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Résumé en français

La localisation d’Anderson est un phénomène qui se produit dans les systèmes désordonnés,

où la fonction d’onde d’une particule quantique (ou d’ondes cohérentes) se localise dans

une petite région de l’espace au lieu de s’étendre. La localisation d’Anderson est due à

l’interférence d’ondes multi-diffusées causée par le désordre dans le système, ce qui peut

conduire à la suppression du transport. L’étude de la localisation d’Anderson a une longue

histoire, qui remonte aux travaux pionniers de Philip Anderson en 1958 [2], lorsqu’il a

prédit que les états électroniques d’un solide désordonné pouvaient être localisés. Depuis

lors, la localisation d’Anderson a été observée dans divers systèmes, y compris les systèmes

électroniques [3, 4, 5, 6], photonique[7, 8, 9, 10, 11, 12], et acoustique[13, 14, 15, 16, 17] au

cours des 50 dernières années. En plus de ces plateformes, l’atome ultrafroid devient un ex-

cellent candidat pour étudier les phénomènes non triviaux liés à la localisation d’Anderson

depuis que le premier condensat de Bose-Einstein a été réalisé [18, 19]. L’atome ultrafroid

est très utile pour simuler la physique de la matière condensée [20, 21]. Le condensat de

Bose-Einstein est une bonne source d’onde de matière cohérente, et la longueur d’onde

de Broglie λdB des atomes peut être contrôlée de nm à µm. Nous pouvons établir le

système d’une dimension à trois dimensions. Il est pratique de générer un potentiel con-

servateur pour les atomes par un potentiel dipolaire optique avec des lasers, et il est facile

de contrôler les paramètres du potentiel, par exemple, la nature (attractive ou répulsive),

la fréquence du piège, la profondeur du piège, et même la forme, etc. L’interaction peut

être réglée par la résonance de Feshbach pour les interactions répulsives et attractives

[22]. Il existe de nombreuses méthodes d’observation, par exemple l’imagerie directe in

situ [23, 24], le temps de vol pour observer la distribution de la quantité de mouvement

[25, 26, 27], la spectroscopie pour mesurer l’énergie, etc. Et les images sont directement

l’imagerie d’absorption ou de fluorescence des atomes capturée dans une caméra CCD.

Tous ces avantages : paramètres contrôlables, potentiel facile à utiliser, interaction ac-

cordable et observation directe, font des atomes ultrafroids un excellent candidat pour
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simuler et étudier expérimentalement la localisation d’Anderson.

Voici les grandes lignes de ce manuscrit :

Chapitre 2 : Ce chapitre donne un aperçu du contexte physique de la localisation

d’Anderson et de la transition d’Anderson en trois dimensions (3D). Il commence par une

brève introduction à la théorie de la localisation d’Anderson, en mettant particulièrement

l’accent sur la transition d’Anderson en 3D. Cela permet de comprendre les concepts de

base et les motivations de l’étude de la transition d’Anderson en 3D. La seconde moitié

du chapitre passe en revue les efforts expérimentaux antérieurs visant à mesurer le seuil

de mobilité de la transition d’Anderson en 3D, en soulignant leurs réalisations et leurs

limites. Le chapitre aborde également les principaux défis et goulets d’étranglement dans

la mesure directe du seuil de mobilité au cours des 10 dernières années et la façon dont le

protocole expérimental de spectroscopie proposé dans notre expérience relève ces défis et

cherche à mesurer le seuil de mobilité.

Chapitre 3 : Ce chapitre présente une vue d’ensemble du dispositif expérimental et du

protocole utilisés dans la recherche. La première section présente brièvement les propriétés

des condensats de Bose-Einstein, jetant les bases du travail expérimental à venir. Le reste

du chapitre se penche sur les détails du cycle expérimental, en fournissant une description

détaillée des étapes expérimentales utilisées pour créer un condensat de Bose-Einstein et

l’observer. Le chapitre couvre les techniques et les méthodes utilisées dans l’expérience,

les procédures et l’équipement utilisé.

Chapitre 4 : Ce chapitre porte sur le speckle optique utilisé dans l’expérience. Le chapitre

commence par examiner les propriétés statistiques du diffuseur utilisé pour générer le

speckle, ce qui permet de bien comprendre les propriétés et les caractéristiques du diffuseur.

Nous examinons ensuite les propriétés du champ de speckle, y compris la distribution de

l’intensité et sa corrélation spatiale, ce qui permet de comprendre en détail le speckle

laser. En outre, le chapitre comprend une description de la mise en œuvre expérimentale

du potentiel de speckle, couvrant l’appareil et les méthodes utilisés pour créer un désordre

dans les atomes.
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Chapitre 5 : Ce chapitre porte sur le transfert de radiofréquences (rf) dans le désordre

dépendant de l’état. Il explique le raisonnement qui sous-tend le choix des niveaux atom-

iques utilisés pour le transfert de rf. Il donne un aperçu du dispositif expérimental utilisé

pour générer le désordre état-dépendant proche de la résonance utilisé dans des recherches

antérieures en 2018. Le chapitre présente les résultats des mesures de la fonction spectrale

publiés en 2018 [28]. En outre, il discute de la limitation principale de cette configuration

de speckle monochromatique, qui empêche les mesures du seuil de mobilité dans cette

plate-forme.

Chapitre 6 : Ce chapitre présente le schéma de speckle bichromatique, qui utilise deux

lasers pour générer un désordre état-dépendant [1] afin de résoudre le problème de la

durée de vie dans le désordre état-dépendant proche de la résonance en 2018. Ce chapitre

démontre que cette approche améliore de manière significative la durée de vie des atomes en

surmontant la limitation clé de la configuration de speckle monochromatique. Il présente

une vue d’ensemble de la mise en œuvre expérimentale utilisée pour vérifier la dépendance

d’état du potentiel de speckle et reproduire le transfert rf effectué en 2018. Il fournit

également des résultats expérimentaux montrant l’amélioration de la durée de vie des

atomes dans le désordre.

Chapitre 7 : S’appuyant sur les résultats du chapitre 6, ce chapitre présente la méthode

utilisée pour mesurer le seuil de mobilité à l’aide d’un potentiel de speckle bichromatique

dépendant de l’état. Il fournit des résultats expérimentaux détaillés et des preuves de

la transition d’Anderson en 3D. Le chapitre démontre que l’estimation du seuil de mo-

bilité basée sur la mesure est en excellent accord avec les prédictions numériques, ce qui

a été l’objectif principal de notre équipe pendant un temps considérable. Cependant, il

aborde également les problèmes techniques actuels et offre des perspectives d’amélioration.

Les chapitres 6 et 7 mettent en lumière les principales réalisations expérimentales de ma

recherche doctorale, menée en collaboration avec mes collègues.
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Chapter 1

Introduction

Anderson localization is a phenomenon that occurs in disordered systems, where the wave

function of a quantum particle (or coherent waves) becomes localized in a small region of

space rather than spreading out. Anderson localization is due to the interference of multi-

ply scattered waves caused by the disorder in the system, which can lead to the suppression

of transport. The study of Anderson localization has a long history, dating back to the pio-

neering work of Philip Anderson in 1958 [2], when he predicted that the electronic states in

a disordered solid could be localized. Since then, Anderson localization has been observed

in a variety of systems, including electronic[3, 4, 5, 6], photonic[7, 8, 9, 10, 11, 12], and

acoustic[13, 14, 15, 16, 17] systems in the past 50 years. In addition to these platforms, the

ultracold atom becomes an excellent candidate to investigate the non-trivial phenomena

related to Anderson localization[29], since the first Bose-Einstein condensate was realized

[18, 19]. Ultracold atom is very useful for simulating condensed matter physics [20, 21].

Bose-Einstein condensate is a good source of the coherent matter wave, and the de Broglie

wavelength λdB of atoms can be controlled from nm to µm. We can establish the system

from one-dimensional to three-dimensional. It is convenient to generate a conservative

potential for atoms through optical dipole potential with lasers[30], and it is easy to con-

trol the parameters of the potential, for example, the nature (attractive or repulsive), the

trap frequency, the trap depth, and even the shape, etc. The interaction can be tuned by

Feshbach resonance for both repulsive and attractive interactions [22]. There are many

ways of observation, for example, direct in-situ imaging[23, 24], time of flight for observ-

ing the momentum distribubution[25, 26, 27], spectroscopy for measuring the energy, etc.

And the images are directly the absorption or fluorescence imaging of atoms captured in

a CCD camera. All these advantages: controllable parameters, easy-to-operate potential,

1



Chapter 1. Introduction 2

Figure 1.1: The observation of Anderson localization in 1d with ultracold
atoms. a. In the experiment of Palaiseau, the disordered potential is generated by laser
speckle. b. The experimental results of Palaiseau: density profile of the localized BEC
after expansion of one second. In the inset, the r.m.s. (root mean square) width of the
profile versus time shows that the expansion of atoms reaches a stationary regime after 0.5
s. c. In the experiment of Florence, the disordered potential is a quasi-periodic potential
combing two lattices of incommensurate frequencies, known as Aubry-André model. J is
the tunneling, and ∆ reprensents the strength of disorder. d. The evolution of BEC at

different strengths of disorder. Figures a and b are from [31], c and d are from [32].

tunable interaction, and direct observation, help the ultracold atoms to become an excel-

lent candidate for simulating and studying Anderson localization experimentally.

The first direct observation of Anderson localization in 1d with ultracold atoms was real-

ized in 2008, in Palaiseau by our team[31] using speckle and in Florence [32] using Aubry-

André model, as shown in figures 1.1. These two experiments marked the beginning of

the study of Anderson localization with ultracold atoms. Later, people tried to observe
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the 3d Anderson localization and attempted to estimate the mobility edge of the Ander-

son transition with ultracold atoms [33, 34, 35]. But these previous experiments share a

common difficulty of loading the atoms in the disorder with a narrow energy distribution.

Because of this problem, their estimates of the mobility edge are all based on measuring

the localized fraction, which means, not direct measurement. And with the broad energy

distribution, one cannot study the critical regime of the Anderson transition. Observing

the Anderson transition and measuring the mobility edge remains a very challenging task

because of some bottlenecks, which have prevented the direct and precise measurement of

the mobility edge for the past decade.

In order to carry out more direct measurements of mobility edge, and to open the possi-

bility of studying the critical regime, our team proposed a spectroscopy scheme: loading

the atoms in the disorder with a narrow energy distribution by an rf-transfer in a state-

dependent disorder, then observing the transport property of the transferred atoms in the

disorder. Our team realized rf-transfer of the atoms in state-dependent disorder by mea-

suring the spectral function in 2018 [28] and demonstrated the energy-resolved loading of

atoms in the disorder. But to observe the transport property, it was not enough because

the set-up for the state-dependent disorder in 2018 was generated by near-resonant speckle

laser, with which the atoms experience strong photon scattering in the disorder, thus de-

stroying the motional wavefunction coherence easily. So the key problem is the photon

scattering lifetime of atoms in the disorder is too short compared to the low dynamics of

the wavefunction in the disorder.

In this thesis, we will see how we improve the scattering lifetime of the atoms in disorder

by two orders of magnitude from using a bichromatic speckle disorder [1]. Then we use

this set-up to study the the 3D Anderson transition and measure the mobility edge.

1.1 Outline

We list the outline of this manuscript:

Chapter 2: This chapter provides an overview of the physical background of Anderson

localization and the Anderson transition in three dimensions (3D). It begins by giving a
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brief introduction to the theory of Anderson localization, with a specific focus on the An-

derson transition in 3D. This serves as a foundation for understanding the basic concepts

and motivations for studying Anderson localization in 3D. The second half of the chapter

reviews previous experimental efforts to measure the mobility edge of the 3D Anderson

transition, highlighting their achievements and limitations. The chapter also discusses

the main challenges and bottlenecks in directly measuring the mobility edge in the last

10 years and how the proposed experimental protocol of spectroscopy in our experiment

addresses these challenges and aims to measure the mobility edge.

Chapter 3: This chapter presents an overview of the experimental setup and protocol

used in the research. The first section briefly introduces the properties of Bose-Einstein

condensates, laying the foundation for the experimental work to follow. The remainder of

the chapter delves into the specifics of the experimental cycle, providing a detailed descrip-

tion of the experimental steps used to create a Bose-Einstein condensate and observe it.

The chapter covers the techniques and methods used in the experiment, the procedures,

and the equipment used.

Chapter 4: This chapter focuses on the optical speckle used in the experiment. The

chapter begins by discussing the statistical properties of the diffuser used to generate the

speckle pattern, providing a comprehensive understanding of the diffuser’s properties and

characteristics. We then examine the properties of the speckle field, including the inten-

sity distribution and its spatial correlation, providing a detailed understanding of the laser

speckle. Additionally, the chapter includes a description of the experimental implementa-

tion of the speckle potential, covering the apparatus and methods used to create disorder

in the atoms.

Chapter 5: This chapter focuses on radio-frequency (rf) transfer in state-dependent dis-

order. It explains the reasoning behind the choice of atomic levels used for the rf-transfer.

It provides an overview of the experimental setup used to generate the near-resonant state-

dependent disorder used in previous research in 2018. The chapter presents the results

of the measurements of the spectral function as published in 2018 [28]. Additionally, it

discusses the key limitation of this monochromatic speckle configuration, which prevents

measurements of the mobility edge in this platform.
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Chapter 6: This chapter presents the bichromatic speckle scheme, which utilizes two

lasers to generate state-dependent disorder[1] to address the problem of the lifetime in the

near-resonant state-dependent disorder. The chapter demonstrates that this approach sig-

nificantly improves the lifetime of atoms by overcoming the key limitation of the monochro-

matic speckle configuration. It presents an overview of the experimental implementation

used to verify the state-dependence of the speckle potential and reproduce the rf-transfer

done in 2018. It also provides experimental results showing the improvement in the life-

time of atoms in disorder.

Chapter 7: Building on the results of Chapter 6, this chapter presents the method used

for measuring the mobility edge using a bichromatic state-dependent speckle potential. It

provides detailed experimental results and presents evidence for the 3D Anderson tran-

sition. The chapter demonstrates that the estimation of the mobility edge based on the

measurement is in excellent agreement with numerical predictions, which has been the

main objective of our team for a considerable time. However, it also discusses the current

technical issues and provides perspectives for improvements. Chapters 6 and 7 highlight

the main experimental accomplishments of my PhD research, conducted in collaboration

with my colleagues.
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Résumé en français



Chapter 2

Anderson localization with

ultracold atoms

In this chapter, we will delve into the topic of Anderson localization with ultracold atoms.

We start by introducing how interference influences the diffusion of particles in disordered

media, which will serve as an introduction to the concept of Anderson localization. We will

then discuss the crucial role that the dimension of the system plays in Anderson localization

and the resulting phase transition in three dimensional system, known as the 3d Anderson

transition. In a three-dimensional system, the wave functions of the system fall into two

distinct phases: localized and diffusive phases. After introducing the theory of Anderson

localization and the Anderson transition, we will review some important experimental

works that have been conducted to investigate Anderson localization and particularly 3d

Anderson transition using the platform of ultracold atoms in speckle potentials [31, 32, 33,

34, 35, 28]. Finally, we will discuss the current challenges and limitations in experimentally

studying the Anderson transition in the last decade[36].

2.1 Microscopic view for the transport in disordered media

We can start with an easy model, a random walk in 1D, to help us understand the diffusion

process. Consider a random walk of a particle in a 1D regular lattice. For each step i,

the particle can move to its left (moving by -a) or right (moving by a) neighbouring sites.

We note the displacement of the particle for each step is δxi, so we have δxi = {a,−a}.
Assuming the diffusion of the particle is isotropic, where the probability of going left and

7
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right are equal: P (δxi = −a) = P (δxi = a) = 1/2. For each step, we can easily obtain

the average displacement and its variance:⟨δxi⟩ = 0

⟨δx2
i ⟩ = a2.

(2.1)

After N steps, the position x(N) of the particle is just the sum of the displacement of all

the N steps:

x(N) =
N∑
i=1

δxi. (2.2)

Each step δxi is assumed to be independent, so {δxi} is an ensemble of independent

random variables. According to the central limit theorem, the position x(N) after N

steps, which is the sum of these independent random variables δxi, tends to a Gaussian

distribution [37]. We can calculate the average position and its variance after N steps:

⟨x(N)⟩ = N⟨δxi⟩ = 0

⟨x2(N)⟩ = N⟨δx2
i ⟩ = Na2.

(2.3)

Define the time for one step as τ , thus the time for N steps is t = Nτ . So the r.m.s.

(root mean square) of the position
√

⟨x2(t)⟩ is proportional to the square root of time:√
⟨x2⟩ = a

√
t/τ . Figure 2.1 is an example of the simulation of a random walk in a 1D

regular lattice.

2.1.0.1 Random walk in disordered media

Having the idea of a random walk in a 1D lattice, now we can generalize to a random walk

in a disordered media in 2D. As shown in figure 2.2 a, we define mean free path ls, which

is the average distance that the particle experiences between two collisions. Suppose the

collision is elastic, so the speed v of the particle is conserved before and after the collision.

Every time the particle collides with the scatterer, its trajectory turns by a diffusing angle

θ. After N collisions, the particle may turn back and completely lose its initial propagating

direction, as shown in figure 2.2 a. We define the average length of this trajectory as the

mean transport path l∗ [38], and we can calculate it:

l∗ = ls + ls⟨cosθ12⟩+ ls⟨cosθ12cosθ23⟩+ ls⟨cosθ12cosθ23cosθ34⟩+ · · ·. (2.4)
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Figure 2.1: Numerical computed 1D random walk. The horizontal axis is time,
one second for each step. The vertical axis is the position x of the particle in the 1D line.

There are 200 realizations and 1000 steps for each one.

The angles {θii+1} are supposed to be statistically identical and independent, so we have:

⟨cosθii+1cosθi+1i+2⟩ = ⟨cosθii+1⟩⟨cosθi+1i+2⟩ = ⟨cosθ⟩2. (2.5)

Then the mean transport path l∗ is just:

l∗ = ls

N→+∞∑
i=0

⟨cosθ⟩i = ls
1− ⟨cosθ⟩

(2.6)

It deserves to highlight the situation of l∗ = ls, meaning that the transport length is equal

to the mean free path in this system. From the expression of l∗ in equation 2.6, l∗ = ls

corresponds to ⟨cosθ⟩ = 0, meaning that the diffusing angle θ is uniformly distributed in

the interval [0, 2π]. This is called isotropic diffusion.

Consider an isotropic diffusion. The displacement of the particle in one step i is δxi. We

can show that the probability P (x) of the particle propagating freely in a distance |x|
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Figure 2.2: Representation of random walk in disordered media. a, Mean free
path ls is the average distance between two collisions. Transport length l∗ is the average
distance after which the particle loses its initial direction of movement. b,. In isotropic

diffusion, the random walk in disordered media is described by {δxi}.

before being scattered by the disorder is :

P (x) =
1

l∗
exp

(
−|x|
l∗

)
, (2.7)

where l∗ is the mean transport path.

Then we can obtain the average displacement for one step and its variance:⟨δxi⟩ = 0

⟨δx2
i ⟩ = 2l∗2.

(2.8)

Since diffusion is isotropic, so each step is independent of others. Using the same argument

as before, the sum of N independent steps tends to a Gaussian distribution, therefore, the

average position and its variance can be calculated as:

⟨x⟩ = N⟨δxi⟩ = 0

⟨x2⟩ = N⟨δx2
i ⟩ = 2Nl∗2.

(2.9)
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We remark that similar as the situation of random walk in 1D lattice, we have
√
⟨x2⟩ ∝

√
t.

Now we define the diffusion constant D by ⟨x2⟩ = 2dDt. We introduce τ∗, the mean

transport time, defined by τ∗ = l∗/v, where v is the average speed of the particle. So

this mean transport time can be interpreted as an average time between two isotropic

collisions. For N collisions, the time is t = Nτ∗. Then the diffusion constant D can be

written as:

D =
vl∗

d
. (2.10)

We see that the more disordered the media is, the smaller the mean transport length l∗

would be, so the diffusion constant D is small in strongly disordered media. d is the di-

mension of the system (in our example here, d=2).

2.1.0.2 Interference and weak localization

So far, the diffusion we have described is for classical particles or incoherent propaga-

tion of classical waves. Now we consider the situation of a coherent propagation for

quantum particle, which has a finite de Broglie wavelength λdB = 2π/k. So now we

need to take into account the interference of different paths experienced by the quan-

tum particle when propagating in the disordered media, and the interference will modify

the dynamics of diffusion that we have described in the previous section. Consider the

probability P (x,x′) for a quantum particle leaving from position x to position x′ in the

disordered media. As illustrated in figure 2.3 a, there are an infinite number of paths

from position x to position x′. Each path (j) corresponds to an amplitude Aj = |Aj |eiϕj ,

where ϕj is the phase accumulated for the quantum particle experiencing the path (j).

The probability for path (j) is the square of the norm of the amplitude, Pj = |Aj |2. Thus
by summing over all the paths, we can get the total probability P (x,x′) for a quantum

particle in disordered media leaving from position x to position x′:

P (x,x′) =

∣∣∣∣∣∣
∑
j

Aj

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
j

|Aj |eiϕj

∣∣∣∣∣∣
2

=
∑
m,j

|Am||Aj |ei(ϕj−ϕm)

=
∑
j

|Aj |2 +
∑
j ̸=m

|Aj ||Am|ei(ϕj−ϕm).

(2.11)
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The first term is very classical and trivial, just the independent sum of the probability of

all the paths. The second term describes the interference between path (j) and path (m).

Consider that the phase ϕ for one path is uniformly distributed over [0, 2π], and the paths

are independent of each other, so the phase difference between (j) and (m) ϕj −ϕm is also

uniformly distributed over [0, 2π]. As the result, in the average of realizations of disorder,

we have ei(ϕj−ϕm) = 0, thus the probability P (x,x′) for a quantum particle going from x

to x′ is:

P (x,x′) =
∑
j

|Aj |2. (2.12)

Nevertheless, things are different if we consider x = x′. We want to know the probability

of a quantum particle turning back to its original point P (x,x). As illustrated in 2.3 b,

consider path (1), which is a loop, meaning the particle turns back to its original point.

There exists path 2, which is the same path as path (1) but circulates in the opposite

direction. In this case, |A1| = |A2| and ϕ1 = ϕ2. There are an infinite number of such

loops for the particle turning back to its origin, such as path (3), and for each loop,

there always exists its time reversal symmetrical path so that the pair of the time reversal

symmetrical loops always have the same amplitude and accumulate the same phase. Each

loop interferes with its time reversal symmetrical path constructively. As the result, the

second term in equation 2.11 for the probability P (x,x) is not zero in average anymore :

P (x,x) =
∑
j

|Aj |2 +
∑
j ̸=m

|Aj ||Am|ei(ϕj−ϕm)

= 2
∑
j

|Aj |2.
(2.13)

Compared with P (x,x′) where x ̸= x′, the probability of turning back to origin P (x,x)

is coherently enhanced. So we can conclude when propagating in disordered media from

position x to x′, the probability of paths with loops, as illustrated in figure 2.3 c, are

coherently enhanced. Finally, the mechanism of enhanced return to the origins makes

the diffusion of a particle with a finite wavelength λdB less efficient than the diffusion of

a classical particle or incoherent propagation of classical waves in the disordered media.

This is the mechanism for weak localization. Particularly, the weak localization effect

introduces a correction for the diffusion constant D:

D = D0 − δD, (2.14)
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Figure 2.3: Coherently enhanced ’loops’ and weak localization. a, The prop-
agation amplitude between x and x′ is determined by the interference between pairs of
paths. The interference between paths (1) and (2) does not participate in the transport
on average over the realizations of disorder. Paths (3) and (4) participate in the first term
of 2.11. b, The pairs (1,2) and (3,4) are time-reversal symmetrical paths of each other.
Their constructive interference doubles the probability of return to the origin 2.13. c.
Formation of a quantum crossover backscattering loop during propagation from x to x′,

a mechanism responsible for the correction of weak localization 2.15.

where D0 is the diffusion constant for the classical particle that we have introduced in the

previous section, see equation 2.10, and δD is the correction due to the weak localization.

The correction of the weak localization actually depends on many microscopic details of

the system, particularly on the dimension d and the size L of the system. We can show

that [38]:

δD/D0 =


O(L/l∗) in 1D,

O
(

1
kl∗ ln

L
l∗

)
in 2D,

O
(

1
(kl∗)2

)
in 3D.

(2.15)

This strong dependence of transport properties on the system’s dimension is critical, and

we will discuss it in the following.

2.1.0.3 Anderson localization

The correction of weak localization in equation 2.15 reveals a remarkable phenomenon:

the correction δD can be equal to the classical diffusion constant D0 under some certain

conditions, and thus the total diffusion constant D drops to zero, then the diffusion of the

quantum particle in disordered media is completely suppressed. The complete suppression

of the diffusion is called Anderson localization. In the regime of Anderson localization,

the wave function is localized around the original point, and the profile of the wave function
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tends to exponential decay in space [39]:

|ψ(x)|2 ∝ e−x/Lloc , (2.16)

Lloc being a typical length of the profile of localized wave function, called localization

length.

The equations 2.15 tells us that the correction of diffusion δD depends on the dimension

of the system, so now we discuss how diffusion is affected by dimensions.

For d=1, according to equations 2.15: δD/D0 = O(L/l∗). So we have δD ∼ D0 as long as

L ∼ l∗. The localization length appears Lloc ∼ l∗, meaning that under a distance Lloc, the

diffusion constant drops to zero (we can show that Lloc = 2l∗ [39]). The localization in 1d

is very efficient so we can observe Anderson localization even in a very weak disorder in

1d [31, 32] .

For d =2, according to equations 2.15: δD/D0 = 1
kl∗ ln(L/l

∗). To suppress the diffusion:

δD(Lloc) ∼ D0, we have the localization length Lloc ∼ l∗exp(kl∗). We can remark that for

the weak disorder (kl∗ ≫ 1), the localization length Lloc can be much longer than l∗, even

longer than the system size. The localization is much less efficient in 2d and therefore to

observe localization in 2d, generally, we need strong disorder[40]. It is very hard to observe

Anderson localization in a weak disorder in 2d.

In this manuscript, the situation that interests us most is d=3, according to the equations

2.15: δD/D0 = O
(

1
(kl∗)2

)
. We see that the correction of diffusion depends on kl∗, which

represents the strength of the disorder. In a strong disorder where kl∗ < 1, we have

δD ∼ D, the diffusion is suppressed and the localization can happen. In a weak disorder

where kl∗ ≫ 1, we have δD0 ≪ 1, the correction of diffusion is too weak to suppress the

diffusion so there is no localization in the weak disorder. It is therefore expected that

there is a phase transition in 3d, between the two regimes: localization phase and diffusive

phase, separated by the criterion: kl∗ ∼ 1. This is called Ioffe−Regal criterion [41]. In

the next section, we will study this phase transition (Anderson transition) from the point

of view of scaling theory.
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Figure 2.4: Scailing function β of the conductance g. In the limit of g ≫ 1,
the conductance recovers Ohm’s law, β ∼ d − 2. The sign of β determines the system
to be metal or insulator. For d ≤ 2, β is always negative, in the limit of infinite size,
β ∼ −L/Lloc, the system is localized (insulator). For d = 3, there is a critical value lngc
for which the scaling function β changes the sign, which is the mark of a phase transition

2.1.0.4 Scaling theory for Anderson transition

The scaling theory can provide a more general and formal approach to studying how the

localization properties depend on the dimension of the system.

We define a dimensionless conductance g [42]:

g(L) =
G(L)

e2/2ℏ
, (2.17)

where G = 1/R is the classical conductance of the system, L is the size of the system.
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According to Thouless [42],

g ∼

Ld−2 g ≫ 1

e−L/Lloc g ≪ 1
(2.18)

The regime where g ≫ 1 refers to the classical diffusion where the correction of localization

is negligible, and the results recover the Ohm’s law.

We define the scaling function β[43]:

β(g) =
dg/g(L)

dL/L
=

d lng

d lnL
. (2.19)

The sign of the scaling function β can define the system to be metal or insulator. For β < 0,

the diffusion of the particles in the system is slowed down when propagating through the

disordered media until g becomes small enough to stop the diffusion. Therefore the system

is insulator (localized) when β < 0. On the contrary, for β > 0, the diffusion accelerates

when propagating through the disordered media, and therefore, the system is metal (dif-

fusive).

In Abrahams et al. [43], the authors present the plot of β(g) versus lng for d=1, d=2 and

d=3, as illustrated in figure 2.4. According to the asymptotic expressions of conductance

g in equations 2.18, the asymptotic curves for β can be expressed as:

β(g) ∼

d− 2 g ≫ 1

−L/Lloc g ≪ 1
(2.20)

We can remark that for d=1 and d=2, β is always negative. Therefore, when the wave

(or quantum particle) propagates through the media, it tends toward the left part of the

curves in figure 2.4, where β ∼ −L/Lloc. The system is localized (insulator) for d=1 and

d=2. Actually, d=2 is more sensitive than d=1. In the regime of weak disorder where

g ≫ 1, even though the scaling function β(g) is still negative, it can be very close to zero.

In this case, if the time-reversal symmetry is broken by some perturbation, e.g. spin-orbit

coupling or magnetic impurities[44], or when a time dependent potential is applied to the

system (e.g., using high frequency rf fields)[45, 46], the weak localization loops can be

suppressed, and the scaling function β(g) can fluctuate to positive values and thus these
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Figure 2.5: Anderson transition in terms of energy. a, The mobility edge Ec is the
critical energy separating the localized states from the diffusive states. b, Approaching
the mobility edge Ec, the localized states have a localization length that diverges with
the exponent ν, and the diffusive states have a diffusion constant that scales with the

exponent s.

perturbation can induce a phase transition in 2d .

