

Détection de points d’intérêts avec

des caméras neuromorphiques

ED MSTIC n°532

Doctorat en informatique (Signal, Image, Automatique)

Thèse préparée au sein du laboratoire IMAGINE, LIGM

Thèse soutenue le 12/12/2022, par
Philippe CHIBERRE

Composition du jury :

Franck, DAVOINE
Directeur de recherche, UTC Compiègne Président

Guillermo, GALLEGO
Professeur, Technische Universität Berlin Rapporteur

Arren, GLOVER
Chargé de recherche, Instituto Italiano di Tecnologia Examinateur

Cornelia, FERMULLER
Research Scientist, University of Maryland Examinatrice

Vincent, LEPETIT
Professeur, Ecole des Ponts ParisTech Directeur de thèse

Amos, SIRONI
Docteur, Prophesee Co-Directeur de thèse

LEARNING TO DETECT KEYPOINTS
WITH AN

EVENT-BASED CAMERA

Philippe Chiberre

Doctoral thesis in the domain of signal and image processing
supervised by Vincent LEPETIT and Amos SIRONI

Presented on 12/12/2022 to a committee consisting of:

Vincent Lepetit École des Ponts ParisTech Supervisor

Amos Sironi Prophesee Co-Supervisor

Franck Davoine Université de technologie de Compiègne Reviewer

Guillermo Gallego Technische Universität Berlin Reviewer

Arren Glover Istituto Italiano di Tecnologia Examiner

Cornelia Fermuller University of Maryland Examiner

Abstract

Keypoint detection is a building block of many computer vision applications, such
as augmented or virtual reality and robotics. On the other hand, event cameras,
or neuromorphic cameras, have numerous advantages for mobile platforms such as
low power consumption, high dynamic range and very fine temporal resolution (in
the order of the microsecond). The goal of this thesis is to develop keypoint detec-
tion algorithms for event cameras and enable multiple computer vision applications
to be easily use with events.The first part of the thesis focuses on how data can be
generated for any data driven approach when using event while still leveraging the
vast computer vision literature for frames. The second part of the thesis introduces
our approach of detecting keypoints using an intermediate representation. We pre-
dict image gradients from events with a convolutional recurrent neural network and
detect keypoints using the Harris formula directly on the predicted gradients. Our
approach maintains similar reprojection error to the state-of-the-art while improving
significantly the track lifetime of the detected keypoints. The last contribution of
this thesis is to predict keypoints directly from events without any intermediate step.
We reduce the state-of-the-art reprojection error and triple the track lifetime using a
data driven approach of predicting multiple heatmaps of keypoint localization’s and
improving our training pipeline for better coherence of the keypoints through time.

1

Résumé

Les points clés sont à l’origine de multiples applications de vision par ordina-
teur telles que la réalité virtuelle ou augmentée et la robotique. Les caméras par
événements, ou caméras neuromorphiques, ont par ailleurs de nombreux avantages
pour les plateformes mobiles : une très faible consommation d’énergie, une grande
plage dynamique et une résolution temporelle très faible (de l’ordre de la microsec-
onde). L’objectif de cette thèse et de développer des algorithmes de détection de
points clés pour les caméras par événements et permettre le transfère des algorithmes
de vision historiques pour les images vers cette nouvelle plateforme. La première par-
tie de la thèse présente les différentes approches possibles pour générer des données
de points clés dans des flux d’événements tout en utilisant la vaste littérature de
vision par ordinateur existante pour les images. La deuxième partie de la thèse
présente un nouvel algorithme permettant de détecter des points d’intérêts en util-
isant une représentation intermédiaire. En effet nous utilisons un réseau de neurones
convolutionels et récurrent pour prédire les gradients de l’image correspondante aux
événements. Nous utilisons ensuite le score de Harris qui utilise les gradients de
l’image pour détecter des points d’intérêts. Cet algorithme obtient une erreur de
reprojection de l’ordre de l’état de l’art tout en augmentant le temps de vie des
trajectoires. Notre dernière contribution est un algorithme qui prédit directement
les points d’intérêts depuis les événements sans représentation intermédiaire. Cette
méthode, basée sur les données, réduit l’erreur de rerojection de l’état de l’art tout
en multipliant par trois la longueur des trajectoires. Ces améliorations proviennent
de deux éléments clés: une amélioration de la plateforme d’entrâınement pour une
meilleure cohérence temporelle des points d’intérêts et une prédiction de plusieurs
cartes de chaleur simultanément pour une meilleure précision.

2

Remerciements

Je souhaite tout d’abord remercier Vincent et Amos qui m’ont fait confiance
pour cette thèse. Vos conseils, votre expérience et votre bienveillance m’ont permis
d’achever ce doctorat en toute sérénité, et ce, malgré une pandémie mondiale. Merci
d’avoir été disponible et d’avoir su m’accompagner dans les moments plus difficiles.

Je voudrais remercier Etienne qui a su, lors de nombreuses discussions, m’aider et
me guider fort de son intuition et de sa curiosité. Ton travail et ta persévérance sont
un exemple pour moi.

Merci à Stéphane Laveau, Stéphane Valente et Prophesee de m’avoir permis de
faire cette thèse.

Merci, à David Picard pour ton écoute et ta gentillesse, surtout quand il s’agit du
bien-être des doctorants.

Merci à tous les gens du laboratoire Imagine pour ces bons moments passés en-
semble. Le sport et les sorties, mais aussi les nombreux repas et discussions partagés.

Je tiens à remercier ma mère et ma sœur, pour le support qu’elles m’ont apporté
tout au long de cette thèse. Merci maman de m’avoir toujours encouragé à poursuivre
mes passions.

Merci, à Martine et Jean-Michel de votre aide lors des confinements, vous avez
rendu ces moments, qui auraient pu être bien compliqués, agréables. De façon plus
générale, merci de votre accompagnement sur mon parcours professionnel.

Enfin, je remercie tout particulièrement Camille d’avoir été à mes côtés tous les
jours de ce doctorat. Merci pour ta présence, ta bonne humeur, ton soutien et ton
écoute. Merci d’être qui tu es. Merci de m’avoir accompagné dans cette aventure.

3

Contents

1 Introduction 7
1.1 Goals . 7
1.2 Motivations . 8
1.3 Approach . 10
1.4 Challenges . 10
1.5 Contributions . 11
1.6 Outline . 12
1.7 Publications . 13

2 The Event Camera 14
2.1 Principle . 14
2.2 Advantages . 16
2.3 Challenges . 17
2.4 Use-cases . 17
2.5 Overview of different devices . 18
2.6 Conclusion . 18

3 Related Work 19
3.1 Reconstruction from Events . 19

3.1.1 Updated event-by-event . 19
3.1.2 Updated from a set of events 28
3.1.3 Conclusion . 34

3.2 Keypoint Detection . 36
3.2.1 Frame-based Keypoint Detection 36
3.2.2 Event-based Keypoint Detection 43

3.3 Convolutional Neural Networks . 50
3.3.1 Squeeze and excite . 50
3.3.2 Convolutional Recurrent Neural Networks 51
3.3.3 Convolutional Neural Networks in Event-Based Data 53

3.4 Image and Gradient Prediction . 53

4

3.4.1 Handcrafted Methods . 54
3.4.2 Learned Methods . 55

4 Data Generation 60
4.1 Introduction . 60
4.2 Real Data . 61

4.2.1 ATIS . 61
4.2.2 Alignment of Two Cameras 61
4.2.3 Planar Surface . 63

4.3 Simulated Data . 64
4.4 Conclusion . 68

5 Detecting Stable Keypoints from Events through Image Gradient
Prediction 69
5.1 Introduction . 69
5.2 Method . 70
5.3 Results . 76
5.4 Conclusion . 79

6 Long-Lived Accurate Keypoints in Event Streams 80
6.1 Introduction . 81
6.2 Method . 83

6.2.1 Input Event Representation 83
6.2.2 Predicting Heatmaps . 84
6.2.3 Creating Training Data . 86
6.2.4 Training Details . 87
6.2.5 Inference and Tracking . 87
6.2.6 Architecture . 87

6.3 Experiments . 88
6.3.1 Baseline, Datasets and Metrics 88
6.3.2 Ablation Study . 91
6.3.3 Comparison to the State-of-the-Art 92
6.3.4 Qualitative results . 93
6.3.5 Computation Times and Memory Footprint 95

6.4 Conclusion . 95

7 Conclusion 96
7.1 Contributions . 97

7.1.1 Detecting Stable Keypoints from Events through Image Gradi-
ent Prediction . 97

5

7.1.2 Long-Lived Accurate Keypoints in Event Streams 97
7.2 Impact . 98
7.3 Future work . 98

6

Chapter 1

Introduction

1.1 Goals

Keypoint detection is a fundamental problem of computer vision since the 1980s and
a building block to a large number of applications such as Simultaneous Localization
and Mapping (SLAM), Structure-from-Motion (SfM), motion detection, image mo-
saicing/panorama stitching, image registration, object tracking, object recognition
and 3D recognition.

We aim to develop and improve this very important tool of computer vision for a
novel sensor: The Event Camera.

Event-based cameras (or neuromorphic camera) are recent sensors capturing the
change in luminosity, asynchronously across the sensor [35, 68, 109]. They are able
to capture high dynamic range scenes while maintaining a low-power consumption,
making them particularly attractive for embedded systems [37]. Not surprisingly,
many methods for keypoint detection for event-based cameras have already been
proposed [4, 20, 43, 73, 77, 119].

However, the nature of the signal provided by event-based cameras is very different
from the images captured by regular cameras. Event-based cameras send ’events’,
which signal a sudden change of light intensity at an image location. Alone, an
event therefore provides very little information. Events are also noisy, with many
false positives and false negatives [27, 45]. This makes computer vision problems for
event-based cameras particularly challenging.

The goal of our work is therefore to build a very lightweight keypoint detection
algorithm to be able to highlight important events and remove redundant or unin-
formative ones. This follows both the event camera mindset of keeping only relevant
information and the need of many computer vision algorithms which use keypoints
as their basis. For the algorithm to be useful, running in real time is paramount and

7

directs our choice of a minimal pipeline.

1.2 Motivations

As of today there is not a single, generally accepted, approach to keypoint detection
algorithm in event-based. Choosing between speed and quality is always a necessity,
and even the best method’s spatial precision leaves to be desired.
We want to make a keypoint detection algorithm, which is accessible to all, easy to
use, and most importantly fast and very accurate. Many applications using events
as their input would benefit from a robust keypoint detection algorithm. Other
application using only frame-based data would also benefit from our algorithm as it
would enable them to use event cameras for better dynamic range and lower latency
without changing their pipeline as keypoints are universal and make the pipeline
agnostic to the input data.

We introduce a multitude of applications where keypoints are proving themselves
useful by reducing making a problem tractable or enabling for real time applications.
Indeed comparing keypoints instead of pixels directly reduces computational needs
and improve accuracy. The described applications are illustrated in Figure 1.1

Object Tracking Once a Deep Neural Network has been used to detect objects in
an event stream such as [83] keypoint can prove useful to track said objects through
time and reduce computation needs. This indeed avoids re-detecting the same objects
over and over again. As improving efficiency of resources is at the core of event
cameras tracking objects with minimal computation would be very valuable.

Object Recognition Object recognition tasks are very important in computer
vision as they prove very useful to build some understanding of a scene. However
object recognition algorithms are often using a lot of resources and can be quite time
consuming. Simple object recognition or pattern detection with a template can be
done with a keypoint detection algorithm in a very efficient way. Objects can also
be detected when their motion is different from the scene or camera movement and
keypoints can be grouped together to define an object.

AR/VR Augmented Reality is the way of overlaying generated graphics with the
real world and Virtual reality is a computer generated environment where all is made
to feel as real as possible and camera will follow the head movement of the person
using the device to enhance the immersion. In Virtual Reality a precise and quick
knowledge of the headset viewing direction is paramount and can be achieved with

8

(a) (b)

(c) (d)

Figure 1.1: (a) Keypoints thanks to their efficiency are used for large scale 3D
reconstruction and camera pose estimation as done in [3] (b) Keypoints are use-
ful for 3D object recognition [8] (c) SLAM pipeline also benefit from keypoints
especially when real-time computation is needed (AR/VR, robot navigation) [47]
(d) Another example of keypoints importance is for object tracking, pedestrians
in this example. Illustration courtesy of http://deepmachinelearningai.com/

object-tracking-in-deep-learning/

9

keypoints, while in Augmented Reality, the knowledge of the physical space around
the user is also very important to be able to correctly position objects in said space.

SfM Structure from Motion is the act of recreating 3D from 2D input. From a
movement and the motion parallax, the depth of keypoints can be inferred and 3D
structure reconstructed. Inspired form how humans see the world this is very useful for
3D reconstruction of structure. Using keypoints can be an efficient way of recreating
a sparse 3D cloud of an object or a scene.

SLAM Simultaneous Localisation And Mapping is another key application for key-
point detection. It needs accurate keypoints and is very useful for autonomous vehicles
traversing unknown environment. It will enable the robot to navigate the environ-
ment while at the same time creating a 3D map of said environment. This application
is one of the most complex as well as the most rewarding.

1.3 Approach

The asynchronous and sparse nature of the event stream entails that new algorithms
specifically designed for event cameras need to be developed. One approach is to
create novel dense representations of events and use the vast existing literature and
algorithm of keypoint detection developed for frame-based applications. The other
is to imagine novel algorithms and use machine learning to bridge the gap between
event-based and frame-based computer vision. We have chosen the later approach in
our work.

1.4 Challenges

The task of detecting keypoint in an event stream presents many challenges. The
novelty, sparsity and asynchronicity of the inputs, the very high readout of novel
sensors, combined with many appearance changes for the same objects in the event
stream are problems we have faced in developing our keypoint detection algorithms.

Novel inputs As event cameras are relatively new sensors: 2000s, the modeling
of the noise has been studied but is not as widely understood as the noise in frame-
based sensors. As the noise is not yet fully understood adding hand-crafted heuristics
to algorithms is often error prone. Preprocessing the events into a representation
or letting a machine learning algorithm learn said representation is often a choice
researchers are faced with. The asynchronous nature also has an impact on potential

10

algorithm creation. The design of the algorithm can use an event after the other or
accumulate them using a fixed number or event or a predetermined time interval.
The algorithm can use a dense representation or not, and can predict a stream or a
dense map of keypoints.

Appearance changes depending on movements direction and speed In
computer vision finding accurate, repeatable and local keyoint is already a challenge
as the keypoint appearance can vary depending on lighting, scale and potential dis-
tortion. In an event stream the changes of appearance of the keypoints are drastic
and vary with the direction of the movement. If the event are accumulated in a
dense representation which is not invariant to speed (most are not) the appearance
of the keypoint will also be dependent on the speed of the camera or of the object
the keypoint is localized on. An illustration of this issue is shown in 3.5.

Balancing compute efficiency and precise temporal location of keypoints
In the event cameras temporal precision is in the order of magnitude of the microsec-
ond. However predicting all keypoint locations at the microsecond is intractable,
especially as the sensors resolution augments [36]. There is therefore a balance to
find between precise temporal localisation of keypoints and computational cost which
comes with processing a large number of events. Indeed computations per event
need to be kept to a minimum to achieve real-time performance without sacrificing
accuracy.

Real-time keypoint prediction High temporal precision of event cameras com-
bined with a high resolution sensor, a textured scene and high speed camera movement
can lead to more than 1 gigaevents per seconds [36]. The more complex the computa-
tion per events are the more intractable the processing of events in real time becomes.
Real-time prediction come at the cost of poor precision either spatial or temporal.

1.5 Contributions

The contributions of the thesis are:

• Two new algorithms for keypoint detection in an event stream

– An algorithm in two steps: predicting gradients and detecting keypoints:
Winner of the best paper award at the CVPR workshop on event-based
computer vision in 2021.

– An end-to-end keypoint prediction algorithm faster and more robust

11

• The source code used to train a gradient or keypoint prediction algorithm from
an event stream.

1.6 Outline

We have sectioned this thesis in multiple chapters as follows:

Chapter 2: The Event Camera In this chapter we will introduce the theoretical
aspects of the event camera, and how this novel sensor works. We will talk about
the asynchronous and sparse nature of the pixels, and the link between the events
and the image gradients. We will present the advantages of the camera: its speed,
low power consumption and high dynamic range. We will also mention the challenges
associated with using this sensor and the use-cases of the camera.

Chapter 3: Related work This chapter will consist of numerous reference to
diverse works which have been an inspiration to build our algorithms. We present
Convolutional Neural Networks, different dense representations for the events and
finally keypoint detection algorithms, in frames and in events.

Chapter 4: Data Generation This chapter will present different strategies to
generate data which can be used to supervise keypoint detection tasks in event-
based. We will present both hardware and software based methods to obtain direct
correspondence between real events and gray levels representation. In a second part
we will describe different simulators used to simulate events from slow motion videos
or synthesized videos. The videos can be created using either a rendering engine or
as we do it using random yet temporally coherent homographies.

Chapter 5: Detecting Stable Keypoints from Events through Image Gra-
dient Prediction This chapter consists of our first work done on events for key-
point prediction. We have used a lightweight recurrent convolutional neural network
combined with a dense representation of events to predict image gradients and then
compute a keypoint score using the Harris corner score formula. The theoretical link
between events and image gradients make for an easy training of the network. The
network is necessary to predict clean image gradients as the theoretical link between
events and gradients does not account for noise which needs to be learned and mod-
eled. We also introduce our training pipeline using simulated videos and events to

12

have a perfect match between events and images. This is useful in this work to predict
image gradients and in the work presented in chapter 6.

Chapter 6: Long-Lived Accurate Keypoints in Event Streams In this chap-
ter we refine our first approach to directly predict keypoints and avoid the interme-
diate step of the previous approach. We modify our training pipeline in two ways:
instead of using the simulation to predict image gradients we use it to predict Har-
ris corners and instead of recomputing keypoints as we did for image gradients we
compute them once and reproject them using the known homographies. This gives
us some added invariance to scale for the keypoints. Learning end-to-end enables a
better spatial prediction of keypoints and a better temporal consistency. To improve
even further the temporal consistency we also introduce a novel way to predict key-
points: instead of predicting keypoints at a single point in time, we predict multiple
keypoints’ positions in time corresponding to the accumulation time used to build
the dense input of the network. It reduces computational needs and improves key-
point accuracy by making the tracking simpler for the nearest neighbor algorithm
and therefore more robust.

Chapter 7: Conclusion In this last chapter we will reflect on our work and the
state of keypoint detection in event cameras. We will give a summary of our contri-
butions and offer some insights to build on our work.

1.7 Publications

Best paper award at CVPR 2021 Workshop on Event-based Vision:
Detecting Stable Keypoints from Events through Image Gradient Prediction,
P. Chiberre, E. Perot, A. Sironi, V. Lepetit

Long-Lived Accurate Keypoints in Event Streams, (submitted)
P. Chiberre, E. Perot, A. Sironi, V. Lepetit

13

Chapter 2

The Event Camera

We present in this chapter the event camera: its principle in Section 2.1, its advantages
in Section 2.2 and challenges in Section 2.3. We also describe use-cases in Section 2.4
and give an overview of different devices in Section 2.5 before concluding in Section
2.6

2.1 Principle

The Event camera, also called neuromorphic camera, is a bio-inspired sensor regis-
tering asynchronously light intensity changes instead of images at fixed frame rate.
Each of the pixel in the sensor, as the photoreceptors in the retina, stays silent as
long as there is no change in the light intensity it measures. As soon as the intensity
exceeds or is exceeded by a threshold, an event (x, y, p, t) is created, or ”fired”. It
consists of the pixel coordinates (x, y), the polarity p: 1 when light increases and
-1 when light decreases, and t the time at which the threshold was crossed. The
sensor therefore produces a continuous stream of events E(xi, yi, pi, ti)i∈N. Figure 2.1
presents a dynamic and active pixel vision sensor (DAVIS) [15] which outputs asyn-
chronous DVS events and synchronous global shutter frames concurrently. Another
example of a sensor which outputs events coupled with grayscale measurements is the
Asynchronous Time-based Image Sensor (ATIS) [86].

