
HAL Id: tel-04076382
https://pastel.hal.science/tel-04076382v1

Submitted on 20 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interval Constraint Programming for Differential
Dynamical Systems
Abderahmane Bedouhene

To cite this version:
Abderahmane Bedouhene. Interval Constraint Programming for Differential Dynamical Systems.
Computer Arithmetic. École des Ponts ParisTech, 2022. English. �NNT : 2022ENPC0048�. �tel-
04076382�

https://pastel.hal.science/tel-04076382v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
de l’École des Ponts ParisTech

Interval Constraint Programming for Differential Dynami-
cal Systems

École doctorale N° 532, Mathématiques & sciences et technologies de
l’information et de la communication

Mathématiques Appliquées

Thèse préparée au sein du laboratoire d’informatique Gaspard Monge LIGM UMR
8049, équipe AS3I (Imagine, ENPC). Financement: ANR-Contredo

Thèse soutenue le 13 Décembre 2022, par
Abderahmane Bedouhene

Composition du jury:

Nacim Ramdani Rapporteur

Université d’Orléans

David DANEY Rapporteur

INRIA Bordeaux

Tarek Raissi Examinateur

CNAM Paris

Carine Jauberthie Examinatrice

LAAS Toulouse

Bertrand Neveu Directeur de thèse

École des Ponts ParisTech

Gilles Trombettoni Co-directeur de thèse

Université de Montpellier

École des Ponts ParisTech
LIGM-IMAGINE
6, Av Blaise Pascal - Cité Descartes
Champs-sur-Marne
77455 Marne-la-Vallée cedex 2
France

Acknowledgments

In french:

Quelle aventure cette thèse de doctorat ! Il serait difficile de choisir UN mot pour résumer
cette expérience, plusieurs me viendraient à l’esprit. Le « travail » par exemple, si
quelque chose est universel pour tout doctorant, c’est le travail. Je pourrai aussi parler
d’abnégation, de résilience ou encore même de chance, mais le mot qui m’a le plus séduit
est « contribution ».
Je trouve ce mot assez particulier car il porte en lui un double sens, du moins, dans un
contexte tel que celui-ci. Une contribution peut être scientifique, telle qu’une idée, un
algorithme, une méthode, ou encore un article participant à faire avancer la recherche.
Mais aussi dans un sens plus large, plus humain, tel qu’un soutien moral, de la camaraderie
ou tout simplement des encouragements, faisant qu’une contribution humaine amène
à une contribution scientifique. Aujourd’hui je souhaite remercier tous ceux qui ont
contribué à l’aboutissement de cette thèse.
Tout d’abord, mes encadrants, Gilles et Bertrand. Je tenais à les remercier de m’avoir
donné cette chance. C’est avec Bertrand que j’ai appris à développer mon sens critique,
mieux réfléchir ou encore accepter d’avoir tort. Mais avec lui, j’ai surtout appris l’humilité.
Quant à Gilles, j’ai toujours admiré sa franchise et son grand cœur. C’est avec lui j’ai
appris à prendre du recul pour apporter une dimension nouvelle à ce que j’entreprenais.
Je voudrais aussi remercier les membres du jury, Tarek Raissi, Carine Jauberthie, David
Daney et Nacim Ramdani, pour leurs remarques aussi constructives que pertinentes, que
ce soit au travers de leurs rapports, ou lors de la soutenance. J’aimerais aussi remercier
tous les membres de l’ANR CONTREDO, que ce soit pour les contributions directes à
travers les articles coécrits, ou pour les contributions indirectes à travers nos différents
échanges.
Et comme une contribution ne se résume pas à une collaboration scientifique, je tenais
aussi à remercier toutes les personnes avec qui j’ai partagé ces dernières années au sein
du laboratoire Imagine et qui pour moi représentent une famille. Que ce soit les ainés,

3

Thibault, Pierre-Alain, Marie, Xi, Yang, François, Théo, Shell, Sophie, Michael, Clément,
Georgia, Simon, Othman, Marie-Morgane, Benjamin, Raphael, Robin, Victor, Yuming,
Hugo, Nermin et Xuchong. Les cadets avec Liza, Tom, Mathis, Margaux, Natasha,
Hannah, Oumayma, Nicolas, Romain, Nguyen, Yannis, Yue. Ensuite, les petits derniers
avec Lucas, Elliot, Charles, Georgy, Monika, Antoine, Dina, Harry, Thomas et Sonat.
Et pour finir, les anciens avec Renaud, Pascal, Guillaume, Mathieu, Vincent, David,
Chaohui, Gül, Brigitte et Isabelle.
J’aimerais aussi remercier mes proches, sans qui tout cela n’aurait jamais été possible.
Je parle bien entendu de mes parents, Ammar et Zaina, qui m’ont soutenu moralement
et ont sacrifié une partie de leur vie pour que j’ai l’opportunité de poursuivre mes études.
Mon frère Hocine et ma sœur Nacera ainsi que leurs conjoints Aya et Mourad. Ma nièce
Maria et mes neveux Samy et Aksil, mais encore mes petits monstres Opale, Tili et Ales
qui ont eu le don d’être mignons lors des moments difficiles. Je remercie aussi tous mes
amis, et plus particulièrement Amel, Idir, Aomar, Meziane, Yazid, Yanis, Hakim, Krimou,
Slimon, Aris, Ryles, Yacine, Chiraz, Sonia S, Kamelia, Yazid A et Aghiles.
Et pour finir, merci à ma compagne Sonia, qui a été mon pilier lors de cette aventure.

4

Abstract

This thesis is a part of the ANR CONTREDO project "Intervals and Contractors for
Dynamical Systems". The goal of this project is to develop methods for the guaranteed
resolution of differential dynamical systems coupled with systems of constraints through
the CODAC library Rohou et al. (2021b).
Trajectories are the variables of these systems of constraints and their domains are
represented with tubes Le Bars et al. (2012); Rohou et al. (2021b).
When a contractor is associated to one or more constraints of these systems, it can reduce
these tubes in order to obtain thinner enclosures of the solutions of these systems.
The main objective of this thesis is to study the existing methods for the guaranteed
resolution of dynamical systems, then to build their associated contractors and integrate
them to Tubex solve, one of the solvers of the CONTREDO project.

The first step of this thesis consists in the formalisation of the dynamical systems as
constraint networks over tubes. A particular interest is given to Ordinary differential
equations (ODE) as well as existing ODE solvers (such as VNODE-LP Nedialkov (2006),
CAPD Kapela et al. (2010), Dynibex dit Sandretto and Chapoutot (2016)...) dedicated
to the guaranteed resolution of this type of equations..
The second step consists in the design of a contractor for ordinary differential equations
based on the different ODE solvers in order to solve problems such as initial value
problems (IVP) or boundary value problems (BVP) involving intervals. This contractor
is then added to the set of contractors of Tubex solve in order to improve its performances
Rohou et al. (2020).
Another solver dedicated to boundary value problems is also developed using the ODE
Contractor. Then the results obtained with this solver are compared to those obtained
with Tubex solve.
Finally, the last step of this thesis consists in using the ODE-Contractor for the validation
of capture tubes for systems such as differential games of the type "homicidal chauffeur"
Le Menec (2011).

5

Capture tubes are represented by temporal sets such that when a trajectory of a dynamical
system is inside this kind of tubes, the trajectory has no way to escape from it. These
sets are difficult to obtain in practice, and are replaced by quasi capture tubes.
Quasi capture tubes are easier to obtain, however, they might let a few trajectories
escape, contrary to capture tubes where the all the trajectories belong for ever.
The idea of quasi capture tubes is that when a trajectory escapes, it should come back
to the quasi capture tube after a finite time.
The ODE Contractor has an important role for the quasi capture tube validation, as it is
used to prove that the escaping trajectories return back to the quasi capture tube after a
finite time Bedouhene et al. (2021).

6

Résumé

Cette thèse s’inscrit dans le cadre du projet ANR CONTREDO “Intervalles et contracteurs
pour les systèmes dynamiques”. Le but de ce projet est de développer des outils de
résolution garantie de systèmes dynamiques différentiels couplés avec des systèmes de
contraintes. Ce développement se fait à l’aide de la bibliothèque CODAC Rohou et al.
(2021b).
Les trajectoires sont les variables de ces systèmes de contraintes, et leurs domaines sont
représentés par des tubes Le Bars et al. (2012),Rohou et al. (2021b).
Des opérateurs de contraction sont associés à une ou plusieurs contraintes du système pour
permettre de réduire ces tubes et filtrer l’espace des solutions. Intégrés à un processus de
recherche combinatoire, ces contracteurs permettent de calculer l’ensemble des solutions.
L’objectif principal de la thèse est d’étudier les méthodes existantes pour la résolution
garantie de systèmes dynamiques, puis de définir les contracteurs différentiels correspon-
dants et les intégrer à Tubex solve, un des solveurs du projet CONTREDO.

Les principaux éléments nécessaires à la compréhension du travail présenté dans cette
thèse sont les suivants:

• L’aspect garanti des calculs réalisés, qui sera assuré principalement par l’arithmétique
des intervalles. Celui-ci est aussi assuré par les contracteurs, des algorithmes qui
permettent de réduire les domaines des solutions en supprimant des parties qui
n’en contiennent pas.

• Les systèmes dynamiques, mais plus précisément les équations différentielles ordi-
naires (EDO).

• Les tubes, domaines constitués de séries de boîtes temporelles contenant les solutions
des systèmes dynamiques.

• Les systèmes de contraintes sur intervalles, qui permettent de modéliser les prob-
lèmes étudiés dans cette thèse.

7

Arithmétique d’intervalles L’arithmétique d’intervalles moderne a été introduite
dans Moore (1966), celle-ci permet de manipuler rigoureusement des nombres réels sur
une machine.

De manière générale, une opération basique utilisant des intervalles consiste à calculer
une boîte (produit cartésien de plusieurs intervalles) contenant une image d’intervalles par
une fonction réelle. Ainsi, les opérateurs arithmétiques de base (+,−,×, /) peuvent être
étendus aux intervalles grâce à [x] ⋄ [y] = [{x ⋄ y |x ∈ [x], y ∈ [y]}]. Les fonctions usuelles
peuvent elles aussi être étendues aux intervalles avec la fonction d’inclusion [f] contenant
l’image f([x]) = {f(x) : x ∈ [x]} telle que f([x]) ⊆ [f]([x]). Ceci est d’autant plus simple
pour les fonctions monotones comme f(x) = exp(x) où exp([x]) = [exp(x), exp(x)], avec
x étant la borne inférieure de [x] et x sa borne supérieure.

Contracteurs Le concept de contracteur s’inspire des algorithmes de filtrage issus de la
programmation par contraintes. Étant donné une contrainte c, un ensemble de variables
x et un domaine [x] pour ces variables, un contracteur C doit vérifier les propriétés
suivantes :

1. C([x]) ⊆ [x]

2. ∀x ∈ [x] c(x) =⇒ x ∈ C([x])

La première propriété assure que le résultat de la contraction est un sous domaine du
domaine initial. La seconde permet de s’assurer qu’aucune solution n’a été perdue lors
du processus de contraction.

Fig. 1 Illustration d’une application d’un contracteur C à un ensemble de variables x
dont le domaine initial est [x] (en rouge). Le résultat de la contraction est une
boîte C([x]) (en vert) contenant l’ensemble correspondant à la contrainte c (en
bleu)

8

Systèmes dynamiques Les systèmes dynamiques étudiés dans cette thèse sont pour
la plupart des EDO du type:

ẋ = f(x(t), t) (1)

Où t représente le temps, x : R → Rn une fonction inconnue de t et f : Rn × R → Rn

une fonction de x.
Les EDO les plus communes sont les problèmes à valeurs initiales (IVP).
les IVP sont accompagnées d’une condition initiale, l’évaluation de x(t) en un instant
initial t = t0 ∈ R (x(t0) = x0).
Un IVP est défini comme suit : ẋ = f(x(t), t)

x(t0) = x0
(2)

Quand la condition initiale est incertaine (manque de précision dans les mesures, bruit,
etc.), on peut modéliser cette incertitude par un intervalle (x(t0) ∈ [x0]). Les méthodes à
intervalles permettent d’approximer rigoureusement l’ensemble des trajectoires possibles
qui partent de l’instant initial.
L’IVP devient alors un IVP intervalles (IIVP) et s’écrit comme suit : ẋ = f(x(t), t)

x(t0) ∈ [x0]
(3)

Le second type d’EDO le plus commun est le problème aux limites (BVP). Contrairement
à l’IVP (ou l’IIVP), l’observation en t = t0 est incomplète et la condition initiale est
remplacée par une relation g(x(t0),x(tf)) = 0 qui relie la trajectoire x(t) en t = t0 et en
t = tf . Un BVP se définit comme suit :

 ẋ = f(x(t), t)
g(x(t0),x(tf)) = 0

(4)

De la même manière que pour les IVP, les intervalles peuvent êtres utilisés pour les BVP.

Tubes Un tube est un intervalle de deux trajectoires [x(t),x(t)] qui sert d’enveloppe à
une trajectoire x(t) tel que ∀tx(t) ∈ [x(t),x(t)].
Numériquement, un tube est représenté par une suite de boîtes temporelles, comme on le
voit sur la figure 2 :

9

δ

·

[x](·)

tf

t1 t3
t0

x(·)

δ

·

[x](·)

tf

t1 t3
t0

x(·)

output gate of [[x]](2)

slice [[x]](2)

Fig. 2 Représentation d’un tube issue de Rohou et al. (2018). Cette figure représente un
tube en une dimension contenant une trajectoire x(t) en orange. x(t) est contenue
dans un intervalle de deux trajectoires (en bleu). Numériquement, celles-ci sont
approximées finement par des boîtes temporelles (slices) de taille δ en temps.
Chacune de ces boîtes contient une porte d’entrée et une porte de sortie (gates).

