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Résumé en français

N.B. Le présent résumé est inspiré de la seconde section du chapitre d’in-
troduction (en anglais) de ce manuscrit.

Contexte et motivation

Notre équipe de recherche1 a développé une technique de détection à 3 1: cette thèse a été conduite au sein de
l’équipe « Optique Atomique Quan-
tique » (sous constituante du groupe
« Gaz quantiques ») du laboratoire
Charles Fabry.

dimensions, résolue pour des atomes individuels. Cela donne accès à de
nombreuses informations qui sont généralement difficile d’accès dans
les expériences de physique atomique, notamment les propriétés de
corrélation entre atomes spatialement séparés. Cette capacité à mesurer
des particules individuelles est une grande force de notre dispositif
expérimental. En effet, les corrélations entre atomes peuvent comporter
la signature d’effets purement quantiques : les propriétés d’intrication
et de non-localité de l’information quantique en sont des exemples
particulièrement marquants [1–4]. [1]: Reid et al. (1986), “Violations of

Classical Inequalities in Quantum
Optics”
[2]: Kheruntsyan et al. (2012), “Viola-
tion of the Cauchy-Schwarz Inequality
withMatter Waves”
[3]: Volovich (2016), “Cauchy–Schwarz
Inequality-Based Criteria for the
Non-Classicality of Sub-Poisson and
Antibunched Light”
[4]: Wasak et al. (2016),
“Cauchy–Schwarz Inequality for
General Measurements as an Entangle-
ment Criterion”

Parallèlement à cela, depuis le milieu des années 2000 notre équipe a
exploré différentes procédures de préparation de paires d’atomes cor-
rélés (émis au sein de jets atomiques) [5–7]. Dans certains régimes

[5]: Perrin et al. (2007), “Observation of
Atom Pairs in Spontaneous Four-Wave
Mixing of Two Colliding Bose-Einstein
Condensates”
[6]: Jaskula et al. (2012), “Acoustic Ana-
log to the Dynamical Casimir Effect in a
Bose-Einstein Condensate”
[7]: Bonneau et al. (2013), “Tunable
Source of Correlated Atom Beams”

de paramètres expérimentaux, de telles paires atomiques peuvent con-
stituer un état quantique intriqué, et grâce à l’interaction lumière-
matière ceci ouvre des perspectives intéressantes pour réaliser de nom-
breuses expériences inspirées de l’optique quantique.

Relativement récemment, l’équipe à été enmesure d’observer l’analogue
atomique de l’effet Hong-Ou-Mandel [8]. Elle a également montré

[8]: Lopes (2015), “An Atomic Hong-
Ou-Mandel Experiment”

une preuve de principe d’interféromètre à deux particules, qui pourrait
être exploité pour mettre en œuvre une expérience de violation des
inégalités de Bell portant sur la vitesse des atomes [9]. Un tel test de

[9]: Dussarrat et al. (2017), “Two-
Particle Four-Mode Interferometer for
Atoms”

non-localité quantique pour des particules massives n’a encore jamais
été observé2 et constitue à ce jour un des objectifs principaux de notre

2: en considérant l’impulsion des
atomes comme paramètre quantique.

équipe. Cette mesure révélerait la nature non-classique d’un degré de
liberté purementmécanique, ce quimarquerait le franchissement d’une
étape importante sur le plan épistémologique. Par ailleurs, comme les
particules mises en jeu sontmassives (et donc assujetties à l’interaction
gravitationnelle), cette expérience réaliserait un pas supplémentaire vers
l’étude du couplage entre mécanique quantique et relativité générale,
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sur le plan expérimental [10].[10]: Penrose et al. (1998), “Quantum
computation, entanglement andstate re-
duction” Durant cette thèse, j’ai contribué à la modernisation et la jouvence de

nos installations expérimentales, qui souffraient depuis plus de cinq ans
de nombreux problèmes techniques, inhibant fortement l’obtention de
nouveaux résultats scientifiques. Ces multiples évolutions ont conduit
à l’obtention d’un condensat de Bose-Einstein d’hélium métastable
dans un piège optique. À partir de ce condensat, nous avons été en
mesure de produire des paires atomiques corrélées dans un régime
« intense » qui n’avait pas été exploré dans les stades antérieurs de
l’expérience.

J’ai également effectué une courte étude théorique traitant d’une ver-
sion généralisée des expériences de type Hong-Ou-Mandel, en consid-
érant une situation où plus de deux particules entrent en jeu. Cette
étude prend en considération les effets d’efficacité quantique finie des
détecteurs utilisés. Une telle expérience pourrait êtremise en place dans
notre laboratoire dans un futur proche.

Résumé rapide de chaque chapitre

Cemanuscrit est organisé en cinqchapitres, répartis dans deux grandes
parties :

Considérations théoriques

Chapitre 1 : de l’effet Hong-Ou-Mandel à deux particules, à sa
version généralisée à N particules.

L’effet Hong-Ou-Mandel est bien connu en optique quantique : ob-
servé pour la première fois en 1987, il a été reproduit avec des atomes
par notre équipe en 2015. Après quelques rappels concernant l’effet
Hong-Ou-Mondel « original » à deux particules, on démontre dans
ce chapitre un ensemble de résultats analytiques qui présentent de l’in-
térêt pour la mise en œuvre d’une expérience que l’équipe souhaiterait
réaliser ultérieurement. En particulier les propriétés d’indiscernabilité
et de non-classicité révélées par certaines observables y sont discutées.
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Chapitre 2 : inégalités de Bell pour des atomes intriqués en
impulsion.

Le début du secondchapitre expose les idées essentielles de l’argument
EPR, et montre comment les inégalités de Bell permettent d’en vérifier
expérimentalement les conclusions.

Après une introduction à la question du théorème de Bell, on détaille
dans une seconde section le sujet d’intérêt principal pour l’équipe de
recherche : la réalisation d’une expérience de test des inégalités de Bell
concernant la vitesse des atomes. Il est en particulier montré qu’un
traitement astucieux des données expérimentales de corrélation permet
d’accroître le rapport signal à bruit pour une telle mesure.

Réalisations expérimentales

Chapitre 3 : détection et obtention d’un condensat de Bose-
Einstein d’hélium métastable.

Cechapitre commence par rappeler comment le caractère métastable
de l’hélium présente un avantage pour la détection de particules indi-
viduelles. Dans une seconde partie, il détaille les différentes étapes de
refroidissement du gaz, vers le seuil de condensation.

Chapitre 4 : évolution et changements technologiques pendant
la thèse.

Cechapitre expose les différentes pannes et problèmes rencontrés sur
l’expérience, avant et pendant la thèse. Il est expliqué en quoi ces diffi-
cultés ont ralenti la production scientifique, ainsi que les décisions et
mesures prises pour les résoudre.

Chapitre 5 : étude de la source de paires d’atomes corrélés.

Le chapitre final présente les récents résultats scientifiques, obtenus
pendant la thèse. Les données exposées n’ont cependant pas été acquises
dans la perspective d’une communication scientifique, mais plutôt
pour dresser une caractérisation préliminaire de la source de paires
fonctionnant dans un nouveau régime.
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Après approximativement trois mois de bon fonctionnement de l’ex-
périence, l’acquisition de ces données a de nouveau été stoppé par une
série de problèmes techniques, survenus à la toute fin de la thèse. Ce
chapitre propose néanmoins un traitement aussi complet que possi-
ble des données les plus prometteuses, obtenues avant ces nouvelles
pannes.

En complément, des rappels théoriques sur le processus de création de
paires servent d’introduction auchapitre.
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2 Introduction

1 Entanglement: from the early 20th

century to nowadays

After more than forty years of experiments, and twice as long of meta-
physical debates, it is now largely admitted –even by the layman– that
quantum entanglement is one of themost remarkable features of quan-
tum theory. Even though it seems to be an obvious component of
quantum formalism of many body systems, the question of its physical
meaning remains the subject of many heated debates: it is one aspect
of the well-known question of quantum reality[11, 12].[11]: Tegmark (1998), “The Interpreta-

tion of QuantumMechanics”
[12]: Laloë (2011), “Comprenons-nous
vraiment la mécanique quantique ?”

1.1 The origins: EPR paradox

Historically, quantum entanglement was put in the spotlight for the
first time back in 1935, thanks to the extremely famous Einstein, Polsky
and Rosen (EPR)’s article[13]. A fundamental element of the EPR[13]: Einstein et al. (1935), “Can

Quantum-Mechanical Description
of Physical Reality Be Considered
Complete?”

reasoning is the principle of locality, which is the idea that any physical
description of a natural phenomenon† should involve local parameters
only. This means that all the information needed to describe an event
–as accurately as possible– is contained in an infinitesimal space-time
volume, centred on that event. Einstein was obviously very much at-
tached to the locality hypothesis, which is the core pillar of the theory of
relativity. Through their work, EPR proved that if we assume the prin-
ciple of locality to be correct, quantum theory is therefore incomplete1,1: a more complete wording of the EPR

theorem will be given in the next chap-
ter.

and requires additional hidden and local elements, so as to cover the
whole reality of Nature. Such a theory is usually named local-realistic
theory.

Bohr is known tobe one of themajor opponents toEPR’s position, and
quickly objected (in an article of the same name)[14] that the conclu-[14]: Bohr (1935), “Can Quantum-

Mechanical Description of Physical
Reality be Considered Complete?”

sion of the EPR theorem –which he did not disprove– should not have
been the idea that quantum physics were an incomplete constituted
theory, but that local realismmust collapse. In this paradigm, entangled
systems must be considered as a whole: it no longer makes any sense
to deal with the alleged physical properties of its sub-components22: that is an aspect of the Copenhagen

interpretation of quantummechanics. (without loss of information at least). In Borh’s mind, the nonsepara-
bility of quantumstatesmeans that some part of quantum information
can be carried in a nonlocal way, and individual particles should not
systematically be considered as the ultimate substrates to the physical
properties of Nature.

† considered to be an event in the sense of special relativity.
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It is nevertheless worth noticing that both visions agree on the validity
of the predictions of quantum theory (to argue against it would have
been quite a tough position to defend considering the unprecedented
series of experimental successes this theory provided1). The essential 1: Franck-Hertz’s electron collision ex-

periment (1914). Stern-Gerlach experi-
ment (1920). Compton scattering exper-
iment (1923). Davisson-Germer electron
diffraction experiment (1927). Ander-
son’s discovery of positron (1932)...

difference between these two schools of thought consists in the belief
–or disbelief– in a deeper theory, involving additional local degrees of
freedom.

1.2 John Bell and the emergence of the quantum
information theory

Apart from Einstein, Bohr and Schrödinger2, few physicists of the first 2: to whomwe owe the term entangle-
ment...half of the 20th century seemed to show a legitimate interest in the

question of the interpretation of entangled states. Since it does not put
the roots of quantummechanics at stake, it was quickly relegated to
the list of metaphysical issues, thus making it a matter for debates in
epistemological circles.

The physical essence of the question was revived by John S. Bell, in an
article published in 1964 with thunderous consequences[15]. Thanks [15]: Bell (1964), “On the Einstein Podol-

sky Rosen paradox”to an ingenious use of correlators3, Bell pinpointed the fact that an
3: a more detailed derivation of the Bell
inequalities will be given in the next
chapter

“extended” version of quantummechanics incorporating local hidden
variables could not reproduce all predictions of the “standard” quan-
tum theory. In particular, if one would consider a two-body system,
entangled with respect to a given observable quantity O –e.g. two
spin-12 particles

4– one could pay attention to the correlations between 4: this is the example proposed by D.
Bohm[16] to simplify the original EPR
argument, historically dealing with par-
ticles spatially entangled. It is now often
called an EPRB experiment.

the measurements of O made upon one particle by a first operator
(commonly calledAlice), and the same measurements made upon its
entangled partner by a second operator (Bob). Bell proved that due to
the locality hypothesis, the degree of correlation between the observa-
tions of Alice and Bob is bound to some numerical limit, that can be
overcome in the purely quantum realm. In other words, quantum the-
ory predicts an excess of correlations, to be compared with the intrinsic
constraints imposed by locality.

Thus, we have two different classes of theories at our disposal, that ex-
hibit two different experimental results. The question of the existence
of Einstein’s hidden variables is therefore experimentally accessible.
Multiple formal alternatives of the Bell inequalities were proposed in
the following years[17–19]

[17]: Clauser et al. (1969), “Proposed Ex-
periment to Test Local Hidden-Variable
Theories”
[18]: Bell (1971), “Introduction to the
hidden-variable question”
[19]: Clauser et al. (1974), “Experimental
consequences of objective local theories”

. After a pioneering realisation by Clauser
and Freedman [20]

[20]: Freedman et al. (1972), “Experi-
mental Test of Local Hidden-Variable
Theories”

, the first convincing measurements of a Bell in-
equalities violation were published in the early 1980s by Alain Aspect
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and his coworkers[21–24]. The tour de force of these experiments was[21]: Aspect (1976), “Proposed experi-
ment to test the nonseparability of quan-
tummechanics”
[22]: Aspect et al. (1981), “Experimen-
tal Tests of Realistic LocalTheories via
Bell’sTheorem”
[23]: Aspect et al. (1982), “Experimen-
tal Realization of Einstein-Podolsky-
Rosen-BohmGedankenexperiment”
[24]: Aspect et al. (1982), “Experimental
Test of Bell’s Inequalities Using Time-
Varying Analyzers”

to take extra care in keeping a spacelike separation between Alice’s and
Bob’s detections, which is a crucial point in order to put the substan-
tial nonlocality of entangled states to the test. A violation was indeed
observed, with statistical confidence better than 240 standard devia-
tion! More than constituting the verdict in a conceptual opposition
between Bohr and Einstein –that endured for almost fifty years– the
joint contributions of Bell and Aspect are a notable milestone in the
advent of modern quantum physics.

Many similar experiments have been achieved since then. Amongst
many others, let us cite the works of Shih et al. [25, 26] that popularised[25]: Shih et al. (1988), “New Type

of Einstein-Podolsky-Rosen-Bohm Ex-
periment Using Pairs of Light Quanta
Produced by Optical Parametric Down
Conversion”
[26]: Kiess et al. (1993), “Einstein-
Podolsky-Rosen-Bohm experiment us-
ing pairs of light quanta produced by
type-II parametric down-conversion”

the process of parametric excitation to induce the creation of entan-
gled particles, and Rarity-Tapster[27] that designed an interferometer

[27]: Rarity et al. (1990), “Experimental
violation of Bell’s inequality based on
phase and momentum”

whose topology is well-adapted to the probing of the entanglement of
velocities. Concerning the epistemological validity of the conclusions
to those experiments, the final piece of this work was obtained in a con-
comitantmanner by three independent groups –respectively inDelpht,
Vienna and Boulder– through the realisation of the so-called loophole-
free experiments [28–30], carefully avoiding any possible local-realistic

[28]: Hensen et al. (2015), “Loophole-
free Bell inequality violation using
electron spins separated by 1.3 kilome-
tres”
[29]: Giustina et al. (2015), “Significant-
Loophole-Free Test of Bell’s Theorem
with Entangled Photons”
[30]: Shalm et al. (2015), “Strong
Loophole-Free Test of Local Realism”

interpretation of the inequalities.

Even though entanglement could be considered to be a mainstream
feature in experimental quantum physics nowadays, it became clear
that the ability to prepare those highly non-classical states in various
contexts is one of the most burning issues for our century. With regard
to the manipulation of information, it is indeed entanglement that is
at the root of the advantage of quantum computing over its classical
counterpart. On a purely formal point of view, it is no difficult task
to convince oneself of the upgraded possibilities offered by quantum
information. In the wake of John Bell, many theorists with fertile imag-
inations came upon various situations that can be efficiently handled by
quantum systems: quantum pseudo-telepathy1 in game theory [31–33],1: strategy based on sharing a set en-

tangled particles between several partici-
pants to a given game, making possible
to the player to beat the optimal classical
limit achieving a collective win.

superdense coding [34, 35] in communication protocols2, quantum

2: allows the communication of a large
number of classical bits via the trans-
mission a smaller amount of entangled
qubits.

teleportation of states [36–38], quantum computing [39, 40], etc.

To some extent, the prodigious booming of research activity in quan-
tum information fields which has been witnessed in the last decades
(and, more recently, strongly stimulated by remarkable financial in-
vestments), can be considered to be a legacy of Bell’s avant-garde con-
tribution. This era of vigorous scientific progress, carried out by the
prominent quantum technologies, is sometimes called “second quantum
revolution” [41].
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1.3 Quantum technologies

In 1948, the discovery of the transistor effect by Bardeen, Shockley and
Brattain paved the way to the technological development of computers,
that propelled the world in the new age of information processing and
digital communication. This major contribution was awarded by the
Nobel prize in 1956.

Very recently, the Nobel prize in physics 2022 was awarded jointly to
Alain Aspect, John F. Clauser and Anton Zeilinger “for experiments
with entangled photons, establishing the violation ofBell inequalities and
pioneering quantum information science”. In addition to the great epis-
temological significance of thework conductedby these three physicists,
this prize is also the recognition that the second quantum revolution
—initiated in laboratories during the early 80s—gave birth to a radically
new way to manipulate and exchange information. Indeed, during
the last three decades, people have identified a number of situations
where the coherent superposition and entanglement of states can pro-
vide a quantum advantage. Just to name a few, we can mention prime
numbers factorisation (and the subsequent question of quantum cryp-
tography) [42]

[42]: Shor (1999), “Polynomial-Time Al-
gorithms for Prime Factorization and
Discrete Logarithms on a Quantum
Computer”

, the speed up search of an element in a list [43]

[43]: Grover (1996), “A Fast Quantum
Mechanical Algorithm for Database
Search”

or the
secured quantum-key distribution for telecommunications [44, 45]

[44]: Bennett et al. (1984), “Quantum
Cryptography”
[45]: Ekert (1991), “QuantumCryptog-
raphy Based on Bell’sTheorem”

.
The concrete implementations of this new kind of protocols requires
the use of technical platforms able to generate, store, transport, and
interact with qubits1

1: the quantum elementary unit of in-
formation, consisting in a two-level
quantum system.

. Various quantum systems seem to be available
to realise qubits2

2: it is perhaps not yet clear which one
will be the most sustainable.

: photons [46], neutral atoms [47], superconductors [46]: Wein et al. (2022), “Photon-
Number Entanglement Generated by
Sequential Excitation of a Two-Level
Atom”
[47]: Browaeys et al. (2020), “Many-
Body Physics with Individually Con-
trolled Rydberg Atoms”

[48], trapped ions [49] etc. These platforms constitute an important

[48]: Lescanne et al. (2020), “Exponen-
tial Suppression of Bit-Flips in a Qubit
Encoded in an Oscillator”
[49]: Debnath et al. (2016), “Demonstra-
tionof a Small ProgrammableQuantum
Computer with Atomic Qubits”

facet of modern quantum technologies.

Another aspect is focused on the enhanced possibilities offered by quan-
tum physics concerning the metrology and high performance sensors.
It is widely known that quantum systems may have an extreme sensi-
tivity to their surroundings, that can be used to advantage to interfer-
ometry above the shot noise limit [50], or even direct measurements

[50]: Marciniak et al. (2022), “Optimal
Metrology with Programmable Quan-
tum Sensors”

(for instance magnetometers based on nitrogen-vacancy [51]).

[51]: Kuwahata et al. (2020), “Magne-
tometer with nitrogen-vacancy center
in a bulk diamond for detecting mag-
netic nanoparticles in biomedical appli-
cations”

Quantum technologies have now invested the industrial sector during
the last few years, gathered in what is sometimes called the quantum
deeptech, and which is heavily supported by public policies: in France
with the Plan Quantique (since 2021), but also in Europe with the
Quantum Flagship program (since 2018) or the QuantERA call (since
2017).
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2 Quantum atom optics with metastable
helium

2.1 Context and motivation

Our team in the Laboratoire Charles Fabry has developed a detection
method for individual atoms, in three dimensions. It gives access to
many information that are usually difficult to capture in atomic physics
experiments, such as the correlations between spatially separated par-
ticles. This feature is a significant strength of our apparatus, because
correlations can contain the signature of purely quantum effects and
nonlocality properties of multiple-particles systems [1–4].[1]: Reid et al. (1986), “Violations of

Classical Inequalities in Quantum
Optics”
[2]: Kheruntsyan et al. (2012), “Viola-
tion of the Cauchy-Schwarz Inequality
withMatter Waves”
[3]: Volovich (2016), “Cauchy–Schwarz
Inequality-Based Criteria for the
Non-Classicality of Sub-Poisson and
Antibunched Light”
[4]: Wasak et al. (2016),
“Cauchy–Schwarz Inequality for
General Measurements as an Entangle-
ment Criterion”

Along with this, since the mid-2000s the team has explored different
way to generate correlated pairs of atomic beams [5–7], that —under

[5]: Perrin et al. (2007), “Observation of
Atom Pairs in Spontaneous Four-Wave
Mixing of Two Colliding Bose-Einstein
Condensates”
[6]: Jaskula et al. (2012), “Acoustic Ana-
log to the Dynamical Casimir Effect in a
Bose-Einstein Condensate”
[7]: Bonneau et al. (2013), “Tunable
Source of Correlated Atom Beams”

specific experimental conditions—may constitute an entangled sys-
tem. With the assistance of light-matter interplay, this opens up the
possibility to realise many experiments, inspired by quantum optics.

Fairly recently, the team achieved the atomic analogue of the Hong-
Ou-Mandel effect [8], as well as a proof of principle of a two-particle

[8]: Lopes (2015), “An Atomic Hong-
Ou-Mandel Experiment”

interferometer that could be used in the future to enable a test of a
Bell inequality for atoms’ entangled in momenta [9]. Such a test of

[9]: Dussarrat et al. (2017), “Two-
Particle Four-Mode Interferometer for
Atoms”

quantum nonlocality with massive particles has not been obtained
yet, and it is currently one of the main goals of our team. By demon-
strating non-classical state of mechanical1 degrees of freedom, such an

1: and therefore having a clear classical
meaning.

experiment would constitute an important philosophical milestone.
In addition, since it involvesmassive particles —subjected to gravita-
tional coupling— in a highly quantum state, it would also be a first
step towards a new generation of experiment soliciting both quantum
mechanics and general relativity [10].

[10]: Penrose et al. (1998), “Quantum
computation, entanglement andstate re-
duction”

During this PhD I contributed to the modernisation of the experimen-
tal setup, who suffered during the last five years ofmany technical issues,
inhibiting the production of new scientific results. These evolutions
conducted to the obtention of a metastable helium Bose-Einstein con-
densate in an optical trap, and thereafter the production of correlated
atomic pairs in a regime that was not explored in the early states of the
experimental platform.

I also achieved a short theoretical study, dealing with a generalised ver-
sion of Hong-Ou-Mandel like experiments, involving more than two
particles, and taking into account finite quantum efficiency effects of
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the detector. Such an experiment could be performed in our laboratory
in a near future.

2.2 Outline of this manuscript

Themanuscript is organised in five chapters, divided in two parts:

Theoretical considerations

Chapter 1: from the two-particle Hong-Ou-Mandel effect, to
its generalised version with N particles.

TheHong-Ou-Mandel effect is famous in quantum optics: it has been
demonstrated experimentally in 1987, and reproduced with atoms in
our team in 2015. In this chapter, after giving some reminders about
the original two particle Hong-Ou-Mandel experiment, I will derivate
a number of theoretical results that could be useful in the prospect of
an upcoming experiment that we would like to achieve in our team:
an experiment similar to the Hong-Ou-Mandel one, but with a large
number of indiscernible particles.

Chapter 2: Bell inequalitieswithmomentum-entangled atoms.

At the beginning of this secondchapter, I shall recall the essential ideas
of the EPR argument, and show how the Bell’s inequalities allow to
verify experimentally its conclusions.

After this fairlywell known introduction to the questionBell’s theorem,
I will dive more precisely into the topic the currently interests us in
the team: the realisation of a Bell inequality test with respect to the
velocities of helium atoms. Such an experiment would be an important
milestone in nowadays quest to engineering new type of entangled
states, and exploring quantummechanics in different regimes.
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Experimental achievements

Chapter 3: detecting and obtaining a Bose-Einstein condensate
of helium.

In this chapter I will start by showing how the metastable state of
helium can be used as an advantage to perform a single-particle resolved
detection of atoms. I will then go through the different experimental
steps that we apply to an helium cloud so as to obtain a metastable
Bose-Einstein condensate.

Chapter 4: technological changes and evolutions during my
PhD.

In this chapter I will expose the various problems that have plagued
our apparatus (mostly during my PhD but also a few years before),
preventing us frommaking scientific progress. Then I shall explain the
different technological evolutions and workarounds that we decided
to implement so as to overcome these issues.

Chapter 5: study of the source of correlated pairs of atoms.

In this final chapter, I will present the main scientific results that I
obtained during my PhD. However, the data that I will show were
not acquired in the purpose of a scientific communication: we were
still testing the generation of pairs, who started to work only recently.
Unfortunately, after approximately three months of successful opera-
tion, a new set of technical issues struck the experiment, and stopped
the acquisition of data. In this chapter, I will propose an analysis —as
complete as possible— of the dataset that offered the most satisfying
results.

Before doing this, I will also make a short formal introduction to the
process of pair creation: it is a summary of several theoretical considera-
tions, that have been treated in the PhDmanuscripts ofmypredecessors
on the experiment.
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Introduction

In this chapter, I will report the analytical and numerical calculations
that I performed1 concerning an extension of the famous Hong-Ou-1: mainly in 2020.
Mandel (HOM) experiment to a domain in which the total number of
particles involved can be much larger than two.

In the first section of this chapter, I will provide a general review of
the HOM experiment, from its origins in quantum optics (back in
1987) to amore recent realisation of its atomic equivalent, that has been
demonstrated by our team in 2015.

I will insist in particular on the fact that this experiment is genuinely
quantum, and provides interesting information about the indistin-
guishability properties of the particles that are involved.

Due to recent technical issues that we have encountered with our ap-
paratus (and that will be at the core of Chapter 4), we have not been
able to reconduct this type of interferometry experiment since 2017
(two years before my arrival in the team). However, in anticipation of
the time when the experiment will be functional again2, I have studied2: and also to take advantage of the

2020 lockdown period... what could be interesting in setting up a similar experiment, in which a
more complex initial state would be involved.

This particular state iswidely known as the two-mode squeezed vacuum
state (TMS). We will see that this entangled state provides remarkable
results when it used in an HOM-like experiment. This state is quite
famous, at least in quantum optics, as it can be prepared with the
spontaneous parametric down conversion with a nonlinear crystal [52].[52]: Gerry et al. (2005), Introductory

Quantum Optics It interests us particularly, because we have several reasons to believe
that our experimental platform is able to generate it with helium atoms:
this will be discussed in details in the lastchapter of this manuscript.
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1 Two-particle HOM effect

1.1 History and presentation

Since the early 1970s, and the appearance of single-photon sources,
the optical testing of quantum mechanics is a fertile field of activity
in experimental physics. From an epistemological point of view, one
of the goals of quantum optics experiments is to exhibit effects which
can in no way be explained by classical physics. Important milestones
have been reached in the 1980s, for example with the pioneering con-
tribution of Clauser et al. and Aspect et al. who revealed the nonlocal
nature of certain states of light [20, 22] (we will come back to this type [20]: Freedman et al. (1972), “Experi-

mental Test of Local Hidden-Variable
Theories”
[22]: Aspect et al. (1981), “Experimen-
tal Tests of Realistic LocalTheories via
Bell’sTheorem”

of measurement in Chapter 2). In 1987 Chung Ki Hong, Zheyu Ou,
and LeonardMandel experimentally demonstrated a two-particle in-
terference effect, involving the bosonic nature of the light field [53].

[53]: Hong et al. (1987), “Measurement
of Subpicosecond Time Intervals be-
tween Two Photons by Interference”

This effect—now commonly known as the Hong-Ou-Mandel (HOM)
effect— is also the signature of the intrinsic indiscernibility property
of single photons, and cannot be explained classically. Before giving
the outline of this experiment, we will present first a simpler version of
the optical setup, that was used at the Institut d’Optique d’Orsay one
year before the HOM experiment.

C.C.

Figure 1.1: Simplified drawing of the
single-photon anti-correlation experi-
ment. This design was proposed by
Grangier et al. [54]The blue arrow rep-
resents a single photon input, in front a
50-50beam splitter.The red arrows repre-
sent the two possible outcomechannels
of the photon.The detections are then
correlated with a coincidence counter
(C.C.) device.

Indeed, in 1986, Grangier et al. obtained direct experimental evidence
of the existence of photons (defined as the quantised excitations of the
electrical field) [54]. The idea was to collect one of the photons emitted

[54]: Grangier et al. (1986), “Experimen-
tal Evidence for a Photon Anticorrela-
tion Effect on a Beam Splitter”

by the radiative cascade1 of a calcium atom and place it at the input of

1: a process in which an atom succes-
sively emits several photons, by deexcit-
ing itself in several successive steps, go-
ing from an excited state to lower energy
states.

a 50-50 beam splitter. One can then look at the coincident detections
between both output sides of the beam splitter: if a single photon is
indeed emitted, it should never be detected at both output sides of the
beam splitter, meaning that no coincidence should be measured. A
schematic of the experiment is given in Figure 1.1. The experiment re-
sulted in strong quantum anti-correlation effect, which is the signature
of a single photon emission from the source: a manifestation of the
particle-like behaviour of light. With the wording of quantumstatistics
and correlation functions, this is known as the photon anti-bunching
effect.

Even though the previous experiment revealed the quantum statistics
of the emission of light by an atom, it does not involve interferences
of any kind. During each realisation only one photon is propagating,
and it never interferes until its detection. To witness quantum interfer-
ence effects, one can complete the optical setup of Figure 1.1 by adding
two mirrors and one beam splitter and realise a single photonMach-
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Zehnder interferometer. This work has also been done by Grangier et
al. (published in the same paper [54]) and the team observed (statisti-
cally) the well known fringes at the output of the interferometer, being
interpreted as the self-interference of the photon wave function.

Figure 1.2: Classical outcomes of a
HOM-like experiment. Classically, pho-
tons are distinguishable, and we are al-
lowed to label themwith specific colours
(red and blue). Each arrow represents
a single photon, and four possible out-
comes can be considered,weighed by the
same probability 1/4 (in the case of a 50-
50 beam splitter).

Figure 1.3: Outcomes of a HOM ex-
periment. Photons are indistinguishable,
and we are not allowed to label them.
Each arrow represents a single photon.
In contrast to the classical picture in Fig-
ure 1.2, the bosonic nature of photons,
and interferences lead to only two possi-
ble outcomes: both photons leaving the
beam splitter on the same side.

The idea of HOM is to consider again the design of the experiment
in Figure 1.1 and to extend it to the domain of two-particle physics.
Considering the schematic in Figure 1.1, one can indeed wonder what
happens when two single photons are placed at the inputs of the beam
splitter, with one on each side. With a classical approach, there is no no-
tionof indiscernibility: the twophotons canbe labelled, anddepending
on which one is reflected or transmitted, four possible outcomes may
be considered, which are represented in Figure 1.2 (the beam splitter
is assumed to be lossless). With a 50-50 beam splitter the configura-
tions are equiprobable, meaning that if an experimentalist monitors
the coincident detections of particles of the output channels, a coin-
cidence should be found half of the time (corresponding to the two
configurations at the top of Figure 1.2).

When considering a quantum treatment of this experiment, the sit-
uation is very different. First, if the photons are in the same mode1,

1: let us say the same polarisation, same
frequency, and same spatial mode.

and reach the beam splitter at the same date 𝑡, they are properly in-
discernible and their labelling does not make any sense. To capture
efficiently the notion of indiscernibility of particles in quantum for-
malism (and the subsequent notion of symmetry of the states) the best
practice is to work with the second-quantisation (that is presented in
details in [55]). Denoting ∣𝑛,𝑚⟩in the state corresponding to 𝑛 photons

[55]: Cohen-Tannoudji et al. (2017),
Mécanique quantique - Tome 3

placed at one of the inputs of the beam splitter and 𝑚 photons on
the other one, the initial quantum state corresponding of the HOM
experiment reads:

∣Ψ⟩in = ∣1, 1⟩in (1.1)

Due to indiscernibility, the two configurations with crossed outputs
represented at the top of Figure 1.2 are completely identical in quan-
tum mechanics. With similar notations as before, the output state
of the HOM experiment is a priori written as the following coherent
superposition:

∣Ψ⟩out = 𝛼20 ∣2, 0⟩ + 𝛼11 ∣1, 1⟩ + 𝛼02 ∣0, 2⟩ (1.2)

where the hypothesis of absence of losses at the beam splitter has been
used, and

∣𝛼20∣
2 + ∣𝛼11∣

2 + ∣𝛼02∣
2 = 1 (1.3)

Now the spectacular result of the HOM effect is that if two indis-
cernible photons reach the beam splitter, the 𝛼11 term turns out to be
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zero, andwe end upwith the output probabilities (with Born’s rule):

∣𝛼20∣
2 = ∣𝛼02∣

2 = 12 (1.4)

Figure 1.4: Historical result of the
HOM copied from [53]. This profile is
nowadays widely known as the “HOM
dip”. When the beam splitter is posi-
tioned such that both photons reach it at
the same time, the coincident detections
counting vanishes.

This not mathematically difficult to prove, and we will give a justifi-
cation of this in the next subsection. For now let us just highlight
the fact the HOM experiment reveals a quantum effect that is very
different from the one that we presented in the two previous experi-
ments. Indeed, in the first experiment of photon anti-correlation that
we presented (Grangier et al.) the vanishing of the coincident detection
probability was sourced by the particle-like nature of photons. On the
contrary, in the case of theHOMeffect, it is the destructive interference
between the output probability amplitudes of the photons that im-
poses the two photons to leave the beam splitter on the samechannel:
it is therefore the manifestation of the wave-like nature of photons.
Actually, HOM experiments probe the level of indiscernibility of the
particles that interfere: this property is sometimes called purity, and it
is a major concern in modern quantum optics[56, 57]. [56]: Somaschi et al. (2016), “Near-

Optimal Single-Photon Sources in the
Solid State”
[57]: Wang et al. (2019), “Towards opti-
mal single-photon sources from polar-
ized microcavities”

1.2 Theory

1.2.1 Lossless beam splitter model

�̂��̂�1

�̂�2

�̂�1
�̂�2 ch.out1

ch.out2

ch.in1

ch.in2
Figure 1.5: Parametrisation of the beam
splitter.The input (respectively output)
channels are denoted as ch.in𝑖 (respec-
tively ch.out𝑖 ), and are provided with the
annihilation operators �̂�𝑖 (respectively
�̂�𝑖). A detector is placed at each of the
two output channels.

First, let us offer some reminders about the representation of a beam
splitter (BS), in the formalism of second quantisation. Since it will
be also useful to Section 2 of this chapter, we will keep fairly general
notations in this subsection.

Input and output channels of the BS, and the associated creation/anni-
hilation operators, are written in compliance with Figure 1.5. Denoting
∣𝑣𝑎𝑐⟩ the vacuum state, and using the second quantisation we have:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣𝑛1, 𝑛2⟩in =
�̂� 𝑛11 �̂�

𝑛2
2√

𝑛1! 𝑛2!
∣𝑣𝑎𝑐⟩

∣𝑁1, 𝑁2⟩out =
�̂�𝛮11 �̂�

𝛮2
2√

𝑁1!𝑁2!
∣𝑣𝑎𝑐⟩

(1.5)

(1.6)

In this manuscript, we will only consider perfect lossless beam splitters.
At first glance this hypothesis may seem questionable: indeed, we will
show in the next chapter that in our experiment the beam splitters
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are realised with short light pulses (performing Rabi coupling) and
cannot have 100% quantum efficiency. Nonetheless, it is useful to treat
the problem with this assumption, because the defects of the beam
splitter can be embedded into the finite quantum efficiency of the
detectors. It does not make much of a difference to an experimentalist
to know whether a particle was lost in the interferometer or during
the detection. However, an accurate description of the lossy beam
splitter would require the use of non-unitary operators, that could
lead to lengthy calculations, without much interest for the current
discussion.

In thischapter wewill also ignore the internal degrees of freedomof the
quantumparticles1, andwe assume that there is a perfect overlapping of1: in the case of metastable helium, the

internal state is obviously crucial, butwe
only propagate atoms polarised in the
same 𝑚 = 0 magnetic sublevel in the
interferometer.The assumption is there-
fore experimentally legitimate.

the spatial modes at the output of the beam splitter2. Thus, the notion

2: meaning that when a detector is
placed at anoutputchannel it cannot dis-
tinguish whether the particle has been
emitted from the opposite side (and
therefore transmitted accross the beam
splitter), or reflected by the beam split-
ter.

of indistinguishability only relies on the difference of time of arrival
of the particles onto the beamsplitter: two particles are indiscernible if
they interact with the beam splitter at the same time.

The beam splitter is entirely characterised by the way it couples the
modes �̂�𝑖∈{1,2} with the modes �̂�𝑖∈{1,2}. Assuming the coupling to be
linear, it turns out that the lossless hypothesis is enough to determine
thenature of the transformation carriedout by thebeam splitter, thanks
toTheorem 1 [58]:

[58]: Campos et al. (1989), “Quantum-
Mechanical Lossless Beam Splitter” Theorem 1 (Unitarity of the transformation)

We denote 𝑆 the linear operator representing the action of the beam
splitter on the input modes:

(�̂�1
�̂�2
) = 𝑆 (�̂�1�̂�2

) (1.7a)

(�̂�1�̂�2
) = 𝑆† (�̂�1

�̂�2
) (1.7b)

U(2) is the group of unitary operators of degree 2.

The three following statements are equivalent:

1. 𝑆 ∈ U(2)
2. the number of particles is conserved

i.e. 𝑛1 + 𝑛2 = 𝑁1 +𝑁2 (1.8)
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(this is the conservation of energy)
3. the bosonic commutation relations are preserved:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[�̂�𝑖, �̂�
†
𝑗] = [�̂�𝑖, �̂�

†
𝑗 ] = 𝛿𝑖𝑗

[�̂�1, �̂�2] = [�̂�1, �̂�2] = 0

(1.9a)

(1.9b)

𝑆 being unitary, its most general 2 × 2matrix representation reads:

𝑆 ≡ 𝑒𝑖𝜑0 [ cos(𝜃)𝑒𝑖𝜑𝜏 sin(𝜃)𝑒𝑖𝜑𝜌
− sin(𝜃)𝑒−𝑖𝜑𝜌 cos(𝜃)𝑒−𝑖𝜑𝜏] ∈ U(2) (1.10)

The global phase 𝜑0 does not play any role
1 so we can drop it without 1: at least in a simple scheme, with a sin-

gle beam splitter, and no subsequent in-
terferences after 𝑆.

loss of generality, leaving 𝑆 ∈ SU(2).

It is also often convenient to introduce the transmittance 𝜏 and the
reflectance 𝜌:

⎧⎪⎪⎨⎪⎪⎩

𝜏 ≜ cos2(𝜃)
𝜌 ≜ sin2(𝜃) = 1 − 𝜏

We can therefore represent the beam splitter in the Fock states bases,
associated to the annihilation operators (�̂�1, �̂�2; �̂�1, �̂�2), with the 2 × 2
matrix:

𝑆(𝜏, 𝜑𝜏, 𝜑𝜌) ≡ [
√
𝜏𝑒𝑖𝜑𝜏 √𝜌𝑒𝑖𝜑𝜌

−√𝜌𝑒−𝑖𝜑𝜌
√
𝜏𝑒−𝑖𝜑𝜏] (1.11)

The coefficients of this matrix contain the amplitude of probabilities
associated to the possible outcomes (transmission of reflection of each
particle).

1.2.2 Derivation and interpretation of the two-particle
HOM effect

In second quantisation We consider a 50-50 beam splitter ; with
previous notations this means 𝜏 = 1

2 :

𝑆 = 1√
2
[ 𝑒

𝑖𝜑𝜏 𝑒𝑖𝜑𝜌
−𝑒−𝑖𝜑𝜌 𝑒−𝑖𝜑𝜏] (1.12)

we kept the phase terms for generality, but we will shortly see that they
do not play any role in the HOM effect2. The input state reads 2: more generally, we will even see in

Subsection 2.1.2 that they do not play
any role when working with pure Fock
states.

∣Ψ⟩ = ∣1, 1⟩in = �̂�
†
1�̂�
†
2 ∣𝑣𝑎𝑐⟩ (1.13)
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and the coupling of the modes via the beam splitter (1.7b) gives

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�̂�†1 =
1√
2
(𝑒𝑖𝜑𝜏 �̂�†1 − 𝑒

−𝑖𝜑𝜌 �̂�†2)

�̂�†2 =
1√
2
(𝑒𝑖𝜑𝜌 �̂�†1 + 𝑒

−𝑖𝜑𝜏 �̂�†2)

(1.14a)

(1.14b)

leading to

�̂�†1�̂�
†
2 =

1
2

⎡⎢⎢⎢⎢⎢⎣
𝑒𝑖(𝜑𝜏+𝜑𝜌) (�̂�†1)

2
− 𝑒−𝑖(𝜑𝜏+𝜑𝜌) (�̂�†2)

2
+ �̂�†1 �̂�

†
2 − �̂�

†
2 �̂�
†
1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

⎤⎥⎥⎥⎥⎥⎦
(1.15)

inwhich the last two crossed terms cancel eachother out since [�̂�1, �̂�2] =
0.

By denoting 𝜙 = 𝜑𝜏 + 𝜑𝜌, we end up with:

∣Ψ⟩ = 1√
2
(𝑒𝑖𝜙 ∣2, 0⟩out − 𝑒

−𝑖𝜙 ∣0, 2⟩out) (1.16)

meaning that indeed, when the detectors are placed after the beam
splitter, in each realisation there is a 50% probability to detect two
particles on either side, and zero probability to witness a coincident
detection on both sides.

Remark 1.1 Let us emphasise the fact that this probabilistic result
is completely independent of the phases 𝜑𝜏 and 𝜑𝜌 applied by the
beam splitter.

The calculation was very quick, and it clearly shows that the HOM is
resulting from a destructive interference between the creation operators
�̂�1 and �̂�2. Another way of interpreting this cancellation of the crossed
detections, may be inspired by Feynman’s prescription1:1: this interpretation is actually sug-

gested in the textbook of Gerry &
Knight [52]. Feynman’s rule (simplified): In order to know the probability as-

sociated to a given outcome 𝐸𝑓 of an experiment, one can add up the
amplitude of probabilitiesassociated to all the paths leading to𝐸𝑓, and
then take its square modulus.

Here the amplitude of probabilities is directly given by the matrix
elements of 𝑆. Indeed by denoting𝐴𝛵[𝑖 ∈ {1, 2}] the complex ampli-
tude of probability that a particle placed at the input channelch.in𝑖 is
transmitted, and𝐴𝑅[𝑖] the complex amplitude of probability that it is
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reflected, we simply have:

𝑆 = (𝐴𝛵[1] 𝐴𝑅[2]
𝐴𝑅[1] 𝐴𝛵[2]

) (1.17)

Now in the HOM experiment, two paths could lead to a coincident
detection of the particles on both outputs:

▶ both particles being transmitted across the beam splitter: the
associated amplitude of probability is𝐴𝛵[1] × 𝐴𝛵[2] ;

▶ both particles being reflected by the beam splitter: the associated
amplitude of probability is𝐴𝑅[1] × 𝐴𝑅[2] ;

regarding the matrix elements (1.12) of 𝑆, and applying Feynman’s rule,
the probability 𝑃crossed of this event is :

𝑃crossed = ∣𝐴𝛵[1]𝐴𝛵[2] + 𝐴𝑅[1]𝐴𝑅[2]∣
2

= ∣𝑒𝑖𝜑𝜏𝑒−𝑖𝜑𝜏 − 𝑒−𝑖𝜑𝜌𝑒𝑖𝜑𝜌 ∣
𝑃crossed = 0 (1.18)

We end up with the famous HOM effect again, but with the somehow
more “physical” picture of a destructive interference between the paths
heading to the crossed exit of the particles.

�̂�|𝐴⟩

|𝐵⟩

|𝐶⟩

|𝐷⟩

Figure 1.6:Notations for the input and
output states of the beam splitter in first
quantisation.

Role of the symmetry of the bosonic wave function Previous
derivations are satisfying, but the fact that we are dealing with indis-
cernible bosons did not appear clearly. Actually, in a sense, we could say
it was “hidden” in the fact that we were using the second quantisation
formalism, that contains by itself the symmetry of the states. To exhibit
the crucial role of indiscernibility in the HOM effect, let us (for once)
take a look at what happens in first quantisation formalism.

With the notations of Figure 1.6, we denote respectively (∣𝐴⟩ , ∣𝐵⟩)
and (∣𝐶⟩ , ∣𝐷⟩) the input and output states of the beam splitter. The
evolution operator 𝑆 of the 50-50 beam splitter is the same as before
(it is actually the same as in classical wave optics). We already observed
that the phase does not matter, so we will assume (for simplicity) that
𝑆 has the well known real form:

⎧⎪⎪⎨⎪⎪⎩

𝑟, 𝑡 ∈ ℝ
𝑡2 + 𝑟2 = 1

𝑆 = [ 𝑡 𝑟
−𝑟 𝑡] (1.19)
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If we do not pay attention to the indiscernibility of the particles,
then the input state takes the form:

∣Ψin⟩ = ∣1 ∶ 𝐴⟩ ⊗ ∣2 ∶ 𝐵⟩ (1.20)

where the labellings 1 and 2 of the particles are clearly highlighted. The
output state is simply obtained by the application of the evolution
operator 𝑆 representing the action of the beam splitter:

∣Ψout⟩ = 𝑆 ∣1 ∶ 𝐴⟩ ⊗ 𝑆 ∣2 ∶ 𝐵⟩
= (𝑡 ∣1 ∶ 𝐶⟩ − 𝑟 ∣1 ∶ 𝐷⟩) ⊗ (𝑟 ∣2 ∶ 𝐶⟩ + 𝑡 ∣2 ∶ 𝐷⟩)

∣Ψout⟩ = 𝑡𝑟 ∣1 ∶ 𝐶 ; 2 ∶ 𝐶⟩ + 𝑡2 ∣1 ∶ 𝐶 ; 2 ∶ 𝐷⟩
− 𝑟2 ∣1 ∶ 𝐷 ; 2 ∶ 𝐶⟩ − 𝑟𝑡 ∣1 ∶ 𝐷 ; 2 ∶ 𝐷⟩

(1.21a)
(1.21b)

(1.21c)

We therefore have four distinct outcomes: this is the classical result
that is depicted in Figure 1.2. When the beam splitter is 50-50, meaning
∣𝑟∣ = ∣𝑡∣ = 1

√
2
, all outcomes are equiprobable, and we find a coincident

detection at the output half of the time: there is no HOM effect. This
scenario actually corresponds towhatwould happen if the twoparticles
interact successively with the beam splitter, making them effectively
distinguishable.

If we consider indiscernible bosons, the only inputstate that satisfies
the symmetry of the two-particle wave function is:

∣Ψin⟩ =
1√
2
(∣𝐴⟩ ∣𝐵⟩ + ∣𝐵⟩ ∣𝐴⟩) (1.22)

then the output state reads:

∣Ψout⟩ =
1√
2
(𝑆 ∣𝐴⟩𝑆 ∣𝐵⟩ + 𝑆 ∣𝐵⟩𝑆 ∣𝐴⟩ ) (1.23a)

= 1√
2
[ (𝑡 ∣𝐶⟩ − 𝑟 ∣𝐷⟩) (𝑟 ∣𝐶⟩ + 𝑡 ∣𝐷⟩) + (𝑟 ∣𝐶⟩ + 𝑡 ∣𝐷⟩) (𝑡 ∣𝐶⟩ − 𝑟 ∣𝐷⟩) ]

(1.23b)

∣Ψout⟩ =
1√
2
[2𝑟𝑡 ∣𝐶,𝐶⟩ + (𝑡2 − 𝑟2) (∣𝐶,𝐷⟩ + ∣𝐷,𝐶⟩) − 2𝑟𝑡 ∣𝐷,𝐷⟩ ]

(1.23c)

This final state is very different from the previous one. The first obser-
vation we can make, is that it involves a coherent superposition of only
three symmetric two-particlestates: ∣𝐶,𝐶⟩, ∣𝐷,𝐷⟩ and 1

√
2
(∣𝐶,𝐷⟩ + ∣𝐷,𝐶⟩),

this is a consequence of the initial symmetrisation of the state: this has
already been discussed in the first subsection.
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Secondly, when the beam splitter is symmetric we have 𝑟2 − 𝑡2 = 0,
thus the crossed term is zero, leading to

∣Ψout⟩ =
1√
2
( ∣𝐶,𝐶⟩ + ∣𝐷,𝐷⟩ ) (1.24)

Once again, we find the HOM effect, written in first quantisation.
With this approach, the role of the symmetry of the two-particle wave
function is clearly visible.

Remark 1.2 (Fermionic anti-HOM effect) If we had considered
fermions, the Pauli exclusion principle would have directly implied
the coincident detections on both detectors, whatever the transmis-
sion coefficient 𝜏 of the beam splitter is! This is sometime called
anti-HOM effect.

On the mathematical level, let us recall that the derivation of the
formal expressionof the beam splitterEq. (1.11) required theuse of the
fact that we were considering bosons: it is wrong when considering
fermions.

1.2.3 Classical limit

At this stage we have a fairly complete picture of what the quantum
HOM effect is. However, we can still legitimately wonder if there
a classical analogue to this phenomenon. In other words, we could
wonder whether the HOM anti-correlation is the genuine signature of
quantum effect.

Keeping the notations (𝐴, 𝐵, 𝐶,𝐷) for the input and output ports, we
can study what happens when we shine two coherent light fields (with
the same frequency), with equal intensities 𝐼0 = 𝐸20 , at the entrance of
the beam splitter. The corresponding complex amplitudes reads:

⎧⎪⎪⎨⎪⎪⎩

𝐸𝛢(𝜑𝛢) = 𝐸0𝑒
𝑖𝜑𝛢

𝐸𝛣(𝜑𝛣) = 𝐸0𝑒
𝑖𝜑𝛣

(1.25a)

(1.25b)

Considering the parametrisation (1.12) of the beam splitter, and setting
𝜙 = 𝜑𝜏 + 𝜑𝜌, it is a very well-known result of classical wave optics that
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the two coherent fields interfere, and give the output intensities

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝐼𝐶(𝜙) = 2𝐼0 cos2 (
𝜑𝛣 − 𝜑𝛢 + 𝜙

2 )

𝐼𝐷(𝜙) = 2𝐼0 sin2 (
𝜑𝛣 − 𝜑𝛢 + 𝜙

2 )

(1.26a)

(1.26b)

in this framework, the classical equivalent to the coincident detections
of particles is given by the product of these intensities1:1: sin2(𝑥) × cos2(𝑥) = 1

4 sin
2(2𝑥)

𝐼𝐶(𝜙) ⋅ 𝐼𝐷(𝜙) = 𝐼20 sin2 (𝜑𝛣 − 𝜑𝛢 + 𝜙) (1.27)

Themajor difference with quantumHOM effect is the phase depen-
dence of above expression. Indeed, even though 𝐼𝐶 ⋅ 𝐼𝐷 can vanish
with specific values of 𝜙, its quantum counterpart is zero whatever 𝜙 is.
In particular, with classical waves, the average value of the coincident
counting rate is given by

1
𝐼20
⟨𝐼𝐶(𝜙) ⋅ 𝐼𝐷(𝜑)⟩𝜙 =

1
2 (1.28)

During an experiment, one can therefore randomise the phase 𝜙, and
compare the coincident counting rate to the classical limit 12 calculated
above. Below this value, the experiment reveals an authentic quantum
effect.

1.3 Experimental results with metastable helium
Figure 1.7: Schematic drawing of the
atomic HOM experiment.The figure is
extracted from the original publication
[59]. An atomic source emits pairs of
helium atoms (a and b) along the ver-
tical axis 𝑧 (cf. Chapter 5). They are sub-
jected to free-fall and their trajectories
are parabolas. Bragg diffraction with a
resonant optical lattice (cf. Chapter 2)
realise the atomic equivalent of a mirror
at 𝑡 = 𝑡2, and a beam splitter when the
atomic trajectories cross again at 𝑡 = 𝑡3.
The lines alternately dashed in red and
blue symbolise the indiscernibility of the
atoms’ trajectories when 𝑡 > 𝑡3. The cor-
relations are probed simply by looking
at the arrival times of the atoms on a de-
tector laying beneath the atomic source.

As it has been mentioned in the introduction, our team demonstrated
in 2015 an atomic version of the HOM effect [8]

[8]: Lopes (2015), “An Atomic Hong-
Ou-Mandel Experiment”

. Let us quickly report
here the main features and result of this experiment. More technical
details about the atomic interferometer will be given in the following
chapter, dealing with a similar experiment (testing a Bell inequality)
that we would like to concretely set up in near future.

A schematic representation of the experiment is given in Figure 1.7.
Additional details about the Bragg diffraction with a lattice are given
in Chapter 2, and an even more complete study of this technique can
be found in the PhDmanuscript of Maxime Perrier [60]

[60]: Perrier (2018), “Interférences mul-
tiples avec atomes froids”

.

The observable that is considered is the cross-correlation𝐺(2)𝑐𝑑 between
both outputs of the beam splitter. By denoting𝑁𝑐 and𝑁𝑑 the number
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of atoms counted in time intervals (with a small width Δ𝑡) centred
onto the arrival times corresponding respectively to the output modes
𝑐 and 𝑑we have1

1: actually in this paragraphwe have sim-
plified a lot what is actually done to the
signal to compute the quantity𝐺(2)𝑐𝑑 : in
addition to time filtering, there is also
a spatial one. These details will be ex-
plained in Chapter 5, but they are not
useful to understand the main meaning
of the results that are presented in this
subsection.

:
𝐺(2)𝑐𝑑 = ⟨𝑁𝑐 ⋅ 𝑁𝑑⟩ (1.29)

Contrary to the “pure” HOM experiment in which exactly two parti-
cles were emitted at each realisation, here, most of the time, no pair is
emitted and the vacuum is detected on both sides of the beam splitter
(a pair is emitted approximately 10% of the time). In addition, the
quantum efficiency of the detector was 𝜂 ≈ 25%, reducing the ampli-
tude of the obtained signal again, by an 𝜂2 factor (since two particles
must be detected).

The quantumness of the effect can however be estimated with the
visibility 𝑉 of the HOM, which is nothing more than the contrast of
the signal (as a function of the time 𝜏 = 𝑡3 − 𝑡2 of application of the
beam splitter):

𝑉 =
max𝜏 [𝐺

(2)
𝑐𝑑 (𝜏)] −min𝜏 [𝐺

(2)
𝑐𝑑 (𝜏)]

max𝜏 [𝐺
(2)
𝑐𝑑 (𝜏)]

(1.30)

At each experimental realisation, the beam splitter applies a phase 𝜙
that is intentionally randomised, so that the visibility can be compared
to the classical threshold𝑉classical = 0.5.

The result of the experiment is presented in Figure 1.8. The teammea-
sured of visibility

𝑉 = 0.65(7)

beating the classical limit by more than two standard deviations.
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Figure 1.8: Correlation𝐺(2)𝑐𝑑 as a func-
tion of time of application 𝜏 = 𝑡3 −
𝑡2 of the beam splitter (cf. Figure 1.7).
The HOM anti-correlations are maxi-
mal when 𝜏 ≈ 𝑡2 − 𝑡1. The red strip rep-
resents the classical limit 𝑉 = 0.5
to HOM dip (taking into account the
experimental uncertainties).The limits
𝜏 ≲ 350 µs and 𝜏 ≳ 750 µs, where𝐺(2)𝑐𝑑
is maximised, correspond to situations
where the particles at the entrance of the
beam splitter are distinguishable. 𝐺(2)𝑐𝑑
is minimised when the particles are in-
discernible: when 𝜏 = 550(50) µs. The
fact that 𝐺(2)𝑐𝑑 does not reach the value
of 0 can be explained by the contribu-
tion of some realisations where the total
number of particles is larger than 2.
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2 N-particle HOM effect

The two-particle HOM experiment obtained in 2015 was an important
milestone for our team. In addition to its scientific value, it is also a
way of probing the quality of our atomic interferometer.

However, we can wonder whether we are able to extend the HOM
experiment to a different regime, where more particles are involved and
interfere at the beam splitter. Wechoose to call this generalised scenario
𝑛-particle Hong-Ou-Mandel (nHOM) experiments. The aim of this
chapter’s second section is to theoretically find a situation –achievable
with our apparatus– in which the indiscernibility properties of a collec-
tion of particles lead to remarkable effects, and compare it to a classical
situation. In this work, taking into account the finite quantum effi-
ciency of the detectors will be crucial: we will see that it has a strong
effect onto the expected signal. With the last improvements of our
apparatus (cf. Chapter 4) this quantum efficiency is estimated to be
roughly 50%: we will use this value in the numerical calculations.

A first simple example of situation that could be considered is the one
consisting in an input state that can be written ∣𝑛, 𝑛⟩in with 𝑛 ≥ 2
(𝑛 = 1 being the “traditional” HOM experiment). This situation,
where the input state is sometimes called a “twin-Fock state” has al-
ready been studied theoretically in [58] and tested experimentally in[58]: Campos et al. (1989), “Quantum-

Mechanical Lossless Beam Splitter” quantum optics [61]. We will present the expected results of an HOM-
[61]: Yu Spasibko et al. (2014), “Interfer-
ence of Macroscopic Beams on a Beam
Splitter”

like experiment using this specific type of state in the Subsection 2.2.1



2 N-particle HOMeffect 25

of this chapter.

However, we will see in Chapter 5 that our source does not directly
provide such a state. Instead, our pair-creation process generates two
separated atomic beams, that can be modelled with a so-called “two-
mode squeezed vacuum state (TMS)”.The definition of this particular
state will be reminded in Subsection 2.2.4, where we will study the
interferences resulting of its use in aHOM-like experiment. It turns out
that in certain aspects the two-mode squeezed state resembles another
one, which is the “thermal” state. Even though the statistical properties
of thermal states and TMSs are similar [62], these states are completely [62]: Perrier et al. (2019), “Thermal

Counting Statistics in an Atomic Two-
Mode Squeezed Vacuum State”

different: the first one is a single mode state, whereas the latter is a
two-mode entangled state. Therefore we dedicate Subsection 2.2.3 to
the study of interferences with thermal states.

This study will however need some theoretical prerequisites, that are
given in Subsection 2.1.

2.1 Theoretical generalities

2.1.1 Notations used

In order to simplify the notations, we will use the following conven-
tion:

Notation 1 When there is no ambiguity, we drop the “in” and
“out” indices in the Dirac notation. Kets with capital letters will
be referring to output channels. Likewise, kets with lowercase
letters will refer to input channels:

⎧⎪⎪⎨⎪⎪⎩

∣𝑛1, 𝑛2⟩ ≡ ∣𝑛1, 𝑛2⟩in
∣𝑁1, 𝑁2⟩ ≡ ∣𝑁1, 𝑁2⟩out

(1.31)

(1.32)

Concerning the probability distributions, we keep the following nota-
tions:

Notation 2 (Joint probability distribution) 𝑘 ∈ {in, out}

We denote 𝑃k(𝑁1, 𝑁2) the joint probability to have exactly 𝑁1
particles at channel ch.k1 and𝑁2 particles at channel ch.

k
2.
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Notation 3 (Marginal distributions) 𝑘 ∈ {in, out}, 𝑖 ∈ {1, 2}

If we focus on a specific channel ch.𝑘𝑖 , we write the marginal
probability of detection 𝑃𝑘𝑖 (𝑁) such that:

𝑃𝑘1 (𝑁) =
∞
∑
𝛮2=0

𝑃k(𝑁1, 𝑁2) (1.33)

𝑃𝑘2 (𝑁) =
∞
∑
𝛮1=0

𝑃k(𝑁1, 𝑁2) (1.34)

If the situation is symmetric ( 𝑃𝑘1 = 𝑃𝑘2 ), we will simply write it
𝑃𝑘.

Notation 4 (Conditional probabilities) We use the standard writ-
ing 𝑃out(𝑁1, 𝑁1∣𝑛1, 𝑛1) to deal with the probability of finding the
couple (𝑁1, 𝑁2) at the output channels knowing that we have the
couple (𝑛1, 𝑛2) at the input channels.