Event generation model We consider an event camera of H × W pixels. Let
L(x, y, t), be the light intensity at pixel (x, y) and time t ≥ 0. The pixels in the event
camera will not record absolute intensity, but will send an output event as soon as
they detect a big enough change of L. Formally, given a contrast threshold C, an

14

Figure 2.1: Summary of the DAVIS camera [15], comprising an event-based dynamic
vision sensor (DVS [68]) and a frame-based active pixel sensor (APS) in the same pixel
array, sharing the same photodiode in each pixel. (a) Simplified circuit diagram of the
DAVIS pixel (DVS pixel in red, APS pixel in blue). (b) Schematic of the operation
of a DVS pixel, converting light into events. (c)-(d) Pictures of the DAVIS chip and
USB camera. (e) A white square on a rotating black disk viewed by the DAVIS
produces grayscale frames and a spiral of events in space-time. Events in space-time
are color-coded, from green (past) to red (present). (f) Frame and overlaid events of
a natural scene; the frames lag behind the low-latency events (colored according to
polarity). A more in-depth comparison of the DVS, DAVIS and ATIS pixel designs
can be found in [87]. Figure courtesy of [38]

15

event ei = (xi, yi, pi, ti) is generated for pixel (xi, yi) if
����log

�
L(xi, yi, ti)

L(xi, yi, ti−1)

����� = C , (2.1)

where ti−1 is the time of the last event at (xi, yi) and pi, called polarity of the event,
is the sign of the contrast change:

pi = sign

�
log

�
L(xi, yi, ti)

L(xi, yi, ti−1)

��
. (2.2)

Defining:

∆log(L(xi, yi, ti)) = log(L(xi, yi, ti))− log(L(xi, yi, ti −∆ti)) (2.3)

combined with 2.1 and 2.2 gives us:

∆log(L(xi, yi, ti)) = pk ∗ C (2.4)

Where ∆ti := ti − ti−1 is the time since the last event at this position and pi (the
polarity) is the sign of the brightness change: pi ∈ {1,−1}. In practice the contrast
threshold can be selected and often set to C+, C−

Using the first order Taylor approximation and 2.3 with a small ∆ti we get:

∆log(L(xi, yi, ti)) ≈
∂L

∂t
(xi, yi, ti) ∗∆ti (2.5)

Which leads to the interpretation of events giving information of the temporal
derivative of the log of the light intensity:

∂log(L)

∂t
(xi, yi, ti) ≈

pi ∗ C
∆ti

(2.6)

2.2 Advantages

Multiple advantages derive from the novel asynchronous registration of information.

Low latency. As the camera does not rely on a global clock, the temporal resolution
of the event stream is very high. The temporal resolution is of the order of magnitude
of microseconds [35].

High dynamic range. As the camera does no rely on a global sensitivity threshold,
the dynamic range across the sensor is very enhanced, typically of the order of 120dB
[69]

16

Low power. As the sensor registers information asynchronously and depending on
the scene the consumption varies. Even for high resolution sensors (1280 × 720) the
power consumption is minimal: 32mW (static) to 84mW at high activity (300ME/s)
[35]

Low data. When the scene is static an event camera does not register any of
the temporally redundant information, reducing both the data generated and post
processing steps needed afterward [35].

These combined advantages make it a great sensor for robotics (drones in par-
ticular), wearable devices such as AR/VR headsets, and more generally: lightweight
battery powered electronics in challenging scenarios for traditional cameras, where
high dynamic range and low latency are expected.

2.3 Challenges

The event camera output is fundamentally different from the output of a standard
camera. The common, dense and synchronous, output called frames are replaced by
a sparse and asynchronous stream. Adapting frame-based algorithms to event-based
cameras is therefore difficult.

The sensing also diverges from frame-based cameras. In event-based cameras
the output is always relative to the past, which is fundamentally different from the
absolute sensing of light intensity in standard cameras.

With the novelty of the sensor also comes the issue of noise modeling. Every
physical sensor is noisy in its own way and diverges from the theoretical models. For
now, and despite a lot of research, noise models for event cameras are still not perfect
and do not allow direct frame reconstruction.

2.4 Use-cases

Algorithms for events cameras include, feature detection and tracking, optical-flow
estimation, frame reconstruction, 3D reconstruction (mono and stereo), SLAM, seg-
mentation and pattern recognition [5]. The low power consumption and low latency
make the event camera a great tool for robotics [14, 24, 126, 127] and has been ex-
tensively tested on drones [28, 30, 34, 48, 79, 99, 112, 122]. The vast number and range
of algorithms combined with the different nature of the event camera which outper-
forms standard cameras in challenging scenarios taking advantage of the low latency,
and high dynamic range enables many applications such as: AR/VR, vibration mon-
itoring, high speed object counting, self-driving cars, super slow motion and image

17

Supplier iniVation Prophesee Samsung CelePixel Insightness

Camera model DVS128 DAVIS240 DAVIS346 ATIS Gen3 CD Gen3 ATIS Gen 4 CD DVS-Gen2 DVS-Gen3 DVS-Gen4 CeleX-IV CeleX-V Rino 3

Year, Reference 2008 [68] 2014 [15] 2017 2011 [86] 2017 [1] 2017 [1] 2020 [35] 2017 [110] 2018 [57] 2020 [113] 2017 [46] 2019 [19] 2018 [2]

S
en
so
r
sp
ec
ifi
ca
ti
on

s

Resolution (pixels) 128× 128 240× 180 346× 260 304× 240 640× 480 480× 360 1280× 720 640× 480 640× 480 1280× 960 768× 640 1280× 800 320× 262
Latency () 12µs @ 1klux 12µs @ 1klux 20 3 40 - 200 40 - 200 20 - 150 65 - 410 50 150 10 8 125µs @ 10lux
Dynamic range () 120 120 120 143 > 120 > 120 > 124 90 90 100 90 120 > 100
Min. contrast sensitivity () 17 11 14.3 - 22.5 13 12 12 11 9 15 20 30 10 15
Power consumption () 23 5 - 14 10 - 170 50 - 175 36 - 95 25 - 87 32 - 84 27 - 50 40 130 - 400 20-70
Chip size () 6.3 × 6 5 × 5 8 × 6 9.9 × 8.2 9.6 × 7.2 9.6 × 7.2 6.22 × 3.5 8 × 5.8 8 × 5.8 8.4 × 7.6 15.5 × 15.8 14.3 × 11.6 5.3 × 5.3
Pixel size () 40 × 40 18.5 × 18.5 18.5 × 18.5 30 × 30 15 × 15 20 × 20 4.86 × 4.86 9 × 9 9 × 9 4.95 × 4.95 18 × 18 9.8 × 9.8 13 × 13
Fill factor () 8.1 22 22 20 25 20 > 77 11 12 22 8.5 8 22
Supply voltage () 3.3 1.8 & 3.3 1.8 & 3.3 1.8 & 3.3 1.8 1.8 1.1 & 2.5 1.2 & 2.8 1.2 & 2.8 1.8 & 3.3 1.2 & 2.5 1.8 & 3.3
Stationary noise (ev/pix/s) at 25C 0.05 0.1 0.1 - 0.1 0.1 0.1 0.03 0.03 0.15 0.2 0.1
CMOS technology () 350 180 180 180 180 180 90 90 90 65/28 180 65 180

2P4M 1P6M MIM 1P6M MIM 1P6M 1P6M CIS 1P6M CIS BI CIS 1P5M BSI 1P6M CIS CIS 1P6M CIS

Grayscale output no yes yes yes no yes no no no no yes yes yes
Grayscale dynamic range () NA 55 56.7 130 NA > 100 NA NA NA NA 90 120 50
Max. frame rate (fps) NA 35 40 NA NA NA NA NA NA NA 50 100 30

C
am

er
a Max. Bandwidth (eps) 1 12 12 - 66 66 1066 300 600 1200 200 140 20

Interface USB 2 USB 2 USB 3 USB 3 USB 3 USB 3 USB 2 USB 3 USB 3 USB 2
IMU output no 1 1 no 1 1 no no 1 no no no 1

Table 2.1: Comparison of commercial or prototype event cameras. Values are ap-
proximate since there is no standard measurement testbed. Table courtesy of [38]

deblurring.

2.5 Overview of different devices

As can be seen in Table 2.1 the general tendency in event cameras development is to
increase spatial resolution, increase readout speed, and add features, such as: gray
level output (in ATIS and DAVIS). Only recently has the focus turned more towards
the difficult task of reducing pixel size for economical mass production of sensors
with large pixel arrays. In this respect, 3D wafer stacking fabrication has the biggest
impact in reducing pixel size and increasing the fill factor.

2.6 Conclusion

We have presented the event camera, its principle, the challenges and advantages
linked to the novel structure of information generated by the sensor. We will present
in the next chapter the works which have influenced this thesis and on which we have
build new ideas and algorithms.

18

Chapter 3

Related Work

Our work on keypoint detection for event cameras is related to many other preceding
works. We use, and have been influenced by, a multitude of deep learning tools, dif-
ferent approaches of reconstructing a dense representation from events and other key-
point detection algorithms for both frame and event cameras. We will present works
on dense reconstruction from events in Section 3.1, keypoint detection in Section 3.2,
convolutional neural networks in Section 3.3 and, image and gradient prediction in
Section 3.4.

3.1 Reconstruction from Events

The sparse nature of events and vast literature on dense representation (frames
mostly) has led researchers to build a dense representation from events, enabling
fast use of existing algorithms. Multiple dense representations of event streams have
therefore been invented. We will detail each one bellow.

3.1.1 Updated event-by-event

A first class of dense representations is a tensor describing a state at time t and
updated for each new event. It has the advantage of using and displaying all the
available data while at the same time keeping the small temporal increments inherent
in events. It is however demanding in compute resources and can be very imprecise
if noisy events are not filtered when building said representations.

Membrane Potential Used to train spiking neural network the membrane poten-
tial [66, 76, 85] is a way to create a dense representation from a stream of events at

19

every available timestamp. A Leaky Integrate and Fire (LIF) [88] neuron is associated
to every pixel and updated at every new event. Since the states of LIF neurons can
be updated asynchronously based on the timing of input events, it is a very efficient
model in terms of computational cost.

The Surface of Active Events (SAE) [13] define for each pixel and polarity the
Surface of Active Events as the latest time an event has occurred (Equation 3.1):

SAE(x, y, p) → t . (3.1)

To put some emphasis on the latest events, a regularization is introduced. [18,23]
introduce a representation named Leaky Surface. The surface increases at the position
of the newest event and decreases everywhere else.

q(x, y) = max(p(x, y)− λ ∗ (ti − ti−1), 0), (3.2)

p(x, y) =

(
q(x, y) +∆increment, if xi = x and yi = y

p(x, y), otherwise
(3.3)

where (xi, yi, pi, ti) is the latest event.

HOTS Regularization with an exponential decay are also considered and introduced
in [63] named the time surface Si for the ith event. Ti is defined in Equation 3.4. We
can see in Figure 3.1 the overview of the generation of the (regularized) time surface,
and in Figure 3.2 the time surfaces for a couple of simple shapes and movements.

Ti(u, p) = max
j≤i

{tj|xj = (xi + u), pj = p}, (3.4)

Si(u, p) = e−(ti−Ti(u,p))/τ , (3.5)

where u = [ux, uy]
T is such that ux ∈ {−R, ..., R} and uy ∈ {−R, ..., R}

The time surface has the advantage of keeping values bounded and the parameters
τ gives control over the order of magnitude of the accumulation of the events.

HATS In [107] the time surface is made more robust to noise by averaging both
in the spatial and temporal dimension for Ti(u, p) As opposed to [63] where a time
surface, defined for a spatial neighborhood [−ρ, ρ] around an event ei = (xi, ti, pi) is
defined as in Equation 3.6. This time surface can be visualized in Figure 3.3 (a).

T̄ei =

(
e

ti−t′(xi+z,q)

τ if pi = q

0 otherwise.
(3.6)

20

Figure 3.1: Definition of a time-surface from the spatio-temporal cloud of events. A
time-surface describes the recent time history of events in the spatial neighborhood
of an event. This figure shows how the time-surface for an event happening at pixel
x0 = [x0, y0]

T at time t 0 is computed. The event-driven time-based vision sensor (a)
is filming a scene and outputs events shown in (b) where ON events are represented
on the left hand picture and OFF events on the right hand one. For clarity, we
continue by only showing values associated to OFF events. When an OFF event
evi = [x0, ti, 1] arrives, we consider the times of most recent OFF events in the spatial
neighborhood (c) where brighter pixels represent more recent events. Extracting a
spatial receptive field allows to build the event-context Ti(x, p) (d) associated with
that event. Exponential decay kernels are then applied to the obtained values (e)
and their values at ti constitute the time-surface itself. (f) shows these values as a
surface.

21

Figure 3.2: Example of some time-surfaces for simple movements of objects. First
column shows a representation of the stimulus. The second column shows correspond-
ing data from the ATIS sensor where white dots are ON events and black dots are
OFF events. The third column shows the time-surface obtained from these events
and computed for the event located in the center of the circle in the second column:
the first, positive, half is obtained from the ON events and the second, negative, half
is obtained from the OFF events. (a) A horizontal bar moving downwards. (b) A
vertical bar moving rightward. (c) Corner moving to the top-right.

22

Where t′(xi +z, q) is the time of the last event with polarity q received from pixel
xi + z and τ is a decay factor.

They introduce two new concepts, the Local Memory Time Surfaces and the
Histograms of Averaged Time Surfaces. In the Local Memory Time Surfaces they
avoid using only the latest event as in Equation 3.4 and use a sum of the latest events
over a certain period of time (Equation 3.7), i.e. the sum is taken over a temporal
window, making the time surface less sensitive to noisy pixels. This can be seen in
Figure 3.3 (b).

T̄ei(z, q) =

P
ej∈N(z,q)(ei)

e
ti−tj

τ
if pi = q

0 otherwise.
(3.7)

Where N(z,q)(ei) = {ej : xj = xi + ztj ∈ [ti −∆t, ti), pj = q}.
Another way to make the representation more robust is to average the time surface

defined in Equation 3.7 spatially. The approach is inspired by [26], where adjacent
pixels are grouped into cells {Cl}Ll=1 of size K ∗K. The sum is normalized by |C| the
number of events in each cell. The Equation 3.8 formalizes the creation process for
the averaged histogram and an example can also be seen in Figure 3.3 (c)

hC(z, q) =
1

|C|
X

ei∈C
Tei](z, q). (3.8)

Filtered Surface of Active Events Similarly, in [4] the authors present a way to
remove noisy events for corner detection. They introduce the Filtered Surface of Ac-
tive Events (FSAE) inspired from [63,106]. The main idea is to remove events which
occur rapidly after one another and only keep the first timestamp of the series. Intu-
itively rapid succession of events correspond to the same edge and are important only
for gray level reconstruction as the number of events corresponds to the intensity dif-
ference between the two sides of the edge. As the intensity difference is not important
for corner detection this approach (Equation 3.9) is beneficial to reduce noise. The
approach is illustrated in Figure 3.4, where we can see the absence of noise for this
linearly moving straight edge. Removing the events closely following the first event of
the series can be seen as adding an artificial refractory period. This refractory period
however needs to be tuned. A compromise needs to be found between removing noisy
events and keeping informative events i.e. avoid removing important events which
would be part of the underlying signal. Indeed during fast motions events can be
close in time for a single pixel location yet carry important information. The tuning
of τ− in Equation 3.9 can be delicate.

23

Figure 3.3: Time surface computation around an event ei , in presence of noise. Noisy
events are represented as red crosses, non-noisy events as blue dots. For clarity of
visualization only the x− t component of the event stream and a single polarity are
shown. (a) In [63] the time surface T̄ei (Equation 3.6) is computed by considering
only the times t′(xi + z, q) of the last events in a neighborhood of ei (orange dashed
line). As a consequence, noisy events can have a large weight in T̄ei . This is visible
from the spurious peaks in the surface T̄ei . (b) By contrast, the definition of Local
Memory Time Surface Tei of Equation 3.7, considers the contribution of all past
events in a spatio-temporal window N(z,q)(ei). In this way, the ratio of noisy events
considered to compute T is smaller and the result better describes the real dynamics
of the underling stream of events. (c) The time surface can be further regularized by
spatially averaging the time surfaces for all the events in a neighborhood (Equation
3.8). Thanks to both the spatial and temporal regularization, the contribution of
noise is almost completely suppressed.

24

Figure 3.4: On the left, real events generated due to translation of a black rectangle
are depicted (brighter green indicates newer events). On the right the timestamps of
the latest events triggered in a small region (red segment) are illustrated. Although
a single contrast change occurs, the significant magnitude of the change induces the
triggering of multiple events in each of the pixels. The proposed filtered SAE S (red)
captures the timestamps of the first event in each pixel, accurately representing the
position of the rectangle at each time (note the constant velocity profile). A naive
SAE S (blue) would capture the timestamp of consecutive latest events instead, which
are subject to noise.

25

FSAE(x, y, p) =
(
t, if t− SAE(x, y, p) ≥ τ−

SAE(x, y, p), otherwise.
(3.9)

In all previously mentioned representations a change of speed or direction of the
movement in the scene changes the visual aspect of the representation (see Figure
3.5). This proves detrimental for keypoint detection’s robustness so [43,73] introduce
representations agnostic to speed and direction. [73] introduces the Speed Invariant
Time Surface described in Algorithm 1. [43] also introduces a local neighborhood-
based method called Threshold-Ordinal Surface (TOS), updating positions after each
event relative to the surrounding values of the latest event as described in Algorithm
2.

Speed Invariant Time Surface As shown in Figure 3.5 the same corner will
change appearance when aggregating events into frame representations such as an
histogram. Surface of Active Events and Filtered Surface of Active Events suffer from
the same issue. In [73] the authors present a novel dense representation for events
named the Speed Invariant Time Surface. As the name suggests the representation
is invariant to the speed of an object at the cost of added computations. The speed
invariance is illustrated in Figure 3.6 for a one dimensional motion and the algorithm
1 explicitly details the computation for the creation of the representation.

Algorithm 1 Speed Invariant Time Surface

1: Output: Speed Invariant Time Surface S(x, y, p)
2: Initialization: S(x, y, p) ← 0 for all (x, y, p)
3: For each incoming event (x, y, p), update S:
4: for −r ≤ dx ≤ r do
5: for −r ≤ dy ≤ r do
6: if S(x+ dx, y + dy, p) ≥ S(x, y, p) then
7: S(x+ dx, y + dy, p) ← S(x+ dx, y + dy, p)− 1

8: S(x, y, p) ← (2r + 1)2

Threshold Ordinal Surface [43] introduce the Threshold Ordinal Surface (TOS)
which is illustrated in Figure 3.7. This representation is asynchronous and highly con-
trasted tailored to the Harris corner detection algorithm improving corner detection
rate. The representation discards the polarity information of the events and is fully
detailed in Algorithm 2. The main advantage of this representation is to have a con-
stant minimum and maximum which is important to set a fix threshold for the Harris

26

Figure 3.5: (Top) In a classical frame-based camera, the appearance of a corner, such
as the one in the red square, is invariant under camera motions. (Bottom) In the
case of an camera, instead, the same corner can generate vert different pattern of the
events depending on its motion. The four panels show 40ms of events generated by
the corner on the top while rotating the camera at different speeds.

Figure 3.6: An edge moves from position 1 to 10 at two different speeds. It creates
a slope on the Standard Time Surface T (Top) and on the corresponding Speed
Invariant Time Surface S (Bottom). S is identical for both speeds.

27

Figure 3.7: Illustration of the high contrast Threshold Ordinal Surface introduced
in [43]. The Background is dark and uniform, it does not suffer from any ghosting
effect.

corner detection algorithm. The hyperparameter used to create the binary histogram
needed in eHarris [119] is also bypassed as the TOS is asynchronous and for each
new event a new representation is computed. The computation, even if only a small
region around every new event is affected, can quickly become intractable with high
event rates. The approach also suffers from noise as events which are continuously
and erroneously firing will have a very negative impact on the representation.

Algorithm 2 Event-by-event computation (q1)

1: v = ⟨x, y, t⟩, TOS
2: for x = vx − kTOS : vx + kTOS do
3: for y = vy − kTOS : vy + kTOS do
4: TOSxy ← TOSxy − 1
5: if TOSxy < 255− TTOS then
6: TOSxy ← 0

7: TOSvxvy ← 255

3.1.2 Updated from a set of events

The representation methods detailed in the previous section all have something in
common when creating a dense representation (with or without adding computations):
the update is done for every new event. Even though every event brings some new
information the extremely fine temporal granularity is not always needed and more
general information can be extracted when considering a group of events instead of
single events independently. The following methods we present in this section all use

28

of a set of event to create a dense representation. The set of events can be selected in
two different ways: either by considering the last N events or the latest events such
that ti ≥ t− δt with t being the timestamp of the latest event. The main issue with
this approach is that both N and δt are hyperparameters which need to be fine-tuned
depending on the use case. Indeed when considering only a fixed time frame and the
speed of motion changes drastically appearance changes might become an issue. The
same can be said when only considering a fixed number of events as the events can be
uniformly distributed or very localized having a strong impact on the representation.

Flat representations

Binary Histogram The simplest dense representation from a set of events is a
binary histogram as used in [119]. For the considered set of events E both the
polarity and timestamps are discarded while only the positions (xi, yi) are used. For
every (xi, yi) the binary histogram value is set to 1. It is set to 0 everywhere else.
Binary histograms (BH) is formalized in Equation 3.10 and can be visualized and
compared with histograms in Figure 3.8.

