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Résumé: Ce manuscrit est centré sur l’étude de
systèmes quantiques à N corps, des gaz quan-
tiques d’atomes d’hélium 4 métastable, dans le
régime de fortes interactions. Ce régime est at-
teint dans un réseau optique 3D où les atomes
simulent l’hamiltonien de Bose-Hubbard. En
augmentant la profondeur du réseau, le système
subit une transition de phase induite par les in-
teractions entre un superfluide et un isolant de
Mott. La détection d’atomes uniques d’hélium
métastable dans l’espace des impulsions nous
permet de caractériser le système par le biais
des corrélations en impulsion entre atomes.

À impulsions proches, ces corrélations iden-
tifient les états quantiques, des superfluides et
des isolants de Mott, via leur cohérence à N
corps. L’extension de ces corrélations jusqu’au
sixième ordre met en évidence la contribution de
la déplétion aux propriétés statistiques du con-
densat. À impulsions opposées, les corrélations
entre atomes révèlent la présence du mécanisme
d’appariement de Bogoliubov au sein de la déplé-
tion quantique de condensats de Bose-Einstein
à l’équilibre et dans le régime de faibles interac-
tions. Plusieurs signatures de l’origine quantique
de ces paires d’atomes confirment cette prédic-

tion vieille de 70 ans.
L’augmentation du potentiel du réseau dans

le régime superfluide nous permet d’étendre ces
mesures au cas des condensats de Bose-Einstein
fortement déplétés. À impulsion nulle, le régime
de fortes interactions est caractérisé par des
déviations plus importantes de la cohérence à N
corps du condensat comparé à la prédiction pour
un état cohérent. D’autre part, la suppression
du signal des paires de Bogoliubov bien avant la
transition de Mott reflète la non-validité de cette
prédiction aux plus fortes interactions. Cela sug-
gère également la présence de triplets d’atomes
corrélés en impulsion, que nous n’avons pas en-
core pu observer.

Dans ce manuscrit, la région critique de
la transition de Mott est explorée à l’aide de
mesures 3D de la densité en impulsion résolues
à l’échelle de l’atome unique. Cette observable
contient des signatures de la criticalité de la
transition au-delà du champ moyen. La capacité
à capturer la physique particulière du système
près de la transition est prometteuse pour éten-
dre les mesures de corrélation à ce régime, où
des corrélations non triviales pourraient signaler
que le système devient fortement corrélé.

Title: Momentum correlations in strongly-depleted 4He∗ Bose-Einstein condensates

Keywords: Quantum gases, Many-body problem, Single-atom detection, Optical lattice, Momen-
tum correlations, Strongly-depleted Bose-Einstein condensates

Abstract: This manuscript focuses on studying
quantum many-body systems, quantum gases
of metastable Helium-4 atoms, in the strongly-
interacting regime. This regime is reached
in a 3D optical lattice where atoms simulate
the Bose-Hubbard Hamiltonian. Increasing the
lattice depth, the atomic cloud undergoes an
interactions-induced transition from a superfluid
to a Mott insulating phase. The single-atom de-
tection of metastable Helium atoms in momen-
tum space allows us to characterize the many-
body system through the atom momentum cor-
relations.

At close-by momenta, these correlations
identify quantum states, Bose superfluids and
Mott insulators, via their many-body coherence.
Extending these correlations up to the sixth or-
der highlights the depletion’s contribution to
the condensate’s statistical properties. At oppo-
site momenta, atom correlations reveal the pres-
ence of Bogoliubov’s pairing mechanism in the
quantum depletion of weakly-interacting Bose-
Einstein condensates at equilibrium. Several sig-
natures of the quantum origin of these atom
pairs confirm this 70-year-long prediction.

Ramping up the lattice potential in the su-
perfluid regime allows us to extend these mea-
surements to the case of strongly-depleted Bose-
Einstein condensates. At zero momenta, the
strongly-interacting regime is characterized by
larger deviations from the many-body coherence
of the condensate compared to the prediction
for a coherent state. On the other hand, the
suppression of the Bogoliubov paring signal well
before the Mott transition reflects the break-
ing of this approximation’s validity at stronger
interactions. It also suggests the presence of
momentum-correlated triplets of atoms, which
we have yet to be able to observe.

In this manuscript, the critical region of the
Mott transition is explored using single-atom re-
solved 3D measurements of the momentum den-
sity. This observable contains signatures of the
criticality of the transition beyond the mean-
field level. The ability to capture the partic-
ular physics of the system near the transition
holds promise for extending correlation measure-
ments to this regime, where non-trivial correla-
tions may signal that the system is becoming
strongly correlated.
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Résumé en français

Ce manuscrit traite de l’étude expérimentale de condensats de Bose-Einstein (BEC) à
fortes interactions au travers des moments et corrélations d’ordre supérieur dans l’espace
des impulsions. Nous accédons à ces quantités en exploitant la détection électronique
d’atomes individuels d’hélium-4 métastables

(4He∗) à l’aide de galettes à microcanaux
après une longue expansion en chute libre. Cette méthode de détection nous permet
également d’obtenir les distributions en impulsion à 3D, avec une résolution et une gamme
dynamique inégalées.

Cette gamme dynamique sur la mesure des densités en impulsion à 3D s’est avérée
essentielle, notamment pour la thermométrie de gaz de bosons sur réseaux de quelques
milliers d’atomes développée en collaboration avec Tommaso Roscilde (ENS Lyon) et
présentée dans le chapitre 2. Nous avons montré que cette thermométrie sature la limite
théorique fixée par l’information de Fisher (associée à la comparaison de ρ(k) avec des
simulations ab-initio QMC). Plus important encore, cette thermométrie nous a permis
de démontrer l’adiabaticité du chargement des réseaux optiques, et donc la préparation
d’états stationnaires du modèle de Bose-Hubbard. En particulier, le protocole de charge-
ment ne souffre pas du spectre d’excitation continu dans le régime superfluide ni du voisi-
nage du point critique quantique proche de la transition. Du point de vue de la simulation
quantique, ces résultats confirment la capacité des plateformes d’atomes froids à préparer
des états quantiques fortement corrélés de faible entropie (en l’absence de réservoir pour
fixer la température).

Cette certification a jeté les bases de l’étude de la région critique de la transition de
Mott à faible entropie. La suppression de ρ(k = 0) en augmentant la profondeur du
réseau conduit à un paramètre d’interaction critique compatible avec celui prédit par les
simulations QMC pour le système homogène à remplissage unitaire et à la température
de l’expérience, plutôt qu’avec celui d’une prédiction de type champ moyen à T = 0.
En outre, la suppression de ρ(k = 0) est compatible avec une variation critique dont
l’exposant serait celui attendu pour le modèle 3DXY , une propriété confirmée par les
données QMC. Ces résultats diffèrent de plusieurs études expérimentales précédentes sur
la région critique de la transition de Mott, une spécificité qui résulte de notre accès unique
à ρ(k = 0) et d’un choix judicieux du nombre d’atome dans les condensats pour obtenir
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un remplissage unitaire du réseau.

Dans le chapitre 3, nous profitons d’une amélioration de notre efficacité de détection
pour étudier la statistique de comptage complète (FCS) et les moments d’ordre élevé
(jusqu’à n = 6) de l’occupation des modes en impulsion dans des gaz de Bose superflu-
ides et des isolants de Mott détectés en champ lointain. Les statistiques de comptage
mesurées sont cohérentes avec celles attendues pour une description en termes d’états
purs, à savoir une distribution de Poisson pour le condensat et une distribution thermique
pour l’isolant de Mott. Ces résultats sont corroborés par la cohérence multi-corps dans
ces systèmes, quantifiée par l’amplitude normalisée g(n)(0) des corrélations locales d’ordre
n. Cette dernières est mesurée avec un contraste parfait via une approche originale basée
sur les moments factoriels. Concernant le mode du condensat en k = 0 de gaz de Bose
superfluides, nous observons de légères déviations

(
g(n)(0) > 1

)
à la cohérence multi-corps

parfaite g(n)(0) = 1 prédite par Glauber pour un état cohérent. Nous introduisons un mod-
èle heuristique pour expliquer ces déviations, puisque les calculs ab-initio des corrélations
à plusieurs particules ne sont pas réalisables dans le régime de fortes interactions de notre
expérience. Malgré sa simplicité, notre modèle capture quantitativement les déviations
g(n)(0) > 1 observées expérimentalement et les attribue à la fraction d’atomes déplétés.
Le modèle explique également pourquoi le rôle de la déplétion n’a pu être observé lors
d’une étude précédente [1]. Ayant identifié la cause des déviations, nos mesures confir-
ment la nature cohérente des condensats produits dans les expériences jusqu’au sixième
ordre des corrélations au moins. Atteindre ce niveau de certification est d’une importance
primordiale pour des investigations plus poussées de ces fluctuations dans le régime forte-
ment corrélé près de la transition de Mott, où des signatures de non-Gaussianité, si elles
sont présentes, apparaîtraient dans les fonctions de corrélation d’ordre élevé (n ≥ 3).

Dans le chapitre 4, les corrélations à deux corps entre modes d’impulsion opposés k et
-k révèlent des paires d’atomes (à impulsions opposées) dans la déplétion de gaz de Bose en
interaction à l’équilibre. Cette observation confirme au niveau microscopique la prédiction
faite par N. Bogoliubov il y a plus de 70 ans pour la déplétion quantique. La présence de
ces paires dans l’état fondamental à N corps du système résulte des fluctuations quantiques
induites par les interactions microscopiques entre particules à température nulle. Cette
origine est confirmée par plusieurs observables: l’extrême sensibilité du signal aux effets
de température finie, la variation de l’amplitude du signal analogue à celle mesurée pour
des états comprimés à deux modes, la violation de l’inégalité de Cauchy-Schwartz, et la
réduction des fluctuations relatives du nombre d’atome entre modes d’impulsion opposés.
Ce signal d’appariement a pu être observé grâce à notre efficacité de détection améliorée et
grâce aux réseaux optiques qui nous permettent d’atteindre le régime de basse température.

Ce dernier offre la possibilité de tester les prédiction de l’approche perturbative de Bo-
goliubov dans le régime fortement intéragissant en augmentant la profondeur des réseaux.
La probabilité pour un atome déplété d’appartenir à une paire k/-k présente une varia-
tions non-monotone avec la fraction condensée. Sa croissance initiale est compatible avec
le régime de Bogoliubov, dans lequel des interactions plus fortes augmentent le nombre de
paires dans la déplétion. Cependant, la suppression de l’amplitude du signal d’appariement
à des fractions condensées plus petites (mais non-nulles) signale une rupture de la validité
de cette approximation. Cette rupture apparaît pour des fractions condensées compatibles
avec celles trouvées dans des systèmes homogènes [2]. Les premières recherches de triplets
corrélés en impulsion dans la déplétion, qui résulteraient de processus d’interaction au-delà
de la théorie de Bogoliubov, ont été infructueuses. Cette exploration a été jusqu’à présent
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purement expérimentale puisque aucune prédiction théorique n’existe pour les corrélations
entre particules dans notre système (même au second ordre), illustrant la complexité de
la physique explorée par notre simulateur quantique.
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Introduction

M. Plank’s derivation of the black-body radiation formula in 1900 [3] and A. Einstein’s
understanding of the photoelectric effect in 1905 [4] both relied on the description of light
fields in terms of discrete energy quanta. These were the first times that a corpuscular
description of light was required to explain a physical effect, and marked the birth of
Quantum Physics. In 1924, L. De Broglie theorized the concept of wave-particle duality
[5] according to which any particle of mass m and velocity v behaves as a wave over the
typical distance set by the De Broglie wavelength:

λ = h

mv
(1)

with h is the Planck constant. The experimental proof of the wave-particle duality was
provided in 1927 by C. J. Davisson and L. H. Germer [6] who observed the diffraction of
electrons by the atoms of Nickel crystals.

Reaching the quantum realm with cold atoms experiments

The averaged (or thermal) De Broglie wavelength generalizes the concept of wave-particle
duality to ensembles of massive particles at thermal equilibrium at temperature T :

λdB = h√
2πmkBT

(2)

with kB the Boltzmann constant. The description of (possibly large) systems of particles
requires the formalism of Quantum Physics as soon as the phase-space density, defined
as nλ3

dB with n the system’s density, is of the order of unity. Above this threshold, the
system is said to be in the quantum degeneracy regime. In nature, this regime can be
found for instance in the core of neutron stars, where the huge pressure increases the phase-
space density up to nλ3

dB ∼ 105 despite a temperature of ∼ 109 K. Such pressures cannot
be achieved in experiments. However, the advent of lasers and laser cooling techniques1

made it possible for experimentalists to reduce the temperature of dilute atomic clouds
1See for instance the Nobel lectures of S. Chu [7], C. Cohen-Tannoudji [8], and W. Ketterle [9]



14 Introduction

below the micro kelvin, hence the name "cold atoms" associated with this field of research.
Combined with optical and magnetic trapping, the phase-space density of atomic clouds
can be brought above the quantum degeneracy threshold. Degenerate quantum gases
were first produced in 1995 with the realization of Bose-Einstein condensates (BECs) of
Rubidium atoms in the group of C.E. Wieman and E.A. Cornel at JILA [10] and of Sodium
atoms in the group of W. Ketterle at the MIT [11]. For these achievements, C.E. Wieman,
E.A. Cornel, and W. Ketterle were awarded the Nobel Prize in Physics in 2001. These
pioneering works opened the way towards investigations of quantum many-body systems
with unrivaled level of control and a wealth of detection techniques.

Quantum simulation with quantum gases

Quantum many-body systems are systems made of interacting quantum particles, in which
the interplay between quantum fluctuations and interactions gives rise to complex physics
that cannot be captured by mean-field descriptions. Many-body correlations occurring
at the vicinity of quantum phase transitions (such as the superfluid-to-Mott transition)
or many-particle entanglement are examples of this peculiar physics. Exact descriptions
of many-body systems are restricted to small ensembles of particles (a few dozen) since
the Hilbert space grows exponentially with the number of degrees of freedom. Because of
this limitation, the wave function of real-life many-body systems is unreachable to modern
simulations with classical computers. In 1982 [12], R. Feynman proposed the alternative
of using quantum systems, which inherently obey the laws of Quantum Mechanics, as
quantum simulators of specific Hamiltonians. Today, the "Quantum Simulation" field of
research envisioned by Feynman is flourishing as experimentalists successfully implemented
various platforms for quantum simulation [13]. This manuscript focuses on quantum gases,
but one can also cite trapped ions [14], arrays of Rydberg atoms [15], superconducting
qubits [16], or polar molecules [17]. Since the first BECs, quantum gases have become
central in the quantum simulation of interacting many-body systems. A reason for that
comes from the possibility to set manually and precisely some microscopic parameters
driving the physics of the system, such as the interactions between the particles (strength,
sign, range), the dimensionality, or the energy landscape seen by the atoms (disorders,
optical lattices, box traps). This versatility has permitted the implementation of numerous
Hamiltonians with quantum gases [18].

An ideal testbed: the Bose-Hubbard model

The first Hamiltonian realized with quantum gases was the Bose-Hubbard Hamiltonian,
which is one of the conceptually simplest Hamiltonians inspired by condensed-matter
physics. It was first implemented with quantum gases loaded inside 3D optical lattices
in the group of I. Bloch in 2002 [19], following the suggestion of D. Jaksch et al. [20].
This Hamiltonian describes the behavior of bosons inside a periodic potential. Physics
is set by two energy scales U and J , associated respectively with on-site interactions
and tunnelling (see Figure 1). Despite its apparent simplicity, the T = 0 phase diagram
of this Hamiltonian contains a quantum phase transition resulting from the competition
between the tunnelling effect, which favors a disordered (superfluid) phase, and repulsive
interactions, which favors an ordered (Mott Insulator) phase. This transition was first
observed in [19], by driving the depth of the optical lattice. The Bose-Hubbard model is
an ideal test bed for the quantum simulation of many-body systems where interactions
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play a central role. It has been studied in detail over the last twenty years but still contains
unanswered questions, especially concerning the quantum critical point of the transition.
This Hamiltonian is one of our team’s main objects of study, and the second chapter of
this manuscript is directly related to its investigation.

Figure 1: Schematics representation of atoms in a 2D optical lattice. The periodic
potential confines the atoms on the lattice sites. The possible microscopic processes are
tunnelling from one site to another or repulsive interactions between atoms at the same
site. The energy costs of these processes are, respectively, the parameters J and U of the
Bose-Hubbard Hamiltonian.

Detection techniques with cold atoms

A complete understanding of quantum many-body systems requires keeping track of the
correlations between individual degrees of freedom (positions, momenta, spins) of the
elementary constituents (atoms, ions, molecules). These correlations are only accessed via
measurements of the full particle distribution in the degree of freedom considered, and
require local probes able to resolve the particles individually.

Cold atoms platforms benefit from a vast panel of optical imaging techniques which can
be destructive (fluorescence and absorption imaging) or non-destructive (phase contrast
imaging). In their simplest implementation, these techniques are global probes of the
system sensitive to the atomic density rather than individual atoms. However, several
single-particle resolved probes have been developed on cold atoms platforms [21]. On
the one hand, fluorescence imaging has been upgraded to collect the photons emitted
by single emitters, the latter being either ions in magnetic traps [22], Rydberg atoms in
optical tweezers [23], or neutral atoms in 2D optical lattices [24]. These measurements
access the in-situ positions of the particles, but single-atom sensitivity with fluorescence
imaging has also been demonstrated in time-of-flight images [25]. On the other hand,
non-optical techniques can also provide single-atom resolved detection. These techniques
rely, for instance, on high-finesse optical cavities to which individual atoms can couple
[26], on ionization of particle and detection of the resulting ions [27], or on multi-channel
plates that detect metastable noble gas atoms [28]. Our experiment belongs to this last
category.
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Electronic detection of metastable Helium atoms

Helium being a noble gas, the metastable state (in which condensation is reached) has a
∼ 20 eV internal energy exceeding by far that of any other atomic specie brought to degen-
eracy. Thanks to this specificity, metastable Helium benefits from an alternative detection
technique to optical imaging. This technique, commonly found in high-energy physics, re-
lies on Micro-Channel Plates (MCPs) to detect electronically individual metastable Helium(4He∗) atoms after a time-of-flight (TOF). With the conditions (verified experimentally)
that the cloud undergoes a free fall and is probed in the far-field regime of expansion,
the spatial coordinates r of each atom yield the in-trap momentum coordinates k via the
ballistic relationship:

ℏk = mr

tTOF
(3)

with tTOF = 297 ms the TOF duration. Therefore, working with 4He∗ atoms provides
unique access to a singular quantity in cold atoms experiments: the 3D distribution of
the momentum occupation number. Averaging experimental realizations of such distribu-
tions yields the 3D momentum density ρ(k) = ⟨â†(k)â(k)⟩ with unmatched resolution and
dynamical range due to the single-atom resolved detection after a long TOF. But most
importantly, momentum distributions provide the moments of the momentum occupation
number beyond the mean and variance, and enable the computation of momentum corre-
lations between individual atoms. These quantities are crucial to investigate many-body
systems, as they should contain signatures of the strongly-correlated regime.

Outline of the manuscript

The manuscript is organized into four chapters:

• Chapter 1 presents the experimental apparatus producing 4He∗ BECs, whose cycle
duration was improved from 6.8 s to 4 s during the course of this thesis. The
electronic detection of individual 4He∗ atoms in the far-field regime of expansion
from an optical lattice is also detailed. Finally, special emphasis is placed on the
experimental calibration of the MCPs’ detection efficiency (ηMCP = 53(2)%) and on
a two-photon Raman transfer that was implemented to multiply by a factor of two
the statistics on the momentum distributions.

The following three chapters illustrate the formidable capacity of combining 3D optical
lattices with the electronic detection of individual 4He∗ atoms in the momentum space:

• Chapter 2 presents a thorough investigation of the average momentum occupation
number ρ(k) = ⟨â†(k)â(k)⟩ across the superfluid-to-Mott transition. More specifi-
cally, this study relies on the 3D momentum densities to certify the adiabatic prepa-
ration of equilibrium states of the Bose-Hubbard model [29], and on the peak mo-
mentum density ρ(k = 0) to locate the transition and reveal the critical scaling
[30].

• Chapter 3 reports the Full Counting Statistics and high-order moments (up to n = 6)
of the momentum occupation number for two iconic states of the Bose-Hubbard
model: Bose superfluids and Mott insulators [31]. These measurements provide an
unprecedented characterization of these strongly-interacting systems via their many-
body coherence.
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• Finally, Chapter 4 presents the observation of the k/-k pairs in the depletion of
interacting Bose gases [32]. This signal, predicted by N. Bogoliubov more than
70 years ago [33], is revealed by the correlations at opposite momenta contained
within the momentum distributions of lattice bosons. These atom pairs at opposite
momenta, together with more complex correlated clusters, are then investigated in
stronger interaction regimes for which Bogoliubov’s approximation is expected to
fail.
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Chapter

Helium was first brought to degeneracy in 2001 in the groups of A. Aspect [34] and C.
Cohen-Tannoudji [35]. These experiments were performed with bosonic Helium-4 atoms,
and a similar achievement was later performed in 2006 with Helium-3, a fermionic isotope,
in the group of W. Vassen [36]. Nowadays, only a few experiments are working with
Helium-4 in the world: one in Amsterdam led by K. Eikema [37], one in Canberra led by
A. Truscott [38], one in Vienna led by A. Zeilinger [39], and two here in Palaiseau, ours
led by D. Clément and the original one led by D. Boiron, C. Westbrook, and A. Aspect
[40]. This small number of experiments results probably from the technical difficulties
associated with cooling metastable Helium gases to quantum degeneracy. A first difficulty
is that Helium-4 can only be laser-cooled in its metastable 2 3S1 state, noted 4He∗, from
which transitions to the 2 3P0,1,2 states can be addressed with commercial lasers operating
at 1083 nm. Therefore, the first step for any Helium-4 experiment is to produce 4He∗

atoms starting from the ground state, which necessitates implementing a plasma discharge.
Another difficulty comes from the low atomic mass of Helium atoms, which requires pre-
cooling the source with liquid nitrogen and a long Zeeman slower to decrease the atoms’
velocity within the capture range of a Magneto-Optical Trap (MOT). Finally, the huge
internal energy of the metastable state, 19.8 eV, drastically increases the rate of light-
assisted Penning collisions [41, 42]. During this interaction process, one atom falls back
into the ground state while the other is ionized, resulting in a loss of two metastable atoms:

He∗ + He∗ → He + He+ + e− (1.1)

Fortunately, Penning collisions can be suppressed by working with spin-polarized gases
for which the collision rate is reduced by four orders of magnitude for Helium [43]. Nev-
ertheless, these collisions limit the maximum atomic density achievable when the gas is
unpolarized, as in the MOT or Molasses stages.

Despite all these difficulties, Helium is worth bringing to degeneracy because its high
internal energy is sufficient to extract an electron from a metallic surface, paving the way
to an electronic detection of single Helium atoms [28, 44]. To do this, the cloud is released
from a magnetic or optical trap and dropped onto a special detector called a Micro-Channel
Plate (MCP). A detailed description of how it enables detecting individual 4He∗ atoms is
given in Section 1.3. Before reaching this detector, the cloud undergoes a time-of-flight
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(TOF) which maps the measured spatial distribution onto the momentum distribution.
Therefore, Helium-4 experiments are particularly well suited for investigating momentum
correlations between individual atoms (see Chapters 3 and 4).

This first chapter describes the experimental set-up and the work done during this the-
sis to improve it. Section 1.1 summarizes the path towards quantum degeneracy with 4He∗

atoms, while Section 1.2 presents the work done to save 3.8 seconds on the experimental
sequence duration. Section 1.3 focuses on the electronic detection chain that enables the
measurement of individual 4He∗ atoms, which is necessary for all the results reported in
this manuscript. Section 1.4 describes a two-photon Raman transfer that we implemented
to increase the statistics of the measured atomic distributions by a factor of two. Finally,
Section 1.5 highlights the specificities of a TOF expansion from an optical lattice, corre-
sponding to the experimental conditions in which all the data presented this manuscript
were taken. Note that the physics of ultracold lattice bosons will be discussed in detail in
the next chapter.

1.1 Condensation of metastable Helium 4 atoms

The first 4He∗ BECs were obtained in tens of seconds [34, 35]. In 2015, our team reported
a faster experimental scheme of ∼ 6 s [45] whose main innovation was replacing the long
evaporation in a magnetic trap with a much shorter one in a hybrid magnetic-optical con-
figuration. Since 2021, the Australian team has held the record for the fastest production
of 4He∗ BECs, achieved in 3.3 s in a magnetic trap [38]. For us, the experimental se-
quence nowadays is pretty much the same as in 2015. For the sake of completeness of this
manuscript, all the different stages toward condensation are reminded in this first section
in a hopefully synthetic and pedagogical way. Of course, more detailed information can
be found in the team’s previous manuscripts [46–49].

1.1.1 4He energy levels of interest

Figure 1.1 presents the relevant energy levels of 4He, whose experimental uses are described
throughout this chapter. The starting point is the metastable 2 3S1 state, which acts as
an effective ground state since its ∼ 8000 s lifetime is long enough to safely neglect the
probability for a 4He∗ atom to return to the true ground state 1 1S0 during an experimental
cycle. An asset of this metastable state is its 19.8 eV internal energy, resulting from the
fact that Helium is a noble atomic species and is thus hard to excite. This energy scale
is much larger than any other atomic specie brought to degeneracy and is at the origin
of the capability to detect 4He∗ atoms individually. Finally, laser cooling is achievable
from the metastable state by addressing either the transitions to the 2 3P2 or 2 3P1 states,
depending on whether Doppler cooling or Sub-Doppler cooling is performed. On the other
hand, the large energy difference between the 2 3P0 state and the other two states is used
to perform two-photon Raman transfer. All these 2 3P0,1,2 states have a natural linewidth
Γ = 2π × 1.6 MHz and are addressed from the metastable 2 3S1 state with resonant light
close to 1083 nm.

Two different laser sources are used for laser cooling. The 2 3S1 → 2 3P2 transition is
addressed by a 50 kHz wide mono-mode fiber laser (NKT Photonics) which is amplified by



1.1 Condensation of metastable Helium 4 atoms 21

an Ytterbium-doped fiber amplifier (Keopsys) delivering a total of 2 W of optical power.
To address the 2 3S1 → 2 3P1 transition, we use a Distributed Bragg Reflector diode of ∼ 5
MHz bandwidth, amplified to 800 mW by a second Ytterbium-doped fiber amplifier from
Keopsys. The frequencies of both lasers are locked to their respective transitions thanks
to a saturated absorption spectroscopy signal obtained from a Helium plasma, generated
inside a Helium cell by a homemade high-voltage circuit [50].

Figure 1.1: 4He energy levels. Starting from the 2 3S1 metastable state, transitions to
the 2 3P0,1,2 states are used for either cooling, imaging, or manipulating the atoms. These
transitions have a wavelength of ∼ 1083 nm.

1.1.2 A source of 4He∗ atoms

The first step of our experimental sequence is the production of 4He∗ atoms from the
ground state 1 1S0. This is done similarly to all other Helium experiments worldwide by
applying a plasma DC-discharge onto the atoms. Figure 1.2 (a) schematically describes
how this process works in our experiment. A flux of Helium atoms is confined inside a
glass tube, which contains a metallic needle connected to a high voltage power supply.
A 3.0 kV voltage applied to the needle ignites a plasma between its tip and a grounded
perforated metallic plate, called a skimmer, located a few centimeters away. The skimmer’s
role is to cut into the transverse velocity distributions of the Helium atoms flux after the
discharge. Multiple excited states are populated by the discharge. Only the metastable
one is laser cooled, while the atoms in the other states are pumped. Due to Helium atoms’
lightness, metastable atoms produced by the plasma are too fast to be trapped inside the
science chamber after a Zeeman slower of reasonable length. To slow them down, a first
cooling stage consists in having the atoms pass through a narrow hole drilled inside a cold
piece of boron nitride (BN). The boron nitride is mounted inside a Copper (Cu) cylinder,
cooled by having liquid Nitrogen flowing through it. The Copper cylinder cools the boron
nitride, which in turns cools the atoms colliding with the walls of the narrow hole. All
these elements are mounted on a single metallic frame shown in Figure 1.2 (b). The whole
structure, affectionately called the "source", is quite fragile and must be carefully handled
any time some maintenance must be performed. And there were ! Here is a short review
of what can possibly happen:

• The glass tube can crack due to the leverage exerted by the (heavy) metallic cross to
which it is attached. The latter is also connected to the plastic tube of the Helium
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Figure 1.2: Schematics and picture of the source. (a) Schematics of the source. 4He
atoms circulate through a glass tube where a plasma discharge excites a fraction

(
10−4)

of them into the metastable state. Atoms then pass through a hole in a piece of boron
nitride (BN) cooled by the Copper mount (Cu) in which liquid Nitrogen flows. Finally,
a skimmer filters the atoms exiting the boron nitride with large transverse velocities.
(b) Picture of the metallic frame holding all the pieces of the source together. The red
rectangle illustrates the part that corresponds to figure (a).

inlet, whose elasticity adds mechanical stress to the cross. For these reasons, the
cross and the plastic tube are both attached to the metallic frame by cable ties (in
black and white in the figure).

• A plastic gasket, in black in figure (a), is glued at the interface between the glass
tube and the boron nitride. Every time the experiment is started, the glue contract
at low temperatures and may eventually crack itself or the glass tube. One has to
use an "elastic" glue that can deform to prevent this.

• The boron nitride inner and outer diameters must match exactly with those of the
glass tube and the hole in the Copper mount. If the first condition is not met,
not all Helium atoms flow into the hole in the boron nitride. The second condition
is necessary for the boron nitride to be cooled effectively by the Copper mount.
Otherwise, the longitudinal velocities of Helium atoms would be too large. The
laboratory’s mechanical workshop precisely machines those boron nitride elements.

• The needle is nibbled by the plasma and must be changed occasionally. In addition,
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some metallic powder can clog the narrow hole in the boron nitride.
• If the needle is too far from the skimmer, the plasma may ignite inside the plastic

tube rather than at the needle tip. The needle orientation also strongly affects the
flux of Helium atoms reaching the science chamber. Therefore, some wedges in the
glass tube maintain the needle aligned with the hole in the boron nitride. Those are
represented in white in figure (a).

Each troubleshooting allowed us to gradually optimize the source until the latest version
shown in Figure 1.2 (b), dated May 2021. The plasma current has been stable since then
(∼ 12.5 mA), and no further openings of the source has been needed, confirming the
robustness of our latest design.

1.1.3 A word about Doppler and Sub-Doppler cooling

Cold atoms experiments rely on laser cooling techniques to slow down large ensembles
of particles, and Doppler cooling is always used as a first cooling stage. It involves the
radiation pressure felt by a two-level atom doing cycles of absorption and spontaneous
emission with resonant photons. In our case, the two-level configuration is obtained by
addressing the 2 3S1 → 2 3P2 transition of 4He with σ+ polarized light, so that the atoms
end up cycling between respectively the mJ = 1 and mJ = 2 sublevels of these states.
The radiation pressure writes:

F = ℏk
Γ
2

s

s+ 1 ,with s = I/Isat

1 + 4∆2/Γ2 (1.2)

where s is the saturation parameter, whose definition involves the detuning to the reso-
nance ∆ and the saturation intensity Isat (for us Isat = 0.16 mW/cm2). Due to the Doppler
effect, an atom moving with a velocity v sees the effective detuning ∆′ = ∆−k ·v, and the
radiation pressure then depends on the orientation between the laser beam and the atom’s
trajectory. To decelerate the atom, one must use a contra-propagating laser beam with a
negative detuning ∆ (red-detuned) so that the Doppler effect brings the atoms back on
resonance with the photons.

In addition to a deceleration process, Doppler cooling allows the accumulation of large
ensembles (millions) of atoms in small volumes on the order of cubic centimeters. This
trapping process is achieved by illuminating an ensemble of two-level atoms with three
orthogonal and contra-propagating pairs of Doppler beams. Such a system is referred
to as a Red Molasse and was first realized experimentally in 1985 [51]. The equilibrium
temperature of a Red Molasse, set by the competition between the friction of the radiation
pressure and the momentum diffusion induced by spontaneous emission processes, writes
as:

kBT = ℏ
2

∆2 + Γ2/4
|∆| (1.3)

The minimum temperature is called the Doppler limit [52], and is reached for ∆ = −Γ/2:

kBTD = ℏΓ
2 (1.4)

For 4He∗, the Doppler limit corresponds to TD ≃ 39 µK [53]. For most atomic species,
this limit is not observed experimentally as Sub-Doppler mechanisms spontaneously take
place and reduce the temperature further. However, these Sub-Doppler mechanisms do
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not occur spontaneously with Helium, as their capture velocity is smaller than the Doppler
limit. This specificity has allowed our team to measure this limit for Helium in 2014 [54].

Figure 1.3: Sisyphus cooling on the transition 2 3S1 → 2 3P1. Left: a Λ-
configuration is achieved via pairs of σ+ −σ− polarized beams. Both beams have the same
Rabi frequency and positive detuning from the 3P1 state. Right: The contra-propagation
of the σ+ − σ− beams modulates spatially the lightshift of |ΨBS⟩, while that of |ΨDS⟩
remains zero. An atom initially in |ΨDS⟩ is transferred to |ΨBS⟩ near the bottom of a po-
tential energy hill. It then loses kinetic energy by climbing that hill before being optically
pumped back into |ΨDS⟩. The repetition of these processes continuously slows down the
atom and is called Sisyphus cooling.

Several Sub-Doppler mechanisms can lower the temperature beyond the Doppler limit.
They originate from the presence of a degenerate ground state in the transition addressed,
contrary to the simple two-level system required for Doppler cooling. In our experiment,
Sisyphus cooling is performed with the transition 2 3S1 → 2 3P1. This Jg = 1 ↔ Je = 1
configuration allows the implementation of a so-called Gray Molasse, whose first realization
dates back to 1992 [55]. Three orthogonal pairs of contra-propagating beams illuminate
the atoms. Each pair contains a σ+ and a σ− beam, which share the same Rabi frequency
Ω0 and detuning to the excited state ∆. Let us consider the motion of an atom along the
direction z of one of these pairs. Because the transition between both mJ = 0 sublevels is
forbidden, the σ+ −σ− beams implement a Λ-configuration between the two ground states
|g+⟩ = |2 3S1,mJ = +1⟩, |g−⟩ = |2 3S1,mJ = −1⟩, and the excited state |e⟩ = |2 3P1,mJ =
0⟩ (see left panel of Figure 1.3). The interference between the σ+ − σ− beams leads to
spatially modulated Rabi frequencies:

Ω±(z) = Ω0 cos(kz ± ϕ/2) (1.5)

where ϕ is the relative phase between the beams. For a sufficiently large detuning ∆, the
population of the excited state is negligible, and the atoms are in one of the following
coherent superpositions of |g+⟩ and |g−⟩:

|ΨBS⟩ ∝ Ω+(z) |g+⟩ + Ω−(z) |g−⟩ ,with ℏωBS ≃ ℏΩ2

4∆
(
Ω+(z)2 + Ω−(z)2

)
(1.6)

|ΨDS⟩ ∝ Ω+(z) |g+⟩ − Ω−(z) |g−⟩ ,with ℏωDS = 0 (1.7)

The dark state (DS) is uncoupled to the excited state |e⟩, and its lightshift is zero. On
the contrary, the lightshift of the bright state (BS) is positive for ∆ > 0 and spatially
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modulated. As the definitions of |ΨBS⟩ and |ΨDS⟩ involve z, the motion of an atom creates
a coupling between both states. One can show that the highest probability for an atom
initially in |ΨDS⟩ to switch to |ΨBS⟩ is reached at the positions z where the lightshifts are
the closest, namely down the hills of ℏωBS. This is referred to as motional coupling, whose
strength is inversely proportional to the energy difference (hence it happens preferentially
when the lightshift in |ΨBS⟩ is small). Conversely, an atom in |ΨBS⟩ can be optically
pumped towards |ΨDS⟩, with a maximum probability at the top of the hills because the
optical pumping rate is Γs/2, i.e. maximum when the lightshift is maximum. Because
climbing the hill of potential energy slows down the atom, the latter returns to |ΨDS⟩ with
a smaller velocity than when it left. Going back and forth between |ΨBS⟩ and |ΨDS⟩ keeps
slowing down the atom as it propagates along z. This mechanism, shown in the right
panel of Figure 1.3, is called Sisyphus cooling by analogy with the endless movement of
Sisyphus’ rock in Greek mythology. In the case of the atom, the temperature does not
decrease endlessly. Sisyphus cooling stops when the atom’s kinetic energy is of the order
of the height of the hill, namely when kBT ∼ ℏΩ2

0/|∆|. The Rabi frequency Ω0 cannot be
chosen arbitrarily small as the final velocity must remain smaller than the capture velocity
for Sub-Doppler mechanisms (∝ Ω2

0). In practice, the smallest velocities obtained with
Sisyphus cooling are of the order of a few times the recoil velocity vr = ℏk/m.

1.1.4 Description of the laser cooling stages

After having reminded some commonly used laser cooling techniques, this section briefly
presents their actual implementation in our experiment, in chronological order. The opti-
cal accesses of the different cooling beams around the science chamber are schematically
presented in Figure 1.4.

Zeeman slower

Right after exiting the source, the atomic jet of 4He∗ atoms is collimated by Transverse
Molasses (TMs), namely two pairs of contra-propagating beams implementing Doppler
cooling along the directions orthogonal to the propagation axis. The atoms then enter
a ∼ 2.5 m long Zeeman slower, in which they are continuously decelerated by a contra-
propagating beam along the longitudinal direction. This Zeeman slower is a vacuum tube
surrounded by magnetic coils. Those produce a Zeeman shift of the atomic energy levels
to keep the atoms in resonance with the light (whose frequency is fixed) as they get slowed
down. This technique was first implemented by W. D. Phillips [56] in 1982 to decelerate
an atomic jet of Sodium atoms and allows us to decrease the atomic longitudinal velocity
from ∼ 1200 m/s at the exit of the source to ∼ 50 m/s on reaching the science chamber.

Magneto-Optical Trap

The longitudinal velocity of the atoms after the Zeeman slower is sufficiently small to
trap them inside a MOT. The latter combines the Doppler effect with the Zeeman shift
induced by a magnetic gradient to spatially confine the atoms. Its first implementation
dates back to 1987 [57]. For the laser part, three orthogonal pairs of laser beams cross
each other at the center of the science chamber. The beams are red-detuned compared to
the 2 3S1 → 2 3P2 transition, and each pair is σ+ − σ− polarized. In addition, two coils
in anti-Helmoltz configuration produce a magnetic quadrupole in the science chamber,
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whose center coincides with the crossing of the laser beams. Due to the local magnetic
gradient, an atom moving away from the trap center is only resonant with a contra-
propagating beam, whose radiation pressure brings it back to the center. Therefore, this
joint mechanism allows to confine atoms into a given volume in space. The capture range
of a MOT is also larger than that of a bare optical Molasse, as the magnetic gradient
allows for atoms with larger velocities to be resonant with the light.

Figure 1.4: Scheme of the cooling beams around the science chamber. The
Zeeman beam is in the opposite direction to the incoming flux of 4He∗ atoms exiting the
Zeeman slower. Although coming from two different lasers, the six Red Molasses and Gray
Molasses beams are delivered to the science chamber by the same optical fibers. The figure
also shows the position of the fluorescence and absorption imaging cameras. A specific
beam is used for absorption imaging, while the MOT beams are tuned to resonance for
fluorescence imaging.

In the experiment, the magnetic coils are positioned along the x-axis, roughly 10 cm
away from the science chamber center. To load the MOT, a current of 16 A is applied
to the coils, creating a magnetic gradient of 25 G/cm on the atoms. The detuning of the
laser beams is set to ∆ = −60 Γ, and the intensity to 15 Isat per beam. A large detuning
ensures a large velocity capture range and also limits the rate of Penning collisions. These
settings allow us to capture ∼ 2 × 109 atoms in 2 s. The MOT is then compressed by
decreasing the detuning to ∆ = −12 Γ, which increases the density by a factor ∼ 10 .
At the same time, the intensity per beam is reduced to ∼ 0.1 Isat to keep a low amount
of Penning collisions. The resulting cloud contains N ∼ 2 × 109 atoms at a temperature
T ≃ 1.2 mK, with a density n ∼ 7 × 109 atoms/cm3.

Red Molasses

Once the MOT loaded, the magnetic quadrupole is switched off and one ends up with a Red
Molasse, where regular Doppler cooling is the only process in place. However, the cloud
temperature is still far from the Doppler limit TD ≃ 38 µK, reached for ∆ = −Γ/2. To get
closer, the detuning is reduced to ∆ ∼ −Γ, which is possible thanks to the narrow 50 kHz
bandwidth of the laser. To avoid large Penning collisions, the intensity is simultaneously
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lowered to 0.05 Isat per beam. After 5 ms, the Red Molasse typically contains N ≃ 1.8×109

atoms at T ≃ 100 µK. Getting closer to the Doppler limit would induce strong losses due
to the vanishing intensity s ≪ 1 required to reach this limit, and is not needed as the
equilibrium temperature is now small to proceed with Sub-Doppler cooling.

Gray Molasses

The capture velocity for traditional Sisyphus configurations, such as the lin ⊥ lin or
σ+ −σ− polarization gradient cooling [58], is below the Doppler limit for 4He∗ atoms [54].
As described in Section 1.1.3, Sub-Doppler temperatures can still be achieved via Gray
Molasses, implemented on the 2 3S1 → 2 3P1 transition. For that, the detuning of the
light is set to ∆ = 8 Γ and the intensity to ∼ 4.7 Isat per beam. After 5 ms, typically
N ≃ 1.7 × 109 atoms are trapped at a temperature T ≃ 15 µK. Although below the
Doppler limit, the temperature is not small enough to reach condensation. This is also
the consequence of the density being limited by the Pennings collisions, resulting in a
phase-space density of only a few 10−5 at this stage. Therefore, the cloud must now be
polarized to increase its density further, and cooled via evaporative cooling.

