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Résumé en français N.B. Le présent résumé est inspiré de la seconde section du chapitre d'introduction (en anglais) de ce manuscrit.

Contexte et motivation

Notre équipe de recherche 1 a développé une technique de détection à 3 1: cette thèse a été conduite au sein de l'équipe « Optique Atomique Quantique » (sous constituante du groupe « Gaz quantiques ») du laboratoire Charles Fabry.

Résumé rapide de chaque chapitre

Ce manuscrit est organisé en cinq chapitres, répartis dans deux grandes parties :

Considérations théoriques

Chapitre 1 : de l'effet Hong-Ou-Mandel à deux particules, à sa version généralisée à N particules. L'effet Hong-Ou-Mandel est bien connu en optique quantique : observé pour la première fois en 1987, il a été reproduit avec des atomes par notre équipe en 2015. Après quelques rappels concernant l'effet Hong-Ou-Mondel « original » à deux particules, on démontre dans ce chapitre un ensemble de résultats analytiques qui présentent de l'intérêt pour la mise en oeuvre d'une expérience que l'équipe souhaiterait réaliser ultérieurement. En particulier les propriétés d'indiscernabilité et de non-classicité révélées par certaines observables y sont discutées. ix Chapitre 2 : inégalités de Bell pour des atomes intriqués en impulsion.

Le début du second chapitre expose les idées essentielles de l'argument EPR, et montre comment les inégalités de Bell permettent d'en vérifier expérimentalement les conclusions.

Après une introduction à la question du théorème de Bell, on détaille dans une seconde section le sujet d'intérêt principal pour l'équipe de recherche : la réalisation d'une expérience de test des inégalités de Bell concernant la vitesse des atomes. Il est en particulier montré qu'un traitement astucieux des données expérimentales de corrélation permet d'accroître le rapport signal à bruit pour une telle mesure.

Réalisations expérimentales

Chapitre 3 : détection et obtention d'un condensat de Bose-Einstein d'hélium métastable.

Ce chapitre commence par rappeler comment le caractère métastable de l'hélium présente un avantage pour la détection de particules individuelles. Dans une seconde partie, il détaille les différentes étapes de refroidissement du gaz, vers le seuil de condensation.

Chapitre 4 : évolution et changements technologiques pendant la thèse.

Ce chapitre expose les différentes pannes et problèmes rencontrés sur l'expérience, avant et pendant la thèse. Il est expliqué en quoi ces difficultés ont ralenti la production scientifique, ainsi que les décisions et mesures prises pour les résoudre.

Chapitre 5 : étude de la source de paires d'atomes corrélés.

Le chapitre final présente les récents résultats scientifiques, obtenus pendant la thèse. Les données exposées n'ont cependant pas été acquises dans la perspective d'une communication scientifique, mais plutôt pour dresser une caractérisation préliminaire de la source de paires fonctionnant dans un nouveau régime.

x Résumé en français Après approximativement trois mois de bon fonctionnement de l'expérience, l'acquisition de ces données a de nouveau été stoppé par une série de problèmes techniques, survenus à la toute fin de la thèse. Ce chapitre propose néanmoins un traitement aussi complet que possible des données les plus prometteuses, obtenues avant ces nouvelles pannes.

En complément, des rappels théoriques sur le processus de création de paires servent d'introduction au chapitre.

dimensions, résolue pour des atomes individuels. Cela donne accès à de nombreuses informations qui sont généralement difficile d'accès dans les expériences de physique atomique, notamment les propriétés de corrélation entre atomes spatialement séparés. Cette capacité à mesurer des particules individuelles est une grande force de notre dispositif expérimental. En effet, les corrélations entre atomes peuvent comporter la signature d'effets purement quantiques : les propriétés d'intrication et de non-localité de l'information quantique en sont des exemples particulièrement marquants [START_REF] Reid | Violations of Classical Inequalities in Quantum Optics[END_REF][START_REF] Kheruntsyan | Violation of the Cauchy-Schwarz Inequality with Matter Waves[END_REF][START_REF] Volovich | Cauchy-Schwarz Inequality-Based Criteria for the Non-Classicality of Sub-Poisson and Antibunched Light[END_REF][START_REF] Wasak | Cauchy-Schwarz Inequality for General Measurements as an Entanglement Criterion[END_REF]. [START_REF] Reid | Violations of Classical Inequalities in Quantum Optics[END_REF]: [START_REF] Reid | Violations of Classical Inequalities in Quantum Optics[END_REF], "Violations of Classical Inequalities in Quantum Optics" [START_REF] Kheruntsyan | Violation of the Cauchy-Schwarz Inequality with Matter Waves[END_REF]: Kheruntsyan et al. (2012), "Violation of the Cauchy-Schwarz Inequality with Matter Waves" [START_REF] Volovich | Cauchy-Schwarz Inequality-Based Criteria for the Non-Classicality of Sub-Poisson and Antibunched Light[END_REF]: [START_REF] Volovich | Cauchy-Schwarz Inequality-Based Criteria for the Non-Classicality of Sub-Poisson and Antibunched Light[END_REF], "Cauchy-Schwarz Inequality-Based Criteria for the Non-Classicality of Sub-Poisson and Antibunched Light" [START_REF] Wasak | Cauchy-Schwarz Inequality for General Measurements as an Entanglement Criterion[END_REF]: Wasak et al.

(2016), "Cauchy-Schwarz Inequality for General Measurements as an Entanglement Criterion" Parallèlement à cela, depuis le milieu des années 2000 notre équipe a exploré différentes procédures de préparation de paires d'atomes corrélés (émis au sein de jets atomiques) [START_REF] Perrin | Observation of Atom Pairs in Spontaneous Four-Wave Mixing of Two Colliding Bose-Einstein Condensates[END_REF][START_REF] Jaskula | Acoustic Analog to the Dynamical Casimir Effect in a Bose-Einstein Condensate[END_REF][START_REF] Bonneau | Tunable Source of Correlated Atom Beams[END_REF]. Dans certains régimes [START_REF] Perrin | Observation of Atom Pairs in Spontaneous Four-Wave Mixing of Two Colliding Bose-Einstein Condensates[END_REF]: [START_REF] Perrin | Observation of Atom Pairs in Spontaneous Four-Wave Mixing of Two Colliding Bose-Einstein Condensates[END_REF], "Observation of Atom Pairs in Spontaneous Four-Wave Mixing of Two Colliding Bose-Einstein Condensates" [START_REF] Jaskula | Acoustic Analog to the Dynamical Casimir Effect in a Bose-Einstein Condensate[END_REF]: [START_REF] Jaskula | Acoustic Analog to the Dynamical Casimir Effect in a Bose-Einstein Condensate[END_REF], "Acoustic Analog to the Dynamical Casimir Effect in a Bose-Einstein Condensate" [START_REF] Bonneau | Tunable Source of Correlated Atom Beams[END_REF]: [START_REF] Bonneau | Tunable Source of Correlated Atom Beams[END_REF], "Tunable Source of Correlated Atom Beams" de paramètres expérimentaux, de telles paires atomiques peuvent constituer un état quantique intriqué, et grâce à l'interaction lumièrematière ceci ouvre des perspectives intéressantes pour réaliser de nombreuses expériences inspirées de l'optique quantique.

Relativement récemment, l'équipe à été en mesure d'observer l'analogue atomique de l'effet Hong-Ou-Mandel [START_REF] Lopes | An Atomic Hong-Ou-Mandel Experiment[END_REF]. Elle a également montré [START_REF] Lopes | An Atomic Hong-Ou-Mandel Experiment[END_REF]: [START_REF] Lopes | An Atomic Hong-Ou-Mandel Experiment[END_REF], "An Atomic Hong-Ou-Mandel Experiment" une preuve de principe d'interféromètre à deux particules, qui pourrait être exploité pour mettre en oeuvre une expérience de violation des inégalités de Bell portant sur la vitesse des atomes [START_REF] Dussarrat | Two-Particle Four-Mode Interferometer for Atoms[END_REF]. Un tel test de [START_REF] Dussarrat | Two-Particle Four-Mode Interferometer for Atoms[END_REF]: [START_REF] Dussarrat | Two-Particle Four-Mode Interferometer for Atoms[END_REF], "Two-Particle Four-Mode Interferometer for Atoms" non-localité quantique pour des particules massives n'a encore jamais été observé 2 et constitue à ce jour un des objectifs principaux de notre 2: en considérant l'impulsion des atomes comme paramètre quantique. équipe. Cette mesure révélerait la nature non-classique d'un degré de liberté purement mécanique, ce qui marquerait le franchissement d'une étape importante sur le plan épistémologique. Par ailleurs, comme les particules mises en jeu sont massives (et donc assujetties à l'interaction gravitationnelle), cette expérience réaliserait un pas supplémentaire vers l'étude du couplage entre mécanique quantique et relativité générale, viii Résumé en français sur le plan expérimental [START_REF] Roger Penrose | Quantum computation, entanglement and state reduction[END_REF]. [START_REF] Roger Penrose | Quantum computation, entanglement and state reduction[END_REF]: Penrose et al. (1998), "Quantum computation, entanglement and state reduction" Durant cette thèse, j'ai contribué à la modernisation et la jouvence de nos installations expérimentales, qui souffraient depuis plus de cinq ans de nombreux problèmes techniques, inhibant fortement l'obtention de nouveaux résultats scientifiques. Ces multiples évolutions ont conduit à l'obtention d'un condensat de Bose-Einstein d'hélium métastable dans un piège optique. À partir de ce condensat, nous avons été en mesure de produire des paires atomiques corrélées dans un régime « intense » qui n'avait pas été exploré dans les stades antérieurs de l'expérience. J'ai également effectué une courte étude théorique traitant d'une version généralisée des expériences de type Hong-Ou-Mandel, en considérant une situation où plus de deux particules entrent en jeu. Cette étude prend en considération les effets d'efficacité quantique finie des détecteurs utilisés. Une telle expérience pourrait être mise en place dans notre laboratoire dans un futur proche. 
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Entanglement: from the early 20 th century to nowadays

After more than forty years of experiments, and twice as long of metaphysical debates, it is now largely admitted -even by the layman-that quantum entanglement is one of the most remarkable features of quantum theory. Even though it seems to be an obvious component of quantum formalism of many body systems, the question of its physical meaning remains the subject of many heated debates: it is one aspect of the well-known question of quantum reality [START_REF] Tegmark | The Interpretation of Quantum Mechanics: Many Worlds or Many Words?[END_REF][START_REF] Laloë | Comprenons-nous vraiment la mécanique quantique ?[END_REF]. [START_REF] Tegmark | The Interpretation of Quantum Mechanics: Many Worlds or Many Words?[END_REF]: [START_REF] Tegmark | The Interpretation of Quantum Mechanics: Many Worlds or Many Words?[END_REF], "The Interpretation of Quantum Mechanics" [START_REF] Laloë | Comprenons-nous vraiment la mécanique quantique ?[END_REF]: [START_REF] Laloë | Comprenons-nous vraiment la mécanique quantique ?[END_REF], "Comprenons-nous vraiment la mécanique quantique ?"

The origins: EPR paradox

Historically, quantum entanglement was put in the spotlight for the first time back in 1935, thanks to the extremely famous Einstein, Polsky and Rosen (EPR)'s article [START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF]. A fundamental element of the EPR [START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF]: [START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF], "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?" reasoning is the principle of locality, which is the idea that any physical description of a natural phenomenon † should involve local parameters only. This means that all the information needed to describe an event -as accurately as possible-is contained in an infinitesimal space-time volume, centred on that event. Einstein was obviously very much attached to the locality hypothesis, which is the core pillar of the theory of relativity. Through their work, EPR proved that if we assume the principle of locality to be correct, quantum theory is therefore incomplete 1 , 1: a more complete wording of the EPR theorem will be given in the next chapter. and requires additional hidden and local elements, so as to cover the whole reality of Nature. Such a theory is usually named local-realistic theory.

Bohr is known to be one of the major opponents to EPR's position, and quickly objected (in an article of the same name) [START_REF] Bohr | Can Quantum-Mechanical Description of Physical Reality be Considered Complete?[END_REF] that the conclu- [START_REF] Bohr | Can Quantum-Mechanical Description of Physical Reality be Considered Complete?[END_REF]: [START_REF] Bohr | Can Quantum-Mechanical Description of Physical Reality be Considered Complete?[END_REF], "Can Quantum-Mechanical Description of Physical Reality be Considered Complete?" sion of the EPR theorem -which he did not disprove-should not have been the idea that quantum physics were an incomplete constituted theory, but that local realism must collapse. In this paradigm, entangled systems must be considered as a whole: it no longer makes any sense to deal with the alleged physical properties of its sub-components 2 2: that is an aspect of the Copenhagen interpretation of quantum mechanics.

(without loss of information at least). In Borh's mind, the nonseparability of quantum states means that some part of quantum information can be carried in a nonlocal way, and individual particles should not systematically be considered as the ultimate substrates to the physical properties of Nature.
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It is nevertheless worth noticing that both visions agree on the validity of the predictions of quantum theory (to argue against it would have been quite a tough position to defend considering the unprecedented series of experimental successes this theory provided 1 ). The essential 1: Franck-Hertz's electron collision experiment (1914). Stern-Gerlach experiment (1920). Compton scattering experiment (1923). Davisson-Germer electron diffraction experiment (1927). Anderson's discovery of positron (1932)... difference between these two schools of thought consists in the belief -or disbelief-in a deeper theory, involving additional local degrees of freedom.

John Bell and the emergence of the quantum information theory

Apart from Einstein, Bohr and Schrödinger 2 , few physicists of the first 2: to whom we owe the term entanglement... half of the 20 th century seemed to show a legitimate interest in the question of the interpretation of entangled states. Since it does not put the roots of quantum mechanics at stake, it was quickly relegated to the list of metaphysical issues, thus making it a matter for debates in epistemological circles.

The physical essence of the question was revived by John S. Bell, in an article published in 1964 with thunderous consequences [START_REF] Bell | On the Einstein Podolsky Rosen paradox[END_REF]. Thanks [START_REF] Bell | On the Einstein Podolsky Rosen paradox[END_REF]: [START_REF] Bell | On the Einstein Podolsky Rosen paradox[END_REF], "On the Einstein Podolsky Rosen paradox"

to an ingenious use of correlators 3 , Bell pinpointed the fact that an 3: a more detailed derivation of the Bell inequalities will be given in the next chapter "extended" version of quantum mechanics incorporating local hidden variables could not reproduce all predictions of the "standard" quantum theory. In particular, if one would consider a two-body system, entangled with respect to a given observable quantity O -e.g. two spin-1 2 particles 4 -one could pay attention to the correlations between 4: this is the example proposed by D.

Bohm [START_REF] Bohm | Quantum theory. Dover books on physics series[END_REF] to simplify the original EPR argument, historically dealing with particles spatially entangled. It is now often called an EPRB experiment.

the measurements of O made upon one particle by a first operator (commonly called Alice), and the same measurements made upon its entangled partner by a second operator (Bob). Bell proved that due to the locality hypothesis, the degree of correlation between the observations of Alice and Bob is bound to some numerical limit, that can be overcome in the purely quantum realm. In other words, quantum theory predicts an excess of correlations, to be compared with the intrinsic constraints imposed by locality.

Thus, we have two different classes of theories at our disposal, that exhibit two different experimental results. The question of the existence of Einstein's hidden variables is therefore experimentally accessible. Multiple formal alternatives of the Bell inequalities were proposed in the following years [START_REF] Clauser | Proposed Experiment to Test Local Hidden-Variable Theories[END_REF][START_REF] Bell | Introduction to the hidden-variable question[END_REF][START_REF] Clauser | Experimental consequences of objective local theories[END_REF] [17]: [START_REF] Clauser | Proposed Experiment to Test Local Hidden-Variable Theories[END_REF], "Proposed Experiment to Test Local Hidden-Variable Theories" [START_REF] Bell | Introduction to the hidden-variable question[END_REF]: [START_REF] Bell | Introduction to the hidden-variable question[END_REF], "Introduction to the hidden-variable question" [START_REF] Clauser | Experimental consequences of objective local theories[END_REF]: [START_REF] Clauser | Experimental consequences of objective local theories[END_REF], "Experimental consequences of objective local theories"

. After a pioneering realisation by Clauser and Freedman [START_REF] Stuart | Experimental Test of Local Hidden-Variable Theories[END_REF] [20]: Freedman et al. (1972), "Experimental Test of Local Hidden-Variable Theories"

, the first convincing measurements of a Bell inequalities violation were published in the early 1980s by Alain Aspect and his coworkers [START_REF] Aspect | Proposed experiment to test the nonseparability of quantum mechanics[END_REF][START_REF] Aspect | Experimental Tests of Realistic Local Theories via Bell's Theorem[END_REF][START_REF] Aspect | Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities[END_REF][START_REF] Aspect | Experimental Test of Bell's Inequalities Using Time-Varying Analyzers[END_REF]. The tour de force of these experiments was [START_REF] Aspect | Proposed experiment to test the nonseparability of quantum mechanics[END_REF]: [START_REF] Aspect | Proposed experiment to test the nonseparability of quantum mechanics[END_REF], "Proposed experiment to test the nonseparability of quantum mechanics" [START_REF] Aspect | Experimental Tests of Realistic Local Theories via Bell's Theorem[END_REF]: [START_REF] Aspect | Experimental Tests of Realistic Local Theories via Bell's Theorem[END_REF], "Experimental Tests of Realistic Local Theories via Bell's Theorem" [START_REF] Aspect | Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities[END_REF]: Aspect et al. (1982), "Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment" [START_REF] Aspect | Experimental Test of Bell's Inequalities Using Time-Varying Analyzers[END_REF]: Aspect et al. (1982), "Experimental Test of Bell's Inequalities Using Time-Varying Analyzers" to take extra care in keeping a spacelike separation between Alice's and Bob's detections, which is a crucial point in order to put the substantial nonlocality of entangled states to the test. A violation was indeed observed, with statistical confidence better than 240 standard deviation! More than constituting the verdict in a conceptual opposition between Bohr and Einstein -that endured for almost fifty years-the joint contributions of Bell and Aspect are a notable milestone in the advent of modern quantum physics.

Many similar experiments have been achieved since then. Amongst many others, let us cite the works of Shih et al. [START_REF] Shih | New Type of Einstein-Podolsky-Rosen-Bohm Experiment Using Pairs of Light Quanta Produced by Optical Parametric Down Conversion[END_REF][START_REF] Kiess | Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by type-II parametric down-conversion[END_REF] that popularised [START_REF] Shih | New Type of Einstein-Podolsky-Rosen-Bohm Experiment Using Pairs of Light Quanta Produced by Optical Parametric Down Conversion[END_REF]: [START_REF] Shih | New Type of Einstein-Podolsky-Rosen-Bohm Experiment Using Pairs of Light Quanta Produced by Optical Parametric Down Conversion[END_REF], "New Type of Einstein-Podolsky-Rosen-Bohm Experiment Using Pairs of Light Quanta Produced by Optical Parametric Down Conversion" [START_REF] Kiess | Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by type-II parametric down-conversion[END_REF]: [START_REF] Kiess | Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by type-II parametric down-conversion[END_REF], "Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by type-II parametric down-conversion" the process of parametric excitation to induce the creation of entangled particles, and Rarity-Tapster [START_REF] Rarity | Experimental violation of Bell's inequality based on phase and momentum[END_REF] that designed an interferometer [START_REF] Rarity | Experimental violation of Bell's inequality based on phase and momentum[END_REF]: [START_REF] Rarity | Experimental violation of Bell's inequality based on phase and momentum[END_REF], "Experimental violation of Bell's inequality based on phase and momentum" whose topology is well-adapted to the probing of the entanglement of velocities. Concerning the epistemological validity of the conclusions to those experiments, the final piece of this work was obtained in a concomitant manner by three independent groups -respectively in Delpht, Vienna and Boulder-through the realisation of the so-called loopholefree experiments [START_REF] Hensen | Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres[END_REF][START_REF] Giustina | Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons[END_REF][START_REF] Lynden | Strong Loophole-Free Test of Local Realism[END_REF], carefully avoiding any possible local-realistic [START_REF] Hensen | Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres[END_REF]: [START_REF] Hensen | Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres[END_REF], "Loopholefree Bell inequality violation using electron spins separated by 1.3 kilometres" [START_REF] Giustina | Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons[END_REF]: [START_REF] Giustina | Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons[END_REF], "Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons" [START_REF] Lynden | Strong Loophole-Free Test of Local Realism[END_REF]: Shalm et al. (2015), "Strong Loophole-Free Test of Local Realism" interpretation of the inequalities.

Even though entanglement could be considered to be a mainstream feature in experimental quantum physics nowadays, it became clear that the ability to prepare those highly non-classical states in various contexts is one of the most burning issues for our century. With regard to the manipulation of information, it is indeed entanglement that is at the root of the advantage of quantum computing over its classical counterpart. On a purely formal point of view, it is no difficult task to convince oneself of the upgraded possibilities offered by quantum information. In the wake of John Bell, many theorists with fertile imaginations came upon various situations that can be efficiently handled by quantum systems: quantum pseudo-telepathy 1 in game theory [START_REF] Daniel | Going beyond Bell's Theorem[END_REF][START_REF] Brassard | Cost of Exactly Simulating Quantum Entanglement with Classical Communication[END_REF][START_REF] Brassard | Multi-Party Pseudo-Telepathy[END_REF],

1: strategy based on sharing a set entangled particles between several participants to a given game, making possible to the player to beat the optimal classical limit achieving a collective win.

superdense coding [START_REF] Mattle | Dense Coding in Experimental Quantum Communication[END_REF][START_REF] Bennett | Communication via One-and Two-Particle Operators on Einstein-Podolsky-Rosen States[END_REF] in communication protocols 2 , quantum 2: allows the communication of a large number of classical bits via the transmission a smaller amount of entangled qubits.

teleportation of states [START_REF] Bennett | Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels[END_REF][START_REF] Bouwmeester | Experimental Quantum Teleportation[END_REF][START_REF] Boschi | Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels[END_REF], quantum computing [START_REF]Committee on Technical Assessment of the Feasibility and Implications of Quantum Computing[END_REF][START_REF] Preskill | Quantum Computing in the NISQ Era and Beyond[END_REF], etc.

To some extent, the prodigious booming of research activity in quantum information fields which has been witnessed in the last decades (and, more recently, strongly stimulated by remarkable financial investments), can be considered to be a legacy of Bell's avant-garde contribution. This era of vigorous scientific progress, carried out by the prominent quantum technologies, is sometimes called "second quantum revolution" [START_REF] Aspect | Preface to Speakable and Unspeakable[END_REF].
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Quantum technologies

In 1948, the discovery of the transistor effect by Bardeen, Shockley and Brattain paved the way to the technological development of computers, that propelled the world in the new age of information processing and digital communication. This major contribution was awarded by the Nobel prize in 1956.

Very recently, the Nobel prize in physics 2022 was awarded jointly to Alain Aspect, John F. Clauser and Anton Zeilinger "for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science". In addition to the great epistemological significance of the work conducted by these three physicists, this prize is also the recognition that the second quantum revolution -initiated in laboratories during the early 80s-gave birth to a radically new way to manipulate and exchange information. Indeed, during the last three decades, people have identified a number of situations where the coherent superposition and entanglement of states can provide a quantum advantage. Just to name a few, we can mention prime numbers factorisation (and the subsequent question of quantum cryptography) [START_REF] Shor | Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer[END_REF] [42]: [START_REF] Shor | Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer[END_REF], "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer" , the speed up search of an element in a list [START_REF] Lov | A Fast Quantum Mechanical Algorithm for Database Search[END_REF] [43]: Grover (1996), "A Fast Quantum Mechanical Algorithm for Database Search" or the secured quantum-key distribution for telecommunications [START_REF] Bennett | Quantum Cryptography: Public Key Distribution and Coin Tossing[END_REF][START_REF] Ekert | Quantum Cryptography Based on Bell's Theorem[END_REF] [44]: [START_REF] Bennett | Quantum Cryptography: Public Key Distribution and Coin Tossing[END_REF], "Quantum Cryptography" [START_REF] Ekert | Quantum Cryptography Based on Bell's Theorem[END_REF]: [START_REF] Ekert | Quantum Cryptography Based on Bell's Theorem[END_REF], "Quantum Cryptography Based on Bell's Theorem" . The concrete implementations of this new kind of protocols requires the use of technical platforms able to generate, store, transport, and interact with qubits 1 1: the quantum elementary unit of information, consisting in a two-level quantum system.

. Various quantum systems seem to be available to realise qubits 2 2: it is perhaps not yet clear which one will be the most sustainable.

: photons [START_REF] Stephen | Photon-Number Entanglement Generated by Sequential Excitation of a Two-Level Atom[END_REF], neutral atoms [START_REF] Browaeys | Many-Body Physics with Individually Controlled Rydberg Atoms[END_REF], superconductors [START_REF] Stephen | Photon-Number Entanglement Generated by Sequential Excitation of a Two-Level Atom[END_REF]: Wein et al. (2022), "Photon-Number Entanglement Generated by Sequential Excitation of a Two-Level Atom" [START_REF] Browaeys | Many-Body Physics with Individually Controlled Rydberg Atoms[END_REF]: [START_REF] Browaeys | Many-Body Physics with Individually Controlled Rydberg Atoms[END_REF], "Many-Body Physics with Individually Controlled Rydberg Atoms" [START_REF] Lescanne | Exponential Suppression of Bit-Flips in a Qubit Encoded in an Oscillator[END_REF], trapped ions [START_REF] Debnath | Demonstration of a Small Programmable Quantum Computer with Atomic Qubits[END_REF] etc. These platforms constitute an important [START_REF] Lescanne | Exponential Suppression of Bit-Flips in a Qubit Encoded in an Oscillator[END_REF]: [START_REF] Lescanne | Exponential Suppression of Bit-Flips in a Qubit Encoded in an Oscillator[END_REF], "Exponential Suppression of Bit-Flips in a Qubit Encoded in an Oscillator" [START_REF] Debnath | Demonstration of a Small Programmable Quantum Computer with Atomic Qubits[END_REF]: [START_REF] Debnath | Demonstration of a Small Programmable Quantum Computer with Atomic Qubits[END_REF], "Demonstration of a Small Programmable Quantum Computer with Atomic Qubits" facet of modern quantum technologies.

Another aspect is focused on the enhanced possibilities offered by quantum physics concerning the metrology and high performance sensors. It is widely known that quantum systems may have an extreme sensitivity to their surroundings, that can be used to advantage to interferometry above the shot noise limit [START_REF] Marciniak | Optimal Metrology with Programmable Quantum Sensors[END_REF], or even direct measurements [START_REF] Marciniak | Optimal Metrology with Programmable Quantum Sensors[END_REF]: [START_REF] Marciniak | Optimal Metrology with Programmable Quantum Sensors[END_REF], "Optimal Metrology with Programmable Quantum Sensors" (for instance magnetometers based on nitrogen-vacancy [START_REF] Kuwahata | Magnetometer with nitrogen-vacancy center in a bulk diamond for detecting magnetic nanoparticles in biomedical applications[END_REF]). [START_REF] Kuwahata | Magnetometer with nitrogen-vacancy center in a bulk diamond for detecting magnetic nanoparticles in biomedical applications[END_REF]: [START_REF] Kuwahata | Magnetometer with nitrogen-vacancy center in a bulk diamond for detecting magnetic nanoparticles in biomedical applications[END_REF], "Magnetometer with nitrogen-vacancy center in a bulk diamond for detecting magnetic nanoparticles in biomedical applications" Quantum technologies have now invested the industrial sector during the last few years, gathered in what is sometimes called the quantum deeptech, and which is heavily supported by public policies: in France with the Plan Quantique (since 2021), but also in Europe with the Quantum Flagship program (since 2018) or the QuantERA call (since 2017).

2 Quantum atom optics with metastable helium

Context and motivation

Our team in the Laboratoire Charles Fabry has developed a detection method for individual atoms, in three dimensions. It gives access to many information that are usually difficult to capture in atomic physics experiments, such as the correlations between spatially separated particles. This feature is a significant strength of our apparatus, because correlations can contain the signature of purely quantum effects and nonlocality properties of multiple-particles systems [START_REF] Reid | Violations of Classical Inequalities in Quantum Optics[END_REF][START_REF] Kheruntsyan | Violation of the Cauchy-Schwarz Inequality with Matter Waves[END_REF][START_REF] Volovich | Cauchy-Schwarz Inequality-Based Criteria for the Non-Classicality of Sub-Poisson and Antibunched Light[END_REF][START_REF] Wasak | Cauchy-Schwarz Inequality for General Measurements as an Entanglement Criterion[END_REF].

[1]: Along with this, since the mid-2000s the team has explored different way to generate correlated pairs of atomic beams [START_REF] Perrin | Observation of Atom Pairs in Spontaneous Four-Wave Mixing of Two Colliding Bose-Einstein Condensates[END_REF][START_REF] Jaskula | Acoustic Analog to the Dynamical Casimir Effect in a Bose-Einstein Condensate[END_REF][START_REF] Bonneau | Tunable Source of Correlated Atom Beams[END_REF], that -under [START_REF] Perrin | Observation of Atom Pairs in Spontaneous Four-Wave Mixing of Two Colliding Bose-Einstein Condensates[END_REF]: [START_REF] Perrin | Observation of Atom Pairs in Spontaneous Four-Wave Mixing of Two Colliding Bose-Einstein Condensates[END_REF], "Observation of Atom Pairs in Spontaneous Four-Wave Mixing of Two Colliding Bose-Einstein Condensates" [START_REF] Jaskula | Acoustic Analog to the Dynamical Casimir Effect in a Bose-Einstein Condensate[END_REF]: [START_REF] Jaskula | Acoustic Analog to the Dynamical Casimir Effect in a Bose-Einstein Condensate[END_REF], "Acoustic Analog to the Dynamical Casimir Effect in a Bose-Einstein Condensate" [START_REF] Bonneau | Tunable Source of Correlated Atom Beams[END_REF]: [START_REF] Bonneau | Tunable Source of Correlated Atom Beams[END_REF], "Tunable Source of Correlated Atom Beams" specific experimental conditions-may constitute an entangled system. With the assistance of light-matter interplay, this opens up the possibility to realise many experiments, inspired by quantum optics.

Fairly recently, the team achieved the atomic analogue of the Hong-Ou-Mandel effect [START_REF] Lopes | An Atomic Hong-Ou-Mandel Experiment[END_REF], as well as a proof of principle of a two-particle [START_REF] Lopes | An Atomic Hong-Ou-Mandel Experiment[END_REF]: [START_REF] Lopes | An Atomic Hong-Ou-Mandel Experiment[END_REF], "An Atomic Hong-Ou-Mandel Experiment" interferometer that could be used in the future to enable a test of a Bell inequality for atoms' entangled in momenta [START_REF] Dussarrat | Two-Particle Four-Mode Interferometer for Atoms[END_REF]. Such a test of [START_REF] Dussarrat | Two-Particle Four-Mode Interferometer for Atoms[END_REF]: [START_REF] Dussarrat | Two-Particle Four-Mode Interferometer for Atoms[END_REF], "Two-Particle Four-Mode Interferometer for Atoms" quantum nonlocality with massive particles has not been obtained yet, and it is currently one of the main goals of our team. By demonstrating non-classical state of mechanical 1 degrees of freedom, such an 1: and therefore having a clear classical meaning.

experiment would constitute an important philosophical milestone. In addition, since it involves massive particles -subjected to gravitational coupling-in a highly quantum state, it would also be a first step towards a new generation of experiment soliciting both quantum mechanics and general relativity [START_REF] Roger Penrose | Quantum computation, entanglement and state reduction[END_REF]. During this PhD I contributed to the modernisation of the experimental setup, who suffered during the last five years of many technical issues, inhibiting the production of new scientific results. These evolutions conducted to the obtention of a metastable helium Bose-Einstein condensate in an optical trap, and thereafter the production of correlated atomic pairs in a regime that was not explored in the early states of the experimental platform.

I also achieved a short theoretical study, dealing with a generalised version of Hong-Ou-Mandel like experiments, involving more than two particles, and taking into account finite quantum efficiency effects of the detector. Such an experiment could be performed in our laboratory in a near future.

Outline of this manuscript

The manuscript is organised in five chapters, divided in two parts:

Theoretical considerations

Chapter 1: from the two-particle Hong-Ou-Mandel effect, to its generalised version with N particles.

The Hong-Ou-Mandel effect is famous in quantum optics: it has been demonstrated experimentally in 1987, and reproduced with atoms in our team in 2015. In this chapter, after giving some reminders about the original two particle Hong-Ou-Mandel experiment, I will derivate a number of theoretical results that could be useful in the prospect of an upcoming experiment that we would like to achieve in our team: an experiment similar to the Hong-Ou-Mandel one, but with a large number of indiscernible particles.

Chapter 2: Bell inequalities with momentum-entangled atoms.

At the beginning of this second chapter, I shall recall the essential ideas of the EPR argument, and show how the Bell's inequalities allow to verify experimentally its conclusions.

After this fairly well known introduction to the question Bell's theorem, I will dive more precisely into the topic the currently interests us in the team: the realisation of a Bell inequality test with respect to the velocities of helium atoms. Such an experiment would be an important milestone in nowadays quest to engineering new type of entangled states, and exploring quantum mechanics in different regimes.

Experimental achievements

Chapter 3: detecting and obtaining a Bose-Einstein condensate of helium.

In this chapter I will start by showing how the metastable state of helium can be used as an advantage to perform a single-particle resolved detection of atoms. I will then go through the different experimental steps that we apply to an helium cloud so as to obtain a metastable Bose-Einstein condensate.

Chapter 4: technological changes and evolutions during my PhD.

In this chapter I will expose the various problems that have plagued our apparatus (mostly during my PhD but also a few years before), preventing us from making scientific progress. Then I shall explain the different technological evolutions and workarounds that we decided to implement so as to overcome these issues.

Chapter 5: study of the source of correlated pairs of atoms.

In this final chapter, I will present the main scientific results that I obtained during my PhD. However, the data that I will show were not acquired in the purpose of a scientific communication: we were still testing the generation of pairs, who started to work only recently. Unfortunately, after approximately three months of successful operation, a new set of technical issues struck the experiment, and stopped the acquisition of data. In this chapter, I will propose an analysis -as complete as possible-of the dataset that offered the most satisfying results.

Before doing this, I will also make a short formal introduction to the process of pair creation: it is a summary of several theoretical considerations, that have been treated in the PhD manuscripts of my predecessors on the experiment.

. Introduction 

Introduction

In this chapter, I will report the analytical and numerical calculations that I performed 1 concerning an extension of the famous Hong-Ou-1: mainly in 2020. Mandel (HOM) experiment to a domain in which the total number of particles involved can be much larger than two.

In the first section of this chapter, I will provide a general review of the HOM experiment, from its origins in quantum optics (back in 1987) to a more recent realisation of its atomic equivalent, that has been demonstrated by our team in 2015.

I will insist in particular on the fact that this experiment is genuinely quantum, and provides interesting information about the indistinguishability properties of the particles that are involved.

Due to recent technical issues that we have encountered with our apparatus (and that will be at the core of Chapter 4), we have not been able to reconduct this type of interferometry experiment since 2017 (two years before my arrival in the team). However, in anticipation of the time when the experiment will be functional again 2 , I have studied 2: and also to take advantage of the 2020 lockdown period... what could be interesting in setting up a similar experiment, in which a more complex initial state would be involved. This particular state is widely known as the two-mode squeezed vacuum state (TMS). We will see that this entangled state provides remarkable results when it used in an HOM-like experiment. This state is quite famous, at least in quantum optics, as it can be prepared with the spontaneous parametric down conversion with a nonlinear crystal [START_REF] Gerry | Introductory Quantum Optics[END_REF]. [START_REF] Gerry | Introductory Quantum Optics[END_REF]: [START_REF] Gerry | Introductory Quantum Optics[END_REF], Introductory Quantum Optics It interests us particularly, because we have several reasons to believe that our experimental platform is able to generate it with helium atoms: this will be discussed in details in the last chapter of this manuscript.
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History and presentation

Since the early 1970s, and the appearance of single-photon sources, the optical testing of quantum mechanics is a fertile field of activity in experimental physics. From an epistemological point of view, one of the goals of quantum optics experiments is to exhibit effects which can in no way be explained by classical physics. Important milestones have been reached in the 1980s, for example with the pioneering contribution of Clauser et al. and Aspect et al. who revealed the nonlocal nature of certain states of light [START_REF] Stuart | Experimental Test of Local Hidden-Variable Theories[END_REF][START_REF] Aspect | Experimental Tests of Realistic Local Theories via Bell's Theorem[END_REF] (we will come back to this type [START_REF] Stuart | Experimental Test of Local Hidden-Variable Theories[END_REF]: Freedman et al. (1972), "Experimental Test of Local Hidden-Variable Theories" [START_REF] Aspect | Experimental Tests of Realistic Local Theories via Bell's Theorem[END_REF]: [START_REF] Aspect | Experimental Tests of Realistic Local Theories via Bell's Theorem[END_REF], "Experimental Tests of Realistic Local Theories via Bell's Theorem" of measurement in Chapter 2). In 1987 Chung Ki Hong, Zheyu Ou, and Leonard Mandel experimentally demonstrated a two-particle interference effect, involving the bosonic nature of the light field [START_REF] Hong | Measurement of Subpicosecond Time Intervals between Two Photons by Interference[END_REF]. [START_REF] Hong | Measurement of Subpicosecond Time Intervals between Two Photons by Interference[END_REF]: [START_REF] Hong | Measurement of Subpicosecond Time Intervals between Two Photons by Interference[END_REF], "Measurement of Subpicosecond Time Intervals between Two Photons by Interference" This effect -now commonly known as the Hong-Ou-Mandel (HOM) effect-is also the signature of the intrinsic indiscernibility property of single photons, and cannot be explained classically. Before giving the outline of this experiment, we will present first a simpler version of the optical setup, that was used at the Institut d'Optique d'Orsay one year before the HOM experiment. Indeed, in 1986, Grangier et al. obtained direct experimental evidence of the existence of photons (defined as the quantised excitations of the electrical field) [START_REF] Grangier | Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences[END_REF]. The idea was to collect one of the photons emitted [START_REF] Grangier | Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences[END_REF]: [START_REF] Grangier | Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences[END_REF], "Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter" by the radiative cascade 1 of a calcium atom and place it at the input of 1: a process in which an atom successively emits several photons, by deexciting itself in several successive steps, going from an excited state to lower energy states. a 50-50 beam splitter. One can then look at the coincident detections between both output sides of the beam splitter: if a single photon is indeed emitted, it should never be detected at both output sides of the beam splitter, meaning that no coincidence should be measured. A schematic of the experiment is given in Figure 1.1. The experiment resulted in strong quantum anti-correlation effect, which is the signature of a single photon emission from the source: a manifestation of the particle-like behaviour of light. With the wording of quantum statistics and correlation functions, this is known as the photon anti-bunching effect.

C.C.

Even though the previous experiment revealed the quantum statistics of the emission of light by an atom, it does not involve interferences of any kind. During each realisation only one photon is propagating, and it never interferes until its detection. To witness quantum interference effects, one can complete the optical setup of Figure 1.1 by adding two mirrors and one beam splitter and realise a single photon Mach-14 [START_REF] Reid | Violations of Classical Inequalities in Quantum Optics[END_REF] Hong-Ou- Mandel effect Zehnder interferometer. This work has also been done by Grangier et al. (published in the same paper [START_REF] Grangier | Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences[END_REF]) and the team observed (statistically) the well known fringes at the output of the interferometer, being interpreted as the self-interference of the photon wave function.

Figure 1.2:

Classical outcomes of a HOM-like experiment. Classically, photons are distinguishable, and we are allowed to label them with specific colours (red and blue). Each arrow represents a single photon, and four possible outcomes can be considered, weighed by the same probability 1 4 (in the case of a 50-50 beam splitter). The idea of HOM is to consider again the design of the experiment in Figure 1.1 and to extend it to the domain of two-particle physics. Considering the schematic in Figure 1.1, one can indeed wonder what happens when two single photons are placed at the inputs of the beam splitter, with one on each side. With a classical approach, there is no notion of indiscernibility: the two photons can be labelled, and depending on which one is reflected or transmitted, four possible outcomes may be considered, which are represented in Figure 1.2 (the beam splitter is assumed to be lossless). With a 50-50 beam splitter the configurations are equiprobable, meaning that if an experimentalist monitors the coincident detections of particles of the output channels, a coincidence should be found half of the time (corresponding to the two configurations at the top of Figure 1.2).

When considering a quantum treatment of this experiment, the situation is very different. First, if the photons are in the same mode 1 , 1: let us say the same polarisation, same frequency, and same spatial mode. and reach the beam splitter at the same date 𝑡, they are properly indiscernible and their labelling does not make any sense. To capture efficiently the notion of indiscernibility of particles in quantum formalism (and the subsequent notion of symmetry of the states) the best practice is to work with the second-quantisation (that is presented in details in [START_REF] Cohen-Tannoudji | Mécanique quantique -Tome 3. Savoirs Actuels[END_REF]). Denoting 𝑛, 𝑚⟩ in the state corresponding to 𝑛 photons [START_REF] Cohen-Tannoudji | Mécanique quantique -Tome 3. Savoirs Actuels[END_REF]: Cohen-Tannoudji et al. (2017), Mécanique quantique -Tome 3 placed at one of the inputs of the beam splitter and 𝑚 photons on the other one, the initial quantum state corresponding of the HOM experiment reads:

Ψ⟩ in = 1, 1⟩ in (1.1) Due to indiscernibility, the two configurations with crossed outputs represented at the top of Figure 1.2 are completely identical in quantum mechanics. With similar notations as before, the output state of the HOM experiment is a priori written as the following coherent superposition:

Ψ⟩ out = 𝛼 20 2, 0⟩ + 𝛼 11 1, 1⟩ + 𝛼 02 0, 2⟩ (1.2) 
where the hypothesis of absence of losses at the beam splitter has been used, and

𝛼 20 2 + 𝛼 11 2 + 𝛼 02 2 = 1 (1.3)
Now the spectacular result of the HOM effect is that if two indiscernible photons reach the beam splitter, the 𝛼 11 term turns out to be 1 Two-particle HOM effect 15 zero, and we end up with the output probabilities (with Born's rule):

𝛼 20 2 = 𝛼 02 2 = 1 2 (1.4)
Figure 1.4: Historical result of the HOM copied from [START_REF] Hong | Measurement of Subpicosecond Time Intervals between Two Photons by Interference[END_REF]. This profile is nowadays widely known as the "HOM dip". When the beam splitter is positioned such that both photons reach it at the same time, the coincident detections counting vanishes.

This not mathematically difficult to prove, and we will give a justification of this in the next subsection. For now let us just highlight the fact the HOM experiment reveals a quantum effect that is very different from the one that we presented in the two previous experiments. Indeed, in the first experiment of photon anti-correlation that we presented (Grangier et al.) the vanishing of the coincident detection probability was sourced by the particle-like nature of photons. On the contrary, in the case of the HOM effect, it is the destructive interference between the output probability amplitudes of the photons that imposes the two photons to leave the beam splitter on the same channel: it is therefore the manifestation of the wave-like nature of photons. Actually, HOM experiments probe the level of indiscernibility of the particles that interfere: this property is sometimes called purity, and it is a major concern in modern quantum optics [START_REF] Somaschi | Near-Optimal Single-Photon Sources in the Solid State[END_REF][START_REF] Wang | Towards optimal single-photon sources from polarized microcavities[END_REF]. First, let us offer some reminders about the representation of a beam splitter (BS), in the formalism of second quantisation. Since it will be also useful to Section 2 of this chapter, we will keep fairly general notations in this subsection.

Input and output channels of the BS, and the associated creation/annihilation operators, are written in compliance with Figure 1.5. Denoting 𝑣𝑎𝑐⟩ the vacuum state, and using the second quantisation we have:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑛 1 , 𝑛 2 ⟩ in = â 𝑛 1 1 â 𝑛 2 2 𝑛 1 ! 𝑛 2 ! 𝑣𝑎𝑐⟩ 𝑁 1 , 𝑁 2 ⟩ out = ̂𝑏 𝛮 1 1 ̂𝑏 𝛮 2 2 𝑁 1 ! 𝑁 2 ! 𝑣𝑎𝑐⟩ (1.5) (1.6)
In this manuscript, we will only consider perfect lossless beam splitters. At first glance this hypothesis may seem questionable: indeed, we will show in the next chapter that in our experiment the beam splitters are realised with short light pulses (performing Rabi coupling) and cannot have 100 % quantum efficiency. Nonetheless, it is useful to treat the problem with this assumption, because the defects of the beam splitter can be embedded into the finite quantum efficiency of the detectors. It does not make much of a difference to an experimentalist to know whether a particle was lost in the interferometer or during the detection. However, an accurate description of the lossy beam splitter would require the use of non-unitary operators, that could lead to lengthy calculations, without much interest for the current discussion.

In this chapter we will also ignore the internal degrees of freedom of the quantum particles 1 , and we assume that there is a perfect overlapping of 1: in the case of metastable helium, the internal state is obviously crucial, but we only propagate atoms polarised in the same 𝑚 = 0 magnetic sublevel in the interferometer. The assumption is therefore experimentally legitimate.

the spatial modes at the output of the beam splitter 2 . Thus, the notion 2: meaning that when a detector is placed at an output channel it cannot distinguish whether the particle has been emitted from the opposite side (and therefore transmitted accross the beam splitter), or reflected by the beam splitter.

of indistinguishability only relies on the difference of time of arrival of the particles onto the beamsplitter: two particles are indiscernible if they interact with the beam splitter at the same time.

The beam splitter is entirely characterised by the way it couples the modes â 𝑖∈{1,2} with the modes ̂𝑏𝑖∈{1,2} . Assuming the coupling to be linear, it turns out that the lossless hypothesis is enough to determine the nature of the transformation carried out by the beam splitter, thanks to Theorem 1 [START_REF] Campos | Quantum-Mechanical Lossless Beam Splitter: SU(2) Symmetry and Photon Statistics[END_REF]: We denote 𝑆 the linear operator representing the action of the beam splitter on the input modes: 2) is the group of unitary operators of degree 2.

b 1 b 2 = 𝑆 â 1 â 2 (1.7a) â 1 â 2 = 𝑆 † b 1 b 2 (1.7b) U(
The three following statements are equivalent:

1. 𝑆 ∈ U(2) 2. the number of particles is conserved i.e. 𝑛 1 + 𝑛 2 = 𝑁 1 + 𝑁 2 (1.8)
1 Two-particle HOM effect 17 (this is the conservation of energy) 3. the bosonic commutation relations are preserved:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ [ â 𝑖 , â † 𝑗 ] = [ ̂𝑏𝑖 , ̂𝑏 † 𝑗 ] = 𝛿 𝑖𝑗 [ â 1 , â 2 ] = [ ̂𝑏1 , ̂𝑏2 ] = 0 (1.9a) (1.9b)
𝑆 being unitary, its most general 2 × 2 matrix representation reads:

𝑆 ≡ 𝑒 𝑖𝜑 0 cos(𝜃)𝑒 𝑖𝜑 𝜏 sin(𝜃)𝑒 𝑖𝜑 𝜌 -sin(𝜃)𝑒 -𝑖𝜑 𝜌 cos(𝜃)𝑒 -𝑖𝜑 𝜏 ∈ U(2) (1.10)
The global phase 𝜑 0 does not play any role 1 so we can drop it without 1: at least in a simple scheme, with a single beam splitter, and no subsequent interferences after 𝑆.

loss of generality, leaving 𝑆 ∈ SU [START_REF] Kheruntsyan | Violation of the Cauchy-Schwarz Inequality with Matter Waves[END_REF].

It is also often convenient to introduce the transmittance 𝜏 and the reflectance 𝜌:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝜏 ≜ cos 2 (𝜃) 𝜌 ≜ sin 2 (𝜃) = 1 -𝜏
We can therefore represent the beam splitter in the Fock states bases, associated to the annihilation operators ( â 1 , â 2 ; ̂𝑏1 , ̂𝑏2 ), with the 2 × 2 matrix:

𝑆(𝜏, 𝜑 𝜏 , 𝜑 𝜌 ) ≡ √ 𝜏𝑒 𝑖𝜑 𝜏 √ 𝜌𝑒 𝑖𝜑 𝜌 - √ 𝜌𝑒 -𝑖𝜑 𝜌 √ 𝜏𝑒 -𝑖𝜑 𝜏 (1.11)
The coefficients of this matrix contain the amplitude of probabilities associated to the possible outcomes (transmission of reflection of each particle).

Derivation and interpretation of the two-particle HOM effect

In second quantisation We consider a 50-50 beam splitter ; with previous notations this means 𝜏 = 1 2 :

𝑆 = 1 √ 2 𝑒 𝑖𝜑 𝜏 𝑒 𝑖𝜑 𝜌 -𝑒 -𝑖𝜑 𝜌 𝑒 -𝑖𝜑 𝜏 (1.12)
we kept the phase terms for generality, but we will shortly see that they do not play any role in the HOM effect 2 . The input state reads 2: more generally, we will even see in Subsection 2.1.2 that they do not play any role when working with pure Fock states.

Ψ⟩ = 1, 1⟩ in = â † 1 â † 2 𝑣𝑎𝑐⟩ (1.13)
and the coupling of the modes via the beam splitter (1.7b) gives

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ â † 1 = 1 √ 2 𝑒 𝑖𝜑 𝜏 ̂𝑏 † 1 -𝑒 -𝑖𝜑 𝜌 ̂𝑏 † 2 â † 2 = 1 √ 2 𝑒 𝑖𝜑 𝜌 ̂𝑏 † 1 + 𝑒 -𝑖𝜑 𝜏 ̂𝑏 † 2 (1.14a) (1.14b) leading to â † 1 â † 2 = 1 2 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝑒 𝑖 𝜑 𝜏 +𝜑 𝜌 ̂𝑏 † 1 2 -𝑒 -𝑖 𝜑 𝜏 +𝜑 𝜌 ̂𝑏 † 2 2 + ̂𝑏 † 1 ̂𝑏 † 2 -̂𝑏 † 2 ̂𝑏 † 1 =0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (1.15)
in which the last two crossed terms cancel each other out since [ ̂𝑏1 , ̂𝑏2 ] = 0.

By denoting 𝜙 = 𝜑 𝜏 + 𝜑 𝜌 , we end up with:

Ψ⟩ = 1 √ 2 𝑒 𝑖𝜙 2, 0⟩ out -𝑒 -𝑖𝜙 0, 2⟩ out (1.16)
meaning that indeed, when the detectors are placed after the beam splitter, in each realisation there is a 50 % probability to detect two particles on either side, and zero probability to witness a coincident detection on both sides.

Remark 1.1 Let us emphasise the fact that this probabilistic result is completely independent of the phases 𝜑 𝜏 and 𝜑 𝜌 applied by the beam splitter.

The calculation was very quick, and it clearly shows that the HOM is resulting from a destructive interference between the creation operators ̂𝑏1 and ̂𝑏2 . Another way of interpreting this cancellation of the crossed detections, may be inspired by Feynman's prescription 1 :

1: this interpretation is actually suggested in the textbook of Gerry & Knight [START_REF] Gerry | Introductory Quantum Optics[END_REF].

Feynman's rule (simplified): In order to know the probability associated to a given outcome 𝐸 𝑓 of an experiment, one can add up the amplitude of probabilities associated to all the paths leading to 𝐸 𝑓 , and then take its square modulus.

Here the amplitude of probabilities is directly given by the matrix elements of 𝑆. Indeed by denoting 𝐴 𝛵 [𝑖 ∈ {1, 2}] the complex amplitude of probability that a particle placed at the input channel ch. in 𝑖 is transmitted, and 𝐴 𝑅 [𝑖] the complex amplitude of probability that it is 1 Two-particle HOM effect 19 reflected, we simply have:

𝑆 = 𝐴 𝛵 [1] 𝐴 𝑅 [2]
𝐴 𝑅 [START_REF] Reid | Violations of Classical Inequalities in Quantum Optics[END_REF] 𝐴 𝛵 [START_REF] Kheruntsyan | Violation of the Cauchy-Schwarz Inequality with Matter Waves[END_REF] (1.17)

Now in the HOM experiment, two paths could lead to a coincident detection of the particles on both outputs:

▶ both particles being transmitted across the beam splitter: the associated amplitude of probability is 𝐴 𝛵 [START_REF] Reid | Violations of Classical Inequalities in Quantum Optics[END_REF] × 𝐴 𝛵 [START_REF] Kheruntsyan | Violation of the Cauchy-Schwarz Inequality with Matter Waves[END_REF] ; ▶ both particles being reflected by the beam splitter: the associated amplitude of probability is 𝐴 𝑅 [START_REF] Reid | Violations of Classical Inequalities in Quantum Optics[END_REF] × 𝐴 𝑅 [START_REF] Kheruntsyan | Violation of the Cauchy-Schwarz Inequality with Matter Waves[END_REF] ;

regarding the matrix elements (1.12) of 𝑆, and applying Feynman's rule, the probability 𝑃 crossed of this event is :

𝑃 crossed = 𝐴 𝛵 [1]𝐴 𝛵 [2] + 𝐴 𝑅 [1]𝐴 𝑅 [2] 2 = 𝑒 𝑖𝜑 𝜏 𝑒 -𝑖𝜑 𝜏 -𝑒 -𝑖𝜑 𝜌 𝑒 𝑖𝜑 𝜌 𝑃 crossed = 0 (1.18)
We end up with the famous HOM effect again, but with the somehow more "physical" picture of a destructive interference between the paths heading to the crossed exit of the particles. Role of the symmetry of the bosonic wave function Previous derivations are satisfying, but the fact that we are dealing with indiscernible bosons did not appear clearly. Actually, in a sense, we could say it was "hidden" in the fact that we were using the second quantisation formalism, that contains by itself the symmetry of the states. To exhibit the crucial role of indiscernibility in the HOM effect, let us (for once) take a look at what happens in first quantisation formalism.

With the notations of Figure 1.6, we denote respectively ( 𝐴⟩ , 𝐵⟩) and ( 𝐶⟩ , 𝐷⟩) the input and output states of the beam splitter. The evolution operator 𝑆 of the 50-50 beam splitter is the same as before (it is actually the same as in classical wave optics). We already observed that the phase does not matter, so we will assume (for simplicity) that 𝑆 has the well known real form:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝑟, 𝑡 ∈ ℝ 𝑡 2 + 𝑟 2 = 1 𝑆 = 𝑡 𝑟 -𝑟 𝑡 (1.19)
If we do not pay attention to the indiscernibility of the particles, then the input state takes the form:

Ψ in ⟩ = 1 ∶ 𝐴⟩ ⊗ 2 ∶ 𝐵⟩ (1.20)
where the labellings 1 and 2 of the particles are clearly highlighted. The output state is simply obtained by the application of the evolution operator 𝑆 representing the action of the beam splitter:

Ψ out ⟩ = 𝑆 1 ∶ 𝐴⟩ ⊗ 𝑆 2 ∶ 𝐵⟩ = (𝑡 1 ∶ 𝐶⟩ -𝑟 1 ∶ 𝐷⟩) ⊗ (𝑟 2 ∶ 𝐶⟩ + 𝑡 2 ∶ 𝐷⟩) Ψ out ⟩ = 𝑡𝑟 1 ∶ 𝐶 ; 2 ∶ 𝐶⟩ + 𝑡 2 1 ∶ 𝐶 ; 2 ∶ 𝐷⟩ -𝑟 2 1 ∶ 𝐷 ; 2 ∶ 𝐶⟩ -𝑟𝑡 1 ∶ 𝐷 ; 2 ∶ 𝐷⟩ (1.21a) (1.21b) (1.21c)
We therefore have four distinct outcomes: this is the classical result that is depicted in Figure 1.2. When the beam splitter is 50-50, meaning

𝑟 = 𝑡 = 1 √ 2
, all outcomes are equiprobable, and we find a coincident detection at the output half of the time: there is no HOM effect. This scenario actually corresponds to what would happen if the two particles interact successively with the beam splitter, making them effectively distinguishable.

If we consider indiscernible bosons, the only input state that satisfies the symmetry of the two-particle wave function is:

Ψ in ⟩ = 1 √ 2 ( 𝐴⟩ 𝐵⟩ + 𝐵⟩ 𝐴⟩) (1.22)
then the output state reads:

Ψ out ⟩ = 1 √ 2 𝑆 𝐴⟩ 𝑆 𝐵⟩ + 𝑆 𝐵⟩ 𝑆 𝐴⟩ (1.23a) = 1 √ 2 (𝑡 𝐶⟩ -𝑟 𝐷⟩) (𝑟 𝐶⟩ + 𝑡 𝐷⟩) + (𝑟 𝐶⟩ + 𝑡 𝐷⟩) (𝑡 𝐶⟩ -𝑟 𝐷⟩) (1.23b) Ψ out ⟩ = 1 √ 2 2𝑟𝑡 𝐶, 𝐶⟩ + (𝑡 2 -𝑟 2 ) ( 𝐶, 𝐷⟩ + 𝐷, 𝐶⟩) -2𝑟𝑡 𝐷, 𝐷⟩ (1.23c) 
This final state is very different from the previous one. The first observation we can make, is that it involves a coherent superposition of only three symmetric two-particle states: 𝐶, 𝐶⟩, 𝐷, 𝐷⟩ and 1 √ 2

( 𝐶, 𝐷⟩ + 𝐷, 𝐶⟩), this is a consequence of the initial symmetrisation of the state: this has already been discussed in the first subsection.
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Secondly, when the beam splitter is symmetric we have 𝑟 2 -𝑡 2 = 0, thus the crossed term is zero, leading to

Ψ out ⟩ = 1 √ 2 𝐶, 𝐶⟩ + 𝐷, 𝐷⟩ (1.24) 
Once again, we find the HOM effect, written in first quantisation. With this approach, the role of the symmetry of the two-particle wave function is clearly visible.

Remark 1.2 (Fermionic anti-HOM effect) If we had considered fermions, the Pauli exclusion principle would have directly implied the coincident detections on both detectors, whatever the transmission coefficient 𝜏 of the beam splitter is! This is sometime called anti-HOM effect.

On the mathematical level, let us recall that the derivation of the formal expression of the beam splitter Eq. (1.11) required the use of the fact that we were considering bosons: it is wrong when considering fermions.

Classical limit

At this stage we have a fairly complete picture of what the quantum HOM effect is. However, we can still legitimately wonder if there a classical analogue to this phenomenon. In other words, we could wonder whether the HOM anti-correlation is the genuine signature of quantum effect.

Keeping the notations (𝐴, 𝐵, 𝐶, 𝐷) for the input and output ports, we can study what happens when we shine two coherent light fields (with the same frequency), with equal intensities 𝐼 0 = 𝐸 2 0 , at the entrance of the beam splitter. The corresponding complex amplitudes reads:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝐸 𝛢 (𝜑 𝛢 ) = 𝐸 0 𝑒 𝑖𝜑 𝛢 𝐸 𝛣 (𝜑 𝛣 ) = 𝐸 0 𝑒 𝑖𝜑 𝛣 (1.25a) (1.25b)
Considering the parametrisation (1.12) of the beam splitter, and setting 𝜙 = 𝜑 𝜏 + 𝜑 𝜌 , it is a very well-known result of classical wave optics that the two coherent fields interfere, and give the output intensities

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝐼 𝐶 (𝜙) = 2𝐼 0 cos 2 𝜑 𝛣 -𝜑 𝛢 + 𝜙 2 𝐼 𝐷 (𝜙) = 2𝐼 0 sin 2 𝜑 𝛣 -𝜑 𝛢 + 𝜙 2 (1.26a) (1.26b)
in this framework, the classical equivalent to the coincident detections of particles is given by the product of these intensities 1 :

1: sin 2 (𝑥) × cos 2 (𝑥) = 1 4 sin 2 (2𝑥) 𝐼 𝐶 (𝜙) ⋅ 𝐼 𝐷 (𝜙) = 𝐼 2 0 sin 2 (𝜑 𝛣 -𝜑 𝛢 + 𝜙) (1.27)
The major difference with quantum HOM effect is the phase dependence of above expression. Indeed, even though 𝐼 𝐶 ⋅ 𝐼 𝐷 can vanish with specific values of 𝜙, its quantum counterpart is zero whatever 𝜙 is.

In particular, with classical waves, the average value of the coincident counting rate is given by

1 𝐼 2 0 ⟨𝐼 𝐶 (𝜙) ⋅ 𝐼 𝐷 (𝜑)⟩ 𝜙 = 1 2 (1.28)
During an experiment, one can therefore randomise the phase 𝜙, and compare the coincident counting rate to the classical limit 1 2 calculated above. Below this value, the experiment reveals an authentic quantum effect. As it has been mentioned in the introduction, our team demonstrated in 2015 an atomic version of the HOM effect [START_REF] Lopes | An Atomic Hong-Ou-Mandel Experiment[END_REF] [8]: [START_REF] Lopes | An Atomic Hong-Ou-Mandel Experiment[END_REF], "An Atomic Hong-Ou-Mandel Experiment" . Let us quickly report here the main features and result of this experiment. More technical details about the atomic interferometer will be given in the following chapter, dealing with a similar experiment (testing a Bell inequality) that we would like to concretely set up in near future.

Experimental results with metastable helium

A schematic representation of the experiment is given in Figure 1. [START_REF] Bonneau | Tunable Source of Correlated Atom Beams[END_REF]. Additional details about the Bragg diffraction with a lattice are given in Chapter 2, and an even more complete study of this technique can be found in the PhD manuscript of Maxime Perrier [START_REF] Perrier | Interférences multiples avec atomes froids[END_REF] [60]: Perrier (2018), "Interférences multiples avec atomes froids" . The observable that is considered is the cross-correlation 𝐺 [START_REF] Kheruntsyan | Violation of the Cauchy-Schwarz Inequality with Matter Waves[END_REF] 𝑐𝑑 between both outputs of the beam splitter. By denoting 𝑁 𝑐 and 𝑁 𝑑 the number 1 Two-particle HOM effect 23 of atoms counted in time intervals (with a small width Δ𝑡) centred onto the arrival times corresponding respectively to the output modes 𝑐 and 𝑑 we have 1 1: actually in this paragraph we have simplified a lot what is actually done to the signal to compute the quantity 𝐺 [START_REF] Kheruntsyan | Violation of the Cauchy-Schwarz Inequality with Matter Waves[END_REF] 𝑐𝑑 : in addition to time filtering, there is also a spatial one. These details will be explained in Chapter 5, but they are not useful to understand the main meaning of the results that are presented in this subsection.

