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Mathématiques Numériques,
Calcul Intensif et Données

Composition du jury :

Johan Hoffman
KTH, Royal Institute of Technology,
Suède
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Aurélien LARCHER
Mines Paris Co-encadrant de thèse
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1 Introduction

Résumé en Français
Les procédés de trempe des métaux sont des traitements thermiques largement
utilisés dans l’industrie. Le processus de refroidissement a un impact direct
sur la modification des propriétés mécaniques, le contrôle de la microstruc-
ture et la libération des contraintes résiduelles. De nombreuses entreprises
souhaitent aujourd’hui mâıtriser ce procédé de refroidissement qui combine
plusieurs paramètres. Leur objectif est de pouvoir les optimiser afin d’obtenir
la combinaison assurant les propriétés métallurigique souhaitées telles que la
dureté et la limite d’élasticité. La trempe étant un processus complexe com-
prenant plusieurs phénomènes physique à la fois dans le fluide et le solide, la
simulation numérique s’avère être un outil important pour le contrôle et la
modélisation de ce processus.
Pour le processus de trempe, plusieurs types de géométries de complexités
différentes sont étudiés et analysés. La génération de maillage de ces configura-
tions complexes est une tâche difficile. Le cadre mathématique général de cette
thèse s’attaque à ces défis en améliorant les méthodes pour la multi-physique,
en particulier les couplages fluide-thermique et fluide-solide. L’objectif prin-
cipal de la thèse est de faire évoluer les méthodes immergées vers un mail-
lage conforme aux interfaces. Il s’agit d’une nouvelle méthode qui combine
les méthodes immergées avec des approches d’ajustement. L’objectif est de
développer un maillage anisotrope adaptatif simple, rapide et robuste pour la
CFD.
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1 Introduction

1.1 The Quenching Process

Metal quenching processes are widely used heat treatments in the industry, especially
in automotive, nuclear and aerospace industries because the cooling process has a
direct impact on changing mechanical properties, controlling microstructure, and
releasing residual stresses.

Heat treatment is a common method of modifying the mechanical properties
(such as hardness, toughness, and strength, etc.) of certain metals without sub-
stantially changing its chemical composition hence tailoring it to the needs of the
environment and the demands of of the job in which the metal is being used. During
the quenching process, the homogeneity of the microstructure needs to be preserved
to avoid distortion and cracks, that’s why controlling the cooling rate is very impor-
tant.

To perform the quenching process, a heated part is usually immersed in a medium
(a liquid like oil, water, ... or a gas such as nitrogen, helium, ... ) to extract
the heat contained therein. The heat transfer is performed through a fluid-solid
interface. Figure 1.1 shows the different steps of the quenching process in the case
of a liquid quenching medium: after immersion of the part in the medium known
as quenchant, a vapor film surrounding the solid insulates the part from cooling
because of high thermal gradient. This is known as calefaction where radiation
and conduction through the vapor are dominant. When the surface temperature of
the metal is lower than a critical temperature, the liquid comes into contact with
the surface and the liquid boils from the surface; this is nucleate boiling. The heat
transfer during this phase is the most efficient of the whole process and the maximum
cooling rate is reached. At the end of the process, when the surface temperature
of the metal is lower than the temperature of vaporization of the quenchant, the
boiling ceases and the cooling is achieved by convection.

Figure 1.1: Schematic of the quenching process showing the stages and the complexity of
the involved physics. Taken from: www.wizcol.com & INFINITY ANR Chair.
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1 Introduction

1.2 General Context and Motivation

Many industrial companies have a strong desire nowadays to control this cooling
process and to take into account the optimal combinations of quench parameters
with their complexity to achieve the desired metallurgical properties such as hardness
and yield strength. This demand is accentuated by the strict deadlines for designing
new materials and high-quality products.

Although numerical simulation is a common tool in the metallurgical industry
for forming processes, currently no software is sufficiently predictable in the face of
the complexity of boiling multi-phase flows during immersed quenching. A precise
numerical modeling that provides a detailed understanding of the complex behavior
of fluid flow and its impact on part cooling is therefore critical. Indeed, it allows for
the first time to reduce the time and cost of developing new materials (by reducing
time experimentation), allowing for the continuous development of safe and reliable
products that meet customer specifications, and for the second time to improve
the design of quenching systems, limiting production costs and decreasing energy
consumption.

Despite the industrial interest in modeling precisely the quenching process, there
is neither a global study nor a global answer addressing this problem in an industrial
context. In order to predict precisely the liquid to vapor phase transition during
boiling as well as to study the optimal combinations of quench parameters to reduce
residual stresses in solid parts, an innovative coupled numerical framework needs to
be designed and implemented.

Different numerical codes for the quenching process have been developed since
1980 [1]. The work by Garwood et al. [2] is one of the first attempts to characterize
a quench tank using computational fluid dynamics. Almost 20 years later, an agi-
tated quench tank was analyzed during the heat treatment of an aluminum cylinder
[3]. Numerical flow simulations are increasingly used in quench tank design, but
considerable imprecision still exists, especially because of the assumptions made on
the use of simple geometries and approximate quench environments.

Currently, there is a strong demand to introduce more realistic physical behavior
and to accurately predict liquid-to-vapor phases during boiling as well as a fluid-
solid-thermal coupling in solid phase transformation which are both related to final
metallurgical properties and are very important features. Hence, precise numerical
modeling offering a detailed understanding of the complex behavior of fluid flow and
its impact on cooling is very important. Such a model will allow the improvement
and control of quenching systems and the cost and time reduction of developing new
materials, and therefore more reliable products that meet the customers’ specifica-
tions and requirements. That is why The INFINITY ANR Chair has been created
and joins together several industrial partners to be able to understand, control,
and optimize the quenching process: ARCELORMITTAL, AREVA, AUBERT &
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DUVAL, CEFIVAL, CMI, FAURECIA, INDUSTEEL, LISI AEROSPACE, MON-
TUPET, SAFRAN, SCC, and TSV.

(a) Solid treatment & Fluid resolution (b) Fluid-Solid coupling

Figure 1.2: Partitioned and monolithic approaches of the quenching process.

To model fluid-solid problems, the fluid and the solid can be treated separately
as seen in Figure 1.2a, or using a monolithic approach treating the two sub-domains
as one (Figure 1.2b). Using the immersed volume method, which will also be pre-
sented in this work, the objective of this project is to consolidate a unified multi-scale
framework around understanding and simulating the quenching process and to in-
tegrate it into the finite element software QOBEO software by the scientific editor
SCC. Modeling the liquid to vapor phase change, predicting different boiling modes
with the transition between them and modeling the fluid-solid heat coupling with
solid phase transformation are mainly aimed.

1.3 Objective of the thesis

This PhD thesis concerns the framework of the immersed volume methods and it is
referred as PhD3 from the WP4 of the industrial chair INFINITY. The title of WP4
was “Enhancement of the immersed method for quenching environments”. Note
also that these developments will serve in the in-house C++ library Cimlib-CFD,
developed by the CFL research group, bringing multi-component applications in
other areas of engineering: renewable energy, medicine, biology and more.

The accuracy of a simulation is closely connected to the design of the fluid-
solid mesh, whereas the reliability of a simulation is related to the sensitivity of the
numerical approximations such as the degree of discretization to model parameters
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and data. For the quenching process, several types of geometries with different
complexities are studied and analyzed. The mesh generation of such complex setups
is a challenging task and consumes too much manpower. The general mathematical
framework of this thesis will tackle such challenges by enhancing methods for multi-
physics, in particular fluid-thermal and fluid-solid couplings.

A finite element numerical immersed framework, based on an implicit repre-
sentation of different phases (liquid, gas, solid) and components using a level-set
description, is combined with an error estimator for anisotropic meshing. The exist-
ing immersed volume method is intensively used in the context of multi-phase flows
and for the fluid-structure interactions in the context of heat and mass transfer [4–7].
It also offers great flexibility to deal with different and realistic industrial immersed
solids. However, a user parameter that defines the thickness at the interface remains
dependent on the test case and is also very hard to generalize it.

Therefore, the main objective of the thesis is to evolve the immersed methods
toward a sharp interface. This is a novel method that combines the immersed
methods with fitting approaches. The goal is to develop a simple, fast and robust
anisotropic adaptive body fitted meshes for CFD. These type of meshes allows,
while keeping high accuracy, to deal with realistic quenching processes as well as the
movement of solids inside quenching devices.

Figure 1.3: Main objectives of this thesis.
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1.4 Layout of the thesis

This thesis is divided into six chapters. Chapter 1 introduced the general objective
and motivation behind this work. Chapter 2 presents the Eulerian numerical frame-
work and the partial differential equations to be solved. Chapter 3 is dedicated to
the description of mesh generation methods as well as mesh adaptation techniques,
especially the metric based anisotropic mesh adaptation. In chapter 4 the impor-
tance of capturing the fluid-solid interface of immersed geometry is highlighted,
the existing methods to deal with this challenge are described, and the proposed
approach creating an anisotropic fitted mesh is explained in detail. The parallel
implementation and the extension of the proposed method in 3D are presented in
chapter 5. In chapter 6, the validation of the framework and the proposed algorithm
for several industrial applications is also detailed. And finally, the conclusion and
possible extension and perspectives of the work are explored.
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2 Numerical Framework

Résumé en Français
Les prédictions des phénomènes d’écoulement des fluides et de transfert de
chaleur conjugué font l’objet d’études et de recherches intensives d’un point
de vue numérique et industriel dans un grand nombre d’applications telles que
la conception d’échangeurs de chaleur, l’étude du nucléaire, la conservation de
l’énergie, les processus de chauffage et de trempe, etc. En fonction des études
expérimentales d’un modèle simple, la prédiction des résultats d’applications
plus complexes n’est pas toujours aussi facile. On a alors recours aux simula-
tions numériques pour fournir une meilleure modélisation de l’application en
termes de temps et de ressources, en particulier lorsqu’il s’agit de systèmes à
plusieurs composants.
Ce chapitre se concentre sur la modélisation et la résolution d’applications
d’écoulement de fluides ainsi que de problèmes de transfert de chaleur pour des
problèmes multi-composants ou multi-phases. Après avoir passé en revue la
manière de détecter et de saisir les différents composants impliqués, l’ensemble
des équations utilisées et les méthodes de stabilisation sont brièvement
décrites. Enfin, quelques applications numériques sont résolues pour évaluer
la validité et la précision du cadre proposé.

10



2 Numerical Framework

2.1 Introduction

The predictions of fluid flow phenomena and conjugate heat transfer are subject
to intensive study and research from a numerical and industrial point of view in a
large number of applications such as heat exchanger design, nuclear study, energy
conservation, heating and quenching processes, etc. Depending on experimental
investigations of a simple model, the prediction of the results of more complex
applications isn’t always that easy. That is why numerical simulations are used to
provide better modeling of the application in terms of time and resources, especially
when dealing with multi-component systems.

This chapter focuses on modeling and solving fluid flow applications as well
as heat transfer problems for multi-component or multi-phase problems. After re-
viewing how to detect and capture the different components involved, the set of
equations used and stabilization methods are briefly described. And finally, some
numerical applications are solved to assess the validity and accuracy of the proposed
framework.

(a) (b)

Figure 2.1: Schematic of the numerical framework.

2.2 The Level-set Method

The level-set method is an Eulerian method used to track interfaces. First proposed
by S. Osher in 1988 [1], it was then further developed and applied to incompressible
flows [2]. The method is very popular and is used in a large variety of applications,
such as microstructural simulations in metallurgy, fast phase change in boiling,
fluid-structure interaction, and multi-fluid flow. The level-set method allows us to

11



2 Numerical Framework

implicitly track the interface as the zero isovalue of a scalar function ϕ, the level-set
function.

2.2.1 Standard Level-set Method
Let Ω ∈ Rd be the computational domain with d the space dimension and Γ the
interface separating two domains Ω1 and Ω2. The level-set function can be computed
by considering a signed distance from the interface for each in point x in the domain:

ϕ(x) =


dist(x, Γ) if x ∈ Ω1

0 if x ∈ Γ
−dist(x, Γ) if x ∈ Ω2

(2.1)

To keep track of the evolution of the interface in time, the level-set ϕ must be
updated accordingly. Therefore, its evolution function is represented by the trans-
port equation:

dϕ

dt

= ∂ϕ

∂t

+ u · ∇ϕ = 0 (2.2)

It’s important to note that for any Eurlerian distance function f , the following
Eikonal equation is achieved ||∇f || = 1.

When the level-set is convected by a certain velocity, the gradient of the solution
∇ϕ has no theoretical limitation, thus it could tend to infinity, yielding numerical
problems in the resolution. A re-initialization step is then needed so the level-
set function remains an Eulerian distance function during the whole computation.
In [3], the most classic re-initialization method is introduced using the following
Hamilton-Jacobi equation:

∂ϕ

∂τ
+ S(ϕ)(||∇ϕ|| − 1) = 0 (2.3)

with τ a virtual time step in which the re-initialization equation 2.3 is solved at each
increment of the physical time domain and S the sign distance of ϕ. Hence ϕ will
converge towards ||∇ϕ|| = 1, keeping the zero isovalue of the level-set unchanged.
The zero isovalue is then implicitly computed. This property is important to keep
since all physical properties at the interface will be computed and distributed in
space according to the level-set function.

Since solving equation 2.3 is an iterative procedure, the computational cost can
be restrictive for some large applications. A better numerical behaviour of the level-
set method can be achieved by using a filtering level-set function [4–7]. In order to
solve simultaneously the Hamilton-Jacobi equation 2.3, and transport the level-set
function, the convected level-set method proposed in [7] is used.
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2.2.2 Convected Level-set Method
The convected level-set method consists of filtering and truncating the level-set
function using the following filter:

ϕ̃ = Etanh

(
ϕ

E

)
(2.4)

with E being a scalar parameter representing the thickness of truncation.

Since the filtered level-set function (equation 2.4) and its derivative ϕ̃
′ are bounded:

lim
ϕ→±∞

ϕ̃ = ±E and lim
ϕ→±∞

ϕ̃
′ = 0 (2.5)

the Dirichlet boundary conditions can be imposed and the gradient of the level-set
near the interface is close to 0.

As a signed distance function, the truncated level-set now verifies:

||∇ϕ̃|| = 1−
(

ϕ̃

E

)2

. (2.6)

For the sake of simplicity, the tilde is dropped, and ϕ represents the truncated
level-set. Its gradient can be linearized in function of the level-set at a previous time
step by:

||∇ϕ|| = ∇ϕ−

||∇ϕ−||
∇ϕ. (2.7)

The Hamilton-Jacobi equation is then merged into the convective form:

∂ϕ

∂τ
+ S(ϕ) ∇ϕ−

∥∇ϕ−∥
∇ϕ = S(ϕ)

1−
(

ϕ

E

)2
 . (2.8)

Using U = s(ϕ) ∇ϕ−

∥∇ϕ−∥ as the re-initialization velocity, the transport and the re-
initialization equations can be combined to insure that the level-set remains a signed
function distance as seen in [7]:

∂ϕ

∂t
+ u · ∇ϕ + λS(ϕ)

∥∇ϕ∥ −

1−
(

ϕ

E

)2
 = 0. (2.9)

with λ := ∂τ/ ∂t.
The equation to solve now reads:

∂ϕ

∂t
+ (u + λU) · ∇ϕ = λS(ϕ)

1−
(

ϕ

E

)2
 (2.10)

In [7–9], the proposed method is shown to reduce the computational cost and
ensure better mass conservation than the classical level-set method.
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2.3 Mixing laws

Working in a monolithic approach, a multi-component or multi-phase system is
considered and solved as one singular domain. The different subdomains are de-
tected and differentiated using level-set functions, and then the properties of each
subdomain are assigned and distributed. To distribute the physical and material
properties of the different subdomains such as the density ρ, the viscosity µ, and
the conductivity k, a mixing law is used. The assignment of the properties is given
through a smoothed Heaviside function applied over a narrow band ϵ, to account for
the sharp variations along the different materials involved. This allows to achieve
better continuity at the interface for the fluid-solid mixture and treats the different
components as one composite domain:

H(x) =


1 for ϕ(x) > ϵ

1
2(1 + ϕ(x)

ϵ
+ 1

π
sin(πϕ(x)

ϵ
)) for |ϕ(x)| ≤ ϵ

0 for ϕ(x) < −ϵ

(2.11)

The different properties are then expressed using the following laws:

ρ = ρfluidH(ϕ(x)) + ρsolid(1−H(ϕ(x)) (2.12)

µ = µfluidH(ϕ(x)) + µsolid(1−H(ϕ(x)) (2.13)

where ρfluid, µfluid, ρsolid and µsolid are the densities and dynamic viscosity of
the fluid and solid, respectively.

For the thermal conductivity k, using a linear distribution will lead to abrupt
changes along the interface [10]. A harmonic law is preferred to ensure the conser-
vation of heat flux along the interface as follows:

k =
(

H(ϕ(x))
kfluid

+ 1−H(ϕ(x))
ksolid

)−1

(2.14)

2.4 Numerical Resolution of the Navier-Stokes Equations

Let Ω ⊂ Rd, with d the space dimension, and dΩ its boundary. We consider the
following velocity u - pressure p formulation of the Navier-Stokes equations for un-
steady incompressible flows:

{
ρ(∂tu + u · ∇u)−∇ · σ = f

∇ · u = 0 (2.15)
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where ρ is the density, f the body force vector per unity density and σ the stress
tensor such as:

σ = 2µϵ(u)− pId (2.16)

with µ the dynamic viscosity, Id the identity tensor, and ϵ the strain-rate tensor
defined as:

ϵ(u) = 1
2(∇u +∇uT ) (2.17)

2.4.1 Weak formulation
The weak formulation of (2.15)-(2.16) with velocity space V ⊂ [H1(Ω)]d and pressure
space Q = {q ∈ L2(Ω) :

∫
Ω q = 0} consists in finding (u, p)inV ×Q such that:


((ρ(∂tu + u · ∇u)), w) + (2µϵ(u) : ϵ(w))− (p,∇ ·w) = (f , w), ∀w ∈ V

(∇ · u, q) = 0, ∀q ∈ Ω
(2.18)

with (.,.) the L inner product over Ω.
To prevent spurious oscillations resulting from the convection-dominated regimes

and solve the pressure instability problem, a variational multiscale method for the
Navier– Stokes equations is used [11–13].