Notation 5 (Finite quantum efficiency) When we need to take into
account a finite quantum efficiency 𝜂, we simply add the index
“𝜂”: e.g. 𝑃out

𝜂 (𝑁), 𝑃
𝜂
out(𝑁1, 𝑁2) ...

2.1.2 Transformation of a quantum system by a beam
splitter

Heisenberg and Schrödinger representations So far we have rep-
resented the beam splitter with an operator 𝑆 that transforms the cre-
ation/annihilation operators, the state vector of the system otherwise
remaining fixed. We were thus working in a similar context as the
Heisenberg picture. We could also consider the equivalent Schrödinger
picture in order to study the effect of the beam splitter directly on a
quantum system (either pure or not). We will need to introduce a
different operator �̂�, that acts on the kets of the infinite dimensional
Fockspace.

It is important to notice that even though they refer to the same physi-
cal object (i.e. the actual beam splitter), and involve the same number
of degrees of freedom, 𝑆 and �̂� are completely different mathemati-
cal entities. There is obviously an unequivocal relation between the
two, which is provided by the Jordan-Schwinger map for the theory of
quantum angular momentum in the Fock space[63, 64].[63]: Jordan (1935), “Der Zusammen-

hang der symmetrischen und linearen
Gruppen und dasMehrkörperproblem”
[64]: Schwinger (1952), “On angular mo-
mentum”
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Wewill not run through the full derivation of the analytical expression
of the Schrödinger representation of the beam splitter, for which the
interested reader will find more detailed explanations in the references
[58, 65]. We will however give here some useful results. [58]: Campos et al. (1989), “Quantum-

Mechanical Lossless Beam Splitter”
[65]: Yurke et al. (1986), “SU(2) and
SU(1,1) Interferometers”

In the Jordan-Schwinger map, we introduce the angular-momenta
operators:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̂�1 =
1
2 (�̂�

†
1�̂�2 + �̂�

†
2�̂�1)

�̂�2 =
1
2𝑖 (�̂�

†
1�̂�2 − �̂�

†
2�̂�1)

�̂�3 =
1
2 (�̂�

†
1�̂�1 − �̂�

†
2�̂�2)

(1.35a)

(1.35b)

(1.35c)

for which it is very easy to check they satisfy the 𝔰𝔬(3) Lie algebra
relations:

[�̂�𝑖, �̂�𝑗] = 𝑖𝜖𝑖𝑗𝑘 �̂�𝑘 (1.36)

�̂� is defined without ambiguity by the relation:

�̂�𝑗 = �̂� (𝜏, 𝜑𝜏, 𝜑𝜌) �̂�𝑗 �̂�† (𝜏, 𝜑𝜏, 𝜑𝜌) (1.37)

This leads to the analytical expression of �̂� [58]: [58]: Campos et al. (1989), “Quantum-
Mechanical Lossless Beam Splitter”

�̂� (𝜏, 𝜑𝜏, 𝜑𝜌) = 𝑒−𝑖(𝜑𝜏−𝜑𝜌)�̂�3 𝑒−2𝑖 arccos[
√
𝜏]�̂�2 𝑒−𝑖(𝜑𝜏+𝜑𝜌)�̂�3 (1.38)

as well as its formal connection with 𝑆, since Eq. (1.38) is written so
that the parameters (𝜏, 𝜑𝜏, 𝜑𝜌) are the very same as those appearing in
Eq. (1.11)!

We have now at our disposal a beam splitter operator that acts on the
kets of the entire (and infinite dimensional) Fock space:

∣𝜓out⟩ = �̂�† (𝜏, 𝜑𝜏, 𝜑𝜌) ∣𝜓in⟩ (1.39)

and, as usual in the Schrödinger picture, the transformation law of the
modes is also known:

(�̂�1
�̂�2
) = �̂� (�̂�1�̂�2

) �̂�† , (�̂�1�̂�2
) = �̂�† (�̂�1

�̂�2
) �̂� (1.40)
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Effect on a general density matrix Themost general description
of a quantum system is provided by a density matrix. We will denote
𝜌in and 𝜌out the density matrices of the many-body system before and
after interacting with the beam splitter. With the bosonic basis states,
those matrices can be written:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�̂�in =
∞
∑

𝑛1,𝑛2,𝑛′1,𝑛′2=0
𝜌in(𝑛1, 𝑛2; 𝑛′1, 𝑛′2) ∣𝑛1, 𝑛2⟩⟨𝑛′1, 𝑛′2∣

�̂�out =
∞
∑

𝛮1,𝛮2,𝛮′1,𝛮′2=0
𝜌out(𝑁1, 𝑁2; 𝑁′1, 𝑁′2) ∣𝑁1, 𝑁2⟩⟨𝑁′1, 𝑁′2∣

(1.41a)

(1.41b)

The diagonal components of the density matrix (the populations) con-
tain information about the joint probability of a given couple of parti-
cles’ numbers:

{
𝑃in(𝑛1, 𝑛2) = ⟨𝑛1, 𝑛2∣�̂�in∣𝑛1, 𝑛2⟩
𝑃out(𝑁1, 𝑁2) = ⟨𝑁1, 𝑁2∣�̂�out∣𝑁1, 𝑁2⟩

(1.42)
(1.43)

It is obviously the �̂�(𝜏, 𝜑𝜏, 𝜑𝜌) operator that relates �̂�out to �̂�in. It acts
as an evolution operator, whichmeans:

�̂�out = �̂�†�̂�in�̂� (1.44)

By re-injecting (1.41a), we can expand the matrix elements of �̂�out:

𝜌out(𝑁1, 𝑁2; 𝑁′
1 , 𝑁

′
2) = ⟨𝑁1, 𝑁2∣�̂�out∣𝑁′

1 , 𝑁
′
2⟩ (1.45)

= ⟨𝑁1, 𝑁2∣�̂�†�̂�in�̂�∣𝑁′
1 , 𝑁

′
2⟩ (1.46)

=
∞
∑

𝑛1,𝑛2,𝑛′1,𝑛
′
2=0
𝜌in(𝑛1, 𝑛2; 𝑛′1, 𝑛′2) ⟨𝑁1, 𝑁2∣�̂�†∣𝑛1, 𝑛2⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

𝑆(𝑛1,𝑛2)𝛮1,𝛮2

⟨𝑛′1, 𝑛′2∣�̂�∣𝑁′
1 , 𝑁

′
2⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(𝑆
(𝑛′1,𝑛

′
2)

𝛮′1,𝛮
′
2
)

∗

(1.47)

where we have introduced the matrix elements 𝑆(𝑛1,𝑛2)𝛮1,𝛮2
of �̂�†.

Let us take a look at the different exponential terms in Eq. (1.38): they
do not share the same kind of contribution when applied to a Fock
state. Indeed, the two exponentials of �̂�3 contribute to a phase shift,
while the exponential of �̂�2 performs a rotation in the Fock space, and as
we shall shortly see, the latter plays a crucial role in our topic of interest.
Keeping this in mind, it is worth rewriting the matrix elements of �̂�†
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so that those two types of contribution appear explicitly [58]: [58]: Campos et al. (1989), “Quantum-
Mechanical Lossless Beam Splitter”

𝑆(𝑛1,𝑛2)𝛮1,𝛮2
= ⟨𝑁1, 𝑁2∣𝑒2𝑖 arccos(

√
𝜏)�̂�2 ∣𝑛1, 𝑛2⟩ × 𝑒

𝑖[𝜑𝜏(𝛮1−𝑛2)+𝜑𝜌(𝛮1−𝑛1)]

(1.48)

Now, �̂� being unitary, all the terms in the sum (1.47) that do not satisfy
the conservation of particles (1.8) are zero. 𝑁1 and𝑁2 being fixed, we
can simplify the quadruple sum into a double sum1, and after a last 1: with 𝑛2 = 𝛮1 +𝛮2 − 𝑛1 and

𝑛2′ = 𝛮1 +𝛮2 − 𝑛1′reindexing step, we end up with the most general form for the joint
output probability distribution:

Theorem 2 (Output probabilities for a general input)

Considering a beam splitter represented by an operator �̂� ∈ SU(2),
and a general density matrix �̂�in at the input channels of this beam
splitter,

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑁 = 𝑁1 +𝑁2
𝑛2 = 𝑁 − 𝑛1
𝑅(𝑛1,𝑛2)𝛮1,𝛮2

≜ ⟨𝑁1, 𝑁2∣𝑒2𝑖 arccos(
√
𝜏)�̂�2 ∣𝑛1, 𝑛2⟩

𝛾𝑘(𝑁1, 𝑁2) ≜
𝛮
∑
𝑛1=0
𝑅(𝑛1,𝑛2)𝛮1,𝛮2

𝑅(𝑛1+𝑘,𝑛2−𝑘)𝛮1,𝛮2
𝜌in(𝑛1, 𝑛2; 𝑛1 + 𝑘, 𝑛2 − 𝑘)

we have: 𝑃out(𝑁1, 𝑁2) =
𝛮
∑
𝑘=−𝛮

𝛾𝑘(𝑁1, 𝑁2)𝑒
−𝑖𝑘(𝜑𝜏−𝜑𝜌) (1.49)

Let us finish this quite lengthy work with a couple of remarks:

1. it is important to realise that (1.49) is not a useless (although
elegant) expression of the joint probability distribution: it can
be used for numerical computation. It only requires a formula
for the 𝑅(𝑛1,𝑛2)𝛮1,𝛮2

(given in the following paragraph) ;
2. in this case, whichwas intended to be kept as general as possible,

we observe on Eq. (1.49) that the phase difference 𝜑𝜏 − 𝜑𝜌 is
important. That being said, some special cases exists, where it
does not play any role. For instance, with a “pure” statistical
mixture –meaning a diagonal density operator– only the 𝑘 = 0
term is non-zero, and we have

𝑃out(𝑁1, 𝑁2) =
𝛮
∑
𝑛1=0
𝑃in(𝑛1, 𝑛2) (𝑅

(𝑛1,𝑛2)
𝛮1,𝛮2

)
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
𝑃out(𝑁1, 𝑁2∣𝑛1, 𝑛2)

(1.50)
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The interpretation of this equation is very clear: without coher-
ence between the different terms of the input state, there is no
interference contribution and we simply sum the conditional
probabilities.
Pure Fock states are a particular case of diagonal density oper-
ator, and therefore phases are also of no consequence for their
resulting output probabilities1. We will give additional details1: it would not be true in the case of a

pure state which is not a number state. about it in the following paragraph.

Fockstates at the input InTheorem2,we have quite surreptitiously
introduced the quantity𝑅(𝑛1,𝑛2)𝛮1,𝛮2

. The previous equation (1.50) revealed
that it is actually the amplitude of probability to measure ∣𝑁1, 𝑁2⟩out at
the output, knowing that we have ∣𝑛1, 𝑛2⟩in at the input.

Indeed, in the scenario of a pure Fock state ∣𝑛1, 𝑛2⟩ at the input, we
have

𝜌in(𝑛′1, 𝑛′2 ; 𝑛″1, 𝑛″2) = 𝛿
𝑛′1
𝑛1 𝛿

𝑛′2
𝑛2 𝛿

𝑛″1
𝑛1 𝛿

𝑛″2
𝑛2 (1.51)

(𝛿𝑗𝑖 being the usual Kronecker symbol), �̂�in is therefore diagonal in the
Fock basis (with just a single 1 somewhere on the diagonal). We are
left with the simplest possible case, with just a single element in (1.49)
which is not zero, which gives

𝑃out(𝑁1, 𝑁2) = 𝑃out(𝑁1, 𝑁2∣𝑛1, 𝑛2) = (𝑅
(𝑛1,𝑛2)
𝛮1,𝛮2

)
2

(1.52)

At this stage, we understand the great importance of the 𝑅 coefficients.
We have an analytical expression thereof [58], as a function of the beam[58]: Campos et al. (1989), “Quantum-

Mechanical Lossless Beam Splitter” splitter’s transmittance:

𝑅(𝑛1,𝑛2)𝛮1,𝛮2
=

𝑛1
∑
𝑘=0
(−1)𝑛1−𝑘

¿
ÁÁÀ(𝑁1𝑘 )(

𝑁2
𝑛1 − 𝑘

)(𝑛1𝑘 )(
𝑛2

𝑁1 − 𝑘
)𝜏2𝑘+𝑛2−𝛮1(1 − 𝜏)𝑛1+𝛮1−2𝑘 (1.53)

Interesting alternative expressions of 𝑅(𝑛1,𝑛2)𝛮1,𝛮2
, involving Jacobi and

Gegenbauer polynomials can be found in reference [58], though Eq.
(1.53) is enough for numerical evaluations.
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It also satisfies useful symmetry relations:

(𝑛2 ≤ 𝑁1 < 𝑛1)⇒ 𝑅(𝑛1,𝑛2)𝛮1,𝛮2
= (−1)𝛮1−𝑛1𝑅(𝛮1,𝛮2)𝑛1,𝑛2 (1.54a)

(𝑛1 ≤ 𝑁1 < 𝑛2)⇒ 𝑅(𝑛1,𝑛2)𝛮1,𝛮2
= 𝑅(𝛮2,𝛮1)𝑛2,𝑛1 (1.54b)

(𝑁1 < 𝑛1, 𝑛2)⇒ 𝑅(𝑛1,𝑛2)𝛮1,𝛮2
= (−1)𝛮1−𝑛1𝑅(𝑛2,𝑛1)𝛮2,𝛮1

(1.54c)

This is interesting since most of the inputs that we will consider will be
symmetric, and therefore this symmetry will hold at the output! The
set of equations (1.54) combined with Eq. (1.52) indeed gives:

𝑃out(𝑁1, 𝑁2∣𝑛1, 𝑛2) = 𝑃out(𝑁2, 𝑁1∣𝑛2, 𝑛1) (1.55)

whatever transmittance 𝜏 is.

2.2 Classification of the interference patterns
for different input states

We are now mathematically equipped to undertake the study of the
joint output probability distribution, in various scenarios. Just as in the
original 2-particles HOM effect, the matter of the discernibility of the
quantum systems that we set at the input will necessarily be discussed,
as it completelychanges the results. The problem of the finite quantum
efficiency will also be considered.

The cases of the twin-Fock states, and the coherent states have already
been studied before, and can found in the literature. However, as far as
we know, the results that we will demonstrate concerning the thermal,
and two-mode squeezed states are new.

2.2.1 Twin-Fock states and mixing with vacuum

We shall begin with the study of the interference effects of twin-Fock
states on a beam splitter. Those states reads ∣𝑛, 𝑛⟩in. Even though we
are not technically able to prepare those states in our experiment, many
result that will establish here will be re-used in the more complex con-
texts that follows. It will also be sort of an introduction to calculations
methods that we will use again afterwards1

1: in particular, the mathematical treat-
ment of the finite quantum efficiency.

Indiscernible case: twin-Fock states
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Figure 1.9:Marginal probability distri-
butions for twin-Fockstates at the input
of a 50-50 beam splitter. 𝑛 is the number
of particles at each input channel. Since
2𝑛 particles are present in the interfer-
ometer,𝛮 takes a value between 0 and
2𝑛.

50-50 beam splitter Considering pure Fock states at the input, in
the specific case for which we have 𝑛1 = 𝑛2 = 𝑛, and with a 50-50 beam
splitter, we can do better than the Eq. (1.53). Indeed, the number of
particles probability distribution assumes the form:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑃out(2𝑘, 2𝑛 − 2𝑘) =
1
2𝑛

¿
ÁÁÀ(2𝑘𝑘 )(

2𝑛 − 2𝑘
𝑛 − 𝑘 )

𝑃out(2𝑘 + 1, 2𝑛 − 2𝑘 − 1) = 0
(1.56)

The situation is completely symmetric, and all the physics can be de-
scribed by restricting ourselves to themarginal distribution𝑃out (which
are the same on bothchannels). A numerical example is given in Figure
1.9. We can highlight two remarkable properties for the distribution of
probability Eq. (1.56):

1. The asymmetrical outputs are much more probable than the
other ones (for instance ∣0, 2𝑛⟩ and ∣2𝑛, 0⟩ are the most likely
output states). This is a manifestation of bosons’ herd instinct:
they tend to leave the beam splitter on the same side, just as
in the two-photon HOM effect case. That distinctive feature
explains why this distribution is traditionally namedU-shape
distribution (or sometimes discrete arcsine law).

2. Perhaps even more surprisingly, odd output numbers are for-
bidden! Just like in the two-particle HOM effect, this is a conse-
quence of the symmetry of the input many-body bosonic wave-
function.

Remark 1.3 Regarding the second property above, we could be
tempted to define a parity operator (e.g. as in references [66, 67]

[66]: Bollinger et al. (1996), “Optimal
Frequency Measurements with Maxi-
mally Correlated States”
[67]: Gerry (2000), “Heisenberg-Limit
Interferometry with Four-WaveMixers
Operating in a Nonlinear Regime”

)

̂P ≜ (−1)�̂� = exp(𝑖𝜋 �̂�†�̂�) (1.57)

and study its expectation values to evaluate the indistinguishability
of the particles at the input. However, it is not something we will be
able to observe with our atomic apparatus. So far we have implicitly
assumed to have an ideal detector, that can count the correct number
of particles with 100% probability. In our experiment we use a
detector with roughly 50% detectivity, and we can easily convince
ourselves that information about parity vanishes extremely fast with
non-perfect quantum efficiency! This effect is visible in Figure 1.12.
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Figure 1.10: Normalised width of the
marginal output distributions, plotted
as a function of the transmission coeffi-
cient 𝜏, for various values of 𝑛.

Dependence with the reflectivity Eventually, it is interesting
to investigate the effect of the reflection/transmission coefficients to
the output probabilities. Without the 𝜌 = 𝜏 hypothesis, the analytical
simplifications are no longer possible, and we are left with Eq. (1.53) to
perform numerical calculations.

Nonetheless, we can have in mind the physical picture for which the
50-50 beam splitter maximises the mixing between modes �̂�1 and �̂�2,
and therefore quantum interference effects. We have already observed
(Figure 1.9) that the output probability distribution for the 50-50 beam
splitter is quite broad. On the other hand, in the limiting cases for
which 𝜏 = 0 or 𝜏 = 1, the two input modes are completely indepen-
dent, and we trivially have the state ∣𝑛, 𝑛⟩𝑜𝑢𝑡 at the output with 100%
probability.

Thus, it is quite natural to think that 𝜏 has a significant effect on the
width of the distribution. Concerning the mean number of particles
detected, as long as we keep a twin-Fock state ∣𝑛, 𝑛⟩𝑖𝑛, each detector
will measure 𝜏 × 𝑛 + (1 − 𝜏) × 𝑛 = 𝑛 particles on average: in fact Eq.
(1.55) with 𝑛1 = 𝑛2 = 𝑛 directly implies the symmetry of the output
probability distribution (which is a stronger result). For given 𝑛 and 𝜏,
we define the width of the distribution with its standard deviation:

𝜎𝑛(𝜏) =
¿
ÁÁÀ 2𝑛
∑
𝛮=0
(𝑁 − 𝑛)2 𝑃out(𝑁, 𝜏) (1.58)

Empirically, one can numerically check that the “normalised” width
𝜎𝑛(𝜏)
𝑛 is weakly dependent of 𝑛, at least as long as 𝑛 ≳ 4.

�̂�|𝑛⟩

|𝑛⟩
𝜂

ch.out1
ch.in1

ch.in2
Figure 1.11: Twin-Fock state on a 50-
50 beam splitter experiment.The exper-
imentalist uses a detector with finite
quantum efficiency 𝜂, and collects data
from a single output channel, in order
to infer the marginal output probability
distribution out of statistical averages.
At each experimental run, the detector
returns a number𝛮 ∈ J0, 2𝑛K.

The problem of the finite detectivity Let us imagine the ex-
periment described in Figure 1.11. Following notation 5, we will denote
𝑃out
𝜂 the marginal probability distribution after detection.

Assuming that an experimental run returns the number 𝑁, due to
detection losses, many situations could have led to it:

▶ the experimentalist could have been lucky, and detected the𝑁
particles exactly scattered by the beam splitter into the observed
channel, without losing a single one. The probability 𝑝0 of such
an event is simple:

𝑝0 = 𝑃out(𝑁) × 𝜂𝛮
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▶ the beam splitter could have scattered 𝑁 + 1 particles in the
observed channel, and one of those were lost at the detection:
the probability for a particle not to be detected is (1 − 𝜂). Any
of the𝑁 + 1 particles could have been lost, therefore there is
𝑁 + 1 possibilities for this scenario. The associated probability
is

𝑝1 = (𝑁 + 1) × 𝑃out(𝑁 + 1) × 𝜂𝛮 × (1 − 𝜂)

▶ more generally, the beam splitter could have scattered𝑁+ 𝑞 par-
ticles towards the detector, which only counted𝑁 of those. The
number of possibilities in such a case is obviously combinatorial:

𝑝𝑞 = (
𝑁 + 𝑞
𝑞 ) × 𝑃out(𝑁 + 𝑞) × 𝜂𝛮 × (1 − 𝜂)𝑞

We are now back to the 50-50 beam splitter case. As it has just been
mentioned in the previous remark, if we want a proper prediction of
the expected experimental signal, we must take into account the finite
quantum efficiency 𝜂 of the detector.
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Figure 1.12:Marginal probability distri-
butions for twin-Fockstates at the input
of a 50-50 BS, using detectors with finite
quantum efficiency 𝜂 (given in the leg-
ends).The first plot (on top) compares
the ideal detector (𝜂 = 1) to an almost
perfect one (𝜂 = 0.95). The second plot
(bottom) shows the expected signal, for
various values of 𝜂 < 1.

It is clear that we simply have 𝑃out
𝜂 (𝑁) = ∑𝑞 𝑝𝑞 which gives the for-

mula:

𝑃out
𝜂 (𝑁) =

2𝑛−𝛮
∑
𝑞=0

𝑃out(𝑁 + 𝑞) 𝜂𝛮 (1 − 𝜂)𝑞 (𝑁 + 𝑞𝑞 ) (1.59)

where we recall that 𝑃out(𝑁) is the discrete arcsine law (1.56), which is
well-known. Some numerical examples are plotted in Figure 1.12. We
can notice how fast the visibility of evenness of the output state washes
out when 𝜂 decreases.

Distinguishable case: mixing with the vacuum In the previous
paragraph, we examined a situation where the particles at the input
of the beam splitter were perfectly indiscernible. Once again, in our
study’s framework it mainly means three things:

1. the particles are of the same kind (e.g. same atoms, same elemen-
tary particles...) ;

2. the particles share the same internal state (e.g. same frequency
for photons, same atomic state...) ;

3. the particles have the samespatial wave function ;
4. the particles at both inputchannels interactwith the beamsplitter

simultaneously ;
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We have already discussed that the latter item is often the most impor-
tant one, in the prospect of an experiment. The delay between the
interactions of both inputs with the beam splitter is generally the pa-
rameter of control of the degree of indiscernibility in the experiment.
It actually makes sense: if two particles arrive on the beam splitter at
very different times, they cannot be considered indiscernible since we
could label them “first one” and “second one”.

When interacting with the beam splitter, the two modes of the twin-
Fock state are therefore perfectly indiscernible. The analogous scenario
with complete discernibility between the two input modes would be
to send 𝑛 particles on ch.in1 , wait some time, send 𝑛 particles on ch.in2 ,
and look at the resulting output probabilities. Hence, the input states
of interest are ∣𝑛, 0⟩in and ∣0, 𝑛⟩in.

There is no quantum interference here,𝑃out(𝑁1, 𝑁2∣𝑛, 0) is actually just
a biased1 Bernoulli trial [68] situation that can be treated classically. 1: biased if 𝜏 ≠ 1

2
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Figure 1.13: (in red) Output probability
distribution resulting from the succes-
sion of the two equally populated Fock
states ∣𝑛, 0⟩ and ∣0, 𝑛⟩ mixed with vac-
uum at a 50-50 beam splitter. We have
also plotted the equivalent indiscernible
twin-Fock state (in blue) for compari-
son.

With a perfect detector Again, if no particles are lost during
the detection, we can restrict ourselves to the marginal probability
distribution, since𝑁2 = 𝑛 − 𝑁1. The solution of the Bernoulli trial
problem is well known:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑃out(𝑁 ∈ J0, 𝑛K∣𝑛, 0) = ( 𝑛𝑁)𝜏
𝛮(1 − 𝜏)𝑛−𝛮

𝑃out(𝑁 ∈ J0, 𝑛K∣0, 𝑛) = ( 𝑛𝑁)𝜏
𝑛−𝛮(1 − 𝜏)𝛮

(1.60a)

(1.60b)

they are of course equal for a 50-50 beam splitter.

The final output probability distribution is then obtained by summing
all the cases for which the total number of particles received by the
detector is equal to𝑁, weighed by the crossed probability:

𝑃out(𝑁 ∈ J0, 2𝑛K) =
𝛮
∑
𝛮′=0

𝑃out(𝑁′∣𝑛, 0) ⋅ 𝑃out(𝑁 −𝑁′∣0, 𝑛) (1.61)

with 𝑃out(𝑁′ > 𝑛∣𝑛, 0) = 𝑃out(𝑁 −𝑁′ < 0∣0, 𝑛) = 0

It is very clear –with the numerical example in Figure 1.13– that this
distribution is completely different from the one resulting from the
interferences of indiscernible twin-Fock states. We notice that the
indiscernible distribution ismuchwider: it is in factquite general, when
making indiscernible bosons interfere on a 50-50 beam splitterwe expect
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to observe a broadening of the output probability distribution.

0 20 40

N

0.00

0.05

0.10

0.15

P̃ out(N) n = 20

η = 0.5

Figure 1.14: Same plot as Figure 1.13, but
taking into account a finite quantum ef-
ficiency 𝜂 = 0.5

With a finite quantum efficiency We can now apply the same
type of trick as in the paragraph 1 to take into account the finite detec-
tivity. We can see in Figure 1.14 that even with a realistic detector, the
distinguishable and indiscernible cases remain very different.

2.2.2 Coherent states

In the rest of this chapter we will deal with distributions consisting in
infinite quantum superpositions of Fock states∑

𝑛≥0
𝑎𝑛 ∣𝑛⟩, and study

the resulting interference pattern after interaction with a 50-50 beam
splitter.

In order to be able to discuss the quantum nature of an output proba-
bility distribution, it is interesting to first take a look at what happens
in a semi-classical context, provided by Glauber’s coherent states[69,
70]. At the end of the chapter, we will discuss the relevant observable[69]: Glauber (1963), “The Quantum

Theory of Optical Coherence”
[70]: Glauber (1963), “Coherent and In-
coherent States of the Radiation Field”

to use so as to distinguish a quantumstate from a semi-classical state.

Theorem 3 (Transformation of coherent states by a beam splitter)

∣𝛼⟩�̂�1 and ∣𝛽⟩�̂�2 being two coherent states placed at the inputs of a beam
splitter with transmission coefficient

√
𝜏𝑒𝑖𝜑𝜏 , and reflection coefficient

√𝜌𝑒𝑖𝜑𝜌 . The output state expressed in the �̂�modes basisis also a product
of coherent states, that writes:

∣𝜓⟩ = ∣𝛼
√
𝜏𝑒𝑖𝜑𝜏 + 𝛽√𝜌𝑒𝑖𝜑𝜌⟩

�̂�1
∣𝛽
√
𝜏𝑒−𝑖𝜑𝜏 − 𝛼√𝜌𝑒−𝑖𝜑𝜌⟩

�̂�2

(1.62)

Proof We consider a general beam splitter, with the notation
of Eq. (1.11) for its parametrisation. Let us first consider two
coherent states ∣𝛼⟩�̂�1 and ∣𝛽⟩�̂�2 , placed at the inputs of a beam

splitter, and let us write ∣𝜓⟩ the corresponding ket. We denote

𝒩 = exp(− ∣𝛼∣
2
+∣𝛽∣2

2 ) the normalisation factor.

∣𝜓⟩
𝒩 =

∣𝛼⟩�̂�1 ∣𝛽⟩�̂�2
𝒩

= exp(𝛼�̂�†1 − 𝛼
∗�̂�1) exp(𝛽�̂�

†
2 − 𝛽

∗�̂�2) ∣𝑣𝑎𝑐⟩



2 N-particle HOMeffect 37

[𝛼�̂�†1 − 𝛼
∗�̂�1, 𝛽�̂�

†
2 − 𝛽

∗�̂�2] = 0, we can therefore merge the expo-

nentials, and express the inner terms in the �̂� modes basis:

= exp (𝛼[
√
𝜏𝑒𝑖𝜑𝜏 �̂�†1 −

√𝜌𝑒−𝑖𝜑𝜌 �̂�†2] − 𝛼
∗[
√
𝜏𝑒−𝑖𝜑𝜏 �̂�1 −

√𝜌𝑒𝑖𝜑𝜌 �̂�2]

+ 𝛽[√𝜌𝑒𝑖𝜑𝜌 �̂�†1 +
√
𝜏𝑒−𝑖𝜑𝜏 �̂�†2] − 𝛽

∗[√𝜌𝑒−𝑖𝜑𝜌 �̂�1 +
√
𝜏𝑒𝑖𝜑𝜏 �̂�2]) ∣𝑣𝑎𝑐⟩

∀(𝑥, 𝑦) ∈ ℂ2, [𝑥�̂�†1 − 𝑥
∗�̂�1, 𝑦�̂�

†
2 − 𝑦

∗�̂�2] = 0, we therefore re-factorise
the expression above, and split the exponential:

= exp ([𝛼
√
𝜏𝑒𝑖𝜑𝜏 + 𝛽√𝜌𝑒𝑖𝜑𝜌] �̂�†1 − [𝛼

∗
√
𝜏𝑒−𝑖𝜑𝜏 + 𝛽∗√𝜌𝑒−𝑖𝜑𝜌] �̂�1)

× exp ([𝛽
√
𝜏𝑒−𝑖𝜑𝜏 − 𝛼√𝜌𝑒−𝑖𝜑𝜌] �̂�†2 − [𝛽

∗
√
𝜏𝑒𝑖𝜑𝜏 − 𝛼∗√𝜌𝑒𝑖𝜑𝜌] �̂�2) ∣𝑣𝑎𝑐⟩

and we identify two coherent states, with respect to the output
modes (the normalisation factor is the same):

∣𝜓⟩ = ∣𝛼
√
𝜏𝑒𝑖𝜑𝜏 + 𝛽√𝜌𝑒𝑖𝜑𝜌⟩

�̂�1
∣𝛽
√
𝜏𝑒−𝑖𝜑𝜏 − 𝛼√𝜌𝑒−𝑖𝜑𝜌⟩

�̂�2

∎
Definition 1 (Poisson distribution)
The discrete probability distribution
of Poisson with mean value 𝜆 is
given by:

𝛲𝑝(𝑛; 𝜆) ≜ 𝑒
−𝜆 𝜆𝑛

𝑛! (1.63)

its standard deviation is also 𝜆.

This is a fairly strong result, but it is not surprising either: classical
states are stable under the action of a beam splitter. Thus, the output
probabilities are Poisson distributions.

In particular, in the symmetric beam splitter case, the joint proba-
bility distribution is:

𝑃out(𝑁1, 𝑁2) = 𝑃𝑝
⎛
⎜
⎝
𝑁1;
∣𝛼𝑒𝑖𝜑𝜏 + 𝛽𝑒𝑖𝜑𝜌 ∣2

2
⎞
⎟
⎠
𝑃𝑝
⎛
⎜
⎝
𝑁2;
∣𝛽𝑒−𝑖𝜑𝜏 − 𝛼𝑒−𝑖𝜑𝜌 ∣2

2
⎞
⎟
⎠

(1.64)
= 𝑃𝑝 (𝑁1; ⟨𝑛1⟩ + 𝐼𝛼,𝛽[Δ𝜑])𝑃𝑝 (𝑁2; ⟨𝑛1⟩ − 𝐼𝛼,𝛽[Δ𝜑])

(1.65)

where:

▶ ⟨𝑛1⟩ = ⟨�̂�1⟩+⟨�̂�2⟩2 is the single-channel average number of parti-
cles;

▶ Δ𝜑 = 𝜑𝜏 − 𝜑𝜌 is the relative phase;
▶ 𝐼𝛼,𝛽[Δ𝜑] = ℜ(𝛼𝛽∗𝑒𝑖Δ𝜑) is the interference term;

In fact, all of this is just a modern rewriting of Michelson’s interfer-
ometer physics. In particular, just like in the classical version of the
two-particleHOMeffect, we find a phase dependence of the joint prob-
ability distribution. We will see in Subsection 2.2.4 that this is not the
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case with a TMS state. During an experiment, one could therefore
test the effect of the phase to check the classical nature of state that is
involved.

What would happen in a distinguishable case? Just as it was
done previously with the Fock states, we should study the successive
mixing of each of the two coherent states with the vacuum, and then
sum up all of their possible combinations.

Vacuum is just the coherent state with average value 0, so the mixing
with vacuum of a coherent state is very simple, since the interference
term is 0. We denote 𝑃1𝛼out output distribution after mixing of the co-
herent state ∣𝛼⟩with the vacuum. Since the beam splitter is symmetric,
the input channel choice does not matter.

so, with Eq. (1.65)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑃1𝛼out(𝑁1, 𝑁2) = 𝑃𝑝 (𝑁1;
∣𝛼∣2
2 )𝑃𝑝 (𝑁2;

∣𝛼∣2
2 )

𝑃1𝛽out(𝑁1, 𝑁2) = 𝑃𝑝 (𝑁1;
∣𝛽∣2
2 )𝑃𝑝 (𝑁2;

∣𝛽∣2
2 )

(1.66a)

(1.66b)

then we just have:

𝑃out(𝑁1, 𝑁2) =
𝛮1
∑
𝛮′1=0

𝛮2
∑
𝛮′2=0

𝑃1𝛼out(𝑁′
1 , 𝑁

′
2)𝑃

1𝛽
out(𝑁1 −𝑁′

1 , 𝑁2 −𝑁′
2) (1.67)

=

Σ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ⎡⎢⎢⎢⎢⎣

𝛮1
∑
𝛮′1=0

𝑃𝑝 (𝑁′
1 ;
∣𝛼∣2
2 )𝑃𝑝 (𝑁1 −𝑁

′
1 ;
∣𝛽∣2
2 )
⎤⎥⎥⎥⎥⎦

×
⎡⎢⎢⎢⎢⎣

𝛮2
∑
𝛮′2=0

𝑃𝑝 (𝑁′
2 ;
∣𝛼∣2
2 )𝑃𝑝 (𝑁2 −𝑁

′
2 ;
∣𝛽∣2
2 )
⎤⎥⎥⎥⎥⎦

(1.68)

now we can simplify both sums, e.g.:

Σ = 𝑒−
∣𝛼∣2+∣𝛽∣2

2
1
2𝛮1

𝛮1
∑
𝛮′1=0

∣𝛼∣2𝛮
′
1 ∣𝛽∣2(𝛮1−𝛮

′
1)

𝑁′
1 ! (𝑁1 −𝑁′

1)!
(1.69)

we identify a binomial identity

= 𝑒−
∣𝛼∣2+∣𝛽∣2

2
1
𝑁1!
(∣𝛼∣

2 + ∣𝛽∣2
2 )

𝛮1

(1.70)
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and finally:

𝑃out(𝑁1, 𝑁2) = 𝑃𝑝 (𝑁1;
∣𝛼∣2 + ∣𝛽∣2

2 )𝑃𝑝 (𝑁2;
∣𝛼∣2 + ∣𝛽∣2

2 ) (1.71)

= 𝑃𝑝 (𝑁1; ⟨𝑛1⟩)𝑃𝑝 (𝑁2; ⟨𝑛1⟩) (1.72)

this is very similar to Eq. (1.65), but with the interference term being 0
(which is reasonable). We actually added intensities: everything works
as if we were considering sources to be incoherent between them. This
is also exactly the result (1.65) when the phase is randomised during an
experiment.

With a finite quantum efficiency The finite detectivity case is
actually included in the previous study, thanks to the following remark-
able property of the Poisson distribution:

Theorem 4 (Stability of the Poisson distribution with finite detec-
tivity)

We consider the Poisson distribution of average population 𝜈. The
corresponding distribution taking into account the finite quantum
efficiency 𝜂 of the detector

1. is also a Poisson distribution
2. its average population is 𝜂𝜈

Proof

𝑃𝜂𝑝 (𝑛; 𝜈) =
∞
∑
𝑚=𝑛
(𝑚𝑛)𝜂

𝑛(1 − 𝜂)𝑚−𝑛𝑒−𝜈 𝜈
𝑚

𝑚!

expanding the combinatorial term:

= (𝜂𝜈)
𝑛

𝑛! 𝑒
−𝜈

∞
∑
𝑚=𝑛

[(1 − 𝜂)𝜈]𝑚−𝑛

(𝑚 − 𝑛)!

we can make the sum start from 𝑚 = 0:

= (𝜂𝜈)
𝑛

𝑛! 𝑒
−𝜈

∞
∑
𝑚=0

[(1 − 𝜂)𝜈]𝑚
𝑚!

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
𝑒(1−𝜂)𝜈

𝑃𝜂𝑝 (𝑛; 𝜈) = 𝑃𝑝(𝑛; 𝜂𝜈)

∎
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Thus, the simple transformation

⎧⎪⎪⎨⎪⎪⎩

𝛼 ↦ √𝜂 𝛼
𝛽 ↦ √𝜂 𝛽

leads to the corresponding joint probability distribution, taking into
account the finite quantum efficiency of the detector.

2.2.3 Thermal states

Before treating the case of the TMS state (which is for us the most
important one), let us take a look at the thermal one, which has close
statistical properties. By “thermal” we actually refer to states for which
the probability 𝑃(𝑛) to measure 𝑛 particles follows the Boltzmann
distribution.

Definition 2 (Thermal state) We call thermal a monomode state
consisting in the following statistical mixture:

�̂�𝑡ℎ = (1 − ∣𝛼∣2)
∞
∑
𝑛=0
∣𝛼∣2𝑛 ∣𝑛⟩⟨𝑛∣ ,

⎧⎪⎪⎨⎪⎪⎩

𝛼 ∈ ℂ
∣𝛼∣ < 1

(1.73)

We have indeed
𝑃𝑡ℎ(𝑛) = (1 − ∣𝛼∣2)∣𝛼∣2𝑛 (1.74)

and ∣𝛼∣2 is sometimes called effective temperature1. It is very easy to1: because it can be assimilated to the
Bolztmann factor: ∣𝛼∣2 ∼ 𝑒−𝛽𝛦, in the
Boltzmann distribution of statistical me-
chanics. 𝑛would play the role of the en-
ergy, which is also consistent.

check that the average population 𝜈 of a thermal state is:

𝜈 = ∣𝛼∣2
1 − ∣𝛼∣2 (1.75)

and reciprocally

∣𝛼∣ =
√

𝜈
1 + 𝜈 (1.76)

It is equally easy to prove that its local second-order degree of coherence
is equal to 2:

⟨𝑛2⟩ − ⟨𝑛⟩
⟨𝑛⟩2

= 𝑔(2)𝑙𝑜𝑐 = 2 (1.77)

In fact, the 𝑛th-order local correlation function of a thermal source is
known [71] and given by[71]: Liu et al. (2009), “Nth-Order Co-

herence ofThermal Light” 𝑔(𝑛)𝑙𝑜𝑐 = 𝑛! (1.78)
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Remark 1.4 We will see later that this particular property of the
local correlations is also true with two-mode squeezed states.

This is a major difference with semi-classical coherent states, where
the correlation function is known to be equal to one.

The second difference being the statistics itself: the coherent state has
a Poissonian statistics, whereas that of thermal states is a power law.

We often prefer to write the probability distribution in terms of the
average population:

𝑃𝑡ℎ(𝑛) =
𝜈𝑛

(1 + 𝜈)𝑛+1 (1.79)

Let us now investigate what happens when we make thermal states
interfere:

Indiscernible case The scenario of two indiscernable thermal states
is complex to treat analytically.

With a perfect detector Thecorrespondingdensitymatrix reads:

�̂� =
∞
∑
𝑛,𝑚=0

𝑃𝑡ℎ(𝑛)𝑃𝑡ℎ(𝑚)
𝑛!𝑚! (�̂�†1)

𝑛(�̂�†2)
𝑚 ∣0⟩⟨0∣ (�̂�1)𝑛(�̂�2)𝑚 (1.80)

then we must express the parameters of the beam splitter to expand
�̂�𝑖 and �̂�

†
𝑖 in terms of �̂�𝑖 and �̂�

†
𝑖 . The density matrix is not diagonal,

therefore the probability distribution a priori depends on the phase (cf.
Theorem 2). Thus we should take into account the phases 𝜑𝜏 and 𝜑𝜌 of
the beam splitter during the expansion:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�̂�1 =
1√
2
(𝑒−𝑖𝜑𝜏 �̂�1 − 𝑒𝑖𝜑𝜌 �̂�2)

�̂�2 =
1√
2
(𝑒−𝑖𝜑𝜌 �̂�1 + 𝑒𝑖𝜑𝜏 �̂�2)

(1.81a)

(1.81b)

The calculations being rather heavy, we will just give here a summary
of what happens when they are done:
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▶ the binomial expansion of the �̂�𝑖 and �̂�
†
𝑖 terms adds four finite

sums to the expression:

�̂� =
∞
∑
𝑛,𝑚=0

𝑛
∑
𝑝1,𝑝2=0

𝑚
∑
𝑞1,𝑞2=0

(⋯) (1.82)

Many phase terms are present.
▶ then, the joint probability is givenby𝑃out(𝑁1, 𝑁2) = ⟨𝑁1, 𝑁2∣�̂�∣𝑁1, 𝑁2⟩,

which provides the additional conditions:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑚 +𝑚 = 𝑁1 +𝑁2
𝑝1 + 𝑞1 = 𝑁1
𝑝2 + 𝑞2 = 𝑁1

(1.83a)
(1.83b)
(1.83c)

Therefore, three (out of six) sums disappear. Thankfully all the
phase terms cancel out.

▶ the remaining sums are still difficult to compute (I did not found
a satisfying final simplification). However, if we study particular
cases we find:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑃out(0,𝑁) =
1

(1 + 𝜈)2
( 𝜈
1 + 𝜈)

𝛮
= 𝑃𝑡ℎ(0)𝑃𝑡ℎ(𝑁)

𝑃out(1,𝑁) =
1

(1 + 𝜈)2
( 𝜈
1 + 𝜈)

𝛮+1
= 𝑃𝑡ℎ(1)𝑃𝑡ℎ(𝑁)

𝑃out(2,𝑁) =
1

(1 + 𝜈)2
( 𝜈
1 + 𝜈)

𝛮+2
= 𝑃𝑡ℎ(2)𝑃𝑡ℎ(𝑁)

(1.84a)

(1.84b)

(1.84c)

𝑃𝜂out(0,𝑁) is easy to compute (the binomial sums are trivial),
𝑃𝜂out(1,𝑁) and𝑃

𝜂
out(2,𝑁) aremore difficult (there are somenon-

trivial sums to compute) but it is still doable.

With the pattern of equations (1.84), we can make the fairly solid con-
jecture that

𝑃out(𝑁1, 𝑁2) ?= 𝑃𝑡ℎ(𝑁1)𝑃𝑡ℎ(𝑁2) (1.85)

If it is true, everything works as if no beam splitter were present... It
is not surprising to find no phase dependence, as the thermal states
are the quantum analogue of incoherent fields. We have plotted this
profile in Figure 1.15.

This distribution is wider than in the distinguishable case (which is
not surprising when dealing with indiscernible boson). But the most
remarkable feature of this joint distribution is that it is separable, and
that the probability of a given outcome depends only on the total
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Figure 1.15: Output joint probabil-
ity distribution for indistinguishable
thermal states interfering at a 50-50
beam splitter. We selected an average
population per mode 𝜈 = 2. We find
𝛲out(0, 0) ≈ 0.111

number of detected particles. Indeed:

𝑃out(𝑁1, 𝑁2) =
1
1 + 𝜈 𝑃𝑡ℎ(𝑁1 +𝑁2) (1.86)

We will see in the subsection dedicated to the treatment of TMS states
that this property does not hold: this is a distinction criterion between
the TMS state (entangled) and the thermal states (not entangled).

With a finite quantumefficiency Wehave seen in the paragraph
above that when two indiscernible thermal distributions of particles
interfere on a beam splitter, they behave as if no beam splitter were
present. We can therefore solve the question of the finite efficiency very
quickly byusing the following property of thermal states:

Theorem 5 (Stability of the thermal distribution with finite detectiv-
ity)

We consider the thermal distribution of average population 𝜈. The
corresponding distribution taking into account the finite quantum
efficiency 𝜂 of the detector:

1. is also thermal
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2. its average population is 𝜂𝜈

Proof first let us recall two useful mathematical identities

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d𝑛𝑥𝑚

d𝑥𝑛 =
𝑚!

(𝑚 − 𝑛)!𝑥
𝑚−𝑛

d𝑛

d𝑥𝑛 [
1

1 − 𝑥𝑦] =
𝑛! 𝑦𝑛

(1 − 𝑥𝑦)𝑛+1

(1.87a)

(1.87b)

𝑃𝜂𝑡ℎ(𝑛) =
∞
∑
𝑚=𝑛
(𝑚𝑛)𝜂

𝑛(1 − 𝜂)𝑚−𝑛 𝜈𝑚

(1 + 𝜈)𝑚+1

using (1.87a) with 𝑥 = (1 − 𝜂):

= 𝜂
𝑛

𝑛!
1
1 + 𝜈

∞
∑
𝑚=𝑛

d𝑛

d(1 − 𝜂)𝑛
[(1 − 𝜂)𝑚 ( 𝜈

1 + 𝜈)
𝑚
]

we can make the sum start from 𝑚 = 0 since the first terms would
be 0 due to the derivative. We can then switch the sum and the
derivative (because the series is geometric):

= 𝜂
𝑛

𝑛!
1
1 + 𝜈

d𝑛

d(1 − 𝜂)𝑛
[ 1
1 − (1 − 𝜂) 𝜈

1+𝜈
]

and finally, using (1.87b):

𝑃𝜂𝑡ℎ(𝑛) =
(𝜂𝜈)𝑛

(1 + 𝜂𝜈)𝑛+1

∎

The resulting joint probability distribution is therefore the same as
before (with a perfect detector), just doing the transformation

𝜈 ↦ 𝜂𝜈

Distinguishable case The scenario of distinguishable thermal states
is simpler.

With a perfect detector As usual, the first thing to do in the
distinguishable case is to study the effect of the mixing of a thermal
state with the vacuum. We work in the Heisenberg picture. The corre-
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sponding density operator reads:

�̂� =
∞
∑
𝑛=0
𝑃𝑡ℎ(𝑛) ∣𝑛⟩�̂�1 ⟨𝑛∣�̂�1 ⊗ ∣0⟩�̂�2 ⟨0∣�̂�2 (1.88)

and we denote 𝑃1out(𝑁1, 𝑁2) the output probability distribution.

𝑃1out(𝑁1, 𝑁2) = �̂�1�̂�2⟨𝑁1𝑁2∣�̂� ∣𝑁1, 𝑁2⟩�̂�1�̂�2 (1.89)

�̂� is a diagonal density operator, thus we already know1 that the phases 1: with the second remark onTheorem
2of the beam splitter will not contribute to the output probabilities.

We can take 𝜑𝜏 = 0 and 𝜑𝜌 = 𝜋 to simplify the calculations. Therefore,
using

�̂�1 =
1√
2
(�̂�1 + �̂�2) (1.90)

we can rewrite �̂� in the �̂�-modes basis:

�̂� =
∞
∑
𝑛=0

𝑃𝑡ℎ(𝑛)
2𝑛𝑛! (�̂�

†
1 + �̂�

†
2)
𝑛
∣0⟩⟨0∣ (�̂�1 + �̂�2)

𝑛
(1.91)

=
∞
∑
𝑛=0

𝑃𝑡ℎ(𝑛)
2𝑛𝑛!

𝑛
∑
𝑘,𝑝=0
(𝑛𝑘)(

𝑛
𝑝) (�̂�

†
1)
𝑘
(�̂�†2)

𝑛−𝑘
∣0⟩⟨0∣ (�̂�1)

𝑝
(�̂�2)

𝑛−𝑝

(1.92)

=
∞
∑
𝑛=0

𝑃𝑡ℎ(𝑛)
2𝑛𝑛!

𝑛
∑
𝑘,𝑝=0
(𝑛𝑘)(

𝑛
𝑝)
√
𝑘! 𝑝! (𝑛 − 𝑘)! (𝑛 − 𝑝)! ∣𝑘, 𝑛 − 𝑘⟩⟨𝑝, 𝑛 − 𝑝∣

(1.93)

we inject this in Eq. (1.89), the scalar products gives 𝑘 = 𝑝 = 𝑁1 and
𝑛 = 𝑁1 +𝑁2. We find:

𝑃1out(𝑁1, 𝑁2) =
𝑃𝑡ℎ(𝑁1 +𝑁2)

2𝛮1+𝛮2(𝑁1 +𝑁2)!
(𝑁1 +𝑁2𝑁1

)
2

𝑁1!𝑁2! (1.94)

𝑃1out(𝑁1, 𝑁2) =
𝑃𝑡ℎ(𝑁1 +𝑁2)
2𝛮1+𝛮2

(𝑁1 +𝑁2𝑁1
) (1.95)

The total probability distribution in the distinguishable case is given
by the sum of the results when we repeat a mixing with vacuum experi-
ment twice:

𝑃out(𝑁1, 𝑁2) =
𝛮1
∑
𝑛1=0

𝛮2
∑
𝑛2=0

𝑃1out(𝑛1, 𝑛2)𝑃1out(𝑁1 − 𝑛1, 𝑁2 − 𝑛2) (1.96)

=
𝛮1
∑
𝑛1=0

𝛮2
∑
𝑛2=0
(𝑛1 + 𝑛2𝑛1

)(𝑁1 +𝑁2 − 𝑛1 − 𝑛2𝑁1 − 𝑛1
) 1
2𝛮1+𝛮2

1
(1 + 𝜈)2 (

𝜈
1 + 𝜈)

𝛮1+𝛮2

(1.97)
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Figure 1.16: Output joint probability
distribution for distinguishable thermal
states interfering at a 50-50 beam splitter.
We selected an average population per
mode 𝜈 = 2. We find 𝛲out(0, 0) ≈ 0.111
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Thanks to Vandermonde’s identity1, we cancheck that:1: Vandermonde’s identity is

𝑝

∑
𝑘=0
(
𝑚
𝑘)(

𝑛
𝑝 − 𝑘) = (

𝑚 + 𝑛
𝑝 ) (1.98)

𝛮1
∑
𝑛1=0

𝛮2
∑
𝑛2=0
(𝑛1 + 𝑛2𝑛1

)(𝑁1 +𝑁2 − 𝑛1 − 𝑛2𝑁1 − 𝑛1
) = (1 +𝑁1 +𝑁2)(

𝑁1 +𝑁2
𝑁1

)

(1.99)
giving:

𝑃out(𝑁1, 𝑁2) =
(1 +𝑁1 +𝑁2)!
𝑁1!𝑁2!

1
2𝛮1+𝛮2

1
(1 + 𝜈)2 (

𝜈
1 + 𝜈)

𝛮1+𝛮2

(1.100)

As always, a numerical example is provided in Figure 1.16. As expected
for a distinguishable case, the distribution is quite narrow, and sym-
metric.

With a finite quantum efficiency The fundamental relation to
take the finite detectivity effect into account is still:

𝑃𝜂out(𝑁1, 𝑁2) =
∞
∑
𝑚1=𝛮1

∞
∑
𝑚2=𝛮2

(𝑚1𝑁1
)(𝑚2𝑁2

)𝜂𝛮1+𝛮2(1−𝜂)𝑚1+𝑚2−𝛮1−𝛮2𝑃out(𝑚1, 𝑚2)

(1.101)
which is a priori very difficult to calculate. Actually, it turns out that it
can be simplified. So far we have always considered the losses to occur
after the interaction with the beam splitter, and before the detection
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stage, but with our model – which does not take into account the
details of the losses mechanism –we are completely allowed to consider
the losses to occur even before the application of the beam splitter. In
that case, the fact that we are dealing with two independent statistical
mixtures, and the stability of the thermal distribution with a finite
quantum efficiency (Theorem 8) ensures that the treatment of the
problem is equivalent to the one with perfect detectors, just replacing
the average population of both distribution 𝜈 by 𝜂𝜈. Therefore:

𝑃𝜂out(𝑁1, 𝑁2; 𝜈) = 𝑃out(𝑁1, 𝑁2; 𝜂𝜈) (1.102)

We also checked – using a symbolic computation software such as Wol-
framMathematica© – that this simplification also occurs by “naively”
computing Eq. (1.101). We finally verified numerically that Eq. (1.102)
makes sense concerning the mean number of particles that are mea-
sured: if we measure 2 × 𝜈 particles on average with a perfect detector,
2 × 𝜂𝜈 should be measured on average with a detector of quantum
efficiency 𝜂.

2.2.4 Two-mode squeezed vacuum state

Motivation As it will be discussed in Chapter 5, our experimental
platform offers the opportunity to generate correlated atomic multi-
mode fields, for which we expect to witness strong nonclassical effects.
In particular, the model that we generally use to describe what our
atomic source is producing is the “two-mode squeezed vacuum state
(TMS)” [52, 72], which is defined as follows: [52]: Gerry et al. (2005), Introductory

Quantum Optics
[72]: Heidmann et al. (1987), “Observa-
tion of QuantumNoise Reduction on
Twin Laser Beams”

Definition 3 (two-mode squeezed vacuumstate) 𝑎 and 𝑏 being two
modes of a bosonic field, we call two-mode squeezed vacuum
state and write ∣TMS⟩ the quantum state:

∣TMS⟩ =
√
1 − ∣𝛼2∣

∞
∑
𝑛=0
𝛼𝑛 ∣𝑛⟩𝑎 ∣𝑛⟩𝑏 ,

⎧⎪⎪⎨⎪⎪⎩

𝛼 ∈ ℂ
∣𝛼∣ < 1

(1.103)

Such a state is obviously entangled, and it involves two modes that can
be spatially separated.

If one traces over one of the two modes, it trivially leads to a thermal
state (power law) of parameter 𝛼.
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It is perfectly feasible to reproduce the analogue of the HOM experi-
ment (discussed in the first section of this chapter) but replacing the
two individual atoms –placed at the inputs of the beam splitter– by
the two entangled modes 𝑎 and 𝑏 of a TMS. One can notice that a
TMS is actually a coherent superposition of many twin Fock states,
weighted by coefficients following a thermal distribution. Therefore,
the output probability distribution resulting of the interferences of
a TMS is simply given by the sum of those obtained with twin-Fock
states, correctly weighted.

Probability distribution of a TMS (no BS) Before diving into
the calculation of the expected results of a HOM-like experiment per-
formed with a TMS, there is a first interesting calculation that we can
consider: what distribution of probability do we expect if we measure
a TMS with a finite quantum efficiency detector? This question is of
special interest for us because even if we have theoretical reasons to
believe that our source is indeed emitting two-mode squeezed states1, it1: those arguments will be given in

Chapter 5 is crucial to gather a maximum of experimental clues indicating that it
is indeed the case, as well as the validity range of this model. Some of
these clues are using the correlations properties of a TMS: those will
be discussed and presented in Chapter 5. The statistical distribution of
the number of atoms detected when the TMS is measured directly is
another clue.

If the quantum efficiency is perfect, this probability distribution is triv-
ial: Born’s rule for expectation values, applied to (1.103), immediately
gives

⎧⎪⎪⎨⎪⎪⎩

𝑃(𝑛, 𝑛) = (1 − ∣𝛼∣2)∣𝛼∣2𝑛

𝑃(𝑛1, 𝑛2 ≠ 𝑛1) = 0
(1.104a)
(1.104b)

There is is a perfect correlation between the number of atoms (a visual-
isation of this distribution is given in Figure 1.20a on page 54).

We can give an analytical expression to the probability distribution
taking into account the finite quantum efficiency of the detector. How-
ever, to do this we will need to introduce two rather unusual2 func-2: in physics at least...
tions:
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Definition 4 (Rising factorial) We call “rising factorial”
(or “Pochhammer function”) the function defined by:

ℂ → ℂ
𝑧 ↦ 𝑧𝑛 = 𝑧(𝑧 + 1)(𝑧 + 2)⋯(𝑧 + 𝑛 − 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
𝑛 terms

The rising factorial being defined, we can introduce the hypergeometric
functions:

Definition 5 (Hypergeometric function) We call “hypergeometric
function” and denote 2𝐹1 the complex function defined by:

2𝐹1 ∶ {𝑧 ∈ ℂ/∣𝑧∣ < 1} → ℂ

𝑧 ↦ 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) =
∞
∑
𝑛=0

𝑎𝑛𝑏𝑛

𝑐𝑛
𝑧𝑛

𝑛!

At first sight, the above-mentioned definition may seem a bit point-
less, since it involves an infinite summation. In fact, it is very useful
for numerical evaluation, because it is well implemented in computa-
tional libraries (for example scipy in PythonPython) allowing for very fast
calculations.

Then we have:

Theorem 6 (Probability distribution of a TMS)

Considering a TMSwith an average population per mode 𝜈 = ∣𝛼∣2

1−∣𝛼∣2
.

When measured with a detector of finite quantum efficiency, the prob-
ability𝑃𝜂(𝑛1, 𝑛2) to count 𝑛1 particles in the firstmode and 𝑛2 particles
in the second mode is symmetric, and given by:

𝑃𝜂(𝑛1, 𝑛2 < 𝑛1) = (1 − ∣𝛼∣
2)∣𝛼∣2𝑛1𝜂𝑛1+𝑛2(1 − 𝜂)𝑛1−𝑛2

× (𝑛1𝑛2
)2𝐹1(𝑛1 + 1, 𝑛1 + 1; 𝑛1 − 𝑛2 + 1; (1 − 𝜂)2∣𝛼∣

2)

(1.105)
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Figure 1.17: Expected joint probabil-
ity distribution of a TMS state, when
it is measured directly (no beam splitter).
Here the average population per mode
is 𝜈 = 2 and the detectivity 𝜂 = 0.5.
We can notice the remarkable property
𝛲𝜂(1, 1) > 𝛲𝜂(0, 1) = 𝛲𝜂(1, 0). This is
a legacy of the “diagonal” shape of this
distribution when we consider the bare
TMS state (i.e. 𝜂 = 1, cf. Figure 1.20a).
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Proof As usual:

𝑃𝜂(𝑛1, 𝑛2) =
∞
∑
𝑚1=𝑛1

∞
∑
𝑚2=𝑛2

(𝑚1𝑛1
)(𝑚2𝑛2

)𝜂𝑛1+𝑛2(1 − 𝜂)𝑚1+𝑚2−𝑛1−𝑛2𝑃(𝑚1, 𝑚2)

the symmetry of the above expression immediately gives𝑃𝜂(𝑛1, 𝑛2) =
𝑃𝜂(𝑛2, 𝑛1), so let us assume 𝑛1 ≥ 𝑛2. Due to (1.104), we can restrict
the double summation to the 𝑚1 = 𝑚2 = 𝑚 domain, and since
𝑚 ≥ max(𝑛1, 𝑛2) = 𝑛1 we have:

𝑃𝜂(𝑛1, 𝑛2) =
∞
∑
𝑚=𝑛1
(𝑚𝑛1
)(𝑚𝑛2
)𝜂𝑛1+𝑛2(1 − 𝜂)2𝑚−𝑛1−𝑛2(1 − ∣𝛼∣2)∣𝛼∣2𝑚

= 𝜂𝑛1+𝑛2(1 − ∣𝛼∣2)
∞
∑
𝑚=𝑛1

(𝑚!)2(1 − 𝜂)2𝑚−𝑛1−𝑛2 ∣𝛼∣2𝑚

𝑛1! 𝑛2!(𝑚 − 𝑛1)!(𝑚 − 𝑛2)!

we can put the constant term on the left, and re-index the sum:

𝑃𝜂(𝑛1, 𝑛2)
𝜂𝑛1+𝑛2(1 − ∣𝛼∣2)

=
∞
∑
𝑚=0

[(𝑛1 +𝑚)!]
2

𝑛1! 𝑛2! 𝑚! (𝑚 + 𝑛1 − 𝑛2)!
(1 − 𝜂)2𝑚+𝑛1−𝑛2 ∣𝛼∣2𝑚+2𝑛1
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to keep simple notations we set:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑧 = (1 − 𝜂)2∣𝛼∣2

Π =
𝑃𝜂(𝑛1, 𝑛2)

𝜂𝑛1+𝑛2(1 − ∣𝛼∣2)(1 − 𝜂)𝑛1−𝑛2 ∣𝛼∣2𝑛1

leaving

Π =
∞
∑
𝑚=0

[(𝑛1 +𝑚)!]
2

𝑛1! 𝑛2! (𝑚 + 𝑛1 − 𝑛2)!´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶𝑢𝑚

𝑧𝑚

𝑚!

regarding Definition 5 of hypergeometric functions we are almost
done, we just need to give 𝑢𝑛 the appropriate shape. Let us notice
that

(𝑛1 +𝑚)! = 𝑛1! × (𝑛1 + 1) ×⋯ × 𝑛1 +𝑚 = 𝑛1!(𝑛1 + 1)𝑛

and therefore also

(𝑚 + 𝑛1 − 𝑛2)! = (𝑛1 − 𝑛2)!(𝑛1 − 𝑛2 + 1)𝑛

𝑢𝑛 =
(𝑛1 + 1)𝑛(𝑛1 +𝑚)!