Systèmes de contraintes sur intervalles Les problèmes étudiés dans le cadre de
cette thèse sont modélisés en utilisant des systèmes de contraintes et deviennent ainsi
des problèmes de satisfaction de contraintes (CSP).
Un CSP est constitué d’un ensemble de variables x. Chaque variable xi ∈ x a pour
domaine un ensemble di ∈ D. Ces variables sont liées entre elles par un ensemble de
contraintes c. La solution d’un CSP est une affectation de chaque variable à une valeur de
son domaine telle que toutes les contraintes du système de contraintes soient satisfaites.
Quand les variables du CSP sont réelles et leurs domaines des intervalles, le CSP est
appelé CSP numérique (NCSP).
Dans cette thèse, les CSP étudiés sont des CSP dynamiques (DCSP) où les variables
sont les trajectoires x(t) et leurs domaines des tubes [x](t).

Principales étapes de la thèse La première étape de cette thèse porte sur la for-
malisation des systèmes dynamiques sous formes de systèmes de contraintes sur des
tubes (DCSP). Un intérêt particulier est porté aux équations différentielles ordinaires
(EDO) ainsi que l’étude des outils logiciels existants pour la résolution garantie de ce
type d’équations (tels que VNODE-LP Nedialkov (2006), CAPD Kapela et al. (2010),

10

Dynibex dit Sandretto and Chapoutot (2016)...).

Une deuxième étape porte sur la réalisation d’un contracteur d’équations différentielles
ordinaires appelant ces différents outils ainsi que son intégration dans Tubex solve Rohou
et al. (2020), le solveur de la bibliothèque C++ Codac développée dans Rohou (2017)
pour le projet CONTREDO. Cela permet l’utilisation de ces outils pour résoudre des
EDO tels que les problèmes avec conditions initiales (IVP et IIVP) et conditions aux
limites (BVP).
Cette intégration permet d’améliorer grandement les performances de Tubex solve.
Un autre solveur dédié à la résolution de BVP a aussi été développé. Celui-ci a été appelé
IBVP solve et utilise la "shooting method" Lohner (1987) avec le contracteur d’EDO
pour trouver des solutions pour les BVP. Les résultats obtenus sont ensuite comparés
aux résultats de Tubex solve.

Enfin, une dernière étape porte sur l’utilisation du contracteur d’EDO afin de valider
des tubes de capture pour des systèmes tels que les jeux différentiels de type “problème
du chauffeur homicide” Le Menec (2011).
Les tubes de capture sont des ensembles temporels tels que si une trajectoire du système
se trouve à l’intérieur, celle-ci ne peut plus s’en échapper. Comme il est difficile pour
l’utilisateur de définir un tube de capture candidat, qui peut avoir une forme complexe,
une approche alternative lui permet de définir un tube de quasi-capture candidat, dont
la forme est plus simple, et qui permet de laisser des trajectoires s’échapper, avant de les
capturer à nouveau avant un temps limite.

Cette méthode a notamment pu être validée sur divers exemples Bedouhene et al. (2021).

11

Publications

This dissertation draws heavily on earlier work and writing in the following papers:

Refereed conferences

• (Bedouhene et al., 2021)
Abderahmane Bedouhene , Bertrand Neveu, Gilles Trombettoni, Luc Jaulin,
Stephane Le Menec:
An Interval Constraint Programming Approach for Quasi Capture Tube
Validation. CP 2021: 18:1-18:17

• (Rohou et al., 2020)
Simon Rohou, Abderahmane Bedouhene , Gilles Chabert, Alexandre Goldsztejn,
Luc Jaulin, Bertrand Neveu, Victor Reyes, Gilles Trombettoni.
Towards a Generic Interval Solver for Differential-Algebraic CSP. CP
2020: 548-565

Non-refereed conference

• (Rohou et al., 2021a)
Simon Rohou, Abderahmane Bedouhene, Gilles Chabert, Alexandre Goldsztejn,
Luc Jaulin, Bertrand Neveu, Victor Reyes et Gilles Trombettoni:
Un solveur générique par intervalles pour le CSP différentio-algébrique.
JFPC 2021.

13

Table of contents

I PROLOGUE 23

1 INTRODUCTION 25
1.1 Context of the thesis . 25
1.2 Thesis motivations . 26
1.3 Approach . 26
1.4 Contributions . 31

1.4.1 Contractor for ODEs and interval BVP solver 31
1.4.2 Quasi Capture Tube Validation 34
1.4.3 Organization of the contributions 34

1.5 Organization of the thesis . 36

II Background 39

2 Intervals and CSP 41
2.1 Introduction . 41
2.2 Intervals . 42

2.2.1 Interval representation . 42
2.2.2 Set operations on intervals . 43
2.2.3 Interval arithmetic . 44
2.2.4 Interval vectors (box) . 45
2.2.5 Inverse element . 46
2.2.6 Inclusion function . 47
2.2.7 Wrapping Effect . 50

2.3 Constraint satisfaction problems . 51
2.3.1 Introduction . 51
2.3.2 Numerical constraint satisfaction problems 52
2.3.3 Contractors . 52

Table of contents

2.3.4 Other contractors for NCSPs . 54
2.4 Conclusion . 55

3 Dynamical systems and DCSP 57
3.1 Introduction . 57
3.2 Dynamical systems: Ordinary differential equations 58

3.2.1 Examples of ODEs . 59
3.3 Solving ordinary differential equations 60

3.3.1 Existence of solutions . 60
3.4 Numerical solutions . 62

3.4.1 Euler Method . 62
3.4.2 Taylor Method . 62
3.4.3 Interval Methods . 63
3.4.4 Interval Euler method . 63

3.5 Guaranteed integration methods . 64
3.5.1 The general method . 65
3.5.2 Global enclosure . 66
3.5.3 Local enclosure . 69
3.5.4 Related work . 69

3.6 CSP approach . 70
3.6.1 Solving a DCSP . 70
3.6.2 Tube Contractors . 71
3.6.3 Differential contractors for tubes 72
3.6.4 Differential tube contractor C d

dt
. 72

3.6.5 Forward contractor C d
dt

→ . 73
3.6.6 Backward contractor C d

dt

← . 74
3.7 Conclusion . 74

III First and second contributions 75

4 A Contractor for ODE 77
4.1 Introduction . 77
4.2 ODE-Contractor motivations . 78

4.2.1 ODE-Contractor: The method . 79
4.2.2 Limitations of the ODE-Contractor 82

4.3 Generic solver for dynamical systems . 83

16

Table of contents

4.3.1 Overview of the generic solver . 84
4.3.2 The Generic solver Algorithm . 85
4.3.3 Contractors in the generic solver 86

4.3.3.1 Contraction function . 87
4.3.3.2 DynBasic . 87
4.3.3.3 DynCidGuess . 87
4.3.3.4 Dyn3b . 87
4.3.3.5 ODE-Contractor . 88
4.3.3.6 Contraction function algorithm 88

4.4 Implementation . 89
4.4.1 Main libraries . 89
4.4.2 Guaranteed integration solvers . 89
4.4.3 Presentation of the different solvers 90

4.4.3.1 VNODE-LP . 90
4.4.3.2 CAPD . 90
4.4.3.3 Dynibex . 90

4.4.4 Discussions . 90
4.5 Experiments and results . 91

4.5.1 The problems: IIVPs . 92
4.5.2 Results: IIVPs . 92
4.5.3 Discussion: IIVPs . 94
4.5.4 Experiments on BVPs . 96
4.5.5 Results: BVPs . 98
4.5.6 Discussion: BVPs . 99

4.6 Conclusion . 100

5 Dedicated method for two-point BVP 103
5.1 Introduction . 103
5.2 Shooting method . 104

5.2.1 Overview on the Newton’s method 105
5.2.2 Application to BVPs . 105

5.3 Interval Newton validation for the shooting method 106
5.3.1 Interval Shooting method . 106
5.3.2 Overview on the Interval Newton method 108
5.3.3 Application of the interval shooting method to BVPs 109
5.3.4 Broyden’s method . 110
5.3.5 Interval Newton validation . 111

17

Table of contents

5.4 Algorithm . 111
5.4.1 Description of the algorithm . 111

5.5 Experiments . 114
5.5.1 Results . 116
5.5.2 Discussion . 116

5.6 Conclusion . 119

IV Last contribution 121

6 Quasi Capture Tube Validation 123
6.1 Introduction . 123
6.2 Related work . 124

6.2.1 Capture tube . 125
6.2.2 Difficulty . 126

6.3 Quasi capture tube validation . 128
6.3.1 Quasi-capture tubes . 129
6.3.2 CSP approach . 129

6.4 Method and algorithm . 130
6.4.1 Main algorithm . 130
6.4.2 Differential contraction . 132
6.4.3 Discussion . 134

6.5 Experiments . 135
6.5.1 Pendulum . 136
6.5.2 2D linear system . 137
6.5.3 Linear tracking system . 138
6.5.4 Pursuit evasion game . 140

6.6 Conclusion . 143

V Epilogue 145

7 Conclusion 147
7.1 Looking back . 147

7.1.1 Detail of the contributions . 148
7.2 Looking ahead . 149

7.2.1 Detail of the perspectives . 149

18

Table of contents

References 151

19

Table of contents

Notations and Acronyms

Notations

∅ Empty set
R Set of reals
IR Set of all intervals of R
IRn Set of all boxes of Rn

x ∈ R Real variable
[x] ∈ IR Interval [x, x]
x Lower bound of [x]
x Upper bound of [x]
[f] Inclusion function of f
[f ∗] Minimal inclusion function of f
c Constraint related to f
C Contractor related to c
t ∈ R Time variable
x(t) Trajectory evolving in time : R 7→ R
[x](t) Tube of trajectory x(t)
[[x]] Tube slice
G(x(t), t) Capture tube candidate
C d

dt
, DynBasic Differential contractor

ODE-Contractor, ODE-Ctc Contractor for Ordinary differential equations

20

Table of contents

Acronyms

CSP Constraint Satisfaction Problem
NCSP Numerical Constraint Satisfaction Problem
DCSP Dynamical Constraint Satisfaction Problem
ODE Ordinary Differential Equation
IVP Initial Value Problem
IIVP Interval Initial Value Problem
BVP Boundary Value Problem
GI Guaranteed Integration
FWD Forward
BWD Backward
SC Stopping Condition
Bis Bisection
COC CrossOut Condition
SIVIA Set Inversion via Interval Analysis
B&C Branch and Contract

21

Part I

Prologue

23

Chapter 1

Introduction

1.1 Context of the thesis

This thesis is supported by the French Agence Nationale de Recherche (ANR) and
is a part of the ANR CONTREDO project "Intervals and Contractors for Dynamical
Systems".
The main goal of this project is to propose methods for the guaranteed resolution of
continuous dynamical systems coupled with constraints.
The core of the project is the study of constraint satisfaction over trajectories. It is guided
by robotic applications studied by the LAB-STICC laboratory from ENSTA-Bretagne
and MBDA, two of the partners of the project.

The Constraint Satisfaction Problem framework (CSP) is a general model representing a
mathematical problem as a finite set of variables such that each variable has a domain
and is subject to constraints. The set of constraints constitutes a network that links the
variables together. A solution to the CSP is an assignment for each variable to a value
from its domain, such that all the constraints are satisfied. When the variables of the
CSP are real and the domains are intervals, the CSP becomes a Numerical CSP (NCSP).
The CONTREDO project aims to address continuous dynamical systems through a CSP
framework called DCSP, for Dynamical CSP . A DCSP involves the trajectories of a
dynamical system as variables with tubes as domains.
These variables are linked by a set of constraints involving algebraic (non differential)
constraints for the real variables (such as for Boundary Value Problems) and differential
constraints (from the dynamical systems) for the trajectory variables.

25

INTRODUCTION

1.2 Thesis motivations

In the context of the ANR CONTREDO project, this thesis aims to solve rigorously
Ordinary Differential Equations (ODE). ODEs represent the most important part of the
dynamical systems studied in the CONTREDO project.
The first motivation of this thesis consists in using interval arithmethic for the reliability
of the solutions.
Contrary to usual numerical analysis methods that work with single values, interval
methods can manage sets of values enclosed in intervals. Interval methods are known to
be particularly useful for handling nonlinear constraint systems. Moreover, when the
result is wanted to be guaranteed, interval methods are particularly useful in order to
compute enclosures containing the true solutions of a problem.
The second motivation of this thesis is to address ODEs through a CSP framework called
DCSP, then to build a contractor dedicated for ODEs.
Contractors consist in applying to each constraint of a CSP an operator that reduces the
domains of its variables by removing undesired parts of the domain.
Some of the existing contractors for NCSPs have been adapted to DCSPs and implemented
in the CODAC library. They showed promising results, at least for state estimation
problems.
Far from DCSPs, there exist different approaches to solve Initial Value Problems (IVP),
the most common type of ODEs. The most popular ones use numerical schemes, such
as Euler methods or Taylor series in order to approximate the solutions. Some of these
approaches have been adapted to intervals and are referred as guaranteed integration
methods. The idea is then to build an ODE-Contractor, a contractor based on guaranteed
integration methods, in order to solve IVPs.
Moreover, the ODE-Contractor will be added to the set of contractors of the generic
solver of the CODAC library in order to solve a wider variety of problems involving
ODEs such as Boundary Value Problems (BVP).
Finally, the ODE-Contractor will be used for the validation and computation of temporal
invariance sets.

1.3 Approach

The first step of this work is to build a contractor for ODEs.

26

1.3 Approach

For a better understanding of this work, a basketball shoot is taken as an example. The
trajectory of the ball can easily be described by an ordinary differential equation of the
type ẋ = f(x, t). Supposing that the initial force given to the ball is constant, there are
only two parameters that can decide how far the ball could go, these parameters are the
initial height h, and the initial angle θ see Figure 1.1.