:

𝐺 (2) 𝑐𝑑 = ⟨𝑁 𝑐 ⋅ 𝑁 𝑑 ⟩ (1.29)
Contrary to the "pure" HOM experiment in which exactly two particles were emitted at each realisation, here, most of the time, no pair is emitted and the vacuum is detected on both sides of the beam splitter (a pair is emitted approximately 10 % of the time). In addition, the quantum efficiency of the detector was 𝜂 ≈ 25 %, reducing the amplitude of the obtained signal again, by an 𝜂 2 factor (since two particles must be detected).

The quantumness of the effect can however be estimated with the visibility 𝑉 of the HOM, which is nothing more than the contrast of the signal (as a function of the time 𝜏 = 𝑡 3 -𝑡 2 of application of the beam splitter):

𝑉 = max 𝜏 𝐺 (2) 
𝑐𝑑 (𝜏)min 𝜏 𝐺

(2)

𝑐𝑑 (𝜏) max 𝜏 𝐺 (2) 𝑐𝑑 (𝜏) (1.30)
At each experimental realisation, the beam splitter applies a phase 𝜙 that is intentionally randomised, so that the visibility can be compared to the classical threshold 𝑉 classical = 0.5.

The result of the experiment is presented in Figure 1.8. The team measured of visibility 𝑉 = 0.65 [START_REF] Bonneau | Tunable Source of Correlated Atom Beams[END_REF] beating the classical limit by more than two standard deviations. 

𝑐𝑑 as a function of time of application 𝜏 = 𝑡 3 -𝑡 2 of the beam splitter (cf. Figure 1.7). The HOM anti-correlations are maximal when 𝜏 ≈ 𝑡 2 -𝑡 1 . The red strip represents the classical limit 𝑉 = 0.5 to HOM dip (taking into account the experimental uncertainties). The limits 𝜏 ≲ 350 µs and 𝜏 ≳ 750 µs, where 𝐺 𝑐𝑑 does not reach the value of 0 can be explained by the contribution of some realisations where the total number of particles is larger than 2. 

G

N-particle HOM effect

The two-particle HOM experiment obtained in 2015 was an important milestone for our team. In addition to its scientific value, it is also a way of probing the quality of our atomic interferometer.

However, we can wonder whether we are able to extend the HOM experiment to a different regime, where more particles are involved and interfere at the beam splitter. We choose to call this generalised scenario 𝑛-particle Hong-Ou-Mandel (nHOM) experiments. The aim of this chapter's second section is to theoretically find a situation -achievable with our apparatus-in which the indiscernibility properties of a collection of particles lead to remarkable effects, and compare it to a classical situation. In this work, taking into account the finite quantum efficiency of the detectors will be crucial: we will see that it has a strong effect onto the expected signal. With the last improvements of our apparatus (cf. Chapter 4) this quantum efficiency is estimated to be roughly 50 %: we will use this value in the numerical calculations.

A first simple example of situation that could be considered is the one consisting in an input state that can be written 𝑛, 𝑛⟩ in with 𝑛 ≥ 2 (𝑛 = 1 being the "traditional" HOM experiment). This situation, where the input state is sometimes called a "twin-Fock state" has already been studied theoretically in [START_REF] Campos | Quantum-Mechanical Lossless Beam Splitter: SU(2) Symmetry and Photon Statistics[END_REF] and tested experimentally in [START_REF] Campos | Quantum-Mechanical Lossless Beam Splitter: SU(2) Symmetry and Photon Statistics[END_REF]: [START_REF] Campos | Quantum-Mechanical Lossless Beam Splitter: SU(2) Symmetry and Photon Statistics[END_REF], "Quantum-Mechanical Lossless Beam Splitter" quantum optics [START_REF] Yu Spasibko | Interference of Macroscopic Beams on a Beam Splitter: Phase Uncertainty Converted into Photon-Number Uncertainty[END_REF]. We will present the expected results of an HOM- However, we will see in Chapter 5 that our source does not directly provide such a state. Instead, our pair-creation process generates two separated atomic beams, that can be modelled with a so-called "twomode squeezed vacuum state (TMS)". The definition of this particular state will be reminded in Subsection 2.2.4, where we will study the interferences resulting of its use in a HOM-like experiment. It turns out that in certain aspects the two-mode squeezed state resembles another one, which is the "thermal" state. Even though the statistical properties of thermal states and TMSs are similar [START_REF] Perrier | Thermal Counting Statistics in an Atomic Two-Mode Squeezed Vacuum State[END_REF], these states are completely [START_REF] Perrier | Thermal Counting Statistics in an Atomic Two-Mode Squeezed Vacuum State[END_REF]: This study will however need some theoretical prerequisites, that are given in Subsection 2.1.

Theoretical generalities

Notations used

In order to simplify the notations, we will use the following convention:

Notation 1 When there is no ambiguity, we drop the "in" and "out" indices in the Dirac notation. Kets with capital letters will be referring to output channels. Likewise, kets with lowercase letters will refer to input channels: 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝑛 1 , 𝑛 2 ⟩ ≡ 𝑛 1 , 𝑛 2 ⟩ in 𝑁 1 , 𝑁 2 ⟩ ≡ 𝑁 1 , 𝑁 2 ⟩ out (1.
P𝑘 1 (𝑁) = ∞ ∑ 𝛮 2 =0 𝑃 k (𝑁 1 , 𝑁 2 ) (1.33) P𝑘 2 (𝑁) = ∞ ∑ 𝛮 1 =0 𝑃 k (𝑁 1 , 𝑁 2 ) (1.34)
If the situation is symmetric ( P𝑘 1 = P𝑘 2 ), we will simply write it P𝑘 .

Notation 4 (Conditional probabilities)

We use the standard writing 𝑃 out (𝑁 1 , 𝑁 1 𝑛 1 , 𝑛 1 ) to deal with the probability of finding the couple (𝑁 1 , 𝑁 2 ) at the output channels knowing that we have the couple (𝑛 1 , 𝑛 2 ) at the input channels.

Notation 5 (Finite quantum efficiency) When we need to take into account a finite quantum efficiency 𝜂, we simply add the index "𝜂": e.g. Pout 𝜂 (𝑁), 𝑃 𝜂 out (𝑁 1 , 𝑁 2 ) ...

Transformation of a quantum system by a beam splitter

Heisenberg and Schrödinger representations So far we have represented the beam splitter with an operator 𝑆 that transforms the creation/annihilation operators, the state vector of the system otherwise remaining fixed. We were thus working in a similar context as the Heisenberg picture. We could also consider the equivalent Schrödinger picture in order to study the effect of the beam splitter directly on a quantum system (either pure or not). We will need to introduce a different operator Ŝ, that acts on the kets of the infinite dimensional Fock space.

It is important to notice that even though they refer to the same physical object (i.e. the actual beam splitter), and involve the same number of degrees of freedom, 𝑆 and Ŝ are completely different mathematical entities. There is obviously an unequivocal relation between the two, which is provided by the Jordan-Schwinger map for the theory of quantum angular momentum in the Fock space [START_REF] Jordan | Der Zusammenhang der symmetrischen und linearen Gruppen und das Mehrkörperproblem[END_REF][START_REF] Schwinger | On angular momentum[END_REF].

[63]: [START_REF] Jordan | Der Zusammenhang der symmetrischen und linearen Gruppen und das Mehrkörperproblem[END_REF], "Der Zusammenhang der symmetrischen und linearen Gruppen und das Mehrkörperproblem" [START_REF] Schwinger | On angular momentum[END_REF]: [START_REF] Schwinger | On angular momentum[END_REF], "On angular momentum"
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We will not run through the full derivation of the analytical expression of the Schrödinger representation of the beam splitter, for which the interested reader will find more detailed explanations in the references [START_REF] Campos | Quantum-Mechanical Lossless Beam Splitter: SU(2) Symmetry and Photon Statistics[END_REF][START_REF] Yurke | SU(2) and SU(1,1) Interferometers[END_REF]. We will however give here some useful results. In the Jordan-Schwinger map, we introduce the angular-momenta operators:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ L1 = 1 2 â † 1 â 2 + â † 2 â 1 L2 = 1 2𝑖 â † 1 â 2 -â † 2 â 1 L3 = 1 2 â † 1 â 1 -â † 2 â 2 (1.35a) (1.35b) (1.35c)
for which it is very easy to check they satisfy the 𝔰𝔬(3) Lie algebra relations:

[ L𝑖 , L𝑗 ] = 𝑖𝜖 𝑖𝑗𝑘 L𝑘 (1.36)
Ŝ is defined without ambiguity by the relation:

̂𝑏𝑗 = Ŝ 𝜏, 𝜑 𝜏 , 𝜑 𝜌 â 𝑗 Ŝ † 𝜏, 𝜑 𝜏 , 𝜑 𝜌 (1.37) 
This leads to the analytical expression of Ŝ [START_REF] Campos | Quantum-Mechanical Lossless Beam Splitter: SU(2) Symmetry and Photon Statistics[END_REF]: [START_REF] Campos | Quantum-Mechanical Lossless Beam Splitter: SU(2) Symmetry and Photon Statistics[END_REF]: [START_REF] Campos | Quantum-Mechanical Lossless Beam Splitter: SU(2) Symmetry and Photon Statistics[END_REF], "Quantum-Mechanical Lossless Beam Splitter"

Ŝ 𝜏, 𝜑 𝜏 , 𝜑 𝜌 = 𝑒 -𝑖(𝜑 𝜏 -𝜑 𝜌 ) L3 𝑒 -2𝑖 arccos √ 𝜏 L2 𝑒 -𝑖(𝜑 𝜏 +𝜑 𝜌 ) L3 (1.38)
as well as its formal connection with 𝑆, since Eq. (1.38) is written so that the parameters (𝜏, 𝜑 𝜏 , 𝜑 𝜌 ) are the very same as those appearing in Eq. (1.11)!

We have now at our disposal a beam splitter operator that acts on the kets of the entire (and infinite dimensional) Fock space:

𝜓 out ⟩ = Ŝ † 𝜏, 𝜑 𝜏 , 𝜑 𝜌 𝜓 in ⟩ (1.39)
and, as usual in the Schrödinger picture, the transformation law of the modes is also known:

b 1 b 2 = Ŝ â 1 â 2 Ŝ † , â 1 â 2 = Ŝ † b 1 b 2 Ŝ (1.40)

Effect on a general density matrix

The most general description of a quantum system is provided by a density matrix. We will denote 𝜌 in and 𝜌 out the density matrices of the many-body system before and after interacting with the beam splitter. With the bosonic basis states, those matrices can be written:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ρin = ∞ ∑ 𝑛 1 ,𝑛 2 ,𝑛′ 1 ,𝑛′ 2 =0 𝜌 in (𝑛 1 , 𝑛 2 ; 𝑛′ 1 , 𝑛′ 2 ) 𝑛 1 , 𝑛 2 ⟩⟨𝑛′ 1 , 𝑛′ 2 ρout = ∞ ∑ 𝛮 1 ,𝛮 2 ,𝛮′ 1 ,𝛮′ 2 =0 𝜌 out (𝑁 1 , 𝑁 2 ; 𝑁′ 1 , 𝑁′ 2 ) 𝑁 1 , 𝑁 2 ⟩⟨𝑁′ 1 , 𝑁′ 2 (1.41a) (1.41b)
The diagonal components of the density matrix (the populations) contain information about the joint probability of a given couple of particles' numbers:

𝑃 in (𝑛 1 , 𝑛 2 ) = ⟨𝑛 1 , 𝑛 2 ρin 𝑛 1 , 𝑛 2 ⟩ 𝑃 out (𝑁 1 , 𝑁 2 ) = ⟨𝑁 1 , 𝑁 2 ρout 𝑁 1 , 𝑁 2 ⟩ (1.42) (1.43)
It is obviously the Ŝ(𝜏, 𝜑 𝜏 , 𝜑 𝜌 ) operator that relates ρout to ρin . It acts as an evolution operator, which means:

ρout = Ŝ † ρin Ŝ (1.44)
By re-injecting (1.41a), we can expand the matrix elements of ρout :

𝜌 out (𝑁 1 , 𝑁 2 ; 𝑁 ′ 1 , 𝑁 ′ 2 ) = ⟨𝑁 1 , 𝑁 2 ρout 𝑁 ′ 1 , 𝑁 ′ 2 ⟩ (1.45) = ⟨𝑁 1 , 𝑁 2 Ŝ † ρin Ŝ 𝑁 ′ 1 , 𝑁 ′ 2 ⟩ (1.46) = ∞ ∑ 𝑛 1 ,𝑛 2 ,𝑛 ′ 1 ,𝑛 ′ 2 =0 𝜌 in (𝑛 1 , 𝑛 2 ; 𝑛 ′ 1 , 𝑛 ′ 2 ) ⟨𝑁 1 , 𝑁 2 Ŝ † 𝑛 1 , 𝑛 2 ⟩ 𝑆 (𝑛 1 ,𝑛 2 ) 𝛮 1 ,𝛮 2 ⟨𝑛 ′ 1 , 𝑛 ′ 2 Ŝ 𝑁 ′ 1 , 𝑁 ′ 2 ⟩ 𝑆 (𝑛 ′ 1 ,𝑛 ′ 2 ) 𝛮 ′ 1 ,𝛮 ′ 2 * (1.47)
where we have introduced the matrix elements 𝑆

(𝑛 1 ,𝑛 2 ) 𝛮 1 ,𝛮 2 of Ŝ † .
Let us take a look at the different exponential terms in Eq. (1.38): they do not share the same kind of contribution when applied to a Fock state. Indeed, the two exponentials of L3 contribute to a phase shift, while the exponential of L2 performs a rotation in the Fock space, and as we shall shortly see, the latter plays a crucial role in our topic of interest. Keeping this in mind, it is worth rewriting the matrix elements of Ŝ † so that those two types of contribution appear explicitly [START_REF] Campos | Quantum-Mechanical Lossless Beam Splitter: SU(2) Symmetry and Photon Statistics[END_REF]: [START_REF] Campos | Quantum-Mechanical Lossless Beam Splitter: SU(2) Symmetry and Photon Statistics[END_REF]: [START_REF] Campos | Quantum-Mechanical Lossless Beam Splitter: SU(2) Symmetry and Photon Statistics[END_REF], "Quantum-Mechanical Lossless Beam Splitter"

𝑆 (𝑛 1 ,𝑛 2 ) 𝛮 1 ,𝛮 2 = ⟨𝑁 1 , 𝑁 2 𝑒 2𝑖 arccos √ 𝜏 L2 𝑛 1 , 𝑛 2 ⟩ × 𝑒 𝑖 𝜑 𝜏 (𝛮 1 -𝑛 2 )+𝜑 𝜌 (𝛮 1 -𝑛 1 ) (1.48)
Now, Ŝ being unitary, all the terms in the sum (1.47) that do not satisfy the conservation of particles (1.8) are zero. 𝑁 1 and 𝑁 2 being fixed, we can simplify the quadruple sum into a double sum 1 , and after a last 1: with 𝑛 2 = 𝛮 1 + 𝛮 2 -𝑛 1 and

𝑛 2 ′ = 𝛮 1 + 𝛮 2 -𝑛 1 ′
reindexing step, we end up with the most general form for the joint output probability distribution:

Theorem 2 (Output probabilities for a general input)

Considering a beam splitter represented by an operator Ŝ ∈ SU(2), and a general density matrix ρin at the input channels of this beam splitter,

with ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑁 = 𝑁 1 + 𝑁 2 𝑛 2 = 𝑁 -𝑛 1 𝑅 (𝑛 1 ,𝑛 2 ) 𝛮 1 ,𝛮 2 ≜ ⟨𝑁 1 , 𝑁 2 𝑒 2𝑖 arccos √ 𝜏 L2 𝑛 1 , 𝑛 2 ⟩ 𝛾 𝑘 (𝑁 1 , 𝑁 2 ) ≜ 𝛮 ∑ 𝑛 1 =0 𝑅 (𝑛 1 ,𝑛 2 ) 𝛮 1 ,𝛮 2 𝑅 (𝑛 1 +𝑘,𝑛 2 -𝑘) 𝛮 1 ,𝛮 2 𝜌 in (𝑛 1 , 𝑛 2 ; 𝑛 1 + 𝑘, 𝑛 2 -𝑘)
we have:

𝑃 out (𝑁 1 , 𝑁 2 ) = 𝛮 ∑ 𝑘=-𝛮 𝛾 𝑘 (𝑁 1 , 𝑁 2 )𝑒 -𝑖𝑘 𝜑 𝜏 -𝜑 𝜌 (1.49)
Let us finish this quite lengthy work with a couple of remarks:

1. it is important to realise that (1.49) is not a useless (although elegant) expression of the joint probability distribution: it can be used for numerical computation. It only requires a formula for the 𝑅

(𝑛 1 ,𝑛 2 ) 𝛮 1 ,𝛮 2
(given in the following paragraph) ; 2. in this case, which was intended to be kept as general as possible, we observe on Eq. (1.49) that the phase difference 𝜑 𝜏 -𝜑 𝜌 is important. That being said, some special cases exists, where it does not play any role. For instance, with a "pure" statistical mixture -meaning a diagonal density operator-only the 𝑘 = 0 term is non-zero, and we have

𝑃 out (𝑁 1 , 𝑁 2 ) = 𝛮 ∑ 𝑛 1 =0 𝑃 in (𝑛 1 , 𝑛 2 ) 𝑅 (𝑛 1 ,𝑛 2 ) 𝛮 1 ,𝛮 2 2 𝑃 out (𝑁 1 , 𝑁 2 𝑛 1 , 𝑛 2 ) (1.50)
The interpretation of this equation is very clear: without coherence between the different terms of the input state, there is no interference contribution and we simply sum the conditional probabilities.

Pure Fock states are a particular case of diagonal density operator, and therefore phases are also of no consequence for their resulting output probabilities 1 . We will give additional details 1: it would not be true in the case of a pure state which is not a number state.

about it in the following paragraph.

Fock states at the input In Theorem 2, we have quite surreptitiously introduced the quantity 𝑅

(𝑛 1 ,𝑛 2 ) 𝛮 1 ,𝛮 2
. The previous equation (1.50) revealed that it is actually the amplitude of probability to measure 𝑁 1 , 𝑁 2 ⟩ out at the output, knowing that we have 𝑛 1 , 𝑛 2 ⟩ in at the input. Indeed, in the scenario of a pure Fock state 𝑛 1 , 𝑛 2 ⟩ at the input, we have

𝜌 in (𝑛′ 1 , 𝑛′ 2 ; 𝑛″ 1 , 𝑛″ 2 ) = 𝛿 𝑛′ 1 𝑛 1 𝛿 𝑛′ 2 𝑛 2 𝛿 𝑛 ″ 1 𝑛 1 𝛿 𝑛 ″ 2 𝑛 2
(1.51) (𝛿 𝑗 𝑖 being the usual Kronecker symbol), ρin is therefore diagonal in the Fock basis (with just a single 1 somewhere on the diagonal). We are left with the simplest possible case, with just a single element in (1.49) which is not zero, which gives

𝑃 out (𝑁 1 , 𝑁 2 ) = 𝑃 out (𝑁 1 , 𝑁 2 𝑛 1 , 𝑛 2 ) = 𝑅 (𝑛 1 ,𝑛 2 ) 𝛮 1 ,𝛮 2 2 (1.52)
At this stage, we understand the great importance of the 𝑅 coefficients. We have an analytical expression thereof [START_REF] Campos | Quantum-Mechanical Lossless Beam Splitter: SU(2) Symmetry and Photon Statistics[END_REF], as a function of the beam [START_REF] Campos | Quantum-Mechanical Lossless Beam Splitter: SU(2) Symmetry and Photon Statistics[END_REF]: [START_REF] Campos | Quantum-Mechanical Lossless Beam Splitter: SU(2) Symmetry and Photon Statistics[END_REF], "Quantum-Mechanical Lossless Beam Splitter" splitter's transmittance:

𝑅 (𝑛 1 ,𝑛 2 ) 𝛮 1 ,𝛮 2 = 𝑛 1 ∑ 𝑘=0 (-1) 𝑛 1 -𝑘 𝑁 1 𝑘 𝑁 2 𝑛 1 -𝑘 𝑛 1 𝑘 𝑛 2 𝑁 1 -𝑘 𝜏 2𝑘+𝑛 2 -𝛮 1 (1 -𝜏) 𝑛 1 +𝛮 1 -2𝑘 (1.53)
Interesting alternative expressions of 𝑅

(𝑛 1 ,𝑛 2 ) 𝛮 1 ,𝛮 2
, involving Jacobi and Gegenbauer polynomials can be found in reference [START_REF] Campos | Quantum-Mechanical Lossless Beam Splitter: SU(2) Symmetry and Photon Statistics[END_REF], though Eq. (1.53) is enough for numerical evaluations.

N-particle HOM effect 31

It also satisfies useful symmetry relations:

(𝑛 2 ≤ 𝑁 1 < 𝑛 1 ) ⇒ 𝑅 (𝑛 1 ,𝑛 2 ) 𝛮 1 ,𝛮 2 = (-1) 𝛮 1 -𝑛 1 𝑅 (𝛮 1 ,𝛮 2 ) 𝑛 1 ,𝑛 2 (1.54a) (𝑛 1 ≤ 𝑁 1 < 𝑛 2 ) ⇒ 𝑅 (𝑛 1 ,𝑛 2 ) 𝛮 1 ,𝛮 2 = 𝑅 (𝛮 2 ,𝛮 1 ) 𝑛 2 ,𝑛 1 (1.54b) (𝑁 1 < 𝑛 1 , 𝑛 2 ) ⇒ 𝑅 (𝑛 1 ,𝑛 2 ) 𝛮 1 ,𝛮 2 = (-1) 𝛮 1 -𝑛 1 𝑅 (𝑛 2 ,𝑛 1 ) 𝛮 2 ,𝛮 1 (1.54c)
This is interesting since most of the inputs that we will consider will be symmetric, and therefore this symmetry will hold at the output! The set of equations (1.54) combined with Eq. (1.52) indeed gives:

𝑃 out (𝑁 1 , 𝑁 2 𝑛 1 , 𝑛 2 ) = 𝑃 out (𝑁 2 , 𝑁 1 𝑛 2 , 𝑛 1 ) (1.55)
whatever transmittance 𝜏 is.

Classification of the interference patterns for different input states

We are now mathematically equipped to undertake the study of the joint output probability distribution, in various scenarios. Just as in the original 2-particles HOM effect, the matter of the discernibility of the quantum systems that we set at the input will necessarily be discussed, as it completely changes the results. The problem of the finite quantum efficiency will also be considered.

The cases of the twin-Fock states, and the coherent states have already been studied before, and can found in the literature. However, as far as we know, the results that we will demonstrate concerning the thermal, and two-mode squeezed states are new.

Twin-Fock states and mixing with vacuum

We shall begin with the study of the interference effects of twin-Fock states on a beam splitter. Those states reads 𝑛, 𝑛⟩ in . Even though we are not technically able to prepare those states in our experiment, many result that will establish here will be re-used in the more complex contexts that follows. It will also be sort of an introduction to calculations methods that we will use again afterwards 1 

50-50 beam splitter

Considering pure Fock states at the input, in the specific case for which we have 𝑛 1 = 𝑛 2 = 𝑛, and with a 50-50 beam splitter, we can do better than the Eq. (1.53). Indeed, the number of particles probability distribution assumes the form:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑃 out (2𝑘, 2𝑛 -2𝑘) = 1 2 𝑛 2𝑘 𝑘 2𝑛 -2𝑘 𝑛 -𝑘 𝑃 out (2𝑘 + 1, 2𝑛 -2𝑘 -1) = 0 (1.56)
The situation is completely symmetric, and all the physics can be described by restricting ourselves to the marginal distribution Pout (which are the same on both channels). A numerical example is given in Figure 1.9. We can highlight two remarkable properties for the distribution of probability Eq. (1.56):

1. The asymmetrical outputs are much more probable than the other ones (for instance 0, 2𝑛⟩ and 2𝑛, 0⟩ are the most likely output states). This is a manifestation of bosons' herd instinct: they tend to leave the beam splitter on the same side, just as in the two-photon HOM effect case. That distinctive feature explains why this distribution is traditionally named U-shape distribution (or sometimes discrete arcsine law). 2. Perhaps even more surprisingly, odd output numbers are forbidden! Just like in the two-particle HOM effect, this is a consequence of the symmetry of the input many-body bosonic wavefunction.

Remark 1.3

Regarding the second property above, we could be tempted to define a parity operator (e.g. as in references [START_REF] Bollinger | Optimal Frequency Measurements with Maximally Correlated States[END_REF][START_REF] Gerry | Heisenberg-Limit Interferometry with Four-Wave Mixers Operating in a Nonlinear Regime[END_REF] [66]: [START_REF] Bollinger | Optimal Frequency Measurements with Maximally Correlated States[END_REF], "Optimal Frequency Measurements with Maximally Correlated States" [START_REF] Gerry | Heisenberg-Limit Interferometry with Four-Wave Mixers Operating in a Nonlinear Regime[END_REF]: [START_REF] Gerry | Heisenberg-Limit Interferometry with Four-Wave Mixers Operating in a Nonlinear Regime[END_REF], "Heisenberg-Limit Interferometry with Four-Wave Mixers Operating in a Nonlinear Regime"

)

P ≜ (-1) Ν = exp(𝑖𝜋 ̂𝑏 † ̂𝑏) (1.57)
and study its expectation values to evaluate the indistinguishability of the particles at the input. However, it is not something we will be able to observe with our atomic apparatus. So far we have implicitly assumed to have an ideal detector, that can count the correct number of particles with 100 % probability. In our experiment we use a detector with roughly 50 % detectivity, and we can easily convince ourselves that information about parity vanishes extremely fast with non-perfect quantum efficiency! This effect is visible in Figure 1.12. Dependence with the reflectivity Eventually, it is interesting to investigate the effect of the reflection/transmission coefficients to the output probabilities. Without the 𝜌 = 𝜏 hypothesis, the analytical simplifications are no longer possible, and we are left with Eq. (1.53) to perform numerical calculations.

Nonetheless, we can have in mind the physical picture for which the 50-50 beam splitter maximises the mixing between modes â 1 and â 2 , and therefore quantum interference effects. We have already observed (Figure 1.9) that the output probability distribution for the 50-50 beam splitter is quite broad. On the other hand, in the limiting cases for which 𝜏 = 0 or 𝜏 = 1, the two input modes are completely independent, and we trivially have the state 𝑛, 𝑛⟩ 𝑜𝑢𝑡 at the output with 100 % probability.

Thus, it is quite natural to think that 𝜏 has a significant effect on the width of the distribution. Concerning the mean number of particles detected, as long as we keep a twin-Fock state 𝑛, 𝑛⟩ 𝑖𝑛 , each detector will measure 𝜏 × 𝑛 + (1 -𝜏) × 𝑛 = 𝑛 particles on average: in fact Eq. (1.55) with 𝑛 1 = 𝑛 2 = 𝑛 directly implies the symmetry of the output probability distribution (which is a stronger result). For given 𝑛 and 𝜏, we define the width of the distribution with its standard deviation: The problem of the finite detectivity Let us imagine the experiment described in Figure 1.11. Following notation 5, we will denote Pout 𝜂 the marginal probability distribution after detection.

𝜎 𝑛 (𝜏) = 2𝑛 ∑ 𝛮=0 (𝑁 -𝑛)
Assuming that an experimental run returns the number 𝑁, due to detection losses, many situations could have led to it:

▶ the experimentalist could have been lucky, and detected the 𝑁 particles exactly scattered by the beam splitter into the observed channel, without losing a single one. The probability 𝑝 0 of such an event is simple:

𝑝 0 = Pout (𝑁) × 𝜂 𝛮
▶ the beam splitter could have scattered 𝑁 + 1 particles in the observed channel, and one of those were lost at the detection: the probability for a particle not to be detected is (1 -𝜂). Any of the 𝑁 + 1 particles could have been lost, therefore there is 𝑁 + 1 possibilities for this scenario. The associated probability is

𝑝 1 = (𝑁 + 1) × Pout (𝑁 + 1) × 𝜂 𝛮 × (1 -𝜂)
▶ more generally, the beam splitter could have scattered 𝑁 + 𝑞 particles towards the detector, which only counted 𝑁 of those. The number of possibilities in such a case is obviously combinatorial:

𝑝 𝑞 = 𝑁 + 𝑞 𝑞 × Pout (𝑁 + 𝑞) × 𝜂 𝛮 × (1 -𝜂) 𝑞
We are now back to the 50-50 beam splitter case. As it has just been mentioned in the previous remark, if we want a proper prediction of the expected experimental signal, we must take into account the finite quantum efficiency 𝜂 of the detector. It is clear that we simply have Pout 𝜂 (𝑁) = ∑ 𝑞 𝑝 𝑞 which gives the formula:

Pout 𝜂 (𝑁) = 2𝑛-𝛮 ∑ 𝑞=0 Pout (𝑁 + 𝑞) 𝜂 𝛮 (1 -𝜂) 𝑞 𝑁 + 𝑞 𝑞 (1.59)
where we recall that Pout (𝑁) is the discrete arcsine law (1.56), which is well-known. Some numerical examples are plotted in Figure 1.12. We can notice how fast the visibility of evenness of the output state washes out when 𝜂 decreases.

Distinguishable case: mixing with the vacuum In the previous paragraph, we examined a situation where the particles at the input of the beam splitter were perfectly indiscernible. Once again, in our study's framework it mainly means three things:

1. the particles are of the same kind (e.g. same atoms, same elementary particles...) ; 2. the particles share the same internal state (e.g. same frequency for photons, same atomic state...) ; 3. the particles have the same spatial wave function ; 4. the particles at both input channels interact with the beam splitter simultaneously ;
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We have already discussed that the latter item is often the most important one, in the prospect of an experiment. The delay between the interactions of both inputs with the beam splitter is generally the parameter of control of the degree of indiscernibility in the experiment. It actually makes sense: if two particles arrive on the beam splitter at very different times, they cannot be considered indiscernible since we could label them "first one" and "second one".

When interacting with the beam splitter, the two modes of the twin-Fock state are therefore perfectly indiscernible. The analogous scenario with complete discernibility between the two input modes would be to send 𝑛 particles on ch. in 1 , wait some time, send 𝑛 particles on ch. in 2 , and look at the resulting output probabilities. Hence, the input states of interest are 𝑛, 0⟩ in and 0, 𝑛⟩ in .

There is no quantum interference here, 𝑃 out (𝑁 1 , 𝑁 2 𝑛, 0) is actually just a biased 1 Bernoulli trial [68] situation that can be treated classically. With a perfect detector Again, if no particles are lost during the detection, we can restrict ourselves to the marginal probability distribution, since 𝑁 2 = 𝑛 -𝑁 1 . The solution of the Bernoulli trial problem is well known:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ Pout (𝑁 ∈ 0, 𝑛 𝑛, 0) = 𝑛 𝑁 𝜏 𝛮 (1 -𝜏) 𝑛-𝛮 Pout (𝑁 ∈ 0, 𝑛 0, 𝑛) = 𝑛 𝑁 𝜏 𝑛-𝛮 (1 -𝜏) 𝛮 (1.60a) (1.60b)
they are of course equal for a 50-50 beam splitter.

The final output probability distribution is then obtained by summing all the cases for which the total number of particles received by the detector is equal to 𝑁, weighed by the crossed probability:

Pout (𝑁 ∈ 0, 2𝑛 ) = 𝛮 ∑ 𝛮 ′ =0 Pout (𝑁 ′ 𝑛, 0) ⋅ Pout (𝑁 -𝑁 ′ 0, 𝑛) (1.61) with Pout (𝑁 ′ > 𝑛 𝑛, 0) = Pout (𝑁 -𝑁 ′ < 0 0, 𝑛) = 0
It is very clear -with the numerical example in Figure 1.13-that this distribution is completely different from the one resulting from the interferences of indiscernible twin-Fock states. We notice that the indiscernible distribution is much wider: it is in fact quite general, when making indiscernible bosons interfere on a 50-50 beam splitter we expect 

With a finite quantum efficiency

We can now apply the same type of trick as in the paragraph 1 to take into account the finite detectivity. We can see in Figure 1.14 that even with a realistic detector, the distinguishable and indiscernible cases remain very different.

Coherent states

In the rest of this chapter we will deal with distributions consisting in infinite quantum superpositions of Fock states ∑ 𝑛≥0 𝑎 𝑛 𝑛⟩, and study the resulting interference pattern after interaction with a 50-50 beam splitter.

In order to be able to discuss the quantum nature of an output probability distribution, it is interesting to first take a look at what happens in a semi-classical context, provided by Glauber's coherent states [START_REF] Glauber | The Quantum Theory of Optical Coherence[END_REF][START_REF] Glauber | Coherent and Incoherent States of the Radiation Field[END_REF]. At the end of the chapter, we will discuss the relevant observable [START_REF] Glauber | The Quantum Theory of Optical Coherence[END_REF]: Glauber (1963), "The Quantum Theory of Optical Coherence" [START_REF] Glauber | Coherent and Incoherent States of the Radiation Field[END_REF]: Glauber (1963), "Coherent and Incoherent States of the Radiation Field"

to use so as to distinguish a quantum state from a semi-classical state. 

𝜓⟩ = 𝛼 √ 𝜏𝑒 𝑖𝜑 𝜏 + 𝛽 √ 𝜌𝑒 𝑖𝜑 𝜌 ⟩ ̂𝑏1 𝛽 √ 𝜏𝑒 -𝑖𝜑 𝜏 -𝛼 √ 𝜌𝑒 -𝑖𝜑 𝜌 ⟩ ̂𝑏2 (1.62)
Proof We consider a general beam splitter, with the notation of Eq. (1.11) for its parametrisation. Let us first consider two coherent states 𝛼⟩ â1 and 𝛽⟩ â 2 , placed at the inputs of a beam splitter, and let us write 𝜓⟩ the corresponding ket. We denote 𝒩 = exp(-

𝛼 2 + 𝛽 2 2
) the normalisation factor.

𝜓⟩ 𝒩 = 𝛼⟩ â1 𝛽⟩ â 2 𝒩 = exp(𝛼 â † 1 -𝛼 * â 1 ) exp(𝛽 â † 2 -𝛽 * â 2 ) 𝑣𝑎𝑐⟩
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[𝛼 â † 1 -𝛼 * â 1 , 𝛽 â † 2 -𝛽 * â 2 ]
= 0, we can therefore merge the exponentials, and express the inner terms in the ̂𝑏 modes basis:

= exp 𝛼[ √ 𝜏𝑒 𝑖𝜑 𝜏 ̂𝑏 † 1 - √ 𝜌𝑒 -𝑖𝜑 𝜌 ̂𝑏 † 2 ] -𝛼 * [ √ 𝜏𝑒 -𝑖𝜑 𝜏 ̂𝑏1 - √ 𝜌𝑒 𝑖𝜑 𝜌 ̂𝑏2 ] + 𝛽[ √ 𝜌𝑒 𝑖𝜑 𝜌 ̂𝑏 † 1 + √ 𝜏𝑒 -𝑖𝜑 𝜏 ̂𝑏 † 2 ] -𝛽 * [ √ 𝜌𝑒 -𝑖𝜑 𝜌 ̂𝑏1 + √ 𝜏𝑒 𝑖𝜑 𝜏 ̂𝑏2 ] 𝑣𝑎𝑐⟩ ∀(𝑥, 𝑦) ∈ ℂ 2 , [𝑥 ̂𝑏 † 1 -𝑥 * ̂𝑏1 , 𝑦 ̂𝑏 † 2 -𝑦 * ̂𝑏2 ]
= 0, we therefore re-factorise the expression above, and split the exponential:

= exp 𝛼 √ 𝜏𝑒 𝑖𝜑 𝜏 + 𝛽 √ 𝜌𝑒 𝑖𝜑 𝜌 ̂𝑏 † 1 -𝛼 * √ 𝜏𝑒 -𝑖𝜑 𝜏 + 𝛽 * √ 𝜌𝑒 -𝑖𝜑 𝜌 ̂𝑏1 × exp 𝛽 √ 𝜏𝑒 -𝑖𝜑 𝜏 -𝛼 √ 𝜌𝑒 -𝑖𝜑 𝜌 ̂𝑏 † 2 -𝛽 * √ 𝜏𝑒 𝑖𝜑 𝜏 -𝛼 * √ 𝜌𝑒 𝑖𝜑 𝜌 ̂𝑏2 𝑣𝑎𝑐⟩
and we identify two coherent states, with respect to the output modes (the normalisation factor is the same):

𝜓⟩ = 𝛼 √ 𝜏𝑒 𝑖𝜑 𝜏 + 𝛽 √ 𝜌𝑒 𝑖𝜑 𝜌 ⟩ ̂𝑏1 𝛽 √ 𝜏𝑒 -𝑖𝜑 𝜏 -𝛼 √ 𝜌𝑒 -𝑖𝜑 𝜌 ⟩ ̂𝑏2 ∎ Definition 1 (Poisson distribution)
The discrete probability distribution of Poisson with mean value 𝜆 is given by:

𝛲 𝑝 (𝑛; 𝜆) ≜ 𝑒 -𝜆 𝜆 𝑛 𝑛! (1.63)
its standard deviation is also 𝜆.

This is a fairly strong result, but it is not surprising either: classical states are stable under the action of a beam splitter. Thus, the output probabilities are Poisson distributions.

In particular, in the symmetric beam splitter case, the joint probability distribution is:

𝑃 out (𝑁 1 , 𝑁 2 ) = 𝑃 𝑝 ⎛ ⎜ ⎝ 𝑁 1 ; 𝛼𝑒 𝑖𝜑 𝜏 + 𝛽𝑒 𝑖𝜑 𝜌 2 2 ⎞ ⎟ ⎠ 𝑃 𝑝 ⎛ ⎜ ⎝ 𝑁 2 ; 𝛽𝑒 -𝑖𝜑 𝜏 -𝛼𝑒 -𝑖𝜑 𝜌 2 2 ⎞ ⎟ ⎠ (1.64) = 𝑃 𝑝 𝑁 1 ; ⟨𝑛 1 ⟩ + 𝐼 𝛼,𝛽 [Δ𝜑] 𝑃 𝑝 𝑁 2 ; ⟨𝑛 1 ⟩ -𝐼 𝛼,𝛽 [Δ𝜑] (1.65) 
where:

▶ ⟨𝑛 1 ⟩ = ⟨ ̂𝑛1 ⟩+⟨ ̂𝑛2 ⟩ 2
is the single-channel average number of particles; ▶ Δ𝜑 = 𝜑 𝜏 -𝜑 𝜌 is the relative phase; ▶ 𝐼 𝛼,𝛽 [Δ𝜑] = ℜ(𝛼𝛽 * 𝑒 𝑖Δ𝜑 ) is the interference term;

In fact, all of this is just a modern rewriting of Michelson's interferometer physics. In particular, just like in the classical version of the two-particle HOM effect, we find a phase dependence of the joint probability distribution. We will see in Subsection 2.2.4 that this is not the case with a TMS state. During an experiment, one could therefore test the effect of the phase to check the classical nature of state that is involved.

What would happen in a distinguishable case? Just as it was done previously with the Fock states, we should study the successive mixing of each of the two coherent states with the vacuum, and then sum up all of their possible combinations.

Vacuum is just the coherent state with average value 0, so the mixing with vacuum of a coherent state is very simple, since the interference term is 0. We denote 𝑃 1𝛼 out output distribution after mixing of the coherent state 𝛼⟩ with the vacuum. Since the beam splitter is symmetric, the input channel choice does not matter. so, with Eq. (1.65)

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑃 1𝛼 out (𝑁 1 , 𝑁 2 ) = 𝑃 𝑝 𝑁 1 ; 𝛼 2 2 𝑃 𝑝 𝑁 2 ; 𝛼 2 2 𝑃 1𝛽 out (𝑁 1 , 𝑁 2 ) = 𝑃 𝑝 𝑁 1 ; 𝛽 2 2 𝑃 𝑝 𝑁 2 ; 𝛽 2 2 (1.66a) (1.66b) 
then we just have:

𝑃 out (𝑁 1 , 𝑁 2 ) = 𝛮 1 ∑ 𝛮 ′ 1 =0 𝛮 2 ∑ 𝛮 ′ 2 =0 𝑃 1𝛼 out (𝑁 ′ 1 , 𝑁 ′ 2 )𝑃 1𝛽 out (𝑁 1 -𝑁 ′ 1 , 𝑁 2 -𝑁 ′ 2 ) (1.67) = Σ ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 𝛮 1 ∑ 𝛮 ′ 1 =0 𝑃 𝑝 𝑁 ′ 1 ; 𝛼 2 2 𝑃 𝑝 𝑁 1 -𝑁 ′ 1 ; 𝛽 2 2 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ × ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 𝛮 2 ∑ 𝛮 ′ 2 =0 𝑃 𝑝 𝑁 ′ 2 ; 𝛼 2 2 𝑃 𝑝 𝑁 2 -𝑁 ′ 2 ; 𝛽 2 2 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ (1.68)
now we can simplify both sums, e.g.:

Σ = 𝑒 -𝛼 2 + 𝛽 2 2 1 2 𝛮 1 𝛮 1 ∑ 𝛮 ′ 1 =0 𝛼 2𝛮 ′ 1 𝛽 2(𝛮 1 -𝛮 ′ 1 ) 𝑁 ′ 1 ! (𝑁 1 -𝑁 ′ 1 )! (1.69)
we identify a binomial identity

= 𝑒 -𝛼 2 + 𝛽 2 2 1 𝑁 1 ! 𝛼 2 + 𝛽 2 2 𝛮 1
(1.70)
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𝑃 out (𝑁 1 , 𝑁 2 ) = 𝑃 𝑝 𝑁 1 ; 𝛼 2 + 𝛽 2 2 𝑃 𝑝 𝑁 2 ; 𝛼 2 + 𝛽 2 2 (1.71) = 𝑃 𝑝 𝑁 1 ; ⟨𝑛 1 ⟩ 𝑃 𝑝 𝑁 2 ; ⟨𝑛 1 ⟩ (1.72)
this is very similar to Eq. (1.65), but with the interference term being 0 (which is reasonable). We actually added intensities: everything works as if we were considering sources to be incoherent between them. This is also exactly the result (1.65) when the phase is randomised during an experiment. 

With a finite quantum efficiency

= (𝜂𝜈) 𝑛 𝑛! 𝑒 -𝜈 ∞ ∑ 𝑚=𝑛 [(1 -𝜂)𝜈] 𝑚-𝑛 (𝑚 -𝑛)!
we can make the sum start from 𝑚 = 0:

= (𝜂𝜈) 𝑛 𝑛! 𝑒 -𝜈 ∞ ∑ 𝑚=0 [(1 -𝜂)𝜈] 𝑚 𝑚! 𝑒 (1-𝜂)𝜈 𝑃 𝜂 𝑝 (𝑛; 𝜈) = 𝑃 𝑝 (𝑛; 𝜂𝜈) ∎ 40 1 Hong-Ou-Mandel effect
Thus, the simple transformation

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝛼 ↦ √ 𝜂 𝛼 𝛽 ↦ √ 𝜂 𝛽
leads to the corresponding joint probability distribution, taking into account the finite quantum efficiency of the detector.

Thermal states

Before treating the case of the TMS state (which is for us the most important one), let us take a look at the thermal one, which has close statistical properties. By "thermal" we actually refer to states for which the probability 𝑃(𝑛) to measure 𝑛 particles follows the Boltzmann distribution.

Definition 2 (Thermal state) We call thermal a monomode state consisting in the following statistical mixture:

ρ 𝑡ℎ = (1 -𝛼 2 ) ∞ ∑ 𝑛=0 𝛼 2𝑛 𝑛⟩⟨𝑛 , ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝛼 ∈ ℂ 𝛼 < 1 (1.73)
We have indeed

𝑃 𝑡ℎ (𝑛) = (1 -𝛼 2 ) 𝛼 2𝑛 (1.74)
and 𝛼 2 is sometimes called effective temperature 1 . It is very easy to 1: because it can be assimilated to the Bolztmann factor: 𝛼 2 ∼ 𝑒 -𝛽𝛦 , in the Boltzmann distribution of statistical mechanics. 𝑛 would play the role of the energy, which is also consistent. check that the average population 𝜈 of a thermal state is:

𝜈 = 𝛼 2 1 -𝛼 2 (1.75)
and reciprocally

𝛼 = 𝜈 1 + 𝜈 (1.76)
It is equally easy to prove that its local second-order degree of coherence is equal to 2:

⟨𝑛 2 ⟩ -⟨𝑛⟩ ⟨𝑛⟩ 2 = 𝑔 (2) 𝑙𝑜𝑐 = 2 (1.77)
In fact, the 𝑛 th -order local correlation function of a thermal source is known [START_REF] Liu | N th -Order Coherence of Thermal Light[END_REF] and given by 2 N-particle HOM effect 41 Remark 1. [START_REF] Wasak | Cauchy-Schwarz Inequality for General Measurements as an Entanglement Criterion[END_REF] We will see later that this particular property of the local correlations is also true with two-mode squeezed states. This is a major difference with semi-classical coherent states, where the correlation function is known to be equal to one.

The second difference being the statistics itself: the coherent state has a Poissonian statistics, whereas that of thermal states is a power law.

We often prefer to write the probability distribution in terms of the average population:

𝑃 𝑡ℎ (𝑛) = 𝜈 𝑛 (1 + 𝜈) 𝑛+1
(1.79)

Let us now investigate what happens when we make thermal states interfere:

Indiscernible case The scenario of two indiscernable thermal states is complex to treat analytically.

With a perfect detector

The corresponding density matrix reads:

ρ = ∞ ∑ 𝑛,𝑚=0 𝑃 𝑡ℎ (𝑛)𝑃 𝑡ℎ (𝑚) 𝑛! 𝑚! ( â † 1 ) 𝑛 ( â † 2 ) 𝑚 0⟩⟨0 ( â 1 ) 𝑛 ( â 2 ) 𝑚 (1.80)
then we must express the parameters of the beam splitter to expand â 𝑖 and â † 𝑖 in terms of ̂𝑏𝑖 and ̂𝑏 † 𝑖 . The density matrix is not diagonal, therefore the probability distribution a priori depends on the phase (cf. Theorem 2). Thus we should take into account the phases 𝜑 𝜏 and 𝜑 𝜌 of the beam splitter during the expansion:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ â 1 = 1 √ 2 𝑒 -𝑖𝜑 𝜏 ̂𝑏1 -𝑒 𝑖𝜑 𝜌 ̂𝑏2 â 2 = 1 √ 2 𝑒 -𝑖𝜑 𝜌 ̂𝑏1 + 𝑒 𝑖𝜑 𝜏 ̂𝑏2 (1.81a) (1.81b)
The calculations being rather heavy, we will just give here a summary of what happens when they are done:

▶ the binomial expansion of the â 𝑖 and â † 𝑖 terms adds four finite sums to the expression:

ρ = ∞ ∑ 𝑛,𝑚=0 𝑛 ∑ 𝑝 1 ,𝑝 2 =0 𝑚 ∑ 𝑞 1 ,𝑞 2 =0 (⋯) (1.82)
Many phase terms are present. ▶ then, the joint probability is given by 𝑃 out (𝑁 1 , 𝑁 2 ) = ⟨𝑁 1 , 𝑁 2 ρ 𝑁 1 , 𝑁 2 ⟩, which provides the additional conditions:

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑚 + 𝑚 = 𝑁 1 + 𝑁 2 𝑝 1 + 𝑞 1 = 𝑁 1 𝑝 2 + 𝑞 2 = 𝑁 1 (1.83a) (1.83b) (1.83c)
Therefore, three (out of six) sums disappear. Thankfully all the phase terms cancel out. ▶ the remaining sums are still difficult to compute (I did not found a satisfying final simplification). However, if we study particular cases we find:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑃 out (0, 𝑁) = 1 (1 + 𝜈) 2 𝜈 1 + 𝜈 𝛮 = 𝑃 𝑡ℎ (0)𝑃 𝑡ℎ (𝑁) 𝑃 out (1, 𝑁) = 1 (1 + 𝜈) 2 𝜈 1 + 𝜈 𝛮+1 = 𝑃 𝑡ℎ (1)𝑃 𝑡ℎ (𝑁) 𝑃 out (2, 𝑁) = 1 (1 + 𝜈) 2 𝜈 1 + 𝜈 𝛮+2 = 𝑃 𝑡ℎ (2)𝑃 𝑡ℎ (𝑁) (1.84a) (1.84b) (1.84c)
𝑃 𝜂 out (0, 𝑁) is easy to compute (the binomial sums are trivial), 𝑃 𝜂 out (1, 𝑁) and 𝑃 𝜂 out (2, 𝑁) are more difficult (there are some nontrivial sums to compute) but it is still doable.

With the pattern of equations (1.84), we can make the fairly solid conjecture that

𝑃 out (𝑁 1 , 𝑁 2 ) ? = 𝑃 𝑡ℎ (𝑁 1 )𝑃 𝑡ℎ (𝑁 2 ) (1.85)
If it is true, everything works as if no beam splitter were present... It is not surprising to find no phase dependence, as the thermal states are the quantum analogue of incoherent fields. We have plotted this profile in Figure 1.15.

This distribution is wider than in the distinguishable case (which is not surprising when dealing with indiscernible boson). But the most remarkable feature of this joint distribution is that it is separable, and that the probability of a given outcome depends only on the total number of detected particles. Indeed:

𝑃 out (𝑁 1 , 𝑁 2 ) = 1 1 + 𝜈 𝑃 𝑡ℎ (𝑁 1 + 𝑁 2 ) (1.86)
We will see in the subsection dedicated to the treatment of TMS states that this property does not hold: this is a distinction criterion between the TMS state (entangled) and the thermal states (not entangled).

With a finite quantum efficiency

We have seen in the paragraph above that when two indiscernible thermal distributions of particles interfere on a beam splitter, they behave as if no beam splitter were present. We can therefore solve the question of the finite efficiency very quickly by using the following property of thermal states:

Theorem 5 (Stability of the thermal distribution with finite detectivity)

We consider the thermal distribution of average population 𝜈. The corresponding distribution taking into account the finite quantum efficiency 𝜂 of the detector:

1. is also thermal 44 [START_REF] Reid | Violations of Classical Inequalities in Quantum Optics[END_REF] Hong-Ou-Mandel effect

its average population is 𝜂𝜈

Proof first let us recall two useful mathematical identities

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ d 𝑛 𝑥 𝑚 d𝑥 𝑛 = 𝑚! (𝑚 -𝑛)! 𝑥 𝑚-𝑛 d 𝑛 d𝑥 𝑛 1 1 -𝑥𝑦 = 𝑛! 𝑦 𝑛 (1 -𝑥𝑦) 𝑛+1 (1.87a) (1.87b) 𝑃 𝜂 𝑡ℎ (𝑛) = ∞ ∑ 𝑚=𝑛 𝑚 𝑛 𝜂 𝑛 (1 -𝜂) 𝑚-𝑛 𝜈 𝑚 (1 + 𝜈) 𝑚+1 using (1.87a) with 𝑥 = (1 -𝜂): = 𝜂 𝑛 𝑛! 1 1 + 𝜈 ∞ ∑ 𝑚=𝑛 d 𝑛 d(1 -𝜂) 𝑛 (1 -𝜂) 𝑚 𝜈 1 + 𝜈 𝑚
we can make the sum start from 𝑚 = 0 since the first terms would be 0 due to the derivative. We can then switch the sum and the derivative (because the series is geometric):

= 𝜂 𝑛 𝑛! 1 1 + 𝜈 d 𝑛 d(1 -𝜂) 𝑛 1 1 -(1 -𝜂) 𝜈 1+𝜈
and finally, using (1.87b):

𝑃 𝜂 𝑡ℎ (𝑛) = (𝜂𝜈) 𝑛 (1 + 𝜂𝜈) 𝑛+1

∎

The resulting joint probability distribution is therefore the same as before (with a perfect detector), just doing the transformation

𝜈 ↦ 𝜂𝜈

Distinguishable case

The scenario of distinguishable thermal states is simpler.

With a perfect detector As usual, the first thing to do in the distinguishable case is to study the effect of the mixing of a thermal state with the vacuum. We work in the Heisenberg picture. The corre-2 N-particle HOM effect 45 sponding density operator reads:

ρ = ∞ ∑ 𝑛=0 𝑃 𝑡ℎ (𝑛) 𝑛⟩ â1 ⟨𝑛 â1 ⊗ 0⟩ â 2 ⟨0 â 2 (1.88)
and we denote 𝑃 1 out (𝑁 1 , 𝑁 2 ) the output probability distribution.

𝑃 1 out (𝑁 1 , 𝑁 2 ) = ̂𝑏1 ̂𝑏2 ⟨𝑁 1 𝑁 2 ρ 𝑁 1 , 𝑁 2 ⟩ ̂𝑏1 ̂𝑏2 (1.89)
ρ is a diagonal density operator, thus we already know 1 that the phases 1: with the second remark on Theorem 2 of the beam splitter will not contribute to the output probabilities. We can take 𝜑 𝜏 = 0 and 𝜑 𝜌 = 𝜋 to simplify the calculations. Therefore, using

â 1 = 1 √ 2 ̂𝑏1 + ̂𝑏2 (1.90)
we can rewrite ρ in the ̂𝑏-modes basis:

ρ = ∞ ∑ 𝑛=0 𝑃 𝑡ℎ (𝑛) 2 𝑛 𝑛! ̂𝑏 † 1 + ̂𝑏 † 2 𝑛 0⟩⟨0 ̂𝑏1 + ̂𝑏2 𝑛 (1.91) = ∞ ∑ 𝑛=0 𝑃 𝑡ℎ (𝑛) 2 𝑛 𝑛! 𝑛 ∑ 𝑘,𝑝=0 𝑛 𝑘 𝑛 𝑝 ̂𝑏 † 1 𝑘 ̂𝑏 † 2 𝑛-𝑘 0⟩⟨0 ̂𝑏1 𝑝 ̂𝑏2 𝑛-𝑝 (1.92) = ∞ ∑ 𝑛=0 𝑃 𝑡ℎ (𝑛) 2 𝑛 𝑛! 𝑛 ∑ 𝑘,𝑝=0 𝑛 𝑘 𝑛 𝑝 𝑘! 𝑝! (𝑛 -𝑘)! (𝑛 -𝑝)! 𝑘, 𝑛 -𝑘⟩⟨𝑝, 𝑛 -𝑝 (1.93)
we inject this in Eq. (1.89), the scalar products gives 𝑘 = 𝑝 = 𝑁 1 and 𝑛 = 𝑁 1 + 𝑁 2 . We find:

𝑃 1 out (𝑁 1 , 𝑁 2 ) = 𝑃 𝑡ℎ (𝑁 1 + 𝑁 2 ) 2 𝛮 1 +𝛮 2 (𝑁 1 + 𝑁 2 )! 𝑁 1 + 𝑁 2 𝑁 1 2 𝑁 1 ! 𝑁 2 ! (1.94) 𝑃 1 out (𝑁 1 , 𝑁 2 ) = 𝑃 𝑡ℎ (𝑁 1 + 𝑁 2 ) 2 𝛮 1 +𝛮 2 𝑁 1 + 𝑁 2 𝑁 1 (1.95)
The total probability distribution in the distinguishable case is given by the sum of the results when we repeat a mixing with vacuum experiment twice: Thanks to Vandermonde's identity 1 , we can check that:

𝑃 out (𝑁 1 , 𝑁 2 ) = 𝛮 1 ∑ 𝑛 1 =0 𝛮 2 ∑ 𝑛 2 =0 𝑃 1 out (𝑛 1 , 𝑛 2 )𝑃 1 out (𝑁 1 -𝑛 1 , 𝑁 2 -𝑛 2 ) (1.96) = 𝛮 1 ∑ 𝑛 1 =0 𝛮 2 ∑ 𝑛 2 =0 𝑛 1 + 𝑛 2 𝑛 1 𝑁 1 + 𝑁 2 -𝑛 1 -𝑛 2 𝑁 1 -𝑛 1 1 2 𝛮 1 +𝛮 2 1 (1 + 𝜈) 2 𝜈 1 + 𝜈 𝛮 1 +𝛮 2 (1.
1: Vandermonde's identity is 𝑝 ∑ 𝑘=0 𝑚 𝑘 𝑛 𝑝 -𝑘 = 𝑚 + 𝑛 𝑝 (1.98) 𝛮 1 ∑ 𝑛 1 =0 𝛮 2 ∑ 𝑛 2 =0 𝑛 1 + 𝑛 2 𝑛 1 𝑁 1 + 𝑁 2 -𝑛 1 -𝑛 2 𝑁 1 -𝑛 1 = (1 + 𝑁 1 + 𝑁 2 ) 𝑁 1 + 𝑁 2 𝑁 1
(1.99) giving:

𝑃 out (𝑁 1 , 𝑁 2 ) = (1 + 𝑁 1 + 𝑁 2 )! 𝑁 1 ! 𝑁 2 ! 1 2 𝛮 1 +𝛮 2 1 (1 + 𝜈) 2 𝜈 1 + 𝜈 𝛮 1 +𝛮 2 (1.100)
As always, a numerical example is provided in Figure 1.16. As expected for a distinguishable case, the distribution is quite narrow, and symmetric.

With a finite quantum efficiency

The fundamental relation to take the finite detectivity effect into account is still:

𝑃 𝜂 out (𝑁 1 , 𝑁 2 ) = ∞ ∑ 𝑚 1 =𝛮 1 ∞ ∑ 𝑚 2 =𝛮 2 𝑚 1 𝑁 1 𝑚 2 𝑁 2 𝜂 𝛮 1 +𝛮 2 (1-𝜂) 𝑚 1 +𝑚 2 -𝛮 1 -𝛮 2 𝑃 out (𝑚 1 , 𝑚 2 )
(1.101) which is a priori very difficult to calculate. Actually, it turns out that it can be simplified. So far we have always considered the losses to occur after the interaction with the beam splitter, and before the detection stage, but with our model -which does not take into account the details of the losses mechanism -we are completely allowed to consider the losses to occur even before the application of the beam splitter. In that case, the fact that we are dealing with two independent statistical mixtures, and the stability of the thermal distribution with a finite quantum efficiency (Theorem 8) ensures that the treatment of the problem is equivalent to the one with perfect detectors, just replacing the average population of both distribution 𝜈 by 𝜂𝜈. Therefore:

𝑃 𝜂 out (𝑁 1 , 𝑁 2 ; 𝜈) = 𝑃 out (𝑁 1 , 𝑁 2 ; 𝜂𝜈) (1.102)
We also checked -using a symbolic computation software such as Wolfram Mathematica © -that this simplification also occurs by "naively" computing Eq. (1.101). We finally verified numerically that Eq. (1.102) makes sense concerning the mean number of particles that are measured: if we measure 2 × 𝜈 particles on average with a perfect detector, 2 × 𝜂𝜈 should be measured on average with a detector of quantum efficiency 𝜂.

Two-mode squeezed vacuum state

Motivation As it will be discussed in Chapter 5, our experimental platform offers the opportunity to generate correlated atomic multimode fields, for which we expect to witness strong nonclassical effects.

In particular, the model that we generally use to describe what our atomic source is producing is the "two-mode squeezed vacuum state (TMS)" [START_REF] Gerry | Introductory Quantum Optics[END_REF][START_REF] Heidmann | Observation of Quantum Noise Reduction on Twin Laser Beams[END_REF], which is defined as follows:

[52]: 

TMS⟩ = 1 -𝛼 2 ∞ ∑ 𝑛=0 𝛼 𝑛 𝑛⟩ 𝑎 𝑛⟩ 𝑏 , ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝛼 ∈ ℂ 𝛼 < 1 (1.103)
Such a state is obviously entangled, and it involves two modes that can be spatially separated.

If one traces over one of the two modes, it trivially leads to a thermal state (power law) of parameter 𝛼.

It is perfectly feasible to reproduce the analogue of the HOM experiment (discussed in the first section of this chapter) but replacing the two individual atoms -placed at the inputs of the beam splitter-by the two entangled modes 𝑎 and 𝑏 of a TMS. One can notice that a TMS is actually a coherent superposition of many twin Fock states, weighted by coefficients following a thermal distribution. Therefore, the output probability distribution resulting of the interferences of a TMS is simply given by the sum of those obtained with twin-Fock states, correctly weighted.

Probability distribution of a TMS (no BS)

Before diving into the calculation of the expected results of a HOM-like experiment performed with a TMS, there is a first interesting calculation that we can consider: what distribution of probability do we expect if we measure a TMS with a finite quantum efficiency detector? This question is of special interest for us because even if we have theoretical reasons to believe that our source is indeed emitting two-mode squeezed states 1 , it 1: those arguments will be given in Chapter 5

is crucial to gather a maximum of experimental clues indicating that it is indeed the case, as well as the validity range of this model. Some of these clues are using the correlations properties of a TMS: those will be discussed and presented in Chapter 5. The statistical distribution of the number of atoms detected when the TMS is measured directly is another clue.

If the quantum efficiency is perfect, this probability distribution is trivial: Born's rule for expectation values, applied to (1.103), immediately gives

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝑃(𝑛, 𝑛) = (1 -𝛼 2 ) 𝛼 2𝑛 𝑃(𝑛 1 , 𝑛 2 ≠ 𝑛 1 ) = 0 (1.104a) (1.104b)
There is is a perfect correlation between the number of atoms (a visualisation of this distribution is given in Figure 1.20a on page 54).

We can give an analytical expression to the probability distribution taking into account the finite quantum efficiency of the detector. However, to do this we will need to introduce two rather unusual 2 func-2: in physics at least... tions:
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Definition 4 (Rising factorial) We call "rising factorial" (or "Pochhammer function") the function defined by:

ℂ → ℂ 𝑧 ↦ 𝑧 𝑛 = 𝑧(𝑧 + 1)(𝑧 + 2)⋯(𝑧 + 𝑛 -1)

𝑛 terms

The rising factorial being defined, we can introduce the hypergeometric functions:

Definition 5 (Hypergeometric function) We call "hypergeometric function" and denote 2 𝐹 1 the complex function defined by:

2 𝐹 1 ∶ {𝑧 ∈ ℂ 𝑧 < 1} → ℂ 𝑧 ↦ 2 𝐹 1 (𝑎, 𝑏; 𝑐; 𝑧) = ∞ ∑ 𝑛=0 𝑎 𝑛 𝑏 𝑛 𝑐 𝑛 𝑧 𝑛 𝑛!
At first sight, the above-mentioned definition may seem a bit pointless, since it involves an infinite summation. In fact, it is very useful for numerical evaluation, because it is well implemented in computational libraries (for example scipy in Python Python) allowing for very fast calculations.