2.4.2 The Variational Multiscale Method
Let τh be an admissible mesh constructed as a triangulation of Ω, and Vh and
Qh the finite dimensional spaces approximations of the function spaces V and Q,
respectively. To ensure the stability of (2.18), the choice of Vh and Qh must fulfill a
compatibility condition [14].

In this work, P1/P1 elements with a Variational Multiscale method (VMS) [15]
are used to ensure the stabilization. All unknowns are divided into coarse and fine
components. The fine scales are solved in an approximate manner and modeled in
function of the residual basis terms. Their effect is then transferred into the large
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scale equations. The coarse and fine components of the velocity and pressure fields
are:

u = uh + u′ (2.19)
p = ph + p′ (2.20)

as well as their respective weight functions:

w = wh + w′ (2.21)
q = qh + q′ (2.22)

The enriched function spaces are defined as V = Vh ⊕ V ′, V0 = Vh,0 ⊕ V ′and Q =
Qh⊕Q′. Therefore, the resulting finite element approximation of the time-dependent
Navier–Stokes problem consists in finding (u, p) inV ×Q such that:



(ρ(∂t(uh + u′) + (uh + u′) · ∇(uh + u′)), (wh + w′))
+(2µϵ(uh + u′) : ϵ((wh + w′)))− ((ph + p′),∇ · (wh + w′))

= (f , (wh + w′)), ∀w ∈ V0

(∇ · (uh + u′), (qh + q′)) = 0, ∀q ∈ Q

(2.23)

The stabilized formulation is then derived from equation (2.23) by forming fine and
large scale problems. The fine-scale problem is defined on element interiors, and
u′ and p’ are written in terms of the time-dependent large-scale variables using
consistently derived residual-based terms.

Then, u′ and p’ are directly replaced into the large-scale problem, which gives rise
to additional terms in the Finite Element formulation, tuned by a local stabilizing
parameter. These terms are responsible for the enhanced stability compared to the
standard Galerkin formulation. Finally, the coarse-scale equations can be computed:


(ρ(∂t(uh + uh · ∇uh), wh)− (τ1Rm, ρuh · ∇wh) + (2µϵ(uh) : ϵ(wh))

−(ph,∇ ·wh)− (τ2Rc,∇ ·wh) = (f , wh), ∀wh ∈ Vh0

(∇ · uh, qh)− (τ1Rm,∇qh) = 0, ∀qh ∈ Qh

(2.24)
with Rm and Rc are piece-wise constant momentum and continuity residuals:

Rm = ρ(∂tuh + uh · ∇uh)−∇ph (2.25)
Rc = −∇uh (2.26)
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and τ1 and τ2 are piece-wise defined stabilization parameters adopted from [16].
More details about the formulation of VMS can be found in [13].

Space discretization being achieved using finite elements, the time discretization
(∂tuh) can be achieved using Backward Difference Formula of order σ as BDF-σ, with
σ = 1 to 4. To do so, a semi-implicit BDF scheme using Newton-Gregory backward
polynomials can be used. The reader is referred to [17, 18] for more details on the
BDF-σ temporal schemes.

2.5 Convection-Diffusion-Reaction Equation

In this section, the general equation of convection-diffusion-reaction (CDR) is de-
scribed and solved. The solution of the CDR equation is an important feature for
the numerical modeling of a wide range of fluid mechanics applications such as heat
transfer equations, turbulence models, and the quenching process. The Standard
Galerkin Finite Element method is typically used to solve these types of problems
because of its simplicity. However, a standard Galerkin formulation causes spurious
oscillations in convection-dominated regimes especially in high gradient regions. To
overcome these numerical oscillations and gain in stability as well as accuracy, many
methods have been proposed [19–21].

The following sections will focus on the description of the convection-diffusion-
reaction equation, followed by an introduction of the standard Galerkin finite ele-
ment method and finally the stabilization formulation chosen in order to overcome
the numerical oscillations: the Streamline Upwind Petrov-Galerkin (SUPG) formu-
lation.

2.5.1 Governing Equation

The CDR equation, over the bounded domain Ω ⊂ Rd with boundary domain dΩ,
consists in finding a scalar α(x, t) such that:


∂tα + u · ∇α−∇ · (k∇α) + rα = f in Ω× [0, T ]

α(., 0) = α0 in ω × [0, T ]
α = g on dΩ× [0, T ]

(2.27)

where k and r are respectively the positive diffusion factor and reaction coefficient,
u a given divergence free velocity, f is a given source term, α0 is the initial data and
g is a given boundary condition. Note that the solution α can be the level-set, the
temperature or any scalar. For this problem, only the Dirichlet Boundary condition
α = 0 on dΩ is considered.
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2.5.2 The Standard Galerkin Finite Element Method
In order to solve equation 2.27 using the finite element method, its variational for-
mulation needs to be derived. First, the function spaces are defined as follows:

H1
0 (Ω) =

{
w | w ∈ H1(Ω), w = 0 on dΩ

}
(2.28)

with
H1(Ω) =

{
w | w ∈ L 2(Ω),∇w ∈ L 2(Ω)

}
, (2.29)

and L 2(Ω) being the Hilbert vector space given by:

L 2(Ω) =
{

w(x) |
∫

Ω
|w|2dx <∞

}
(2.30)

In the following, the integral notation is represented as:

(a, b)Ω :=
∫

Ω
ab dx (2.31)

The Galerkin variational formulation of the convection-diffusion-reaction equa-
tion is obtained by multiplying equation 2.27 by a test function w ∈ H1

0 (Ω) and
integrating over the computational domain. The weak formulation is then:

{
Find α ∈ H1

0 (Ω) such that:
(∂tα, w) + (k∇α,∇w) + (u · ∇α, w) + (rα, w) = (f, w) ∀w ∈ H1

0 (Ω) (2.32)

Considering the finite element partition Th of Ω subdivided into simplex elements
K, the functional spaces are now subdivided by discrete spaces: H1

0,h(Ω) and H1
h(Ω).

The Galerkin finite element formulation then reads:

{ Find αh ∈ H1
0,h(Ω) such that:

(∂tαh, wh) +
(
k∇αh,∇wh) + (uh · ∇αh, wh) + (rα, wh) = (f, wh) ∀w ∈ H1

0,h(Ω)
(2.33)

This formulation being unstable leads to spurious numerical oscillations espe-
cially when working in convection-dominant regimes, leading to the need for stabi-
lization. In this work, the SUPG numerical scheme is used. This scheme commonly
used nowadays to solve heat transfer finite element application, has proven to be
efficient in reducing and eliminating the spurious oscillations related to the Galerkin
formulation.
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2.5.3 The Streamline Upwind Petrov-Galerkin Method
The SUPG method enhances the stability of the solution by adding a stabilizing
term to the original Galerkin formulation. The stabilizing term is written within
each element domain of the residual Ruh

of the standard equation to be solved by
an operator applied on the test function. Artificial diffusion is added only in the
direction of the flow by adding weighted residuals to the variational formulation of
the problem. Additional weight τKu∇wh is added to the standard Galerkin test
functions wh in the upwind direction for all terms of the equation, hence adding
more weight in the upstream direction and reducing the weight in the downstream
direction. The modified test function becomes:

whmodified = wh + τKu∇wh. (2.34)

Equation 2.33 then reads:



Find αh ∈ H1
0,h(Ω) such that:

(∂tαh + u · ∇αh, wh) +
∑

K∈Th

τK(∂tαh, u · ∇wh)K + (k∇αh,∇wh) + (rαh, wh)

+
∑

K∈Th

τK(Rαh
, u · ∇wh)K = (f, wh) +

∑
K∈Th

τK(f, u · ∇wh)K ∀wh ∈ H1
0,h(Ω)

(2.35)
where τK is a stabilization parameter that tunes the amplitude of the added

weight and Ruh
the appropriate residual of equation 2.33 given by:

Rαh
= −∇ · (k∇αh) + u · ∇αh + rαh (2.36)

This stabilization adds numerical diffusion in the neighborhood of sharp gradient
and boundary layers. In this work, the stabilizing parameter τK is chosen from [22]
as:

τK = hm

2∥u∥2

(
coth (PeK)− 1

PeK

)
(2.37)

with PeK is the local Peclet number defined as :

PeK = ∥u∥2hm

2|K| (2.38)

and hm is the average mesh size.
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2.6 Numerical Applications

To validate the proposed numerical framework, several test cases are presented in
this section. We consider the open cavity problem to assess the ability of Navier-
Stokes to deal with critical Reynolds number flow. Then the coupling of the flow
solver and the mixing law is considered to solve a dam break flow hence a multi-phase
problem.

2.6.1 Open Cavity Flow

We first consider a 2D open square cavity of side h, upon which lies a channel of
height 0.5h as represented in Figure 2.2. A uniform velocity stream is prescribed at
the inlet of the boundary located at the left side of the channel. Free-slip condition
with zero tangential stress is applied on the upper boundary of the channel, and
on the lower boundary for x ∈ [1.2h,−0.4h] ∪ [1.75h, 2.5h]. The no slip-boundary
conditions are imposed on the remainder of the lower boundary of the channel and
the cavity walls.

h

0.5h

1.2h h 1.5h

x

y

Figure 2.2: Setup of the open cavity problem.

To solve the Navier-Stokes equations, the VMS solver, presented in section 2.4.2,
and the BDF time discretization have been used. The velocity evolution for h = 1
at a Reynolds number of Re = 6000 is shown in figure 2.5. The velocity field and
boundary conditions lead to the formation of a recirculating eddy in the square
cavity.

Plots 2.3 and 2.4 show the velocity Vx obtained on two different sensors positioned
at a height y = 0.05h, and x = 0.25h and 0.75h. Well-defined oscillations emerge
after around 30 time units and the solution slowly converges around 50 time units,
with their amplitude being more important for the sensor positioned at 0.75h due
to the recirculating eddy formed in the cavity.
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Figure 2.3: Velocity evolution at the
sensor positioned at 0.25h.
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Figure 2.4: Velocity evolution at the
sensor positioned at 0.75h.

2.6.2 Dam break flow
Next, a multi-phase problem is considered for the numerical validation of our frame-
work. Its reliability is tested against the well-known dam-break case of Lobovský et
al. [23]. The configuration of the problem is shown in figure 2.6: a water column
with height D = 0.15m and a depth of W = 0.25m is confined on the left hand side
of the enclosure of size H = 0.3m and L = 0.7m, filled with air. No-slip boundary
condition is enforced on all rigid walls. The physical properties of air and water
considered are represented in table 2.1. The interface water-air is detected and cap-
tured using the level-set function described in section 2.2. The convected level-set
allows us to follow the evolution and displacement of the water phase in the dam.
Equations 2.12 and 2.13 are coupled with the Navier-stokes equations in order to
simulate and solve the dam-break problem.

The solution obtained is coherent to the experimental results from [23] and the
simulation results obtained, using the Volume of Fluid (VOF) model, in[24], in which
the water column is on the right hand side (Figure 2.8).

Table 2.1: Numerical parameters considered for water and air, with ρ the fluid density,
and µ the dynamic viscosity.

ρ(kg/m3) µ(Pa.s)
Water 1000 855 · 10−6

Air 1 184 · 10−7

Note that the characteristics and behavior of the flood wave resulting from the
instantaneous break of a dam over dry can be divided into four distinct stages
namely:
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(a) t = 1s (b) t = 10s

(c) t = 25s (d) t = 50s

(e) t = 75s (f) t = 100s

Figure 2.5: Velocity profile of the cavity flow at Re=6000.

1. collapsing and propagating
2. impacting and jetting
3. plunging and surging
4. rebounding and splashing

For more details see also Figure 2.7 and [23, 24]. This same hydrodynamic behavior
can also be observed in the results obtained for our dam break simulation seen in
Figure 2.8.
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Water

L = 0.7m

H
=

0.
3m

D
=

0.
15

m

W = 0.25m

Figure 2.6: Schematic of the dam break setup.

Figure 2.7: Characteristics of dam-break flow. Adopted from [24].

23



2 Numerical Framework

Experimental
results from
[23]

Using V OF
from [24]

V alidation

Experimental
results from
[23]

Using V OF
from [24]

V alidation

Figure 2.8: Comparison of the dam break flow evolution.
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2.7 Conclusion

In this chapter, the numerical framework has been presented for fluid flow and heat
transfer applications applied to multi-components or multi-phase problems. The
convected level-set method detects the interface of an immersed part or different
phases. The Navier-Stokes equations are solved using the Variational Multiscale
method to ensure stabilization and the resolution of Convection-Diffusion-Reaction
equations has also been presented. Numerical test cases have been presented and
solved to assess the validity of the proposed solvers and framework.

However, in order to solve dynamic simulations and complex problems, the phys-
ical domain must be discretized to allow solving of partial differential equations. In
the next chapter, mesh generation, i.e. the discretization, and mesh adaptation are
presented and described in detail.
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3 Anisotropic Mesh Adaptation

Résumé en Français
Avec le besoin continu de comprendre les phénomènes physiques et grâce à
l’augmentation de la puissance de calcul, la modélisation numérique est dev-
enue un outil très important. Cependant, la modélisation de ces phénomènes
à l’aide de la simulation de la dynamique des fluides et de l’analyse ther-
mique peut devenir très complexe. Ainsi, afin de concevoir des configurations
réalistes et d’augmenter la précision de la solution et l’efficacité du calcul, des
techniques d’adaptation du maillage ont été développées.
En effet, dans le chapitre précédent, la résolution des équations de Navier-
Stokes et de Convection-Diffusion-Réaction ont été présentées et définies. Ces
équations sont en fonction du temps et de l’espace et ne peuvent pas être
résolues analytiquement sur un domaine entier. Par conséquent, le domaine
physique doit être divisé en un nombre fini d’éléments géométriques: c’est le
maillage ou la discrétisation de l’espace. Cette discrétisation va permettre de
résoudre les équations aux dérivées partielles.
Avec un maillage uniforme simple et des degrés de liberté limités, la capture de
caractéristiques physiques avec une échelle fine peut s’avérer assez coûteuse et
peut même générer des résultats incorrects, en particulier lorsqu’il s’agit d’un
problème transitoire comportant des caractéristiques à plusieurs échelles. Une
résolution plus élevée de la solution est alors nécessaire : c’est pourquoi des
techniques de raffinement de maillage local ont été développées. L’adaptation
du maillage est donc considérée comme un ingrédient important du calcul
numérique.
Dans ce chapitre, un aperçu des techniques de génération de maillage est
présenté. Ensuite, l’adaptation de maillage anisotrope utilisée dans ce tra-
vail est décrite en détail. Enfin, le calcul de la fonction level-set comme une
fonction de distance signée sur chaque sommet du maillage est expliqué.

30



3 Anisotropic Mesh Adaptation

3.1 Introduction

With the continuous need to understand physical phenomena and the increase in
computational power, numerical modeling has become a very important tool. How-
ever, the modeling of such phenomena using fluid dynamic simulation and thermal
analysis can become very complex. So, in order to devise realistic configurations
and increase the solution’s accuracy and computational efficiency, mesh adaptation
techniques have been developed.

Indeed, in the previous chapter, the resolution of Navier-Stokes and Convection-
Diffusion-Reaction equations were presented and defined. These equations are in
function of time and space and can’t be solved analytically over an entire domain.
Therefore, the physical domain is to be divided into a finite number of geometrical
elements: this is mesh generation or space discretization. This discretization will
allow solving the partial differential equations.

With a simple uniform mesh and limited degrees of freedom, capturing fine scale
physical features can be quite expensive and can even generate incorrect results, es-
pecially when dealing with a transient problem having multi-scale features. A higher
resolution of the solution is then needed: that is why local mesh refinement tech-
niques have been developed. Hence, mesh adaptation is regarded as an important
ingredient in numerical computation.

In this chapter, an overview of the mesh generation techniques is presented.
Then the anisotropic mesh adaptation used in this work is described in detail. And
finally, the computation of the level-set function as a signed distance function on
each vertex of the mesh is explained.

3.2 Mesh Generation

Finite element methods are effective techniques to compute approximate solutions
of partial differential equations. These methods use a discrete domain instead of
the continuous one to approximate the solution on its vertices. Mesh generation is
a key step in the numerical solution of physical problems using the finite element
method and can be challenging and time-consuming. Hence, several methods and
algorithms have been developed to generate automatically an appropriate mesh such
as:

1. the advancing front method

2. the Delaunay method

3. the tree-based method

4. the topological method.
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These methods will be briefly described in the following sections, focusing on
the last one, the topological method, that is developed by the CFL (Computing and
Fluids) team at CEMEF and used in this work.

(a) (b) Isotropic mesh generation & interface detection.

Figure 3.1: Mesh generation framework.

