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Résumé

La turbulence est l’un des problèmes fondamentaux non résolus de la physique

classique, en dépit de sa manifestation dans de nombreux domaines, y compris l’ingénierie,

par exemple dans l’énergie éolienne. Ceci est lié à notre manque de connaissance des

propriétés des équations déterministes 3D de Navier-Stokes (NS) aussi fondamentales

que l’existence et l’unicité de ses solutions. Cela n’empêche pas les chercheurs et les

ingénieurs de l’utiliser. À l’aide de méthodes statistiques, le mécanisme de la tur-

bulence a été partiellement révélé, comme le processus de transfert d’énergie. Par

exemple, des modèles de fermeture de la turbulence, tels que le modèle quasi-normal

à amortissement turbulent markovianisé (EDQNM), ont été introduits pour tenir

compte partiellement de la hiérarchie infinie des équations des moments statistiques

générée par le terme non linéaire des équations de Navier-Stokes. Ils ont mis en

évidence la possibilité d’une rétrodiffusion de l’énergie du pic du spectre énergétique

vers les plus gros tourbillons et donc une modification de la loi de décroissance de

l’énergie de la turbulence. Cependant, ces avancées ne prennent pas en compte la

caractéristique fondamentale de la turbulence : l’intermittence, qui signifie que la

turbulence est extrêmement hétérogène et conduit à une grande divergence entre les

preuves empiriques et ces modèles. Nous avons donc choisi le modèle déterministe

Scaling Gyroscope Cascade (SGC), pour étudier la multifractalité de l’intermittence.
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Le SGC est basé sur une discrétisation parcimonieuse de la forme de Bernoulli des

équations de NS dans l’espace de Fourier qui préserve bien l’interaction de la triade

d’un tourbillon parent et de ses tourbillons enfants, générant étape par étape une

forte intermittence.

Tout d’abord, les codes Python pour les trois méthodes de simulation numérique

explicite - la méthode d’Euler, la méthode de Runge-Kutta du quatrième ordre et

la méthode d’Adams-Bashforth asservie - sont présentés et testés afin de déterminer

l’approche de simulation numérique la plus efficace pour le modèle SGC. Il ressort

que la méthode d’Euler est la méthode de simulation numérique la plus efficace en

comparant le temps d’exécution et la mémoire maximale. En outre, la structure

spatiale du modèle SGC suggère que la complexité de calcul augmente de manière

exponentielle avec le nombre d’étapes de la cascade.

Ensuite, l’intermittence du modèle SGC à de grands pas de cascade est étudiée en

injectant différents forçages. L’existence de fluctuations spatio-temporelles est con-

firmée à l’aide d’une analyse statistique du flux d’énergie dans le domaine inertiel.

La distribution de probabilité de ces fluctuations présente des queues beaucoup plus

épaisses que celles d’une distribution gaussienne. Pour obtenir un aperçu plus détaillé,

l’analyse est poursuivie dans le cadre de l’Universal Multifractal (UM), basé sur des

cascades multiplicatives stochastiques qui sont à la fois stables et attractives. Ces

cascades sont déterminées par seulement quelques paramètres UM qui sont physique-

ment significatifs pour tout modèle de cascade, y compris le SGC.

Parmi les différents résultats obtenus, nous démontrons que l’indice clé de mul-

tifractalité est significativement inférieur à 2, remettant ainsi en cause le modèle

log-normal encore souvent utilisé pour la turbulence hydrodynamique.
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Enfin, nous revisitons à l’aide du SGC la décroissance d’énergie d’une turbulence

libre en tenant compte de l’intermittence. En raison de cette dernière, la mise en

évidence du terme de rétrodiffusion d’énergie est plus complexe à démontrer, ainsi

que ses impacts sur la loi de décroissance de l’énergie. Mais la phénoménologie reste

la même, bien qu’avec des effets d’intermittence, par exemple, l’énergie est stockée à

grande échelle par bouffées, et non plus de manière continue.

Mots clés- turbulence, intermittence; multifractalité; le modèle SGC;

loi de décroissance de l’énergie libre; terme de rétrodiffusion, interac-

tions triadiques non locales;
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Abstract

Turbulence is one of the fundamental unresolved problems of classical physics,

despite its manifestation in many fields, including engineering, for example in wind

energy. This is linked to our lack of knowledge of properties of the deterministic

3D Navier-Stokes (NS) equations as basic as the existence and uniqueness of its

solutions. This doesn’t prevent researchers and engineers from using it. With the

help of statistical methods, the mechanism of turbulence has been partially revealed,

such as the energy transfer process. For instance, turbulence closure models, such as

the Eddy Damped Quasi-Normal Markovian model, have been introduced to partially

account for the infinite hierarchy of moment equations caused by the non-linear term

in the NS equation. They have highlighted the possibility of backscattered energy

from the energy spectrum peak to the largest eddies and therefore modification of

the energy decay law of turbulence. However, these advancements do not take into

account the fundamental characteristic of turbulence: intermittency, which means

that turbulence is extremely heterogeneous and leads to a large discrepancy between

the empirical evidence and these models. We therefore chose the deterministic Scaling

Gyroscope Cascade (SGC) model, to investigate the multifractality of intermittency.

SGC is based on a parsimonious discretisation of the Bernoulli’s form of the NS
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equations in Fourier space that well preserves the triad interaction of a parent eddy

and its child eddies, generating step by step a strong intermittency.

Firstly, the Python codes for the three explicit numerical simulation methods

- the Euler method, the fourth order Runge-Kutta method and the slaved Adams-

Bashforth method - are presented and tested to determine the most efficient numerical

simulation approach for the SGC model. It comes out that the Euler method is

the most effective numerical simulation method by comparing the running time and

maximum memory. Besides, the spatial structure of the SGC model suggests that

the computing complexity increases exponentially with the number of cascade steps.

Then, the intermittency of SGC model at large cascade steps is investigated by

injecting various forcings. The existence of spatial-temporal fluctuations is confirmed

with the help of a statistical analysis of the energy flux in the inertial range. The

probability distribution of these fluctuations has tails that are much heavier than those

of a Gaussian distribution. To get more detailed insights, the analysis is pursued in the

Universal Multifractal (UM) framework, based on stochastic multiplicative cascades

that are both stable and attractive. These cascades are determined by only a few

UM parameters that are physically meaningful for any cascade models, including the

SGC.

Among the various obtained results, we demonstrate that the key multifractality

index is significantly less than 2 thus questioning the log-normal model still often

used for hydrodynamic turbulence.

Last but not least, we revisit with the help of SGC the energy decay of a free

turbulence taking into account the intermittency. Due to the latter, the evidence of

the energy backscatter term is more complex to demonstrate, as well as its impacts
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on the energy decay law. But the phenomenology remains the same, although with

intermittency effects, e.g., energy is stored at large scales by puffs, no longer in a

continuous manner.

Key words- turbulence, intermittency; multifractality; the SGC model;

free energy decay law; backscatter term, nonlocal triad interactions;
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Résumé iii

Abstract vi

Acknowledgements x

Notation and Abbreviations xxviii

Notations xxix

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 The deterministic equation: NS equation . . . . . . . . . . . 7

1.2.2 Statistical approach . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Energy cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Kolmogorov assumption . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Energy decay law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 The nonlocal triad interaction . . . . . . . . . . . . . . . . . . . . . . 16

1.7 The intermittency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

xi



1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Multiplicative cascade models and Universal Multifractal frame-

work 25

2.1 The fractal geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Multiplicative Process . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 β−model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 The probabilistic conservation of upscaled β−model . . . . . . 34

2.3.2 The probabilistic conservation of β−model in the down-scaling 39

2.4 α−model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Multifractal field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 Universal Multifractal . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6.1 Double Trace Moment . . . . . . . . . . . . . . . . . . . . . . 52

2.6.2 Sampling dimension . . . . . . . . . . . . . . . . . . . . . . . 53

2.7 Summary of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 The Scaling Gyroscope Cascade model and numerical methods 56

3.1 Scaling Gyroscope Cascade (SGC) model . . . . . . . . . . . . . . . 57

3.2 The numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 The Euler method . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.2 Fourth-order Runge-Kutta method . . . . . . . . . . . . . . . 63

3.2.3 Slaved Adams-Bashforth Method . . . . . . . . . . . . . . . . 64

3.2.4 Semi-implicit Euler method . . . . . . . . . . . . . . . . . . . 66

3.3 Result analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Algorithm analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xii



3.5 Summary of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Multifractal intermittency of forced SGC model analysed by UM

framework 79

4.1 The forced SGC model . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Numerical parameters for the forced SGC model . . . . . . . . . . . . 81

4.3 Cascade step 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1 Intermittency of energy flux . . . . . . . . . . . . . . . . . . . 83

4.3.2 Non-Gaussian distribution and “heavy” tail . . . . . . . . . . 86

4.3.3 Multifractality analyzed by UM framework . . . . . . . . . . . 87

4.3.4 Time scale closing to atmospheric turbulence . . . . . . . . . . 105

4.3.5 Summary of cascade step 12 . . . . . . . . . . . . . . . . . . . 109

4.4 Cascade step 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4.1 Intermittency of energy flux . . . . . . . . . . . . . . . . . . . 111

4.4.2 Non-Gaussian distribution and “heavy” tail . . . . . . . . . . 113

4.4.3 Multifractality described by UM framework . . . . . . . . . . 114

4.4.4 Time scale closing to atmospheric turbulence . . . . . . . . . . 127

4.4.5 Summary of cascade step 14 . . . . . . . . . . . . . . . . . . . 129

4.5 Cascade step 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.5.1 Intermittency of energy flux . . . . . . . . . . . . . . . . . . . 131

4.5.2 Non-Gaussian distribution and “heavy” tail . . . . . . . . . . 132

4.5.3 Multifractality described by UM framework . . . . . . . . . . 133

4.5.4 Time scale closing to atmospheric turbulence . . . . . . . . . . 142

4.5.5 Summary of cascade step 15 . . . . . . . . . . . . . . . . . . . 143

4.6 Computational instability by comparing semi-implicit Euler method 144

xiii



4.7 Summary of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5 Backscatter term and energy decay law 150

5.1 Global scaling and the decay law of free turbulence . . . . . . . . . . 150

5.2 Stationarity of big eddies and energy backscattering . . . . . . . . . . 154

5.3 Other studies of backscatter term . . . . . . . . . . . . . . . . . . . . 156

5.4 New challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.5 SGC model and its backscatter term . . . . . . . . . . . . . . . . . . 159

5.5.1 Theoretical insights . . . . . . . . . . . . . . . . . . . . . . . . 159

5.5.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.6 Conclusions of Chapter 5 and prospects . . . . . . . . . . . . . . . . . 175

6 Conclusion and perspectives 177

A 182

A.1 Legendre Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.2 Universal Multifractal . . . . . . . . . . . . . . . . . . . . . . . . . . 183

B 186

B.1 Gyroscope Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

B.2 The orthogonality of SGC model . . . . . . . . . . . . . . . . . . . . 187

B.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.3.1 Euler method . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.3.2 The fourth order Runge-Kutta method . . . . . . . . . . . . . 198

B.3.3 The slaved Adams Bashforth method . . . . . . . . . . . . . . 203

B.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

xiv



B.4 The cascade step n = 12 simulated by semi-implicit Euler method . . 211

Declaration of Academic Achievement 214

xv



List of Figures

1.1 Wind turbines in Aveyron department of the Midi-Pyrenees region of

France . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The Reynolds experiment . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 The cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 The inertial range. k is wave number, which has k ∝ 1
l
. . . . . . . . 12

1.5 The triad interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Three kinds of triad interaction . . . . . . . . . . . . . . . . . . . . . 20

1.7 The wind velocity exhibiting high intermittent. The time unit is an

hour and resolution is 1Hz. . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Two fractal sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Cantor set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Multiplicative process whose separate ratio is 2. And increments for

ε(n,1) and ε(n,2) are generally considered to be the same. . . . . . . . . 30

2.4 β−cascade. Dash line represents dead eddies and the solid one is alive

eddies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Examples of two dimensional β−model. The resolution is 25. The

white area means alive area, while the black area is dead area. . . . 33

xvi



2.6 The upscaling process of two dimensional β−model whose codimension

is 0.2. The maximum resolution is 25. . . . . . . . . . . . . . . . . . . 34

2.7 The probability of events in two cascade step upscaled field. The orig-

inal field is one-dimensional β−model whose resolution is 28. The

codimension is 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8 α−model. Compared with β−model, some eddies act more active and

the rest acts less active. . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.9 The separating process of α−model when λ equals 2. . . . . . . . . . 44

2.10 A irregular field showing the codimensions c(γ) is associated to different

singularities γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.11 The codimension function c(γ). . . . . . . . . . . . . . . . . . . . . . 48

2.12 The function K(q, η) obtained by DTM method. UM parameters is

estimated by linear fit of empirical points. . . . . . . . . . . . . . . . 53

3.1 Gyroscope cascade whose separate ratio is λ = 2. . . . . . . . . . . . 57

3.2 Energy flux Π(k6) for Case 3.1 . . . . . . . . . . . . . . . . . . . . . . 70

3.3 UM analysis of energy fluxes Π(k6) for Case 3.1. The UM parameters

is obtained from ensemble analysis of samples whose resolution is 512. 71

3.4 Comparing commonly used functions in the big O notation when n ≤ 15. 73

3.5 The storage space S(n). . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1 Energy flux Π(k6) of Case 4.1. Time unit is initial eddy turn over time.

Vertical coordinate of energy fluxes is not uniform. . . . . . . . . . . 84

4.2 Energy flux Π(k6) of Case 4.1 getting rid of extremely high values. . 85

4.3 Energy flux Π(k5) of Case 4.1.1-4.1.3 (t : 1000− 23810). . . . . . . . . 86

xvii



4.4 Log-log plot of probability Pr(∆|Π(k6)|) > s) exceeding a fixed reflec-

tivity threshold s of Case 4.1. . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Temporal evolution of UM parameters and critical moment qs for Case

4.1.6 under size 1024 (a), 512 (b) and 256 (c). . . . . . . . . . . . . . 89

4.6 Bias of UM parameters for Case 4.1.6. . . . . . . . . . . . . . . . . . 91

4.7 Adjustment of Sub-series 23 for Case 4.1.6. . . . . . . . . . . . . . . 91

4.8 Time evolution of UM parameters and critical moment qs for Case 4.1.6

obtained by limiting correlation coefficient. Sub-series size is 512. The

horizontal coordinate is sub-series number. . . . . . . . . . . . . . . 92

4.9 Time evolution of UM parameters and critical moment qs for Case

4.1.7. Sample size is 512. . . . . . . . . . . . . . . . . . . . . . . . . 94

4.10 Time evolution of UM parameters and critical moment of Case 4.1.8. 95

4.11 Sub-series N = 6 in Case 4.1.8. . . . . . . . . . . . . . . . . . . . . . 96

4.12 Time evolution of UM parameters and critical moment of Case 4.1.9. 97

4.13 Time evolution of UM parameters and critical moment of Case 4.1.10. 98

4.14 Time evolution of UM parameters and critical moment of Case 4.1.5. 99

4.15 Subseries N = 42 in Case 4.1.5. . . . . . . . . . . . . . . . . . . . . . 100

4.16 Time evolution of UM parameters and critical moment of Case 4.1.4. 101

4.17 Time evolution of UM parameters and critical moment of Case 4.1.3. 102

4.18 Time evolution of UM parameters and critical moment of Case 4.1.2. 103

4.19 Time evolution of UM parameters and critical moment of Case 4.1.1. 104

4.20 Sub-series of Case 4.1.3 for ensemble analysis. Theoretical scaling mo-

ment function is defined by empirical UM parameters for atmospheric

turbulence α ≈ 1.5, C1 ≈ 0.25. . . . . . . . . . . . . . . . . . . . . . . 106

xviii



4.21 Ensemble analysis of Case 4.1.3. . . . . . . . . . . . . . . . . . . . . 107

4.22 Ensemble analysis of Case 4.1.4. . . . . . . . . . . . . . . . . . . . . 107

4.23 Ensemble analysis of Case 4.1.6. . . . . . . . . . . . . . . . . . . . . 108

4.24 Ensemble analysis of Case 4.1.7. . . . . . . . . . . . . . . . . . . . . 109

4.25 Ensemble analysis of Case 4.1.8. . . . . . . . . . . . . . . . . . . . . 109

4.26 Energy flux Π(k8) of Case 4.2. . . . . . . . . . . . . . . . . . . . . . . 111

4.27 Energy flux Π(k8) of Case 4.2 removing unstable time. . . . . . . . . 113

4.28 Log-log plot of probability Pr(∆|Π(k8)| > s) exceeding a fixed reflec-

tivity threshold s of Case 4.2 . . . . . . . . . . . . . . . . . . . . . . . 114

4.29 Time evolution of UM parameters and critical moment of Case 4.2.11. 115

4.30 Time evolution of UM parameters and critical moment of Case 4.2.10. 116

4.31 Time evolution of UM parameters and critical moment of Case 4.2.9. 117

4.32 Time evolution of UM parameters and critical moment of Case 4.2.8. 118

4.33 Time evolution of UM parameters and critical moment of Case 4.2.7. 119

4.34 Time evolution of UM parameters and critical moment of Case 4.2.6. 120

4.35 Time evolution of UM parameters and critical moment of Case 4.2.5. 121

4.36 Time evolution of UM parameters and critical moment of Case 4.2.4. 122

4.37 Time evolution of UM parameters and critical moment of Case 4.2.3. 123

4.38 Time evolution of UM parameters and critical moment of Case 4.2.2. 125

4.39 Time evolution of UM parameters and critical moment of Case 4.2.1. 126

4.40 Ensemble analysis of Case 4.2.3. . . . . . . . . . . . . . . . . . . . . 128

4.41 Ensemble analysis of Case 4.2.6. . . . . . . . . . . . . . . . . . . . . . 128

4.42 Ensemble analysis of subseries N = 22− 33 in Case 4.2.9. . . . . . . 129

4.43 Energy flux Π(k9) whose cascade step n = 15. . . . . . . . . . . . . . 131

xix



4.44 Energy flux Π(k9) of Case 4.3. . . . . . . . . . . . . . . . . . . . . . . 132

4.45 Log-log plot of probability Pr(∆|Π(k9)| > s) exceeding a fixed reflec-

tivity threshold s of Case 4.3 . . . . . . . . . . . . . . . . . . . . . . . 133

4.46 Time evolution of UM parameters and critical moment of Case 4.3.7. 134

4.47 Time evolution of UM parameters and critical moment of Case 4.3.6. 135

4.48 Time evolution of UM parameters and critical moment of Case 4.3.5. 136

4.49 Time evolution of UM parameters and critical moment of Case 4.3.4. 137

4.50 Time evolution of UM parameters and critical moment of Case 4.3.3. 138

4.51 Time evolution of UM parameters and critical moment of Case 4.3.2. 139

4.52 Time evolution of UM parameters and critical moment of Case 4.3.1. 140

4.53 Ensemble analysis of Case 4.3.4. . . . . . . . . . . . . . . . . . . . . 142

4.54 Ensemble analysis of Case 4.3.5. . . . . . . . . . . . . . . . . . . . . 143

4.55 Ensemble analysis of Case 4.3.6. . . . . . . . . . . . . . . . . . . . . 143

4.56 Energy flux Π(k6) of Case 4.1 simulated by semi-implicit Euler method. 145

4.57 Energy flux Π(k6) of Case 4.1 which is simulated by the semi-implicit

Euler method and removed the extreme values. . . . . . . . . . . . . 146

5.1 Energy spetcrum Eq 5.5.10. . . . . . . . . . . . . . . . . . . . . . . . 162

5.2 Log-log plot of energy E(t) of Case 5.1 and Case 5.2. Time unit of

time t is the initial large eddy turnover time. K is system energy E(t). 164

5.3 Local Reynolds number Re of Case 5.1 and Case 5.2. . . . . . . . . . 165

5.4 Energy spectrum of Case 5.1 and Case 5.2, as well as their compensated

spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.5 Log-log plot of integral scale L(t) of Case 5.1 and Case 5.2 . . . . . . 167

5.6 Time evolution of ensemble averaged spectrum Er(km, t) of Case 5.3. 168

xx



5.7 Compensated spectrum and local Reynolds number of Case 5.3 . . . 168

5.8 Log-log plot of system energy and integral scale of Case 5.3 . . . . . . 169

5.9 Ensemble averaged spectrum Er(km, t) of Case 5.4. . . . . . . . . . . 169

5.10 Ak4 energy spectrum of Case 5.4 . . . . . . . . . . . . . . . . . . . . 170

5.11 Compensated spectrum and Reynolds number of Case 5.4 from time

310 to 400. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.12 The Log-log plot of energy and integral scale of Case 5.4 . . . . . . . 171

5.13 Energy spectrum of Case 5.5. . . . . . . . . . . . . . . . . . . . . . . 171

5.14 Compensated spectrum and Reynolds number of Case 5.5 at time 210−

300. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.15 Energy decay and integral scale of Case 5.5. . . . . . . . . . . . . . . 172

5.16 Energy spectrum of Case 5.6. . . . . . . . . . . . . . . . . . . . . . . 173

5.17 Exponent of infrared spectrum of Case 5.6. . . . . . . . . . . . . . . . 173

5.18 Reynolds spectrum and compensated spectrum of Case 5.6. . . . . . . 174

5.19 Energy decay and integral scale of Case 5.6. . . . . . . . . . . . . . . 174

A.1 The illustration that shows c(γ) could be locally characterized by the

singularity C1 and the local radius of curvature Rc(C1) at C1. K(q)

can be characterized through same method. . . . . . . . . . . . . . . 185

B.2 The orthogonality interaction of SGC model . . . . . . . . . . . . . . 189

B.3 Euler method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

B.4 RK4 method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

B.5 Slaved ABF method . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

B.6 The UM parameters of Cases 4.1.1-4.1.5 simulated by the semi-implicit

Euler method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

xxi



B.7 The UM parameters of Cases 4.1.6-4.1.10 simulated by the semi-implicit

Euler method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

xxii



List of Tables

3.1 Case 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 The space complexity for numerical methods. . . . . . . . . . . . . . 74

3.3 The time complexity for algorithms. . . . . . . . . . . . . . . . . . . . 75

3.4 The posterior analysis of three numerical methods for Case 3.1, which

is obtained on the same server. . . . . . . . . . . . . . . . . . . . . . 76

4.1 Parameters of Case 4.1 whose cascade step is n = 12. . . . . . . . . . 83

4.2 Frequency of UM parameters of Case 4.1 closing to atmospheric tur-

bulence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Case 4.2 whose cascade step is n = 14 . . . . . . . . . . . . . . . . . 111

4.4 Frequency of UM parameters of Case 4.2 closing to atmospheric tur-

bulence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.5 Case 4.3 whose cascade step is n = 15. . . . . . . . . . . . . . . . . . 130

4.6 Frequency of UM parameters of Case 4.3 closing to atmospheric tur-

bulence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.7 Frequency of UM parameters of Case 4.1 simulated by semi-implicit

Euler method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.1 Cases without power spectrum . . . . . . . . . . . . . . . . . . . . . . 164

5.2 Cases with power spectrum k4 . . . . . . . . . . . . . . . . . . . . . . 167

xxiii



5.3 The exponent of energy decay and integral scale of cases with power

spectrum k4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

xxiv



Code Listings

B.1 Computing velocity at top layer u0
0(t+∆t) by Euler method . . . . . 191

B.2 Computing velocity ui
n(t+∆t) by Euler method . . . . . . . . . . . . 192

B.3 Computing velocity ui
m(t+∆t)(1 ≤ m ≤ n− 1) by Euler method . . 192

B.4 Euler method. The velocities U i
m for all layers (0 ≤ m ≤ n) at each

time step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

B.5 Computing velocity at top layer u0
0(t+∆t) by Semi-implicit Euler method196

B.6 Computing velocity ui
n(t+∆t) by Semi-implicit Euler method . . . . 196

B.7 Computing velocity ui
m(t+∆t)(1 ≤ m ≤ n−1) by Semi-implicit Euler

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

B.8 Computing velocity u0
0(t+∆t) simulated by RK4 method . . . . . . . 198

B.9 Computing velocities ui
n by RK4 method . . . . . . . . . . . . . . . . 199

B.10 Computing velocities ui
m(t + ∆t)(1 ≤ m ≤ n − 1) simulated by RK4

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

B.11 RK4 method. Velocities U i
m for all layers (0 ≤ m ≤ n) at each time step201

B.12 Computing velocity u0
0(t+∆t) by slaved ABF method . . . . . . . . 205

B.13 Computing velocities ui
n(t+∆t) by slaved ABF method . . . . . . . 206

B.14 Computing velocities ui
m(t+∆t) (1 ≤ m ≤ n−1) by slaved ABF method206

xxv



B.15 Slaved ABF method: Velocities U i
m for all layers (0 ≤ m ≤ n) at each

time step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

xxvi



List of Algorithms

1 The Euler method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

2 The slaved Adams-Bashforth Method . . . . . . . . . . . . . . . . . . 203

xxvii



Notation and Abbreviations

xxviii



Notations

Notations

αℓ The exponent of scaling law of scale ℓ(t), 151

αD The dissipativity is the power of negative Laplacian when v ∂2

∂x2 is replaced by

−v(− ∂2

∂x2 )
αD , 152

αe Exponent of energy decay law, 15

αl Exponent of integral scale, 16

f Body force, 7

k Wave number, 9

p Pressure, 7

r Location vector, 7

t Time, 7

u Velocity which has vector, 7

δru(l) The velocity increment, 10

xxix



ℓ(t) A rather arbitrary scale of energy-containing eddies in the energy spectrum

function, 151

ℓd,αD
(t) The dissipation scale related to RαD

, 152

∞ Infinite, 14

λ Separate ratio , 30

µ Increment of the energy flux at cascade step n, 30

ρ Density, 7

σ2 The variance, 22

ε Energy flux rate or energy flux density, 8
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C1 Averaged mean codimension obtained from all sub-series , 88

qs The mean critical moment obtained from all sub-series , 88

τ Eddy turnover time, 13

τe Initial large-eddy turnover time, 81

θk,p,q The correlation relaxation time of the triad k, p, q, 155

εn The energy flux density at step n , 30

ζ(q) Exponent of the qth-order moment structure function, 10

c(γ) Co-dimension function , 47

xxxiii



C1 One of UM parameters, the codimension of singularity of the mean field, which

equals its singularity. , 50

C1e Mean codimension obtained from ensemble analysis , 88

cij Sub-codimensions , 46

D The diameter of the pipe, 6

E(t) System energy, 82

Em(t) Energy at wave number km, 82

H∗ A measure of correlation, 13

K(q) The moment scaling function, 48

L Scale of motion, 7

L(t) Integral scale, 81

n+ The number of more active steps , 45

n− The number of less active steps , 45

P (∇) The projector of nabla operator, 58

qse Critical moment obtained from ensemble analysis, 88

Re Reynolds number, 7

S(n) The storage space, 72

T (n) Statement frequency, 75

xxxiv



tf Maximum time, 82

U Velocity, 6

v Viscosity, 6

Operations

∫
Integral, 14

∏
Product , 30

Ω The divergence , 58

· Scalar product , 7

∆ The Laplace Operator , 58

∇ Gradient, 7

∝ Proportional to, 13

curl The curl , 58

grad The gradient , 58

Abbreviations
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Chapter 1

Introduction

1.1 Background

Turbulence occur everywhere from life to scientific research, such as the mixing

of cream in a coffee cup, flight, and chemical experiments. Rapid development of

technologies motivates the study of turbulence to predict and control it. For ex-

ample, when designing the structural load and safety in marine engineering, one of

factors causing the movement of sediments and resuspension is turbulence in the

bottom layer of the ocean. Besides, turbulence will enhance sound scattering, mak-

ing studying sound transportation in the ocean more complex. Turbulence in the

atmosphere is more important than ever to many fields since recent research [136]

predicts a high frequency of atmospheric turbulence occurring and it will strengthen

with climate change to which turbulent heat flux may play an important role, though

1
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difficult to estimate [126]. Turbulence-related injuries in the flight, according to the

International Air Transport Association [77], reach 25%. On the other side, Gestion-

naire du Réseau de Transport d’Electricité (RTE) claims that renewable resource -

wind energy in France has remarkable growth [37], as wind energy in 2020 gener-

ated 7.9% of electricity and the maximum average rate of coverage of consumption in

2021 reached 31.35%. This renewable resource is the kinetic energy available in the

large-scale movements of air in the atmosphere [13], which is transported from the

ground to the height and captured by wind turbines Fig 1.11. It requires quantifying

turbulence caused by converting the kinetic energy of wind into thermal energy [86].

However, the mechanism of turbulence is neither completely understood nor precisely

predictable [87].

Figure 1.1: Wind turbines in Aveyron department of the Midi-Pyrenees region of
France

In the absence of computer technique, turbulence research at the beginning has

been largely focused on the analytical approximations through deterministic and

stochastic approaches, since the Navier-Stokes (NS) equation (See 1.2.1), which is

1This figure is from JohnnyOneSpeed
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the deterministic equation of turbulence, is still very challenging to guarantee and

obtain the global existence of unique solutions. After the statistical method is pro-

posed, significant achievements were achieved in the 20th century. The statistical

description (See 1.2.2), which relies on the moments of velocity fluctuations from the

NS equation, enables to study the dynamic of turbulence and gives generic properties,

such as the energy spectrum and decaying energy. However, one of the challenges is

an infinite hierarchy of enclosed moment equations caused by the nonlinear term, as

the partial time derivative of moments n is determined by moments n + 1. In order

to obtain a finite and closed set of equations, which is called closure scheme, this

difficulty could be handed by truncating by a model.

Based on the assumption of homogeneous isotropic turbulence [131] and station-

ary statistics, the Kármán-Howarth [25] equations are introduced, which inspires

statistic theory of turbulence and lays the foundation of “closure” approximations.

Kolmogorov proposed the well-known assumption of turbulence (See 1.4, 1.5) relying

on the cascade structure (See 1.3). This assumption has been used to testify the

following closure models.

The Quasi-Normal approximation (QNA) [90] by assuming that the probability

distributions of fluctuating velocity are normal distributions, closes the second and

third-order moments equations. The fourth-order moments of the cumulant, which

indicates the difference between the velocity distribution and normal distribution, are

zero. Scientists have taken notice of this promising analytical approach because of its

ability to achieve high Reynolds numbers and relative simplicity.

Kraichnan [60] noticed realizability problem of QNA that it violates the basic

probabilistic inequalities and the energy spectrum obtained by the QNA model is

3
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unphysical. So he proposed a field-theoretic closure called Direct Interaction Approx-

imation (DIA) to solve this realizability problem, which provides the exact statistical

solution to a stochastic model and saves many properties shown in the NS equation.

The pity of DIA is that it is not consistent with Kolmogorov theory. Plus, Kraichnan

[61] investigated the energy transfer process and revealed the importance of nonlocal

triad interaction (See 1.6) in two-dimensional turbulence that transfers most of en-

ergy from large scale to small scale [96, 56]. The nonlocal triad interaction provides

an approach to study the inner detail of the energy transferring in the scales of tur-

bulence, but it questions Kolmogorov’s theory due to the assumption of statistical

independence of cascade motion.

Eddy Damped Quasi-Normal Markovian (EDQNM) Model [98], a DIA-based clo-

sure model, is the currently most accepted closure model. By introducing a phe-

nomenological eddy damping rate, EDQNM avoids unphysical features, especially

the realizability guaranteed by Markovianization assumption, so that it is consistent

with Kolmogorov theory. It has been proven as an effective model to study the dy-

namics and transport properties of turbulence [48]. In the framework of EDQNM,

some deep insights have been proposed through the nonlocal interactions. One of

them is the backscatter term [74] becomes a non-neglected factor in the energy decay

of turbulence, which reveals the mechanism of inverse energy [88] and provides a more

accurate energy decay process.

Unfortunately, these advances haven’t taken one of the most fundamental phe-

nomena of natural turbulence: intermittency [8, 40] (See 1.7) into account, resulting

in strongly non-Gaussian fluctuations over a wide range of space-time scales. Even

though the traditional assuring scale invariance method by neglecting intermittency

4
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can describe turbulence energy transport, which involves only the second-order mo-

ments, description for the higher-order statistical moments urgently needs to be cor-

rected. Universal Multifractals (UM) based on multiplicative cascade models (See

Chapter 2) have been introduced as a powerful tool to describe intermittency in a

scale-invariant (scaling) framework, which emphasized extreme nonlinear variability.