𝑛2! (𝑛1 − 𝑛2)!(𝑛1 − 𝑛2 + 1)𝑛

= (𝑛1𝑛2
) (𝑛1 + 1)𝑛
(𝑛1 − 𝑛2 + 1)𝑛

(𝑛1 +𝑚)!
𝑛1!

𝑢𝑛 = (
𝑛1
𝑛2
)
[(𝑛1 + 1)𝑛]

2

(𝑛1 − 𝑛2 + 1)𝑛

and putting the pieces together we have:

Π = (𝑛1𝑛2
)2𝐹1(𝑛1 + 1, 𝑛1 + 1; 𝑛1 − 𝑛2 + 1; 𝑧)

We just have to use
∣𝛼∣2 = 𝜈

1 + 𝜈
to recover the expression Eq. (1.105).

∎

We give a visualisation of this probability distribution in Figure 1.17.
Obtaining it experimentally is feasible, but requires a lot of statistical av-
eraging. In Chapter 5 we will perform the complete analysis of a dataset
that we recently obtained. Unfortunately the statistics (∼ 800 files) is
not large enough to obtain a faithful picture of the distribution calcu-
lated above. In a near future we will be able to gather data again, and
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hopefully obtain enough statistics to evaluate the measured 𝑃𝜂(𝑛1, 𝑛2).
However, we will see that we were able to measure experimentally the
marginal distribution.

Now in the following paragraphs, wewill study the probability distribu-
tions resulting from the interaction of the twomodes of the TMSwith
a beam splitter. In the indistinguishable case, the two modes are mixed
with each other, giving birth to interferences. In the distinguishable
case each of the two modes is mixed with the vacuum, one interaction
following the other. We will always assume the beam splitter to be
50-50.

Interferences on a beam splitter: indiscernible case

With a perfect detector If we assume the beam splitter to be
symmetric (50-50), the two-mode output probability distribution can
be calculated exactly:

Theorem 7 (Output probability distribution for a TMS state inter-
fering at a 50-50 beam splitter)

Given (𝑄𝑛) the sequence defined by:

𝑘 ∈ ℕ,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑄2𝑘 =
√
1 − ∣𝛼∣2 (∣𝛼∣2 )

2𝑘 (2𝑘)!
𝑘!2

𝑄2𝑘+1 = 0
(1.106)

we have:
𝑃out(𝑁1, 𝑁2) = 𝑄𝛮1 ⋅ 𝑄𝛮2 (1.107)

0 1 2 3 4 5

1
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3

4

5

𝑚

𝑛
Figure 1.18: Graphical proof of the
equivalence of two double summation
patterns.The sum is evaluated over the
black vertices, and we canchoose to sum
along the blue lines, or the red ones.
∞
∑
𝑛=0

𝑛
∑
𝑚=0
● =

∞
∑
𝑚=0

∞
∑
𝑛=𝑚
● =

∞
∑
𝑚=0

∞
∑

𝑝=𝑛−𝑚=0
●

Proof Following the notations introduced in Eq. (1.11) for the
matrix representation of the beam splitter, we have:

�̂�
†
= 1√

2
(𝑒
−𝑖𝜑𝜏 −𝑒𝑖𝜑𝜌
𝑒−𝑖𝜑𝜌 𝑒𝑖𝜑𝜏 )

which therefore gives the fundamental coupling relations:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�̂�1 =
1√
2
[𝑒−𝑖𝜑𝜏 �̂�1 − 𝑒𝑖𝜑𝜌 �̂�2]

�̂�2 =
1√
2
[𝑒−𝑖𝜑𝜌 �̂�1 + 𝑒𝑖𝜑𝜏 �̂�2]
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therefore, since [�̂�1, �̂�2] = 0:

�̂�†1�̂�
†
2 =

1
2 [𝑒

𝑖(𝜑𝜏+𝜑𝜌)(�̂�†1)
2 − 𝑒−𝑖(𝜑𝜏+𝜑𝜌)(�̂�†2)

2 +
�
���̂�†1 �̂�
†
2 −�

���̂�†2 �̂�
†
1]

= 12 [𝑒
𝑖𝜙 (�̂�†1)

2 − 𝑒−𝑖𝜙 (�̂�†2)
2]

where we have introduced

𝜙 = 𝜑𝜏 + 𝜑𝜌

then we can express the TMS in the �̂�modes basis. Indeed, starting
with its definition (1.103) in which we inject Eq. (1.5):

∣TMS⟩√
1 − ∣𝛼∣2

=
∞
∑
𝑛=0
𝛼𝑛 ∣𝑛, 𝑛⟩

=
∞
∑
𝑛=0

𝛼𝑛

𝑛! 2𝑛 (𝑒
𝑖𝜙 (�̂�†1)

2 − 𝑒−𝑖𝜙 (�̂�†2)
2)
𝑛
∣𝑣𝑎𝑐⟩

=
∞
∑
𝑛=0

𝑛
∑
𝑚=0
(𝛼2)

𝑛 1
𝑛!(

𝑛
𝑚)

× 𝑒𝑖𝑚𝜙 (�̂�†1)
2𝑚𝑒𝑖(𝑛−𝑚)(𝜋−𝜙) (�̂�†2)

2(𝑛−𝑚)

∣TMS⟩√
1 − ∣𝛼∣2

=
∞
∑
𝑛=0

𝑛
∑
𝑚=0
(𝛼2)

𝑛 1
𝑚!(𝑛 −𝑚)!

× 𝑒𝑖𝑚𝜙 (�̂�†1)
2𝑚𝑒𝑖(𝑛−𝑚)(𝜋−𝜙) (�̂�†2)

2(𝑛−𝑚)

Then we transform the double summation with the little trick
explained graphically in Figure 1.18:

∣TMS⟩ =
√
1 − ∣𝛼∣2

∞
∑
𝑚,𝑝=0
(𝛼2)

𝑚+𝑝 (𝑒𝑖𝜙(�̂�†1)
2)
𝑚

𝑚!
(𝑒𝑖(𝜋−𝜙)(�̂�†2)

2)
𝑝

𝑝! ∣𝑣𝑎𝑐⟩

Thus written in the output modes basis, the TMS has the remark-
able property of being a separable state!

∣TMS⟩ = ∣𝜓out
1 ⟩ ⊗ ∣𝜓out

2 ⟩

with

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣𝜓out
1 ⟩ = (1 − ∣𝛼∣

2)
1
4
∞
∑
𝑛=0
(𝛼2)

𝑛
√
(2𝑛)!
𝑛! (𝑒𝑖𝜙)𝑛 ∣2𝑛, 0⟩

∣𝜓out
2 ⟩ = (1 − ∣𝛼∣

2)
1
4
∞
∑
𝑛=0
(𝛼2)

𝑛
√
(2𝑛)!
𝑛! (𝑒𝑖(𝜋−𝜙))

𝑛
∣0, 2𝑛⟩
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∣𝜓out
1 ⟩ and ∣𝜓out

2 ⟩ only differ in the output mode and a in phase
inside the sum. Since we are interested in the probabilities of
detections, these phases do not play any role:

𝑃out(𝑁1, 𝑁2) = 𝑄𝛮1 ⋅ 𝑄𝛮2

with,

𝑘 ∈ ℕ,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑄2𝑘 =
√
1 − ∣𝛼∣2 (∣𝛼∣2 )

2𝑘 (2𝑘)!
𝑘!2

𝑄2𝑘+1 = 0
∎

0 5 10

n

0.0

0.2

0.4

0.6
Qn

Figure 1.19: Numerical evaluation of
the𝑄𝑛 sequence, taken for 𝜈 = 2.

𝑃out is separable, and obviously symmetric. One can notice (for instance
in Figure 1.19) that the key feature of the 𝑛-particle Hong-Ou-Mandel
(nHOM) effect is preserved: no odd number of particles can be de-
tected.
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(a) Input TMS probability distribu-
tion. The two modes are perfectly cor-
related and only𝑃in(𝑁,𝑁) takes non-
zero values.
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(b) After interfering at the 50-50 beam
splitter, the distribution is widely
spread over the (𝑁1, 𝑁2) domain.
However, all configurations involving
an odd number of particles are forbid-
den.

Figure 1.20: Effect of the 50-50 beam splitter on a TMS (here 𝜈 = 2).

With a finite quantum efficiency Even with finite detectivity,
the distribution remains separable:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑃𝜂out(𝑁1, 𝑁2) = 𝑄
𝜂
𝛮1
⋅ 𝑄𝜂𝛮2

𝑄𝜂𝛮 =
∞
∑
𝑚=𝛮

𝑄𝑚 𝜂
𝛮 (1 − 𝜂)𝑚−𝛮 (𝑚𝑁)

(1.108a)

(1.108b)
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We can derivate an analytic solution for this sum, using again the
hypergeometric functions. Let us indeed prove the following result:

Theorem 8 (Output probability distribution for a TMS interfering
at a 50-50 beam splitter, with finite quantum efficiency)

Given 𝜂 the quantum efficiency of the detector, and 𝛼 the effective
temperature of the TMS, we denote:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑧 = ∣𝛼∣2 (1 − 𝜂)

𝑢𝑝 = 2𝐹1 [𝑝 +
1
2, 𝑝 +

1
2;
1
2; 4𝑧

2]

𝑣𝑝 = 2𝐹1 [𝑝 +
3
2, 𝑝 +

3
2;
3
2; 4𝑧

2]

(1.109)

we have:
𝑃𝜂out(𝑁1, 𝑁2) = 𝑄

𝜂
𝛮1
⋅ 𝑄𝜂𝛮2 (1.110)

with:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑄𝜂2𝑝 = (
𝜂 ∣𝛼∣
2 )

2𝑝 (2𝑝)!
(𝑝!)2

√
1 − ∣𝛼∣2 𝑢𝑝

𝑄𝜂2𝑝+1 = 𝑧 (
𝜂 ∣𝛼∣
2 )

2𝑝+1

(2𝑝 + 2)(2𝑝 + 2)!(𝑝 + 1)!2
√
1 − ∣𝛼∣2 𝑣𝑝

(1.111)

Proof In the view of the parity issue for the index of 𝑄𝛮, it is
useful to separate even and odd cases in the calculation:

if N=2p:

𝑄𝜂2𝑝 = 𝜂
2𝑝

∞
∑
𝑚=2𝑝
(𝑚2𝑝) (1 − 𝜂)

𝑚−2𝑝 𝑄𝑚

all the odd terms of the sum being 0, we can remove them:

= 𝜂2𝑝
∞
∑
𝑚=𝑝
(2𝑚2𝑝) (1 − 𝜂)

2𝑚−2𝑝 𝑄2𝑚
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we inject the expression (1.106) of 𝑄2𝑚:

= 𝜂2𝑝
√
1 − ∣𝛼∣2

∞
∑
𝑚=𝑝
(2𝑚2𝑝)(1 − 𝜂)

2𝑚−2𝑝 (∣𝛼∣2 )
2𝑚 (2𝑚)!
(𝑚!)2

we reindex the sum, making it start from 0:

= 𝜂2𝑝
√
1 − ∣𝛼∣2

∞
∑
𝑚=0
(2𝑚 + 2𝑝2𝑝 )(1 − 𝜂)2𝑚 (∣𝛼∣2 )

2𝑚+2𝑝 (2𝑚 + 2𝑝)!
(𝑚 + 𝑝)!2

expanding the binomial term:

= (𝜂 ∣𝛼∣2 )
2𝑝
√
1 − ∣𝛼∣2

(2𝑝)!

𝑇³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∞
∑
𝑚=0
[(2𝑚 + 2𝑝)!(𝑚 + 𝑝)! ]

2
1
(2𝑚)! [

∣𝛼∣
2 (1 − 𝜂)]

2𝑚

The final infinite series 𝑇 may seem rather uninviting, but in fact
we can rearrange this to make it more orderly:

for convenience we denote

𝑧 = ∣𝛼∣2 (1 − 𝜂)

we can force the apparition of rising factorial terms in 𝑇:

𝑇 = ((2𝑝)!𝑝! )
2 ∞
∑
𝑚=0
[(2𝑚 + 2𝑝)!(2𝑝)! ]

2

[ 𝑝!
(𝑚 + 𝑝)!]

2
𝑧2𝑚

(2𝑚)!

= ((2𝑝)!𝑝! )
2 ∞
∑
𝑚=0

⎡⎢⎢⎢⎢⎣

(2𝑝 + 1)2𝑚

(𝑝 + 1)𝑚
⎤⎥⎥⎥⎥⎦

2
𝑧2𝑚

(2𝑚)!

in addition:

(2𝑝 + 1)2𝑚 =
2𝑚 terms³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

(2𝑝 + 1)(2𝑝 + 2)(2𝑝 + 3)(2𝑝 + 4)⋯(2𝑝 + 2𝑚)

= 22𝑚(𝑝 + 12)(𝑝 + 1)(𝑝 +
3
2)(𝑝 + 2)⋯(𝑝 +𝑚)

grouping the reds together and the blues together:

= 22𝑚(𝑝 + 12)
𝑚
(𝑝 + 1)𝑚

thus:
(2𝑝 + 1)2𝑚

(𝑝 + 1)𝑚 = 2
2𝑚 (𝑝 + 12)

𝑚
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the same reasoning provides:

(2𝑚)! = 2𝑚(2𝑚 − 1)(2𝑚 − 2)(2𝑚 − 3)⋯1

= 22𝑚𝑚(𝑚 − 12)(𝑚 − 1)(𝑚 −
3
2)⋯

1
2

(2𝑚)! = 22𝑚 𝑚! (12)
𝑚

and finally assembling up the pieces together:

𝑇 = ((2𝑝)!𝑝! )
2 ∞
∑
𝑚=0

[(𝑝 + 12)
𝑚]
2

(12)
𝑚 22𝑚 𝑧

2𝑚

𝑚!

= ((2𝑝)!𝑝! )
2

2𝐹1(𝑝 +
1
2, 𝑝 +

1
2;
1
2; 4 𝑧

2)

we end up with an analytic formula:

𝑄𝜂2𝑝 = (
𝜂 ∣𝛼∣
2 )

2𝑝 (2𝑝)!
(𝑝!)2

√
1 − ∣𝛼∣2 2𝐹1 [𝑝 +

1
2, 𝑝 +

1
2;
1
2; ∣𝛼∣

2(1 − 𝜂)2]

if N=2p+1:

we now have to play the same little game for odd cases.

𝑄𝜂2𝑝+1 = 𝜂
2𝑝+1

∞
∑

𝑚=2𝑝+1
( 𝑚
2𝑝 + 1) (1 − 𝜂)

𝑚−2𝑝−1 𝑄𝑚

we only keep the terms where 𝑄𝑚 takes a non-zero value:

= 𝜂2𝑝+1
∞
∑
𝑚=𝑝+1

( 2𝑚2𝑝 + 1) (1 − 𝜂)
2𝑚−2𝑝−1 𝑄2𝑚

we inject the expression (1.106) of 𝑄2𝑚:

= 𝜂2𝑝+1
√
1 − ∣𝛼∣2

∞
∑
𝑚=𝑝+1

( 2𝑚2𝑝 + 1)(1 − 𝜂)
2𝑚−2𝑝−1 (∣𝛼∣2 )

2𝑚 (2𝑚)!
(𝑚!)2

we reindex the sum, making it start from 0:

= 𝜂2𝑝+1
√
1 − ∣𝛼∣2

∞
∑
𝑚=0
(2𝑚 + 2𝑝 + 22𝑝 + 1 )(1 − 𝜂)2𝑚+1 (∣𝛼∣2 )

2𝑚+2𝑝+2

×
(2𝑚 + 2𝑝 + 2)!
(𝑚 + 𝑝 + 1)!2
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expanding the binomial term:

= (𝜂 ∣𝛼∣2 )
2𝑝+1
√
1 − ∣𝛼∣2

(2𝑝 + 1)!

×

𝑈³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∞
∑
𝑚=0
[(2𝑚 + 2𝑝 + 2)!(𝑚 + 𝑝 + 1)! ]

2
1

(2𝑚 + 1)! [
∣𝛼∣
2 (1 − 𝜂)]

2𝑚+1

then, with the same trick as in the previous case and using the
notation 𝑧:

𝑈 = [(2𝑝 + 2)!(𝑝 + 1)! ]
2 ∞
∑
𝑚=0

⎡⎢⎢⎢⎢⎣

(2𝑝 + 3)2𝑚

(𝑝 + 2)𝑚
⎤⎥⎥⎥⎥⎦

2
𝑧2𝑚+1

(2𝑚 + 1)!

again:

(2𝑝 + 3)2𝑚 =
2𝑚 terms³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

(2𝑝 + 3)(2𝑝 + 4)⋯(2𝑝 + 2𝑚 + 2)

= 22𝑚 ×

𝑚 terms³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(𝑝 + 32)(𝑝 +

5
2)⋯(𝑝 +𝑚 +

1
2)

× (𝑝 + 2)(𝑝 + 3)⋯(𝑝 +𝑚 + 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

𝑚 terms

= 22𝑚 (𝑝 + 32)
𝑚
(𝑝 + 1)𝑚

and

(2𝑚 + 1)! = (1×)
2𝑚 terms³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

2 × 3 ×⋯ × (2𝑚 + 1)

= 22𝑚 (32)
𝑚
𝑚!

and finally:

𝑈 = ((2𝑝 + 2)!(𝑝 + 1)! )
2 ∞
∑
𝑚=0

[(𝑝 + 32)
𝑚]
2

(32)
𝑚

(4 𝑧2)𝑚
𝑚! × 𝑧

= 𝑧 ((2𝑝 + 2)!(𝑝 + 1)! )
2

2𝐹1(𝑝 +
3
2, 𝑝 +

3
2;
3
2; 4 𝑧

2)
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thus:

𝑄𝜂2𝑝+1 =
𝛼(1 − 𝜂)
2 (𝜂 ∣𝛼∣2 )

2𝑝+1

(2𝑝 + 2)(2𝑝 + 2)!(𝑝 + 1)!2
√
1 − ∣𝛼∣2

× 2𝐹1 [𝑝 +
3
2, 𝑝 +

3
2;
3
2; ∣𝛼∣

2(1 − 𝜂)2]

∎
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Figure 1.21: Output joint probabil-
ity distribution for a TMS interfer-
ing at a 50-50 beam splitter with fi-
nite quantum efficiency. This plot has
to be compared to the perfect detec-
tor case in Figure 1.20b. Here 𝜂 = 0.5
and the average population per mode
𝜈 = 2. We find 𝛲𝜂out(0, 0) = 0.4 and
𝛲𝜂out(𝛮1 > 0,𝛮2 > 0) ≈ 0.135

We cancheck (at least numerically) that Eq. (1.111) leads to a joint proba-
bility distribution that satisfies thenormalisation ∑

𝛮1,𝛮2
𝑃𝜂out(𝑁1, 𝑁2) = 1

and the average number of detected particles:

𝑁1 +𝑁2 =
∞
∑

𝛮1,𝛮2=0
(𝑁1 +𝑁2)𝑃

𝜂
out(𝑁1, 𝑁2) = 2𝜂 𝜈 (1.112)

We can see in Figure 1.21 that the information about the parity of
the number of particles at the output channels has vanished. All the
(𝑁1, 𝑁2) couples are possible, but we can remark that the two “lines”
(𝑁, 0) and (0,𝑁) are gathering an overwhelmingmajority of shots.

A satisfying feature of this distribution is that it is very different from
the analogue case considering a couple of indiscernable thermal states
(see Figure 1.15 on page 43). In particular,𝑃𝜂out(𝑁1, 𝑁2) is not a function
of𝑁1 +𝑁2 only.
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Interferences on a beam splitter: distinguishable case

With a perfect detector First, let us imagine what a distinguish-
able TMS interferometry experiment would be:

1. a two-mode squeezed vacuum state is generated;
2. each of the two modes are spatially separated;
3. a) one of the two modes interacts with the beam splitter...

b) ... and is then measured with the detectors placed at each
output channel;

4. the second mode waits for a certain duration 𝜏;
5. the secondmode interactswith the beam splitter, and is detected;

We should be careful about the fact that there are two successive mea-
surements here, and that we are dealingwith an entangledstate. Indeed,
during the first measurement the experimentalist counts the number
of particles on each detector, it is a fortiori a measurement of the total
number of particles in the first mode. Due to entanglement, the wave
packet of the secondmode collapses, and its quantum state is projected
onto the ket ∣𝑁′1 +𝑁′2⟩, (𝑁′1, 𝑁′2) being the numbers of particles
measured after the mixing of the first mode with the vacuum.

Theorem 9 (Output probability distribution for a distinguishable
TMS interfering at a 50-50 beam splitter)

Considering a TMS with an average population per mode 𝜈, and
denoting 𝑃𝑡ℎ the thermal law of probability with the same average
number of particles 𝜈, the output probability distribution in the distin-
guishable case is:

𝑃out(𝑁1, 𝑁2) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if𝑁1 +𝑁2 is odd

(𝑁1 +𝑁2𝑁1
) 1
2𝛮1+𝛮2

𝑃𝑡ℎ (
𝑁1 +𝑁2
2 ) else

(1.113)

Proof Because of the wave functions collapse, we know that
the same number of particles is detected for each mode (the two
modes are perfectly correlated): the total number of particles
must be even.

The interaction of the first mode with the beam splitter is actually
the case of the mixing of a thermal state with the vacuum. The
corresponding output probability distribution 𝑃1out has already
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been already in 2.2.3.

When interacting with the beam splitter, the second mode is re-
duced to a Fock state, whose output probability distribution has
also been studied, and is given by Eq. (1.52).

Once again, we consider the combinatorial outcomes between
those two distributions:

𝑃out(𝑁1, 𝑁2) =
𝛮1
∑
𝑛1=0

𝛮2
∑
𝑛2=0

𝑃1out(𝑛1, 𝑛2) (𝑅
(𝑛1+𝑛2,0)
𝛮1−𝑛1,𝛮2−𝑛2

)
2

Now, we know that the exact same number of particles is measured
at both detection stages:

𝑛1 + 𝑛2 = 𝑁1 − 𝑛1 +𝑁2 − 𝑛2
= 12 (𝑁1 +𝑁2)

≜ 𝑛

therefore one of the two sums collapses because of the condition
𝑛2 = 𝑛 − 𝑛1. The upper bound of the remaining sum is changed
to 𝑛, which is the maximum number of particles detected on one
channel for a mode:

𝑃out(𝑁1, 𝑁2) =
𝑛
∑
𝑘=0
𝑃1out(𝑘, 𝑛 − 𝑘)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(𝛮1+𝛮2𝑘 )

𝛲𝑡ℎ(𝑛)
2𝑛

(𝑅(𝑛,0)𝛮1−𝑘,𝛮2−𝑛+𝑘
)
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1
2𝑛(

𝑛
𝛮1−𝑘)

the Vandermonde’s identity gives1
1: the missing or extra terms (with re-
spect to “genuine” Vandermonde’s iden-
tity) in the sum are zero.

:

𝑛
∑
𝑘=0
(𝑛𝑘)(

𝑛
𝑁1 − 𝑘

) = (2𝑛𝑁1
)

and finally

𝑃out(𝑁1, 𝑁2) = (
𝑁1 +𝑁2
𝑁1

) 1
2𝛮1+𝛮2

𝑃𝑡ℎ (
𝑁1 +𝑁2
2 )

∎

Weobserve the same kind ofchecked pattern as in the indiscernible case,
but the middle of the “draughtboard” is more populated. This is no
surprise: the sort of aggregation effect that favorises the edges (0,𝑁)
and (𝑁, 0) is a consequence of the interferences between indiscernible
bosons.
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Figure 1.22: Output joint probability
distribution for a “distinguishableTMS”
interfering at a 50-50 beam splitter.This
plot has to be compared with the indis-
tinguishable case in Figure 1.20b.
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However, the evenness of the total number of particles is an intrinsic
property of the TMS: it is a consequence of the entanglement between
the two modes.

The total number of particle must be even (this generates the sort of
chessboard pattern), but if we look a one specific output channel, we
can obviously detect an odd number of particles. The situation is less
constrained than the indiscernible case.

With finite detectivity As usual, we apply the summation of all
the cases involving at least𝑁1 and𝑁2 particles:

𝑃𝜂out(𝑁1, 𝑁2) = 𝜂𝛮1+𝛮2
∞
∑

𝑚1,𝑚2=0
(1−𝜂)𝑚1+𝑚2(𝑚1 +𝑁1𝑁1

)(𝑚2 +𝑁2𝑁2
)𝑃out(𝑁1+𝑚1, 𝑁2+𝑚2)

(1.114)
I did not find analytical simplifications in this case, and we are left with
numerical estimations, such as the one provided below in Figure 1.23
Even if the checked pattern disappeared (as always when the detectiv-
ity is finite), the resulting joint probability distribution remains very
different from the indiscernible case, where the 𝑃𝜂out(𝑁1 > 1,𝑁2 > 1)
terms decay extremely fast to zero.
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Figure 1.23: Output joint probability
distribution for a “distinguishableTMS”
interfering at a 50-50 beam splitter with
finite quantum efficiency.This plot has
to be compared to the distinguishable
case in Figure 1.21.
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Figure 1.24: Probability to detect zero
particle on an output channel, in both
distinguishable and indiscernible cases,
as a function of the average population
per mode. The plain lines correspond
to the perfect detectors cases, and the
dashed lines consider a quantum effi-
ciency 𝜂 = 0.5.

Distinguishable and indiscernible comparison The shape of the
joint probability distribution can be visually compared with the 3D
histogram plots in Figure 1.20b/Figure 1.22 (with perfects detectors)
and Figure 1.21/Figure 1.23 (with finite quantum efficiencies). However
we would like to find a simple observable to distinguish both cases,
even if the detectivity is not perfect.

Visually, indiscernibility seems to enhance the grouping of the particles
on a same side. Let us define 𝑃1ch0 : the probability to detect 0 particle
on an output channel, whatever we have on the other. Concretely it
corresponds to sum of the probabilities placed on “the edges” of the
3D graphs previously plotted.

𝑃1ch0 might be a good guess towitness a difference of behaviour between
distinguishable and indiscernible cases:

𝑃1ch0 = 𝑃1(0) + 𝑃2(0) − 𝑃out(0, 0) (1.115)
= 1 − 𝑃out(𝑁1 > 0,𝑁2 > 0) (1.116)

we remove 𝑃out(0, 0), because otherwise it would be counted twice.

Luckily, we observe on the numerical calculations in Figure 1.24 that
this quantity is very weakly dependent on the quantum efficiency,
which is good for in the prospect of an experiment.

We show in Figure 1.24 𝑃1ch0,dis, 𝑃
1ch
0,ind (where dis and indmean respec-

tively distinguishable and indiscernable), as well as and the correspond-
ing contrast𝐶

𝐶 =
RRRRRRRRRRR

𝑃1ch0,ind − 𝑃1ch0,dis
𝑃1ch0,ind + 𝑃1ch0,dis

RRRRRRRRRRR
The contrast between the two situations increases with 𝜈. In our exper-
imental setup we expect to be able to realise TMS with 𝜈 ∼ 10. In that
case, the numerical estimation gives a contrast of roughly 50%, giving
good hope of seeing a significant effect with this observable.
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Conclusion

Let us conclude this chapter with a summary of the results that we
have established in the second section. We will only deal with the cases
where we took into account the finite quantum efficiency, since it is a
constraint imposed by our experimental apparatus.

Differentiate indiscernable and distinguishable scenarios,
with TMS states. We have seen in the last paragraph of the chapter
that looking at the probability to measure zero particle on a given
output channel could be an appropriate observable. With the states
that we are able to concretely generate in the lab, we expect a relative
difference of 50% between both scenarios.

Differentiate a TMS state from a coherent state. It is rather
straightforward when looking at the statistical distribution of the num-
ber of particles detected (without beam splitter): cf. Remark 1.4. Al-
though, coherent states reproduce thewell known interference patterns
of classical wave optics, involving a phase dependence that is not ex-
pected with TMS states. We have already observed experimentally that
our source is producing a state that does not follow a semi-classical
Poissonian statistics [62]. [62]: Perrier et al. (2019), “Thermal

Counting Statistics in an Atomic Two-
Mode Squeezed Vacuum State”

Differentiate a TMS state from a pair of thermal states.
In indiscernible scenarios, the joint output probability distributions
generated by those twostates are very different. In particular, in the case
of thermal states, it only depends on one parameter, which is the total
number of particles. Furthermore, if we compare Figure 1.15 on page 43
with Figure 1.21 onpage 59, it seems that the distribution corresponding
to the thermal states populates the states (𝑁1 ≠ 0,𝑁2 ≠ 0) muchmore1, 1: “the middle of the chessboard”.
which is another noticeable difference.

What remains to be done with this theoretical work? On
a technical aspect, we still need to find a proper analytical ending to
the derivations of Equation 1.85 on page 42 (thermal and indiscern-
able), as well as an analytical form to the resulting interferences of a
distinguishable TMS state, with finite quantum efficiency.

Apart from these rather formal andmathematical topics of concern, we
can also look for other observables (depending only on the population
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𝜈), clearly exhibiting the distinction between an indiscernible and a
distinguishable situation. The joint probability distributions calculated
in this chapter contains all the information needed to calculate the
expectation values of those observable: in particular the information
about the correlations between the detections operated at both output
channels.

Contrary to the two-particle HOM effect, we did not yet found the
clear signature of a quantum effect in an HOM-like experiment using
TMS.Therefore, for now, such an experiment cannot provide a result
as “strong” as the two-particle HOM anti-correlation. However, we
exhibited a clear effect of the indiscernibility property between the
distributions, which is sort of a weaker result. Let us give a possible
experimental application of it.

In the following chapter, we will present a two-particle interferometer
that was designed to perform Bell inequality violation experiments: it
basically consists in two separated Mach-Zehnder interferometers (cf.
Figure 2.8 on page 85). Both Mach-Zehnders requires to be “closed”
meaning that particles interfering on the last beam splitter should be
indiscernible. Since we are planning to use this setup with TMS states,
the results established in thischapter couldbeuseful to verify the correct
setting of eachMach-Zehnder.
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Introduction

Thischapter is dedicated to the question of the Bell inequalities, and
the way that we want to test them with our experimental platform. We
will start in the first section by reminding the general idea of what a
Bell inequality is, how it is derived, and what it means to violate it.

In a second step, we will more specifically address the issue of the con-
crete implementation of a Bell inequality violation with the apparatus
that we have at our disposal. We will see in particular that we are plan-
ning to use the entanglement between themomentaof atoms towitness
such a violation: this has never been done yet with massive particles.
This second section will be divided in two main parts:

▶ first we will present the two-atom interferometer that we aspire
to realise to probe nonlocal correlations. This interferometer is
inspired by the Rarity-Tapster experiment [27] ;[27]: Rarity et al. (1990), “Experimental

violation of Bell’s inequality based on
phase and momentum”

▶ then we will show that the properties of the peculiar multimode
quantum state that our source is producing may have a negative
impact on the level of violation of the inequality. We will show
that some ideas presented in a recent theoretical publication of
Nemoto et al. [73] can be used to perform a cleverer treatment[73]: Kitzinger et al. (2021), “Bell Corre-

lations in a Split Two-Mode-Squeezed
Bose-Einstein Condensate”

of the data, increasing the visibility of the violation of the Bell
inequality.

1 General considerations

1.1 EPR argument

One of the most admirable successes of modern physics is general rel-
ativity: a metric theory of gravitation, that depicts the universe in a
relativistic way. From the anomalous perihelion advance of Mercury
(1915), the deflection of starlight by the Sun observed during an eclipse
(1919) to the direct detection of gravitational waves [74] or gravitational[74]: Abbott et al. (2016), “Observation

of Gravitational Waves from a Binary
BlackHole Merger”

redshift measurements [75], this elegant theory passed many experi-

[75]: Hafele et al. (1972), “Around-the-
World Atomic Clocks: Predicted Rela-
tivistic Time Gains”

mental tests. It offers the best mathematical framework for physics
at non-microscopic length scale. One of the core hypotheses of both
special and general relativity theories is the principle of locality, that
states that physical systems may only be influenced by their space-time
immediate surroundings. To put it simply, local theories (i.e. assuming
the principle of locality to be true) avoid any form of action at distance.
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This is a very natural hypothesis, which is also at the root of a remarkably
robust theory. Thus it seems legitimate to think that locality (just like
causality) should be a postulate of any fundamental physics theory.

It is well known in epistemology that the famous work of Einstein et
al. [13] was an attempt to exhibit a flaw in quantum theory. Indeed, [13]: Einstein et al. (1935), “Can

Quantum-Mechanical Description
of Physical Reality Be Considered
Complete?”

essentially assuming the principle of locality to be true, it is possible to
show a contradiction in the statements of quantummechanics. Let us
take a closer look at the EPR argument, in its “modern” formulation
of Bohm and Aharonov [76], that we will call “EPRB” argument, or [76]: Bohm et al. (1957), “Discussion of

Experimental Proof for the Paradox of
Einstein, Rosen, and Podolsky”

EPRB thought experiment (gedankenexperiment a la Einstein).

Postulates The argument is built upon three hypotheses of capital
importance, the first two being often combined into one, known as
the local realism hypothesis1: 1: at least, this is the definition that we

will use in this manuscript. Some au-
thors refer to local realism as the whole
set of the EPR hypotheses, including
H𝟑.

Local realism hypothesis
We call local realism the set of the two followings hypotheses:
Hypothesis H𝟏 (Realism) An experimental result that can be
predicted in advance may only be the consequence of a pre-existing
and well-defined physical quantity. Such a quantity is called an
“element of reality”.
Hypothesis H𝟐 (Space-time locality) The relativistic spacetime
is the correct geometrical structure to describe the physical events.
The elements of reality are locally attached tospacetime, and their
time evolution may only be influenced by their local surrounding.

The previous formulation is inspired by reference [55]. [55]: Cohen-Tannoudji et al. (2017),
Mécanique quantique - Tome 3

Remark 2.1 An important consequence ofH𝟐 is that a physical
measurement performed in a given region of spacetime cannot be in-
fluenced by an other physical transformation realised by an operator
located in a separated region of spacetime. More precisely, an event
𝐸1 may have an influence on an other event 𝐸2 if and only if they are
separated by a timelike interval2

2: for more information about space-
time intervals, we refer the interested
reader towards any general relativity text-
book, such as [77] or [78].

. This corollary is sometimes called
“separability”.

Hypothesis H𝟑 (Quantummechanics) The predictions of quantum
mechanics concerning the outcome probabilities of an experiment are
correct.
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𝑆

a

b

𝒜

ℬ

Figure 2.1: Principle of an EPRB exper-
iment. Two particles (blue and red) are
emitted from a common source 𝑆 in spa-
tially separated regions. We then look at
the correlations between the measure-
ments 𝛢 and 𝛣, obtained by the experi-
mentalists𝒜 andℬ, using detectors ori-
ented by 𝐚 and 𝐛.

Reductio ad absurdum The reasoning is essentially a proof by con-
tradiction. An EPRB experiment –presented on Figure 2.1– consists
in a source 𝑆, emitting two physical systems (e.g. two particles or two
photons) that propagate towards separate regions of space, without
interaction. Two experimentalists, Alice (𝒜) and Bob (ℬ), perform
measurements (respectively𝐴 and 𝐵) on the two systems, separately.

Let us consider now that the physical systems emitted by the source
are two-level systems (like linearly polarised photons or spin-12 particles)
emitted in a quantum singlet state (which is actually a particular case of
what we call aBell state nowadays):

∣𝜓⟩ = 1√
2
[∣1⟩∣0⟩ − ∣0⟩∣1⟩] (2.1)

Alice and Bob’s measurements are characterised by vectors 𝐚 and 𝐛,
that they can choose freely (they correspond to a choice of basis for
the quantummeasurement): it would correspond to the angle of the
polaroid in the case of photons, or the direction of the magnetic field
in a Stern-Gerlach setup for spin-12 particles.

Eachmeasurement returns a value ±1, and we assume that Alice and
Bob choose the orientation of their detector right before executing
their measurement, in a finite subset of the continuum of possible
orientations, for example {2𝑝𝜋𝑛 / 𝑛 ∈ ℕ∗, 𝑝 ∈ J1, 𝑛K}.

Sometimes, during some pairs of measurements, 𝐚 and 𝐛 are aligned
(𝐚 = 𝐛), or anti-aligned (𝐚 = −𝐛). In those cases, whatever the distance
separating Alice and Bob, quantummechanics (hypothesisH𝟑) pre-
dicts that the result are respectively anti-correlated (𝐴 ⋅ 𝐵 = −1), or
correlated (𝐴 ⋅ 𝐵 = 1). Let us additionally assume that Alice performs
hermeasurement a short time before Bob (short enough to have a space-
like interval between both measurements). It is then certain (according
toH𝟑) that if Bobchooses an orientation 𝐛 that is aligned (respectively
anti-aligned) to Alice’s one, the correlation between the measurements
will be perfectly anti-correlated (respectively correlated).

NowH𝟏 stipulates that if Bob’s measurement can somehow be deter-
mined with certainty, it means that an element of reality –carried by
the quantum particle measured by Bob– is present and influences the
detector in such a way that detection matches prediction. But Bob’s
detection being separated of Alice’s one by a spacelike interval, due to
hypothesisH𝟐, it cannot be influenced by anything occurring inAlice’s
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laboratory during her measurement1 (in particular her measurement’s 1: this still would have been true even if
we would not have assumed the absence
of interaction.

outcome). It means that the results obtained by Bob and Alice2 were

2: by a simple symmetry argument
where we exchange Alice and Bob in all
the previous reasoning.

formely determined and since the orientation 𝐚 is chosen randomly,
the determination is complete (i.e. the value of the spin/polarisation is
determined in all directions). Finally, since there are no interaction dur-
ing the propagation of the particles, the additional element of reality
was set since the emission of the particles from the source 𝑆.

Now the problem is that quantum mechanics does not predict the
existence of such a parameter: we all know that in quantum formalism,
the randomness of the outcome of Alice’s measurement is intrinsic.
Worse, to some extent, we can even say that quantummechanics pre-
dicts the non-existence of such a parameter: because the spin of particles
are described by non-commuting observables, there is no quantum de-
scription where all the components of the spin are well defined, which
is inconsistent with the previous statement about the completeness of
the determination of the states.

Conclusion Thematter of the conclusion of the EPRwas at the core
of decades of debates since its publishing in 1935. The authors stated
that it was the proof that quantum mechanics was incomplete, and
even if it provided perfectly satisfying theoretical predictions (in good
accordance with experiments) it was not covering the whole physical
essence of Nature. This is tacitly assuming that local realism is a valid
postulate, and that the contradiction is actually sourced by hypothe-
sisH𝟑, or more correctly by the physical interpretation of quantum
theory: it could indeed simply be an incomplete theory but providing
correct statistical results (in which case in all rigourH𝟑 is also a valid
hypothesis).

Bohr immediately proposed a verydifferent interpretation. Even though
he did not question the validity of the concrete constraints imposed by
general relativity3, he asserted that there is an aspect ofH𝟐 that could 3: essentially the fact that information

cannot ship at a faster speed than Ein-
stein’s speed 𝑐.

collapse in the quantum realm. For Bohr, an entangled system such
as (2.1) may only be considered globally. Such a composite system is
not separable, and in some cases it does not make any sense4 to try to 4: at least if we want to keep a maximal

quantity of information in our descrip-
tion.

give physical properties to its sub-components (here the spin or the
polarisation).
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1.2 Bell’s theorem

1.2.1 Main idea

The philosophical question of the correct interpretation of the EPR
argument took a new perspective in 1964with the contribution of John
Bell [15], who proved the following theorem:[15]: Bell (1964), “On the Einstein Podol-

sky Rosen paradox”

Theorem 10 (Bell’s theorem)

Assuming the validity of the local realism hypothesis, there is no way
to complete quantummechanics such that it takes into account local ele-
ments of reality without changing some of its experimental predictions.

In particular, Bell identified a quantum system Σ, with a measurable
physical quantity 𝑆, for which quantum theory predicts a value that
cannot be taken in any local realistic framework. In fact, Bell showed
that local realism imposes some numerical constraints to the level of
correlation that can be observed between the measurements of Al-
ice and Bob, numerical contraints that can sometimes be violated in
the quantum realm. This constraint takes the form of an inequality,
that must be satisfied in any local realistic (sometimes called classical)
context. These inequality are famously known, and nowadays usually
namedBell’s inequalities.

Thanks to Bell’s inequality, the existence of EPR’s element of reality, or
with modern wording “local hidden-variables”, becomes experimen-
tally testable. In 2015, research groups in Vienna, Delft and the NIST
independently measured Bell inequality violations [28–30], using loop-[28]: Hensen et al. (2015), “Loophole-

free Bell inequality violation using
electron spins separated by 1.3 kilome-
tres”
[29]: Giustina et al. (2015), “Significant-
Loophole-Free Test of Bell’s Theorem
with Entangled Photons”
[30]: Shalm et al. (2015), “Strong
Loophole-Free Test of Local Realism”

hole free setups: meaning that any possible classical interpretations of
the results is avoided [79].

[79]: Aspect (2015), “Closing the Door
on Einstein and Bohr’s Quantum De-
bate”

1.2.2 CHSH inequality & violation

Classical inequality It is important to understand that different
quantum systems, with different correlation-based observables may
be a case of application (or an illustration) of Bell’s theorem: for each
of them there is a specific Bell inequality, more or less conveniently
testable in a laboratory.

Let us recall the most famous one, known as the CHSH inequal-
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ity:

Theorem 11 (Bell inequality: CHSH formulation)

Let Σ be a system of two two-level particles, spatially separated, that
can be repeatedly prepared in the same quantum state. Two operators
separately perform measurements of the state of the particles, with
detectors characterised by their orientation, respectively 𝐚 and 𝐛.

The experimental result of each realisation take the value +1 or −1
(and also possibly 0 if a detectors fails to detect a particle), they are
denoted 𝐴 and 𝐵, respectively for one operator and the other. For a
given couple of orientations (𝐚, 𝐛), we denote 𝐸(𝐚, 𝐛) the correlation
between the measurements obtained by the operators, in extenso the
average value of the product of their measurements:

𝐸(𝐚, 𝐛) ≜ ⟨𝐴 ⋅ 𝐵⟩ (2.2)

If we assume that a set of local hidden-variables completing the quan-
tummechanics in a local realistic framework exists, then given (𝐚, 𝐚′)
and (𝐛, 𝐛′) two couples of orientations respectivelyused by eachoperator,
we have:

∣𝐸(𝐚, 𝐛) − 𝐸(𝐚, 𝐛′)∣ + ∣𝐸(𝐚′, 𝐛′) + 𝐸(𝐚′, 𝐛)∣ ≤ 2 (2.3)

Remark 2.2

1. The situation described is actually the EPRB experiment pro-
posed by Bohm and Aharonov in 1957 [76] [76]: Bohm et al. (1957), “Discussion of

Experimental Proof for the Paradox of
Einstein, Rosen, and Podolsky”

(cf. Figure 2.1).

2. By setting

𝑆(𝐚, 𝐚′, 𝐛, 𝐛′) ≜ 𝐸(𝐚, 𝐛)−𝐸(𝐚, 𝐛′)+𝐸(𝐚′, 𝐛′)+𝐸(𝐚′, 𝐛) (2.4)

the triangle inequality immediately gives the perhaps more
famous (but also weaker) formulation:

∣𝑆(𝐚, 𝐚′, 𝐛, 𝐛′)∣ ≤ 2 (2.5)

𝑆 is sometimes called BCHSH parameter, CHSH parameter,
or simply Bell parameter.

The inequality’s name refers to the initials of the authorswhopublished
it first in 1969: Clauser, Horne, Shimony and Holt [17], but with a [17]: Clauser et al. (1969), “Proposed Ex-

periment to Test Local Hidden-Variable
Theories”
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quite “messy” demonstration. Theproofwas simplified and generalized
by Bell in 1971 [18]. It is published in his reference textbook Speakable[18]: Bell (1971), “Introduction to the

hidden-variable question” and unspeakable [80], and reminded in the following box:
[80]: Bell et al. (2004), “Introduction to
the hidden-variable question” Proof (CHSH inequality, Bell 1971) We denote 𝜆 the set of local

hidden-variable, carried by the particles, making quantum me-
chanics local realistic. It does not matter to know the mathemati-
cal nature of 𝜆: if it is a singleton or a set, numbers of functions,
discrete or continuous. It also does not require to be “minimal”,
in the sense that all the information contained in lambda should
be mandatory to depict the experiment in a local realistic way: it
only needs to be “sufficient”.

Applying the EPR prescription, we conclude that a given 𝜆 is drawn
in a large set Λ (assumed to be measurable) at each realisation,
and fixed, from the emission at the source until the measurement.
The results of the measurements of the two experimentalists (let
us call them Alice and Bob) are functions of the orientation of
their detectors (𝐚, 𝐛), of 𝜆, and also possibly of additional local
hidden-variables 𝜆𝐚 ∈ Λ𝐚 and 𝜆𝐛 ∈ Λ𝐛, attached to the detectors,
and that may influence the outcome of the measurements:

⎧⎪⎪⎨⎪⎪⎩

𝐴 ∶ (𝐚, 𝜆, 𝜆𝐚) ↦ 𝐴(𝐚, 𝜆, 𝜆𝐚) ∈ {−1, 0, 1}
𝐵 ∶ (𝐛, 𝜆, 𝜆𝐛) ↦ 𝐵(𝐛, 𝜆, 𝜆𝐛) ∈ {−1, 0, 1}

0 being the outcome of a realisation where one or both detectors
failed and did not return any result.

The experimental results are therefore determined at the emis-
sion of the particles, and the apparent randomness of the results
registered by Alice and Bob comes from the probability density
distributions 𝜌(𝜆), 𝜌𝐚(𝜆𝐚), and 𝜌𝐛(𝜆𝐛), when the experiment is
repeated.

We first introduce the measured quantities, averaged over the
local variables of the detectors:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐴(𝐚, 𝜆) ≜ ∫
𝜆𝐚∈Λ𝐚

d𝜆𝐚 𝜌𝐚(𝜆𝐚)𝐴(𝐚, 𝜆, 𝜆𝐚) ∈ [−1, 1]

𝐵(𝐛, 𝜆) ≜ ∫
𝜆𝐛∈Λ𝐛

d𝜆𝐛 𝜌𝐛(𝜆𝐛)𝐵(𝐛, 𝜆, 𝜆𝐛) ∈ [−1, 1]
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where the inequalities

∣𝐴(𝐚, 𝜆)∣ ≤ 1 , ∣𝐵(𝐛, 𝜆)∣ ≤ 1 (†)

are usual, reminding that 𝜌, 𝜌𝐚 and 𝜌𝐛, being probability densities,
are positive, and their integral are normalised to 1.

Eq. (†) also gives immediately

∣𝐴(𝐚, 𝜆)𝐵(𝐛, 𝜆)∣ ≤ 1 (‡)

With the definition Eq. (2.2), we have:

𝐸(𝐚, 𝐛) = ∫
𝜆∈Λ

d𝜆 𝜌(𝜆)𝐴(𝐚, 𝜆)𝐵(𝐛, 𝜆)

Then we compute

𝐸(𝐚, 𝐛) − 𝐸(𝐚, 𝐛′) = ∫
𝜆∈Λ

d𝜆 𝜌(𝜆) (𝐴(𝐚, 𝜆)𝐵(𝐛, 𝜆) − 𝐴(𝐚, 𝜆)𝐵(𝐛′, 𝜆))

= ∫
𝜆∈Λ

d𝜆 𝜌(𝜆)[

∈[−1,1]
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
𝐴(𝐚, 𝜆)𝐵(𝐛, 𝜆)

≥0³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(1 ± 𝐴(𝐚′, 𝜆)𝐵(𝐛′, 𝜆)) ]

− ∫
𝜆∈Λ

d𝜆 𝜌(𝜆)[𝐴(𝐚, 𝜆)𝐵(𝐛′, 𝜆)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈[−1,1]

(1 ± 𝐴(𝐚′, 𝜆)𝐵(𝐛, 𝜆))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥0

]

where the inequalities written on the braces are given by Eq. (‡).

We then use the triangle inequality, and the fact that ∣∫ 𝑓∣ ≤ ∫ ∣𝑓∣:

∣𝐸(𝐚, 𝐛) − 𝐸(𝐚, 𝐛′)∣ ≤ ∫
𝜆∈Λ

d𝜆 𝜌(𝜆) [1 ± 𝐴(𝐚′, 𝜆)𝐵(𝐛′, 𝜆)]

+ ∫
𝜆∈Λ

d𝜆 𝜌(𝜆) [1 ± 𝐴(𝐚′, 𝜆)𝐵(𝐛, 𝜆)]

which is exactly

∣𝐸(𝐚, 𝐛) − 𝐸(𝐚, 𝐛′)∣ ≤ 2 ± [𝐸(𝐚′, 𝐛′) + 𝐸(𝐚′, 𝐛)]

which is actually also

∣𝐸(𝐚, 𝐛) − 𝐸(𝐚, 𝐛′)∣ + ∣𝐸(𝐚′, 𝐛′) + 𝐸(𝐚′, 𝐛)∣ ≤ 2
∎
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Remark 2.3 (Bell inequality with continuous variable measure-
ments) Regarding the previous proof, one could notice that the
very core of the mathematical reasoning is conducted by manipulat-
ing the quantities𝐴(𝐚, 𝜆) and 𝐵(𝐛, 𝜆) (the measurements averaged
over the local variables of the detectors)whichare continuousvariables
contained in the interval [−1, 1].

This is very interesting because it means that the CHSH inequality
actually holds for continuous variable measurements.

Actually the fact that𝐴 and 𝐵 should be bounded to [−1, 1] is not
a strong constraint. Indeed even if 𝐴, 𝐵 ∈ ℝ, Alice and and Bob
can always apply a function mapping it into [−1, 1] (tanh for in-
stance). Less naïvely, if Alice and Bob have twochannels of detection
at their disposal (which is generally the case during an experiment)
labelled “(𝐴+, 𝐴−)” and “(𝐵+, 𝐵−)” respectively, they can consider
the normalised quantities

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐴+ =
𝐴+

∣𝐴+∣ + ∣𝐴−∣
, 𝐴− =

𝐴−
∣𝐴+∣ + ∣𝐴−∣

∈ [−1, 1]

𝐵+ =
𝐵+

∣𝐵+∣ + ∣𝐵−∣
, 𝐵− =

𝐵−
∣𝐵+∣ + ∣𝐵−∣

∈ [−1, 1]

(2.6a)

(2.6b)

Quantum violation of the inequality Now it turns out that quan-
tummechanicsmake it possible to compute the correlators𝐸directly.

|0⟩

|1⟩

𝜃

𝜃 |0𝜃⟩

|1𝜃⟩

Figure 2.2: Rotation of the basis of de-
tection of a two-level system. The two
orientations are said to be aligned when
𝜃 ≡ 0(𝜋). On the contrary, they are
said to be anti-aligned (or crossed in the
case of polarising beam splitters) when
𝜃 ≡ 𝜋

2 (𝜋): in that case, the roles of ∣0⟩
and ∣1⟩ are exchanged.

Let us consider again the EPRB experiment, where the source generates
a singlet state (2.1).

The orientations of the detectors 𝐚, 𝐚′, 𝐛 and𝐛′are coplanar unit vectors,
that we will parametrise by the respective angles 𝜃𝑎, 𝜃𝑎′, 𝜃𝑏, 𝜃𝑏′, oriented
by the Alice-Bob axis, and with 𝜃 = 0 corresponding to a measurement
operated in the {∣0⟩ , ∣1⟩} basis1. We denote {∣0𝜃⟩ , ∣1𝜃⟩} the rotated

1: it is in fact a reference that can becho-
sen arbitrarily.

basis, in which a measurement is operated by a detector with the angle
𝜃.

Given its orientation 𝜃, we ask the detector to return the value +1
when the state ∣1𝜃⟩ is measured, and the value −1when the state ∣0𝜃⟩ is
measured.
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By definition of the correlator, we have:

𝐸(𝜃𝑎, 𝜃𝑏) ≜ ⟨𝐴 ⋅ 𝐵⟩(𝜃𝑎,𝜃𝑏) (2.7)

= (+1) ⋅ (+1) × ∣⟨1𝜃𝑎 , 1𝜃𝑏 ∣𝜓⟩∣
2

+ (+1) ⋅ (−1) × ∣⟨1𝜃𝑎 , 0𝜃𝑏 ∣𝜓⟩∣
2

+ (−1) ⋅ (+1) × ∣⟨0𝜃𝑎 , 1𝜃𝑏 ∣𝜓⟩∣
2

+ (−1) ⋅ (−1) × ∣⟨0𝜃𝑎 , 0𝜃𝑏 ∣𝜓⟩∣
2

(2.8)

𝐸(𝜃𝑎, 𝜃𝑏) = 𝑃+,+(𝜃𝑎, 𝜃𝑏) − 𝑃+,−(𝜃𝑎, 𝜃𝑏) − 𝑃−,+(𝜃𝑎, 𝜃𝑏) + 𝑃−,−(𝜃𝑎, 𝜃𝑏)
(2.9)

where the last line conveniently uses the joint conditional probabilities
notations, to simplify the bracket notation.

It is not a difficult exercise to check that the scalar products give

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑃+,+(𝜃𝑎, 𝜃𝑏) = 𝑃−,−(𝜃𝑎, 𝜃𝑏) =
1
2 sin

2(𝜃𝑎 − 𝜃𝑏)

𝑃+,−(𝜃𝑎, 𝜃𝑏) = 𝑃+,−(𝜃𝑎, 𝜃𝑏) =
1
2 cos

2(𝜃𝑎 − 𝜃𝑏)

(2.10a)

(2.10b)

which is in line with what we would expect with a singlet state:

▶ it is independent of the reference direction ;

▶ aligned detectors (𝜃𝑎 = 𝜃𝑏) lead to a perfect anti-correlation of
the measures ;

▶ anti-aligned detectors (𝜃𝑎 = 𝜃𝑏 + 𝜋2 ) lead to a perfect correlation
of the measures ;

Eq. (2.10) simplifies the expression (2.9) of the correlator:

𝐸(𝜃𝑎, 𝜃𝑏) = − cos (2 [𝜃𝑎 − 𝜃𝑏]) (2.11)

which is an even function, which is also good since the symmetry of
the problem allows us to exchange the roles of 𝜃𝑎 and 𝜃𝑏.

Remark 2.4 The actual expression of E, is obviously dependent on
the type of state that we initially choose to consider. For instance,
Eq. (2.11) gives

𝜃𝑎 = 𝜃𝑏 ⇒ 𝐸(𝜃𝑎, 𝜃𝑏) = −1

whichmakes sense for a singlet state, but not for any entangled state.
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For example the Bell state ∣Φ+⟩ = 1
√
2
(∣0, 0⟩ + ∣1, 1⟩) leads to the

correlator:
𝐸(𝜃𝑎, 𝜃𝑏) = + cos (2 [𝜃𝑎 − 𝜃𝑏])

(if we take the same values returned by the detectors).

Now we just have to consider the particular quadruplet of angles

𝜃𝑎 = 0 𝜃𝑏 =
𝜋
8 𝜃𝑎′ =

𝜋
4 𝜃𝑏′ =

3𝜋
8

to check that quantummechanics predicts a BCHSH parameter:

𝑆𝑄𝛭 (0,
𝜋
4 ,
𝜋
8 ,
3𝜋
8 ) = 2

√
2 (2.12)

Strongly violating the inequality (2.5) (by more that 40%), which is
enough to prove Bell’s theorem (Theorem 10).

2 Rarity-Tapster interferometer

2.1 Introduction to the problem

The first Bell inequalities violation experiments [20, 22–24] were con-[20]: Freedman et al. (1972), “Experi-
mental Test of Local Hidden-Variable
Theories”
[22]: Aspect et al. (1981), “Experimen-
tal Tests of Realistic LocalTheories via
Bell’sTheorem”
[23]: Aspect et al. (1982), “Experimen-
tal Realization of Einstein-Podolsky-
Rosen-BohmGedankenexperiment”
[24]: Aspect et al. (1982), “Experimental
Test of Bell’s Inequalities Using Time-
Varying Analyzers”

ducted with a source of pairs of photons1, entangled with respect to

1: emitted in a radiative cascade.

their polarization, and emitted in different directions. In the followings
we will call respectivelyAlice andBob the fictional experimentalists
performingmeasurements respectively on eachparticle of the entangled
system: these names could actually indistinctly refer to the experimen-
talists, or their measurements.

The apparatus used for these polarisation-based experiments, only in-
volves two polarising beamsplitting cubes (one for each side), and a
coincidence counter device, that can evaluate the correlations between
the measurements made upon a particle on the one hand (e.g. Alice’s
side), and upon the second particle on the other hand (Bob’s side).

The schematic of these experiments are shown in Figure 2.3. It is worth
noticing that it involves four detection modes: two for Alice (denoted
𝐴+ and 𝐴−) and two for Bob (denoted 𝐵+ and 𝐵−). Actually, two
modes are coming from the fact that the photons are emitted in op-
posite directions, and then two modes are again coming from the two
polarisation states of the photons: therefore we indeed have 2 × 2 = 4
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modes.

𝑆

Coincidences
counter

𝜈𝛢
𝐚𝐴+

𝐴−

𝜈𝛣 𝐛 𝐵+

𝐵−

Figure 2.3: Schematic of a CHSH in-
equality violation experiment, with pho-
tons entangled with respect to their po-
larisation.The detectors’ orientations 𝐚
and 𝐛 are randomlychosen, right before
the detection.The coincidences counter
computes the correlations between the
detections on the modes𝛢+/𝛢− on the
one hand, and on the modes 𝛣+/𝛣− on
the other hand.

The key point in any Bell inequality violation experiment is that both
Alice and Bob must have a “turnable button” that changes the output
modes of their detector at their disposal. More concretely, these but-
tons control the orientation 𝐚 and 𝐛 , and in the language of quantum
mechanics, this corresponds to rotating the basis inwhich the detections
are performed (cf. Figure 2.2). In the case of the experiment previously
mentioned, these buttons are naturally provided by the physical ori-
entation of the polarising beamsplitting cubes: that is why the overall
geometry of the setup remains pretty simple.

In summary, a Bell inequality violation requires three fundamental
elements:

1. a source of many-particle entangled state. In this work we con-
sider only two-particle entanglement, but the generalised many-
particle Bell inequality violation is also an active research the-
matic [81–83] ; [81]: Mermin (1990), “Extreme Quan-

tum Entanglement in a Superposition
of Macroscopically Distinct States”
[82]: Cereceda (2001), “Mermin’s n-
Particle Bell Inequality and Operators’
Noncommutativity”
[83]: Laskowski et al. (2005), “Detection
of N -Particle Entanglement with Gen-
eralized Bell Inequalities”

2. single particle resolved detectors. In the case of photons it could
be photomultipliers (PM), or more recently superconducting
nanowire single-photon detectors (SNSPD) (offering better per-
formances for photon counting [84]). In the case of our ex-

[84]: Esmaeil Zadeh et al. (2021), “Super-
conducting Nanowire Single-Photon
Detectors”

periment, the detection is carried out by a microchannel plate
(MCP) (cf. Chapter 3 and Chapter 4): it is worth noticing that
both Alice and Bob detections are performed by a same physical
device (there is only oneMCP) but at different times.

