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General introduction

This PhD work is dedicated to the design, geometry and mechanics of shape-changing structures.
There is currently a strong interest in the scientific community for "morphing" materials. It might be
explained by the fact that this problem gathers questions that are now relevant for several different
communities.

Figure 1 Examples of shape morphing materials. a) A soft robot grabbing a ball [1]. b) Different
morphologies of long orchids due to differential growth [2]. c) Shape changing of a thin layer of liquid
crystal elastomer [3]. d) Deployment of a kirigami tessellation [4]

For example, the emergence of soft robotics [5] in the last decade opens a new paradigm. In contrast
with standard robotics, where stiff members (the supports) are articulated and actuated by separate active
devices (motors), in soft robotics, the material is both the motor and the support, so that “the material is
the machine” [6]. By relying on continuously changing shapes, soft robots can be designed to crawl
into narrow places [7] or gently grip fragile objects [1, 8], (figure 1a). Based on techniques and materials
initially developed for micro-fluidics, soft robotics provides simple, resilient, lightweight and low-cost
devices using fabrication techniques that become every year more accessible [1]. But it also leads to the
question of the mechanics of continuous materials capable of distributed actuation.
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General introduction

In a second stream of research, the study of instabilities in non-linear physics, which started in the
1980’s, naturally lead to a fascination for morphogenesis in biology, and the mechanical instabilities
resulting from differential growth [9]. Such phenomena lead to the self-shaping of slender biological
organs [2, 10–12] (figure 1b). Instabilities were also recognized as a way to obtain fast change in shape
(much faster than the actuation time-scale) with the beautiful example of the Venus Flytrap [13], a plant
capable of capturing an insect without the fast activity of a muscle. It is also noted that sometimes very
complex shapes may be obtained from rather simple growth law [14], emphasizing the crucial and subtle
role of geometry in morphing processes.

An active area of Material Science is devoted to the development and study of “active” materials:
materials that undergo deformation as a response to an external stimulus (which in fact is responsible for
the energy input). For example, liquid crystal elastomers [15] and shape memory polymers [16] reorga-
nize their molecular conformations when heated above a critical temperature, or dielectric elastomers
[17, 18] expand when their surface is charged. There are many more examples of such material which
can actively mechanically deform upon activation (light, temperature, solvent, electric or magnetic
field...). Material scientists also investigated how to control spatially the deformation (its orientation
and/or its magnitude), so they can produce complex 3D shapes. For example, in figure 1c, a specific
pattern of orientation of the deformation in a sheet of liquid crystal elastomer takes a complex 3D shape
when heated.

The last decade has also witnessed the development of mechanical metamaterials. These architected
materials were first introduced to give them controllable (and often anomalous) wave propagation
properties resulting from internal structure having similar scale as the wavelength. Soon, an interest
arose for such "programmable" materials outside the domain of wave propagation, and several groups
started investigating strategies to program a material’s mechanical response (the stress-strain law) [19].
An example of shape-changing metamaterial is presented in figure 1d, where a planar square is manually
expanded into a disk. In this field, a fundamental question is therefore to "design" a material (using
internal structures), an approach that we will follow in this PhD.

Several of these converging fields are making extensive use of digital fabrication techniques, such
as 3D printers, laser cutters,... These devices become standard tools because they are fast and easy to
use. They can be adapted to many materials, from traditional 3D printing filaments to elastomers, metals
or other materials. They can also be used at different scales, from nano to macro and even to meter
scale. Rapid prototyping opens the lead to new kinds of structures that were not accessible before and
generates new scientific questions. In particular, the new trend of 4D printing emerges. It consists in 3D
printing samples that are activable and that can evolve in time [20].

In term of applications, shape-changing materials open many possibilities. New prototypes could
be used through tortuous paths, for example in mini-invasive surgery, as a shape-changing object can
adapt to the body. Another advantage of such structures is that they can be easily manufactured in a
simple geometry and deploy their shape later. By being designed in the first place as flat or undeployed,
they could bring huge improvement for both storage and transport in the initial state. However there are
not so many industrial applications of shape-changing materials (if we exclude the classical bimetallic
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strip [21]). This might be due to the fact that material programming processes are often complex and
not easily scalable to an industry. Another limitation for applications in most of the shape-changing
concepts is that they lead to systems that are very soft and generally small (see for example the scale bar
in figure 1c)

In this manuscript we question the possibility of designing relatively large (tens of cm) and stiff
shape-changing systems using simple materials, simple actuation (thermal, pressure, direct force through
wires, or surface tension) and standard rapid prototyping techniques (laser cutting and 3D-printing).
The complexity of the design and the versatility of programming lies in the geometry of a structure,
composed of a network of slender members arranged into cellular structures, that is designed to restrict
or guide an otherwise featureless deformation. A recurring pattern of this work is the diamond-shaped
unit structure (center in figure 2), but we will also consider other elementary cell geometries (chevrons
and rectangles, in figure 2 ) as they lead to different elementary deformations.

Figure 2 Main experimental systems used throughout this work. Left: a reinforcing mesh of chevrons
embedded in a thermally activable elastomer matrix. Center: networks of diamonds, 3D printed out of
thermoplastic polyurethan (TPU), can be externally activated. Right: a network of rectangles laser cut in
a Mylar sheet is covered by soap films which deform it. All pictures are about 10 cm wide.

The manuscript is divided in four parts:
In a first part (chapter 1), we start with a brief introduction on the physics and geometry of shape
changing process, and give examples from the literature. In a second part (chapter 2), we present a
new method for shape morphing based on phase change and restrictive networks that include diamond
networks. In (chapter 3), we study a second experimental system that uses thicker 3D printed networks
as activable structures that are able to morph into 3D structures. Finally, in (chapter 4) we investigate the
role of surface tension (soap films) in the design of ephemeral 3D shapes out of thin planar networks.
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Résumé français

Les structures qui changent de forme trouvent des applications dans de nombreux domaines tech-
nologiques. Cependant, le passage d’une surface plane à une forme en trois dimensions est soumis à
des conditions géométriques bien précises : il n’est pas possible de changer la courbure de Gauss d’une
surface sans modifier les distances dans son plan. Cette propriété peut en revanche être exploitée pour
changer de forme en variant localement la direction et/ou l’intensité de déformations spontanées. Dans
ce but, nous utilisons des structures cellulaires à géométrie et motifs variables pour induire et guider
des déformations dans le plan qui conduisent à des transformations tridimensionnelles de la structure.
Ces structures cellulaires sont produites par prototypage rapide (impression 3D, découpeuse laser ...)
et utilisent des systèmes d’activation simples (pression, chaleur, fils tendus ou tension de surface). Un
motif élémentaire récurrent de cette thèse est le losange, mais d’autres motifs comme des chevrons, des
rectangles ou des lignes sont utilisés et permettront d’obtenir différentes déformations élémentaires.

Au cours de cette thèse, nous avons utilisé trois systèmes qui mettent en œuvre des techniques
d’activation différentes. Dans une première partie nous avons utilisé des structures cellulaires fines pour
contraindre les déformations d’une matrice gonflant par changement de phase. Dans une deuxième partie,
nous avons étudié un dispositif expérimental qui repose sur des structures plus épaisses, imprimées en
3D, qui sont activées des fils ou une mise sous vide dans une poche. Enfin, dans une troisième partie,
nous avons cherché à utiliser la tension de surface à travers des films de savon pour créer des formes 3D
éphémères.

Pour tous les systèmes, des formes simples comme des cônes et anti-cônes ont été programmées pour
donner des exemples de formes élémentaires à courbure de Gauss positive ou négative. Une manière
simple de programmer des cônes est de permettre une croissance radiale plus forte que la croissance
azimutale. Au contraire en induisant une croissance radiale plus faible qu’une croissance azimutale, on
porduit un anti-cône. Le principe de cette méthode sera appliqué pour tester les différents systèmes.

0.1 Changement de forme par changement de phase

Dans cette première partie, nous avons utilisé une matrice qui subit de grandes déformations par
changement de phase. Ce matériau, développé par Miriyev et al. [22], est composé d’élastomère et
d’éthanol. L’éthanol est mélangé à l’élastomère avant la réticulation de celui-ci. Une fois réticulé, des
gouttes d’éthanol se trouvent piégées dans la matrice. Lorsque la matrice est chauffée au delà de 80°C,
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l’éthanol se met à bouillir et la pression à l’intérieur des cavités augmente amenant à un gonflement
global de la matrice. Cette expansion est réversible et quand la température redescend, la matrice
élastique revient à sa forme initiale.

Comme les gouttes sont globalement réparties de manière homogène dans la matrice, le gonflement
est homogène sur tout l’échantillon. Ainsi, en chauffant le matériau, il subit seulement une homothétie et
ne change pas de forme. Pour changer de forme, il faut rendre le gonflement de la matrice non homogène.
Pour cela, nous avons choisi de contraindre son gonflement en incluant de minces réseaux inextensibles
dans la matrice. Ces réseaux sont obtenus par découpe laser des feuilles de Mylar de 30µm. Il sont
ensuite insérés de part et d’autre de la matrice pour que la déformation soit symétrique (figure 1).

Figure 1 Confection des échantillons. Au centre se trouve la matrice active élastomère/éthanol qui gonfle
quand le matériau est chauffé. Des réseaux inextensibles identiques sont déposés de part et d’autre de la
matrice pour contraindre sa déformation. Enfin, à l’extérieur de l’échantillon, des couches d’élastomère
pur sont coulées pour limiter les fuites d’éthanol.

En changeant les motifs des réseaux, il est ainsi possible de programmer différentes formes. Dans
un premier temps, des réseaux sont composés de larges lignes parallèles également espacées reliées par
des chevrons. Quand la matrice est activée, la déformation le long des lignes est bloquée, la matrice
ne peut donc gonfler que dans la direction perpendiculaire aux lignes. Différents échantillons tests ont
été utilisés pour mesurer l’influence des chevrons sur la déformation des échantillons. Il en ressort
que l’angle et la densité des chevrons reliant les lignes n’agit qu’au second ordre, la déformation étant
majoritairement guidée par le motif des lignes.

Au lieu d’utiliser des lignes parallèles entre elles qui n’autorisent qu’une simple déformation dans le
plan, les lignes peuvent être agencées différemment. Pour obtenir un cône, le réseau est composé de
cercles concentriques reliés par des chevrons. Le gonflement n’ayant lieu que perpendiculairement aux
lignes, les rayons de l’échantillon tendent à augmenter alors que les périmètres restent constants (figure
2). À l’inverse, si les lignes sont disposées en étoiles et reliées par des chevrons, un anti-cône est obtenu.

Un autre type de motif élémentaire est utilisé : le losange. Quand le losange est activé, il se
déforme de manière couplée selon ses deux diagonales : si l’une rétrécit, l’autre grandit. Dans le cas de
l’activation par une matrice qui gonfle, les losanges tendent à devenir des carrés, ce qui maximise leur
aire. Ainsi, la déformation est négative le long des grandes diagonales et positive le long des petites
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diagonales. La déformation dépend de la géométrie des losanges et plus particulièrement de leur angle
initial. Plus ils sont éloignés du losange, plus ils se déforment. Expérimentalement, les losanges tendent
vers le carré mais ne l’atteignent pas.

Si ces losanges sont alignés, le système reste dans le plan. Mais si leur orientation dans l’espace est
choisie avec soin il est possible de programmer des formes en 3 dimensions. Pour obtenir des cônes et
des anti-cônes, le réseau de losange est formé par l’intersection de spirales logarithmiques orientées
dans des directions opposées. Grâce aux propriétés de ces spirales, les losanges ainsi dessinés ont tous
le même angle même si leur taille change. Si la grande diagonale des losanges est orientée dans la
direction azimutale, une fois l’échantillon activé, il y aura une déformation négative dans la direction
azimutale et une déformation positive dans la direction radiale, menant à l’apparition d’un cône (figure
2). Au contraire si la grande diagonale est orientée suivant les rayons, un anti-cône apparait.

Figure 2 Exemples de formes 3D obtenues avec des lignes et chevrons (haut) et des losanges (bas).

Ainsi en utilisant une matrice actionnée par changement de phase, il est possible d’obtenir des
formes 3D de manière réversible. Une des limites de cette méthode est la matrice en elle-même. D’un
échantillon à un autre, les déformations sont différentes. Il est donc difficile de quantifier précisément la
déformation des échantillons et de s’en servir pour programmer une forme précise.

0.2 Changement de forme par fermeture de structures cellulaires

Si dans la partie précédente, les réseaux cellulaires agissaient de manière restrictive en contraignant
le gonflement d’une matrice, dans cette partie, les cellules des structures sont utilisées en compression.
Au lieu de changer de forme par gonflement d’une matrice, les réseaux sont ici activés directement. Ces
réseaux sont plus épais (∼ 1cm) et imprimés en TPU (thermoplastic polyurethane) par impression 3D.
Ils sont composés de losanges qui se ferment quand ils sont activés, menant à une déformation négative
dans la direction de fermeture et positive dans la direction perpendiculaire. L’activation se fait soit par la
pression, soit par la tension mécanique de fils parcourant la structure.
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Dans un premier temps, nous avons choisi d’utiliser les fils comme moyen d’activation des cellules.
Les fils passent à travers les cellules de la structure le long de la diagonale qui doit être fermée. Comme
dans le système précédent, si les losanges sont alignés, la déformation reste dans le plan. Pour obtenir des
formes en 3 dimensions, les losanges sont aussi construits par l’intersection de spirales logarithmiques.
Toutefois, les formes obtenues sont inversées : si la grande diagonale des losanges est alignée selon
les périmètres, un anti-cône apparaît lors de la fermeture des cellules, inversement si les losanges sont
alignés avec les rayons, un cône apparaît.

Pour programmer des formes plus complexes, il faut varier localement la déformation de chaque
cellule. Si on veut utiliser des losanges simples, il faut changer les paramètres géométriques de chaque
losange (taille, angle, ...). Cependant l’utilisation de losanges de différentes formes et tailles rend le
pavage de l’espace beaucoup plus compliqué et limite les possibilités. Une alternative à cela est d’insérer
des cales à l’intérieur des losanges pour bloquer leur forme finale. Dans chaque demi-losange, trois
triangles sont dessinés et se bloquent une fois au contact. En choisissant la taille de ces triangles il est
possible de programmer la forme finale des losanges et donc la déformation à l’échelle de la cellule.
Plus les cales sont grosses, plus la déformation est limitée.

Cette technique est utilisée pour programmer des formes plus complexes que des cônes et anti-cônes.
Une des solutions pour créer des structures axisymétriques est d’utiliser comme base un réseau de
losanges déterminé par des spirales logarithmiques pour avoir des cellules qui ont toutes le même
angle initial. Un algorithme prend un profil en entrée, et calcule la déformation nécessaire pour chaque
couronne de losanges et en déduit la taille des blocs. Avec cette méthode des objets, comme des sphères
ou des ellipsoïdes peuvent être obtenus à partir d’une structure plane.

Figure 3 À gauche, des exemples de losanges alignés avec et sans cales dans leur état initial et après
activation. À droite en haut, l’activation d’une structure par des fils pour obtenir un cône, en bas une
structure activée par le vide pour donner un cône.

Une méthode plus générale peut être utilisée pour programmer des structures qui ne sont pas
axisymétriques en utilisant un réseau de Tchebyshev. Ce travail à été réalisé en collaboration avec Hillel
Aharoni du Weizmann Institute. Un maillage de losanges avec une longueur des côtés constante est
dessiné sur une surface 3D et l’angle de chaque losange est mesuré sur cette forme 3D. L’angle final
mesuré des losanges est ensuite encodé dans la taille des cales des losanges d’une grille de losanges
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identiques et alignés. Une fois que les fils passés à travers toutes les cellules sont tendus, la forme 3D
programmée apparaît.

Pour mieux comprendre le comportement de ces structures, une étude mécanique à été réalisée. Il en
ressort que la mécanique de tels objets est gouvernée par la mécanique des petites poutres qui composent
chaque losange.

Dans un second temps, ces structures imprimées en TPU sont placées dans des sacs en tissu étanches
dans lequel le vide est fait. En mettant ces objets sous dépression, chaque cellule se ferme le long de sa
petite diagonale. Quand le vide se fait, les losanges ne se ferment pas totalement car le tissu à tendance
à s’engouffrer dans les cavités. La hauteur des échantillons doit être choisie de manière à ce que le tissu
des deux côtés de l’échantillon ne rentre pas en contact mais que la structure soit suffisamment fine pour
se courber dans la forme désirée. Cette technique d’activation ne permet cependant pas une mesure
quantitative des déformations et ne permet donc pas de programmer de formes complexes.

0.3 Sculpter des films de savons

Dans ce dernier système, le moteur de la déformation est la tension de surface. Ce travail a été réalisé
en collaboration avec Pierre-Brice Bintein et Rémi Abdallah. De minces réseaux de Mylar sont placés
dans un bain d’eau savonneuse pour créer des films de savon dans les différentes cellules. Les réseaux
utilisés sont composés de rectangles disposés en quinconce (figure 4 gauche). Quand un film de savon
est tendu à l’intérieur des cellules, celles-ci se referment dans leur largeur alors que presque aucune
déformation n’est observée dans la longueur. La déformation maximale qui peut être obtenue quand
toutse les cellules sont fermées est de 50%, car seulement la moitié des cellules se referment sur chaque
ligne. Les deux énergies en compétition sont l’énergie de la tension de surface et l’énergie élastique des
cellules. Il existe deux modes de fermeture : une fermeture dans le plan (2D) et une fermeture hors-plan
(3D) (figure 4 droite). Le passage de l’une à l’autre se fait en changeant les paramètres géométriques des
cellules.

Soap

α
α

Figure 4 À gauche un réseau de cellules rectangulaires plongé dans de l’eau savonneuse. À droite, en
haut, une cellule unité qui se déforme dans le plan, en bas, une cellule unité qui se déforme hors du plan.
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Résumé français

Un diagramme de phase peut être tracé pour déterminer le comportement de chaque cellule quand
elle est plongée dans l’eau savonneuse. L’étude fait apparaitre deux nombres élasto-capillaires sans
dimension qui expriment l’équilibre entre l’énergie de la tension de surface et l’énergie élastique de
déformation de la cellule dans le plan :

A2D =
Eelast2D

Esoap

∣∣∣∣
contact

=
Ee3td
γL4 (1)

ou hors du plan:

A3D =
Eelast3D

Esoap
=

Et3

γ

√
ew
dL5 (2)

La majorité des cellules se déforment dans le plan même si cette déformation peut être très petite et
non observable à l’œil nu. Cependant pour A3D < A3Dc, où A3Dc est un nombre élasto-capillaire critique,
une instabilité apparaît et les cellules se ferment hors plan.

Pour programmer des formes, la taille des cellules est choisie de sorte que les cellules se ferment
totalement ou partiellement hors plan (3D). Au lieu de les aligner, les rectangles sont utilisés pour paver
un disque. Dans un premier temps, les rectangles sont alignés dans la direction radiale. Quand ils sont
plongés dans l’eau savonneuse, ils se ferment selon leur largeur ce qui induit une déformation négative
dans la direction azimutale, induisant la formation cône. Au contraire, si les rectangles sont alignés dans
la direction azimutale, un anti-cône apparaît quand la structure est plongée dans de l’eau savonneuse.
Dans ce deuxième cas, les rectangles sont courbés pour pouvoir paver l’espace il faut donc utiliser une
correction pour prédire les paramètres qui permettent la fermeture totale des cellules.

Ainsi, en utilisant des films de savons qui ont une courbure de Gauss négative (comme toute surface
minimale) il est possible d’obtenir à la fois des structures avec une courbure de Gauss négative ou
positive. Le caractère éphémère des films de savon rend les manipulations des échantillons compliquée et
ne permet pas la création de formes très complexes. Les mêmes motifs en rectangle peuvent être utilisés
avec la méthode décrite dans la précédente section. S’ils sont imprimés en 3D et ont une épaisseur
suffisante, ils peuvent être activés par le vide et donner les mêmes formes qu’avec la présence du savon.

Figure 5 De gauche à droite, le dessin du réseau de Mylar, le réseau à l’équilibre piégé dans un film de
savon, le réseau activé par le savon présent dans toutes les cellules et enfin le réseau soumis à son propre
poids quand tous les films de savon ont éclaté. Les rectangles sont alignés radialement, ainsi un cône
apparait quand la structure est activée par les films de savon.
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Chapter 1

Introduction to shape morphing

Cellular structures for shape morphing, what does it mean ?
Morphing comes from the ancient Greek morphé that means shape. The term morphing often refers

to special effect in image animation whereas the term of shape morphing is more used in the soft robotic
field. In this first chapter, we will first explain what mechanisms can be involved in a shape change and
how to trigger them. We will then give examples of morphing object and their possible applications.

Contents
1.1 Geometry and morphing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 Bi-layer effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.2 Geometry of surface shaping . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Active shape changing due to internal mechanisms . . . . . . . . . . . . . . . . . 19

1.3 Cellular structures for shape morphing . . . . . . . . . . . . . . . . . . . . . . . 21

1.1 Geometry and morphing

Changing the shape of an object can be done following three elementary paths: subtractive, additive
or deformation. In the subtractive way, the object is broken, or some material can be removed to obtain
a new shape: this is the case of sculpture in stone. Another way of modifying the shape of an object is
by assembling the new object with existing parts of another one, like a furniture (additive way). With
these methods, the objects loose their integrity: new boundaries are created or suppressed.

In the following we focus on an alternative way: shaping that consists in a continuous non-destructive
shape change. In order for objects to deform without breaking, they must be soft enough. Modifying the
shape of bulk material requires large strains. Materials such as sand or modeling clay can withstand it,
as they are plastic enough. However, modifying the shape of bulk material with high Young modulus
like stone or wood leads to its failure, but such materials can be shaped if they are thin enough, or heated
to become more ductile, such as iron that can be heated to be bent for sculptures (Figure 1.1).
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Introduction to shape morphing

Figure 1.1 Forged iron sculpture “The Comb of the wind” by Chillida (San Sebastian, Spain).

Thus, to design shape-changing objects, the constitutive material and the object scale are important.
Objects must be stiff enough to maintain their shape, but soft enough to undergo a shape change. We
will detail what “soft enough” means in the following section.

Until now, we have mentioned objects that change shape due to external forces, so that materials can
adopt many shapes depending on the will and action of the operator. But shape change can be internally
programmed, and then triggered. Doing so the final shape is always known and is not directly dependent
on the will of the actor. Shape-change can be beautiful in itself and is very present in art (figure 1.2),
but it can also be useful, for example in soft robotics where a continuous programmed deformation is
very important. As mentioned, deforming a bulk is not easy whereas deforming a slender object is much
easier, that is why there is a larger focus on the morphing of slender objects in the literature. Most of
the shape change occur in 2 dimensions, and the objects are most of the time rods, or elongated beams.
They rely on a "bi-layer" effect that we explain now.

Figure 1.2 Solstice, a kinetic clock that open and close with the hour from Animaro. The shape evolves
in time.

1.1.1 Bi-layer effect

This very simple phenomenon is present in nature on many forms. For example, a pine cone can be
opened or closed depending on the humidity rate [23]. When the pine cone are on the tree, they remain
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closed and only open once they fall and dry, liberating the seeds to the ground. Every scale is composed
of two parallel layers on top of each other that do not shrink by the same amount when the pine cone
dries: one layer becomes shorter than the other one, and this mismatch in length causes a bending of the
structure, opening the pine cone. The same strategy is used in art and design to create samples that are
sensitive to humidity rate [24–26] (figure 1.3).

Figure 1.3 Photo of a HygroSkin aperture adapting to weather changes: open at low relative humidity
rate (left) and closed at high relative humidity rate (right). Image by Achim Menges’ group (2013).

This bi-layer effect first mechanically introduced by Timoshenko [21] described the bending of a
beam composed of two layers of metal that do not have the same heat expansion rate. When the beam is
heated, one layer gets longer than the other and again the material bend to satisfy the mismatch. In a
bent sample, the outer layer is longer than the inner one and thus fits the mismatch (see figure 1.4).

Figure 1.4 Bi-layer effect: two joint layers of materials with a dimensional mismatch tend to bend,
placing the longer layer on the external part.

This effect is very powerful to bend slender structures and can be used to actuate. The activation
can be done in many ways: temperature, humidity rate, pressure, light [27]. Being able to activate
the samples provides a response in time that is often reversible. The bending actuation can be done
with rods[28] or mesh of rods [29] that bend in order to create new structures by changing shape with
temperature, or with pressure [1] for example. Strips can also be used and can be activated by humidity
rate [30] or pressure [7].
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The size of the samples and their thickness are important in order for the effect to appear but another
dimension can be added: the choice of the material. It can be stiff like wood or metal, or much softer.
The last cited example used elastomer and internal pressure to create one of the first soft robots [7],
opening the way to a large variety of actuators. Like an octopus, in soft robots, the change in shape
occurs because of a distributed strain. Depending on the geometry, soft robots can move in complex,
tortuous and narrow environment [7], or help grabbing delicate objects [8].

Such soft robots are bending because they are composed of two different layers that do not behave
the same when the sample is activated. One layer, the restrictive one, does not change in length when
the sample is activated. It can be composed of the stiffer or thicker material. The other part is meant to
expand with the pressure and is often composed of cavities that expand like a balloon.

All these transformations occur because bending is strongly favored over stretching. Slender objects
easily deform in bending rather than in stretching (elastic response). Considering a sample of length
L, width d and thickness t, and assuming that its end is displaced by distance δ leading to a pure
compression. The associated elastic energy scales as :

Eelastic = EtdL
(

δ

L

)2

= EtdLε
2 (1.1)

If instead of compression, the sample keeps its length, it must bend with a deflection δ ′∼
√

L2 − (L−δ )2 ∼√
Lδ when δ is small (figure 1.5), and the scaling of the associated bending energy is:

Ebending = Et3dL
(

δ ′

L2

)2

= Et3dL
δL
L4 = E

t3d
L

ε (1.2)

δ

δ'

L-δ

L

td

Figure 1.5 Scheme of a beam before and after bending instability.

For very small δ , the stretching energy (quadratic in δ ) is lower than bending energy (linear in δ ),
and the beam remains straight and compressed. This is true until Eelastic ∼ Ebending, which corresponds to
a critical buckling strain on the order of εb =

( t
L

)2. Above this strain the beam prefers to bend than being
compressed. In slender structures, the ratio t

L is quite small that explains why most of the structures
bend in the previous examples.
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Up to now, we have described samples that bend in one direction, the shape changing is thus limited.
To obtain 3D object, many bending beams have to be arranged together because, in order to get complex
3D shapes, samples have to be bent in more than one direction. Thus instead of using rods or beams,
plate can be used. But if a simple bi-layer effect is used for a thin plate (with isotropic expansion of
one layer), the bending will still occur in one direction [31]. In order to have bending in two directions
of space, the deformation on the plate has to be more complex because of an important geometrical
limitation that we review next.

1.1.2 Geometry of surface shaping

1.1.2.a Gauss’ theorema egregium

Changing the shape of a plate has strong geometrical implications. A well-known example is the
cartographer’s problem: it is not possible to draw an accurate 2-dimensional map of the Earth. Projecting
the spherical map onto a plane can only be done at the expense of deforming the continents or oceans.
This fact was first explained by Gauss in a theorem that he considered as remarkable: the theorema
egregium. This theorem states that it is not possible to change the Gaussian curvature of a surface
without changing its metric, i.e. the distances between the points along the surface.

The Gaussian curvature K, is defined locally as the product of both principal curvatures K1 and K2

of a surface. If both curvatures have the same sign, the Gaussian curvature is positive: the archetypal
example is the sphere (figure 1.6 left). If K1 and K2 have opposite signs, the Gaussian curvature is
negative, which represents saddle shapes (figure 1.6 right). If at least one of the two principal curvatures
is zero the Gaussian curvature is zero. The particular group of shapes that have zero Gaussian curvature
everywhere is called developable surfaces, and includes all the shapes that can be obtained from a planar
sheet without stretching or compressing it (planes, cylinders, cones...).

K1

K1

K2

K2

K>0 K<0

Figure 1.6 Example of positive (left) and negative (right) Gaussian curvature surface with respectively a
pelota ball and a potato chip.

A simple manifestation of Gauss’s theorem is that when a circle with radius r is drawn on surfaces
with positive or negative Gaussian curvature, the perimeter is larger or smaller than 2πr. The radius is
measured along the surface as if the circle was drawn with a pen attached to the center with a flexible
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rope. Let us take the example of a sphere of radius R on which we draw a circle of radius r = φR (see
figure 1.7 left).

K>0 K<0

r

P

r

P

r'

�

r

R

Figure 1.7 Circles on non-developable surfaces. On positive Gaussian curvature surfaces (left), circles
with radius r have a perimeter shorter than 2πr. Conversely, on negative Gaussian curvature surfaces
(right) the perimeter is longer than 2πr.

The actual perimeter of the circle is 2πr′ = 2πRsinφ with R the radius of the sphere and φ the angle
from the vertical. Writing the expansion for circles of radius much small than the sphere radius (r ≪ R),
the actual perimeter can be written:

P = 2πr′ = 2πr
(

1− 1
6

r2

R2 +O

(
r4

R4

))
(1.3)

or
P = 2πr

(
1− 1

6
Kr2 +O

(
K2r4)) (1.4)

This equation can be generalized to any shape [32] and reads:

P = 2πr
(

1− K(Pi)

6
r2 +O

(
r4)) (1.5)

where K(Pi) is the Gaussian curvature measured at point Pi in the center of the circle.

With this equation, it can be seen that for positive Gaussian curvatures (K > 0), the perimeter
is smaller than 2πr. For the negative Gaussian curvatures (K < 0), the perimeter is larger than 2πr.
Finally, when the Gaussian curvature is zero, the perimeter is exactly 2πr. We will repeatedly use this
simple argument with radius and perimeter when analyzing and programming shape morphing in this
manuscript.

Two particular shapes are present throughout this manuscript : cones and e-cones (where e stand
for "excess"). These shapes are particular because at first glance it seems that they have zero Gaussian
curvature, but it is not exactly the case. The two shapes seems to be ruled surfaces, i.e surfaces that can
be described as a set of points swept by a moving straight line (figure 1.8, bottom) and in addition, they
do have a zero Gaussian curvature. However that does not describe what is happening at the center of
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both shapes. These singular regions bear concentrated Gauss curvature. The integral of the Gaussian
curvature of these shape around any surface that contains the singular tip is constant and not zero.

Figure 1.8 Example of a cone (left) and a e-cone (right).

For example, these surfaces can be obtained experimentally by adding or removing a section of
a disk. By removing a section from a disk (figure 1.8, left), a cone is obtained, and we see that the
perimeters indeed are smaller than they should be considering their distance to the center. Moreover,
when a point runs along a closed curve containing the tip, it turns by an amount that less than 2π when
returning to its initial position: there is a deficit angle. The Gaussian curvature of the sample is indeed
positive.

If instead of removing it, an additional sector is added to a disk, an e-cone (excess cone) emerges [9],
due to an excess of length for the perimeter and thus an excess of turning angle along a closed path. The
Gaussian curvature of the sample is thus negative.

1.1.2.b Metrics changing strategies

Following Gauss theorem, in order to change shape, the metrics of the surfaces must evolve. This
can be done in three different ways : making folds, or cuts, or using internal mechanisms.