The multifractal analysis of empirical data, particularly from lab experiments and at-

mospheric in-situ/remotely sensed data, has rather consistently generated estimated

UM parameters: multifractality index α ≈ 1.5 and mean codimension C1 ≈ 0.25. NS

equation and stochastic cascades are sometimes disagreed, nevertheless. The Scaling

Gyroscope Cascade (SGC) model [20] (See 3.1), which is based on a parsimonious

discretization of Fourier transform of the Bernoulli’s form of NS equation and pre-

serves majority of the fundamental properties of NS equation, is therefore studied

since it provides a more close statistical description of natural turbulence and shows

intermittency.

This thesis initially investigates the efficient numerical approach for SGC model.

The intermittency is next verified by energy flux of numerical simulated SGC model,

and its temporal multifractality is analyzed by UM framework (See Chapter 4). Free

energy decay process considering intermittency is studied by SGC model (See Chapter

5) to fill part of gap between scaling laws obtained by EDQNM and energy trans-

ferring process considering intermittency. Here, SGC model is simulated by direct

numerical simulation (DNS), which is an ideal method to explore the dynamic and

transitional process of turbulence in great detail under the rapid development of com-

puting technology. It gets rid of the limitations of closure problems and analytical

approaches and provides a great amount of information on turbulence. Related basic

5
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knowledge is provided in the following.

1.2 Turbulence

Turbulence are disorder flows over time and space domain, and the motion is

random and believed to be highly unpredictable. There is no precise mathematical

definition, but a physical definition was first proposed in Reynolds experiment [104].

In this experiment, the flow was pumped into a long, straight circular pipe to get rid

of vibration from the left side, which is shown in Fig 1.22.

Figure 1.2: The Reynolds experiment

The injected water contains a stream of stained trickle, allowing to observe water

motion in the glass tube clearly. This experiment was performed by independently

varying velocity U , the diameter of pipe D, and by considering various molecular vis-

cosity v. Hence, the parameter which characterizes turbulence is named as Reynolds

number:

Re =
UL

v
∼ The inertial force

The viscosity force
(1.2.1)

2The figure is from https://clqtg10snjb14i85u49wifbv-wpengine.netdna-ssl.com/wp-
content/uploads/2020/04
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where L is the scale of motion which is D in Reynolds experiment. The critical value

Rc suggested by Reynolds was the order of 2000. For R > Rc, the mixture of colored

stream and surrounding water on the right side is irregular and random, which is

turbulent flow. On the contrary, the unmixed stream is laminar flow.

1.2.1 The deterministic equation: NS equation

It’s generally accepted that the equation governing turbulence is Navier-Stokes

equation [92, 10]:

∂u

∂t
+ (u · ∇)u = v∇2u+ f − 1

ρ
∇p (1.2.2)

where u is velocity vector which depends on time t and location vector r; p is pressure;

ρ is pressure; f is body force; ∇ represents gradient. For incompressible fluid, the

divergence of velocity is

∇ · u = 0. (1.2.3)

It is of great importance that it characterizes the constant transfer of physical

quantities in the fluid. The unsteady-state term, which is the first item on the left

side of Eq 1.2.2, is the rate of changed momentum of fluid per unit volume. The

advection term, which is the second item on the left side of Eq 1.2.2, represents

the momentum that flows in and flows out of control surface. The right side of Eq

1.2.2 is pressure term, external forcing, and viscous dissipation, which contributes to

momentum of dissipation of Newtonian viscous fluids. Unfortunately, the existence

of rigorous mathematical unique solution for incompressible Navier-Stokes equation

hasn’t been obtained so far due to its complexity [107] resulting from the non-linear

term and infinite-dimensional problem.

7
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NS equation follows three basic physical laws: the conservation of mass, Newton’s

second law, and energy conservation. Energy transfer rate [58] is defined as the energy

per mass per time that passes through a spherical shell in Fourier space:

ε = −1

2

∂

∂t
(u · u). (1.2.4)

It is conserved by the nonlinear term of NS equation assuming v = 0, f = 0 and

density is constant.

Moreover, NS equation is symmetrical so that many properties are invariant under

these conditions. These symmetries are:

1. Space-translations: t, r,u 7→ t, r + l,u, l ∈ R3

2. Time-translations: t, r,u 7→ t+ τ, r,u, τ ∈ R

3. Galilean transformations: t, r,u 7→ t, r +Ut,u+U ,U ∈ R3

4. Parity: t, r,u 7→ t,−r,−u

5. Rotations: t, r,u 7→ t, Rr, Ru, R ∈ SO(3,R)

6. Scaling: t, r,u 7→ e1−at, er, eau, e ∈ R+, a ∈ R

The first four symmetries can be explained as Galilean invariance and scaling sym-

metry is obvious under the limit v → 0,f → 0. A hidden scaling symmetry [81] of

NS equation (v → 0) is introduced from rescaling around suitably defined Lagrangian

scaling centres, which is different from Galilean invariance.

1.2.2 Statistical approach

8
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When Reynolds number of NS equation is high, the degrees of freedom are huge

and turbulence is very sensitive to small disturbances and errors. It’s impossible

to trace and predict turbulence because of its random instantaneous motion. After

Taylor [132] suggested that the motion of turbulence can be studied as the stochas-

tic process, statistical method [65] is introduced as one of the important research

approaches to quantify turbulence, e.g., the averages, probability distribution func-

tions, spectra, correlations. One of statistical methods is correlation function:

Rij(l) = ⟨ui(r) · uj(r + l)⟩. (1.2.5)

This correlation function describes the relationship of velocity at different locations.

Kármán and Howarth in 1938 [25] proposed a self-similar law for this spatial correla-

tion function of velocity during studying decay of three-dimensional isotropic turbu-

lence at a high Reynolds number.

Many physical quantities of turbulence are related to the correlation function. For

example, energy spectrum [5] which is under assumption of homogeneous, describes

the distribution of average kinetic energy wave number space k:

Rii(l) =

∫ ∞

−∞
e−iklE(t)dk ⇒ E(k) ≡ 1

2

∫ ∫
|k|

ϕii(k)dσ(k) (1.2.6)

where ϕii(k) =
∫ ∫ ∫ +∞

−∞ eik·rRii(r)dr is three-dimensional.

To avoid the difficulty to determine probability density function with few param-

eters, the moment of high order q [3] providing approximation is:

⟨[u(r + l)− u(r)]q⟩ = ⟨(δru(l))q⟩ = Sq(l), (1.2.7)

9
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where

δru(l) = u(r + l)− u(r) (1.2.8)

is velocity increment. Assuming that turbulence are maintained at a steady state

by external forces, the right sides of Eq 1.2.7 under assumption of homogeneous

and isotropic is independent of time, direction, and selected spatial point r, so it is

simplified to a velocity component relating only to the magnitude of distance l, which

is named as structure function:

Sq(l) ∝ lζ(q), (1.2.9)

where ζ(q) is the exponent of the qth-order moment structure function.

Fruitful conclusions were built on assumption of statistical theory, such as the

well-known K41 theory. What’s more, strongly anisotropic systems are studied by

Generalized Scale Invariance (GSI) [115, 78]. It’s actually self-affine generated by the

pullback transforms and differential dilations/contractions operators. In two dimen-

sions, the operators could be represented by off-diagonal matrices.

1.3 Energy cascade

Richardson [105] is considered that laid the foundation for turbulence structure

as he first introduced the energy cascade to describe scaling law of turbulence. Part

of Richardson’s poem describing turbulence is

“Big whorls have little whorls,

Which feed on their velocity;

10
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And little whorls have lesser whorls,

And so on to viscosity.”

It suggests that turbulence are full of eddies of different sizes. Large-scale eddies

in Fig 1.3, which are like tanks and contain energy continuously, obtain energy from

the outside and transport energy to small-scale eddies by the inertia of fluid, while

small-scale eddies whirling faster will consume energy and turn it into heat by viscous

fraction. The inertia range, which depends on Reynolds number, is between large-

scale energy storage and small-scale energy consumption. The dissipation exists at

all scales but could be neglected in the inertial range.

Figure 1.3: The cascade

After introducing cascade, turbulence research has been greatly motivated by

cascades for a long time. Based on Richardson’s cascade structure, Kolmogorov [58]

proposed a statistical theory of turbulence, which measures statistical quantities of

turbulence. Moreover, achievements in multiplicative cascade models suggest the

importance of the cascade is far more significant.

11
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1.4 Kolmogorov assumption

Here, the well-known Kolmogorov assumption, which quantitatively describes en-

ergy distribution between scales and is considered as the fundamental advancement

of turbulence research, is explained. To start, several hypotheses are proposed to get

rid of large anisotropic eddies, which are affected by the boundary condition.

Lemma 1 The hypothesis of local isotropy: When Reynolds number is high

enough, the motion of turbulence at small scales l < lI is statistically isotropic, where

lI is the scale dividing isotropic eddies from those anisotropic large eddy.

Lemma 2 The similarity hypothesis: At sufficiently high Reynolds number, the

motions of turbulence at small scale (lη < l < lI) are in a statistically universal

form as shown in Fig 1.4, which is uniquely determined by dissipation rate ε and

independent of v. lη is Kolmogorov scale (Reη = 1) where dissipation starts.

Figure 1.4: The inertial range. k is wave number, which has k ∝ 1
l
.

Now it’s possible to describe the uniform characteristic in inertial range. Kol-

mogorov assumed the dissipation rate is the mean ⟨ε⟩ = ε in whole energy transferring

12
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process to reveal spatial distribution of turbulence. Due the Eq 1.2.4, the dissipation

rate is [25]

ϵ ∝ u2

τ
=

u2

l/u
=

u3

l
, (1.4.1)

where τ is eddy turnover time. Eq 1.4.1 yields that the mean square of velocity

increment between two points is two-thirds powers of the distance.

Lemma 3 Structure function: The second-order structure function depends on

length scale l and mean dissipation rate ϵ:

S2(l) ∝ l2H
∗ ∼ (ϵl)2/3, (1.4.2)

where H∗ is a measure of correlation.

Therefore, famous −5/3 energy spectrum [95] is obtained from the definition of

energy spectrum Eq 1.2.6.

Lemma 4 Kolmogorov-Obukhov spectrum: Scaling law of spectrum in inertial

range is:

E(k, t) ∝ ϵ2/3k−β∗
= ϵ2/3k−5/3, (1.4.3)

where β∗ is power spectrum exponent.

Besides, relationship between the second-order structure function and energy spec-

trum is

β∗ = 1 + ζ(2) ≈ 1 + 2H∗, (1.4.4)

where ζ(2) is the second-order-moment structure function exponent.
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Variety of experiments [110, 47] and theories [14] since the 1950s have confirmed

that the micro-structure of turbulence is what predicted by Kolmogorov and Obukhov-

the second-order structure function of turbulence obeys 2
3
law, and the one-dimensional

spectrum of turbulence obeys −5
3
power law.

1.5 Energy decay law

The dynamics of turbulence are generally referred to energy transferring from

large eddies to small eddies, which maintains motion of turbulence. Without external

forces, the kinetic energy (TKE) of fully developed turbulence will be consumed by

the viscosity term. Therefore, free energy decay law is one of the key characteristics to

reveal the mechanism of turbulence, which could be widely applied to rapid expansion

of wind energy [55]. Until now, plenty of research on the free energy decay laws has

been carried out. Even though there is a general agreement on the kinetic energy of

freely decaying turbulence that decays with time, the exponent of energy decay law

is still debatable.

According to the definition of energy spectrum, kinetic energy is

K ≡ 1

2
Rii(0) =

∫ +∞

0

E(k, t)dk. (1.5.1)

Kármán and Howarth [25] firstly suggest energy decay is self-similar for scales out-

side the dissipation range. Batchelor and Townsend [7] investigated the decay of

homogeneous isotropic three-dimensional turbulence at a high Reynolds number and

predicated energy decay law in the initial period when viscous dissipation and inertia
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forces are of comparable importance, is

K(t) ∝ t−1, (1.5.2)

whereas energy decay law in the final period after which inertia forces are negligible

is

K(t) ∝ t−
5
2 . (1.5.3)

Comte-Bellot and Corrsin [23] obtained that energy decay obeys a power law

K(t) ∝ tαe (1.5.4)

where exponent αe is less than −1. George in 1992 [45] confirmed this conclusion

that exponent αe should be between −5
2
and −1 and explicit value is decided by the

behavior of energy spectrum near k → 0. By assuming Loitsiansky integral

I(t) = −
∫

r2Rii(r, t)dr (1.5.5)

is an invariant, Kolmogorov [57] derived

K(t) ∝ t−
10
7 . (1.5.6)

Besides, the freely decaying turbulence with this assumption is commonly known as

Batchelor turbulence.

However, Proudman and Reid in 1954 [103] and Batchelor and Proudman in 1956

[6, 88] proved that Loitsiansky scale isn’t an invariant, which brings questions to −10
7
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energy decay law. Saffman [111] therefore proposed that the second integral moment

of velocity correlation is an invariant:

Ls(t) =

∫
Rii(r, t)dr ̸= 0, (1.5.7)

which is named as Saffman invariant, and the exponent αe associated with this hy-

pothesis which is referred as Saffman turbulence is −6
5
. Both measurement data

and experimental data of freely decaying grid-generated turbulence [23, 64, 91] have

verified it.

Actually, energy decay process is dominated by contributions from small wave

numbers as a consequence of exponential factor in the integrand, so its power-law

decay during the final period results from a behavior of E(k, 0) (k → 0). Energy

decay law αe = −10
7
corresponds to the energy spectrum E(k, 0) ∼ k4 at large scale,

while energy decay law αe = −6
5
is related to spectrum E(k, 0) ∼ k2.

Meanwhile, integral scale l measuring the correlation distance between two terms

of distance or time has a power law:

L(t) =

∫∞
0

k−1E(k, t)dk∫∞
0

E(k, t)dk
∝ tαl . (1.5.8)

Exponent αl in Batchelor turbulence is 2
7
obtaining from constant u2l5 = const,

whereas it is 2
5
in Saffman turbulence resulting from constant u2l3 = const.

More detailed research on energy decay process will be discussed in Chapter 5.

1.6 The nonlocal triad interaction
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Although a clear big picture of turbulence in which energy spectrum and energy

decay obey self-similar law has been obtained, the microcosm mechanism dominated

energy transferring in the scales of turbulence is also of great importance. Actually,

triads interaction preserves detailed conservation of kinetic energy that provides sig-

nificant information about the way nonlinear interactions occur between these modes.

Fourier analysis of NS equation, an infinite set of ordinary differential equations, could

be projected into a plane perpendicular to the wave vector due to incompressibility

eliminating longitudinal motion. Thus, the quadratic nonlinearity decomposes into

three Fourier modes interactions, which is named as triad interaction by Kraichnan

[60].

Velocity u(x, t) of homogeneous turbulence in Fourier space is:

û(k, t) =
1

(2π)3

∫
u(x, t)eik·xdx, (1.6.1)

which satisfies conjugate symmetry:

û(−k, t) = û(k, t). (1.6.2)

Continuity equation Eq 1.2.3 indicates

κ · û = 0, (1.6.3)

where κ is wave number. When any vector V̂ decomposes into:

V̂ = V̂
∥
+ V̂

⊥
, (1.6.4)

17

https://ecoledesponts.fr/
https://ecoledesponts.fr/en/laboratories-research-hydrology-meteorology-complexity


Thesis – X. LI; Ecole des Ponts ParisTech – Hydrology Meteorology et Complexity

where component V̂
∥
is parallel to κ and component V̂

⊥
is normal to κ. Then

component of V̂
∥
becomes

V̂
∥
= e(e · V̂ ) = κ(κ · V̂ )/κ2 ⇐⇒ V̂

∥
j =

κjκk

κ2
V̂k, (1.6.5)

where the unit vector e equals e = κ/κ. Unit vector Due to Eq 1.6.4, component

V̂
⊥
has

V̂
⊥
= V̂ − κ(κ · V̂ )/κ2 ⇐⇒ V̂ ⊥

j = P ikV̂k, (1.6.6)

where P ij is projection tensor allowing that component Eq 1.6.6 is the projection of

V̂ onto the plane normal to κ:

P ij(κ) ≡ δjk −
κjκk

κ2
. (1.6.7)

Projection tensor

Regarding momentum conservation on an fluid element, it yields [139]

∂uj

∂t
+

∂ujuk

∂xk

= v
∂2uj

∂xk∂xk

− 1

ρ

∂p

∂xj

, (1.6.8)

the equation for time evolution of velocity vector is obtained by its Fourier transform:

dûj

dt
+ vκ2ûj = −iκj p̂− V̂j (1.6.9)

where V̂j is derived from Fourier transform of nonliear term of Eq 1.6.8. Due to Eq

1.6.3, V̂j has:

κ2p̂ = iκjV̂j ⇒ V̂
∥
j =

κjκk

κ2
V̂k = −iκj p̂, (1.6.10)
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which indicates that −V̂
∥
j is balanced by pressure term. Hence, Eq 1.6.9 turns into:

dûj

dt
+ vκ2ûj = −(δij −

κjκk

κ2
)V̂k = −PijV̂k = −V̂ ⊥

j (1.6.11)

Now it’s time to give out V̂j:

V̂j(κ, t) = iκk

∑
κ′

ûj(κ
′)ûk(κ− κ′), (1.6.12)

Eq 1.6.11 becomes

(
d

dt
+ vκ2)ûj(κ, t) = −iκlP jk(κ)

∑
κ′

ûk(κ
′, t)ûk(κ− κ′, t). (1.6.13)

It shows time evolution of velocity û(κ, t) are related to velocities at wave number

p = κ′ and q = κ− κ′ (κ = k). These three wave vectors (k,p, q) in Fig 1.5 forms

a triangle

k + p+ q = 0. (1.6.14)

Hence, the elementary interactions between this triad (k,p, q) resulting from the

quadratic nonlinearity conserves energy.

!

"

# $

Figure 1.5: The triad interaction
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The triad interaction in Fig.1.6a whose wave numbers’ length are almost same, is

local.

!
"

# $

(a) The local triad interaction

!
"

#
$

(b) One kind of nonlocal triad
interactions

!
"

#

$

(c) Another kind of nonlocal triad
interactions

Figure 1.6: Three kinds of triad interaction

Conversely, the triad interaction in Fig 1.6b,1.6c is nonlocal when one of wave

numbers’ length is smaller:

q ≪ p ∼ k, (1.6.15a)

p ≪ q ∼ k, (1.6.15b)

k ≪ p ∼ q. (1.6.15c)

The nonlocal triad interaction makes energy locally exchanged between two larger
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wave numbers. Plus, the nonlocal triad interaction in Eq.1.6.15c could be repre-

sented by k−independent viscosity vturb(k) [63], which has widely applied to the sub-

grid models for homogeneous turbulence. Kraichnan [61] investigated energy transfer

process and confirmed the importance of nonlocal triad interaction, which has been

demonstrated by more detailed studies [28, 30] through the DNS of Navier-Stokes

turbulence and motives further research of energy transfer process [29, 138, 36, 96].

For instance, the parameter λk to separate the local and nonlocal interactions [71]

max(k,p, q)

min(k,p, q)
≥ λk, (1.6.16)

and the parameter that has been used by Lesieur is 2. Moreover, the backscatter

term and intermittency based on nonlocal interactions will be discussed later.

1.7 The intermittency

Further investigation showed that structure function proposed by K41 theory,

as well as scaling laws of energy dissipation rates at higher order moments, don’t

agree with experimental results. These significant deviations are caused by inter-

mittency, which breaks self-similarity properties [41] and brings the scale invariance

under doubt. For example, one of the shortcomings of K41 theory was that energy

dissipation rate ϵ is uniform in space and constant in time. Moreover, it is not only

the fundamental characteristic of natural turbulence [114, 31] but also a general phe-

nomenon in geophysics [117], raising doubts about previous research.

The general concept of intermittency is that high activate part of field concentrates
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into a small fraction, which is non-Gaussian distribution. As shown in Fig 1.7a,

vertical velocity [46] 3 shows high values in the time 10h−15h, which is more obviously

observed in Fig 1.7b.

(a) The wind velocity (b) The normalized vertical wind velocity

Figure 1.7: The wind velocity exhibiting high intermittent. The time unit is an hour
and resolution is 1Hz.

Intermittency was first introduced by Batchelor and Townsend [8] to describe

spatial inhomogeneous energy caused by the stretching of vortex filaments that the

fraction of available space for energy reduces as scale of eddies decreases. This spotti-

ness of eddies whose scale is small is the internal intermittency of turbulence. Landau

[68] noticed that intermittency should be taken into consideration in energy trans-

ferring process and claimed dissipation rate ε is a function of space and time. Later

Kolmogorov [59] refined K41 theory and ε in K62 hypothesis is assumed to have a

log-normal distribution

σ2
logε ∼ A+ alog(L/l) (1.7.1)

where a is some universal constant, σ2
logε is the variance and L is the largest scale.

3The data is from Hydrology Meteorology and Complexity laboratory of École des Ponts Paris-
Tech, which is measured by one of 3D sonic anemometers (manufactured by Thies). It is installed
at a wind farm located the southeast of Paris in France.
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The second-order moment scaling function now is

S2(l) ∝ ε2/3l2/3 (1.7.2)

which is also known as refined similarity hypothesis.

More research about intermittency will be explained in Chapter 2.

1.8 Summary

Turbulence is unquestionably complicated, and given how important it is, its

mechanism and properties have to be exposed. Some basic knowledge and signif-

icant advancements of turbulence that have been described above provide a brief

comprehension of the dynamic of turbulence. The deterministic equation of turbu-

lence is explained whose symmetries enable the maintenance of invariant properties.

Although it hasn’t been completed to give out a general solution to NS equation,

statistical methods have been commonly used to characterize turbulence. Energy cas-

cade structure greatly inspired turbulence research, such as the classic Kolmogorov

assumption that provides the energy spectrum and energy decay law. Besides, the

closure techniques, such as QNA and EDQNM, motivate the microcosmic description

of turbulence, revealing triad interactions preserving energy conservation. Backscat-

ter term resulting from nonlocal triad interactions generates reversed energy, which

leads to a more detailed decay law using EDQNM approach. These theories, particu-

larly the existence of the backscatter term and scaling laws are, however, called into

23

https://ecoledesponts.fr/
https://ecoledesponts.fr/en/laboratories-research-hydrology-meteorology-complexity


Thesis – X. LI; Ecole des Ponts ParisTech – Hydrology Meteorology et Complexity

question by the fundamental property of natural turbulence: intermittency. There-

fore, this research is carried out initially on the properties of intermittency, such as

multifractality. Then the role of intermittency in scaling laws of natural turbulence

is investigated.
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Chapter 2

Multiplicative cascade models and

Universal Multifractal framework

After realizing the importance of intermittency that is commonly observed by the

distribution of velocity increments and of fragment sizes at small scales in turbulence,

which results in the gap between classic models and reality, it captures researchers’

attention. Due to its non-Gaussian and anomalously heavy tails distribution, the

investigation of chaotic and nonlinear cascade driven by the vortex-stretching mecha-

nism is challenging. The multiplicative cascades considering intermittency lead to sig-

nificant improvements in bridging this gap, such as the simplest β−model. Moreover,

the convergence of multiplicative cascade process based on the central limit theorem

contributes to Universal Multifractal (UM) framework to quantity intermittency by

two scaling invariant parameters- the multifractality index and mean codimension

reflecting the similarity degree, which has been widely applied to describe the ex-

treme nonlinear variability of many fields including the atmospheric turbulence. Two
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UM parameters can be estimated by Double Trace Moment (DTM) technique. In

this chapter, cascade models considering intermittency as well as the converged UM

framework are explained.

2.1 The fractal geometry

As well known, fractal theory characterizing the simplest scale invariance-similarity

degree, laid the foundation to overcome the challenge faced by traditional geometry

in describing complex irregular events in the nature, and becomes a powerful tool

for studying physical phenomena. It motivates the β−model that take intermittency

into consideration.

Despite the fact that many studies significantly boosted the development of fractal

theory [53], fractal came to light after Mandelbrot [82, 106] explained Richardson’s

empirical finding that the length of coast will be greatly exceeded under some dimen-

sional measurements, as the lengths are different under different scale measurements.

When the scale approaches 0, the length will be positive infinity. Therefore, he gave

Hausdorff dimension [52] based on self-similar method and named as fractal dimension

DF . Fractal dimension DF is the measure of geometric irregularity degree. Fractal

dimension of the Britain coastline is 1.25. It is less than Euclidean dimension of the

plane 2 and larger than Euclidean dimension of straight line 1. Moreover, fractal

dimension describes self-similarity that is repeated at each scale. The fractal geome-

try allows to quantify the complexity of a chaotic system by fractal dimension of the

converged attractor of trajectories in their phase space. Moreover, it has been widely

applied to model the natural phenomena, for example, topographical surfaces, wind
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activity [18], and rainfall fields.

A fractal set F [34] satisfies the followings:

(i) F has a fine structure, i.e. details on arbitrarily small scales;

(ii) F is too irregular to be described in traditional geometry, both locally and globally;

(iii) F has some form of self-similarity, perhaps approximate or statistical;

(iv) F in most cases is defined in a very simple way, perhaps recursively.

(a) Koch curve (b) The Mandelbrot set

Figure 2.1: Two fractal sets

There are several methods to estimate fractal dimension DF , such as the box

counting method. The most commonly theoretical definition is given as below [82, 85]:

DF = lim
r→0

− logN

log r(N)
⇐⇒ N = r(N)−DF (2.1.1)

where N is the number of parts that object exactly decomposed into, and r(N) is the

similarity ratio that divides object or inverse resolution. In this way, fractal dimension
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DF is no longer an integer number. And a large fractal dimension DF indicates the

structure is highly irregular.

Another decisive parameter in fractal geometry is co-dimension c, which is the

intermittency exponent or Hurst exponent:

c = D −DF (2.1.2)

where D is Euclidean dimension. Contrary to fractal dimension DF , the co-dimension

c describes the degree of sparseness.

Here, one-dimensional fractal set Cantor set Fig.2.2 provides an illustration of

fractal geometry and clarifies fractal dimension DF .

Figure 2.2: Cantor set

It is assumed that the initial scale of this Cantor set is l0. Separating ratio λ is 3

and the scales after n steps ln become l0
λn which indicates similarity ratio r(N) equals

1
λn . The number of small scale ln is N(ln) = 2n. Hence, fractal dimension of Cantor

set is estimated by

DF = lim
n→∞

− log(N(ln))

log( 1
λn )

=
log2

log3
≈ 0.63, (2.1.3)
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which suggests that the co-dimension is c ≈ 0.37.

Typically, the difficulty of directly obtaining fractal dimension requires estimating

the co-dimension to describe irregular properties of fields.

2.2 Multiplicative Process

Following L.F.Richardson, the notion of multiplicative cascade was developed in

statistical study of turbulence by Kolmogorov as a phenomenological framework to

consider intermittency. Yaglom [137] exhibits an explicit cascade to take intermit-

tency into account. It’s a discrete procedure in which the breakdown of turbulent

eddies occurs, which is named as “self-similar breakdown of turbulence eddies”. He

proposed that the distribution of ε is log–normal distribution. This result also tes-

tifies to one of the shortcomings of K41 theory. Although log-normal approximation

is considered as a good solution for the problem of intermittency in hydrodynamic

turbulence, its application has been questioned by other researches. The most com-

mon challenge [83, 84] is that tails of probability distribution generated by nonlinear

cascade process [93, 62] deviate from the log-normal distribution, especially for high-

order moments. And it was until 1980, the fact that these multiplicative cascade

models [137, 94, 50] actually is general multifractal process, is realized.

Energy transfers from the large scale l0 to small scale l by successive steps. Sep-

arate ratio in the whole process is assumed as a fixed value λ. After separating n

steps, the length of small scales is

ln =
l0
λn

(2.2.1)
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Energy transfer rate εln at scale ln should be calculated by the multiplicative method

as shown in Fig.2.3:

εn = εln = µn · εn−1. (2.2.2)

where µn is usually assumed to be a scale-independent increment µ.2 &/2

)*+,

)(*,,) )(*,0)

1* 1*

Figure 2.3: Multiplicative process whose separate ratio is 2. And increments for
ε(n,1) and ε(n,2) are generally considered to be the same.

From Eq 2.2.2, it yields:

εn = µnµn−1 · · ·µ1ε0 = (
n∏

m=1

µm)ε0 = µnε0 (2.2.3)

Since turbulence energy is conserved in inertial range, the total transfer rate is

conserved

⟨εn⟩ = ⟨ε0⟩. (2.2.4)
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Besides, the scaling moment of energy flux density εn is:

⟨(εn)q⟩ =
n∏

m=1

⟨(µm)
q⟩⟨ε0⟩q = ⟨µq

1⟩n⟨ε0⟩q (2.2.5)

2.3 β−model

Based on Novikov-Stewart model [94], β−model [42] which is one of the funda-

mental cascade models considering intermittency is introduced. It has scaling law

associated with fractal dimension and therefore provides more physical insight than

the traditional approach based on probabilistic models of the dissipation. The idea

is that part of the total space in scales is excited.

In the β−model, as shown in Fig 2.4, small eddies are either alive or dead, which

is consistent with the disappearance of small eddies [8, 139] known as internal inter-

mittency of turbulence.

Figure 2.4: β−cascade. Dash line represents dead eddies and the solid one is alive
eddies.
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The fraction of alive eddies at scale ln is

βn = βn, (2.3.1)

where β is the fraction of alive eddies decreasing by each step. This is the reason why

it’s named as β−model.

According to Eq.2.1.1, the alive fraction βn can be expressed in fractal form:

βn =
N

N(ln)
=

r(N)−DF

r(N)−D
=

λn·DF

λn·D = λn·(−c). (2.3.2)

The alive fraction β at each step from Eq 2.3.1 is

β = λ−c. (2.3.3)

Considering this model in the probabilistic form, there are two states of the random

increments µ. The probability of alive increment is:

Pr(µ ̸= 0) = λ−c. (2.3.4)

The probability of dead increment is:

Pr(µ = 0) = 1− λ−c. (2.3.5)

Here, the nonzero increment

µ = λc, (2.3.6)

which is assumed from the alive fraction β at each step, is larger than 1 to guarantee
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the conservation of ε in whole process:

⟨µ⟩ = λc · Pr(µ = λc) + 0 · Pr(µ = 0) = 1 ⇐⇒ ⟨εn⟩ = ⟨ε0⟩. (2.3.7)

After iterating n steps, there are two possible states at solution rn = λn. The proba-

bility of alive state is:

Pr(εn = µεn−1 = (rn)
c = λnc) = λ−nc. (2.3.8)

The probability of dead state is:

Pr(εn = µεn−1 = 0) = 1− λ−nc. (2.3.9)

In the β−model, the activity of field ε depends on scale invariant fractal co-

dimension. The larger co-dimension or high intermittent exponent c indicates more

sparseness ( less occupied fraction) of the set (See the black area of Fig 2.5).

(a) Codimension c = 0.2 (b) Codimension c = 0.4

Figure 2.5: Examples of two dimensional β−model. The resolution is 25. The white
area means alive area, while the black area is dead area.

Since scaling invariant is of great importance and β−model provides probability
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distribution of intermittency, probabilistic conservation at different scales is studied.

Due to the length of scales, there are two kinds of scale changes: up-scaling and

down-scaling. The length of scales changes with a fixed number that is generally

related to the scale ratio λ.

2.3.1 The probabilistic conservation of upscaled β−model

The up-scaling process is to study the field whose resolution is Λ at the smaller

resolution Λ
λn until reaching 1. As an illustration, a two-dimensional β−model is up-

scaled. The field in Fig 2.6a has a resolution of Λ = 25. The resolution of upscaled

field in Fig 2.6b is 23. Each event in the up-scaled field consists of all events at

maximum resolution in the same location so that the mean of these events εΛ at

maximum resolution Λ is the event in the up-scaled field.

(a) The field (b) The upscaled field

Figure 2.6: The upscaling process of two dimensional β−model whose codimension
is 0.2. The maximum resolution is 25.