θ

h

Fig. 1.1 An illustration of a basketball player throwing a ball. h and θ are respectively
the initial height of the ball and the angle of the velocity vector induced by the
initial force.

Using intervals, a tube can be computed to enclose the trajectory of the ball displayed in
red —, such as in Figure 1.2.
Numerically, the blue tube displayed in Figure 1.2 can be obtained using existing
contractors for ODEs. The available contractors of the CODAC library are mostly using
first order integration methods. They propagate information from the ODE system to
contract the domains of the ODE solutions, such as in Figure 1.3.
The idea is to improve the quality and the efficiency of the contraction using higher
integration methods.
Several solvers, such as VNODE-LP, CAPD or Dynibex, use high order integration
methods coupled with interval analysis to compute reliable solutions for ODEs. The
design of the proposed ODE-Contractor consists in wrapping a guaranteed integration
solver inside a higher level function.

27

INTRODUCTION

h

θ

Fig. 1.2 In blue, a tube composed of a lower bound trajectory and an upper bound
trajectory enclosing the real trajectory of the ball.

The second step consists in the integration of the ODE-Contractor in the DCSP solver of
the CONTREDO project. This implementation is followed by the resolution of different
problems from a benchmark of various dynamical systems, including interval IVPs (IIVP)
and BVPs. Solving the problems of the benchmark provides useful observations on how
the ODE-Contractor interacts with the DCSP solver. The ODE-Contractor is expected
to provide an efficient contraction for ODEs, while the DCSP solver provides external
tools, such as bisection, to better exploit of the ODE-Contractor.

Contrary to IVP, BVPs do not provide full information on the trajectory as an initial
condition. However, it provides partial information at different moments such as the
initial time and the final time. Taking the basketball example, a scenario describing
a BVP would be knowing the position of the ball when it is thrown, and knowing its
position after a few seconds (when it enters the basket for example) but the shooting
angle remains unknown, see Figure 1.4.
As a result, the ODE-Contractor is also used in an alternative approach for BVP resolu-
tion based on an interval shooting method. This method is expected to compute solutions
for BVPs faster by setting an initial guess for the solution instead of an initial domain.
The interval shooting method computes a solution for the initial guess, then it is followed

28

1.3 Approach

θ

h

Fig. 1.3 Example of a tube resulting from a first order derivative contractor. The
interval initial condition with the size of the ball is propagated using the lower
bound and the upper bound derivatives at each slice of the tube. Each slice is a
box containing the possible trajectories of the ball according to the derivatives
during a given time step. A gate (in pink) is also computed and consists in a
thinner enclosure for the trajectories at the end of each slice.

by a validation step that proves that this solution exists and is unique in its neighborhood.

consists in the design
Finally, the ODE-Contractor will be used for validating temporal invariance sets, called
here capture tubes.
Capture tubes can be useful in many domains. In robotics, proving properties such
as avoidance can be performed through the validation of a capture tube. Taking the
basketball example, if there are two players playing against each other, player 2 will try
to intercept the ball when player 1 throws it. Figure 1.5 shows an example of capture
tube such that if the ball’s trajectory is inside the capture tube, player two will not be
able to catch it.
The root of this project is an existing solver called Bubbibex. It was developed by the
students of ENSTA-Bretagne , and uses a V-Stability approach to validate capture tubes.
Bubbibex takes a dynamical system and its associated capture tube candidate as input.
It performs a capture tube validation by solving a system of equations using a SIVIA
algorithm Jaulin and Walter (1993).

29

INTRODUCTION

h0

t0 tf

hf

θ2?

θ1?

Fig. 1.4 Other illustration modeling of a basketball player throwing a ball. In this
case, the problem is given as a boundary value problem (BVP). The height is
known at the beginning and at the end of the exercise, while the angle remains
unknown.

Fig. 1.5 Example of discrete bubbles forming a path containing all the possible trajecto-
ries for the ball thrown by player one such that player two cannot intercept
them. Each bubble is a capture tube at a given time of the throwing.

30

1.4 Contributions

These equations characterize the subsets of the capture tube candidate where the trajecto-
ries of the dynamical systems cross its boundaries from inside to outside. As a result, when
the system of equations has at least one solution, the tube candidate is not a capture tube.

The interval approach is crucial to guarantee that a given tube is a capture tube by
proving that the system of equations has no solution. A first improvement for Bubbibex
is to define the whole problem as a unique DACSP, and not a sequence of two problems.
The second improvement for Bubbibex consists in using the state of the art numerical
contractors to improve the efficiency of capture tube validation.
When the capture tube validation is unsuccessful, i.e. there is at least one trajectory
escaping from the capture tube candidate, Bubbibex performs a simulation for the
escaping trajectories. The goal is to verify if the escaping trajectories return to the
capture tube candidate before the end of the simulation.
Based on that, the second improvement for Bubbibex consists in replacing the simulation,
initially performed with a Euler method, with guaranteed integration.
Guaranteed integration computes tubes enclosing all the escaping trajectories. When
the tubes containing the escaping trajectories have been proven to return to the capture
tube candidate, the tube candidate is referred as a quasi capture tube.

1.4 Contributions

1.4.1 Contractor for ODEs and interval BVP solver

The first contribution of this thesis is a contractor for ordinary differential equations.
It consists in the design of the ODE-Contractor and its integration in the solver of the
CONTREDO project, Tubex Solve.
The conception of the ODE-Contractor is based on wrapping the C++ state of the art
guaranteed integration solver VNODE-LP, in a higher level function of the CODAC
library. This function performs forward and backward tube contractions for ODEs, see
Figure 1.6.
Tubex Solve is the DCSP solver of the CODAC library. It is based on a branch and
filter algorithm i.e an combinatorial algorithm in which a choice point is achieved by the
bisection of a tube into two "sub-tubes" at a specific time, and the filtering is carried out
by contractors.
The contraction procedure is provided by a propagation loop calling a set of contractors
to reduce the domain of a functional variable . The ODE-Contractor is added to the set of

31

INTRODUCTION

h

θ

Fig. 1.6 Example of a forward contraction using the ODE-Contractor.

the contractors called during the propagation loop in order to improve the performances
of the solver.
The different assets provided by the DCSP solver benefits the ODE-Contractor as well.
In one hand, they allow the ODE-Contractor to improve its performances for IVPs, see
Figure 1.7.
On the other hand, they allow the ODE-Contractor to address and solve problems such
as BVPs, successfully finding all their solutions in a given domain, despite the fact
that ODE solvers, such as VNODE-LP, were not initially made to address this kind of
problems, see Figures 1.4 and 1.8.
An ODE-Contractor based on the C++ state of the art guaranteed integration solver
CAPD is implemented as well.

The second contribution consists in using the ODE-Contractor an alternative approach
for BVP resolution. It is based on a shooting method coupled with an interval newton
validation. This approach is only implemented in CAPD as the guaranteed integration
solver provide various tools to access to the partial derivatives of a solution of an ODE.
Therefor, this approach is applied to various two-point BVPs and the results are compared
to the results of the DCSP approach.

32

1.4 Contributions

h

θ

Further contractions Step size reduction
+

contractions

Fig. 1.7 Example of an improved contraction. The blue tube is the result of the ODE-
Contractor. The green tube is the result of further contractions performed by
the DCSP solver. The solver has also performed a new time-step slicing for
the tube in order to improve the contraction.

h0

t0 tf

hf

θ2?

θ1?

Initial domain for the trajectories

Fig. 1.8 The BVP is solved by contracting the domain in gray. The green tube satisfies
the constraints of the DCSP suggesting that it is a solution to the BVP. The
purple tube does not satisfy the constraints of the DCSP.

33

INTRODUCTION

1.4.2 Quasi Capture Tube Validation

The last contribution of this thesis is the quasi capture tube validation.
The quasi capture tube validation is performed though a DCSP approach, improving the
initial solver dedicated to capture tube validation, Bubbibex.
Proving that a tube candidate is a capture tube for a dynamical system amounts to
proving that a set of equations has no solution. The capture tube validation was initially
performed by a SIVIA algorithm in the Bubbibex solver.
The first part of this contribution consists in replacing the SIVIA algorithm by a DCSP
approach involving a branch and contract algorithm using the state of the art numerical
contractors, such as HC4-Revise, in order to improve the capture tube validation.
When the capture tube validation is unsuccessful, i.e. the numerical contractors were
able to find at least one solution for the set of equations (the box A in Figure 1.9), the
second part of the contribution takes the lead.
This part consists in adapting the approach proposed by Jaulin et al. (2016), for the
validation of quasi capture tubes. It is based on the simulation of all the trajectories
crossing the solutions found by the numerical contractors, and on proving that they return
to the capture tube candidate. This simulation is carried out by the ODE-Contractor
during the branch and contract procedure. If all the trajectories return to the tube
candidate before the end of the simulation (see the box B in Figure 1.9), then the quasi
capture tube validation is considered as a success, see Figure 1.9.

1.4.3 Organization of the contributions

The contributions described above are a part of the ANR CONTREDO and to better
understand where these contributions belong in the ANR CONTREDO’s ecosystem a
few elements must be introduced as well.
As previously mentioned, the CONTREDO project aims to develop tools to address
dynamical systems through approaches based on intervals and contractors.
Ibex Chabert (2020) is the main library used for interval analysis and contractors. Ibex is
built on top of a low level library (such as Filib Lerch et al. (2006)) dedicated to interval
analysis. Moreover, Ibex carries a set of algorithms and contractors dedicated to solve
complex problems through the NCSP approach. Plugins such as IbexOpt, for global
optimization or Dynibex dit Sandretto and Chapoutot (2016) for guaranteed integration
have also been developed for Ibex in order to address a wider variety of problems.
CODAC (previously named Tubex) Rohou et al. (2021b) is the main library for tubes
arithmetic and dynamical contractors (tube contractors).

34

1.4 Contributions

A: Trajectory leaving
the bubble

B: Trajectory
returning to the
bubble

Fig. 1.9 Example of simpler shapes for the bubbles (the radius is the same for all circles).
The yellow, the red and the green trajectories satisfy the definition of a capture
tube, as the trajectories never leave the path of the circles. However, the
purple trajectory leaves the path in the beginning, it is then captured afterward,
showing that the bubbles correspond to a quasi capture tube.

Both these libraries (Ibex and CODAC) can be considered at the root of the tools
developed in the ANR CONTREDO project.
The contributions of this thesis can be enumerated as follows:

1. ODE-COntractor

2. IBVP Solver

3. Bubbibex

The ODE-Contractor is the first contribution. It is built on top of both CODAC
and external libraries for guaranteed integration such as VNODE-LP Nedialkov (2006)
or CAPD Kapela et al. (2010). Dynibex was considered as well but was eventually
abandoned due to version incompatibilities with Ibex.
The ODE-Contractor is also integrated in the generic solver of the CONTREDO project
as an indirect contribution.
Moreover, the ODE-Contractor is used for guaranteed integration in the IBVP Solver.
This solver performs a Shooting Method coupled with an Interval Newton validation to

35

INTRODUCTION

compute guaranteed solutions for BVPs, which consists in the second contribution of
this thesis.
Finally, the ODE-Contractor, coupled with the numerical contractors of Ibex and a branch
and contract procedure, is used for Quasi Capture tube validation, as an improvement
for Bubbibex Akkouche et al. (2014). This is the last contribution of this thesis.
Figure 1.10 illustrates the whole environment of development of the CONTREDO project,
highlighting the used libraries and the contributions of this thesis.

Low level interval
arithmetic library:

Filib

Intervals and
constraints:

Ibex

Guaranteed
Integration:

DynIbex

Tubes and Dynamical
Contractors:

CODAC

ODE-Contractor

Guaranteed
Integration:

CAPD
VNODE-LP

Generic Solver:
Tubex Solve

IBVP Solve

Bubbibex 2.0

External libraries

ANR CONTREDO’s partners

Direct contributions

Indirect contributions

Not maintained for
recent version

Fig. 1.10 Diagram of the used libraries in the context of the ANR CONTREDO project,
as well as the contributions of the thesis

1.5 Organization of the thesis

This document is organized as follows:

Part II presents the necessary background to understand interval arithmetic, constraint
satisfaction problems and dynamical systems.
It contains two chapters.

36

1.5 Organization of the thesis

Chapter 2 introduces the most important notions about intervals, constraint
satisfaction problems and contractors.

Chapter 3 introduces dynamical systems with an overview on the usual numer-
ical methods for their resolution, including guaranteed integration methods and a
dynamical CSP approach with differential contractors.

Part III presents Chapter 4 , the first contribution of this thesis, and Chapter 5, the
second contribution of this thesis.

Chapter 4 presents the ODE-Contractor, a differential contractor for DCSPs
involving ODEs.
The DCSP solver of the CONTREDO solver is also presented in this Chapter, as
well as an overview on the differential contractors that have been developed for the
solver.
Finally, Chapter 4 presents a benchmark of problems followed by the results and a
discussion about the results.

Chapter 5 presents an approach based on an interval shooting method for the
resolution of two-point BVPs, this method is followed with an interval Newton
validation for the solutions. After that, the Chapter presents a benchmark of
problems and the results of the approach.

Part IV presents the Chapter 6, the last contribution of this thesis.

Chapter 6 introduces the quasi capture tube validation problem and a CSP
approach to address it.
A set of examples is presented, followed by the results of the approach obtained
on these examples.

Finally, this thesis concludes with Chapter 7, which summarizes the contributions and
suggests a few additional research ideas.

37

Part II

Background

39

Chapter 2

Intervals and constraint satisfaction
problems

Synopsis This Chapter introduces fundamental notions about interval arithmetic and
interval constraint satisfaction problems.

