork bifurcation predicted and the order starting from which the measured response does not match the analytical one. Firstly, a localised pendulums' response can still lead to a rotor's response very close from that at unison [28]. Secondly, it takes time for the bifurcation to actually occur, so it is possible that the steady state was not yet reached between n = 1.5 and n = 1.502. Finally, note that the damping coefficients used for each T1 value in A torque response of the system near the tuning order n p is shown in Fig. 11.

The measured rotor and pendulums' responses fit well with the analytical model up to T1 ≈ 0.045. Above this value, the rotor's amplitude is larger than expected, and the pendulums' responses differ from the analtical prediction. This undesired response is assumed to be due to a slipping of the pendulums. This is investigated in details in section 5.3. Note that the torque sweep was performed for n = 1.49 < n p in order to avoid the unstable zone leading to a localised solution (cf. Fig. 3). Fig. 11(a) shows that the pendulums achieve a significant filtration even though n = 1.49 is quite far from the antiresonance. This confirms the high performance of this CPVA, as discussed in section 5.1. The performance could have been further improved if the CPVA had been designed

for the classical operation [9]. In Fig. 11(b), one can see that the amplitude of the 2 nd and 3 rd rotor harmonics is clearly not negligible. This confirms one of the major drawbacks of the classical CPVA operation, i.e. the generation of higher harmonics. These two harmonics are not as well predicted as the first one by the analytical model.

Evaluation of the slipping

The slipping of a pendulum is an undesired behaviour that occurs when |f t (ϑ)|> ψ a |f n (ϑ)| where f t and f n are the magnitude of the normal and tangential forces at the real contact points I rp1 and I rp2 (cf. Fig. 7(a)). The forces at those two points are identical as there are no out-of-plane motions of a pendulum. ψ a is the adherence coefficient of a ball on the roller's track. To prevent slipping, one must preserve |f t (ϑ)|< ψ a |f n (ϑ)|, which limits the maximum pendulums' amplitude and thus limits the torque range of the CPVA. In the following, ψ a is determined experimentally and a method for approximating the torque at the adherence limit is proposed.

Applying Newton's second law on a CPVA of the form presented in Fig. 7 with a single pendulum and using the relations between the trajectories provided in Appendix A, one can find the dimensionless tangential and normal forces at the virtual contact point I * rp to be

f * t = -ηγ(s) yy + γ(s)(yy s + y 2 s ) + dγ(s) ds y 2 s 2 , f * n = 1 2 dx(s) ds yy + 2 dz(s) ds dx(s) ds -1 y 2 s 2 + y 2 z(s) + 2y 2 s . (22a) (22b) 
Neglecting terms of order in Eqs. (22) and linearising leads to

f * t = -ηα 2 [1] s , f * n = 1 + 2s , (23a) (23b) 
and it is convenient to define the ratio

ψ * = f * t f * n = ηα 2 [1] s 1 + 2s . ( 24 
)
Substituting the pendulums' classical response (11) in Eq. ( 24) leads to

ψ * (CL) = ηα 2 [1] n 2 a 2 cos(nϑ -ξ) 1 -2na sin(nϑ -ξ) . (25) 
Then, one can show that the maximum value of ψ * (CL) over a period is reached for a critical rotor angle ϑ c such that

sin(nϑ c -ξ) = 2na ⇒ cos(nϑ c -ξ) = ± 1 -4n 2 a 2 , (26) 
and the associated maximum value is

ψ * (CL) max = ηα 2 [1] n 2 a √ 1 -4n 2 a 2 . ( 27 
)
Because of the v-shaped rotor tracks (cf. Fig. 7(a)), the real forces are related to the virtual ones such that

f * t = 2f t ⇒ f t = f * t /2, f * n = 2f n cos(θ t ) ⇒ f n = f * n 2 cos(θ t ) . (28a) (28b) 
Hence, the actual maximum of ratio ψ = |f t /f n | over one period is

ψ (CL) max = cos θ t ηα 2 [1] n 2 a √ 1 -4n 2 a 2 . ( 29 
)
In the case of a subharmonic response, one would have substituted Eq. ( 12) instead of Eq. ( 11) in Eq. ( 24), leading to In Fig. 11(a), T1 = 0.045 can be interpreted as the torque at the limit of adherence, thus explaining the difference between the analytical and experimen-330 tal results for T1 > 0.045. Similar torque responses were performed for several mean rotational speeds Ω in order to identify the torque at the adherence limit as a function of Ω. The corresponding results are shown in Appendix B, and they are included in Fig. 12 which is a map representing ψ (CL) max as a function of Ω and T 1 . With the help of this map one can identify the values of ψ (CL) max for which the system is at the limit of adherence. Those values, corresponding to ψ a , lie between the two green curves. The five measurements lead to close but not equal values of ψ a because, from one sweep to the other, the contact points on the pendulums are not the same. Because of wear and the white paint dots visible in Fig. 7, the surface of the balls is not perfectly uniform, thus explaining why a change in the contact points can change ψ a (this is the same explanation as for the change in damping coefficient in Fig. 10). Despite this slightly changing ψ a , its dependency on Ω and T 1 fits well with the evolution of ψ max to ψ a leads to the amplitudes at the adherence limit

ψ (SH) max = cos θ t ηα 2 [1] n 2 a 4 √ 1 -n 2 a 2 . ( 30 
)
a (CL) a = ψ 2 a η 2 α 2 [1] n 4 cos 2 θ t + 4n 2 ψ 2 a , a (SH) a = 16ψ 2 a η 2 α 2 [1] n 4 cos 2 θ t + 16n 2 ψ 2 a . (31a) (31b) 
Then, using the expression of the torque response in the classical [9] and subharmonic [10] operations, one obtains the torque at the adherence limit for both operations, written T (CL) 1a

and T

(SH) 1a . Computing those torques is important for several reasons. First, the system wears out faster when the pendulums are slipping because of the friction at the contact points. Hence, when doing experiments, one should be careful not to exceed too much T (CL) 1a and T (SH) 1a . Secondly, the desired operation of a system is that without slipping, so the effective torque range is actually limited by

T (CL) 1a or T (SH) 1a
(or the apparition of instabilities [10]) rather than pendulums hitting their cusp. To prevent slipping, one must try to enforce a < a (CL) a (or a < a (SH) a ) for as long as possible. This can be done by choosing materials that increase ψ a . The other solutions are based on limiting the increase in a as T1 is increased, exactly as one would do to avoid pendulums reaching their cusp. This can be done using linear and nonlinear detunings (this might decrease the performance) and using a larger inertia ratio µ (this is limited by the acceptable added mass and expanded shape of the pendulums) [10]. A torque response of the rotor in subharmonic operation is shown in Fig. 13.

As explained in section 4.2, it is preferable to start sweeps in subharmonic operation at large torques. In the case of Fig. 13, the sweep was started from T1 ≈ 0.042 and then decreased. This initial torque value was chosen so as to trigger the subharmonic response quickly while minimising the slipping of the pendulums. Using the procedure described in section 5.3 with the values of ψ a identified in Fig. 12, the torque at the limit of adherence is expected to be

T (SH) 1a
∈ [0.031, 0.042]. Above T1 = 0.037, which is within the range of T (SH) 1a , the measurements do not fit with the analytical results because the pendulums are slipping. However, for T1 ≤ 0.037, the experimental results are well predicted by the analytical model. Particularly, from T1 ≈ 0.019 to T1 ≈ 0.037, one can see the saturation of the rotor's response due to the subharmonic filtration. Note that if the pendulums did not slip they would reach their cusp for T1 ≈ 0.081, which is much larger than the actual limit due to slipping, T1 = 0.037. This highlights the importance of investigating the slipping as ignoring it would result in a large overestimation of the CPVA's torque range. The reason for this difference is explained hereafter. In order to investigate slipping in more details, markers were initially glued on some pendulums. This was done on every pendulum but the first one. The heat due to the oscillations caused these markers to melt on the tracks and pendulums after a few measurements. The CPVA was then cleaned to pursue the measurements, but still, this slightly modified the system. Pendulum 1 was not affected by these modifications and happened to slip more easily than the others, hence sometimes oscillating differently. This is illustrated in Appendix C for torque responses in classical operation. In the case of subharmonic operation, pendulums oscillate by pairs [43]. This is why, in Fig. 14, another pendulum (the 4 th one) is also oscillating differently. Apart from the difference regarding pendulums 1 and 4 in Fig. 14, one can clearly see the phase-opposition oscillations of the pendulums at order n/2 due to the subharmonic response, as predicted by the analytical model.

Conclusion

This paper deals with the experimental investigation of a new CPVA design in both classical and subharmonic operations. Some theoretical background developed in former works was summarised. Then, experiments were conducted on a system consisting in a rotor on which roll six identical spherical pendulums distributed evenly. First, order responses around the pendulums' tuning order were performed. They validated the analytical model used in classical operation and evidenced the high performance of this new CPVA design, which was observed to provide an attenuation of 28 [dB]. These order sweeps were performed for several torque amplitudes, which allowed to visualise the shifting of the antiresonance and to verify with accuracy that the linear and nonlinear tunings were the expected ones. Secondly, torque sweeps were performed near the tuning order. They highlighted the main drawback of the classical operation, which is the generation of higher rotor harmonics. These measurements also evidenced a limitation of the CPVA design related to the slipping of the pendulums. This slipping was investigated in depth through experiments and analytical developments. A procedure to determine the adherence coefficient of the pendulums on the rotor's track was proposed. In turn, this allowed to estimate analytically the torque at the adherence limit, which sets the system's torque capacity. Finally, the subharmonic operation was investigated. As predicted by the analytical model, the saturation of the rotor's response was observed experimentally. The recorded time signals of the pendulums matched well with the responses expected from the analytical model, except for two of the pendulums. However, this difference was not attributed to a nonlinear phenomenon but to small discrepancies amongst the pendulums, mainly due to wear caused by slipping, that sometimes led them to oscillate differently from the other ones.

The present study only shows subharmonic responses were they are expected to be stable. It was not possible to investigate flawlessly instabilities leading to localised subharmonic solutions due to the discrepancies between pendulums caused by wear. However, preventing localisation is of utmost importance as it can decrease the filtration performances and reduce the torque capacity. For this reason, future work should aim at validating the unstable zones predicted by the analytical model. The + solution is the most useful one as ϕ typically increases with S. However, for some trajectories (a circle for instance), dϕ/dS changes sign when 1 -(dR/dS) 2 passes through zero, in which case thesolution should be used.

C S G ϕ R β ϕ O x r y r z r t n u v d S dX G dY G | d R | R d ϕ
ϕ(S) is obtained by integrating Eq. (A.10), leading to

ϕ(S) = S 0 ± 1 R 1 - dR dS 2 ds , (A.11) 
where we have assumed ϕ(S = 0) = 0, which is the case in practice. Moreover, the Cartesian coordinates of G in R r are simply given by

X G (S) = R sin ϕ, Y G (S) = -R cos ϕ. (A.12)
Finally, from In Fig. C.17, one can see that pendulum 1, and sometimes also pendulum 4, oscillate differently from the others. However, this is not attributed to nonlinear energy localisation but to small differences amongst the pendulums, causing them to oscillate differently [64,65]. Regarding pendulum 1, this is likely due 660 to slipping causing premature wear, hence modifying slightly its rolling track and the pendulum itself, as explained in section 5.4. Regarding pendulum 4, no particular reason explaining a different oscillation was observed, so this should be investigated further in the future. 

SUBHARMONIC TUNING OF

The slipping issue

In this section, we address the slipping issue of the CPVA by evaluating its operating range. This range goes from the torque at the bifurcation, T ¯ * 1 , to the torque at the limit of adherence T ¯1a . Using the procedure described previously in this chapter, one can compute

T ¯2 1a = [︄ c c -c p n p Λ m 100ψ 2 a cos 2 θ t n 2 (n 2 + 100ψ 2 a cos 2 θ t ) -2(n -2n p ) ]︄ 2 + (2b ¯)2 Λ 2 m . ( 8.1) 
Moreover, in the case of a spherical pendulum, one has

m = 4πr 3 p ρ 3 , I = 8πr 5 p ρ 15 , α [1] = - R 0 r p cos θ t , α [3] = 0, (8.2) 
where ρ is the density of the material used. Hence, it is possible to express

Λ m = 1 + 2 5 cos 2 θ t , c c = µn 4 p (︃ 1 + 2 5 cos 2 θ t )︃ 2 , c p = 3x [4] , b ¯= 3b 4πr 3 p ρΩ . ( 8.3) 
This way, the torques at the bifurcation and at the adherence limit can be rewritten as

T ¯ * 2 1 = 4(n -2n p ) 2 + 9b 2 (︂ 2πr 3 p ρΩ )︂ 2 1 (︂ 1 + 2 5 cos 2 θt )︂ 2 , T ¯2 1a = ⎡ ⎢ ⎣ µn 4 p (︂ 1 + 2 5 cos 2 θt )︂ 2 -3x [4] (︂ 1 + 2 5 cos 2 θt )︂ n p 100ψ 2 a cos 2 θ t n 2 (n 2 + 100ψ 2 a cos 2 θ t ) -2(n -2n p ) ⎤ ⎥ ⎦ 2 + 9b 2 (︂ 2πr 3 p ρΩ )︂ 2 1 (︂ 1 + 2 5 cos 2 θt )︂ 2 . (8.4a) (8.4b)
The last terms of T ¯ * 2 1 and T ¯2 1a are the same. Hence, one could increase r p to lower the torque at the bifurcation, but this would also lower the torque at the adherence limit, leading to no gain on the final operating range. The only two parameters that appear in T ¯1a but not T ¯ * 1 are µ and x [4] . x [4] cannot be chosen as desired as it is already constrained by the nonlinear tuning (cf. section 8.2.3). Hence, one can try to increase T ¯1a without changing T ¯ * 1 using µ. It is reminded that

µ = N mR 2 0 J r + N I . ( 8.5) 
However, the pendulums' inertia is negligible in front of the rotor's, so µ can only be increased by increasing N , R 0 or m. The best option is to choose the largest acceptable value for r p (which would significantly increase m, cf. Eq. (8.2)) and then adjust N and R 0 to satisfy the design requirements.

More details on this optimisation are shown in Appendix E. However, a radius r p = 15 [mm] is already large. The remaining parameters that can be used to improve the torque range are θ t and n p . The

SUBHARMONIC TUNING OF A CENTRIFUGAL PENDULUM VIBRATION ABSORBER TO FILTER-OUT ORDER 20

evolution of T ¯ * 1 and T ¯1a with these parameters is shown in Fig. 8.2. They both increase when n p departs from n/2 but are not affected much by θ t . Note that the maps particularly focus on n p > n/2 as it is preferable to use overtuned hardened pendulums to avoid instabilities (cf. chapter 7). This is discussed in details in section 8.2.3. The black and dashed grey lines in Fig. 8.2 are contour lines indicating the limit of acceptable designs for T ¯ * 1 and T ¯1a , respectively. The designs on the left of the black line in Fig. 8.2(a) allow for a relatively low torque at the bifurcation and those on the right of the grey line permit a satisfactory torque capacity. Unfortunately, the grey line is on the right of the black one, so there are no designs that lead to satisfying values of both T ¯ * 1 and T ¯1a. As µ = 0.263 is already large in the case presented here, there are no possibilities to push the grey line further to the left to reach an acceptable design. Hence, it does not seem to be possible to filter-out order 20 torques using subharmonic CPVAs with spherical pendulums because the torque capacity is too limited by the slipping. 

The nonlinear tuning issue

In chapter 7, it was advised to use overtuned hardened pendulums to avoid the instability leading to a localised response. However, as illustrated in Fig. 8.3(a), this nonlinear tuning requires a thin precision of the path, which can only be done with very small manufacturing tolerances. Indeed, in the case presented here, the difference near the cusp of the two paths is less than 1 [µm]. Nevertheless, the hardened path leads to a response quite different from the epicycloidal one, as shown in Fig. 8.3(b).

Increasing x [4] further would reduce the manufacturing tolerance needed but it would also decrease too much the filtering efficiency. Hence, the manufacturing tolerances are too demanding to control the nonlinear tuning of a subharmonic CPVA tuned at order 10.

Discussion

In this section, a subharmonic CPVA was proposed based on the design presented in section 8.1, the subharmonic models developed in chapters 6 and 7, and using the damping and adherence coefficient identified in section 8.1. This resulted in pendulums having very short paths and subjected to slipping at torques lower than the desired torque capacity. It was also not possible to prescribe a nonlinear tuning due to the too demanding manufacturing tolerances. For these reasons, it does not seem possible to use subharmonic CPVAs to filter-out a torque at order 20.

Part IV The centrifugal double pendulum

Summary of part IV

This summary presents the main results of part IV of this report, which deals with the use of centrifugal double pendulum vibration absorbers (CDPVAs). The automotive industry currently uses centrifugal pendulum vibration absorbers (CPVAs) to reduce the torsional vibrations of thermal powertrains. One of the main aims of this thesis is to adapt pendulum systems to electric vehicles, which are receiving more and more interest due to the increasingly stringent environmental standards. The torsional vibrations to be reduced in electric drivetrains occur at much larger orders than in thermal vehicles (cf. section 1.1). Unfortunately, high-order CPVA tuning is difficult to achieve because of demanding manufacturing tolerances (cf. section 2.2.3). This is why we are interested in the use of centrifugal double pendulums, whose tuning is more flexible, thus requiring less demanding manufacturing tolerances. In addition, double pendulums generate two rotor antiresonances. The use of the second antiresonance can help filtering high orders.

We list below the main topics dealt with in part IV of the thesis:

• Modelling of a CDPVA;

• Linear characteristics, tuning orders and optimisation of the linear tuning process;

• Nonlinear response of a CDPVA;

• The rotor's antiresonances, whose evolution is not trivial due to nonlinear effects;

• Instabilities of the unison response of a CDPVA.

The development of many of the results discussed in this summary requires elaborate algebraic manipulations, detailed in chapters 9, 10 and 11. Here, we report only the main results of part IV, described from a physical point of view.

Modelling [chap. 10]

The modelling of a CDPVA used in this thesis is presented in Stability of the unison response and performance [chap. 9,10] In practice, the CDPVA is to operate either at n ≈ n p1 or n ≈ n p2 . In the first case, the resonance of the second unison mode is typically far (cf. Fig. IV.3), so its contribution can be neglected.

Similarly, when n ≈ n p2 , the contribution of the first unison mode is negligible. Note that these approximations hold only if there are no internal resonances between the two unison modes (i.e. n p2 is not close from an integer multiple of n p1 , cf. chapter 9). In addition, we explained previously that the rotor is a node of the phase-opposition modes, so they do not contribute to the linear response (cf. of the double pendulums to be localised, which means that they oscillate with different amplitudes (cf. chapter 10). Thus, because of localisation, some pendulums might oscillate with an amplitude much larger than expected. However, in real systems, the amplitude of motion is limited due to space requirements. This is why an original design guideline is proposed in chapter 10 to avoid these instabilities. Note that even though the CDPVA investigated contains only two double pendulums (cf. is increased. This is detrimental for the filtering efficiency, because in practice the excitation order n is fixed, and the designer chooses n p1 = n for the rotor to be excited on its antiresonance. However, if this antiresonance shifts, the rotor is no longer excited on the minimum of its response, leading to a significant increase of its vibration level. The shifting of the antiresonance as the torque level is increased is represented by the pink curve, obtained through an original analytical antiresonance tracking procedure (cf. chapter 9). A design guideline preventing this shifting is proposed in chapter 

Experimental investigation of a centrifugal double pendulum [chap. 11]

The theoretical results obtained in this thesis are based on very general CDPVA models. This way, these results can be used to design any CDPVA architecture. In chapter 11, we focus on a specific architecture, shown in Fig. IV.5. The double pendulums are made of a hollow cylinder (pendulum 1) in which rolls an h-shape cylinder (pendulum 2). allows to verify the proper linear tuning of the CDPVA. Note that the viscous damping coefficients identified are larger than expected. This causes the antiresonance order to be slightly lower than n p1 and is detrimental to an efficient vibration reduction. In Fig. IV.6(b), one can see that the nonlinear model developed in chapter 9 describes relatively well the shifting of the antiresonance as the torque level is increased. The significant discrepancies around the resonance might be due to the slipping of the pendulums, but this assumption remains to be verified. Unfortunately, it was not possible to observe the second rotor antiresonance due to limitations of the experimental set-up (cf. chapter 11).

A CDPVA prototype tuned at order 20 is proposed in chapter 11. The linear tuning appears feasible in practice, but the current design has other limitations. Indeed, with constant length pendulums, it is not possible to control the nonlinear tuning of this CDPVA. To remedy this, the pendulums should follow non-circular paths, as is the case for CPVAs (cf. section 2.1.3). This is left for future work, and one will have to ensure that the paths achieving the desired nonlinear tuning do not require too demanding manufacturing tolerances. The slipping of the pendulums was not investigated in chapter Unison response of a centrifugal double pendulum vibration absorber

Introduction

In the frame of reducing polluting emissions and fuel consumption of vehicles using thermal engines, automotive manufacturers try to reduce the cylinder Email addresses: vincent.mahe@ensam.eu (V. Mahé), alexandre.renault@valeo.com (A. Renault), aurelien.grolet@ensam.eu (A. Grolet), herve.mahe@valeo.com (H. Mahé), olivier.thomas@ensam.eu (O. Thomas) Preprint submitted to Journal of L A T E X Templates November 28, 2022 capacity and engine speed of rotation. These evolutions lead to a significant increase of rotation irregularities called acyclisms, mainly due to higher combustion pressure. One of the main characteristics of these reciprocating engines is the linear dependence of the acyclism frequency to the engine speed of rotation. The coefficient of proportionality is the engine order and only depends on the architecture of the engine. During an acceleration phase, the engine sweeps a wide frequency range containing some driveline torsional modes. This situation may lead to significant noise and vibration levels in the passenger compartment and premature wear of the driveline components. This study deals with centrifugal double pendulum vibration absorbers (CDPVAs), which are a mean to reduce the vibrations of driveline components. The principle of operation of CDPVAs is very close from that of centrifugal pendulum vibration absorbers (CPVAs), which have been used for many years to minimise acyclisms of automotive powertrains at the engine order [1][2][3]. These passive devices consist of oscillating masses (pendulums) moving along paths relative to a primary inertia (rotor), as shown in Fig. 1 in the case of a CDPVA. Because the absorbers (single pendulums for a CPVA, double pendulums for a CDPVA) are driven by the centrifugal acceleration field resulting from the rotation of the system, their natural frequency is proportional to the engine speed of rotation. Hence, CPVAs and CDPVAs act as dynamic vibration absorbers tuned with respect to an order rather than a frequency. This allows the antiresonance frequency to shift linearly with the rotational velocity so that the vibrations are reduced over the whole engine speed range.

The first work dealing with a CDPVA was led by R. W. Zdanowich and T.

S. Wilson [4], who focused on a particular architecture made of a pin (pendulum 1) rolling in a circular rotor cavity, and a ring (pendulum 2) whose inner radius rolls on the pin. They showed that these two-degree-of-freedom absorbers have two tuning orders and hence generate two rotor antiresonances. However, with their architecture, the system is to operate on a single mode and they gave design guidelines in the case where the pin's mass is negligible. Another inves-tigation of a CDPVA was led by J.-G. Duh and M. Wenyong [5] whose aim was to reduce the vibrations caused by helicopter rotor blades, which requires the filtering of two distinct orders [6]. They focused on a design similar to the one proposed in [4] except for a more general shape of the ring, and they showed experimentally its filtering capacity. CDPVAs exhibit nonlinearities of different natures such as geometric nonlinearities due to the large amplitude of motion of the pendulums and their coupling, and inertial nonlinearities, for instance due to Coriolis effects. J.-G. Duh and M. Wenyong [5] performed a nonlinear analysis showing that overtuning their double pendulum design increases its efficiency at large excitation levels due to the softening behaviour. A more recent study of a CDPVA was led by V. Manchi and C. Sujatha [7]. They explained that one of the advantages of a CDPVA over a CPVA is the increased flexibility in the tuning process. Indeed, in the case of a CPVA tuned at high order, the pendulums' path is small so that the manufacturing tolerances are demanding [8]. Moreover, tuning a CPVA at low order requires long pendulums, which might be inconvenient due to space requirements. However, there are much more parameters for the tuning of a CDPVA than for a CPVA, so these issues can be avoided. In addition, the fact that CDPVAs can be used to filter-out several excitation orders can be useful in the case of cylinder deactivation for instance. V. Manchi and C. Sujatha [7] also showed that the modes of a CD-PVA are not necessarily softening (in their case, the second mode is hardening), and they observed experimentally the vibration reduction effect with a CDPVA installed on the drive shaft of an automotive vehicle.

The work presented in [7] does not account for the rotational inertia of the pendulums, which contributes to the tuning orders [4,5] and, for a CPVA, might significantly increase the performance [9][10][11][12][13][14]. The rotational motion of the pendulums with respect to the rotor is accounted for in many recent studies on CPVAs [15][16][17][18][19][20][21][22][23][24][25][26] but is yet to be investigated for CDPVAs. It is also known for a long time that the pendulums' path is of primary importance to control the behaviour of a CPVA [27][28][29][30]. It is often recommended to use epicycloids as these are the tautochronic paths of the uncoupled pendulums [30]. However, many studies showed that slightly perturbed epicycloids can help avoiding instabilities [15,17,22,24,[31][32][33][34][35] and increase the performance of the CPVA [14,25]. Hence, studying the paths of the pendulums of a CDPVA could provide new possibilities to increase the efficiency of the system.

The motivation of this paper is to investigate the linear and nonlinear response of a CDPVA made of a single double pendulum using an analytical perturbation method. To achieve sufficient absorber inertia and to prevent rotor imbalance, one would typically use several double pendulums placed evenly around the axis of rotation of the rotor. However, in the same way as for CPVAs, the expected behaviour is a unison motion of the double pendulums. Hence, to facilitate the investigation of this unison motion, it is convenient to consider a single equivalent pendulum, as shown in Fig. 1. The rotational inertia of the pendulums is accounted for and these pendulums obey general rotation laws.

This allows for a representation of double pendulums whose motion is not only a pure translation in the rotor's frame, but is also made of a rotational motion relative to the rotor. Hence, the framework used allows to represent a variety of CDPVAs, including the particular designs studied in [4,5]. The influence of the pendulums' rotation laws on the linear tuning orders and the nonlinear behaviour is investigated. The pendulums considered in this paper have constant length, so the effect of their path on their response is left for future work. The efficiency of a CDPVA is closely related to the features of the antiresonances generated by the double pendulum on the rotor. If the rotor's amplitude at the antiresonance is low and the antiresonance order does not shift much as the torque amplitude is increased, the CDPVA will significantly reduce the vibrations over the whole torque range. The shifting of the antiresonance order was studied in [27,36,37] in the case of a CPVA whose pendulums oscillate along a circular path. In [12][13][14]25], more general paths were investigated and guidelines were proposed to lock the antiresonance. A. Renault et al. presented a fully numerical antiresonance continuation method and applied it to Euler's pendulum [38]. In the present paper, an analytical procedure similar to [25] is used to investigate the shifting of the antiresonances of a CDPVA.

This paper is organised as follows. Section 2 describes the modelling of the CDPVA. A linear analysis and a design procedure are presented in 3. The analytical model describing the nonlinear response of a CDPVA is derived in section 4. Case studies and design guidelines allowing to reduce the shifting of one of the antiresonances and to avoid jumps of the response are presented in section 5. This paper ends with a conclusion in section 6. The system studied is shown in Fig. 1. A rotor of inertia J r rotates about its centre O. The frame R r (O, x r , y r , z 0 ) is attached to the rotor at point O.

Modelling

O A G 1 G 2 T ( ϑ ) ϑ = Ω t + θ ϕ 1 ϕ 2 α 1 (ϕ 1 ) α 2 (ϕ 2 ) rotor pendulum 1 pendulum 2 x 0 y 0 z 0 x r y r x p1 y p1 x p2 y p2
The rotation of this frame with respect to the Galilean frame R 0 (O, x 0 , y 0 , z 0 ) is ϑ(t) = Ωt + θ(t) where t is the time, Ω is the mean rotational velocity and θ(t) corresponds to the fluctuating part of the rotation. A torque T (ϑ) = T 0 + T θ (ϑ) is applied to the rotor where T 0 is its constant part and T θ (ϑ) is periodic. At equilibrium, T 0 = b r Ω where b r is the linear viscous damping coefficient of the rotor, such that the constant torque balances with the damping to set the mean rotational speed Ω.

A double pendulum is attached to the rotor at point A. The first pendulum is attached at a distance OA = r from the rotor's center. It has length AG 1 = 1 , mass m 1 and inertia I 1 about its center of mass G 1 . If in a real system there were N double pendulums, then m 1 and I 1 would represent the sum of the N masses and inertias of each first pendulums. The position of G 1 with respect to the rotor's frame R r is located through angle ϕ 1 (t). The frame R p1 (G 1 , x p1 , y p1 , z 0 ) is attached to pendulum 1 at point G 1 . Its rotation with respect to the rotor's frame R r is α 1 (ϕ 1 ). The second pendulum is attached to the first one at point

G 1 . It has length G 1 G 2 = 2 ,
mass m 2 and inertia I 2 about its center of mass G 2 . As for pendulum 1, if a real system is made of N double pendulums, then m 2 and I 2 would represent the sum of the N masses and inertias of each second pendulums. The position of G 2 with respect to R p1 is located through angle

ϕ 2 (t). The frame R p2 (G 2 , x p2 , y p2 , z 0 ) is attached to pendulum 2 at point G 2 .
Its rotation with respect to R p1 is α 2 (ϕ 2 ). As for the rotor, equivalent linear viscous damping coefficients b 1 and b 2 are used to model the damping between the rotor and pendulum 1 and between pendulum 1 and pendulum 2, respectively.

The dimensional equations of motion are derived in Appendix A.1, but it is more convenient to write them in a dimensionless form. To do so, the following quantities are introduced:

y = θ Ω = 1 + θ Ω , µ = m 1 (r + 1 ) 2 + m 2 (r + 1 + 2 ) 2 J r + I 1 + I 2 , η 1 = I 1 m 1 2 1 , η 2 = I 2 m 2 2 2 , µ 2 = m 2 m 1 , ν r = r 1 , ν 2 = 2 1 , h = m 1 2 1 m 1 (r + 2 1 ) + m 2 (r + 1 + 2 ) 2 = 1 (ν r + 1) 2 + µ 2 (ν r + 1 + ν 2 ) 2 , br = b r (J r + I 1 + I 2 )Ω , b1 = h b 1 m 1 2 1 Ω , b2 = h b 2 m 1 2
1 Ω

,

T (ϑ) = T0 + Tθ (ϑ) = T (ϑ) (J r + I 1 + I 1 )Ω 2 , Γ 1 (ϕ 1 ) = dα 1 (ϕ 1 ) dϕ 1 , Γ 2 (ϕ 2 ) = dα 2 (ϕ 2 ) dϕ 2 , (1) 
where (•) = ∂(•)/∂t. y(t), ϕ 1 (t) and ϕ 2 (t) are the 3 degree-of-freedom of the system. y corresponds to the dimensionless rotational velocity of the rotor. µ is the ratio of the pendulums' geometric inertias about O over the rotatory inertia of the whole system about O. η 1 and η 2 are the ratios of the rotational inertia of pendulums 1 and 2 about their center of mass over their geometric inertia about their attachment points, respectively. µ 2 is the mass ratio between pendulums 1 and 2. ν r and ν 2 are dimensionless lengths associated to r and 2 , respectively.

h is the ratio of the geometric inertia of pendulum 1 about A over the geometric inertias of the pendulums about O. br , b1 and b2 are non-dimensional damping constants and T (ϑ) is the non-dimensional torque applied on the rotor. Γ 1 and Γ 2 are rotation functions. It is convenient to define these rotation functions as polynomials such that

α 1 (ϕ 1 ) = α 11 ϕ 1 + α 13 ϕ 3 1 ⇒ Γ 1 (ϕ 1 ) = α 11 + 3α 13 ϕ 2 1 , α 2 (ϕ 2 ) = α 21 ϕ 2 + α 23 ϕ 3 2 ⇒ Γ 2 (ϕ 2 ) = α 21 + 3α 23 ϕ 2 2 . (2a) (2b) 
α 1 (ϕ 1 ) and α 2 (ϕ 2 ) are chosen to be antisymmetric with respect to ϕ 1 and ϕ 2 based on the experience that, for practical reasons, rotation functions of CPVAs mode shapes. Using θ instead of y and the balance between the constant torque and the damping br = T0 (cf. section 2), one can linearise Eq. ( 4), leading to

(1 + µ)θ + µΛ c1 ϕ 1 + µΛ c2 ϕ 2 + br θ = T1 cos(nϑ), Λ c1 θ + Λ m1 ϕ 1 + Λ c12 ϕ 2 + k 1 ϕ 1 + k 12 ϕ 2 + b1 ϕ 1 = 0, Λ c2 θ + Λ c12 ϕ 1 + Λ m2 ϕ 2 + k 12 ϕ 1 + k 2 ϕ 2 + b2 ϕ 2 = 0. (5a) (5b) (5c) 
Λ m1 and Λ m2 are constants representing the equivalent mass of pendulums 1 and 2, respectively. Similarly, k 1 and k 2 represent their equivalent stiffness. Λ c1 and Λ c2 represent the inertial coupling between the pendulums and the rotor. Λ c12 155 and k 12 represent the inertial and non-inertial couplings between the pendulums.

The expression of these constants in terms of the system parameters is given in Appendix B.

Linear modal analysis

In order to determine the tuning orders of the double pendulum, one needs to compute the eigenorders of the uncoupled system, that is, the system where the rotor spins at a constant speed. In this case, the free, conservative equations associated to Eqs. (5) reduce to

Λ m1 ϕ 1 + Λ c12 ϕ 2 + k 1 ϕ 1 + k 12 ϕ 2 = 0, Λ c12 ϕ 1 + Λ m2 ϕ 2 + k 12 ϕ 1 + k 2 ϕ 2 = 0. (6a) (6b) 
Solving the eigenvalue problem associated to Eqs. ( 6) leads to the eigenmodes of the uncoupled system, (n p1 , ψ p1 ) and (n p2 , ψ p2 ). The two eigenorders 1 and associated eigenvectors are

n 2 p1,2 = Λ m1 k 2 + Λ m2 k 1 -2Λ c12 k 12 2(Λ m1 Λ m2 -Λ 2 c12 ) ∓ 4(Λ c12 k 1 -Λ m1 k 12 )(Λ c12 k 2 -Λ m2 k 12 ) + (Λ m1 k 2 -Λ m2 k 1 ) 2 2(Λ m1 Λ m2 -Λ 2 c12 ) ψ pi = [1, χ pi ] , χ pi = n 2 pi Λ m1 -k 1 k 12 -n 2 pi Λ c12 , i = 1, 2. (7a) (7b) 
1 Eigenorders can be seen as dimensionless eigenfrequencies.

n p1 and n p2 are the tuning orders of the CDPVA. For reasonable system param-160 eters, one of the uncoupled modes represents an in-phase motion of the pendulums while the other mode represents a phase-opposition motion. Whether the in-phase mode is mode 1 or mode 2 depends on the system parameters.

mode 0 To compute the eigenmodes of the coupled system, we can first rewrite the free, conservative equations associated to Eqs. (5) such that

n 00 = 0 mode 1 n 10 = n p1 + ε 1 mode 2 n 20 = n p2 + ε 2
θ = - µ 1 + µ Λ c1 ϕ 1 - µ 1 + µ Λ c2 ϕ 2 , Λm1 ϕ 1 + Λc12 ϕ 2 + k 1 ϕ 1 + k 12 ϕ 2 = 0, Λc12 ϕ 1 + Λm2 ϕ 2 + k 12 ϕ 1 + k 2 ϕ 2 = 0, (8a) (8b) (8c) 
where we have introduced the constants Λm1 , Λm2 , Λc12 , defined in Appendix B.

First of all, it is obvious from Eqs. (8) that the system includes a rigid body mode (n 00 , φ 0 ) with

n 00 = 0, φ 0 = [1, 0, 0] . (9) 
The pendulums are nodes of this mode. Two reduced eigenmodes (n 10 , ψ 1 ) and

(n 20 , ψ 2 ) can be computed using Eqs. (8b) and (8c), just like for the uncoupled system. The two associated full modes (n 10 , φ 1 ) and (n 20 , φ 2 ), which include the rotor's component, are obtained using Eq. (8a). This leads to

n 2 10,20 = Λm1 k 2 + Λm2 k 1 -2 Λc12 k 12 2( Λm1 Λm2 -Λ2 c12 ) ∓ 4( Λc12 k 1 -Λm1 k 12 )( Λc12 k 2 -Λm2 k 12 ) + ( Λm1 k 2 -Λm2 k 1 ) 2 2( Λm1 Λm2 -Λ2 c12 ) φ i = [ i , 1, χ i ] , χ i = n 2 i0 Λm1 -k 1 k 12 -n 2 i0 Λc12 , i = - µ(Λ c1 + Λ c2 χ i ) 1 + µ , i = 1, 2. (10a) (10b) 
Like for the uncoupled modes, modes 1 and 2 correspond to in-phase and phaseopposition motions of the pendulums. These modes are illustrated in Fig. 2 together with the rigid body mode. For reasonable system parameters, the pendulums are in phase-opposition with the rotor when they respond on the inphase mode. When they respond on the phase-opposition mode, pendulum 1 or 2 can be in phase-opposition with the rotor, depending on system parameters.

In practice, the inertia ratio µ is small. As it tends to zero, the reduced modes 1 and 2 (i.e. modes 1 and 2 without the rotor's component in the modal shapes) tend towards the uncoupled modes 1 and 2, respectively. In other words, the coupled and uncoupled modal shapes are close, and the n i0 are close from (but larger than) the n pi .

As explained previously, there are much more parameters available for the tuning of a CDPVA than for a CPVA. Indeed, n p1 and n p2 depend on ν r , ν 2 , µ 2 , η 1 , η 2 , α 11 , α 21 , that is, 7 parameters (this reduces to 4 parameters if the rotational inertia of the pendulums is neglected). For a CPVA, there are 3 tuning parameters if the pendulums' rotation is accounted for, and only 1

parameter otherwise [22]. The evolution of n p1 and n p2 as a function of ν 2 and µ 2 is displayed in Fig. 3. It is interesting to note that increasing µ 2 decreases n p1 but increases n p2 . V. Manchi et al. suggested to adjust the tuning through iterations on the system's parameters [7]. However, maps as those shown in Fig. 3 would be very useful in the design process as they show how the tuning orders evolve with some of the design parameters. This allows to converge towards a desired order much more efficiently than through manual iterations. Finally, accounting for the pendulums' rotational inertia is mandatory for an accurate tuning. Indeed, if these inertias were neglected, the tuning orders of the CDPVA described in Tab. 1 would go from 1.500 and 2.220 to 1.732 and Table 1: Parameters of the CDPVA studied in this section.

The linear forced response

The linear forced response of a CDPVA can be computed from Eqs. (5), which yields solutions of the form

θ = h 1 cos(nϑ -ψ 1 ), ϕ 1 = a 1 cos(nϑ -ξ 1 ), ϕ 2 = a 2 cos(nϑ -ξ 2 ). ( 11 
)
Such a response is illustrated in Fig. 4. Because the CDPVA has two tuning orders, there are two antiresonances on the rotor's forced response, n AR1 = n p1

and n AR2 = n p2 (the demonstration is provided in Appendix C). Hence, if a 195 torque of order n is applied to the rotor, one can choose n p1 ≈ n or n p2 ≈ n to significantly reduce the vibration level. According to linear theory, CDPVAs can also be used to filter-out a torque containing order n and 2n harmonics by choosing a design such that n p1 ≈ n and n p2 ≈ 2n p1 . This possibility is interesting but is limited by nonlinear effects (cf. section 5.1).