3.2.1 Advancing Front Method
The advancing front method [1, 2] constructs the mesh element by element starting
from a defined boundary. In the beginning, the front consists of the boundary edges
and it progresses forward as each new element is created. No area outside of the
defined boundary is included in the triangulation process. The creation of elements
starts at the boundary and progresses inward. After defining edges on the domain’s
boundary, for each edge, a new point is created and connected to the edge such
as the new point closest to the edge. Once the element is created, the front is
moved forward and the process is repeated iteratively until all the area enclosed by
the initial boundary defined is meshed. Figure 3.2 illustrates the advancing front
method. At the start, the front, represented in red, is the entire exterior boundary
divided into several edges. Starting at a first edge (v7, v1), the closest point to
it is point i. Connecting the three points, a new element, represented in blue, is
created and the front progresses. On the updated front, moving counterclockwise,
another edge is treated by repeating the same steps until all the bounded domain
is meshed. However, during the creation process the quality of elements might
deteriorate as the front advances causing convergence problems. The correction of a
degenerate element is done as a second step where vertices should be removed and
the process restarted. Hence, guaranteeing the elements’ quality and the convergence
of the method can be troublesome, particularly when dealing with complex three-
dimensional geometries and domains.
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Figure 3.2: Representation of the advancing front method

3.2.2 Delaunay Method

The Delaunay method [3] is a classical mesh generation method that has been used
by many researchers [4, 5] trying to deal with the properties of this method. The
general concept is that the triangulation must satisfy the ”empty sphere” criterion,
known as the Delaunay criterion. This criterion states that the open ball (i.e. a disk
for two-dimensional problems and a sphere for three-dimensional geometries) circum-
scribing each element shouldn’t contain any vertex from the mesh. The Delaunay
triangulation consists in first triangulating a box that includes all the vertices, then
introducing the vertices one after the other in the triangulation by the Delaunay
kernel. Finally, the elements outside the domain are removed. The obtained trian-
gulation can be refined by inserting new points inside the domain. The elements
whose circumscribed circles contain these vertices will be removed and new elements
will be created respecting the above-stated criterion. The main disadvantage of the
Delaunay method is related to the fact that the Delaunay criterion doesn’t take into
account the quality of the element created. The method may thus generate elements
of very poor quality, especially near the borders. An optimization phase is therefore
essential to the generation of a mesh. The Delaunay triangulation method is very
technical and requires great expertise for the implementation of a robust and fast
version. More information and details on Delaunay algorithms might be found in
[3, 5–7].
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Figure 3.3: A Delaunay triangulation (right) vs a non-Delaunay triangulation (left) for a
set of four points

3.2.3 Tree-based Method
The main idea of this method is to create an envelope that covers the targeted
domain using a tree-like structure (quadtree for two-dimensional problems or octree
for three-dimensional problems) and then use cells or bins of the tree to derive
elements of the mesh. The method consists in defining a parent cell encompassing
the object to mesh, and refining the latter recursively. In practice, the parent cell
(or root) is divided into four identical cells (or eight in 3D), and each cell is marked
according to its position relative to the object to be meshed: inside, outside, or if it
intersects the boundary of the object. Only cells cut by the boundary are subdivided
again. The process is repeated until the desired level of resolution is reached [8–
10]. Using the tree-based method, a solution is always built, and the problem of
existence doesn’t arise. The boundary of the result is built as the mesh generation
progresses. The tree-based method can be used to build simplices or quadrilateral
elements. However, this method might generate poor quality elements, especially
near the boundary.

Figure 3.4: Tree based method using quadrilateral elements.
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3.2.4 Topological Method
The topological method has been introduced in our laboratory CEMEF by T.
Coupez [11]. The topological mesher MTC proceeds by iterative local optimiza-
tion of the mesh topology, starting from an initial random mesh of the domain.
This method presents many advantages such as its robustness and its easy imple-
mentation. It’s based on two aspects: the minimal volume criterion and geometrical
mesh quality. For more information about the method, the reader is referred to
[11, 12]. First, some useful definitions will be recalled.

Let N ⊂ N a set of finite number of vertices. Let PD(N ) the set of parts in N
made up of D different vertices and forms the set of all possible elements that can
constitute N .
T is a mesh topology meaning it is made of the set of elements verifying the

properties defined in Definition 2, and the subset of vertices forming its elements is:

N (T ) =
⋃

K∈T
K (3.1)

Definition 1. A d-simplex is the convex hull of its (d + 1) affinely independent
points, called vertices.
For instance, a triangle is a 2-simplex and a tetrahedron is a 3-simplex.

Definition 2. Consider a domain Ω ∈ Rd. Denote by N a finite set of vertices in
Ω and T a set of d-simplices generated from the N vertices. Let F(T ) be the set of
T ’s elements’ faces.
We say that T is a mesh topology of Ω if and only if:

(i) each face F of F(T ) shares at least one and at most two elements of T .

(ii) (N , ∂T ) is a mesh of the boundary ∂Ω.

Hence, the mesh topology consists of the mesh connectivity: the element-vertex
relation. It can be described independently from any mesh vertex coordinates.

The topological mesh generator solves an optimization problem under the con-
straint of the volume of Ω. A local mesh modification of a mesh topology is done
via a cut/paste operation where a subset of elements to be deleted A is replaced by
another subset B:

T ← T −A+ B (3.2)
Note that, A and B have the same boundary ∂A = ∂B only if the result is still

a mesh topology. The mesh topology is optimized in the neighborhood of a vertex
or an edge (Figure 3.5).
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Figure 3.5: Element subsets.

The generation of new mesh topologies, preserving the boundary, is achieved
using the ”starring” operator: a vertex S is connected to the given boundary faces
that don’t contain it:

T ∗(S, ∂A) = {K|K = {{S} ∪ F} , F ∈ ∂A,S /∈ F.} (3.3)

As already mentioned, the new subset created should be a mesh topology. That’s
why the closure Ā is introduced:

Ā = {K ∈ T , K ⊂ N (A)} (3.4)

And finally, the cut/paste operation becomes [12]:

T ← T − Ā+ B (3.5)

3.2.4.1 Selection criteria for optimal local mesh generation

The generation of the new local topologies is based on:

• The minimum volume principle:
This principle ensures the conformity of the elements, with no element over-
laps. Let A ⊂ T be a mesh topology. According to the minimum volume
principle, the optimal re-triangulation, generated by the local mesh modifica-
tion that is a starring operation improving the quality of A, is given by:

B = arg min
T

∑
K∈T

|K|

with T = {T ∗(S, ∂A), s.t S ∈ N (A) ∪ {C(A)}}
(3.6)
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where |K| denotes the volume of the element K and C(A) the centroid of the
vertices on ∂A. The minimization is done over the set of all possible mesh
topologies, obtained for all the vertices in A, connecting the vertices on the
border of A, or other vertices like C(A), with all boundary faces.

When there are several options for a certain subset, the selection is made follow-
ing mesh quality. The shape factor of the simplex is defined as the ratio between
the volume of the element K and the length of its edges hK .

• The geometric quality criterion:
The quality of elements in a mesh topology is an important requirement for
the assessment of finite element meshes generated automatically or meshes
that have undergone adaptation. A minimal requirement for mesh quality is
for all elements to be non-inverted, and that no element has a volume equal to
zero. It is also important to avoid nearly degenerate elements such as a needle
or flattened elements that have one angle close to zero or π, respectively.

Some quality measures
In the literature, several element quality measures have been proposed based

on different geometric parameters [13], some of which are listed below.
Considering a triangular element K (Figure 3.6) with an area A, a half pa-
rameter p, and edges lengths: a = AB, b = AC, c = BC. Let r and R be
the inscribed and circumscribed radii, respectively, and α, β and γ the angles
at vertex A, B and C, respectively. Lmax (resp. Lmin) is the largest (resp.
smallest) length edge.

K

A

B C

a b

c

Figure 3.6: A triangular element K

Let’s recall some elementary geometry results:
The area A is one half the magnitude of the cross product of any pair of
adjacent edge vector or it can be computed as:

A = rp (3.7)
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or using the well-known Heron’s formula:

A =
√

p(p− a)(p− b)(p− c) (3.8)

▶ Aspect Ratio:
The quality of an element Q(K) can be defined by computing its aspect ratio
AR and compared to the reference element K̂0 . When using the aspect ratio
as a criterion, K̂0 is chosen as the equilateral unit triangle with AR = 1. The
aspect ratio is then computed as:

Q(K) = AR = Lmax

2
√

3r
. (3.9)

▶ Aspect Frobenius:
The aspect Frobenius is the sum of the edge lengths squared divided by the
area and normalized so that a unit equilateral triangle has a value of 1.

Q(K) = a2 + b2 + c2

4A
√

3
. (3.10)

▶ Edge Ratio:
The edge ratio of a triangle is:

Q(K) = Lmax

Lmin

(3.11)

▶ Radius Ratio:
The radius ratio is expressed as:

Q(K) = R

2r
(3.12)

The reference quality for an equilateral unit triangle K̂0 is equal to 1.
▶ Maximum and Minimum Angles:
The maximum included angle of the triangle, measured in degrees, is

Q(K) = max
n∈{0,1,2}

arccos
 L⃗n · L⃗n+1∥∥∥L⃗n

∥∥∥ ∥∥∥L⃗n+1

∥∥∥
(180◦

π

) (3.13)

And the minimum included angle of the triangle, measured in degrees, is

Q(K) = min
n∈{0,1,2}

arccos
 L⃗n · L⃗n+1∥∥∥L⃗n

∥∥∥ ∥∥∥L⃗n+1

∥∥∥
(180◦

π

) (3.14)

38



3 Anisotropic Mesh Adaptation

Chosen geometric criterion
Here, to choose the optimal mesh, the quality of each element in the candi-

date mesh topologies is evaluated by:

Q(K) = |K|
hd

K

(3.15)

where d is the space dimension and hK the mean of the lengths of the edges.
For each candidate mesh topology, the worst elements are compared, then the
geometrical quality principle selects the mesh topology having the best quality
among these elements, therefore handling the optimization of elements’ shapes.

3.2.4.2 Algorithm of the topological mesh generator

Based on the local mesh optimization already defined, the final mesh can then be
generated through an iterative procedure until the optimal mesh with minimum
volume is achieved. Algorithm 1 explains in detail the iterative procedure.

Algorithm 1 Optimization of a Mesh Topology
Input (N , ∂T ) a mesh topology of Ω
Output (No, ∂To) the optimal mesh topology obtained

1: while
∑

K∈T
|K| ≥ |Ω|, the volume isn’t yet optimal, do

2: for each vertex and edge in T do
3: Remove the local topology TA associated with the specific vertex or edge
4: Replace TA with new mesh topology TB = T ∗(SA, ∂TA) that minimizes

the volume and maximizes the local mesh quality
5: Update T =

⋃
B
TB

A local topology TA associated to a vertex S is composed of the elements of T
whose all vertices belong to {{S} ∪ N (S)}, the set of vertices neighbor to S. In the
configuration represented in Figure 3.7 the candidate topologies to achieve a star
formation are:

• Eliminating both vertices S0 and S6 and creating a mesh topology around the
centroid C

• Keeping point S0 and removing vertex S6

• Eliminating both vertices S0 and S6 and creating a mesh topology around any
of the remaining vertices S1 to S5 (5 possible configurations)
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Or

Or...

S0
S6

S1

S2

S3

S4 S5

S4 S4

S4

S5

S5
S5

S3

S3S3

S2

S2S2

S1

S1S1

C

S0
S1

S2

S3

S4 S5

Figure 3.7: Example of the local optimization process applied on a vertex. Adopted from
[11]

The same steps can be applied to an initial topology associated with an edge.
Note that, the boundary patches are given special treatment. Indeed, in order to

eliminate or remove a boundary vertex S ∈ ∂TA, each one of the boundary faces is
connected to a virtual vertex creating new virtual elements that do not contribute
to the mesh without affecting the overall volume of the mesh (Figure 3.8).

0

S

Figure 3.8: Mesh topology with virtual elements.
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3.3 Adaptive Mesh Refinement

Dealing with multi-component problems and turbulent flows may become very com-
plex due to the development of discontinuities or vortices. That’s why a mesh
allowing good precision and accuracy during the entire simulation is needed. These
types of meshes aren’t cheap: they require a large number of fine isotropic ele-
ments especially in the regions of discontinuity making the resolution of the partial
differential equations very expensive. In order to sustain the high resolution and
accuracy of the solution during the entire simulation, methods have been developed
to dynamically adapt the mesh keeping a minimum of mesh elements.

(a)

(b) From isotropic to anisotropic mesh.

Figure 3.9: Mesh refinement framework.
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3.3.1 Metric-based Anisotropic Mesh Adaptation
In this work, anisotropic mesh adaptation, based on [14], is used and described in
what follows.

Anisotropic mesh adaptation is a powerful method that not only increases the
quality of the mesh and the accuracy of the numerical solution but also reduces
significantly their CPU time. The domain discretization is accomplished following
the size and directional constraints, hence, mesh elements are concentrated in regions
with high gradients and large discontinuities allowing their capture with higher
accuracy. The anisotropic mesh algorithm allows also to control the number of
vertices and to get the smallest error possible, therefore the algorithm is designed to
build the mesh, compute the numerical solution and evaluate an estimation of the
interpolation error. A local geometrical transformation is applied to each element
before quality measurements. To obtain the optimal metric value, an edge based
error estimator and a gradient recovery procedure are defined. The mesh is then
generated according to the new metric field [15, 16].

3.3.2 Edge-based Error Estimation
Let uh be a P1 finite element approximation obtained by applying the Lagrange
interpolation operator Π to a function u ∈ C2(Ω) and x =

{
xi ∈ Rd, i = 1, ...N

}
the set of coordinates of vertices vi in the mesh. For each vertex vi of the mesh,
let Ui = u(xi) = uh(xi) and Γ(i) the set of vertices or ”patch” connected to xi by a
common edge xij such in Figure 3.10, such that xij = xj − xi and Uij = Uj − Ui.

xi

xj

xij

Figure 3.10: Representation of Γ(i) and of the edge xij connecting vertices vi ands vj.

The gradient ∇uh · xij on the edge xij is continuous, therefore we can write:

Uj = Ui +∇uh · xij (3.16)

which leads to

∇uh · xij = Uj − Ui (3.17)
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From [16], the error estimator can be defined as:

∥ ∇uh · xij −∇u(xi) · xij ∥≤ max
y∈|xi,xj |

| xij ·Hu(y) · xij | (3.18)

with Hu the Hessian of u. At xi, the gradient gi of uh can be written as:

∇gh · xij = gj − gi (3.19)

Hence, the projection of the Hessian based on the gradient at the extremities of the
edge is:

(∇gh · xij) · xij = (gj − gi) · xij (3.20)
(Hu · xij) · xij = gij · xij (3.21)

with gij = gj − gi. From [16], it can be shown that | gij · xij | gives a second order
accurate approximation of the second derivative of u along the edge xij. The error
errij along the edges can then be defined as:

errij =| gij · xij | (3.22)

Equation 3.22 is the exact interpolation error along the edge and allows the evalua-
tion of the global L2 error. However, the interpolation error can only be evaluated
when the gradient at the vertices is known and continuous on the vertices, thus a
recovery method needs to be considered.

3.3.3 Gradient recovery procedure
The gradient recovery operator is defined by a local optimization problem:

Gi = arg min
G

 ∑
j∈Γ(i)

| (G−∇uh) · xij |2
 (3.23)

where Gi is the recovered gradient. Let Xi be the length distribution tensor at
vertex vi defined using the vector product ⊗ as:

Xi = 1
| Γ(i) |

 ∑
j∈Γ(i)

xij ⊗ xij

 (3.24)

The recovered gradient can then be expressed in terms of the length distribution
tensor as follows:

Gi = (Xi)−1 ∑
j∈Γ(i)

Uijxij (3.25)

and finally, the estimated error errij is written as:

errij = Gij.xij (3.26)
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3.3.4 Metric Construction
In order to link the error variation to the changes in the length of the edges, a
stretching factor sij is introduced. However, it’s insufficient to only enlarge the edge
if the error is too small or to reduce it or break it if it is too large, the neighbor-
hood of the vertex must be taken into account: a metric is thus the best averaging
representation. It is defined as follows:

M̃i = (X̃i)−1 (3.27)
where

X̃i = 1
| Γ(i) |

 ∑
j∈Γ(i)

sij ⊗ sij

 (3.28)

The stretching factor sij of the edge xij is chosen so that the total number of vertices
in the mesh is kept fixed and is defined as

sij =
(

errij

err(N)

)
(3.29)

where err(N) the total error.

3.3.5 Mesh Adaptation
In a multi-component application, the interface between the solid and the liquid need
to be modeled accurately. Hence, the mesh should be adapted to several variables,
like the velocity and the level-set function. The most common way is to define
a metric for each variable and combine them using metric intersection operation.
However, in this work, this operation is simplified and one metric is used to account
for the changes in all variables. Equation 3.22 is extended to consider all sources of
error defined in vector v(xi):

v(xi) =
{

Vi

| V i |
,
| V i |

maxj | V j |
,

ϕ

max(ϕ)

}
(3.30)

Note that since all fields are normalized, the variations of all the variables are
taken into account.

Figure 3.11 compares the interface captured by an isotropic and anisotropic mesh
for the same immersed geometry. Applying the anisotropic mesh adaptation on the
level-set function, the elements surrounding the interface are stretched along its di-
rection and hence define it more precisely. Figures 3.12 and 3.13 show the anisotropic
mesh adaptation near the interface of the 2D and 3D immersed geometries. Com-
paring the initial and final mesh, the geometries are better defined, however, the
interface of the immersed object cuts the elements of the mesh. Hence, the objective
of this work is to accurately capture the interface and create an anisotropic fitted
mesh: a new geometrical adaptation method is proposed.
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Figure 3.11: A level-set function computed on an isotropic (left) and anisotropic (right)
meshes.

(a) Initial mesh (b) Final mesh

Figure 3.12: Mesh adaptation Algorithm applied on 2D immersed bodies.

3.4 Numerical Computation of the Level-set function

As seen in 2.1, the level-set or signed distance function ϕ of an interface Γ is used
to determine the position of the interface of the immersed body. For any point
xi in the domain Ω, the level-set function corresponds to the shortest distance to
the interface Γ. This is achieved by determining the elements with the minimum
surface distance, which is the shortest distance value from the surface to xi with
|d| = mine=1(|de|).
In order to find the minimum distance |de| in each element a bounding box check
is done. It determines if their exists another candidate element closer to fxi based
on the current |d|. If xi is outside of the bounding box then the current minimum
|d| remains however if it lies inside it, a projected volume is done.
The general idea of projected volume check consists of determining whether xi lies
inside or outside the projected volume of an element:
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(a) Initial mesh (b) Final mesh

Figure 3.13: Mesh adaptation algorithm applied on 3D immersed bodies.