1.1.5 Description of the evaporative cooling stages

Evaporative cooling removes the hottest particles from a sample and allows the rest to
thermalize at a lower temperature when elastic collisions are sufficiently large. It is en-
countered in everyday life, for example when blowing on a cup of coffee, and is the final
step in all experiments with cold atoms to achieve condensation. Experimentally, it is
implemented either in a magnetic trap or in an optical trap. The first realizations of 4He∗

BECs were all performed by extensive evaporation in a magnetic trap [34, 35, 39, 59, 60].
However, this technique has two drawbacks. Firstly, achieving condensation requires long
evaporation ramps (∼ 10 s) in a magnetic trap. Secondly, the light mass of 4He∗ makes
it particularly susceptible to Majorana spin flips at the center of a magnetic quadrupole,
where the field cancels out [61]. Particular trapping geometries, such as the "cloverleaf"
design, can circumvent this effect, but induce large atom number fluctuations at the end
of evaporation. On the other hand, early work on all-optical evaporation of Rubidium
atoms demonstrated the stability and speed of evaporation inside optical traps [62, 63].
However, this technique cannot be implemented with 4He∗ atoms because Penning colli-
sions would limit the density in this unpolarized case. In 2009, the authors of [64] reported
the condensation of Rubidium atoms in a combined magnetic and optical trap. Inspired
by this approach, our team has set up a similar scheme for 4He∗ atoms [54]. This hybrid
configuration combines the efficient loading of a magnetic quadrupole with fast optical
evaporation ramps.

Magnetic trap

Before being loaded into the magnetic quadrupole, 4He∗ atoms are optically pumped to
the mJ = 1 sublevel of the 2 3S1 state by addressing the transition to the 2 3P1 state with
σ+ light. This optical pumping stage is required because only the mJ = 1 sublevel is
magnetically trapped: the mJ = 0 is insensitive to the magnetic field, and the mJ = −1
is anti-trapped. To define a quantization axis during this stage, two coils in Helmoltz
configuration produce a bias field along the z-axis. The quadrupole is produced with the
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same coils as for the MOT, and corresponds to a magnetic gradient of ∼ 5 G/cm. Around
N ≃ 1.7 × 109 atoms are loaded into the quadrupole, which corresponds to almost all the
atoms of the gray molasses. Polarizing the atoms decreases the Pennings collisions rate
by a factor ∼ 104 [65], which allows us to increase the density. To this end, the gradient is
increased to ∼ 35 G/cm. Finally, the cloud is cooled via radio-frequency (RF) evaporation
[9]. The idea of this technique is to selectively couple the hottest atoms to the mJ = 0
and mJ = 1 sublevels using RF waves. Due to the spatial dependence of the Zeeman shift,
progressively decreasing the RF frequency allows to expel atoms which are located closer
to the trap center, namely colder atoms. In our experiment, RF evaporation is performed
in ∼ 3 s, during which the RF frequency is linearly decreased from 40 MHz to 6 MHz. At
the end of the evaporation, N ≃ 120×106 atoms are trapped with a density n = 6.6×1011

at/cm3 and at a temperature T ≃ 70 µK. Even though this temperature is larger than the
one of the Gray Molasses, the phase-space density has increased by almost two orders of
magnitude due to the higher density.

Optical Dipole Trap

After the RF evaporation, the cloud is sufficiently cold and dense to be loaded into a
crossed Optical Dipole Trap (ODT). The latter is produced by a far red-detuned laser
beam at 1550 nm (from IPG Photonics), so that atoms are trapped at the maxima of the
light intensity [66]. Consequently, the beam is tightly focused on the atoms and reflected
on itself with an angle of 20° to produce a cigar-shaped trap (see Figure 1.19). The forward
and return beams are referred to as ODT1 and ODT2, and their waists are respectively
133 µm and 63 µm. An Acousto-Optic Modulator (AOM) shifts the frequency of ODT2
by a few tens of MHz to prevent interference effects with ODT1. The ODT trap is loaded
by switching on ODT1 and ODT2 at full power (18 W for ODT1) and decreasing the
quadrupole current in 500 ms with exponential decaying ramps. This transfer is optimized
by slightly offsetting the position of the magnetic zero compared to the center of the ODT.
This is done with magnetic biases, and limits Majorana losses that would be too high if
both centers were superimposed [47]. Due to its narrowness, only N ≃ 5 × 106 atoms
are loaded into the ODT. Simultaneously, the density increases by more than two orders
of magnitude, and the temperature is divided by two. Note that a bias field is applied
along the x-axis while the atoms are in the ODT to maintain their polarization and
avoid Pennings losses. Final evaporation in the ODT allows condensation to be reached.
The laser intensity is progressively decreased with a PID loop to let the hottest particles
escape. The trap opens during the process, meaning that the trapping frequencies and the
density decrease during the evaporation, contrary to the magnetic case. Nevertheless, the
temperature is cooled faster, and condensation is reached after typically ∼ 600 ms. The
final ODT intensity determines the BEC atom number and the trapping frequencies. The
largest BECs corresponds to N ≃ 106 atoms and (ωx, ωy, ωz) = 2π × (81, 352, 320) Hz,
with no thermal fraction distinguishable on absorption images (see next paragraph). All
the results presented in this manuscript required significantly smaller BECs, for which the
evaporation was pushed further. These smaller BECs corresponds to N ≃ 5 × 103 atoms
or less, and trapping frequencies of the order of (ωx, ωy, ωz) = 2π× (41, 173, 180) Hz. The
evolution of the phase-space density throughout the experimental sequence is summarized
in Figure 1.5.
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Figure 1.5: Phase-space density nλ3
dB in the different experimental stages. The

phase-space density corresponds to the product of the atomic density n with the third
power of the (thermal) De Broglie wavelength λdB = h/

√
2πkBT . A BEC is obtained

when the phase-space density exceeds one, which is achieved by cooling (λdB ↗) and
compressing (n ↗) the atomic clouds.

1.1.6 Optical imaging

In complement to the electronic detection permitted by 4He∗ atoms, our experiment im-
plements traditional fluorescence and absorption imaging techniques. Optical detection is
essential for diagnosing the cloud temperature and atom number via the density profiles
of the atomic distribution after Time-Of-Flight (TOF). Fluorescence imaging is achieved
by illuminating the atoms with the MOT beams on resonance for 100 µs. The fluores-
cence photons, emitted isotropically, are collected by an InGaAs camera above the science
chamber (see Figure 1.4). This camera contains 256 × 320 pixels of (30 × 30) µm2, and
its 125 µm resolution in the image plane is appropriate for imaging the cloud until the
end of the RF evaporation. To characterize the clouds after the loading into the ODT,
absorption imaging is performed with a probe beam of weak intensity Isat/5 addressing
the 2 3S1 → 2 3P2 transition. This beam illuminates the atoms from the side of the science
chamber, and the cloud shadow is imaged by a second InGaAs camera whose optical axis
forms an angle with the xy plane due to geometrical constraints. The resolution of this
detection scheme is 13 µm, which is enough to resolve a BEC after a short TOF. In partic-
ular, the BEC atom number NBEC is extracted from the Thomas-Fermi profiles measured
after a TOF of a few milliseconds.

1.2 Reducing the experimental sequence duration

The first 4He∗ BECs obtained by our team in 2015 [45] were produced every 6 seconds,
which was a factor of two faster than the state of the art at that time [35, 59, 60].
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The main innovation for this improvement was to perform evaporative cooling in both a
magnetic and an optical trap. In 2021, the Australian team reported the production of
4He∗ BECs of ∼ 106 atoms in 3.3 seconds [38]. They achieve such short cycle durations by
by-passing the evaporative cooling stage in the magnetic trap. In their case, performing
1D Doppler cooling in the magnetic trap (QUIC configuration) is sufficient to load a
crossed optical dipole trap. This is impossible for us because the cloud’s density directly
after loading the magnetic trap is too small

(∼ 1010 cm−3). Therefore, we compress the
magnetic trap to increase the density, which in turn heats the cloud and makes the RF
evaporation mandatory before loading the ODT. Nevertheless, the work of the Australian
team motivated us to try reducing our own sequence duration. Indeed, short experimental
sequences are a prerequisite for extracting correlations, since each measurement usually
requires thousands of experimental files to reach a satisfying signal-to-noise ratio.

1.2.1 Faster production of 4He∗ BECs

At the beginning of my thesis, the experiment could typically produce 4He∗ BECs of 6×106

atoms in ∼ 6.8 seconds. To do faster without major modifications of the experimental
apparatus, we first tried to optimize the number of 4He∗ atoms in the different steps of the
experimental cycle. The most efficient lever was to increase the initial number of atoms
trapped in the MOT. This number strongly depends on the plasma’s "health", the pressure
in the source vacuum chamber, and the orientation of the Helium beam. As mentioned
in Section 1.1.2, the several attempts at improving the source design have allowed us to
reach a situation where the plasma is stable. Combined with a thorough optimization
of the source and MOT parameters (skimmer position, source pressure, alignment of the
TMs/Zeeman/MOT beams, MOT detuning . . . ), both the loading rate and maximum
atom number of the MOT can be significantly improved, as illustrated in Figure 1.6.
This optimization typically permits the shortening of the MOT loading stage from 2 s to
1 s while keeping ∼ 2.5 × 109 atoms at the end of the MOT loading, which is already
a significant improvement. Thanks to this higher atom number, the evaporation in the
magnetic trap is more efficient and can be done faster. We found that we could keep
more than 150 × 106 atoms at the end of the RF evaporation while (i) suppressing an
unnecessary 1 s wait time at the beginning of the ramps and (ii) reducing the duration of
the ramp from 2 s to 1.4 s. Finally, the transfer from the magnetic to the optical dipole
trap was also shortened by 0.4 s by reducing the exponential decay time of the quadrupole
current from τ = 100 ms to τ = 85. In total, the experimental cycle has been fastened
from ∼ 6.8 s to ∼ 4 s without loosing in terms of BEC atom number

(
5 − 6 × 105) or

shot-to-shot atom number fluctuations (∼ 8%).

1.2.2 Optical pumping of mJ = 0 atoms

As mentioned in the introduction of this chapter, using MCPs allows us to detect indi-
vidual 4He∗ atoms. One of the benefits of this detector is to measure very dilute signals.
For instance, the results presented in Chapter 4 required to detect atomic clouds with
momentum densities of typically n = 0.5 atom/cm3. Therefore, such signals can easily be
masked by the detection background on the MCPs if nothing is done to reduce it. This
background (of 4He∗ atoms) has two origins. The first contribution comes from the atoms
ejected during the evaporation stages of the experimental sequence. In particular, the
fraction ejected upwards in the science chamber may reach the MCPs at the same time
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Figure 1.6: Improvement of the MOT loading. The atom number in the MOT is
plotted versus the duration of the loading stage for an optimized (blue) and non-optimized
(red) loading. Experimental points are fitted with the scalingNmax

(
1 − exp−(t−t0)/τ

)
from

which the maximum atom number Nmax and the loading rate Nmax/τ are extracted.

as the atoms of interest. The second contribution corresponds to mJ = 0 atoms trapped
inside the crossed ODT together with the mJ = 1 atoms. They originate from Majorana
spin-flips occurring during the transfer from the magnetic to the optical trap. Both contri-
butions are visible in the upper left and right panels of Figure 1.7. These are respectively
the histogram of the number of counts detected by the MCP and a time-integrated top
view of the atom’s impacts on the MCP surface. For this measurement, a large BEC of
hundreds of thousands of atoms was released from the ODT after 1 s of holding. We apply
a magnetic gradient at the beginning of the expansion to push the condensate away so that
the MCPs measure only background atoms. The atoms ejected during the evaporation
(indicated by the orange dashed line) reach the MCP first and are delocalized over its
entire surface. On the other hand, the colder mJ = 0 atoms that remained in the ODT
until the end of evaporation have a narrower velocity distribution centered on the MCP
(k ≃ 0), and indicated by the pink dashed line. To reduce this background when taking
data, a typical procedure consists in holding the BEC in the ODT for 3 s. The outcome is
shown in the middle panels of Figure 1.7. The number of detected atoms has been divided
by 373/102 ≃ 3.7 compared to the previous case, and most of the delocalized background
has been removed. However, doing this does not totally suppress the mJ = 0 atoms, and
a faint cloud remains at the MCP’s center. To reach faster experimental sequences, we
thought of optically pumping these mJ = 0 atoms into the |2 3S1 , mJ = 1⟩ state. The
idea behind this is to reduce the initial number of background atoms to avoid such a long
holding time. The lower panels of Figure 1.7 show an example of the background reduc-
tion achieved by an additional optical pumping stage, the implementation of which is now
described.

Optical pumping is realized at the end of the evaporation in the ODT. It is done
similarly to the one in the Gray Molasses by addressing the 2 3S1 → 2 3P2 transition with
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Figure 1.7: MCP background versus holding time and optical pumping. Left:
histograms of the number of counts detected by the MCP. Right: time-integrated top
views of the atom’s impacts on the MCP surface. Both contributions to the background
are indicated by the orange and pink dashed lines (see text). From top to bottom, the
background is reduced by increasing the holding time in the ODT from 1 to 3 s, and from
applying an optical pumping stage to further reduce the amount of mJ = 0 atoms in the
pink dashed line of the upper panels.
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σ+ polarized light. The magnetic bias of the ODT along the x-axis is decreased to zero
while that along the z-axis is increased to its maximum value (∼ 4 MHz) in 60 ms. The
atoms are then illuminated by a 700 µs long pulse whose frequency is tuned via an AOM to
match that of the 2 3S1 → 2 3P2 transition. After that, the magnetic biases are re-inverted
in another 60 ms. We record the number of background atoms detected by the MCPs on
varying the AOM frequency to observe the optical pumping effect. As illustrated in the
left panel of Figure 1.8, we indeed observe a reduction of the number of mJ = 0 atoms
around 235 MHz. After some optimization (for instance, passing from a pulse to a sweep),
we tested this optical pumping in real data-taking conditions with lattice gases of a few
thousand atoms. In particular, we investigated the background level reduction with the
ODT’s holding time for both configurations with and without optical pumping right after
the end of evaporation. The results are presented in the right panel of Figure 1.8. Without
optical pumping, the background level saturates around 3−4 s of holding. This saturation
is reached after only ∼ 2 s when optical pumping is performed. Therefore, this optical
pumping stage makes us gain one additional second on the total experimental cycle.

Figure 1.8: Optical pumping after ramping down the ODT. Left: background
atoms on the MCPs versus optical pumping frequency. The dip in the number of mJ = 0
atoms around 235 MHz shows that the optical pumping reduces the background level.
The solid line is a moving average of the experimental data. Right: background atoms
on the MCPs versus ODT’s holding time. Solid lines are also moving averages. Without
optical pumping (blue data), the background level on the MCPs saturates after ∼ 3 − 4
s. In contrast, a similarly good background can be reached in only ∼ 2 s when optical
pumping is performed (red data).

We comment here briefly on the difficulties encountered when trying to achieve optical
pumping at maximum ODT intensity, namely before optical evaporation. Contrary to the
previous case, we observe now a clear Lorentzian resonance associated with an increase of
mJ = 0 atoms (see left panel of Figure 1.9). This observation, combined with a strong
suppression of the mJ = 1 atoms at the same frequency (curve not shown), indicates that
the optical pumping transfers atoms from the mJ = 1 to the mJ = 0 sublevel rather than
the opposite. One reasonable explanation is that the light polarization is not σ+ but rather
π or σ−. To confirm this hypothesis, we measured the resonance frequency for various
ODT intensities and magnetic fields. The results are presented in the right panel of Figure
1.9. A first observation is that the resonance frequency decreases with the strength of the
magnetic field (x-axis). This means that the energy levels addressed optically get closer
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in energy the stronger the Zeeman shift. It thus excludes the possibility of a π polarized
light, since the latter would address the transition between the states |2 3S1 , mJ = 1⟩
and |2 3P2 , mJ = 1⟩ whose energy difference remains constant. On the other hand, this
measurement is consistent with a σ− polarized light coupling the states |2 3S1 , mJ = 1⟩
and |2 3P2 , mJ = 0⟩. The shift between the resonance frequencies in the low/high ODT’s
intensity cases supports this conclusion. Indeed, the red-detuned ODT induces a negative
lightshift on the energy levels, which increases the energy difference between the states
|2 3S1 , mJ = 1⟩ and |2 3P2 , mJ = 0⟩. Therefore, the ODT seems to polarize the atoms
in such a way that the optical pumping beam acts as a σ− light. To see if the beam
also contains a σ+ component, we scanned the frequency range around 235 MHz trying
to observe a similar dip to the one in Figure 1.8, without success. The result of these
attempts is that the ODT-induced perturbation when the ODT is at maximum power is
too strong to perform optical pumping before optical evaporation.

Figure 1.9: Optical pumping before ramping down the ODT. Left: background
atoms on the MCPs versus optical pumping frequency. The solid line is a Lorentzian fit
used to extract the resonance frequency. Right: Resonance frequency versus magnetic bias
field, at two different ODT intensities. The magnetic field strength is quantified via the
voltage command sent to the power supply of the coils.

To conclude this section, the entire experimental sequence for data taking has been
reduced by 3.8 s to reach ∼ 8 s (accounting for the reset time). This improvement has
a significant impact since it increases the maximum number of files that can be collected
during a typical day of acquisition from ∼ 2400 to ∼ 3600. For comparison, all the results
concerning momentum correlations between individual atoms (Chapters 3 and 4) were
obtained by averaging over ∼ 2000 distributions for each set of parameters. Because half
(at worse) of the measured distributions are thrown away due to atom number fluctuations,
each dataset must contain about 4000 distributions to be confident that the statistic
is sufficient. Two days of acquisition were needed per dataset with the old sequence,
whereas one day is enough with the new one. In addition, collecting a dataset in a single
day tends to limit variations in the experimental conditions between the distributions.
Finally, we note that improving the shot-to-shot atom number fluctuations for our typical
experimental conditions (lattice gases with a few thousand atoms) might be the next major
step in reducing the total acquisition time.
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1.3 Individual detection of 4He∗ atoms

As mentioned in the introduction of this chapter, the 19.8 eV internal energy of 4He∗

atoms allow them to be detected electronically using a Micro-Channel Plate (MCP). This
kind of detector is widely used in high energy physics [67–69], but not commonly found in
cold atoms experiments. The electronic detection is one of the main purposes of bringing
4He∗ atoms to degeneracy. Combined with delay lines, it permits reconstructing the three
momentum coordinates of individual atoms after a TOF. Consequently, the 3D momentum
distribution of the released gas is accessible with an outstanding momentum resolution
and a dynamic range of several orders of magnitude. In addition, this measurement is
performed without line-of-sight integration, contrary to the case of optical imaging. All
the results presented in this manuscript were achieved thanks to this particular detection
method, whose key aspects are now presented.

1.3.1 Description of the MCPs

A Micro-Channel Plate is a thin metallic disc with a series of holes (or channels) in the
micrometer range. Ours is the F9142-01 MOD6 Hamamatsu design whose open-to-air
ratio, i.e. the ratio of the area of the holes to the total area of the MCP, is 90%. The total
diameter of the disc is 8 cm, while that of the channels is dc = 12 µm. These channels
are drilled at an angle of 20° to the surface normal so that a Helium atom falling into one
of them is sure to hit its surface at some point. When this happens, the high internal
energy of the metastable atom compared to the work function of the metal (∼ eV) makes
the extraction of an electron from the surface possible [70]. By polarizing the MCP, this
first electron is accelerated downwards and continues to extract other electrons by hitting

Figure 1.10: Descriptions of the MCPs and delays lines. (a) Schematic representa-
tion of the electronic discharge triggered by an initial 4He∗ atom falling into a micrometer
channel of two MCPs in a Z-stack configuration. (b) Schematic description of how the
MCPs and the delay lines are mounted on a flange. (c) Photograph of the mounting rep-
resented in (b).
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the surfaces, producing an avalanche process (see Figure 1.10). In our experiment, two
MCPs are attached in a Z-stack configuration to amplify this electronic discharge further
[71]. By applying a voltage of 2.4 kV between the plates, an initial 4He∗ atom hitting the
MCPs produces an electronic shower of ∼ 108 electrons at the channel exit. By itself, this
signal is insufficient to know when and where an atom has fallen. However, the position
and arrival time of a 4He∗ atom onto the MCPs can be inferred by coupling the electronic
discharge to delay lines.

1.3.2 Delay lines and reconstruction of spatial distributions

Underneath the MCPs are two Roentdek delay lines, consisting of two metallic wires
perpendicularly wrapped around a holding board about a hundred times (see Figure 1.11).
The electronic discharge couples to these wires, resulting in the contra-propagation of two
pulses towards the extremities of each waveguide. To reconstruct the 3D position of an
atom, one must find its corresponding quadruplet (tx1 , tx2 , ty1 , ty2) among the list of arrival
times. This is the role of the "reconstruction algorithm", which operates in two steps. The
algorithm first collects all the pulses in the channels x1, x2, y1 and y2 that belong to a
time interval of 100 ns. This duration represents the longest time a pulse propagating at
vg = 20 cm/ns can spend inside the Ldl = 20 m long delay lines [72]. Consequently, the
four pulses of a single detection event must be contained within this time window. The job
is done if only one pulse in each channel satisfies this condition. Otherwise, the algorithm
computes the quantity D:

D = tx1 + tx2 − (ty1 + ty2) (1.8)

for each possible quadruplet among the list of arrival times satisfying the first condition.
By construction, D equals zero when the arrival times correspond to the same detection
event. Therefore, the four pulses for which D is the closest to zero are assigned to the
same atom. These times are removed from the list, and the procedure is repeated with
the remaining ones until each detection event has been identified.

After having found the quadruplet (tx1 , tx2 , ty1 , ty2 , ) of a single detection event, one
can derive the impact position (xi, yi) of the discharge on the grid, which identifies with
the position (x, y) of the initial 4He∗ atom on the surface of the MCP:

x = 1
2 (tx1 − tx2) vg (1.9)

y = 1
2 (ty1 − ty2) vg (1.10)

The quadruplet (tx1 , tx2 , ty1 , ty2 , ) also gives the impact time of the pulse:

ti = tx1 + tx2 − Ldl

vg
= ty1 + ty2 − Ldl

vg
(1.11)

The vertical coordinate of an atom is then obtained from z = vCOM × ti, with vCOM

the vertical velocity of the cloud’s center-of-mass when hitting the MCPs. The latter
being located 43 cm below the center of the science chamber, the cloud’s center-of-mass
undergoes a TOF of tT OF = 297 before reaching the MCPs with a velocity vCOM = 2.9
m/s. Therefore, the precise determination of the quadruplets (tx1 , tx2 , ty1 , ty2) yields the
3D spatial coordinates of each atom reaching the MCPs.
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Figure 1.11: Delay lines. (a) Schematic representation of the delay lines. After the
impact of an electronic discharge, two pulses propagate in opposite directions towards the
extremities of both delay lines. Their arrival times (tx1 , tx2 , ty1 , ty2) allows to reconstruct
the spatial coordinates of the atoms. (b) Photograph of the delay lines.

1.3.3 Electronic chain and resolution of the detector

The resolution on the spatial distributions is directly determined by the temporal resolu-
tion on the pulse arrival times. For example, resolving two atoms separated by 1 mm on the
MCPs plane and propagating along the x or y axis at speed v⊥ = 10 cm × (vg/Ldl) = 106

m/s requires a temporal resolution of 2 × 10−3/106 = 2 ns. We thus need fast electronics.
In addition, assigning an arrival time to a pulse with such a precision is not straightforward
when all pulses do not share the same amplitudes. Those depend on how well the elec-
tronic discharges couple to the delay lines, and strongly vary between the detection events.
In this case, the naive approach of choosing as the arrival time the moment when a signal
exceeds an amplitude threshold is not sufficiently sophisticated. Indeed, stronger pulses
may be detected earlier than weaker ones, even if their arrival times are identical. This
issue is overcome by using a Constant Fraction Discriminator (CFD), which determines
the maximum of a pulse by finding the zero of its slope. To do that, the CFD transforms
an initial pulse into a bimodal one:

VCFD(t) = Vpulse(t) − fc × Vpulse(t− τ) (1.12)

using the so-called constant fraction fc ∈ [0, 1] and a delay τ . The zero-crossing of this
bimodal pulse indicates when the maximum of the actual pulse is reached and is used to
trigger a 0 − 1 V signal with sharp rising edges. This signal is sent to an FPGA-based
time-to-digital converter (TDC) [73] which converts it into digital time, with a coding step
of t0 = 10 ps.

This coding step gives us a first idea of the best resolution achievable by the whole
detection chain. Along the lines of Equations 1.9 and 1.10, this minimum time interval
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corresponds to a pixel size in the MCP plane given by:

∆x = ∆y = 1
2 t0vg = 60 µm (1.13)

which corresponds to the minimum bound of the in-plane resolution. However, any noise
in the electronic chain affects the assignment of arrival times and consequently enlarges
the resolution. This noise was measured experimentally in [48, 73] and yields the in-plane
resolution:

σx/y ≈ 120 µm (1.14)

At first glance, the situation is far more favorable for the vertical resolution. Indeed, the
smallest vertical distance ∆z resolved by the coding time and its value after accounting
for the electronic noise are both much smaller than the horizontal resolution:

∆z = vCOMt0 ≃ 0.35 nm (1.15)

σz ≈ 0.5 nm (1.16)

However, the vertical resolution is actually limited by a geometrical constraint. As shown
in Figure 1.12, the 20° angle of the channels implies that two atoms separated vertically
by a distance smaller than dc/ tan(20) cannot be distinguished. This distance represents
a minimum uncertainty in estimating the z coordinate of each atom, which limits the
vertical resolution to:

σz = dc/ tan(20) ≈ 33 µm (1.17)

As it will be discussed in Section 1.5, the spatial atomic distribution after a TOF from
an optical lattice can be related to the in-trap momentum distribution via the ballistic
relationship:

ℏk = mr

tTOF
(1.18)

Figure 1.12: Geometrical constraint on the vertical resolution. The channels are
drilled at an angle of θ = 20° to the normal to the MCP surface to ensure that a 4He∗

atom hits the wall at some point. Because of this angle, both atoms A and B are detected
simultaneously, although their arrival times differ. This effect limits the vertical resolution
to dc/ tan(20) ≈ 33 µm.
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Consequently, the spatial resolutions of Equations 1.14 and 1.17 converts into the momen-
tum resolutions:

σkx/ky
=
mσx/y

ℏ tTOF
≈ 3 × 10−3 kd σkz = mσz

ℏ tTOF
≈ 9 × 10−4 kd (1.19)

where kd ≃ 8.1 µm−1 is our lattice wave vector. Verifying experimentally such small
resolutions is not straightforward because it requires measuring momentum structures
with sizes of the same order of magnitude. Sufficiently small structures can be obtained
by considering the bunching peak associated with Hanbury-Brown and Twiss correlations.
This effect is discussed in detail in section 3.2.2. In short, the second order correlation
function g(2)(k,k′) of a bosonic system with Gaussian statistics should reach 2 when
considering k′ = k. However, this amplitude is reduced if the size of the associated
correlation peak is of the order of the detector resolution. Therefore, the reduction of
the peak amplitude compared to 2 provides a way to quantify the resolution. Since the
size of the correlation peak is inversely proportional to the system size, the goal is to
measure the bunching amplitude of large trapped systems with Gaussian statistics. The
best candidate for us is a thermal cloud trapped in the ODT before the evaporation ramps.
The cigar-shaped trap makes the gas more elongated along the x axis, and the bunching
peak is consequently narrower in this direction. The associated bunching amplitude was
reduced to 1.33(1), which allowed us to deduce a resolution σMCP = 2.9(3) × 10−3 kd

compatible with the estimate based on the electronic noise measurement. Importantly,
this measurement was voluntarily performed at high atom numbers to enlarge the system
in the trap and decrease the bunching width further. However, all the results reported in
this manuscript were obtained with much smaller atom numbers for which the correlation
signals are wide enough not to be affected by the detector resolution.

1.3.4 Limitations of the detector

The combination of MCPs with delay lines and a long TOF allows the detection of indi-
vidual atoms with an unprecedented resolution in momentum space. On the other hand,
this detector suffers from several limitations. The main ones are its quantum efficiency,
detection range, and saturation.

Quantum efficiency, noted ηMCP, is the ratio between the number of atoms detected
and the number of atoms falling onto the MCP. It is limited by a low open-to-air ratio,
which results in a high probability of an atom missing a micrometer channel. This cause
affects us only slightly, as this ratio is 90% for our MCP model. The probability for an
atom falling inside a channel to ionize a first electron, and for this electron not to escape
the channel also limits the quantum efficiency. Low quantum efficiencies are particularly
problematic for detecting correlations between particles since there are as many powers of
ηMCP as there are particles between which correlations are computed. The measurement
of this quantum efficiency for our MCP, presented in Section 1.4, yields ηMCP = 53(2)%.

The detection range of the MCP is limited by its 8 cm diameter, which cuts into the
transverse velocity distribution of the released cloud. This is even more true with a TOF
as long as ours, and is the trade-off for our excellent momentum resolution. This constraint
does not affect the vertical detection range and is not a problem when measuring BECs,
which are narrow structures even after the TOF. However, it does limit the observation
of lattice gases to the first Brillouin zone and becomes a real challenge for measuring the
high-momentum tails of 1D Bose gases [74].
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Saturation of the detection chain occurs in three different forms. The first is the local
saturation of the MCP itself when working with high atomic flux. This effect arises from
the time it takes for a micrometer channel to replenish its electrons after an avalanche
process. If another 4He∗ atom enters the channel in the meantime, the amplification
of the ionized electron may be too low for the resulting pulses to be detected by the
electronics. This saturation is well known when working with MCPs [28, 75], and a
previous investigation in our team [48, 49, 73] concluded that it occurs with our MCP
for an atomic flux of the order of 250 × 103 atoms/cm2/s. This threshold is reached
when working with BECs or lattice superfluids. To study the number of atoms in the
densest parts of these clouds, it is necessary to artificially reduce the atomic flux on the
detector (see section 1.4). The second type of saturation comes from the electronics of
the detection chain. More precisely, the TDC contains a multiplexer working at 16.4 MHz
to transmit the arrival times of the pulses to the computer, which limits the detection of
events to 4.1 MHz per channel. The final saturation effect comes from the reconstruction
algorithm, which has difficulty identifying the correct time quadruplets when the atomic
flux is high. This mixing of arrival times between different detection events is indicated
by a "saturation cross" in the plane kz = 0 of the momentum distributions (see Figure
1.13). Indeed, one can show [48] that the criteria used for the pulse assignment are not
error-proof and can lead, for high fluxes, to erroneously reconstructed atoms for which the
arrival times have been mixed. This mixing artificially adds atoms on the ±45° directions
of the MCP images (which do not coincide with the +45 and −45 lattice directions),
hence the saturation cross. According to the constructor, a solution to this third type
of saturation is provided by working with hexagonal delay lines that would lead to the
emission of six pulses for each detection event. This higher number of pulses per atom
results in lifting the uncertainty of the pulses assignment.

Figure 1.13: Saturation cross on the MCPs. Time-integrated top view of the atom’s
impacts on the MCP surface, where one dot represents each detected atom. The saturation
cross is made up of erroneous atoms reconstructed along the ±45° axis of the image. The
almost horizontal line corresponds to real atoms trapped inside an arm of the ODT, that
are released during optical evaporation.
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1.4 Implementing a two-photon Raman transfer

The fact that condensation is reached in the mJ = 1 sublevel of the 2 3S1 excited state
is problematic for our detection after a long TOF because this sublevel is sensitive to
the magnetic field. Therefore, any residual magnetic gradient during during the 43 cm
TOF deviates the atoms and destroys the correspondence between the measured spatial
distribution and the momentum distribution in the trap. Fortunately, this effect is circum-
vented by transferring the atoms to the mJ = 0 sublevel at the beginning of the TOF. For
the first months of my Ph.D., this transfer was done by splitting the sublevels of the 2 3S1
state with a magnetic bias and addressing the resulting Zeeman shift ∆E ≃ h× 13 MHz
between the mJ = 0 and mJ = 1 sublevels with a radio-frequency (RF) wave. Although
easy to implement, such a technique has a fundamental limitation: the RF wave is also
resonant with the mJ = 0 → mJ = −1 transition, bounding the maximum transfer to the
mJ = 0 state to 50% of the condensed atoms. This barrier dramatically limits the overall
efficiency of our detection chain, as it adds a factor 1/2 to the already low MCP’s detec-
tion efficiency. This effect is not too problematic if one is only interested in measuring the
momentum occupation average, namely the momentum density. This is actually the case
for the data presented in the next chapter, for which the efficiency of the RF transfer has
even been lowered to avoid saturating the MCPs. However, one of the strengths of our
experiment is the ability to measure momentum correlations between individual particles.
Because such measurements rely on the joint detection of several atoms, they are more
affected by the detection efficiency the higher the order of the correlations. To overcome
this issue, we replaced the RF transfer by a two-photon Raman transfer that allows keep-
ing 100% of the condensed atoms. This improvement is at the origin of the experimental
results presented in Chapters 3 and 4. This section summarizes the implementation of the
Raman transfer, whose first use was to calibrate precisely the MCP’s detection efficiency.

1.4.1 Brief description

The comparison between the RF and Raman transfer configurations is shown in Figure
1.14. In both cases, the magnetic sublevels of the 2 3S1 state are split by a Zeeman shift
∆E. While the condensed and detected states are directly coupled in the RF case, the
optical transfer relies on a two-photon process addressing the intermediate |2 3P0 , mJ =
0⟩ state. More specifically, a Pump beam, σ− polarized, couples the |2 3S1 , mJ = 1⟩ and
|2 3P0 , mJ = 0⟩ states, while a Stokes beam, π polarized, couples the |2 3P0 , mJ = 0⟩
and |2 3S1 , mJ = 0⟩ states. Absorption of a Pump photon followed by stimulated emission
into the Stokes beam allows the transfer of atoms from the condensed state to the detected
one. In the experiment, the beams are co-propagating to avoid any simultaneous transfer
of momentum that would affect the reconstruction of the in-trap momentum distributions.
This co-propagation is achieved by using a single polarization-maintaining optical fiber to
send both beams onto the atoms. The beam’s polarizations are set to be linear and
orthogonal. At the exit of the fiber, a half-wave plate allows to control the polarization
orientation of the beams. The Stokes π-polarization is obtained by aligning its linear
polarization with the quantization axis of the magnetic field, defined along the x-axis. In
contrast, the Pump beam’s linear polarization splits into a σ− and a σ+ components. The
former is used for the transfer, while the latter does not interact with the atoms because
there is no sublevel of the 2 3P0 state to which couple them. This means that half the
power of the Pump is useless, and so twice as much power has to be put on the Pump
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Figure 1.14: RF transfer and two-photon Raman transfer configurations. Rf
transfer addresses directly the transition between the |2 3S1 , mJ = 0⟩ and |2 3S1 , mJ = 1⟩
states, and is limited to 50% as the |2 3S1 , mJ = −1⟩ state can also be populated.
Conversely, a two-photon Raman transfer relies on a Λ-configuration in which only the
condensed and detected states could be coupled, leading to the possibility of a 100%
transfer (see text).

beam than on the Stokes one to reach a symmetrical configuration.

To transfer the atoms from the mJ = 1 to the mJ = 0 sublevel of the 2 3S1 state, one
must satisfy the conditions of (i) large one-photon detuning ∆ ≫ Γ to avoid one-photon
absorption towards the intermediate state, and (ii) two-photon resonance δ2p = 0 so that
the energy difference between both beams matches the Zeeman shift ∆E. To reach large
∆, a first double-pass AOM (originally intended for saturated absorption spectroscopy)
applies a 2 × (−200) MHz detuning to the 2 3S1 → 2 3P0 transition at the output of an
External-Cavity Diode laser [76]. This light is then split into two beams, the Pump and
Stokes ones, which both possess their own double-pass AOM. The Pump AOM adds an
additional and fixed 2×(−200) MHz detuning, while that of the Stokes adds a controllable
detuning of roughly 2×(−193.5) MHz. These settings fulfill the conditions (i) and (ii) since
they correspond to |∆| = 800 MHz and δ2p = νStokes − νPump = 13 MHz. The large value
of ∆, permitted by the 29.9 GHz separation between the 2 3P0 and 2 3P1 states, allows
to eliminate adiabatically the intermediate 2 3P0 state. The three-level Λ-configuration
becomes equivalent to an effective two-level system driven by the effective Hamiltonian:

Ĥeff =
(

0 Ω2p
Ω2p −δ′

)
(1.20)

The two-photon Rabi frequency and detuning are expressed as Ωeff = ΩSΩP /2|∆| and
δ′ = δ2p − (Ω2

S − Ω2
P )/4∆. Provided that the optical powers of the Pump and Stokes

beams are equal (symmetric configuration), the lightshifts Ω2
S/P /4∆ cancel out, and the

detuning is only given by δ2p. The unitary dynamics of an atom under such Hamiltonian
is well known [77]: the atom performs Rabi oscillations between states |2 3S1 , mJ = 0⟩
and |2 3S1 , mJ = 1⟩, at an effective Rabi frequency:

Ωeff =

√
Ω2

SΩ2
P

4∆2 + δ2
2p (1.21)

The maximum transferred efficiency is given by the ratio Ω2
2p/Ω2

eff, which means that 100%



1.4 Implementing a two-photon Raman transfer 43

transfer can be achieved when the two-photon resonance condition δ2p = 0 is met and the
pulse duration is π/Ω2p (π-pulse).

1.4.2 Experimental calibration

The two-photon Raman transfer must be carefully implemented. The first step consists
in setting the beams’ alignment onto the atoms. By sending the Pump beam alone onto a
BEC, in a configuration that maximizes the one-photon absorption (small |∆|, high optical
power), the amount of losses on absorption images informs us of how good the alignment
is. The latter is optimized by maximizing the losses while decreasing the optical power
in the Pump beam from a few mW to tens of µW. The orientation of the half-wave plate
at the output of the Raman fiber is calibrated in the same way. After that, one can
check that sending the Stokes beam alone on the condensed atoms has no effect. This
is due to the π-polarization of the beam, which cannot couple the |2 3S1 , mJ = 1⟩ and
|2 3P0 , mJ = 0⟩ states. At this stage, setting |∆| = 800 MHz and twice as much power in
the Pump beam than in the Stokes one generally allows imaging partially a BEC on the
MCP by performing a preliminary two-photon Raman transfer. Naturally, the parameters
δ2p and Ωeff have still to be optimized. This second part is more like a daily calibration,
which must be repeated before taking any data.

This calibration starts by measuring the Raman resonance frequency corresponding
to the condition δ2p = 0. To do that, the optical power is reduced to 30/60 µW for the
Stokes/Pump beams before the Raman fiber to achieve slow Rabi oscillations of ∼ 200
µs period. These settings allow us to use rather long pulse durations of ∼ 50 µs to
increase the energy resolution, while staying at the beginning of the first Rabi oscillation.
Note that the pulse duration cannot be extended much further as the transfer would
then be sensitive to magnetic field fluctuations. To locate the two-photon resonance, the
Stokes AOM detuning is varied around −387 MHz. Two things happen when approaching
the resonance frequency: the transfer efficiency increases

(
Ω2

2p/Ω2
eff → 1

)
and the Rabi

oscillations become slower (Ωeff ↘). Both effects act in opposite ways on the transferred
atom number, but the first one dominates and the transferred atom number is maximum
at the resonance. A Lorentzian fit provides the Stokes AOM frequency corresponding to
the two-photon resonance condition δ2p = 0. The second part of the calibration procedure
is to set the π-pulse duration to ∆t ∼ 10 µs. To do this, Rabi oscillations are measured for
different optical powers at the input of the Raman fiber until the period of the oscillations
reaches the desired value of 20 µs. The π-pulse duration is chosen as small as possible
(given the time resolution of our experimental sequencer) for two reasons. One is simply
to be less sensitive to magnetic field fluctuations. The other one results from the presence
of a residual magnetic gradient of 0.17 G/cm in our experiment, affecting the atoms in the
mJ = 1 sublevel during the TOF. For long pulse durations, the gas expands sufficiently
that this magnetic gradient induces different Zeeman shifts between different parts of the
atomic cloud, preventing the transfer from being resonant with the whole cloud at the
same time. Finally, a simple observable to verify that the transfer is properly calibrated
is to detect twice as many atoms on the MCP as with the RF transfer.
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1.4.3 Measurement of the MCP detection efficiency

The first use of the two-photon Raman transfer was to quantify the MCPs’ quantum
efficiency ηMCP, defined as the ratio between the number of atoms detected and the actual
number of atoms falling onto the detector. As mentioned in Section 1.3.4, this ratio is not
limited in our case by a poor open-to-air ratio, as ours reaches 90%. What is left are the
probabilities for an initial 4He∗ atom to ionize the first electron and for this electron not
to escape the channel. This last probability is about 1/2 and constitutes a higher bound
for ηMCP. Still, we expect a larger value than those typically reported for MCPs with
lower open-to-air ratios. For instance, a quantum efficiency of 25 ± 15% was reported in
[78] for a 60% open-to-air ratio.