BH(x, y) =

(
1, if ∃ei = (xi, yi, pi, ti) ∈ E|xi = x and yi = y

0, otherwise.
(3.10)

Histogram A way to improve on the binary histogram described above is to count
the number of events at each of the pixels location and create an histogram H.
The values of each pixel (x, y) will correspond to the number of events with these
coordinates in the set of considered events (see Equations 3.11 3.12 for formalization).
The polarity of the events can be considered and two distinct histograms (HP) can
be created (Equation 3.13 3.14). This would effectively create a two channels dense
representation for the set of events. Another way to consider polarity is to create two
histograms as before but aggregating them into a one channel representation using
the difference operator (see Equation 3.15). Different histograms can be visualized in
Figure 3.8

E(x,y) = {ei = (xi, yi, pi, ti) ∈ E|xi = x and yi = y} (3.11)

H(x, y) =
X

ei∈E(x,y)

1, (3.12)

E(x,y,p) = {ei = (xi, yi, pi, ti) ∈ E such that xi = x, yi = y and pi = p} (3.13)

29

HP (x, y, p) =
X

ei∈E(x,y,p)

1, (3.14)

H(x, y) = HP (x, y, 1)−HP (x, y, 0) (3.15)

Inceptive Events Time-Surface The Inceptive Events Time-Surface introduced
in [9] uses a more restrictive filtering than the FSAE introduced in [4]. Events are
filtered considering both the preceding timestamps and following ones. The general
idea is to average events within a certain time window. This methods, similar the
FSAE, suffers from the same issues: the need to fine-tune parameters τ− and τ+. The
Equations 3.16, 3.17, 3.18 give details of how the filtering is done. Let it be noted
that this filtering is only possible for a set of events as timestamps from the past and
the future of the events are considered which is not possible when working event by
event. The visual comparison can be seen in Figure 3.9. Let E be the set of events:

T (x, y, p) = {ei ∈ E|xi = x, yi = y, pi = p} (3.16)

IE(x, y, p) = {T (x, y, p)|ti − ti−1 ≥ τ− ∧ ti+1 − ti ≤ τ+} (3.17)

IET S(x, y, p) = mean{IE(x, y, p)} (3.18)

Contrast Maximization Framework for Event Cameras In [39] the authors
introduce a framework producing motion-corrected edge-like images with high dy-
namic range. Those images do not suffer from the motion blur in histograms and
does not need any hyper parameter. The main idea of the method is to find the point
trajectories on the image plane that are best aligned with the event data by maximiz-
ing an objective function: the contrast of an image of warped events. This framework
has the advantage of being simple and can offer information on the optical-flow, the
depth or the motion of the scene. As the events are aggregated and despite not suffer-
ing from motion blur the very fine temporal information of event-based sensors is lost
in the process. the main issue however is the fact that the computational complexity
of the image of warped events is linear on the number of events to be warped. This
makes the framework unusable for lightweight and real time applications, especially
as the number of events keep increasing with the higher resolution, novel sensors such
as the one described in [36].

30

(a) (b) (c)

(d) (e) (f)

Figure 3.8: Different representations using histograms: (a) A simple binary his-
togram without considering the polarity of the events. It can be represented very
efficiently with a single channel and a single byte. (b) and (c) consider the polarity
of the events yet maintain a binary form of information when considering the set of
events. The polarity can be represented with a single channel as a deviation from
a standard value (b) or as a color when using multiple channels (c). (d)-(f) are the
histograms counterparts of the first row. Each pixel value corresponds the amount of
events with the same (x, y) coordinates. The histograms are a way to emphasize the
pixels corresponding to signal and reduce the weight of noisy (isolated) events. The
polarity is not considered in (d) while it is represented with a single channel in (e)
as a deviation from a standard value or with two channels (one color per channel) in
(f). (b) and (e) are also called difference of histograms as they are the difference of
two histograms each corresponding to a polarity.

31

(a) (b)

Figure 3.9: Event Generation. (a) On a per pixel level, intensity variations trigger
events at each log-scaled level crossing. The first event in a series of consecutive
events is called an Inceptive Event. (b) IETS, FSAE, HOTS and the Mean Surface
are compared in the presence of noisy events. IETS is the most stable approach and
less sensitive to noisy events, both when leading and following signal events.

Figure 3.10: motion-corrected image generation. (a) Events (dots) caused by a mov-
ing edge pattern and point trajectories in a space-time region of the image plane,
colored according to event polarity (b) Visualization of the events along the direc-
tion of the point trajectories highlighted in (a). The approach works by maximizing
the contrast of an image of warped events similar to (b).

32

Volumetric representation

The histograms are a simple and efficient way of representing a set of event in a
dense manner. The issue however is the lost of details in the temporal dimension.
The way to densify a set of events without the loss of information would be to have a
volume where each channel would correspond to an event. The large number of events
make this approach unfeasible in practice. The idea is therefore to find a compromise
between having a single event per channel and aggregating all the events into the
same channel. The Event Volume is here to fill this gap and keep a lot of temporal
information. The events are not simply assigned to the closest channel i.e. they are
not only contributing to a single channel but contributes to the two closest, weighted
by the inverse of the distance to the channel, or bin. The notion of distance when
saying closest is on the temporal direction: two events are close if the difference of
their timestamp is close to zero.

Event Volume A more versatile approach to densify events is the event volume.
It was first introduced in [129]. The event volume is populated using trilinear voting
(interpolation) where each event (xi, yi, ti, pi) contributes its polarity to its two closest
temporal bins according to:

E(x, y, tn) =
X

i

pimax(0, 1− |tn − t⋆i |), (3.19)

with:

t⋆i =
(ti − tmin)

(tmax − tmin)
(B − 1) (3.20)

and where n is the temporal bin index, pi is the polarity and t⋆i is the normalized
timestamp of the ith event. The hyperparameter B defines the number of channels
of the volume. The linear voting in time make the Event Volume a very powerful
representation for event. It is compact and descriptive without suffering of any motion
blur. The hyperparameter B proves to be flexible and multiple values produce good
results. We have chosen representation for our work due to its simpleness: no added
computation apart from a simple linear interpolation, and descriptive power into a
small tensor: we chose B to be of the order of magnitude of 10.

Discretized Event Spike Tensor In [41] a unifying framework is presented and
a novel learnable representation is introduced. The main advantages of the method
are two folds: minimize the information lost when densifying the events and having
a representation which can be learned, each task can have an optimal representation

33

improving results on downstream tasks such as optical flow and object detection. The
method works in three steps :

• The interpretation of the events as a succession of measurements of a function
f± defined on the domain of the events (Equation 3.21).

• The convolution of the measurement field with a suitable aggregation kernel
(Equation 3.22).

• The discretization of the signal into the Discretized Event Spike Tensor by
sampling the convolved signal at regular intervals (Equation 3.23).

The final representation is created by projecting the Discretized Event Spike Ten-
sor over the temporal axis or the polarities. The kernel can be handcrafted or learned
to enable an end-to-end learnable representation. The learnable kernel is a small mul-
tilayer perceptron which takes the coordinates and time stamp of an event as input,
and produces an activation map around it. The whole framework is more general
than previous fixed representation but requires non negligible computational power.

S±(x, y, t) =
X

ek∈E±
f±(x, y, t)δ(x− xk, y − yk)δ(t− tk) (3.21)

(k ∗ S±)(x, y, t) =
X

ek∈E±
f±(xk, yk, tk)k(x− xk, y − yk, t− tk) (3.22)

S±(xl, ym, tn) = (k ∗ S±)(xl, ym, tn) =
X

ek∈E±
f±(xk, yk, tk)k(xl − xk, ym − yk, tn − tk)

(3.23)

3.1.3 Conclusion

We have seen in this section on overview of different ways to represent events bridging
the gap between event-based data and vast frame-based algorithms and literature.
The main takeaway is that most if not all methods who introduce some form of
computation or who treat each event independently suffer from latency and become
unusable when high event rates occur. The more simple representations such as the
histograms, binary or not, are however too simplistic and discard too much of the
temporal information for the use case of keypoint detection. The Event Volume proves
to be a very good trade off between low latency and high spatio-temporal information.
It is simple enough to be generated very quickly and retains a lot of the information
thanks to the linear interpolation in the time direction. We have decided to use it as
the input of our network and proved it’s efficiency for the task of keypoint detection.

34

time

MeasurementsEvents

Convolution Discretization

x

y

t

kernel

k(x,y,t)

time

time

f(x,y,t)

Figure 3.11: Overview of the method presented in [41]: Each event is associated
with a measurement (green) which is convolved with a (possibly learnt) kernel. This
convolved signal is then sampled on a regular grid. Finally, various representations
can be instantiated by performing projections over the temporal axis or over polarities.

35

3.2 Keypoint Detection

Keypoints are sparse by nature. They are used as robust indicators and to reduce
computations. For example when using keypoints to estimate a change of pose be-
tween two frames, one need only to consider a dozen (at most a couple hundreds)
keypoints. This is both easier and more efficient than trying to match all (in the order
of millions) pixels, in both frames. Keypoints are designed to be local, repeatable
and accurate.

Local Keypoints are very local in the sense that they only consider a small pixel
neighborhood (also called a ”patch”). Ignoring global semantics of the image enables
corner detection to dramatically reduce computations.

Repeatable Keypoints need to be as repeatable as possible. They should be in-
variant to rotations, translations, and zooms (scale). The translation invariance is
achieved thanks to the local aspect of detectors. Rotation and aspect changes invari-
ance need to be engineered into each method.

Accurate Most important, keypoints need to be very accurately localized. The best
ones are sub-pixel accurate. As keypoint are used as a building block for downstream
applications small errors can quickly accumulate and lead to algorithms failing. A
comparison of keypoint detector with sub-pixel and pixel accuracy is done in [111].

A specific difficulty with events is that the same corner can appear differently
depending on the direction and speed of the movement as can be seen in Figure 3.5.
This change in appearance in event-based imply that repeatability is very difficult to
achieve. While tracking can easily be done using the very high temporal definition
of the sensor, tracking based on appearance is very difficult. We will present the
historical keypoint detection methods in frame-based in section 3.2.1 and the keypoint
detection methods developed for event-based data in section 3.2.2.

3.2.1 Frame-based Keypoint Detection

For Visual Odometry, Structure fromMotion, Simultanous Localization and Mapping,
and similar problems matching between images in a sequence need to be computed.
Dense matching such as optical flow can be too expensive to compute which has led
people to use only a subset of pixels to do the matching. We will see in the following
subsection how those pixels are selected.

36

handcrafted Features

Corners are good candidates for keypoints as they are local, repeatable and accurate.
Multiple method focus on corner detection such as the Harris corner detector [50],
it’s improvement Harris-Laplace [75] making it scale invariant and Features from
Accelerated Segment Test (FAST) [98]. Another keypoint detection, focusing on
blob-like areas: Scale-Invariant Feature Transform (SIFT) is also described in this
section.

Harris corner detector One of the first successful attempts was the detection of
corners and edges later referred to as the Harris corner detector [49]. The idea of
the algorithm is to consider an image patch, compute it’s cross-correlation and select
local maximums as points of interests. The algorithm works as follow :

• convert and RGB image to a black and white image

• compute the spatial derivatives of the image (making it more robust to light
intensity variations)

• consider a window such that (x, y) ∈ W , shift it by (∆x,∆y) and compute the
sum of square differences (see Equations 3.24 and 3.25).

• compute Harris score (see Equation 3.27). k is an hyperparameter determined
by experiments k ∈ [0.04, 0.06].

f(∆x,∆y) =
X

(x,y) ∈W
(I(x, y)− I(x+∆x, y +∆y))2

≈
X

(x,y) ∈W
(Ix(x, y)∆x+ Iy(x, y)∆y)2

(3.24)

with Ix and Iy as the partial derivatives of I and using the first order Taylor
expansion of f . in the matrix form, with M the structure tensor, we get

f(∆x,∆y) ≈ (∆x∆y)M

�
∆x
∆y

�
(3.25)

M =
X

(x,y) ∈W

�
I2x IxIy
IxIy I2y

�
(3.26)

S = det(M)− k ∗ tr(M)2 (3.27)

37

The Harris corner detector is a way to measure how much an image patch is
different from itself when moved horizontally and vertically. When the patch is very
different the score is high and the point is considered as a corner, when the score is
low however it corresponds to an edge or a flat region. In order to select the best
corner in a local region, only local maximas of a small 3x3 regions are considered. The
Harris corner detector is highly repeatable and invariant to translation and in-plane
rotation. However it fails for strong changes in view-point or scale.

Harris-Laplace To remove the variance of the Harris corner score when scale
changes, [75] run the Harris corner detector at multiple scales. The best scale (char-
acteristic scale) is subsequently selected using the Laplacian operator as proposed
in [17]. The scale invariance however comes with a larger computational cost.

Distinctive Image Features from Scale-Invariant Keypoints (SIFT) [72]
introduces features which are invariant to image scaling, rotation, partially invariant
to change in illumination and 3D camera viewpoint. It works in multiple steps, we
give them here as described in the original paper:

• Scale-space extrema detection : The first stage of computation searches over
all scales and image locations. It is implemented efficiently by using a difference-
of-Gaussian function to identify potential interest points that are invariant to
scale and orientation. (Illustrated in Figure 3.12).

• Keypoint localization At each candidate location, a detailed model is fit to
determine location and scale. Keypoints are selected based on measures of their
stability. (Illustrated in Figure 3.13).

• Orientation assignment: One or more orientations are assigned to each key-
point location based on local image gradient directions. All future operations
are performed on image data that has been transformed relative to the assigned
orientation, scale, and location for each feature, thereby providing invariance to
these transformations.

• Keypoint descriptor : The local image gradients are measured at the selected
scale in the region around each keypoint. These are transformed into a repre-
sentation that allows for significant levels of local shape distortion and change
in illumination. (See Figure 3.14 for an illustration).

In addition to highly distinctive descriptors SIFT has the advantage of generating
a large number of keypoints per image compared to other methods (in the order of
2000 stable keypoints for a 500x500 pixels image depending on the scene).

38

Figure 3.12: For each octave of scale space, the initial image is repeatedly convolved
with Gaussians to produce the set of scale space images shown on the left. Adjacent
Gaussian images are subtracted to produce the difference-of-Gaussian images on the
right. After each octave, the Gaussian image is down-sampled by a factor of 2, and
the process repeated.

Figure 3.13: Maxima and minima of the difference-of-Gaussian images are detected
by comparing a pixel (marked with X) to its 26 neighbors in 3x3 regions at the current
and adjacent scales (marked with circles).

39

Figure 3.14: A keypoint descriptor is created by first computing the gradient mag-
nitude and orientation at each image sample point in a region around the keypoint
location, as shown on the left. These are weighted by a Gaussian window, indicated by
the overlaid circle. These samples are then accumulated into orientation histograms
summarizing the contents over 4x4 subregions, as shown on the right, with the length
of each arrow corresponding to the sum of the gradient magnitudes near that direc-
tion within the region. This figure shows a 2x2 descriptor array computed from an
8x8 set of samples, whereas the experiments in the original paper use 4x4 descriptors
computed from a 16x16 sample array.

FAST FAST [98] focuses on building a computationally efficient corner detection
algorithm. For each pixel in the image the 16 pixels forming a circle around it is
considered. The intensity of corners in the circle are compared to the one at its center.
If a continuous arc of pixels are brighter or darker than the center pixel’s intensity,
the center pixel will be considered as a corner (illustration in Figure 3.15). The issue
of duplicate detection in a small area is solved by using non maximum suppression.
The proposed method is fast but suffers from noise as only pixels intensity values are
considered.

Learned Features

With the development of machine learning many authors proposed methods where
keypoints are learned using a dataset rather than setting handcrafted rules. Quickly
after the development of ConvNets for image classification they had a high impact on
the keypoint detection field. Improving robustness in keypoint detection is paramount
and ConvNets can improve robustness both to noise and aspect changes of corners.

TILDE A Temporally Invariant Learned DEtector (TILDE) [121] introduces a
piece-wise linear regressor based on Generalized Hinging Hyperplanes (GHH) [16]

40

15

11

10

16

14

13

12

p

21

3

4

5

6

7

89

Figure 3.15: In FAST the candidate corner (pixel p) is is classified as a corner based
on a 12 point segment test. The highlighted corners (forming a circle around the
candidate) are considered, if a number of contiguous pixels in the circle are all brighter
than p plus a threshold or dimmer than p minus a threshold, p is classified as a corner.
Here 12 pixels are brighter hence the classification of p as a corner.

to detect corners invariant to strong illumination changes. The training is done with
videos from a static webcam over long periods of time, learning both illumination
and weather changes. Keypoint detectors are usually very sensitive to weather and
lighting conditions. This approach however detects repeatable keypoints due to the
training methodology of using the same point of view for day and night or different
seasons altogether. The features used as input are the LUV components of the color
space as well as the horizontal and vertical gradients of the image and the gradients
magnitude.

Learned Invariant Feature Transform LIFT [125] are the first to learn the
full feature point handling pipeline, that is, detection, orientation estimation, and
feature description as is done in SIFT. They use three Convolutional Neural Networks
(one for each component) who feed into each other (overview in Figure 3.16). The
softargmax replaces standard non maximum suppression (NMS) to keep the pipeline
differentiable. Although the end-to-end training is possible in theory it proves difficult
to achieve in practice and the components are trained independently. The Descriptor
is trained first, which is then used to train the Orientation Estimator, and finally
the Detector, based on the already learned Descriptor and Orientation Estimator,
differentiating through the entire network. At test time, they decouple the Detector,
which runs over the whole image in scale space, from the Orientation Estimator
and Descriptor, which process only the keypoints. The training is done using SIFT

41

Figure 3.16: LIFT’s integrated feature extraction pipeline. The pipeline consists
of three major components: the Detector, the Orientation Estimator, and the De-
scriptor. They are tied together with differentiable operations to preserve end-to-end
differentiability.

keypoints in association with a Structure-from-Motion model. This has proven to be
an inspiration to our work: refining a handcrafted method with more modern and
robust to noise algorithms. They manage to learn keypoints invariant to rotation,
translation, scale and view-point changes, as in SIFT, and manage to outperform
both SIFT and previous state-of-the-art baselines.

SuperPoint [29]Introduces two novel and important ideas to the keypoint detection
field. They train their network with synthetic images for the first time using simple
symbols with known corners as training examples and in a second step they refine the
corners positions by training the network on natural images with and without some
distortion from a known homography. The pipeline, described in Figure 3.17, has been
another inspiration for us. The use of synthetic dataset as well as trying to refine
existing keypoint information and improve them has been one of our main objective
for event-based keypoint detection. Another advantage of SuperPoint is the fully
convolutional architecture which takes as input the image and outputs interest points
and descriptors without the need for multiple networks or a complicated pipeline at
test time.

Others A number of other method use ConvNets to detect and describe keypoints
in images which we cite here for completeness: D2-Net [32], R2D2 [96], D2D [116],
S2D-Net [42] and DISK [118].

42

Figure 3.17: Self-Supervised Training Overview of SuperPoint. (a) An initial
interest point detector is pre-trained on synthetic data. (b) A novel Homographic
Adaptation procedure is applied to automatically label images from a target, unla-
beled domain. (c) The generated labels are used to train a fully-convolutional network
that jointly extracts interest points and descriptors from an image.

3.2.2 Event-based Keypoint Detection

We focus here on methods for keypoint detection in event streams. They can be
classified into two categories: The first category is made of handcrafted methods,
in contrast to methods based on machine learning. As in other areas of computer
vision handcrafted methods precede machine learning ones. Handcrafted methods are
more interpretable, easier to implement (do not need any data) and can sometimes be
very fast, however machine learning methods benefit from the large amount of data
available and already existing handcrafted methods to train models which surpass
previous handcrafted only methods. We have used and built on the best of both
worlds, handcrafted for the interpretability and machine learning for its robustness
to noise and generalization power.

Handcrafted Methods

The handcrafted methods for keypoint detection in event-based are inspired or adapted
from frame-based keypoint detection. We will first present two approaches: eHarris
and LuvHarris where the authors have directly applied the Harris corner detector
on a dense representation built from the events. The aim is to create the best rep-
resentation to be able to use a well known and robust corner detector which was
developed for frames. Two other methods were inspired from keypoint detection in
frames, and more specifically corner detection: eFast and ARC. eFast as in eHar-
ris have created a dense representation on which they applied the FAST algorithm
developed for frames. ARC introduced both a new representation and added some
handcrafted rules to make eFast more robust to noise and detect more varied shapes
of corners.

43

Figure 3.18: (a) Slice of 1000 events and ground truth corners and (b) distribution of
the score compared to the distance from the ground truth. The threshold S is marked
by the dashed black line. Blue dots represent the score around the ground truth (red
line) of each event inside the dotted black square within the slice of 1000 events.

eHarris In [119] the authors creates a binary histogram from the latest N events,
with pixel locations set to 1 if an event has occurred during some integration period
and set to 0 elsewhere. The Harris corner detector, originally defined for grey level
images [50], is then applied to this binary histogram. The method suffers from two
drawbacks: without some kind of memory it is sensitive to speed of motion or scene
complexity while the hyperparameter for the number of events needs to be tuned
accordingly, secondly as can be seen in Figure 3.18 (b) the score for the corner is
not accurately localized. Some post processing such as a Gaussian fitting needs to
be done where scores are higher than a threshold to estimate the corner position in
space. The estimation would however be too computationally expensive, which is
why it was not implemented in the approach.

LuvHarris Look-up event-Harris [43] contributes in two ways to corner detec-
tion in event-based vision. They introduce a novel representation of events, named
Threshold-ordinal Surface (TOS), replacing the binary image used in [50]. The TOS
is a novel representation specially designed for Harris corner detection computation.
It has an integrated memory while at the same time staying bounded. This new rep-
resentation makes the Harris detection more precise and more stable at the expense of
a greater computational load: the representation is computed event-by-event, which
is not parallelisable. It is described in more details in 3.1.1. The second contribution

44

is the introduction to computing the Harris corner score only as-fast-as-possible and
completely decoupled from the data flow. When the Harris score cannot be computed
due to computational constraints it is looked-up in a stored table, hence the name of
the method. The computational impact of the Harris score map is therefore lessened
and they manage spikes of up to 8.59 M events / s.

eFast In [77], the authors use a non-computationally intensive representation, named
the Surface of Active Events (SAE). The SAE is also computed for an integration
period since it contains the information of many preceding events. They then pro-
ceed to apply a local matching pattern for each new event at its location in the SAE.
They considers two circles around the latest event of radius 3 and 4 respectively and
compare the timestamps with respect to other timestamps along the circles. Similar
to [98] they classify center pixels as corners if segments of contiguous pixels (arcs) are
higher (i.e., they have a more recent timestamp) than all other pixels on the circle.
The number of pixels should be between 3 and 6 for the inner circle and between 4
and 8 for the outer one. If such segments are found on both circles, the current event
is classified as a corner event. The circles, the SAE and a classification example can
be visualized in Figure 3.19.