2.1 Introduction

Number representation is an old problem studied by generations of mathematicians.
Pythagorean school preached that every number is rational, meaning that each number
can be expressed as a ratio of two integers. So when it comes to "Pythagoras’s number"
one can naturally expect a rational number, ironically this number is

√
2 an irrational

number as its discovery is credited to Hippasus, a Pythagorean.
Nowadays, on computers, real numbers are represented by floating-point numbers. This
representation can be extremely precise but it is still incomplete. Taking

√
2 as example,

a numerical representation of this number cannot be done exactly but there exist several
algorithms that can approach its real value. The approached value is known by stopping
the algorithm at a desired digit. In that case, one can represent it as 1, 41, 1, 4142, ...,
1, 41421356237309504880.
In 1966, Modern interval analysis was born when Ramon E. Moore published his book
" Interval Analysis" Moore (1966). The approach consists on a number representation
using two bounds enclosing its real value. The approach is not new, as ancient Greek
mathematician Archimedes calculated lower and upper bounds of π. Interval analysis
constitutes a solid alternative to traditional floating-point number approaches by providing
bounds that guarantee reliability and correctness of the results.

41

Intervals and CSP

2.2 Intervals

This section presents the most important notions about intervals. For more details about
the subject, the reader may refer to Jaulin et al. (2001); Moore (1966); Tucker (2011).

2.2.1 Interval representation

An interval [x] is a closed and connected subset of R defined as follows:

[x] = [x, x] = {x ∈ R , x ≤ x ≤ x} (2.1)

Where x and x are the lower and the upper bounds of the interval [x], also called End
points of the interval.
The interval [x] belongs to the set of intervals IR (IR denotes the set of all the intervals).

Example 2.1. Examples of intervals

• [1, 2] simple interval

• [−∞, 4] interval with infinite lower bound

• [−∞,∞] infinite interval

• < 0, 0 >= [0, 0] degenerate interval

• ∅ empty interval

The center of an interval (also called Mid point) is a scalar value defined by :

mid([x]) = x+ x

2 (2.2)

The diameter of an interval (also called width) is defined by :

diam([x]) = w([x]) = x− x (2.3)

42

2.2 Intervals

x x

w([x])

mid([x])

Fig. 2.1 Simple interval [x] with diameter and mid point

2.2.2 Set operations on intervals

Usual operations on sets (intersection ∩, union ∪, ...) can be applied to intervals.
Given two intervals [x] and [y], the intersection is defined by:

[x] ∩ [y] = {z ∈ R | z ∈ [x] and z ∈ [y]} (2.4)

The union is defined by:

[x] ∪ [y] = {z ∈ R | z ∈ [x] or z ∈ [y]} (2.5)

Fig. 2.2 intersection of two intervals

Unlike the intersection, the union of two intervals is not always an interval (see Figure
2.3)
In order to obtain a closed interval from the union, an interval union, defined by the
Interval hull, computes the smallest interval containing [x] ∪ [y].
The interval hull is defined by:

[x] ⊔ [y] = [[x] ∪ [y]] (2.6)

43

Intervals and CSP

A B

Union = AUB

Hull = [AUB]

A B

1

2

Fig. 2.3 Union of two intervals: Example of the union of two intervals A and B. (1)
A ∪B (yellow) is not an interval. (2) The interval hull A ⊔B = [A ∪B] is the
smallest interval (orange) containing A ∪B.

Remark 2.1. Note that the intersection and the interval hull can relay on the end points
of the intervals to compute the resulting set :

[x] ∩ [y] =

 [max(x, y),min(x, y)] if max(x, y
¯

) ≤ min(x, y)
∅ otherwise

(2.7)

[x] ⊔ [y] = [min(x, y),max(x, y)] (2.8)

2.2.3 Interval arithmetic

Considering two intervals [x] and [y], the basic real arithmetic operations can be extended
to intervals.
As well as intersection and interval hull, any binary operation between [x] and [y] can be
performed using the end points of the intervals. A general form is provided using the
binary operator ⋄ ∈ {+,−,×, /} such that :

[x] ⋄ [y] = [{x ⋄ y/x ∈ [x], y ∈ [y]}] (2.9)

As a result, each binary operation can be performed as follows:

44

2.2 Intervals

• Sum + :

[x] + [y] = [{x+ y|x ∈ [x], y ∈ [y]}] (2.10)
= [x+ y, x+ y] (2.11)

• Subtraction −:

[x]− [y] = [{x− y|x ∈ [x], y ∈ [y]}] (2.12)
= [x− y, x− y] (2.13)

• Multiplication × :

[x]× [y] = [{x× y|x ∈ [x], y ∈ [y]}] (2.14)
= [min{xy, xy, xy, xy},max{xy, xy, xy, xy}] (2.15)

• Division / :

[x]/[y] = [{x/y|x ∈ [x], y ∈ [y]}] (2.16)

= [x]× 1
[y] (2.17)

Remark 2.2. The fraction 1
[y] is provided by the following operations:

1
[y] =

∅ if y = [0, 0]
[1
y
,
1
y

] if 0 /∈ [y]

[−∞, 1
y

] if y = 0

[1
y
,∞] if y = 0

[−∞,∞] if 0 ∈ [y]

(2.18)

2.2.4 Interval vectors (box)

An interval vector [x], also called a box, is a subset of Rn defined by the Cartesian
product of n intervals.
An interval vector is defined by:

45

Intervals and CSP

[x] = [x1]× [x2]× · · · × [xn] (2.19)

With : [xi] = [xi, xi] for i = 1, . . . , n.
Each component of the interval vector is the projection of [x] onto its corresponding axis.

x2

x1 [x1]

 [x2] [x]

Fig. 2.4 Example of box

The empty interval vector is defined by ∅ × · · · × ∅.
Many properties of the intervals can be extended to interval vectors.

• Bounds:
x = (x1, . . . , xn), x = (x1, . . . , xn) (2.20)

• Mid point:
mid([x]) = (mid([x1]), . . . ,mid([xn])) (2.21)

• Width :
w([x]) = max(w([x1]), . . . , w([xn])) (2.22)

With the same logic, these extensions apply to interval matrices.

2.2.5 Inverse element

In interval arithmetic, the interval −[x] is not the additional inverse of [x].

46

2.2 Intervals

x2

x1 [x1]

 [x2] mid([x])

w([x])

Fig. 2.5 width, mid point of interval vector

[x]− [x] = [x, x] + [−x,−x] = [−(x− x), (x− x)] = [−1, 1]diam([x]) (2.23)

Unless diam([x]) = 0, [x]− [x] ̸= 0. This is also true for 1
[x] for multiplication.

Example 2.2. The following example shows that −[−1, 1] is not the inverse of [−1, 1]
for the sum:

[−1, 1]− [−1, 1] = [−1− 1, 1− (−1)] = [−2, 2] (2.24)

2.2.6 Inclusion function

Considering a function f : Rn → Rm the image of the set A ⊂ Rn is

f(A) = {f(x) |x ∈ A} (2.25)

When A is an interval vector [x] (or interval matrix) the image of [x] by f is:

f([x]) = {f(x) |x ∈ [x]} (2.26)

47

Intervals and CSP

More specifically elementary functions can be extended to intervals (resp interval vectors,
interval matrices). Moreover, when the function is monotonic its interval extension can
rely on end points such as in the following examples:

Examples 2.1.
[exp([x])] = [exp(x), exp(x)]

[log([x])] = [log(x), log(x)], x > 0

In general, when the function f is increasing, its interval extension is : [f([x])] =
[f(x), f(x))]. When f is decreasing, its interval extension is [f([x])] = [f(x), f(x))].
However, it is not necessary the case for non-monotonic functions. These functions
require more elaborate methods such as reasoning on the different monotonic parts of
the function and return the interval hull of the result. See Example 2.3.

Example 2.3.
[sin([0, π])] ̸= [sin(0), sin(π)] = [0, 0]

[sin([0, π])] is computed by the Algorithm 1 and returns the interval [0,1].

Algorithm 1: Interval evaluation of sin function 1
1 Function sin([x])

// The sin function is bounded and belongs to the interval [−1, 1].
// Its periodicity simplifies distinguishing the parts where the

function is increasing and the parts where it is decreasing.
2 if ∃k ∈ Z | 2kπ − π/2 ∈ [x] then
3 sin([x]) = −1
4 else
5 sin([x]) = min(sin(x), sin(x))
6 end
7 if ∃k ∈ Z | 2kπ + π/2 ∈ [x] then
8 sin([x]) = 1
9 else

10 sin([x]) = max(sin(x), sin(x))
11 end
12 return ([sin([x]), sin([x])])
13 end

Definition 2.1. Inclusion function

48

2.2 Intervals

Considering a function f : Rn → Rm, [f] : IRn → IRm is an inclusion function for f if:

∀[x] ∈ Rn, f([x]) ⊂ [f]([x]) (2.27)

The image of an interval vector (resp. interval matrix) by an inclusion function is always
an interval vector (resp. interval matrix).
It is possible to have multiple inclusion functions for a given function f , depending
on its mathematical expression, and some of them might be over estimated. The
overestimation is a well known effect generally due to the lack of some properties of
interval arithmetic (sub-distributivity, absence of inverse element, see example 2.2) or
some phenomena like the wrapping effect.
Therefore, even if it is usually hard to compute, a minimal image [f]([x]) exists such
that [f]([x]) is the smallest box (resp interval matrix) containing f([x]).

Properties 2.1.

• An inclusion function [f] is thin if, for any punctual interval (degenerate interval):

[x] = x, [f]([x]) = f(x) (2.28)

• [f] is convergent if, for any sequence of boxes [x](k):

lim
k→∞

w([x](k)) = 0 =⇒ lim
k→∞

w([f][x](k)) = 0 (2.29)

• [f] is inclusion monotonic if:

[x] ⊆ [y] =⇒ [f]([x]) ⊆ [f]([y]) (2.30)

These properties are generally satisfied by the usual inclusion functions.

The simplest inclusion function is the natural inclusion function and it is defined as
follows:

Definition 2.2. [f]N is a natural inclusion function when each variable xi is replaced by its
corresponding interval [xi] and each operator (+,−, ,×, /) or function sin, cos, exp, log, ...)
is replaced by its interval counterpart. See Example 2.4.

Example 2.4. Natural evaluation of different representations of a function f(x) for
x = [−1, 1]:

49

Intervals and CSP

• f(x) = x(x+ 1) : [f]N([−1, 1]) = [−2, 2]

• f(x) = (x ∗x+x) : [f]N ([−1, 1]) = [−2, 2] (same result as the previous evaluation).

• f(x) = (x2 + x) : [f]N([−1, 1]) = [−1, 2] (better result).

• f(x) = (x+ 1
2)2 − 1

4 : [f]N([−1, 1]) = [−1
4 , 2] (minimal).

Remark 2.3. Note that in the previous example, the variable x occurs only once in
the last representation of the function f , as a consequence, the evaluation [f]N of f is
minimal.

Proposition 2.1. Let [f]N be the natural inclusion function of the function f such that,
every operator and function involved in the formal expression of f are continuous. If
each variable xi of the function f occurs at most once, then [f]N is minimal Jaulin and
Le Bars (2012).

Another useful inclusion function is the Taylor inclusion function and it is defined as
follows:

Definition 2.3. The inclusion function of f can be performed using the Taylor inclusion
function :

f(x) ∈ [f]T ([x]) = f(x̂) +
k∑

i=1

1
i!f

(i)(x̂)([x]− x̂)i + [R]([x], [x̂]) (2.31)

Where f is k-differentiable, x̂ ∈ [x] (usually x̂ = mid([x])) and [R] is an interval extension
of the Taylor reminder R = 1

(k + 1)!f
(k+1)(ξ)(x− x̂)k+1 with ξ ∈ [x].

When k = 1, this inclusion function is referred as the mean value form Moore (1966).

2.2.7 Wrapping Effect

Intervals (resp. interval vectors/matrices) are axis-aligned. The advantage of repre-
senting an n-dimensional set by an interval vector lies in its simplicity. Most of the
arithmetic operators (or set operators) rely on the bounds of the intervals (resp interval
vectors/matrices). But estimating a non axis-aligned set with an axis-aligned one causes
pessimism. This phenomenon is called wrapping effect. See Figure 2.6

50

2.3 Constraint satisfaction problems

Fig. 2.6 Example of wrapping effect: The yellow boxes represent the real positions of a
moving robot. The robot rotates with a π

4 angle at each step. Its first position
is at the top, and it is represented by the green box. At each rotation, the green
box cannot be represented by an interval vector (Cartesian product), but it is
represented by the red box, the smallest interval vector (Cartesian product)
containing it. As a result, the red box increases at each step causing the well
known wrapping effect.

2.3 Constraint satisfaction problems

2.3.1 Introduction

Constraint satisfaction problems (CSP) Mackworth (1977); Montanari (1974) provide
a model representing a mathematical problem as a set of finite discrete variables, each
variable being associated with a domain of possible values, and a set of constraints. A
solution to the CSP is an assignment of a value to each variable from its domain such
that the constraints are satisfied.

51

Intervals and CSP

2.3.2 Numerical constraint satisfaction problems

Definition 2.4. CSP
A CSP P = (X,D,C) provides:

• Variables: X = {x1, . . . , xn}.

• A set of domains D = {D(x1), . . . , D(xn)}.

• A set of constraints C = {c1, . . . , cm}

A solution to P is an assignment of the variables in X satisfying all the constraints fr C.
When xi ∈ R and D(xi) is an interval, the CSP is a numerical CSP (NCSP) and the
notation [x] = {[x1], . . . , [xn]} is more suitable for the set of domains of the NCSP.