Then we have:

Theorem 6 (Probability distribution of a TMS)

Considering a TMS with an average population per mode 𝜈

= 𝛼 2 1-𝛼 2 .
When measured with a detector of finite quantum efficiency, the probability 𝑃 𝜂 (𝑛 1 , 𝑛 2 ) to count 𝑛 1 particles in the first mode and 𝑛 2 particles in the second mode is symmetric, and given by:

𝑃 𝜂 (𝑛 1 , 𝑛 2 < 𝑛 1 ) = (1 -𝛼 2 ) 𝛼 2𝑛 1 𝜂 𝑛 1 +𝑛 2 (1 -𝜂) 𝑛 1 -𝑛 2 × 𝑛 1 𝑛 2 2 𝐹 1 (𝑛 1 + 1, 𝑛 1 + 1; 𝑛 1 -𝑛 2 + 1; (1 -𝜂) 2 𝛼 2 )
(1.105)

Figure 1.17: Expected joint probability distribution of a TMS state, when it is measured directly (no beam splitter).

Here the average population per mode is 𝜈 = 2 and the detectivity 𝜂 = 0.5.

We can notice the remarkable property 𝛲 𝜂 (1, 1) > 𝛲 𝜂 (0, 1) = 𝛲 𝜂 (1, 0). This is a legacy of the "diagonal" shape of this distribution when we consider the bare TMS state (i.e. 𝜂 = 1, cf. Figure 1.20a). Proof As usual:

𝑃 𝜂 (𝑛 1 , 𝑛 2 ) = ∞ ∑ 𝑚 1 =𝑛 1 ∞ ∑ 𝑚 2 =𝑛 2 𝑚 1 𝑛 1 𝑚 2 𝑛 2 𝜂 𝑛 1 +𝑛 2 (1 -𝜂) 𝑚 1 +𝑚 2 -𝑛 1 -𝑛 2 𝑃(𝑚 1 , 𝑚 2 )
the symmetry of the above expression immediately gives 𝑃 𝜂 (𝑛 1 , 𝑛 2 ) = 𝑃 𝜂 (𝑛 2 , 𝑛 1 ), so let us assume 𝑛 1 ≥ 𝑛 2 . Due to (1.104), we can restrict the double summation to the 𝑚 1 = 𝑚 2 = 𝑚 domain, and since 𝑚 ≥ max(𝑛 1 , 𝑛 2 ) = 𝑛 1 we have:

𝑃 𝜂 (𝑛 1 , 𝑛 2 ) = ∞ ∑ 𝑚=𝑛 1 𝑚 𝑛 1 𝑚 𝑛 2 𝜂 𝑛 1 +𝑛 2 (1 -𝜂) 2𝑚-𝑛 1 -𝑛 2 (1 -𝛼 2 ) 𝛼 2𝑚 = 𝜂 𝑛 1 +𝑛 2 (1 -𝛼 2 ) ∞ ∑ 𝑚=𝑛 1 (𝑚!) 2 (1 -𝜂) 2𝑚-𝑛 1 -𝑛 2 𝛼 2𝑚 𝑛 1 ! 𝑛 2 !(𝑚 -𝑛 1 )!(𝑚 -𝑛 2 )!
we can put the constant term on the left, and re-index the sum:

𝑃 𝜂 (𝑛 1 , 𝑛 2 ) 𝜂 𝑛 1 +𝑛 2 (1 -𝛼 2 ) = ∞ ∑ 𝑚=0 [(𝑛 1 + 𝑚)!] 2 𝑛 1 ! 𝑛 2 ! 𝑚! (𝑚 + 𝑛 1 -𝑛 2 )! (1 -𝜂) 2𝑚+𝑛 1 -𝑛 2 𝛼 2𝑚+2𝑛 1 2 N-particle HOM effect 51
to keep simple notations we set:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑧 = (1 -𝜂) 2 𝛼 2 Π = 𝑃 𝜂 (𝑛 1 , 𝑛 2 ) 𝜂 𝑛 1 +𝑛 2 (1 -𝛼 2 )(1 -𝜂) 𝑛 1 -𝑛 2 𝛼 2𝑛 1 leaving Π = ∞ ∑ 𝑚=0 [(𝑛 1 + 𝑚)!] 2 𝑛 1 ! 𝑛 2 ! (𝑚 + 𝑛 1 -𝑛 2 )! 𝑢 𝑚 𝑧 𝑚 𝑚!
regarding Definition 5 of hypergeometric functions we are almost done, we just need to give 𝑢 𝑛 the appropriate shape. Let us notice that

(𝑛 1 + 𝑚)! = 𝑛 1 ! × (𝑛 1 + 1) × ⋯ × 𝑛 1 + 𝑚 = 𝑛 1 !(𝑛 1 + 1) 𝑛
and therefore also

(𝑚 + 𝑛 1 -𝑛 2 )! = (𝑛 1 -𝑛 2 )!(𝑛 1 -𝑛 2 + 1) 𝑛 𝑢 𝑛 = (𝑛 1 + 1) 𝑛 (𝑛 1 + 𝑚)! 𝑛 2 ! (𝑛 1 -𝑛 2 )!(𝑛 1 -𝑛 2 + 1) 𝑛 = 𝑛 1 𝑛 2 (𝑛 1 + 1) 𝑛 (𝑛 1 -𝑛 2 + 1) 𝑛 (𝑛 1 + 𝑚)! 𝑛 1 ! 𝑢 𝑛 = 𝑛 1 𝑛 2 (𝑛 1 + 1) 𝑛 2 (𝑛 1 -𝑛 2 + 1) 𝑛
and putting the pieces together we have:

Π = 𝑛 1 𝑛 2 2 𝐹 1 (𝑛 1 + 1, 𝑛 1 + 1; 𝑛 1 -𝑛 2 + 1; 𝑧)
We just have to use 𝛼 2 = 𝜈 1 + 𝜈 to recover the expression Eq. (1.105). ∎

We give a visualisation of this probability distribution in Figure 1.17.

Obtaining it experimentally is feasible, but requires a lot of statistical averaging. In Chapter 5 we will perform the complete analysis of a dataset that we recently obtained. Unfortunately the statistics (∼ 800 files) is not large enough to obtain a faithful picture of the distribution calculated above. In a near future we will be able to gather data again, and hopefully obtain enough statistics to evaluate the measured 𝑃 𝜂 (𝑛 1 , 𝑛 2 ). However, we will see that we were able to measure experimentally the marginal distribution. Now in the following paragraphs, we will study the probability distributions resulting from the interaction of the two modes of the TMS with a beam splitter. In the indistinguishable case, the two modes are mixed with each other, giving birth to interferences. In the distinguishable case each of the two modes is mixed with the vacuum, one interaction following the other. We will always assume the beam splitter to be 50-50.

Interferences on a beam splitter: indiscernible case

With a perfect detector If we assume the beam splitter to be symmetric , the two-mode output probability distribution can be calculated exactly:

Theorem 7 (Output probability distribution for a TMS state interfering at a 50-50 beam splitter)

Given (𝑄 𝑛 ) the sequence defined by:

𝑘 ∈ ℕ, ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑄 2𝑘 = 1 -𝛼 2 𝛼 2 2𝑘 (2𝑘)! 𝑘! 2 𝑄 2𝑘+1 = 0 (1.106)
we have: 

𝑃 out (𝑁 1 , 𝑁 2 ) = 𝑄 𝛮 1 ⋅ 𝑄 𝛮 2 (1.107)
∑ 𝑛=0 𝑛 ∑ 𝑚=0 • = ∞ ∑ 𝑚=0 ∞ ∑ 𝑛=𝑚 • = ∞ ∑ 𝑚=0 ∞ ∑ 𝑝=𝑛-𝑚=0
• Proof Following the notations introduced in Eq. (1.11) for the matrix representation of the beam splitter, we have:

̂𝑆 † = 1 √ 2 𝑒 -𝑖𝜑 𝜏 -𝑒 𝑖𝜑 𝜌 𝑒 -𝑖𝜑 𝜌 𝑒 𝑖𝜑 𝜏
which therefore gives the fundamental coupling relations:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ â 1 = 1 √ 2 𝑒 -𝑖𝜑 𝜏 ̂𝑏1 -𝑒 𝑖𝜑 𝜌 ̂𝑏2 â 2 = 1 √ 2 𝑒 -𝑖𝜑 𝜌 ̂𝑏1 + 𝑒 𝑖𝜑 𝜏 ̂𝑏2 2 N-particle HOM effect 53 therefore, since [ ̂𝑏1 , ̂𝑏2 ] = 0: â † 1 â † 2 = 1 2 𝑒 𝑖 𝜑 𝜏 +𝜑 𝜌 ( ̂𝑏 † 1 ) 2 -𝑒 -𝑖 𝜑 𝜏 +𝜑 𝜌 ( ̂𝑏 † 2 ) 2 + ̂𝑏 † 1 ̂𝑏 † 2 -̂𝑏 † 2 ̂𝑏 † 1 = 1 2 𝑒 𝑖𝜙 ( ̂𝑏 † 1 ) 2 -𝑒 -𝑖𝜙 ( ̂𝑏 † 2 ) 2
where we have introduced

𝜙 = 𝜑 𝜏 + 𝜑 𝜌
then we can express the TMS in the ̂𝑏 modes basis. Indeed, starting with its definition (1.103) in which we inject Eq. (1.5):

TMS⟩

1 -𝛼 2 = ∞ ∑ 𝑛=0 𝛼 𝑛 𝑛, 𝑛⟩ = ∞ ∑ 𝑛=0 𝛼 𝑛 𝑛! 2 𝑛 𝑒 𝑖𝜙 ( ̂𝑏 † 1 ) 2 -𝑒 -𝑖𝜙 ( ̂𝑏 † 2 ) 2 𝑛 𝑣𝑎𝑐⟩ = ∞ ∑ 𝑛=0 𝑛 ∑ 𝑚=0 𝛼 2 𝑛 1 𝑛! 𝑛 𝑚 × 𝑒 𝑖𝑚𝜙 ( ̂𝑏 † 1 ) 2𝑚 𝑒 𝑖(𝑛-𝑚)(𝜋-𝜙) ( ̂𝑏 † 2 ) 2(𝑛-𝑚) TMS⟩ 1 -𝛼 2 = ∞ ∑ 𝑛=0 𝑛 ∑ 𝑚=0 𝛼 2 𝑛 1 𝑚!(𝑛 -𝑚)! × 𝑒 𝑖𝑚𝜙 ( ̂𝑏 † 1 ) 2𝑚 𝑒 𝑖(𝑛-𝑚)(𝜋-𝜙) ( ̂𝑏 † 2 ) 2(𝑛-𝑚)
Then we transform the double summation with the little trick explained graphically in Figure 1.18:

TMS⟩ = 1 -𝛼 2 ∞ ∑ 𝑚,𝑝=0 𝛼 2 𝑚+𝑝 𝑒 𝑖𝜙 ( ̂𝑏 † 1 ) 2 𝑚 𝑚! 𝑒 𝑖(𝜋-𝜙) ( ̂𝑏 † 2 ) 2 𝑝 𝑝! 𝑣𝑎𝑐⟩
Thus written in the output modes basis, the TMS has the remarkable property of being a separable state! With a finite quantum efficiency Even with finite detectivity, the distribution remains separable:

TMS⟩ = 𝜓 out 1 ⟩ ⊗ 𝜓 out 2 ⟩ with ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝜓 out 1 ⟩ = 1 -𝛼 2 1 4 ∞ ∑ 𝑛=0 𝛼 2 𝑛 (2𝑛)! 𝑛! 𝑒 𝑖𝜙 𝑛 2𝑛, 0⟩ 𝜓 out 2 ⟩ = 1 -𝛼 2 1 4 ∞ ∑ 𝑛=0 𝛼 2 𝑛 (2𝑛)! 𝑛! 𝑒 𝑖(𝜋-𝜙) 𝑛 0, 2𝑛⟩ 54 
𝑃 out (𝑁 1 , 𝑁 2 ) = 𝑄 𝛮 1 ⋅ 𝑄 𝛮 2 with, 𝑘 ∈ ℕ, ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑄 2𝑘 = 1 -𝛼 2 𝛼 2 2𝑘 (2𝑘)! 𝑘! 2 𝑄 2𝑘+1 = 0 ∎ 0 5
⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑃 𝜂 out (𝑁 1 , 𝑁 2 ) = 𝑄 𝜂 𝛮 1 ⋅ 𝑄 𝜂 𝛮 2 𝑄 𝜂 𝛮 = ∞ ∑ 𝑚=𝛮 𝑄 𝑚 𝜂 𝛮 (1 -𝜂) 𝑚-𝛮 𝑚 𝑁 (1.108a) (1.108b)

N-particle HOM effect 55

We can derivate an analytic solution for this sum, using again the hypergeometric functions. Let us indeed prove the following result:

Theorem 8 (Output probability distribution for a TMS interfering at a 50-50 beam splitter, with finite quantum efficiency)

Given 𝜂 the quantum efficiency of the detector, and 𝛼 the effective temperature of the TMS, we denote:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑧 = 𝛼 2 (1 -𝜂) 𝑢 𝑝 = 2 𝐹 1 𝑝 + 1 2 , 𝑝 + 1 2 ; 1 2 ; 4𝑧 2 𝑣 𝑝 = 2 𝐹 1 𝑝 + 3 2 , 𝑝 + 3 2 ; 3 2 ; 4𝑧 2 (1.109)
we have:

𝑃 𝜂 out (𝑁 1 , 𝑁 2 ) = 𝑄 𝜂 𝛮 1 ⋅ 𝑄 𝜂 𝛮 2 (1.110)
with:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑄 𝜂 2𝑝 = 𝜂 𝛼 2 2𝑝 (2𝑝)! (𝑝!) 2 1 -𝛼 2 𝑢 𝑝 𝑄 𝜂 2𝑝+1 = 𝑧 𝜂 𝛼 2 2𝑝+1 (2𝑝 + 2) (2𝑝 + 2)! (𝑝 + 1)! 2 1 -𝛼 2 𝑣 𝑝 (1.111)
Proof In the view of the parity issue for the index of 𝑄 𝛮 , it is useful to separate even and odd cases in the calculation:

if N=2p: 𝑄 𝜂 2𝑝 = 𝜂 2𝑝 ∞ ∑ 𝑚=2𝑝 𝑚 2𝑝 (1 -𝜂) 𝑚-2𝑝 𝑄 𝑚
all the odd terms of the sum being 0, we can remove them:

= 𝜂 2𝑝 ∞ ∑ 𝑚=𝑝 2𝑚 2𝑝 (1 -𝜂) 2𝑚-2𝑝 𝑄 2𝑚 56 1 Hong-Ou-Mandel effect
we inject the expression (1.106) of 𝑄 2𝑚 :

= 𝜂 2𝑝 1 -𝛼 2 ∞ ∑ 𝑚=𝑝 2𝑚 2𝑝 (1 -𝜂) 2𝑚-2𝑝 𝛼 2 2𝑚 (2𝑚)! (𝑚!) 2
we reindex the sum, making it start from 0:

= 𝜂 2𝑝 1 -𝛼 2 ∞ ∑ 𝑚=0 2𝑚 + 2𝑝 2𝑝 (1 -𝜂) 2𝑚 𝛼 2 2𝑚+2𝑝 (2𝑚 + 2𝑝)! (𝑚 + 𝑝)! 2
expanding the binomial term:

= 𝜂 𝛼 2 2𝑝 1 -𝛼 2 (2𝑝)! 𝑇 ∞ ∑ 𝑚=0 (2𝑚 + 2𝑝)! (𝑚 + 𝑝)! 2 1 (2𝑚)! 𝛼 2 (1 -𝜂) 2𝑚
The final infinite series 𝑇 may seem rather uninviting, but in fact we can rearrange this to make it more orderly:

for convenience we denote

𝑧 = 𝛼 2 (1 -𝜂)
we can force the apparition of rising factorial terms in 𝑇:

𝑇 = (2𝑝)! 𝑝! 2 ∞ ∑ 𝑚=0 (2𝑚 + 2𝑝)! (2𝑝)! 2 𝑝! (𝑚 + 𝑝)! 2 𝑧 2𝑚 (2𝑚)! = (2𝑝)! 𝑝! 2 ∞ ∑ 𝑚=0 ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ (2𝑝 + 1) 2𝑚 (𝑝 + 1) 𝑚 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 2 𝑧 2𝑚 (2𝑚)! in addition: (2𝑝 + 1) 2𝑚 = 2𝑚 terms (2𝑝 + 1)(2𝑝 + 2)(2𝑝 + 3)(2𝑝 + 4)⋯(2𝑝 + 2𝑚) = 2 2𝑚 𝑝 + 1 2 (𝑝 + 1) 𝑝 + 3 2 (𝑝 + 2)⋯(𝑝 + 𝑚)
grouping the reds together and the blues together:

= 2 2𝑚 𝑝 + 1 2 𝑚 (𝑝 + 1) 𝑚 thus: (2𝑝 + 1) 2𝑚 (𝑝 + 1) 𝑚 = 2 2𝑚 𝑝 + 1 2 𝑚 2 N-particle HOM effect 57
the same reasoning provides:

(2𝑚)! = 2𝑚(2𝑚 -1)(2𝑚 -2)(2𝑚 -3)⋯1 = 2 2𝑚 𝑚 𝑚 - 1 2 (𝑚 -1) 𝑚 - 3 2 ⋯ 1 2 (2𝑚)! = 2 2𝑚 𝑚! 1 2
𝑚 and finally assembling up the pieces together:

𝑇 = (2𝑝)! 𝑝! 2 ∞ ∑ 𝑚=0 𝑝 + 1 2 𝑚 2 1 2 𝑚 2 2𝑚 𝑧 2𝑚 𝑚! = (2𝑝)! 𝑝! 2 2 𝐹 1 (𝑝 + 1 2 , 𝑝 + 1 2 ; 1 2 ; 4 𝑧 2 )
we end up with an analytic formula:

𝑄 𝜂 2𝑝 = 𝜂 𝛼 2 2𝑝 (2𝑝)! (𝑝!) 2 1 -𝛼 2 2 𝐹 1 𝑝 + 1 2 , 𝑝 + 1 2 ; 1 2 ; 𝛼 2 (1 -𝜂) 2
if N=2p+1:

we now have to play the same little game for odd cases.

𝑄 𝜂 2𝑝+1 = 𝜂 2𝑝+1 ∞ ∑ 𝑚=2𝑝+1 𝑚 2𝑝 + 1 (1 -𝜂) 𝑚-2𝑝-1 𝑄 𝑚
we only keep the terms where 𝑄 𝑚 takes a non-zero value:

= 𝜂 2𝑝+1 ∞ ∑ 𝑚=𝑝+1 2𝑚 2𝑝 + 1 (1 -𝜂) 2𝑚-2𝑝-1 𝑄 2𝑚
we inject the expression (1.106) of 𝑄 2𝑚 :

= 𝜂 2𝑝+1 1 -𝛼 2 ∞ ∑ 𝑚=𝑝+1 2𝑚 2𝑝 + 1 (1 -𝜂) 2𝑚-2𝑝-1 𝛼 2 2𝑚 (2𝑚)! (𝑚!) 2
we reindex the sum, making it start from 0:

= 𝜂 2𝑝+1 1 -𝛼 2 ∞ ∑ 𝑚=0 2𝑚 + 2𝑝 + 2 2𝑝 + 1 (1 -𝜂) 2𝑚+1 𝛼 2 2𝑚+2𝑝+2 × (2𝑚 + 2𝑝 + 2)! (𝑚 + 𝑝 + 1)! 2
expanding the binomial term:

= 𝜂 𝛼 2 2𝑝+1 1 -𝛼 2 (2𝑝 + 1)! × 𝑈 ∞ ∑ 𝑚=0 (2𝑚 + 2𝑝 + 2)! (𝑚 + 𝑝 + 1)! 2 1 (2𝑚 + 1)! 𝛼 2 (1 -𝜂) 2𝑚+1
then, with the same trick as in the previous case and using the notation 𝑧:

𝑈 = (2𝑝 + 2)! (𝑝 + 1)! 2 ∞ ∑ 𝑚=0 ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ (2𝑝 + 3) 2𝑚 (𝑝 + 2) 𝑚 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 2 𝑧 2𝑚+1 (2𝑚 + 1)! again: (2𝑝 + 3) 2𝑚 = 2𝑚 terms (2𝑝 + 3)(2𝑝 + 4)⋯(2𝑝 + 2𝑚 + 2) = 2 2𝑚 × 𝑚 terms (𝑝 + 3 2 )(𝑝 + 5 2 )⋯(𝑝 + 𝑚 + 1 2 ) × (𝑝 + 2)(𝑝 + 3)⋯(𝑝 + 𝑚 + 1) 𝑚 terms = 2 2𝑚 𝑝 + 3 2 𝑚 (𝑝 + 1) 𝑚 and (2𝑚 + 1)! = (1×) 2𝑚 terms 2 × 3 × ⋯ × (2𝑚 + 1) = 2 2𝑚 3 2 𝑚 𝑚!
and finally:

𝑈 = (2𝑝 + 2)! (𝑝 + 1)! 2 ∞ ∑ 𝑚=0 𝑝 + 3 2 𝑚 2 3 2 𝑚 (4 𝑧 2 ) 𝑚 𝑚! × 𝑧 = 𝑧 (2𝑝 + 2)! (𝑝 + 1)! 2 2 𝐹 1 (𝑝 + 3 2 , 𝑝 + 3 2 ; 3 2 ; 4 𝑧 2 )
2 N-particle HOM effect 59 thus: We can check (at least numerically) that Eq. (1.111) leads to a joint probability distribution that satisfies the normalisation ∑

𝑄 𝜂 2𝑝+1 = 𝛼(1 -𝜂) 2 𝜂 𝛼 2 2𝑝+1 (2𝑝 + 2) (2𝑝 + 2)! (𝑝 + 1)! 2 1 -𝛼 2 × 2 𝐹 1 𝑝 + 3 2 , 𝑝 + 3 2 ; 3 2 ; 𝛼 2 (1 -𝜂) 2 ∎ N 2
𝛮 1 ,𝛮 2 𝑃 𝜂 out (𝑁 1 , 𝑁 2 ) = 1
and the average number of detected particles:

𝑁 1 + 𝑁 2 = ∞ ∑ 𝛮 1 ,𝛮 2 =0 (𝑁 1 + 𝑁 2 ) 𝑃 𝜂 out (𝑁 1 , 𝑁 2 ) = 2𝜂 𝜈 (1.112)
We can see in Figure 1.21 that the information about the parity of the number of particles at the output channels has vanished. All the (𝑁 1 , 𝑁 2 ) couples are possible, but we can remark that the two "lines" (𝑁, 0) and (0, 𝑁) are gathering an overwhelming majority of shots.

A satisfying feature of this distribution is that it is very different from the analogue case considering a couple of indiscernable thermal states (see Figure 1.15 on page 43). In particular, 𝑃

𝜂 out (𝑁 1 , 𝑁 2 ) is not a function of 𝑁 1 + 𝑁 2 only.

Interferences on a beam splitter: distinguishable case

With a perfect detector First, let us imagine what a distinguishable TMS interferometry experiment would be:

1. a two-mode squeezed vacuum state is generated; 2. each of the two modes are spatially separated; 3. a) one of the two modes interacts with the beam splitter... b) ... and is then measured with the detectors placed at each output channel; 4. the second mode waits for a certain duration 𝜏; 5. the second mode interacts with the beam splitter, and is detected;

We should be careful about the fact that there are two successive measurements here, and that we are dealing with an entangled state. Indeed, during the first measurement the experimentalist counts the number of particles on each detector, it is a fortiori a measurement of the total number of particles in the first mode. Due to entanglement, the wave packet of the second mode collapses, and its quantum state is projected onto the ket 𝑁′ 1 + 𝑁′ 2 ⟩, (𝑁′ 1 , 𝑁′ 2 ) being the numbers of particles measured after the mixing of the first mode with the vacuum.

Theorem 9 (Output probability distribution for a distinguishable TMS interfering at a 50-50 beam splitter)

Considering a TMS with an average population per mode 𝜈, and denoting 𝑃 𝑡ℎ the thermal law of probability with the same average number of particles 𝜈, the output probability distribution in the distinguishable case is:

𝑃 out (𝑁 1 , 𝑁 2 ) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 0 if 𝑁 1 + 𝑁 2 is odd 𝑁 1 + 𝑁 2 𝑁 1 1 2 𝛮 1 +𝛮 2 𝑃 𝑡ℎ 𝑁 1 + 𝑁 2 2 else (1.113)
Proof Because of the wave functions collapse, we know that the same number of particles is detected for each mode (the two modes are perfectly correlated): the total number of particles must be even.

The interaction of the first mode with the beam splitter is actually the case of the mixing of a thermal state with the vacuum. The corresponding output probability distribution 𝑃 1 out has already 2 N-particle HOM effect 61 been already in 2.2.3.

When interacting with the beam splitter, the second mode is reduced to a Fock state, whose output probability distribution has also been studied, and is given by Eq. (1.52).

Once again, we consider the combinatorial outcomes between those two distributions:

𝑃 out (𝑁 1 , 𝑁 2 ) = 𝛮 1 ∑ 𝑛 1 =0 𝛮 2 ∑ 𝑛 2 =0 𝑃 1 out (𝑛 1 , 𝑛 2 ) 𝑅 (𝑛 1 +𝑛 2 ,0) 𝛮 1 -𝑛 1 ,𝛮 2 -𝑛 2 2
Now, we know that the exact same number of particles is measured at both detection stages:

𝑛 1 + 𝑛 2 = 𝑁 1 -𝑛 1 + 𝑁 2 -𝑛 2 = 1 2 (𝑁 1 + 𝑁 2 )
≜ 𝑛 therefore one of the two sums collapses because of the condition

𝑛 2 = 𝑛 -𝑛 1 .
The upper bound of the remaining sum is changed to 𝑛, which is the maximum number of particles detected on one channel for a mode:

𝑃 out (𝑁 1 , 𝑁 2 ) = 𝑛 ∑ 𝑘=0 𝑃 1 out (𝑘, 𝑛 -𝑘) 𝛮 1 +𝛮 2 𝑘 𝛲 𝑡ℎ (𝑛) 2 𝑛 𝑅 (𝑛,0) 𝛮 1 -𝑘,𝛮 2 -𝑛+𝑘 2 1 2 𝑛 𝑛 𝛮 1 -𝑘
the Vandermonde's identity gives 1 1: the missing or extra terms (with respect to "genuine" Vandermonde's identity) in the sum are zero.

: 𝑛 ∑ 𝑘=0 𝑛 𝑘 𝑛 𝑁 1 -𝑘 = 2𝑛 𝑁 1
and finally

𝑃 out (𝑁 1 , 𝑁 2 ) = 𝑁 1 + 𝑁 2 𝑁 1 1 2 𝛮 1 +𝛮 2 𝑃 𝑡ℎ 𝑁 1 + 𝑁 2 2

∎

We observe the same kind of checked pattern as in the indiscernible case, but the middle of the "draughtboard" is more populated. This is no surprise: the sort of aggregation effect that favorises the edges (0, 𝑁) and (𝑁, 0) is a consequence of the interferences between indiscernible bosons. However, the evenness of the total number of particles is an intrinsic property of the TMS: it is a consequence of the entanglement between the two modes.

The total number of particle must be even (this generates the sort of chessboard pattern), but if we look a one specific output channel, we can obviously detect an odd number of particles. The situation is less constrained than the indiscernible case.

With finite detectivity

As usual, we apply the summation of all the cases involving at least 𝑁 1 and 𝑁 2 particles:

𝑃 𝜂 out (𝑁 1 , 𝑁 2 ) = 𝜂 𝛮 1 +𝛮 2 ∞ ∑ 𝑚 1 ,𝑚 2 =0 (1-𝜂) 𝑚 1 +𝑚 2 𝑚 1 + 𝑁 1 𝑁 1 𝑚 2 + 𝑁 2 𝑁 2 𝑃 out (𝑁 1 +𝑚 1 , 𝑁 2 +𝑚 2 )
(1.114) I did not find analytical simplifications in this case, and we are left with numerical estimations, such as the one provided below in Figure 1.23 Even if the checked pattern disappeared (as always when the detectivity is finite), the resulting joint probability distribution remains very different from the indiscernible case, where the

𝑃 𝜂 out (𝑁 1 > 1, 𝑁 2 > 1)
terms decay extremely fast to zero. . However we would like to find a simple observable to distinguish both cases, even if the detectivity is not perfect.
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Distinguishable and indiscernible comparison

Visually, indiscernibility seems to enhance the grouping of the particles on a same side. Let us define 𝑃 1ch 0 : the probability to detect 0 particle on an output channel, whatever we have on the other. Concretely it corresponds to sum of the probabilities placed on "the edges" of the 3D graphs previously plotted.

𝑃 1ch

0 might be a good guess to witness a difference of behaviour between distinguishable and indiscernible cases:

𝑃 1ch 0 = P1 (0) + P2 (0) -𝑃 out (0, 0) (1.115) = 1 -𝑃 out (𝑁 1 > 0, 𝑁 2 > 0) (1.116) 
we remove 𝑃 out (0, 0), because otherwise it would be counted twice.

Luckily, we observe on the numerical calculations in Figure 1.24 that this quantity is very weakly dependent on the quantum efficiency, which is good for in the prospect of an experiment.

We show in Figure 1.24 𝑃 1ch 0,dis , 𝑃 1ch 0,ind (where dis and ind mean respectively distinguishable and indiscernable), as well as and the correspond-

ing contrast 𝐶 𝐶 = 𝑃 1ch 0,ind -𝑃 1ch 0,dis 𝑃 1ch 0,ind + 𝑃 1ch 0,dis
The contrast between the two situations increases with 𝜈. In our experimental setup we expect to be able to realise TMS with 𝜈 ∼ 10. In that case, the numerical estimation gives a contrast of roughly 50 %, giving good hope of seeing a significant effect with this observable.
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Conclusion

Let us conclude this chapter with a summary of the results that we have established in the second section. We will only deal with the cases where we took into account the finite quantum efficiency, since it is a constraint imposed by our experimental apparatus.

Differentiate indiscernable and distinguishable scenarios, with TMS states. We have seen in the last paragraph of the chapter that looking at the probability to measure zero particle on a given output channel could be an appropriate observable. With the states that we are able to concretely generate in the lab, we expect a relative difference of 50 % between both scenarios.

Differentiate a TMS state from a coherent state. It is rather straightforward when looking at the statistical distribution of the number of particles detected (without beam splitter): cf. Remark 1.4. Although, coherent states reproduce the well known interference patterns of classical wave optics, involving a phase dependence that is not expected with TMS states. We have already observed experimentally that our source is producing a state that does not follow a semi-classical Poissonian statistics [START_REF] Perrier | Thermal Counting Statistics in an Atomic Two-Mode Squeezed Vacuum State[END_REF]. Differentiate a TMS state from a pair of thermal states.

In indiscernible scenarios, the joint output probability distributions generated by those two states are very different. In particular, in the case of thermal states, it only depends on one parameter, which is the total number of particles. Furthermore, if we compare Figure 1.15 on page 43 with Figure 1.21 on page 59, it seems that the distribution corresponding to the thermal states populates the states (𝑁 1 ≠ 0, 𝑁 2 ≠ 0) much more 1 , 1: "the middle of the chessboard". which is another noticeable difference.

What remains to be done with this theoretical work? On a technical aspect, we still need to find a proper analytical ending to the derivations of Equation 1.85 on page 42 (thermal and indiscernable), as well as an analytical form to the resulting interferences of a distinguishable TMS state, with finite quantum efficiency.

Apart from these rather formal and mathematical topics of concern, we can also look for other observables (depending only on the population 66 1 Hong-Ou-Mandel effect 𝜈), clearly exhibiting the distinction between an indiscernible and a distinguishable situation. The joint probability distributions calculated in this chapter contains all the information needed to calculate the expectation values of those observable: in particular the information about the correlations between the detections operated at both output channels.

Contrary to the two-particle HOM effect, we did not yet found the clear signature of a quantum effect in an HOM-like experiment using TMS. Therefore, for now, such an experiment cannot provide a result as "strong" as the two-particle HOM anti-correlation. However, we exhibited a clear effect of the indiscernibility property between the distributions, which is sort of a weaker result. Let us give a possible experimental application of it.

In the following chapter, we will present a two-particle interferometer that was designed to perform Bell inequality violation experiments: it basically consists in two separated Mach-Zehnder interferometers (cf. Figure 2.8 on page 85). Both Mach-Zehnders requires to be "closed" meaning that particles interfering on the last beam splitter should be indiscernible. Since we are planning to use this setup with TMS states, the results established in this chapter could be useful to verify the correct setting of each Mach-Zehnder.
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Chapter's table of contents 

Introduction

This chapter is dedicated to the question of the Bell inequalities, and the way that we want to test them with our experimental platform. We will start in the first section by reminding the general idea of what a Bell inequality is, how it is derived, and what it means to violate it.

In a second step, we will more specifically address the issue of the concrete implementation of a Bell inequality violation with the apparatus that we have at our disposal. We will see in particular that we are planning to use the entanglement between the momenta of atoms to witness such a violation: this has never been done yet with massive particles. This second section will be divided in two main parts:

▶ first we will present the two-atom interferometer that we aspire to realise to probe nonlocal correlations. This interferometer is inspired by the Rarity-Tapster experiment [START_REF] Rarity | Experimental violation of Bell's inequality based on phase and momentum[END_REF] ; ▶ then we will show that the properties of the peculiar multimode quantum state that our source is producing may have a negative impact on the level of violation of the inequality. We will show that some ideas presented in a recent theoretical publication of Nemoto et al. [START_REF] Kitzinger | Bell Correlations in a Split Two-Mode-Squeezed Bose-Einstein Condensate[END_REF] can be used to perform a cleverer treatment 1 General considerations

EPR argument

One of the most admirable successes of modern physics is general relativity: a metric theory of gravitation, that depicts the universe in a relativistic way. From the anomalous perihelion advance of Mercury (1915), the deflection of starlight by the Sun observed during an eclipse (1919) to the direct detection of gravitational waves [START_REF] Abbott | Observation of Gravitational Waves from a Binary Black Hole Merger[END_REF] or gravitational redshift measurements [START_REF] Hafele | Around-the-World Atomic Clocks: Predicted Relativistic Time Gains[END_REF], this elegant theory passed many experi- mental tests. It offers the best mathematical framework for physics at non-microscopic length scale. One of the core hypotheses of both special and general relativity theories is the principle of locality, that states that physical systems may only be influenced by their space-time immediate surroundings. To put it simply, local theories (i.e. assuming the principle of locality to be true) avoid any form of action at distance.
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This is a very natural hypothesis, which is also at the root of a remarkably robust theory. Thus it seems legitimate to think that locality (just like causality) should be a postulate of any fundamental physics theory.

It is well known in epistemology that the famous work of Einstein et al. [START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF] was an attempt to exhibit a flaw in quantum theory. Indeed, [START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF]: [START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF], "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?" essentially assuming the principle of locality to be true, it is possible to show a contradiction in the statements of quantum mechanics. Let us take a closer look at the EPR argument, in its "modern" formulation of Bohm and Aharonov [START_REF] Bohm | Discussion of Experimental Proof for the Paradox of Einstein, Rosen, and Podolsky[END_REF], that we will call "EPRB" argument, or [START_REF] Bohm | Discussion of Experimental Proof for the Paradox of Einstein, Rosen, and Podolsky[END_REF]: [START_REF] Bohm | Discussion of Experimental Proof for the Paradox of Einstein, Rosen, and Podolsky[END_REF], "Discussion of Experimental Proof for the Paradox of Einstein, Rosen, and Podolsky" EPRB thought experiment (gedankenexperiment a la Einstein).

Postulates The argument is built upon three hypotheses of capital importance, the first two being often combined into one, known as the local realism hypothesis 1 :

1: at least, this is the definition that we will use in this manuscript. Some authors refer to local realism as the whole set of the EPR hypotheses, including H𝟑.

Local realism hypothesis

We call local realism the set of the two followings hypotheses:

Hypothesis H𝟏 (Realism) An experimental result that can be predicted in advance may only be the consequence of a pre-existing and well-defined physical quantity. Such a quantity is called an "element of reality".

Hypothesis H𝟐 (Space-time locality)

The relativistic spacetime is the correct geometrical structure to describe the physical events. The elements of reality are locally attached to spacetime, and their time evolution may only be influenced by their local surrounding.

The previous formulation is inspired by reference [START_REF] Cohen-Tannoudji | Mécanique quantique -Tome 3. Savoirs Actuels[END_REF]. Remark 2.1 An important consequence of H𝟐 is that a physical measurement performed in a given region of spacetime cannot be influenced by an other physical transformation realised by an operator located in a separated region of spacetime. More precisely, an event 𝐸 1 may have an influence on an other event 𝐸 2 if and only if they are separated by a timelike interval 2 2: for more information about spacetime intervals, we refer the interested reader towards any general relativity textbook, such as [77] or [START_REF] Hartle | Gravity: An Introduction to Einstein's General Relativity[END_REF].

. This corollary is sometimes called "separability". 

Hypothesis H𝟑 (Quantum mechanics) The predictions of quantum mechanics concerning the outcome probabilities of an experiment are correct.

Reductio ad absurdum

The reasoning is essentially a proof by contradiction. An EPRB experiment -presented on Figure 2.1-consists in a source 𝑆, emitting two physical systems (e.g. two particles or two photons) that propagate towards separate regions of space, without interaction. Two experimentalists, Alice (𝒜) and Bob (ℬ), perform measurements (respectively 𝐴 and 𝐵) on the two systems, separately.

Let us consider now that the physical systems emitted by the source are two-level systems (like linearly polarised photons or spin- 1 2 particles) emitted in a quantum singlet state (which is actually a particular case of what we call a Bell state nowadays):

𝜓⟩ = 1 √ 2 [ 1⟩ 0⟩ -0⟩ 1⟩] (2.1)
Alice and Bob's measurements are characterised by vectors 𝐚 and 𝐛, that they can choose freely (they correspond to a choice of basis for the quantum measurement): it would correspond to the angle of the polaroid in the case of photons, or the direction of the magnetic field in a Stern-Gerlach setup for spin-1 2 particles.

Each measurement returns a value ±1, and we assume that Alice and Bob choose the orientation of their detector right before executing their measurement, in a finite subset of the continuum of possible orientations, for example

2𝑝𝜋 𝑛 𝑛 ∈ ℕ * , 𝑝 ∈ 1, 𝑛 .
Sometimes, during some pairs of measurements, 𝐚 and 𝐛 are aligned (𝐚 = 𝐛), or anti-aligned (𝐚 = -𝐛). In those cases, whatever the distance separating Alice and Bob, quantum mechanics (hypothesis H𝟑) predicts that the result are respectively anti-correlated (𝐴 ⋅ 𝐵 = -1), or correlated (𝐴 ⋅ 𝐵 = 1). Let us additionally assume that Alice performs her measurement a short time before Bob (short enough to have a spacelike interval between both measurements). It is then certain (according to H𝟑) that if Bob chooses an orientation 𝐛 that is aligned (respectively anti-aligned) to Alice's one, the correlation between the measurements will be perfectly anti-correlated (respectively correlated).

Now H𝟏 stipulates that if Bob's measurement can somehow be determined with certainty, it means that an element of reality -carried by the quantum particle measured by Bob-is present and influences the detector in such a way that detection matches prediction. But Bob's detection being separated of Alice's one by a spacelike interval, due to hypothesis H𝟐, it cannot be influenced by anything occurring in Alice's laboratory during her measurement 1 (in particular her measurement's 1: this still would have been true even if we would not have assumed the absence of interaction.

outcome). It means that the results obtained by Bob and Alice 2 were 2: by a simple symmetry argument where we exchange Alice and Bob in all the previous reasoning.

formely determined and since the orientation 𝐚 is chosen randomly, the determination is complete (i.e. the value of the spin/polarisation is determined in all directions). Finally, since there are no interaction during the propagation of the particles, the additional element of reality was set since the emission of the particles from the source 𝑆.

Now the problem is that quantum mechanics does not predict the existence of such a parameter: we all know that in quantum formalism, the randomness of the outcome of Alice's measurement is intrinsic. Worse, to some extent, we can even say that quantum mechanics predicts the non-existence of such a parameter: because the spin of particles are described by non-commuting observables, there is no quantum description where all the components of the spin are well defined, which is inconsistent with the previous statement about the completeness of the determination of the states.

Conclusion

The matter of the conclusion of the EPR was at the core of decades of debates since its publishing in 1935. The authors stated that it was the proof that quantum mechanics was incomplete, and even if it provided perfectly satisfying theoretical predictions (in good accordance with experiments) it was not covering the whole physical essence of Nature. This is tacitly assuming that local realism is a valid postulate, and that the contradiction is actually sourced by hypothesis H𝟑, or more correctly by the physical interpretation of quantum theory: it could indeed simply be an incomplete theory but providing correct statistical results (in which case in all rigour H𝟑 is also a valid hypothesis).

Bohr immediately proposed a very different interpretation. Even though he did not question the validity of the concrete constraints imposed by general relativity 3 , he asserted that there is an aspect of H𝟐 that could 3: essentially the fact that information cannot ship at a faster speed than Einstein's speed 𝑐.

collapse in the quantum realm. For Bohr, an entangled system such as (2.1) may only be considered globally. Such a composite system is not separable, and in some cases it does not make any sense 4 to try to 4: at least if we want to keep a maximal quantity of information in our description.

give physical properties to its sub-components (here the spin or the polarisation).

Bell's theorem 1.2.1 Main idea

The philosophical question of the correct interpretation of the EPR argument took a new perspective in 1964 with the contribution of John Bell [START_REF] Bell | On the Einstein Podolsky Rosen paradox[END_REF], who proved the following theorem: [START_REF] Bell | On the Einstein Podolsky Rosen paradox[END_REF]: [START_REF] Bell | On the Einstein Podolsky Rosen paradox[END_REF], "On the Einstein Podolsky Rosen paradox"

Theorem 10 (Bell's theorem)

Assuming the validity of the local realism hypothesis, there is no way to complete quantum mechanics such that it takes into account local elements of reality without changing some of its experimental predictions.

In particular, Bell identified a quantum system Σ, with a measurable physical quantity 𝑆, for which quantum theory predicts a value that cannot be taken in any local realistic framework. In fact, Bell showed that local realism imposes some numerical constraints to the level of correlation that can be observed between the measurements of Alice and Bob, numerical contraints that can sometimes be violated in the quantum realm. This constraint takes the form of an inequality, that must be satisfied in any local realistic (sometimes called classical) context. These inequality are famously known, and nowadays usually named Bell's inequalities.

Thanks to Bell's inequality, the existence of EPR's element of reality, or with modern wording "local hidden-variables", becomes experimentally testable. In 2015, research groups in Vienna, Delft and the NIST independently measured Bell inequality violations [START_REF] Hensen | Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres[END_REF][START_REF] Giustina | Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons[END_REF][START_REF] Lynden | Strong Loophole-Free Test of Local Realism[END_REF], using loop- hole free setups: meaning that any possible classical interpretations of the results is avoided [START_REF] Aspect | Closing the Door on Einstein and Bohr's Quantum Debate[END_REF].

[79]: [START_REF] Aspect | Closing the Door on Einstein and Bohr's Quantum Debate[END_REF], "Closing the Door on Einstein and Bohr's Quantum Debate"

CHSH inequality & violation

Classical inequality It is important to understand that different quantum systems, with different correlation-based observables may be a case of application (or an illustration) of Bell's theorem: for each of them there is a specific Bell inequality, more or less conveniently testable in a laboratory.

Let us recall the most famous one, known as the CHSH inequal-ity:

Theorem 11 (Bell inequality: CHSH formulation)

Let Σ be a system of two two-level particles, spatially separated, that can be repeatedly prepared in the same quantum state. Two operators separately perform measurements of the state of the particles, with detectors characterised by their orientation, respectively 𝐚 and 𝐛.

The experimental result of each realisation take the value +1 or -1 (and also possibly 0 if a detectors fails to detect a particle), they are denoted 𝐴 and 𝐵, respectively for one operator and the other. For a given couple of orientations (𝐚, 𝐛), we denote 𝐸(𝐚, 𝐛) the correlation between the measurements obtained by the operators, in extenso the average value of the product of their measurements: quite "messy" demonstration. The proof was simplified and generalized by Bell in 1971 [START_REF] Bell | Introduction to the hidden-variable question[END_REF]. It is published in his reference textbook Speakable [START_REF] Bell | Introduction to the hidden-variable question[END_REF]: [START_REF] Bell | Introduction to the hidden-variable question[END_REF], "Introduction to the hidden-variable question"

𝐸(𝐚, 𝐛) ≜ ⟨𝐴 ⋅ 𝐵⟩ (2.2)

If we assume that a set of local hidden-variables completing the quantum mechanics in a local

and unspeakable [START_REF] Bell | Introduction to the hidden-variable question[END_REF], and reminded in the following box: Proof (CHSH inequality, Bell 1971) We denote 𝜆 the set of local hidden-variable, carried by the particles, making quantum mechanics local realistic. It does not matter to know the mathematical nature of 𝜆: if it is a singleton or a set, numbers of functions, discrete or continuous. It also does not require to be "minimal", in the sense that all the information contained in lambda should be mandatory to depict the experiment in a local realistic way: it only needs to be "sufficient".

Applying the EPR prescription, we conclude that a given 𝜆 is drawn in a large set Λ (assumed to be measurable) at each realisation, and fixed, from the emission at the source until the measurement.

The results of the measurements of the two experimentalists (let us call them Alice and Bob) are functions of the orientation of their detectors (𝐚, 𝐛), of 𝜆, and also possibly of additional local hidden-variables 𝜆 𝐚 ∈ Λ 𝐚 and 𝜆 𝐛 ∈ Λ 𝐛 , attached to the detectors, and that may influence the outcome of the measurements:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝐴 ∶ (𝐚, 𝜆, 𝜆 𝐚 ) ↦ 𝐴(𝐚, 𝜆, 𝜆 𝐚 ) ∈ {-1, 0, 1} 𝐵 ∶ (𝐛, 𝜆, 𝜆 𝐛 ) ↦ 𝐵(𝐛, 𝜆, 𝜆 𝐛 ) ∈ {-1, 0, 1}
0 being the outcome of a realisation where one or both detectors failed and did not return any result.

The experimental results are therefore determined at the emission of the particles, and the apparent randomness of the results registered by Alice and Bob comes from the probability density distributions 𝜌(𝜆), 𝜌 𝐚 (𝜆 𝐚 ), and 𝜌 𝐛 (𝜆 𝐛 ), when the experiment is repeated.

We first introduce the measured quantities, averaged over the local variables of the detectors:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝐴(𝐚, 𝜆) ≜ 𝜆 𝐚 ∈Λ 𝐚 d𝜆 𝐚 𝜌 𝐚 (𝜆 𝐚 )𝐴(𝐚, 𝜆, 𝜆 𝐚 ) ∈ [-1, 1] 𝐵(𝐛, 𝜆) ≜ 𝜆 𝐛 ∈Λ 𝐛 d𝜆 𝐛 𝜌 𝐛 (𝜆 𝐛 )𝐵(𝐛, 𝜆, 𝜆 𝐛 ) ∈ [-1, 1]
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where the inequalities

𝐴(𝐚, 𝜆) ≤ 1 , 𝐵(𝐛, 𝜆) ≤ 1 ( †)
are usual, reminding that 𝜌, 𝜌 𝐚 and 𝜌 𝐛 , being probability densities, are positive, and their integral are normalised to 1.

Eq. ( †) also gives immediately

𝐴(𝐚, 𝜆)𝐵(𝐛, 𝜆) ≤ 1 ( ‡)
With the definition Eq. ( 2.2), we have:

𝐸(𝐚, 𝐛) = 𝜆∈Λ d𝜆 𝜌(𝜆)𝐴(𝐚, 𝜆)𝐵(𝐛, 𝜆)
Then we compute

𝐸(𝐚, 𝐛) -𝐸(𝐚, 𝐛′) = 𝜆∈Λ d𝜆 𝜌(𝜆) 𝐴(𝐚, 𝜆)𝐵(𝐛, 𝜆) -𝐴(𝐚, 𝜆)𝐵(𝐛′, 𝜆) = 𝜆∈Λ d𝜆 𝜌(𝜆) ∈[-1,1] 𝐴(𝐚, 𝜆)𝐵(𝐛, 𝜆) ≥0 1 ± 𝐴(𝐚′, 𝜆)𝐵(𝐛′, 𝜆) - 𝜆∈Λ d𝜆 𝜌(𝜆) 𝐴(𝐚, 𝜆)𝐵(𝐛′, 𝜆) ∈[-1,1]
1 ± 𝐴(𝐚′, 𝜆)𝐵(𝐛, 𝜆)

≥0
where the inequalities written on the braces are given by Eq. ( ‡).

We then use the triangle inequality, and the fact that ∫ 𝑓 ≤ ∫ 𝑓 :

𝐸(𝐚, 𝐛) -𝐸(𝐚, 𝐛′) ≤ 𝜆∈Λ d𝜆 𝜌(𝜆) 1 ± 𝐴(𝐚′, 𝜆)𝐵(𝐛′, 𝜆) + 𝜆∈Λ d𝜆 𝜌(𝜆) 1 ± 𝐴(𝐚′, 𝜆)𝐵(𝐛, 𝜆)
which is exactly

𝐸(𝐚, 𝐛) -𝐸(𝐚, 𝐛′) ≤ 2 ± [𝐸(𝐚′, 𝐛′) + 𝐸(𝐚′, 𝐛)]
which is actually also 

𝐸(𝐚,
⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ Ã+ = 𝐴 + 𝐴 + + 𝐴 - , Ã-= 𝐴 - 𝐴 + + 𝐴 - ∈ [-1, 1] B+ = 𝐵 + 𝐵 + + 𝐵 - , B-= 𝐵 - 𝐵 + + 𝐵 - ∈ [-1, 1] (2.6a) (2.6b) 
Quantum violation of the inequality Now it turns out that quantum mechanics make it possible to compute the correlators 𝐸 directly.

|0⟩ |1⟩ 𝜃 𝜃 |0 𝜃 ⟩ |1 𝜃 ⟩ Figure 2.2:
Rotation of the basis of detection of a two-level system. The two orientations are said to be aligned when 𝜃 ≡ 0(𝜋). On the contrary, they are said to be anti-aligned (or crossed in the case of polarising beam splitters) when 𝜃 ≡ 𝜋 2 (𝜋): in that case, the roles of 0⟩ and 1⟩ are exchanged.

Let us consider again the EPRB experiment, where the source generates a singlet state (2.1).

The orientations of the detectors 𝐚, 𝐚′, 𝐛 and 𝐛′are coplanar unit vectors, that we will parametrise by the respective angles 𝜃 𝑎 , 𝜃 𝑎′ , 𝜃 𝑏 , 𝜃 𝑏′ , oriented by the Alice-Bob axis, and with 𝜃 = 0 corresponding to a measurement operated in the { 0⟩ , 1⟩} basis 1 . We denote { 0 𝜃 ⟩ , 1 𝜃 ⟩} the rotated 1: it is in fact a reference that can be chosen arbitrarily.

basis, in which a measurement is operated by a detector with the angle 𝜃.

Given its orientation 𝜃, we ask the detector to return the value +1 when the state 1 𝜃 ⟩ is measured, and the value -1 when the state 0 𝜃 ⟩ is measured.
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By definition of the correlator, we have:

𝐸(𝜃 𝑎 , 𝜃 𝑏 ) ≜ ⟨𝐴 ⋅ 𝐵⟩ (𝜃 𝑎 ,𝜃 𝑏 ) (2.7) = (+1) ⋅ (+1) × ⟨1 𝜃 𝑎 , 1 𝜃 𝑏 𝜓⟩ 2 + (+1) ⋅ (-1) × ⟨1 𝜃 𝑎 , 0 𝜃 𝑏 𝜓⟩ 2 + (-1) ⋅ (+1) × ⟨0 𝜃 𝑎 , 1 𝜃 𝑏 𝜓⟩ 2 + (-1) ⋅ (-1) × ⟨0 𝜃 𝑎 , 0 𝜃 𝑏 𝜓⟩ 2 (2.8) 𝐸(𝜃 𝑎 , 𝜃 𝑏 ) = 𝑃 +,+ (𝜃 𝑎 , 𝜃 𝑏 ) -𝑃 +,-(𝜃 𝑎 , 𝜃 𝑏 ) -𝑃 -,+ (𝜃 𝑎 , 𝜃 𝑏 ) + 𝑃 -,-(𝜃 𝑎 , 𝜃 𝑏 ) (2.9)
where the last line conveniently uses the joint conditional probabilities notations, to simplify the bracket notation.

It is not a difficult exercise to check that the scalar products give

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑃 +,+ (𝜃 𝑎 , 𝜃 𝑏 ) = 𝑃 -,-(𝜃 𝑎 , 𝜃 𝑏 ) = 1 2 sin 2 (𝜃 𝑎 -𝜃 𝑏 ) 𝑃 +,-(𝜃 𝑎 , 𝜃 𝑏 ) = 𝑃 +,-(𝜃 𝑎 , 𝜃 𝑏 ) = 1 2 cos 2 (𝜃 𝑎 -𝜃 𝑏 ) (2.10a) (2.10b)
which is in line with what we would expect with a singlet state:

▶ it is independent of the reference direction ;

▶ aligned detectors (𝜃 𝑎 = 𝜃 𝑏 ) lead to a perfect anti-correlation of the measures ;

▶ anti-aligned detectors (𝜃 𝑎 = 𝜃 𝑏 + 𝜋 2 ) lead to a perfect correlation of the measures ; Eq. (2.10) simplifies the expression (2.9) of the correlator:

𝐸(𝜃 𝑎 , 𝜃 𝑏 ) = -cos (2 [𝜃 𝑎 -𝜃 𝑏 ]) (2.11)
which is an even function, which is also good since the symmetry of the problem allows us to exchange the roles of 𝜃 𝑎 and 𝜃 𝑏 .

Remark 2.4

The actual expression of E, is obviously dependent on the type of state that we initially choose to consider. For instance, Eq. (2.11) gives

𝜃 𝑎 = 𝜃 𝑏 ⇒ 𝐸(𝜃 𝑎 , 𝜃 𝑏 ) = -1
which makes sense for a singlet state, but not for any entangled state.

For example the Bell state

Φ + ⟩ = 1 √ 2 ( 0, 0⟩ + 1, 1⟩) leads to the correlator: 𝐸(𝜃 𝑎 , 𝜃 𝑏 ) = + cos (2 [𝜃 𝑎 -𝜃 𝑏 ])
(if we take the same values returned by the detectors). Now we just have to consider the particular quadruplet of angles

𝜃 𝑎 = 0 𝜃 𝑏 = 𝜋 8 𝜃 𝑎′ = 𝜋 4 𝜃 𝑏′ = 3𝜋 8
to check that quantum mechanics predicts a BCHSH parameter:

𝑆 𝑄𝛭 0, 𝜋 4 , 𝜋 8 , 3𝜋 8 = 2 √ 2 (2.12)
Strongly violating the inequality (2.5) (by more that 40 %), which is enough to prove Bell's theorem (Theorem 10).

Rarity-Tapster interferometer 2.1 Introduction to the problem

The first Bell inequalities violation experiments [START_REF] Stuart | Experimental Test of Local Hidden-Variable Theories[END_REF][START_REF] Aspect | Experimental Tests of Realistic Local Theories via Bell's Theorem[END_REF][START_REF] Aspect | Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities[END_REF][START_REF] Aspect | Experimental Test of Bell's Inequalities Using Time-Varying Analyzers[END_REF] were con- ducted with a source of pairs of photons 1 , entangled with respect to 1: emitted in a radiative cascade.

their polarization, and emitted in different directions. In the followings we will call respectively Alice and Bob the fictional experimentalists performing measurements respectively on each particle of the entangled system: these names could actually indistinctly refer to the experimentalists, or their measurements.

The apparatus used for these polarisation-based experiments, only involves two polarising beamsplitting cubes (one for each side), and a coincidence counter device, that can evaluate the correlations between the measurements made upon a particle on the one hand (e.g. Alice's side), and upon the second particle on the other hand (Bob's side).

The schematic of these experiments are shown in Figure 2 The key point in any Bell inequality violation experiment is that both Alice and Bob must have a "turnable button" that changes the output modes of their detector at their disposal. More concretely, these buttons control the orientation 𝐚 and 𝐛 , and in the language of quantum mechanics, this corresponds to rotating the basis in which the detections are performed (cf. Figure 2.2). In the case of the experiment previously mentioned, these buttons are naturally provided by the physical orientation of the polarising beamsplitting cubes: that is why the overall geometry of the setup remains pretty simple.

In summary, a Bell inequality violation requires three fundamental elements:

1. a source of many-particle entangled state. In this work we consider only two-particle entanglement, but the generalised manyparticle Bell inequality violation is also an active research thematic [START_REF] David Mermin | Extreme Quantum Entanglement in a Superposition of Macroscopically Distinct States[END_REF][START_REF] José | Mermin's n-Particle Bell Inequality and Operators' Noncommutativity[END_REF][START_REF] Laskowski | Detection of N -Particle Entanglement with Generalized Bell Inequalities[END_REF] ; [START_REF] David Mermin | Extreme Quantum Entanglement in a Superposition of Macroscopically Distinct States[END_REF] 2. single particle resolved detectors. In the case of photons it could be photomultipliers (PM), or more recently superconducting nanowire single-photon detectors (SNSPD) (offering better performances for photon counting [START_REF] Esmaeil Zadeh | Superconducting Nanowire Single-Photon Detectors: A Perspective on Evolution, State-of-the-Art, Future Developments, and Applications[END_REF]). In the case of our ex- periment, the detection is carried out by a microchannel plate (MCP) (cf. Chapter 3 and Chapter 4): it is worth noticing that both Alice and Bob detections are performed by a same physical device (there is only one MCP) but at different times.

a technical way to change the bases of detections.

The experiments described above are designed to reveal the entanglement between the polarisations of photons, which is an internal degree of freedom (cf. Remark 2.5). In 1989, Horne, Shimony and Zeilinger proposed a different topology, that is able to probe entanglement with respect to what most closely resembles to a mechanical degree of freedom for the photon: the wave vector (or the optical path) [START_REF] Michael | Two-Particle Interferometry[END_REF]. The [START_REF] Michael | Two-Particle Interferometry[END_REF] section that the experimental trick used to change the basis of detection, and measure a BCHSH parameter is less trivial than in the case of photon polarisation. With our experiment, we intend to reproduce the analogue of the Rarity-Tapster experiment, to probe the momentum entanglement of massive particles: helium atoms.

Remark 2.5 (Internal and external quantum parameters) For the quantum systems that we consider, we distinguish two types of degree of freedom:

▶ the internal ones: that are carried by the particle itself (without needing anything else than the particle to define it). In the case of elementary particles they usually have a purely quantum origin: for example the spin of electrons, or the helicity of photons 1 1: one could argue that these parameters are not purely quantum since both the spin and the helicity also come out of relativistic arguments. Without going deep into the details we will just say that the quantum theory plays at least a crucial role for that matter. The interested reader can refer to those references for more information: [START_REF] Dean | Spinor solutions and CPT[END_REF][START_REF] Weinberg | Relativistic quantum mechanics[END_REF] . Internal parameters may also come from the composite nature of a more complex quantum system, such as atoms are. For example, the total angular momentum of an atom comes from the different contributions of its constituents (spin and angular momentum of the electrons, nuclear spin) but it is considered as an internal parameter because it is self-contained, in the atomic structure. In general the internal degrees of freedom can be represented with discrete quantum numbers ;

▶ the external ones: referring to the state of the particle, with respect to a wider structure to whom it is bounded. In simple words, they typically are the position or the momentum, that is why we also sometimes call them mechanical parameters.

It is interesting to notice that these parameters have a direct classical equivalent (classical position/velocity), and anyone has a fairly natural and subjective knowledge of it. This apparent familiarity that we have with this class of parameters makes even more interesting, on the epistemological aspect, the possibility to prepare them in a highly quantum regime, such as entangled states ;
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𝑧 𝑡 𝑡 𝑑 𝑡 𝑠 𝑡 0 𝐴 - 𝐵 - 𝐴 + 𝐵 + 𝑝 𝑞 -𝑞 -𝑝 -𝑞 -𝑝 𝑞 𝑝 𝑆 Figure 2
.4: Schematic of the atomic Rarity-Tapster two-particle four modes interferometer that we want to implement so as to perform a test of Bell inequality violation. An atomic source emits two pairs of quantum correlated modes (𝑝, -𝑝) and (𝑞, -𝑞). A first deflection Bragg pulse is applied at 𝑡 = 𝑡 𝑑 so as to topologically close the interferometer. Then a second Bragg pulse is applied at 𝑡 = 𝑡 𝑠 realising respectively a beam splitter for Alice and for Bob.

General description 2.2.1 Topology

The figure Figure 2.4 describes the type of setup that we want to achieve 1 . 1: pay attention to the fact the coloured lines are not trajectories, Figure 2.4 is a spacetime diagram: the emissions of the particles (helium atoms) is done along the vertical axis.

It is completely equivalent to the original design used by Rarity and Tapster, except that we are considering atoms (in vacuum), emitted by a source 𝑆 (cf. Chapter 5) along the vertical axis, and subjected to free fall.

For now let us assume that the source is emitting a Bell state in momentum space:

Ψ⟩ = 1 √ 2 ( 𝑝, -𝑝⟩ + 𝑞, -𝑞⟩) (2.13)
Which is an entangled two-particle state (the notation are consistent with the Figure 2.4). If we just perform the measurements after the emission from the source (corresponding to a date 𝑡 ∈]𝑡 0 , 𝑡 𝑑 [ on the Figure 2.4) we would only probe its "vanilla" correlation properties, observed with respect to a fixed given basis (the plane waves), without being able to measure a Bell parameter 2 . Even though this work 2: this is actually the current state of the experiment, and the corresponding experimental results that we have are presented in Chapter 5.

is not devoid of interest, it is not enough to claim a Bell inequality violation. 

𝑝 𝐸/ℏ 2 3 𝑆 1 2 3 𝑃 0 𝑝 1 𝑝 1 +𝑝 2 2 𝑝 2 𝜔 1 (𝜋) 𝜔 2 (𝜋) |𝑝 1 ⟩ |𝑝 2 ⟩ Δ = 2𝜋 × 0.6 GHz Δ𝛦(𝑝 1 ,𝑝 2 ) ℏ

𝛿 ℏ𝑘 ℏ𝑘

To be able to change the bases used for detections, we need to mix, in a coherent manner, the natural modes (𝑝, -𝑝) on the one hand, with the natural modes (𝑞, -𝑞) on the other hand. Rarity and Tapster showed that such a mixing can be achieved with a two-particle four-mode interferometer, which is topologically equivalent to a double Mach-Zehnder interferometer: one for Alice (in blue) and one for Bob (in red). This requires the usage of mirrors (to "close" the interferometers) and beam splitters which (as it has been discussed in details in the Chapter 1) realise a 𝑆𝑈(2) transformation, and therefore effectively perform the desired rotation of the detection bases.