– if xi is inside, then |de| is taken as the shortest distance between xi and the
plane defined by the element face normal |ne|. The condition where this is
satisfied is: (x1i · n3 ⩽ 0) ∩ (x2i · n1 ⩽ 0) ∩ (x3i · n2 ⩽ 0), where xij = xj − xi

and n1, n2 and n3 are the edge normals.

– If xi lies outside the projected volume of the element, each edge of the triangle
is examined to get the shortest distance to any of the line segments |de|.

Finally, the level-set function ϕ = |d| xic·ne
|xic·ne| , where xic ·ne will be positive inside the

immersed geometry Ωs and negative in the rest of domain Ωf [17]:

ϕ(x) =


dist(x, Γ) if x ∈ Ωs

0 if x ∈ Γ
−dist(x, Γ) if x /∈ Ωs

(3.31)

The interface of the immersed object is determined by the zero-value of ϕ (Figure
3.14). Further details on how to compute the signed distance function can be found
in [18–21].

In order to decrease the computational time cost needed to compute all |de|,
a hierarchical representation of the surface mesh is done [18, 22, 23]. A box tree
is created by dividing the domain into levels of small boxes where the lowest level
contains the entire mesh. Children boxes are recursively created by packing the
elements of the mesh and determining the parent box that contains elements of the
immersed interface or surface elements. Hence, the distance between xi and a box
Ci is evaluated before computing the distance between xi and the children of Ci or
its elements.
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Figure 3.14: A level-set function (in red) for a circle separating two domains.

3.5 Conclusion

As seen in this chapter, mesh generation and mesh adaptation are very important
tools for numerical simulations and modeling, especially when dealing with the so-
lution’s accuracy. The basic notions for the study and generation of meshes have
been recalled and the operations of the MTC mesher, used in this thesis, have been
described [11, 12]. The dynamic mesh adaptation based on edge-based error esti-
mation constructing metric-based anisotropic meshes has also been explained. The
numerical computation and detection of the level-set function have been detailed,
the level-set function tracks and detects the interface of the immersed geometry.
This property allows then the fixation of the boundary conditions and resolution of
physical phenomena.

However, with the methods described so far, the mesh generated doesn’t neces-
sarily conforms to the immersed geometry. This non-conformity has been a challenge
to researchers, especially when dealing with complex problems with high gradients
and sharp discontinuities. The next chapter describes the existing methods that
have attempted to solve this problem, and our proposed method to generate an
anisotropic fitted mesh is presented.
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Résumé en Français
Le développement de méthodes efficaces pour simuler des systèmes multi-
composants fait partie des défis d’ingénierie et reste un besoin pour une
variété d’applications industrielles, en particulier dans le cas de l’interaction
fluide-structure ou du transfert de chaleur conjugué. Ces dernières années, un
intérêt croissant a été porté à l’étude numérique d’une variété d’applications
d’ingénierie qui impliquent de tels couplages entre des domaines fluides et
solides.
Classiquement, les techniques de couplage consistent à diviser le domaine
global en plusieurs sous-domaines locaux où un modèle local (équation à
résoudre) peut être analysé indépendamment sur chaque sous-domaine. La
solution globale peut alors être construite en assemblant de manière appro-
priée les solutions locales des sous-domaines modélisés individuellement [1, 2].
Un maillage adapté au corps immergé est généralement nécessaire pour de
telles simulations et sa construction peut être limitée en raison des coûts de
calcul nécessaires à cause du remaillage ou de la complexité des géométries
traitées.
Alternativement, le développement de méthodes immergées ou incorporées
devient un sujet de recherche intense principalement en raison de leur sim-
plicité relative et de leur efficacité de calcul pour la simulation de géométries
complexes [3–5]. En effet, il n’y a pas de contrainte pour la génération du
maillage, différentes approches existes et sont décrites dans ce chapitre. Un
défi principal commun lié au développement de ces méthodes est le fait que
les éléments à l’interface sont coupés de telle manière qu’une fraction d’entre
eux reste à l’intérieur du domaine solide, et l’autre dans le domaine fluide, et
par conséquent la question de savoir comment imposer les conditions limites
à l’interface.
L’objectif est de pouvoir bénéficier des avantages des deux méthodes : la
méthode des corps ajustés et la méthode immergée. Dans ce chapitre,
après une brève description des méthodes existantes, un aperçu général de
la méthode proposée est décrite pour une adaptation géométrique permettant
la création d’un maillage ajusté anisotrope pour les géométries immergées.
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4.1 Introduction

As seen in the above chapters, the development of efficient methods to simulate
multi-component systems is among engineering challenges and still a need for a va-
riety of industrial applications, especially in the case of fluid-structure interaction
or conjugate heat transfer. In recent years, there has been an increasing interest
in studying numerically a variety of engineering applications that involve such cou-
plings between fluid and solid domains.

Classically, coupling techniques consist of dividing the global domain into several
local subdomains over each of which a local model (equation to be solved) can be
analyzed independently. The global solution can then be constructed by suitably
piecing together local solutions from individually modeled subdomains [1, 2]. A
body-fitted mesh is generally required for such simulations and its construction may
be limited due either to the needed computational costs due to repeated remeshing
or to the complexity of the treated geometries.

Alternatively, the development of immersed or embedded methods is becoming
a subject of intense research mainly because of their relative simplicity and com-
putational efficiency for simulating complex geometries [3–5]. Indeed, there is no
constraint for the mesh generation, different approaches are proposed to enforce
strongly or weakly the boundary conditions at the fluid-solid interface [6–10], and
finally several clever techniques such as penalty or enrichment methods can be used
to ensure continuity and to increase accuracy at the interface [11–16]. One common
main challenge related to the development of these methods is in fact that elements
at the interface are cut in such a way that a fraction of them remains inside the solid
domain, and the other in the fluid domain, and consequently the question of how to
impose a boundary condition at the interface. The objective is to be able to benefit
from the advantages of both methods: body-fitted and immersed methods. In this
chapter, after a brief description of the existing methods, a general overview of the
proposed method is described for a geometric adaptation allowing the creation of
an anisotropic fitted mesh for immersed geometries.

4.2 Existing Methods

In order to solve multi-component systems, the mesh generated should be adapted
on the entire domain to accurately detect the boundary layer and capture the entire
flow phenomena. To tackle this challenge, different methods have been developed
and can be divided into three main categories:

• Modifying the numerical scheme

• Modifying the governing equations
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(a)

(b) From cut cells to fitted mesh.

Figure 4.1: Geometric mesh adaptation framework.

• Altering the mesh

The diagram shown in figure 4.2 summarizes the existing embedded geometry tech-
niques.

In this section, some of the existing methods used to solve multi-component and
multi-phase flows problems will be briefly described.

4.2.1 Modifying the Numerical Scheme
Enriched finite element methods are based on the decomposition of the solution
into a classical Galerkin finite element part and an enriched part. The enrichment
can be global or local. The local enrichment method is known to be mostly used
to approximate a solution with discontinuous characteristics and singularities in the
computational domain.

Recently, the X-FEM gained a lot of attention and is continuously developed and

54



4 Anisotropic Fitted Algorithm for Immersed Geometries

Figure 4.2: Diagram summarizing the existing embedded geometry techniques. Adapted
from [17]

.
E-FEM: Enriched Finite Element Method, G-FEM: Generalilzed Finite Element Method, X-FEM: Extended

Finite Element Method, IVM: Immersed Volume Method, EBM: Embedded Boundary Method, EDM: Embedded
Domain Method.

used with structured and unstructured mesh. The embedded geometry is described
using the level-set method. The cut elements are determined and the enriched
vertices defined. These vertices will be used to handle the embedded boundary.
Based on the type of discontinuity at hand, the enrichment function is chosen. The
X-FEM formulation is applied near discontinuities and singularities as follows:

uh(x) =
∑

ukϕk(x)︸ ︷︷ ︸
classic−F EM

+
∑

uk∗ϕk∗(x)F (x)︸ ︷︷ ︸
local−enrichment

(4.1)

where:
x = the spatial position (x,y,z)
uk = the degree of freedom at node nk

ϕk = the shape function
ϕk∗ = the partition of unity function
uk∗= the unknown at the enriched node
F (x) = the enrichment function

Details of the extended finite element method can be found in [6, 18].
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Figure 4.3: Extended finite element approach [17].

4.2.2 Modifying the Governing Equations
Other methods add a forcing term to the governing equations near the boundary
layer. Depending on the approach, the forcing term can be introduced before or
after discretization on the whole domain or only on the boundary of the embedded
geometry.

The forcing term introduced before discretization reproduces the effect on the
fluid of the embedded boundary. Two categories in continuous forcing can be dis-
tinguished:

• The Embedded Boundary Methods (EBM): here, the forcing term represents
the effect of the embedded boundary on the fluid. The well known Immersed
Boundary Method (IBM) [3, 4] belongs to this category.

• The Embedded Domain Methods (EDM): the forcing term penalizes some
quantity over the entire domain such in the Immersed Stress Model [2].

4.2.2.1 The Ghost Cell Method

Introducing the forcing term into the governing equations after discretization results
in extracting it directly from the numerical solution rather than introducing it in
the continuous momentum equations. The governing equations are discretized on a
computational grid, resulting in a set of discretized equations. The forcing term is
then introduced only for cell points close to the immersed boundary to account for
it. The Ghost Cell Method [11] falls in this category.
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The Ghost cell method is widely used to solve two-phase flows and obtaining an
accurate description of the interface. Ghost cells are generally defined as cells in
the solid domain and neighboring at least one fluid cell. The general idea of this
approach is to impose the boundary condition on the interface to a ghost vertex
inside a body by interpolation or extrapolation. Below is a brief description of the
procedure of the Ghost Cell Method:

Once the immersed boundary is identified, the computational domain is divided
into two: the physical domain and the ghost-cell domain. Hence, the ghost-cells are
determined. Each ghost-cell is associated with a boundary point located inside the
cell, and interpolation points that are usually nearest fluid vertices or image vertices.
Depending on the application, an interpolation scheme is defined and accordingly
the boundary condition is imposed.

Figure 4.4: Ghost cell Method. Figure taken from [17].

In [11], Tseng et al. calculate the ghost-cell value by extrapolation from the
nearest fluid vertices. Referring to figure 4.4, G is the ghost vertex and X1, X2
are the fluid vertices. The point O is the boundary point at which the boundary
condition needs to be satisfied. To determine the positions of O, the authors propose
two approaches: O can be chosen as the midpoint of the boundary segment and
should be within the ghost-cell or O is computed such that −→GO is normal to the
boundary. Flow variables are expressed in terms of linear or quadratic polynomials
in order to satisfy and reconstruct the boundary conditions. More details on how
to impose the boundary conditions can be found in [11].

4.2.2.2 The Shifted Boundary Method

The Shifted Boundary Method (SB), presented in 2018 by Main et al. [9, 10], shifts
the location where the boundary conditions are applied to a surrogate boundary
and then weakly enforces the shifted boundary conditions (Figure 4.5).
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The Shifted boundary method proposes the following Taylor expansion in order
to impose the Dirichlet boundary condition uD on the surrogate boundary Γ̃:

u(x̃) +∇u(x̃) · d(x̃)− uD(x̃) + O(||d(x̃)||2) = 0 (4.2)

where the distance vector d between the boundary and its surrogate is defined as:
d = ||d||n with n being the normal to the original boundary.

Γ̃ Γ

Figure 4.5: Shifted Boundary Method - The true and surrogate boundary.

Considering the Poisson problem with Dirichlet boundary condition:

−∆u = f, onΩ
u = uD, onΓ (4.3)

Nitsche’s method introduces a penalty term to equation 4.3 in order to weakly
enforce the Dirichlet boundary condition on Γ as well as the partial differential
equation on Ω. The details of this method can be found in [9].

4.2.3 Altering the Mesh

The methods mentioned above require the addition of a forcing term. This category
includes two methods that tackle the multi-component system through the use of
a Monolithic formulation. A Monolithic resolution consists in considering the
computational domain and the immersed object as one whole domain, and then
solve one set of equations on this domain. Two models fall in this category:

• The Nearly Body Fitted mesh [17] introduced by Quan et al. in 2014.

• The Immersed Volume Method (IVM) [1, 19]
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4.2.3.1 Nearly Body Fitted

The Nearly body fitted (NBF) mesh is a recent study inspired from the IVM. The
difference between the two methods is that the virtual boundary of anisotropic mesh
created in IVM is replaced by a real interface approximation in the NBF method.

The basic idea of this method is to generate a refined mesh around the embedded
geometry and to impose the boundary conditions on the vertices closest to the
interface. These vertices form an approximation Γ∗ of the interface (Figure 4.6).
The novelty here is that the mesh adaptation is done to both the geometry and the
flow using a mesh intersection technique.

Figure 4.6: A discrete approximation Γ∗ of the level-set Γ. Figure taken from [17].

The first metric is a level-set based metric. At each vertex, a metric is built
based on the gradient ∇ϕ(x) and the Hessian H(ϕ(x)) of the distance function. The
mesh metric MLS obtained is given by:

MLS = RT

 λn 0 0
0 λt1 0
0 0 λt2

R (4.4)

where R = (n, t1, t2)T and the eigenvalues λn,λt1 and λt2 are computed from the
mesh sizes hn and hti.
Equation (4.4) is applied in a narrow band region in the vicinity of the interface.
Outside this band, an isotropic element mesh size hb is defined such as:

MLS =


1

h2
b

0 0
0 1

h2
b

0
0 0 1

h2
b

 (4.5)
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The second mesh metric is based on the Hessian of the flow. It is computed as
follows:

MH = αH(|u(x)|) (4.6)

with α a factor of proportionality. Details on how to compute α can be found in
[17].

Finally, a metric intersection is done in order to keep the smallest mesh size and
conserve the orientation of the most anisotropic metric.

4.2.3.2 The Immersed Volume Method

The Immersed Volume Method (IVM) is an interesting approach for computational
problems [1, 20]. It treats and solves the different subdomains as one singular domain
with variable material properties. The IVM consists of three main components.

1. The geometry of the immersed solid is treated, and implicitly represented
using the sign distance function described in section 3.4: the level-set func-
tion. Hence, the interface position of the immersed object is detected and the
different subdomains defined.

2. Anisotropic mesh adaptation, described in detail in Chapter 3, is employed
to provide an accurate configuration of the problem. The adaptation can be
applied to the level-set function, providing a flexibility to capture details and
with high fidelity any complex geometry, and/or to the solution of the set of
equations to be solved. This will yield to the capture of the fluid-solid interface
at low computational cost with well oriented stretched elements allowing a
good capture of discontinuities and high gradients.

3. Finally, the Mixing law (referred to in section 2.3) is used to distribute the
different components’ properties on the different subdomains.

The IVM can be applied without the modification of any geometry or any phys-
ical property. It can be very easily implemented and applied with stabilized finite
element methods.

4.3 Objective

The objective of each method listed above is to accurately track and define the inter-
face. Our goal is to extend the IVM (section 4.2.3.2) to benefit from the properties
of an anisotropic mesh that smoothly follows the interface and from there develop a
system that enables us to get a robust and sharp interface by creating new elements
or adapting some of the existing elements to intersect with the interface.
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The anisotropic mesh elements stretched in the right direction in the Immersed
Volume Method describe well the immersed geometry with all its angles and cur-
vatures. It offers a high fidelity resolution at the interface creating a well defined
boundary layer between the two domains (solid and fluid). This method guaran-
tees a precise mesh on the fluid-solid interface in order to capture more precisely
the thermal gradients and the strong discontinuity of the physical properties. It
therefore offers great flexibility in the setting of FSI problems.

In a Body Fitted (BF) approach, isotropic mesh elements accurately define the
geometry at the interface where there is no longer a need for a narrow band region.
However, this method cannot support high thermal gradients and strong disconti-
nuities of the physical properties.

Figure 4.7: A close up comparison between an anisotropic and a body fitted mesh.

The aim is to define a technique that will allow to accurately capture the interface
of immersed objects creating a body fitted mesh. The result will combine both the
flexibility of the immersed method and the accuracy of a body fitted mesh.

The order of implementation of the two methods is of high importance: anisotropic
mesh adaptation is applied first to create the refined region near the interface, hence
stretching the elements and moving the vertices closer to it. Then, a BF approach
is implemented in order to accurately capture the interface.

4.4 Anisotropic Adaptive Fitted Mesh

This section describes the general principles of the new fitting technique that can
capture the boundary between the fluid and the solid. It’s based on capturing the
interface following a geometrical adaptation. Geometry based adaptation consists
of modifying the elements of the mesh:

• by relocating mesh vertices to some regions of interest to better capture the
desired physical and mechanical properties - this is known as R-adaptation
(Section 4.4.1),
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• by inserting new vertices in the region of interest and creating new elements
that would need to be remeshed. The introduced vertices are the intersection
points between two vertices vi and vj, and whose coordinates are computed
by linear interpolation using the following equation:

xij = xi − (xi − xj)
ϕ(xi)

ϕ(xi)− ϕ(xj)
(4.7)

with ϕ the level-function computed at each vertex.

• by inducing a change in the overall topology of the mesh like in edge-swapping
or edge-flipping [21] while conserving the number of elements (Section 4.4.1).

4.4.1 Geometric Adaptation for a Fitted Mesh
The steps of the proposed technique are illustrated in the diagram of figure 4.8.
Algorithm 2 summarizes the overall technique and the details are explained below
(Algorithms 3 to 5).