2.3.3 Contractors

As mentioned in Definition 2.4 solving a CSP P = (X,D,C) amounts to finding an
assignment in X satisfying all the constraints in C. One way to proceed, is through
filtering algorithms. It consists in removing values from the domains of the variables of
P that cannot satisfy the constraints Bessiere and Debruyne (2008).
When the variables of the CSP are real (i.e., the CSP is an NCSP Lhomme (1993a))
interval analysis combined with filtering algorithms is particularly well suited.
In the paper Chabert and Jaulin (2009), the authors introduced the concept of contractors
for the resolution of NCSPs. Contractors are an adaptation of filtering algorithm
techniques as they involve domain reduction for the variables of the NCSP. Contractors
provide sophisticate assets such as linear relaxation, shaving, constraint propagation
operators, etc...
Formally, a contractor C is defined by an operator IRn → IRn Chabert and Jaulin (2009).
Contracting an NCSP consists in replacing its domain [X] by a smaller domain [X ′] such
that:

[X ′] = C([X]) ⊆ [X] (2.32)

Definition 2.5. Contractor
A contractor is a mapping C from IRn → IRn such that:

1. ∀x ∈ IRn, C([x] ⊆ [x] (contraction)

2. (x ∈ [x], C({x}) = {x}) =⇒ x ∈ C([x]) (consistency)

Property (1) states that a box can only be reduced by a contractor. (2) states that no
solution is lost during the contraction.

52

2.3 Constraint satisfaction problems

Contractor example: Forward-Backward The Forward-Backward algorithm Ben-
hamou et al. (1999), also known as HC4-Revise, is a prime example of contractors.
The algorithm works by decomposing each single constraint to primary constraints
(see example 2.5). After that, the algorithm performs two operations. A forward step
applies interval arithmetic to the primary constraints successively reconstructing the
original constraint and a backward step going from the original constraint back to the
primary ones (see Figure 2.7).

Example 2.5. HC4-revise applied on the constraint: (x− y)2 − z = 0.
Given that x = [0, 10], y = [0, 4] and z = [9, 16] with a, b and c set to [−∞,∞]
Forward:

a := a ∩ (x− y)
:= [−∞,∞] ∩ ([0, 10]− [0, 4])
:= [−4, 10]

b := b ∩ (a2)
:= [−∞,∞] ∩ ([−4, 10]2)
:= [0, 100]

c := c ∩ (b− z)
:= [−∞,∞] ∩ ([0, 100]− [9, 16])
:= [−16, 91]

53

Intervals and CSP

Backward:

c := c ∩ [0, 0]
:= [−16, 91] ∩ [0, 0)
:= [0, 0]

z := z ∩ (b− c)
:= [9, 16] ∩ ([0, 100]− [0, 0])
:= [9, 16]

b := b ∩ (c+ z)
:= [0, 100] ∩ ([0, 0] + [9, 16])
:= [9, 16]

a := a ∩
√
b

:= [−4, 10] ∩ ([−4,−3] ⊔ [3, 4])
:= [−4, 4]

y := y ∩ (a+ x)
:= [0, 4] ∩ ([−4, 10] + [0, 10])
:= [0, 4]

x := x ∩ (a+ y)
:= [0, 10] ∩ [−4, 4] + [0, 4]
:= [0, 8]

As shown in the example 2.5, this contractor handles a single numerical constraint by
decomposing it into primary constraints.

2.3.4 Other contractors for NCSPs

So far, the main contractor used in this thesis is HC4-revise. To contract a box w.r.t. an
NCSP instance, HC4-revise is generally applied iteratively to each constraint individually
until a quasi fixed-point is obtained in terms of contraction. This AC3-like propagation
loop is achieved by the HC4 algorithm Benhamou et al. (1999); Messine (1997).
However, HC4-revise generally obtains a non optimal Collavizza et al. (1999)) contracted
box including all the solutions of that constraint, in particular when a variable has multiple

54

2.4 Conclusion

C

 b

a

y

z

 x

C

b z

 a

 x y

[-16,91][-16,91]

Fig. 2.7 forward backward algorithm applied to the constraint of the example 2.5

occurrences in the expression of a constraint. Therefore CID-consistency Trombettoni
and Chabert (2007) is sometimes used to enforce a stronger consistency.
CID-consistency is enforced on an NCSP. The CID algorithm calls its VarCID procedure
on all the NCSP variables for enforcing the CID-consistency. VarCID splits a variable
interval in k sub-intervals, and runs a contractor, such as HC4, on the corresponding
sub-boxes. The smallest box including the k contracted sub-boxes is finally returned.
The 3BCID contractor that will be later used in this thesis uses a variant of the VarCID
procedure.

2.4 Conclusion

This Chapter has introduced the main tools related to interval arithmetic. It is clear
that the main strength of intervals is to compute guaranteed and reliable results while
dealing with uncertainties over real numbers.
Moreover, when it comes to CSP, or more exactly NCSP, the interval approach has proved
to be a fairly interesting tool for the definition of domains but also for the contractors,
the algorithms that filter the domains.
These filtering algorithms are the essence of the methods for the resolution of NCSPs,
and the main goal of this thesis is to develop this type of algorithms.
The next Chapter introduces the DCSP model, an extension of the NCSP model for
dynamical systems as well as an approach through interval analysis and contractors.

55

Chapter 3

Dynamical systems and Differential
constraint satisfaction problems

Synopsis This Chapter introduces fundamental notions about resolution of continuous
dynamical systems and a dynamical constraint satisfaction problem approach dedicated
to dynamical systems.

3.1 Introduction

In the context of numerical CSP (NCSP), the functions describing the constraints are
usually combinations of basic functions (cos, sin, exp, log,etc...) and basic operators
(+,−,×, /). But what happens if the variables of the NCSP are functional? And what if
the basic operators of the constraint functions involve differential operators?
In that case, the NCSP becomes a dynamical constraint satisfaction problem (DCSP).
Just like a CSP, a DCSP is composed of variables, domains, and constraints. The
difference between the two lies in the nature of the variables and the constraints. A
DCSP, in addition to the real variables and the usual constraints, has functional variables
and differential constraints Rohou et al. (2020).
This document will focus on the interval approaches to solve DCSPs due to their numerous
advantages. DCSPs are able to handle various types of constraints such as linear and non-
linear differential constraints. The interval approaches provide a rigorous approximation
of the solution while being able to handle uncertainties (noise, measurement errors, etc...)
using bounded intervals.
The main challenge when solving a DCSP is characterizing each solution by computing a
“small” envelope containing it. This will be performed using contractor programming.
Rohou et al. (2017) and Bethencourt and Jaulin (2014) have developed differential

57

Dynamical systems and DCSP

contractors to do so. Independently from contractors, there are techniques that have been
developed to compute rigorous solutions for ordinary differential equations such as in
Moore (1966); Nedialkov et al. (1999); Tucker (2002). Those methods, called guaranteed
integration, are used in Dynibex dit Sandretto and Chapoutot (2016), VNODE-LP
Nedialkov (2006), CAPD Kapela et al. (2010).

3.2 Dynamical systems: Ordinary differential equa-
tions

A dynamical system is a set of mathematical equations describing a system evolving
in time. When the system evolves continuously over time, it is called a continuous
dynamical system.
Most of the continuous dynamical systems are described by ordinary differential equations
and their solutions are called trajectories Bourgois (2021).
This document focuses on continuous differential dynamical systems, and more precisely
on ordinary differential equations.

Definition 3.1. Ordinary Differential Equations
An ordinary differential equation (ODE) is an equation of the form:

ẋ(t) = f(x(t), t) (3.1)

Where t denotes the time, x : R→ Rn an unknown function of t and f : Rn × R→ Rn a
function of x.

Equation 3.1 is known as an explicit first order differential equation Butcher (2004).
It is also non-autonomous since the function f depends on the variable t. In other cases,
the ordinary differential equation is considered as autonomous. The function f does
not depend on t and the system depends only on the state vector x(t). Therefore the
equation of an autonomous system is written:

ẋ(t) = f(x(t)) (3.2)

Remark 3.1. It is possible to transform a non-autonomous system to an autonomous
one by considering the variable t as the (n+1)-st variable of the system. As a result, the
dimension of the system increases by 1.

58

3.2 Dynamical systems: Ordinary differential equations

Remark 3.2. Any n-th order ordinary differential equation can be transformed to an
n-dimensional first order ordinary differential equation by a simple change of variable
x(i−1) = xi with i = 1, . . . , n− 1 and x(n−1) = xn = f(x1, . . . , xn−1, t).
As a consequence, the ODE

x(n) = f(x, x′, x′′, . . . , x(n−1), t) (3.3)

Becomes:
ẋ1

ẋ2
...
ẋn

 =

x2

x3
...

f(x1, x2, . . . , xn−1, t)

 (3.4)

3.2.1 Examples of ODEs

Lotka-Volterra equation: Also known as the “Predator-prey equation”, the Lotka-
Volterra equation consists in a pair of non linear differential equations used to describe a
system in which two species, a predator and a prey, interact. The population of both
species varies through time according to the following differential equation: ẋ = αx− βxy

ẏ = λxy − γy
(3.5)

Where x(t) and y(t) are respectively the number of preys and predators at time t. ẋ(t)
and ẏ(t) the growth ratio of both species according to t. α, β, λ and γ are parameters
describing the interactions between the two species.

Simple pendulum A simple pendulum is a body fixed at the end of a massless and
inextensible cord. The body oscillates under the effect of gravity. The simple pendulum
can be modeled with help of an ordinary differential equation. Considering that there is
no loss of energy, the equation is defined by:

θ̈ = −g
l
sin(θ) (3.6)

Where θ is the angle from the vertical axis, θ̈ is the angular acceleration, g is the gravity
constant and l the length of the cord.

59

Dynamical systems and DCSP

3.3 Solving ordinary differential equations

The solution of an ordinary differential equation, called “general solution” describes the
set of all the solutions of the ODE. Each individual solution is called “particular solution”.
An ordinary differential equation might have an infinity of particular solutions.
It is necessary to consider more information about the ODE in order to characterize
fewer, or one single particular solution. This type of information might come as a value
taken by the state variable at an initial time t = t0, in this case the ODE is called an
initial value problem (IVP).
Sometimes, solutions of ODEs can be explicit and computed formally. When the ODE is
an IVP, as long as the analytical solution of the ODE is known, it is possible to deduce
the particular solution satisfying the initial condition for the IVP.
Usually, explicit solutions for ODEs are not known, especially for the non linear ones.
Fortunately, it is possible to use numerical methods to compute approximations of their
solutions.

Definition 3.2. Initial value problem (IVP)
An initial value problem is defined by: ẋ = f(x(t), t)

x(t0) = x0
(3.7)

Where f , x and t are defined as in the equation 3.1. And x0 is the initial condition
corresponding to the value of x at t = t0.

Definition 3.3. Boundary value problem (BVP)
A two-point boundary value problem is defined by: ẋ = f(x(t), t)

g(x(a),x(b)) = 0
(3.8)

Where f , x and t are defined as in the equation 3.1. In addition, a is the initial time
and b the final time such that a ≤ t ≤ b. g(x(a),x(b)) = 0 is the boundary condition
evaluated on two points, a and b.

3.3.1 Existence of solutions

An ordinary differential equation may have an infinite number of solutions. The initial
condition x(t0) = x0 is a precious information indicating that a solution for the ODE

60

3.3 Solving ordinary differential equations

passes through the point x0 at t = t0 but this information is not sufficient for proving
the existence and the uniqueness of a solution.

Examples Consider the following examples: ẋ =
√
x(t)− 1

x(0) = 0
(3.9)

The general solution of the ODE associated to IVP 3.9 is x(t) = (1 + c

2)2 + 1. Note that
the value of x(t) when t = 0 cannot be equal to 0, since it is the sum of two positive
numbers. Hence, the IVP 3.9 has no solution.

 ẋ = x(t)
t

x(0) = 0
(3.10)

On the other hand, the general solution of the ODE associated to IVP 3.10 is x(t) = ct.
The output of this expression when it is evaluated at t = 0 is always 0, for every possible
value of c. Hence, the IVP 3.10 has an infinite number of solutions.

For convenience reasons, it is assumed that the ordinary differential equations have “nice”
properties. This restriction is important in order ensure that there is a unique solution
for any given initial condition x(t0) = x0.
These properties are in fact two sufficient conditions providing:

• Existence of the solution when f is continuous on x and t.

• Uniqueness of the solution when f is uniformly Lipschitz on x.

They are summarized in the following theorem:

Theorem 3.1. Picard-Lindelöf theorem
Consider the IVP 3.7.
Let J = [t0, tf]. Assuming that f : I × J ⊂ (Rn ×R)→ Rn is continuous on x and t and
f is uniformly Lipschitz on x then, for ϵ < 1

k
, there exists a unique solution x∗(t) to the

IVP 3.7 on the interval [t0, t0 + ϵ], where k is the Lipschitz constant.

61

Dynamical systems and DCSP

3.4 Numerical solutions

In practice, explicit solutions for ordinary differential equations exist only for a few types
of ODEs, and sometimes, it is not even possible to compute an implicit solution.
When dealing with IVPs or BVPs, numerical methods can be used in order to approximate
solutions when they exist.
The most popular methods to solve IVPs are Euler methods, Taylor methods, Range-
Kutta schemes. Those methods can also be used to solve BVPs when using shooting
method, or multiple shooting method Butcher (2004).

Remark 3.3. In this document the approach for solving BVPs consists in iteratively
solving IVPs until a solution satisfying the boundary condition is found Lohner (1987).
As a consequence, this Chapter will mainly focus on numerical methods to solve initial
value problems.

3.4.1 Euler Method

The Euler method for solving IVP 3.7 consists in building a numerical solution iteratively:

 x0 = x(t0) = x0

xi+1 = xi + h.f(xi, ti) with : i = 0, . . . , Nh − 1
(3.11)

Where h is the time-step and Nh the total number of time-steps.
This method, called the forward Euler method (or explicit), is obtained by replacing the

exact derivative ẋ by the difference quotient x′(ti) ≈
x(ti+1)− x(ti)

h
.