Bragg diffraction in brief

A fairly usual way in atom interferometry to produce mirrors and beam splitters, is to use the Bragg diffraction technique [START_REF] Cronin | Optics and Interferometry with Atoms and Molecules[END_REF], which The total momentum ̵ ℎ𝑘 𝑏𝑟𝑎𝑔𝑔 given to an atom when it exchanges two photons with the lattice depends on the laser wavelength, and the angle 2𝜃 between the laser beams (Eq. (2.14)). The detuning 𝛿 to the twophoton resonance is controllable and must be set up to zero if want to be able to achieve a 100 % transfer 1 1: we can also show that when 𝛿 ≠ 0 there are also phases terms 𝑒 ±𝛿𝑡 in the effective hamiltonian driving the evolution, that are preferable for us to vanish [START_REF] Perrier | Interférences multiples avec atomes froids[END_REF].

(analogous to a mirror in optics).

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑘 = 2𝜋 𝜆 sin(𝜃) 𝑘 𝑏𝑟𝑎𝑔𝑔 ≜ 2𝑘 (2.14a) (2.14b)
̵ ℎ𝑘 𝑏𝑟𝑎𝑔𝑔 being fixed, given a momentum 𝑝 1 the resonance condition 𝛿 = 0 is fulfilled when the angular frequency difference between both laser beams is equal to

Δ𝛦(𝑝 1 ,𝑝 2 ) ̵ ℎ : ̵ ℎ (𝜔 1 -𝜔 2 ) ≜ Δ𝜔 = Δ𝐸(𝑝 1 , 𝑝 2 ) (2.15) with 𝑝 2 = 𝑝 1 + ̵ ℎ𝑘 𝑏𝑟𝑎𝑔𝑔 Δ𝐸(𝑝 1 , 𝑝 2 ) = 𝑝 2 2 2𝑚 - 𝑝 2 1 2𝑚 (2.16a) = ̵ ℎ𝑘 𝑏𝑟𝑎𝑔𝑔 𝑚 𝑝 1 + ̵ ℎ 2 𝑘 2 𝑏𝑟𝑎𝑔𝑔 2𝑚 (2.16b)
Remark 2.6 Eq. (2.16b) means that there is a linear correspondence between the angular frequency difference Δ𝜔 and the velocity classes

(𝑝 1 , 𝑝 2 ).
Since the magnitude of the Bragg kick ̵ ℎ𝑘 𝑏𝑟𝑎𝑔𝑔 is fixed by the geometry of the optical lattice, we can consider Δ𝐸 to be a function of the parameter 𝑝 1 only: Bragg diffraction always couples the velocity class 𝑝 1 𝑚 to the velocity class

𝑝 1 + ̵ ℎ𝑘 𝑏𝑟𝑎𝑔𝑔 𝑚 = 𝑝 1 +2 ̵ ℎ𝑘 𝑚 .
In practice, the total kick ̵ ℎ𝑘 𝑏𝑟𝑎𝑔𝑔 has been measured experimentally (with a microchannel plate (MCP): cf. Chapter 3) when the lattice was installed. We find

𝑘 𝑏𝑟𝑎𝑔𝑔 = 0.550(5) 𝑘 𝑟𝑒𝑐 (2.17)
where 𝑘 𝑟𝑒𝑐 is the one-photon recoil momentum with the 1083 nm laser that we use (cf. Chapter 3). We generally express our lattices' wave vectors in units of 𝑘 𝑟𝑒𝑐 ≈ 5.8 µm -1 . This corresponds to an angle 𝜃 = 32.0(6)°(2.18)

A more complete study of the Bragg diffraction, with analytical calculations about the transferred population and the resulting phase can be found in the previous PhD manuscripts of the team, in particular [START_REF] Lopes | An Atomic Hong-Ou-Mandel Experiment[END_REF][START_REF] Perrier | Interférences multiples avec atomes froids[END_REF][START_REF] Imanaliev | Towards Testing Bell's Inequality Using Atoms Correlated in Momentum[END_REF] . It is interesting to notice that the geometry presented on the Figure 2.8 is topologically equivalent to the one presented in Figure 2.4 (that we would like to realise first). It could even be considered to be a better configuration, as the spatial separation between Alice and Bob is larger. Indeed, we would be probing a non-local effect, spreading across larger distances, which is more interesting. However this design require much smaller values of the Bragg kick ̵ ℎ𝑘 𝑟𝑒𝑐 . Actually, the multi-mode source that we use emits the particles in an envelope of with two main atomic beams, in the momentum space restricted to the vertical axis (cf. Figure 2.7 and Chapter 5). While the separation between both "bumps" of this envelope is typically of the order of 0.6 ̵ ℎ𝑘 𝑟𝑒𝑐 , the configuration of Figure 2.8 would require to pair modes living in a same bump, whose typical RMS width is of the order 0.1 𝑘 𝑙𝑎𝑡 . This lead to an angle 𝜃 at least three time smaller than the current one, which may be a technical difficulty for us.

Formal effect of the deflector and beam splitters

Coupling matrix and degrees of freedom When a Bragg diffraction pulse is applied, the population oscillates between the coupled modes. We denote Ω 1 and Ω 2 the one-photon Rabi angular frequencies of each laser beam 1 , and define the effective two-photon Rabi an-1: these are complex numbers whose amplitude are proportional to the squareroot of the intensity of the beams (Ω 𝑖 ∝ 𝛪 𝑖 ) and their argument is given by the phase of the lasers. gular frequency:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ Ω = 𝛿 2 + Ω 𝑅 2 (effective two-photon Rabi frequency) Ω 𝑅 = 2 Ω 1 Ω * 2 Δ (two-photon Rabi frequency) (2.19a) (2.19b)
We have

Ω 𝑅 = Ω 𝑅 𝑒 𝑖𝜑 (2.20)
where 𝜑 is the phase difference between both laser beam.

In the case of a square pulse (i.e. Ω 𝑅 and 𝛿 non-zero constants between 𝑡 = 0 and 𝑡 = 𝑇, and zero otherwise) the dynamics of the system can be solved analytically [START_REF] Perrier | Interférences multiples avec atomes froids[END_REF], and we can write the corresponding evolution [START_REF] Perrier | Interférences multiples avec atomes froids[END_REF]: Perrier (2018), "Interférences multiples avec atomes froids" operator 𝑈:

𝑈(𝑇) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ cos Ω𝑡 2 -𝑖 𝛿 Ω sin Ω𝑡 2 𝑒 𝑖 𝛿𝑡 2 𝑖 Ω 𝑅 Ω sin Ω𝑡 2 𝑒 𝑖 𝛿𝑡 2 +𝜑 𝑖 Ω 𝑅 Ω sin Ω𝑡 2 𝑒 -𝑖 𝛿𝑡 2 +𝜑 cos Ω𝑡 2 + 𝑖 𝛿 Ω sin Ω𝑡 2 𝑒 -𝑖 𝛿𝑡 2 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ (2.21)
This expression may seem a bit messy, but actually we recognise the general form of a 𝑆𝑈(2) operator, that we have discussed in the first chapter of this manuscript 1 .

1: in particular we can check that det(𝑈) = 1.

If we consider a couple ( 𝑝⟩ , 𝑞⟩) of momentum states, for which the resonance condition is fulfilled (𝛿 = 0), the Bragg pulse can whether realise:

▶ a mirror (or deflector) when

Ω𝑇 = 𝜋 ⇒ 𝑈(𝑇) = 0 𝑖 𝑒 𝑖𝜑 𝑖 𝑒 -𝑖𝜑 0 (2.22)
It is a 𝜋 pulse: atoms are transferred from one state to the other with 100 % probability.

▶ a beam splitter when

Ω𝑇 = 𝜋 2 ⇒ 𝑈(𝑇) = 1 √ 2 1 𝑖 𝑒 𝑖𝜑 𝑖 𝑒 -𝑖𝜑 1 (2.23)
It is a 𝜋 2 pulse: atoms are transferred from one state to the other with 50 % probability.

In both cases the transmission and reflection phases applied are

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝜑 𝜏 = 0 𝜑 𝜌 = 𝜋 2 + 𝜑 (2.24a) (2.24b)
Two important ideas must be stressed at this stage:

1. the evolution operator 𝑈 also couples velocity classes that are not strictly resonant: when the small detuning 𝛿 is not zero. It means that the reflectivity profile has some width in the momenta space. This profile 1 must be studied numerically. A perturbative cal-1: i.e. the dependance of the reflectivity and also the applied phase with the detuning 𝛿.

culation conducted in [START_REF] Perrier | Interférences multiples avec atomes froids[END_REF] establishes that the profile of the [START_REF] Perrier | Interférences multiples avec atomes froids[END_REF]: Perrier (2018), "Interférences multiples avec atomes froids" reflectivity as a function of the small detuning 𝛿 2 is proportional 2: i.e. the velocity classes that are not strictly at resonance.

to the temporal Fourier transform of the two-photon Rabi frequency Ω 𝑅 : the shorter the pulse, the broader the reflectivity profile is. However since it comes from a perturbative approximation, this result is just a "thumb rule", that becomes wrong when the transferred population is large (in the case of the deflector for example) ;

2. Ω 𝑅 being a complex number -whose argument corresponds to the phase difference 𝜑 between the laser beams-a phase may be applied to the output state. Again, due to the 𝑖𝛿 Ω terms in the diagonal of 𝑈, this phase also depends on the velocity classes ; Now we will see that it possible to use the phases applied by Alice and Bob' respective beam splitter (obtained with the Bragg pulses (2.23)) as experimental "buttons" to compute the correlators involved in the BCHSH parameter.
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This framework is different from the historical experiment of Aspect et al., where experimentalists where using the angle of polarisers (which is equivalent to the transitivity of our beam splitters) to measure the Bell parameter.

There is no formal difference between both methods, it is just simpler for us to use only 50-50 beam splitters pulses, and control the phases.

Technical implementation

In practice we need to address four velocity classes (corresponding to the modes 𝑝⟩, -𝑝⟩, 𝑞⟩, -𝑞⟩ of the previous figures). We are planning to pursue a strategy keeping the optical setup as simple as possible: deflectors and beam splitters being realised with the same optical beams.

A specific numerical study must be done to find the appropriate pulses (i.e. the power and phase difference of the laser beams) performing the desired deflector and beam splitter (paying attention to the phase that is applied to the different velocity classes). This work has already been done (at least partially 1 ) in [START_REF] Perrier | Interférences multiples avec atomes froids[END_REF], and it is not useful to the purpose of 1: Charlie Leprince, PhD student and my colleague on the experiment, performed additional numerical simulations to refine this work. This was useful to have a better understanding of what we need to implement to the apparatus to realise the Bragg pulses. This complementary work can be found in his master's degree internship repport, or in his PhD manuscript (coming out next year). this chapter. Therefore, we will only give the very general principle of what we want to do:

▶ the deflection pulse (applied at 𝑡 = 𝑡 𝑑 in Figure 2.4 and Figure 2.8) is "broadband", meaning that it adresses all the velocity classes at once. This is possible using a short and intense laser pulse (therefore with a large value of Ω 𝑅 ) ;

▶ the beam splitters (applied at 𝑡 = 𝑡 𝑠 in Figure 2.4 and Figure 2.8) are obtained with multiplexed "narrowband" pulses: meaning that one of the two beams forming the lattice contains two frequencies, creating two lattices addressing respectively Alice's couple of modes (𝑝, -𝑞) and Bob's one (-𝑝, 𝑞).

Concretely, the temporal profile of the pulses (Ω 𝑅 [𝑡]) are sinc functions, multiplied by a large window function (for apodisation). The choice of sinc functions is inspired by the perturbative approach (a sinc in the time domain giving a square in the momenta space). We checked numerically that even if the regime is clearly not perturbative 2 the sinc 2: ∼ 50 % of transferred population with a BS pulse, and ∼ 100 % with a mirror shape is still giving good results.

In the following we will just consider the situation of Figure 2.4, and assume that thanks to the Bragg pulses 3 , it corresponds to the experi-3: with the notations of ment presented in [START_REF] Dussarrat | Expériences d'Optique Atomique Quantique, Interféromètres à 2 et 4 modes[END_REF]. The output modes can be written in basis of [START_REF] Dussarrat | Expériences d'Optique Atomique Quantique, Interféromètres à 2 et 4 modes[END_REF]: Dussarrat (2017), "Expériences d'Optique Atomique Quantique, Interféromètres à 2 et 4 modes"

the natural emitted modes:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝐴 + ⟩ = -1 √ 2 𝑒 -𝑖(𝜑 𝑎 -𝜑 𝑑 ) 𝑝⟩ + 𝑖𝑒 -𝑖𝜑 𝑑 -𝑞⟩ 𝐴 -⟩ = -1 √ 2 𝑖𝑒 𝑖𝜑 𝑑 𝑝⟩ + 𝑖𝑒 𝑖(𝜑 𝑎 -𝜑 𝑑 ) -𝑞⟩ 𝐵 + ⟩ = -1 √ 2 𝑒 -𝑖(𝜑 𝑏 -𝜑 𝑑 ) 𝑞⟩ + 𝑖𝑒 -𝑖𝜑 𝑑 -𝑝⟩ 𝐵 -⟩ = -1 √ 2 𝑖𝑒 𝑖𝜑 𝑑 𝑞⟩ + 𝑖𝑒 𝑖(𝜑 𝑏 -𝜑 𝑑 ) -𝑝⟩ (2.25a) (2.25b) (2.25c) (2.25d)
where 𝜑 𝑑 is a phase applied the deflection (𝜋) pulse, and (𝜑 𝛢 , 𝜑 𝛣 ) are the phases applied by Alice and Bob beam splitters. 𝜑 𝛢 and 𝜑 𝛣 are the "buttons" used by Alice and Bob to measure a Bell parameter.

With previous parametrisation, one can check that the emitted state Ψ⟩ of (2.13) writes:

Ψ⟩ = √ 2 4 -𝑖 𝑒 𝑖𝜑 𝑎 + 𝑒 𝑖𝜑 𝑏 𝐴 + , 𝐵 + ⟩ + √ 2 4 𝑒 𝑖(𝜑 𝑎 -𝜑 𝑏 ) -1 𝐴 + , 𝐵 -⟩ + √ 2 4 𝑒 -𝑖(𝜑 𝑎 -𝜑 𝑏 ) -1 𝐴 -, 𝐵 + ⟩ + √ 2 4 -𝑖 𝑒 -𝑖𝜑 𝑎 + 𝑒 -𝑖𝜑 𝑏 𝐴 -, 𝐵 -⟩ (2.26) 
leading to output probabilities very similar to Eq. (2.10):

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑃 𝛢 + ,𝛣 + (𝜑 𝑎 , 𝜑 𝑏 ) = 𝑃 𝛢 -,𝛣 -(𝜑 𝑎 , 𝜑 𝑏 ) = 1 2 cos 2 𝜑 𝑎 -𝜑 𝑏 2 𝑃 𝛢 + ,𝛣 -(𝜑 𝑎 , 𝜑 𝑏 ) = 𝑃 𝛢 -,𝛣 + (𝜑 𝑎 , 𝜑 𝑏 ) = 1 2 sin 2 𝜑 𝑎 -𝜑 𝑏 2 (2.27a) (2.27b)
Therefore, we find a correlator also similar to Eq. (2.11):

𝐸(𝜑 𝑎 , 𝜑 𝑏 ) = cos(𝜑 𝑎 -𝜑 𝑏 ) (2.28)
The correlator oscillates with the phase difference 1 Δ𝜙 = 𝜑 𝑎 -𝜑 𝑏 . In 1: let us recall that both 𝜑 𝑎 and 𝜑 𝑏 themselves are interpreted as a phase difference between the two laser beams creating the beam splitters.

practice it means that it enough to control the phase difference Δ𝜙, and measure an oscillation of 𝐸 with an amplitude larger than Remark 2.7 (Is the Rarity-Tapster setup an interferometer?) The oscillation (2.28) of 𝐸 does not have the same status as the oscillation observed in a regular one-particle interferometer (a Mach-Zehnder for example). It is not the oscillation of an intensity (fringes), but of a correlations between two detections.

On can easily check that neither Alice nor Bob see an oscillating signal at their respective outputs:

𝑃(𝐴 + ) = 𝑃(𝐴 -) = 𝑃(𝐵 + ) = 𝑃(𝐵 -) = 1 2 (2.29)
One could argue that an interferometer should be (by definition) a phase correlator of a one-particle state. We do not intend to fuel a semantic debate, but we choose to call this type configuration a two-particle interferometer.

Well-suited Bell inequalities

Due its similarity with the correlator used CHSH inequality, Eq. (2.28) may seem satisfying. However in the previous paragraph we assumed that exactly two particles were propagating in the interferometer: this is actually the very first hypothesis that we made, by writing the input state (2.13) with a Bell state.

The "problem" is that we cannot prepare such a state. As it has been explained in Chapter 1 (and will be developed in Chapter 5), the source at our disposal produces tensor product of two-mode squeezed vacuum states. Let us recall the expression of such a state:

Ψ⟩ = 1 -𝛼 2 ∞ ∑ 𝑛=0 𝛼 𝑛 𝑛⟩ 𝑝 𝑛⟩ -𝑝 ⊗ 1 -𝛽 2 ∞ ∑ 𝑛=0 𝛽 𝑛 𝑛⟩ 𝑞 𝑛⟩ -𝑞
(2.30) Where the number of particle per mode for each TMS are given by

𝜈 𝑎 = 𝛼 2 1 -𝛼 2 𝜈 𝑏 = 𝛽 2 1 -𝛽 2 (2.31)
𝜈 𝑎 and 𝜈 𝑏 are positive real numbers, let us assume 𝛼 = 𝛽 for simplicity. During an experiment, the detectors (single particle counters) placed on the channels 𝐴 + , 𝐴 -, 𝐵 + and 𝐵 -return positive integer values. This is a priori not a problem since the CHSH inequality is still valid in a generalised context where the measured observables are continuous variables (cf. Remark 2.3).

One can however notice that in the limit 𝜈 𝛼 →0

→ 0, the two brackets in (2.30) can be approximated to the vacuum and the first order in 𝛼 contributions, in extenso:

Ψ⟩ ≈ 𝜈→0 1 -𝛼 2 0⟩ + 𝛼 1⟩ 𝑝 1⟩ -𝑝 + 𝑒 𝑖𝜙 1⟩ 𝑞 1⟩ -𝑞 Φ⟩ (2.32)
whose non-empty part Φ⟩ is exactly a Bell state (up to a normalisation factor and a phase 𝜙 = arg[𝛽 𝛼]). That means that during an experiment, if the pair creation rate is small (𝜈 → 0), and if we do not consider the realisations where no particle is detected (removing the vacuum), we expect to recover the same type of physics as the one presented in the previous section.

Nonetheless, in the general case, the question is to know which observable and correlator are to consider in order to construct a Bell parameter that exceed the critical value of 2. Based on the reference [START_REF] Kitzinger | Bell Correlations in a Split Two-Mode-Squeezed Bose-Einstein Condensate[END_REF], we will show in the following different approaches, and conclude about the most suitable for us regarding the constraints imposed by our apparatus.

First natural approach

Let us first introduce the numbers 𝑁 𝛢 + (𝜑 𝑎 ), 𝑁 𝛢 -(𝜑 𝑎 ), 𝑁 𝛣 + (𝜑 𝑏 ) and 𝑁 𝛣 -(𝜑 𝑏 ) corresponding to the number of particles counted at each channel during an experimental realisation. These are all positive integers. We also introduce:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝑁 𝛢 = 𝑁 𝛢 + (𝜑 𝑎 ) + 𝑁 𝛢 -(𝜑 𝑎 ) 𝑁 𝛣 = 𝑁 𝛣 + (𝜑 𝑏 ) + 𝑁 𝛣 -(𝜑 𝑏 ) (2.33a) (2.33b)
the total number of particles measured by Alice and Bob during a realisation. The conservation of the number of particles at the beam splitters implies that 𝑁 𝛢 and 𝑁 𝛣 are independent of 𝜑 𝑎 and 𝜑 𝑏 . We also define

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝑆 𝛢 (𝜑 𝑎 ) = 𝑁 𝛢 + (𝜑 𝑎 ) -𝑁 𝛢 -(𝜑 𝑎 ) 𝑆 𝛣 (𝜑 𝑏 ) = 𝑁 𝛣 + (𝜑 𝑏 ) -𝑁 𝛣 -(𝜑 𝑏 ) (2.34a) (2.34b)
the differences of number of particles measured by Alice and Bob.

We define the normalised averaged correlator 1 :

1: historically, it was the correlator used by Rarity and Tapster in their experiment.

𝐸 I (𝜑 𝑎 , 𝜑 𝑏 ) = ⟨𝑆 𝛢 (𝜑 𝑎 )𝑆 𝛣 (𝜑 𝑏 )⟩ ⟨𝑁 𝛢 𝑁 𝛣 ⟩ (2.35)
2 Rarity-Tapster interferometer 91

It is possible to prove that it is subjected to the same inequality as the CHSH one (2.5), but using a slightly different derivation as the one presented in the first section 1 [START_REF] Clauser | Experimental consequences of objective local theories[END_REF]. 

𝑃 𝑖,𝑗 ∈{+,-} (𝜑 𝑎 , 𝜑 𝑏 ) = ⟨𝑁 𝛢 𝑖 (𝜑 𝑎 )𝑁 𝛣 𝑗 (𝜑 𝑏 )⟩ ⟨𝑁 𝛢 + 𝑁 𝛣 + ⟩ + ⟨𝑁 𝛢 + 𝑁 𝛣 -⟩ + ⟨𝑁 𝛢 -𝑁 𝛣 -⟩ + ⟨𝑁 𝛢 -𝑁 𝛣 -⟩ (2.37) 𝑃 𝑖,𝑗 (𝜑 𝑎 , 𝜑 𝑏 ) ∈ [0, 1]
is a crossed detection probability, thus once written in its expanded form (2.36) the correlator 𝐸 I is reminiscent of Eq. (2.9). This correlator has been proposed by Ralph et al. [START_REF] Ralph | Proposal for the Measurement of Bell-Type Correlations from Continuous Variables[END_REF], exposing [START_REF] Ralph | Proposal for the Measurement of Bell-Type Correlations from Continuous Variables[END_REF]: [START_REF] Ralph | Proposal for the Measurement of Bell-Type Correlations from Continuous Variables[END_REF], "Proposal for the Measurement of Bell-Type Correlations from Continuous Variables" this approach to show a CHSH inequality violation from continuous variable. The appreciable point about this correlator is that it is very close to the one that we studied in the first section, when we were manipulating a genuine Bell state. It is actually quick to check that the restriction to the one particle domain (𝑁 𝛢 = 𝑁 𝛣 = 1) leads to the exact same observable and correlator as in the first sections: 𝑆 𝛢 , 𝑆 𝛣 ∈ {-1, 1}. Eq. (2.35) is therefore sort of a generalisation of the "usual" correlator, used to perform a two-particle CHSH inequality violation.

The relations Eq. (2.25) are still valid. Knowing the state (2.30), and by injecting the quadruplet of optimal angles 2 2: optimal at least in the 𝜈 → 0 limit. 

𝑆(𝜈) = 2 √ 2 ⋅ 1 + 𝜈 1 + 3𝜈 (2.38)
which is plotted on Figure 2.9. When 𝜈 → 0, 𝑆 reaches its maximal value 3 2 √ 2. This is an expected behaviour since with this method the 3: the first Tsirelson's bound.

vacuum contribution to the correlator implicitly vanishes. Indeed, if we label with the superscript (𝑖) the experimental realisations the correlator 𝐸 I concretely measured with 𝑛 realisations writes:

𝐸 I (𝜑 𝑎 , 𝜑 𝑏 ) = 𝑆 (1) 
𝛢 𝑆

(1)

𝛣 + 𝑆 (2) 
𝛢 𝑆

(2)

𝛣 + ⋯ + 𝑆 (𝑛) 𝛢 𝑆 (𝑛) 𝛣 𝑁 (1) 𝛢 𝑁 (1) 𝛣 + 𝑁 (2) 𝛢 𝑁 (2) 𝛣 + ⋯ + 𝑁 (𝑛) 𝛢 𝑁 (𝑛) 𝛣 (2.39)
if during a realisation (𝑖) the vacuum turns out to be measured on a side (let us assume Alice's one), we have 𝑁 (𝑖) 𝛢 = 0 and therefore 𝑆 (𝑖) 𝛢 , which effectively just removes one term on both the numerator and the denominator: we have an effective postselection of the vacuum. Therefore in the small population limits only the non-vacuum part -that can be approximated by a Bell state-contributes to the signal and we find the usual result 𝑆 = 2 √ 2.

An other remarkable property of this approach is that the measured Bell parameter 𝑆(𝜈) is independent of the quantum efficiency 𝜂 of the detector! It is pretty simple to see regarding Eq. (2.37), since -by definition of the quantum efficiency-the only effect of the losses on the 𝑃 𝑖,𝑗 s is to add a 𝜂 2 factor on both the numerator and the denominator, that cancel out immediately.

However, it is natural to think that when the population 𝜈 increases, the level of entanglement of system increases as well. Indeed, two-mode squeezed states are completely entangled states, therefore increasing the population means increasing the number of particles involved in this entanglement. One could argue that it is a bit strange to find a Bell parameter decreasing -which is a priori the signature of less quantum effects-whereas the expected level of entanglement increases.

Second approach: projection onto two-outcomed events observables

An alternative approach was proposed by Nemoto et al. [START_REF] Kitzinger | Bell Correlations in a Split Two-Mode-Squeezed Bose-Einstein Condensate[END_REF]. The idea 

ℝ → ℝ 𝑥 ↦ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ -1 if 𝑥 < 0 +1 if 𝑥 ≥ 0 (2.40)
Then we can define a correlator 𝐸 II :

𝐸 II (𝜑 𝑎 , 𝜑 𝑏 ) = ⟨sgn [𝑆 𝛢 (𝜑 𝑎 )] sgn [𝑆 𝛣 (𝜑 𝑏 )]⟩ (2.41)
Since both sgn [𝑆 𝛢 (𝜑 𝑎 )] and sgn [𝑆 𝛣 (𝜑 𝑏 )] are contained in {-1, 1}, 𝐸 II is can be used to build a CHSH inequality, based on its original derivation.
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Actually in the previous case, the Bell parameter was quickly decreasing with 𝜈 due to the harmful contribution of the terms involving more than 2 particles, which effectively reduced the amplitude of the correlator 𝐸 I . In this second approach, all the measurements are projected onto the two outcomes +1 and -1. Even without giving a rigorous mathematical proof, we can have the insight that this projection has a damping effect onto the contribution of the realisation involving a large number of particles. We expect a better behaviour of the Bell parameter when the population increases. We can have a numerical estimation of the Bell parameter, using the correlator 𝐸 II . However, the finite quantum efficiency of the detectors no longer cancel out, and must be taken into account in the calculations. The implementation of the losses due to the finite quantum efficiency is very similar to the one that we used in the previous chapter, the details of the derivation of the formulae can be found in the original publication [START_REF] Kitzinger | Bell Correlations in a Split Two-Mode-Squeezed Bose-Einstein Condensate[END_REF]. We give the final result anyway: 

𝐺 𝜂 𝛮 + ,𝛮 - = 1 -2 ∑ 0≤𝑛≤𝛮 + 0≤𝑚≤𝛮 - 𝑛<𝑚 𝑁 + 𝑁 + -𝑛 𝑁 - 𝑁 --𝑚 𝜂 𝑛+𝑚 (1 -𝜂) 𝛮 + +𝛮 --𝑛-𝑚
(2.42) is the lossy sgn[𝑆] operator. Then the Born's rule gives the probability of a given outcome:

𝑃 𝜑 𝑎 ,𝜑 𝑏 (𝑁 𝛢 + , 𝑁 𝛢 -; 𝑁 𝛣 + , 𝑁 𝛣 -) = ⟨Ψ 𝑁 𝛢 + , 𝑁 𝛢 -; 𝑁 𝛣 + , 𝑁 𝛣 -⟩ 2 (2.43)
and finally

𝐸 II (𝜑 𝑎 , 𝜑 𝑏 ) = ∞ ∑ 𝛮 𝛢 + ,𝛮 𝛢 -,𝛮 𝛣 + ,𝛮 𝛣 -=0 𝑃 𝜑 𝑎 ,𝜑 𝑏 (𝑁 𝛢 + , 𝑁 𝛢 -; 𝑁 𝛣 + , 𝑁 𝛣 -)𝐺 𝜂 𝛮 𝛢 + ,𝛮 𝛢 - 𝐺 𝜂 𝛮 𝛣 + ,𝛮 𝛣 - (2.44)
A numerical calculation of the variations of the Bell parameter with the population is plotted in Figure 2.10. Let us make a commentary about it:

1. whatever the quantum efficiency, when 𝜈 goes to zero, 𝑆 goes to 2. This is no surprise, because the state Ψ⟩ is then approximated by the vacuum, which gives 𝐸 II (𝜑 𝑎 , 𝜑 𝑏 ) = 1 whatever the orientations of the detectors, and therefore

𝑆 = 1 + 1 + 1 -1 = 2.
2. When the quantum efficiency is large (≳ 85 %), the Bell parameter 𝑆 increases with the population, which is very good! This is what we was hopping for: the Bell parameter increases when the level of correlations in the system increases. However, the strength of the violation is smaller than in the previous case (𝑆 < 2.3).

3.

The most serious problem is that the violation collapses quickly when the quantum efficiency is not close to 1. In the case of our experiment, where the quantum efficiency is approximately 50 %, this approach is unusable.

Third approach based on the CH inequality

The main reason that explains the fact the Bell inequality violation can be strong with the first approach is that the vacuum do not contribute to the signal. Indeed, vacuum obviously do not contain any correlation, and may only have a negative effect on the measured Bell parameter. The idea of this third approach is to cumulate the advantages of both previous methods:

1. find a way to reject vacuum's contribution (inspired by the first approach), so has to keep the maximal value of the Bell parameter to a large value (if possible 2 √ 2) ; 2. project the results of the experimental realisations onto twooutcomes event, taking the values ±1, so as to have a better behaviour when the population increases ;

This approach is steered by the Clauser and Holt (CH) inequality. This inequality -proved in 1974 [START_REF] Clauser | Experimental consequences of objective local theories[END_REF]-is a constraint built from outcomes' The proof of the inequality may be found in [START_REF] Clauser | Experimental consequences of objective local theories[END_REF].

outcome measurements, returning either the value +1 or -1.

By using the notation 𝑃 𝑖,𝑗 (with 𝑖, 𝑖 ∈ {+, -}) of the first section (notations introduced with Eq. (2.9)) and using the symbol "∀" for the marginal probabilities: Now we still need to define actual observables, in order to have a concrete definition of the probabilities 𝑃 𝑖,𝑗 . The strategy is the following:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑃 ∀,∀ = ∑ 𝑖,𝑗=±
1. the vacuum is postselected, meaning that if either Alice or Bob measure zero particle on both their channels (+ and -) during an experimental realisation, this realisation is dropped.

2. if at least one particle is detected on both side (𝑁 𝛢 , 𝑁 𝛣 ≥ 1), then Alice and Bob consider the observables, sgn [𝑆 𝛢 (𝜑 𝑎 )] and sgn [𝑆 𝛣 (𝜑 𝑏 )], that we already introduced in the second approach.

More formally, if we denote Π the orthogonal projection operator, projecting the states onto the hyperplane orthogonal to the vacuum (i.e. the non-empty subspace), by definition of 𝑃 ∀,∀ we have

𝑃 ∀,∀ = ⟨Π⟩ (2.48)
and 𝐸 III can be rewritten in an expression exhibiting the fact that it is indeed a correlation function:

𝐸 III (𝜑 𝑎 , 𝜑 𝑏 ) = ⟨Πsgn [𝑆 𝛢 (𝜑 𝑎 )] Πsgn [𝑆 𝛣 (𝜑 𝑏 )]⟩ ⟨Π⟩ (2.49)
which is (just like 𝐸 I ) a normalised correlator. Now we can again perform some numerical simulations, and check if there is an experimental interest with this approach. Just as in the previous case (with the correlator 𝐸 II ) there is no simple simplification of the quantum efficiency here, and it must be taken into account during the numerical computations. Just as before, the finite quantum efficiency is treated as particle losses, similarly to the previous case (more information can be found in [START_REF] Kitzinger | Bell Correlations in a Split Two-Mode-Squeezed Bose-Einstein Condensate[END_REF]). The results are plotted in Figure Even though, the Bell parameter 𝑆 is decreasing with the population 𝜈, it is significantly larger than the one resulting from the first correlator 𝐸 I , which is very satisfying.

An other interesting visualisation, is the profile of the population giving 𝑆 = 2 (saturation of the Bell inequality) as a function of the quantum efficiency. This is plotted in Figure 2.12. We observe that this functions increases exponentially fast, meaning that using detectors with a quantum efficiency close to 100 % 1 allows to obtain a Bell inequality 1: as it can be the case in quantum optics.

violation with very large populations. In our case, with 𝜂 ≈ 0.5, we find 𝜈 𝑚𝑎𝑥 ≈ 0.7, which is a gain of almost a factor 3 compared to the first approach.
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Conclusion

In this chapter we have recalled what the CHSH Bell inequality is, and how it can be tested with a Rarity-Tapster interferometer. In particular, we have seen that even though the use of a two-mode squeezed state for the purpose of such an experiment is generally deteriorates the quality of the signal, the smart choice of the nonlocal correlator can improve the degree of violation, even with a finite quantum efficiency.

In a practical experiment, if we aim at obtaining a BCHSH parameter 𝑆 ≈ 2.5, with the simple approach of Ralph et al. (based on the correlator 𝐸 I ) we should use an average population per mode 𝜈 ≈ 0.07, whereas with the third approach a population 𝜈 ≈ 0.14 is enough. Therefore, there is roughly a gain of a factor of 2, which is a huge improvement experimentally speaking, as it means that we can double our signal-to-noise ratio. 

Experimental works

Preparation of a

Introduction

The realisation of a Bose-Einstein condensate (BEC) is at the very core of our experimental procedure. As it will be discussed in the last chapter of this manuscript, the BEC acts as a cornerstone for the generation of non-classical states. Therefore, Bose-Einstein condensation is "step zero" in our process, and its stable generation is a mandatory condition to any experimental attempt. The successive cooling stages of the metastable helium cloud, from room temperature down to the quantum phase transition, will be an important topic of interest in this chapter.

But before giving a complete depiction of our cooling techniques, we will first discuss the crucial question of the detection of the signal. We will show in particular that our choice of atomic species is completely related to the technology we are using: a single-atom momentum resolved detector.

In this chapter, we will deal with many experimental techniques, several of those having been implemented by my predecessors, working on the experiment since its very early stages back in 1996. We will highlight with a blue background frame the recent innovations that I contributed to set up during my work in the team: namely the compression of the MOT, the fluorescence imaging calibration, the new MCP installation, the new setup for the optical dipole trap (ODT).

1 Metastable helium 103 1 Metastable helium

Spectroscopy

Helium -whose name is modestly derived from Helios (ancient Greek deity of the Sun) 1 -exists under only two stable isotopic forms: 3 2 He 1: Helium was first detected on August 18 th , 1868, by French astronomer Jules Janssen, as an unknown spectral line during a complete solar eclipse.

-a fermion-with the incredibly small natural abundance on Earth of 2 ⋅ 10 -4 % ; and the bosonic form 4 2 He, which is much more common. As we are interested in the realisation of a BEC, we will obviously only deal with the latter in the following.

Helium has two electrons, but only one of them can be in an excited state. Indeed, any configuration with both electrons in an excited state would have an energy larger than the ionisation threshold, and therefore lead to the self-ionisation of the atom. Thus 4 He behaves as an effective one-electron atom 2 . For convenience, we therefore extend 2: this is fairly common for noble gases the Russel-Saunders term symbols 𝑛 2𝑆+1 𝐿 𝐽 of the alkali metals to the noble gases, helium in particular.

Like most noble gases 3 , 4 He does not have nuclear spin, which entails 3: and unlike alkali metals... the absence of hyperfine structure. That reduces the complexity of the spectroscopic structure by an appreciable amount. The specific case of helium is even simpler: since there are only two electrons (core and valence) they share the same S-state, leaving only two possible types of configurations:

• parahelium, corresponding to the singlet states, with the two electrons having anti-parallel spins ↑↓⟩. The total spin 𝑆 is 0 ; • orthohelium, that corresponds to the triplet states, with the two electrons having parallel spins ↑↑⟩. The total spin 𝑆 is 1 ;

any transition between these two domains is "forbidden" by selections rules, as it does not conserve the total spin. This prohibition of optical transition between orthohelium and paramhelium is the first reason of the apparition of a metastable state. One should indeed notice (c.f. Figure 3.1) that the first excited state 2 3 𝑆 1 is a triplet state, whereas the ground state 1 1 𝑆 0 is singlet. The second reason is that 2 3 𝑆 1 and the ground state share the same angular momentum quantum number (𝑆 ⇔ 𝑙 = 0), which makes the single-photon electric dipole decay impossible. ticular much longer than the typical time required to prepare a BEC (∼15 seconds with the last improvements of our apparatus). The spininduced magnetic dipole of the state 1 2 3 𝑆 1 allows the use of magnetic 1: with 𝑆 = 𝐽 = 1, the Landé 𝑔-factor of the state is equal to the electron spin 𝑔-factor 𝑔 𝑠 ≈ 2. It leads to a magnetic force twice as big as for the alkali species.

trapping techniques, which is also experimentally appealing for the purpose of the preparation of a metastable BEC. Finally, the 1.08 µm optical coupling with the 2 3 𝑃 0,1,2 states is perfectly suitable to perform laser cooling with a cycling transition:

1. it is experimentally accessible 2 ;

2: with distributed Bragg reflector (DBR) laser diode, or distributed feedback laser (DFB) (diode or optical-fiber).

2. the selection rules guarantee a return to the metastable state ; 3. the associated lifetime is short: roughly 98 ns ; Remark 3.1 Although not formally impossible, the realisation of a BEC of helium on the genuine ground state, in a diluted phase (gas), would be quite challenging, and has not yet been achieved. The Landé 𝑔-factor of the ground state being zero, it is not possible to magnetically trap it, and the laser cooling would require intense XUV laser sources in order to perform the coupling with the far above excited states 2 1 𝐿 𝐽 , which seems rather difficult to achieve with contemporary technology.

However, in condensed matter, superfluid helium-4 (which is indeed a BEC) has been obtained in 1937 [START_REF] Kapitza | Viscosity of Liquid Helium below the λ-Point[END_REF] [94]: [START_REF] Kapitza | Viscosity of Liquid Helium below the λ-Point[END_REF], "Viscosity of Liquid Helium below the λ-Point"

.

Manipulating metastable helium with the 2 3 𝑆 1 → 2 3 𝑃 transitions is therefore quite standard, the 𝑃 2 line (2 3 𝑆 1 → 2 3 𝑃 2 ) being used for the first laser cooling stages 3 . The first BECs of helium have been observed

3: it is a 𝐽 → 𝐽 + 1 transition that allows a simple magneto-optical trap (MOT) scheme.

for the first time (and almost concomitantly) in 2001 at the Institut d'Optique [START_REF] Robert | A Bose-Einstein Condensate of Metastable Atoms[END_REF] and the École Normale Supérieure [START_REF] Pereira Dos Santos | Bose-Einstein Condensation of Metastable Helium[END_REF], thanks to laser 𝜏 * = 7870(510) s He, truncated to the states with principal quantum number 𝑛 ≤ 3. Some experimentally useful transitions are also represented, with their wavelength and natural linewidth. We also have circled in purple the states of particular interest in the current work. The relative positions of the levels are on scale. The wavy violet arrow represents the twice-forbidden transition from the metastable state to the ground state, with the measured half-life 𝜏 associated to it [START_REF] Hodgman | Metastable Helium: A New Determination of the Longest Atomic Excited-State Lifetime[END_REF]. The numerical values of the energy levels can be calculated with quantum electrodynamics (QED), and are tabulated in [START_REF] Donald C Morton | Energy Levels for the Stable Isotopes of Atomic Helium( 4 He I and 3 He I)[END_REF]. The ionisation energy has been experimentally measured in [START_REF] Dominik | Extreme Ultraviolet Frequency Comb Metrology[END_REF].

1 1 𝑆 0 2 1 𝑆 0 2 1 𝑃 1 3 1 𝑆 0 3 1 𝐷 2 3 1 𝑃 1 2 3 𝑆 1 2 3 𝑃 0,1,2 3 3 𝑆 1 3 3 𝑃 0,1,2 3 3 𝐷 1,2,3 3 𝑃 2 3 𝑃 1 3 𝑃 0 2.
latter point later in this chapter.

Concerning the other optical transitions (cf. Figure 3.1):

• the 389 nm 2 3 𝑆 1 → 3 3 𝑃 2 transition can also be used for laser cooling and imaging [START_REF] Koelemeij | Magneto-Optical Trap for Metastable Helium at 389 nm[END_REF][START_REF] Keller | Bose-Einstein Condensate of Metastable Helium for Quantum Correlation Experiments[END_REF] ; [START_REF] Koelemeij | Magneto-Optical Trap for Metastable Helium at 389 nm[END_REF] • the 588 nm 2 3 𝑃 → 3 3 𝐷 transition has been used for the preparation of a MOT [START_REF] Kumakura | Visible Observation of Metastable Helium Atoms Confined in an Infrared/Visible Double Resonance Trap[END_REF] ; • the forbidden transitions between orthohelium and parahelium have also been probed for metrological testing of the QED predictions [START_REF] Notermans | High-Precision Spectroscopy of the Forbidden 2 3 𝑆 1 → 2 1 𝑃 1 Transition in Quantum Degenerate Metastable Helium[END_REF][START_REF] Van Rooij | Frequency Metrology in Quantum Degenerate Helium: Direct Measurement of the 2 3 S 1 → 2 1 S 0 Transition[END_REF] ; With only four nucleons, helium is a featherweight compared to other popular species of ultra-cold atoms physics. This is an advantage for us, as our experimental platform is designed to probe the velocity of individual atoms. Indeed, low mass means large recoil velocity when atoms exchange photons with a resonant laser field, which consequently increases the separation of the different velocity classes of interest in the signal, and -ultimately-the resolution of the experiment. Finally, metastable helium, that we will denote He ⋆ in the following of this manuscript, has a last remarkable feature: it is the most energetic metastable state amongst all atomic species, with the colossal value of 19.82 eV. In particular, this huge amount of energy is enough to extract an electron from a metallic surface during a collision, the associated work function being typically a few electronvolts. When amplified by an appropriate electronic chain of devices, this single electron, expelled from the metal by a single atom, can be converted into a macroscopic signal. This mechanism is at the root of the operation of our detector -microchannel plate (MCP)-that we will introduce in the next section.

Collision theory

A cold gas of helium is the seat of collisions. When it is elastic, the collision is characterised by the S-wave scattering length 𝑎. It also may be inelastic, meaning that the collision changes the internal state of the colliding atoms. In particular, due to its large internal energy, metastable helium produces ionising collisions called Penning collisions, that are in practice an important source of atom losses in the cloud.

1 Metastable helium 107 and inelastic collisions constant rates as a function of the temperature (by convention ionising collisions are not included in the inelastic ones). Data are extracted from [START_REF] Daniel | Ultracold Homonuclear and Heteronuclear Collisions in Metastable Helium[END_REF] and result from multichannel quantum calculations. The hamiltonian used for time evolution takes into account the kinetic part, the unperturbed hamiltonian of both atoms, the electrostatic interaction, and the magnetic spin-dipole interaction. The gas is considered to be spin-polarised, except for the dashed line.

Elastic collision

Notation 6 ⟨•⟩ 𝛵 represent the averaging over the velocity distribution of a thermal cloud at temperature 𝛵.

As in most of the ultra-cold atoms experiment, elastic collisions play a major role, as they provide the re-thermalisation mechanism during the final stage of evaporative cooling. As always, at low temperature they only depend on the S-wave scattering length, whose value has been theoretically estimated [START_REF] Przybytek | Bounds for the Scattering Length of Spin-Polarized Helium from High-Accuracy Electronic Structure Calculations[END_REF] and 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 𝜎 0 ≜ 8𝜋𝑎 2 𝜎(𝑘 𝑟 ) = 𝜎 0 1 + 𝑎 2 𝑘 2 𝑟 (3.1)
where 𝑘 𝑟 is the relative wave vector magnitude

𝑘 𝑟 = 𝑚 2 ̵ ℎ 𝑣 𝑟 (3.2)
For a classical thermal cloud at temperature 𝑇, the relative velocity follows the Maxwell-Boltzmann velocity distribution 1 , from which we 1: and considering the effective reduced mass of the two-body problem 𝑚 2 can derivate the average collision rate constant 𝛼(𝑇) = ⟨𝜎(𝑘 𝑟 )𝑣 𝑟 ⟩ 𝛵 :

𝛼(𝑇) = ∞ 0 4𝜋𝑣 2 𝑟 d𝑣 𝑟 𝑚 4𝜋𝑘 𝛣 𝑇 3 2 exp - 𝑚𝑣 2 𝑟 4𝑘 𝛣 𝑇 𝜎(𝑘 𝑟 )𝑣 𝑟 (3.3)
When 𝑇 ≲ 100 µK, 𝜎(𝑘) ≈ 𝜎 0 , and we have the good approximation

𝛼(𝑇 ≲ 100 µK) = 𝜎 0 16 𝑘 𝛣 𝑇 𝜋𝑚 (3.4)
The elastic collision rate 𝛾 𝑒𝑙 is then simply given by

𝛾 𝑒𝑙 ≜ 𝑛⟨𝜎(𝑘 𝑟 )𝑣 𝑟 ⟩ 𝛵 = 𝑛 𝛼(𝑇) (3.5)

Inelastic & ionising collisions

Strictly speaking, ionising collisions are a particular case of inelastic collisions, but by convention and for more convenience we distinguish the two as they differ widely concerning their involved mechanism and likelihood. Due to its large internal energy, when a metastable He ⋆ collides with other atoms or molecules, it can lead the ionisation of one of them, and the loss of the metastable state. Experimentally, with densities up to 10 13 cm -3 for BECs, we are sensitive to two-body and three-body mechanisms.

Notation 7

We denote "He ⋆ " the helium atoms in the 2 3 𝑆 1 metastable state, and "He" the helium atoms in the fundamental state 1 1 𝑆 0 .

Two-body collisions... ▶ ...ionising with the residual gas:

He ⋆ + 𝑋 → ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ He + 𝑋 + + 𝑒 - He𝑋 + + 𝑒 - (3.6)
the strength of the mechanism is dependent on the quality of the vacuum in the science chamber, where the metastables are trapped. It significantly contributes to the value of the lifetime of the trapped cloud (∼ 35 s in the magnetic trap). We can actually experimentally detect the flux of ions created, and use it as an insight of the number of atoms trapped in the cloud [START_REF] Sirjean | Ionization Rates in a Bose-Einstein Condensate of Metastable Helium[END_REF][START_REF] Seidelin | Using Ion Production to Monitor the Birth and Death of a Metastable Helium Bose Einstein Condensate[END_REF][START_REF] Seidelin | Getting the Elastic Scattering Length by Observing Inelastic Collisions in Ultracold Metastable Helium Atoms[END_REF] [108]: In short, when two metastable atoms collide, they interact via a complex potential that has the form [START_REF] Leo | Ultracold Collisions of Metastable Helium Atoms[END_REF] [111]: [START_REF] Leo | Ultracold Collisions of Metastable Helium Atoms[END_REF], "Ultracold Collisions of Metastable Helium Atoms"

2𝑆 𝑡 +1 𝑉(𝑟) - 1 2 𝑖 2𝑆 𝑡 +1 Γ(𝑟)
where 𝑟 is the internuclear separation of the atoms, 2𝑆 𝑡 +1 𝑉(𝑟) is the molecular potential corresponding to the 2𝑆 𝑡 +1 Σ + 𝑔 𝑢 molecular state (see [START_REF] Wikipedia | The Free Encyclopedia[END_REF] for more information about the notation), [START_REF] Wikipedia | The Free Encyclopedia[END_REF]: Wikipedia, The Free Encyclopedia (2021), Molecular term symbol and 2𝑆 𝑡 +1 Γ(𝑟) is the ionisation width. The total spin 𝑆 𝑡 of the system can either be 0, 1 or 2, and therefore three channels corresponding to the states 1 Σ + 𝑔 , 3 Σ + 𝑢 and 5 Σ + 𝑔 must be considered.

Quantitatively, we characterise the strength of the two-body Penning losses with the collision constant 𝛽(𝑇) depending on the temperature, such that these losses write:

d𝑛 d𝑡 𝛲𝑒𝑛𝑛𝑖𝑛𝑔 = -2 𝛽(𝑇) 𝑛 2 (3.8) 
it is proportional to the squared density 𝑛 2 as it is a two-body process, and there is a factor 2 because when an interaction occurs, both atoms are lost. We can relate 𝛽(𝑇) to the collisional cross sections calculated for each channel of the above model, and averaged over the different velocity classes for a cloud at temperature 𝑇:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 𝛽(𝑇) = 𝛽 1 Σ ; 𝑇 + 𝛽 3 Σ ; 𝑇 + 𝛽 5 Σ ; 𝑇 𝛽 (2𝑆 𝑡 +1) Σ ; 𝑇 ≜ ⟨𝜎 2𝑆 𝑡 +1 Σ + 𝑔 𝑢 ; 𝑣 𝑟 𝑣 𝑟 ⟩ 𝛵 (3.9a) (3.9b)
For temperature below ∼ 1 mK, the collision is dominated by S-wave scattering, and therefore for parity conservation reasons we can neglect in good approximation the interaction led by the molecular potential 3 Σ + 𝑢 . In addition, in order to satisfy spin conservation 1 we have 5 Γ(𝑟) = 0 which means that at first order 1: one should notice that the outcome of the Penning collision has a total spin that can be either 0 or 1 (but not 2).

the 5 Σ + 𝑔 channel does not contribute to Penning ionisations 2 .

2: there is still the (smaller) magnetic spin-dipole contribution, that plays an important role in the case of a spin polarised cloud.

Finally, the typical order of magnitude of 𝛽(𝑇) is strongly dependent on the type of gas that we are considering:

• for a spin "unpolarised" gas of helium, where all the spin projections quantum numbers 𝑚 𝑠 are present in equal quantity (a MOT for example) the Penning collision cross section is dominated by the 1 Σ + 𝑔 term, and

𝛽 𝑢𝑛𝑝𝑜𝑙. (𝑇) ∼ 10 -10 cm 3 s -1 (3.10)
which is far too large to be able to prepare a BEC. Indeed a density 𝑛 𝛣𝛦𝐶 of typically 10 13 cm -3 leads to a decay time of 1 ms! • on the contrary for a spin-polarised gas (thanks to a magnetic field) all the atoms have the same spin projection quantum number (𝑚 𝑠 = +1 in our magnetic trap), and the collisions are dominated by the 5 Σ + 𝑔 with the magnetic spin-dipole contribution which is much smaller. We end up with 𝛽 𝑝𝑜𝑙𝑎𝑟𝑖𝑠𝑒𝑑 (𝑇) ∼ 10 -14 cm 3 s -1 (3.11) which means that the Penning losses are reduced by 4 orders of magnitude, and the realisation of a BEC is possible.

These calculations of Penning collisions cross sections have been performed taking into account the three channels in a quantum formalism for both fermionic and bosonic helium [START_REF] Daniel | Ultracold Homonuclear and Heteronuclear Collisions in Metastable Helium[END_REF][START_REF] Leo | Ultracold Collisions of Metastable Helium Atoms[END_REF], and We have represented the corresponding results on Figure 3.2 on page 107.

▶ ...inelastic with an other metastable

In addition, with the model presented in the previous paragraph, the presence of the magnetic spin-dipole interaction in the hamiltonian induces a coupling with states whose total spin and spin projection has changed. Using the space-fixed eigenstates of the noninteracting system:

𝑆 1 , 𝑆 2 , 𝑆 𝑡 , 𝑚 𝑠 ⟩
for a spin polarised gas, these inelastic collisions realise the transformations:

1, 1, 2, 2⟩ → ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 1, 1, 2, 1⟩ (1) 
1, 1, 2, 0⟩ (2) 
1, 1, 0, 0⟩

(3.12) leading to the loss of atoms 1 and indirect ionisation 2 .

1: in cases (1) and (2) atoms are no longer trapped by the magnetic field. where the helium dimer in an excited state He ⋆ 2 is a short-lived autoionising state.

Just as in the two-body case, we quantitatively characterise this threebody recombination with a collision constant 𝜚 such that:

d𝑛 d𝑡 3 𝑏𝑜𝑑𝑦 = -3𝜚 𝑛 3 (3.14)
in the low temperature limit, 𝜚 follows a universal law [START_REF] Fedichev | Three-Body Recombination of Ultracold Atoms to a Weakly Bound s Level[END_REF], only depen- [START_REF] Fedichev | Three-Body Recombination of Ultracold Atoms to a Weakly Bound s Level[END_REF]: [START_REF] Fedichev | Three-Body Recombination of Ultracold Atoms to a Weakly Bound s Level[END_REF], "Three-Body Recombination of Ultracold Atoms to a Weakly Bound s Level" dent on the scattering length 𝑎:

𝜚 ≈ 3.9 ̵ ℎ 𝑚 𝑎 4 (3.15) 
Low temperature limit means that the collision energy 𝐸 must be much smaller than the binding energy

𝜖 0 = ̵ ℎ 2
𝑚𝑎 2 between two atoms. In the case of spin-polarised He ⋆ , we have 𝜖 0 ≈ 𝑘 𝛣 × 2 mK. However, when the density becomes very large (close to condensation) quantum interference effects may cause deviations from the law Eq. (3.15) [START_REF] Esry | Recombination of Three Atoms in the Ultracold Limit[END_REF]. which is in "fairly" good agreement with the results of an experiment previously conducted in our group [START_REF] Seidelin | Getting the Elastic Scattering Length by Observing Inelastic Collisions in Ultracold Metastable Helium Atoms[END_REF]: Therefore, as long as the density is not much larger that 10 13 cm -3 , the three-body recombination has a minor effect.

2 Detecting individual atoms in the momentum space

Microchannel plate

The experiments that we operate in the lab require the counting of individual atoms 1 . It is therefore crucial for us to have a single-atom 1: for probing quantum interference effects, or the emission statistics of a nonclassical source.

resolved sensor at our disposal. The microchannel plate (MCP) is a device that has the ability to generate a macroscopic electric signal, out of its interaction with a single atom. It consists in a 1 mm thick ceramic slab, regularly drilled with tilted micrometric holes (cf. Figure 3.4). The ceramic is electrically resistive (our current MCP has a resistance of 30 MΩ) and can be electrically polarised thanks to a high-voltage power supply, so that a strong electric field is present inside the channels (cf. Figure 3.5).

As we will see in Subsection 2.2.3, in our usage of the MCP atoms have velocity normal to the plate during the detection, with good approximation. The bias angle between the channels and the vertical guarantees that atoms hit the channels' inner walls when they penetrate into it. As shown in Figure 3.6 this angle 𝜃, and the diameter 𝑑 of the channels define the longitudinal uncertainty when an atoms falls in a given tube.

In practice, it limits the resolution of the sensor concerning the arrival times of atoms, we therefore want 𝜃 to be as close as possible to 90°. When a metastable atom crashes into a microchannel, there is some probability that it will remove one or two electrons from the surface. Because of the electric field, the emitted electrons are accelerated, and collide again inside the channel, giving birth to more and more secondary electrons (cf. Figure 3.5). The amplification gain is typically 10 4 , meaning that when a single metastable falls in a channel, it may generate a cascade of 10 4 at the output. After the electronic discharge, the microchannel needs some time to recover (as it has been "emptied" of its electrons) ; in practice this is a source of saturation effect when the atoms flux is too large (larger than a few 10 5 s -1 cm -2 [START_REF] Schellekens | The Hanbury Brown and Twiss Effet for Cold Atoms[END_REF][START_REF] Hugo | Measuring the momentum distribution of a lattice gas at the single-atom level[END_REF]).

[117]: Schellekens (2007), "The Hanbury Brown and Twiss Effet for Cold Atoms" [START_REF] Hugo | Measuring the momentum distribution of a lattice gas at the single-atom level[END_REF]: Cayla (2018), "Measuring the momentum distribution of a lattice gas at the single-atom level"

In many aspects, MCPs are similar to other electron amplifier systems (such as photomultipliers and dynodes tubes) though with the big difference that they provide spatial information, given that the microchannels are distributed on the whole surface of the plate. The delicate swapping operation (because the MCP is placed in a ultra-high vacuum chamber) was one of my first jobs in the team. A comparison of the raw characteristics of both MCPs is given in Table 3.3. 

Generation of 3D data: delay lines, electronics & software 2.2.1 Delay lines & electronics

Principle We are actually using two MCPs, stacked in a chevron pattern (v-shape). This increases the gain quadratically (final gain is 𝐺 = 10 8 ), without damaging the plates (the 2𝜃 angle between the channels of the two plates greatly reduces the feedback of cations).

A metastable atom therefore creates a shower of 10 8 electrons, that itself excites two copper delay lines wrapped around orthogonal axes, 𝑥 and 𝑦 (cf. Figure 3.9). The excitations propagate through the lines and are collected by time-tagger devices placed at the end. We name them "𝑋 1 ", "𝑋 2 ", "𝑌 1 " and "𝑌 2 ", depending on the line and propagation Remark 3.2 Out of the delay lines, the pulses have negative polarity.

direction. Thanks to the wrapping of the lines, the effective velocity 𝑣 ⟂ of the excitations along the 𝑥 and 𝑦 axis is the velocity of the signal in the copper line (∼ 𝑐 3) divided by the number of loops 𝑁 (100 in our case).

𝑣 ⟂ ≈ 𝑐 3𝑁 (3.18)
But in practice, due to small length differences between the two lines, 𝑣 ⟂ does not have the exact same value in the 𝑥 and 𝑦 directions. The 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝑣 𝑥 ⟂ = 1.02 mm ns -1 𝑣 𝑦 ⟂ = 1.13 mm ns -1 (3.19a) (3.19b)
Now it is possible to deduce the date and position of the impact of a metastable atom, thanks to the quadruplet of time-tags (𝑡 𝛸 1 , 𝑡 𝛸 2 , 𝑡 𝑌 1 , 𝑡 𝑌 2 ) collected at the end of the lines: 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑥 = 𝑣 𝑥 ⟂ 2 (𝑡 𝛸 1 -𝑡 𝛸 2 ) 𝑦 = 𝑣 𝑦 ⟂ 2 (𝑡 𝑌 1 -𝑡 𝑌 2 ) 𝑡 = 1 2 (𝑡 𝛸 1 + 𝑡 𝛸 2 ) 𝑡 = 1 2 (𝑡 𝑌 1 + 𝑡 𝑌 2 ) (3.20a) 
∼ mV 𝑋 1 𝑋 2 𝑌 1 𝑌 2 ⎧ ⎨ ⎩ 𝑡 𝛸 1 𝑡 𝛸 2 𝑡 𝑌 1 𝑡 𝑌 2 ⎧ ⎨ ⎩ ∼ 100mV

NIM

MCPs are very low noise detectors, but the amplification gain when an atom is detected is itself very noisy... The electronic pulses detected in the delay lines have roughly 10 ns width, but with an amplitude that can change a lot shot-to-shot (roughly up to one order of magnitude). It is however a good approximation to consider that the pulses generated by an atomic discharge always have the same shape (they are homothetic). Therefore, the usual way to time-tag the pulses coming out from an MCP is to use a constant fraction discriminator (CFD), that will return a time independently of the amplitude of the bump. The main idea of CFDs is as follows:

Definition 6 (NIM signal) A NIM signal is a digital signal following the definition:

▶ when the signal voltage is between -0.8 V and -1 V, it is a logical "1".

▶ when the signal voltage is 0 V, it is a logical "0".

NIM is an acronym for Nuclear Instrument Modules since it has been invented for this kind of experiment.

After a first pre-amplification stage, we apply the transformation

𝐴 b = 𝐴 in (𝑡) -𝑓 𝑐 𝐴 in (𝑡 -𝜏) (3.21) 
where 𝐴 in is an analog pulse (in our case an electronic pulse collected in the delay lines), 𝑓 𝑐 ∈ [0, 1] is a number and 𝜏 a delay time of the same order of magnitude than the width of the pulse. Due to the delay, if the shape of the pulse is not "pathological", 𝐴 b has a zero whose time position is independent of the amplitude of 𝐴 in (cf. Figure 3.11).

This zero is used as a reference time to generate a digital NIM signal (cf. Definition 6). Afterwards, the falling edge of the NIM constitutes a convenient reference to tag and digitise the time of the incoming pulse. The functional electronic pre-treatment of the signal is summarised in Figure 3.12. It is clocked at 𝛿 𝑡 = 120 ps, which is much smaller than the resolution limitation induced by the MCP.

The software interface is ensured by a C ++ library provided by the LUMAT-DTPI (which is quite problematic as it imposes a complex C ++ layer in our otherwise pythonic workflow...).

Technology changes

In 2019, we effected major changes in the electronics 1 1: before, we were using an older generation of ROENTDEK © electronics for the detection, coupled with an homemade high-voltage power supply unit (PSU).

, at the same time as we changed the MCP. We installed a new ROENTDEK © system, including: the high-voltage power supply (THQ by Iseg) ; ▶ ▶ a high-voltage splitter (Zener diode based circuit) that distributes the tension among the two MCPs and the delay lines ; ▶ the pre-amplifier module ; ▶ the CFD module ;

The installation and characterisation of the new electronics was an important aspect of the beginning of my PhD. The new pre-amplifier and CFD offer the possibility to set specific settings (six parameters) to each of the four channels:

1. the gain, 𝐺 -is adjustable from 10 to 90 2 . It is set in order to have 2: defined in amplitude, for a 10 MHz input sinusoidal signal, and measured with an oscilloscope with a 50 Ω input impedance.

pulses whose amplitude matches the CFD recommended specifications (from -10 mV to -3 V). Experimentally we adjust it so as to have the same average value of the pulses' amplitude at each channel. These mean values are extracted from the histograms of the pulses amplitude, obtained with an oscilloscope in binning mode (cf. Figure 3.13). In practice, the four gains are set to the same value: 𝐺 = 80. There is also a frequency dependence of the gain (see Appendix B for more details).