3. a technical way tochange the bases of detections.

The experiments described above are designed to reveal the entangle-
ment between the polarisations of photons, which is an internal degree
of freedom (cf. Remark 2.5). In 1989, Horne, Shimony and Zeilinger
proposed a different topology, that is able to probe entanglement with
respect to what most closely resembles to a mechanical degree of free-
dom for the photon: the wave vector (or the optical path) [85]. The [85]: Horne et al. (1989), “Two-Particle

Interferometry”experiment was achieved one year later by Rarity and Tapster, who
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were able to measured a Bell inequality violation for the momenta of
photons by several standard deviations [27]. We will show in the next[27]: Rarity et al. (1990), “Experimental

violation of Bell’s inequality based on
phase and momentum”

section that the experimental trick used to change the basis of detec-
tion, and measure a BCHSH parameter is less trivial than in the case of
photon polarisation. With our experiment, we intend to reproduce the
analogue of the Rarity-Tapster experiment, to probe the momentum
entanglement of massive particles: helium atoms.

Remark 2.5 (Internal and external quantum parameters) For the
quantum systems that we consider, we distinguish two types of de-
gree of freedom:

▶ the internal ones: that are carried by the particle itself (with-
out needing anything else than the particle to define it). In
the case of elementary particles they usually have a purely
quantum origin: for example the spin of electrons, or the he-
licity of photons11: one could argue that these parame-

ters are not purely quantum since both
the spin and the helicity also come out
of relativistic arguments.Without going
deep into the details we will just say that
the quantum theory plays at least a cru-
cial role for that matter.The interested
reader can refer to those references for
more information: [86, 87]

. Internal parameters may also come from
the composite nature of a more complex quantum system,
such as atoms are. For example, the total angular momen-
tum of an atom comes from the different contributions of its
constituents (spin and angular momentum of the electrons,
nuclear spin) but it is considered as an internal parameter
because it is self-contained, in the atomic structure. In gen-
eral the internal degrees of freedom can be represented with
discrete quantum numbers ;

▶ the external ones: referring to the state of the particle, with
respect to a wider structure to whom it is bounded. In simple
words, they typically are the position or the momentum, that
is why we also sometimes call themmechanical parameters.
It is interesting to notice that these parameters have a direct
classical equivalent (classical position/velocity), and anyone
has a fairly natural and subjective knowledge of it. This ap-
parent familiarity that we have with this class of parameters
makes even more interesting, on the epistemological aspect,
the possibility to prepare them in a highly quantum regime,
such as entangled states ;
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𝑧

𝑡𝑡𝑑 𝑡𝑠𝑡0

𝐴−

𝐵−

𝐴+

𝐵+

𝑝

𝑞

−𝑞

−𝑝

−𝑞

−𝑝

𝑞

𝑝

𝑆
Figure 2.4: Schematic of the atomic
Rarity-Tapster two-particle four modes
interferometer that we want to imple-
ment so as to perform a test of Bell
inequality violation. An atomic source
emits two pairs of quantum correlated
modes (𝑝,−𝑝) and (𝑞,−𝑞). A first deflec-
tion Bragg pulse is applied at 𝑡 = 𝑡𝑑 so as
to topologically close the interferometer.
Then a second Bragg pulse is applied at
𝑡 = 𝑡𝑠 realising respectively a beam split-
ter for Alice and for Bob.

2.2 General description

2.2.1 Topology

Thefigure Figure 2.4 describes the type of setup thatwewant to achieve1. 1: pay attention to the fact the coloured
lines are not trajectories, Figure 2.4 is a
spacetime diagram: the emissions of the
particles (helium atoms) is done along
the vertical axis.

It is completely equivalent to the original design used by Rarity and
Tapster, except that we are considering atoms (in vacuum), emitted by
a source 𝑆 (cf. Chapter 5) along the vertical axis, and subjected to free
fall.

For now let us assume that the source is emitting a Bell state in momen-
tum space:

∣Ψ⟩ = 1√
2
(∣𝑝,−𝑝⟩ + ∣𝑞,−𝑞⟩) (2.13)

Which is an entangled two-particle state (the notation are consistent
with the Figure 2.4). If we just perform the measurements after the
emission from the source (corresponding to a date 𝑡 ∈]𝑡0, 𝑡𝑑[ on the
Figure 2.4) we would only probe its “vanilla” correlation properties,
observed with respect to a fixed given basis (the plane waves), with-
out being able to measure a Bell parameter2. Even though this work 2: this is actually the current state of the

experiment, and the corresponding ex-
perimental results that we have are pre-
sented in Chapter 5.

is not devoid of interest, it is not enough to claim a Bell inequality
violation.
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Figure 2.5:Weuse the 23𝛲0 excited state
in order to use the same laser diode as the
one used for a Raman transition that we
also need on the experiment (more infor-
mation are given inRemark 3.9 of Chap-
ter 3, and in Subsection 2.1.2 of Chapter
4). The transition is operated between
two 𝑚𝐽 = 0 magnetic sublevels of he-
lium, and the laser beams are therefore𝜋
polarised.The detuningΔ is very large as
compared to the one-photon transition
natural linewidth (1.6MHz), so that we
can approximate a coherent coupling
with between two levels only (∣𝑝1⟩ and
∣𝑝2⟩).The equivalent one-photon wave
vector 𝑘 is set by the geometrical angle
between the two beams of the lattice (cf.
Figure 2.6 and Eq. (2.14)). Δ𝛦ℎ̵ is typically
of the order of a few tenth of kilohertz.

𝑝

𝐸/ℏ

23𝑆1

23𝑃0

𝑝1 𝑝1+𝑝2
2

𝑝2

𝜔1(𝜋)

𝜔2(𝜋)

∣𝑝1⟩

∣𝑝2⟩

Δ = 2𝜋 × 0.6GHz

Δ𝛦(𝑝1,𝑝2)
ℏ

𝛿

ℏ𝑘 ℏ𝑘

To be able to change the bases used for detections, we need to mix, in a
coherentmanner, the natural modes (𝑝,−𝑝) on the one hand, with the
natural modes (𝑞,−𝑞) on the other hand. Rarity and Tapster showed
that such amixing can be achieved with a two-particle four-mode inter-
ferometer, which is topologically equivalent to a doubleMach-Zehnder
interferometer: one for Alice (in blue) and one for Bob (in red). This
requires the usage of mirrors (to “close” the interferometers) and beam
splitters which (as it has been discussed in details in the Chapter 1)
realise a 𝑆𝑈(2) transformation, and therefore effectively perform the
desired rotation of the detection bases.

2.2.2 Bragg diffraction in brief

A fairly usual way in atom interferometry to produce mirrors and
beam splitters, is to use theBragg diffraction technique [88], which[88]: Cronin et al. (2009), “Optics

and Interferometry with Atoms and
Molecules”

is nothing more than the coherent coupling between different atom
velocity classes. This coupling is established with an optical lattice1,

1: the beating between two laser beams,
slightly detuned with each other. which is resonant in a two-photon exchange process. The principle of

Bragg diffraction is presented in Figure 2.5.
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2𝜃

�⃗�𝑦

�⃗�𝑧

�⃗�𝑥

Figure 2.6: Schematic of the optical
lattice used for Bragg diffraction. 𝜃 is
defined as the half-angle between the
beams.The coordinate system (𝑒𝑥, 𝑒𝑦, 𝑒𝑧)
is given for consistency with the Figure
3.19 (cf. Chapter 3).

The total momentum ℎ̵𝑘𝑏𝑟𝑎𝑔𝑔 given to an atom when it exchanges two
photons with the lattice depends on the laser wavelength, and the angle
2𝜃 between the laser beams (Eq. (2.14)). The detuning 𝛿 to the two-
photon resonance is controllable and must be set up to zero if want to
be able to achieve a 100% transfer1

1: we can also show that when 𝛿 ≠ 0
there are also phases terms 𝑒±𝛿𝑡 in the
effective hamiltonian driving the evolu-
tion, that are preferable for us to vanish
[60].

(analogous to a mirror in optics).

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑘 = 2𝜋𝜆 sin(𝜃)

𝑘𝑏𝑟𝑎𝑔𝑔 ≜ 2𝑘

(2.14a)

(2.14b)

ℎ̵𝑘𝑏𝑟𝑎𝑔𝑔 being fixed, given a momentum 𝑝1 the resonance condition
𝛿 = 0 is fulfilled when the angular frequency difference between both
laser beams is equal to Δ𝛦(𝑝1,𝑝2)

ℎ̵ :

ℎ̵ (𝜔1 − 𝜔2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≜ Δ𝜔

= Δ𝐸(𝑝1, 𝑝2) (2.15)

with 𝑝2 = 𝑝1 + ℎ̵𝑘𝑏𝑟𝑎𝑔𝑔

Δ𝐸(𝑝1, 𝑝2) =
𝑝22
2𝑚 −

𝑝21
2𝑚 (2.16a)

=
ℎ̵𝑘𝑏𝑟𝑎𝑔𝑔
𝑚 𝑝1 +

ℎ̵2𝑘2𝑏𝑟𝑎𝑔𝑔
2𝑚 (2.16b)

Remark 2.6 Eq. (2.16b) means that there is a linear correspondence
between the angular frequency differenceΔ𝜔 and the velocity classes
(𝑝1, 𝑝2).

Since themagnitude of the Bragg kick ℎ̵𝑘𝑏𝑟𝑎𝑔𝑔 is fixed by the geometry
of the optical lattice, we can consider Δ𝐸 to be a function of the
parameter 𝑝1 only: Bragg diffraction always couples the velocity class
𝑝1
𝑚 to the velocity class

𝑝1+ℎ̵𝑘𝑏𝑟𝑎𝑔𝑔
𝑚 = 𝑝1+2ℎ̵𝑘

𝑚 .

In practice, the total kick ℎ̵𝑘𝑏𝑟𝑎𝑔𝑔 has been measured experimentally
(with a microchannel plate (MCP): cf. Chapter 3) when the lattice was
installed. We find

𝑘𝑏𝑟𝑎𝑔𝑔 = 0.550(5) 𝑘𝑟𝑒𝑐 (2.17)

where 𝑘𝑟𝑒𝑐 is the one-photon recoil momentumwith the 1083 nm laser
that we use (cf. Chapter 3). We generally express our lattices’ wave
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vectors in units of 𝑘𝑟𝑒𝑐 ≈ 5.8 µm
−1. This corresponds to an angle

𝜃 = 32.0(6)° (2.18)

A more complete study of the Bragg diffraction, with analytical calcu-
lations about the transferred population and the resulting phase can
be found in the previous PhDmanuscripts of the team, in particular
[8, 60, 89]

[8]: Lopes (2015), “An Atomic Hong-
Ou-Mandel Experiment”
[60]: Perrier (2018), “Interférences mul-
tiples avec atomes froids”
[89]: Imanaliev (2016), “Towards Test-
ing Bell’s Inequality Using Atoms Cor-
related inMomentum”
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Figure 2.7: Pairing of the naturalmodes
emitted by the source in two configu-
rations of the Rarity-Tapster interfer-
ometer.The sub-figure a) on top corre-
sponds to the geometry presented in Fig-
ure 2.4 (simpler to do experimentally),
whereas the sub-figureb) on bottomcor-
responds to the Figure 2.8 (it requires a
very narrow angle between both beams
of the Bragg lattice).

It is interesting to notice that the geometry presented on the Figure 2.8
is topologically equivalent to the one presented in Figure 2.4 (that we
would like to realise first). It could even be considered to be a better
configuration, as the spatial separation between Alice and Bob is larger.
Indeed, we would be probing a non-local effect, spreading across larger
distances, which ismore interesting. However this design requiremuch
smaller values of the Bragg kick ℎ̵𝑘𝑟𝑒𝑐. Actually, the multi-mode source
that we use emits the particles in an envelope of with two main atomic
beams, in the momentum space restricted to the vertical axis (cf. Figure
2.7 and Chapter 5). While the separation between both “bumps” of
this envelope is typically of the order of 0.6 ℎ̵𝑘𝑟𝑒𝑐, the configuration of
Figure 2.8 would require to pair modes living in a same bump, whose
typical RMS width is of the order 0.1 𝑘𝑙𝑎𝑡. This lead to an angle 𝜃 at
least three time smaller than the current one, whichmay be a technical
difficulty for us.

2.2.3 Formal effect of the deflector and beam splitters

Coupling matrix and degrees of freedom When a Bragg diffrac-
tion pulse is applied, the population oscillates between the coupled
modes. We denoteΩ1 andΩ2 the one-photon Rabi angular frequen-
cies of each laser beam1, and define the effective two-photon Rabi an-1: these are complexnumberswhose am-

plitude are proportional to the square-
root of the intensity of the beams
(Ω𝑖 ∝

√
𝛪𝑖) and their argument is given

by the phase of the lasers.

gular frequency:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ω =
√
𝛿2 + ∣Ω𝑅∣

2 (effective two-photon Rabi frequency)

Ω𝑅 = 2
Ω1Ω

∗
2

Δ (two-photon Rabi frequency)

(2.19a)

(2.19b)

We have
Ω𝑅 = ∣Ω𝑅∣ 𝑒𝑖𝜑 (2.20)

where 𝜑 is the phase difference between both laser beam.

In the case of a square pulse (i.e. Ω𝑅 and 𝛿 non-zero constants between
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𝑧

𝑡𝑡𝑑 𝑡𝑠𝑡0
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𝑆

Figure 2.8: Schematic of the atomic
Rarity-Tapster two-particle four modes
interferometer in the large separation
configuration. It is formally equivalent
to the design of Figure 2.4.

𝑡 = 0 and 𝑡 = 𝑇, and zero otherwise) the dynamics of the system can be
solved analytically [60], and we can write the corresponding evolution [60]: Perrier (2018), “Interférences mul-

tiples avec atomes froids”operator𝑈:

𝑈(𝑇) =
⎡⎢⎢⎢⎢⎣

(cos [Ω𝑡2 ] − 𝑖
𝛿
Ω sin [Ω𝑡2 ]) 𝑒

𝑖 𝛿𝑡2 𝑖 ∣Ω𝑅∣Ω sin [Ω𝑡2 ] 𝑒
𝑖( 𝛿𝑡2 +𝜑)

𝑖 ∣Ω𝑅∣Ω sin [Ω𝑡2 ] 𝑒
−𝑖( 𝛿𝑡2 +𝜑) (cos [Ω𝑡2 ] + 𝑖

𝛿
Ω sin [Ω𝑡2 ]) 𝑒

−𝑖 𝛿𝑡2

⎤⎥⎥⎥⎥⎦
(2.21)

This expression may seem a bit messy, but actually we recognise the
general form of a 𝑆𝑈(2) operator, that we have discussed in the first
chapter of this manuscript1. 1: in particular we can check that

det(𝑈) = 1.

If we consider a couple (∣𝑝⟩ , ∣𝑞⟩) of momentum states, for which the
resonance condition is fulfilled (𝛿 = 0), the Bragg pulse can whether
realise:
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▶ amirror (or deflector) when

Ω𝑇 = 𝜋 ⇒ 𝑈(𝑇) = [ 0 𝑖 𝑒𝑖𝜑

𝑖 𝑒−𝑖𝜑 0 ] (2.22)

It is a 𝜋 pulse: atoms are transferred from one state to the other
with 100% probability.

▶ a beam splitterwhen

Ω𝑇 = 𝜋/2 ⇒ 𝑈(𝑇) = 1√
2
[ 1 𝑖 𝑒𝑖𝜑

𝑖 𝑒−𝑖𝜑 1 ] (2.23)

It is a 𝜋/2 pulse: atoms are transferred from one state to the
other with 50% probability.

In both cases the transmission and reflection phases applied are

⎧⎪⎪⎨⎪⎪⎩

𝜑𝜏 = 0
𝜑𝜌 =

𝜋
2 + 𝜑

(2.24a)

(2.24b)

Two important ideas must be stressed at this stage:

1. the evolution operator𝑈 also couples velocity classes that are not
strictly resonant: when the small detuning 𝛿 is not zero. Itmeans
that the reflectivity profile has somewidth in themomenta space.
This profile1 must be studied numerically. A perturbative cal-1: i.e. the dependance of the reflectiv-

ity and also the applied phase with the
detuning 𝛿.

culation conducted in [60] establishes that the profile of the

[60]: Perrier (2018), “Interférences mul-
tiples avec atomes froids”

reflectivity as a function of the small detuning 𝛿2 is proportional

2: i.e. the velocity classes that are not
strictly at resonance.

to the temporal Fourier transform of the two-photon Rabi fre-
quencyΩ𝑅: the shorter the pulse, the broader the reflectivity
profile is. However since it comes from a perturbative approxi-
mation, this result is just a “thumb rule”, that becomes wrong
when the transferred population is large (in the case of the de-
flector for example) ;

2. Ω𝑅 being a complex number –whose argument corresponds to
the phase difference 𝜑 between the laser beams– a phase may be
applied to the output state. Again, due to the 𝑖𝛿Ω terms in the
diagonal of𝑈, this phase also depends on the velocity classes ;

Now we will see that it possible to use the phases applied by Alice and
Bob’ respective beam splitter (obtained with the Bragg pulses (2.23))
as experimental “buttons” to compute the correlators involved in the
BCHSH parameter.
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This framework is different from the historical experiment of Aspect et
al., where experimentalists where using the angle of polarisers (which
is equivalent to the transitivity of our beam splitters) to measure the
Bell parameter.

There is no formal difference between both methods, it is just simpler
for us to use only 50-50 beam splitters pulses, and control the phases.

Technical implementation In practice we need to address four ve-
locity classes (corresponding to the modes ∣𝑝⟩, ∣−𝑝⟩, ∣𝑞⟩, ∣−𝑞⟩ of the
previous figures). We are planning to pursue a strategy keeping the
optical setup as simple as possible: deflectors and beam splitters being
realised with the same optical beams.

A specific numerical study must be done to find the appropriate pulses
(i.e. the power and phase difference of the laser beams) performing the
desired deflector and beam splitter (paying attention to the phase that
is applied to the different velocity classes). This work has already been
done (at least partially1) in [60], and it is not useful to the purpose of 1: Charlie Leprince, PhD student and

my colleague on the experiment, per-
formed additional numerical simula-
tions to refine this work. This was use-
ful to have a better understanding of
what we need to implement to the ap-
paratus to realise the Bragg pulses.This
complementary work can be found in
his master’s degree internship repport,
or in his PhDmanuscript (coming out
next year).

this chapter. Therefore, we will only give the very general principle of
what we want to do:

▶ the deflection pulse (applied at 𝑡 = 𝑡𝑑 in Figure 2.4 and Figure
2.8) is “broadband”, meaning that it adresses all the velocity
classes at once. This is possible using a short and intense laser
pulse (therefore with a large value ofΩ𝑅) ;

▶ the beam splitters (applied at 𝑡 = 𝑡𝑠 in Figure 2.4 and Figure
2.8) are obtained with multiplexed “narrowband” pulses: mean-
ing that one of the two beams forming the lattice contains two
frequencies, creating two lattices addressing respectively Alice’s
couple of modes (𝑝,−𝑞) and Bob’s one (−𝑝, 𝑞).

Concretely, the temporal profile of the pulses (Ω𝑅[𝑡]) are sinc func-
tions, multiplied by a large window function (for apodisation). The
choice of sinc functions is inspired by the perturbative approach (a sinc
in the time domain giving a square in the momenta space). Wechecked
numerically that even if the regime is clearly not perturbative2 the sinc 2: ∼ 50% of transferred population

with a BS pulse, and ∼ 100%with amir-
ror

shape is still giving good results.

In the following we will just consider the situation of Figure 2.4, and
assume that thanks to the Bragg pulses3, it corresponds to the experi- 3: with the notations of Figure 2.4 and

Figure 2.8, we have a 𝜋 pulse at 𝑡 = 𝑡𝑑
and 𝜋/2 pulses at 𝑡 = 𝑡𝑠.

ment presented in [90]. The output modes can be written in basis of

[90]: Dussarrat (2017), “Expériences
d’Optique Atomique Quantique, Inter-
féromètres à 2 et 4 modes”
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the natural emitted modes:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣𝐴+⟩ =
−1√
2
[𝑒−𝑖(𝜑𝑎−𝜑𝑑) ∣𝑝⟩ + 𝑖𝑒−𝑖𝜑𝑑 ∣−𝑞⟩]

∣𝐴−⟩ =
−1√
2
[𝑖𝑒𝑖𝜑𝑑 ∣𝑝⟩ + 𝑖𝑒𝑖(𝜑𝑎−𝜑𝑑) ∣−𝑞⟩]

∣𝐵+⟩ =
−1√
2
[𝑒−𝑖(𝜑𝑏−𝜑𝑑) ∣𝑞⟩ + 𝑖𝑒−𝑖𝜑𝑑 ∣−𝑝⟩]

∣𝐵−⟩ =
−1√
2
[𝑖𝑒𝑖𝜑𝑑 ∣𝑞⟩ + 𝑖𝑒𝑖(𝜑𝑏−𝜑𝑑) ∣−𝑝⟩]

(2.25a)

(2.25b)

(2.25c)

(2.25d)

where 𝜑𝑑 is a phase applied the deflection (𝜋) pulse, and (𝜑𝛢, 𝜑𝛣) are
the phases applied by Alice and Bob beam splitters. 𝜑𝛢 and 𝜑𝛣 are the
“buttons” used by Alice and Bob to measure a Bell parameter.

With previous parametrisation, one can check that the emitted state
∣Ψ⟩ of (2.13) writes:

∣Ψ⟩ =
√
2
4 [−𝑖 (𝑒

𝑖𝜑𝑎 + 𝑒𝑖𝜑𝑏)] ∣𝐴+, 𝐵+⟩

+
√
2
4 [𝑒

𝑖(𝜑𝑎−𝜑𝑏) − 1] ∣𝐴+, 𝐵−⟩

+
√
2
4 [𝑒

−𝑖(𝜑𝑎−𝜑𝑏) − 1] ∣𝐴−, 𝐵+⟩

+
√
2
4 [−𝑖 (𝑒

−𝑖𝜑𝑎 + 𝑒−𝑖𝜑𝑏)] ∣𝐴−, 𝐵−⟩

(2.26)

leading to output probabilities very similar to Eq. (2.10):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑃𝛢
+
,𝛣
+

(𝜑𝑎, 𝜑𝑏) = 𝑃𝛢
−
,𝛣
−

(𝜑𝑎, 𝜑𝑏) =
1
2 cos

2 (𝜑𝑎 − 𝜑𝑏2 )

𝑃𝛢
+
,𝛣
−

(𝜑𝑎, 𝜑𝑏) = 𝑃𝛢
−
,𝛣
+

(𝜑𝑎, 𝜑𝑏) =
1
2 sin

2 (𝜑𝑎 − 𝜑𝑏2 )

(2.27a)

(2.27b)

Therefore, we find a correlator also similar to Eq. (2.11):

𝐸(𝜑𝑎, 𝜑𝑏) = cos(𝜑𝑎 − 𝜑𝑏) (2.28)

The correlator oscillates with the phase difference1 Δ𝜙 = 𝜑𝑎 − 𝜑𝑏. In1: let us recall that both 𝜑𝑎 and 𝜑𝑏 them-
selves are interpreted as a phase differ-
ence between the two laser beams creat-
ing the beam splitters.

practice it means that it enough to control the phase differenceΔ𝜙, and
measure an oscillation of 𝐸with an amplitude larger than

√
2
2 to claim

a Bell inequality violation.

Remark 2.7 (Is the Rarity-Tapster setup an interferometer?) The
oscillation (2.28) of𝐸 does not have the same status as the oscillation
observed in a regular one-particle interferometer (a Mach-Zehnder
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for example). It is not the oscillation of an intensity (fringes), but of
a correlations between two detections.

On can easilycheck that neitherAlice nor Bob see an oscillating signal
at their respective outputs:

𝑃(𝐴+) = 𝑃(𝐴−) = 𝑃(𝐵+) = 𝑃(𝐵−) =
1
2 (2.29)

One could argue that an interferometer should be (by definition)
a phase correlator of a one-particle state. We do not intend to fuel
a semantic debate, but we choose to call this type configuration a
two-particle interferometer.

2.3 Well-suited Bell inequalities

Due its similarity with the correlator used CHSH inequality, Eq. (2.28)
may seem satisfying. However in the previous paragraph we assumed
that exactly two particles were propagating in the interferometer: this
is actually the very first hypothesis that we made, by writing the input
state (2.13) with a Bell state.

The “problem” is that we cannot prepare such a state. As it has been
explained in Chapter 1 (and will be developed in Chapter 5), the source
at our disposal produces tensor productof two-mode squeezed vacuum
states. Let us recall the expression of such a state:

∣Ψ⟩ = [
√
1 − ∣𝛼2∣

∞
∑
𝑛=0
𝛼𝑛 ∣𝑛⟩𝑝 ∣𝑛⟩−𝑝] ⊗ [

√
1 − ∣𝛽2∣

∞
∑
𝑛=0
𝛽𝑛 ∣𝑛⟩𝑞 ∣𝑛⟩−𝑞]

(2.30)
Where the number of particle per mode for each TMS are given by

𝜈𝑎 =
∣𝛼∣2

1 − ∣𝛼∣2
𝜈𝑏 =

∣𝛽∣2

1 − ∣𝛽∣2
(2.31)

𝜈𝑎 and 𝜈𝑏 are positive real numbers, let us assume ∣𝛼∣ = ∣𝛽∣ for simplicity.
During an experiment, the detectors (single particle counters) placed
on thechannels𝐴+,𝐴−,𝐵+ and𝐵− return positive integer values. This
is a priori not a problem since the CHSH inequality is still valid in a
generalised context where the measured observables are continuous
variables (cf. Remark 2.3).

One can however notice that in the limit 𝜈
∣𝛼∣→0ÐÐ→ 0, the two brackets

in (2.30) can be approximated to the vacuum and the first order in ∣𝛼∣
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contributions, in extenso:

∣Ψ⟩ ≈
𝜈→0
(1 − ∣𝛼∣2) [ ∣0⟩ + 𝛼 (∣1⟩𝑝 ∣1⟩−𝑝 + 𝑒

𝑖𝜙 ∣1⟩𝑞 ∣1⟩−𝑞)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∣Φ⟩

] (2.32)

whose non-empty part ∣Φ⟩ is exactly a Bell state (up to a normalisation
factor and a phase 𝜙 = arg[𝛽/𝛼]). That means that during an experi-
ment, if the pair creation rate is small (𝜈 → 0), and if we do not consider
the realisations where no particle is detected (removing the vacuum),
we expect to recover the same type of physics as the one presented in
the previous section.

Nonetheless, in the general case, the question is to know which observ-
able and correlator are to consider in order to construct aBell parameter
that exceed the critical value of 2. Based on the reference [73], we will[73]: Kitzinger et al. (2021), “Bell Corre-

lations in a Split Two-Mode-Squeezed
Bose-Einstein Condensate”

show in the following different approaches, and conclude about the
most suitable for us regarding the constraints imposed by our appara-
tus.

2.3.1 First natural approach

Let us first introduce the numbers𝑁𝛢
+

(𝜑𝑎),𝑁𝛢
−

(𝜑𝑎),𝑁𝛣
+

(𝜑𝑏) and
𝑁𝛣

−

(𝜑𝑏) corresponding to the number of particles counted at each
channel during an experimental realisation. These are all positive
integers. We also introduce:

⎧⎪⎪⎨⎪⎪⎩

𝑁𝛢 = 𝑁𝛢
+

(𝜑𝑎) +𝑁𝛢
−

(𝜑𝑎)
𝑁𝛣 = 𝑁𝛣

+

(𝜑𝑏) +𝑁𝛣
−

(𝜑𝑏)
(2.33a)

(2.33b)

the total number of particles measured by Alice and Bob during a
realisation. The conservation of the number of particles at the beam
splitters implies that𝑁𝛢 and𝑁𝛣 are independent of 𝜑𝑎 and 𝜑𝑏. We also
define

⎧⎪⎪⎨⎪⎪⎩

𝑆𝛢(𝜑𝑎) = 𝑁𝛢
+

(𝜑𝑎) −𝑁𝛢
−

(𝜑𝑎)
𝑆𝛣(𝜑𝑏) = 𝑁𝛣

+

(𝜑𝑏) −𝑁𝛣
−

(𝜑𝑏)
(2.34a)

(2.34b)

the differences of number of particles measured by Alice and Bob.

We define the normalised averaged correlator1:1: historically, it was the correlator used
by Rarity and Tapster in their experi-
ment.

𝐸I(𝜑𝑎, 𝜑𝑏) =
⟨𝑆𝛢(𝜑𝑎)𝑆𝛣(𝜑𝑏)⟩
⟨𝑁𝛢𝑁𝛣⟩

(2.35)
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It is possible to prove that it is subjected to the same inequality as the
CHSH one (2.5), but using a slightly different derivation as the one
presented in the first section1 [19]. 1: indeed, if we wanted to interpret the

normalised averaged correlator Eq. (2.35)
as the correlator (2.2) of the CHSH
inequality proof, one should consider
the observable 𝑆𝛢(𝜑𝑎)

⟨𝛮𝛢𝛮𝛣⟩
and 𝑆𝛣(𝜑𝑎)

⟨𝛮𝛢𝛮𝛣⟩
which

are not bounded to [−1, 1], and there-
fore do not satisfy the hypotheses of the
proof.

[19]: Clauser et al. (1974), “Experimental
consequences of objective local theories”

One can expand the terms of (2.35), andcheck that

𝐸I(𝜑𝑎, 𝜑𝑏) = 𝑃+,+(𝜑𝑎, 𝜑𝑏)−𝑃+,−(𝜑𝑎, 𝜑𝑏)−𝑃−,+(𝜑𝑎, 𝜑𝑏)+𝑃−,−(𝜑𝑎, 𝜑𝑏)
(2.36)

where

𝑃𝑖,𝑗 ∈{+,−}(𝜑𝑎, 𝜑𝑏) =
⟨𝑁𝛢𝑖(𝜑𝑎)𝑁𝛣𝑗(𝜑𝑏)⟩

⟨𝑁𝛢
+

𝑁𝛣
+

⟩ + ⟨𝑁𝛢
+

𝑁𝛣
−

⟩ + ⟨𝑁𝛢
−

𝑁𝛣
−

⟩ + ⟨𝑁𝛢
−

𝑁𝛣
−

⟩
(2.37)

𝑃𝑖,𝑗(𝜑𝑎, 𝜑𝑏) ∈ [0, 1] is a crossed detection probability, thus once writ-
ten in its expanded form (2.36) the correlator 𝐸I is reminiscent of Eq.
(2.9). This correlator has been proposed by Ralph et al. [91], exposing [91]: Ralph et al. (2000), “Proposal for

the Measurement of Bell-Type Correla-
tions from Continuous Variables”

this approach to show a CHSH inequality violation from continuous
variable. The appreciable point about this correlator is that it is very
close to the one that we studied in the first section, when we were ma-
nipulating a genuine Bell state. It is actually quick to check that the
restriction to the one particle domain (𝑁𝛢 = 𝑁𝛣 = 1) leads to the exact
same observable and correlator as in the first sections: 𝑆𝛢, 𝑆𝛣 ∈ {−1, 1}.
Eq. (2.35) is therefore sort of a generalisation of the “usual” correlator,
used to perform a two-particle CHSH inequality violation.

The relations Eq. (2.25) are still valid. Knowing the state (2.30), and by
injecting the quadruplet of optimal angles2 2: optimal at least in the 𝜈 → 0 limit.
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Figure 2.9: Bell parameter as a function
of the population 𝜈, using Ralph et al.
correlator 𝛦I. The black dashed line rep-
resent the CHSH critical value. Bell’s
inequality is violated for 𝜈 ≲ 0.26.
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one can compute analytically the corresponding Bell parameter 𝑆 as a
function of the population 𝜈. The calculation gives:

𝑆(𝜈) = 2
√
2 ⋅ 1 + 𝜈1 + 3𝜈 (2.38)

which is plotted on Figure 2.9. When 𝜈 → 0, 𝑆 reaches its maximal
value3 2

√
2. This is an expected behaviour since with this method the

3: the first Tsirelson’s bound.

vacuum contribution to the correlator implicitly vanishes. Indeed,
if we label with the superscript (𝑖) the experimental realisations the
correlator 𝐸I concretely measured with 𝑛 realisations writes:

𝐸I(𝜑𝑎, 𝜑𝑏) =
𝑆(1)𝛢 𝑆(1)𝛣 + 𝑆(2)𝛢 𝑆(2)𝛣 + ⋯ + 𝑆(𝑛)𝛢 𝑆(𝑛)𝛣

𝑁(1)𝛢 𝑁(1)𝛣 +𝑁(2)𝛢 𝑁(2)𝛣 + ⋯ +𝑁(𝑛)𝛢 𝑁(𝑛)𝛣

(2.39)
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if during a realisation (𝑖) the vacuum turns out to be measured on a
side (let us assume Alice’s one), we have𝑁(𝑖)𝛢 = 0 and therefore 𝑆(𝑖)𝛢 ,
which effectively just removes one term on both the numerator and the
denominator: we have an effective postselection of the vacuum.

Therefore in the small population limits only the non-vacuum part
–that can be approximated by a Bell state– contributes to the signal
and we find the usual result 𝑆 = 2

√
2.

An other remarkable property of this approach is that the measured
Bell parameter 𝑆(𝜈) is independent of the quantum efficiency 𝜂 of
the detector! It is pretty simple to see regarding Eq. (2.37), since –by
definition of the quantumefficiency– the only effectof the losses on the
𝑃𝑖,𝑗s is to add a 𝜂

2 factor on both the numerator and the denominator,
that cancel out immediately.

However, it is natural to think that when the population 𝜈 increases,
the level of entanglement of system increases as well. Indeed, two-mode
squeezed states are completely entangled states, therefore increasing
the population means increasing the number of particles involved in
this entanglement. One could argue that it is a bit strange to find a Bell
parameter decreasing –which is a priori the signature of less quantum
effects– whereas the expected level of entanglement increases.

2.3.2 Second approach: projection onto two-outcomed
events observables

An alternative approach was proposed by Nemoto et al. [73]. The idea[73]: Kitzinger et al. (2021), “Bell Corre-
lations in a Split Two-Mode-Squeezed
Bose-Einstein Condensate”

is to consider the observables sgn [𝑆𝛢(𝜑𝑎)] and sgn [𝑆𝛣(𝜑𝑏)]where

sgn∶ ℝ → ℝ

𝑥 ↦
⎧⎪⎪⎨⎪⎪⎩

−1 if 𝑥 < 0
+1 if 𝑥 ≥ 0

(2.40)

Then we can define a correlator 𝐸II:

𝐸II(𝜑𝑎, 𝜑𝑏) = ⟨sgn [𝑆𝛢(𝜑𝑎)] sgn [𝑆𝛣(𝜑𝑏)]⟩ (2.41)

Since both sgn [𝑆𝛢(𝜑𝑎)] and sgn [𝑆𝛣(𝜑𝑏)] are contained in {−1, 1},
𝐸II is can be used to build a CHSH inequality, based on its original
derivation.
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Actually in the previous case, the Bell parameter was quickly decreasing
with 𝜈 due to the harmful contribution of the terms involving more
than 2 particles, which effectively reduced the amplitude of the corre-
lator 𝐸I. In this second approach, all the measurements are projected
onto the two outcomes +1 and −1. Even without giving a rigorous
mathematical proof, we can have the insight that this projection has
a damping effect onto the contribution of the realisation involving a
large number of particles. We expect a better behaviour of the Bell
parameter when the population increases.

0.00 0.25 0.50

ν
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2.0

2.2
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Figure 2.10: Bell parameter as a func-
tion of the population 𝜈, using the cor-
relator 𝛦II (2.41).The black dashed line
represent the CHSH critical value.The
lines are labelled with the quantum effi-
ciency of the detectors.

We can have a numerical estimation of the Bell parameter, using the
correlator 𝐸II. However, the finite quantum efficiency of the detectors
no longer cancel out, andmustbe taken into account in the calculations.
The implementation of the losses due to the finite quantum efficiency
is very similar to the one that we used in the previous chapter, the
details of the derivation of the formulae can be found in the original
publication [73]. We give the final result anyway:

[73]: Kitzinger et al. (2021), “Bell Corre-
lations in a Split Two-Mode-Squeezed
Bose-Einstein Condensate”

𝐺𝜂𝛮
+
,𝛮
−

= 1 − 2∑
0≤𝑛≤𝛮

+

0≤𝑚≤𝛮
−

𝑛<𝑚

( 𝑁+
𝑁+ − 𝑛

)( 𝑁−
𝑁− −𝑚

)𝜂𝑛+𝑚(1 − 𝜂)𝛮++𝛮−−𝑛−𝑚

(2.42)
is the lossy sgn[𝑆] operator. Then the Born’s rule gives the probability
of a given outcome:

𝑃𝜑𝑎,𝜑𝑏(𝑁𝛢+ , 𝑁𝛢− ; 𝑁𝛣+ , 𝑁𝛣−) = ∣⟨Ψ∣𝑁𝛢+ , 𝑁𝛢− ; 𝑁𝛣+ , 𝑁𝛣−⟩∣
2

(2.43)

and finally

𝐸II(𝜑𝑎, 𝜑𝑏) =
∞
∑

𝛮𝛢+ ,𝛮𝛢− ,𝛮𝛣+ ,𝛮𝛣−=0
𝑃𝜑𝑎,𝜑𝑏(𝑁𝛢+ , 𝑁𝛢− ; 𝑁𝛣+ , 𝑁𝛣−)𝐺

𝜂
𝛮𝛢+ ,𝛮𝛢−

𝐺𝜂𝛮𝛣+ ,𝛮𝛣−
(2.44)

A numerical calculation of the variations of the Bell parameter with
the population is plotted in Figure 2.10. Let us make a commentary
about it:

1. whatever the quantum efficiency, when 𝜈 goes to zero, 𝑆 goes
to 2. This is no surprise, because the state ∣Ψ⟩ is then approxi-
mated by the vacuum, which gives 𝐸II(𝜑𝑎, 𝜑𝑏) = 1whatever the
orientations of the detectors, and therefore𝑆 = 1+1+1−1 = 2.

2. When the quantum efficiency is large (≳ 85%), the Bell param-
eter 𝑆 increases with the population, which is very good! This
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is what we was hopping for: the Bell parameter increases when
the level of correlations in the system increases. However, the
strength of the violation is smaller than in the previous case
(𝑆 < 2.3).

3. The most serious problem is that the violation collapses quickly
when the quantum efficiency is not close to 1. In the case of
our experiment, where the quantum efficiency is approximately
50%, this approach is unusable.

2.3.3 Third approach based on the CH inequality

Themain reason that explains the fact the Bell inequality violation can
be strong with the first approach is that the vacuum do not contribute
to the signal. Indeed, vacuumobviously do not contain any correlation,
and may only have a negative effect on the measured Bell parameter.
The idea of this third approach is to cumulate the advantages of both
previous methods:

1. find a way to reject vacuum’s contribution (inspired by the first
approach), so has to keep themaximal value of theBell parameter
to a large value (if possible 2

√
2) ;

2. project the results of the experimental realisations onto two-
outcomes event, taking the values ±1, so as to have a better
behaviour when the population increases ;

This approach is steered by the Clauser andHolt (CH) inequality. This
inequality —proved in 1974 [19]— is a constraint built from outcomes’[19]: Clauser et al. (1974), “Experimental

consequences of objective local theories” probabilities1 (joint and single-channels), it requires to consider two-
1: which is slightly different from the
original CHSH formulation which is
only involving correlation functions.
The proof of the inequality may be
found in [19].

outcome measurements, returning either the value +1 or −1.

By using the notation 𝑃𝑖,𝑗 (with 𝑖, 𝑖 ∈ {+,−}) of the first section (no-
tations introduced with Eq. (2.9)) and using the symbol “∀” for the
marginal probabilities:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑃∀,∀ = ∑
𝑖,𝑗=±

𝑃𝑖,𝑗(𝜑𝑎, 𝜑𝑏)

𝑃𝑖,∀(𝜑𝑎) =∑
𝑗=±
𝑃𝑖,𝑗(𝜑𝑎, 𝜑𝑏)

𝑃∀,𝑗(𝜑𝑏) =∑
𝑖=±
𝑃𝑖,𝑗(𝜑𝑎, 𝜑𝑏)

(2.45a)

(2.45b)

(2.45c)



2 Rarity-Tapster interferometer 95

theCHinequality reads (longdouble inequalitywrittenon two lines):

−𝑃∀,∀ ≤ 𝑃𝑖,𝑗(𝜑𝑎, 𝜑𝑏) + 𝑃𝑖,𝑗(𝜑𝑎, 𝜑′𝑏) + 𝑃𝑖,𝑗(𝜑′𝑎, 𝜑𝑏)
−𝑃𝑖,𝑗(𝜑′𝑎, 𝜑′𝑏) − 𝑃𝑖,∀(𝜑𝑎) − 𝑃∀,𝑗(𝜑𝑏) ≤ 0

(2.46)

It is easy to derive from (2.46) an other inequality that resemble to the
CHSH one 𝑆 ≤ 2. Just by considering the quantity

𝐸III(𝜑𝑎, 𝜑𝑏) =
1
𝑃∀,∀

∑
𝑖,𝑗=±
(𝑖 × 𝑗)𝑃𝑖,𝑗(𝜑𝑎, 𝜑𝑏) (2.47)

Proof

(2.46) ⇒
(𝑖=𝑗)

𝑃𝑖,𝑖(𝜑𝑎, 𝜑𝑏) + 𝑃𝑖,𝑖(𝜑𝑎, 𝜑′𝑏) + 𝑃𝑖,𝑖(𝜑′𝑎, 𝜑𝑏)

−𝑃𝑖,𝑖(𝜑′𝑎, 𝜑′𝑏) ≤ 𝑃𝑖,∀(𝜑𝑎) + 𝑃∀,𝑖(𝜑𝑏)
(†)

and

(2.46) ⇒
(𝑗=−𝑖)

−𝑃𝑖,−𝑖(𝜑𝑎, 𝜑𝑏) − 𝑃𝑖,−𝑖(𝜑𝑎, 𝜑′𝑏) − 𝑃𝑖,−𝑖(𝜑′𝑎, 𝜑𝑏)

+𝑃𝑖,−𝑖(𝜑′𝑎, 𝜑′𝑏) ≤ 𝑃∀,∀ − 𝑃𝑖,∀(𝜑𝑎) − 𝑃∀,−𝑖(𝜑𝑏)
(‡)

then (†) + (‡) gives

𝐸III(𝜑𝑎, 𝜑𝑏) + 𝐸III(𝜑′𝑎, 𝜑𝑏) + 𝐸III(𝜑𝑎, 𝜑′𝑏) − 𝐸III(𝜑′𝑎, 𝜑′𝑏) ≤ 2 ∎

Nowwe still need to define actual observables, in order to have a con-
crete definition of the probabilities𝑃𝑖,𝑗. The strategy is the following:

1. the vacuum is postselected, meaning that if either Alice or Bob
measure zero particle on both their channels (+ and −) during
an experimental realisation, this realisation is dropped.

2. if at least one particle is detected on both side (𝑁𝛢, 𝑁𝛣 ≥ 1),
then Alice and Bob consider the observables, sgn [𝑆𝛢(𝜑𝑎)] and
sgn [𝑆𝛣(𝜑𝑏)], thatwe already introduced in the second approach.

More formally, if we denote Π the orthogonal projection operator,
projecting the states onto the hyperplane orthogonal to the vacuum
(i.e. the non-empty subspace), by definition of 𝑃∀,∀ we have

𝑃∀,∀ = ⟨Π⟩ (2.48)
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and 𝐸III can be rewritten in an expression exhibiting the fact that it is
indeed a correlation function:

𝐸III(𝜑𝑎, 𝜑𝑏) =
⟨Πsgn [𝑆𝛢(𝜑𝑎)]Πsgn [𝑆𝛣(𝜑𝑏)]⟩

⟨Π⟩ (2.49)

which is (just like 𝐸I) a normalised correlator.

0.0 0.5 1.0

ν

1.5

2

2.5

2
√

2

S

0.25

0.5

0.95

1.0

EI

Figure 2.11: Bell parameter as a function
of the population 𝜈, using the correlator
𝛦III (2.49).The black dashed line repre-
sent the CHSH critical value.The lines
are labelled with the quantum efficiency
of the detectors. We also plotted (mauve
dashed line) the result of the first ap-
proach for comparison. With the quan-
tum efficiency of our detector (𝜂 = 0.5)
the Bell inequality is violated for 𝜈 ≲ 0.7.

Now we can again perform some numerical simulations, and check
if there is an experimental interest with this approach. Just as in the
previous case (with the correlator 𝐸II) there is no simple simplification
of the quantum efficiency here, and it must be taken into account
during the numerical computations. Just as before, the finite quantum
efficiency is treated as particle losses, similarly to the previous case (more
information can be found in [73]). The results are plotted in Figure

[73]: Kitzinger et al. (2021), “Bell Corre-
lations in a Split Two-Mode-Squeezed
Bose-Einstein Condensate”
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Figure 2.12: Saturation of the Bell in-
equality as a function of the population.

Even though, the Bell parameter 𝑆 is decreasing with the population 𝜈,
it is significantly larger than the one resulting from the first correlator
𝐸I, which is very satisfying.

Another interesting visualisation, is the profile of the population giving
𝑆 = 2 (saturation of the Bell inequality) as a function of the quantum
efficiency. This is plotted in Figure 2.12. We observe that this func-
tions increases exponentially fast, meaning that using detectors with a
quantum efficiency close to 100%1 allows to obtain a Bell inequality

1: as it can be the case in quantum op-
tics.

violation with very large populations. In our case, with 𝜂 ≈ 0.5, we
find 𝜈𝑚𝑎𝑥 ≈ 0.7, which is a gain of almost a factor 3 compared to the
first approach.
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Conclusion

In this chapter we have recalled what the CHSH Bell inequality is, and
how it can be tested with a Rarity-Tapster interferometer. In particular,
we have seen that even though the use of a two-mode squeezed state for
the purpose of such an experiment is generally deteriorates the quality
of the signal, the smart choice of the nonlocal correlator can improve
the degree of violation, even with a finite quantum efficiency.

In a practical experiment, if we aim at obtaining a BCHSH parameter
𝑆 ≈ 2.5, with the simple approach of Ralph et al. (based on the cor-
relator 𝐸I) we should use an average population per mode 𝜈 ≈ 0.07,
whereas with the third approach a population 𝜈 ≈ 0.14 is enough.
Therefore, there is roughly a gain of a factor of 2, which is a huge im-
provement experimentally speaking, as it means that we can double
our signal-to-noise ratio.
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Introduction

The realisation of a Bose-Einstein condensate (BEC) is at the very core
of our experimental procedure. As it will be discussed in the lastchapter
of this manuscript, the BEC acts as a cornerstone for the generation of
non-classical states. Therefore, Bose-Einstein condensation is “step zero”
in our process, and its stable generation is amandatory condition to any
experimental attempt. The successive cooling stages of the metastable
helium cloud, from room temperature down to the quantum phase
transition, will be an important topic of interest in this chapter.

But before giving a complete depiction of our cooling techniques, we
will first discuss the crucial question of the detection of the signal. We
will show in particular that our choice of atomic species is completely
related to the technology we are using: a single-atommomentum re-
solved detector.

In this chapter, we will deal with many experimental techniques,
several of those having been implemented by my predecessors, work-
ing on the experiment since its very early stages back in 1996. We
will highlight with a blue background frame the recent innovations
that I contributed to set up during my work in the team: namely the
compression of the MOT, the fluorescence imaging calibration,
the new MCP installation, the new setup for the optical dipole
trap (ODT).
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1 Metastable helium

1.1 Spectroscopy

Helium –whose name is modestly derived fromHelios (ancient Greek
deity of the Sun)1– exists under only two stable isotopic forms: 3

2He 1: Helium was first detected on August
18th, 1868, by French astronomer Jules
Janssen, as an unknown spectral line dur-
ing a complete solar eclipse.

–a fermion– with the incredibly small natural abundance on Earth of
2 ⋅ 10−4 % ; and the bosonic form 4

2He, which is muchmore common.
As we are interested in the realisation of a BEC, we will obviously only
deal with the latter in the following.

Helium has two electrons, but only one of them can be in an excited
state. Indeed, any configuration with both electrons in an excited
state would have an energy larger than the ionisation threshold, and
therefore lead to the self-ionisation of the atom. Thus 4He behaves as
an effective one-electron atom2. For convenience, we therefore extend 2: this is fairly common for noble gases
the Russel-Saunders term symbols 𝑛2𝑆+1𝐿𝐽 of the alkali metals to the
noble gases, helium in particular.

Like most noble gases3, 4He does not have nuclear spin, which entails 3: and unlike alkali metals...
the absence of hyperfine structure. That reduces the complexity of the
spectroscopic structure by an appreciable amount. The specific case
of helium is even simpler: since there are only two electrons (core and
valence) they share the same S-state, leaving only two possible types of
configurations:

● parahelium, corresponding to the singlet states, with the two elec-
trons having anti-parallel spins ∣↑↓⟩. The total spin 𝑆 is 0 ;
● orthohelium, that corresponds to the triplet states, with the two
electrons having parallel spins ∣↑↑⟩. The total spin 𝑆 is 1 ;

any transition between these two domains is “forbidden” by selections
rules, as it does not conserve the total spin.

Thisprohibitionof optical transitionbetweenorthoheliumandparamhe-
lium is the first reason of the apparition of a metastable state. One
should indeed notice (c.f. Figure 3.1) that the first excited state 23𝑆1
is a triplet state, whereas the ground state 11𝑆0 is singlet. The second
reason is that 23𝑆1 and the ground state share the same angularmomen-
tum quantum number (𝑆 ⇔ 𝑙 = 0), whichmakes the single-photon
electric dipole decay impossible.

Its decay to ground state being twice-forbidden, the 23𝑆1 has an ex-
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Table 3.1: Some important physical
properties of metastable helium. Physical quantity Notation Numerical Value

Mass 𝑚 6.646 ⋅ 10−27 kg
Metastable state lifetime [92] 𝜏⋆ 7870(510) s
S-wave scattering length [93] 𝑎 7.512(5) nm

tremely long half-life time. It is actually the longest-lived neutral atomic
state (𝜏⋆ is 2 h11 !) and its characteristic decay time has been measured
to be in very good agreement with QED predictions [92]. It is in par-[92]: Hodgman et al. (2009),

“Metastable Helium” ticular much longer than the typical time required to prepare a BEC
(∼15 seconds with the last improvements of our apparatus). The spin-
induced magnetic dipole of the state1 23𝑆1 allows the use of magnetic1: with 𝑆 = 𝐽 = 1, the Landé 𝑔-factor

of the state is equal to the electron spin
𝑔-factor 𝑔𝑠 ≈ 2. It leads to a magnetic
force twice as big as for the alkali species.

trapping techniques, which is also experimentally appealing for the
purpose of the preparation of a metastable BEC. Finally, the 1.08 µm
optical coupling with the 23𝑃0,1,2 states is perfectly suitable to perform
laser cooling with a cycling transition:

1. it is experimentally accessible2 ;2: with distributed Bragg reflector
(DBR) laser diode, or distributed
feedback laser (DFB) (diode or
optical-fiber).

2. the selection rules guarantee a return to the metastable state ;
3. the associated lifetime is short: roughly 98 ns ;

Remark 3.1 Although not formally impossible, the realisation of
a BEC of helium on the genuine ground state, in a diluted phase
(gas), would be quite challenging, and has not yet been achieved.
The Landé 𝑔-factor of the ground state being zero, it is not possible
to magnetically trap it, and the laser cooling would require intense
XUV laser sources in order to perform the coupling with the far
above excited states 21𝐿𝐽, which seems rather difficult to achieve with
contemporary technology.

However, in condensedmatter, superfluid helium-4 (which is indeed
a BEC) has been obtained in 1937 [94]

[94]: Kapitza (1938), “Viscosity of Liq-
uid Helium below the λ-Point” .

Manipulating metastable helium with the 23𝑆1 → 23𝑃 transitions is
therefore quite standard, the 𝑃2 line (2

3𝑆1 → 23𝑃2) being used for the
first laser cooling stages 3. The first BECs of helium have been observed3: it is a 𝐽 → 𝐽 + 1 transition that

allows a simple magneto-optical trap
(MOT) scheme.

for the first time (and almost concomitantly) in 2001 at the Institut
d’Optique[97] and the École Normale Supérieure[98], thanks to laser

[97]: Robert et al. (2001), “A Bose-
Einstein Condensate of Metastable
Atoms”
[98]: Pereira Dos Santos et al. (2001),
“Bose-Einstein Condensation of
Metastable Helium”

cooling, and evaporative cooling performed by radio frequency (RF)
induced spin flips, in a magnetic trap. The 𝑃0 line (2

3𝑆1 → 23𝑃0) is
also used in our setup to implement Bragg diffraction for the atomic
interferometer (cf. Chapter 2), and Raman coupling between the
magnetic sublevels of the metastable state. We will come back to the
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Figure 3.1: Spectroscopic structure of
4He, truncated to the states with prin-
cipal quantum number 𝑛 ≤ 3. Some
experimentally useful transitions are
also represented, with their wavelength
and natural linewidth. We also have
circled in purple the states of particu-
lar interest in the current work. The
relative positions of the levels are on
scale.The wavy violet arrow represents
the twice-forbidden transition from the
metastable state to the ground state,
with the measured half-life 𝜏 associated
to it[92].The numerical values of the en-
ergy levels can be calculated with quan-
tum electrodynamics (QED), and are
tabulated in [95].The ionisation energy
has been experimentally measured in
[96].

latter point later in this chapter.

Concerning the other optical transitions (cf. Figure 3.1):

● the 389 nm 23𝑆1 → 33𝑃2 transition can also be used for laser
cooling and imaging [99, 100] ; [99]: Koelemeij et al. (2003), “Magneto-

Optical Trap for Metastable Helium at
389 nm”
[100]: Keller et al. (2014), “Bose-Einstein
Condensate of Metastable Helium for
Quantum Correlation Experiments”

● the 588 nm 23𝑃 → 33𝐷 transition has been used for the prepa-
ration of a MOT [101] ;

[101]: Kumakura et al. (1992), “Visi-
ble Observation of Metastable Helium
Atoms Confined in an Infrared/Visible
Double Resonance Trap”

● the forbidden transitions between orthohelium and parahelium
have also been probed for metrological testing of the QED pre-
dictions [102, 103] ;

[102]: Notermans et al. (2014), “High-
Precision Spectroscopy of the Forbid-
den 23𝑆1 → 21𝛲1 Transition in Quan-
tumDegenerate Metastable Helium”
[103]: van Rooij et al. (2011), “Frequency
Metrology in Quantum Degenerate He-
lium”

With only four nucleons, helium is a featherweight compared to other
popular species of ultra-cold atoms physics. This is an advantage for
us, as our experimental platform is designed to probe the velocity of
individual atoms. Indeed, lowmass means large recoil velocity when
atoms exchangephotonswith a resonant laser field, whichconsequently
increases the separation of the different velocity classes of interest in
the signal, and –ultimately– the resolution of the experiment.
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Table 3.2: Cooling transition
23𝛲2 → 23𝑆1 characteristics. One
should keep in mind that the transition
strengths Γ are the same for the three
transitions 23𝛲0,1,2 → 23𝑆1 (with 10

−4

accuracy).

Physical quantity Notation Numerical Value

Transition wavelength [104] 𝜆 1083.33 nm
Transition strength [95] Γ 2𝜋 × 1.626MHz
Lifetime 𝜏 = 1/Γ 97.89 ns

Absorption cross section 𝜎 = 3𝜆
2

2𝜋 5.604 ⋅ 10−13m2

Saturation intensity 𝐼𝑠 =
𝜋ℎ𝑐Γ
3𝜆3

0.167mWcm−2

Doppler limit temperature 𝑇𝐷 =
ℎ̵Γ
2𝑘𝛣

39.01 µK

Recoil momentum 𝑘𝑟𝑒𝑐 =
2𝜋
𝜆 5.8 µm−1

Recoil velocity 𝑣𝑟𝑒𝑐 =
ℎ̵𝑘𝑟𝑒𝑐
𝑚 92.02mm s−1

Recoil energy 𝐸𝑟𝑒𝑐 =
ℎ̵2𝑘2𝑟𝑒𝑐
2𝑚 2.814 ⋅ 10−29 J

= 1.757 ⋅ 10−10 eV
= 42.47 kHz × ℎ

Recoil temperature 𝑇𝑟𝑒𝑐 =
𝐸𝑟𝑒𝑐
𝑘𝛣

2.038 µK

Finally, metastable helium, that we will denote He⋆in the following of
this manuscript, has a last remarkable feature: it is the most energetic
metastable state amongst all atomic species, with the colossal value of
19.82 eV. In particular, this huge amount of energy is enough to extract
an electron from a metallic surface during a collision, the associated
work function being typically a few electronvolts. When amplified by
an appropriate electronic chain of devices, this single electron, expelled
from the metal by a single atom, can be converted into a macroscopic
signal. This mechanism is at the root of the operation of our detec-
tor –microchannel plate (MCP)– that we will introduce in the next
section.

1.2 Collision theory

A cold gas of helium is the seat of collisions. When it is elastic, the colli-
sion is characterised by the S-wave scattering length 𝑎. It also may be
inelastic, meaning that the collisionchanges the internal state of the col-
liding atoms. In particular, due to its large internal energy, metastable
helium produces ionising collisions calledPenning collisions, that are
in practice an important source of atom losses in the cloud.
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Figure 3.2: Two-body elastic, ionising
and inelastic collisions constant rates as a
function of the temperature (by conven-
tion ionising collisions are not included
in the inelastic ones). Data are extracted
from [105] and result frommultichannel
quantum calculations.The hamiltonian
used for time evolution takes into ac-
count the kinetic part, the unperturbed
hamiltonian of both atoms, the elec-
trostatic interaction, and the magnetic
spin-dipole interaction. The gas is con-
sidered to be spin-polarised, except for
the dashed line.

1.2.1 Elastic collision

Notation 6 ⟨●⟩𝛵 represent the aver-
aging over the velocity distribution
of a thermal cloud at temperature
𝛵.

As in most of the ultra-cold atoms experiment, elastic collisions play
a major role, as they provide the re-thermalisation mechanism during
the final stage of evaporative cooling.

10−6 10−4 10−2

T (K)

10−10

10−9

10−8

α(T ) (cm3/s)

Figure 3.3: Elastic collision rate con-
stant as a function of temperature.The
red plain line is given by Eq. (3.3) and
the blue dashed line is the square root
approximation Eq. (3.4).

As always, at low temperature they only depend on the S-wave scat-
tering length, whose value has been theoretically estimated [106] and

[106]: Przybytek et al. (2005), “Bounds
for the Scattering Length of Spin-
Polarized Helium fromHigh-Accuracy
Electronic Structure Calculations”

measured[93] to be 𝑎 = 7.512(5) nm. The scattering cross-section

[93]: Moal et al. (2006), “Accurate De-
termination of the Scattering Length of
Metastable Helium Atoms Using Dark
Resonances between Atoms and Exotic
Molecules”

at low temperature depends on the relative velocity 𝑣𝑟 of the atoms
involved in the collision, and is given by[107]:

[107]: Landau et al. (1977), Quantum
mechanics

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜎0 ≜ 8𝜋𝑎
2

𝜎(𝑘𝑟) =
𝜎0

1 + 𝑎2𝑘2𝑟
(3.1)

where 𝑘𝑟 is the relative wave vector magnitude

𝑘𝑟 =
𝑚
2ℎ̵𝑣𝑟 (3.2)

For a classical thermal cloud at temperature 𝑇, the relative velocity
follows the Maxwell-Boltzmann velocity distribution1, from which we

1: and considering the effective reduced
mass of the two-body problem 𝑚

2

can derivate the average collision rate constant 𝛼(𝑇) = ⟨𝜎(𝑘𝑟)𝑣𝑟⟩𝛵:

𝛼(𝑇) =
∞

∫
0

4𝜋𝑣2𝑟 d𝑣𝑟 (
𝑚

4𝜋𝑘𝛣𝑇
)
3
2

exp (− 𝑚𝑣
2
𝑟

4𝑘𝛣𝑇
) 𝜎(𝑘𝑟)𝑣𝑟 (3.3)
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When𝑇 ≲ 100 µK, 𝜎(𝑘) ≈ 𝜎0, andwe have the good approximation

𝛼(𝑇 ≲ 100 µK) = 𝜎0

√
16 𝑘𝛣𝑇
𝜋𝑚 (3.4)

The elastic collision rate 𝛾𝑒𝑙 is then simply given by

𝛾𝑒𝑙 ≜ 𝑛⟨𝜎(𝑘𝑟)𝑣𝑟⟩𝛵 = 𝑛 𝛼(𝑇) (3.5)

1.2.2 Inelastic & ionising collisions

Strictly speaking, ionising collisions are a particular case of inelastic
collisions, but by convention and for more convenience we distinguish
the two as they differ widely concerning their involved mechanism
and likelihood. Due to its large internal energy, when a metastable
He⋆collides with other atoms or molecules, it can lead the ionisation
of one of them, and the loss of the metastable state. Experimentally,
with densities up to 1013 cm−3 for BECs, we are sensitive to two-body
and three-body mechanisms.