Folding:
The most famous example of shape-changing with folds is origami: the Japanese art of paper folding.

By choosing carefully the folding pattern of a sheet of paper, a wide variety of shapes can be obtained
from very simple to very complex. Depending on the number of folds and their complexity, the final
shape can go from the paper fortune teller to a bunny or a dome [33] (figure 1.9). Theses shapes are
clearly non-developable (because they include non-zero Gaussian curvature) even though the paper sheet
itself is very slender and therefore very close to be inextensible. This is because between each facet,
material has been "tucked" inside, therefore modifying the apparent metric.
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Figure 1.9 Regular paper fortune teller (left), bunny from Tomohiro Tachi[33] (center) and a dome by
Ron Resch.

In addition to shape changing, origami can also help to design structures that are deployable [34].
An example of pattern that allow to create deployable structure is the Miura ori pattern [35]. Deployable
pattern can be used for example in space [36] but can also be used to create motion in robots [37–39].

Another way of using fold is by using wrinkles. By wrinkling, a sheet can adapt and change its
global Gaussian curvature. A spherical cap can adapt to a flat interface by making some wrinkles
[40, 41] or in the other way, a planar sheet can take a spherical shape by wrinkling [42].

Cutting:
A famous art, also coming from Japan is using cuts to change the shape of a paper sheet: the kirigami

art. Cuts are made on planar sheets, and by stretching these sheets, the cuts open, and a 3D shape may
emerge. Depending on the local geometry of the cuts, the final shapes are totally different. For example,
using a kind of cross patterns, a sphere can be mapped [43] (figure 1.10). By locally changing the cut
pattern, complex shapes can be obtained [4, 44] when the structures are activated. The deformation of
kirigami can also be used in soft robots, for example to make a soft robot crawl [45] or to grab fragile
objects [46].

Figure 1.10 Shape obtained by cross cuts from [47] adapted from [43].

Contraction or extension along the surface
The change of metric that is necessary for morphing can occur with a differential expansion or

shrinking of a material. By having a non-homogeneous shrinking or growth, the material undergoes a
shape change.
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Examples of such mechanism can be observed in nature, as for acetabularia, a small algae [48, 49]
(figure 1.11). At the early stage of development of the plant, the radial growth is dominant, the algae
adopts a conical shape. However at a later development stage, the dominant growth is circumferential,
the algae thus go from conical to a flat state before becoming a saddle. By introducing a dominant
radial growth, a conical shape appears whereas with a dominant circumferential growth, a saddle shape
appears.

Figure 1.11 Evolution of the shape of the algae acetabularia (taken from [48]).

This type of shape morphing by differential growth can be obtained with different strategies and
type of actuation that will be detailed in the following section.

1.2 Active shape changing due to internal mechanisms

Inspired by nature and the morphogenesis of plants, different strategies to mimic the differential
growth have been developed:

Swelling hydrogels: Some hydrogels may swell when the physico-chemical conditions are varied. But
shape change may only be obtained if the swelling is not homogeneous. Pioneering works used a spatial
variation of the density of cross-links. A first method [50] proposed in 2007 by Klein et al uses different
cross-link density in a NIPAM gels to create negative and positive Gaussian curvatures when the matrix
is put in hot water. By locally tuning the swelling rate, the final shape can be designed. This first paper
used material with different cross linking and was not precise enough to obtain precise shape. Using UV
light to monitor the amount of reticulation helps design more complex shapes by being able to gradually
change the density of cross-links [51, 52]. By using other types of polymers it is also possible to create
hydrogels that evolve through time by modulating the cross linking ratio in time [53]. Using this method
the path to the final shape can even be monitored [27].

Instead of a spatial distribution of swelling rate, some restrictive part (lines) can be used instead.
These stiff line can be area with a large cross-link density [54] or a different stiffer material [55, 56].
Using 3D printing it is also possible to embed small fibers in the hydrogel that will constrain the
expansion to their perpendicular direction [57]. By tuning the direction of these restrictive lines, the
direction of swelling is defined and a 3D shape can emerge.

We see that it is possible to create Gaussian curvature with hydrogels using different techniques,
however these techniques have some drawbacks : the structures are most of the time small and very soft,
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Introduction to shape morphing

and they need to be put in hot water to be activated with an actuation time limited by diffusion.

Liquid crystal elastomers: Liquid crystal elastomers (LCEs) are liquid crystalline polymer that are
slightly cross-linked. They thus combine the elastic properties of a polymeric network and the orga-
nization of the liquid crystal phase [58]. They may exhibit a reversible shape change in response to
heat, light or solvent. At room temperature, all the liquid crystals are aligned. When they are activated
(heat, light or solvent), the polymer relaxes and an isotropic phase appears (there is no order anymore)
so that the material undergoes a mechanical deformation. This strain may induce a global shape change
as the metric is changed in an anisotropic way. By tuning the orientation of the liquid crystals at rest
(along a director field), the local contraction and elongation are defined, and can be arranged to obtain
3D shapes. A shape change can be obtained using defects in the director field or continuous director
fields [3, 59, 60] or by tuning locally the orientation of each liquid crystal, which gives access to a larger
variety of shapes [15, 61]. Liquid crystal elastomers can also be printed, encoding the director field in
the printing direction. By choosing carefully the printing path, 3D shapes can be obtained [62–64].

Dielectric elastomer: Dielectric elastomer are another way of activating expansion and thus a possible
metric change. Dielectric elastomers are composed of a sheet of elastomer that is coated on both sides
with soft electrodes (typically carbon powder). When a voltage is applied, electrostatic charges on both
faces of the elastomer attract, and tend to reduce the membrane thickness, leading to a large in-plane
expansion [65, 66] with strains up to 500% in some cases [67]. Applying a non-uniform voltage leads to
out of plane deformation [18]. By spatially controlling the electric field, shapes such as cone or saddle
can be obtained [68]. Inserting stiffer fiber also allow to obtain 3D shapes [17, 69, 70].

These different strategies to create Gauss curvature are used at small scale and remains relatively
soft. It makes them not suitable for soft robots application at macro scale or even larger scales.

Inflatable structures: Another powerful actuation is pneumatic pressure. Pressure can be used to
deploy large structures [71]. By inflating or deflecting objects, large expansion and shrinking can be
observed. If the expansion is not uniform, the metric can be changed. As this type of actuation may
develop large forces compared to the previous type of actuation, they are widely used in soft robotics to
create crawlers or grippers by inflation [7, 8, 45, 72] or deflation [39, 73, 74].

But pneumatic actuation mostly rely on simple structure that only bend in one direction. Different
strategies have been developed during the PhD of E. Siéfert [75] for inflatable structures which may bend
in two directions. Two different systems were developed with extensible and inextensible material. In
the first case, an elastomer matrix is cast with air channel inside: baromorphs. When these channels are
inflated, they expand perpendicularly. By choosing the pattern of such channels, shapes with positive or
negative Gaussian curvatures are obtained [76] (figure 1.12 top). In the second case, inextensible fabric
are heat-sealed along path that delimits air channels. The sealing lines define the direction of shrinking,
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1.3 Cellular structures for shape morphing

as when the structure is inflated, the sealed lines get closer. It is possible to design the direction of these
lines to obtain complex 3D shapes [77–80] (figure 1.12 bottom).

Figure 1.12 On top, baromorph upon deflation (right), at rest (center) and upon inflation (right). At the
bottom, inflatable fabric structures with different sealing patterns [75].

We see that pressure can also be used to activate structures and made them deform. If constrained
balloon are inflated they can they can adopt many different shapes [81].

Shape shift due to local unit cell morphing: An interesting strategy is to compose a sample out of
collection of small units that can be activated to create a 3D shape, instead of actuation of a continuous
sample as a whole. Samples can be composed of active cells that deform with different speed, in order
to create 3D shapes which deploy with a programmed deformation path [82]. By using the bistability of
local unit cells of a network, complex shapes can be obtained and locked [83, 84]. Finally, using small
cells with beams of different physical properties allows to create a bigger network that will deform. By
using bilayer beams that respond to thermal expansion, the network can deploy in 2D [85] or in 3D [86]
(figure 1.13). Deformation can also be due yo the use of shape memory polymer in the cells [87].

Figure 1.13 3D structures obtained from flat structure by increasing the temperature from [86].

1.3 Cellular structures for shape morphing

In this PhD work, we embrace the fact that to be able to transform into an interesting family of
shapes, surfaces must undergo non-uniform (and possibly non-isotropic) expansion or shrinkage.
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Introduction to shape morphing

We have reviewed above a variety of materials capable of undergoing such in-plane deformation in
response to a stimulus. Many of them were difficult to manufacture and restricted to small scale.

We wish in this work to introduce new systems capable of shape-change, but we wish to restrict
ourselves to systems that are easy to obtain through standard rapid prototyping techniques. Each of the
three following chapter is devoted to a different system. The common feature is that the shape change
will rely on the control of cellular networks which locally constrain the expansion or shrinkage of the
structures, leading to 3D shapes.
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Chapter 2

Untethered shape morphing by phase
transition

Bread dough increases significantly its volume during baking as fermentation gases inflate into large
bubbles. In a recent work from Miriyev et al, silicone elastomer materials containing micro droplets
of volatile liquid have been found to expend in a similar way as the ambient temperature is raised
above the boiling temperature of the liquid [22]. If the gas does not diffuse out of the material, the
expansion process is reversible. When an internal structure limiting the deformation in certain direction
is embedded in such expendable material, untethered shape changing objects can be obtained.
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Untethered shape morphing by phase transition

2.1 Change shape with expanding material

If we look around us, we may realize that many materials undergo very large deformations upon
activation in our daily life, especially in food. Various mechanisms are at play in the swelling of food
materials under the influence of temperature or time. The use of baking soda or yeast is one of them.
When we bake cakes, brioches or bread, the more the dough swells, the better. The mechanism involved
to obtain large cellular structures in the dough is the same with yeast and baking soda: the release of
carbon dioxide.

In the case of baking soda, the water present in the dough triggers an acid-base reaction which
releases CO2. The heat of the oven shifts the chemical equilibrium toward the creation of more CO2. In
the case of yeast, living organisms cause the fermentation of the sugar present inside the flour which
generates alcohol and CO2. In both cases, as raw dough is easily deformable, the increase in gaseous
CO2 content creates cells that grow inside the dough which then solidifies at high temperature and
remains inflated even after the CO2 diffuses. Thus, thanks to an emission of gas, large expansions can
be observed in the materials.

Figure 2.1 Leavened brioche after baking. The dough has expanded under the release of CO2 during
baking.

In other examples of food material, such as popcorn, the large expansion is due to water vapor
pressure. Although dried, the grains of corn still contain a low level of moisture (10-15%). When the
grains are heated (a temperature up to 180°C is needed), the water present inside the kernel boils and
each small vapor bubble generates a high pressure vapor [88]. This increase in pressure makes the
starch inside the kernel gelatinize and increase its volume. When the temperature is high enough, the
pressure on the kernel makes it explode, the starch expands (just as the dough) and the familiar popcorn
is obtained [89].

One last example of material expanding with gas/steam is the ’Keropok’ or Krupuk cracker, a popular
Asian crispy food and very common in Chinese restaurants in France. The dough is first prepared with
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2.1 Change shape with expanding material

(tapioca) starch or flour, seasoning, flavor and water. This dough is rolled and cooked by boiling water,
and as for popcorn, the starch gelifies and gets a new shape. This intermediate product is then cooled,
sliced and dried in order to get small, round and stiff chips (figure 2.2 left). In a last step, this dried
dough is fried in oil to obtain puffed crackers (figure 2.2 right). Even if the intermediate product is dried,
a little amount of moisture remains. When it is fried, the residual water turns into vapor bubbles, and the
increasing pressure leads to a very large plastic deformation of the sample [90] and the emergence of the
puffed cracker (figure 2.2 right).

Figure 2.2 Crackers ’Keropok’ in the intermediate state (left column) and after being fried (right column).
When the crackers is fried, it expands by a very large factor and becomes puffed.

The process that we will use in this first chapter, developed by Miriyev et al. [22], bears strong
similarities with the examples cited above: the material undergoes a very large expansion upon heating.
It is composed of ethanol bubbles dispersed through an elastomeric matrix. When heated sufficiently,
ethanol boils inside the cavities and forces the expansion of the elastomer matrix by a very large factor
(figure 2.3).

Figure 2.3 Material develop by Miriyev et al. [22] before and after heating by an internal resistive wire.

This material looks pretty similar to the ’Keropok’. In addition to the visual and physical aspect
(whiter and puffed in the final state), the principle of actuation is identical. In both cases, the expansion
of the raw material relies on the phase transition of a liquid trapped in the initial matrix. The main
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Untethered shape morphing by phase transition

difference between the two products is that the expansion of the ’Keropok’ is not reversible.

After having salivated over the starter, let us now focus on the main course: pasta. While uniform
expansion of the material is interesting, it would lead to a homothetic transformation: the object grows
but maintains its shape. It would be even more interesting if the final shape could be controlled. A team
at MIT Media Lab developed pasta that can change shape upon heating [91]. Unlike the other systems
cited above, when the pasta are cooked, they expand but also change shape. They do not only undergo a
trivial homothety (figure 2.4).

During cooking, the pasta absorb water and thus expand (they also undergo a glassy to rubbery
transition [92] due to the plasticizing effect of water). In [91], cellulose strips are deposited on top of
the pasta, and these lines act as constraints reducing the water adsorption locally. Depending on the
orientation of these cellulose fibers (black lines in fig 2.4) the cooked final shape is different.

Figure 2.4 Composite pasta decorated with cellulose strips (black lines on the left panel) which locally
reduce the water absorption during cooking. Flat before cooking (center) the pasta deploy into 3D
shapes dictated by the geometry of the strips and the pattern of strips (right). Picture taken from [91].

Thus, in order to create 3D shapes with expanding material, the idea is to hinder expansion in a
given direction of space through inclusions of non-active material (figure 2.5).

In the material developed by Miriyev et al., some lines are left without alcohol to locally inhibit
expansion. This idea appeared complex to implement experimentally, so that we decided to use stiffer
material embedded in the matrix in order to block expansion in given directions of space. The samples
then change shape due to anisotropic expansion imposed by the internal network (figure 2.5).
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T°

Figure 2.5 Principle of an expanding matrix with an embedded network in the initial and activated state.

The main challenge is then the choice and design of internal restrictive networks which force
non-uniform expansion. We will explore two types of constraints to produce locally uniaxial or biaxial
expansion. The first is achieved by internal networks consisting of series of parallel lines connected
by chevrons. Conversely, biaxial strains are obtained by embedding arrays of diamond-shapes meshes
(figure 2.6). A similar structure is for instance encountered in the well-known McKibben artificial
muscle.

Figure 2.6 Unit pattern for chevrons networks (left) and diamonds network (right).

Thus in this chapter we will first explain how the samples are prepared and the different parameters
that can be adjusted. Then we will detail the behavior of active matrices reinforced with two kinds of
network: lines and diamonds (figure 2.6).

2.2 Experimental set up

2.2.1 Preparation of the material

The material provided to obtain large expansion is inspired by the work of Miriyev et al. [22]. It is
experiencing a relatively reversible expansion by thermal actuation. It is composed of an elastomeric
matrix in which small bubbles of a volatile liquid are dispersed. When the temperature of the sample is
increased above the boiling point of the volatile liquid, the liquid trapped inside the cavities tends to
boil, increasing the internal pressure. During a liquid-gas phase transition, the volume of the component
increases dramatically. As the matrix is elastic, the increasing pressure in the small cavities inflates them
until reaching a mechanical equilibrium. As a result, the cavities expand, deforming the elastic matrix
and inducing an expansion of the overall material (figure 2.7). Thus thanks to the liquid-vapor phase
transition of a volatile liquid, a large and homogeneous expansion is obtained. If the gas phase does
not diffuse significantly in the inflated configuration, this actuation is reversible as the phase change is
reversible and the matrix undergoes reversible elastic deformations (figure 2.8).
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Untethered shape morphing by phase transition

Figure 2.7 Material composed of an elastomeric matrix with trapped bubbles of a volatile liquid before
and after heating. The increasing pressure inside the cavities leads to an overall expansion of the
material.

The elastomer used for the matrix is a two-part platinum-catalyzed silicone elastomer: Ecoflex 00-35
fast and 00-50 from Smooth On®. These silicone elastomers are chosen for their high elasticity and
because they are commercially available and easy to use. The standard procedure is to mix two parts (A
and B) in equal amounts, cast and let it cure for a few hours at room temperature or in an oven at low
temperature (∼ 50◦C). After curing, the material is removed from the mold and ready to use.

The volatile liquid in our case is ethanol, it is progressively added before curing to ensure a large
expansion of the material. The ethanol is added to the part A of the silicone and then gently mixed.
Mixing is a critical step because ethanol is not miscible with silicone. However, ethanol wets silicone
which helps to create an emulsion. During the mixing air bubbles are trapped in the silicone. The part A
with ethanol is then mixed with part B, cast and let to cure. Ecoflex 00-35 fast is mainly used for short
curing time of typically 5 min. While short curing times limit the coalescence of alcohol droplets, they
also hinder the gravity-driven rise of trapped air bubbles. The resulting elastomeric matrix containing air
bubbles and ethanol is rather homogeneous upon heating (figure 2.8). The molds where the raw material
is poured are closed from both sides to prevent the break of symmetry and to have two identical side
surfaces.

Figure 2.8 Sample of Ecoflex 00-35 fast with trapped ethanol bubbles inside before and after heating on
an hot plate. The sample swell linearly by over 100 %.
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2.2.2 Adjusting the fabrication procedure

2.2.2.a Selecting a volatile liquid

To be optimal, the volatile liquid has to meet some requirements. First it must be compatible with
the silicone, in other words, the liquid has to wet both the cured and un-cured elastomer and not to be
miscible. The ethanol has to wet the liquid silicone precursor to provide a nice emulsion. Secondly, its
boiling point has to be low to be able to activate the sample at relatively low temperature (no more than
100◦C) with non specific oven or heating process. Finally, it is better to find a non hazardous liquid that
can be used without specific restrictions.

Ethanol is very convenient for its wettability and low boiling point. However as a very small
molecule, it leaks easily from the sample. The matrix is not totally impermeable to liquid ethanol and
even less to its vapor. Thus after each activation, a part of the ethanol trapped in the cavities vanishes
and after few cycles the sample does not expand anymore upon activation. Among potential candidates
as volatile liquids, water was disregarded due to its poor wettability and thus the impossibility to mix it
correctly with part A.

We also tried 3M™Novec™7200, a hydrofluoroether. It seemed to meet all the criteria: high
wettability and compatibility with the silicone and low boiling point (around 76°C). Experiments were
conducted using the same protocol as ethanol. As the hydrofluoroether is denser than the silicone, it
tends to sink at the bottom of the batch when mixed but seems to mix more easily. The mixture obtained
with the hydrofluoroether and silicone is less turbid than the one with ethanol. Trapped bubbles seem also
smaller. Once cured, specimens are nearly as clear as if nothing has been mixed to the Ecoflex matrix.
Upon heating, a lot of very small bubbles appear in the material and cause small plastic deformations.
Experiment showed that the deformation is smaller and requires higher temperatures and the process is
less reversible than with ethanol. Thus we finally selected ethanol for our experiments.

Once the solvent is chosen, the proportion to be mixed to the silicone has to be determined. According
to [22], the optimal percentage is 20% in weight (best expansion). In the lab, tests were done on small
samples with various amounts of ethanol. Above 15% the expansion of all the samples are similar. Thus
in the following experiments, a part 15% in weight is kept.

As ethanol tends to leak from the matrix, the samples are kept in sealed containers saturated with
ethanol to limit the aging of the materials.

2.2.2.b Mixing techniques

As an emulsion has to be done with the part A and the ethanol, the technique of mixing is important.
Ethanol is added 1g at a time and is then gently mixed with part A. As the ethanol is not miscible to part
A, it takes time to incorporate it as small droplets. In all experiments, mixing is done by hand. A trial
with a mortar and pestle was done in order to obtain smaller droplets in the emulsion. The expansion of
the material was similar, but the temperature activation was higher and the process less reversible.
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Untethered shape morphing by phase transition

Considering these results, and the one with the hydrofluoroether, it appears that having too small
bubbles does not help. The pressure inside the bubble might be higher when the cavities are smaller,
which could explain the higher temperature of activation, and the fact that the deformations seem more
plastic.

As the mixing is done by hand, the expansion of the material is however not perfectly homogeneous.
It is very hard to determine a global expansion with the temperature. One solution could be to mix with
a stirring machine.

2.2.2.c Heating processes

In order to observe homogeneous and controlled heating over the sample, different ways of heating
are tested but only one is kept to do the measurements.

In a first attempt to obtain uniform heating, the samples are immersed in boiling water. However, the
samples are floating and water vapor prevents from taking pictures. Moreover with water the maximal
temperature is fixed at 100°C and it is not easy to maintain a constant temperature that is not 100°C.

Another technique consists in putting the sample on a hot plate. In this configuration, pictures are
easy to take but the heating is not homogeneous through the thickness (the sample had to be flipped
frequently) and not easy to control. The positive point of this method was the actuation speed. The
sample expands really quickly although the activation is less reversible as the ethanol diffuses more.

The last possibility we tested and selected is a homogeneous heating of the sample in an oven.
We chose an oven with a large window in order to be able to take pictures: the environmental test
chamber Weiss MKF115 (which offers possibility to monitor humidity, a feature we did not use during
experiments). In this oven, the heating is relatively slow and the temperature rate cannot be tuned.
However the measurements done are quite repeatable. In the experiments, a target temperature is set in
the oven and the sample is put in it when the temperature of the oven is homogeneous.

We use several thermocouples to monitor temperature, a thermocouple is placed in the oven and
three others are put inside the sample. Thus the temperature in the oven can be checked and the real
temperature of the sample can be measured too. Two thermocouples are put inside the lateral edges of
the samples and one inside the bottom edge (figure 2.9). The temperatures are recorded with an Arduino
board connected to a computer in real time.

Not to be dependent on the potential impact of the temperature rate, the sample is put in an already
hot oven at a given temperature. The inner temperature evolution of the samples is then recorded thanks
to the three thermocouples, the temperature evolution is smooth and similar from one experiment to
another. In a second part of the experiments, the heating is stopped and the door opened so that the
sample cools down.
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Figure 2.9 Expanding matrix in the oven at room temperature (left) and at 90°C (right).

If the sample is heated too much, we can observe that the experiment is not reversible. As ethanol
is a very volatile liquid and a small molecule, it leaks through the sample and the experiment is not
reversible anymore.

2.2.3 From homogeneous expansion to shape-change: preparation of the samples

In this chapter, we wish to use the liquid-gas phase transition for shape morphing. The expanding
matrix naturally undergoes isotropic and homogeneous expansion because the bubbles are spherical
and the distribution in the matrix is almost homogeneous, so that no shape change is observed. To
trigger a 3D-shape from a flat object, we propose to constrain the expansion along chosen directions in
space. To do so, stiffer fibers can be embedded in an expanding matrix to control the local deformation
[93, 94]. In our case, to control the direction of dilatation, thin Mylar meshes are embedded inside
the expanding material. They are embedded on top and bottom of the sample to keep symmetry in the
system (figure 2.10). These networks are cut off a large 30µm thick sheet with a laser cutter and act
as small links restricting the expansion of the matrix along their length. As the Young modulus of the
Mylar is significantly higher than the elastomer, it is considered as inextensible. Imposing the local
anisotropy of expansion, should allow one to modify the metric, and thus to produce 3D shapes.

Figure 2.10 Expanding matrix with a Mylar network on top and on bottom.

In order to prepare the samples, two layers of pure elastomer (thickness: 0.6mm) are poured on two
different plates. A network in then embedded in a second 0.6mm thick layer of pure elastomer on top of
the previous ones for both sides. The excess elastomer around the mesh is then removed in order to have
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two faces of the size of the sample containing each one a network. They are then assembled in one mold
where the expanding matrix is poured in between the two layers. The total height of the sample is 4mm.

We consider two different kinds of networks with different behaviors: “chevrons” and “diamonds”.

2.3 Lines and chevrons

The simplest pattern for restrictive networks is composed of straight inextensible lines. The swelling
material should be restricted along the lines and can only expand along the direction perpendicular to
these lines.

2.3.1 From lines to chevrons

Using solely lines is not convenient experimentally. As the networks have to be embedded in an
elastomeric layer, it is difficult to handle lines without connections and to arrange them at the right place.
Moreover bulging effects are observed and lines tend to slide inside the matrix. As a result, the final
shape are out of plane and not reproducible (figure 2.12).

Figure 2.11 Sample with parallel lines at room temperature (left) and 90°C (center and right). The two
samples (center and right) behave differently but do not remain in plane.

In order to solve the problem cited above, we decided to add chevrons to connect the thick lines
between them. With these chevrons, the network can be manipulated as a whole piece and not as
individual line. Moreover, they prevent the bulging deformation in the z-direction like a net and
smoothen the deformation. The samples remain much more in-plane (figure 2.12). In the following
experiments, only the lines are painted in black to ensure an easier detection.

Figure 2.12 Samples with parallel lines linked with chevrons at room temperature (left) and at 90°C
(right).
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Thus, chevrons improve significantly the experiments. They also have an influence on the mechanics
of the sample as the samples do not expand the same way with or without chevrons. In addition, when
the chevrons are in their open state (straight), they may block the expansion and stiffen the material.
This hypothesis will be discussed in the following part 2.3.2.

2.3.2 Mechanical properties of chevrons under traction

Chevrons are added for experimental reasons. They could also impose a maximum deformation ε⊥

and could potentially help to stiffen the sample in the activated state. In a simple view, we would expect
the material to be free to expand until the chevrons are streched and block the deformation.

Figure 2.13 Sketch of chevrons in between two thick parallel lines.

In order to test this scenario, the mechanical responses of chevrons networks are measured alone
without the expanding matrix. Test samples with a few chevrons are cut out of a Mylar sheets and then
tested under traction with an Instron traction machine. The notations are the ones used in the figure 2.13.
The distance h between the lines is kept at 15mm, the angle θ is varied from π/3 to π/6, the width e of
the chevrons is set at 1.5mm or 2mm and the density d defined as d = e

e+a changed from 0.3 to 0.6. The
thickness t of the network is 30µm.

Figure 2.14 Chevrons under traction in an Instron test machine. Initial state (left), intermediary state
during the opening of the chevrons (center) and final state when the blocking occurs (right).

When the chevrons are put under traction by the Instron machine, they first open very easily before
blocking when in total extension (figure 2.14). This behavior can be observed on a force-strain curve
figure 2.15 with ε = δ l

h . A small slope for small displacement is first observed before a steep change
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and a much larger slope (more than ten times higher). The chevrons are very weak when they open but
become stiffer when fully deployed. With the plot in figure 2.15, the response of the reoriented chevrons
is characterized by measuring the slope after the steep variation of slope. The response is considered
linear when the chevrons start to be under tension. The linear approximation of the slope gives both
the rigidity of the chevrons and the measure of εopen, the final strain when the chevrons is open. It can
be seen that when the angle θ increases, the chevrons are straighter and εopen is smaller and the total
extension of the chevrons occurs sooner.

εopen
ε

kmeas

Figure 2.15 Experimentally measured force-strain curves of chevrons: e = 1mm, h = 15mm and density
d = 0.3 and θ = π

6 to π

3 .

The value εopen of the final strain when the chevrons are open is calculated for all the samples. This
value depends on the geometrical parameters of the chevrons. As a first approximation, the final length
between the parallel lines can be defined as the total length of the chevrons (purple plain line figure 2.16)
:

l1 =
h

sinθ
(2.1)

which gives a final strain εop1 of:

εop1 =
1

sinθ
−1 (2.2)

This calculated strain appears slightly larger than the measured one (purple crosses on figure 2.17).
We explain this fact by looking at the picture of the extended chevrons on figure 2.16: the chevrons are
not thin wires, but are ribbons which twist, so that the final effective length is smaller than the total one.
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Figure 2.16 Sketch of the chevrons with the different final lengths considered. In purple and plain line,
the total length, in yellow dashed line the smallest length between the two ends and in blue dotted line
the measure inspired by the picture on the right.

As a second approximation, the final length is defined as the shortest straight line joining the plates
through the chevrons (yellow dashed line in figure 2.16) and is equal to:

l2 = 2

√(
h
2

)2

+

(
h

2tanθ
− e

sinθ

)2

(2.3)

which gives a final strain εop2:

εop2 = 2

√
1
4
+

(
1

2tanθ
− e

hsinθ

)2

−1 (2.4)

This theoretical strain is also overestimated as seen on the measures of figure 2.17. The real locking
length is situated between l1 and l2.

Looking at the picture more carefully in figure 2.16 right, it can be seen that a part of the inside
length of the chevron is straight, and the rest (red triangle) is composed of one side of the triangles that
appear on the edge. This third length l3 inspired by the behavior during the experiment is represented
with a blue dashed line on figure 2.16, with:

l3 =
h

sinθ
+

2e
cosθ

(
1− 1

sinθ

)
(2.5)

which gives a final strain εop3:

εop3 =

(
1

sinθ
−1
)(

1− 2e
hcosθ

)
(2.6)

This last calculated strain (blue circles in figure 2.17) seems to give the best approximation and will
be kept in the following.

The maximal strain before stiffening and blocking is now known for different parameters and can be
used to limit the expansion of the matrix. If the material of the chevrons is stiff enough, the expansion
stops at a strain of εopen.
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Figure 2.17 Measured blocking strain as a function of the prediction of several minimal models for
chevrons withour expanding matrix. The third computation in blue seems to be the closest.

We now give simple arguments to estimate if the chevrons may block the matrix expansion. Con-
sidering that the material follows Hooke’s law, a naive estimate of the stiffness of a single extended
chevron of width e and Young modulus E is obtained by assuming that it is stretched by ∆l

l3
:

F =
Nte

h
sinθ

+ 2e
cosθ

(
1− 1

sinθ

)E∆l (2.7)

where F is the force measured over the entire sample, N the number of chevrons extended and ∆l the
elongation of the sample.

The slope measured on a force-strain curve should then be equal to:

kth = NEt
ecosθ sinθ

hcosθ +2e(sinθ −1)
(2.8)

with N the number of chevrons (depends on the density), t the thickness of the Mylar sheet, h, e and θ

described in figure 2.6.

The stiffness is estimated from the force-strain curve as the coefficient of the first slope after the
steep variation (figure 2.15). Plotting the measured stiffness kmeas as a function of the coefficient

tNecosθ sinθ

hcosθ+2e(sinθ−1) , the slope should be equal to the Young modulus E of the sample. For straight lines,
i.e. when θ = π

2 the measured effective Young modulus is around 1.2GPa, which corresponds to the
typical Young modulus of Mylar. For chevrons that are not initially straight lines and have an angle
lower than π

2 , the effective Young modulus measured is about 0.46GPa which is significantly lower
than the expected value for Mylar. The deployed chevrons seem to be weaker than the equivalent with
straight lines. However, when the chevrons are totally open, the sample is much more rigid than at in the
initial unstretched state.
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Figure 2.18 Measured rigidity for the different samples plotted as a function of a geometrical coefficient
in order to get the Young modulus. If the material follows Hooke’s law, the slope corresponds to the
Young modulus. For π

2 (blue crosses) we measured 1.2 109 Pa. For chevrons, we find a smaller effective
modulus E∗ = 4.6 108Pa.