2. the threshold -even if a CFD is used, a threshold must be set to remove most of the noise fluctuations, and define from how much voltage a pulse may be considered to be due to an atom. This setting is both crucial and delicate: since there is no clear separation between the noise and the signal (cf. Figure 3.13) we want it to be slightly in the noise, so as to almost never loose the atoms. The excess pulses coming from the noise are removed in the later stage of reconstruction, performed by an algorithm. However, if the threshold is too close to 0 V, too much noise is sampled by the CFD and the reconstruction algorithm quickly collapses (actually the CFD itself might also saturate). The cur-rent settings (date: 30/06/2022) are: . This setting is rather empirical and we let it to the default value 0.35, which is well adapted for near-gaussian input signals ;

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑋 𝑡ℎ.
4. the delay 𝜏 -also has an effect on 𝐴 𝑏 (which is obviously not independent of the fraction 𝑓 𝑐 ). It is experimentally set with an extra propagation in a short additional LEMO cable. In order to have a fine shape for the bipolar signal (zero-crossing with a big slope), we have a "thumb rule":

𝜏 ≈ 𝑇 rising (1 -𝑓 𝑐 ) (3.22) 
where 𝑇 rising is the typical 10 % to 90 % rising time. In our case:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝑇 rising ≈ 10 ns 𝜏 = 4 ns
5. the walk level 𝑍 -actually the output NIM is generated when the logical product .AND. between two logical signals 𝐿 1 and 𝐿 2 is true:

▶ 𝐿 1 is true when the (pre-amplified) input signal 𝐴 in overtakes the threshold. It is false otherwise ; ▶ 𝐿 2 is true when the bipolar signal 𝐴 b is above the walk level 𝑍, and false otherwise ;

with this trick, we ensure that a NIM is generated only when the pulse's amplitude is large enough to potentially be due to an atom, AND (logical) when the bipolar pulse crosses the zero (independent of the amplitude). In practice, 𝑍 must be set to the baseline of 𝐴 b (which presents no difficulty to do) ;

6. the width 𝑤 -of the output NIM signal. It acts as a deadtime for the electronics. If it is too large some events might be lost. In order to avoid any false-positive event (e.g. very short-time electronic ripples) we set it to 20 ns, which is roughly the duration of an input pulse ; Pulses amplitude histograms (after pre-aplification). Side by side plots share a same grid axis. 𝐺 is the pre-amplification gain of the channel. A sample of 1000 pulses is used for each plot: acquired with an oscilloscope binning the minimum voltage read in a 50 ns large window, trigged in normal mode, with a threshold of a few millivolts. We identify a contribution of the noise (in red) with small amplitude pulses, and a contribution of the signal (in green) with amplitudes ranging up to approximately 0.6 V. There is no sharp separation between the noise and the signal.

It is interesting to have an individual control of these parameters for each of the four channels because of their behaviour is not symmetric. The coupling between the delay lines and the MCP is not linear, and very sensitive to the inhomogeneities encountered along the lines: that is why the pulses' amplitude distribution (Figure 3.13) exhibits differences between the channels.

As we mentioned previously, these histograms are useful to have a first insight of where to put the threshold: slightly in the noise, with the purpose of keeping all the atoms in the digitised signal. In fact, it appears that the performances of our detection system are strongly dependent on the values of the thresholds. Aiming to maximise the homogeneity of the detectivity, and the overall quality of the reconstructed signal, we experimented new techniques to have a fine adjustment of the thresholds.

Definition 7 (TDC event) We call "event" a digitised NIM pulse, collected and time-tagged by the TDC. It is not necessarily due to an atom, as it could also have been induced by an above-threshold noise fluctuation.

Number of events per channel

When the experiment is running, we have the possibility to print the number of events 𝑁 ev (𝑍 𝑖 ) for each channel 𝑍 𝑖 ∈ {𝑋 1 , 𝑋 2 , 𝑌 1 , 𝑌 2 } and the number of reconstructed atom 𝑁 at (more details about the reconstruction are given in the next subsection) in live, at each run.

We can define the reconstruction rate for each channel:

𝜌(𝑍 𝑖 ) = 𝑁 at 𝑁 ev (𝑍 𝑖 ) ∈ [0, 1] (3.23) 
If we increase the threshold, the number of events decreases, and the reconstruction rate increases, because the events are more likely to be due to atoms. Assuming that the number of events should be approximately the same for each channel, we adjust the threshold so as to have the same reconstruction rate everywhere. We chose the value 𝜌 = 90 %, because we empirically know that in this regime the reconstruction algorithm removes the noise efficiently, and produces faithful data.

Events self-correlation in time

A common issue that we face when working with MCPs and delay lines is the so-called "pulse rebounds" problem. Indeed, because of impedance mismatching, when a pulses reaches the edge of a delay line, some fraction of its energy is reflected backwards. It is then reflected again on the other side of the line, and eventually detected a second time on the initial side. It is also possible to generate pulse rebounds in the middle of the line, induced by impedance inhomogeneities.

As a result, when a pulse is observed at the end of a line, we often see short-time "aftershocks" with smaller amplitudes. When the rebounds occur on the edges of the lines, we expect them to be separated by twice the time-length of the lines: 2 × 80 ns = 160 ns. It is also the role of the thresholds to remove most of those rebounds.

Reconstruction algorithm

The passage from digitised event timestamps to atoms momenta coordinates obviously involves an important software processing. This reconstruction stage is performed in real time by a C ++ code run at the end of each experimental cycle. It is also the program that interfaces the TDC with the computer, loading its driver and parametrising the acquisition options. We shall describe the outlines of how this process works in the current subsection.

Generation of raw data

First, the driver of the TDC is loaded, such that it will wait the trigger signals to start and stop the time-tagging of the NIM pulses it receives. These triggers are TTLs generated by the experiment's sequencer (connected to the IsiBox rack via two LEMO cables), they define an adjustable time range of typically 600 ms, during which we expect the metastable atoms to fall onto the MCP.

The data produced by the TDC are directly loaded into the computer's memory 1 , they take the form of 32 bits words, eventually stored in hardware and software. The bitset of each word is divided into two parts:

▶ the first 6 bits are a LABEL field. It indicates the channel number (if the word is an encoding word) or the nature of the function realised by a service word ; ▶ the last 26 bits are the DATA field. For encoding words, it contains the timestamp, expressed in discrete time step units 1 . In the 1: in our case a time step is 𝛿 𝑡 = 120 ps. case of a service word, it may give some additional information, useful for its function ;

Demuxing One may notice that the time range accessible with a 26 bits long word (𝑇 max ) is finite. Its value is simply given by:

𝑇 max = 2 26 × 𝛿 𝑡 120 ps ≈ 8 ms (3.24)
𝑇 max is in particular much smaller than the typical acquisition time of an experiment (few hundreds of milliseconds). To overcome this problem, the range extension (REXT) service word is used: when a time overflow is about to occur 2 the TDC generates a REXT word, and resets 2: after 7.8 ms, so as to keep a 0.2 ms margin and prevent any overflow.

the clock to zero. When the reconstruction algorithm reads the TDC raw data vector, it keeps track of the generated REXT words so as to add the correct amount of missing time to the timestamps. This trick allows to extend the accessible time range indefinitely. We perform this time correction, as well as the encoding words sorting by channel numbers, in a first main stage that we call "demuxing". For security and long term reproducibility, we also save at this moment the TDC raw data vector, and the four demuxed channels vectors (cf. Figure 3.14).

Atoms searching and filtering

The last step is the very core of the algorithm, the aim is to find "time correlated" events quadruplets.

That means that we are looking for four events -each one on a separate channel-whose time differences are compatible with the hypothesis that a metastable atom created them via the relations Eq. (3.20). To do this, we apply successive filtering criteria:

▶ we know that the diameter of the MCP is 𝑇 𝐷 = 80 ns, therefore two events cannot be separated by more than 𝑇 𝐷 . The search is performed by looping over 𝑋 1 events, and looking for the other three in a bulb with 𝑇 𝐷 time radius (purple diagonal lines in Figure 3.14) ; ▶ an atom must fall inside the disc defined by the MCP shape:

𝑡 𝛸 1 -𝑡 𝛸 2 2 + 𝑡 𝑌 1 -𝑡 𝑌 2 2 ≤ 𝑇 2 𝐷 (3.25)
if a quadruplet candidate is found at the previous step, we check the condition Eq. (3.25), if it is not fulfilled we reject it ; ▶ by construction, (3.20c) -(3.20d) gives:

𝑆 ≜ (𝑡 𝛸 1 + 𝑡 𝛸 2 ) -(𝑡 𝑌 1 + 𝑡 𝑌 2 ) = 0 (3.26)
actually Eq. (3.26) is not true: geometrical constraints imply that the 𝑆 quantity -that we call offset-is not zero everywhere. It has small spatial variation, depending on the location of the impact, but these variations are bounded and stable (they only depend on the winding of the delay lines and the electronics).

We use an upper bound of the 𝑆 values as an additional filtering criterion:

𝑆 ≤ 𝑆 max = 10 ns (3.27)
it is a coarse sieve, and the value of 10 ns has been chosen after a specific study of the offset map. ▶ we use as a last filtering step a finer version of the previous filtering, where we compare the offset value of a candidate quadruplet to a reference value of the offset for this specific location. With (𝑥, 𝑦) the impact coordinate associated with a quadruplet, we check the condition:

𝑆(𝑥, 𝑦) -𝑆 ref ≤ Δ𝑆 max = 5 𝛿 𝑡 = 0.6 ns (3.28)
This final sieve is much more selective, and guarantees the keeping of faithful data, but it also requires a reference offset map, previously acquired, averaging a large amount of data (and without this final filtering stage). The threshold value of 5 time steps has been chosen after a specific study I made in 2019, more details are given in Appendix B. At this stage, Equation 3.20 on page 115, allows to calculate an impact time 𝑡, and (𝑥, 𝑦) in-MCP plane coordinates. However, it has already been said several times since the introduction of this manuscript that the observable that we need to probe is the momentum of the atoms. We need a last set of relations, that transcript the (𝑥, 𝑦, 𝑡) "MCP coordinates" into (⃗ 𝑝 𝑥 , ⃗ 𝑝 𝑦 , ⃗ 𝑝 𝑧 ) momentum coordinates. With that in mind, it is interesting to notice that the distance 𝐿 separating the trapped cloud from the detector (∼ 45 cm) is very large compared to the typical size of the cloud (∼ 100 µm): we often say that the MCP is performing a detection in the far field regime. When the trap is released, atoms realise a free fall 1 1: to be perfectly rigorous, as it will be explained in details in Subsection 2.1.2 of Chapter 4, they also receive a kick during a Raman transfer from the magnetic sublevel 𝑚 𝐽 = 1 to 𝑚 𝐽 = 0. By the way, this transfer is very much required as it guarantees that the atoms do not feel the residual magnetic field, and indeed perform a "genuine" free fall.

From timestamps to velocities

, whose final impact point is known thanks to the MCP measurement, and we can take (with very good approximation) the centre of the trap cloud as the emission point. Knowing these two points, simple classical mechanics gives the unique initial velocity that link them via a free fall whose duration Δ𝑡 is known (cf. Figure 3.15 on the side). In practice we take the trap shutdown as the time reference such that Δ𝑡 = 𝑡. Setting the origin in the middle of the MCP plane, we have:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑝 𝑥 = 𝑚 𝑥 𝑡 𝑝 𝑦 = 𝑚 𝑦 𝑡 𝑝 𝑧 = 𝑚 1 2 𝑔𝑡 - 𝐿 𝑡 (3.29a) (3.29b) (3.29c)
Regarding Eq. (3.29), it is important to notice that 𝑥 and 𝑦 give the information about momenta in the horizontal (or transverse) plane, whilst the arrival time 𝑡 provides a measurement of the vertical (or longitudinal) velocity. This point is crucial, because it means that the resolution of the detection in the horizontal and vertical directions are not necessarily the same.

A word about the resolution

We already discussed in Subsection 2.1 the question of the longitudinal resolution: Figure 3.6 shows in particular that it is constrained by the geometry of the microchannels. As we will see in Chapter 5, our source expels pairs of correlated atoms with momenta (mainly) along the long axis of the BEC: it means that in the current configuration of the experiment where the BEC is elongated along the vertical, the longitudinal resolution is the most important element for probing quantum correlations.

It is also obviously important to have the knowledge of the transverse resolution. In space units, we denote them 𝜎 𝑥 and 𝜎 𝑦 , with respect to the delay lines directions. With Eq. (3.20), with a statistical definition of the resolution, and denoting 𝜎 𝑡 the time resolution we have:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝜎 𝑥 = 𝑣 𝑥 ⟂ 2 𝜎 2 𝑡 𝛸 1 + 𝜎 2 𝑡 𝛸 2 = 𝑣 𝑥 ⟂ √ 2 𝜎 𝑡 𝜎 𝑦 = 𝑣 𝑦 ⟂ 2 𝜎 2 𝑡 𝑌 1 + 𝜎 2 𝑡 𝑌 2 = 𝑣 𝑦 ⟂ √ 2 𝜎 𝑡 (3.30a) (3.30b)
where we assume the time resolution to be independent of the channel (it is a simple model that ignores subtle electronic effects that may differentiate between the various behaviours of the channels). Then, the definition (red box) Eq. (3.26) gives:

𝜎 𝑆 = 𝜎 2 𝑡 𝛸 1 + 𝜎 2 𝑡 𝛸 2 + 𝜎 2 𝑡 𝑌 1 + 𝜎 2 𝑡 𝑌 2 = 2𝜎 𝑡 (3.31)
we therefore have a relation between the transverse resolution, and the standard deviation of the offset values:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝜎 𝑥 = 𝑣 𝑥 ⟂ 2 √ 2 𝜎 𝑆 𝜎 𝑦 = 𝑣 𝑦 ⟂ 2 √ 2 𝜎 𝑆 (3.32a) (3.32b)
these relations are very useful, as it means that the standard deviation of the offset map, is a picture of the transverse resolution: we obviously call it "resolution map".

Comparison between performances

The resolution map is one the two major features that provide quantitative information about the performances of the detection system. The other one is the so-called detectivity map that characterises the homogeneity of the detection. It is the normalised number of atoms detected on a given location of the MCP, when we "shine" it with an homogeneous flux of atoms 1 . Since it is not possible in practice to 1: usually a hot cloud coming from a magneto-optical trap (MOT).

have a precise value of the total number of atoms incoming onto the MCP 2 , it is only a relative quantity, and not a map of the quantum 2: even if we have an additional fluorescence imaging detetector, it does not evualate precisely the number of atoms in the MOT cloud, and moreover due to the high temperature many atoms of the cloud do not fall onto the MCP...

efficiency.

I acquired these data in 2019, before and after changing the system, in identical experimental situations, and the results are plotted in Figure 3.16. We can be satisfied by the gain of homogeneity of the detectivity, and a resolution roughly 3 times better.

If we compare the transverse resolution 𝜎 𝑥 𝑦 with the theoretical longitudinal resolution h (cf. Figure 3.6 and Table 3.3), with the approximation 𝑣 𝑥 ⟂ ≈ 𝑣 𝑦 ⟂ ≈ 1 µm ps, we get:

𝜎 𝑥 𝑦 ≈ 50 µm h = 𝜎 𝑧 ≈ 33 µm (3.33a) (3.33b)
These numbers come out from modelling approaches, and are not direct measurements of the resolution. This can also be done, thanks to an Hanbury Brown and Twiss (HBT) experiment, when probing correlation lengths smaller than the resolution [START_REF] Viana Gomes | Theory for a Hanbury Brown Twiss Experiment with a Ballistically Expanding Cloud of Cold Atoms[END_REF][START_REF] Schellekens | Hanbury Brown Twiss Effect for Ultracold Quantum Gases[END_REF].

[ Remark 3.5 (Orientation of the optical setup) Regarding the values given in Eq. (3.33), there is no wide difference between the transverse resolution and the longitudinal resolution. This was however not always the case: Figure 3.16 and Table 3.3 show that in the old setup the longitudinal resolution was about 180 µm, and the transverse one was in the range of 300 µm. At the time, there was a significant advantage into having the BEC elongated along the 𝑧 axis, and therefore emitting the atomic pairs along the direction towards which the resolution is the best.

The major drawback of the configuration (that has been kept for legacy reasons) is the presence of an intense vertical laser beam, hitting right in the middle of the detector: this can be a problem (cf. Chapter 4). Now, with our new electronic setup, the resolution should not (on the right) maps between the old (on top) and new (on the bottom) detection system. Data have been collected in may 2019, by making hot MOT fall onto the MCP. The total number of atoms at each run is kept small in order to avoid any saturation (in practice the collimation of the atomic beam with the transverse molasses has been switched off). The averaging is made over 14 000 files, and the statistics per pixel is roughly 200 shots. The detectivity is normalised with the total number of atoms detected. The resolution is given in time steps units 𝛿 𝑡 = 120 ps. Qualitatively, we observe that the detectivity is much more homogeneous, and the resolution is finer with the new electronics (the colour maps have the same scaling). Quantitatively, we can compute means and standard deviation inside a central disc (red dotted line) with 50 ns of diameter, which is the main region of interest in our experiments: be a topic of concern anymore, and we could consider to redesign the apparatus, such that the atomic pairs would be emitted in the horizontal plane, and no laser beam would touch the MCP's surface (cf. Remark 4.3).

3 Cooling of the metastable helium cloud: down to the BEC

Source of metastable helium

The 2 3 𝑆 1 state of helium cannot be prepared with a laser excitation (due to its very large energy). Instead, we produce it chaotically, during an electronic discharge that generates a plasma containing all kinds of excited and ionised states [START_REF] Lu | A Bright Metastable Atom Source at 80 K[END_REF]. This procedure is extremely inefficient [START_REF] Lu | A Bright Metastable Atom Source at 80 K[END_REF] (less than one atom out of ten thousand is excited in the metastable state) yet effectively very bright considering the typical number of atoms loaded in a cold cloud (∼ 10 9 ). A schematic description of the source is given in Figure 3.18. The plasma is ejected at a discharge cap placed at the end of a narrow capillary tube (250 µm of diameter and 1 cm long). This reduces the width Δ𝑣 𝑠 of the velocity distribution of the plasma of atoms. Indeed, the mean free path 𝜆 0 of an atom is related to the helium collisional cross section 𝜎 and the density 𝑛 [START_REF] Kaiser | Manipulation par laser d'hélium métastable: effet Hanle mécanique, refroidissement sous le recul d'un photon[END_REF][START_REF] Labeyrie | Deux outils pour l'optique atomique : jet intense d'hélium métastable et miroir à onde évanescente exaltée[END_REF]: [START_REF] Kaiser | Manipulation par laser d'hélium métastable: effet Hanle mécanique, refroidissement sous le recul d'un photon[END_REF]: [START_REF] Kaiser | Manipulation par laser d'hélium métastable: effet Hanle mécanique, refroidissement sous le recul d'un photon[END_REF], "Manipulation par laser d'hélium métastable: effet Hanle mécanique, refroidissement sous le recul d'un photon" [START_REF] Labeyrie | Deux outils pour l'optique atomique : jet intense d'hélium métastable et miroir à onde évanescente exaltée[END_REF]: Labeyrie (1998), "Deux outils pour l'optique atomique : jet intense d'hélium métastable et miroir à onde évanescente exaltée"

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 𝜎 ≈ 37 Å 2 𝜆 0 = 1 √ 2𝑛𝜎 (3.34a) (3.34b)
and the supersonic jet theory gives the mean ̄𝑣𝑠 and RMS width Δ𝑣 𝑠 of the velocity distribution: where 𝛾 is the heat capacity ratio, which is 5 3 for a monoatomic gas such as helium, and 𝐾 𝑛 is the Knudsen number which depends on the diameter 𝐷 of the capillary: [START_REF] Perrier | Interférences multiples avec atomes froids[END_REF]. Helium is injected from an insulating glass tube into a boron nitride nozzle (good thermal conductor and electric insulator). The plasma is produced in the nozzle thanks to a metallic needle (P) that plays the role of a cathode. 𝑅 = 150 kΩ, and the plasma resistance is estimated at 37 kΩ. The plasma is ejected from the nozzle at a discharge cap (C), and crosses a skimmer (S) that acts as an anode. Discharge heat is dissipated with a copper bloc cooled down with liquid nitrogen.

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ̄𝑣𝑠 = 2𝛾 𝛾 -1 𝑘 𝛣 𝑇 𝑀 Δ𝑣 𝑠 = 4 𝛾 -1 𝑘 𝛣 𝑇 𝑀 𝐾 𝑛 (3.35a) (3.35b)
𝐾 𝑛 = 𝜆 0 𝐷 (3.36)
Without liquid nitrogen cooling, the typical discharge temperature of 650 K would lead to an average velocity of 2600 m s -1 . Thanks to cooling, the typical speed is reduced to ̄𝑣𝑠 ≈ 1200 m s -1 out of the discharge cap. This allows for a Zeeman slower with a reasonable length (cf. Table 5.1 and Figure 3.17).

After the skimmer, the atomic jet flux is estimated to 10 12 s -1 mm -2 with a divergence of 40 mrad [START_REF] Browaeys | Piegeage magnetique d'un gaz d'helium metastable : vers la condensation de Bose-Einstein[END_REF].

[124]: [START_REF] Browaeys | Piegeage magnetique d'un gaz d'helium metastable : vers la condensation de Bose-Einstein[END_REF], "Piegeage magnetique d'un gaz d'helium metastable : vers la condensation de Bose-Einstein"

Cooling procedure

Once the metastables atoms are generated, the cooling of the gas is operated through many stages. A general description of the apparatus is provided in Figure 3.19. The cloud is successively loaded and transferred into three types of traps in the science chamber:

▶ a magneto-optical trap (MOT) ; ▶ a biased magnetic trap (MT) ; ▶ an optical dipole trap (ODT) ;

In the following, we will briefly run through these processes. We also recall some numbers in Table 5.1. ). The atomic source is on the very left, and the science chamber is the thick black ring on the very right. The MCP chamber lays below the science chamber (both chambers can be insulated from each other with a manual vacuum valve placed between the two). The different laser beams are also represented, with a given colour for each wavelength. Helium is injected on the left, in a first chamber cooled with liquid nitrogen, and where the plasma is formed. The resulting atomic beam is collimated with a transverse optical molasses (TM) of resonant light, before being slowed down across the Zeeman slower (ZS). A 3D MOT cloud is then loaded in the science chamber, thanks to three retro-reflected MOT beams. We also have an additional resonant laser beam along the 𝑦 axis in the science chamber to perform atom pumping and a 1D doppler cooling (PD). Finally the cloud can be loaded in a crossed optical dipole trap (vertical: vODT, and horizontal along the 𝑥 axis: hODT) in which we can perform evaporative cooling. The two laser beams LattT (lattice top) and LattB (lattice bottom) are used for generating pairs of atoms with correlated momenta. The source part (before the Zeeman slower) can be insulated from the "high-vacuum" part (after the Zeeman slower) thanks to two manual vacuum valves placed before the Zeeman slower (black handles on the drawing). A Faraday cup is also installed between the large and the small Zeeman slowers, to measure the atomic flux out of the source. Without collimation, the clipping of the atomic jet across the 4 m long Zeeman solenoid (cf. Figure 3.19) would reduce the flux in the science chamber down to 10 7 s -1 mm -2 . The transverse molasses consists in two pairs of retro-reflected elliptical beams, red-detuned by 1.8Γ with respect to the 2 3 𝑆 1 → 2 3 𝑃 2 transition. The major axis of the ellipses is along the atomic jet, so as to have a long interaction time. This reduces the transverse (ie. in the 𝑥𝑧-plane) velocity of the atoms a lot, and increases the flux in the science chamber. The number of atoms incoming in the science chamber per time unit has been measured in [START_REF] Browaeys | Piegeage magnetique d'un gaz d'helium metastable : vers la condensation de Bose-Einstein[END_REF] to be around 10 11 s -1 . In order to be able to trap the atoms, longitudinal velocity also needs to be reduced. This is the role of the Zeeman slower, where the atoms interact with a counter-propagating beam, and the Doppler effect induced by the slowing is compensated by a spatially varying magnetic field, so as to keep the interaction resonance all the way along the tube. The maximum deceleration 𝑎 𝑚𝑎𝑥 is an intrinsic property of the transition and is roughly equal to 50 000𝑔 1 (cf. Table 5.1). This Zeeman 1: let us recall for comparison that the human g-LOC occurs at about 5𝑔... slower has been designed to apply a deceleration of 66 % of 𝑎 𝑚𝑎𝑥 [START_REF] Labeyrie | Deux outils pour l'optique atomique : jet intense d'hélium métastable et miroir à onde évanescente exaltée[END_REF], [START_REF] Labeyrie | Deux outils pour l'optique atomique : jet intense d'hélium métastable et miroir à onde évanescente exaltée[END_REF]: Labeyrie (1998), "Deux outils pour l'optique atomique : jet intense d'hélium métastable et miroir à onde évanescente exaltée"

Physical quantity

Transverse optical molasses and

and is therefore slightly longer than 𝐿 𝑚𝑖𝑛 the minimal stopping length (cf. Table 5.1). The laser light is red-detuned by Δ𝜈 𝑧 ≈ 400 MHz so as not to interact with the atoms trapped in the science chamber: this is possible with the small Zeeman slower 2 that generates a magnetic field 2: 40 cm long of opposite direction such that the atoms reach the science chamber with smaller speed (∼ 70 m s -1 ) while being resonant with the far reddetuned Zeeman laser beam. The small Zeeman solenoid is shut down during the following 𝑀𝑂𝑇 loading step, in order to avoid its parasitic magnetic field. The theoretical spacial profile of the field -required to perform the Zeeman slowing-takes the form:

𝐵(𝑦) = -Δ𝜈 𝑧 μ 𝛣 + 𝑣 𝑠 𝜆 μ 𝛣 1 - 𝑦 𝐿 (3.37)
where 𝐿 ≈ 2.3 m is the solenoid length and

μ 𝛣 ≜ μ 𝛣 ℎ ≈ 1.4 MHz G -1 (3.38)
is the Bohr magneton in Planck constant units. Measurements of this magnetic field has been made in the past, an example is given in Figure 3.20.
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Magneto-optical trap & optical molasses

First realised 35 years ago [START_REF] Raab | Trapping of Neutral Sodium Atoms with Radiation Pressure[END_REF], the theory of the magneto-optical trap [START_REF] Raab | Trapping of Neutral Sodium Atoms with Radiation Pressure[END_REF] (MOT) with a 𝐽 → 𝐽 + 1 transition is very well known, and described in many lectures and textbooks [START_REF] Dalibard | Une brève histoire des atomes froids -Chapitre 2[END_REF][START_REF] Metcalf | Graduate Texts in Contemporary Physics[END_REF]. We will therefore not explore the MOT theory further, and just provide some important numbers for the current state of the experiment. 

MOT loading

We prepare a 3D MOT with 3 retro-reflected near resonance laser beams (cf. Figure 3.19). The magnetic field is generated by a pair of anti-Helmholtz coils, producing a gradient along their axis of 40 G cm -1 at the centre of the trap (cf. Figure C.2). In practice, the power supply delivers the maximum current possible (225 A) and the number of atoms is optimised by adjusting the detuning of the laser beams with an acousto-optic modulator (AOM). Light is red-detuned by 34.6Γ, with a power of approximately 30 mW per axis.

The detuning must be large compared to Γ, because the number of atoms in a MOT of metastable helium is quickly limited by the Penning collision assisted by resonant light. Indeed, in the MOT cloud is not spin-polarised, which means that the bare Penning collision rate is already very high (∼ 10 -10 cm 3 s -1 cf. Subsection 1.2.2 on page 108), but it is in addition greatly enhanced by a light-assisted mechanism [START_REF] Kumakura | Laser Trapping of Metastable H 3 e Atoms: Isotopic Difference in Cold Penning Collisions[END_REF][START_REF] Paul | Large Numbers of Cold Metastable Helium Atoms in a Magneto-Optical Trap[END_REF][START_REF] Browaeys | Two Body Loss Rate in a Magneto-Optical Trap of Metastable He[END_REF][START_REF] Pereira Dos Santos | Penning Collisions of Laser-Cooled Metastable Helium Atoms[END_REF]. The idea is that an atom in the excited state [START_REF] Kumakura | Laser Trapping of Metastable H 3 e Atoms: Isotopic Difference in Cold Penning Collisions[END_REF] 2 3 𝑃 2 can interact with a metastable via a very favorable dipole-dipole interaction. When light is close to resonance, this increases the collision rate constant by two orders of magnitude! The solution to counteract this is to keep the population in the excited state very small, with far detuned MOT beams. Since with helium the cooling in MOT is only carried out by Doppler mechanisms 1 , this large detuning implies large 1: in fact, since with helium the Doppler limit and the recoil limit for temperature are "relatively" close (cf. Table 3.2 on page 106), sub-Doppler mechanisms for cooling are never used in a MOT.

temperatures.

We use light beams as large as the viewports allow, in order to maximise the capture volume. A cloud of approximately 2.5 ⋅ 10 9 atoms is loaded in 1.5 s, with a temperature estimated 2 between 0.5 mK and 2: with the ballistic expansion of the cloud in time of flight, observed with fluorescence imaging.

1 mK.

Remark 3.6

The measures of the number of atoms in the MOT are not precise, and probably underestimated: when the cloud is hot, atoms with large velocities can be out of resonance due to the Doppler effect. In practice, we measure the number of atoms in the cMOT (next cooling step, see next paragraph) to be larger than the one in the MOT, which does not make sense. In the same way, the temperature estimation is not very precise with hot gases, and should be considered as an order of magnitude.

MOT compression

At the end of the loading we perform a dynamical compression of the MOT by ramping the detuning (closer to resonance), and lowering the optical power in 20 ms. The compression cools the cloud even further, and increases the phase-space density (PSD) [START_REF] Petrich | Behavior of Atoms in a Compressed Magneto-Optical Trap[END_REF] [133]: [START_REF] Petrich | Behavior of Atoms in a Compressed Magneto-Optical Trap[END_REF], "Behavior of Atoms in a Compressed Magneto-Optical Trap"

. Theoretically it might be a good idea to also ramp the current in the coils so as to adapt the magnetic field gradient accordingly during the compression (that is what is done in an analogous experiment installed in Camberra [START_REF] Abbas | Rapid Generation of Metastable Helium Bose-Einstein Condensates[END_REF] [134]: Abbas et al. ( 2021), "Rapid Generation of Metastable Helium Bose-Einstein Condensates"

), it is however difficult for us to do, as the response time of our power supply does not allow to have control at times shorter than a few tens of milliseconds. We therefore keep the same magnetic gradient during the compression.

The power per beam is lowered down to 190 µW, and the detuning at the end of the compression is -8.8Γ. We end up with a compressed magneto-optical trap (cMOT) with 3 ⋅ 10 9 atoms at approximately 150 -200 µK.

The very point of this new feature is that it allows to increase a lot the PSD, by reducing both the temperature and the volume of the cloud. There is a balance to find between temperature and number of atoms: generally using laser beams closer to resonance gives cooler clouds, but with fewer atoms. Empirically, we optimise the parameters of the beams (frequency and power) by maximising:

1. the number of atoms during the MOT ; 2. the phase space density during the MOT compression ;

Optical molasses

The MOT beams are used a last time for cooling, with a three-dimensional optical molasses (OM) stage, occurring right after the compression. The laser cooling mechanism of a 3D OM on helium can lead to steady-state temperature very close to the Doppler cooling limit 𝑇 𝐷 ≈ 40 µK for a laser detuning 𝛿 = -Γ 2 [START_REF] Chang | Three-Dimensional Laser Cooling at the Doppler Limit[END_REF]. In practice, some technical imperfection of our apparatus make the OM quite unstable, and we regularly need to control and adjust its setting. First the magnetic environment is not under control: so as 3 Cooling of the metastable helium cloud: down to the BEC 133 to keep a maximum of atoms, the quadrupole magnetic field of the MOT is shut down right before the OM 1 , but because of the eddy 1: there is only 10 µs of delay between the end of the MOT compression and the beginning of the OM.

currents induced inside the metallic frame of the science chamber, the magnetic field takes a few milliseconds to vanish. This has an effect on the detuning that we must set, but may also give a velocity to the cloud [START_REF] Walhout | 𝜎 + -𝜎 -Optical Molasses in a Longitudinal Magnetic Field[END_REF] 2 . In addition, the OM is realised with the same beams as the ones [START_REF] Walhout | 𝜎 + -𝜎 -Optical Molasses in a Longitudinal Magnetic Field[END_REF]: [START_REF] Walhout | 𝜎 + -𝜎 -Optical Molasses in a Longitudinal Magnetic Field[END_REF], "𝜎 + -𝜎 -Optical Molasses in a Longitudinal Magnetic Field" 2: and ideed, when the parameters are set such that the OM has a positive effect on the temperature, we can see a global motion of the cloud in the -⃗ 𝑒 𝑥 direction.

used for the cMOT (we just ramp their frequency and power) ; these being retro-reflected laser beams, it means that the optical intensity on the way back is smaller than the one on the way forth... This power imbalance can have a negative impact on the time required to reach a steady-state, as well as the stability [START_REF] Chang | Three-Dimensional Laser Cooling at the Doppler Limit[END_REF].

The molasses is applied during 3 ms with near resonance light and we can reach a final temperature of 60 µK. The measurement of the final size of the cloud is technically challenging for us, as we use the same beams to perform the cMOT, the OM and the imaging. Indeed, one of the beams is placed along the axis of the imaging camera, and we have to wait the closing of a mechanical shutter (hiding this beam) before taking the picture. This deadtime is of the order of a few hundreds of microseconds. The cloud is in the ballistic expansion regime during the 3D OM phase, we can have a coarse estimation of the typical size by considering a linear time evolution of the temperature (from ∼ 200 µK to ∼ 60 µK) and a typical initial size of 1.5 mm (cMOT size). We find sizes from 2 to 3 mm, quite compatible with the time of flight (TOF) images we are able to take, a few milliseconds after the OM.

Magnetic trap

The second set of cooling stages is performed inside a purely magnetic trap.

Idea By definition, the metastable state 2 3 𝑆 1 has a total angular momentum quantum number 𝐽 = 𝑆 = 1, and therefore an angular momentum 𝐉 and a magnetic moment 𝝁 such that

𝝁 = -𝑔 μ 𝛣 ℎ 𝐉 (3.39)
where 𝑔 = 2 𝑔 𝑠 ≈ 2 is the Landé 𝑔-factor of the metastable state 3 3: 𝑔 𝑠 being the electron spin 𝑔factor [137].

. In the presence of a magnetic field, the atoms with the total angular momentum projection quantum number 𝑚 𝐽 ∈ {-1, 0, 1} acquire a potential energy 𝐸 𝑝 (𝐫) depending on the magnitude 𝐵(𝐫) of the field 1 1: if we consider semi-classically that the magnetic moment is a vector always aligned with the field, which is legitimate in our case as the Larmor precession pulsation Ω 𝐿 = 𝜇𝛣 ℎ is large compared to the trapping frequency.

:

𝐸 𝑝 (𝐫) = 𝑔 𝑚 𝐽 μ 𝛣 𝐵(𝐫) (3.40)
By creating a local minimum of magnetic field, the force resulting from the vector gradient of the potential energy traps the atoms polarised in the 𝑚 𝐽 = 1 state.

Shape of the trap

We realise a Ioffe-Pritchard trap with two symmetric clusters of coils in a cloverleaf configuration [START_REF] Browaeys | Piegeage magnetique d'un gaz d'helium metastable : vers la condensation de Bose-Einstein[END_REF], similar to [START_REF] Browaeys | Piegeage magnetique d'un gaz d'helium metastable : vers la condensation de Bose-Einstein[END_REF]: [START_REF] Browaeys | Piegeage magnetique d'un gaz d'helium metastable : vers la condensation de Bose-Einstein[END_REF], "Piegeage magnetique d'un gaz d'helium metastable : vers la condensation de Bose-Einstein"

those used for the preparation of the first condensates [START_REF] Mewes | Bose-Einstein Condensation in a Tightly Confining DC Magnetic Trap[END_REF] (cf. Figure It consists in the superposition of a dipole field along the 𝑥 direction and a quadrupole field in the transverse 𝑦𝑧-plane. Its reduction to second-order terms writes:

𝐁 ⎛ ⎜ ⎝ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝑥 𝑦 𝑧 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎞ ⎟ ⎠ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝐵 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ + 𝐵′ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 𝑦 -𝑧 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ + 𝐵″ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 𝑥 2 -1 2 (𝑦 2 + 𝑧 2 ) -𝑥𝑦 -𝑥𝑧 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (3.41)
from which we deduce the 3D repartition of the magnitude of the field:

𝐵 𝑥, 𝜌 = 𝑦 2 + 𝑧 2 = 𝐵 0 + 𝐵″𝑥 2 + 𝐵′ 2 2𝐵 0 - 𝐵″ 2 𝛣 ″ 𝜌 𝜌 2 (3.42)
The trap is therefore quasi-harmonic at the centre, we denote 𝜔 and 𝜔 ⟂ the trapping frequencies along the coils' axis, and the transverse plane respectively.

𝐵 0 is the bias field, it prevents having a field zero at the centre of the trap, that would induce nonadiabatic spin-flip losses, known as Majorana losses [START_REF] Bergeman | Quantized Motion of Atoms in a Quadrupole Magnetostatic Trap[END_REF]. At the end of the OM the cloud is isotropic, with a size 𝜎 0 and temperature 𝑇. Ideally, in order to conserve the phase-space density (PSD), the harmonic trap should be set up to be also isotropic 3 Cooling of the metastable helium cloud: down to the BEC 135 during the loading (𝐵″ 𝜌 = 𝐵″) and should match the condition:

2μ 𝛣 𝐵″𝜎 2 0 = 1 2 𝑘 𝛣 𝑇 (3.43)
where 𝜎 0 is the 1 √ 𝑒 size of the cloud, before the loading in the MT (after the optical molasses), and 𝑇 the temperature of the cloud during the loading. With a cloud of 2 mm, at 60 µK (cf. 3 rd paragraph of Subsection 3.2.2), this corresponds to a curvature of 5 G cm -2 .

The maximum curvature that we are able to generate with our coils (with the PSU at full power) is 𝐵″ ≈ 20 G cm -2 , greater than the value calculated above. It should therefore be optimal to proceed to the loading with a smaller current (for the adaption of the trap), and then adiabatically ramp up the current to compress the cloud.

However in practice, this kind of study has been tested in the early 2000s, without seeing much of a difference: we therefore make it as simple as possible, and load the cloud in the MT with the maximum curvature. Notice that this study was made at a time where there was no imaging system, and the size of the cloud was unknown. We will very soon change the coils of the magnetic trap (cf. Subsection 2.3 of Chapter 4). It would be interesting at this time to redo this type of testing, and see if we can find a small gain there.

Remark 3.8

One should also notice in Eq. (3.42) that the bias may control the transverse stiffness of the trap, if we want to compress it. The compression increases the collision rate (which is required to reach the evaporative cooling regime).

The trap is semi-linear (asymptotically linear in the transverse plane and harmonic in the longitudinal axis), but the bottom of the trap can always be approximated with a 3D harmonic potential.

When the trap is compressed, the region where it can be approximated with a transverse harmonic potential becomes smaller. The increase of collision rate can be computed [START_REF] Browaeys | Piegeage magnetique d'un gaz d'helium metastable : vers la condensation de Bose-Einstein[END_REF] as well as the resulting heating in such a case.

When we perform the compression of the trap by reducing the bias, we have The data points are fitted with a tanh function, from which we extract the center, that we empirically define as the measured bias. In this example, the fit returns a measured bias of 1.67 MHz.

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 𝐵′ ∼ 75 G cm -1 𝐵″ ∼ 20 G cm -2 𝐵 0 < 25 G 136 
To perform a bias measurement, we use the RF coupling between the magnetic sublevel 𝑚 𝐽 = 1 (trapped) and the magnetic sublevel 𝑚 𝐽 = 0 (not trapped): cf Figure 3.23 on the next page. Indeed, after the compression of the magnetic trap, we apply a RF field 1 , whose frequency is 1: thanks to an antenna in the science chamber constant. This frequency is scanned (from one experimental realisation to the next), starting to "small" values (smaller) towards higher values. When the RF frequencies reaches the threshold 2 μ 𝛣 𝐵 0 , atoms in the 𝑚 𝐽 = 1 state are coupled to the 𝑚 𝐽 = 0 state and therefore lost from the trap: we can witness these losses by taking picture of the cloud with fluorescence imaging. An example of such a measurement is given in Figure 3.21.

Oscillation frequencies of the atoms in the trap are directly measured with fluorescence imaging, for different values of the bias current in the coils.

In practice we measured

Λ = 0.40(1) G kHz 2 (3.45)
The longitudinal trapping frequency is however independent of the bias, and only depends on the curvature: 

𝜔 ≈ 2 μ 𝛣 𝐵″ 𝑚 ≈ 2𝜋 × 45 Hz (3.46)

Atoms pumping & Doppler cooling

We do not have the control on the polarisation (meaning the 𝑚 𝐽 value) of the atoms in MOT. We therefore apply a short and intense laser pulse at the beginning of the MT, with the 𝜎 + polarisation to transfer most of the atoms in the trapped magnetic sub-level 𝑚 𝐽 = 1.

We then apply a phase of 1D Doppler cooling with a dim retro-reflected beam along the 𝑥 axis, very close to the resonance (about Γ 2 red detuned). The theory of the 1D Doppler cooling in a magnetic trap is not . The main idea is that with a large density and therefore a big optical density, the atoms are cooled transversely by absorbing the photons spontaneously emitted by the atoms excited by the laser beam. This mechanism is slow, and might also be in competition with the optical molasses along the 𝑥 axis, which is unfavourable when the density is high, and eventually leads to the heating of the cloud. This competition can be visualised in Figure 3.22, where we can see the "transverse temperature" of the cloud decreasing with the density (doppler cooling), while the "longitudinal temperature" is increasing. Even though the Doppler cooling mechanism is more efficient with dimmer light, interacting for longer times, in our case the fact that the beam also has a small 𝜋 polarisation component (because of its constrained orientation) limits the maximal duration we can achieve without depolarising the gas. Prior to Doppler cooling, we apply a first compression of the MT. This compression is done by ramping the bias down to 𝐵 0 = 74 MHz in 20 ms, where

𝐵 0 = 2 μ 𝛣 𝐵 0 (3.47)
is the bias in frequency units. The resulting harmonic trap has a longitudinal frequency 𝜔 2𝜋 = 45(5) Hz, and a transverse frequency 𝜔 ⟂ 2𝜋 = 122(2) Hz. After the Doppler cooling, we end up with a cloud of 𝑁 ∼ 2.5 ⋅ 10 9 atoms at 100 µK. Thanks to the compression and the Doppler cooling, the density has increased to (peak values) 𝑛 ∼ 2.8 ⋅ 10 11 cm -3 , and the PSD to 𝑛 𝜆 3 𝑑𝛣 ∼ 1.8 ⋅ 10 -4 . Where 𝜆 𝑑𝛣 is the de Broglie thermal length given by

𝜆 𝑑𝛣 = ℎ 2𝜋𝑚𝑘 𝛣 𝑇 (3.48)
and 𝑛 is evaluated with the RMS volume of the harmonic trap: Evaporation in the magnetic trap A last compression of the magnetic trap is operated after the Doppler cooling. The bias 𝐵 0 is lowered to 1.3 MHz, which increases the transverse trapping frequency to 𝜔 ⟂ = 2𝜋 × 930 Hz, and therefore also increases the elastic collision rate.

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑛 = 𝑁 (2𝜋) 3 2 𝜎 𝜎 2 ⟂ 𝜎 𝑖∈{ ,⟂} = 1 𝜔 𝑖 𝑘 𝛣 𝑇 𝑚 (3.49a) (3.49b) 𝜌 𝐸 2μ 𝛣 𝜈 𝑟𝑓 𝑚 𝐽 = +1 𝑚 𝐽 = 0 𝑚 𝐽 = -1
We then perform an evaporative cooling stage, with an RF antenna that couples the trapped 𝑚 𝐽 = 1 magnetic sublevel to the not trapped 𝑚 𝐽 = 0 magnetic sublevel. Starting at large frequency, and slowly lowering it, the RF evacuates the most energetic atoms and the cloud has the time to re-thermalise thanks to the elastic collisions [START_REF] Luiten | Kinetic Theory of the Evaporative Cooling of a Trapped Gas[END_REF] [141]: [START_REF] Luiten | Kinetic Theory of the Evaporative Cooling of a Trapped Gas[END_REF], "Kinetic Theory of the Evaporative Cooling of a Trapped Gas" . The goal is to prepare a cloud cold enough to be trapped in the optical dipole trap (ODT), in which we apply the last steps of the experimental cycle. The RF frequency 𝜈 𝑟𝑓 has a temporal profile of decaying exponential with the typical following parameters: Ramp duration 1.5 s Time constant 0.9 s Initial RF frequency 35 MHz Final RF frequency 8 MHz

At the end of the RF evaporation, the cloud contains 𝑁 ∼ 5 ⋅ 10 8 atoms, with a temperature 𝑇 ∼ 45 µK.

We also have the possibility to push the evaporation further, in order to obtain a BEC in the MT. Historically, the group prepared the first BEC of metastable helium this way [START_REF] Robert | A Bose-Einstein Condensate of Metastable Atoms[END_REF]. With a bias 𝐵 0 = 1.3 MHz, [START_REF] Robert | A Bose-Einstein Condensate of Metastable Atoms[END_REF] However, current and vibrational instabilities in the coils induce painful bias fluctuations (especially since an episode of overheating of the coils that occurred in October 2020... see Chapter 4). These fluctuations make the number of atoms, probability of condensation and even the position of the cloud not very reliable when the evaporation in MT is pushed very far. This was one of the motivations for installing an optical trap in which we perform the final cooling stage. 

Optical dipole trap (ODT)

Presentation After the evaporation in the MT, we shine two intense laser light beams at 1550 nm (i.e. very far red-detuned) focused on the cloud, in order to load the atoms in a crossed ODT. The first beam is oriented along the vertical axis (going from the top to the bottom), and the second one is horizontal (oriented along ⃗ 𝑒 𝑥 ). The overlap between the MT and the ODT lasts 500 ms, letting some time to the trap to capture atoms. We keep a magnetic field of a few gauss 1 , along ⃗ 𝑒 𝑥 during 1: it is generated by a pair of coils, in an approximate Helmoltz configuration, with a current of 0.8 A.

the trapping, such that the atoms remain in the 𝑚 𝐽 = 1 sublevel, and the Penning collisions are strongly reduced.

Once loaded in the ODT, we induce evaporative cooling of the cloud again, by lowering the optical power. At some point, the PSD crosses the critical value, and BEC is obtained. The ODT laser source has been changed in 2017. However no BEC was obtained at the time until 2022, because of different issues that will be explained in details in Chapter 4. I contributed to the fixing of these problems, and the setting of a new evaporation protocol, generating BECs in a stable and reliable way.

The vertical beam (vODT) is the most powerful (5 W during the loading) and has the smallest waist (42.5 µm). It drives the evaporation and compensate the gravity potential, during most of the cooling stage 2 .

2: when its power is lowered below 0.55 W it no longer compensates the gravity, and the vertical trapping is carried out by the horizontal beam.

The temporal profile of its power is represented in Figure 3.24, and the power-related quantities are given in Table 3.8 and Table 4 Single beam issues At the end of the evaporation, the longitudinal trapping frequency of the vertical beam is very small (∼ 10 Hz cf. Table 4.1) and as a consequence the trapping area is very elongated: the centre A similar study has been carried out in 2015 with the previous laser, and can be visualised (with more data statistics) in [START_REF] Lopes | An Atomic Hong-Ou-Mandel Experiment[END_REF]. However, at the time a much less powerful laser were used, and this effect was even stronger. of the cloud may slightly oscillate along this axis. This very strong anisotropy of the trapping frequency (𝜔 ⟂ 𝜔 ≈ 120) causes two main issues, that motivate the realisation of a crossed ODT by installing an horizontal beam:

1. By looking at the arrival times of BECs on the MCP, we observe that it effectively broadens the shot-to-shot fluctuations of the initial velocity of the cloud when the trap is shut down (cf. Figure 3.25 histogram on the left). This is problematic because, as we will see in Chapter 5, the momentum of the BEC has an import effect on the mechanism of emission of correlated atoms that we use. Such a jitter also blurs the signal of second-order correlation functions that we measure for the momenta of pairs of atoms (with large statistical averaging). Increasing the trapping frequency along the vertical axis reduces these shot-to-shot fluctuations.
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2. When the transverse confinement is much larger than the longitudinal one, the transverse motion becomes frozen for the atoms, and the physics of the BEC enters the 1D regime. By denoting 𝑎 ℎ𝑜 the characteristic length of the quantum harmonic oscillator

𝑎 ⟂ ℎ𝑜 = ̵ ℎ 𝑚𝜔 ⟂ 𝑎 ℎ𝑜 = ̵ ℎ 𝑚𝜔 (3.50)
the transverse size of such 1D quasi-BEC is gaussian with width 𝜎 𝜌 ∝ 𝑎 ⟂ ℎ𝑜 , and its length depends on the chemical potential. We can estimate in which regime the cloud lays with an adimensional number 𝜒 [START_REF] Menotti | Collective Oscillations of a One-Dimensional Trapped Bose-Einstein Gas[END_REF] that roughly quantifies the ratio of the mean- [START_REF] Menotti | Collective Oscillations of a One-Dimensional Trapped Bose-Einstein Gas[END_REF]: [START_REF] Menotti | Collective Oscillations of a One-Dimensional Trapped Bose-Einstein Gas[END_REF], "Collective Oscillations of a One-Dimensional Trapped Bose-Einstein Gas" field interaction energy to the radial confinement energy:

𝜒 = 𝑁 𝜔 𝑎 𝜔 ⟂ 𝑎 ⟂ ℎ𝑜 (3.51)
When 𝜒 ≫ 1, the interactions dominate and we recover in the 3D Thomas-Fermi (TF) case. On the contrary, when 𝜒 ≪ 1 the transverse degrees of freedom are frozen, and the condensate is effectively one-dimensional. With the vertical beam alone, and the parameters in Table 4.1, we have 𝜒 ≈ 1.41 which is an intermediate regime described in [START_REF] Gerbier | Quasi-1D Bose-Einstein Condensates in the Dimensional Crossover Regime[END_REF].

[144]: Gerbier (2004), "Quasi-1D Bose-Einstein Condensates in the Dimensional Crossover Regime"

In particular, it is known for those elongated ultra-cold clouds that there is a regime of temperatures, below the critical temperature 𝑇 𝑐 , where the density fluctuations vanished but there is still low-energy excitations that cause phase fluctuations 1 [START_REF] Petrov | Phase-Fluctuating 3D Bose-Einstein Condensates in Elongated Traps[END_REF][START_REF] Gallucci | Phase Coherence in Quasicondensate Experiments: An Ab Initio Analysis via the Stochastic Gross-Pitaevskii Equation[END_REF] 1: the phase coherence of the cloud is not strictly satisfied and that is why we talk about quasi-BEC. 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝜔 ≜ 3 √ 𝜔 𝜔 2 ⟂ 𝑘 𝛣 𝑇 𝑐 ≈ 3 √ 𝑁 ̵ ℎ𝜔 (3.52a) (3.52b)
we denote 𝑇 𝜙 the temperature to reach so as to remove these phase fluctuations:

𝑇 𝜙 = 15 ( ̵ ℎ𝜔 ) 2 𝑁 32 𝜇 𝑘 𝛣 (3.53)
where 𝜇 is the chemical potential. Without horizontal beam, with 𝑁 ∼ 3 ⋅ 10 4 and the parameters in Table 4.1 for the vertical beam, we estimate:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝑇 𝑐 ∼ 450 nK 𝑇 𝜙 ∼ 100 nK (3.54a) (3.54b)
This defines a problematic range of temperatures where the phase fluctuations are not negligible and induce velocity fluctuations (which is the observable that we probe after time of flight). It would also affect the coherence of the atomic pair production. We do want to avoid this regime.

Crossed dipole trap

We therefore installed another beam in the horizontal plane, forming an angle of 7°with repect to the 𝑥 axis, and with a waist of 135 µm. It increases the trapping frequency along the vertical direction up to ∼ 75 Hz at the end of the evaporation (cf. Table 3.8 and Table 4.1). The temporal profile of the power is represented in Figure 3.24, and the power-related quantities are given in Table 3 In the cylindrical basis defined by their axis of propagation and centred on their waists (𝜌, 𝜑, 𝜁), each beam creates a dipole potential 𝑉 𝑑𝑖𝑝 :

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑉 𝑑𝑖𝑝 (𝜌, 𝜑, 𝜁) = 𝑉 0 1 + 𝜁 𝑧 𝑅 2 exp ⎛ ⎜ ⎜ ⎜ ⎝ - 2𝜌 2 𝑤 2 1 + 𝜁 𝑧 𝑅 2 ⎞ ⎟ ⎟ ⎟ ⎠ 𝑉 0 = - 3𝜋𝑐 2 2𝜔 3 0 2𝑃 𝜋𝑤 2 Γ 𝜔 0 -𝜔 + Γ 𝜔 0 + 𝜔 𝑧 𝑅 = 𝜋𝑤 2 𝜆 (3.55a) (3.55b) (3.55c)
where 𝜆 = 1550 nm is the laser wavelength, 𝜔 = 2𝜋 𝑐 𝜆 is the associated angular frequency, 𝜔 0 is the angular frequency of the 2 3 𝑆 1 → 2 3 𝑃 2 cooling transition, Γ = 2𝜋 × 1.6 MHz is the corresonding natural linewidth, 𝑤 is the waist of the beam and 𝑧 𝑅 its Rayleigh length. We can take all the pieces together and simulate the total potential 𝑉 𝑡𝑜𝑡 seen by the atoms in a Python Python code to generate the visualisation in Figure 3.26 and Figure 3.27.

Final cloud

The counting of the number of atoms in the BEC is not trivial in our experiment. Indeed, the velocity distribution of the atoms in a BEC is very narrow, which means that after releasing the trap, many atoms are detected on a small area of the MCP (∼ 1 cm 2 ) in a very short time range (∼ 100 µs). This flux of atoms is in particular larger than 10 5 s -1 cm -2 , the typical flux saturation of the MCP, and the number of atoms is strongly underestimated... We can slightly enlarge the velocity distribution by heating the cloud with the optical lattice used for the atomic pair generation (cf. Chapter 5). More atoms are detected but we still see saturation of the detector at the BEC arrival time. We measured 𝑁 ∼ 2.8 ⋅ 10 4 atoms with this technique, which is therefore a lower bound. An improvement of this technique would be to realise Bragg diffraction of the cloud to many orders, so as to spread the falling of the atoms over a very long time, but this part of the apparatus is not perfectly operational at the time when this manuscript is being written. This technique was used a few years ago (however with a different ODT configuration) and a value of 𝑁 ∼ 5 ⋅ 10 4 was found [START_REF] Lopes | An Atomic Hong-Ou-Mandel Experiment[END_REF], with 20 % uncertainty because of the [START_REF] Lopes | An Atomic Hong-Ou-Mandel Experiment[END_REF]: [START_REF] Lopes | An Atomic Hong-Ou-Mandel Experiment[END_REF], "An Atomic Hong-Ou-Mandel Experiment" inaccurate knowledge of the MCP quantum efficiency.

If we compare the current state of the ODT with the configuration that was used before 2018, we use beams with roughly the same waist as before, but with much more power (we went from ∼ 1.5 W available on atoms to ∼ 11 W available on atoms). Due to the small optical power, in the previous configuration people were forced to load a cloud already very cold in the ODT, meaning that it required to be cooled in the MT down to a temperature very close to the bias of the MT (which is known to be very prone to fluctuations). Therefore the relative fluctuations of the initial number of atoms in the ODT was large. In addition, the ratio 𝑈 𝑘 𝛣 𝑇 between the depth of the ODT and the thermal energy of the cloud was not very favourable to an efficient evaporative cooling (∼ 3).

With the new laser, we improved the initial loading by two orders of magnitude, and the loaded cloud is warmer. We are no longer sensitive to the fluctuations of the MT's bias. The evaporative cooling is also more efficient.

2022

Atoms loaded ∼ 2 ⋅ 10 5 ∼ 2 ⋅ 10 Even though we estimate that the final number of atoms in the BEC did not change much, and lays between 3 ⋅ 10 4 and 10 5 , we improved the stability and the reliably of condensation a lot.

Remark 3.9 (Raman transfer) Until the end of the ODT, atoms are polarised in the 𝑚 𝐽 = 1 magnetic sublevel. This is not good during the free fall following the release of the trap, because stray magnetic fields could deviate the cloud during falling or induce phase fluctuations.

We therefore need to perform a transition between the sublevels 𝑚 𝐽 = 1 and 𝑚 𝐽 = 0 right after the releasing of the trap. We perform a two-photons Raman transition, with the 2 3 𝑃 0 state. This way we can achieve more than 90 % of transfer efficiency.

Recap

The entire cooling procedure takes less than 10 seconds (cf. Figure 3.28), which is a significant improvement in comparison with the previous states of the experiment (roughly speaking, before 2019) where a similar cycle used to take more than 30 seconds. In addition, the setup currently being neither fully complete nor perfectly stable, we did not yet proceed to the ultimate time optimisation of all the cooling stages. Thus we have good reasons to hope that this final optimisation could save one second or more (especially during the evaporative processes). This enhancement of the duty cycle of the experiment is particularly appreciable. Indeed, the quantum effect that we aim at requires the use of an atomic-pair source 1 that usually has a very low pair production 1: this source is described in Chapter 5, where will see that the BEC is an important component of it. rate 2 . When the experiment is running, and considering a TMS with 2: we have seen in Chapter 2 that a Bell inequality violation based on a TMS is easier to see when the average number of particle per mode 𝜈 is small: in practice typically of the order of 0.1 an average number of particle per mode 𝜈, the average number of pair detected per second is

𝛾 𝑝𝑎𝑖𝑟 = 𝜈 𝜂 2 𝑇 𝑒𝑥𝑝 (3.57)
where 𝑇 𝑒𝑥𝑝 is the duty cycle of a run, 𝜂 is the quantum efficiency of the MCP (squared because we want to detect two atoms) 𝜈 is the average number of atoms per mode. With the changing of the MCP, and the cooling speedup, we increased this rate by a factor 12. ODT load.

ODT evap. atomic interferometer [START_REF] Dussarrat | Two-Particle Four-Mode Interferometer for Atoms[END_REF], respectively published in 2015 and 2017. Several repairs and apparatus upgrades had already been made when I arrived, but unfortunately I cannot say that we quickly saw the light at the end of the tunnel... My PhD too was marked by serious technical difficulties, that checked our initial ambition to observe an atomic Bell inequalities violation.

𝑛 𝜆

In February 2021, it was collectively decided that we would operate heavy modifications on the apparatus, in order to (hopefully) fix the various stability problems that we encountered. This considerable investment in both time and money seemed to be worth it, and we will detail what has been done concretely in this chapter.

Status of the experiment in 2019

In April 2019 the experiment was just recovering from a first wave of issues [START_REF] Perrier | Interférences multiples avec atomes froids[END_REF], including two major ones amongst the rest:

[60]: Perrier (2018), "Interférences multiples avec atomes froids"

1. Vacuum (June 2016): A science chamber's turbopump broke down → 6 months of maintenance (long delivery times and the changing operation required the dismantling of many optomechanical components).

ODT (2017):

The laser used for experiments [START_REF] Lopes | Atomic Hong-Ou-Mandel Experiment[END_REF] and [START_REF] Dussarrat | Two-Particle Four-Mode Interferometer for Atoms[END_REF] was not powerful enough to guarantee a stable condensation of the cloud (1.5 W usable on the atoms). The breadboard for the optomechanics (placed vertically) was not perfectly stable. The laser was therefore changed, and the optomechanics completely remade, but the new laser (designed by Keopsys © ) died twice in less than two months 1 1: we have good reasons to believe that the company sold a technology (30 W 1550 nm fibered laser) that they did not master . After two consecutive repairs, the laser was finally restrained to a 20 W nominal power. In total, an other 6 months of work was spent on this operation. Actually, we continued to have problems with this laser, even very recently 2 2: the most recent breakdown having taken place on July 2022. We therefore ordered a new 30 W IPG Photonics © fibered laser that we will soon install on the experiement. In order to complete the detection system, a short-wave infrared (SWIR) InGaAs camera 3 was also installed in 2017 to perform fluorescence imag-3: Xeva 320 Series designed by Xenics © , with 80 % of quantum efficiency and 30 µm large pixels. ing. Indeed, even though the MCP is very well-suited for the detection of low density clouds in the far field (atomic pairs in our case), it is not very convenient for the daily monitoring of the clouds: it easily saturates when the density or the number of atoms is large ; it only provides information in the momentum space (we cannot see the cloud spatially in the trap) ; if the atoms are polarised, residual magnetic fields may perturb the "free fall". The camera solves these issues by observing the fluorescence of the cloud, along the axis of one of the three MOT beams, while the two other beams briefly excite the atoms with resonant light. It also simplifies the alignment of the ODT, since the loaded atoms can be seen directly. The setup is a bit complicated, because it requires a motorised flip-mirror to toggle between the 3D MOT configuration and the imaging configuration, but it is the best compromise since the experiment was not initially thought to host such a camera, and optical access to the vacuum chamber is very limited.

To provide a correct estimation of the number of atoms, the fluorescence imaging pulse requires to saturate the 2 3 𝑆 1 → 2 3 𝑃 transition. The problem was that at the time not enough power was available in the MOT beams' cluster 4 . Eventually, almost the entire optical setup 4: for legacy reasons many components (AOMs, lenses, RF amplifiers...) were not fitting the needs, and the beams had many defects (bad waists, bad power balance, bad optical isolator (OI) coupling...) for the cooling had to be redone. The total time cost of the installation of the camera was therefore also amounted to several months.

The final software integration of the imaging system was done during my PhD (cf. Appenfix B for technical details).

When I joined the team, the ODT was not yet focused on the atoms, and the condensation was not successfully observed with the new Keopsys © laser. A Hamamatsu © new generation MCP (with better quantum efficiency) was available in the lab, but not installed on the experiment. The main short-term objectives therefore were:

1. aligning the ODT and finding power temporal profiles for the evaporation to condensation ; 2. testing the performances of the new MCP on a benchmarking bench, before installing it on the MCP ; 3. putting the pair creation and Bragg optical lattices back into service.

Problems and workarounds during my PhD

Since 2016 and the apparition of the previously mentioned problems, the apparatus suffered from many technical issues. Our hope that the fixing operations, briefly explained in the first section of this chapter, would lead to a quick healing of the experiment, and new scientific investigation vanished rapidly. Instead, we had to deal with other difficulties: hardware/software malfunction, equipment breakdown (sometimes due to human mistake and sometimes not), cloud instabilities... After struggling a long time, without durable progress, we finally collegially decided -in February 2021-to proceed to massive apparatus changes. It was not an easy decision to make, as it also meant that the scientific part of the project would also be in standby for several months more.