Notation 7 We denote “He⋆” the
helium atoms in the 23𝑆1 metastable
state, and “He” the helium atoms in
the fundamental state 11𝑆0.

Two-body collisions...

▶ ...ionising with the residual gas:

He⋆ +𝑋 →
⎧⎪⎪⎨⎪⎪⎩

He +𝑋+ + 𝑒−

He𝑋+ + 𝑒−
(3.6)

the strength of the mechanism is dependent on the quality of
the vacuum in the science chamber, where the metastables are
trapped. It significantly contributes to the value of the lifetime
of the trapped cloud (∼ 35 s in the magnetic trap). We can
actually experimentally detect the flux of ions created, and use it
as an insight of the number of atoms trapped in the cloud[108–
110]

[108]: Sirjean et al. (2002), “Ionization
Rates in a Bose-Einstein Condensate of
Metastable Helium”
[109]: Seidelin et al. (2003), “Using Ion
Production to Monitor the Birth and
Death of aMetastable Helium Bose Ein-
stein Condensate”
[110]: Seidelin et al. (2004), “Getting
the Elastic Scattering Length by Ob-
serving Inelastic Collisions in Ultracold
Metastable Helium Atoms” ;

▶ ...ionising with an other metastable1(Penning):1: which is sort of a particular case of the
previous mechanism, but we consider it
separately as in a trap it is an important
source of loss of atoms He⋆ +He⋆ →

⎧⎪⎪⎨⎪⎪⎩

He +He+ + 𝑒− (PI)
He+2 + 𝑒− (AI)

(3.7)

where PI stands for Penning ionisation and AI for associative
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ionisation. In both cases the metastables are lost, and since the
detail of the mechanism is not important in experiments, we
generally call them both “two-body Penning collisions”.

In short, when twometastable atoms collide, they interact via
a complex potential that has the form[111] [111]: Leo et al. (2001), “Ultracold Colli-

sions of Metastable Helium Atoms”
2𝑆𝑡+1𝑉(𝑟) − 12 𝑖

2𝑆𝑡+1Γ(𝑟)

where 𝑟 is the internuclear separation of the atoms, 2𝑆𝑡+1𝑉(𝑟) is
the molecular potential corresponding to the 2𝑆𝑡+1Σ+𝑔/𝑢 molec-
ular state (see [112] for more information about the notation), [112]: Wikipedia, The Free Encyclopedia

(2021),Molecular term symboland 2𝑆𝑡+1Γ(𝑟) is the ionisation width. The total spin 𝑆𝑡 of the
system can either be 0, 1 or 2, and therefore three channels cor-
responding to the states 1Σ+𝑔 ,

3Σ+𝑢 and
5Σ+𝑔 must be considered.

Quantitatively, we characterise the strength of the two-body
Penning losses with the collision constant 𝛽(𝑇) depending on
the temperature, such that these losses write:

d𝑛
d𝑡 ∣𝛲𝑒𝑛𝑛𝑖𝑛𝑔

= −2 𝛽(𝑇) 𝑛2 (3.8)

it is proportional to the squared density𝑛2 as it is a two-bodypro-
cess, and there is a factor 2 because when an interaction occurs,
both atoms are lost.
We can relate 𝛽(𝑇) to the collisional cross sections calculated for
eachchannel of the above model, and averaged over the different
velocity classes for a cloud at temperature 𝑇:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛽(𝑇) = 𝛽 (1Σ ; 𝑇) + 𝛽 (3Σ ; 𝑇) + 𝛽 (5Σ ; 𝑇)
𝛽 ((2𝑆𝑡+1)Σ ; 𝑇) ≜ ⟨𝜎 [2𝑆𝑡+1Σ+𝑔/𝑢; 𝑣𝑟] 𝑣𝑟⟩𝛵

(3.9a)

(3.9b)

For temperature below ∼ 1mK, the collision is dominated by
S-wave scattering, and therefore for parity conservation reasons
we can neglect in good approximation the interaction led by the
molecular potential 3Σ+𝑢 . In addition, in order to satisfy spin
conservation1 we have 5Γ(𝑟) = 0whichmeans that at first order 1: one should notice that the outcome

of the Penning collision has a total spin
that can be either 0 or 1 (but not 2).

the 5Σ+𝑔 channel does not contribute to Penning ionisations2.

2: there is still the (smaller) magnetic
spin-dipole contribution, that plays an
important role in the case of a spin po-
larised cloud.

Finally, the typical order of magnitude of 𝛽(𝑇) is strongly de-
pendent on the type of gas that we are considering:

• for a spin “unpolarised” gas of helium, where all the spin
projections quantum numbers 𝑚𝑠 are present in equal

https://en.wikipedia.org/wiki/Molecular_term_symbol
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quantity (a MOT for example) the Penning collision cross
section is dominated by the 1Σ+𝑔 term, and

𝛽𝑢𝑛𝑝𝑜𝑙.(𝑇) ∼ 10−10 cm3 s−1 (3.10)

which is far too large to be able to prepare a BEC. Indeed
a density 𝑛𝛣𝛦𝐶 of typically 10

13 cm−3 leads to a decay time
of 1ms!

• on the contrary for a spin-polarised gas (thanks to a mag-
netic field) all the atoms have the same spin projection
quantum number (𝑚𝑠 = +1 in our magnetic trap), and
the collisions are dominated by the 5Σ+𝑔 with the magnetic
spin-dipole contribution which is much smaller. We end
up with

𝛽𝑝𝑜𝑙𝑎𝑟𝑖𝑠𝑒𝑑(𝑇) ∼ 10−14 cm3 s−1 (3.11)

whichmeans that the Penning losses are reduced by 4 or-
ders of magnitude, and the realisation of a BEC is possible.

These calculations of Penning collisions cross sections have been
performed taking into account the three channels in a quantum
formalism for both fermionic and bosonic helium[105, 111], and[105]: Cocks et al. (2019), “Ultracold

Homonuclear and Heteronuclear Colli-
sions in Metastable Helium”
[111]: Leo et al. (2001), “Ultracold Colli-
sions of Metastable Helium Atoms”

are in good agreementwith experimentalmeasurements[113, 114].

[113]: Mastwijk et al. (1998), “Optical
Collisions of Cold, Metastable Helium
Atoms”
[114]: Stas et al. (2006), “Homonuclear
Ionizing Collisions of Laser-Cooled
Metastable Helium Atoms”

We have represented the corresponding results on Figure 3.2 on
page 107.

▶ ...inelastic with an other metastable
In addition, with themodel presented in the previous paragraph,
the presence of themagnetic spin-dipole interaction in the hamil-
tonian induces a coupling with states whose total spin and spin
projection has changed. Using the space-fixed eigenstates of the
noninteracting system:

∣𝑆1, 𝑆2, 𝑆𝑡, 𝑚𝑠⟩

for a spin polarised gas, these inelastic collisions realise the trans-
formations:

∣1, 1, 2, 2⟩→
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣1, 1, 2, 1⟩ (1)
∣1, 1, 2, 0⟩ (2)
∣1, 1, 0, 0⟩ (3)

(3.12)

leading to the loss of atoms1 and indirect ionisation2.1: in cases (1) and (2) atoms are no
longer trapped by the magnetic field.

2: in case (3) the outgoing atoms feel
the channel 1Σ+𝑔 .

With the same model as before, it is again possible to have nu-
merical evaluations of the corresponding cross section (cf. Fig-
ure 3.2 on page 107). In particular we observe that below a few
millikelvins, these losses are much smaller than the Penning ion-
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ising collisions.

Three-body collisions When the density of the cloud increases (i.e.
close to condensation) we must also consider three-body ionisation
processes:

He⋆ +He⋆ +He⋆ → He⋆2

{

→He +He+ + 𝑒−

+ He⋆∣
∼mK

(3.13)

where the helium dimer in an excited state He⋆2 is a short-lived autoion-
ising state.

Just as in the two-body case, we quantitatively characterise this three-
body recombination with a collision constant 𝜚 such that:

d𝑛
d𝑡 ∣3 𝑏𝑜𝑑𝑦

= −3𝜚 𝑛3 (3.14)

in the low temperature limit, 𝜚 follows a universal law[115], only depen- [115]: Fedichev et al. (1996), “Three-Body
Recombination of Ultracold Atoms to
aWeakly Bound s Level”

dent on the scattering length 𝑎:

𝜚 ≈ 3.9 ℎ̵𝑚𝑎
4 (3.15)

Low temperature limitmeans that the collision energy𝐸mustbemuch
smaller than the binding energy 𝜖0 = ℎ̵2

𝑚𝑎2 between two atoms. In
the case of spin-polarised He⋆, we have 𝜖0 ≈ 𝑘𝛣 × 2mK. However,
when the density becomes very large (close to condensation) quantum
interference effectsmay cause deviations from the law Eq. (3.15) [116]. [116]: Esry et al. (1999), “Recombination

ofThree Atoms in the Ultracold Limit”

Numerically, with 𝑎 = 7.512 nm, Eq. (3.15) gives

𝜚 ≈ 2 ⋅ 10−28 cm6 s−1 (3.16)

which is in “fairly” good agreement with the results of an experiment
previously conducted in our group[110]: [110]: Seidelin et al. (2004), “Getting

the Elastic Scattering Length by Ob-
serving Inelastic Collisions in Ultracold
Metastable Helium Atoms”

𝜚 = 8.3+15−5 ⋅ 10−28 cm6 s−1 (3.17)

Therefore, as long as the density is not much larger that 1013 cm−3, the
three-body recombination has a minor effect.
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2 Detecting individual atoms in the
momentum space

2.1 Microchannel plate

The experiments that we operate in the lab require the counting of
individual atoms1. It is therefore crucial for us to have a single-atom1: for probing quantum interference ef-

fects, or the emission statistics of a non-
classical source.

resolved sensor at our disposal.

Figure 3.4:Cutaway drawing of aMCP.
In our case the plate is 1mm thick, the
channels diameter is𝑑 = 25 µm, and the
effective area diameter is 𝐷 = 79mm.
The bias angle of the microchannels
is 𝜃 = 20°. Image provided by Hama-
matsu Photonics ©.

Themicrochannel plate (MCP) is a device that has the ability to gen-
erate a macroscopic electric signal, out of its interaction with a single
atom. It consists in a 1mm thick ceramic slab, regularly drilled with
tilted micrometric holes (cf. Figure 3.4). The ceramic is electrically
resistive (our current MCP has a resistance of 30MΩ) and can be elec-
trically polarised thanks to a high-voltage power supply, so that a strong
electric field is present inside the channels (cf. Figure 3.5).

As we will see in Subsection 2.2.3, in our usage of the MCP atoms have
velocity normal to the plate during the detection, with good approxima-
tion. The bias angle between the channels and the vertical guarantees
that atoms hit the channels’ inner walls when they penetrate into it.
As shown in Figure 3.6 this angle 𝜃, and the diameter 𝑑 of the channels
define the longitudinal uncertainty when an atoms falls in a given tube.
In practice, it limits the resolution of the sensor concerning the arrival
times of atoms, we therefore want 𝜃 to be as close as possible to 90°.

Figure 3.5: Schematic of the electronic
cascade inside a microchannel. In the
lab we use a HAMAMATSU© MCP,
with a tension 𝑉𝐷 = 2.34 kV. A single
metastable atom typically gives rise to
104 secondary electrons at the output
side.The quantum efficiency of the pro-
cess is estimated to be close to 50%. Im-
age provided by HAMAMATSU Pho-
tonics ©.
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h

𝑑

𝜃

Figure 3.6: Schematic of a cross-
sectional view of a microchannel. The
input orifice is flared in order to increase
the open area ratio (OAR) of the chan-
nels.The tilt guarantees that the atoms
crash on the wall of the channel, h =
𝑑

tan(𝜃) is the longitudinal uncertainty
when an atom falls inside a given tube.

When a metastable atom crashes into a microchannel, there is some
probability that it will remove one or two electrons from the surface.
Because of the electric field, the emitted electrons are accelerated, and
collide again inside the channel, giving birth to more and more sec-
ondary electrons (cf. Figure 3.5). The amplification gain is typically
104, meaning that when a single metastable falls in a channel, it may
generate a cascade of 104 at the output. After the electronic discharge,
the microchannel needs some time to recover (as it has been “emptied”
of its electrons) ; in practice this is a source of saturation effect when
the atoms flux is too large (larger than a few 105 s−1 cm−2 [117, 118]).

[117]: Schellekens (2007), “TheHanbury
Brown andTwiss Effet for Cold Atoms”
[118]: Cayla (2018), “Measuring the mo-
mentum distribution of a lattice gas at
the single-atom level”

In many aspects, MCPs are similar to other electron amplifier systems
(such as photomultipliers and dynodes tubes) though with the big
difference that they provide spatial information, given that the mi-
crochannels are distributed on the whole surface of the plate.

Figure 3.7: Micrometer scale photo-
graph of the surface of standard and
“funnel” MCPs. Photograph provided
by HAMAMATSU Photonics ©.

In 2019, we changed the MCP, trading an old and deteriorated
BURLEmodel for a new generation HAMAMATSU sensor. The
latter has flared input orifices (cf. Figure 3.7). This greatly increases
the open area ratio (OAR), and therefore the quantum efficiency.
Numerically, the new model is expected to have 50% quantum effi-
ciency (better than the 25% of the previous one), and a better longi-
tudinal resolution (thanks to a bigger bias angle of the channels).

The delicate swapping operation (because the MCP is placed in a
ultra-high vacuumchamber) was one of my first jobs in the team. A
comparison of the rawcharacteristics of bothMCPs is given in Table
3.3.
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Table 3.3: Raw features comparison be-
tween the old and newMCP.The longi-
tudinal resolutionh is a theoretical value,
given by the geometry of the channels
(cf. Figure 3.6).

Feature Burle (old) Hamamatsu (new)

Model reference F1942-016F

Channel diameter 25 µm 12 µm
Bias angle 8° 20°
Longitudinal resolution 178 µm 33 µm
Open area ratio 45% 90%
Maximum dark current 0.5 pA cm−2

Estimated quantum efficiency 25% 50%

Figure 3.8: Pictures taken during the
MCP swapping. On the top view, on
the left, the MCP is removed, and the
delay lines laying beneath are visible. On
the right picture, the MCP is mounted
(black disc) and connected to high volt-
ages copper wires. Everything shall be
placed in high vacuum chamber (the
large copper seal is visible below), and
the wires are connected to the external
high-voltage power supply via a vacuum
feedthrough flange (hole in the middle).

2.2 Generation of 3D data: delay lines,
electronics & software

2.2.1 Delay lines & electronics

Principle We are actually using two MCPs, stacked in a chevron
pattern (v-shape). This increases the gain quadratically (final gain is
𝐺 = 108), without damaging the plates (the 2𝜃 angle between the
channels of the two plates greatly reduces the feedback of cations).

A metastable atom therefore creates a shower of 108 electrons, that
itself excites two copper delay lines wrapped around orthogonal axes,
𝑥 and 𝑦 (cf. Figure 3.9). The excitations propagate through the lines
and are collected by time-tagger devices placed at the end. We name
them“𝑋1”, “𝑋2”, “𝑌1” and “𝑌2”, depending on the line and propagation

Remark 3.2 Out of the delay lines,
the pulses have negative polarity.

direction. Thanks to the wrapping of the lines, the effective velocity 𝑣⟂
of the excitations along the 𝑥 and 𝑦 axis is the velocity of the signal in
the copper line (∼ 𝑐/3) divided by the number of loops𝑁 (100 in our
case).

𝑣⟂ ≈
𝑐
3𝑁 (3.18)

But in practice, due to small length differences between the two lines,
𝑣⟂ does not have the exact same value in the 𝑥 and 𝑦 directions. The
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Figure 3.9: [Taken and modified from
[60]].When ametastable hits the𝛭𝐶𝛲,
it might create a rain of 108 electrons
onto the delay lines standing beneath.
These excitations propagates along the
lines and are tagged by a time-to-digital
converter (TDC).

delay lines assembly, and the electronics for the detection is provided
by ROENTDEK©, and the effective signal velocities are tabulated in
the datasheet:

𝑉

threshold

𝑡1𝑡2 𝑡

Figure 3.10: Illustration of the fact that
a simple threshold trigged TDC does
not work when the gain is noisy. Here
the two pulses are the same, up to a mul-
tiplicative constant, but 𝑡1 < 𝑡2.

𝐴in(𝑡)

𝐴in(𝑡)

−𝑓𝑐 𝐴in(𝑡 − 𝜏)

𝐴b(𝑡)

Figure 3.11: Principle of the CFD.The
input signal is split in two, and one of
the two partite is damped by a 𝑓𝑐 fac-
tor, and delayed. After recombination,
the resulting bipolar signal𝛢b has a zero
(red point) whose position corresponds
to a given fraction of the input signal.

⎧⎪⎪⎨⎪⎪⎩

𝑣𝑥⟂ = 1.02mmns−1

𝑣𝑦⟂ = 1.13mmns−1
(3.19a)
(3.19b)

Now it is possible to deduce the date and position of the impact of a
metastable atom, thanks to the quadruplet of time-tags (𝑡𝛸1 , 𝑡𝛸2 , 𝑡𝑌1 , 𝑡𝑌2)
collected at the end of the lines:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥 = 𝑣
𝑥
⟂
2 (𝑡𝛸1 − 𝑡𝛸2)

𝑦 = 𝑣
𝑦
⟂
2 (𝑡𝑌1 − 𝑡𝑌2)

𝑡 = 12(𝑡𝛸1 + 𝑡𝛸2)

𝑡 = 12(𝑡𝑌1 + 𝑡𝑌2)

(3.20a)

(3.20b)

(3.20c)

(3.20d)

Remark 3.3 In Eq. (3.20c) and (3.20d), we have neglected a propa-

gation time 𝐿
𝑐/3 ≈ 80 ns (the “diameter of the MCP” in time units)

because it is much smaller than the time resolution induced by the
bias angle of the microchannels (cf. Figure 3.6). As we will shortly
see, the typical velocity of the atoms during the impact is 𝑣 ≈ 3m s−1.
The time resolution is therefore 𝜎𝑡 = 𝑑

𝑣 tan(𝜃) ≈ 10 µs ≫ 80 ns.
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Figure 3.12: Block diagram of the elec-
tronic chain used for the detection, and
the conversion from analog (red) to digi-
tal (blue). Out of the delay lines, the sig-
nal only has an amplitude of a few milli-
volts: it is first amplified with a high-pass
filter pre-amplifier (𝐺 = 80). It is then
converted into a NIM by the CFD, be-
fore being digitised and sent to the PC
by the TDC.

Delay line Pre-amp. CFD TDC PC

Binary file

∼mV

𝑋1
𝑋2
𝑌1
𝑌2

⎧

⎨
⎩

𝑡𝛸1
𝑡𝛸2
𝑡𝑌1
𝑡𝑌2

⎧

⎨
⎩

∼ 100mV

NIM

MCPs are very low noise detectors, but the amplification gain when an
atom is detected is itself very noisy... The electronic pulses detected in
the delay lines have roughly10 nswidth, butwith an amplitude that can
change a lot shot-to-shot (roughly up to one order of magnitude). It is
however a good approximation to consider that the pulses generated by
an atomic discharge always have the same shape (they are homothetic).
Therefore, the usual way to time-tag the pulses coming out from an
MCP is to use a constant fraction discriminator (CFD), that will return
a time independently of the amplitude of the bump. The main idea of
CFDs is as follows:

Definition 6 (NIM signal) A NIM
signal is a digital signal following
the definition:

▶ when the signal voltage is be-
tween −0.8V and −1V, it is a
logical ”1”.

▶ when the signal voltage is 0V, it
is a logical ”0”.

NIM is an acronym for Nuclear In-
strument Modules since it has been
invented for this kind of experiment.

After a first pre-amplification stage, we apply the transformation

𝐴b = 𝐴in(𝑡) − 𝑓𝑐 𝐴in(𝑡 − 𝜏) (3.21)

where𝐴in is an analog pulse (in our case an electronic pulse collected in
the delay lines), 𝑓𝑐 ∈ [0, 1] is a number and 𝜏 a delay time of the same
order of magnitude than the width of the pulse. Due to the delay, if
the shape of the pulse is not “pathological”,𝐴b has a zero whose time
position is independent of the amplitude of𝐴in (cf. Figure 3.11).

This zero is used as a reference time to generate a digital NIM signal (cf.
Definition 6). Afterwards, the falling edge of the NIM constitutes a
convenient reference to tag and digitise the time of the incoming pulse.
The functional electronic pre-treatment of the signal is summarised in
Figure 3.12.

Remark 3.4 (TDC hardware) Our TDC device is the TDC-V4
developped by the Plateforme Détection: Temps, Position, Image
(DTPI) of the Fédération Lumière-Matière (LUMAT) at the Univer-
sité Paris-Sud. It consists in a PCI card plugged into the experiment
computer, and it is connected to a 19” rackable interface (IsiBox)
that ensures the BNC connections to the MCP output channels𝑋1,
𝑋2, 𝑌1 and 𝑌2.
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It is clocked at 𝛿𝑡 = 120 ps, which ismuch smaller than the resolution
limitation induced by the MCP.

The software interface is ensured by a C++ library provided by the
LUMAT-DTPI (which is quite problematic as it imposes a complex
C++ layer in our otherwise pythonic workflow...).

Technology changes In 2019, we effected major changes in the
electronics1

1: before, we were using an older gener-
ation of ROENTDEK© electronics for
the detection, coupled with an home-
made high-voltage power supply unit
(PSU).

, at the same time as we changed the MCP. We installed a
new ROENTDEK© system, including:

the high-voltage power supply (THQ by Iseg) ;
▶▶ a high-voltage splitter (Zener diode based circuit) that dis-

tributes the tension among the twoMCPs and the delay lines ;
▶ the pre-amplifier module ;
▶ the CFDmodule ;

The installation and characterisation of the new electronics was an
important aspect of the beginning of my PhD.The new pre-amplifier
and CFD offer the possibility to set specific settings (six parameters) to
each of the four channels:

1. the gain,𝐺– is adjustable from10 to902. It is set in order tohave 2: defined in amplitude, for a 10MHz
input sinusoidal signal, and measured
with an oscilloscope with a 50Ω input
impedance.

pulses whose amplitudematches theCFD recommended specifi-
cations (from −10mV to −3V). Experimentally we adjust it so
as to have the same average value of the pulses’ amplitude at each
channel. These mean values are extracted from the histograms of
the pulses amplitude, obtained with an oscilloscope in binning
mode (cf. Figure 3.13). In practice, the four gains are set to the
same value: 𝐺 = 80. There is also a frequency dependence of
the gain (see Appendix B for more details).

2. the threshold – even if a CFD is used, a threshold must be set
to remove most of the noise fluctuations, and define from how
much voltage a pulse may be considered to be due to an atom.
This setting is both crucial and delicate: since there is no clear
separation between the noise and the signal (cf. Figure 3.13) we
want it to be slightly in the noise, so as to almost never loose the
atoms. The excess pulses coming from the noise are removed
in the later stage of reconstruction, performed by an algorithm.
However, if the threshold is too close to 0V, too much noise is
sampled by the CFD and the reconstruction algorithm quickly
collapses (actually the CFD itself might also saturate). The cur-
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rent settings (date: 30/06/2022) are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑋𝑡ℎ.1 = −30mV

𝑋𝑡ℎ.2 = −25mV

𝑌𝑡ℎ.1 = −17mV

𝑌𝑡ℎ.2 = −15mV

3. the fraction 𝑓𝑐 – affects the shape of the bipolar pulse 𝐴𝑏. The
technology allows the values [0.14, 0.35, 0.57, 0.8, 1]. This set-
ting is rather empirical and we let it to the default value 0.35,
which is well adapted for near-gaussian input signals ;

4. the delay 𝜏 – also has an effect on 𝐴𝑏 (which is obviously not
independent of the fraction 𝑓𝑐). It is experimentally set with an
extra propagation in a short additional LEMO cable. In order
to have a fine shape for the bipolar signal (zero-crossing with a
big slope), we have a “thumb rule”:

𝜏 ≈ 𝑇rising(1 − 𝑓𝑐) (3.22)

where 𝑇rising is the typical 10% to 90% rising time. In our case:

⎧⎪⎪⎨⎪⎪⎩

𝑇rising ≈ 10 ns
𝜏 = 4 ns

5. the walk level 𝑍 – actually the output NIM is generated when
the logical product .AND. between two logical signals 𝐿1 and
𝐿2 is true:

▶ 𝐿1 is truewhen the (pre-amplified) input signal𝐴in over-
takes the threshold. It is false otherwise ;

▶ 𝐿2 is true when the bipolar signal 𝐴b is above the walk
level 𝑍, and false otherwise ;

with this trick, we ensure that a NIM is generated only when
the pulse’s amplitude is large enough to potentially be due to
an atom, AND (logical) when the bipolar pulse crosses the zero
(independent of the amplitude). In practice, 𝑍must be set to
the baseline of𝐴b (which presents no difficulty to do) ;

6. the width 𝑤 – of the output NIM signal. It acts as a deadtime
for the electronics. If it is too large some events might be lost. In
order to avoid any false-positive event (e.g. very short-time elec-
tronic ripples) we set it to 20 ns, which is roughly the duration
of an input pulse ;
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Figure 3.13: Pulses amplitude his-
tograms (after pre-aplification). Side by
side plots share a same grid axis. 𝐺 is
the pre-amplification gain of the chan-
nel. A sample of 1000 pulses is used for
each plot: acquired with an oscilloscope
binning the minimum voltage read in a
50 ns large window, trigged in normal
mode, with a threshold of a few mil-
livolts. We identify a contribution of
the noise (in red) with small amplitude
pulses, and a contribution of the signal
(in green)with amplitudes ranging up to
approximately 0.6V. There is no sharp
separation between the noise and the sig-
nal.

It is interesting to have an individual control of these parameters for
each of the four channels because of their behaviour is not symmet-
ric. The coupling between the delay lines and the MCP is not linear,
and very sensitive to the inhomogeneities encountered along the lines:
that is why the pulses’ amplitude distribution (Figure 3.13) exhibits
differences between the channels.

As we mentioned previously, these histograms are useful to have a first
insight of where to put the threshold: slightly in the noise, with the pur-
pose of keeping all the atoms in the digitised signal. In fact, it appears
that the performances of our detection system are strongly dependent
on the values of the thresholds. Aiming to maximise the homogeneity
of the detectivity, and the overall quality of the reconstructed signal, we
experimented new techniques to have a fine adjustment of the thresh-
olds.

Definition 7 (TDC event) We call
“event” a digitised NIM pulse, col-
lected and time-tagged by the TDC.
It is not necessarily due to an atom,
as it could also have been induced
by an above-threshold noise fluctu-
ation.

Number of events per channel When the experiment is run-
ning, we have the possibility to print the number of events𝑁ev(𝑍𝑖) for
eachchannel 𝑍𝑖 ∈ {𝑋1, 𝑋2, 𝑌1, 𝑌2} and the number of reconstructed
atom𝑁at (more details about the reconstruction are given in the next
subsection) in live, at each run.

We can define the reconstruction rate for eachchannel:

𝜌(𝑍𝑖) =
𝑁at

𝑁ev(𝑍𝑖)
∈ [0, 1] (3.23)

If we increase the threshold, the number of events decreases, and the
reconstruction rate increases, because the events are more likely to be
due to atoms. Assuming that the number of events should be approxi-
mately the same for eachchannel, we adjust the threshold so as to have
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the same reconstruction rate everywhere. Wechose the value 𝜌 = 90%,
because we empirically know that in this regime the reconstruction
algorithm removes the noise efficiently, and produces faithful data.

Events self-correlation in time A common issue that we face
when working with MCPs and delay lines is the so-called “pulse re-
bounds” problem. Indeed, because of impedance mismatching, when
a pulses reaches the edge of a delay line, some fraction of its energy is
reflected backwards. It is then reflected again on the other side of the
line, and eventually detected a second time on the initial side. It is also
possible to generate pulse rebounds in the middle of the line, induced
by impedance inhomogeneities.

As a result, when a pulse is observed at the end of a line, we often see
short-time “aftershocks” with smaller amplitudes. When the rebounds
occur on the edges of the lines, we expect them to be separated by twice
the time-length of the lines: 2 × 80 ns = 160 ns. It is also the role of
the thresholds to remove most of those rebounds.

2.2.2 Reconstruction algorithm

The passage from digitised event timestamps to atoms momenta
coordinates obviously involves an important software processing.
This reconstruction stage is performed in real time by a C++ code
run at the end of each experimental cycle. It is also the program
that interfaces the TDCwith the computer, loading its driver and
parametrising the acquisition options. We shall describe the outlines
of how this process works in the current subsection.

Generation of raw data First, the driver of the TDC is loaded,
such that it will wait the trigger signals tostart andstop the time-tagging
of the NIM pulses it receives. These triggers are TTLs generated by the
experiment’s sequencer (connected to the IsiBox rack via two LEMO
cables), they define an adjustable time range of typically 600ms, during
which we expect the metastable atoms to fall onto the MCP.

The data produced by the TDC are directly loaded into the computer’s
memory1, they take the form of 32 bits words, eventually stored in1: the flow of data is ensured by an on-

chip buffer memory with a size of 509
32 bits words.

a C++ <vector> structure (cf. blue column in Figure 3.14). There
are two types of words: encoding words that carry an event time, and
service words that are used to fulfill communication operations between
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Figure 3.14: Diagrammatic represen-
tation of the reconstruction algorithm.
The computer receives a large vector (in
blue) of 32 bits words from the TDC.
Most of them are encoding words (�̃�𝑖(𝑗)
words on the diagram), but there also
are service words (framed words) used
to stabilise the interfacing between the
hardware and the software, and extend
the limited range of encoding words
with 26 bits (thanks to the REXTword).
The first step is the DEMUXING, where
the different encoding words are sorted
by channel label (in orange), in sepa-
rate vectors.Their timestamps 𝑧𝑖(𝑗) are
also corrected, taking into account the
REXTwords. Finally we proceed to the
SEARCHING stage, in bulbs where the
maximal distance between two events is
given by the MCP diameter 𝛵𝐷.

hardware and software. The bitset of each word is divided into two
parts:

▶ the first 6 bits are a LABEL field. It indicates thechannel number
(if the word is an encoding word) or the nature of the function
realised by a service word ;

▶ the last 26 bits are the DATA field. For encoding words, it con-
tains the timestamp, expressed in discrete time step units1. In the 1: in our case a time step is 𝛿𝑡 = 120 ps.
case of a service word, it may give some additional information,
useful for its function ;

Demuxing Onemay notice that the time range accessible with a 26
bits long word (𝑇max) is finite. Its value is simply given by:

𝑇max = 226 × 𝛿𝑡®
120 ps

≈ 8ms (3.24)

𝑇max is in particular much smaller than the typical acquisition time
of an experiment (few hundreds of milliseconds). To overcome this
problem, the range extension (REXT) service word is used: when a time
overflow is about to occur2 the TDC generates a REXTword, and resets 2: after 7.8ms, so as to keep a 0.2ms

margin and prevent any overflow.the clock to zero. When the reconstruction algorithm reads the TDC
raw data vector, it keeps track of the generated REXTwords so as to add
the correct amount ofmissing time to the timestamps. This trick allows
to extend the accessible time range indefinitely. We perform this time
correction, as well as the encoding words sorting by channel numbers,
in a first main stage that we call “demuxing”. For security and long
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term reproducibility, we also save at this moment the TDC raw data
vector, and the four demuxedchannels vectors (cf. Figure 3.14).

Atoms searching and filtering The last step is the very core of
the algorithm, the aim is to find “time correlated” events quadruplets.
That means that we are looking for four events –each one on a separate
channel– whose time differences are compatible with the hypothesis
that a metastable atom created them via the relations Eq. (3.20). To do
this, we apply successive filtering criteria:

▶ we know that the diameter of the MCP is 𝑇𝐷 = 80 ns, therefore
two events cannot be separated by more than 𝑇𝐷. The search is
performed by looping over𝑋1 events, and looking for the other
three in a bulb with 𝑇𝐷 time radius (purple diagonal lines in
Figure 3.14) ;

▶ an atommust fall inside the disc defined by the MCP shape:

∣𝑡𝛸1 − 𝑡𝛸2 ∣
2 + ∣𝑡𝑌1 − 𝑡𝑌2 ∣

2 ≤ 𝑇2𝐷 (3.25)

if a quadruplet candidate is found at the previous step, wecheck
the condition Eq. (3.25), if it is not fulfilled we reject it ;

▶ by construction, (3.20c) − (3.20d) gives:

𝑆 ≜ (𝑡𝛸1 + 𝑡𝛸2) − (𝑡𝑌1 + 𝑡𝑌2) = 0 (3.26)

actually Eq. (3.26) is not true: geometrical constraints imply
that the 𝑆 quantity –that we call offset– is not zero everywhere.
It has small spatial variation, depending on the location of the
impact, but these variations are bounded and stable (they only
depend on the winding of the delay lines and the electronics).
We use an upper bound of the 𝑆 values as an additional filtering
criterion:

∣𝑆∣ ≤ 𝑆max = 10 ns (3.27)

it is a coarse sieve, and the value of 10 ns has been chosen after a
specific study of the offset map.

▶ we use as a last filtering step a finer version of the previous filter-
ing, wherewe compare the offset value of a candidate quadruplet
to a reference value of the offset for this specific location. With
(𝑥, 𝑦) the impact coordinate associated with a quadruplet, we
check the condition:

∣𝑆(𝑥, 𝑦) − 𝑆ref∣ ≤ Δ𝑆max = 5 𝛿𝑡 = 0.6 ns (3.28)
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This final sieve is muchmore selective, and guarantees the keep-
ing of faithful data, but it also requires a reference offset map,
previously acquired, averaging a large amount of data (and with-
out this final filtering stage). The threshold value of 5 time steps
has beenchosen after a specificstudy Imade in 2019, more details
are given in Appendix B.

2.2.3 From timestamps to velocities
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Figure 3.15: Schematic of the far field
regime detection with anMCP.The typ-
ical size of the cloud is givenby thewaists
of the laser beams trapping it (cf. Sub-
section 3.2.4). When the trap is released,
atoms are transferred in𝑚𝐽 = 0 with a
Raman transition and then perform a
free fall whose trajectory is dependent
on their initial velocity 𝑣𝑖 = 𝑝𝑖/𝑚.

At this stage, Equation 3.20 on page 115, allows to calculate an impact
time 𝑡, and (𝑥, 𝑦) in-MCP plane coordinates. However, it has already
been said several times since the introduction of this manuscript that
the observable that we need to probe is themomentum of the atoms.
We need a last set of relations, that transcript the (𝑥, 𝑦, 𝑡) “MCP coordi-
nates” into (𝑝𝑥, 𝑝𝑦, 𝑝𝑧)momentum coordinates. With that in mind, it
is interesting to notice that the distance 𝐿 separating the trapped cloud
from the detector (∼ 45 cm) is very large compared to the typical size
of the cloud (∼ 100 µm): we often say that the MCP is performing
a detection in the far field regime. When the trap is released, atoms
realise a free fall1

1: to be perfectly rigorous, as it will be
explained in details in Subsection 2.1.2
ofChapter 4, they also receive a kickdur-
ing a Raman transfer from the magnetic
sublevel𝑚𝐽 = 1 to𝑚𝐽 = 0. By the way,
this transfer is very much required as it
guarantees that the atoms do not feel the
residual magnetic field, and indeed per-
form a “genuine” free fall.

, whose final impact point is known thanks to the
MCPmeasurement, and we can take (with very good approximation)
the centre of the trap cloud as the emission point. Knowing these two
points, simple classical mechanics gives the unique initial velocity that
link them via a free fall whose durationΔ𝑡 is known (cf. Figure 3.15 on
the side). In practice we take the trap shutdown as the time reference
such that Δ𝑡 = 𝑡. Setting the origin in the middle of the MCP plane,
we have:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑝𝑥 = 𝑚
𝑥
𝑡

𝑝𝑦 = 𝑚
𝑦
𝑡

𝑝𝑧 = 𝑚 (
1
2 𝑔𝑡 −

𝐿
𝑡 )

(3.29a)

(3.29b)

(3.29c)

Regarding Eq. (3.29), it is important to notice that 𝑥 and 𝑦 give the
information about momenta in the horizontal (or transverse) plane,
whilst the arrival time 𝑡 provides a measurement of the vertical (or
longitudinal) velocity. This point is crucial, because it means that the
resolution of the detection in the horizontal and vertical directions are
not necessarily the same.
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2.2.4 A word about the resolution

We already discussed in Subsection 2.1 the question of the longitudinal
resolution: Figure 3.6 shows in particular that it is constrained by the
geometry of the microchannels. As we will see in Chapter 5, our source
expels pairs of correlated atoms with momenta (mainly) along the
long axis of the BEC: it means that in the current configuration of
the experiment where the BEC is elongated along the vertical, the
longitudinal resolution is the most important element for probing
quantum correlations.

It is also obviously important to have the knowledge of the transverse
resolution. In space units, we denote them 𝜎𝑥 and 𝜎𝑦, with respect to
the delay lines directions. With Eq. (3.20), with a statistical definition
of the resolution, and denoting 𝜎𝑡 the time resolution we have:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜎𝑥 =
𝑣𝑥⟂
2
√
𝜎2𝑡𝛸1 + 𝜎

2
𝑡𝛸2
= 𝑣

𝑥
⟂√
2
𝜎𝑡

𝜎𝑦 =
𝑣𝑦⟂
2
√
𝜎2𝑡𝑌1 + 𝜎

2
𝑡𝑌2
= 𝑣

𝑦
⟂√
2
𝜎𝑡

(3.30a)

(3.30b)

where we assume the time resolution to be independent of the channel
(it is a simple model that ignores subtle electronic effects that may
differentiate between the various behaviours of the channels). Then,
the definition (red box) Eq. (3.26) gives:

𝜎𝑆 =
√
𝜎2𝑡𝛸1 + 𝜎

2
𝑡𝛸2
+ 𝜎2𝑡𝑌1 + 𝜎

2
𝑡𝑌2
= 2𝜎𝑡 (3.31)

we therefore have a relation between the transverse resolution, and the
standard deviation of the offset values:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜎𝑥 =
𝑣𝑥⟂
2
√
2
𝜎𝑆

𝜎𝑦 =
𝑣𝑦⟂
2
√
2
𝜎𝑆

(3.32a)

(3.32b)

these relations are very useful, as it means that the standard deviation
of the offset map, is a picture of the transverse resolution: we obviously
call it “resolution map”.
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2.2.5 Comparison between performances

The resolution map is one the two major features that provide quan-
titative information about the performances of the detection system.
The other one is the so-called detectivity map that characterises the
homogeneity of the detection. It is the normalised number of atoms
detected on a given location of the MCP, when we “shine” it with
an homogeneous flux of atoms1. Since it is not possible in practice to 1: usually a hot cloud coming from a

magneto-optical trap (MOT).have a precise value of the total number of atoms incoming onto the
MCP2, it is only a relative quantity, and not a map of the quantum 2: even if we have an additional fluo-

rescence imaging detetector, it does not
evualate precisely the number of atoms
in the MOT cloud, and moreover due
to the high temperature many atoms of
the cloud do not fall onto the MCP...

efficiency.

I acquired these data in 2019, before and after changing the system, in
identical experimental situations, and the results are plotted in Figure
3.16. We can be satisfied by the gain of homogeneity of the detectivity,
and a resolution roughly 3 times better.

Ifwe compare the transverse resolution𝜎𝑥/𝑦with the theoretical longitu-
dinal resolution h (cf. Figure 3.6 andTable 3.3), with the approximation
𝑣𝑥⟂ ≈ 𝑣

𝑦
⟂ ≈ 1 µm/ps, we get:

{
𝜎𝑥/𝑦 ≈ 50 µm

h = 𝜎𝑧 ≈ 33 µm
(3.33a)

(3.33b)

These numbers come out from modelling approaches, and are not
direct measurements of the resolution. This can also be done, thanks
to an Hanbury Brown and Twiss (HBT) experiment, when probing
correlation lengths smaller than the resolution[119, 120]. [119]: Gomes et al. (2006), “Theory for

a Hanbury Brown Twiss Experiment
with a Ballistically Expanding Cloud of
Cold Atoms”
[120]: Schellekens et al. (2005), “Han-
bury Brown Twiss Effect for Ultracold
QuantumGases”

Remark 3.5 (Orientation of the optical setup) Regarding the values
given in Eq. (3.33), there is no wide difference between the transverse
resolution and the longitudinal resolution. This was however not
always the case: Figure 3.16 and Table 3.3 show that in the old setup
the longitudinal resolution was about 180 µm, and the transverse
one was in the range of 300 µm. At the time, there was a significant
advantage into having the BEC elongated along the 𝑧 axis, and there-
fore emitting the atomic pairs along the direction towards which the
resolution is the best.

The major drawback of the configuration (that has been kept for
legacy reasons) is the presence of an intense vertical laser beam, hitting
right in themiddle of the detector: this canbe a problem (cf. Chapter
4). Now, with our new electronic setup, the resolution should not
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Figure 3.16: Comparison of the gain (on the left) and resolution 𝜎𝑆
2
√
2
(on the right) maps between the old (on top) and new (on

the bottom) detection system. Data have been collected in may 2019, by making hot MOT fall onto the MCP.The total number
of atoms at each run is kept small in order to avoid any saturation (in practice the collimation of the atomic beam with the
transverse molasses has been switched off).The averaging is made over 14 000 files, and the statistics per pixel is roughly 200 shots.
The detectivity is normalised with the total number of atoms detected.The resolution is given in time steps units 𝛿𝑡 = 120 ps.
Qualitatively, we observe that the detectivity is muchmore homogeneous, and the resolution is finer with the new electronics
(the colour maps have the same scaling). Quantitatively, we can compute means and standard deviation inside a central disc (red
dotted line) with 50 ns of diameter, which is the main region of interest in our experiments:

Detectivity fluctuations Resolution (mean and standard deviation)

Old 33% 2.22 𝛿𝑡 (16%)

New 16% 0.41 𝛿𝑡 (17%)
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be a topic of concern anymore, and we could consider to redesign
the apparatus, such that the atomic pairs would be emitted in the
horizontal plane, and no laser beam would touch the MCP’s surface
(cf. Remark 4.3).

3 Cooling of the metastable helium
cloud: down to the BEC

3.1 Source of metastable helium

The 23𝑆1 state of helium cannot be prepared with a laser excitation
(due to its very large energy). Instead, we produce it chaotically, during
an electronic discharge that generates a plasma containing all kinds of
excited and ionised states[121]. This procedure is extremely inefficient [121]: Lu et al. (2001), “A Bright

Metastable Atom Source at 80 K”(less than one atom out of ten thousand is excited in the metastable
state) yet effectively very bright considering the typical number of atoms
loaded in a cold cloud (∼ 109). A schematic description of the source
is given in Figure 3.18. The plasma is ejected at a discharge cap placed
at the end of a narrow capillary tube (250 µm of diameter and 1 cm
long). This reduces the width Δ𝑣𝑠 of the velocity distribution of the
plasma of atoms. Indeed, the mean free path 𝜆0 of an atom is related
to the helium collisional cross section 𝜎 and the density 𝑛 [122, 123]: [122]: Kaiser (1990), “Manipulation par

laser d’hélium métastable: effet Hanle
mécanique, refroidissement sous le recul
d’un photon”
[123]: Labeyrie (1998), “Deux outils pour
l’optique atomique : jet intense d’hélium
métastable et miroir à onde évanescente
exaltée”

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜎 ≈ 37Å2

𝜆0 =
1√
2𝑛𝜎

(3.34a)

(3.34b)

and the supersonic jet theory gives the mean �̄�𝑠 and RMS widthΔ𝑣𝑠 of
the velocity distribution:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�̄�𝑠 =
√

2𝛾
𝛾 − 1

𝑘𝛣𝑇
𝑀

Δ𝑣𝑠 =
√

4
𝛾 − 1

𝑘𝛣𝑇
𝑀 𝐾𝑛

(3.35a)

(3.35b)

1 2

vs (km/s)

0.0

2.5

5.0

Lmin (m)

Figure 3.17: Minimal Zeeman slower
length for helium, as a function of atoms
velocity

where 𝛾 is the heat capacity ratio, which is 53 for a monoatomic gas
such as helium, and𝐾𝑛 is the Knudsen number which depends on the
diameter𝐷 of the capillary:

𝐾𝑛 =
𝜆0
𝐷 (3.36)
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Figure 3.18: Representation of the he-
lium plasma source. Figure extracted
from [60]. Helium is injected from an
insulating glass tube into a boron ni-
tride nozzle (good thermal conductor
and electric insulator).Theplasma is pro-
duced in the nozzle thanks to a metallic
needle (P) that plays the role of a cath-
ode. 𝑅 = 150 kΩ, and the plasma resis-
tance is estimated at 37 kΩ. The plasma
is ejected from the nozzle at a discharge
cap (C), and crosses a skimmer (S) that
acts as an anode. Discharge heat is dissi-
pated with a copper bloc cooled down
with liquid nitrogen.

Without liquid nitrogen cooling, the typical discharge temperature
of 650Kwould lead to an average velocity of 2600ms−1. Thanks to
cooling, the typical speed is reduced to �̄�𝑠 ≈ 1200ms−1 out of the
discharge cap. This allows for a Zeeman slower with a reasonable length
(cf. Table 5.1 and Figure 3.17).

After the skimmer, the atomic jet flux is estimated to 1012 s−1mm−2

with a divergence of 40mrad [124].[124]: Browaeys (2000), “Piegeage mag-
netique d’un gaz d’heliummetastable :
vers la condensation de Bose-Einstein”

3.2 Cooling procedure

Once the metastables atoms are generated, the cooling of the gas is
operated throughmanystages. A general description of the apparatus is
provided in Figure 3.19. The cloud is successively loaded and transferred
into three types of traps in the science chamber:

▶ a magneto-optical trap (MOT) ;
▶ a biased magnetic trap (MT) ;
▶ an optical dipole trap (ODT) ;

In the following, we will briefly run through these processes. We also
recall some numbers in Table 5.1.
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Physical quantity Notation Numerical Value

Absorption cross section 𝜎 = 3𝜆
2

2𝜋 5.604 ⋅ 10−13m2

Saturation intensity 𝐼𝑠 =
𝜋ℎ𝑐Γ
3𝜆3

0.167mWcm−2

Maximum deceleration 𝑎𝑚𝑎𝑥 =
Γ
2
ℎ̵𝑘𝑟𝑒𝑐
𝑚 4.69 ⋅ 105m s−2

Effective plasma temperature 𝑇discharge ≈ 140K
Atomic jet velocity 𝑣discharge ≈ 1200m s−1

Minimum stopping length 𝐿𝑚𝑖𝑛 =
𝑣2discharge

2𝑎𝑚𝑎𝑥
1.5m

Table 3.4: Slowing and trapping charac-
teristics of metastable helium, with the
23𝛲2 → 23𝑆1 transition.
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Pompes à diffusion

F
ig

.
2.

2
–

S
ch

ém
a

d
u

m
o
n
ta

ge
ex

p
ér

im
en

ta
l.

L
es

d
ir
ec

ti
o
n
s

d
es

p
ri

n
ci

pa
u
x

fa
is

ce
a
u
x

la
se

r
u
ti
li
sé
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Figure 3.19: Schematic of the experiment apparatus (extracted and modified from [125]).The atomic source is on the very left,
and the science chamber is the thick black ring on the very right. The MCP chamber lays below the science chamber (both
chambers can be insulated from each other with a manual vacuum valve placed between the two).The different laser beams are
also represented, with a given colour for eachwavelength. Helium is injected on the left, in a firstchamber cooled with liquid
nitrogen, and where the plasma is formed. The resulting atomic beam is collimated with a transverse optical molasses (TM)
of resonant light, before being slowed down across the Zeeman slower (ZS). A 3DMOT cloud is then loaded in the science
chamber, thanks to three retro-reflectedMOT beams. We also have an additional resonant laser beam along the 𝑦 axis in the
science chamber to perform atom pumping and a 1D doppler cooling (PD). Finally the cloud can be loaded in a crossed optical
dipole trap (vertical: vODT, and horizontal along the 𝑥 axis: hODT) in which we can perform evaporative cooling.The two laser
beams LattT (lattice top) and LattB (lattice bottom) are used for generating pairs of atoms with correlated momenta.The source
part (before the Zeeman slower) can be insulated from the “high-vacuum” part (after the Zeeman slower) thanks to two manual
vacuum valves placed before the Zeeman slower (black handles on the drawing). A Faraday cup is also installed between the large
and the small Zeeman slowers, to measure the atomic flux out of the source.
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3.2.1 Transverse optical molasses and Zeeman slower

0.0 1.0 2.3

x (m)

−300

0

250

500

B (G)

theoretical

measurement

Figure 3.20:Measurement of the mag-
netic field along the Zeeman solenoid
[124]. The theoretical is given in Eq.
(3.37), without fitting adjustment.

Without collimation, the clipping of the atomic jet across the 4m long
Zeeman solenoid (cf. Figure 3.19) would reduce the flux in the science
chamber down to 107 s−1mm−2. The transverse molasses consists in
two pairs of retro-reflected elliptical beams, red-detuned by 1.8Γwith
respect to the 23𝑆1 → 23𝑃2 transition. The major axis of the ellipses
is along the atomic jet, so as to have a long interaction time. This
reduces the transverse (ie. in the 𝑥𝑧-plane) velocity of the atoms a lot,
and increases the flux in the science chamber. The number of atoms
incoming in the science chamber per time unit has been measured in
[124] to be around 1011 s−1.

Table 3.5:Characteristics of the Zeeman
and transverse molasses beams

Transverse molasses

Horizontal waist 59mm
Vertical waist 11mm
Aspect ratio 5.4
Power per beam 100mW
Peak intensity 59 𝛪𝑠
Detuning −2.94MHz

Zeeman beam

Power 62mW
Detuning −394MHz

In order to be able to trap the atoms, longitudinal velocity also needs
to be reduced. This is the role of the Zeeman slower, where the atoms
interact with a counter-propagating beam, and the Doppler effect in-
duced by the slowing is compensated by a spatially varying magnetic
field, so as to keep the interaction resonance all the way along the tube.
The maximum deceleration 𝑎𝑚𝑎𝑥 is an intrinsic property of the tran-
sition and is roughly equal to 50 000𝑔1 (cf. Table 5.1). This Zeeman

1: let us recall for comparison that the
human g-LOC occurs at about 5𝑔...

slower has been designed to apply a deceleration of 66% of 𝑎𝑚𝑎𝑥 [123],

[123]: Labeyrie (1998), “Deux outils pour
l’optique atomique : jet intense d’hélium
métastable et miroir à onde évanescente
exaltée”

and is therefore slightly longer than 𝐿𝑚𝑖𝑛 the minimal stopping length
(cf. Table 5.1). The laser light is red-detuned byΔ𝜈𝑧 ≈ 400MHz so as
not to interact with the atoms trapped in the science chamber: this is
possible with the small Zeeman slower2 that generates a magnetic field

2: 40 cm long

of opposite direction such that the atoms reach the science chamber
with smaller speed (∼ 70m s−1) while being resonant with the far red-
detuned Zeeman laser beam. The small Zeeman solenoid is shut down
during the following𝑀𝑂𝑇 loading step, in order to avoid its parasitic
magnetic field. The theoretical spacial profile of the field –required to
perform the Zeeman slowing– takes the form:

𝐵(𝑦) = −Δ𝜈𝑧μ𝛣
+ 𝑣𝑠
𝜆 μ𝛣

√
1 − 𝑦𝐿 (3.37)

where 𝐿 ≈ 2.3m is the solenoid length and

μ𝛣 ≜
μ𝛣
ℎ ≈ 1.4MHzG−1 (3.38)

is the Bohr magneton in Planck constant units. Measurements of this
magnetic field has been made in the past, an example is given in Figure
3.20.
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3.2.2 Magneto-optical trap & optical molasses

First realised 35 years ago [126], the theory of the magneto-optical trap [126]: Raab et al. (1987), “Trapping of
Neutral Sodium Atoms with Radiation
Pressure”

(MOT) with a 𝐽 → 𝐽 + 1 transition is very well known, and described
in many lectures and textbooks[127, 128]. We will therefore not explore

[127]: Dalibard (2015), “Une brève his-
toire des atomes froids - Chapitre 2”
[128]: Metcalf et al. (1999), Laser Cooling
and Trapping

the MOT theory further, and just provide some important numbers
for the current state of the experiment.

Table 3.6: Characteristics of the MOT
beams, and the pulses performed with
it.

Waist 20mm

MOT

Power per beam 26mW
Peak intensity 25 𝛪𝑠
Detuning −56.3MHz
Duration 1.5 s

cMOT

Power per beam 190 µW
Final peak intensity 1 𝛪𝑠
Final detuning −14.3MHz
Ramp duration 20ms

Optical molasses

Power per beam 30 µW
Peak intensity 0.18 𝛪𝑠
Detuning −1.8MHz
Duration 3ms

MOT loading We prepare a 3DMOT with 3 retro-reflected near
resonance laser beams (cf. Figure 3.19). The magnetic field is generated
by a pair of anti-Helmholtz coils, producing a gradient along their axis
of 40Gcm−1 at the centre of the trap (cf. Figure C.2). In practice, the
power supply delivers the maximum current possible (225A) and the
number of atoms is optimised by adjusting the detuning of the laser
beams with an acousto-optic modulator (AOM). Light is red-detuned
by 34.6Γ, with a power of approximately 30mW per axis.

The detuning must be large compared to Γ, because the number
of atoms in a MOT of metastable helium is quickly limited by the
Penning collision assisted by resonant light. Indeed, in theMOT cloud
is not spin-polarised, which means that the bare Penning collision
rate is already very high (∼ 10−10 cm3 s−1 cf. Subsection 1.2.2 on
page 108), but it is in addition greatly enhanced by a light-assisted
mechanism[129–132]. The idea is that an atom in the excited state

[129]: Kumakura et al. (1999), “Laser
Trapping of Metastable H 3 e Atoms”
[130]: Tol et al. (1999), “Large Numbers
of ColdMetastable Helium Atoms in a
Magneto-Optical Trap”
[131]: Browaeys et al. (2000), “Two Body
Loss Rate in aMagneto-Optical Trap of
Metastable He”
[132]: Pereira Dos Santos et al. (2001),
“Penning Collisions of Laser-Cooled
Metastable Helium Atoms”

23𝑃2 can interact with a metastable via a very favorable dipole-dipole
interaction. When light is close to resonance, this increases the collision
rate constant by two orders of magnitude! The solution to counteract
this is to keep the population in the excited state very small, with far
detunedMOT beams. Since with helium the cooling in MOT is only
carried out by Doppler mechanisms1, this large detuning implies large

1: in fact, sincewith helium theDoppler
limit and the recoil limit for tempera-
ture are “relatively” close (cf. Table 3.2
on page 106), sub-Doppler mechanisms
for cooling are never used in a MOT.

temperatures.

We use light beams as large as the viewports allow, in order to max-
imise the capture volume. A cloud of approximately 2.5 ⋅ 109 atoms
is loaded in 1.5 s, with a temperature estimated2 between 0.5mK and

2: with the ballistic expansion of the
cloud in time of flight, observed with
fluorescence imaging.

1mK.

Remark 3.6 The measures of the number of atoms in the MOT
are not precise, and probably underestimated: when the cloud is
hot, atoms with large velocities can be out of resonance due to the

https://www.college-de-france.fr/site/jean-dalibard/course-2015-05-27-09h30.htm
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Doppler effect. In practice, we measure the number of atoms in the
cMOT (next cooling step, see next paragraph) to be larger than the
one in the MOT, which does not make sense. In the same way, the
temperature estimation is not very precise with hot gases, and should
be considered as an order of magnitude.

MOT compression At the end of the loading we perform a dy-
namical compression of the MOT by ramping the detuning (closer
to resonance), and lowering the optical power in 20ms. The com-
pression cools the cloud even further, and increases the phase-space
density (PSD)[133]

[133]: Petrich et al. (1994), “Behavior
of Atoms in a Compressed Magneto-
Optical Trap”

. Theoretically it might be a good idea to also
ramp the current in the coils so as to adapt the magnetic field gra-
dient accordingly during the compression (that is what is done in
an analogous experiment installed in Camberra [134]

[134]: Abbas et al. (2021), “Rapid Gen-
eration of Metastable Helium Bose-
Einstein Condensates”

), it is however
difficult for us to do, as the response time of our power supply does
not allow to have control at times shorter than a few tens of mil-
liseconds. We therefore keep the same magnetic gradient during the
compression.

The power per beam is lowered down to 190 µW, and the detuning
at the end of the compression is−8.8Γ. We end upwith a compressed
magneto-optical trap (cMOT) with 3 ⋅ 109 atoms at approximately
150 − 200 µK.

The very point of this new feature is that it allows to increase a lot
the PSD, by reducing both the temperature and the volume of the
cloud. There is a balance to find between temperature and number
of atoms: generally using laser beams closer to resonance gives cooler
clouds, but with fewer atoms. Empirically, we optimise the parameters
of the beams (frequency and power) by maximising:

1. the number of atoms during the MOT ;
2. the phase space density during the MOT compression ;

Optical molasses TheMOT beams are used a last time for cooling,
with a three-dimensional optical molasses (OM) stage, occurring right
after the compression. The laser cooling mechanism of a 3DOMon
helium can lead to steady-state temperature very close to the Doppler
cooling limit 𝑇𝐷 ≈ 40 µK for a laser detuning 𝛿 = −Γ2 [135].[135]: Chang et al. (2014), “Three-

Dimensional Laser Cooling at the
Doppler Limit” In practice, some technical imperfection of our apparatus make the

OM quite unstable, and we regularly need to control and adjust its
setting. First the magnetic environment is not under control: so as
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to keep a maximum of atoms, the quadrupole magnetic field of the
MOT is shut down right before the OM1, but because of the eddy 1: there is only 10 µs of delay between

the end of the MOT compression and
the beginning of the OM.

currents induced inside the metallic frame of the science chamber, the
magnetic field takes a few milliseconds to vanish. This has an effect on
the detuning that we must set, but may also give a velocity to the cloud
[136] 2. In addition, the OM is realised with the same beams as the ones [136]: Walhout et al. (1992), “𝜎+–𝜎− Op-

tical Molasses in a Longitudinal Mag-
netic Field”
2: and ideed, when the parameters are
set such that theOMhas a positive effect
on the temperature, we can see a global
motion of the cloud in the−𝑒𝑥 direction.

used for the cMOT (we just ramp their frequency and power) ; these
being retro-reflected laser beams, it means that the optical intensity on
the way back is smaller than the one on the way forth... This power
imbalance can have a negative impact on the time required to reach a
steady-state, as well as the stability [135].

The molasses is applied during 3mswith near resonance light and we
can reach a final temperature of 60 µK. The measurement of the final
size of the cloud is technically challenging for us, as we use the same
beams to perform the cMOT, theOM and the imaging. Indeed, one of
the beams is placed along the axis of the imaging camera, and we have
to wait the closing of a mechanical shutter (hiding this beam) before
taking the picture. This deadtime is of the order of a few hundreds of
microseconds. The cloud is in the ballistic expansion regime during the
3DOM phase, we can have a coarse estimation of the typical size by
considering a linear time evolution of the temperature (from ∼ 200 µK
to ∼ 60 µK) and a typical initial size of 1.5mm (cMOT size). We find
sizes from 2 to 3mm, quite compatible with the time of flight (TOF)
images we are able to take, a few milliseconds after the OM.