The purpose of the chevrons is to let the matrix expand before reaching εopen, then block it in a final
state where the chevrons are fully deployed. But are they correctly designed for these tasks ?

Let us compare the stiffness of the expanding matrix to that of the chevron layers that we have
studied. Imagine that the network is embedded in the expanding matrix with the process detailed in
section 2.2.3. The test samples used are approximately 15mm in height, 50mm in width and 4mm in
thickness. The Young modulus of the silicon elastomer is approximaely 1MPa. The stiffness is thus
equal to:

kelast ∼
50.10−3 ×4.10−3

15.10−3 106 ∼ 104N.m−1 (2.9)

Chevrons experience two regimes, the deployment phase and the blocking phase. Taking the higher
slope in the force-strain curve in the deployment phase gives a stiffness knet about 4.102 N.m−1 in
our experiments. In this regime, the matrix is much stiffer than the network. As a consequence, the
expansion of the matrix should not be influenced by the presence of the chevrons.

When chevrons are blocked, the stiffness knetb is between 4.103 N.m−1 and 2.104 N.m−1 (fig-
ure 2.15). These values are comparable to the expanding matrix and should thus limit the expansion of
the matrix.

Finally, chevron patterns let the matrix expand until εopen and then strongly limit the strain which
may add strength to the material. We now test the behavior of the hybrid system (matrix+chevrons)
and characterize the deformation of the samples as a function of the distance h between the thick lines,
the angle θ of the chevrons, the thickness e of the chevrons and the spacing a between the chevrons
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(figure 2.6 (left)). For that, networks of parallel lines connected with aligned chevrons are embedded in
the expanding matrix.

2.3.3 Parallel lines and aligned chevrons

We now consider the influence of the different geometric parameters of the embedded chevrons
pattern on the expansion of the matrix. As mentioned earlier, the expansion of the matrix depends
significantly on the detail of the preparation of the emulsion and may differ from a sample to another.
In order to get rid of the influence of the expansion of the matrix, the different parameters are tested
on a single sample to be compared more easily. We thus design rectangular samples, with six lines
separated by five rows of chevrons to measure the influence of the parameters of the networks only. The
networks chosen consist in straight thick parallel lines separated by a distance h. All theses thick lines
are connected with chevrons with parameter θ , e or a that vary from one row to another (figure 2.19).
The total thickness of the sample is 4 mm.

Figure 2.19 Drawing of a linear test sample to measure the influence of the chevron density d. The
parameters e = 1mm, θ = π

4 and h = 10mm are kept the same from a row to another, only the spacing a
is modified. From top to bottom, a increases, and thus the density d decreases. The temperature of the
sample is recorded with the three thermocouples inserted inside the matrix.

These networks are embedded in the expanding matrix and the samples are suspended in the oven
at 90°C (figure 2.12). When their inner temperature reaches 90°C, they are left for five minutes in the
oven before the heating is stopped and the door opened to observe the cooling. The temperature of the
sample and the oven are recorded over time and pictures are taken every 20 seconds. The strain is then
recorded thanks to image analysis with a Matlab algorithm. The thick lines are painted in black whereas
the chevrons are left transparent. The algorithm tracks the displacement of the thick parallel lines (i.e.
the distance h) as a function of time or equivalently as a function of temperature (figure 2.20).
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Figure 2.20 Experiment done with the sample from figure 2.19. The vertical strain of each row of
chevrons is measured following the displacement of the thick parallel lines with a Matlab code.

2.3.3.a Influence of density d of the chevrons

We start by studying the influence of the density d of chevrons on the expansion of the material.
According to section 2.3.2, they should not influence the expansion in their initial deployment phase.
The thickness of the chevrons e = 1mm, the angle θ = π

4 and the height between the lines h = 15mm
are kept constant from one row to another. Only the spacing a between the chevrons is modified.

The density is defined as : d = e
e+a . Two different networks with different density sets are used :

d = 0.1, 0.2, 0.3, 0.4, 0.5 and d = 0.05, 0.1, 0.2, 0.4, 0.6 .

Figure 2.21 Left, measurement of the temperature (red) and strain of the sample (blue) from figures 2.19
and 2.20. The strain perpendicular ε⊥ to each row is measured for different densities as well as the strain
ε// parallel to the thick lines (left). Right, perpendicular strain at 10 min and 90°C (vertical black line in
the left plot) as a function of the density d.

Using image analysis, the strain of each row is measured as a function of time and is plotted as a
function of temperature (figure 2.21). We noticed that the quasi-plateau of temperature coincides with
the strain plateau. The expansion rate seems to depend on the temperature as expected. All curves follow
the same trend, except that the amplitude is different for the different densities.

The strain ε//, parallel to the lines (figure 2.21, triangles), is measured on the entire sample. It almost
vanishes except when the limited adhesion between the matrix and the mesh allows for some sliding.
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The other blue lines in figure 2.21 correspond to the perpendicular strains ε⊥ of the different rows of
chevrons. The maximal mean strain is measured on the plateau of each curve. As expected, the denser
the network, the less it expands. The perpendicular strain can also be measured at all times and thus for
different temperatures (an example of measurement at time=10min can be seen in figure 2.21, right). In
the curves strain versus density, the strain corresponds at zero density to a network with only parallel
lines. At a density d = 1, the strain should be zero and corresponds to the strain parallel to the thick
lines.

In order to compare the influence of d for different temperatures, the global expansion of the sample
must be known as a function of temperature. One possibility is to record the expansion rate as a function
of temperature for samples without any networks or with only lines. As seen on figure 2.9 and 2.11, it
is not very convenient and precise to measure strains on blank samples. Another solution consists in
extrapolating the strain at zero density for each strain versus density curve at a given temperature, to
extract ε⊥0(T ). This perpendicular strain in a case of zero density can be linked to the global expansion
ε0(T ) (expansion of the free matrix without any mesh embedded).

To find the relation between these two quantities, we consider a uniform pattern of parallel lines
along the x direction, embedded in a matrix with isotropic stretch of λ0(T ) (corresponding to the case
of networks with zero density). Assuming that there is no stretching in the x direction (λx = 1), that
the stretching is the same in the perpendicular directions (λz = λy), and that the volume is conserved
(λxλyλz = λ 3

0 (T )), the stretches parallel and perpendicular to the lines should be:

λ|| = 1 λ⊥ = λ
3/2
0 (T ) (2.10)

In the limit of small deformation (ε = (λ −1)≪ 1), the corresponding strains are:

ε|| = 0 ε⊥ ∼ 3
2

ε0(T ) (2.11)

where ε0 is the global strain in absence of any constraint. As a result, the presence of lines blocks one
direction of expansion and enhances the two others.
Thus in a case of small strain (ε ≪ 1):

ε0(T )∼
2
3

ε⊥0(T ) (2.12)

To determine the strain at zero density ε⊥0(T ), we performed a linear regression over the data points
and extrapolate it at zero density (figure 2.22).
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Figure 2.22 Strain of the chevrons rows with different densities and at different temperatures. For each
temperature a linear fit is extrapolated at d = 0 to extract the global perpendicular strain ε⊥0 .

Linear regression is chosen among other fitting possibilities because it offers a more robust way of
normalizing the samples. Thus for each pictures, the measured strain can be now normalized by the
global estimated value ε0. This strain normalization is convenient to compare the results at different
temperatures and it also helps to compare the samples with each other. As mentioned before, due to
variability in the fabrication process the expansion is different from one sample to another. However as
the normalization is done for each sample, it is now possible to compare the samples with each other.

In order to measure the expansion due to the phase change as a function of the density, the data for
the normalized strain are recorded for all temperatures when the sample is heating up. An average is
done over five samples of the first set of density and two for the second. Keeping only the temperatures
above 79°C (boiling point of ethanol) gives almost the same results as taking the normalized strain for
all temperatures.

The material starts to expand for temperatures below the boiling point. This early expansion is
probably due to the equilibrium vapor pressure or because some parts of the material are hotter than
others. As the expansion is normalized, the influence of the chevrons should be the same and it seems to
be the case.

The point at density d = 1 corresponds to the mean normalized parallel strain over all the samples.
As explained earlier, the strain is not perfectly zero because the samples expand on the edges. Due to
experimental issues, the networks often delaminate or slide on the edges which leads to a finite strain in
the direction parallel to the lines.
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Figure 2.23 Measurement of the strain as a function of the density for a compilation of all the samples
and all temperatures.

In the final state, the chevrons are never fully open, the maximal extension is thus never reached.
The expectation from section 2.3.2 are not met. No additional strength is added by fully deployed
chevrons (rigidity of Mylar). However, in the deployment phase, the force needed to open the chevrons
is surprisingly linked to the density whereas it is much easier to open the chevrons than expanding the
matrix. This might be due to the fact that the networks are embedded and that the material has to shear
to open the chevrons: the deformation of the matrix and reinforcing network are strongly coupled.

On the final plot (figure 2.23), the trend is not perfectly linear but shows a dependency between the
strain and the density: qualitatively, when the density increases, the strain decreases. Since the density of
the chevrons fails to precisely predict the final strain, this technique cannot be used to program precise
3D-shapes. The dependency with densities seems not to be the same at low and higher density. Below
d = 0.3 the slope is steeper, a small change in density has a bigger impact than above d = 0.3. At very
high density a plateau seems to be reached. Experiments were not done above d = 0.6 because these
configurations offers too small strains to be used for shape-changing objects.

2.3.3.b Influence of angle θ on the strain

We now focus on the influence of the angle θ of the chevrons. The density is set to d = 0.4 which
gives better results. When the density is too low, the expansion of the matrix is too strong and may
break the chevrons. Conversely if the density is too high, the final deformation is smaller and thus more
difficult to measure.

Samples with different angles for each row are placed in the oven under the same conditions as in
the previous section. The angles selected are : π

3 , 3π

10 , π

4 , 3π

14 , and π

6 . The mean strain is measured on
the plateau at 90°C. In this case, the samples can not be normalized intrinsically. Looking at the results
(figure 2.24), the strain increases when the chevrons are more closed (smaller θ angle) and seems to
reach a plateau.
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For almost straight chevrons (large angle θ ), the final strain seems to correspond to the maximal
value εopen, when chevrons are open at their maximum. As θ decreases, the expansion is however not
strong enough fully open the chevrons. The angle of the chevrons seems thus to only play a role when
the angle is large and that the chevrons are almost straight. When the chevrons are almost straight, they
block the expansion and become the limiting factor. However when the chevrons are more closed, the
expansion of the matrix is the limitation and the density seems to be the only factor influencing the strain
as seen in the previous part.

Figure 2.24 Measurement of the final strain of chevrons for different angles. The dotted line represents
the maximal strain εopen that the free chevrons can reach.

2.3.3.c Influence of thickness t of the Mylar sheet

In all previous experiments, the thickness t of the Mylar sheet used was maintained constant
(t = 30µm). In this section, experiments are done with the same material but with thickness of 50µm
and 100µm with the same parameters. Samples with chevrons of angle θ = π

4 and density set d = 0.1,
0.2, 0.3, 0.4 and 0.5 are put in an oven at 90°C.

When the thickness of the network increases, the perpendicular strain is reduced as the network is
stiffer. The samples remain more in plane when the networks are thicker and the measurements are
cleaner. Normalizing the strain by the extrapolated zero density strain as in the part 2.3.3.a, the different
samples can be compared even if the final perpendicular strain is different.

When the sample is thicker, the relation between the normalized perpendicular strain and the density
is closer to linear (figure 2.25). The relation between the final perpendicular strain and the density d
seems easier to determine in the case of thicker networks although the strain is smaller. To design 3D
shapes, having a strong dependency is important but small strains limit the family of achievable shapes.
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Figure 2.25 Network of chevrons with angle θ = π

4 and density d = 0.1, 0.2, 0.3, 0.4 and 0.5 but with
a different thickness t from a sample to another. The Mylar thickness selected are 30µm, 50µm and
100µm.

2.3.3.d Effect of temperature

We are now interested in the influence of the temperature of the oven on the induced global strain.
We use chevrons networks with different densities to extrapolate a global strain for different temperatures
of the oven (part 2.3.3.a).
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Figure 2.26 Global strain ε0 as a function of the internal temperature for all the samples. The color
represents the temperature of the oven when the sample is inserted.

Selecting the temperature of the oven at 80°C, 90°C or 100°C, gives similar reponses of the material.
In most cases the sample are heated in an oven at 90°C (figure 2.26, orange crosses), but the samples
heated in oven at 80°C and 100°C tend to follow the same trend. The temperature of the oven does
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not have a strong effect on the expansion of the sample, it only changes the final global strain. The
temperature of the oven is set at 90°C in the experiments as a compromise between a good expansion of
the material and a limited diffusion of ethanol.

This extrapolation of a global strain can also be used to determine a general trend ε0(T ) that does
not depend on a specific sample. For each sample, the extrapolated global strain is recorded for each
temperature on the same figure (figure 2.27). In order to determine the relation between the global strain
ε0 and the temperature, an exponential fit is superimposed to the data points recorded (figure 2.27 purple
line). This approximated global strain as a function of the temperature ε0(T ) will be used in the next
part when the normalization of the data cannot be done intrinsically.

On the same figure 2.27, the strain is also recorded while the temperature of the sample is decreasing
(the oven is opened). The hysteresis may be due to the fact that the deformation is partially plastic or
irreversible or that the temperature cooling and heating rates are different. Indeed, time is not present on
the graph and temperature rates are not accounted for. In practice, samples are cooled down faster than
they are heated up.
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Figure 2.27 Global strain as a function of the temperature when the sample is put in an already hot oven
and then when the temperature of the oven is dropped down.

To conclude this part with uniaxial deformations, we were able to provide correlations between final
perpendicular strain and the density or angle of the chevrons. Thick lines seem to drive the deforma-
tion while chevrons seem to act at second order. The difference in strain for the different angles and
densities is probably not strong enough to use it to create more complex shapes than in-plane deformation.

In order to create 3D-shapes, we will not rely on the change in density or on the angle of the chevrons
but rather on the orientation of the thick lines which drives most of the deformation. The chevrons are
conserved because they help maintaining the deformation in the plane of the network, preventing too
large deformations in the thickness.
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2.3.4 Programming 3D-shapes

One of the first goals of this PhD thesis is to design objects that can change shape upon activation.
In the first section we tried to characterize a new material that undergoes a large expansion when
heated, combined with an internal structure that selects the local direction of deformation. A qualitative
understanding of the achievable deformations was possible.

The position of thick straight lines appears to be leading the deformation, the presence of the
chevrons playing at a second order but helping smoothening the deformation. To create simple shapes
with negative or positive Gaussian curvature, we were inspired by material with anisotropic deformations
along “director fields”. We decided to use axisymmetric networks.

As a first attempt, the thick lines are arranged in concentric circles. These circles are connected with
chevrons of equal angle and with the same thickness and spacing everywhere. As explained earlier, the
matrix can only expand perpendicularly to the thick lines. In the case of the concentric circles, the strain
vanishes along the perimeters (thick lines) and is maximal along the radii (perpendicular to the thick
lines). The chevrons are identical on every ring, leading to an uniform strain in the radial direction. The
concentric circles keep their perimeters but their distance to the center increases. As a consequence, they
go out of plane and the surface deploys into a cone (figure 2.28).

Figure 2.28 Network of chevrons with thick lines as concentric circles. When the temperature is
increased, a conical shape emerges and goes back to the flat state when the temperature is lowered. On
the left the Mylar network before being embedded in the matrix.

The lines can also be drawn along the radii and be connected by chevrons. The angle of the chevrons
and their density are kept constant along the radius even if their length changes. In this case, the
radial strain (parallel to the thick lines) is zero while the strain is maximal in the orthoradial direction
(perpendicular to the thick lines). As in the previous case, the metric changes upon heating and a 3D
shape emerges. The perimeters of the samples expand whereas the radii are preserved. This change in
metric codes for an e-cone, the excess of length of the perimeters causing them to buckle (figure 2.29).
In principle, the azimuthal positions of the lobes are random and could be changed as the network is
axisymmetric. Once one shape is chosen it is usually difficult to change it if the sample is heated again:
small defects and history determine the shape.
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In these two designs (e-cone and cone), the position of the thick lines drives the deformations and
the main role of the chevrons is to reduce the deformation across thickness. However it is possible to
design relatively simple structures that use the properties of the chevrons to program shape morphing.

Figure 2.29 Network of chevrons with radial thick lines. When the temperature is increased, a shape of
an e-cone emerges and goes back to the flat state when the temperature is lowered. On the left the Mylar
network before being embedded in the matrix.

To prove that chevrons also have an impact on the deformations and that they can be used to design
shapes, we design pattern relying either on the angle or density change and using only thick lines. The
goal is to design samples with positive and negative Gaussian curvature: a helix and a shell.

A first attempt at programming these two shapes is made using only thick lines. In both cases,
horizontal parallel thick lines are connected through a few vertical lines.

In order to get a helicoidal shape, a thick vertical line is drawn in the center of the sample (figure 2.30
(left)). The horizontal parallel lines limit the deformation in the horizontal direction. However the
central backbone also blocks the deformation in the vertical direction. Thus on both sides, the matrix
can expand freely perpendicular to the lines, extending the edges but without expanding in the center.
The resulting shape observed in figure 2.30 might be reminiscent of a helix but the deformation appears
irregular.

Figure 2.30 Horizontal thick lines with a vertical line in the center (left) or on the edges (rigth). When
the temperature is increased, two different shapes emerges. The expected shapes (helicoidal and shell
like, respectively) are not observed and the expansion does not seem homogeneous.

In order to obtain a shell, two vertical lines are drawn along the sides of the sample (figure 2.30,
right). The horizontal parallel lines limit the deformation in the horizontal direction. The expansion
is also blocked along both edges, the matrix can only freely expand in the center of the sample. The
activated shape might be reminiscent of a shell divided in two parts. As in the case of the former
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backbone, the deformation is irregular and the shell exhibits two parts with opposite concavities. Upon
further activations, the same shape will deploy: the material is likely damaged by its first cycle and will
follow the same path in the following deployments.

The issue with the two last designs is that the change in strain is too abrupt. A smoother change in
the strain should help obtaining more controlled shapes. Using chevrons helps in this way and changing
their geometrical parameters allows to better control 3D shapes.

Figure 2.31 Networks with horizontal thick lines connected by chevrons with different angles or density.
On the left, the density is higher in the center than on the edge. On the right, angles θ are lower on the
edge than in the center. A helix emerges when the temperature is increased (right picture of each pair).

We use now chevrons as tool to control 3D shapes. The horizontal parallel thick lines are kept but the
chevrons in each row change in density or angle depending to their position from the center of the sample.

First we focus on helices. To obtain more regular shapes than in figure 2.30, the target strain should
evolve linearly along the width of the sample: smaller in the center of the sample, larger on the edges.
If we consider that the final strain is almost linear with the density, placing chevrons with a density
decreasing linearly from the center should lead to a helix (figure 2.31).

Alternatively, the angle of the chevrons can be changed instead of their density. The angle is linearly
decreased from the center to the edges across the width. When the sample is heated, an helix deploys
(figure 2.31 right).

These two ways of creating helices demonstrate that the density and the angle can be tuned to change
shape and that the chevrons help regularizing the final shape. As the thick lines only drive general
expansions, the chevrons help to refine the direction and the final shape.

For both helices, the density and angle are decreased from the center to the edges of the samples.
The opposite can also be done: the density or the angle of the chevrons can be increased from the center.
If the density of chevrons is increased from the center (figure 2.32 left) or if the angle of the chevron is
increased from the center to the edge (figure 2.32 right), a shell shape emerges when the temperature is
increased.
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Figure 2.32 Network of chevrons with horizontal thick lines and chevrons with different angles or
density. On the left, the density is low in the center and higher on the edge. On the right, angles θ are
larger on the edge than in the center. A shell shape seems to emerge when the temperature is increased
(right picture of each pair).

Thus, networks with lines and chevrons that are embedded in an expanding elastomeric matrix can
drive a shape changes. Although drawing lines is a simple way to program shape change, other designs
can be used too.

2.4 Diamonds network

In this section, another type of network composed of diamonds is tested. Why diamonds ? Looking
around more carefully, they appear everywhere. From a facade, a fence or a card they are very present
in the daily life. They are used either for their aesthetics (logo, decorations,...) or because they are
deployable and can easily be open and close (fence,grids,...).

In the following, we will try to use such diamonds networks to create objects that change shape upon
activation. The diamond cell is interesting because it undergoes a bi-axial deformation when activated.
If the sides are inextensible (constant perimeter), the state of the diamond relies on a single degree of
freedom as the sum of all angles is 2π .

As in the previous section, the network of diamonds is embedded in an expanding matrix. When
activated, the matrix expands, which tends to maximize the area enclosed within each cell: diamonds
evolve toward squares (figure 2.33). The length of one diagonal is thus increased whereas the other
is decreased, providing extension and compression strains respectively. Interestingly, the anisotropy
induced is larger than in the case of the lines.

Figure 2.33 Activation of the diamonds upon inflation. As the area increases with the temperature, the
half diagonal b extends while the half diagonal a contracts.
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As for the lines and the chevrons, before using the diamonds to create 3D shapes, the expansion
of one unit cell has to be quantified. In order to understand how embedded diamonds behave inside a
matrix, a pattern with identical aligned diamonds is used first. With this type of networks, when the
temperature increases, the deformation is homogeneous and the samples deform in plane.

Contrary to the last section, the network are not tested alone with the Instron machine, they are
directly embedded inside the matrix and tested in the oven.

2.4.1 Network of aligned diamonds

In order to understand the influence of the diamonds on the deformation of the sample, networks of
identical aligned diamonds are embedded in an expanding matrix. They are placed in the oven at 90°C.
The resulting deformation is measured and quantified by image analysis using Matlab.

From one network to another, different parameters are changed. The thickness of the network and
the temperature are kept the same during all experiments, as the measures of the influence of these
parameters has been done in the previous sections 2.3.3.d and 2.3.3.c .

The networks are simply parametrized by three parameters: the thickness of the diamonds e, the
length of the side l and the aspect ratio C = tanθ = a

b that is linked to the angle θ . The lengths 2a
and 2b correspond to the diagonals of the diamonds with 2a corresponding to the diagonal opposite
to the measured angle θ . In most cases, 2a is considered as the major axis and 2b as the minor axis
(figure 2.34). The side length l is measured inside the diamonds and corresponds thus to the side length
of the expanding material inside the diamonds.
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Figure 2.34 Test sample of length L and width w with diamonds of angle θ , side length l, thickness e
and diagonals 2a and 2b.

On the network, diamonds of equal angle θ are aligned in rows. The thickness measured perpendic-
ularly to the side is e but they are laterally and vertically separated by the same distance eL = ew:

eL = ew =
e√

2sin
(

π

4 +arctan 1
C

) (2.13)
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2.4 Diamonds network

The samples used have the same area wL with L the total length and w the total width. Knowing
these distances and the other parameters it is possible to measure a density of lines for each sample. This
density corresponds to the ratio of areas of the network with the total area of the sample.

D =
Amylar

Atot
=

1

1+ b2C
eh+b

√
(e2+h2)(1+C2 sin(π−arctanC−arctan e

h ))

(2.14)

In all the experiments, the density D is kept constant not to influence the measurement of expansion
and to be able to compare the different samples between each other. As the density of lines is the same
in all samples, the global expansion is expected to be the same as seen previously with the chevrons.
Locally, the “same energy” is involved to push the different lines embedded in the different samples.

As in the experiment with the chevrons, the samples are put in the oven. The temperature is recorded
with four thermocouples (one in the oven and three others in the sample) and pictures of the sample are
recorded every 20 seconds. The heat treatment is the same as for the samples with lines and chevrons.
The sample is put in a pre-heated oven at 90°C. When the sample reach 90°C, it is left 5min and the
oven is finally switched off and the door opened to observe the cooling.

When the sample is heated, the diamonds tend to approach a square shape (figure 2.35). This
behavior can be quantified by image analysis.

Figure 2.35 Diamond network embedded in the expanding matrix at room temperature (left) and 90°C
(right). The diamonds seems to evolve into squares. On both pictures, the number of diamonds is the
same but the heated sample is wider and slightly less high.

A Matlab algorithm follows the evolution of the diamonds in time. More especially, we measure
their dimensions and aspect ratios. The diamonds networks are painted in black and the position of the
corners of the diamonds is measured on each image. When a diamond shape (four corners) is recognized
on the image (colored diamond in figure 2.36), the position of the point is taken into account. For each
image, an average is done over all the detected diamonds to measure the length of the minor and major
axes. The evolution of the total size of the sample is also measured.

On figure 2.36, we observe that the shape of the diamonds evolves with temperature. Diamonds tend
to become square as mentioned previously.
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Untethered shape morphing by phase transition

Figure 2.36 Diamond sample with C = 3, ew = eL = 1mm, d = 0.28 at room temperature (up) and 90°C
(down). On the right of each picture the detection of the diamonds by the algorithm.

As in the case of chevrons, the evolution of the different dimensions of the system and the temperature
are plotted as a function of time (figure 2.37). As assumed, the perimeter of the diamonds is rather
constant over time (yellow circles in figure 2.37): the branches of the network remain unstretched.
The evolution of the total length L and minor axis 2b are very similar. The two lengths increase with
temperature and reach a plateau when the temperature reaches a quasi-plateau. They get shorter when
the temperature decreases.
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Figure 2.37 Diamonds network with C = 2.5. The strain is measured along the different directions of
the sample when the temperature is increased. Evolution of the mean of the major and minor axes of the
diamonds, of the length and the width as well as the evolution of the perimeter with temperature.

However, the major axis 2a and the width w do not follow a similar trend. The major axis evolves
as expected: when the temperature increases, it shrinks because the minor axis stretches (if the square
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2.4 Diamonds network

shape is reached, the diagonals are equal). However the total width seems to remain constant when the
temperature increases. As explained earlier with the chevrons, the networks tend to delaminate on the
edges which lets the matrix expand freely on the edge. As a result, the material does not globally reduce
its size in one direction.

For all networks, the strain of the diamonds in the direction of both diagonals can be measured as a
function of the temperature. Most tests are done with the same density d = 0.28. Unlike the chevrons
network with changing density, the diamonds network cannot be internally normalized as a single density
is used. In order to compare the different temperatures, the approximated law ε0(T ) calculated in section
2.3.3.d is used.

We now try to predict theoretically the behavior of the different networks to compare it with the
experiments. We consider the expanding matrix as a homogeneous material following a neo-hookean
elastic behavior. Some restrictions are applied to this material when it expands due to the presence of
the embedded network.

The reference state is taken before the expansion of the material and the actual stretches in the three
directions of space are noted λx, λy and λz. When the sample is heated, we first consider that it reaches a
new stress-free state with an isotropic expansion λ0. The effect of the network is taken into account in a
second step. The material is considered incompressible which leads to:

λxλyλz

λ 3
0

= 1 (2.15)

Thus the elastic energy of the system can be written as:

E =
µ

2
(I1 −3) (2.16)

with:

I1 =

(
λx

λ0

)2

+

(
λy

λ0

)2

+

(
λz

λ0

)2

(2.17)

from incompressibility λz =
λ 3

0
λxλy

, so that:

E =
µ

2λ 2
0

(
λ

2
x +λ

2
y +

λ 6
0

λ 2
x λ 2

y
−3λ

2
0

)
(2.18)

The stored elastic energy is zero if the material is allowed to expand freely : λx = λy = λz = λ0.
However, the presence of the internal network, frustrates expansion in some directions. If the sides l of
the diamonds are considered inextensible:

λx =
lx f in

lxini

=
l cosθ f

l cosθi
=

cosθ f

cosθi
(2.19)

53



Untethered shape morphing by phase transition

where θi and θ f are the initial and final value of the diamond angle. Similarly:

λy =
sinθ f

sinθi
(2.20)

The elastic energy can then be written as:

E =
µ

2λ 2
0

(
cos2θ f

cos2 θi
+

sin2
θ f

sin2
θi

+
λ 6

0 cos2 θi sin2
θi

cos2 θ f sin2
θ f

−3λ
2
0

)
(2.21)

The equilibrium angle θ f minimizes E and satisfies ∂E
∂θ f

= 0:

∂E

∂θ f
=

µ

2λ 2
0

(
−sin(2θ f )

cos2 θi
+

sin(2θ f )

sin2
θi

+λ
6
0 sin2 2θi

−4cos(2θ f )sin(2θ f )

sin4 (2θ f )

)
= 0 (2.22)

4sin(2θ f )
cos(2θi)

sin2 (2θi)
= 4λ

6
0 sin(2θi)

cos(2θ f )

sin3 (2θ f )
(2.23)

Which yields :

cos(2θ f )

sin4 (2θ f )
=

cos(2θi)

λ 6
0 sin4 (2θi)

(2.24)

When the expansion of the matrix is very large (i.e λ0 → ∞), the factor 1
λ 6

0
tends toward zero which

gives cos(2θ f )→ 0 and thus θ f → π

4 . The shape that minimizes the energy of the expanding sample is
the square as expected.

For each sample with a different θi, the measured angle θ f (ε0) is plotted in (figure 2.38) as a function
of the global expansion of the material ε0(T )∼ λ0−1. Theoretical prediction (equation 2.24) are plotted
as a dashed line: they all converge toward a final angle of π/4 when the expansion is large enough.
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Figure 2.38 Evolution of the angle θ of the diamonds as a function of the global expansion of the matrix,
for various values of the initial aspect ratio Ci. The theory in dashed line converges toward an angle of
π/4.

On figure 2.38, we can see that the experimental points are in better agreement with the theory for
large initial angles. Measurements are not easy to achieve as the strain ε0 is not known for the samples
and has to be extrapolated with the data from section 2.3.3.d.

At small deformation (ε0 ≪ 1), the angle θ f seems to vary linearly with the global strain ε0. Most
of the recorded data points seem to be in this regime. Thus, at small strain, θ can be written as θi +Aε0

with A a coefficient to be determined and ε0 ≪ 1.

In these condition, the equation 2.24 leads to:

cos(2(θi +Aε0))

sin4 (2(θi +Aε0))
=

cos(2θi)

(1+ ε0)6 sin4 (2θi)
(2.25)

(sin(2θi)cos(2Aε0)+ sin(2Aε0)cos(2θi))
4

cos(2θi)cos(2Aε0)− sin(2Aε0)sin(2θi)
= (1+ ε0)

6 sin4(2θi)

cos(2θi)
(2.26)

Considering ε0 ≪ 1, the development at first order gives:

(sin(2θi)+2Aε0 cos(2θi))
4

cos(2θi)−2Aε0 sin(2θi)
= (1+6ε0)

sin4(2θi)

cos(2θi)
(2.27)

sin4 (2θi)

cos(2θi)
(1+8Aε0 cot(2θi))(1+2Aε0 tan(2θi)) = (1+6ε0)

sin4(2θi)

cos(2θi)
(2.28)

We can finally deduce the expression for the prefactor:
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A =
3tan(2θi)

4+ tan2 (2θi)
(2.29)

We have now determined the relation between the global deformation ε0 and the measured angle θ .
In order to design shapes, it is more interesting to work with the strain of each diamonds instead of the
stretch λ . Using the coefficient A we can now derive:

εy =
sinθ f

sinθi
−1 =

sin(θi +Aε0)

sinθi
−1 ∼ sinθi +Aε0 cosθi

sinθi
−1 = Aε0 cotθi (2.30)

εy

ε0
=

3tan(2θi)

4+ tan2 (2θi)
cotθi (2.31)

The strain εy is obtained from the measurements of the length of the diagonal 2b for each picture. It
is recorded on samples with diamonds of different initial angles. These values are normalized by the
the law ε0(T ) deduced from measurements taken in the previous section 2.3.3.d. These experimental
normalized strains are then compared to the prediction of equation 2.31 in figure 2.39.