10 -4 10 -3 10 -2 h 1 n p1 n p2 n 10 n 20 antiresonance 1 antiresonance 2 (a) 10 -3 10 -1 a 1 , a 2 (b) a 1 a 2 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 n 
-1 0 1 ψ 1 , ξ 1 , ξ 2 [π-rad] (c) ψ 1 ξ 1 ξ 2
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The CDPVA shown in Fig. 4 can operate efficiently at both n p1 and n p2 as both antiresonances are quite pronounced. Indeed, they reduce significantly the vibration level compared to the configuration with locked pendulums (black dashed line). Moreover, n p1 and n p2 are not too close from n 10 and n 20 , which is the sign of a robust design. Indeed, if an antiresonance is too close from a 205 resonance, a very small undesired mistuning could lead to a dramatic vibration level of the rotor. This is discussed further in section 3.3.

Note that in practice, the excitation order is fixed such that n is a constant and the CDPVA is tuned close to n. Mistuning can exist, either intentionally or because of material imperfections. Varying the excitation order, as in Fig. 4, is similar to introducing mistuning and is therefore relevant for studying the effect of mistuning on the system's response [35].

Linear performance indicators

As explained in the previous section, the linear performance of a CDPVA depends on whether its antiresonances are pronounced and far from the resonances. These two indicators can be quantified using the criteria ∆n i and G i , i = 1, 2, defined as

∆n i = n i -n pi , G i = h 1 h 1f n=npi , (12a) (12b) 
where h 1f is the amplitude of the rotor's acceleration with fixed pendulums.

∆n i directly measures the distance between the resonance and the antiresonance around mode i. G i is a gain that quantifies the diminution of the rotor's vibrations thanks to the pendulums' motion. Its analytical expression is given in Appendix D. For high performance around mode i, the desired configuration is ∆n i large and G i low.

The evolution of ∆n i and G i , i = 1, 2, as a function of ν 2 and µ 2 is displayed in Fig. 5. The dashed black line indicates a fixed value of n pi . To design a CDPVA with high-performance, one can follow this line and choose the point where ∆n i is the largest and G i the smallest. Note that G 2 fluctuates a lot more than G 1 and even reaches values of 1, in which cases the antiresonance has no effect on the response. These designs, for which the second antiresonance is flat, are to be avoided absolutely if one wants to perform filtration using the second mode. Maps as those shown in Fig. 5 are extremely useful in the design process as they allow for a huge gain of time to converge towards a satisfactory design as compared to manual iterations on the parameters. The next step of improvement of the design process would be to use an optimisation algorithm that yields the desired tuning order while achieving the best possible performance. However, such a procedure is out of the scope of this paper.

Nonlinear response of a CDPVA
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The aim of this section is to present the construction of an analytical model describing the nonlinear response of a CDPVA. As for CPVAs [41], the construction starts with a scaling of the parameters. This allows for a simplification of the equations of motion such that the dynamics of the pendulums becomes uncoupled from that of the rotor. Then, as in [24], the pendulums' equations 240 are written in matrix form and projected on the linear modes, leading to the simplified modal equations. The modal solutions are obtained by considering a response on a single mode and applying the method of multiple scales [42].

Finally, the modal responses are used to deduce the pendulums' motion, which in turn is used to obtain the rotor's response.

Scaling and simplified physical equations

The following hypothesis and remarks will govern the scaling:

• The optimum configuration is that with small rotor and pendulums' damping as it leads to the most pronounced antiresonances.

• The fluctuating torque is small compared to the rotor's kinetic energy (J r Ω 2 /2 at equilibrium) so that T1 is small.

• The pendulums' geometric inertia about O is small compared to the rotatory inertia of the whole system, so that µ is small.

• As the rotor's kinetic energy is significant, the rotor's fluctuating speed is small compared to its mean rotational velocity, so y can be decomposed as

y(ϑ) = 1 + y θ (ϑ), (13) 
where y θ is small.

• The rotation laws considered in this paper are close from linear, so that α 13 and α 23 are small.

Hence, we can scale the parameters such that b1 = b1 , b2 = b2 , br = br , T1 = T1 ,

µ = μ, y θ = ỹθ , θ = θ , α 13 = α13 , α 23 = α23 , (14) 
where is a small parameter that can for instance be chosen to be µ. In the following, only first-order terms will be retained in the rotor's equation. Hence, like in section 3, the approximation θ ≈ ỹθ can be used in order to represent the degree-of-freedom of the rotor through its position rather than its velocity [40].

Introducing the scaled parameters (14) in the rotor's equation (A.6), keeping only first-order terms and using Taylor series in ϕ 1 and ϕ 2 , one obtains the rotor's simplified equation

θ = f θ (ϕ, ϑ). (15) 
Equation ( 15) expresses the rotor's acceleration as a function of the pendulums' motion. ϕ = [ϕ 1 , ϕ 2 ] is the vector containing the pendulums' coordinates.

Function f θ (ϕ, ϑ), described in Appendix A.3, contains linear, quadratic and cubic terms in ϕ 1 and ϕ 2 and the external torque. Note that f θ (ϕ, ϑ) involves the derivatives ϕ and ϕ , but this is not indicated explicitly for the sake of readability. This remark holds for the rest of this paper.

The only nonlinearities that are currently scaled by are those involving µ, α 13 or α 23 . They represent the indirect coupling between the pendulums through the rotor and the nonlinear contribution of the rotation laws, respectively. However, the system exhibits additional nonlinearities coming from the circular path of pendulum 1 and from the direct coupling between the two pendulums. For those nonlinear terms to appear at order , further scaling is required. This is presented in Appendix A.3. With this additional scaling, the simplified equations of pendulums 1 and 2 can be written

Λ m1 ϕ 1 + Λ c12 ϕ 2 + k 1 ϕ 1 + k 12 ϕ 2 = -f p1 (ϕ, ϑ), Λ c12 ϕ 1 + Λ m2 ϕ 2 + k 12 ϕ 1 + k 2 ϕ 2 = -f p2 (ϕ, ϑ). (16a) (16b) 
Functions f p1 (ϕ, ϑ) and f p2 (ϕ, ϑ) are given in Appendix A.3. They contain linear, quadratic and cubic terms in ϕ 1 and ϕ 2 . They also account for the external torque applied on the rotor and the pendulums' damping.

Equations (16a) and (16b) are linearly coupled, which complicates their solving. Hence, it is convenient to project them on the linear modes so as to obtain two linearly uncoupled modal equations which are more easily solvable. This is presented in the next section.

Simplified modal equations

The first step in deriving the modal equations is to rewrite Eqs. (16a) and (16b) in a matrix form using the vector of unknowns ϕ. This matrix equation takes the form

M p ϕ + K p ϕ = -f p (ϕ, ϑ) (17) 
and is to be projected on the reduced linear modes (n 10 , ψ 1 ) and (n 20 , ψ 2 ) (cf. section 3). As higher powers of are neglected in Eq. ( 17), one can use the Taylor series of the modal component χ i (cf. section 3),

χ i = χ pi + μw i + O( 2 ), i = 1, 2, (18) 
in order to write the reduced mode shapes ψ 1 and ψ 2 as

ψ i = ψ pi + μ   0 w i   + O( 2 ), i = 1, 2. (19) 
w i are constants that do not need to be defined as they will cancel later in the derivations (cf. Appendix A.4). Modes 1 and 2 are typically far from each other, so it makes sense to consider in a first approximation that the pendulums respond on a single mode. Hence, the pendulums' coordinates can be expressed as

ϕ = ζ i ψ i = ζ i ψ pi + ζ i μ   0 w i   + O( 2 ), i = 1 or 2. ( 20 
)
Introducing Eq. ( 20) in Eq. ( 17) and projecting on ψ i , one obtains the modal equation of mode i,

ζ i + n 2 pi ζ i = -Λmi fi (ζ i , ϑ), i = 1, 2. (21) 
Functions fi are described in Appendix A.4. They involve the modal constants Λmi , ki , bi , Λci , defined in Appendix B, which represent the modal mass, 280 stiffness, damping and linear coupling with the rotor, respectively. Note that Eqs. ( 21) make use of n 2 pi = ki / Λmi . fi (ζ i , ϑ) contain linear, quadratic and cubic terms in ζ i , and account for the damping and the external forcing.

Modal and physical solutions

The method of multiple scales [42] is used to find the solution of Eq. (21).

Two rotation scales are introduced, ϑ 0 = ϑ and ϑ 1 = ϑ, and the modal coordinate is expanded such that

ζ i (ϑ) = ζ i0 (ϑ 0 , ϑ 1 ) + ζ i1 (ϑ 0 , ϑ 1 ). ( 22 
)
As the excitation order n is close from n pi , it is convenient to define the detuning term σ as

n = n pi + σ. (23) 
σ > 0 and σ < 0 correspond to under-tuned and over-tuned double pendulums, respectively. Applying the method of multiple scales yields a first-order solution of the form

ζ i0 (ϑ 0 , ϑ 1 ) = u i (ϑ 1 ) cos (nϑ 0 -β i (ϑ 1 )) . (24) 
The modal amplitude u i and phase β i are governed by the system

   D 1 u i = f ui (u i , β i ), u i D 1 β i = f βi (u i , β i ), (25a) (25b) 
where D 1 (•) = ∂(•)/∂ϑ 1 . Functions f ui and f βi are given in Appendix F. They make use of the nonlinear coefficient

c i = c pi + c si -c ci + c ti . (26) 
c pi represents the nonlinearity coming from the rotation functions of pendu-285 lums 1 and 2, which can be seen as perturbations from linear rotation laws. It also accounts for the nonlinearity coming from the circular path of pendulum 1, which is seen as a perturbation of an epicycloidal path in the case of a CPVA [31]. c ci and c si are related to Coriolis effects and to the direct coupling between pendulums 1 and 2, respectively. c ti accounts for nonlinear couplings through 290 the rotor other than Coriolis effects. These definitions are chosen to identify the effect of the different sources of nonlinearity and to facilitate the comparison of the results obtained in this paper with results dealing with CPVAs [25].

The solutions sought are those at steady-state, meaning that the amplitudes and phases are invariant with ϑ such that

D 1 u i = D 1 β i = 0. ( 27 
)
The modal response is obtained by introducing the steady-state condition (27) in system (25) and solving for σ, T1 and β i . The solutions obtained are given in Appendix G. The stability of those solutions is obtained by evaluating the eigenvalues of the Jacobian of system

   D 1 u i = f ui (u i , β i ), D 1 β i = f * βi (u i , β i ), (28a) (28b) 
where f * βi = f βi /u i . The instabilities encountered are related to a jump of the 295 system's response, which is typical of Duffing oscillators [43].

The backbone curve of mode i is obtained by cancelling the damping and forcing in the forced order response (cf. Eq. (G.1a)), leading to

n i = n pi + Λ2 ci n pi µ 2 Λmi - c i 4 Λmi n pi u 2 i . ( 29 
)
n i is the resonance order of mode i and c i is seen to control the hardening/softening behaviour of this mode. It is of importance to note that the rotation coefficients α 13 and α 23 contribute only to c pi , which appears in c i (cf.
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Eq. ( 26)). Hence, one can choose these two rotation coefficients (or equivalently, choose c pi ) to modify the softening/hardening behaviour of the system. Thus, c pi can be seen as the nonlinear tuning parameter of the CDPVA.

The pendulums' responses are directly deduced from Eq. ( 20), leading to

ϕ 1 = a 1 cos(nϑ -ξ 1 ), ϕ 2 = a 2 cos(nϑ -ξ 2 ), (30a) (30b) 
where the amplitudes a 1 and a 2 and phases ξ 1 and ξ 2 are given by

a 1 = u i , a 2 = |χ i |u i , ξ 1 = β i , ξ 2 =    β i if χ i > 0, β + π if χ i < 0. (31) 
The rotor's response is obtained by injecting the pendulums' responses (30) in the rotor's equation (15), leading to

θ = h 1 cos(nϑ -ψ 1 ) + h 2 cos(2nϑ -ψ 2 ) + h 3 cos(3nϑ -ψ 3 ). ( 32 
)
Amplitudes h i and phases ψ i , i = 1, 2, 3, are given in Appendix G. θ contains only three harmonics due to the Taylor series up to cubic terms in ϕ 1 and ϕ 2 used in section 4.1, and because the pendulums' motion is harmonic at first order.

Case studies and design guidelines

The aim of this section is to compare the analytical results with numerical ones in order to validate the model and to provide design guidelines. The numerical solutions are obtained through a numerical integration of the equations of motion (4) using a Runge-Kutta algorithm. When the steady state is reached, the signals' amplitudes and phases are computed using a decomposition into Fourier series.

Typical nonlinear response of a CDPVA

The response of a CDPVA around modes 1 and 2 is given in Fig. much lower orders than predicted analytically. Indeed, the saddle-node bifur-325 cation was expected at n ≈ 1.923, but it is seen to be around n ≈ 1.500. Note that this saddle-node bifurcation makes the system jump from mode 2 to mode 1. This explains why the analytical results (which represent a motion on mode 2 only in the right-hand side of Fig. 6) and the numerical ones do not match for n < 1.5. The amplitude response of the rotor is given in Fig. 6(b) and (e).
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Again, it is well predicted by the analytical model. As shown in Fig. 6(c) and (f), the analytical model also allows to compute the phases of the pendulums and the rotor with a satisfying accuracy. Though the analytical model offer a useful overall prediction of the dynamics, its accuracy is obviously limited.

Several explanations for those limitations are provided below:

• To derive the simplified pendulums' equations (cf. section 4.1), Taylor series about 0 and up to cubic terms were used for ϕ 1 and ϕ 2 . However, the amplitudes in Fig. 6(a) are quite large so more terms should be kept in the Taylor series.

• In section 4.1, several parameters were assumed small to appear at order . In the case of Fig. 6, some parameters are not that small. For instance, much smaller values of µ are often considered [7,31,34].

• In section 4.2, the pendulums are assumed to respond on a single mode.

This assumption is relevant close from the resonances, but might be a source of errors as n departs from the resonance, especially if the two modes are close. This is visible in the right-hand side of Fig. 6 before the antiresonance, where the contribution of the two modes is significant.

• It is interesting to note that mode 2 is nonsimilar, meaning that the mode shape changes as the amplitude of motion increases [44]. This can be seen in Fig. 6(d) where the ratio a 2 /a 1 is clearly not constant. The fact that mode 1 is nonsimilar generates several inaccuracies in the derivation of the modal equations (cf. section 4.2) and the reconstruction of the physical response (cf. section 4.3).

• There are also limitations related to the use of the method of multiple scales itself as it only provides approximate solutions.

Figure 7 shows the response of higher and lower harmonics of the rotor's acceleration as a function of the excitation order around modes 1 (left) and 2

(right). The model tends to strongly overestimate the amplitude of the higher harmonics h 2 and h 3 . The same limitations as in Fig. 6 represent more accurately those higher harmonics it is mandatory to keep more terms in the Taylor series used in section 4.1. It is interesting to remark the resonance peaks around n 20 /2 in (e) and around 2n 10 in (f). These peaks are due to a superharmonic resonance of mode 2 and a subharmonic resonance of mode 1, respectively. The order at the maximum amplitude is slightly lower than n 20 /2 and 2n 10 because of the softening behaviour. The existence of those secondary resonances questions the possibility to filter-out a torque containing harmonics n and 2n with a CDPVA. Indeed, using linear theory, one would assume that modes 1 and 2 behave independently and respond at distinct orders, hence allowing for the filtering of two-harmonic torques by setting n p1 = n and n p2 = 2n p1 . However, Fig. 7 shows that modes 1 and 2 also respond at 2n 10 and n 20 /2, respectively. Thus, if 2n 10 ≈ n p2 and n 20 /2 ≈ n p1 , it is likely that antiresonances 1 and 2 be perturbed by modes 2 and 1, respectively. This is particularly true for the subharmonic resonance of mode 1 which causes h 1/2

to have a large amplitude. To investigate this in details, one should consider a torque of the form Tθ = T1 cos(nϑ)+ T2 cos(2nϑ) (as done in [45][46][47] for a CPVA)

and study secondary resonances (subharmonic resonances were investigated in [26,40,41,45,46,[48][49][50] for a CPVA), but this is out of the scope of this paper. 

Tuning for performance

As explained in section 1, avoiding jumps of the response and controlling the shifting of the antiresonances is crucial to perform efficient vibration reduction.

In this section, design guidelines allowing to avoid the jumps and to lock one of the antiresonances are derived.
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To track the antiresonance order we apply the procedure described in [22] to the case of a CDPVA. Neglecting the damping and considering an excitation order small than the resonance of mode i, one has cos β i = -1 (the situation cos β i = 1 could also occur in theory but was not observed for reasonable parameters). Using this in the expression of the rotor's first harmonic (G.2a) leads to

h 1 = T1 -μΛ ci n 2 u i + μn 2 c f i u 3 i 8 . (33) 
Moreover, performing a Taylor series of T1 in u i using Eq. (G.1b) (and neglecting the damping again) leads to

T1 = u i μΛ ci n 2 pi - Λmi n pi (8 Λci + 3c f i u 2 i )u i 4 Λ2 ci σ + 3c ti /4 -c i 8 Λci u 2 i + O(u 4 i ). ( 34 
)
For the three reasons listed thereafter, it is fair to assume that what is in the absolute value in Eq. ( 34) is positive until a jump of the response occurs. First, for small torques, u i is small and the antiresonance is very close from n pi . Hence, for small torques, the term μΛ ci n 2 pi dominates. Secondly, this term is positive for reasonable system parameters. Thirdly, T1 is monotonically increasing before a jump of the response is met. Hence, introducing Eq. (34) in Eq. ( 35) and ignoring terms of order (such that n ≈ n pi ) leads to

h 1 = - Λmi n pi (8 Λci + 3c f i u 2 i )u i 4 Λ2 ci σ + c ti -c i 8 Λci u 3 i . (35) 
It is not an issue that this expression be valid only up to a jump as jumps are to be avoided, otherwise they fix the maximum torque at which the system can operate. Because we neglected the damping, h 1 must be zero at the antiresonance. Hence, the antiresonance locus is obtained by solving h 1 = 0 for σ, leading to

n ARi = n pi + c ci -c pi -c si 16 Λmi n pi u 2 i + O(u 4 i ). (36) 
Thus, one can lock the antiresonance by setting the nonlinear tuning parameter c pi such that

c pi = c ci -c si . (37) 
Note that this is different from the condition leading to a straight backbone of the uncoupled double pendulum. Indeed, setting µ = 0 in Eq. ( 29) leads to

n i(uc) = n pi - c pi + c si 4 Λmi n pi u 2 i , (38) 
so that the rule leading to a tautochronic uncoupled double pendulum around mode i is

c pi = -c si . (39) 
Rule ( 37) is also different from the condition yielding a tautochronic coupled double pendulum. Indeed, the behaviour is tautochronic if the backbone of the coupled system ( 29) is a straight line, that is,

c pi = c ci -c si -c ti . (40) 
The interesting feature of condition ( 40) is to avoid the jumps of the response.

If c pi < c ci -c si -c ti , jumps occur at n > n i0 , which corresponds to orders larger than the operating point n pi . If c pi > c cic sic ti , a jump will eventually occur at the operating point. However, this is not an issue if the torque level at the jump is larger than the maximum torque to be filtered.

Figure 8 shows the order response of the rotor of two CDPVAs, one is tuned accordingly to the design rule (37) to lock n AR1 and the other one is not. This figure zooms around the first antiresonance and responses at several torque lev-395 els are represented so we can observe how n AR1 evolves with the forcing. As expected, the use of the design rule almost locks the antiresonance, hence allowing for an improved vibration reduction over the whole torque range. Indeed, for the CDPVA in Fig. 8(b), the antiresonance has only slightly shifted for T1 = 0.008, whereas n AR1 is already significantly lower than n p1 at T1 = 0.002 400 for the CDPVA in Fig. 8(a). Moreover, rule (37) hardens the behaviour of the response in the case presented here. This has the nice property of pushing the jump point to higher torque levels.

It is interesting to remark that at large amplitudes the rotor's response can loop around the antiresonance. Such a situation is presented in Appendix H. This 405 looping feature is highly detrimental as it renders the antiresonance unstable, hence preventing the CDPVA to achieve large vibration reduction. Note that the jump is predicted at T1 ≈ 0.017 by the analytical model. This inaccuracy can be understood from Fig. 8, where one sees that the antiresonance gets narrower as the torque level increases. Hence, a high accuracy is required to predict the response near the antiresonance for large torque levels. However, the accuracy of the model is limited for the reasons explained in section 5.1.

Fig. 9(b) shows the higher harmonics of the rotor's response for the CDPVA tuned accordingly to rule (37). The amplitude of harmonics 2 and 3 is well predicted by the analytical model before the jump. Clearly, the amplitude of these higher harmonics is not negligible in front of h 1 . This means that the CDPVA is efficient at reducing the vibrations at order n but causes issues at orders 2n and 3n. This is a known problem with CPVAs [21,25,51]. Table 2: Parameters of the CDPVA studied in this section.

µ

Conclusion

This paper deals with the use of CDPVAs to reduce the torsional vibrations of a rotating machine. In order to increase the accuracy of former CDPVA models, we took into account the rotation of the pendulums about their centre of mass. A linear analysis was carried out to compute the eigenmodes of the system. This allowed to derive the expression of the two tuning orders of the double pendulum, which correspond to the orders of the two antiresonances generated on the rotor. In addition, an efficient design procedure based on the linear response was proposed. This allows to quickly converge towards a CDPVA tuned at the desired order(s) and with a satisfactory performance.

Then, the dynamic response of the system and its stability were computed using a perturbation method, and the validity of this analytical model was verified through a comparison with numerical solutions. Because of nonlinearities, the resonance and antiresonance orders can increase/decrease with the amplitude of motion. In this paper, we derived new design guidelines that prevent the shifting of one of the antiresonances and limit jumps of the response, thus maximising the filtering over the whole torque range. These guidelines are based on a choice of nonlinear rotation laws that balances the other sources of nonlinearities in order to lock one of the antiresonances or to render the double pendulum tautochronic.

The efficiency of the design rule locking the antiresonance was confirmed with a torque sweep. We also showed that the nonlinearities lead to the generation of higher and lower harmonics, partly due to secondary resonances of the modes of the system. This should be investigated in the future as it might prevent the use of a CDPVA to filter out a torque made of two harmonics. Also of interest for future works is the pendulums' path. In the present study, both pendulums have constant length so they follow circular paths, but considering more general paths could prove useful in the tuning process. Finally, the present paper considers a CDPVA made of a single equivalent double pendulum. However, it is known from studies on CPVAs that systems made of several absorbers can be subjected to energy localisation. This should be investigated in the future.

Using the Euler-Lagrange equations together with the principle of virtual powers, one obtains the equations of motion

J r + I 1 + I 2 + (m 1 + m 2 ) r 2 + 2 1 + 2r 1 cos ϕ 1 + m 2 2 (2r cos (α 1 + ϕ 2 ) + 2 1 cos (α 1 -ϕ 1 + ϕ 2 ) + 2 ) θ + (I 1 + I 2 + m 2 2 2 )Γ 1 + (m 1 + m 2 ) 2 1 + r 1 cos ϕ 1 + m 2 r 2 Γ 1 cos (α 1 + ϕ 2 ) + m 2 1 2 (1 + Γ 1 ) cos (α 1 -ϕ 1 + ϕ 2 ) φ1 + I 2 Γ 2 + m 2 2 2 + m 2 r 2 cos (α 1 + ϕ 2 ) + m 2 1 2 cos (α 1 -ϕ 1 + ϕ 2 ) φ2 + m 2 1 2 dΓ 1 dϕ 1 φ2 1 cos (α 1 -ϕ 1 + ϕ 2 ) -m 2 1 2 ((Γ 1 -1) φ1 + φ2 ) (Γ 1 + 1) φ1 + φ2 + 2 θ sin (α 1 -ϕ 1 + ϕ 2 ) + m 2 r 2 dΓ 1 dϕ 1 φ2 1 cos (α 1 + ϕ 2 )
m 2 r 2 (Γ 1 φ1 + φ2 ) Γ 1 φ1 + φ2 + 2 θ sin (α 1 + ϕ 2 )

+ I 1 + I 2 + m 2 2 2 dΓ 1 dϕ 1 φ2 1 + I 2 dΓ 2 dϕ 2 φ2 2 -(m 1 + m 2 ) r 1 φ1 + 2 θ φ1 sin ϕ 1 + b r θ = T (ϑ), (A.3) [((I 1 + I 2 )Γ 1 + (m 1 + m 2 ) 2 1 + r 1 cos ϕ 1 + m 2 2 2 Γ 1 + m 2 r 2 Γ 1 cos (α 1 + ϕ 2 ) + m 2 1 2 (Γ 1 + 1) cos (α 1 -ϕ + ϕ 2 )] θ + I 1 + I 2 + m 2 2 2 Γ 2 1 + (m 1 + m 2 ) 2 1 + 2m 2 1 2 Γ 1 cos (α 1 -ϕ 1 + ϕ 2 ) φ1 + I 2 Γ 1 Γ 2 + m 2 2 2 Γ 1 + m 2 1 2 cos (α 1 -ϕ 1 + ϕ 2 ) φ2 + (m 1 + m 2 ) r 1 θ2 sin ϕ 1 + m 2 r 2 Γ 1 θ2 sin (α 1 + ϕ 2 ) -m 2 1 2 Γ 1 (Γ 1 -1) φ2 1 + 2Γ 1 φ1 φ2 -Γ 1 θ2 + φ2 + θ 2 sin (α 1 -ϕ 1 + ϕ 2 ) + m 2 1 2 dΓ 1 dϕ 1 φ2 1 cos (α 1 -ϕ 1 + ϕ 2 ) + I 1 + I 2 + m 2 2 2 Γ 1 dΓ 1 dϕ 1 φ2 1 + I 2 Γ 1 dΓ 2 dϕ 2 φ2 2 + b 1 φ1 = 0, (A.4) I 2 Γ 2 + m 2 2 2 + m 2 r 2 cos (α 1 + ϕ 2 ) + m 2 1 2 cos (α 1 -ϕ + ϕ 2 ) θ + I 2 Γ 1 Γ 2 + m 2 2 2 Γ 1 + m 2 1 2 cos (α 1 -ϕ 1 + ϕ 2 ) φ1 + I 2 Γ 2 2 + m 2 2 2 φ2 + m 2 r 2 θ2 sin (α 1 + ϕ 2 ) + m 2 1 2 φ1 + θ 2 sin (α 1 -ϕ 1 + ϕ 2 ) + I 2 Γ 2 + m 2 2 2 dΓ 1 dϕ 1 φ2 1 + I 2 Γ 2 dΓ 2 dϕ 2 φ2 2 + b 2 φ2 = 0, (A.5)
where Γ 1 (ϕ 1 ) and Γ 2 (ϕ 2 ) are rotation functions defined in Eq. (2). Equations The expression of the nonlinear coefficients introduced in section 4 is

g 1 = hν r (1 + µ 2 ), g a = hµ 2 ν 2 , g b = ν r g a , g c = (α 11 -1)g a , g d = (α 11 + 1)g a , g e = α 11 g a , g f = ν r α 11 g a , r 1 = 6h[(η 1 + µ 2 ν 2 2 η 2 + µ 2 ν 2 2 )α 11 + µ 2 ν 2 ]α 13 r 12a = 3hµ 2 ν 2 2 η 2 α 11 α23 , r 12b = 3hµ 2 ν 2 2 η 2 (1 + η 2 α 21 )α 13 , r 2 = 6hµ 2 ν 2 2 η 2 α 21 α23 , r g1a = 4(k 1 α 11 -g a )α 13 , r g1b = k 2 α13 , r g12 = 3k 2 α13 , (B.2)
and the expression of the modal parameters is

Λmi = Λ m1 + 2χ pi Λ c12 + χ 2 pi Λ m2 , ki = k 1 + 2χ pi k 12 + χ 2 pi k 2 , Λci = Λ c1 + χ pi Λ c2 , bi = b1 + χ 2 pi b2 , ri = r 1 + χ 4 pi r 2 , r12i = r 12a χ 3 pi + r 12b χ pi , rgi = r g1a + (r g1b + r g12 )χ pi , c f i = g 1 + g a (α 11 -1 + χ pi ) 2 (α 11 + 1 + χ pi ) + g b (α 11 + χ pi ) 3 , c pi = g1 + 4n 2 pi (r i + 2r 12i ) -6r gi c si = ga (α 11 -1 + χ pi ) 2 [(α 11 -1 + χ pi ) 2 -4n 2 pi (α 11 + χ pi )] + gb (α 11 + χ pi ) 4 , c ti = 4μ Λci n 2 pi c f i , c ci = 4μ Λmi ki n 2 pi , δ ni = Λ2 ci n pi 2 Λmi . (B.3)

Appendix C. Antiresonances of the rotor's response

The antiresonances of the rotor are computed from the conservative equations associated to system (5). These antiresonances are the solutions of det

     T1 -n 2 Λ c1 -n 2 Λ c2 0 k 1 -n 2 Λ m1 k 12 -n 2 Λ c12 0 k 12 -n 2 Λ c12 k 2 -n 2 Λ m2      = 0, (C.1)
which we can develop as

T1 det   k 1 -n 2 Λ m1 k 12 -n 2 Λ c12 k 12 -n 2 Λ c12 k 2 -n 2 Λ m2   = 0. (C.2)
The determinant to be computed is the same as that associated to the eigenvalue problem of the uncoupled system (6). Hence, the solutions of Eq. (C.2) are

n AR1 = n p1 , n AR2 = n p2 . (C.3)
It is fair to assume that the antiresonances of the non-conservative system are also given by Eq. (C.3) as damping in a CDPVA is typically desired to be as small as possible. reduces to

|θ|= R0 + i Ri . (D.3)
Moreover, it is fair to neglect the contribution of b0 as it has a very small influence on the response. Finally, we obtain

|h 2 1 n=npi = ( f0 m0 (n 2 pi -n 2 i ) + i fi m0 n 2 pi ) 2 + f 2 0 n 2 pi b2 i m2 0 m2 i (n i -n pi ) 2 (n i + n pi ) 2 + m2 0 n 2 pi b2 i . (D.4)
The rotor's amplitude with fixed pendulums is directly obtained from Eq. (5a) in which we set ϕ 1 = ϕ 2 = 0, leading to

h 1f = T1 1 + µ . (D.5)
G i can be deduced directly from Eqs. (D.4) and (D.5).

Appendix E. Relation between coefficient g 1 and the path nonlinearity of a CPVA

In the special case where pendulum 2 is massless, i.e. µ 2 = η 2 = 0, g 1 reduces to

g 1 = ν r (1 + ν r ) 2 . (E.1)
When studying a CPVA, the path is often controlled through the path function [22] x

(s) = 1 -ν r s 2 + x [4] s 4 , (E.2)
where s is the dimensionless curvilinear abscissa of the pendulum along its path and x [4] is the first-order nonlinear coefficient of the path. s is usually defined as [22] 

s = S r + 1 . (E.3)
Moreover, in the case of a circular path, one has [14,31] 

S = 1 ϕ 1 ⇒ ϕ 1 s = r + 1 1 = (1 + ν r ), x [4] = ν r (1 + ν r ) 2 12 
.

(E.4)

Hence, one has the relation

g 1 = x [4] 12(1 + ν r ) 4 , (E.5)
where the factor (1 + ν r ) 4 comes from the fact that the pendulum's motion is 655 written in terms of s or ϕ 1 and the factor 12 simply depends on the way g 1 and

x [4] are defined. Thus, g 1 can be thought of as the equivalent of x [4] .

Appendix F. Application of the method of multiple scales

The system obtained through the method of multiple scales is given by Eq. ( 25) where functions f ui and f βi are

f ui (u i , β i ) = -8 bi n pi u i -(8 Λci -c f i u 2 i ) T1 sin β i 16 Λmi n pi f βi (u i , β i ) = σu i -μδ ni u i + c i u 3 i -(8 Λci -3c f i u 2 i ) T1 cos β i 16 Λmi n pi . (F.1a) (F.1b)
Constants c i , c f i and δ ni are defined in Eq. ( 26) and Appendix B, respectively.

Appendix G. Steady state solutions 660

The amplitude and phase response of mode i are given by

σ = μδ ni - c i u 2 i 16 Λmi n pi ± 8 Λci -3c f i u 2 i 16 Λmi n pi T 2 1 u 2 i - 64 b2 i n 2 pi (8 Λci -c f i u 2 i ) 2 , T 2 1 = u 2 i    16 Λmi n pi (σ -μδ ni ) + c i u 2 i 2 (8 Λci -3c f i u 2 i ) 2 + 64 b2 i n 2 pi (8 Λci -c f i u 2 i ) 2    , tan β i = -8 bi n pi 16 Λmi n pi (σ -μδ ni ) + c i u 2 i 8 Λci -3c f i u 2 i 8 Λci -c f i u 2 i . (G.1a) (G.1b) (G.1c)
When the pendulums respond on mode i, the amplitudes and phases of the three first harmonics of the rotor's acceleration are given by 

h 2 1 = T 2 1 + µ T1 n 2 u i cos β i 2 Λci - c f i 4 u 2 i + µ 2 4 n 4 u 2 i 2 Λci - c f i 4 u 2 i 2 tan ψ 1 = µn 2 u i sin β i (8 Λci -c f i u 2 i ) µn 2 u i cos β i (8 Λci -c f i u 2 i ) + 8 T1 , h 2 = µn pi ki u 2 i , tan ψ 2 = -cos(2β i ) sin(2β i ) , h 3 = 3 |c ti | 32 Λci u 3 i , tan ψ 3 = -sin(3β i ) -cos(3β i ) . (G.2a) (G.2b) (G.2c) (G.2d) (G.2e) (G.

Stability of the unison response of centrifugal double pendulums

This chapter is made of a paper about to be submitted to the Journal of Theoretical, Computational and Applied Mechanics [153]. It focuses on the stability of the response of a CDPVA made of several double pendulums. We particularly discuss the instability of the unison response that causes a localised solution to appear. Hence, it is the logical continuity of chapter 9 where the nonlinear response of a CDPVA was derived but the instabilities related to the presence of multiple double pendulums were ignored.

The context of this study, described in section 1, repeats information from chapters 1 and 2. Hence, the reader might want to skip this section if he already read these chapters. Moreover, sections 2 to 4.1 are very similar to information provided in chapter 9. They present the modelling, a linear analysis and the derivation of physical simplified equations for a CDPVA made of two double pendulums, whereas a single double pendulum was considered in chapter 9. Hence, the reader might want to go quickly over these sections if he already read chapter 9.

The novelty of the article starts in section 4.2, where we consider that the system might respond on two modes, whereas only a single-mode response was investigated in chapter 9. The modal and physical solutions are computed in section 4.3 and their stability is assessed in section 4.4 using the method of multiple scales (cf. section 2.5.2.1). The results are applied to case studies in section 5 and verified through comparisons with numerical resolutions of the system's dynamics. Numerical investigations showed the existence of quasi-periodic and even chaotic solutions. Moreover, it is verified that the analytical model, though derived considering only two double pendulums, allows to predict bifurcations towards localised solutions no matter the number of pendulums considered. A design guideline allowing to avoid instabilities is proposed and represented in the parameter space with other guidelines from chapter 9. This allows to identify the ideal tuning of a CDPVA.

On the dynamic stability of centrifugal double pendulum vibration absorbers

Introduction

In the frame of reducing polluting emissions and fuel consumption of vehicles using thermal engines, automotive manufacturers try to reduce the cylinder Email addresses: vincent.mahe@ensam.eu (V. Mahé), alexandre.renault@valeo.com (A. Renault), aurelien.grolet@ensam.eu (A. Grolet), herve.mahe@valeo.com (H. Mahé), olivier.thomas@ensam.eu (O. to an order rather than a frequency. This allows the antiresonance frequency to shift linearly with the rotational velocity so that the vibrations are reduced over the whole engine speed range.

CDPVAs were first investigated by R. W. Zdanowich and T. S. Wilson [4],

who showed that they generate two rotor antiresonances. Later, J.-G. Duh and M. Wenyong [5] presented experimental evidence of the filtering effect of CDPVAs at two distinct orders. It is important to be aware that CDPVAs exhibit nonlinearities of different natures: geometric nonlinearities due to the large amplitude of motion of the pendulums and their coupling, and inertial nonlinearities, for instance due to Coriolis effects. J.-G. Duh and M. Weny-ong [5] showed that overtuning the double pendulums increases the efficiency at large excitation levels due to the softening behaviour of their CDPVA design.

Recently, V. Manchi and C. Sujatha [6] exposed the advantages of CDPVAs over CPVAs, proposed an analytical approach to approximate the system's response, and showed experimentally the vibration reduction effect of CDPVAs. V. Mahe et al. extended these investigations by accounting for the rotational inertia of the pendulums about their center of mass, allowing the model to better represent real systems [7]. An original analytical approach was presented and design guidelines allowing to maximise the efficiency of the CDPVA were derived. To the author's knowledge, these are the only four studies dealing with CDPVAs.

However, many studies were carried out on CPVAs, whose challenging design issues are close from those of CDPVAs. One of the first research topics on CP-VAs was the shape of the pendulums' path [8][9][10][11], as circular paths were known to cause nonlinear jumps of the system's response. Among the other main issues investigated are the localisation of the pendulums' response [12][13][14][15][16][17][18][19][20][21][22][23][24][25], the shift of the antiresonance [8,24,[26][27][28][29] and the generation of higher rotor harmonics [24,[30][31][32][33][34][35]. Though most studies on CPVAs consider purely translated pendulums, some works, mostly recent ones, also account for their rotation about their center of mass [4, 21-25, 28, 36-53]. This increased interest for rocking absorbers is probably due to pioneer results from by J. Mayet et al. showing that the rotational motion can significantly improve the efficiency of a CPVA [41].

The motivation of this paper is to increase the knowledge on CDPVAs by investigating the instabilities of the unison response related to symmetry-breaking bifurcations. To the authors' knowledge, it is the first study of the localisation phenomenon in CDPVAs. An original method to study efficiently this phenomenon is presented, and the analytical results are compared with numerical resolutions of the system's dynamics. The analytical approach is close from that used in [7] except that N > 1 double pendulums are considered, so that localised solutions can exist. The procedure to assess the stability of the unison solution is similar to that used in [25] and [52], which focused on the stability of the localised and subharmonic responses of two-pendulums CPVAs, respectively.

This paper is organised as follows. Section 2 describes the modelling of the CDPVA and a linear analysis is detailed in 3. The analytical model describing the nonlinear response of a CDPVA and its stability is derived in section 4. Case studies and guidelines to avoid localisation and achieve maximum performance are presented in section 5. This paper ends with a conclusion in section 6. The system studied is shown in Fig. 1. A rotor of inertia J r rotates about its centre O. The frame R r (O, x r , y r , z 0 ) is attached to the rotor at point O.

Modelling

The rotation of this frame with respect to the Galilean frame R 0 (O, x 0 , y 0 , z 0 ) is ϑ(t) = Ωt + θ(t) where t is the time, Ω is the mean rotational velocity and θ(t) corresponds to the fluctuating part of the rotation. A torque T (ϑ) = T 0 + T θ (ϑ) is applied to the rotor where T 0 is its constant part and T θ (ϑ) is periodic. At equilibrium, T 0 = b r Ω where b r is the linear viscous damping coefficient of the rotor, such that the constant torque balances with the damping to set the mean rotational speed Ω.

N double pendulums are attached to the rotor, one at point at point A 1 the other at A 2 . For the i th double pendulum, the first pendulum is attached at a distance OA i = r from the rotor's center. It has length A i G 1i = 1 , mass m 1 and inertia I 1 about its center of mass G 1i . The position of G 1i with respect to R r is located through angle ϕ 1i (t). The frame R p1i (G 1i , x p1i , y p1i , z 0 ) is attached to pendulum 1i at point G 1i . Its rotation with respect to R r is α 1 (ϕ 1i ). The second pendulum is attached to the first one at point G 1i . It has length G 1i G 2i = 2 , mass m 2 and inertia I 2 about its center of mass G 2i .