Arc In [4], Alzugaray and Chli also consider two concentric circles around the latest
event but introduce new rules for the classification of an event as a corner, enabling
detection of corners with angles larger than 180 degrees. They introduce a new rep-
resentation for events: the Filtered Surface of Active Events described above in 3.1.1.
They introduce as well a significantly more efficient iterative algorithm that mini-
mizes the number of operations to classify corner-events. The novel representation
makes the algorithm more robust by reducing the amount of noisy events, the new
classification rules augment the number of corners detected and the novel algorithm
enables more than a 4× speed-up compared to eFast. As can be seen in Figure 3.21
the tracks detected by the algorithm are continuous and suffer from very few misclas-
sifications. The corners are however not very precisely localized and the metrics used
for validation do not really reflect it. Indeed they use a metric where a corner-event
is labelled as true positive if it is closer than 3.5 pixels from an intensity-based track,
i.e. a track generated from corners in gray level images. The method is therefore
precise up to 3.5 pixels which is problematic in practice. This also explains why in
Figure 3.21 we can see tracks which are not really straight (they seem to be jittering)
while at the same time still being classified as corners.

In all those handcrafted methods some computation is done event-by-event, either
for the dense representation or the classification of events as corners. It becomes
quickly intractable as the resolution of event-based sensors keeps growing [35] and

45

(a) (b)

Figure 3.19: The proposed method compares the timestamps of the pixels on two
circles (red and blue) around the current event (in black). (a): The inner (red) and
outer (blue) circle around the current event (black). (b): Visualization of the Surface
of Active Events (SAE) around the current event (black) and of the circles used for
the timestamp comparison. In this example, the event under consideration (center
pixel) is classified as corner.

46

Figure 3.20: This figure illustrates an example in which the same corner under two
different motion directions (Magenta arrows) may induce completely different SAEs
(Height represents the timestamps of the latest event triggered in each location).
Both algorithms, Arc*, and eFAST successfully detect the corner on SAE depicted
on the left, as the set of newest elements in the inspected circles (Blue and red) are
distributed continuously. However, only Arc* (and not eFAST) is able to detect the
same corner from the SAE depicted on the right, where the angle of arc of newest
elements is now over 180◦.

Figure 3.21: Despite the new Filtered Surface of Active Events and the new rules
for corner detection, the Arc algorithm suffers from small (less than 3 pixels) yet
noticeable local noise in the keypoint localization.

47

therefore event rates increase dramatically. The second issue is that the metrics for
algorithm evaluation are not good enough when approaching the pixel level or even
sub-pixel accuracy which is needed in many applications. The novel evaluation metric
introduced in [73] described in Section 3.2.2 solves the issues regarding the metrics.
The next section will focus on Learned methods which need training as well as data
to perform well, i.e. be very robust to noise and generalize to many different scenes.
The robustness to noise and generalization power are two very important aspects of
a good keypoint detection algorithms.

Learned Methods

We have presented in the previous section handcrafted methods, they are a natural
way to start a problem since learned methods require annotated data which is not
easily attainable, specifically in a novel field. The handcrafted approaches however
are sensitive to the noise present in the event stream which is an issue when trying to
generalize the method to other scenes or sensors. More recently, despite the advance
of deep learning only a single method is using machine learning for keypoint detection
in event-based. Training a model is very challenging as coherent and accurate ground
truth is very difficult to obtain. Only one paper [73] before us has used machine
learning successfully to detect keypoints in an event stream.

Speed Invariant Learned Corners (SILC) [73] made three significant contri-
butions to the field (which are overviewed in Figure 3.22: the speed invariant time
surface, the classification of patches as corners using a learned Random Forest and the
introduction of a novel evaluation method for event-based corner detection algorithms
on planar scenes with a novel dataset: The HVGA ATIS Corner dataset. We have
already detailed the speed invariant time surface in 3.1.1. We focus in this paragraph
on the machine learning and new dataset. As a reminder a Random Forest is a an
ensemble of decision trees, and each tree is uncorrelated (by randomly sampling a
subset of the training set). We detail here how the Random Forest is trained and how
the evaluation for planar scenes can be defined to be more general and more precise.
To train the Random Forest, a dataset (and therefore a ground truth) needs to be
built. Ground truth for event-based corners is difficult to obtain, manual annotation
is unfeasible and automatic annotation can prove difficult. They propose to leverage
the gray level measurement provided by a HVGA ATIS sensor which provides asyn-
chronous intensity measurements in form of time differences at the same temporal
resolution of the events. For every event, they apply the Harris corner detector to
its location only, in the graylevel image. If a corner is detected at this location, they
add the event to the training set as a positive sample, and as a negative sample oth-
erwise. The gray level are only used in training and are not needed at testing time.

48

The Harris detector applied to gray level images can sometimes fail in presence of
noise, to avoid such an issue the dataset was acquired by recording well contrasted
geometric patterns only. The use of simple geometric patterns reduces the amount of
false negatives examples in the training set but reduces the generalization power of
the method and fewer corners will therefore be detected at test time. Another issue
of the method is the use of gray levels which is not available in all sensors. This limits
the number of sensors on which this method can be applied.
The other important contribution they make is by introducing a new dataset and
a new metric specifically designed to evaluate the accuracy of event-based feature
detection and tracking algorithms. The dataset contains only records of planar pat-
terns, so that ground truth acquisition is simple and the evaluation is less affected by
triangulation errors. In order to assess the quality of an event-based detector, they
combine it with a simple tracking algorithm based on nearest neighbor matching in
space and time. After tracking, they evaluate the accuracy of the method by comput-
ing the reprojection error associated to the feature tracks (computed by estimating a
homography between two different timestamps). The evaluation method is explained
more formally in Section 6.3.1. As in [6] they are however obligated to use ”trail fil-
tering”: removing the multiple events generated by a contrast step in intensity which
causes multiple threshold crossing. The use of the filter shows the limitation of the
method to generalize and the need for some tuning parameters. Despite improving
the quality of the keypoints, the computation of the speed invariant time surface
and random forest done event-by-event make this approach unsuitable for real time
applications in practice.

Discussion

While algorithms treating events in their natural form, independently and asyn-
chronously, are theoretically appealing, they are very sensitive to noise and are compu-
tationally intractable for certain high event-rate scenes in high resolution sensors such
as the one described in [35]. Even when trying to treat each event independently every
keypoint detection method uses a dense representation: binary histograms, Surface of
Active Events, Time Surface, Threshold-Ordinal Surface, Speed Invariant Time Sur-
face. Depending on the representation chosen issues with creating the surface arise
when values are interdependent and cannot be updated directly (Threshold-Ordinal
Surface and Speed Invariant Time Surface). Removing any processing step such as
the binary histograms or Surface of Active Events ensures a quick generation of the
dense representation. The downside of such methods is that they are very sensitive
to noise as every event has the same weight in the representation. Some expensive
post-processing would be needed to have precise keypoint detection algorithms.

To move away from such issues we have chosen to use a simple and direct dense

49

X X

y

t

S(x0,y0)

y

t

(x0,y0)

(a) Input Events
(b) Speed Invariant

Time Surface (c) Random Forest (d) Corner Events

Figure 3.22: Overview of the SILC method. For each incoming event (x0, y0, t0, p0) in
the input stream (a) the Speed Invariant Time Surface is computed (b). The Speed
Invariant Time Surface is used as input to a Random Forest trained to discriminate
corner points (c). If the probability returned by the Random Forest is above a
threshold, the event is classified as a corner. This generates a sparse and stable
stream of corner events (d) which can be used for further processing.

representation of the events: the event volume, and use a neural network to learn noise
patterns from data directly, building a very stable feature representation for keypoint
detection with minimal computational cost. The event volume maintains the benefit
of event cameras which are high dynamic range and no motion blur while at the same
time the shallow convolutional recurrent neural network limits computation and keeps
the state of the scene into memory. This approach has given very precise and stable
keypoint detection trough space and time.

3.3 Convolutional Neural Networks

Convolutional neural networks are an essential part of our approach. First introduced
in [65] for image classification, they have not stopped gaining traction in computer
vision problems and are still widely used for a multitude of tasks such as: image
classification [51, 54, 104], object recognition [67, 71, 94, 95], semantic segmentation
[114, 115] and many others. Both our approaches to keypoint predictions rely on
ConvNets albeit with multiple modifications.

3.3.1 Squeeze and excite

The Squeeze and excite (SE) [55] block is the basis of the ILSVRC 2017 classification
submission which won first place and reduced the top-5 error to 2.251%, surpassing
the winning entry of 2016 by a relative improvement of ≈ 25%. The key idea is to

50

Figure 3.23: Squeeze and Excitation (SE) block. The main idea is to first Squeeze
the features down to a channel descriptor by aggregating feature maps across their
spatial dimensions. This descriptor, which allows the information from the global
receptive field of the network to be used by all its layers, is followed by an excitation
operation. It is a simple self-gating mechanism producing per-channel modulation
weights. They are then applied to the initial feature map to generate the output of
the block. As the dimension is unchanged, blocks can be stacked to create an SE
network (SENet).

explicitly model interdependencies between channels with minimal additional compu-
tational cost. They propose a mechanism that allows the network to perform feature
recalibration, through which it can learn to use global information to selectively em-
phasise informative features and suppress less useful ones. We can see in Figure 3.23
the overview of an SE block. In Figure 3.24 we can see how easily the resnet block
can be adapted to use the Squeeze-and-Excitation block. They proved it to be greatly
beneficial for a slight additional computational cost and this is the approach we have
chosen and used in our small network when predicting gradients and later directly
predicting keypoints.

3.3.2 Convolutional Recurrent Neural Networks

Shi et al. in [124], added a memory block to a convolutional neural network. The
memory block, a Long Short Term Memory [53] was introduced to learn to store
information over extended period of time and solving the issue with conventional
Back Propagation Through Time (BPTT) which suffers from either a vanishing or
exploding gradient when the sequence is too long. In the LSTM Equations 3.28 (◦
denotes the Hadamard product), which can also be visualized in Figure 3.29, we see
how every hidden state, and past state depends on all of the inputs. [124] combines
a convolutional neural network for feature extraction to an LSTM memory both in
the input-to-state and state-to-state. As the next state will depend only on previous
states and local spatial neighbors in the input. The added convolutions (Equation
3.29), reduce the complexity and use the inductive bias of ConvNets. In Equation

51

SE-ResNet Module

+

Global pooling

FC

ReLU

+

ResNet Module

X

�X

X

�X

Sigmoid

1 × 1 × C

1 × 1 ×
C

𝑟

1 × 1 × C

1 × 1 × C

Scale

𝐻 ×W× C

𝐻 ×W× C

𝐻 ×W× C

Residual Residual

FC

1 × 1 ×
C

𝑟

Figure 3.24: The schema of the original Residual module (left) and the SE-ResNet
module (right).

Ht−1, Ct−1

Ht, Ct

Ht+1, Ct+1

Xt

Xt+1

Figure 3.25: Inner structure of ConvLSTM

3.29 ∗ is a convolution operator and ◦ is the Hadamard product. The Equations 3.29
corresponds to the diagram in Figure 3.25. Their network captures spatio-temporal
correlations better than competitors and achieves state of the art.

it = σ(Wxixt +Whiht−1 +Wci ◦ ct−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcf ◦ ct−1 + bf)

ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 +Wco ◦ ct + bo)

ht = ot ◦ tanh(ct)

(3.28)

52

it = σ(Wxi ∗ Xt +Whi ∗Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ(Wxf ∗ Xt +Whf ∗Ht−1 +Wcf ◦ Ct−1 + bf)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt +Whc ∗Ht−1 + bc)

ot = σ(Wxo ∗ Xt +Who ∗Ht−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)

(3.29)

3.3.3 Convolutional Neural Networks in Event-Based Data

ConvNets are widely used in event-based data for numerous applications. This has
been an inspiration for our work.

Video Synthesis [92] Introduced the use of recurrent network for video synthesis
from an event stream and surpasses other approaches by a large margin. Their ap-
proach was later improved in a follow-up paper [93]. [102] took inspiration from [59] for
the architecture of the network. They used this shallow and lightweight convolutional
recurrent network for the task of video reconstruction from events.

Object Detection In [83], the authors introduce a novel deep convolutional recur-
rent neural network to detect objects in an event stream without any reconstruction
of intensity images.

Those approaches have shown the great potential of ConvNets, and more specif-
ically convolutional recurrent neural networks, applied to event-based data. They
enable more efficient computations, as well as more robustness to varied types of
noises.

3.4 Image and Gradient Prediction

Events are a very novel way to represent visual information and none of the traditional
(i.e. frame-based) computer vision algorithms are adapted to deal with such inputs.
A natural reaction when dealing with a new representation is to try to recreate a
known representation for which a large amount of literature and algorithms exists.
Many papers work on creating dense representations for event-based data which we
have presented in Section 3.1. We will focus in this part on methods who explicitly
represent an event stream with images or image gradients. Some methods try to
recreate images and gradients directly but suffer from multiple noise patterns in event
cameras which degrades the reconstructions. Others use deep learning to learn a

53

mapping from events to images and successfully use neural network to learn and
remove the noise coming from event sensors. When reconstructing images from events
the benefits of neuromorphic cameras are not lost. The reconstructed images will not
suffer from motion blur or loss of details in scenes with high dynamic range due to
the nature of events.

3.4.1 Handcrafted Methods

Using the direct theoretical link between events and log intensity some research has
been done in the direction of direct image or image gradient reconstruction from
events.

Gradient prediction In 2011, Cook et al. [25] first introduce the idea of gradient
and image reconstruction from an event stream. Their approach is however limited
to rotation only camera movements. Building on this work [61], also relying on the
known movement of the camera (a pure rotation), estimate at the same time the cam-
era motion and the image gradients corresponding to such rotation. The gradients
are a step in the process of reconstruction gray levels by solving a partial differen-
tial equation. In [62] the authors reconstruct gradients and intensity from a joint
optimisation and estimation of the 3D motion of the camera, the gradients and the
inverse depth of the scene per pixel. Everything is done pixel per pixel which can be
intractable with modern cameras and high event rates. Another issue of the approach
is the slow convergence of inverse depth estimates limiting the amplitude of the cam-
era motion. In [91] the simultaneous tracking of the camera and semi-dense mapping
of the scene give all the tools needed to estimate the gradients of the mapped scene
and use said gradients to reconstruct the intensity using a Poisson’s reconstruction.
These estimations are all done under the assumption of constant brightness of the
scene which limits the quality of the gradients and intensity reconstruction, as well
as the generalization to dynamically lit scenes.

Direct intensity prediction In [11] the estimation of the intensity is done jointly
with a dense optical flow field, using a variational optimisation problem. The optimi-
sation is however very costly and the quality of the reconstructed intensity levels are
not precise enough to detect keypoints. In [82] they reconstruct the intensity image
from events via integration of the events similar to [11] they however introduce an
event manifold for regularisation and they work on an event-by-event basis. A com-
plementary filter is introduced in [101] to fuse events and frames, reconstructing high
temporal resolution and high dynamic range images. The approach obtains better
results than the ones in [11], by using frames in addition to events. When using only

54

events as inputs of the filter the results are not convincing and are very far from what
would be needed to detect keypoints consistently.

Issues with handcrafted methods We have seen a number of different methods
recreating directly or indirectly intensity images from an event stream. They do not
model or learn noise patterns and except for a sliding window in [11] or the event
manifold in [82] do not focus on this issue, creating a number of artifacts such as
ghosting effects and bleeding edges in the reconstruction. The bleeding edges come
from the fact that the contrast threshold (value of the minimum brightness change
to create an event) is theorize to be constant over the pixels. In reality it is neither
constant nor uniform across the pixels. The ghosting effect results from the nature of
events being a relative measure. From a set of events it is possible to integrate them
up to an unknown initial image. This initial image can remain visible over a period
creating what is called a ghosting effect. As long as the noise in event cameras is
not modeled correctly it will prevent any reconstruction using analytical methods as
their basis to be perfect. Some methods therefore make use of machine learning to
recreate intensity images from events using more complex models. We will present
them in the next subsection.

3.4.2 Learned Methods

[12] were the first authors who learned gradients from event data. The gradients are
obtained using a learned dictionary mapping between small patches of accumulated
events and corresponding gradients. The correspondence between the events and the
gradients is done using a simulator. They use the learned gradients as an intermedi-
ate representation to reconstruct an image using the Poisson reconstruction. Other
learned methods focused on reconstructing images directly. Improving the image re-
construction quality is necessary for many tasks such as super slow motion, High
Dynamic Range (HDR) video, deblurring etc.

cGAN Multiple paper use conditional Generative Adversarial Networks as a way
to predict images from events. [58] introduce the idea of using a conditional GAN
to predict images from events. They use a very sparse 3D volume as input to the
generator network and train it using a mix of real data captured with the DAVIS
camera and synthetic data using the Open Event Camera Simulator (ESIM) [89].
Their method is later adapter in [108] to predict the depth and the optical flow with
minor modifications, proving the strength of the approach. [84] is able to synthesize
RGB images from events and an initial or a periodic set of color key-frames. They use
a combination of Generator and Discriminator as in [44] coupled with a convolutional

55

LSTM [124] to refine the RGB predictions and improve the temporal coherence. They
also use high frame rate RGB datasets to create synthetic events. Using larger RGB
datasets improves the model generalisation to novel scenes while using real events
help the model to learn real noise distribution. The main issue with this method is
the need for an hybrid sensor producing both frames and events which is not the case
in most event cameras.

Event and frames fusion [123] have an analytical approach to frame and event
fusion using a module named the Differential model-based reconstruction. The issue,
as previously stated, with such a reconstruction is the noise of the event camera.
Indeed, the noise when not fully taken into account in the model, has a negative
impact on the frame reconstruction: it creates unwanted artifacts. To remove said
artifacts, the authors model them as additive noise and remove them using deep
residual learning. The residual learning is done with a deep convolutional neural
network. The approach however, suffers from the same limitations, as [84], of needing
a reference frame and inability to work using only events.

E2VID In 2019, [92] created a paradigm shift in image reconstruction from events.
They introduced a novel recurrent network using only events as inputs. The net-
work they use has an integrated recurrence (overview in Figure 3.26) enabling them
to reuse previously reconstructed frames and improving temporal consistency. They
train the network with data generated using a more complex and realistic simula-
tor [90]. More specifically the simulator is based on the observation made in [68],
that the contrast threshold is not constant, but rather normally distributed across
the pixel array. [90] therefore sample the contrast threshold at every step of the simu-
lation. They also differentiate the positive and negative contrast threshold which are
sampled independently. They trained their network using the calibrated perceptual
loss (LPIPS) from [128]. The loss consists in passing the ground truth image and the
reconstructed frame through a VGG network [105] trained on ImageNet and measure
the distance between features at multiple depths. Qualitative results can be seen in
Figure 3.27 where we can observe the realism of reconstructed frames compared to
previous methods.

E2VID+ In [93] the authors of E2VID changed the initial loss presented in [92].
They add some temporal consistency constraints to remove some of the flickering
observed in their previous work. The loss they introduced (based on [64]) is using
the known optical flow F from the simulated data. The equation for the temporal
consistency (TC) loss is:

56

EkÎk−1

Îk−2

Îk−3

Ek−1Îk−2

Îk−3

Îk−4

ÎkA A

εk−1 εk

tek−1
0 ek−1

N−1 ekN−1ekN−1ekN−1ek0e
k
0e
k
0e
k
0ek−1

i

εk−1 εk

tek−1
0 ek−1

N−1 ekN−1ekN−1ekN−1ek0e
k
0e
k
0e
k
0ek−1

i

Figure 3.26: Overview of [92]’s approach. The event stream (depicted as red/blue
dots on the time axis) is split into windows εk with N events in each. Each window
is converted into a 3D event tensor Ek and passed through the network together with
the last K reconstructed images to generate a new image reconstruction Îk. In this
example, K = 3 and N = 7. Image courtesy of [92].

(a) Scene overview (b) Events (c) HF (d) MR (e) E@VID (f) Ground truth

Figure 3.27: Comparison of [92]’s method with Manifold Regularization (MR) and
High-pass Filter (HF) on sequences from [81]. [92]’s network reconstruct fine details
well (textures in the first row) compared to the competing methods, while avoiding
their artifacts (e.g. the “bleeding edges” in the third row).

57

Figure 3.28: FireNet architecture. The input is an event tensor with 5 temporal bins.
The network consists of convolutional layers (H, P), convolutional gated recurrent
units (G1, G2) and residual blocks (R1, R2). Every layer uses ReLU activation
except the final layer (P).