3. In d = 3, some states have β > 0, thus they are metallic states, while other states have

β < 0 and they are insulating states. So a well-defined phase transition exists in d=3.

The critical point corresponds to β(gc) = 0.

We can also look at the phase transition in the picture of energy. As shown in figure 2.5 a, in

the spectrum for a three-dimensional disordered system, Ec is the critical energy (mobility

edge) of the phase transition. The eigenstates with energies above Ec are diffusive, and

those lower than Ec are localized states. In Abrahams et al. [43], the authors predict that

near the critical regime, as shown in figure 2.5 b, the diffusion constant D and localization

length εloc follow scaling laws with energy:

εloc ∝ |E − Ec|−ν

D ∝ |E − Ec|s.
(2.21)

where ν and s are called critical exponents. Although the scaling theory predicts the exis-

tence of the phase transition from a general picture, it cannot predict the exact value for

the critical exponents. There is no exact theory that can describe well the critical regime

of the Anderson transition. Some numerical work [47, 48] predicted that the critical ex-

ponents s = ν = 1.58. Measuring the critical exponent is very difficult in experiments.

So far, there is only experimental validation in the system of periodically driven quantum
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kicked rotors, exhibiting an analog of localization in momentum space[49]. By modulating

the amplitude of the kick quasi-periodically in an appropriate way[50], it is possible to ob-

serve a dynamical localization transition which is believed to be in the same universality

class as the Anderson transition. But the direct experimental measurement in real space

is challenging and remains an open question.

2.2 Ultra cold atoms: a good platform to study Anderson

localization

After the publication of the paper of P.W.Anderson [2] in 1958, observations of Anderson

localization and investigation towards the Anderson transition were first performed in elec-

tronic systems in the experiments in the domain of condensed matter physics [3, 4, 5, 6].

Although there are many beautiful results in the experiment using electrons, there are

always some difficulties that are not easy to bypass. It is hard to eliminate the Coulomb

interaction of the electrons, which can induce dephasing to the wavefunction. And it is

not easy to control the disorder due to the phonon modes of the lattice.

Experiments with classical waves have also been a candidate for studying Anderson lo-

calization since the 90s, with light [7, 8, 9, 10, 11], microwaves[12, 51, 52] and acoustic

wave[13, 14, 15, 17, 16]. Compared with electronic systems, interaction is naturally absent

in these systems. Nevertheless, it has been shown recently that the vectorial nature of the

light can kill the Anderson localization in 3d [53].

Among these experimental platforms, ultracold atom becomes an excellent candidate to

explore Anderson localization. The first direct observation of Anderson localization with

ultracold atoms was realized at Institut d’Optique in Palaiseau [31] and at LENS in Flo-

rence [32] in 2008 in one-dimensional systems. These two experiments use different tech-

niques to generate the disorder. In Palaiseau, they use laser speckle while in Florence

they use a bichromatic lattice to play the role as the disordered potential. A few years

later, the experimental observations of 3D Anderson localization were realized in 2011 in

Urbana-Champaign[35] , in 2012 at Institut d’Optique in Palaiseau [33], and at LENS in

Florence in 2015 [34]. For 2D Anderson localization, as we have explained above in section

2.1.0.3, the localization length Lloc can be extremely large (> 100µm) in the regime of
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weak disorder, so it is very hard to observe Anderson localization in weak disorder. To

my knowledge, in 2d, with ultracold atoms, there has only been the experimental ob-

servation of Anderson localization in the regime of strong disorder [40]. There are some

important experimental studies in 2d in the regime of weak localization, e.g., coherent

backscattering[54]and the role of time-reversal symmetry in weak localization[55]. In this

section, we will focus on the developments of the experimental investigation in Anderson

localization in 3d with ultracold atoms. We will review the three experimental works in

3d mentioned above, and discuss their achievements and limitations. At the end of the

section, we will discuss the bottlenecks of the study for the Anderson transition, and we

will briefly explain how we overcome these bottlenecks to go further toward the mobility

edge of the Anderson transition with our state-of-the-art platform.

There is another platform to study Anderson localization with cold atoms, called dynamical

localization, using quantum kicked rotor. A quantum kicked rotor is realized by placing

cold atoms in a pulsed standing wave. Each pulse gives a kick to the atoms. In momentum

space, the atom experiences a random walk, and the momentum distribution diffuses, as

shown in figure 2.6. If the pulse is periodically driven, one observes the suppression of

the diffusion in momentum space. It is shown that there is a complete analogy between

Anderson localization (in real space) and dynamical localization (in momentum space)

[56]. It was experimentally observed with cold atoms in 90s[50, 57, 58].

In the platform of quantum kicked rotor, it is easy to extend from 1d to 3d by performing a

quasi−periodic driven. In the team in Lille, with the quantum kicked rotor, they observed

the Anderson transition and measured the critical exponent. They get ν = 1.4± 0.3. This

is so far the only experimental measurement of the critical exponents of the Anderson

transition that is compatible with numerical calculations [59, 60].

2.3 3D Anderson localization and the Anderson transition

So far, three experiments of Anderson localization in 3d have been performed with ultra-

cold atoms, using laser speckle[61] to generate disordered potential [33, 34, 35]. These

three experiments have tried to demonstrate the existence of the phase transition and

measure the mobility edge Ec separating the diffusive and localized states, as illustrated
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Figure 2.6: The time evolution of the momentum distribution. The atoms are
subjected to periodic kicks, and that induces a random walk in the momentum space.
After a certain number of kicks, the momentum distribution is frozen and has an expo-

nential profile. The figure is from [58].

in fig 2.5 a. In this section, we will present the three experiments’ main results and show

the advantages and drawbacks of each. At the end of the section, after reviewing these

important experimental investigations, we will discuss the bottleneck limiting us to going

toward the critical regime and measure the mobility edge Ec.

2.3.1 Experiment of Urbana-Champaign

The experiment at the University of Illinois Urbana Champaign in 2011 [35] was performed

with ultracold 40K in speckle potential. The authors’ analysis is based on observing a

double structure of the atomic density profile for expansion time t ≥ 20ms. The profile of

the final atomic density is interpreted as the coexistence of localized and diffusive states,

as shown in figure 2.7. Defining the localized fraction floc = Nloc/(Nloc + Ndiff), it is

possible to estimate the mobility edge Ec by noting that only energy atoms lower than Ec

remain localized:

floc =

∫ Ec

−∞
dE DE(E), (2.22)
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Figure 2.7: The experimental observation of Anderson localization in 3d in
Urbana Champaign.

where DE(E) is the energy distribution of atoms in the disorder.

We see that to determine Ec, it is required to know the energy distribution of atoms

DE(E). The energy distribution of atoms DE(E) can be expressed as:

DE(E) =

∫
ddk

(2π)d
A(k, E)Dk(k), (2.23)

where A(k, E) is the spectral function, corresponding to the probability of a particle with

momentum k and energy E. In the presence of the disordered potential, the spectral

function is far different from that of free particles. But the authors hypothesize that their

slow introduction of the disordered potential does not modify the spectral function so that

it remains the same as for free particles:

A(k, E) = δ

(
E − ℏ2k2

2m

)
. (2.24)

Some criticisms have been made regarding the interpretation of their experimental data
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[36, 62]. Notably, this hypothesis for the spectral function is too much naive, and it makes

them use a completely incorrect energy distribution of atoms DE(E) to estimate the mo-

bility edge Ec. Actually, since 2018, in our experiment, the team has investigated a lot

in spectral function. The numerical prediction and experimental results show that the

spectral functions are deeply modified from that of free particles [28], especially for the

strong disorder. We will see what the spectral functions look like in chapter 5. Another

important imperfection is their expansion time, only 20ms, which is too short to measure

the slow dynamics of the diffusive states. Close to the critical regime, the order of mag-

nitude for the diffusion constant D ∼ 250µm2/s. The distance for the diffusion after a

time t is l ∼
√
2dDt, where d = 3 (dimension = 3). So we can estimate that for 20ms, the

diffusion distance is only a few µm, making the difference between localized and diffusive

states not evident. We thus conclude that some severe imperfections impair these results.

2.3.2 Experiment of Palaiseau

The second experiment to realize Anderson localization in d=3 was performed in Palaiseau

in 2012 [33]. The experiment measured the temporal evolution of the expansion of a Bose-

Einstein condensate of 87Rb in a speckle potential. In this experiment, the disorder is

composed of two crossed speckle laser fields[61, 63] to make the 3D disorder more isotropic.

The wave packet of Bose-Einstein condensate is prepared with a narrow energy distribution

in the absence of disorder. The BEC is diluted before illuminating the disordered potential

to lower the interaction energy. Hence, as a result, the energy distribution is very narrow,

and the atomic sample can be considered to be a plane wave with |k = 0⟩. Then the

disorder is applied abruptly, and the atoms are left to expand in the disorder for as long

as 6 s. Magnetic levitation can hold the atoms against gravity, which is necessary for the

extremely long expansion time. Since the disorder is applied abruptly (within 100µs), the

energy distribution of the atoms in the presence of the disorder is very broad, extending

on both sides of the mobility edge, resulting in a localized fraction and a diffusive fraction

existing together. The temporal evolution of the atomic density is:

n(x, t) = flocni(x) + nD(x, t), (2.25)

where ni being the initial atomic density and nD being the atomic density for the diffusive

atoms.
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Figure 2.8: Measure Ec in the experiment of Palaiseau. a, The expansion of
atoms for 6s with weak (VR/h = 135Hz) and strong (VR/h = 680Hz) disorder. b, Time
evolution of the mean squared widths along y (blue circles) and z (red diamonds) of the
column density profiles, and their fits by straight lines, yielding the diffusion coefficients

along y and z. c, Time evolution of the central density of atoms (green circles).

The localized fraction is estimated from the evolution of the central atomic density, fitted

by an asymptotic function floc + A/t in the long time limit, as shown in figure 2.8 c.

Knowing the localized fraction, to estimate the mobility edge, it is still required to know

the energy distribution of atoms due to the relation:

floc =

∫ Ec

−∞
dEDE(E). (2.26)

Since the atomic sample can be considered to be a plane wave with |k = 0⟩, the relevant

energy distribution of atoms is for |k = 0⟩:

DE(E) = A(k = 0, E). (2.27)

In this situation, one needs to know the spectral function of the atoms at null momen-

tum. In this work [33], the authors calculate A(k = 0, E) numerically, and then using
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the knowledge of spectral function, they estimate the mobility edge Ec from the measured

localized fraction using equation 2.26.

Compared with the experiment in Urbana-Champaign [35], in this work, the 6s’ expansion

time is long enough, and the numerically calculated spectral function is more reasonable

than the naive hypothesis in [35]. But the observation is very indirect because the spectral

function is numerically calculated but not directly measured. And the estimation of the

mobility edge relies on the measurement of the localized fraction due to the broad energy

distribution of atoms in the disorder.

2.3.3 Experiment in Florence

The third experiment for Anderson localization in d = 3 and measuring the mobility edge

for Anderson transition with ultracold atoms was realized in 2015 in Florence [34]. This ex-

periment shares some similarities with the previous two, e.g., they also use crossed optical

speckles as disordered potential and estimate the mobility edge by counting the localized

fraction. But they have a narrower energy distribution of atoms in disorder, and more

importantly, they demonstrate a new method of spectroscopy to study the mobility edge.

In this experiment, they use ultracold 39K, whose interaction can be conveniently adjusted

by Feshbach resonances. Their measurement procedure is shown in figure 2.9. After the

preparation of BEC, they ramp down the trap and interaction while illuminating the

disorder in a quasi-adiabatic way. At the end of the ramp, the energy distribution of

atoms in the disorder is narrow. This quasi-adiabatic loading of disorder allows loading

the majority of atoms into the low energy states, as illustrated in figure 2.9 a.I.

Once loading the atoms into the disorder with a certain energy distribution DE(E), as

in the previous experiments, it is required to know the energy distribution to determine

the mobility edge. In this experiment, they measure the momentum distribution of atoms

Dk(k) directly. According to the equation 2.23, to determine the energy distribution

DE(E) one needs to know the spectral function A(k, E). In this experiment, the authors

numerically calculate the spectral function A(k, E), as illustrated in figure 2.9 b.
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Figure 2.9: Experiment in Florence. a, The experiment sequence. b, The re-
construction from the measured momentum distribution of atoms Dk(k) to the energy
distribution of atoms DE(E) via the spectral function A(k, E). c, The initial energy dis-
tribution of atoms DE(E) (gray curve) and the energy distribution of atoms DE(E, ℏω)

after the modulation by ℏω (green curve).

The second step is modulating the disordered potential periodically with frequency ω/2π,

in a duration T = 500ms to excite the atoms by an energy ℏω, as shown in figure 2.9

a. After the excitation, the energy distribution of atoms in disorder is modified from the

initial energy distribution, and the new energy distribution DE(E, ℏω) is:

DE(E, ℏω) = (1− α)DE(E) + αDE(E − ℏω), (2.28)

where α being the fraction of atoms excited by an energy ℏω, DE(E − ℏω) being the

corresponding shifted energy distribution for the excited atoms. The illustration of the

distribution of energy after excitation DE(E, ℏω) is shown in figure 2.9 a.II.
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The excitation of ℏω can transfer some atoms from the initial low energy states to the

energies above the mobility edge Ec to be diffusive states, as shown in figure 2.10 a. There-

fore the third step is to leave disorder at fixed value for another 0.5s, allowing the atoms

transferred to diffusive states to expand enough to be effectively invisible to the imaging

system. The transfer to diffusive states is hence detected as atom losses.

Figure 2.10 a shows an example of the variation of the final atom number N as a func-

tion of the transferred energy ℏω. To determine Ec, they fit these data with floc =∫ Ec

−∞ dEDE(E, ℏω) where the mobility edge Ec is the only free parameter. Then they re-

peat the measurements for different amplitudes of disorder, and at the end, they get the

mobility edge for different amplitudes of disorder, as shown in figure 2.10 b.

This experiment proposed a new method of studying Anderson’s transition by selecting

the energy of atoms in the disorder with resolved energy. However, the disorder needed

to reach localization is strong so they still end up with a broad energy distribution in the

disorder. Because of the low energy resolution, their measurement of the mobility edge

is still by counting the localized fraction. And as the authors remark in their paper [34],

in this experiment, the expansion time is 500ms, not long enough to distinguish all the

diffusive states. Similar to the experiment in Palaiseau, their estimation of the mobility

edge relies on numerically calculated spectral functions. So although this experiment is

more direct than the previous ones, it is still an indirect measurement.

2.4 Synthesis

The three experiments introduced above aimed to measure the mobility edge of the Ander-

son transition in 3D. Pasek et al. [36] calculated the mobility edge Ec numerically for differ-

ent amplitudes of disorder VR. They demonstrated that the relation between the mobility

edge and the amplitude of disorder follows a universal scaling law: Ec/VR = F(VR/Eσ),

where VR is the amplitude of the disorder, and Eσ is a constant known as the ”correlation

energy” (this correlation energy Eσ will be discussed in section 7.1.1). They compared

the experimental results in the three experiments with the numerical calculations of the

mobility edge, as shown in figure 2.11.
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Figure 2.10: Determination of Ec in Florence. a. A fraction of the atoms get
transferred by energy ℏω, due to the modulation of the potential of frequency ω/2π.
After the modulation, the atoms are distributed with a new energy distribution. Some
of the atoms can be transferred to diffusive states (with energy above mobility edge Ec).
The figure of floc shows the fraction of atom number remaining after the expansion of
0.5s in the disorder. We see a saturation of the localized fraction floc at transfer energy
ℏω∗, meaning that it transfers maximum atom number to diffusive states, corresponding

to ℏω∗ = Ec − E0. b. Measuring mobility edge for different amplitudes of disorder.

As shown in figure 2.11, there is a significant discrepancy by orders of magnitude between

the mobility edge measured by the team in Urbana Champaign (green dots) and the nu-

merical curve. As previously discussed, their hypothesis for the spectral function is too

simplistic and the duration of the expansion of atoms in disorder is only 20ms, which is too

short to observe the difference between the localized and diffusive states. These imperfec-

tions can explain the strong overestimation of the mobility edge. The experimental results

in Palaiseau (red curve) have a fair agreement with the numerical work of Pasek et al. [36].

Nevertheless, the numerically calculated spectral function still makes the measurement of

the mobility edge indirect. In Florence, they used a spectroscopic method, and their

experimental results present a qualitative agreement with the numerical curve. However,

their results may overestimate the mobility edge due to the short expansion time of 500ms.

In all of these experiments, the mobility edge is estimated by measuring the localized

fraction floc, which is not direct measurement. That is due to the coexistence of localized

and diffusive phases caused by the broad energy distribution of atoms in the disorder.
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Figure 2.11: Comparison between numerical simulations and experimental
results for the mobility edge. Eσ is correlation energy. The horizontal axis is the
rescaled amplitude of disorder. The vertical axis is the rescaled mobility edge. The
black dashed curve is the numerical simulations by Pasek et al. [36]. The red line is
the experimental results of Palaiseau [33]. The blue dots are the experimental results of
Florence [34]. The green dots are the experiment results of Urbana-Champaign [35].

To perform a more direct measurement of the mobility edge, it is crucial to narrow the

energy distribution of atoms in the disorder. Additionally, to determine the energy dis-

tribution of atoms DE(E), knowledge of the spectral function A(k, E) is necessary, which

is calculated in these three experiments instead of being directly measured. Therefore,

these experiments are not direct measurements of mobility edge, and to study the critical

regime, new experimental approaches that allow for high resolution of energy distribution

and the selection of energy of atoms in disordered potential are needed.

Our team proposes a high-resolution spectroscopy method for studying the Anderson lo-

calization transition. The method is illustrated in figure 2.12. We first prepare atoms in

an initial state |i⟩ with a well-defined energy Ei, free of disorder. Then, we use radio-

frequency (rf) transfer to load some atoms into a final state |f⟩ within the disordered
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Figure 2.12: The scheme of our spectroscopy method. The atoms are prepared
in an initial state |i⟩, with energy Ei, with momentum |k = 0⟩. The rf with energy ℏω

transfers some atoms to a state |f⟩, with energy Eα.

potential with high energy resolution. This ensures that the atoms in the disorder have

a much narrower energy distribution than in previous experiments, making it possible to

distinguish between purely localized and diffusive states a priori. By expanding the atoms

for sufficient duration in the disordered potential with a fixed amplitude, we can directly

probe the transport properties of the state |Eα⟩ and identify it as diffusive or localized.

By controlling the rf frequency, which corresponds to the transfer energy ℏω, we can select

the desired energy to load. By scanning across the spectrum of the disorder, we can then

locate the mobility edge. Additionally, this method enables us to measure the spectral

function A(k = 0, E) directly, rather than calculating it numerically. This can be used

to calibrate the amplitude of disorder VR, which is necessary for determining the mobility

edge (as we will see in Chapter 5). This approach may also open up opportunities for

studying the critical regime in the near future.



Chapter 3

Preparation of Bose-Einstein

condensate

In the previous chapter, we have introduced the physical background of Anderson localiza-

tion briefly and we have especially reviewed the important experimental investigation using

ultracold atoms. In this chapter, firstly, we recall the main properties of Bose-Einstein

condensate. Secondly, we introduce our experimental cycle.

3.1 Bose-Einstein Condensate

A Bose-Einstein condensate is a state of matter when an ensemble of bosons is cooled to

ultra-low temperature, that a macroscopic fraction of bosons occupies the lowest state. To

describe a Bose-Einstein condensate, we need to first know its statistics.

3.1.0.1 Statistics for Bose-Einstein condensate

Bosons and fermions follow different quantum statistics. Fermions follow Fermi-Dirac

distribution, while bosons follow Bose-Einstein distribution. The average population Nn

of bosonic particles occupying the energy level En is:

Nn =
gn

e(En−µ)/kBT − 1
, (3.1)

30
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where gn is the degeneracy in the energy level En, and µ is the chemical potential. The

chemical potential can take the values from −∞ to the energy of the ground state E0.

For the chemical potential higher than the energy of ground state µ>E0, the population

of the atoms on the ground state becomes negative, so there is no physical meaning.

Consider the particle number in all the excited states:

Ne =
∑
n̸=0

Nn =
∑
n̸=0

gn

e(En−µ)/kBT − 1
. (3.2)

in the situation µ<E0, there exists an upper limit Nmax
e for the number of particles that

can occupy all the excited states:

Ne ≤ Nmax
e =

∑
n̸=0

gn

e(En−E0)/kBT − 1
. (3.3)

We can see that the upper limit for the number of particles that can occupy the excited

states, Nmax
e , becomes less when the temperature T is lower. When the temperature T is

low enough so that Nmax
e < N , thus all the excited states are saturated, then the atoms

have to occupy the ground state E0. When µ → E0, the number of particle that can oc-

cupy the ground state N0 = g0
e(E0−µ)/kBT−1

can tend to +∞. Thus a macroscopic number

of particles gather on the ground state to form a macroscopic wavefunction. That is how

Bose-Einstein condensate forms.

Consider a perfect gas in a trap to have a clearer image of the transition to Bose-Einstein

condensate. We can define the average de Broglie wavelength of the particles λdB, which

depends on the temperature of the gas:

λdB =

√
2πℏ2
mkBT

. (3.4)

As shown in figure 3.1, when the temperature of the gas is high, the average wavelength

of particle λdB is small compared to ⟨r⟩, the average distance between the particles in the

trap. But when the temperature becomes lower, λdB increases. Until the temperature

reaches a critical value Tc, where λdB ≃ ⟨r⟩, the wavefunction of individual particles

overlaps with others. A portion of the particles condensate into the ground state, and the

phase transition occurs at temperature Tc. In a 3-d harmonic trap, this condition for the
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Figure 3.1: Phase transition to BEC. When temperature T is lower than the critical
temperature Tc, ⟨λdB⟩ is comparable to with ⟨r⟩, so it becomes impossible to distinguish
different particles in real space, and the particles gather to the fundamental state E0.

phase transition to condensate can be written as:

nλ3dB ≥ 1, (3.5)

nλ3dB is called phase − space density. When the gas becomes colder and colder, phase-

space density becomes larger, and the wavefunction of particles becomes more degenerate.

In the end, a macroscopic number of particles condensate on the ground state, that is a

Bose-Einstein condensate.

3.1.0.2 Gross-Pitaevskii equation for Bose-Einstein condensate

The last part explains how an ideal Bose gas in a 3-d harmonic trap without interaction

transitions to Bose-Einstein condensate. But in reality, as shown in figure 3.1, below the

critical temperature Tc, the particles accumulate heavily on the ground state in the trap,

and that will result in a drastic increase of the particle density so that we cannot ignore

the interaction between the particles anymore. If the gas is dilute enough, the interaction

between the particles can be treated as collisions at low energy, which is an s-wave collision.

In this regime, the interaction between particles is considered contact interaction and can

be described as U(x1−x2) = gδ(x1−x2) [64]. The coefficient g characterizes the strength



Chapter 3. Preparation of Bose-Einstein condensate 33

of the contact interaction, and g = 4πℏ2
m as [65], with as the scattering length for the s-

wave collision between the particles. Even though the particle density of Bose-Einstein

condensate n is high, in the order of 1019 to 1021m−3, the scattering length is generally

small, so that na3s ≪ 1. So in the general case, the scattering length is much smaller than

the average distance between the particles in BEC, satisfying the dilute condition. For

example, for the BEC of 87Rb, the scattering length is about 5×10−9m, na3s ∼ 10−4 to

10−6, much smaller than one.

In the regime of dilute bosonic gas, using mean field approximation, one can describe the

gas by a nonlinear Schrödinger equation, the famous Gross-Pitaevskii equation [66, 67]:[
− ℏ2

2m
∆+ V (x) + g|ϕ0(x)|2

]
ϕ0(x) = µϕ0(x), (3.6)

where ϕ0(x) is the macroscopic wave function for the Bose-Einstein condensate and µ

is the chemical potential. The particle density is n(x) = |ϕ0(x)|2. The nonlinear term

g|ϕ0(x)|2 is from the mean-field approximation for interaction. For an individual particle,

its interaction with other particles can be treated approximately as a pseudo-potential

applied to this particle. So the mean-field approximation helps to simplify a many-body

problem to a one-body nonlinear Schrödinger equation.

3.1.0.3 Thomas-Fermi regime

Consider a Bose-Einstein condensate in a harmonic trap [65]. In Gross-Pitaevskii equation

3.6, the term of external potential V (x) is the potential of harmonic trap, V (x) = 1
2mω

2x2

(consider an isotropic trap, ωx = ωy = ωz = ω). The size of the condensate is about ζ,

so the potential energy given by the harmonic trap per particle Ep/N0 ∼ 1
2mωζ

2, and the

kinetic energy per particle Ek/N0 ∼ ℏ2/2mζ2. The interaction energy per particle for one

particle Eint/N0 = gn.

Now compare the three terms of energy: kinetic energy, potential energy and interaction

energy. When kinetic energy is equal to potential energy, Ek = Ep:

1

2
mωζ2h = ℏ2/2mζ2h that is ζh =

√
ℏ
mω

. (3.7)
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In reality, e.g., for Bose-Einstein condensate of 87Rb, ζh is in the order of µm. This length

means that when the condensate size is much larger than this length ζh, the kinetic energy

is much smaller than the trapping potential. Generally, the typical size of a Bose-Einstein

condensate ζ is tens of µm. So the potential energy is higher than kinetic energy by at

least two orders of magnitude, Ep ≫ Ek.

Then we compare the kinetic energy with interaction energy:

Eint

Ek
∼ gn

1/ζ2
∼ N0

a

ζ
. (3.8)

For 87Rb, a is about 5 nm, as mentioned above ζ is tens of µm, N0 ∼ 105, so in this

regime, the interaction energy is much higher than the kinetic energy, Eint ≫ Ek.

According to the analysis above, the kinetic energy can be neglected compared to in-

teraction and trapping potential energy. This approximation is called Thomas − Fermi

approximation, and the Gross-Pitaevskii equation 3.6 is simplified to:

[
V (x) + g|ϕ0|2

]
ϕ0(x) = µϕ0(x). (3.9)

By solving this equation, we can get the local density of the condensate:

n(x) =

(µ− V (x))/g when µ>V (x)

0 otherwise
(3.10)

So in a harmonic trap of frequency ω, the density distribution of the condensate is a

parabola of radius RTF,i =
√

2µ
mωi

as shown in figure 3.2 a. One can consider the

sum of the trapping potential V (x) and the interaction pseudo-potential gn(x) as an

effective energy applied to each individual particle: Veff(x) = V (x) + gn(x). Thus,

according to the density distribution 3.10, the effective potential Veff(x) is:

Veff(x) =

µ when µ > V (x)

V (x) otherwise
(3.11)

The shape of the effective potential Veff(x) is shown in figure 3.2(b). The energy of

the condensate is constant, and its value is just the chemical potential µ. The chemical

potential of the condensate characterizes an energy scale above which the condensate would
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Figure 3.2: a : Density distribution in Thomas− Fermi regime. The density
distribution is a parabola, given by the form of the trapping potential. At the
edge of the trap, the density is too low to satisfy the Thomas-Fermi approximation.
Healing length ξ describes the region where the Thomas-Fermi approximation fails.
b : The effective potential felt by each individual particle. Veff = V (x) + gn(x).
In the center of the trap, the external potential V (x) is screened by the mean-field inter-

action gn(x).

be excited, and this idea is very important for the test of our bichromatic speckle set-up

(in chapter 6). The chemical potential can be calculated as follows [64]:

µ =
1

2

(
15aN0ℏ2ω3

)2/5
m1/5, (3.12)

where a is scattering length, N0 is the central density of condensate, ω = (ωxωyωz)
1/3 is

the geometric average trap frequency of the harmonic trap.

3.2 Properties of 87Rb

We use 87Rb atoms in our experiment. As an alkali element with an atomic number of 37,

87Rb is a bosonic isotope, and its relevant physical properties are listed in Table 3.2 [68].

87Rb has two main groups of transition lines: the D1 and D2 lines, as shown in Figure 3.3.
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Quantity Symbol Value

Mass m 1.44 × 10−25 kg

Frequency of D2 transition ω0 2 π × 384.230 THz

Wavelength of D2 transition (vacuum) λ0 780.241nm

Wavelength of D2 transition (air) λair0 780.033nm

Linewidth of D2 transition Γ 2 π × 6.07MHz

Hyperfine splitting frequency ∆hf 6.834682611 GHz

Recoil velocity vr 0.59 cm.s−1

Intensity of saturation Isat 1.66mW.cm−2

The D2 line refers to the transitions between the 52S1/2 and 52P3/2 energy levels, with

wavelength of λ0 ≃ 780nm. The D2 line provides convenient channels for atom-laser inter-

action for the lasers that are commonly available in the industry. Due to hyperfine struc-

ture, the 52P3/2 energy level splits into four energy levels: |F ′ = 0⟩, |F ′ = 1⟩, |F ′ = 2⟩,
|F ′ = 3⟩. The 52S1/2 energy level also splits into two energy levels: |F = 1⟩ and |F = 2⟩,
which are differentiated by the hyperfine energy gap of ∆hf ≈ 6.83GHz. In most ultra-cold

atom experiments with 87Rb, the cooling channel is the transition |F = 2⟩ → |F ′ = 3⟩.
This transition can be used for techniques such as Doppler cooling, Zeeman slowing, MOT,

and imaging.