The position of G 2i with respect to R p1i is located through angle ϕ 2i (t). The frame R p2i (G 2i , x p2i , y p2i , z 0 ) is attached to pendulum 2 at point G 2i . Its rotation with respect to R p1i is α 2 (ϕ 2i ). As for the rotor, equivalent linear viscous damping coefficients b 1 and b 2 are used to model the damping between the rotor and pendulums 1i and between pendulums 1i and pendulums 2i, respectively.

The dimensional equations of motion are derived in [7] in the case of a single double pendulum. To write these equations in a dimensionless form, the following quantities are introduced:

y = θ Ω = 1 + θ Ω , µ = N m 1 (r + 1 ) 2 + m 2 (r + 1 + 2 ) 2 J r + N (I 1 + I 2 ) , η 1 = I 1 m 1 2 1 , η 2 = I 2 m 2 2 2 , µ 2 = m 2 m 1 , ν r = r 1 , ν 2 = 2 1 , h = m 1 2 1 m 1 (r + 2 1 ) + m 2 (r + 1 + 2 ) 2 = 1 (ν r + 1) 2 + µ 2 (ν r + 1 + ν 2 ) 2 , br = b r (J r + N (I 1 + I 2 ))Ω , b1 = h b 1 m 1 2 1 Ω , b2 = h b 2 m 1 2 1 Ω , T (ϑ) = T0 + Tθ (ϑ) = T (ϑ) (J r + N (I 1 + I 2 ))Ω 2 , Γ 1 (ϕ 1i ) = dα 1 (ϕ 1i ) dϕ 1i , Γ 2 (ϕ 2i ) = dα 2 (ϕ 2i ) dϕ 2i , (1) 
where (•) = ∂(•)/∂t. y(t), ϕ 1i (t) and ϕ 2i (t) are the 2N + 1 degree-of-freedom of the system. y corresponds to the dimensionless rotational velocity of the rotor.

µ, η 1 , η 2 and h are inertia ratios. µ 2 is the mass ratio between pendulums 1i and 2i. ν r and ν 2 are dimensionless lengths associated to r and 2 , respectively. br , b1 and b2 are non-dimensional damping constants and T (ϑ) is the non-dimensional torque applied on the rotor. Γ 1 and Γ 2 are rotation functions. It is convenient to define these rotation functions as polynomials such that

α 1 (ϕ 1i ) = α 11 ϕ 1i + α 13 ϕ 3 1i ⇒ Γ 1 (ϕ 1i ) = α 11 + 3α 13 ϕ 2 1i , α 2 (ϕ 2i ) = α 21 ϕ 2i + α 23 ϕ 3 2i ⇒ Γ 2 (ϕ 2i ) = α 21 + 3α 23 ϕ 2 2i . (2a) (2b) 
α 1 (ϕ 1i ) and α 2 (ϕ 2i ) are chosen to be antisymmetric with respect to ϕ 1i and ϕ 2i based on the experience that, for practical reasons, rotation functions of CPVAs are antisymmetric. α 11 and α 21 are linear rotation coefficients involved in the 100 linear response of the system, while α 13 and α 23 will contribute to the nonlinear behaviour of the CDPVA (cf. section 4.3).

In order to give T (ϑ) the meaning of an external forcing term, we replace the independent variable t by the rotor's position ϑ [54], which can be seen as a non-dimensional time. Using the chain rule, one can show that

(•) = Ωy(•) , ( •) = Ω 2 yy (•) + Ω 2 y 2 (•) , (3) 
where (•) = ∂(•)/∂ϑ (the details can be found in [52]). Hence, the dimensionless rotor's acceleration is now θ/Ω 2 = ẏ/Ω = yy . Using the dimensionless quantities (1) and the chain rule (3), one can write the equations of motion as M (q)q + Cq + K(q)q + f nl (q, q , q ) = f (t).

q = [y, ϕ 11 , . . . , ϕ 1N , ϕ 21 , . . . , ϕ 2N ] is the vector containing the degree-of-freedom ( indicates the transpose). M (q), C, K(q) represent the mass, damping and 105 stiffness matrices, respectively. f nl (q, q , q ) and f (t) are vectors containing nonlinear inertial terms and forcing terms, respectively. In the system of three equations generated by Eq. ( 4), the first governs the motion of y, the next N ones govern the ϕ 1i and the last N equations govern the ϕ 2i . These 2N + 1 dimensionless equations are given in Appendix A.

From now on, it is assumed that the fluctuating torque applied on the rotor contains only one harmonic whose non-dimensional form is Tθ (ϑ) = T1 cos(nϑ),

where n is the excitation order. For a car engine, n corresponds to the number of strikes per revolution of the crankshaft.

Linear analysis

This section presents a linear analysis of the CDPVA. First of all, one can use Eq. ( 3) to show that, at first order, 1 + θ ≈ y and θ ≈ yy ≈ y (the demonstration can be found in [52]). Hence, it is possible to represent the motion of the rotor with position θ instead of velocity y. This way, all the degree-offreedom of the system are positions, which facilitates the representation of the mode shapes. Using θ instead of y and the balance between the constant torque and the damping br = T0 (cf. section 2), one can linearise the free, conservative equations associated to Eq. ( 4), leading to

(1 + µ)θ + µ N N i=1 [Λ c1 ϕ 1i + Λ c2 ϕ 2i ] = 0, Λ c1 θ + Λ m1 ϕ 1i + Λ c12 ϕ 2i + k 1 ϕ 1i + k 12 ϕ 2i = 0, i = 1, ..., N, Λ c2 θ + Λ c12 ϕ 1i + Λ m2 ϕ 2i + k 12 ϕ 1i + k 2 ϕ 2i = 0, i = 1, ..., N. (5a) (5b) (5c) 
Λ m1 and Λ m2 are constants representing the equivalent mass of pendulums 1i and 2i, respectively. Similarly, k 1 and k 2 represent their equivalent stiffness.

Λ c1 and Λ c2 represent the inertial coupling between a double pendulum and the rotor. Λ c12 and k 12 represent the inertial and non-inertial couplings between pendulums 1i and 2i. The expression of these constants in terms of the system parameters is given in Appendix B.

In order to compute the eigenmodes of the system, it is convenient to rewrite system (5) as

θ = - µ N (1 + µ) N i=1 [Λ c1 ϕ 1i + Λ c2 ϕ 2i ] , - µ N (1 + µ) N j=1 Λ 2 c1 ϕ 1j + Λ c1 Λ c2 ϕ 2j +Λ m1 ϕ 1i + Λ c12 ϕ 2i + k 1 ϕ 1i + k 12 ϕ 2i = 0, i = 1, ..., N, - µ N (1 + µ) N j=1 Λ c1 Λ c2 ϕ 1j + Λ 2 c2 ϕ 2j +Λ c12 ϕ 1i + Λ m2 ϕ 2i + k 12 ϕ 1i + k 2 ϕ 2i = 0, i = 1, ..., N. (6a) (6b) (6c) 
This way, one can use Eqs. (6b) and (6c), which are independent from θ, to compute "reduced" eigenmodes, i.e. eigenmodes where the mode shape contains 125 only the pendulums' components. In a second step, Eq. (6a) can be used to compute the "full" eigenmodes, including the mode shape's component on θ. 

pi ) and (n pi , ψ

pi ) are degenerated as they have the same eigenorder 1 n pi . The expression of n pi and the modal components χ pi are given in Appendix C.

The five modes of the coupled system are given by

φ 0 = [1, 0, 0, 0, 0] , n 00 = 0, φ (o) i = [0, 1, -1, χ pi , -χ pi ] , n (o) i0 = n pi , φ (u) i = [ i , 1, 1, χ i , χ i ] , n (u) i0 > n pi , i = 1, 2, ( 8 
)
1 An eigenorder can be seen as a dimensionless eigenfrequency. 

i ), and these modes are the same as the uncoupled phase-opposition modes, except for the presence of a null rotor's component. As for CPVAs, one could expect these phase-opposition modes to become degenerated if a CDPVA with more than two double pendulums is considered [23].

(n

(u) i0 , φ (u) 
i ) are modes for which the two double pendulums move in unison. To filter-out a fluctuating torque, one can set n pi ≈ n to generate and antiresonance on the rotor at n ARi ≈ n using the unison mode i.

The linear forced response of a CDPVA can be computed from the linear equations associated to Eq. ( 4), which yields solutions of the form

θ = h 1 cos(nϑ -ψ 1 ), ϕ 1i = a 1 cos(nϑ -ξ 1 ), ϕ 2i = a 2 cos(nϑ -ξ 2 ), i = 1, ..., N. (9) 
Such a response is illustrated in Fig. 3. Because the CDPVA has two tuning orders, there are two antiresonances on the rotor's forced response, n AR1 = n p1 and n AR2 = n p2 . Note that in practice, the excitation order is fixed such that n is a constant 150 and the CDPVA is tuned close to n. Mistuning can exist, either intentionally or because of material imperfections. Varying the excitation order, as in Fig. 3, is similar to introducing mistuning and is therefore relevant for studying the effect of mistuning on the system's response [20]. Table 1: Parameters of the CDPVA studied in this section.

a 1 a 2 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 n -1 0 1 ψ 1 , ξ 1 , ξ 2 [π-rad] (c) ψ 1 ξ 1 ξ 2
µ η 1 η 2 µ 2 ν r ν 2 α
velocity [52]. Introducing the scaled parameters (11) in Eq. ( 4) and retaining only terms of order 0 and , one can express the rotor's acceleration in terms of the pendulums' motion and uncouple the pendulums' equations from the rotor's dynamics, similarly as for CPVAs [15]. Moreover, to solve the pendulums' equations, it is necessary that nonlinear terms appear at least at order . However, with the current scaling, only two sources of nonlinearities appear at order .

The first ones are those related to the indirect coupling between the pendulums through the rotor appear at order (because they involve μ). The second ones are those related to the nonlinear part of the rotation laws (because they involve α13 and α23 ). In order that the nonlinearities related to the direct coupling between the pendulums and to the circular shape of their path appear at order , further scaling is required. This is presented in Appendix A. Now that all the nonlinear terms appear at order , on can use Taylor series in ϕ 1i and ϕ 2i to obtain the simplified equations θ = f θ (ϕ, ϑ),

Λ m1 ϕ 1i + Λ c12 ϕ 2i + k 1 ϕ 1i + k 12 ϕ 2i = -f p1 (ϕ, ϑ), i = 1, ..., N, Λ c12 ϕ 1i + Λ m2 ϕ 2i + k 12 ϕ 1i + k 2 ϕ 2i = -f p2 (ϕ, ϑ), i = 1, ..., N. (12a) (12b) (12c) 
The simplified Eqs. (12a), (12b) and (12c) govern the motion of the rotor, pendulums 1 and pendulums 2, respectively. ϕ = [ϕ 11 , ..., ϕ 1N , ϕ 21 , ..., ϕ 2N ] is the vector containing the pendulums' coordinates. Functions f θ (ϕ, ϑ), f p1i (ϕ, ϑ)

and f p2i (ϕ, ϑ), described in Appendix A, contain linear, quadratic and cubic 170 terms in ϕ 1j and ϕ 2j , j = 1, ..., N , and the external torque. Note that these functions involve the derivatives ϕ and ϕ , but this is not indicated explicitly for the sake of readability. As Eqs. (12b) and (12c) do not involve θ, one can solve them to obtain the ϕ 1i and ϕ 2i , and inject the results in Eq. (12a) to retrieve the rotor's acceleration. However, Eqs. (12b) and (12c) are linearly 175 coupled, which complicates their solving. Hence, it is convenient to project them on the linear modes so as to obtain linearly uncoupled modal equations which are more easily solvable. This is presented in the next section.

Simplified modal equations

In order to derive the simplified modal equations, Eqs. (12b) and (12c) must first be written in matrix form using the vector of unknowns ϕ. This matrix equation takes the form

M p ϕ + K p ϕ = -f p (ϕ, ϑ). (13) 
Then, we can use a modal expansion of ϕ and project the matrix equation on the linear modes to obtain the modal equations. In this paper, we will look for the response near the tuning order n pi , i = 1 or 2, and n p1 is relatively far from n p2 . Thus, it is relevant to keep only the i th phase-opposition and unison modes in the modal expansion as the contribution of the other modes to the system's response is negligible. Hence, we can use the truncated modal expansion The localisation phenomenon investigated in this paper is due to a 1:1 internal resonance [57] between the i th phase-opposition and unison modes [25], which is another reason making the modal expansion (14) relevant. Nevertheless, it 185 must be noted that if n p2 ≈ 2n p1 , secondary resonances of the modes can lead to complex responses that are not captured with the truncated modal expansion (14) [7,52,53].

ϕ = ρ i ψ (o) i + ζ i ψ (u) i (14) where ψ (o) 
As higher powers of will be neglected in the modal equations, one can use the Taylor series of the modal component χ i (cf. section 3),

χ i = χ pi + μw i + O( 2 ), i = 1, 2, (15) 
in order to write the reduced mode shapes ψ

(u) i as ψ (u) i ≈ ψ (u) pi + μ[0, 0, w i , w i ] , i = 1, 2. ( 16 
)
w i are constants that do not need to be defined as they will cancel later in the 190 derivations (cf. Appendix A.3).

Introducing the modal expansion (14) in the matrix equation (13), projecting on the i th phase-opposition and unison modes and using the approximation ( 16), one obtains the modal equations, 

ρ i + n 2 pi ρ i = -Λmi f (o) i (ρ i , ζ i , ϑ), i = 1, 2,
ζ i + n 2 pi ζ i = -Λmi f (u) i (ρ i , ζ i , ϑ), i = 1, 2, (17a) (17b) 

Modal and physical solutions

The method of multiple scales [56] is used to find the solution of Eqs. (17a) and (17b). Two rotation scales are introduced, ϑ 0 = ϑ and ϑ 1 = ϑ, and the modal coordinates are expanded such that ρ i (ϑ) = ρ i0 (ϑ 0 , ϑ 1 ) + ρ i1 (ϑ 0 , ϑ 1 ),

ζ i (ϑ) = ζ i0 (ϑ 0 , ϑ 1 ) + ζ i1 (ϑ 0 , ϑ 1 ). (18a) (18b)
As the excitation order n is close from n pi , it is convenient to define the detuning term σ as

n = n pi + σ. ( 19 
)
σ > 0 and σ < 0 correspond to under-tuned and over-tuned double pendulums, respectively. Applying the method of multiple scales yields first-order solutions of the form

ρ i0 (ϑ 0 , ϑ 1 ) = v i (ϑ 1 ) cos (nϑ 0 -φ i (ϑ 1 )) , ζ i0 (ϑ 0 , ϑ 1 ) = u i (ϑ 1 ) cos (nϑ 0 -β i (ϑ 1 )) . (20a) (20b) 
The modal amplitudes v i , u i and phases φ i , β i are governed by the system

                 D 1 v i = f vi (u i , β i ), v i D 1 φ i = f φi (u i , β i ), D 1 u i = f ui (u i , β i ), u i D 1 β i = f βi (u i , β i ), (21a) (21b) (21c) (21d) 
where D 1 (•) = ∂(•)/∂ϑ 1 and u i = [v i , u i ] and β i = [φ i , β i ] are vectors containing the modal amplitudes and phases, respectively. Functions f vi , f ui , f φi and f βi are given in Appendix D. They make use of the nonlinear coefficient

c i = c pi + c si -c ci + c ti . (22) 
c pi represents the nonlinearity coming from the rotation functions of pendulums 1 and 2, which can be seen as perturbations from linear rotation laws. It also accounts for the nonlinearity coming from the circular path of pendulums 1, which is seen as a perturbation of an epicycloidal path in the case of a CPVA [14]. c ci and c si are related to Coriolis effects and to the direct coupling between pendulums 1 and 2, respectively. c ti accounts for nonlinear couplings through the rotor other than Coriolis effects. These definitions are chosen to identify the effect of the different sources of nonlinearity and to facilitate the comparison of the results obtained in this paper with results dealing with CP-VAs [24]. Moreover, it is of importance to note that the rotation coefficients α 13 and α 23 contribute only to c pi , which appears in c i (cf. Eq. ( 22)). Hence, one can choose these two rotation coefficients (or equivalently, choose c pi ) to modify the softening/hardening behaviour of the system. Thus, c pi can be seen as the nonlinear tuning parameter of the CDPVA. The functions involved in system (21) also make use of the nonlinear coefficient c mi , which is exclusively related to the nonlinear modal coupling.

The steady-state solution for the i th unison mode was derived in [7] and can also be computed from Eqs. (21c) and (21d) by setting v i = 0 and enforcing the steady-state condition D 1 u i = D 1 β i = 0. These solutions are given in Appendix E. The pendulums' responses at unison are directly deduced from Eq. ( 14), leading to

ϕ 11 = ϕ 12 = a 1 cos(nϑ -ξ 1 )
,

ϕ 21 = ϕ 22 = a 2 cos(nϑ -ξ 2 ), (23a) (23b) 
where the amplitudes a 1 and a 2 and phases ξ 1 and ξ 2 are given by

a 1 = u i , a 2 = |χ i |u i , ξ 1 = β i , ξ 2 =    β i if χ i > 0, β + π if χ i < 0. ( 24 
)
The rotor's response is obtained by injecting the pendulums' responses (23) in the rotor's equation (12a), leading to

θ = h 1 cos(nϑ -ψ 1 ) + h 2 cos(2nϑ -ψ 2 ) + h 3 cos(3nϑ -ψ 3 ). (25) 
Amplitudes h i and phases ψ i , i = 1, 2, 3, are given in Appendix E.

Stability of the response on the unison mode

It is not possible to assess the stability of the i th unison mode using directly the system of polar coordinates (21) as this would lead to a singularity because of v i = 0. Hence, as in [52,55], we use a change from polar to Cartesian coordinates. To this aim, the new variables

p 1i = v i cos φ i , q 1i = v i sin φ i , p 2i = u i cos β i , q 2i = u i sin β i (26) 
are defined. (p 1i , q 1i ) and (p 2i , q 2i ) are the Cartesian coordinates of the i th phase-opposition and unison modes, respectively. Using these new coordinates, system (21) can be rewritten under the form

                 D 1 p 1i = f p1i (p i , q i ), D 1 q 1i = f q1i (p i , q i ), D 1 p 2i = f p2i (p i , q i ), D 1 q 2i = f q2i (p i , q i ). (27a) (27b) (27c) (27d) 
p i = [p 1i , p 2i ] and q i = [q 1i , q 2i ] are vectors containing the Cartesian coordinates. f p1i , f q1i , f p2i and f q2i are functions given in Appendix D. The Jacobian of system ( 27) evaluated on the i th unison solution has the special form

J i =   A i 0 0 B i   , A i =   ∂fp 1i ∂p1i ∂fp 1i ∂q1i ∂fq 1i ∂p1i ∂fq 1i ∂q1i   , B i =   ∂fp 2i ∂p2i ∂fp 2i ∂q2i ∂fq 2i ∂p2i ∂fq 2i ∂q2i   , (28) 
so that the eigenvalues of J i are the eigenvalues of A i and B i . Instabilities occur when the real part of one of the eigenvalues becomes positive. As J i is evaluated on the i th unison mode, A i represents the effect of a perturbation of the phase-opposition mode one the unison one while B i represents the effect of a perturbation of the unison mode on itself. Hence, instabilities related to B i indicate saddle-node bifurcations that cause jumps of the response. This instability is typical of Duffing oscillators [58]. On the other hand, instabilities related to A i indicate pitchfork bifurcations leading to a coupled-mode solution, which causes localisation [25]. The trace of A i and B i is

trace(A i ) = trace(B i ) = - bi Λ mi < 0. ( 29 
)
As it is negative, the sign of the real part of the eigenvalues is given by the sign of the determinants of A i and B i . More specifically, the unison response is sub-220 jected to localisation if det(A i ) < 0 and to jumps if det(B i ) < 0. The expression of these determinants is given in Appendix F.1. The limits of the unstable zones describe bifurcation curves, that is, curves describing all the possible bifurcation points. By computing det(A i ) = 0, one obtains the bifurcation curve n pfi , which describes the pitchfork bifurcations. Similarly, computing det(B i ) = 0 225 leads to the bifurcation curve n sni , describing the saddle-node bifurcations. The expression of these curves is given in Appendix F.2.

Case studies and design guidelines

The aim of this section is to compare the analytical results with numerical ones in order to validate the model and to provide design guidelines. The numer-230 ical solutions are obtained through a numerical integration of the equations of motion (4) using a Runge-Kutta algorithm. When the steady state is reached, the signals' amplitudes and phases are computed using a decomposition into Fourier series. The pitchfork bifurcation at n ≈ 1.0007, which leads to a localised solution, is very well predicted by the model. On the first part of the localised solution, the pendulums oscillate with approximately the same amplitude but this amplitude is larger than that of the unison solution. Then, at n ≈ 1.0043, there is a jump of the response of pendulums 12 and 22. This jump is probably due to a looping of the response, as observed in [25] for a CPVA. This could be investigated in more details using continuation methods such as MANLAB [59] CPVAs [19,25,61]. In practice the pendulums' path are not infinite, so the pendulums' amplitudes are physically limited, usually by means of stoppers. This is the true drawback of localisation: the amplitude of one or more pendulums is larger than that predicted by the unison response, so it will reach its 270 maximum amplitude for smaller torque levels. This limits the torque capacity of the system, just like for CPVAs [24]. In this section, only responses around unison mode 1 are presented. There are several reasons for this. Firstly, with the case study considered here but localisation can not be captured with time integrations around unison mode 2.

N
Secondly, the construction of the model is exactly the same for responses around unison modes 1 and 2. Hence, if the analytical approach is validated for one mode it means that it is also correct for the other one. This being said, the accuracy of the model is unlikely to be the same for the two modes, as already seen with CDPVAs containing a single double pendulum [7].

Extension of the model to CDPVAs with N > 2 double pendulums

The analytical model is constructed with the assumption that the CDPVA contains N = 2 double pendulums. In the case where it contains N > 2 double pendulums, the phase-opposition modes become N -1-degenerated, just like for CPVAs containing N > 2 pendulums [53]. Hence, to assess the stability of the i th unison mode, one should look for its interaction with the N -1 degenerated phase-opposition modes whose eigenorder is n pi . However, as these N -1 modes are all in 1:1:...:1 internal resonance, the unison mode could interact with any of those modes or combinations of them. Thus, it is likely that the pitchfork bifurcation leading to a localised solution is the same for any N > 2. This is verified below for N = 3. 

Avoiding localisation

Now that the localisation was observed and its drawbacks exposed, it could be interesting to know how to avoid it. This is done in this section.

One can obtain an approximate expression of the bifurcation curve related to localisation by ignoring damping and using Taylor series of n pfi in u i . This leads to

n pfi ≈ n pi + -2(c pi + c si + 2c mi ) ± |c pi + c si + 6c mi -c ci | 16 Λmi n pi u 2 i . (30) 
Depending whether n pi increases or decreases with u i , one can know whether the unstable zone leading to localisation is located at n < n pi , n > n pi or both.

There are three different cases to consider:

1. If sign [-2(c pi + c si + 2c mi ) + |c pi + c si + 6c mi -c ci |] < 0, then localisa-
tion occurs for orders smaller than the tuning order. Hence, localisation is avoided if n ≥ n pi . It is relevant to include n pi is the range avoiding localisation as damping pushes the unstable zone away from n pi . This can be seen in Fig. 4 where the localisation zone starts at an order slightly larger than n pi . The three cases described above are represented in Fig. 8. First of all, the approximated version of n pf1 allows for a satisfactory description of the unstable zones. In (a) and (c), the localisation can be avoided even for n = n p1 . Small linear mistuning can be used to increase the robustness of the system in front 325 of undesired mistuning, coming for instance from manufacturing imperfections.

However, in case (b), localisation occurs at n = n p1 , so mistuning has to be used. The nonlinear tuning chosen in this case (α 13 = 0.0417) is the tuning for tautochronic uncoupled pendulums (i.e. tautochronic pendulums when the rotor spins at a constant speed). Case (c) seems to depict the best situation 330 as it allows to avoid both kinds of instabilities. However, it might not be the preferred one in practice due to the shifting of the antiresonance limiting the efficiency of the vibration reduction. This shifting was studied in [7] and its relation with the avoidance of the instabilities is discussed in section 5.4. 

Representation in the design space

In order to determine which CDPVA designs are the best to filter-out a harmonic torque of order n, it is convenient to represent the maximum amount of information in a design space. Among the most important information are the stability of the response and the efficiency of the vibration reduction. The later one can be assessed indirectly by analysing the shifting of the antiresonance as the pendulums' amplitudes increase. This was done in [7], and it was found that the shifting of the i th antiresonance is limited by setting

c pi = c ci -c si . (31) 
It can also be interesting to represent other particular designs, as for instance those yielding tautochronic coupled and tautochronic uncoupled double pendulums. These designs satisfy the relations [7] 

c pi = c ci -c si -c ti and c pi = -c si , (32) respectively. 
Figure 9 shows two maps representing the stability information and the design rules as a function of the tuning order and the nonlinear tuning parameter.

Note the we introduced the unscaled nonlinear tuning parameter cpi = c pi .

The design rules represented are Eqs. (31) and (32) together with cases 1 and 3 from section 5.3, which aim at preventing the apparition of instabilities. Note that the tuning order n p1 is not a parameter of the system. Hence, it was chosen to vary it indirectly by varying α 11 . In the maps, α 11 takes values from -0.35 to -0.29 so that n p1 varies around n = 1 (note that in this range of values, in red (blue). The designs that are subjected to both kinds of instabilities are shown in purple and those that remain stable over the whole amplitude range are shown in green.

n p1 (α 1 1) is almost linear). As it is n p1 which is close from n,
One can see in the maps that cases 1 and 3 presented in section 5.3 limit 355 the apparition of localised responses, but case 1 does not completely prevent it. This is particularly visible in Fig. 9(b), where there are designs that are unstable in the lower right-hand corner of the top hatched area. This small inaccuracy of the design rule is due to a complex shape of the unstable region, as shown in Appendix G. The maps also show that tautochronic uncoupled pendulums (cyan curve) are subjected to localisation for tuning orders close from n. This was already observed in Fig. 8 and confirms that these designs should not be used. To a lesser extent, the same situation occurs for tautochronic coupled pendulums (grey curve). Indeed, one can see in Fig. 9(a) that tautochronic coupled pendulums with tuning orders close from n are subjected to instabilities. However, at moderate amplitudes, small undertuning can help avoiding localisation. The most interesting case is that of pendulums tuned to lock the antiresonance (brown curve), as it corresponds to the CDPVA achieving the best performance [7]. One can see that a CDPVA tuned accordingly to Eq. ( 31) and with n p1 = n is still stable at an amplitude u 1 = 0.75. This is the best situation as the rotor is excited exactly on the linear antiresonance, the antiresonance order is almost locked thanks to the nonlinear design rule, and the system is stable. The only drawback of this configuration is that it is still subjected to jumps at large amplitudes, as can be seen in Fig. 9(b). To deal with this issue and increase the torque range, one can decide to overtune slightly the double pendulums by choosing n p1 > n and/or harden the response by decreasing c p1 .

This will push the jump towards higher pendulums' amplitudes at the expense of performance.

Conclusion

This paper deals with the stability of the response of CDPVAs. A linear analysis was carried out to compute the eigenmodes of a system with N = 2 double pendulums. This allowed to understand what additional modes appear with the presence of several double pendulums. Then, the dynamic response of the system and its stability were computed using a perturbation method, and the validity of this analytical model was verified through a comparison with numerical solutions. Though the model is based on a CDPVA with N = 2 pendulums, the prediction of the pitchfork bifurcations leading to a localised solution was observed to be the same for any N > 2 double pendulums. Design guidelines to avoid localisation were derived from the model. A representation of these guidelines and the stability in the design space allowed to see that they indeed help preventing the apparition of localised responses. Additional guidelines from former works were also included in these representations in the design space. One of them, allowing for a maximised performance, was seen to be compatible with the avoidance of localisation and jumps out to large amplitudes.

terms. These functions are

f L1i (ϕ) = - μΛ c1 N N j=1 Λ c1 ϕ 1j + Λ c2 ϕ 2j + b1 ϕ 1i , f Q1i (ϕ) = -2g a X 1i ϕ 2i - μ N N j=1 (Λ m1 ϕ 1i + Λ c12 ϕ 2i ) Λ c1 ϕ 1j + Λ c2 ϕ 2j + 2μΛ c1 N N j=1 (k 1 ϕ 1j ϕ 1j + k 12 ϕ 1j ϕ 2j + ϕ 2j ϕ 1j + k 2 ϕ 2j ϕ 2j ) f C1i (ϕ) = -g a X 2 1i α 11 ϕ 1i + ϕ 2i 2 - gc X 3 1i 6 - g1 6 ϕ 3 1i - gf 6 X 3 2i -ga X 1i X 2 2i -α 11 ϕ 2 1i + r 1 ϕ 1i ϕ 2 1i + ϕ 1i ϕ 2 1i + r 12a ϕ 2i ϕ 2 2i + 2ϕ 2i ϕ 2 2i + r 12b ϕ 2 1i ϕ 2i + r g12 ϕ 2 1i ϕ 2i + r g1a ϕ 3 1i + μ N N j=1 2 (Λ m1 ϕ 1i + Λ c12 ϕ 2i ) k 1 ϕ 1j ϕ 1j + k 12 ϕ 1j ϕ 2j + ϕ 2j ϕ 1j + k 2 ϕ 2j ϕ 2j + 1 2 g d X 2 1i + g f X 2 2i + g 1 ϕ 2 1i Λ c2 ϕ 2j + Λ c1 ϕ 1j + Λ c1 2 g d X 2 1j + g f X 2 2j + g 1 ϕ 2 1j ϕ 1j + g a X 2 1j + g b X 2 2j ϕ 2j + 2 g a X 1j X 1j X 2j + ϕ 1j + g b X 2j X 2 2j + g 1 ϕ 1j ϕ 2 1j f f 1 (ϕ, ϑ) = Λ c1 + Λ m1 -g e X 2 1i ϕ 1i + Λ c12 - g a 2 X 2 1i ϕ 2i - g d 2 X 2 1i - g f 2 X 2 2i - g 1 2 ϕ 2 1i T1 cos(nϑ), (A.8a) (A.8b) (A.8c) (A.8d)
for pendulums 1 and

f L2i (ϕ) = - μΛ c2 N N j=1 Λ c1 ϕ 1j + Λ c2 ϕ 2j + b2 ϕ 2i , f Q2i (ϕ) = 2g a X 1i ϕ 1i - μ N N j=1 (Λ c12 ϕ 1i + Λ m2 ϕ 2i ) Λ c1 ϕ 1j + Λ c2 ϕ 2j + 2Λ c2 μ N N j=1 k 1 ϕ 1j ϕ 1j + k 12 ϕ 1j ϕ 2j + ϕ 2j ϕ 1j + k 2 ϕ 2j ϕ 2j , f C2i (ϕ) = - ga 6 3X 2 1i ϕ 1i + X 3 1i -6X 2 1i ϕ 1i - gf 6 X 3 2i + r 12a ϕ 1i ϕ 2 2i + r 12b ϕ 1i ϕ 2 1i + 2ϕ 1i ϕ 2 1i + r 2 ϕ 2i ϕ 2 2i + ϕ 2i ϕ 2 2i + r g1b ϕ 3 1i + μ N N j=1 2 (Λ c12 ϕ 1i + Λ m2 ϕ 2i ) k 1 ϕ 1j ϕ 1j + k 12 ϕ 1j ϕ 2j + ϕ 2j ϕ 1j + k 2 ϕ 2j ϕ 2j + 1 2 g a X 2 1i + g b X 2 2i Λ c1 ϕ 1j + Λ c2 ϕ 2j + Λ c2 2 g d X 2 1j + g f X 2 2j + g 1 ϕ 2 1j ϕ 1j + g a X 2 1j + g b X 2 2j ϕ 2j + 2 g a X 1j X 1j X 2j + ϕ 1j + g b X 2j X 2 2j + g 1 ϕ 1j ϕ 2 1j , f f 2 (ϕ, ϑ) = Λ c2 + Λ c12 ϕ 1i + Λ m2 ϕ 2i -g 12 ϕ 2 2i 2 -k 12 (ϕ 1i + ϕ 2i ) 2 2 -g 12 ϕ 2 2i 2 ϕ 1i T1 cos(nϑ) (A.9a) (A.9b) (A.9c) (A.9d)
for pendulums 2. g d and g e are nonlinear constants defined in Appendix B.

for the phase-opposition modes and

f (u) Li (ζ i ) = -μ Λ2 ci ζ i + bi ζ i , f (u) Qi (ρ i , ζ i ) = 2μ Λci ki (ζ i ζ i + ρ i ρ i ) -μΛ ci Λmi ζ i + Λc2i ρ i ζ i , f (u) Ci (ρ i , ζ i ) = - 1 6 g1 + ga (α 11 -1 + χ pi ) 4 + gb (α 11 + χ pi ) 4 3ρ 2 i + ζ 2 i ζ i + (r i + 2r 12i ) [ ρ 2 i + ζ 2 i ζ i + ζ i ρ 2 i + ζ 2 i + 2ρ i (ζ i ρ i + ρ i ζ i ) ] + rgi 3ρ 2 i + ζ 2 i ζ i + 2μ Λmi ki (ρ i ρ i + ζ i ζ i ) ζ i -ga (α 11 + χ pi ) (α 11 -1 + χ pi ) 2 (ρ i + ζ i ) (ρ i + ζ i ) ζ i + ρ 2 i + ζ 2 i + μΛ ci c f i ζ i ζ 2 i + ρ 2 i + 2ρ i ρ i ζ i + ζ 2 i + ρ 2 i ζ i + ρ i ζ i ρ i , f (u) f i (ρ i , ζ i , ϑ) = Λci + Λmi ζ i - 1 2 c f i ρ 2 i + ζ 2 i -g a χ 2 pi (α 11 + χ pi ) (α 11 -1 + χ pi )
The expression of the nonlinear coefficients introduced in section 4 is

g 1 = hν r (1 + µ 2 ), g a = hµ 2 ν 2 , g b = ν r g a , g c = (α 11 -1)g a , g d = (α 11 + 1)g a , g e = α 11 g a , g f = ν r α 11 g a , r 1 = 6h[(η 1 + µ 2 ν 2 2 η 2 + µ 2 ν 2 2 )α 11 + µ 2 ν 2 ]α 13 r 12a = 3hµ 2 ν 2 2 η 2 α 11 α23 , r 12b = 3hµ 2 ν 2 2 η 2 (1 + η 2 α 21 )α 13 , r 2 = 6hµ 2 ν 2 2 η 2 α 21 α23 , r g1a = 4(k 1 α 11 -g a )α 13 , r g1b = k 2 α13 , r g12 = 3k 2 α13 , (B.2) with Mr =         Λm1 + µΛ 2 c1 2(1+µ) - µΛ 2 c1 2(1+µ) Λc12 + µΛ c1 Λ c2 2(1+µ) -µΛ c1 Λ c2 2(1+µ) - µΛ 2 c1 2(1+µ) Λm1 + µΛ 2 c1 2(1+µ) -µΛ c1 Λ c2 2(1+µ) Λc12 + µΛ c1 Λ c2 2(1+µ) Λc12 + µΛ c1 Λ c2 2(1+µ) -µΛ c1 Λ c2 2(1+µ) Λm2 + µΛ 2 c2 2(1+µ) - µΛ 2 c2 2(1+µ) -µΛ c1 Λ c2 2(1+µ) Λc12 + µΛ c1 Λ c2 2(1+µ) - µΛ 2 c2 2(1+µ) Λm2 + µΛ 2 c2 2(1+µ)         , Kr =        k 1 0 k 12 0 0 k 1 0 k 12 k 12 0 k 2 0 0 k 12 0 k 2        . (C.2a) (C.2b)
The four solutions of det(A r ) = 0 are n p1 , n 10 , n p2 and n 20 with

n 2 p1,2 = Λ m1 k 2 + Λ m2 k 1 -2Λ c12 k 12 2(Λ m1 Λ m2 -Λ 2 c12 ) ∓ 4(Λ c12 k 1 -Λ m1 k 12 )(Λ c12 k 2 -Λ m2 k 12 ) + (Λ m1 k 2 -Λ m2 k 1 ) 2 2(Λ m1 Λ m2 -Λ 2 c12 ) , n 2 10,20 = Λm1 k 2 + Λm2 k 1 -2 Λc12 k 12 2( Λm1 Λm2 -Λ2 c12 ) ∓ 4( Λc12 k 1 -Λm1 k 12 )( Λc12 k 2 -Λm2 k 12 ) + ( Λm1 k 2 -Λm2 k 1 ) 2 2( Λm1 Λm2 -Λ2 c12 ) . (C.3a) (C.3b)
To compute the mode shapes associated to n p1 and n p2 , it is convenient to use row operations on A r and substitute n for n pi , i = 1, 2 in order to form matrix

A (1i)
r . This matrix is such that

R (1i) 1 = [R 1 ] n=npi , R (1i) 2 
= [R 1 + R 2 ] n=npi , R (1i) 3 
= [R 3 ] n=npi , R (1i) 4 
= [R 3 + R 4 ] n=npi , (C.4)
where R (1i) j and R j refer to the j th row of A (1i) r and A r , respectively. Then, one can compute the reduced mode shape ψ 

(o) ri = [1, -1, χ pi , -χ pi ] , (C.5)
where χ pi is a constant. Using the 1 st line of

A (1i) r ψ (o) ri = 0, one finds that χ pi = n 2 pi Λ m1 -k 1 k 12 -n 2 pi Λ c12 . (C.6) c ti 2 v i u 2 i sin (2φ i -2β i ) -2c mi v i u i (4v i sin (φ i -β i ) -3u i sin (2φ i -2β i )) -8 bi n pi v i + 2c f i T1 v i u i sin (2φ i -β i ) 16 Λmi n pi -1 f φi (u i , β i ) = σv i + c i - c ti 2 v i u 2 i cos (2φ i -2β i ) + v 2 i + 2u 2 i + 2c ci u 2 i - c ti 2 v 2 i v i -2c mi v i v 2 i -2u 2 i + 4v i u i cos (φ i -β i ) -3u 2 i cos (2φ i -2β i ) + 2c f i T1 v i u i (2 cos β i + cos (2φ i -β i )) 16 Λmi n pi -1 , f ui (u i , β i ) = -c i - c ti 2 v 2 i u i sin (2φ i -2β i ) + 2c mi v i v 2 i + u 2 i sin (φ i -β i ) + 8 bi n pi u i + T1 c f i v 2 i sin (2φ i -β i ) + 8 Λci -c f i 2v 2 i + u 2 i sin β i 16 Λmi n pi -1 , f βi (u i , β i ) = σu i -μδ ni u i + c i - c ti 2 u i v 2 i cos (2φ i -2β i ) + 2v 2 i + u 2 i + 2c ci v 2 i + c ti 2 u 2 i u i + 2c mi v i v 2 i -5u 2 i cos (φ i -β i ) + 4v i u i -T1 -c f i v 2 i cos (2φ i -β i ) + 8 Λci -c f i 2v 2 i + 3u 2 i cos β i 16 Λmi n pi -1 . (D.1a) (D.1b) (D.1c) (D.1d) Constants c f i , c ti , c ci , c pi , c mi , c i and δ ni are defined in Appendix B.