When xi = xi+1 − h.f(xi+1, ti+1) is used to approximate the solution in Equation 3.11,
the method is called backward Euler method (or implicit).

3.4.2 Taylor Method

Considering the IVP 3.7, the Taylor method is based on the relation:

x(t+ h) = x(t) + ẋ(t).h+ 1
2!x

(2)(t).h2 + · · ·+ 1
m!x

(m)(t).hm + E(t, h) (3.12)

where E is the truncation error.
This relation predicts x(t+ h) from x(t), therefore, it is possible to write a numerical

integration relation ẋ(t) = f(x(t), t), x(2)(t) = ∂f(x(t), t)
∂t

+ ∂f(x(t), t)
∂x

.f(x(t), t))... etc.

62

3.4 Numerical solutions

The last term indicates the order of the method and the error can be approximated with
:

E(t, h) ≈ hm

m+ 1!(x
(m)(t+ h)− x(m)(t)) (3.13)

3.4.3 Interval Methods

Usual numerical methods can be extended to interval methods. Moore Moore (1966)
introduced an interval approach to numerically solve ODEs based on interval Taylor
models called guaranteed integration. Many works were dedicated to improve these
models such as in Deville et al. (1998); Lohner (1987); Nedialkov et al. (2001); Tucker
(2011) or proposed new methods such as in dit Sandretto and Chapoutot (2016) with a
RungeKutta approach, Kapela et al. (2020); Nedialkov et al. (2001) with an Hermite-
Obreshkoff approach and Rohou et al. (2021b) with contractors.
The main advantage with guaranteed integration lies in its capacity to compute an
enclosure to a solution of an IVP proving its existence and uniqueness during the process.
A second advantage is that, even when the initial condition is not a single point (due
to noise, or approximation errors), guaranteed integration is able to compute a solution
starting from an interval (or a box) containing the initial condition. Considering that, the
initial value problem (IVP) can be redefined as an interval initial value problem (IIVP).

 ẋ = f(x(t), t)
[x](t0) = [x0]

(3.14)

Where [x](t0) = [x0] is a box containing the initial condition x0.

3.4.4 Interval Euler method

A naive approach to solve IIVP 3.14 is to use the interval Euler method. It is based on
the natural inclusion function [f] of f in a Euler integration scheme Tucker (2011) such
as:

[x](ti + h) = [x](ti) +
∫ ti+h

ti

[f]([x](τ))dτ (3.15)

The goal of this approach is to find at each ti an enclosure [x̃i] containing all the
trajectories starting from the box [x](ti) then compute [x](ti + h) using the relation:

[x](ti + h) = [x](ti) + [0, h].[f]([x̃i]) (3.16)

63

Dynamical systems and DCSP

However, two problems rise. First, there is no straightforward method to compute the
enclosure [x̃i]. Second, higher order methods might be necessary to deal with more
complex IIVPs.
This document will present a brief overview on guaranteed integration methods used to
compute global and local enclosures containing the solution of the IIVP. These methods
are usually based on Taylor expansion models Lohner (1987); Moore (1966); Nedialkov
(2006) Hermite-Obreschkoff expansion models Kapela et al. (2010); Nedialkov (2006) or
more recently, Runge-Kutta schemes dit Sandretto and Chapoutot (2016).

3.5 Guaranteed integration methods

As introduced previously, guaranteed integration methods are aiming to solve the problem
3.14 by iteratively computing a list of enclosures [x̃i] containing every trajectory (x)(t) ∈
[x](t) from an initial time t0 to a final time tf . At each iteration, an enclosure [x̃i] going
from ti to ti+1 is computed, this box is usually called a “global enclosure”. At ti+1 a
tighter box [x](ti+1) is computed, this box is called “local enclosure”.
All together this list of global and local enclosures can be represented by a tube.

Definition 3.4. (Tube) Le Bars et al. (2012)

A tube [x](·) : [t0, tf] → P(Rn) is an interval of two trajectories [x(·),x(·)] such that
∀t ∈ [t0, tf], x(t) ⩽ x(t). We also consider empty tubes that depict an absence of
solutions.
A trajectory x(·) belongs to the tube [x] (·) if ∀t ∈ [t0, tf], x (t) ∈ [x] (t).

Numerically, a tube is represented by a set of boxes corresponding to temporal slices.
More precisely, an n-dimensional tube [x](·) with a sampling time δ > 0 is implemented
as a box-valued function [iδ, iδ + δ] × [xi] called the ith slice of the tube [x](·) and is
denoted by [[x]](i).
This implementation takes rigorously into account floating-point precision when building
a tube: computations involving [x](·) will be based on its slices, thus giving a reliable
outer approximation of the solution set.
The slices may be of same width as depicted in Fig. 3.1, but the tube can also be
implemented with a customized temporal slicing.
Finally, the definition of a slice [[x]](i) is endowed with the slice (box) envelope (blue
painted in Fig. 3.1) and two input/output gates [x](ti) and [x](ti+1) (black painted) that
are intervals of IRn through which trajectories are entering/leaving the slice.

64

3.5 Guaranteed integration methods

δ

·

[x](·)

tf

t1 t3
t0

x(·)

δ

·

[x](·)

tf

t1 t3
t0

x(·)

output gate of [[x]](2)

slice [[x]](2)

Fig. 3.1 A one-dimensional tube [x](·) (Courtesy of S. Rohou). In grey a tube enclosing
a trajectory x(·) depicted in plain line (orange). [x](·) is an interval of two
functions [x(·), x(·)]. The tube is numerically represented by a set of δ-width
slices illustrated by blue boxes.

Using tubes, global enclosures [x̃i], and local enclosures [x](ti) and [x](ti+1) are represented
by a slice [[x]](i), where [x̃i] is the envelope of the slice associated to a time-step hi =
ti+1 − ti = δ and [x](ti) and [x](ti+1) are respectively the input and the output gates of
the slice.

3.5.1 The general method

Usually, guaranteed integration methods consist in one-step method algorithms
computing at each time-step i a global enclosure [x̃i] and a local enclosure [x](ti+1) dit
Sandretto and Chapoutot (2016); Joudrier (2018); Nedialkov (2006).
Hence, a one-step algorithm can be decomposed into two phases:

• Phase 1: Global enclosure
This phase consists in computing a global enclosure [x̃i] such that:

– x(t) is guaranteed to exist ∀t ∈ [ti, ti+1].

– x(t) ⊆ [x̃i]∀t ∈ [ti, ti+1].

– The time-step hi = ti+1 − ti > 0 is large enough while ensuring that the
solution exists and is accurate for the IIVP.

65

Dynamical systems and DCSP

• Phase2: Local enclosure
This phase consists in computing a local enclosure [x](ti+1) at time ti+1 such that:

– The trajectory x(t) belongs to the local enclosure [xi+1] at t = ti+1 such that
x(ti+1) ∈ [x](ti+1) ⊆ [x̃i].

x

t

Fig. 3.2 Small overview on the ith iteration of the guaranteed integration method

3.5.2 Global enclosure

Phase 1 computes a global enclosure [x̃i] of the solution of the IIVP 3.14 over the
time-step [ti, ti+1]. It is based on the application of the Banach fixed-point theorem 3.2
and the Picard-Lindelöf operator 3.17.

Theorem 3.2. Banach fixed-point theorem
Let (E, d) a metric space and g : E → E a contraction i.e:
∃k ∈]0, 1[such that ∀x, y ∈ E,

d(g(x), g(y)) ≤ k.d(x, y)

Then g has a unique fixed-point in E.

Definition 3.5. Picard-Lindelöf Operator

66

3.5 Guaranteed integration methods

Consider the space of continuous functions C0([ti, ti+1],Rn) and the operator

Φ(x) = xi +
∫ ti+1

ti

f(x(t), t)dt (3.17)

Note that the equation 3.17 is the integral form of the IVP 3.7 where the initial condition
is x(ti) = xi.
Let [xi] be the enclosure (or the interval initial condition) of x(t) at t = ti and [x̃0

i] an a
priori estimate for the global enclosure [x̃i].
The interval enclosure of the operator 3.17 is given by:

xi +
∫ ti+1

ti

f(x(t), t)dt ∈ xi +
∫ ti+1

ti

[f]([x̃0
i], t)dt (3.18)

⊆ xi + [0, hi][f]([x̃0
i], [ti, ti+1]) (3.19)

⊆ [xi] + [0, hi][f]([x̃0
i], [ti, ti+1]) (3.20)

= Φ([x̃0
i]) (3.21)

With hi = ti+1 − ti.
If Φ([x̃0

i]) ⊆ [x̃0
i] then:

• The Banach fixed-point theorem ensures the existence and uniqueness of a solution
x∗(t) in [ti, ti+1] for the problem 3.7) Moore (1966); Nedialkov (2006); Tucker
(2011).

• Φ([x̃0
i]) is an enclosure of x(t) on the time domain [ti, ti+1] with respect to the

initial condition x(ti) ∈ [xi].

The right choice of [x̃0
i] to obtain the contraction of Φ associated to a time-step of step

size h is not always straightforward. Some algorithms consist in inflating iteratively
[x̃0

i] by a factor ϵ such that [x̃1
i] = ϵ[x̃0

i], [x̃2
i] = ϵ[x̃1

i]... and so on, but it is not always
sufficient.
Lohner Lohner (1987) and Moore Moore (1966) proposed algorithms based on the inflation
of [x̃0

i] and the reduction of the step size hi in order to obtain a successful contraction
for the Picard-Lindelöf operator Φ (see Algorithm 2 as an example).

Remark 3.4. The global enclosure can be computed using other methods. The Lohner
polynomial enclosure method could be taken as example (for more details, see (cite
Nedialkov survey)).

67

Dynamical systems and DCSP

Algorithm 2: Moore’s Global enclosure algorithm
1 Input ([xi], hi, [x̃0

i], hmin)
2 Output (hi, [x̃1

i])
3 while (hi > hmin) do
4 [x̃1

i] := Φ([x̃0
i], [ti, ti+1])

5 if ([x̃1
i] ⊆ [x̃0

i]) then
6 [x̃1

i] := Φ([x̃1
i], [ti, ti+1])

7 return ([x̃1
i])

8 else
9 [x̃0

i] = [x̃1
i]

10 [x̃1
i] = Φ([x̃1

i], [ti, ti+1])
11 if ([x̃1

i] ⊆ [x̃0
i]) then

12 [x̃1
i] := Φ([x̃1

i], [ti, ti+1])
13 return ([x̃1

i])
14 else
15 hi := hi/2
16 end
17 end

As example, Moore’s algorithm 2 computes a global enclosure [x̃1
i] alternating between

inflation of the estimated enclosure [x̃0
i] and reduction of the step size hi until the function

Φ contracts. Otherwise, the algorithm stops if a minimum step size hmin is reached

x2

x1

x2

x1

 = [xi]
[xi]

x

t

x

t

Fig. 3.3 Left: First iteration of the global enclosure algorithm, it is not contracting.
Right: Second iteration of the global enclosure algorithm after inflation, it is
contracting

68

3.5 Guaranteed integration methods

3.5.3 Local enclosure

Once the global enclosure [x̃i] is obtained on a time interval [ti, ti+1], a tighter enclosure
[xi+1] is computed such that:

x(ti+1) ∈ [xi+1] ⊆ [x̃i]

This can be done using Moore’s method, based on Taylor series:

[xi+1] = [xi] +
k−1∑
j=1

f (j)([xi])
hj

i

j! + f (k)([x̃i])
hk

i

k! (3.22)

3.5.4 Related work

Most of the guaranteed integration methods for IIVPs 3.14 are based on Interval Taylor
Series schemes (ITS) as the Taylor coefficients can be obtained through automatic
differentiation.
Considering the equation 3.22 with a given order k, an initial box [xi] and a global
enclosure [x̃i], the local enclosure [xi+1] can be obtained by a simple evaluation using
intervals and interval arithmetic.
One disadvantage of this method is that the width of [xi] will iteratively increase with i

even if the true solution becomes smaller. This is mostly due to the over approximation
phenomena described in section (reference section intervalles) and the so called wrapping
effect.
Different approaches were proposed to reduce the over approximation as local coordinate
transformation Moore (1966), linear transformation of the box Hansen et al. (1969) or
QR factorization Lohner (1987).
Most of these methods are detailed in Nedialkov et al. (2001).
In 1999, Nedialkov introduced a guaranteed integration method based on an Interval
Hermite-Obreschkoff (IHO) approach providing better stability properties while reducing
the overestimation compared to the usual ITS methods.
ITS and IHO methods are implemented in guaranteed integration solvers for validated
solutions for IVPs and IIVPs VNODE-LP (ref Nedialkov VNODE-LP) and CAPD (ref
capd).
Later, Chapoutot et al. developed Dynibex dit Sandretto and Chapoutot (2016), a
guaranteed integration solver based on interval Runge-Kutta schemes.

69

Dynamical systems and DCSP

Recently, a CSP approach was proposed with the Codac library, using tubes and contrac-
tors. Bourgois (2021); Rohou et al. (2021b, 2017)

3.6 CSP approach

One way to numerically solve dynamical systems is through CSPs. The idea is to consider
the trajectory, solution of the dynamical system, as the variable of the CSP. Its domain
is represented by a tube, and a set of constraints obtained from the dynamical system.

Example 3.1. ˙x(t) = −x(t)
x(0) = 1 t ∈ [0, 10]

(3.23)

The IVP 3.23 using the CSP approach:

• Variable: x(t).

• Domain: A tube [x](t).

• Constraints:

1. ˙x(t) = −x(t) (Differential constraint).

2. x(0) = 1 (Initial condition).

Definition 3.6. DCSP
A dynamical CSP network is defined by (x(·), [x](·), c), where x(·) is a trajectory variable
of domain [x](·) and c denotes the set of classic and differential constraints between
variables x(·).
Solving a dynamical CSP instance consists in finding the set of trajectories in [x](·)
satisfying c.