3.2.3 Magnetic trap

The second set of cooling stages is performed inside a purely magnetic
trap.

Idea By definition, the metastable state 23𝑆1 has a total angular mo-
mentum quantum number 𝐽 = 𝑆 = 1, and therefore an angular
momentum 𝐉 and a magnetic moment 𝝁 such that

𝝁 = −𝑔μ𝛣ℎ 𝐉 (3.39)

where 𝑔 = 2 𝑔𝑠 ≈ 2 is the Landé 𝑔-factor of the metastable state3
3: 𝑔𝑠 being the electron spin 𝑔-
factor[137].. In the

presence of a magnetic field, the atoms with the total angular momen-
tum projection quantum number𝑚𝐽 ∈{−1, 0, 1} acquire a potential
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energy 𝐸𝑝(𝐫) depending on the magnitude 𝐵(𝐫) of the field11: if we consider semi-classically that
the magnetic moment is a vector always
alignedwith the field,which is legitimate
in our case as the Larmor precession pul-
sationΩ𝐿 =

𝜇𝛣
ℎ is large compared to the

trapping frequency.

:

𝐸𝑝(𝐫) = 𝑔𝑚𝐽 μ𝛣 𝐵(𝐫) (3.40)

By creating a local minimum ofmagnetic field, the force resulting from
the vector gradient of the potential energy traps the atoms polarised in
the𝑚𝐽 = 1 state.

Shape of the trap We realise a Ioffe-Pritchard trap with two sym-
metric clusters of coils in a cloverleaf configuration[124], similar to[124]: Browaeys (2000), “Piegeage mag-

netique d’un gaz d’heliummetastable :
vers la condensation de Bose-Einstein”

those used for the preparation of the first condensates[138] (cf. Figure

[138]: Mewes et al. (1996), “Bose-
Einstein Condensation in a Tightly
Confining DCMagnetic Trap”

C.3).

Remark 3.7 We are using the same coils as the one installed by
Antoine Browaeys et al. in 2000. It is a homemade design, and we
are planning to change it very soon because we recently faced some
problems with it (cf. Subsection 2.3 of Chapter 4).

It consists in the superposition of a dipole field along the 𝑥 direction
and a quadrupole field in the transverse 𝑦𝑧-plane. Its reduction to
second-order terms writes:

𝐁
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

𝑥
𝑦
𝑧

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
=
⎡⎢⎢⎢⎢⎢⎣

𝐵0
0
0

⎤⎥⎥⎥⎥⎥⎦
+ 𝐵′
⎡⎢⎢⎢⎢⎢⎣

0
𝑦
−𝑧

⎤⎥⎥⎥⎥⎥⎦
+ 𝐵″
⎡⎢⎢⎢⎢⎢⎣

𝑥2 − 12(𝑦
2 + 𝑧2)

−𝑥𝑦
−𝑥𝑧

⎤⎥⎥⎥⎥⎥⎦
(3.41)

from which we deduce the 3D repartition of the magnitude of the
field:

𝐵 (𝑥, 𝜌 =
√
𝑦2 + 𝑧2) = 𝐵0 + 𝐵″𝑥2 + (

𝐵′2

2𝐵0
− 𝐵″2 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
𝛣″𝜌

𝜌2 (3.42)

The trap is therefore quasi-harmonic at the centre, we denote 𝜔∥ and
𝜔⟂ the trapping frequencies along the coils’ axis, and the transverse
plane respectively.

𝐵0 is the bias field, it prevents having a field zero at the centre of the trap,
that would induce nonadiabatic spin-flip losses, known asMajorana
losses [139]. At the end of the OM the cloud is isotropic, with a size[139]: Bergeman et al. (1989), “Quan-

tizedMotion of Atoms in aQuadrupole
Magnetostatic Trap”

𝜎0 and temperature 𝑇. Ideally, in order to conserve the phase-space
density (PSD), the harmonic trap should be set up to be also isotropic
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during the loading (𝐵″𝜌 = 𝐵″) and should match the condition:

2μ𝛣𝐵″𝜎
2
0 =

1
2𝑘𝛣𝑇 (3.43)

where 𝜎0 is the 1/
√
𝑒 size of the cloud, before the loading in the MT

(after the optical molasses), and 𝑇 the temperature of the cloud during
the loading. With a cloud of 2mm, at 60 µK (cf. 3rd paragraph of
Subsection 3.2.2), this corresponds to a curvature of 5Gcm−2.

The maximum curvature that we are able to generate with our coils
(with the PSU at full power) is 𝐵″ ≈ 20Gcm−2, greater than the value
calculated above. It should therefore be optimal to proceed to the
loading with a smaller current (for the adaption of the trap), and then
adiabatically ramp up the current to compress the cloud.

However in practice, this kind of study has been tested in the early
2000s, without seeing much of a difference: we therefore make it as
simple as possible, and load the cloud in the MTwith the maximum
curvature. Notice that this study was made at a time where there was
no imaging system, and the size of the cloud was unknown. We will
very soonchange the coils of the magnetic trap (cf. Subsection 2.3 of
Chapter 4). It would be interesting at this time to redo this type of
testing, and see if we can find a small gain there.

Remark 3.8 One should also notice in Eq. (3.42) that the bias may
control the transverse stiffness of the trap, if we want to compress
it. The compression increases the collision rate (which is required to
reach the evaporative cooling regime).

The trap is semi-linear (asymptotically linear in the transverse plane
and harmonic in the longitudinal axis), but the bottom of the trap
can always be approximated with a 3D harmonic potential.

When the trap is compressed, the region where it can be approxi-
mated with a transverse harmonic potential becomes smaller. The
increase of collision rate can be computed [124] aswell as the resulting
heating in such a case.

When we perform the compression of the trap by reducing the bias,
we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝐵′ ∼ 75Gcm−1

𝐵″ ∼ 20Gcm−2

𝐵0 < 25G
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𝐵′2/𝐵0 is typically much larger than 𝐵″, and

𝜔⟂ ≈
√
μ𝛣𝐵′2
𝑚𝐵0

= 2𝜋
√
Λ
𝐵0

(3.44)
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Figure 3.21: Bias measurement in the
magnetic trap (explanation in the text).
The data points are fitted with a tanh
function, fromwhichwe extract the cen-
ter, thatwe empirically define as themea-
sured bias. In this example, the fit re-
turns a measured bias of 1.67MHz.

To perform a bias measurement, we use the RF coupling between the
magnetic sublevel𝑚𝐽 = 1 (trapped) and the magnetic sublevel𝑚𝐽 = 0
(not trapped): cf Figure 3.23 on the next page. Indeed, after the com-
pression of the magnetic trap, we apply a RF field1, whose frequency is

1: thanks to an antenna in the science
chamber

constant. This frequency is scanned (from one experimental realisation
to the next), starting to “small” values (smaller) towards higher values.
When the RF frequencies reaches the threshold 2 μ𝛣 𝐵0, atoms in the
𝑚𝐽 = 1state are coupled to the𝑚𝐽 = 0state and therefore lost from the
trap: we can witness these losses by taking picture of the cloud with
fluorescence imaging. An example of such a measurement is given in
Figure 3.21.

Oscillation frequencies of the atoms in the trap are directly measured
with fluorescence imaging, for different values of the bias current in
the coils.

In practice we measured

Λ = 0.40(1)GkHz2 (3.45)

The longitudinal trapping frequency is however independent of the
bias, and only depends on the curvature:

𝜔∥ ≈ 2

√
μ𝛣𝐵″
𝑚 ≈ 2𝜋 × 45Hz (3.46)

Table 3.7: Characteristics of the pump-
ing and Doppler pulses.The detunings
are selected by optimising the number of
trapped atoms (for the optical pumping)
and the temperature (for the Doppler
cooling). Because of the presence of the
magnetic field, they appear to be blue-
detuned.

Waist ∼ 20mm

Optical pump

Power per beam 12mW
Peak intensity ∼ 11 𝛪𝑠
Detuning 23.8MHz
Duration 50 µs

1D Doppler

Power 15 µW
Peak intensity ∼ 0.015 𝛪𝑠
Detuning 26.4MHz
Duration 1 s

Atoms pumping & Doppler cooling We do not have the control
on the polarisation (meaning the𝑚𝐽 value) of the atoms in MOT.We
therefore apply a short and intense laser pulse at the beginning of the
MT, with the 𝜎+ polarisation to transfer most of the atoms in the
trapped magnetic sub-level𝑚𝐽 = 1.

We then apply a phase of 1DDoppler coolingwith a dim retro-reflected
beam along the 𝑥 axis, very close to the resonance (about Γ/2 red de-
tuned). The theory of the 1DDoppler cooling in a magnetic trap is not
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trivial[140]

[140]: Schmidt et al. (2003), “Doppler
Cooling of anOptically Dense Cloud of
Magnetically Trapped Atoms”

. The main idea is that with a large density and therefore a
big optical density, the atoms are cooled transversely by absorbing the
photons spontaneously emitted by the atoms excited by the laser beam.
This mechanism is slow, and might also be in competition with the op-
tical molasses along the 𝑥 axis, which is unfavourable when the density
is high, and eventually leads to the heating of the cloud. This competi-
tion can be visualised in Figure 3.22, where we can see the “transverse
temperature” of the cloud decreasing with the density (doppler cool-
ing), while the “longitudinal temperature” is increasing. Even though
the Doppler cooling mechanism is more efficient with dimmer light,
interacting for longer times, in our case the fact that the beam also has
a small 𝜋 polarisation component (because of its constrained orienta-
tion) limits the maximal duration we can achieve without depolarising
the gas.
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Figure 3.22: Competition between the
doppler cooling in the magnetic trap,
and the heating due to the longitudinal
optical molasses.The data are acquired
with fluorescence imaging, after a time
of flight of the cloud of 3ms: the RMS
size of the cloud is therefore a picture of
the temperature. When the density in-
creases, the longitudinal length of cloud
𝜎// increases as well, while transversely
the cloud is smaller.

Prior to Doppler cooling, we apply a first compression of theMT.This
compression is done by ramping the bias down to 𝐵0 = 74MHz in
20ms, where

𝐵0 = 2 μ𝛣 𝐵0 (3.47)

is the bias in frequency units. The resulting harmonic trap has a lon-
gitudinal frequency 𝜔∥/2𝜋 = 45(5)Hz, and a transverse frequency
𝜔⟂/2𝜋 = 122(2)Hz. After the Doppler cooling, we end up with a
cloud of𝑁 ∼ 2.5 ⋅ 109 atoms at 100 µK. Thanks to the compression
and the Doppler cooling, the density has increased to (peak values)
𝑛 ∼ 2.8 ⋅ 1011 cm−3, and the PSD to 𝑛 𝜆3𝑑𝛣 ∼ 1.8 ⋅ 10

−4. Where 𝜆𝑑𝛣 is
the de Broglie thermal length given by

𝜆𝑑𝛣 =
ℎ√

2𝜋𝑚𝑘𝛣𝑇
(3.48)

and 𝑛 is evaluated with the RMS volume of the harmonic trap:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑛 = 𝑁
(2𝜋)3/2𝜎∥𝜎2⟂

𝜎𝑖∈{∥,⟂} =
1
𝜔𝑖

√
𝑘𝛣𝑇
𝑚

(3.49a)

(3.49b)

𝜌

𝐸

2μ𝛣 𝜈𝑟𝑓
𝑚𝐽 = +1

𝑚𝐽 = 0

𝑚𝐽 = −1

Figure 3.23: Schematic of the RF
coupling used to perform evaporative
cooling in the MT. Only atoms in
the 𝑚𝐽 = 1 magnetic sublevel are
trapped (red shaded area). They oscil-
late in the trap, in a domain depend-
ing on their kinetic energy (which fol-
lows aMaxwell-Boltzmann distribution,
driven by the temperature 𝛵 of the
cloud). The “hottest” atoms, with an
energy above 2μ𝛣 𝜈𝑟𝑓 (hatched pattern),
are coupled with the untrapped sublevel
𝑚𝐽 = 0, and are therefore lost.

Evaporation in the magnetic trap A last compression of the mag-
netic trap is operated after the Doppler cooling. The bias 𝐵0 is low-
ered to 1.3MHz, which increases the transverse trapping frequency
to 𝜔⟂ = 2𝜋 × 930Hz, and therefore also increases the elastic collision
rate.
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We then perform an evaporative cooling stage, with an RF antenna
that couples the trapped𝑚𝐽 = 1magnetic sublevel to the not trapped
𝑚𝐽 = 0 magnetic sublevel. Starting at large frequency, and slowly
lowering it, the RF evacuates the most energetic atoms and the cloud
has the time to re-thermalise thanks to the elastic collisions [141]

[141]: Luiten et al. (1996), “KineticThe-
ory of the Evaporative Cooling of a
Trapped Gas”

. The
goal is to prepare a cloud cold enough to be trapped in the optical dipole
trap (ODT), in which we apply the last steps of the experimental cycle.
The RF frequency 𝜈𝑟𝑓 has a temporal profile of decaying exponential
with the typical following parameters:

Ramp duration 1.5 s
Time constant 0.9 s
Initial RF frequency 35MHz
Final RF frequency 8MHz

At the end of the RF evaporation, the cloud contains𝑁 ∼ 5 ⋅ 108

atoms, with a temperature 𝑇 ∼ 45 µK.

We also have the possibility to push the evaporation further, in order
to obtain a BEC in the MT. Historically, the group prepared the first
BEC of metastable helium this way[142]. With a bias 𝐵0 = 1.3MHz,[142]: Robert et al. (2001), “A Bose-

Einstein Condensate of Metastable
Atoms”

the evaporation parameters are typically:

Ramp duration 2.5 s
Time constant 0.9 s
Initial RF frequency 35MHz
Condensation frequency 2.3MHz
Typical final RF frequency 1.8MHz

However, current andvibrational instabilities in the coils inducepainful
bias fluctuations (especially since an episode of overheating of the coils
that occurred in October 2020... see Chapter 4). These fluctuations
make the number of atoms, probability of condensation and even the
position of the cloud not very reliable when the evaporation in MT
is pushed very far. This was one of the motivations for installing an
optical trap in which we perform the final cooling stage.
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Table 3.8: Characteristics of the ODT
during the loading. Gravity is taken into
account in the evaluation of the depth.

vODT

Waist 42.5 µm
Power 5W
Depth 160 µK
Transverse trap. freq. 5.23 kHz
Longitudinal trap. freq. 43Hz

hODT

Waist 135 µm
Power 1W
Depth 3.7 µK
Transverse trap. freq. 231Hz
Longitudinal trap. freq. 0.6Hz

3.2.4 Optical dipole trap (ODT)

Presentation After the evaporation in theMT,we shine two intense
laser light beams at 1550 nm (i.e. very far red-detuned) focused on the
cloud, in order to load the atoms in a crossed ODT.The first beam is
oriented along the vertical axis (going from the top to the bottom), and
the second one is horizontal (oriented along 𝑒𝑥). The overlap between
the MT and the ODT lasts 500ms, letting some time to the trap to
capture atoms. We keep amagnetic field of a few gauss1, along 𝑒𝑥 during

1: it is generated by a pair of coils, in
an approximateHelmoltz configuration,
with a current of 0.8A.

the trapping, such that the atoms remain in the𝑚𝐽 = 1 sublevel, and
the Penning collisions are strongly reduced.

Once loaded in the ODT, we induce evaporative cooling of the cloud
again, by lowering the optical power. At some point, the PSD crosses
the critical value, and BEC is obtained.

Table 3.9: Characteristics of the ODT
at the end of the evaporation.With such
low powers, neither of the two beams
can compensate the gravity. We give the
total trapping depth of the trap, which
is strongly dependent on the relative po-
sition of the waists of the beams: we just
have an order of magnitude.

vODT

Power 0.4W
Transverse trap. freq. 1.48 kHz
Longitudinal trap. freq. 12.1Hz

hODT

Power 0.1W
Transverse trap. freq. 73.3Hz
Longitudinal trap. freq. 189mHz

TheODT laser source has beenchanged in 2017. However no BEC
was obtained at the time until 2022, because of different issues that
will be explained in details in Chapter 4. I contributed to the fixing
of these problems, and the setting of a new evaporation protocol,
generating BECs in a stable and reliable way.

The vertical beam (vODT) is the most powerful (5W during the
loading) and has the smallest waist (42.5 µm). It drives the evaporation
and compensate the gravity potential, duringmostof the coolingstage2.

2: when its power is lowered below
0.55W it no longer compensates the
gravity, and the vertical trapping is car-
ried out by the horizontal beam.

The temporal profile of its power is represented in Figure 3.24, and the
power-related quantities are given in Table 3.8 and Table 4.1.

Power rising duration 150ms
Full power duration 500ms
Evap. ramp duration 2.5 s
Evap. ramp time constant 500ms
Final power holding 400ms

Single beam issues At the end of the evaporation, the longitudinal
trapping frequency of the vertical beam is very small (∼ 10Hz cf. Table
4.1) and as a consequence the trapping area is very elongated: the centre
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Figure 3.24: Temporal profile of the
power of the ODT beams. There is a
roughly 115ms long overlap between
the MT and the magnetic compensa-
tion. 𝑡 = 0 corresponds to the beginning
of an experimental realisation.
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Figure 3.25:Histograms of BECs arrival
times without horizontal ODT (on the
left: 438 BEC realisations), and with the
horizontal beam (on the right: 516 BEC
realisations).The orange bins are at the
same time values on both graphs, their
colour is different in order to guide the
eye. Due to a bigger jitter (red bins) the
standard deviation𝜎without the hODT
is twice as large as in the crossed ODT.
A similar study has been carried out in
2015 with the previous laser, and can be
visualised (with more data statistics) in
[8]. However, at the time a much less
powerful laser were used, and this effect
was even stronger.
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of the cloud may slightly oscillate along this axis. This very strong
anisotropy of the trapping frequency (𝜔⟂/𝜔∥ ≈ 120) causes two main
issues, that motivate the realisation of a crossed ODT by installing an
horizontal beam:

1. By looking at the arrival times of BECs on the MCP, we ob-
serve that it effectively broadens the shot-to-shot fluctuations of
the initial velocity of the cloud when the trap is shut down (cf.
Figure 3.25 histogram on the left).
This is problematic because, as we will see in Chapter 5, the
momentum of the BEC has an import effect on the mechanism
of emission of correlated atoms that we use. Such a jitter also
blurs the signal of second-order correlation functions that we
measure for the momenta of pairs of atoms (with large statistical
averaging). Increasing the trapping frequency along the vertical
axis reduces these shot-to-shot fluctuations.
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2. When the transverse confinement is much larger than the longi-
tudinal one, the transversemotion becomes frozen for the atoms,
and the physics of the BEC enters the 1D regime. By denoting
𝑎ℎ𝑜 thecharacteristic length of the quantum harmonic oscillator

𝑎⟂ℎ𝑜 =
√

ℎ̵
𝑚𝜔⟂

𝑎∥ℎ𝑜 =
√

ℎ̵
𝑚𝜔∥

(3.50)

the transverse size of such 1D quasi-BEC is gaussian with width
𝜎𝜌 ∝ 𝑎

⟂
ℎ𝑜, and its length depends on the chemical potential. We

can estimate inwhichregime the cloud layswith an adimensional
number 𝜒 [143] that roughly quantifies the ratio of the mean- [143]: Menotti et al. (2002), “Collec-

tive Oscillations of a One-Dimensional
Trapped Bose-Einstein Gas”

field interaction energy to the radial confinement energy:

𝜒 = 𝑁 𝜔∥𝑎
𝜔⟂𝑎⟂ℎ𝑜

(3.51)

When 𝜒 ≫ 1, the interactions dominate and we recover in the
3DThomas-Fermi (TF) case. On the contrary, when 𝜒 ≪ 1 the
transverse degrees of freedom are frozen, and the condensate
is effectively one-dimensional. With the vertical beam alone,
and the parameters in Table 4.1, we have 𝜒 ≈ 1.41 which is an
intermediate regime described in [144]. [144]: Gerbier (2004), “Quasi-1DBose-

Einstein Condensates in the Dimen-
sional Crossover Regime”

In particular, it is known for those elongated ultra-cold clouds
that there is a regime of temperatures, below the critical temper-
ature𝑇𝑐, where the density fluctuations vanished but there is still
low-energy excitations that cause phase fluctuations1[145, 146] 1: the phase coherence of the cloud is

not strictly satisfied and that is why we
talk about quasi-BEC.

[145]: Petrov et al. (2001), “Phase-
Fluctuating 3DBose-Einstein Conden-
sates in Elongated Traps”
[146]: Gallucci et al. (2012), “Phase
Coherence in Quasicondensate Exper-
iments”

⎧⎪⎪⎨⎪⎪⎩

𝜔 ≜
3
√𝜔∥𝜔2⟂

𝑘𝛣𝑇𝑐 ≈
3√𝑁 ℎ̵𝜔

(3.52a)

(3.52b)

we denote 𝑇𝜙 the temperature to reach so as to remove these
phase fluctuations:

𝑇𝜙 = 15 (ℎ̵𝜔∥)
2 𝑁
32𝜇 𝑘𝛣

(3.53)

where 𝜇 is the chemical potential.
Without horizontal beam, with𝑁 ∼ 3 ⋅ 104 and the parameters
in Table 4.1 for the vertical beam, we estimate:

⎧⎪⎪⎨⎪⎪⎩

𝑇𝑐 ∼ 450 nK
𝑇𝜙 ∼ 100 nK

(3.54a)
(3.54b)
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This defines a problematic range of temperatures where the
phase fluctuations are not negligible and induce velocity fluctua-
tions (which is the observable that we probe after time of flight).
It would also affect the coherence of the atomic pair production.
We do want to avoid this regime.

Crossed dipole trap We therefore installed another beam in the
horizontal plane, forming an angle of 7°with repect to the 𝑥 axis, and
with a waist of 135 µm. It increases the trapping frequency along the
vertical direction up to∼ 75Hz at the end of the evaporation (cf. Table
3.8 and Table 4.1). The temporal profile of the power is represented in
Figure 3.24, and the power-related quantities are given in Table 3.8 and
Table 4.1. Concerning the horizontal beam, we set up:

Power rising duration 50ms
Full power duration 1.5 s
Evap. ramp duration 1.3 s
Evap. ramp decay rate 500ms
Minimal power holding 760ms

Two 40MHzAOMs create a 80MHz frequency difference, such that
there is no slowmodulation of the intensity due to the beating between
the two axis.

In the cylindrical basis defined by their axis of propagation and centred
on their waists (𝜌, 𝜑, 𝜁), each beam creates a dipole potential𝑉𝑑𝑖𝑝:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑉𝑑𝑖𝑝(𝜌, 𝜑, 𝜁) =
𝑉0

1 + ( 𝜁𝑧𝑅)
2 exp

⎛
⎜⎜⎜
⎝
− 2𝜌2

𝑤2 [1 + ( 𝜁𝑧𝑅)
2
]

⎞
⎟⎟⎟
⎠

𝑉0 = −
3𝜋𝑐2

2𝜔30

2𝑃
𝜋𝑤2
( Γ
𝜔0 − 𝜔

+ Γ
𝜔0 + 𝜔

)

𝑧𝑅 =
𝜋𝑤2

𝜆

(3.55a)

(3.55b)

(3.55c)

where 𝜆 = 1550 nm is the laser wavelength, 𝜔 = 2𝜋 𝑐𝜆 is the associated
angular frequency, 𝜔0 is the angular frequency of the 2

3𝑆1 → 23𝑃2
cooling transition, Γ = 2𝜋 × 1.6MHz is the corresonding natural
linewidth, 𝑤 is the waist of the beam and 𝑧𝑅 its Rayleigh length.
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Figure 3.26: Potential seen by the atoms
during the loading. Even though the
trapping frequency of the hODT along
the vertical axis 𝑧 is higher than the
vODT one, it effectively has no effect
because it is far too shallow. Due to this
huge difference of intensity, the horizon-
tal beam is also almost invisible in the 𝑥𝑦
plane, on the top left heatmap.

Figure 3.27: Potential seen by the atoms
at the end of the evaporation. Now the
horizontal beam has a dominant effect
on the depth and trapping frequency
along the vertical 𝑧 direction.The depth
in the 𝑍 direction is difficult to evaluate,
because it is very sensitive to the geom-
etry of the beams. It is however proba-
bly of the order of 1 µK.We added an
unimportant offset to the vODT poten-
tial to make it visible on the same 1𝐷 bot-
tom right graph.

The gravitation generates the well known potential𝑉𝑔𝑟𝑎𝑣:

𝑉𝑔𝑟𝑎𝑣(𝑧) = −𝑚𝑔𝑧 (3.56)

We can take all the pieces together and simulate the total potential𝑉𝑡𝑜𝑡
seen by the atoms in a PythonPython code to generate the visualisation in
Figure 3.26 and Figure 3.27.

Final cloud The counting of the number of atoms in the BEC is
not trivial in our experiment. Indeed, the velocity distribution of the
atoms in a BEC is very narrow, which means that after releasing the
trap, many atoms are detected on a small area of theMCP (∼ 1 cm2) in
a very short time range (∼ 100 µs). This flux of atoms is in particular
larger than 105 s−1 cm−2, the typical flux saturation of the MCP, and
the number of atoms is strongly underestimated...

We can slightly enlarge the velocity distribution by heating the cloud
with the optical lattice used for the atomic pair generation (cf. Chapter
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5). More atoms are detected but we still see saturation of the detector
at the BEC arrival time. We measured𝑁 ∼ 2.8 ⋅ 104 atoms with this
technique, which is therefore a lower bound. An improvement of this
technique would be to realise Bragg diffraction of the cloud to many
orders, so as to spread the falling of the atoms over a very long time,
but this part of the apparatus is not perfectly operational at the time
when this manuscript is being written. This technique was used a few
years ago (however with a different ODT configuration) and a value
of𝑁 ∼ 5 ⋅ 104 was found [8], with 20% uncertainty because of the[8]: Lopes (2015), “An Atomic Hong-

Ou-Mandel Experiment” inaccurate knowledge of the MCP quantum efficiency.

If we compare the current state of the ODT with the configuration
that was used before 2018, we use beams with roughly the same waist as
before, butwithmuchmore power (wewent from∼ 1.5W available on
atoms to ∼ 11W available on atoms). Due to the small optical power,
in the previous configuration peoplewere forced to load a cloud already
very cold in the ODT, meaning that it required to be cooled in theMT
down to a temperature very close to the bias of theMT (which is known
to be very prone to fluctuations). Therefore the relative fluctuations
of the initial number of atoms in the ODTwas large. In addition, the
ratio𝑈/𝑘𝛣𝑇 between the depth of the ODT and the thermal energy of
the cloud was not very favourable to an efficient evaporative cooling
(∼ 3).

With the new laser, we improved the initial loading by two orders of
magnitude, and the loaded cloud is warmer. We are no longer sensitive
to the fluctuations of the MT’s bias. The evaporative cooling is also
more efficient.

2015 2022

Atoms loaded ∼ 2 ⋅ 105 ∼ 2 ⋅ 107

Loaded cloud temperature 3 µK 22 µK
BEC atoms number 5 ⋅ 104 𝑁 > 2.8 ⋅ 104
Thermal fraction temperature 200 nK ∼ 200 nK

Even though we estimate that the final number of atoms in the BEC
did not change much, and lays between 3 ⋅ 104 and 105, we improved
the stability and the reliably of condensation a lot.

Remark 3.9 (Raman transfer) Until the end of the ODT, atoms
are polarised in the 𝑚𝐽 = 1 magnetic sublevel. This is not good
during the free fall following the release of the trap, because stray
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magnetic fields could deviate the cloud during falling or induce phase
fluctuations.

We therefore need to perform a transition between the sublevels
𝑚𝐽 = 1 and𝑚𝐽 = 0 right after the releasing of the trap. We perform
a two-photons Raman transition, with the 23𝑃0 state. This way we
can achieve more than 90% of transfer efficiency.

3.2.5 Recap

The entire cooling procedure takes less than 10 seconds (cf. Figure
3.28), which is a significant improvement in comparison with the
previous states of the experiment (roughly speaking, before 2019)
where a similar cycle used to take more than 30 seconds. In addition,
the setup currently being neither fully complete nor perfectly stable,
we did not yet proceed to the ultimate time optimisation of all the
cooling stages. Thus we have good reasons to hope that this final
optimisation could save one second or more (especially during the
evaporative processes).

This enhancement of the duty cycle of the experiment is particularly
appreciable. Indeed, the quantum effect that we aim at requires the use
of an atomic-pair source1 that usually has a very low pair production 1: this source is described in Chapter 5,

where will see that the BEC is an impor-
tant component of it.

rate2. When the experiment is running, and considering a TMS with

2: we have seen in Chapter 2 that a Bell
inequality violation based on a TMS is
easier to see when the average number of
particle per mode 𝜈 is small: in practice
typically of the order of 0.1

an average number of particle per mode 𝜈, the average number of pair
detected per second is

𝛾𝑝𝑎𝑖𝑟 = 𝜈
𝜂2

𝑇𝑒𝑥𝑝
(3.57)

where 𝑇𝑒𝑥𝑝 is the duty cycle of a run, 𝜂 is the quantum efficiency of the
MCP (squared because we want to detect two atoms) 𝜈 is the average
number of atoms per mode. With the changing of the MCP, and the
cooling speedup, we increased this rate by a factor 12.
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Figure 3.28: Overview of the different
cooling steps of the procedure: from a
MOT cloud to a BEC. The numerical
values are order of magnitudes (espe-
cially for theMOT clouds in blue where
the measurements are not easy).The red
dashed line represents the condensation
threshold.
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Introduction

I joined the team of professors Boiron & Westbrook (as a Master’s
student) inApril 2019. At the time, people of the teamhad already been
facing technical difficulties for more than 2 years, which prohibited the
realisation of new scientific measurements. The last milestones of the
teamwere the atomicHOM effect [59] and the two-particle four-mode[59]: Lopes et al. (2015), “Atomic

Hong–Ou–Mandel Experiment” atomic interferometer [9], respectively published in 2015 and 2017.
[9]: Dussarrat et al. (2017), “Two-
Particle Four-Mode Interferometer for
Atoms”

Several repairs and apparatus upgrades had already been made when I
arrived, but unfortunately I cannot say that we quickly saw the light at
the end of the tunnel... My PhD too was marked by serious technical
difficulties, that checked our initial ambition to observe an atomic Bell
inequalities violation.

In February 2021, it was collectively decided that we would operate
heavy modifications on the apparatus, in order to (hopefully) fix the
various stability problems that we encountered. This considerable
investment in both time and money seemed to be worth it, and we will
detail what has been done concretely in this chapter.
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1 Status of the experiment in 2019

In April 2019 the experiment was just recovering from a first wave of
issues [60], including two major ones amongst the rest: [60]: Perrier (2018), “Interférences mul-

tiples avec atomes froids”

1. Vacuum (June 2016): A science chamber’s turbopump broke
down→ 6 months of maintenance (long delivery times and
the changing operation required the dismantling of many op-
tomechanical components).

2. ODT (2017): The laser used for experiments [59] and [9] was
not powerful enough to guarantee a stable condensation of the
cloud (1.5W usable on the atoms). The breadboard for the
optomechanics (placed vertically) was not perfectly stable. The
laser was therefore changed, and the optomechanics completely
remade, but the new laser (designed by Keopsys©) died twice in
less than two months1

1: we have good reasons to believe that
the company sold a technology (30W
1550 nm fibered laser) that they did not
master

. After two consecutive repairs, the laser
was finally restrained to a 20W nominal power. In total, an
other 6 months of work was spent on this operation.
Actually, we continued to have problems with this laser, even
very recently2

2: the most recent breakdown having
taken place on July 2022. We therefore
ordered a new 30W IPG Photonics©

fibered laser that we will soon install on
the experiement.

Camera

�⃗�𝑦
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Figure 4.1: Schematic of the camera
set-up, used for the fluorescence imag-
ing. The figure is modified from [60].
Axis orientations are consistentwith Fig-
ure 3.19.The telescope forms the image
of the cloud on the CCD during the
imaging (blue rays), and amotorised flip-
mirror is used for the retro-reflection of
the MOT beam.

Inorder to complete thedetection system, a short-wave infrared (SWIR)
InGaAs camera3was also installed in 2017 to performfluorescence imag-

3: Xeva 320 Series designed by Xenics©,
with 80% of quantum efficiency and
30 µm large pixels.

ing. Indeed, even though the MCP is very well-suited for the detection
of low density clouds in the far field (atomic pairs in our case), it is
not very convenient for the daily monitoring of the clouds: it easily
saturates when the density or the number of atoms is large ; it only
provides information in themomentum space (we cannot see the cloud
spatially in the trap) ; if the atoms are polarised, residual magnetic fields
may perturb the “free fall”. The camera solves these issues by observing
the fluorescence of the cloud, along the axis of one of the three MOT
beams, while the two other beams briefly excite the atoms with reso-
nant light. It also simplifies the alignment of theODT, since the loaded
atoms can be seen directly. The setup is a bit complicated, because it
requires a motorised flip-mirror to toggle between the 3DMOT con-
figuration and the imaging configuration, but it is the best compromise
since the experiment was not initially thought to host such a camera,
and optical access to the vacuumchamber is very limited.

To provide a correct estimation of the number of atoms, the fluores-
cence imaging pulse requires to saturate the 23𝑆1 → 23𝑃 transition.
The problem was that at the time not enough power was available in
the MOT beams’ cluster4. Eventually, almost the entire optical setup 4: for legacy reasons many components

(AOMs, lenses, RF amplifiers...) were
not fitting the needs, and the beams
hadmany defects (badwaists, bad power
balance, bad optical isolator (OI) cou-
pling...)

for the cooling had to be redone. The total time cost of the installation
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of the camera was therefore also amounted to several months.

The final software integration of the imaging system was done during
my PhD (cf. Appenfix B for technical details).

When I joined the team, the ODTwas not yet focused on the atoms,
and the condensation was not successfully observed with the new
Keopsys© laser. A Hamamatsu© new generation MCP (with better
quantum efficiency) was available in the lab, but not installed on the
experiment. The main short-term objectives therefore were:

1. aligning the ODT and finding power temporal profiles for the
evaporation to condensation ;

2. testing the performances of the newMCP on a benchmarking
bench, before installing it on the MCP ;

3. putting the pair creation and Bragg optical lattices back into
service.

2 Problems and workarounds during
my PhD

Since 2016 and the apparition of the previously mentioned problems,
the apparatus suffered frommany technical issues. Our hope that the
fixing operations, briefly explained in the first section of this chapter,
would lead to a quick healing of the experiment, and new scientific
investigation vanished rapidly. Instead, we had to deal with other diffi-
culties: hardware/softwaremalfunction, equipment breakdown (some-
times due to human mistake and sometimes not), cloud instabilities...
After struggling a long time, without durable progress, we finally col-
legially decided –in February 2021– to proceed to massive apparatus
changes. It was not an easy decision to make, as it also meant that the
scientific part of the projectwould also be in standby for severalmonths
more.

As I write this manuscript, even if the setup is not fully upgraded yet,
we already have very promising experimental results, that convinced
us that this laborious work was worth it. In this section, I will detail
the nature of the issues that we encountered, and what solutions we
decided to implement to cure them.
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Figure 4.2: Image of the hole in the old
Burle MCP. Axis orientations are con-
sistent with Figure 3.19. Colours encode
the number of atoms detected.The red
line corresponds to BEC obtained with
RF evaporative cooling in the magnetic
trap: after time of flight the cigar-shaped
BEC along the 𝑥-axis becomes a pancake
in the transverse 𝑦𝑧-plane, due to the fa-
mous anisotropic expansion of BECs. A
zero-detectivity disc at the centre is vis-
ible. The diameter of this hole roughly
matches the 1/𝑒2 size of the vODT on
the MCP... Data come from a single
run (which is why the heatmap is quite
“sparse”).

2.1 Holes in the MCP

2.1.1 Genesis of the breakdown

A fewmonths after the beginning of my PhD, we obtained a BEC in
the ODT and we started to optimise the atomic pair creation process.
For the following it is worth noticing that the vODT hits right in the
middle of theMCP1. In August 2019, we tried to keep the vODT beam 1: which is not an optimal design, but

we do not have that much flexibility
with our sciencechamber, if wewant the
BEC to be cigar-shaped along the verti-
cal direction. It never was an issue with
the previous IPGPhotonics© laser (with
1.5W on the atoms) and the MCP that
was used at that time.

at full power during the MOT phase (8W at the time) in order to
keep the AOM and the fiber coupler warm, and minimise the thermal
fluctuations during the loading of theODT2. It turned out to be quite a

2: in many aspects, the coupling of the
high power optical fibers has always
been a technical issue for us. In partic-
ular it appeared that when the laser is
switched on, the coupling efficiency fluc-
tuates for a few seconds because of the
heating of optical components.

bad idea. TheMCPcould not dissipate thatmuchpower for sucha long
time (a few seconds per run cycle) and a “hole” (i.e. zero detectivity) in
the detectivity map quickly appeared (cf. Figure 4.2).

This experimental mishap motivated the installation of the brand new
Hamamatsu© MCP, that I had finished testing on a separate minimal
apparatus a fewweeks before that. This was a rather heavy operation:

▶ it required to brake the ultra-high vacuum in theMCPchamber,
and therefore a one-week baking was needed afterwards ;

▶ the vacuum high-voltage electrical connections are delicate ;
▶ once the change of the MCP and the chamber baking had been
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successfully achieved, the MCP needed to degas all the residual
impurities present in the microchannels. This process was stim-
ulated by the activation of the microchannels with metastable
atoms (in practice we repeat the falling of hot MOT clouds on
the MCP), but it was still very long (several weeks).

0 2 4

Nruns (×103)

5

6

7

� (mm)

Figure 4.3: Evolution of the diameter of
the hole, as a function of the number of
experimental realisations. During each
run, the vODTmakes a1.8W→ 0.5W
exponential decay in 4 s, and the hole
diameter is then evaluated with a bidi-
mensional fitting (top graph). We then
plot the evolution of the diameter (bot-
tom graph), where every red point is the
statistical average of the measured diam-
eters for ∼ 30 consecutive runs.

We finally got back to the evaporation in the ODT in January 2019 (5
months later). We reduced the maximum power of the vODT to 5W,
and dropped the idea of keeping it on at full power for a long time. Yet,
another hole, similar to the previous one (Figure 4.2), appeared in the
middle of the plate... It turns out (phenomenologically) that the new
Hammamatsu© MCPs are far less resilient to heating than the ones
previously used in the experiment. It is a major issue for us, because
the atomic pair creation process generates atoms whose velocities are
along the BEC axis. Thus, the hole, the BEC and the atomic pairs are
aligned along the vertical axis, and the signal of interest is undetectable
(the pairs fall right in the middle of the hole)!

In order to check if once the hole is made it continues to grow, we
tried to repeat fake exponential evaporation with the vertical beam
(without atoms) lowering again its maximum power down to 1.8W
(which is roughly the minimum power we need to reliably prepare
a BEC). The result is presented on Figure 4.3, where we can see that
the hole’s diameter does not converge quickly towards an “acceptable
value” (which would be less than 10mm, as it will be explained in the
following subsection). We therefore stopped doing this and looked
for more sustainable workarounds, to overcome the two following
problems:

1. How to detect the signal of interest with a zero-detectivity disc in
the middle of theMCP ?

2. How to stop the hole from growing ?

2.1.2 Pushing the cloud with a Raman kick

As it has been briefly mentioned in Remark 3.9, we need to perform a
Raman transfer, right after the release of the trap, to have only atoms
in the 𝑚𝐽 = 0 magnetic sublevel falling onto the MCP. Depending
on the orientation of the two laser beams creating the Raman lattice,
some momentum is passed on to the atoms due to the two-photon
exchange: it is not difficult to prove with momentum conservation
that the direction of this kick is given by the external bisector of the
two beams.
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In the previous configuration of the experiment, the Raman beams
were contained in the 𝑦𝑧-plane, in such a way that the kick given to
the atoms was directed upwards. Atoms were falling in the middle of
the MCP, at a slightly delayed time because of this additional initial
velocity.

23𝑆1 states
𝑚𝐽 = 0

𝑚𝐽 = 1

𝑚𝐽 = −1

2MHz

Δ = 0.8GHz
𝑚𝐽 = 0

23𝑃0

𝜎−𝜋

𝛿 ∼ kHz

Figure 4.4:Raman transfer towards the
𝑚𝐽 = 0magnetic sublevel. The 2MHz
frequency gap corresponds to an ap-
proximately 1Gmagnetic bias. 𝜎− and
𝜋 are the photons’ polarisations, with
respect to the magnetic bias. The sin-
gle photon transition is red-detuned of
Δ = 800MHz, which simplifies the sit-
uation to an effective two level coherent
coupling, with a two-photons angular
Rabi frequencyΩ2𝑝ℎ = Ω𝜎−Ω𝜋/2Δ.

Wechanged that configuration such that the kick is given along the 𝑥
axis (cf. Figure 4.5), and the cloud (as well as the atomic pairs) is pushed
away from the hole standing beneath.

Remark 4.1 TheRaman transition is realised with the 23𝑃0 excited
state so has to keep the atoms in the 𝑚𝐽 = 0 state after the (𝜎−, 𝜋)
transitions. Indeed, if we were using the 𝑃1 or 𝑃2 transitions, an
additional (𝜎−, 𝜋) couple of transitions would be possible (relying
on the 23𝑃1,2, 𝑚𝐽 = −1 excited state) leading to the 23𝑆1, 𝑚𝐽 = −1
state.
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Figure 4.5: Top view of the Raman
beams, and of the kick given to the
BEC. Axis orientations are consistent
with Figure 3.19.The labels ”Wall” and
”Computers”, are just experimental-
ists’ naming conventions, referring to
the orientation of the room.The 𝜃 angle
is limited by the diameter of the view-
port. In reality, for historical reasons,
the “Raman 1“ is not perfectly in the
𝑥𝑦 plane (by a few degrees), and there
is therefore also a small vertical contri-
bution to the kick. Violet dashed lines
correspond to the virtual one-photon
kicks, and the plain violet line is the ac-
tual two-photons kick. A magnetic bias
of a few gauss is kept along the 𝑥 axis.
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Figure 4.6: Raman kick applied to a
BEC trapped in theMT. Data are aver-
aged over 91 experimental realisations,
in each file an average of 3.2 ⋅ 105 atoms
are reconstructed.
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Figure 4.7: Integration over the 𝑌 axis
of Figure 4.6. We measure a shift of
11.5mm.

The one photon recoil velocity is 92mm s−1, which after 308ms of
free fall corresponds to approximately a 28mm shift on the MCP.
Considering the angle of 28° between the twoRaman beams, we expect
a 13.5mm total shift, in the 𝑒𝑥 direction. We are geometrically limited
by the diameter of the viewport, and this is therefore the largest kick
we can give (at least by using this optical access): this sets an upper
bound to the diameter of the holes that we are able to “dodge” (the
diameter on the MCP of the BEC obtained with the ODT typically
being 10mm itself).

In practice we measure a slightly smaller kick (11.3(2)mm shift on the
MCP) ; the small vertical contribution to the kick or an overestimated
angle between the two beams could explain this discrepancy. Whatever,
the cloud is pushed far enough so that we can consider the first of the
two hole-related problems as solved.

Additional details about the technical realisation of the Raman pulse,
and its quality control are given in appendix A.

2.1.3 Protecting the MCP with a copper plate

Based on our experience of 2019, we understood that it was no longer
possible to have an intense optical beam hitting the MCP surface di-
rectly.

Our first workaround attempt was to drive the evaporation with the
horizontal beam, allowing us to reduce the power of the vertical beam
below 1W. This solution required tochange the optical setup, realising
a “butterfly” configuration, presented in Remark 4.2.

Remark 4.2 (“Butterfly configuration”) Because of the large waist
of the hODT (135 µm), it was necessary tochange the configuration
of the horizontal beam, in order to increase the trapping frequencies
by a few hundreds of hertz.
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The idea was to recycle a first
passing of the hODT with
two mirror (and two lenses)
and send it back towards the
atoms. The “butterfly” self-
crossing of the beam increases
the trapping frequency during
the loading up to 40Hz along
𝑒𝑥 and 500Hz in the transverse
plane.

�⃗�𝑥
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This configuration is muchmore delicate to realise, as it requires to
overlap the waists of three beams (instead of two), and the second
passing of the hODT is obviously not independent of the first one...

Iwill not go deep into the details of this technique, because even though
we succeeded in loading a cloud in this trap, the evaporative cooling
was inefficient and we never obtained a BEC this way. It was mostly a
waste of time.

Table 4.1: Characteristics of the copper
plate

Thickness 6mm
Diameter 2.54mm
Cutting distance from centre 5mm
Tilt angle 7°

We therefore went back to the initial configuration (two beams only
and the evaporation driven by the vertical one), but adding a protective
copper plate, hanging above themiddle of theMCP thanks to astainless
steel arm (Figure 4.8 and Figure 4.9). The blueprint of the assembly is
available in the Appendix (Figure D.1).

Figure 4.8: Top view of the protective
copper plate. Picture taken on the day
of the installation (30/09/2021).

Copper has beenchosen for its good thermal conductivity properties,
the piece is 6mm thick (for having a heat capacity large enough). It has
a rough surface finish in order to diffuse the laser light in a wide solid
angle. We also added a tilt angle of 7° so as not to reflect most of the
light backward towards the atoms. We also cut the plate, to only hide
the part of the MCP exposed to laser light.

We performed a bunch of benchmarks (on the experiment but also on
a testing apparatus) and we made sure that less than 5% of the laser
power reaches the MCP. We never observed again a localised loss of
detectivity on the MCP, even using large optical powers, whichmakes
this change a success.
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Figure 4.9: Side view of the protective
copper plate.Thecopper plate, theMCP
and the delay lines are visible. The pic-
ture was taken during a secondchanging
operation (13/01/2022) where we insu-
lated the stainless steel arm and the plate
from the high voltage with a polyether
ether ketone (PEEK) piece (here the
white piece connected to the ring).Then,
the arm and the plate were connected to
the ground with a wire.

However, when paying attention to the resulting detectivity map, the
metallic structure is obviously visible, and the copper plate’s shadow
is just brushing against the hole (which is good), but we can also see a
strange and unclear structure all around the sharp shadow (cf. Figure
4.10).

Figure 4.10: Detectivity map of the
MCP protected with the copper plate.
The map is obtained by accumulating
data from MOT clouds without the
transverse molasses stage (to reduce the
number of atoms per run and avoid any
saturation of the electronics). A strange
structure with more atoms than average
is visible around themetallic arm,within
a range of a few millimeters.
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We first imagined that this disturbance could be due to uncontrolled
electric fields (the arm first being at the same high voltage potential
than the delay lines: ∼ 2.6 kV). That is why we tried to electrically
insulate this protective structure from the high voltage part with a
PEEK support piece (Figure 4.9). This modification did not change a
thing in the detectivity map.

Themap in Figure 4.10 was obtained withMOT clouds, where a mix
of atoms in all magnetic sublevels. However, when we do the same
kind of map, with atoms coming out of an optical dipole trap and then
transferred in𝑚𝐽 = 01, detectivity is much cleaner near the arm and1: we can easily separate the 𝑚𝐽 = 0

atoms from the few remaining𝑚𝐽 = 1
ones with post-selection over the time of
arrival on the MCP: the atoms polarise
in the𝑚𝐽 = 1 arriving roughly 30ms be-
fore the𝑚𝐽 = 0 because of the residual
magnetic field gradients.

plate’s shadow (cf. Figure 4.11).

The stainless steel stand arm was crafted by a subcontractor, and it
has been made of “SAE 304” stainless steel. It is less magnetic than
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) Figure 4.11: Detectivity map obtained
with 𝑚𝐽 = 0 atoms coming out of an
ODT. At each run we load the ODT
at full power (5W) and we do not
evaporate (the cloud has a temperature
𝛵 ∼ 22 µK large enough to cover the
MCP homogeneously). We then post-
select and keep only the atoms in the
[308, 309]ms arrival time range (cen-
tred on the arrival time of the 𝑚𝑗 =
0). Data come from the averaging of
536 experimental realisations, with 1.6 ⋅
103 atoms on average per file (8.7 ⋅ 105
atoms in total). The ungracious struc-
tures around the shadow almost van-
ished.

conventional steel, but still more than the “SAE 316”: an interesting
upgrade could therefore be to remanufacture the pieces in 316 stainless
steel. Regarding the size of the shadow, it might also be tempting to
design smaller pieces, but actually the signal of interest falls whatever on
the left side of the MCP ; the correlations that we want to observe are
carried out by the vertical component of the atoms’ velocities, thus their
arrival time: velocities in the transverse plane are no crucial information
in our design1, we essentially use them to post-select velocity boxes 1: contrary to other experiments such as

the one managed by David Clement’s
team, also at the Institut d’Optique.

matching the size of the atomic pairs modes. It is therefore probably
safer (in this configuration) to keep a piece of metal massive enough to
endure the laser-induced heating.

With these replacement solutions, we solved the problems related to
the formation of a hole at the centre of the detector. A stable BEC in
the vertical ODT alone was then obtained on the 02/02/2022 ; it was
the first time since 2017. That milestone was quickly followed by a BEC
in the crossed ODT on the 15/03/2022, and finally a signal of atomic
pairs on the 30/03/2022.
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Remark 4.3 (Another configuration) Even if we worked around
the hole issue, it is still frustrating to have this piece of metal casting
a large shadow over the detector. As it has been shown above with
the unfortunate magnetic effects we encountered, it is obviously also
not a good thing to add a massive handmade metallic structure in an
environment which has been precisely calibrated by a constructor to
have suitable detection conditions withMCPs.

A rather radical idea would be to rotate the whole optical setup (the
ODT and the three optical lattices) by 90° around the 𝑦 axis. The
BEC would be cigar-shaped along the 𝑥 axis. We would not have
laser hitting/heating the surface of theMCP, and we could get rid of
this additional protective part.

This would however be quite a colossal change in the optical setup,
mostly consisting in a game of musical chairs:

▶ the pair creation lattice would be obtained with a pair of
counter-propagating beams along the 𝑥 axis 11: the atomic pairs would be created

along the 𝑥 axis.

;

▶ the Raman beams could keep their current location, but they
should also be able to perform the Bragg pulses22: as the Bragg diffraction should also

kick the atoms along 𝑒𝑥.

: an electro-
optic modulator (EOM) shall be used to quickly change one
of the beams from the 𝜎− polarisation (for Raman pulses) to
𝜋 polarisation (for Bragg pulses) ;

▶ depending on the type of experiment we perform to generate
atomic pairs33: in a dynamical Casimir effect (DCE)

experiment, the pairs are created on ei-
ther sides of the BEC, close to it (no kick
is needed) ; however the pairs generated
by the dynamical instability of the lat-
tice are created on the same side, and
then the two Bragg deflections push the
atoms of 2 × 3 cm on the MCP level
which is out of the 4 cm radius of the
plate: we would need to compensate it
with an opposite Raman kick.

the atoms might get out of the MCP area: a
Raman kick towards the centre of the plate could sometimes
be needed and sometimes not. We should therefore find a
way of having the possibility the mix two frequencies and
polarisations (𝜋 and 𝜎−) inside the same Raman beam ; we
would have therefore have the possibility to choose whether
we want to perform a Raman transfer with a kick along 𝑒𝑥, or
with zero momentum exchange ;

▶ we would need to change the current hODT beam’s waist
(from 135 µm down to a value close to 40 µm) making it the
most confining axis, and install another beam, with ∼ 135 µm
waist, along one of the 7° tilted vertical axis available (currently
used for the pair creation lattice, cf. turquoise arrows in Figure
3.19): it would not touch the MCP44: we could actually get it out of the

chamber, which is much cleaner!

, and would create a weak
confinement along the 𝑥 axis ;
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2.2 A new cooling laser

2.2.1 Why do it?

Since the early stages of the experiment, and until June 2021, the laser
source used for the cooling system was a DFB diode1, amplified with a 1: Toptica - Eagle Yard© 1083 nm single

frequency laser diode.2WKeopsys© Ytterbium doped fiber amplifier.

Even though it was possible to work with this type of laser source for
quite a long time, it was however not an ideal solution. Indeed, the
linewidth of the diode is 2MHz2: since the natural linewidth of the 2: in fact, by studying the beat note

frequency between two laser diodes, or
between one laser diode and another
narrowband fibered laser, we sometimes
measured linewidth of the order of
1.7MHz.

cooling transition is 1.6MHz this is pretty bad, especially when we
need to use light very close to resonance (as it was the case during the
optical molasses or the Doppler cooling).
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Figure 4.12: Example of drift of the
number of atoms in a Doppler cloud.
The number of atoms is measured with
fluorescence imaging. Each point is an
experimental run.

Historically, the typical shot-to-shot fluctuation level of the number
of atoms in theMOTwas of the order of 30%, and we roughly kept
this level of fluctuation all along the cooling procedure. Gradually,
since 2019, we also witnessed the apparition of drifts of the cloud’s
properties (especially the number of atoms). These drifts are added to
the already existing fluctuations, and can involve different timescales
(fromminutes to hours or even a few days). An example of drift of the
number of atoms in a Doppler cooled cloud is given in Figure 4.12. In
particular, we noticed that the amplitude of this drift of the number of
atoms over time can reach 100% (the number of atoms drops down to
zero).

The origin of these instabilities is probably multifactorial, and even if
we investigated almost all the aspects of the apparatus for a long time
(frequency servo loops, optomechanical components, strong currents
electronic circuit, laser diode feedback...) we never found one single
element that could explain their growth unequivocally3. However 3: that iswhywedecided tochange glob-

ally what we estimated to be various
weak points of our system, roughly at
the same.

we are quite sure that the cooling laser diode was involved in these
problems: in winter 2020, the experiment became extremely sensitive
to any external mechanical stress. Touching the optical table or even
speaking too loud could annihilate the MOT loading! This level of
sensitivity could have been considered to be the signature of a laser
feedback on the diode’s cavity, but changing the diode and rearranging
to the first optical elements did not solve the problem.
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2.2.2 The new laser

Figure 4.13

Table 4.2:New fibered laser reference

Brand NKT Photonics©

Range Koheras ADJUSTIK

Model Y10

Serial number K0043893

Vac. ref. wavelength 1083.33 nm

We decided to install a new narrowband fibered laser source for the
cooling. We ordered the same device (cf. Table 4.2) as the one used
by our colleagues from theHelium lattice team (conducted by David
Clément). It is a singleDFBfiber laser, with passive vibration reduction.
The output power is factory set to 33mW and cannot be changed, we
can monitor it with a dedicated low power output (returning 0.4 % of
the effective power).

The output power is remarkably stable: we measured it of the order of
0.01 %. After amplification (and after the optical isolator) power fluc-
tuations are smaller than 1% for the usable beam, and only generated
by the laser amplifier.

The emission wavelength can be tuned with two independent fea-
tures:

▶ thermal tuning: the laser’s fiber is mounted under tension on a
substrate that tightens or expandswhen the temperaturechanges.
Due to the thermal contraction or dilation of the substrate,
the laser’s cavity length (and therefore the modes) also changes.
In addition, the temperature of the cavity itself has a thermo-
optic effect, modifying its refractive index. These two effects
contribute to the dependence of the optical path length –and
therefore the emission wavelength– with temperature ;

▶ fast wavelength modulation: the emission wavelength can also
be modulated with a piezoelectric crystal acting on the cavity.
We can control the wavelength over a range of 1GHz, with a
±2.5V tension, and a modulation bandwidth of 30MHz1.1: these characteristics correspond to

thenarrow frequency tuning, controlled
with single-ended input signal. There is
also a wide frequency range (10GHz)
and other voltage control modes, but
they are not suitable/useful for our fre-
quency locking servo loop. See docu-
mentation for more information.

We remade the frequency locking servo loop: it is a rather usual design
(cf. Figure 4.14) based on the saturated absorption spectroscopy princi-
ple. Yet, in comparison with the previous version of the setup (with
the laser diode) we have a few enhancements:

▶ a muchmore compact design, without external optical isolator
(OI), as an OI is already included inside the laser box ;

▶ we have a strong separation between the frequency locking op-
tical setup and the cooling optical setup, obtained with a fiber
splitter2 ;2: before, the separation was made in

free space inside the frequency locking
setup.

▶ the small frequency modulation used for the lock-in amplifica-
tion is performedwithRFonto theAOM: it is not present in the
optically-amplified beam used for the cooling. In the previous

https://contentnktphotonics.s3.eu-central-1.amazonaws.com/Koheras-ADJUSTIK/Koheras ADJUSTIK and ADJUSTIK HP Product Guide- 20220405 R1.2.pdf
https://contentnktphotonics.s3.eu-central-1.amazonaws.com/Koheras-ADJUSTIK/Koheras ADJUSTIK and ADJUSTIK HP Product Guide- 20220405 R1.2.pdf
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Figure 4.14: Laser frequency locking: optical schematic. This is a standard setup using saturated absorption spectroscopy, with a
helium discharge cell. Blue wires are fiber optics. We use a 1 × 2 fiber optic coupler (C) to split the output fiber of the NKT© laser
source: 75% of the power (≈ 27.3mW) is used for the saturated absorption spectroscopy, and the remaining 25% is amplified
and used for the actual cooling.The waist of the beam out of the fiber collimator (Col) is ∼ 1.6mm, we reduce it to 325 µmwith
a first telescope in order to match the usage recommendation of the AOM (the AOM is placed at the minimal waist position,
1m away from the fiber collimator). The AOM is used in double-pass (70% of double-pass efficiency): a 200mm plano-convex
lens is making the image of the waist (centred on the AOM) onto the retro-reflecting mirror (in a 1𝑓 − 1𝑓 gaussian optics
configuration).The AOM is fed with 110MHzRF, and the laser is therefore locked 220MHz away from the atomic resonance
(red-detuned).The signal of the photodiode (PD) is treated with a lock-in amplifier, and then used in a servo loop that generates
the feedback on the laser. A 5 dB optical density is used to reduce the intensity of the probing beam: its value has been chosen to
optimise the relative amplitude of the saturated absorption peak.

setup, the AOMwas poorly resilient to RF frequency changes,
and this modulation was performed onto the laser diode’s cur-
rent, and therefore affected the whole cooling procedure...
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Figure 4.15: Example of Stability of
number of atoms in a Doppler cloud
with the newNKT© laser.The number
of atoms is measured with fluorescence
imaging.Thefluctuations are dominated
by slow drifts, with an amplitude of 2%
RMS (5% peak-peak). The short term
fluctuations are even much smaller than
that (< 0.5 % RMS), and are not rele-
vant anymore for us.

Wechecked the spectral width of the emitted laser beam after frequency
locking: we studied the beat note with the laser of the Helium lat-
tice team with a spectrum analyser and found a value of a few tens of
kilohertz, which is the expected order of magnitude.

2.2.3 Obtained effects

We did not observe a significant gain in terms of cooling performances
with the new laser: the temperatures are roughly the same as before at
each cooling stage, and we did not increase the number of atoms a lot.
However, we obtained a huge gain of stability: mechanical sensitivity
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of the apparatus (acoustic noise, vibrations...) vanished, and we usually
have less than 5% of fluctuations of the number of atoms in the cMOT
and Doppler clouds.

In summary:

before: 30% of short time fluctuations of the number of atoms, and
long-term drifts with an amplitude a few tens of percent→
Figure 4.12 ;

now: almost zero short time fluctuations of the number of atoms, and
a long-term drift with an amplitude smaller than 5%→ Figure
4.15 ;

Needless to say, we consider this change a victory.

Remark 4.4 (Average number of atoms) One could argue that
–on average– the number of atoms in Figure 4.15 is also higher the
in Figure 4.12, and it would be appealing to conclude that the new
narrowband laser also leads to a gain in the mean number of atoms
loaded in the cloud: this is erroneous.

It is delicate to compare these numbers between situations separated
by several months or years1

1: data in Figure 4.12 were taken on
17/12/2020, whereas data in Figure 4.15
were taken on 21/02/2022.

as we know it also depends on external
factors that we do not always master: air conditioning temperature,
watercooling temperature, plasma source temperature and pressure,
etc. Secondly, many parameters of these “prototype” apparatus drift a
bit with time, andwe regularly have to adjust it: quality of the optical
fibers’ coupling, RF noise, strong current stability, etc. Finally, we
know that the number of atoms is strongly related to the intensity
of the helium plasma source. In particular the metallic needle (cf.
Figure 3.18) ages through the years, and should be changed every two
to five years, which has never been done in over a decade...