In order to simplify writing, An represents the survival eddy at nth step whose

energy flux density is εn = λnc

An : εn = λnc, (2.3.10)

while Ac
n is complementary event of An corresponding to the dead eddy at nth step
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whose energy flux density is εn = 0

Ac
n : εn = 0. (2.3.11)

The number of alive eddies at nth step is denoted as r and s is the number of dead

eddies. Eddies at nth step are independent. Upscaled steps is m. Therefore, Ar
n(A

c
n)

s

is defined as possible upscaled event at (n−m)th step, which is generated by r alive

eddies and s dead eddies at nth step (r+s = 2m). The energy flux density of Ar
n(A

c
n)

s

is

Ar
n(A

c
n)

s : εn−m =
r · εn(An) + s · εn(Ac

n)

2m
=

r · 2nc
2m

, ∀r + s = 2m. (2.3.12)

After upscaled one step (m = 1), there are three types of upscaled states:

A2
n : εn−1 = 2nc; (2.3.13a)

AnAc
n : εn−1 =

2nc

2
; (2.3.13b)

(Ac
n)

2 : εn−1 = 0. (2.3.13c)

According to the up-scaling process and independence, their probabilities are:

P (A2
n) = P (An)

2; (2.3.14a)

P ((Ac
n)

2) = P (Ac
n)

2; (2.3.14b)

P (AnAc
n) = 2P (An)P (Ac

n). (2.3.14c)

Here, upscaled event AnAc
n could be produced by two possible arrangements of eddies

at nth step: (An, A
c
n), (Ac

n, An), so the coefficient of its probability in Eq 2.3.14c
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should be 2.

Moreover, the sum of upscaled events’ probabilities equals 1, which ensures prob-

abilistic conservation in upscaling process, as shown in following:

P (A2
n) + P (AnAc

n) + P ((Ac
n)

2) = (P (An) + P (Ac
n))

2 = 1. (2.3.15)

For other cases (m > 1), the number of possible upscaled event Ar
n(A

c
n)

s increases

and probability can be directly derived by the binomial coefficient theory, which indi-

cates possible arrangements of eddies at nth step should be taken into consideration.

Therefore, probability of upscaled event Ar
n(A

c
n)

s is given by:

P (Ar
n(A

c
n)

s) = (2
m

r )P (An)
rP (Ac

n)
s. (2.3.16)

The possibility field of up-scaled events is also conserved:

∑
r+s=2m

P (Ar
n(A

c
n)

s) =
∑

r+s=2m

(2
m

r )P (An)
rP (Ac

n)
s = (P (An) + P (Ac

n))
2m = 1. (2.3.17)

Fig 2.7 is the probability of events in two cascade step upscaled field. Energy flux

density is normalized by εn = λnc so that event 1 in Fig 2.7 is An and event 0 is Ac
n.
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Figure 2.7: The probability of events in two cascade step upscaled field. The original
field is one-dimensional β−model whose resolution is 28. The codimension is 0.2.

Now the statistical moments of up-scaled event εn−m could be calculated as follow:

E(εqn−m) =
∑

r+s=2m

(εn−m(Ar
N(A

c
N)

s))qP (Ar
N(A

c
N)

s)

=
∑

r+s=2m

(
r

2m
· 2nc)q(2mr )P (AN)

rP (Ac
N)

s.

(2.3.18)

For the case q = 1:

E(εn−m) =
2m∑
r=1

r

2m
· 2nc(2mr )P (AN)

rP (Ac
N)

s

=
2m∑
r=1

(2
m−1

r−1 )P (AN)
r−1P (Ac

N)
2m−r

= (P (AN) + P (Ac
N))

2m−1 = 1.

(2.3.19)

The high statistical moments in study to describe distribution have q ≤ 4. The

upscaled step m is assumed large than 2 and it yields q < 2m. From Eq 2.3.19, the
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statistical moments function can be substituted into:

E(εqn−m) =
2m∑
r=1

(
r

2m
· 2nc)q−1(2

m−1
r−1 )P (AN)

r−1P (Ac
N)

s

=
2m∑
r=1

(
r

2m
)q−1(2

m−1
r−1 )P (AN)

r−qP (Ac
N)

s

=
2m∑
r=1

(
r

2m
)q−1 · (2m − 1)!

(2m − r)! · (r − 1)!
P (AN)

r−qP (Ac
N)

s.

(2.3.20)

According to the inequality

1

2m
<

1

2m − 1
<

1

2m − 2
, (2.3.21)

Eq 2.3.20 becomes

E(εqn−m) <
2m∑
r=1

rq−1 · (2m − q)!

(2m − r)! · (r − 1)!
P (AN)

r−qP (Ac
N)

s

<
(2m − q)!

(2m − 1)!
P (AN)

1−qP (Ac
N)

2m−1 +
2m∑
r=2

rq−1 · (2m − q)!

(2m − r)! · (r − 1)!
P (AN)

r−q·

P (Ac
N)

s.

(2.3.22)

The right hand side of Eq 2.3.22 is simply denoted as Emax(ε
q
n−m). Considering
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r = 1 + r − 1, Emax(ε
q
n−m) turns into

Emax(ε
q
n−m) =

(2m − q)!

(2m − 1)!
P (AN)

1−qP (Ac
N)

2m−1 +
2m∑
r=2

rq−2 · (1 + r − 1) · (2m − q)!

(2m − r)! · (r − 1)!
·

P (AN)
r−qP (Ac

N)
s

=
(2m − q)!

(2m − 1)!
P (AN)

1−qP (Ac
N)

2m−1 +
2m∑
r=2

rq−2 · (2m − q)!

(2m − r)! · (r − 1)!
P (AN)

r−q·

P (Ac
N)

s +
2m∑
r=2

rq−2 · (2m − q)!

(2m − r)! · (r − 2)!
P (AN)

r−qP (Ac
N)

s

...

=
(2m − q)!

(2m − 1)!
P (AN)

1−qP (Ac
N)

2m−1 +
2m∑
r=2

rq−2 · (2m − q)!

(2m − r)! · (r − 1)!
P (AN)

r−p·

P (Ac
N)

s + · · ·+
2m∑
r=q

(2m − q)!

(2m − r)! · (r − q)!
P (AN)

r−pP (Ac
N)

s.

(2.3.23)

Obviously the last term in Eq 2.3.23 equals 1 and

E(εqn−m) < Emax(ε
q
n−m), Emax(ε

q
n−m) > 1. (2.3.24)

When statistical moment is q = 1, the upscaling process of β−model is con-

served. When the statistical moments q is larger than 1, the value of upscaled fields

Emax(ε
q
n−m) suggests the weight of the alive eddies in the up-scaled field gets higher.

2.3.2 The probabilistic conservation of β−model in the down-

scaling

39

https://ecoledesponts.fr/
https://ecoledesponts.fr/en/laboratories-research-hydrology-meteorology-complexity


Thesis – X. LI; Ecole des Ponts ParisTech – Hydrology Meteorology et Complexity

This part will discuss the conservation of down-scaled field whose probability is

determined by the hierarchical path in downscaling.

The ancestor eddy must be alive ε0 = 1 due to the fact that alive eddies cannot

be generated by dead mother eddy. The probabilities of increments are simplified as:

Pr(µ = λc) = λ−c = P1; (2.3.25a)

Pr(µ = 0) = 1− λ−c = 1− P1. (2.3.25b)

The number of alive eddies at nth step is denoted by rn in downscaling, which

corresponds to energy flux density εn = rn · 2nc, preventing to mislead with the alive

number at other steps.

When n = 1, there are three kinds of possible states at 1st cascade step:

All small eddies are alive (r1 = 2) : ε1 = 2 · 2c; (2.3.26a)

One of the small eddies is alive (r1 = 1) : ε1 = 1 · 2c; (2.3.26b)

None of the small eddies is alive (r1 = 0) : ε1 = 0 · 2c. (2.3.26c)

The probability of state Eq.2.3.26b has to take arrangements of events into consid-

eration too. So their probabilities are:

P (ε1 = 2 · 2c) = (22) · P 2
1 ; (2.3.27a)

P (ε1 = 1 · 2c) = (21) · P 1
1 · (1− P1)

1; (2.3.27b)

P (ε1 = 0 · 2c) = (20) · (1− P1)
2. (2.3.27c)
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Plus, the sum of these events’ probabilities is 1 ensuring probability conservation.

When n > 1, energy flux density at nth step that depends on states at former

steps can be generated by different events, suggesting that probabilities should be

obtained by conditional probability theory

P (A|B) =
P (AB)

P (B)
. (2.3.28)

Event at nth step can be generated by numerous different states at (n− 1)th step

when only the state at (n− 1)th step is taken into account. Therefore, events at the

nth step can be generated by many possible paths by considering hierarchical former

steps.

Alive number rn could be either the odd number or the even number. These

situations will be separately discussed. rn = 2n − 2j (0 ≤ j < 2n−1) alive eddies

at nth step, which is even, should be generated from event rn−1 = 2n−1 or event

rn−1 = 2n−1−j if we only consider the (n−1)th step. Meanwhile, event rn−1 = 2n−1−j

could be generated through different paths from 1st step to (n − 2)th step which

exhibits hierarchical property in the downscaling. Because dead eddies only generate

dead eddies instead of alive eddies that has an impact on the event at nth step. As

a result, 2j dead eddies at nth step, which are generated by different former layers,

could consist of dead eddies produced by the last step or the former steps. In this

way, there are plenty of arrangements of dead eddies which will be represented by

coefficient a(m). h(z) dead eddies which are produced at (n− z)th step except those

eddies generated by former steps could be referred as binomial coefficient (
2n−z−g(z)
h(z)

).

And g(z) is the number of supposed dead eddies at (n − z)th step which is caused

by former steps. Therefore g(z) =
∑

m′=z+1 h(m′) · 2m′−z corresponds to the supposed
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dead eddies at (n − z)th step which is caused by former step. So
∑

h(z) · 2z = 2j is

the number of dead eddies at nth step, whereas the sum of
∑

h(z) is the index of the

probabilities of dead eddy.

The following gives a clear formula of events probabilities:

P (εn = (2n − 2j) · 2nc) =P (rn = 2n − 2j)

=P (rn−1 = 2n−1) · (2n2j ) · P 2n−2j
1 · (1− P0)

2j + P (rn−1 = 2n−1 − 1)·

(2
n−2

2j−2 ) · P 2n−2j
1 · (1− P1)

2j−2 + · · ·+ P (rn−1 = 2n−1 − j) · P 2n−2j
1

=

j∑
m′=0

P(rn−1=2n−1−m′) · (2
n−2m′

2j−2m′ ) · P 2n−2j
1 · (1− P1)

2j−2m′

=
∑

a(m) · Pw
1 · (1− P1)

v

(2.3.29)

where a(m) =
∏n

z=0(
2n−z−g(z)
h(z)

), in which
∑

h(z) = v,
∑

h(z) · 2z = 2j, g(z) =∑
m′=z+1 h(m′) · 2m′−z,

∑
(2n−z − g(z) − h(z)) = w.

Another case is pn = 2n − 2j − 1 alive eddies at nth step. The same procedure is

easily adapted to obtain its probability.

P (εn = (2n − 2j − 1) · 2nc) =P (pn = 2n − 2j − 1)

=P (pn−1 = 2n−1) · (2n2j+1) · P 2n−2j−1
1 · (1− P1)

2j+1+

P (pn−1 = 2n−1 − 1) · (2n−2
2j−2+1) · P 2n−2j−1

1 · (1− P1)
2j−2+1+

· · ·+ P (pn−1 = 2n−1 − j)(2
n−2j

1 ) · P 2n−2j−1
1 · (1− P1)

=

j∑
t=0

P(p=2n−1−m′) · (2
n−2m′

2j+1−2m′) · P 2n−2j−1
1 · (1− P1)

2j+1−2m′

=
∑

a(m) · Pw
1 · (1− P1)

v

(2.3.30)
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where a(m) =
∏n

z=0(
2n−z−g(z)
h(z)

), in which
∑

h(z) = v,
∑

h(z) · 2z = 2j + 1, g(z) =∑
m′=z+1 h(m′) · 2m′−z,

∑
2n−z − g(z) − h(z) = w.

Moreover, the sum of probabilities of energy density at nth step equals 1 suggesting

hierarchical theory exits in downscaling. Above two probabilities equations of down-

scaled β−model provide probability without computing probabilities of former events.

The detailed probability of up-scaled and down-scaled β−model are presented. It

shows that the measure of probability is conserved when scale changes.

2.4 α−model

As known, two states are used to roughly describe eddies in β−model. However,

Schertzer and Lovejoy in 1984 discovered that various thresholds is allowed for a hier-

archy of many fractals to characterize irregular field, which is the idea of multifractal.

Instead of that eddy is either “alive” or “dead”, α−model is introduced to reveal

multifractal field by considering intensity of activity that eddy is going to act more

active or less active, as shown in Fig 2.8.
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Figure 2.8: α−model. Compared with β−model, some eddies act more active and
the rest acts less active.

Due to this detailed description of activities, α−model is a better approximation

and exponent α represents instability degree. The intensity of activity based on

increments Eq 2.3.6 in β−model is related to threshold, which can be written in the

form of singularity with separate ratio λγ.

Figure 2.9: The separating process of α−model when λ equals 2.

Therefore, increments of α−model shown in Fig 2.9 are:

More active (γ+ > 0) : µ = λγ+ ; (2.4.1a)

Less active (γ− < 0) : µ = λγ− ; (2.4.1b)
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where

γ+ =
c

α
; γ− = − c

α′ ;
1

α
+

1

α′ = 1. (2.4.2)

When γ− → −∞, γ+ = c which is β−model. And there is only one unique singularity

in β−model.

Due to Eq.2.3.4, 2.3.5, probabilities of increments are:

Pr(µ = λγ+) = λ−c; (2.4.3a)

Pr(µ = λγ−) = 1− λ−c. (2.4.3b)

As the averaged increments should be conversed ⟨µ⟩ = 1, α−model requires

⟨µ⟩ = λγ+ · Pr(µ = λγ+) + λγ− · Pr(µ = λγ−) = 1, (2.4.4)

where parameters are (γ+, γ−, c) and two of them could be chosen freely. The singu-

larities in separating process indicate α−model is multifratal. Obviously, β−model

is a special case that α = 1 and α′ = 0 , which suggests β−model is a fractal model.

After iterating n = n+ + n− step, probability of states at nth step is:

Pr(εn = (λn)γn) = (nn+
)λ−cn+(1− λ−c)n− . (2.4.5)

where

γn =
n+γ+ + n−γ−

n+ + n−
; (2.4.6)

n+ is number of more active steps and n− is number of less active steps.
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For those intensity states, probability is summed as the following:

Pr(εn ≥ (λn)γi) =
∑
j

pij(λ
n)−cij (2.4.7)

where pij is the prefactors in Eq 2.4.5, cij is the sub-codimensions.

2.5 Multifractal field

By re-normalizing α−model, multifractal field is obtained. These n steps with

two increment states cascade are replaced by a single step cascade with n+ 1 states.

The new scale ratio λ′ replaces λn and λ′ will eventually approach ∞. Here, ci is

defined by

ci = min{cij} = c(γi). (2.5.1)

And Eq 2.4.7 turns into

Pr(ελ′ ≥ (λ′)γi) = pi(λ
′)−ci . (2.5.2)
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Figure 2.10: A irregular field showing the codimensions c(γ) is associated to
different singularities γ.

For uniform and continuous distribution, Eq 2.5.2 could be written as

Pr(ελ ≥ λγ) ≈ λ−c(γ), (2.5.3)

where pi is absorbed by ≈. It describes probabilities of events whose intensity exceeds

the scale-dependant threshold λγ and yields a scale-invariant singularity γ, as shown

in Fig 2.10. Since Eq 2.5.2 indicates there is an unique co-dimension corresponding

to scaling threshold, c(γ) in Eq 2.5.3 is an increasing function [116] of the singularity

γ in Fig. 2.11. The multifractality of field is represented by codimension function

c(γ).
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Figure 2.11: The codimension function c(γ).

Now let’s move to scaling statistical moments of energy dissipation rate. The

statistical moments of energy dissipation rate ⟨(ελ)q⟩ has been given in Eq 2.2.5.

Schertzer and Lovejoy [79] obtained that the qth moment of energy dissipation rate

⟨(ελ)q⟩ can be expressed with the resolution λ

⟨(ελ)q⟩ ≈ λK(q) (2.5.4)

where K(q) is moment scaling function which is convex. Moreover, Parisi and Frisch

in 1985 [100] discovered the connection of scaling moment function K(q) and the

codimension function c(γ) through Legendre transform (Appendix A.1):

c(γ) = max
q

(qγ −K(q)) = qγγ −K(qγ); (2.5.5a)

K(q) = max
γ

(qγ − c(γ)) = qγq − c(γq) (2.5.5b)

where qγ is defined by K ′(qγ) = γ and γq is defined by c′(γq) = q. The statistical

moment and singularity are unique corresponded. Because there are only convexity

constraints, characteristic scaling function K(q) and codimension function c(γ) may

48

https://ecoledesponts.fr/
https://ecoledesponts.fr/en/laboratories-research-hydrology-meteorology-complexity


Thesis – X. LI; Ecole des Ponts ParisTech – Hydrology Meteorology et Complexity

depend on infinite number of parameters.

2.6 Universal Multifractal

The idea that only a few parameters are crucial in determining “universality”

classes caught scientists’ attention in the middle of 1980s. Based on the central

limit theorem of additive process, Schertzer and Lovejoy in 1987 [116] obtained that

multiplicative cascade processes converge to a “universality” process under quite gen-

eral conditions, which is named as Universal Multifractal (UM). For conservative

processes, these infinite parameters determined scaling moment function K(q) and

codimension function c(γ), can be reduced to two.

When scaling moment is q = 1 indicating it is the mean of process, corresponding

singularity is γ1. Due to Eq 2.5.5, it has

⟨ελ⟩ ≈ λγ1−c(γ1). (2.6.1)

As the field is conserved ⟨ελ⟩ = 1, it has

γ1 = c(γ1) = C1 (2.6.2)
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Therefore, C1 is the codimension of singularity which related to the mean field. More-

over, Legendre transforms yield

c(γ1) = c(C1) = C1, c
′(γ1) = c′(C1) = 1 (2.6.3a)

K(1) = γ1 − c(γ1) = 0, K ′(1) = γ1 = C1. (2.6.3b)

Then multifractality can be characterized by the deviations of K(q) from the mean

process q = 1. Since moment scaling functionK(q) is convex, local radius of curvature

RK at q = 1, which is local rate of change of slope, enables to define multifractality

index α. The local radius of curvature RK at q = 1 is

RK(q = 1) =
(1 + (K ′(1))2)3/2

K ′′(1)
=

(1 + C2
1)

3/2

K ′′(1)
(2.6.4)

And multifractality index α is defined as

α =
K ′′(1)

K ′(1)
. (2.6.5)

Therefore C1 is mean codimension measuring mean concentration of the activity.

Typically, C1 of irregular field couldn’t be smaller than 0 (C1 ≥ 0). When C1 equals 0,

the process is homogeneous, and intermittency doesn’t appear. Multifractality index

α (0 ≤ α ≤ 2) measures how quickly intermittency evolves when singularity slightly

deviates from the singularity obtained from average field. α = 0 is a monofractal

field, such as β−model, while α = 2 is the Log-normal model [137]. It’s important to

emphasize that α in UM is not the same as the one in α−model.
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So the moment scaling function K(q) and codimension function c(γ) described by

UM parameters [79] are (See in Appendix A.2)

K(q) =


C1

α− 1
(qα − q), α ̸= 1

C1qLn(q), α = 1

(2.6.6a)

c(γ) =


C1(

γ

C1α′ +
1

α
)α

′
, α ̸= 1

C1exp(
γ

C1

− 1), α = 1

(2.6.6b)

where

1

α
+

1

α′ = 1. (2.6.7)

Also included is multifractal impact on structural function Sn(l) Eq 1.2.9 [123].

When a field is monofractal, scaling exponent ζ(q) is linear

ζ(q) = qH, (2.6.8)

however structure function of universal multifractal field exhibits deviations from

linearity, which can be characterised by UM parameters

ζ(q) = qH − C1

α− 1
(qα − q), (2.6.9)

where H = ζ(1) is scaling Hurst exponent corresponding to the scaling of average

absolute fluctuations. UM parameters could be obtained from plot of log10(qζ
′(0) −

ζ(q)) and log10(q).
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2.6.1 Double Trace Moment

UM parameters can be directly estimated by Double Trace Moment (DTM) method

[70, 133]. Considering renormalized ηth power of field whose resolution is λ

ε
(η)
λ =

εηλ
⟨εηλ⟩

, (2.6.10)

and statistical qth moment of ε
(η)
λ obtained from Eq 2.5.4 is

⟨ε(η)qλ ⟩ = ⟨εηqλ ⟩
⟨εηλ⟩q

≈ λK(ηq)

λqK(η)
= λK(q,η) (2.6.11)

where

K(q, η) = K(ηq)− qK(η). (2.6.12)

In UM framework, moment function has

K(q, η) = ηαK(q) (2.6.13)

and K(q, η) turns into

K(q, η) = ηα
C1

α− 1
(qα − q). (2.6.14)

It suggests the slope of log-log plot of K(q, η) and η is α and C1 = exp(b) α−1
qα−q

, where

b is the intercept shown in Fig. 2.12.
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Figure 2.12: The function K(q, η) obtained by DTM method. UM parameters is
estimated by linear fit of empirical points.

2.6.2 Sampling dimension

It is crucial to note that statistical properties of multifractal process in above are

defined for infinite statistical ensembles. However, empirically statistical analysis nor-

mally is supported by finite samples instead of infinities that don’t capture the whole

rare events. Thus, sample dimension Ds is introduced to describe finite samples by

generating a maximum singularity γs and critical moment qs, which is the maximum

value that codimension and scaling moment function are reliable statistical estimated.

For a collection of Ns samples, the resolution of samples is λ and there are λD

values for each D−dimensional sample. Based on the definition of codimension Eq

2.5.3, there is a maximum value of γ, which is denoted γs, and could be observed on

at least one sample. Hence, it yields:

Nsλ
Dλc(γs) ≈ 1. (2.6.15)
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And the sampling definition is defined as

Ns = λDs ⇒ Ds =
log(Ns)

log(λ)
. (2.6.16)

From Eq 2.6.15, it has

c(γs) = D +Ds. (2.6.17)

According to Fig 2.11, when the sampling dimension is considered, the maximum

singularity gets large indicating that more rare events are studied.

The critical moment qs = c′(γs) which depends on number of samples, is always

used to study scaling moment function. It is the highest order moment after which

estimated moment scaling function K(q) will become linear. The critical moment

qs = c′(γs) obtained from the UM framework is:

qs = (
D +Ds

C1

)
1
α . (2.6.18)

2.7 Summary of Chapter 2

In this chapter, the most basic phenomenological cascade β−model considering

the intermittency is explained. Since many studies have attempted to understand the

intermittency with its’ probability distribution and the physical β−model gives the

probabilistic representation, the probability conservation under the changing scales

is studied. It demonstrates that probability conservation is a scaling invariant, which

lays a solid foundation for the further developed multifractal field. However, the alive

eddies at high moments will take more weights, causing the probability field to be
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larger than 1.

Based on the β−model, the multifractal is introduced to provide a remarkable

accuracy description of irregular fields. Meanwhile, UM framework, which is inspired

by the multifractal process and the central limit theorem, is presented as a powerful

framework for characterizing the multifractality of weather and climate on a large

spatial and temporal scale. A detailed analysis is carried out in the next chapter.
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Chapter 3

The Scaling Gyroscope Cascade

model and numerical methods

The intermittency of natural turbulence is considered one of the most important

phenomena in classical physics, nevertheless, for which neither a thorough theoretical

foundation nor phenomenological knowledge is sufficient. Scaling Gyroscope Cascade

(SGC) model [20, 21, 120] was motivated by Arnold’s insight [4] that vorticity equa-

tion arising from NS equation is analogous to Euler’s gyroscope equation. On the

basis of this similarity, SGC model preserves the majority of fundamental properties

of NS equation, such as the triad interaction and energy conservation. With its capac-

ity to generate the intermittency and quantitative description of natural turbulence,

SGC model is regarded as being extremely close to turbulence in nature and boosting

the possibility to precisely study intermittency and its role in energy decay. Various

numerical techniques are used to provide the velocity time evolution of SGC model,
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deformation of NS equation, which is particularly difficult to obtain the general solu-

tion. These methods are the simplest explicit Euler method, the classic fourth-order

Runge-Kutta method, and two methods considering physical properties. They are

the semi-implicit Euler method, which is often used to describe the motion of rigid

bodies, and the slaved Adams-Bashforth method, which takes into account the fast

damping of waves with high wave numbers. Algorithm analysis is performed, and

the results obtained from these three approaches are compared in order to identify

effective numerical simulation approach.

3.1 Scaling Gyroscope Cascade (SGC) model

Scaling Gyroscopes Cascade (SGC) model [20, 21, 120] is a space-time gyroscope

step-step model depicting evolution of the superposition coupling of daughter eddies

in Fig.3.1, which is based on a parsimonious discretization of Bernoulli’s form of

NS equation. The model doesn’t undergo an infinite number of iterations, and the

maximum finite cascade step is n.

Figure 3.1: Gyroscope cascade whose separate ratio is λ = 2.

SGC model is developed as a result of nonlocal orthogonal approximation of NS
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equation in Bernoulli form satisfying gyroscope equation (See Appendix B.1), in which

velocity and vorticity are analogous to angular momentum M and rotation Ω. In

the imcompressibility condition

div(u(x, t)) = 0, (3.1.1)

Bernoulli form of NS equation is

(
∂

∂t
− v∆)u(x, t) = u(x, t) ∧ ω(x, t)− grad(α∗); (3.1.2a)

ω(x, t) = curl(u(x, t)) (3.1.2b)

where ω(x, t) is vorticity and α∗ is kinematic pressure. Projector P (∇) corresponding

to P̂ (k) in Fourier space

Pi,j(∇) = δi,j −∇i∇j∆
−1 (δi,j is Kronecker′s δ) (3.1.3)

imposes the imcompressibility condition Eq.3.1.1 restriction on advection term, classic

pseudospectral technique typically employed in DNS [102, 17], and Eq.3.1.2 in Fourier

space turns into:

(
∂

∂t
+ vk2)û(k, t) = P̂ (k) ·

∫
p+q=k

û(p, t) ∧ ω̂(q, t)ddp, (3.1.4)

where ω is vorticity:

ω̂i
m = iki

m ∧ ûi
m. (3.1.5)

Here, the velocity-vorticity vertex of triad interaction (k,p, q) also only exits under
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orthogonality condition

k · û(k, t) = 0. (3.1.6)

Assuming arbitrary nonlocalness parameter λk in Eq.1.6.16, the orthogonality of

vorticity-velocity vertex interaction is

|k| ≪ |p| ≈ |q|,p ⊥ k =⇒ (û(p) ∧ ω̂(q)) ⊥ k (3.1.7a)

|p| ≪ |k| ≈ |q|, û(p) ∥ k =⇒ (û(p) ∧ ω̂(q)) ⊥ k, (û(q) ∧ ω̂(p)) ∥ k. (3.1.7b)

Therefore, Eq.3.1.4 turns into:

(
∂

∂t
+vk2)û(k, t) =

∫
|p|>λk|k|

(û(p)∧ ω̂(q))ddp+(

∫
|p|≤λ−1

k |k|
û(p)ddp)∧ ω̂(q). (3.1.8)

Since the triad interaction of SGCmodel is chosen as its tree structure (ki
m,k

2i
m+1,k

2i+1
m+1),

which has orthogonality constraints, Eq. 3.1.8 becomes

(
∂

∂t
+ vk2)ûi

m = û2i
m+1 ∧ ω̂

2i

m+1 + û2i+1
m+1 ∧ ω̂

2i+1

m+1 + û
a(i)
m−1 ∧ ω̂i

m. (3.1.9)

The symmetric property of gyroscope equation yields

u(k, t) =
ik ∧ ω̂(k, t)

k2
. (3.1.10)

and the orthogonality in Appendix B.2 leads to

k2i+1
m+1 = −k2i

m+1, (3.1.11)
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which is the last orthogonality triad.

Following the matrix representation of Eq.3.1.9 considering orthogonality, discrete

SGC model is as follow:

(
∂

∂t
+ vk2

m)u
i
m = km+1[|u2i

m+1|2 − |u2i+1
m+1|2] + (−1)i+1kmu

i
mu

a(i)
m−1 (3.1.12)

where km is wave number at layer m (0 ≤ m ≤ n); km+1 is wave number at layer

m+1; ui
m is velocity of eddy in location i at layer m (0 ≤ i ≤ 2m−1); a(i) is location

index of its mother eddy which is the integer part of real i
2
.

It presents the temporal evolution of velocity field ui
m, which is associated with

mother eddies u
a(i)
m−1 and two daughter eddies u2i

m+1 and u2i+1
m+1. Due to spatial structure,

velocity equations for two special layer are given. Velocity at top layer u0
0 without

ancestor eddy is

∂u0
0(t)

∂t
= k1[|u0

1(t)|2 − |u1
1(t)|2]− vk2

0u
0
0(t). (3.1.13)

Velocities at last layer ui
n without generating daughter eddies are

∂ui
n(t)

∂t
= (−1)i+1knu

i
n(t)u

a(i)
n−1(t)− vk2

nu
i
n(t). (3.1.14)

According to the invariant of gyroscope equation, turbulence energy corresponds

to the square of the angular momentum M 2 conserves.

Waleffe [134, 135] reported that the instability assumption for rapidly rotating

turbulence, which is typically applicable for any sort of triad interaction, suggests

direction of energy transferring - from the poles of the rotation axis to the equator.

Furthermore, this instability assumption is made even more apparent with helical

mode decomposition. As an alternative to the Craya-Herring decomposition, helical
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mode decomposition [15, 112] allows for departures from isotropy caused by external

rotational forces and the spectral energy to move from parallel to the normal wave

vector, which seems to be compatible with trend toward two-dimensionality. Further-

more, Benzi et al. [9] investigated in detail various classes of helical shell models that

arise from helical decomposition of interactions, and four different types were dis-

cussed. Two of them match the two-dimensional and three-dimensional shell models.

Consequently, this helical decomposition might be applied to SGC model to provide

more specific details.

3.2 The numerical methods

Four different numerical algorithms are discussed in this section to determine the

scheme contributing to time developed velocity field of SGC model. Euler method,

the simplest numerical approach, is presented first, followed by widely used, high

precision fourth-order Runge-Kutta method. As a next step, slaved Adams-Bashforth

method considering high dissipation at large wave numbers and the semi-implicit

Euler scheme that maintains the rigid body property are studied. A brief overview of

these methods will be provided, and the corresponding Python code and Pseudo-code

will be provided in Appendix B.3.

3.2.1 The Euler method

Euler method [11], first reported by Leonhard Euler in 1768, utilizes the elemen-

tary difference methods to obtain approximate solutions to differential equations or
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initial value problems. Theory underlying Euler’s method of using the concept of

local linearity of small line segments to approximate solutions is well illustrated by

Taylor’s theorem, which was published in 1714. Algorithm for Euler method is inves-

tigated since it is simple and its discretization of continuous variables can be easily

calculated numerically.

Typical form of the first-order differential equation is

dy

dt
= f(t, y(t)) (3.2.1)

with initial condition y(t0) = y0. The classic first-order forward Euler method dis-

cretizes Eq.3.2.1 writing as

y(t+∆t)− y(t)

∆t
∼= f(t, y(t))

y(t+∆t) ∼= y(t) + ∆t · f(t, y(t)),
(3.2.2)

where ∆t is the time step.

Numerically simulated velocity equations using Euler’s method are categorized

into three functions due to the spatial structure of SGC model. First of all, velocity

at the top layer u0
0 is computed by

u0
0(t+∆t) = u0

0(t) + ∆t · k1[|u0
1(t)|2 − |u1

1(t)|2]−∆t · vk2
0u

0
0(t). (3.2.3)

External forcing is added to the code as forced turbulence is going to be studied in

the next chapter, which is not necessary to repeat.
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Velocities ui
n located at the last layer are

ui
n(t+∆t) = ui

n(t) · (1−∆t · vk2
n) + ∆t · (−1)i+1knu

i
n(t)u

a(j)
n−1(t). (3.2.4)

As for velocities ui
m whose cascade step m is between 1 and n − 1, they are

simulated by

ui
m(t+∆t) =ui

m(t) · [1−∆t · vk2
m +∆t · (−1)i+1kmu

a(i)
m−1(t)] + ∆t · km+1[|u2i

m+1(t)|2−

|u2i+1
m+1(t)|2].