2 i

2 i

Figure 2.39 Measurements of the normalized strain of the diamonds as a function of the initial angle θi

for small global strain ε0. Each color corresponds to a new sample.

In figure 2.39, the normalized strain is plotted as a function of 2θi which corresponds to the total
angle of the diamonds. Each color corresponds to a different sample and a different experiment. Each
data point of the same color corresponds to the measurements of εy

ε0
at different temperatures and thus at

different ε0. The black circles correspond to the mean value of εy
ε0

for each sample tested. The points at
0° and 180° correspond to the measurements along the line and perpendicular to the lines at zero density
for the samples with chevrons tested in part 2.3.
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As in figure 2.38, the experimental points better fit the theory for relative large angles. When the
initial shape is close to a square, the strain measured is lower than the one predicted.

The difference between the theory and the experiment can be explained by the fact that the expansion
of the sample cannot be determined intrinsically for each samples. The value of ε0 is deduced from
precedent experiments and may not correspond to the actual global strain of the samples as the variability
in the expansion of the matrix is significant from a sample to another.

In order to better predict the shape of the diamonds, the matrix should be prepared with a higher
degree of repeatability and tested in a more controlled environment.

Even thought the theory does not fit totally the experiments, it still gives a good idea of the
deformation of the diamonds when the matrix is expanding. It provides at least the direction of the strain.
The larger the initial angle, the larger the strain for an equivalent matrix expansion.

2.4.2 3D-shapes

While predicting the exact strain of the cells as a function of the initial angle is difficult, the direction
of strain is known. Taking advantage of this information, diamonds can be arranged along certain
director fields. To start with simple patterns, we use diamonds with similar angles.

As in the section 2.3 with the lines, by tuning the direction of expansion of the material, we can
program shapes. As in the case of radial lines and circles, it is easier to deal with uniform strain along
the desired direction. In order to have the same direction of expansion for the diamonds, the diamonds
are arranged radially and point toward the center of the network and they should all share the same
angle.

Following a classical result from geometry, the only manner to arrange such diamonds on a disk
with constant angle is to use logarithmic spirals.

2.4.2.a Logarithmic spirals

When trying to find a way of paving the space with regular patterns, Nature has found different
solutions. For example, the seeds of the sunflower move from the center following logarithmic spirals.
Counterclockwise and clockwise spirals can be observed on figure 2.40 which delimits cells reminiscent
of diamonds.
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Figure 2.40 Corols of a sunflower. The seeds are organized as logarithmic spirals when they grow.

Examples of logarithmic spirals also appear in animals as in the iconic nautilus shell (figure 2.41) [95].

Figure 2.41 Nautilus shape follows a logarithmic spiral [95].

These particular spirals can be described in polar coordinates as:

r = aecotβθ (2.32)

where β is the angle between the radius and the tangent to the spiral at any point (figure 2.42). It can be
written in carthesian coordinates as: x = aecotβθ cosθ

y = aecotβθ sinθ

(2.33)
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β

β

Figure 2.42 Logarithmic spiral with β = 7π

16

This spiral is self-similar and thus keeps a constant angle β with any tangent to the curve. Logarithmic
spirals are chosen over other curves for this property. If the angle is kept constant over the curve, it is
then possible to draw diamonds with equal angle when moving from the center of the figure to the edge.

To create diamonds, a series of counterclockwise spirals is intersected with a series of clockwise
spirals with the same angle β . Depending on the chosen angle β , the angles of the diamonds are different.
Thus by tuning this parameters the shape of the diamonds can be determined.

Using these spirals to design samples is not easy because the width of the black spirals has to be
tuned to keep the density d constant. For more simplicity, the diamonds are drawn one by one with the
same angle but not using the fact that they belong to logarithmic spirals.

θi

θi

θi

a

b

Figure 2.43 Example of diamonds delimited by logarithmic spirals with θi >
π

4 .

The angle θi is measured at the center of the diamonds as shown in figure 2.43. By increasing the
value of this angle θi, one switches from radial to orthoradial growth of the structure upon activation. As
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a result, a family of shapes from cones θi <
π

4 (i.e the ratio C < 1) to saddles θi >
π

4 (i.e the ratio C > 1)
can be programmed. In the special configuration θi =

π

4 or C = 1, the sample should remain planar.

Figure 2.44 Diamonds network made with logarithmic spirals. For all the diamonds, the ratio Ci < 1.
The diamonds are thus elongated along the perimeters and grow radially. When the matrix expands, a
conical shape emerges.

When the initial angle of the diamonds is lower than π

4 (Ci < 1), the diamonds are oriented along
perimeters. According to figure 2.39, for angles smaller than π

4 , the strain is positive in the radial
direction and negative in the orthoradial one. Thus when the matrix expands, the “perimeters” are
reduced and the radii increase. These strains are not compatible with in-plane deformation and a conical
shape pops off when the temperature is increased (figure 2.44).

Figure 2.45 Diamond networks made of logarithmic spirals. For all the diamonds, the ratio Ci > 1. The
diamonds are elongated along the radii and grow azimuthally. When the matrix expands, a saddle shape
emerges.

When the angle θi is higher than π

4 , (C > 1), diamonds are elongated in the radial direction. Accord-
ing to figure 2.39, for such initial angle the strain is negative in the radial direction and positive in the
orthoradial one. When temperature is increased and the matrix expands, the “perimeters” get longer and
the radii shorter. This excess of length on the edge is only compatible with a saddle shape (figure 2.45).

Thus by changing the angle of the spirals, we showed that is possible to obtain both positive and
negative Gaussian curvature surfaces. We did not used the differences between diamonds but the
principal directions of positive strain of the diamonds according to their angles.
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Another solution consists in keeping the same orientation for the diamonds but changing the angle
of each one.

2.4.2.b Continuous variation of the diamonds angle

In the previous section, we used logarithmic spirals to define diamond cells. By intersecting a series
of shifted curves of the same function and their mirror image, diamonds are also drawn. The simplest
example is a linear function, which leads to the regular array of identical diamonds used as test samples
in section 2.4.1. This particular pattern causes in-plane deformation when the sample is heated.

If the orientation of the diamonds does not spatially change, the angle have to change and the chosen
function has to be non-linear. In order to obtain helices and shells as in section 2.3.4, the angle of the
diamonds must evolve gradually from the center to the edges of the sample.

We first use exponential functions:
y =Cxe

x
b lns (2.34)

with C the ratio of the central diamond, b the half diagonal in the x direction for all the diamonds and s
the step used to decrease or increase the angle of the diamonds.

Each curve is then shifted by a distance 2b in the x direction in order to get a succession of curves.
Diamonds are defined by the intersection between this family of translated curves and their mirror image.
Doing so, half of the network is drawn (from the center to the edge), the other half is drawn by symmetry
(figure 2.46).

θi

θ2 b

b

Figure 2.46 Diamonds network with changing angles according to the function 2.34. The initial ratio is
C = 2, s = 0.93 and b = 4.5. As s < 1, the angles decrease as they go far from the center (θn > θn+1
with n = 1 at the center line).

The angles of the central diamonds are chosen first, while the dimensions of the sample and the
number of the diamonds gives the half diagonal b. Finally the value s indicates if the angles increase
or decrease when going away from the median of the figure. If s > 1 (figure 2.46) the angles of the
diamonds increase, if s < 1, the angles decrease. The value of this parameter also controls the amplitude
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of the shape change of the diamonds.

When the aspect ratio C is higher than 1 along the median (θ > π

4 ) and smaller than 1 along the
edges, the perpendicular strain is positive along the center line and negative along the edges. The length
mismatch lead to a shell shape (figure 2.47).

Figure 2.47 Diamonds network following the function 2.34, an exponential variation. The ratio in the
center is C = 2, the step value is s = 0.93, the half diagonal is b = 3.7mm and the width of the walls is
e = 0.7mm. When the sample is heated a shell emerges.

Conversely, if the ratio C is lower than 1 at the center and higher than 1 on the edges, the perpendicular
strain is positive on the edges and negative along the center line. The excess length on the edges when
the matrix expands leads to the emergence of a helicoidal shape (figure 2.48).

Figure 2.48 Diamonds network following the function 2.34, an exponential variation. The ratio in the
center is C = 0.8, the step value is s = 1.2, the half diagonal is b = 3mm and the width of the walls is
e = 0.7mm. When the sample is heated an helix emerges.

In the examples used before, the exponential function can be replaced by a power law:

y =
C

b(s−1) x(s) (2.35)

The pattern looks similar but the evolution of the angle is different. As in the previous example, an
initial ratio C has to be chosen for the central diamonds. Then the choice of the parameter s will decide
if the angles of the diamonds increase or decrease when they go away from the center. By following the
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same principle as the examples showed above it is possible to obtain shell (figure 2.49) and helicoidal
shapes (figure 2.50).

Figure 2.49 Diamonds network following the function 2.35, a power law variation. The ratio in the
center is C = 3, the step value is s = 0.59, the half diagonal is b = 3.5mm and the width of the walls is
e = 0.7mm. When the sample is heated a shell emerges.

Figure 2.50 Diamonds network following the function 2.35, a power law variation. The ratio in the
center is C = 0.7, the step value is s = 1.7, the half diagonal is b = 3.2mm and the width of the walls is
e = 0.7mm. When the sample is heated the beginning of a catenoid emerges.

In both cases, the diamonds tend to become squares but they stop before reaching the square shape.
For high strains it seems that it takes less energy to plastically stretch the network instead of deforming
it. It can be explained by the fact that the matrix is embedded and thus the deformation of the sample
leads to a lot of shearing in the material.

2.5 Conclusion

In this chapter, we have shown how to use the giant expansion provided by liquid-gas phase
transitions and created untethered objects that can evolve and change shape when temperature is varied.
The active material used undergoes a very large but uniform and isotropic expansion upon heating.
We have therefore embedded thin but inextensible cellular networks to impose the local direction of
expansion. Changing the geometry of such networks allows us to direct shape changes, with positive
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or negative Gaussian curvature. These objects are quite unique: they have a relatively high stiffness
(compared to morphing gels), and are still capable of extracting from the environment sufficient energy
to power their large change of shape.

We however found that it is difficult to accurately program the final shape. We could not calibrate
the material response with sufficient precision, as the experiments were not fully reproducible: when the
sample are heated, they expand, but not all by the same amount, whereas a precise control of expansion
is key to program 3D shapes. The behavior of such samples depends on too many parameters to offer
fully reproducible experiments: temperature, temperature rate, the storing method before experiment,
resting time between the fabrication process and experiment... The use of ethanol (that is not perfectly
retained in the matrix) seems to be the main source of inconsistency in the process but it is difficult to
find a liquid that meets all technical and safety requirements.

However we could imagine using the same concept with a different swelling mechanism (e.g.
hydrogel responsive to pH or temperature [50, 51, 96] with very large expansion) adapted to small scale
structures. We can envision embedding 3D-printed (with a printer such as Nanoscribe) networks in gel
sheets, and build shape-changing devices at small scale, capable of interacting mechanically (capturing,
applying forces) with micro-systems such as living cells or bacteria.

In the following chapter, we will further explore the geometries of pattern that we found to be
efficient in this study, and create shape-shifting structures with other types of actuation.
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Chapter 3

Changing shape by closing cellular
structures

In the previous chapter we described how a mesh of diamonds embedded in a expending matrix
can dictate the final 3D shape of a composite structure. In this chapter, we propose to “close” diamond
frames, which similarly results into a large biaxial deformation. As a consequence, an initially flat frame
may adopt a complex 3D shape that can be programmed.
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3.1 Introduction

In the previous chapter, we have shown how a material that undergoes a large but featureless
expansion sees its deformation constrained and guided by an internal cellular structure.

In this chapter, we wish to study the shape-changing properties of such structures by themselves,
when they are stiff enough to carry loads. Instead of cutting the network out of a very thin sheet, the
samples are now 3D-printed to a thickness on the order of a centimeter (figure 3.1, bottom right).

Figure 3.1 Top: Example of gridshell when it is flat (left) and deformed elastically with boundary
conditions (right) (Cathédrale Ephemere de Créteil from [97]). Bottom left: an asymptotic gridshell
pavillon [98], before and after being activated. Right: example of a 3D printed sample used in the
chapter.

The structures that we now consider are visually similar to gridshells (or pantographs) as illustrated
in figure 3.1. Gridshells [99] are composed of a grid network of flexible beams assembled with rotational
joints in a flat, typically square pattern. They were introduced by architects (first by V. Shukhov, and
famously by F. Otto) as an efficient way to construct shells: a crane pulls up the network initially laid
flat on the ground. The structure may adopt a variety of shapes because the rotation at the connections is
left free. When the desired shape is obtained, it is fixed by locking the joints. Sometimes, a third family
of beam is introduced to increase the stiffness of the system.
A very important difference is that in gridshells, the joints allow free rotation at each connection point,
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whereas the system of interest here is a single piece of material, with no rotational parts, so that all
deformations involve elastic bending energy of the beams of the network.

In this sense, our system is closer to the “mechanical metamaterials" that were recently developed.
Metamaterials are architectured materials that are most of the time composed of periodically arranged
unit cells, designed to have effective properties [19] different from the material they are made of. A very
successful technique consists in designing an assembly of rigid blocks that can rotate around a flexible
connecting ligament. The coordinated internal rotation of several neighboring blocks can produce a
large in-plane expansion (or contraction).

Meta-materials structures were designed for a variety of properties: controlling the global mechan-
ical response [19] or the Poisson ratio [100], providing large in-plane contraction [101]. Relatively
few studies consider 3D shape-morphing [4]. A beautiful example of shape-changing meta-material is
obtained by the snapping of all the internal patterns [83] into expanded (open) stable states.

Our cellular networks require less manufacturing precision than the fine rotational ligaments in
metamaterials, and we expect them to be more robust. Because they are composed of slender members,
they occupy a very low surfacic density in the deployed state, and we may expect them to be capable of
huge change in area, and very large strains. However their deformation involves the bending of their
beam components, and is more complex.

In this chapter we will first study the geometry and mechanics of large in-plane deformations of
uniform 3D-printed diamond-shaped networks.
We then ask if contraction of controlled amplitude can be programmed and distributed spatially, and
show how axisymmetric 3D shapes can be obtained when the material is activated by the tension of
internal wires. We then turn to the question of how to program arbitrary shapes.
Finally, we show how pressure differences may also activate shape changes, a concept that we extend to
other type of networks.

3.2 Fabrication process

3.2.1 3D printing of structures

In the previous chapter, networks were cut out of Mylar sheets. Such 2D meshes exhibit strong
resistance when stretched, but the thin beams separating the nodes tend to buckle out of plane under
compression. In this chapter, we consider cellular plates with walls of height h (the thickness of the
plate) much larger than their thickness e. Although such cellular samples may undergo global buckling,
the deformations of the cell walls remain in plane. In this section, the networks are printed with a regular
fused filament 3D-printer (Artilley Sidewinder). In this 3D printer, filaments with different properties
can be introduced. The most commonly used filament in open 3D printer is the PLA (polyactic acid)
for its strength. This recycled material is commonly used in the plastic industry in general because it is
biodegradable by industrial processes, even if the pigment added in the 3D printed filaments may alter
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this property. In addition, printing with PLA is relatively easy because the filament is rigid and can be
extruded at a relative low temperature (200 °C). The alternative to PLA for rigid filament is ABS, but as
it is suspected to release nanoparticles when printed, we do not use it with open 3D-printer.

In addition to rigid filaments, flexible ones can be printed with this printer. Most of the flexible
filaments are thermoplastic elastomers that possess both the elastic property of elastomers and the
mechanical properties of thermoplastics. The two categories that are widely commercialized are TPU
(Thermoplastic polyurethane) and TPE (Thermoplastic elastomer). Although they are both thermoplastic
elastomers, they don’t have exactly the same mechanical properties. As the composition of commercial
filaments is not known and may vary, the properties of each filament change from one brand to another
even if the declared shore and name are the same. We chose TPU over TPE because samples were less
viscoelastic. Among the different brands, we selected the less viscoelastic material: Flexifill 92A from
Fillamentum®. Using test samples, we have measured the Young modulus to be around 26MPa, and the
Poisson ration around 0.3. These values look surprising (lower E and a Poisson ratio not equal to 0.5)
but it might be explained by the fact that the test sample are printed and that the printing path has an
influence on the mechanical properties of the samples.

In this first section, we focus on networks of identical diamonds aligned along lines and rows
(figure 3.2). This type of networks enables in-plane deformations: shrinking along the closing direction
and extension in the perpendicular one. Such networks are printed in TPU, with different geometrical
parameters as shown in figure 3.2: the initial half-angle θ of the diamonds, the thickness e of the walls,
the length l of the diamonds’ side, and the height h of the network. The total length L and width w of
the samples are related to the number of columns NL and the number of rows Nw by L = NL2l cosθ ,
W = NW 2l sinθ .

Samples are printed with different θ , l, e, h but the thickness e is difficult to control precisely due to
the limited precision of the printer. As the thickness e is not precisely controlled in the printing process,
the wall thickness is measured a posteriori. The height h of the walls is more precise: the height of the
layers is driven by the motor step rather than extrusion parameters for the width of the walls. The angle
θ is geometrically represented through the aspect ratio C of the diamonds. C is the ratio between the
diagonals of the diamonds 2a and 2b respectively along the length and along the width, : C = a

b = tanθ

so θ = arctanC. When C = 1, diamonds are squares, when C > 1 the diamonds are elongated along w
and if C < 1 they are elongated along L.

68



3.2 Fabrication process

Figure 3.2 Example of a diamonds network and the different geometrical parameters: the half angle θ ,
the length of the diamonds l, the thickness of the walls e, the height of the walls h, the half diagonals a
and b, the total length L and width w and the thickness of the separation between the diamonds ev and eh.

Paving space with diamonds might not seem to be complicated but there are actually many ways
of doing it for diamonds with a finite thickness. Here the constraint is to keep the wall thickness and
diamonds size constant. We have been using two different methods of drawing. In the first one, l is
measured along the inside edge of the diamonds. Diamonds with a certain thickness e are laid out with
the same distance vertically, 2ev, and horizontally, 2eh (figure 3.2 left):

eh = ev =
e√

2sin
(

π

4 + arctan 1
C

) (3.1)

In the second method, a backbone of diamonds of side l and angle θ are drawn and are then thickened.
Thus l is measured from the center of the walls and eh and ev are different from each other and depend
on θ .

In the following, l will be mentioned for either methods. In reality the computation will be slightly
different in the different cases but will not be mentioned in the following.

These printed shapes are then activated by wires (section 3.3) or by the vacuum (section 3.5) to close
the cells. In order to let the wires go trough the sample as well as the air when the vacuum pump is
switched on, a small hole is left at the center of the walls during the printing of the samples. The holes
are designed to be small (radius r = 0.7mm) and at the intersection of the beams in the center of the
walls, to minimize the influence on the deformations of the samples toward their final shapes (figure 3.3
right).
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Figure 3.3 Closing of the diamond cells with through a series of wires under tension. Left: rest state.
Right: side and front view of the compressed state. The compression is very large.

When cells are activated by wires, the wires are usually pulled taut by hand. They are then blocked
thanks to small cleats (wires are coiled around cleats many times and remain in place due to friction).
We usually use a wire of high performance nylon with a diameter of 0.35mm that can resist to 13kg
(manufacturer data). Usually a different wire is used for each contraction line in order to avoid multiple
u-turns in the path of the wire. These turns in the wire path would result in increased friction and make
the actuation hardly possible. Nylon and TPU are two materials that are known to cause friction when put
into contact due to polar interactions. Nylon is used for its good mechanical properties and for practical
purposes because its rigidity helps inserting the wires through the holes. However, using a different
material could help reducing friction and enable an easier activation but we have not investigated other
materials.

3.2.2 Selecting the final angle: blocker mechanism

Programming 3D shapes requires non uniform in-plane deformations. We can impose different
directions of deformation or impose inhomogeneous deformations. In the first case, the orientation of
the diamond has to be precisely determined in the other case the amount of closing must be tuned locally.
However, simple diamonds usually display only two states: opened (starting state) and closed (final
state). In order to get different final strains for the cells, two solutions exist: changing the initial angle of
the cells or controlling the closing of cells in their final state. In the second option, if the cells are not
completely closed the mechanical performances are less interesting. The challenge is thus to obtain cells
with a chosen maximal strain when closed in the final state. To achieve this goal, triangular blockers
are implemented to the inner walls of the cells (figure 3.4). As the cells are squeezed, these blockers
interlock and set the maximal amount of closing for each cell and thus their maximal and final strain.
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Figure 3.4 Implementation of blockers to control the maximal strain of each cell.

The actuation of such designs can also be reminiscent of the jamming effect. Blocks that are initially
loose provide stiffer structures when jammed [102]. In our case, as the triangles get into contact, the
diamonds behave as if they were almost a block of bulk material. Moreover, using three triangles instead
of two may improve the rigidity of the sample by preventing shear of the diamond thanks to the locking
effect. Samples are printed with basic printers so the surfaces are not totally smooth. Having three
triangles guides the deformation of the cells and increases the surface of contact, reducing the impact of
a bad printing compared to the case where only two triangles meet.

There are different ways of drawing three triangles inside a larger one which can interlock (figure 3.5).
For simplicity, we assume that when a diamond closes, there is a simple rotation of the walls around
the upper joint. A length e joint is left around the joint to maintain some freedom in the rotation. Two
angles are given as an input, the initial angle θi and the final one θ f . Both angles determine the initial
shape and the final local strain. The algorithm that determines the shape of these triangles and their
truncation is detailed in Appendix A. Moreover, the angle α1 is set at its maximum value θi, which
leaves an empty space inside the diamond after closing. Then, only two parameters have to be chosen to
determine precisely the size and location of the triangles. The parameters taken for construction are the
angle γ3 and the length l3 (figure 3.5). In most of the cases, γ3 is set to α1 −0.19 and l3 = 3

4 l. These
parameters are chosen arbitrarily to have triangles of similar sizes. For convenience, the initial and final
angles are defined by the aspect ratios: Ci = tanθi and C f = tanθ f .

Figure 3.5 Sketch of the closing of half a diamond with initial and final angles θi and θ f . α1 is set to θi,
its maximal value. In addition to the three parameters just cited, it only takes two more parameters to
completely define the system. The parameters chosen are l3 and γ3.

The samples used for the experiments are homogeneous systems with aligned diamonds that undergo
purely in-plane deformation. The size of the blockers is changed from a sample to another keeping some
parameters constant: the initial aspect ratio Ci, the side length l, the thickness e and height h of the walls.
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The size of the blockers determines the final aspect ratio C f =
a
b = tanθ f of the diamond and thus the

local strain. In figure 3.6, when the final C f is increased, the final compression is smaller.

Figure 3.6 Samples with constant parameters Ci = 2, l = 15mm, e = 0.8mm and h = 8mm but with
different size of blockers before (up) and after (bottom) being activated. From left to right: no blockers,
C f = 4, 6 and 8.

In addition to determining the final strain of the cells, blockers bring stiffness to the structures when
the samples are activated with wires. It can be observed through tension and compression tests using an
Instron machine on samples that are in the closed and free state (figure 3.7). In the free state, we can
observe that the sample is blocked in compression (slope break) when the blockers are in contact.
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Figure 3.7 Sample containing blockers, tested directly (purple) or after being closed by a pulled internal
wire (blue) in traction and compression. Ci = 2, C f = 4, l = 15mm, e = 0.8mm

3.3 Programming with blockers

In order to obtain 3D shapes out of a planar network, the strain magnitude and direction have to
be determined locally. The presence of blockers of different sizes inside the diamonds allows us to
locally tune the strain and can thus be used to program 3D shapes: the larger the blockers, the lower the
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compression strain. In this section, we will show how cells with blockers activated by wires can be used
to program 3D shapes.

3.3.1 Aligned diamonds with different blockers

First we keep a tiling of aligned diamonds, but change the size of the blockers from one line to
another. With two similar designs we can obtain shapes with positive or negative Gaussian curvature
(figure 3.8). If the strain is larger on the edges than in the center, when the wires are pulled along the
lines a barrel shape appears (figure 3.8 top). Conversely, if the strain is larger in the center than on
the edges, a “catenoid-like surface” emerges when activated (figure 3.8 bottom). These two samples
are designed to have negative and positive Gaussian curvature but we did not program a specific target
geometry.

Figure 3.8 Variation of the size of the blockers along the rows. On top, the blockers are smaller on the
edge than in the center, leading to a barrel. On the bottom, in contrast, the blockers are smaller in the
center than on the edges which leads to a catenoid-like surface with a negative Gaussian curvature.

The two previous designs can be combined in one to obtain a sample with both positive and negative
Gaussian curvatures. The top part of the sample is programmed to have a cathenoid-like shape (large-
small-large blockers) and the bottom part is programmed to have a barrel shape (small-large-small
blockers) (figure 3.9 left). When the wires are pulled and the diamonds closed, a vase shape appear
(figure 3.9) that exhibits both negative and positive Gaussian curvature.
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Figure 3.9 Diamond network, varying the size of the blockers from one line to another. It is a combination
of the two samples figure 3.8. When the shape is activated, a portion of vase appears with both negative
and positive Gaussian curvatures.

3.3.2 Axisymmetric actuation

In the previous section, an initially flat rectangle is transformed either into a barrel or in a catenoid
shape by playing with the distribution of the closing angles with the blockers. The same strategy could
be generalized to other shapes. However, programming the final shape requires solving an inverse
problem: what distribution of final angles should we select to obtain a target shape after actuation? We
first tackle this problem in the case of axisymmetric shapes. The designs are similar to the ones used in
the second chapter to pave a disk with diamonds: logarithmic spirals. The plane can be tiled in multiple
ways, but using logarithmic spirals ensures that the magnitude of the strain will be the same for all the
cells. As a consequence if no blockers are put, a cone (figure 3.10) or e-cone should emerge.

Figure 3.10 Diamonds network made with logarithmic spirals. When orthoradial wires are pulled, a
conical shape emerges (right).

We start with the case where cells are programmed to close in the orthoradial direction. As the
diamonds pave a disk, they are not exactly diamonds because all sides do not have the same length, the
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sides close to the center are shorter than the two others. Each diamond can be divided into two isosceles
triangles which share the same base but have different side lengths. Thus, for each diamond, two sets of
blockers are calculated, one for each triangle. The size of the blockers is programmed to have the same
base length for both half diamonds after being activated by wires.

To activate these shapes, a wire is inserted along the perimeters through the center of the diamonds.
When the wire is taut, there is a negative strain along the orthoradial direction, and a corresponding
positive one along the radial direction. As the magnitude of the strain is the same everywhere, a cone is
obtained. The size of the blockers determines the slope of the cone: the smaller they are, the steeper the
cone (figure 3.11).

Figure 3.11 Conical shape obtained keeping the size of the blockers constant for all cells.

In the opposite case, cells close radially and are elongated along the perimeters. This configuration is
more difficult to design because the two sides of the diamonds that are getting in contact do not have the
same length, they are not on the same ring in the spiral construction. The design of the blockers is thus
slightly adapted to take into account the movement of the diamonds when they are closed. When looking
at the movement of a portion of disc, we see that the edge of the diamonds are following a circular
trajectory when the cells are closed. In this configuration, the wires are put radially (figure 3.12), and we
obtain an e-cone. Even when manipulating by hands (without wires), the e-cones appears spontaneously.

Figure 3.12 E-cone obtained keeping the size of the blockers constant for each cell.
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In order to solve the inverse problem for more complex axisymmetric shapes than cones and e-cones,
we choose to use diamonds network with orthoradial wires, because they are easier to design. In this
method, shapes are designed from the profile that generates the shape through rotation along its axis of
symmetry. We wrote an algorithm that computes the position of the points along the desired shape in
the final state (figure 3.14 red crosses). To each of these points will correspond a given perimeter to
match. The algorithm computes the solution step-by-step because of the coupling between strains in the
radial and orthoradial directions. The drawing starts from the center of the sample and proceeds ring
after ring (we consider as a ring a row of triangle at the same distance from the center. A triangle is
defined as half a diamond). The diamond corner that is the closest to the center is assumed fixed, it is
put on the profile at a given distance r from the center. To this new position corresponds a new radius R f

dictated by the profile, the perimeter of the ring has to be reduced from 2πr to 2πR f , the blockers are
programmed accordingly. This orthoradial contraction induces a radial extension of the ring and thus
gives the position of the next ring on the profile. The same process is then repeated for this new ring. By
iteration, the whole profile is mapped. More details are presented in Appendix A.

Figure 3.13 Non-uniform strain magnitude along the radius leads to domes.

With this design the closing is activated by wires, allowing us to control which diagonal will be
closed (not necessarily the small one). Using diamonds with low θ angle (θ < π

4 ) is interesting because
the contraction strain obtained can be very large and a wider range of shapes can be obtained. In addition
to cones and domes figure 3.13, we can obtain shapes that close onto themselves, such as spheres
figure 3.14.
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Figure 3.14 Sphere obtained from a profile following half a circle. On the left, the profile is in blue,
the black segments correspond to the length of each closed ring and the red crosses correspond to the
position of the bottom of the ring. In the center, the programmed network and on the right the samples
closed by orthoradial wires. The red points correspond to the prediction of the profile.

In the case of figure 3.14 the profile is half a circle. On the left, the target profile is plotted in blue.
The red crosses are the points at the base of each diamonds ring. The black segments correspond to the
closed diamonds. On the center of figure 3.14 we show the sample in the flat open state. The diamonds
that are far from the center have very small blockers whereas the ones in the center have bigger ones:
the strain is much larger on the periphery than close to the center in order to close the sample onto itself.
In the open state, a wire is laid trough the middle of the diamonds along the orthoradial direction, and
when it is pulled an almost closed axisymmetric shape is obtained (figure 3.14 right). A pretty good
agreement with the programmed profile (red circles) is obtained. The last ring should not be taken into
account as it corresponds to an extra half of diamond added for practical purposes.

The same work is done for a profile of half an ellipse (figure 3.15). The blue network in the center
seems very similar to the one for the sphere. With bare eyes it is difficult to distinguish the two, but in
the activated state they are clearly different (one is a sphere and the other one an ellipsoid).

Figure 3.15 Ellipsoid obtained from a profile with half an ellipse. On the left, the profile is in blue,
the black segments correspond to the length of each closed ring and the red crosses correspond to the
position of the bottom of the ring. In the center, the programmed network and on the right the samples
closed by orthoradial wires. The red points correspond to the prediction of the profile.
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In both previous cases, the cellular structures undergo a transformation from zero Gaussian curvature
to positive Gaussian curvature. Using diamonds with θ < π

4 (C < 1), we can also design samples that go
from zero Gaussian curvature to a distribution of positive and negative Gaussian curvatures, as in the
case of the vase in figure 3.16. At the bottom of the vase, the Gaussian curvature is positive but it is
negative at the neck of the vase.

Figure 3.16 Vase obtained from a profile with vase. On the top right, the profile is in blue, the black
segments correspond to the length of each closed ring and the red crosses correspond to the position of
the bottom of the ring. On the top left, the programmed network. On the bottom activated samples with
different thicknesses, h = 8mm on the left and h = 4mm on the right.