Appendix D.2. Cartesian coordinates

The functions involved in the system obtained through the method of multiple scales written in Cartesian coordinates are

f p1i (p i , q i ) = -σq 1i -8 bi n pi p 1i + 2c f i T1 (p 1i q 2i + p 2i q 1i ) + c i - c ti 2 p 2 1i q 1i + 2p 1i p 2i q 2i + p 2 2i q 1i + q 3 1i + 3q 1i q 2 2i - c ti 2 p 2 1i q 1i + q 3 1i + 2c ci q 1i p 2 2i + q 1i q 2 2i -2c mi p 2 1i + p 2 2i q 1i + 4q 2i p 2 1i + q 2 1i + q 3 1i -6p 1i p 2i q 2i -5q 1i q 2 2i 16 Λmi n pi -1 f q1i (p i , q i ) = σp 1i + -8 bi n pi q 1i + 2c f i T1 (3p 1i p 2i + q 1i q 2i ) + c i - c ti 2 p 3 1i + 3p 1i p 2 2i + p 1i q 2 1i + p 1i q 2 2i + 2p 2i q 1i q 2i - c ti 2 p 3 1i + p 1i q 2 1i + 2c ci p 1i p 2 2i + p 1i q 2 2i -2c mi q 2 1i + q 2 2i p 1i + 4p 2i p 2 1i + q 2 1i + p 3 1i -6p 2i q 1i q 2i -5p 1i p 2 2i 16 Λmi n pi -1 f p2i (p i , q i ) = -(σ -μδ ni ) q 2i -8 bi n pi p 2i + 2c f i T1 (p 1i q 1i + p 2i q 2i ) + c i - c ti 2 p 2 1i q 2i + 2p 1i p 2i q 1i + p 2 2i q 2i + 3q 2 1i q 2i + q 3 2i + c ti 2 p 2 2i q 2i + q 3 2i + 2c ci p 2 1i q 2i + q 2 1i q 2i + 2c mi p 2 1i + p 2 2i q 1i + 4q 2i p 2 1i + q 2 1i + q 3 1i -6p 1i p 2i q 2i -5q 1i q 2 2i 16 Λmi n pi -1 f q2i (p i , q i ) = (σ -μδ ni )p 2i -8 bi n pi q 2i + T1 8 Λci -c f i 3p 2 1i + 3p 2 2i + q 2 1i + q 2 2i -c i - c ti 2 3p 2 1i p 2i + 2p 1i q 1i q 2i + p 3 2i + p 2i q 2 1i + p 2i q 2 2i - c ti 2 p 3 2i + p 2i q 2 2i -2c ci p 2 1i p 2i + q 2 1i p 2i -2c mi q 2 1i + q 2 2i p 1i + 4p 2i p 2 1i + q 2 1i + p 3 1i -6p 2i q 1i q 2i -5p 1i p 2 2i 16 Λmi n pi -1 (D.2a) (D.2b) (D.2c) (D.2d) with A pfi = 256 Λmi Λci μδ ni c f i n pi u 2 i + 4 Λci c f i (2c i -3c ti + 4c ci ) u 4 i -32 Λ2 ci (2c i -c ti + 2c ci ) u 2 i + 3c ci c 2 f i u 6 i -4c mi u 2 i 4 Λci -c f i u 2 i 8 Λci -3c f i u 2 i , B pfi = 8 Λci -3c f i u 2 i 2 16 -256 b2 i n 2 pi 8 Λci + 3c f i u 2 i 8 Λci -c f i u 2 i 64 Λ2 ci -16 Λci c f i u 2 i + 3c 2 f i (32 Λci -5)u 4 i -12c 3 f i u 6 i + 64 Λmi μδ ni n pi c f i -8 Λci (2c i + 12c mi -c ti ) + c f i (2c i -3c ti + 8c ci + 4c mi ) u 2 i 2 u 4 i , C pfi = 8 Λmi n pi 8 Λci -c f i u 2 i 8 Λci + 3c f i u 2 i (F.4a) (F.4b) (F.4c)
and

A sni = 2 8 Λci + 3c f i u 2 i Λmi n pi μδ ni -Λci c i u 2 i , B sni = - 8 Λci -3c f i u 2 i 2 64 8 Λci -c f i u 2 i 3 64 b2 i n 2 pi (8 Λci + 3c f i u 2 i ) 64 Λ2 ci -16 Λci c f i u 2 i + 3c 2 f i 32 Λci -5 u 4 i -12c 3 f i u 6 i -c 2 i 8 Λci -c f i u 2 i 3 u 4 i , C sni = 2 Λmi n pi 8 Λci + 3c f i u 2 i (F.5a) (F.5b) (F.5c)
Appendix G. Illustration of a localisation zone with a complex shape Figure G.10 illustrates a situation where the unstable zone related to locali-610 sation has a complicated shape. In that case, the Taylor series up to u 2 1 used in section 5.3 are not sufficient to guarantee that the unstable zone will not cross the operating point at large amplitudes. Indeed, though at small amplitudes the red zone tends to shift to the left, it shifts back to the right at larger amplitudes and crosses the vertical line n = n p1 at an amplitude u 1 ≈ 0.72. It rolls on the rotor's rolling track, which is a circular hole of centre A and radius r 0 . The position of A is such that OA = r. Note that in practice the rotor's rolling track is not a full circle, which limits the amplitude of pendulum 1. Pendulum 2, whose centre of mass is G 2 , is made of three parts, as can be seen in Fig. 11.2(c). There is a cylinder of radius r p2 and width w 2 which rolls on the inner part of pendulum 1. On each side of this small-radius cylinder are two additional cylinders of radius r p2a and width w 2a , giving pendulum 2 an h-shape. Their purpose is to provide an easier control on the mass and inertia of pendulum 2. The parametrisation of the double pendulum is exactly the same as that used in chapters 9 and 10. Indeed, the position of G 1 and the rotation of pendulum 1 with respect to the rotor are measured through the angles φ 1 and α 1 (φ 1 ), respectively. Similarly, the position of G 2 and the rotation of pendulum 2 with respect to pendulum 1 are measured through the angles φ 2 and α 2 (φ 2 ), respectively.

In order to use the models presented in chapters 9 and 10, it is necessary to express the lengths Moreover, the rolling without slipping conditions between pendulum 1 and the rotor and between 

PRESENTATION OF THE EXPERIMENTAL SYSTEM

O A G 1 G 2 ϕ 1 ϕ 2 α 1 (ϕ 1 ) α 2 (ϕ 2 )
α 1 (φ 1 ) = (︄ 1 - r 0 r p1 )︄ φ 1 ⇒ α 11 = 1 - r 0 r p1 , α 13 = 0 α 2 (φ 2 ) = (︄ 1 - r p1 -e r p2 )︄ φ 2 ⇒ α 21 = 1 - r p1 -e r p2 , α 23 = 0. (11.2a) (11.2b) 
α i1 and α i3 , i = 1, 2, are the linear and nonlinear rotation coefficients introduced in chapters 9 and 10. Finally, the masses an inertias of pendulums 1 and 2, written m 1 , m 2 , I 1 and I 2 , respectively, can be expressed as

m 1 = ρ 1 w 1 π(r 2 p1 -(r p1 -e) 2 ), I 1 = 1 2 m 1 (r 2 p1 + (r p1 + e) 2 ), m 2 = ρ 2 w 2 πr 2 p1 + 2ρ 2 w 2a πr 2 p2a , I 2 = 1 2 ρ 2 w 2 πr 4 p1 + ρ 2 w 2a πr 4 p2a , (11.3) 
where ρ 1 and ρ 2 are the density of the materials used for pendulums 1 and 2, respectively. In practice, the pendulums are slightly more complicated than perfect cylinders made of a single material (cf. 

Experimental set-up

The experimental set-up is shown in Fig. 11.3. The rotor is fixed on a bench of inertia J b = 8.5 [g.m 2 ]. This value is deduced from the response of the bench in Fig. 11.6, using the fact that its angular acceleration θ ¨b must be |θ ¨b| = T 1 /J b . As the rotor is fixed on the bench, J r has to be replaced by the equivalent inertia J eq = J r + J b = 19.873 [g.m 2 ] in the models developed in chapters 9 and 10.

The experimental results include order sweeps, torque sweeps and fast camera videos. All the sweeps were done slowly for the response to be close from a succession of steady states. The amplitude of the These results are obtained using the models developed in chapters 9 and 10. H 1 is the dimensional amplitude of the rotor's acceleration. Note that there is a small modification to take into account the large value of µ in the rotor's response computed from the nonlinear model. In chapter 9, µ was assumed to be small and the rotor's acceleration too, so the term (1 + µ)θ ′′ in the rotor's equation was approximated by simply θ ′′ ((•) ′ = ∂(•)/∂ϑ where ϑ is the rotor's angular position). However, in the present case, µ = 0.323 so it is quite inaccurate to use (1 + µ)θ ′′ ≈ θ ′′ . To account for this, we simply redefine the amplitude of the first harmonic of the rotor's acceleration obtained in chapter 9 as

h 1 ← h 1 /(1 + µ).
With this new definition of h 1 , we can define the dimensional amplitude

H 1 = h 1 Ω 2 .

EXPERIMENTAL ANALYSIS

As expected from section 11.1.1, the linear antiresonances shown in Fig. 11.4 are located at 1.3 and 8.1. One can see on the linear response that the first antiresonance is very close from the resonance. In addition, Fig. 11.4(b) shows that the first antiresonance and resonance bend to the left as the torque increases, so the resonance will actually pass through n p1 . This makes the first antiresonance poorly robust, but this issue was not considered during the tuning process. Indeed, the aim of this PhD is to design pendulums able to operate at high orders, so the second antiresonance is much more meaningful than the first one. This second antiresonance is more robust than the first one as it is further from the linear resonance and the response does not bend much to the left as the torque is increased (it does, but at larger amplitudes than that represented in (c)). However, this second antiresonance is less pronounced than the first one. The performance could have been increased using the linear performance indicators presented in chapter 9, but at the time of the specification of the prototype, there was an error in the model of the CDPVA, so the predictions were misleading.

The error was that the second pendulum was parametrised differently such that φ 2 was defined as AG 1 .G 1 G 2 = cos φ 2 (cf. Fig. 11.2), as in [START_REF] Manchi | Torsional vibration reduction of rotating shafts for multiple orders using centrifugal double pendulum vibration absorber[END_REF], instead of -y p1 .G 1 G 2 = cos φ 2 . These two parametrisations happen to be the same in the case of a first pendulum with the simple rotation law α 1 (φ 1 ) = φ 1 , but not with more complex rotations, as is the case here. Note also that the parametrisation used in [START_REF] Manchi | Torsional vibration reduction of rotating shafts for multiple orders using centrifugal double pendulum vibration absorber[END_REF] can be used in the general case but then α 2 would be a function of both φ 1 and φ 2 , which is not convenient. With the model containing the error, the CDPVA was expected to have antiresonances at 1.750 and 4.001. It might seem beneficial that the second antiresonance appears to be at approximately twice the expected one (it is at 8.101 instead of 4.001), as we aim at designing CDPVAs for high orders. However, this will come to be a difficulty as the experimental set-ups available at Valeo do not currently allow to investigate the response of pendulum devices at high orders. This is discussed further in the next section.

Overview of the response and bench-related issues

An overview of the measurements is presented in Fig. 11.5. This figure shows the amplitude of the first harmonic of the rotor's acceleration as a function of the order (on the left) and frequency (on the right). The response associated to several mean rotational velocities and torques is displayed. This was unexpected and is discussed further later in this section. From the model, it is expected to observe an antiresonance at n = 8.1 in (a)-(d). However, no such antiresonance is visible. Instead, there is an increase of the rotor's response around n = 8 in (a). One could think this is due to 11.2. EXPERIMENTAL ANALYSIS for the response of the bench alone. This means that this antiresonance is not related to the rotor nor the pendulums. Moreover, the fact that it does no shift with the addition of inertia (it remains at 92 [Hz] after adding the rotor and the pendulums) might indicate that it is related to the acquisition system of the bench. Apart from this antiresonance, the response of the bench is almost flat up to 200 [Hz], after which it starts decreasing. The addition of the rotor creates a large diminution in the response centred at 225 [Hz] but affecting all the frequency band. One can compute where this antiresonance would be centred after adding the pendulums' masses using

√︄ J r + J b J r + J b + N (I 1 + I 2 + m 1 (r + ℓ 1 ) 2 + m 2 (r + ℓ 1 + ℓ 2 ) 2 ) × 225 = 192 [Hz]. (11.4) 
This corresponds to what was observed in Fig. 11.5. Hence, this issue is not related to the pendulums but to the installation of the rotor on the bench. Note that because of this large antiresonance, there is no flat part in the rotor's response, even at low orders. This issue unfortunately prevented the visualisation of the second antiresonance. However, the response near the first antiresonance is discussed in the next section. antiresonance order to be slightly lower than n p1 . There is a small difference at the resonance. This is probably due to the fact that the order sweep was going slightly too fast so there are not enough points after using the sliding Fourier transforms to describe accurately the resonance. Another reason, which might also explain the difference after the resonance, is that the large antiresonance discussed in section 11.2.2 decreases the rotor's vibrations over the whole frequency band, even the part represented in Fig. 11.7. This decrease is more pronounced as the order increases, explaining why it has an effect after the antiresonance but not before.

Focus on the first antiresonance

The evolution of the antiresonance with larger torque levels is compared in (b) with the nonlinear analytical model proposed in chapter 9 (and using the small modification explained in section 11.2.1).

The analytical model allows for a rather accurate description of the locus of the antiresonance. However, like in (a), the response after the antiresonance is strongly overestimated by the model. This difference gets larger as the torque amplitude is increased. The damping values necessary to fit the model with the experiments are significantly larger than expected and even increase as the torque amplitude increases. This large damping might be due to an imperfect rolling-without-slipping motion of the pendulums, causing friction. The slipping duration over one period increases as the pendulums amplitude increases, which could explain the increase of the damping with the forcing. A detailed 11.3. HIGH ORDER TUNING OF CENTRIFUGAL DOUBLE PENDULUMS study of the occurrence of slipping was proposed in chapter 8 for a CPVA but is not carried out in the current chapter for a CDPVA. not be exactly the same of those for mode 2, this seems to indicate that it is quite difficult to observe the second antiresonance with the current prototype. However, as explained in 11.2.2, this is not the only difficulty. Indeed, the bench used was not initially designed to investigate the dynamics of heavy pendulums systems at high order but to to test light CPVAs (i.e. with a rotor of inertia J r ≈ 2 [g.m 2 ]) at low orders (typically, n = 1 or n = 2). There is another bench available at Valeo which might be more suited for the current heavy prototype, but this is a work in progress. It could also be possible to design another CDPVA with a second antiresonance at lower orders (for instance n p2 = 4), which would facilitate the tests on the benches available. Moreover, the performance of this new prototype around its second antiresonance could be improved using the linear design tool introduced in chapter 9 and applied in the next section. 

Discussion on the experimental study

High order tuning of centrifugal double pendulums 11.3.1 A design tool for centrifugal double pendulums with cylindrical pendulums

In order to facilitate the design process, design maps similar to those presented in chapter 9 are introduced. These maps are shown in Fig. 11.9 and indicate the value of the second antiresonance and the performance indicators ∆n 2 and G 2 as a function of the pendulums' radii r p1 and r p2 . ∆n 2 and G 2 , described in details in chapter 9, represent the distance between the antiresonance and the resonance (a large distance is a sign of robustness to design imperfections) and the gain due to the use of the pendulums (a low gain indicates a large decrease of the rotor's vibrations), respectively. this reduces the torque capacity of a CPVA, and it is likely that the same issue exists for a CDPVA.

Conclusion

An original CDPVA architecture made of two cylinder-pendulums was introduced in this chapter.

A prototype was build and tested on a measurement bench. The first antiresonance was well identified and matched well with both the linear and nonlinear models developed in the previous chapters.

However, the comparison between the models and the experimental data was incomplete as it was not possible to observe the second antiresonance due to difficulties related to the bench. The identification of the first antiresonance allowed to estimate the damping to use in the models. This damping happened to be larger than expected, which lowers the performance of the CDPVA. Then, a design tool was presented and helped computing the dimensions of a compact CDPVA tuned on order 20.

Though this CDPVA achieves satisfying linear performances, its robustness and the control of its nonlinear behaviour are a concern due to manufacturing tolerances. Further work is necessary to determine whether these limitations are acceptable or not. If so, the performance of other CDPVA designs, such as the one proposed by J.-G. Duh and M. Wenyong [START_REF] Duh | Development of monofilar rotor hub vibration absorber[END_REF] (cf. Fig. 1.18), could be investigated.

Conclusion Conclusion

With the aim of providing the best possible service to the car driver, the problems of noise, comfort, fuel consumption and vehicle reliability are currently the major concerns of the automotive industry.

In thermal vehicles, the internal combustion engine is a major contributor to these problems because of the generation of torsional vibrations that are transmitted to the drivetrain components. This issue has been investigated for a long time but improvements and a better comprehension are still needed.

In addition, due to increasingly stringent environmental standards concerning polluting emissions and fuel consumption of thermal vehicles, car manufacturers are more and more attracted towards electric vehicles. These are known to be more quiet than thermal vehicles, but sources of noise previously hidden by the engine's noise are a new disturbance that car manufacturers want to reduce to meet the demands of their customers. The most disturbing of these low-volume sources are the transmission errors that occur in the gearbox. They lead to fluctuations of the torque transmitted which generates vibrations of the drivetrain and causes the housing of the gearbox to radiate an irritating whining noise (cf. chapter 1). Several types of absorbers are available to reduce the torsional vibrations and the problems they generate. However, the most appropriate passive absorption mean seems to be the centrifugal pendulum vibration absorber (CPVA), which has been used in thermal powertrains for almost a century. The special feature of these pendulum absorbers is the linear dependence of their natural frequency to the engine speed, which allows them to reduce the vibrations over the whole speed range. However, the characteristics of the excitation signals in electric powertrains are significantly different from those of thermal ones, which requires an adaptation of the CPVAs currently used in the industry. To meet this objective and to improve the CPVAs currently used in thermal engines, two major axes of research were favoured:

• Increase the general knowledge on CPVAs with a particular focus on its current limitations and on original operation principles;

• Adapt pendulum absorbers to operate in electric powertrains through the proposition of original architectures.

CONCLUSION

The results from these two axes are summarised thereafter.

General knowledge on CPVAs

One of the objectives of the thesis was to increase the general knowledge on CPVAs in order to improve the ones currently used in thermal powertrains and to have a better understanding of some special operations and concepts that could prove useful in the adaptation of pendulum absorbers to electric powertrains.

Most studies on CPVAs consider only purely translated pendulums, but it was shown a few years ago that allowing a rotational mobility in addition to the traditional translation motion increases the performance. Hence, every study presented in this report took into account a rotation of the pendulums with respect to the rotor. It was shown in chapter 2 that this rotation acts like an added mass and modifies the linear coupling between the pendulums and the rotor of a CPVA. Moreover, it contributes to the nonlinear response in a way similar to the pendulums' path. Chapters 3, 5 and 4 focused on the localisation phenomenon, which causes one or more pendulums to oscillate with a phase and/or amplitude different from the others. It is a known issue with CPVAs, not necessarily because it lowers the filtering efficiency but because it reduces the torque capacity. Two different models predicting the apparition of such instabilities of the unison response were proposed in chapters 3 and 4. The first model, validated experimentally, is accurate at low tuning orders so it useful in the case of CPVAs used in the frame of cylinder deactivation. The second model, more complex, is valid no matter the tuning order, so it is more general. In both cases, new design guidelines allowing to avoid instabilities were proposed. The localised response itself was analysed in chapter 5, where its dynamics were detailed. Interestingly, it was shown that in some cases localisation does not lower the torque capacity and enhances the filtering, so it can be beneficial to vibration reduction.

Epicycloidal paths are often used in the industry because they are the tautochronic paths of a pendulum in a uniform centrifugal acceleration field. However, in practice, the acceleration field varies because the rotor's angular speed fluctuates, so the epicycloid is no longer a tautochronic path (cf. chapter 4). In addition, assessing the shifting of the antiresonance as the torque level is increased is more relevant to performance evaluation than the tautochronic property. Indeed, if the antiresonance is locked, the rotor is always excited where its response is minimum, which maximises the vibration reduction. This shifting was investigated in details in chapter 4 where it was shown that the pendulums locking the antiresonance are those whose path and rotation nonlinearities balance with the nonlinearities related to the Coriolis effect. In such a configuration, the rotor's response is dominated CONCLUSION by higher harmonics because the amplitude of the first harmonic is very low. The accuracy of the antiresonance tracking developed in chapter 4 was verified experimentally in chapter 8. Furthermore, chapter 4 introduced a representation in the design space of the stability of CPVA designs and of the guidelines to avoid localisation and to lock the antiresonance. This design tool allowed to identify easily the designs that remain stable while achieving the best vibration reduction.

The CPVAs used in the industry are tuned close from the fundamental frequency of the engine torque. However, they could also be tuned at half the engine order, in which case the CPVA operation is subharmonic. This was investigated in details in chapters 6 and 7, where it was shown that the filtering of the rotor's vibrations is done through the torque generated by the Coriolis effect. The main advantages of the subharmonic operation are that the pendulums do not generate higher rotor harmonics and cause a saturation of the rotor's response. As in classical operation, the antiresonance can shift as the torque level increases, hence perturbing the saturation effect. Guidelines on the CPVA tuning were proposed to increase the torque capacity while limiting the drawbacks of the antiresonance shifting (cf. chapter 6). This was observed to achieve satisfying vibration reduction but the torque capacity is lower than that of CPVAs in classical operation. In addition, these guidelines are not compatible with a stable response if the CPVA is made of several pairs of pendulums (cf. chapter 7). In that case, other guidelines were provided to prevent the apparition of subharmonic localised solutions. The analytical models used in chapters 6 and 7 were validated experimentally in chapter 8.

Another major contribution of the thesis is the investigation of centrifugal double pendulum vibration absorbers (CDPVA), which make use of double pendulums instead of the simple pendulums used in CPVAs (cf. chapters 9 and 10). As the absorbers are now two degree-of-freedom systems, the rotor possesses two antiresonances. The tuning of a CDPVA depends on a lot more parameters than that of a CPVA, which is both an advantage and a drawback as it allows for more flexibility in the tuning but increases the complexity. This is why an efficient tuning process was proposed in chapter 9. It is based on the computation of the two tuning orders and the assessment of linear performance indicators. A nonlinear analytical model representing the unison response and its stability was developed in chapters 9 and 10. The experimental investigation of a CDPVA led in chapter 11 allowed to validate several features of this analytical model. This model allowed to derive design guidelines to lock one of the antiresonances (which maximises the performance around the associated tuning order) while avoiding the appearance of localised solutions. As for CPVAs, the guidelines and stability state were represented in the design space to identify easily the optimum CDPVA designs. The construction of the nonlinear analytical model was rendered possible thanks to the python code presented in Appendix F, which automatises the method of multiple scales. CONCLUSION retained. However, the approach allows to consider higher-order nonlinear terms. Accounting for nonlinear terms of order 5 would prove useful to derive more accurate design guidelines.

• In chapter 7, it was observed that the period-doubling bifurcation leading to the subharmonic pendulums' response can take some time to occur. This is an issue as it delays the subharmonic filtering of the rotor's vibrations. Studies of the bifurcation time would be useful as they might provide guidelines to minimise this delay.

• It was suggested in previous studies that a two-harmonic torque could be filtered using a CPVA with pendulums tuned on two different orders. The few studies on the subject could be pursued by adapting the models developed in this thesis to a CPVA with pendulums tuned on two orders.

• In this thesis, several design rules optimising the intrinsic efficiency of a CPVA were derived.

However, the optimal CPVA design might differ slightly when it is coupled to the driveline. The benefit of using the design rules on a CPVA installed in a driveline should be investigated in the future.

• The CDPVAs studied in this report have pendulums following circular paths so that their nonlinear tuning is controlled only through the pendulums' rotation. However, considering non-circular paths would provide another mean for nonlinear tuning, which could be more practical than using the nonlinear contribution of the rotation law. For instance, the use of non-circular paths is the only way to control the nonlinear tuning of the CDPVA design presented in chapter 11.

• A procedure based on linear considerations was presented in chapter 9 to quickly converge towards satisfying CDPVA parameters. Though this approach saves a lot of time in the designing process, it remains limited. The use of an optimisation algorithm would prove more efficient.

• The fast camera videos obtained from the experiments presented in chapter 11 have not yet been post-treated. Once this is done, the analysis of the pendulums' motion might provide a better understanding of the measurements and could help validating more features of the analytical model developed in chapters 9 and 10.

• The tests on the CDPVA prototype presented in chapter 11 were limited because of the setup used. Using another test bench might provide more interesting results, in particular the observation of the rotor's second antiresonance.

• Several studies suggested that CDPVAs could be used to filter the fundamental and second harmonics of an exciting torque. However, results from chapter 9 showed that internal resonances might be problematic when trying to filter two orders simultaneously. The analysis of a CDPVA subjected to a torque made of two harmonics would indicate whether filtering orders n and 2n is possible or not.

CONCLUSION

• The slipping of the pendulums was seen to be a major limitation of the CPVA investigated in chapter 8, but was not analysed for the CDPVA presented in chapter 11. The slipping of these double pendulums must be studied to see whether it is problematic or not.

• The only CDPVA design investigated is the one presented in chapter 11. However, other designs should also be analysed as they might be more efficient. To begin with, one could study the CDPVA design shown in Fig. 1.18.

• It was shown in this report that subharmonic CPVAs and classical CDPVAs both allow to filter higher orders than classical CPVAs. It would be interesting the assess the subharmonic response of a CDPVA as it should rather easily allow for a high-order filtering. However, the performance of such a system is a concern as it would combine the drawbacks of both the subharmonic operation and the CDPVAs.

• It was explained in chapter 1 that centrifugated beams could be order-tuned. The limitations of these devices are not yet well understood and deserve more investigations.

• In this thesis, we focused only on passive absorbers, among which pendulum systems appeared to be the optimum devices. However, the semi-passive absorption means discussed in section 1.2.2 might be the best solution for reducing the torsional vibrations of an electric powertrain.

These devices should receive more attention in the future.

• The python code presented in Appendix F proved extremely useful to solve the equations met during the thesis. Nevertheless, it deserves several improvements. First, it could be modified to be usable with nonlinear systems presenting internal resonances other than 1:1:...:1. Secondly, additional functions allowing for a stability analysis through the computation of the Jacobian could be included. The computation of the Jacobian is sometimes required to be done using Cartesian coordinates (cf. chapters 7 and 10). An automatic change from polar to Cartesian coordinates could be implemented in the code.

Appendix B

Details on the linear response of a centrifugal pendulum vibration absorber B.1 Computation of the linear response

It is convenient to compute the forced response using the truncated modal basis Φ = [ϕ 00 , ϕ 20 ]. Indeed, the rotor is a node of modes ϕ 10 i , so they do not contribute to the linear forced response.

Hence, we can use the truncated expansion

q = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ θ s 1 . . . s N ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ = ζ 0 ϕ 00 + ζ 2 ϕ 20 , (B.1)
where ζ 0 and ζ 2 are the modal coordinates of the rigid body and unison modes, respectively. Projecting the linear equations (2.24) on the truncated modal basis and neglecting the coupling through the damping leads to the two equations

(1 + µ)ζ ′′ 0 + b ¯rζ ′ 0 = T ¯1, ζ ′′ 2 + b ˜2 m ˜2 ζ ′ 2 + n 2 2 ζ 2 = - Λ c T ¯1 (1 + µ)Λ m -µΛ 2 c , (B.2a) (B.2b)
where the modal mass and damping of mode 2 are given by (1 + µ)

m ˜2 = Λ m - µΛ 2 c 1 + µ , b ˜2 = b ¯+ µΛ 2 c (1 + µ)
1 -n 2 + jnb ¯r , Z ˆ2 = - T ¯1Λ c [(1 + µ)Λ m -µΛ 2 c ] [︂ n 2 20 -n 2 + jnb ˜2/m ˜2]︂ . (B.4a) (B.4b)
Finally, the physical solutions are q = ℜ[Q ˆejnτ ] where the complex amplitudes Q ˆare obtained through

Q ˆ= ΦZ ˆwith Z ˆ= [Z ˆ0, Z ˆ2] ⊺ .
To derive the locus of the rotor's antiresonances, we can use Cramer's rule on the matrix equation associated to Eqs. (2.24). These antiresonances are the solutions of

⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ T ¯1 Λ c • • • • • • Λ c 0 n t -n 2 Λ m 0 • • • 0 . . . 0 . . . . . . . . . . . . . . . . . . . . . 0 0 0 • • • 0 n t -n 2 Λ m ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ = 0. (B.5)
Developing with respect to the first column, this reduces to

⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ n t -n 2 Λ m 0 • • • 0 0 . . . . . . . . . . . . . . . . . . 0 0 • • • 0 n t -n 2 Λ m ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ = 0, (B.6)
whose N solutions are all

n AR = n p . (B.7)
Hence, we see that in the absence of damping, the rotor possesses a single antiresonance at order n AR = n p .

B.2 Evaluation of the linear performance

This Appendix presents the details of the linear performance analysis summarised in section 2.2.4.

To do this, we analyse the variations of the performance indicators G θ , ∆n and G s (cf. Eq. (2.34)) PENDULUM VIBRATION ABSORBER as a function of the system parameters. The expressions of the performance indicators are

G θ = ⌜ ⃓ ⃓ ⃓ ⎷ [︂ (1 + µ) 2 b ¯+ µΛ 2 c b ¯r]︂ 2 (1 + µ) 4 b ¯2 + n 2 p µ 2 (1 + µ) 2 Λ 4 c , ∆n = ⎛ ⎜ ⎝ ⌜ ⃓ ⃓ ⎷ 1 + µ 1 + µ (︂ 1 -Λ 2 c Λm )︂ -1 ⎞ ⎟ ⎠ n p , G s = ⌜ ⃓ ⃓ ⃓ ⎷ Λ m Λ 2 c (1 + µ) 3 n 2 p [︃ Λ m Λ 4 c n 2 p µ 2 (1 + µ) 3 + ((1 + µ)Λ m -µΛ 2 c ) (︂ Λ c µb ¯r + (1 + µ) 2 b ¯)︂2 ]︃ . (B.8a) (B.8b) (B.8c)

Influence of the damping

When the damping increases, the term

[︂ (1 + µ) 2 b ¯+ µΛ 2 c b ¯r]︂ 2 increases faster than [︂ (1 + µ) 2 b ¯]︂2 .
Hence, as expected, increasing whether b ¯or b ¯r deteriorates G θ .

The damping has no influence on ∆n.

Increasing the damping lowers G s assuming (1 + µ)Λ m -µΛ 2 c > 0, which is the case for realistic parameters.

Influence of the tuning order

n p appears only at the denominator of G θ , so that high tuning orders should provide a better performance. ∆n increases linearly with n p . G s decreases with n p .

Influence of the inertia ratio

To simplify the study of the variations of G θ with µ, we propose to use a Taylor series of G θ in µ (we recall that µ is a small parameter), which leads to

G θ = 1 + µ b ¯rΛ 2 c b ¯-µ 2 Λ 2 c Λ 2 c n 2 p + 4b ¯rb 2b ¯2 + O(µ 3 ). (B.9)
The term multiplying µ is positive, which means that for µ very small, G θ increases with µ. However, the damping is very small which implies that the term -Λ 

G s = ⌜ ⃓ ⃓ ⃓ ⎷ Λ 2 c (1 + µ) 3 n 2 p [︃ Λ 4 c n 2 p µ 2 (1 + µ) 3 + ((1 + µ)Λ m -µΛ 2 c /Λ m ) (︂ Λ c µb ¯r + (1 + µ) 2 b ¯)︂2 ]︃ , (B.12)
which shows that Λ m only affects the damping terms in G s , which are small. In addition, -µΛ 2 c /Λ m < 0, so increasing Λ m very slightly decreases G s .

Influence of the linear coupling term between a pendulum and the rotor

The parameter that has the most interesting effect on linear performance is Λ c . Both G θ and ∆n are even functions of Λ c . We can compute the zeros of ∂G θ /∂Λ c and ∂∆n/∂Λ c , leading to

∂G θ ∂Λ c = 0 ⇒ Λ c ∈ ⎧ ⎨ ⎩ - ⌜ ⃓ ⃓ ⎷ b ¯b ¯r µn 2 p , 0, ⌜ ⃓ ⃓ ⎷ b ¯b ¯r µn 2 p ⎫ ⎬ ⎭ , ∂∆n ∂Λ c = 0 ⇒ Λ c = 0. (B.13a) (B.13b)
The evolution of the performance indicators with Λ c is represented in Fig. B.2. We remind that in the case of purely translated pendulums, Λ c = 1 (cf. Eq. (2.25b)), and it increases (decreases) for positive (negative) values of α [1] .

Increasing Λ c above 1 improves all performance indicators, meaning that in the frame of a linear study, positive values of α [1] should be preferred. On the contrary, decreasing Λ c decreases the performance indicators G θ and ∆n until Λ c = 0. For this special value, G θ = 1, ∆n = 0 and G s = 0, so the system acts as if there were no pendulums. This should not be a surprise as Λ c = 0, which occurs for α [1] = -1/η, corresponds to a situation where there is no coupling between the pendulums and the rotor (cf. Eq. (2.24)). Decreasing Λ c below -√︂ b ¯b ¯r/µn 2 p ≈ 0 improves the performance indicators G θ and ∆n, but it requires large negative values of α [1] , which is difficult to achieve in practice.

The evolution of G s is not presented in details here as its variations with Λ c are difficult to analyse analytically. Nevertheless, it is clear from Fig. B.2 that increasing Λ c above 1 improves this indicator.

Decreasing Λ c below 1 first deteriorates G s until it reaches a maximum, for Λ c ≈ 0.2. Then, decreasing Λ c from 0.2 to 0, G s decreases until it reaches 0. This is the optimal value of this indicator, but it corresponds to inactive pendulums, so it is absolutely not compatible with the performance indicators G θ and ∆n. The evolution of G s with negative values of Λ c is not discussed in details as G s is almost symmetric with respect to Λ c = 0.

Influence of the linear rotation coefficient

The evolution of the performance indicators as a function of the linear rotation coefficient α [1] is discussed in section 2.2.4. Here, we only detail the computation of particular values of α [1] . First, one PENDULUM VIBRATION ABSORBER can compute the zeros of ∂∆n/∂α [1] , leading to

-1 0 1 2 Λ c 10 -2 10 -1 10 0 G θ Λ c | α [1] =0 (a) -1 0 1 2 Λ c 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ∆n Λ c | α [1] =0 (b) -1 0 1 2 Λ c 0 1 2 3 4 5 6 G s Λ c | α [1] =0 (c) 
∂∆n ∂α [1] = 0 ⇒ α [1] = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ - 1 η ⇒ ∆n = 0, 1 ⇒ ∆n = n p (︄√︄ 1 + µ 1 -ηµ -1 )︄ . (B.14)
Moreover, if there is no rotation, the value of ∆n reduces to

∆n = n p (︂ √︁ 1 + µ -1 )︂ . (B.15)
To find a value of α [1] ̸ = 0 that yields the same value of ∆n, it is convenient to look for the solutions of

n 2 20 -n 2 20 ⃓ ⃓ ⃓ α [1] =0 = n 2 20 -n 2 p (1 + µ) = 0. (B.16)
This way, we find that

α [1] = 2 1 -η (B.17)
leads to the same value of ∆n as α [1] = 0.

Appendix D

Application of the method of multiple scales to a Duffing oscillator

The MMS is applied to the Duffing oscillator presented in section 2.5.1.1. We only consider terms up to order ϵ, so that we only need to introduce t 0 = t (fast scale) and t 1 = ϵt (slow scale) and to look for a solution of the from x(t) = x 0 (t 0 , t 1 ) + ϵx 1 (t 0 , t 1 ). We give

∂(•) ∂t = ∂(•) ∂t 0 + ϵ ∂(•) ∂t 1 , ∂ 2 (•) ∂t 2 = ∂ 2 (•) ∂t 2 0 + 2ϵ ∂ 2 (•) ∂t 0 ∂t 1 + O(ϵ 2 ). (D.1a) (D.1b)
In addition, we consider the the Duffing oscillator is weakly damped, weakly forced and weakly nonlinear, meaning that c, F and γ are of order ϵ. To make this explicit, it is convenient to introduce

c = ϵc ˜, F = ϵF ˜, γ = ϵγ ˜. (D.2)
Introducing the above in Eq. (2.44), grouping the terms by powers of ϵ and defining D 0 (

•) = ∂(•)/∂t 0 , D 1 (•) = ∂(•)/∂t 1
, we obtain the system of two equations

D 2 0 (x 0 ) + ω 2 0 x 0 = 0, D 2 0 (x 1 ) + ω 2 0 x 1 = -2D 0 D 1 (x 0 ) -c ˜D0 (x 0 ) -γ ˜x3 0 + F ˜cos(ωt 0 ). (D.3a) (D.3b)
The general solution of Eq. (D.3b) is

x 0 (t 0 , t 1 ) = A(t 1 )e iω 0 t 0 + [cc], (D.4)

where A is a complex quantity, i is the imaginary number and [cc] refers to the complex conjugate. We choose to look for solutions around the resonance ω 0 so that it is convenient to introduce the detuning σ as ω = ω 0 + ϵσ. (D.5) DUFFING OSCILLATOR Introducing Eq. (D.4) in Eq. (D.3b) and using cos(ωt 0 ) = e iσt 1 e iω 0 t 0 /2 + [cc], we obtain

D 2 0 (x 1 ) + ω 2 0 x 1 = [︄ -2iω 0 D 1 (A) -ic ˜ω0 A -3γ ˜A2 A ¯+ F ˜eiσt 1 2 ]︄ ⏞ ⏟⏟ ⏞ secular term e iω 0 t 0 -γ ˜A3 e 3iω 0 t 0 + [cc], (D.6)
where (•) ¯denotes the conjugate of (•). In Eq. (D.6), it is interesting to see that x 0 acts as a forcing term in the equation on x 1 . More specifically, x 1 is forced at frequencies ω 0 and 3ω 0 . However, its resonance frequency is ω 0 , so the forcing at frequency ω 0 makes x 1 explode. For the solution to be bounded, one needs the secular term to be null. Hence, the equation to be satisfied is

-2iω 0 D 1 (A) -ic ˜ω0 A -3γ ˜A2 A ¯+ F ˜eiσt 1 2 = 0. (D.7)
It is convenient to define the amplitude a and phase φ such that

A(t 1 ) = 1 2 a(t 1 )e iφ(t 1 ) (D.8)
in order to describe the oscillator's motion through polar coordinates. Introducing Eq. (D.8) in Eq.

(D.7) and grouping the real and imaginary terms, we obtain the two equations

⎧ ⎪ ⎨ ⎪ ⎩ 4ω 0 D 1 (a) + 2ω 0 c ˜a -2F ˜sin(σt 1 -φ) = 0, 4ω 0 aD 1 (φ) - 3 2 γ ˜a3 + 2F ˜cos(σt 1 -φ) = 0. (D.9a) (D.9b)
Phase φ does not have a physical meaning, so it is more convenient to use ξ(t 1 ) = σt 1 -φ(t 1 ), which corresponds to the relative phase between the response and the excitation, in order to write the solution as

x 0 (t 0 , t 1 ) = a(t 1 ) cos(ω 0 t 0 + φ(t 1 )) = a(t 1 ) cos(ωt 0 -ξ(t 1 )). (D.10)

The equations governing a(t 1 ) and ξ(t 1 ) are

{︄ D 1 (a) = f a (a, ξ), aD 1 (ξ) = f ξ (a, ξ), (D.11a) (D.11b)
where functions f a (a, ξ) and f ξ (a, ξ) are defined as

f a (a, ξ) = 2F ˜sin(ξ) -2ω 0 c ˜a 4ω 0 , f ξ (a, ξ) = 2F ˜cos(ξ) -3 2 γ ˜a3 + 4ω 0 σa 4ω 0 . (D.12a) (D.12b)
From the chain rule described in Eq. (D.1a), we have

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ da dt = ϵf a (a, ξ), a dξ dt = ϵf ξ (a, ξ). (D.13a) (D.13b) DUFFING OSCILLATOR
Now, we can use the procedure described in section 2.5.1.2 to compute the fixed points and their stability. The fixed points are

x(t) = a cos(ωt -ξ) (D.14)
where a and ξ are such that

σ(a) = 3γ ˜a2 ± 4 √︂ F ˜2/a 2 -c ˜a2 8ω 0 , F ˜(a) = a √︃ 9 16 γ ˜2a 4 -3γ ˜ω0 σa 2 + 4ω 2 0 + c ˜2ω 2 0 , sin(ξ) = ω 0 c ˜a F ˜, cos(ξ) = 3 4 γ ˜a3 -2ω 0 σa F ˜. (D.15a) (D.15b) (D.15c) (D.15d)
The stability of these periodic solutions are assessed by evaluating the eigenvalues of the Jacobian associated to system (D.13). These eigenvalues are given by

λ 1,2 = - c 2 ± √︁ -(3γ ˜a2 -8ω 0 σ)(9γ ˜a2 -8ω 0 σ) 8ω 0 . (D.16)

Appendix F

A python code for the automatised implementation of the method of multiple scales

F.1 Minimal working example: the Duffing oscillator

We propose to present briefly the python code that automatises the method of multiple scales (MMS) through a minimal working example: the resolution of the Duffing equation [161] x ¨+ cx ̇+ ω 2 0 x + γx 3 = F cos ωt, (F.1)

where x is the displacement of the oscillator, c, ω 0 and γ are its damping, natural frequency and nonlinear coefficient, respectively, and F and ω are the amplitude and the frequency of the forcing, respectively. A script to solve this equation is given below: means that we want to account for damping. This adds a viscous damping term cx ̇in the equation. sol_SS=True means that we will look for a steady-state solution of the equation.