However, |F = 2⟩ → |F ′ = 3⟩ is not a closed transition. According to the selection rules,

atoms in the |F = 2⟩ state can not only transition to the |F ′ = 3⟩ state, but can also

transition to the |F ′ = 2⟩ or |F ′ = 1⟩ states, and subsequently decay back to the |F = 1⟩
state. These atoms in the |F = 1⟩ state cannot be excited to the |F ′ = 3⟩ state, which

means that they escape from the cooling cycle of |F = 2⟩ → |F ′ = 3⟩. To address this, we

need to repump these escaping atoms back into the cooling cycle by using the transition

|F = 1⟩ → |F ′ = 2⟩.

3.3 Description of experimental cycle

The global view of our experiment is described in figure 3.4. The experiment cycle can be

divided into two parts, the operations in the cooling chamber and the second chamber.
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Figure 3.3: Hyperfine structure of D2 line of 87Rb

Figure 3.4: Global view of the experimental apparatus. The axis x, y, z are set in
the way shown in the figure and this standard of the axis will be used in this manuscript

and in our experiment.
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First, we heat rubidium metal in an oven set to 120◦C to vaporize the rubidium gas and

introduce it into the vacuum chamber. After a series of cooling processes, such as trans-

verse molasses and Zeeman slowing, we are able to capture more than 109 atoms in a

magneto-optical trap within a glass cell, referred to as the cooling chamber. Then, we

load about 1 × 109 atoms into a magnetic trap and cool them further by RF evapora-

tion to reach temperatures of around 5µK. Following RF evaporation, we use an optical

tweezer to capture more than 1×107 atoms from the magnetic trap and move them into

the second chamber. Here, we load the atoms into a quasi-isotropic 3D optical dipole

trap and cool them further by optical evaporation until we reach a Bose-Einstein conden-

sate. Finally, we manipulate the BEC in a disordered potential and conduct measurements.

The vacuum pressure is maintained at a level of 10−9 mbar in the region where transverse

molasses and Zeeman slowing are performed, and 10−11 mbar in the cooling chamber

and the second chamber. This minimizes collisions between the atoms and residual air

molecules, thus reducing heating and loss of cooled atoms.

The laser system used in the experiment is illustrated in figure 3.5. This system gen-

erates the beams needed for all cooling, pumping, and imaging of atoms. L1 is locked

to 87 Rb using saturated absorption spectroscopy. The locked L1 serves as the reference

frequency for L2 and L3. L2 is the repumping laser, and L3 is the cooling laser. The laser

source for L1 is an assembly of an external cavity diode laser developed in Observatoire

de Paris (SYRTE). The external cavity can reduce the linewidth of the laser < 1MHz [69].

The laser can provide a power of 20 mW. At the beginning of my PhD, we used to use

the same laser for L2 and L3. But they have been used for many years and the power

was decreasing gradually, so we replaced L2 and L3 with new lasers called Cheetah from

Sacher − Lasertechnik. This Cheetah laser can provide power up to about 120 mW at

780 nm. The linewidth is about 5 MHz.The tuning range is within 20 GHz so that it can

work both for cooling (L3) and repumping (L2).

3.4 Transverse molasses and Zeeman slowing

First, the atomic jet from the oven is collimated by two pairs of counter-propagating

laser beams, performing transverse Doppler cooling on the atomic jet. The cooling laser
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Figure 3.5: Laser systems of L1, L2 and L3. AOM is acousto-optical modulator.
TA is tapered amplifier for lasers.

is red-detuned from the transition |F = 2⟩ → |F ′
= 3⟩ to slow down the atoms in the

transverse direction along x and y, a process known as transverse molasses. With the aid

of transverse molasses cooling, the atomic beam is collimated along the z direction. The

atomic beam is then filtered spatially by a metal plate pierced by a diaphragm and in

contact with a ’cold finger’ at -30◦C. The atoms that do not pass through the tube con-

necting the chamber of transverse molasses and the Zeeman slower are adsorbed on the

surface of the cold finger, so that these atoms do not increase the pressure inside the cham-

ber and do not attach to the surface of the glass, which would affect the transverse cooling.

The collimated atomic beam is then exposed to a counter-propagating laser beam moving

in the -z direction. This laser beam is red-detuned with respect to the transition |F = 2⟩
→ |F ′

= 3⟩, with a frequency of ω. This laser beam applies Doppler cooling on the longi-

tudinal velocity of atoms along z direction, reducing the longitudinal velocity of the atoms,

a process known as Zeeman slowing.
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.

Figure 3.6: Principal of Zeeman slower. The atoms are kept resonant for the laser
cooling along z by the magnetic field B(z). The laser is red-detuned from the transition
|F = 2⟩ → |F ′ = 3⟩ by 133MHz so that the Zeeman laser is not resonant with the atoms
in the MOT, which can induce loss of atoms. The magnetic field defines the magnetic
polarization of atoms along z. The circular polarization of the laser is adjusted for the
cooling transition |F = 2,mF = ±2⟩ → |F ′ = 3,mF = ±3⟩ according to the direction of

the magnetic field.

However, after several cooling cycles along z, the velocity of the atoms v(z) becomes in-

creasingly smaller, making it difficult to maintain the resonance condition for Doppler cool-

ing. To address this issue, we adjust the energy gap of the transition |F = 2⟩ → |F ′
= 3⟩

along z to ensure that the resonance condition is always met during the Zeeman cooling

process.

In order to adjust the energy gap between |F = 2⟩ and |F ′
= 3⟩, we apply a magnetic field

ramping along z, B(z) as shown in figure 3.6. The magnetic field induces an energy shift

due to the Zeeman effect, proportional to µBB[70], as shown in figure 3.6. By well selecting

the polarization of the cooling laser, we select the transition |F = 2⟩ → |F ′
= 3,mF = ±3⟩.

So for the relevant transition that we select, the condition of resonance can be satisfied

along z:

ω0 = ω + |k|v(z)− µBB(z)

ℏ
, (3.13)

where v(z) is the velocity of atoms along z direction. This Zeeman slowing is highly effi-

cient that the velocity of the atomic beam can be slowed from a typical velocity of about
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100 m.s−1, to about 20 m.s−1 after the Zeeman slower of about one meter.

3.5 Magneto-optical trap

With velocity 20 m.s−1, the atoms are slow enough to be captured by the magneto-optical

trap (MOT) in the cooling chamber, as shown in figure 3.8. We briefly introduce the basic

principle of MOT.

The basic principle of MOT [71, 72] is illustrated in figure 3.7. To simplify the explanation,

a 1D version is considered, but it can be easily extended to 3D. A magneto-optical trap

consists of pairs of counter-propagating laser beams and a magnetic field gradient. In the

example shown in figure 3.7, the transition J = 0 → J = 1 forms the cooling cycle of the

MOT. The two laser beams in each direction have opposite circular polarizations. The

σ+ beam generates the cycle |J = 0⟩ → |J = 1,mJ = +1⟩, while the σ− beam generates

the cycle |J = 0⟩ → |J = 1,mJ = −1⟩. Both lasers are red-detuned from the relevant

transitions. If an atom is located at x > 0, it experiences two forces: one from the σ+

beam pushing it towards the right, and one from the σ− beam pushing it towards the

center. Since the detuning of the σ− beam is smaller than the detuning of σ+, the total

force experienced by the atom is towards the center. Since the force applied to the atom

is the radiation pressure from the laser, the atom also experiences Doppler cooling in the

MOT. This allows the magneto-optical trap to cool and trap the atoms around the center

of the magnetic field gradient.

In our experiment of 87Rb, we have a 3D MOT. The cooling cycle is the transition |F = 2⟩
→ |F ′

= 3⟩. As shown in figure 3.8, for 3D MOT, we have three pairs of counter-

propagating laser beams, σ+ and σ− for each pair. The gradient of the magnetic field is

generated by a pair of anti-Helmholtz coils (the current circulating in opposite directions).

The coils produce a spherically symmetric quadrupole magnetic field to assure the pres-

ence of a gradient of the magnetic field along each pair of counter-propagating laser beams.

In our experiment, the loading time for the MOT is 3.5 seconds to saturate the MOT.

Then once the loading of MOT is finished, the mechanical shutter is closed, and the atomic

beam from the oven is blocked. The temperature of the MOT is estimated to be about
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Figure 3.7: Basic principle of the magneto-optical trap (one-dimensional ver-
sion). The radiation pressure force created by each light wave depends on the position
due to the presence of a magnetic field gradient. The resultant of the two radiation pres-

sure forces is a restoring force towards the origin. The figure is from [71].

500µK. Then the magnetic field of MOT is switched OFF, and we apply another 3D

optical molasses of the atoms, by the cycle |F = 2⟩ → |F ′
= 3⟩ and that permits us to

lower the temperature of the atoms to 50 µK before loading the atoms into a magnetic trap.

3.6 Magnetic trap

To understand how atoms can be trapped by a magnetic potential, we briefly introduce the

magnetic potential principle. The magnetic potential arises from the interaction between

the magnetic dipole of an atom and a magnetic field. The total angular internal momentum

of the atom F = I+ L+ S, where I is nuclear spin, L is orbital angular momentum, and

S is electronic spin. The interaction between the magnetic momentum of the atom and

the magnetic field induces an energy shift Umag = −µ⃗F ·B for the atomic level |F ⟩, where
µ⃗F = −µBgFF, and µB is Bohr magneton, gF is Landé-g factor. In the regime of the

weak magnetic field, the energy shift is approximately linear to the magnetic field, and

the energy shift induced by the magnetic field can be described by linear Zeeman shift:

Umag(x) = mF gFµBB(x), (3.14)
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Figure 3.8: Magneto-optical trap in our experiment. Three pairs of counter-
propagating lasers and a magnetic gradient can cool and trap the atoms (magneto-optical
trap). The three pairs of lasers come from the cluster, and each laser is about 15mW.

where B = |B|, gF=2 = 1/2 for |F = 2⟩, gF=1 = −1/2 for |F = 1⟩. Therefore a mag-

netic field B = B(x) variant in space {x} can produce a conservative magnetic potential

Umag(x).

In our experiment, the 87Rb atoms are trapped in the minimum of the magnetic poten-

tial, so we need gFmF > 0. Since gF=1 = −1/2 and gF=2 = 1/2, the states that can be

trapped by the minimum of the magnetic field are |F = 1,mF = −1⟩, |F = 2,mF = 1⟩,
and |F = 2,mF = 2⟩. We choose |F = 1,mF = −1⟩ to be the state trapped in our

magnetic trap.

The realization of our magnetic trap is shown in figure 3.9 [73]. It is an Ioffe−Pritchard
trap [74], composed of a quadrupole field and a dipole field. The quadrupole field is

generated by a pair of coils in an anti-Helmholtz configuration(the current circulating in
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Figure 3.9: Realization of our magnetic trap. The magnetic trap is formed by
combining a quadrupole field generated by an electromagnet of 60 A, and a dipolar field

created by a pair of coils of 15 A.

opposite directions in the two coils), twining around a piece of ferromagnetic material,

forming an electromagnet. Using the ferromagnetic material can help to induce a rela-

tively large gradient with a smaller current. Here we can generate a gradient of 830G.cm−1

with a current of 60A. If we use only a pair of coils, that will cost 100A to generate the

same level of the gradient. The dipole field is produced by a pair of coils in Helmholtz

configuration.

In our experiment, after loading the MOT with atoms in state |F = 2⟩, we apply a pulse

called optical pumping to transfer the atoms from |F = 2⟩ to |F = 1⟩ for the magnetic

trap. Finally we have about 1× 109 atoms trapped in the state |F = 1,mF = −1⟩ in the

magnetic trap, about 300 µK. The density of atoms is in the order of 1015 m−3. Then we

compress the magnetic trap to increase the density in order to make sure that the collision

between the atoms in the trap is efficient enough to perform the RF-evaporation.
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Figure 3.10: Principal of RF-evaporation. The atoms in high energy levels (rela-
tively hot atoms) in the trap are excited by an rf field with energy hνrf . These atoms are
excited from |F = 1,mF = −1⟩ to state |F = 1,mF = 0⟩. The atoms excited to state
|F = 1,mF = 0⟩ are no longer trapped by the magnetic potential and they leave the trap
by gravity. Then the rest of the atoms thermalize by collision to a lower temperature.

3.7 RF-evaporation

Evaporative cooling is a widely used for cooling atoms to a Bose-Einstein condensate state.

Two main methods for implementing evaporative cooling are RF-evaporation and optical

evaporation. The basic principle behind both techniques is the same: by selectively ex-

tracting the relatively hot atoms from the ensemble, the remaining atoms thermalize to

a lower temperature. In optical evaporation, this is achieved by gradually lowering the

trap depth, allowing the hot atoms to escape, while in RF-evaporation, a radio-frequency

’knife’ is used to remove the hot atoms. In our experimental cycle, we use RF-evaporation

to cool the atoms in the magnetic trap in the cooling chamber. We do optical evaporation

in the second chamber (see section 3.9) to create Bose-Einstein condensate.

For the RF-evaporation in the magnetic trap, we use a radio-frequency ’knife’ to ex-

cite the hot atoms from the trapped state |F = 1,mF = −1⟩ to untrapped state

|F = 1,mF = 0⟩. The atoms excited to the state |F = 1,mF = 0⟩ are no longer trapped

in the magnetic field, and they will leave the magnetic trap by gravity. Then the rest of

the atoms get thermalization to a lower temperature. Then we scan the RF frequency to

continuously extract the relatively hot atoms when they are getting thermalized. Scanning
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the RF-knife can be equivalently seen as diminishing the trap depth of the magnetic trap.

In our experiment, the process of the RF-evaporation is about 10s. During this process,

we scan the frequency of RF-knife from 90MHz to 6MHz to continuously evaporate the

hot atoms. Finally we get an ensemble of about 6×107 atoms in state |F = 1,mF = −1⟩,
with density of 1017m−3 and temperature about 5 µK. In our experiment, we do not get

BEC with this step of RF-evaporation. After RF-evaporation, the de Broglie wavelength

of the atoms is about 100nm, and the phase density nλ3dB can reach about 10−4. This step

helps to cool the atoms cold enough for efficient loading in an optical tweezer.

3.8 Loading the atoms in an optical tweezer and transport

to the second chamber

The optical tweezer is a dipole trap produced by a far-detuned and highly focused Gaus-

sian beam. The beam can induce an optical dipole potential variant in real space. If the

beam is red-detuned from the resonance of atom, the minimum of the potential is at the

focal point of the beam. So the potential induced by the Gaussian beam forms a trap, and

the atoms can be captured in the minimum, which is the focal point of the beam. That is

the so-called optical tweezer.

The general expression for optical dipole trap is [30]:

Udip =
3πc2

2ω3
0

Γ

∆
I(r) with

1

∆
=

(
1

ω − ω0
− 1

ω + ω0

)
, (3.15)

where Γ is the spontaneous decay rate of the excited level (6.6MHz for D2 line of 87Rb),

ω0 is the frequency of the relevant resonance of the atom (780nm for D2 line of 87Rb), ω

is the frequency of the trapping laser and I(r) is the intensity of the trapping laser. The

intensity of the laser I(r) at point r = {x, y, z} can be converted into the power of laser:

I(r) =
2P

πw2(z)
e−2x2/w2(z) with w(z) = w0

√
1 +

z2

z2R
, (3.16)

where P is the power of trapping laser, w(z) is the beam diameter at poisition z, w0 is

the beam waist, zR is Rayleigh length of the laser, zR = πw2
0/λ. Since the atoms are
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Figure 3.11: Optical tweezer and translation of the atoms. The laser beam is
focused to the atoms by a lens to have a waist of 28 µm. The lens is mounted on a
translation stage. The atoms trapped by the focal point of the laser are translated by

45 cm from the cooling chamber to the second chamber.

trapped in the focal point of the beam, we can develop the trapping potential at the focal

point x = y = z = 0 to the first order, and in this regime, the potential can be seen as a

harmonic trap:

U(r) =
3πc2Γ

2ω3
0∆

× 2P

πw2
0

(
1− 2x2

w2
0

− z2

z2R

)
. (3.17)

From the equation 3.17, the trap depth of the optical potential is:

U0 =
3c2ΓP

ω3
0w

2
0∆

, (3.18)

and the radial trapping frequency ωx=y and longitudinal trapping frequency ωz are:

ωx=y =

√
4U0

mw2
0

and ωz =

√
2U0

mz2R
. (3.19)

In our experiment, the laser we use for the optical tweezer is a laser Keopsis of λ = 1070

nm. Therefore the trapping is far red-detuned from the D2 transition of 87Rb. The power

of the laser we use to produce the optical tweezer is about 1.5W. As shown in figure 3.11, we

focus the laser through a lens mounted on a translation stage into the atoms in the cooling

chamber, the waist of the laser w0 = 28µm, and Rayleigh length zR = 2.3mm. According
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to the equations 3.18 and 3.19, the transverse trapping frequency ωx=y ≃2π×1.03kHz and

the longitudinal trapping frequency ωz =2π × 89Hz.

More than 1 × 107 atoms can be captured in the optical tweezer after the RF evaporation.

The large detuning guarantees the absence of the photon scattering of the atoms by the

trapping laser. The lifetime of the atoms trapped in the tweezer is measured to be about

25 seconds, and the loss is mainly due to the collision of the atoms with the residual back-

ground gas in the vacuum.

After loading the atoms into the tweezer, we transport the atoms from the cooling chamber

into the second chamber. As shown in figure 3.11, with the help of the translation stage,

we move the lens by 45 cm in 2 seconds. The translation stage is supported by compressed

air. The transport will inevitably slightly heat the atoms, from 5 µK to about 10 µK,

and about 6× 106 atoms are lost during the transport. Finally, about 4 × 106 atoms are

transported into the second chamber by the optical tweezer.

3.9 Optical evaporation

Once the atoms are transported into the second chamber, another laser beam propagating

along y, vertical direction, is focused on the atoms to form a 3D quasi-isotropic trap as

shown in figure 3.13 a, a crossed optical dipole trap. In our experiment, this vertical laser

beam is called the dimple beam. The focal point of the tweezer and dimple beams are

superimposed, and the atoms are trapped in the crossed focal point of the two beams.

The dimple beam comes from the same Keopsis laser, λ = 1070 nm, and the power of the

dimple beam is about 7 W to form the crossed optical dipole trap. To make the crossed

optical dipole trap isotropic along x, y and z, the dimple beam is reshaped to be elliptical

by a cylindrical telescope, and at the focal point, the waist of the dimple beam is wz = 91

µm and wx = 203 µm. Thus we have a cloud of more than 2×106 atoms in crossed optical

dipole trap, the temperature of the cloud ∼ 10µK and the phase space density nλ3dB at

this step is in the order of 10−2.

Now in the optical trap, we can conveniently perform the optical evaporation by diminish-

ing the trap depth. As mentioned in the last section, the basic idea of optical evaporation
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is to extract the hot atoms in the optical trap by simply lowering the trap depth, and the

rest of the atoms thermalizes to a lower temperature.

In the first year of my PhD, with my colleagues, I spent quite some time optimizing the

optical evaporation. Because of the lock-down of Covid-19, I spent two months in my

home mainly on studying the theories of evaporation, and at the end, we optimized the

ramp of our optical evaporation from five separate ramps to a single ramp following a

power law as:

P (t) =
P0

(1 + t/τ)β
, (3.20)

the parameters of the ramp τ and β decide the efficiency of the optical evaporation. In

appendix A we explain in detail why we ramp the laser power as this power law from a

general picture of thermodynamics .

The efficiency of optical evaporation can be defined as γ = dD
D = −dN

N , where D is the

phase-space density (This definition of efficiency is explained in the appendix A). The

efficiency γ represents the ratio of atoms lost to the increase in phase-space density. In our

experiment, the efficiency of the optical evaporation is very high, with γ reaching about

4, as shown in figure 3.12.

The process of optical evaporation in our experiment lasts for 2 seconds. During this time,

the power of the tweezer beam is reduced from around 500mW to 10mW and the power

of the dimple beam is reduced from around 7W to 218mW. At the end of the evaporation,

the trap frequencies are ωx ≃ 2π × 30Hz, ωy ≃ 2π × 40Hz, ωz ≃ 2π × 25Hz. We achieve a

Bose-Einstein condensate of 2× 105 atoms at around 60 nK.

There are some conveniences for optical evaporation. The optical trap does not inter-

act with the magnetic spin states of atoms, so a priori, it can trap the atoms with any

magnetic spin without specific selection. It is beneficial for the experiment studying many-

body physics with Feshbach resonances because it is much easier to play with Feshbach

resonances in an optical trap.
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Figure 3.12: Efficiency of optical evaporation in our experiment. The efficiency
γ means how much we gain in phase-space density(PSD) by losing how many atoms. In

our experiment, the efficiency of optical evaporation γ is measure to be about 4.

Figure 3.13: Crossed optical dipole trap and adiabatic opening. a, the config-
uration of the crossed optical dipole trap. b, the adiabatic cooling through moving the

focus of the tweezer beam by 6 mm along z direction.
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3.10 Cool the atoms even more by adiabatic cooling

Adiabatic cooling is a technique that allows us to achieve even lower temperatures after

optical evaporation. The process involves moving the focal point of the optical tweezer

beam, which results in an increase in the waist of the tweezer and a decrease in the trap

frequency. This is because in thermodynamic equilibrium, the temperature of the atomic

gas T is directly proportional to the trap frequency f . By decreasing the trap frequency,

we are able to lower the temperature of the gas. To avoid confusion, we use the symbol f

instead of the usual symbol ω for the trap frequency, as it is visibly distinguishable from

the beam waist w.

As illustrated in figure 3.13b, the focal point of the tweezer beam is moved by 6mm in

1 second with the help of the translation stage. At the crossing point with the dimple

beam, the waist of the tweezer beam w is enlarged from 28µm to 78 µm. Since the trap

frequency is inversely proportional to the square of the beam waist, f ∝ 1/w2, the trap

frequency f ′ after the decompression is:

f ′ =
w2

w′2 f ≃ 0.13 f. (3.21)

Thus, by adiabatic cooling, the temperature of the gas is lowered from T to T ′:

T ′ =

(
f ′

f

)
T ≃ 0.13 T. (3.22)

Finally, by a TOF measurement, the temperature of the gas is measured to be about

7.5nK. So the adiabatic cooling helps to cool the gas from ∼ 60nK to ∼ 7.5nK, without

increasing the phase-space density. At this temperature, the BEC is in a good condition

of being a plane wave with |k = 0⟩. The profile of our Bose-Einstein condensate after the

adiabatic cooling is shown in figure 3.14.

3.11 Magnetic levitation

As previously discussed in section 2.4, the dynamics of Anderson localization involve the

long-time evolution of the atoms in a disordered potential. In order to observe these

dynamics in experiments, it is necessary to compensate for the effects of gravity on the

atoms. This can be achieved by applying a force in the opposite direction of gravity, such
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Figure 3.14: Experimental image of BEC. The picture of BEC is taken after a time
of light(TOF) = 150ms. In the gas, we have both condensed atoms and thermal atoms.

The profile of BEC is a parabola and the profile of thermal atoms is Gaussian.

Figure 3.15: The coils for the magnetic levitation. The coils in the anti-Helmholtz
configuration generate the magnetic gradient field (red coils). The coils in the Helmholtz
configuration generate the magnetic bias field (blue coils). On the right, the magnetic

field is the situation for a strong bias field.
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as through levitation techniques.

To compensate for the effects of gravity on the atoms in a disordered potential, a magnetic

force can be applied. This can be achieved by using a magnetic potential with a gradient

of mgy in the opposite direction of gravity (along the y-axis). This gradient is typically

generated using a pair of coils in an anti-Helmholtz configuration, where the current flows

in opposite directions in the two coils. However, due to the nature of the magnetic field,

where ∇ ·B = 0, the presence of a gradient along one direction (such as the y-axis) also

implies the presence of gradients along other directions (such as the x- and z-axes). Thus,

a single pair of coils in an anti-Helmholtz configuration cannot produce a completely ho-

mogeneous field. To address this inhomogeneity, another pair of coils can be added in a

Helmholtz configuration, where the current flows in the same direction in the two coils.

This pair of coils generates a bias field B0 and curvature b′′, which can be used to smooth

out the inhomogeneities in the magnetic field.

The total norm of the magnetic field produced by these two pairs of coils is:

B(x) ∼ B0 + b′y +
1

2
b′′y2 +

(
b′2

8B0
− b′′

2

)
ρ2, (3.23)

where B0 is the bias, b′ is the linear gradient, b′′ is the curvature, and x = {y, ρ},
ρ =

√
x2 + y2.

In our experiment, the linear gradient b′ is approximately 3.04G/mm and the curvature

b′′ is approximately 10−5G/mm2 (more details about measuring the configurations of the

magnetic field can be found in the master thesis of Vasiliki Angelopoulou). We work in a

low bias regime, with B0 ≃ 3.23 G, and we will explain the reason for this in section 5.1.1.

Given the small value of b′′, the curvature can be considered negligible in our experiment.

So we have:

B(x) ∼ B0 + b′y +
b′2

8B0
ρ2. (3.24)

The magnetic potential is Umag(x) = gFmFµBB(x). Therefore, in order to compensate for

gravity and levitate the atoms in place, the magnetic potential Umag(x) = gFmFµBB(x)

must be adjusted such that its gradient along the y-axis is equal to the force of gravity:
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Figure 3.16: The dependence of gradient b′ on the bias field B0 for different
atomic levels. The blue curve is for |F = 1,mF = −1⟩, the yellow curve is for |F =
2,mF = +1⟩, and the red curve is for |F = 2,mF = +2⟩ (this state was used in the

experiment of 3d Anderson localization in 2012 [33]).

∇yUmag(x) = mg. This is achieved by controlling the current flowing through the gradient

coils:

b′ =
mg

mFgF,mF
µB

. (3.25)

where m is the mass of one atom, gF,mF
is the Landé factor.

To determine the value of the gradient b′ needed to compensate for gravity, it is necessary

to know the Landé factor gF,mF
in equation 3.25. The Landé factor can be written as [70]:

gF,mF
(B0) =

1

mFµB

dE

dB
(B0). (3.26)

In the regime of a weak field, where the energy shift caused by the bias field can be seen as

linear, the Landé factor can be considered approximately constant. However, in the regime

of a strong field, where the linearity is no longer valid, the dependence on the magnetic

bias field B0 of the Landé factor cannot be neglected anymore. Therefore, according to

equation 3.25, the value of the gradient b′ required to compensate for gravity also depends
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on the bias B0.

The Landé factor, which is related to the atomic spin, varies for different atomic levels.

Figure 3.16 shows the relation between the gradient b′ required to compensate for gravity

and the bias field B0 for three atomic levels: |F = 1,mF = −1⟩, |F = 2,mF = +1⟩,
and |F = 2,mF = −2⟩ on the bias field B0. These levels are chosen because 1) our BEC

is produced in state |F = 1,mF = −1⟩, 2) state |F = 2,mF = +1⟩ is used to perform

rf-spectroscopy as will be discussed in chapter 5, and 3) state |F = 2,mF = −2⟩ was used
in a study in 2012 to investigate 3D Anderson localization and the mobility edge [33].

In equation 3.24, the quadratic term b′2

8B0
(x2 + z2) means that the magnetic field for lev-

itation applies a horizontal harmonic trap on the atoms along x- and z-axis, with a trap

frequency ω⊥ ∝ 1/
√
B0, so this horizontal trap frequency depends on the bias field. In

figure 3.17, we measure the horizontal trap frequency ω⊥ in function of the bias field B0.

We use a fitting curve ω⊥ ∝ 1/
√
B0 to fit the measured the trap frequencies. Here we use

the very simple model by supposing the curvature b” = 0, as introduced in section 3.11,

but in reality, for strong current, the curvature b′′ cannot be neglected (more details of

our magnetic levitation can be found in the master thesis of Vasiliki Angelopoulou).

As mentioned above, in our experiment, we work with a low bias field B0 ≃ 3.23G (that is

the magic point for our rf-transfer, see section 5.1.1). Under this condition, the horizontal

trap frequency ω⊥ = ωx,z of the magnetic field is measured to be: ω⊥ ≃ 2π × 7 Hz. In

section 7.4.2, we will discuss this horizontal magnetic trap ω⊥.

3.12 Imaging system

In our experiment, to image the atoms, we use two methods of imaging, absorption imaging

and fluorescence imaging.

3.12.0.1 Absorption imaging

Absorption imaging is a technique that can be used to image the atoms. A laser beam

is shined through the atoms, and the resulting absorption of the light by the atoms is
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Figure 3.17: The horizontal trap frequency ω⊥ in function of bias field B0. The
black dots are the data of the trap frequency ω⊥ measured at various bias field B0.

detected to create an image of the distribution of atoms, as shown figure 3.18.

We perform absorption imaging for the atoms in the cooling chamber in our experiment.