(3.2.5)

Furthermore, the numerical convergence of Euler’s method has been demonstrated

by Augustine Louis Cauchy in 1824, thus it’s clear that time steps must be sufficiently

small to ensure convergence. The absolute stability region of Euler method is

|1 + f(t, y(t))

y
·∆t| < 1, (3.2.6)

3.2.2 Fourth-order Runge-Kutta method

Runge-Kutta method is a conventional, one-step approach that has been utilized

extensively due to its high accuracy. It was initially proposed by Carl Runge in 1895

[109] and later extended to solve systems of differential equations by Martin Wilhelm

Kutta in 1901[66]. To avoid computing higher order derivatives in Taylor expansion

technique while still achieving higher order convergence, Runge-Kutta approach in-

serts a series of points into range [t, t + ∆t] to anticipate the slopes k1, k2 · · · , and

then takes their weighted average. Obviously, Euler method is Runge-Kutta method
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of the first order. The discretized Eq.3.2.1 for fourth-order Runge-Kutta (RK4) is

y(t+∆t) = y(t) +
∆t

6
(k∗

1 + 2k∗
2 + 2k∗

3 + k∗
4) (3.2.7)

where

k∗
1 = f(t, y(t))

k∗
2 = f(t+

∆t

2
, y(t) +

∆t

2
· k∗

1)

k∗
3 = f(t+

∆t

2
, y(t) +

∆t

2
· k∗

2)

k∗
4 = f(t+∆t, y(t) + ∆t · k∗

3).

(3.2.8)

Except that RK4 method has to calculate the slope four times, numerical velocities

equation is the same between the Euler and RK4 methods, therefore, Python code

for RK4 method is directly provided. The equations describing velocity field of all

layers for each time step are written in pseudo-code and Python code, which are quite

similar to that of Euler and in Appendix B.3.2.

Besides, the absolute stability region of RK4 method is

|1+ f(t, y(t))

y
·dt+ 1

2!
·(f(t, y(t))

y
·dt)2+ 1

3!
·(f(t, y(t))

y
·dt)3+ 1

4!
·(f(t, y(t))

y
·dt)4| < 1.

(3.2.9)

3.2.3 Slaved Adams-Bashforth Method

The linear multi-step method is another approach that is typically used to resolve

ordinary differential equations. Unlike the one-step method, which simply discards

former data in favor of the most recently acquired data, this method uses a linear

combination of former points and derivative values to predict the next point. One of
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the classic multi-step approaches is Adams-Bashforth method, commonly known as

explicit Adam method. In order to account for the quick damping at high wave num-

bers, “slaved frog” scheme [44] has been implemented in two-step Adams-Bashforth

method, which is slaved Adams-Bashforth (ABF) approach and has been applied to

the investigation of shell model [101].

A simple linear model that displays fast damping at high wave numbers is

dU

dt
= −aU + g(t). (3.2.10)

After integrating, it turns into

U(t+ δt) = e−aδtU(t) +

∫ t+δt

e−a(t+δt−s)g(s)ds

U(t+ δt) = e−aδtU(t) +
1− e−aδt

a
g(t)

(3.2.11)

Hence, the slaved Adams-Bashforth Method is:

U(t+∆t) = e−a·∆tu(t) +
1− e−a·∆t

a
(
3

2
g(t)− 1

2
g(t−∆t)). (3.2.12)

The initial time t0 is estimated by g(t0 −∆t) = g(t0).

Velocity equation u0
0 obtained from slaved ABF method is

u0
0(t+∆t) = e−a0·∆tu0

0(t) +
1− e−a0·∆t

a0
(
3

2
g0(t)−

1

2
g0(t−∆t)), (3.2.13)

where a0 = vk2
0 and g0(t) = k1[|u0

1(t)|2 − |u1
1(t)|2].
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Velocities at the end layer ui
n are computed by

ui
n(t+∆t) = e−an·∆tui

n(t) (3.2.14)

where an = vk2
n − (−1)i+1knu

a(j)
n−1(t).

Velocities ui
m (1 ≤ m ≤ n− 1) are computed from

ui
m(t+∆t) = e−am·dtui

m(t) +
1− e−am·∆t

am
(
3

2
gm(t)−

1

2
gm(t−∆t)) (3.2.15)

where am = vk2
m − (−1)i+1kmu

a(j)
m−1(t) and gm(t) = km+1[|u2i

m+1(t)|2 − |u2i+1
m+1(t)|2].

Despite the fact that two schemes are applied to increase the precision of turbu-

lence numerical simulations, slaved ABF technique still has to adhere to the stability

of ABF approach. The characteristic equation of ABF method satisfies root condi-

tion, suggesting that it is highly stable and avoids the round-off error from growing

exponentially.

3.2.4 Semi-implicit Euler method

Semi-implicit Euler method known as Störmer-Verlet and symplectic-Euler [51] is

commonly applied to the numerical simulations of rigid bodies, as it’s more stable

than classic explicit Euler schemes and preserves the nature of volume conservation

of phase space volume element in physical system. Hence, semi-implicit Euler scheme

is studied in the simulation of SGC model, which is obtained from the gyroscope

equation- Euler’s equation for a rigid body. Semi-implicit Euler scheme for SGC

model, in which linear dissipation is implicit and nonlinear transfer term is explicit,
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is as follows:

(
1

∆t
+ vk2

m)u
i
m(t+∆t)− ui

m(t)

∆t
= gim(t)

ui
m(t+∆t) =

gim(t)∆t+ ui
m(t)

1 + vk2
m∆t

(3.2.16)

where the nonlinear transfer term is wrote as gim(t) = km+1[|u2i
m+1|2 − |u2i+1

m+1|2] +

(−1)i+1kmu
i
mu

a(i)
m−1.

Velocity u0
0(t+∆t) at the top layer is computed by:

u0
0(t+∆t) =

k1[|u0
1(t)|2 − |u1

1(t)|2] ·∆t+ u0
0(t)

1 + vk2
0 ·∆t

(3.2.17)

Velocities ui
n located at last layer are:

ui
m(t+∆t) =

(−1)i+1knu
i
n(t)u

a(i)
n−1(t) ·∆t+ ui

m(t)

1 + vk2
m ·∆t

(3.2.18)

For velocities ui
m whose cascade step m is between 1 and n−1, they are simulated

by

ui
m(t+∆t) =

(km+1[|u2i
m+1(t)|2 − |u2i+1

m+1(t)|2] + (−1)i+1knu
i
n(t)u

a(i)
n−1(t)) ·∆t+ ui

m(t)

1 + vk2
m∆t

(3.2.19)

3.3 Result analysis

In order to determine an optimal numerical method for SGC model, it is essential

to compare velocity fields generated by different approaches, such as energy flux
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utilized to study intermittency and it’s multifractality analyzed by UM framework.

Moreover, complexity of the principal function as well as the specific running time

and space of these algorithms will be calculated in next section to evaluate numerical

methods.

To begin, the specific equation for energy flux and required simulation parameters

are presented. According to Kolmogorov’s local stationary assumption, the inertial

range has

∂E(k, t)

∂t
= 0, (3.3.1)

which suggests

Π(km) ≈ ϵ(t). (3.3.2)

Energy flux, which refers to energy transfer rate from all wave number k < km to

the other wave number k ≥ km or the cumulative energy transfer rate above the wave

number km, is calculated from

Π(km) = −
m−1∑
m′=0

T (km′ , t)

=
n∑

m′=m

T (km′ , t)

∝
n∑

m′=m

u(km′ , t) · [∂u(km′ , t)

∂t
+ vk2

m′u(km′ , t)].

(3.3.3)

The energy flux through wave number km of SGC model is

Π(km) ∝
n∑

j=m

2m−1∑
i=0

ui
j(t) · [kj+1[|u2i

j+1(t)|2 − |u2i+1
j+1 (t)|2] + (−1)i+1kju

i
j(t)u

a(i)
j−1(t)]

(3.3.4)

which is related to the nonlinear transfer term of SGC model.
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The initial kinetic energy spectrum is assumed as Kolmogorov spectrum

E(k, 0) = CKε
2
3k− 5

3 , (3.3.5)

where Ck is Kolmogorov constant. Ck and ε are taken to be 1 to start simulation.

Initial velocities ui
m(0) are obtained from the assumed energy spectrum E(km, 0) by

|ui
m(0)|2 = E(ki

m, 0)k
i
m ≡ E(km, 0)km. (3.3.6)

An artificial viscosity v is required to dissipate the energy and it can be derived from

Reynolds number at Kolmogorov scale Re(lη∗) ≈ 1

Re(lη∗) =
uη∗lη∗
v

=
uη∗

vkη∗
≈ 1. (3.3.7)

Related artificial dissipation cascade step η∗ is generally assumed as two steps before

the maximum cascade step n.

Now, initial values for Case 3.1, which is used for the comparison, are shown

in Table 3.1. Time step ∆t should be small enough to guarantee the stability of

numerical simulation methods. RK4 method has a broader absolute stability zone

than Euler method, whereas slaved ABF method is strongly stable. As a result, time

step of these approaches is uniformly assumed by the stability of Euler method. It is

also limited by cascade steps. Hence, the restriction on time step ∆t is that it should

approximately obey |1− vk2
n∆t| < 1, since the main dissipation term is viscous term

and the convection term can be neglected. The running time Tmax is set as sufficient

enough time to investigate the difference in results caused by numerical methods.
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For simplicity’s sake, the external forcing f is assumed to be 0, which eliminates the

complexity of turbulent characteristics brought on by injecting forcing.

Table 3.1: Case 3.1

Case n η∗ ∆t Tmax f

3.1 12 10 0.0002 30000 0

Energy flux Π(k6) calculated from these different numerical methods is displayed

in Fig 3.2. It reveals that energy fluxes at the initial time period are indistinguishable,

whereas they become inconsistent as time goes on. The occurrence of this disparity

is expected due to the chaotic nature and introduction of deviations in the velocity

field by different numerical algorithms.

Figure 3.2: Energy flux Π(k6) for Case 3.1

Furthermore, it’s apparent that all energy fluxes exhibit fluctuation depicted in

Fig.3.2. Multifractality of these fluctuations is studied by UM framework to clar-

ify whether the properties of SGC model are impacted by numerical simulation ap-

proaches. UM parameters for Case 3.1 are displayed in Fig.3.3. The analysis is carried
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out from all time steps, and UM parameters are determined by averaging results of

three moments η = 0.9, 1.5, 2. These approaches have the same codimension C1 but

differ in multifractality index α. Multifractality index α for the classic Euler method

is 1.52, while α obtained from RK4 method and slaved ABF method are 1.53 and

1.47, respectively. However, semi-implicit Euler method yields a multifractality index

of 1.44, which differs from the classic Euler method by 0.08 and from Slaved ABF

method by 0.03. It demonstrates that UM parameters estimations for explicit one-

step approaches are quite close, and results for Slaved ABF method and Semi-implicit

that take into account physical properties are close.

(a) Euler method (b) RK4 method

(c) Slaved ABF method (d) Semi-implicit Euler method

Figure 3.3: UM analysis of energy fluxes Π(k6) for Case 3.1. The UM parameters is
obtained from ensemble analysis of samples whose resolution is 512.
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3.4 Algorithm analysis

Algorithm analysis [125] is a quantitative evaluation of resources needed to run

a task, which primarily takes execution time and memory usage into account. Due

to the fact that it can be carried out in two stages: pre-implementation and post-

implementation, priori analysis of these algorithms is performed first, and then the

posterior analysis follows.

A priori analysis is an approach that does not rely on specific testing or data, so

the pseudo-code of velocity function for previously presented algorithms is provided

along with complexity analysis. Space complexity characterizes required storage space

S(n) for full execution, including temporary auxiliary space, input space, and output

space, as a function of problem size n. It is defined as an asymptotic behavior by

following generic formula :

lim
n→∞

S(n)

f(n)
= Cst ̸= 0, (3.4.1)

where f(n) is a statement function with regard to the storage space. Space complexity

is denoted as S(n) = O(f(n)) merely preserving the highest order term without

coefficient. The order of algorithm complexity from simplest to most complicated is

O(1) < O(log(n)) < O(n) < O(nlogn) < O(n2) < O(n3) < . . . < O(2n).

However, the empirical efficiency of algorithms not only depends on the complexity,

but also problem size n, as shown in Fig.3.4.
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Figure 3.4: Comparing commonly used functions in the big O notation when n ≤ 15.

Space complexity of these algorithms computing velocity for each step time is

listed in Table.3.2. There are a total of 2n+1 − 1 spatial eddies in SGC model, all of

whose velocities must be calculated. Storage space S(n) of Function 1 in Algorithm

1 becomes 2n+2 − 1 after accounting for extra memory occupied in computation as

well as new velocities needed to be written out. Except for velocities equations,

Euler method including classic Euler method and semi-implicit Euler method share

the same algorithm with RK4 method, hence space complexity of these one-step

methods is O(2n). Storage space S(n) of Function 1 in Algorithm 2 is 3 · 2n+1 − 2

and complexity is O(2n) since slaved ABF method, in comparison to those one-step

approaches, requires an additional set of inputs U(t −∆t). Table.3.2 indicates that

these four numerical methods have the same space complexity O(2n) due to spatial

structure of SGC model.
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Table 3.2: The space complexity for numerical methods.

Lines S(n) Space Complexity

Line 2,6,9,13 1 O(1)

Lines 3 2n+1 − 1 O(2n)

Function 1 in Algorithm 1 2n+2 − 1 O(2n)

Function 1 in Algorithm 2 3 · 2n+1 − 2 O(2n)

However, storage space S(n) of slaved ABF method is larger than that of one-step

methods, demonstrating that slaved ABF method requires more usage memory for

each time step. And the difference in S(n) rapidly grows as cascade step n enlarges

as illustrated in Fig.3.5.

Figure 3.5: The storage space S(n).

Asymptotic time complexity, as opposed to actual code execution time, is the

tendency of code execution time growing with data size. Given that running time

is proportional to statements executed number in algorithms, statements executed

number is referred to as statement frequency or time-frequency T (n), which also
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depends on problem size n. If there is a function g(n) satisfying

lim
n→∞

T (n)

g(n)
= C ̸= 0, (3.4.2)

then T (n) is denoted as T (n) = O(g(n)) and O(g(n)) is asymptotic time complexity.

Below is Table 3.3 displaying time complexity of these algorithms. Simple opera-

tions, such as addition, have an execution number of 1 and time complexity of O(1).

Executions number of computing velocities for each cascade step m is 2m. Subse-

quently, all eddies velocities U(t+∆t) takes T (n) = 2n+1 + 1 iterations, which is the

sum of all steps executions, and time complexity is O(2n).

Table 3.3: The time complexity for algorithms.

Lines T (n) Time Complexity

Line 2,3,6,9,13 1 O(1)

Lines 8-10 2m O(2m)

Lines 12-14 2n O(2n)

Function 1 2n+1 + 1 O(2n)

Both space complexity and time complexity defined in terms of cascade step n are

O(2n) for these algorithms, suggesting that spatial structure of SGC model determines

its complexity. Time and storage space required to simulate SGC model increases

exponentially when cascade step n grows, and numerical simulation approaches are

incapable of improving SGC model’s computation. Complexity analysis, however,

is a rather rough evaluation of algorithms. A more thorough posterior analysis is

presented to enhance the overall evaluation.
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In order to conduct empirical investigation of algorithms, posterior analysis utilizes

data to execute a coded algorithm on target computer and collect practical statistics

such as running time and required space. The accuracy of this approach is reliant

on testing environment and compiler languages. Indeed, computations for velocity

equations distinguishing classical Euler algorithm from semi-implicit Euler technique

are basic operations so that posterior analysis for these two approaches is almost

identical. Posterior analysis of classical Euler algorithm representing semi-implicit

Euler method is used in comparison with the other two algorithms.

Posterior analysis of Case 3.1 simulated by three numerical methods, including

User time and the maximum resident set size (Max RSS), is shown in Table3.4 (See

Appendix B.3.4). User time referred to the empirical time spent on execution process

without taking into account any other processes or blocking condition is CPU time

spent by process Case 3.1. According to User time in Table 3.4, the order from

smallest to largest is classic Euler method, RK4 method and slaved ABF method.

Max RSS is the maximum physical memory utilised by execution process at any given

time. Max RSS of three approaches is extremely close as the maximum memory relies

on velocity field that has to be written out and velocities for all eddies at each time

step are saved in case 3.1. In terms of efficiency, the classic Euler method, which

takes the least amount of time, is an good option, based on posterior analysis.

Table 3.4: The posterior analysis of three numerical methods for Case 3.1, which is
obtained on the same server.

Classic Euler Method RK4 Method Slaved ABF Method

User time 14872s 15664s 33910s

Max RSS 11590 Mb 11588 Mb 11590 Mb
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3.5 Summary of Chapter 3

SGC model that preserves the most fundamental properties of NS equation, in-

cluding triad interactions, is applied to characterize the properties of natural turbulent

flows. In this chapter, four numerical methods—classic Euler approach, RK4 method,

slaved ABF method (considering fast dissipation at high wave numbers), and semi-

implicit Euler method (widely applied to the motion of rigid body) —are evaluated

to determine the effective numerical simulation for SGC model and to provide simu-

lated transient motion of eddies on the full-scale range for next chapters. Algorithms

analysis consists of UM analysis, complexity analysis and empirical analysis.

UM parameters of Case 3.1 demonstrate that multifractality index of intermit-

tency using classic Euler scheme is close to that of the fourth-order Runge Kutta

scheme, while multifractality index of semi-implicit Euler method is close to the re-

sult obtained by Slaved ABH method. The definition of multifractality index makes it

common for numerical approaches to result in relatively small difference. Priori anal-

ysis reveals that spatial-temporal complexity of these algorithms computing velocities

for each time step is O(2n) because of spatial structure of SGC model. Execution

time T (n) and storage space S(n) of SGC model grow exponentially when cascade

step n increases. However, slaved ABF method per time step requires more memory

than the other two methods. A more thorough empirical posterior analysis reveals

that maximum memory for Case 3.1 which has a large enough time scale, is almost

the same for all three methods because the output velocity field is preserved at all

time steps. Euler method takes the least amount of time in terms of user time.
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However, time scale used to compare algorithms in Case 3.1 isn’t enough to per-

form properties analysis and time differences will be far more significant when time

scale is extended. It also likely that the difference will increase as the cascade step

increases, but that is not the focus of this study. Euler methods including classic Eu-

ler method and semi-implicit Euler method are effective numerical methods and are

employed in the following chapters. In addition, simulation of SGC model is complex

and can not be simply improved by numerical methods, as the complexity analysis

demonstrates.
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Chapter 4

Multifractal intermittency of

forced SGC model analysed by UM

framework

Numerous achievements in turbulence [38] are challenged by intermittency, which

commonly refers to spatially and temporally unevenly distributed velocity fluctua-

tions. Because of “the heavy tails” generated by extreme events, it is well acknowl-

edged that intermittency is non-Gaussian distribution. Advance studies [1], such as

K62, claim that it follows log-normal distribution, which has been proven in hydro-

dynamic turbulence. However, log-normal model is criticized by universal behavior

[118, 49], UM framework based on the central limit theorem is then considered a

powerful approach to characterize this intermittency. Empirical UM parameters esti-

mated from various turbulence data, especially from laboratory experiments [121] and

atmospheric in-situ/remotely sensed data [122], are multifractality index α ≈ 1.5 and
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mean co-dimension C1 ≈ 0.25. Moreover, results of SGC model simulated by RK4

method [20, 120, 21] confirm that forced SGC model whose cascade step is 12 exhibits

strong fluctuations in energy transfer process and UM parameters are consistent with

those obtained from empirical data. Therefore, the existence of intermittency and its

multifractality is firstly investigated by forced SGC model whose cascade step is 12

and then expanded to large cascade steps 14, 15 in this chapter.

4.1 The forced SGC model

Forced SGC model instead of freely decaying SGC model is simulated to achieve

quasi-equilibrium state, which prolongs turbulence motion and hence exhibits more

information, such as strong fluctuations, for studying the intermittency. A quasi-

equilibrium state [129] is a statistically stable condition in which viscous dissipation

is not precisely balanced by external energy and system kinetic energy does not remain

constant during the whole process, as it does in the equilibrium state. Despite the fact

that the system is not self-preserving, it is nevertheless possible to obtain a similar

law partly.

There are two fundamental approaches of forcing [128]: deterministic forcing and

stochastic forcing [2, 32]. Evidence [20] suggests, however, that SGC model isn’t

largely dependent on the type of external forcing. Specifically, simple deterministic

forcing f is utilized in the study. Forced SGC model is

∂ui
m

∂t
= km+1[|u2i

m+1|2 − |u2i+1
m+1|2] + (−1)i+1kmu

i
mu

a(j)
m−1 − vk2

mu
i
m + f. (4.1.1)
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If external force is significantly larger than viscous term (f ≫ vk2
mu

i
m), Eq 4.1.1 turns

into

∂ui
m

∂t
= km+1[|u2i

m+1|2 − |u2i+1
m+1|2] + (−1)i+1kmu

i
mu

a(j)
m−1 + f (4.1.2)

which gives unstable state or even worse explodes the model. Conversely, when forcing

is less than viscous term, Eq 4.1.1 is equivalent to freely decaying SGC model. To

sum up, an appropriate forcing f is essential to achieve quasi-equilibrium state, and

deterministic forcing is performed by merely adding forcing at the top layer.

4.2 Numerical parameters for the forced SGCmodel

Due to Eq 3.3.2, details of numerical simulations of SGC model are presented, as

energy flux equaling kinetic energy dissipation rate reveals significant local fluctuation

of turbulence. Energy spectrum is Kolmogorov spectrum assuming Ck and ε to be 1.

Velocities as well as artificial viscosity are given according to Eq 3.3.6 and Eq 3.3.7

in Chapter 3.

Typical time unit of turbulence is initial large-eddy turnover time [39] that allows

significant distortion of eddy to transfer energy:

τe =
L(0)

(E(0))1/2
, (4.2.1)

where integral scale [5] measures the correlation distance between two points in terms

of distance or time characterizing energy containing scale:

L(t) =

∫ kmax

0
k−1E(k, t)dk∫ kmax

0
E(k, t)dk

(4.2.2)
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and system energy is computed by

E(t) =
m=n∑
m=0

2m−1∑
i=0

|ui
m(t)|2. (4.2.3)

Due to specific spatial structure of SGC model, time evolution of energy spectrum

E(km, t) is calculated by

E(km, t) =
1

2m

2m−1∑
i=0

|ui
m(t)|2 ≈ Em(t), (4.2.4)

where

Em(t) =
2m−1∑
i=0

|ui
m(t)|2 (4.2.5)

is energy at layer m whose wave number is km.

4.3 Cascade step 12

Table 4.1 lists key parameters of forced SGC model with a cascade step of 12

ensuring a sufficient inertial range in cascade model. External forcing f is limited to

the range of 0.1 to 1.0 as a result of assumptions of Ck and ε in energy spectrum.

Energy flux whose step is m has to be in inertial range. The time in simulation is

displayed in terms of initial eddy turnover time τe with a large time scale tf reaching

104.
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Table 4.1: Parameters of Case 4.1 whose cascade step is n = 12.

Case 4.1
n η∗ ∆t m
12 10 0.0002 6

Case f tf

4.1.1 0.1 23810

4.1.2 0.2 23810

4.1.3 0.3 23810

4.1.4 0.4 23810

4.1.5 0.5 23810

4.1.6 0.6 23810

4.1.7 0.7 23810

4.1.8 0.8 18000

4.1.9 0.9 12000

4.1.10 1 11000

The following section will give out temporal evolution of energy fluxes injected

with various forcings. Energy flux confirms the existence of intermittency and its

probability distribution is provided to testify that it’s non-Gaussian distribution and

has a “heavy” tail. Then UM analysis is performed to describe the multifractality.

4.3.1 Intermittency of energy flux

Energy flux Π(k6) of Case 4.1 is shown in Fig 4.1. On a time frame of 23810,

energy fluxes of Case 4.1.1- Case 4.1.7 displayed in Fig 4.1a- Fig 4.1g have achieved

the expected time 23810. Extremely significant variations, as illustrated in Fig 4.1h,

Fig 4.1i and Fig 4.1j, prevent energy fluxes of Case 4.1.8- Case 4.1.10 from reaching

expected time scale 23810. Moreover, the larger forcing f is, the earlier energy flux

Π(k6) stops.
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(a) Case 4.1.1 (b) Case 4.1.2 (c) Case 4.1.3

(d) Case 4.1.4 (e) Case 4.1.5 (f) Case 4.1.6

(g) Case 4.1.7 (h) Case 4.1.8 (i) Case 4.1.9

(j) Case 4.1.10

Figure 4.1: Energy flux Π(k6) of Case 4.1. Time unit is initial eddy turn over time.
Vertical coordinate of energy fluxes is not uniform.

At the same time, energy fluxes in Fig 4.1e, Fig 4.1f and Fig 4.1g are directly in-

dicative of intermittency behavior, whereas extreme values occurring at the beginning

or the end time period make it difficult to observe fluctuations in the rest of Case 4.1.

Thus, extreme values for Case 4.1 excluding Case 4.1.5- Case 4.1.7 are removed and

shown in Fig 4.2.
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(a) Case 4.1.1
(t : 2000−)

(b) Case 4.1.2
(t : 2000−)

(c) Case 4.1.3
(t : 2000−)

(d) Case 4.1.4
(t : 1000−)

(e) Case 4.1.8
(t : −18000)

(f) Case 4.1.9
(t : −10000)

(g) Case 4.1.10
(t : −10000)

Figure 4.2: Energy flux Π(k6) of Case 4.1 getting rid of extremely high values.

Energy flux of Case 4.1.8-4.1.10 after cutting extreme value at the end shown

in Fig.4.2e, Fig.4.2f and Fig.4.2g exhibits strong fluctuation, as do Case 4.1.1-4.1.4

in Fig.4.2a-Fig.4.2d when energy flux in initial transition period has been removed.

Besides, fluctuations get weaker as forcing decreases. The range of energy flux in

Fig.4.2a-Fig.4.2d is smaller than that in Fig. 4.2e-Fig.4.2g.

Even though energy fluxes Π(k6) of Cases 4.1.1–4.1.3 are weak, energy flux at

former cascade step Π(k5) in Fig.4.3 exhibits strong fluctuations.
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(a) Case 4.1.1 (b) Case 4.1.2 (c) Case 4.1.3

Figure 4.3: Energy flux Π(k5) of Case 4.1.1-4.1.3 (t : 1000− 23810).

Existence of intermittency is confirmed by all energy fluxes in Case 4.1, and inten-

sity of fluctuations is related to the value of forcing. Dramatically increased energy

flux Π(k6) is evidence that SGC model with large injected force explodes. This might

be the result of SGC model’s unique spatial structure, which intensifies the energy

exchange. SGC model with a medium-range forcing injection is able to reach ex-

pected large time scales, and energy flux Π(k6) directly displays high intermittent.

Strong fluctuations appear in energy flux Π(k5) rather than energy flux Π(k6) when

external forcing is small, indicating that injected forcing is insufficient to enlarge sys-

tem energy and energy flux Π(k6), but intermittency exists. For this reason, energy

flux Π(k6) is chosen to investigate property of fluctuations for various forcings. Given

that conservative multiplicative cascades and UM framework are established in the

positive field, energy flux Π(k6) has to be taken at absolute value in the following.

4.3.2 Non-Gaussian distribution and “heavy” tail

Probability distribution is given to confirm that fluctuations in turbulence are

non-Gaussian distribution and have a “heavy” tail [38].

Probability distribution of fluctuations ∆|Π(k6)| for Case 4.1 exceeding threshold
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s is presented according to probability definition of multiplicative cascade Eq.2.5.3.

As seen in Fig 4.4, probability distribution of Case 4.1 decays much more slowly than

corresponding Gaussian distribution with the same mean and variance. The tails

of PDF for Case 4.1 are heavier than those of the equivalent Gaussian distribution,

which implies that extreme events occur far more frequently than those in Gaussian

distribution. Besides, Fig 4.4 demonstrates that the mean and standard deviation

resulting in different Gaussian distributions vary depending on the case. Nonetheless,

variation in Gaussian distributions is not the focus of this thesis. The extreme events

causing “heavy” tail are going to be studied next.

(a) Case 4.1.1 (b) Case 4.1.2 (c) Case 4.1.3 (d) Case 4.1.4

(e) Case 4.1.5 (f) Case 4.1.6 (g) Case 4.1.7 (h) Case 4.1.8

(i) Case 4.1.9 (j) Case 4.1.10

Figure 4.4: Log-log plot of probability Pr(∆|Π(k6)|) > s) exceeding a fixed
reflectivity threshold s of Case 4.1.

4.3.3 Multifractality analyzed by UM framework
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It has been demonstrated that, in accordance with the central limit theorem,

the sum of random variables from “heavy” tail eventually converges to an α-stable

distribution [38]. UM framework based on the central limit theorem and multiplicative

cascade processes is a powerful tool [119] to describe this nonlinear high variability.

The entire time series of energy flux is divided into many sub-series to carry out the

temporal evolution of UM parameters as well as corresponding frequency. Ensemble

analysis is then conducted on all sub-series. Multifractality index obtained from

ensemble analysis of all subsequences is represented as αe, while mean codimension

is written as C1e . α is the average of multifractality index of all sub-series, and

C1 represents the averaged mean codimension. qse is critical moment obtained by

ensemble analysis, and qs is the mean of critical moment of all sub-series.

UM analysis of Case 4.1 starts with cases in which a middle range of forcings is

imposing and high intermittent energy flux is directly observed. Cases injecting large

forcing are analyzed next, followed by those in which small forcing is injected. UM

parameters are estimated as the mean value of three scaling moment orders q = 0.9,

q = 1.5, and q = 2. Absolute energy flux |Π(k6)| has to be normalized to maintain

the conservation and perform the UM analysis.

Sample size and bias generated by fixed range estimation

To begin studying intermittency using UM analysis, a sample size has to be se-

lected.

Case 4.1.6 in which strong fluctuation is directly observed is studied as an example.

Time evolution of UM parameters for Case 4.1.6 at three different sizes of 1024, 512,

and 256 is shown in Fig.4.5.
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(a) Size 1024 (b) Size 512 (c) Size 256

Figure 4.5: Temporal evolution of UM parameters and critical moment qs for Case
4.1.6 under size 1024 (a), 512 (b) and 256 (c).
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Temporal evolution of UM parameters and critical moment qs obtained from small

sub-sequence size clearly reveals more detailed information, such as the trend, since

results of size 512 in Fig.4.5b and size 256 in Fig.4.5c provide more elaborated de-

scriptions than the analysis of size 1024 in Fig.4.5a. The trends of UM parameters

and qs for size 256 are largely similar to those for size 512 with the exception of α

in the final period, which results in changes of qs at the same time. UM parameters

obtained by ensemble analysis are almost the same as shown by frequency histograms.

α varies as a result of changes in sample sizes, so does qs derived by ensemble analysis,

which would not be considered. Frequency histogram of α for size 512 is more com-

parable that for size 256 rather than size 1024. Almost identical C1 are found over

all three sizes, and its frequency histogram shows nearly predicted double growth.

In summary, size 512 is chosen for UM analysis of energy flux in the following case

study.

It should be emphasized that UM parameters 1 in above is derived from a prede-

fined range η ≈ 1. Nevertheless, this statistical predefined range estimation does not

precisely capture multifractality of intermittency, given energy flux varies dramati-

cally over time. For instance, three sub-series of Case 4.1.6 are shown in Fig.4.6 whose

UM parameters are determined from the fixed range η ≈ 1. Fig.4.6a and Fig.4.6c

display well-fitted UM parameters, whereas UM parameter estimations in Fig. 4.6b

demonstrates that estimation derived from the fixed range is grossly unfit.

1The first two decimal places of UM parameters are retained for the sake of labeling concisely in
figures, but qs is calculated from the original UM parameters. qs in figures and the one estimated
from the labeled UM parameters, thus, differ slightly.
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(a) Sub-series 16 (b) Sub-series 23 (c) Sub-series 29

Figure 4.6: Bias of UM parameters for Case 4.1.6.

The bias results from the fact that convergence of certain computational quanti-

ties is determined by field distribution [27]. Sometimes only a small fraction of the

field primarily contributes to certain statistical moments. The convergence of trace

moments may only occur at rather large scales and varies with sub-series, indicating

that ”flat” region at the upper right for each sub-series is different. For this reason,

fit correlation coefficient for the plot is limited to a value larger than 0.995 in order

to locate optimal range closest to 1 for each sub-series to ensure that slope is well

fitted. Fig 4.7 illustrates the adjusted analysis for subseries 23. Compared to UM

parameters estimated from the fixed range in Fig 4.6b, this approach reduce the bias

effectively.

Figure 4.7: Adjustment of Sub-series 23 for Case 4.1.6.

Time evolution of UM parameters and qs obtained from the optimal range method

is now given in Fig 4.8.

91

https://ecoledesponts.fr/
https://ecoledesponts.fr/en/laboratories-research-hydrology-meteorology-complexity


Thesis – X. LI; Ecole des Ponts ParisTech – Hydrology Meteorology et Complexity

(a) Multifractality index
α

(b) Mean codimesnion
C1

(c) Critical moment qs

Figure 4.8: Time evolution of UM parameters and critical moment qs for Case 4.1.6
obtained by limiting correlation coefficient. Sub-series size is 512. The horizontal

coordinate is sub-series number.