• Function apply_MMS is called in line 25. In the arguments, passing omega0 means that the MMS is applied around ω 0 , that is to say, ω = ω 0 + ϵσ where σ is a detuning term. This function returns the dictionaries MMS and SS, which contain the results of the application of the MMS and their evaluation at steady state, respectively.

• Several items are extracted from the dictionaries in lines 28 to 32. a and β are the amplitude and phase of the response such that

x = a cos(ωt -β). (F.2)
fa and fbeta contain the expression of functions f a and f β , which govern a and β such that

{︄ 0 = f a (a, β), 0 = f β (a, β). (F.3a) (F.3b)
Note that if steady state was not assumed, these functions would govern the evolution of a and β with time such that

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ da dt = f a (a, β), a dβ dt = f β (a, β). (F.4a) (F.4b)
sig_bbc contains the expression of the backbone curve of the oscillator. sig_a contains the expression of the forced response of the oscillator under the form σ(a). The forced response is complete with sin_beta and cos_beta, which contain the expression of sin β and cos β, respectively. Note that dictionaries MMS and SS contain a lot more items than those extracted here.

One of the results of the script described above is the backbone curve 

ω bbc = ω 0 + ϵσ bbc = ω 0 + 3ϵγa 2 8ω 0 - 15ϵ 2 γ 2 a 4 256ω 3 0 + 123ϵ 3 γ 3 a 6 8192ω 5 

L'absorbeur pendulaire centrifuge

C'est donc en choisissant n p tel que n p = n e que l'on assure ω p = ω e (cf. Eq. ( 2)).

Le choix de n p s'effectue via un contrôle précis des fonctions de trajectoire x(s i ) et de rotation α(s i ) des pendules. Dans cette thèse, on choisit d'exprimer ces fonctions sous la forme

x(s i ) = 1 -n 2 t s 2 i + x [4] s 4 i , α(s i ) = α [1] 

s i + α [3] s 3 i , (6a) (6b) 
où n t et x [4] sont des coefficients de trajectoire et α [1] et α [3] sont des coefficients de rotation. Le cas

x [4] = α , c p = 3(x [4] + 2n 2 p ηα [1] α [3] ), (7a) RÉSUMÉ FRANÇAIS où η = I/mR 2 0 est l'inertie sans dimension d'un pendule. Il est intéressant de noter que n p ne dépend que des coefficients n t et α [1] , qui gouvernent le comportement linéaire, alors que c p dépend en plus de x [4] et α [3] , qui contrôlent le comportement non-linéaire. Le designer peut donc utiliser n t et α [1] pour choisir n p , puis, dans un second temps, utiliser x [4] et α [3] pour choisir c p . Il est à noter que la rotation des pendules (visible ici via α [1] ) influe le couplage linéaire pendule/rotor et la masse équivalente d'un pendule, ce qui peut être utilisé pour améliorer les performances de l'APC (cf. section 2.2.4). 

Analyse linéaire d'un absorbeur pendulaire centrifuge

Objectifs et contributions

Cette thèse comporte deux objectifs principaux :

• Augmenter l'efficacité des absorbeurs pendulaires actuellement utilisés dans l'industrie en se con- La trajectoire et la loi de rotation des pendules sont gouvernés par les fonctions

x(s i ) = 1 -n 2 t s 2 i + x [4] s 4 i , α(s i ) = α [1] s i + α [3] s 3 i , (13a) (13b) 
où s i représente l'abscisse curviligne du i ème pendule (cf. Fig. 6), n t , x [4] sont des paramètres de trajectoire et α [1] , α , c p = 3(x [4] + 2n 2 p ηα [1] α [3] ). ( 14) RÉSUMÉ FRANÇAIS paramétriquement") par le couple externe. Le modèle précis tient compte à la fois du forçage direct et paramétrique des pendules par le couple externe.

• Le modèle simple permet de calculer analytiquement les deux premières harmoniques du rotor alors que le modèle précis permet de dériver ses trois premières harmoniques.

Les deux modèles sont utilisés dans la littérature (sans la contribution de la rotation, voir [65,66,[START_REF] Issa | Synchronous and non-synchronous responses of systems with multiple identical nonlinear vibration absorbers[END_REF] par 

Décalage de l'antirésonance et performance [chap. 4]

En raison de la nature non-linéaire du système, l'ordre de l'antirésonance classique du rotor dépend de l'amplitude des variables, qui dépend à son tour de l'amplitude du couple de forçage. La Fig. 11 La trajectoire et la loi de rotation des pendules sont régies par des fonctions

x(s i ) = 1 -n 2 t s 2 i + x [4] s 4 i , α(s i ) = α [1] s i + α [3] s 3 i , (16a) (16b) 
où s i représente l'abscisse curviligne du i ème pendule (cf. Fig. 13), n t , x [4] sont des paramètres de trajectoire et α [1] , α Il est à noter que chaque bifurcation PF dans la Fig. 16 se produit au-dessus du point de rebroussement.

Elles ne sont donc pas un problème car les pendules ne peuvent pas osciller à de telles amplitudes.

Néanmoins, il peut y avoir des cas autres que celui décrit dans la Fig. 16 pour lesquels ces instabilités sont problématiques. Par conséquent, des règles de design sont fournies dans le chapitre 6 pour s'assurer que la solution sous-harmonique reste stable jusqu'à ce que les pendules atteignent leur point de rebroussement.

Stabilité de la solution sous-harmonique en présence de plusieurs paires de

pendules et désaccord non-linéaire [chap. 6,7] Dans un APC constitué de plusieurs paires de pendules, le mode d'opposition de phase est dégénéré, et la solution sous-harmonique désirée, notée "SH1", correspond à des combinaisons particulières de ces modes dégénérés (cf. chapitre 7). Ces combinaisons doivent être telles que les N pendules oscillent avec la même amplitude, mais N/2 pendules sont en opposition de phase avec les autres N/2. L'une de ces configurations est illustrée dans la Fig. 

Absorbeurs à doubles pendules centrifuges

On présente ici les principaux résultats de la partie IV de ce rapport, qui traite de l'utilisation d'absorbeurs à double pendules centrifuges (ADPC, ou "CDPVA" en anglais pour "centrifugal double pendulum vibration absorber"). L'industrie automobile utilise actuellement des absorbeurs pendulaires centrifuges (APC) pour réduire les vibrations de torsion des groupes motopropulseurs de véhicules RÉSUMÉ FRANÇAIS thermiques. L'un des principaux objectifs de cette thèse est d'adapter les systèmes pendulaires aux véhicules électriques, qui suscitent de plus en plus d'intérêt en raison des normes environnementales de plus en plus strictes. Les vibrations de torsion à réduire dans les chaînes de transmission électriques se produisent à des ordres beaucoup plus élevés que dans les véhicules thermiques (cf. section 1.1).

Malheureusement, l'accord d'un APC à ordre élevé est difficile à réaliser en raison de tolérances de fabrication exigeantes (cf. section 2.2.3). C'est pourquoi nous nous intéressons à l'utilisation de doubles pendules centrifuges, dont l'accord est plus flexible et nécessite donc des tolérances de fabrication moins exigeantes. De plus, les doubles pendules génèrent deux antirésonances du rotor. L'utilisation de la deuxième antirésonance peut aider à filtrer des ordres élevés.

Les principaux sujets traités dans la partie IV de la thèse sont listé ci-dessous :

• Modélisation d'un ADPC ;

• Caractéristiques linéaires, ordres d'accord et optimisation du processus d'accord linéaire ;

• Réponse non-linéaire d'un ADPC ;

• Les antirésonances du rotor, dont l'évolution n'est pas triviale en raison des effets non-linéaires ;

• Instabilités de la réponse à l'unisson d'un ADPC.

Le développement de plusieurs des résultats discutés dans ce résumé nécessite des manipulations algébriques élaborées, détaillées dans les chapitres 9, 10 et 11. Nous ne rapportons ici que les principaux résultats de la partie IV, décrits d'un point de vue physique. Le second rotor (vert) est associé à un ADPC accordé pour verrouiller l'antirésonance à n p1 afin qu'elle ne se décale pas lorsque le forçage augmente. L'accord non-linéaire de l'ADPC proposé dans les chapitres 9 et 10 est réalisé par le choix de la loi de rotation des pendules autour de leur centre de masse. La règle de design pour verrouiller l'antirésonance a été obtenue via la procédure de suivi d'antirésonance illustrée en Fig. 24(c). Elle est extrêmement bénéfique pour la réduction des vibrations car elle diminue l'amplitude du rotor et repousse la bifurcation SN à des niveaux de couple élevés.

L'amplitude du rotor augmente de manière significative pour de grands niveaux de couple car les approximations utilisées pour obtenir la règle de verrouillage d'antirésonance sont moins précises à de fortes amplitudes de pendule. 

Conclusion

Les travaux présentés dans ce rapport portent sur l'utilisation d'absorbeurs pendulaires centrifuges (APCs) pour réduire les vibrations de torsion rencontrées dans des chaînes de transmission automobiles, qu'elles soient thermiques ou électriques. Le but de ces absorbeurs est de filtrer un couple s'appliquant sur une machine tournante. Les travaux s'orientent autour de deux axes de recherche principaux :

• Augmenter les connaissances sur les absorbeurs pendulaires centrifuges, en se concentrant particulièrement sur leurs limitations actuelles et sur des principes de fonctionnement originaux ;

• Adapter les absorbeurs pendulaires actuellement utilisés dans des véhicules thermiques à des véhicules électriques via la proposition d'architectures originales.

Les principaux résultats sont résumés ci-dessous.

Dans la littérature, la plupart des travaux sur des absorbeurs pendulaires ne considèrent qu'un mouvement de translation des pendules. Cependant, des études récentes ont montré un réel avantage à profiter de la rotation des pendules autour de leur centre de masse. La prise en compte et l'étude approfondie de cette rotation est une contribution importante de cette thèse. 

Improvements in the design of pendulum absorbers to reduce the vibrations of automotive powertrains

Résumé : Dans le contexte de normes environnementales de plus en plus strictes, les constructeurs automobiles doivent s'adapter pour développer des véhicules moins polluants. Dans ce but, ils proposent de réduire la taille des moteurs thermiques et s'orientent vers les véhicules électriques. Cependant, la réduction de la taille du moteur augmente son acyclisme, provoquant des vibrations de torsion plus importantes de la chaîne cinématique. De plus, l'utilisation de moteurs électriques met en évidence des sources de vibration de torsion auparavant éclipsées par l'acyclisme du moteur. Les absorbeurs pendulaires centrifuges (APCs) sont utilisés depuis près d'un siècle pour contrebalancer l'acyclisme de moteurs thermiques. Ils sont constitués de plusieurs masses (pendules) oscillant par rapport à un rotor. Cependant, ces dispositifs sont soumis à plusieurs sources de non-linéarité qui peuvent réduire drastiquement leur efficacité. Il est donc nécessaire d'optimiser la conception des APCs afin de répondre aux exigences des moteurs thermiques les plus récents et de les adapter aux véhicules électriques. Dans cette thèse, nous nous concentrons sur trois concepts de pendules centrifuges. Le premier est l'APC classique, qui est actuellement utilisé dans l'industrie automobile mais qui requiert des améliorations. Les deuxième et troisième concepts sont les APC sous-harmoniques et les absorbeurs à doubles pendules centrifuges (ADPCs), qui ont été beaucoup moins étudiés que les APC classiques et qui ne sont actuellement pas utilisés dans l'industrie. Nous utilisons principalement des méthodes analytiques pour étudier la réponse non-linéaire des pendules centrifuges. Ces modèles analytiques sont particulièrement utiles car ils fournissent une compréhension approfondie de la dynamique des pendules centrifuges et ils permettent de dériver des règles de design pour optimiser leur efficacité. Ces règles sont étroitement liées au choix de la trajectoire des pendules et à leur rotation par rapport au rotor. Des méthodes numériques sont utilisées pour valider les résultats analytiques. De plus, plusieurs prototypes de pendules centrifuges ont été conçus au cours de la thèse. Ceci a permis de réaliser des analyses expérimentales qui ont validé les modèles théoriques.

Mots clés : pendules centrifuges, absorbeur de vibrations, absorbeur non-linéaire, vibrations de torsion, localisation, sous-harmonique, méthode des échelles multiples, chaîne de transmission.

Abstract:

In the context of increasingly stringent environmental standards, automotive manufacturers have to adapt themselves to develop less polluting vehicles. To this aim, they propose to reduce the size of thermal engines and they turn their attention towards electric vehicles. However, the reduction of the engine size increases its acyclism, causing larger torsional vibrations of the drivetrain. Moreover, the use of electric motors brings to the fore sources of torsional vibrations previously hidden by the engine. Centrifugal pendulum vibration absorbers (CPVAs) have been used for nearly a century to balance the acyclism of thermal engines. They consist of several masses (pendulums) oscillating relatively to a rotor. However, these devices are subjected to several sources of nonlinearity that can drastically reduce their efficiency. Hence, there is a need to optimise the design of CPVAs to meet the requirements of the most recent thermal engines and to adapt them to electric vehicles. In this thesis, we focus on three different centrifugal pendulum concepts. The first one is classic CPVAs, which are currently used in the automotive industry but need improvements. The second and third ones are subharmonic CPVAs and centrifugal double pendulums vibration absorbers (CDPVAs), which are been much less studied than classical CPVAs and are currently not used in the industry. We mainly use analytical methods to investigate the nonlinear response of centrifugal pendulums. These analytical models are particularly useful as they provide a deep understanding of the dynamics of centrifugal pendulums and they allow to derive guidelines to optimise their efficiency. These guidelines are related to the choice of the pendulums' path and to their rotation relatively to the rotor. Numerical methods are used to validate the analytical results. Moreover, several centrifugal pendulum prototypes were designed during the thesis. This allowed to perform experimental investigations which validated the theoretical models.

Keywords: centrifugal pendulums, vibration absorber, nonlinear absorber, torsional vibrations, localisation, subharmonic, method of multiple scales, drivetrain.
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Figure 1 . 1 :

 11 Figure 1.1: Typical torque applied on a rotating machine. This example represents the torque delivered by a four-stroke, four-cylinder internal combustion engine over one engine cycle, for a mean rotational speed Ω = 1000 [rpm].
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 1 VIBRATIONS IN AUTOMOTIVE POWERTRAINS decomposed into Fourier series of fundamental order n e such that T (ϑ) = T 0 + ∞ ∑︂ k=1 ck cos(kn e ϑ) + T sk sin(kn e ϑ), (1.2)

Figure 1 . 2 :

 12 Figure 1.2: Possible architecture for the gearbox of an electric car.

1. 1 .Figure 1 . 4 :

 114 Figure 1.4: Representation of a SynRM with 2 rotor poles and 12 stator slots. Axes d and q are the direct and quadrature axes of the SynRM, respectively. Taken from [11].
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 23415 Figure 1.5: Illustration of the numerous critical points (circles) corresponding to a resonance of the drivetrain via the intersection of the harmonics of the excitation (in black) with the modes of the drivetrain (dashed lines). Two drivetrain configurations are shown, one in blue and one in red, corresponding to different gear ratios.

1. 2 .Figure 1 . 6 :

 216 Figure 1.6: Representation of a CPVA with four pendulums. The blue curves are the pendulums' path.

Figure 1 . 7 :

 17 Figure 1.7: Illustration of a tuned mass damper.

20 1. 2 .

 202 THE CENTRIFUGAL PENDULUM VIBRATION ABSORBER the CPVA on the excitation by tuning the pendulums such that: ω p = ω e , or equivalently n p ϑ ̇= n e ϑ ̇⇒ n p = n e .(1.11)

Figure 1 . 8 :

 18 Figure 1.8: Illustrations taken from patents by (a) Carter[37], (b) Sarazin[38] and (c) Chilton[39]. The axis of rotation indicated is that of the rotor.

Figure 1 . 9 :

 19 Figure 1.9: Illustration of a centrifugal pendulum vibration absorber (CPVA) attached on a flywheel.

Figure 1 . 10 :

 110 Figure 1.10: Photos of a translated bifilar CPVA with 6 pendulums. The front plate was removed on the zoom in order to observe the rollers and tracks of the CPVA.

Figure 1 . 11 :

 111 Figure 1.11: Representation of a pendulum (rectangle) in several positions. This pendulum rotates about its centre of mass as it moves on its path.

Figure 1 . 12 :

 112 Figure 1.12: Illustration of the motion of a rocking bifilar CPVA.

Figure 1 . 19 :

 119 Figure 1.19: Discrete modelling of a drivetrain. The main elements act as inertias while the shafts act as torsional springs.

  , A. Renault, A. Grolet, O. Thomas, H. Mahé, "Dynamic stability of centrifugal pendulum vibration absorbers allowing a rotational mobility", Journal of Sound and Vibration (517), 2022, • V. Mahé, A. Renault, A. Grolet, H. Mahé, O. Thomas, "Subharmonic centrifugal pendulum vibration absorbers allowing a rotational mobility", Mechanical Systems and Signal Processing (177), 2022, • V. Mahé, A. Renault, A. Grolet, H. Mahé, O. Thomas, "On the dynamic stability and efficiency of centrifugal pendulum vibration absorbers with rotating pendulums", Journal of Sound and Vibration (536), 2022.
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 5212132131 MODELLING OF A CENTRIFUGAL PENDULUM VIBRATION ABSORBER Representation of the path and rotation functions A description of general pendulum paths introduced by Denman [42] uses a one-parameter function to control the radius of curvature ρ(S) of C such that

Figure 2 . 3 :

 23 Figure 2.3: Modes of a CPVA made of N = 2 pendulums. The rotation of the pendulums about their centre of mass is not represented in this figure.

Figure 2 . 4 :

 24 Figure 2.4: Linear response of a CPVA made of two pendulums tuned on order 2. The rotor's and pendulums' amplitudes are represented in (a) and (b), respectively, while their phases are shown in (c). In (a), the horizontal black dashed line corresponds to the rotor's response when the pendulums are fixed. ∆n is a performance indicator used in section 2.2.4. n p = 2, µ = 0.1, η = 1, α [1] = 1, b ¯= 0.025, b ¯r = 0.002, T ¯1 = 0.001.

Figure 2 . 5 :

 25 Figure 2.5: Evolution of G θ (a), ∆n (b) and G s (c) as a function of α [1] . η = 0.5, n p = 2, µ = 0.15, b ¯= 0.01, b ¯r = 0.001.

Figure 2 . 6 :

 26 Figure 2.6: Illustration of the optimal positioning of a CPVA in a gear train.

Figure 2 . 10 :

 210 Figure 2.10: Amplitude response of the first harmonic of a Duffing oscillator as a function of the excitation frequency and for three different forcing levels. The solid and dashed lines indicate stable and unstable solutions, respectively. The blue area is an instability zone causing jumps of the response. Blue stars indicate saddle-node (SN) bifurcations. Parameters: ω 0 = 1, γ = 1, c = 0.1, F = {0.01, 0.05, 0.1}.

Figure 2 . 11 :

 211 Figure 2.11: Path of Floquet exponents α n in the complex plane during bifurcations of periodic solutions of angular frequency ω. Taken from [168].

Figure 2 . 12 :

 212 Figure 2.12: Bifurcation diagram representing super-and subcritical pitchfork bifurcations. Dashed lines indicate unstable solutions and the red star corresponds to the pitchfork bifurcation.

Figure 2 . 13 :

 213 Figure 2.13: Poincaré sections of a nonlinear system in quasi-periodic regime (a) and chaotic regime (b).

2 Figure II. 1 :

 21 Figure II.1: Illustration of a CPVA made of N = 2 pendulums. The black frames attached to the pendulums represent their rotation relatively to the rotor.

n 10 = n p unison mode n 20 =Figure II. 2 :

 10202 Figure II.2: Modes of a CPVA made of N = 2 pendulums. ϵ is a small parameter indicating that the eigenorder of the unison mode is slightly larger than the tuning order. The rotation of the pendulums about their centre of mass is not represented in this figure.

Figure II. 3

 3 Figure II.3 depicts a typical nonlinear response of the system when submitted to a harmonic torque with variable excitation order n (similar to a frequency response function with a varying excitation frequency). The amplitude of the pendulums is shown in (a) and the amplitude of the rotor's acceleration in (b). The right-hand side of Fig. II.3 deals with the subharmonic CPVA tuning, which is the subject of part III, so it is not detailed here. The scope of the chapters constituting part II is illustrated on the left-hand side of Fig. II.3. The green curves represent the response of the CPVA for pendulums oscillating at unison. The amplitudes of the pendulums are physically limited due to the finiteness of their path, and this limit is indicated by s cusp in Fig. II.3(a). When the pendulums oscillate on the unison mode and before its resonance, they exert a torque on the rotor that opposes the external torque. This generates the classical antiresonance visible in Fig. II.3(b) near n p (it is exactly at n p in the linear, conservative case).

Figure II. 3 :

 3 Figure II.3: Typical amplitude response of the pendulums (a) and rotor (b) of a CPVA as a function of the excitation order. The left-hand side of this figure is the scope of part II while the right-hand side is the scope of part III. The green and blue curves correspond to pendulums responding on the unison and phase-opposition modes, respectively, and the dashed lines indicate unstable solutions. Harmonics 1 and 1/2 of the pendulums' response are shown in (a) while only the first rotor harmonic is shown in (b). The horizontal black line in (a) indicates the cusp of the pendulums' path. The red, blue and black stars indicate pitchfork (PF), saddle-node (SN) and period-doubling (PD) bifurcations, respectively.

  Fig. II.3 through the presence pitchfork (PF) bifurcations (red stars) and saddle-node (SN) bifurcations (blue stars). PF bifurcations lead to non-unison pendulums' motions (this corresponds to the localised response in pink and cyan in Fig. II.3) and SN bifurcations cause the pendulums to no longer act as absorbers but as amplifiers.

  figure depicts the forced response of two different CPVAs excited on their tuning order, i.e. n = n p .

  Fig. II.4(a)-(b). When realising an

Figure II. 4 (

 4 Figure II.4(c)-(d) shows the response of another CPVA as a function of the forcing amplitude and excited at its tuning order. During an increasing sweep in T ¯1, the amplitude of the pendulums and

Figure II. 4 :

 4 Figure II.4: Torque response of a first CPVA (on the left) and a second one (on the right) as a function of the torque amplitude. (a), (c) and (b), (d) represent the pendulums' and the rotor's amplitudes, respectively. The green curve corresponds to the unison pendulums' motion while the blue and orange ones in (c), (d) correspond to the localised response. Dashed lines indicate unstable solutions. The red and blue stars indicate pitchfork (PF) and saddle-node (SN) bifurcations, respectively. In all plots, n = n p so that the CPVAs are excited on their tuning order.

Figure II. 5 3 Figure II. 5 :

 535 Figure II.5 represents the response of the pendulums of three CPVAs as a function of the excitation order. These CPVAs have the same parameters except for their nonlinear tuning.

  Fig. II.5(a) and (c)) allows to avoid instabilities at n = n p , which is convenient as the rotor's antiresonance is located near n p . On the contrary, CPVA 2 (cf. Fig. II.5(b)) fails to avoid the apparition of instabilities at n = n p , so the associated nonlinear tuning is not recommended. Simple tuning guidelines are derived in chapters 3 and 4 to systematically avoid instabilities of the unison response. These guidelines are a major contribution of the thesis.

Figure II. 6

 6 Figure II.6(a) illustrates the evolution of the rotor's response around its antiresonance (green curves)

Figures II. 6

 6 Figures II.6(b) and (c) compare the response of two CPVAs as a function of the forcing level and

  Figures II.6(b) and (c) compare the response of two CPVAs as a function of the forcing level and for an excitation order n = n p . The CPVA shown in red is tuned to have tautochronic uncoupled pendulums. This configuration, often discussed in the literature, means that the period of oscillation of the pendulums does not depend on their amplitude of motion when the rotor spins with a constant velocity. It is the evolution of the antiresonance of this CPVA that is represented in Fig. II.6(a). The other CPVA, shown in green in (b)-(c), is tuned to lock the antiresonance at n = n p .

Figure II. 6 :

 6 Figure II.6: The response of two different CPVAs is represented in this figure. (a) shows the amplitude of a rotor's first harmonic around its antiresonance and for several forcing levels. This rotor is part of a CPVA with tautochronic pendulums. The darker the line the larger the associated torque level and dashed lines indicate unstable solutions. The pink curve represents the antiresonance locus as the torque amplitude is increased. The pendulums' and rotor's response of two CPVAs are shown in (b) and (c) as a function of the forcing level and for n = n p . One of the CPVAs is the one represented in (a). The other one is tuned to lock the antiresonance at n = n p . (d) represents the three first rotor harmonics of the CPVA tuned to lock the antiresonance as a function of the forcing level. The red and blue stars indicate pitchfork (PF) and saddle-node (SN) bifurcations, respectively.

Figure II. 7 :

 7 Figure II.7: Maps representing the stability state and some guidelines in the design space. Each map is shown for a given excitation order n and a given pendulums' amplitude. Green, blue and red areas correspond to designs that are stable, subjected to jumps and subjected to localisation, respectively.

Fig. 1 .

 1 Fig. 1. Representation of the system studied for 𝑁 = 2 pendulums.
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Fig. 2 .

 2 Fig. 2. CPVA studied (only one of the two pendulums is represented, the architecture being symmetric).
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Fig. 3 .

 3 Fig. 3. Order response of the pendulums at unison and their stability. Portions of the response curves corresponding to stable unison, unstable unison and unstable periodic responses are represented in green, red and blue, respectively. Portions where both the unison and the periodic response are unstable are represented in purple. Additionally, all unstable portions are shown as dashed-lines. The black and grey curves represent the pitchfork and saddle-node bifurcations, respectively. T1 = {0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.3, 1.6, 2, 2.4} × 10 -2 .

  Fig.4. Representation of the stability in the design space (𝛼[1] , 𝑥[4] ). The colour code is the same as that used in Fig.3, so that areas corresponding to stable unison, unstable unison and unstable periodic responses are represented in green, red and blue, respectively. Areas where both the unison and the periodic response are unstable are represented in purple. The black dot corresponds to the design represented in Fig.3. The black curve represents designs rendering a linear behaviour. The hatched regions indicate non-achievable designs. 𝑛 = 0.63, 𝑅 𝑂 1 ∕𝑅 0 = 0.422. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5 .

 5 Fig. 5. Comparison of the pendulums' response (a) and rotor's response (b) obtained analytically and numerically. The colour code of the analytical results is the same as that used in Fig. 3. Circles represent the numerical results obtained through temporal integrations. In (a), one of the pendulums is represented by blue circles, the other by orange ones. The MANLAB solution is given as a black line with cross markers. Bifurcation points found with MANLAB are marked as black stars with an associated code name. Code names ''PF'' and ''SN'' refer to ''pitchfork'' and ''saddle-node'' bifurcations, respectively. T1 = 0.01.

Fig. 6 .

 6 Fig. 6. Temporal signals (truncated) of the pendulums (a) and rotor (b) obtained through a numerical integration of the equations of motion. These signals lead to the amplitudes shown in Fig. 5 at 𝑛 = 0.65.

Fig. 7 .Fig. 8 .

 78 Fig. 7. Pendulums' order response exhibiting non-periodic localised solutions. The colour code of the analytical results is the same as that used in Fig. 3. Circles represent the numerical results. One of the pendulums is represented by blue circles, the other by orange ones. b = 0.063, T1 = 0.01. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9 .

 9 Fig. 9. Behaviour of the response according to the value of 𝑥 [4] . (a) softening, 𝑥 [4] = 4.2, (b) linear, 𝑥 [4] = -0.0561, (c) hardening, 𝑥 [4] = -4.2. The limits of the bifurcation zones in the undamped case are represented with dashed lines. T1 = 0.01 and system parameters are given in Table1. The colour code is the same as that used in Fig.3. The black and grey dots indicate the points corresponding to 𝑛(𝑣) 𝑑 and 𝑛 (𝑣) 𝑗 , respectively. The black and grey diamonds indicate the points corresponding to 𝑛(ℎ) 𝑑 and 𝑛 (ℎ) 𝑗 , respectively.

3 .

 3 Fig.10. Representation of the stability in the design space (𝛼[1] , 𝑥[4] ) for three different tuning levels: 𝑛 = 0.4 (over-tuning), 𝑛 = 0.6 (under-tuning) and 𝑛 = 0.5 (perfect tuning). The other system parameters are given in Table1. The colour code is the same as that used in Fig.3. The black curve represents designs rendering a linear behaviour. Each map is represented for |𝑠 (1) | = 0.3 and 𝑅 𝑂 1 ∕𝑅 0 = 0.422.
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Fig. 11 .

 11 Fig. 11. CPVA used for the experiments.

Fig. 12 .

 12 Fig. 12. Experimental setup. (a) zoom on a side view, (b) global view, (c) front view. Note that the CPVA shown in this figure is not the one used for the experiments.
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Fig. 13 .

 13 Fig. 13. Comparison of the analytical, numerical and experimental results. Blue and orange circles represent the numerical results (obtained with increasing and decreasing torque sweeps). Diamonds represent the experimental results. One of the pendulums is represented by black diamonds, the other by grey ones. The curve represents the analytical results (stable in green, unstable unison in red). Black crosses indicate the bifurcation points obtained analytically. 𝑛 = 0.568, 𝛺 = 1500 [rpm].
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Fig. 1 .

 1 Fig. 1. Representation of the system studied. It is made of 𝑁 = 2 pendulums.

Fig. 7 .

 7 Fig. 7. Torque response of three different CPVAs at 𝑛 = 𝑛 𝑝 . The solutions associated to the first, second and third CPVAs are shown as lines with square, cross and diamond markers, respectively. The first harmonic of the pendulums is shown in (a), the gain on the first harmonic of the rotor is shown in (b), and higher rotor harmonics are shown in (c). The gain shown in (b) is defined as ℎ 1 ∕ T1 , as the amplitude of the rotor with fixed pendulums is T1 . Analytical results are shown in black for CPVA 1 (they are not shown for CPVAs 2 and 3 for clarity). Pitchfork bifurcations are indicated as red stars. Dashed lines indicate unstable solutions. The parameters of the three CPVAs are given in Table1expect for 𝑥[4] = {0.3261, 0, 0}, 𝛼[3] = {-0.1, 0, 0} and 𝛼[1] = {0.5, 0.5, 0} for CPVAs 1, 2 and 3, respectively.

Fig. 8 .

 8 Fig.8. Order response of the pendulums for three different values of nonlinear tuning. The unison response is represented in green and its unstable parts are dashed. The red and blue areas are the instability regions related to localisation and jumps, respectively. The dashed black and grey lines are 2nd order approximations of the limits of those regions in the conservative case. The vertical brown line indicates 𝑛 𝑝 . T1 = 0.015 and 𝑥[4] = {0.25, 0.1, -0.25} in (a), (b) and (c), respectively, while the other parameters are given in Table1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9 .

 9 Fig. 9. Maps representing the stability of the response as a function of the tuning parameters 𝑛 𝑝 and c𝑝 . Each map is shown for a given order 𝑛 and a given pendulums' amplitude 𝑎. Stable designs are depicted in green while designs subjected to localisation or jumps are shown in red or blue, respectively. The parameters avoiding localisation are delimited by black lines. The brown line corresponds to recommendation(30), locking the antiresonance. The grey line shows the limit between the hardening and softening behaviour of the unison mode. Designs below this line are hardening. The hatched areas indicate the designs for which amplitude 𝑎 is larger than 𝑠 cusp . 𝑛 = 1.5 and the parameters that are not varied are given in Table1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

  mode n 10 = n p unison mode n 20 = n p + ε

Figure 2 :

 2 Figure 2: Modes of a CPVA made of N = 2 pendulums. The rotation of the pendulums about their centre of mass is not represented in this figure. ε indicates that n 20 is slightly larger than n p .

Figure 3 :

 3 Figure3: Amplitude of modes 1 and 2 as a function of the excitation order. The single-mode solution (mode 2) is depicted in green and its backbone curve is shown in black. For the coupled-mode solution, modes 1 and 2 are represented in pink and brown, respectively. The backbone curve of the coupled-mode solution projected on modes 1 and 2 is shown in grey. Dashed lines indicate unstable solutions. The red and blue areas correspond to unstable zones of the unison response leading to a localised solution and a jump of the response, respectively. The pitchfork and saddle-node bifurcations obtained analytically are indicated with code names "PF" and "SN", respectively. T1 = 0.001 and the other parameters are given in Tab. 1.

Figure 4 :

 4 Fig.4

Figure 5 :

 5 Figure 5: Time signals of the pendulums for the excitation parameters n = 0.5239 and T1 = 0.001. The amplitude and phase of these signals are shown Fig. 4. Both analytic and time integration signals are shown. The time integration ones are shown as lines with dot markers. The system parameters are given in Tab. 1.

Figure 6 :

 6 Figure 6: Amplitude of the first (a) and second (b) harmonics of the rotor's acceleration as a function of the excitation order. The analytical and MANLAB unison solutions are depicted in green while the localised solution is shown in blue. Dashed lines indicate unstable solutions. The pitchfork and saddle-node bifurcations obtained analytically are indicated with code names "PF" and "SN", respectively. The solutions obtained using MANLAB are represented as lines with square markers. The blue circles are the solutions obtained through time integration. T1 = 0.001 and the other parameters are given in Tab. 1.

Figure 7 :

 7 Fig. 7(a)

Figure 8 :

 8 Figure 8: Time signals of the pendulums for the four excitation orders indicated by arrows at the bottom of Fig. 7(b). (a), (b), (c) and (d) correspond to n = {0.5179, 0.5193, 0.5265, 0.5279}, respectively. (a) and (d) are at the outer limit of the non-periodic response zone, while (b) and (c) are in the inner limit. T1 = 0.001 and the system parameters are given in Tab. 2.

Figure 9 :

 9 Figure 9: (a) and (b) are Poincaré maps associated to the non-periodic signals represented in Fig. 8(b) and (c), respectively. n = {0.5193, 0.5265} for (a) and (b), respectively, T1 = 0.001 and the system parameters are given in Tab. 2.

Figure 10 :

 10 Figure 10: Amplitude of the pendulums (a) and the first (b) and second (c) harmonics of the rotor's acceleration as a function of the excitation amplitude. The analytical and MANLAB unison solutions are depicted in green while the localised branches of pendulums 1 and 2 are shown in orange and blue, respectively. The localised rotor response is shown in blue. Dashed lines indicate unstable solutions. The pitchfork and saddle-node bifurcations obtained analytically are indicated with code names "PF" and "SN", respectively. The solutions obtained using MANLAB are represented as lines with square markers. n = 0.504 and the other parameters are given in Tab. 3.

2 Figure III. 1 :

 21 Figure III.1: Illustration of a CPVA made of N = 2 pendulums. The black frames attached to the pendulums represent their rotation relatively to the rotor.

  Figure III.2: Modes of a CPVA made of N = 2 pendulums. ϵ is a small parameter indicating that the eigenorder of the unison mode is slightly larger than the tuning order. The rotation of the pendulums about their centre of mass is not represented in this figure.

  Fig. III.2 becomes degenerated. This significantly complicates the analysis of the subharmonic response and is addressed in chapter 7. Chapter 8 presents an experimental investigation on a prototype designed to work in subharmonic regime following the recommendations exposed in chapters 6 and 7.

Figure III. 3 Figure III. 3 :

 33 Figure III.3 depicts a typical nonlinear response of the system when submitted to a harmonic torque with variable excitation order n (similar to a frequency response function with a varying excitation frequency). The amplitude of the pendulums is shown in (a) and the amplitude of the rotor's acceleration in (b). The left-hand side of Fig. III.3 deals with the classical CPVA tuning,which is the subject of part II, so it is not detailed here.

  Fig. III.3(b)). This PF bifurcation leads to a response different from the desired phase-opposition motion of the pendulums. Other instabilities, not visible in Fig. III.3, are due to a subharmonic response of the unison mode which also perturbs the phase-opposition motion.

Figure III. 4 :

 4 Figure III.4: On the left, we represent the amplitude of the pendulums (a) and the rotor (b) as a function of the excitation order and for three torque levels. The darker the line the larger the associated torque level. On the right, we also represent the amplitude of the pendulums (c) and the rotor(d), but as a function of the forcing level and at order n = 2n p . Green and blue curves correspond to the solution with immobile pendulums and the subharmonic operation, respectively. Dashed lines indicate unstable solutions. Red and black stars correspond to pitchfork (PF) and period-doubling (PD+ for supercritical, PD-for subcritical) bifurcations, respectively. The red and grey areas indicate instability zones related to localisation of the subharmonic solution and to jumps, respectively.

  Fig. III.4(a). Note that they correspond to the lower branches of the subharmonic response, which bends to the right, hence exhibiting a hardening behaviour. The red area in Fig. III.4(a) indicates another instability zone of the subharmonic solution. PF bifurcations occur at the crossings of the response with this zone. They give rise to coupled-mode solutions for which the unison mode contributes to the subharmonic response (cf. chapter 6). This is the opposite of the situation encountered in classical operation, where the response at unison is perturbed by the contribution of phase-opposition mode (cf. part II). These coupled-mode solutions cause the pendulums to oscillate differently and lower the filtering efficiency of the CPVA. Note that every PF bifurcation in Fig. III.4 occurs above the cusp, so they are not an issue because the pendulums cannot oscillate at such amplitudes. Nevertheless, there can cases other than the one depicted in Fig. III.4 for which these instabilities are problematic. Hence, guidelines are provided in chapter 6 to ensure that the subharmonic solution remains stable up until the pendulums reach their cusp.

Figure III. 5 :Figure III. 6 :

 56 Figure III.5: Illustration of the desired motion in subharmonic operation for a CPVA made of six pendulums. This desired motion corresponds to the solution called "SH1". Note that here we represent only one configuration satisfying SH1, but there are others (three successive pendulums in unison and in phase-opposition with the next three for instance).

  7). For these reasons, these instabilities are undesired. Moreover, they are particularly bothering because the PF bifurcations giving birth to the localised solution are located exactly at the rotor's antiresonance, as visible in Fig. III.6(b).

  Fig. III.6(d), is no longer perfect.There is a balance to be found between the avoidance of instabilities and the limitation of the antiresonance shifting. The most recommended configuration is a hardened CPVA with overtuned (i.e. 2n p > n) pendulums, which corresponds to the configuration shown in Fig. III.6. This has the advantage of slightly increasing the torque capacity compared to the perfectly-tuned case (cf.

Fig. III. 6

 6 Fig. III.6(c)-(d)). Nevertheless, for a given application, the use of a subharmonic CPVA tuning leads

Figure III. 8 :

 8 Figure III.7: Prototype of a CPVA with spherical pendulums

Fig. 1 .