The measurement of ηMCP with the RF transfer can only be approximate. Indeed, the
limited RF power implies relatively slow Rabi frequencies ≤ 8 kHz. Consequently, the
maximum 50% transfer achievable requires long pulse durations ∼ 100 µs, for which the
resonance condition becomes sensitive to magnetic field fluctuations. To avoid large shot-
to-shot fluctuations of the transferred atom number, we used to work with shorter pulses
for which the transfer efficiency (< 50%) was never known exactly. The implementation
of a two-photon Raman scheme makes it possible to circumvent this obstacle because the
optical power available to us leads to Rabi frequencies of ∼ 100 kHz, which are sufficiently
large to perform tens of Rabi oscillations in a few tens of microseconds. From these Rabi
oscillations, we can access the MCP detection efficiency ηMCP via the formula:

NMCP = NBEC

(Ω2p
Ωeff

)2
sin2

(Ωeff∆t
2

)
ηMCP (1.22)

(Ω2p/Ωeff)2 sin2 (Ωeff∆t/2) represents the fraction of the initial BEC atom number NBEC
that is transferred to the |2 3S1 , mJ = 0⟩ state by the Raman pulse, whose duration ∆t
sets the position on the Rabi oscillation. ηMCP relates this number of atoms reaching the
detector to the number actually detected NMCP. For a π-pulse, the two-photon Raman
transfer is maximal, and ηMCP is obtained from:

Nmax
MCP = NBEC

(Ω2p
Ωeff

)2
ηMCP (1.23)

Equation 1.23 does not account for the effect of saturation, which is hardly measurable.
As a consequence, the two-photon resonance condition cannot be met in the measurement
of ηMCP as the resulting atomic flux on the MCP would induce saturation and falsify
Nmax

MCP. The trick is to perform Rabi oscillations with off-resonance Raman transfers, where
large two-photon detunings δ2p ensure low transfer efficiencies and prevent saturating the
detector. Knowing the value of δ2p, the measurement of Ωeff yields the two-photon Rabi
frequency Ω2p =

√
Ω2

eff − δ2
2p while Nmax

MCP is obtained from the maximum transfer of the
Rabi oscillation. A separated calibration of NBEC with absorption imaging finally gives
ηMCP. This experimental procedure relies on the precise knowledge of the two-photon
detunings and, thus, of the two-photon resonance frequency. As aforementioned, the
latter is routinely estimated from the maximum transferred atom number measured when
scanning the Stokes beam detuning. However, a more accurate (and time-consuming)
estimate can be obtained from Rabi oscillations performed at fixed optical power (Ω2p
constant) and various Stokes beam detunings ∆ν. Fitting the measured Ωeff with the
scaling of Equation 1.21 allows to extract δ2p from the position of the minimum, as shown
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in Figure 1.15 (a). This preliminary calibration is followed by the off-resonance Rabi
oscillations. For the latter, initial BECs of NBEC = 2 × 105 atoms are transferred onto the
mJ = 0 state with a two-photon Raman transfer of fixed optical power (Ω2p = 20 kHz)
and large two-photon detunings (δ2p ∈ [300; 1000] kHz). Figure 1.15 (b) summarizes the
results: the maximum atom number transferred Nmax

MCP for each detuning is plotted versus
all the other terms of Equation 1.23 except ηMCP. The expected linear scaling is found,
whose slope is fitted to obtain the MCPs’ quantum efficiency ηMCP = 53(2)%, where the
error denotes the fit uncertainty. This value is consistent with the fact that the quantum
efficiency should mainly be limited in our case by the 1/2 probability for the first ionized
electron to escape from the micrometer channel.

Figure 1.15: Measurement of the MCP’s quantum efficiency. (a) The two-photon
resonance frequency is extracted using the scaling of Equation 1.21 and the measured
Ωeff at various Stokes beam frequencies. (b) Maximum atom number transferred with
off-resonance Rabi oscillations versus NBEC (Ω2p/Ωeff)2. According to Equation 1.23, the
slope of this curve corresponds to the MCPs’ detection efficiency. A linear fit yields
ηMCP = 53(2)%.

1.4.4 Improvements of the Raman transfer

The two-photon Raman transfer has received several improvements after its first imple-
mentation, mainly to enhance its stability and repeatability. They are listed here to
conclude this section.

The first change was to replace the homemade External-Cavity Diode (ECD) laser
with a mono-mode fiber laser from NKT Photonics that we had at our disposal. This
choice originated from the slow drift of the ECL laser wavelength on the time scale of tens
of minutes, illustrated in Figure 1.16. This drift was problematic as, for a long period, the
Raman transfer had to be done without a spectroscopy cell because it was under repair.
Therefore, we could not perform saturated absorption to lock the laser wavelength on
the transition 2 3S1 → 2 3P2, and had to adjust it manually several times a day. On the
contrary, NKT’s laser does not drift, which makes it more stable in the long term. Note
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that the early fast decrease of the ECD laser wavelength in a few tens of seconds simply
corresponds to the laser needing some time to stabilize time when switched on. After
already two hours, the wavelength drift corresponds to a frequency shift of ∼ 180 MHz,
which affects the one-photon resonance condition of the Raman transfer and makes Ω2p
decreased by ∼ 22%. Consequently, the π-pulse duration changes, and the transferred
atom number decreases over time.

Figure 1.16: Wavelength stability of the Raman lasers. The wavelength of the
homemade ECD laser (red) and of the commercial NKT model (blue) is recorded for two
hours. The slow drift of the ECD laser is problematic for the stability of the two-photon
Raman transfer (see text).

Figure 1.17: Clean Rabi oscillations. We repeated the measurement of a Rabi oscil-
lation four times consecutively, each corresponding to a given color. The fact that all
points can be placed on a single curve illustrates the stability of the two-photon resonance
frequency after replacing the RF drivers.

At some point, significant variations in the transferred atom number made us realize
that the two-photon resonance frequency was shifting through the day by several tens
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of kilohertz, which is large enough to get strongly out-of-resonance. To solve this issue,
we first upgraded the analog card transmitting our sequencer’s voltage command to the
power supply of the coils shifting the mJ = 1 sublevel during the transfer. The idea
was to see whether the improved 16-bit encoding of the novel NI PXI-6738 card (12-bit
for the old NI PXI-6723 model) could suppress possible magnetic field fluctuations at
the origin of the two-photon resonance instability. Indeed, the previous 12-bit encoding
of the voltage command setting the ∼ 200 MHz detuning of the Stokes AOM could in-
duce relative fluctuations of ∼ 10−4. Those would result in ∼ 40 kHz fluctuations of
the Stokes frequency, which agrees with the order of magnitude of the shifts observed
on the two-photon resonance condition. On the other hand, a 16-bit encoding would
only induce fluctuations of a few kilohertz, to which the two-photon Raman transfer is
insensitive. However, the problem persisted after this upgrade. Then, we decided to im-
prove the stability of the Pump/Stokes frequencies by replacing the homemade RF drivers
of the AOMs with a more stable arbitrary waveform generator (SDG6022X model from
SIGLENT). This choice solved the stability issue, and no shift of the two-photon reso-
nance has been observed since then. The resulting Rabi oscillations are reproducible, as
reflected in Figure 1.17 where stable Rabi oscillations were measured four times in a row.
These measurements are fitted by a damped Rabi oscillation function (solid gray line)
of the form (Nmax/2) [1 − cos (Ωeff ∆t) exp(−∆t/τ)], yielding an effective Rabi frequency
Ωeff ≃ 80 kHz and a damping time τ ≃ 115 µs. This damping, illustrated by the dashed
blue lines, is attributed to some residual misalignment of the Raman beams. Indeed, such
a defect leads to a non-homogeneous intensity profile seen by the atoms, resulting in a
mixing of Rabi oscillations at different frequencies.

Figure 1.18: Cage mount of the Raman collimator. From left to right: the Raman
fiber is inserted into a large diameter collimator, followed by a beam sampler reflecting
part of the beam onto a photodiode (at the bottom of the image), and finally, a half-wave
plate setting the orientation of the polarization axis.

Finally, a previous study of Tan’s Contact [79] in 1D Bose gases was limited by the 50%
RF transfer efficiency [74]. One of our mid-term objectives is to renew this investigation
with the higher statistics offered by the Raman transfer. However, the experimental
procedure requires a ∼ 15 ms before transferring the atoms to the |2 3S1 , mJ = 0⟩ state.
In the meantime, the ∼ 4 mm cloud expansion prevents transferring all the atoms with
the Raman transfer because of the 1/e beam size of ∼ 1.7 mm. This future investigation
motivated us to replace the Raman collimator with a larger model (60FC-L-4-M60L-37
from Schäfter+Kirchhoff) whose 24 mm clear aperture should increase the beam size by
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a factor ∼ 5. We took this opportunity to mount properly all the optical components
at the output of the Raman fiber into a cage (see Figure 1.18). The latter contains the
new collimator, followed by a beam sampler at 45° reflecting 1% − 10% (depending on the
polarization) of the incident light on a photodiode, and finally the half-wave plate used
to orientate the Pump and Stokes polarization axis just before the science chamber. This
implementation of the different elements is more robust and limits the risks of accidental
misalignment of the beam. In addition, the screws of the collimator mount makes the
fine tuning of the alignment easier, and the added photodiode allows us to infer from its
voltage the total Raman power sent on the atoms. Note that the larger beam size limits
the Rabi frequencies and typically prevents doing π-pulse in less than ∼ 100 µs with the 25
mW of the NKT laser. To spare an amplifier, we decided to switch back to the ECD laser
whose ∼ 170 mW enables 10 µs π-pulses even with the larger collimator. The stability of
the Rabi oscillations illustrated in Figure 1.17 was also checked with this new collimator
[80].

1.5 Ballistic expansion of interacting lattice gases

As explained in Section 1.3, one of the specificities of our experiment is to combine MCPs
and delay lines to detect atomic distributions after TOF with both exquisite resolution
and single-atom sensitivity. Another feature of our experiment is to use optical lattices to
simulate the Bose-Hubbard Hamiltonian and explore the richness of its associated phase
diagram (see Chapter 2). Indeed, our original electronic detection provides new informa-
tion on the momentum properties of lattice bosons compared to what can be accessed via
optical imaging. A prerequisite is therefore to relate the spatial distribution recorded after
TOF to the momentum distribution in the trap. Ideally, this is achieved thanks to the
ballistic relationship of Equation 1.18. Two conditions are required for this equation to be
valid: no interactions should deform the momentum distribution during the TOF, which,
in addition, must be long enough for the cloud to reach the far-field expansion regime.
The first condition is generally not met when considering a BEC released from a harmonic
trap. In this case, the cloud expansion is driven by the mean-field repulsion energy, which
distorts the momentum distribution into a so-called parabolic Thomas-Fermi profile [81].
One possible route to avoid the effect of the mean-field potential during the TOF is to
switch off interactions using Feshbach resonances [82]. This is however impossible in the
case of 4He∗ for which no Feshbach resonance is accessible. Fortunately, we shall see in the
second part of this Section that accessing the in-trap momentum distribution is possible
when considering the expansion from an optical lattice. Before that, we briefly describe
how such a lattice is implemented in our experiment.

1.5.1 3D Optical lattice

An optical lattice refers to a periodic potential obtained with a standing-wave laser light
far-detuned from any atomic transition. Similarly to an optical dipole trap, atoms are ei-
ther trapped at the maxima or at the minima of the light intensity depending on the sign of
the detuning. The simplest implementation of an optical lattice consists in retro-reflecting
a laser beam. The resulting interference pattern modulates spatially the light intensity
and consequently the potential. This concept is easily extended to higher dimensions by
adding retro-reflected beams along other directions of space. To avoid interference effects
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between the different lattice beams, the latter are generally detuned from each others by
tens of MHz using AOMs. Then, the atoms only feel the sum of the time-average lattice
potentials along each lattice axis, which for a 3D cubic lattice writes:

V (r) = V0

(
sin2

(
kd

2 x
)

+ sin2
(
kd

2 y
)

+ sin2
(
kd

2 z
))

+ m

2 ω
2
extr

2 (1.24)

The lattice wave vector kd = 2π/d depends on the lattice spacing d = λL/2. V0 is the
lattice potential and is usually expressed as V0 = sEr, with Er = h2/8md2 the recoil
energy and s the dimensionless lattice depth. This potential varies proportionally to the
optical power of the lattice beams and is then easily tuned experimentally. Finally, the
second term in Equation 1.24 describes the residual harmonic confinement induced by the
Gaussian intensity profile of the lattice beams.

Figure 1.19: Scheme of the ODT and lattice beams around the science chamber.
The ODT1 beam is recycled into ODT2, after refocusing it and shifting its frequency with
an AOM. The names of the lattice beams originate from their orientations around the
science chamber. Also represented are the co-propagating Raman beams, for which the
quantization axis is set by two coils in Helmoltz configuration producing a magnetic bias
along the x-axis (see Section 1.4).

Such a 3D cubic lattice is implemented in our experiment with far red-detuned laser
light at λL = 1550 nm. An initial 15 W beam, produced by an Erbium-doped fiber laser
(Keopsys), is split into three components which are retro-reflected and intersect at the
center of the science chamber. One of the directions is along the x axis and is labeled
H. The two other orthogonal directions belong to the yz plane and form an angle of
±45° with the y axis, hence their names +45 and −45. The lattice beams have a waist of
∼ 150 µm and their detunings are respectively (93, 70,−80) MHz for (H,+45,−45). Their
orientations around the science chamber are schematically represented in Figure 1.19. To
keep the coherence along the ∼ 1 m retro-reflection paths, the laser has a narrow linewidth
of ∼ 40 kHz. Each lattice beam has its own PID controller to lock its amplitude to the
desired value, and a photodiode to monitor the beam intensity for the feedback loop.
Finally, the Gaussian intensity profiles of the lattice beams adds an external confinement
whose frequency depends on the beam waists and intensities. In our experiment, this
trapping frequency is expressed as ωext = 2π× 140 × √

s and corresponds typically to few
hundred Hertz.
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1.5.2 Neglecting mean-field effects and two-body collisions during the TOF

At the mean-field level, atomic interactions are quantified by the interaction energy Uint =
gn, with n the atomic density and g = 4πℏ2as/m the coupling constant. The latter
depends on the atom mass m and scattering length as, which correspond respectively to
m = 4u and as = 142 a0 for 4He∗ atoms. With our typical experimental numbers, the
interaction energy of a BEC in the harmonic optical trap corresponds to Uint/h ∼ 103

Hz. In contrast, the ODT average trapping frequency after the evaporation ramps is
only ω̄ ∼ 2π × 300 Hz, explaining why the expansion from the ODT is driven by the
repulsive interaction energy rather than by the kinetic energy. The situation is quite
different in the optical lattice, where each lattice site is approximated by a harmonic trap
of frequency ωL/2π ∼ 105 − 106 Hz. This energy scale greatly exceeds the mean-field
interaction energy, even though the latter is increased compared to the ODT because of
the tighter confinement. As a consequence, the early stage of the expansion from the lattice
is ballistic. Later during the expansion, another mean-field interaction may kick in when
the atomic wavefunctions between different lattice sites overlap. This effect occurs when
the spatial extent of the wavefunctions is of the order of the lattice spacing d. By that
time, the density has decreased by a factor (xHO/d)3 ∼ 102 (for s = 10), where xHO is the
harmonic length associated with a single lattice site. Therefore, this mean-field interaction
can be neglected provided that the initial density is not too high [83]. Finally, interaction
energy induces a dephasing between the wavefunctions of lattice sites whose filling differ
[84]. The consequence of this dephasing is a reduction of the visibility of the interference
pattern after TOF, which can be drastic in the 1D case [85]. However, this effect is far less
important in the 3D case (< 5%) [84], provided again that the density is not too high. As
shown below, this condition corresponds for us to BECs of a few thousand atoms. This
small atom number combined with the tight harmonic confinement at each lattice site and
the low atomic mass of the Helium atoms means that the Thomas-Fermi parameter is less
than one in the lattice, which is another way of understanding why mean-field effects are
negligible during the expansion.

Beyond mean-field interactions, such as two-body collisions, can also affect the early
stage of a TOF expansion from a shallow optical lattice. As formally explained in the next
chapter, a low-amplitude optical grating behaves like a grating for the coherent matter
wave that is the BEC. Consequently, the atomic distributions after the TOF exhibit sharp
diffraction peaks whose momentum periodicity, set by kd, reflects that of the lattice.
Elastic collisions during the separation of these different BEC copies result in the presence
of scattering halos between the diffraction peaks [86], similar to when two BECs collide
[87–89]. Our team has conducted a thorough investigation of this effect in 2020 [90], which
is described in the thesis manuscripts of Cécile Carcy [49] and Antoine Ténart [74]. This
work concluded that the probability for such collisions to occur during the TOF is only
∼ 10−3 when considering experimentally relevant atom numbers

(
NBEC = 5 × 103) and

shallow optical lattices (s = 5). Therefore, the similar experimental conditions used in
this manuscript allow us to safely neglect these collisions.

It is now clearer why the momentum distribution should not be affected by interactions
during the TOF. However, the mapping between the momentum and spatial distributions
via the ballistic equation 1.18 is only correct under the assumption that the expanding
cloud has reached the far-field regime. This condition is equivalent to the Fraunhofer
regime in optics and ensures that all the momentum features have had enough time to
fully develop. For a trapped system of size L, this condition is fulfilled after an expansion
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time [91, 92]:

tFF ≃ mL2

2ℏ (1.25)

Our typical BECs occupy ∼ 50 lattice sites which corresponds to a trapped size L ≃ 39
µm, and the corresponding far-field time is tFF ≃ 50 ms. Therefore, our experiment’s 297
ms TOF is more than enough to satisfy the far-field condition. The measured atomic dis-
tribution should then, in principle, map accurately onto the momentum distribution. This
assertion was verified experimentally using a comparison with ab-initio Quantum Monte-
Carlo (QMC) simulations [93]. QMC algorithms are the only exact numerical approach
able to simulate the ab-initio momentum density of our system, provided that the atom
number is not too large. These simulations were performed by Tommaso Roscilde (ENS
Lyon) using all our experimental parameters (atom number, external trapping frequency,
lattice depth) except the temperature. The latter is chosen to minimize the mismatch be-
tween numerical and experimental data. An example of this comparison is shown in Figure
1.20 for a shallow optical lattice. The excellent agreement over more than three decades
in density confirms that our experiment allows us to measure the in-trap momentum dis-
tribution of lattice bosons. In particular, the fact that the experimental diffraction peaks
are not larger than the simulated ones confirms that the cloud is detected in the far-field
regime of expansion, where even the narrowest features of the momentum distribution are
fully developed.
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Figure 1.20: Comparison between the measured density after TOF and ab-
initio QMC simulations of the in-trap momentum density. Temperature is the
only adjustable parameter in the simulations and is chosen to minimize the discrepancies
between both curves. It is expressed in units of the Bose-Hubbard parameter J , which will
be defined in the next chapter. The BEC atom number for these data is only NBEC = 3000
atoms, which explains the noise around k = 0.5 kd where the density level is the lowest.
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1.6 Conclusion

This first chapter has presented our Helium-4 experiment, which was slightly improved
during this thesis to produce BECs of 4He∗ atoms every ∼ 4 s instead of every 6.8 s. This
gain has brought us close to the current state-of-the-art cycle duration of 3.3 s, obtained
with an innovative experimental setup recently reported by the group of Canberra [38].

A TOF is performed to access the momentum space, after which the clouds are de-
tected electronically by Micro-Channel Plates and delay lines. The 297 ms TOF duration
combined with the t0 = 120 ps coding step of the electronic chain allow the detection of
individual 4He∗ atoms with an extreme momentum resolution. In addition, the TOF dura-
tion is far superior to the far-field condition tFF ≃ 50 ms for Helium, required for a correct
mapping between the spatial and the momentum distributions. To avoid residual mag-
netic fields affecting the momentum distributions during such a long TOF, the atoms are
transferred from the condensed state |2 311,mJ = 1⟩ to the detected state |2 311,mJ = 0⟩
at the beginning of the expansion. During this thesis, we replaced the old RF transfer
by a two-photon Raman transfer to gain a factor of two on the statistics of the detected
distributions.

Considering BECs of moderate atom number released from an optical lattice, both
mean-field and beyond mean-field interaction processes are negligible during the expan-
sion. The measured far-field spatial distribution then reproduces the in-trap momentum
distribution via the ballistic formula, which has been verified experimentally by bench-
marking our setup with ab-initio QMC simulations. Therefore, our experiment is designed
to investigate the physics of lattice bosons in momentum space, with a renewed approach
relying on the single-atom sensitivity offered by the electronic detection. In particular,
the capabilities to detect dilute signals without line-of-sight integration or to compute
momentum correlations between individual atoms are crucial for the work presented in
this manuscript.
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Chapter

Mott insulators initially referred to a particular class of semiconductors and insulators
predicted by the band theory to conduct electricity. Following their discovery in 1937 by
Boer and Verwey [94], Peierls intuited that their insulating behavior could result from
the strong Coulomb repulsion between the electrons [95]. Mott’s pioneering work [96–98]
confirmed this explanation and gave his name to these insulators. In the past decades, nu-
merous theoretical advances have provided a better understanding of these materials [99].
In particular, Hubbard’s celebrated model [100–102] was the first theoretical framework
to describe the transition between the Mott insulator and metal phases. However, the
complexity of this model as the number of electrons increases makes it difficult to solve
numerically for only a few dozen electrons. Therefore, its investigation turned towards
experimental approaches.

Cold atoms are a versatile platform for implementing the Hubbard model, where atoms
loaded inside the periodic potential of an optical lattice simulate the electrons of a crys-
talline structure. The idea of using cold atoms as quantum simulators of the Bose-Hubbard
model was suggested by P. Zoller’s group in 1998 [20] and realized experimentally in the
group of I. Bloch in 2002 [19]. It was followed by the implementation of the Fermi-Hubbard
model in the groups of T. Esslinger and I. Bloch in 2008 [103, 104]. Cold atoms platforms
offer precise control of the parameters driving the transition towards a Mott insulating
phase and unique detection methods, which have provided numerous breakthroughs in un-
derstanding Hubbard physics in the past twenty years. Of course, grey areas remain, and
among them, the critical region of the phase diagram above the T = 0 superfluid-to-Mott
transition which is still largely unexplored. Investigating this critical region is precisely
the aim of this chapter. This study is based on the measurement of momentum densities
resolved at the individual atom level, as permitted by the detection of 4He∗ atoms.

The chapter is divided into five sections. Section 2.1 presents the transition from a con-
tinuous description of lattice bosons with the band Hamiltonian to a discrete description
in terms of lattice sites with the three-dimensional (3D) Bose-Hubbard (BH) Hamiltonian.
Section 2.2 describes the main regions of the T = 0 phase diagram, namely the superfluid
and Mott insulator limits, as well as the interactions-induced quantum phase transition
between both regimes. Section 2.3 recalls some experimental aspects and limitations of
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implementing the Bose-Hubbard model with cold atoms platforms to keep them in mind
during the presentation of our experimental results, which is done in the last two sections.
The adiabatic preparation of equilibrium states of the 3D BH model is demonstrated in
Section 2.4, while Section 2.5 focuses on revealing critical properties of the transition.

2.1 Bose-Hubbard model

This section describes homogeneous ultracold bosons loaded in a 3D optical lattice, im-
plementing the celebrated 3D BH model. For the sake of simplicity, the lattice potential
is assumed to be flat so that it does not induce any external confinement. The conse-
quences of external trapping are considered later in this chapter, along with the finite size
and finite temperature effects. Extensive literature exists on this topic, and the reader is
referred to e.g. [105, 106] for more exhaustive information.

2.1.1 The band Hamiltonian

We consider a 3D optical lattice, with cubic symmetry and lattice spacing d similar to
that of our experiment, whose periodic potential writes:

V (r) = V0

(
sin2

(
kd

2 x
)

+ sin2
(
kd

2 y
)

+ sin2
(
kd

2 z
))

(2.1)

The Hamiltonian describing a system of N ultracold bosons trapped inside this lattice is
expressed as:

Ĥ =
N∑

i=1

p2
i

2m +
N∑
i

V (ri) +
N∑
i

N∑
j>i

Uint(ri, rj) (2.2)

The first two terms are often referred to as the band Hamiltonian and describe the behavior
of ideal bosons in the 3D lattice. In this non-interacting case, the Bloch theorem states that
eigenfunctions are a product of a plane wave with a periodic function whose periodicity
reflects that of the lattice [107]. The band Hamiltonian being separable, we can restrict
ourselves to the 1D case and express the Bloch’s functions as:

ψq(x) = eiqxuq(x) (2.3)

with q ∈ R the quasi-momentum. Injecting Equation 2.3 into the eigenvalue equation
gives: [

(px + ℏq)2

2m + V0 sin2
(
kd

2 x
)]

uq(x) = E(q)uq(x) (2.4)

This equation can be solved numerically to obtain the band energies En(q) (indexed by
n so that E0(q) < E1(q) < · · · ) and the corresponding un,q(x). Due to the periodicity
of the functions un,q(x), the quasi-momentum can be restricted to the first Brillouin zone
q ∈ [−kd

2 ; kd
2 ].

As represented in Figure 2.1, a specificity of the energy band is that they separate from
each other and flatten out as the lattice potential increases. Consequently, the effective
mass m∗, defined from the curvature of the energy bands as:

1
m∗ = 1

ℏ2
d2En(q)

d q2 (2.5)
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increases with the lattice potential. This quantity describes how the lattice affects an
isolated wave packet. Indeed, the bottom of the lowest energy (or fundamental) band is
well approximated by a parabolic function:

E0(q) ≃ ℏ2q2

2m∗ (2.6)

which is identical to the dispersion relation of free particles considering the normalization
of the mass m → m∗. In the 3D case, a gap between the fundamental and the first excited
band appears for V0 ≃ 2.2Er. For such lattice potential and at unit filling, a BEC only
populates the fundamental band E0(q) of the lattice. As both conditions are fulfilled
throughout this manuscript, the index n is dropped in the following.

Figure 2.1: First three energy bands at various lattice amplitudes. The energy
bands En(q) for n ∈ [0, 1, 2] are plotted versus the quasi-momentum in the first Brillouin
zone.

2.1.2 The Bose-Hubbard Hamiltonian

The Bloch functions are delocalized over the entire momentum space. As we shall see, it
is convenient to work in the basis of the Wannier functions [108], which are all the more
localized on the lattice sites the higher the lattice potential. They are expressed in terms
of the Bloch functions as:

wj(x) =
√

d

2π

∫
1BZ

ψq(x)e−ijqddq , j ∈ Z (2.7)

where the index 1BZ refers to an integration over the first Brillouin zone. Wannier function
verifies the relation w0(x− jd) = wj(x), and can be interpreted as the wavefunction of a
particle located on site j. After inverting Equation 2.7, the delocalized Bloch functions
write as a sum of localized functions on the different lattice sites:

ψq(x) =
√

d

2π
∑

j

wj(x)e−ijqd (2.8)

Re-writing the band Hamiltonian in the Wannier basis makes the description of non-
interacting lattice bosons more intuitive. In the second quantization formalism, the band
Hamiltonian expression is:

Hband =
∫

1BZ
E(q)ĉ†

q ĉq dq (2.9)
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where the operator ĉq (resp. ĉ†
q) annihilates (resp. creates) a particle in the Bloch function

ψq(x). Introducing the corresponding operators b̂j , b̂†
j for the Wannier functions, one can

repeat the change of variables of Equation 2.7:

ĉ†
q =

√
d

2π
∑

j

b̂†
je

−ijqd (2.10)

and re-write the band Hamiltonian of Equation 2.9 with these new operators:

Ĥband =
∑
j,j′

J(j′ − j)b̂†
j b̂j′ (2.11)

Under this form, the physics behind Ĥband is easy to grasp: the term b̂†
j b̂j′ describes hops

of the particles between two different lattice sites j′ and j with the tunnelling energy
J(j′ − j) given by:

J(j′ − j) = d

2π

∫
1BZ

ei(j′−j)qdE(q) dq (2.12)

This amplitude decreases the further away the sites are, and also the higher the lattice
potential. In the tight-binding regime, reached for V0 ≥ 5Er [106], only the tunnelling
processes between adjacent lattice sites are non-negligible. The tunnelling energy is equal
for all these processes and is usually written as J = −J(1) (J > 0). The expression of the
band Hamiltonian finally simplifies into:

Ĥband = −J
∑
⟨i,j⟩

b̂†
i b̂j (2.13)

where the notation ⟨i, j⟩ refers to all the pairs of adjacent lattice sites i and j. This
expression is identical for the 3D lattice, and corresponds to the non-interacting part of
3D the BH model.

The interaction part of Hamiltonian 2.2 can be treated similarly, and its expression in
second quantization is:

Ĥint = 1
2

∫∫
Uint(x, x′)Ψ̂†(x)Ψ̂†(x′)Ψ̂(x′)Ψ̂(x′) dx dx′ (2.14)

with Ψ̂(x) the operator destroying a particle at position x:

Ψ̂(x) =
∑

j

wj(x)b̂j =
∑

j

w0(x− xj)b̂j (2.15)

The particles are assumed to interact via two-body contact interactions Uint(x1, x2) =
gδ(x1 − x2), with g = 4πℏ2as/m the coupling constant and as the scattering length. In
this case, Equation 2.14 becomes:

Ĥint = g

2
∑
j1

∑
j2

∑
j3

∑
j4

b̂†
j4
b̂†

j3
b̂j2 b̂j1

∫
w∗

j4(x)w∗
j3(x)wj2(x)wj1(x)dx (2.16)

Within the tight-binding regime, the overlap between the different Wannier functions
in this equation is non-negligible only when considering two particles on the same site,
meaning j1 = j2 = j3 = j4. With this simplification, the interaction Hamiltonian becomes:

Ĥint = U1D
2
∑

j

n̂j(n̂j − 1) (2.17)
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with n̂j = b̂†
j b̂j the atom number on site j, and U1D = g

∫ |w0(x)|4dx the on-site interaction
energy. The latter is easily generalized to the 3D case : U = g

(∫ |w0(x)|4dx)3. Then again,
the interpretation of the interaction Hamiltonian in the Wannier basis is intuitive: the total
energy is simply obtained by summing the interaction energy U of all atom pairs located
inside a same lattice site j.

Combining Equation 2.13 with Equation 2.17 yields the celebrated 3D BH Hamiltonian:

ĤBH = −J
∑
⟨i,j⟩

b̂†
i b̂j + U

2
∑

j

n̂j(n̂j − 1) (2.18)

which describes the behavior of ultracold bosons loaded inside the fundamental band of
an optical lattice. The next section describes how the many-body ground state of this
Hamiltonian evolves depending on the ratio u = U/J .

2.2 The superfluid-to-Mott transition

This section begins by treating the two limiting cases U/J → 0 and U/J → ∞ as they
are analytically solvable. We consider a homogeneous gas of N bosons loaded inside the
fundamental band of a lattice of M sites, and assume the filling to be commensurate,
meaning that n̄ = N/M is an integer.

2.2.1 Analytical cases : the limits U/J → 0 and U/J → ∞

In the non-interacting limit, the ground state of the system writes as the N product of
the single particle ground state. According to the previous section, the latter corresponds
to the Bloch function at quasi-momentum q = 0. Including the normalization factor in a
lattice with M sites, the ground state of the system is:

|Ψ0⟩SF = 1√
N !

(
ĉ†
q=0

)N
|0⟩ = 1√

N !

 1√
M

M∑
j=1

b̂†
j

N

|0⟩ (2.19)

For such a state, it can be shown [106] that the probability distribution to find nj atoms
at site j in the thermodynamic limit (N,M → ∞ and N/M = n̄) is Poissonian:

p(nj) ≈ e−n̄ n̄
nj

nj ! (2.20)

One would have obtained a similar distribution for a coherent state with a mean atom
number N :

|Ψcoh⟩ = N e
√

N ĉ†
q=0 |0⟩ (2.21)

Due to the relationship between ĉ†
q=0 and b̂†

j , the coherent state |Ψcoh⟩ can be written as
a product of local ones |αj⟩j at each lattice site j:

|Ψcoh⟩ = N e
√

N ĉ†
q=0 |0⟩ = N

M∏
j=1

e
√

n̄ b̂†
j |0⟩ =

M∏
j=1

Nj

∞∑
nj=0

α
nj

j√
nj ! |nj⟩j =

M∏
j=1

|αj⟩j (2.22)
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The amplitudes and normalization factors of each local coherent state are respectively
αj =

√
n̄ and Nj = e−|αj |2/2. In a good approximation, the predictions made for |Ψ0⟩SF

and |Ψcoh⟩ are the same, and one may choose to work with the latter which is easier
to manipulate. In particular, the computation of the first order correlation function
G(1)(i, j) = ⟨b̂†

i b̂j⟩ between two sites i and j is straightforward:

G(1)(i, j) = ⟨Ψcoh|b̂†
i b̂j |Ψcoh⟩ = α∗

iαj = n̄ (2.23)

The result is independent of the separation between the lattice sites, indicating off-diagonal
long range order for the ground state of the system. This U/J → 0 limit 1 is called the
superfluid regime.

In the opposite limit where the on-site interaction U diverges and the tunnelling energy
J is small, the Hamiltonian reduces to:

ĤBH ≃ U

2
∑

j

n̂j(n̂j − 1) (2.24)

which is diagonal in the Fock states basis. Consequently, the ground state writes:

|Ψ0⟩MI = 1√
N !

M∏
j=1

(
b̂†

j

)n̄
|0⟩ (2.25)

and is called a Mott insulator state [109]. Due to the vanishing tunnelling, the atoms are
localized on the lattice sites, that evolve independently from each other. To minimize the
interaction energy, each site must then contain as fewer atoms as possible. This ground
state configuration is reached when each site contains exactly n̄ = N/M atoms. The
fluctuations of the phase are then maximal, and no off-diagonal long range order exists.
Indeed, the first order correlation function is now zero when considered between different
lattice sites:

G(1)(i, j) = MI⟨Ψ0|b̂†
i b̂j |Ψ0⟩MI = δi,jn̄ (2.26)

Consequently, the system is incoherent in the Mott insulator limit U/J → 0. The tran-
sition between both regimes is called the superfluid-to-Mott transition [109], and we now
recall some of its characteristics.

2.2.2 A continuous quantum phase transition in 3D

The superfluid-to-Mott transition is a quantum phase transition: it occurs at T = 0 in the
many-body ground state due to the competition between two energy scales rooted inside
the system’s Hamiltonian. Those are the on-site interaction U and the tunnelling energy
J , and the transition is consequently driven by the dimensionless interaction parameter
u = U/J .

The superfluid-to-Mott phase transition is a continuous (or second-order) phase tran-
sition [110, 111]. Such transitions are characterized by an order parameter whose value
is non-zero in the ordered phase and zero in the disordered phase. At the transition (or
critical) point, where the order parameter cancels out, its fluctuations become long-ranged
in time and space, with a diverging decay time τc:

τc ∝ ξz ∝ |t|−νz (2.27)
1The case U = 0 is excluded as it corresponds to an ideal BEC, which is not superfluid.
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and a diverging correlation length ξ:

ξ ∝ |t|−ν (2.28)

In these equations, t is some dimensionless distance from the transition point. Note that
the divergence of τc on approaching the transition point implies a vanishing energy scale
of the fluctuations above the ground state. This feature is illustrated in the Bose-Hubbard
Hamiltonian by the transition from gapped particle-holes excitations in the Mott phase
to the gapless Bogoliubov excitation spectrum in the superfluid phase. Due to the di-
vergences in Equations 2.27 and 2.28, all observables near the transition point scale as
power laws with a given set of exponents. This phenomenon is known as criticality. An
even more intriguing feature of continuous phase transition is universality. Due to the
diverging correlation length, the microscopic details of the Hamiltonian are irrelevant at
the transition point. Consequently, all the phase transitions belonging to the same uni-
versality class share the same critical exponents, which can thus be observed in totally
different systems. In particular, the superfluid-to-Mott phase transition belongs to the
3D XY universality class [112], characterized by short-range interactions, O(2) symme-
try, and a two-component order parameter. In 3D, the latter corresponds to the BEC
wavefunction whose modulus square, the condensed fraction, takes a non-zero value in
the superfluid (ordered) phase and cancels out as soon as the system enters the Mott
insulating (disordered) phase [106].

2.2.3 Numerical approaches to tackle the Bose-Hubbard model

The complexity of the BH model away from the aforementioned limiting case lies in the
Hamiltonian of Equation 2.24 not being diagonal in either the Bloch or the Fock states
basis. It must then be addressed via numerical approaches, which are either approximate
or exact.

Mean-field theories, such as the Gross-Pitaevskii equation, neglect particle correlations
in position space. Consequently, they are not suited to describe the superfluid-to-Mott
transition because they give an approximate account of interactions, despite their critical
role in driving the system’s evolution. Even the next order Bogoliubov approach (see
Chapter 4 for more details) fails to predict the presence of a transition in the 2D and
3D cases [113]. On the Mott insulator side, the strong-coupling approximation allows to
treat interactions exactly while approximating the kinetic energy. Many approaches exist
depending on the level of approximation. At the mean-field level, the tunnelling energy J
can be treated as a perturbation [109] or with a site-decoupling approach [113, 114]. More
sophisticated methods also exist, such as the strong coupling expansion [115, 116].

All these approaches qualitatively transcribe the phase diagram of the homogeneous
BH model at zero temperature. The latter is plotted in Figure 2.2, where the filling n̄ (and
thus the chemical potential µ) is allowed to vary. As n̄ is independent of the dimensionless
interaction in the homogeneous case, the system must follow iso-filling lines on varying
U/J . Only when the filling is commensurate (⟨N⟩ = 1, 2, 3 in the figure) can the system
reach a Mott insulating phase. In this case, and as long as J is sufficiently large, tunnelling
always compensates for the energy cost of having two or more atoms on the same lattice
site. On decreasing J , there comes the point where the total energy becomes dominated
by the interaction energy, which is minimized by having exactly n̄ atoms per site. The
system then enters a Mott insulating phase, at a critical ratio (J/U)c that decreases with
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the filling n̄. In the incommensurate case, though, the excess atoms must be delocalized
over the entire lattice to minimize the interaction energy, and superfluid properties are
conserved down to the lowest values of J .

Figure 2.2: Zero-temperature phase diagram of the homogeneous BH model,
from [109]. The filling is noted ⟨N⟩, and the dashed lines are iso-filling lines. A superfluid-
to-Mott transition only occurs for commensurate filling (horizontal dashed lines).

Another kind of approximate method to assess the BH Hamiltonian is the mean-field
variational Gutzwiller approach [20, 117–119], in which the many-body ground state is
found by minimizing the free energy starting from the Gutzwiller ansatz:

|ΨG⟩ =
M∏

j=1
|ϕj⟩ =

M∏
j=1

∞∑
nj=0

fj(nj)|nj⟩j (2.29)

The latter consists in writing the many-body ground state in product form of on-site
wavefunctions |ϕj⟩ developed in the Fock states basis. The amplitudes fj(nj) are the
coefficients to be optimized while verifying the normalization condition ∑∞

nj
|fj(nj)|2 = 1.

Interestingly, this description is exact in the two limiting cases of the phase diagram:

• U/J → 0: the superfluid state |Ψ0⟩SF of Equation 2.19 is a coherent state, and is

retrieved from the Gutzwiller ansatz for fj(nj) = Nj
α

nj
j√
nj !

• U/J → ∞: the Mott insulator state |Ψ0⟩MI of Equation 3.8 is already a Fock state
with n̄ atom per site, so fj(nj) = δnj ,n̄

Despite working poorly close to the quantum critical point, this method provides accurate
predictions in both the superfluid and Mott insulating limits. In particular, it can be
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used to estimate the ground state density profile and the condensed fraction, even in the
presence of an external trapping potential (see Chapter 4).

Quantum Monte Carlo (QMC) algorithms are the only ones able to solve exactly the
3D BH model. They are based on a stochastic estimation of the partition function, from
an ensemble of space-time configurations (world-lines) in its path-integral representation
(see e.g. [120]). They were used soon after the seminal paper of M. P. Fisher et al. [109] to
characterize the BH model [121–125], particularly its (µ/U, J/U) phase diagram, for which
they predicted the positions of the quantum critical points and also critical exponents.

All these approaches provide approximate/exact predictions for the superfluid-to-Mott
transition that can be confronted with experiments. In this chapter, we focus on the critical
ratio (U/J)c and the critical exponents in the 3D case, for which theoretical computations
give quite different results. For the BH model with unit filling n̄ = 1, all mean-field
theories predict a quantum critical point at (U/J) = 5.8 z, with z the number of nearest
neighbors. In 3D, z = 6 and the mean-field prediction is consequently (U/J)MF

c = 34.8.
This value is quite larger the exact QMC estimate (U/J)QMC

c = 29.34 [126]. Surprisingly,
the critical ratios found in several experiments were consistent with [19, 127–129] (or
indistinguishable from [130]) the mean-field prediction rather than the QMC simulations.
In addition, critical exponents of the 3D BH model have never been observed so far, further
questioning the capacity of quantum gas experiments to study the critical region. To
provide some first explanations, the next section reminds practical aspects of investigating
the Bose-Hubbard model with cold atoms.

2.3 Investigating the Mott transition with ultracold atoms

In the first implementation of the BH model with lattice bosons [19], the transition from
a superfluid to a Mott insulating phase was signaled by the opening of a gap in the
excitation spectrum and the loss of off-diagonal long range order. Different signatures
of the transition were then reported by other teams, such as kinks in the visibility of
the interference pattern [83, 128] and in the width of the momentum density [130], as
well as the breakdown of superfluid currents [127]. The work of [19] opened the field of
quantum simulation of the BH model with cold atoms, which is still very active today.
Our experiment belongs to this line of research. More specifically, our original detection
of individual atoms in momentum space allows us to shed new light on the superfluid-to-
Mott transition, in addition to what can be known from optical imaging. Our experimental
results are detailed in the last two sections of this chapter. Here we first consider some
practical aspects of studying the BH model with cold atoms and the possible limitations
of an actual experiment compared to the ideal case considered so far.

2.3.1 Experimental control of U/J

On top of implementing the BH Hamiltonian, bosons in optical lattice offer complete
control over the dimensionless interaction u = U/J via the lattice potential V0. Indeed,
the latter is directly proportional to the lattice beam power and can be tuned from zero
to a few tens of the recoil energy. The variations of the BH parameters U and J over
this range are plotted on the left side of Figure 2.3 for our experimental parameters. The
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on-site interaction energy U = g
(∫ |w0(x)|4dx)3 increases due to the tightening of the

Wannier functions with the increasing lattice potential. At the same time, the tunnelling
energy J is exponentially suppressed because of the potential barrier getting higher. Both
effects allow to vary the dimensionless interaction over several orders of magnitude (right
side of Figure 2.3), from the superfluid regime to deep into the Mott insulating phase.

Figure 2.3: Numerical values of U , J , and U/J versus the lattice depth for
Helium atoms and d = 775 nm. (Left) The on-site interaction U increases smoothly
with the lattice depth, while the tunnelling energy J is exponentially suppressed. (Right)
Both effects result in an exponential increase of the dimensionless interaction u = U/J
with the lattice potential.