Figure 4.8: Scheme for applying the Geometric Adaptation.

Algorithm 2 Geometric Adaptation for a fitted mesh
1: Apply anisotropic adaptation on the level-set.
2: Flag the cut elements where ϕ(xi)ϕ(xj) < 0
3: for each flagged element do
4: Move the vertex with the minimum distance
5: Detect two adjacent elements with each element having one fitted vertex on the

interface in order to define a pair
6: for each couple do
7: Apply Edge Swapping keeping in mind the orientation of the elements
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• Adapting
After generating an isotropic mesh for the immersed geometry, an anisotropic

mesh adaptation is applied to the level-set using the metric map described in equa-
tion 3.27. On a narrow band region in the vicinity of the interface, extremely
anisotropic elements stretched along the boundary are formed. The anisotropic re-
finement allows us to follow the geometric shape of the immersed geometry hence
describing its curvatures, angles, direction, etc. (Figures 4.9).

Figure 4.9: Anisotropic adaptation for 2D geometries.

Figure 4.10: Zoom on the interfaces of a cylinder and a rectangle highlighting the cut
elements.

• Flagging
Since the immersed geometry is described using the level-set method, the interface

Γ separates the domain Ω into two subdomains: a negative one Ωf and a positive
one Ωs [14]. Therefore, the interface elements or the cut elements are detected by
looping over their edges. The product of the signed distance value computed at the
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coordinates of each vertex (vi, vj) of a cut edge results in a negative value allowing
the detection of the cut elements (Algorithm 3 and figure 4.12). A loop over all the
level-set values is performed, the cells that are fully contained in Ωf or in Ωs are
flagged with 0, and all the cells that are cut by the zero-value of the level-set are
marked as 1 (Figure 4.11).

Algorithm 3 Flagging
1: for each edge (eij) do
2: Compute ϕ(xi) and ϕ(xj)
3: if ϕ(xi)ϕ(xj) < 0 then
4: flag = 1
5: else
6: flag = 0
7: flag(vi), i ∈ {1, . . . , N} N: # of vertices

ϕ(xi) < 0 ϕ(xi) > 0 ϕ(xi) < 0
vi

vj vk

ϕ(xk) < 0ϕ(xj) < 0

vj vk vj vk

vi vi

ϕ(xj) > 0 ϕ(xk) > 0 ϕ(xj) > 0 ϕ(xk) > 0

ϕ(x) = 00 0 1

Figure 4.11: Illustration of Algorithm 3

Figure 4.12: The flagged elements cut by the interface.

• Inserting & Fitting

▷ R-adaptation
R-adaption is based on relocating the vertices by maintaining the same number
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vi

vmi

vjvj

vk vk

vf0

vf1
vf0

Figure 4.13: R-adaptation operation for a 2D cut element applied on vertex vi.

of degrees of freedom and element connectivity. It’s only applied on the flagged
elements as a consequence, the computational cost remains low.

The general strategy consists of moving specific vertices of the mesh. For each
cut element, the distance from each vertex to the interface is analyzed via the level-
set function: the vertex having the minimum distance vmi

is then marked. Since
the interface cuts the facets of the mesh: the intersection points are then defined as
virtual vertices vf such that f = 0, 1, ....nf with nf the number of cut facets.

The objective is to move the marked vertex vmi
along its associated facet f with

minimum effort. Since vmi
can be associated to multiple virtual vertices, a set of

associated virtual vertices is created and analyzed for each vmi
. From this set, vf is

chosen as the virtual vertex having the smallest distance dvmi vf , then the coordinates
xmi

of vmi
are updated as follows:

xmi
= xvf

(4.8)

with xvf
the coordinates of the chosen virtual vertex associated to vmf

.

Algorithm 4 R-adaptation

1: for the vertices of a cut element do
2: Mark the vertex having minimum distance
3: for each marked vertex do
4: Determine the needed virtual vertex vf of the associated facet f and the

interface
5: xinew = xvf

6: x(i), i ∈ {1, . . . , n} n: # of marked vertices in cut elements

To prevent mesh degeneration or inverted elements, care must be taken. Hence,
constraints on the number of marked vertices are applied: each cut element should
have at least one vertex marked and no element has all of its vertices marked to
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avoid generating a flat element. And each vf can be associated to only one real
marked vertex vm0 .

▷ Edge Swapping
The R-adaptation algorithm allows the movement of the vertices’ cut elements to

capture the interface. To ensure a fitted mesh, algorithm 4 is coupled with a local
mesh optimization algorithm. This algorithm is based on a simple topology change
method: Edge swapping. Edge swapping not only avoids expensive remeshing but
preserves the quality and integrity of the mesh. This operation conserves the number
of elements and the number of edges. In 2D, this local optimization is a simple
topological operation consisting of swapping or flipping a common edge shared by
two elements (forming a pair or a couple) (Figure 4.14).

vi

vj

vr

vk

vi

vj

vr

vk

Figure 4.14: Edge swapping operation in 2D.

Since edge-swapping alters the topology of the mesh, a careful evaluation of the
global connectivity of the mesh needs to be done to ensure that the orientation
of the elements is preserved [22]. Therefore, the edge swapping algorithm can be
decomposed into three main parts:

1. Pairing the elements

2. Swapping

3. Fixing the orientation
The geometric adaptation can be used to solve multi-component systems with

complex geometries, CFD problems and Fluid-Solid Interaction applications.

4.5 Numerical Illustrations

The geometric adaptation algorithm is applied first on a set of geometries to show
the accurate and precise capture of the interface and then benchmark problems are
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Algorithm 5 Edge swapping
1: Loop over the cut elements
2: Flag the elements with only one vertex on the interface
3: Loop over the newly flagged elements
4: if two elements have a common edge then
5: Form a couple ▷ Pairing the elements
6: for each couple do
7: Determine the common edge
8: Swap the edge ▷ Edge-Swapping
9: for each element do

10: Calculate the signed volume V
11: while V < 0 do
12: Reorder the vertices indiex ▷ Fixing the orientation

Figure 4.15: Zoom on the fitted interface for a cylinder and a rectangle.

Figure 4.16: Comparison between the initial and final fitted geometry.

explored. The objective of exploring these cases is to understand the impact and
importance of an immersed fitted interface.
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4.5.1 Anisotropic Fitted Mesh for Immersed 2D Objects
In order to confirm the results, the global adaptive framework was implemented suc-
cessfully on simple geometries (Figures 4.9 - 4.16) as well as the geometry of a rabbit
(Figures 4.17-4.19) with different curvatures. First, an anisotropic adaptation, im-
plemented on the level-set function of the immersed geometry, is applied. The use
of anisotropic elements is an essential component to accurately trace the different
changes in the geometry due to the flexibility of such elements (Figure 4.17).

Figure 4.17: Anisotropic adaptation on the geometry of a 2D rabbit.

Figure 4.18: Zoom on the interface highlighting the cut elements

Then the immersed-fitting adaptation was applied to the elements in the vicinity
of the level-set, represented in red in Figures 4.18 and 4.19. The R-adaptation
relocates the marked vertices to get them closer to the interface, and then edge-
swapping is applied to ensure a body-fitted mesh.

Figure 4.20 shows the flexibility and versatility of the fitting algorithm. More-
over, the flow over four circular cylinders at various Reynolds numbers (Figure 4.21)
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Figure 4.19: Zoom on the fitted interface.

Figure 4.20: Comparison between the initial and the final fitted mesh of a 2D rabbit.

was studied. Using the method presented, an anisotropic fitted mesh was success-
fully created on all four cylinders independent on the flow’s turbulence.

Figure 4.21: Immersed Fitted mesh for 4 circular cylinders and zoom on the interface.

4.5.2 Flow over a Circular Cylinder
We consider the flow over a circular cylinder, also studied by Main et al. in [10], at
Reynolds number Re = 100 over which the Navier-Stokes equations for incompress-

69



4 Anisotropic Fitted Algorithm for Immersed Geometries

ible flow are solved using the Variational Multiscale Method.
The velocity inlet of the flow is set to U = 1 and the top and bottom of the

domain are set to be traction free. On the outlet, a free Newman boundary condition
is imposed. The Drag coefficient is calculated using the following equation:

CD = 2Fd

DρU2 (4.9)

where Fd is the drag force.
Table 4.1 compares the drag coefficient obtained for three types of meshes:

1. a non fitted isotropic initial mesh

2. a non fitted anisotropic mesh

3. an immersed-fitted mesh.

The immersed-fitted mesh was obtained by implementing the algorithm defined in
Section 3.3.1 by applying an anisotropic adaptation near the interface and using the
Immersed Method described in section 2.

Figure 4.22: Solution for flow past a cylinder for Re = 100 using an isotropic mesh (left)
and an immersed-fitted anisotropic mesh (right) at t = 100s.

Table 4.1: Drag Coefficient CD computed for the 3 cases for Re=100 with N being the
number of elements used.

N CD % Error
Reference 352 590 1.34 -
Isotropic mesh 156 163 1.413 5.45%
Anisotropic mesh 10 000 1.316 1.77%
Immersed-Fitted mesh 10 000 1.334 0.44%
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Figure 4.23: Anisotropic mesh adaptation for both the velocity and the level-set fields (left),
zoom on the sharp immersed-fitted interface (right).

The results obtained (table 4.1 and plot 4.24) confirm that using the Immersed
Fitted mesh adaptation yields to better results with a minimum error in CD equal
to 0.44%. Figure 4.24 shows a time history of the drag coefficient for Re = 100, for
the three cases studied.
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Anisotropic fitted mesh

Figure 4.24: Time evolution of the drag coefficient for three different meshes.

It is important to note from table 4.1 that the anisotropic adaptation allows one
to significantly reduce the number of elements used in order to solve the Navier-
Stokes equations, compared to the use of isotropic mesh: only 10 000 elements were
needed compared to 156 163 elements in the case of isotropic refinement and more
than 350 000 elements in [10]. Also, the computational time to calculate the results
using the anisotropic or the immersed-fitted mesh is significantly lower than the
time needed to solve the problem using an isotropic mesh.
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4.5.3 Flow over a Square Cylinder
We consider next a flow over a square cylinder for Re=100 presented in [23]. The
computational domain consists of a square cylinder placed normal to a free stream
in an infinite domain. A uniform velocity is set on the inlet U = 1 and no slip
conditions are applied to the boundary of the immersed square.
Such a geometry was tested because its corners and sharp angles can be a challenge.
The algorithm of section 3.3.1 was successfully applied to the geometry without any
modifications and was able to capture the sharp edges. Table 4.2 compares the drag
coefficient obtained for the three types of meshes: the Immersed fitted mesh shows
the best results.

Table 4.2: Drag Coefficient CD computed for the 3 cases for a square cylinder at Re=100.

CD % Error
Reference [23] 1.461 -
Isotropic mesh 1.524 4.312%
Anisotropic mesh 1.429 2.173%
Immersed-Fitted mesh 1.433 1.926%

(a) t = 25s (b) t = 100s

Figure 4.25: Solution for flow past a square cylinder for Re = 100 for an immersed-fitted
anisotropic mesh (bottom) at t = 25s an t = 100s.

4.5.4 Complex Geometry with High Reynolds Number Flow
To go further, we consider the flow over a complex geometry, a 2D representation of a
F1 car. The objective of this example is to show the performance of immersed-fitted
meshing. Indeed, combined with flow solvers it allows to easily and accurately deal
with complex fluid-structure interaction problems. Taking a closer look at the mesh
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Figure 4.26: Anisotropic mesh adaptation for both the velocity and the level-set fields (left),
zoom on the sharp immersed-fitted interface (right).

near the interfaces, we can detect the good orientation of the anisotropic elements
as well as the accurate precision with the conformal interface. The velocity field and
the mesh obtained are shown in Figures 4.27 and 4.28. Taking a closer look at the
mesh in Figure 4.29, we can see how the interface not only follows the curvatures of
the immersed geometry but also captures accurately its interface.

4.6 Advantage of the Proposed Method

Since CFD and fluid flow problems use complex geometries, high resolution CAD
models (or STL) require to be treated. The use of immersed geometries and how
they are expressed on the interface depends on the end use and the level of ge-
ometric information needed at the interface. Many accurate interface description
using high-order polynomial representations [24] or level-set functions [25, 26] have
been used. The mathematical structure of the governing equations being solved
frequently influences the augmentation of discrete operators employing immersed
interfaces, which are divided into incompressible [27] or compressible formulations
[28, 29]. Some methods, like the ghost fluid method, described in section 4.2.2.1,
often requires one or more of the following steps:

1. inserting local vertices at the interface

2. increasing the size of the discrete stencils near the interface

3. adding vertices in the solid region in the vicinity of the interface to enforce
local boundary conditions.

Other methods rely on transforming the background mesh to conform to the
boundary by using a closest point projection to parameterize the immersed boundary
over a collection of nearby edges [30], or on augmenting the level-set function via
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(a) t = 2.5s (b) t = 5s

(c) t = 10s (d) t = 20s

(e) t = 35s (f) t = 50s

Figure 4.27: Velocity profile past an immersed 2D car.

an iterative procedure to then reconstruct the cut cell elements using Lagrangian
polynomials [31].

Since the first step of the proposed method is to apply an anisotropic mesh adap-
tation, the mesh is locally refined according to the level-set function that describes
the geometry without resorting to the reconstruction or correction of the interface
from a CAD model. The anisotropic mesh adaptation gives the flexibility to adapt
to the immersed geometry and to construct the stretched elements in the direction of
the interface allowing to smoothly track the curve of the geometry. Unlike isotropic
elements, the smoothness of the immersed interface and its detection can be done

74



4 Anisotropic Fitted Algorithm for Immersed Geometries

(a) t = 0s (b) t = 5s

(c) t = 10s (d) t = 20s

(e) t = 35s (f) t = 50s

Figure 4.28: Anisotropic mesh adaptation for both the velocity and the level-set of the
immersed 2D car fields.

Figure 4.29: Zoom on the sharp immersed-fitted interface of the 2D car.
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with a relatively low number of elements as can be seen in Table 4.1.
The metric map allows an adaptation on the level-set function as well as the

solution of the problem as mentioned in section 3.3.5, the boundary layer is then
well constructed taking onto account the flow physics. The Dirichlet boundary
conditions can then be strongly imposed on the interface just like classical body-
fitted meshes.

4.7 Conclusion

After a brief review and description of the existing method that treat multi-component
systems and immersed geometries, in this chapter, the proposed anisotropic fitted
algorithm is presented. It’s an ordered two-step implementation allowing the cre-
ation of a fitted mesh while benefiting from the advantages of an anisotropic one,
hence flow phenomena can be treated more accurately especially near the interface
and zones with high gradients and discontinuity. First, the metric based anisotropic
mesh adaptation is applied on a coarse initial mesh. This refinement allows one to
detect the immersed object via the level-set function and hence better describes its
geometric shape. Then a geometric mesh adaptation is applied to the flagged and
isolated cut cell to create a conformal mesh on the interface of the immersed ge-
ometry with a series of topological adaptation: R-adaptation followed by swapping.
Numerical illustrations in 2D have been presented.

However, since the objective of this work is to be applied to more real and com-
plex problems, especially to model the quenching process, the proposed algorithm
can be extended to 3D. This extension, of course, comes with some challenges. Fur-
thermore, generating and refining a mesh adapted to three-dimensional complex
industrial problems, and then solving the partial differential equations at hand be-
come very expensive. In the next chapter, the new implementation of the parallel
mesh adaptation used in our code CIMLIB-CFD is described and the proposed
algorithm in parallel and 3D is explained in detail.
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Résumé en Français
Comme les phénomènes d’écoulement et les problèmes de CFD visent à
résoudre des problèmes complexes et réels, ils doivent s’appuyer sur des
systèmes de calcul haute performance (HPC). Dans le contexte des appli-
cations industrielles, le temps de calcul devient un problème. L’utilisation
de la programmation parallèle dans le calcul scientifique peut réduire con-
sidérablement le temps de calcul par rapport au temps séquentiel nécessaire
pour réaliser la même tâche. Par conséquent, les problèmes complexes et à
grande échelle traitant de systèmes multiphases et multi-composants devien-
nent plus abordables à traiter. Par exemple, le nombre de degrés de liberté
peut être augmenté pour obtenir une solution plus précise sans causer une
augmentation drastique du temps de calcul.
Cependant, pour bénéficier des avantages du calcul parallèle, il est nécessaire
de prendre certaines précautions lors de la parallélisation de cet algorithme.
L’efficacité de la programmation parallèle dépend fortement d’aspects logi-
ciels tels que l’équilibrage des charges et l’architecture de l’ordinateur. Par
conséquent, l’étape finale de cette nouvelle mise en œuvre est la parallélisation
de l’algorithme.
Ce chapitre donne un aperçu rapide du parallélisme et se concentre sur
l’algorithme parallèle d’adaptation du maillage utilisé dans CIMLIB-CFD.
La modélisation parallèle de l’algorithme proposé est également expliquée en
détail en mettant l’accent sur les défis rencontrés et son extension aux appli-
cations tridimensionnelles.
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5.1 Introduction

Since flow phenomena and CFD problems aim to solve more complex and real prob-
lems, they must rely on high performance computing (HPC) systems. In the context
of industrial applications, computational time becomes an issue. Using parallel pro-
gramming in scientific computing can significantly reduce the computational time
compared to the sequential time needed to achieve the same task. Therefore, large
scale and complex problems dealing with multi-phase and multi-component systems
become more affordable to handle. For example, the number of degrees of freedom
can be increased to obtain a more accurate solution without a drastic increase of
the computing time.

However, to benefit from the advantages of parallelism, the algorithm needs to
be treated with care. The efficiency of the parallel programming strongly depends
on software aspects such as load balancing and computer architecture. Therefore,
the final step of this new implementation is the parallel modeling of the algorithm.