The probe laser is resonant with the transition |F = 2⟩ → |F ′ = 3⟩ of the atoms. This laser

beam is directed along the x axis, towards the camera put next to the cooling chamber,

and illuminates the atoms for a short period of time, typically around 50µs. As the light

passes through the atoms, in low-saturation regime where the light is very weak, I0 ≪ Isat,

a portion of it is absorbed according to the Beer-Lambert law:

I(y, z) = I0(y, z)exp(−σ n2D(y, z)) with n2D(y, z) =

∫
dx n(x, y, z), (3.27)

where I is the intensity of the light after passing through the atoms, I0(y, z) is the intensity

of the incident laser, σ is the cross section of absorption of the atoms:

σ = C 3λ
2

2π

1

1 +
(
2δ
Γ

)2
+ I

Isat

(3.28)

where δ is the detuning of the probe laser with respect to the atomic resonance, Γ is the

linewidth of the atomic transition and Isat ≃ 1.67mW/cm2. C takes into account the

multi-level structure of the atom and depends on the polarization. C ≃ 7/15 if we suppose

there is no preferred polarisation. In the regime of low saturation (I0 ≪ Isat), σ can be
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Figure 3.18: Absorption imaging. A collimated beam is sent to the atoms, which
can absorb a part of the photons. So the camera takes an image of the laser with a
part of photons absorbed by the atoms and another image of the laser without atoms.
By comparing the two images, we can determine the atomic density integrated along the
longitudinal direction of the beam. The camera for imaging in the cooling chamber is

called ’MOT camera’.

seen as a constant independent of the light intensity, and n2D is the density of atoms inte-

grated along x direction. To satisfy the low saturation condition, the power of the probe

laser is generally about 70µW in our experiment.

By measuring the intensity of the light before and after it passes through the atoms, we

can deduce the density of atoms along y and z:

n2D(y, z) =
1

σ
ln

(
I(y, z)

I0(y, z)

)
. (3.29)

3.12.0.2 Fluorescence imaging

We use fluorescence imaging to image the atoms in the second chamber. Compared with

absorption imaging, fluorescence imaging has a better sensitivity. It is particularly useful

for detecting the atoms after a long-time expansion in the disordered potential, generally,

only a few thousand atoms surviving.

To perform the fluorescence imaging, we use a laser beam resonant with the transition

|F = 2⟩ → |F = 3⟩ to illuminate the atoms for 50 µs off the camera axis. The atoms

then emit the light by fluorescence to all the directions. A part of the light emitted is

collected by an objective lens with a high numerical aperture, NA∼ 0.4, then the image
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Figure 3.19: Fluorescence imaging. The beam for fluorescence imaging is about
10 mW. We have two cameras to perform a 3D imaging.

of the atoms is focused on the sensor of our CCD camera by another lens. The intensity

detected by the camera is:

Ifluo(y, z) ≃
Ω

4π
Γspℏω0n2D(y, z), (3.30)

where Ω ≃ π NA2 is the solid angle where the photons are captured by the imaging system.

To perform the absorption and fluorescence imaging, we setup three cameras EMCCD

C9102 from Hamamatsu. One camera is set next to the cooling chamber, imaging along

x direction. For the second chamber, one camera is put along x direction and the other

one is put under the chamber, along y direction to perform a 3D imaging together, as

illustrated in figure 3.19. Each camera has 1000× 1000 pixels of size 8µm× 8µm. In the

second chamber, the telescope for the imaging system has an enlargement of a factor = 3

for the atoms, so the resolved pixel is 2.7µm× 2.7µm.



Chapter 4

Optical speckle

In the previous chapter, we presented the characteristics of Bose-Einstein condensates and

explained how we cooled and manipulated 87Rb atoms to achieve a Bose-Einstein conden-

sate in our experiment. Bose-Einstein condensates are an excellent source of matter waves,

and to study Anderson localization, we also require another crucial component: disorder.

An optical speckle pattern is an ideal candidate to simulate disorder[61, 63].

An optical speckle is a random pattern of light intensity created when a laser beam is shown

through a glass with a rough surface (diffuser), as shown in figure 4.1 a. The fluctuation

of light intensity gives a distribution of bright and dark grains of light. When the laser

passes through the diffuser, each point of the speckle pattern receives many wavelets issued

from different points of the diffuser. The wavelets’ interference gives rise to the speckle

pattern. In this chapter, we will describe the statistical properties of the diffuser, then the

statistical properties of the speckle field, and of the intensity. We will then show how we

implement such an optical speckle and introduce the important parameters of the speckle

in our experiment.

4.1 The property of diffuser

The first element to introduce for the speckle field is the diffuser. The roughness of the

diffuser is characterized by its thickness l(x0) distributing randomly on the surface. In the

following, we suppose the thickness l(x0) is distributed as a Gaussian distribution p(l),

59
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Figure 4.1: Speckle field and its generation. a, The speckle field consists of a
random distribution of light intensity. b, The diffuser prints a random phase to the

wavefront.

with an average l and a width σl, where · describes the average for different realizations

of random thickness. We suppose that this diffuser has been homogeneously etched so

that the statistics of the thickness does not depend on the position on the surface of the

diffuser. The distribution of the thickness is therefore considered to be stationary.

In the limit of thin diffuser, an incident wave with amplitude Einc(x) passing through the

diffuser acquires a phase shift ϕ(x0):

ϕ(x0) =
2π

λ
(n− 1)l(x0), (4.1)

where λ is the wavelength of the incident light, and n is the refractive index of the diffuser.

{x0} is the position on the surface of the diffuser. The phase shift created through the

diffuser is added to the amplitude of the field via a transmission factor tdiff(x0):

tdiff(x0) = eiϕ(x0). (4.2)

The diffusing power is characterized by the average of the transmission factor tdiff and can

be calculated as:

tdiff = eiϕ =

∫
dϕ eiϕp(ϕ) (4.3)
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where p(ϕ) is the probability distribution of the phase shift.

As mentioned above, we suppose the distribution of thickness follows a Gaussian with

width σl, and according to equation 4.1, the phase shift is proportional to the thickness,

so the distribution of the phase shift is also a Gaussian with width σϕ = 2π
λ (n− 1)σl:

p(ϕ) =
1

σϕ
√
2π

e−(ϕ−ϕ)2/2σ2
ϕ (4.4)

So we have:

tdiff = e−ϕ2/2 = e−σ2
ϕ/2 (4.5)

To understand the physical meaning of tdiff , we can think of an extreme rough glass, where

σl ≫ 1 (equivalently σϕ ≫ 2π). The diffusing power tdiff tends to zero. On the contrary,

for a diffuser whose surface is very little rough, σϕ ∼ 0, the diffusing power tdiff tends to

one. In the limit of an extremely rough diffuser, we have σϕ ≫ 2π, meaning the width

of the distribution of the dephase ϕ is much larger than 2π, so we can consider p(ϕ) as a

uniform distribution in the interval [0, 2π]

Beyond the average transmission, it is important to estimate the spatial correlation of the

transmission, Cdiff , which describes the correlation of field on the surface of the diffuser:

Cdiff(x0,x
′
0) = tdiff(x0)t∗diff(x

′
0) = ei(ϕ(x0)−ϕ(x0

′)). (4.6)

We suppose that (ϕ(x0)− ϕ(x0
′)) to be also a Gaussian variable, then with the diffusing

power calculated in equation 4.5, we have (more details of the calculation can be found in

thesis of Vincent Denechaud[75]):

Cdiff(x0,x
′
0) ≃ exp

(
−|x0 − x′

0|2

2r2diff

)
, with rdiff = rl/σϕ, (4.7)

where rl corresponds to the typical size of the grains of the surface of the diffuser, which

is the correlation length of the fluctuation of the thickness of the diffuser. The correlation

length rdiff of the transmission factor also depends on the variance of the phase shift σϕ,

and it describes an effective size of the independent emitters on the surface of the diffuser.

In the situation of an extremely rough surface where σϕ ≫ 2π, the typical size of an emit-

ter is much smaller than the size of a grain on the surface of the diffuser: rdiff ≪ rl, as
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Figure 4.2: The correlation of the transmission of the diffuser. The thickness
of the diffuser at position x0 is l(x0). rl is the typical size of the fluctuation of the
roughness. σl is the variance of the distribution of the thickness. The limit σϕ ≫ 2π can
be equivalently written as σl ≫ λ. That means the phase of the transmitted field on the

surface of the diffuser varies many times beyond 2π in a single grain of roughness.

shown in figure 4.2

4.2 The distribution of light intensity

In the previous section, we described the field on the surface of the diffuser. In the fol-

lowing, we will describe the propagation of such a field beyond the surface of the diffuser

according to the diffraction and interference to study the statistical properties of light

intensity after the propagation.

As shown in figure 4.1 b, the field at point x is created from the interference of wavelets

diffracted from the different emitters of the diffuser, characterized by rdiff . So the field
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E(x) at point x is the sum of the fields of all the wavelets :

E(x) =

N∑
i=1

E0e
iϕi(x). (4.8)

Each emitter can be seen as independent with a typical size rdiff . Therefore the statistical

properties of ϕi do not depend on the emitter i. So {ϕ(x)}i is an ensemble of independent

random variables. The complex field issued from each emitter can be written into real

and imaginary parts, E0e
iϕi = ER,i + iEI,i. Since the phase of the field is an ensemble of

independent random variables, hence, {ER,i}i and {EI,i}i are also independent random

variables. According to the central limit theorem, the sum of the independent random

variables tends towards a Gaussian distribution. So the real and imaginary part of the

total field ER =
∑

iER,i and EI =
∑

iEI,i are Gaussian distributed:

p(ER,I) =
1√
2πσ2E

exp

(
−
E2

R,I
2σ2E

)
. (4.9)

The light intensity I of the field, I = |E|2 = E2
R+E2

I , so a pair of {ER, ER} correspond to

a unique pair of
{√

I cosϕ,
√
I sinϕ

}
. Hence, the probability distribution of light intensity

with a phase ϕ is:

p(I, ϕ) =
1

4πσ2E
exp

(
− I

2σ2E

)
. (4.10)

We suppose that ϕ is uniformly distributed over [0, 2π] with p(ϕ) = 1/2π. Then by

integrating ϕ over [0, 2π], we can get the distribution of light intensity p(I):

p(I) =

∫ 2π

0
dϕ p(I, ϕ) =

1

2σ2E
exp

(
− I

2σ2E

)
. (4.11)

We see that the distribution of light intensity of the speckle is exponential. The average

intensity I is:

I =

∫ +∞

0
dI I p(I) = 2σ2E . (4.12)

We can calculate I2:

I2 =

∫ +∞

0
dI I2 p(I) = 8σ4E = 2I

2
, (4.13)

thus the standard variation σI of the distribution of light intensity is:

σI =

√
I2 − I

2
=

√
2I

2 − I
2
= I. (4.14)
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Figure 4.3: Intensity and Rayleigh length of speckle. The emitters on the diffuser
can be characterized by a size rdiff , so the diffraction in the focal plane induces the pattern
with a width σex = λf/πrdiff . The Rayleigh length δf of the speckle pattern describes

the regions where all the beams diffracted from the emitters participate.

So the distribution of light intensity can be rewritten in a simple form:

p(I) =
1

I
exp

(
−I
I

)
(4.15)

We can remark that the distribution of light intensity is exponential, and its standard

variation σI is equal to the average intensity. We will use this property when we study

the correlation of bichromatic speckles in chapter 6.

4.3 Spatially statistical properties of intensity

Consider an incident plane wave Einc(x) illuminating a convergent thin lens of focal length

f attached with the diffuser, as shown in figure 4.3. In the following, we note {x0} =

{x, y, z = 0} to be the coordinates of the points in the plane of the diffuser, and note

{xf} = {x, y, z = f} to be the coordinates of the points of in the focal plane of the lens.

In the regime of Fraunhofer diffraction, we show that in the focal plane, the field E(xf ) is:

E(xf ) ∝ TF[Einc(x0)t(x0)](
xf

λf
) =

∫
dx0Einc(x0)t(x0)e

−i 2π
λf

xf ·x0 , (4.16)
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where t(x0) describes the combined transmission of the lens and the diffuser:

t(x0) = m(x0)tdiff(x0). (4.17)

m(x0) is the aperture, and we suppose it to be a circle of diameter D, so m(x0) =

Θ(x0 −D/2), Θ(x) is Heaviside function.

Knowing the field E(x) in the focal plane, we can calculate the intensity I(x) = E(x)E∗(x).

In the focal plane, we can demonstrate that the average intensity is (more details of

calculation can be found in [75]):

I(xf ) = E(xf )E∗(xf ) ∝ TF[Cdiff ](xf/λf) ∝ exp

(
−2|xf |2

σ2ex

)
with σex =

λf

πrdiff
. (4.18)

where Cdiff is the correlation of the field on the surface of the diffuser, introduced in equa-

tion 4.7, and σex is the typical width of the spatial extension of average intensity I(xf ) in

the focal plane.

The average intensity I(xf ) in the focal plane is issued from the Fourier transform of the

correlation Cdiff function of transmission factor tdiff in the diffuser, so that can explain why

the typical width σex of the average intensity in the focal plane is inversely proportional to

the correlation length rdiff of the transmission factor: σex = λf
πrdiff

. As shown in figure 4.3,

we can define the diffusing angle θdiff = σex/f . In our experiment, for the diffuser that we

use, the diffusing angle θdiff ≃ 5◦ and f = 16.4mm(the assembly will be introduced in the

following) so we can calculate σex = θdifff ≃ 1.43mm. In the thesis of J.Richard [76], there

is the explanation of how to measure σex. The value of σex is measured to be 1.47±0.01mm.

As shown in figure 4.3, by analogy with a Gaussian beam, we can define a Rayleigh length

of the speckle δf . The Rayleigh length δf describes the region where all the beams

diffracted from all the emitters in the diffuser participate. The inset of the figure 4.3

shows that δf/2 ≃ σex/NA. NA is numerical aperture and in our experiment, ON≃ 0.5,

so δf ∼ 5.88mm. In the experiment, this δf gives an upper limit of the uncertainty for

the position of the atoms.

In our experiment, the spatial extension σex of the average intensity is much larger than

the size of the speckle grain. We will see in the following that the typical size σ⊥ of
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Figure 4.4: Correlation of the speckle field. The size of the grains of light in focal
plane is limited by the diffraction. The transverse size of grain σ⊥ ∼ λ/2NA is limited
by the numerical aperture of the diffuser. The longitudinal size of grain is limited by the

Rayleigh length: σ∥ ∼ λ/NA2.

the speckle grain is about 0.42µm, and σex ≃ 1.4mm, so we have σex ≫ σ⊥. And when

we measure the expansion of our BEC in the speckle potential, the size of BEC after a

long expansion (∼3 secdons) is generally less than 100µm. Therefore, in practice, we can

consider the average intensity I(xf ) to be constant in the region of interest near the focal

point in the Fourier plane.

4.3.0.1 Spatial correlation of the intensity

The grain size is characterized by the correlation of the intensity in Fourier plane, as shown

in figure 4.4:

I(x)I(x+ δx) = E(x)E∗(x)E(x+ δx)E∗(x+ δx)

= E(x)E∗(x)E(x+ δx)E∗(x+ δx) + E(x)E∗(x+ δx)E∗(x)E(x+ δx)

= I(x)I(x+ δx) +
∣∣∣E(x)E∗(x+ δx)

∣∣∣2 .
(4.19)

We can show that in the Fourier plane the second term in the equation 4.19, the correlation

of the field is [75]:

E(xf )E∗(xf + δxf ) ∝ TF[I0](δxf/λf) · TF[Cdiff ]((xf − δxf/2)/λf). (4.20)
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The transverse grain size is characterized by the transverse correlation of the intensity in

Fourier plane perpendicular to the optical axis (direction z). As we mentioned above, we

can consider the average intensity I(xf ) to be constant, therefore, in the equation 4.19,

the first term can be treated a constant I
2
. The grain size is then given by the correlation

of the fluctuation of intensity δI(xf ) = I(xf )− I:

δI(xf )δI(xf + δxf ) =
∣∣∣E(xf )E∗(xf + δxf )

∣∣∣2 . (4.21)

Since we consider the average intensity to be constant in the region of interest, the second

factor in the expression of the correlation of field 4.20 can be seen as a constant. Then we

can simplify the correlation of the intensity as:

δI(xf )δI(xf + δxf ) ∝ |TF[I0](δxf/λf)|2. (4.22)

We see that the correlation of the intensity in the Fourier plane is completely determined

by the intensity of the incident light in the diffuser plane via the Fourier transform. We

consider the incident light as a homogeneous plane wave, where I0 is constant, and the

aperture is a circle of diameter D. In this case, by Fourier transform, the correlation of the

intensity in Fourier plane δI(xf )δI(xf + δxf ) is an Airy function with width σ⊥ ∼ λ/2NA,

where NA is the numerical aperture of the optical system formed by the lens and aperture.

So the transverse grain size is the transverse correlation length σ⊥.

4.4 Experimental implementation

We have seen that the transverse grain size σ⊥ ∼ λ/2NA, so in order to realize a speckle

field with small grains, we need to have an incident beam with large beam size. Figure

4.5 shows how we shape the speckle beam. The beam is enlarged by a telescope composed

of −75mm and +200mm lenses. With this telescope, the beam waist is increased from

5.6mm to 14.6mm.

Now let us look at near the vacuum chamber and how the diffuser is assembled. As illus-

trated in figure 4.6, the diffuser and the lens are mounted in a tube of diameter 1” (inner

diameter of 22.9mm), which is placed extremely close to the glass vacuum chamber, by only

0.5mm, in order to have a large NA. The lens is aspherical Thorlabs ACL2520−B, with

a focal length of 16mm, and the distance between the plane face of the lens and the focal
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Figure 4.5: Experimental realization of speckle beam. At the output the fiber,
the waist of the beam is 5.6 mm. The beam waist is then broadened to 14.6 mm by a

telescope before going to the science chamber.

Figure 4.6: Assembly of the diffuser near the glass cell. All the lengths in this
figure are in millimetres.
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point is 15.7mm. The diffuser is from Newport FSD10−3, with a diffusing angle θdiff ≃ 5◦

and thickness of 0.3mm. It is attached to the plane surface of the lens. The wall of the

glass vacuum chamber has a thickness of 3mm. So we need to estimate the displacement of

the focal plane by 1mm caused by the finite thickness of the glass chamber. The position

of the focal point with respect to the surface of the diffuser is estimated to be f = 16.4mm.

Now we can characterize the transverse σ⊥ and longitudinal size σ∥ (correlation length)

of grain in the speckle pattern that we generate onto the atoms. The correlation length

is defined as the HWHM (Half Width of Half Maximum) of the correlation function.

The transverse grain size σ⊥ is determined by the diffraction limit = λ/2NA. In our

experiment, the numerical aperture NA is 0.5. But since here the NA is huge, and that

is beyond the regime of paraxial approximation, so in order to calculate the correlation

length, M.Pasek and D.Delande proposed a numerical calculation based on the principle

of Huygens-Fresnel. Here in this manuscript, we give the result directly (the procedure of

how to measure the correlation lengths and the details of the numerical calculation can be

found in thesis of J.Richard [76]) :

σ⊥ = 0.42± 0.01 µm and σ∥ = 2.02± 0.03 µm. (4.23)

In this chapter, we first describe the spatially statistical properties of the diffuser and

introduce rdiff , which defines the typical size of the independent emitters on the diffuser.

Next, we derive the distribution of intensity. Then we study the spatially statistical prop-

erties of intensity near the Fourier plane: the average intensity I(xf ) and the correlation

of the intensity which defines the grain size of the speckle. At the end of the chapter, we

show the assembly of the speckle in our experiment. In the next chapter, we will see how

we perform the energy-resolved transfer in the speckle potential.



Chapter 5

Transfer scheme in a

monochromatic state-dependent

disorder

In section 2.4, we review the three experiments that have tried to measure the mobility

edge of the Anderson transition with ultracold atoms in speckle disorder[33, 34, 35], but

precise quantitative measurements are still lacking[36]. In experiments performed so far,

the atoms loaded in the disorder have a large energy dispersion so evaluating the mobility

edge demands a deconvolution leading to large uncertainties.

In section 2.4, we introduce that our team has proposed a method of spectroscopy to load

the atoms in the disorder with a narrow energy distribution. Scanning the energy around

the mobility edge would allow us to determine precisely the mobility edge. One might

even evaluate critical exponents for further investigation with this platform.

This chapter is to explain our method of spectroscopy. Our strategy for loading atoms

with a precisely defined energy, as described in figure 5.1, consists in performing an rf

transition from the state insensitive to disorder (in this manuscript and in our experiment,

this disorder-insensitive state is called state |1⟩) to the state sensitive to disorder (called

state |2⟩). The energy of the populated eigenstates in the disorder can be adjusted by

controlling the frequency of the rf.

70
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Figure 5.1: Rf transfer scheme with a state-dependent disorder. The state |1⟩
is insensitive to the disorder and we prepare the BEC |k = 0⟩ in this state. The state
|2⟩ is sensitive to the disorder. By a radio-frequency ωrf , we transfer the atoms from the
state |1⟩ to state |2⟩ in the disorder. By controlling ωrf , we can scan the spectral function

A(k = 0, E) of the disorder.

The first implementation of that scheme was demonstrated in the work of Volchkov et al.

[28] in our team. They performed an rf transfer between the atomic hyperfine states with

different sensitivities to a monochromatic laser speckle disorder. These different sensitiv-

ities stemmed from the very different detunings of the laser for the initial state |1⟩ and

the final state |2⟩, used to produce the state-dependent disordered potential. The narrow

Fourier-limited energy distribution they obtained—two orders of magnitude lower than

in previous experiments [28, 36] —allowed us to make a quantitative study of the spec-

tral function of the atoms in that disorder, and to explore different regimes of quantum

transport from the low disorder regime (quantum regime) to the strong disorder regime

(classical regime) [77, 78, 79].

In this chapter, we will first introduce the transition |1⟩ → |2⟩ that we choose to use.

Next, we will explain how to generate a state-dependent disordered potential with our

monochromatic speckle configuration. Then we will describe the rf transfer of |1⟩ → |2⟩
in the state-dependent disorder and show the experimental results of Volchkov et al. [28].

At the end of the chapter, we will see the method is, however, strongly limited by a

serious problem, that prevents us from measuring the mobility edge. It relies on a laser

tuned between the two resonances associated with the two atomic hyperfine states, and the

detuning for the upper state |2⟩ cannot be large enough to avoid the resonant scattering

of photons in that state. This entails a rapid destruction of the coherence of the spatial
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wave function describing the atomic motion and thus of Anderson localization. During

my thesis, we have overcome this bottleneck, and that is the content for the next chapter.

5.1 The two-level system composed of |1⟩ and |2⟩

In this section, we will first explain why we choose to use another hyperfine state |F =

2,mF = +1⟩ to be the state |2⟩ in our rf transfer scheme and how we suppress the fluctu-

ation of the resonance between |1⟩ and |2⟩ due to the fluctuation of magnetic fields. Then

we will show the Rabi oscillation between the two states. The narrow Rabi spectrum

shows the ability of energy-resolved transfer.

5.1.1 Choose the state |2⟩ and magic point B∗
0 of magnetic field.

As introduced in the section 3.11, the Bose-Einstein condensate is prepared in state |1⟩ =
|F = 1,mF = −1⟩. We design the magnetic field to levitate the atoms in this state to com-

pensate the gravity. We use this state |F = 1,mF = −1⟩ as state |1⟩ for the RF-transfer.

In our experiment, we choose |F = 2,mF = +1⟩ to be state |2⟩ to realize the rf-transfer.

There are two reasons why we choose this state. First, this state |2⟩ = |F = 2,mF = +1⟩
experiences the same magnetic potential as |1⟩ = |F = 1,mF = −1⟩ so that it is also levi-

tated by the same gradient of magnetic fields. This is crucial for observing the long-time

expansion of the atoms in the disorder.

The second and the more important reason is to minimize the fluctuation of the position of

the resonance due to the fluctuation of magnetic fields. The energy separation ∆hf between

the two magnetic hyperfine states |1⟩ and |2⟩ fluctuates if the magnetic field fluctuates.

Figure 5.2 a shows the dependence of the energy of the hyperfine states with magnetic

fields. This fluctuation of the resonance ∆hf limits the precision of our rf-spectroscopy. To

minimize this fluctuation, we impose a bias field at the so-called magic point B∗
0 ≃ 3.23

G. At this bias field B∗
0 , the magnetic susceptibilities χB of state |1⟩ and |2⟩ are identical,

as shown in figure 5.2 b. That means at B∗
0 , the variation of the energy with the magnetic

bias field is the same for the two states, leading that the energy separation ∆hf between

these two states is insensitive with the magnetic fluctuation.
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Figure 5.2: The dependence of the hyperfine sub-levels to magnetic field. a.
The dependence of the energy shift on the magnetic bias B0 for different atomic sublevels
in |F = 1⟩ and |F = 2⟩. b. The magnetic susceptibility of each state. We find that the
two states |F = 1,mF = −1⟩ and |F = 2,mF = +1⟩ have the magnetic susceptibility at

bias B0 = 3.23 G.

We can calculate the magic point B∗
0 of the magnetic field. According to the Breit-Rabi

formula[70], we can write the energy shift of the two states in the regime of weak magnetic

field up to the second order:

EF=2,mF=+1 ∼
h∆hf

2
+ gF=2µBB +

3(gJ − gI)
2µ2B

16h∆hf
B2

EF=1,mF=−1 ∼ −
(
h∆hf

2
+ gF=1µBB +

3(gJ − gI)
2µ2B

16h∆hf
B2

)
,

(5.1)

the Landé factors for the two states are gF=2 = (gJ + 3gI)/4 and gF=1 = (−gJ + 5gI)/4.
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The energy separation ∆E1,2 = EF=2,mF=+1−EF=1,mF=−1 between |1⟩ and |2⟩ depending
on the magnetic field B can be written as:

∆E1,2 = h∆hf + 2gIµBB +
3(gJ − gI)

2µ2B
8h∆hf

B2

= a

(
B +

b

2a

)2

− b2

4a
+ h∆hf ,

(5.2)

where we set a = 3(gJ − gI)
2µ2B/8h∆hf and b = 2gIµB.

Equation 5.2 indicates that there exists a magnetic field B∗
0 so that close to this magnetic

bias, the energy separation ∆E1,2 between |1⟩ and |2⟩ does not change with the fluctuation

of magnetic field:

B∗
0 = − b

2a
≃ 3.228917G for ∂B∆E1,2(B = B∗

0) = 0. (5.3)

In the experiment, we calibrate the magic pointB∗
0 by measuring how the energy separation

of |1⟩ and |2⟩ shifts depending on the bias field B0 and then fit it with equation 5.2 to find

the magic point B∗
0 , as shown in figure 5.3.

5.1.2 Two-photon transition

Once we select |F = 2,mF = 1⟩ to be |2⟩, now we have the two-level system. The next step

is to perform the transition between |F = 1,mF = −1⟩ (state |1⟩) and |F = 2,mF = 1⟩
(state |2⟩). However, we cannot realize the transition |F = 1,mF = −1⟩ → |F = 2,mF =

1⟩ directly by a single photon excitation because for this transition, |∆mF | = 2, which

is forbidden by selection rules (spin of a single photon is 1). Therefore to realize the

transition |F = 1,mF = −1⟩ → |F = 2,mF = 1⟩, we need to use a 2-photon excitation,

intermediated by state |F = 2,mF = 2⟩, as illustrated in figure 5.4.

The energy separation between |F = 1,mF = −1⟩ and |F = 2,mF = 1⟩ is about

6.834678GHz. In our experiment, we use a microwave at about 6.89GHz (ωmw) to be

the first photon and a radio-frequency at about 2.75MHz (ωrf) to be the second photon.

We keep a detuning δmw ≃ 500kHz between the frequency of microwave and the transition

frequency of |F = 1,mF = −1⟩ → |F = 2,mF = 0⟩, to avoid atoms populating into the

intermediate state which can induce strong decoherence for the 2-photon transition. Note
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Figure 5.3: The dependence of the energy separation ∆E1,2 on the magnetic
bias field B0. The vertical axis ’Resonance’ is just the energy separation ∆E1,2 by an
offset set in our program of parameters. The horizontal axis is the current of Bias A,
which is linear to B0. We adjust the bias field B0 by simply tuning the current of Bias
A. The black dots are the energy separation measured by Rabi spectrum, the blue curve

is the fitting function in the form of equation 5.2.

Ωmw to be the Rabi frequency of |F = 1,mF = −1⟩ → |F = 2,mF = 0⟩, and Ωrf to be the

Rabi frequency of |F = 2,mF = 0⟩ → |F = 2,mF = 1⟩, in the regime of:

|δmw| ≫ Ωmw,Ωrf , (5.4)

we can neglect the richness of the three-level transition and consider it to be an effective

two-level system composed of |F = 1,mF = −1⟩ and |F = 2,mF = 1⟩. The effective Rabi

frequency of the 2-photon transition |F = 1,mF = −1⟩ → |F = 2,mF = 1⟩ is [80]:

Ωeff =
ΩmwΩrf

2δmw
. (5.5)

In the experiment, by measuring the population in state |2⟩ = |F = 2,mF = 1⟩, we know

how many atoms transferred from |1⟩ to state |2⟩ during a duration = tp with a Rabi

frequency = Ωeff . The fraction of the atoms in state |2⟩ is [80]:

|⟨2|ψ(tp)⟩|2 =
Ω2
eff

Ω2
eff + δ2

sin2
(
π
√

Ω2
eff + δ2 tp

)
= π2Ω2

efft
2
psinc

2

(
π
√

Ω2
eff + δ2 tp

)
. (5.6)
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Figure 5.4: The principle of two-photon transition |F = 1,mF = −1⟩ → |F = 2,mF =
1⟩, using |F = 2,mF = 0⟩ as an intermediate state.

In the picture of spectroscopy, we can fix the duration of transfer tp and scan the rf-

frequency to observe the number of atoms transferred to |2⟩, and that is Rabi spectrum.