2.3.2 Calibration of the lattice depth

As the ratio U/J is extremely sensitive to the lattice potential V0, the latter must be finely
calibrated to reach a desired U/J value. Such a calibration is performed via parametric
excitation of the atoms from the fundamental band of the lattice to the second one [131,
132]. This is achieved via the experimental procedure represented in Figure 2.4. The
atoms are loaded from the ODT to the optical lattice, for which two beams are increased
up to s = 7 and the third one to s = 10. The lattice amplitude of this last beam is then
modulated for a time tmod = 20ms at a frequency fmod. To do so, the voltage command
of the AOM driver for this beam is modulated at the frequency fmod. Because the driver
is linear, this modulation is printed on the AOM output power, which is proportional to
the lattice amplitude. When the resonance condition is met, namely fmod = 2 × fres with
fres = (E2(q = 0) − E0(q = 0)) /h, atoms are parametrically excited from the zeroth to the
second energy band of the lattice. These atoms are lost when loading back the gas from
the optical lattice to a low-depth ODT. Therefore, monitoring with absorption imaging the
losses of the atom number while tuning the modulation frequency allows us to pinpoint
the resonance (see left panel of Figure 2.5). From the energy band calculations, the
dependency of fres on s is known, allowing the latter to be derived from the measurement
of the former (right panel of Figure 2.5). As shown in this figure, the uncertainties in the
fitted resonant frequency and lattice depth are less than the percent level. Due to the
linear relationship between the AOM driver voltage command and the lattice depth, it is
sufficient to divide the old calibration factor by the measured lattice depth to update it.
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This calibration method is then repeated for the other two beams to calibrate all three
axis of the optical lattice.

Figure 2.4: Scheme of the lattice calibration sequence. The ODT is ramped down
while the lattice beams are ramped up, with one beam being set to a higher amplitude
than the other two. The amplitude of this beam is modulated for a time tmod and at a
frequency fmod, which is tuned to find the parametric heating resonance frequency. For
each fmod value, the cloud is transferred back into the ODT and the fraction of excited
(lost) atoms is measured with absorption imaging.

2.3.3 Finite temperature effect

An experimental implementation of the BH model necessarily occurs at finite temperature.
The corresponding phase diagram for the homogeneous system, which depends now on
the dimensionless ratios U/J and T/J , is plotted in Figure 2.6. The T = 0 (quantum)
phase transition between a superfluid and a Mott insulator is represented by the x-axis,
both phases being separated by the quantum critical point. A third phase, called the
normal gas, appears at higher temperatures. By increasing the temperature from the
superfluid side, the gas undergoes a classical superfluid-to-normal phase transition, similar
to the Bose-Einstein condensation transition. It is classical in the sense that it is driven
by thermal fluctuations, characterized by the reduced temperature T/J . On the Mott
insulator side, there is no transition but a smooth crossover to the normal phase. On
increasing the temperature, the Mott plateau is progressively nibbled away by the particle-
hole excitations that occur on its edges, until the "melting" temperature T ∗ ∼ 0.2UkB is
reached where the remaining Mott plateau vanishes [133].

Of particular interest is the quantum critical region of the phase diagram, above the
quantum critical point, where critical properties of the T = 0 phase transition should be
accessible despite being at finite temperature [111]. The reason for that can be understood
in terms of energy scales. From the characteristic decay time of the order parameter
fluctuations (Equation 2.27), a characteristic energy scale can be deduced whose behavior
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Figure 2.5: Calibration of the lattice depth from the parametric heating pro-
cess. Left: Typical resonance curve for the modulation frequency. The atom number
is obtained from absorption imaging and the resonance is fitted with a Lorenztian curve
(solid line). This measurement gives here fres = 162.8(5) kHz. Right: Derivation of the
lattice depth s from its calculated dependency with the resonance frequency. The result
here is s = 10.08(5). The uncertainty on the lattice depth comes from the fitting error on
the resonance frequency (see red shaded area in the inset).

Figure 2.6: Schematic phase diagram of the BH model at finite-temperature.
The position on this phase diagram depends on the ratio T/J and U/J that quantify
the effect of temperature and interactions, respectively. At T = 0, the superfluid-to-Mott
transition is retrieved, with the quantum critical point separating both phases. At finite
temperatures, these two regimes are separated by a normal phase whose part just above
the quantum critical point is referred to as the quantum critical region (see text).

on approaching the transition follows the critical scaling:

ℏωc ∝ |t|ν z (2.30)
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A general rule is that quantum mechanics affect the transition as long as this energy
scale is larger than the temperature, while a purely classical description of the order
parameter fluctuations can be applied in the case ℏωc ≪ kBT . Therefore, the boundaries
of the critical quantum region are set by the inequality ℏωc > kBT . Within this region,
the system "looks critical", but is driven away from criticality by thermal fluctuations.
Although the superfluid and Mott insulating phases can be observed experimentally, the
temperature achieved may be too high to reveal the critical properties of quantum phase
transition.

2.3.4 The paradigm of adiabatic state preparation

The need for a low temperature to access the physics of the quantum critical point is now
clearer. To carry out this study with cold atoms, experimentalists start from a state of
non-zero entropy, namely a BEC at finite temperature. The transformation of the system’s
Hamiltonian from this initial state to the desired equilibrium state of the BH model must
then be adiabatic. In other words, both the loading into the lattice and the ramping up
of the lattice potential to the desired u must not create excitations.

The evolution of a system during an external driving of its Hamiltonian is called
adiabatic as long as the system’s state remains close to the instantaneous time-dependent
eigenstate of the Hamiltonian. The adiabatic theorem [134] states that this condition
can always be fulfilled for a pure state if the driving rate is chosen sufficiently small.
The extension of this notion to quantum systems prepared at finite temperature has only
started to be addressed theoretically [135]. On the experimental side, adiabaticity of the
loading process has been a central preoccupation since the early investigations of the BH
model with cold atoms. This issue has been studied in the superfluid regime (u ≤ uc) with
indirect signatures of non-adiabaticity, such as observing an increased fraction of atoms
populating the higher energy bands of the lattice [136], or a degraded visibility of the
interference pattern in the superfluid regime [137]. A direct measurement of the entropy
is hardly achievable with cold atom, preventing such mixed-state adiabaticity from being
certified quantitatively. Moreover, it is still an open question to which extent the latter is
fulfilled on crossing a quantum phase transition.

2.3.5 Effect of an external confinement

In actual experiments, optical lattices are usually generated by the counter-propagation
of focused laser beams. Due to their Gaussian shape, the average intensity profile of the
interference pattern is not flat, which induces a weak external confinement on the atoms:

Vext(r) = 1
2mω

2
extr (2.31)

This confinement increases with the intensity of the lattice beams, and is given in our
case by ωext = 2π × 140

√
s Hz. Such a frequency corresponds typically to a few hundred

Hertz, which is low enough for the Local Density Approximation [139] to apply. The
latter allows for a numerical resolution of the inhomogeneous BH model by replacing the
chemical potential µ with an effective one2:

µeff(r) = µ− Vext(r) (2.32)
2A failure of this approximation can be observed near the quantum critical point [120]
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The effective chemical potential is maximum at the trap center and decreases to zero
on approaching the edges of the system. The filling n̄ follows a similar behavior, which
dramatically changes the many-body ground state. For sufficiently low U/J ratios, the
system remains in the superfluid phase for any filling, as represented by a green arrow in
Figure 2.7 (a). As U/J increases, there comes the point where the filling at the center
of the trap reaches exactly one, and a Mott plateau appears there while the rest of the
cloud remains superfluid. The unitary filling at the trap’s center is preserved as U/J
keeps increasing due to the incompressibility of the Mott phase. It is then the size of the
Mott region that grows bigger as more and more sites fulfill the n̄ = 1 condition until
a second Mott plateau appears at the center of the trap when the filling there reaches
n̄ = 2 (yellow arrow in Figure 2.7 (a) and (b)). The system’s ground state then consists
of a stack of Mott shells, with superfluid shells between them (see Figure 2.7 (b)). At
finite temperature, this wedding cake structure is expected to survive, with normal gas
separating the Mott shells. The resulting "wedding cake" structure was first observed with
a quantum gas microscope, permitting to reveal the onset of each Mott plateau (see Figure
2.7 (c)). In the remaining of this chapter, the system is said to be in the Mott insulating

Figure 2.7: Wedding-cake structure of the inhomogeneous system. (a) Depending
on the ratio U/J , the many-body ground state of the inhomogeneous system may corre-
spond to: a superfluid phase (green arrow), a Mott insulating phase with n̄ = 1 at the
trap’s center surrounded by a superfluid shell (red arrow), an alternation of superfluid
and Mott insulating phase with an increasing filling as one gets closer to the trap’s center
(yellow arrow). (b) Scheme of the wedding-cake structure corresponding to the yellow
arrow of (a). (c) Experimental observation of the Mott insulating phases with a quantum
microscope experiment. The imaging technique used here reveal the presence of atoms
trapped inside individual lattice site, as long as the atom number is odd. The ratio U/J
is increased from left to right, resulting in successive observation of the n̄ = 1, n̄ = 2, and
n̄ = 3 Mott insulating phases at the trap’s center. Taken from [138].
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phase as soon as a Mott plateau exists.

In conclusion, the physics of the system gets richer in the presence of external confine-
ment. The latter can even be an asset from an experimental point of view, as it makes the
constraint on the atom number less stringent than in the homogeneous case to observe the
formation of a Mott plateau. The coexistence of different phases also allows for the distri-
bution of the entropy into the superfluid part as U/J increases, preventing the system from
heating up due to the gapped energy spectrum of the Mott insulator phase. However, the
system no longer exhibits a proper phase transition due to the reminiscence of superfluid
or normal parts way beyond the formation of a Mott plateau. This effect might very well
prevent the investigation of the quantum critical point and critical properties compared
to the homogeneous case.

2.4 Certifying the adiabatic state preparation near the Mott transition

This section presents our work [29] to validate the mixed-state adiabaticity mentioned
earlier in Section 2.3.4. This result was obtained thanks to a thermometry developed in
collaboration with Tommaso Roscilde from the ENS Lyon, and based on the comparison
of our experimental momentum densities with exact QMC simulations. Before presenting
this thermometry, this section begins with a description of the experimental ramps used
to increase the lattice potential.

2.4.1 Description of the lattice ramps

The experimental sequence used to load the optical lattice from the ODT is schematically
represented in Figure 2.8. The optical power of the ODT is decreased linearly in a time
tdown while the lattice power is increased linearly after a delay time tdelay. The linear
increase of the lattice power translates into an exponential growth of the dimensionless
interaction u = U/J . The rate at which the lattice is ramped up is fixed whatever the
final value of u, meaning that the ramps used for two different final depths are identical
up to the smallest of the two depths.

The ramp parameters were optimized by minimizing the atom losses and the heating
when loading a BEC from the ODT into the lattice and then back into the ODT. Indeed,
a similar BEC than the initial one is expected if the ramps are adiabatic. In practice,
the percentage of losses is never less than 15% due to the imperfect overlap between the
ODT and the lattice. The optimum parameters were found to be tdown = 22 ms, tdelay = 0
ms and 0.3Er/ms for the rate at which the power increases. As any discontinuity in the
ramps can lead to non-adiabaticity, they usually have a s-shape with smooth variations at
the beginning and the end. However, no improvement was found between an s-shape and
a linear one [49], so we kept the linear ramps as they ensure a identical increase of the
lattice potential between different s values . For all the datasets used in this manuscript,
the linear rate of 0.3Er/ms implies that the ramp duration is at least 18 ms. The limiting
(longest) time scales in our system are associated with the smallest energy scales, namely
the tunnelling energy J and the external trapping confinement ℏωext. For the lattice
depths used in this manuscript, both are below 10 ms, which ensures that the driving rate
of the Hamiltonian is indeed slower than any other time scale in the system. Minimizing
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Figure 2.8: Scheme of the experimental sequence used for loading the lattice.
The power of the optical dipole trap decreases as the lattice amplitude is ramped up. The
loading parameters tdown, tdelay, and the loading rate were optimized experimentally.

the losses in this ramping up and down of the lattice is certainly handy to check routinely
that the ramps do not induce heating but does not constitute a quantitative certification
of adiabaticity. The latter requires the knowledge of the gas’s temperature and entropy,
which can be accessed from a comparison with ab-initio QMC calculations.

2.4.2 Thermometry of lattice bosons using ab-initio QMC simulations

Without any analytical prediction for the trapped 3D BH model, the gas temperature
cannot be estimated from the momentum density measurement alone. A viable route for
assessing the adiabaticity of the state preparation comes from a quantitative comparison
with ab-initio calculations [140]. To this aim, we record 3D momentum distributions of
lattice gases after a time of flight, whose average yields the 3D momentum density ρexp(k).
The latter can directly be compared with the ab-initio QMC estimate ρQMC(k) calculated
in the trap. Our single atom sensitivity allows us to work with low atom number BECs
of NBEC = 3.0(5) × 103, which are numerically accessible for the QMC simulations. The
calculations are performed by Tommaso Roscilde [141] using a Stochastic Series Expansions
in the canonical ensemble. They account for the specificities of our experiment, such as
the atom number, the external trapping frequency, or the lattice amplitude, leaving T the
only adjustable parameter.

The agreement between the experimental and simulated momentum densities is illus-
trated in Figure 2.9 for a dimensionless interactions u = 30. The quantities plotted are nor-
malized momentum density cuts of the experimental density ρ̃exp(k) = ρexp(k, 0, 0)/ρexp(0)
and simulated ones ρ̃QMC(k;T ) = ρQMC(k, 0, 0;T )/ρQMC(0;T ) for the first Brillouin zone.
The simulated densities shown in the figure correspond to the reduced temperatures
TJ ≡ T/J = 2.2, 2.4, and 2.6. The agreement between ρ̃exp(k) and ρ̃QMC(k;T ) is optimum
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Figure 2.9: Comparison between experimental and numerical momentum den-
sities. The normalized density cut of the experimental density ρexp(k) is compared with
ab-initio QMC simulations ρQMC(k) at various temperatures T and fixed atom number
N = 3000. The experimental temperature is the only adjustable parameter in the simula-
tions and is found from the optimum matching between the real and simulated data. This
thermometry yields here TJ = 2.4(2) at u = 30.

for the reduced temperature TJ = 2.4 (the temperature resolution of the simulations is 0.2
TJ). In the case where the system is close to the superfluid-to-normal transition, such as
in Figure 2.9, the momentum density is extremely sensitive to temperature changes, and
the identification of the best temperature to match ρ̃exp(k) and ρ̃QMC(k;T ) is excellent.
However, a quantitative estimate of this agreement is handy for the remaining part of
the phase diagram where variations of the momentum density with temperature are more
subtle.

The goodness of the matching between experimental and numerical densities is mea-
sured via the reduced chi-square parameter:

χ2
r(T ) = 1

Np

Np∑
j=1

(ρ̃exp(kj) − ρ̃QMC(kj ;T ))2

σexp(kj)2 (2.33)

where the first Brillouin zone has been discretized with a uniform mesh of Np = 120
points, and σexp(kj) =

√
ρ̃exp(kj)/M is the error estimate on the experimental density

from the finite sample of M experimental realizations (assuming Poissonian statistics).
The chi-square parameter is plotted in Figure 2.10 for all the numerical densities at various
temperatures. This parameter shows a clear minimum with temperature, with a minimum
value χ2

r(T = 2.4J) = 3.6±3.0 compatible with unity. The exact position of the minimum
can be obtained from a parabolic fit, giving TJ = 2.36(3) at u = 30. Outside of the region
near the superfluid-to-normal transition, this method generally overlooks the uncertainty
induced by the shot-to-shot fluctuations of the atom number within the range [2500 −
3500] (see discussion below). To be more realistic, we rather choose as error bars the
temperature interval over which distinct χ2

r(T ) are observed, giving here TJ = 2.4(2).
This procedure is finally extended to any u across the Mott transition. One comment
here is that such agreement is not given: it assumes that (i) the experiment produces
equilibrium states of the BH model and (ii) that the temperature is well-defined despite
shot-to-shot fluctuations of the atom number. Both hypotheses can only be checked a
posteriori by finding a convincing agreement between the experimental and numerical
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data. The second hypothesis was tested thoroughly by additional simulations carried out
at different atom numbers, the results of which are plotted in Figure 2.11.

Figure 2.10: Chi-square parameter for all simulated data at u = 30. The param-
eter χ2

r(T ) (see text) exhibits a clear maximum in linear (left) and semilog (right) scale.
A parabolic fit (solid line) yields TJ = 2.36(3) for the estimated optimum temperature.

Each of the four subplots contains the numerical simulations for a fixed u, starting
from the superfluid phase, then to the vicinity of the superfluid-to-normal transition, and
finally deep into the Mott insulating phase. Contrary to Figure 2.9, the simulations are
carried out at various atom numbers within the experimental range [2500 − 3500] of the
post-selected datasets. All densities corresponding to the same temperature but different
atom numbers are plotted in the same color. The goal of these additional calculations is
to estimate the effect of shot-to-shot fluctuations of the atom number on the estimated
temperature. Namely, if the density range allowed by the fluctuations of N exceeds that
given by the fluctuations of T , then the densities ρ̃QMC(k;N = 3000;T ) and ρ̃QMC(k,N ′ ∈
[2500; 3500], T + ∆T ) overlap and the minimum uncertainty on the temperature ∆Tmin =
0.2 J is underestimated. Figure 2.11 shows that the effect of atom number fluctuations is
quite different between the different phases. Deep into the superfluid regime (u = 10.5),
small variations of TJ far from the critical temperature only slightly affect the shape of the
density. Conversely, variations of the atom number at these temperatures have a greater
impact. On adding atoms in the system, a given fraction populates the peak at k = 0,
while the other ones spread uniformly over the remaining modes. Due to the normalization
by the height of the k = 0 peak (increasing with N), the density tails are suppressed as
N increases. Consequently, the overlap between numerical densities separated by 0.2 J
is significant, and a clear separation is only found for a lower temperature resolution
∆T = 0.4 J . This lower resolution is compatible with the experimental error bars given
by the non-overlapping condition between the different χ2

r(T ) at fixed N = 3000.

Deep into the Mott insulator regime (u = 60), the experimental temperatures TJ are
lower than the energy gap for the Mott plateau at the trap center. Therefore, the extra
particles mainly populate the momentum density wings. As a consequence, the normal-
ization to the k = 0 peak height becomes insensitive with the atom number, and the wings
of ρ̃QMC(k;N ;T ) increase with N contrary to the superfluid case. Experimental temper-
atures are also much higher than the critical temperature for the superfluid-to-normal
transition. Therefore, temperature steps of 0.2 J only weakly affect the momentum den-
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Figure 2.11: Effects of atom number fluctuations on the thermometry. Additional
QMC simulations are provided in different regions of the phase diagram for experimentally
relevant temperature and atom number ranges. These simulations estimate the reliability
of the 0.2 J temperature resolution at fixed N = 3000, considering the uncertainty given
by the shot-to-shot atom number fluctuations in the experiment (see text).

sities. Overall, the dependency of ρ̃QMC(k;N ;T ) with T is much smoother than with N ,
and the minimum temperature resolution to distinguish between different atom numbers
is larger now, about 0.6 J . The experimental temperature uncertainty based on the dis-
tinction between different χ2

r(T ) is however much larger than this minimum temperature
resolution.

In the vicinity of the superfluid-to-normal transition (u = 25 and u = 30), the extreme
sensitivity of the momentum density with temperature makes the curves at different atom
numbers discernible even at the lowest temperature resolution of 0.2 J . Moreover, the
opposite scalings of ρ̃QMC(k;N ;T ) with N in the superfluid and Mott insulator regimes
cancel out near the transition, reducing the effect of N on the densities further. Therefore,
the temperature resolution of the simulations is a priori meaningful near the transition
and, in practice, is the one found to correctly estimate the uncertainty on the experimental
χ2

r(T ) (see Figure 2.10).

In conclusion, experimentally allowed atom number fluctuations impose a larger tem-
perature uncertainty than the 0.2 J resolution of the simulations in the limiting cases of
the phase diagram. However, the error bars in these regions are dominated by the exper-
imental ones, estimated via the comparison between ρ̃exp(k) and ρ̃QMC(k;N = 3000;T ).
Therefore, we conclude that the simulations of the 3D BH model in the canonical en-
semble reproduce the experiment well, considering the experimental uncertainties. This
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statement is even more true near the superfluid-to-normal transition, where the effect of
atom number fluctuations is found to be negligible compared with temperature fluctua-
tions of 0.2 J . In this case, the minimum uncertainty achievable obtained from the fit of
χ2

r(T ) is meaningful. As a concluding remark, Figure 2.11 illustrates that the quantitative
comparison between experimental and numerical data requires a precise detection of the
low-density wings of ρ̃exp(k) for only NBEC = 3000. Such extreme sensitivity can only be
achieved thanks to the Multi-Channel-Plate detector.

2.4.3 Adiabatic state preparation across the superfluid-to-Mott transition

To investigate the adiabaticity of the lattice ramps, we recorded 3D momentum densities
for lattice bosons prepared at various interaction parameter u, spanning the entire phase
diagram from the superfluid regime (u = 5) to deep into the Mott insulating phase (u =
92). The lowest interaction parameter already corresponds to a lattice potential V0 =
7.75Er, ensuring that the energy bands are well separated and that the tight binding
approximation is valid. The target atom number for the initial BEC is NBEC = 3000, and
for each u, about M ∼ 600 experimental densities satisfy the post-selection criterion that
the atom number must fall within the window [2500 − 3500]. This atom number ensures
a filling n̄ ≤ 1 at the trap center. Our thermometry is applied to each data set and the
resulting experimental temperatures are plotted in Figure 2.12.

Figure 2.12: Experimental temperatures across the superfluid-to-Mott transi-
tion. The temperatures and their vertical error bars are extracted via the thermometry
based on comparison with ab-initio QMC simulations for the 3D momentum density (see
Section 2.4.2). Horizontal error bars represents the uncertainty on the final lattice depth
calibrated with parametric heating (see Section 2.3.2). The dashed-line corresponds to the
energy 2.2 J expressed in units of the recoil energy, which best matches the experimental
date in the range u = 5 − 20.

The variations of T with the interaction parameter u are now discussed. In the super-
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fluid regime, the exponential decrease in temperature is known as adiabatic cooling [142].
This phenomenon is due to the decrease in the speed of sound c =

√
U/m∗ ∝

√
UJ as the

lattice potential increases. As this happens, the number of thermally populated excited
states increases if the temperature remains constant. The adiabaticity of the loading then
dictates that the temperature must decrease in proportion to the width ∼ J of the energy
band to maintain a constant entropy when driving the Hamiltonian. This proportionality
between T and J is illustrated by the experimental temperatures in the superfluid regime
(see Figure 2.12). The energy spectrum changes dramatically when the Mott transition is
crossed, as a gap ∆ ∼ U gradually opens. The temperature must then increase with the
depth of the lattice to conserve the entropy, which is referred to as adiabatic heating. In
the experimental data, such increase of T when going deeper in the Mott insulator regime
is observed (comparing the temperatures at u = 30, 35 with those at larger u) but barely
resolved by the error bars.

To quantitatively assess the adiabaticity of the ramps, our experimental temperatures
need be compared with the isentropic lines of the BH phase diagram. Tommaso Roscilde
has provided us with the full entropy map (in false color in Figure 2.13) of the trapped 3D
BH model at fixed atom number N = 3000 for our experimentally relevant temperature
and interaction ranges. This map is accessible because the average energy per particle,

Figure 2.13: Comparison between experimental temperatures and isentropic
curves over the phase diagram. The entropy map of 3D trapped lattice bosons ex-
tracted from the QMC data (see text) is plotted in false color, together with the exper-
imental temperatures expressed in units of J . All experimental points (except the one
at u = 5) are compatible with isentropic lines spanning the range S/N = 0.8(1) kB, con-
firming the adiabatic state preparation over the entire phase diagram. The black dashed
line shows the QMC critical temperatures for the homogeneous 3D BH model with n̄ = 1
[126], shown as a reference.
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e(T ), can also be calculated from the QMC simulations for our experiment’s moderate
atom numbers and system sizes. A high-order polynomial fit of e(T ) provides a smooth
interpolation of the numerical data, efit(T ), from which the entropy per particle is derived
[29]:

S(T )
N

=
∫ T

0

dθ

θ

defit(θ)
dθ

(2.34)

Figure 2.13 also contains our experimental temperatures expressed in units of J . The
main observation is that all the experimental temperatures (except the one at u = 5)3

are compatible with isentropic curves spanning the range S/N = 0.8(1) kB. This finding
validates the picture that tuning the lattice potential produces a sequence of thermal
equilibrium states in which the entropy is conserved, thus certifying the experimental
adiabatic preparation of equilibrium states of the trapped 3D BH Hamiltonian. It also
confirms mixed-state adiabaticity’s robustness on crossing the low-entropy Mott transition.

In addition, the entropy per particle of the initial BECs inside the ODT was measured,
to be compared with that of the lattice gas over the phase diagram. In a harmonic trap,
the condensed fraction fc is linked with the entropy per particle S0 via the formula [143]:

S0
N kB

= 4 g4(1)
η(3) (1 − fc) (2.35)

with g4(1) ∼ 1.082 and η(3) ≃ 1.2026. The condensed fraction is estimated by a bi-modal
fit of the momentum density to quantify its condensed and depleted components. The

Figure 2.14: Entropy per particle of lattice bosons at various u. The entropy
per particle for each data set is extracted from the experimental temperatures in Figure
2.13. Almost all points are compatible with the entropy per particle of the initial BEC
S0/N = 0.72(7) kB (dashed blue line and blue shaded area).

3Our thermometry is mostly sensitive to the dilute tails of the momentum density, whose amplitude
deep into the superfluid regime can be four orders of magnitude smaller than the peak density at k =
0. Then, the background counts may contribute to these tails, resulting in an over-estimation of the
temperature. This effect, which rapidly disappears as the depletion level increases, is a possible explanation
for the discrepancy between the experimental temperature and the S/N = 0.8 kd entropy curve at U/J = 5.
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use of Equation 2.35, valid for non-interacting bosons, is justified in our experiment by
the different energy scales of the temperature kB T ≃ h× 2380 Hz and chemical potential
µ ≃ h× 350 Hz. Equation 2.35 yields an initial entropy per particle of S0/N = 0.72(7)kB.
As illustrated in Figure 2.14, this value is compatible with the ones in the lattice for almost
all interaction parameters u. This additional measurement shows that the loading from
the optical dipole trap to the lattice is adiabatic as well.

2.4.4 Saturation of the Cramér-Rao bound for the thermometry

As concluding remarks, this section comments on the experimental temperature error bars
in Figure 2.13, namely the resolution of our thermometry over the entire phase diagram.
As discussed in the previous section, the latter encompasses the effect of atom number
fluctuations and seems to work best near the superfluid-to-normal transition, where the
momentum density is the most sensitive to temperature variations. A quantitative evalu-
ation of the temperature resolution is possible by considering the theoretical Cramér-Rao
bound [144]. When applied to our thermometry, this limit states that the experimental
temperature uncertainty δTJ from M momentum distributions is bounded by:

(δTJ)min = 1√
I(T )M

(2.36)

with I(T ) the Fisher information [145] associated with temperature. Generally speak-
ing, the latter quantifies the variations of an observable according to a given parameter.
The more sensitive the observable, the larger the Fisher information and the smaller the
Cramér-Rao uncertainty bound. For our thermometry, the Fisher information captures
the sensitivity of the simulated momentum densities with temperature variations:

I(T ) =
∑

k

ρ̃QMC(k;T )
NT

[
∂ log(ρ̃QMC(k;T )/NT )

∂TJ

]2
(2.37)

where NT is the normalization of ρ̃QMC(k;T ) when summed over k. In the simulations, k
forms a discrete grid with a momentum spacing ∆k < 10−2kd fine enough to resolve the
features of the momentum density. The Fisher information is computed from the QMC
data at fixed N = 3000, by approximating the derivative of the logarithm in Equation
2.37 with the finite difference:

∂ log(ρ̃QMC(k;T )/NT )
∂TJ

≃ 1
∆T log

(
ρ̃QMC(k;T + ∆T )

ρ̃QMC(k;T )
NT

NT +∆T

)
(2.38)

where ∆T = 0.1 J .

Figure 2.15 shows in false color the values of the Fisher information over the entire
phase diagram. Our experimental temperatures are shown for reference. The Fisher
information exhibits a dramatic excursion over four orders of magnitude, which confirms
the potential of a thermometry based on the measurement of the momentum density.
The peak values are reached at the superfluid-to-normal transition, whose location in the
phase diagram is discussed in detail in the next section. The lowest Fisher information
is found deep into the Mott insulator regime, where thermal effects weakly affect the
momentum density at our experimental temperatures. Conversely, little information on
T can be obtained from the knowledge of ρ̃QMC(k;T ) in this region. A first comment is
that the size of the experimental error bars varies accordingly with the values of Fisher
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information. Secondly, the Cramér-Rao bound can now be estimated from the values
of the Fisher information. The latter are (i) I(T ) ∼ 0.1 in the superfluid regime, (i)
I(T ) ∼ 10−3 in the Mott insulator regime, and (iii) I(T ) ∼ 7 at the superfluid-to-normal
transition. They correspond respectively to the Cramér-Rao bounds (i) (δTJ)min ∼ 0.4,
(ii) (δTJ)min ∼ 1.3, and (iii) (δTJ)min ∼ 0.02. On the experimental side, the error bars in
the superfluid and Mott insulator regimes are respectively δTJ ∼ 0.3 and δTJ ∼ 1.5, and
therefore fully agree with the Cramér-Rao limit. This is also true near the superfluid-to-
normal transition, where the fitting procedure of χ2

r(T ) yields δTJ ∼ 0.03. As it nearly
saturates the Cramér-Rao bound over the entire phase diagram, our thermometry thus
fully exploits the information contained within the momentum density.

Figure 2.15: Fisher information I(T ) for the temperature estimation from the
simulated momentum densities. The values of I(T ), plotted in false color, reflect the
sensitivity of ρ̃QMC(k;T ) with variations of T and, conversely, the potential accuracy of a
thermometry based on ρ̃QMC(k;T ). The Fisher information is minimum deep in the Mott
insulator phase, while it is four orders of magnitude larger at the superfluid-to-normal
transition. The evolution of I(T ) is consistent with the experimental error bars of the
temperature estimates.

2.5 Study of the low-entropy Mott transition

Having certified the adiabatic preparation of the 3D BH Hamiltonian equilibrium states,
the next step is the study of the critical region above the quantum critical point. Let
us recall that the precise location of the superfluid-to-Mott transition with experiments
has remained challenging so far. Many experiments [19, 127–129] have reported values
of the unit-filling critical interaction u

(n̄=1)
c closer to the mean-field prediction at zero

temperature, uMF
c ≃ 34.8, rather than the exact QMC values [126] at zero

(
uQMC

c ≃ 29.3
)

and non-zero temperatures (black dashed line in Figure 2.13). The critical exponents have
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not yet been measured either, in particular due to inhomogeneity and finite-size effects
in the experimental implementations. Here this investigation is renewed with a novel
approach that combines, as in the previous section, our original detection method with
the QMC simulations performed by Tommaso Roscilde [30].

2.5.1 Phase-diagram of the trapped 3D Bose-Hubbard model

In principle, the low-entropy Mott transition can be monitored via the measurement of
the condensed fraction fc. Similarly to the case of a harmonically trapped BEC, the
momentum density of lattice bosons loaded inside a shallow optical lattice exhibits a clear
double structure (a condensate and a pedestal), from which fc can be reliably accessed.
This technique has already allowed us to investigate the condensation transition at u ≃ 10
[146]. However, such a distinction becomes blurred at stronger interactions, particularly
near the Mott transition where fc is so small that the condensed and non-condensed
components in the momentum density can hardly be identified. A different approach is
used here to circumvent this difficulty. Rather than the condensed fraction, we record
the maximum density at the center of the Brillouin zone ρ0 = ρ(k = 0). This quantity
corresponds to the mean atom number inside a small 3D momentum volume Vk = (kd/30)3

centered on k = 0, and is only accessible through our single-atom resolved detection in
3D. In particular, it is beyond the reach of absorption imaging techniques where the
integration along the camera line of sight provides integrated 2D momentum densities. As
the condensate mode is strongly peaked around k = 0, ρ0 is intimately connected with
the condensed fraction [147], and is measured directly without depending on a fit of the
momentum density. The experimental variation of ρ0 across the transition are discussed
in the next section. To better understand this result, it is insightful to first have a look at
the QMC values of ρ0 across the entire phase diagram.

Figure 2.16 shows the variations with U/J of ρ̃QMC(k;T ), for N = 3000 atoms and
experimentally relevant temperatures. The onset of a superfluid regime corresponds to
ρ0 ≳ 10 atoms/Vk (white line in Figure 2.16) and is consistent with the region of the
phase diagram where the Fisher information is maximum (yellow line in Figure 2.13).
The condition ρ0 ≃ 10 atoms/Vk represents a line of critical temperatures for our trapped
system, which differs significantly from the QMC prediction for the homogeneous case
with n̄ = 1 (black dashed line in Figure 2.16). The discrepancy below u ∼ 26, where
the critical temperatures of the homogeneous system are systematically higher than for
the trapped case, comes from the choice of the total atom number. Based on previous
QMC simulations, the latter was chosen to have n̄ ∼ 1 at the trap center for u ∼ 30. The
weaker external confinement at lower U/J imposes a density n < 1 at the trap center,
explaining why the temperature extent of the superfluid phase is smaller in our trapped
system than for the homogeneous one. Similarly, the slight increase of the line of critical
temperatures below u ∼ 15 results from the growth of n with the lattice beams intensity
in this regime. Above u ∼ 26, the contrasting behaviors between the homogeneous and
trapped systems result from the coexistence of several phases in the trap. At sufficiently
low temperatures, the halo surrounding the Mott insulator core is superfluid and keeps
the value of ρ0 high, despite the Mott atoms disappearing from the condensate peak. As
u → ∞, the superfluid shell shrinks to a thin spherical corona where the atoms reproduce
the physics of 2D hardcore bosons at half-filling, for which the critical temperature is given
by Tc = 0.785 J/kB [148].
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Figure 2.16: Phase diagram of 3D lattice bosons in a trap. The maximum mo-
mentum density ρ0 is plotted in false color for all u and TJ . ρ0 corresponds to the atom
number inside a volume Vk = (kd/30)3 centered on k = 0, and is extracted from the sim-
ulated momentum densities ρ̃QMC(k;T ) at N = 3000. The black dashed line represents
the line of critical temperatures for the homogeneous 3D BH model with n̄ = 1 [126]. The
white dashed-dotted lines depict isentropic trajectories computed for our experimental
parameters (see Equation 2.34). The black dotted line indicates the critical temperature
kBT = 0.785 J for 2D hard-core (HC) bosons at half filling n̄ = 1/2 [148].

Of particular interest to us is the isentropic line S/N = 0.8 kB describing the trajec-
tory of our experiment in the phase diagram. According to the QMC data simulating our
trapped system (false color), our experiment should cross the superfluid-to-normal transi-
tion at a temperature Texp ≃ 2.6 J/kB for which the interaction strength uc(Texp) is close
to the bulk value for the T = 0 Mott transition uQMC

c = 29.34. Therefore, the transition
probed experimentally is located in the quantum critical region of the phase diagram,
possibly affected by the presence of the quantum critical point just below. In addition,
the fact that uc(Texp) < uQMC

c ensures that the cloud is fully normal when a Mott core
starts forming at the trap center. For these reasons, we refer to the transition probed
experimentally as a low-entropy Mott transition, although we expect it to exhibit critical
properties of the finite-temperature superfluid-to-normal transition. This conclusion is
not generic and results from a careful choice of the atom number given our experiment’s
temperature regime and trapping frequencies.

2.5.2 Experimental determination of the Mott transition and of the critical exponent

Figure 2.17 shows the variations of the measured ρ0 versus the interaction strength u.
The error bars, induced by the shot noise, are rather large because of the low (5%) de-
tection efficiency used here to avoid saturating the 4He∗ detector. In agreement with the
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homogeneous case, ρ0 exhibits a sharp decrease in the range u ∈ [5 − 25] where it seems
unaffected by our system’s inhomogeneity and finite size. However, both effects mask the
sharp variations of ρ0 in the region u ∈]25 − 35], where a slowly-decaying tail is observed.
Consequently, only the region u ∈ [5 − 25] is used to derive the critical ratio uc of the bulk
system (blue shaded area in Figure 2.17). The variations of ρ0 are fitted with the critical
scaling expected for the homogeneous system near the transition:

ρfit
0 (u) = ρu=0

0

[
1 − u

uc

]2β

(2.39)

where ρu=0
0 and uc are chosen as fitting parameters. The critical exponent is fixed to its

theoretical value for the 3D XY universality class β = 0.3485 [112].
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Figure 2.17: Location of the Mott transition. The experimental values of ρ0 below
u ≤ 25 (blue shaded area) are fitted with the critical scaling expected for the 3D XY
universality class (solid blue line). The fitted function matches well with the experimen-
tal data, and returns ρ0 = 215(15) atoms/Vk and uc = 26(1). Inset: the line of critical
temperatures for the homogeneous 3D BH model with n̄ = 1 (black dashed line) is su-
perimposed with the experimental temperatures. The intersection between both curves
yields uc = 27(1), in good agreement with the value derived from the critical scaling of ρ0.

The agreement between Equation 2.39 and the experimental data in Figure 2.17 con-
firms the experimental observation of a critical scaling, with the expected critical exponent
for a homogeneous system belonging to the 3D XY universality class. Surprisingly, the
critical scaling manifests itself in a broad range of interactions, even well below the tran-
sition. The fitted parameters are ρ0 = 215(15) atoms/Vk and uc = 26(1). As expected,
this critical interaction is compatible with the QMC prediction for our trapped system at
the temperature of our experiment (false color in Figure 2.16). In addition, the inset of
Figure 2.17 shows the intersection between the line of critical temperatures for the homo-
geneous 3D BH model with n̄ = 1 (black dashed line in Figure 2.16) and our experimental
temperatures. This analysis yields a critical interaction uc = 27(1) compatible with the
one measured experimentally. In contrast to what was reported in other experiments,
both results clearly differ from the zero-temperature mean-field prediction uMF

c ≃ 34.8.
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Their compatibility confirms the ability of our experiment to reveal the physics of the bulk
system, which again stems from an appropriate choice of the atom number to have n̄ = 1
around u ∼ uc given our experimental conditions.

It may seem surprising to observe the criticality of the homogeneous system at T = 0
in our experiment, especially over such a wide range of interactions u. This feature may
be explained by the condensate mimicking a homogeneous system due to the flatness of
the harmonic potential at the trap’s center. Interestingly, this finding is supported by a
similar observation for the QMC data. Indeed, The variations of the simulated ρ0 along
different isotherms around Texp are all compatible with the critical scaling of the 3D XY
universality class (see the left panel of Figure 2.18). As with the experimental data, the
tail of the simulated ρ0 is excluded from the analysis in order to probe the physics of
the homogeneous system. Furthermore, the left panel of the figure illustrates that the
critical exponent of the theoretical and experimental data clearly differs from the mean-
field criticality βMF = 1/2. Note that even though the experiment follows an isentropic
trajectory in the phase diagram, the temperature remains close to Texp for u ≤ 40 so that
a comparison with the QMC data along isotherms is meaningful in this region. However,
the contribution of the cloud shell affects the fitted value of uc for both isotherms at the
lowest temperatures. In particular, the value at TJ = 2.2, uc ≃ 31, exceeds the largest
critical ratio uQMC

c ≃ 29.3 of the homogeneous case.
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Figure 2.18: Criticality of ρ0 from the QMC and experimental data. Left: sim-
ulated values of ρ0 along relevant isotherms and near the transition. The solid lines are
fitting functions of the form 2.39, whose agreement with the data confirms the presence
of the 3D XY criticality. Right: QMC data and experimental points plotted in log-log
scale versus 1 − u/uc, so that the superfluid region is on the right side and the transition
is on the left side. Theoretical and experimental data are inconsistent with the mean-field
critical exponent βMF = 1/2.
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2.5.3 Phase coherence properties on the Mott insulator side

As aforementioned in Section 2.2.2, the in-trap correlation length ξ of a homogeneous
system diverges on approaching the transition from the Mott insulator side:

ξ ∝ |t|−ν (2.40)

with ν ≃ 0.671 for the 3D XY universality class [112]. The central peak width of the
interference pattern is inversely proportional to ξ and therefore provides information on
the in-trap coherence properties of system [130, 149, 150]. To investigate the divergence
of the correlation length, the half width at half maximum (HWHM) δk of the central peak
is extracted from the momentum densities. The left panel of Figure 2.19 shows a log-log
plot of 1/δk ∝ ξ versus the distance from the transition u/uc − 1. On approaching the
transition from right to left, 1/δk increases with a scaling compatible with an algebraic
one. However, the points scattering is significant and may be explained by the temperature
scattering in Figure 2.13 (the colder temperatures corresponding to smaller δk). As a
consequence, our data cannot distinguish between the 3D XY criticality and the mean-
field one

(
νMF = 1/2

)
. Indeed, fitting the data with ξ0(u/uc − 1)ν using ξ0 and ν as

fitting parameters yields ν = 0.6(1). Similarly to the previous section, the behavior of the
QMC data can also be examined. The inverse widths 1/δk extracted from the simulated
momentum densities are plotted in the right panel of Figure 2.19, along the same isotherms
as before. Comparing these isotherms with the isentropic trajectory S/N = 0.8 kB followed
by the experiment is more questionable on the Mott insulator side. Nevertheless, the
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Figure 2.19: Criticality of the correlation length on the Mott insulator side of
the transition. Left: log-log plot of the inverse HWHM 1/δk in units of the lattice
spacing d versus the distance from the transition. The solid black line is a fit of the data
with the function ξ0(u/uc − 1)ν , yielding ν = 0.6(1). The point on the far right (u = 92)
is not used for the fit. The black dotted (resp. dashed) line is a fit of ξ0 using the same
fitting function and the critical exponent of the 3D XY (resp. mean-field) value. Right:
same plot for the QMC data along isotherms close to the experimental temperature. The
critical scaling observed seems rather compatible with the mean-field exponent ν = 1/2.
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QMC data still exhibit a critical scaling, but one seemingly compatible with the mean-
field exponent. This last observation leads us to the conclusion that trapping effects are
too strong to observe the bulk critical behavior of the correlation length, and consequently
of 1/δk, on the Mott insulator side of the transition. This can be interpreted by the fact
that the phase coherence in the Mott regime first increases on approaching the transition
in the normal outer shells, which are located at positions where the trap is strongly non-
homogeneous.