With this method, we demonstrated that different surfaces of revolution can be obtained, even shapes
that can close onto themselves (such as spheres) or ones that have both positive and negative Gaussian
curvature (such as the vase). The method only requires a profile that will be then translated into a 3D
object.

There are however some limits to this technique. There is a minimal initial angle θ or C under which
the blockers are too small to be activated. When the diamonds are very elongated in the closing direction,
the initial area inside the diamond is very small and thus there is no room to insert blockers. In order not
to have any issue, the minimal initial C = tanθ is set to 0.7 and thus fixes the maximal contractions that
can be obtained.

The other limit to this method is that the algorithm is only geometric and does not take into account
the mechanical properties of the samples, especially the bending properties. That is why the solution
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does not perfectly match the 3D object in figures 3.14, 3.15, 3.16 and why the thickness of the sample
plays a role. When the sample is very thin, the bending is very easy, however some diamonds can bend
out of plane due to the tension of the wire (figure 3.17). The final shape slightly deviate from the target:
thicker samples comply more closely to the closing law for each individual cell. However, they are more
difficult to bend out of the initial plane of the samples figures 3.18, 3.16 (bottom). An optimal thickness
has to be used. To limit the bending in the wrong direction as in figure 3.17, the cells have to remain
small, the size of the cells must be linked to the thickness of the sample. The bigger are the cells the
thicker the samples have to be.

Figure 3.17 Vase shape from a sample with thickness 3mm. The external diamonds bend out of plane.

Figure 3.18 Spherical shapes from a sample of thickness 3mm on the left and 8mm on the right. The
shapes are slightly different, on the left the overall structure bend more easily but on the right the
individual cells close more in plane.

In this section, samples were activated with wires but some can also be activated by hand. Indeed,
when an elastic plate is bent, at small deformation, a negative Gaussian curvature is obtained because of
the Poisson coupling. Samples figure 3.12 can be activated by hand just with a simple torque applied by
hand because they are programmed to reach negative Gaussian curvature when the diamonds deform
along their natural mode.
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3.3.3 General inverse problem

In this section we will focus on a more general inverse problem that is not restricted to axisymmetrical
shapes. A technique used to map a 3D surface with diamond makes use of Chebyshev nets. Such nets
are diamond meshes that can cover arbitrarily curved surfaces keeping the side length of the diamonds
constant. They correspond to a deformation of a planar grid of identical diamonds: the lengths are
conserved but the angles are not [103].

This idea of having a net that can change shape by adapting locally the angle of the diamonds can be
applied in our case. A 3D surface can be mapped with a Chebyshev net, then be flattened to be printed
to recover the 3D shape once activated. A solution to map smooth surfaces with a Chebyshev net is the
“compass method” [104, 105] (figure 3.19). Two arbitrary geodesics are drawn on the surface (curves
that are “straight lines” along the surface) that are intersecting at an arbitrary point. These two curves
are divided in segments of equal length. Starting from the intersecting point, diamonds are drawn using
a “compass”, all the diamond sides have the same length along the surface. The overall network is then
drawn step-by-step.

Figure 3.19 Successive steps of the compass method. a) Two geodesics (straight lines along the surface)
are drawn; b) They are divided in equal length l ; c),d),e) Thank to a compass, diamonds of identical
length are drawn on the surface.

Although the two geodesics can be chosen arbitrarily, it not always possible to map any shape
without generating singularities. Thus the initial conditions have to be chosen carefully to map the
desired shape entirely. Mapping 3D surfaces with Chebyshev net is mostly used to design gridshells
[99, 105, 106].

The work of this section has been done in collaboration with Hillel Aharoni from the Weizmann
Institute. He programmed 3D diamond meshes to map a 3D surface with the compass method. The
algorithm takes a 3D surface as an input. Using well chosen initial conditions, it maps the 3D surface
with diamonds of given length l. In order to ensure smooth deformations, the size of the diamonds is
chosen smaller than the inverse of the local curvature. Once the 3D surface is mapped, the angles of all
diamonds are measured and compiled. The output of the algorithm is a map of the cells with their angle
on the deployed target shape (figures 3.20 and 3.21 top right).

We choose to start from an initially homogeneous network of identical diamonds. If their target
angle is encoded in them, the 3D shape should appear when the structure is activated. We use the map to
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set the position of the diamonds in the flat state and the blocker size of each diamonds is programmed to
fit the final angle measured on the 3D shape in their activated state.

Figure 3.20 Upper left: car mapped with a Chebyshev net. Upper right: map of the angles, each color
corresponds to a different final angle. Bottom: Network in the flat state (left) and activated by wires
(right): a car emerges.

The final angles that have to be programmed are determined by the mapping of the 3D shape but
the starting angle of the flat structure can be chosen arbitrarily. The final angle θ f measured on the
3D surfaces varies from 0 to π

2 . If the flat rest state grid is homogeneous, diamonds close in different
directions of space depending on the local final angle of each cell. A simple solution is to take the initial
angle at π

4 (square cells). However closing the cells in the two directions of space would require to have
wires in the two directions and thus complexifies the task of inserting wires through the sample. In
addition, it is better to have close initial and final angle as it allows to have bigger blockers and thus a
better locking. For these two reasons, the initial angle is chosen such that the majority of the cells close
in the same direction and have initial and final angles that are not too different.
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Figure 3.21 Upper left: face mapped with a Chebyshev net. Upper right: map of the target angles, each
color corresponds to a different final angle. Bottom: Network in the flat state (left) and activated by
wires (right): a face emerges.

Thus instead of calculating the distribution of strain to obtain 3D shapes out of planar structures,
each diamond cell is programmed to fit the shape it should have on a 3D structures. The limit of this
method is the existence of a solution that actually maps the target 3D structure with a Chebyshev net.
A suitable initial conditions must be found in order for the solution to converge. This first step is not
achievable to map any surface without forcing singularities.

3.3.4 Programming the curvature

The blockers used are straight and homogeneous through the thickness of our samples. When the
sample bends, the outer face gets longer than the internal one, and the closing is thus not perfect along
the thickness. The size of the blockers encodes the metric change but not the curvature. Any deployed
shape can for instance be “popped out” inside out without changing the metric. The prediction of the 3D
deformations is done in the limit of thin plates with vanishing thickness, which is not the case of our
samples. In order to program the curvature, blockers must not be homogeneous across the thickness of
the sample. Blockers must then have edges that are not vertical, or equivalently have different sizes on
both faces of the samples. Changing the size of the blockers along the thickness of the sample allows
to select a specific isometry. We can draw blockers of different sizes on the two faces of the diamonds
according to the local curvature along the bending diagonal.

As a first experiment, we print a network of identical diamond cells which should keep a zero
Gaussian curvature upon activation. However, the size of the blockers is varied linearly across the
thickness of the structure, enabling to define the dimensional mismatch between both sides of the
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deployed sample. Doing so, a cylindrical shape is selected among a family of developable surfaces
(figure 3.22 left).

In a second attempt, this method is applied to samples with changing Gaussian curvature upon
activation. Knowing the final shape and the thickness of the samples, we can determine the difference
in curvature for both sides of the sample and program the blockers accordingly. In figure 3.22 right,
a catenoid-like sample is programmed with both metric and curvature. The sample seems to be “full”
compared to the sample one figure 3.8. This technique has a limit: it only allows to match the curvature
along the diagonal that closes, the object in the final state is thus not always totally “full”.

Figure 3.22 Left: Cylinder obtained by varying the size of the blockers across the thickness of the
sample. Right: Catenoid-like surface with curvature encoded in the blockers, the material appears as
“full”.

3.4 Mechanical properties of cellular plates

In the previous section, we showed how to program 3D shapes with cellular structures. This
programming only relies on geometry. The plates are assumed infinitely thin but it is not the case in
reality. In this section we propose to study the mechanical properties of such systems to improve their
design in order to program shapes more precisely.

3.4.1 Mechanical properties under traction/compression

In order to understand the mechanical behavior of complex diamonds networks, we first study the
linear networks described in part 3.2. The samples are tested under traction and compression with an
Instron test machine. They are held by jaws at both ends, along 3 points of the network, on a line drawn
in orange on figure 3.2. One of the jaw is fixed to the ground while the other is connected to a 100 N
force sensor. Displacement is imposed, and the force is measured. If deformations are relatively small,
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Changing shape by closing cellular structures

responses in compression and tension exhibit the same stiffness. We observe a linear response at small
displacements, figure 3.23.
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Figure 3.23 Force-displacement curve of a diamond network in traction and compression with: l = 15mm,
e = 0.6mm, h = 10mm, C = 3, Nw = 3 and NL = 8 (number of diamonds in the width and length) printed
in TPU.

However for very large compressions (δ ∼ L), we measure a sudden increase in the force. This is the
transition towards the state where the network is totally compressed: diamonds are closed and all beams
are in contact. When this state is eventually reached, we expect the measured force to correspond to
the compression of the bulk material. In addition to the shape change, the closing of the cells increases
rigidity.

In this part we focus on the mechanics of small deformations in the linear regime. The deformation
upon traction and compression of the samples is measured for different parameters l, e, h and θ . If
the network is considered as a sample of homogeneous material, an effective Young modulus can be
extracted from the slope k of the curves of figure 3.23.

F = k∆L = whE∗∆L
L

(3.2)

E∗ =
L

wh
k (3.3)

where F is the measured force, E∗ the effective young modulus and k the slope of the force-displacement
curve. The coefficient k considered is the average of kext and kcomp (values in traction and compression)
for different trials. The effective modulus E∗ can thus be experimentally measured.

This effective modulus results from the bending response of the walls that constitute each diamond
cell. The stiffness of a honey-comb cellular structure has already been derived by Gibson and Ashby
[107] in their book Cellular solids.
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3.4 Mechanical properties of cellular plates

Figure 3.24 Compression of honeycomb structure. The mechanical response of the beams composing
the cell results in an effective Young modulus for the homogeneous material. Picture from Gibson and
Ashby book [107].

In this derivation, they assume that the clamping angle θ of honeycomb is conserved under loading,
but when the cells deforms, the upper and lower sides of the cells of length l bend. Thus the loading is
converted in bending of the beams. In the case of the diamonds, the vertical sides of the honeycomb
are missing and the walls that bend form the diamond. This computation can be then extrapolated to
diamonds that are similar to honeycomb with h = 0 (figure 3.24).

Following the same framework one can thus derive the effective modulus for a diamond network.
For the derivation a loading F along X1 is considered.

δ

θ

l

e

h
θ

l

F

X1

X2

Figure 3.25 Compression of an elementary diamond-shaped cell. The sides bend under the loading F .

We consider half of the load F
2 that applies in an arm of length l on an elementary beam of the

diamond of length l, thickness e and height h (figure 3.25). The resulting torque M (3.4) with respect to
the lower corner of the cell reads:

M ∼ Fl sinθ (3.4)

We give here a simple law argument. For elastic beams the moment is given by the product of the
bending stiffness by the induced curvature κ:

M = EIκ ∼ EIw′′(x) (3.5)

85



Changing shape by closing cellular structures

with w(x) the deflection of the beam at x.
In term of scaling w′′(x)∼ δ

l2 , Fl sinθ ∼ EI δ

l2 , which leads to the scaling law:

δ ∼ Fl3 sinθ

EI
(3.6)

If the same calculation is conducted with the pre-factors, the deflection δ becomes:

δ =
Fl3 sinθ

24EI
(3.7)

with I the second moment of area of a regular beam I = he3

12 .
Considering the deflection along X1, δ sinθ , the corresponding effective strain ε can be computed.

ε =
δ sinθ

l cosθ
=

Fl2 sin2
θ

24EI cosθ
(3.8)

By defining σ = F
2hl sinθ

we obtain:

ε =
2hl3 sinθ 3

24EI cosθ
σ =

sinθ 3

E cosθ

(
l
e

)3

σ (3.9)

The effective Young modulus E∗ can thus be deduced as σ = εE∗ for the sample.

E∗ =
(e

l

)3 cosθ

sin3
θ

E (3.10)

The relation between E and E∗ can be tested for different samples. The l used for the calculation
is not easy to define if e is not very small. In our case we will take l as the inside edge length of the
diamonds, which corresponds to the portions of each beam that is really free.

The measured effective modulus, E∗
mes is plotted as a function of

( e
l

)3 cosθ

sin3
θ

(figure 3.26). The relation
between the two is linear and the prefactor is of the same order of magnitude as the modulus of the
filament. On the plot, the measured modulus is Emes ∼ 50 MPa, in contrast with the 26 MPa measured
on test samples of TPU. On the data sheet of Filaflex, the tensile modulus is 49 MPa. The tests on test
samples were done with samples printed with oblique lines, which may explain the difference in the
modulus.
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Figure 3.26 Effective modulus as a function of
( e

l

)3 cosθ

sin3
θ

, scaling obtained if we consider the bending
of the beam as the mechanism involved in the closing of the diamonds (i.e. if the angles at the corner
remain constant). During the experiments, e, l, θ and h.

The data on figure 3.26 validates the hypothesis on the bending of beams and the fact that the angle
of the diamonds remains unchanged upon deformation. The sides of the diamonds appear to behave as
clamped singular beams rather than long beams with joints, as seen in gridshells. The joints between
diamonds do not seem to play a role at the first order.

The same measurements can be done on samples with blockers. Networks of aligned diamonds with
blockers are put under traction and compression. Samples are tested with no blockers and with blockers
corresponding to a final ratio C f =

a f
b f

of 8, 6 or 4 with a starting ratio Ci = 2 (figure 3.27). During the
compression test, we can observe that there is a large break in the slope, the material becomes much
stiffer. This slope break appears when the samples are totally closed and the blockers are in contact. At
this point, the sample behaves almost like a bulk material. When the blockers are larger (C f small), the
slope break appears for smaller displacements (figure 3.27). The displacement measured at this slope
break corresponds to the final strain encoded in the size of the blockers.

In the pre-closed state, when the cells are closed and blocked with a wire, we observe a similar
response but the sample behaves directly as a bulk material as the cells are already closed and the
blockers are in contact (figure 3.7). Indeed the slopes observed for large negative deformation for the
free sample are similar to the slope observed for small negative deformations in the case of the pre-closed
network.
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Changing shape by closing cellular structures

Figure 3.27 Open sample under traction and compression with Ci = 2, C f = 4−8, l = 15mm, e= 0.8mm.

In the case of the samples with blockers, the rigidity for small displacements in the open state should
not be dictated by the size of the blockers. As seen in the previous part, under loading, walls of each cell
bend and the relevant parameter becomes the thickness of the walls e. In the case of the blockers, the
average thickness of the diamonds increases when the final ratio C f decreases, the rigidity should then
increase when C f decreases. This trend is true for samples without blockers to C f = 6 but an inversion
can be observed between C f = 4 and C f = 6 (figure 3.28). In all the previous theory we supposed that
the cells were closing due to the bending of the wall, however, if the walls get too thick, the junctions of
the diamonds may play a role in the opening/closing of the cells and may influence the rigidity of such
samples. This might explain these observations.

Figure 3.28 Zoom of figure 3.27. Open sample (without wires) under traction and compression with
Ci = 2, C f = 4−8, l = 15mm, e = 0.8mm.
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3.4 Mechanical properties of cellular plates

3.4.2 Mechanical properties: bending of cellular networks

After characterizing the diamonds networks under tension/compression, we also characterize their
bending stiffness. It might be useful since the structures will eventually be curved into 3D target shapes.

The samples used here are the same as in the previous part 3.4.1. A three point bending test is
performed (see figure 3.29). The distance Lbend between the two bottom points can be modified. For
each sample, the displacement is imposed at the center of the sample and the force F is recorded with a
100 N sensor. For each sample, the measurement is performed for different Lbend . The length Lbend is
chosen not to be too small compared to h (Lbend ≫ h), but smaller than the length beyond which the
sample would bent significantly under its own weight, so that gravity can be neglected.

Figure 3.29 Three points bending test of a diamond network.

As in the previous section, the parameters that are modified are θ , l, e and h. In a similar way,
we want to determine the relation between the effective bending modulus of the sample B∗ and the
geometric parameters of the sample. We interpret the 3 points bending test as if the the network was a
regular beam with an effective bending modulus B∗. In scaling approach for the three point bending test,
the applied moment is given by:

M ∼ FLbend ∼ B∗wκ (3.11)

with κ ∼ δ

L2
bend

the curvature.

FLbend ∼ B∗w
δ

L2
bend

(3.12)

which leads to:

F ∼ B∗w
δ

L3
bend

(3.13)

where δ is the imposed indentation, and w is the width of the sample.
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Changing shape by closing cellular structures

We have now access to an experimental measurement of B∗ and we can try to find its dependency
with the geometrical parameters of the structure.

As a first approximation, the network could be considered as a beam with a reduced density Dbeam.
In scaling law, Dbeam ∼ e

l (portion of material per cell). If the network is considered as a simple beam,
the effective bending modulus should thus be written as:

B∗ ∼ Dbendh3E ∼ eh3

l
E (3.14)

If this hypothesis were correct B∗ should scale as e, h3 and l−1. However experiments reveal a
different trend as shown in figure 3.30. According to the measurements, B∗ displays a dependency in e3.
This trend shows that the network cannot be described as large beam made of less dense material, but as
a collection of individual beams of length l . Indeed the presence of a cubic dependency in e is a clue for
a bending deformation of a beam of width e, so a deformation at the scale of the diamond cell walls.
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Figure 3.30 B∗ measured as a function of the thickness of the walls e, a cubic dependency is observed.

Considering the sample bent globally by a radius R, the bending energy can be written dimensionally as:

Etot ∼
B∗wLbend

R2 (3.15)

with B∗ the effective bending modulus.
We now try to determine what is hidden in the scaling of B∗ by estimating directly the elastic energy

in the cells. The samples can be considered as a grid of crossing ribbons. Elastic energy of ribbons can
be difficult to estimate [108]. However we use a simplified estimate.

Taking a closer look at the bent sample figure 3.31, unit diamond cells appear deformed. In order
to obtain a global bending of the sample across its thickness h, one solution would be to bend each
elementary beam across h. However, since h ≫ e, bending across the thickness of the walls is much
more favorable than across h. As a consequence, the walls tend to bend across e or to twist to match the
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3.4 Mechanical properties of cellular plates

curvature. Each small beam of length l seems to twist to accommodate the overall bending of the sample.
On the upper part of the sample, the cells are compressed to reduce the length, but on the bottom part,
they open to increase the length, as imposed by the geometry of the overall bending.

Figure 3.31 Bending of a linear diamonds network with a curvature κ ∼ 1
R . The upper part of the cells

seems squeezed whereas the bottom part seems more open. The wall of each cells seem to twist (bue
dotted lines).

According to the observations made on the picture (figure 3.31), the overall bending energy could be
described by the twisting energy of a small beams of length l.

To estimate the twisting energy of a beam, the twisting rate defined as τ ∼ ω

l has to be estimated
where ω is the twisting angle (figure 3.32).

δcell

twist

h

h

l

ω

Figure 3.32 Twisting of a beam of length l

In the limit of small displacement δcell ≪ h (figure 3.32), the twisting angle can be approximated as
ω ∼ δ

h , so that:

τ ∼ δcell/h
l

(3.16)
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with δcell the deflection of each cell so that the upper and bottom part of the sample have different
lengths.

If the entire network is seen as a beam bent with a radius of curvature R, one side is stretched and
the other is compressed. The strain between the neutral line and the edge is:

εtot ∼
h

2R
(3.17)

This global strain imposes a deflection δcell such as:

εtot ∼
δcell sinθ

l cosθ
(3.18)

thus,

δcell ∼
hl

R tanθ
(3.19)

We can then deduce the twist rate:

τ ∼ hl
R tanθ

1
hl

∼ 1
R tanθ

(3.20)

The twisting energy for a ribbon δcell ≪ h ≪ l can be approximated [109]:

Etwist ∼ µτ
2lhe3 ∼ E

(1+ν)

he3l
R2 tan2 θ

(3.21)

We find here a similar result as in [110], in the case of high beams where the bending in the plane of
the ribbons is prohibited. In addition, the derivation made by Lebée et al. that we applied to oblique
networks with diamonds of angle θ , shows the coupling between the two curvatures along x and y,
which are principal direction by symmetry:

κ⊥ =− 1
R

tanθ
2 (3.22)

If the sample is bent in one direction, there is a bending coupling in the other direction in order for
the ribbons not to bend in their plane. This coupling can be observed on figure 3.31.

By identification we can now determine the expression of the effective bending modulus in the case
of pure twisting of the walls (i.e. if Etot = Etwist). The surfacic density of elastic energy is:

Etot

l2 sinθ cosθ
∼ B∗

R2 (3.23)

with l2 sinθ cosθ half the area of a diamond, so that the predicted value of B∗ reads:

B∗ ∼
(

h
l

)
e3 cosθ

sin3
θ

E
(1+ν)

(3.24)
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This formula is compatible with a scaling in e3 measured in figure 3.30. In order to test the different
other parameters, the effective bending modulus B∗ is experimentally measured for various values of
the height h of the samples but keeping the other parameters θ , l = 15mm and e = 0.8mm constant
(figure 3.33).
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Figure 3.33 Effective bending modulus B∗ as a function of h. For these samples, C = 2, l = 15mm,
e = 0.8mm. The blue line corresponds to a linear dependency and the purple to a square dependency.

Within our experimental range, the effective bending modulus B∗ seems to scale with h2 (purple
line figure 3.33). This scaling does not correspond to the one found before considering pure twist in
equation 3.24 (h). Instead of having a dependency in h

l , the effective bending modulus seems to have a
dependency in

(h
l

)2
by dimensional analysis (dependency in e3 has already been proven experimentally).

In order to test this experimental scaling on a wider range of data, the bending modulus B∗ is normalized
by e3 cosθ

sin3
θ

Eth considering that the geometrical parameter is true. This normalized effective bending
modulus B∗

norm = B∗

e3 cosθ

sin3 θ
Eth

, with Eth = 5.107Pa the approximate value of the Young modulus, is plotted

versus the ratio h
l figure 3.34.
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Figure 3.34 Effective bending modulus B∗ normalized by e3 cosθ

sin3
θ

Eth against h
l for all samples varying θ ,

h, e and l.

The experiments seem in good agreement with a scaling in
(h

l

)2
, the experimental points are aligned

in figure 3.34 and the prefactor is of the order of 1. Experimentally, the expression of the effective
bending seems to be:

B∗
exp ∼

(
h
l

)2

e3 cosθ

sin3
θ

E (3.25)

It does not corresponds to the expression obtained considering only the twisting energy. This may
be explained by different hypothesis. First, if the ribbons twist, they may also bend to help the overall
bending. We did not succeed in modeling the bending perpendicularly to the walls, this component may
help understanding this scaling. Secondly we may not measure the linear response of the system, the
linear regime might only be true for small global deflection that are too small to be measured. Lastly we
supposed that there were no bending in the height of the wall but the ribbons might be able to curve in
their plane. Their twisting energy might also involve stretching [108].

In conclusion of this mechanical part, the mechanic of the diamond networks is driven by the small
beams of length l that compose the network. We have shown that the bending and twisting of these
beams that can be described as ribbons, drive the compression, extension and bending of the bigger
object in the case of small strains.

3.5 Activation with vacuum

We have activated our networks with wires, but this method has some drawbacks. First the wires
have to pass through all the diamonds which becomes very long when there are many of them, especially
when they are not aligned in the same direction. In addition, as mentioned before, there is friction
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between the wire and the structure when it is activated or released. Finally, it is difficult to maintain all
the wires totally tensed and the blockers in contact.

Another option exists to close the cells: using vacuum. The samples are simply inserted in airtight
bags connected to a vacuum pump. In contrast with the wires which force locally the diamonds to be
closed, vacuum acts directly on all the wall and closes the cell by reducing the area between the walls.
The advantage of the vacuum is that the forcing is homogeneous: all the cells experience the same
forcing and act together when the pump is turned on.

Airtight bags are made of thermosealable fabric. The fabric can be extensible or not and is coated
with TPU. When the two sides coated with TPU are heated, the TPU melt and seal the bag. The samples
are also 3D-printed in TPU, and can thus be stuck to the fabric if needed. In most cases, the bag is not
stuck to the samples. As in the case of wires, a hole is designed at the center of the walls on selected
lines to ensure a uniform pumping of the air in the entire sample. The pump provides a residual pressure
below 0.1 bar.

3.5.1 Network of aligned diamonds under vacuum

What is the compressive strain generated by a pressure difference? To program complex shapes
and solve the inverse problem with this technique, the strain of the cells as a function of the parameters
should be known. We start by characterizing simple uniform networks described in part 3.2. The
parameters that are changed from one experiment to another are : h, l, e, θ (figure 3.35).

P

h

Vacuum
2 f

y

x

Figure 3.35 Diamond under vacuum. The area inside the cell decreases when the air is pumped out.

We first want to estimate the minimal pressure needed to completely close the cells. We firstly
neglect the influence of the fabric in the closing of the cells and only consider small deformations ε ≪ 1.
The total energy reads:

Etot = PV +Eelast (3.26)

with P the pressure applied on the cells, V = hArea the volume of one cell with Area the area of the
diamond, and Eelast the elastic energy of one cell.

Etot = PhArea +
1
2

E∗hAreaε
2
x (3.27)
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where εx is the strain in the x direction.
By conservation of the perimeters of the diamonds: εx =− tan2 θεy. At the first order, the area of

the diamond can be written as Area ≃ A0(1+ εx + εy)≃ A0(1+ εx(1− cot2 θ)) where A0 is the initial
area of the cell. The energy can be thus written at first order:

Etot ∼ PhA0(1+ εx(1− cot2 θ))+
1
2

E∗hA0ε
2
x (3.28)

The equilibrium state is obtained by minimizing the energy with respect to εx:

∂Etot

∂εx
= 0 ∼ A0h(P(1− cot2 θ)+E∗

εx) (3.29)

as (1− cot2 θ) = sin2
θ−cos2 θ

sin2
θ

=− cos2θ

sin2
θ

, the linear strains can be written as:

εx =
P

E∗(θ)

cos2θ

sin2
θ

εy =− P
E∗(θ)

cos2θ cos2 θ

sin4
θ

(3.30)

The effective bending modulus E∗(θ) has been calculated earlier in equation 3.10 E∗ =
( e

l

)3 cosθ

sin3
θ

E:

εx =
p
E

(
l
e

)3

cos2θ tanθ εy =− p
E

(
l
e

)3

cos2θ cotθ (3.31)

Thus we see that for θ > π

4 , εx < 0 and εy > 0: the cells close along the x direction. If θ = π

2 , εx = εy

the cells do not move with the pressure. Finally if θ < π

4 , εx > 0 and εy < 0: the cells close along the y
direction. By programming the angle of the diamonds the direction of closing can be chosen.

We now estimate if the vacuum pump delivers high enough pressures to close the cells. If εx ∼ 1,
Pmin ∼ E

( e
l

)3 ∼ 107(10−1)3 ∼ 104 Pa. In the experiments, the residual pressure is below 0.1 bar, so that
∆P ≳ 0.9 bar > δPmin, all the cells should close.

In the experiments, pictures are taken before and after putting the samples under an internal residual
pressure of at most 0.1 bar. The total length and width of the samples as well as the length and width of
each cell are measured on the two pictures. From these measurements, a final strain is computed. Both
the global and local measurements are consistent with each other, which confirms that the closing of
the cells is homogeneous across the sample. For better accuracy, the strain is taken for the total length
because it includes all the cells and the measured displacement is larger.

NB: In this part, for simplicity we note compressive strain as positive (in contrast with the common
definition in the rest of the manuscript).

When the total length is measured, it includes the empty areas that close but also the thickness
of the walls that will define a minimal compacted length. A maximal strain is calculated for each
dimension (length and high of the sample). This maximal strain, εmax, corresponds to the strain that is
obtained when all the cells are totally closed and the walls of the cells are totally in contact (for example
εmaxl =

L−2Nleh
L ). It is smaller when the walls are very thick. This value is reported on figure 3.36: it

corresponds to the top points (blue stars). As the thickness of the wall is similar for all the sample, when
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h is changed εmax is quasi constant on this graph. In the following graphs, to get rid of this issue, ε is
normalized by its corresponding εmax (ε f in =

ε

εmax
).

In the experiments, the internal pressure should provide strong enough forces to entirely closed all
the samples used and ε should be maximal for all samples. However, it appears that it is not true in the
experiments. Indeed we did not consider the role of the fabric in the previous calculations.

When the strain ε is plotted versus the height h of the sample, a linear dependency appears (fig-
ure 3.36). Very thin samples barely close as seen on the left of figure 3.36. Conversely thicker samples
almost totally close as seen on the right picture of figure 3.36. In the middle range the diamonds close
but they also shear, a scale pattern appears (top left picture of figure 3.36).

ε

ε

ε

Figure 3.36 Compression ε as a function of the height h of the samples for e, l and θ constant. In blue
star the theoretical maximal compression and in purple cross the experimental points.

The thicker the samples (large h), the more they close. The closing strain is smaller than expected
because the fabric is suck into the cavities (figure 3.37). If the samples are too thin the fabric from both
sides gets into contact and prevent in-plane closing. Thick samples (large h

l ) undergo stronger in-plane
compression. However if they are too thick the bending of the structure becomes more difficult. We
expect that getting 3D-shapes out of planar sample (which is our final goal) will become more difficult.
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Figure 3.37 Network of aligned diamonds under vacuum. The fabric is sucked inside the cells when the
sample is activated.

The other parameters l, e and θ also have an effect in vacuum closing. Changing the thickness e of
the walls does not seem to have a strong effect as long as long as e

l ≪ 1. Overall, closing strains tend
to decrease when the thickness e of the walls is increased but the trend is not clear. In the following
measurement, e is kept constant.

When θ is large, the cells are almost closed in the initial state, the final strain is higher than for small
θ , the final state is closer to the total closing of the cells. It can also be noticed that the final strain is
lower when l increases.

These two trends seem to be consistent with the fact that the fabric penetrates inside the cells. The
area inside the cell in the initial state depends both on the l size of the cell and the initial angle θ . When
both parameters increase, the initial area increase and thus the fabric gets more easily stuck inside the
cells, stopping the closing.

A simple approach to try to determine the closing amplitude consists in assuming that the closing
stops when the fabric of both sides get into contact. The fabric is considered inextensible and to not
slide on the sample. The fabric of one side gets in contact with the other side when (figure 3.37):

2l cosθi = h (3.32)

This should correspond to the maximal strain if there is no sliding of the fabric. If 2l cosθ < h the
strain should be 1 as the fabric of both side cannot touch. For shallower samples, we expect the maximal
strain to be (figure 3.37):

εth =
h

2l cosθi
(3.33)

This equation is consistent with the observations made just above. When h or θi increase, the
contraction strain increases but when l increases, the strain decreases.

The strain that is measured is normalized by εmax and plotted against the approximated strain
εth

h
2l cosθi

(figure 3.38). The thickness of the walls e is kept constant. For h > 2l cosθ , the strain should
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be maximal and equal to 1 as the fabric sides are not in contact and or h < 2l cosθ , the points shoukd
align with the slope 1 (orange dashed line in figure 3.38).

εfin

h >13

1

1

Figure 3.38 Normalized final strain plotted as a function of h
2l cosθ

for e ∼ 0.6mm.