LTC
k = Mk−1

k ∥Îk −Wk−1
k (Îk−1)∥1, (3.30)

where Wk−1
k (Îk−1) is the reconstructed image Îk−1 warped to Îk using optical flow

Fk−1
k and Mk−1

k = exp(−α∥Ik − Wk−1
k (Ik−1)∥22) is a weighing term to account for

occlusion. When the error between the images Ik and warped image Wk−1
k is high,

the weight goes to zero and the error between reconstructed images is ignored. α = 50
in their work.

Fast Image Reconstruction with an Event Camera In [102] the authors in-
troduce a novel architecture inspired from [59] and manage to reduce the number of
parameters from 10M to 38k and lower inference times from 30ms to 10ms compared
to the state of the art [93]. The architecture can be seen in Figure 3.28. As opposed
to [93] they use ConvGRU [10] instead of ConvLSTM [103]. As can be seen in Figure
3.29 (from [22]), the Gated Recurrent Unit (GRU) [21] is found to be comparable
to the Long Short-Term Memory (LSTM) [53] unit while reducing computational
and memory footprint. Indeed, the FireNet method performs three times faster than
E2VID on GPU, and up to four times faster on CPU, requiring less than one tenth
the number of FLOPs.

Conclusion In practice using image reconstruction methods for keypoint detection
does not work well. Keypoints are not correctly localized spatially or temporally due
to the imperfection in the reconstruction. The spatial precision is poor and detected
keypoints tend to move around a point in space (jittering). The temporal stability is

58

f

c

c
~

+

+

o

i

IN

OUT

z

rh h
~ IN

OUT

(a) Long Short-Term Memory (b) Gated Recurrent Unit

Figure 3.29: Illustration of (a) LSTM and (b) gated recurrent units. (a) i, f and o
are the input, forget and output gates, respectively. c and c̃ denote the memory cell
and the new memory cell content. (b) r and z are the reset and update gates, and h
and h̃ are the activation and the candidate activation.

also an issue. keypoints turn on and off alternatively without any major visual change
of the scene (flickering). This was observed in [92] and improved in [93] yet results
on keypoint detection leave to be desired when directly applied to reconstructions.
When detecting keypoints using the Harris formula one needs to compute the image
gradients first, it is therefore more natural to learn to predict gradients directly, rather
than predict images followed by a computation of image gradients. In addition, the
nature of events simplify the prediction of gradients as opposed to the prediction of
images.

59

Chapter 4

Data Generation

In this chapter we will present how one can generate data for event-based vision
applications. We introduce the notion of data generation for event-based in section
4.1, describe how hybrid senors, beam splitter or planar scenes can be used to generate
ground truth data in Section 4.2, and present in Section 4.3 the work we have done
and improvements we made to simulate events from high frame rate videos (natural
or synthetic).

4.1 Introduction

From the beginning all our work has been focused on trying to train a network to
predict keypoints. We could train our network in two ways: directly (supervised)
or using a proxy task (self-supervised). We decided to focus our research on su-
pervised training and therefore to remove the difficulty of finding a proxy task for
self-supervision. It was difficult to find any kind of annotated data which we could
use for keypoint detection, either directly or indirectly, as was done in automatic an-
notation of humans in videos [31]. In this work the authors benefited from the scripts
of movies and used them as a supervision. Annotated data for keypoints in an event
stream does not exist directly and is very difficult to create in practice. We will detail
in the following sections some ways to create a dataset of keypoints with recorded
data from a sensor: either aligning two cameras and syncing them using a one way
mirror or as was done in [73] using a sensor where both gray levels and events are
available. The other way to generate some ground truth data is by using a simulator.
The simulator has multiple advantages: it will always have perfectly matching frames
and events; it can generate gray levels at a very high (as high as needed) frame rate.
Real data is useful when the sensor does not change between training and validation,
and the noise levels are not previously known but need to be modeled. On the other

60

hand when trying to create an approach which can generalize to multiple sensors, a
simulator is most useful. It enables us to randomly change the noise modelling and
therefore avoid overfitting of the network to a specific noise model. To be able to
model noise as truthfully as possible, however requires some detailed understanding
and knowledge of noise in event sensors.

4.2 Real Data

4.2.1 ATIS

As was done in [73] a good way to get a correspondence between events and corners
is to use the Asynchronous Time-based Image Sensor (ATIS) presented in Figure
4.1. It gives a direct correspondence between events and gray levels or grayscale
measurement. This makes it possible to detect keypoints in the gray levels using
traditional methods such as the Harris corner detector and classify corresponding
events as keypoints or non keypoints. This approach was used successfully in [73].
However the method is dependent on gray levels which do not exist in most event-
based sensors such as the one presented in [36]. As we tried to detect keypoints in
higher resolution (ATIS is QVGA) we could not use this method. As [73] was state-
of-the-art we tried to use the detected keypoints of the their method (SILC) on higher
resolution sensors. The SILC method is very slow and unusable for high resolution
sensors as then event rate can augment drastically and the Speed Invariant Time
Surface cannot be computed in real time. We tried to use the SILC keypoints as
ground truth for higher resolution, as the computation could have been done offline,
and train a smaller and faster convolutional neural network for inference. However
this knowledge distillation was not a success as despite good generalisation power
of the SILC method to other sequences in the dataset, when using this method on
another sensor with higher resolution such as the one presented in [36] the method
failed to detect coherent and consistent keypoints both in space and time.

4.2.2 Alignment of Two Cameras

Another method to have a correspondence between events and gray levels or even
RGB images is to use two cameras and a beam-splitter as was done in [74]. Their
approach is illustrated in Figure 4.2. Some hardware synchronisation of the camera
clocks is needed as well as some calibration of the cameras. The perfect pixel matching
between the event camera and the RGB camera is not trivial to achieve and we decided
not to pursue this idea. At the time of our research the dataset was not available.
An issue of this method is the need to choose between a very high speed camera

61

Figure 4.1: ATIS, Asynchronous Time-based Image Sensor: (a) The ATIS and its
pixel array, made of 304x240 pixels (QVGA). PD1 is the change detector, PD2 is the
grayscale measurement unit. (b) When a contrast change occurs in the visual scene,
the ATIS outputs a change event (ON or OFF) and a grayscale event. (c) The spatio-
temporal space of imaging events: static objects and scene background are acquired
first. Then, dynamic objects trigger pixel-individual, asynchronous gray-level events
after each change. Frames are absent from this acquisition process. Samples of
generated images from the presented spatio-temporal space are shown in the upper
part of the figure. Figure courtesy of [38]

62

Figure 4.2: The beam-splitter setup used to record the new HDR-ERGB dataset.
It combines an event and RGB camera by projecting the scene via a beam-splitter
mirror to both cameras.

which can be quite expensive or settle for discrete keypoint locations in time. Indeed
the position of the keypoint in time would only be measured when a frame from
the standard camera is recorded. Interpolation could be done in between frames
necessitating some tracking and potentially lowering the overall quality of the ground
truth.

4.2.3 Planar Surface

When [73] released their dataset and novel evaluation metric using only planar scene,
we had an idea to generate a very stable ground truth. Indeed when using the Harris
corner detector multiple times for the same corner we can run into two issues. The
first one is that the gray level reconstruction from ATIS is not perfect and noise
can disturb the corner detection leading to instability of the detection in space and
time. The second issue comes from the fact that the Harris corner detector is not
scale invariant and depending on the level of movement towards or away from the
image, Harris corners can be falsely classified as background. Using the fact that
the scene was planar meaning an homography between the first and every image in
the sequence exists we decided to explicit every homography corresponding to the
sequence generation. The first step of the method was to recreate some gray levels
using event integration (the reconstructed gray levels are noisy but this is not an
issue). With the reconstructed gray levels for every timestep needed we are then able
to search for the homography corresponding to the camera movement. Parametric
Image Alignment Using Enhanced Correlation Coefficient Maximization presented
in [33] was used to find the homography. The method can be initialized manually if

63

(a) (b)

Figure 4.3: (a) The gray level with the least noise is used as a comparison to other
gray levels and is warped using an homography to match other gray levels in the
sequence (b) current gray level in the sequence to which the warped gray level ((a))
needs to match. The matching is done using Parametric Image Alignment Using
Enhanced Correlation Coefficient Maximization [33].

needed, in practice we found manual initialization to be unnecessary when the gray
levels did not contain too much noise. We show an example of the warped gray
level corresponding to the current gray level in Figure 4.3. Using the now known
homographies from the sequence we have to choices: either use the Harris corner
detector on the first image of the sequence and reproject the corners to the whole
sequence (i.e. to each subsequent frames using the corresponding homography) or, if
the quality of the detector is not what we wish for, we can manually annotate the
first frame and reproject corners. As the images correspond to events we have now a
continuous set of events and corners to train a neural network or any other learned
method.

4.3 Simulated Data

We also studied the possibility of using simulated data for our keypoint detection
ground truth generation. The main advantage of simulation is having access to un-
limited data both in term of the variability in appearance but also in the type of
noise pattern helping ourselves to be robust to changes in appearance and changes
in the amount and different types of noise. Another advantage of simulation is the
ability to instantly label keypoints with pixel perfect accuracy and perfect time syn-
chronization. The issue with simulated data is the absolute necessity to be as close

64

Figure 4.4: DAVIS Simulator. Per-pixel event generation using piecewise linear time
interpolation of the intensities given by the rendered images. For simplicity, images
were rendered at a fixed rate. Figure courtesy of [80]

as possible to real data. This proves to be very difficult to achieve in practice.
The concept was introduced in [80] where they used the computer graphics soft-

ware Blender to generate thousands of rendered images along a specific trajectory.
The images were generated to always have less than 1/3 of a pixel motion between
consecutive frames. The authors create a Surface of Active Events and use time in-
terpolation of the rendered image intensities to determine brightness changes. This
interpolation removes the need to generate millions of images (up to microsecond-
resolution) yet make it possible to reconstruct a piecewise linear approximation of
the continuous underlying visual signal. The time interpolation approach is illus-
trated in Figure 4.4. The sampling strategy in [80] is uniform and bounded by the
displacement of pixels, while in [89] a novel sampling strategy called the adaptive
sampling strategy is introduced (see Figure 4.5 for comparison with the uniform sam-
pling strategy of [80]). Adapting the sampling rate based on the predicted dynamics
of the visual signal requires tight coupling between the rendering engine and the event
simulator. The sampling can be done based on brightness change or pixel displace-
ment. A second addition of [89] is the non constant contrast threshold. Indeed as
originally observed in [68] the contrast threshold is normally distributed across the
pixel grid. Therefore, at every simulation step the contrast is sampled according to
N (C, σC), where σC controls the amount of noise and can vary. The mean C can
be set independently for the positive (C+) and negative contrast threshold (C−) to
simulate a real event camera more accurately.

Some additional improvement to the simulator have been introduce in [56] such

65

(a) Uniform Sampling [80] (b) adaptive Sampling [89]

Figure 4.5: Comparison of uniform sampling (a) versus adaptive sampling (b). The
timestamps at which brightness samples are extracted are shown on the time axis as
green markers. While both strategies produce similar events when the signal varies
slowly (left part), the uniform sampling strategy fails to faithfully simulate events
in the fast-varying part of the signal. By contrast, the adaptive sampling strategy
extracts more samples in the fast-varying region, thus successfully simulating events.
Figure courtesy of [89].

as finite intensity dependent bandwidth, and intensity-dependent noise. Since the
real DVS pixel bandwidth is proportional to intensity [56] models this effect for each
pixel by making the filter bandwidth (BW) increase monotonically with the intensity
value. To avoid nearly zero bandwidth for small digital number pixels, an additive
constant limits the minimum bandwidth to about 10% of the maximum value. They
add multiple kind of noises:

• Hot pixels pixels who continuously fire events at a high rate even in the absence
of input

• Leak noise events ON events emitted spontaneously called leak events

• Temporal noise To model shot noise they generates ON and OFF temporal
noise events with lower probability in bright parts

On the other hand, [60] simplifies the latency and the noise models. In addition,
to more closely model the behaviour of a real pixel, the readout circuitry is modelled,
as this can strongly affect the time precision of events in complex scenes (shown in
Figure 4.6).

66

Figure 4.6: (A) Main blocks of an imaging system based on a DVS camera simulated
by ESIM, V2E, and ICNS. The Scene and Camera Model are often part of the same
rendering tool, but slow motion interpolation neural networks such as SuperSlomo
can help provide better time precision. The Logarithmic Conversion block encapsu-
lates the conversion of the light into an electrical signal before the Amplifier and the
Thresholds. In the ICNS model, the noise is also injected before the Timestamp block
and the noise distribution is a function of the light level. (B) Events and frames from
the DAVIS and comparison between the original events (C) and the simulated events
(D) using the ICNS model. Figure courtesy of [60].

67

We have decided to base our simulator on [40] and [56]. We kept the correspon-
dence we had using planar scenes between real events and synthesized video to run
our simulator. This made it possible to directly compare the noise levels and dis-
tribution between simulated events and recorded events. We simulated only planar
sequences to be able to use the known homographies for ground truth reprojection
instead of detecting keypoints repeatedly. This is a key part of our data generation
pipeline as it creates a very stable ground truth which is paramount to train the net-
work successfully. Another key advantage of using reprojected ground truth is that it
enables us to use hard negative mining without emphasizing on possible errors in the
ground truth during training. To ensure the most diversity possible in the training
set we used the images from the COCO dataset [70] which is made of 200K images
and more than 1.5 million object instances.

4.4 Conclusion

We have presented in this chapter the general approaches to generate ground truth
to train algorithms for tasks in event-based vision. While using data recorded using
a beam splitter can lead to impressive results [117] we have decided to work with
simulated data for two key reasons:

• The noise modeling is good enough to enable neural network generalisation on
real data when randomly sampling noise parameters of the simulator

• The pixel perfect alignment between events and frames enable us to be very
accurate when generating the data, leading to very accurate predictions

Indeed to achieve similar robustness to noise using a beam splitter we would have
needed to record multiple scenes with multiple sensors with very precise calibration
to ensure pixel perfect alignment. This proves to be both impractical and costly.

We will present in the next chapter how we used our simulator to train a recurrent
convolutional neural network to predict image gradients from events leading to accu-
rate keypoint detection computing the Harris corner score directly on the predicted
gradients.

68

Chapter 5

Detecting Stable Keypoints from
Events through Image Gradient
Prediction

We present in this Chapter our approach of predicting image gradients as an inter-
mediate step for keypoint detection from events. We first introduce our method and
explain the rational behind it in Section 5.1. We present our method in greater details
in Section 5.2 and present our results in Section 5.3 before concluding the chapter in
Section 5.4

5.1 Introduction

Our key observation connects two points: It should be easier to reconstruct the image
gradients rather than the image itself from the events, and the Harris corner detector,
one of the most reliable keypoint detectors for short baseline regular images, depends
on the image gradients, not the image. We therefore introduce a recurrent convo-
lutional neural network to predict image gradients from events. As image gradients
and events are correlated, this prediction task is relatively easy and we can keep this
network very small. We train our network solely on synthetic data. Extracting Harris
corners from these gradients is then very efficient. Moreover, in contrast to learned
methods, we can change the hyperparameters of the detector without retraining. Our
experiments confirm that predicting image gradients rather than images is much more
efficient, and that our approach predicts stable corner points which are easier to track
for a longer time compared to state-of-the-art event-based methods.

69

5.2 Method

Let us consider an event camera of H×W pixels. Let L(x, y, t), be the light intensity
at pixel (x, y) and time t ≥ 0. The pixels in the event camera will not record absolute
intensity, but will send an output event as soon as they detect a big enough change
of L. Formally, given a contrast threshold C, an event ei = (xi, yi, pi, ti) is generated
for pixel (xi, yi) if ����log

�
L(xi, yi, ti)

L(xi, yi, ti−1)

����� ≥ C , (5.1)

where ti−1 is the time of the last event at (xi, yi) and pi, called polarity of the event,
is the sign of the contrast change:

pi = sign

�
log

�
L(xi, yi, ti)

L(xi, yi, ti−1)

��
. (5.2)

Let e = {ei}Ni=1 be a generic sequence of events generated by the camera in time
interval [t1, tN]. Our goal is to find a function F mapping an event sequence e to the
corresponding gradient image G ∈ RH×W×2 at time tN , where G(x, y, tN) is given by

G(x, y, tN) = ∇xyL(x, y, tN)

= (Lx(x, y, tN), Ly(x, y, tN))
⊤ .

(5.3)

For simplicity of notation, we will omit the dependency on tN in the following.
In [100], F is implemented as a model-based filtering method. This approach

has the advantage of being easily interpretable. However, since it is a local method
with a very limited memory mechanism, it can not reach accurate enough results
when applied to noisy real world data. By contrast, we use a recurrent convolutional
neural network which gives better results. The advantage of using a deep learning
approach is that we can directly learn the best function F from the data being robust
to its variability. Moreover, by using ConvLSTM layers [124], our model can handle
long spatio-temporal dependencies on the events.

Once G is computed, it is straightforward to estimate corners locations using
Harris rule. We first compute the structure tensor M as

M = wσ ∗ (G ·G⊤) , (5.4)

where wσ is a Gaussian kernel of standard deviation σ. For each image location, G is
a 2D vector, so M can be seen as a 2× 2 matrix for each image location. Following
Harris detection method, we then compute the score map:

S = det(M)− k · tr(M)2 . (5.5)

70

Corners locations are given by the local maxima of S that are above a given threshold.
Note that we can change hyperparameters σ and k to tune keypoint detection without
having to retrain our network.

In the following, we detail our architecture for F and how we train it.

Skip connection

SE-ResNet connection

Convolutional connection

Recurrent connection

Figure 5.1: Proposed Architecture. Our architecture combines recurrent connec-
tions with convolutional and Squeeze-and-Excite ResNet connections. The input to
the network is given by an event cube E(x, y, t) [130], computed at every N events.
The event cube is given as input to a Squeeze and Excite ResNet connection, followed
by a ConvLSTM with residual connection. This block of two layers is repeated once.
Finally, a simple convolutional layer is used to predict the gradients G(x, y).

Architecture

As mentioned in the previous section, we learn the function F , predicting the im-
age gradients from events, as a recurrent neural network. The architecture we use is
shown in Figure 5.1. It is a 5-layer fully convolutional network of 3× 3 kernels. Each
layer has 12 channels and residual connections [51]. The second and fourth layers
are ConvLSTM, the last layer predicting the gradients is a standard convolutional
layer, while for the remaining feed-forward ones we use Squeeze-Excite (SE) connec-
tions [55]. This results in a very efficient architecture, but still able to learn gradients
from event data. In the following, we describe how we train our network and the
events representation used as input.

Training

For training, we use a subset of the training images in the COCO dataset [70]. As
shown in Figure 5.2 and detailed in the Listing 5.1, for each image, we create a smooth
video sequence from random homographies simulating camera movement in front of
a planar scene and simulate events from said video. We draw the contrast threshold

71

Figure 5.2: Generating Training Data. First row: Given a training image, we
apply homographies to warp it and generate a video sequence. Second row: From
the video sequence we generate events using a simulator and then compute the event
cubes [130] used as input to our network. Third row: Ground-truth gradients of the
video sequence. We train the architecture of Figure 5.1 to predict image gradients
from events. Finally, at inference time, we compute the Harris score from the pre-
dicted gradients.

from a uniform distribution in [0.01, 0.2]. Each image yields a 5000 frame video. Every
5 frames, we generate events with our own simulator, which is based on a combination
of [90] and [27]. From the events, we build an event cube (see Section 5.2) composed
of 5 channels. At each iteration, we use a batch made of 8 different sequences of 20
time bins. The input size is (T,Ba,B,H,W) = (20, 8, 5, 320, 240). For each input
tensor, we have a corresponding image. We use it to compute its spatial gradient using
kornia [97]. Our loss is simply the smooth L1 metric between the spatial gradient
computed using the Sobel kernels and the 2 channels output of our network. We use
truncated-backpropagation-through-time of 20 time steps, detaching the state at each
batch never resetting for each video. We train for 10 epochs with a learning rate of
1e−4.

To generate a smooth video by applying homographies to an initial image, we
generate a number of sine waves with differing periods and phases. We use this signal
as a basis for a random yet continuous translation vector and a rotation vector, from
which we can compute homographies. For completeness, our code is given in the
Listing 5.1.