3.6.1 Solving a DCSP

Similarly to a NCSP described in Chapter 2, the approach to solve DCSP consists in
reducing the domain of its variable. The domain, represented by a tube, is reduced with
help of a branch and filter procedure. The branching part is performed by tube bisection
and the filtering part is performed by tube contractors.

70

3.6 CSP approach

Definition 3.7. (Tube bisection)
Let [x](·) be a tube of a trajectory x(·) defined over [t0, tf].
Let ti be an instant in [t0, tf], k a dimension in {1..n}, and [xk] the interval value of
[xi](·) at ti. Let mid(xk) be xk + xk

2 .
The tube bisection (ti, k) of [x](·) produces two tubes [xL](·) and [xR](·) equal to [x](·)
except at time ti, where [xL

k] = [xk,mid(xk)] and [xR
k] = [mid(xk), xk].

Fig. 3.4 Illustration of a tube bisection at time ti (courtesy of S. Rohou). A gate is
created at ti and the two sub-tubes [xL](·) and [xR](·) differ only by their new
created sub-gate (in bold). Two (among an infinity) possible trajectories of the
initial tube are separated by the bisection, one belonging to [xL](·), the other
belonging to [xR](·).

3.6.2 Tube Contractors

Definition 3.8. Tube contractors
A tube contractor Cc is a contractor applied to a tube [x](.) in order to remove infeasible
trajectories according to a given constraint c.

[x′](.) = [Cc(x)(.)] ⊆ [x](.). (3.24)

The tube [x′] is the output of the contractor Cc such that:

71

Dynamical systems and DCSP

1. ∀t, [Cc(X)(t)] ⊆ [x](t) (contraction).

2. c(x(.)), x(.) ∈ [x](.) =⇒ x(.) ∈ Cc[x](.) (consistency).

3.6.3 Differential contractors for tubes

As explained in Definition 3.8, contracting a tube consists in reducing the tube, domain
of the trajectory, in order to obtain a thinner envelope containing it without losing
any solution. Far from contractors, some techniques have been developed in order to
reduce the size of this envelope. As mentioned in the previous section, Moore used
local coordinate transformation in order to reduce overestimation, as a consequence, the
envelope of the solution doesn’t expand unnecessarily.
In Deville et al. (1998) the authors proposed consistency techniques for ODEs. These
techniques are based on propagation of small boxes (peace-wise evaluation) and pruning
methods (box consistency) in order to reduce the accumulation of errors during the
computation of the envelope. When an enclosure is computed, the box is broken down
into small boxes and propagated in order to improve the accuracy of the results. After
that the consistency of these boxes is explored and, as well as the contractor approaches,
inconsistent boxes are removed from the envelope while the consistent boxes are kept.
Back to contractor approaches, Aymeric Bethencourt Bethencourt and Jaulin (2014)
proposed contractors for basic operators in tube arithmetic. He also proposed a strangle
algorithm, a tube contractor for state equations based on the CSP framework and
contractors for tubes.
Later on, Simon Rohou et al. proposed a differential tube contractor C d

dt
in Rohou et al.

(2017). Similarly to Aymeric Bethencourt’s work Bethencourt and Jaulin (2014), the
authors addressed the problem of state estimation in robotics with a tube contractor
approach, obtaining competitive results compared to guaranteed integration approaches
for this kind of problems. The C d

dt
contractor is now implemented in the Codac library.

3.6.4 Differential tube contractor C d
dt

As mentioned above, the differential tube contractor C d
dt

is dedicated for the resolution
of the problem 3.14. The main idea behind this contractor is described as follows:
The constraint x(t) = f(x, t) are decomposed into primary constraints:

ẋ(t) = v(t) (3.25)

72

3.6 CSP approach

x2

x1

x2

x1

Fig. 3.5 Example of peace-wise evaluation. The pink box doesn’t intersect the true
solution (in green), once the box consistency is explored, the pink boxes are
removed and the blue boxes are kept.

v(t) = f(x, t) (3.26)

A contractor associated to constraint 3.26 can be built with the composition of elementary
contractors as long as the expression of f(x, t) is known.
Once it is done, the contractor C d

dt
takes the turn for the constraint 3.25 by propagating

contractions, consequences of this constraint, on the whole domain in a forward and a
backward way.

3.6.5 Forward contractor C d
dt

→

The forward contractor is based on the following approximation:

x(t+ h) ≈ x(t) + hv(t) (3.27)

The contractor is obtained with bounded values and intersections:

[x](t+ h) = [x](t+ h) ∩ ([x](t) + h[v](t)) (3.28)

73

Dynamical systems and DCSP

Finally, adapting this equation to slices in order to take into account the evolution of v,
the ith slice of step size h is obtained with:

[[x]](i+ 1) = [[x]](i+ 1) ∩ ([[x]](i) ∩ [[x]](i+ 1) + [0, h][[v]](i+ 1)) (3.29)

3.6.6 Backward contractor C d
dt

←

Similarly to the forward contractor C d
dt

→, the backward contractor can be obtained with:

[[x]](i− 1) = [[x]](i− 1) ∩ ([[x]](i) ∩ [[x]](i− 1)− [0, h][[v]](i− 1)) (3.30)

3.7 Conclusion

This Chapter introduced dynamical systems, and some popular methods for their resolu-
tion including guaranteed integration approaches using interval analysis.
DCSPs, similar to NCSPs introduced in Chapter 4 and based on contractors such as the
differential contractor C d

dt
, have been introduced as well.

C d
dt

has shown promising results in robotics and state estimation problems Rohou et al.
(2017), but for IIVPs this contractor might be not sufficient, even when a fixed-point is
applied to obtain the thinnest tube possible.
As a consequence, the idea of improving the set of contractors for DCSPs has merged.
The next Chapter presents the first contribution of this thesis, the ODE contractor based
on guaranteed integration tools, as well as a set of contractors and a solver dedicated for
the resolution of the DCSPs.

74

Part III

A contractor for ordinary differential
equations

75

Chapter 4

A Contractor for Ordinary
Differential Equations

Synopsis This chapter presents the first contribution of this thesis, a contractor
for ordinary differential equations. The interaction of the contractor with the ANR
CONTREDO project is also highlighted.

4.1 Introduction

As mentioned in chapter 2, one way to solve dynamical systems is using the CSP approach
through DCSP.
Solving a DCSP amounts to finding the thinnest envelopes (tubes) containing each
trajectory solution of the associated dynamical system through a branch and contract
algorithm.
In this context, a project of the French National Agency, ANR-Contredo, has been
launched in order to design tools capable of addressing and solving a wide variety of
dynamical systems through the DCSP framework.
When it comes to state estimation problems and robotics Rohou et al. (2017), the
differential contractor C

d

dt
combines simplicity and efficiency showing competitive results

compared to the state of the art solvers Rohou et al. (2018, 2017). This is mainly due to
the nature of the problem and the presence of information such as the position of the
robot at a some given times (similar to the initial condition of an IVP). However, when
dealing with more generic ODEs, this contractor might be outperformed.

77

A Contractor for ODE

The idea is then to build an ODE-Contractor, based on high order guaranteed integration
methods through an ODE solver. The purpose of the ODE-Contractor is to contract
tubes for problems involving ODEs.
As explained in the previous chapter, ODE solvers are developed to solve IVPs and
IIVPs. When the right conditions are met, the ODE solvers are able to provide rigorous
results. However, depending on the nature of the problem (dimension, stiffness, wrapping
effect, etc.), or even the size of the initial condition (for IIVPs) the ODE solvers might
struggle to compute a stable solution. Not to mention the BVPs for which they were not
originally designed. As a consequence, contractors based on ODE solvers face the same
issues.
In order to address these issues, but also to answer the request of the Contredo project,
the ODE-Contractor is associated to the DCSP solver. This association provides the
solver with an efficient contractor capable to address ODE problems with ease, while the
Codac library provides complementary contractors that allow the DCSP solver to better
control the diameter of the solution tubes built.

This chapter introduces the first contribution of this thesis, the ODE-Contractor. After
that, a small overview of the DCSP generic solver is sketched along with a bench of
experiments and results. Finally, a method dedicated for the resolution of BVPs is
discussed.

4.2 ODE-Contractor motivations

Let the IVP:

ẋ = −x
x(0) = 1
[t0, tf] = [0, 10]

(4.1)

Solving equation 4.1 can be done numerically using a DCSP solver with the C
d

dt
contractor

or an ODE solver.
The results of this equation using both methods are displayed in Figures 4.1 and 4.2 for
the C

d

dt
and in 4.3 for the ODE solver.

Figure 4.1 shows the results obtained using the C
d

dt
contractor. The true solution (a

thin line in the middle of the tubes) is known and is displayed in the figure. See how the
solution diverges even though the initial domain of the tube is set to [−1, 1].

78

4.2 ODE-Contractor motivations

Figure 4.2 shows the results obtained while adding an information at tf , x(10) = −exp(10).
The backward contraction improves the tube and shows interesting results.
The main problem when addressing ODEs is that a wide variety of ODEs are IVPs. The
initial condition comes as a single information and ODE solvers such as VNODE-LP are
particularly good for that.
As explained in the previous chapter, ODE solvers use high order integration methods
based on ITS or IHO schemes to compute reliable and rigorous solutions Nedialkov
(2006).
Figure 4.3 shows a tube computed by an ODE solver enclosing the solution of IVP 4.1.
This tube is a better envelope for the solution than the tube in Figure 4.1.
The IVP 4.1 is just one example among many others. In general, ODE solvers are able
to provide better solutions than the C

d

dt
contractor when it comes to IVPs and IIVPs.

That is why the idea of building a contractor using ODE solvers has merged as well as a
bench of other contractors dedicated to problems such as 4.1.

Fig. 4.1 C
d

dt
(Sys 4.1, SC 0.2, tfdiam 2., CPU, 1.1)

4.2.1 ODE-Contractor: The method

Consider the DCSP network (P = (x(.), [x](·), c) defined in Chapter 3. The idea behind
the ODE-Contractor is to contract a tube using the solution computed by an ODE solver.
ODE solvers use high order integration methods to compute the different elements of a
tube. Starting from an initial condition x(ti) = xi, an ODE solver computes a global
solution [x̃i] and a local solution [xi+1], corresponding respectively to a slice and its

79

A Contractor for ODE

Fig. 4.2 C
d

dt
(Sys 4.1 forward and backward contraction)

output gate. This procedure is performed iteratively, in a forward way, from ti to tf

when ti < tf , and in a backward way, from ti to t0 when ti > t0.
The contraction part occurs during the intersection of the tube, computed by the ODE
solver, with the initial tube [x](·), domain of the variable x(·) of P.
The ODE-Contractor is detailed in Algorithms 3 and 4.

Algorithm 3: ODE-Contractor
1 Input: (P , startGate, preserveSlicing)
2 if gateBis = null then
3 gate←Min(gates ∈ [x](·))
4 else
5 gate← initialCondition
6 end
7 [x](·)→ ← GIntegration(P , gate, FWD)
8 [x](·)← ← GIntegration(P , gate, BWD)
9 [x](·)⇄ ← Concatenate([x](·)→, [x](·)←)

10 [x](·)← Update
(
preserveSlicing, [x](·) ⋂([x](·)⇄)

11 return [x](·)

Algorithms 3 and 4 describe how the ODE-Contractor operates. The startGate parameter
is storing the initial condition of the IVP. The initial condition could be at t0 as well as
at any other time ti ∈ [t0, tf] of the time domain of the tube. The idea is to propagate
new information provided by an external information of the problem. This information

80

4.2 ODE-Contractor motivations

Fig. 4.3 ODE-Ctc (Sys 4.1, SC 0.2, tfdiam 7e-20, CPU, 0.26)

Algorithm 4: Guaranteed integration (FORWARD)
1 Input: (P , gate, FWD)
2 t← TimeIndex([x](·), gate)
3 while t < tf /*Forward integration */ do
4 h← AdaptiveTimeStep(P,gate,t)
5 [[x]](t, t+ h)← GlobalEnclosure(P, gate, t)
6 [x](t+ h)← LocalEnclosure(P, gate, t)
7 t← t+ h

8 end
9 return [x](·)→

is usually the initial condition of the IVP, but it could also be the result of a different
contraction or a bisection.
When this parameter is not given, the algorithm starts from the smallest gate of the
tube [x](·) in order to avoid as much over estimation as possible during the integration
procedure (lines 2 to 6 of Algorithm 3).
Once the starting gate has been selected, two guaranteed integration procedures compute
two sub-tubes, [x](·)→ and [x](·)←, containing respectively the forward and the backward
results of the guaranteed integration provided by the ODE solver. The sub-tubes are
then concatenated into one single tube [x](·)⇄ containing them.
At the end of the algorithm, the tube [x](·)⇄ is intersected with the initial tube [x](·)
in order to update it with one last (local) contraction. This operation is done while
preserving the initial slicing of the tube, or not, depending on how the parameter
preserveSlicing was set.

81

A Contractor for ODE

Finally, Algorithm 4 details how the forward sub-tube [x](·)→ is computed using an ODE
solver such as VNODE-LP.
At each step, a time-step is computed through the adaptive procedure of the ODE solver,
as well as a global enclosure and a local enclosure.
The global and local enclosures provide the sub-tube [x](·)→ with respectively a slice
and a gate.
The backward procedure is very similar to the forward one, therefore, it will not be
detailed.