As I write this manuscript, even if the setup is not fully upgraded yet, we already have very promising experimental results, that convinced us that this laborious work was worth it. In this section, I will detail the nature of the issues that we encountered, and what solutions we decided to implement to cure them. Colours encode the number of atoms detected. The red line corresponds to BEC obtained with RF evaporative cooling in the magnetic trap: after time of flight the cigar-shaped BEC along the 𝑥-axis becomes a pancake in the transverse 𝑦𝑧-plane, due to the famous anisotropic expansion of BECs. A zero-detectivity disc at the centre is visible. The diameter of this hole roughly matches the 1 𝑒 2 size of the vODT on the MCP... Data come from a single run (which is why the heatmap is quite "sparse").

Holes in the MCP

Genesis of the breakdown

A few months after the beginning of my PhD, we obtained a BEC in the ODT and we started to optimise the atomic pair creation process. For the following it is worth noticing that the vODT hits right in the middle of the MCP 1 . In August 2019, we tried to keep the vODT beam 1: which is not an optimal design, but we do not have that much flexibility with our science chamber, if we want the BEC to be cigar-shaped along the vertical direction. It never was an issue with the previous IPG Photonics © laser (with 1.5 W on the atoms) and the MCP that was used at that time. at full power during the MOT phase (8 W at the time) in order to keep the AOM and the fiber coupler warm, and minimise the thermal fluctuations during the loading of the ODT 2 . It turned out to be quite a 2: in many aspects, the coupling of the high power optical fibers has always been a technical issue for us. In particular it appeared that when the laser is switched on, the coupling efficiency fluctuates for a few seconds because of the heating of optical components. bad idea. The MCP could not dissipate that much power for such a long time (a few seconds per run cycle) and a "hole" (i.e. zero detectivity) in the detectivity map quickly appeared (cf. Figure 4.2). This experimental mishap motivated the installation of the brand new Hamamatsu © MCP, that I had finished testing on a separate minimal apparatus a few weeks before that. This was a rather heavy operation:

▶ it required to brake the ultra-high vacuum in the MCP chamber, and therefore a one-week baking was needed afterwards ; ▶ the vacuum high-voltage electrical connections are delicate ; ▶ once the change of the MCP and the chamber baking had been successfully achieved, the MCP needed to degas all the residual impurities present in the microchannels. This process was stimulated by the activation of the microchannels with metastable atoms (in practice we repeat the falling of hot MOT clouds on the MCP), but it was still very long (several weeks). During each run, the vODT makes a 1.8 W → 0.5 W exponential decay in 4 s, and the hole diameter is then evaluated with a bidimensional fitting (top graph). We then plot the evolution of the diameter (bottom graph), where every red point is the statistical average of the measured diameters for ∼ 30 consecutive runs.

We finally got back to the evaporation in the ODT in January 2019 (5 months later). We reduced the maximum power of the vODT to 5 W, and dropped the idea of keeping it on at full power for a long time. Yet, another hole, similar to the previous one (Figure 4.2), appeared in the middle of the plate... It turns out (phenomenologically) that the new Hammamatsu © MCPs are far less resilient to heating than the ones previously used in the experiment. It is a major issue for us, because the atomic pair creation process generates atoms whose velocities are along the BEC axis. Thus, the hole, the BEC and the atomic pairs are aligned along the vertical axis, and the signal of interest is undetectable (the pairs fall right in the middle of the hole)! In order to check if once the hole is made it continues to grow, we tried to repeat fake exponential evaporation with the vertical beam (without atoms) lowering again its maximum power down to 1.8 W (which is roughly the minimum power we need to reliably prepare a BEC). The result is presented on Figure 4.3, where we can see that the hole's diameter does not converge quickly towards an "acceptable value" (which would be less than 10 mm, as it will be explained in the following subsection). We therefore stopped doing this and looked for more sustainable workarounds, to overcome the two following problems:

1. How to detect the signal of interest with a zero-detectivity disc in the middle of the MCP ? 2. How to stop the hole from growing ?

Pushing the cloud with a Raman kick

As it has been briefly mentioned in Remark 3.9, we need to perform a Raman transfer, right after the release of the trap, to have only atoms in the 𝑚 𝐽 = 0 magnetic sublevel falling onto the MCP. Depending on the orientation of the two laser beams creating the Raman lattice, some momentum is passed on to the atoms due to the two-photon exchange: it is not difficult to prove with momentum conservation that the direction of this kick is given by the external bisector of the two beams.

In the previous configuration of the experiment, the Raman beams were contained in the 𝑦𝑧-plane, in such a way that the kick given to the atoms was directed upwards. Atoms were falling in the middle of the MCP, at a slightly delayed time because of this additional initial velocity. We changed that configuration such that the kick is given along the 𝑥 axis (cf. Figure 4.5), and the cloud (as well as the atomic pairs) is pushed away from the hole standing beneath.

2 3 𝑆 1 states 𝑚 𝐽 = 0 𝑚 𝐽 = 1 𝑚 𝐽 = -1 2 MHz Δ = 0.8 GHz 𝑚 𝐽 = 0 2 3 𝑃 0 𝜎 - 𝜋 𝛿 ∼ kHz

Remark 4.1

The Raman transition is realised with the 2 3 𝑃 0 excited state so has to keep the atoms in the 𝑚 𝐽 = 0 state after the (𝜎 -, 𝜋) transitions. Indeed, if we were using the 𝑃 1 or 𝑃 2 transitions, an additional (𝜎 -, 𝜋) couple of transitions would be possible (relying on the 2 3 𝑃 1,2 , 𝑚 𝐽 = -1 excited state) leading to the 2 3 𝑆 1 , 𝑚 𝐽 = -1 state. The labels "Wall" and "Computers", are just experimentalists' naming conventions, referring to the orientation of the room. The 𝜃 angle is limited by the diameter of the viewport. In reality, for historical reasons, the "Raman 1" is not perfectly in the 𝑥𝑦 plane (by a few degrees), and there is therefore also a small vertical contribution to the kick. Violet dashed lines correspond to the virtual one-photon kicks, and the plain violet line is the actual two-photons kick. A magnetic bias of a few gauss is kept along the 𝑥 axis. The one photon recoil velocity is 92 mm s -1 , which after 308 ms of free fall corresponds to approximately a 28 mm shift on the MCP. Considering the angle of 28°between the two Raman beams, we expect a 13.5 mm total shift, in the ⃗ 𝑒 𝑥 direction. We are geometrically limited by the diameter of the viewport, and this is therefore the largest kick we can give (at least by using this optical access): this sets an upper bound to the diameter of the holes that we are able to "dodge" (the diameter on the MCP of the BEC obtained with the ODT typically being 10 mm itself).

⃗𝑒

In practice we measure a slightly smaller kick (11.3(2) mm shift on the MCP) ; the small vertical contribution to the kick or an overestimated angle between the two beams could explain this discrepancy. Whatever, the cloud is pushed far enough so that we can consider the first of the two hole-related problems as solved.

Additional details about the technical realisation of the Raman pulse, and its quality control are given in appendix A.

Protecting the MCP with a copper plate

Based on our experience of 2019, we understood that it was no longer possible to have an intense optical beam hitting the MCP surface directly.

Our first workaround attempt was to drive the evaporation with the horizontal beam, allowing us to reduce the power of the vertical beam below 1 W. This solution required to change the optical setup, realising a "butterfly" configuration, presented in Remark 4.2. Remark 4.2 ("Butterfly configuration") Because of the large waist of the hODT (135 µm), it was necessary to change the configuration of the horizontal beam, in order to increase the trapping frequencies by a few hundreds of hertz.

The idea was to recycle a first passing of the hODT with two mirror (and two lenses) and send it back towards the atoms. The "butterfly" selfcrossing of the beam increases the trapping frequency during the loading up to 40 Hz along ⃗ 𝑒 𝑥 and 500 Hz in the transverse plane.

⃗𝑒 𝑥 ⃗𝑒 𝑦 ⃗𝑒 𝑧
This configuration is much more delicate to realise, as it requires to overlap the waists of three beams (instead of two), and the second passing of the hODT is obviously not independent of the first one... I will not go deep into the details of this technique, because even though we succeeded in loading a cloud in this trap, the evaporative cooling was inefficient and we never obtained a BEC this way. It was mostly a waste of time. Copper has been chosen for its good thermal conductivity properties, the piece is 6 mm thick (for having a heat capacity large enough). It has a rough surface finish in order to diffuse the laser light in a wide solid angle. We also added a tilt angle of 7°so as not to reflect most of the light backward towards the atoms. We also cut the plate, to only hide the part of the MCP exposed to laser light.

We performed a bunch of benchmarks (on the experiment but also on a testing apparatus) and we made sure that less than 5 % of the laser power reaches the MCP. We never observed again a localised loss of detectivity on the MCP, even using large optical powers, which makes this change a success. ) where we insulated the stainless steel arm and the plate from the high voltage with a polyether ether ketone (PEEK) piece (here the white piece connected to the ring). Then, the arm and the plate were connected to the ground with a wire.

However, when paying attention to the resulting detectivity map, the metallic structure is obviously visible, and the copper plate's shadow is just brushing against the hole (which is good), but we can also see a strange and unclear structure all around the sharp shadow (cf. We first imagined that this disturbance could be due to uncontrolled electric fields (the arm first being at the same high voltage potential than the delay lines: ∼ 2.6 kV). That is why we tried to electrically insulate this protective structure from the high voltage part with a PEEK support piece (Figure 4.9). This modification did not change a thing in the detectivity map.

The map in Figure 4.10 was obtained with MOT clouds, where a mix of atoms in all magnetic sublevels. However, when we do the same kind of map, with atoms coming out of an optical dipole trap and then transferred in 𝑚 𝐽 = 0 1 , detectivity is much cleaner near the arm and 1: we can easily separate the 𝑚 𝐽 = 0 atoms from the few remaining 𝑚 𝐽 = 1 ones with post-selection over the time of arrival on the MCP: the atoms polarise in the 𝑚 𝐽 = 1 arriving roughly 30 ms before the 𝑚 𝐽 = 0 because of the residual magnetic field gradients. plate's shadow (cf. Figure 4.11).

The stainless steel stand arm was crafted by a subcontractor, and it has been made of "SAE 304" stainless steel. It is less magnetic than conventional steel, but still more than the "SAE 316": an interesting upgrade could therefore be to remanufacture the pieces in 316 stainless steel. Regarding the size of the shadow, it might also be tempting to design smaller pieces, but actually the signal of interest falls whatever on the left side of the MCP ; the correlations that we want to observe are carried out by the vertical component of the atoms' velocities, thus their arrival time: velocities in the transverse plane are no crucial information in our design 1 , we essentially use them to post-select velocity boxes 1: contrary to other experiments such as the one managed by David Clement's team, also at the Institut d'Optique. matching the size of the atomic pairs modes. It is therefore probably safer (in this configuration) to keep a piece of metal massive enough to endure the laser-induced heating.

With these replacement solutions, we solved the problems related to the formation of a hole at the centre of the detector. A stable BEC in the vertical ODT alone was then obtained on the 02/02/2022 ; it was the first time since 2017. That milestone was quickly followed by a BEC in the crossed ODT on the 15/03/2022, and finally a signal of atomic pairs on the 30/03/2022. Remark 4.3 (Another configuration) Even if we worked around the hole issue, it is still frustrating to have this piece of metal casting a large shadow over the detector. As it has been shown above with the unfortunate magnetic effects we encountered, it is obviously also not a good thing to add a massive handmade metallic structure in an environment which has been precisely calibrated by a constructor to have suitable detection conditions with MCPs.

A rather radical idea would be to rotate the whole optical setup (the ODT and the three optical lattices) by 90°around the 𝑦 axis. The BEC would be cigar-shaped along the 𝑥 axis. We would not have laser hitting/heating the surface of the MCP, and we could get rid of this additional protective part. This would however be quite a colossal change in the optical setup, mostly consisting in a game of musical chairs:

▶ the pair creation lattice would be obtained with a pair of counter-propagating beams along the 𝑥 axis 1 1: the atomic pairs would be created along the 𝑥 axis.

;

▶ the Raman beams could keep their current location, but they should also be able to perform the Bragg pulses 2 2: as the Bragg diffraction should also kick the atoms along ⃗ 𝑒 𝑥 .

: an electrooptic modulator (EOM) shall be used to quickly change one of the beams from the 𝜎 -polarisation (for Raman pulses) to 𝜋 polarisation (for Bragg pulses) ; ▶ depending on the type of experiment we perform to generate atomic pairs 3 3: in a dynamical Casimir effect (DCE) experiment, the pairs are created on either sides of the BEC, close to it (no kick is needed) ; however the pairs generated by the dynamical instability of the lattice are created on the same side, and then the two Bragg deflections push the atoms of 2 × 3 cm on the MCP level which is out of the 4 cm radius of the plate: we would need to compensate it with an opposite Raman kick.

the atoms might get out of the MCP area: a Raman kick towards the centre of the plate could sometimes be needed and sometimes not. We should therefore find a way of having the possibility the mix two frequencies and polarisations (𝜋 and 𝜎 -) inside the same Raman beam ; we would have therefore have the possibility to choose whether we want to perform a Raman transfer with a kick along ⃗ 𝑒 𝑥 , or with zero momentum exchange ;

▶ we would need to change the current hODT beam's waist (from 135 µm down to a value close to 40 µm) making it the most confining axis, and install another beam, with ∼ 135 µm waist, along one of the 7°tilted vertical axis available (currently used for the pair creation lattice, cf. turquoise arrows in Figure 3.19): it would not touch the MCP 4 4: we could actually get it out of the chamber, which is much cleaner! , and would create a weak confinement along the 𝑥 axis ;

2 Problems and workarounds during my PhD 159

A new cooling laser 2.2.1 Why do it?

Since the early stages of the experiment, and until June 2021, the laser source used for the cooling system was a DFB diode 1 , amplified with a 1: Toptica -Eagle Yard © 1083 nm single frequency laser diode.

2 W Keopsys © Ytterbium doped fiber amplifier.

Even though it was possible to work with this type of laser source for quite a long time, it was however not an ideal solution. Indeed, the linewidth of the diode is 2 MHz 2 : since the natural linewidth of the 2: in fact, by studying the beat note frequency between two laser diodes, or between one laser diode and another narrowband fibered laser, we sometimes measured linewidth of the order of 1.7 MHz.

cooling transition is 1.6 MHz this is pretty bad, especially when we need to use light very close to resonance (as it was the case during the optical molasses or the Doppler cooling). Historically, the typical shot-to-shot fluctuation level of the number of atoms in the MOT was of the order of 30 %, and we roughly kept this level of fluctuation all along the cooling procedure. Gradually, since 2019, we also witnessed the apparition of drifts of the cloud's properties (especially the number of atoms). These drifts are added to the already existing fluctuations, and can involve different timescales (from minutes to hours or even a few days). An example of drift of the number of atoms in a Doppler cooled cloud is given in Figure 4.12. In particular, we noticed that the amplitude of this drift of the number of atoms over time can reach 100 % (the number of atoms drops down to zero).

The origin of these instabilities is probably multifactorial, and even if we investigated almost all the aspects of the apparatus for a long time (frequency servo loops, optomechanical components, strong currents electronic circuit, laser diode feedback...) we never found one single element that could explain their growth unequivocally 3 . However 3: that is why we decided to change globally what we estimated to be various weak points of our system, roughly at the same.

we are quite sure that the cooling laser diode was involved in these problems: in winter 2020, the experiment became extremely sensitive to any external mechanical stress. Touching the optical table or even speaking too loud could annihilate the MOT loading! This level of sensitivity could have been considered to be the signature of a laser feedback on the diode's cavity, but changing the diode and rearranging to the first optical elements did not solve the problem. We decided to install a new narrowband fibered laser source for the cooling. We ordered the same device (cf. Table 4.2) as the one used by our colleagues from the Helium lattice team (conducted by David Clément). It is a single DFB fiber laser, with passive vibration reduction. The output power is factory set to 33 mW and cannot be changed, we can monitor it with a dedicated low power output (returning 0.4 % of the effective power).

The new laser

The output power is remarkably stable: we measured it of the order of 0.01 %. After amplification (and after the optical isolator) power fluctuations are smaller than 1 % for the usable beam, and only generated by the laser amplifier.

The emission wavelength can be tuned with two independent features:

▶ thermal tuning: the laser's fiber is mounted under tension on a substrate that tightens or expands when the temperature changes. Due to the thermal contraction or dilation of the substrate, the laser's cavity length (and therefore the modes) also changes.

In addition, the temperature of the cavity itself has a thermooptic effect, modifying its refractive index. These two effects contribute to the dependence of the optical path length -and therefore the emission wavelength-with temperature ; ▶ fast wavelength modulation: the emission wavelength can also be modulated with a piezoelectric crystal acting on the cavity. We can control the wavelength over a range of 1 GHz, with a ±2.5 V tension, and a modulation bandwidth of 30 MHz 1 .

1: these characteristics correspond to the narrow frequency tuning, controlled with single-ended input signal. There is also a wide frequency range (10 GHz) and other voltage control modes, but they are not suitable/useful for our frequency locking servo loop. See documentation for more information.

We remade the frequency locking servo loop: it is a rather usual design (cf. ▶ a much more compact design, without external optical isolator (OI), as an OI is already included inside the laser box ; ▶ we have a strong separation between the frequency locking optical setup and the cooling optical setup, obtained with a fiber splitter 2 ;

2: before, the separation was made in free space inside the frequency locking setup.

▶ the small frequency modulation used for the lock-in amplification is performed with RF onto the AOM: it is not present in the optically-amplified beam used for the cooling. In the previous 

Figure 4.14:

Laser frequency locking: optical schematic. This is a standard setup using saturated absorption spectroscopy, with a helium discharge cell. Blue wires are fiber optics. We use a 1 × 2 fiber optic coupler (C) to split the output fiber of the NKT © laser source: 75 % of the power (≈ 27.3 mW) is used for the saturated absorption spectroscopy, and the remaining 25 % is amplified and used for the actual cooling. The waist of the beam out of the fiber collimator (Col) is ∼ 1.6 mm, we reduce it to 325 µm with a first telescope in order to match the usage recommendation of the AOM (the AOM is placed at the minimal waist position, 1 m away from the fiber collimator). The AOM is used in double-pass (70 % of double-pass efficiency): a 200 mm plano-convex lens is making the image of the waist (centred on the AOM) onto the retro-reflecting mirror (in a 1𝑓 -1𝑓 gaussian optics configuration). The AOM is fed with 110 MHz RF, and the laser is therefore locked 220 MHz away from the atomic resonance (red-detuned). The signal of the photodiode (PD) is treated with a lock-in amplifier, and then used in a servo loop that generates the feedback on the laser. A 5 dB optical density is used to reduce the intensity of the probing beam: its value has been chosen to optimise the relative amplitude of the saturated absorption peak. setup, the AOM was poorly resilient to RF frequency changes, and this modulation was performed onto the laser diode's current, and therefore affected the whole cooling procedure... We checked the spectral width of the emitted laser beam after frequency locking: we studied the beat note with the laser of the Helium lattice team with a spectrum analyser and found a value of a few tens of kilohertz, which is the expected order of magnitude.

Obtained effects

We did not observe a significant gain in terms of cooling performances with the new laser: the temperatures are roughly the same as before at each cooling stage, and we did not increase the number of atoms a lot. However, we obtained a huge gain of stability: mechanical sensitivity of the apparatus (acoustic noise, vibrations...) vanished, and we usually have less than 5 % of fluctuations of the number of atoms in the cMOT and Doppler clouds. Needless to say, we consider this change a victory.

Remark 4.4 (Average number of atoms) One could argue that -on average-the number of atoms in Figure 4.15 is also higher the in Figure 4.12, and it would be appealing to conclude that the new narrowband laser also leads to a gain in the mean number of atoms loaded in the cloud: this is erroneous.

It is delicate to compare these numbers between situations separated by several months or years 1 1: data in Figure 4.12 were taken on 17/12/2020, whereas data in Figure 4.15 were taken on 21/02/2022.

as we know it also depends on external factors that we do not always master: air conditioning temperature, watercooling temperature, plasma source temperature and pressure, etc. Secondly, many parameters of these "prototype" apparatus drift a bit with time, and we regularly have to adjust it: quality of the optical fibers' coupling, RF noise, strong current stability, etc. Finally, we know that the number of atoms is strongly related to the intensity of the helium plasma source. In particular the metallic needle (cf. Figure 3.18) ages through the years, and should be changed every two to five years, which has never been done in over a decade... However the gain of stability mentioned above is:

1. resilient over time ; 2. unprecedented in the history of the experiment ; 3. completely correlated in time to the change of the laser source ; we can therefore legitimately claim that it is induced by the new fibered DFB laser.

Instabilities of the magnetic trap

The magnetic trap is realised with two clusters of coils in a cloverleaf design (each cluster is symmetrically disposed on both side of the science chamber, along the 𝑥 axis: cf. Subsection 3.2.3). On 7 October 2020, due to a human mistake 1 , one of two quadrupole coils overheated (our 1: an experimentalist forgot to open one of the watercooling valve of the coils.

logging system suggests that the temperature of the cluster exceeded 100 °C). Since this episode, we observe positional instabilities of the cloud in the magnetic trap (cf. Figure 4.16). These are both shot-toshot instabilities (𝜎 𝑥 ∼ 300 µm, 𝜎 𝑦 ∼ 100 µm), and day-to-day drift of the mean value (same order of magnitude). In practice this is quite harmful as the position of the cloud is not well defined at the end of the evaporation in the MT 1 , which causes serious 1: it not stable shot-to-shot and day-today issues during the loading of the cloud in the ODT (the position of the ODT beams' waists obviously being fixed).
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In addition, it prevents us from performing direct measurements of the trapping frequencies in the MT. These measurements are sometimes required, because we know that for a given current, the bias field 𝐵 0 , and therefore the transverse trapping frequency, may shift a bit with time. Indeed, generally we do not see changes of the bias on the one day timescale, but sometimes (typically once in a few months) an unmastered event may shift it of a few hundreds of kilohertz. This is not particularly surprising as the bias is a small field (a few gauss) resulting from the annihilation of strong fields (several hundreds of gauss): it is extremely sensitive to the geometry of the coils (at the micrometer length scale), and the trapping frequency (scaling in 1 𝛣 0

) is also sensitive to the variations of the bias... Fortunately, the gradient 𝐵′ is resilient, meaning that the Λ constant in the relation Eq. (3.44) is also robust 2 . Therefore our knowledge of the transverse trapping frequency can rely on our measurements of the Λ constant Eq. (3.45).

We ordered to Oswald Elektromotoren © the fabrication of professional grade clusters of coils (received in September 2022). Contrary to the previous coils that were homemade (winded by hand), these coils will have precise sizing and tolerances (typically of the order of the tenth of millimeter). The electrical insulation should also be of better quality 3 .

3: in the current system, the coils are cast in epoxy, but in some places the layer of epoxy is quite thin, and we already had to reinforce the insulation with protective Kapton tape.

In addition to the fact that the current coils are getting old 4 , we know 4: we recently noticed that the cooling water flow inside the coils has been reduced by a factor of almost 2 since 2000 (probably due to limestone deposit).

-regarding the electrical resistance-that a loop in one of the cloverleafs is short-circuited: the changing of the magnetic trap will also correct the induced symmetry issue.

The blueprint of the Oswald's clusters of coils is given in the Appendix: see Figure D.2.

A next-gen sequencer and software control 2.4.1 GUS and the old hardware

Until the end of May 2021, the sequencer of the experiment was an old frame in which we had plugged various cards (TTL output, analog output, RF output...) that were made at the electronics workshop of the IOGS 1 . The system was software controlled by a heavy Matlab 1: by André Villing script. This piece of technology was set up roughly 20 years ago, and we had several problems with it:

▶ on the hardware side, the electronics engineer who had designed the sequencer's cards left the institute many years ago, and we did not have hardware maintenance anymore. In particular -due to aging-we often had output channels (or even sometimes a whole card) breaking down, without the possibility of repairing or replacing it. We were basically under the clock, waiting for the time where we would be running out of spare output channels and cards ;

▶ on the software side, the Matlab script 2 consisted in a heavy 2: that was named "gus" stacking of patches (getting bigger and bigger as the successive generations of PhD students joined and leaved the team). Even if we proceeded to a "trimming of the fat" back in 2020, the code was not perfectly stable, and very prone to bugs. When something went wrong during the experiments, it was also quite frustrating to always suspect the sequence code rather than some physical issue to explain it ;

▶ the last point that was not very satisfying was the very hacky way to control the two PSUs used for the MOT and the MT. Communication was established with an old-fashion GPIB bus. In order to keep the time synchronisation of the events occurring during an experimental cycle, the changing of output state of the PSUs had to be triggered by the sequencer: we used three TTL output channels (that could therefore encode 2 3 = 8 states), that were connected to a serial port of our experiment computer's motherboard 3 . The state of the serial port was then read every 3: serial port that was initially supposed to serve a completely different purpose... 50 ms by the Matlab's script, and an according GPIB signal was sent when a change of state was detected... With this solution, we were limited to 8 current configurations for the PSUs, and, during an experiment, changing from one configuration to another was done abruptly. The USB to GPIB (or LAN to GPIB) adapter was not very faithful as well, and regularly caused experiment to crash. Finally, we could not beat the 50 ms jitter on the time control of the PSUs, corresponding to the reading frequency of the serial port ;

We therefore took the decision to terminate the use of this dying setup, and install a brand new system, based on a recent factory-made sequencer, and a Pythonic Python framework to carry out the software interface. The new hardware is a flexible and modular Jäger ADwin © system, model ADwin-Pro II-light (7 slots frame). We can plug different types of input/output electronic cards in it, the first one being a CPU and LAN interface card: Pro-CPU-T12. This CPU is used to compile the sequences' script (containing all the events that occur during an experimental realisation), and sets the time resolution of the clock up to the nanosecond scale, which is much better than what we need (the shortest timescale we need to address being in the microsecond range).

ADwin sequencer and the QControl3 project

We must however notice that even if the hardware is able to work at the nanosecond timescale, we have a software issue (coming from Qcontrol3: our interfacing layer, see next paragraph) that causes a crash in the compilation of the sequences when we want to perform pulses shorter than 5 µs. This is an annoyance, and when this manuscript is being written this bug has not yet been fixed.

This sequencer is programmed with a dedicated native compiled language called ADbasic 1 (the language and the binary compiler share the who set it up now for his own strontium experiment at the IOGS, and is now a regular contributor and maintainer of the project.

It would be quite cumbersome to go deep into the details about the way QControl3 is coded ; I will restrict my explanations to its general structure, what problems it is meant to solve, how we implemented it in our experiment and finally give some pros and cons about it.

QControl3 structure

QControl3 has a server/client structure, that allows for the synchronisation of events carried out by the ADwin sequencer (TTL pulses, analog output ramps...) with operations realised by other devices (PSUs, RF synthesisers...). The synchronisation is managed at the software level by the "Timing system" (cf. Figure 4.18) that sets a namespace where all these events are declared, and keeps tracks of their trigging. Using external devices in sync with sequencer's channels events was a program. The core of the code is the "Timing System", that is mainly a server launched on the experiment's computer once and for all (linux based system). This server receives a queue of requests from "clients", that consist in sequence script files, and configuration files. With a bare installation of QControl3 the interaction between the client and the server is carried out by a command line interface (CLI), but we also added a simple graphical user interface (GUI) as a plugin, to have a rather user-friendly control over the various parameters. The Timing System is responsible for the synchronisation between the sequencer's part (in red: the Timing Controller Adwin and its various Timing Channels) and the software / external devices part (in blue: the Software Controller). It also writes the output files (HDF5...) at the end of the run. All these terms are just naming conventions chosen by the first developers of the QControl3 project.

real issue with our previous system.

In the experimental sequence's script (provided by the users) there is only one time variable 𝑡 involved. After compilation and execution of the sequence, depending on the device that we call upon, events are triggered with respect to a timing that is managed either by the computer's internal clock 1 ("sloppy timing") or the very precise ADwin's 1: e.g. the time at which an external device receives a set of SCPI instructions, or we request the execution of a side program... clock 2 ("strict timing" for all the events involving a card slotted in the 2: e.g. the time of trigging of an external device, the toggling of a sequencer's TTL signal, the voltage ramping of an analog output...

ADwin's sequencer).

Concerning data saving and logging, each experimental realisation returns an HDF5 archive file, containing the complete sequence scripts, all the parameters used during the run, and can also contain the "output" data of interest (PNG image coming from the fluorescence imaging, or MCP data): this big file therefore contains all the depth of an experimental realisation, from the users' request to raw data measurements.

In practice, even though the writing of this HDF5 file is a very good habit (regarding the reproducibility crisis in science), it is quite heavy and slow to manipulate (especially in our data analysis programs). To overcome this, we save the relevants parameters and the data separately, in appropriate lighter files, devised for a fast digital treatment 3 , in addi-3: json or toml for the experiment parameters (frequency/power of AOMs, laser pulses durations...), PNG for the images coming out of the InGaAs camera, and binary files (with 64 bits integers) for the MCP raw data and the reconstructed atoms files.

tion to the HDF5 archive.

The couple ADwin/QControl3 also provided an unexpected advantage: the reduction of duty cycle, by approximately 4 s! Indeed, in the previous system based on Matlab, the experimental scripts were executed without compiling, with the interpreted languages paradigm.

In particular the initialisation of each run, and the final resetting of the apparatus was time consuming, and caused a painful dead time between each experimental realisation. QControl3 proceeds differently: the "Timing System" sends a compiled version of the sequence to the ADwin sequencer (or "Timing Controller"), and compiles the next realisation while the current one is running. With this strategy, there is no dead time between the runs, and the duty cycle is strongly reduced (cf. Table 4.3). Finally, QControl3 was imagined to be object-oriented, which simplifies the readability of the sequences' script a lot. There is no longer any need to constantly have the "micro" control of the apparatus (at the single channel scale), because we can now define mixin and complex objects, that will implement useful methods to control it. For example, if we want to switch on a laser at a given time, and ramp its frequency with an AOM, instead of individually addressing all the sequencer channels involved in the state of this beam 1 , we can rather which is much easier to read and debug.

Pros and cons

The relative low visibility of QControl3 in the community of ultra-cold atoms experiments can be considered to be a disadvantage of this solution. Indeed it could have been possible to choose a more "mature" system on software level, with a larger community of users, such as the Cicero Word Generator [START_REF] Keshet | A distributed, graphical user interface based, computer control system for atomic physics experiments[END_REF] developed at [START_REF] Keshet | A distributed, graphical user interface based, computer control system for atomic physics experiments[END_REF]: [START_REF] Keshet | A distributed, graphical user interface based, computer control system for atomic physics experiments[END_REF], "A distributed, graphical user interface based, computer control system for atomic physics experiments"

the MIT, and based on National Instruments commercial hardware. This heavy community support of Cicero translates into an appreciable gain of time: we can expect the code to be essentially bug-free, and most of the hardware implementation is already done 3 . Apart from 3: i.e. drivers for electronic cards.

the fact that Cicero is widely known and has to be a reliable system, it is also a natively graphical user interface (GUI) program, making it fairly user-friendly. On the contrary, the workflow after the default installation of QControl3 is fully scripted.

However QControl3 offers a very easy way of accessing to a deep control of the hardware, and the sequence that we want to run. Python is currently the most popular programming language, it is well-established in academic teaching programs, and very fast to learn. QControl3 provides a clean and readable framework to quickly write sequences in a Python file. The drawback of fully GUI programs such as Cicero occurs when it is once needed to do something that is not covered by the GUI. In such a case, the only solution is to go back to the core source code of the software 1 , which in the case of Cicero turns out to be written 1: which is generally not much known by regular users.

in C# 2 ... I would therefore claim that QControl3 is probably more 2: which is a complex compiled programming language, derived from the C ++ .

versatile. We also integrated a GUI module to our implementation of QControl3.

With only a few days of learning, Python scripts allow for an almost complete control on the way data are generated and saved. We have integrated to our framework a live data analysis program, also written in Python, that can manage both 3D MCP data, and 2D imaging data. We shall briefly describe this new interface in the next subsection. who started the project before he left the team. The motivation for the development and maintenance of this new software was twofold:

A word about HAL

1. we first meant to modernise and unify the previous Matlab based GUI programs. Before HAL, MCP data, and imaging data were treated in separate softwares, with an important amount of old "legacy" code that was difficult to maintain 4 . Without 4: actually, most of the code of these programs was inherited from even older programs developed by the successive generation of PhD students of the team.

going too deep into the details, in the case of MCP data the workflow was particularly bad, as it required the use of a chain of interdependent softwares, ultimately relying on gus (the previous sequencer interface)... It was no longer reasonable to continue living with this ;

2. we also wanted to develop a modulable software, that could be reused (and co-maintained) by other teams of our group, and (why not?) other groups.

As of today, HAL is perfectly functional 5 5: actually some figures of this manuscript, exposing visualisations of experimental data were generated thanks to a data exportation module of HAL.

, although (in my opinion at least) not mature and complete enough to start promoting it out of our group. As one of the current main developers, I contributed to many aspects of this project 6 6: to cite a few: the data and metadata loading modules (in particular for the MCP), enhancements of the visualisations, fitting and interpolation modules (in particular in 2D), several scripts and libraries for data analysis (e.g. the momenta correlation of atoms extracted from MCP data) etc. In the centre we have a display panel where the main visualisation of data is placed (here it is the fluorescence imaging of a cloud in the MT, but it could also be an image similar to Figure 4.11 for MCP data). On the left, we find a customisable data explorer and selector, and a quick fit panel. The panels is dedicated to metadata, with a selector of sources, and the text printing of selected files' metadata. At the bottom we have quick access to common plotting methods. The custom analysis scripts (generally more complex) can be accessed via a dedicated menu placed at the top of the window. currently do, coarsely how it is build and thought, and finally how I would like it to evolve in a near future.

. I will quickly explain what HAL can

HAL is able to load and process different raw data types -in our case PNG files (coming out of the fluorescence imaging), and custom binary files (containing raw MCP) data-but also different metadata types. Metadata refer to anything giving information about rawdata:

▶ file timestamp, file size, file path... ; ▶ sequence parameters ; ▶ fit results ; ▶ external data (e.g. room temperature at the time of the run) ▶ etc. HAL's interface then offers simple plotting and fitting routines: it basically allows us to visualise data as functions of metadata (e.g. how the number of atoms in the cloud evolves when we change an experimental parameter), or data as functions of other data (i.e. correlations). HAL's power lies in its modular architecture. Indeed, in order to load data and/or metadata, HAL makes use of "user-modules" 1 that are 1: that are placed in a configuration folder in user's home directory. in charge of explaining to HAL how a given file is formatted/serialised. Data and metadata are then loaded in a universal manner, and can be processed with any other data or metadata. The particular data class of 2D pictures is for the most part already implemented in the core code of HAL (since it is by far the most common data file type used in experiments) 2 .

2: the corresponding loading module incorporates basic default parameters, and can be easily extended (thanks to Python class inheritance) to include additional custom features: e.g. pixel size, magnification factor etc.

In addition to the user-modules, HAL loads "user-scripts" at startup, which are also custom extensions that a research team can quickly incorporate to HAL's GUI to perform specific treatments onto the data. For example, visualisations of the momenta correlations between atoms that I will show in Chapter 5 are generated with custom user-scripts that I wrote for the team. HAL core code is maintained in a git repository Git-Alt that is currently hosted on A. Dareau's Github © Github page: https://github.com/ adareau/HAL. Members of other teams of our group would like to integrate HAL to their workflow. After discussions, the next major features that we would like to implement are:

▶ the caching of loaded data for better performances ; ▶ an asynchronous and multiprocessing behaviour of the software (meaning that the whole software is not frozen when we ask it to run a long task) ;

The 

Introduction

Atomic pair production exhibiting quantum correlations is a research thematic that has been actively explored in the last fifteen years, and is at the very core of our experiment. In this topic, one may be interested in the correlations considered with respect to internal degrees of freedom, which can be achieved through a wide variety of ways, including spin-squeezing [START_REF] Lücke | Detecting Multiparticle Entanglement of Dicke States[END_REF] ... All these works have revealed strong quantum properties of the prepared states. The other approach -which is the one considered by our team-consists in focusing on external (or mechanical) degrees of freedom, such as momentum. Different generation protocols have also been explored, like the pair-wise dissociation of molecules [START_REF] Greiner | Probing Pair-Correlated Fermionic Atoms through Correlations in Atom Shot Noise[END_REF] , the parametric excitation of a BEC [START_REF] Jaskula | Acoustic Analog to the Dynamical Casimir Effect in a Bose-Einstein Condensate[END_REF][START_REF] Clark | Collective Emission of Matter-Wave Jets from Driven Bose-Einstein Condensates[END_REF] (which is currently still under study in our team), collisional deexcitation [START_REF] Bücker | Twin-Atom Beams[END_REF][START_REF] Borselli | Two-Particle Interference with Double Twin-Atom Beams[END_REF] Actually, some techniques developed since the 1980's in quantum optics (in particular the spontaneous parametric down-conversion (SPDC) [START_REF] Ghosh | Observation of Nonclassical Effects in the Interference of Two Photons[END_REF][START_REF] Bahaa | Duality between Partial Coherence and Partial Entanglement[END_REF] and the four-wave mixing (FWM) [START_REF] Sharping | Four-Wave Mixing in Microstructure Fiber[END_REF][START_REF] Wang | Generation of Correlated Photons via Four-Wave Mixing in Optical Fibres[END_REF][START_REF] Takesue | Generation of Polarization-Entangled Photon Pairs and Violation of Bell's Inequality Using Spontaneous Four-Wave Mixing in a Fiber Loop[END_REF]) may serve as an inspiring guideline to reproduce this type of nonclassical sources in the realm of ultra-cold atoms. In 2005, the theoretical contribution of Mølmer et al. [START_REF] Hilligsøe | Phase-Matched Four Wave Mixing and Quantum Beam Splitting of Matter Waves in a Periodic Potential[END_REF] , and since 2012 our team also implemented it [START_REF] Bonneau | Tunable Source of Correlated Atom Beams[END_REF] [7]: [START_REF] Bonneau | Tunable Source of Correlated Atom Beams[END_REF], "Tunable Source of Correlated Atom Beams" . This technique offers a better flexibility and control over the generated pairs than the one based on the collisions between BECs. This aspect of our experiment as been studied in depth, and is well documented in the thesis manuscripts of my predecessors. In particular, the interested reader can find a depiction of the FWM process in the BEC in Marie Bonneau's thesis [START_REF] Bonneau | Mélange à quatre ondes atomique dans un réseau optique[END_REF], simulations in Josselin Ruaudel's thesis [START_REF] Ruaudel | Création et caractérisation d'une source ajustable de paires d'atomes corrélés[END_REF], and a perturbative study in Pierre Dussarrat's thesis [START_REF] Dussarrat | Expériences d'Optique Atomique Quantique, Interféromètres à 2 et 4 modes[END_REF]. We will only give in this manuscript some general reminders about the theoretical that we usually use to describe our source.

After roughly 5 years of inactivity, and thanks to the recent upgrades that we described in the previous chapter, our source is finally able to produce atomic pairs again. In the second part of this chapter, we will present the most recent experimental results that we obtained in the last few months.

1 Source of momenta-correlated atoms 1751 Source of momenta-correlated atoms 1.1 Generalities

Parametric down conversion

Nowadays, SPDC is one of the most common techniques used in quantum optics to generate highly correlated pairs of photons [START_REF] Mandel | Optical Coherence and Quantum Optics[END_REF], [START_REF] Mandel | Optical Coherence and Quantum Optics[END_REF]: [START_REF] Mandel | Optical Coherence and Quantum Optics[END_REF], Optical Coherence and Quantum Optics it has proven to be able to generate highly quantum correlation [START_REF] Walborn | Spatial Correlations in Parametric Down-Conversion[END_REF] [168]: [START_REF] Walborn | Spatial Correlations in Parametric Down-Conversion[END_REF], "Spatial Correlations in Parametric Down-Conversion" and the hamiltonian describing the process -in the classical and nondepleted 1 pump approximation-is well-known, and studied since the 1: the non-depleted approximation is valid as SPDC is generally an inefficient process. For the matter, this poor brightness is its weakest point for modern applications to quantum technologies. 1960's [START_REF] Louisell | Quantum Fluctuations and Noise in Parametric Processes. I[END_REF]: 

𝑁 𝑝 â † 𝑠 â † 𝑖 + â 𝑠 â 𝑖 (5.1) 
Where κ

(𝑠,𝑖) 𝑝 is a function characterising the efficiency of conversion, 𝑁 𝑝 is the average number of particles of the pump in the mode 𝑝, and â 𝑠 / â 𝑖 are the annihilation operators of the correlated particles, canonically named signal and idler.

Naturally, the SPDC is maximally efficient when energy and momentum (or wave vector) are conserved, which (with obvious notations) reads:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝐸 𝑝 = 𝐸 𝑠 + 𝐸 𝑖 𝐤 𝑝 = 𝐤 𝑠 + 𝐤 𝑖 (5.2a) 
(5.2b)

These relations are usually called phase-matching condition.

However, SPDC is a second-order nonlinear process (involving the second-order susceptibility 𝜒 (2) of a nonlinear medium). In second quantisation, it corresponds to a "one in, two out" situation, where a single photon from the pump may give birth to two correlated photons: this is clearly not something that can be considered in a monoatomic gas (but it is possible with molecules [START_REF] Greiner | Probing Pair-Correlated Fermionic Atoms through Correlations in Atom Shot Noise[END_REF]). We unfortunately can not [START_REF] Greiner | Probing Pair-Correlated Fermionic Atoms through Correlations in Atom Shot Noise[END_REF] get helium atoms to come out of nowhere for free...

We have to look for the next order nonlinear effect to find a situation where the total number of particles is conserved.

Four-wave mixing

While it less common in quantum optics, the FWM involves the third order susceptibility 𝜒 (3) of a nonlinear medium. It can be interpreted with a "two in, two out" picture, where two particles in different modes interact and generate two particles in the correlated modes signal and idler. Since the number of particles is conserved it may have a non-zero effect in a monoatomic gas.

Assuming again that the pumps are classical and not depleted, it is easy to check that the FWM leads to the same type of quadratic hamiltonian as for SPDC [START_REF] Gerry | Introductory Quantum Optics[END_REF][START_REF] Ruaudel | Création et caractérisation d'une source ajustable de paires d'atomes corrélés[END_REF][START_REF] Mandel | Optical Coherence and Quantum Optics[END_REF]]:

[52]: 

𝑁 𝑝 1 𝑁 𝑝 2 â † 𝑠 â † 𝑖 + â 𝑠 â 𝑖 (5.
3)

The conservation of energy and momentum now involves four particles:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝐸 𝑝 1 + 𝐸 𝑝 2 = 𝐸 𝑠 + 𝐸 𝑖 𝐤 𝑝 1 + 𝐤 𝑝 2 = 𝐤 𝑠 + 𝐤 𝑖 (5.4a) 
(5.4b)

Extension to the atomic case

These conversion processes require the intervention of a non-linear medium, which is naturally provided in a BEC thanks to the interatomic interactions. That being said, a simple and natural approach to turn on the generation of correlated atomic pairs consists in colliding two BECs: a lot of collisions take place and the mechanism of FWM is strongly activated. This technique has been pioneered at the NIST, in the team of William D. Phillips [START_REF] Deng | Four-Wave Mixing with Matter Waves[END_REF] [170]: [START_REF] Deng | Four-Wave Mixing with Matter Waves[END_REF], "Four-Wave Mixing with Matter Waves" and then improved in the team of Wolfgang Ketterle [START_REF] Vogels | Generation of Macroscopic Pair-Correlated Atomic Beams by Four-Wave Mixing in Bose-Einstein Condensates[END_REF][START_REF] Vogels | Coherent Collisions between Bose-Einstein Condensates[END_REF] . It was also used in our team between 2006 and 2012 [START_REF] Perrin | Observation of Atom Pairs in Spontaneous Four-Wave Mixing of Two Colliding Bose-Einstein Condensates[END_REF]: in particular, the observation of a Cauchy-Schwarz inequality violation, and sub-shot-noise statistics [START_REF] Kheruntsyan | Violation of the Cauchy-Schwarz Inequality with Matter Waves[END_REF] was achieved [START_REF] Kheruntsyan | Violation of the Cauchy-Schwarz Inequality with Matter Waves[END_REF]: Kheruntsyan et al. (2012), "Violation of the Cauchy-Schwarz Inequality with Matter Waves" with this technique. The main problem with this method is its lack of control. Momentum conservation imposes that the scattered atoms are on a sphere 1 (in the momentum space), the remaining condensates 1: in the reference frame of the collision, the sphere is centred on zero, and the BECs momenta give its radius. after collision, pancake-shaped after expansion, lying on the edge of the sphere. This source of correlated pairs with opposite momenta is not very convenient for performing atom interferometry with Bragg diffraction.
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Since 2012, our team took better control of the phase-matching of the pair creation process condition by adding an optical lattice [START_REF] Bonneau | Tunable Source of Correlated Atom Beams[END_REF], [START_REF] Bonneau | Tunable Source of Correlated Atom Beams[END_REF]: [START_REF] Bonneau | Tunable Source of Correlated Atom Beams[END_REF], "Tunable Source of Correlated Atom Beams" following Mølmer et al.'s proposal [START_REF] Hilligsøe | Phase-Matched Four Wave Mixing and Quantum Beam Splitting of Matter Waves in a Periodic Potential[END_REF]. The strength of this solution [START_REF] Hilligsøe | Phase-Matched Four Wave Mixing and Quantum Beam Splitting of Matter Waves in a Periodic Potential[END_REF]: Hilligsøe et al. (2005), "Phase-Matched Four Wave Mixing and Quantum Beam Splitting of Matter Waves in a Periodic Potential" lies in its versatility: the control on the phase and amplitude of the lattice is transposed into the control over the dispersion relation to which the atoms are subjected, and -ultimately-over the two main parameters of interest for such a source: the emission momenta and the average number of particles per correlated mode [START_REF] Perrier | Thermal Counting Statistics in an Atomic Two-Mode Squeezed Vacuum State[END_REF]. Even if the [START_REF] Perrier | Thermal Counting Statistics in an Atomic Two-Mode Squeezed Vacuum State[END_REF]: [START_REF] Perrier | Thermal Counting Statistics in an Atomic Two-Mode Squeezed Vacuum State[END_REF], "Thermal Counting Statistics in an Atomic Two-Mode Squeezed Vacuum State" source remains multimode, the pairs are no longer scattered on a whole sphere, but rather inside a cone of vertical principal axis: this is more convenient for the realisation of Mach-Zehnder like interferometers with Bragg diffraction.

A bit of formalism 1.2.1 Four-wave mixing in a BEC

In the Heisenberg picture, the field operator Ψ describing the BEC satisfies the evolution equation:

𝑖 ̵ ℎ 𝜕 𝑡 Ψ(𝐫, 𝑡) = [ Ψ(𝐫, 𝑡), Ĥ]
(5.5)

Ĥ being the hamiltonian containing the relevant physics, in particular the interatomic forces.

A rather simple depiction of Ĥ is obtained with the dilute gas hypothesis 1 at temperature close to zero [START_REF] Petrovič | Bose-Einstein Condensation and Superfluidity[END_REF]. It allows to replace the mi-1: meaning

𝑛 𝑟 3 0 ≪ 1 (5.6)
with 𝑛 being the cloud's density and 𝑟 0 the range of the interatomic force. The hamiltonian Ĥ then reads:

Ĥ = d 3 𝐫 Ψ † - ̵ ℎ 2 2𝑚 Δ + 𝑉(𝐫, 𝑡) + 𝑔 2 Ψ † Ψ Ψ (5.7)
𝑉 corresponding to an external potential (typically the trap used in experiments) and 𝑔 the coupling constant, which fulfills:

𝑔 = 4𝜋 ̵ ℎ 2 𝑎 𝑚 (5.8)
Now we can a priori force the apparition of the FWM terms by decomposing the field operator over the four modes that it involves, written with the appropriate annihilation operators:

Ψ(𝐫, 𝑡) = Φ 𝑝 1 (𝐫, 𝑡) â 𝑝 1 + Φ 𝑝 2 (𝐫, 𝑡) â 𝑝 2 pump modes + Φ 𝑠 (𝐫, 𝑡) â 𝑠 + Φ 𝑖 (𝐫, 𝑡) â 𝑖 scattered modes
(5.9)

Actually, in our case the depletion induced by the FWM is very small when compared with the number of atoms in the gas, and the dynamics of the wave function above is expected to be very slow compared to the typical duration of the pair creation process during our experiments 1 :

1: in fact, the evolution equation Eq. (5.5) leads to Ψ(𝐫, 𝑡) ∝ 𝑒 -𝑖 ̵ ℎ (𝛦 𝑠 +𝛦 𝑖 -𝛦 𝑝 1 -𝛦 𝑝 2 )𝑡 , where 𝛦 𝑠 , 𝛦 𝑖 , 𝛦 𝑝 1 , 𝛦 𝑝 2 are the energies associated to each mode, and the FWM is effective only when the energy is conserved. On the timescale of the pair creation process (∼ 400 µs) this phase term does not have the time to evolve.

we can drop time dependence in Eq. (5.9). In addition, by considering the low temperature limit, the BEC reduces to the zero-momentum mode contribution: both atoms of the pump have zero momentum, and the decomposition (5.9) may be restricted to three terms only 2 : 2: in nonlinear optics, this situation with a single pump mode is sometimes called partially degenerated four-wave mixing. (5.10) the facts that there are exactly four field operators in the interaction term of the hamiltonian (5.7) guarantees that four-wave mixing is the only nonlinear conversion process that may appear. The injection of (5.10) inside the interaction part 𝑔 2 ∫ d 3 𝐫 Ψ † Ψ † Ψ Ψ of (5.7) generates many terms among which only two kinds fulfill the momentum conservation (and therefore significantly contribute to the dynamics of the system):

Ψ(𝐫) = Φ 0 (𝐫) â0 BEC (pump) + Φ 𝑠 (𝐫) â 𝑠 + Φ 𝑖 (𝐫) â 𝑖 scattered modes
1. mean-field interaction terms:

Ĥ 𝛭𝐹 = 2𝑔 ∑ 𝑖≠𝑗 𝑖,𝑗∈{0,𝑠,𝑖} d 3 𝐫 Φ 𝑖 (𝐫) 2 â † 𝑖 â 𝑖 Φ 𝑗 (𝐫) 2 â † 𝑗 â 𝑗 + 𝑔 2 ∑ 𝑖∈{0,𝑠,𝑖} d 3 𝐫 Ψ 𝑖 (𝐫) 4 â † 𝑖 â † 𝑖 â 𝑖 â 𝑖 (5.11)
2. two four-wave mixing terms: 

Ĥ 𝐹𝑊𝛭 = 𝑔 d 3 𝐫 Φ 2 0 (𝐫)Φ * 𝑠 (𝐫)Φ * 𝑖 (𝐫) â † 𝑠 â † 𝑖 â0 â0 + h.c. ( 5 
𝐼 𝑠,𝑖 is an overlap integral term, with the dimension of a density, that is obviously dependent on the spatial shape of the wave functions Φ. This integral term corresponds to momentum conservation.

Phase-matching condition in a periodic potential

If we neglect the mean-field interaction energy for a moment, and rewrite Eq. (5.4a) only with the kinetic energy contribution of the modes,

̵ ℎ 2 𝑘 2 𝑝 1 2𝑚 + ̵ ℎ 2 𝑘 2 𝑝 2 2𝑚 = ̵ ℎ 2 𝑘 2 𝑠 2𝑚 + ̵ ℎ 2 𝑘 2 𝑖 2𝑚 (5.16) 
with a single BEC, both atoms of the pump are in the same mode 𝑘 0 , giving

̵ ℎ 2 𝑘 2 0 𝑚 = ̵ ℎ 2 𝑘 2 𝑠 2𝑚 + ̵ ℎ 2 𝑘 2 𝑖

2𝑚

(5.17) it is not difficult to see that, in free space, without additional external potential, it is not possible to fulfill the phase-matching condition with partially degenerated four-wave mixing (i.e. when the two pump modes are equal). This is why the former generation of experiments carried out in our team required the collision between two BECs.

With a single condensate (𝑝 1 = 𝑝 2 ) the dispersion relation seen by the atoms must be modified, so that the phase-matching condition can be satisfied. It has been proven [START_REF] Hilligsøe | Phase-Matched Four Wave Mixing and Quantum Beam Splitting of Matter Waves in a Periodic Potential[END_REF] that it can be achieved with a periodic [START_REF] Hilligsøe | Phase-Matched Four Wave Mixing and Quantum Beam Splitting of Matter Waves in a Periodic Potential[END_REF] 2006.

Remark 5.1 (Band structure and quasi-momentum) With a spatially periodic potential, Bloch's theorem guarantees that there is a basis of wave functions, each being an energy eigenstate, that can be written:

Ψ(𝐫) = 𝑒 𝑖 𝐪⋅𝐫 ̵ ℎ 𝑢 𝐪 (𝐫) (5.18)
where 𝑢 has the same periodicity as the potential. Quasi-momentum 𝑞 (ℏ𝑘 𝑙𝑎𝑡 )

Energy 𝐸

(𝐸 𝑙𝑎𝑡 )
Then the resolution of the eigenvalues equation (the time-independent Schrödinger equation) gives the band structure of the atoms in the periodic potential (details of the calculations may be found in any solid state physics textbook, such as [START_REF] Kittel | Introduction to Solid State Physics[END_REF][START_REF] Ashcroft | Solid State Physics[END_REF] [174]: [START_REF] Kittel | Introduction to Solid State Physics[END_REF] ). We therefore find out that the dispersion relation is no longer quadratic (as in free space) but periodic, with a period 𝑘 𝑙𝑎𝑡 = 𝜋 𝑎 (𝑎 being the spatial period of the potential).

In our case the potential is periodic along the vertical direction, which is also the elongated axis of the BEC, that is why we often restrict the problem to 1D physics:

Ψ(𝑧) = 𝑒 𝑖 𝑞 𝑧 𝑧 ̵ ℎ 𝑢 𝑞 𝑧 (𝑧) (5.19)
𝑞 𝑧 is very much alike a momentum, except that it is restricted to the first Brillouin zone 𝑞 𝑧 ∈ [-̵ ℎ𝑘 𝑙𝑎𝑡 , ̵ ℎ𝑘 𝑙𝑎𝑡 ] ; it is called quasi-momentum. For simplicity, we will drop the 𝑧 index in the following, and only denote 𝑞 the quasi-momentum along the vertical axis. In the pair creation lattice, without the interactions, Bloch's wave functions are the right modes to consider, and the phase-matching corresponds to the conservation of the quasi-momentum and energy, similar to Eq. (5.4). In practice due to the high density of the gas, the interactions are not negligible and modify the energy conservation equation. We model it with a mean-field term, that we add to the bare equation involving Bloch's wave function in the non-interacting problem:

2𝐸(𝑞 0 ) = 𝐸(𝑞 𝑠 ) + 𝐸(𝑞 𝑖 ) + 2𝑔 𝑛 0 2𝑞 0 = 𝑞 𝑠 + 𝑞 𝑖 mod(2 ̵ ℎ 𝑘 𝑙𝑎𝑡 ) (5.20a) 
(5.20b)
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where 2𝑔 𝑛 0 is the mean field interaction term (𝑛 0 is the peak density of the BEC). Solutions can be found thanks to periodicity (cf. Figure 5.1).

-1 0 1 q (hk lat ) Remark 5.2 (Critical BEC's quasi-momentum) With a periodic potential, it is the change in concavity in the modified dispersion relation (cf. Figure 5.1) that provides a solution to Eq. (5.20). However it does not mean that such a solution exists whatever the value of the quasi-momentum 𝑞 0 is. Without trying to prove a very general mathematical theorem with all its rigorous assumptions, we will just remember the following result, that is a key element for experiments:

a solution to the phasematching equations exists ⇔ the solution is unique

⇒ 𝑞 0 ≥ 𝑞 𝑐 (𝑉 0 ) > 0.5 ̵ ℎ𝑘 𝑙𝑎𝑡
where 𝑞 𝑐 is a critical value of the BEC's quasi-momentum, which depends on the lattice depth 𝑉 0 .

Dynamics, density and correlations

We will not give a detailed description of the dynamics of the pair creation in this manuscript. This work has already been done in the references [START_REF] Dussarrat | Expériences d'Optique Atomique Quantique, Interféromètres à 2 et 4 modes[END_REF][START_REF] Ruaudel | Création et caractérisation d'une source ajustable de paires d'atomes corrélés[END_REF]. We will just recall that the two-mode emission [START_REF] Dussarrat | Expériences d'Optique Atomique Quantique, Interféromètres à 2 et 4 modes[END_REF] with a FWM term in the hamiltonian (such as (5.14)) is well-known.

In particular, it is not difficult to check (using the Heisenberg picture) that the creation operators associated to the pairs have the form:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ â 𝑠 (𝑡) = â 𝑠 (0) cosh( κ 𝑡) -𝑖𝑒 𝑖𝜑 κ â † 𝑖 (0) sinh( κ 𝑡) â 𝑖 (𝑡) = â 𝑖 (0) cosh( κ 𝑡) -𝑖𝑒 𝑖𝜑 κ â † 𝑠 (0) sinh( κ 𝑡) (5.21a) (5.21b)
where κ = κ 𝑒 𝑖𝜑 κ is defined in Eq. (5.15).

It is then possible to calculate expectation values and second-order correlation functions for the modes 𝑠 and 𝑖, after the application of the pair creation lattice for a duration 𝑇:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑁 𝑠 𝑖 (𝑇) = 𝑁 𝑠 𝑖 (𝑇) = ⟨ â † 𝑠 𝑖 â 𝑠 𝑖 ⟩ = sinh 2 (κ 𝑇) ≜ 𝜈 𝑔 (2) 𝑙𝑜𝑐 (𝑇) = ⟨ â † 𝑠 𝑖 â † 𝑠 𝑖 â 𝑠 𝑖 â 𝑠 𝑖 ⟩ 𝑁 2 𝑠 𝑖 (𝑇) = 2 𝑔 (2) 𝑐𝑟𝑜𝑠𝑠𝑒𝑑 (𝑇) = ⟨ â † 𝑠 â † 𝑖 â 𝑠 â 𝑖 ⟩ 𝑁 𝑠 (𝑇)𝑁 𝑖 (𝑇) = 2 + 1 𝜈 (5.22a) (5.22b) (5.22c)
where the notation 𝑠 𝑖 means that the quantity is the same whatever the mode we consider (actually this model is completely symmetric between the two modes).

𝑔 𝑙𝑜𝑐 is the normalised local second-order correlation function for each mode, which is equal to 2 due to bosonic bunching. 𝑔

𝑐𝑟𝑜𝑠𝑠𝑒𝑑 is the normalised crossed second-order correlation function between the two modes, that we usually want to be as large as possible to witness quantum effects.

It is even possible to solve the Schrödinger equation (in the Schrödinger picture) to extract the form of the quantum state generated by the amplification process:

𝜓(𝑇)⟩ = 1 cosh( κ 𝑇) ∞ ∑ 𝑛=0 𝑒 𝑖𝑛𝜑 κ tanh 𝑛 ( κ 𝑇) 𝑛, 𝑛⟩ 𝑠,𝑖 (5.23) 
which is exactly the TMS that has been discussed in Subsection 2.2.4 of Chapter 1.

The results above are obtained by considering that the conservation of quasi-momentum and energy are strict, which leads to a simple two-mode emission. In fact, we empirically know that our source of pairs is multi-mode. This is not a big surprise since the duration of application of the lattice is short (less than a millisecond) which relaxes the energy conservation condition, and due to the trapping potential, the BEC has a finite size, which also relaxes the momentum conservation condition.

We do not have an exact analytical treatment of the multi-mode emission of source. Pierre Dussarat proposed in his PhD a 1D perturbative approach, assuming the gas to be homogeneous, and the pair creation lattice to be shallow: the general procedure is similar to the one used for the two-mode emission, but in order to find the expression of the annihilation operators (similarly as Eq. (5.21)) the coupling between where 𝑉 is the volume of the BEC and 𝐿 its length, and

Δ𝑞(𝑞, 𝑞′) = 2𝑞 0 -𝑞 -𝑞′ mod(2 ̵ ℎ 𝑘 𝑙𝑎𝑡 ) (5.25)
is the deviation from quasi-momentum conservation.

The pair creation rate is therefore also computable:

two modes κ = 𝑁𝑔 ̵ ℎ 𝐼 𝑠,𝑖 ⟶ multi-mode κ(𝑞, 𝑞′) = 𝑁𝑔 ̵ ℎ 𝐼(𝑞, 𝑞′) = 𝑔𝑛 0 ̵ ℎ sinc Δ𝑞(𝑞, 𝑞′) 𝐿 2 (5.26)
where 𝑛 0 is the atomic density of the gas.

This leads to an approximated expression of the number of particles 𝜈(𝑞) emitted in each mode, as a function of their quasi-momenta: is the deviation from energy conservation, and Δ𝑞 𝑚 = 2𝜋 𝐿 is the size of the modes (depending on the length 𝐿 of the BEC).

𝜈(𝑞) = d𝑞′ Δ𝑞 𝑚 κ(𝑞, 𝑞′) 2 𝜀 (𝑞, 𝑞′) 2 (5.
An example of such density distribution is given in Figure 5.4 (black line). The scaling 𝜈 ∝ 𝑇 2 is consistent with the simple two-mode emission model Eq. (5.22a), in the perturbative regime where κ𝑇 ≪ 1. 𝑛 0 is the peak atomic density of the BEC. Now, in the same way, this perturbative model allows for the evaluation of the second-order correlation function 1 between the modes 2 . One 1: a reminder about the correlation is given in Subsection 2.3 2: the perturbative model actually provides the dynamics of the creation/annihilation operators, and thus the correlation fonctions, as expressed as the expectation value of a product of these operators.

finds:

𝐺 (2) (𝑞 1 , 𝑞 2 ) = 𝜈(𝑞 1 ) ⋅ 𝜈(𝑞 2 ) + d𝑞 Δ𝑞 𝑚 κ * (𝑞 1 , 𝑞) κ(𝑞 2 , 𝑞) 𝜀 * (𝑞 1 , 𝑞) 𝜀(𝑞 2 , 𝑞) 2 + κ(𝑞 1 , 𝑞 2 ) 2 𝜀(𝑞 1 , 𝑞 2 ) 2 (5.30a) (5.30b) (5.30c)
where three different terms are present: (5.30a) is the uncorrelated background, (5.30b) is the local correlation term (similar to (5.22b)), and (5.30c) is the crossed correlations term (similar to (5.22c)).