Difference in multifractality index α as well as its trend is observed when compar-

ing the results shown in Fig.4.8 to Fig.4.5b. Alterations in the tendency of qs occurs

as a result of α since trend of C1 has not changed noticeably. Frequency histogram of

UM parameters, along with qs, their means, and their ensemble values, all show that

adjusted range technique improves the poor fit over fixed range method. α fluctuates

constantly throughout the time shown in Fig.4.8, whereas C1 increases initially and

then floats steadily after N = 30. The tendency of qs thus is decreasing, followed by

end period of steadily fluctuating steadily.

α is between 1 and the Levy index in Log-normal model 2, while C1 ranges between

0 and 0.5. Ensemble analysis considering number of samples yields larger values

qse than averaged qs. As for UM parameters, it’s typical for discrepancy between

ensemble analysis and averaged values. Moreover, time evolution of UM parameters

reflects time period close to atmospheric turbulence whose empirical parameters are
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α ≈ 1.5, C1 ≈ 0.25. The number of subsequences centered around α ≈ 1.5 and

C1 ≈ 0.25 is visible on frequency plots. qs can also be utilized to study atmospheric

turbulence whose qs is around 2.5.

Analysis of Case 4.1

UM analysis results for Case 4.1.7 showing strong fluctuations are presented in

Fig.4.9 2.

Due to the range used to estimate UM parameters, difference between Fig.4.9a

and Fig.4.9b is observed from trends of α and qs. α decreases with time in Fig.4.9a,

but fluctuates steadily in Fig.4.9b. In contrast to trend in Fig.4.9b, critical moment

qs in Fig.4.9a varies steadily after unstable initial state. Evidences from frequency

histograms and mean values testify the necessity of adjusted range approach. En-

semble analysis gives the same UM parameters and qs for these two different range

estimation. The maximum α for Case 4.1.7 in Fig 4.9b does not exceed 2 and the min-

imum is not far from 1. C1 grows over time, but it’s less than 1. Both qs suggesting

by qs and qse because of large sample size are far away from that of the atmospheric

turbulence. In the beginning, mean codimesnion C1 is around 0.1 as injected forcing

has not yet taken effect and the system is reaching quasi-equilibrium. UM analysis

and frequency plots reveal the overlap period that α near 1.5 and C1 close to 0.25

and subsequences number for ensemble analysis.

2The first set of results is time evolution of UM parameters and qs obtained from fixed range
method, while the second set of results is obtained from optimal range method. For each set, the first
column displays time evolution of multifractality index α and its frequency, and mean codimension
C1 is the second column. Critical moment qs is in the last column. The outcomes for remaining
cases are organized in the same structure and won’t be repeated.
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(a) Fixed range estimation

(b) Adjusted range estimation

Figure 4.9: Time evolution of UM parameters and critical moment qs for Case 4.1.7.
Sample size is 512.

UM analysis for Case 4.1.8, in which SGC model stops early because of slightly

large forcing, is displayed in Fig.4.10. UM analysis is thus carried out from time 0

to 18000 before SGC model explodes. Multifractality index α in Fig.4.10a decrease,

whereas α in Fig.4.10b becomes stable once the initial instability phase is passed.

Even though two methods yield nearly identical trends for C1 that float steadily in

intermediate phases, mean values and frequency histograms of UM parameters as

well as qs testify the difference caused by estimation range. Ensemble analysis yields
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identical UM parameters and qs for two different range estimations.

(a) Fixed range estimation

(b) Adjusted range estimation

Figure 4.10: Time evolution of UM parameters and critical moment of Case 4.1.8.

Multifractality index α ranges between 1 and 2, with the exception of subseries

N = 6 in Fig 4.11. There are some extreme values in energy flux Fig 4.11a that

dominate UM analysis. This leads to α of subseries N = 6 being larger than 2,

as shown in Fig 4.11b. C1 is small at the beginning and has an increment at the

end. qs is larger than 2.5, and is close to qse as the number of sample is reduced.

Time evolution of UM parameters indicates that the intermediate sub-series are close
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to that of atmospheric turbulence, while frequency plots give the number of specific

sub-series.

(a) Normalized flux (b) UM parameters

Figure 4.11: Sub-series N = 6 in Case 4.1.8.

Fig 4.12 is UM analysis for Case 4.1.9 with a large forcing resulting in an enormous

energy flux and ending SGC model at time 12000. UM analysis is therefore performed

from 0 to 10000. The trends of C1 and qs are quite similar when comparing Fig 4.12a

and Fig 4.12b. Difference in α, which includes trend, the mean, and frequency plot,

contributes to alteration of qs. It indicates that the bias for Case 4.1.9 generated

by fixed range estimation is non-negligible. In Fig 4.12b, multifractality index α

varies from 1.3 to 1.8 and mean codimension C1 ranges from 0.05 to 0.25. Due to

the limitation of C1, there is only one sub-series for Case 4.1.9 close to atmospheric

turbulence, making it difficult to conduct ensemble analysis. This analysis concludes

that forcing 0.9 is excessive not only stopping SGCmodel but also generating subseries

far away from atmospheric turbulence.
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(a) Fixed range estimation

(b) Adjusted range estimation

Figure 4.12: Time evolution of UM parameters and critical moment of Case 4.1.9.

Case 4.1.10 has similar results to Case 4.1.9, in which forcing is too large that

energy flux ends SGC model early. UM analysis of Case 4.1.10 is carried out from

time 0 to 10000, as shown in Fig 4.13. The nearly identical results in Fig 4.13a and

Fig 4.13b indicate that there is almost no difference for Case 4.1.10. Multifractality

index α varies between 1.3 and 1.9, when mean codimension C1 fluctuates around 0.1

and does not exceed 0.15. The fact that C1 is less than 0.25 demonstrates that there

are no subseries whose UM parameters are in agreement with the empirical values of
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atmospheric turbulence. Analysis of Case 4.1.10 also proves that this forcing is too

large to reach quasi-equilibrium state.

(a) Fixed range estimation

(b) Adjusted range estimation

Figure 4.13: Time evolution of UM parameters and critical moment of Case 4.1.10.

UM analysis for cases with forcing less than 0.6 is given below, from the largest

to the smallest forcing.

UM analysis for Case 4.1.5 is in Fig 4.14.
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(a) Fixed range estimation

(b) Adjusted range estimation

Figure 4.14: Time evolution of UM parameters and critical moment of Case 4.1.5.

UM parameters and qs as well as their tendencies derived by two range methods

are completely different. Multifractality index α in Fig 4.14a is decreasing, whereas it

fluctuates around the mean value in Fig 4.14b. qs in Fig 4.14a is stable excluding the

end, however, in Fig 4.14b decreasing before being stable. It confirms a huge disparity

for Case 4.1.5, which is also manifested in averaged values as well as their frequency

histograms. Surprisingly, mean codimension C1 at N = 42 shown in Fig 4.14b is

larger than 1. Due to extremely low energy flux of Case 4.1.5 in Fig 4.1e at the end,

99

https://ecoledesponts.fr/
https://ecoledesponts.fr/en/laboratories-research-hydrology-meteorology-complexity


Thesis – X. LI; Ecole des Ponts ParisTech – Hydrology Meteorology et Complexity

almost 0, this abnormal value is brought on by weak fluctuations, which also generates

α at N = 41 greater than 2. This explains why ensemble UM parameters obtained

from adjusted range estimation are different from those from fixed range estimation

and analysis after N = 40 should not be taken into account. UM parameters and

its frequency plots in Fig 4.14b display the duration of energy flux that is close to

atmospheric turbulence as well as number of subseries.

Vanishing flux and weak fluctuation are also what are responsible for abnormal

C1 at sub-series N = 42, as demonstrated in Fig 4.15a, which suggests that sub-series

N = 42 is not a multifractal field.

(a) Normalized flux (b) UM parameters

Figure 4.15: Subseries N = 42 in Case 4.1.5.

UM analysis of Case 4.1.4 is presented in Fig 4.16. New tendency for α and qs

emerge when estimation is obtained from adjusted range, with an abnormal value

C1 at the end. Statistics like averages and histograms of frequencies confirm the

discrepancies caused by estimated range. Steadily fluctuating of multifractality index

αis observed in Fig 4.16b, which initially has values larger than 2. Mean codimension

C1 floats smoothly before N = 35 once the initial conditions are over. But Case 4.1.4

also has an abnormal value at N = 42 as a result of extraordinarily low value of

energy flux and nearly nonexistent fluctuations. UM parameters and corresponding
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frequency plots alao give out subseries that are in accordance with empirical value of

atmospheric turbulence.

(a) Fixed range estimation

(b) Adjusted range estimation

Figure 4.16: Time evolution of UM parameters and critical moment of Case 4.1.4.

Fig 4.17 displays UM analysis performed on Case 4.1.3. Comparing Fig 4.17a

with Fig 4.17b, for instance, UM parameters and their trends, reveals the disparity

resulting from estimated range. It’s evident that multifractality index alpha varies

and the trend shifts from decreasing to stable floating. Several values greater than 0.4

for mean codimension C1 are observed in Fig 4.17b. Hence, there is a clear disparity
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in averaged UM parameters and frequency histograms and changes in qs naturally

follows from alteration of UM parameters. Besides, UM parameters in Fig 4.17b have

more extreme values affecting ensemble analysis. Multifractality index α has many

values below 1 or close to 2, while mean codimension C1 has several values close to

0.8. This is due to energy flux of Case 4.1.3 in Fig 4.2c, in which energy flux is small

and fluctuations disappear with time.

(a) Fixed range estimation(a) Fixed range method

(b) Adjusted range estimation

Figure 4.17: Time evolution of UM parameters and critical moment of Case 4.1.3.

For Case 4.1.2, UM analysis is displayed in Fig 4.18. The estimating deviation
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caused by fixed range is similar to analysis in Case 4.1.3. Because of small energy flux

and gradually disappearing fluctuation, UM parameters in Fig 4.18b display unusual

values that multifractal index α has many values around 2 and mean codimension C1

is either close to 0.1 or close to 1. There is no sub-sequence for Case 4.1.2 that is

consistent with atmospheric turbulence after leaving initial unstable condition.

(a) Fixed range estimation

(b) Adjusted range estimation

Figure 4.18: Time evolution of UM parameters and critical moment of Case 4.1.2.

UM analysis for Case 4.1.1 is shown in Fig 4.19. Both difference of UM parameters

and trends prove estimating deviation. Due to accelerated absence of fluctuations in

energy flux, more values appear in Fig 4.19b after N = 20, such as multifractal index
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α, which has values outside of the range of 1 − 2, and mean codimension C1, which

has values near to 0.8. Thus abnormal value qs = 1000 appears.

(a) Fixed range estimation

(b) Optimal range method
(b) Adjusted range estimation

Figure 4.19: Time evolution of UM parameters and critical moment of Case 4.1.1.

The frequency of UM parameters that is close to empirical values is summarised

in Table 4.2 to study the effect of various forcing on intermittency. UM parameters

are obtained from adjusted range estimation. The frequency of multifractality index

α between 1.4 and 1.6 is denoted as Nα, and frequency of mean intermittency C1

between 0.2 and 0.3 is written as NC1 .
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Table 4.2: Frequency of UM parameters of Case 4.1 closing to atmospheric
turbulence.

Case 4.1
n η∗ ∆t m resolution
12 10 0.0002 6 512

Case f tf Nα NC1 α C1 αe C1e

4.1.1 0.1 23810 17 3 1.13 0.12 1.44 0.08
4.1.2 0.2 23810 12 5 1.57 0.25 1.27 0.09
4.1.3 0.3 23810 11 7 1.47 0.23 1.28 0.09
4.1.4 0.4 23810 11 10 1.59 0.29 1.51 0.17
4.1.5 0.5 23810 16 10 1.51 0.3 1.26 0.15
4.1.6 0.6 23810 17 14 1.54 0.24 1.35 0.18
4.1.7 0.7 23810 14 9 1.54 0.23 1.13 0.12
4.1.8 0.8 18000 14 9 1.5 0.22 1.42 0.19
4.1.9 0.9 10000 11 1 1.53 0.1 1.58 0.11
4.1.10 1 10000 6 0 1.59 0.1 1.66 0.1

No sub-series consistent with atmospheric turbulence exists due to the limitation

of NC1 when external forcing is large, as in the range 0.9–1, or low, as in the range

f ≤ 0.3. Averaged UM parameters of Cases 4.1.4–4.1.8, along with Nα and NC1 ,

imply that the middle range of forcing is appropriate to describe intermittency. UM

parameters become stable once initial instability period is finished and injected forcing

have maintained the system. Except for Case 4.1, averaged multifractality index α is

1.55± 0.05, on the other hand, most of C1 is 0.25± 0.05. However, UM parameters

obtained by ensemble analysis are inaccurate, since it is performed on all sub-series

including initial unstable time, averaged UM parameters instead of ensemble values

are sufficient to study the entire time series.

4.3.4 Time scale closing to atmospheric turbulence
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This section presents ensemble analysis of energy flux, whose UM parameters are

consistent with those of atmospheric turbulence. Time series is determined from time

evolution of UM parameters and critical moment qs. Number of sub-series is suggested

by Table 4.2 satisfying α ≈ 1.5 and C1 ≈ 0.25 simultaneously. Therefore, ensemble

analysis can not be performed on Case 4.1.9 and Case 4.1.10 due to explosions of

SGC model, and neither Case 4.1.1 nor Case 4.1.2 are provided because of small

energy flux. Forcings from f = 0.3 to the maximum forcing f = 1 requiring at least

3 sub-series for ensemble analysis are shown below.

Figure 4.20 illustrates UM analysis of sub-series N = 12 to sub-series N = 14

in Case 4.1.3, when fluctuation exists. It confirms that adjusted range estimation

provides better fitted UM parameters. Mean codimension C1 is between 0.14 and

0.45, and multifractality index α ranges from 1.3 to 1.9. So empirical scaling mo-

ment function K(q) deviates from theoretical moment function 3 after the first order

moment q = 1.

(a) Sub-series
N = 12

(b) Sub-series
N = 13

(c) Sub-series
N = 14

(d) Sub-series
N = 15

Figure 4.20: Sub-series of Case 4.1.3 for ensemble analysis. Theoretical scaling
moment function is defined by empirical UM parameters for atmospheric turbulence

α ≈ 1.5, C1 ≈ 0.25.

3If not specifically noted, theoretical UM parameters remain the same.
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Ensemble analysis of sub-series N = 12 − 14 of Case 4.1.3 is shown in Fig.4.21

with estimated UM parameters α = 1.54, C1 = 0.27.

(a) UM parameters (b) Scaling moment
function K(q)

Figure 4.21: Ensemble analysis of Case 4.1.3.

It implies that multifractality of energy flux during this time is close to that of the

atmospheric turbulence. After this time period, system energy decreases, weakening

energy flow and fluctuations as a result of injected forcing failing to compensate

for dissipation and causing UM parameters to deviate from general empirical value.

Scaling moment equation K(q) is indistinguishable from theoretical scaling moment

equation until critical moment qs = 2.67, after which empirical curve becomes linear.

(a) UM parameters (b) Scaling moment
function K(q)

Figure 4.22: Ensemble analysis of Case 4.1.4.

UM analysis of four subsequences for Case 4.1.4 is N = 12 − 15. α varies from

1.2 and 1.8, and C1 is between 0.11 and 0.35. Ensemble analysis, shown in Fig.4.22,
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illustrates that UM parameters α = 1.49, C1 = 0.25 of energy flux at this time period

is consistent with empirical values.

Fluctuations of Case 4.1.3 and 4.1.4 are weak because of small amount of external

forcing, while forcing amplify fluctuation of Case 4.1.5. Overlap time restriction limits

the number of subsequences for ensemble analysis, even if UM analysis indicates more

subseries with UM parameters α ≈ 1.5, C1 ≈ 0.25. Thus, no ensemble analysis

available for Case 4.1.5.

Energy flux of Case 4.1.6 is highly intermittent, increasing the number of subseries

for ensemble analysis to 8. Ensemble study of subseries 23 to 30 in Fig.4.23 suggested

α ≈ 1.39, C1 ≈ 0.26 which are close to empirical UM parameters of atmospheric

turbulence. And empirical scaling moment function is identical to the theoretical

function up to q = 2.1.

(a) UM parameters (b) Scaling moment
function K(q)

Figure 4.23: Ensemble analysis of Case 4.1.6.

Since energy fluxes in Cases 4.1.7 and Case 4.1.8 exhibit strong fluctuations, just

like Case 4.1.6, the number of sub-series for ensemble analysis is 8, which used in

Case 4.1.6. Ensemble analysis for subseries N = 26 to N = 33 of Case 4.1.7 shown

in Fig 4.24a is α ≈ 1.49, C1 ≈ 0.26, which gives critical moment qs = 3.
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(a) UM parameters (b) Scaling moment
function K(q)

Figure 4.24: Ensemble analysis of Case 4.1.7.

Fig 4.25 gives out UM parameters of Case 4.1.8 estimated by ensemble analysis

α ≈ 1.52, C1 ≈ 0.23, which is performed on subseries N = 12− 17.

(a) UM parameters (b) Scaling moment
function K(q)

Figure 4.25: Ensemble analysis of Case 4.1.8.

4.3.5 Summary of cascade step 12

Different forcings are injected into SGC model with cascade step n = 12 to study

the intermittency of natural turbulence. Fluctuations in energy flux occur and gradu-

ally vanish when forcing is between 0.1 and 0.3, whereas extraordinarily large energy

flux generated by forcing f larger than 0.8 stopped SGC model, which could be as a

result of spatial structure of SGC model amplifying energy exchange. All energy fluxes
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whose forcing is between 0.4 and 0.8 display highly intermittent. Probability distri-

bution function of these fluctuations has a “heavy” tail, resulting in non-Gaussian

distribution and allowing UM framework as an effective tool to study multifractality.

According to UM analysis of Case 4.1.6, sample size 512 is chosen to display proper-

ties of fluctuations over the entire time series. UM parameters and critical moment

qs confirm the difference brought on by fixed range estimation because of different

fluctuations for each subseries. Hence, adjusted range estimation method yields bet-

ter fitted UM parameters. There aren’t many subseries whose UM parameters are

α ≈ 1.5 and C1 ≈ 0.25 when forcing is either small or large, but number of subseries

closing to empirical UM parameters for atmospheric turbulence increases for the rest

cases. Temporal evolution of UM parameters reveals the time of energy flux which is

consistent with the atmospheric turbulence, and frequency plots suggests UM param-

eters for most cases centered on α ≈ 1.5 and C1 ≈ 0.25. Averaged UM parameters are

α ≈ 1.55± 0.05 and C1 ≈ 0.25± 0.05 except forcing 0.1. At last, ensemble analyze of

energy flux whose parameters consistent to empirical UM parameters is carried out.

4.4 Cascade step 14

Intermittency of forced SGC model with a large cascade step n = 14 is investi-

gated, and the range of external forcings is from 0.1 to 1.1 because of larger cascade

step. Time step and dissipation step have both been reset. Initial values are presented

in Table 4.3 as well as extended cascade step that was used to study energy flux. The

study is divided into three parts: intermittency, non-Gaussian distribution, and time

evolution of multifractality.
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Table 4.3: Case 4.2 whose cascade step is n = 14

Case 4.2
n η∗ ∆t m
14 12 0.0001 8

Case f τ
4.2.1 0.1 25001
4.2.2 0.2 25001
4.2.3 0.3 25001
4.2.4 0.4 25001
4.2.5 0.5 25001
4.2.6 0.6 25001
4.2.7 0.7 21371
4.2.8 0.8 14000
4.2.9 0.9 20974
4.2.10 1 19000
4.2.11 1.1 7000

4.4.1 Intermittency of energy flux

Energy flux Π(k8) of Case 4.2 is displayed in Fig 4.26.

(a) Case 4.2.1 (b) Case 4.2.2 (c) Case 4.2.3 (d) Case 4.2.4

(e) Case 4.2.5 (f) Case 4.4.2.6 (g) Case 4.2.7 (h) Case 4.2.8

(i) Case 4.2.9 (j) Case 4.2.10 (k) Case 4.2.11

Figure 4.26: Energy flux Π(k8) of Case 4.2.
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When injected forcing is larger than 0.7 due to incredibly high energy flux, SGC

model ends before expected time scale 25001 and more quickly as the forcing in-

creases. Energy fluxes with forcing below 0.7 show that SGC model doesn’t generate

excessively huge value and can be numerically simulated up to expected time. Cases

4.2.1-Case 4.2.6 begin in an unstable condition, as shown in Fig 4.26a-Fig 4.26f,

thereby making it difficult to directly observe fluctuations. Meanwhile, large energy

fluxes at the end shown in Fig 4.26g-Fig 4.26i pose a difficulty to observe the inter-

mittency.

Energy flux Π(k8) of Case 4.2 is shown in Fig 4.27, where intermittency is evident,

once extreme energy fluxes at the beginning or end are removed. Fig 4.27f-Fig 4.27k

show that there are strong fluctuations in Cases 4.2.6-4.2.11 throughout the time

period. Fluctuations with large forcing get stronger towards the end, as it is in

Case 4.2.7–Case 4.2.11. The beginning time period needs to be removed to study

intermittency of Case 4.1.1-4.1.5 whose injected forcing is small. In contrast to cases

injecting large forcing, Fig 4.27d and Fig 4.27e demonstrate weak fluctuations as a

result of injected forcing. Fig 4.27c shows that intermittency disappears near the

end, but this behavior disappears at much earlier times in Fig 4.27a and Fig 4.27b.

Energy flux implies that intermittency is affected by external forcing.
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(a) Case 4.2.1 (t : 500−) (b) Case 4.2.2 (t : 500−) (c) Case 4.2.3 (t : 500−)

(d) Case 4.2.4 (t : 500−) (e) Case 4.2.5 (t : 500−) (f) Case 4.2.6 (t : 500−)

(g) Case 4.2.7
(t : 500− 19500)

(h) Case 4.2.8
(t : 500− 13500)

(i) Case 4.2.9
(t : 1000− 20000)

(j) Case 4.2.10
(t : 500− 17500)

(k) Case 4.2.11
(t : 0− 6800)

Figure 4.27: Energy flux Π(k8) of Case 4.2 removing unstable time.

4.4.2 Non-Gaussian distribution and “heavy” tail

After observing fluctuations in energy flux of Case 4.2, probability distribution of
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∆|Π(k8)| exceeding a fixed reflectivity threshold s is shown in Fig 4.28.

(a) Case 4.2.1 (b) Case 4.2.2 (c) Case 4.2.3 (d) Case 4.2.4

(e) Case 4.2.5 (f) Case 4.2.6 (g) Case 4.2.7 (h) Case 4.2.8

(i) Case 4.2.9 (j) Case 4.2.10 (k) Case 4.2.11

Figure 4.28: Log-log plot of probability Pr(∆|Π(k8)| > s) exceeding a fixed
reflectivity threshold s of Case 4.2

The probability distribution compared with corresponding Gaussian distribution

displays “heavy” tails for Case 4.2. Hence, UM framework is applied to study this

extreme events causing ”heavy” tails.

4.4.3 Multifractality described by UM framework

UM parameters for Case 4.2 are provided below to investigate multifractality of

fluctuations over time. Energy flux is analysed in the same way as in cascade step 12

and analysis is presented from the largest forcing to the smallest forcing.

UM analysis for Case 4.2.11 is displayed in Fig 4.29.
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(a) Fix range method

(b) Adjusted range method

Figure 4.29: Time evolution of UM parameters and critical moment of Case 4.2.11.

Both Fig 4.29a and Fig 4.29b show the same pattern for critical moments qs as

well as UM parameters. Mean values, frequency plots, and UM parameters obtained

from ensemble analysis are identical, which naturally leads to same critical moments

qs. The difference caused by estimation range for Case 4.2.11 is negligible. Frequency

plots in Fig 4.29b show that multifractality index α ranges from 1.45 to 1.80 and mean

codimension C1 varies under 0.25, indicating that energy flux Π(k8) of Case 4.2.11 does

not match the characteristics of atmospheric turbulence. Besides, UM parameters
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obtained from ensemble analysis are close to mean values, while qs obtained from

ensemble analysis are much larger than mean values, which is consistent with the

definition of qs taking into account sample dimension.

(a) Fix range method

(b) Adjusted range method

Figure 4.30: Time evolution of UM parameters and critical moment of Case 4.2.10.

UM analysis for Case 2.10 with large forcing f = 1 is displayed in Fig.4.30. Similar

to disparity analysis of Case 2.11, results in Fig.4.30a and Fig.4.30b are quite similar,

demonstrating that the difference for Case 2.10 is negligible. Since mean codimension

C1 in Fig.4.30b is less than 0.20, it can be concluded that no time period reflects
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atmospheric turbulence. Even though, there are four sub-series with α greater than

2.

UM analysis of Case 4.2.9 is shown in Fig 4.31.

(a) Fix range method

(b) Adjusted range method

Figure 4.31: Time evolution of UM parameters and critical moment of Case 4.2.9.

Fig 4.31a shows a decreasing multifractality index α, whereas Fig 4.31b displays

α varying around the average. Comparing these two range estimations, both the

average and frequency plot of α change. Similar tendencies are seen in Fig 4.31 for

mean codimension C1. As a result, qs exhibits significant variation. This significantly
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disparity that differs from Cases 4.2.10 and 4.2.11, implying that adjusted range

estimation provides well fitted UM analysis. According to Fig 4.31b, α varies between

1.2 and 2, but does not exceed 2. C1 is in the range of 0.05 and 0.45 and qs stabilizes

after getting rid of initial unstable state.

(a) Fix range method

(b) Adjusted range method

Figure 4.32: Time evolution of UM parameters and critical moment of Case 4.2.8.

Case 4.2.8 is shown in Fig 4.32. There aren’t many noticeable deviations in

tendencies of UM parameters and qs between Fig 4.32a and Fig 4.32b. The difference

yielded by range estimation is, nevertheless, confirmed by mean values. After initial
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unstable condition, α in Fig 4.32b is in the range of 1 to 2, but only three subsequences

have C1 between 0.2 and 0.3. As a result, there are few sub-series in Case 4.2.8 whose

UM parameters are comparable to those of atmospheric turbulence.

(a) Fix range method

(b) Adjusted range method

Figure 4.33: Time evolution of UM parameters and critical moment of Case 4.2.7.

Fig.4.33 is the UM analysis of Case 4.2.7. α in Fig 4.33b compared to Fig 4.33a

increases, as indicated by mean value. C1 is greater than 0.8 at the end in Fig 4.33b,

whereas it is close to 0.5 in Fig 4.33a. Thus, qs in Fig 4.33b is without a doubt

different from those in Fig 4.33a, as shown by mean values and frequency plots, even
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though curves are similar. These differences confirm that adjusted range estimation

is a well fitted UM parameters technique. Additionally, three subseries with α greater

than 2 caused by the same reason as in Case 2.10. Based on temporal evolution of UM

parameters, subseries exist in which UM parameters are in agreement with empirical

value for atmospheric turbulence.

(a) Fix range method

(b) Adjusted range method

Figure 4.34: Time evolution of UM parameters and critical moment of Case 4.2.6.

Time evolution of UM parameters for Case 4.2.6 exhibiting highly intermittent

energy flux is shown in Fig 4.34. α decreases and then stabilizes in Fig 4.34a, but

swings steadily around the mean in Fig 4.34b. Disparity in α caused by estimation
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range is demonstrated by frequency plot and mean value. C1 in Fig 4.34b is almost

identical to that in Fig 4.34a. Change in qs results from the variation in α. All these

results testify difference generated by estimation range for Case 4.2.6. In Fig 4.34b,

α is in the range of 1 and 2 before N = 40, whereas there are two extreme values

after N = 40: one larger than 2 at N = 41 and another less than 1 at N = 46. C1 is

less than 0.4 before N = 40 and has two values approaching 0.5 after N = 40.

(a) Fix range method

(b) Adjusted range method

Figure 4.35: Time evolution of UM parameters and critical moment of Case 4.2.5.

UM analysis for Case 4.2.5 is shown in Fig 4.35. Variations in UM parameters
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and qs implies the difference caused by estimation range. α is decreasing in Fig 4.35a,

whereas it is fluctuating around the mean in Fig 4.35b. C1 increases to almost 0.6

in Fig 4.35a, but exceeds abnormal value 1.2 in Fig 4.35b. The disparity resulting

from estimation range is evident in both frequency plots and mean values of UM

parameters. Therefore, qs has a significantly change after N = 20 in Fig 4.35b

compared to Fig 4.35a. In addition, three α large than 2 after N = 40 are shown in

Fig 4.35b.

(a) Fix range method

(b) Adjusted range method

Figure 4.36: Time evolution of UM parameters and critical moment of Case 4.2.4.
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UM analysis of Case 4.2.4 is provided in Fig 4.36. Similar to Case 4.2.5, both

tendencies and frequency plots of UM parameters demonstrate difference caused by

estimation range for Case 4.2.4. α has six values larger than 2 after N = 20, and C1

has two abnormal value which is greater than 1. These extreme values indicate that

Case 4.2.4 with forcing 0.4 generates many non-multifractal subseries and appeared

earlier than Case 4.1.5. Unfortunately, there is no overlap time satisfying α ≈ 1.5

and C1 ≈ 0.25, according to time evolution of UM parameters. So Case 4.2.4 doesn’t

have enough subseries to perform ensemble analysis.

(a) Fix range method

(b) Adjusted range method

Figure 4.37: Time evolution of UM parameters and critical moment of Case 4.2.3.
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UM analysis of Case 4.2.3, in which forcing is 0.3 and fluctuations vanish over

time, is shown in Fig.4.37. In Fig 4.37a, α has a downward trend and C1 is centered

around the mean. qs is stable before the final upward trend. Averaged UM parameters

in Fig 4.37b is greater than those in Fig 4.37a. Frequency diagrams further confirm

disparity caused by well fitted UM estimation. After forced SGC model has been

fully developed, α is less than 2, and has a value less than 1 at the end which is in

agreement with disappearing fluctuations. C1 is between 0 and 1, with no abnormal

value. Frequency diagrams of UM parameters for Case 4.2.3 suggests that there

are subsequences satisfying α ≈ 1.5 and C1 ≈ 0.25 before fluctuations vanishes.

Overlapping time is confirmed by time evolution of UM parameters, indicating that

energy flux exhibits atmospheric turbulence-like properties.

UM analysis of Case 4.2.2 is shown in Fig 4.38. Disparity in trend of UM pa-

rameters and qs is obvious when Fig 4.38a and Fig 4.38b are compared, and their

frequency plots and averages verify this difference. Although α in Fig.4.38b is around

the mean, there are two values greater than 2. The number of subseries whose C1 is

in the range of 0.2 to 0.3 is 1. Forcing injected in Case 4.2.2 thus is not enough to

provide ensemble analysis because of low values energy flux and weak fluctuations.
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(a) Fix range method

(b) Adjusted range method

Figure 4.38: Time evolution of UM parameters and critical moment of Case 4.2.2.

Fig 4.39 displays UM analysis of Case 4.2.1. The existence of range estimation-

generated difference is proved by UM analysis comparison. C1 suggests that energy

flux of Case 4.2.1 does not have subseries to approximate empirical UM parameters,

despite the frequency plot in Fig 4.39b indicating subseries satisfying α ≈ 1.5.
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(a) Fix range method

(b) Adjusted range method

Figure 4.39: Time evolution of UM parameters and critical moment of Case 4.2.1.

Frequency for subseries of Case 4.2 whose UM parameters are close to α ≈ 1.5

and C1 ≈ 0.25 is listed in Table 4.4. Case 4.2.7 - Case 4.2.11, whose forcing is large,

doesn’t reach expected time because of enormous energy flux. And few subseries

satisfy C1 ≈ 0.25 with the exception of Case 4.2.9 resulting in mean values below

0.25. Case 4.2.1 and Case 4.2.2, on the other hand, have relatively few cases satisfying

C1 ≈ 0.25 due to small forcings, as indicated by mean values. As for Case 4.2.3– Case

4.2.6, there are many subseries whose UM parameters are close to α ≈ 1.5 and

C1 ≈ 0.25. Case 4.2 with sample size 512 has many subseries α > 2, which is caused
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by extreme values dominating scaling properties and leads to α being larger than 1.5.

Since averaged values are obtained over all subseries, including unstable state at the

beginning or the end, it cannot be used to determine whether or not the entire time

series is close to atmospheric turbulence. Time period of Case 4.2 that is consistent

with atmospheric turbulence is displayed in the following.

Table 4.4: Frequency of UM parameters of Case 4.2 closing to atmospheric
turbulence.