However the gain of stability mentioned above is:

1. resilient over time ;
2. unprecedented in the history of the experiment ;
3. completely correlated in time to thechange of the laser source ;

we can therefore legitimately claim that it is induced by the new
fibered DFB laser.
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2.3 Instabilities of the magnetic trap

Themagnetic trap is realised with two clusters of coils in a cloverleaf
design (eachcluster is symmetrically disposedonboth side of the science
chamber, along the 𝑥 axis: cf. Subsection 3.2.3). On 7 October 2020,
due to a human mistake1, one of two quadrupole coils overheated (our 1: an experimentalist forgot to open one

of the watercooling valve of the coils.logging system suggests that the temperature of the cluster exceeded
100 °C). Since this episode, we observe positional instabilities of the
cloud in the magnetic trap (cf. Figure 4.16). These are both shot-to-
shot instabilities (𝜎𝑥 ∼ 300 µm, 𝜎𝑦 ∼ 100 µm), and day-to-day drift of
the mean value (same order of magnitude).
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Figure 4.16: Position of the centre of a cloud trapped in the magnetic trap, and evaporated down to ∼ 15 µK (corresponding
to a final RF frequency of 4MHz).These data are acquired through in situ fluorescence imaging, meaning that the picture of
the cloud is taken in the trap, before the release of the cloud. Each blue point is an experimental realisation.The black points
are obtained by averaging the data acquired on a given day, and the red area is the corresponding ±1𝜎 standard deviation.The
plotted data spread over a 77 days time range.
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In practice this is quite harmful as the position of the cloud is not well
defined at the end of the evaporation in the MT1, which causes serious1: it not stable shot-to-shot and day-to-

day issues during the loading of the cloud in the ODT (the position of the
ODT beams’ waists obviously being fixed).

In addition, it prevents us from performing direct measurements of
the trapping frequencies in the MT.These measurements are some-
times required, because we know that for a given current, the bias field
𝐵0, and therefore the transverse trapping frequency, may shift a bit
with time. Indeed, generally we do not see changes of the bias on the
one day timescale, but sometimes (typically once in a few months) an
unmastered event may shift it of a few hundreds of kilohertz. This
is not particularly surprising as the bias is a small field (a few gauss)
resulting from the annihilation of strong fields (several hundreds of
gauss): it is extremely sensitive to the geometry of the coils (at the mi-
crometer length scale), and the trapping frequency (scaling in 1

√
𝛣0
) is

also sensitive to the variations of the bias...

Fortunately, the gradient 𝐵′ is resilient, meaning that theΛ constant in
the relation Eq. (3.44) is also robust2. Therefore our knowledge of the2: in the past, even when the bias and

therefore the transverse trapping fre-
quency changed for some reason (at
fixed current 𝑖BOT, cf. Section 2 in Chap-
ter 1), the product 𝜔2∥ × 𝛣0 remains the
same.

transverse trapping frequency can rely on our measurements of theΛ
constant Eq. (3.45).

We ordered toOswald Elektromotoren© the fabrication of professional
grade clusters of coils (received in September 2022). Contrary to the
previous coils that were homemade (winded by hand), these coils will
have precise sizing and tolerances (typically of the order of the tenth of
millimeter). The electrical insulation should also be of better quality3.3: in the current system, the coils are

cast in epoxy, but in someplaces the layer
of epoxy is quite thin, and we already
had to reinforce the insulation with pro-
tective Kapton tape.

In addition to the fact that the current coils are getting old4, we know

4: we recently noticed that the cooling
water flow inside the coils has been re-
duced by a factor of almost 2 since 2000
(probably due to limestone deposit).

–regarding the electrical resistance– that a loop in one of the cloverleafs
is short-circuited: the changing of the magnetic trap will also correct
the induced symmetry issue.

The blueprint of the Oswald’s clusters of coils is given in the Appendix:
see Figure D.2.

2.4 A next-gen sequencer and software control

2.4.1 GUS and the old hardware

Until the end of May 2021, the sequencer of the experiment was an
old frame in which we had plugged various cards (TTL output, analog
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output, RF output...) that were made at the electronics workshop
of the IOGS1. The system was software controlled by a heavyMatlab 1: by André Villing
script. This piece of technology was set up roughly 20 years ago, and
we had several problems with it:

▶ on the hardware side, the electronics engineer who had designed
the sequencer’s cards left the institutemany years ago, andwe did
not have hardware maintenance anymore. In particular –due
to aging– we often had output channels (or even sometimes a
whole card) breaking down, without the possibility of repairing
or replacing it. Wewere basically under the clock, waiting for the
time where we would be running out of spare output channels
and cards ;

▶ on the software side, the Matlab script2 consisted in a heavy 2: that was named “gus”
stacking of patches (getting bigger and bigger as the successive
generations of PhD students joined and leaved the team). Even
if we proceeded to a “trimming of the fat” back in 2020, the
code was not perfectly stable, and very prone to bugs. When
something went wrong during the experiments, it was also quite
frustrating to always suspect the sequence code rather than some
physical issue to explain it ;

▶ the last point that was not very satisfying was the very hacky way
to control the two PSUs used for the MOT and the MT. Com-
munication was established with an old-fashion GPIB bus. In
order to keep the time synchronisation of the events occurring
during an experimental cycle, thechanging of output state of the
PSUs had to be triggered by the sequencer: we used three TTL
outputchannels (that could therefore encode 23 = 8states), that
were connected to a serial port of our experiment computer’s
motherboard3. The state of the serial port was then read every 3: serial port that was initially supposed

to serve a completely different purpose...50ms by the Matlab’s script, and an according GPIB signal was
sent when achange of state was detected... With this solution,
we were limited to 8 current configurations for the PSUs, and,
during an experiment, changing from one configuration to an-
other was done abruptly. The USB to GPIB (or LAN to GPIB)
adapter was not very faithful as well, and regularly caused ex-
periment to crash. Finally, we could not beat the 50ms jitter
on the time control of the PSUs, corresponding to the reading
frequency of the serial port ;

We therefore took the decision to terminate the use of this dying setup,
and install a brand new system, based on a recent factory-made se-
quencer, and a PythonicPython framework to carry out the software inter-
face.
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2.4.2 ADwin sequencer and the QControl3 project

Figure 4.17: Picture of the ADwin-

Pro II-light sequencer frame.
More details can be found in the official
documentation.

The new hardware is a flexible and modular Jäger ADwin © system,
model ADwin-Pro II-light (7 slots frame). We can plug different
types of input/output electronic cards in it, the first one being a CPU
and LAN interface card: Pro-CPU-T12. This CPU is used to compile
the sequences’ script (containing all the events that occur during an
experimental realisation), and sets the time resolution of the clock up
to the nanosecond scale, which is much better than what we need (the
shortest timescale we need to address being in the microsecond range).
We must however notice that even if the hardware is able to work
at the nanosecond timescale, we have a software issue (coming from
Qcontrol3: our interfacing layer, see next paragraph) that causes a crash
in the compilation of the sequences when we want to perform pulses
shorter than 5 µs. This is an annoyance, and when this manuscript is
being written this bug has not yet been fixed.

This sequencer is programmed with a dedicated native compiled lan-
guage calledADbasic1 (the language and the binary compiler share the1: useful information can be found in

the french official documentation same name). In practice we rarely have to workwith it, because we use a
Python framework designed for cold atoms experiments, that behaves
as a softwarewrapper of the low-level ADbasic control of the sequencer:
QControl3. This software project has started in February 2016 at the
Max-Planck-Institute for Quantum Optics (MPQ), with the initial
contribution of Dr. Christoph Gohle2, Dr. Sebastian Blatt3 and Dr.2: postdoc at the time in the Quantum

Many Body Systems team.

3: group leader, QuantumMany Body
Systems, strontium experiment.

Christian Groß4. In our group it was imported byDr. Marc Cheneau5,

4: group leader, Rydberg Dressed
QuantumMany-Body Systems.

5: who was introduced to QControl3
during his postdoc position at theMPQ.

who set it up now for his own strontium experiment at the IOGS, and
is now a regular contributor and maintainer of the project.

It would be quite cumbersome to go deep into the details about the
way QControl3 is coded ; I will restrict my explanations to its general
structure, what problems it is meant to solve, how we implemented it
in our experiment and finally give some pros and cons about it.

2.4.3 QControl3 structure

QControl3 has a server/client structure, that allows for the synchroni-
sation of events carried out by the ADwin sequencer (TTL pulses, ana-
log output ramps...) with operations realised by other devices (PSUs,
RF synthesisers...). The synchronisation is managed at the software
level by the “Timing system” (cf. Figure 4.18) that sets a namespace
where all these events are declared, and keeps tracks of their trigging.
Using external devices in sync with sequencer’s channels events was a

https://www.adwin.de/us/produkte/proII.html
https://www.adwin.de/us/produkte/proII.html
https://www.adwin.de/fr2/index.php
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“Strict timing”
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(hardware: ADwin)

Timing Channels
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● Digital outputs

“Sloppy timing”
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Software Controller
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● Cameras
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    Timing Channels
● External programs
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User
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Figure 4.18: Chartflow diagram of the
coarse architecture of the QControl3
program. The core of the code is the
“Timing System”, that is mainly a server
launched on the experiment’s computer
once and for all (linux based system).
This server receives a queue of requests
from “clients”, that consist in sequence
script files, and configuration files. With
a bare installation of QControl3 the
interaction between the client and the
server is carried out by a command line
interface (CLI), but we also added a sim-
ple graphical user interface (GUI) as a
plugin, to have a rather user-friendly
control over the various parameters.The
Timing System is responsible for the syn-
chronisation between the sequencer’s
part (in red: theTiming Controller Ad-
win and its various Timing Channels)
and the software / external devices part
(in blue: the Software Controller). It also
writes the output files (HDF5...) at the
end of the run. All these terms are just
naming conventions chosen by the first
developers of the QControl3 project.

real issue with our previous system.

In the experimental sequence’s script (provided by the users) there is
only one time variable 𝑡 involved. After compilation and execution of
the sequence, depending on the device that we call upon, events are
triggered with respect to a timing that is managed either by the com-
puter’s internal clock1 (“sloppy timing”) or the very precise ADwin’s 1: e.g. the time at which an external de-

vice receives a set of SCPI instructions,
or we request the execution of a side pro-
gram...

clock2 (“strict timing” for all the events involving a card slotted in the

2: e.g. the time of trigging of an exter-
nal device, the toggling of a sequencer’s
TTL signal, the voltage ramping of an
analog output...

ADwin’s sequencer).

Concerning data saving and logging, each experimental realisation re-
turns anHDF5 archive file, containing the complete sequence scripts, all
the parameters used during the run, and can also contain the “output”
data of interest (PNG image coming from the fluorescence imaging, or
MCP data): this big file therefore contains all the depth of an experi-
mental realisation, from the users’ request to raw data measurements.
In practice, even though the writing of this HDF5 file is a very good
habit (regarding the reproducibility crisis in science), it is quite heavy
and slow to manipulate (especially in our data analysis programs). To
overcome this, we save the relevants parameters and the data separately,
in appropriate lighter files, devised for a fast digital treatment3, in addi- 3: json or toml for the experiment pa-

rameters (frequency/power of AOMs,
laser pulses durations...), PNG for the im-
ages coming out of the InGaAs camera,
and binary files (with 64 bits integers)
for the MCP raw data and the recon-
structed atoms files.

tion to the HDF5 archive.
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The couple ADwin/QControl3 also provided an unexpected advan-
tage: the reduction of duty cycle, by approximately 4 s! Indeed, in
the previous system based on Matlab, the experimental scripts were
executed without compiling, with the interpreted languages paradigm.
In particular the initialisation of each run, and the final resetting of
the apparatus was time consuming, and caused a painful dead time be-
tween each experimental realisation. QControl3 proceeds differently:
the “Timing System” sends a compiled version of the sequence to the
ADwin sequencer (or “Timing Controller”), and compiles the next
realisation while the current one is running. With this strategy, there is
no dead time between the runs, and the duty cycle is strongly reduced
(cf. Table 4.3).

Table 4.3: Typical duty cycles of dif-
ferent types of clouds. These numbers
come from “stability test” sequences,
acquired between February and April
2022 (by taking the average run time
rounded up to the first decimal). It may
vary downside in the upcomingmonths,
as we did not yet proceed to a final opti-
misation of the duty cycle.

cMOT 2.3 s
Doppler 4.7 s
EvaporatedMT 6.2 s
BEC in ODT 11.4 s

Finally, QControl3 was imagined to be object-oriented, which sim-
plifies the readability of the sequences’ script a lot. There is no longer
any need to constantly have the “micro” control of the apparatus (at
the single channel scale), because we can now define mixin and com-
plex objects, that will implement useful methods to control it. For
example, if we want to switch on a laser at a given time, and ramp its
frequency with an AOM, instead of individually addressing all the
sequencer channels involved in the state of this beam1, we can rather

1: typically: one TTL gate to turn on
the AOM’s RF, two analog outputs to
control its power and frequency and one
TTL gate to open the mechanical shut-
ter.

define a Laser python class taking into account all parameters and
calibrations (mechanical shutters delays, 2D frequency/power AOM
calibrations2...) and only having in the script an instruction of the

2: in summer 2021, I spent some time
implementing a multi-channel calibra-
tion class, where the input and out-
put quantities can have arbitrary dimen-
sions: e.g. the power of a beamdiffracted
in anAOM (1 quantity) may depend on
the RF power and frequency (2 quanti-
ties).

type:

myLaser.turn_on(detuning=20MHz, power=10mW)

which is much easier to read and debug.

Pros and cons The relative low visibility of QControl3 in the
community of ultra-cold atoms experiments can be considered to be
a disadvantage of this solution. Indeed it could have been possible to
choose a more “mature” system on software level, with a larger com-
munity of users, such as the CiceroWord Generator [147] developed at[147]: Keshet et al. (2013), “A distributed,

graphical user interface based, computer
control system for atomic physics exper-
iments”

theMIT, and based on National Instruments commercial hardware.
This heavy community support of Cicero translates into an appreciable
gain of time: we can expect the code to be essentially bug-free, and
most of the hardware implementation is already done3. Apart from3: i.e. drivers for electronic cards.
the fact that Cicero is widely known and has to be a reliable system,
it is also a natively graphical user interface (GUI) program, making it
fairly user-friendly. On the contrary, the workflow after the default
installation of QControl3 is fully scripted.

https://en.wikipedia.org/wiki/Mixin


2 Problems and workarounds during my PhD 169

However QControl3 offers a very easy way of accessing to a deep con-
trol of the hardware, and the sequence that we want to run. Python is
currently themostpopular programming language, it iswell-established
in academic teaching programs, and very fast to learn. QControl3
provides a clean and readable framework to quicklywrite sequences in a
Python file. The drawbackof fullyGUI programs suchasCicero occurs
when it is once needed to do something that is not covered by the GUI.
In such a case, the only solution is to go back to the core source code
of the software1, which in the case of Cicero turns out to be written 1: which is generally not much known

by regular users.in C#2... I would therefore claim that QControl3 is probably more
2: which is a complex compiled pro-
gramming language, derived from the
C++.

versatile. We also integrated a GUI module to our implementation of
QControl3.

With only a few days of learning, Python scripts allow for an almost
complete control on the way data are generated and saved. We have
integrated to our framework a live data analysis program, also written
in Python, that can manage both 3DMCP data, and 2D imaging data.
We shall briefly describe this new interface in the next subsection.

2.4.4 A word about HAL

Figure 4.19:HAL’s logo

We deployed Helium Atom Locator (HAL) a few months before mov-
ing to QControl3, under the initial impulse of Alexandre Dareau3,

3: who worked as a postdoc for the
team between 2019 and 2020.

who started the project before he left the team. The motivation for the
development and maintenance of this new software was twofold:

1. we firstmeant tomodernise and unify the previousMatlab based
GUI programs. Before HAL, MCP data, and imaging data
were treated in separate softwares, with an important amount
of old “legacy” code that was difficult to maintain4. Without 4: actually, most of the code of these

programs was inherited from even older
programs developed by the successive
generation of PhD students of the team.

going too deep into the details, in the case of MCP data the
workflow was particularly bad, as it required the use of a chain
of interdependent softwares, ultimately relying on gus (the
previous sequencer interface)... It was no longer reasonable to
continue living with this ;

2. we also wanted to develop a modulable software, that could be
reused (and co-maintained) by other teams of our group, and
(why not?) other groups.

As of today, HAL is perfectly functional5

5: actually some figures of this
manuscript, exposing visualisations
of experimental data were generated
thanks to a data exportation module of
HAL.

, although (in my opinion
at least) not mature and complete enough to start promoting it out
of our group. As one of the current main developers, I contributed
to many aspects of this project6

6: to cite a few: the data and metadata
loading modules (in particular for the
MCP), enhancements of the visualisa-
tions, fitting and interpolation modules
(in particular in 2D), several scripts and
libraries for data analysis (e.g. the mo-
menta correlation of atoms extracted
fromMCP data) etc.

. I will quickly explain what HAL can
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Figure 4.20: User interface of HAL. In the centre we have a display panel where the main visualisation of data is placed (here it
is the fluorescence imaging of a cloud in the MT, but it could also be an image similar to Figure 4.11 for MCP data). On the left,
we find a customisable data explorer and selector, and a quick fit panel.The panels is dedicated to metadata, with a selector of
sources, and the text printing of selected files’ metadata. At the bottom we have quick access to common plotting methods.The
custom analysis scripts (generally more complex) can be accessed via a dedicated menu placed at the top of the window.

currently do, coarsely how it is build and thought, and finally how I
would like it to evolve in a near future.

HAL is able to load and process different raw data types —in our case
PNG files (coming out of the fluorescence imaging), and custom binary
files (containing rawMCP) data— but also differentmetadata types.
Metadata refer to anything giving information about rawdata:

▶ file timestamp, file size, file path... ;
▶ sequence parameters ;
▶ fit results ;
▶ external data (e.g. room temperature at the time of the run)
▶ etc.

HAL’s interface then offers simple plotting and fitting routines: it basi-
cally allows us to visualise data as functions of metadata (e.g. how the
number of atoms in the cloud evolves when wechange an experimental
parameter), or data as functions of other data (i.e. correlations).

HAL’s power lies in its modular architecture. Indeed, in order to load
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Figure 4.21: Examples of visualisations generated with HAL.The top left 1D plot results from an automated script returning
the temperature of a cloud, out of fluorescence images taken after different times of flight. At the botton I plotted examples of
2D visualisations, that can be very handy when we want to probe the effect of two interdependant experimental parameters at
the same time.The bottom right plot is actually performing an interpolation of the data points, which can be useful when we
want to have a 2D density plot as a function of parameters that are not regularly positioned in a “square” array.

data and/or metadata, HALmakes use of “user-modules”1 that are 1: that are placed in a configuration
folder in user’s home directory.in charge of explaining to HAL how a given file is formatted/serialised.

Data and metadata are then loaded in a universal manner, and can be
processed with any other data or metadata. The particular data class
of 2D pictures is for the most part already implemented in the core
code of HAL (since it is by far the most common data file type used in
experiments)2. 2: the corresponding loading module

incorporates basic default parameters,
and can be easily extended (thanks to
Python class inheritance) to include ad-
ditional custom features: e.g. pixel size,
magnification factor etc.

In addition to the user-modules, HAL loads “user-scripts”
at startup, which are also custom extensions that a research team can
quickly incorporate to HAL’s GUI to perform specific treatments
onto the data. For example, visualisations of the momenta correlations
between atoms that I will show in Chapter 5 are generated with custom
user-scripts that I wrote for the team.

HAL core code is maintained in a git repositoryGit-Alt that is currently
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hosted on A. Dareau’s Github© Github page: https://github.com/
adareau/HAL. Members of other teams of our group would like to
integrate HAL to their workflow. After discussions, the next major
features that we would like to implement are:

▶ the caching of loaded data for better performances ;
▶ an asynchronous andmultiprocessing behaviour of the software

(meaning that the whole software is not frozen when we ask it
to run a long task) ;

The user-modules that we use in our team are available on my own
Github© Github page https://github.com/quentinmarolleau/
HAL-modules ; and our user-scripts are hosted on Charlie Lep-
rince’s pagehttps://github.com/charlieleprince/HAL-scripts.

https://github.com/adareau/HAL
https://github.com/adareau/HAL
https://github.com/quentinmarolleau/HAL-modules
https://github.com/quentinmarolleau/HAL-modules
https://github.com/charlieleprince/HAL-scripts
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Introduction
Atomic pair production exhibiting quantum correlations is a research
thematic that has been actively explored in the last fifteen years, and is
at the very core of our experiment. In this topic, one may be interested
in the correlations considered with respect to internal degrees of free-
dom, which can be achieved through a wide variety of ways, including
spin-squeezing [148]

[148]: Lücke et al. (2014), “Detecting
Multiparticle Entanglement of Dicke
States”

, nonlinear coupling and non-gaussian states gen-
eration [149]

[149]: Strobel et al. (2014), “Fisher In-
formation and Entanglement of Non-
Gaussian Spin States”

, magnetic separation of spin states [150]
[150]: Lange et al. (2018), “Entangle-
ment between Two Spatially Separated
Atomic Modes”

, BEC collisions
[151][151]: Shin et al. (2019), “Bell Correla-

tions between Spatially Separated Pairs
of Atoms”

... All these works have revealed strong quantum properties of the
prepared states. The other approach –which is the one considered by
our team– consists in focusing on external (ormechanical) degrees of
freedom, such as momentum. Different generation protocols have also
been explored, like the pair-wise dissociation of molecules [152]

[152]: Greiner et al. (2005), “Prob-
ing Pair-Correlated Fermionic Atoms
through Correlations in Atom Shot
Noise”

, the
parametric excitation of a BEC [6, 153]

[6]: Jaskula et al. (2012), “Acoustic Ana-
log to the Dynamical Casimir Effect in a
Bose-Einstein Condensate”
[153]: Clark et al. (2017), “Collective
Emission of Matter-Wave Jets from
Driven Bose–Einstein Condensates”

(which is currently still under
study in our team), collisional deexcitation [154, 155]

[154]: Bücker et al. (2011), “Twin-Atom
Beams”
[155]: Borselli et al. (2021), “Two-Particle
Interference with Double Twin-Atom
Beams”

or the collision
between BECs [5, 156, 157]

[5]: Perrin et al. (2007), “Observation of
Atom Pairs in Spontaneous Four-Wave
Mixing of Two Colliding Bose-Einstein
Condensates”
[156]: Kheruntsyan et al. (2012), “Viola-
tion of the Cauchy-Schwarz Inequality
withMatter Waves”
[157]: Hodgman et al. (2017), “Solving
the QuantumMany-Body Problem via
Correlations Measured with a Momen-
tumMicroscope”

that was developed and used in our team
from 2006 to 2012.

Actually, some techniques developed since the 1980’s in quantumoptics
(in particular the spontaneous parametric down-conversion (SPDC)
[158, 159] and the four-wave mixing (FWM) [160–162]) may serve as
an inspiring guideline to reproduce this type of nonclassical sources
in the realm of ultra-cold atoms. In 2005, the theoretical contribution
of Mølmer et al. [163]

[163]: Hilligsøe et al. (2005), “Phase-
Matched FourWave Mixing and Quan-
tum Beam Splitting of Matter Waves in
a Periodic Potential”

initiated the setting of a new generation of
experiments where the production of atomic pairs is induced by the
presence of an optical lattice, generating a dynamic instability. The first
experiments making use of this technique were achieved in the group
of Wolfgang Ketterle [164]

[164]: Campbell et al. (2006), “Para-
metric Amplification of Scattered Atom
Pairs”

, and since 2012 our team also implemented
it [7]

[7]: Bonneau et al. (2013), “Tunable
Source of Correlated Atom Beams”

. This technique offers a better flexibility and control over the
generated pairs than the one based on the collisions between BECs.

This aspect of our experiment as been studied in depth, and is well
documented in the thesismanuscripts ofmypredecessors. In particular,
the interested reader can find a depiction of the FWMprocess in the
BEC inMarie Bonneau’s thesis [165], simulations in Josselin Ruaudel’s
thesis [166], and a perturbative study in Pierre Dussarrat’s thesis [90].
We will only give in this manuscript some general reminders about the
theoretical that we usually use to describe our source.

After roughly 5 years of inactivity, and thanks to the recent upgrades
that we described in the previous chapter, our source is finally able to
produce atomic pairs again. In the second part of this chapter, we will
present the most recent experimental results that we obtained in the
last few months.
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1 Source of momenta-correlated atoms

1.1 Generalities

1.1.1 Parametric down conversion

Nowadays, SPDC is one of the most common techniques used in
quantum optics to generate highly correlated pairs of photons [167], [167]: Mandel et al. (1995), Optical Co-

herence and Quantum Opticsit has proven to be able to generate highly quantum correlation [168]
[168]: Walborn et al. (2010), “Spa-
tial Correlations in Parametric Down-
Conversion”

and the hamiltonian describing the process –in the classical and non-
depleted1 pump approximation– is well-known, and studied since the

1: the non-depleted approximation is
valid as SPDC is generally an inefficient
process. For the matter, this poor bright-
ness is its weakest point for modern ap-
plications to quantum technologies.

1960’s [169]:

[169]: Louisell et al. (1961), “Quantum
Fluctuations and Noise in Parametric
Processes. I.”

�̂�SPDC = ∫
𝑝, 𝑠, 𝑖

ℎ̵ κ(𝑠,𝑖)𝑝

√
𝑁𝑝 (�̂�†𝑠 �̂�†𝑖 + �̂�𝑠�̂�𝑖) (5.1)

Where κ(𝑠,𝑖)𝑝 is a functioncharacterising the efficiency of conversion,𝑁𝑝
is the average number of particles of the pump in themode𝑝, and �̂�𝑠 / �̂�𝑖
are the annihilation operators of the correlated particles, canonically
named signal and idler.

Naturally, the SPDC is maximally efficient when energy and momen-
tum (or wave vector) are conserved, which (with obvious notations)
reads:

⎧⎪⎪⎨⎪⎪⎩

𝐸𝑝 = 𝐸𝑠 + 𝐸𝑖
𝐤𝑝 = 𝐤𝑠 + 𝐤𝑖

(5.2a)

(5.2b)

These relations are usually called phase-matching condition.

However, SPDC is a second-order nonlinear process (involving the
second-order susceptibility 𝜒(2) of a nonlinear medium). In second
quantisation, it corresponds to a “one in, two out” situation, where a
single photon from the pumpmay give birth to two correlated photons:
this is clearly not something that can be considered in a monoatomic
gas (but it is possible with molecules [152]). We unfortunately can not [152]: Greiner et al. (2005), “Prob-

ing Pair-Correlated Fermionic Atoms
through Correlations in Atom Shot
Noise”

get helium atoms to come out of nowhere for free...

We have to look for the next order nonlinear effect to find a situation
where the total number of particles is conserved.
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1.1.2 Four-wave mixing

While it less common in quantum optics, the FWM involves the third
order susceptibility 𝜒(3) of a nonlinear medium. It can be interpreted
with a “two in, two out” picture, where two particles in different modes
interact and generate two particles in the correlated modes signal and
idler. Since the number of particles is conserved it may have a non-zero
effect in a monoatomic gas.

Assuming again that the pumps are classical and not depleted, it is easy
tocheck that the FWM leads to the same type of quadratic hamiltonian
as for SPDC [52, 166, 167]:[52]: Gerry et al. (2005), Introductory

Quantum Optics
[166]: Ruaudel (2013), “Création et car-
actérisation d’une source ajustable de
paires d’atomes corrélés”
[167]: Mandel et al. (1995), Optical Co-
herence and Quantum Optics

�̂�FWM = ∫
𝑝1, 𝑝2, 𝑠, 𝑖

ℎ̵ κ(𝑠,𝑖)𝑝1, 𝑝2

√
𝑁𝑝1
√
𝑁𝑝2 (�̂�

†
𝑠 �̂�
†
𝑖 + �̂�𝑠�̂�𝑖) (5.3)

The conservation of energy and momentum now involves four parti-
cles:

⎧⎪⎪⎨⎪⎪⎩

𝐸𝑝1 + 𝐸𝑝2 = 𝐸𝑠 + 𝐸𝑖
𝐤𝑝1 + 𝐤𝑝2 = 𝐤𝑠 + 𝐤𝑖

(5.4a)

(5.4b)

1.1.3 Extension to the atomic case

These conversion processes require the intervention of a non-linear
medium, which is naturally provided in a BEC thanks to the inter-
atomic interactions. That being said, a simple and natural approach to
turn on the generation of correlated atomic pairs consists in colliding
two BECs: a lot of collisions take place and the mechanism of FWM is
strongly activated. This technique has been pioneered at the NIST, in
the team ofWilliam D. Phillips [170]

[170]: Deng et al. (1999), “Four-Wave
Mixing withMatter Waves”

and then improved in the team
ofWolfgang Ketterle [171, 172]

[171]: Vogels et al. (2002), “Generation
of Macroscopic Pair-Correlated Atomic
Beams by Four-Wave Mixing in Bose-
Einstein Condensates”
[172]: Vogels et al. (2003), “Coherent
Collisions between Bose-Einstein Con-
densates” . It was also used in our team between

2006 and 2012 [5]: in particular, the observation of a Cauchy-Schwarz[5]: Perrin et al. (2007), “Observation of
Atom Pairs in Spontaneous Four-Wave
Mixing of Two Colliding Bose-Einstein
Condensates”

inequality violation, and sub-shot-noise statistics [156] was achieved

[156]: Kheruntsyan et al. (2012), “Viola-
tion of the Cauchy-Schwarz Inequality
withMatter Waves”

with this technique. The main problem with this method is its lack of
control. Momentum conservation imposes that the scattered atoms
are on a sphere1 (in the momentum space), the remaining condensates

1: in the reference frame of the collision,
the sphere is centred on zero, and the
BECs momenta give its radius.

after collision, pancake-shaped after expansion, lying on the edge of
the sphere. This source of correlated pairs with opposite momenta is
not very convenient for performing atom interferometry with Bragg
diffraction.
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Since 2012, our team took better control of the phase-matching of
the pair creation process condition by adding an optical lattice [7], [7]: Bonneau et al. (2013), “Tunable

Source of Correlated Atom Beams”followingMølmer et al.’s proposal [163]. The strength of this solution
[163]: Hilligsøe et al. (2005), “Phase-
Matched FourWave Mixing and Quan-
tum Beam Splitting of Matter Waves in
a Periodic Potential”

lies in its versatility: the control on the phase and amplitude of the
lattice is transposed into the control over the dispersion relation to
which the atoms are subjected, and –ultimately– over the two main
parameters of interest for such a source: the emission momenta and
the average number of particles per correlated mode [62]. Even if the [62]: Perrier et al. (2019), “Thermal

Counting Statistics in an Atomic Two-
Mode Squeezed Vacuum State”

source remains multimode, the pairs are no longer scattered on a whole
sphere, but rather inside a cone of vertical principal axis: this is more
convenient for the realisation of Mach-Zehnder like interferometers
with Bragg diffraction.

1.2 A bit of formalism

1.2.1 Four-wave mixing in a BEC

In the Heisenberg picture, the field operator Ψ̂ describing the BEC
satisfies the evolution equation:

𝑖ℎ̵ 𝜕𝑡Ψ̂(𝐫, 𝑡) = [Ψ̂(𝐫, 𝑡), �̂�] (5.5)

�̂� being the hamiltonian containing the relevant physics, in particular
the interatomic forces.

A rather simple depiction of �̂� is obtained with the dilute gas hypoth-
esis1 at temperature close to zero [173]. It allows to replace the mi- 1: meaning

𝑛 𝑟30 ≪ 1 (5.6)

with 𝑛 being the cloud’s density and 𝑟0
the range of the interatomic force.

[173]: Pitaevskii et al. (2016), Bose-
Einstein Condensation and Superfluid-
ity

croscopic interatomic potential by the regularised contact interaction
(only depending on the 𝑠-wave scattering length), and to apply the
Bogoliubov prescription2.

2: replacing the zero-momentum an-
nihilation operator �̂�0 by the number
√
𝛮.

The hamiltonian �̂� then reads:

�̂� = ∫ d3𝐫 Ψ̂† (− ℎ̵
2

2𝑚 Δ + 𝑉(𝐫, 𝑡) +
𝑔
2 Ψ̂

†Ψ̂) Ψ̂ (5.7)

𝑉 corresponding to an external potential (typically the trap used in
experiments) and 𝑔 the coupling constant, which fulfills:

𝑔 = 4𝜋ℎ̵
2𝑎
𝑚 (5.8)
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Nowwe can a priori force the apparition of the FWM terms by decom-
posing the field operator over the four modes that it involves, written
with the appropriate annihilation operators:

Ψ̂(𝐫, 𝑡) = Φ𝑝1(𝐫, 𝑡)�̂�𝑝1 +Φ𝑝2(𝐫, 𝑡)�̂�𝑝2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

pumpmodes

+ Φ𝑠(𝐫, 𝑡)�̂�𝑠 +Φ𝑖(𝐫, 𝑡)�̂�𝑖´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
scattered modes

(5.9)

Actually, in our case the depletion induced by the FWM is very small
when comparedwith the number of atoms in the gas, and the dynamics
of the wave function above is expected to be very slow compared to the
typical duration of the pair creation process during our experiments1:1: in fact, the evolution

equation Eq. (5.5) leads to
Ψ̂(𝐫, 𝑡) ∝ 𝑒−

𝑖
ℎ̵ (𝛦𝑠+𝛦𝑖−𝛦𝑝1−𝛦𝑝2)𝑡,

where 𝛦𝑠, 𝛦𝑖, 𝛦𝑝1 , 𝛦𝑝2 are the energies
associated to eachmode, and the FWM
is effective only when the energy is
conserved. On the timescale of the pair
creation process (∼ 400 µs) this phase
term does not have the time to evolve.

we can drop time dependence in Eq. (5.9). In addition, by considering
the low temperature limit, the BEC reduces to the zero-momentum
mode contribution: both atoms of the pump have zero momentum,
and the decomposition (5.9) may be restricted to three terms only2:

2: in nonlinear optics, this situation
with a single pumpmode is sometimes
called partially degenerated four-wave
mixing.

Ψ̂(𝐫) = Φ0(𝐫)�̂�0´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
BEC (pump)

+ Φ𝑠(𝐫)�̂�𝑠 +Φ𝑖(𝐫)�̂�𝑖´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
scattered modes

(5.10)

the facts that there are exactly four field operators in the interaction
term of the hamiltonian (5.7) guarantees that four-wave mixing is the
only nonlinear conversion process that may appear.

The injection of (5.10) inside the interaction part 𝑔
2 ∫ d

3𝐫 Ψ̂†Ψ̂†Ψ̂Ψ̂
of (5.7) generates many terms among which only two kinds fulfill the
momentum conservation (and therefore significantly contribute to the
dynamics of the system):

1. mean-field interaction terms:

�̂�𝛭𝐹 = 2𝑔∑
𝑖≠𝑗

𝑖,𝑗∈{0,𝑠,𝑖}

∫ d3𝐫 ∣Φ𝑖(𝐫)∣
2�̂�†𝑖 �̂�𝑖 ∣Φ𝑗(𝐫)∣

2
�̂�†𝑗 �̂�𝑗

+ 𝑔2 ∑
𝑖∈{0,𝑠,𝑖}

∫ d3𝐫 ∣Ψ𝑖(𝐫)∣
4�̂�†𝑖 �̂�

†
𝑖 �̂�𝑖�̂�𝑖

(5.11)

2. two four-wave mixing terms:

�̂�𝐹𝑊𝛭 = 𝑔∫ d3𝐫 (Φ20 (𝐫)Φ∗𝑠 (𝐫)Φ∗𝑖 (𝐫)�̂�†𝑠 �̂�†𝑖 �̂�0�̂�0 + h.c.)
(5.12)

Indeed, using the Bogoliubov prescription �̂�0 ≈
√
𝑁 ⋅ 𝟙, with the

classical and non-depleted pump approximation, and by denoting

𝐼𝑠,𝑖 ≜ ∫ d3𝐫Φ20 (𝐫)Φ∗𝑠 (𝐫)Φ∗𝑖 (𝐫) (5.13)
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we have
�̂�𝐹𝑊𝛭 = 𝑁𝑔 (𝐼𝑠,𝑖 �̂�†𝑠 �̂�†𝑖 + 𝐼

∗
𝑠,𝑖 �̂�𝑠�̂�𝑖) (5.14)

which has the same form as Eq. (5.1) and Eq. (5.3), with a complex
rate

κ ≜
𝑁𝑔
ℎ̵ 𝐼𝑠,𝑖 (5.15)

𝐼𝑠,𝑖 is an overlap integral term, with the dimension of a density, that
is obviously dependent on the spatial shape of the wave functionsΦ.
This integral term corresponds to momentum conservation.

1.2.2 Phase-matching condition in a periodic potential

If we neglect the mean-field interaction energy for a moment, and
rewrite Eq. (5.4a) only with the kinetic energy contribution of the
modes,

ℎ̵2𝑘2𝑝1
2𝑚 +

ℎ̵2𝑘2𝑝2
2𝑚 = ℎ̵

2𝑘2𝑠
2𝑚 +

ℎ̵2𝑘2𝑖
2𝑚 (5.16)

with a single BEC, both atoms of the pump are in the same mode 𝑘0,
giving

ℎ̵2𝑘20
𝑚 = ℎ̵

2𝑘2𝑠
2𝑚 +

ℎ̵2𝑘2𝑖
2𝑚 (5.17)

it is not difficult to see that, in free space, without additional external
potential, it is not possible to fulfill the phase-matching condition with
partially degenerated four-wavemixing (i.e. when the twopumpmodes
are equal). This is why the former generation of experiments carried
out in our team required the collision between two BECs.

With a single condensate (𝑝1 = 𝑝2) the dispersion relation seen by the
atoms must be modified, so that the phase-matching condition can be
satisfied. It has been proven [163] that it can be achieved with a periodic [163]: Hilligsøe et al. (2005), “Phase-

Matched FourWave Mixing and Quan-
tum Beam Splitting of Matter Waves in
a Periodic Potential”

potential, that is in practice obtained with an optical lattice. The first
experiment of this kind has been conducted by Ketterle et al. [164] in

[164]: Campbell et al. (2006), “Para-
metric Amplification of Scattered Atom
Pairs”

2006.

Remark 5.1 (Bandstructure and quasi-momentum) With a spatially
periodic potential, Bloch’s theorem guarantees that there is a basis of
wave functions, each being an energy eigenstate, that can be written:

Ψ(𝐫) = 𝑒 𝑖
𝐪⋅𝐫
ℎ̵ 𝑢𝐪(𝐫) (5.18)

where 𝑢 has the same periodicity as the potential.
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Figure 5.1: Pair creation process in the
lowest energy band of the optical lat-
tice (with 0.45𝛦𝑙𝑎𝑡 depth). In the refer-
ence frame of the lattice, the BEC (green
point) has a quasi-momentum −0.6𝑘𝑙𝑎𝑡.
The periodicity of the dispersion rela-
tion makes it possible to find a solution
to the phase-matching condition (edges
of the dotted black line). When the lat-
tice is switched off, Bloch’s wave func-
tions with quasi-momentum 𝑞 (eigen-
states of the hamiltonian with the lat-
tice) are projected onto the plane waves
with momentum 𝑝𝑧. If it is switched off
adiabatically, the momenta 𝑝𝑧 are just
the restriction to the first Brillouin zone
of the quasi-momenta. Picture adapted
from [90].
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Thenthe resolutionof the eigenvalues equation (the time-independent
Schrödinger equation) gives the band structure of the atoms in the
periodic potential (details of the calculations may be found in any
solid state physics textbook, such as [174, 175]

[174]: Kittel (2018), Introduction to
Solid State Physics
[175]: Ashcroft et al. (1976), Solid State
Physics

). We therefore find out
that the dispersion relation is no longer quadratic (as in free space)
but periodic, with a period 𝑘𝑙𝑎𝑡 = 𝜋

𝑎 (𝑎 being the spatial period of the
potential).

In our case the potential is periodic along the vertical direction, which
is also the elongated axis of the BEC, that is why we often restrict the
problem to 1D physics:

Ψ(𝑧) = 𝑒 𝑖
𝑞𝑧𝑧
ℎ̵ 𝑢𝑞𝑧(𝑧) (5.19)

𝑞𝑧 is very much alike a momentum, except that it is restricted to the
first Brillouin zone 𝑞𝑧 ∈ [−ℎ̵𝑘𝑙𝑎𝑡, ℎ̵𝑘𝑙𝑎𝑡] ; it is called quasi-momentum.
For simplicity, we will drop the 𝑧 index in the following, and only
denote 𝑞 the quasi-momentum along the vertical axis.
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Figure 5.2: First three bands of the
modified dispersion relation, for
𝐕𝟎 = 𝟎.𝟖 𝚬𝐥𝐚𝐭 (harmonic potential). In
the case of the adiabatic turning on of
the lattice, the pairs are only generated
on the lowest energy band 𝛦0.

In the pair creation lattice, without the interactions, Bloch’s wave func-
tions are the right modes to consider, and the phase-matching corre-
sponds to the conservation of the quasi-momentum and energy, similar
to Eq. (5.4). In practice due to the high density of the gas, the interac-
tions are not negligible and modify the energy conservation equation.
We model it with a mean-field term, that we add to the bare equation
involving Bloch’s wave function in the non-interacting problem:

{
2𝐸(𝑞0) = 𝐸(𝑞𝑠) + 𝐸(𝑞𝑖) + 2𝑔 𝑛0
2𝑞0 = 𝑞𝑠 + 𝑞𝑖 mod(2ℎ̵ 𝑘𝑙𝑎𝑡)

(5.20a)
(5.20b)
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where 2𝑔 𝑛0 is the mean field interaction term (𝑛0 is the peak density
of the BEC). Solutions can be found thanks to periodicity (cf. Figure
5.1).
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Figure 5.3: First three bands of themod-
ified dispersion relation, for𝐕𝟎 = 𝟒 𝚬𝐥𝐚𝐭
(harmonic potential). Compared to Fig-
ure 5.2, the gap between the bands has
increased.

Remark 5.2 (Critical BEC’s quasi-momentum) With a periodic
potential, it is the change in concavity in the modified dispersion re-
lation (cf. Figure 5.1) that provides a solution to Eq. (5.20). However
it does not mean that such a solution exists whatever the value of
the quasi-momentum 𝑞0 is. Without trying to prove a very general
mathematical theorem with all its rigorous assumptions, we will just
remember the following result, that is a key element for experiments:

a solution to the phase-
matching equations exists ⇔ the solution is unique

⇒ ∣𝑞0∣ ≥ 𝑞𝑐(𝑉0) > 0.5 ℎ̵𝑘𝑙𝑎𝑡

where 𝑞𝑐 is a critical value of the BEC’s quasi-momentum, which
depends on the lattice depth𝑉0.

1.2.3 Dynamics, density and correlations

We will not give a detailed description of the dynamics of the pair
creation in this manuscript. This work has already been done in the
references [90, 166]. We will just recall that the two-mode emission [90]: Dussarrat (2017), “Expériences

d’Optique Atomique Quantique, Inter-
féromètres à 2 et 4 modes”
[166]: Ruaudel (2013), “Création et car-
actérisation d’une source ajustable de
paires d’atomes corrélés”

with a FWM term in the hamiltonian (such as (5.14)) is well-known.
In particular, it is not difficult to check (using the Heisenberg picture)
that the creation operators associated to the pairs have the form:

⎧⎪⎪⎨⎪⎪⎩

�̂�𝑠(𝑡) = �̂�𝑠(0) cosh(∣κ∣ 𝑡) − 𝑖𝑒𝑖𝜑κ �̂�†𝑖 (0) sinh(∣κ∣ 𝑡)
�̂�𝑖(𝑡) = �̂�𝑖(0) cosh(∣κ∣ 𝑡) − 𝑖𝑒𝑖𝜑κ �̂�†𝑠 (0) sinh(∣κ∣ 𝑡)

(5.21a)
(5.21b)

where κ = ∣κ∣𝑒𝑖𝜑κ is defined in Eq. (5.15).

It is then possible to calculate expectation values and second-order
correlation functions for the modes 𝑠 and 𝑖, after the application of the
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pair creation lattice for a duration 𝑇:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑁𝑠∣𝑖(𝑇) = 𝑁𝑠∣𝑖(𝑇) = ⟨�̂�†𝑠∣𝑖�̂�𝑠∣𝑖⟩ = sinh
2(κ 𝑇) ≜ 𝜈

𝑔(2)𝑙𝑜𝑐 (𝑇) =
⟨�̂�†𝑠∣𝑖�̂�

†
𝑠∣𝑖�̂�𝑠∣𝑖�̂�𝑠∣𝑖⟩
𝑁2
𝑠∣𝑖(𝑇)

= 2

𝑔(2)𝑐𝑟𝑜𝑠𝑠𝑒𝑑(𝑇) =
⟨�̂�†𝑠 �̂�†𝑖 �̂�𝑠�̂�𝑖⟩
𝑁𝑠(𝑇)𝑁𝑖(𝑇)

= 2 + 1𝜈

(5.22a)

(5.22b)

(5.22c)

where the notation 𝑠∣𝑖means that the quantity is the same whatever
the mode we consider (actually this model is completely symmetric
between the two modes).

𝑔𝑙𝑜𝑐 is the normalised local second-order correlation function for each
mode, which is equal to 2 due to bosonic bunching. 𝑔(2)𝑐𝑟𝑜𝑠𝑠𝑒𝑑 is the nor-
malised crossed second-order correlation function between the two
modes, that we usually want to be as large as possible to witness quan-
tum effects.

It is even possible to solve the Schrödinger equation (in the Schrödinger
picture) to extract the form of the quantum state generated by the
amplification process:

∣𝜓(𝑇)⟩ = 1
cosh(∣κ∣𝑇)

∞
∑
𝑛=0
𝑒𝑖𝑛𝜑κ tanh𝑛(∣κ∣𝑇) ∣𝑛, 𝑛⟩𝑠,𝑖 (5.23)

which is exactly the TMS that has been discussed in Subsection 2.2.4
of Chapter 1.

The results above are obtained by considering that the conservation
of quasi-momentum and energy are strict, which leads to a simple
two-mode emission. In fact, we empirically know that our source
of pairs ismulti-mode. This is not a big surprise since the duration
of application of the lattice is short (less than a millisecond) which
relaxes the energy conservation condition, and due to the trapping
potential, the BEC has a finite size, which also relaxes the momentum
conservation condition.

We do not have an exact analytical treatment of the multi-mode emis-
sion of source. PierreDussarat proposed in his PhD a 1D perturbative
approach, assuming the gas to be homogeneous, and the pair creation
lattice to be shallow: the general procedure is similar to the one used
for the two-mode emission, but in order to find the expression of the
annihilation operators (similarly as Eq. (5.21)) the coupling between
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Figure 5.4: Profile of the density for the
multi-mode emission.The black line is
obtained with the perturbative model
(5.27). Its shape depends on the time of
application of the lattice (the larger the
duration, the stricter the conservation of
energy is, and the tighter the bumps are)
and on the BEC’s quasi-momentum.
If we consider now the strict conserva-
tion of quasi-momentum, only pairs of
modes, symmetrically distributed, are
correlated: we represented them with
the same colour.

the modes is truncated to the first order. With a shallow lattice, the
wave functions of the atoms are approximated by plane waves trun-
cated to the box delimitating the BEC, and the overlap integrals are
computable:

two modes©
𝐼𝑠,𝑖 ⟶

multi-mode³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
𝐼(𝑞, 𝑞′) = 1𝑉 sinc (Δ𝑞(𝑞, 𝑞′)𝐿2) (5.24)

where𝑉 is the volume of the BEC and 𝐿 its length, and

Δ𝑞(𝑞, 𝑞′) = 2𝑞0 − 𝑞 − 𝑞′ mod(2ℎ̵ 𝑘𝑙𝑎𝑡) (5.25)

is the deviation from quasi-momentum conservation.

The pair creation rate is therefore also computable:

two modes³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
κ = 𝑁𝑔ℎ̵ 𝐼𝑠,𝑖 ⟶

multi-mode³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
κ(𝑞, 𝑞′) = 𝑁𝑔ℎ̵ 𝐼(𝑞, 𝑞′)

= 𝑔𝑛0ℎ̵ sinc (Δ𝑞(𝑞, 𝑞′)𝐿2)

(5.26)

where 𝑛0 is the atomic density of the gas.

This leads to an approximated expression of the number of particles
𝜈(𝑞) emitted in eachmode, as a function of their quasi-momenta:

𝜈(𝑞) = ∫
d𝑞′
Δ𝑞𝑚
∣κ(𝑞, 𝑞′)∣2 ∣𝜀 (𝑞, 𝑞′)∣2 (5.27)

where
𝜀 (𝑞, 𝑞′) ≜ 𝑇 sinc (Δ𝐸(𝑞, 𝑞′)ℎ̵

𝑇
2 ) (5.28)

Δ𝐸(𝑞, 𝑞′) = 2𝐸(𝑞0) − 𝐸(𝑞) − 𝐸(𝑞′) − 2𝑔𝑛0 (5.29)
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is the deviation from energy conservation, andΔ𝑞𝑚 = 2𝜋
𝐿 is the size of

the modes (depending on the length 𝐿 of the BEC).

An example of such density distribution is given in Figure 5.4 (black
line). The scaling 𝜈 ∝ 𝑇2 is consistent with the simple two-mode
emission model Eq. (5.22a), in the perturbative regime where κ𝑇 ≪ 1.
𝑛0 is the peak atomic density of the BEC.

Now, in the sameway, this perturbativemodel allows for the evaluation
of the second-order correlation function1 between the modes2. One1: a reminder about the correlation is

given in Subsection 2.3

2: the perturbative model actually pro-
vides the dynamics of the creation/an-
nihilation operators, and thus the cor-
relation fonctions, as expressed as the
expectation value of a product of these
operators.

finds:

𝐺(2)(𝑞1, 𝑞2) = 𝜈(𝑞1) ⋅ 𝜈(𝑞2)

+ ∣∫
d𝑞
Δ𝑞𝑚

κ∗(𝑞1, 𝑞) κ(𝑞2, 𝑞) 𝜀∗(𝑞1, 𝑞) 𝜀(𝑞2, 𝑞)∣
2

+ ∣κ(𝑞1, 𝑞2)∣
2 ∣𝜀(𝑞1, 𝑞2)∣

2

(5.30a)

(5.30b)

(5.30c)

where three different terms are present: (5.30a) is the uncorrelated
background, (5.30b) is the local correlation term (similar to (5.22b)),
and (5.30c) is the crossed correlations term (similar to (5.22c)).

Numerically, withparameterschosen tomatchour experimental regime,
we cancheck that the correlation vanishes extremely fastwhen the quasi-
momentum is not conserved. We therefore simplify the model even
further, by imposing the strict conservation of quasi-momentum3. The3: which basically means (re-

garding Eq. (5.26)) that we set
κ(𝑞1, 𝑞2) =

𝑔𝑛0
ℎ̵ 𝛿 [Δ𝑞(𝑞1, 𝑞2)]

local and crossed –normalised– second-order correlation functions
take the simple form4:

4: Eq. (5.31b) looks like Eq. (5.22c), but
with 𝑔(2)𝑐𝑟𝑜𝑠𝑠𝑒𝑑 ÐÐ→𝜈→∞ 1, instead of 2... This
comes from the fact that it is a perturba-
tive calculation, only valid in the limit
𝑔𝑛0
ℎ̵ 𝛵 ≪ 1, thus 1, 2 ≪

1
𝜈 .

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑔(2)𝑙𝑜𝑐 (𝑞1, 𝑞2 = 𝑞1 + 𝛿𝑞) = 1 + sinc
2 (𝛿𝑞𝐿2)

𝑔(2)𝑐𝑟𝑜𝑠𝑠𝑒𝑑(𝑞1, 𝑞2 = 2𝑞0 − 𝑞1 + 𝛿𝑞) = 1 +
1

𝜈(𝑞1)
sinc2 (𝛿𝑞𝐿2)

(5.31a)

(5.31b)

We will obviously never observe correlations that fit such sinc2 profiles
experimentally: many approximations have been made to obtain this
analytical result, and we also have to keep in mind that this study is per-
turbative, and should be wrong when the average number of particles
per mode becomes “large”5.5: even if we do not precisely know

where the perturbative approach col-
lapses The interesting point of this work is that it provides a consistent scal-

ing between the width of the correlations (local and crossed) and the
typical Δ𝑞𝑚 size of the modes: both scale in 1

𝐿 , the inverse size of the
condensate. The physical interpretation of this is satisfying: correla-
tions are present if we overlap an atomic mode with itself, or with its
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correlated partner. It also shows the experimental advantage we have
by preparing elongated condensates: the number of correlated modes
fitting in the emission envelope is larger, making the design of many
particles interference experiments possible.

Three ideas are worth remembering:

1. the relaxed energy conservation relation sets the width of the
envelope for the density of emitted pairs (cf. Figure 5.4). It is
experimentally controlled by the duration of the pair emission
process (cf. Eq. (5.27) and Eq. (5.28)) ;

2. the width of the modes is proportional to 1
𝐿 , which is also the

typical size of the correlations between 𝑞1 and 𝑞2 ;
3. the conservation of quasi-momentum can be considered to be

strict in very good approximation, which guarantees that the
nonlocal correlation only occurs for pairs of modes ;

With all of this in mind, we can propose the following quantum state
to describe what our source is emitting:

∣𝜓⟩ =⨂
𝑞 ∈𝑄
{
√
1 − ∣𝛼𝑞∣

2 ∞
∑
𝛮=0

𝛼𝛮𝑞 ∣𝑁,𝑁⟩𝑞,2𝑞0−𝑞} (5.32)

where 𝑄 is the set of modes of width Δ𝑞𝑚 fitting in the envelope
𝑛(𝑞, 𝑇), and 𝛼𝑞 is the two-mode squeezed state parameter, relatively to
the couple of modes (𝑞, 2𝑞0 − 𝑞), which satisfies:

∞
∑
𝛮=0

𝑁∣𝛼𝛮𝑞 ∣
2 = 𝜈(𝑞) (5.33)

1.2.4 Turning on and off the optical lattice

The pairs production is carried out by the collisions, and therefore
requires high density to be efficient. That is why the pair creation
lattice is applied while the ODT is still operating.

However, the pair creation lattice is not switched on and off abruptly.
We actually proceed to a linear ramping of the optical power, in approx-
imately 𝑇𝑟 ≈ 100 µs.

▶ the lattice is switched on adiabatically so that the BEC is loaded
in the lowest energy band of the modified dispersion relation1 1: thereafter the pairs are created in this

lowest energy band.(cf. Figure 5.1). The general case would require to take into
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account the complete band structure while describing the pair
creation process, and has been explored experimentally in [176].[176]: Denschlag et al. (2002), “A Bose-

Einstein Condensate in an Optical Lat-
tice”

The condition of adiabaticity can be written [177]

[177]: Messiah (1961), Quantum Me-
chanics

d𝑉0
d𝑡 ≪

Δ𝐸(𝑞0)2
ℎ̵ (5.34)

where𝑉0 is the amplitude of the periodic potential, andΔ𝐸(𝑞0)
is the energydifferencebetween aBlochstatewithquasi-momentum
𝑞0 in the lowest energy band 𝐸0, and a Bloch state with quasi-
momentum 𝑞0 in the first excited band 𝐸1 (cf. Figure 5.2 and
Figure 5.3). Indeed, the BECmust be loaded adiabatically in the
lattice, with a relative quasi-momentum 𝑞0 > 0.5 ℎ̵𝑘𝑙𝑎𝑡 (cf. Re-
mark 5.2). In practice, it means that there is no Bragg diffraction
of the BEC by the lattice (see [8] for more details), which is a[8]: Lopes (2015), “An Atomic Hong-

Ou-Mandel Experiment” criterion that can be checked experimentally.

This condition is more complicated than it seems, because
the band structure (and therefore Δ𝐸(𝑞)) depends on 𝑉0. In
general, the required ramping time (𝑇𝑟) of the lattice’s potential
increases with 𝑉0 and ∣𝑞0∣ (cf. Figure 5.2 and Figure 5.3: when
∣𝑞0∣ increases, Δ𝐸 decreases and therefore 𝑇𝑟 ∝

1
Δ𝛦 increases).

Some numerical simulations have been performed in reference
[8] with different parameters. We generally find that

𝑇𝑟 ≫ [1 − 10] µs

but with a very deep lattice (𝑉0 ⪆ 4𝐸𝑙𝑎𝑡) and with a BEC having
a large quasi-momentum (∣𝑞0∣ ≈ 0.9 ℎ̵𝑘𝑙𝑎𝑡) we can find

𝑇𝑟 ≫ 100 µs

▶ when the lattice is switchedoff, Bloch’sstates are projectedon the
free space eigenstates, which are the planewaves. If the switching
off is done abruptly, we are basically measuring the Bloch’s states
components in the plane waves’ basis. It turns out that when
the lattice is shallow, the decomposition of the Bloch’s states is
very close to the trivial decomposition (only one component in
the plane waves’ basis is populated) [90, 176]

[90]: Dussarrat (2017), “Expériences
d’Optique Atomique Quantique, Inter-
féromètres à 2 et 4 modes”
[176]: Denschlag et al. (2002), “A Bose-
Einstein Condensate in an Optical Lat-
tice”

. It is indeed quite
natural to think that in the limit of the very shallow periodic
potential, the physics is almost the same as in free space, and the
Bloch’s states match the plane waves perfectly. We therefore also
perform an adiabatic turning off of the pair creation lattice in
order to map the Bloch’s states of the generated pairs onto plane
waves lying inside the first Brillouin zone.
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2 Experimental results

We will present in this section the latest experimental results that we
have obtained. At the time this manuscript is being written, this work
can still be considered to be a work in progress. Indeed, we succeeded
in making our first atomic pairs on 30March 2022, and we got a new
apparatus break down approximately two months later: the ODT
fibered laser died and we also faced electrical1 and vacuum issues. We 1: one the two PSUs used for the MT

stops randomly during the experiments,
and the IGBT watercooling system be-
gan to malfunction.

still have to figure out the cause of the electrical problems, but we
already have ordered and received a new IPG Photonics© laser that we
should install soon.

The main goal (which has not achieved been yet) is to find two sets of
parameters:

▶ a firstone generating correlated pairswith a large average number
of particles per mode (useful for 𝑛-particles HOM-like experi-
ments) ;

▶ a second one with a very small number of particles per mode,
that should be used to perform Bell inequalities violation exper-
iments ;

When the apparatus issues forced the experiment to stop producing
pairs (inMay 2022) weweremostly exploring the first type of regime.

In the first sub-section we will describe our optical setup, and then we
will give an example of analysis for a specific dataset. We cannot claim
that this dataset is optimal, because we did not have time to properly
test the effect of the different parameters. We can only say that we
observed promising correlation with it.

2.1 Optical setup

As it has already been discussed, the periodic potential is realised with
an optical lattice, resulting from the crossing of two laser beams. We
use an ultra-stable Nd:YAG 1064 nm laser (Mephisto by Coherent©).
It is very far (in blue) from the atomic transition (23𝑆1 → 23𝑃2 at
𝜆𝑙𝑎𝑡 = 1083 nm), making the one-beam induced spontaneous emission
negligible during our ≲ 1ms long pulses (in reference [8] a rate of
2 ⋅ 10−5ms−1 is calculated with our typical parameters).

The atoms feel a repulsive potential proportional to the optical inten-
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sity:
𝐼(𝑧, 𝑡) = 4𝐼0 sin2 [𝑘𝑙𝑎𝑡𝑧 + 𝛿𝜔

𝑡
2] (5.35)

2𝜃

�⃗�𝑦

�⃗�𝑧

�⃗�𝑥

Figure 5.5: Schematic representation of
the pair creation lattice.The red vertical
narrow and the large red circles repre-
sent the two beams of the ODT.The lat-
tice, is represented in blue, with its two
beams forming a 2𝜃 angle. Axes orien-
tations are set in compliance with Fig-
ure 3.19 on page 129.