Numerically, with parameters chosen to match our experimental regime, we can check that the correlation vanishes extremely fast when the quasimomentum is not conserved. We therefore simplify the model even further, by imposing the strict conservation of quasi-momentum 3 . The local and crossed -normalised-second-order correlation functions take the simple form 4 :

4: Eq. (5.31b) looks like Eq. (5.22c), but with 𝑔

(2) 𝑐𝑟𝑜𝑠𝑠𝑒𝑑 → 𝜈→∞ 1, instead of 2... This comes from the fact that it is a perturbative calculation, only valid in the limit

𝑔𝑛 0 ̵ ℎ 𝛵 ≪ 1, thus 1, 2 ≪ 1 𝜈 . ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑔 (2) 𝑙𝑜𝑐 (𝑞 1 , 𝑞 2 = 𝑞 1 + 𝛿𝑞) = 1 + sinc 2 𝛿𝑞 𝐿 2 𝑔 (2) 𝑐𝑟𝑜𝑠𝑠𝑒𝑑 (𝑞 1 , 𝑞 2 = 2𝑞 0 -𝑞 1 + 𝛿𝑞) = 1 + 1 𝜈(𝑞 1 ) sinc 2 𝛿𝑞 𝐿 2 
(5.31a)

(5.31b)

We will obviously never observe correlations that fit such sinc 2 profiles experimentally: many approximations have been made to obtain this analytical result, and we also have to keep in mind that this study is perturbative, and should be wrong when the average number of particles per mode becomes "large" 5 .

5: even if we do not precisely know where the perturbative approach collapses

The interesting point of this work is that it provides a consistent scaling between the width of the correlations (local and crossed) and the typical Δ𝑞 𝑚 size of the modes: both scale in 1 𝐿 , the inverse size of the condensate. The physical interpretation of this is satisfying: correlations are present if we overlap an atomic mode with itself, or with its 1 Source of momenta-correlated atoms 185 correlated partner. It also shows the experimental advantage we have by preparing elongated condensates: the number of correlated modes fitting in the emission envelope is larger, making the design of many particles interference experiments possible.

Three ideas are worth remembering:

1. the relaxed energy conservation relation sets the width of the envelope for the density of emitted pairs (cf. Figure 5.4). It is experimentally controlled by the duration of the pair emission process (cf. Eq. (5.27) and Eq. (5.28)) ; 2. the width of the modes is proportional to 1 𝐿 , which is also the typical size of the correlations between 𝑞 1 and 𝑞 2 ; 3. the conservation of quasi-momentum can be considered to be strict in very good approximation, which guarantees that the nonlocal correlation only occurs for pairs of modes ;

With all of this in mind, we can propose the following quantum state to describe what our source is emitting:

𝜓⟩ = ⨂ 𝑞 ∈ 𝑄 1 -𝛼 𝑞 2 ∞ ∑ 𝛮=0 𝛼 𝛮 𝑞 𝑁, 𝑁⟩ 𝑞,2𝑞 0 -𝑞 (5.32)
where 𝑄 is the set of modes of width Δ𝑞 𝑚 fitting in the envelope 𝑛(𝑞, 𝑇), and 𝛼 𝑞 is the two-mode squeezed state parameter, relatively to the couple of modes (𝑞, 2𝑞 0 -𝑞), which satisfies:

∞ ∑ 𝛮=0 𝑁 𝛼 𝛮 𝑞 2 = 𝜈(𝑞) (5.33)

Turning on and off the optical lattice

The pairs production is carried out by the collisions, and therefore requires high density to be efficient. That is why the pair creation lattice is applied while the ODT is still operating.

However, the pair creation lattice is not switched on and off abruptly.

We actually proceed to a linear ramping of the optical power, in approximately 𝑇 𝑟 ≈ 100 µs.

▶ the lattice is switched on adiabatically so that the BEC is loaded in the lowest energy band of the modified dispersion relation 1 1: thereafter the pairs are created in this lowest energy band.

(cf. Figure 5.1). The general case would require to take into account the complete band structure while describing the pair creation process, and has been explored experimentally in [START_REF] Hecker Denschlag | A Bose-Einstein Condensate in an Optical Lattice[END_REF]. The condition of adiabaticity can be written [START_REF] Messiah | Quantum Mechanics. Quantum Mechanics[END_REF] [177]: [START_REF] Messiah | Quantum Mechanics. Quantum Mechanics[END_REF], Quantum Mechanics

d𝑉 0 d𝑡 ≪ Δ𝐸(𝑞 0 ) 2 ̵ ℎ (5.34)
where 𝑉 0 is the amplitude of the periodic potential, and Δ𝐸(𝑞 0 ) is the energy difference between a Bloch state with quasi-momentum 𝑞 0 in the lowest energy band 𝐸 0 , and a Bloch state with quasimomentum 𝑞 0 in the first excited band 𝐸 1 (cf. Figure 5.2 and Figure 5.3). Indeed, the BEC must be loaded adiabatically in the lattice, with a relative quasi-momentum 𝑞 0 > 0.5 ̵ ℎ𝑘 𝑙𝑎𝑡 (cf. Remark 5.2). In practice, it means that there is no Bragg diffraction of the BEC by the lattice (see [START_REF] Lopes | An Atomic Hong-Ou-Mandel Experiment[END_REF] for more details), which is a [START_REF] Lopes | An Atomic Hong-Ou-Mandel Experiment[END_REF]: [START_REF] Lopes | An Atomic Hong-Ou-Mandel Experiment[END_REF], "An Atomic Hong-Ou-Mandel Experiment" criterion that can be checked experimentally. This condition is more complicated than it seems, because the band structure (and therefore Δ𝐸(𝑞)) depends on 𝑉 0 . In general, the required ramping time (𝑇 𝑟 ) of the lattice's potential increases with 𝑉 0 and 𝑞 0 (cf. Figure 5.2 and Figure 5.3: when 𝑞 0 increases, Δ𝐸 decreases and therefore 𝑇 𝑟 ∝ 1 Δ𝛦 increases). Some numerical simulations have been performed in reference [START_REF] Lopes | An Atomic Hong-Ou-Mandel Experiment[END_REF] with different parameters. We generally find that 𝑇 𝑟 ≫ [1 -10] µs but with a very deep lattice (𝑉 0 ⪆ 4 𝐸 𝑙𝑎𝑡 ) and with a BEC having a large quasi-momentum ( 𝑞 0 ≈ 0.9 ̵ ℎ𝑘 𝑙𝑎𝑡 ) we can find . It is indeed quite natural to think that in the limit of the very shallow periodic potential, the physics is almost the same as in free space, and the Bloch's states match the plane waves perfectly. We therefore also perform an adiabatic turning off of the pair creation lattice in order to map the Bloch's states of the generated pairs onto plane waves lying inside the first Brillouin zone.
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We will present in this section the latest experimental results that we have obtained. At the time this manuscript is being written, this work can still be considered to be a work in progress. Indeed, we succeeded in making our first atomic pairs on 30 March 2022, and we got a new apparatus break down approximately two months later: the ODT fibered laser died and we also faced electrical 1 and vacuum issues. We 1: one the two PSUs used for the MT stops randomly during the experiments, and the IGBT watercooling system began to malfunction.

still have to figure out the cause of the electrical problems, but we already have ordered and received a new IPG Photonics © laser that we should install soon.

The main goal (which has not achieved been yet) is to find two sets of parameters:

▶ a first one generating correlated pairs with a large average number of particles per mode (useful for 𝑛-particles HOM-like experiments) ; ▶ a second one with a very small number of particles per mode, that should be used to perform Bell inequalities violation experiments ;

When the apparatus issues forced the experiment to stop producing pairs (in May 2022) we were mostly exploring the first type of regime.

In the first sub-section we will describe our optical setup, and then we will give an example of analysis for a specific dataset. We cannot claim that this dataset is optimal, because we did not have time to properly test the effect of the different parameters. We can only say that we observed promising correlation with it.

Optical setup

As it has already been discussed, the periodic potential is realised with an optical lattice, resulting from the crossing of two laser beams. We use an ultra-stable Nd:YAG 1064 nm laser (Mephisto by Coherent © ).

It is very far (in blue) from the atomic transition (2 3 𝑆 1 → 2 3 𝑃 2 at 𝜆 𝑙𝑎𝑡 = 1083 nm), making the one-beam induced spontaneous emission negligible during our ≲ 1 ms long pulses (in reference [START_REF] Lopes | An Atomic Hong-Ou-Mandel Experiment[END_REF] a rate of 2 ⋅ 10 -5 ms -1 is calculated with our typical parameters).

The atoms feel a repulsive potential proportional to the optical inten- 

56 mm s -1 with ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑘 𝑙𝑎𝑡 ≜ 𝜋 𝑎 𝑙𝑎𝑡 𝑎 𝑙𝑎𝑡 = 𝜆 𝑙𝑎𝑡 2 sin(𝜃) 𝑣 𝑙𝑎𝑡 = ̵ ℎ𝑘 𝑙𝑎𝑡 𝑚 (5.36a) (5.36b) (5.36c)
𝑎 𝑙𝑎𝑡 being the lattice periodicity, and 𝛿𝜔 being the angular frequency difference between the two beams. It is often convenient to give the atoms' velocities/momenta in the lattice's units of velocity/momentum (respectively 𝑣 𝑙𝑎𝑡 and ̵ ℎ𝑘 𝑙𝑎𝑡 ).

If we then work in the lattice's frame of reference, the potential writes:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑉 𝑙𝑎𝑡 (𝑧) = 𝑉 0 sin 2 (𝑘 𝑙𝑎𝑡 𝑧) 𝑉 0 = ̵ ℎΓ 2 𝐼 0 2 𝐼 𝑠 Δ 𝑙𝑎𝑡 Δ 𝑙𝑎𝑡 = 2𝜋𝑐 1 𝜆 𝑙𝑎𝑡 - 1 𝜆 (5.37a) (5.37b) 
(5.37c) 𝐼 0 being the single gaussian beam peak intensity.

The intensities of the beams are controlled with the RF frequency of the two AOMs used to tune them. This RF power is modulated with Mini-Circuit © RF attenuators. However this control is not yet satisfying due to the nonlinear time response of the attenuators (which could be an issue for the adiabatic loading of the BEC in a very deep lattice). We should improve this part of the setup in the near future.

Generation of pairs 2.2.1 First characterisation of the pair creation's behaviour

When we performed our first pair generation experiments, we initially tried to maximise the pair density signal (for convenience). That is why we explored a regime where the average number of particles per mode is large. Since we had to stop the experiments at a time when we were still setting it up, we currently do not have many datasets with a reasonable number of experimental realisations (to perform statistical averaging). We give in Table 5.2 the reference and some information about the dataset that we will use in the following for the computation of second-order correlations. The fit returns a Rabi angular frequency Ω = 2𝜋 × 11.4 kHz. In order not to saturate the MCP, the experimental realisations are performed with slightly offdetuned Raman transfers, so that only a small fraction of the total number of atoms is detected.

As it has been discussed in the first section, the two important variable parameters characterising the pair creation regime are the BEC quasimomentum (controlled by the lattice's beams relative frequency), and the lattice depth (controlled by the beams power). Even though the lattice depth could be evaluated with Eq. (5.37b), it does not give a faithful value, because of our poor knowledge of the waists of the lattice's beams 1 . The safest way to evaluate the lattice's depth is to 1: their waists are large, and we do not have a convenient access to measure them. Additionally we found numerical discrepencies in the previous PhD manuscripts/lab notebooks concerning these waists.

perform Rabi oscillations of the BEC, using the lattice.

The idea (as always for Rabi oscillations) is to perform the coherent coupling between the state of zero-momentum in the trap ̵ ℎ𝑘 = 0⟩ and the state with a momentum resulting from the exchange of two photons with the lattice 2 ̵ ℎ𝑘 𝑙𝑎𝑡 ⟩. To this end, we just have to apply a lattice detuning corresponding to the kinetic energy of an atom in the 2 ̵ ℎ𝑘 𝑙𝑎𝑡 ⟩ state:

𝛿𝜔 = 2 ̵ ℎ𝑘 2 𝑙𝑎𝑡 𝑚 (5.38)
The Rabi oscillation can then be visualised by counting the number 𝑁 0 of atoms falling on the MCP inside a temporal box centred on a time corresponding to the zero-initial velocity (308 ms), and the number 𝑁 2 of atoms falling in a temporal box centred on a time corresponding to an initial vertical velocity (5.20), adjusted with the free parameter 𝑛 0 . We observed that the pair generation starts for 𝑞 0 > 𝑞 𝑐 ≈ 0.53 ⋅ ̵ ℎ𝑘 𝑙𝑎𝑡 > 0.5, which is expected (cf. Remark 5.2). We find a BEC's density 𝑛 0 ≈ 1.3(2) ⋅ 10 13 cm -3 . 0.5 0.6 0.7 0.8 0.9 1.0 q 0 (hk lat ) -1.0 -0.5 0.0 0.5 1.0 q s|i (hk lat )
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measurement is given in Figure 5.6.

Then the lattice's depth is simply given by (Ω being the Rabi angular frequency of the lattice):

𝑉 0 = 2 ̵ ℎΩ (5.39)
that we usually express in recoil energy units 𝐸 𝑟𝑒𝑐 (cf. Table 3.2).

The BEC's quasi-momentum in the lattice's frame of reference is even simpler to evaluate. It is the exact opposite of the running speed of the lattice in the laboratory reference frame, therefore:

𝑞 0 = 𝑚𝑣 0 = 𝑚 𝛿𝜔 2𝑘 𝑙𝑎𝑡 (5.40)
In order to test the behavior of the source, we measured the quasimomenta of the generated pairs, as a function of the BEC's quasimomentum, with a lattice's depth fixed to 𝑉 0 = 0.54 𝐸 𝑟𝑒𝑐 . This experiment actually consists in the verification of the phase-matching conditions Eq. (5.20), that can be solved numerically. This type of experiment has been conducted in our team back in 2013 [START_REF] Bonneau | Tunable Source of Correlated Atom Beams[END_REF], our recent estimation, this experiment is effectively a measure of the BEC's density in the optical trap. We found a value

𝑛 0 = 1.3(2) ⋅ 10 13 cm -3
which is the expected order of magnitude. However we do not have an alternative measurement method to compare this value yet. Indeed, as it has been discussed in Chapter 3 1 , the saturation of the MCP 1: last paragraph of Subsection 3.2.4 prevents us from performing a direct measurement, and fluorescence imaging cannot resolve the BECs obtained in the ODT (due to the small number of atoms). As I write this manuscript, we are testing an imaging technique based on the absorption of the photons by the cloud 2 . This technique is used by our colleagues in the Helium lattice 2: with the same camera as the one used for the fluence team, and provided them very good result to estimate the number of atoms in the BEC, and also calibrate the quantum efficiency of their MCP. However we only have preliminary data: a more complete depiction of this approach will probably be discussed in the manuscript of Charlie Leprince (currently PhD student on the experiment). these values are therefore expressed in atoms ( ̵ ℎ𝑘 𝑙𝑎𝑡 ) 2 . The coloured dashed lines mark out coarse domains used in Figure 5.10 to compute 1D histograms for both modes separately. We can clearly see a sharp cut in the (𝑞 𝑥 , 𝑞 𝑧 ) domain on the left graph (close to 𝑞 𝑥 = 0): this is due to the copper plate (cf. Chapter 4) that hides most of the MCP's area corresponding to 𝑞 𝑥 > 0. 
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Density of pairs

We can then visualise the density of atoms in the momentum space, restricted to the region where the pairs are emitted (Figure 5.8, Figure 5.9, Figure 5.10). Once we have estimated the size of the modes (by computing the local second-order correlations, cf. Subsection 2.3) we can check the multimode nature of the emission along the different axes, and also compute the average number of atoms per mode 𝜈.

Concerning the number of modes emitted, a simple way of proceeding consists in computing the number of modes fitting in the density envelope, by calculating the ratio

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑛 𝑚 ≜ 𝜎 𝑖 𝑑 𝜎 𝑖 𝑐 √ 2 𝑑 ≡ density 𝑐 ≡ correlations 𝑖 ∈ {𝑥, 𝑦, 𝑧} (5.41)
where 𝜎 𝑖 𝑑 is the RMS width of the 1D density along the 𝑞 𝑖 axis (cf. Figure 5.10) and 𝜎 𝑖 𝑐 is the RMS width of the second-order correlations along the same axis: it is a direct picture of the RMS width of the mode, up to a √ 2 factor coming out of the fact that the 𝑔 (2) function is essentially a product of densities, and not a density itself (cf. Figure 5 These numbers are slightly larger than the old estimations of the number of emitted modes performed in 2015 and 2017. In particular, in the transverse directions the emission is not perfectly monomode: we must therefore perform postselection in the transverse plane (to consider only a single transverse mode) before computing the correlations along the vertical direction.

Along the vertical axis, the emission is multimode, which is good to set up a multi-particles interferometer (such as the Rarity-Tapster interferometer [START_REF] Rarity | Experimental violation of Bell's inequality based on phase and momentum[END_REF]) to probe the entanglement between the modes (cf. Knowing the size of the modes, we can also compute the average number of particles per mode 𝜈. For the matter, we will distinguish the two regions of emissions 1 and 2 (respectively in red and orange in Figure 5.9 and Figure 5.10), and also denote 𝜈 𝑚 ≜ 𝜂𝜈, the measured number of particles per mode, that is dependent on the quantum efficiency 𝜂 of the detector. By computing the average number of atoms in boxes ▶ centred on the zones where the density is maximal (cf. Figure 5.9) ; ▶ with sizes given by 𝜎 𝑥,𝑦,𝑧 𝑐 √ 2, the estimated natural size of the modes 1 ; 1: the transverse sizes of the boxes are visible with the shaded area of Figure 5.10. The longitudinal size is too small to be visible on this figure .   we find:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝜈 𝑚,1 = 3.2 𝜈 𝑚,2 = 1.5 (5.42)
These values corresponds to the average number of particles per mode in the region where the atomic beams are the brightest. We can also do the same thing, changing the centre of the mode: the resulting graph is plotted in Figure 5.11.

There is a strong asymmetry between average populations of the two modes. However, one should notice that there is also a significant difference between the size of the boxes that were used to obtain the graph of the Figure 5.11. Indeed, as we will see in Subsection 2.3.3, the measurements of the local correlation lengths give slightly different values between the two atomic beams. But in practice, the measurements of these lengths are not extremely precise (with the data that we currently have), and anyway the natural modes are obviously not square shaped.

During an interferometry experiment, we will only need to select boxes that are slightly smaller than the natural modes 2 and having the same 2: in order not to wash away the correlations by mixing up uncorrelated modes in a same box.

size. We can therefore redo the same graph as in the Figure 5.11 but using this time boxes having the same volume and shape. The result is plotted in Figure 5.12. The values corresponding to the first atomic beam are strongly reduced, reducing a lot the asymmetry between the two beams. The maximum values are now hypotheses may be considered to explain this phenomenon:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝜈 𝑚,1 = 1.6 𝜈 𝑚,2 = 1.5 ( 
1. it is always the mode with the largest momentum which is the less populated. In the schematic Figure 5.1, it corresponds to the Bloch state with the highest energy (that is remapped inside the first Brillouin zone). Since its energy is larger, the probability for an atom in this Block state to tunnel in the upper band is also higher. If that happens, when the lattice is switched off, the atom is recast at a different momentum, and does not contribute to the density distribution that we measure.

2. the concavity of the dispersion relation also makes it possible for two atoms in the high energy Bloch state to realise a secondary collision and generate higher order pairs, which obviously depletes the population of this Bloch state. 5.11 but using the same boxes, whose size is given by: Δ𝑞 𝑥 0.14 Δ𝑞 𝑦 0.17 Δ𝑞 𝑧 0.011 However, we never proceeded to numerical simulation or experimental tests to check the plausibility of these hypotheses, for now they are just "food for thought".

Setting aside the question of the profile's asymmetry, in absolute terms, the values (5.43) are large as compared to those used during the last experiments conducted in the team [START_REF] Dussarrat | Two-Particle Four-Mode Interferometer for Atoms[END_REF][START_REF] Lopes | Atomic Hong-Ou-Mandel Experiment[END_REF], where 𝜈 was intentionally set to a value smaller than 1, such that the non-vacuum part of the emitted state could be approximated by a 1, 1⟩ state. The difference is approximately one order of magnitude. This regime with a "large" number of particles per mode is not very well known in our group, and has only been observed previously back in 2013 [START_REF] Bonneau | Tunable Source of Correlated Atom Beams[END_REF]. The study of the correlations of the source in this regime is a new investigation for us. With these measured values, and assuming that the MCP has a detectivity of 50 %, the actual number 𝜈 of particles per mode should be ranging between approximately 3 and 4, which is promising to perform HOM-like experiments with TMS states, that we have discussed in Chapter 1.

Probing the correlation

Let us now focus on the correlations that can be measured with the sample.

Short definition reminder

We first need to recall some definitions for the correlations functions. Definition 8 (second-order correlation function) n th -order correlation functions were introduced by Glauber in 1963 [START_REF] Glauber | The Quantum Theory of Optical Coherence[END_REF][START_REF] Glauber | Coherent and Incoherent States of the Radiation Field[END_REF] [69]: Glauber (1963), "The Quantum Theory of Optical Coherence" [START_REF] Glauber | Coherent and Incoherent States of the Radiation Field[END_REF]: Glauber (1963), "Coherent and Incoherent States of the Radiation Field" . The second-order correlation function -probing density (or intensity) correlations-is usually written:

𝐺 (2) (𝐪 𝟏 , 𝐪 ′ 𝟏 ; 𝐪 𝟐 , 𝐪 ′ 𝟐 ) = ⟨ â † 𝐪 𝟏 â † 𝐪 ′ 𝟏 â 𝐪 𝟐 â 𝐪 ′ 𝟐 ⟩ (5.44)
Where 𝐪 𝟏 , 𝐪 ′ 𝟏 , 𝐪 𝟐 , 𝐪 ′ 𝟐 are general parameters: in our case velocities, or momenta. This mathematical object is however not hermitian, and therefore not a physical observable. In experiments we usually restrict to the case where 𝐪 𝟏 = 𝐪 ′ 𝟏 and 𝐪 𝟐 = 𝐪 ′ 𝟐 , and write:

𝐺 (2) (𝐪 𝟏 ; 𝐪 𝟐 ) ≜ ⟨ â † 𝐪 𝟏 â † 𝐪 𝟏 â 𝐪 𝟐 â 𝐪 𝟐 ⟩ = ⟨∶ 𝑛 𝐪 𝟏 𝑛 𝐪 𝟐 ∶⟩ (5.45)
where 𝑛 𝐪 𝐢 is the density of particles in the mode 𝐪 𝐢 , and the columns indicate the normal ordering of the annihilation/creation operators. Given the commutation relations [ â 𝐪 𝐢 , â † 𝐪 𝐣 ], this quantity can be related to the number of particles collected with a detector.

In our case, we will see that the typical correlation length is not negligible compared to the size of the pair's density profile in the momentum space. This means that the "background" of the 𝐺 (2) correlations is also dependent on the momenta 𝐪 𝟏 , 𝐪 𝟐 . Thus we prefer to work with normalised second-order correlation functions: Definition 9 (Normalised second-order correlation function) We define the normalised second-order correlation function by:

𝑔 (2) (𝐪 𝟏 , 𝐪 𝟐 ) ≜ 𝐺 (2) (𝐪 𝟏 ; 𝐪 𝟐 ) ⟨ â † 𝐪 𝟏 â 𝐪 𝟏 ⟩ ⟨ â † 𝐪 𝟐 â 𝐪 𝟐 ⟩ = ⟨∶ 𝑛 𝐪 𝟏 𝑛 𝐪 𝟐 ∶⟩ ⟨𝑛 𝐪 𝟏 ⟩ ⟨𝑛 𝐪 𝟐 ⟩ (5.46)
That takes the value of 1 when the two modes are not correlated.

In this manuscript when we refer to second-order correlation function, we will always mean normalised second-order correlation function.

In the previous section, we already discussed the fact that we can observe two types of correlations with our source:

▶ local correlation: when a mode is correlated with itself. These are the correlations that are probed during an HBT-like experiment [START_REF] Schellekens | Hanbury Brown Twiss Effect for Ultracold Quantum Gases[END_REF][START_REF] Mølmer | Hanbury Brown and Twiss Correlations in Atoms Scattered from Colliding Condensates[END_REF], where the correlation length is directly related to the [START_REF] Schellekens | Hanbury Brown Twiss Effect for Ultracold Quantum Gases[END_REF] inverse size of the BEC 1 𝐿 . In our model, where our source produces a TMS state, each single mode taken alone should behave like a thermal state, and therefore thermal bosonic bunching: we expect the local correlations to reach the value 2! = 2 (cf. Eq. (5.31a) and [START_REF] Liu | N th -Order Coherence of Thermal Light[END_REF]). ▶ nonlocal (or crossed) correlation: when the two modes of a same pair are correlated. Eq. (5.31b) suggest that these correlations may be larger than 2, especially when the population is small.

Second-order correlations: 2D map

The first analysis that we perform is the calculation and plotting of the complete 𝑔 (2) (𝑞 1 , 𝑞 2 ), relative to the velocities along the vertical 1 . This 1: for the simplicity of the notations we will for now drop the 𝑧 index of the momenta, and write 𝑞 1 ≡ 𝑞 1 𝑧 and 𝑞 2 ≡ 𝑞 2 𝑧 map exhibits both local and nonlocal correlations: its visualisation is given in Figure 5.13.

The calculation of these correlations requires to set boxes (in the 3D momentum space) inside which we can count the number of atoms detected. The shape (and size) of these boxes play a crucial role: they have an averaging effect on the signal that we will quantify in a few paragraphs. For now, let us just remember that ideally we want boxes that are:

▶ narrow as compared to the modes' size, along the direction in which we want to probe the correlations. We indeed want to be sensitive to the width of the correlations which is actually given by the size of the mode ; ▶ roughly fitting the size of the modes' in the other two directions: so as to increase the signal to noise ratio (more atoms are detected), without reducing the amplitude of the signal too much because of the averaging effect of large boxes ;

For each experimental realisation, we compute the following quantities where 𝑁(𝑞) is the number of atoms counted in a box centred on 𝑞 𝑧 . We can then calculate the average and the standard deviation of those quantities (over the files of the dataset), and compute the average values of the second-order correlation functions:

𝑞 1 , 𝑞 2 ∈ [0.54, 1.45] ̵ ℎ𝑘 𝑙𝑎𝑡 ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝑁(𝑞 1 ) × 𝑁(𝑞 2 ) → 2D array 𝑁(𝑞 1 ) → 1D list
⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑔 (2) (𝑞 1 , 𝑞 2 ≠ 𝑞 1 ) = ⟨𝑁(𝑞 1 ) 𝑁(𝑞 2 )⟩ ⟨𝑁(𝑞 1 )⟩ ⟨𝑁(𝑞 2 )⟩ 𝑔 (2) 𝑙𝑜𝑐 (𝑞, 𝑞) = ⟨𝑁 2 (𝑞)⟩ -⟨𝑁(𝑞)⟩ ⟨𝑁(𝑞)⟩ 2 (5.47a) (5.47b)
as well as the corresponding standard deviations 1 .

1: with a usual quadratic propagation of the standard deviations of the different terms of the formula.

The extra-term -1 ⟨𝛮(𝑞)⟩ in the local correlation case comes from the normal ordering in the definition of the second-order correlation function (cf. Eq. (5.45)): the commutation relations [ â 𝑞 , â † 𝑞 ] = 𝟙 generates a shot noise term that must be subtracted. Figure 5.13 displays the average values of 𝑔 (2) , but we are also able to give an error bar on each pixel of the map. We tested many choices of parametrisation for the boxes (sizes and centres on the transverse plane), in order to reveal the correlations as clearly as possible. The dataset is not very big (802 files only) and the signal turns out to be very noisy when we try to use boxes that are "too small": there is a balance that needs to be found between the signal to noise ratio, and the amplitude/resolution of the signal.

We will discuss the matter of the size of the modes in the next paragraph, but we can already say that the map plotted in Figure 5.13 uses cylindrical boxes, with a diameter approximately fitting the measured transverse modes' size, and a height 2 times smaller than the longitudinal length of the modes, along the 𝑞 𝑧 direction. With this parametrisation, the statistics is good enough to see the local correlations (in the red and orange boxes), and also distinguish the crossed correlations (in the pink boxes).

1D analysis: correlation amplitude and modes' width

To extract "more quantitative" information, we plot 1D data: the aim is to find the amplitude of the correlation, and the width of the modes.

Local correlations Concerning local correlations, the procedure is the same for each axis 1 : we will detail it as an example for the 𝑞 𝑧 1: it just requires to adapt the shape of the boxes to keep a good resolution along the axis that we want to probe. direction.

Both atomic beams are treated separately: we keep the same colour code (red for the first region, and orange for the second one), adopted since the beginning of this section, in particular in Fig. 5.9, Fig. 5.10 and more importantly Fig. 5.13. The data are restricted to a domain where preliminary visualisations revealed that the correlations are significantly out of the noise: in our example, the orange and red squares in Figure 5. 13. We know that the local correlations are maximised (and a priori equal to 2) when 𝛿𝑞 = 𝑞 1 -𝑞 2 = 0: we therefore plot the data as a function of 𝛿𝑞, which means that the data are averaged "along the diagonal direction" 2 . 2: more formally the averaging is performed along lines of equation 𝑞 1 -𝑞 2 = 𝑘, where 𝑘 is a constant indexing the line.

The error bars on each pixel of Figure 5.13 are used to compute the error bars of the 1D plot.

Since more data are stacked in such a 1D projection, we can select smaller boxes, mitigating the averaging effect, and guaranteeing a sufficiently fine resolution to measure the correlation lengths 3 . These measurements are useful to evaluate the typical number of modes emitted, and the average number of atoms per mode, that we have already presented in Table 5.3 and Eq. (5.43) of the previous subsection.

The strength of the correlations can be evaluated with the amplitude parameter 𝐴 of the fits. However, depending on the shape of the modes, the gaussian function may not always be perfectly adapted to fit the data: in particular one would notice that along the 𝑞 𝑦 direction, the fit is always smaller than the data around 𝛿𝑞 𝑦 = 0, which is also the point where the correlations are the largest...

The fact that we do not always reach the value of 2 may be an averaging effect, coming out of the size of the integration box. Indeed, let us consider a gaussian shape for the density of pairs (centred on 𝐪 = 0 for simplicity): same thing without the red term (5.52) We finally perform a final averaging (to consider 1D data): 𝑔 (2) (Δ𝑚 𝑧 ) = ⟨𝑔 (2) (𝑚 𝑧 , 𝑚 𝑧 + Δ𝑚 𝑧 )⟩ 𝑚 𝑧 ∈ℤ (5.53) We can do this type of calculation for each axis. Knowing the box sizes Δ𝑞 𝑖 that we used, the measured correlation width 𝜎 𝑖 , and the width of the density of atoms, we can perform a numerical estimation of the "expected" amplitudes 𝐴 𝑗 𝑖 that we should measure with this model, and compare it to the ones that we indeed measured: the results are gathered in Table 5.4.

𝑛(𝐪) = 𝑛 0 𝑒 - ∑ 𝑖
Even if the matching is not perfect, the computed values are closer to the measured ones. An improvement of this treatment would consist in considering the raw experimental data for the density profile rather than a gaussian shape (resulting from its RMS size measurement).

This study, at least, confirms our belief that the rather small amplitude that we measured may come from the size of the correlations boxes that we had to use, and that with a larger dataset we could compute the correlations with smaller boxes, and find a higher signal.

Crossed correlations

We apply the same type of procedure to generate a 1D visualisation of the crossed correlations: experimental data are plotted in Figure 5.15. The correlations are computed in the pink rectangular subset of Figure 5.13 (which one of the two pink rectangles does not matter since due to symmetry they contain the same data). Regarding the data, there is no doubt that there is a nonlocal correlation. Its amplitude is however smaller than the local one. At first glance this is no good, because if we were dealing with a genuine TMS, we would expect to find the nonlocal correlation larger than the local ones (cf. Eq. (5.22c)).

However, we have already seen that the pair emission was operating in a regime where the average number of particles per mode 𝜈 is large (between 3 and 4). Therefore, the additional 1 𝜈 contribution to the correlation may be lost in the noise.

In addition to the fact that there is strong dependence of the amplitude of the crossed correlation with the shape, centres, and sizes of the boxes (which again could be improved with smaller boxes and better statistics), we could argue that even if the perturbative study (and previous experiments [START_REF] Perrier | Thermal Counting Statistics in an Atomic Two-Mode Squeezed Vacuum State[END_REF]) showed that it may be well described by a TMS, we [START_REF] Perrier | Thermal Counting Statistics in an Atomic Two-Mode Squeezed Vacuum State[END_REF] do not know if it is still the case when the number of particles per mode is large. It is actually quite natural to think that when the number of particles increases, it is more and more difficult to prepare an entangled state (such as the TMS), and the level of nonlocal correlations could decrease.

Nevertheless, if we compare these values to similar measurements performed in the past on the experiment and documented in the thesis manuscripts of R. Lopes [START_REF] Lopes | An Atomic Hong-Ou-Mandel Experiment[END_REF] and P. Dussarrat [START_REF] Dussarrat | Expériences d'Optique Atomique Quantique, Interféromètres à 2 et 4 modes[END_REF], they found crossed [START_REF] Lopes | An Atomic Hong-Ou-Mandel Experiment[END_REF]: [START_REF] Lopes | An Atomic Hong-Ou-Mandel Experiment[END_REF], "An Atomic Hong-Ou-Mandel Experiment" [START_REF] Dussarrat | Expériences d'Optique Atomique Quantique, Interféromètres à 2 et 4 modes[END_REF]: Dussarrat (2017), "Expériences d'Optique Atomique Quantique, Interféromètres à 2 et 4 modes" correlations with a peak amplitude of 1.2 to 1.3 1 , which is even smaller 1: with also larger correlation boxes in the case of the results presented by P. Dussarrat. than the correlations that we registered (1.4 ± 0.1).

It should also be noticed that the nonlocal correlation that we measured is larger than the local one: 𝜎 𝑐 ≈ 1.8 𝜎 𝑙𝑜𝑐𝑎𝑙 . This has a favourable effect for a potential Cauchy-Schwarz inequality violation. Indeed, even though a simple calculation shows that violating the Cauchy-Schwarz inequality implies that the local correlation is smaller than the nonlocal one, it is possible to consider another version of the inequality taking into account the "volume" of the correlations (i.e. the width of above graphs) [START_REF] Kheruntsyan | Violation of the Cauchy-Schwarz Inequality with Matter Waves[END_REF]. We have not yet completed this study with our recent [START_REF] Kheruntsyan | Violation of the Cauchy-Schwarz Inequality with Matter Waves[END_REF]: Kheruntsyan et al. (2012), "Violation of the Cauchy-Schwarz Inequality with Matter Waves" data.

Emission statistics

We can finally study the statistics of the number of atoms collected in boxes, who should be slightly smaller than the natural modes. This is a similar study as the one published in [START_REF] Perrier | Thermal Counting Statistics in an Atomic Two-Mode Squeezed Vacuum State[END_REF]. In logarithmic scale, it gives a straight line, whose slope is related to the population.

In the graphs of figure Figure 5.16 and Figure 5.17 we have plotted these 1+𝜈 𝑚 ) 𝛮 , where 𝜈 𝑚 is computed by counting the total number of atoms in the box: there is no fitting parameter. Even though the data of the second mode fit pretty well the theoretical thermal law, it not the case for the first mode. In particular, there is a discrepancy when 𝛮 is either very large or very small: the shape of the red data points is reminiscent of a Poissonian distribution, that is expected to occur when several modes are mixed in the same box. date, and we compare it with the thermal power law with a parameter 𝜈 𝑚 that is the measured averaged number of particles in the box: it is not a fitting parameter.

In Figure 5.16 we used the same boxes as in Figure 5.11: their sizes are given by the correlation lengths 1 that we measured in Subsection 1: up to a √ 2 factor.

2.3.3. In the case of the "first mode" (which is the brightest: located in 𝑞 𝑧 ≈ 0.66) we can see a non-thermal behaviour when 𝑁 ≲ 4. This profile is studied in [START_REF] Perrier | Thermal Counting Statistics in an Atomic Two-Mode Squeezed Vacuum State[END_REF], and it is the signature of the fact that the box that is used to compute counting statistics is too large, as compared to the natural size of the mode. Just like what we did for Figure 5.12, we replot the same graph but this time using boxes of the same size (the smaller one). We find a much better agreement with the theoretical thermal law for of probabilities. Since there is no fitting, this fairly good match between the data and the expected thermal profile is a solid argument for stating that our state is indeed a TMS.

Remark 5.3

Let us highlight the fact that the study of the emission statistics is a useful tool to check that the boxes chosen for the numerical analysis of the data are small enough.

If a the box is too large, the statistics exhibits a profile that looks like a Poissonian distribution 2 2: the reference [START_REF] Perrier | Thermal Counting Statistics in an Atomic Two-Mode Squeezed Vacuum State[END_REF] shows that it actually intermediate between a thermal and a Poisson distribution. .17: Same graph as in Figure 5.16, except that now the boxes in which the statistics is computed have the same size for both modes. We used the same box as in Figure 5.12, whose size in ̵ ℎ𝑘 𝑙𝑎𝑡 units is: Δ𝑞 𝑥 0.14 Δ𝑞 𝑦 0.17 Δ𝑞 𝑧 0.011

The power laws fits the data pretty well. page 49).

Conclusion

In this chapter we have exposed the most important results that we obtained during my PhD. These data were acquired between april and june 2022: the only three month during which it was possible to generate correlated pairs. Indeed, our progresses were stopped by the death of the laser used for the optical dipole trap (at the beginning of july), and also by the breakdown of a part of the high current electrical system, that we use during the MOT and the magnetic trap 1 (since august).

1: the watercooling system used for the IGBT became deficient, and several IGBT modules died due to overheating. In addition one of our high power PSU (used during the magnetic trap) now switches off randomly, in middle of the experimental realisations. Finally we faced in october vacuum issues (at the very start of the apparatus: where the room temperature helium is injected).

Nonetheless, with these data we showed that our atomic source presents interesting correlations properties, that could be use advantageously in upcoming experiments. Let us do a very short summary of what is known about our source:

What was already known before my PhD?

▶ the statistics of emission for the two modes of a pair was studied in 2019 (but using a dataset acquired in 2016), in a regime where the average population per mode were small: 𝜂𝜈 ≈ 0.158 [START_REF] Perrier | Thermal Counting Statistics in an Atomic Two-Mode Squeezed Vacuum State[END_REF]. A thermal statistics was found, which is indeed expected with a TMS state ; ▶ again in this regime where 𝜈 is small, nonlocal correlations where witnessed during the PhDs of R. Lopes and P. Dussarrat [START_REF] Lopes | Atomic Hong-Ou-Mandel Experiment[END_REF][START_REF] Dussarrat | Expériences d'Optique Atomique Quantique, Interféromètres à 2 et 4 modes[END_REF]. A violation of the Cauchy-Schwarz inequality was even observed in [START_REF] Lopes | Atomic Hong-Ou-Mandel Experiment[END_REF], which is the signature of strong correlations. ▶ a preliminary experiment of two particle interferometry [START_REF] Dussarrat | Two-Particle Four-Mode Interferometer for Atoms[END_REF] ex- hibited a two-particle correlator 2 𝐸 ≠ 0. This result is extremely 2: we refer here to the correlator that is used in a Rarity-Tapster experiment.

promising: indeed, let us recall the state that we want to use in the Bell inequality violation experiment reads:

1 -𝛼 2 ∞ ∑ 𝑛=0 𝛼 𝑛 𝑛⟩ 𝑝 𝑛⟩ -𝑝 ⊗ 1 -𝛽 2 ∞ ∑ 𝑛=0 𝛽 𝑛 𝑛⟩ 𝑞 𝑛⟩ -𝑞
𝛼 and 𝛽 are related to density of pairs that are generated, that are known to be stable during an experiment. However, we have a priori no clue about the relative phase arg 𝛼 𝛽 between these two TMS. If this phase was shot-to-shot fluctuating, in a Rarity-Tapster experiment the correlator 𝐸 would always be 0, killing any hope of witnessing a Bell inequality violation. In [START_REF] Dussarrat | Two-Particle Four-Mode Interferometer for Atoms[END_REF] a correlator 𝐸 ≈ 0.6 was measured, indicating that the variations of arg 𝛼 𝛽 are not too problematic.

General conclusion

Even if during my PhD several evolutions of our apparatus and software platform have led to the obtention of promising results (cf. Chapter 5), the scientific goals that were set seven years ago have not yet been achieved. Indeed, after the successful obtention of the atomic HOM effect [START_REF] Lopes | Atomic Hong-Ou-Mandel Experiment[END_REF], it was decided that a Bell inequality test would be the next natural field to explore with our experimental platform. Indeed, the microchannel plate offers the remarkable opportunity to extract information on the mechanical state of single massive particles. This could pave the way towards the study of the interplay between gravitation and entanglement. Such a study would obviously be extremely interesting, given the well-known difficulties that modern physics encounters to integrate gravitation in a quantum framework. A violation of Bell inequalities would also constitute a first milestone before trying to prepare quantum entangled states with more particles, which a microchannel plate should also be able to probe a priori.

In this quest, a preliminary result was obtained in 2017 [START_REF] Dussarrat | Two-Particle Four-Mode Interferometer for Atoms[END_REF]; at this time it was however not possible to measure a Bell parameter, because there was no active control of the phase difference between Alice's interferometer and Bob's one 1 (cf. Chapter 2 for more explanation 1: actually, the final beam splitters of both "Mach-Zehnder" interferometers were realised by the same Bragg pulse.

about the interferometric setup). Implementing two independent Bragg pulses, and obtaining the control on this phase difference is the next step. Unfortunately -as it has been explained in Chapter 4-in the last five years, technical issues have considerably slowed down our progress, and forced us to work on aspects of the experiments that were achieved for the most part more than ten years ago.

Lacking scientifically new experimental material to present, this manuscript therefore aims at meeting different objectives. One of those is setting a reference point concerning the current status of the experiment. Indeed, in the last few years, many experimental procedures have evolved, or have been replaced: I provided in Chapter 3 and Chapter 4 as much technical detail about it as possible.

Another objective was to offer some food for thought on other possible experiments that we could conduct when the platform is ready (cf. Chapter 1). I cannot claim that the theoretical work about the 𝑛-particle HOM physics is over, as I have not yet found the striking signature of a many-body quantum effect with it. To this end, an interesting field to explore (and that I did not consider in this manuscript) could be the study of 𝑛 th -order correlation functions 𝐺 (𝑛) : after all, if the 𝐺 (2) function contains the trace of the quantum two-particle HOM effect, is it not natural to imagine that 𝐺 (𝑛) could contain a similar trace, for a situation in which the number of particles is larger?

The last element that I have attempted to clarify in this manuscript is the description of the Bell inequality test experiment that we still aspire to achieve, and to provide a methodology for data processing (cf. Chapter 2). However, information on this work is not exhaustive here: the numerical study of the effect of Bragg deflectors and beam splitters, as well as their concrete implementation with our hardware, are indeed of primary importance. This work should be presented in the upcoming manuscript of Charlie Leprince.

Regarding the recent progress that we have made in the last six months, one can venture to be optimistic about what will happen in the upcoming few months. Indeed, appart from recent breakdowns, we have reached a state that is close to that of the experiment back in 2017. Essentially, the last part that we still need to set up is the Bragg diffraction lattice: we are currently working on it. At last, once this final aspect of the experiment will be sorted out, we should be able to go on, and realise the experiments that have been put on hold for so long. Quality control of the Raman transfer can be made by looking at the Rabi oscillations between the two magnetic sublevels, by scanning the duration of application of the Raman lattice. Previously in the experiment, it was only possible to look at the 𝑚 𝐽 = 0 atoms with the MCP (cf. Figure A.2). We recently found out that it is now also possible to observe the oscillations with the fluorescence, with a cold thermal cloud, intensifying the spatial separations between the two clouds by pushing the 𝑚 𝐽 = 1 atoms with a small magnetic gradient (cf. The expected effective two-photon Rabi frequency Ω eff 𝑅 is easy to estimate, knowing the powers 𝑃 1 2 of the beams and the small detuning 𝛿 defined in Figure 4.5. The peak intensity of the gaussian beam is given by

𝐼 0 = 2𝑃 𝜋 𝑤 2 (A.1)
where 𝑤 is the geometric mean of the waist (considering a slightly elliptical beam). Then, Ω eff 𝑅 can be expressed with Ω is a Clebsch-Gordan coefficient, and we considered detunings defined in hertz, as in Figure 4.5.

When conducting the experiment, we find out that we need to take into account a power loss coefficient to fit the theoretical law (cf. Figure A.3). This is probably due to a small imperfection of the polarisation of the beams (implied by their geometrical orientations) and the absence of anti-reflective coating, but this is not really an issue for us, as we can (A.2), considering that only 77 % of the beams' power is available for the atoms: the absence of anti-reflective coating on this viewport, and polarisation imperfections because of the angle of the beams with respect to the direction of the magnetic bias may explain this loss. easily compensate this by increasing the overall power.

However we are still a bit puzzled with the damping of the Rabi oscillations over time (cf. repartition of the cloud's density (with a Thomas-Fermi profile for example): I could not reproduce a damping of the oscillations on the observed timescale (∼ 100 µs). The damping is reproducible by adding a magnetic gradient, which is a reasonable hypothesis.

B Imaging camera settings

We use a Xenics © Xeva 320 series short-wave infrared camera for fluorescence imaging. This camera generates a PNG file (in greyscales) out of the number of photons received during a given integration time.

The complete chain of conversion for fluorescence imaging is given in • 𝜂: quantum efficiency ∼ 0.7

• 𝜎 𝑒 -: electron sensitivity of the ADC = 45.7𝑒 -𝐴𝐷𝑈 3 3: in low gain mode (915𝑒 -𝛢𝐷𝑈 otherwise).

• 𝑓 𝑙𝑖𝑛 : linear rescaling function applied by the Xenics software.

The final data is a 16bits PNG file: a matrix of grascale (𝑁 𝑔𝑠 ) numbers. Beware: a PNG cannot contain negative values (it will be written as a 0) and while writing the PNG file, we can choose either of the two endianness convention → right-writting must be chosen for backward compatibility with our data analysis softwares. The bias 𝐵 0 of the trap is generated by the "compensation" (C1, C2) and "dipole" (D1, D2) pairs of coils. The numbers of turns in these pairs of coils, with respect to their diameters, was chosen such that the bias propagated by the couple (C1,C2) should exactly compensate the bias created by the couple (D1,D2): meaning that when PSU2 is turned off, and all the coils have the same current flowing through them (cf. Figure C.3), the bias should be zero.

Bias measurements and calibration

In practice, it is very difficult to achieve this: the fields created by (C1,C2) and (D1,D2) are large, and their compensation is extremely sensitive to the geometrical structure. Denoting 𝑖 TOP 𝑖 BOT the current generated by the top/bottom PSU, and 𝛽 𝐶 𝛽 𝐷 the first order coefficients for the dependence of the bias with the current in the compensation/dipole coils (linear approximation), we therefore have the following relations (expressed in frequency units): where 𝐵 offset is an additional contribution that results from the magnetisation of the surroundings (in the order of a few hundreds of kilohertz: cf. The bias to trapping frequency relation (Eq. (3.44)) is always valid, and involves the same Λ constant. It is the current to bias relation that may vary with time (or some "mechanical" event such as the disassembly/reassembly of the coils), in particular the zero-bias current. But when we witness a shift of the bias, we can always find a new value of the compression current to retrieve the same trapping conditions. 79, 83, 102, 106, 112-117, 119-123, 125-127, 129, 140, 143-145, 147, 149-158, 167, 169, 170, 189, 191, 192, 194, 195 11, 12, 25, 38, 40, 43, 47-50, 52, 53, 55, 60, 62, 64-66, 89, 145, 182, 195, 197, 202-204 Title : Quantum atom optics with metastable helium Keywords : non locality, ultra cold atoms, quantum mechanics, Bell inequalities, atom interferometry, metastable helium Abstract : Correlation and entanglement properties of multi-particle quantum states have been demonstrated since the 1980s in the context of photonics. Since then, the production and characterisation of non-classical states in various contexts has become a very fruitful research topic, as well as a burning issue for the development of quantum technologies. This thesis presents an experimental platform able to prepare helium atoms in strongly correlated momentum states. The detection technique that has been developed in our group (threedimensional and resolved to the single atom) allows to efficiently probe these correlation properties, which is in general difficult to achieve for most similar experimental setups.

In particular, this manuscript contains a first part of theoretical nature, which deals on the one hand with the generalisation of the Hong-Ou-Mandel effect (in a context where more than two particles are involved) ; and on the other hand with the implementation of an experiment testing the Bell inequalities for atoms entangled with respect to their velocities. Both experiments could be carried out by our team in the near future. A second experimental part reports on the recent progress made on the platform, as well as the latest experimental results concerning the correlation properties of the atomic source that we have set up.
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 11 Figure 1.1: Simplified drawing of the single-photon anti-correlation experiment. This design was proposed by Grangier et al. [54] The blue arrow represents a single photon input, in front a 50-50 beam splitter. The red arrows represent the two possible outcome channels of the photon. The detections are then correlated with a coincidence counter (C.C.) device.
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 13 Figure 1.3: Outcomes of a HOM experiment. Photons are indistinguishable, and we are not allowed to label them. Each arrow represents a single photon. In contrast to the classical picture in Figure 1.2, the bosonic nature of photons, and interferences lead to only two possible outcomes: both photons leaving the beam splitter on the same side.
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 56215 Figure 1.5: Parametrisation of the beam splitter. The input (respectively output) channels are denoted as ch. in 𝑖 (respectively ch. out 𝑖 ), and are provided with the annihilation operators â 𝑖 (respectively ̂𝑏𝑖 ). A detector is placed at each of the two output channels.
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 581 [START_REF] Campos | Quantum-Mechanical Lossless Beam Splitter: SU(2) Symmetry and Photon Statistics[END_REF], "Quantum-Mechanical Lossless Beam Splitter" Unitarity of the transformation)
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 16 Figure 1.6: Notations for the input and output states of the beam splitter in first quantisation.
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 17 Figure 1.7: Schematic drawing of the atomic HOM experiment. The figure is extracted from the original publication [59]. An atomic source emits pairs of helium atoms (a and b) along the vertical axis 𝑧 (cf. Chapter 5). They are subjected to free-fall and their trajectories are parabolas. Bragg diffraction with a resonant optical lattice (cf. Chapter 2) realise the atomic equivalent of a mirror at 𝑡 = 𝑡 2 , and a beam splitter when the atomic trajectories cross again at 𝑡 = 𝑡 3 . The lines alternately dashed in red and blue symbolise the indiscernibility of the atoms' trajectories when 𝑡 > 𝑡 3 . The correlations are probed simply by looking at the arrival times of the atoms on a detector laying beneath the atomic source.
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 18 Figure 1.8: Correlation 𝐺

  𝑐𝑑is maximised, correspond to situations where the particles at the entrance of the beam splitter are distinguishable. 𝐺(2) 𝑐𝑑 is minimised when the particles are indiscernible: when 𝜏 = 550(50) µs. The fact that 𝐺[START_REF] Kheruntsyan | Violation of the Cauchy-Schwarz Inequality with Matter Waves[END_REF] 
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 2019 Figure 1.9: Marginal probability distributions for twin-Fock states at the input of a 50-50 beam splitter. 𝑛 is the number of particles at each input channel. Since 2𝑛 particles are present in the interferometer, 𝛮 takes a value between 0 and 2𝑛.
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 110 Figure 1.10: Normalised width of the marginal output distributions, plotted as a function of the transmission coefficient 𝜏, for various values of 𝑛.
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 112 Figure 1.12: Marginal probability distributions for twin-Fock states at the input of a 50-50 BS, using detectors with finite quantum efficiency 𝜂 (given in the legends). The first plot (on top) compares the ideal detector (𝜂 = 1) to an almost perfect one (𝜂 = 0.95). The second plot (bottom) shows the expected signal, for various values of 𝜂 < 1.
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 15114 Figure 1.14: Same plot as Figure 1.13, but taking into account a finite quantum efficiency 𝜂 = 0.5
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 118 Figure 1.18: Graphical proof of the equivalence of two double summation patterns. The sum is evaluated over the black vertices, and we can choose to sum along the blue lines, or the red ones.
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 120 Figure 1.20: Effect of the 50-50 beam splitter on a TMS (here 𝜈 = 2).
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 1212 Figure 1.21: Output joint probability distribution for a TMS interfering at a 50-50 beam splitter with finite quantum efficiency. This plot has to be compared to the perfect detector case in Figure 1.20b. Here 𝜂 = 0.5 and the average population per mode 𝜈 = 2. We find 𝛲 𝜂 out (0, 0) = 0.4 and 𝛲 𝜂 out (𝛮 1 > 0, 𝛮 2 > 0) ≈ 0.135
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 122 Figure 1.22: Output joint probability distribution for a "distinguishable TMS" interfering at a 50-50 beam splitter. This plot has to be compared with the indistinguishable case in Figure 1.20b.
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 123124 Figure 1.23: Output joint probability distribution for a "distinguishable TMS" interfering at a 50-50 beam splitter with finite quantum efficiency. This plot has to be compared to the distinguishable case in Figure 1.21.

  The shape of the joint probability distribution can be visually compared with the 3D histogram plots in Figure 1.20b/Figure 1.22 (with perfects detectors) and Figure 1.21/Figure 1.23 (with finite quantum efficiencies)
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 21 Figure 2.1:Principle of an EPRB experiment. Two particles (blue and red) are emitted from a common source 𝑆 in spatially separated regions. We then look at the correlations between the measurements 𝛢 and 𝛣, obtained by the experimentalists 𝒜 and ℬ, using detectors oriented by 𝐚 and 𝐛.
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 84 : Esmaeil Zadeh et al. (2021), "Superconducting Nanowire Single-Photon Detectors"

Figure 2 . 5 :

 25 Figure 2.5:We use the 2 3 𝛲 0 excited state in order to use the same laser diode as the one used for a Raman transition that we also need on the experiment (more information are given in Remark 3.9 of Chapter 3, and in Subsection 2.1.2 of Chapter 4). The transition is operated between two 𝑚 𝐽 = 0 magnetic sublevels of helium, and the laser beams are therefore 𝜋 polarised. The detuning Δ is very large as compared to the one-photon transition natural linewidth (1.6 MHz), so that we can approximate a coherent coupling with between two levels only ( 𝑝 1 ⟩ and 𝑝 2 ⟩). The equivalent one-photon wave vector 𝑘 is set by the geometrical angle between the two beams of the lattice (cf. Figure2.6 and Eq. (2.14)). Δ𝛦 ̵ ℎ is typically of the order of a few tenth of kilohertz.

Figure 2 . 7 :

 27 Figure 2.7: Pairing of the natural modes emitted by the source in two configurations of the Rarity-Tapster interferometer. The sub-figure a) on top corresponds to the geometry presented in Figure 2.4 (simpler to do experimentally), whereas the sub-figure b) on bottom corresponds to the Figure 2.8 (it requires a very narrow angle between both beams of the Bragg lattice).

Figure 2 . 8 :

 28 Figure 2.8: Schematic of the atomic Rarity-Tapster two-particle four modes interferometer in the large separation configuration. It is formally equivalent to the design of Figure 2.4.

  Figure 2.8, we have a 𝜋 pulse at 𝑡 = 𝑡 𝑑 and 𝜋 2 pulses at 𝑡 = 𝑡 𝑠 .
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 2 to claim a Bell inequality violation.
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 73 : Kitzinger et al. (2021), "Bell Correlations in a Split Two-Mode-Squeezed Bose-Einstein Condensate"
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 229 Figure 2.9: Bell parameter as a function of the population 𝜈, using Ralph et al. correlator 𝛦 I . The black dashed line represent the CHSH critical value. Bell's inequality is violated for 𝜈 ≲ 0.26.
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 210 Figure 2.10: Bell parameter as a function of the population 𝜈, using the correlator 𝛦 II (2.41). The black dashed line represent the CHSH critical value. The lines are labelled with the quantum efficiency of the detectors.
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 73 : Kitzinger et al. (2021), "Bell Correlations in a Split Two-Mode-Squeezed Bose-Einstein Condensate"
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 19 [START_REF] Clauser | Experimental consequences of objective local theories[END_REF], "Experimental consequences of objective local theories" probabilities 1 (joint and single-channels), it requires to consider two-1: which is slightly different from the original CHSH formulation which is only involving correlation functions.

Figure 2 . 11 :

 211 Figure 2.11: Bell parameter as a function of the population 𝜈, using the correlator 𝛦 III (2.49). The black dashed line represent the CHSH critical value. The lines are labelled with the quantum efficiency of the detectors. We also plotted (mauve dashed line) the result of the first approach for comparison. With the quantum efficiency of our detector (𝜂 = 0.5) the Bell inequality is violated for 𝜈 ≲ 0.7.
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 73212 Figure 2.12: Saturation of the Bell inequality as a function of the population.
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 31 Figure 3.1: Spectroscopic structure of 4
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 101 : Kumakura et al. (1992), "Visible Observation of Metastable Helium Atoms Confined in an Infrared/Visible Double Resonance Trap"

[ 102 ]

 102 : Notermans et al. (2014), "High-Precision Spectroscopy of the Forbidden 2 3 𝑆 1 → 2 1 𝛲 1 Transition in Quantum Degenerate Metastable Helium" [103]: van Rooij et al. (2011), "Frequency Metrology in Quantum Degenerate Helium"

Figure 3 . 2 :

 32 Figure 3.2:Two-body elastic, ionising and inelastic collisions constant rates as a function of the temperature (by convention ionising collisions are not included in the inelastic ones). Data are extracted from[START_REF] Daniel | Ultracold Homonuclear and Heteronuclear Collisions in Metastable Helium[END_REF] and result from multichannel quantum calculations. The hamiltonian used for time evolution takes into account the kinetic part, the unperturbed hamiltonian of both atoms, the electrostatic interaction, and the magnetic spin-dipole interaction. The gas is considered to be spin-polarised, except for the dashed line.
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 33 Figure 3.3: Elastic collision rate constant as a function of temperature. The red plain line is given by Eq. (3.3) and the blue dashed line is the square root approximation Eq. (3.4).
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 106 [START_REF] Przybytek | Bounds for the Scattering Length of Spin-Polarized Helium from High-Accuracy Electronic Structure Calculations[END_REF], "Bounds for the Scattering Length of Spin-Polarized Helium from High-Accuracy Electronic Structure Calculations" measured[START_REF] Moal | Accurate Determination of the Scattering Length of Metastable Helium Atoms Using Dark Resonances between Atoms and Exotic Molecules[END_REF] to be 𝑎 = 7.512(5) nm. The scattering cross-section[START_REF] Moal | Accurate Determination of the Scattering Length of Metastable Helium Atoms Using Dark Resonances between Atoms and Exotic Molecules[END_REF]: Moal et al. (2006), "Accurate Determination of the Scattering Length of Metastable Helium Atoms Using Dark Resonances between Atoms and Exotic Molecules" at low temperature depends on the relative velocity 𝑣 𝑟 of the atoms involved in the collision, and is given by[107]: [107]: Landau et al. (1977), Quantum mechanics
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 22 in case (3) the outgoing atoms feel the channel 1 Σ + 𝑔 .With the same model as before, it is again possible to have numerical evaluations of the corresponding cross section (cf. Figure3.2 on page 107). In particular we observe that below a few millikelvins, these losses are much smaller than the Penning ion-1 Metastable helium 111ising collisions.Three-body collisionsWhen the density of the cloud increases (i.e. close to condensation) we must also consider three-body ionisation processes: He ⋆ + He ⋆ + He ⋆ → He ⋆ → He + He + + 𝑒 -
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 116 : Esry et al. (1999), "Recombination of Three Atoms in the Ultracold Limit" Numerically, with 𝑎 = 7.512 nm, Eq. (3.15) gives 𝜚 ≈ 2 ⋅ 10 -28 cm 6 s -1 (3.16)
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 110 : Seidelin et al. (2004), "Getting the Elastic Scattering Length by Observing Inelastic Collisions in Ultracold Metastable Helium Atoms" 𝜚 = 8.3 +15 -5 ⋅ 10 -28 cm 6 s -1 (3.17)
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 34 Figure 3.4: Cutaway drawing of a MCP. In our case the plate is 1 mm thick, the channels diameter is 𝑑 = 25 µm, and the effective area diameter is 𝐷 = 79 mm. The bias angle of the microchannels is 𝜃 = 20°. Image provided by Hamamatsu Photonics ©.
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 3536 Figure 3.5: Schematic of the electronic cascade inside a microchannel. In the lab we use a HAMAMATSU © MCP, with a tension 𝑉 𝐷 = 2.34 kV. A single metastable atom typically gives rise to 10 4 secondary electrons at the output side. The quantum efficiency of the process is estimated to be close to 50 %. Image provided by HAMAMATSU Photonics ©.
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 37 Figure 3.7: Micrometer scale photograph of the surface of standard and "funnel" MCPs. Photograph provided by HAMAMATSU Photonics ©.

2Figure 3 . 9 :𝑡 1 𝑡 2 𝑡Figure 3 . 10 :Figure 3 . 11 :

 3912310311 Figure3.9: [Taken and modified from[START_REF] Perrier | Interférences multiples avec atomes froids[END_REF]]. When a metastable hits the 𝛭𝐶𝛲, it might create a rain of 10 8 electrons onto the delay lines standing beneath. These excitations propagates along the lines and are tagged by a time-to-digital converter (TDC).

Remark 3 . 3

 33 In Eq. (3.20c) and (3.20d), we have neglected a propagation time 𝐿 𝑐 3 ≈ 80 ns (the "diameter of the MCP" in time units)because it is much smaller than the time resolution induced by the bias angle of the microchannels (cf. Figure3.6). As we will shortly see, the typical velocity of the atoms during the impact is 𝑣 ≈ 3 m s -1 . The time resolution is therefore 𝜎 𝑡 = 𝑑 𝑣 tan(𝜃) ≈ 10 µs ≫ 80 ns.

Figure 3 . 12 :

 312 Figure3.12: Block diagram of the electronic chain used for the detection, and the conversion from analog (red) to digital (blue). Out of the delay lines, the signal only has an amplitude of a few millivolts: it is first amplified with a high-pass filter pre-amplifier (𝐺 = 80). It is then converted into a NIM by the CFD, before being digitised and sent to the PC by the TDC.

Remark 3 . 4 (

 34 TDC hardware) Our TDC device is the TDC-V4 developped by the Plateforme Détection: Temps, Position, Image (DTPI) of the Fédération Lumière-Matière (LUMAT) at the Université Paris-Sud. It consists in a PCI card plugged into the experiment computer, and it is connected to a 19" rackable interface (IsiBox) that ensures the BNC connections to the MCP output channels 𝑋 1 , 𝑋 2 , 𝑌 1 and 𝑌 2 .