The energy resolution δE of the rf-transfer can be characterized by the width of the Rabi

spectrum (FWHM). Figure 5.5 shows two examples of Rabi spectrum. We fix the duration

of transfer tp = 30 ms in figure 5.5 a, tp = 40 ms in figure 5.5 b, and scan the rf-frequency to

observe the atom number in state |2⟩. We fit the experimental data with the equation 5.6.

According to the figures, we see that for the duration of transfer tp = 30 ms, the energy

resolution of the Rabi spectrum δE/h ≃ 30 Hz. For tp = 40 ms, the energy resolution

δE/h ≃ 23 Hz. So we verify that the energy resolution δE corresponds well to the Fourier

limit of the transfer: δE/h ∼ 1/tp. By adjusting the duration of the transfer from 8 ms

to 100 ms, the energy resolution can vary from ∼ 10 Hz to ∼ 125 Hz in our experiment.
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Figure 5.5: Rabi sepctrum. The orange dots are the experimentally measured atom
number in state |2⟩ and the blue curve is the fitting curve in equation 5.6. a. Rabi
spectrum for the duration of transfer tp = 30 ms. The width of the spectrum (FWHM)
is about 30 Hz. b. Rabi spectrum for the duration of transfer tp = 40 ms. The width of

the spectrum is about 23 Hz.

5.2 The state-dependent disorder

In the last section, we introduced the first element for the rf-transfer scheme: the choice

of the state |2⟩ = |F = 2,mF = +1⟩. And we also explained how we minimize the fluctua-

tion of the energy separation ∆hf due to the magnetic field fluctuation. In this section, we

introduce the other element for the rf-transfer: the state-dependent disordered potential.

The creation of state-dependent potential for alkali atoms has been widely investigated in

the context of optical lattices using circularly polarized light tuned between the D1 and

D2 lines [81, 82, 83]. However, such scheme is efficient only if the two states have different

magnetic susceptibilities [30]. But in our experiment, both of the two states are required

to be levitated against gravity by the magnetic levitation during their expansion in the

disorder[33, 34, 35], and to minimize the effect of magnetic fluctuation, the two states must

have similar magnetic susceptibility. So in our experiment, we use an alternative method

to generate the state-dependent potential by a near-resonant laser.

In section 3.8, we introduced the principle of the optical dipole potential. The speckle beam

can generate such an optical potential applying on the atoms. As shown by equation 3.15,

the potential depends on the light intensity I(x) and the detuning of the laser with respect

to the atomic resonance ∆:

V (x) ∝ I(x)

∆
. (5.7)

We introduced in chapter 4 how to generate a speckle configuration, and we showed the

spatial statistical properties of the light intensity of the speckle field. Since the potential
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Figure 5.6: State-dependent disorder generated by a single laser. The speckle
laser is near the resonance of state |2⟩, so that the detuning is much smaller than the

energy gap ∆hf between |1⟩ and |2⟩: |δ| ≪ ∆hf .

is proportional to the light intensity, the disordered potential shares the same spatial

statistical properties as the light intensity of the speckle field. As shown in figure 5.6, δ

is the detuning of the speckle laser with respect to the resonance of state |2⟩. Since the

natural linewidth of the transitions |1⟩ → |F ′⟩ and |2⟩ → |F ′⟩ (ΓRb/2π ≃ 6.07MHz) is

small compared to the energy separation ∆hf between |1⟩ and |2⟩ (∆hf/2π ≃ 6.8GHz), it

is possible to operate in the regime of ΓRb ≪ δ ≪ ∆hf . Thus, the detuning from resonance

for state |1⟩ is almost equal to ∆hf . The ratio between the average potentials for |1⟩ and
|2⟩ is:

V1
V2

∼ δ

∆hf
≪ 1. (5.8)

In Volchkov et al.[28], the detuning δ/2π ≃ ±80MHz, and that can lead to the ratio be-

tween the disordered potentials |V2/V1| ∼ 100, the disorder in state |1⟩ being much smaller

than the disorder in state |2⟩ by two orders of magnitude.

So we see that in this configuration, we are unable to completely eliminate the potential

in state |1⟩, resulting in a residual disorder V1(x) potential in state |1⟩. Therefore, we

need to analyze the disorder-insensitivity of state |1⟩. To do this, we compare V1 with the

chemical potential µ of the BEC. According to Volchkov et al. [28], the chemical potential
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of the BEC is approximately µ/h ≃ 50 Hz. In the regime of the disordered potential

they work with in [28], the range is V2/h ∈ [∼ 60Hz,∼ 4kHz]. Since |V2/V1| ∼ 100, the

corresponding residual potential in state |1⟩ V1/h ∈ [∼ 0.6Hz, 40Hz]. This ensures that the

residual potential in state |1⟩ is smaller than the chemical potential of the BEC, V1 ≤ µ,

making state |1⟩ insensitive to the residual disorder.

This simple generation of a state-dependent disordered potential allows one to determine

the spectral functions of ultracold atoms in a speckle potential at various amplitudes. In

the following, we will discuss the spectral function and show the experimental results of

the measurement of spectral functions in Volchkov. et al. [28].

5.3 Spectral function and the transfer in the disorder

We highlight that the objective of the rf-spectroscopy protocol is to prove that we can

load the atoms into a highly-resolved energy state in the disordered potential. As we

discussed in section 2.4 the limit of the previous experiments for the Anderson transition,

our rf-spectroscopy protocol is an important step towards launching a direct measurement

of mobility edge, that will allow one to characterize directly the localized and diffusive

phases by selecting the energy state in disorder.

In this section, we first introduce rapidly the definition of the spectral function and we will

connect the spectral function with the transfer rate of atoms by Fermi-Golden rule (more

details of spectral function is found in the thesis of V.Denechaud [75]). Then we will point

out that for my work in PhD, to measure the mobility edge Ec at a given disorder with

amplitude VR, spectral function is the excellent tool to calibrate VR.

5.3.1 Spectral function

We define the spectral function A(k, E) for the quantum system with Green function

G(k, E):

A(k, E) = − 1

π
ImG(k, E). (5.9)
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The spectral function A(k, E) can be seen as the overlap |⟨E|k⟩|2 between the momentum

|k⟩ and energy |E⟩ under the Hamiltonian Ĥ, so the spectral function can be written as:

A(k, E) = − 1

π
⟨k|ImĜ(E)|k⟩ = ⟨k|δ(E − Ĥ)|k⟩. (5.10)

By inserting the basis of eigenstates {|Eα⟩}α of Hamiltonian Ĥ, the spectral function can

be further expressed as:

A(k, E) =
∑
α

⟨k|δ(E − Ĥ)|Eα⟩⟨Eα|k⟩ =
∑
α

δ(E − Eα)|⟨Eα|k⟩|2. (5.11)

We use the example of the free particle in absence of potential V̂ . Its Green function

is G0(k, E) = 1
E−εk+i0+

. According to the equation 5.11, the spectral function for free

particle is:

A0(k, E) = − 1

π
ImG0(k, E) = δ(εk). (5.12)

Therefore we see that for free particle, the spectral function is a Dirac function. That

means given a momentum |k⟩, there is no dispersion of energy, the only possible energy

that momentum |k⟩ can overlap with is εk = ℏ2k2

2m .

Now we consider the situation in presence of the potential, introducing a self-energy Σ to

the system. We separate the real and imaginary part of the self-energy: Σ = Σ′+ iΣ′′, and

according to the equation C.9, the spectral function can be expressed as with self-energy

[84]:

A(k, E) =
1

π

Σ′′(k, E)

(E − Ek − Σ′(k, E))2 +Σ′′2(k, E)
(5.13)

Figure 5.7 can help to understand how the self-energy Σ(k, E) plays an effect to the spec-

tral function A(k, E). The real part of the self-energy In figure 5.7 a, the real part of the

self-energy shift the maximum of the spectrum and the imaginary part induces a broaden-

ing of the spectrum. We can take an example of a harmonic oscillator with frequency ω0,

corresponding to the energy εk, embedded in a viscous fluid that gives a damping term,

can be considered as a ”quasi−harmonic oscillator” with a new frequency ωr and a finite

lifetime τ . The interaction of the harmonic oscillator with the viscous fluid is coded in

self-energy Σ. The energy of this ”quasi − harmonic oscillator” is εk + Σ′, shifted by

Σ′ compared to the free harmonic oscillator. The finite lifetime τ = ℏ/Σ”, given by the

imaginary part of the self-energy Σ, and in the domain of energy, the finite lifetime causes
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Figure 5.7: Example of self-energy for harmonic oscillator. a. Without the
viscous fluid, the self-energy Σ is zero, and the spectral function of the ’free’ harmonic
oscillator is A0(k, E) ∼ δ(E − ϵk). In the presence of the viscous fluid, the maximum
of the spectral function is shifted by Σ′ (real part of the sefl-energy Σ) and the width is
broadened by Σ′′ (imaginary part of the self-energy Σ). b. In the picture of time domain,
in the presence of viscous fluid, the frequency of oscillation is shifted by Σ′, and the
lifetime of the oscillator is is ℏ/Σ′′ which corresponds to the broadening of the spectrum.

the broadening of the spectrum.

5.3.2 Connect the spectral function with the transfer rate of atoms

In our two-level systems in the state-dependent disorder, we prepare a Bose-Einstein con-

densate in disorder-insensitive state |1⟩, then by rf-transfer, we load the atoms into the

disorder-sensitive state |2⟩, as shown in figure 5.1. The rf coupling for the transition from

state |1⟩ to |2⟩ can be written as Ŵ (t) = Ŵ0cos(wrft). The Bose-Einstein condensate can

be seen as a plane wave with null momentum |k = 0⟩. Then the coupling is actually from

an initial state |i⟩ = |1⟩ ⊗ |k = 0⟩ to a continuum of final states {|f⟩}f = {|2⟩ ⊗ |Eα⟩}α,
where {|Eα⟩}α is the ensemble of the eigenenergies for the atoms in the disordered poten-

tial.

In this context, the transition from a discrete state |i⟩ to a continuum of states |f⟩f can

be described by the well-known Fermi golden rule, in the limit of first-order perturbation

of the Hamiltonian by a disordered potential. The transfer rate Γ is given by [80]:
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Γ =
2π

ℏ
∑
f

|⟨f |Ŵ0|i⟩|2δ(Ef − Ei − ℏω)

=
2π

ℏ
|⟨2|Ŵ0|1⟩|2

∑
α

|⟨Eα|k = 0⟩|2δ(Eα − Ei − ℏωrf)
(5.14)

We set the initial energy Ei of the condensate as the origin of energy: Ei = 0, and recall

the expression of the spectral function in equation 5.11, we get the connection between

the transfer rate and the spectral function:

Γ(ωrf) ∝ A(k = 0, E = ℏωrf) (5.15)

So we conclude that measuring the spectral function A(k = 0, E) is just need to measure

the transfer rate of the transition from the BEC |i⟩ = |1⟩⊗|k = 0⟩ to the disorder-sensitive

states {|f⟩}f = {|2⟩ ⊗ |Eα⟩}α. In the next section, we will show the experimental results

of measurement of spectral function in 2018 with the quasi-resonant speckle [28].

5.4 Experimental measurement of the spectral function with

near-resonant speckle

The experiment starts with the realization of a 87Rb BEC of about N1 = 2 × 105 atoms

in the state |1⟩. Then the disordered potential for state |2⟩ is turned on with a given

amplitude VR, at the same time, the microwave and rf fields is applied to transfer the

atoms in the |1⟩ to |2⟩, for a time duration t. The rf coupling is weak enough such that the

transfer rate Γ can be calculated via the Fermi golden rule[80, 85, 86, 87]. The duration t

is chosen to be short, i.e. Γt ≪ 1, so that only small fraction of atoms are transferred to

state |2⟩ (only a few percent). In this regime, the population N2 in state |2⟩ grows linearly
in time: N2(t) = N2(0) Γ t. So measuring the transfer rate Γ is directly measuring the

atom number transferred to state |2⟩. Then by repeating the measurement with different

rf-detuning δ, we can obtain the transfer rate Γ(δ), thus measuring the spectral function

A(k = 0, E = ℏδ) in the disorder with amplitude VR.
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Figure 5.8: The measurement of spectral functions A(k = 0, E) in attractive
disorders. From a to f, the amplitude of disorder VR/h is −60 Hz, −121 Hz, −416 Hz,
−832 Hz, −2042 Hz, −4008 Hz. The blue dots are the measured data. The red curves
are the numerical simulations from D.Delande for the corresponding disordered potential.
The black vertical line in each figure marks the amplitude of the disorder VR/h. The
duration of transfer tp is adjusted for various VR so that the energy resolution δE is
much smaller than the width of the spectral function. Figure f is in the regime of strong
disorder, VR/h = −4008 Hz. The green dashed curve is the distribution of potential
p(V ) as introduced in equation 4.15. The marron dotted line is the numerical simulation

considering the residual disorder in state |1⟩.

Change the amplitude of disorder potential VR and do the same measurement as described

above, we can obtain the spectral function A(k = 0, E = ℏδ) with various VR. In [28],

they measured from low amplitude to strong amplitude of disorder[77, 78, 79], for both

repulsive and attractive disorder. The experimental results are shown in figures 5.8 for

attractive disorder and in figures 5.9 for repulsive disorder, with V ranging from 60 Hz to

4 kHz.

In the figures, the experimental results are compared with the numerical simulation real-

ized by M. Pasek and D. Delande[28]. We see that the agreement between the experimental

results and the numerical curves is remarkable. The experimental data overlap excellently

with the numerical simulations given by M. Pasek and D. Delande without any fitted pa-

rameters.

This work has demonstrated a method to probe the spectral functions with state-dependent

disorder. That proves that we can load the atoms in the disorder with selected energy

Ef = Ei+ℏδ, and with a high energy resolution which is only Fourier-limited: δ ∼ h/t. It

also proves that spectral function is an excellent tool to calibrate the amplitude of disorder
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Figure 5.9: The measurement of spectral functions A(k = 0, E) in repulsive
disorders. From a to f, the amplitude of disorder VR/h is 60 Hz, 121 Hz, 416 Hz,
832 Hz, 2042 Hz, 4008 Hz. The blue dots are the measured data. The red curves are
the numerical simulations from D.Delande for the corresponding disordered potential.
The black vertical line in each figure marks the amplitude of the disorder VR/h. The
duration of transfer tp is adjusted for various VR so that the energy resolution δE is
much smaller than the width of the spectral function. Figure f is in the regime of strong
disorder, VR/h = −4008 Hz. The green dashed curve is the distribution of potential
p(V ) as introduced in equation 4.15. The marron dotted line is the numerical simulation

considering the residual disorder in state |1⟩.

VR. The precision of calibration is within 5%. It is very important if we want to trust the

measurement of the mobility edge in a given amplitude of disorder VR.

5.5 To explore the Anderson transition in this platform?

To measure the mobility edge Ec, the strategy can be divided into two steps: 1. The first

step is to load the atoms into a disordered state at energy Ef = Ei + ℏδ by an rf field

with frequency δ. 2. The second step is to expand the atoms in the disorder. We need to

characterize its transport properties of the energy state Ef from the long time evolution

of the atomic profile.

In this chapter, we show that the first step has been realized [28]. Can we go further

towards the second step, measure the mobility edge by the expansion of atoms? Unfortu-

nately, the answer is no, because in state |2⟩, the atom experience a strong spontaneous

scattering, which can destroy the motional wave function coherence. In our protocol of
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state-dependnet disorder, illustrated in figure 5.6, the speckle laser is close to the reso-

nances of state |2⟩, detuned by ∼ 80MHz. Thus during the expansion in state |2⟩ embedded

in the disorder, the atoms experience a strong photon scattering. The photon scattering

rate in state |2⟩, Γ2 can be calculated as:

Γ2 ≃
1

ℏ
|V |Γ

δ
, (5.16)

where V is the average amplitude of disordered potential, Γ = 2π×6.07MHz, the linewidth

of the D2 transition of 87Rb, and δ is the detuning.

For a disorder with amplitude |V2|/h = 416Hz, according to the equation 5.16 above, the

photon scattering lifetime of the state |2⟩ in disorder, τ2 ≃ 1/Γ2 is about 5.3ms. Com-

pared with the required lifetime in the order of seconds, 5ms is far from being enough.

So the strong photon scattering of the atom in state |2⟩ is the main limitation of this

near-resonant speckle protocol.

In summary, using the protocol outlined in Figure 5.6, we are able to generate a state-

dependent disordered potential and measure the spectral function at different levels of

disorder. However, the near-resonant speckle laser used in this process causes intense

atom loss due to photon scattering, and destroys the coherence of the atomic wavefunc-

tion. The corresponding photon scattering lifetime is only a few milliseconds for atoms

in state |2⟩ (with a disorder of VR/h = 416Hz). To measure the mobility edge, we need

to improve the photon scattering lifetime by two orders of magnitude. In the following

chapter, we will introduce a new set-up called bichromatic speckle that overcomes this

limitation of the monochromatic speckle (near-resonant speckle potential) and allows for

long-lasting energy-resolved quantum transport experiments.



Chapter 6

Bichromatic state-dependent

disordered potential

In the previous chapter, we have presented how to generate the state-dependent disordered

potential with a laser speckle. At the end of the chapter, we have shown the limitations

of this scheme: the strong photon scattering of the atoms in the disorder prevents us from

measuring the mobility edge.

To overcome this problem, the basic idea is to tune the frequency of speckle laser far

from the atomic resonances of state |2⟩. Nevertheless, by doing so, in state |1⟩, the laser

produces a disordered potential comparable with the potential in state |2⟩. Thus we lose

the state-dependence of the disorder. But if we use two lasers to generate the disorder, as

illustrated in figure 6.1, whose frequencies and power are adjusted so that their potentials

cancel each other in state |1⟩ (|1⟩ is insensitive to the disordered potentials in other words)

and add-up in state |2⟩ while keeping their frequency far away from the resonance of

state |2⟩, we can produce a state-dependent disorder (we call it bichromatic speckle in

the following). With this bichromatic speckle, the photon scattering rate in state |2⟩ is

reduced by orders of magnitude to allow for long observation of quantum transport. In

this chapter, we will introduce our experimental investigation of this bichromatic speckle.

86
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Figure 6.1: State dependent disorder in a bichromatic speckle. ωp is the fre-
quency of principal laser and ωc is the frequency of compensating laser. The detunings of
the two lasers with respect to the atomic resonance are δp and δc respectively. V1(r) and
V2(r) are the total potentials created by the two lasers in state |1⟩ and |2⟩ respectively.

6.1 Bichromatic speckle scheme

In the scheme of bichromatic speckle, as shown in figure 6.1, the two lasers that we apply

to generate the bichromatic speckle are called principal laser and compensating laser re-

spectively. The detuning δp of the principal laser with respect to the transition |1⟩ → |F ′⟩
is rather large, about 100GHz. It produces a repulsive potential Vp,1(r) in state |1⟩. The

other laser is called compensating laser, as its name implies, we use it to compensate the

potential produced by the principal laser Vp,1(r) in state |1⟩. It is less detuned, by about 1

to 2 GHz with respect to the transition |1⟩ → |F ′⟩ in the red side. Thus the compensation

laser produces an attractive potential Vc,1(r) in state |1⟩.

In our scheme of bichromatic speckle, in state |1⟩, the potentials created by the principal

laser and the compensating laser should cancel each other so that the total potential V1(r)

in state |1⟩ is zero, and in state |2⟩ the total potential V2(r) is just the sum of the two

potentials. We denote VR as the average amplitude of the total potential in state |2⟩.
These two conditions are:V1(r) = Vp,1(r) + Vc,1(r) = 0

V2(r) = Vp,2(r) + Vc,2(r) with V2 = VR

(6.1)
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In this scheme, since the principal laser is detuned from the atomic resonances by about

100GHz, the photon scattering lifetime of state |2⟩ is essentially limited by the compen-

sating laser. Remember the photon scattering rate Γ2 for state |2⟩ is calculated as:

Γ2 ≃
1

ℏ
|V |Γ

δ
, (6.2)

where |V | is the average amplitude of the potential in state |2⟩, δ is the detuning, and

Γ ≃= 2π × 6.07MHz is the linewidth of the atomic resonance.

As we mentioned above, δp ≃ 100GHz, δc ∼ 1− 2GHz, here we do a very simple calcula-

tion to have some ideas on the order of magnitude, so we only consider the detuning of

compensating laser δc and neglect the δp at the moment. For a disordered potential of

|V |/h = 416 Hz, we get that the lifetime of state |2⟩ τ2 ∼ 1 − 2 s. Remind that for the

scheme of monochromatic speckle in the last chapter, for the same amplitude of disorder

|V |/h = 416 Hz, the photon scattering lifetime τ2 is only 5ms. Therefore, in principle the

bichromatic speckle can help to improve the lifetime by more than two orders of magnitude.

We have introduced the basic idea of the bichromatic speckle scheme and given a simple

analysis of how this scheme can help to improve the photon scattering lifetime by two

orders of magnitude. The analysis so far is oversimplified. In reality, the speckle pattern

depends on the diffraction of the incident waves, thus, since the wavelengths of the two

lasers are different by ∼ 100GHz, the two speckle patterns cannot be strictly identical to

cancel each other completely, as shown in figure 6.2 a. That means we cannot satisfy the

condition V1(r) = 0 for all {r}. So the different laser wavelengths lead to the decorre-

lation between the two speckle potentials and it prevents the complete canceling of the

disordered potential in state |1⟩. As the result, this decorrelation effect between the two

speckle patterns induces a residual disorder in state |1⟩.

To perform the energy-resolved transfer between |1⟩ and |2⟩, it is required that our speckle

potential should be state-dependent, and |1⟩ should be insensitive to the disorder. So we

need to ask the question, does the residual disorder due to the decorrelation of the two

lasers kill the insensitivity of state |1⟩ to the disorder?

To answer this question, we need to calculate the variance σV1 of the residual disorder, and

compare it with the chemical potential µ of our BEC in state |1⟩. If σV1 < µ, that means
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Figure 6.2: Illustration of the correlation between two speckle potentials by
the same diffuser. a. Close to the Fourier plane, the two patterns are identical up to
a spatial scaling factor, yielding an almost perfect overlap of the potential that decreases
with the distance to the optical axis. The correlation length lc describes the typical
distance for which the speckle patterns become out of phase. b. Plot of the variance of
the total potential as a function of the position in the Fourier plane. Close to the optical
axis, the two speckle patterns are similar and the only decorrelation term arises from the
phase difference due to the propagation through the diffuser. Far away from the optical
axis, the two speckle patterns do not superimpose and the variance of the total potential
is the sum of the two individual variances. In our experiment, the correlation length lc is

about 2 mm.

the fluctuation residual disordered potential can be screened by the chemical potential of

the BEC thus the BEC in state |1⟩ is not excited by the residual disorder. In the following,

we will prove that in our experiment the residual disorder does not kill the insensitivity of

the disordered in state |1⟩. We will show our experimental realization of the bichromatic

speckle scheme and the experimental check of the insensitivity of the disorder in state |1⟩.

6.2 Fundamental potential deccorelation in state |1⟩

Recalling equation 6.1, we need to first adjust the detunings and power of the two lasers

to make the average potential in state |1⟩ zero:

V1(r) = Vp,1(r) + Vc,1(r) = 0. (6.3)

Then we characterize the residual spatial fluctuation δV1(r) = δVc,1(r) + δVp,1(r) of the

total potential in state |1⟩. To characterize the spatial fluctuation of V1(r), we need to
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calculate its variance σ2V1
:

σ2V1
= δV 2

1

= (δVp,1 + δVc,1)2

= σ2Vp,1
+ σ2Vc,1

+ 2δVp,1(r)δVc,1(r)

= V
2
p,1 + V

2
c,1 + 2δVp,1(r)δVc,1(r)

= 2|V p,1V c,1|

(
1− δVp,1(r)δVc,1(r)

V p,1V c,1

)
.

(6.4)

In the derivation, we have used the property due to the exponential distribution of the

intensity demonstrated in section 4.2: σV = V (σI = I in section 4.2). From equation

6.4, we define the normalized bichromatic correlation function c2λ as a function of the

two lasers’ wavelengths. c2λ quantifies the correlation of the two disordered potentials at

position r:

c2λ(r, λp, λc) =
δVp,1(r)δVc,1(r)

V p,1V c,1

(6.5)

The interpretation is rather direct: if the two potentials are completely decorrelated, then

the correlation function c2λ(r, λp, λc) = 0. According to equation 6.4, the variance of the

residual potential in state |1⟩ is:

σ2V = 2|V p,1V c,1| (1− c2λ(r, λp, λc))

= 2|V p,1V c,1|

= Vp,1
2
+ Vc,1

2

= σ2Vp,1
+ σ2Vc,1

.

(6.6)

So in the situation where the two speckle potentials are completely decorrelated, the vari-

ance of the residual potential in state |1⟩ is simply the sum of the variance of each potential:

σ2V1
= σ2Vp,1

+ σ2Vc,1
.

While in contrast, for exactly identical speckle patterns, their potential is perfectly corre-

lated: c2λ(r, λp, λc) = 1. According to equation 6.4, the variance of the residual potential

σV1 is zero, meaning that the two speckle potentials cancel each other completely.
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Studying the amplitude of the residual potential then comes down to investigating the

behavior of the normalized bichromatic correlation function c2λ(r, λp, λc).

6.2.0.1 Calculate the normalized bichromatic correlation function

In order to facilitate the calculation of the normalized bichromatic correlation function

c2λ(r, λp, λc), we convert the expression of the correlation function c2λ(r, λp, λc) in function

of light intensity I instead of amplitude of potential:

c2λ(r, λp, λc) =
δVp,1(r)δVc,1(r)

V p,1V c,1

=
δIp(r)δIc(r)

I20 (r)
.

(6.7)

Therefore in order to calculate the correlation function c2λ(r, λp, λc), we need to calculate

the correlation between the intensity of the two lasers. The calculation is rather com-

plicated, so to make it clear, we divide it into four steps: 1. the bichromatic correlation

function of the diffuser, 2. the correlation function of the amplitude, 3. 3D monochromatic

correlation close to the Fourier plane, and finally, we combine all these elements together

to get the bichromatic correlation function of the speckle.

6.2.0.2 The decorrelation effect in practice

The calculation is in appendix B and in the thesis of Baptiste Lecoutre[88]. The bichro-

matic correlation function c2λ can be expressed as :

c2λ(r⊥, z, λp, λc) = e−σ2
∆ϕ c3D

(
r⊥
δλ

λ
, z
δλ

λ

)
, (6.8)

where r⊥ is the transverse position in the Fourier plane, z is the longitudinal position

near the Fourier plane, σ2∆ϕ is the variance of the local phase difference ∆ϕ(r0) of the

speckle fields on the surface of the diffuser: ∆ϕ(r0) = ϕp(r0) − ϕc(r0), and c3D is the

monochromatic correlation function close to the Fourier plane and its expression can be

found in appendix B.
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We define finess F , to characterize the frequency difference between the two lasers, and

F = λ/δλ. Then we can rewrite the bichromatic correlation function c2λ(r⊥, z, λp, λc) as:

c2λ(r⊥, z, λp, λc) = e−σ2
∆ϕ c3D

(r⊥
F
,
z

F

)
. (6.9)

The equation 6.9 is the major result of the calculation on the decorrelation effect of the two

speckle potentials. Now we discuss the interpretation of the two terms of the bichromatic

correlation function separately.

The first term exp(−σ2∆ϕ) is associated with the fluctuations of the phase difference for the

laser with two different wavelengths λp and λc, propagating inside the diffuser at the same

point. To be more precise, at point r0 on the diffuser, the phase acquired by the principal

laser is ϕp = 2π(n−1)δe(r0)/λp and the phase acquired by the compensating laser is ϕc =

2π(n− 1)δe(r0)/λc where δe(r0) is the thickness of the diffuser at point r0. So the phase

difference for the two lasers at point r0 is ∆ϕ(r0) = ϕp−ϕc = 2π(n−1)(λ−1
p −λ−1

c )δe(r0).

Consider the Gaussian distribution for the phase ϕp and ϕc, their difference ∆ϕ(r0) is

also Gaussian distributed. When averaged over the diffuser, i.e. over r0, we obtain that

the average for the phase term exp(i∆ϕ) = exp(−σ2∆ϕ/2), with σ
2
∆ϕ the variance of ∆ϕ.

This fluctuating phase difference term, therefore, results in a decorrelation factor in the

speckle pattern. In the final analysis, the decorrelation factor is due to the roughness of

the diffuser. It can be rewritten as exp(−σ2∆ϕ) ≃ exp(−4π2(n − 1)2σ2e/λ
2
pF2). Here σe

is the thickness fluctuation of the diffuser. So from the expression of exp(−σ2∆ϕ/2), we

know that the rougher the diffuser is and the bigger the frequency difference is, the less

correlated the two speckle potentials will be.

In practice, the roughness of the diffuser σe is given by manufacturing. It is measured at

the optical workshop of Institut d’Optique, using a profilometer. We get that the rough-

ness of diffuser σe = 1.3µm. For F = λ/δλ ≃ 4000, (this value 4000 corresponds to our

bichromatic setup), the term exp(−σ2∆ϕ) is ∼ 1 - 10−6, indicating almost perfect correla-

tion between the two speckles on the surface of the diffuser, and thus the decorrelation

produced when the two lasers transmitting through the diffuser can be negligible.