 1 Fig. 1. Representation of the system studied. It is made of 𝑁 = 2 pendulums.

Fig. 2 .

 2 Fig. 2. Representation of the Coriolis forces and torques generated by two pendulums in phase-opposition. The projection of the Coriolis forces on vectors 𝒖 𝟏 and 𝒖 𝟐 is also given, as it indicates the sign of the torque produced.
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Fig. 3 .

 3 Fig. 3. Typical order (left) and torque (right) responses of a CPVA. Pendulums' responses are shown in (c) and (d) while rotor's responses are shown in (a) and (b). (a) and (c) are order responses for T1 = 0.03 while (b) and (d) are torque responses for 𝑛 = 2𝑛 𝑝 = 3. Green curves represent the system's response for immobile pendulums while blue curves correspond to the pendulums' subharmonic solution and the associated rotor's response. Dashed lines indicate unstable solutions. Black squares with code names ''PD'' indicate period doubling bifurcations. PD+ and PD-correspond to supercritical and subcritical bifurcations, respectively. 𝑛 𝑝 = 1.5, 𝜇 = 0.1, b = 0.002, 𝜂 = 𝛼 [𝑘] = 𝑥 [𝑘] = 0, ∀𝑘.
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Fig. 4 .

 4 Fig.4. Arnold tongues representing the range of excitation parameters for which the trivial solution bifurcates to SH1 or SH2. Dashed lines represent the limit of the tongues in the absence of damping. Parameters used are those given in Table1, except for b = 0.005.

Fig. 5 .

 5 Fig. 5. Order response of mode 1 and its stability. Dashed lines indicate an unstable response. The black line represents one of the bifurcation curves. Coloured areas correspond to the instability zones. Numerical solutions are represented as thin blue lines with dot markers. PF indicates a pitchfork bifurcation. T1 = 0.02, and other parameters are given in Table1.
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Fig. 6 .

 6 Fig. 6. Order response of mode 2 and its stability. Dashed lines indicate an unstable response. Bifurcation curves are shown in grey. Coloured areas correspond the instability zones. Numerical solutions are represented as thin orange lines with dot markers. PF indicates a pitchfork bifurcation. T1 = 0.02, and other parameters are given in Table1.

Fig. 9 .

 9 Fig. 9. Torque response of cases 1, 2 and 3. Pendulums and rotor's responses are shown in (a) and (b), respectively. Cases 1, 2 and 3 are represented as light, regular and dark blue lines, respectively. The trivial solution for cases 1 and 3 is depicted in green. That of case 2 is not shown as it overlaps the others (only the unstable part is different). Dashed lines indicate unstable responses and stars with code names PF indicate pitchfork bifurcations. Numerical solutions are shown as thin lines with dot markers. Dashed black lines indicate the cusp amplitudes for CPVAs that minimise the rotor's vibrations at T1 = 0.03 using relation (55). A, B and C indicate the rotor's amplitude at cusp point corresponding to cases 1, 2 and 3, respectively. 𝑛 = 3 and other parameters are given in Table2except for 𝑛 𝑝 , 𝑥[4] and 𝛼[3] . 𝑛 𝑝 = {1.498, 1.5, 1.502}, 𝑥[4] = {-0.037, 0, 0.0556} and 𝛼[3] = {0.02, 0, 0.02} in cases 1, 2 and 3, respectively.
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Fig. 10 .

 10 Fig. 10. Representation of the torque capacity as a function of tuning parameters for 𝑛 = 3. The torque capacity is compared to the maximum torque of perfectly-tuned pendulums, called T1 ref . The hatched regions describe undesirable sets of parameters. The three coloured curves in (c) correspond to the use of relation (55) for three different T1 . The blue dots along the purple curve represent the cases shown in Fig. 9. The three zones delimited by red lines in (d) represent parameter sets that are a priori not undesirable. System parameters that are not varied are given in Table2.

  Fig. I.14). The limits of the hatched regions are obtained by equating Eqs. (
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Fig. 11 .

 11 Fig. 11. Representation of indicator 𝐺 as a function of tuning parameters for 𝑛 = 3. Values 𝐺 ≥ 100 are represented with the same colour. The hatched regions describe undesirable sets of parameters. The purple curve corresponds to the use of relation (55) for T1 = 0.03. The three zones delimited by thick black lines represent parameter sets that are a priori not undesirable. System parameters that are not varied are given in Table2.
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Fig. 12 .

 12 Fig. 12. Comparison of a torque response at 𝑛 = 3 between a subharmonic CPVA (lines with dot markers) and a classical one (lines with cross markers). Pendulums' and rotors' responses are shown in (a) and (b), respectively. The trivial subharmonic solution is shown in green. Horizontal blue and red dashed lines represent the cusp point of the pendulums in the classical and subharmonic case, respectively. Parameters are given in Table3.

Appendix A .

 . Chain rule for a change of variable from 𝒕 to 𝝑 Using the chain rule, one can write

Fig. H. 13

 13 Fig. H.13 represents the order response of a perfectly-tuned CPVA (left) and a softened-CPVA (right). The parameters of the two CPVAs are the same as in Section 7.1, except for the softened-CPVA for which 𝑥 [4] = 0.1, leading to 𝑐 𝑝 > 0.From (a) and (b), one can see that the pendulums' amplitude at a given torque and order is always larger for the softened-CPVA. Hence, it has a smaller torque capacity compared to the perfectly-tuned CPVA. The other important feature, visible in (d), is that the antiresonance shift to the left as the torque amplitude is increased. This is opposite to hardened-CPVAs for which the antiresonance shifts to the right (cf. Fig.8).

Fig. H. 13 .

 13 Fig. H.13. Order response of the softened-and reference-CPVA for three torque amplitudes. The associated pendulums' response are shown in (a) and (b) and the associated rotor's response are given in (c) and (d), respectively. The subharmonic and trivial responses are depicted as blue and green lines, respectively. The darker the line the higher the associated torque amplitude. Dashed lines indicate unstable responses and stars with code names PF indicate pitchfork bifurcations. Only one trivial response is shown in (a) and (b) as it overlaps with the other ones (only the unstable part is different). 𝑛 𝐴𝑅 is the order at the non-linear antiresonance. T1 = {0.01, 0.025, 0.04}.

Fig. I. 14 .

 14 Fig. I.14. Torque response of the pendulums for 𝑛 = 3. Blue and green curves correspond to SH1 and the trivial solution, respectively. Dashed lines indicate unstable solutions. The star with code name ''PF'' indicates a pitchfork bifurcation. Parameters: 𝑛 𝑝 = 1.4925, 𝜇 = 0.1, 𝜂 = 1, 𝛼 [1] = -0.1, c𝑝 = 0, b = 0.002.

3 Figure 2 :

 32 Figure 2: Representation of the modes of a CPVA made of N = 4 pendulums. "r" indicates the rotor's component (in red) while "pi" indicates the component of the i th pendulum (in blue).

G 1 =

 1 {1, 2, ..., N/2} and G 2 = {N/2 + 1, N/2 + 2, ..., N }.

3. 5 Figure 3 :

 53 Figure 3: Typical order (left) and torque (right) responses of a CPVA. Pendulums' responses are shown in (c) and (d) while rotor's responses are shown in (a) and (b). (a) and (c) are order responses for T1 = 0.03 while (b) and (d) are torque responses for n = 2n p = 3. Green curves represent the system's response for immobile pendulums while blue curves correspond to SH1. Dashed lines indicate unstable solutions. n p = 1.5, µ = 0.1, b = 0.002, η = α [1] = α [3] = x [4] = 0.

Figure 4 :

 4 Figure 4: Response of the rotor of a hardened CPVA as a function of the torque order and amplitude. Blue and green surfaces correspond to SH1 and TS, respectively. The solid black line indicates the locus of the antiresonance which, in the present case, shifts towards higher orders as the torque increases. The dashed black and the red lines are both in the plane n = 2n p = 3. The dashed line represents the saturated amplitude in the case of perfect tuning. It remains constant as the torque increases due to c p = 0. The red line represents the rotor's amplitude of the present design, which increases with the torque level due to c p = 0, which causes the antiresonance to shift. For readability reasons, the unstable solutions are not shown. The parameters are those given in Tab. 1, except for α [3] = -0.1.

Figure 5 :

 5 Figure 5: Order response of the pendulums and their stability. SH1 and TS are represented in blue and green, respectively. The bifurcation curves are represented in black and brown. Dashed lines indicate an unstable response. Blue stars with code name "PF" indicate a pitchfork bifurcation. Light and dark red areas correspond to instabilities due to pitchfork bifurcations only and to pitchfork and saddle-node bifurcations, respectively. T1 = 0.01, n p = 1.5, η = 1, µ = 0.1, x [4] = -0.25, α [1] = 0.5, α [3] = 0.1, b = 0.002.

Figure 6 :

 6 Figure 6: Order response of the pendulums. SH1 and TS are represented in blue and green, respectively. The bifurcation curve a pf 3 is represented in brown. Dashed lines indicate an unstable response and the red area corresponds to the instability zone delimited by a pf 3 . The solutions and the pitchfork bifurcation determined by MANLAB are represented by thin dark lines with square markers and by the red star, respectively. The coloured circles represent the pendulums' amplitudes obtained through time integration. SHL1 and SHL2 are localised solutions. The bar plots indicate the amplitude of the four pendulums at a given time and order on SH1, SHL1 and SHL2. T1 = 0.01 and other parameters are given in Tab. 1.

Figure 7 :

 7 Figure 7: Order response of the rotor. SH1 and TS are represented in blue and green, respectively, and dashed lines indicate an unstable response. The solutions and the pitchfork bifurcation determined by MANLAB are represented by thin dark lines with square markers and by the red star, respectively. The pink, blue and orange circles represent the rotor's amplitude obtained through time integration for harmonics 1/2, 1 and 3/2, respectively. T1 = 0.01 and other parameters are given in Tab. 1.

Figure 8 Figure 8 :

 88 Figure 8 represents the stability of SH1 at a given excitation order and as a function of the linear and non-linear tunings, n p and cp , where the later is

Figure 9 :

 9 Figure 9: Torque response response of over-tuned hardened pendulums. The amplitude and phase are represented in (a) and (b), respectively. SH1 and TS are represented in blue and green, respectively. Dashed lines indicate an unstable response. The coloured circles represent the pendulums' amplitudes obtained through time integration. The black squares are the initial conditions for the time integrations. n = 2.995 and other parameters are given in Tab. 1.

Figure 10 :

 10 Figure 10: Temporal signals of the pendulums associated to the amplitudes and phases shown in Fig. 9. The torque amplitude for which the response is computed is increased as one goes from (a) to (g). The cusp is indicated by the horizontal black dashed lines.

6 {1, 2 , 4} ∈ G 1 {3, 5 , 6} ∈ G 2 Figure B1 :

 62152B1 Figure B1: Three different subharmonic solution optimal for torsional vibration reduction but generating different shaking forces. The Coriolis forces generated on the rotor by the pendulums in G 1 and G 2 are shown in green and purple, respectively. The resulting force on the rotor in shown in red.

Figure

  FigureF2shows a zoom of Fig.5near the operating point (i.e. near 2n p ) together with numerical solutions. A CPVA with N = 8 pendulums is considered. The MANLAB results are shown as thin dark lines with square markers while time integration results are the coloured circles. The red star represents the pitchfork bifurcation determined using MANLAB. The area coloured in red corresponds to the instability zone delimited by a pf 3 . The analytical model predicts well SH1 as the MANLAB results are close to the analytical ones, especially on the upper branch. Moreover, the bifurcation point is very well predicted by the analytical model as the intersection of a pf 3 and SH1 is superimposed with the red star, located at n ≈ 3.0004. Results from time integration show the dynamics of the pendulums before

Figure F2 :

 F2 FigureF2: Order response of the pendulums. SH1 and TS are represented in blue and green, respectively. The bifurcation curve a pf 3 is represented in brown. Dashed lines indicate an unstable response and the red area corresponds to the instability zone delimited by a pf 3 . The solutions and the pitchfork bifurcation determined using MANLAB are represented by thin dark lines with square markers and by the red star, respectively. The coloured circles represent the pendulums' amplitudes obtained through time integration. N = 8, T1 = 0.01, br = 0.002, and the other system parameters are the same as in Fig.5.

Figure F3 :

 F3 Figure F3: Temporal signals of the pendulums before (a) and after (b) the bifurcation. These signals correspond to the time integration results shown in Fig. F2 at n = 2.998 and n = 3.001, respectively.

Figure G4 :

 G4 Figure G4: Order response of the pendulums. SH1 and TS are represented in blue and green, respectively. The bifurcation curve a pf 3 is represented in brown. Dashed lines indicate an unstable response and the red area corresponds to the instability zone delimited by a pf 3 . The coloured circles represent the pendulums' amplitudes obtained through time integration. The grey lines with up and down triangles indicate the jumps and their direction. SHL1 and SHL2 are localised solutions. The bar plots indicate the amplitude of the four pendulums at a given time and order on SH1, SHL1 and SHL2. T1 = 0.01 and other parameters are given in Tab. 1, excpet for x [4] = 0.5.

)

  

Figure H5 :

 H5 Figure H5: Order response of the pendulums. The amplitudes are given in (a) and the phases in (b). SH1 and TS are represented in blue and green, respectively. The bifurcation curve a pf 3 is represented in brown. Dashed lines indicate an unstable response and the red area corresponds to the instability zone delimited by a pf 3 . The solutions and the pitchfork bifurcations determined by MANLAB are represented by thin dark lines with square markers and by the red stars, respectively. The coloured circles represent the pendulums' amplitudes obtained through time integration. The analytical solutions corresponding to SHL2 are represented as green and orange curves while that of SHL3 is given by the red curve. T1 = 0.01 and other parameters are given in Tab. 1.
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 I6588182 Figure I6: Temporal signals of the pendulums associated to time integrations of the CPVA whose parameters are given in Tab. 1. The excitation parameters are n = 2.995 and T1 = 0.04. The initial conditions correspond to a perturbation of the trivial solution (TS). In (a), a random noise between 0 and 0.01 is added. The upper bound of this noise corresponds to about 3.3% of the pendulums' cusp (in the present case, s cusp ≈ 0.305). In (b), the initial pendulums' position is s 1 = -s 2 = 0.01 and s 3 = s 4 = 0, which corresponds to a pendulums' response on mode 1 1 . In (c) and (d), the initial pendulums' position is s 1 = -0.03, s 2 = s 3 = s 4 = 0.01 and s 1 = -0.03, s 2 = 0.02, s 3 = 0.01, s 4 = 0, respectively. These correspond to combinations of modes 1 different from SH1. The cusp is indicated by the horizontal black dashed lines.

  three rotor harmonics and showed experimental time signals of the pendulums in classical-localised and subharmonic regimes. This allowed him to verify the apparition of instabilities predicted by his analytical model [48]. B. J Vidmar et al. also investigated the effect of Coulomb friction on the response of a CPVA [49]. J. Mayet et al. proposed a new experimental set up and showed steadystate and transient time signals of both the rotor and pendulum [50]. R. Monroe and S. Shaw studied the large pendulums' amplitudes encountered in transient responses that mimic cylinder deactivation conditions [51]. E. R. Gomez et al.measured time-decays to identify the friction parameters of a CPVA [52]. E. R. Gomez et al. also investigated the performance of a CPVA mounted on a realistic powertrain [53]. Their results showed that the CPVA reduces the amplitude of the first harmonic on the driveline components but can increase the amplitude of higher harmonics. V. Mahé et al. compared the analytical prediction of localised responses with experimental measurements [28]. V. Manchi et al. showed that centrifugal double pendulum vibration absorbers can reduce

Figure 1 :

 1 Figure 1: Representation of the system studied. It is made of N = 2 pendulums.

Figure 2 :

 2 Figure 2: Amplitude response of the pendulums (a) and rotor (b) as a function of the excitation order. The classical response is shown in green while the subharmonic one is shown in blue. Dashed lines indicate unstable solutions and code names "SN", "PF" and "PD" refer to saddlenode, pitchfork and period-doubling bifurcations, respectively. The cusp of the pendulums' trajectory is shown as a black dashed line. The backbone curves of the response of mode 2 and the subharmonic response of SH1 are shown as black doted lines. No saddle-node bifurcation is shown for the upper branch of the rotor's response in classical operation as it is poorly

Figure 3 :

 3 Figure 3: Amplitude response of the pendulums (a) and rotor (b) as a function of the excitation order. Dashed lines indicate unstable solutions and code names "SN" and "PF" refer to saddlenode and pitchfork bifurcations, respectively. The unstable zones leading to localisation and jumps are shown in red and blue, respectively. The bifurcations are located at the intersection between the border of these zones and the response. The cusp of the pendulums' trajectory and the backbone curve are shown as dashed and dotted lines in (a). Thin dashed lines indicate the response of a, h 1 , h 2 and h 3 at the antiresonance order (note that the antiresonance exists only on h 1 ). T1 = 0.0332 and the parameters of the CPVA are given in Tab. 1 except for b = 0.0042.

Figure 4 :

 4 Figure 4: Order (left) and torque (right) responses of a CPVA. The order response is shown for four different torque amplitudes T1 = {0.002, 0.011, 0.022, 0.033}, and the torque response is shown for n = 2.995. The order associated to the torque response is shown as a vertical black line in (a) and (c). The pendulums' amplitude is given in (a), (b), and the rotor's amplitude is given in (c), (d). The response on SH1 is depicted in blue while a trivial solution with immobile pendulums is given in green. This trivial solution is an approximation of the response on mode 2 far from np [10]. Dashed lines indicate unstable solutions. The light and dark red areas indicate instabilities due to pitchfork bifurcations only and to both pitchfork and saddle-node bifurcations, respectively. "PF" indicates a pitchfork bifurcation while "PD+" and "PD-" indicate super-and sub-critial period doubling bifurcations, respectively. The cusp of the pendulums' trajectory is shown as a black dashed line. In addition, the cusp is indicated with black cross markers in the torque responses (b) and (d). The parameters of the CPVA are given in Tab. 1 except for b = 0.0042.

Figure 5 :

 5 Figure 5: CPVA used for the experiments.

Figure 6 :

 6 Figure 6: Top view of a bifilar CPVA with perfectly aligned (left) and misaligned (right) rollers to illustrate the shock problem. Light colors indicate the initial position of the pendulum while darker colors indicate a displaced configuration. (xr, yr, zr) is a frame attached to the rotor (see Fig. 7).

Figure 7 :

 7 Figure 7: Side view (a) and front view (b) representation of a spherical pendulum.

Figure 8 :

 8 Figure 8: Experimental setup.

3 .

 3 A tracking algorithm is used on the movie to track the position of the six balls and a fixed point of the rotor. This leads to Cartesian coordinates in the Galilean frame R 0 .4. The angular position of the rotor ϑ(t) is retrieved using the Cartesian coordinates of the rotor's fixed point chosen.5. The Cartesian coordinates of the pendulums in R r (i.e. with respect to the rotor) are computed from the Cartesian coordinates in R 0 and ϑ.6. The angular position of the pendulums' center of mass with respect to the rotor ϕ i (t) is computed using their Cartesian coordinates in R r . 7. The time signals of the curvilinear abscissa S i (t) are obtained using the relation between S and ϕ (cf. Appendix A.4). 8. The time signals S i (t) are decomposed into Fourier series to extract the pendulums' amplitudes and phases.

Figure 9 Figure 9 :

 99 Figure 9 shows the rotor's amplitude for an order sweep going from n = 1.4 to n = 1.6 and back to n = 1.4. The experimental results fit very well with

Figure 10 :

 10 Figure 10: Amplitude response of the rotor as a function of the excitation order for five different torque amplitudes. Dashed lines indicate unstable solutions and code names "PF" refer to pitchfork bifurcations. The parameters of the CPVA are given in Tab. 1 except for b = {0.017, 0.012, 0.011, 0.014, 0.013} from the lowest to largest T1 values, respectively.
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Fig. 10

 10 Fig. 10 differ slightly. This changing value of b is likely due to different contact points between the rotor and pendulums. The parts in contact can have slightly different surface conditions, thus explaining why the equivalent viscous damping coefficient varies.

300 5 . 2 .Figure 11 :

 5211 Figure 11: Amplitude of the rotor's first (a) and higher (b) harmonics and amplitude (c) and phase (d) of the pendulums as a function of the torque level T1 . The response with fixed pendulums is shown in (a) instead of a response without pendulums in order to account for their rotational inertia. In the legend shown in (d), "pj" refers to "pendulum j". The pendulums are given an identification number in Fig. 5. n = 1.49 and the parameters of the CPVA are given in Tab. 1 except for b = 0.0027.

Figure 12 :

 12 Figure 12: Map representing ψ (CL) max as a function of the dimensional torque amplitude and mean rotational velocity. This map is represented for n = 1.49 < np such that the instabilities leading to a localised response are avoided. Black dashed lines are contour lines and horizontal red lines are constant Ω values. The black dots are experimental measurements of T 1 at the adherence limit. The two green curves indicate the range of ψa values obtained experimentally. The white part of the map corresponds to pendulums hitting their cusp. The parameters of the CPVA are given in Tab. 1. The dimensional damping b is kept constant and the nondimensional damping b varies with Ω (cf. Eq. (1)). For instance, for Ω = 1000 [rpm], b = 0.0068.

1 PDFigure 13 :

 113 Figure 13: Torque response of the rotor's first harmonic for n = 2.995. The analytical subharmonic solution is shown in blue while the trivial response with immobile pendulums is represented in green. Measurements are shown in pink. Dashed lines indicate unstable solutions. PD indicates the period-doubling bifurcation. The parameters of the CPVA are given in Tab. 1 except for b = 0.011.

Figure 14 :

 14 Figure 14: Time signals of the pendulums in subharmonic operation. The analytical resultsare represented using Eq.(12). "pj" refers to "pendulum j" and the pendulums are given an identification number in Fig.5. The excitation parameters are n = 2.995, T1 = 0.035 and the CPVA parameters are given in Tab. 1 except for b = 0.010.

Figure 14

 14 Figure 14 represents a time record of the pendulums' signals. The experimental signals match well the analytical ones except for pendulums 1 and 4.

Figure A. 15 :

 15 Figure A.15: Illustration of the relations between the trajectory functions.

FigFigure B. 16 : 2 :Figure C. 17 :

 16217 Figure B.16: Torque responses of the rotor's first harmonic for several mean rotational speeds. The green and pink lines correspond to the analytical and experimental results, respectively. The vertical dashed black lines identify the torque at the adherence limit. n = 1.49 and the parameters of the CPVA are given in Tab. 1 except for b = {0.0068, 0.0045, 0.0034, 0.0027, 0.0023} in (a), (b), (c), (d) and (e), respectively. It is normal that different values of b are used as they depend on Ω (cf. Eq. (1)).

Figure 8 . 1 :

 81 Figure 8.1: Global view of a CPVA tuned at order 10. Only the virtual radius of the pendulums is shown to better see the rolling tracks of the rotor. The parameters are given in Tab. 8.1.

Figure 8 . 2 :

 82 Figure 8.2: Representation of the torques at the bifurcation (a) and the adherence limit (b) as a function of the tuning order and the angle of the v-shaped tracks. The black lines are contour lines and the dashed grey lines in (a) represent the contour line of (b). The parameters are given in Tab. 8.1 except for J r = 4 [g.m 2 ], Ω = 3000 [rpm], ρ = 8000 [kg.m 3 ], b = 0.2 [N.m.s] and ψ a = 0.19.

8. 2 .Figure 8 . 3 :

 283 Figure 8.3: Comparison of an epicycloidal and hardened path (a). A torque response at n = 20 associated to the two paths is shown in (b). The vertical black line indicates the torque at the adherence limit for the hardened CPVA. The parameters are given in Tab. 8.1 except for J r = 4 [g.m 2 ], Ω = 3000 [rpm], ρ = 8000 [kg.m 3 ], b = 0.2 [N.m.s] and ψ a = 0.19. In addition, x [4] = -1500 for the hardened path.

Figure IV. 3 :

 3 Figure IV.3: Linear response of a CDPVA showing the amplitude of the rotor's acceleration (a) and the pendulums' motion (b). The dashed black line in (a) corresponds to the rotor's response with fixed pendulums.

  Fig. IV.3). Hence, it is fair to study the nonlinear response of a CDPVA assuming the pendulums respond only on one of the unison modes.

Figure IV. 4 Figure IV. 4 :

 44 Figure IV.4 represents a typical CDPVA response around the first tuning order n p1 . The nonlinear response around n p2 is not discussed in this summary as it presents the same features as the one around n p1 . In Fig. IV.4(a)-(b), one can see the strong bending of the response to the left, showing the softening behaviour of the 1 st unison mode. Because of this bending, there are saddle-node (SN) bifurcations at the intersections of the response with the blue instability zone. When sweeping in the order n, a jump occurs at the SN bifurcations (cf. section 2.5.1.1). This causes the pendulums to no longer act as absorbers but as amplifiers, which is very detrimental to the CDPVA efficiency. Hence, one should try to avoid these instabilities. There is another instability zone (red area) represented in Fig. IV.4(a)-(b). This one is related to a perturbation of the unison solution by the 1 st phase-opposition mode. This contribution of

  Fig. IV.1), the design guideline derived holds for any number of double pendulums (cf. chapter 10).

Figure

  Figure IV.4(c) shows a zoom of the rotor's response around its first antiresonance. Because of the strong softening behaviour of the unison mode, the antiresonance shifts to the left as the forcing level

9

  and discussed thereafter. The response of the rotor of two different CDPVAs is shown in Fig. IV.4(d) as a function of the forcing level and for an excitation order n equal to their first tuning order n p1 . The first rotor (red) corresponds to the CDPVA represented in Fig. IV.4(a)-(c), which exhibits a strong softening behaviour. The second rotor (green) is associated to a CDPVA tuned to lock the antiresonance at n p1 so that it does not shift as the forcing increases. The nonlinear CDPVA tuning proposed in chapters 9 and 10 is achieved through the appropriate choice of the pendulums' rotation law about heir centre of mass. The guideline to lock the antiresonance was obtained through the antiresonance tracking procedure illustrated in Fig. IV.4(c). It is extremely beneficial to vibration reduction as it lowers the rotor's amplitude and pushes the SN bifurcation to large torque levels. The rotor's amplitude increases significantly at large torque levels because the approximations used to derive the antiresonance locking guideline are less accurate at large pendulums' amplitudes.

Figure IV. 6

 6 Figure IV.6 presents some of the main results of the tests conducted on the CDPVA prototype shown in Fig. IV.5. Order sweeps around the first rotor antiresonance are represented in this figure. The comparison of the linear model developed in chapter 9 with the experimental data in Fig. IV.6(a)

Figure IV. 5 :

 5 Figure IV.5: Prototype of a CDPVA with cylindrical double pendulums (a). Pendulums 1 (b) are hollow cylinders and pendulums 2 (c) are made of a small-radius cylinder linked to two larger cylinder, giving it an h-shape. In (a), pendulums 1 are hidden behind pendulums 2.

11 .

 11 It was seen to be a limitation of some CPVA designs (cf. chapter 8) and is also a concern for the CDPVA architecture shown in Fig. IV.5. Finally, the experimental identification of large damping coefficients questions the performance of this CDPVA architecture.

Figure 1 :

 1 Figure 1: Representation of the system studied. Only one equivalent double pendulum is represented.

135 are antisymmetric. α 11

 13511 and α 21 are linear rotation coefficients involved in the linear response of the system, while α 13 and α 23 will contribute to the nonlinear behaviour of the CDPVA (cf. section 4.3).

Figure 2 :

 2 Figure 2: Modes of a CDPVA made of N = 1 double pendulum. The rotation of the pendulums about their centre of mass is not represented in this figure. ε 1 and ε 2 indicate that n 10 and n 20 are slightly larger than n p1 and n p2 , respectively.

Figure 3 :

 3 Figure 3: Evolution of the tuning orders as a function of ν 2 and µ 2 . The contour lines correspond to the tuning orders of the design given in Tab. 1. The other designs represented have the same parameters except for ν 2 and µ 2 , which are varied.

190 2 .η 1 η 2 µ 2 ν r ν 2 α 11 α 21 α 13 α 23

 223 576, which is quite different. µ

Figure 4 :

 4 Figure 4: Linear response of a CDPVA showing the amplitude response of the rotor (a) and pendulums (b) and the phase response of the rotor and pendulums (c). The dashed black line in (a) corresponds to the rotor's response with fixed pendulums. T1 = 0.001 and the system parameters are given in Tab. 1.

Figure 5 :

 5 Figure 5: Evolution of the performance indicators ∆n i and G i as a function of ν 2 and µ 2 for modes 1 left) and 2 (right). The dashed black lines correspond to the sets (ν 2 , µ 2 ) that produce the same tuning orders as the design given in Tab. 1. The parameters used to create the maps are given in Tab. 1 except for ν 2 and µ 2 , which are varied.

Figure 6 :

 6 Figure 6: Amplitude response of the pendulums (a,d) and rotor (b,e) and their phases (c,f) as a function of the excitation order. The response on mode 1 is shown on the left and that on mode two on the right. The stable and unstable parts of the analytical solutions are shown as solid and dashed lines, respectively. The numerical solutions are the coloured circles. Note that both increasing and decreasing sweeps were performed to obtain these numerical results. T1 = 0.01 for the response on mode 1 and T1 = 0.005 for the response on mode 2. The system parameters are given in Tab. 1.

Figure 7 :

 7 Figure 7: Amplitude of higher and lower rotor harmonics as a function of the excitation order. h 1/2 indicates the amplitude of harmonic 1/2 of the rotor's acceleration. The response around mode 1 is shown on the left and that around mode two on the right. The stable and unstable parts of the analytical solutions are shown as solid and dashed lines, respectively. The numerical solutions are the coloured circles. T1 = 0.001 for (a), (b), T1 = 0.005 for (c), (d), T1 = 0.1 for (e) and T1 = 0.02 for (f). The system parameters are given in Tab. 1.
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Figure 8 :

 8 Figure 8: Rotor's response around antiresonance 1 for two different CDPVAs. The CDPVA in (a) is not nonlinearly tuned whereas that in (b) is tuned accordingly to rule (37) to lock its first antiresonance. The stable and unstable parts of the analytical responses are shown as solid and dashed green lines, respectively. The darker the line the larger the associated torque level. The analytical antiresonance tracking, performed using Eq. (36), is shown as a solid red line. The numerical solutions are the green circles. The system parameters for the CDPVA in (a) are given in Tab. 2. For the CDPVA in (b), the parameters are the same except for α 13 = 0.0357.

Figure 9 :

 9 Figure 9: Rotor's response at n = 1 = n p1 for two different CDPVAs as a function of the torque level.One of the CDPVAs is not nonlinearly tuned (it is the same as that studied in section 5.1) whereas the other one is tuned accordingly to rule(37). The first harmonic is shown in (a) for both CDPVAs while the higher harmonics are shown in (b) for the nonlinearly tuned CDPVA only. The stable and unstable parts of the analytical responses are shown as solid and dashed lines, respectively. The numerical solutions are the coloured circles. The system parameters for the CDPVA that is not nonlinearly tuned are given in Tab. 2. For the other CDPVA, the parameters are the same except for α 13 = 0.0357.

(A. 3 )

 3 , (A.4) and (A.5) govern the motion of the rotor, pendulum 1 and pen-635 dulum 2, respectively. Neglecting I 1 and I 2 in Eqs. (A.3), (A.4) and (A.5) and considering a simple pendulum such that α 1 (ϕ 1 ) = ϕ , one obtains the equations of motion given in [7] 1 .

Figure H. 10 :

 10 Figure H.10: Rotor's response around the first antiresonance as a function of the excitation order. The stable and unstable parts of the analytical solutions are shown as solid and dashed lines, respectively. T1 = 0.008 and the system parameters are given in Tab. 2.

Figure H. 10

 10 Figure H.10 shows the rotor's response around the first antiresonance at a large torque level. One can see the looping of the rotor's response around n AR1 , which causes the antiresonance to be unstable.665

  Thomas)Preprint submitted to Journal of L A T E X TemplatesNovember 28, 2022 capacity and engine speed of rotation. These evolutions lead to a significant increase of rotation irregularities called acyclisms, mainly due to higher combustion pressure. One of the main characteristics of these reciprocating engines is the linear dependency of the acyclism frequency to the engine speed of rotation. The coefficient of proportionality is the engine order and only depends on the architecture of the engine. During an acceleration phase, the engine sweeps a wide frequency range containing some driveline torsional modes. This situation may lead to significant noise and vibration levels into the passenger compartment and premature wear of the driveline components. This study deals with centrifugal double pendulum vibration absorbers (CDPVAs), which are a mean to reduce the vibrations of driveline components. The principle of operation of CDPVAs is very close from that of centrifugal pendulum vibration absorbers (CPVAs), which have been used for many years to minimise acyclisms of automotive powertrains at the engine order [1-3]. These passive devices consist of oscillating masses (pendulums) moving along paths relative to a primary inertia (rotor) as shown in Fig. 1 in the case of a CDPVA. Because the absorbers (single pendulums for a CPVA, double pendulums for a CDPVA) are driven by the centrifugal acceleration field resulting from the rotation of the system, their natural frequency is proportional to the engine speed of rotation. Hence, CPVAs and CDPVAs act as dynamic vibration absorbers tuned with respect

Figure 1 :

 1 Figure 1: Representation of the system studied. Only two double pendulums are represented here.

  Eqs. (6b) and (6c) can also be used to compute the uncoupled modes by simply setting µ = 0. These computations are done in Appendix C for N = 2 double pendulums, leading to the four uncoupled modesψ (o) pi = [1, -1, χ pi , -χ pi ] , ψ (u) pi = [1, 1, χ pi , χ pi ] , n pi , i = 1, 2.(7) Superscripts (o) and (u) indicate phase-opposition and unison motions of the 130 two double pendulums, respectively. Note that modes (n pi , ψ

20 =

 20 n p2 + ε 2

Figure 2 :

 2 Figure 2: Modes of a CDPVA made of N = 2 double pendulums. The rotation of the pendulums about their centre of mass is not represented in this figure. ε 1 and ε 2 indicate that n (u) 10 and n (u) 20 are slightly larger than n p1 and n p2 , respectively.

Figure 3 :

 3 Figure 3: Linear response of a CDPVA showing the amplitude response of the rotor (a) and pendulums (b) and the phase response of the rotor and pendulums (c). The dashed black line in (a) corresponds to the rotor's response with fixed pendulums. T1 = 0.001 and the system parameters are given in Tab. 1.
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  section 3). ρ i and ζ i are the modal coordinates of the i th phase-opposition and unison modes, respectively.

Figure 4 :

 4 Figure 4: Pendulums' amplitude around mode 1 as a function of the excitation order. The stable and unstable parts of the analytical solutions are shown as solid and dashed lines, respectively. The red and blue areas are the instability regions related to localisation and jumps, respectively. The numerical solutions for pendulums 11 and 12 are the blue and orange circles, respectively. The numerical solutions for pendulums 21 and 22 are the green and pink circles, respectively. T1 = 0.005 and the system parameters are given in Tab. 2.

Figure 4

 4 Figure 4 represents the amplitude response of the two double pendulums of a CDPVA around mode 1 as a function of the excitation order. The fact that the

  instead of time integrations. However, a detailed investigation of the localised response is out of the scope of this paper. After the jump, the amplitudes of pendulums 12 and 22 are much lower than those of pendulums 11 and 21, respectively. They even approach zero at n ≈ 1.0047. The localised solution continues up to n ≈ 1.0090 at which point an instability gives rise to non-periodic solutions. The time signals of pendulums 11 and 12 at n = 1.0092 and the associated Poincaré maps are shown in Fig. 5(a) and (c), respectively. This allows to see that the response on the left-hand side of the non-periodic band is quasi-periodic. The time signals of pendulums 11 and 12 at n = 1.0155 and the associated Poincaré maps are shown in Fig. 5(b) and (d). The shape of the Poincaré maps seems to indicatethat the response on the right-hand side of the non-periodic band is chaotic[60]. There is another bifurcation at n ≈ 1.0157 after which the non-periodic solutions are unstable. This bifurcation leads to another part of the localised solution. It is stable up to n ≈ 1.0220 after which a jump occurs, leading back to the unison motion.

Figure 6

 6 Figure 6 represent the amplitude of the rotor's harmonics as a function of the excitation order. It is interesting to see that the localised response does not worsen the vibration reduction as compared to the unison response. It even seems to improve the filtration as the response of every harmonic is lower on the localised solution than for the unison pendulums' motion. The improvement of the filtration with the localised solution was a feature observed previously for

Figure 5 :

 5 Figure 5: The time signals of pendulums 11 and 12 at the limits of the non-periodic part of the response are shown in (a) and (b). The parameters are the same as those of Fig. 4 and n = {1.0092, 1.0155} in (a) and (b), respectively. The Poincaré maps associated to the time signals in (a) and (b) are given in (c) and (d), respectively. Note that in (d) the signal used to compute the Poincaré map is longer than that shown in (b).

275 around unison mode 2 ,Figure 6 :

 26 Figure 6: Amplitude of the rotor's first harmonic (a) and higher harmonics (b) around mode 1 as a function of the excitation order. The stable and unstable parts of the analytical solutions are shown as solid and dashed lines, respectively. The numerical solutions are the coloured circles. T1 = 0.005 and the system parameters are given in Tab. 2.

Figure 7 :

 7 Figure 7: Pendulums' amplitude around mode 1 as a function of the excitation order. The stable and unstable parts of the analytical solutions are shown as solid and dashed lines,respectively. The red and blue areas are the instability regions related to localisation and jumps, respectively. The numerical solutions for the pendulums are the coloured circles. The blue and green circles are larger so they can be seen even when behind another marker. T1 = 0.005 and the system parameters are given in Tab. 2, except for N = 3.
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Figure 7

 7 Figure 7 shows the response of the three double pendulums of a CDPVA around mode 1. Numerical solutions are shown only between the tuning order and the zone where non-periodic solutions exist. As in the case of N = 2 double pendulums, the pitchfork bifurcation at n ≈ 1.0007 is very well predicted by 300

2 . 3 .

 23 If sign [-2(c pi + c si + 2c mi ) -|c pi + c si + 6c mic ci |] < 0 and sign [-2(c pi + c si + 2c mi ) + |c pi + c si + 6c mic ci |] > 0 ,then localisation occurs at the tuning order. This situation is to be avoided as it would require a large linear detuning to avoid localisation. This would be at the expense of filtering efficiency as the system would have to operate far from the antiresonance. If sign [-2(c pi + c si + 2c mi ) -|c pi + c si + 6c mic ci |] > 0, then localisation occurs for orders larger than the tuning order. Hence, localisation is avoided if n ≤ n pi .

0.99 n p1 1 Figure 8 :

 18 Figure 8: Amplitude of mode 1 as a function of the excitation order. (a), (b) and (c) representsystems tuned accordingly to the cases 1, 2 and 3 described in section 5.3, respectively. The stable and unstable parts of the analytical solutions are shown as solid and dashed lines, respectively. The red and blue areas are the instability regions related to localisation and jumps, respectively. The dashed black lines correspond to the approximated contours of the unstable zone leading to localisation. They are obtained using Eq.(30). T1 = 0.002 and the system parameters are given in Tab. 2 except for α 13 = {0, 0.0417, 0.06} in (a), (b) and (c), respectively.

Fig. 9 is associated to the response around mode 1 .

 1 Fig. 9(b) it is varied from 0 to 1. The colors indicate the stability. The designs subjected to localisation (jump) in the amplitude range of a map are shown

Figure 9 :

 9 Figure 9: Maps representing the stability of the response around mode 1 as a function of the tuning order n p1 and the nonlinear tuning parameter cpi . Hence, each point on the map represents a given CDPVA design. Each map is shown for a given order n and a given range of modal amplitude u i . Stable designs are depicted in green while designs subjected to localisation or jumps are shown in red or blue, respectively. The designs subjected to both localisation and jumps are represented in purple. The hatched areas represent the design that should prevent localisation according to the observations of section 5.3. The brown line corresponds to recommendation (31), locking the antiresonance 1. The designs along the grey line yield tautochronic coupled pendulums. Larger and lower values of c p1 yield softening and hardening behaviours of the response, respectively. The designs along the cyan line yield tautochronic uncoupled pendulums. n = 1 and the parameters are given in Tab. 2. n p1 is varied indirectly by varying α 11 , which takes values from from -0.35 to -0.29.

ri = 0 .