2.6 Conclusion

In this chapter, we have renewed the investigation of the low-entropy Mott transition with
cold atoms, with an original approach combining our measured 3D momentum densities
at various interactions with ab-initio QMC calculations performed by Tommaso Roscilde
at ENS Lyon [29, 30]. Such a comparison is possible thanks to our single-atom resolved
detection of 4He∗ atoms, which allows us to work at low atoms numbers for which numerical
simulations are still accessible.

Minimizing the discrepancies between our experimental densities and the simulations
performed at various temperatures provides a unique thermometry for the lattice gases.
Computing the Fisher information associated with this thermometry confirms that it al-
most reaches the maximum accuracy allowed by the Cramér-Rao limit, which includes the
regime close to the superfluid-to-normal transition where the temperature is the most ac-
curately estimated. Building on this technique and on the first unbiased calculation of an
entropy map for the 3D BH model, we experimentally certified the adiabatic preparation
of finite entropy states over the whole phase diagram at a constant entropy per particle
S/N = 0.8 kB. The latter is compatible with that of the initial BEC. This mixed-state
adiabaticity appears to be a robust property, unaffected by the superfluid phase’s gapless
energy spectrum or the crossing of a finite-temperature phase transition. This feature dif-
fers greatly from experimental platforms manipulating nearly zero-entropy states (such as
trapped ions, Rydberg atoms, or quantum circuits) in which systematic deviations to adi-
abaticity are observed upon crossing a quantum phase transition due to the disappearance
of the energy gap [150, 151].

The adiabatic preparation of equilibrium states of the 3D Bose-Hubbard model paved
the way for the study of the quantum critical region above the quantum critical point of the
phase diagram. In principle, finite-temperature superfluid-to-normal transitions occurring
sufficiently close to the quantum critical point should exhibit the critical properties of the
T = 0 Mott transition. However, the temperature range of the quantum critical region is
unknown, and critical properties of homogeneous systems are difficult to measure due to
trapping and finite-size effects. Our detection of the full 3D momentum density allows us to
access ρ0 = ρ(k = 0) without suffering from line-of-sight integration present in absorption
images, which partially circumvents these limitations. The strong suppression of ρ0 on the
superfluid side of the transition yields a critical interaction uc = 26(1) consistent with the
QMC prediction for the uniform 3D BH model at unit filling and finite temperature. This
compatibility originates from our careful choice of the atom number to reach a unit filling
close to the transition point. Such a strong dependence on the experimental conditions
limits the relevance of using a trapped system to locate the transition in the homogeneous
case, as illustrated by the mean-field compatible values reported in experiments where the
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filling was greater than one [19, 128]. For both the experimental and theoretical data,
the decay of ρ0 is compatible with the critical exponent of the 3D XY universality class,
to which the T = 0 superfluid-to-Mott transition belongs. To our knowledge, this is the
first time this critical scaling has been observed experimentally. Here again, this finding
strongly depends on the experimental conditions. In particular:

• QMC data showed that the persistence of a superfluid shell at (significantly) lower
entropies than ours would have prevented the observation of the transition,

• The measured width of the central peak does not allow for distinguishing between
the 3D XY and the mean-field criticality, whereas QMC data seem consistent with
a mean-field exponent. Both results suggest that the trap’s presence masks the
criticality of the bulk system for the correlation length.

To overcome these obstacles, one could work with box-like potentials [152] to experimen-
tally implement the homogeneous 3D BH model. However, the unitary filling condition
achieved naturally in our case (at the center of the trap) by the harmonic confinement
would then be difficult to fulfill. An alternative approach would be to selectively probe
the coherence properties at the center of the trap [153] to minimize the effect of the
surrounding superfluid shell.





33. Local N-body correlations : Full
Counting Statistics and high-order
moments of interacting lattice bosons

Chapter

The previous chapter presented our exploration of the low-entropy Mott transition and its
critical properties based on the measurement of the 3D momentum density, as offered by
our original electronic detection. This study has focused on the average mode occupancy
ρ(k) = ⟨â†(k)â(k)⟩. In quantum mechanics, the fluctuations of an observable are known
to contain a wealth of information unavailable to the mean value. The noise analysis is
thus central in many fields, such as quantum electronics [154], quantum optics [155], or
quantum gases [156–158].

In this chapter, we extensively investigate the statistics of the occupation number
fluctuations in 3D lattice gases detected after a long free-fall expansion. This study takes
advantage of the single-atom-resolved detection in the far-field regime to reveal the many-
body coherence of the systems under study. To this aim, we measure the Full Counting
Statistics (FCS) and high-order moments of the momentum occupation number beyond
the mean and variance [31]. The novelty of our approach is to consider interacting atomic
gases, for which an optical lattice enhances interactions. We focus on two iconic states
of lattice bosons, Bose superfluids and Mott insulators, which we characterize from their
statistical properties measured with unrivaled precision.

This chapter is divided into three sections. The first two present our measurements of
the FCS and high-order moments up to n = 6 in the BEC mode (k = 0) of Bose superfluids
and Mott insulators. Section three is dedicated to understanding the deviations to the
prediction for a coherent state observed for the BEC.

3.1 Full counting statistics

A powerful tool to thoroughly investigate the fluctuations of an observable is the Full
Counting Statistics (FCS), which consists in counting the number of particles detected
in a given time and/or space interval. This technique was first implemented in quantum
optics and mesoscopic conductors [159] thanks to the early development of single-particle-
resolved probes for photons and electrons. Following the advent of quantum simulations
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with cold atoms, the FCS was applied to the study of Rydberg atoms [160–162] and
non-interacting atomic gases [26, 163]. Many theoretical studies have demonstrated the
capabilities of the FCS to explore quantum phase transitions [164–166], universality [167,
168], entanglement properties [169], or out-of-equilibrium dynamics [170]. The FCS is also
promising from a quantum information perspective, as it can probe the diagonal part of the
many-body density matrix and, therefore, identify quantum states with large numbers of
particles without resorting to a consuming quantum state tomography [171]. In addition,
recent works [172, 173] have also shown that applying random unitary transformations on
a system before measuring the FCS would allow access to the non-diagonal correlators.
All these reasons call for further developments of experimental approaches to access the
FCS in quantum simulators.

In this work, the FCS is characterized by measuring the probability distribution of the
atom number NΩ falling inside a small voxel of volume VΩ in momentum space, for either
Bose superfluids or Mott insulators. What "small" refers to will be discussed in detail in
the presentation of the analysis procedure. First, we remind what is the expected FCS in
the two limiting regimes of the Bose-Hubbard phase diagram.

3.1.1 Poisson and thermal FCS

The Bose-Einstein condensed phase is characterized by a complex order parameter, the
condensate wavefunction, whose arbitrary choice of phase when crossing the transition
point corresponds to a breaking of the gauge symmetry [143]. This well-defined phase
enables to describe an ideal BEC at zero temperature by a coherent state, in which all the
particles have condensed into the single-particle ground state. Such a coherent state |α⟩
can be written in the Fock state basis |n⟩ as follows:

|α⟩ = e−|α|2/2∑
n

αn

√
n!

|n⟩ (3.1)

This decomposition yields a Poissonian probability distribution for the occupation number:

P (n) = |⟨n|α⟩|2 = e−|α|2 |α|2
n! (3.2)

which is entirely defined by the mean atom number |α|2. Of course, BECs produced ex-
perimentally are neither ideal nor zero temperature. Therefore, there is no guarantee that
a Poisson FCS is found when studying the BEC mode (k = 0) of Bose superfluids. More
generally, pure states cannot even be prepared experimentally, strictly speaking, due to
the inevitable coupling with the environment. To what extent a pure-state description cor-
rectly describes the result of an experiment remains an open question that is of particular
interest for the development of experimental platforms for quantum technologies.

Similarly, this concern also applies to the other side of the BH phase diagram. Uniform
Mott insulators at zero temperature are described by Fock states in the in-trap position ba-
sis (see Equation 3.8 in Chapter 2). In the momentum basis, which is the one probed after
the TOF, a Mott insulator exhibits thermal-like statistics [92, 174, 175]. This property can
be understood intuitively from the fact that the different lattice site behave as a discrete
series of uncorrelated emitters in the limit of zero tunnelling (J → 0), which is analogous
to a thermal gas with a correlation length shorter than the lattice spacing. Therefore, the
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FCS for a Mott insulator should be characterized by the geometric probability distribution
associated with a thermal distribution:

P (n) = n̄n

(n̄+ 1)n+1 (3.3)

We comment here that the imperfect detection efficiency of our detector (ηMCP < 1) does
not prevent in practice the observation of the probability distributions 3.2 and 3.3. Indeed,
one sees that replacing |α|2 by ηMCP|α|2 in Equation 3.2 (resp. n̄ by ηMCPn̄ in Equation
3.3) still yield a Poisson (resp. geometrical) distribution. This property is in fact generic
to Gaussian states [155].

3.1.2 Experimental constraints on the volume probed for the FCS

A first necessary condition to measure the FCS associated with a given quantum state is
to count the atoms in a smaller volume than that of the state itself. This condition enables
bypassing the thermodynamical constraints on macroscopic quantities (the atom number
here that has small fluctuations) of quantum states prepared at equilibrium. To illustrate
that, let us consider the simplified case where the experiment repeatedly produces ideal
BECs with a strictly constant atom number at zero temperature. After the expansion, the
condensed atoms occupy a momentum volume VBEC ≃ (1.6/L)3 [176] roughly set by the
inverse of the in-trap spatial size L. In this volume, the atom number detected between
different experimental realizations is constant as the experiment reproduces the canonical
ensemble [177]. To measure the fluctuations associated with a coherent state, one must
somehow mimic the grand canonical ensemble and let the atom number fluctuate [178].
This is achieved by probing a volume VΩ much smaller than VBEC, in which the atom
number NΩ can fluctuate thanks to the remaining cloud acting as a reservoir.

A second constraint for accessing the FCS is illustrated in Figure 3.1 (right panel)
and consists in probing a volume equal to or smaller than that of a single mode in the
momentum space. This volume corresponds to (2π/L)3 and is referred to as the correlation
volume Vc in the following of this chapter for a reason that will become clear in Section
3.2.2. When considering the condensate mode of Bose superfluids, the condition VΩ ≲ Vc is
automatically fulfilled by the previous one VΩ ≪ VBEC. On the other hand, Mott insulators
are large and dilute clouds in the momentum space, whose volumes VMott exceed the first
Brillouin zone. Therefore, the condition VΩ ≲ Vc is even more stringent than VΩ ≪ VMott.
Consequently, the statistics within VΩ is greatly limited in the case of Mott insulators
compared to the condensate mode of Bose superfluids, and imposes two different analysis
procedures to extract the FCS of both systems.

3.1.3 Analysis procedures and experimental results

Our investigation starts by recording around Nruns ≃ 2000 momentum distributions of
Bose superfluids and Mott insulators. The former corresponds to U/J = 5 and N =
5(1) × 103, and the later to U/J = 76 and N = 7(2) × 103. Both data sets were taken
with the Raman transfer so that the overall detection efficiency η is only limited by that
of the MCPs ηMCP = 53(2)%. This is a fundamental improvement compared to previous
works done in our team [146, 174] or in Australia [1], for which η < 15%. Indeed, a large
detection efficiency is obviously necessary to extend the probability distribution to large
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atom numbers and to reach high-order moments. This is all the more true since these
measurements require probing the gases in small momentum-space volumes VΩ after a
long TOF of 297 ms (see Figure 3.1).

Single-atom detector

Figure 3.1: Sketch of the experimental procedure. Interacting quantum gases of
4He∗ atoms undergo a free-fall expansion from a 3D optical lattice. The detection by
the MCPs yields the 3D single-atom resolved momentum distributions, from which the
probability distribution P (NΩ) is extracted. To properly reveal the statistical properties
of NΩ, the volume probed VΩ ∼ δk3 must be equal to or smaller than that of a single
mode Vc = (2π/L)3.

The procedure for extracting P (NΩ) differs between a Mott insulator and the BEC
mode of a Bose superfluid, as the former is a dilute cloud spread over the entire first
Brillouin zone while the latter is highly peaked at k = 0. For a Mott insulator, the entire
first Brillouin zone is binned with cubic voxels of side δk = 6 × 10−2 kd corresponding to
VΩ = 0.9Vc. The probability distributions of all the voxels VΩ are then averaged to obtain
that of a Mott insulator with better statistics. On the other hand, the condensed atoms
of lattice superfluids probed in the far-field regime of expansion are located inside narrow
diffraction peaks of width ∆k ∼ 15 × 10−2 kd [32]. Therefore, these peaks are very dense
and contain enough atoms to probe the statistics of the BEC mode with a single voxel
smaller than (∆k)3. In practice, we use a spherical voxel SΩ of radius δk = 0.025 kd ≪ ∆k
centered on k = 0. The resulting probability distributions of Mott insulators and Bose
superfluids are plotted in Figure 3.2.

In both cases, the experimental data are compared with the Poisson and geometric
distributions of Equations 3.2 and 3.3 associated with the average atom number ⟨NΩ⟩
measured in the experiment. For Mott insulators, ⟨NΩ⟩ = 0.46(5), and an excellent
agreement is found with the corresponding geometric distribution expected for a thermal
state. Therefore, the momentum FCS of a Mott insulator is identical to that of a statistical
mixture of thermal bosons. On the other hand, the BEC data exhibits a very contrasted
probability distribution which matches well (but not perfectly) with the Poisson law at
the measured ⟨NΩ⟩ = 5.3(2). As expected, the different statistical properties of BECs
and Mott insulators are clearly reflected by their FCS, which are consistent with those
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Figure 3.2: Full Counting Statistics P (NΩ) of BECs and Mott insulators. The
error bars on the experimental points correspond to the statistical uncertainty (standard
deviation) estimated via the bootstrapping method. The experimental data are com-
pared with the expectations for a thermal and coherent state, respectively a geometric
law (dashed-dotted black line) and a Poisson law (dashed blue line). Both predictions
are entirely defined, without any adjustable parameter, from the measured average atom
number: ⟨NΩ⟩ = 0.46(5) in the Mott case (top panel) and ⟨NΩ⟩ = 5.3(2) in the BEC
case (bottom panel). The uncertainty on these curves (shaded areas) reflects that on the
measured ⟨NΩ⟩.
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expected for coherent and thermal states. The origin of the discrepancies between the BEC
data and the Poisson distribution will actually become clear when studying the high-order
moments. Before that, the next section illustrates the importance of the criterion VΩ ≲ Vc

to reveal the thermal statistics of Mott insulators.

3.1.4 Increasing VΩ when computing the FCS of Mott insulators

In Figure 3.3, we test varying the voxel volume VΩ = δk3 compared to Vc in the computa-
tion of P (NΩ) for Mott insulators. The black data points correspond to the voxel size used
in the previous section

(
δk = 6 × 10−2 kd

)
for which VΩ = 0.9Vc and the FCS is correctly

fitted by a geometric law. As VΩ is increased, P (NΩ) keeps deviating from the geometric
distribution (dashed-dotted lines) associated with the correspondingly increasing average
atom number ⟨NΩ⟩. Because Equation 3.3 concerns a single mode with thermal statistics,
its failing to describe the data at larger volumes VΩ suggests to describe the statistical
properties of NΩ by accounting for the contributions of several modes. As derived in [179],
the probability distribution resulting from the contribution of M independent modes with
thermal statistics and average occupation ⟨N⟩ is a multimode thermal distribution:

PM (N) = (⟨N⟩ +M − 1)!
⟨N⟩! (M − 1)!

(⟨N⟩/M)N

(1 + ⟨N⟩/M)N+M
(3.4)

Naturally, the single-mode case M = 1 returns the geometric distribution of Equation 3.3.
As shown in Figure 3.3, the predictions PM (N) (solid lines) are in perfect agreement with
the experimental data when VΩ > Vc. Those predictions do not rely on any adjustable
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Figure 3.3: Full counting statistics P (NΩ) of Mott insulators for different VΩ.
Predictions of Equation 3.3 for a thermal distribution are indicated as dashed-dotted
lines, while the multimode thermal predictions of Equation 3.4 correspond to the solid
lines. These multimode thermal scalings only depend on ⟨NΩ⟩ and on the chosen ratio
M = VΩ/Vc corresponding to the number of independent modes per voxel. As expected,
they are found to correctly fit the data when VΩ > Vc.
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parameters: they are entirely defined by the average atom number ⟨NΩ⟩ and the number
of modes per voxel M = VΩ/Vc. These results allow us to conclude that the condition
VΩ ≲ Vc is sufficient to retrieve the thermal statistics associated with Mott insulators. In
particular, the more stringent requirement VΩ ≪ Vc (which we verified was also leading
to thermal FCS) is unnecessary here.

3.2 High-order moments

As an alternative to measuring the FCS, the validity of a pure-state description of Bose
superfluids and Mott insulators can be assessed by looking at the maximum order of
correlations at which the correlation amplitude in these systems is compatible with that
expected for a pure state. This idea stems from R. Glauber’s characterization of light
fields through their photon correlations at any order [180, 181]. As for the case of light
propagation, the many-body coherence of atomic gases is accessed in the far-field regime
of expansion, where momentum correlations reflect multi-particle interferences [182].

In quantum gases, momentum correlations up to the second order have been measured
with single-atom-resolved detection in non-interacting and non-degenerate bosonic [28,
183] and fermionic systems [44, 184], BECs [1], interacting lattice bosons [32, 146, 174]
(by our team), and interacting fermions [185]. The only extensions of such measurements
to higher-order correlations were performed several years ago by the Australian 4He∗ team
with BECs [1] (up to the third order), and non-interacting bosons [183] (up to the sixth
order). For Gaussian states, high-order correlations factorize into lower-order ones and
do not bring additional information. On the contrary, signatures of non-Gaussianity in
strongly-correlated systems should precisely be contained within high-order correlations,
as recently suggested [186–188]. This motivates the following investigation of high-order
correlations in strongly-interacting lattice Bose gases for both Bose superfluids and Mott
insulators. This starting point will open the way towards similar measurements in more
strongly-correlated systems close to the superfluid-to-Mott transition.

3.2.1 Many-body coherence of Bose superfluids and Mott insulators

According to R. Glauber [180], the definition of the nth-order coherence of a light field
relies on that of the joint probability for detecting n photons at a given set of position
and time coordinates xj = (rj , tj), noted G(n)(x1, . . . , xn). More conveniently, the notion
of coherence is quantified via the normalized correlation function:

g(n)(x1, . . . , xn) = G(n)(x1, . . . , xn)
n∏

j=1
G(1)(xj)

(3.5)

Coherent light fields, such as lasers, are defined by a perfect coherence at any order
g(n)(x1, . . . , xn) = 1 and for any set of coordinates (x1, . . . , xn). On the other hand,
looking at simultaneous and localized detection events x1 = · · · = xn ≡ x with incoherent
(or chaotic) light fields yields the very different result g(n)(x, . . . , x) = n! [181]. This scaling
is notably valid for thermal light, with the most famous example of the Hanbury-Brown
and Twiss experiment [189]. The latter, which actually motivated the work of R. Glauber
on the nth-order coherence, is discussed in the next section.
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Glauber’s predictions for the amplitude of the normalized correlation functions are
readily transposed to the momentum space [180], where the notation g(n)(0) refers to
g(n)(k, . . . ,k). Expressing g(n)(0) in terms of the operators â(k) and â†(k) (second quan-
tization), Glauber’s predictions are easily derived from the bosonic commutation rules[
â(k), â†(k′)

]
= δk,k′ . As an example, the amplitude of the second-order correlations

writes:

g(2)(0) = ⟨â†(k)â†(k)â(k)â(k)⟩
⟨â†(k)â(k)⟩2

=
⟨â†(k)

(
â(k)â†(k) − 1

)
â(k)⟩

⟨â†(k)â(k)⟩2

= ⟨N̂(N̂ − 1)⟩
⟨N̂⟩2

= ⟨N̂2⟩ − ⟨N̂⟩
⟨N̂⟩2

= 1 + σ2
N − ⟨N̂⟩
⟨N⟩2 (3.6)

with σ2
N = ⟨N̂2⟩ − ⟨N̂⟩2 the variance of the number of particles N . Therefore, one finds

that the correlation amplitude depends on the state statistics. For a coherent state, the
Poissonian probability distribution function implies σ2

N = ⟨N̂⟩ and one retrieves g(2)(0) =
1. On the other hand, the geometric probability distribution of the atom number for
thermal sources yields σ2

N = ⟨N̂⟩2 + ⟨N̂⟩, which leads to the bosonic bunching effect
g(2)(0) = 2.

As shown in the previous section, Mott insulators exhibit the probability distributions
of thermal states. This finding is consistent with a previous work [174] in which our
team measured g(2)(0) = 2 for Mott insulators. Using correlation functions, the fact that
Mott insulators should exhibit thermal statistics in momentum space can be expressed
explicitly. To this aim, one uses the decomposition of the momentum space operator and
of the ground state wave function of a Mott insulator into the basis of Wannier functions:

â(k) = 1√
V

Nsite∑
j=1

eik.rj b̂j (3.7)

|Ψ0⟩MI = 1√
N !

Nsites∏
j=1

(
b̂†

j

)n̄
|0⟩ (3.8)

where the operators b̂†
j , b̂j create/annihilate an atom in the Wannier function localized on

site j. From these expressions, the calculations of the second-order correlation function
g(2)(0) for a perfect Mott insulator (J = 0) yields correlations of the type ⟨b̂†

i b̂
†
j b̂k b̂l⟩, which

decomposes into:
⟨b̂†

i b̂
†
j b̂k b̂l⟩ = n̄2 (δi,k + δj,l) − n̄ δi,j,k,l (3.9)

where n̄ denotes the lattice filling. Both first terms correspond to a double sum over
the lattice sites

(∝ N2
site
)
, while the last term only correspond to a single sum (∝ Nsite).

Therefore, this last term becomes negligible when the number of occupied sites is large.
Because this condition is fulfilled experimentally

(
Nsites ∼ 403), and as ⟨â†(k)â(k)⟩2 = n̄2,

one retrieves the bunching amplitude g(2)(0) = 2 associated with a thermal state. This
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reasoning can be extended to any order n > 2, explaining why the many-body coherence
properties of Mott insulators and thermal states are similar in momentum space up to
negligible terms. In particular, one expects g(n)(0) = n! for any order n.

3.2.2 Condition for measuring fully-contrasted correlation amplitudes

Another fundamental quantity of correlation functions is the correlation length lc associ-
ated with the decay of the correlation amplitude. When correlations are measured in the
far-field regime, lc represents the typical momentum separation between uncorrelated com-
ponents of the system and is inversely proportional to the source size. The most famous
illustration of this property dates back to the first observation of the bosonic bunching
effect in 1956. In their landmark experiment [189], Hanbury-Brown and Twiss used two
photon detectors at positions r1 and r2 to collect the photons of the star Sirius. A star
being an incoherent light source, the photons emitted are associated with thermal statis-
tics, and a bunching peak was observed by Hanbury-Brown and Twiss when placing the
two detectors at the same position r1 = r2. In this experiment, the decay of the bunching
amplitude when increasing the detectors separation |r1 − r2| was used to obtain lc, from
which Hanbury-Brown and Twiss deduced the angular size of the star.

An important consequence of the (finite) correlation length of systems with thermal
statistics is that fully-contrasted correlation amplitudes g(n)(0) = n! can only be measured
inside volumes smaller than the one set by lc. Otherwise, uncorrelated atoms are mixed
together, resulting in a reduction/suppression of the correlation amplitude. This effect
was clearly observed in a previous investigation of the third-order momentum correlations
of Mott insulators done by our team in 2019 [174]. The correlation length reported at
the time for Mott insulators with similar atom numbers to ours was lc ≃ 3 × 10−2. This
value, defined as the 1/e2 width of the Bell-shaped bunching peak, was compatible with
the prediction 2π/L for an in-trap size L. Therefore, the volume Vc = (2π/L)3 can be
identified in a relatively good approximation to the one set by the correlation length1,
hence his name. Consequently, the condition δk ≪ lc for measuring fully-contrasted
correlation amplitudes translates into VΩ ≪ Vc, which is more stringent than in the case
of the FCS.

3.2.3 Experimental procedure

In quantum optics, the high-order moments of the photon number are also called the
factorial moments because of the relationship [190, 191]:

g(n)(0) ≡ ⟨N̂ (n)⟩
⟨N̂⟩n

= ⟨: N̂n :⟩
⟨N̂⟩n

= ⟨N̂(N̂ − 1) . . . (N̂ − n+ 1)⟩
⟨N̂⟩n

(3.10)

which appeared already for the second-order correlation function in Equation 3.6. This
relationship results from the normal operator ordering ⟨: N̂n :⟩ = ⟨(â†)n ân ⟩, reflecting
the fact that a detected photon is necessarily destroyed and ensuring that the numerator
of Equation 3.10 is zero for the vacuum state. Interestingly, our detector of 4He∗ atoms
works similarly since each atom detected is destroyed from the metastable state (the atom
returns to the ground state 1 1S0). Transposing the result of quantum optics, we compute

1This would not be true quantitatively if lc were defined as a RMS width.
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the amplitude of the normalized correlation functions g(n)(0) at any order:

g(n)(0) = ⟨NΩ(NΩ − 1) . . . (NΩ − n+ 1)⟩
⟨NΩ⟩n

(3.11)

from the atom number NΩ detected in the volume Ωk for each momentum distribution.
This atom number yields the factorial moment NΩ(NΩ − 1) . . . (NΩ − n + 1), whose sta-
tistical average ⟨.⟩ over the Nruns ∼ 2000 experimental distributions gives the numerator
of Equation 3.11. Note that this computation method, that we implemented recently,
speeds up the computation of (local) correlations at fixed momentum k compared to our
"traditional" algorithm used in [146, 174]. However, it cannot compute the correlations at
opposite momenta, which are the object of focus of the next chapter. The algorithm used
for the measurement of these k/-k correlations will be described in the next chapter.

For Bose superfluids, the atom number NΩ is the one detected inside the same sphere
SΩ located on k = 0 than for the measurement of the FCS. Indeed, the relatively large
average atom number in the volume SΩ (⟨NΩ⟩ = 5.3(2)) allows us to compute accurately
the factorial moments. On the contrary, the voxel size used to compute the correlation
function of Mott insulators has to be reduced compared to that of the FCS case to fulfill
the condition δk ≪ lc and obtain well-contrasted correlation amplitudes. This necessity
further reduces the already low statistics inside the voxels of Mott insulators, which, as a
reminder, are dilute clouds with momentum extents exceeding that of the first Brillouin
zone. To circumvent this issue, the statistical properties of Mott insulators are accessed
by binning the momentum space with anisotropic voxels of volume VΩ = δk × δk2

⊥. The
transverse size is chosen larger than the correlation length, δk⊥ > lc > δk, to increase the
statistics inside the voxels. The resulting atom number is noted Nδk⊥ , and its factorial
moments are averaged over all the anisotropic voxels inside the first Brillouin zone to
increase the statistics further:

⟨N̂ (n)
δk⊥

⟩ =
∑

j∈1BZ
⟨Nδk⊥(Nδk⊥ − 1) . . . (Nδk⊥ − n+ 1)⟩j (3.12)

Then, these average factorial moments are normalized to obtain the corresponding corre-
lation amplitudes:

g
(n)
δk⊥

(0) =

∑
j∈1BZ

⟨Nδk⊥(Nδk⊥ − 1) . . . (Nδk⊥ − n+ 1)⟩j∑
j∈1BZ

⟨Nδk⊥⟩n
j

(3.13)

Note that because we are interested in the high-order moments of the occupation number,
increasing the mean atom number per voxel by increasing the voxel size raises the statistics
much more efficiently than averaging over many voxels or experimental runs.

Naturally, this procedure cannot yield the fully-contrasted correlation amplitude g(n)(0) =
n! since uncorrelated atoms are added inside the voxels along the two directions δk⊥ > lc.
This effect is illustrated in Figure 3.4 where a clear suppression of g(n)

δk⊥
(0) on increasing

the transverse voxel size can be seen for any order. However, the 3D Gaussian shape of
the correlation volume allows us to decouple the three directions of the momentum space
and to quantify the effect of the transverse integration along the two directions δk⊥ on the
decay of g(n)

δk⊥
(0) along the longitudinal δk-axis. By repeating the calculation of g(n)

δk⊥
(0) for

different transverse integrations δk⊥, the fully-contrasted amplitude g(n)(0) is extracted
from extrapolating the value of g(n)

δk⊥
(0) in the limit δk⊥ → 0.
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Figure 3.4: Amplitudes g
(n)
δk⊥

(0) as a function of the transverse integration δk⊥.
The different panels correspond to different correlation orders, from n = 2 to n = 6. The
panel n = 2 is plotted in linear scale, while all other orders have their vertical axis plotted
in log scale. For any orders, the voxel size δk = 1.5 × 10−2 ≤ lc is fixed and only the
transverse one δk⊥ increases. For each order, the dashed black line fits the dependency
of g(n)

δk⊥
(0) with δk⊥ to extrapolate the fully-contrasted amplitude g(n)(0) in the limit

δk⊥ → 0.
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3.2.4 Experimental results

The measured amplitudes of the correlation functions g(n)(0) are plotted in Figure 3.5 (in
log scale) for Mott insulators and the condensed parts of Bose superfluids. In the former
case, the error bars correspond to the fitting error on the extrapolation of the amplitude
g(n)(0) in the limit δk⊥ → 0. For Bose superfluids, the error bars on g(n)(0) are defined
as ∆N (n)

Ω /⟨N⟩n with ∆N (n)
Ω the standard error of the factorial moment of order n:

∆N (n)
Ω = 1√

Nruns

√
⟨(NΩ . . . (NΩ − n+ 1))2⟩ − ⟨NΩ . . . (NΩ − n+ 1)⟩2 (3.14)

Up to the sixth order, the correlation amplitudes of Mott insulators are consistent with
the scaling g(n)(0) = n! associated with thermal statistics. This finding is a substantial
improvement of our previous measurement of the second-order and third-order correlation
amplitudes [29], which reported the values g(2)(0) = 1.065(10) and g(3)(0) = 1.32(5).
Although the scaling between the magnitudes g(2)(0) − 1 and g(3)(0) − 1 was compatible
with the factor 5 expected for thermal statistics, the absolute correlation amplitudes were
quite far from the fully-contrasted ones. This effect was caused by the large transverse
integration used in the third-order computation to raise the statistics. Thanks to the
improved statistics offered by the Raman transfer, sufficiently small volumes can be probed
to retrieve the prediction n!. In addition, the extension of this measurement up to the
sixth order further confirms the argument presented in Section 3.2.1 along which, up to
negligible terms, the Fock state of a perfect Mott insulator leads to thermal statistics
of the momentum occupation number. Mott insulators and thermal gases actually differ
from their different in-trap sizes and the incompressible (resp. compressible) nature of
a Mott insulator (resp. thermal cloud), which results in different correlation lengths l(n)

c
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Figure 3.5: High-order moments of BECs and Mott insulators. Amplitudes g(n)(0)
in log scale versus the order of correlations n for the condensate mode of Bose superfluids
and Mott insulators. The Mott data agrees with the n! prediction for thermal state (solid
line) while the BEC data seems consistent with Glauber’s prediction for a coherent state.
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[174]. On the other hand, the correlation amplitude associated with the condensed part
of Bose superfluids is g(n)(0) ∼ 1 for any order up to n = 6, consistent with Glauber’s
prediction for a coherent state. The several orders of magnitude between both cases
illustrate the outstanding capabilities of high-order moments to identify quantum states
from their many-body coherence.

Zooming in on the amplitude range close to unity (Figure 3.6), our results for the
BEC mode of Bose superfluids surprisingly deviate from the exact prediction g(n)(0) = 1.
This deviation increases the higher the order of correlations and makes our measurement
incompatible within error bars with Glauber’s prediction already for n = 2. To confirm the
physical origin of this discrepancy, we repeat our computation of g(n)(0) on a "randomized"
data set. The latter is obtained by randomly shuffling the detected atoms between the
different distributions while conserving the same number of distributions and number of
atoms per distribution. This randomization procedure destroys the many-body coherence
within single files. Consequently, our measuring of discrete and independent detection
events should lead to a Poisson probability distribution of the occupation number, implying
g(n)(0) = 1 at any order. As illustrated by the yellow data in Figure 3.6, this is precisely
what we observe with the randomized data set. The measured correlation amplitudes
are contained within a 2% interval around 1, confirming that the deviation with unity in
the non-randomized experimental data is significant. In the next section, we propose an
interpretation for our measurement of g(n)(0) > 1 which differs from Glauber’s prediction
for a coherent state.
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Figure 3.6: Deviation from Glauber’s definition of a coherent state. The measured
amplitude g(n)(0) for the BEC mode actually deviates from Glauber’s prediction (in red)
g(n)(0) = 1. This deviation increases with the order of correlations and is absent from the
randomized data set (see text), confirming that it should be statistically meaningful.
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3.3 Deviations to the pure-state description for the BEC

The 4He∗ team in Canberra reported in 2011 the first measurement of second- and third-
order momentum correlations for atoms [1]. They demonstrated that a thermal cloud
of bosonic atoms and a BEC share, respectively, the coherence properties introduced by
Glauber to define incoherent and coherent light fields. Unlike us, they measured g(2)(0) =
g(3)(0) = 1 for the BECs without any visible deviation from Glauber’s prediction. In
addition to finding the origin of the deviation in our own data, this section also aims at
understanding how our measurement differs from theirs.

3.3.1 Increasing the lattice depth

To understand the deviations g(n)(0) > 1, we repeated the measurement of g(n)(0) at var-
ious lattice depths corresponding to Bose-Hubbard interaction parameters U/J ∈ [2, 22].
The initial BEC atom number was kept to 5×103, for which the corresponding low-entropy
Mott transition is around 25 − 30 according to the previous chapter. Therefore, the sys-
tem remains far from entering the Mott regime where the statistics is thermal and yields
g(n)(0) = n!. The results are plotted in Figure 3.7 for U/J = 10, 15, and 20. In a general
manner, the data shows that the deviation increases with the lattice depth. This effect
is jointly reflected in the increasing deviations with U/J between the FCS of the BEC
mode and the expected Poisson distribution. Wondering what else increases with U/J ,
we naturally thought of the quantum depletion. Indeed, the higher U/J , the stronger the
interactions and the more depleted the condensate is. Furthermore, we know from a pre-
vious work [146] that both the thermal and quantum depletion of Bose superfluids exhibit
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Figure 3.7: Many-body coherence of Bose superfluids at various U/J . The corre-
lation amplitudes g(n)(0) for the atoms inside the sphere SΩ, centered on the condensate
mode, are found to deviate from unity. This deviation increases with the order of correla-
tions and the interaction parameter U/J .
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perfect bosonic bunching g(2)(0) = 2. This result is expected for the thermal depletion
because temperature incoherently depletes atoms from the condensate mode. In the case
of the quantum depletion, this feature is more subtle to explain and is actually only valid
when looking at local correlations. It will be discussed in the next chapter when compar-
ing the local second-order correlations with those at opposite momenta. For the moment,
let us focus on the fact that the total depletion contributes to g(n)(0) = n!. Naturally,
the sphere SΩ of radius δk = 0.025 kd centered on the condensate mode k = 0 essentially
contains condensed atoms, since both the thermal and quantum depletion are delocalized
over a much larger volume in momentum space. However, a small fraction of the atoms
inside SΩ belongs to the depletion and affects the many-body coherence properties of the
condensed ones. We now introduce a simple model to quantify this effect and account for
both contributions.

3.3.2 A simple model . . .

The volume SΩ contains essentially condensed atoms and a small fraction of depleted
ones, which either belong to the thermal or quantum depletion. Our first assumption
is to consider that these two contributions act on the statistical properties of the whole
volume SΩ independently of each other. Naturally, the atom numbers of the BEC and the
depletion are correlated in the canonical ensemble since each atom added to the depletion
must be removed from the BEC. However, these correlations are assumed to be negligi-
ble in the small volume SΩ considered, whose radius δk = 0.025 kd is (by far) smaller
than the momentum range of the thermal/quantum depletion. This approximation seems
reasonable for small interactions corresponding to the Bogoliubov regime, where the con-
densed fraction remains close to unity. However, nothing says it should remain valid in the
strongly-interacting regime, where the (quantum) depletion can no longer be treated as
a perturbation of the BEC. Our second assumption consists in considering the BEC as a
coherent state and the depletion as a thermal one, assigning g(n)(0) = 1 to the former and
g(n)(0) = n! to the latter. In our previous work [146], the quantum depletion was found to
exhibit (local) thermal statistics when considered at non-zero momenta outside the BEC
mode. Whether or not this property holds for small momenta k ≃ 0 is an assumption,
which is difficult to assess in the lattice due to the residual harmonic confinement.

Our goal is to derive the statistical properties of the atom number NΩ inside the
volume SΩ. In our model, this atom number is associated with the operator N̂Ω = â†

ΩâΩ,
whose annihilation operator âΩ = âBEC + âdep corresponds to the sum of two operators
acting respectively on the BEC and the (total) depletion. Our first assumption consist in
considering that these two operators are uncorrelated, ⟨â†

BEC âdep⟩ = 0, meaning that the
atom number in SΩ is given by:

NΩ = ⟨N̂Ω⟩ = ⟨â†
BEC âBEC⟩ + ⟨â†

dep âdep⟩ = NBEC +Ndep (3.15)

with NBEC and Ndep the BEC and depleted atom number inside SΩ. The assumption that
âBEC and âdep are uncorrelated implies that the nth power of âΩ writes:

ân
Ω =

n∑
p=1

(
n

p

)
(âBEC)p(âdep)n−p (3.16)
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and the high-order moments of NΩ is readily derived:

⟨N̂ (n)
Ω ⟩ = ⟨(â†

Ω)n ân
Ω⟩ =

n∑
p=1

(
n

p

)2

⟨ (â†
BEC)p (âBEC)p (â†

dep)n−p (âdep)n−p ⟩ (3.17)

This expression leads to an analytical formula for the normalized correlation amplitude:

g(n)(0) − 1 = ⟨(â†
Ω)n ân

Ω⟩
⟨â†

Ω âΩ⟩n
− 1 =

n−1∑
p=1

(n− p)!
(
n

p

)2

−
(
n

p

) (fcoh)p (1 − fcoh)n−p (3.18)

which uniquely depends on the so-called "coherent fraction" fcoh. The latter is defined
as the fraction of atoms inside SΩ belonging to the condensate mode, namely fcoh =
NBEC/NΩ = ⟨â†

BEC âBEC⟩/⟨â†
ΩâΩ⟩. Note that even though our simple model can predict

the high-order moments of NΩ, the probability distribution P (NΩ) remains out-of-reach
as it results from a complex convolution of those of the BEC and the depletion. Obtaining
P (X) from the moments of a random variable X is actually a notoriously difficult problem
[192, 193].

3.3.3 . . . that works !

The amplitudes g(n)(0) of the BEC mode at U/J = 5 are reproduced in Figure 3.8,
along with the prediction of our model after adjusting its only variable fcoh. Despite the
simplicity of our model, an excellent agreement is found between the experimental data
and the theoretical prediction. In addition, the fitted coherent fraction fcoh = 0.9960(5) is
close to unity, as expected from our assumption that the fraction of depleted atoms inside
SΩ deep into the superfluid regime must be negligible. Nevertheless, our model suggests
that such a small fraction is enough to affect the statistical properties in a way that we
can resolve experimentally. Furthermore, the uncertainty on the fitted coherent fraction
is only at the ∼ 0.1% level (blue shaded area), way below the size of the experimental
error bars for the amplitudes g(n)(0). This extreme accuracy is the direct consequence
of adjusting our model on the highest orders and illustrates the sensitivity of high-order
correlations to probe many-body coherence.

As illustrated in Figure 3.9, we confirmed with the data sets at higher interactions
the good agreement between the experimental data and the theoretical prediction of our
model. The fitted values of the single adjustable parameter fcoh decrease with the interac-
tion strength. This observation is consistent with the physical picture behind the model.
Indeed, the coherent fraction expresses the ratio between the condensed atom number in-
side SΩ, NBEC, and the total atom number in this volume NΩ = NBEC +Ndep. The higher
the interactions, the more the BEC gets depleted. Therefore, the total number of con-
densed atoms N tot

BEC decreases on increasing U/J while the total number of depleted atoms
N tot

dep increases. Inside the small volume SΩ, which mainly contains condensed atoms, the
reduction of NBEC is much stronger than the growth of Ndep. As a consequence, ⟨NΩ⟩
decreases (slower than NBEC) at stronger interactions and fcoh is thus expected to decrease
too.