The experimental points (blue cross) do not totally collapse on the prediction, as the fabric has a
finite size (e f = 0.65mm), it should be taken into account in the estimation of εmax. Considering the
thickness of the sample, another εmax can be calculated (εmax2 =

L−2Nl(eh+e f )
L ). The new final strain

ε f in2 is thus plotted as a function of h
2l cosθ

(figure 3.39). The experimental points seem to better fit the
prediction than for figure 3.38.

εfin2

1

1

Figure 3.39 Normalized final strain plotted as a function of h
2l cosθ

for e ∼ 0.6mm. The thickness of the
fabric e f is taken into account in the normalization.
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Thus, at first order, the scaling law seems to be valid. However, the two hypotheses made are not
totally respected. The fabric used is slightly extensible and the samples may move freely in the fabric
bag. In practice, the sample does not slide much in the bag and the stretching of the fabric remains small.
As both factors change the size of the fabric that is inside the cells in an opposite way the actions may
compensate.

These two requirements could be met but the stretchy fabric and the loose bag where the sample
can slide are used on purpose. Indeed, when the diamonds are activated, the short diagonal of a unit
cell is compressed while the long one is elongated. A stretchy envelope favors smoother deformations
and limits incompatibilities. As seen in figure 3.40, when the fabric is not extensible (right panel, grey
Nylon fabric), the closing is not very smooth and they are many folds. As the long diagonal cannot
stretch, it causes some frustration that tends to bend the diamonds in the other direction.

Figure 3.40 Networks with C = 2, l = 12mm, h = 8mm, ep = 1mm in a pink bag of extensible fabric
(left) and in a grey bag of non extensible fabric (right). The extensible envelope leads to smoother
collapsed shapes.

In conclusion, when cells close, the volume inside the cells decreases faster in the presence of a
deformable fabric and thus help the closing. At the beginning, the fabric helps to deform by reducing the
“pressure energy” component PV but as this energy is rapidly consumed the closing saturates. Having
fabrics around the sample fasten the closing but stops it sooner. In order to observe the larger strain, it is
better to use small cells with high wall. However the walls have to be small enough to allow bending
and out of plane deformation.

Using vacuum does not allow to increase the rigidity of the samples. As the fabric goes inside the
cells there is no real blocking of the shapes. Once the sample are under vacuum the walls do not touch
and cannot be considered as a bulk material.

3.5.2 3D shapes with vacuum

When trying to do shape morphing, we select the pink extensible material to obtain smoother shapes.
When the networks with blockers are put inside the bag, they only close of a very small amount. The
fabric gets stuck on the blockers and only a small amount of fabric goes inside the cell in between
the blockers. As blockers cannot be used in this configuration, the shapes have to be programmed by
changing the orientation of the diamonds in space or the different geometrical parameters.
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3.5 Activation with vacuum

The strain of the cells depends on l, θ and h. Changing h across the sample is complicated and does
not seem appropriate to 3D printing on a plate. Paving the space with diamonds with different lengths and
angles is possible but quite complicated. It would be interesting but requires solving simultaneously the
tiling and the local strain. We thus start by printing samples where diamonds have different orientations.

As in the second chapter 2 and in the section with the wires, the plane is paved by diamonds with
similar angles, and they are subdivided when they get too large. The thickness e of the walls is also set to
be proportional to the length l of the side of the diamonds to maintain the same stiffness E∗ everywhere.
To draw such diamonds, logarithmic spirals are used, as in the second chapter 2. The internal angle
θ of all diamonds depends on the pitch of the spiral. They can be radially elongated (figure 3.41) or
orthoradially elongated (figure 3.42). The final shapes obtained are opposite to the one get in the second
chapter 2: indeed, the changes in distances due to vacuum have opposite signs compared to the case of
expanding matrix.

In the case where diamonds are radially elongated (figure 3.41), the depression tends to shrink the
perimeters and increase the radii.Considering that the contraction is the same for every ring as the angle
is kept constant, a cone with a positive Gaussian curvature should emerge.

Figure 3.41 Diamonds network organized along logarithmic spirals with large angle θ > π

4 . When the
sample is put under vacuum, the cells close in the orthoradial direction and a conical shape emerges.

In the case where diamonds are orthoradially elongated (figure 3.42) , the depression tends to close
the cells along the small diagonal, the radii shrink and the perimeters stretch. Considering that the
squeezing is the same for every ring (as the angle θ is kept constant), an e-cone should emerge with a
localized negative Gaussian curvature at the pole .
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Figure 3.42 Diamond network organized along logarithmic spirals with small angle θ > π

4 . When the
sample is put under vacuum, the cells close in the radial direction and an e-cone emerges

As in the last section of the second chapter figure 2.4.2.b, space can also be paved by diamonds with
different shapes and sizes. If the same curve is drawn many time translated by the same distance and is
added to its mirror image, a network of diamonds appears. In this case, the angle θ of the diamonds
changes gradually from the center to the edge. If the angle increases gradually from the center to the
edges, the compression is vertical in the center and horizontal on the edges. The center line gets “longer”
than the edges so a positive Gaussian curvature appears (figure 3.43).

Figure 3.43 Diamond network with contraction in the vertical direction in the center and in the horizontal
direction on the edges. The angle of the diamonds increases gradually from the center to the edges.
When under vacuum, a positive Gaussian curvature appears.

If on the contrary, the angle decreases gradually from the center to the edges, the compression is
horizontal in the center while vertical on the edges. The center line gets “shorter” than the edges so a
negative Gaussian curvature, an helix-like appears (figure 3.44).
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Figure 3.44 Diamond network with contraction in the horizontal direction in the center and in the vertical
direction on the edges. The angle of the diamonds decreases gradually from the center to the edges.
When under vacuum, a helix with a negative Gaussian curvature appears.

3.6 Rectangular unit cells

In this chapter we mainly focused on diamond shape networks but other kind of patterns can be used
for activation with vacuum.

One of the other designs we have tested is the following: rectangles are aligned in a cartesian grid
and are shifted by one half of their length from one row to another (figure 3.45). This particular tiling
allows the global sample to reduce its width by a factor of two, keeping the length constant as can be
seen in figure 3.45.

Unlike the diamonds, the deformation in the direction perpendicular to the direction of contraction
is nearly zero. This property is convenient when using the vacuum in bags because they do not need to
stretch the external pocket.

Vacuum

h

e

l

d

Figure 3.45 Network of aligned rectangles shifted of half a length from one row to the next, before and
after being activated by vacuum

In the case of the rectangles, the strain does not depend on the parameters of the cells, it is always
0.5 (considering the wall infinitely small) and cannot be higher than 0.5. In order to program 3D shapes,
the orientation of the rectangle must change spatially. However, some specific ratios are kept constant in
order for the rigidity to be the same everywhere in the sample.

Considering that h ≫ d and l ≫ d, when the cells are closed (figure 3.45), for a deflection δ at the
center of the beam, the long side l is bending with typical curvature δ

l2 . The bending related energy is:
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Ebend ∼ Ee3h
(

δ

l2

)2

l (3.34)

where E is the Young modulus of the sample, h the height, e the thickness of the walls, l the length of
the long side and d the length of the small side.

If we want that all the cells close in a similar way when placed under vacuum, the effective bending
modulus E∗ of the sample have to be constant over the sample. The bending energy of a cell is:

Ebend =
1
2

E∗
ε

2hld =
1
2

E∗
(

δ

d

)2

hld (3.35)

with ε = δ

d the strain corresponding to deflection δ at the center of the beam of length l. By identification:

E∗ =
(e

l

)3 d
l

E (3.36)

Keeping the aspect ratio l
d of the cell constant, the ratio l

e has to be kept constant in order to conserve
E∗ across the sample.

In order for the cells to totally close, the global strain of the sample ε > 0.5. ε = P
E∗ , so the following

inequality has to be satisfied:

P
E

(
l
e

)3 l
d
> 0.5 (3.37)

Considering that the aspect ratio of the cell is set to l
d = 3:

l
e
>

(
0.5

d
l

E
P

)3

∼
(

0.5
1
3

5 107

1 105

)1/3

∼ 5 (3.38)

If this inequality is respected, the pressure should close the cell (only the fabric could interfere). In
the design, this ratio is set between 10 and 50 to be sure that all cells close. The fabric seems to be less
an issue with this design because there is still some “volume” that is available at the two ends when the
cells are closed.

3.6.1 3D shapes with angular sectors

We start, as we did for the diamonds, to arrange rectangles radially or orthoradially. As it is difficult
to pave a disk with rectangles, we chose to use curved rectangle (sectors) to pave the disk. Depending
on the orientation, of the long axis of the rectangles, it is possible to obtain positive or negative Gaussian
curvatures.

In order to program positive Gaussian curvature, the rectangles have to be elongated along the radial
direction (figure 3.46) and shrink mainly azimuthally. The disk is divided into angular sectors which
are closed with straight segments. Rectangles are shifted by half their length between the two neighbor
sectors.
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Figure 3.46 Rectangles with their long axis orientated in the radial directions before (left) and after
(right) being activated by vacuum. When the cells close, the perimeters shrink while the radius keep
their length: a shape with positive Gaussian curvature emerges.

In order to program negative Gaussian curvature, the rectangles must be orthoradially elongated.
Concentric rings are drawn keeping the aspect ratio l

d constant and the number of rectangle per ring
constant. When rectangles get too large they are subdivided to keep them relatively small compared to
their curvature. From one ring to the next, the rectangles are shifted by half their length.

Figure 3.47 Rectangles with their long axis orientated in the orthoradial directions before (left) and after
(rigth) being activated by vacuum. When the cells close, the radius shrink while the perimeters keep
their length: a shape with negative Gaussian curvature emerges.

As shown in figures 3.46 and 3.47, these qualitative design rules indeed lead to the production of the
expected family of shapes.

3.6.2 3D shapes from logarithmic spirals

Logarithmic spirals can also be used to arrange rectangles. The notation are the same as in section
2.4.2.a. They are drawn starting from the center, all in the same direction with a given spiral angle. The
subdivision of these portions is done by arc of spirals in the perpendicular direction.

As before, between neighbors section of spirals, the rectangles are shifted by half their length. In this
case it is difficult to have them shifted exactly by half their length because the spirals rotate. If a portion
is exactly shifted of half a rectangle with the previous portion, it will not be well shifted with the next
section. Moreover, keeping the aspect ratio l

d constant on the disk makes the shifting even more difficult.
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To keep a significant shift of the rectangle from a spiral to another, the length of the first rectangle of the
even spiral is multiplied by a number between 0.5 and 1 depending on the angle β of the spirals.

When the angle of the spiral β varies from π

3 to π

10 , the shape of the sample varies from an e-cone
(figure 3.48) to a cone (figure 3.49). The strain direction is perpendicular to the direction of the spirals.
The two previous cases are limit case of the spirals with β = 0 and π

2 .
Having spirals allow to have strains in both the radial and orthoradial directions. The distribution

between the two depends on the value of the angle β of the spirals. When β is smaller than π

4 , the
shape has a negative Gaussian curvature (figure 3.48). When β is larger than π

4 , the shape has a positive
Gaussian curvature (figure 3.49). A similar behavior will be observed in section 4.3.2.

Figure 3.48 Logarithmic spirals with an angle β = π

3 . The aspect ration of the cells l
d as well as the ratio

e
l are kept constant. As the cells close, a shape with a negative Gaussian curvature emerges.

Figure 3.49 Logarithmic spirals with an angle β = π

10 . The aspect ration of the cells l
d as well as the

ratio e
l are kept constant. As the cells close, a shape with a positive Gaussian curvature emerges.

By keeping the aspect ratio l
d of the cells as well as the ratio e

l constant in the sample, the deformation
of the sample is homogeneous and all the cells close at the same time. With this homogeneous activation,
in the case of the negative Gaussian curvature (figure 3.48), the shape first close in plane before going
out of plane when the forces are strong enough to bend the sample in its height.

3.7 Conclusion

In this chapter, we have studied the mechanics and geometry of shape change in networks of diamond
unit cells.
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3.7 Conclusion

We found that the low bending stiffness of the beams in the network provides a mode of deformation
that couples expansion in one direction and contraction in the perpendicular one. We characterized the
corresponding elastic stiffness, both in-plane and out-of-plane.

We showed how to control the amplitude of deformation by inserting blockers that limit the move-
ment of the beams. We used this technique to program axisymmetric shapes when internal wires are put
under tension. We also demonstrated experimentally a method to program arbitrary shapes (the compass
method).

Another way to activate these structure is to put them inside an airtight pocket from which air is
pumped. External pressure partially closes the compliant network, depending on its geometry. We
showed that this can be used to induce the spontaneous buckling into simple axisymmetric 3D shapes.

We note that actuation through wires is very efficient as it provides very large contractions, because
we can arbitrarily impose the direction of contraction. However, it requires manual installation of the
wires, which turned out to be very time consuming. The depressurization of an external pocket is simpler
and really appealing. We conclude that these metamaterials do present very interesting shape-change
properties that can be programmed rather simply and manufactured with any consumer-grade 3D printer.

An obvious extension of this work would be to study the possibility of programming more complex
shapes through negative pressure. One possibility would be to extend the strategy used for the axisym-
metric shapes: use diamonds with (almost) the same shape, and only use their orientation as a parameter
for programming, adapting theoretical tools developed for liquid crystal elastomers [15]. We also could
translate inverse problems developed for uniaxial contraction[80] to the network of rectangles. It might
also be interesting to program a spatial distribution of stiffness which would produce different local
deformation (and adapt the compass method, for example). In all these cases, we will have to solve
challenging geometrical puzzles.

Another question that we did not tackle is the geometrical precision of the morphing. In this study,
we have mainly triggered in-plane deformations (metric distortion) to obtain 3D shapes. This method
implicitly assumes that the sheets are very thin, or more exactly that bending to stretching stiffness
(which scales as a length square, the thickness) is very small, so that the system will "obey" the metric at
the cost of any curvature. It would be interesting to estimate and control this parameter in our system.
But we note that the mechanical properties are strongly anisotropic. Indeed, the beams in our networks
tend to have a ribbon-like geometry, which hinders some specific bending directions of the resulting
structure seen as an equivalent plate. Could this limit the family of 3D surfaces available as target for
morphing?

In the next chapter, we consider a very different type of matrix for the actuation of these structures:
a simple soap film...
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Chapter 4

Sculpting soap films

In the previous chapters we show how to change shape using cellular structures which were able to
expand or contract. Two different strategies have been developed to contract the structures: wires and
pressure. In the search for new ways of reducing the area of cells in cellular structures, surface tension
appears to be an elegant solution. Surface tension tends to minimize the area and thus to close the cells.
It seems that the structures developed in the other chapters of the thesis could be dipped in a soap bath
and should then deform. In reality, we will see that the designs have to be adapted: they have to be very
thin, and the geometrical parameters have to be changed.

The work of this chapter has been done in collaboration with Pierre-Brice Bintein with the help of Rémi
Abdallah.
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4.1 Introduction

Capillary forces are often negligible but they can be dominant at small scale. In order for the
capillarity forces to have an influence on the object we consider, the capillary force has to be stronger
than the other forces involved. In scaling law, for a structure with a typical length of L, the capillary
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force scales like L whereas the pressure force scales like L2 and volume forces such as gravity scale
like L3. For large L, the capillary force does not influence the behavior of the structure. The capillary
forces begin to have an influence when the typical length of the structure is small. For example when the
typical length L is smaller than the gravito-capillary length Lc :

Lc =

√
γ

ρg
(4.1)

(with γ the surface tension, ρ the density and g the gravity), droplets are spherical when deposited on a
surface instead of flat.

Surface tension is mostly known for its effect on liquid surfaces but capillary interactions can also
deform bodies that are soft enough [111]. In this chapter we will focus on the coupling between capillary
and elastic forces. This coupling can generate many different behaviors, 3D deformation of bulk solids,
1D bending of rod-structure or 2D bending or stretching of thin sheets.

When a droplet of liquid is deposited on a solid substrate, due to vertical component of the force on
the substrate, the substrate can be deformed if it is soft enough [112]. The deformation of such bulk
elastic solids with surface forces scales with the ratio γ

E [113], on the order of at tenth of micron even
for soft elastomers.

Bulk deformations are often quite small compare to the size of the object, but using slender structures
instead will generate larger deformations due to capillary forces.This phenomenon is for example present
in nature and explains why wet hair bundle [114]. Another example or flexible lamellae that collapsed
with capillary forces can be used to mimic the opening of ferns of temperate forests. The shell of the
spore capsule is composed of parallel water cavities separated with lamellae. When the water evaporates,
the lamellae collapse and open the capsule releasing the spores [115] [116] (figure 4.1).

Figure 4.1 Fern capsule model opened with capillary forces [116] [113]

In order to understand why such slender structures (rod or thin sheets) deform, the capillary forces
have to be compared with the bending forces. In a similar way as the gravito-capillary length, an
elasto-capillary length Lec can be defined. This length compares the bending stiffness to the surface
tension, and gives the typical curvature that the capillary forces induced on flexible slender structure.
Considering a thin plate of length L and thickness h:

Lec =

√
B
γ
∼

√
Eh3

γ
(4.2)
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with B ∼ Eh3 the bending modulus. The deformation of the object becomes significant when the typical
length of the sample L is much larger than Lec.

Thus, for objects that have a typical length higher than the Lec, capillary forces are strong enough
to bend the object, it can be thin sheet or rods. It is then possible to fold thin sheets in 3D such as the
“Capillary origami” [117]: an elastic sheet self may wrap when a liquid droplet is deposited.

Figure 4.2 Folding on a “capillary origami” from article [117]

In the examples cited above, the liquid was most of the time water drops, but soap films can also
be used to bend structures. Using soap instead of water allows one to create films (rather than drops)
that may deform closed structure such as flexible rod loop [118, 119]. The soap film tends to adopt a
minimal surface and adopt a negative Gaussian curvature. Instead of a rod, a 2D ring can be used, when
a soap film is only put inside the ring, the ring buckle to reduce the radius of the ring [120]. Soap can
even be used to fold thin ribbons [121] or thin flexible sheets [113] (figure 4.3).

Figure 4.3 Folding on a “capillary origami” with soap bubble from article [113]

Capillary forces can also be used to deform cellular structures and change the pattern of the network
[122].

In our work, we also propose to deform cellular structures of slender beam with soap film such as
they become 3D shape. The design mostly used is the rectangle. Putting a soap film inside a rectangle
makes it close as the long sides bend. This shape is for example used to create small tensiometers by
measuring the deflection of the long sides [123] or to measure surface tension profile in vertical soap
film by probing the surface tension locally [124].

4.2 Unit cell and principle

We start by using rectangles as in section 3.6. When such a rectangular frame is dipped and
withdrawn from a soap water bath, a soap film forms on the frame. As surface tension tends to minimize
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the film area, the rectangles tend to close along their widths (figure 4.4). We consider a uniform assembly
of rectangles aligned along the same direction. The rectangles are shifted by half a length from one
row to the next (as in section 3.6). When the soap film is laid on the structure, we expect the network
to contract by a maximal factor 2. However, experiments show that depending on the geometrical
parameters of the networks, the rectangles close by different amount when the soap is added 4.4.

Soap

Figure 4.4 Network of rectangles without (left) and with a soap film (right).

In the following part we will explain how to use these rectangle unit cells to create 3D shapes but
we first focus on the unit cells and determine the geometrical characteristics of cells which ensure their
closing by surface tension.

In experiments, we use thin sheets of Mylar that we laser cut in different geometries. NB: Because
of this fabrication process, the beams forming the rectangles are often ribbon-like (with a width much
larger than their thickness).

4.2.1 Networks of aligned cells

As a first approach, we consider a network of aligned rectangles shifted by half a length from one
row to the next (figure 4.4). To estimate the deformation of the networks by surface tension, we compare
the surface energy with the elastic bending energy of the rectangles.

L

d

w
α

e

t

Figure 4.5 Scheme of the rectangle before activation (center) and after closing in its plane (2D case, left)
and 3D case (right).
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When the rectangles close, two modes of deformation are observed: a 2D deformation (in the initial
plane of the network) and a 3D deformation (out of the initial plane of the network). Depending on the
geometrical parameters, the rectangle goes out of plane when closed (figure 4.5 right) or remains in the
plane (figure 4.5 left).

In the following, we characterize the closing of rectangles by the minimal distance X between the
two opposed sides. X varies from 0 (totally closed) to d (totally open) (figure 4.6).

αα X

X

d

(d-X)/2

Figure 4.6 Sketch of a rectangle partially closed in 2D (left) and 3D (right).

When the width of the cells is reduced to a distance X (for both 2D and 3D case), the energy gain of
surface tension that is provided to the system is of the order of:

Esoap ∼ γ(d −X)L (4.3)

where γ is the surface tension of the soapy water, L, d and X respectively the inside length and width of
the rectangles and the distance between the two sides (see figures 4.5 and 4.6).

We now estimate the elastic energy of deformed cells, first for in-plane deformations, and then for
3D deformations. In this section we will consider that the sides are relatively thin d ≫ e and L ≫ w. We
also assume that cells are elongated: L ≫ d (see figure 4.5 for definitions).

4.2.1.a Case of in plane deformation

When the cells close in 2D (in-plane deformation), the sides of the rectangles bend in the perpendic-
ular direction. As the cells are elongated (L ≫ d), it can be considered that only the sides of length L
bend. The deflection at the center of the side is approximately δ2D ∼ (d−X)

2 (figure 4.6 left). The related
elastic energy can then be written as :

Eelast2D ∼ Ee3
(

δ2D

L2

)2

Lt ∼ E
e3t(d −X)2

L3 (4.4)

where E is the Young modulus of the network, e, L, d, t and X detailed in figure 4.5 and 4.6.

At equilibrium, the elastic energy balances the work of surface tension :

E
e3t(d −X)2

L3 ∼ γ(d −X)L (4.5)
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so that:

(d −X)∼ γL4

Ee3t
(4.6)

Thus the sides of length L are always bent (at least slightly) by the presence of the soap film but the
deflection of the sides becomes significant and noticeable with bare eyes when the deflection is close to
d. When the cells are totally closed (X = 0), the following equation is verified:

Ee3td
γL4 ∼ cst (4.7)

Equation 4.6 becomes (d −X)∼ d
A2D

and we define the elastocapillary number A2D = 1
ε2D

= Ee3td
γL4 ,

with perfect closing occurring for A2D = cst .

4.2.1.b Case of 3D deformation

We now consider the case of rectangles that deform out of plane. We consider that there is no
twisting but only bending of the sides.

α

α
R

X

Figure 4.7 Rectangle network close mechanically with a distance X between the two long sides. The
small edge bends in half a circle and the angle α is conserved as expected

We also assume that the small sides d bend with a constant curvature of radius R (orange portion of
circle in figure 4.7). From the pictures and the experiments, a single cell partially opened can be drawn
as in figure 4.8.
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X

�3DX/2

�

R

�

�

Figure 4.8 3D deformation of a unit rectangle (left) and its schematic side view (right) when the cell is
partially closed with a distance X between the sides.

When the rectangle is deformed, both the ribbon along the width d (blue in figure 4.8) and the ribbon
along the length L (yellow in figure 4.8) of the rectangle bend. Looking at the sketch (figure 4.8 right) of
the experiment, the curvature of the small side is κ ∼ 2α

d .
The bending energy of the width d (blue in figure 4.8) can be written as:

Eelast3Dd ∼ EIddκ
2 ∼ Et3 wα2

d
(4.8)

where Id ∼ t3w is the second moment of inertia of the ribbon, E the Young modulus of Mylar and t, e, w,
α are defined in figure 4.5.

We now estimate the bending of the ribbon forming the rectangle length L (yellow in figure 4.8).
The deflection δ3D can be deduced and approximated from the geometrical parameters:

δ3D ∼ R− X
2sinα

∼ d
2α

− X
2α

∼ (d −X)

α
(4.9)

in the case of elongated cells (L ≫ d). Thus the bending energy of the ribbon of length L can be written
as:

Eelast3DL ∼ EILL
(

δ3D

L2

)2

∼ Et3e
(d −X)2

α2L3 (4.10)

with IL ∼ t3e the second moment of inertia of the other ribbon.

The total 3D bending energy is thus:

Eelast3Dtot ∼ Et3e
(d −X)2

α2L3 +Et3 wα2

d
(4.11)

where the angle α of bending is unknown at this point. We find αeq by minimizing the total energy with
respect to α .
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∂Eelast3Dtot

∂α
(αeq)∼ 2Et3

(
wαeq

d
− e(d −X)2

L3α3
eq

)
= 0 (4.12)

so:

α
4
eq ∼

e
w

d(d −X)2

L3 (4.13)

The value of this angle αeq as a function of the different geometrical parameters can be measured
experimentally using a different, simpler experiment (figure 4.9). Large stiff networks cut in thick Mylar
sheet are closed at the center of every cell by a piece of tape of a given length X . The measures are not
directly taken on samples dipped into soap bath because it is very difficult to take pictures on which the
angles can be measured. Using tape allows us to test the “dry” samples with many different geometries
as the closing distance X is defined and not the force to close the cells.

For the different samples, in a first series of experiments, the aspect ratio d
l is kept constant with

l = 50mm and d = 10mm, choosing e = 2 or 4mm and w varying from 2 to 15mm. Then in a second
series, the ratio e

w is kept constant with w = e = 4mm, varying l between 40 and 100mm and d between
10 and 60mm.

Figure 4.9 Networks closed at contact with tape. The angle α is measured for different geometrical
parameters.

The different αexp that are measured are plotted as a function of the theoretical prediction of equation

4.13: αth =
(

ed(d−X)2

wL3

)1/4
(figure 4.10).
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Figure 4.10 Measured αexp as a function of the theoretical αth, varying e from 2 to 4mm, w from 2 to
15mm, d from 10 to 60mm and L from 40 to 100mm. A linear fit is done with a resulting slope of 1.7
(dashed line). In blue cross the measures for X = 0 at contact and in purple circles the measures for
X ̸= 0.

The measured αexp seem to be consistent with the scaling laws derived earlier. A prefactor of order
1 appears, another fact in favor of the geometrical description done in figure 4.8. As we know the
expression of α , it can then be replaced in the expression for the elastic energy:

Eelast3Dtot ∼ Et3
√

ew
dL3 (d −X) (4.14)

When the rectangles are totally closed, X = 0. If the closing is due to surface tension, the following
equation is verified:

Et3
√

ew
dL3 d ∼ γdL (4.15)

so that:

Et3

γ

√
ew
dL5 ∼ cst (4.16)

We define here another non dimensional number A3D = 1
Gamma3D

= Et3

γ

√
ew
dL5 , when the cells are

closed in 3D, A3D = cst . Smalls variations in L induce large change in this parameter.

4.2.1.c Phase diagram and soap experiments

Thus for both the 3D and 2D deformation cases, we calculated the energies involved in the closure
of the cells. It has been shown that in the case of 2D deformation, the cells always deform, however the
separation with the case of 3D deformation has not been explained yet.
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When the cells are almost totally closed, X ∼ 0, they remain in plane if:

Eelast2D(X ∼ 0)< Eelast3Dtot (X ∼ 0) (4.17)

so:

e5d3 < L3wt4 or A2D < A3D (4.18)

For any other X , the limit between 2D and 3D deformations can be seen as an instability reminiscent
of lateral torsional buckling [108]. The bending energy in 2D scales like (d −X)2 whereas the bending
energy for the 3D deformations scales like (d −X). Thus for small deflections (d −X), the 2D bending
energy is smaller whereas at large deflection (d −X), the elastic bending energy of the 3D mode
more favorable (figure 4.11 left). Thus for a critical value of the deflection (d −X)b, found when
Eelast2D = Eelast3D, the system chooses to buckle out of plane:

Et3
√

ew
dL3 (d −X)b ∼

Ee3t
L3 (d −X)2

b (4.19)

so :

(d −X)b ∼ t2

√
L3w
e5d

(4.20)

Eelast

(d-X)

E2D

E3D

(d-X)b

F

(d-X)
(d-X)b

Fb

3D2D

Figure 4.11 Elastic energy as a function of the deflection (left). The 2D elastic energy is quadratic
whereas the 3D one is linear with (d −X). On the right, the force needed to induce a deflection (d −X).

Knowing the elastic energy of the system as a function of deflection (figure 4.11, left), it is possible
to calculate the force needed to achieve a given deflection (figure 4.11, right):

F ∼ ∂Eelast

∂(d −X)
(4.21)

It is thus possible to know the force needed for the sample to buckle in 3D:
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Fb ∼ Et3
√

ew
dL3 (4.22)

In our system, the force considered is the surface tension γL. If γL < Fb, this model predicts
deformations in the plane, with a deflection (d −X)∼ d

A2D
that leads to complete closure when A2D ∼ 1.

If γL = Fb, then the model predicts buckling in 3D, and in fact very large deflection (up to closure).
With all these conditions on the geometrical parameters, it is convenient to draw a phase diagram

to summarize the different results of the experiments. We will use the two non dimensional numbers
defined earlier:

A3D =
Eelast3D

Esoap
=

Et3

γ

√
ew
dL5 (4.23)

A2D =
Eelast2D

Esoap

∣∣∣∣
contact

=
Ee3td
γL4 (4.24)

In figure 4.12, we represent the expected phase diagram in the A2D−A3D plane. The full vertical line
represents the separation between the networks with cells partially and totally closed in the 2D mode.
The full horizontal line corresponds to the separation between the networks partially closed in 2D and
closed in 3D. The region with stripes represents the region where the cells are expected to fully close.

In scaling law there is no difference between condition to be fully closed in 3D and the transition
between partial closing in 2D and 3D. The separation has to be checked experimentally.

A3D

A2D

Figure 4.12 Theoretical phase diagram of the rectangular cells. The A2D −A3D plane is divided in three
zones: one where the rectangles totally close in plane (2D, blue), one where they totally close out of
plane (3D, purple) and a region where the cell are partially closed in plane (2D, yellow). The region
with stripes represent the region where the cells are expected to fully close.

To check the theoretical predictions, experiments are performed with many different networks. First
networks are cut off Mylar sheets with t = 30 µm, varying the distances d, L, e and w. Later the same
experiments are performed with thicker Mylar networks (different symbols in figure 4.14) or with
networks of different materials (different Young modulus E: PLA, TPU, Filaflex (elastic filament)). The
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networks are dipped in a soap solution (glycerol, water and Fairy®dish washing liquid) and are hung by
hands vertically. The observation of the different behaviors is done by eyes.

In order to obtain shapes that close and that are easily handable when put in soap, the networks cells
are much smaller than in the study of the angle α (cells with L ∼1cm instead of 10cm).

All point are collected in a phase diagram in the A2D −A3D plane in figure 4.14. Five different
behaviors can be observed: in blue the in-plane deformation, in light blue the total 2D closing, in dark
blue the partial 2D closing; in purple the 3D deformation, in light purple the total 3D closing, dark
purple the 3D partial closing. Finally in yellow, the points for the networks that do not deform with soap.

Figure 4.13 Examples of networks present in the three zones. On the left (yellow frame) a network that
does not deform, in the center (blue frames) networks that close in 2D, on the right (purple frames)
networks that undergo 3D deformations. The colors correspond to the ones in the diagram figure 4.14.