This chapter provides a quick overview of parallelism and focuses on the parallel
mesh adaptation algorithm used in CIMLIB-CFD. The proposed algorithm’s par-
allel modeling is also explained in details focusing on the challenges faced and its
extension to three-dimensional applications.

Figure 5.1: Parallel implementation framework.
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5.2 Parallel Terminology & Memory Classification

As already mentioned, to have an efficient parallel algorithm, one has to know and
understand the computer architecture and software. For computer architectures,
several classifications exist. In this section, Flynn’s taxonomy will be presented
followed by the most common memory classifications.

5.2.1 Flynn’s Taxonomy
Flynn’s classification scheme [1] is a classification of the existing computing systems.
It depends on the notions of instruction and data. Hence, based on the number
of instruction and data streams that can be processed simultaneously, four major
categories can be found:

1. Single-Instruction, Single-Data (SISD) systems:
this system is a single-processor machine capable of executing one instruction
and operating on one single data stream. All the instructions and data are
stored in a primary memory. It is based on a sequential processor. The speed
of processing is dependent on the rate at which the computer can transfer and
communicate the information internally.

2. Single-Instruction, Multiple-Data (SIMD) systems:
this system uses a multi-processor machine to execute one single instruction
but operates on several data streams. Each processing unit obtains the same
information, but loads a separate and different data set. Machines based on a
SIMD model are well suited to scientific computing.

3. Multiple-Instruction, Single-Data (MISD) systems:
this system uses a multi-processor machine to execute several instructions but
accesses the same data stream. Even though, it can perform many operations
on the same data set, it remains restrictive and tricky to operate hence, it isn’t
common to find machines built using this model.

4. Multiple-Instruction, Multiple-Data (MIMD) systems:
this system uses a multi-processor machine to execute several instructions
on multiple data sets. Each processor executes a different instruction to a
different data memory and stores the results into the corresponding storage.
The MIMD model is capable for any type of applications and is mostly used
in multi-processors systems and clusters.

5.2.2 Memory Classification
As for memory access and classification, two major types exist:
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1. Shared memory system:
In this system, the memory data is stored in one single storage (global memory)
to which all the processors are connected and can access all the data. Hence,
the communication between the different processors takes place through the
shared memory. Indeed, a modification of the data by one processor is visi-
ble and seen to all others. Parallel computing using this model is generally
associated with threads (OpenMP).

2. Distributed memory system:
This type of system refers to a multiprocessor computer model in which each
processor has its own private memory. This pairing (processor-memory) is
called a node. The interconnection between all this private memory processors
is accomplished via a network. In term of parallel computing, a distributed
memory machine is associated with a process using a message passing interface
(MPI) to communicate between nodes.

Even-though the shared memory model seem easier to program since a minimum
communication between the processors needs to be done, this system is less tolerant
to failure, where one failure can affect the entire system contrary to distributed
memory systems. However, the choice between these two systems is also dependent
on the equipment used.

In our work, distributed memory MIMD system with Message Passing Interface
(MPI) is used for parallel computing and implementation.

5.2.3 Load Balancing
In scientific computing, load balancing is the process of distributing the workload as
equally as possible to all the resources, i.e. the processors in a parallel environment.
There exists two type load balancing algorithms: static and dynamic ones.

Static load balancing algorithms have a prior knowledge about the existing
servers of the distributed network, and divide the incoming load in the beginning
evenly on all participating processors. During the simulation, the allocated load
cannot be transferred to other processors. This can affect the scalability since the
current state isn’t taken into account. However, with dynamic load balancing algo-
rithms the load is identified and evaluated during run-time, and distributed to the
processors involved accordingly.

When dealing with finite element problems that require mesh generation and
refinement during the computation, as seen in Chapter 3, there is a local change
in the number of vertices, and elements involved in the mesh, so load imbalance is
bound to happen. A dynamic reallocation of the vertices can overcome this issue
by transferring some of the workload from a processor to another. An overview and
more details about dynamic load balancing can be found in [2, 3].
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Memory

P

Interconnect

P P P

(a) Shared Memory Access

M MMMP PPP

Interconnect - Message Passing Interface

(b) Distributed Memory Access

Figure 5.2: The memory classification of parallel computers (M stands for Memory and
P for processor)

5.3 Parallel Implementation of the Anisotropic Fitted Adap-
tation

In this section, the parallel implementation of the proposed anisotropic fitted adap-
tation will be explained in details.

5.3.1 Parallel Mesh Adaptation
Our library Cimlib-CFD is based on Message Passing Interface (MPI) for efficient
and parallel implementation and communication between processors (procs). Details
of the parallel mesh adaptation algorithm used in the library can be found in [4–6].

At the beginning of the simulation, the initial mesh M = (N , T ), with N and
T the set of vertices and simplices forming the mesh, respectively, is partitioned
over the allocated resources p into multiple subdomains creating sub-meshes Mi =
(Ni, Ti) such as:

M =
card(p)⋃

i=0
Mi (5.1)

An initial load balancing is done based on the mesh topology and the geometry
of the domain. Each sub-mesh is associated with a particular processor pi. Note
that a simplex can only belong to one sub-domain: it can be owned by only one
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processor. However, a vertex or a set of vertices can be shared between processors:
for instance, a shared vertex vi between two processors pi and pj can be owned by
pi, and also be a ghost vertex of pj. The shared vertices form an interface between
the different processors referred to as inter-process interface:

Γij =
{
Mi ∩Mj|pi ̸= pj

}
(5.2)

Figure 5.3 illustrates the partitioning and distribution on each processor, showing
the local and ghost vertices. Once the partition is created, each pi reads the data
related to its associated sub-mesh, and has a local numbering of the vertices as well
as simplices.

Pi Pj

e1

e3

e2

e1

e2

n1

n2

n3

n4

n5
n1

n2

n3

n4

Ghost
Vertex

Local Ver-
tex

(a) Local numbering per processor

eI

eII

eIII

eIV
eV

nI

nII

nIII

nIV

nV

nV I

(b) Global numbering

Figure 5.3: Illustration of mesh partitioning

Following the initial partitioning, on each Mi, the different operations such as
the resolution of the Navier-Stokes or CDR equations (see Chapter 2) are done. In
case of anisotropic mesh adaptation or refinement, the local error is computed using
the method described in Chapter 3.

The mesh is then adapted with respect to the solution field. For each sub-domain,
a local error estimate is computed and the individual sub-meshes are adapted or re-
fined to the error estimator using a sequential mesh adaptor. In order to keep the
global mesh correct, the interfaces between the sub-meshes should also be adapted.
To do so, the interfaces between processors are first blocked and kept unchanged
during local remeshing inside each sub-domain, hence avoiding communication be-
tween the adjacent processors. To obtain a final adapted mesh, a repartitioning step
is performed to move the interface inside a sub-domain to enable remeshing in the
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next phase. A few iterations of remeshing and repartitioning are necessary in order
to remesh the entire domain and build the optimal mesh. Note that the time spent
doing so per iteration decreases drastically as there are less and less elements to
move and remesh [6].

5.3.2 Parallel implementation: Anisotropic-Fitted Mesh
5.3.2.1 Flagging

After anisotropic mesh adaptation, the cut elements by the interface of the immersed
geometry need to be detected. Since each simplex can only be owned by one pro-
cessor, algorithm 3 can be used on each partition (sub-domain): with a loop over
the local elements of each sub-domain, the local flagged elements Kfi

are detected
and then isolated. The collection of all flagged simplices form a new sub-mesh or
hall H:

H =
card(p)⋃

i=0
Kfi

(5.3)

A new global numbering or data structure applied on H is then needed to estab-
lish the communication between the processors. Figure 5.4 illustrates on a immersed
2D circle the reduction of the whole mesh to only the hall H and a segment of the
new global numbering of the elements.

Figure 5.4: Illustration on an immersed circle of the creation of a hall H and a new
global numbering of the vertices and simplices forming H, with each color
representing a different partition associated with a processor pi
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For the rest of this section, all the work and algorithm described will be applied
on this new hall H, unless otherwise specified.

5.3.2.2 R-adaptation

In this step, the properties of the level-set as a signed distance function are in-
serted to determine the vertex of each element having the minimum distance to the
interface.

On each partition, a loop on the vertices of each element is done to mark the
vertex having the minimum distance. However, special care is needed to deal with
the shared vertices. To do so, a point-to-point communication is done as follows:

1. For each partition of H, a new local numbering for the vertices is put in place.

2. Then, the shared vertices and their respective owner are determined.

3. For each ghost vertex, its local position on the local processor is send to
its owner and its ”global” index as seen by the owner is send back to the
local processor: this is done by using twice a point-to-point communication,
MPI Sendrecv.

With these three steps, a global numbering of the vertices forming H is ac-
complished using an all-to-all communication MPI Allgatherv. Hence, a mapping
between local partition numbering and global numbering on H is created:

vp
i 7→ vH

i (5.4)

This global numbering allows a last point-to-point communication between the
adjacent processors to communicate all the marked vertices. Finally, a sequential
bubble sort makes sure that no element has all its vertices marked.

Then following the same procedure explained in section 4.4.1 and algorithm 4, the
coordinates of each marked vertex are replaced by the coordinates of its associated
global virtual vertex vf : this is achieved with a series of mappings and all-to-all
communication:

1. First, for each marked vertex vp
mi

, the set of virtual vertices vfi
and their

respective distances dvmi
are determined on each partition:

vp
mi
7→ ⟨dvmi

, vfi
⟩ (5.5)

2. Then, using an all-to-all communication MPI Allgatherv all the distances
dvm are communicated to all processors.
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3. Following this communication, a global sorting of each set of all the virtual
vertices, for each global marked vertex vH

mi
, on all processors is applied to end

up with the following mapping:

vH
mi
7→ ⟨dglbvmi

, pvf
⟩ (5.6)

with pvf
the processor that owns the final virtual vertex vf having the global

minimum distance dglbvmi
associated with the marked vertex vmi

.

4. Finally, the coordinates xmi
of vmi

are locally updated as follows:

xmi
= xvf

(5.7)

with xvf
the coordinates of the final virtual vertex associated to vf .

5.3.2.3 Edge Swapping

As seen in section 4.4.1, R-adaptation isn’t always enough, a local topology op-
timization: edge swapping is needed. However, with parallel programming, two
configurations of algorithm 5 can be found affecting the sparsity pattern and alloca-
tion. In this section, a brief description of the sparsity pattern is presented followed
by an explanation of the different configurations.

▷ Sparsity Pattern
The study of a mathematical properties of a partial differential equations is usually

done on a general weak formulation, verifying the Lax-Milgram Theorem [7]:
{

Find u ∈ V ⊂ H, such that:
a(u, v) = L(v), ∀v ∈ V

(5.8)

with a(., .) a coercive continuous bilinear form on V ×V and L(.) a continuous linear
form on V .

The approximate or discrete solution uh to a problem can then be constructed
on a finite dimensional space vh ⊂ V , to have the approximate weak problem read:

{
Find u ∈ Vh ⊂ H, such that:
a(uh, vh) = L(vh), ∀vh ∈ Vh

(5.9)

with a(., .) a coercive continuous bilinear form on Vh×Vh and L(.) a continuous linear
form on Vh, while Vh is a finite dimensional approximation space characterized by a
discretization parameter h.
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To define the discrete space Vh, a basis (φ1, ..., φNVh
) of Vh needs to be constructed

with NVh
= dim(Vh), on which the discrete solution is written as:

uh =
NVh∑
j=1

ujφj (5.10)

with {uj} a family of NVh
real numbers called global degrees of freedom and {φj} a

family of NVh
elements of Vh called global shape functions.

Using the Galerkin method [8], the approximate problem can then be written as
a linear system of algebraic equation:

Au = b (5.11)

In parallel computation, the global matrix A is computed by assembling the local
matrices Ai assembled on each partition pi . Figure 5.5 shows the matrix assembly
of the two sub-domains represented in Figure 5.3. The result of the global assembly
of the entire domain leads to a sparse matrix.

1 2
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3

3

4 5

4

5

(a) Local matrix associated
with the blue sub-domain

1 2

1

2

3

3

4

4

(b) Local matrix asso-
ciated with the red
sub-domain

I II III IV V V I

I

II

III

IV

V

V I

Off - diagonal Diagonal

(c) Global matrix

Figure 5.5: Matrix assembly of two sub-domains

To store and manipulate such matrices, a special data structure taking advantage
of the sparse structure is used: in our library, the non-zero elements are stored by
rows, along with an array of corresponding column numbers and an array of pointers
to the beginning of each row.

Note that, it’s important to preallocate the memory needed for a sparse matrix
since the dynamic process of allocating new memory and copying from an old to
new storage is intrinsically expensive.
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In this work, the Portable Extensible Toolkit for Scientific computation (PETSc)
is used to to store and solve large systems in parallel. It is an open-source suite of
data structures and routines to solve scientific applications modeled by PDEs [9].

▷ Edge Swapping Configuration
When dealing with edge swapping, two configurations can be found:

(a) Basic Configuration
With the basic configuration, represented in figure 5.6a, the shared edge to
be swapped falls exactly on the inter-process interface, and when flipped the
inter-process interface changes along with it. This means that the local number
of vertices owned by each processor remains the same. However, this type of
configuration entitles that on each partition pi the connectivity, ownership
and assembly of an existent element have to be completely deleted and a new
element has to be constructed and added the list of elements. For instance, in
figure 5.6a, the first element K0, initially belonging to pi, connected to the set
of vertices: vj owned by pi and vi, vk shared, give the local mapping:{

K → V :
K0 7→ vi, vj, vk

(5.12)

After swapping, a redistribution hence a renumbering of the vertices needs to
be done to eventually reconstruct and add the new element K ′

0 mapping to vi

owned by pi and vj, vr shared:{
K → V :
K ′

0 7→ vi, vj, vr
(5.13)

Similarly, the second element K1 owned by pj associated to vr (owned) , vi and
vk (shared) becomes K ′

1 mapping to vk (owned) , vj and vr (shared). So even-
tually, for each processor, a new numbering taking into account the removal
of a vertex, an element and the addition of a new vertex and element, and a
new communication of the shared vertices need to be established.

(b) Z-Configuration
The Z-Configuration, as it names states, increases the inter-process interface
by only adding one extra shared vertices to the initial shared set on each
partition, resulting in a larger inter-process interface having a Z shape as can
be seen in Figure 5.6b.
Indeed, in figure 5.6b, vj (or vr) initially only owned by pi (by pj) and not
seen by pj (by pi), is also communicated to pj (pi) and becomes shared by the
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two processors. A simple point-to-point communication is done here to add
the newly shared vertex to the adjacent partition without losing the initial
ownership of the respective vertices.

In this work, the Z-configuration (Figure 5.6b) has been chosen since, for each
pair of elements subject to swapping since only one vertex needs to be added to each
partition.

To overcome the change in the sparsity pattern, an extra padding, dependent
on the space dimension, is allocated on each off-diagonal entries to allow for more
memory space when constructing the sparse matrix. Therefore, any new addition
of a shared vertex is already accounted for and we avoid the destruction and recon-
struction of the entire matrix each time a swap occurs.

vi vi vi

vj vj vj

vk vk vk

vr vr vr

Pi Pj

Owned by P i Owned by Pi Shared P rocessors Interface

Pi

Pj

(a) Basic Configuration

vi vi vi

vj vj vj

vk vk vk

vr vr vr

Pi Pj

Owned by P i Owned by Pi Shared P rocessors Interface

Pi

Pj

(b) Z-Configuration

Figure 5.6: Illustration of configurations of 2D parallel edge swapping

5.3.3 2D Illustration of the Parallel Implementation
We consider the well-known Rudman-Zalesak slotted disk immersed in a 0.5 ×
0.5 square domain. Starting with a very coarse two-element mesh, the parallel
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anisotropic fitted algorithm is applied on the geometry. As can be seen in Figure
5.7, the mesh evolves as the geometry is detected and the anisotropic fitted mesh is
created.

(a) initial mesh (b) 1st increment (c) 3rd increment

(d) 5th increment (e) 10th increment (f) final mesh

Figure 5.7: Anisotropic Fitted mesh evolution of the Rudman-Zalesak slotted disk

5.4 3D Modeling

The 3D parallel modeling of the anisotropic fitted interface of an immersed geom-
etry follow almost the same algorithm presented in section 5.3 for a parallel two-
dimensional computation, except for the last step: edge swapping. Just as in 2D,
the mesh is subject to an anisotropic adaptation, capturing the complex immersed
geometry. Then, the cut cells, i.e, tetrahedral elements, are flagged and isolated to
create the sub-mesh H. The properties of the level-set as a signed distance function
are inserted on the flagged elements in order to determine and mark the vertices
that are goning to be subject to R-adaptation. Once the R-adaptation is done, edge
swapping is replaced by a three-dimensional permutation as will be explained in this
section.
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In 3D, the immersed geometry’s interface can cut the tetrahedral elements in
four different ways, creating an immersed ”virtual” plane:

1. three intersection points, with two of them coincide with real vertices of the
cell and one virtual vertex forming the intersection between an edge of the cell
and the virtual plane (Figure 5.8a).

2. three intersection points, with only one of them coinciding with the real ver-
tices of the cell, and two vertices forming the intersection between two edge of
the cell and the virtual plane (Figure 5.8b).

3. three intersection points, with none of them coinciding with any real vertex,
all the points intersect an edge of the cell (Figure 5.8c).

4. four intersection points that are all virtual (Figure 5.8d).

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Figure 5.8: Illustration of the possible cases for the 3D cut cells

In order to ensure the creation of a fitted mesh, accurately defining and capturing
the geometry, each one of these cases need to treated individually.