Case 4.2
n η∗ ∆t m resolution
14 12 0.0001 8 512

Case f tf Nα NC1 α C1 αe C1e

4.2.1 0.1 25001 16 1 1.58 0.12 1.62 0.09
4.2.2 0.2 25001 16 2 1.62 0.14 1.63 0.09
4.2.3 0.3 25001 14 17 1.68 0.25 1.3 0.12
4.2.4 0.4 25001 11 10 1.7 0.31 1.38 0.1
4.2.5 0.5 25001 11 9 1.61 0.23 1.37 0.1
4.2.6 0.6 25001 17 12 1.54 0.19 1.29 0.11
4.2.7 0.7 21000 19 4 1.65 0.23 1.49 0.17
4.2.8 0.8 13500 9 3 1.6 0.16 1.35 0.12
4.2.9 0.9 20000 10 12 1.58 0.19 1.29 0.13
4.2.10 1 19000 14 0 1.66 0.08 1.72 0.08
4.2.11 1.1 7000 2 0 1.62 0.1 1.63 0.09

4.4.4 Time scale closing to atmospheric turbulence

Due to UM analysis for time evolution of fluctuations in the last section, this

part presents ensemble analysis for the time exhibiting atmospheric turbulence-like

properties. It starts with cases with small forcing. Here it has to point out that time

scale for ensemble analysis doesn’t necessarily have to be slot subseries from time

evolution UM analysis. Due to the limitation of C1, cases whose time scales reflect

127

https://ecoledesponts.fr/
https://ecoledesponts.fr/en/laboratories-research-hydrology-meteorology-complexity


Thesis – X. LI; Ecole des Ponts ParisTech – Hydrology Meteorology et Complexity

the nature of atmospheric turbulence are Case 4.2.3-Case 4.2.6 and Case 2.9.

Ensemble analysis for subseries N = 21 to N = 30 in Case 4.2.3 is shown in Fig

4.40. UM parameters are close to empirical general value for atmospheric turbulence

with α = 1.45 and C1 = 0.26.

(a) UM parameters (b) Scaling moment function
K(q)

Figure 4.40: Ensemble analysis of Case 4.2.3.

In spite of small forcing and weak fluctuations, Case 4.2.3 has a time period with

UM parameters close to empirical general values. As stated, there is no time period

for Case 4.2.4.

Ensemble analysis of Case 4.2.6 from time 18000 to 24145, with estimated UM

parameters of α = 1.57, C1 = 0.27, as shown in Fig 4.41.

(a) UM parameters (b) Scaling moment function
K(q)

Figure 4.41: Ensemble analysis of Case 4.2.6.
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Ensemble analysis for Case 4.2.9 is shown in Fig 4.42. UM parameters obtained

from ensemble analysis of subseries N = 22 to N = 33 are consistent with empirical

UM parameters for atmospheric turbulence. Estimated UM parameters are α =

1.51, C1 = 0.24 yielding critical moment qs = 3.21. And the empirical function is

indistinguishable from the theoretical function.

(a) UM parameters (b) Scaling moment function
K(q)

Figure 4.42: Ensemble analysis of subseries N = 22− 33 in Case 4.2.9.

4.4.5 Summary of cascade step 14

SGC model with a large cascade step n = 14 injecting various forcing is studied.

In all cases, energy fluxes exhibit fluctuations. Excessive energy flux is generated

stopping SGC model when forcing is large, whereas fluctuations vanish for small forc-

ing. For the remaining forcings, SGC model is capable of reaching expected numerical

simulation time scale, and intermittency is present throughout the entire time series.

The probability distribution function for these fluctuations doesn’t follow Gaussian

distribution, as indicated by the occurrence of a ”heavy” tail. UM parameters and qs

of Case 4.2 also demonstrate the disparity brought on by estimation range. α of Case
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4.2 is α ≈ 1.66 ± 0.06, as there are several values α > 2 caused by the extreme val-

ues in the field dominating scaling properties. Frequency plots, as well as Table 4.4,

reveal that there are more subseries with UM parameters close to α ≈ 1.5, C1 ≈ 0.25

for middle-range forcings. Mean codimension C1 is 0.25± 0.05 with the exception of

small forcing Case 4.2.1-Case 4.2.2, large forcing Case 4.2.10-Case 4.2.11, and Case

4.2.8. Temporal evolution provides time periods and ensemble analysis confirms that

part of time evolution is in agreement with atmospheric turbulence.

4.5 Cascade step 15

Numerical simulations of forced SGC model which has a large cascade step n = 15

are displayed with forcing ranging from 0.5 to 1.1. Simulation time grows exponen-

tially with the maximum cascade step n in SGC model because of its spatial structure

(see Chapter 3), so simulation is limited by computing devices. The initial condition

is presented in Table.4.5.

Table 4.5: Case 4.3 whose cascade step is n = 15.

Case 4.3
n η∗ ∆t m
15 13 0.00007 9

Case f tf
4.3.1 0.5 25001
4.3.2 0.6 25001
4.3.3 0.7 13233
4.3.4 0.8 25001
4.3.5 0.9 19000
4.3.6 1 18000
4.3.7 1.1 11203
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4.5.1 Intermittency of energy flux

Energy flux of Case 4.3 is shown in Fig 4.43 to study the existence of fluctuations.

In Case 4.3.1, Case 4.3.2, and Case 4.3.4, the simulation is able to complete compu-

tation within expected time frame. For Case 4.3.6 and Case 4.3.7 with large forcing,

the simulation yields enormously large energy flux and ends running. Regardless,

extreme values in either the initial unstable state or the end state, make it difficult

to clearly observe fluctuations in Fig 4.43.

(a) Case 4.3.1 (b) Case 4.3.2 (c) Case 4.3.3

(d) Case 4.3.4 (e) Case 4.3.5 (f) Case 4.3.6

(g) Case 4.3.7

Figure 4.43: Energy flux Π(k9) whose cascade step n = 15.

Energy fluxes Π(k9) after removing these extreme values are shown in Fig 4.44.

Energy fluxes in Case 4.3.1 and Case 4.3.2 display fluctuations, whereas intermittency
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is observed in Case 4.3.3-Case 4.3.7 all the time series.

(a) Case 4.3.1 (t : 500−) (b) Case 4.3.2 (t : 500−) (c) Case 4.3.3
(t : 500− 12000)

(d) Case 4.3.4 (t : 500−) (e) Case 4.3.5
(t : 500− 19000)

(f) Case 4.3.6
(t : 500− 18000)

(g) Case 4.3.7
(t : 500− 10000)

Figure 4.44: Energy flux Π(k9) of Case 4.3.

4.5.2 Non-Gaussian distribution and “heavy” tail

Probability distribution of fluctuations for Case 4.3 is given in this part. Fig 4.45

verify “heavy” tail for Case 4.3 by comparing probability distribution of Pr(∆|Π(k9)| >

s) with Gaussian distribution that has the same mean and variance.
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(a) Case 4.3.1 (b) Case 4.3.2 (c) Case 4.3.3

(d) Case 4.3.4 (e) Case 4.3.5 (f) Case 4.3.6

(g) Case 4.3.7

Figure 4.45: Log-log plot of probability Pr(∆|Π(k9)| > s) exceeding a fixed
reflectivity threshold s of Case 4.3

4.5.3 Multifractality described by UM framework

Extreme events resulting in ”heavy” tails are analyzed by UM framework to study

multifractality over time and UM analysis of Case 4.3 is presented in descending order

of forcing.

Case 4.3.7 with forcing f = 1.1 is shown in Fig 4.46.
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(a) Fix range estimation(a) Fix range method

(b) Optimal range method

Figure 1.4: Time evolution of UM parameters and critical moment of Case 3.7.

The analysis of Case 3.6 is shown in Fig.1.5, whose time scale reaches its maximum

around 20000 and is adequate to study the intermittent. In contrast to ↵ in Fig.1.5a,

↵ in Fig.1.5b is more smoothly flowing. C1 of sub-series N = 25� 30 are di↵erent in

Fig.1.5b and Fig.1.5a. The definition of qs implies that it is normal for Case 3.6 that

qs yielded from two methods are not the same. The UM parameters obtained by the

optimal range are more reasonable and accurate, as shown by the fact that the mean

value of the UM parameters in Fig.1.5b is higher than that in Fig.1.5a. In addition,

9

(b) Adjusted range estimation

Figure 4.46: Time evolution of UM parameters and critical moment of Case 4.3.7.

Two range estimation methods yield nearly identical trend curves for UM param-

eters and qs. Frequency plots suggest that the means haven’t changed significantly,

but a few modifications have been made to C1. Changes in α lead to adjustments of

the frequency plot and the mean of qs qs obtained from ensemble analysis is larger

than the mean due to sample number. UM parameters in the early phase have one

value α greater than 2 and several C1 lower than 0.1 as the model is trying to reach

quasi-equilibrium before injected forcing is not yet acting. When forcing is large, the
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time scale for analysis cannot reach expected time, preventing it from providing more

information. Considering that C1 has only two subseries around 0.25, there are no

more than three subseries approaching atmospheric turbulence for ensemble analysis.

Analysis of Case 4.3.6 is shown in Fig 4.47, whose time scale reaches its maximum

around 20000 and is adequate to study intermittency.

(a) Fix range estimation

(b) Adjusted range estimation

Figure 4.47: Time evolution of UM parameters and critical moment of Case 4.3.6.

In contrast to α in Fig.4.47a, it in Fig.4.47b varies around mean. There is a

disparity for subseries N = 25− 30 between Fig.4.47b and Fig.4.47a. The definition
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of qs implies that it is normal for Case 4.3.6 that qs yielded from these range estimation

methods are different. In addition, UM parameters indicate that there is an overlap

time that satisfies α around 1.5 and C1 around 0.25.

(a) Fix range estimation

(b) Adjusted range estimation

Figure 4.48: Time evolution of UM parameters and critical moment of Case 4.3.5.

Fig 4.48 illustrates UM analysis of Case 4.3.5, which demonstrates the observed

changes in α and qs, including trends, frequency plots, and mean values. For instance,

the trend of α after N = 20 in Fig 4.48b is much more stable than that in Fig 4.48a.

This confirms the difference caused by range estimation. Besides, time evolution
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of UM parameters reveals an overlap time satisfying α ≈ 1.5 and C1 ≈ 0.25, and

ensemble analysis is carried out in the following part.

(a) Fix range method

(b) Adjusted range method

Figure 4.49: Time evolution of UM parameters and critical moment of Case 4.3.4.

The result of Case 4.3.4, whose analysis is similar to that of Case 4.3.6, is displayed

in Fig 4.49. Multifractality index α, including the trend, frequency plot, and mean,

clearly reveals the difference between these two range estimations, which is further

supported by changes in trend and the mean of qs. Fig 4.49b shows a higher frequency

of subsidies whose α is close to 1.5 and C1 is close to 0.25, and overlap time periods
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agreeing with empirical UM parameters.

(a) Fix range estimation

(b) Adjusted range estimation

Figure 4.50: Time evolution of UM parameters and critical moment of Case 4.3.3.

UM analysis for Case 4.3.3 is presented in Fig 4.50. Due to limitation of time

scales, the difference resulting from estimated range is less visible than it is in the

previous cases and there won’t be sufficient time scale to provide ensemble analysis.

Plus, frequency histogram of α displays an increment of α resulting in changes of qs.
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(a) Fix range estimation

(b) Adjusted range estimation

Figure 4.51: Time evolution of UM parameters and critical moment of Case 4.3.2.

In Fig 4.51, UM analysis of Case 4.3.2 exhibiting vanishing fluctuation is displayed.

α changes from decreasing in Fig 4.51a to floating around the mean in Fig.4.51b, and

its frequency concentrates more closely around the mean. C1 in Fig.4.51b reaches

abnormal values toward the end instead of values closer to 0.6 in Fig.4.51a. So qs in

Fig.4.51b is approximately decreasing. Mean values of UM parameters and qs also

confirm the disparity generated by range estimation. But there are three subsequences

C1 > 1 indicating that they are not multifractal fields.
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(a) Fix range estimation

(b) Adjusted range estimation

Figure 4.52: Time evolution of UM parameters and critical moment of Case 4.3.1.

UM analysis for Case 4.3.1 is shown in Fig 4.52. Multifractality index α decreases

gradually in Fig 4.52a, but not in Fig 4.52b, which is centered around the mean.

Mean codimension C1 increases below 0.5 in Fig 4.52a, whereas an abnormal value

greater than 1 appears in Fig 4.52b. Critical moment qs is stable except at the end

in Fig 4.52a, while it falls off after subseries N = 30 in Fig 4.52b. The difference is

also confirmed by averaged UM parameters. Besides, there are two subseries whose

α is greater than 2 and three subseries with C1 greater than 1 at the end in Fig

4.52b, indicating subseries with abnormal C1 are not multifractal fields. Frequency of
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C1 ≈ 0.25 as shown in Fig 4.52b limits subseries exhibiting properties of atmospheric

turbulence.

The number of subseries with α ≈ 1.5 and C1 ≈ 0.25, as shown by frequency

histograms, is summarized in Table 4.6. NC1 of Case 4.3.7 whose forcing is extremely

large causing SGC model stops at time 11000 is 2, while it is 3 for Case 4.3.1 whose

fluctuations vanish. Because the energy flux of spatial eddies is so large that results

in an early stopping, Case 4.3.3 only has two subseries satisfying C1 ≈ 0.25. These

cases demonstrate the absence of a large time scale with UM parameters that are

consistent with empirical UM parameters. For the rest, Nα and NC1 in the table

suggest that energy flux reflecting properties of atmospheric turbulence has sufficient

time scale, and ensemble analysis is presented in the following part. The mean of

multifractality index α is 1.63± 0.04, which is greater than the empirical value 1.5 as

many values α > 2 appears in Case 4.3. C1 is 0.25± 0.07 excluding Case 4.3.1, Case

4.3.3, and Case 4.3.7.

Table 4.6: Frequency of UM parameters of Case 4.3 closing to atmospheric
turbulence.

Case 4.3
n η∗ ∆t m resolution
15 13 0.00007 9 512

Case f tf Nα NC1 α C1 αe C1e

4.3.1 0.5 25001 16 3 1.63 0.32 1.5 0.1
4.3.2 0.6 25001 11 7 1.65 0.32 1.47 0.1
4.3.3 0.7 12000 10 2 1.64 0.13 1.53 0.11
4.3.4 0.8 25001 15 17 1.66 0.21 1.35 0.11
4.3.5 0.9 19000 17 10 1.63 0.18 1.33 0.13
4.3.6 1 19000 11 8 1.66 0.23 1.46 0.13
4.3.7 1.1 11000 14 2 1.59 0.12 1.56 0.1
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4.5.4 Time scale closing to atmospheric turbulence

Ensemble analysis for Case 4.3 is presented in this part. Case 4.3.1, Case 4.3.3,

and Case 4.3.7 have inadequate time scales whose UM parameters agree with empir-

ical UM parameters, according to NC1 in Table 4.6. Overlapping time scale is not

enough for Case 4.3.2, since Case 4.3.2 exhibiting gradually vanishing intermittency

has abnormal C1 after subseries N = 20 and α greater than 2 in the first half of

time series. Ensemble analysis of Case 4.3.4-Case 4.3.6 is therefore carried out to

demonstrate partial time series reflecting the characteristics of empirical atmospheric

turbulence.

Ensemble analysis of Case 4.3.4 is shown in Fig 4.53. UM parameters performed

on subseries N = 30− 45 are α = 1.56 and C1 = 0.26, which implies scaling moment

functionK(q) after critical moment function qs = 2.99 is linear. And empirical scaling

moment function is identical to the theoretical scaling moment function, as shown in

Fig 4.55b.

(a) UM parameters (b) Scaling moment function
k(q)

Figure 4.53: Ensemble analysis of Case 4.3.4.

Fig 4.54 is ensemble analysis of subseries N = 30− 38 in Case 4.3.5. UM param-

eters are α = 1.47 and C1 = 0.27 with critical moment function is qs = 2.96.

142

https://ecoledesponts.fr/
https://ecoledesponts.fr/en/laboratories-research-hydrology-meteorology-complexity


Thesis – X. LI; Ecole des Ponts ParisTech – Hydrology Meteorology et Complexity

(a) UM parameters (b) Scaling moment function
k(q)

Figure 4.54: Ensemble analysis of Case 4.3.5.

Ensemble analysis of Case 4.3.6 at time 12200 ≤ t ≤ 16800 is shown in Fig 4.55.

Estimated UM parameters are α = 1.5 and C1 = 0.25.

(a) UM parameters (b) Scaling moment function
k(q)

Figure 4.55: Ensemble analysis of Case 4.3.6.

4.5.5 Summary of cascade step 15

In consideration of the complexity analysis of SGC model, the maximum cascade

step using DNS in our study is n = 15. Case 4.3 exhibits fluctuations in energy flux

in reaction to injected forcing. Except for Case 4.3.3, fluctuations get stronger and

even end SGC model when forcing enlarges. Probability distribution function of these

fluctuations has a “heavy” tail, allowing UM framework to be used to analyze them.
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As statistically uniform estimating range may not be well fitted for every subseries,

adjusted range estimation is utilized to estimate UM parameters and critical moments

qs. The number of subseries with UM parameters close to α = 1.5 and C1 = 0.25

is summarized in Table 4.6, which suggests both large forcing and small forcing will

result in a low number satisfying C1 ≈ 0.25, whereas middle-range forcing has a large

number of subsequences. Averaged multifractality index is 1.63±0.04. C1 is between

0.12 and 0.32, and C1 is 0.25±0.07 excluding Case 4.3.1 with small forcing, Case 4.3.7

as well as Case 4.3.3 with large forcing. Corresponding ensemble analysis confirms

that cases injecting forcing in the middle range do have time whose UM parameters

are consistent with those of empirical atmospheric turbulence.

4.6 Computational instability by comparing semi-

implicit Euler method

Computational instability has been revealed in three cases utilizing the classic

Euler method. Case 4.1 is simulated by the semi-implicit Euler technique, which is

more stable than the classic Euler approach, to investigate the reason for instability

in this section.

Energy flux Π(k6) of Case 3.1 simulated by the semi-implicit Euler method is

presented in Fig 4.56. Energy flux of Case 4.1.6 and Case 4.1.8 - Case 4.1.10 deviates

significantly from what was simulated by classic Euler method in Fig 4.1. Case 4.1.6

stops at time 21856 and doesn’t reach the expected time, which is earlier than that

simulated by classic Euler method. Extremely large energy flux in Case 4.1.10 stopped
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the computation in advance. However, Case 4.1.8 has a prolonged time series and

significant values at the end, while Case 4.1.9 ends at the expected time.

(a) Case 4.1.1 (b) Case 4.1.2 (c) Case 4.1.3

(d) Case 4.1.4 (e) Case 4.1.5 (f) Case 4.1.6

(g) Case 4.1.7 (h) Case 4.1.8 (i) Case 4.1.9

(j) Case 4.1.10

Figure 4.56: Energy flux Π(k6) of Case 4.1 simulated by semi-implicit Euler method.

Except for obvious fluctuations in Case 4.1.7 and Case 4.1.9, energy flux in the rest

cases removing unstable state is presented in Fig 4.57. All cases exhibit fluctuations.
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Especially, strong fluctuations are observed in most of Case 4.1 excluding Case 4.1.1

and Case 4.1.2.

(a) Case 4.1.1 (1000-) (b) Case 4.1.2 (1000-) (c) Case 4.1.3 (1000-)

(d) Case 4.1.4 (1000-) (e) Case 4.1.5 (1000-) (f) Case 4.1.6 (0-18000)

(g) Case 4.1.8 (0-18000) (h) Case 4.1.10 (0-6000)

Figure 4.57: Energy flux Π(k6) of Case 4.1 which is simulated by the semi-implicit
Euler method and removed the extreme values.

Non-Gaussian distribution of these fluctuations and heavy tails are not given in

this section. UM analysis of all cases will be provided in Appendix B.4 and sum-

marised UM parameters are given in Table 4.7. Averaged multifractaility index α

is 1.55 ± 0.07 and averaged mean codimension C1 is 0.25 ± 0.05 except the largest

forcing case 4.1.10. It also confirms that multifractality index is smaller less than 2.
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Table 4.7: Frequency of UM parameters of Case 4.1 simulated by semi-implicit
Euler method.

Case 4.1 simulated by semi-implicit Euler method.
n η∗ ∆t m resolution
12 10 0.0002 6 512

Case f tf Nα NC1 α C1 αe C1e

4.1.1 0.1 23810 14 5 1.61 0.2 1.35 0.09
4.1.2 0.2 23810 14 5 1.61 0.2 1.35 0.09
4.1.3 0.3 23810 10 14 1.62 0.28 1.21 0.13
4.1.4 0.4 23810 12 8 1.61 0.3 1.32 0.15
4.1.5 0.5 23810 19 6 1.57 0.28 1.36 0.17
4.1.6 0.6 18000 17 7 1.58 0.2 1.5 0.17
4.1.7 0.7 23810 16 11 1.48 0.24 1.21 0.16
4.1.8 0.8 18000 16 12 1.48 0.23 1.5 0.2
4.1.9 0.9 23810 17 8 1.52 0.24 1.37 0.15
4.1.10 1 6000 7 4 1.62 0.12 1.34 0.08

4.7 Summary of Chapter 4

Intermittency of forced SGC model with three large cascade steps n = 12, 14, 15,

which is simulated by classic Euler method, is investigated in this chapter by injecting

forcing at top layer to achieve quasi-equilibrium state. Forcing is 0.1 ≤ f ≤ 1 for

cascade step n = 12, and ranges from f = 0.1 to f = 1.1. Cascade step 15 with forcing

from 0.5 to 1.1 is studied. The proof of intermittency is given out first, followed by

its multifractality, and then the investigation about computational instability.

With the exception of one special case, energy flux in the inertial range for these

three cascade steps yields extraordinarily high values as forcing increases, even bring-

ing an early ending to SGC model. All these cases confirm the existence of intermit-

tency. Strong intermittency is clearly observed in cases injecting the medium value
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forcings. Cases with large forcings demonstrate strong fluctuations after removing

extraordinarily large value of energy flux strengthened by forcings at the end are vis-

ible. On the other hand, energy flux in instability state at the beginning prevents

direct observation of intermittency in cases with small forcing, but these noticeable

fluctuations become weaker and eventually vanish as time goes on. Probability distri-

bution function of energy flux in all cases verifies the “heavy” tail caused by extreme

events.

UM framework is therefore used to analyze the multifractality of intermittency.

Properties of time slots are presented first, followed by ensemble analysis, due to

the lack of additional independent cases to perform general ensemble analysis on.

Sample size 512 is chosen by comparing UM analysis of three sample sizes 1024, 512,

and 256. As subsequences have different scale-invariant features and statistical fixed

range estimation η ≈ 1 doesn’t fit well, adjusted range estimation is introduced by

improving the plot fit of UM parameters. Results reveal that disparity caused by fixed

range estimation is either negligible or non-existent for cases injecting large forcings,

whereas in the other cases, UM parameters as well as critical moment qs, confirm the

difference, e.g. trends, frequency histograms, mean values.

Multifractality index α obtained from adjusted range estimation swings around

the mean, mostly between 1 and 2. Subseries with α larger than 2 appear either at

the beginning or the end since some extreme values in energy flux dominate the scale-

invariant properties. More α greater than 2 are observed as cascade step enlarges,

most likely as a result of the expansion of spatial eddies in SGC model, which acceler-

ates energy exchange. Mean codimension C1 is small at the beginning as SGC model

is quitting from an ad-hoc initial state and forcing is not yet functioning, followed
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by stable and rising at the end. The occurrence of abnormal values C1 > 1 when

forcing is small suggests that these subseries are not multifractal fields, but this does

not happen when forcing is extremely small.

The analysis of these three cascade steps reveals that the multifractality index is

significantly smaller than 2. Averaged multifractality index of cascade step 12 except

the minimum forcing 0.1 is α = 1.53 ± 0.06 and is 1.66 ± 0.06 for cascade step 14.

It is also confirmed by averaged multifractality index 1.63 ± 0.04 for cascade step

15. There are many cases for these three cascade steps whose energy flux is con-

sistent with the empirical atmospheric turbulence α ≈ 1.5, C1 = 0.25. Time scale

for ensemble analysis is limited when forcing is either large or small because of few

subseries satisfying C1 ≈ 0.25 As for forcings of medium value, many subseries satis-

fying α ≈ 1.5, C1 ≈ 0.25, which is supported by ensemble analysis, demonstrates that

there is a temporal scale at which UM parameters obtained from ensemble analysis

confirms empirical UM parameters from various measurements.

Last but not least, computation instability in classic Euler method simulation

is investigated by comparing the simulation of cascade step n = 12 obtained by

more stable semi-implicit Euler method that is commonly used for rigid bodies. It

turns out that semi-implicit Euler method couldn’t reduce computational instability.

Furthermore, strong fluctuations are observed in most cases and UM analysis confirms

a multifractality index of significantly less than 2.
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Chapter 5

Backscatter term and energy decay

law

5.1 Global scaling and the decay law of free tur-

bulence

Since at least the empirical observations made by Leonardo da Vinci, turbulence

has been known to be dissipative, i.e. without external forcing it will decay. At the

mathematical level, this is due to the presence of dissipative term ν∆u in the Navier-

Stokes equation. However, it has also been observed that this decay is slow, in fact

much slower than an exponential law that would result from neglecting all the other

terms of these equations. More precisely it was empirically found and theoretically

argued that the decay of free turbulence follows a power law for the whole period
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where it remains fully developed, i.e. with a high Reynolds number. The exponent

of this decay law can be obtained with the help of only two hypotheses:

• global self-similarity of the energy spectrum and transfer, with the possible

exception of the dissipation range [113]

• stationarity of the energy spectrum of big eddies, i.e. those corresponding to

vanishing wave numbers (k → 0)

Indeed, these hypotheses yield the two equations that follow:

E(k, t) = v2(t)ℓ(t)F (x); T (k, t) = v3(t)G(x) : x = kℓ(t); (5.1.1a)

E(k, t) = Cs(t0)k
s +O(ks+1), k → 0; (5.1.1b)

where F (x) and G(x) are dimensionless functions of the dimensionless wavevector

x, v2(t)/2 is the average energy K(t) (Eq.1.5.1); ℓ(t) is a rather arbitrary scale of

the energy-containing eddies (e.g. the integral scale); s is the exponent of stationary

of big eddies and Cs is its prefactor. The latter, via Eq.5.1.1b, yields a first scaling

relation between v(t) ∝ tαv and ℓ(t) ∝ tαℓ :

v(t)2ℓ(t)s+1 = Const. ⇒ 2αv + (s+ 1)αℓ = 0. (5.1.2)

A second scaling relation is obtained by considering the phenomenological relation of

energy dissipation to the velocity ε (Eq.1.4.1):

ε(t) = − d

dt
v2(t) ≈ v3

ℓ
⇒ αv − αℓ + 1 = 0. (5.1.3)
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Combining both scaling relations (Eqs.5.1.2, 5.1.3) yields:

αv = −s+ 1

s+ 3
; αℓ =

2

s+ 3
. (5.1.4)

A more rigorous and more general derivation was obtained by Schertzer in 1980

[113] by firstly introducing a modified dissipativity [76] αD ̸= 1 to enable to obtain

a strict global self-similarity, i.e., including in the dissipation range. The spectral

equation is then generalized to:

(
∂

∂t
+ 2 ναD

k2αD

)
E(k, t) = T (k, t) (5.1.5)

The scales of dissipation ℓd,αD
and of energy containing eddies ℓ are linked through

the modified Reynolds number RαD
:

ℓd,αD
(t) ∝ ℓ(t)RαD

(t)−3/2(3αD−1); RαD
(t) = v(t)ℓ(t)2αD−1/ναD

(5.1.6)

Then it is assumed that the modified dissipativity αD ̸= 1 can be chosen to obtain

a strict global self-similarity. Spectral equation Eq.5.1.5 can be expressed with the

help of functions F and G:

v−3d(v
2ℓ)

dt
F (x) + v−1dℓ

dt
xF ′(x) +

2

RαD

x2αDF (x) = G(x). (5.1.7)

Deriving this equation only with respect to time, one faces then the alternative:

• the three functions F, xF ′, x2αDF (x) are linearly dependent

• they are linearly independent
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The first hypothesis yields solutions of type:

F (x) = a0x
i−a2/a1e

i−x2αD/a1 (5.1.8)

that was rejected by Schertzer [113] as non-physically interesting, despite they were

investigated in the physical space by [124].

The second hypothesis yields the following form of spectral equation:

(
1

β
− a)F (x) + v−1 1

β
xF ′(x) +

2

RαD

x2αDF (x) = G(x) (5.1.9)

with the series of constant positive prefactors:

1

β
= v−1dℓ

dt
= Const. > 0; a =

ℓ

v3
ε = Const. > 0;RαD

= Const. > 0 (5.1.10)

The two first prefactors are equivalent to the aforementioned phenomenological re-

lation and the resulting relation between scaling exponents of v and ℓ (Eq.5.1.3).

Together with the assumed stationarity of big eddies (Eq.5.1.2), they yield the ex-

pressions of scaling exponents αv and αℓ with respect to big eddies stationary expo-

nent s. The third prefactor, which is the (modified) Reynolds number, provides the

expression of adequate modified dissipativity αD with respect to the exponent s:

αD(s) = (1− αv

αℓ

)/2 =
s+ 3

4
(5.1.11)

In this respect, the case s = 1 is the unique case that does not require any modification

of the dissipativity to ensure strict global self-similarity. It confirms a remark made

by [75] on the fact that in this case the analysis of free decay can be performed with
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a non-negligible viscosity. On the contrary, the often studied case s = 4, see below,

requires a significantly modified dissipativity αD(s) = 1.75 to be in the situation of

strict global self-similarity.

5.2 Stationarity of big eddies and energy backscat-

tering

The stationarity of big eddies was largely discussed by Kolmogorov [58] and Lan-

dau and Lifchitz [67] in relation with the so-called Loitsianski’s invariant or Loitsian-

ski’s integral Eq.1.5.5:

I =< u2(t) >

∫ ∞

0

r4f(r)dr (5.2.1)

where f(r) is the longitudinal correlation.

Some physical arguments [24] have been put forward, notably by [69] to ensure

that this integral is indeed time-invariant, however, no mathematical proof has yet

been provided and there is reason to believe that it will be not done. Indeed, a basic

feature of Loitsianski’s integral is that it is proportional to the prefactor C4(t) of k
4

term of energy spectrum expansion at k → 0, while the analytical closures, starting

with Quasi-Normal approximation [89] point out [103] that:

T (k, t) = A(t)k4 +O(ks+1), k → 0; s > −1;A > 0 (5.2.2)

The fact that A(t) is positive implies that the largest eddies are growing and storing

energy and thus have the potential to slow down turbulence decay. This is very
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effective if initially s ≥ 4, particularly if s ≫ 4, modifying the scaling exponent

expressions (Eq.5.1.4). On the contrary, it will have a negligible impact for s < 4

and the scaling exponent expressions (Eq.5.1.4) will apply unchanged. The non-

realisability of Quasi-Normal approximation at long times does not bring into question

this behavior for short times. This is more than being confirmed by Lesieur and

Schertzer [74] with the help of Eddy Damped Quasi-Nomal Markovianized model

(EDNM) [97]. They demonstrated that for all times:

A(t) =
7

15

∫ ∞

k/a

θk,p,p
E(p, t)2

p2
dp, (5.2.3)

where θk,p,q is the correlation relaxation time of the triad k, p, q. The main contri-

bution to A(t) comes from energy-containing eddies of wave numbers p ∼ ℓ−1 and

therefore does not depend on either of wavenumber k or the non-locality parameter a

(k ≤ ap, q ∼ p). This term was initially called ‘beating term’ because it corresponds

to interactions between two wavenumbers very close to each other p ∼ q. But, due

to the fact that it scatters energy from energy-containing eddies back to the largest

eddies, it became known as ‘backscatter term’.

For initial s ≥ 4, Lesieur and Schertzer [74] introduced the scaling exponent γ > 0

of the Loitsianski’s integral and the corresponding prefactor C4(t):

C4(t) = C4(t0)(t/t0)
γ, (5.2.4)

which modifies the scaling exponents of v and ℓ (Eq.5.1.4) into:

αv = −5− γ

7
; αℓ =

2 + γ

7
, (5.2.5)
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with the following numerical estimates:

αe = −2αv = 1.38; αℓ = 0.31; γ ≈ 0.17. (5.2.6)

Lesieur and Schertzer [74] also argued that the fact that backscatter is in k4 is also

obtained by the renormalization group [35]. It is also worthwhile to note that most of

the aforementioned results on the velocity field were extended by Herring et al.,[54]

to the passive scalar field, not only with the help of EDQNM, but also with the Test

Field Model (TFM), which can be understood as somewhat more elaborated. Frisch

et al [43] showed also these results could be also obtained with the less markovianised

version of the Quasi-Normal model (QNM) [130], which is fully realizable contrary

to the original QN, but still fails to renormalize the Green functions, contrary to the

Test-Field-Model(TFM).