The second term in equation 6.9, c3D
(
r⊥
F ,

z
F
)
, describes the loss of correlation between the

two speckle potentials as shifted away from the optical axis, as shown in figure 6.2 b. It is

due to the different geometrical scaling factors of the two speckle patterns, proportional
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to the wavelengths. We find this term c3D
(
r⊥
F ,

z
F
)
is nothing but the correlation function

of a monochromatic speckle in equation B.11 with a magnifying factor F . As illustrated

in figure 6.2 a, close to the center in the Fourier plane, the two potentials are identical

up to a spatial scaling factor, yielding an almost perfect overlap of the potential, and the

overlap decreases with the distance to the optical axis. So just as the monochromatic cor-

relation function has a width of σ⊥, the bichromatic correlation function then has a width

lc = Fσ⊥, which defines its correlation length. As shown in figure 6.2 b, this correlation

length lc characterizes the distance from the center where the two speckle potentials are

shifted by one speckle grain size, therefore losing the spatial overlap.

In the experiment, what does matter is the comparison of the bichromatic correlation

length lc with the size of the expansion of the atoms. Taking again F ≃ 4000, the

bichromatic correlation length is in the order of l2 ∼ 2mm. In our experiment, generally,

after a long expansion (∼ 3 seconds), even for a very diffusive state, the size L of the

atoms is less than 100µm. So the bichromatic correlation length l2 is much larger than

the size of the expansion of the atoms. Thus we can estimate the decorrelation factor to

be at most 1− c3D(L/F) ∼ 10−4. Using equation 6.4, we estimate that the decorrelation

effect between the two speckle potentials leads typically to a residual disordered potentials

in state |1⟩, with the variance in the order of:

σV1 ∼ 0.02× VR, (6.10)

where VR is the average amplitude of the disordered potential in state |2⟩.

Equation 6.10 is the main result of this section. It shows that given amplitude of disorder

VR in state |2⟩ what is the variance of the residual disorder in state |1⟩. As mentioned

above, to judge whether the state |1⟩ is insensitive to the disorder, we need to compare

the variance of the residual disorder σV1 with the chemical potential µ of our BEC. If

σV1 < µ, that means the residual disorder cannot excite the BEC and therefore state |1⟩ is
insensitive to the disorder. For instance, for VR/h = 416Hz in state |2⟩, the variance of the
residual disorder σV1/h ∼ 11.4Hz. The chemical potential µ of our BEC is about 250Hz,

so according to equation 6.10, the BEC can sustain a residual disorder for VR/h ∼ 10kHz

in state |2⟩. That is largely sufficient for our experiment because we are interested in the

regime of VR/h ∈ [∼ 100Hz,∼ 1kHz] in state |2⟩.
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6.3 Reduction of the photon-scattering rate for the disorder-

sensitive state

Recall that a strong reduction of the photon scattering rate in state |2⟩ is the main goal

of bichromatic speckle potential, as mentioned at the beginning of this chapter. To study

Anderson localization, a lifetime of the atoms on the order of one second or more is

essential[33, 34]. Note that the limitation of the lifetime for state |1⟩ is much less strin-

gent. The state |1⟩ is only a source of atoms with well-defined energy for the rf-transfer. So

the limitation is: Γ−1
1 > trf , the lifetime in state |1⟩ needs to be longer than the duration

of rf-transfer. In our experiment, trf depends on the amplitude of the disorder VR. For

a typical value of VR/h = 416Hz, trf is generally less than 50ms. So Γ−1
1 must be longer

than tens of milliseconds.

The photon scattering rate Γsc is the sum of the scattering rate from principal Γp and

compensating disorder Γc. To calculate the scattering rate, we know that atomic polar-

izability α has real and imaginary parts. The real part introduces an energy shift, so we

use this part to form the conservative trap, which is optical dipole trap. The imaginary

part is the damping term, that limits the lifetime of the atoms. Therefore the scattering

rate Γsc is proportional to the imaginary part of polarizability α [30]:

Γsc(r) =
1

ℏϵ0c
Im(α)I(r). (6.11)

For a given hyperfine level state of atom |F,mF ⟩, the total scattering rate is the sum of

the effect from principal laser and compensating laser. For a given level:

ΓF,mF
=

1

ℏϵ0c
(Im[αF,mF

(δp)Ip + Im[αF,mF
(δc)Ic]) . (6.12)

In order to calculate it, the explicit expression for scattering rate for large detuning and

negligible saturation (linear regime) is:

Γsc(r) =
3πc2

2ℏω3
0

(
ω

ω0

)3( Γ

ω0 − ω
+

Γ

ω0 + ω

)2

, (6.13)

where ω is the frequency of laser, ω0 is the relevant resonant frequency of atom, Γ =
ω3
0

3πϵ0ℏc3 |⟨e|µ|g⟩|
2 is the dipole matrix element between ground and excited state of the rel-

evant transition of atom.
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With the explicit expression of scattering rate 6.13, we can numerically calculate the scat-

tering rates Γ1 and Γ2 for state |1⟩ and state |2⟩ respectively.

Table 6.1 shows the result of the numerical calculation of the scattering rates, with the ex-

perimental parameters for a bichromatic speckle potential corresponding to VR/h = 416 Hz

in state |2⟩. This value for the amplitude of disorder is typical in our experimental study

of Anderson localization or the spectral functions [28] (see correlation energy in section

chapter 7). Here, the detuning of the principal laser δp is chosen to be 95GHz. We choose

δp/2π = 95GHz because we need the detuning to be large enough to reduce the photon

scattering in state |2⟩. At the same time, the difference between the frequencies of the two

lasers cannot be too large so that the two speckle potentials can be identical enough to

cancel each other well in state |1⟩. So δp = 95GHz is a good comprise. The choice of δp is

not that strict. We have tried some frequencies around 100± 10GHz. In the experiment,

we choose δp = 95GHz mainly because we can find a clean and stable mode of laser at

this frequency. It can change if we find another better mode of laser.

The compensating laser limits both the lifetime of state |1⟩ and |2⟩. We choose its detuning

δc to be large enough from |2⟩ to have long time Γ−1
2 ∼ seconds, while at the same time,

the lifetime in state |1⟩ needs to be longer than the duration of rf-transfer (γ−1
1 > trf).

For the measurement we do in this section, trf = 40ms. For the reason of this comprise,

we choose δc/2π = 1.4GHz and in state |1⟩ the corresponding lifetime Γ−1
1 = 73ms. So we

have Γ−1
1 > trf .

With these parameters, δp/2π = 95GHz, δc/2π = 1.4GHz, and VR/h = 416Hz, we can

deduce the amplitudes of the potential generated by each laser in |1⟩ and |2⟩: Vp,1/h =

−Vc,1/h = 366Hz, Vp,2/h = 348Hz and Vc,2/h = 68Hz (VR/h = Vp,2/h+ Vc,2/h = 416Hz).

The most important result with these parameters of bichromatic speckle shown in table

6.1 is the improvement of the lifetime Γ−1
2 in state |2⟩. According to the calculation, the

lifetime Γ−1
2 can improved from 5.3ms to 1.66s for VR/h = 416Hz, by two orders of magni-

tude compared with the monochromatic speckle [28]. Another additional point is that in

our bichromatic speckle scheme, for VR/h = 416Hz, the variance of the residual disorder in

state |1⟩ is σV1/h ∼ 11.4Hz, the same order as monochromatic speckle[28], σV1/h ∼ 6.3Hz,
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Table 6.1: Comparison of the state-dependent disordered potential parameters between
the monochromatic configuration and the bichromatic one.

Quantity Monochromatic Bichromatic

δ/2π 81MHz -

δp/2π - 95GHz

δc/2π - -1.4GHz

Γ−1
1 26.6s 73ms

Γ−1
2 5.3ms 1.66s

σV1/h 6.3Hz 11.4Hz

P 0.49µW -

Pp - 430µW

Pc - 4.6µW

yielding the same state-selectivity as in [28].

The analysis in this section for VR/h = 416Hz can be easily generalized to a wide range of

VR by adjusting the parameters of the two lasers, from quantum regime to classical regime,

both for repulsive (VR > 0) and attractive (VR < 0) potentials. We check that we can

obtain similar improvements for the lifetime Γ−1
2 in state |2⟩ for VR/h ∈ [∼ 40Hz,∼ 4kHz].

6.4 Experimental realization

In this section, we present how we realize the scheme of the bichromatic speckle in our

experiment. There are two main objectives. Firstly, we need to check insensitivity to the

disorder of state |1⟩ experimentally, to prove that the variance of the residual potential in

state |1⟩ can be neglected in front of our Bose-Einstein condensate. This is done by study-

ing the mechanical excitation of the BEC in state |1⟩ by the residual disorder, following a

quench of the disordered potential. We will explain how we measure the excitation of the

disordered potential and how to characterize the cancellation of the two speckle potentials

in state |1⟩.

Secondly, with this new bichromatic speckle setup, we perform the rf-transfer protocol as

what has been done with the monochromatic speckle in 2018 [28]. We check that with

our bichromatic speckle setup, we are able to reproduce the spectral function measured

in [28], and that proves that we can achieve the energy-resolved loading of atoms in the

bichromatic disorder. Then we check the photon scattering lifetime of the disordered states
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in the bichromatic speckle potential. As predicted, we find a large improvement by two

orders of magnitude compared to the monochromatic speckle case, the photon scattering

lifetime for the disordered states now being on the time scale of several seconds.

6.4.1 Experimental set-up

The laser source for the principal laser is Toptica TA−Pro, which can provide up to 1.5W

of the beam at 780nm. The tuning range is more than 10nm. In the scheme of bichromatic

speckle, we need this principal laser to be tuned away from the D2 line by 100GHz, so this

laser can easily satisfy our demands. The typical linewidth of this laser is about 50kHz.

If we compare the linewidth with the detuning of 100GHz, it can be negligible. It is hard

to lock the frequency of this laser in our experiment due to the huge detuning of 100GHz.

Since the linewidth is negligible compared with the detuning, we do not lock it in our

experiment.

For the compensating laser, the laser source we use is Cheetah from Sacher−Lasertechnik.
It is the same laser that we use for the repumper laser (L2) and the cooling laser (L3).

This laser can provide power up to about 120mW, at 780nm. Here for generating the

bichromatic speckle, generally, the power we use is about 30mW. The tuning range for

the frequency is less than 20GHz, which explains why we use this laser to play the role

of the compensating laser, which is generally tuned to be only 1-2GHz away from the

transitions for |F = 1⟩. The linewidth of this laser is about 5MHz. Since this laser works

in a much smaller detuning ∼ 1 − 2GHz, we need to lock its frequency with a reference.

We choose our repumper laser (L2) to be the reference of frequency. The passing band of

the PID system is 10kHz. So finally the precision of the frequency of compensating laser

is controlled within 10kHz.

The assembly allowing the shaping and stabilization of the beams for the generation of the

bichromatic speckle is illustrated in figure 6.3. The optical schema in the left box shows

the optics to combine the principal laser and the compensating laser together. The two

lasers are combined by a beam splitter. Then a polarizer filters the two lasers to have the

same polarisation before sending them into a monomode optical fiber. The spatial mode

and the polarisation of the beam are filtered with the help of the monomode optical fiber
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Figure 6.3: Experimental set-up for bichromatic speckle. The optics in the left
and right parts represents the setup in two optical tables. The left part shows how we
combine the principal laser and the compensating laser. For each of them, there is a
servo-loop for controlling and stabilizing their power. The two lasers are combined by a
beam splitter, and they are filtered to the same polarization by a polarizer before being
injected into the fiber. The right part is the same as figure 4.5 to shape the beam to have
a large waist of 14.6 mm. In this optical table, we put a PD before the beam going to the

telescope to monitor the power fluctuation of the beam.

to maintain the polarisation of the beams.

The output of the fiber goes to another optical table (the right box in figure 6.3). The

polarization of the beam is adjusted by a half-wave plate (λ/2) so that the beam can be

transmitted through two PBS. These steps assures the linear polarisation of the beam is

always well maintained. Then the next step is to reshape the beam to have a large waist,

and the optics to do so are the same as what we have introduced in section 4.4. The beam

is enlarged by a telescope composed of -75mm to +200mm lenses. With this telescope,

the waist of the beam is increased from 5.6mm to 14.6mm.

To control the power of each laser individually, at the optical table in the left box in figure

6.3, we have servo-loop to AOM for each laser before combining them together with the

beam splitter. The precision of the power control is better than 1 %. After the beams

are combined together, we do not have power control of them anymore. Thus, if there

is any fluctuation of power, there is no servo-loop to correct the fluctuation. The fluctu-

ation of power can come from the fluctuation of polarization. If the polarization of the



Chapter 6. Bichromatic state-dependent disordered potential 99

beam is not well adjusted before going to the optical fiber, then at the output of the fiber,

the polarization of the beam will fluctuate, then after the PBS, the fluctuation of the

polarization causes the fluctuation of power. Therefore, we need to monitor the fluctu-

ation of power after the PBS. As shown in figure 6.3, after the beam transmits through

the PBS and before going to the telescope, by a beam splitter, we distribute 10% of the

power to the telescope, and 90% of the power to a photo-diode which is used to monitor

the fluctuation of power. This photo-diode is independent of the servo-loops of each beam.

In our experiment, the photo-diode shows that the fluctuation of the power is within 1%.

That can induce a fluctuation of the amplitude of the disordered potential δVR ∼ 1%VR.

The precision of the calibration for the amplitude of the disordered potential by spectral

function is about 5%. Therefore, we can remark that the fluctuation of power does not

introduce additional fluctuation to the disordered potential.

Generally, in our experiment, the power of the principal laser that we use is the range

[200µW, 2mW] and the compensating laser is the range of [2µW, 20µW]. With this range

of power, we can generate the disordered potential with amplitude VR/h ∈ [100Hz, 1kHz]

in state |2⟩, and the corresponding fluctuation is in the range of [1Hz, 10Hz].

6.4.2 Probing the insensitivity of state |1⟩ to disorder using a quench

In our experiment, we have a BEC with around 2 × 105 atoms, in a very decompressed

trap configuration: ωy/2π ≃ 5Hz, ωz/2π ≃ 25Hz, ωx/2π ≃ 30Hz. That corresponds

to a chemical potential around µ/h ≃ 250Hz and a Thomas-Fermi radii around RTF ∼
45µm, 10µm, 8µm along each direction. In the experiment in order to quantify the effect

of the residual disorder in state |1⟩, we use a quench protocol. After we got the BEC, we

switch abruptly on the disordered potential within 100 µs, at the same time we switch off

the optical trap for the BEC, and keep the disordered potential on for 4ms [89]. Then

after the evolution of 4ms, we switch off the disorder and do a time of flight measurement

with duration tToF = 200ms to measure the momentum distribution of the atoms.

The measurement is shown in figure 6.4. In this figure, we fix the power and the fre-

quency of the principal laser, thus keeping the amplitude of the disordered potential gen-

erated by principal laser Vp,1 unchanged. Here in our measurement shown in figure 6.4,
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Figure 6.4: Evolution of the momentum distribution of the atoms in state |1⟩
following a quench of the bichromatic speckle potential. The amplitude of the
principal potential is fixed to Vp,1/h = 366 Hz, and we scan the amplitude of compensating
potential |Vc,1|/h from 0 to 700 Hz. The dots correspond to the size of the atomic cloud
measured after a time of flight of 200 ms. The size is fitted by a Gaussian function. The
error bars is estimated over five repeated measurements. The blue dots refer to the regime
where |Vp,1| > |Vc,1|, thus the total potential V1 being repulsive. The red dots refer to the
regime of V1 being attractive. The horizontal line corresponds to the reference where the
same measurement is performed without disorder. The vertical dotted line corresponds
to the theoretical prediction for an optimal cancellation of the total disorder in state |1⟩.

Vp,1/h = 366Hz. We scan the power of the compensating laser (fixing its frequency),

thus scanning its amplitude of disordered potential. We scan the compensating potential

|Vc,1|/h from 0 to 700Hz. The principal laser is blue-detuned, so Vp,1 is positive, while the

compensating is red-detuned, therefore, Vc,1 is negative. Here to simplify, when we discuss

the amplitude of disorder, we actually discuss its norm |V |.

The BEC is excited when the disorder is switched on abruptly, a part of the disordered

potential energy being transferred to the kinetic energy. This excited kinetic energy results

in an extra broadening of the momentum distribution of the atoms. After time of flight,

the momentum distribution is converted into the size of the atoms. So this extra kinetic

energy is reflected by an extra gain of the size of the atoms.

In the figure, we see that for a very low amplitude of compensating disorder, where
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|Vc,1| ≪ Vp,1, the total disordered potential Vp,1 + Vc,1 is mainly from principal disor-

der, and the total disorder is repulsive (the blue color means the repulsive regime). Then

as the amplitude of compensating disorder is increased, the total disordered potential

V1 = Vp,1+Vc,1 in state |1⟩ decreases, and the excitation to the atoms becomes less strong

accordingly. It is shown in the figure that the broadening of the momentum distribution

becomes smaller. Then when |Vc,1|>Vp,1, the total disordered potential V1 = Vp,1 + Vc,1

in state |1⟩ turns to negative, thus attractive potential (the red color means the attractive

regime). Now when we increase |Vc,1|, the amplitude of V1 increases again. Thus the

excitation becomes stronger, and accordingly, the broadening of momentum distribution

becomes stronger.

The minimum is reached as expected around |Vc,1| = Vp,1 (Vc,1 = −Vp,1), which is the

vertical thin dotted line in the figure. And what’s more, we observe that the momentum

spread is equal to the one in the absence of disorder within uncertainty ∼ 15%. So

that means in this minimum, there is no excitation to the BEC. This observation is strong

evidence of the efficient cancellation of the two disordered potentials, the residual potential

yielding no observable excitation of the atomic cloud in state |1⟩.

6.4.3 Check the rf-transfer with bichromatic speckle

In the previous section, we have shown the suppression of the disordered potential in state

|1⟩ being verified. Now we have a state-dependent potential, where state |1⟩ is disorder-

insensitive, and state |2⟩ is disorder-sensitive. With the state-dependent disorder, we

perform the rf-transfer, to transfer the atoms from state |1⟩ to state |2⟩, with the energy

defined by δrf = ωrf −∆hf , the same method as introduced in section 5.1 (see the insert

in figure 6.5 a). Here we take again the configuration in table 6.1: we set the bicrhomatic

disorder parameters at the minimum point of figure 6.4, where |Vc,1|/h = Vp,1/h = 366Hz,

so that the total potential in state |1⟩ V 1/h = 0Hz. In state |2⟩, the total potential

V 2/h = 416Hz.

The rf power is chosen low enough to operate in the weak coupling regime where the trans-

fer rate Γ(δrf) is well predicted by the Fermi Golden rule. The rf field is applied in the

regime of Γtrf ≪ 1 (with the duration of transfer trf = 40ms) so that only a small fraction

of the atoms are transferred to state |2⟩ (no more than 15% at most). As discussed in

section 6.3, note that the duration of the transfer is also chosen to be shorter than the
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Figure 6.5: Implementation of the rf transfer scheme and lifetime measure-
ment for VR/h=416Hz. a, Normalized transfer rate Γ(δrf) from disorder insensitive
state |1⟩ to the disorder sensitive state |2⟩. The compensation and principal disorder am-
plitudes are set to |Vc,1|/h = Vp,1/h = 366Hz. That is the optimal cancellation condition
for the disorder in state |1⟩. The rf power is fixed during the scan of rf frequency. The rf
pulse is applied for trf = 20ms in order to avoid the photon scattering in state |1⟩ during
rf transfer. The blue dots are the measured points, and the red curve is the numerical
calculation in [28] by M.Pasek and D.Delande, taking into account that the resolution of
energy is 50Hz. The squared points are chosen to be used to measure the photon scat-
tering lifetime. b, Atom number decay in the state |2⟩ after the transfer in the disorder.
The fits with exponential decays yield the lifetime of 1.85(5)s and 1.67(6)s respectively,

in a good agreement with the predicted calculation in Table 6.1.

lifetime in state |1⟩, to avoid the photon scattering during rf transfer. Remind in Table

6.1, in the configuration that we work in, the photon scattering lifetime in state |1⟩ is

about 73ms, so trf = 40ms is in a safe regime. In these conditions, the energy resolution

is time Fourier-limited to ∆E/h = 1/trf = 25Hz.

In figure 6.5 a, we show our measurement for the transfer rate of atoms, versus the rf

frequency. The experiment is the same as the rf spectroscopy for the monochromatic dis-

order. We prepare the BEC in an optical dipole trap, then switch on the bichromatic

disorder and at the same time apply the rf field with a fixed amplitude. During the rf

transfer, the optical dipole trap is kept on. Then after the transfer is finished, we switch

off the optical dipole trap and the bichromatic disordered potential, doing a time of flight

for 50ms, then image the atoms transferred to state |2⟩. The curve in figure 6.5 a is

the direct measurement of spectral function for V2/h = 416Hz. As discussed in section

5.1, the excellent agreement is used to calibrate precisely the disorder amplitude in the

experiments (with a 5% uncertainty). This measurement shows good evidence that with

the new bichromatic speckle potential, we are able to load the atoms into the disordered
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states with a narrow and controllable energy distribution (∆E/h = 1/trf). And by scan-

ning δrf we can investigate all the states in the disorder. So we can do as good as for the

monochromatic speckle potential in the work in 2018[28].

6.4.4 Improve the lifetime of state |2⟩

After we can check the rf-transfer in the disordered potential, the next step is to study

the photon scattering lifetime of the atoms in the disorder. In the experiment, we choose

a certain rf detuning δrf/2π, and once the rf transfer is done, we hold the atoms in the

disorder to observe its decay in time.

We take again the same configuration corresponding to V 2/h = 416Hz. We choose to

study the lifetime of two states in the disorder. As shown in figure 6.5 a, the two squares

are the two states that we choose, and the corresponding rf detuning for the two states

are δrf/2π = 210Hz, and 350Hz. We choose these two states because, first, they are

close to the maximum transfer rate, so the atom number is good enough to have a good

signal-to-noise ratio for studying the longtime decay, and second, according to numerical

prediction in the work [36], the state δrf/2π = 210Hz is supposed to be a localized state,

and δrf/2π = 350Hz is supposed to be a diffusive state.

As shown in figure 6.5 b, the fits by exponential curves yield very similar lifetime for the

two states, τ210 = 1.85(5)s and τ350 = 1.67(6)s respectively. These values of photon scat-

tering lifetime are in good agreement with the predicted value of 1.66s in table 6.1, thus

validating our analysis. We prove that compared to the monochromatic speckle potential,

we do improve the photon scattering lifetime for the disorder sensitive state by two orders

of magnitude. We check this improvement of photons scattering lifetime for various am-

plitudes of disorder. The long photon scattering lifetime, larger than one second, is crucial

for our investigation of the Anderson transition. We have checked the state-dependence of

the disorder, the energy-resolved transfer, and the long lifetime in the bichromatic speckle.

In the next chapter, we will introduce our experiment hint of the Anderson transition and

we will show the mobility edge estimated from our experimental results.



Chapter 7

Measurement of the mobility edge

In the last chapter, we introduced our bichromatic speckle scheme. We demonstrated that

with this platform, the transferred atoms can have a typical photon scattering lifetime on

a time scale of seconds. We improved the lifetime of atoms by two orders of magnitude

compared to the monochromatic speckle configuration [28], as shown in figure 6.5 and table

6.1. With this long lifetime of transferred atoms, our bichromatic speckle scheme opens

the possibility for precise and direct measurements of the mobility edge of the Anderson

transition. As discussed in section 2.4, the precise and direct measurement of the mobility

edge remains an utmost experimental challenge [33, 34, 35].

In this chapter, we present our method for measuring the mobility edge using the bichro-

matic speckle potential and present our preliminary experimental results. We are in the

process of understanding our observations and will provide an analysis in the following

sections. At the end of the chapter, we will address some current technical problems and

provide some perspectives for future improvements.

7.1 Scaling law of the mobility edge versus amplitude of

disorder

Our aim is to measure the mobility edge Ec for various values of the disorder amplitude

VR and compare the results to the numerical curve obtained by Pasek et al.[36] in figure

104
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Figure 7.1: The mobility edge EC versus amplitude of disorder VR. The same
figure as 2.11. To remind, the red curve is the experimental results of Palaiseau [33], the
blue curve is the experimental results of Florence [34], the green curve is the results of

Urbana-Champaign [35], and the black curve is the numerical prediction in [36].

7.1, which is a scaling law:
Ec

V0
= F

(
V0
Eσ

)
. (7.1)

It is important to note that the horizontal axis of the curve is expressed in terms of the

correlation energy Eσ, which is a unit of measurement for the disorder amplitude. There-

fore, in order to carry out a meaningful measurement of the mobility edge, it is necessary

to first dicuss the value of the correlation energy Eσ.

7.1.1 Correlation energy

In an isotropic disordered potential, the correlation energy is defined as:

Eσ =
ℏ2

mσ2
, (7.2)

where σ is the correlation length of the disordered potential and describes the typical size

of the grains of the disordered potential. To understand what correlation energy Eσ means,
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we can consider in a relatively strong disordered potential as shown in figure 7.2, the two

adjacent minima of the potential form a harmonic trap, so in this context, the localized

states can be seen as the bound states trapped by in these minima. The correlation length

σ is the typical size of the bound states trapped by the harmonic potential. Therefore, the

correlation energy Eσ represents the typical energy of such harmonic oscillator. If the trap

is deep to sustain many levels of bound states, then Eσ describes the energy gap between

the levels.

For Eσ ≪ V0, that is the strong disorder regime. The energy gap between the levels is

much smaller than the average energy of the potential, so many levels of bound states can

be sustained by the potential. The atoms in these bound states are classically trapped in

the local region. This classical trapping effect is the main mechanism for the localization

in the regime of strong disorder so we call this regime ’classical regime’.

For Eσ ≫ V0, that is the weak disorder regime. The energy of the bound state is much

higher than the average energy of the potential, so the atom can tunnel to the adjacent

region, and thus the wavefunction extends over many speckle grains. There is no bound

state that can be sustained by the potential. In this regime, the mechanism for localization

is quantum interference. So we call this regime of low disorder ’quantum regime’.

We remark that the correlation energy Eσ is a unit of measurement for the disorder am-

plitude, and that explains why the correlation energy Eσ is so important when we talk

about the amplitude of disorder.

7.1.2 Universality of the disorder

Different from the crossed speckle used in 2012 [33], we now use only single speckle in our

experiment, resulting in a more anisotropic speckle pattern. So an important question

is whether the scaling law of equation 7.1 in figure 7.1 is universal for different levels of

anisotropy of the disorder.

In Pasek et al. [36], they performed quasi-exact numerical calculations for different speckle

configuration to understand the effect of the anisotropy of disorder. Figures 7.3 show their
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Figure 7.2: Example of correlation energy. V0 is the average potential of the
disorder. σ is the correlation length of the potential, corresponding to the typical size
of the local minima. The correlation energy Eσ can be seen as the energy gap between

adjacent levels in the trap formed by the local minima in the disorder.

results. In figures 7.3 a and b, they plot the normalized mobility edge Ec/V0 for single

speckle configuration as a function of the disorder amplitude V0, for five different anistropy

of disorder. In figure 7.3 c and d, they plot Ec/V0 for two-crossed speckle configuration

with different numerical aperture, corresponding to different correlation energy Eσ. In

figures 7.3 a and c, the horizontal axis for amplitude of disorder are expressed in the unit

of EL = ℏ2k2L/m, while in b and d, the unit is the correlation energy Eσ.

We have given the definition of correlation energy for isotropic disorder: Eσ = ℏ2/mσ2.
For anisotropy disorder, we can use the geometric average the correlation length to define

the correlation energy Eσ [36]:

Eσ =
ℏ2

m(σxσyσz)2/3
, (7.3)

where σx,y,z are the correlation lengths of the disorder along x,y, z directions respectively.

In [36], they are defined as the HWHM of the central correlation peak divided by the

numerical factor γ ≃ 1.39156 (such that sin γ/γ = 1/
√
2).
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Figure 7.3: Mobility edge for different speckle configuration. The figures are
from [36]. Figures (a) and (b). are for single speckles with different numerical apertures
θ0 = {0.4, 0.5, 0.7, 0.85, 1.0} (from lower to upper solid colored curves), corresponding to
different anistropy. (c) and (d) are for two-crossed speckle configurations with different
numerical aperture θ0 = {0.5, 0.8} (from lower to upper solid colored curves). (a) and
(c) show the calculated values of the normalized mobility edge Ec/V0 vs the disorder
amplitude V0 in the units of EL = ℏ2k2L/m (kL is the wave vector of the laser beam and
m is the atomic mass). (b) and (d) show the same data of Ec/V0 vs the rescaled disorder
strength V0/Eσ. In (b), the correlation energy Eσ = ℏ2/m(σ2

⊥σ∥) where σ∥ and σ⊥ are
the correlation lengths along and perpendicular to the laser beam respectively. The black

dashed line is the same for single and two-crossed speckle.
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The speckle geometries in figure 7.3 a are different (five curves with different anisotropy,

thus different correlation energies) and the speckle geometries in figure 7.3 c are also

different (two curves with different isotropic correlation length σ), resulting in different

correlation energies Eσ for these different speckle geometries. When the mobility edge for

these different speckle geometries are replotted together in function of the rescaled disorder

strength V0/Eσ in figures 7.3 b and d, we find that they collapse onto a single universal

curve despite having different correlation energies! This demonstrates that the scaling

law in 7.1 is independent of the speckle geometry no matter whether they are isotropic or

anisotropic, created by single or two-crossed speckle and the scaling law is also indepen-

dent of the correlation energy. The universality of the scaling law allows us to compare the

experimental results from different experiments with different speckle geometries. So that

explains why we can put the different results from the three groups [33, 35, 34] together

and compare their results with a single universal numerical curve.