A2D

A3D

t = 30 m

t = 200 m

t = 100 mA3Dpc

A2Dc

A3Dc

Figure 4.14 Phase diagram of the rectangles networks in the A2D −A3D plane. The colors represent the
5 different cases observed: in blue the deformations in 2D and in purple the deformations in 3D. The
light colors represent cells that totally close and the dark the cells that partially close. The yellow points
correspond to networks that do not seem to close. The symbol shapes corresponds to different Mylar
thicknesses. Lines are drawn for A3D = 0.39 and 0.85 and A2D = 0.26.
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4.2 Unit cell and principle

According to the equation derived earlier, the limits between networks that are totally closed and the
others are horizontal in the case of the 3D deformations and vertical in the case of the planar one. This
behavior is indeed observed in the phase diagram (figure 4.14). The equations only allows to determine
scaling laws, the position of the vertical and horizontal lines are drawn experimentally by finding the
limit between the networks that are partially and totally closed. Experimentally, the area where the
cells are totally closed is relatively small as the networks fold into themselves and become a ball when
A2D < A2Dc = 0.26 or A3D < A3Dc = 0.39.

Doing the experiment it appears that the cells can partially close in both modes. In the case of
in-plane deformation, the limit observed seems to be limited by eye resolution. If the deflection is very
small, the networks appear as open. In the case of the deformation in 3D, two limits can be clearly
observed: A3D = A3Dc = 0.39 and A3D = A3Dpc = 0.85 (separation between the different phases). Using
only scaling laws, the theory predicts that there is only one limit and that the cells should go from
partially closed in 2D to totally closed in 3D but it is not the case experimentally. This might be due to
the fact that many terms are neglected in the energy estimate.

Eelast

(d-X)

E2D

E3D

(d-X)b

F

(d-X)
(d-X)b

Fb

3D2D

d

F3Dc

Figure 4.15 Schematic elastic energy as a function of the deflection (left). The energy due to 3D
deformations is approximated at the second order in (d −X). On the right the force needed to have a
deflection of (d −X) and the position of the transition 2D-3D and the total closure in 3D.

If the bending energy in the case of 3D deformations is not a linear function of (d −X) but has
higher order terms, the forces needed to partially and totally close in 3D are different (figure 4.15). The
calculation done earlier were not precise enough to capture this details. Moreover in the experiments, it
seems that the separation between 3D et 2D for A3D = A2D seems to be true for values of X higher than
zero.

Finally, the diagram can be summarized as figure 4.16.
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A3D

A2D

Figure 4.16 Theoretical phase diagram of figure 4.12 filled with a new frontier that put the limit between
the state partially open in the 2D and 3D case. The dark purple part corresponds to the rectangle partially
closed in 3D.

4.3 Deploying 3D structures

Soap films can only adopt zero and negative Gaussian curvature due to pressure equilibrium. Since
then, obtain shape with positive Gaussian curvature with soap seems to be a challenge.

In the previous section we have calibrated the new system of actuation with surface tension to close
cells. As we now know how much a cell closes as a function of its geometrical parameters and the
surface tension, it becomes possible to design 3D shapes. As in the previous chapter 3, by orienting
differently the rectangles in space it is possible to program 3D shapes. Rectangle cells close according
to their width d. If the rectangles are shifted by half their length, the network shrinks by a factor 2 on
average.

We mostly programmed axisymmetric metric distortions obtained from networks designed in
cylindrical coordinates. The observation and characterization of 3D shapes is a challenge since soap
films are very fragile and have a limited lifetime about ten seconds. The networks are dipped into soapy
water and then hung from the center, and then from one edge. If the soap film is thick, its weight is not
always negligible, and the shape observed are thus influenced by the gravity. To estimate this effect,
we also take pictures of the samples when they are hung from the edge. We also take picture of the dry
network as a comparison to evidence the shaping role of the surface tension.

4.3.1 Aligned rectangles on a disk

As seen earlier 3, a simple way to obtain 3D shapes is to program negative strain in the radial or
orthoradial direction only. To impose such strain patterns, we use rectangles that are elongated in the
radial direction or in the orthoradial direction. However, this requires geometrical adjustments of the
unit pattern.
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4.3 Deploying 3D structures

4.3.1.a Cells elongated along the radial direction

When the cells are elongated in the radial direction, they must take trapezoid shape (the smaller
side being close to the center of the circle) to tile the disk (figure 4.17). We wish to obtain a shape with
constant programmed strain with the cells closing the same amount everywhere. It is thus important to
choose rectangles that belong to the closed zone or next to the limits in the phase diagram (figure ??).
The length e and w of the network are fixed, the width d is fixed by the number of rectangle on a ring
and the distance to the center. The length L of the cells is chosen in order for the cells to close under
surface tension forces. When cells become too large far from the center of the samples, they are divided
into 3 rectangles in order to maintain a smooth deformations (cells with roughly the same size).

The mean width dmean of a rectangle depends on the length of the rectangle L. Rectangles are drawn
from the center to the edge, ring by ring. dmean corresponds to di+1 in the figure 4.17. To make sure that
all the cells close in a similar way, we keep the coefficient A3D constant (in order to stay in 3D closing).
The following equation has then to be obeyed:

A3D =
Et3

γ

√
ew

dmeanL5 = cst (4.25)

For the ring i, dmean = di+1 =
2π

N (Ri+
L
2 ), with Ri the radius at the base of the rectangles and L the height

of the rectangle and N the number of rectangle per ring (figure 4.17). Thus:

A3D =
Et3

γ

√
ew

2π

N (Ri +
L
2 )L

5
(4.26)

so L has to be solution of:

L6 +2RiL5 =
NE2t6ew
πγ2A2

3D
(4.27)

The value of A3D is varied upon experiment to change the closing of the cells.
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Li

Ri

di

di+2

di+1

e

w

Figure 4.17 Part of a network designed to produce cones when activated by soap films. Rectangular cells
close along the orthoradial direction

Equation 4.27 is solved at each step by Matlab in the algorithm that draws the networks. The single
positive solution at each i gives the position of the next ring of rectangle. From one ring to the next,
rectangles are shifted to observe the same configuration as in the case of aligned rectangles. Keeping
A3D truly constant is not convenient to have rectangles that are exactly shifted by half a length along a
radius, as their length is dictated by equation 4.27 it changes from a ring to the next one.

If such network is dipped in a soap solution and that the cells are totally closed, the radial strain is
zero whereas the strain contraction in the orthoradial direction is around 0.5. Due to this metric change,
the sample should go out of plane and a conical shape should emerge.

In our experiments, the dry network is first hung by a wire in its center. It is dipped into soapy
water together with a circular annulus. When it is pulled off, a planar film is supported by the annulus
(first picture of figure 4.18). When the soap film outside the structure burst, the final 3D shape appears
(second picture of figure 4.18). Finally when all the films inside the rectangles are broken, we recover
the initial network (third picture of figure 4.18). While gravity appears to induce limited sagging of the
structure, the effect of soap films dominates the programmed 3D-shape of the network.

Figure 4.18 Network with radially elongated cells shrunk by soap films. On the left, the design then the
network before, after being deformed by the soaps films, and finally the shape when all soap films burst.
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4.3 Deploying 3D structures

For each network a value of A3D is chosen and gives different results. The cells does not close by the
same amount when A3D is changed. We expect the angle of the cone to be different for each sample with
different A3D. However as the deformation is not smooth and since the cells tend to deform in 3D, it is
difficult to measure the angles of the cones. Due to the 3D deformation of the cells, depending on the
view angle, the observed 3D shapes are different that is why two pictures of the same cones are taken
(figure 4.19).

Figure 4.19 Network of radially elongated cells with different values of the elasto-capillary number A3D.
The top and bottom pictures are taken at 90°. Positive Gaussian curvature appears.

Qualitatively, we can see that when the value of A3D is decreased, the cells close more and the angle
of the cone is thus lower (figure 4.19.

4.3.1.b Rectangles elongated in the orthoradial direction

When the rectangles are elongated in the orthoradial direction, they are curved in order to pave the
disk (figure 4.20). The closer they are to the center, the higher is their curvature. However if the rectangle
are small enough (L ≪ R) they can be considered as “straight” rectangles. We will first consider that
this condition is satisfied. In a second part, we will study the influence of curvature on the closure of the
cells later in section 4.3.3.

We choose to keep the lengths e and w constant throughout a given sample. Fixing the number of
rectangles per ring sets the length L of the rectangles. The width d is then chosen for each ring in order
for the rectangle to be in a configuration where they totally close. As in the previous case, the cells
within a given sample are designed to have the same A3D. This number is changed from a sample to
another: the lower A3D, the higher is the negative strain of the cells.

In order to keep the number A3D constant for the rectangle of each ring, the same equation as in
section 4.3.1.a has to be imposed of each cell:
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A3D =
Et3

γ

√
ew

dL5
m

(4.28)

looking at ring i, we define Lmi =
2π

N

(
Ri +

di
2

)
as the length at the center of the rectangle, Ri the radius

at the base of the rectangle,di the height of the rectangle and N the number of rectangle per ring (figure
4.20). The height di is then expressed as di = 2

( N
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)
. Thus:
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so that Lmi is solution of:

L6
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− 2πRi

N
L5

mi
=

πE2t6ew
Nγ2A2

3D
(4.30)
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Figure 4.20 Part of a network designed to produce an e-cone shape when covered with soap films.

As in section 4.3.1.a, equation 4.30 is solved by Matlab and the positive solution is retained. To
avoid too large rectangles, a maximal value of di is set, around 1cm in our experiments. When this
criteria is met, there are two options. The first option is to multiply the number of rectangles by two. The
new rectangles are exactly shifted of half a length from one ring to the next one. However the length Lmi

is divided by two and the aspect ratio is then very different. The second option consists in adding only a
finite number of rectangle to the ring (most of the time 2). Doing so, the new rectangles are not exactly
shifted by half a length, but the change in Lmi is smoother. We retain this option in the experiments.

When soap films are added to the rectangles that are oriented perdicularly to the radii, there is a
contraction strain in the radial direction, whereas the length of the perimeters remains constant. The
resulting relative excess of length on the edge should lead to the emergence of a saddle shape (figure
4.21).
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Figure 4.21 Network with orthoradial cells with soap film. From left to right: the design, the shape
before and after being deformed by the soap and the shape when all the soap films have disappeared.

As in the previous section 4.3.1.a, the number A3D can be modified from one sample to another.
The curvature of the saddle increases when the number A3D decreases (figure 4.22). As in the previous
section it is difficult to characterize the 3D shapes quantitatively. If A3D is too low, it is more difficult to
get a controlled shape and the network often ends up as a ball of wool.

Figure 4.22 Network of orthoradially elongated cells with different number A3D covered with soap
film. The top and bottom rows display pictures of the same sample taken at 90°. A negative Gaussian
curvature appears.

Thus we show how to obtain 3D shapes out of a 2D axisymetric networks covered with soap films.
Here we focused on two different directions of shrinking. However using logarithmic spirals as in
chapter 2 and 3, it is possible to obtain all the range of negative strain direction from orthoradial (90°) to
radial (0°) direction giving access to a larger variety of shapes.

4.3.2 Logarithmic spirals

In this section we will consider the logarithmic spirals defined in chapter 3. An even number of
spirals of the same pitch angle are drawn, separated by an equal angular distance. We define a section of
the spiral as the area delimited by two consecutive spirals (white or blue in figure 4.23). Each section
is then divided in rectangles using perpendicular spirals. As in all other networks of rectangles, the
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rectangles have to be shifted of half their length from a spiral section to the next. In addition, as before
we keep the number A3D constant.

As drawing logarithmic spirals is more complicated than the more symmetric networks drawn in the
previous section 4.3.1, we do not have an explicit way of solving the dimensions of the rectangles to
give a constant A3D. The width dmean is difficult to approximate as a function of the radius Ri and the
length Li. To simplify the problem, Li is calculated with the bottom width db, the value at the mean dm

is then measured with such Li and a new L′
i is calculated from this new dm (figure 4.23) by using the

equation A3D = cst . It is a sort of iterative process with only two iterations to obtain a value of Li that is
more precise.

As the length of the rectangles satisfy the equation A3D = cst , it is then difficult to shift them by half
a length from one section to the next. In the experiments, the shifting is done manually. The top width
dt of the first rectangle from the center is not taken at the same position (distance from the center) for
even and uneven section of spiral (white and blue sections in figure 4.23). The position of the top first
rectangle of the uneven section is chosen as a fraction of the length of the first rectangle of the even
portion. This number changes when the spiral angle β changes. It ranges from 0.5 to 1. The rectangles
are perfectly shifted only in the case of β =90° or β =0° that corresponds to the two purely orthoradial
and radial limit regimes presented in the previous section.

Li db
e

w

dm

dt

�

Rc

Figure 4.23 Spiral network with β = π

2.5 , Rc = 5mm (starting radius of the spirals), N = 10, e=w= 1mm
and A3D = 2 (the value γ is considered constant in the experiments γ = 25.10−3N.m−1 and t = 30µm).

By changing the angle β of the spirals, it is possible to obtain a continuous family of shapes from
cones to anti-cones. It is also possible to change the value of A3D to change the amount of closure of the
cells. The phase diagram (figure 4.14) gives an approximation of the value of A3D that have to be taken
but in order to find the best one for the experiments, three different values of A3D are tested for a sample
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with β = π

10 (figure 4.24). We select the samples that deform with surface tension but do not fold too
much onto themselves when dipped into soap. With this networks, different conical shapes are obtained.

We choose the central one to be the best, in the following the A3D chosen is thus 0.4 because for
A3D = 0.3, the cells have the tendency to fold onto themselves with the soap and for A3D = 0.5 the
closing is too small. On the top of figure 4.24, the networks look similar but the length of the rectangles
slightly change from one sample to another that lead to shapes that look very different. This shows that
the size of the cells have to be taken carefully in order to get precise shapes.

For a given number A3D = 0.4, the angle β of the spirals is changed from π

2.5 to π

10 , in order to keep
approximately the same size of rectangles between the sample, the number N is increased when the
angle get smaller. N goes from 10 to 20 (figure 4.25, top). When the angle β is close to π

2 , a shape of an
e cone appears, on the contrary if β is close to zero, a cone appears.

Figure 4.24 Spiral network in soapy water with β = π

10 , Rc = 5mm, N = 20, e = w = 1mm with different
closing number A3D.

The closing of the cells occurs perpendicularly to the spirals. There is a mismatch in the plane if the
radial and orthoradial strains are different. In the the case of the rectangle elongated purely radially or
orthoradially, one strain is negative and the other zero. In the configuration of spirals, as the cells close
perpendicularly to the spirals, the negative strain has a radial and orthoradial components [77].

If the radial contraction strain component is higher than the orthoradial one, the final shape should
have a positive Gaussian curvature and look like a cone (figure 4.25 β = π

5 and π

10 ). Conversely, if the
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radial contraction strain component is lower than the orthoradial one, a shape with a negative Gaussian
curvature should appear (figure 4.25, β = π

2.5 and π

3 ). Following this reasoning at β = π

4 or close to this
angle, the network should only shrink in plane. However in our case (figure 4.25, when the angle β is
close to π

4 , the deformation is not totally in plane. According to Siefert et al. [77], the exact angle that
gives a deformation that is only in plane is βc =

π

2 − arcsin 1√
1+λ

with λ the contraction perpendicularly
to the spirals. This angle is different from π

4 because it takes into account the final direction of the spirals
that is different from the beginning.

In our case, λ is 0.5 at most, taking this value βc ∼ 0.6 ∼ π

5 . Thus the angle that lead on only in
plane deformation should be around βc ∼ π

5 . However in the experiments, it seems that at β = π

5 and
β = π

4.05 , the shapes obtained have positive Gaussian curvature. It might be due to the gravity that is not
taken into account and that could influence the shape or that the rectangles are not exactly shifted by
half a length or lastly that the wall width of the cells plays a role.

Figure 4.25 Spiral network in soapy water with A3D = 0.4, Ri = 5mm, e = w = 1mm and various values
of β . A continuous family of shapes is obtained.

Observation (and taking pictures) requires care and patience. Setting up the soap film bath is not easy
as the cells tend to close onto themselves when taken out of the bath. The final shape depends on the
number of rectangles that are actually closed by a soap film. Since the films break easily, pictures have
to be taken immediately after the outside film breaks. The final shape can vary for different experiments
with the same network. The shape can thus only be characterized qualitatively. We also notice that the
shape is not axisymmetric, due to the fact that the tiling of the disk is discrete.

Up to now we have neglected the overall curvature of the rectangular cells. This makes sense if
L ≪ Rc (with Rc the curvature radius of the cell), a reasonable hypothesis when the angle β is close to
zero, but it is not the case when β approaches π

2 . When the rectangles are more elongated along the
orthoradial direction the curvature of the cell should play a role in its capillary closing.

130



4.3 Deploying 3D structures

4.3.3 Influence of the curvature of “rectangular” cells

When the orientation of the rectangular cells is close to the orthoradial direction, the condition
L ≪ Rc is no longer respected. When rectangular cells are oriented with an angle β close to π

2 , they
do not all close by the same amount when dipped in soap and the total closing does not occur for the
predicted A3Dc. In order to better program shapes with a constant strain when activated, the influence of
the curvature on the closing of the rectangular cells should be understood.

As drawing a network of aligned curved rectangles is difficult, single rectangular cells with a given
curvature are used instead. They are covered with soap films and a phase diagram is realized. In the
experiments, the ratio A3D is changed as well as the radius of curvature Rc, the width d and the length of
the cell L, the thicknesses e and w are kept constant. The curvature of such cells is then κ ∼ 1

Rc
. The L

and d considered in the study are Lθ and dr the radial and orthoradial distances.

L�

dr
Rc

e

w

Figure 4.26 Sketch of a unit rectangular cell with a given curvature κ = 1
Rc

As mentioned earlier, when the ratio L/Rc ∼ κL is small, the cells should behave as regular rectangles.
When the ratio is large, the curvature can no longer be neglected. Thus the axes used for the phase
diagram to find the influence of the curvature are the ratio L/Rc and the number elasto-capillary number
A3D (figure 4.27).

As in the previous phase diagram, three cases can be observed: totally closed, partially closed and
open (truly 2D partially closed). If the curvature was not influencing the closure of the cells, the different
phases in the phase diagram should be delimited by horizontal lines. Here we actually observe that the
different phases are delimited by a decreasing function. We describe the boundary between the different
phases by a function of the form : A3D = 1

acorr+bcorr
L

Rc
, with acorr and bcorr coefficients to be determined.

1
acorr

correspond to the y-intercept and bcorr to the slope.
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Figure 4.27 Phase diagram of the rectangles as a function in the plane formed by the ratio L
Rc

and the
elasto-capillary number A3D.

On figure 4.27, two different sets of acorr and bcorr are chosen to approximate the boundaries between
the different phases. The criterion for uniform actuation strain was:

A3D =
Et3

γ

√
ew
dL5 = cste (4.31)

To take the curvature of the cells into account, the new criterion is:

Et3

γ

√
ew
dL5 =

1
acorr +bcorr

L
Rc

(4.32)

The phase diagram (figure 4.27) gives an interesting indication for an isolated cell but does not
exactly describe the actual experiment as the shapes are obtained with networks and not individual cells.

This new correction can be applied both to the spiral with β angles close to π

2 , and to networks with
orthoradial cells.
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Figure 4.28 Network with orthoradial cells with and without correction (respectively left and right).

In the case of the spirals, instead of considering L
Rc

the parameter taken into account is Lκ thus the
new equation to satisfy is :

Et3

γ

√
ew
dL5 =

1

acorr +bcorr
Lsinβ

r

(4.33)

with r the radial coordinate of the center of the rectangle and L the curved length (L =
∫

dS with dS the
curvilinear path).

This new correction is used the same way as the A3D number in the spiral case. Equation 4.33 is
used with the bottom width db to find the length L, with this value L the witdth at half lenght dm can be
measured, this dm is then used in equation 4.33 to determine the final L that will be used in the end.
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Figure 4.29 Spirals with β = π

2 , N = 10, e = w = 1mm and with a correction parameter acorr = 2.5 that
corresponds to A3D = 0.4 when bcorr=0. The correction parameter bcorr is increased from 0 to 3.

For a given correction parameter acorr, the parameter bcorr is changed, on the phase diagram it only
changes where the curve goes. By increasing the value of bcorr, we stay in a part that is more closed.
This effect can be seen on figure 4.29, when the correction parameter β is increased, the shape with
negative Gaussian curvature seems more and more pronounced.

In conclusion we can experimentally determine parameters that can be used to correct the influence
of curvature on the closing of cells. As opposite sides of the rectangles do not have the same length
when the cells are curved, it is hard to determine the deformation when the cells close and the exact
expression of the energy.

4.4 Other types of cells

So far we exposed how to create shape using rectangular cells. We did not discuss the case of other
designs. In the previous section, the cells had large aspect ratio. The case of the square was not predicted
by the model. When networks of cells that are almost square are dipped in the soap film, the behavior is
different, the phase diagram figure 4.16 is no longer true. Moreover the deformation is also different, in
addition to the 2D and 3D mode of deformation, some shear of the cells can be observed.

Another cell that can be tested is the diamond, a recurrent shape in this PhD work. Following the
same pattern as for the rectangular cells, a network of shifted diamonds is drawn: from a diagonal to the
next, the diamonds are shifted by half their length . Similarly to the squares, the cells experience shear.
Indeed, to close, the cells tend to bring opposite sides closer causing shear.
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These two other patterns were not used to create shapes as their deformation with soap was not well
understood and as closing with shear increases the chance of having cells folding onto themselves.

4.5 Conclusion

We have shown that it is possible to use capillary forces to design 3D objects. By using a cellular
network, it is possible to obtain shapes with positive Gaussian curvature whereas soap film can usually
only adopt negative or zero Gaussian curvature.

By measuring the degree of closing of the cells as a function of geometrical parameters on simple
networks, it appears possible to create more complex networks that deform in 3D. By changing the ori-
entation of rectangular cells, it is possible to obtain shapes from positive to negative Gaussian curvature.

Soap film are ephemeral. Such shapes do not last long, which makes them beautiful but not easy to
handle. The study has been done considering soap film as a surface that closes the cells, but surface
tension might be replaced by another force. For example, actual cells (biological term) could be put in
every holes to pull on the side as the soap film does .

Figure 4.30 Spiral network with N = 20, A3D = 0.4 and β = π/10.
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Conclusion

In this manuscript we have presented several approaches to shape-change, all based on networks
of deformable units. These cells, often diamond-shaped, are composed of slender members that bend
easily, and therefore have a preferred mode of deformation that is defined by their geometry.

Figure 4.31 Diamond-based deployed basket with many of the samples used in this PhD work

In a first part (chapter 2), we have studied how these cellular structures can be activated when
embedded in an active matrix. We used a hybrid material (elastomer matrix + cavities containing
alcohol) that undergoes large expansion when heated above the boiling temperature of alcohol. We
found that adding a compliant restrictive network (representing a very small mass fraction of the total
material) is enough to program large, untethered shape-change, as demonstrated on simple shapes. Such
independent active devices are interesting: they directly respond to their environment, from which they
extract energy (in this case, heat powers the liquid-gas phase transition, which produces mechanical
work), and are not very difficult to produce. In our experiments, the drawbacks were that it is not easy to
achieve a fine control of the expansion rate, and that alcohol eventually leaks out of the matrix. However
this idea could be interesting at small scales (using another swelling matrix, such as a responsive
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Sculpting soap films

hydrogel) as a microscopic grabber or manipulator, capable for example to mechanically probe living
cell tissue.

In a second part (chapter 3), we have studied the mechanical deformation of 3D-printed networks
and the mode of deformation of each cells. When they are not homogeneously distributed in the plane,
their in-plane deformation leads to 3D shapes. We showed how to activate these structures, either directly
through wires (and in this case the programmable contraction can be used to program complex shapes),
or by vacuum. These techniques are promising as it should be possible to scale them up (we studied
their stiffness).

In a third part (chapter 4), we showed how surface tension could also be used as an activation
mechanism on our networks. We showed that when a soap film is laid across the network, two modes of
closing can occur: in plane, or out-of-plane when a buckling threshold is reached. We characterized
the condition for capillary closing, and showed how it also leads to 3D shapes. Even though soap films
always present a negative Gaussian curvature, we showed how to sculpt soap film surfaces with a global
Gaussian curvature that can be either negative or positive.

Throughout this work, we have therefore seen how an internal structure that restrains or guides the
deformation can be used to control the local in-plane strain. We have made extensive use of the powerful
and beautiful geometry obtained from a family of intersecting logarithmic (scale-free) spirals to provide a
diamond tiling of the plane with almost axisymmetric properties. Because the local deformation depends
on the geometry of the unit element, we were able to program a spatial distribution of deformation. In
each case, we found that the resulting object spontaneously buckles into a 3D shape. We were able to
program simple shapes (cones or e-cones) and sometimes more advanced geometries.

We made the initial observation that there are hardly any applications of shape-changing materials.
We think that combining a powerful but featureless actuation mechanism to an internal structure that
orients and guide the deformation could help overcome the limitations of many shape-changing devices:
the manufacturing is not technically complex, and the stiffness can be much larger. However, many
questions remain open, that are common to the three studies and hinder the potential of these systems.
First, we note that it is not easy to infer the final 3D surface from a simple look at the network pattern.
For example, spiraling patterns leading to positive and negatively curved shape may look quite similar to
the untrained eye. It is even more difficult to solve the inverse question: what pattern should we produce
to obtain a specific 3D surface? We did not go very deep into this inverse problem, and this is clearly a
very important next step.
A natural extension of this work would be to consider networks initially drawn along a non-flat surface.
That is to say: can we imagine a shell morphing into another shell? The design, the inverse problem and
the practical fabrication will all be more complex, but we expect the principle to hold. In the same line,
it would be important for the reliability of the process to program not only the distances compatible with
a new 3D surface, but also the curvature, ensuring that the system does not evolve towards an isometry
of the target shape.
Another problem which should be discussed is the prediction of the mechanical properties of the 3D
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4.5 Conclusion

objects when activated. It should be possible to infer them from the stretching and bending stiffness
of uniform patterns, but the task is made more difficult by the strong anisotropic properties that they
exhibit. In particular, in the case of wire activation, we expect the 3D structure to become stiffer. Such
stiffening effect would be very promising for applications, and it would be very interesting to devise and
characterize other strategies capable of stiffening the structure once deployed.
Advances in these open questions require the blending of different disciplines: computational design,
physics, digital fabrication, mechanics, geometry, physico-chemistry, robotics, computer graphics. The
fact that these domains are currently starting to connect is an encouraging sign for more interesting
developments in the future.

139





References

[1] Trevor J Jones, Etienne Jambon-Puillet, Joel Marthelot, and P-T Brun. Bubble casting soft
robotics. Nature, 599(7884):229–233, 2021.

[2] Changjin Huang, Zilu Wang, David Quinn, Subra Suresh, and K. Jimmy Hsia. Differential
growth and shape formation in plant organs. Proceedings of the National Academy of Sciences,
115(49):12359–12364, 2018.

[3] Taylor H Ware, Michael E McConney, Jeong Jae Wie, Vincent P Tondiglia, and Timothy J White.
Voxelated liquid crystal elastomers. Science, 347(6225):982–984, 2015.

[4] Gary P. T. Choi, Levi H. Dudte, and L. Mahadevan. Programming shape using kirigami tessella-
tions. Nature Materials, 18(9):999–1004, 2019.

[5] George M. Whitesides. Soft robotics. Angewandte Chemie International Edition, 57(16):4258–
4273, 2018.

[6] Kaushik Bhattacharya and Richard D. James. The material is the machine. Science, 307(5706):53–
54, 2005.

[7] Robert F Shepherd, Filip Ilievski, Wonjae Choi, Stephen A Morin, Adam A Stokes, Aaron D
Mazzeo, Xin Chen, Michael Wang, and George M Whitesides. Multigait soft robot. Proceedings
of the national academy of sciences, 108(51):20400–20403, 2011.

[8] Filip Ilievski, Aaron D Mazzeo, Robert F Shepherd, Xin Chen, and George M Whitesides. Soft
robotics for chemists. Angewandte Chemie, 123(8):1930–1935, 2011.

[9] Martin Michael Müller, Martine Ben Amar, and Jemal Guven. Conical defects in growing sheets.
Physical review letters, 101(15):156104, 2008.

[10] Vincent Mirabet, Pradeep Das, Arezki Boudaoud, and Olivier Hamant. The role of mechanical
forces in plant morphogenesis. Annual review of plant biology, 62(1):365–385, 2011.

[11] Renate Sachse, Anna Westermeier, Max Mylo, Joey Nadasdi, Manfred Bischoff, Thomas Speck,
and Simon Poppinga. Snapping mechanics of the venus flytrap. Proceedings of the National
Academy of Sciences, 117(27):16035–16042, 2020.

[12] Enrico Coen, Anne-Gaëlle Rolland-Lagan, Mark Matthews, J. Andrew Bangham, and Przemyslaw
Prusinkiewicz. The genetics of geometry. Proceedings of the National Academy of Sciences,
101(14):4728–4735, 2004.

[13] Yoël Forterre, Jan M. Skotheim, Jacques Dumais, and L. Mahadevan. How the venus flytrap
snaps. Nature, 433(7024):421–425, 2005.

[14] Eran Sharon, Benoît Roman, Michael Marder, Gyu-Seung Shin, and Harry L Swinney. Buckling
cascades in free sheets. Nature, 419(6907):579–579, 2002.

141



References

[15] Hillel Aharoni, Yu Xia, Xinyue Zhang, Randall D Kamien, and Shu Yang. Universal inverse
design of surfaces with thin nematic elastomer sheets. Proceedings of the National Academy of
Sciences, 115(28):7206–7211, 2018.

[16] Qi Ge, Amir Hosein Sakhaei, Howon Lee, Conner K Dunn, Nicholas X Fang, and Martin L Dunn.
Multimaterial 4d printing with tailorable shape memory polymers. Scientific reports, 6(1):1–11,
2016.

[17] Ehsan Hajiesmaili, Eesha Khare, Alex Chortos, Jennifer Lewis, and David R Clarke. Voltage-
controlled morphing of dielectric elastomer circular sheets into conical surfaces. Extreme Me-
chanics Letters, 30:100504, 2019.

[18] Hadrien Bense, Miguel Trejo, Etienne Reyssat, José Bico, and Benoît Roman. Buckling of
elastomer sheets under non-uniform electro-actuation. Soft matter, 13(15):2876–2885, 2017.

[19] Bastiaan Florijn, Corentin Coulais, and Martin van Hecke. Programmable mechanical metamate-
rials. Physical review letters, 113(17):175503, 2014.

[20] Farhang Momeni, Seyed M.Mehdi Hassani.N, Xun Liu, and Jun Ni. A review of 4d printing.
Materials Design, 122:42–79, 2017.

[21] Stephen Timoshenko. Analysis of bi-metal thermostats. Josa, 11(3):233–255, 1925.

[22] Aslan Miriyev, Kenneth Stack, and Hod Lipson. Soft material for soft actuators. Nature
Communications, 8(1):596, 2017.

[23] Etienne Reyssat and Lakshminarayanan Mahadevan. Hygromorphs: from pine cones to
biomimetic bilayers. Journal of the Royal Society Interface, 6(39):951–957, 2009.

[24] Achim Menges and Steffen Reichert. Performative wood: physically programming the responsive
architecture of the hygroscope and hygroskin projects. Architectural Design, 85(5):66–73, 2015.