 0 ri associated to the eigenvalue n pi . It must satisfy A Using either the 2 nd of 4 th line of A and normalising the first component to one, one finds that ψ (o) ri has the shape ψ

615Figure 11 . 1 :

 111 Figure 11.1: CDPVA used for the experiments (a). Pendulums 1 (b) are hollow cylinders and pendulums 2 (c) are made of a small-radius cylinder linked to two larger cylinder, whose aim is to increase the mass and inertia. In (a), pendulums 1 are hidden behind pendulums 2.

Figure 11 . 2 :ℓ 1 =

 1121 Figure 11.2: Front view (a) and side view (b) of a double pendulum rolling on the rotor.

Fig. 11 .

 11 Fig. 11.1). For instance, the real pendulums are equipped with plastic stoppers whose role it to prevent steel/steel friction and chocks. Friction and chocks are not desired but they are likely to occur when the system starts (the pendulums go from rest to their centrifugated position) and stops (the pendulums go back to their rest position). Chocks might also occur when the pendulums hit the end of their path. Even though the pendulums are not perfect cylinders made of a single material, using Eq. (11.3) with ρ 1 = ρ 2 = ρ = 7800 [kg/m 3 ] (this is the density of the steel used) provides values of masses and inertias close from the real ones. The parameters of the prototype are given in Tabs.

Figure 11 . 3 :

 113 Figure 11.3: Experimental set-up. Note that the bench shown in (a) and (b) is not exactly the same as the one shown in (c). Still, both benches are designed in the same way.

Figure 11 . 4 :

 114 Figure 11.4: Linear response of the CDPVA (a) and nonlinear responses around the first (b) and second (c) antiresonances. In (b) and (c), the black line represents the evolution of the antiresonance with the torque and the dashed lines indicate unstable solutions. Ω = 1000 [rpm] and the forcing level is T 1 = 5 [Nm] in (a) and T 1 = 15 [Nm] in (b) and (c). The damping is set to b 1 = b 2 = 10 [Nm.s].

Figure 11 .

 11 Figure 11.4 shows the expected response of the rotor of the CDPVA investigated in this chapter.

First, looking

  at Fig. 11.5(a), (c) and (d), one can see an antiresonance around n = 1.3, as expected from the model. A focus on this antiresonance is presented in section 11.2.3. Then, one can see an antiresonance in (a), (b), (c) and (d) at orders 5.6, 4.5, 3.7 and 3.1, respectively. Looking at (e)-(h), one can see that these antiresonances actually correspond to a single antiresonance fixed at 92 [Hz].

Figure 11 . 5 :

 115 Figure 11.5: Overview of the measurements. The amplitude of the first harmonic of the rotor's acceleration is represented as a function of the order (a)-(d) and frequency (e)-(h), for different mean rotational velocities and for several torque levels. The darker the line the larger the associated torque level. T 1 = {10, 12, 15, 20, 30} [Nm] in (a) and (e), T 1 = {5, 10, 20, 30} [Nm] in (b) and (f), T 1 = {20, 30} [Nm] in (c) and (g) and T 1 = {15, 30} [Nm] in (d) and (h). The vertical lines in (a)-(d) indicate the expected location of the two antiresonances. The vertical lines in (e)-(h) indicate the location of two unexpected antiresonances fixed in frequency.

Figure 11 .Figure 11 . 6 :

 11116 Figure 11.6 shows the response of the bench alone and the rotor without the pendulums as a

Figure 11 .Figure 11 . 7 :

 11117 Figure 11.7 shows the rotor's response around the first antiresonance. A comparison with the linear model described in chapter 9 is proposed in (a) and shows a good fitting. Damping causes the

Figure 11 . 8 :

 118 Figure 11.8: Rotor's linear response with the damping level identified from the measurements. The horizontal dashed black line represents the amplitude when the pendulums are fixed. T 1 = 5 [Nm], Ω = 1500 [rpm] and b 1 = b 2 = 50 [Nm.s].

11. 3 .Figure 11 . 9 :

 3119 Figure 11.9: Evolution of the second antiresonance and the performance indicators ∆n 2 and G 2 as a function of r p1 and r p2 for a small value of r 0 (left) and a larger one (right). The black dashed line in the maps indicate the designs for which n p2 = 20. The parameters used to create the maps are given in Tab. 11.4, except for r p1 , r p2 and r 0 , which are varied. Moreover, the tolerance is set to δ = 0.4 [mm].

Figure 11 . 11 :

 1111 Figure 11.11: Rotor's and pendulums' linear responses for the CDPVA tuned to order 20 and with the damping level identified from the measurements. The horizontal dashed black line represents the amplitude when the pendulums are fixed. T 1 = 5 [Nm], Ω = 1500 [rpm] and b 1 = b 2 = 50 [Nm.s]. The other parameters can be retrieved from Tab. 11.4 and Eq. (11.3) appart from J r = 8 [g.m 2 ].

  2 b ¯r. (B.3) PENDULUM VIBRATION ABSORBER Looking for periodic solutions of the form ζ 0 = ℜ[Z ˆ0e jnτ ] and ζ 2 = ℜ[Z ˆ2e jnτ ] where j = √ -1, we obtain the expression of the complex modal amplitudes Z ˆ0 = T ¯1

Figure B. 2 :

 2 Figure B.2: Evolution of G θ (a), ∆n (b) and G s (c) as a function of the coupling term Λ c . The three black circles in the zoom of (a) indicate the solutions of ∂G θ /∂Λ c = 0. n p = 2, µ = 0.15, Λ m = 1.25, b ¯= 0.01, b ¯r = 0.001.
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 79 Definition of quantities 10 omega0, eps = symbols(r'\omega_0, \epsilon',real=True,positive=True) ('x')(t)14 ddx = x.diff(t,2)15 IMPLEMENTATION OF THE METHOD OF MULTIPLE SCALES include forcing in the equation. The default forcing is f (t) = F cos(ωt), but more complex forms, such as parametric forcing, can be included using other keyword arguments. damping='damped'
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 005111 Figure 1: Couple caractéristique délivré par un moteur à quatre temps, quatre cylindres, pour une vitesse de 1000 [tr/min].
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 234 Les absorbeurs pendulaires centrifuges (APCs) sont utilisés depuis près d'un siècle pour contrebalancer l'acyclisme de moteurs thermiques. Ils sont constitués de N masses (pendules) oscillant par rapport à un rotor, comme illustré en Fig.3. Les pendules sont tous identiques, de masse m et d'inertie I, et suivent une trajectoire notée C (en bleu). Leur position le long de cette trajectoire est en ta l (h ar m on ic 1)

Figure 2 :Figure 3 :

 23 Figure2: Illustration des nombreux points critiques (cercles) correspondants à une résonance de la chaîne cinématique via l'intersection des harmoniques de l'excitation (en noir) avec les modes de la chaîne cinématique (lignes pointillées). Deux configurations de la chaîne cinématique sont représentées, l'une en bleu et l'autre en rouge, correspondant à des rapports de transmission différents.
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 3121 = 0 est particulièrement intéressant car il correspond au cas d'une trajectoire épicycloïdale et d'une loi de rotation linéaire. La trajectoire épicycloïdale a longtemps été préférée car, pour des pendules purement translatés et découplés du rotor, elle mène à un comportement tautochrone des pendules. C'est-à-dire que leur période d'oscillation ne dépend pas de l'amplitude de leur mouvement, ce qui en fait des oscillateurs linéaires. L'ajout d'une mobilité de rotation suivant une loi linéaire ne vient pas perturber le comportement linéaire des pendules. L'ajout des coefficients x[4] et α[3] correspond à l'introduction intentionnelle de non-linéarités. Cela permet de compenser les non-linéarités issues du couplage non-linéaire entre les pendules et le rotor. Les paramètres d'accord d'un APC sont l'ordre d'accord n p , qui joue le rôle d'un paramètre d'accord linéaire, et un paramètre d'accord non-linéaire c p , permettant d'améliorer les performances du système à de grandes amplitudes de mouvement. L'expression de ces paramètres est n p = n t

N mR 2 0J

 2 Un APC possède N + 1 degrés de liberté (le rotor et les N pendules). Les équations du mouvement sans dimension conservatives linéarisées gouvernant ce système sont données par(1 + µ)θ ′′ + µΛ c N N ∑︂ i=1 s ′′ i = T ¯θ(τ ), Λ c θ ′′ + Λ m s ′′ i + n 2 t s i = 0, i = 1, ..., N,(8a) (8b) où µ est un ratio d'inertie (typiquement µ ≪ 1), Λ c est un terme de couplage linéaire entre un pendule et le rotor, Λ m représente une masse équivalente de pendule, T ¯θ est le couple fluctuant sans dimension, τ est le temps sans dimension et (•) ′ = ∂(•)/∂τ . Ces paramètres sans dimension sont définis tel queµ = r + N I , Λ c = 1 + ηα [1] , Λ m = 1 + ηα 2 [1] , T ¯θ(τ ) ≈ T ¯θ(ϑ) =T θ (ϑ) (J r + N I)Ω 2 , τ = Ωt.(9) 
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 45 Figure 4: Modes d'un APC composé de N = 2 pendules. La rotation des pendules autour de leur centre de masse n'est pas représentée sur cette figure.

2 2 Figure 6 :

 26 Figure 6: Illustration d'un APC composé de N = 2 pendules. Les repères noirs attachés aux pendules représentent leur rotation par rapport au rotor.
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 3121 sont des paramètres de rotation. Il s'avère que le comportement du système peut être contrôlé en utilisant seulement deux paramètres : l'ordre d'accord des pendules n p et le paramètre d'accord non-linéaire c p (cf. chapitres 4). Ces deux paramètres d'accord dépendent des paramètres de trajectoire et de rotation ainsi que de l'inertie sans dimension des pendules η, de sorte que n p = n t

  exemple), mais ils ne sont pas comparés. Une comparaison est proposée dans le chapitre 4 et montre que le modèle précis devrait être utilisé dans la plupart des cas. Néanmoins, il existe encore des cas où le modèle simple est utile : • Bien que le modèle simple ait un domaine de validité beaucoup plus petit que le modèle précis, il est moins complexe et fournit une estimation correcte du comportement de l'APC pour de faibles valeurs de l'ordre d'accord n p . Ceci est vérifié dans le chapitre 3. • Le modèle simple permet d'étudier la solution en modes couplés du système (c'est-à-dire que les pendules répondent simultanément sur les modes d'unisson et d'opposition de phase) alors que le modèle précis ne le permet pas. En effet, sa plus grande complexité ne permet pas de dériver une solution analytique pour la solution en modes couplés cohérente avec la solution sur le mode d'unisson. Le modèle simple est utilisé dans le chapitre 5 pour étudier la solution en modes couplés. La figure 8 représente une réponse non-linéaire typique du système lorsqu'il est soumis à un couple harmonique avec un ordre d'excitation variable n (similaire à une fonction de réponse en fréquence avec une fréquence d'excitation variable). L'amplitude des pendules est représentée en (a) et l'amplitude de l'accélération du rotor en (b). La partie droite de la Fig. 8 traite de l'accord sous-harmonique d'un APC, qui fait l'objet de la partie III et n'est donc pas détaillée ici. Le contenu des chapitres constituant la partie II est illustré sur le côté gauche de la Fig. 8. Les courbes vertes représentent la réponse de l'APC pour des pendules oscillant à l'unisson. Les amplitudes des pendules sont physiquement limitées en raison de la finitude de leur trajectoire, et cette limite est indiquée par s cusp dans la Fig. 8(a). Lorsque les pendules oscillent sur le mode d'unisson et avant sa résonance, ils exercent un couple sur le rotor qui s'oppose au couple extérieur. Ceci génère l'antirésonance classique visible dans la Fig. 8(b) au voisinage de n p (elle est exactement à n p dans le cas linéaire et conservatif).En pratique, l'ordre d'excitation n étant fixe, on accordera typiquement les pendules de telle sorte que n p = n pour que le rotor soit excité sur son antirésonance, réduisant ainsi ses vibrations au maximum. Cependant, ce comportement idéal est perturbé par des effets non-linéaires qui détériorent l'efficacité des APC. Ces effets non désirés sont énumérés ci-dessous et discutés en détail par la suite :

Figure 8 :

 8 Figure 8: Réponse typique en amplitude des pendules (a) et du rotor (b) d'un APC en fonction de l'ordre d'excitation. La partie gauche de cette figure correspond au champ d'intérêt de la partie II tandis que la partie droite correspond au champ d'intérêt de la partie III. Les courbes vertes et bleues correspondent aux pendules répondant sur les modes d'unisson et d'opposition de phase, respectivement, et les lignes pointillées indiquent les solutions instables. Les harmoniques 1 et 1/2 de la réponse des pendules sont représentées en (a) alors que seule la première harmonique du rotor est représentée en (b). La ligne noire horizontale en (a) indique le point de rebroussement de la trajectoire des pendules. Les étoiles rouges, bleues et noires indiquent respectivement les bifurcations fourche (PF pour "pitchfork"), noeud-col (SN pour "saddle-node") et de doublement de période (PD pour "period doubling").

Figure 9 :s 1 3 Figure 10 :

 91310 Figure 9: Réponse en couple d'un premier APC (à gauche) et d'un second (à droite) en fonction de l'amplitude du couple. (a), (c) et (b), (d) représentent les amplitudes des pendules et du rotor, respectivement. La courbe verte correspond au mouvement des pendules à l'unisson, tandis que les courbes bleue et orange dans (c) et (d) correspondent à la réponse localisée. Les lignes pointillées indiquent les solutions instables. Les étoiles rouges et bleues indiquent les bifurcations fourche (PF) et noeud-col (SN), respectivement. Dans tous les graphiques, n = n p de sorte que les APCs sont excités sur leur ordre d'accord.

Figure 11 :

 11 Figure 11: La réponse de deux APCs différents est représentée dans cette figure. (a) montre l'amplitude de la première harmonique d'un rotor autour de son antirésonance et pour plusieurs niveaux de forçage. Ce rotor fait partie d'un APC avec des pendules tautochrones. Plus la ligne est foncée, plus le niveau de forçage associé est grand. Les lignes pointillées indiquent des solutions instables. La courbe rose représente le lieu d'antirésonance lorsque l'amplitude du couple augmente. Les réponses des pendules et du rotor de deux APCs sont présentées en (b) et (c) en fonction du niveau de forçage et pour n = n p . L'un des APCs est celui représenté en (a). L'autre est accordé pour verrouiller l'antirésonance à n = n p . (d) représente les trois premières harmoniques du rotor de l'APC accordé pour verrouiller l'antirésonance en fonction du niveau de forçage. Les étoiles rouges et bleues indiquent les bifurcations fourche (PF) et noeud-col (SN), respectivement.

Figure 13 :

 13 Figure 13: Illustration d'un APC composé de N = 2 pendules. Les repères noirs attachés aux pendules représentent leur rotation par rapport au rotor.

[ 3 ]

 3 des paramètres de rotation. Il s'avère que le comportement du système peut être contrôlé par l'ordre d'accord des pendules n p et le paramètre d'accord non-linéaire c p (cf. chapitre 7). Ces deux paramètres d'accord dépendent des paramètres de trajectoire et de rotation et de l'inertie illustré en Fig. 14 devient dégénéré. Cela complique considérablement l'analyse de la réponse sousharmonique et est abordé dans le chapitre 7. Le chapitre 8 présente une étude expérimentale sur un prototype conçu pour fonctionner en régime sous-harmonique suivant les recommandations exposées dans les chapitres 6 et 7. La figure 15 représente une réponse non-linéaire typique du système lorsqu'il est soumis à un couple harmonique avec un ordre d'excitation variable n (similaire à une fonction de réponse en fréquence avec une fréquence d'excitation variable). L'amplitude des pendules est représentée en (a) et l'amplitude de l'accélération du rotor en (b). La partie gauche de la Fig. 15 traite de l'accord classique d'un APC, qui fait l'objet de la partie II et n'est donc pas détaillée ici.

Figure 15 :Fig. 15 ,

 1515 Figure 15: Réponse typique en amplitude des pendules (a) et du rotor (b) d'un APC en fonction de l'ordre d'excitation. La partie gauche de cette figure est le champ d'intérêt de la partie II tandis que la partie droite est celui de la partie III. Les courbes vertes et bleues correspondent aux pendules répondant sur les modes d'unisson et d'opposition de phase, respectivement, et les lignes pointillées indiquent les solutions instables. Les harmoniques 1 et 1/2 de la réponse des pendules sont montrées en (a) alors que seule la première harmonique du rotor est montrée en (b). La ligne noire horizontale en (a) indique le point de rebroussement de la trajectoire des pendules. Les étoiles rouges, bleues et noires indiquent respectivement les bifurcations fourche (PF pour "pitchfork"), noeud-col (SN pour "saddle-node") et de doublement de période (PD pour "period doubling").

  Ceci explique comment les oscillations des pendules sous-harmoniques à n p = n/2 génèrent un couple d'ordre n qui peut réduire les vibrations du rotor. De plus, aucune harmonique supérieure du rotor n'est générée par le fonctionnement sous-harmonique car chaque terme de l'accélération du rotor(18) oscille à l'ordre n. Il s'agit d'un avantage significatif par rapport au fonctionnement classique. Une réponse sous-harmonique typique pour un APC composé de N = 2 pendules est représentée dans la Fig. 16. Cet APC est dit "parfaitement accordé" car les fonctions de trajectoire et de rotation des pendules sont une épicycloïde et une rotation linéaire, elles ne génèrent donc pas de non-linéarités supplémentaires dans le système (cf. section 2.1.3). Regardons d'abord les Fig. 16(c)-(d), qui représentent une réponse forcée de l'APC à deux fois son ordre d'accord (i.e. n = 2n p ). La réponse sous-harmonique (courbes bleues) apparaît par une bifurcation PD à partir d'une solution triviale (courbes vertes). Cette solution triviale est en fait une approximation de la réponse sur le mode unisson loin de sa résonance (cf. Fig. 15 et chapitre 6). La bifurcation PD n'est pas située à couple nul, ce qui signifie qu'il existe un seuil de couple pour déclencher la réponse sous-harmonique. C'est l'un des inconvénients du fonctionnement sousharmonique car il le rend inefficace à des niveaux de couple faibles. Ce seuil existe parce que le mode d'opposition de phase est excité de manière paramétrique par le couple externe (cf. chapitre 6). Le niveau de couple amenant les pendules au point de rebroussement de leur trajectoire est représentée en Fig. 16(c) et est définit comme la capacité en couple de l'APC. Une autre particularité du fonctionnement sous-harmonique est le phénomène de saturation. Celuici est visible dans la Fig. 16(d), où l'amplitude du rotor est indépendante du niveau de forçage. Le fait que les vibrations n'augmentent pas avec le forçage est une particularité extrêmement intéressante à utiliser pour la réduction des vibrations. Le phénomène de saturation est également visible sur la figure 16(b), qui représente la réponse du

Figure 16 :

 16 Figure 16: À gauche, on représente l'amplitude des pendules (a) et du rotor (b) en fonction de l'ordre d'excitation et pour trois niveaux de couple. Plus la ligne est foncée, plus le niveau de couple associé est important. A droite, nous représentons également l'amplitude des pendules (c) et du rotor (d), mais en fonction du niveau de forçage et à l'ordre n = 2n p . Les courbes verte et bleue correspondent respectivement à la solution avec pendules immobiles et au fonctionnement sous-harmonique. Les lignes pointillées indiquent les solutions instables. Les étoiles rouges et noires correspondent respectivement aux bifurcations fourche (PF) et de doublement de période (PD+ pour supercritique, PDpour sous-critique). Les zones rouges et grises indiquent les zones d'instabilité liées à la localisation de la solution sous-harmonique et aux sauts, respectivement.
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 1718 Figure17: Illustration du mouvement souhaité en régime sous-harmonique pour un APC composé de six pendules. Ce mouvement désiré correspond à la solution appelée "SH1". Il est à noter que nous ne représentons ici qu'une seule configuration satisfaisant SH1, mais il en existe d'autres (trois pendules successifs à l'unisson et en opposition de phase avec les trois suivants par exemple).
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 1920 Figure 19: Prototype d'un APC à pendules sphériques

4. 1 Fig. 22 .

 122 Fig. 22. Le mode 0 est un mode de corps rigide pour lequel les pendules sont immobiles. Les modes d'opposition de phase correspondent à un mouvement d'opposition de phase des deux pendules doubles et le rotor est un noeud de ces modes. Leurs ordres propres sont les ordres d'accord de l'ADPC. Les modes d'unisson représentent un mouvement d'unisson des doubles pendules, et (pour des paramètres raisonnables) au moins un des pendules oscille en opposition de phase avec le rotor. Leurs ordres propres sont légèrement plus grands que les ordres d'accord.

Figure 23 :

 23 Figure 23: Réponse linéaire d'un ADPC montrant l'amplitude de l'accélération du rotor (a) et du mouvement des pendules (b). La ligne noire pointillée en (a) correspond à la réponse du rotor avec des pendules fixes.

Figure 24 :

 24 Figure 24: Réponse des pendules (a)-(b) et du rotor (c) d'un ADPC autour de la première antirésonance du rotor pour trois niveaux de forçage différents. Les lignes pointillées indiquent les solutions instables. Les étoiles rouges et bleues indiquent respectivement les bifurcations fourche (PF) et noeudcol (SN). Les zones rouges et bleues sont des zones d'instabilité liées à la localisation et aux sauts de la réponse, respectivement. La courbe rose dans (c) représente le lieu de l'antirésonance lorsque le niveau de couple varie. (d) montre l'amplitude du rotor de deux ADPCs différents en fonction du forçage et pour l'ordre d'excitation n = n p1 .

4. 4

 4 Étude expérimentale d'un double pendule centrifuge [chap. 11] Les résultats théoriques obtenus dans cette thèse sont basés sur des modèles d'ADPC très généraux. Ainsi, ces résultats peuvent être utilisés pour concevoir n'importe quelle architecture d'ADPC. Dans le chapitre 11, nous nous concentrons sur une architecture spécifique, représentée en Fig. 25. Les doubles pendules sont constitués d'un cylindre creux (pendule 1) dans lequel roule un cylindre en forme de h (pendule 2).

Figure 25 :

 25 Figure 25: Prototype d'un ADPC à double pendules cylindriques (a). Les pendules 1 (b) sont des cylindres creux et les pendules 2 (c) sont constitués d'un cylindre de petit rayon rigidement lié à deux cylindres de plus grand diamètre, ce qui leur donne une forme en h. En (a), les pendules 1 sont cachés derrière les pendules 2.

  La partie II du manuscrit traite le cas de l'accord classique d'APCs via une approche analytique, numérique et expérimentale. L'étude théorique approfondie du phénomène non-linéaire de localisation d'énergie et du décalage de l'antirésonance du rotor a permis d'accroître la compréhension de ces limitations. Des règles et outils de design ont été proposés afin d'éviter la localisation de la réponse des pendules et de prévenir le décalage de l'antirésonance du rotor, augmentant ainsi la capacité en couple et les performances de filtration du système. Les campagnes d'essai ont permis de valider expérimentalement une partie des modèles théoriques. L'accord classique est actuellement utilisé dans des véhicules thermiques, mais il n'est cependant pas envisageable dans des véhicules électriques car la filtration d'ordres élevés requiert des tolérances de fabrication trop fines. La partie III traite le cas de l'accord sous-harmonique d'APCs via une approche analytique, numérique et expérimentale. L'étude théorique approfondie de cette solution purement non-linéaire, du décalage de l'antirésonance du rotor et de l'apparition de solutions localisées a permis d'accroître RÉSUMÉ FRANÇAIS la compréhension de cet accord particulier. Des règles et outils de design ont été proposés afin de maximiser la performance du système via l'optimisation de la réponse sous-harmonique et l'évitement de réponses localisées. Un prototype d'APC basé sur une architecture nouvelle et dédié au fonctionnement sous-harmonique a été conçu durant la thèse. Les campagnes d'essai sur ce prototype ont permis de valider en partie les modèles théoriques et d'observer pour la première fois la filtration sous-harmonique de manière expérimentale. Il est plus aisé de filtrer des ordres élevés avec des pendules sous-harmoniques qu'avec des pendules classiques car ils peuvent être accordés à la moitié de l'ordre à filtrer. Toutefois, l'accord non-linéaire de pendules sous-harmoniques requiert de très faibles tolérances de fabrication pour des ordres élevés, ce qui empêche actuellement leur adaptation dans des véhicules électriques. La faible capacité en couple du prototype développé, due au glissement des pendules, est un autre frein à l'adaptation d'APCs sous-harmoniques à des véhicules électriques. La partie IV traite le cas de l'utilisation d'absorbeurs à double pendules centrifuges (ADPCs) plutôt que d'APCs. L'étude théorique approfondie de la réponse linéaire et non-linéaire d'ADPCs, de l'apparition de solutions localisées et du décalage des antirésonances du rotor a grandement amélioré la connaissance de ces systèmes complexes. Des règles et outils de design ont été proposés afin d'éviter la localisation de la réponse des pendules et de prévenir le décalage des antirésonances du rotor, augmentant ainsi la capacité en couple et les performances de filtration de ces systèmes. Un prototype d'ADPC basé sur une architecture originale a été conçu durant la thèse. Les campagnes d'essai sur ce prototype ont permis de valider en partie les modèles théoriques. Ce sont les premières comparaisons entre la réponse forcée (linéaire et non-linéaire) d'un ADPC obtenue de manière théorique et expérimentale. Il est plus aisé de filtrer des ordres élevés avec des doubles pendules qu'avec des pendules simples (classique ou sous-harmoniques) car leur accord est plus flexible et nécessite des tolérances de fabrication moins contraignantes. Toutefois, les tolérances requises restent faibles pour un accord satisfaisant. De plus, l'architecture actuelle ne permet pas l'accord non-linéaire de l'ADPC car les pendules suivent des trajectoires circulaires. Ceci pourrait être corrigé en prenant en compte des trajectoires non-circulaires des pendules, comme c'est le cas pour un APC. Une telle étude est laissée pour un travail futur, et il sera nécessaire de vérifier que l'accord non-linéaire requis soit compatible avec des tolérances de fabrication acceptables. Il sera également intéressant d'étudier le glissement des doubles pendules afin de s'assurer que la capacité en couple du système est satisfaisante.

  

  

  

  

  

  

  

  

  

  

  

  

Table 1 .

 1 1: Order of magnitude of n e in thermal and electrical powertrains and rotating element considered.

	1.1. VIBRATIONS IN AUTOMOTIVE POWERTRAINS
		n e	ϑ
	Thermal engine 0.5 -6 Crankshaft/flywheel or clutch
	Gear train	15 -60	Driving or driven gear
	Electric motors 6 -48	motor shaft

Table 1 . 2
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  1.1.3 that the filtering of vibrations related to gears requires a high-order tuning of the CPVA. Reasonable CPVA requirements to reduce torsional vibrations in an electric vehicle are n p ∼ 20 and R 0 < 60 [mm] (cf. section 2.4.1). For instance, if we focus on a purely

translated CPVA, we could propose

n t = 20, R 0 = 50 [mm] ⇒ r = 49.875 [mm], ℓ = 124.688 [µm].

(2.33)

  1 and s 2 are the pendulums' coordinates while ζ 1 and ζ 2 are the modal ones. When only the unison mode responds (i.e. ζ 1 = 0, ζ 2

	]︄	
	.	(II.3)
	⏞ ⏟⏟ ⏞ unison mode	
	s 1	

  𝒂 and 𝝃 are vectors containing the 𝑎 𝑖 and 𝜉 𝑖 , respectively, and 𝐷 1 denotes derivation with respect to 𝜏 1 . Functions 𝑓 𝑎 𝑖 and 𝑓 𝜉 𝑖 are

	V. Mahe et al.								
	𝐷 1 𝑎 𝑖 = 𝑓 𝑎 𝑖 (𝒂, 𝝃), 𝑎 𝑖 𝐷 1 𝜉 𝑖 = 𝑓 𝜉 𝑖 (𝒂, 𝝃).	(a) (b)						(16)
	given by								
	𝑓 𝑎 𝑖 (𝒂, 𝝃) = -	1 2𝛬 𝑚 𝑛 𝑝	⎡ ⎢ ⎢ ⎢ ⎣ 𝛬 𝑐 T1 sin(𝜉 𝑖 ) + 𝑛 𝑝 b𝑎 𝑖 +	𝛬 2 𝑐 𝑛 2 𝑝 𝑁	μ	𝑁 ∑ 𝑗≠𝑖 𝑗=1	⎤ ⎦ ⎥ 𝑎 𝑗 sin(𝜉 𝑖 -𝜉 𝑗 ) ⎥ ⎥	,	(17a)

Table 1

 1 Parameters of the CPVA studied in this section.

	𝑁	𝑛 𝑝	𝜂	𝜇	𝑥 [4]	𝛼 [1]	𝛼 [3]	b	b𝑟
	2	0.5	1.4	0.1	-4.2	1.33	0.06	0.16	0.002

Table 2

 2 Parameters of the CPVA studied experimentally.

	𝑁	𝑛 𝑝	𝜂	𝑥 [4]	𝛼 [1]	𝛼 [3]	𝜇	b	b𝑟
	2	0.5	0.88	-4.2	1.33	-0.02	0.167	0.043	0.002

  degenerated modes for which two pendulums are moving in phase-opposition. Their eigenvalue 𝑛 10 has multiplicity 𝑁 -1 and the rotor is a node of these modes. For a CPVA made of only two pendulums, ( 𝑛 10 , 𝝓 𝟏𝟎 ) is not degenerated and simply represents a phase-opposition motion of the pendulums.

et al. ( 𝑛 00 , 𝝓 𝟎𝟎 ) is a rigid body mode for which only the rotor is excited. ( 𝑛 10 , 𝝓 𝟏𝟎 𝒊 ) are 𝑁 -1
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Table 3 :

 3 Parameters of the CPVA studied in this section.

  table. The Routh table corresponding to the characteristic polynomial (34) is given in Tab. B1 and the expression of the elements of this table are

Table B1 :

 B1 table based on the row preceding the row of zeros. The real part of the pair(s) of complex conjugate eigenvalues can be determined by analysing the first column of the table, starting from the row preceding the row of zeros. Routh table for a polynomial of degree 4. The r ij are the elements of the Routh table.

	Row R 4 Row R 3 Row R 2 Row R 1 Row R 0	r 40 r 30 r 20 r 10 r 00	r 41 r 31 r 21 0 0	r 42 0 0 0 0

Table B2 :

 B2 Routh table if R 2 is full of zeros. The r ij are the same elements as in Tab. B1 and the rij are the modified elements.

Case 3: row R 1 is full of zeros

As in the previous case, the Routh table has to be modified, leading to Tab. B3. The expression of the modified elements rij is r10 = 2r 20 , r00 = r 21 .

  et al. Free responses of SH1 (blue), SH2 (orange), SH12a (pink) and SH12b (brown). Bifurcation curves associated to SH1 and SH2 are shown in black and grey, respectively. Dashed lines indicate unstable responses. PF indicates a pitchfork bifurcation. Parameters are given in Table

	Fig. 7.

Table 3

 3 Parameters of the subharmonic and classical CPVAs.

		𝑛 𝑝	𝜂	𝜇	𝑥 [4]	𝛼 [1]	𝛼 [3]	b	b𝑟
	Subharmonic CPVA	1.498	1	0.1	-0.037	-0.1	0.02	0.002	0.002
	Classical CPVA	3.02	1	0.1	0	-0.1	0	0.002	0.002

  1 , 𝑓 𝛽 1 , 𝑓 𝑢 2 and 𝑓 𝛽 2 are

	𝑓 𝑢 1 (𝒖, 𝜷) =	[ (𝑐

𝑝 -𝑐 𝑐 + 𝑐 𝑡 )𝑢 1 𝑢 2 2 sin(𝛽 1 -𝛽 2 ) + 𝑛 𝑝 𝛬 𝑚 𝑢 1 T1 cos(𝛽 1 ) -2𝑛 𝑝 b𝑢 1 ] [4𝑛 𝑝 𝛬 𝑚 ] -1 , (E.1)
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  )

			0.30	s cusp			SN			
			0.25							
			0.20							
	a	0.15								(a)
				PF		PF				
			0.05 0.10				response at the antiresonance		backbone curve
			0.00							
		0.0125 0.0150	h 1				h 2 at the antiresonance		
	1 , h 2 , h 3	0.0075 0.0100	PF	PF		h 3 at the antiresonance		
	h	0.0025 0.0050		PF PF	antiresonance locus (only on h 1 )		
				PF					
		1.450 0.0000	1.475	n p	PF	1.525	1.550	1.575	1.600	1.625	1.650
								n		

Table 8 .

 8 1: Nominal parameters of the CPVA tuned at order 10.8.2. SUBHARMONIC TUNING OF A CENTRIFUGAL PENDULUM VIBRATION ABSORBER TO FILTER-OUT ORDER 20

  , ζ i , ϑ) contain linear, quadratic and cubic terms in ρ i and ζ i , and account for the damping and the external forcing.

		Functions	f (o) i	and	f (u) i	are described in Appendix A. They involve the modal
		constants Λmi , ki , bi , Λci , defined in Appendix B, which represent the modal
	195	mass, stiffness, damping and linear coupling with the rotor, respectively. Note
		that Eqs. (17a) and (17b) make use of n 2 pi = ki / Λmi . Functions	f (o) i (ρ i , ζ i , ϑ)
		and	f (u) i (ρ i	

Table 2 :

 2 Parameters of the CDPVA studied in this section.

Table 11 .

 11 1: Dimensions of the prototype (all in [mm]). N r [mm] ℓ 1 [mm] ℓ 2 [mm] m 1 [g] m 2 [g] I 1 [g.m 2 ] I 2 [g.m 2 ] J r [g.m 2 ]

	11.1. PRESENTATION OF THE EXPERIMENTAL SYSTEM
			r	r 0	r p1	w 1 e r p2 w 2 r p2a w 2a
			60 25.5 15.49 15 3 8.45 18	19	8
	6	60	10.01	4.04	30.85 169.55 0.006147 0.02684	11.373
			Table 11.2: Parameters of the CDPVA used for the models.
	pendulum 2 and pendulum 1 imply		

Table 11 . 3
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	11.1, 11.2 and 11.3. Note that m 1 and m 2 were not computed from Eq. (11.3) (which yields values of
	31.051 [g] and 174.141 [g], respectively), but were measured on the real system. However, the values
	used for I

1 and I 2 are those computed from Eq. (11.3) as they could not be measured and lead to good fittings between the model and the experiments (cf. section 11.2). With such parameters, the tuning orders of the CDPVA are n p1 = 1.303 and n p2 = 8.101. : Dimensionless parameters of the CDPVA.

  Que ce soit dans une motorisation thermique ou électrique, le couple T (ϑ) est périodique en ϑ et sa fréquence fondamentale s'exprimeω e = n e ϑ ̇≈ n e Ω(2)où n e est l'ordre d'excitation, ϑ ̇est la vitesse de rotation instantanée ((• ̇) = ∂(•)/∂t où t est le temps), et Ω est la vitesse de rotation moyenne. La période de T (ϑ) est 2π/n e . L'ordre d'excitation n e dépend du système considéré. Pour un moteur thermique, n e correspond au nombre d'explosions par révolution et son ordre de grandeur est n e ∼ 2. Dans un train d'engrenage, n e correspond au nombre de dents de l'engrenage dont la position est notée ϑ, et on a typiquement n , ce qui peut générer des résonances de la chaîne cinématique. Ces situations de résonance, générant des niveaux de vibration inacceptables, sont illustrées en Fig. 2 pour un groupe motopropulseur thermique avec deux configurations de rapport de vitesse engagé (l'un en bleu, l'autre en rouge). Cette figure prend en compte les résonances rencontrées à cause des quatre premiers harmoniques du couple T θ (ϑ). Toutefois, en pratique, l'harmonique 1 est de loin la plus gênante car elle possède la plus grande amplitude. Par la suite, on s'intéressera à réduire les vibrations générées par cette harmonique fondamentale.

e ∼ 20. T (ϑ) peut être décomposé en une série de Fourier d'ordre fondamental n e tel que

T (ϑ) = T 0 + ∞ ∑︂ k=1 T ck cos(kn e ϑ) + T sk sin(kn e ϑ),

(3)

où T ck et T sk sont les coefficients de Fourier. L'équation (4) met en évidence que la partie fluctuante du couple, T θ (ϑ), contient plusieurs harmoniques. Il est intéressant de noter que l'on peut également décomposer T (t) en une série de Fourier en utilisant l'approximation ω e ≈ n e Ω afin d'écrire

T (t) ≈ T 0 + ∞ ∑︂ k=1

T ck cos(kω e t) + T sk sin(kω e t).

(

4

)

On voit via l'Eq. (

2

) que la fréquence d'excitation dépend (quasiment) linéairement de la vitesse de rotation moyenne. De plus, la chaîne cinématique est un ensemble complexe contenant de nombreux modes de vibration à des fréquences fixes. Ainsi, lorsque l'automobiliste accélère ou décélère, il fait varier ω e

3.1 Bases de la réponse sous-harmonique [chap

  .6] Pour un APC constitué de deux absorbeurs, le fonctionnement sous-harmonique souhaité est une réponse des pendules sur la sous-harmonique du mode d'opposition de phase tel qu'ils oscillent à la moitié de l'ordre du couple et avec des phases opposées. En tenant compte de ce mouvement d'opposition de phase, l'accélération du rotor peut être exprimée au premier ordre (cf. chapitre 6) ¯1 cos(nϑ) + 2µn 2 t ss ′ , s = s 1 = -s 2 , (18) où s 1 et s 2 sont les coordonnées des pendules 1 et 2, respectivement, et µ et n t sont un rapport d'inertie et l'ordre de la trajectoire des pendules (cf. sections 2.1.2.2 et 2.1.3). Le seul terme équilibrant le couple externe dans l'équation (18) est dû à l'effet de Coriolis et présente une non-linéarité quadratique. Une conséquence de cette non-linéarité est que le terme ss ′ oscille à deux fois la fréquence de s.

	θ ′′ accélération du rotor ⏞⏟⏟⏞	extérieur ⏟⏟ couple = T ¯1 cos(nϑ) ⏞ ⏞	⏞ + µn 2 effet de Coriolis ⏟⏟ t (︁ s 1 s ′ 1 + s 2 s ′ 2	⏞ )︁	= T

1.5. ORGANISATION OF THE REPORT

An order is the proportionality coefficient between a frequency and the rotational speed of the rotating machine

The eigenorders are analogous to eigenfrequencies. They can even be seen as dimensionless eigenfrequencies.

It is a pitchfork bifurcation of the slow scale system(30), which corresponds to a period doubling bifurcation of the initial dynamical system, since a harmonic 1 response bifurcates to a harmonic 1/2 response. (cf. Appendix F).

MANLAB is a path-following and bifurcation analysis software.

Actually, the saturation is not perfect in that case. Zooming on Fig.8(c) around 𝑛 = 2.997, one would see that there is a small difference on | | | 𝜃(1) ′′ | | | between the three torque levels. However, this difference seems negligible.

This is analogous to a frequency response.

This corresponds to the response as a function of the excitation amplitude.

"SH" stands for "subharmonic", "L" for "localised" and "1" indicates that this is the first localised solution encountered for an increasing sweep.

It is fixed in the linear regime, but it is slightly changing at large pendulum amplitudes due to nonlinear effects. This is explained later in this section.

"SH" stands for "sumbharmonic" and "1" indicates that modes 1 are involved

It is not exactly the same equations as the CDPVA considered in[7] is equipped with torsional springs while it is not the case in the present paper.
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Appendix A System obtained through the method of multiple scales

The system of equations obtained through the application of the method of multiple scales is given by Eq. (20) where functions f u 1 , f β 1 , f u 2 and f β 2 are

where c p and ∆β are defined in Eqs. (24) and (29), respectively.