5.3 Other studies of backscatter term

More detailed research achievements are given in the following since global scaling

law and the role of backscatter term in the stationarity of big eddies have been

explained in the previous two sections.

The permanence of large eddies has been extensively investigated using the clas-

sic two-point closure theories, and thus indirectly confirms the existence of energy

backscatter term. Except for closure analysis methods, the existence of energy

backscatter is studied by the commonly numerical approach for turbulence. Using
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large eddy simulation (LES) [72], Ossia and Lesieur [99] examined energy backscat-

tering in free decay of three-dimensional incompressible isotropic turbulence and con-

firmed the non-negligible energy backscattering term Eq.5.2.2 for initial power spec-

trum s = 4. The exponent of energy decay law is −1.4 which is between −1.38

proposed by EDQNM and −1.43 predicted by Kolmogorov. However, the quantita-

tive measure of energy backscatter intensity γ relies on the resolution and integration

time. Chasnov [19] observed the continuous energy backscattering term and obtained

the estimated exponent γ ≈ 0.25 from spectral velocity field, when the finite size

effects are negligible, through computing 1024 independent cases and large resolution

643 to improve statistical convergence of the infrared modes.

Another interesting argument is the threshold for destabilizing stationarity of large

eddies, which is commonly acknowledged as an integer 4. With EDQNM framework,

Eyink and Thomson [33] suggested the threshold is sc ≈ 3.45, above which backscatter

term k4 can be clearly observed and a new energy decay law is derived. Lesieur

and Ossia [73] conducted EDQNM analysis of three-dimensional isotropic turbulence

(without helicity) to study this backscatter term issue with cases whose noninteger

s is from 3.2 to 3.9. The computation doesn’t yield significant observed backscatter

term indicating that big eddies are stationary when s < 3, which is consistent with

energy decay exponent αe and scaling law Eq.5.1.4. The slope of energy spectrum

with non-integer exponent 3 < s < 4 over time evolution is somewhat higher than s

and backscatter does gradually observed. The exponent of energy decay law ranges

from −4
3
to −1.38. However, they didn’t find evidence of backscatter term k4 above

threshold s = 3.45 suggested by Eyink and Thomson. Furthermore, Ossia and Lesieur

[99] utilized LES approach and claimed that backscatter term k4 did not appear at
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s = 3.5 despite an increase in the energy spectrum. Briard et al. [12] developed an

extension of EDQNM to anisotropic flows in relation to the interplay between third-

order statistics and anisotropy of turbulent flow [16]. See also the analysis of freely

decaying rotating turbulence by Delache et al. 2014 [26].

5.4 New challenge

The crucial role of backscatter term in the stationarity of big eddies [113], which

leads to the reversed energy cascade phenomenon and modifies free energy decay pro-

cess, has been revealed within the framework of EDQNM. Even though the backscat-

ter term has been observed and quantified its impact in many kinds of research, a

strong limitation of EDQNM theory is that it is based on a quasi-normal approxi-

mation preventing it from being able to generate intermittency. This fundamental

property [127] poses questions about the dynamics of turbulence, in particular, the

stationarity of large eddies and scaling law.

SGC model preserving the nonlocal triad interaction, which can generate intermit-

tency proven in the last chapter, is applied to investigate the existence of backscatter

terms taking intermittency into account. More precisely, the selected NS interactions

for SGC model are semi-local interactions rather than strongly nonlocal interactions

generating backscatter term. Therefore, this study will provide some insight into

whether semi-local interactions can indirectly establish the nonlocal interactions to

observe backscatter term in simulation.
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5.5 SGC model and its backscatter term

5.5.1 Theoretical insights

Due to the triads interaction of SGC model, the evidence for backscatter term is

theoretically hypothesized to be derived directly from the nonlinear transfer term.

Since the nonlocal transfer term revealing backscatter term is generated by the

nonlocal triad interaction Eq.1.6.15c, the nonlinear transfer term of eddy ûi
m (Eq.3.1.9)

generated by same triad interaction which actually is semi-local is:

TNL
U i
m
(k, t) = û2i

m+1(k, t) ∧ ŵ
2i

m+1(k, t) + û2i+1
m+1(k, t) ∧ ŵ

2i+1

m+1(k, t). (5.5.1)

Hence, the nonlocal transfer term in wave number space can be obtained from the

velocity equation Eq.5.5.1 and its conjugate, as

∂E(k, t)

∂t
= û(k, t) · ∂û(k, t)

∂t
+ û(k, t) · ∂û(k, t)

∂t
. (5.5.2)

The velocity field in Fourier space has:

∀ k : û(−k) = û(k), (5.5.3)
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and Eq3.1.10 considering the complex conjugation symmetry of SGC model yields

∀ k : ŵ(−k) = ŵ(k); (5.5.4)

∀ k : û ∧ ŵ = û ∧ ŵ. (5.5.5)

Then, the conjugation of TNL
U i
m
(k, t) is:

T
NL

U i
m
(k, t) = û

2i

m+1(k, t) ∧ ŵ
2i

m+1(−k, t) + û
2i+1

m+1(k, t) ∧ ŵ
2i+1

m+1(−k, t). (5.5.6)

The nonlocal transfer term TNL(k, t) producing backscatter term for spatial eddy

ûi
m is

TNL(k
i
m, t) =û

i

m(k, t) · û2i
m+1(k, t) ∧ ŵ

2i

m+1(k, t) + û
i

m(k, t) · û2i+1
m+1(k, t) ∧ ŵ

2i+1

m+1(k, t)+

ûi
m(k, t) · û

2i

m+1(k, t) ∧ ŵ
2i

m+1(−k, t) + ûi
m(k, t) · û

2i+1

m+1(k, t) ∧ ŵ
2i+1

m+1(−k, t).

(5.5.7)

After the matrix representation, the nonlocal transfer term TNL(k
i
m, t) is

TNL(k
i
m, t) =ui

m(k, t) · km+1 · (|u2i
m+1(k, t)|2 − |u2i+1

m+1(k, t)|2)+

ui
m(k, t) · km+1 · (|u2i

m+1(k, t)|2 − |u2i+1
m+1(k, t)|2)

=2ui
m(k, t) · km+1 · |u2i

m+1(k, t)|2 − 2ui
m(k, t) · km+1 · |u2i+1

m+1(k, t)|2 (5.5.8)
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For power spectrum ks (k → 0), TNL(k
i
m, t) is

TNL(k
i
m, t) ≈2ks/2

m · km+1E(k2i
m+1, t)− 2ks/2

m · km+1E(k2i+1
m+1, t)

≈2ks/2
m · ks+1

m+1 − 2ks/2
m · km+1E(k2i+1

m+1, t). (5.5.9)

Unfortunately, Eq.5.5.9 fails to provide backscatter term yet. It is important to

note that energy lost during the elimination of initial ah-hoc state is not considered,

which might be a determining factor. Tree structure of SGC model whose semi-local

triad interaction is (ki
m,k

2i
m+1, k

2i+1
m+1) makes the separating of backscatter term more

complex. But Eq.5.5.9 suggests there is a positive term that will slow down the energy

decay. The simulation thus will be carried out in the next section to study the energy

decay law considering intermittency.

5.5.2 Numerical results

Initial condition for free decaying SGC model

In this part, energy spectrum and initial simulation parameters are presented

to investigate the impact of intermittency on backscatter term as well as energy

decay law. The energy spectrum has to include both power spectrum ks resulting in

backscatter term and k− 5
3 inertial spectrum exhibiting extreme intermittency. Energy
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spectrum shown in Fig 5.1 is

E(k, 0) =

 Csk
s, 0 < km ≤ kL,

k− 5
3 , kL ≤ km ≤ kn,

(5.5.10)

where Cs is k
−(s+ 5

3
)

L required by connected wave number kL. Comte-Bellot, G and

Corrsin, S [23] also proposed energy spectrum Eq.5.5.10 and studied the connection

between −10/7 decay law and integral scale 2/7 law.

Figure 5.1: Energy spetcrum Eq 5.5.10.

But the energy spectrum for SGC model in simulation is

E(k, 0) =

 Csk
s, 1 ≤ km ≤ kpeak,

k− 5
3 , kpeak ≤ km ≤ kn.

(5.5.11)

It requires the numerical simulated energy spectrum Eq.5.5.11 to be normalized by

E(kpeak, 0):

Er(km, t) =
E(km, t)

E(kpeak, 0)
, (5.5.12)

which is the time evolution of energy spectrum Eq.5.5.10. Initial velocities for spatial

eddies are obtained from energy spectrum Eq 5.5.11, as described in Chapter 4. So do
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the artificial viscosity, time step, and time units. The classic Euler method is chosen

in the simulation of this Chapter.

Corresponding compensated spectrum, as well as the local Reynolds number, can

be calculated. The compensated spectrum for inertial spectrum is defined as:

Ec(km/kpeak, t) = k
5
3Er(km, t). (5.5.13)

To emphasize that the exponent of energy decay is obtained through a sufficiently

high local Reynolds number ReL, the local Reynolds number ReL of SGC model is

computed by:

ReL(km/kpeak, t) =
UL

v
=

(km/kpeakEr(km, t))
1/2

vkm/kpeak
. (5.5.14)

The high Reynolds number implies that the inertial force is many times greater than

the viscosity force, so the viscosity force can be neglected and the flow is fully devel-

oped turbulent.

Meanwhile, two crucial properties in the dynamic of turbulence remain the same

after normalization, which are the exponent of integral scale and energy decay law.

According to the definition of integral scale Eq.4.2.2, integral scale is

L(t) =

∑n
m=0 k

−1
m Km∑n

m=0Km

= k−1
peak ·

∑n
m=0(km/kpeak)

−1Km/Kpeak∑n
m=0 Km/Kpeak

, (5.5.15)

which indicates the exponent of integral scale obtained from energy spectrum Eq.5.5.11

and energy spectrum Eq.5.5.10 is equivalent. The deduction of energy decay law is

not going to repeat. In this way, the exponent of integral scale and energy decay can
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be directly estimated from energy spectrum Eq.5.5.11 instead of using the normalized

value.

Free energy decay law of spectrum k− 5
3

Before studying the role of intermittency, free energy decay law of SGC model

without power spectrum is checked to compare with that of energy spectrum Eq.5.5.10.

npeak is assumed as 0 to ensure energy spectrum Eq.5.5.10 without power spectrum,

and initial parameters are listed in Table 5.1.

Table 5.1: Cases without power spectrum

Case n npeak η∗ ∆t Tmax

5.1 11 0 9 0.0002 6000
5.2 12 0 10 0.0002 6000

Since there is no independent case to perform an ensemble average, statistical

descriptions for time slots are carried out with resolution 10.

(a) Case 5.1 (b) Case 5.2

Figure 5.2: Log-log plot of energy E(t) of Case 5.1 and Case 5.2. Time unit of time
t is the initial large eddy turnover time. K is system energy E(t).
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Fig.5.2 presents the log-log plot of system energy for these two cases without power

spectrum. Apart from the initial unstable phase, exponent of energy decay law at

time t = 30− 300 in Fig.5.2a is αe = 1.41, and αe = 1.47 at time t between 50− 300

in Fig.5.2b. The following are the other characteristics of same time period.

(a) Case 5.1 (b) Case 5.2

Figure 5.3: Local Reynolds number Re of Case 5.1 and Case 5.2.

At time 210− 300, Case 5.1 in Fig.5.3a has a Reynolds number close to 103, while

the Reynolds number of Case 5.2 is around 104, demonstrating that the Reynolds

numbers of Case 5.1 and Case 5.2 are sufficient to guarantee full developed SGC

model.

Meanwhile, the energy spectrum of Case 5.1 and Case 5.2 as well as the compen-

sation spectrum are given in Fig.5.4. It’s clear that energy spectrum of Case 5.1 in

Fig.5.4a and Case 5.2 in Fig.5.4c is −5
3
spectrum, which is confirmed by their compen-

sation spectrum. Energy loss during the initial unstable time prevents compensated

spectrum from reaching 1.
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(a) Energy spectrum of Case 5.1 (b) Compensated spectrum of Case
5.1

(c) Energy spectrum of Case 5.2 (d) Compensated spectrum of Case
5.2

Figure 5.4: Energy spectrum of Case 5.1 and Case 5.2, as well as their compensated
spectrum.

Integral scale of Case 5.1 and Case 5.2, which is the weighted average of inverse

wave numbers describing the characteristic length scale of energy-containing eddies, is

simulated and shown in Fig 5.5. The scaling law of integral scale L(t) with spectrum

k− 5
3 is L(t) ∝ t

2
7 . The simulation reveals that exponent of integral scale for Case 5.1

and Case 5.2 is larger than 2
7
resulting from wavering log-log plot of integral scale.
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(a) Case 5.1 (b) Case 5.2

Figure 5.5: Log-log plot of integral scale L(t) of Case 5.1 and Case 5.2 .

Energy decay law of spectrum injecting power spectrum

Now, free energy decay law of energy spectrum Eq.5.5.11 is investigated and cases

are given in Table 5.2. Cases 5.3, Case 5.4, and Case 5.1 have the same inertial range

length, and another group sharing the same inertial range length is Case 5.5, Case 5.6,

and Case 5.2. Not only does time step follow the stability of classic Euler method,

but it’s also less than the initial eddy turnover time.

Table 5.2: Cases with power spectrum k4

Case n npeak η∗ ∆t Tmax

5.3 12 1 10 0.0001 6000
5.4 13 2 11 0.00006 6000
5.5 13 1 11 0.0001 6000
5.6 14 2 12 0.00001 6000

The study will start with Case 5.3. Ensemble-averaged spectrum Er(km, t) of Case

5.3 to time scale 3000 is shown in Fig 5.6. Spectrum coefficient in the infrared range

increases and the power spectrum vanishes at the end 300 in Fig 5.6c as time evolves,
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which indicates that energy in the infrared range of Case 5.3 grows due to backscatter

term.

(a) Time 0− 100 (b) Time 110− 200 (c) Time 210− 300

Figure 5.6: Time evolution of ensemble averaged spectrum Er(km, t) of Case 5.3.

Compensated spectrum shown in Fig 5.7a confirms the vanishing power spectrum

and consistency with −5/3 spectrum. Meanwhile, Reynolds number in Fig 5.7b

suggests that the maximum Reynolds number almost reaches 104 even at the end

ensuring Case 5.3 is a fully developed turbulent flow.

(a) Compensated spectrum (b) Local Reynolds number

Figure 5.7: Compensated spectrum and local Reynolds number of Case 5.3

Fig 5.8 displays the log-log plot of system energy and integral scale. The slope

of log-log plot of energy at time 100 − 300 in Fig 5.8a is −1.56, much smaller than

−5
2
, implying that Case 5.3 is not capable of comparison. Corresponding exponent of

the integral scale is shown in Fig 5.8b as 0.77. All these results suggest the infrared

range of Case 5.3 is insufficient to analyze theoretical energy spectrum Eq.5.5.10.
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(a) Exponent of energy decay law
(100− 300)

(b) Exponent of integral scale (100− 300)

Figure 5.8: Log-log plot of system energy and integral scale of Case 5.3

Ensemble averaged Er(km, t) of Case 5.4 whose infrared range is two cascade steps,

is shown in Fig 5.9.

(a) Time t = 0− 100 (b) Time t = 110− 200

(c) Time t = 210− 300 (d) Time t = 310− 400

Figure 5.9: Ensemble averaged spectrum Er(km, t) of Case 5.4.
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In Fig 5.9d, the infrared range maintains two cascade steps until time 300, then

drops to one cascade step. Increased spectrum coefficient in infrared range is observed

in Fig 5.9c confirming the existence of backscatter term that scatters back energy in

the infrared range. Power spectrum obviously lasts longer than it does in Case 5.3.

The exponent of power spectrum in Case 5.4 for time period 160− 190 is given in

Fig 5.10, which shows spectrum in infrared range st time 170− 180 is k4.

Figure 5.10: Ak4 energy spectrum of Case 5.4

Compensated spectrum of Case 5.4 at time 310− 400 as well as Reynolds number

are presented in Fig 5.11.

(a) Compensated spectrum (b) Reynolds number

Figure 5.11: Compensated spectrum and Reynolds number of Case 5.4 from time
310 to 400.

Compensated spectrum in Fig 5.11a supports −5/3 spectrum in inertial range,

and flattening compensated spectrum in infrared range reveals the disappearance of
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power spectrum. A sufficient Reynolds number for Case 5.4 is guaranteed by the

maximum Reynolds number in Fig 5.11b exceeding 104.

Fig 5.12 displays system energy and integral scale of Case 5.4. The log-log plot

of energy at time 100 − 400 in Fig 5.12a has a slope of −1.04, while corresponding

exponent of integral scale is 0.19.

(a) Exponent of energy decaying law
t = 100− 400

(b) Integral scale t = 100− 400

Figure 5.12: The Log-log plot of energy and integral scale of Case 5.4

Now let’s discuss inserting power spectrum into Case 5.2.

(a) Time t = 0− 100 (b) Time t = 110− 200 (c) Time t = 210− 300

Figure 5.13: Energy spectrum of Case 5.5.

Fig 5.13 is time evolution of ensemble-averaged energy spectrum of Case 5.5 which

is similar to Case 5.3 that spectrum coefficient in infrared range rises due to the

reversed energy and has vanished between time 200 and 300 in Fig 5.13c.
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Power spectrum of Case 5.5 has dissipated since time 200 that is confirmed by

compensated spectrum in Fig 5.14a And the maximum Reynolds number exceeding

104 in Fig 5.14b indicates Case 5.5 is fully developed.

(a) Compensated spectrum (b) Reynolds number

Figure 5.14: Compensated spectrum and Reynolds number of Case 5.5 at time
210− 300.

At time 100 − 300, Fig 5.15 shows the exponent of energy decay for Case 5.5 is

−1.08 and exponent of integral scale is 0.35.

(a) System energy (b) Integral scale

Figure 5.15: Energy decay and integral scale of Case 5.5.

Finally, the temporal evolution of ensemble-averaged energy spectrum of Case

5.6 is presented in Fig 5.16. It’s evident that the infrared range decrease over time
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because it has two cascade steps at time 0− 300 and one step at time 310− 600. The

increased infrared spectrum coefficient suggests that part of energy in inertial range

is reversed to the infrared range. Depending on the degree of parallelism with energy

spectrum at time 0, energy spectrum of k4 appears at time 390, unfortunately it does

not last for a large time scale.

(a) Time t = 0− 100 (b) Time t = 110− 200 (c) Time t = 210− 300

(d) Time t = 310− 400 (e) Time t = 410− 500 (f) Time t = 510− 600

Figure 5.16: Energy spectrum of Case 5.6.

The slope of log-log plot in Fig 5.17 verifies that infrared spectrum of Case 5.6 at

time 390 is k4.

Figure 5.17: Exponent of infrared spectrum of Case 5.6.

Reynolds number and compensated spectrum for Case 5.6 after time 500 are
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shown in Fig 5.18. The highest Reynolds number is over 104, as shown in Fig 5.18a

which is sufficient. Compensated spectrum in Fig 5.18b demonstrates that the inertial

spectrum is −5/3 spectrum.

(a) Reynolds number (b) Compensated spectrum

Figure 5.18: Reynolds spectrum and compensated spectrum of Case 5.6.

The energy decay process of Case 5.6 is given in Fig 5.19, which suggests that

exponent of energy decay obtained from time 100 − 400 is −0.84 and corresponding

exponent of integral scale estimated from wavering slope is 0.12.

(a) System energy (b) Integral scale

Figure 5.19: Energy decay and integral scale of Case 5.6.

At the end, the exponent of energy decay and integral scale of Case 5.3-Case 5.6 is

summarised in Table 5.3. The dynamic of these four cases is different due to various
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infrared ranges and inertial ranges. According to energy decay exponent αe of Case

5.4 and Case 5.5, the energy of spectrum Eq.5.5.10 decays slower than that of case

without infrared spectrum, which is also supported by Case 5.6. The infrared range

for Case 5.3 is too small, resulting in strange value for αe and integral scale exponent.

Table 5.3: The exponent of energy decay and integral scale of cases with power
spectrum k4

Case t αe γ∗
5.3 100-300 -1.56 0.77
5.4 100-400 -1.04 0.19
5.5 100-300 -1.08 0.35
5.6 100-400 -0.84 0.12

5.6 Conclusions of Chapter 5 and prospects

Due to the fact that SGC model preserves the triad interaction generating inter-

mittency, the stationarity of large eddies and scaling laws taking intermittency into

consideration are studied by such a model. Theoretical backscatter term is initially

tried to be derived from SGC equations, but the semi-local interaction might prevents

direct verification. The study thus is carried out with the classic Euler method nu-

merical simulation of SGC model whose two-range spectrum contains power spectrum

k4 and inertial spectrum k−5/3. Reynolds number of all cases is sufficient to guaran-

tee that SGC model is full developed. It’s typical that infrared range decreases and

vanishes with time, as evidenced by four cases whose two-range spectrum includes

power spectrum k4. But phenomena including the conservation of large eddies and
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the increased exponent of infrared spectrum are observed although with intermit-

tency effects. Compensated spectrum confirms the change of infrared spectrum and

inertial spectrum k−5/3. With the exception of Case 5.3, exponents of energy decay

law for case containing infrared spectrum are larger than those for cases lacking in-

frared spectrum, indicating that backscatter term slows down the energy decay. The

buffs happened in the integral scale of these four cases, which suggests the energy is

stored at large scales in a discontinuous way. Besides, k4 at large eddies is observed

over a short time scale and with a small wave number length, making it impossible

to estimate the significance of backscattering term by Loitsiansky index that slowing

down the energy decay.

More work needs to be done on energy backscatter term to provide both theoretical

and numerical simulation evidence. It’s challenging to obtain theoretical backscatter

term from semi-local triad interactions of SGC model. Besides, it will be interesting to

study SGC model by helical modes decompositions, which is typically used to analyze

the non-isotropic effects of solid-body rotation on homogeneous turbulence, to provide

detailed information about the dynamics of SGC model, such as the manner in which

energy is transferred. As for numerical simulation, stable semi-implicit Euler method

is worth considering for SGC model, as numerical results in this chapter are achieved

by the classical Euler method. Due to time restrictions, results of the semi-implicit

Euler simulation have not yet been sorted out and included in this chapter. It’s also

important to look into the energy decay using only k4 infrared spectrum to enlarge

infrared range, revealing the effect brought on by semi-local interaction of SGC model.
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Chapter 6

Conclusion and perspectives

In this chapter, the most relevant findings and challenges encountered in this

research are reported below, along with a list of future study directions.

With the advancement of turbulence study, the significance of intermittency of

turbulence has been progressively realized. However, there are some disagreements

regarding its properties and contribution to the mechanism of turbulence, for instance,

it was initially assumed to be uniform, and later investigations suggested that it is a

log-normal distribution. Aiming at filling part of this gap, SGC model which is more

close to NS equation than the well known shell model, is simulated in this study, since

it preserves the most important energy transfer structure-triad interactions, which is

able to generate intermittency and backscatter term.

To begin, different numerical simulation approaches are investigated thorough

complexity analysis, UM analysis and empirical analysis to determine the effective

one. Two of them are the classic Euler method and classical RK4 method. The

third one is slaved ABF method, which takes into account the rapid damping of high
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wave numbers of turbulence, and the last one is semi-implicit Euler method which is

commonly applied to the motion of rigid body. These four numerical methods have

spatial and temporal complexity O(2n) implying running time increases exponentially

when cascade step enlarges. UM parameters of Case 3.1, test case of freely decaying

SGC model, show that multifractality index of intermittency by classic Euler scheme

is close to that of RK4 scheme, while multifractality of fluctuations of semi-implicit

Euler method is close to results achieved by Slaved ABH technique. Given the def-

inition of multifractality index, it’s natural that different numerical schemes bring

variations in multifractality index. On the other hand, empirical analysis of Case 3.1

including computing time and maximum memory suggests classic Euler technique is

the most efficient numerical simulation approach among these schemes, which is also

supported by complexity analysis. The numerical simulation method for SGC model

is thus obtained from classic Euler method to provide time evolution of velocity field.

The existence of intermittency and its multifractality are investigated by forced

SGC model with different large cascade steps n = 12, 14, 15 as adding forcing at top

cascade step will prolong the motion revealing the properties of turbulence. Forcing

for cascade step n = 12 ranges from f = 0.1 to f = 1, while forcing for n = 14 is

between f = 0.1 and f = 1.1. Cascade step n = 15 with forcing f = 0.5 to f = 1.1

is carried out due to time-consuming computation supported by complexity analysis.

The existence of intermittency and “heavy” tail of its probability distribution are con-

firmed by all cases, which suggests UM framework is a powerful tool to describe this

nonlinear extreme events. The intensity of fluctuations is related to injected forcing,

which is normal considering forcing has to prevent energy from losing to prolong run-

ning time. Fluctuations in cases with small forcing vanish over time, however in other
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cases with large forcing, enormous fluctuations emerge and even stop the simulation,

resulting in computational instability. Strong fluctuations are obviously observed in

cases injecting medium value forcing. Therefore, part of cases supports empirical

UM parameters for atmospheric turbulence. Averaged multifractality index for all

cases as well as ensemble value is significantly smaller than 2 casting doubt on the

log-normal model. Besides, computation instability displayed by these three cascade

steps using classic Euler method is investigated by cascade step n = 12 simulated

by semi-implicit Euler method, becasue semi-implicit Euler method preserves many

symmetries and is more stable than the Euler method, widely utilizing in the motion

of rigid body. The outcomes demonstrate that computation instability still exists in

the simulation of semi-implicit Euler method. Strong fluctuations are exhibited in

the majority of cases n = 12 and UM analysis confirms the conclusion carried out by

classic Euler method that multifractality index is significantly less than 2.

Last but not least, the role of intermittency in backscattering energy ans scaling

laws are investigated by energy spectrum containing power spectrum k4 and the

inertial spectrum, since energy is backscattering for power spectrum ks(s ≤ 4) with

the help of EDQNM, a closure approach without considering intermittency. Time

evolution of four cases exhibits the conserved large eddies and increased spectrum

exponent in infrared range, supporting that phenomenology resulting from power

spectrum remains the same, although with intermittency effects. It also confirmed

by observed slower energy decay, when energy decay process is compared to the

energy decay of case with same inertial range but no infrared spectrum. Besides,

integrals scale demonstrates the energy is stored at large scales by buffs, no longer

in a continuous manner. Unfortunately, neither theoretical evidence nor numerical
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evidence of backscatter term is presented.

Complexity analysis of SGC model suggests that it’s challenging to improve the

execution time as well as memory massively from algorithms. An effective eddy

viscosity [63, 22] which is a typical two-point closures technique, applies to predict the

large scales without information beyond cutoff wave number. However, this method

doesn’t consider intermittency. It would be meaningful to improve this method,

allowing to shorten the running time and memory of large cascade steps to provide

more cases to study the role of intermittency in scaling laws.

Regarding intermittency, forced SGC model in the study has been injected the de-

terministic forcing at the top layer. Recently the linear forcing proposed by Lundgren

[80] has been considered as a useful alternative [108] to classic forcing, as it’s simple

and can be easily applied to numerical codes in physics, but provides the same re-

sults. This linear forcing raises questions about the ability to maintain intermittency,

so adding linear forcing to SGC model to test the properties of intermittency will

be intriguing. It is important to emphasize that multifractality analysis is performed

on the entire time series, including the initial ah-hoc states. This instability state

actually has an impact on UM parameters. A hypothesis that UM parameters will be

well in agreement with empirical values if this instability state is removed, which has

been supported by some cases. Further detailed study will be carried out soon. An-

other study worth further consideration is reducing the sensitivity of multifractality

index estimates caused by algorithms since semi-implicit Euler method is as efficient

as classical Euler method. The simulation had finished, as demonstrated in Chapter

4, and further in-depth research will be summarized and published in related paper.
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Large infrared range research will provide a clear insight into the impact of semi-

local interactions of SGC model on basckscatter term and scaling laws. Until now,

more cases with large infrared range are limited by the drawbacks of cutoff wave

number method, as well as successfully assessing the role of backscatter term in

slowing energy decay by Loitsiansky exponent over large time scales and a wide range

of k4 energy spectrum. Besides, helical modes decompositions which is explored for

the non-isotropic impacts of solid-body rotation on homogeneous turbulence, appears

consistent with a trend toward two-dimensionalityas a result of allowing a departure

from isotropy via external rotation effects and the loss of spectral energy from the

parallel to the normal wave vectors (relative to the rotation axis). It will provide new

perspectives on the dynamics of SGC model, such as the manner in which energy is

transferred.

In conclusion, this research provides some insight on the effective numerical sim-

ulation method for SGC model. The existence of spatial-temporal intermittency is

confirmed and the multifractality of intermittency questions the log-normal model.

Moreover, some findings-the role of intermittency on backscatter term and scaling

laws is investigated. We must acknowledge, nevertheless, that much more research is

needed to fully understand the impact of intermittency on energy decay, even if it is

challenging, which will be crucial for empirical utilization of energy in the future.
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Appendix A

A.1 Legendre Transform

The connection between the scaling moment function K(q) and the codimension

function c(γ) through the Legendre transform is explained.

From Eq 2.4.5, the probability of ε

Pr(ελ = λγ) ≃ λ−c(γ), (A.1.1)

where the field has many variables γ. The qth moment of ε has

⟨εqλ⟩ =
∫

dP (ε) · εqλ ≃
∫

λ−c(γ)λqγdγ. (A.1.2)

Since Eq.2.5.4 suggests ⟨εqλ⟩ can be expressed by the resolution λ, it yields

⟨εqλ⟩ = λK(q) = eK(q)log(λ) =

∫ +∞

−∞
eξf(γ)dγ (A.1.3)
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where ξ = log(λ). Due to Eq A.1.2, the function f(γ) is

f(γ) = qγ − c(γ). (A.1.4)

Considering the mathematical technique of ”steepest descents”, the dominant term

of Eq A.1.3 is exp[ξmaxγ(f(γ))]. Therefore, the corresponded moment equation is

K(q) = max
γ

{qγ − c(γ)}. (A.1.5)

Eq A.1.5 describing the moment equation K(q) and the codimsion function c(γ) is a

Legendre transform. Following same method, another Legendre transform is obtained

c(γ) = max
q

(qγ −K(q)). (A.1.6)

For a given q, γq is defined by the maximum value that increase qγ − c(γ). qγ is

defined as same way.

A.2 Universal Multifractal

The general form of scaling moment functionK(q) and codimension function C(γ)

which relates to the UM parameters α,C1 are explained.

Based on the Taylor expansion, the moment functionK(q) is obtained correspond-

ing to a pure log-normal cascade

⟨εqλ⟩ = λA2q2 (A.2.1)
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where A2 is coefficient. In order to make sure the small scale cascade limit is well

behaved, the field has to be normalized by ε → ε/⟨ε⟩, so that K(q) → K(q)− qK(1).

And the moment function K(q) is

K(q) = C1(q
2 − q) (A.2.2)

where A2 is replaced by C1 due to Eq 2.6.3 K ′(1) = C1.

However, this is not sufficient to describe the cascade process. A random generator

following an “extremely asymmetric” Lévy distribution is added. And it yields

K(q) =
C1

α− 1
(qα − q) (0 ≤ α ≤ 2) (A.2.3)

For α = 1, K(q) = C1qLn(q) is obtained from L’Hopital’s rule for the limit α → 1.

Taking the Legendre transformation of the moment function K(q), the codimen-

sion function c(γ) is obtained

c(γ) =


C1(

γ

C1α′ +
1

α
)α

′
, α ̸= 1

C1exp(
γ

C1

− 1), α = 1

(A.2.4)

where

1

α
+

1

α′ = 1. (A.2.5)

When α = 0, it’s the monofractal β−model. And α = 2 is the Log-normal model

which is the upper limit .
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Figure A.1: The illustration that shows c(γ) could be locally characterized by the
singularity C1 and the local radius of curvature Rc(C1) at C1. K(q) can be

characterized through same method.
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Appendix B

B.1 Gyroscope Equation

The Euler’s equation for a rigid body is known as the gyroscope equation. There

are two invariant, the square of the angular momentum and the kinetic energy.