Case 1:
The treatment of this case is very straightforward. The geometry’s interface cuts

the cell at one virtual vertex e0 and two real vertices. This configuration gives
readily two new tetrahedra. Figure 5.9 shows how the initial cell {v0, v1, v2, v3} is
decomposed into two new cells adjacent and connected by the new facet {e0, v2, v3}.
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Figure 5.9: 3D cutting of case 1

Case 2:
In this case, the interface intersects the cell at two virtual points e0 and e1 and

one real vertex. This configuration leads to decomposing the initial cell into a total
of 4 tetrahedra.

The construction of the first one is pretty intrinsic: it’s made of the common
node of the two intersected edges of the cut cell and the cut plane. In Figure 5.10,
the intersected edges are {v0, v1} and {v0, v3}, so the common node is v0 and the
first tetrahedron K ′

1 is made of the vertices v0, e0, v2, and e1.
After the construction of the first tetrahedra, the ”base” of the initial cell is left

with vertices v1, e0, e1, v3, and v2. In order to construct new tetrahedra, a vertex
m needs to be introduced on the edge opposite to the edge formed by the virtual
vertices. In Figure 5.10, the new vertex m is added on the edge {v1, v3} such as the
coordinates of m, xm, are obtained from the coordinates x of vertices v1 and v3 as
such:

xm = xv1 + xv3

2 (5.14)

Once introduced, the vertex m is linked to the vertices of the cut plane and the 3
new tetrahedra are constructed:

• K ′
2 7→ {v1, v2, m, e0}

• K ′
3 7→ {v2, v3, m, e1}

• K ′
4 7→ {v2, e0, e1, m}.
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Figure 5.10: 3D cutting of case 2

Case 3:
In this case the cut plane or interface intersects the mesh cell in 3 virtual vertices:

e0, e1 and e2, leading to the decomposition of the initial cell into 5 tetrahedra.
Similarly to case 2, the construction of the first cell is straightforward made of

the common node and the cut plane. For the rest of the tetrahedra, a vertex m is
also introduced just like in the previous case; however in this case, it results in the
creation of 4 new cells. Using the vertex opposite to the cut edge by m (vertex v2 in
Figure 5.11) as a reference node, the truncated base (v1, v2, v3, e0, e1) can be treated
as in case 2, and then the last tetrahedron with the third intersection point can be
added (e0, e2, e1, v2).

Figure 5.11 shows the how the cut plane decomposes the initial cell into 5 new
tetrahedra:

• K ′
1 7→ {e0, e2, e1, v0}

• K ′
2 7→ {v1, v2, e0, m}

• K ′
3 7→ {v2, v3, e1, m}

• K ′
4 7→ {v2, e1, e0, m}

• K ′
5 7→ {e0, e2, e1, v2}.

e0

v1

v2

v3

e1

v0

e2

e0

v1

v2

v3

e1

e2

e0 e1

v0

e2

+

m

Figure 5.11: 3D cutting of case 3
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Case 4:
In this case, the cut plane intersects the mesh cell into four virtual vertices. In

order to create a fitted mesh with this configuration, two new vertices m1 and m2 are
introduced as the mid-point of two adjacent edges of the initial cell’s base, splitting
the initial mesh cell into two. Each new created tetrahedra is treated as in case 2,
resulting in total to the creation of 2 ∗ 4 tetrahedra.

v0

v2

v3

e1

v1
e2

e0

e3

v0

v2

v3

e1

v1 e2

e0

e3m1

m2

Figure 5.12: 3D cutting of case 4

Note that due to the R-adaptation, the most common cases to happen are cases
1 and 2 with at least one vertex of the cut plane coinciding with a real vertex of the
cut cell.

5.4.1 3D Cutting Parallel Modeling Challenge
When partitioning the initial mesh, the mesh information and parameters are di-
vided such that each partition has an equal load resulting in a balanced system.
Each partition has a fixed number of elements and a known number of owned and
shared vertices. Unlike in the 2D parallel implementation of edge swapping using
Z-configuration, 3D cutting results in the construction of the new cells and vertices
to the initial mesh, hence altering the initial number of elements. Since a cell can-
not be shared by two or more processors, the new cells constructed will be added
to the list of elements on the owner of the initial cell. This addition can affect the
load balance between the processors involved. To overcome this, an improvement
of the load balance through a dynamic re-distribution of the added elements must
be done while minimizing the communication cost and trying not to increase the
inter-process interface. Note that, the dynamic load balancing for the addition of
new cells and the dynamic creation of a new mesh coupled with this parallel algo-
rithm aren’t yet supported by the Cimlib-CFD library, but developments are being
made so they are integrated to the library making the parallelization of the entire
3D algorithm possible.
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5.5 Conclusion

After a recall of the definitions and taxonomy, the parallel implementation of the
proposed algorithm has been presented and described in details, in this chapter.
A new data structure involving the creation of a sub-mesh and the renumbering
locally (on each partition) and globally of the entities (elements and vertices) have
been done. This numbering insures a more efficient communication between the
processors especially during R-adaptation and Edge-Swapping involving vertices on
the inter-process interface. The 3D extension was also described in details replacing
the 2D edge-swapping with 3D cutting. Four different cases of cut cells have been
studied and implemented, in order to ensure the creation of an anisotropic fitted
mesh. Depending on the number of intersection points, the initial cut cell is divided
into two or more new tetrahedra. One challenge however remains, the dynamic load
balancing allowing us an equal re- distribution of the load on each process after 3D
cutting.
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6 Quenching Process

Résumé en Français
Dans ce chapitre, tous les outils et algorithmes numériques développés et
décrits précédemment sont utilisés pour simuler le refroidissement d’un solide
immergé. Nous montrons comment, en quelques étapes simples : définir
les propriétés du ”quenchant” et du solide immergé, puis fixer les condi-
tions limites et initiales, la mise en place d’une simulation de refroidissement
peut être réalisée, puis la solution calculée. Une comparaison détaillée de
différents types de maillage montre l’importance d’un maillage bien défini sur
la résolution de la solution.
Dans la première section, un couplage 2D de transfert de chaleur conjugué est
décrit et expliqué. Dans cet exemple, les équations de Navier-Stokes stabilisées
sont couplées à l’équation de convection-diffusion-réaction (CDR), expliquée
au chapitre 2, et sont appliquées sur un maillage ajusté anisotrope obtenu
à l’aide de l’algorithme présenté au chapitre 3. Ce couplage aboutit à la
simulation du processus de refroidissement du cylindre rectangulaire immergé.
La deuxième section se concentre sur la présentation du travail de la chaire
INFINITY, qui consiste à consolider un cadre multi-échelle unifié pour la
représentation et la simulation d’une application industrielle : le processus
de trempe. Dans ce qui suit, l’ensemble du dispositif de simulation de la
trempe, développé par les contributions des différents candidats et chercheurs
de la chaire et de l’équipe CFL, sera présenté et expliqué. Ensuite, des cas
industriels fournis par nos partenaires AUBERT & DUVAL et SAFRAN seront
présentés avec toutes les spécifications numériques et de simulation.
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6.1 Introduction

In this chapter, all the numerical tools and algorithms developed and described
previously are used to simulate the cooling of an immersed solid. We show how
with a few simple steps: defining the properties of the quenchant and the immersed
solid and then setting the boundary and initial conditions, the setup of a cooling
simulation can be achieved and then the solution computed. A detailed comparison
of different mesh types shows the importance of a well-defined mesh on the solution’s
resolution.

In the first section, a 2D conjugate heat transfer coupling is described and ex-
plained. In this example, the stabilized Navier-Stokes equations are coupled with
the convection-diffusion-reaction equation (CDR), explained in chapter 2, and are
applied on anisotropic fitted mesh obtained using the algorithm presented in chapter
3. This coupling results in the simulation of the cooling process of the immersed
rectangular cylinder.

The second section focuses on the presentation of the work of the INFINITY
chair, which is to consolidate a unified multi-scale framework for the representation
and the simulation of the industrial application: the quenching process. In what
follows, the entire quenching simulation set up, developed by the contributions of the
different candidates and researchers of the chair and the CFL team, will be presented
and explained. Then, industrial test cases provided by our partners AUBERT &
DUVAL, and SAFRAN will be presented with all the simulation and numerical
specifications.

6.2 Conjugate Heat Transfer Coupling

We now consider a heat transfer application where a heated solid is immersed in a
cooling cavity (Figure 6.1). A Cartesian coordinate system is used with the origin
at the center of mass of the solid that has a rectangular shape of height h and an
aspect ratio of 2 : 1, initially at temperature Ts. The solid is fixed at the center
of a cavity of height H and aspect ratio 4:1, whose walls are isothermal and have
a fixed temperature Tw. Cooled air at Tc is pumped into the enclosure from two
inlets located at the top of the cavity, at a velocity Vi. Two outlets for the hot air
are located at the sidewalls of the cavity. Table 6.1 gives the numerical parameters
used all expressed in SI units and the temperature in Celsius. Using the immersed-
fitted algorithm coupled with flow and heat transfer solvers, the level-set function,
the velocity and the temperature are used as multi-components criteria in order to
adapt the mesh on the interface of the immersed geometry as well as the solution
of the equations solved. This can be illustrated in Figure 6.5a showing how the
mesh conforms to the interface. The corresponding adapted mesh colored by the
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temperature distribution in Figure 6.5b shows how the numerical framework can
capture accurately all boundary layers and shear regions via stretched elements.
Figures 6.2 to 6.5 are a clear example of how the immersed-fitted algorithm evolves
dynamically with the problem at hand: starting with a coarse mesh, the mesh
progresses towards an anisotropic refined one without any intervention from the
user. The problem is then solved simultaneously in the domain capturing the vortices
formed and in the solid tracking its cooling evolution.

Figure 6.1: Schematic of the 2D forced convection set-up.

Table 6.1: Numerical parameters used in the 2D forced convection problem, with ρ the fluid
density, µ the dynamic viscosity, λ the thermal conductivity, and cp specific
heat.

H h ei eo Vi Tw Tc Ts µ ρ λ cp

1 0.2 0.2 0.2 1 10 10 150 0.0011 0.5 1000 Fluid
1000 100 15 300 Solid

(a) t = 1s (b) t = 150s

Figure 6.2: Velocity profiles inside the cavity.
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(a) t = 0s (b) t = 35s

(c) t = 70s (d) t = 150s

Figure 6.3: Temperature distribution inside the cavity.

(a) t = 0s (b) t = 150s

Figure 6.4: Coarse initial mesh (left) and the obtained anisotropic adapted one on both
the velocity, temperature and the solid level-set (right) at t = 150s.

(a) (b)

Figure 6.5: Zoom on the sharp immersed-fitted interface of the 2D solid.
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6.3 Industrial Applications: Quenching of a Solid

The main objective of the INFINITY chair, hence of this work, is to be able to
achieve a full model to simulate the fluid and solid part as well as their interaction
during the quenching process. Previously developed solvers by the CFL team that
simulate multi-phase flows and heat transfer are used. Note that in order to achieve
a high accuracy and resolution of the solution, special attention to the mesh needs
to be given: for instance, having the same element size in all the domain might cause
the increase of the computational cost since the elements should be small enough
to capture all the discontinuities. Therefore, the size of the elements near the fluid-
solid interface should be smaller than the size in areas away from the interface.
Furthermore, having anisotropic fitted elements in high gradient regions would not
only allow us to achieve better precision but also to capture the jumps in different
media without the need to increase the number of elements used.

In this section, industrial test cases will be presented, showing the importance
of an appropriate mesh, and the simulation results compared to experimental data
provided by our partners. For each test case, the quenching tank and the solid
dimension with along with .STL files, if needed, were given. The initial conditions
of each test case and the position of the solid in the tank were also provided. The
thermal and physical properties of both the coolant and the solid were also given.

6.3.1 The Simulation Setup
As presented in Chapter 1, the cooling rate of a solid (often a metal alloy) is directly
related to its microstructure, metallurgic, and mechanical properties. In this work,
we consider pool quenching, where the heated solid is immersed in a liquid coolant.
The cooling rate is greatly influenced by the behavior of the coolant that extracts the
heat from the immersed solid. We are interested in liquid coolants that vaporize in
contact with the heated components. These boiling phenomena have a direct effect
on heat transfer. The cooling rate of a solid varies during the quenching process
(Figure 6.6):

• During the calefaction phase, a vapor film surrounds the immersed solid. This
insulation causes the cooling rate to be relatively moderate.

• A sudden increase in the rate is then observed due to nucleate boiling. During
this phase, the coolant may come in direct contact with the solid surface but
mainly boiling takes place as vapor bubbles are formed and then released
on most of the surface of the immersed part. This phenomenon reduces the
temperature of the solid drastically and is the most efficient cooling mode with
heat transfer being very important.
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• Finally, with boiling ceasing and the natural convection being dominant, the
immersed part cools down slowly.
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Figure 6.6: Typical cooling rate and temperature evolution during a quenching process.

Simulating the quenching process allows the manufacturers to control the phase
changes taking place in the alloy, thus achieving good homogeneity and obtaining
high-quality products for new designs. The direct simulation of the whole quenching
process can be accomplished by using the Immersed Volume Method, described in
4.2.3.2. The IVM has the ability to account for all the features of the process in a
unified way with an anisotropic mesh adaptation that provides a better description
of the interfaces. However, the simulation of a complete quench is challenging and
can be quite complex and costly. To overcome the computational costs, a strategy
was adopted to model the full quenching process in the INFINITY chair: the desyn-
chronization of the quenching process. This strategy consists in dividing the direct
simulation into two parts: the boiling process i.e. the modeling and study of the
thermo-hydrodynamic properties and the solid cooling (Figure 6.7).

• The thermo-hydrodynamic simulation:
The thermo-hydrodynamic simulation represents the simulation of the boiling
process at a fixed temperature over a few seconds. This process is modeled
using a phase change solver where the Navier-Stokes equations and the thermal
CDR equations are solved coupled with the advection of the level-set. The
Navier-Stokes equations are modified to take into account the surface tension
terms and mass transfer considered on the extended liquid-vapor interface via
the Continuum Surface Force approach [1, 2]. Once a steady regime is reached,
time averaged local heat fluxes on the solid surface, and film thicknesses are
recovered in order to compute the heat transfer coefficient (HTC). Note that
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hHT C is a coefficient averaged over a given surface, and integrates the effect of
a fluid temperature:

qw = hHT C∆Tw (6.1)
where qw represent the heat flux, ∆Tw = Tw − Tsat the temperature variation,
Tw the surface temperature, and Tsat the saturation temperature of the coolant
used. Details on its modeling can be found in [3].

• Thermal Simulation:
This second step consists of the simulation of the solid part alone. The HTC,
computed from the recovered heat fluxes from the thermo-hydrodynamic sim-
ulation, is set as boundary conditions and a thermal model is solved.

The two steps are computed on two separate domains that communicate together.
The main advantage of this desynchronization is that it offers the precision of a
direct numerical simulation at an affordable computational cost.

In what follows, the quenching framework has been applied to two test cases,
provided by the industrial partners AUBERT & DUVAL, and SAFRAN.
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Figure 6.7: Solving procedure of the quenching process.
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6.3.2 Test case 1: Quenching of an immersed cylinder
The first test case considers an immersed cylinder having a diameter of 150mm and
a height of 150mm immersed in a (1× 1× 1.2)m quenching tank (Figure 6.8). The
physical properties of the coolant (see Table 6.2) and the solid part were provided
by AUBERT & DUVAL. The cylinder is positioned horizontally at the center of the
tank with its axis parallel to the tank’s walls. The total cooling process is around
24 minutes. The initial conditions are :

• The initial solid temperature is: Ts = 980◦C
• The initial water temperature is: Tw = 30◦C

Table 6.2: Numerical parameters considered for water and vapor, with ρ the fluid density,
µ the dynamic viscosity, k the thermal conductivity, and cp specific heat.

ρ(kg/m3) µ(Pa.s) cp(J/kg/◦C) k(W/m/K)
Water 1000 5 · 10−3 4216 6.79 · 10−1

Vapor 6 · 10−1 1 · 10−3 2030 2.7 · 10−1

Figure 6.8: Test Case 1: Quenching tank and immersed cylinder at Ts and Tw.

Before starting the simulation, a mesh adapted to the problem has to be gener-
ated. Different types of meshes can be used:

• Isotropic Fitted mesh:
A ”filled” fitted (BF) mesh is tested. As can be seen in Figures 6.9 and 6.10
isotropic mesh elements accurately define the geometry at the interface. The
mesh is refined near the interface where smaller isotropic elements can be
found to deal with high gradients and temperature jumps, whereas in regions
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away from the interface the size of the elements increase linearly. In order to
accurately capture the discontinuities and the temperature variations at the
interface, a high number of elements is required to ensure that the interface
is well-defined, meaning a significant increase in the computational cost. The
mesh shown in Figures 6.9 and 6.10 is made of more than 600, 000 elements,
and as can be seen, is not sufficiently refined at the interface.

Figure 6.9: Test Case 1: Filled
Body-Fitted mesh.

(a)

(b)

Figure 6.10: Test Case 1: Zoom on
a cut of the filled BF
mesh

• Anisotropic Boundary layers mesh:
An anisotropic boundary layer mesh can also be considered. This mesh allows
us to vary the element size in different regions of the mesh: the mesh size in-
creases as we move away from the interface (Figure 6.11). First, an anisotropic
mesh adaptation is applied near the interface generating very stretched ele-
ments and allowing a better resolution of the high gradients present in this
region. Then a box surrounding the solid is defined with a specific element size.
Within this box, the evolution of the bubbles formed during the cooling pro-
cess can be tracked. However, with these predefined meshes, the anisotropic
adaptation cannot be achieved dynamically as the thermo-hydrodynamic sim-
ulation is solved, and the advantages of fitted meshes, precisely capturing the
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interface and setting the boundary conditions, aren’t achieved.

Figure 6.11: Test Case 1: Cut of anisotropic boundary layer mesh.