The following section presents additional certifications of the heuristic model intro-
duced here, based on the comparison of the fitted coherent fraction fcoh at various U/J
and other observables, such as the momentum density and the condensed fraction. Be-
fore that, let us first briefly comment on why we stopped at n = 6 when computing the
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Figure 3.8: Adjusting the growth of g(n)(0) for U/J = 5 with our model. Same
experimental data than the one shown in Figure 3.5 along with the theoretical prediction
of our simple model. The latter fits correctly the experimental points, with an adjusted
coherent fraction fcoh = 0.9960 close to unity (dashed line) and a small uncertainty 5×10−4

(shaded area).
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Figure 3.9: Adjusting the growth of g(n)(0) at increasing lattice depths. For any
interaction strength, our model correctly fits the data with its single adjustable parameter
fcoh. In addition, the fitted values of fcoh decrease at higher interactions, which is quali-
tatively consistent with our model.

high-order moments of the occupation number. As already mentioned, our randomization
procedure yields essentially uncorrelated momentum distributions for which the normal-
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ized amplitudes g(n)(0) are compatible with unity up to n = 6 (see Figure 3.6). Because
this feature only comes from detecting discrete and independent events, a similar result
is found when applying this procedure to Mott insulator distributions. There is no order
limit to the computations of g(n)(0) from the factorial moments of NΩ. In practice, how-
ever, the finite statistics per voxel limits the maximum order reachable. One way to assess
this limit consists in looking at deviations to g(n)(0) = 1 in the randomized data sets. As
illustrated in Figure 3.10, such deviations appear for n > 7 at U/J = 5, signaling that
there are too few distributions with NΩ > n to correctly evaluate the probability of finding
NΩ = n for n ≥ 7. This systematic deviation starting from n ≥ 7 is conjointly found in
the amplitudes g(n)(0) of the actual data sets when compared to the predictions of our
model adjusted with the orders n ≤ 6. From this observation (and similar ones at other
U/J), we decided to restrict our analysis to n ≤ 6. To go beyond this limit requires either
a larger number of files or a higher detection efficiency η. Increasing η is undoubtedly
the most efficient method. Indeed, an imperfect detection efficiency (η < 1) affects each
detection event. Therefore, the joint detection of n atoms depends on a factor ηn whose
growth with η is all the more significant than n is large.
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Figure 3.10: Deviations of the amplitudes g(n)(0) at larger correlation orders.
Top: The computations of the normalized amplitudes g(n)(0) for both the actual and ran-
domized data sets are extended to the tenth order compared to Figure 3.6. The prediction
of our model adjusted for the orders n ≤ 6 is also reproduced to illustrate the system-
atic deviation starting from n ≥ 7. Bottom: Zooming in on the randomized correlation
amplitudes shows that the lack of statistics is clearly signaled by systematic deviations to
g(n)(0) = 1 in the randomized data.
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3.3.4 Further validating the model

Naturally, an ideal validation of our model would be to quantitatively compare the fitted
value of fcoh with the experimental value of NBEC/NΩ. Unfortunately, this is impossible
since NBEC is unknown. Indeed, we cannot assign which atoms are condensed and which
are not when measuring the number of counts inside the volume SΩ. Furthermore, we
are unaware of any analytical prediction that could provide the fraction of depleted atoms
inside SΩ for our 3D lattice bosons with additional harmonic confinement.

However, a first quick comparison is amenable by comparing the fitted values of the
depleted fraction inside SΩ, 1−fcoh, with momentum density cuts. This comparison, which
is certainly not a certification, simply consists in (i) fitting the tails of the momentum
density far from the BEC (k ∈ [0.2, 0.5] kd) to have a rough idea of the momentum shape
of the depletion, and (ii) comparing 1 − fcoh with the extrapolation of the depletion level
at k = 0. It is illustrated in Figure 3.11 for U/J = 5 and U/J = 20. It turns out
that a Lorentzian curve fits best the tails of the depletion. Note that one must use 1D
cuts of the momentum density with small transverse integration to avoid the momentum
tails being distorted by the integration effect. The momentum density cuts in Figure
3.11 are normalized by their value at k = 0 so that they can directly be compared with
the percentage 1 − fcoh. This analysis shows that the fitted values of 1 − fcoh are rather
consistent with the extrapolated percentage of depleted atoms in SΩ. This agreement is
valid over a range of interactions for which both 1 − fcoh and the extrapolated depletion
level have varied by one order of magnitude.
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Figure 3.11: Comparison between 1 − fcoh and 1D cuts of the momentum densi-
ties. The measured depleted fraction 1 − fcoh inside the volume SΩ (vertical shaded area)
is compared with an extrapolation of the depletion level at k = 0. The latter is obtained
by fitting the tails of the momentum density cuts with a Lorentzian function, which is an
arbitrary choice that matches the data better than a Gaussian one. Within the fit uncer-
tainty (blue/black shaded areas), the agreement between 1 − fcoh and the extrapolated
depletion level at k = 0 is rather good, for both the weakly-interacting (U/J = 5) and the
strongly-interacting (U/J = 20) regimes.

A more robust certification for the fitted coherent fraction fcoh consists in linking it
with the condensed fraction fc. The latter is measured from a separate and independent
procedure described in Appendix A. The relationship between fcoh and fc is not trivial,
and particularly not a linear one, since the condensed fraction concerns the whole cloud
while the coherent fraction is limited to a small volume centered on k = 0 where the
condensed contribution (i) exceeds by far that of the depletion, and (ii) varies much more
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abruptly with the interaction strength than the total number of condensed atoms in the
whole momentum space. The relationship between fcoh and fc is modeled as follows:

• One assumes that the shape of the BEC in the first Brillouin zone is given by a 3D
isotropic Gaussian function [176]:

nBEC(k) = ρBEC(0)e−k2/2σ2
BEC (3.19)

while that of the depletion consists of a Lorentzian function along each (uncoupled)
lattice axis:

ndep(k) = ρdep(0)
∏

j=x,y,z

(
σ2

dep/4
k2

j + σ2
dep/4

)
(3.20)

• With these assumptions, the coherent fraction in the small volume SΩ centered on
k = 0 can be approximated by:

fcoh = NBEC
NBEC +Ndep

≃ ρBEC(0)
ρBEC(0) + ρdep(0) (3.21)

On the other hand, the condensed fraction is given by:

fc = N tot
BEC

N tot
BEC +N tot

dep
≃

∫
1BZ

dk nBEC(k)∫
1BZ

dk [nBEC(k) + ndep(k)]
(3.22)

where 1BZ means that the integration is performed over the first Brillouin zone.
However, it can be inferred from Figure 3.11 that σBEC is much smaller than the
momentum extent of the first Brillouin zone since the BEC density decreases by at
least four orders of magnitude between k = 0 and k = ±0.5 kd.. Therefore, the
integration over the first Brillouin zone in the BEC case can be replaced by one
over ±∞ without introducing any significant loss of accuracy. Consequently, the
condensed fraction can be conveniently expressed as a function of the maximum
densities ρBEC(0) and ρdep(0):

fc ≃ ρBEC(0)Vc

ρBEC(0)Vc + ρdep(0)Vd
(3.23)

with:
Vc ≃

∫ ∞

−∞
nBEC(k)/ρBEC(0) =

(√
2πσBEC

)3
(3.24)

Vd =
∫

1BZ
ndep(k)/ρdep(0) =

(
σdep arctan

[
kd

σdep

])3

(3.25)

the entire volumes of the BEC and the depletion normalized by their respective
densities at k = 0.

• Finally, it follows from Equations 3.21 and 3.23 that fcoh and fc are linked via the
relationship:

fcoh ≃ fc

fc + (1 − fc)Vc/Vd
(3.26)

which only depends on the ratio Vc/Vd, obtained by fitting the momentum densities
to extract σBEC and σdep. To estimate fcoh from the measured values of fc, this ratio
is fixed in Equation 3.26 to its average value between all the datasets Vc/Vd ≃ 0.3(1).
The 33% error corresponds to the standard deviation of the list of Vc/Vd values.
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Figure 3.12: Coherent fraction versus condensed fraction. The values of fcoh ex-
tracted from our fitting procedure of the deviations to g(n) = 1 are plotted in function
of the condensed fractions fc measured for each data set by a separate procedure (see
Appendix A). For comparison, the non-linear prediction of Equation 3.26 is represented
by the dotted line and its uncertainty by the shaded area. The inset shows a zoom of the
highly-condensed part. The satisfying agreement between experimental and theoretical
points confirms the validity of our model with fcoh as the only adjustable parameter.

The measured values of fcoh and fc are reported in Figure 3.12 for all the data sets
between U/J = 2 and U/J = 20, along with the quantitative prediction of Equation 3.26.
Despite its simplicity, Equation 3.26 correctly captures the non-linear relationship between
fcoh and fc without any adjustable parameter, and for a wide range of condensed fractions.
This separate measurement further validates the model introduced in Section 3.3.2. As
illustrated in both Figures 3.9 and 3.12, this model works even in the strongly-interacting
regime where U/J is large and fc ≪ 1. This observation is rather surprising considering the
key assumption that the BEC and its depletion must be uncorrelated. Understanding this
interesting feature would definitely demand a more refined theoretical approach than the
one presented here. By attributing the observed deviations from g(n)(0) = 1 to the total
depletion (quantum and thermal) within the volume probed, our experiment confirms the
coherent nature of a BEC up to the sixth order of correlations. A similar conclusion was
reached by the Australian team in 2011 up to the third order [1]. However, the effect of the
depletion on the system’s many-body coherence (visible already for n = 2 in Figure 3.8)
was not observed at the time. The authors of [1] probably missed it because they probed
the statistics in momentum volumes VΩ larger than the one set by the correlation length
associated with the thermal statistics. This choice may have resulted from their smaller
detection efficiency η ∼ 0.1, preventing them from reaching sufficient statistics in smaller
volumes. As already mentioned, too large volumes VΩ induce a convolution between
uncorrelated atoms that suppresses the amplitude of the correlation functions. This effect
is illustrated by the normalized amplitudes g(2)(0) = 1.022(2) and g(3)(0) = 1.061(6)
reported by Hodgman et al. in the case of a thermal cloud [1], which are significantly
smaller than the predictions g(2)(0) = 2 and g(3)(0) = 6. This shows that, despite its
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formidable ability to characterize quantum states, many-body coherence is a complex
measurement that requires reaching sufficient statistics in tiny volumes.

3.4 Conclusion

This chapter has presented the measurements of the Full Counting Statistics and high-
order moment of the occupation number, up to n = 6, in Bose superfluids and Mott
insulators. Probed in the far-field regime of the expansion, these quantities identify quan-
tum states from their many-body coherence. Mott insulators and BECs were found to
exhibit, respectively, the probability distribution of a thermal and coherent state, with a
thermal FCS in the former case and a Poisson FCS in the latter.

The amplitudes of the high-order correlation functions, derived from the factorial mo-
ments of the occupation number, corroborated these results. For Mott insulator, finding
fully-contrasted correlations g(n)(0) = n! up to the sixth order represents a substantial
state-of-the-art improvement compared to previous second-order [175] and third-order
[174] correlations measured with significantly smaller amplitudes g(n)(0) < n!. Such an
improvement is the consequence of the higher detection efficiency used in this work, al-
lowing us to reach high statistics in volumes similar to or smaller than the one set by the
system’s correlation length.

This capability revealed the effect of the total depletion on the BEC many-body coher-
ence. The resulting deviations from g(n)(0) = 1 were successfully captured by a heuristic
model introduced to account for the uncorrelated contribution of non-condensed atoms
inside the probed volume, that we verified experimentally from studying the coherent
fraction at stronger interactions. According to Glauber’s definition, we thus conclude that
a BEC exhibits a perfect coherence up to n = 6, again extending the state-of-the-art [1].
Furthermore, the fact that our simple model work for strongly-interacting gases beyond
the Bogoliubov regime (fc ≪ 1) was surprising, and this finding calls for further theoretical
confirmation.

Overall, we certified quantitatively that a pure-state description correctly describes
two iconic states of the Bose-Hubbard phase diagram. Our experimental procedure for
measuring the many-body coherence holds promise for studying phase transitions, where
fluctuations increase [177] and coherence properties change drastically. Therefore, a nat-
ural prospect for us is to extend this technique to investigate the quantum critical region
of the low-entropy Mott transition, where the system gets strongly correlated and may
exhibit non-trivial (non-Gaussian) correlations at high orders n ≥ 3.
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Chapter

Motivated by the discovery of superfluidity in liquid Helium in the late 30s [194, 195],
N. Bogoliubov proposed in 1947 [33] a theoretical explanation for the emergence of this
phenomenon in ensembles of weakly-interacting bosons. One of the main results of his
work is the prediction of the excitation spectrum of the system, whose linear dependency
at small momenta implies the existence of a finite critical velocity (according to Landau’s
criterion [196]) below which the system is superfluid. This feature has been verified in
many experimental platforms [197–200], confirming the universal scope of this theory for
the description of quantum fluids.

Another prediction of this theory is the existence of a non-condensed fraction in the
many-body ground state of the system (at T = 0), the so-called quantum depletion. The
latter represents the fraction of atoms promulgated outside the condensate mode (k = 0)
by the interactions, whose momentum range extends much further than the condensate
[201, 202]. Following the work of Bogoliubov, Lee, Huang, and Yang (LHY) derived in 1957
[203] several properties of the quantum depletion. In particular, they made explicit the
quantum depletion-induced energy correction, the linear scaling of the quantum depletion
with the interaction strength, and the presence of atom pairs at opposite momenta in
the quantum depletion. Measurements of the LHY energy and of the quantum depleted
fraction have been reported by other teams [2, 204, 205], confirming the macroscopic
predictions of the LHY paper. However, the observation of k/-k pairs had never been
done until our team made this measurement last year [32], thanks to our ability to detect
individual atoms in momentum space.

This chapter is divided into five sections. Section one recalls the main steps of the
Bogoliubov theory, particularly how the pairs of atoms at opposite momenta emerge from
the effect of (weak) interactions. Sections two and three summarize our experimental
work to observe correlations at opposite momenta in the depletion of weakly-interacting
Bose gases, and how we ensured that these correlations originate from the Bogoliubov
pairs. In the second part of the chapter, we present our undergoing work on investigating
this physics in stronger interaction regimes, beyond the validity range of the Bogoliubov
theory. Section four presents our recent results on the evolution of the pairing signal with
interactions, which is compared to the work of [2]. Finally section five summarizes our
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efforts to search for momentum correlations involving three particles that would signal the
presence of beyond-Bogoliubov interaction processes.

4.1 The Bogoliubov theory

This section recalls the main steps of Bogoliubov’s perturbative approach [33] to describe
weakly-interacting Bose gases with two-body contact interactions. Those consist in de-
scribing the collision between two atoms at positions r and r′ by the two-body contact
potential V = gδ(r − r′), with g = 4πℏ2as/m the coupling constant and as the scattering
length of the gas [206].

4.1.1 The many-body ground state

In the formalism of second quantization, the Hamiltonian of a homogeneous Bose gas
contained in a box of volume L3 writes:

Ĥ =
∫ ( ℏ2

2m∇Ψ̂†(r)∇Ψ̂(r)
)
dr + g

2

∫
Ψ̂†(r)Ψ̂†(r′)δ(r − r′)Ψ̂(r)Ψ̂(r′)dr′dr (4.1)

where the field operator Ψ̂, Ψ̂† can be decomposed into the plane wave basis:

Ψ̂(r) = 1
L3/2

∑
k

âke
ik.r (4.2)

Ψ̂†(r) = 1
L3/2

∑
k

â†
ke

−ik.r (4.3)

Here the operator âk (resp. â†
k) annihilates (resp. creates) a particle at momentum k.

The momentum-space decomposition allows to rewrite the Hamiltonian in the plane wave
basis:

Ĥ =
∑
k

ℏ2k2

2m â†
kâk + g

2L3

∑
k′,k′′,q

â†
k′+qâ

†
k′′−qâk′′ âk′ (4.4)

At zero-temperature, the ideal Bose gas (g = 0) is Bose-condensed with all the bosons
in the single-particle ground state, called a Bose-Einstein condensate (BEC). The BEC
corresponds to the k = 0 mode of the momentum space. Assuming interactions are weak,
the Hamiltonian 4.4 can be simplified considering that a majority of the N atoms remains
in the single-particle ground state. Then, N0 = ⟨N̂0⟩ = ⟨â†

0â0⟩ ∼ N and the operators â0,
â†
0 can be replaced by

√
N0, which consists in treating the condensate mode as a classical

field. In the development of the interacting part of Equation 4.4, the Bogoliubov approach
keeps all the terms which are at least quadratic in â0 and â†

0. The result is a simplified
Hamiltonian:

Ĥ ′ = gn0N0
2 +

∑
k ̸=0

(
ℏ2k2

2m + 2gn0

)
â†
kâk + gn0

2
∑
k ̸=0

(
â†
kâ

†
−k + âkâ−k

)
(4.5)

with n0 = N0/L
3. The first term consists of the interaction energy between all condensed

atoms. The second term contains the kinetic energy of the non-condensed atoms and
the Hartree and Fock terms (hidden in the factor two) of the interaction between the
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condensed and non-condensed atoms [207]. Finally, the last term correlates two atoms at
momenta k and -k that can either enter or exit the condensate mode k = 0 as a pair (see
Figure 4.1).

Figure 4.1: Scheme of the pair creation and annihilation within the Bogoliubov
theory. Left: two atoms in the condensate mode k = 0 interact via a two-body contact
interaction, producing a pair of atoms at opposite momenta to conserve the impulsion.
Right: the reversed process where a pair is annihilated back into the condensate mode
k = 0.

This pairing mechanism, referred to as the Bogoliubov or k/-k pairing in the following,
is a central feature of Bogoliubov’s theory. In particular, the system being at equilibrium is
a fundamental distinction from other pairing mechanisms occurring in out-of-equilibrium
configurations. Examples of the latter include the parametric downconversion in quan-
tum optics [208], dissociation of diatomic molecules in atomic physics [209], and elastic
collisions in high-energy physics [210] or with Bose-Einstein condensates [88]. This dis-
tinction can be illustrated by considering two atoms initially at rest in the BEC. After
the collision process described by the last term in the Hamiltonian 4.5, these two atoms
acquire the momenta k and -k. Because k can be arbitrarily large, the gain in kinetic
energy 2(ℏ2k2/2m) may exceed the available interaction energy, inducing an apparent vi-
olation of energy conservation. Of course, this is not what is happening here. The oddity
comes from the fact that it is conceptually wrong to isolate two atoms from the BEC
because of the quantum fluctuations present even without interactions, and quantified by
the Heisenberg inequality. As a matter of fact, the existence of the quantum depletion in
Bose Superfluids can be derived alternatively to Bogoliubov’s approach by a generalization
of the Heisenberg uncertainty principle to the case of non-Hermitian operators [211]. In
the trap, the atoms in the condensate mode k ≃ 0 and those of the k/-k pairs all belong
to the same many-body ground state, whose wavefunction is consequently expressed as a
coherent superposition of both contributions [212]:

|ΨB⟩ ∝ exp

√N0â
†
0 +

∑
k ̸=0

(vk/uk)â†
−kâ

†
k

 |0⟩ (4.6)

Note that Equation 4.6 is of the same form as the many-body ground state of the Bardeen-
Cooper-Schrieffer theory of superconductivity [213], which contains the recently observed
(fermionic) Cooper pairs [185]. The coefficients uk and vk are introduced via the Bogoli-
ubov transformation, which we now recall.
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4.1.2 Bogoliubov transformation and excitation spectrum

The simplified Hamiltonian H ′ can be diagonalized using the Bogoliubov transformation
[33] that introduces the quasi-particle creation (resp. annihilation) operators b̂k (resp.
b̂†
−k):

b̂k = ukâk + v∗
−kâ

†
−k (4.7)

b̂†
k = u∗

kâ
†
k + v−kâ−k (4.8)

The latter follow the bosonic commutation rule [b̂k, b̂†
k′ ] = δk,k′ , which implies that the

complex numbers uk and vk verify the relation |uk|2 −|v−k|2 = 1. For these quasi-particle
operators to form a basis, the coefficients of the terms b̂†

kb̂
†
−k and b̂kb̂−k must be zero.

This additional condition allows to write uk and v−k as:

uk =
√

ℏ2k2/2m+ gn0
2ϵk

+ 1
2 (4.9)

v−k = −
√

ℏ2k2/2m+ gn0
2ϵk

− 1
2 (4.10)

where ϵk is the Bogoliubov dispersion relation (see Figure 4.2):

ϵk =
√

ℏ2k2

2m

(ℏ2k2

2m + 2gn0

)
(4.11)

The latter contains a linear (phononic) part at low momentum which is the origin of
superfluid properties [196]. In particular, it defines the speed of sound c =

√
gn0/m below

which an impurity can propagate through the gas without scattering. In the opposite
large momenta limit, this dispersion relation is quadratic and the quasi-particles are then
identical to the real particles (uk → 1 and vk → 0).

In the basis of the quasi-particle operators, the Bogoliubov Hamiltonian is diagonal
and writes:

ĤBog = ELHY +
∑
k

ϵkb̂
†
kb̂k (4.12)

where ELHY contains the Lee Huang Yang energy correction [203] due to the presence
of k/-k pairs in the many-body ground state. The total energy of the system is simply
obtained by adding the contribution of the non-interacting quasi-particles to the LHY
energy. These excitations are ideal bosons and are populated by the temperature following
the Bose distribution:

⟨b̂†
kb̂k⟩ = 1

eϵk/kBT − 1
(4.13)

Therefore, their statistics is thermal chaotic, in the same way than photons emitted by an
incoherent thermal source.

4.1.3 Depleted atoms at finite temperature

Working at finite temperature, the depletion of the condensate has two contributions:

⟨â†
kâk⟩ = (|uk|2 + |vk|2)⟨b̂†

kb̂k⟩ + |vk|2 (4.14)
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Figure 4.2: Excitation spectrum of a trapped Bose-Einstein condensate, from
[198]. The Bogoliubov prediction (solid line) without free parameters agrees remarkably
well with the experimental points. In particular, both the linear phononic regime below
ξ−1 (in inset) and the free particle regime above ξ−1 are clearly visible.

The first one corresponds to the quasi-particles promoted out of the condensed mode by the
temperature (thermal depletion) and the second one corresponds to the Bogoliubov pairs
present at T = 0. Note that the thermal depletion mostly corresponds to single-particle
excitations, except at very small momenta kξ ≪ 1 for which a quasi-particle has a strong
phononic character with |uk| ∼ |vk|. One requirement to detect the Bogoliubov pairs is
to work at low temperature for the contribution of the thermally depleted (incoherent)
atoms to be reduced. This situation corresponds to reaching the low-temperature regime
kBT/µ ≪ 1. In the optical dipole trap, this ratio is of the order of unity kBT/µ ≃ 0.75
[214] due to the limitation of the evaporative cooling. To decrease the contribution of
the thermal depletion, we rather increase the interactions, and consequently the term gn0
in equation 4.10. As 4He∗ atoms do not have reachable Feshbach resonance [82] to tune
the scattering length and increase the coupling constant g, a 3D optical lattice is used
instead. The following section briefly presents the modifications induced by the presence
of a lattice, which is assumed not to cause any external trapping confinement for simplicity.

4.1.4 Bogoliubov prediction in the presence of an optical lattice

The Bogoliubov treatment of interactions in the Bose-Hubbard model has been derived, for
instance, in [92, 113], and we recall here the main results. The approach is similar to the
one of the homogeneous system: starting from the Bose-Hubbard Hamiltonian expanded
in the quasi-momentum basis âq, â†

q, the high-order terms are grouped into an effective
Hamiltonian which is then diagonalized by the use of a Bogoliubov transformation. One
ends up with a Hamiltonian of the same form than the one of equation 4.12:

Ĥeff
BB = H0 +

∑
k

ϵ(q)b̂†
q b̂q (4.15)
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H0 is the ground state energy and the quasi-particle operators b̂q, b̂†
q are similar to those

of equations 4.7 and 4.8, except that the coefficients vq and uq now writes:

|vq|2 = |uq|2 − 1 = ℏ2q2/2m∗ + Un0
2ϵk

− 1
2 (4.16)

Finally, the dispersion relation ϵ(q) in the presence of an optical lattice becomes:

ϵ(q) =
√

ℏ2q2

2m∗

(ℏ2q2

2m∗ + 2Un0

)
(4.17)

The effect of the lattice compared to the homogeneous case is twofold:

• the dispersion relation in the ideal case U → 0 now involves the effective mass m∗

rather than m [215]. It is therefore not quadratic with q but instead has a sinusoidal
shape whose zeros (resp. maxima) are located at the centers (resp. edges) of the
Brillouin zones. In the limit of small quasi-momenta, the dispersion relation becomes
ϵ(q) ≃ ℏq

√
Un0/m∗. Similarly to the homogeneous case, it is linear in this limit

(where m∗ ≃ m) and the corresponding speed of sound writes c =
√
Un0/m∗.

• as illustrated by the formula for the speed of sound, the interaction constant g is
replaced by the on-site interaction energy U = g

∫ |w0,0(r)|4dr that takes into ac-
count the shape of the Wannier functions on the lattice sites. In the limit of a
vanishing lattice potential, U → g and one retrieves the interaction term of the ho-
mogeneous case. On the contrary, the higher the lattice potential, the more localized
the Wannier functions and the larger the on-site interactions. Therefore, confining
the atoms in the lattice sites allows to reach stronger interaction regimes than with
the homogeneous system. In particular, it allows us to reach a ratio kBT/µ ≃ 0.3 at
s = 7.75Er which is more favorable than the one of the optical dipole trap.

We should comment here that these results are valid only for homogeneous lattice gases.
In our experiment, the optical lattice induces an overall weak harmonic confinement due
to the Gaussian shapes of the lattice beams. This external trapping means that the con-
densate density n0 is not homogeneous anymore which greatly complicates the resolution
of the problem. Actually, an extension of the Bogoliubov theory to the case of 3D lattice
bosons in a trap (and at finite temperature) does not exist to our knowledge. It is therefore
interesting to provide some first experimental signals for this kind of system.

4.2 Numerical procedure to detect k/-k pairs

This section presents the numerical procedure used to reveal the Bogoliubov pairs in the
depletion of weakly-interacting Bose gases released from an optical lattice. The presence of
these pairs in the distributions is equivalent to the presence of correlations at opposite mo-
menta between the atoms. In analogy with Quantum Optics [180, 216], these correlations
are revealed via a two-body correlator, expressed in second quantization as:

G(k,k′) = ⟨â†
kâ

†
k′ âkâk′⟩ (4.18)

We recall that the normal ordering of the operators in G(k,k′) results from the destruction
of a particle upon its detection, which is the case for both the photons in Quantum Optics
and the 4He∗ atoms in our experiment. Similarly to Chapter 3, the pairing signal will
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actually be quantified by a normalized version g(2)(k,k′) of the two-body correlator 4.19.
As explained below, this normalization allows us to identify Bogoliubov’s pairs among all
possible doublets of atoms within each distribution.

4.2.1 The integration volume Ωk

When loaded inside a shallow optical lattice, the cloud is in the superfluid phase of the
Bose-Hubbard phase diagram. This means that the BEC keeps its coherence and is there-
fore diffracted by the periodic structure of the optical lattice. In the far-field regime of
expansion, condensed atoms are located in the different diffraction peaks whose momentum
volume corresponds to ∼ (1/LBEC)3 [176], with LBEC the in-trap spatial size of the BEC.
On the contrary, the typical momentum extent of the quantum depletion is given by the
inverse of the healing length 1/ξ ≫ 1/LBEC , and the depleted atoms are delocalized over a
much larger momentum space than the BEC. This feature is also true for thermal atoms at
the temperature of our experiment [93]. Such a distinction of momentum scales is helpful
to detect the k/-k pairs. Indeed, one would like to exclude the condensed atoms from the
computation as they would hide the signal of interest. This is done by post-selecting only
the atoms falling in between the BEC diffraction peaks. Those are kd-periodically spaced
features whose total momentum extent does not exceed 2 × ∆k = 2 × 0.15 kd. Therefore,
the post-selected volume Ωk consists in a cube of side kmax ≤ 0.85 kd, with a smaller cube

Figure 4.3: Scheme of the integration volume Ωk. The latter is represented as a
green shaded area on top of the momentum distribution of lattice bosons detected after
time-of-flight. It has a cubic shape whose side can be chosen at will and a cubic hole at
the center to exclude the condensed atoms of the zeroth order diffraction peak. The lines
between the diffraction peaks are added to represent the orientation of the lattice beams,
symbolized by the vectors kx, ky and kz.
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of side kmin ≥ 0.15 kd removed at its center (see Figure 4.3). These dimensions ensure that
Ωk contains exclusively depleted atoms, among which we look for k/-k pairs.

4.2.2 Anomalous and normal correlations

Because ĤBog is diagonal in the quasi-particle basis, all of its eigenstates have Gaussian
statistics [155]. As the Bogoliubov transformation is linear, the Gaussian nature of the
state is also present in the particle basis where Wick’s theorem can be used to decompose
G(2)(k,k′) into [217] :

G(2)(k,k′) = ⟨â†
kâ

†
k′⟩⟨âkâk′⟩ + ⟨â†

kâk⟩⟨â†
k′ âk′⟩ + ⟨â†

kâk′⟩⟨â†
k′ âk⟩

= |⟨â†
kâ

†
k′⟩|2 + ρ(k)ρ(k′) + |⟨â†

kâk′⟩|2 (4.19)

with ρ(k) = ⟨â†
kâk⟩ the momentum density. The second part of this equation ρ(k)ρ(k′) +

|⟨â†
kâk′⟩|2 is called the normal correlations, as the operators are normally ordered (and

conserve particle number). We will come back to it later in this chapter. For the moment,
let us focus on the first term of this equation that is referred to as the anomalous part
of the two-body correlations |⟨â†

kâ
†
k′⟩|2. This term is non-zero only in the presence of

correlations between the modes k and -k. Naturally, Bogoliubov pairs contribute to this
signal. However, the atoms of the thermal depletion can also contribute to these anomalous
correlations. To illustrate that, one can use the Bogoliubov transformation to write the
anomalous part in terms of quasi-particle operators [212, 217]:

|⟨â†
kâ

†
−k⟩|2 = |⟨

(
ukb

†
k + v−kb−k

) (
u−kb

†
−k + vkbk

)
⟩|2

= |ukvk|2
(
1 + 2 ⟨b̂†

kb̂k⟩
)2

(4.20)

The presence of ⟨b̂†
kb̂k⟩ implies that quasi-particles can indeed contribute to the anomalous

correlations. Looking at equation 4.7, this situation occurs when |uk| ∼ |vk|, namely when
Bogoliubov quasi-particles have a strong phononic character. This condition is fulfilled at
low momenta such that kξ ≪ 1. In order to unambiguously attribute k/-k correlations
to atoms from the quantum depletion, we must ensure that the integration volume Ωk

excludes momenta verifying this condition. Fortunately, this is easier to do when atoms
expand from a 3D optical lattice compared to the optical dipole trap. Indeed, the higher
chemical potential in the optical lattice makes the healing length smaller, and thus the
condition kξ ≪ 1 becomes less stringent on k. Actually, even the smallest lower bound for
Ωk, kmin = 0.15 kd, already corresponds to kξ ≃ 0.85. It is therefore safe to assume that
the thermally depleted atoms in Ωk do not contribute to the anomalous correlation signal
[217].

4.2.3 The integrated and normalized two-body correlator

The two-body correlator of equation 4.19 is not an appropriate quantity to deal with.
Firstly because the number of individual modes k, k′ of volume (LBEC)−3 inside the
integration volume Ωk is of the order of 105. Therefore, reaching a satisfying signal-to-
noise ratio for the two-body correlations measurement between all these modes would
require a huge amount of experimental realizations. Secondly, G(2)(k,k′) is a 6D function,
and so plotting it in an intelligible way is not straightforward either. To circumvent these
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issues, we average the correlations over Ωk. We first compute the joint probability for any
modes k and k′ = δk − k, before summing the contributions of all the modes k inside
Ωk to increase the signal-to-noise ratio. The resulting two-body correlation function only
depends on the parameter δk:

G
(2)
A (δk) =

∫
Ωk

G(2)(k, δk − k)dk =
∫

Ωk

⟨â†
kâ

†
δk−kâkâδk−k⟩dk (4.21)

With this definition, an enhanced probability at δk = 0 signals the presence of k/-k
pairs. Note that this definition contains both the anomalous term and the density squared
term of Equation 4.19. Therefore, Equation 4.21 also returns the auto-correlation function
of the momentum density

∫
Ωk
ρ(k)ρ(δk − k)⟩dk. To ease the visualization of the k/-k

correlation signal on top of this uncorrelated background, we compute the normalized
integrated two-body correlator:

g
(2)
A (δk) =

∫
Ωk

⟨â†
kâ

†
δk−kâkâδk−k⟩dk∫

Ωk
ρ(k)ρ(δk− k)⟩dk (4.22)

where the normalization ensures that correlated atom pairs are detected if the correlation
function g(2)

A (δk) exceeds one. Therefore, we look at the anomalous amplitude g(2)
A (0) − 1

which is non-zero in the presence of k/-k pairs. The algorithm used to compute the
normalized two-body correlation function g(2)

A (δk) is presented in the following paragraph.

4.2.4 Brief description of the algorithm

The anomalous correlations g(2)
A (δk) cannot be calculated from the factorial moments of

the occupation number as it was done in Chapter 3, because this method is limited to the
measurement of local correlations at close-by momenta k′ = k. Prior to its implemen-
tation, our team studied local (normal) two-body correlations across the Mott transition
[146, 174] using a different algorithm. For the purpose of the work reported here, the
former Ph.D. student Antoine Ténart adapted this older algorithm to detect two-body
correlations at opposite momenta k′ = −k [74]. In practice, g(2)

A is a 3D histogram ob-
tained after dividing the 3D histograms of the numerator and denominator of equation
4.22. The numerator computation is schematically described in Figure 4.4. For a given
distribution, the momenta of all possible pairs of atoms are summed. The 3D histogram
of this list of (sums of) momenta is then computed with an adjustable size of the voxels
in the momentum space. If Bogoliubov pairs are contained within an atomic distribution,
they "add a click" in the central voxel of this 3D histogram as both atoms i and j of the
pair verify ki

x + kj
x = 0, ki

y + kj
y = 0, and ki

z + kj
z = 0.

To get the denominator of equation 4.22, we repeat this procedure with an uncorrelated
dataset with the same momentum density. Such dataset can be obtained in two different
ways. The first one consists in merging all the atoms of the different atomic distributions
into a single file on which the numerator procedure described above is repeated. In that
way, the k/-k correlations are washed out and one essentially retrieves the auto-correlation
of the momentum density. If Ni is the number of atoms detected in each file i, then the
number of counts in the denominator with this method is (∑iNi) (∑iNi − 1). On the op-
posite, there are only ∑iNi(Ni − 1) counts in the histogram of the numerator. Therefore,
the 3D histogram obtained after dividing the numerator by the denominator has to be
normalized by the factor (∑iNi) (∑iNi − 1) /∑iNi(Ni − 1) for the voxels in g

(2)
A to be
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equal to 1 in the absence of k/-k pairs. This method gives the auto-correlation of the mo-
mentum density with a good signal-to-noise ratio and is used to quantitatively characterize
the correlation signals, but it is quite time-consuming (because of the denominator). An
alternative approach consists in repeating the numerator procedure on an artificial set of
experimental realizations obtained after shuffling the atoms between the different atomic
distributions (similarly to the randomization procedure in Chapter 3). Then again, the
resulting atomic distributions are essentially uncorrelated since the probability for both
atoms of a pair to end up in the same file is small. By keeping the number of distributions
and the number of atoms by distribution identical during the mixing, the denominator has
exactly the same number of counts than the numerator and then g(2)

A does not need to be
rescaled. This method is useful to get a first rapid answer on whether k/-k correlations
are present.

Figure 4.4: Pseudo-code version of the two-body correlations algorithm. The
procedure is identical between the numerator and the denominator of Equation 4.22 except
that for the latter, this algorithm is carried out on a distribution for which the anomalous
signal has been suppressed (see text).

4.2.5 Transverse integration and absolute amplitude of the correlation signal

A natural way to visualize the information contained in g
(2)
A is to plot 1D cuts of the

3D histogram along the directions of the lattice axis (kx, 0, 0), (0, ky, 0), and (0, 0, kz).
However, the signal-to-noise ratio is not good enough when plotting such a single line of
voxels, so that we usually perform some transverse integration of adjustable width δk⊥
to average the neighboring lines. Figure 4.5 illustrates a transverse integration of ±δk⊥
along the axis ky and kz. This procedure affects the amplitude of the measured correlation
signal. To illustrate this effect, let us assume that the 3D histogram g

(2)
A contains on top

of the uncorrelated background level a Bell-shaped correlation peak centered at k = 0
with an amplitude η0:

g
(2)
A (δk) = 1 + η0

∏
i=x,y,z

exp
(

−δk2
i

2σ2
i

)
(4.23)

σi are the RMS width of this correlation peak along the three lattice direction. Note that it
is assumed here that these axis are separable, a property that was checked experimentally.
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Figure 4.5: 3D visualization of the transverse integration. The 7 × 7 × 7 matrix
represents the 3D histogram g

(2)
A (δk) which has been computed with 3D voxels of volume

(δk||)3. The red parallelogram illustrates a transverse integration of ±δk⊥ along the axis
δky and δkz, meaning that all the voxel lines along δkx inside this red parallelogram are
averaged into a single one.

Then, a double transverse integration of ±δk⊥ along the ky and kz axis leads to:

g
(2)
A (δkx) = 1

(2δk⊥)2

∫∫ δk⊥

−δk⊥

1 + η0
∏

i=x,y,z

exp
(

−δk2
i

2σ2
i

) dδky dδkz

= 1 + η0
2πσyσz

(2δk⊥)2 erf
(
δk⊥√
2σy

)
erf
(
δk⊥√
2σz

)
exp

(
−δk2

x

2σ2
x

)
(4.24)

with the error function defined as:

erf(x) = 2√
π

∫ x

0
exp

(
−t2

)
dt (4.25)

relthe assumption that the correlation peak is isotropic σx = σy = σz ≡ σ, the amplitude
of the 1D cut of the correlation peak for a given transverse integration, η(δk⊥), writes as:

η(δk⊥) = η0
2πσ2

(2δk⊥)2 erf
(
δk⊥√

2σ

)2
(4.26)

Correcting the transverse integration effect is done in the same spirit than for the previous
chapter. The measurement of η(δk⊥) is repeated for different transverse integrations, and
η0 is then obtained by fitting the resulting amplitudes with the scaling of Equation 4.26 to
extrapolate the amplitude at zero transverse integration. Having described the numerical
procedure to reveal the Bogoliubov pairs from the measured momentum distributions, we
now move to the experimental signals and their analysis.
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Figure 4.6: Anomalous correlations revealing pairs of atoms at opposite mo-
menta. 1D cuts through g(2)

A (δk) along the three lattice axis. The transverse integration
is δk⊥ = 3.0 × 10−2kd and the longitudinal voxel size is δk|| = 1.2 × 10−2kd. The data are
fitted by Gaussian functions (solid lines) and the error bars are obtained from the inverse
square root of the number of counts in the voxels.

4.3 Observation of k/-k pairs

This section presents the measurements and analysis reported in [32] to validate the ob-
servation of the Bogoliubov pairs.

4.3.1 A first signal

To perform the measurement of the Bogoliubov pairs, we calibrate the experiment to
prepare BECs of NBEC = 5 × 103 atoms that are loaded in a shallow 3D optical lattice
of amplitude s = 7.75Er (U/J = 5). The lattice is then abruptly switched off, and the
gas is let to expand during a 296 ms time-of-flight before reaching our detector. As
explained in the first chapter, the expansion from the lattice ensures that the effects of
interactions are suppressed during the TOF so that the in-trap many-body wavefunction
is mapped onto the momentum basis [90, 146]. The small lattice amplitude allows to keep
a high condensed fraction, so that the Bogoliubov approximation should reasonably be
valid. The measured condensed fraction for this dataset is about 84% (see Appendix A
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for the method), and the latter contains approximately 4000 experimental distributions.
Not all of these distributions are retained for calculating the correlations because of shot-
to-shot fluctuations in the atom number. In practice, we keep the distributions whose
atom number belongs to [3500; 6500], namely a 30% interval around NBEC = 5 × 103. At
worse, this constraint corresponds to keeping about half of the dataset. The correlation
algorithm is computed using a momentum volume Ωk corresponding to kmin = 0.15 kd and
kmax = 0.85 kd, and voxels of dimensions δk∥ = 1.2×10−2 kd. Figure 4.6 presents the result
of this computation. A correlation peak is clearly visible on top of the noise along each 1D
cut of g(2)

A . Extending the range δk of the computations yields additional correlation peaks
at momenta k = ±kd along each lattice axis, as expected from Bloch’s theorem (see 4.7).
Such a correlation signal is exactly what we hoped to obtain in searching for signatures of
the Bogoliubov pairs. The remaining of Section 4.3 summarizes the list analysis carried
out to attribute this pairing signal to Bogoliubov’s physics unambiguously.

Figure 4.7: Periodicity of g
(2)
A (δk). As the diffraction peaks of the momentum density,

we observe additional correlations peaks at ±kd on the 1D cut of the anomalous function.

4.3.2 Comparison with HBT-like correlations

In the following, we show how interesting it is to compare the anomalous correlations
with the normal ones, mentioned earlier in equation 4.19. The term |⟨â†

kâk′⟩|2 is non-zero
only when identical modes k′ = k are considered. In this case, the normal correlations
become twice the density squared and the normalized correlation amplitude equals two.
This enhanced probability for detecting two atoms at close by momenta is commonly
referred to as bosonic bunching, a property resulting from the interference between possible
detection paths for two indistinguishable bosons with thermal (chaotic) statistics. The first
observation of this effect dates back to the Hanbury-Brown and Twiss (HBT) experiment
[189] in 1956 (see Chapter 3). Since this first experiment, bosonic bunching has been
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observed in various systems [218, 219] and including in cold atoms experiments [26, 28, 146,
174, 175]. Having already explained the computation method for two-body correlations at
opposite momenta, the computation of HBT-like correlations is easy to understand. We
simply compute the joint probability for two modes k and k′ = δk + k to be populated,
resulting in the two-body correlation function:

G
(2)
N (δk) =

∫
Ωk

G(2)(k, δk + k)dk =
∫

Ωk

⟨â†
kâ

†
δk+kâkâδk+k⟩dk (4.27)

where, similarly to Equation 4.21, the contributions of all the modes k inside Ωk are
summed. Normalizing these correlations yields the 3D normalized and integrated normal
correlation function: 1

g
(2)
N (δk) =

∫
Ωk

⟨â†
kâ

†
δk+kâkâδk+k⟩dk∫

Ωk
ρ(k)ρ(δk+ k)⟩dk (4.28)

In practice, this is done with the same algorithm than the one described in 4.2.4 except
that the momenta of all possible pairs of atoms are subtracted rather than summed. Two
bunched atoms then "add a click" at the center of the 3D histogram as their momenta
verify ki

x − kj
x = 0, ki

y − kj
y = 0, and ki

z − kj
z = 0. Figure 4.8 shows 1D cuts of the normal

Figure 4.8: 1D cut of the normal correlation function g
(2)
N (δk). Compared to the

anomalous case, the voxel size was reduced to δk|| = 6 × 10−3kd to resolve the thinner
bunching peak, resulting in a smaller statistics per voxel and consequently larger error bars.
The transverse integration δk⊥ = 1.5×10−2 reduces the amplitude of the correlation peak
compared to the perfect bunching g(2)

N (0) = 2. Note that g(2)
N (δk) is plotted between −0.2

kd and 0.2 kd but is symmetric by construction.