1 = 2 = -15 mV 3 .

 123 the fraction 𝑓 𝑐 -affects the shape of the bipolar pulse 𝐴 𝑏 . The technology allows the values [0.14, 0.35, 0.57, 0.8, 1]

Figure 3 .

 3 Figure 3.13:Pulses amplitude histograms (after pre-aplification). Side by side plots share a same grid axis. 𝐺 is the pre-amplification gain of the channel. A sample of 1000 pulses is used for each plot: acquired with an oscilloscope binning the minimum voltage read in a 50 ns large window, trigged in normal mode, with a threshold of a few millivolts. We identify a contribution of the noise (in red) with small amplitude pulses, and a contribution of the signal (in green) with amplitudes ranging up to approximately 0.6 V. There is no sharp separation between the noise and the signal.

Figure 3 . 15 :

 315 Figure 3.15: Schematic of the far field regime detection with an MCP. The typical size of the cloud is given by the waists of the laser beams trapping it (cf. Subsection 3.2.4). When the trap is released, atoms are transferred in 𝑚 𝐽 = 0 with a Raman transition and then perform a free fall whose trajectory is dependent on their initial velocity ⃗ 𝑣 𝑖 = ⃗ 𝑝 𝑖 𝑚.
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 331622 Figure 3.16: Comparison of the gain (on the left) and resolution 𝜎 𝑆 2 √ 2

Figure 3 . 17 :

 317 Figure 3.17: Minimal Zeeman slower length for helium, as a function of atoms velocity

Figure 3 . 18 :

 318 Figure 3.18: Representation of the helium plasma source. Figure extracted from[START_REF] Perrier | Interférences multiples avec atomes froids[END_REF]. Helium is injected from an insulating glass tube into a boron nitride nozzle (good thermal conductor and electric insulator). The plasma is produced in the nozzle thanks to a metallic needle (P) that plays the role of a cathode. 𝑅 = 150 kΩ, and the plasma resistance is estimated at 37 kΩ. The plasma is ejected from the nozzle at a discharge cap (C), and crosses a skimmer (S) that acts as an anode. Discharge heat is dissipated with a copper bloc cooled down with liquid nitrogen.
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 2222319 Fig. 2.2 -Schéma du montage expérimental. Les directions des principaux faisceaux laser utilisés pour le refroidissement de l'He sont indiqués : seuls les faisceaux dont les directions sont orthogonales au plan (Oyz) ne sont pas apparents. La qualité du vide est indiqué pour les différentes parties du dispositif.
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 320 Figure 3.20: Measurement of the magnetic field along the Zeeman solenoid [124]. The theoretical is given in Eq. (3.37), without fitting adjustment.
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 127 : Dalibard (2015), "Une brève histoire des atomes froids -Chapitre 2" [128]: Metcalf et al. (1999), Laser Cooling and Trapping

[ 135 ]

 135 : Chang et al. (2014), "Three-Dimensional Laser Cooling at the Doppler Limit"

[ 138 ]Remark 3 . 7

 13837 : Mewes et al. (1996), "Bose-Einstein Condensation in a Tightly Confining DC Magnetic Trap" C.3). We are using the same coils as the one installed by Antoine Browaeys et al. in 2000. It is a homemade design, and we are planning to change it very soon because we recently faced some problems with it (cf. Subsection 2.3 of Chapter 4).

[ 139 ]

 139 [START_REF] Bergeman | Quantized Motion of Atoms in a Quadrupole Magnetostatic Trap[END_REF], "Quantized Motion of Atoms in a Quadrupole Magnetostatic Trap"

Figure 3 . 21 :

 321 Figure 3.21: Bias measurement in the magnetic trap (explanation in the text).The data points are fitted with a tanh function, from which we extract the center, that we empirically define as the measured bias. In this example, the fit returns a measured bias of 1.67 MHz.

Figure 3 . 22 :

 322 Figure 3.22: Competition between the doppler cooling in the magnetic trap, and the heating due to the longitudinal optical molasses. The data are acquired with fluorescence imaging, after a time of flight of the cloud of 3 ms: the RMS size of the cloud is therefore a picture of the temperature. When the density increases, the longitudinal length of cloud 𝜎 increases as well, while transversely the cloud is smaller.

Figure 3 . 23 :

 323 Figure 3.23: Schematic of the RF coupling used to perform evaporative cooling in the MT. Only atoms in the 𝑚 𝐽 = 1 magnetic sublevel are trapped (red shaded area). They oscillate in the trap, in a domain depending on their kinetic energy (which follows a Maxwell-Boltzmann distribution, driven by the temperature 𝛵 of the cloud). The "hottest" atoms, with an energy above 2μ 𝛣 𝜈 𝑟𝑓 (hatched pattern), are coupled with the untrapped sublevel 𝑚 𝐽 = 0, and are therefore lost.
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 324325 Figure 3.24: Temporal profile of the power of the ODT beams. There is a roughly 115 ms long overlap between the MT and the magnetic compensation. 𝑡 = 0 corresponds to the beginning of an experimental realisation.
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 145 : Petrov et al. (2001), "Phase-Fluctuating 3D Bose-Einstein Condensates in Elongated Traps" [146]: Gallucci et al. (2012), "Phase Coherence in Quasicondensate Experiments"

Figure 3 . 26 :

 326 Figure 3.26: Potential seen by the atoms during the loading. Even though the trapping frequency of the hODT along the vertical axis 𝑧 is higher than the vODT one, it effectively has no effect because it is far too shallow. Due to this huge difference of intensity, the horizontal beam is also almost invisible in the 𝑥𝑦 plane, on the top left heatmap.

Figure 3 . 27 :

 327 Figure 3.27: Potential seen by the atoms at the end of the evaporation. Now the horizontal beam has a dominant effect on the depth and trapping frequency along the vertical 𝑧 direction. The depth in the 𝑍 direction is difficult to evaluate, because it is very sensitive to the geometry of the beams. It is however probably of the order of 1 µK. We added an unimportant offset to the vODT potential to make it visible on the same 1𝐷 bottom right graph.

Figure 3 . 28 :

 328 Figure 3.28: Overview of the different cooling steps of the procedure: from a MOT cloud to a BEC. The numerical values are order of magnitudes (especially for the MOT clouds in blue where the measurements are not easy). The red dashed line represents the condensation threshold.
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 9 : Dussarrat et al. (2017), "Two-Particle Four-Mode Interferometer for Atoms"

Figure 4 . 1 :

 41 Figure 4.1: Schematic of the camera set-up, used for the fluorescence imaging. The figure is modified from [60]. Axis orientations are consistent with Figure 3.19. The telescope forms the image of the cloud on the CCD during the imaging (blue rays), and a motorised flipmirror is used for the retro-reflection of the MOT beam.
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Figure 4 . 2 :

 42 Figure 4.2: Image of the hole in the old Burle MCP. Axis orientations are consistent with Figure 3.19.Colours encode the number of atoms detected. The red line corresponds to BEC obtained with RF evaporative cooling in the magnetic trap: after time of flight the cigar-shaped BEC along the 𝑥-axis becomes a pancake in the transverse 𝑦𝑧-plane, due to the famous anisotropic expansion of BECs. A zero-detectivity disc at the centre is visible. The diameter of this hole roughly matches the 1 𝑒 2 size of the vODT on the MCP... Data come from a single run (which is why the heatmap is quite "sparse").

Figure 4 . 3 :

 43 Figure 4.3:Evolution of the diameter of the hole, as a function of the number of experimental realisations. During each run, the vODT makes a 1.8 W → 0.5 W exponential decay in 4 s, and the hole diameter is then evaluated with a bidimensional fitting (top graph). We then plot the evolution of the diameter (bottom graph), where every red point is the statistical average of the measured diameters for ∼ 30 consecutive runs.

Figure 4 . 4 :

 44 Figure 4.4: Raman transfer towards the 𝑚 𝐽 = 0 magnetic sublevel. The 2 MHz frequency gap corresponds to an approximately 1 G magnetic bias. 𝜎 -and 𝜋 are the photons' polarisations, with respect to the magnetic bias. The single photon transition is red-detuned of Δ = 800 MHz, which simplifies the situation to an effective two level coherent coupling, with a two-photons angular Rabi frequency Ω 2𝑝ℎ = Ω 𝜎 -Ω 𝜋 2Δ.

Figure 4 . 5 :

 45 Figure 4.5: Top view of the Raman beams, and of the kick given to the BEC. Axis orientations are consistent with Figure 3.19.The labels "Wall" and "Computers", are just experimentalists' naming conventions, referring to the orientation of the room. The 𝜃 angle is limited by the diameter of the viewport. In reality, for historical reasons, the "Raman 1" is not perfectly in the 𝑥𝑦 plane (by a few degrees), and there is therefore also a small vertical contribution to the kick. Violet dashed lines correspond to the virtual one-photon kicks, and the plain violet line is the actual two-photons kick. A magnetic bias of a few gauss is kept along the 𝑥 axis.
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 46 Figure 4.6: Raman kick applied to a BEC trapped in the MT. Data are averaged over 91 experimental realisations, in each file an average of 3.2 ⋅ 10 5 atoms are reconstructed.

Figure 4 . 7 :

 47 Figure 4.7: Integration over the 𝑌 axis of Figure 4.6. We measure a shift of 11.5 mm.

e

  therefore went back to the initial configuration (two beams only and the evaporation driven by the vertical one), but adding a protective copper plate, hanging above the middle of the MCP thanks to a stainless steel arm (Figure 4.8 and Figure 4.9). The blueprint of the assembly is available in the Appendix (Figure D.1).

Figure 4 . 8 :

 48 Figure 4.8: Top view of the protective copper plate. Picture taken on the day of the installation (30/09/2021).

Figure 4 . 9 :

 49 Figure 4.9: Side view of the protective copper plate. The copper plate, the MCP and the delay lines are visible. The picture was taken during a second changing operation (13/01/2022) where we insulated the stainless steel arm and the plate from the high voltage with a polyether ether ketone (PEEK) piece (here the white piece connected to the ring). Then, the arm and the plate were connected to the ground with a wire.

Figure 4 .

 4 10).

Figure 4 . 10 :

 410 Figure 4.10: Detectivity map of the MCP protected with the copper plate. The map is obtained by accumulating data from MOT clouds without the transverse molasses stage (to reduce the number of atoms per run and avoid any saturation of the electronics). A strange structure with more atoms than average is visible around the metallic arm, within a range of a few millimeters.
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Figure 4 . 11 :

 411 Figure 4.11: Detectivity map obtained with 𝑚 𝐽 = 0 atoms coming out of an ODT. At each run we load the ODT at full power (5 W) and we do not evaporate (the cloud has a temperature 𝛵 ∼ 22 µK large enough to cover the MCP homogeneously). We then postselect and keep only the atoms in the [308, 309]ms arrival time range (centred on the arrival time of the 𝑚 𝑗 = 0). Data come from the averaging of 536 experimental realisations, with 1.6 ⋅ 10 3 atoms on average per file (8.7 ⋅ 10 5 atoms in total). The ungracious structures around the shadow almost vanished.
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 412 Figure 4.12: Example of drift of the number of atoms in a Doppler cloud. The number of atoms is measured with fluorescence imaging. Each point is an experimental run.

Figure 4

 4 Figure 4.13

Figure 4 .

 4 [START_REF] Bohr | Can Quantum-Mechanical Description of Physical Reality be Considered Complete?[END_REF] based on the saturated absorption spectroscopy principle. Yet, in comparison with the previous version of the setup (with the laser diode) we have a few enhancements:

5 N (×10 9 )Figure 4 . 15 :

 59415 Figure 4.15: Example of Stability of number of atoms in a Doppler cloud with the new NKT © laser. The number of atoms is measured with fluorescence imaging. The fluctuations are dominated by slow drifts, with an amplitude of 2 % RMS (5 % peak-peak). The short term fluctuations are even much smaller than that (< 0.5 % RMS), and are not relevant anymore for us.

  In summary: before: 30 % of short time fluctuations of the number of atoms, and long-term drifts with an amplitude a few tens of percent → Figure 4.12 ; now: almost zero short time fluctuations of the number of atoms, and a long-term drift with an amplitude smaller than 5 % → Figure 4.15 ;

Figure 4 . 16 :

 416 Figure 4.16: Position of the centre of a cloud trapped in the magnetic trap, and evaporated down to ∼ 15 µK (corresponding to a final RF frequency of 4 MHz). These data are acquired through in situ fluorescence imaging, meaning that the picture of the cloud is taken in the trap, before the release of the cloud. Each blue point is an experimental realisation. The black points are obtained by averaging the data acquired on a given day, and the red area is the corresponding ±1𝜎 standard deviation. The plotted data spread over a 77 days time range.
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 417 Figure 4.17: Picture of the ADwin-Pro II-light sequencer frame. More details can be found in the official documentation.
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 167418 Figure 4.18: Chartflow diagram of the coarse architecture of the QControl3program. The core of the code is the "Timing System", that is mainly a server launched on the experiment's computer once and for all (linux based system). This server receives a queue of requests from "clients", that consist in sequence script files, and configuration files. With a bare installation of QControl3 the interaction between the client and the server is carried out by a command line interface (CLI), but we also added a simple graphical user interface (GUI) as a plugin, to have a rather user-friendly control over the various parameters. The Timing System is responsible for the synchronisation between the sequencer's part (in red: the Timing Controller Adwin and its various Timing Channels) and the software / external devices part (in blue: the Software Controller). It also writes the output files (HDF5...) at the end of the run. All these terms are just naming conventions chosen by the first developers of the QControl3 project.
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 419 Figure 4.19: HAL's logo

Figure 4 . 20 :

 420 Figure 4.20: User interface of HAL.In the centre we have a display panel where the main visualisation of data is placed (here it is the fluorescence imaging of a cloud in the MT, but it could also be an image similar to Figure4.11 for MCP data). On the left, we find a customisable data explorer and selector, and a quick fit panel. The panels is dedicated to metadata, with a selector of sources, and the text printing of selected files' metadata. At the bottom we have quick access to common plotting methods. The custom analysis scripts (generally more complex) can be accessed via a dedicated menu placed at the top of the window.

Figure 4 . 21 :

 421 Figure 4.21: Examples of visualisations generated with HAL. The top left 1D plot results from an automated script returning the temperature of a cloud, out of fluorescence images taken after different times of flight. At the botton I plotted examples of 2D visualisations, that can be very handy when we want to probe the effect of two interdependant experimental parameters at the same time. The bottom right plot is actually performing an interpolation of the data points, which can be useful when we want to have a 2D density plot as a function of parameters that are not regularly positioned in a "square" array.
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 163 : Hilligsøe et al. (2005), "Phase-Matched Four Wave Mixing and Quantum Beam Splitting of Matter Waves in a Periodic Potential" initiated the setting of a new generation of experiments where the production of atomic pairs is induced by the presence of an optical lattice, generating a dynamic instability. The first experiments making use of this technique were achieved in the group of Wolfgang Ketterle [164] [164]: Campbell et al. (2006), "Parametric Amplification of Scattered Atom Pairs"
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 173 : Pitaevskii et al. (2016), Bose-Einstein Condensation and Superfluidity croscopic interatomic potential by the regularised contact interaction (only depending on the 𝑠-wave scattering length), and to apply the Bogoliubov prescription 2 . 2: replacing the zero-momentum annihilation operator â0 by the number √ 𝛮.

Figure 5 . 1 :

 51 Figure5.1: Pair creation process in the lowest energy band of the optical lattice (with 0.45𝛦 𝑙𝑎𝑡 depth). In the reference frame of the lattice, the BEC (green point) has a quasi-momentum -0.6𝑘 𝑙𝑎𝑡 . The periodicity of the dispersion relation makes it possible to find a solution to the phase-matching condition (edges of the dotted black line). When the lattice is switched off, Bloch's wave functions with quasi-momentum 𝑞 (eigenstates of the hamiltonian with the lattice) are projected onto the plane waves with momentum 𝑝 𝑧 . If it is switched off adiabatically, the momenta 𝑝 𝑧 are just the restriction to the first Brillouin zone of the quasi-momenta. Picture adapted from[START_REF] Dussarrat | Expériences d'Optique Atomique Quantique, Interféromètres à 2 et 4 modes[END_REF].
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 252 Figure 5.2: First three bands of the modified dispersion relation, for 𝐕 𝟎 = 𝟎.𝟖 𝚬 𝐥𝐚𝐭 (harmonic potential). In the case of the adiabatic turning on of the lattice, the pairs are only generated on the lowest energy band 𝛦 0 .
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 253 Figure 5.3: First three bands of the modified dispersion relation, for 𝐕 𝟎 = 𝟒 𝚬 𝐥𝐚𝐭 (harmonic potential). Compared to Figure 5.2, the gap between the bands has increased.

  [START_REF] Rarity | Experimental violation of Bell's inequality based on phase and momentum[END_REF] where𝜀 (𝑞, 𝑞′) ≜ 𝑇 sinc Δ𝐸(𝑞, 𝑞′) ̵ ℎ 𝑇 2 (5.28)Δ𝐸(𝑞, 𝑞′) = 2𝐸(𝑞 0 ) -𝐸(𝑞) -𝐸(𝑞′) -2𝑔𝑛 0(5.29) 

[ 176 ]

 176 : Denschlag et al. (2002), "A Bose-Einstein Condensate in an Optical Lattice"

Figure 5 . 5 :

 55 Figure 5.5: Schematic representation of the pair creation lattice. The red vertical narrow and the large red circles represent the two beams of the ODT. The lattice, is represented in blue, with its two beams forming a 2𝜃 angle. Axes orientations are set in compliance with Figure 3.19 on page 129.

Figure 5 . 6 :

 56 Figure 5.6: Example of Rabi oscillations with the pair creation lattice, with 85 mW (value used for the dataset Table 5.2). Here we plot the normalised transferred population: 𝛮 𝑡 = 𝛮 1 -𝛮 0 𝛮 1 +𝛮 0

Figure 5 . 7 :

 57 Figure 5.7: Quasi-momenta of the pairs as a function of the BEC's quasimomentum. The lattice's depth is fixed to 𝑉 0 = 0.54 𝛦 𝑟𝑒𝑐 . The plain lines correspond to the numerical solving of the phase-matching conditions Eq. (5.20), adjusted with the free parameter 𝑛 0 . We observed that the pair generation starts for 𝑞 0 > 𝑞 𝑐 ≈ 0.53 ⋅ ̵ ℎ𝑘 𝑙𝑎𝑡 > 0.5, which is expected (cf. Remark 5.2). We find a BEC's density 𝑛 0 ≈ 1.3(2) ⋅ 10 13 cm -3 .

Figure 5 . 9 :

 59 Figure 5.9: 2D histograms of the pairs' density in the momentum space. The numerical values are normalised by the number of files (averaging) and the size of the pixels (40 bins for the 𝑞 𝑥 𝑞 𝑦 axes and 100 bins for the 𝑞 𝑧 axis): these values are therefore expressed in atoms ( ̵ ℎ𝑘 𝑙𝑎𝑡 ) 2. The coloured dashed lines mark out coarse domains used in Figure5.10 to compute 1D histograms for both modes separately. We can clearly see a sharp cut in the (𝑞 𝑥 , 𝑞 𝑧 ) domain on the left graph (close to 𝑞 𝑥 = 0): this is due to the copper plate (cf. Chapter 4) that hides most of the MCP's area corresponding to 𝑞 𝑥 > 0.

Figure 5 . 10 :

 510 Figure5.10: 1D pairs' density histogram in the momentum space. Both regions of emission are treated separately and the domains chosen to perform the binning are represented in Figure5.9 (with the corresponding colours). The values are normalised by the number of files (averaging) and the size of the bins (200 bins for each axis). The integral under each curve of the same colour is the same (equal to the average number of atoms in the domain). The shaded area under the plain lines correspond to the modes' size, estimated by studying the secondorder local correlation functions along each axis (cf.Figure 5.14). We can check that in the transverse plane the emission is almost mono-mode. However along the longitudinal axis the modes are too small to even be visible: the emission is multi-mode.

  [START_REF] Rarity | Experimental violation of Bell's inequality based on phase and momentum[END_REF]:[START_REF] Rarity | Experimental violation of Bell's inequality based on phase and momentum[END_REF], "Experimental violation of Bell's inequality based on phase and momentum" Chapter 2).

Figure 5 . 11 :

 511 Figure 5.11: Average number of particle per mode 𝜈 as a function of the centre 𝑞 𝑧 of the mode. The protocol used to compute these values is explained in the main text. The red line corresponds to the first atomic beam (𝑞 𝑧 ≈ 0.7 ̵ ℎ𝑘 𝑙𝑎𝑡 ), and the orange line corresponds to the second one (𝑞 𝑧 ≈ 1.4 ̵ ℎ𝑘 𝑙𝑎𝑡 ). Here 𝜈 𝑚 is the measured population, meaning that it reduced by the quantum efficiency of the MCP: the actual population are therefore approximately twice as large. The boxes inside which the atoms are counted are rectangular, with sizes chosen in compliance with the measured local correlations lengths (plotted in Figure 5.14): Δ𝑞 𝑖 = 2 × 𝜎 𝑖

Figure 5 . 12 :

 512 Figure5.12: Same graph as Figure5.11 but using the same boxes, whose size is given by:

[ 9 ]

 9 : Dussarrat et al. (2017), "Two-Particle Four-Mode Interferometer for Atoms" [59]: Lopes et al. (2015), "Atomic Hong-Ou-Mandel Experiment"

[ 7 ]

 7 [START_REF] Bonneau | Tunable Source of Correlated Atom Beams[END_REF], "Tunable Source of Correlated Atom Beams"

[ 71 ]

 71 [START_REF] Liu | N th -Order Coherence of Thermal Light[END_REF], "N th -Order Coherence of Thermal Light"

Figure 5 . 13 :

 513 Figure 5.13: 2D map of the secondorder correlation function, with regards to the 𝑣 𝑧 velocities. Each pixel corresponds to the 𝑔 (2) (𝑣 1 𝑧 ; 𝑣 2 𝑧 ) term, computed by counting the atoms falling in momenta boxes (with cylindrical shape) parametrised as such:

Figure 5 . 14 : 4 )

 5144 Figure 5.14: 1D local correlations as a function of the difference of quasimomenta 𝛿𝑞 = 𝑞 1 -𝑞 2 . Boxes (used to compute the correlations) are rectangular shaped, with widths Δ𝑣 𝑖 chosen such that they are smaller than the natural width of the modes in the probed direction, and roughly fitting the natural width of the modes in the transverse directions:

Figure 5 . 15 :

 515 Figure 5.15: 1D crossed correlations as a function of the sum of quasi-momenta 𝑞 1 𝑧 + 𝑞 2 𝑧 . Rectangular boxes are used to compute the correlations, parametrised as such:

:

  Perrier et al. (2019), "Thermal Counting Statistics in an Atomic Two-Mode Squeezed Vacuum State"

[ 62 ]

 62 : Perrier et al. (2019), "Thermal Counting Statistics in an Atomic Two-Mode Squeezed Vacuum State"If the state emitted by the source -and restricted to regions where the boxes are placed-is indeed a two-mode squeezed state, then the statistics of each mode should follow a thermal law (cf. Chapter 1):

Figure 5 . 16 :

 516 Figure 5.16: Counting statistics of the two modes modes emitted by the source. Here the boxes are the same as in Figure 5.11, meaning that the box used to compute the statistics of the first mode is larger than the one used for the second mode. The dashed lines represent the thermal probability law 𝛲 𝑡ℎ (𝛮) = 1 1+𝜈 𝑚 ( 𝜈 𝑚

.Figure 5

 5 Figure5.17: Same graph as in Figure5.16, except that now the boxes in which the statistics is computed have the same size for both modes. We used the same box as in Figure5.12, whose size in ̵ ℎ𝑘 𝑙𝑎𝑡 units is:

[ 62 ]

 62 : Perrier et al. (2019), "Thermal Counting Statistics in an Atomic Two-Mode Squeezed Vacuum State"

[ 59 ]

 59 : Lopes et al. (2015), "Atomic Hong-Ou-Mandel Experiment" [90]: Dussarrat (2017), "Expériences d'Optique Atomique Quantique, Interféromètres à 2 et 4 modes"
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 9 : Dussarrat et al. (2017), "Two-Particle Four-Mode Interferometer for Atoms"

  [START_REF] Lopes | Atomic Hong-Ou-Mandel Experiment[END_REF]:[START_REF] Lopes | Atomic Hong-Ou-Mandel Experiment[END_REF], "Atomic Hong-Ou-Mandel Experiment"
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 9 : Dussarrat et al. (2017), "Two-Particle Four-Mode Interferometer for Atoms"

1 Figure A. 1 :

 11 Figure A.1: Rabi oscillations of the Raman coupling, observed with fluorescence imaging.

Figure A. 2 :

 2 Figure A.2: Rabi oscillations of the Raman coupling, observed with the MCP.

  Figure A.1).

1𝑝ℎ 𝑅 and Ω 2𝑝ℎ 𝑅

 2𝑝ℎ , respectively the one-photon and two-photon angular Rabi frequencies:⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

Figure A. 3 :

 3 Figure A.3:Two-photon Rabi frequencies, for different powers and detuning of the Raman beams. The coloured dots are experimental measurements, and the dashed lines are given by Eq. (A.2), considering that only 77 % of the beams' power is available for the atoms: the absence of anti-reflective coating on this viewport, and polarisation imperfections because of the angle of the beams with respect to the direction of the magnetic bias may explain this loss.

Figure A. 1 ,

 1 Figure A.2). I performed numerical simulations, taking into account the gaussian repartition of the intensity of the beams 1 , the light shift with the Stark effect, and the spatial 1: that induces a spatial dependence of the Rabi frequency.

Figure B. 1 .

 1 

Figure B. 1 :

 1 Figure B.1: Chain of conversions for fluorescence imaging: from a number of atoms to the greyscales of a PNG file

Figure C. 4 :

 4 Figure C.4:We noticed the field generated by the "pusher" coil (used to remove the atoms in the 𝑚 𝐽 = 1 magnetic sublevel after the Raman transfer) can change magnetisation of the science chamber's surroundings. This coil is in voltage control (legacy reason), and we tried to apply a 400 ms magnetic pulse between successive bias measurement experiments. It revealed a characteristic hysteresis cycle, exhibiting the presence of a residual magnetisation field. Expressed in the frequency domain, we typically find 𝛣 offset ∼ 200 kHz.

𝐵 0 =

 0 𝛽 𝐶 𝑖 TOP + 𝛽 𝐷 (𝑖 TOP + 𝑖 BOT ) + 𝐵 offset = (𝛽 𝐶 + 𝛽 𝐷 ) small 𝑖 TOP + 𝛽 𝐷 𝑖 BOT + 𝐵 offset

Figure C. 4 )

 4 . The measurements of theses coefficients are given in Figure C.5.

Figure C. 5 :

 5 Figure C.5: Calibration of the bias 𝛣 0 in MHz as a function of the current in the two PSUs. Calibration done after the overheating episode of October 2020. The first graph is obtained with a constant current 𝑖 TOP = 198 A on the left and gives 𝛽 𝐷 = 2.226 MHz A -1 . The second graph on the right is obtained with a constant current 𝑖 BOT = 17 A and gives 𝛽 𝐶 + 𝛽 𝐷 = -0.175 MHz A -1 . These slopes are rather stable, however the current 𝑖 0 BOT corresponding to the zero bias is quite prone to change (in the range of 11 A to 16 A).

Figure D. 1 :

 1 Figure D.1: Blueprint of the protective copper plate. Design by M. Jean-René Rullier, IOGS design office.

1 .

 1 Für diese Zeichnung & das dazugehörige Modell gilt das Eigentumsrecht gemäß "Urheberrechtsgesetz DIN ISO 16016" 2. Es gelten, wenn nichts anderes angegeben, die üblichen DIN Normen für Anbaumaße, Maßtoleranzen, etc von Elektromotoren 3.Tolerierungsgrundsatz nach ISO 8015 "Unabhängigkeitsprinzip" 4. Gewichtsangaben sind Näherungswerte aus dem CAD und keine verbindlichen Angaben! 5. CAD Importdaten müssen mit dem beiliegenden PDF auf Maßstabsgerechten Import geprüft werden 1. German copyright according to "DIN ISO 16016" apply to this drawing and 3d-base-model 2. It apply, unless otherwise specified, the general DIN standards for elektromotor-design and -tolerances. 3. Tolerancing principle after ISO 8015 "independence principle" 4. Weights are approximate from CAD data. There are no mandatory entries! 5. When using OSWALD's CAD Data in customer cad the scale of drawing has to be checked by attached / additional pdf file! K, 2m long wire, glass fibre insulation, 0,3mm diameter, up to +400°C ) -1 thermocouple for quadrupole coil system on connector exit (+1 redundancy) -1 thremocouple for outer coil on connector exit (+1 redundancy) -1 thermocouple for inner coil on connector exit (+1 redundancy)

Figure D. 2 :

 2 Figure D.2: Blueprint of the new Oswald © clusters of coils.

  , 206 TOF time of flight. 133 TTL Transistor-transistor logic. 120, 164-168 V vODT vertical optical dipole trap. 139, 143, 151, 152, 189 Titre : Optique atomique quantique avec hélium métastable Mots clés : non-localité, atomes ultra-froids, mécanique quantique, inégalités de Bell, interférométrie atomique, helium métastable. Résumé : Les propriétés de corrélation et d'intrication de certains états quantiques à multiples particules ont été mises en évidence à partir des années 80, dans le cadre de la photonique. Depuis lors, la production et caractérisation d'états nonclassiques dans divers contextes est devenue une thématique de recherche très féconde, ainsi qu'un important enjeu pour le développement des technologies quantiques. Cette thèse présente une plateforme expérimentale permettant de préparer des atomes d'hélium dans des états d'impulsion fortement corrélés. Le dispositif de détection qui a été développé dans notre groupe (à trois dimensions et résolu à l'atome unique) permet de sonder efficacement ces propriétés de corrélation, ce qui est en général difficilement réalisable pour la plupart des montages expérimentaux similaires. Plus particulièrement, ce manuscrit contient une première partie théorique qui traite d'une part de la généralisation de l'effet Hong-Ou-Mandel dans un contexte à multiples particules, et d'autre part de la mise oeuvre d'une expérience de test des inégalités de Bell pour des atomes intriqués en vitesse. Ces deux expériences pourraient être réalisées prochainement dans notre équipe. Une seconde partie expérimentale rend compte des récents progrès effectués sur la plateforme, ainsi que les derniers résultats expérimentaux concernant les propriétés de corrélation de la source atomique que nous avons mise en place.

  

  

  

  : the first one is a single mode state, whereas the latter is a two-mode entangled state. Therefore we dedicate Subsection 2.2.3 to the study of interferences with thermal states.

	Perrier et al. (2019), "Thermal
	Counting Statistics in an Atomic Two-
	Mode Squeezed Vacuum State"

different
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		0.12										
		0.10										
	P out (N 1 , N 2 )	0.04 0.06 0.08										
		0.02										0
		0.00										2
	probability distribution for distinguishable thermal states interfering at a 50-50 beam splitter. We selected an average population per	0	2	4	N 1	6	8	10	10	8	6	N 2 4
	mode 𝜈 = 2. We find 𝛲 out (0, 0) ≈ 0.111											

  (Bell inequality with continuous variable measurements) Regarding the previous proof, one could notice that the very core of the mathematical reasoning is conducted by manipulating the quantities 𝐴(𝐚, 𝜆) and 𝐵(𝐛, 𝜆) (the measurements averaged over the local variables of the detectors) which are continuous variables contained in the interval [-1, 1]. This is very interesting because it means that the CHSH inequality actually holds for continuous variable measurements.Actually the fact that 𝐴 and 𝐵 should be bounded to [-1, 1] is not a strong constraint. Indeed even if 𝐴, 𝐵 ∈ ℝ, Alice and and Bob can always apply a function mapping it into [-1, 1] (tanh for in-

𝐛) -𝐸(𝐚, 𝐛′) + 𝐸(𝐚′, 𝐛′) + 𝐸(𝐚′, 𝐛) ≤ 2 ∎ Remark 2.3 stance). Less naïvely, if Alice and Bob have two channels of detection at their disposal (which is generally the case during an experiment) labelled "(𝐴 + , 𝐴 -)" and "(𝐵 + , 𝐵 -)" respectively, they can consider the normalised quantities

  Schematic of a CHSH inequality violation experiment, with photons entangled with respect to their polarisation. The detectors' orientations 𝐚 and 𝐛 are randomly chosen, right before the detection. The coincidences counter computes the correlations between the detections on the modes 𝛢 + /𝛢 -on the one hand, and on the modes 𝛣 + /𝛣 -on the other hand.
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	modes.							
	𝐴 +	𝐚	𝜈 𝛢	𝑆	𝜈 𝛣	𝐛	𝐵 +	Figure 2.3:
	𝐴 -					𝐵 -		
			Coincidences			
				counter				

.3. It is worth noticing that it involves four detection modes: two for Alice (denoted 𝐴 + and 𝐴 -) and two for Bob (denoted 𝐵 + and 𝐵 -). Actually, two modes are coming from the fact that the photons are emitted in opposite directions, and then two modes are again coming from the two polarisation states of the photons: therefore we indeed have 2 × 2 = 4

  Bell inequality violation for the momenta of photons by several standard deviations[START_REF] Rarity | Experimental violation of Bell's inequality based on phase and momentum[END_REF]. We will show in the next

	[27]: Rarity et al. (1990), "Experimental
	violation of Bell's inequality based on
	phase and momentum"

: Horne et al. (1989), "Two-Particle Interferometry" experiment was achieved one year later by Rarity and Tapster, who were able to measured a

  Schematic of the optical lattice used for Bragg diffraction. 𝜃 is defined as the half-angle between the beams. The coordinate system (⃗ 𝑒 𝑥 , ⃗ 𝑒 𝑦 , ⃗ 𝑒 𝑧 ) is given for consistency with the Figure3.19 (cf. Chapter 3).
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			2𝜃
		⃗𝑒 𝑧
		⃗𝑒 𝑥	⃗𝑒 𝑦
		Figure 2.6:
	[88]: Cronin et al. (2009), "Optics	
	and Interferometry with Atoms and	is nothing more than the coherent coupling between different atom
	Molecules" 1: the beating between two laser beams, slightly detuned with each other.	velocity classes. This coupling is established with an optical lattice 1 , which is resonant in a two-photon exchange process. The principle of Bragg diffraction is presented in Figure 2.5.

  One can expand the terms of (2.35), and check that𝐸 I (𝜑 𝑎 , 𝜑 𝑏 ) = 𝑃 +,+ (𝜑 𝑎 , 𝜑 𝑏 )-𝑃 +,-(𝜑 𝑎 , 𝜑 𝑏 )-𝑃 -,+ (𝜑 𝑎 , 𝜑 𝑏 )+𝑃 -,-(𝜑 𝑎 , 𝜑 𝑏 )(2.36) where

	1: indeed, if we wanted to interpret the
	normalised averaged correlator Eq. (2.35)
	as the correlator (2.2) of the CHSH
	inequality proof, one should consider
	the observable	𝑆 𝛢 (𝜑 𝑎 ) ⟨𝛮 𝛢 𝛮 𝛣 ⟩ and	𝑆 𝛣 (𝜑 𝑎 ) ⟨𝛮 𝛢 𝛮 𝛣 ⟩ which
	are not bounded to [-1, 1], and there-
	fore do not satisfy the hypotheses of the
	proof.		
	[19]: Clauser et al. (1974), "Experimental
	consequences of objective local theories"

  𝑃 𝑖,𝑗 (𝜑 𝑎 , 𝜑 𝑏 ) -𝑃 ∀,∀ ≤ 𝑃 𝑖,𝑗 (𝜑 𝑎 , 𝜑 𝑏 ) + 𝑃 𝑖,𝑗 (𝜑 𝑎 , 𝜑′ 𝑏 ) + 𝑃 𝑖,𝑗 (𝜑′ 𝑎 , 𝜑 𝑏 ) -𝑃 𝑖,𝑗 (𝜑′ 𝑎 , 𝜑′ 𝑏 ) -𝑃 𝑖,∀ (𝜑 𝑎 ) -𝑃 ∀,𝑗 (𝜑 𝑏 ) ≤ 0 (2.46) It is easy to derive from (2.46) an other inequality that resemble to the CHSH one 𝑆 ≤ 2. Just by considering the quantity 𝐸 III (𝜑 𝑎 , 𝜑 𝑏 ) = 𝑃 𝑖,𝑖 (𝜑 𝑎 , 𝜑 𝑏 ) + 𝑃 𝑖,𝑖 (𝜑 𝑎 , 𝜑′ 𝑏 ) + 𝑃 𝑖,𝑖 (𝜑′ 𝑎 , 𝜑 𝑏 ) -𝑃 𝑖,𝑖 (𝜑′ 𝑎 , 𝜑′ 𝑏 ) ≤ 𝑃 𝑖,∀ (𝜑 𝑎 ) + 𝑃 ∀,𝑖 (𝜑 𝑏 )
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	the CH inequality reads (long double inequality written on two lines):
	1 𝑃 ∀,∀	𝑖,𝑗=± ∑ (𝑖 × 𝑗)𝑃 𝑖,𝑗 (𝜑 𝑎 , 𝜑 𝑏 )	(2.47)
	Proof		
	(2.46) ⇒ (𝑖=𝑗)		( †)
	and		
	(2.46) ⇒		
			(2.45a)
			(2.45b)
			(2.45c)

𝑃 𝑖,∀ (𝜑 𝑎 ) = ∑ 𝑗=± 𝑃 𝑖,𝑗 (𝜑 𝑎 , 𝜑 𝑏 ) 𝑃 ∀,𝑗 (𝜑 𝑏 ) = ∑ 𝑖=± 𝑃 𝑖,𝑗 (𝜑 𝑎 , 𝜑 𝑏 ) (𝑗=-𝑖) -𝑃 𝑖,-𝑖 (𝜑 𝑎 , 𝜑 𝑏 ) -𝑃 𝑖,-𝑖 (𝜑 𝑎 , 𝜑′ 𝑏 ) -𝑃 𝑖,-𝑖 (𝜑′ 𝑎 , 𝜑 𝑏 ) +𝑃 𝑖,-𝑖 (𝜑′ 𝑎 , 𝜑′ 𝑏 ) ≤ 𝑃 ∀,∀ -𝑃 𝑖,∀ (𝜑 𝑎 ) -𝑃 ∀,-𝑖 (𝜑 𝑏 ) ( ‡)

then ( †) + ( ‡) gives

𝐸 III (𝜑 𝑎 , 𝜑 𝑏 ) + 𝐸 III (𝜑′ 𝑎 , 𝜑 𝑏 ) + 𝐸 III (𝜑 𝑎 , 𝜑′ 𝑏 ) -𝐸 III (𝜑′ 𝑎 , 𝜑′ 𝑏 ) ≤ 2 ∎
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Table 3 . 1 :

 31 Some important physical properties of metastable helium.

		Physical quantity	Notation Numerical Value
		Mass	𝑚	6.646 ⋅ 10 -27 kg
		Metastable state lifetime [92]	𝜏 ⋆	7870(510) s
		S-wave scattering length [93]	𝑎	7.512(5) nm
		tremely long half-life time. It is actually the longest-lived neutral atomic
		state (𝜏 ⋆ is 2 h11 !) and its characteristic decay time has been measured
	[92]: Hodgman et al. (2009),	to be in very good agreement with QED predictions [92]. It is in par-
	"Metastable Helium"		

Table 3 . 2 :

 32 Cooling transition 2 3 𝛲 2 → 2 3 𝑆 1 characteristics. One should keep in mind that the transition strengths Γ are the same for the three transitions 2 3 𝛲 0,1,2 → 2 3 𝑆 1 (with 10 -4 accuracy).

	Physical quantity	Notation	Numerical Value
	Transition wavelength [104]	𝜆		1083.33 nm
	Transition strength [95]	Γ		2𝜋 × 1.626 MHz
	Lifetime	𝜏 = 1 Γ	97.89 ns
	Absorption cross section	𝜎 =	3𝜆 2 2𝜋	5.604 ⋅ 10 -13 m 2
	Saturation intensity	𝐼 𝑠 =	𝜋ℎ𝑐Γ 3𝜆 3	0.167 mW cm -2
	Doppler limit temperature	𝑇 𝐷 =	̵ ℎΓ 2𝑘 𝛣	39.01 µK
	Recoil momentum Recoil velocity	𝑘 𝑟𝑒𝑐 = 𝑣 𝑟𝑒𝑐 = ℎ𝑘 𝑟𝑒𝑐 2𝜋 𝜆 ̵ 𝑚	5.8 µm -1 92.02 mm s -1
	Recoil energy	𝐸 𝑟𝑒𝑐 =	̵ ℎ 2 𝑘 2 𝑟𝑒𝑐 2𝑚	2.814 ⋅ 10 -29 J = 1.757 ⋅ 10 -10 eV
					= 42.47 kHz × ℎ
	Recoil temperature	𝑇 𝑟𝑒𝑐 =	𝐸 𝑟𝑒𝑐 𝑘 𝛣	2.038 µK

  In both cases the metastables are lost, and since the detail of the mechanism is not important in experiments, we generally call them both "two-body Penning collisions".

	Sirjean et al. (2002), "Ionization					
	Rates in a Bose-Einstein Condensate of					
	Metastable Helium"					
	[109]: Seidelin et al. (2003), "Using Ion					
	Production to Monitor the Birth and					
	Death of a Metastable Helium Bose Ein-					
	stein Condensate"					
	[110]: Seidelin et al. (2004), "Getting					
	the Elastic Scattering Length by Ob-					
	serving Inelastic Collisions in Ultracold					
	Metastable Helium Atoms"	;				
	1: which is sort of a particular case of the					
	previous mechanism, but we consider it separately as in a trap it is an important source of loss of atoms	He ⋆ + He ⋆ →	⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩	He + 2 + 𝑒 -	(AI)	(3.7)

▶ ...ionising with an other metastable 1 (Penning):

He + He + + 𝑒 -(PI)

where PI stands for Penning ionisation and AI for associative 1 Metastable helium 109 ionisation.

Table 3 . 3 :

 33 Raw features comparison between the old and new MCP. The longitudinal resolution h is a theoretical value, given by the geometry of the channels (cf. Figure3.6).

	Feature	Burle (old) Hamamatsu (new)
	Model reference		F1942-016F
	Channel diameter	25 µm	12 µm
	Bias angle	8°20°L
	ongitudinal resolution	178 µm	33 µm
	Open area ratio	45 %	90 %
	Maximum dark current		0.5 pA cm -2
	Estimated quantum efficiency	25 %	50 %
	Figure 3.8: Pictures taken during the		
	MCP swapping. On the top view, on		
	the left, the MCP is removed, and the		
	delay lines laying beneath are visible. On		
	the right picture, the MCP is mounted		
	(black disc) and connected to high volt-		
	ages copper wires. Everything shall be		
	placed in high vacuum chamber (the		
	large copper seal is visible below), and		
	the wires are connected to the external		
	high-voltage power supply via a vacuum		
	feedthrough flange (hole in the middle).		

Detectivity fluctuations Resolution (mean and standard deviation)

  

	Old	33 %	2.22 𝛿 𝑡 (16 %)
	New	16 %	0.41 𝛿

𝑡

(17 %) 
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 34 Slowing and trapping characteristics of metastable helium, with the 2 3 𝛲 2 → 2 3 𝑆 1 transition. Chap 2 -Condensats de Bose-Einstein d'hélium métastable

		Notation	Numerical Value
	Absorption cross section	𝜎 =	3𝜆 2 2𝜋	5.604 ⋅ 10 -13 m 2
	Saturation intensity	𝐼 𝑠 =	𝜋ℎ𝑐Γ 3𝜆 3	0.167 mW cm -2
	Maximum deceleration	𝑎 𝑚𝑎𝑥 =	Γ 2	̵ ℎ𝑘 𝑟𝑒𝑐 𝑚	4.69 ⋅ 10 5 m s -2
	Effective plasma temperature	𝑇 discharge	≈ 140 K
	Atomic jet velocity Minimum stopping length	𝑣 discharge 𝐿 𝑚𝑖𝑛 = 𝑣 2 discharge 2𝑎 𝑚𝑎𝑥	≈ 1200 m s -1 1.5 m
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 35 Characteristics of the Zeeman and transverse molasses beams

	Transverse molasses
	Horizontal waist	59 mm
	Vertical waist	11 mm
	Aspect ratio	5.4
	Power per beam	100 mW
	Peak intensity	59 𝛪 𝑠
	Detuning	-2.94 MHz
	Zeeman beam	
	Power	62 mW
	Detuning	-394 MHz

Table 3 .

 3 

	6: Characteristics of the MOT
	beams, and the pulses performed with
	it.	
	Waist	20 mm
	MOT	
	Power per beam	26 mW
	Peak intensity	25 𝛪 𝑠
	Detuning	-56.3 MHz
	Duration	1.5 s
	cMOT	
	Power per beam	190 µW
	Final peak intensity	1 𝛪 𝑠
	Final detuning	-14.3 MHz
	Ramp duration	20 ms
	Optical molasses	
	Power per beam	30 µW
	Peak intensity	0.18 𝛪 𝑠
	Detuning	-1.8 MHz
	Duration	3 ms

  3 Preparation of a Bose-Einstein condensate and single atom detection 𝐵′ 2 𝐵 0 is typically much larger than 𝐵″, and

			𝜔 ⟂ ≈	μ 𝛣 𝐵′ 2 𝑚𝐵 0	= 2𝜋	Λ 𝐵 0	(3.44)
		×10 9			
		1.25	fit		
	Atoms	0.75 1.00	data		
		0.50			
		0.25			
		1	2		
		RF frequency (MHz)		

Table 3 .7: Characteristics

 3 

		of the pump-
	ing and Doppler pulses. The detunings
	are selected by optimising the number of
	trapped atoms (for the optical pumping)
	and the temperature (for the Doppler
	cooling). Because of the presence of the
	magnetic field, they appear to be blue-
	detuned.	
	Waist	∼ 20 mm
	Optical pump	
	Power per beam	12 mW
	Peak intensity	∼ 11 𝛪 𝑠
	Detuning	23.8 MHz
	Duration	50 µs
	1D Doppler	
	Power	15 µW
	Peak intensity	∼ 0.015 𝛪 𝑠
	Detuning	26.4 MHz
	Duration	1 s

Table 3 . 8 :

 38 Characteristics of the ODT during the loading. Gravity is taken into account in the evaluation of the depth.

	vODT	
	Waist	42.5 µm
	Power	5 W
	Depth	160 µK
	Transverse trap. freq.	5.23 kHz
	Longitudinal trap. freq.	43 Hz
	hODT	
	Waist	135 µm
	Power	1 W
	Depth	3.7 µK
	Transverse trap. freq.	231 Hz
	Longitudinal trap. freq.	0.6 Hz

Table 3 . 9 :

 39 Characteristics of the ODT at the end of the evaporation. With such low powers, neither of the two beams can compensate the gravity. We give the total trapping depth of the trap, which is strongly dependent on the relative position of the waists of the beams: we just have an order of magnitude.

	vODT	
	Power	0.4 W
	Transverse trap. freq.	1.48 kHz
	Longitudinal trap. freq.	12.1 Hz
	hODT	
	Power	0.1 W
	Transverse trap. freq.	73.3 Hz
	Longitudinal trap. freq. 189 mHz

  .1.

	Power rising duration	150 ms
	Full power duration	500 ms
	Evap. ramp duration	2.5 s
	Evap. ramp time constant 500 ms
	Final power holding	400 ms

  .8 and Table4.1. Concerning the horizontal beam, we set up: Two 40 MHz AOMs create a 80 MHz frequency difference, such that there is no slow modulation of the intensity due to the beating between the two axis.

	Power rising duration	50 ms
	Full power duration	1.5 s
	Evap. ramp duration	1.3 s
	Evap. ramp decay rate	500 ms
	Minimal power holding 760 ms

Table 4 . 1 :

 41 Characteristics of the copper plate

	Thickness	6 mm
	Diameter	2.54 mm
	Cutting distance from centre 5 mm
	Tilt angle	7°W

  1: useful information can be found in the french official documentation same name). In practice we rarely have to work with it, because we use a Python framework designed for cold atoms experiments, that behaves as a software wrapper of the low-level ADbasic control of the sequencer: QControl3. This software project has started in February 2016 at the Max-Planck-Institute for Quantum Optics (MPQ), with the initial contribution of Dr. Christoph Gohle 2 , Dr. Sebastian Blatt 3 and Dr.

	2: postdoc at the time in the Quantum	
	Many Body Systems team.	Christian Groß 4 . In our group it was imported by Dr. Marc Cheneau 5 ,
	3: group leader, Quantum Many Body	
	Systems, strontium experiment.	
	4: group leader, Rydberg Dressed	
	Quantum Many-Body Systems.	
	5: who was introduced to QControl3	
	during his postdoc position at the MPQ.	

Table 4 .
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	3: Typical duty cycles of dif-
	ferent types of clouds. These numbers
	come from "stability test" sequences,
	acquired between February and April
	2022 (by taking the average run time
	rounded up to the first decimal). It may
	vary downside in the upcoming months,
	as we did not yet proceed to a final opti-
	misation of the duty cycle.
	cMOT	2.3 s
	Doppler	4.7 s
	Evaporated MT	6.2 s
	BEC in ODT	11.4 s

  user-modules that we use in our team are available on my own Github © Github page https://github.com/quentinmarolleau/ HAL-modules ; and our user-scripts are hosted on Charlie Leprince's page https://github.com/charlieleprince/HAL-scripts.
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		2.3.3 1D analysis: correlation amplitude and modes' width
	2.4 Emission statistics

  𝑇 𝑟 ≫ 100 µs ▶ when the lattice is switched off, Bloch's states are projected on the free space eigenstates, which are the plane waves. If the switching off is done abruptly, we are basically measuring the Bloch's states components in the plane waves' basis. It turns out that when the lattice is shallow, the decomposition of the Bloch's states is very close to the trivial decomposition (only one component in the plane waves' basis is populated)[START_REF] Dussarrat | Expériences d'Optique Atomique Quantique, Interféromètres à 2 et 4 modes[END_REF][START_REF] Hecker Denschlag | A Bose-Einstein Condensate in an Optical Lattice[END_REF] 

	[90]: Dussarrat (2017), "Expériences
	d'Optique Atomique Quantique, Inter-
	féromètres à 2 et 4 modes"
	[176]: Denschlag et al. (2002), "A Bose-
	Einstein Condensate in an Optical Lat-
	tice"
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 51 Parameters of the lattice

	𝜆 𝑙𝑎𝑡	1064 nm
	𝜃	83°𝑎
	𝑙𝑎𝑡	536 nm
	𝑘 𝑙𝑎𝑡	5.86 µm -1 ≈ 1.01𝑘 𝑟𝑒𝑐
	𝑣 𝑙𝑎𝑡	93 mm s -1
	typical 𝛿𝜔	2𝜋 × 105 kHz
	typical 𝑣 0	

Table 5 . 2 :

 52 Sequence reference and informations about the dataset chosen to measure densities and correlation

	Date	13/05/2022
	Sequence number	022
	Lattice detuning	𝛿𝜔 = 2𝜋 × 105 kHz
	Power per beam	85 mW
	Lattice ramping up/down duration	100 µs
	Lattice max. power duration	800 µs
	Lattice depth BEC's quasi-momentum	𝑉 0 = 0.54(1) 𝐸 𝑟𝑒𝑐 𝑞 0 = 0.6 ̵ ℎ𝑘 𝑙𝑎𝑡
	vODT power	0.4 W
	hODT power	0.1 W
	Number of files	802

  .14 in the Subsection 2.3.3). We find Atomic beam 𝑛 𝑥 𝑛 𝑦 𝑛 𝑧 𝐪 𝐳 ≈ 𝟎.𝟕 ̵ 𝐡𝐤 𝐥𝐚𝐭 3.6 2.4 15.2 𝐪 𝐳 ≈ 𝟏.𝟒 ̵ 𝐡𝐤 𝐥𝐚𝐭 3.2 2.6 12.4

Table 5 . 3
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	: Estimation of the number of
	atomic modes emitted along each direc-
	tion, estimated with the ratio (5.41) be-
	tween the RMS size of the modes, and
	the RMS width of the pairs' density pro-
	file.

  7 ̵ ℎ𝑘 𝑙𝑎𝑡 ), and the orange line corresponds to the second one (𝑞 𝑧 ≈ 1.4 ̵ ℎ𝑘 𝑙𝑎𝑡 ). Here 𝜈 𝑚 is the measured population, meaning that it reduced by the quantum efficiency of the MCP: the actual population are therefore approximately twice as large. The boxes inside which the atoms are counted are rectangular, with sizes chosen in compliance with the measured local correlations lengths (plotted in Figure 5.14): Δ𝑞 𝑖 = 2 × 𝜎 𝑖

	√
	𝑐	2. We give here
	these sizes in units of ̵ ℎ𝑘 𝑙𝑎𝑡 :
	red line: Δ𝑞 𝑥	0.18
	Δ𝑞 𝑦 0.24
	Δ𝑞 𝑧 0.013
	blue line: Δ𝑞 𝑥	0.14
	Δ𝑞 𝑦 0.17
	Δ𝑞 𝑧 0.011

  5.43) It remains a small difference between 𝜈 𝑚,1 and 𝜈 𝑚,2 : this is not something new for us (this sort of unbalance has always been observed), and it has also been reported by Ketterle et al., in similar experiments[START_REF] Campbell | Parametric Amplification of Scattered Atom Pairs[END_REF]. Two[START_REF] Campbell | Parametric Amplification of Scattered Atom Pairs[END_REF]:[START_REF] Campbell | Parametric Amplification of Scattered Atom Pairs[END_REF], "Para-

	metric Amplification of Scattered Atom
	Pairs"

  During the digital treatment of the data, the momentum space is discretised into boxes of volume 𝑉 Ω = Δ𝑞 𝑥 Δ𝑞 𝑦 Δ𝑞 𝑧 , that we can index with 𝑚 𝑥 , 𝑚 𝑦 , 𝑚 𝑧 ∈ ℤ (let us say 𝑚 𝑥 = 𝑚 𝑦 = 𝑚 𝑧 = 0 corresponds to the box centred on 𝐪 = 0). The average number of atoms in the box (𝑚 𝑥 , 𝑚 𝑦 , 𝑚 𝑧 ) corresponds to the integration of the density of atoms in that box:⟨𝑁(𝑚 𝑥 , 𝑚 𝑦 , 𝑚 𝑧 )⟩ = 𝑛 0 ∏Then, the definition of the second order correlation function is𝑔 (2) (𝐪, 𝜹𝐪) = ⟨𝑁 𝐪 𝑁 𝐪+𝜹𝐪 ⟩ ⟨𝑁 𝐪 ⟩ ⟨𝑁 𝐪+𝜹𝐪 ⟩(5.51)now if we work with our discretised quantities (let us consider 𝑚 𝑥 = 𝑚 𝑦 = 0 for simplicity), and if we add the expected profile of correlations (using the correlation width 𝜎 𝑧 𝑐𝑜𝑟,𝑧 that we measured experimentally) we end up with: 𝑔(2) (𝑚 𝑧 , 𝑚 ′ 𝑧 ) =

					𝑞 2 𝑖				
					2𝜎 2 𝑛,𝑖			(5.49)
					(𝑚 𝑖 + 1 2 )Δ𝑞 𝑖 d𝑞 𝑖 𝑒 -	𝑞 2 𝑖 2𝜎 2 𝑛,𝑖	(5.50)
				𝑖∈{𝑥,𝑦,𝑧} (𝑚 𝑖 -1 2 )Δ𝑞 𝑖				
	∏ 𝑖∈{𝑥,𝑦}	-	Δ𝑞 𝑖 2 ∫ Δ𝑞 𝑖 2	d𝑞 𝑖 d𝑞 ′ 𝑖	(𝑚 𝑧 + 1 2 )Δ𝑞 𝑧 ∫ (𝑚 𝑧 -1 2 )Δ𝑞 𝑧 (𝑚 ′ (𝑚 ′ 𝑧 + 1 2 )Δ𝑞 𝑧 ∫ 2 )Δ𝑞 𝑧 𝑧 -1	d𝑞 𝑧 d𝑞 ′ 𝑧 𝑒 -	𝑞 2 𝑖 +𝑞 ′ 𝑖 2 2𝜎 2 𝑛,𝑖 𝑒 -	𝑞 2 𝑧 +𝑞 ′ 𝑧 2 2𝜎 2 𝑛,𝑧 𝑒 -	𝑞 2 𝑧 -𝑞 ′ 𝑧 2 2𝜎 2 𝑐𝑜𝑟,𝑧
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 54 Comparison between the expected amplitude of the local correlations, and the ones measured and plotted in Figure5.14. Notice that even the "expected" values make use of measured ones, due to the 𝜎

		𝐀 𝐣 𝐢	Expected "averaged" value Measured value
	𝑗 𝑖 correlation width,	𝐴 𝑥 1 𝐴 𝑦 1 𝐴 𝑧 1	0.41 0.39 0.91	0.70(9) 0.48(3) 0.91(5)
	that we assume to be independent of their amplitude.	𝐴 𝑥 2 𝐴 𝑦 2 𝐴 𝑧 2	0.34 0.32 0.86	0.47(3) 0.47(6) 0.62(4)

  Clauser, Horne, Shimony and Holt. 73, 78, 80, 86, 97 BEC Bose-Einstein condensate. xiii, xvi, xvii, 102-104, 108, 110, 124, 125, 138-141, 143-146, 151-155, 157, 158, 168, 173, 174, 176-186, 188-191, 197 BS beam splitter. 15, 48, 87 C CCD charge-coupled device. 149 CFD constant fraction discriminator. xvi, 115-117 CH Clauser and Holt. xii, 67, 94, 95 CHSH Clauser, Horne, Shimony and Holt. xii, xv, 67, 72-74, 76, 79, 89, 91-97 CLI command line interface. 167 cMOT compressed magneto-optical trap. 132, 133, 162, 168 CPU central process unit. 166 D DBR distributed Bragg reflector. 104 DCE dynamical Casimir effect. 158 DFB distributed feedback laser. 104, 159, 160, 162 DTPI Détection: Temps, Position, Image. 116, 117 E EOM electro-optic modulator. 158 EPR Einstein, Polsky and Rosen. ix, xii, 2, 7, 67-69, 71, 72, 74 EPRB Einstein-Polsky-Rosen-Bohm. xv, 3, 69, 70, 73, 76 F FWM four-wave mixing. 174, 176, 178, 181 G GPIB general purpose interface bus. 165 GUI graphical user interface. 167-169, 171 H HAL Helium Atom Locator. xvii, 169-172 HBT Hanbury Brown and Twiss. 125, 197 hODT horizontal optical dipole trap. 139, 140, 143, 154, 155, 158, 189 HOM Hong-Ou-Mandel. xi, xv, 11-15, 17-25, 31, 32, 37, 48, 66, 148, 187, 195, 209, 210 I IGBT insulated gate bipolar transistor. xiv, xviii, 187, 206, 213, 219 IOGS Institut d'Optique Graduate School. 166, 224 L LUMAT Lumière-Matière. 116, 117 M MCP microchannel plate. xiii, xvi-xviii,

	Special Terms
	A
	AOM acousto-optic modulator. 131, 142, 149, 151, 160, 161, 167, 168, 188
	B
	BCHSH Bell,

  , 215 MOT magneto-optical trap. xviii, 101, 102, 104, 105, 110, 125, 126, 128-133, 136, 146, 149, 151, 152, 156, 159, 165, 206, 219 MPQ Max-Planck-Institute for Quantum Optics. 166 MT magnetic trap. xvi-xviii, 128, 135-140, 144, 154, 164, 165, 168, 170, 187, 219 N nHOM 𝑛-particle Hong-Ou-Mandel. 24, 54 NIM Nuclear Instrument Module. 116, 118-120 NIST National Institute of Standards and Technology. 72, 176 O OAR open area ratio. 113 ODT optical dipole trap. xvi-xviii, 102, 128, 138-140, 144, 149-152, 154, 157, 158, 164, 168, 185, 187, 188, 191 OI optical isolator. 149, 160 OM optical molasses. 132-134 P PEEK polyether ether ketone. 156 PM photomultiplier. 79 PSD phase-space density. 132, 134, 137, 139 PSU power supply unit. xviii, 117, 135, 165, 166, 187, 206, 219, 220 Q QED quantum electrodynamics. 104, 105 R RF radio frequency. xvi, 104, 136-138, 149, 151, 160-163, 165, 166, 168, 188, 219 S SCPI Standard Commands for Programmable Instruments. 167 SNSPD superconducting nanowire single-photon detector. 79 SPDC spontaneous parametric down-conversion. 174-176 SWIR short-wave infrared. 149 T TDC time-to-digital converter. xvi, 115, 116, 119-122 TF Thomas-Fermi. 141 TMS two-mode squeezed vacuum state. xv,
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† considered to be an event in the sense of special relativity.

1: in particular, the mathematical treatment of the finite quantum efficiency.

2: in the past, even when the bias and therefore the transverse trapping frequency changed for some reason (at fixed current 𝑖 BOT , cf. Section 2 in Chapter 1), the product 𝜔 2 × 𝛣 0 remains the same.

̵ ℎ𝑘 𝑙𝑎𝑡𝑚 (327 ms). Both boxes have the same "size" -a few milliseconds-which is larger than the typical time arrival spread of a BEC on the MCP (cf. Figure

3.25). An exemple of such a

3: in practice we tested different values of the box's height Δ𝑣 𝑧 , to find the value starting from which the measured correlation length does not change, and we finally set Δ𝑣 𝑧 smaller than this, to have a security margin.
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What is new?

We explored a regime where the populations are approximately 10 times larger than before. In particular we checked that:

▶ each of the two modes have the expected properties of a thermal state, in particular:

• the bosonic bunching (𝑔 (2) (0) = 2) when we probe the local correlations ; • a thermal counting statistics ;

▶ we find non-zero crossed correlation between both mode, even if we did not yet find a quantum signature of this correlation (such as the violation of the Cauchy-Schwarz inequality).

What do we want to do next?

Concerning the study of the source, when the experiment will be running again, we would like to acquire dataset so as to:

▶ obtain the full joint counting statistics: i.e. 𝑃(𝑁 1 , 𝑁 2 ) and compare it to the model that has been derived in Chapter 1 ; ▶ use smaller boxes for the computation of the correlations, and try to find a situation where the nonlocal correlations are larger than the local ones. This could lead to the violation of the Cauchy-Schwarz inequality, and therefore reveal some quantumness in the state that we generate.