• Cavity Anisotropic Body-Fitted mesh:
A cavity anisotropic body-fitted (BF) mesh is tested. Using this type of mesh,
the solid is extracted from the fluid domain forming a cavity. The properties
of the solid are taken into account via the boundary conditions applied to the
cavity and then, using the mixing laws at the interface, the effect of the solid
on the fluid is considered.
Figure 6.12 shows an anisotropic cavity BF mesh where the interface is pre-
cisely defined by the nodes of the mesh, since the solid has been extracted
from the fluid domain. Anisotropic mesh adaptation has been applied at the
interface as per section 3.3.1. The stretched elements, which better define the
geometry, form a thickness around the interface allowing a better resolution
of the gradients and discontinuities near the solid. Because of the anisotropic
properties, fewer elements near the interface are needed: for this simulation,
a maximum of 400,000 elements is used. Using the multi-criteria adaptation
(defined in section 3.3.5) the mesh is adapted following different variables and
the creation of the vapor film as well as the bubbles evolution can be tracked.

• Anisotropic Fitted mesh:
An anisotropic fitted mesh allows us to combine all the advantages of above
mentioned meshes:

▷ A ”filled” mesh: the resolution of the problem and equations is done
simultaneously on the fluid and the solid. The cooling rate of the core of
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Figure 6.12: Test Case 1: Cavity-
Anisotropic BF mesh.

(a)

(b)

Figure 6.13: Test Case 1: Zoom
on a cut of the cavity-
anisotropic BF mesh.

the solid can also be tracked during the thermo-hydrodynamic simulation,
unlike when using a ”cavity” BF mesh.

▷ A Fitted mesh: the boundary of the immersed geometry, i.e. the fluid-
solid interface, is well captured with the vertices of the mesh falling di-
rectly on the interface. This allows to accurately impose the boundary
conditions and track the evolution of the solution precisely on the inter-
face.

▷ An Anisotropic mesh: the geometry of the immersed part is well-
defined independently of its complexity. The stretched elements follow all
its curvature and angles defining a narrow band region near the interface.
This narrow band region allows us to deal with high gradients, jumps and
discontinuities at the interface.

▷ A Boundary layer mesh: having different element sizes (Figure 6.15)
while moving away from the interface allow to follow the evolution of
the vapor bubbles forming and capture their effect on the cooling pro-
cess without increasing the number of elements of the domain and hence
increasing the computational cost.
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Figure 6.14: Test Case 1 :Anisotropic
fitted mesh for the im-
mersed cylinder.

Figure 6.15: Test Case 1: Zoom on a
cut of the anisotropic fitted
mesh.

For the resolution of this test case, the anisotropic fitted mesh is used along with
the mixing laws at the interface.

The strategy presented in the previous section 6.3 is used: first the thermo-
hydrodynamic simulation is computed until a certain vaporization pattern is achieved
reaching a steady state. Recall, that in this first part, the updated pseudo-compressible
Navier-Stokes equations and the CDR equations are solved, representing the phase
change solver. The heat fluxes are then computed and transported to the thermal
simulation. Finally, the temperature evolution can be extracted and plotted.

The graphs obtained show how the adopted strategy, with the use of an anisotropic
fitted mesh gives in good accuracy and resolution since the results obtained are in
coherence with the experimental results. Eight sensors were placed at different po-
sitions at the boundary of the solid, and one at its center. Figure 6.16 compares
the obtained results to the experimental results provided by the industrial partner.
Figure 6.16a shows the temperature evolution obtained at the center of the solid
and Figures 6.16b and 6.16c show the temperature for two different thermo-couples
placed at the vicinity of the interface.
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(a)

(b)

(c)

Figure 6.16: Test Case 1: Temperature evolution for the thermo-couple in the center (a)
and two thermo-couples in the vicinity of the interface (b & c).
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6.3.3 Test case 2: Quenching of an immersed cylinder
This test case considers an immersed cylinder having a radius 0.15m and a height of
0.15m immersed in a (4.7× 3.1× 1.75)m tank filled with water. Figure 6.17 shows
the position of the cylinder in the tank. The main challenge here is the dimension
of the domain that is relatively big and therefore to be able to simulate the cooling
process without an increase in the computational cost. The total cooling process is
of 15 minutes. The initial conditions are :

• The initial solid temperature is: Ts = 985◦C
• The initial water temperature is: Tw = 25◦C

Figure 6.17: Test case 2: Quenching tank and immersed cylinder at Ts and Tw.

Similarly to the previous test case, several meshes have been tested. Figures
6.18 to 6.24 show the different meshes that can be used: filled BF mesh, anisotropic
boundary layer mesh, anisotropic BF mesh and anisotropic fitted mesh.

The phase change evolution liquid/vapor can be found in Figure 6.25. Because of
the high temperature gradient at the fluid-solid interface, vaporization and ebullition
occur directly at the interface. As explained in section 6.3.1, a vapor film surrounds
the solid part creating an isolating surface, heat transfer mainly occurs by conduction
(figure 6.25a). As vapor bubbles start to form, the cooling rate start to increase
reaching nucleate boiling (Figures 6.25b and 6.25c). The thermo-hydrodynamic
simulation is computed until steady state is achieved, this can be detected by a
repetitive vaporization pattern as seen in figure 6.25c.

The obtained results are compared with the experimental ones provided by
SAFRAN. Figure 6.26 shows the temperature evolution of the immersed cylinder
using thermo-couples positioned at the center and near the vicinity of the interface.
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Figure 6.18: Test Case 2: Filled Body-
Fitted mesh.

(a)

(b)

Figure 6.19: Test Case 2: Zoom on
a cut of the filled BF
mesh

Figure 6.20: Test case 2: Cut of anisotropic boundary layer mesh.

As can be seen, the obtained results show a good correlation with the experimental
ones.

Note that the mesh used to solve the presented test cases is predefined, adapted
before the simulation. For larger and more complex solid parts, the phase transfor-
mation occurring inside the solid due to its metallurgic and elasto-plastic properties
might cause the solid to deform. Therefore, a dynamic adaptation of the mesh near
the interface is needed to ensure that the mesh captures exactly the interface to

117



6 Quenching Process

Figure 6.21: Test Case 2: Anisotropic BF
mesh.

Figure 6.22: Test Case 2: Zoom on
a cut of the anisotropic
BF mesh.

Figure 6.23: Test Case 2: Anisotropic fitted
mesh for the immersed cylinder.

Figure 6.24: Test Case 2: Zoom on
a cut of the anisotropic
fitted mesh.

(a) (b) (c)

Figure 6.25: Test case 2: Bubble formation and evolution.

account for these displacements. This can be done using the anisotropic fitted mesh
algorithm presented in this thesis (Chapters 4 and 5), once the dynamic parallel
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(a)

(b)

(c)

Figure 6.26: Test Case 2: Temperature evolution for the thermo-couple in the center (a)
and two thermo-couples in the vicinity of the interface (b & c).

load balancing is finalized.

6.4 Conclusion

In this chapter, the quenching model and simulation setup have been described. It
is based on an extrapolation of heat fluxes from a few seconds of simulations of
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the fluid domain, and then integrates this information inside a thermal solver along
with correlations to account for the entire boiling curve. The 3D test cases presented
compare different types of meshes focusing on the advantages of an anisotropic fitted
mesh: accurate detection of the geometry and the fluid-solid interface, the ability
to directly impose the boundary and initial conditions, and the use of a monolithic
approach to track the cooling rate of the immersed solid. Finally, the numerical
results obtained are coherent with the experimental results provided by our partners.
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Chapter 7

Conclusion and Perspectives

Résumé en Français
Ce chapitre résume l’objectif de la thèse en récapitulant le contributions de
chaque chapitre. L’objectif de ce travail est le développement d’un maillage
anisotropique adaptatif simple, rapide et robuste pour les applications CFD,
et en particulier pour le processus de trempe, notre principale application dans
la chaire INFINITY.
Le chapitre un introduit le phénomène de la trempe et certains des défis posés
par la simulation du processus. Dans le chapitre deux, les outils numériques
adoptés pour la modélisation et la simulation des écoulements de fluides et des
transferts thermiques conjugués ainsi que les différentes méthodes de stabil-
isation, développés par le groupe CFL (Computing and Fluids) du CEMEF,
et utilisés dans la simulation de problèmes multiphases et multi-composants
ont été décrits. Le chapitre trois décrit, en premier lieu, les méthodes de
création de maillage puis présente en détails l’adaptation anisotrope utilisée
tout au long de ce travail. Dans le chapitre quatre, l’algorithme de création
d’un maillage adaptative anisotrope ajusté à l’interface est décrit. Le chapitre
cinq montre comment cet algorithme est appliqué en parallèle et étendu aux
applications 3D. Finalement, le dernier chapitre résume le framework de la
trempe industrielle numérique et est appliqué à des cas tests industriels, en se
focalisant sur l’importance de la résolution du maillage utilisé.
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7.1 Conclusion and Perspectives

This thesis was devoted for the capturing of fluid-solid interface and the creation
of an anisotropic fitted mesh for the treatment of multi-component systems. With
advances in technology and AI, single-component systems cease to exist, and simu-
lation of multi-component systems is increasingly required. The need to solve such
problems plays a huge impact in different fields like environment, health, biomedical,
security, industrial and many more. The focus of this work was the development
of a simple, fast and robust anisotropic adaptive body fitted meshes for CFD ap-
plications, and especially for the quenching process, our main application in the
INFINITY chair:

• Simple: in terms of implementation and use
• Fast: automatic with minimum interference for the entire simulation
• Robust: able to handle any geometry no matter how complex
• Anisotropic: needed for high gradients and complex physics
• Adaptive: evolves dynamically with the interface as well as the solution
• Body-fitted: sharp interface

In chapter 1, we have introduced the quenching process and some of the chal-
lenges arising from the simulation of the process. As part of the INFINITY chair
and in order to consolidate a unified multi-scale framework around understand-
ing and simulating the quenching process, we proposed the development of a novel
method that combines the immersed methods with fitting approaches to enhance
the quenching or any multi-component environment.

In chapter 2, the numerical tools adopted for the modeling and simulation of fluid
flows and conjugate heat transfers, developed by the CFL (Computing and Fluids)
group at CEMEF, and used in the simulation of multi-phase and multi-component
problems were described. Since during the resolution of the PDE’s many numerical
solutions might oscillate especially near sharp gradients, we resort to stabilization
methods, such as the Variational Multiscale method for the Navier-Stokes equations
and the SUPG technique for the convection-diffusion-reaction equations. The test
cases considered reflect their accuracy in simulating physical phenomena.

In order to solve these equations analytically, space discretization of the phys-
ical domain into a finite number of elements is needed. Chapter 3 starts with an
overview of different mesh generation techniques. Anisotropic mesh adaptation is
then presented in details: the optimized metric map is obtained via an edge-based
a posteriori error estimator and gradient recovery. The mesh adaptation presented
can be applied on multiple variables and therefore, results in a high resolution and
accuracy of the solution during the entire simulation. The anisotropic metric applied
on the level-set function creates stretched elements near the interface and captur-
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ing and separating the different components. However, the mesh generated is not
conformal to the immersed geometry.

In Chapter 4, an overview of the existing methods to treat immersed multi-
component applications have been described, presenting the different families and
methods. It can be seen that the adaptation of the immersed methods towards a
fitted mesh can be done numerically or geometrically. Our objective and main focus
is to extend the Immersed Volume method, based on the immersed anisotropic mesh
adaptation, towards a fitted mesh. To do so, a novel anisotropic fitted algorithm has
been developed. In this chapter its 2D implementation is described followed by some
numerical test cases for validation. In the vicinity of the interface the anisotropic
cut elements are isolated to create a sub-mesh. On this sub-mesh an R-adaptation
on the vertices closest to the interface on each element is then applied followed by
a topological optimization, edge-swapping of the remaining cut edges, resulting in a
conformal mesh at the interface. Finally, through some numerical illustrations, we
show that the objective of creating a simple, fast and robust anisotropic adaptive
body fitted mesh has been accomplished.

The algorithm is extended to 3D and parallel. Chapter 5 describes the parallel
algorithm with the implementation of a new data structure for the sub-mesh created
to ensure an efficient communication between the processors involved. For the three-
dimensional implementation, 2D edge-swapping is replaced by 3D cutting of the cut
elements: four different cases are described and generate new fitted elements at the
interface.

In Chapter 6, we have validated the entire work presented: the numerical frame-
work and the proposed anisotropic fitted algorithm. A new simulation setup desyn-
chronizing the direct quenching process into two main parts: thermo-hydrodynamic
and thermal simulation, is explained and then validated by applications for the
quenching process, provided by our industrial partners, have also been treated.

The quenching simulation may also be coupled with solid phase transformation
solver depicting the metallurgic transformation happening inside the solid during
cooling. These transformations can potentially generate elasto-plastic deformations
in the solid especially some displacements of the interface. In order to track during
the simulation the interface and solid deformation, a full dynamic robust and adap-
tive algorithm is needed. The dynamic parallel implementation of the algorithm
ensuring load balancing will allow re-distribution of the added elements in 3D while
trying to maintain a balanced inter-process interface and minimizing the commu-
nication cost. This ongoing work will allow us to automatically and dynamically
generate an anisotropic conformal fitted mesh that can handle more complex three-
dimensional geometries.
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With the advancement of technologies and artificial intelligence, coupling ma-
chine learning with this existing work has infinite potential and possibilities. For
instance, during a quenching process, the position of the solid part inside the quench-
ing tank plays an important role on the the cooling rate: deep reinforcement learning
can test and predict different positions until the optimal one is achieved. This test-
ing, and the change in states can be coupled with the anisotropic fitted algorithm
to ensure an accurate and high resolution of the cooling process. Furthermore, the
addition of mixers in the tank, their position and their effect on the cooling rate can
also be tested.

The work presented is not limited to industrial applications but can be gener-
alized to several areas and critical applications and thus benefit a large number of
people in different branches. It improves the performance of simulations and solves
them with more precision. As for the simulation of aneurysm rupture (Figure 7.1),
the reduction of the calculation cost makes it possible to develop a decision sup-
port tool. Without the generation of suitable meshes, the implementation of such
simulations for a specific patient would be too costly.

Figure 7.1: Simulation of blood flow in arteries through finely meshed aneurysms.
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MOTS CLÉS

Méthodes d’immersion, Adaptation anisotrope, Maillage Conforme, Fonction Level-set, CFD

RÉSUMÉ

Le développement de méthodes efficaces pour simuler des systèmes multi-composants fait partie des défis d’ingénierie
et reste un besoin pour les industriels, notamment dans le cas de l’interaction fluide-structure ou du transfert de chaleur
conjugué. Le processus de trempe s’inscrit dans ce cadre puisqu’il a un impact direct sur la modification des pro-
priétés mécaniques et physiques des pièces industrielles. De nombreuses formulations numériques de ce processus
ont été développées, mais une grande imprécision subsiste, notamment en raison des hypothèses faites sur l’utilisation
de géométries simples et d’environnements de trempe approximatifs. Pour le processus de trempe, plusieurs types
de géométries de complexités différentes sont étudiés et analysés. Par conséquent, la génération de maillages pour
des géométries aussi complexes reste un défi. En améliorant les méthodes pour la multi-physique, en particulier les
couplages fluide-thermique et fluide-solide, le cadre mathématique global de cette thèse permettra de relever ce défi.
Dans ce travail, la méthode des volumes immergés est étendue : une nouvelle méthode de maillage adaptatif anisotrope
adaptée à la géométrie est proposée. Sa simplicité et sa généralité lui permettent d’aborder des géométries complexes,
et sa robustesse permet de traiter des problèmes physiques complexes. Deux itérations successives sont combinées :
tout d’abord, la construction d’une métrique basée sur le gradient utilise les gradients de la fonction level-set de l’objet
immergé pour générer un maillage anisotrope bien adapté. Elle est suivie d’une adaptation géométrique utilisant la R-
adaptation et la permutation afin de créer un maillage ajusté net. Cette nouvelle approche permet d’atteindre la résolution
géométrique locale souhaitée d’un maillage adapté au corps et d’obtenir la précision numérique nécessaire à l’interface
grâce aux éléments anisotropes non structurés. La nouvelle approche permettra de résoudre les interactions fluide-
solide et les problèmes de CFD, y compris les solutions de couche limite, de courbure et de gradient élevé, couvrant les
applications parallèles 2D et 3D, et les problèmes pratiques du monde réel.

ABSTRACT

The development of efficient methods to simulate multi-components systems is among engineering challenges and still a
need for industrials, especially in the case of fluid-structure interaction or conjugate heat transfer. The quenching process
falls within this framework since it impacts directly the change in the mechanical and physical property of industrial parts.
Many numerical formulations of this process have been developed, but considerable imprecision still exists, especially
because of the assumptions made on the use of simple geometries and approximate quench environments. For the
quenching process, several types of geometries with different complexities are studied and analyzed. Therefore, generat-
ing meshes for such complex geometries is a challenge. By improving methods for multi-physics, particularly fluid-thermal
and fluid-solid couplings, the overall mathematical framework of this thesis will address this challenge.
In this work, the Immersed Volume Method is extended: a new anisotropic adaptive body-fitted mesh method is proposed.
Its simplicity and generality allow it to tackle complex geometries, and its robustness allows one to deal with complex
physical problems. Two successive iterations are combined: first, gradient-based metric construction uses the gradients of
the level-set function of any immersed object to generate an anisotropic well-adapted mesh. It is followed by a geometric
adaptation using R-adaptation and swapping in order to create a sharp fitted mesh. This new approach achieves the
desired local geometry resolution of a body-fitted mesh and obtains the needed numerical accuracy at the interface due
to the anisotropic unstructured elements. The new approach will allow to solve fluid-solid interactions and CFD problems
including boundary layer, curvature, and high-gradient solutions, covering 2D and 3D parallel applications, and real-world
practical problems.

KEYWORDS

Immersed methods, Anisotropic adaptation, Body-fitted mesh, Level-set function, CFD
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