In our experiment, the transverse and longitudinal correlation lengths of our anisotropic

speckle are noted as σ⊥ = σy,z and σ∥ = σx, respectively, with σ⊥ = 0.42 ± 0.01µm, and

σ∥ = 2.02 ± 0.03µm, as shown in section 4.4. Using the definition of correlation length

from Pasek et al. [36], we divide our correlation length by γ, then according to equation

7.3, the correlation energy of our anisotropic disorder is Eσ/h ≃ 441± 18Hz.

Our aim is to measure the mobility edge for various amplitudes of disorder and compare the

data with the universal scaling curve from Pasek et al.[36]. In our experiment, the range of

the amplitudes of disorder that is accessible for us is VR ∈ [∼ 100Hz,∼ 1kHz]. Considering

the correlation energy Eσ/h ≃ 441Hz in our experiment, this range of amplitude of disor-

der covers from low disorder to strong disorder, spanning the quantum to classical regimes.

7.2 Experimental procedure

In this section we present a detailed experimental procedure for measuring the mobility

edge for a fixed amplitude of disorder VR = 416Hz, in order to compare our experimental

measurements with the universal scaling curve, which takes into account our correlation

energy Eσ ≃ 441Hz.
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1. Parameters of bichromatic speckle. We fix the frequency of principal laser δp

and compensating laser δc, as in table 6.1 (the detunings can change depending on the

condition of the laser mode). Then we calculate the power of the two lasers Pp and Pc to

satisfy the conditions for V1 and V2:V1(r) = Vp,1(r) + Vc,1(r) with V1 = 0

V2(r) = Vp,2(r) + Vc,2(r) with V2 = VR

(7.4)

2. Check the disorder-insensitivity of |1⟩. Then we do the quench measurement and

follow the ’quench’ procedure introduced in section 6.4.2: quench the disorder to measure

the excitation of BEC by the residual disorder, and scan Pc while keeping δp, δc, Pp fixed

to find the minimum excitation of BEC where the two speckles cancel each other in |1⟩.
The measurement checks that the parameters of the two lasers that we found in step 1 for

V1 = 0 satisfies the cancellation of the disorder in state |1⟩, shown as figure 6.4. This step

confirms the disorder-insensitivity of state |1⟩.

3. Check the rf-transfer and lifetime in |2⟩. Once we have found and verified the

appropriate parameters for the bichromatic speckle potential, we use rf-transfer to mea-

sure the spectral function in this speckle configuration with an amplitude of disorder in

state |2⟩ given by VR, as described in section 6.4.3. This step demonstrates our ability to

load atoms in the disorder in an energy-resolved way. By comparing the measured spectral

function with the numerical curve in [28], we can calibrate the amplitude of disorder VR

with an uncertainty of approximately 5%.

After performing the rf-transfer, we check the lifetime of the transferred atoms, as shown

in figure 6.5, to ensure that we can make observations of expansion over a timescale of

seconds.

These steps serve as preparation before measuring the mobility edge. We can then study

the transport properties of the atoms.

4. Expansion at given energy in disorder. Given the disordered potential with the

amplitude VR, we perform the rf-transfer of the atoms with a certain rf-frequency δrf (du-

ration of transfer trf is adjusted depending on VR) to load the atoms at a given energy
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Ef = hδrf . Then we switch off the optical dipole trap and let the atoms expand in the

disordered potential VR for a duration texp. Afterwards, we image the atomic profile after

a time-of-flight of tTOF = 1ms immediately following the expansion. By scanning the

expansion time texp, we can observe the time-evolution of the atomic profile at this energy

Ef = hδrf .

In our experiment, we only measure the atomic profile along the y-axis (vertical axis). As

explained in section 3.11, the magnetic field for the levitation induces a horizontal residual

harmonic trap to the atoms along the x- and z-axis, with trap frequency ω⊥ ∝ 1/
√
B0. In

section 5.1.1, we have explained that to suppress the fluctuation of the magnetic field, we

choose to work with a magic magnetic bias field B∗
0 ≃ 3.23G. With this B∗

0 , the horizontal

trap frequency is measured to be: ω⊥ ≃ 2π × 7Hz. It is a very weak trap and the atoms

can expand almost ’freely’ in the disorder up to ∼ 20 µm along the x- and z- axis in this

residual trap. Consider that the grain size of speckle along x and z (correlation lengths)

σx = 0.42 µm and σz = 2.02 µm, in presence of this residual trap, the expansion of the

atoms in the disorder is locally 3D. If we want to have a completely 3D expansion, we

need to eliminate the trapping effect along x and z induced by the magnetic levitation.

5. Expansion at different energies in disorder. We repeat step 4 and scan the

rf-frequency δrf . Then we can obtain the time evolution of the atomic profile at different

energies Ef = hδrf in the disorder.

In this disordered potential with amplitude VR, we hope to observe a clear distinction be-

tween two regimes separated by critical energy ≃ Ec: 1) for all the energies Ef below Ec,

we could expect that the expansion of cloud should be frozen because in our experiment

the localization length (∼ a few µm) is small compared to the size of the atomic cloud

(∼ 45µm). 2) for energies above Ec, the expansion of the cloud size is significantly stronger

and the diffusion increases with energy Ef . The distinction between the different behavior

of the transport of the atoms in the disorder may show the signature of the Anderson

transition and we may probably estimate the mobility edge.
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Figure 7.4: Spectral function for VR/h = 416 Hz. The green dots mark the loading
energies δrf = 156Hz, δrf = 216Hz, δrf = 276Hz, and δrf = 336Hz.

7.3 First experimental results and the analysis

Now we show some preliminary experimental results that have been observed recently

from October to December 2022. We concentrate mainly on two amplitudes of disorder:

VR/h = 416 Hz(VR/Eσ ≃ 0.94) and VR/h = 832 Hz ((VR/Eσ ≃ 1.89)). For these two

specific amplitudes of disorder, we have the spectral function numerically calculated by

D.Delande [28], so we can use them for calibration.

7.3.1 The first results for VR/h = 416Hz

We scan the expansion time texp from 0.01s to 2.71s and observe the time evolution of the

atomic profile at different energies Ef = hδrf . Figure 7.5 shows our direct measurement

of the atomic profile evolving at energies δrf = 156Hz, δrf = 216Hz, δrf = 276Hz, and

δrf = 336Hz. These energies were chosen because they span a wide range of states in the

spectral function for VR/h = 416Hz, as shown in figure 7.4, from low to high energy, and

we still have a sufficient number of atoms to achieve a good signal-to-noise ratio, particu-

larly after a long expansion of about 3 seconds.
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Figure 7.5: Evolution of the atomic profile. The atomic profiles show the expansion
along y-axis. The image of the atoms is y- and z-axis, and the atomic profiles shown here
is by integrating the atom number over z-axis. Considering the decay of atoms due to the
photon scattering, for each picture, the atoms profile is normalized by the atom number
so that we can compare the atomic profile for short- and long-time evolution at the same

scale of figure.

7.3.2 First signature of the mobility edge

In the previous subsection, we presented our direct measurements of the atomic pro-

file evolving at different energies. We observed that for relatively high energies, such as

δrf = 276Hz and δrf = 336Hz in the disorder with amplitude VR/h = 416Hz, the wave-

function can fully expand in 2.11 seconds, which is slightly longer than the corresponding

photon scattering lifetime τ ≃ 1.66 s, and the atom number decreases significantly for

longer expansion times. Therefore, we fixed the expansion time at tmes = 2.11s and com-

pared the size of the expansion at different energies Ef = hδrf .

In Figure 7.6 a, we show our experimental results for the size of expansion after 2.11 sec-

onds at different energies δrf in the disorder with amplitude VR/h = 416Hz. The size we

show is the root mean square (r.m.s.) of the atomic profile as shown in the figures 7.5.

We can see that there appear to be two regimes separated by a critical energy Ec: for all

loading energies Ef = hδrf < Ec, the size of the atomic cloud after 2.11 s of expansion is

almost the same, consistent with the behavior of localized states. In contrast, for loading
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energies Ef = hδrf > Ec, the size of the atomic cloud increases with the energy of the

atoms, and the expansion is much stronger at high energies in this regime compared to

the regime where Ef < Ec.

Our results provide a hint of the Anderson transition apparently. According to our exper-

imental data, for VR/h = 416Hz, the critical energy is estimated to be: Emes
c /h ≃ 238Hz.

It’s worth noting that the calculation of the r.m.s is not easy at all and the r.m.s. obtained

depends strongly on noise and the region of interest chosen for calculation.

Next, we increase the disorder amplitude to VR/h = 832Hz and repeat the same experi-

mental procedure for a 2s expansion. The results, shown in figure 7.6 b, also indicate the

hint of the Anderson transition, with the estimated critical energy Emes
c /h ≃ 420Hz.

In figure 7.6 c, we compare our estimates of the critical energies Ec from our measurement

for VR/h = 416Hz and VR/h = 832Hz with the mobility edge numerically predicted by

Pasek et al. [36]. We have estimated experimentally: Emes
c ≃ 238Hz for VR/h = 416Hz and

Emes
c ≃ 420Hz for VR/h = 832Hz, while the numerical prediction in [36] is: Enum

c ≃ 240Hz

for VR/h = 416Hz and Enum
c ≃ 416Hz for VR/h = 832Hz.

We mark the horizontal and vertical uncertainties for our data in the figure. The hori-

zontal uncertainty takes into account the uncertainty of our calibration of VR (about 5%)

and the uncertainty of Eσ (about 4%), resulting in an overall uncertainty of about 6.4%.

The vertical uncertainty is estimated roughly by considering that the uncertainty of our

measurement of Ec is primarily due to the Fourier limited finite energy resolution of the

rf-transfer: ∆E/h = 1/trf . For VR/h = 416Hz, the duration of the transfer trf is chosen

to be 40 ms, resulting in an energy resolution of ∆E/h ≃ 25 Hz, giving ∆Ec ≃ 10.4%,

so by including the uncertainty of VR, the overall vertical uncertainty is estimated to be

about 11%. For VR/h = 832Hz, the duration of the transfer trf is chosen to be 20 ms,

resulting in an energy resolution of ∆E/h ≃ 50 Hz, giving ∆Ec ≃ 12%, and thus the

vertical uncertainty is estimated to be about 12.7%.

Our measurements of critical energies show excellent agreement with the numerically pre-

dicted mobility edge with a reasonable uncertainty, indicating that our measured critical

energies apparently correspond to the mobility edge we are looking for. Compared to
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Figure 7.6: The size of atomic cloud for different δrf at fixed texp. a. VR/h =
416 Hz . b. VR/h = 832 Hz. c. Comparison of our critical energy with the numerical
curve by Pasek et al.[36]. The two blue dots are the critical energies estimated from the
data in figures a and b, for VR/h = 416 Hz (η = VR/Eσ ≃ 0.94) and VR/h = 832 Hz
(η = VR/Eσ ≃ 1.89). The error bars show the horizontal and vertical uncertainty of
our measurements. The horizontal uncertainty is given by 1. the uncertainty of the
estimation of Eσ, which is from the uncertainty of the correlation lengths of the speckle,
2. the uncertainty of measurement of VR. The vertical uncertainty is given by 1. the
uncertainty of measurement of VR, 2. the finite energy resolution of the rf-transfer when

determining the critical energy Ec.
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previous experimental results with ultracold atoms [34, 35], our results are significantly

closer to the numerical curve.

7.3.3 Analysis of the central density

By looking at the r.m.s. of the atomic profile, we have found the hint of Anderson tran-

sition and estimated the critical energy Ec. There is another way to observe the signal of

Anderson transition, by looking at the decay of the central density of the atomic cloud.

For diffusive states, the decay of the central density is expected to be faster than that

of localized states. In addition, for localized states, we expect to see the central density

tending towards a steady value over a long time of expansion.

Figure 7.7 a shows the decay of the central density of the atomic cloud for VR/h = 416Hz

at different energies Ef = hδrf : δrf = 156Hz, δrf = 216Hz, δrf = 276Hz, δrf = 336Hz.

In the figure, in order to eliminate the effect of atom loss due to photon scattering by

the speckle potential, we normalized the central density data by the corresponding initial

atom number. Each group of data is normalized to the value at t = 0 in order to compare

them together at the same scale.

According to the figure, we find that for δrf = 336Hz and δrf = 276Hz, the decay of the

central density is evidently faster than the decay for δrf = 216Hz and δrf = 156Hz.

To further emphasize the difference in behavior between the two regimes, we choose to

compare the central density at a fixed expansion time of texp = 2.11s for different energies

δrf , as shown in Figure 7.8 a. We can see that there is a sharp transition with a critical

energy Ec ≃ 236 Hz that separates the two regimes: for energies lower than Ec, the decay

of the central density is very slow, while for energies above Ec, the decay is much stronger.

We can also look at the atomic profile of these different energies at the fixed expansion

time of texp = 2.11s, as shown in figure 7.8 b. We see two regimes in the figure: for the

low energies, Ef < 236 Hz (dark blue and orange profiles), the decay of the central peak

is very weak; by comparison, for the high energies, Ef > 236 Hz (purple, green and light

blue profiles), the decay of the central peak is much stronger and the diffusion is more
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Figure 7.7: Time evolution of the central density for different energies. The
blue data is for δrf = 336Hz, the orange data is for δrf = 276Hz, the yellow data is for
δrf = 216Hz, and the purple data is for δrf = 156Hz. The atom number is normalized to

eliminate the loss due to the photon scattering by the speckle.

Figure 7.8: The analysis of the central density. a. Compare the central density
with different energies for texp = 2.11s. The black dashed vertical line is the numerical
prediction of the mobility edge. b. The atomic profile of different energies for expansion

time = 2.11 s. The treatment of the atomic profile is the same as above.

evident. So the different behaviors of the atomic profiles also indicates a transition at

critical energy Ec ≃ 236 Hz between the two regimes.

This sharp transition in the behavior of central density and the atomic profile for a long

time expansion of 2.11 seconds is consistent with the properties expected to see for the

Anderson transition. If we believe that we have indeed observed the Anderson transition

for VR/h = 416Hz, then the critical energy Ec/h ≃ 236 Hz that separates the two regimes

should be the mobility edge. Our experimental measurements are thus in good agreement

with the numerical prediction of Enum
c ≃ 240Hz.
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7.3.4 Temporal dynamics

Despite everything, we need to admit our results are not perfect yet. In figures 7.8 b, we

see that after a long expansion of 2.11 s, even for the low energy states, e.g. δrf = 156Hz

and δrf = 216Hz, which are expected to be in the localized phase, we observe some unex-

pected diffusion in the wings of the atomic profile. The diffusion in the wings seems to

be similar for low-energy states and high-energy states. The same issue can be seen in

figure 7.7, for δrf = 156Hz and δrf = 216Hz, the decay of the central density is somewhat

stronger than expected. So there seems to be some excitation present during the expan-

sion of atoms, and the atoms at low energy states can be excited to some diffusive states

at higher energies, thus causing the unexpected diffusion. This excitation can make the

distinction between the localized and diffusive regimes less clear. However, the source of

the excitation is not yet clear to us. We will analyze the temporal dynamics of the atomic

cloud in disorder to get some insights.

To observe the temporal dynamics of the atomic cloud, we calculated the root mean square

(r.m.s.) of the atomic cloud and examined how the r.m.s. at different energies evolves

with expansion time. In the ideal case, for energies in the localized regime, we expect to

see that the r.m.s. of the cloud expands extremely slowly and tends to a steady value.

On the other hand, for energies in the diffusive regime, we expect to observe the square

of the r.m.s. evolving linearly in time, which is a characteristic property of diffusive states.

In figure 7.9, we plot our measurements for VR/h = 416Hz for different energies. From

the figure, we can see that the temporal dynamics of the atomic cloud is not as clear as

we expected. Even for the energies δrf = 156 Hz and δrf = 216 Hz, which are expected

to be in the localized regime, the r.m.s. still increases in time and does not seem to sat-

urate. If we fit these data with a linear function in time, then we estimate the diffusion

constant D ∼ r.m.s.2

t , we find that the diffusion is very similar for all of these four energies.

As discussed above, the excitation induces unexpected diffusion for the low-energy states.

Therefore, there is some fundamental diffusion present for all the energies, making it dif-

ficult to clearly distinguish between the localized and diffusive regimes by looking at the

temporal dynamics of the r.m.s..
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One possible explanation for this observation is fluctuations in the disordered potential.

In section 6.4.1, we have verified that the power fluctuation of the speckle beam is on the

order of 1%, which we do not believe is the source of the excitation.

We suspect that despite the reduction by two orders of magnitude in photon scattering of

the atoms in the bichromatic disorder compared to the monochromatic speckle, scattering

can still excite some atoms to higher energies during the long expansion. This may explain

the diffusion of low-energy states. To further study the localization properties, we can

try to improve the photon scattering lifetime of the disordered states, which may help

to weaken the excitation and observe a more clear signal of localization in the localized

regime

Figure 7.9: Temporal dynamics for different energies. The purple dots are the
r.m.s. calculated from our data. The error bar is from five repeated measurements. The
diffusion constant D is estimated by fitting the r.m.s.2 versus time with the linear function

(blue line): r.m.s.2 ∼ Dt.

7.4 Future improvements

We have shown our experimental results and we see there are still some imperfections in

our measurements. In this section, we will list some improvements that we will try to do
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Figure 7.10: Experimental sequence for longer lifetime of atoms in disorder.
Up to the step of rf-transfer, the sequence is the same as the normal sequence. But once
the rf-transfer is finished, we ramp down the power of compensating laser to zero and
ramp up the power of the principal laser, keeping V2 unchanged during the ramp. Then
we do the expansion in this configuration of disorder. The optimal ramp duration is yet

to be found.

in the near future in addition to the search for the excitation source.

7.4.1 Improve the lifetime of disordered states

In the last section, we noted that photon scattering of the atoms in the disorder may be

one of the sources of excitation, which can excite some atoms from localized states to diffu-

sive states. So we to suppress this photons scattering and improve the lifetime of the atoms.

As described in section 6.3, the lifetime of the disordered states (state |2⟩) is primarily

limited by the compensating laser as it is closer to the resonances of atoms. One way to

suppress the photon scattering is shown in figure 7.10. In this scheme, we still do the same

rf-transfer in the state-dependent disorder, and once the atoms are transferred from state

|1⟩ to state |2⟩, we do not care about the disorder-insensitivity of state |1⟩ anymore, so we

can ramp down the power of the compensating laser to zero. But it is necessary to keep

the amplitude of disorder VR in state |2⟩ constant during the ramp, so we need to ramp up

the power of the principal laser simultaneously, and the ramp of the two lasers is designed

to keep the amplitude of the disorder VR in state |2⟩ constant.
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By implementing this ramping technique, we can in principle greatly reduce the photon

scattering of the atoms during expansion. Take again the configuration of bichromatic

speckle in table 6.1 for VR/h = 416Hz, by this ramping technique, the lifetime Γ−1
2 of

the atoms in the disorder can be improved from 1.66s to about 10s, by one order of mag-

nitude. This longer lifetime of atoms in disorder may help to reduce the fundamental

excitation and allow us to probe the transport properties with longer expansion time,

providing more precise estimates of the mobility edge Ec. We have already started to try

this technique. We have proved that we could improve the lifetime of the atoms in the

disorder of VR/h = 416 Hz from 1.66 s to more than 7 s. But there was some technical

problem with the ramp of the principal laser, which induced more excitation to the atoms.

We have solved this problem recently and we will try again to see whether we can have a

cleaner improvement of the lifetime or not.

7.4.2 Horizontal trap due to magnetic levitation

We mentioned in section 7.2 that we only measure the expansion of the atomic cloud in the

disorder along the y-axis (vertical direction). The reason is due to the residual horizontal

trap along the x- and z-axis induced by our magnetic levitation, and the corresponding

trap frequency ω⊥ = ωx,z depends on the bias B0: ω⊥ ∝ 1/
√
B0. With the magic mag-

netic field B∗
0 ≃ 3.23G, the trap frequency ω⊥ ≃ 2π × 7 Hz. In the end, the expansion in

the disorder is locally 3D in this condition. In order to perform the expansion which is

completely ’free’(no trap) in the disorder in 3d, we have two possible solutions.

7.4.2.1 Open the trap by increasing the bias field

Since the trap frequency of the residual trap depends on the bias field as ω⊥ ∝ 1/
√
B0,

we can increase the bias field B0 to reduce the trap frequency ω⊥. We have discussed in

chapter 3.11 the dependence of the trap frequency ω⊥ in function of B0 in figure 3.17. We

can estimate that by increasing the bias field B0 from 3.23 G to about 2000 G, we can

reduce the trap frequency ω⊥ from 7 Hz to about 0.3 Hz.

But in section 3.11, we have shown that to levitate the atoms by the magnetic gradient

b′, we need to satisfy the levitation condition: b′ = mg
mFgF,mF

µB
. Since the Landé factor



Chapter 7. Measurement of the mobility edge 122

Figure 7.11: Set-up of the anti-trap. The laser comes from a source of high-power
laser of 532 nm. The beam waist is about 1.125 mm. It is diffracted by an AOM, and
the order 0 is shone into a beam dump for security. Then beam is shaped to have a small
waist of about 420 µm by a telescope, and goes to the atoms. Near the atoms, the beam
is along the y-axis (vertical direction), therefore the anti-trap is for the x- and z-axis.

gF,mF
change with the bias B0, we need to adjust b′ to keep the atoms levitated when

increasing B0. Figure 3.16 shows the dependence of the gradient b′ on the bias B0 under

the levitation condition.

7.4.2.2 Optical anti-trap

Another method to suppress the residual magnetic trap along the x- and z-axis is to shine a

blue-detuned Gaussian beam along the y-axis to the atoms, as shown in figure 7.11. Since

the beam is blue-detuned with respect to the atomic resonances, it produces a potential

that gives an effect of anti-trapping on the atoms along the x- and z-axis. As shown in

figure 7.12, by combining the quadratic magnetic trap and the Gaussian anti-trap, along

the x- and z-axis, we can get a potential with a flat bottom where the atoms do not expe-

rience residual trapping effect.
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Figure 7.12: Compensate the residual magnetic trap with a Gaussian anti-
trap. The orange line represents the residual magnetic trap along x and z direction, the
green line represents the Gaussian anti-trap along x and z direction. The blue line is the

total potential by combining the quadratic magnetic trap and Gaussian anti-trap.

In our experiment, as shown in figure 7.11, we use a laser at 532nm to do the anti-trap.

The beam waist of the laser is about 1.125±10% mm and can provide power of up to 18 W.

We use an AOM to control the power of the beam. Then we use a telescope composed of

a lens with f = 200 mm and a lens with f = −75 mm to reduce the beam waist w0 to

about 420 µm and shine it on the atoms. The potential Vanti generated by the Gaussian

beam can be expanded up to the quartic term:

Vanti(x) = −1

2
mω2x2 +mω2 x

4

w4
0

(7.5)

where w0 is the waist and ω is the frequency of the residual magnetic trap. The parameters

of the Gaussian potential is set so that the quadratic term can cancel the harmonic poten-

tial of the residual magnetic trap. We can define that in the Gaussian potential, within a

region of w0/2, the quadratic term dominates over the quartic term so that the Gaussian

potential can be well approximately seen as a harmonic potential. So the size of the flat

region of the total potential can be about ∼ 210 µm. That means the atoms can expand

’freely’ (no trapping effect) in a flat region of about ∼ 210 µm in the disorder. Consider-

ing that in most cases of our measurement, the size of the diffusion of the cloud is within

80µm, so the flat region of ∼ 210 µm is large enough for our measurement of mobility edge.
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7.5 Conclusion

Due to our bichromatic speckle scheme, we have improved the lifetime of the atoms in the

disorder by two orders of magnitude. This improvement allows the atoms to expand in

the disorder for a time scale of seconds, opening the possibility of exploring the transport

properties of the atoms in the disorder. In this chapter, we have presented the prelimi-

nary results of our measurements toward the Anderson transition and mobility edge. We

first show our direct measurement of the time evolution of the atomic profile at different

energies in the speckle VR/h = 416Hz. Using our bichromatic speckle scheme allows us to

observe the long-time evolution for approximately 3s. Then we show our measurements of

the size of the cloud after 2.11s of expansion at different energies for VR/h = 416Hz and

VR/h = 832Hz. The data provide the first hint for the Anderson transition. Our estimates

of the mobility edge based on these data agree excellently with the numerical predictions of

Pasek et al.[36]. We also analyze the decay of the central density of the atomic cloud and

the sharp transition in figure 7.8 further shows the behavior of the Anderson transition,

with an estimated mobility edge that agrees excellently with numerical predictions.

Overall, the excellent agreement of our preliminary results with the numerical predictions

is very encouraging. However, it is important to note that there is still some imperfection

in our results. Particularly, there is excitation present during the expansion that causes

some fundamental diffusion for all the states, with high or low energies, which makes the

distinction between the localized and diffusive regimes less clear. We suspect that the

excitation is due to photon scattering and we provide a possible solution to improve the

photon scattering lifetime of atoms.

Then we discussed the residual trap induced by our magnetic levitation, which may per-

turb our expansion of atoms in a larger 3D region. We have suggested two ideas to suppress

the residual trap: open the trap by ramping the magnetic fields or use a blue-detuned laser

beam to compensate for the residual magnetic trap.

We should admit that, although the data for VR/h = 416Hz and VR/h = 832Hz agree well

with the numerical prediction, for lower amplitudes of disorder, such as VR/h ∼ 121Hz,

we have not yet obtained similar agreement. The reason for the discrepancy is currently

unclear and requires further investigation.



Chapter 7. Measurement of the mobility edge 125

So to conclude, we have some encouraging results for VR/h = 416Hz and VR/h = 832Hz,

but there are some imperfections in our measurement and we have some clues to overcome

the problems. Once our measurement of the mobility edge is more compelling, we will

try to measure the mobility edge for more amplitudes of disorder VR, especially for lower

amplitudes of disorder.



Chapter 8

Conclusion and perspectives

In summary, this thesis presents a detailed study of the Anderson transition in 3D using

ultracold atoms. Our team has proposed a spectroscopy to overcome the challenges of

energy-resolved loading of atoms in disorder and has successfully measured the spectral

function in 2018 [28]. However, the near-resonant speckle potential used in 2018 resulted

in strong photon scattering of atoms in disorder, preventing further study of the Anderson

transition. To address this issue, we proposed a bichromatic speckle potential composed

of two lasers [88] and experimentally confirmed the state-dependence of the potential. We

then used this potential to reproduce the spectral function as in 2018 and verified the

improvement of the lifetime of atoms in disorder by two orders of magnitude.

Then we introduced our method to measure the mobility edge with the bichromatic speckle

potential and presented preliminary experimental results, which provide the hint for the

3D Anderson transition. The mobility edge estimated based on our measurements showed

excellent agreement with numerical predictions in Pasek et al.[36]. We also presented

some imperfections in our data and we have provided possible solutions to improve the

measurement. Overall, this work represents a significant advancement in the field of An-

derson localization and ultracold atoms, and opens up new possibilities for future research.

126
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Figure 8.1: The same figure as in 2.5 in section 2.1.0.4.

8.1 Study near the critical regime

Once we locate the mobility edge, we can focus on the critical regime. Our energy-resolved

loading of atoms in the disorder opens up the possibility to study the intriguing physics

in this regime. Two key areas of interest for our research community include measuring

the critical exponent and studying the multifractality of the wavefunction.

8.1.1 Critical exponent

In section 2.1.0.4, we introduced the scaling theory which can predict the Anderson tran-

sition in 3D. According to [43], the scaling theory predicts that near the critical regime,

the localization length ξloc and the diffusion constant D follow a power law with respect

to the energy E, with critical exponents ν and s, as shown in figure 8.1.

In our experiment, we can measure the time evolution of the r.m.s. of the cloud to

estimate the diffusion constant D, according to ⟨x2⟩ ∝ Dt. By obtaining the diffusion

constants at different energies, fitted by D ∝ |E − Ec|s, we aim to estimate the critical

exponent s. However, in figure 7.9, we observed that the unexpected excitations in our

measurement caused similar diffusion constants D for all energies, from low to high energy

states. Therefore, once we address this issue of the excitation, we expect to measure the

diffusion constant in different energies and determine the critical exponent.
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Figure 8.2: (a). Example of the wavefunction near the critical regime. The lines
represents isovalue of |ψ(x)|2. The figure is from [93]. (b). The example of fractal
dimension. From left to right, the length of stick L: 200 km, 100 km, 50 km, the length

measured of the coastline C: 2300 km, 2800 km, 3500 km.

8.1.2 Multi-fractality near the critical regime

It is predicted that near the mobility edge Ec, the wavefunction of the atoms in disorder

ψ(x) exhibits multi-fractal structure[90, 91, 92] and the probability of the atoms |ψ(x)|2

presents large fluctuations in space, i.e., it can be unexpectedly large in some region and

unexpectedly small in some other region as shown in figure 8.2 a.

First, we need to briefly introduce the concept of fractal dimension. It is an index used to

quantify the complexity of fractal patterns by measuring the ratio of change in detail to

change in scale. An example of this is shown in figure 8.2 b. When measuring the length

of a coastline using a stick, we find that as the length of the measuring stick, L, is scaled
smaller and smaller, the total length of the coastline, C, increases. This can be represented

by the relationship C ∼ L−d, where d is the fractal dimension.