72

1 import numpy as np
2 import cv2
3

4 DTYPE = np . f l o a t 3 2
5

6

7 de f generate homography (rvec , tvec , nt , depth) :
8 ”””
9 Generates a s i n g l e homography

10

11 Args :
12 rvec (np . array) : r o t a t i on vec to r
13 tvec (np . array) : t r a n s l a t i o n vec to r
14 nt (np . array) : normal to camera
15 depth (f l o a t) : depth to camera
16 ”””
17 R = cv2 . Rodrigues (rvec) [0] .T
18 H = R − np . dot (tvec . reshape (3 , 1) , nt) / depth
19 r e turn H
20

21

22 de f generate image homography (rvec , tvec , nt , depth , K, Kinv) :
23 ”””
24 Generates a s i n g l e image homography
25

26 Args :
27 rvec (np . array) : r o t a t i on vec to r
28 tvec (np . array) : t r a n s l a t i o n vec to r
29 nt (np . array) : normal to camera
30 depth (f l o a t) : depth
31 K (np . array) : i n t r i s i c matrix
32 Kinv (np . array) : i n v e r s e i n t r i n s i c matrix
33 ”””
34 H = generate homography (rvec , tvec , nt , depth)
35 G = np . dot (K, np . dot (H, Kinv))
36 G /= G[2 , 2]
37 r e turn G
38

39 de f g ene ra t e smooth s i gna l (num signals , num samples ,
40 min speed=1e−4, max speed=1e−1) :
41 ”””
42 Generates a smooth s i g n a l

73

43

44 Args :
45 num signa ls (i n t) : number o f s i g n a l s to generate
46 num samples (i n t) : l ength o f mul t id imens iona l s i g n a l
47 min speed (f l o a t) : minimum rat e o f change
48 max speed (f l o a t) : maximum rat e o f change
49 ”””
50 t = np . l i n s p a c e (0 , num samples − 1 , num samples)
51

52 num bases = 10
53 samples = 0 ∗ t
54 samples = samples [None , :] . r epeat (num signals , 0)
55 f o r i in range (num bases) :
56 speed =
57 np . random . uniform (min speed ,
58 max speed ,
59 (num signals ,)) [: , None]
60 phase = np . random . uniform (np . pi , 10 ∗ np . p i)
61 t e s t = np . s i n ((speed ∗ t [None , :]) + phase)
62 samples += t e s t / num bases
63

64 # f i n a l
65 speed =
66 np . random . uniform (min speed ,
67 max speed ,
68 (num signals ,)) [: , None]
69 t e s t = np . s i n ((speed ∗ t [None , :]))
70 t e s t = (t e s t + 1) / 2
71 samples ∗= t e s t
72 r e turn samples . astype (DTYPE)
73

74

75 max frames = 100 # number o f homographies needed
76 s i g n a l = gene ra t e smooth s i gna l (6 , max frames) .T
77 rvec s = s i g n a l [: , : 3]
78 tvec s = s i g n a l [: , 3 :]
79 nt = np . array ([0 , 0 , 1] , dtype=DTYPE) . reshape (1 , 3)
80 depth = np . random . uniform (1 . 0 , 2 . 0)
81 K = np . array (
82 [[width / 2 , 0 , width / 2] ,
83 [0 , he ight / 2 , he ight / 2] ,
84 [0 , 0 , 1]] ,

74

Input Event Cube Ground-truth Image Gradients Predicted Image Gradients

Figure 5.3: Predicting Image Gradients. Events from a camera are directly
correlated to the spatio-temporal gradients of the scene. For this reason, in our
method, we train a small neural network to predict image gradients from events. The
gradients can be directly used to estimate corner locations using the Harris rule.

85 dtype=DTYPE,
86)
87 Kinv = np . l i n a l g . inv (K)
88

89 f o r f rame index in range (max frame) :
90 rvec , tvec = rvec s [f rame index] , tvec [f rame index]
91 homography = generate image homography (rvec , tvec , nt ,
92 depth , K, Kinv)

Listing 5.1: Random Homography Generation

Inference

At inference, we build an event cube (see Section 5.2) and feed it to our network. The
event cube depends on a hyperparameter N (the length of the sequence of events used
to predict the image gradients), if it is large the quality of the tracks will improve,
but the network might be a bottleneck. The network outputs a prediction of the
image gradients. In practice, we notice that some values are erroneously large, and

75

we clamp all values exceeding 3 times the standard deviation of the output values.
Then, we compute the Harris score as given in Eq. (5.5) using the kornia [97] im-
plementation. We simply extract the local maxima of this score map as keypoints.
Example of predicted gradients and corresponding events and ground-truth are shown
in Figure 5.3.

Input Representation

The input to our network is a H×W ×B event tensor E(x, y, t), as proposed in [130].
H, W are the image sensor height and width respectively and B is the number
of temporal bins. In the event tensor computation, each input event (xi, yi, ti, pi)
contributes by its polarity to the two closest temporal bins using a triangular kernel.
More formally, E is computed as

E(x, y, tn) =
X

i

pi max(0, 1− |tn − t⋆i |) , (5.6)

with

t⋆i =
(ti − tmin)

(tmax − tmin)
(B − 1) , (5.7)

and where n is the temporal bin index, pi is the polarity, and t⋆i is the normalized
timestamp of the ith event. In practice, we use B = 5.

At runtime, we select the N latest events to create the event cube. Running by
N events enables us to follow the rate of the event stream naturally and avoid useless
computation when there are no new incoming events.

5.3 Results

Quantitative Results

For evaluating our method, we consider the ATIS Corner Dataset [73], which is specif-
ically designed to evaluate event-based corner detection and tracking methods. This
dataset is composed of 7 sequences of planar scenes acquired with a HVGA event
sensor. We use the same evaluation metrics as in [73], that is we compute reprojec-
tion error by estimating a homography form the tracked corners. As in [73], we also
consider average track length.

For tracking, we use a very simple nearest neighbor rule: Two corners are assigned
to the same track if their distance in pixel and in timestamp is lower than a threshold.

The results are shown in Table 5.1. As can be seen, our method has the best
tracking length, almost 5 times longer than the second best method [73]. This is

76

Figure 5.4: Qualitative Results on the ATIS Corner Dataset. First row:
Gradients predicted by our network, with overlaid tracks returned by our method.
Second row: Results obtained by replacing our network by the method of [100], which
predicts gradients from events by using a model-based approach. As we can see, our
gradients are better localized. Moreover, thanks to the recurrent layers of the network,
we do not have a trailing effect on the gradients. As a consequence, we can track
more corner points, more accurately.

Figure 5.5: Qualitative comparison to previous state-of-the-art methods.
First row: we visually compare our method with the previous state-of-the art SILC
[73]. Second row: Our method is compared to evFast method [78]. Here we visualize
the events with different polarities for an easier comparison but our method still
computes corners on the predicted gradients (best seen in electronic format).

77

Table 5.1: Evaluation on the ATIS Corner Dataset [73] for ∆t = 25ms. Our method
has 5 times longer tracks, while maintaining similar reprojection error as the state-
of-the-art.

evHarris evFast Arc SILC∗ Ours
[120] [78] [7] [73]

Reprj. error (pix) 2.57 2.12 3.8 2.45 2.56
Track length (sec) 0.74 0.69 0.91 1.12 5.46

thanks to the memory of the recurrent layers which can stabilize the detection and
also to the robustness of the Harris detector.

Our method has slightly worse reprojection error. This is probably due to the
smoothing effect introduced by the network on the predicted gradients. The other
methods suffer less from this problem, since they operate event by event.

Qualitative Results

Figure 5.3 compares ground truth gradients with gradients predicted by our architec-
ture, and shows the predicted gradients are very similar to the real ones.

Figure 5.4 compares Harris keypoints extracted using gradients predicted with
our recurrent architecture and Harris keypoints extracted using gradients estimated
by the handcrafted method [100]. Only the gradient computation is different, all
the other computations are the identical. Our method predicts much more accurate
gradients, yielding much more stable keypoints.

Figure 5.5 shows a visual comparison of our method with previous state-of-the
art. Our stable gradient prediction enables the corner tracks to be longer and more
accurate than other methods.

Computation Times and Memory Footprint

Our network has less than 26K parameters and runs in 7ms on a GTX 1080 GPU,
for a HVGA input event sensor. For comparison, the network of [92] reconstructing
graylevel intensities runs in 35ms and has more than 5.1M parameters. This low
footprint enables fast computation of corners and makes our approach suitable for
real-time applications.

78

5.4 Conclusion

We have seen in this Chapter how image gradients can efficiently be used as an
intermediate representation between events and keypoints. The direct computation
of image gradients from events is too noisy and does not enable accurate keypoint
detection. This has justified our choice to use a small recurrent convolutional neural
network to predict image gradients from the stream of events. The predicted gradients
contain less noise and are more consistent through time helping with the accuracy and
the track lifetime. However we would like to avoid the intermediate representation to
limit computations as well as remove scale dependence of keypoint detection inherent
to the Harris corner detection operator.

79

Chapter 6

Long-Lived Accurate Keypoints in
Event Streams

80

(a) eHarris (b) Ours

(c) (d)

Figure 6.1: (a-b) Using our keypoint detection method on a real event streams of a
3D scene, we obtain tracks that are significantly longer than with previous methods.
(c) Our tracks for the beginning of the Guernica sequence from the HVGA ATIS
Corner dataset [73]. (d) We compare our method to Arc [4], eHarris [119], SILC [73],
eFast [77], and the Gradients-based method seen in Chapter 5. Our detector predicts
well-localized keypoints that can be tracked with a simple nearest-neighbor matching
algorithm to obtain very long tracks. It nearly triples the track lifetime of the previous
best method while reducing the reprojection error by more than 1 pixel.

This chapter will be sectioned as follow: we introduce the modifications to the
keypoint detection pipeline in Section 6.1, we present our method in greater details
in Section 6.2 and our experiments in Section 6.3. Section 6.4 is the section in which
we present our conclusion regarding this novel approach.

6.1 Introduction

As shown in Figure 6.1, we propose a novel event-based keypoint detector that sig-
nificantly outperforms previous methods, in terms of stability as it provides much
longer tracks, and accuracy as the keypoints are much better localized.

Our detector is based on a deep recurrent architecture. A first simple but critical

81

contribution is how we generate training data: We generate video sequences of
bitmap frames by applying homographies to images from the COCO dataset [70].
We transform these video sequences into event streams using an event-based camera
simulator. To obtain keypoint location labels, we run the Harris corner detector [50]
on the original image from COCO. We warp these locations using the homographies
to obtain the keypoint locations over time. This generates much more stable labels
than, for example, running the Harris detector on all the frames of the sequences.

While this procedure is simple, this results in keypoint detections that are much
more consistent over time than for previous methods. We link these detections us-
ing a simple nearest-neighbor matching procedure into tracks. This results in very
long keypoint tracks, which are very important for many applications such as object
tracking or Structure-from-Motion. This also provides very accurate locations.

We train our architecture on synthetic planar scenes (since we use homographies),
but it generalizes well on real data captured from 3D scenes, which we show by
evaluating on both the HVGA ATIS Corner and The Event-Camera Dataset and
Simulator real datasets [81] (cf. Figure 6.1). Generalization of keypoints trained
on planar scenes to 3D scenes was observed before for bitmap frames, for example
in [29], while generalization of networks trained on synthetic data and evaluated on
real events was demonstrated in [92, 102].

We also observed all previous event-based keypoint detection methods integrate
events over a period of time in a 2D buffer. This integration period is required to
gather enough information from the events, and compensates for noise. While this
integration period is required, all previous methods for keypoint detection for event-
based cameras still provide a single image location for each keypoint detected for this
period. This is probably only because of the legacy of keypoint detection methods
for bitmap images, in which it is assumed that the image information is captured
instantly.

Instead, as our second contribution, we predict multiple successive locations
rather for a single integration period. This is illustrated in Figure 6.2: We
predict a series of successive heatmaps for the entire frame. The local maxima of the
heatmaps give us the predicted keypoint locations. Predicting multiple heatmaps lets
us handle different numbers of keypoints and the fact that keypoints can appear or
disappear during the integration period. Because the predicted locations are spaced
out by a very fine time step, we significantly improve the accuracy of our predictions.

An alternative would be to predict a single location per keypoint, but for many
overlapping integration periods. However, this would result in significantly increased
computation times. By contrast, our approach is very light and has a computational
cost similar to previous methods.

Beyond keypoint detection, we believe that our first observation—predicting mul-
tiple successive estimates for the integration period rather than a single one—can be

82

(a) (b) (c) (d) (e)

Figure 6.2: Different keypoint location prediction strategies. (a) Buffer
of accumulated events around a keypoint over a short period of time (20ms). The
keypoint is spread over several image locations. (b-d) Some of the possible locations
for the keypoint, if one sticks to a single location for the buffer. (e) Instead, we
predict multiple heatmaps each corresponding to a point in time (shown here with
a gradient in color). This makes linking detections from several time periods much
more reliable, and results in much longer keypoint tracks.

applied to other event-based camera tasks such as segment detection, depth predic-
tion and object detection to improve their accuracy. Thus, we hope our work will
encourage other researchers to explore this direction.

6.2 Method

Figure 6.3 summarizes our inference pipeline: Our detector integrates the events
sent by the camera over a time period into an ‘event cube’, and outputs a series of
heatmaps for this time period. We detail below how we construct this event cube in
practice, the nature of the heatmaps, the architecture we use, and how we generate
our training data.

6.2.1 Input Event Representation

The input to our detector is a H×W ×B event tensor E(x, y, t), where H, W are the
image sensor height and width respectively and B is the number of temporal bins. In
practice, we use B = 10. We use the method first proposed in [130] and describe it
briefly below for completeness.

Each input event (xi, yi, ti, pi) received during the integration period ∆T con-
tributes to E by its polarity pi to the two closest temporal bins using a triangular
kernel. Formally, E is computed as

E(x, y, t) =
X

i

pi max(0, 1− |t− t⋆i |) , (6.1)

83

Figure 6.3: Overview of our inference pipeline. An event cube is built from the
input events and fed to a recurrent neural network. We keep the architecture simple
and efficient. We use the one introduced in Chapter 5. More precisely, the event cube
is given as input to a Squeeze-and-Excite ResNet block, followed by a ConvLSTM
with residual connection. This block of two layers is repeated once. Finally, a simple
convolutional layer predicts the keypoints as a sequence of NH heatmaps.

for all image locations x, y and all temporal bins t. The sum is over all the events
such that xi = x and yi = y. t⋆i is the normalized timestamp of the ith event:

t⋆i =
(ti − tmin)

∆T
(B − 1) , (6.2)

where tmin is the time at the beginning of the integration period.

6.2.2 Predicting Heatmaps

From the event cube, our detector predicts a set of heatmaps. Heatmaps are con-
venient to predict the keypoints’ locations as the number of keypoints varies over
time. In addition, predicting a dense tensor from a dense input like the event cube is
standard and straightforward.

The local maxima of the heatmaps are expected to correspond the keypoints’
locations. To do so, we rely on the cross-entropy between the predicted heatmaps

84

Figure 6.4: Generating training data. Similarly to Chapter 5, given a still image,
we apply homographies to warp it and generate a video sequence. However, by
contrast with Chapter 5, we use the same homographies to warp the heatmap of
Harris’ corner of the still image to have a perfect match between the video frames
and the corners. From the video sequence we then generate events using a simulator
and then compute the event cubes [130] used as input to our network.

and the labelled locations for the keypoints:

L =
X

h∈[1;NH]

X

(x,y)

BCE(Hh(x, y), bHh(x, y)) . (6.3)

The first sum is over the NH predicted heatmaps, in practice we use NH = 10. The
second sum is over the image locations (x, y). BCE denotes the binary cross-entropy.

The bHh’s are labelled binary heatmaps for a given event cube: A location in bHh is
set to 1 if there is a keypoint at this location at time step [tmin+(h−1)/NH×∆T, tmin+
(h)/NH ×∆T [and set to 0 otherwise. The Hh’s are the predicted heatmaps for the
event cube. We guarantee that their values remain between 0 and 1 by applying the
logistic function on the last layer of our architecture. A similar loss function was used
in [42] for example. It encourages the local maxima with large values in the predicted
heatmaps to correspond to the locations of the keypoints.

85

6.2.3 Creating Training Data

Our procedure to generate training data is illustrated in Figure 6.4. We generate
synthetic videos by applying homographies to grayscale images, and convert them
into event streams using a simulator. The keypoint labels are obtained using the
Harris detector for grayscale images. We detail this procedure below.

From an image to a video. More precisely, to generate a synthetic video, we
select an image from the COCO dataset [70] at random. We apply the Harris corner
detector to this image to obtain a set of keypoints. Then, as shown in Figure 6.4,
we create a smooth video from homographies varying randomly to simulate complex
camera motions in front of a planar scene.

To do so, we first generate a number of sine waves with differing periods and
phases. We use this signal as a basis for a random yet continuous translation vector
and a rotation vector. By combining the translation and rotation vectors with a
random depth, we can obtain a homography matrix. By applying these homographies
to the image, we obtain a smooth yet random video. More details are given in the
Listing 5.1. We generate a homography and thus a video frame every∆T/NH seconds,
where ∆T is the integration period, and NH the number of predicted heatmaps for
this period.

From the video to the event stream. To generate events from the synthetic
video, we apply our home-brewed simulator, which is mostly a combination of [90]
and [27]. This simulator computes the difference between consecutive frames after
applying a logarithm to the pixel intensities. It then generates events when the ON-
or-OFF threshold is crossed by the log-difference, if the distance in time since the
last event is greater than a hyperparameter for the refractory period. Multiple noise
patterns are also added including random events firing, events firing multiple times
and certain events always ON or OFF. The internal parameters of the simulator which
define the noise are randomly selected for each video. This finally gives us a stream
of events {(xi, yi, ti, pi)}i, from which we can build the event cubes.

Generating the keypoint labels. We simply apply the homographies already
used to generate the video frames to the keypoint locations in the COCO images.
From this, we can generate the bHh heatmaps needed to compute the loss function.
The ablation study in Table 6.3 shows the beneficial influence of warping the keypoints
locations as opposed to detecting them independently.

86

6.2.4 Training Details

We notice it is important to use hard negative mining during training. This is not sur-
prising because of the imbalance between keypoint and non-keypoint pixels: Without
mining, the network converges to the trivial solution of never predicting any keypoint,
as this corresponds to a low value for the loss already.

At each iteration of the optimization, we select a labelled heatmap bHh, and build a
temporally consistent batch that mixes keypoint and hard non-keypoint pixels. This
batch is made of all the positive locations in bHh, i.e. the (x, y) such that bHh(x, y) = 1
and the negative locations (x, y) for which the current predicted value Hh(x, y) is
particularly wrong. More exactly, we use negative locations such that Hh(x, y) > τ
with threshold τ selected such that the number of negative locations in the batch is
three times the number of positive locations.

We also use truncated-backpropagation-through-time of 10 time steps, detaching
the state at each batch and never resetting for each video. We train for 30 epochs
with a learning rate of 1e−4.

6.2.5 Inference and Tracking

At inference, we create the event cubes from incoming events over time periods. To
define the time period, we use either a fixed time delta, or a fixed number of events.
We apply our network to each event cube once it is built. We obtain NH heatmaps
Hh, to which we apply a local non-maximum suppression for every patch of 7 × 7
pixels and keep every local maximum over a threshold τkeypoint = 0.3 to be classified
as a keypoint.

To obtain tracks, we rely on a simple nearest neighbor tracking algorithm: For each
heatmap successively and for each keypoint in this heatmap, we look for a neighbor
in a small region (we consider a 9× 9 region) and a short time period in the past (we
consider a 7ms period). If a neighbor keypoint is found (closest in space within the
7ms period), we associate the new keypoint to its track. If more than one neighbor
keypoint are found, we consider the closest one only. If we do not find any neighbor,
we start a new track with the new keypoint.

6.2.6 Architecture

We use a very shallow recurrent neural network to predict heatmaps {Hh}h from
an event cube. Thanks to this simplicity, inference is very fast. We rely on an
architecture similar to the one presented in Chapter 5 with the exception that we
predict multiple heatmaps instead of two gradient maps as it was previously done.
This architecture is shown in Figure 6.3, and we describe it here for completeness.

87

Figure 6.5: Predicting keypoints. When events are integrated over a long time
window, edges become thick and accurate keypoint localization becomes challenging.
We therefore predict the keypoint’s spatial position for multiple time steps. The color
gradient from yellow to red represents the time from past to present. Our network
is able to predict precise keypoint locations at every time step. We then link these
keypoint locations into trajectories using a simple nearest neighbor tracker. (Best
seen in colour).

Also note that in Chapter 5 we still needed to compute the Harris score from the
predicted gradients, while in this Chapter we directly predict keypoint heatmaps as
output of the network.

Our architecture is a 5-layer fully convolutional network of 3 × 3 kernels. Each
layer has 12 channels and residual connections [51]. The second and fourth layers are
ConvLSTMs. The last layer, which predicts the heatmaps, is a standard convolutional
layer, while the remaining feed-forward ones are Squeeze-Excite (SE) connections [55].

6.3 Experiments

In this section, we report our experimental comparison with previous event-based
keypoint detectors on recorded data, and an ablation study on the different aspects
of our detector. We first introduce the baseline, the datasets and metrics we consider,
and then report the results of our experiments.

6.3.1 Baseline, Datasets and Metrics

We used eHarris [119] as baseline for our experiments. Their approach has proven to
be very accurate and very easy to implement. The combination of the efficiency and
ease of execution make it the perfect baseline. We demonstrate with our experiments
that our approach surpasses the baseline by a large margin.
We first consider the HVGA ATIS Corner dataset [73], which was created to evalu-

88

NH
δt-reprojection Error (pixels)

Track Lifetime (s)
δt = 25 50 100 150 200

1 1.47 1.62 1.91 1.95 2.62 15.63
2 1.27 1.47 1.66 1.81 2.06 16.70
3 1.25 1.32 1.60 1.67 1.79 16.44
5 1.26 1.31 1.47 1.82 1.85 16.14
10 1.18 1.28 1.45 1.63 1.84 15.7
12 1.15 1.24 1.35 1.53 1.68 15.4

Table 6.1: Influence of NH , the number of predicted heatmaps. NH = 1
corresponds to the standard approach with a single prediction for the integration
period. While NH = 1 already performs well thanks to our training procedure,
increasing NH consistently improves accuracy. Here, we use ∆T = 5ms.

ate event-based keypoint detectors. It consists of seven real sequences with varying
degrees of texture from a standard checkerboard to a complex natural image. These
sequences were captured using an event camera (ATIS sensor) with a resolution of
480× 360 pixels. It only contains recordings of planar patterns.