The gyroscope equation is

dM

dt
= M ∧Ω (B.1.1)

where M is the angular momentum of a rigid body; Ω is its rotation; ∧ is the vector

product. The linear relationship between angular momentum M and rotation Ω is

symmetric

M = I ·Ω;Ω = I−1 ·M (B.1.2)

where I is the moment of inertial tensor.

Considering Eq. B.1.1 in so(3), the components of the fundamental asymmetric

tensor I is the structure constants and the vector product ∧ corresponds to the Lie

bracket [ , ]. Now Eq. B.1.1 equals to an adjoint action on Lie algebra a

∂X

∂t
= −adY (X) ≡ [X, Y ];X, Y ∈ a (B.1.3)
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where [ , ] is defined by [Ei, Ej] = Ck
ijEk; Ei is the basis; Cij is the structure constant.

An invariant is the square of the angular momentum M 2

dM 2

dt
= 2M · (M ∧Ω) = 0. (B.1.4)

Another invariant is the kinetic energy

T =
1

2
M ·Ω =

1

2
M · (I−1 ·M ), (B.1.5)

since

dT

dt
= 2Ω · dM

dt
= 2Ω · (M ∧Ω) = 0. (B.1.6)

B.2 The orthogonality of SGC model

The orthogonality is crucial to obtain the SGC model. First of all, the impress-

ibility condition yields

k · û(k, t) = 0. (B.2.1)

The velocity ûi
m and its the vorticity ω̂i

m has the orthogonal triad (ki
m, ûi

m, ω̂i
m)

Fig.B.2a. In order to make Eq. 3.1.9 link to gyroscope equation Eq. B.1.1, the

M i
m and Ωi

m has the orthogonal decomposition (ûi
m, û2i

m+1, û2i+1
m+1) Fig.B.2b and

(k2i
m+1, ω̂2i+1

m+1, ω̂2i
m+1) Fig.B.2c. These orthogonality conditions yield

k2i+1
m+1 = −k2i

m+1. (B.2.2)
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The velocity field and the wave vector has

ûi
m = û(ki

m) = ûi
me

i
m (B.2.3a)

ei
m =

ki
m

ki
m

(B.2.3b)

ki
m = |ki

m| (B.2.3c)

The last orthogonality triad is Fig.B.2d

ei
m ∧ e2i

m+1 = e2i
m+2. (B.2.4)
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((ûi

m, û2i
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Figure B.2: The orthogonality interaction of SGC model

The matrix representation of velocity ûi
m and its vorticity ω̂i

m are


û2i+1
m+1

ûi
m

û2i
m+1

 = i[M i
m] = i


u2i+1
m+1

ui
m

u2i
m+1

 (B.2.5a)


ω̂2i
m+1

0

ω̂2i+1
m+1

 = [Ωi
m] = ikm+1


û2i
m+1

0

û2i+1
m+1

 . (B.2.5b)
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And the inverse of the inertia tensor I−1 corresponds to

I−1 = kmJ ; J =


0 0 1

0 0 0

1 0 0

 . (B.2.6)

B.3 Algorithms

This part gives the pseudo-code for the numerical methods of the SGC model and

the specific Python code for the main function contributing to the velocity field.

B.3.1 Euler method

The pseudo-code is provided first to better comprehend the following python code.

Algorithm 1 The Euler method

Input: The initial velocity U , The wave number K, The time steps ∆t, The

viscosity v, The computation time T , The maximum cascade step n, The ratio l

Output: The velocities UT for all locations at time 0− T

1: function computing velocities (U(t+∆t)) ▷ By the former velocity U(t)

2: Set L as the size of U ▷ Number of eddies at all layers

3: Set the working list Q = [0 . . . L− 1]

4: for m = 0, . . . , n do

5: if m = 0 then ▷ Selecting velocity equation at layer 0

6: Compute Q[0] = U0
0 (t+∆t) according to Eq. 3.2.3

7: else if m < n then ▷ Selecting velocity equation at layer m
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8: for i = 0, . . . , K[m]− 1 do ▷ i is the location at layer m

9: Compute Q[lm − 1 + i] = U i
m(t+∆t) according to Eq.3.2.5

10: end for

11: else ▷ Selecting velocity equation at layer n

12: for i = 0, . . . , K[m]− 1 do ▷ i is the location at layer m

13: Compute Q[lm − 1 + i] = U i
n(t+∆t) according to Eq.3.2.4

14: end for

15: end if

16: end for

17: return Q

18: end function

19: function computing velocities (UT )

20: Set the final velocity list UT := U ▷ The final velocity includes the initial

value

21: for t = 0, . . . , T do ▷ Computing velocities for each location at time t

22: Compute U(t+∆t) by Function 1

23: Store U(t+∆t) in UT

24: end for

25: return UT

26: end function

The Python codes for velocities equations using classic Euler’s scheme are given.

First of all, the associated Python code for the velocity at top layer u0
0 Eq.3.2.3 is:

1 ### v0 is the initial value of the top layer

2 ### v is the viscosity

3 ### v1,v2 is v0’s sub -eddies
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4 ### k0 is the wave number at top layer

5 ### k1 is the wave number at cascade step 1

6 def Velocity_function0(v0 , v1 , v2 , k1 , k0 ,v, time_step ,Force):

7 a = 1 - v*np.power(k0 ,2)*time_step

8 d = np.power(v1 ,2)-np.power(v2 ,2)

9 new_velocity = v0*a +(k1 * d+Force ) * time_step

10 return new_velocity

Code Listing B.1: Computing velocity at top layer u0
0(t+∆t) by Euler method

The corresponded Python code for the velocities ui
n which are located at last layer

Eq.3.2.4 is presented:

1 ### i is the location in (n)th step

2 ### v_n0 is the initial velocity

3 ### a_n is the ancestor eddy

4 ### k_n is the wave number at layer n

5 def Velocity_function2(v_n0 ,i,a_n ,k_n ,v,time_step ,Force):

6 a=(-1)**(i+1)

7 b=a*k_n*v_n0*a_n

8 c=v*np.power(k_n ,2)

9 B=1-c*time_step

10 new_velocity=v_n0*B+(b+Force)*time_step

11 return new_velocity

Code Listing B.2: Computing velocity ui
n(t+∆t) by Euler method

The Python code for the velocities ui
m whose cascade step m is between 1 and

n− 1 Eq.3.2.5 are simulated by :

1 ### i is the location at (s)th step

2 ### v_s0 is the initial velocity
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3 ### a_s is it’s ancestor eddy

4 ### v_s1 ,v_s2 is it’s sub -eddies

5 ### v is the viscosity

6 ### k_s is the wave number at cascade step s

7 ### k_s1 is the wave number at cascade step s+1

8 def Velocity_function1(v_s0 ,i,a_s ,v_s1 ,v_s2 ,k_s1 ,k_s ,v,time_step ,

Force):

9 a=(-1)**(i+1)

10 b=np.power(v_s1 ,2)-np.power(v_s1 ,2)

11 c=v*k_s**2

12 C=1-c*time_step+a*k_s*a_s*time_step

13 new_velocity=v_s0*C+(k_s1*b+Force)*time_step

14 return new_velocity

Code Listing B.3: Computing velocity ui
m(t+∆t)(1 ≤ m ≤ n− 1) by Euler method

Python code for Function 1 of Algorithm 1 computing U(t + ∆t) is presented in

the following.

1 ### n is the maximum cascade step , l is the separating ratio

2 ### wave_number is the wave number for all cascade steps

3 ### v is the viscosity

4 ### Former_velocities is the velocity at time t

5 def Time_function(n, l, wave_number , Former_velocities , v, time_step

, Force):

6 length=len(Former_velocities) ### the number of eddies needs to

compute

7 New_velocities =[[]]* length ### Prepare array for new

velocities

8 for layer in range(n+1): ### Selecting the velocities equation

by cascade step
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9 if layer == 0: ### Special of the top layer

10 y = Velocity_function0(Former_velocities [0][0] ,

Former_velocities [1][0] , Former_velocities [2][0] ,

wave_number [1], wave_number [0],v,time_step ,Force)

11 New_velocities [0]=[y]### Store the new velocity

12 elif layer <n: ### From cascade step 1 to (n-1)th step

13 w_layer=wave_number[layer] ### Wave number for cascade

step (layer)

14 a=int(l**(layer -1))

15 b=int(l**layer)

16 B=Former_velocities[a-1:b-1] ### Eddies for (layer -1)th

step at time t

17 c=int(l**( layer +1))

18 C=Former_velocities[b-1:c-1] ### Eddies for (layer)th

step at time t

19 d=int(l**( layer +2))

20 D=Former_velocities[c-1:d-1] ### Eddies for (layer +1)th

step at time t

21 w_layer1=wave_number[layer +1]### Wave number for (layer

+1)th step

22 for i in range (l** layer):### Computing the velocities

for all locations at cascade step (layer)

23 h=int(i/2.) ### Computing the location of ancestor

24 a_layer=B[h][0] ### The velocity of ancestor eddy at

time t

25 v_layer1=D[2*i][0] ### The velocity of sub -eddies at

time t

26 v_layer2=D[2*i+1][0]

27 v_layer0=C[i][0] ### The initial velocity at time t
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28 f=0

29 y=Velocity_function1(v_layer0 ,i,a_layer ,v_layer1 ,

v_layer2 ,w_layer1 ,w_layer ,v,time_step ,f)

30 New_velocities[l**layer -1+i]=[y]### Store the new

velocity

31 else:### Cascade step n

32 w_layer=wave_number[layer] ###Wave number for cascade

step (layer)

33 a=int(l**(layer -1))

34 b=int(l**layer)

35 B=Former_velocities[a-1:b-1] ### Eddies for (n-1)th step

at time t

36 c=int(l**( layer +1))

37 C=Former_velocities[b-1:c-1] ### Eddies for (n)th step

at time t

38 for m in range (l** layer): ### Computing velocities for

all location at cascade step n

39 H=int(m/2.) ### Computing the location of ancestor

40 a_n=B[H][0] ### The velocity of ancestor eddy at

time t

41 v_n0=C[m][0]### The initial velocity at time t

42 y=Velocity_function2(v_n0 ,m,a_n ,w_layer ,v,time_step

,0)

43 New_velocities[l**layer -1+m]=[y]### Store the new

velocity

44 return New_velocities

Code Listing B.4: Euler method. The velocities U i
m for all layers (0 ≤ m ≤ n) at

each time step
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The Python codes for velocities equations using semi-implicit Euler’s scheme are

given. First of all, the associated Python code for the velocity at top layer u0
0 Eq.3.2.17

is:

1 ### v0 is the initial value of the top layer

2 ### v is the viscosity

3 ### v1,v2 is v0’s sub -eddies

4 ### k0 is the wave number at top layer

5 ### k1 is the wave number at cascade step 1

6 def Velocity_function0(v0 , v1 , v2 , k1 , k0 ,v, time_step ,Force):

7 a = 1+ v*np.power(k0 ,2)*time_step

8 d = Square(v1)-Square(v2)

9 b = v0 +(k1 * d+Force ) * time_step

10 new_velocity = b/a

11 return new_velocity

Code Listing B.5: Computing velocity at top layer u0
0(t+∆t) by Semi-implicit

Euler method

The corresponded Python code for the velocities ui
n which are located at last layer

Eq.3.2.18 is presented:

1 ### i is the location in (n)th step

2 ### v_n0 is the initial velocity

3 ### a_n is the ancestor eddy

4 ### k_n is the wave number at layer n

5 def Velocity_function2(v_n0 ,i,a_n ,k_n ,v,time_step ,Force):

6 a=(-1)**i

7 b= a*k_n*v_n0*a_n

8 c= v*k_n**2

9 d= v_n0 +(b+Force)*time_step
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10 B= 1 +c*time_step

11 new_velocity= d/B

12 return new_velocity

Code Listing B.6: Computing velocity ui
n(t+∆t) by Semi-implicit Euler method

The Python code for the velocities ui
m whose cascade step m is between 1 and

n− 1 Eq.3.2.19 are simulated by :

1 ### i is the location at (s)th step

2 ### v_s0 is the initial velocity

3 ### a_s is it’s ancestor eddy

4 ### v_s1 ,v_s2 is it’s sub -eddies

5 ### v is the viscosity

6 ### k_s is the wave number at cascade step s

7 ### k_s1 is the wave number at cascade step s+1

8 def Velocity_function1(v_s0 ,i,a_s ,v_s1 ,v_s2 ,k_s1 ,k_s ,v,time_step ,

Force):

9 a=(-1)**i

10 b= Square(v_s1)-Square(v_s2)

11 A= k_s1* b +a *k_s *v_s0 *a_s

12 c= v* k_s**2

13 d= v_s0+ (A+Force)* time_step

14 C= 1+ c* time_step

15 new_velocity= d/C

16 return new_velocity

Code Listing B.7: Computing velocity ui
m(t+∆t)(1 ≤ m ≤ n− 1) by Semi-implicit

Euler method
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B.3.2 The fourth order Runge-Kutta method

The pseudo-code for the RK4 method is the same as the Euler method except for

the equations for computing the velocity field. So the specific Python code instead of

the pseudo-code is shown.

The Python code for the velocity at top layer is:

1 ### v0 is the initial value of the top layer

2 ### v is the viscosity

3 ### v1,v2 is v0’s sub -eddies

4 ### k0 is the wave number at top layer

5 ### k1 is the wave number at cascade step 1

6 def Runge_0(v0 , v1 , v2 , k1 , k0 ,v, time_step ,Force):

7 a = -v*np.power(k0 ,2)

8 d = np.power(v1 ,2)-np.power(v2 ,2)

9 k_1= v0*a+(k1*d+Force) ### the derivative function

10 y_1 = time_step*k_1 ### y_1 = dx * f( x,y)

11 ### y2 = dx * f( x + 0.5 * dx, y + 0.5 * y1)

12 c = v0 +0.5* y_1

13 k_2 = c*a +(k1 * d+Force )

14 y_2 = time_step*k_2

15 ### y3 = dx * f(x + 0.5 * dx, y + 0.5 * y2)

16 f = v0 +0.5* y_2

17 k_3 = f*a +(k1 * d+Force )

18 y_3 = time_step*k_3

19 ### y4 = dx * f( x + dx, y + y3)

20 g = v0+y_3

21 k_4 = g*a +(k1 * d+Force )

22 y_4=time_step*k_4
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23 ### the new Velocity y + (y1 + 2 * y2 + 2 * y3 + y4) / 6.

24 V = v0+(y_1 + 2 * y_2 + 2 * y_3 + y_4) / 6.

25 return V

Code Listing B.8: Computing velocity u0
0(t+∆t) simulated by RK4 method

The Python code for the velocity ui
n is:

1 ### i is the location in (n)th step

2 ### v_n0 is the initial velocity

3 ### a_n is the ancestor eddy

4 ### k_n is the wave number at layer n

5 def Runge_2(v_n0 ,i,a_n ,k_n ,v,time_step ,Force):

6 ### y1 = dx * f( x,y)

7 a=(-1)**(i+1)

8 b=a*k_n*a_n

9 c=-v*k_n **2+b

10 k_1=v_n0*c+Force

11 y_1=time_step*k_1

12 ### y2 = dx * f(x + 0.5 * dx, y + 0.5 * y1)

13 C=v_n0 +0.5* y_1

14 k_2=C*c+Force

15 y_2=time_step*k_2

16 ### y3 = dx * f( x + 0.5 * dx, y + 0.5 * y2)

17 f=v_n0 +0.5* y_2

18 k_3=f*c+Force

19 y_3=time_step*k_3

20 ### y4 = dx * f( x + dx, y + y3 )

21 g=v_n0+y_3

22 k_4=g*c+Force

23 y_4=time_step*k_4
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24 ### y + (y1 + 2 * y2 + 2 * y3 + y4) / 6.

25 V=v_n0+(y_1 + 2 * y_2 + 2 * y_3 + y_4) / 6.

26 return V

Code Listing B.9: Computing velocities ui
n by RK4 method

The Python code for the velocities ui
m from layer 1 to n− 1 is:

1 ### i is the location at (s)th step

2 ### v_s0 is the initial velocity

3 ### a_s is it’s ancestor eddy

4 ### v_s1 ,v_s2 is it’s sub -eddies

5 ### v is the viscosity

6 ### k_s is the wave number at cascade step s

7 ### k_s1 is the wave number at cascade step s+1

8 def Runge_1(v_s0 ,i,a_s ,v_s1 ,v_s2 ,k_s1 ,k_s ,v,time_step ,Force):

9 ### y1 = dx * f(x,y)

10 a=(-1)**(i+1)

11 b=np.power(v_s1 ,2)-np.power(v_s2 ,2)

12 A=k_s1*b

13 c=-v*k_s **2+a*k_s*a_s

14 k_1=v_s0*c+A+Force

15 y_1=time_step*k_1

16 ### y2 = dx * f(x + 0.5 * dx ,y + 0.5 * y1)

17 C=v_s0 +0.5* y_1

18 k_2=C*c+A+Force

19 y_2=time_step*k_2

20 ### y3 = dx * f( x + 0.5 * dx, y + 0.5 * y2)

21 f=v_s0 +0.5* y_2

22 k_3=f*c+A+Force

23 y_3=time_step*k_3
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24 ### y4 = dx * f( x + dx, y + y3 )

25 g=v_s0+y_3

26 k_4=g*c+A+Force

27 y_4=time_step*k_4

28 ### y + (y1 + 2 * y2 + 2 * y3 + y4) / 6.

29 V=v_s0+(y_1 + 2 * y_2 + 2 * y_3 + y_4) / 6.

30 return V

Code Listing B.10: Computing velocities ui
m(t+∆t)(1 ≤ m ≤ n− 1) simulated by

RK4 method

The Python code for the velocities for each time step is:

1 ### n is the maximum cascade step , l is the separating ratio , v is

the viscosity

2 ### wave_number is the wave number for all cascade steps

3 ### Former_velocities is the velocity at time t

4 def Time_function(n, l, wave_number , Former_velocities , v, time_step

, Force):

5 length=len(Former_velocities) ### the number of eddies needs to

compute

6 New_velocities =[[]]* length ### Prepare array for new

velocities

7 for layer in range(n+1): ### Selecting the velocities equation

by cascade step

8 if layer == 0: ### Special of the top layer

9 y = Runge_0(Former_velocities [0][0] , Former_velocities

[1][0] , Former_velocities [2][0] , wave_number [1],

wave_number [0],v,time_step ,Force)

10 New_velocities [0]=[y]### Store the new velocity

11 elif layer <n: ### From cascade step 1 to (n-1)th step
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12 w_layer=wave_number[layer] ### Wave number for cascade

step (layer)

13 a=int(l**(layer -1))

14 b=int(l**layer)

15 B=Former_velocities[a-1:b-1] ### Eddies for (layer -1)th

step at time t

16 c=int(l**( layer +1))

17 C=Former_velocities[b-1:c-1] ### Eddies for (layer)th

step at time t

18 d=int(l**( layer +2))

19 D=Former_velocities[c-1:d-1] ### Eddies for (layer +1)th

step at time t

20 w_layer1=wave_number[layer +1]### Wave number for (layer

+1)th step

21 for i in range (l** layer):### Computing the velocities

for all locations at cascade step (layer)

22 h=int(i/2.) ### Computing the location of ancestor

23 a_layer=B[h][0] ### The velocity of ancestor eddy at

time t

24 v_layer1=D[2*i][0] ### The velocity of sub -eddies at

time t

25 v_layer2=D[2*i+1][0]

26 v_layer0=C[i][0] ### The initial velocity at time t

27 f=0

28 y=Runge_1(v_layer0 ,i,a_layer ,v_layer1 ,v_layer2 ,

w_layer1 ,w_layer ,v,time_step ,f)

29 New_velocities[l**layer -1+i]=[y]### Store the new

velocity

30 else:### Cascade step n
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31 w_layer=wave_number[layer] ###Wave number for cascade

step (layer)

32 a=int(l**(layer -1))

33 b=int(l**layer)

34 B=Former_velocities[a-1:b-1] ### Eddies for (n-1)th step

at time t

35 c=int(l**( layer +1))

36 C=Former_velocities[b-1:c-1] ### Eddies for (n)th step

at time t

37 for m in range (l** layer): ### Computing velocities for

all location at cascade step n

38 H=int(m/2.) ### Computing the location of ancestor

39 a_n=B[H][0] ### The velocity of ancestor eddy at

time t

40 v_n0=C[m][0]### The initial velocity at time t

41 y=Runge_2(v_n0 ,m,a_n ,w_layer ,v,time_step ,0)

42 New_velocities[l**layer -1+m]=[y]### Store the new

velocity

43 return New_velocities

Code Listing B.11: RK4 method. Velocities U i
m for all layers (0 ≤ m ≤ n) at each

time step

B.3.3 The slaved Adams Bashforth method

Since the input required by the slaved ABF method is different from that of the

one-step methods, the pseudo-code for the slaved ABF method is given.

Algorithm 2 The slaved Adams-Bashforth Method
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Input The initial velocity U , The wave number K, The time steps ∆t, The

viscosity v, The computation time T , The maximum cascade step n, The ratio l

Output The velocities UT for all locations at time 0− T

1: function Computing velocities(U(t+∆t)) ▷ By the former velocities

U(t), U(t−∆t)

2: Set L as the size of U ▷ Number of eddies for all layers

3: Set the working list Q = [0 . . . L− 1] ▷ Velocities U(t+∆t)

4: for m = 0, . . . , n do ▷ Selecting velocities equations by cascade step m

5: if m = 0 then ▷ Using velocity equation at top layer

6: Compute Q[0] = U0
0 (t+∆t) according to Eq.3.2.13 ▷ The velocity at

layer 0

7: else if m < n then ▷ Selecting velocity equation at layer m

8: for i = 0, . . . , K[m]− 1 do ▷ i is the location at layer m

9: Compute Q[lm − 1 + i] = U i
m(t+∆t) according to Eq.3.2.15

10: end for

11: else ▷ Selecting velocity equation at layer n

12: for i = 0, . . . , K[m]− 1 do ▷ i is the location at layer n

13: Compute Q[lm − 1 + i] = U i
n(t+∆t) according to Eq.3.2.14

14: end for

15: end if

16: end for

17: return Q

18: end function

19: function computing velocities (UT )
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20: Set the final velocity list UT := U ▷ The final velocity includes the initial

value

21: for t = 0, . . . , T do ▷ Computing velocities for each location at time t

22: Compute U(t+∆t) by Function 3 ▷ When t = 0, the former velocities

U(t−∆t) is U(t)

23: Store U(t+∆t) in UT

24: end for

25: return UT

26: end function

Python code for Eq.3.2.13 is:

1 ### v0 is the initial value of the top layer

2 ### v is the viscosity

3 ### v1,v2 are v0’s sub -eddies , v1_0 ,v2_0 are former velocities

4 ### k0 is the wave number at top layer

5 ### k1 is the wave number at cascade step 1

6 def Velocity_function0_1(v0 , v1 , v2 , k1 , k0 ,v, time_step ,Force ,v1_0 ,

v2_0):

7 a = v*np.power(k0 ,2)

8 b = np.power(math.e,-a*time_step)

9 d = k1 * (np.power(v1 ,2)-np.power(v2 ,2))+Force

10 d_0 = k1 * (np.power(v1_0 ,2)-np.power(v2_0 ,2))+Force

11 c=(3*d-d_0)/2

12 new_velocity = v0*b+(1-b)/a*c

13 return new_velocity

Code Listing B.12: Computing velocity u0
0(t+∆t) by slaved ABF method

The Python code for the velocities ui
n(t+∆t) at last cascade step is:
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1 ### i is the location in (n)th step

2 ### v_n0 is the initial velocity

3 ### a_n is the ancestor eddy

4 ### k_n is the wave number at layer n

5 def Velocity_function2_1(v_n0 ,i,a_n ,k_n ,v,time_step ,Force):

6 a = v*k_n**2-(-1)**(i+1)*k_n*a_n

7 b = np.power(math.e,-a*time_step)

8 new_velocity = v_n0*b+(1-b)/a*Force

9 return new_velocity

Code Listing B.13: Computing velocities ui
n(t+∆t) by slaved ABF method

The Python code for the velocities ui
m(t+∆t) (1 ≤ m ≤ n− 1) is:

1 ### i is the location at (s)th step

2 ### v_s0 is the initial velocity

3 ### a_s is it’s ancestor eddy

4 ### v_s1 ,v_s2 are it’s sub -eddies , v_s1_0 ,v_s2_0 are former

velocities

5 ### v is the viscosity

6 ### k_s is the wave number at cascade step s

7 ### k_s1 is the wave number at cascade step s+1

8 def Velocity_function1_1(v_s0 ,i,a_s ,v_s1 ,v_s2 ,k_s1 ,k_s ,v,time_step ,

Force ,v_s1_0 ,v_s2_0):

9 a = v*k_s**2-(-1)**(i+1)*k_s*a_s

10 b = np.power(math.e,-a*time_step)

11 d = k_s1*(np.power(v_s1 ,2)-np.power(v_s2 ,2))+Force

12 d_0 = k_s1*(np.power(v_s1_0 ,2)-np.power(v_s2_0 ,2))+Force

13 c = (3*d-d_0)/2

14 new_velocity = v_s0*b+(1-b)/a*c
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15 return new_velocity

Code Listing B.14: Computing velocities ui
m(t+∆t) (1 ≤ m ≤ n− 1) by slaved

ABF method

The Python code for Function 1 in Algorithm 2 is exhibited in the below.

1 ### n is the maximum cascade step , l is the separating ratio , v is

the viscosity

2 ### wave_number is the wave number for all cascade steps ,

Former_velocities is the velocity at time t,

Former_two_velocities is velocity at time t-dt

3 def Time_function(n, l, wave_number , Former_velocities , v, time_step

, Force ,Former_two_velocities):

4 New_velocities =[[]]* len(Former_velocities) ### Array for new

velocities

5 for layer in range(n+1): ### Selecting the velocities equation

by cascade step

6 if layer == 0: ### Special of the top layer

7 y = Velocity_function0_1(Former_velocities [0][0] ,

Former_velocities [1][0] , Former_velocities [2][0] ,

wave_number [1], wave_number [0],v, time_step ,0,

Former_two_velocities [1][0] , Former_two_velocities

[2][0])

8 New_velocities [0]=[y]### Store the new velocity

9 elif layer <n: ### From cascade step 1 to (n-1)th step

10 w_layer=wave_number[layer] ### Wave number for cascade

step (layer)

11 a=int(l**(layer -1))

12 b=int(l**layer)
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13 B=Former_velocities[a-1:b-1] ### Eddies for (layer -1)th

step at time t

14 c=int(l**( layer +1))

15 C=Former_velocities[b-1:c-1] ### Eddies for (layer)th

step at time t

16 d=int(l**( layer +2))

17 D=Former_velocities[c-1:d-1] ### Eddies for (layer +1)th

step at time t

18 F=Former_two_velocities[c-1:d-1] ### (layer +1)th step at

time t-dt

19 w_layer1=wave_number[layer +1]### Wave number for (layer

+1)th step

20 for i in range (l** layer):### Computing the velocities

for all locations at cascade step (layer)

21 h=int(i/2.) ### Computing the location of ancestor

22 a_layer=B[h][0] ### The velocity of ancestor eddy at

time t

23 v_layer1=D[2*i][0] ### The velocity of sub -eddies at

time t

24 v_layer2=D[2*i+1][0]

25 v_layer0=C[i][0] ### The initial velocity at time t

26 y=Velocity_function1_1(v_layer0 ,i,a_layer ,v_layer1 ,

v_layer2 ,w_layer1 ,w_layer ,v,time_step ,0,F[2*i

][0],F[2*i+1][0])

27 New_velocities[l**layer -1+i]=[y]### Store the new

velocity

28 else:### Cascade step n

29 w_layer=wave_number[layer] ###Wave number for cascade

step (layer)

208

https://ecoledesponts.fr/
https://ecoledesponts.fr/en/laboratories-research-hydrology-meteorology-complexity


Thesis – X. LI; Ecole des Ponts ParisTech – Hydrology Meteorology et Complexity

30 a=int(l**(layer -1))

31 b=int(l**layer)

32 B=Former_velocities[a-1:b-1] ### Eddies for (n-1)th step

at time t

33 c=int(l**( layer +1))

34 C=Former_velocities[b-1:c-1] ### Eddies for (n)th step

at time t

35 for m in range (l** layer): ### Computing velocities for

all location at cascade step n

36 H=int(m/2.) ### Computing the location of ancestor

37 a_n=B[H][0] ### The velocity of ancestor eddy at

time t

38 v_n0=C[m][0]### The initial velocity at time t

39 y=Velocity_function2_1(v_n0 ,m,a_n ,w_layer ,v,

time_step ,0)

40 New_velocities[l**layer -1+m]=[y]### Store the new

velocity

41 return New_velocities

Code Listing B.15: Slaved ABF method: Velocities U i
m for all layers (0 ≤ m ≤ n) at

each time step

B.3.4 Results

The computing time and maximum memory of Euler method:
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Figure B.3: Euler method

The computing time and maximum memory of RK4 method:

Figure B.4: RK4 method

The computing time and maximum memory of Slaved ABF method:
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Figure B.5: Slaved ABF method

B.4 The cascade step n = 12 simulated by semi-

implicit Euler method
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(a) Case 4.1.1

(b) Case 4.1.2

(c) Case 4.1.3

(d) Case 4.1.4

(e) Case 4.1.5

Figure B.6: The UM parameters of Cases 4.1.1-4.1.5 simulated by the semi-implicit
Euler method.
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(a) Case 4.1.6

(b) Case 4.1.7

(c) Case 4.1.8

(d) Case 4.1.9

(e) Case 4.1.10

Figure B.7: The UM parameters of Cases 4.1.6-4.1.10 simulated by the semi-implicit
Euler method.
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[52] F. Hausdorff. Dimension und äußeres maß. Mathematische Annalen, 79(1):

157–179, 1918.

[53] F. Hausdorff. Der wertvorrat einer bilinearform. Mathematische Zeitschrift, 3

(1):314–316, 1919.

[54] J. Herring, D. Schertzer, M. Lesieur, G. Newman, J. Chollet, and

M. Larcheveque. A comparative assessment of spectral closures as applied to

passive scalar diffusion. Journal of Fluid Mechanics, 124:411–437, 1982.

[55] F. Hvelplund. Renewable energy and the need for local energy markets. Energy,

31(13):2293–2302, 2006.

[56] S. Kida, R. H. Kraichnan, R. Rogallo, F. Waleffe, and Y. Zhou. Triad inter-

actions in the dissipation range. Stanford Univ., Studying Turbulence Using

Numerical Simulation Databases. 4: Proceedings of the 1992 Summer Program,

1992.

221

https://ecoledesponts.fr/
https://ecoledesponts.fr/en/laboratories-research-hydrology-meteorology-complexity


Thesis – X. LI; Ecole des Ponts ParisTech – Hydrology Meteorology et Complexity

[57] A. N. Kolmogorov. On degeneration (decay) of isotropic turbulence in an incom-

pressible viscous liquid. In Dokl. Akad. Nauk SSSR, volume 31, pages 538–540,

1941.

[58] A. N. Kolmogorov. The local structure of turbulence in incompressible viscous

fluid for very large reynolds numbers. Cr Acad. Sci. URSS, 30:301–305, 1941.

[59] A. N. Kolmogorov. A refinement of previous hypotheses concerning the lo-

cal structure of turbulence in a viscous incompressible fluid at high reynolds

number. Journal of Fluid Mechanics, 13(1):82–85, 1962.

[60] R. H. Kraichnan. Irreversible statistical mechanics of incompressible hydromag-

netic turbulence. Physical Review, 109(5):1407, 1958.

[61] R. H. Kraichnan. Inertial-range transfer in two-and three-dimensional turbu-

lence. Journal of Fluid Mechanics, 47(3):525–535, 1971.

[62] R. H. Kraichnan. Convection of a passive scalar by a quasi-uniform random

straining field. Journal of fluid mechanics, 64(4):737–762, 1974.

[63] R. H. Kraichnan. Eddy viscosity in two and three dimensions. Journal of

Atmospheric Sciences, 33(8):1521–1536, 1976.
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[88] O. Métais and M. Lesieur. Statistical predictability of decaying turbulence.

Journal of the atmospheric sciences, 43(9):857–870, 1986.

[89] M. Millionshchikov. On the theory of homogeneous isotropic turbulence. In

Dokl. Akad. Nauk SSSR, volume 32, pages 611–614, 1941.

[90] M. Millionshtchikov. On the role of the third moments in isotropic turbulence.

CR Acad. Sci. SSSR, 32:619, 1941.

[91] C. Morize and F. Moisy. Energy decay of rotating turbulence with confinement

effects. Physics of Fluids, 18(6):065107, 2006.
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