Table 5.1: Parameters of the lattice

𝜆𝑙𝑎𝑡 1064 nm
𝜃 83°
𝑎𝑙𝑎𝑡 536 nm
𝑘𝑙𝑎𝑡 5.86 µm−1 ≈ 1.01𝑘𝑟𝑒𝑐
𝑣𝑙𝑎𝑡 93mm s−1

typical 𝛿𝜔 2𝜋 × 105 kHz
typical 𝑣0 56mm s−1

with
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑘𝑙𝑎𝑡 ≜
𝜋
𝑎𝑙𝑎𝑡

𝑎𝑙𝑎𝑡 =
𝜆𝑙𝑎𝑡

2 sin(𝜃)

𝑣𝑙𝑎𝑡 =
ℎ̵𝑘𝑙𝑎𝑡
𝑚

(5.36a)

(5.36b)

(5.36c)

𝑎𝑙𝑎𝑡 being the lattice periodicity, and 𝛿𝜔 being the angular frequency
difference between the two beams. It is often convenient to give the
atoms’ velocities/momenta in the lattice’s units of velocity/momentum
(respectively 𝑣𝑙𝑎𝑡 and ℎ̵𝑘𝑙𝑎𝑡).

Ifwe thenwork in the lattice’s frameof reference, thepotentialwrites:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑉𝑙𝑎𝑡(𝑧) = 𝑉0 sin2(𝑘𝑙𝑎𝑡𝑧)

𝑉0 =
ℎ̵Γ2𝐼0
2 𝐼𝑠 Δ𝑙𝑎𝑡

Δ𝑙𝑎𝑡 = 2𝜋𝑐 (
1
𝜆𝑙𝑎𝑡
− 1𝜆)

(5.37a)

(5.37b)

(5.37c)

𝐼0 being the single gaussian beam peak intensity.

The intensities of the beams are controlled with the RF frequency
of the two AOMs used to tune them. This RF power is modulated
with Mini-Circuit© RF attenuators. However this control is not yet
satisfying due to the nonlinear time response of the attenuators (which
could be an issue for the adiabatic loading of the BEC in a very deep
lattice). We should improve this part of the setup in the near future.

2.2 Generation of pairs

2.2.1 First characterisation of the pair creation’s
behaviour

When we performed our first pair generation experiments, we initially
tried to maximise the pair density signal (for convenience). That is
why we explored a regime where the average number of particles per
mode is large. Since we had to stop the experiments at a time when we
were still setting it up, we currently do not have many datasets with a



2 Experimental results 189

Date 13/05/2022
Sequence number 022

Lattice detuning 𝛿𝜔 = 2𝜋 × 105 kHz
Power per beam 85mW
Lattice ramping up/down duration 100 µs
Lattice max. power duration 800 µs

Lattice depth 𝑉0 = 0.54(1)𝐸𝑟𝑒𝑐
BEC’s quasi-momentum 𝑞0 = 0.6 ℎ̵𝑘𝑙𝑎𝑡
vODT power 0.4W
hODT power 0.1W

Number of files 802

Table 5.2: Sequence reference and in-
formations about the dataset chosen to
measure densities and correlation

reasonable number of experimental realisations (to perform statistical
averaging). We give in Table 5.2 the reference and some information
about the dataset that we will use in the following for the computation
of second-order correlations.
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Figure 5.6: Example of Rabi oscilla-
tions with the pair creation lattice, with
85mW (value used for the dataset Ta-
ble 5.2). Here we plot the normalised
transferred population: 𝛮𝑡 =

∣𝛮1−𝛮0∣
𝛮1+𝛮0

The fit returns a Rabi angular frequency
Ω = 2𝜋 × 11.4 kHz. In order not to sat-
urate the MCP, the experimental reali-
sations are performed with slightly off-
detuned Raman transfers, so that only
a small fraction of the total number of
atoms is detected.

As it has been discussed in the first section, the two important variable
parameters characterising the pair creation regime are theBEC quasi-
momentum (controlled by the lattice’s beams relative frequency), and
the lattice depth (controlled by the beams power). Even though the
lattice depth could be evaluated with Eq. (5.37b), it does not give a
faithful value, because of our poor knowledge of the waists of the
lattice’s beams1. The safest way to evaluate the lattice’s depth is to

1: their waists are large, and we do not
have a convenient access to measure
them. Additionally we found numeri-
cal discrepencies in the previous PhD
manuscripts/lab notebooks concerning
these waists.

perform Rabi oscillations of the BEC, using the lattice.

The idea (as always for Rabi oscillations) is to perform the coherent
coupling between the state of zero-momentum in the trap ∣ℎ̵𝑘 = 0⟩
and the state with a momentum resulting from the exchange of two
photons with the lattice ∣2ℎ̵𝑘𝑙𝑎𝑡⟩. To this end, we just have to apply a
lattice detuning corresponding to the kinetic energy of an atom in the
∣2ℎ̵𝑘𝑙𝑎𝑡⟩ state:

𝛿𝜔 =
2ℎ̵𝑘2𝑙𝑎𝑡
𝑚 (5.38)

TheRabi oscillation can then be visualised by counting the number𝑁0
of atoms falling on the MCP inside a temporal box centred on a time
corresponding to the zero-initial velocity (308ms), and the number
𝑁2 of atoms falling in a temporal box centred on a time corresponding
to an initial vertical velocity 2ℎ̵𝑘𝑙𝑎𝑡𝑚 (327ms). Both boxes have the same
“size” –a few milliseconds– which is larger than the typical time arrival
spread of a BEC on theMCP (cf. Figure 3.25). An exemple of such a
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Figure 5.7: Quasi-momenta of the
pairs as a function of the BEC’s quasi-
momentum.The lattice’s depth is fixed
to 𝑉0 = 0.54 𝛦𝑟𝑒𝑐. The plain lines corre-
spond to the numerical solving of the
phase-matching conditions Eq. (5.20),
adjusted with the free parameter 𝑛0. We
observed that the pair generation starts
for𝑞0 > 𝑞𝑐 ≈ 0.53 ⋅ ℎ̵𝑘𝑙𝑎𝑡 > 0.5,which is
expected (cf. Remark 5.2). We find a
BEC’s density 𝑛0 ≈ 1.3(2) ⋅ 10

13 cm−3.
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measurement is given in Figure 5.6.

Then the lattice’s depth is simply given by (Ω being the Rabi angular
frequency of the lattice):

𝑉0 = 2ℎ̵Ω (5.39)

that we usually express in recoil energy units 𝐸𝑟𝑒𝑐 (cf. Table 3.2).

The BEC’s quasi-momentum in the lattice’s frame of reference is even
simpler to evaluate. It is the exact opposite of the running speed of the
lattice in the laboratory reference frame, therefore:

𝑞0 = 𝑚𝑣0 = 𝑚
𝛿𝜔
2𝑘𝑙𝑎𝑡

(5.40)

In order to test the behavior of the source, we measured the quasi-
momenta of the generated pairs, as a function of the BEC’s quasi-
momentum, with a lattice’s depth fixed to 𝑉0 = 0.54 𝐸𝑟𝑒𝑐. This ex-
periment actually consists in the verification of the phase-matching
conditions Eq. (5.20), that can be solved numerically. This type of
experiment has been conducted in our team back in 2013 [7], our recent[7]: Bonneau et al. (2013), “Tunable

Source of Correlated Atom Beams” results are presented in Figure 5.7. Since the mean field correction, pro-
portional to the BEC’s density, plays an important role in the energy
conservation equation (5.20a), and is the only fitting parameter to have
a good matching between our experimental data and the numerical
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Figure 5.8: 3D pairs’ density iso-
surfaces. The visualisation in the mo-
mentum space is computed with kernel
density estimation based on the experi-
mental datasetTable 5.2.The iso-surfaces
are linearly spaced, from low densities
(blue outer sheet) to high densities (red
inner sheet). The correlations are max-
imal in the region where the density is
the largest.This3Dgraph ismostly a first
qualitative visualisation of the shape of
the data.

estimation, this experiment is effectively ameasure of the BEC’s density
in the optical trap. We found a value

𝑛0 = 1.3(2) ⋅ 1013 cm−3

which is the expected order of magnitude. However we do not have
an alternative measurement method to compare this value yet. In-
deed, as it has been discussed in Chapter 31, the saturation of the MCP 1: last paragraph of Subsection 3.2.4
prevents us from performing a direct measurement, and fluorescence
imaging cannot resolve the BECs obtained in the ODT (due to the
small number of atoms). As I write this manuscript, we are testing
an imaging technique based on the absorption of the photons by the
cloud2. This technique is used by our colleagues in theHelium lattice 2: with the same camera as the one used

for the fluenceteam, and provided them very good result to estimate the number of
atoms in the BEC, and also calibrate the quantum efficiency of their
MCP. However we only have preliminary data: a more complete de-
piction of this approachwill probably be discussed in the manuscript
of Charlie Leprince (currently PhD student on the experiment).
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Figure 5.9: 2D histograms of the pairs’
density in the momentum space. The
numerical values are normalised by the
number of files (averaging) and the size
of the pixels (40 bins for the 𝑞𝑥/𝑞𝑦
axes and 100 bins for the 𝑞𝑧 axis):
these values are therefore expressed in
atoms/(ℎ̵𝑘𝑙𝑎𝑡)

2. The coloured dashed
lines mark out coarse domains used in
Figure 5.10 to compute 1D histograms
for both modes separately. We can
clearly see a sharp cut in the (𝑞𝑥, 𝑞𝑧) do-
main on the left graph (close to 𝑞𝑥 = 0):
this is due to the copper plate (cf. Chap-
ter 4) that hides most of theMCP’s area
corresponding to 𝑞𝑥 > 0.
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Figure 5.10: 1Dpairs’ density histogram
in the momentum space. Both regions
of emission are treated separately and
the domains chosen to perform the bin-
ning are represented in Figure 5.9 (with
the corresponding colours).The values
are normalised by the number of files
(averaging) and the size of the bins (200
bins for each axis). The integral under
each curve of the same colour is the same
(equal to the average number of atoms
in the domain).The shaded area under
the plain lines correspond to the modes’
size, estimated by studying the second-
order local correlation functions along
each axis (cf. Figure 5.14). We cancheck
that in the transverse plane the emission
is almost mono-mode. However along
the longitudinal axis the modes are too
small to even be visible: the emission is
multi-mode.
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2.2.2 Density of pairs

We can then visualise the density of atoms in the momentum space,
restricted to the region where the pairs are emitted (Figure 5.8, Figure
5.9, Figure 5.10). Once we have estimated the size of the modes (by
computing the local second-order correlations, cf. Subsection 2.3) we
can check the multimode nature of the emission along the different
axes, and also compute the average number of atoms per mode 𝜈.

Concerning the number of modes emitted, a simple way of proceed-
ing consists in computing the number of modes fitting in the density
envelope, by calculating the ratio

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑛𝑚 ≜
𝜎𝑖𝑑

𝜎𝑖𝑐 /
√
2

𝑑 ≡ density
𝑐 ≡ correlations

𝑖 ∈ {𝑥, 𝑦, 𝑧}
(5.41)

where 𝜎𝑖𝑑 is the RMS width of the 1D density along the 𝑞𝑖 axis (cf.
Figure 5.10) and 𝜎𝑖𝑐 is the RMS width of the second-order correlations
along the same axis: it is a direct picture of the RMS width of the
mode, up to a

√
2 factor coming out of the fact that the 𝑔(2) function

is essentially a product of densities, and not a density itself (cf. Figure
5.14 in the Subsection 2.3.3). We find

Atomic beam 𝑛𝑥 𝑛𝑦 𝑛𝑧
𝐪𝐳 ≈ 𝟎.𝟕 �̵�𝐤𝐥𝐚𝐭 3.6 2.4 15.2
𝐪𝐳 ≈ 𝟏.𝟒 �̵�𝐤𝐥𝐚𝐭 3.2 2.6 12.4

Table 5.3: Estimation of the number of
atomic modes emitted along each direc-
tion, estimated with the ratio (5.41) be-
tween the RMS size of the modes, and
the RMSwidth of the pairs’ density pro-
file.

These numbers are slightly larger than the old estimations of the num-
ber of emitted modes performed in 2015 and 2017. In particular, in the
transverse directions the emission is not perfectly monomode: wemust
therefore perform postselection in the transverse plane (to consider
only a single transverse mode) before computing the correlations along
the vertical direction.

Along the vertical axis, the emission is multimode, which is good to
set up a multi-particles interferometer (such as the Rarity-Tapster in-
terferometer [27]) to probe the entanglement between the modes (cf. [27]: Rarity et al. (1990), “Experimental

violation of Bell’s inequality based on
phase and momentum”

Chapter 2).
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Figure 5.11: Average number of parti-
cle per mode 𝜈 as a function of the cen-
tre 𝑞𝑧 of the mode.The protocol used to
compute these values is explained in the
main text. The red line corresponds to
the first atomic beam (𝑞𝑧 ≈ 0.7 ℎ̵𝑘𝑙𝑎𝑡),
and the orange line corresponds to the
second one (𝑞𝑧 ≈ 1.4 ℎ̵𝑘𝑙𝑎𝑡). Here 𝜈𝑚 is
themeasured population, meaning that
it reduced by the quantum efficiency
of the MCP: the actual population are
therefore approximately twice as large.
The boxes inside which the atoms are
counted are rectangular, with sizes cho-
sen in compliance with the measured lo-
cal correlations lengths (plotted in Fig-
ure 5.14):Δ𝑞𝑖 = 2×𝜎

𝑖
𝑐 /
√
2. We give here

these sizes in units of ℎ̵𝑘𝑙𝑎𝑡:

red line: Δ𝑞𝑥 0.18
Δ𝑞𝑦 0.24
Δ𝑞𝑧 0.013

blue line: Δ𝑞𝑥 0.14
Δ𝑞𝑦 0.17
Δ𝑞𝑧 0.011

Knowing the size of the modes, we can also compute the average num-
ber of particles per mode 𝜈. For the matter, we will distinguish the two
regions of emissions 1 and 2 (respectively in red and orange in Figure
5.9 and Figure 5.10), and also denote 𝜈𝑚 ≜ 𝜂𝜈, themeasured number of
particles per mode, that is dependent on the quantum efficiency 𝜂 of
the detector. By computing the average number of atoms in boxes

▶ centred on the zones where the density is maximal (cf. Figure
5.9) ;

▶ with sizes given by 𝜎𝑥,𝑦,𝑧𝑐 /
√
2, the estimated natural size of the

modes1 ;

1: the transverse sizes of the boxes are
visible with the shaded area of Figure
5.10.The longitudinal size is too small to
be visible on this figure.

we find: ⎧⎪⎪⎨⎪⎪⎩

𝜈𝑚,1 = 3.2
𝜈𝑚,2 = 1.5

(5.42)

These values corresponds to the average number of particles per mode
in the region where the atomic beams are the brightest. We can also do
the same thing, changing the centre of the mode: the resulting graph is
plotted in Figure 5.11.

There is a strong asymmetry between average populations of the two
modes. However, one should notice that there is also a significant dif-
ference between the size of the boxes that were used to obtain the graph
of the Figure 5.11. Indeed, as we will see in Subsection 2.3.3, the mea-
surements of the local correlation lengths give slightly different values
between the two atomic beams. But in practice, the measurements of
these lengths are not extremely precise (with the data that we currently
have), and anyway the natural modes are obviously not square shaped.
During an interferometry experiment, we will only need to select boxes
that are slightly smaller than the natural modes2 and having the same

2: in order not to wash away the correla-
tions by mixing up uncorrelated modes
in a same box.

size. We can therefore redo the same graph as in the Figure 5.11 but
using this time boxes having the same volume and shape. The result
is plotted in Figure 5.12. The values corresponding to the first atomic
beam are strongly reduced, reducing a lot the asymmetry between the
two beams. The maximum values are now

⎧⎪⎪⎨⎪⎪⎩

𝜈𝑚,1 = 1.6
𝜈𝑚,2 = 1.5

(5.43)

It remains a small difference between 𝜈𝑚,1 and 𝜈𝑚,2: this is not something
new for us (this sort of unbalance has always been observed), and it has
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also been reported by Ketterle et al., in similar experiments [164]. Two [164]: Campbell et al. (2006), “Para-
metric Amplification of Scattered Atom
Pairs”

hypotheses may be considered to explain this phenomenon:

1. it is always the mode with the largest momentum which is the
less populated. In the schematic Figure 5.1, it corresponds to the
Bloch state with the highest energy (that is remapped inside the
first Brillouin zone). Since its energy is larger, the probability
for an atom in this Block state to tunnel in the upper band is
also higher. If that happens, when the lattice is switched off, the
atom is recast at a differentmomentum, and does not contribute
to the density distribution that we measure.

2. the concavity of the dispersion relation also makes it possible for
two atoms in the high energy Bloch state to realise a secondary
collision and generate higher order pairs, which obviously de-
pletes the population of this Bloch state.
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Figure 5.12: Same graph as Figure 5.11
but using the same boxes, whose size is
given by:

Δ𝑞𝑥 0.14
Δ𝑞𝑦 0.17
Δ𝑞𝑧 0.011

However, we never proceeded to numerical simulation or experimental
tests to check the plausibility of these hypotheses, for now they are just
“food for thought”.

Setting aside the question of the profile’s asymmetry, in absolute terms,
the values (5.43) are large as compared to those used during the last
experiments conducted in the team [9, 59], where 𝜈was intentionally

[9]: Dussarrat et al. (2017), “Two-
Particle Four-Mode Interferometer for
Atoms”
[59]: Lopes et al. (2015), “Atomic
Hong–Ou–Mandel Experiment”

set to a value smaller than 1, such that the non-vacuum part of the
emitted state could be approximated by a ∣1, 1⟩ state. The difference is
approximately one order of magnitude.

This regime with a “large” number of particles per mode is not very
well known in our group, and has only been observed previously back
in 2013 [7]. The study of the correlations of the source in this regime is

[7]: Bonneau et al. (2013), “Tunable
Source of Correlated Atom Beams”

a new investigation for us. With these measured values, and assuming
that theMCPhas a detectivity of 50%, the actual number 𝜈 of particles
per mode should be ranging between approximately 3 and 4, which is
promising to performHOM-like experiments with TMS states, that
we have discussed in Chapter 1.

2.3 Probing the correlation

Let us now focus on the correlations that can be measured with the
sample.
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2.3.1 Short definition reminder

We first need to recall some definitions for the correlations functions.

Definition 8 (second-order correlation function) nth-order corre-
lation functions were introduced by Glauber in 1963 [69, 70]

[69]: Glauber (1963), “The Quantum
Theory of Optical Coherence”
[70]: Glauber (1963), “Coherent and In-
coherent States of the Radiation Field”

.

The second-order correlation function –probing density (or inten-
sity) correlations– is usually written:

𝐺(2)(𝐪𝟏, 𝐪′𝟏; 𝐪𝟐, 𝐪′𝟐) = ⟨�̂� †𝐪𝟏 �̂�
†
𝐪′𝟏
�̂�𝐪𝟐 �̂�𝐪′𝟐⟩ (5.44)

Where 𝐪𝟏, 𝐪
′
𝟏, 𝐪𝟐, 𝐪

′
𝟐 are general parameters: in our case velocities,

or momenta. This mathematical object is however not hermitian,
and therefore not a physical observable. In experiments we usually
restrict to the case where 𝐪𝟏 = 𝐪′𝟏 and 𝐪𝟐 = 𝐪′𝟐, and write:

𝐺(2)(𝐪𝟏; 𝐪𝟐) ≜ ⟨�̂� †𝐪𝟏 �̂�
†
𝐪𝟏 �̂�𝐪𝟐 �̂�𝐪𝟐⟩ = ⟨∶ 𝑛𝐪𝟏𝑛𝐪𝟐 ∶⟩ (5.45)

where 𝑛𝐪𝐢 is the density of particles in the mode 𝐪𝐢, and the
columns indicate the normal ordering of the annihilation/cre-
ation operators. Given the commutation relations [�̂�𝐪𝐢 , �̂�

†
𝐪𝐣], this

quantity can be related to the number of particles collected with
a detector.

In our case, we will see that the typical correlation length is not negligi-
ble compared to the size of the pair’s density profile in the momentum
space. This means that the “background” of the 𝐺(2) correlations is
also dependent on the momenta 𝐪𝟏, 𝐪𝟐. Thus we prefer to work with
normalised second-order correlation functions:

Definition 9 (Normalised second-order correlation function) We
define the normalised second-order correlation function by:

𝑔(2)(𝐪𝟏, 𝐪𝟐) ≜
𝐺(2)(𝐪𝟏; 𝐪𝟐)
⟨�̂� †𝐪𝟏 �̂�𝐪𝟏⟩ ⟨�̂�

†
𝐪𝟐 �̂�𝐪𝟐⟩

=
⟨∶ 𝑛𝐪𝟏𝑛𝐪𝟐 ∶⟩
⟨𝑛𝐪𝟏⟩ ⟨𝑛𝐪𝟐⟩

(5.46)

That takes the value of 1 when the two modes are not correlated.

In this manuscript when we refer to second-order correlation
function, we will always mean normalised second-order correla-
tion function.
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In the previous section,we already discussed the fact thatwe canobserve
two types of correlations with our source:

▶ local correlation: when amode is correlated with itself. These are
the correlations that are probed during anHBT-like experiment
[120, 178], where the correlation length is directly related to the [120]: Schellekens et al. (2005), “Han-

bury Brown Twiss Effect for Ultracold
QuantumGases”
[178]: Mølmer et al. (2008), “Hanbury
Brown andTwissCorrelations inAtoms
Scattered from Colliding Condensates”

inverse size of the BEC 1
𝐿 . In our model, where our source pro-

duces a TMS state, each single mode taken alone should behave
like a thermal state, and therefore thermal bosonic bunching:
we expect the local correlations to reach the value 2! = 2 (cf. Eq.
(5.31a) and [71]). [71]: Liu et al. (2009), “Nth-Order Co-

herence ofThermal Light”▶ nonlocal (or crossed) correlation: when the two modes of a same
pair are correlated. Eq. (5.31b) suggest that these correlations
may be larger than 2, especially when the population is small.

2.3.2 Second-order correlations: 2D map

The first analysis that we perform is the calculation and plotting of the
complete 𝑔(2)(𝑞1, 𝑞2), relative to the velocities along the vertical1. This 1: for the simplicity of the notations we

will for now drop the 𝑧 index of the mo-
menta, and write 𝑞1 ≡ 𝑞

1
𝑧 and 𝑞2 ≡ 𝑞

2
𝑧

map exhibits both local and nonlocal correlations: its visualisation is
given in Figure 5.13.

The calculation of these correlations requires to set boxes (in the 3D
momentum space) inside which we can count the number of atoms
detected. The shape (and size) of these boxes play a crucial role: they
have an averaging effect on the signal that we will quantify in a few
paragraphs. For now, let us just remember that ideally we want boxes
that are:

▶ narrow as compared to the modes’ size, along the direction in
which we want to probe the correlations. We indeed want to be
sensitive to the width of the correlations which is actually given
by the size of the mode ;

▶ roughly fitting the size of the modes’ in the other two directions:
so as to increase the signal to noise ratio (more atoms are de-
tected), without reducing the amplitude of the signal too much
because of the averaging effect of large boxes ;

For each experimental realisation, we compute the following quanti-
ties

𝑞1, 𝑞2 ∈ [0.54, 1.45] ℎ̵𝑘𝑙𝑎𝑡
⎧⎪⎪⎨⎪⎪⎩

𝑁(𝑞1) × 𝑁(𝑞2) → 2D array
𝑁(𝑞1) → 1D list
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Figure 5.13: 2D map of the second-
order correlation function, with regards
to the 𝑣𝑧 velocities. Each pixel corre-
sponds to the 𝑔(2)(𝑣1𝑧 ; 𝑣

2
𝑧 ) term, com-

puted by counting the atoms falling in
momenta boxes (with cylindrical shape)
parametrised as such:

Centers: 𝑣𝑥 −40.5mm s−1

𝑣𝑦 1.5mm s−1

𝑣𝑧 𝑣𝑖𝑧
Diameter: 𝐷𝑥∣𝑦 16.0mm s−1

Height: Δ𝑣𝑧 0.6mm s−1

In this case, the centres of the boxes
in the transverse direction are the same
(this is not mandatory): that is why the
line 𝑣1𝑧 = 𝑣

2
𝑧 is a symmetry axis of the

graph.The local correlations are visible
on the 𝑣1𝑧 = 𝑣2𝑧 diagonal line, while
the crossed correlations are present on
the 𝑣1𝑧 + 𝑣

2
𝑧 = cte ≈ 190mm s−1 anti-

diagonal line.The red and orange boxes
(containing local correlations) and the
pink boxes (containing nonlocal correla-
tions) delimit the domains used to com-
pute the 1D graphs of Figure 5.14 and
Figure 5.15.
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where𝑁(𝑞) is the number of atoms counted in a box centred on 𝑞𝑧.
We can then calculate the average and the standard deviation of those
quantities (over the files of the dataset), and compute the average values
of the second-order correlation functions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑔(2)(𝑞1, 𝑞2 ≠ 𝑞1) =
⟨𝑁(𝑞1)𝑁(𝑞2)⟩
⟨𝑁(𝑞1)⟩ ⟨𝑁(𝑞2)⟩

𝑔(2)𝑙𝑜𝑐 (𝑞, 𝑞) =
⟨𝑁 2(𝑞)⟩ − ⟨𝑁(𝑞)⟩

⟨𝑁(𝑞)⟩2

(5.47a)

(5.47b)

as well as the corresponding standard deviations1.1: with a usual quadratic propagation of
the standard deviations of the different
terms of the formula. The extra-term −1

⟨𝛮(𝑞)⟩ in the local correlation case comes from the nor-
mal ordering in the definition of the second-order correlation function
(cf. Eq. (5.45)): the commutation relations [�̂�𝑞, �̂�

†
𝑞] = 𝟙 generates a

shot noise term that must be subtracted.

Figure 5.13 displays the average values of 𝑔(2), but we are also able to
give an error bar on each pixel of the map. We tested many choices
of parametrisation for the boxes (sizes and centres on the transverse
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plane), in order to reveal the correlations as clearly as possible. The
dataset is not very big (802 files only) and the signal turns out to be
very noisy when we try to use boxes that are “too small”: there is a
balance that needs to be found between the signal to noise ratio, and
the amplitude/resolution of the signal.

Wewill discuss thematter of the size of themodes in the next paragraph,
butwe can already say that themapplotted in Figure 5.13 uses cylindrical
boxes, with a diameter approximately fitting the measured transverse
modes’ size, and a height 2 times smaller than the longitudinal length
of the modes, along the 𝑞𝑧 direction. With this parametrisation, the
statistics is good enough to see the local correlations (in the red and
orange boxes), and also distinguish the crossed correlations (in the pink
boxes).

2.3.3 1D analysis: correlation amplitude and modes’ width

To extract “more quantitative” information, we plot 1Ddata: the aim is
to find the amplitude of the correlation, and the width of the modes.

Local correlations Concerning local correlations, the procedure
is the same for each axis1: we will detail it as an example for the 𝑞𝑧 1: it just requires to adapt the shape

of the boxes to keep a good resolution
along the axis that we want to probe.

direction.

Both atomic beams are treated separately: we keep the same colour
code (red for the first region, and orange for the second one), adopted
since the beginning of this section, in particular in Fig. 5.9, Fig. 5.10 and
more importantly Fig. 5.13. The data are restricted to a domain where
preliminary visualisations revealed that the correlations are significantly
out of the noise: in our example, the orange and red squares in Figure
5.13.

We know that the local correlations aremaximised (and a priori equal to
2) when 𝛿𝑞 = 𝑞1−𝑞2 = 0: we therefore plot the data as a function of 𝛿𝑞,
whichmeans that the data are averaged “along the diagonal direction”2. 2: more formally the averaging is

performed along lines of equation
𝑞1 − 𝑞2 = 𝑘, where 𝑘 is a constant
indexing the line.

The error bars on each pixel of Figure 5.13 are used to compute the error
bars of the 1D plot.

Since more data are stacked in such a 1D projection, we can select
smaller boxes, mitigating the averaging effect, and guaranteeing a suffi-
ciently fine resolution to measure the correlation lengths3. 3: in practice we tested different values

of the box’s heightΔ𝑣𝑧, to find the value
starting from which the measured cor-
relation length does not change, and we
finally setΔ𝑣𝑧 smaller than this, to have
a security margin.
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Figure 5.14: 1D local correlations as
a function of the difference of quasi-
momenta 𝛿𝑞 = 𝑞1 − 𝑞2. Boxes (used
to compute the correlations) are rectan-
gular shaped, with widths Δ𝑣𝑖 chosen
such that they are smaller than the nat-
ural width of the modes in the probed
direction, and roughly fitting the natu-
ral width of the modes in the transverse
directions:

𝐠(𝟐)(𝜹𝐪𝐳) Δ𝑣𝑧 0.5mm s−1

Δ𝑣⟂ 8.0mm s−1

𝐠(𝟐)(𝜹𝐪𝐱∣𝐲) Δ𝑣𝑥∣𝑦 3.0mm s−1

Δ𝑣𝑧 4.0mm s−1

Δ𝑣𝑦∣𝑥 15.0mm s−1
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The results are presented in Figure 5.14. The width 𝜎𝑗𝑖 and amplitude
𝐴𝑗𝑖 are evaluated with gaussian fits:

𝑖 ∈ [1, 2] , 𝑗 ∈ [𝑥, 𝑦, 𝑧] / 𝑔(2)𝑙𝑜𝑐 ≈ 1 + 𝐴
𝑗
𝑖 𝑒
−
(𝛿𝑞)2

2(𝜎𝑗𝑖 )
2

(5.48)

are a direct measurement of the modes’ size, up to a
√
2 factor.

Thesemeasurements are useful to evaluate the typical number ofmodes
emitted, and the average number of atoms per mode, that we have al-
ready presented inTable 5.3 andEq. (5.43) of the previous subsection.

The strength of the correlations can be evaluated with the amplitude
parameter𝐴of the fits. However, depending on the shape of themodes,
the gaussian function may not always be perfectly adapted to fit the
data: in particular one would notice that along the 𝑞𝑦 direction, the fit
is always smaller than the data around 𝛿𝑞𝑦 = 0, which is also the point
where the correlations are the largest...

The fact that we do not always reach the value of 2may be an averaging
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effect, coming out of the size of the integration box. Indeed, let us
consider a gaussian shape for the density of pairs (centred on 𝐪 = 0 for
simplicity):

𝑛(𝐪) = 𝑛0 𝑒
−
∑
𝑖
𝑞2𝑖

2𝜎2𝑛,𝑖 (5.49)

During the digital treatment of the data, the momentum space is dis-
cretised into boxes of volume 𝑉Ω = Δ𝑞𝑥 Δ𝑞𝑦 Δ𝑞𝑧, that we can index
with 𝑚𝑥, 𝑚𝑦, 𝑚𝑧 ∈ ℤ (let us say 𝑚𝑥 = 𝑚𝑦 = 𝑚𝑧 = 0 corresponds to
the box centred on 𝐪 = 0). The average number of atoms in the box
(𝑚𝑥, 𝑚𝑦, 𝑚𝑧) corresponds to the integration of the density of atoms in
that box:

⟨𝑁(𝑚𝑥, 𝑚𝑦, 𝑚𝑧)⟩ = 𝑛0 ∏
𝑖∈{𝑥,𝑦,𝑧}

(𝑚𝑖+
1
2 )Δ𝑞𝑖

∫
(𝑚𝑖−

1
2 )Δ𝑞𝑖

d𝑞𝑖 𝑒
−

𝑞2𝑖
2𝜎2𝑛,𝑖 (5.50)

Then, the definition of the second order correlation function is

𝑔(2)(𝐪, 𝜹𝐪) =
⟨𝑁𝐪𝑁𝐪+𝜹𝐪⟩
⟨𝑁𝐪⟩ ⟨𝑁𝐪+𝜹𝐪⟩

(5.51)

now ifweworkwithourdiscretisedquantities (let us consider𝑚𝑥 = 𝑚𝑦 = 0
for simplicity), and if we add the expected profile of correlations (using
the correlation width 𝜎𝑧𝑐𝑜𝑟,𝑧 that we measured experimentally) we end
up with:

𝑔(2)(𝑚𝑧, 𝑚′𝑧) =
∏

𝑖∈{𝑥,𝑦}

Δ𝑞𝑖
2

∫
−
Δ𝑞𝑖
2

d𝑞𝑖d𝑞
′
𝑖

(𝑚𝑧+
1
2 )Δ𝑞𝑧

∫
(𝑚𝑧−

1
2 )Δ𝑞𝑧

(𝑚′𝑧+
1
2 )Δ𝑞𝑧

∫
(𝑚′𝑧−

1
2 )Δ𝑞𝑧

d𝑞𝑧d𝑞
′
𝑧 𝑒
−
𝑞2𝑖 +𝑞

′
𝑖
2

2𝜎2𝑛,𝑖 𝑒
−
𝑞2𝑧 +𝑞

′
𝑧
2

2𝜎2𝑛,𝑧 𝑒
−
𝑞2𝑧 −𝑞

′
𝑧
2

2𝜎2𝑐𝑜𝑟,𝑧

same thing without the red term
(5.52)

We finally perform a final averaging (to consider 1D data):

𝑔(2)(Δ𝑚𝑧) = ⟨𝑔(2)(𝑚𝑧, 𝑚𝑧 + Δ𝑚𝑧)⟩𝑚𝑧∈ℤ (5.53)

We can do this type of calculation for each axis. Knowing the box sizes
Δ𝑞𝑖 that we used, the measured correlation width 𝜎𝑖, and the width
of the density of atoms, we can perform a numerical estimation of
the “expected” amplitudes𝐴𝑗𝑖 that we should measure with this model,
and compare it to the ones that we indeed measured: the results are
gathered in Table 5.4.

Even if the matching is not perfect, the computed values are closer to
the measured ones. An improvement of this treatment would consist
in considering the raw experimental data for the density profile rather
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Table 5.4: Comparison between the ex-
pected amplitude of the local correla-
tions, and the ones measured and plot-
ted in Figure 5.14. Notice that even the
“expected” values make use of measured
ones, due to the 𝜎𝑗𝑖 correlation width,
that we assume to be independent of
their amplitude.

𝐀𝐣𝐢 Expected “averaged” value Measured value

𝐴𝑥1 0.41 0.70(9)
𝐴𝑦1 0.39 0.48(3)
𝐴𝑧1 0.91 0.91(5)
𝐴𝑥2 0.34 0.47(3)
𝐴𝑦2 0.32 0.47(6)
𝐴𝑧2 0.86 0.62(4)

than a gaussian shape (resulting from its RMS size measurement).

This study, at least, confirms our belief that the rather small amplitude
that we measured may come from the size of the correlations boxes
that we had to use, and that with a larger dataset we could compute
the correlations with smaller boxes, and find a higher signal.

Crossed correlations We apply the same type of procedure to gen-
erate a 1D visualisation of the crossed correlations: experimental data
are plotted in Figure 5.15.

Figure 5.15: 1D crossed correlations as a
function of the sum of quasi-momenta
𝑞1𝑧 + 𝑞

2
𝑧 . Rectangular boxes are used to

compute the correlations, parametrised
as such:

𝐠(𝟐)(𝜹𝐪𝐳) Δ𝑣𝑧 0.5mm s−1

Δ𝑣⟂ 8.0mm s−1

The correlations are computed in the
pink rectangular subset of Figure 5.13
(which one of the two pink rectangles
does not matter since due to symmetry
they contain the same data).
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Regarding thedata, there is nodoubt that there is a nonlocal correlation.
Its amplitude is however smaller than the local one. At first glance this
is no good, because if we were dealing with a genuine TMS, we would
expect to find the nonlocal correlation larger than the local ones (cf.
Eq. (5.22c)).

However, we have already seen that the pair emission was operating
in a regime where the average number of particles per mode 𝜈 is large
(between 3 and 4). Therefore, the additional 1𝜈 contribution to the
correlation may be lost in the noise.
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In addition to the fact that there is strong dependence of the amplitude
of the crossed correlation with the shape, centres, and sizes of the boxes
(which again could be improved with smaller boxes and better statis-
tics), we could argue that even if the perturbative study (and previous
experiments [62]) showed that it may be well described by a TMS, we [62]: Perrier et al. (2019), “Thermal

Counting Statistics in an Atomic Two-
Mode Squeezed Vacuum State”

do not know if it is still the case when the number of particles permode
is large. It is actually quite natural to think that when the number of
particles increases, it is more andmore difficult to prepare an entangled
state (such as the TMS), and the level of nonlocal correlations could
decrease.

Nevertheless, if we compare these values to similar measurements per-
formed in the past on the experiment and documented in the thesis
manuscripts of R. Lopes [8] and P. Dussarrat [90], they found crossed [8]: Lopes (2015), “An Atomic Hong-

Ou-Mandel Experiment”

[90]: Dussarrat (2017), “Expériences
d’Optique Atomique Quantique, Inter-
féromètres à 2 et 4 modes”

correlations with a peak amplitude of 1.2 to 1.31, which is even smaller

1: with also larger correlation boxes in
the case of the results presented by P.
Dussarrat.

than the correlations that we registered (1.4 ± 0.1).

It should also be noticed that the nonlocal correlation thatwemeasured
is larger than the local one: 𝜎𝑐 ≈ 1.8 𝜎𝑙𝑜𝑐𝑎𝑙. This has a favourable effect
for a potential Cauchy-Schwarz inequality violation. Indeed, even
though a simple calculation shows that violating the Cauchy-Schwarz
inequality implies that the local correlation is smaller than the nonlocal
one, it is possible to consider another version of the inequality taking
into account the “volume” of the correlations (i.e. the width of above
graphs) [2]. We have not yet completed this study with our recent [2]: Kheruntsyan et al. (2012), “Viola-

tion of the Cauchy-Schwarz Inequality
withMatter Waves”

data.

2.4 Emission statistics

We can finally study the statistics of the number of atoms collected in
boxes, who should be slightly smaller than the natural modes. This is a
similar study as the one published in [62]. [62]: Perrier et al. (2019), “Thermal

Counting Statistics in an Atomic Two-
Mode Squeezed Vacuum State”If the state emitted by the source –and restricted to regions where

the boxes are placed– is indeed a two-mode squeezed state, then the
statistics of eachmode should follow a thermal law (cf. Chapter 1):

𝑃(𝑁) = 1
1 + 𝜈 (

𝜈
1 + 𝜈)

𝛮
(5.54)

In logarithmic scale, it gives a straight line, whose slope is related to the
population.

In the graphs of figure Figure 5.16 and Figure 5.17 we have plotted these
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Figure 5.16: Counting statistics of
the two modes modes emitted by the
source. Here the boxes are the same
as in Figure 5.11, meaning that the
box used to compute the statistics of
the first mode is larger than the one
used for the second mode. The dashed
lines represent the thermal probability
law𝛲𝑡ℎ(𝛮) =

1
1+𝜈𝑚
(
𝜈𝑚
1+𝜈𝑚
)𝛮, where 𝜈𝑚 is

computed by counting the total num-
ber of atoms in the box: there is no fit-
ting parameter. Even though the data of
the second mode fit pretty well the the-
oretical thermal law, it not the case for
the first mode. In particular, there is a
discrepancy when𝛮 is either very large
or very small: the shape of the red data
points is reminiscent of a Poissonian dis-
tribution, that is expected to occurwhen
several modes are mixed in the same box.
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date, and we compare it with the thermal power law with a parameter
𝜈𝑚 that is the measured averaged number of particles in the box: it is
not a fitting parameter.

In Figure 5.16 we used the same boxes as in Figure 5.11: their sizes
are given by the correlation lengths1 that we measured in Subsection1: up to a

√
2 factor.

2.3.3. In the case of the “first mode” (which is the brightest: located
in 𝑞𝑧 ≈ 0.66) we can see a non-thermal behaviour when𝑁 ≲ 4. This
profile is studied in [62], and it is the signature of the fact that the box
that is used to compute counting statistics is too large, as compared to
the natural size of the mode. Just like what we did for Figure 5.12, we
replot the same graph but this time using boxes of the same size (the
smaller one). We find a much better agreement with the theoretical
thermal law for of probabilities. Since there is no fitting, this fairly
goodmatch between the data and the expected thermal profile is a solid
argument for stating that our state is indeed a TMS.

Remark 5.3 Let us highlight the fact that the study of the emis-
sion statistics is a useful tool to check that the boxes chosen for the
numerical analysis of the data are small enough.

If a the box is too large, the statistics exhibits a profile that looks like
a Poissonian distribution2

2: the reference [62] shows that it actu-
ally intermediate between a thermal and
a Poisson distribution.

.

With a larger data set, we could extend this type of analysis, by com-
puting the joint counting statistics, and compare it to the expected
model, for which I derived an analytical formula (cf. Equation 1.105 on
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First mode

Second mode Figure 5.17: Samegraph as inFigure 5.16,
except that now the boxes in which the
statistics is computed have the same size
for both modes. We used the same box
as in Figure 5.12, whose size in ℎ̵𝑘𝑙𝑎𝑡 units
is:

Δ𝑞𝑥 0.14
Δ𝑞𝑦 0.17
Δ𝑞𝑧 0.011

The power laws fits the data pretty well.

page 49).
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Conclusion

In this chapter we have exposed the most important results that we
obtained during my PhD.These data were acquired between april and
june 2022: the only three month during which it was possible to gener-
ate correlated pairs. Indeed, our progresses were stopped by the death
of the laser used for the optical dipole trap (at the beginning of july),
and also by the breakdownof a part of the high current electrical system,
that we use during the MOT and the magnetic trap1 (since august).1: the watercooling system used for the

IGBT became deficient, and several
IGBT modules died due to overheat-
ing. In addition one of our high power
PSU (used during the magnetic trap)
now switches off randomly, in middle
of the experimental realisations. Finally
we faced in october vacuum issues (at
the very start of the apparatus: where the
room temperature helium is injected).

Nonetheless, with these datawe showed that our atomic sourcepresents
interesting correlations properties, that could be use advantageously
in upcoming experiments. Let us do a very short summary of what is
known about our source:

What was already known before my PhD?

▶ the statistics of emission for the two modes of a pair was studied
in 2019 (but using a dataset acquired in 2016), in a regime where
the average population per mode were small: 𝜂𝜈 ≈ 0.158 [62].[62]: Perrier et al. (2019), “Thermal

Counting Statistics in an Atomic Two-
Mode Squeezed Vacuum State”

A thermal statistics was found, which is indeed expected with a
TMS state ;

▶ again in this regimewhere 𝜈 is small, nonlocal correlations where
witnessed during the PhDs of R. Lopes and P. Dussarrat [59,
90]. A violation of the Cauchy-Schwarz inequality was even[59]: Lopes et al. (2015), “Atomic

Hong–Ou–Mandel Experiment”
[90]: Dussarrat (2017), “Expériences
d’Optique Atomique Quantique,
Interféromètres à 2 et 4 modes”

observed in [59], which is the signature of strong correlations.
▶ a preliminary experiment of two particle interferometry [9] ex-

[9]: Dussarrat et al. (2017), “Two-
Particle Four-Mode Interferometer for
Atoms”

hibited a two-particle correlator2 𝐸 ≠ 0. This result is extremely

2: we refer here to the correlator that is
used in a Rarity-Tapster experiment.

promising: indeed, let us recall the state that we want to use in
the Bell inequality violation experiment reads:

[
√
1 − ∣𝛼2∣

∞
∑
𝑛=0
𝛼𝑛 ∣𝑛⟩𝑝 ∣𝑛⟩−𝑝] ⊗ [

√
1 − ∣𝛽2∣

∞
∑
𝑛=0
𝛽𝑛 ∣𝑛⟩𝑞 ∣𝑛⟩−𝑞]

∣𝛼∣ and ∣𝛽∣ are related to density of pairs that are generated, that
are known to be stable during an experiment. However, we
have a priori no clue about the relative phase arg [ 𝛼𝛽] between
these two TMS. If this phase was shot-to-shot fluctuating, in a
Rarity-Tapster experiment the correlator 𝐸would always be 0,
killing any hope of witnessing a Bell inequality violation. In [9]
a correlator𝐸 ≈ 0.6wasmeasured, indicating that the variations
of arg [ 𝛼𝛽] are not too problematic.
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What is new?

We explored a regime where the populations are approximately 10
times larger than before. In particular wechecked that:

▶ each of the two modes have the expected properties of a thermal
state, in particular:

• the bosonic bunching (𝑔(2)(0) = 2) when we probe the
local correlations ;

• a thermal counting statistics ;

▶ we find non-zero crossed correlation between both mode, even
if we did not yet find a quantum signature of this correlation
(such as the violation of the Cauchy-Schwarz inequality).

What do we want to do next?

Concerning the study of the source, when the experiment will be run-
ning again, we would like to acquire dataset so as to:

▶ obtain the full joint counting statistics: i.e. 𝑃(𝑁1, 𝑁2) and com-
pare it to the model that has been derived in Chapter 1 ;

▶ use smaller boxes for the computationof the correlations, and try
to find a situationwhere the nonlocal correlations are larger than
the local ones. This could lead to the violation of the Cauchy-
Schwarz inequality, and therefore reveal some quantumness in
the state that we generate.





General conclusion

Even if duringmyPhD several evolutions of our apparatus and software
platform have led to the obtention of promising results (cf. Chapter
5), the scientific goals that were set seven years ago have not yet been
achieved. Indeed, after the successful obtention of the atomic HOM
effect [59], it was decided that a Bell inequality test would be the next [59]: Lopes et al. (2015), “Atomic

Hong–Ou–Mandel Experiment”natural field to explore with our experimental platform. Indeed, the
microchannel plate offers the remarkable opportunity to extract in-
formation on the mechanical state of single massive particles. This
could pave the way towards the study of the interplay between gravi-
tation and entanglement. Such a study would obviously be extremely
interesting, given the well-known difficulties that modern physics en-
counters to integrate gravitation in a quantum framework. A violation
of Bell inequalities would also constitute a first milestone before try-
ing to prepare quantum entangled states with more particles, which a
microchannel plate should also be able to probe a priori.

In this quest, a preliminary result was obtained in 2017 [9]; at this [9]: Dussarrat et al. (2017), “Two-
Particle Four-Mode Interferometer for
Atoms”

time it was however not possible to measure a Bell parameter, because
there was no active control of the phase difference betweenAlice’s
interferometer and Bob’s one1 (cf. Chapter 2 for more explanation 1: actually, the final beam splitters of

both “Mach-Zehnder” interferometers
were realised by the same Bragg pulse.

about the interferometric setup). Implementing two independent
Bragg pulses, and obtaining the control on this phase difference is the
next step. Unfortunately —as it has been explained in Chapter 4— in
the last five years, technical issues have considerably slowed down our
progress, and forced us to work on aspects of the experiments that were
achieved for the most part more than ten years ago.

Lacking scientifically newexperimentalmaterial topresent, thismanuscript
therefore aims at meeting different objectives. One of those is setting a
reference point concerning the current status of the experiment. In-
deed, in the last few years, many experimental procedures have evolved,
or have been replaced: I provided in Chapter 3 and Chapter 4 as much
technical detail about it as possible.

Another objective was to offer some food for thought on other possible
experiments that we could conduct when the platform is ready (cf.
Chapter 1). I cannot claim that the theoretical work about the𝑛-particle
HOM physics is over, as I have not yet found the striking signature of
a many-body quantum effect with it. To this end, an interesting field
to explore (and that I did not consider in this manuscript) could be
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the study of 𝑛th-order correlation functions𝐺(𝑛): after all, if the𝐺(2)

function contains the trace of the quantum two-particle HOM effect,
is it not natural to imagine that𝐺(𝑛) could contain a similar trace, for
a situation in which the number of particles is larger?

The last element that I have attempted to clarify in this manuscript
is the description of the Bell inequality test experiment that we still
aspire to achieve, and to provide a methodology for data processing
(cf. Chapter 2). However, information on this work is not exhaustive
here: the numerical study of the effect of Bragg deflectors and beam
splitters, as well as their concrete implementation with our hardware,
are indeed of primary importance. This work should be presented in
the upcoming manuscript of Charlie Leprince.

Regarding the recent progress that we have made in the last six months,
one can venture to be optimistic about what will happen in the up-
coming few months. Indeed, appart from recent breakdowns, we have
reached a state that is close to that of the experiment back in 2017. Es-
sentially, the last part that we still need to set up is the Bragg diffraction
lattice: we are currently working on it. At last, once this final aspect
of the experiment will be sorted out, we should be able to go on, and
realise the experiments that have been put on hold for so long.
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A
Raman lattice
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Figure A.1: Rabi oscillations of the Ra-
man coupling, observed with fluores-
cence imaging.
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Figure A.2: Rabi oscillations of the Ra-
man coupling, observed with the MCP.

Quality control of the Raman transfer can be made by looking at the
Rabi oscillations between the two magnetic sublevels, by scanning
the duration of application of the Raman lattice. Previously in the
experiment, it was only possible to look at the 𝑚𝐽 = 0 atoms with
the MCP (cf. Figure A.2). We recently found out that it is now also
possible to observe the oscillations with the fluorescence, with a cold
thermal cloud, intensifying the spatial separations between the two
clouds by pushing the𝑚𝐽 = 1 atoms with a small magnetic gradient
(cf. Figure A.1).

The expected effective two-photon Rabi frequencyΩeff
𝑅 is easy to esti-

mate, knowing the powers 𝑃1/2 of the beams and the small detuning 𝛿
defined in Figure 4.5. The peak intensity of the gaussian beam is given
by

𝐼0 =
2𝑃
𝜋𝑤 2

(A.1)

where 𝑤 is the geometric mean of the waist (considering a slightly ellip-
tical beam). Then,Ωeff

𝑅 can be expressed withΩ1𝑝ℎ𝑅 andΩ2𝑝ℎ𝑅 , respec-
tively the one-photon and two-photon angular Rabi frequencies:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ω1𝑝ℎ𝑅 = Γ
√
𝐼0
2𝐼𝑠
× 1√

3

Ω2𝑝ℎ𝑅 =
Ω1𝑝ℎ𝑅 (𝜎

−)Ω1𝑝ℎ𝑅 (𝜋)
2𝜋 × Δ

Ωeff
𝑅 =
√
(2𝜋 × 𝛿)2 + (Ω2𝑝ℎ𝑅 )

2

(A.2a)

(A.2b)

(A.2c)

where 1
√
3
is a Clebsch–Gordan coefficient, and we considered detun-

ings defined in hertz, as in Figure 4.5.

When conducting the experiment, we find out that we need to take into
account a power loss coefficient to fit the theoretical law (cf. Figure
A.3). This is probably due to a small imperfection of the polarisation of
the beams (implied by their geometrical orientations) and the absence
of anti-reflective coating, but this is not really an issue for us, as we can
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Figure A.3: Two-photon Rabi frequen-
cies, for different powers and detun-
ing of the Raman beams.The coloured
dots are experimental measurements,
and the dashed lines are given by Eq.
(A.2), considering that only 77% of the
beams’ power is available for the atoms:
the absence of anti-reflective coating on
this viewport, and polarisation imperfec-
tions because of the angle of the beams
with respect to the direction of the mag-
netic bias may explain this loss.
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easily compensate this by increasing the overall power.

However we are still a bit puzzled with the damping of the Rabi oscil-
lations over time (cf. Figure A.1, Figure A.2). I performed numerical
simulations, taking into account the gaussian repartition of the inten-
sity of the beams1, the light shift with the Stark effect, and the spatial1: that induces a spatial dependence of

the Rabi frequency. repartition of the cloud’s density (with a Thomas-Fermi profile for
example): I could not reproduce a damping of the oscillations on the
observed timescale (∼ 100 µs). The damping is reproducible by adding
a magnetic gradient, which is a reasonable hypothesis.
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Imaging camera settings

We use a Xenics© Xeva 320 series short-wave infrared camera for fluo-
rescence imaging. This camera generates a PNG file (in greyscales) out
of the number of photons received during a given integration time.
The complete chain of conversion for fluorescence imaging is given in
Figure B.1.

Figure B.1: Chain of conversions for
fluorescence imaging: from a number of
atoms to the greyscales of a PNG file

Where

● 𝑁𝑎𝑡: initial number of atoms
● 𝑁𝛾: number of scattered photons collected by the lens
● 𝑁𝑒− : number of electrons induced in the sensor
● 𝑁𝛢𝐷𝑈: output value of the analog to digital converter
● 𝑁𝑔𝑠: grascale value on a pixel of the image.
● Γ: linewidth = 2𝜋 × 1.62MHz
● Δ𝑡: exposure time = 200 µs
● ΔΩ: solid angle = 2.5 ⋅ 10−3 str 2 2: for the 2” lens 250mm away from

the atoms.● 𝜂: quantum efficiency ∼ 0.7
● 𝜎𝑒− : electron sensitivity of the ADC = 45.7𝑒−/𝐴𝐷𝑈 3 3: in low gain mode (915𝑒−/𝛢𝐷𝑈 oth-

erwise).● 𝑓𝑙𝑖𝑛: linear rescaling function applied by the Xenics software.

The final data is a 16bits PNG file: a matrix of grascale (𝑁𝑔𝑠) numbers.
Beware: a PNG cannot contain negative values (it will be written as
a 0) and while writing the PNG file, we can choose either of the two
endianness convention→ right-writting must be chosen for backward
compatibility with our data analysis softwares.
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𝐴𝐷𝑈𝑟𝑒𝑓 and𝐴𝐷𝑈𝑖𝑛 parameters can be manually chosen in the Xenics
controller: 𝐴𝐷𝑈𝑟𝑒𝑓 = 𝐴𝐷𝑈𝑖𝑛 = 2048 is a wise choice...

Numerically, the usual constant of conversion from greyscales to atoms
(with above values) is𝐾 ≈ 93 atoms/gs



C
Magnetic trap

1 Coils and IGBT setup

Figure C.1: General electrical network
of the Ioffe-Pritchard magnetic trap.
We have the individual control of the
five IGBTs. We use Semikron© IGBTs:
SKM 500GA124D (IGBT 1 and 2) and
SKM 500GA124D (IGBT 3, 4 and 5).
When an IGBT is closed, the typical volt-
age between the collector and the emit-
ter is 1 to 2V, for a current of 200A.
Both PSUs are 5 kWHewlett-Packard©
model 6682A (21V 240A), with a rela-
tive current ripple measured to be in the
order of a few 10−5.

Figure C.2: MOT configuration of
the IGBTs circuit. Only the “compensa-
tion” coils (C1, C2) are used, in anti-
Helmholtz configuration,with a current
of 225A.

Figure C.3: MT configuration of the
IGBTs circuit. The current in PSU1 is
set to 198A, and the current of PSU2
depends on the level of compression we
want to achieve: 210A for the uncom-
pressed gas, 48A during the Doppler
cooling phase, and ∼ 18A for the final
compression during the RF evaporative
cooling phase.
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2 Bias measurements and calibration
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Figure C.4: We noticed the field gen-
erated by the “pusher” coil (used to
remove the atoms in the 𝑚𝐽 = 1 mag-
netic sublevel after the Raman transfer)
can change magnetisation of the science
chamber’s surroundings.This coil is in
voltage control (legacy reason), and we
tried to apply a 400msmagnetic pulse
between successive bias measurement
experiments. It revealed a characteris-
tic hysteresis cycle, exhibiting the pres-
ence of a residual magnetisation field.
Expressed in the frequency domain, we
typically find 𝛣offset ∼ 200 kHz.

The bias 𝐵0 of the trap is generated by the “compensation” (C1, C2)

and “dipole” (D1, D2) pairs of coils. The numbers of turns in these
pairs of coils, with respect to their diameters, was chosen such that the
bias propagated by the couple (C1,C2) should exactly compensate
the bias created by the couple (D1,D2): meaning that when PSU2
is turned off, and all the coils have the same current flowing through
them (cf. Figure C.3), the bias should be zero.

In practice, it is very difficult to achieve this: the fields created by
(C1,C2) and (D1,D2) are large, and their compensation is extremely
sensitive to the geometrical structure. Denoting 𝑖TOP/𝑖BOT the current
generated by the top/bottom PSU, and 𝛽𝐶/𝛽𝐷 the first order coeffi-
cients for the dependence of the bias with the current in the com-
pensation/dipole coils (linear approximation), we therefore have the
following relations (expressed in frequency units):

𝐵0 = 𝛽𝐶 𝑖TOP + 𝛽𝐷(𝑖TOP + 𝑖BOT) + 𝐵offset
= (𝛽𝐶 + 𝛽𝐷)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

small

𝑖TOP + 𝛽𝐷 𝑖BOT + 𝐵offset
(C.1)
(C.2)

where 𝐵offset is an additional contribution that results from the mag-
netisation of the surroundings (in the order of a few hundreds of kilo-
hertz: cf. Figure C.4). The measurements of theses coefficients are
given in Figure C.5.

Figure C.5: Calibration of the bias 𝛣0
inMHz as a function of the current in
the twoPSUs.Calibrationdone after the
overheating episode of October 2020.
The first graph is obtained with a con-
stant current 𝑖TOP = 198A on the left
and gives 𝛽𝐷 = 2.226MHzA−1. The
second graph on the right is obtained
with a constant current 𝑖BOT = 17A
and gives 𝛽𝐶 + 𝛽𝐷 = −0.175MHzA−1.
These slopes are rather stable, however
the current 𝑖0BOT corresponding to the
zero bias is quite prone tochange (in the
range of 11A to 16A).
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The bias to trapping frequency relation (Eq. (3.44)) is always valid, and
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involves the sameΛ constant. It is the current to bias relation that may
vary with time (or some “mechanical” event such as the disassembly/re-
assembly of the coils), in particular the zero-bias current. But when
we witness a shift of the bias, we can always find a new value of the
compression current to retrieve the same trapping conditions.
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Figure D.1: Blueprint of the protective copper plate. Design byM. Jean-René Rullier, IOGS design office.
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Titre : Optique atomique quantique avec hélium métastable
Mots clés : non-localité, atomes ultra-froids, mécanique quantique, inégalités de Bell, interférométrie
atomique, helium métastable.

Résumé : Les propriétés de corrélation et d’in-
trication de certains états quantiques à multiples
particules ont été mises en évidence à partir des
années 80, dans le cadre de la photonique. Depuis
lors, la production et caractérisation d’états non-
classiques dans divers contextes est devenue une
thématique de recherche très féconde, ainsi qu’un
important enjeu pour le développement des tech-
nologies quantiques. Cette thèse présente une pla-
teforme expérimentale permettant de préparer des
atomes d’hélium dans des états d’impulsion forte-
ment corrélés. Le dispositif de détection qui a été
développé dans notre groupe (à trois dimensions
et résolu à l’atome unique) permet de sonder effi-
cacement ces propriétés de corrélation, ce qui est

en général difficilement réalisable pour la plupart
des montages expérimentaux similaires.

Plus particulièrement, ce manuscrit contient
une première partie théorique qui traite d’une part
de la généralisation de l’effet Hong-Ou-Mandel
dans un contexte à multiples particules, et d’autre
part de la mise œuvre d’une expérience de test
des inégalités de Bell pour des atomes intriqués en
vitesse. Ces deux expériences pourraient être réa-
lisées prochainement dans notre équipe. Une se-
conde partie expérimentale rend compte des ré-
cents progrès effectués sur la plateforme, ainsi que
les derniers résultats expérimentaux concernant les
propriétés de corrélation de la source atomique que
nous avons mise en place.

Title : Quantum atom optics with metastable helium
Keywords : non locality, ultra cold atoms, quantum mechanics, Bell inequalities, atom interferometry,
metastable helium

Abstract : Correlation and entanglement proper-
ties of multi-particle quantum states have been de-
monstrated since the 1980s in the context of pho-
tonics. Since then, the production and characte-
risation of non-classical states in various contexts
has become a very fruitful research topic, as well
as a burning issue for the development of quantum
technologies. This thesis presents an experimental
platform able to prepare helium atoms in strongly
correlated momentum states. The detection tech-
nique that has been developed in our group (three-
dimensional and resolved to the single atom) al-
lows to efficiently probe these correlation proper-
ties, which is in general difficult to achieve for most

similar experimental setups.
In particular, this manuscript contains a first

part of theoretical nature, which deals on the
one hand with the generalisation of the Hong-Ou-
Mandel effect (in a context where more than two
particles are involved) ; and on the other hand with
the implementation of an experiment testing the
Bell inequalities for atoms entangled with respect
to their velocities. Both experiments could be car-
ried out by our team in the near future. A second
experimental part reports on the recent progress
made on the platform, as well as the latest expe-
rimental results concerning the correlation proper-
ties of the atomic source that we have set up.
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