Following the evaluation protocol of [73], we consider the following metrics:

• the δt-homography reprojection error erδt, which depends on a time parameter
δt:

erδt =
1

NK

X

t

X

k

∥W t+δt
t (Kt,k)−Kt+δt,k∥ , (6.4)

where Kt,k is a detected keypoint at time t, and Kt+δt,k is the location of the
keypoint at time t+ δt that belongs to the same track as keypoint Kt,k. If the
track of Kt,k ends before t+ δt, it is ignored in the sum. W t+δt

t is the estimated
homography (using Kt,k and Kt+δt,k) that warps the view of the planar scene at
time t to the one at time t+ δt. NK is the total number of terms in the sums,
to compute the average of the distances.

• the average track lifetime of the longest 100 tracks over each of the seven se-
quence.

We also evaluated our detector on The Event-Camera Dataset and Simulator [81].
The dataset is composed of multiple scenes with a variety of shapes and textures.
Some scenes capture 3D and/or dynamic environments. This makes the computation
of the homography reprojection error metric unfeasible. We therefore followed a
similar protocol to [43] for evaluation: We run the event-to-video model from [92]

89

Figure 6.6: Ground truth inconsistencies for the Event-Camera Dataset [81].
Ground truth keypoint locations for this dataset are sometimes quite inconsistent,
making the comparison of methods on this data challenging. (Best seen in colour)

90

Integration Period ∆T
δt-reprojection Error (pixels)

Track Lifetime (s)
δt = 25 50 100 150 200

2.5ms 1.19 1.33 1.72 2.15 3.11 12.8
5ms 1.18 1.28 1.45 1.63 1.84 15.7
7.5ms 1.31 1.37 1.52 1.52 1.54 15.8
10ms 1.39 1.50 1.51 1.55 1.56 14.8
25ms 1.46 1.50 1.62 1.98 2.86 11.7
50 ms - 1.92 2.28 3.32 3.81 10.8

Table 6.2: Influence of ∆T , the length of integration period. We use ∆T =
5ms in all the other experiments.

to recreate frames from events and extract Harris corners on said frames to create
groundtruth. However, as shown in Figure 6.6, the groundtruth is inaccurate and
unstable over time. Another flaw of this evaluation criterion is a positive bias towards
keypoints detectors relying on Harris corners. Nonetheless, for completeness, we
provide an evaluation following this protocol for comparison with earlier methods as
it was used in previous papers.

On this dataset, to be able to compare with already published results, we report
Prel and Rrel, respectively the precision and recall relative to eHarris (Prel = P/PHarris

and Rrel = R/RHarris). As in [43] results are computed on the sequences boxes 6dof,
dynamic 6dof, poster 6dof and shapes 6dof.

6.3.2 Ablation Study

Predicting a single heatmap vs multiple heatmaps (the influence of NH).
We evaluated the performance of our detector on the HVGA ATIS Corner Dataset
when varying NH , the number of predicted heatmaps. Setting NH = 1 allows us to
also evaluate the influence of predicting multiple heatmaps compared to a single one,
as it is more traditionally done.

Table 6.1 reports the results. Predicting a single heatmap already performs well
thanks to our training data. However, accuracy keeps improving when NH increases.
As computation time also increases with NH , there is still a balance to find. We chose
NH = 10 for all the other experiments reported in this paper.

Influence of ∆T , the length of integration period. Our network is dependent
on the integration period. Table 6.2 reports the δt-reprojection error and the track
liftetime metric for various values of ∆T . Reducing ∆T too much reduces the per-
formance as not enough events are given as inputs, which puts too much strain on

91

Generation of Training Data
δt-reprojection Error (pixels)

Track Lifetime (s)
δt = 25 50 100 150 200

Detecting Corners 1.34 1.59 1.99 2.19 2.31 2.4
Warping Corners 1.18 1.28 1.45 1.63 1.84 15.7

Table 6.3: Evaluation of two strategies for generating training data: detect-
ing or warping keypoints. We compare two networks: Detecting Corners cor-
responds to a network trained with keypoints detected independently in each frame;
Warping Corners corresponds to training with keypoints detected in the reference
frame and then warped using the simulated homographies.

the memory of such a small network. On the other hand, setting ∆T too high also
reduces the precision of the predictions. A good trade-off is ∆t = 5ms, and it is the
value we used for all other experiments.

Influence of the strategy for generating training data. In Table 6.3, we eval-
uate the strategy to generate keypoint labels described at the end of Section 6.2.3,
where we detect a first set of keypoints in the initial grayscale image using Harris
and warp their locations in the other images using the homographies already used to
generate the video frames. It is compared with a more commonly approach where
the keypoints are redetected in each frame independently. Generating training labels
by warping results in a significantly more stable detector.

6.3.3 Comparison to the State-of-the-Art

We compare ourselves to [4, 43, 73, 77, 119] and our previously mentioned approach
using image gradients, on two real event-based datasets.

Table 6.4 reports the comparison results, using the same tracking algorithm for
all methods, on the HVGA ATIS Corner Dataset. Our detector is able to beat previ-
ous methods both in terms of accuracy as given by the δt-homography reprojection
error and of track lifetime metrics. When comparing this novel approach to the one
presented in Chapter 5, predicting image gradients first followed by a corner score
computation, we can clearly see the benefit of predicting keypoints directly. Remov-
ing the intermediate representation improves accuracy as well as temporal coherence
(measured with the track lifetime metric). Moreover, Figure 6.7 provides visual com-
parisons of the track lengths for these methods.

Table 6.5 reports the comparison results on The Event-Camera Dataset. While,
as discussed at the beginning of this section, the results can be considered as biased,
they show that our detector performs well on this other dataset captured with a

92

Method
δt-reprojection Error (pixels)

Track Lifetime (s)
δt = 25 50 100 150 200

eHarris [119] 2.57 3.46 4.58 5.37 6.06 0.74
eFast [77] 2.12 2.63 3.18 3.57 3.82 0.69
Arc [4] 3.80 5.31 7.22 8.48 9.49 0.91

SILC [73] 2.45 3.02 3.68 4.13 4.42 1.12
gradients 5 2.46 4.26 7.25 11.98 8.89 5.46

ours 1.18 1.28 1.45 1.63 1.84 15.7

Table 6.4: Evaluation on the HVGA ATIS Corner Dataset. Our detector
outperforms all previous methods in terms of δt-homography reprojection error for
various δt, and of track lifetime metric. We nearly reduce by half the reprojection
error while at the same time triple the tracks lifetime.

Method Prel Rrel

eHarris [119] 1 1
eFast [77] 0.68 0.55
Arc [4] 0.84 0.59

luvHarris [43] 0.86 0.97
ours 1.03 2.17

Table 6.5: Evaluation on The Event-Camera Dataset. The dataset was captured
with a different sensor than the HVGA ATIS Corner dataset, nevertheless our detector
also outperforms earlier work. Following the protocol of [43], we report Prel and Rrel,
the precision and recall relative to eHarris (Prel = P/PHarris and Rrel = R/RHarris).

different sensor.

6.3.4 Qualitative results

Figure 6.5 shows how our network is able to predict heatmaps through time which are
coherent with one another. The keypoint is correctly predicted at multiple locations
for the same volumetric input despite long accumulation time which make the edges
become thicker. Keypoint are correctly detected for easy corners on the left as well
as more textured keypoint. The consistency through time is a great advantage of
our method and make it possible to track corners using a simple nearest neighbor
algorithm.
Similarly, Figure 6.7 demonstrate the homogeneous spatial distribution of our key-

93

eHarris eFast Arc luvHarris Ours

Figure 6.7: Visual comparisons of tracks obtained by different methods on
the HVGA ATIS Corner Dataset. The tracks obtained with our detector are
significantly longer.

94

points which create very long and smooth tracks. Our method helps with tracks
continuity, they are seldomly lost or broken which is not the case for other methods
such as eHarris, eFast, Arc or even luvHarris.

6.3.5 Computation Times and Memory Footprint

The network used in Chapter 5 has only been changed to ouptut more than two
channels. The small number of parameters (27.5k) and minimal runtime (7ms on
a GTX 1080 GPU for a HVGA input event sensor) make it the ideal candidate for
real-time applications. The overall approach is very lightweight: The event cute have
a low footprint, the network size is minimal and no post processing is needed for
keypoint detection other than a non-maximal suppression. Our detector offers the
possibility to reduce even more computations by augmenting the integration period
and the number of predicted heatmaps at the cost of only minimal latency if needed.

6.4 Conclusion

We have explained in this Chapter how we train a neural network to predict keypoints
directly from an event cube without using an intermediate representation, such as the
image gradients. Bypassing the intermediate representation speeds up the process
as computing the Harris score becomes unnecessary. The prediction of a volume,
through the prediction of multiple heatmaps, instead of predicting keypoints for a
single timestamp, is another way to decrease computational needs while at the same
time improving the accuracy of the keypoints. We manage to reach an accuracy in
the range of the pixel for the reprojection error which is very precise and will enable
future applications such as SLAM.

95

Chapter 7

Conclusion

96

To conclude our work we will discuss in this chapter the overall contributions of
our work in Section 7.1, the impact it had in Section 7.2 and the potential future
work directions in Section 7.3.

7.1 Contributions

The main objective of our work was to create a keypoint detection algorithm for event
based sensors as computationally efficient as possible. The perfect keypoint detector
is fast yet robust. Our first work used gradient prediction as a intermediate step
between events and keypoints. In our second work we have removed this intermediate
step and predicted keypoints directly. We have also introduced multiple predictions
in time for keypoints, improving significantly the precision of keypoints in space and
lowering the frequency of inference needed for a similar precision.

7.1.1 Detecting Stable Keypoints from Events through Im-
age Gradient Prediction

In this paper the main contribution is to use the image gradients as a bridge be-
tween events and keypoints. The network used is very lightweight and enables very
fast gradient predictions. The computation of the Harris score efficiently gives the
classification of events as keypoints. The network was trained using a simulator to
benefit from pixel perfect alignment and robustness to noise. The approach became
the novel state-of-the-art in the field both in terms of keypoint precision and keypoints
robustness (stability through time).

7.1.2 Long-Lived Accurate Keypoints in Event Streams

In this work we were able to bypass the intermediate representation of the image
gradients to directly predict keypoints locations as heatmaps. We improved the ro-
bustness of the predictions and the track lifetime by reprojecting the keypoints during
the generation of the ground truth. The good quality of the ground truth also enabled
us to use hard negative mining during training helping with the imbalance between
positive and negative classification of keypoints. The accuracy of the prediction was
greatly improved by predicting multiple heatmaps instead of a unique one. This also
made it possible to augment the time between inference and reduce the computational
needs of the method.

We have released the code needed to train and validate the keypoint detection algo-
rithm for event cameras here https://www.prophesee.ai/metavision-intelligence/.
The code can be downloaded along with trained models.

97

7.2 Impact

The use of gradient as an in-between representation between events and images can
be found in [52]. The authors compute the gradients of images and collect polarities
pixelwise to produce a brightness increment image. They then proceed to compare
both representations as part of their Direct Sparse Odometry pipeline.
The code has been publicly released for our the state-of-the-art keypoint detection
algorithm and is now available to everyone. It will also be used internally for multiple
projects at Prophesee.

7.3 Future work

Our work has been focused on keypoint detection i.e. classification of pixels as key-
points. The tracking has always been done with a simple nearest neighbor algorithm
proving the robustness of our method and taking advantage of the very high temporal
resolution of event sensors.

This approach has however some limitations, especially when considering loop
closing in a SLAM or odometry setting. It is also an issue when trying to do some
matching or relocalisation. This fallout can be avoided by computing some descriptors
per pixel as is done in many other papers such as [29] (illustrated in Figure 7.1). The
easiest way to compute descriptors would be to add a descriptor head to our network
and introduce a descriptor loss. We could use the known homographies to train our
descriptor head as was done in [29] using a hinge loss. The learning would also need to
be balanced between detecting and describing keypoints. This addition would increase
the computational needs of the method but would enable many other applications for
the keypoint detection algorithm. This would also help to make the algorithm even
more robust as we could use the descriptors to link feature tracks together instead of
creating a novel track when some discontinuity or discrepancies arise.

98

Figure 7.1: A simple way to add descriptors to a neural network is to add a description
head in addition to the head for classification. Figure courtesy of [29]

99

Bibliography

[1] Prophesee evaluation kits. https://www.prophesee.ai/event-based-evk/

[2] Insightness event-based sensor modules. http://www.insightness.com/

technology/ (2020)

[3] Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building rome in a day.
In: 2009 IEEE 12th International Conference on Computer Vision. pp. 72–79 (2009).
https://doi.org/10.1109/ICCV.2009.5459148

[4] Alzugaray, I., Chli, M.: Asynchronous corner detection and tracking for event cameras
in real time. IEEE Robotics and Automation Letters 3(4), 3177–3184 (2018)

[5] Alzugaray, I.: Event-driven Feature Detection and Tracking for Visual SLAM. Ph.D.
thesis, ETH Zurich, Zurich (2022). https://doi.org/10.3929/ethz-b-000541700

[6] Alzugaray, I., Chli, M.: Asynchronous Corner Detection and Tracking for Event Cam-
eras in Real Time. IEEE Robotics and Automation Letters (2018)

[7] Alzugaray, I., Chli, M.: Asynchronous Corner Detection and Tracking for Event Cam-
eras in Real Time. IEEE Robotics and Automation Letters (2018)

[8] Arnaud, É., Delponte, E., Odone, F., Verri, A.: Trains of keypoints for 3d object
recognition. In: International Conference on Pattern Recognition. Honk Kong, Hong
Kong SAR China (2006), https://hal.inria.fr/inria-00306707

[9] Baldwin, R.W., Almatrafi, M., Kaufman, J.R., Asari, V., Hirakawa, K.: Inceptive
event time-surfaces for object classification using neuromorphic cameras. In: Karray,
F., Campilho, A., Yu, A. (eds.) Image Analysis and Recognition. Springer Interna-
tional Publishing (2019)

[10] Ballas, N., Yao, L., Pal, C., Courville, A.C.: Delving deeper into convolutional net-
works for learning video representations. In: Bengio, Y., LeCun, Y. (eds.) 4th In-
ternational Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings (2016), http://arxiv.org/abs/
1511.06432

100

[11] Bardow, P., Davison, A.J., Leutenegger, S.: Simultaneous optical flow
and intensity estimation from an event camera. In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 884–892 (2016).
https://doi.org/10.1109/CVPR.2016.102

[12] Barua, S., Miyatani, Y., Veeraraghavan, A.: Direct face detection and
video reconstruction from event cameras. In: 2016 IEEE Winter Con-
ference on Applications of Computer Vision (WACV). pp. 1–9 (2016).
https://doi.org/10.1109/WACV.2016.7477561

[13] Benosman, R., Ieng, S.H., Clercq, C., Bartolozzi, C., Srinivasan, M.: Asyn-
chronous frameless event-based optical flow. Neural networks : the official
journal of the International Neural Network Society 27, 32–7 (11 2011).
https://doi.org/10.1016/j.neunet.2011.11.001

[14] Blum, H., Dietmüller, A., Milde, M.B., Conradt, J., Indiveri, G., Sandamirskaya,
Y.: A neuromorphic controller for a robotic vehicle equipped with a dynamic vision
sensor. In: Robotics: Science and Systems (2017)

[15] Brandli, C., Berner, R., Yang, M., Liu, S.C., Delbruck, T.: A 240 × 180 130 db 3
µs latency global shutter spatiotemporal vision sensor. IEEE Journal of Solid-State
Circuits 49(10), 2333–2341 (2014). https://doi.org/10.1109/JSSC.2014.2342715

[16] Breiman, L.: Hinging hyperplanes for regression, classification, and func-
tion approximation. IEEE Trans. Inf. Theor. 39(3), 999–1013 (may 1993).
https://doi.org/10.1109/18.256506, https://doi.org/10.1109/18.256506

[17] Bretzner, L., Lindeberg, T.: Feature tracking with automatic selection
of spatial scales. Computer Vision and Image Understanding 71(3), 385–
392 (1998). https://doi.org/https://doi.org/10.1006/cviu.1998.0650, https://www.

sciencedirect.com/science/article/pii/S1077314298906506

[18] Cannici, M., Ciccone, M., Romanoni, A., Matteucci, M.: Asynchronous convolu-
tional networks for object detection in neuromorphic cameras. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(2019)

[19] Chen, S., Guo, M.: Live demonstration: Celex-v: A 1m pixel multi-
mode event-based sensor. In: 2019 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition Workshops (CVPRW). pp. 1682–1683 (2019).
https://doi.org/10.1109/CVPRW.2019.00214

[20] Chiberre, P., Perot, E., Sironi, A., Lepetit, V.: Detecting Stable Keypoints from
Events through Image Gradient Prediction. In: Conference on Computer Vision and
Pattern Recognition Workshops (2021)

101

[21] Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural
machine translation: Encoder–decoder approaches. In: SSST@EMNLP (2014)

[22] Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent
neural networks on sequence modeling. In: NIPS 2014 Workshop on Deep Learning,
December 2014 (2014)

[23] Cohen, G.K.: Event-Based Feature Detection, Recognition and Classification. Theses,
Université Pierre et Marie Curie - Paris VI ; University of Western Sydney (Sep 2016),
https://tel.archives-ouvertes.fr/tel-01426001

[24] Conradt, J., Cook, M., Berner, R., Lichtsteiner, P., Douglas, R., Delbruck, T.:
A pencil balancing robot using a pair of aer dynamic vision sensors. In: 2009
IEEE International Symposium on Circuits and Systems. pp. 781–784 (2009).
https://doi.org/10.1109/ISCAS.2009.5117867

[25] Cook, M., Gugelmann, L., Jug, F., Krautz, C., Steger, A.: Interacting maps for
fast visual interpretation. In: The 2011 International Joint Conference on Neural
Networks. pp. 770–776 (2011). https://doi.org/10.1109/IJCNN.2011.6033299

[26] Dalal, N., Triggs, B., Schmid, C.: Human Detection Using Oriented Histograms of
Flow and Appearance. In: European Conference on Computer Vision (2006)

[27] Delbruck, T., Hu, Y., He, Z.: V2E: From Video Frames to Realistic DVS Event Cam-
era Streams. In: Conference on Computer Vision and Pattern Recognition Workshops
(2021)

[28] Delmerico, J., Cieslewski, T., Rebecq, H., Faessler, M., Scaramuzza, D.: Are we
ready for autonomous drone racing? the uzh-fpv drone racing dataset. In: 2019
International Conference on Robotics and Automation (ICRA). pp. 6713–6719 (2019).
https://doi.org/10.1109/ICRA.2019.8793887

[29] Detone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: Self-Supervised Interest
Point Detection and Description. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops (2018)

[30] Dimitrova, R., Gehrig, M., Brescianini, D., Scaramuzza, D.: Towards low-latency
high-bandwidth control of quadrotors using event cameras. pp. 4294–4300 (05 2020).
https://doi.org/10.1109/ICRA40945.2020.9197530

[31] Duchenne, O., Laptev, I., Sivic, J., Bach, F., Ponce, J.: Automatic annotation of
human actions in video. In: 2009 IEEE 12th International Conference on Computer
Vision. pp. 1491–1498 (2009). https://doi.org/10.1109/ICCV.2009.5459279

[32] Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A., Sattler, T.:
D2-Net: A Trainable CNN for Joint Detection and Description of Local Features. In:
Conference on Computer Vision and Pattern Recognition (2019)

102

[33] Evangelidis, G.D., Psarakis, E.Z.: Parametric image alignment using enhanced corre-
lation coefficient maximization. IEEE Transactions on Pattern Analysis and Machine
Intelligence 30, 1858–1865 (2008)

[34] Falanga, D., Kleber, K., Scaramuzza, D.: Dynamic obstacle avoidance
for quadrotors with event cameras. Science Robotics 5(40), eaaz9712 (2020).
https://doi.org/10.1126/scirobotics.aaz9712, https://www.science.org/doi/abs/

10.1126/scirobotics.aaz9712

[35] Finateu, T., Niwa, A., Matolin, D., Tsuchimoto, K., Mascheroni, A., Rey-
naud, E., Mostafalu, P., Brady, F., Chotard, L., Legoff, F.: A 1280×720 Back-
Illuminated Stacked Temporal Contrast Event-Based Vision Sensor with 4.86 µm
Pixels, 1.066 GEPS Readout, Programmable Event-Rate Controller and Compressive
Data-Formatting Pipeline. In: IEEE International Solid-State Circuits Conference-
(ISSCC) (2020)

[36] Finateu, T., Niwa, A., Matolin, D., Tsuchimoto, K., Mascheroni, A., Reynaud, E.,
Mostafalu, P., Brady, F., Chotard, L., LeGoff, F., Takahashi, H., Wakabayashi, H.,
Oike, Y., Posch, C.: 5.10 A 1280chr(195)chr(151)720 Back-Illuminated Stacked Tem-
poral Contrast Event-Based Vision Sensor with 4.86µm Pixels, 1.066GEPS Readout,
Programmable Event-Rate Controller and Compressive Data-Formatting Pipeline. In:
2020 IEEE International Solid- State Circuits Conference - (ISSCC) (2020)