1At that time, we did not have at our disposal the algorithm based on the factorial moments of the
occupation number.
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correlation function g
(2)
N (δk) computed with the same post-selected atoms than in the

previous paragraph. As for the anomalous case, a clear correlation peak is visible.

The procedure for correcting the transverse integration effect is identical between the
anomalous and normal correlation signals. It is illustrated in Figure 4.9 using the bunching
signal of Figure 4.8. For each transverse integration, three amplitudes g(2)

N (∆k⊥) − 1 are
obtained from fitting the 1D cuts of the correlation peak along each lattice axis with
a Gaussian function. The error bars correspond to the confidence interval of the fitted
amplitude. The variation of the correlation amplitude with ∆k⊥ is then adjusted with the
scaling of Equation 4.26 (solid lines), from which η0 is extrapolated. The shaded areas
in Figure 4.9 represent the uncertainty on the fitting parameters. Finally, the amplitude
g

(2)
N (0)−1 is obtained by averaging those along each lattice axis, with an error defined as the

standard deviation. Applied to the data of Figure 4.8, this procedure yields an amplitude
g

(2)
N (0) − 1 = 0.99(2) compatible with that expected for bosonic bunching. It is easy to

understand that atoms from the thermal depletion at kξ ≥ 1 would give a perfect bosonic
bunching. In the framework of Bogoliubov theory those atoms correspond to thermally
populated quasi-particles and the Bogoliubov transformation being linear, the statistics of
the real particles is thermal as well. However, it is not straightforward that atoms pairs
of the quantum depletion also contribute to the bunching effect. It actually comes from
the fact that a single mode k may contain several atoms from distinct pairs which are
not themselves correlated in the Bogoliubov approximation. Therefore, computing local
correlations inside a single mode k traces over the partners of the pairs and explains how
a chaotic statistics is retrieved from the atoms of the quantum depletion [146, 217, 220].
A similar effect is found in two-mode squeezed states when only one mode is probed [221].

Figure 4.9: Correction of the transverse integration effect. Amplitude of the normal
correlations function along each lattice axis versus the transverse integration (see text).

In connection with the previous chapter, we have checked that our algorithms for
computing both the anomalous and normal correlations led to g(2)(0) ≃ 1 when computed
with atoms of the BEC mode (k = 0). This feature is illustrated in Figure 4.10, for which
the integration volume Ωk only keeps the atoms inside a cube of side 0.04 kd centered on
k = 0. The small modulation (of the order of 1%) visible in the inset of Figure 4.10 is an
artifact of the normalization procedure coming from shot-to-shot fluctuations of the BEC
width [48]. In the following, the contrasted behaviors between the anomalous and normal
correlations is shown to provide signatures of the quantum origin of the anomalous signal.
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Figure 4.10: Normal and anomalous correlation functions in the BEC. The error
bars are smaller than the markers.

Figure 4.11: Bunching amplitude versus kBT/µ, from [146]. The measurements
are consistent with g

(2)
N (0) = 2, namely with a chaotic statistics at any temperature. The

vertical blue dashed line in both panels signals TBEC .

4.3.3 Effect of the temperature

The dependency with temperature of both correlation signals g(2)
N and g

(2)
A is expected to

be quite different. One the one hand, bosonic bunching is independent of temperature as
it is a consequence of the Bose statistics. Figure 4.11 illustrates a previous experiment of
our team in which the bunching amplitude g(2)

N (0) − 1 of lattice bosons was measured for
various temperatures across the condensation transition [146]. Starting from the lowest
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temperature, the gas is gradually heated up by holding it at the final amplitude of the 3D
lattice for an increasing duration. Such heating is attributed to imperfections of the optical
lattice, such as spontaneous emission or mechanical vibrations, and is reproducible. All
the measurements are compatible with g(2)

N (0) = 2. Below the critical temperature TBEC ,
this perfectly contrasted amplitude is attributed to a bunching of both the thermal and
quantum depletion, while above TBEC it consists in the classical HBT bunching of thermal
bosons.

Figure 4.12: Atom-atom correlations in weakly-interacting BECs at two different
temperatures. The data for the low-temperature (fc = 84%) and heated (fc = 29%)
BECs are depicted respectively in blue and red. (a) Anomalous correlations g(2)

A (δk).
The k/-k peak disappears as the temperature increases, suggesting a T = 0 effect. (b)
1D cut of the momentum density ρ(k) in semilog scale. The depletion density of the
heated BEC is around 4 times larger than that of the low-temperature BEC. According to
Equation 4.22, this increase implies a reduction of g(2)

A (δk) for the heated BEC by a factor
16, which is compatible with the one observed experimentally. The green shaded area
shows the integration volume Ωk over which the correlations are calculated. (c) Normal
correlations g(2)

N (δk) for the same datasets and integration volume. The peak amplitude
shows no significant change as the temperature increases, as expected since all depleted
particles bunch (see text). All amplitudes shown here are not corrected from the transverse
integration effect.

On the other hand, anomalous correlations reflects a zero-temperature feature orig-
inating from the interplay between quantum fluctuations and interactions in the many-
body ground state of the system [211]. As the cloud is heated up, the k/-k pairs are
overwhelmed by the increasing number of thermally depleted atoms, and the anomalous
correlation signal is expected to disappear. To test this hypothesis, we cannot use the
datasets of Figure 4.11 as they were taken with a low transfer efficiency for which no k/-k
signal could be seen even at low temperature. Therefore, we took a new dataset where
the atoms were hold during 500 ms in the optical lattice, a duration corresponding to 225
tunnelling times h/J . The higher temperature between this dataset and the previous one
is visible in the momentum density cut in Figure 4.12. The amplitude of the diffraction
peaks has decreased while the density level in the depletion has increased by roughly a
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factor four. The condensed fraction for this heated dataset is about 29% (it has to be non-
zero to keep quantum depleted atoms), and the correlation measurement is reproduced
identically for both the normal and the anomalous correlation. As expected, we obtain
that the normal correlation signal is identical between the two datasets. In contrast, the
anomalous correlation signal has totally disappeared in the heated case. The reduced
error bars for the heated dataset result from the larger number of (thermally) depleted
atoms. These contrasted behaviors strongly suggest that the anomalous correlation signal
is a T = 0 feature. To corroborate this conclusion, we took a third dataset at intermedi-
ate temperature (corresponding to a condensed fraction of 55%) for which an anomalous
correlation peak of intermediate amplitude was observed (see Figure 4.13).

Figure 4.13: Anomalous correlation function for datasets with different tem-
peratures and condensed fractions. The amplitude of the k/-k correlation signal is
progressively lost as the temperature rises and the condensed fraction diminishes.

4.3.4 Comparison of the widths and center-of-mass fluctuations

To gain further insights into the origin of the anomalous signal, we extend the comparison
with the normal correlations to the widths of the associated correlations peaks. In their
experiment, Hanbury-Brown and Twiss deduced the angular size of Sirius from the width
of the bunching peak [189]. In our case, the width of the two-body correlation function is
inversely proportional to the spatial extent of the associated component in the trap [146,
217], which can be used to confirm the quantum origin of the anomalous correlation signal.
Indeed, the in-trap spatial extent of the quantum depletion is limited by definition to that
of the BEC. As shown by the authors of [217], this property remains valid even in the
presence of an external harmonic confinement as in our experiment. Therefore, finding a
width of the anomalous peak compatible with the momentum width of the BEC would
confirm the origin of these k/-k correlations. In a similar way, we already argued that
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both the atoms from the quantum and the thermal depletion contribute to the bunching
signal. As the thermal depletion extends on a wider range than the BEC in the trap,
the width of the normal correlations is expected to be smaller than that of the BEC, and
consequently with that of the anomalous peak.

Figure 4.14: Correlations widths versus the BEC atom number NBEC . The
peak RMS widths of the normal correlations σN are represented as blue squares and
the anomalous ones σA as green circles. The green area represents the expected value
of Equation 4.31 based on our estimation of the center-of-mass shot-to-shot fluctuations
δkcom (see text).

The RMS widths of the anomalous (σA) and normal (σN ) correlations peaks are plotted
in Figure 4.14 for all the datasets with different atom numbers. The horizontal error bars
correspond to the standard deviation of the total atom number, while the vertical error
bars corresponds to the standard deviation of the mean over the three 1D cuts of the
width along the lattice axis. With this first analysis we always find that σN < σA as
we would expect from the previous picture. One would also expect σA to decrease with
the atom number. In the Thomas-Fermi regime, the scaling LBEC ∝ N

1/5
BEC translates

into a 30% diminution of the width between the datasets at NBEC = 2.5 × 103 and
NBEC = 10×103. Although a decrease of the anomalous width with NBEC is observed, the
error bars in Figure 4.14 are too large to reach such conclusion. Additionally, we find that
the measured BEC widths (not plotted) are always larger than the ones expected from the
Gutzwiller prediction. We attribute this observation to an imperfection of our experiment:
the center-of-mass fluctuations from shot to shot of the momentum distributions. To
correct this effect, each experimental distribution is manually centered on k = 0 by fitting
the zeroth order diffraction peak with a Gaussian function. However, some residual center-
of-mass fluctuations may remain after this centering procedure, explaining the larger BEC
widths observed. These fluctuations should then also be reported in the estimation of the
correlation width.



126
Chapter 4. 2-body correlations at opposite momenta: the fate of Bogoliubov pairs

at increasing interactions

If we note σBEC,0 the true momentum width of the BEC, the one measured after
averaging the signal of all the distributions is enlarged by the center-of-mass fluctuations
δkcom according to:

σBEC =
√
σ2

BEC,0 + δk2
com (4.29)

with δk2
com = ⟨|δkcom|2⟩. In a similar way, these center-of-mass fluctuations enlarge the

width of the anomalous correlation function. Because the sum of the momenta of two
displaced atoms is increased by twice the amount δkcom:

(k + δkcom) +
(
k′ + δkcom

)
= k + k′ + 2δkcom (4.30)

the width of the anomalous correlation peak becomes:

σA =
√
σ2

A,0 + 4δk2
com (4.31)

On the opposite, it is straightforward to see that δkcom does not affect the width of
the normal correlation peak as the momentum difference of two displaced atoms remains
unchanged. The amplitude of the fluctuations δkcom can be estimated from Equation
4.29. For NBEC = 5 × 103, we measured a BEC width of σBEC ≃ 2.00(4) × 10−2kd. Note
that the measurement of the BEC width requires drastically reducing the Raman transfer
efficiency to avoid saturating the detector. Otherwise, saturation would flatten the top
of the BEC peak, and the Gaussian fit would over-estimate the condensate width σBEC .
Using the Gutzwiller prediction for this atom number, σBEC,0 ≃ 1.7×10−2kd, we estimate
the center-of-mass fluctuations to be δkcom ≃ 1.05(2) × 10−2kd. These fluctuations, which
amount to 1% of the separation between the BEC diffraction peaks, are too small to
be corrected in post-analysis. We repeated this procedure for all datasets and plotted
the theoretical anomalous width of equation 4.31 in Figure 4.14 as a green shaded area.
We used for that the theoretical value σA,0 ≃ 0.94σBEC,0 of reference [217], valid for an
inhomogeneous 1D system with the same external trapping frequency as ours. We find
a good agreement between the experimental widths and the theoretical predictions when
accounting for the center-of-mass fluctuations, which is coherent with the hypothesis that
the anomalous signal comes from the atom pairs of the quantum depletion. However, we
cannot conclude that the anomalous signal is larger than the normal one when comparing
the corrected anomalous widths σA,0 to the normal ones (Figure 4.15). We conclude from
this observation that the temperature is too low for the in-trap extent of the thermal cloud
to exceed that of the BEC in a way that the correlation widths can resolve.

4.3.5 Effect of the mode population

In this paragraph we discuss the analogy between the k/-k pairs and the emblematic
signal and idler modes of the non-degenerate parametric amplifier in Quantum Optics.
Theses two modes, labeled as modes 1 and 2 in the following, are populated by correlated
pairs of photons just like our modes k and -k are populated by correlated pairs of atoms.
However, let us stress that this analogy is incomplete for at least two reasons:

• the pair of photons in the case of Quantum Optics results from a spontaneous para-
metric down conversion (SPDC) process or a four wave mixing (FWM) process in
which the interaction between one or two pump photon(s) and a non-linear medium
leads to the creation of a correlated photon pair. Contrary to the Bogoliubov pairs,
the SPDC and FWM can be described as a classical interaction process in which
both momentum and energy are conserved.
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Figure 4.15: Correlations widths versus the BEC atom number NBEC . Anomalous
(green circles) and normal (blue squares) RMS widths corrected from the center-of-mass
shot-to-shot fluctuations δkcom. Both measurements cannot be distinguished any more
within the error bars, indicating that the temperature might be too low to have a clear
distinction between the thermal and the condensed cloud in the trap.

• the two modes signal and idler are exclusively populated by pairs of photons resulting
for the SPDC/FWM process. Therefore, the number of photons in those two modes
are equal and perfectly correlated. Because we work at finite temperature, this
is not the case for the modes k and -k which can be populated by either k/-k
pairs or thermally depleted atoms. We thus expect the amplitude of the anomalous
correlations in our case to be reduced by the presence of these uncorrelated atoms.

The Hamiltonian of the non-degenerate parametric amplifier can be written as [221]:

Ĥ = ℏω1â
†
1â1 + ℏω2â

†
2â2 + iℏχ

(
â†

1â
†
2e

−2giωt − â1â2e
2iωt

)
(4.32)

where â1 (â2) annihilates a photon in the signal (idler) mode and χ is a coupling con-
stant, associated either with a χ(2) susceptibility (SPDC) or a χ(3) susceptibility (FWM).
Solving the Heisenberg equations of motion in the interaction picture leads to the coupled
equations:

â1(t) = â1(0) coshχt+ â†
2(0) sinhχt (4.33)

â2(t) = â2(0) coshχt+ â†
1(0) sinhχt (4.34)
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from which we can derive the amplitude of the normalized cross-correlations between
modes 1 and 2 (using Wick’s theorem and initial vacuum conditions):

g(2)(1, 2) = ⟨â†
1â

†
2â1â2⟩

⟨â†
1â1⟩⟨â†

2â2⟩

= ⟨â†
1â

†
2⟩⟨â1â2⟩ + ⟨â†

1â1⟩⟨â†
2â2⟩ + ⟨â†

1â2⟩⟨â†
2â1⟩

⟨â†
1â1⟩⟨â†

2â2⟩

= 1 + cosh2(χt) sinh2(χt)
sinh4(χt)

= 1 +

(
1 + sinh2(χt)

)
sinh2(χt)

sinh4(χt)

= 2 + 1
⟨n̂1(t)⟩ (4.35)

We see that the amplitude of the cross-correlation for the non-degenerate parametric
amplifier scales inversely with the average mode occupancy, a general property of two-
mode vacuum squeezed states [222]. Therefore, it would be interesting to test whether
our anomalous correlation signal follows a similar scaling. To that end, the average mode
occupancy must be varied. In our case, it corresponds to the average momentum density
ρ(k) = ⟨â†

kâk⟩ in the integration volume Ωk:

ρ̄Ωk
=
∫

Ωk

ρ(k)dk (4.36)

which can be changed easily by repeating the experiment with a different atom number
in the BEC. For this purpose, we took two additional datasets at NBEC = 2.5 × 103 and
NBEC = 10 × 103. By changing the post-selection criterion, we could also extract from
the dataset originally intended for NBEC = 2.5 × 103 a fourth dataset corresponding to
NBEC = 3.5 × 103. For the datasets at NBEC = 2.5 × 103, the integration volume Ωk was
reduced to the momenta 0.3 kd ≤ |kx,y,z| ≤ 0.7 kd to further decrease the average density
ρ̄Ωk

. The normal and anomalous correlation amplitudes (corrected from the integration
effect) for these new datasets are plotted in Figure 4.16.

While the normal amplitude remains compatible with g(2)
N (0) = 2, the anomalous am-

plitude is found to vary inversely with the average momentum density, with a scaling
compatible with a linear one. Observing such an analogous scaling to two-mode squeezed
states suggests that the anomalous signal comes from a pair creation term in the Hamil-
tonian, as predicted by Bogoliubov’s theory. It is thus another strong indication that we
are indeed measuring the Bogoliubov pairs. Note that our anomalous correlation signal
is compatible with g

(2)
A (0) = 1 when the average density goes to infinity, whereas in this

limit the cross-correlations amplitude of equation 4.35 is predicted to reach g(1, 2) = 2.
We attribute this discrepancy to be an effect of the thermal depletion in our experiment.
In the limiting case of zero temperature, for which the modes k and -k are only popu-
lated by correlated atom pairs according to Bogoliubov theory, we would expect the value
g

(2)
A (0) = 2 as for the Quantum Optics case. In the opposite limit of high temperature

where the thermal depletion overwhelm the quantum depletion, we found in the previous
paragraph g

(2)
A (0) = 1. Therefore, we can infer that for intermediate temperature, the

anomalous correlations amplitude in the limit of infinite average density is a number be-
tween 1 and 2 whose value depends on the balance between the quantum and the thermal
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depletions. As explained below, these two contributions are highly unbalanced for the
atoms inside Ωk with which anomalous correlations are computed.

Figure 4.16: Correlations amplitudes versus the inverse density 1/ρ̄Ωk. The
normal correlations amplitudes g(2)

N (0) are represented as blue squares and the anomalous
ones g(2)

A (0) as green circles. All are corrected from the transverse integration effect.
While the amplitude of the bunching is perfectly contrasted and constant, g(2)

N (0) = 2, the
amplitude of the k/-k peak increases linearly with 1/ρ̄Ωk

. Vertical error bars are mostly
hidden behind the symbols and correspond to the standard deviation of the mean over the
three lattice directions of the momentum space. Horizontal error bars correspond to one
standard deviation and increase with 1/ρ̄Ωk

as the statistics inside the voxels decreases.

The mean number of k/-k pairs per shot ⟨Nk/−k
pairs ⟩ can be estimated by subtracting the

mean number of counts between the numerator and the denominator histograms for the
voxels within a volume (δk)3 large enough to contain the entire correlation peak. Denoting
these numbers ⟨Nnum⟩ and ⟨Nden⟩, the mean number of pairs per file writes:

2⟨Nk/−k
pairs ⟩ =

(
⟨Nnum⟩ − ⟨Nden⟩ ×

∑
iNi(Ni − 1)

(∑iNi) (∑iNi − 1)

)
(4.37)

where the normalization factor ∑iNi(Ni − 1)/ (∑iNi) (∑iNi − 1) ensures that the total
number of counts in both histograms is equal (see Section 4.2.4). The factor 2 is here
because the correlation algorithm is computed on all post-selected atoms, meaning that
each possible pair of atoms is counted twice. For the dataset at NBEC = 5 × 103 we find
in average ⟨Nk/−k

pairs ⟩ = 1 per shot, while the mean atom number in Ωk for this dataset is
⟨NΩk

⟩ ≃ 50. We thus expect to be closer to the high-temperature limiting case than to
the T = 0 one, explaining the zero intercept in Figure 4.16.

We should comment here on the mean number of pairs ⟨Nk/−k
pairs ⟩ detected in the integra-

tion volume Ωk. Under the assumption that all atoms from the quantum depletion form
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k/-k pairs, and that these pairs are the only contribution to the anomalous correlations,
⟨Nk/−k

pairs ⟩ should be linked to ⟨NΩk
⟩ through the relation:

2⟨Nk/−k
pairs ⟩ = ⟨NΩk

⟩ηMCP αQ (4.38)

where αQ is the proportion of the depletion which is quantum. The additional factor
ηMCP (a first one being already hidden in ⟨NΩk

⟩) illustrates that the detection efficiency
of the MCP has to be counted twice when considering the joint detection of two atoms of
the same pair. With our experimental numbers, we obtain αQ ≃ 3.8%. The same quantity
can be estimated thanks to the T = 0 Gutzwiller approach that predicts 5% of quantum
depletion at this lattice amplitude for NBEC = 5 × 103. Having measured a condensed
fraction of ∼ 85%, the total depletion corresponds to 15% and the thermal depletion
should amount to 10% according to Gutzwiller’s prediction for the quantum depletion.
Therefore, the proportion of the total depletion that is quantum should be αQ ≃ 33%,
which is one order of magnitude larger than the estimation based on the mean number of
pairs per file. There are at least two possible reasons for such discrepancy:

• the distribution of the quantum depleted atoms |vk|2 being the largest in the limit of
small momenta k → 0, a non-negligible fraction of the k/-k pairs should be located
inside the volume of the zeroth order diffraction peak that we exclude in our analysis.
We lack a theoretical prediction to estimate the number of pairs missed that way.

• due to the choice of the integration volume Ωk, the detected k/-k pairs are mostly
located close to the edge of the first Brillouin zone where the dispersion relation in
the presence of a lattice flattens and becomes quite different from the parabolic one
of the homogeneous case. Here as well we miss of a quantitative estimate of this
effect.

To conclude on this topic, our anomalous correlation signal follows the linear scaling
with the inverse momentum density expected from the analogy with the non-degenerate
parametric amplifier. Therefore, this feature represents an additional signature of the
quantum origin of our anomalous signal, suggesting that we are indeed detecting the
Bogoliubov pairs. However, the absence of a theory designed for our system of inhomoge-
neous lattice bosons at finite temperature prevents us from a quantitative comparison of
our results. In particular, it prevents us from fully understanding the discrepancies of the
absolute amplitude of the correlation signal and of the total number of pairs detected.

4.3.6 Cauchy-Schwarz inequality and entanglement

As a final remark on the amplitude of the correlation signal, we stress that observing
an anomalous amplitude higher than a normal one represents a violation of the Cauchy-
Schwarz inequality for classically fluctuating variables. Indeed, the cross-fluctuations be-
tween two classical variables I1 and I2 is bounded by the well-know Cauchy-Scharwz
inequality:

⟨I1I2⟩ ≤
√

⟨I2
1 ⟩⟨I2

2 ⟩ (4.39)

Its counter part in quantum mechanics is expressed in terms of creation and annihilation
operators. Considering the case of two symmetric modes, such as the signal and idler
modes of the SPDC, the Cauchy-Schwarz inequality becomes [221]:

⟨â†
1â1â

†
2â2⟩ ≤ ⟨â†

1â
†
1â1â1⟩ (4.40)
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Normalizing Equation 4.40 leads to:

⟨â†
1â1â

†
2â2⟩2

⟨â†
1â1⟩2⟨â†

2â2⟩2
≤ ⟨â†

1â
†
1â1â1⟩⟨â†

2â
†
2â2â2⟩

⟨â†
1â1⟩2⟨â†

2â2⟩2

g(2)(1, 2)2 ≤ g(2)(1, 1) g(2)(2, 2) (4.41)

which for our weakly interacting Bose gas translates into:

g
(2)
A (0) ≤ g

(2)
N (0) (4.42)

Therefore, three experimental points in Figure 4.16 exhibit a clear violation of the Cauchy-
Schwarz inequality, with a maximum violation of 5.27(8) > 2.09(5). This observation is
analog to what was reported with photons for the spontaneous parametric down conversion
[223].

4.3.7 Relative number squeezing

The presence of k/-k pairs in the depletion should come along with reduced relative
fluctuations of the occupation numbers Nk and N−k between modes at opposite momenta.
This feature is referred to as relative number squeezing, in analogy with regular squeezing
defined as the reduced fluctuations of an operator at the expense of stronger fluctuations
of its conjugate operator [221]. If our experiment were performed at T = 0, all the modes
in the depletion would be populated by k/-k pairs. Nk and N−k would then be equal
for all k and the atom number difference between these two modes would always be zero.
At finite temperature, each mode k is mostly populated by uncorrelated thermal atoms
and the statistics of Nk is Poissonian because of the shot-noise. Still, the effect of the
Bogoliubov pairs might be visible in the statistics of the atom number difference between
two modes k and k′. For uncorrelated modes, such that k′ ̸= −k, we expect the variance
and the mean value of this atom number difference to be equal:

σ2
Nk−Nk′ ≡ ⟨(Nk −Nk′)2⟩ − ⟨Nk −Nk′⟩2 = ⟨Nk −Nk′⟩ (4.43)

because the difference of two Poissonian variable is Poissonian as well. However, the k/-
k pairs should reduce these fluctuations when probing the two modes k and k′ = −k,
leading to sub-Poissonian statistics of the atom number difference in this case. As for the
anomalous correlations amplitude, the temperature has to be low enough for the effect of
the k/-k pairs to be visible.

To detect this signal, we use a squeezing parameter ξ defined as:

ξ2
k,k′ = ⟨(Nk −Nk′)2⟩ − ⟨Nk −Nk′⟩2

⟨Nk⟩ + ⟨Nk′⟩ (4.44)

With this definition, ξ2
k,k′ corresponds to the variance of the atom number difference

between modes k and k′ normalized by its expectation value if the two modes are uncor-
related. It thus gives ξ2

k,k′ = 1 for uncorrelated modes and ξ2
k,k′ < 1 for sub-Poissonian

fluctuations of the atom number difference between the two modes. The procedure to
compute this squeezing parameter is represented in Figure 4.17. The first step consists in
dividing the integration volume Ωk into big voxels of volume (0.3 kd)3. The voxel size is
chosen to be much bigger than the size of a single mode (of the order of σN ) to increase
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the signal. Similarly to the correlation algorithm, the grid of voxels is centered on the
origin, so that all the atoms from the zeroth order diffraction peak are contained within
a "central" voxel (in black). As represented in Figure 4.17, this voxel is excluded for the
analysis and the squeezing parameter ξ2

k,k′ is computed with the remaining ones for all
correlated (orange) or uncorrelated (blue) configurations.

Figure 4.17: Procedure for detecting relative number squeezing. Illustration of
the momentum-space volumes used to compute the normalized variance ξ2

k,k′ of Equation
4.44. The BEC is contained in the black voxel centered on k = 0. The considered voxels
are either located at opposite momenta k/-k (orange) to compute ξ2

k,−k or at random
positions such that k′ ̸= −k to compute ξ2

k,k′ ̸=−k (blue) regions. The values ξ2
k,k′ are

obtained from averaging over all couples of voxels spanning the entire integration volume
Ωk.

The average values of the distributions of the ξ2 in the uncorrelated and correlated
case are plotted in Figure 4.18 for all datasets, with the error bars defined as the standard
deviation. Relative number squeezing is observed on the coldest dataset (higher condensed
fraction) for which ξ2

k,−k < 1. Finding for the same dataset a number squeezing slightly
above one in the uncorrelated case confirms this measurement. The amplitude of this
number squeezing is small compared to what has been reported with discrete (spins) vari-
able systems [25, 224, 225], being limited in our case by the thermally depleted atoms and
the detection efficiency. As expected, the relative number squeezing disappears at higher
temperatures where we find ξ2

k,−k ≃ ξ2
k,k′ ̸=−k within the error bars. The increase of ξ2

above one in these cases is due to a larger contribution of the total atom number fluctua-
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tions. Those add a contribution proportional to ⟨Nk⟩2 to the variance of the atom number
difference, contrary to the Poisson law whose variance scales as ⟨Nk⟩. This contribution
is negligible as long as the condensed fraction is high, while this is not the case anymore
at higher temperature due to the increase of ⟨Nk⟩.

Figure 4.18: Relative number squeezing results. Measured values ξ2
k,k′ for correlated

and uncorrelated voxels, and for different values of the condensed fraction fc. Error bars
correspond to one standard error. A small relative number squeezing is observed in the
low-temperature data, where ξ2

k,−k < ξ2
k,k′ ̸=−k ≃ 1. At higher temperatures, no relative

number squeezing is visible.

4.3.8 Conclusion of this first part

In the first part of this chapter we have demonstrated the presence of correlations at
opposite momenta in the depletion of interacting Bose gases. We verified the quantum
nature of these anomalous correlations thanks to several observations:

• their disappearance on increasing the temperature, suggesting a T=0 effect;
• the linear scaling of the their amplitude with respect to the inverse of the average

density, in analogy with the two-mode squeezed states produced in Spontaneous
Parametric Down Conversion or Four Wave Mixing;

• the violation of the Cauchy-Schwarz inequality for classically fluctuating variables;
• the presence of relative number squeezing induced by the reduced fluctuations of the

mode occupancies between modes at opposite momenta.

All these features confirm that the anomalous correlations indeed originate from the pres-
ence of pairs of atoms at opposite momenta in the many-body ground state, validating
the prediction made by Bogoliubov over 70 years ago. This measurement required the
single-atom-resolved detection offered by the 4He∗ atoms and a 3D optical lattice to en-
hance the in-trap interactions and make the expansion ballistic. Comparing our results
with predictions would require a theory that takes into account: the modified dispersion
relation in the lattice, the external confinement induced by the Gaussian beams, the finite
temperature, and the fact that we work in 3D. To our knowledge, these constraints are
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beyond state-of-the-art computations of second-order correlations.

An interesting perspective for the future would be to further exploit the violation of
the Cauchy-Schwarz inequality in order to look for the presence of entanglement in our
system. In the context of analogous Hawking radiation [226, 227], the Busch-Parentani
criterion [228] states that any two-mode system violating the Cauchy-Schwarz inequality
is non-separable, providing that the statistics of the system is chaotic and that no cross-
correlations exist between the modes. We have experimentally verified the first condition
by finding a perfect bunching amplitude g(2)

N (0) = 2. The second condition ⟨â†
kâ−k⟩ = 0

is fulfilled within Bogoliubov theory and the assumption that it should be valid in our
system is therefore reasonable. Thus, we are close to being able to prove the presence of
entanglement in the continuous variable k in our system. All that is left is the experimental
confirmation of ⟨â†

kâ−k⟩ = 0. In principle, this correlator could be measured with atom
interferometry [40, 229, 230] using Bragg diffraction [231] to produce the required mirrors
and beam splitters. This measurement is not immediately feasible because Bragg beams
would first have to be implemented, but it may be possible in the near future. Having
confirmed the presence of Bogoliubov pairs in the depletion of interacting Bose gases,
an exciting and readily achievable prospect is to extend this measurement to stronger
interaction regimes. The second part of this chapter details our work on this aspect,
which is still an on-going study.

4.4 Increasing the interaction strength

Coming back to the context in which Bogoliubov developed his theory, the original goal was
to understand the emergence of superfluid properties in liquid Helium at low-temperature
[194, 195]. Bogoliubov successfully explained this phenomenon using the theoretical frame-
work of degenerate Bose gases, for which the description of interactions between the par-
ticles is much simpler than for liquids. The approximation of weak interactions allowed
him to diagonalized the Hamiltonian of the system and find its excitation spectrum, the
phononic part of which verifies the Landau criterion for superfluidity [196]. However,
measurements of the condensed fraction in liquid Helium using neutron scattering have
converged towards a value of the order of 10% [232–234]. Therefore, the case of liquid
Helium is way beyond the validity regime of the Bogoliubov approximation which requires
that the condensed fraction should remain close to unity. Interestingly, this theory does
not apply to the system for which it was originally designed, and it is natural to ask what
happens to its predictions under stronger interactions. Momentum correlations at oppo-
site momenta are rooted within Bogoliubov’s theory and are thus a natural candidate to
try answering this question. The first part of this chapter highlighted the microscopic de-
scription of the many-body ground state provided by the anomalous signal. As explained
below, these correlations also ought to contain characteristic signatures of the system
becoming strongly correlated, and revealing them is the goal of this second part.

4.4.1 Predictions of Bogoliubov’s theory

As aforementioned, an extension of the Bogoliubov theory for 3D lattice bosons at finite
temperature and in the presence of an harmonic trap does not exist to our knowledge.
To get some insights on how our anomalous signal should evolves when interactions are
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increased, we rely on the prediction for a 1D system of homogeneous bosons in this section.
Then, the Bogoliubov coefficients uk and v−k (see equations 4.9 and 4.10) can be written
as:

uk =
√

1
2

( 1 + x√
1 + 2x

+ 1
)

(4.45)

vk = −
√

1
2

( 1 + x√
1 + 2x

− 1
)

(4.46)

where x is the ratio between the interaction energy gn0 and the free particle energy
ℏ2k2/2m. One can then derive the expressions of the anomalous part of the correlations
(cf equation 4.20):

|⟨â†
kâ

†
−k⟩|2 = |ukvk|2

(
1 + 2 ⟨b̂†

kb̂k⟩
)2

= x2

1 + 2x

(1
2 + ⟨b̂†

kb̂k⟩
)2

(4.47)

and of the momentum density:

ρ(k) = ⟨â†
kâk⟩

= |uk|2⟨b̂†
kb̂k⟩ + |vk|2

(
1 + ⟨b̂†

kb̂k⟩
)

= 1 + x√
1 + 2x

(1
2 + ⟨b̂†

kb̂k⟩
)

− 1
2 (4.48)

The increase of ρ(k) with x for any k ̸= 0 reflects the depletion of the condensate mode
growing larger the stronger the interactions, assuming the total atom number is fixed.
Similarly, the temperature effect on the depletion level is contained within ⟨b̂†

kb̂k⟩. We can
then derive how the normalized anomalous function, whose numerator contains both the
anomalous correlations and the momentum density squared, evolves with x. In the T = 0
case where ⟨b̂†

kb̂k⟩ = 0, it takes a simple form:

g
(2)
A (k,−k) =

ρ(k)ρ(−k) + |⟨â†
kâ

†
−k⟩|2

ρ(k)ρ(−k)

⇔ g
(2)
A (k,−k) − 1 = x2(

1 + x−
√

1 + 2x
)2 (4.49)

which is a monotonic decreasing function of x. At finite temperature, the quasi-particle
population ⟨b̂†

kb̂k⟩ contributes to the behavior of the anomalous amplitude g(2)
A (k,−k)−1.

However, the left panel of Figure 4.19 illustrates that in the low-temperature regime
kBT ≪ µ, one still expects a monotonic decrease of the anomalous amplitude with the
interaction strength, analogous to the T = 0 case. At first glance, it may seem confusing
that the amplitude of the anomalous correlation decreases at stronger interactions, whereas
the condensate gets more strongly depleted. However, the scaling g

(2)
A (0) − 1 ∝ ρ(k)

found in the first part of the chapter corroborates this counter-intuitive result that higher
depletion levels lead to smaller anomalous amplitudes. Within Bogoliubov’s picture, what
is expected to grow with the interaction strength is the probability for a depleted atom
to belong to the quantum depletion, i.e. to a k/-k pair. As explained in Appendix C,
this probability is linked to the product of the anomalous amplitude with the mean atom
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number in the integration volume ⟨NΩk
⟩, or equivalently the momentum density ρ(k),

rather than to the anomalous amplitude alone. At T = 0, this product scales with x as:

(
g

(2)
A (k,−k) − 1

)
ρ(k) = 1

2
x2

√
1 + 2x(1 + x−

√
1 + 2x)

(4.50)

which is indeed a monotonously increasing function of x. The right panel of Figure 4.19
shows that this increase is also found at finite temperature for an experimentally relevant
x range. This increase confirms the naive expectation: when interactions are increased at
constant temperature, Bogoliubov’s theory predicts that a larger fraction of the depletion
belongs to the quantum depletion and contributes to the pairing signal. As this conclusion
is independent of k, we expect it to remain valid for the average momentum density ρ̄Ωk

.

Figure 4.19: Predictions for the 1D harmonically-trapped system. Left: Anoma-
lous amplitude as a function of the ratio x between the interaction energy and the free-
particle energy for three different temperatures. This amplitude corresponds to Equation
4.47 divided by Equation 4.48 squared. Right: Same predictions for the anomalous am-
plitude times the momentum density (Equation 4.47 divided by Equation 4.48).

4.4.2 Expectations beyond the Bogoliubov approximation

Bogoliubov’s theory is a perturbative approach, so one naturally expects this approxima-
tion to fail when the BEC gets strongly depleted. To guess what happens then, we first
recall the Hamiltonian of equation 4.4 describing a homogeneous gas of ultracold bosons
with two-body contact interaction in the formalism of second quantization:

Ĥ =
∑
k

ℏ2k2

2m â†
kâk + g

2L3

∑
k′,k′′,q

â†
k′+qâ

†
k′′−qâk′′ âk′ (4.51)

To derive the Bogoliubov Hamiltonian in the particle basis (equation 4.5) we made the
simplifying approximation of neglecting all the terms of the interaction part containing
fewer than two â0, â†

0 operators (those were replaced by the real numbers
√
N0). Naturally,

these neglected terms have to be considered to answer the question of which correlations
can be expected beyond Bogoliubov’s theory. The first terms to be considered are the ones
which contain only one â0 or â†

0 operator. If we take for instance k′ = 0 in equation 4.51,
then it represents the two-body interaction between one atom in the k = 0 mode and one
atom at momentum k′′ ̸= 0 [197]. At T = 0, the second atom with a non-zero momentum
can only come from the quantum depletion, meaning from a Bogoliubov pair. Therefore,
one sees that going beyond the Bogoliubov picture consists in allowing the k/-k atoms to
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interact instead of returning to the condensate. As illustrated in Figure 4.20, this (T = 0)
third-order process in the development of equation 4.51 creates a triplet of bosons whose
total momentum is zero. This can be viewed as the higher-order process analog to the
pairing one. Similarly, interactions between two non-condensed atoms, namely atoms from
two different Bogoliubov pairs, are neglected in the Bogoliubov approximation. This fourth
order process, which is even more unlikely to happen when the condensed fraction is large,
is represented in Figure 4.20. This next-order terms leads to the creation of a quadruplet
whose total momentum is zero. Similarly to the pairing mechanism, the creation of such
momentum-correlated triplets and quadruplets occurs at T = 0. Any finite temperature
contribution will generate uncorrelated ensembles of atoms and, in turn, finite temperature
strongly reduces the probability to find pairs, triplets, and quadruplets.

Figure 4.20: Scheme of some interaction processes beyond the Bogoliubov ap-
proximation. Left: One member of a k/-k pair interacts with an atom in the condensate
mode k = 0 (represented as a dashed line). This process yields a pair of correlated atoms
with non-zero total momentum (in red) and a triplet of atoms whose total sum is zero.
Right: next-order process where two atoms from two different Bogoliubov pairs interact,
yielding a correlated quadruplet whose total momentum is zero. Both left and right pan-
els correspond respectively to the third- and fourth-order terms in the development of the
interacting part of the Hamiltonian 4.51, which are neglected in the Bogoliubov approxi-
mation.

Both kinds of microscopic processes are beyond Bogoliubov’s theory and it would be
great to reveal them in interacting Bose gases. The question now is the same as for the
k/-k pairs: are there signatures of this physics that we could detect? Accounting for
our capacity to compute correlations between individual particles in momentum space,
the answer to that question should be "Yes!". If the Bogoliubov pairs interact before
returning to the BEC, an immediate consequence should be a diminution of the anoma-
lous amplitude. Indeed, Figure 4.20 illustrates that each third- and fourth-order process
removes two/four atoms that would otherwise contribute to the correlations at opposite
momenta. Another possible route to detect high-order processes is to look for correlated
triplets and quadruplets whose sum of momenta is zero [235]. These clusters corresponds
to −k′′ + (k′′ − q) + q = 0 in the third-order case and −k′′ + (k′′ − q) + (k′ + q) − k′ = 0
in the fourth-order case. Detecting them relies on the condition that the partner of each
annihilated paired atom has not interacted in turn. Under this assumption, such triplets
and quadruplets can be measured in our experiment, provided that we adapt our cor-
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relation algorithm. These computations are detailed in the last section of this chapter.
Finally, both high-order processes produce correlated pairs at non-zero total momentum,
represented in red and green in Figure 4.20. Similarly to the k/-k pairs, these atoms par-
ticipate to the anomalous signal g(2)

A , except that their contribution is not be located at
δk = 0 anymore. As there is no preferred δk value for observing them, these pairs should
induce an overall increase of the baseline of the anomalous signal above one. However, we
may anticipate that such a delocalized signal could very well be hidden in the noise of our
normalization procedure, depending on the number of events.

4.4.3 Increasing the interactions at fixed temperature

As illustrated in section 4.1.4, changing interactions in our experimental setup is straight-
forward: we simply have to increase the lattice intensity to increase the on-site interaction
energy U . The non-trivial part is to perform this change without heating the gas, to
conserve a roughly constant amount of thermal depletion. For that, we rely on the adia-
baticity of the ramps with which we change the lattice potential, a property that we have
experimentally shown in the second chapter of this thesis. In particular, Figure 2.13 shows
that we can prepare clouds at increasing values of U/J in the superfluid regime without
changing the reduced temperature T/J by a significant amount. Therefore, increasing
the lattice potential is quite analogous to increasing the interactions at fixed temperature
(with all energies in units of J). An additional effect that should favor the observation of
the quantum depleted atoms on increasing the lattice potential is that the reduced speed
of sound c/J =

√
Un/m∗/J ∝

√
U/J also increases. If the reduced temperature does

not increase in the process, the population of the quasi-particles becomes more phononic,
and the temperature contribution in the integration volume becomes smaller. Therefore,
we expect our setup to be suited for testing Bogoliubov prediction in stronger interaction
regimes via our measurement of anomalous correlations.

dataset Condensed fraction (%) Number of files
U/J = 2 90(1) 2033
U/J = 5 84(1) 2367
U/J = 7.5 78(2) 1480
U/J = 10 74(1) 2243
U/J = 12.5 67(2) 2831
U/J = 15 57(4) 3257
U/J = 20 41(2) 2876

Table 4.1: Summary of the datasets taken at different U/J values. All these
datasets were taken at NBEC = 5 × 103. The number of files represents the post-selected
shots for which the atom number belongs to a 30% interval around the targeted atom
number.

To that end, we took several datasets at NBEC = 5 × 103, spanning the superfluid
region of the phase diagram between U/J = 2 and U/J = 20. Contrary to the ones used
in our previous study of the Mott transition (Chapter 2), all these datasets use the Raman
transfer to increase the number of detected atoms. The corresponding condensed fractions
and numbers of post-selected files are summarized in table 4.1. Similarly to the first part
of the chapter, the distributions kept are the ones whose atom number belongs to a 30%
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interval around NBEC . The condensed fraction is estimated according to the procedure
described in Appendix A. With the same aim of keeping it non-zero as in the study of
the effect of temperature at U/J = 5, we have taken care here not to entirely deplete the
condensate by staying far from the Mott transition. The resulting condensed fractions are
more relevant than U/J for labeling the different datasets since they are directly related
to the validity of Bogoliubov’s approximation. Figure 4.21 shows normalized 1D cuts of
the momentum density for all these datasets. In logarithmic scale, the increase of the
depletion level in the integration volume Ωk is clear and extends over one decade. Finally,
the correlation computations are repeated for all these datasets. Due to the limitations
induced by the center-of-mass fluctuations, we focus on the amplitude of the correlations in
the following. The behavior of the anomalous width with U/J is commented in Appendix
B, the conclusion being that it remains essentially constant over the range of U/J values
spanned.