[25] Tiffany Cheng, Marc Thielen, Simon Poppinga, Yasaman Tahouni, Dylan Wood, Thorsten
Steinberg, Achim Menges, and Thomas Speck. Bio-inspired motion mechanisms: Computational
design and material programming of self-adjusting 4d-printed wearable systems. Advanced
Science, 8(13):2100411, 2021.

[26] Yasaman Tahouni, Tiffany Cheng, Dylan Wood, Renate Sachse, Rebecca Thierer, Manfred
Bischoff, and Achim Menges. Self-shaping curved folding: A 4d-printing method for fabrication
of self-folding curved crease structures. In Symposium on computational fabrication, pages 1–11,
2020.

[27] Amirali Nojoomi, Junha Jeon, and Kyungsuk Yum. 2d material programming for 3d shaping.
Nature communications, 12(1):1–8, 2021.

[28] Zhen Ding, Oliver Weeger, H Jerry Qi, and Martin L Dunn. 4d rods: 3d structures via pro-
grammable 1d composite rods. Materials & design, 137:256–265, 2018.

[29] Yousif Saad Alshebly, Khameel B Mustapha, Ali Zolfagharian, Mahdi Bodaghi, Mohamed Sultan
Mohamed Ali, Haider Abbas Almurib, and Marwan Nafea. Bioinspired pattern-driven single-
material 4d printing for self-morphing actuators. Sustainability, 14(16):10141, 2022.

[30] Jihyun Ryu, Mehdi Tahernia, Maedeh Mohammadifar, Yang Gao, and Seokheun Choi. Moisture-
responsive paper robotics. Journal of Microelectromechanical Systems, 29(5):1049–1053, 2020.

[31] Matteo Pezzulla, Gabriel P. Smith, Paola Nardinocchi, and Douglas P. Holmes. Geometry and
mechanics of thin growing bilayers. Soft Matter, 12(19):4435–4442, 2016.

142



References

[32] Basile Audoly and Yves Pomeau. Elasticity and geometry: from hair curls to the non-linear
response of shells. Oxford university press, 2010.

[33] Tomohiro Tachi. Origamizing polyhedral surfaces. IEEE transactions on visualization and
computer graphics, 16(2):298–311, 2009.

[34] Evgueni T. Filipov, Tomohiro Tachi, and Glaucio H. Paulino. Origami tubes assembled into
stiff, yet reconfigurable structures and metamaterials. Proceedings of the National Academy of
Sciences, 112(40):12321–12326, 2015.

[35] Koryo Miura. Map fold a la miura style, its physical characteristics and application to the space
science. Research of Pattern Formation, pages 77–90, 1994.

[36] Shannon A Zirbel, Brian P Trease, Mark W Thomson, Robert J Lang, Spencer P Magleby,
and Larry H Howell. Hanaflex: a large solar array for space applications. In Micro-and
Nanotechnology Sensors, Systems, and Applications VII, volume 9467, pages 179–187. SPIE,
2015.

[37] Qiji Ze, Shuai Wu, Jun Nishikawa, Jize Dai, Yue Sun, Sophie Leanza, Cole Zemelka, Larissa S
Novelino, Glaucio H Paulino, and Ruike Renee Zhao. Soft robotic origami crawler. Science
advances, 8(13):eabm7834, 2022.

[38] Shuai Wu, Qiji Ze, Jize Dai, Nupur Udipi, Glaucio H Paulino, and Ruike Zhao. Stretchable
origami robotic arm with omnidirectional bending and twisting. Proceedings of the National
Academy of Sciences, 118(36):e2110023118, 2021.

[39] Shuguang Li, Daniel M. Vogt, Daniela Rus, and Robert J. Wood. Fluid-driven origami-inspired
artificial muscles. Proceedings of the National Academy of Sciences, 114(50):13132–13137,
2017.

[40] Hillel Aharoni, Desislava V Todorova, Octavio Albarrán, Lucas Goehring, Randall D Kamien,
and Eleni Katifori. The smectic order of wrinkles. Nature communications, 8(1):15809, 2017.

[41] Yousra Timounay, Alexander R Hartwell, Mengfei He, D Eric King, Lindsay K Murphy, Vincent
Démery, and Joseph D Paulsen. Sculpting liquids with ultrathin shells. Physical Review Letters,
127(10):108002, 2021.

[42] Jérémy Hure, Benoît Roman, and José Bico. Stamping and wrinkling of elastic plates. Physical
review letters, 109(5):054302, 2012.

[43] Yigil Cho, Joong-Ho Shin, Avelino Costa, Tae Ann Kim, Valentin Kunin, Ju Li, Su Yeon Lee,
Shu Yang, Heung Nam Han, In-Suk Choi, and David J. Srolovitz. Engineering the shape
and structure of materials by fractal cut. Proceedings of the National Academy of Sciences,
111(49):17390–17395, 2014.

[44] Paolo Celli, Connor McMahan, Brian Ramirez, Anton Bauhofer, Christina Naify, Douglas
Hofmann, Basile Audoly, and Chiara Daraio. Shape-morphing architected sheets with non-
periodic cut patterns. Soft Matter, 14(48):9744–9749, 2018.

[45] Ahmad Rafsanjani, Yuerou Zhang, Bangyuan Liu, Shmuel M Rubinstein, and Katia Bertoldi.
Kirigami skins make a simple soft actuator crawl. Science Robotics, 3(15):eaar7555, 2018.

[46] Yi Yang, Katherine Vella, and Douglas P Holmes. Grasping with kirigami shells. Science
Robotics, 6(54):eabd6426, 2021.

143



References

[47] Sebastien J.P. Callens and Amir A. Zadpoor. From flat sheets to curved geometries: Origami and
kirigami approaches. Materials Today, 21(3):241–264, 2018.

[48] Kyle A Serikawa and Dina F Mandoli. An analysis of morphogenesis of the reproductive whorl
of acetabularia acetabulum. Planta, 207(1):96–104, 1998.

[49] Julien Dervaux and Martine Ben Amar. Morphogenesis of growing soft tissues. Physical review
letters, 101(6):068101, 2008.

[50] Yael Klein, Efi Efrati, and Eran Sharon. Shaping of elastic sheets by prescription of non-euclidean
metrics. Science, 315(5815):1116–1120, 2007.

[51] Jungwook Kim, James A Hanna, Myunghwan Byun, Christian D Santangelo, and Ryan C
Hayward. Designing responsive buckled surfaces by halftone gel lithography. Science,
335(6073):1201–1205, 2012.

[52] Limei Huang, Ruiqi Jiang, Jingjun Wu, Jizhou Song, Hao Bai, Bogeng Li, Qian Zhao, and
Tao Xie. Ultrafast digital printing toward 4d shape changing materials. Advanced Materials,
29(7):1605390, 2017.

[53] Amirali Nojoomi, Hakan Arslan, Kwan Lee, and Kyungsuk Yum. Bioinspired 3d structures with
programmable morphologies and motions. Nature communications, 9(1):1–11, 2018.

[54] Myunghwan Byun, Christian D Santangelo, and Ryan C Hayward. Swelling-driven rolling and
anisotropic expansion of striped gel sheets. Soft Matter, 9(34):8264–8273, 2013.

[55] Zi Liang Wu, Michael Moshe, Jesse Greener, Heloise Therien-Aubin, Zhihong Nie, Eran Sharon,
and Eugenia Kumacheva. Three-dimensional shape transformations of hydrogel sheets induced
by small-scale modulation of internal stresses. Nature communications, 4(1):1586, 2013.

[56] Seog-Jin Jeon, Adam W Hauser, and Ryan C Hayward. Shape-morphing materials from stimuli-
responsive hydrogel hybrids. Accounts of chemical research, 50(2):161–169, 2017.

[57] A Sydney Gladman, Elisabetta A Matsumoto, Ralph G Nuzzo, Lakshminarayanan Mahadevan,
and Jennifer A Lewis. Biomimetic 4d printing. Nature materials, 15(4):413–418, 2016.

[58] Mark Warner and Eugene Michael Terentjev. Liquid crystal elastomers, volume 120. Oxford
university press, 2007.

[59] Cyrus Mostajeran, Mark Warner, Taylor H Ware, and Timothy J White. Encoding gaussian
curvature in glassy and elastomeric liquid crystal solids. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 472(2189):20160112, 2016.

[60] Michael E McConney, Angel Martinez, Vincent P Tondiglia, Kyung Min Lee, Derrick Langley,
Ivan I Smalyukh, and Timothy J White. Topography from topology: photoinduced surface
features generated in liquid crystal polymer networks. Advanced Materials, 25(41):5880–5885,
2013.

[61] Paul Plucinsky, Marius Lemm, and Kaushik Bhattacharya. Programming complex shapes in thin
nematic elastomer and glass sheets. Physical Review E, 94(1):010701, 2016.

[62] Morgan Barnes, Seyed M. Sajadi, Shaan Parekh, Muhammad M. Rahman, Pulickel M. Ajayan,
and Rafael Verduzco. Reactive 3d printing of shape-programmable liquid crystal elastomer
actuators. ACS Applied Materials Interfaces, 12(25):28692–28699, 2020.

144



References

[63] Cedric P Ambulo, Julia J Burroughs, Jennifer M Boothby, Hyun Kim, M Ravi Shankar, and
Taylor H Ware. Four-dimensional printing of liquid crystal elastomers. ACS applied materials &
interfaces, 9(42):37332–37339, 2017.

[64] Arda Kotikian, Ryan L Truby, John William Boley, Timothy J White, and Jennifer A Lewis. 3d
printing of liquid crystal elastomeric actuators with spatially programed nematic order. Advanced
materials, 30(10):1706164, 2018.

[65] Ron Pelrine, Roy Kornbluh, Qibing Pei, and Jose Joseph. High-speed electrically actuated
elastomers with strain greater than 100%. Science, 287(5454):836–839, 2000.

[66] Christoph Keplinger, Martin Kaltenbrunner, Nikita Arnold, and Siegfried Bauer. Röntgen’s
electrode-free elastomer actuators without electromechanical pull-in instability. Proceedings of
the National Academy of Sciences, 107(10):4505–4510, 2010.

[67] Jiangshui Huang, Tiefeng Li, Choon Chiang Foo, Jian Zhu, David R Clarke, and Zhigang Suo.
Giant, voltage-actuated deformation of a dielectric elastomer under dead load. Applied Physics
Letters, 100(4):041911, 2012.

[68] Ehsan Hajiesmaili and David R Clarke. Reconfigurable shape-morphing dielectric elastomers
using spatially varying electric fields. Nature communications, 10(1):1–7, 2019.

[69] R Ortigosa and J Martínez-Frutos. Topology optimisation of stiffeners layout for shape-morphing
of dielectric elastomers. Structural and Multidisciplinary Optimization, 64(6):3681–3703, 2021.

[70] Ehsan Hajiesmaili, Natalie M Larson, Jennifer A Lewis, and David R Clarke. Programmed shape-
morphing into complex target shapes using architected dielectric elastomer actuators. Science
Advances, 8(28):eabn9198, 2022.

[71] David Cadogan, William Graham, and Timothy Smith. Inflatable and rigidizable wings for
unmanned aerial vehicles. In 2nd AIAA" Unmanned Unlimited" Conf. and Workshop & Exhibit,
page 6630, 2003.

[72] Ignacio Andrade-Silva and Joel Marthelot. Fabric-based star soft robotic gripper. arXiv preprint
arXiv:2209.02491, 2022.

[73] Shuguang Li, John J Stampfli, Helen J Xu, Elian Malkin, Evelin Villegas Diaz, Daniela Rus,
and Robert J Wood. A vacuum-driven origami “magic-ball” soft gripper. In 2019 International
Conference on Robotics and Automation (ICRA), pages 7401–7408. IEEE, 2019.

[74] Eric Brown, Nicholas Rodenberg, John Amend, Annan Mozeika, Erik Steltz, Mitchell R. Zakin,
Hod Lipson, and Heinrich M. Jaeger. Universal robotic gripper based on the jamming of granular
material. Proceedings of the National Academy of Sciences, 107(44):18809–18814, 2010.

[75] Emmanuel Siéfert. Inflating to shape: from soft architectured elastomers to patterned fabric
sheets. PhD thesis, Sorbonne université, 2019.

[76] Emmanuel Siéfert, Etienne Reyssat, José Bico, and Benoît Roman. Bio-inspired pneumatic
shape-morphing elastomers. Nature materials, 18(1):24–28, 2019.

[77] Emmanuel Siéfert and Mark Warner. Inflationary routes to gaussian curved topography. Proceed-
ings of the Royal Society A, 476(2240):20200047, 2020.

[78] Emmanuel Siéfert, Etienne Reyssat, José Bico, and Benoît Roman. Programming stiff inflatable
shells from planar patterned fabrics. Soft Matter, 16(34):7898–7903, 2020.

145



References

[79] Tian Gao, Emmanuel Siéfert, Antonio DeSimone, and Benoît Roman. Shape programming by
modulating actuation over hierarchical length scales. Advanced Materials, 32(47):2004515, 2020.

[80] Julian Panetta, Florin Isvoranu, Tian Chen, Emmanuel Siéfert, Benoît Roman, and Mark Pauly.
Computational inverse design of surface-based inflatables. ACM Transactions on Graphics (TOG),
40(4):1–14, 2021.

[81] Lishuai Jin, Antonio Elia Forte, Bolei Deng, Ahmad Rafsanjani, and Katia Bertoldi. Kirigami-
inspired inflatables with programmable shapes. Advanced Materials, 32(33):2001863, 2020.

[82] Ruslan Guseinov, Connor McMahan, Jesús Pérez, Chiara Daraio, and Bernd Bickel. Programming
temporal morphing of self-actuated shells. Nature communications, 11(1):237, 2020.

[83] Tian Chen, Julian Panetta, Max Schnaubelt, and Mark Pauly. Bistable auxetic surface structures.
ACM Transactions on Graphics, 40(4):1–9, 2021.

[84] Tian Chen and Kristina Shea. Computational design of multi-stable, reconfigurable surfaces.
Materials Design, 205:109688, 2021.

[85] Lu Liu, Chuan Qiao, Haichao An, and Damiano Pasini. Encoding kirigami bi-materials to morph
on target in response to temperature. Scientific reports, 9(1):1–14, 2019.

[86] J. William Boley, Wim M. van Rees, Charles Lissandrello, Mark N. Horenstein, Ryan L. Truby,
Arda Kotikian, Jennifer A. Lewis, and L. Mahadevan. Shape-shifting structured lattices via
multimaterial 4d printing. Proceedings of the National Academy of Sciences, 116(42):20856–
20862, 2019.

[87] Marius Wagner, Tian Chen, and Kristina Shea. Large shape transforming 4d auxetic structures.
3D printing and Additive Manufacturing, 4(3):133–142, 2017.

[88] R.C. Hoseney, K. Zeleznak, and A. Abdelrahman. Mechanism of popcorn popping. Journal of
Cereal Science, 1(1):43–52, 1983.

[89] Emmanuel Virot and Alexandre Ponomarenko. Popcorn: critical temperature, jump and sound.
Journal of The Royal Society Interface, 12(104):20141247, 2015.

[90] TK Taewee. Cracker “keropok”: A review on factors influencing expansion. International Food
Research Journal, 18(3):855–866, 2011.

[91] Wen Wang, Lining Yao, Teng Zhang, Chin-Yi Cheng, Daniel Levine, and Hiroshi Ishii. Trans-
formative appetite: shape-changing food transforms from 2d to 3d by water interaction through
cooking. In Proceedings of the 2017 CHI conference on human factors in computing systems,
pages 6123–6132, 2017.

[92] S. Cafieri, M. Mastromatteo, S. Chillo, and M.A. Del Nobile. Modeling the mechanical properties
of pasta cooked at different times. Journal of Food Engineering, 100(2):336–342, 2010.

[93] Burebi Yiming, Tao Liu, Guodong Nian, Zilong Han, Zheng Jia, and Shaoxing Qu. Mechanics-
guided design of shape-morphing composite sheets with hard and soft materials. Extreme
Mechanics Letters, 35:100643, 2020.

[94] Qingrui Wang, Xiaoyong Tian, Lan Huang, Dichen Li, Andrei V. Malakhov, and Alexander N.
Polilov. Programmable morphing composites with embedded continuous fibers by 4d printing.
Materials Design, 155:404–413, 2018.

[95] Darcy Wentworth Thompson. On growth and form, volume 2. Cambridge university press
Cambridge, 1942.

146



References

[96] Loïc D’eramo, Benjamin Chollet, Marie Leman, Ekkachai Martwong, Mengxing Li, Hubert
Geisler, Jules Dupire, Margaux Kerdraon, Clémence Vergne, Fabrice Monti, et al. Microfluidic
actuators based on temperature-responsive hydrogels. Microsystems & Nanoengineering, 4(1):1–
7, 2018.

[97] Frédéric Tayeb, Baptiste Lefevre, Olivier Baverel, Jean-François Caron, and Lionel Du Peloux.
Design and realisation of composite gridshell structures. Journal of the International Association
for Shell and Spatial Structures, 56(1):49–59, 2015.

[98] Eike Schling, Denis Hitrec, Jonas Schikore, and Rainer Barthel. Design and construction of
the asymptotic pavilion. In VIII International Conference on Textile Composites and Inflatable
Structures. STRUCTURAL MEMBRANES 2017. Barcelona: International Center for Numerical
Methods in Engineering (CIMNE, pages S–178, 2017.

[99] Changyeob Baek, Andrew O. Sageman-Furnas, Mohammad K. Jawed, and Pedro M. Reis. Form
finding in elastic gridshells. Proceedings of the National Academy of Sciences, 115(1):75–80,
2017.

[100] Xiaonan Hou and Vadim V. Silberschmidt. Metamaterials with negative poisson’s ratio: a review
of mechanical properties and deformation mechanisms. In Mechanics of Advanced Materials,
pages 155–179. Springer International Publishing, 2015.

[101] Corentin Coulais, Alberico Sabbadini, Fré Vink, and Martin van Hecke. Multi-step self-guided
pathways for shape-changing metamaterials. Nature, 561(7724):512–515, 2018.

[102] Yongkang Jiang, Diansheng Chen, Che Liu, and Jian Li. Chain-like granular jamming: a novel
stiffness-programmable mechanism for soft robotics. Soft robotics, 6(1):118–132, 2019.

[103] Jan Koenderink and Andrea van Doom. Shape from chebyshev nets. In European Conference on
Computer Vision, pages 215–225. Springer, 1998.

[104] F Otto, J Hennicke, and K Matsushita. Il10 gitterschalen. Institut für leichte Flächentragwerke
(IL), 1974.

[105] Lina Bouhaya, Olivier Baverel, and Jean-François Caron. Mapping two-way continuous elastic
grid on an imposed surface: Application to grid shells. In IASS 2009: Evolution and Trends in
Design, Analysis and Construction of Shell and Spatial Structures, pages 989–998, 2009.

[106] Lionel Du Peloux, Olivier Baverel, Jean-François Caron, and Frédéric Tayeb. From shape to
shell: a design tool to materialize freeform shapes using gridshell structures. In Design Modelling
Symposium Berlin, 2013.

[107] Lorna J. Gibson and Michael F. Ashby. Cellular solids. 1997.

[108] Basile Audoly and Sébastien Neukirch. A one-dimensional model for elastic ribbons: a little
stretching makes a big difference. Journal of the Mechanics and Physics of Solids, 153:104457,
2021.

[109] Albert Edward Green. The equilibrium and elastic stability of a thin twisted strip. Proceedings of
the Royal Society of London. Series A-Mathematical and Physical Sciences, 154(882):430–455,
1936.

[110] Arthur Lebée and Karam Sab. Homogenization of a space frame as a thick plate: Application of
the bending-gradient theory to a beam lattice. Computers & Structures, 127:88–101, 2013.

147



References

[111] José Bico, Étienne Reyssat, and Benoît Roman. Elastocapillarity: When Surface Tension Deforms
Elastic Solids. Annual Review of Fluid Mechanics, 50(1):629–659, 2018.

[112] M. E. R. Shanahan and A. Carre. Viscoelastic dissipation in wetting and adhesion phenomena.
Langmuir, 11(4):1396–1402, 1995.

[113] Benoit Roman and José Bico. Elasto-capillarity: deforming an elastic structure with a liquid
droplet. Journal of Physics: Condensed Matter, 22(49):493101, 2010.

[114] José Bico, Benoît Roman, Loic Moulin, and Arezki Boudaoud. Elastocapillary coalescence in
wet hair. Nature, 432(7018):690–690, 2004.

[115] Xavier Noblin, Jared Westbrook, Nicolas Rojas, Médéric Argentina, and Jacques Dumais. Biome-
chanics of fern spores discharge: the sporangium opening. In Proceedings of the 6th Plant
Biomechanics Conference. Cayenne: Ecofog, pages 179–86, 2009.

[116] Ruba T Borno, Joseph D Steinmeyer, and Michel M Maharbiz. Transpiration actuation: the
design, fabrication and characterization of biomimetic microactuators driven by the surface
tension of water. Journal of Micromechanics and Microengineering, 16(11):2375–2383, 2006.

[117] Charlotte Py, Paul Reverdy, Lionel Doppler, José Bico, Benoît Roman, and Charles N. Baroud.
Capillary Origami: Spontaneous Wrapping of a Droplet with an Elastic Sheet. Physical Review
Letters, 98(15):156103, 2007.

[118] Aisa Biria and Eliot Fried. Theoretical and experimental study of the stability of a soap film
spanning a flexible loop, 2015. arXiv:1412.1210 [cond-mat].

[119] Luca Giomi and Lakshminarayanan Mahadevan. Minimal surfaces bounded by elastic lines.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
468(2143):1851–1864, 2012.

[120] Finn Box, Ousmane Kodio, Doireann O’Kiely, Vincent Cantelli, Alain Goriely, and Dominic Vella.
Dynamic Buckling of an Elastic Ring in a Soap Film. Physical Review Letters, 124(19):198003,
2020.

[121] Manon Jouanlanne, Antoine Egelé, Damien Favier, Wiebke Drenckhan, Jean Farago, and Aurélie
Hourlier-Fargette. Elastocapillary deformation of thin elastic ribbons in 2d foam columns. Soft
Matter, 18(12):2325–2331, 2022.

[122] Shucong Li, Bolei Deng, Alison Grinthal, Alyssha Schneider-Yamamura, Jinliang Kang, Reese S.
Martens, Cathy T. Zhang, Jian Li, Siqin Yu, Katia Bertoldi, and Joanna Aizenberg. Liquid-induced
topological transformations of cellular microstructures. Nature, 592(7854):386–391, 2021.

[123] Zachary A Zell, SiYoung Q Choi, L Gary Leal, and Todd M Squires. Microfabricated deflection
tensiometers for insoluble surfactants. Applied physics letters, 97(13):133505, 2010.

[124] N Adami and H Caps. Surface tension profiles in vertical soap films. Physical Review E,
91(1):013007, 2015.

148



Appendix A

Code for sample drawing

A.1 Code for blockers

In order for the cells to only squeeze a certain amount, blockers are added. Three triangles that
interlock are drawn inside half a diamond. There are different ways of designing such diamonds.
Knowing the initial and final angle of the diamonds, only three other parameters are required A.1.

Figure A.1 Scheme for the construction of the blockers. Half of the diamond in its open state on the left
and in its final state on the right

To have the final diamond as full of material as possible, α1 has to be as large as possible. The
limitation comes from the fact that in the open state, the tip of triangle 1 should not be in the other half
of the diamond. α1 is thus set to θi. For convenience, the two other values taken are γ3 and l3.

Knowing all this values, the other can be deduced.

α1 +β1 + γ1 = 180 (A.1)

α2 +β2 + γ2 = 180 (A.2)

α3 +β3 + γ3 = 180 (A.3)

β1 +α2 +α3 = 180 (A.4)

α2 +θ f = β3 (A.5)

(A.6)
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Code for sample drawing

A.2 Code for axisymmetric case

A.2.1 Construction of logarithmic spiral

θ

θbis

h

h

h1

h1

h1

R0

R1

ac

a1c
a1c

ac
acbis

b

bcbis

Figure A.2 Scheme for the construction of the diamonds in the case of the axisymmetric shapes

2b is the distance between the two sides of the diamond along the arc of circle. ep is the thickness
of the diamonds and h the distance between the diamonds vertically and horizontally. ep has a linear
dependency with the length of the diamonds side. ep = αl with l = b

√
C2 +1 and h = Aep, thus:

h = Aαb
√

C2 +1 (A.7)

Looking at the scheme A.2, this equation can be derived:

(2b+2h) = (R+h+ac)θ (A.8)

(2b+2Aαb
√

C2 +1) = (R+Aαb
√

C2 +1+Cb)θ (A.9)

Thus
b =

Rθ

2−Cθ +Aα(2−θ)
√

C2 +1
(A.10)

and then R1 = R+h+ac with ac =Cb
The operation is repeated for the second ring of diamonds that are is shifted of half a diamond.
In reality the length of the diamonds side is not l = b

√
C2 +1 but lc = acbis

bcbis
with acbis and bcbis

respectively the half vertical and horizontal straight diagonal.
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A.2 Code for axisymmetric case

Moreover from one ring to another ac is conserve between the half top of the lower diamond and the
half bottom of the higher diamond (see A.2). Indeed, all the point are set in a way that every summit and
the center of the diamond of the next ring are aligned on the same circle centered at the center of the
figure.

When one portion is drawn, it is then repeated N = θ

360 times.
This description of the drawing can be used to designed the desired shapes. ac, ac1 ... correspond to

the open diamond. When they are closed, the ac f in measured is different and the summit of the diamonds
are aligned on a different circle with radius R f

A.2.2 Algorithm axisymmetric shapes

Once the logarithmic spiral is drawn, the blockers with a specific size have to be drawn. A function
takes the profile and the positions of specific points to determine the strain to apply in each diamonds.
Every length used here correspond to the final state when the diamonds are closed.

Inputs:

• pro f ile : discrete or continuous profile of the desired shape (Rbis,Ht).

• Rbisi, Hti: coordinate of the initial point on the profile.

• H1: correspond to h the distance in between diamonds.

• n: number of diamonds per ring.

• l1, l2: the upper and lower side of the diamond.

• a f 1: the final length of the upper half diagonal of the diamonds from the previous ring.

• R f 1: length from the center of the sample to the initial point.

• j : taken into account when the number of diamonds is doubled not to have too big diamonds

Outputs:

• a f 2: length of the upper vertical half of the actual diamond from the arc of circle.

• Rbis f 1,Ht f 1: coordinate on the profile of the upper corner of the diamond.

• b f ,bbis f : respectively the final distance of the half horizontal diagonal as an arc of circle and
straight line.

• abis f 1,abis f 2: respectively the lower and upper vertical half of the diamonds taken from bbis f .

• R f 2: length from the center of the sample to the upper corner of the diamond.
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Code for sample drawing

In the function the point closer to the center is supposed fixed, all the other move when the cells
close. The function take the initial point on the profile, the lower vertical half diagonal is know from the
previous ring. With this length a new point is created of the profile, it determines a strain for the selected
ring. Knowing the strain for the cell, the length of the upper half vertical diagonal can be calculated and
positioned on the profile.

Going from a ring to another, every diamonds can be created and the final shape can be obtained.
When the strain for every ring is known, it can be converted to a size of blockers thanks to the code
detailed just before.
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MOTS CLÉS

élasticité, géométrie, matériaux programmables, changement de forme

RÉSUMÉ

Des matériaux qui seraient capables de changer de forme par eux-mêmes peuvent trouver des applications dans de
nombreux domaines technologiques. Par exemple, en “soft robotics”, où changer de forme de manière continue permet
d’attraper des objets fragiles, de se faufiler dans des espaces difficiles d’accès ou d’assister des opérations chirurgicales.
Mais le passage d’une surface plane à une forme en trois dimensions ne peut se faire qu’à des conditions géométriques
bien précises : il n’est pas possible de changer la courbure de Gauss d’une surface sans modifier les distances dans
son plan. Il est ainsi possible d’utiliser cette propriété pour changer de forme en variant localement la direction et/ou
l’intensité de déformations spontanées. Dans ce travail de thèse, nous avons développé des solutions simples pour
créer des objets plans capables de changer de forme, en utilisant des matériaux actifs (capables de se déformer en
réponse à un stimulus), et en contraignant leur déformation par couplage avec des structures déformables obtenues par
des méthodes de prototypage rapide (impression 3D, découpeuse laser. . . ). Nous avons pour cela utilisé des structures
cellulaires (contenant un motif qui se répète) dans différentes configurations. Dans un premier temps, un mélange
élastomère/éthanol a été utilisé comme matrice active qui gonfle quand elle est chauffée. De fins réseaux cellulaires
inextensibles ont été emprisonnés dans cette matrice pour contraindre son gonflement dans certaines directions de
l’espace et induire un changement de forme. Dans une deuxième partie, au lieu d’utiliser une matrice extérieure comme
moteur de la déformation (croissance/rétrécissement), des réseaux plus épais (∼ 1cm) sont directement actionnés. Pour
changer de forme, les cellules de ces structures sont fermées, soit en y faisant le vide, soit en utilisant des fils tendus à
travers la structure. Enfin, dans un dernier temps, des réseaux cellulaires fins sont actionnés par des films de savon, la
tension de surface permettant la fermeture des cellules. Dans les trois cas, la présence de réseaux cellulaires permet
de programmer localement l’intensité ou la direction de la déformation des structures planes pour en faire des formes 3D.
Des formes simples comme des cônes ou des anti-cônes ont été obtenues avec les trois techniques. De plus, dans le
cas des structures plus épaisses actionnées par des fils, il est aussi possible d’obtenir des formes plus complexes et de
résoudre le problème inverse dans certains cas (programmer la forme finale dans le design initial).

ABSTRACT

Materials that are able to change shape by themselves find applications in many fields. For example, in soft robotics,
where changing shape in a continuous way allows to catch fragile objects, to sneak into narrow spaces or to assist
surgical operations. But the change from a flat surface to a three-dimensional shape can only be done under specific
geometrical conditions: it is not possible to change the Gaussian curvature of a surface without changing the distances
in its plane. It is thus possible to use this property to change shape by locally varying the direction and/or intensity of
spontaneous deformations. In this thesis, we have developed simple solutions to create planar objects capable of shape
changing, by using simple active materials (deforming in response to a stimulus), and by constraining their deformation
by coupling them to deformable structures obtained by rapid prototyping methods (3D printing, laser cutter...). We have
used cellular structures (containing a repeating pattern) in different configurations. In a first part, an elastomer/ethanol
mixture has been used as an active matrix which swells when heated. Thin inextensible cellular networks trapped in this
matrix constrain its swelling in certain spatial directions and allow for shape change. In a second part, instead of using
an external matrix as a driver for deformation (growth/shrinkage), thicker networks (∼ 1cm) were directly actuated. To
change shape, cells of these structures were closed, either by using a vacuum pump or by using wires stretched across
the structure. Finally, in a last part, thin cellular networks were actuated by soap films, the surface tension allowing the
closure of the cells. In all three cases, the presence of cellular networks allowed to locally program the density or direction
of the deformation of the planar structures into 3D shapes. Simple shapes such as cones or anti-cones were obtained
with the three techniques. Moreover, in the case of thicker structures driven by wires, it is also possible to obtain more
complex shapes and to solve the inverse problem in some cases (programming the final shape in the initial design).

KEYWORDS

elasticity, geometry, morphable materials, shape changing
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