[37] Gallego, G., Delbruck, T., Orchard, G., Bartolozzi, C., Taba, B., Censi, A., Leuteneg-
ger, S., Davison, A., Conradt, J., Daniilidis, K., Scaramuzza, D.: Event-Based Vision:
A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (2020)

[38] Gallego, G., Delbrück, T., Orchard, G., Bartolozzi, C., Taba, B., Censi, A., Leuteneg-
ger, S., Davison, A.J., Conradt, J., Daniilidis, K., Scaramuzza, D.: Event-based vi-
sion: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence
44(1), 154–180 (2022). https://doi.org/10.1109/TPAMI.2020.3008413

[39] Gallego, G., Rebecq, H., Scaramuzza, D.: A unifying contrast maximization frame-
work for event cameras, with applications to motion, depth, and optical flow estima-
tion. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 3867–3876 (2018). https://doi.org/10.1109/CVPR.2018.00407

[40] Gehrig, D., Gehrig, M., Hidalgo-Carrió, J., Scaramuzza, D.: Video to Events: Bring-
ing Modern Computer Vision Closer to Event Cameras. In: arXiv Preprint (2019)

[41] Gehrig, D., Loquercio, A., Derpanis, K.G., Scaramuzza, D.: End-to-end learning of
representations for asynchronous event-based data. 2019 IEEE/CVF International
Conference on Computer Vision (ICCV) pp. 5632–5642 (2019)

103

[42] Germain, H., Bourmaud, G., Lepetit, V.: S2DNet: Learning Image Features for
Accurate Sparse-to-Dense Matching. In: European Conference on Computer Vision.
pp. 626–643 (2020)

[43] Glover, A., Dinale, A., Rosa, L.D.S., Bamford, S., Bartolozzi, C.: luvHarris: A
Practical Corner Detector for Event-Cameras. IEEE Transactions on Pattern Analysis
and Machine Intelligence (2021)

[44] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. In: Ghahramani, Z., Welling,
M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information
Processing Systems. vol. 27. Curran Associates, Inc. (2014), https://proceedings.
neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[45] Graca, R., Delbruck, T.: Unraveling the Paradox of Intensity-Dependent DVS Pixel
Noise. In: arXiv Preprint (Sep 2021)

[46] Guo, M., Huang, J., Chen, S.: Live demonstration: A 768 × 640 pixels 200meps dy-
namic vision sensor. In: 2017 IEEE International Symposium on Circuits and Systems
(ISCAS). pp. 1–1 (2017). https://doi.org/10.1109/ISCAS.2017.8050397

[47] Haddadi, S.J., Castelan, E.B.: Evaluation of monocular visual-inertial
slam: Benchmark and experiment. In: 2019 7th International Con-
ference on Robotics and Mechatronics (ICRoM). pp. 599–606 (2019).
https://doi.org/10.1109/ICRoM48714.2019.9071825

[48] Hagenaars, J.J., Paredes-Vallés, F., Bohté, S.M., de Croon, G.C.H.E.:
Evolved neuromorphic control for high speed divergence-based landings of
mavs. IEEE Robotics and Automation Letters 5(4), 6239–6246 (2020).
https://doi.org/10.1109/LRA.2020.3012129

[49] Harris, C., Stephens, M.: A combined corner and edge detector (1988)

[50] Harris, C., Stephens, M.: A Combined Corner and Edge Detector. In: Alvey vision
conference (1988)

[51] He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition.
In: Conference on Computer Vision and Pattern Recognition. pp. 770–778 (2016)

[52] Hidalgo-Carrió, J., Gallego, G., Scaramuzza, D.: Event-aided direct sparse odometry.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

[53] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8),
1735–1780 (1997)

104

[54] Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for mobile
vision applications. ArXiv abs/1704.04861 (2017)

[55] Hu, J., Shen, L., Sun, G.: Squeeze-and-Excitation Networks. In: Conference on Com-
puter Vision and Pattern Recognition. pp. 7132–7141 (2018)

[56] Hu, Y., Liu, S.C., Delbrück, T.: v2e: From video frames to realistic dvs events.
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW) pp. 1312–1321 (2021)

[57] Hyunsurk Eric, R.: Industrial DVS design; key features and applications. http://
rpg.ifi.uzh.ch/docs/CVPR19workshop/CVPRW19_Eric_Ryu_Samsung.pdf (2019)

[58] Isfahani, S.M.M., Wang, L., Ho, Y.S., jin Yoon, K.: Event-based high dynamic range
image and very high frame rate video generation using conditional generative ad-
versarial networks. 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) pp. 10073–10082 (2019)

[59] Jadon, A., Omama, M., Varshney, A., Ansari, M.S., Sharma, R.: Firenet: A spe-
cialized lightweight fire & smoke detection model for real-time iot applications. arXiv
preprint arXiv:1905.11922 (2019)

[60] Joubert, D., Marcireau, A., Ralph, N.O., Jolley, A., van Schaik, A., Cohen, G.: Event
camera simulator improvements via characterized parameters. Frontiers in Neuro-
science 15 (2021)

[61] Kim, H., Handa, A., Benosman, R., Ieng, S.H., Davison, A.: Simultaneous mosaicing
and tracking with an event camera. In: Proceedings of the British Machine Vision
Conference. BMVA Press (2014)

[62] Kim, H., Leutenegger, S., Davison, A.J.: Real-time 3d reconstruction and 6-dof track-
ing with an event camera. In: ECCV (2016)

[63] Lagorce, X., Orchard, G., Galluppi, F., Shi, B.E., Benosman, R.B.: Hots: A Hierarchy
of Event-Based Time-Surfaces for Pattern Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2017)

[64] Lai, W.S., Huang, J.B., Wang, O., Shechtman, E., Yumer, E., Yang, M.H.: Learn-
ing blind video temporal consistency. In: European Conference on Computer Vision
(2018)

[65] LeCun, Y., Haffner, P., Bottou, L., Bengio, Y.: Object Recognition with Gradient-
Based Learning. In: Shape, Contour and Grouping in Computer Vision. p. 319 (1999)

105

[66] Lee, J.H., Delbruck, T., Pfeiffer, M.: Training deep spiking neural
networks using backpropagation. Frontiers in Neuroscience 10 (2016).
https://doi.org/10.3389/fnins.2016.00508, https://www.frontiersin.org/

articles/10.3389/fnins.2016.00508

[67] Li, Y., Chen, Y., Wang, N., Zhang, Z.: Scale-aware trident networks for object de-
tection (2019)

[68] Lichtsteiner, P., Posch, C., Delbruck, T.: A 128× 128 120 dB 15 µs Latency Asyn-
chronous Temporal Contrast Vision Sensor. IEEE Journal of Solid-State Circuits pp.
566–576 (2008)

[69] Lichtsteiner, P., Posch, C., Delbruck, T.: A 128x128 120db 15us Latency Asyn-
chronous Temporal Contrast Vision Sensor. IEEE Journal of Solid State Circuits
(2008)

[70] Lin, T.Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona,
P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in
Context (2014)

[71] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu, C.Y., Berg, A.C.: Ssd:
Single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.)
ECCV (1). Lecture Notes in Computer Science, vol. 9905, pp. 21–37. Springer (2016)

[72] Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Com-
put. Vision pp. 91–110 (2004)

[73] Manderscheid, J., Sironi, A., Bourdis, N., Migliore, D., Lepetit, V.: Speed Invariant
Time Surface for Learning to Detect Corner Points with Event-Based Cameras. In:
Conference on Computer Vision and Pattern Recognition. pp. 10245–10254, https:
//www.prophesee.ai/2019/06/05/hvga--atis--corner--dataset/ (2019)

[74] Messikommer, N., Georgoulis, S., Gehrig, D., Tulyakov, S., Erbach, J., Bochicchio,
A., Li, Y., Scaramuzza, D.: Multi-bracket high dynamic range imaging with event
cameras. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW) pp. 546–556 (2022)

[75] Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In:
Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.
vol. 1, pp. 525–531 vol.1 (2001). https://doi.org/10.1109/ICCV.2001.937561

[76] Mohemmed, A., Schliebs, S., Kasabov, N.K.: Span: A neuron for precise-time spike
pattern association. In: ICONIP (2011)

[77] Mueggler, E., Bartolozzi, C., Scaramuzza, D.: Fast Event-based Corner Detection.
In: British Machine Vision Conference (2017)

106

[78] Mueggler, E., Bartolozzi, C., Scaramuzza, D.: Fast Event-Based Corner Detection.
In: British Machine Vision Conference (2017)

[79] Mueggler, E., Baumli, N., Fontana, F., Scaramuzza, D.: Towards evasive maneuvers
with quadrotors using dynamic vision sensors. In: 2015 European Conference on Mo-
bile Robots (ECMR). pp. 1–8 (2015). https://doi.org/10.1109/ECMR.2015.7324048

[80] Mueggler, E., Rebecq, H., Gallego, G., Delbruck, T., Scaramuzza, D.: The event-
camera dataset and simulator: Event-based data for pose estimation, visual odometry,
and slam. The International Journal of Robotics Research 36(2), 142–149 (2017).
https://doi.org/10.1177/0278364917691115

[81] Mueggler, E., Rebecq, H., Gallego, G., Delbruck, T., Scaramuzza, D.: The Event-
Camera Dataset and Simulator: Event-Based Data for Pose Estimation, Visual
Odometry, and SLAM. International Journal of Robotics Research pp. 142–149,
https://rpg.ifi.uzh.ch/davis_data.html (2017)

[82] Munda, G., Reinbacher, C., Pock, T.: Real-time intensity-image reconstruction for
event cameras using manifold regularisation. International Journal of Computer Vi-
sion 126(12), 1381–1393 (2018). https://doi.org/10.1007/s11263-018-1106-2

[83] Perot, E., De Tournemire, P., Nitti, D., Masci, J., Sironi, A.: Learning to Detect
Objects with a 1 Megapixel Event Camera. In: Advances in Neural Information Pro-
cessing Systems. pp. 16639–16652 (2020)

[84] Pini, S., Borghi, G., Vezzani, R.: Learn to see by events: Color frame synthesis from
event and rgb cameras. In: VISIGRAPP (2020)

[85] Ponulak, F.: Resume-new supervised learning method for spiking neural networks
(2005)

[86] Posch, C., Matolin, D., Wohlgenannt, R.: A qvga 143 db dynamic range
frame-free pwm image sensor with lossless pixel-level video compression and
time-domain cds. IEEE Journal of Solid-State Circuits 46(1), 259–275 (2011).
https://doi.org/10.1109/JSSC.2010.2085952

[87] Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B., Delbruck,
T.: Retinomorphic event-based vision sensors: Bioinspired cameras with
spiking output. Proceedings of the IEEE 102(10), 1470–1484 (2014).
https://doi.org/10.1109/JPROC.2014.2346153

[88] Rast, A.D., Galluppi, F., Jin, X., Furber, S.: The leaky integrate-and-fire neu-
ron: A platform for synaptic model exploration on the spinnaker chip. In: The
2010 International Joint Conference on Neural Networks (IJCNN). pp. 1–8 (2010).
https://doi.org/10.1109/IJCNN.2010.5596364

107

[89] Rebecq, H., Gehrig, D., Scaramuzza, D.: ESIM: an open event camera simulator.
Conf. on Robotics Learning (CoRL) (Oct 2018)

[90] Rebecq, H., Gehrig, D., Scaramuzza, D.: ESIM: An Open Event Camera Simulator.
In: Conference on Robot Learning. pp. 969–982 (2018)

[91] Rebecq, H., Horstschaefer, T., Gallego, G., Scaramuzza, D.: Evo: A
geometric approach to event-based 6-dof parallel tracking and mapping in
real time. IEEE Robotics and Automation Letters 2(2), 593–600 (2017).
https://doi.org/10.1109/LRA.2016.2645143

[92] Rebecq, H., Ranftl, R., Koltun, V., Scaramuzza, D.: Events-To-Video: Bringing
Modern Computer Vision to Event Cameras. In: Conference on Computer Vision
and Pattern Recognition. pp. 3852–3861 (2019)

[93] Rebecq, H., Ranftl, R., Koltun, V., Scaramuzza, D.: High Speed and High Dynamic
Range Video with an Event Camera. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2019)

[94] Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-
time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91

[95] Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection
with region proposal networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence 39(6), 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031

[96] Revaud, J., De Souza, C., Humenberger, M., Weinzaepfel, P.: R2D2: Reliable and
Repeatable Detector and Descriptor. In: Advances in Neural Information Processing
Systems (2019)

[97] Riba, E., Mishkin, D., Ponsa, D., Rublee, E., Bradski, G.: Kornia: An Open Source
Differentiable Computer Vision Library for PyTorch. In: Winter Conference on Ap-
plications of Computer Vision (2020)

[98] Rosten, E., Drummond, T.: Machine Learning for High-Speed Corner Detection. In:
European Conference on Computer Vision. pp. 430–443 (2006)

[99] Sanket, N., Parameshwara, C.M., Singh, C., Kuruttukulam, A.V.,
Fermüller, C., Scaramuzza, D., Aloimonos, Y.: Evdodgenet: Deep dy-
namic obstacle dodging with event cameras. pp. 10651–10657 (05 2020).
https://doi.org/10.1109/ICRA40945.2020.9196877

[100] Scheerlinck, C., Barnes, N., Mahony, R.: Asynchronous Spatial Image Convolutions
for Event Cameras. IEEE Robotics and Automation Letters pp. 816–822 (2019)

108

[101] Scheerlinck, C., Barnes, N., Mahony, R.: Continuous-time intensity estimation using
event cameras. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds.) Computer
Vision – ACCV 2018. pp. 308–324. Springer International Publishing, Cham (2019)

[102] Scheerlinck, C., Rebecq, H., Gehrig, D., Barnes, N., Mahony, R., Scaramuzza, D.:
Fast Image Reconstruction with an Event Camera. In: IEEE Winter Conference on
Applications of Computer Vision. pp. 156–163 (2020)

[103] Shi, X., Chen, Z., Wang, H., Yeung, D., Wong, W., Woo, W.: Convolutional LSTM
Network: A Machine Learning Approach for Precipitation Nowcasting. In: Advances
in Neural Information Processing Systems. pp. 802–810 (2015)

[104] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings (2015), http://arxiv.org/abs/1409.1556

[105] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings (2015), http://arxiv.org/abs/1409.1556

[106] Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., Benosman, R.: HATS: His-
tograms of Averaged Time Surfaces for Robust Event-Based Object Classification.
In: Conference on Computer Vision and Pattern Recognition (2018)

[107] Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., Benosman, R.B.: Hats: His-
tograms of averaged time surfaces for robust event-based object classification. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 1731–1740
(2018)

[108] S.MohammadMostafavi, I., Wang, L., Yoon, K.J.: Learning to reconstruct hdr images
from events, with applications to depth and flow prediction. International Journal of
Computer Vision pp. 1–21 (2021)

[109] Son, B., Suh, Y., Kim, S., Jung, H., Kim, J.S., Shin, C., Park, K., Lee, K., Park,
J., Woo, J.: A 640× 480 Dynamic Vision Sensor with a 9µm Pixel and 300Meps
Address-Event Representation. In: IEEE International Solid-State Circuits Confer-
ence (ISSCC) (2017)

[110] Son, B., Suh, Y., Kim, S., Jung, H., Kim, J.S., Shin, C., Park, K., Lee, K., Park,
J., Woo, J., Roh, Y., Lee, H., Wang, Y., Ovsiannikov, I., Ryu, H.: 4.1 a 640×480
dynamic vision sensor with a 9µm pixel and 300meps address-event representation. In:
2017 IEEE International Solid-State Circuits Conference (ISSCC). pp. 66–67 (2017).
https://doi.org/10.1109/ISSCC.2017.7870263

109

[111] Sroba, L., Ravas, R., Grman, J.: The influence of subpixel corner detec-
tion to determine the camera displacement. Procedia Engineering 100, 834–840
(2015). https://doi.org/https://doi.org/10.1016/j.proeng.2015.01.438, https://www.
sciencedirect.com/science/article/pii/S1877705815004658, 25th DAAAM In-
ternational Symposium on Intelligent Manufacturing and Automation, 2014

[112] Stagsted, R., Vitale, A., Binz, J., Renner, A., Larsen, L., Sandamirskaya, Y.: Towards
neuromorphic control: A spiking neural network based pid controller for uav (07 2020).
https://doi.org/10.15607/RSS.2020.XVI.074

[113] Suh, Y., Choi, S., Ito, M., Kim, J., Lee, Y., Seo, J., Jung, H., Yeo, D.H., Namgung,
S., Bong, J., Yoo, S., Shin, S.H., Kwon, D., Kang, P., Kim, S., Na, H., Hwang, K.,
Shin, C., Kim, J.S., Park, P.K.J., Kim, J., Ryu, H., Park, Y.: A 1280×960 dynamic
vision sensor with a 4.95-m pixel pitch and motion artifact minimization. In: 2020
IEEE International Symposium on Circuits and Systems (ISCAS). pp. 1–5 (2020).
https://doi.org/10.1109/ISCAS45731.2020.9180436

[114] Sun, K., Zhao, Y., Jiang, B., Cheng, T., Xiao, B., Liu, D., Mu, Y., Wang, X., Liu,
W., Wang, J.: High-resolution representations for labeling pixels and regions. CoRR
abs/1904.04514 (2019)

[115] Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neural
networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th Inter-
national Conference on Machine Learning. Proceedings of Machine Learning Research,
vol. 97, pp. 6105–6114. PMLR (09–15 Jun 2019)

[116] Tian, Y., Balntas, V., Ng, T., Barroso-Laguna, A., Demiris, Y., Mikolajczyk, K.:
D2d: Keypoint extraction with describe to detect approach. In: Computer Vision –
ACCV 2020: 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30
– December 4, 2020, Revised Selected Papers, Part III. p. 223–240. Springer-Verlag,
Berlin, Heidelberg (2020)

[117] Tulyakov, S., Bochicchio, A., Gehrig, D., Georgoulis, S., Li, Y., Scaramuzza, D.:
Time Lens++: Event-based frame interpolation with non-linear parametric flow and
multi-scale fusion. IEEE Conference on Computer Vision and Pattern Recognition
(2022)

[118] Tyszkiewicz, M., Fua, P., Trulls, E.: Disk: Learning local features with policy gradi-
ent. Advances in Neural Information Processing Systems 33 (2020)

[119] Vasco, V., Glover, A., Bartolozzi, C.: Fast Event-Based Harris Corner Detection
Exploiting the Advantages of Event-Driven Cameras. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). pp. 4144–4149 (2016)

110

[120] Vasco, V., Glover, A., Bartolozzi, C.: Fast Event-Based Harris Corner Detection
Exploiting the Advantages of Event-Driven Cameras. In: International Conference on
Intelligent Robots and Systems (2016)

[121] Verdie, Y., Yi, K.M., Fua, P.V., Lepetit, V.: Tilde: A temporally invariant learned de-
tector. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
pp. 5279–5288 (2015)

[122] Vitale, A., Renner, A., Nauer, C., Scaramuzza, D., Sandamirskaya, Y.: Event-
driven vision and control for uavs on a neuromorphic chip. In: 2021 IEEE In-
ternational Conference on Robotics and Automation (ICRA). pp. 103–109 (2021).
https://doi.org/10.1109/ICRA48506.2021.9560881

[123] Wang, Z.W., Jiang, W., He, K., Shi, B., Katsaggelos, A., Cossairt,
O.: Event-driven video frame synthesis. In: 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW). pp. 4320–4329 (2019).
https://doi.org/10.1109/ICCVW.2019.00532

[124] Xingjian, S.H.I., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.c.: Convo-
lutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting.
In: Advances in Neural Information Processing Systems. pp. 802–810 (2015)

[125] Yi, K.M., Trulls, E., Lepetit, V., Fua, P.: LIFT: Learned Invariant Feature Transform.
In: European Conference on Computer Vision. pp. 467–483 (2016)

[126] Youssef, I., Mutlu, M., Bayat, B., Crespi, A., Hauser, S., Conradt, J., Bernardino, A.,
Ijspeert, A.: A neuro-inspired computational model for a visually guided robotic lam-
prey using frame and event based cameras. IEEE Robotics and Automation Letters
5(2), 2395–2402 (2020). https://doi.org/10.1109/LRA.2020.2972839

[127] Youssef, I., Mutlu, M., Bayat, B., Crespi, A., Hauser, S., Conradt, J., Bernardino, A.,
Ijspeert, A.: A neuro-inspired computational model for a visually guided robotic lam-
prey using frame and event based cameras. IEEE Robotics and Automation Letters
5(2), 2395–2402 (2020). https://doi.org/10.1109/LRA.2020.2972839

[128] Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable ef-
fectiveness of deep features as a perceptual metric. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition pp. 586–595 (2018)

[129] Zhu, A., Yuan, L., Chaney, K., Daniilidis, K.: Unsupervised event-based learning of
optical flow, depth, and egomotion. In: 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 989–997. IEEE Computer Society, Los
Alamitos, CA, USA (jun 2019). https://doi.org/10.1109/CVPR.2019.00108, https:
//doi.ieeecomputersociety.org/10.1109/CVPR.2019.00108

111

[130] Zhu, A.Z., Yuan, L., Chaney, K., Daniilidis, K.: Unsupervised Event-Based Learning
of Optical Flow, Depth, and Egomotion. In: Conference on Computer Vision and
Pattern Recognition. pp. 989–997 (2019)

112