Chapter 6

The subharmonic operation of centrifugal pendulums

This chapter is made of a paper published in the Journal of Sound and Vibrations [START_REF] Mahe | Subharmonic centrifugal pendulum vibration absorbers allowing a rotational mobility[END_REF]. It focuses on the subharmonic response of a centrifugal pendulum vibration absorber (CPVA). This could prove useful to adapt CPVAs to gear trains as it allows to divide by two the tuning order required for the pendulums. In this chapter, the analytical results are obtained starting from the simplified CPVA model proposed in section 2.3.2.

Sections 1 to 3 repeat information from chapters 1 and 2. They present the context of the study, the modelling of a CPVA (cf. section 2.1.1) and a linear analysis (cf. section 2.2). In addition, sections 5.1 and 5.2 repeat the derivation of simplified CPVA equations, which was already detailed in section 2.3.2 of chapter 2. The reader might want to skip these sections of the article if he already read chapters 1 and 2.

The novelty of the article starts in section 4, where the basic principles of the subharmonic operation are presented. The computation of simplified modal equations is detailed in section 5 (we remind that the content of sections 5.1 and 5.2 was already discussed in chapter 2, so the reader might only want to look at section 5.3). In section 6, the associated modal solutions and their stability are computed using the method of multiple scales (cf. section 2.5.2.1). In addition, they are validated through comparisons with numerical resolutions of the system's dynamics. The model is applied to case studies in section 7, and the link between the shifting of the nonlinear antiresonance and the saturation of the rotor's response is investigated. Design rules allowing to maximise the performance while avoiding instabilities are provided. Finally, in section 8, the performance in subharmonic operation is compared to that in classical operation.

V. Mahe et al. As remarked in [29], Figs. 8(a) and (b) confirm that one can use the non-linear mistuning to increase the torque capacity of the CPVA. Indeed, the pendulums' amplitude is always smaller in Fig. 8(b) than in Fig. 8(a), so that the hardened-pendulums will hit their cusp for a larger torque level. Moreover, a linear over-tuning (which corresponds to 𝑛 < 3) allows for a decrease in the pendulums' amplitude and thus an increase in the torque capacity.

The evolution of the rotors' response is given in Figs. 8(c) and (d). For the reference-CPVA, the response at the three torque levels overlaps so that min

is fixed both in order (at 𝑛 𝐴𝑅 ) and in amplitude. This is the saturation phenomenon as increasing the forcing does not change the amplitude's response. A small linear mistuning still leads to a saturation, 4 but at a larger amplitude. This can be seen looking at Fig. 8(c) at 𝑛 = 2.99 for instance. The rotor's behaviour is significantly different for the hardened-CPVA shown in Fig. 8(d). Indeed, increasing the torque level shifts the antiresonance order to the right. Because of this shifting, the rotor's amplitude at a given order will evolve with the torque level instead of saturating. This can be seen looking at Fig. 8(d) at 𝑛 = 3 for instance. An interesting point is that the rotor's amplitude at the antiresonance does not change, only 𝑛 𝐴𝑅 is shifted. Hence, the CPVA remains efficient in reducing vibrations but its maximum efficiency is shifted to higher orders. This feature will be used for the design guideline proposed in Section 7.2. As min

is tuning-independent, the recommendations on b and 𝛬 𝑚 proposed earlier in the case of perfect tuning (cf. Section 6.6) also apply in the presence of mistunings.

In the case of a CPVA with a softened behaviour (i.e. 𝑐 𝑝 > 0), the rotor's response would not shift to the right but to the left, leading to similar qualitative results as those of the hardened-CPVA. However, the amplitude of softened pendulums is larger than that of perfectly-tuned ones, so that their torque range is reduced. Those two remarks are illustrated in Appendix H.

The pros and cons of intentional mistuning have now been exposed, and the results are in accordance with [29], where pendulums with a purely translational motion were considered. However, to our knowledge, no directions were given regarding how to choose those mistunings efficiently. This is discussed in the next section.
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Appendix A Details on the computation of the degenerated modes

A.1 Choice of the mode shapes

The eigenvalue problem to solve to find the modes of the system is

The N + 1 solutions (n i0 , φ i0 ) are the linear modes. The computation of those modes leads to the eigenvalues and mode shapes given in Eq. (8). However, when searching for the N -1 mode shapes associated to eigenvalue n 10 = n p , one finds that they must only satisfy

These mode shapes must also be chosen such that modes 0, 1 and 2 span the whole space. Hence, instead of the simple form used in Eq. ( 8), the degenerated (this is verified in Fig. H5(b) for three combinations). The free solutions can be deduced from the forced ones by setting b = T1 = 0, leading to

Appendix B Shaking forces generated by the pendulums on the rotor

In section 3.1, we chose to split the pendulums in two groups G 1 and G 2 , each one of size N/2, such that G 1 = {1, 2, ..., N/2} and G 2 = {N/2 + 1, N/2 + 2, ..., N }. Then, we assumed that the pendulums all oscillate with the same amplitude and that those in G 1 are in phase-opposition with those in G 2 to obtain the optimal subharmonic solution SH1. However, we could have chosen to distribute the pendulums differently in these two groups to obtain other optimal solutions, as discussed in section 3.2 for instance. The choice for the definition of groups G 1 and G 2 does not affect the results derived in this paper, but it influences the resulting force generated by the pendulums on the rotor. This would have an importance if one were to consider a translational mobility of the rotor, as in [49][50][51][52][53][54][55][56]. This is illustrated in Fig. B1 for a CPVA made of N = 6 pendulums. This figure represents the Coriolis forces generated by the pendulums on the rotor, which are responsible for the subharmonic filtering [30], and the resulting Coriolis force acting on the rotor. For the configuration on the left, the resulting force on the rotor is null. However, for the other two configurations, the resulting force exerted on the rotor is different from zero. This means that the Coriolis effect generates a shaking force which can lead to translational rotor vibrations. One could imagine introducing intentional mistuning among the absorbers to enforce a particular configuration (the one on the left for instance, for which there is no shaking force), but this investigation is out of the scope of this paper.

Appendix C System obtained through the method of multiple scales

The system of equations obtained through the application of the method of multiple scales is given by Eq. (26) where functions f a i and f ξ i are

Constants c p , c c and c t are defined in Eqs. (30) and (48) and ∆ξ ij is defined as To derive the kinematic equations, one first needs to express the velocity of the virtual contact point I * rp (cf. Fig. 7) as

where (p) and (r) refer to the pendulum and the rotor, respectively. The model assumes rolling without slipping, so that v I * rp ∈(p)/(r) = 0. Hence, Eq. (A.1) can be written as 

where X G and Y G are the known Cartesian coordinates of G (cf. Appendix A.4).

From the kinematic equations (A.3), one can find

where β is a known trajectory function (cf. Appendix A.4). Hence, the Carte- such that C : {G, OG = -R(S)[sin ϕ(S)x r + cos ϕ(S)y r ]}, where we have used v =sin ϕ(S)x r + cos ϕ(S)y r . However, in practice, it is convenient to describe a given trajectory using X(S) = R 2 (S). We show below how every trajectory function is related to X. For R this is trivial as R(S) = X(S).

From Fig. A.15, as u is orthogonal to v, one has

from what we can write

. Additional relations between the trajectory functions

If is convenient to introduce the dimensional function Z(S), defined as

Note that the associated dimensionless function z(s) was defined in Eq. ( 1).

From Fig.

A.15, one can deduce

where thesign in the expression of sin(βϕ) comes from the fact that, in 

The acceleration of the pendulum with respect to the rotor can be expressed

where R r (0, x r , y r , z 0 ) is a frame attached to the rotor at point O. Then, by identification, one obtains

Finally, using the definition of X (i.e. X = R 2 ) and Eqs. (A.14), (A.10) and (A.9), it is possible to show that

Appendix B. Measurement of the torque at the adherence limit fluctuations of the rotor's angular position. A periodic torque T (ϑ) = T 0 + T 1 cos(nϑ) is applied on the rotor. T 0 is a constant torque component which balances with the rotor's damping to set its mean rotational velocity Ω. T 1 cos(nϑ) is a fluctuating torque of order n and is the source of the fluctuations θ(t). Note that in the following, we will write T ¯1 cos(nϑ) the dimensionless fluctuating torque. N = 2 identical double pendulums are attached to the rotor. Pendulums 1 (in blue) and 2 (in green) have different masses, inertias and lengths. The position of the centres of mass of pendulums 1 and 2 can be located relatively to the rotor and pendulums 1, respectively. In addition to their relative translation motion, the pendulums can rotate about their centre of mass. These rotations are indicated by the black frames attached to the pendulums in Fig. IV.1. They are not additional degree-of-freedom as they are functions of the pendulums' positions. Hence, the system has 5 degree-of-freedom: the rotor's position and the relative position of the four pendulums.

Linear features [chap. 10]

When the double pendulums are uncoupled from the rotor, the system has four modes (because the rotor is no longer a degree-of-freedom). They represent two phase-opposition and two unison motions of the double pendulums. The first phase-opposition and unison modes share the same eigenorder (analogous to an eigenfrequency) n p1 . Hence, these modes are degenerated. n p1 is the first tuning order of the double pendulums and depends on the system parameters. Similarly, the second phaseopposition and unison modes share the same eigenorder n p2 and they are degenerated. the rotor is a node of the phase-opposition modes, so these are not excited by the external torque.

The choice of the tuning orders is crucial as it controls the locus of the rotor's antiresonances.

However, it is not an easy task to find the CDPVA parameters that lead to the desired values of n p1

and n p2 while achieving satisfactory filtering efficiency. An original procedure is proposed in chapter 9 to facilitate this linear tuning process.

In this section we presented only the linear features of CDPVAs. However, these systems are subjected to nonlinearities of different sources: nonlinear coupling between the pendulums and the rotor, nonlinear coupling between the two pendulums of a double pendulum, pendulums' path and rotation nonlinearities. The nonlinear behaviour of CDPVAs is discussed thereafter.

SUMMARY OF PART IV

excitation order n amplitude of the rotor (H1) 

Chapter 9

The unison response of centrifugal double pendulums

This chapter is made of a paper that is about to be submitted to the Journal of Sound and Vibration [155]. It focuses on the linear and nonlinear responses of a centrifugal double pendulum vibration absorber (CDPVA) with the aim to provide methods and guidelines to accelerate the tuning process and to improve the efficiency of the system.

The context of this study, described in section 1, repeats information from chapters 1 and 2. Hence, the reader might want to skip this section if he already read these chapters.

The novelty of the article starts in section 2, where the modelling of a CDPVA is detailed. Then, a linear analysis is led in section 3. The two tuning orders of the system are computed and the forced response is described. It has the particularity of presenting two rotor antiresonances. In addition, a method to efficiently design a CDPVA using performance indicators is proposed. The nonlinear response and stability of a CDPVA equipped with a single double pendulum is derived in section 4. It starts with a simplification of the equations of motion similar to the one presented in section 2.3.2 for a centrifugal pendulum, but in the present case it is adapted to double pendulums. Then, we assume a response on a single mode and we compute its response and stability using the method of multiple scales (cf. section 2.5.2.1). The results are applied to case studies in section 5 and verified through comparisons with numerical resolutions of the system's dynamics. A design guideline maximising the performance through the use of a nonlinear tuning locking one of the rotor's antiresonances is proposed.

In order to give T (ϑ) the meaning of an external forcing term, we replace the independent variable t by the rotor's position ϑ [39], which can be seen as a non-dimensional time. Using the chain rule, one can show that

where (•) = ∂(•)/∂ϑ (the details can be found in [40]). Hence, the dimensionless rotor's acceleration is now θ/Ω 2 = ẏ/Ω = yy . Using the dimensionless quantities (1) and the chain rule (3), one can write the equations of motion as M (q)q + Cq + K(q)q + f nl (q, q , q ) = f (t).

q = [y, ϕ 1 , ϕ 2 ] is the vector containing the degree-of-freedom ( indicates the transpose). M (q), C, K(q) represent 3 × 3 mass, damping and stiffness matrices, respectively. f nl (q, q , q ) and f (t) are vectors containing nonlinear inertial terms and forcing terms, respectively. In the system of three equations generated by Eq. ( 4), the first, second and third equations govern the motion of y, ϕ 1 and ϕ 2 , respectively. These three dimensionless equations are given in Appendix A.2.

From now on, it is assumed that the fluctuating torque applied on the rotor contains only one harmonic whose non-dimensional form is Tθ (ϑ) = T1 cos(nϑ),

where n is the excitation order. For a car engine, n corresponds to the number of strikes per revolution of the crankshaft.

Linear analysis

This section presents a linear analysis of the CDPVA. First of all, one can use Eq. (3) to show that, at first order, 1 + θ ≈ y and θ ≈ yy ≈ y (the demonstration can be found in [40]). Hence, it is possible to represent the motion of the rotor with position θ instead of velocity y. This way, all the degree-offreedom of the system are positions, which facilitates the representation of the Appendix A.1. Dimensional equations

The kinetic energy of the system represented in Fig. 1 is

where v G1 and v G2 are the velocities of points G 1 and G 2 in the Galilean frame, respectively, and Ω Rr/R0 , Ω Rp1/R0 and Ω Rp2/R0 are the rotational velocities of the rotor, pendulum 1 and pendulum 2 with respect to the Galilean frame, respectively. These three rotational velocities are given by

The potential energy U is neglected as the gravitational acceleration is assumed negligible in front of the centrifugal acceleration. Hence, the Lagrangian is

There are four external loads applied on the system:

625

• A torque T (ϑ)z 0 is applied on the rotor, where z 0 is the out-of-plane unit vector (cf. Fig. 1). It is the external forcing.

• A resistive torque -b r θz 0 is applied on the rotor. It represents the damping between the rotor and the ground.

• A resistive torque -b 1 φ1 z 0 is applied on pendulum 1. It represents the 630 damping between the rotor and pendulum 1.

• A resistive torque -b 2 φ2 z 0 is applied on pendulum 2. It represents the damping between pendulum 2 and pendulum 1.

One can use the procedure described in section 2 to derive the dimensionless equations of the system. These equations are

The simplified rotor equation is

where constants g 1 , g a , g b and g f are defined in Appendix B and notations X 1 and X 2 are defined as

To derive the simplified pendulums' equations, further scaling is necessary.

For the nonlinear terms to appear at least at order in the equation of pendulum 1, it is required that the term

be of order . g c is a nonlinear constant defined in Appendix B. This scaling is justified for g 1 ϕ 3 1 /6 as this term represents the nonlinearity due to the path of pendulum 1 (cf. Appendix E), which is usually considered to be small [40].

However, for the other terms of expression (A.11), the scaling by is not easily justified but is a choice that might be a source of inaccuracies in the final results.

The same scaling requirement arises for the equation of pendulum 2. In that case, it is the term

that is required to be of order . To scale terms (A.11) and (A.12), it is convenient to introduce the additional scaled parameters

With this additional scaling, the simplified pendulums' equations are given by Eqs (16), where f p1 and f p2 can be split such that

, contain exclusively linear, quadratic, cubic and forcing terms. These functions are

for pendulum 1 and

for pendulum 2. g d and g e are nonlinear constants defined in Appendix B.

Appendix A.4. Modal simplified equations

Following the procedure described in section 4.2, one obtains the modal equations (21), where functions fi can be decomposed as

fLi , fQi , fCi and ffi contain exclusively linear, quadratic, cubic and forcing terms. These functions are fLi

c f i is a modal parameter contributing to the forcing and described in Appendix B. Note that the modal projection generates a linear term

which could be included in fLi (ζ i ). However, using the first order solution of the modal equation,

and from the definition of χ pi (cf. section 3.1), we have

Hence, w i does not contribute to the response at the order retained.

645

The expression of the notations introduced in section 3 is

,

Appendix D. Performance indicator G i

To compute G i , one first needs to project the equations of motion ( 5) on the linear modes (cf. section 3.1) and to neglect the modal coupling through the damping (this is relevant as damping is small) in order to obtain an uncoupled problem in terms of the modal coordinates. This can be solved to obtain the complex amplitudes of the modal coordinates, given by

Ri , mi , bi and fi are the complex amplitude, mass, damping coefficient and forcing associated to mode i, i = 0, 1, 2. n i0 are the natural orders given in section 3.1. We give

As we look for the response at n = n pi , several approximations can be done.

First, the contribution of mode j = {0, i} is negligible so the rotor's amplitude

Nonlinear response of a CDPVA

The aim of this section is to present the construction of an analytical model describing the nonlinear response of a CDPVA and its stability. As for CPVAs [55], the construction starts with a scaling of the parameters. This allows a simplification of the equations of motion such that the dynamics of the pendulums becomes uncoupled from that of the rotor. Then, as in [25], the pendulums' equations are written in matrix form and projected on the linear modes, leading to the simplified modal equations. The modal solutions are obtained by considering a response on a single mode and applying the method of multiple scales [56]. Finally, the modal responses are used to deduce the pendulums' motion, which in turn is used to obtain the rotor's response.

Scaling and simplified physical equations

In order to derive analytical solutions of Eq. ( 4), it is necessary to simply these equations. The procedure is the same as in [7], so only the main steps are reminded here. The rotor's rotational velocity is decomposed as

As for CPVAs [52], it is relevant to assume small damping, small fluctuations of the rotor's rotational velocity, small torque amplitudes, small ratio of the pendulums' geometric inertia over the CDPVA's rotational inertia. Moreover, the rotation laws considered are close from linear. Hence, we can scale the parameters such that [7] b1 = b1 , b2 = b2 , br = br , T1 = T1 ,

where is a small parameter that can for instance be chosen to be µ. In the following, only first-order terms will be retained in the rotor's equation. Hence, like in section 3, the approximations θ ≈ ỹθ and θ ≈ ỹ θ can be used in order to represent the degree-of-freedom of the rotor through its position rather than its Appendix A.1. Dimensionless equations 590

One can use the procedure described in section 2 to derive the dimensionless equations of the system. These equations are

Simplified equations

One can use the procedure described in section 4.1 to derive the simplified equations. The simplified rotor equation is

where constants g 1 , g a , g b and g f are defined in Appendix B and notations X 1i and X 2i are defined as

To derive the simplified pendulums' equations, additional scaling is required so that the nonlinearities coming from the circular path of pendulums 1i and the direct coupling between the pendulums appear at order . This is done by introducing the additional scaled parameters

Details can be found in [7]. This way, one can split the functions f p1i and f p2i which appear in the simplified pendulums' equations (12b) and (12c) such that 

Ci and f (x) f i , x = {o, u}, i = {1, 2}, contain exclusively linear, quadratic, cubic and forcing terms. These functions are

for the unison modes. c f i is a modal parameter contributing to the forcing and described in Appendix B. Note that the modal projection generates a linear

which could be included in f (u) Li (ζ i ). However, using the first order solution

and from the definition of χ pi (cf. section 3), k 12 +k 2 χ pi -n 2 pi (Λ c12 +Λ m2 χ pi ) = 0. Hence, the term (A.13) does not contribute to the response at the order 595 retained.

The expression of the notations introduced in section 3 is

,

and the expression of the modal parameters is 

Finally, to retrieve the rotor's component, we rewrite Eq. (6a) as

and we substitute ϕ 1i and ϕ 2i for their components in ψ

ri . This way, we obtain the full mode shape φ (o) i , which contains the rotor's component i . For the two modes considered here, we have i = 0 such that

The two mode shapes associated to n 10 and n 20 are computed using the exact same procedure but another matrix

where R (2i) j refers to the j th row of A

r . This way, we obtain the mode shape associated to n i0 ,

(C.10)

with

The last mode of the CDPVA with N = 2 double pendulums is the rigid-body mode (n 0 , φ 0 ) with

Indeed, one can easily see that this rigid-body mode satisfies the eigenvalue problem associated to system (6).
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Appendix D.1. Polar coordinates

The system obtained through the method of multiple scales is given by Eq. ( 21) where functions f vi , f ui , f φi and f βi are

The amplitude and phase response of mode i are given by

When the pendulums respond on mode i, the amplitudes and phases of the three first harmonics of the rotor's acceleration are given by

Th determinants of A i and B i are

. Bifurcation curves

The bifurcation curves are The dashed black lines correspond to the approximated contours of the unstable zone leading to localisation. They are obtained using Eq. ( 30). T1 = 0.002 and the system parameters are given in Tab. 2 except for α 13 = 0.0391.

Chapter 11

Experimental investigation of the response of centrifugal double pendulums The maps are represented for two values of r 0 (a low one on the left-hand side, a larger one on the right-hand side). First, notice the triangular shape of the maps. This is due to both r p1 and r p2 begin upper-bounded. Indeed, r p1 cannot exceed r 0 -δ, where δ is a chosen tolerance. This sets the vertical grey lines in Fig. 11.9. Moreover, r p2 cannot exceed r p1 -e -δ, which sets the oblique grey lines in the maps. Furthermore, notice that it is relevant to use r p1 , r p2 and r 0 as the main design parameters. Indeed, r can be quite limited due to design constraints. In the present case, it is set to r = 40 [mm] in order to obtain a CDPVA significantly smaller than the prototype presented previously in this chapter. w 1 , w 2 , w 2a and r p2a only play a role in the masses and inertias of the pendulums, but not in their lengths. Hence, their effect is expected to be limited compared to r p1 , r p2 and r 0 .

The parameter left is e, which plays and important role as it contributes to the length of the second pendulum, but its variations are quite limited. Indeed, it cannot be decreased too much otherwise the physical resistance of pendulums 1 would be too small.

Presentation of a centrifugal double pendulum vibration absorber tuned to order 20

Now, let us focus on the most interesting designs visible in Fig. 11.9. The black dashed line visible in the top corner of the triangles indicates the designs with a tuning order n p2 = 20. This drastically limits the design options and imposes that both r p1 and r p2 be close from their limits. Looking at ∆n 2 and G 2 , it seems that performance is better for smaller r 0 , which is beneficial as it advantages compact designs. The best performance is achieved along the vertical grey line. Those maps allowed to quickly converge towards the design presented in Fig. 11.

It occupies a diameter of 114 [mm],

which is relevant given the space requirement in the gearbox of an electric vehicle. Note that the room occupied is set by the rotor's radius, whose edge was chosen to be at a minimal distance of 5

[mm] from the rolling track for physical resistance purposes. Hence, the CDPVA's diameter is given by 2(r + r 0 + 5) [mm]. The inner diameter of the CDPVA might also be an important parameter.

Like for the outer diameter, it can be estimated imposing a maximal internal radius r -r 0 -5 is satisfying. However, one should be be careful about manufacturing tolerances. For instance, if e is 30 [µm] thinner than expected, the antiresonance and resonance go from 20.001 and 20.268 to 19.884 and 20.250. In that case, the rotor is no longer excited on his antiresonance but closer to its resonance, hence decreasing the filtering efficiency (there is still vibration reduction though). In practice, 30 [µm] would not correspond to the manufacturing tolerances (they are smaller than that), but rather to the order of magnitude of the summation of all the manufacturing errors. The effect of the manufacturing tolerances becomes even more important when considering the nonlinear behaviour of the system. Indeed, the CDPVA is a nonlinear system that requires nonlinear tuning in order to prevent the shifting of its antiresonance and the apparition of a localised response, as detailed in chapters 9 and 10. In those two chapters, it was proposed to control the nonlinear tuning through the nonlinear coefficients of the rotation laws, α 13 and α 23 . However, the design proposed in the current chapter necessarily leads to α 13 = α 23 = 0 (cf. section 11.1.1). Hence, one needs to find another way to deal with the nonlinear tuning. This could be done using a non-circular rolling-tracks in order to control the path of pendulums 1, like what is proposed in chapters 3 to 8 for CPVAs. However, this requires lower manufacturing tolerances, which might becomes too demanding. Another concern that was quickly addressed previously is the slipping of the pendulums. It was observed in chapter 8 that

Adaptation of pendulum absorbers to electric powertrains

The other objective of the thesis was to design pendulum absorber systems able to operate at high orders to reduce the vibrations of electric powertrains. The main difficulties to tackle are the demanding manufacturing tolerances necessary for an accurate high-order tuning and the small space available for a CPVA.

The subharmonic operation is particularly relevant for high-order tuning as it allows to divide by two the tuning order required. An original CPVA design made of spherical pendulums was presented in chapter 8. This simple design overcomes limitations of bifilar CPVAs that would be too detrimental at high frequencies. A prototype tuned at low order was build and experimental investigations showed its large attenuation capacity in classical operation and the saturation of the rotor's response in subharmonic operation. However, the performance was significantly limited by the shifting of the pendulums which reduces the torque capacity by about 50%. A CPVA tuned on order 10, hence filtering order 20 when in subharmonic operation, was presented in chapter 8. Unfortunately, the slipping of the pendulums and the too demanding manufacturing tolerances for the nonlinear tuning currently prevent the use of such a CPVA.

The use of a CDPVA can also help filtering high orders thanks to the flexibility of the tuning process. An original CDPVA design made of an h-shape cylinder rolling inside a hollow cylinder was presented in chapter 11. A prototype tuned at relatively low orders was build and experimental investigations showed the rotor's first antiresonance. Unfortunately, it was not possible to observe the second antiresonance, which is the most useful one, due to limitations of the experimental set-up. The damping values used to match the analytical model from chapters 9 and 10 with the measurements were larger than expected, which is detrimental to the efficiency of the CDPVA. A CDPVA with a second antiresonance at order 20 was proposed in chapter 11. The linear tuning appears feasible and sufficiently robust, but the current design still has limitations. Indeed, in order to control the nonlinear tuning of the CDPVA, the rolling tracks of the rotor should not be circular but have a more complex shape, which would require smaller manufacturing tolerances. These small tolerances and the possible slipping of the pendulums are a concern to the use of CDPVAs at high orders.

Perspectives

Though the thesis led to many interesting results, there is still work to be done. The main perspectives are listed below.

• In the analytical model developed in chapter 4, only quadratic and cubic nonlinear terms are w(x), respectively. In addition, the rotation of the cross-section is θ(x). The area of a cross section is A and the mass per unit length of the beam is ρ. In the following, the rotational inertia of the beam is neglected. The equations of motion on u and w, derived in [24], are
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where N is the axial load, M is the bending moment and (•) ′ = ∂(•)/∂x. N and M are related to u and w such that

where E and I are the Young's modulus of the beam and its second moment of area about axis z 0 , respectively. It is convenient to decompose some quantities into a static and a dynamic component in order to write

where indices "s" and "d" refer to "static" and "dynamic", respectively. It must be noted that

• The transverse displacement of the beam oscillates about 0, meaning that w s (x) = 0∀x.

• There is no external axial load applied on the beam, meaning that u and N only contain a static component.

From these observations, we can write

In the following, indices s and d are omitted. As u does not depend on t, Eq. (A.1a) can be rewritten

The boundary conditions (BCs) are detailed below. As the beam is clamped at x = 0, we have

A.2 Derivation of a simplified equation

In order to simplify Eq. (A.7), we can assume

There are two justifications for this:

• u ≪ L, so the assumption is verified for sufficiently large values of x.

• From the BC at x = 0, we have u(0) = 0, so the assumption is also valid for small values of x.

Using assumption (A.10) in Eq. (A.7), we obtain

It is more convenient to write the equations in a dimensionless form. To do so, we introduce the dimensionless quantities

where T 0 , w 0 , N 0 and Ω 0 are characteristic time, displacement, load and angular frequencies, respectively. It is convenient to set them as

and the choice of w 0 is arbitrary as it will cancel in the equations. Introducing the dimensionless quantities in the equations, using the chain rules 

with the BCs

Integrating Eq. (A.15a) and using the BC on N at x = 1, we can obtain

This can be introduced in Eq. (A.15b) so that the dynamics are governed only by this equation and the BCs on w.

There are no general solutions for Eq. (A.15b), so additional assumptions are required. In a first step, we can assume that Ω is small so that the term Ω 2 (N w ′ ) ′ can be neglected. In this case, Eq.

(A.15b) reduces to w ¨+ w ′′′′ = 0, (A. 19) which corresponds to the well-known problem of a the bending of a clamped-free beam [23]. Of interest here is the case where Ω is large so that the bending stiffness w ′′′′ can be neglected. In such a situation, Eq. (A.15b) reduces to

This equation is solved thereafter in a special case.

A.3 Modes of the centrifugated beam

We can use the separation of variables w(x, t) = q(t)ϕ(x) (A.21) in Eq. (A.20), rearrange it and use Eq. (A.18) in order to obtain the two equations

where ω is a constant. The solutions for q are simply q(t) = A q cos(ωt) + B d sin(ωt), (A. 23) where A q and B q are constants depending on the initial conditions. However, there are no analytical solutions for Eq. (A.22b). To derive an analytical solution, we can assume R = 0, in which case Eq.

(A.22b) reduces to

where we have introduced

Eq. (A.24) is a Legendre equation of degree λ and order 0 [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF]. Its general solution is

where A and B are constants to be determined and P λ and Q λ are Legendre functions of the first and second kind and of degree λ. These functions are defined as [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] P

where Γ and 2 F 1 are the Gamma and the hypergeometric functions, respectively. In the present case, where we have chosen A = 1. The BCs derived previously do not apply to the present case as they were derived for Eq. (A.15b), which is a fourth order equation in x, hence requiring four BCs, whereas

Eq. (A.20) is only a second order equation in x, hence requiring only two BCs. Actually, neglecting the bending stiffness of the beam is equivalent to considering it is a string, so it makes sense that only two BCs are required. For a string fixed at x = 0 and free at x = 1, the BCs on the transverse displacement are [23] w(0, t) = 0 ∀t,

The second BC is already satisfied because N (1) = 0 (cf. Eq. (A.18)). Hence, the only BC to be satisfied by ϕ is

Moreover, we can use the relation [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] 2 F 1

with a = -λ and b = λ + 1 in order to rewrite the BC as

In addition, we can use [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] Γ

with z = (-λ + 1)/2 and z = (λ + 2)/2 to rewrite the BC as

Hence, the general solution ϕ(x) = P λ (x) must satisfy one of the two conditions on λ described above.

However, because of the relation [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] P λ (x) = P -λ-1 (x), (A. 35) both conditions are equivalent. Thus, the solutions of Eq. (A.24) are (to a multiplicative constant)

As λ m is an integer, the mode shapes P λm are not Legendre functions of the first kind but Legendre polynomials of odd degree. The eigenorders are directly deduced from Eqs. (A.25) and (A.36). Finally, the modes of the centrifugated beam are (n m , ϕ m (x)) with

The five first values of n m are given in Tab. A.1 and the associated mode shapes are represented in Fig. A.2. It can reasonably be assumed that the first mode would be the one providing the best filtering efficiency if the rotor was subjected to a fluctuating torque. However, for a rotor of zero radius, the first eigenorder is low (n 0 = 1). Ongoing works investigate the possibility to increase this eigenorder by considering the case R ̸ = 0 and by adding a mass on the beam. Nevertheless, the first results tend to show that reaching a high order is difficult and that the rotational velocity above which the bending stiffness can be neglected is large. The study presented here has no practical application but shows that beams can be order-tuned (when their bending stiffness is negligible). In addition, the results obtained can be used to validate numerical simulations of centrifugated beams. As the damping coefficients are intended to be small, we have µ crit ≈ 0, and we can estimate that increasing µ only improves the performance of the system.

As 1 -Λ 2 c /Λ m < 1, ∆n increases with µ. As we did previously for G θ , it is insightful to compute a Taylor series of G s in µ to assess its evolution. Doing so, we obtain

where we neglected terms of order µ 3 and the contributions of b ¯and b ¯r to the numerator of the coefficient of µ 2 (we recall that in practice, damping is small). From Eq. (B.11), we see that when µ is very small, G s typically decreases with µ as

For larger values of µ, G s quickly decreases as the coefficient of µ 2 is negative and its magnitude is much larger than that of the coefficient of µ.

The evolution of the performance indicators with µ is represented in 

Influence of the equivalent pendulums' mass

Λ m does not appear in G θ , so it has no effect on this performance indicator.

The smaller 1 -Λ 2 c /Λ m , the larger ∆n. Hence, increasing Λ m decreases ∆n (we remind that Λ m ≥ 1, cf. Eq. (2.25a)). single gear train where the input and output shafts have inertias J s1 and J s2 and the driving and driven gears have inertias J g1 and J g2 , respectively. Hence, the total inertias at the input and output are J 1 = J s1 + J g1 and J 2 = J s2 + J g2 . The input shaft spins at an angular velocity Ω 1 and the output one at a velocity Ω 2 , so that the gear ratio is ρ = Ω 2 /Ω 1 . The kinetic energy of the system is

Appendix C Equivalent inertia of a driveline

Hence, the equivalent inertia of the gear train expressed on the shaft that spins at Ω 1 (i.e. the input shaft) is J 1eq = (J 1 + J 2 ρ 2 ). Similarly, the equivalent inertia of the whole system evaluated at the output is J 2eq = (J 1 /ρ 2 + J 2 ). For gear ratios less than 1, which is the case in electric car gearboxes,

APPENDIX C. EQUIVALENT INERTIA OF A DRIVELINE

we have J 1eq < J 2eq . From this analysis, we can deduce that the equivalent inertia of a driveline is smaller when evaluated at the input.

Appendix E

Maximising the inertia ratio of a centrifugal pendulum vibration absorber with spherical pendulums E.1 Maximum number of pendulums for a given configuration Here, we are interested in the maximum number of pendulums N max that can be used in a fixed configuration, i.e. without changing the dimensions and tracks of the system. The approach to PENDULUM VIBRATION ABSORBER WITH SPHERICAL PENDULUMS calculating N max is illustrated in Fig. E.1 and detailed below. First of all, the path of the pendulums is considered circular. The path of the i th pendulum C (in blue) is therefore a circle centred on A i , of radius r r -r * p , and the rotor's virtual track C * r (in black) is also a circle centred on A i , of radius r * r . This choice of circular path makes it possible to simply introduce the surface swept by the i th pendulum as being a circle of radius r * r -r * p + r p centred on A i (green areas). The criterion chosen to restrict the maximum number of pendulums is to prevent shocks between these pendulums when they are in phase opposition (as is the case in subharmonic operation), which amounts to preventing the overlap of the green surfaces. Figure E.1 represents precisely the critical case where the C max circles delimiting the scanned surfaces are tangent. A good approximation of the maximum radius of these circles is r max ≤ πr/N max , which can be written as

We can then define the maximum number of pendulums such that

It should be noted that this approximation of the maximum number of pendulums is more accurate when the radius of the pendulums is small in front of r. Indeed, in such configurations, the maximum number of pendulums is high, and the circle of centre O and radius r intersects C max closer to the tangency point. The criterion r max ≤ πr/N max is then more precise.

E.2 Evolution of the inertia ratio with the pendulums' radius

The aim here is to analyse the evolution of different characteristics of the system as a function of the radius of the pendulums r p . To do this, the procedure is as follows:

• A circle of radius R max centred on O is introduced, inside which all the pendulums must be contained (R max thus defines the available space). They are placed as far as possible from O in order to increase their moment of inertia with respect to O, which results in R 0 = R max -r p .

• All parameters independent of r p are fixed. This includes the inclination of the v-shaped tracks θ t , the tuning order n p and the rotor's inertia J r .

• The chosen path is the epicycloid X(S) = R 2 0 -n 2 t S 2 whose distance R 0 evolves as explained above.

• The number of pendulums used by the system is maximal, i.e. N = N max is chosen using Eq. shows the inertia ratio µ increases with the radius of the pendulums, even though the total number of pendulums decreases. This is because the mass of the pendulums is proportional to r 3 p , so a small increase in the radius of the pendulums causes a large increase in their mass. It is also interesting to note that the calculation of N max is based solely on the space requirement in the rotor's plane whereas increasing r p also increases the space requirement out of this plane. The use of largeradius pendulums therefore increases the total mass of the pendulums, but not the space required in the rotor's plane. This is clearly visible in The script is described below:

• In lines 1 to 3, the modules necessary to the script are imported. sympy is Python's symbolic mathematics module, from which we import the functions symbols and Function, which allow to define parameters and variables. init_vprinting is only used to control the display. Indeed, at line 5, one can see that it takes as argument use_latex=True, meaning that sympy expressions will be printed like math expressions in latex. Func_MMS_Nddl contains all the necessary functions to apply the MMS to N degree-of-freedom systems and is described in details in section F.2.

With the current version, these systems cannot exhibit internal resonances other than 1:1:...1.

• Parameters and variables are defined in lines 10 to 14. Note that eps is the small parameter ϵ to be used in the MMS (cf. Appendix D) and ddx is x ¨.

• The duffing equation is written in line 17. ϵ is used in this equation to indicate that the nonlinearity is small. The forcing and damping are not included in this equation, they will be added later.

• Lines 20 to 23 prepare the call of function apply_MMS, which applies the MMS. Ne is the order of the expansions used in the MMS. That is, every term that appears at orders larger than ϵ Ne are neglected. Eqs is a list containing the equations of the system. In the present case, there is a single equation as the Duffing oscillator is a 1 degree-of-freedom system. In the same way, var is a list containing the unknowns of the system. kwargs is a dictionary containing the keyword arguments to be passed to apply_MMS. forcing='forced' means that we want to IMPLEMENTATION OF THE METHOD OF MULTIPLE SCALES

F.2 Description of the module Func_MMS_Nddl

Func_MMS_Nddl contains 10 functions described briefly below (more informations are provided in the script Func_MMS_Nddl.py via comments).

• apply_MMS is the main function of the module. It calls calls successively the different functions necessary to the application of the MMS and returns the result.

• init_MMS initialises the equations to apply the MMS. It is this function that creates the time scales and expands the unknowns.

• Equations_MMS computes the equations at each order of ϵ. It is also in this function that the damping and forcing can be added.

• sol_EqOi computes the secular terms and solves the equations at each order. This is where most of the computations are done.

• modulation_equations computes the modulation equations from the secular terms. It is here that variables a(t) and β(t) are introduced and that functions f a and f β are computed.

• eval_SS evaluates the modulation equations at steady state and solves them if desired.

• Chain_rule_dfdt applies the chain rule to transform first-order time derivatives into derivatives in terms of the time scales. This function is used in init_MMS.

• Chain_rule_ddfdt2 applies the chain rule to transform second-order time derivatives into derivatives in terms of the time scales. This function is used in init_MMS.

• collect_PDE is a workaround to the the sympy function collect, which does not work when applied to an expression containing partial derivatives in different variables. This function is used in sol_EqOi.

• solve_poly_2 is a workaround to the sympy function solve, which can take a very long time to compute the solution of a second-order polynomial if the coefficients of this polynomial have long expressions. This function is used in eval_SS. Notons qu'en pratique, n = n e est fixe, mais il est pratique de faire varier n afin de mieux comprendre la dynamique d'un APC en obtenant une courbe qui peut être interprétée comme une fonction de réponse en fréquence. Le calcul de la réponse forcée de l'APC conduit à des solutions de la forme Les principales contributions de cette thèse sont listées ci-dessous :

RÉSUMÉ

• Prise en compte et optimisation de la mobilité de rotation des pendules ;

• Étude approfondie de l'accord sous-harmonique, menant à une réponse purement non-linéaire ;

• Étude du phénomène non-linéaire de localisation d'énergie, qui mène des pendules identiques à osciller différemment (accord classique et sous-harmonique) ;

• Étude du désaccord non-linéaire de l'antirésonance générée par les pendules sur le rotor (accord classique et non-linéaire) ;

• Proposition de règles de design analytiques pour profiter au maximum de la rotation des pendules et pour éviter la localisation et le désaccord de l'antirésonance, améliorant ainsi les performances de l'APC ; , c p = 3(x [4] + 2n 2 p ηα [1] α [3] ). (17) Dans la suite, nous allons présenter le comportement d'APCs accordés de différentes manières afin de mettre en évidence la richesse de leur dynamique.

Rappelons que pour N = 2 pendules, le système possède trois modes, illustrés en Fig.