Figure 8.2 a shows an example of the wavefunction of atoms near the mobility edge of the

Anderson transition. We can define such ’coastline’ by connecting the isovalue of |ψ(x)|2

and we can thus deduce the corresponding fractal dimension of these lines. It is shown the-

oretically that the wavefunction near the mobility edge of the Anderson transition presents

a multi-fractal structure, and the fractal dimension d depends continuously on the isovalue

of |ψ(x)|2 [91, 94, 95, 96]. The ensemble of the fractal dimensions is called multifractality
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Figure 8.3: a. The schema of the experimental set-up of the two crossed speckle beams
(blue beams in the figure). Yellow coils are the coils of magnetic gradient. b. False color

representation of a realization of the disorder by the two crossed speckle.

spectrum.

Although tried in many experiments, a convincing measurement of the multifractal spec-

trum remains missing for lacking of energy resolution. In fact it is a very delicate task

because the multifractal behavior is the property of a single eigenstate, so the mixture of

eigenstates makes it hard to observe. Motivated by this bottleneck, Werner et al. [97] pro-

pose to use the spectroscopy method in a state-dependent disorder to address the critical

state in a narrow energy window. That is exactly our experiment scheme.

8.2 Investigate various configurations of speckle

We can also perform the measurement of mobility edge with different speckle geometries.

For example, as shown in figure 7.3, we can try the single speckle with different numerical

apertures, leading to different anisotropy and different correlation energy Eσ. We can also

try to use two-crossed speckle beams to generate a more isotropic disorder as what was
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used in 2012 [33], as illustrated in figure 8.3. Measuring the mobility edge with different

speckle geometries can test the universality of the scaling law of mobility edge versus the

amplitude of disorder: Ec/VR = F (VR/Eσ) in figure 2.11.

Another interest of using an isotropic speckle is that we can have much higher correlation

energy Eσ by one order of magnitude. That means the normalized amplitude of disorder

VR/Eσ can be much lower, thus, it is more convenient to investigate the quantum regime

(low disorder), as the regime of the yellow data in figure 2.11 measured in Palaiseau[33]

in 2012. In the experiment in 2012, with the two crossed speckle, with the correlation

lengths of the speckle potential are: σx = 0.11 µm, σy = 0.27 µm, σx = 0.08 µm, resulting

in a hight correlation energy Eσ ≃ 6.5 kHz. We can also investigate the red speckles, and

the behaviors of the mobility edge in red speckle potential is predicted to be significantly

different from that in blue ones [48]. We can also use a spatial light modulator to generate

various disorder [98].



Appendix A

Optical evaporation

Remember that in section 3.9, we mention that to do the optical evaporation, we ramp

down the laser power as:

P (t) =
P0

(1 + tτ)β
. (A.1)

In this appendix, we explain why we use this ramp.

Note U the trap depth U , and T the temperature of the atoms. Define η = U
kBT

, when

η ≫ 1, the evaporation rate is proportional to Γel(η − 4)e−η [99], as shown in figure A.1,

where Γel is the rate of elastic collision. If the trap depth U is a constant, then η = U
kBT

will increase when the temperature of the atoms is getting lower. Thus the evaporation

rate Γel(η− 4)e−η will decrease exponentially, thus, the evaporation becomes less and less

Figure A.1: Evaporation induced by elastic collision. The trap depth is U . The
temperature of the gas in the trap is T . The elastic collision rate is Γel. The rate for a

particle leaving the trap by elastic collision (evaporation rate) is (η − 4)exp(−η).

131
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Figure A.2: Decompression of optical trap. For optical trap, the trap depth is
proportional to the square of the trap frequency: U ∝ ω2, so lowering the trap depth also

decompresses the trap.

efficient and the time scale beomes larger than the experimental one. This mechanism is

natural evaporation. Therefore, to keep the cooling efficiency always high enough along

with the evaporation, we need to ramp down progressively the trap depth U , thus decreas-

ing η. In optical evaporation, generally, η is about 10 and can be seen as a constant if the

gas is kept at equilibrium.

Consider the loss of atoms dN ≪ N , the loss of energy dE1 of the gas due to the loss of

atoms dN is:

dE1 = dN(U + κkBT ) = dN(η + κ)kBT, (A.2)

where κkBT represents the part of the energy in excess of the trap depth of the atom

leaving the trap, and κ = η−5
η−4 for a 3-d deep harmonic trap [99].

For optical evaporation, both the trap depth and trap frequency are decided by laser

power, so they are not independent. Therefore lowering the trap depth U will also lower

the trap frequency ω simultaneously, thus decompressing the trap, as shown in figure A.2.

We can quantify this correlation between the trap depth U and trap frequency ω by defin-

ing a quantity ν = ω̇/ω

U̇/U
. e.g. for optical dipole trap, ω ∝

√
U , so ν = 1/2. For the

RF-evaporation in a magnetic trap, as we do in the cooling chamber before loading the

optical tweezer, the trap frequency is given by the magnetic potential, the trap depth is

truncated by the RF-knife. Hence, the trap frequency and depth can be independently

controlled, so ν =0.
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The decompression of the optical trap contributes another term for the loss of energy dE2:

dE2 = ν
E

T
dT (A.3)

where E is the total energy of the gas, T is the temperature of the gas.

By summing up the two contributions of the loss of energy dE1 in equation A.2, and dE2

in equation A.3, the total loss of energy dE is:

dE = N(η + κ)kBT + ν
E

T
dT. (A.4)

Now let us establish the equation describing the thermalization of the gas. The total

energy of the trapped gas is:

E = 3NkBT, (A.5)

so the loss of energy can be expressed in function with the loss of atoms and the lowering

of temperature:

dE = 3kBTdN + 3NkBdT. (A.6)

The loss of energy in equation A.4 and in equation A.6 are equal:

N(η + κ)kBT + ν
E

T
dT = 3kBTdN + 3NkBdT, (A.7)

and by reforming the equation, we get a scaling relation between the temperature T and

atom number N :
dT

T
= α

dN

N
, (A.8)

where α = η+κ−3
3(1−ν) .

In harmonic trap with trap frequency ω, the phase-space density (PSD) is:

D = n0λ
3
dB =

Nℏ3ω3

k3BT
3
. (A.9)

We see that the phase-space density is in power law with the temperature. Recall the

scaling relation between the temperature T and the atom number N , we can build the

scaling law for the phase-space density and the atom number:

dD

D
= −γ dN

N
, (A.10)
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where γ = −(η + κ− 4). This γ is the efficiency of the evaporation, and shows how many

atoms are lost when increasing the phase-space density.

The elastic collision rate between the atoms in the harmonic trap is:

Γel =

√
2

π
n0σv̄ =

mω3σN

2π2kBT
, (A.11)

where n0 is the atomic density, σ is the cross section of the s-wave collision, v̄ is the

average velocity of the atoms. Thus we have the scaling law of elastic collision rate and

atom number:
dΓel

Γel
= [1− α(1− 3ν)]

dN

N
. (A.12)

For 1 − α(1 − 3ν) > 0, the elastic collision rate decreases with the loss of atoms. There-

fore, during the evaporative cooling, the evaporation decelerates and becomes less efficient.

Standard optical evaporation where ν = 1/2 is an example.

On the contrary, for 1 − α(1 − 3ν)<0, the elastic collision rate increases along with the

loss of atoms, so the evaporation accelerates and becomes more and more efficient. RF

evaporation in a magnetic trap where ν = 0 is an example.

The regime where evaporation accelerates is called runaway evaporative cooling. In opti-

cal evaporation, it is possible to control ν to accelerate the evaporation by controlling the

optical trap with some special tilting [100] [101]. In our experiment, we do not tilt the

optical trap, so our optical evaporation is standard optical evaporation where ν = 1/2.

Even though the elastic collision rate Γel decreases during the evaporation for the standard

optical trap, the large value of Γel assures the evaporation is efficient enough. Generally,

for RF-evaporation in a magnetic trap, the collision rate Γel is in the order of 102 s−1. For

optical evaporation, at the beginning of the evaporation, the starting collision rate Γel is

in the order of 103 s−1.

The time evolution of the atom number in the trap is:

dN

dt
= −(Γevap + Γ1b + Γ3b)N, (A.13)
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where Γevap is the rate of the loss of atoms due to evaporation, Γ1b is the rate of loss of

atoms due to the collision of the atoms with the background gas in the vacuum and Γ3b

is the rate of three-body loss.

In our experiment, the pressure in the vacuum is about 1× 10−11 mbar, and the lifetime

of the atoms due to the collision with the background gas is measured to be more than

20 seconds. Our evaporation lasts about 2 seconds, so the loss due to collision with

background gas (Γ1b) can be neglected. The three-body loss (Γ3b)) is a nonlinear term,

so it is hard to get an analytical form for this term. Three-body loss dominates only

at the very beginning of evaporation when the atomic density is very high. In our 2s’

evaporation, the effect of three-body loss can be neglected after ∼ 300ms. So in order to

simplify the problem, we neglect this term. So the time evolution of the atom number can

be written as :
dN

dt
= −ΓevapN = −Γel(η − 4)e−ηN. (A.14)

By solving this equation, we get the time evolution of atom number N:

N(t) = N0

(
1 +

t

τ

)−b

, (A.15)

where a and b are constants associated with η. As we mentioned above, η = U
kBT

can be

supposed to be constant during the ramp, so dU
U = dT

T = αdN
N , therefore, to keep the gas

at equilibrium, we need to ramp the trap depth U as:

U(t) = U0

(
1 +

t

τ

)−β

. (A.16)

Since trap depth is proportional to the power of the laser, U ∝ P , the power of the laser

should follow the same ramp given by equation A.16, and that explains why we ramp the

power as the equation 3.20 in section 3.9.
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Calculation of the normalized

bichromatic correlation function

B.1 Bichromatic correlation fucntion of the diffuser

Remind in section 4.1, we have introduced the monochromatic correlation function of the

diffuser in equation 4.6:

Cdiff(r0, r
′
0) = tdiff(r0)t

∗
diff(r

′
0) = ei(ϕ(r0)−ϕ(r0′)). (B.1)

Monochromatic correlation shows how the fluctuation of transmission through the diffuser

of a laser with a single wavelength is correlated over the surface of the diffuser. There we

define the bichromatic correlation function of the diffuser:

Cdiff(r0, r
′
0, λp, λc) = tdiff(r0, λp)t

∗
diff(r

′
0, λc) = ei(ϕp(r0)−ϕc(r0′)). (B.2)

We can easily recover the monochromatic correlation function by setting λp = λc in the

bichromatic correlation function. Remind that in section 4.1, we have discussed that the

fluctuation of the thickness of diffuser is Gaussian distributed with standard deviation σe,

therefore the phase fluctuation introduced to the laser by passing through the diffuser is

also Gaussian distributed with standard deviation σϕ = 2π(n − 1)σe/λ. Therefore the

phase difference ϕp(r0) − ϕc(r0
′) in equation B.2 is Gaussian distribution as well and we
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can calculate the bichromatic correlation Cdiff(r0, r
′
0, λp, λc):

Cdiff(r0, r
′
0, λp, λc) = tdiff(r0, λp)t

∗
diff(r

′
0, λc) = ei(ϕp(r0)−ϕc(r0′))

= exp

[
−2π2(n− 1)2σ2e

(
1

λ2p
+

1

λ2c

)]
× exp

[
4π2(n− 1)2

2

λpλc
δe(r0)δe(r′0)

]
.

(B.3)

As mentioned in section 4.1, the surface of the diffuser is considered to be extreme rough,

and that leads to the condition σe ≫ λ (equivalently σϕ ≫ 2π). The correlation of the

thickness of diffuser δe(r0)δe(r′0) can be expressed as:

δe(r0)δe(r′0)

σ2l
≃ 1− (r0 − r′0)

2

2r2e
, (B.4)

for |r0 − r′0| ≪ re. rl is the correlation length of the thickness correlation of the diffuser

and it characterizes the typical size of a grain in the surface of diffuser. Finally by susti-

tuting the expression of δe(r0)δe(r′0) into the bicrhomatic diffuser correlation fucntion

Cdiff(r0, r
′
0, λp, λc):

Cdiff(r0, r
′
0, λp, λc) = exp

(
−
σ2∆ϕ

2

)
× exp

(
− (r0 − r′0)

2

2rdiff,prdiff,c

)
, (B.5)

where σ2∆ϕ = (σϕp − σϕc)
2 is the varaiance of the local phase difference ∆ϕ(r0) = ϕp(r0 −

ϕc(r
′
0), and rdiff has been defined in section 4.1, rdiff = re/σϕ (σϕ is different for principle

and compensating lasers).

B.2 Correlation function of the amplitude

To approach the correlation of the intensity, we first need to calculate the correlation

function of the amplitude. First, we consider the amplitude of a monochromatic laser

passing through the diffuser and converged by a lens right before the diffuser, its amplitude

at position rd = {x, y, z} is:

E(rd) =
eikz

iλz

∫
dr0Einc(r0)tdiff(r0)exp

(
−ik

x20 + y20
2f

)
exp

(
−ik

(x− x0)
2 + (y − y0)

2

2z

)
.

(B.6)

In the expression, Einc(r0) is the amplitude of the incident laser, tdiff(r0) is the transmis-

sion of the diffuser,the term exp
(
−ik

x2
0+y20
2f

)
is the phase mask of the converging lens, the
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term exp
(
−ik (x−x0)2+(y−y0)2

2z

)
is the accumulation of the phase while propagation accord-

ing to the principle of Fresnel diffraction.

Now we consider the general two-point correlation function of bichromatic speckle field, at

position r and r′, for lasers with different wavelength λp and λc. The correlation function

is expressed as:

Γ(r, r′, λp, λc) = E(r′, λc)E∗(r′, λp)

=
e
ikp

(
z+x2+y2

2z

)
e
−ikc

(
z′+x′2+y′2

2z′

)
λpλczz′

×
∫
dr0dr

′
0tdiff(r0, λp)t

∗
diff(r

′
0, λc)

× Einc(r0, λc)E
∗
inc(r

′
0, λp)

× e
ikp

r0
2

2deff e
−ikc

r′0
2

2d′
eff e−ikp

r·r0
z eikc

r′·r′0
z′ ,

(B.7)

where the effective distance deff are defined with respect to the focal plane by 1/deff =

1/z − 1/f . z = z + f is the longitudinal distance compared to the diffuser (z being the

distance only to the Fourier plane, so for the distance to the diffuser, we need to add f ,

see Fig 4.4). Actually, remind that the bichromatic correlation function of the diffuser is

just Cdiff(r0, r
′
0, λp, λc) = tdiff(r0, λp)t

∗
diff(r

′
0, λc).

Then we change the variables {r0, r′0} → {rc,0 = (r0 + r′0)/2,∆r0 = r′0 − r0}, we obtain:

Γ(r, r′, λp, λc) =
e
ikp

(
z+x2+y2

2z

)
e
−ikc

(
z′+x′2+y′2

2z′

)
λpλczz′

×
∫
drc,0d∆r0Cdiff(∆r0, λp, λc)

× Einc(rc,0 −∆r0/2, λp)E
∗
inc(rc,0 +∆r0/2, λc)

× e
irc,0

(
kcr

′
z′ − kpr

z

)
e
i
∆r0
2

(
kpr

z
+ kcr

′
z′

)
e
i
r2c,0
2

(
kp

ddiff
− kc

d′
diff

)

× e
−i

∆r0·rc,0
2

(
kp
deff

+ kc
d′
eff

)
e
i
∆r20
8

(
kp
deff

− kc
d′
eff

)
.

(B.8)

Remind that Cdiff(∆r0, λp, λc) ∝ exp
(
− ∆r2

2rdiff,prdiff,c

)
, so the typical width of Cdiff is in the

order of rdiff,prdiff,c. As shown in section 4.1, rdiff represents a typical size of the grain,

and it is very small. So the region of interest that we consider is ∆r<rdiff,prdiff,c, so in this
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regime, we can approximately suppose that: Einc(rc,0−∆r0/2, λp)E
∗
inc(rc,0+∆r0/2, λc) ≃

Einc(rc,0, λp)E
∗
inc(rc,0, λc) = I(r0), I(r0) being the incident illumination. Then we find:

Γ(r, r′, λp, λc) =
e
ikp

(
z+x2+y2

2z

)
e
−ikc

(
z′+x′2+y′2

2z′

)
λpλczz′

×
∫
dr0I(r0)e

i
r20
2

(
kp
deff

− kc
d′
eff

)
e
ir0·

(
kcr

′
z′ − kpr

z

)

×
∫
d∆r0Cdiff(∆r0, λp, λc)e

−i
∆r0·r0

2

(
kp
deff

+ kc
d′
eff

)

× e
i
∆r0
2

(
kpr

z
+ kcr

′
z′

)
.

(B.9)

B.3 3D monochromatic correlation close to the Fourier plane

In this part, we will derive the expression of spatial autocorrelation function of monochro-

matic laser speckle field, in three dimension close to the Fourier plane. It will be used

for the derivation of the bichromatic correlation function. The two point autocorrelation

function is defiend as:

c3D(∆r⊥,∆z) =
δI(r⊥ +∆r⊥, z +∆z)δI(r⊥, z)

δI2
, (B.10)

with r⊥ = {x, y}. Close to the Fourier plane, where z = 0, and close to the optical axis,

where r⊥ = 0, the numerator reads as δI(∆r⊥,∆z)δI(0, 0), and is computed using Wick’s

theorem:
δI(∆r⊥,∆z)δI(0, 0) = |Γ(∆r⊥,∆z)|2

=
∣∣∣Einc(∆r⊥,∆z)E

∗
inc(0, 0)

∣∣∣2
=

∣∣∣∣∣ 1

λ2f2

∫
dr0I(r0)e

−i
r20k∆z

2f2 e
−i

kr0·∆r⊥
f

×
∫

d∆r0Cdiff(∆r0)e
i
∆r0·r0k∆z

2f2 e
i
k∆r0·∆r⊥

2f

2

(B.11)

As mentioned in the previous part, Cdiff is a Gaussian distribution with width ∼ rdiff ,

rdiff is very small, and as the result, the second integral is negligible compared to the first
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integral. After normalization by
∣∣∣I(0, 0)∣∣∣2, and identifying a Fourier transform, we obtain:

c3D(∆r⊥,∆z) =

∣∣∣∣∣∣FT
[
I(r0)e

−i
r20k∆z

2f2

]
k∆r⊥

f

∣∣∣∣∣∣
2

∣∣∫ dr0I(r0)
∣∣2 . (B.12)

B.4 Bichromatic correlation function of the speckle

With all the element above, now we can consider the bichromatic correlation function

c2λ(r⊥, z, λp, λc) between the two potentials created at different wavelength speckle pattern

at a single point located by r = {r⊥, z} compared to the center of the Fourier plane. As

discussed in equation 6.5, the correlation between the two speckles disorder potentials is:

c2λ(r, λp, λc) =
δVp,1(r)δVc,1(r)

V p,1V c,1

. (B.13)

We express it in intensity of the lasers:

c2λ(r⊥, z, λp, λc) =
δI(r⊥, z, λp)δI(r⊥, z, λc)

I(z⊥, z, λp)I(z⊥, z, λc)
. (B.14)

In the equation above, we can compute the numerator δI(r⊥, z, λp)δI(r⊥, z, λc) using the

Wick’s theorem, then we have:

δI(r⊥, z, λp)δI(r⊥, z, λc) = |ΓA(r⊥, z, λp, λc)|2 , (B.15)

with:

|ΓA(r⊥, z, λp, λc)|2 =
∣∣∣A(r⊥, z, λp)A∗(r⊥, z, λc)

∣∣∣2
=

∣∣∣∣ 1

λpλcz2

∫
dr0I(r0)e

−i
r0

2z

2f2
(kp−kc)

× e
i
r⊥·r0

f
(kc−kp)

∫
d∆r0Cdiff(∆r0, λp, λc)

× e
i
∆r0·r0z

f2
kc+kp

2 e
i
∆r0·r⊥

f2
kc+kp

2

2

.

(B.16)

Using (i) the same approximation as in equation B.11 for the phase exponentials in the

second integral, (ii) the normalization by the average intensity profile around the center
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∣∣∣I(0, 0)∣∣∣2, and (iii) δλ = |λc − λp| ≪ λp,c ∼ λ, we obatin:

c2λ(r⊥, z, λp, λc)

=

∣∣∫ d∆r0Cdiff(∆r0, λp, λc)
∣∣2∫

d∆r0Cdiff(∆r0, λp)
∫
d∆r0Cdiff(∆r0, λc)

×

∣∣∣∣∫ dr0I(r0)e
−ik

r0
2z

2f2
δλ
λ e

ik
r⊥·r0

f
δλ
λ

∣∣∣∣2∫
|dr0I(r0)

∣∣2
(B.17)

consisting of two terms. The first one features the decorrelation effect induced by the

diffuser, and the second one features the effect of the free space propagation after the

diffuser. The first term can be computed as:∫
d∆r0Cdiff(∆r0, λ) = 2πr2diff . (B.18)

Thus at the end, the normalized bichromatic correlation function reads as:

c2λ(r⊥, z, λp, λc)

= C2
diff(0, λp, λc)

∣∣∣∣∣FT [I(r0)e−ik
r0z

2f2

]
kr⊥
f

δλ
λ

∣∣∣∣∣
2

∣∣∫ dr0I(r0)
∣∣2

= e−σ2
∆ϕc3D

(
r⊥
δλ

λ
, z
δλ

λ

)
.

(B.19)



Appendix C

Green function

The Hamiltonian of a quantum particle in a disordered potential can be written as:

Ĥ = Ĥ0 + V̂ , (C.1)

where V̂ is the disordered potential and Ĥ0 is the kinetic energy whose eigenstates are

momentum states {|k⟩}

If the Hamiltonian is time-independent, the evolution of wave function Ψ(x, t) can be

written as:
Ψ(x, t) = ⟨x|Ψ(t)⟩

= ⟨x|e−itĤ|ℏ|Ψ(t = 0)⟩

=

∫
dx′⟨x|e−itĤ|x′⟩⟨x′|Ψ(t = 0)⟩

=

∫
dx′G(x′,x, t)Ψ(x′, t = 0).

(C.2)

We see that the solution for the wave function Ψ(x, t) at time t is just a convolution

between the initial wave function Ψ(x′, t = 0) and the function connecting the initial and

the final state G(x′,x, t). This function G(x′,x, t) is Green function. Green function is

very useful to describe the evolution of quantum systems. It represents the amplitude of

the quantum path of the particle initially at position |x′⟩ being detected at position |x⟩
after a time of evolution t, under the Hamiltonian Ĥ. By Fourier transform, we get the

Green function in the domain of energy:

Ĝ(E) =
1

E − Ĥ+ i0+
. (C.3)
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For a free particle, the Hamiltonian Ĥ0 is only kinetic energy, and the eigenstates are

momentum {|k⟩}. The Green function operator Ĝ0 for the free particle is:

Ĝ0 =
1

E − Ĥ0 + i0+
. (C.4)

We can express the Green function for the free particle in the base of momentum {|k⟩}:

G0(k, E) = ⟨k|Ĝ0(E)|k⟩ = 1

E − εk + i0+
, (C.5)

where εk = ℏ2k2

2m is the dispersion for a free particle.

Now let us add the disordered potential. By replacing the Hamiltonian Ĥ = Ĥ0 + V̂ in

the Green function operator in equation C.3, the Green function can be demonstrated to

be the solution of Dyson equation written in the base of momentum {|k⟩}:

G(k, E) = G0(k, E) + G0(k, E)V̂ G(k, E). (C.6)

This iteration equation allows us to define a quantity called self − energy Σ(k, E):

G(k, E) = G0(k, E) + G0(k, E)Σ(k, E)G0(k, E), (C.7)

where the self-energy Σ(k, E) is:

Σ(k, E) =
∑

⟨k|V̂ (Ĝ0(E)V̂ )n|k⟩. (C.8)

Then with the help of the self-energy Σ(k, E), the Green function can be expressed as:

G(k, E) =
1

E − εk − Σ(k, E)
. (C.9)

The information of how the interaction between the particle and the disordered potential

is encoded in the self-energy Σ(k, E). The interaction of the particle and the disordered

potential induces an energy shift of the particle and a broadening of the spectrum of

energy. We see in the next section how these effects are encoded in the self-energy.
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143, 2015.

[72] Eric L Raab, Mara Prentiss, Alex Cable, Steven Chu, and David E Pritchard.

Trapping of neutral sodium atoms with radiation pressure. Physical review letters,

59(23):2631, 1987.
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Immanuel Bloch. Coherent transport of neutral atoms in spin-dependent optical

lattice potentials. Phys. Rev. Lett., 91:010407, Jul 2003.
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Temps de diffusion élastique et fonctions spectrales. PhD thesis, Université Paris-
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[127] Berthold Jäck, Fabian Zinser, Elio J König, Sune NP Wissing, Anke B Schmidt,

Markus Donath, Klaus Kern, and Christian R Ast. Visualizing the multifractal wave

functions of a disordered two-dimensional electron gas. Physical Review Research,

3(1):013022, 2021.

[128] Dominique Delande and Giuliano Orso. Mobility edge for cold atoms in laser speckle

potentials. Physical review letters, 113(6):060601, 2014.

[129] Adrien Signoles, Baptiste Lecoutre, Jérémie Richard, Lih-King Lim, Vincent

Denechaud, Valentin V Volchkov, Vasiliki Angelopoulou, Fred Jendrzejewski, Alain

Aspect, Laurent Sanchez-Palencia, et al. Ultracold atoms in disordered potentials:

elastic scattering time in the strong scattering regime. New Journal of Physics,

21(10):105002, 2019.


	Acknowledgements
	Résumé en français
	1 Introduction
	1.1 Outline

	2 Anderson localization with ultracold atoms
	2.1 Microscopic view for the transport in disordered media
	2.1.0.1 Random walk in disordered media
	2.1.0.2 Interference and weak localization
	2.1.0.3 Anderson localization
	2.1.0.4 Scaling theory for Anderson transition


	2.2 Ultra cold atoms: a good platform to study Anderson localization
	2.3 3D Anderson localization and the Anderson transition
	2.3.1 Experiment of Urbana-Champaign
	2.3.2 Experiment of Palaiseau
	2.3.3 Experiment in Florence

	2.4 Synthesis

	3 Preparation of Bose-Einstein condensate
	3.1 Bose-Einstein Condensate
	3.1.0.1 Statistics for Bose-Einstein condensate
	3.1.0.2 Gross-Pitaevskii equation for Bose-Einstein condensate
	3.1.0.3 Thomas-Fermi regime


	3.2 Properties of 87Rb
	3.3 Description of experimental cycle
	3.4 Transverse molasses and Zeeman slowing
	3.5 Magneto-optical trap
	3.6 Magnetic trap
	3.7 RF-evaporation
	3.8 Loading the atoms in an optical tweezer and transport to the second chamber
	3.9 Optical evaporation
	3.10 Cool the atoms even more by adiabatic cooling
	3.11 Magnetic levitation
	3.12 Imaging system
	3.12.0.1 Absorption imaging
	3.12.0.2 Fluorescence imaging



	4 Optical speckle
	4.1 The property of diffuser
	4.2 The distribution of light intensity
	4.3 Spatially statistical properties of intensity
	4.3.0.1 Spatial correlation of the intensity

	4.4 Experimental implementation

	5 Transfer scheme in a monochromatic state-dependent disorder
	5.1 The two-level system composed of |1 and |2
	5.1.1 Choose the state |2 and magic point B0* of magnetic field.
	5.1.2 Two-photon transition

	5.2 The state-dependent disorder
	5.3 Spectral function and the transfer in the disorder
	5.3.1 Spectral function
	5.3.2 Connect the spectral function with the transfer rate of atoms

	5.4 Experimental measurement of the spectral function with near-resonant speckle
	5.5 To explore the Anderson transition in this platform?

	6 Bichromatic state-dependent disordered potential
	6.1 Bichromatic speckle scheme
	6.2 Fundamental potential deccorelation in state |1
	6.2.0.1 Calculate the normalized bichromatic correlation function
	6.2.0.2 The decorrelation effect in practice


	6.3 Reduction of the photon-scattering rate for the disorder-sensitive state
	6.4 Experimental realization
	6.4.1 Experimental set-up
	6.4.2 Probing the insensitivity of state |1 to disorder using a quench
	6.4.3 Check the rf-transfer with bichromatic speckle
	6.4.4 Improve the lifetime of state |2


	7 Measurement of the mobility edge
	7.1 Scaling law of the mobility edge versus amplitude of disorder
	7.1.1 Correlation energy
	7.1.2 Universality of the disorder

	7.2 Experimental procedure
	7.3 First experimental results and the analysis
	7.3.1 The first results for VR/h = 416Hz
	7.3.2 First signature of the mobility edge
	7.3.3 Analysis of the central density
	7.3.4 Temporal dynamics

	7.4 Future improvements
	7.4.1 Improve the lifetime of disordered states
	7.4.2 Horizontal trap due to magnetic levitation
	7.4.2.1 Open the trap by increasing the bias field
	7.4.2.2 Optical anti-trap


	7.5 Conclusion

	8 Conclusion and perspectives
	8.1 Study near the critical regime
	8.1.1 Critical exponent
	8.1.2 Multi-fractality near the critical regime

	8.2 Investigate various configurations of speckle

	A Optical evaporation
	B Calculation of the normalized bichromatic correlation function
	B.1 Bichromatic correlation fucntion of the diffuser
	B.2 Correlation function of the amplitude
	B.3 3D monochromatic correlation close to the Fourier plane
	B.4 Bichromatic correlation function of the speckle

	C Green function
	Bibliography