Figure 4.21: Normalized 1D cuts of the momentum densities versus U/J . The
transverse integration used is δk⊥ = 0.1 kd. The plot is in semilog scale to emphasize the
increase of the depletion level with interactions. In particular, the average momentum
density in the integration volume ρ̄Ωk

is varied by more than one order of magnitude in
the interaction regime spanned.

4.4.4 Anomalous and normal amplitudes at stronger interactions

The amplitudes of the anomalous correlation peaks, corrected from the integration effect,
are plotted in Figure 4.22 as a function of the condensed fraction of the corresponding
dataset. We observe a smooth decay of the anomalous amplitude up to U/J = 20 where
no correlation peak stands out from the noise. The decay of the anomalous amplitude is
qualitatively compatible with the behavior expected from the 1D homogeneous system at
the temperature regime of our experiment, but a quantitative comparison with theory is
not available at the moment. Instead, we compare the decrease of the anomalous amplitude
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with that measured when the temperature was increased at fixed U/J = 5. As a reminder,
we had measured:

• a peak amplitude equal to 0.22(2) for the dataset with an intermediate condensed
fraction of 55%,

• no correlation peak in the most heated dataset (fc = 0.29).

These observations are quantitatively compatible with the decay observed in Figure 4.22
as interactions are increased. However, it would be interesting to further compare the
decays of the anomalous signal with the condensed fraction depending on whether the
temperature or the interaction strength is increased. We would expect a slower decay
when the cloud is heated up, because in this case the number of pairs is constant and the
anomalous amplitude only decreases due to the larger fraction of uncorrelated (thermal)
atoms in the the depletion. On the opposite, an additional contribution to this decay is
expected at higher interaction strength if k/-k pairs start interacting. Said differently,
only the denominator of g(2)

A increases in the first case, while the decrease of the numerator
in the second case would induce a faster decay. For the moment, both heated datasets at
U/J = 5 do not allow to answer this question since they lie on the right side of Figure 4.22,
where the anomalous amplitude is already small for the datasets taken at various lattice
depths. To answer this question, we would need to take new heated datasets corresponding
to a condensed fraction above 75%, for which a smaller anomalous amplitude than the
points in Figure 4.22 would be more easily seen.

Figure 4.22: Anomalous and normal amplitudes versus the total depleted frac-
tion. A smooth decay of the anomalous signal is observed while all normal amplitudes
remain compatible with a perfect bosonic bunching g(2)

N (0) = 2. Vertical (resp. Horizon-
tal) error bars represent the uncertainty in the estimation of the correlation amplitude
(resp. of the condensed fraction) detailed in Section 4.3.2 (resp. in Appendix A).

Similarly to the previous section, we compare the behavior of the anomalous correla-
tions with that of the normal ones. We recall that a perfectly contrasted bosonic bunching
g

(2)
N (0) = 2 was found at U/J = 5 once corrected the integration effect. This feature was

explained by the fact that all the atoms in the integration volume Ωk, regardless of whether
they belong to the thermal or to the quantum depletion, contributed to the normal corre-
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lations. Therefore, we expect a similar result with the new datasets for which the quantum
depletion is increased. Figure 4.22 shows the amplitudes g(2)

N (0) − 1 of the normal correla-
tions versus the condensed fraction for all the datasets between U/J = 2 and U/J = 20.
Indeed, we always find a perfect bosonic bunching, extending, by the way, the violation
of the Cauchy-Schwarz inequality to the dataset with a 90% condensed fraction. This
consistent behavior of the normal correlations across the superfluid regime suggests that
the decay of the anomalous correlations on the same datasets has a real physical origin.

4.4.5 Anomalous amplitude multiplied by the average density

According to the 1D homogeneous Bogoliubov prediction, the product (g(2)
A (0) − 1)ρ̄Ωk

is
expected to increase monotonously with the interaction strength. This increase is easily
understood since this quantity is proportional to the probability for a depleted atom to
belong to a k/-k pair (see Appendix C). In Bogoliubov’s picture, all atoms from the
quantum depletion form pairs at opposite momenta. The probability of a depleted atom
belonging to one of them should then increase with the quantum depletion level, assuming
that the thermal depletion remains constant. The product (g(2)

A (0) − 1)ρ̄Ωk
is plotted for

the various datasets at increasing interactions in Figure 4.23. Interestingly, the behavior is
not monotonous anymore. It first increases up to a depleted fraction of roughly 20% and
then starts decreasing until it reaches zero on the last dataset, for which no correlation
peak can be distinguished anymore. The high condensed fraction part of this plot can be
interpreted within Bogoliubov theory as being a consequence of an increased number of
k/-k pairs at stronger interactions. However, the decay observed at smaller condensed
fractions is incompatible with Bogoliubov’s picture. The most likely reason is that the
Bogoliubov approximation starts to break down at such large depleted fractions because
we are gradually moving out of the domain of validity of this perturbative theory. For

Figure 4.23: Anomalous amplitude times the average density versus the total
depleted fraction. All amplitudes are corrected from the transverse integration effect.
Vertical error bars represent the uncertainty in the estimation of the anomalous amplitude
only, as the uncertainty in the average density is negligible. Horizontal error bars represent
the uncertainty in the estimation of the condensed fraction (see Appendix A).
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this conclusion to be true, we must ensure that the temperature does not play a role in
the observed decay of the anomalous signal.

4.4.6 A possible consequence of the temperature?

We should consider the possibility that the decay of the anomalous correlations is simply
a consequence of some unintentional heating rather than the limitation of Bogoliubov’s
regime. Indeed, we have seen with the example of the U/J = 5 datasets that temperature
drowns out anomalous correlations while it does not affect the normal ones. Note that the
heating referred to here is not related to how the lattice intensity is increased - we used the
same ramps as the ones with which the adiabatic state preparation was proved in Chapter
2. Its origin would rather be related to the quality of the lattice alignment. Indeed, we took
all these datasets several months apart. Due to the inevitable misalignment of the lattice
on this timescale, it has been re-aligned before taking each measurement. However, setting
the lattice in the optimal configuration is difficult. This hardship is illustrated in Figure
4.24, which shows normalized momentum densities of different datasets at U/J = 12.5 and
NBEC = 5 × 103 that were all taken after different lattice alignments. On a logarithmic
scale, the level of the depletion varies over almost one decade between the different datasets
while it should, in principle, remain constant. This variation of the depletion level and,
consequently, of the condensed fraction, reflects the heating induced by a sub-optimal
lattice alignment. Between all these datasets, anomalous correlations were only visible
on the coldest one taken on April 28th, 2022. There is thus little doubt that the lattice
alignment can affect our measurement of the anomalous correlations across the superfluid

Figure 4.24: All attempts at U/J = 12.5. The 1D cuts of the momentum densities
of all the datasets taken at U/J = 12.5 and for NBEC = 5 × 103 are superimposed in
semilog scale to emphasize how sensible the depletion level is to the lattice alignment.
The transverse integration is δk⊥ = 0.1 kd.
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phase.

Fortunately, we have at least two observables to convince ourselves that this is not
happening here. First, the condensed fractions of the new datasets are consistent with the
values found at the same U/J in our previous investigation of the Mott transition with
transfer (Chapter 2). As this study led to the observation of the critical scaling (1−u/uc)2β

for the maximum momentum density ρ0 = ρ(k = 0), there is good reason to trust the
associated condensed fractions. Secondly, we empirically observed a linear variation of the
average density in the integration volume ρ̄Ωk

with U/J (see Figure 4.25). This linear
variation allows us to identify datasets for which some heating might be induced by a sub-
optimal alignment (in red). For instance, all the failed attempts at U/J = 12.5 are clearly
visible in this plot. We could also identify wrong datasets at U/J = 5 and U/J = 7.5,
for which the anomalous amplitudes were smaller than the ones of the colder datasets at
the same U/J . Both observables suggest that the temperature is not the cause of the
anomalous amplitude decay. Again, we can hardly comment quantitatively on this decay
and, in particular, predict where its onset should be located in our system. However, an
alternative can consist in comparing our system with others to provide a first quantitative
answer.

Figure 4.25: Average density in the integration volume versus U/J . The aver-
age density is obtained by averaging the momentum density belonging to the integration
volume Ωk defined such that all atoms verifying the condition 0.3 ≤ |kx,y,z| ≤ 0.7 are
kept. Error bars are defined as the standard deviation of the mean over all voxels and are
smaller than the marker size.

4.4.7 Comparison with the work of Lopes et al

Following Bogoliubov’s work that predicted the presence of the quantum depletion in
weakly interacting Bose gases, a scaling of the condensed fraction versus the interaction
strength was derived by Lee, Huang, and Yang (LHY) in 1957 [203]. They showed that in
the homogeneous case this scaling is:

fc = 1 − γ
√
na3

s (4.52)
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with
√
na3

s defining the interaction strength of the homogeneous system and γ = 8/(3
√
π) ≃

1.5. In 1999, Giorgini et al. [236] verified numerically this scaling of the fraction of atoms
in the quantum depletion using Monte Carlo simulations. In particular, they showed that
it was valid up to na3

s ≤ 10−3. It was only recently that an experimental validation was
provided by the group of Zoran Hadzibabic in Cambridge in 2017 [2]. They reproduced
the textbook configuration of the LHY paper by producing homogeneous BECs of 39K
held in cylindrical optical-box traps [152]. A Feshbach resonance allows them to magneti-
cally tune the scattering length from as = 200 a0 initially, with a0 the Bohr radius, to any
desired value within the range [700 − 3000] a0 in order to prepare clouds of varying inter-
action strength (the largest value of a corresponding to

√
na3

s ≃ 0.04). Their experiment
uses a Doppler-sensitive two-photon Bragg scattering [237] to spatially separate the BEC
from the high-momentum tails of the momentum distribution after a 10ms time-of-flight.
Prior to this time-of-flight, the interactions are frozen by transferring the atoms from the
|F = 1, mF = 1⟩ to the |F = 1, mF = 0⟩ hyperfine state for which as ≃ 0. Finally, the
condensed fraction for a given as is given by the maximum diffracted fraction η, which is
fitted from the ones measured close to a pi-pulse duration of the Bragg pulse. Those η
values are shown in Figure 4.26 versus the interaction strength. The linear fit of their ex-
perimental data gives γ = 1.5(2), which agrees remarkably well with the LHY prediction.
The extrapolation of this fit to the limit as = 0 gives a diffracted fraction slightly below
one mostly because of the thermal depletion - which is insensitive to the Bragg pulse -
and also to the finite Rabi frequency that prevents a total transfer of the tails of the BEC
momentum distribution.

Figure 4.26: Quantum depleted fraction versus interaction strength, from [2].
This measurement is performed in homogeneous Bose-Einstein condensates using a coher-
ent two-photon Bragg scattering, whose maximum diffracted fraction η is assimilated to
the quantum depleted fraction (see text). The interaction strength

√
na3 is tuned via a

Feshbach resonance. The vertical error bars are fitting errors on η, while the horizontal
ones reflect the uncertainty on the position of the Feshbach resonance and a 10% error in
n. The solid line is a linear fit. The inset shows numerical simulations for T = 0 (dashed
line) and for initial temperatures between 3.5 and 5 nK (orange shading; see [2] for more
details.
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The experimental proof of the LHY scaling of the condensed fraction represents the
main result of this paper. Of interest to us is that the authors also tried to extend
their measurements to the case of higher interaction strengths for which the Monte-Carlo
simulations of [236] predicted that deviations to Bogoliubov should be observed. These
additional measurements were published in the supplementary material and are shown
in Figure 4.27 as brown circles, together with the previous ones (blue circles) and the
Monte-Carlo simulations (black diamonds). The larger horizontal error bars on the new
experimental points result from the increase of the three-body losses at such high inter-
action strengths, which also prevents the authors from correctly estimating the effect of
the non-zero temperature. Therefore, these new measurements are not entirely conclusive:
they suggest that deviations from the Bogoliubov theory are observed. In particular, those
deviations would be of the same sign and magnitude as the Monte-Carlo simulations.

Figure 4.27: Quantum depleted fraction at higher interaction strength, from
the Supplementary of [2]. This plot shows additional measurements (red circles) than
the ones presented in Figure 4.26 (blue circles), for which the interaction strength was
increased further at the cost of larger error bars in the value of

√
na3 (see text). In

agreement with Quantum Monte-Carlo simulations from [236] (black diamonds and the
interpolating dashed line), these new points seem to disagree quantitatively with the Bo-
goliubov prediction symbolized by the solid line.

We can try to draw a parallel between this measurement and ours, although the system
and the quantity traced are different. This link is justified by the fact that Bogoliubov’s
approach only relies on the assumption fc ∼ 1, regardless of whether the interaction
strength is quantified by

√
na3

s (as in the homogeneous case) or by U/J (for lattice bosons).
Let us assume that the deviations in Figure 4.27 are the consequence of the Bogoliubov
approximation being invalid at such strong interactions. In that case, we can infer that
a quantitative onset for observing such deviations corresponds to a quantum depletion
between 5% and 15% (η between 0.90 and 0.80). As our measure of the depleted fraction
encompasses both the quantum and the thermal depletion, we must rely on a T = 0
Gutzwiller approach to estimate when such quantum depleted fraction is reached with
our lattice gases of NBEC = 5 × 103. The result of this computation is plotted in Figure
4.28. We can see that a quantum depleted fraction between 5% and 15% corresponds
roughly, in our case, to a U/J ratio in the range [5 − 11.5]. This interval of U/J values
is consistent with the one over which the anomalous amplitude times the average density
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starts to decrease. It would then suggest that deviations from Bogoliubov’s theory occurs
for similar condensed fractions. Naturally, it would be great to confirm this conclusion in
our system at the microscopic level via momentum correlations between individual atoms.
To this aim, we started to look for momentum correlations that would unambiguously
signal the beginning of a breakdown of Bogoliubov’s approximation at higher interactions.

Figure 4.28: Gutzwiller estimate of the quantum depleted fraction versus U/J .
This T = 0 approach returns an estimate of the condensed fraction, which can directly
be identified with an estimate of the quantum depleted fraction. The computations are
performed with our experimental parameters between U/J = 2 and U/J = 20, and for
NBEC = 5 × 103 (black diamonds and interpolating dashed line). The gray shaded area
reflects the 30% interval around NBEC allowed on the atom number of the post-selected
distributions.

4.5 Attempts to find signatures of momentum-correlated triplets

In this last section we review the tests to look for the high-order interaction processes
mentioned in 4.4.2 and illustrated in Figure 4.20. In particular, we have focused on
trying to reveal the momentum correlations associated with third-order processes in the
development of Equation 4.51 (left panel of Figure 4.20) , i.e. atom pairs with non-
zero total momentum and momentum-correlated triplets. Unfortunately, observing such
momentum correlations has remained elusive so far.

4.5.1 Baseline of the anomalous correlations

As explained in Section 4.4.2, third- and fourth-order interaction processes create pairs
of atoms whose sum of momenta is non-zero, which may increase in the baseline of the
anomalous correlations. This signature may be hard to detect as it is not localized in the
momentum space. To look for this effect, we repeated the anomalous computation with
all our datasets at NBEC = 5 × 103 while:

• conserving the same holed cubic integration volume Ωk as for the previous study, for
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which any atoms whose momentum coordinates verify the condition 0.3 ≤ kx,y,z ≤
0.7 is kept;

• extending the maximal sum of momenta δk up to which the correlations are com-
puted to 0.75 kd to increase our chances of detecting pairs of atoms with a non-zero
sum of momenta. In the previous study, the maximal δk was typically smaller
than 0.3 kd as we were looking for correlations centered on δk = 0 with a typical
correlation length on the order of 0.1 kd.

• increasing the voxel size from (0.012 kd)3 to (0.3 kd)3 to reduce their number and
speed up the computations. This is permitted because we are not interested any-
more in trying to resolve the k/-k correlation signal. We remove the central voxel
corresponding to −0.15 kd ≤ δk ≤ 0.15 kd to be sure not to count the k/-k atoms. Fi-
nally, the total number of counts in the remaining voxels of the numerator is divided
by that of the denominator, obtained from repeating the anomalous computation on
a merged file containing all the experimental distributions.

This procedure returns a grid of voxels containing baseline values of the anomalous signal
at different δk. As there should not be any preferred δk for the sum of the momenta
of the paired atoms, nothing prevents us from averaging the contribution of all voxels to
increase the signal. The resulting average baseline is plotted in blue in Figure 4.29 for
each datasets at NBEC = 5 × 103. Error bars correspond to the standard error of the
mean of the distribution of all the baselines computed inside a single dataset.

Figure 4.29: Baselines of the anomalous correlations versus the depleted frac-
tion. The baselines are computed for two integration volume Ωk: a first one for the atoms
verifying the condition 0.3 ≤ |kx,y,z| ≤ 0.7 [kd] (in blue), and a larger one corresponding
to 0.15 ≤ |kx,y,z| ≤ 0.85 [kd] (in red). Vertical error bars represent the standard deviation
of the mean over the ensemble of baselines computed for each experimental run within a
single dataset (see text). Horizontal error bars represent the uncertainty in the estimation
of the condensed fraction whose measurement is explained in Appendix A.

The baseline is found to increase with the interaction strength, despite the large error
bars stemming from the finite statistics in the voxels. At stronger interactions, the larger
depletion of the condensate increases the atom number inside the voxels, and the error bars
are reduced. As is, the baseline increase cannot be associated with a growing contribution
of pairs of atoms whose total momentum is non-zero. Indeed, the baseline always lies below



148
Chapter 4. 2-body correlations at opposite momenta: the fate of Bogoliubov pairs

at increasing interactions

one, which is, in principle, the smallest value it can take. This measurement instead seems
to point out some imperfection in our normalization procedure. For the latter to work
best, the statistics must be high enough that mixing all the experimental runs provides an
accurate estimate of the momentum density. Only then does the denominator computation
correctly reproduce its auto-correlation. As the integration volume Ωk only keeps the most
dilute parts of the distributions, the finite statistics prevent our normalization procedure
from working to better than one percent. This effect is worse for highly condensed datasets,
where most atoms are located within the diffraction peaks. This hypothesis is verified when
repeating the baseline measurement with a larger integration volume Ωk, which now keeps
all the atoms whose momentum coordinates verify the condition 0.15 ≤ kx,y,z ≤ 0.85. The
new baselines are plotted in red in Figure 4.29, and are closer to 1 than the previous ones.
This behavior is consistent with our explanation, and the conclusion is that our resolution
does not allow us to distinguish any increase in the baseline of the two-body correlations
that would signal the presence of atom pairs with non-zero total momentum.

4.5.2 Three-body correlations: first algorithm

A second approach to finding signatures of interaction processes beyond Bogoliubov’s
picture is to look for the presence of triplets whose total momentum is zero. As represented
in Figure 4.20, such triplet comes from considering the partner of the annihilated k/-k
atom together with the pairs with non-zero total momentum. Similarly to the k/-k
pairs, this signal should be located at the center of the three-body correlations histogram.
However, its observation should be significantly harder than for the k/-k pairs for several
reasons:

• the most obvious one is that three correlated particles must now be detected at the
same time, which is a factor of ηMCP less likely than for the k/-k pairs;

• the most limiting reason may be that such triplets do not exist if the annihilated
k/-k atom has interacted with a thermal one. In this case, the total momentum of
the resulting triplet would not be zero anymore due to the non-zero momentum of
the thermal atom. In the triplet case, not only can thermal atoms hide the signal,
but they can also destroy it.

• similarly, two additional conditions are that (i) only one member of a k/-k pair
interacts, and (ii) that this interaction does not involve an atom from another k/-k
pair, otherwise a correlated quadruplet is produced rather than a triplet. However,
both hypothesis should be fulfilled in a moderately stronger interaction regime.

The identification of these triplets requires an upgrade of the correlation algorithm. As
illustrated in Figure 4.30, we simply modified the code to compute the histograms of all
the possible sum of triplets - rather than doublets - of momenta within the experimen-
tal distributions. Doing this adds a factor ∼ ⟨NΩk

⟩ to the total number of operations,
increasing the computation times. The latter are typically several hours long, and the
normalization must be calculated by shuffling the atoms between the different experimen-
tal distributions instead of merging them into a single file. Unfortunately, we have not
distinguished any correlation signal above the noise level while running this algorithm on
the different datasets. During these computations, we tried different integration volumes
Ωk and voxel sizes without success. Finally, we also took additional datasets closer to the
Mott transition to increase the interactions further, but this did not help us either. As a
last attempt, we modified the algorithm to account for the presence of thermally depleted
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atoms inside the depletion.

Figure 4.30: Pseudo-code version of the three-body correlations algorithm. The
procedure is identical to that of the two-body algorithm in Figure 4.4, except that now
the 3D histograms are calculated on the sum of the momenta of all possible triplets of
atoms in the experimental distributions.

4.5.3 Three-body correlations: second algorithm

As already discussed, triplets such as those in the left panel of Figure 4.20 whose sum of
momenta is zero are one of the most natural signatures of interaction processes beyond
Bogoliubov’s regime we can think of. After a first unsuccessful attempt at observing them,
we thought of a different approach: observing the absence of the annihilated k/-k atom
(the one at momentum k′′ in the left panel of Figure 4.20). One way to do that is to
compute the 3D histogram of the quantity δk = k1 + k2 − k3 for all possible triplets of
atoms within the experimental distributions. As usual the central voxel δk = 0 of the
denominator histogram provides a reference value for the uncorrelated case, which corre-
sponds here to the probability of having three uncorrelated atoms verifying the condition
k1 + k2 − k3. In the numerator, when a pair with non-zero total momentum is detected,
its atoms are less likely to contribute to the correlations k1 + k2 − k3 since the atom at
k3 (k′′ in Figure 4.20) has been annihilated. The number of counts in the central voxel
δk = 0 should then be smaller for the numerator than for the denominator if atom pairs
with non-zero total momentum are present in the distributions. With this algorithm, we
expect to observe a dip at δk = 0 in the normalized three-body correlations function. It is
more likely to observe a signal with this algorithm as the annihilated atom does not need
to belong to the quantum depletion. Indeed, a thermally depleted atom interacting with
one in the condensate mode k = 0 may produce a similar correlated pair that does not
contribute to the correlations k1+k2−k3. The drawback is that if a signal (here, a dip) is
detected, we cannot attribute it unambiguously to the higher-order interaction processes
we are looking for. The idea behind this algorithm was to get a first signal rather than a
conclusive proof. Unfortunately, no clear dip was observed in the normalized correlations
function with our datasets.
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4.6 Conclusion

After providing experimental evidence for the presence of pairs of atoms at opposite mo-
menta in the depletion of interacting Bose gases, we tested the evolution of this pairing
signal at higher interactions beyond the validity regime of the Bogoliubov. Our goal was
to gain some insights into the microscopic evolution of the many-body ground state of the
system and, in particular, to observe the effect of more complex interaction processes than
the one modeled by the Bogoliubov theory. We found that the probability per depleted
atom to belong to a k/-k pair evolves non-monotonously with the interaction strength.
It starts to increase as one would expect when more k/-k pairs were to be added in the
depletion by interactions. It then decreases up to a point where no correlation peak is vis-
ible anymore, although the condensed fraction is still about 40%. The onset of the decay
corresponds to a quantum depleted fraction between 5% and 15%, which is comparable
with recently measured deviations of the Bogoliubov prediction for the linear scaling of
the condensed fraction in the homogeneous case [2]. We then tried to link the decay of the
pairing correlations with the microscopic picture that Bogoliubov pairs start interacting at
higher interactions. More specifically, we searched for signatures of these processes, such
as the increase of the baseline of the two-body correlations, or three-body correlations
that would either signal the presence of triplets of correlated atoms or the absence of an
annihilated k/-k atom. The conclusion is that none of these approaches has yet allowed
us to observe a clear signal. We could try accumulating more distributions to reduce the
noise level and make such signal visible. An alternative approach would be first to try
to maximize the number of k/-k pairs detected for a given interaction strength before
searching for signatures of higher-order interaction processes. One way to achieve this
would be to increase the trapping frequencies in the ODT to produce BECs with lower
entropies. This would further reduce the amount of thermal depletion and bring us closer
to the T = 0 Bogoliubov physics.



Conclusion

This manuscript reports the experimental investigation of strongly-interacting Bose gases
via the high-order moments and correlations in momentum space. We access these quan-
tities exploiting the electronic detection of individual 4He∗ atoms with Micro-Channel
Plates after a long free fall expansion. In addition, this detection method yields the 3D
momentum distributions with an unprecedented resolution and dynamical range.

The dynamical range on the 3D momentum densities of lattice gases with a few thou-
sand atoms was essential for the thermometry developed in collaboration with Tommaso
Roscilde (ENS Lyon) and presented in Chapter 2. This thermometry was shown to sat-
urate the theoretical limit set by the Fisher information (associated to the comparison
of ρ(k) with ab-initio QMC simulations). More importantly, this thermometry led us to
demonstrate the adiabatic preparation of equilibrium states of the Bose-Hubbard model.
In particular, the loading protocol does not suffer from the gapless energy spectrum in
the superfluid regime nor from the vicinity of the quantum critical point. From a quan-
tum simulation perspective, these results confirm the capability of cold atom platforms to
prepare low-entropy states of strongly-correlated quantum-matter (without a heat bath).

This certification laid the foundations for investigating the critical region of the low-
entropy Mott transition. The suppression of ρ(k = 0) when increasing the lattice depth
leads to a critical interaction compatible with that estimated from QMC simulations for
the homogeneous system at unit filling and the temperature of the experiment, rather than
with the mean-field prediction at T = 0. In addition, the suppression of ρ(k = 0) exhibits
a critical scaling compatible with that of the 3DXY model, a property confirmed by the
QMC data. These findings differ from several previous experimental investigations of the
critical region of the Mott transition, a specificity that results from our unique access to
ρ(k = 0) and from a careful choice of the lattice filling.

In Chapter 3, we take advantage of an improved detection efficiency to investigate the
Full Counting statistics (FCS) and the high-order moments (up to n = 6) of the momen-
tum occupation number of Bose superfluids and Mott insulators detected in the far-field
regime of expansion. The measured FCS are consistent with the Poisson and thermal ones
expected from a pure state description of BECs and Mott insulators. These results are
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corroborated by the many-body coherence in these systems, quantified by the normalized
amplitudes g(n)(0) of the nth-order correlation functions. The latter are measured with
perfect contrast via an original approach based on the factorial moments. Concerning
the BEC mode (k = 0) of Bose superfluids, we observe tiny deviations

(
g(n)(0) > 1

)
to

the perfect coherence at any order g(n)(0) = 1 theorized by Glauber for a coherent state.
We introduced a heuristic model to explain these deviations since ab-initio calculations of
many-body correlations are not accessible for the strongly-interacting regime of our exper-
iment. Despite its simplicity, the model quantitatively captures the deviations g(n)(0) > 1
observed experimentally and attributes them to the depleted fraction. The model also
explains why the role of the depletion could not be observed in a previous study [1]. Hav-
ing identified the cause of the deviations, our measurements confirm the coherent nature
of BECs produced in experiments to at least the sixth order of correlations. Reaching
this level of certification is of primary importance for further investigations of these fluc-
tuations in the strongly-correlated regime near the Mott transition, where signatures of
non-Gaussianity, if present, would appear in the high-order (n ≥ 3) correlation functions.

In Chapter 4, second-order correlations of the momentum occupation number between
opposite modes k and -k reveal atom pairs (at opposite momenta) in the depletion of in-
teracting Bose gases at equilibrium. This observation confirms at the microscopic level the
prediction made by N. Bogoliubov more than 70 years ago for the quantum depletion. The
presence of these pairs in the many-body ground state results from the interplay between
quantum fluctuations and interactions. This quantum origin is confirmed by several ob-
servables: the extreme sensitivity with temperature, the scaling of the pairing amplitude
analog to that found in two-mode squeezed states, the violation of the Cauchy-Schwartz
inequality, and the relative number squeezing between opposite momentum modes. This
pairing signal could be observed thanks to the improved detection efficiency and in the
low-temperature regime accessed in the optical lattice.

The latter offers the possibility to test the prediction of Bogoliubov’s perturbative ap-
proach in the strongly-interacting regime by increasing the lattice depth. The probability
for a depleted atom to belong to a k/-k pair exhibits a non-monotonous variations with
the condensed fraction. Its initial growth is compatible with Bogoliubov’s approximation,
according to which stronger interactions increase the number of pairs in the depletion.
However, the suppression of the pairing amplitude at smaller (but non-zero) condensed
fractions signals a breaking of this approximation’s validity. This appears at condensed
fractions compatible with those found in homogeneous systems [2]. Initial searches for
momentum-correlated triplets in the depletion that would result from interaction pro-
cesses beyond Bogoliubov’s theory have been unsuccessful. This exploration is so far
purely experimental as no theoretical predictions exist for the two-body correlations at
opposite momenta in our system, which illustrates the complexity of the physics explored
by our quantum simulator.



AA. Estimation of the condensed fraction

Appendix

The condensed fraction is evaluated similarly to Cécile Carcy’s thesis [49]. From the
momentum density, we compute the cumulative distribution function of the number of
atoms falling inside the first Brillouin zone NBZ :

P (kr) = N(|kx|, |ky|, |kz| ≤ kr)
NBZ

(A.1)

where kr is the side of a cube in momentum space centered on k = 0. This fraction is
plotted in Figure A.1 for all the datasets at NBEC = 5 × 103 between U/J = 2 and 20.

Figure A.1: Fraction P (kr) versus kr for all the different datasets. This fraction
represents the proportion of atoms of the first Brillouin zone within a cube of side kr. The
intersection of both linear parts in P (kr) gives the condensed fraction with a few percent
uncertainties.
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The fraction P (kr) presents two linear behaviors: the first one at low momentum
shows a rapid increase as long as kr is smaller than the condensate size. In contrast,
the slow increase at higher momentum is attributed to the depletion. Thanks to this
clear distinction, we can infer the condensed fraction from the intersection of these two
regions, both fitted with a linear model. This method neglects the contribution of the
depleted atoms under the condensate peak, and it provides an accurate estimation (with
a few percents uncertainty) as long as the condensed fraction is not too small, namely for
roughly fc ≥ 30%. Above this threshold, a condensate can be safely identified from the
presence of sharp diffraction peaks on the momentum density cuts. A limitation of this
method is that it is affected by the detector’s saturation. Indeed, deep in the superfluid
region, the central diffraction peak is saturated when working with NBEC = 5 × 103. This
effect is illustrated by the presence of a saturation cross on the detector for the datasets
below U/J = 15. Because of this saturation, our measurement of P (kr) under-evaluates
the contribution of the condensate and, thus, the condensed fraction. However, we know
from [49] that the diffraction peaks are not saturated when working with a few thousand
atoms. From the additional knowledge of the lattice depth s, one can compute the Fourier
transform of the corresponding Wannier function. As illustrated in Figure A.2, adjusting
it to the diffraction peak amplitudes at ±kd allows us to predict what the amplitude of
the central peak would be in the absence of saturation.

Figure A.2: Momentum density and Fourier transform of the Wannier function.
A 1D cut of the momentum density at U/J = 5 with a transverse integration of δk⊥ =
0.1 kd is superimposed with the Fourier transform of the corresponding Wannier function.
The latter is normalized to coincide with the amplitude of the first-order diffraction peaks.
The discrepancy at k = 0 reflects the saturation of the central peak from which we deduce
the saturation coefficient γ (see text).

The ratio between this expected amplitude and the measured one, ρ(k = 0), defines
the saturation coefficient γ. To correct from the saturation effect, For simplicity, we
assume that the saturation evenly affects the momentum region from k = 0 up to the
limit where the density of the central peak reaches that of the first-order diffraction peaks.
To correct this effect, the number of atoms detected inside this region is multiplied by γ
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in the computation of P (kr) to infer what the non-saturated atom number would be. The
result of this procedure is shown in Figure A.3 for the dataset at U/J = 5 (s = 8) and
NBEC = 5 × 103. In the saturated case (in red), the intersection of the linear parts of
P (kr) yields fc = 80(1)%. As the correction increases artificially the number of atoms at
low momenta, P (kr) increases faster for the corrected data (in blue) and its linear parts
cross at a higher condensed fraction fc = 85(1)%. This correction is reduced at lower
condensed fractions, and becomes negligible at U/J = 15 where γ ≃ 1.

Figure A.3: Estimation of the condensed fraction from the fraction P (kr). The
blue (resp. red) dashed curve represents the fraction P (kr) for the U/J = 5 dataset with
(resp. without) the correction of the saturation (see text). The condensed fraction is
deduced from the intersection of both linear parts in P (kr). We obtainfc = 85(1)% for in
the corrected case and fc = 80(1)% for the saturated one.
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Appendix

This paragraph briefly comments on the evolution of the anomalous width with the in-
teraction strength. Similarly to the anomalous amplitude, σA is obtained from fitting the
amplitude of the 1D cuts of the anomalous peak at various transverse integrations (Figure
4.9). The final width is the average of the three fitted values along each lattice axis, and its
error is defined as the standard deviation of the mean. The fitted values of σA are reported
on Table B.1 for all the datasets. A clear trend in the data is hardly distinguishable. Un-
fortunately, we did not take datasets at low transfer efficiencies, so we cannot quantify the
effect of the shot-to-shot center-of-mass fluctuations δkcom as we did with the dataset at
U/J = 5. Still, we can compare the experimental values with the theoretical predictions
of the trapped system. We estimate the in-trap BEC size LBEC from the Gutzwiller ap-
proach with our experimental parameters, from which we derive the expected theoretical
size σA,0 in the absence of center-of-mass fluctuations. Except for the U/J = 2 case, the
in-trap BEC size LBEC is found to be globally constant for all. This feature is explained
by the competition between external trapping and interaction energy. Indeed, the increase
of the on-site interaction energy U tends to increase the spatial extent of the BEC, while
this effect is counterbalanced by the increase of the external confinement with the lattice
intensity. Therefore, the theoretical width of the anomalous peak should not vary much
between U/J = 5 and U/J = 15. The experimental width σA follows a similar trend while
its absolute values differ due to the shot-to-shot center-of-mass fluctuations. Although
the latter cannot be properly quantified, we expect them to decrease on increasing U/J
as the stronger external confinement holds the BEC more tightly. This effect could be at
the origin of the larger (resp. smaller) discrepancies between the theoretical and experi-
mental widths for the U/J = 2 (resp. U/J = 15) datasets. Overall, we consider that the
experimental width weakly varies over the U/J values spanned.
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dataset σA × 10−3 [kd] LBEC [d] σA,0 × 10−3 [kd]
U/J = 2 32(1) 20(1) 12(1)
U/J = 5 27(2) 15(1) 16(1)
U/J = 7.5 27(2) 14(1) 17(1)
U/J = 10 30(1) 13(1) 18(1)
U/J = 12.5 32(1) 13(1) 18(1)
U/J = 15 24(1) 13(1) 18(1)

Table B.1: Anomalous RMS widths for the different datasets. The in-trap size of
the condensate LBEC is obtained from the T = 0 Gutzwiller prediction at NBEC = 5×103

and the uncertainty reflects the allowed 30% shot-to-shot fluctuations around this atom
number. The values of σA,0 are obtained from the measured anomalous widths σA and
the estimated center-of-mass shot-to-shot fluctuations δkcom via Equation 4.31.
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Appendix

The computation of anomalous correlations yields a correlation signal whose non-zero am-
plitude g(2)

A (0) − 1 results from the presence of k/-k pairs within the atomic distributions.
This part aims at linking explicitly the anomalous amplitude g(2)

A (0)−1 to the mean num-
ber of k/-k pairs per file ⟨Nk/−k

pairs ⟩. More specifically, the final result of this section is the
relationship between the probability of a depleted atom belonging to a k/-k pair and the
product

(
g

(2)
A (0) − 1

)
⟨NΩk

⟩. The former quantity is expected to increase with the interac-
tion strength according to Bogoliubov’s picture and can be compared with the latter that
we measure in the experiment. We consider a fictitious dataset containing k/-k pairs, on
which we run the anomalous correlations algorithm. The left side of Figure C.1 represents
a 1D view of numerator G(2)

A (δk) of equation 4.22 obtained with this computation. Each
voxel i of the histogram contains on average:

• ⟨Nuncorr
pairs (i)⟩ uncorrelated pairs (represented in blue in Figure C.1) originating from

the auto-correlation of the part of the momentum density inside Ωk. This uncorre-
lated signal corresponds to the result of the denominator computation in Equation
4.22.

• ⟨Nk/−k
pairs (i)⟩ correlated pairs (represented in red in Figure C.1) that denote the number

of k/-k pairs whose sum of momenta belongs to the i-th voxel. Of course, ⟨Nk/−k
pairs (i)⟩

is non-zero only at δk ≃ 0 (or multiples of kd) and decays on the momentum-scale
set by the anomalous correlation length σA.

The procedure to extract ⟨Nk/−k
pairs ⟩ = ∑

i⟨N
k/−k
pairs (i)⟩ is simple. One first delimits a

volume V0 containing the whole anomalous correlation peak (see Figure C.1). Having de-
fined σA as the RMS width of the Bell-shaped anomalous correlation peak, an appropriate
choice is V0 = (6σA)3. Then, the mean number of k/-k pairs per file is given by:

⟨Nk/−k
pairs ⟩ = 1

V0

(∫
V0

[g(2)
A (δk) − 1]d(δk)

) M∑
i=1

⟨Nuncorr
pairs (i)⟩ (C.1)

with M the number of voxels inside V0. The interpretation of this equation is straightfor-
ward: the number of k/-k pairs corresponds to the integral of the normalized anomalous
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with the product
(
g

(2)
A (0) − 1

)
⟨NΩk⟩

amplitude (with a factor 1/V0 since g(2)
A (δk) has no dimension) times the total background

of uncorrelated pairs under the anomalous peak in the numerator histogram. To evaluate
this background, one can remark that the momentum density is almost flat inside Ωk (see
Figure 4.21), and can thus be replaced by:

ρ̄Ωk
= ⟨NΩk

⟩
VΩk

(C.2)

This flatness also implies that the uncorrelated signal is approximately constant in the
small volume V0, where it is equal to the auto-correlation of the momentum density C.2
at δk = 0, namely ⟨NΩk

⟩2/VΩk
. Under this approximation, the total background of un-

correlated pairs in Equation C.1 becomes:

M∑
i=1

⟨Nuncorr
pairs (i)⟩ ≃ V0

VΩk

⟨NΩk
⟩2 (C.3)

Finally, the fact that V0 has been chosen sufficiently large to contain most of the Gaussian-
shaped anomalous correlation peak leads to:

∫
V0

[g(2)
A (δk) − 1]d(δk) ≃

(√
2πσA

)3 (
g

(2)
A (0) − 1

)
=
(√

2π
6

)3

V0
(
g

(2)
A (0) − 1

)
(C.4)

and Equation C.1 turns into:

⟨Nk/−k
pairs ⟩ ≃

(√
2π
6

)3
V0
VΩk

(
g

(2)
A (0) − 1

)
⟨NΩk

⟩2 (C.5)

Therefore, one sees that ⟨Nk/−k
pairs ⟩ can be related to the amplitude of the anomalous corre-

lation function and the mean atom number in Ωk.

Figure C.1: 1D scheme of the normalization procedure. Left: 1D histogram G
(2)
A

whose pixels contain either correlated counts from Bogoliubov pairs (orange shading) or
uncorrelated counts (blue shading). Right: After the normalization, each pixel of g(2)

A

contains one plus the number of k/-k pairs falling inside the corresponding voxel of G(2)
A .

To check the validity of this estimate, Figure C.2 shows a comparison with the one
of Equation 4.37 where the mean number of pair per file is evaluated by subtracting the
number of counts in the numerator and denominator histograms. More specifically, what
is plotted in Figure C.2 is the estimate 4.37 (solid black line) computed for a cubic volume
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centered on k = 0 whose radius corresponds to the x-axis. On increasing this radius,
the difference between the number of counts in both histograms is expected to grow as
long as the radius considered is smaller than the size of the anomalous correlation peak
contained in the numerator. Once the radius exceeds this size, the voxels of the numerator
and denominator have more or less the same number of counts, and the number difference
saturates at the value of ⟨Nk/−k

pairs ⟩. For a typical dataset of 2000 files with 100 atoms
per file in Ωk, the total number of counts in the denominator is ∼ 2000 times larger
than in the numerator. Therefore, this estimate is highly sensitive to the value of the
normalization factor in Equation 4.37. As illustrated in the figure, a 0.3% uncertainty on
this normalization factor (gray shaded area) already significantly impacts the estimate’s
accuracy. On the other hand, the estimate C.5 is plotted as a solid red line, with an
uncertainty (red shaded area) reflecting that of the measurements of

(
g

(2)
A (0) − 1

)
and

⟨NΩk
⟩. This figure shows that both estimates are of the same order of magnitude. This

agreement is also observed for the other U/J values, confirming the link between ⟨Nk/−k
pairs ⟩,

g
(2)
A (0)−1, and ⟨NΩk

⟩. Our initial goal is almost met. The last step consists in multiplying
Equation C.5 by 2/⟨NΩk

⟩ to obtain an explicit formula for the probability of a depleted
atom (hence the factor 2) belonging to a k/-k pair:

Pk/−k =
2⟨Nk/−k

pairs ⟩
⟨NΩk

⟩ ≃ 2
(√

2π
6

)3
V0
VΩk

(
g

(2)
A (0) − 1

)
⟨NΩk

⟩ (C.6)

The only variable in this formula is the product
(
g

(2)
A (0) − 1

)
⟨NΩk

⟩ which is accessible
experimentally for each dataset.

Figure C.2: Comparison between the estimates 4.37 and C.5 of ⟨N
k/−k
pairs ⟩. Within

their uncertainties, both estimates are compatible with each other.
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