4.2.2 Limitations of the ODE-Contractor

The ODE-Contractor could work for both IVPs and IIVPs modeled in a DCSP framework.
As previously introduced, the contraction efficiency of the ODE-Contractor depends on
the nature of the problem. This is a direct consequence from the ODE solver used to
build the contractor. Therefore, if the solver is unable to compute a stable solution, the
ODE-Contractor will not be able to perform a contraction either.
The width of the initial condition of an IIVP could also be an issue. Some solvers, such
as VNODE-LP, are known to be less stable for problems involving large initial conditions
for long time integration Nedialkov (2006).
In order to overcome these issues, the first approach would be to use different ODE
solvers in order to address specific problems. For example COSY solver Berz and Makino
(2006); Nedialkov (2006) is expected to to provide better results than VNODE-LP for
problems with large initial conditions.
This approach requires an a priori knowledge about the problem in order to use the right
ODE solver. In addition, it might be difficult to implement all the different solvers in
one.
Another approach would be to use the ODE-Contractor in a generic solver for DCSPs.
The DCSP solver provides external tools for the ODE solver wrapped inside the ODE-
Contractor. These external tools are intended to set up the right conditions for the ODE
solver (such as a thinner initial condition) in order to compute a stable solution. In
return, the solver benefits from the resulting contractions.
As an example, for an IIVP with a large initial condition, bisection could be used to
break it down into a set of small boxes. From that, the ODE solver would be able to
compute stable solutions starting from the small boxes. Lastly, the solutions could be
merged, constituting the whole solution for the IIVP.
The approach of the generic solver has been preferred to the first one for different reasons.

82

4.3 Generic solver for dynamical systems

The first reason is that this thesis is a part of the Contredo project. This project aims to
develop a solver such as the DCSP solver for generic resolution of dynamical systems.
Moreover, the first version of the generic solver has already been developed by the
Contredo team, adding an ODE-Contractor would be easier than building a whole new
solver based on different ODE solvers.
The main objective of this chapter is to highlight the contribution around the ODE-
Contractor. Now that the ODE-Contractor has been introduced, a small description of
the generic DCSP solver and the set of contractors developed in parallel to the ODE-
Contractor is necessary. On one hand, to understand the global idea behind the generic
solver for DCSPs, on the other hand, to see how the solver and the other contractors
interact with the ODE-Contractor.

4.3 Generic solver for dynamical systems

As mentioned in the introduction, an important goal of the Contredo project is to design
a generic solver dedicated to the resolution of dynamical systems through a CSP approach
Rohou et al. (2020).
Consider the DCSP network (P = (x(.), [x](·), c) defined in Chapter 3.
P involves trajectories x(.) as variables with tube [x](·) as their domains and a set of
constraints c described as follows:

1. ẋ(·) = f
(
x(·)

)
(ODE)

2. x(ti) = y (Evaluation constraint)

3. ∀t ∈ [t], x(t) ̸∈ [y] (Complementary constraint of (2))

Constraint (1) and (2) are the constraints introduced for the DCSP in the previous
chapter. (3) is the complementary constraint of (2).

Remarks 4.1.

• The generic solver of the Contredo project is a DACSP solver. The DACSP is a
network involving the same variables x, domains [x] and constraints c as the DCSP.
In addition, the DACSP involves a set of variables y such that there is no explicit
relation between y and its derivatives. However, y and x are linked through an
algebraic constraint such as g(x,y, t) = 0.

83

A Contractor for ODE

The DACSP is more general than the DCSP, as it involves a wider variety of
variables and constraints. As an example, the DACSP can involve constraints such
as the integro-differential constraint:

ẋ(t) = f
(
x(t)

)
+

∫ t

t0
x(τ)dτ (4.2)

Nevertheless, in some cases, this constraint can be rewritten as a combination of a
differential constraint (1) and an evaluation constraint (2) in a DCSP.

• The ODE-Contractor is mainly built for the resolution of IVPs and BVPs. IVPs
are composed of differential constraints (1) and evaluation constraints (2), while
BVPs could be composed of differential constraints (1) and an algebraic constraint
g(x(t0),x(tf)) = 0. This algebraic constraint should not be mistaken with the one
used in the previous item for the DACSP solver. The relation between x(t) and its
derivative is explicitly known.

Nevertheless, the constraint g(x(t0),x(tf)) = 0 is reduced to a set of boxes by the
numerical contractors such as HC4-Revise, which somehow reduces this constraint
to a set of evaluation constraints (2).

• In this document, only DCSPs will be addressed.

4.3.1 Overview of the generic solver

The generic solver, takes a DCSP network P as input, and returns the solutions satisfying
its constraints. The solutions are thin tubes containing the real trajectories of the
dynamical system associated to the DCSP. The DCSP solver operates using three main
steps:

1. Slicing

2. Tree search

3. Solution merge

The slicing is performed by splitting the temporal domain of the tube [x](·).
The tree search is performed though tube bisection (see Fig. 3.4) and contraction.
Finally, the solution merge brings together the solutions that intersect.

84

4.3 Generic solver for dynamical systems

Algorithm 5: The Generic solver Algorithm
1 Input: (P = (x(·), [x](·), c), specialT imes, tubeSize, #slicesMax, preserveSlicing,

ctcPolicy)
2 repeat
3 /* Slicing loop: */
4 ([x](·))← Contraction(P , null, preserveSlicing, ctcPolicy)
5 ([x](·))← Slicing([x](·), #slicesMax)
6 until MaxDiam([x](·)) ≤ tubeSize or #Slices(tube) = #slicesMax
7 if MaxDiam([x](·)) ≤ tubeSize then return {[x](·)}
8 L ← { ([x](·), null) }
9 while L ̸= ∅ /* Depth-first tree search */ do

10 ([x](·)) ← Pop(L)
11 ([x](·))← Contraction(P , gateBis, preserveSlicing, ctcPolicy)
12 if MaxDiam([x](·)) ≤ tubeSize then
13 solutionsList← solutionsList ∪ {[x](·)}
14 else
15 ([x1](·), [x2](·), gateBis) ← Bisect ([x](·), specialT imes)
16 L← {([x1](·), gateBis)} ∪ {([x2](·), gateBis)} ∪ L
17 end
18 end
19 solutionsList ← TubeMerge(solutionsList, [x](·))
20 return solutionsList

4.3.2 The Generic solver Algorithm

Algorithm 5 describes a generic solver for DCSP. The input of the algorithm is a constraint
network P = (x(·), [x](·), c) and the output is a list of tubes containing all the trajectories
satisfying c.
The initial tube [x](·) usually starts as a single slice [t0, tf]×Rn. This naive initialization
is a way to cover a large variety of problems. This may impair the effectiveness but the
user might use a different initialization based on his intuition or his knowledge about the
problem. In any case, the solver proposes tools to do so.
The main goal of the generic solver is to compute accurate solutions for the DCSP, the
accuracy of a solution is measured in term of thickness of the tubes containing it (usually
the maximum gate diameter over all gates or the maximum slice diameter over all slices).
These tubes are computed using three main steps.
The first step is the slicing (lines 3 to 6 from Algorithm 5). It consists in alternating
slicing and contraction iteratively, until the desired thickness (tubeSize) or the maximum
number of slices (#slicesMax) are reached.

85

A Contractor for ODE

It has been observed that the accuracy of the solver improves with the number of slices,
but at the cost of worse CPU-time performances. In order to overcome this issue, slicing
policies have been tested such as splitting the largest slice, or using the tube derivative
to detect stiffness (in practice, it is more simple than that, the procedure is based on
the finite difference between the mid point of two successive gates). Another approach
consists in using the adaptive time discretization, available in the ODE solvers, after the
call of the ODE-Contractor through the parameter preserveSlicing.
The other main step of the algorithm (lines 9 to 18) is the tree search. This step
performs a depth-first tree search through a branch and filter strategy. The branching
is performed by tube bisection (see Fig. 3.4) and the filtering strategy is performed
through contraction. Different bisection strategies have been tested, such as bisecting
the largest gate (or slice), or bisecting at a “special time” (the initial condition of an
IIVP for example). The bisection procedure stores the bisected gate in gateBis in order
to indicate to the contraction procedure to start the propagation from this bisected gate.
The last step is the solution merge (line 19 of the algorithm). It consists in merging
together pairs of tubes that reached the wanted precision after the bisection process, but
should not be separated as they intersect. This is usually the case when the solver is
unable to compute a tube thin enough to enclose the true solution, or the true solution
is thicker than expected (especially when it is an IIVP). In any case, the solver computes
thin tubes containing different parts of the solution that intersect at some points. At the
end, the solver merges these tubes into a thicker one enclosing the true solution.

4.3.3 Contractors in the generic solver

As previously explained, the generic solver for DCSP is based on a branch and filter
approach where the filtering is obtained through contraction.
So far, the usual contractors introduced in this document are either numerical contractors,
for NCSPs, or dynamical contractors (also referred as differential contractors), dedicated
to DCSPs. The generic solver is endowed with both. First, are called the numerical ones,
already implemented in the Ibex library, then, the dynamical ones. Some of them are
already implemented in the Codac library while the other dynamical contractors have
been specially developed for the generic solver.

86

4.3 Generic solver for dynamical systems

4.3.3.1 Contraction function

The contraction function in Algorithm 5 consists of a propagation loop that calls contrac-
tors until a fixed-point on the volume of the tube is reached. Usually these contractors
are associated to a subset c from the constraint network P .
The choice of the contractors is based on the parameter ctcPolicy of Algorithm 5 and
could be of any type, numerical, or dynamical contractors.
As example, a contractor, such as HC4-Revise Benhamou et al. (1999), could be used to
contract boxes that correspond to gates of a tube with respect to an evaluation constraint.
The dynamical contractors are used to contract tubes using the differential constraint
ẋ = f(x(t), t) in a forward and a backward way. These contractors are:

• DynBasic

• DynCidGuess

• Dyn3b

• ODE-Contractor

4.3.3.2 DynBasic

DynBasic is a slice contractor using the primary constraints ẋ = v and v = f(x(t), t)
propagation information from a slice to another. In a nut shell, it is the C

d

dt
contractor

introduced in the previous chapter.

4.3.3.3 DynCidGuess

DynCidGuess is a slice contractor. At each step, a slice contractor graph, where the
variables correspond to the two gates of the slice and the slice envelope, is generated.
DynCidGuess improves the output gate of the slice according to the input gate and the
slice envelope Rohou et al. (2020), using sophisticated singleton consistencies similar to
3B and CID Lhomme (1993b); Trombettoni and Chabert (2007).

4.3.3.4 Dyn3b

Dyn3b is a tube contractor called outside the propagation loop. It is adapted from the
3B algorithm Lhomme (1993b).
Dyn3b selects iteratively the largest gate at an instant ti and applies a DynVar3b, a
straightforward adaptation of Var3b on tubes. Subintervals at bounds of [xi] can be safely

87

A Contractor for ODE

removed if an integration (performed with ODE-Contractor or DynBasic and starting
from these subintervals) leads to empty domains Rohou et al. (2020).

4.3.3.5 ODE-Contractor

The ODE-Contractor described in Algorithms 3 and 4 can be used in the propagation
loop or during the call of Dyn3B.
The parameter startingGate is replaced by gateBis during the propagation loop, or by a
starting gate defined by Dyn3B during the shaving procedure. The idea is the same as for
the initial purpose of the ODE-Contractor, propagate new information obtained during
the tree search, or the shaving procedure. Finally, as well as for a single contraction, if
the startingGate was not selected, the integration will start from the smallest gate of
the tube.

4.3.3.6 Contraction function algorithm

Algorithm 6 describes the propagation loop procedure initiated by the contraction function
of Algorithm 5.

Algorithm 6: Contraction function
1 Input: (P , gateBis, preserveSlicing, ctcPolicy)
2 /* List of contractors according to ctcPolicy */
3 Lc ← Get(ctcPolicy,Ctc: {HC4-Revise, DynBasic, DynCidGuess,

ODE-Contractor,. . . })
4 /* Propagation loop */
5 repeat
6 /* Calling iteratively the contractors in the list Lc */
7 forall Ctc ∈ Lc do
8 ([x](·))←Ctc(P , gateBis, preserveSlicing)
9 end

10 until (stoppingCondition) /*Stops when a fixed point is achieved*/
11 /* Consistency contractor */
12 ([x](·))←Dyn3B(P , ctcPolicy)
13 return [x](·)

Any contractor could be called during the propagation loop in order to fit any type of
constraint. The choice of a contractor is carried through the parameter ctcPolicy (line 3).
Each selected contractor is called iteratively during the propagation loop until a stopping
condition, usually a fixed point on the volume of the tube, is reached (lines 5 to 10).

88

4.4 Implementation

At the end of the propagation loop and if the parameter ctcPolicy allows it, Dyn3b takes
over to finish the contraction procedure (line 12).

4.4 Implementation

The ODE-Contractor, as well as every tool/method introduced in chapters 1 and 2, is
implemented in the C++ language.

4.4.1 Main libraries

The starting point is the Ibex library. Ibex is a C++ library for constraint processing
over real numbers using interval arithmetics. It provides necessary tools for the numerical
representation of real numbers and symbolic functions. It also provides the ability
to declaratively build algorithms to solve numerical problems through the contractor
programming paradigm Chabert (2020); Chabert and Jaulin (2009).
Equally important, a library dedicated to tubes representation and tube contractors. It
is the Codac (previously known as Tubex) library and it is compatible with Ibex.
Codac provides the data structure for the numerical representation of tubes and a set of
tube contractors to solve numerical problems involving differential constraints through
the contractor programming paradigm.
The generic solver, Tubex Solve, is a module of the Codac library dedicated to solve
a general variety of dynamical systems. Compared to Codac (alone) Tubex Solve is
endowed with an operator that can perform a choice point by bisecting a tube into two
sub-tubes at a chosen time. It is also capable to modify the distribution of the time steps
in a tube when it is necessary. As a consequence, a tree search can accurately estimate
distinct solutions for a dynamical systems (for problems with multiple solutions) and
handle several hard problems.
The ODE-Contractor is implemented as a part of Tubex Solve.

4.4.2 Guaranteed integration solvers

As previously explained, the main idea behind the ODE-Contractor is to wrap an existing
guaranteed integration solver and build a differential contractor using it. As it was
explained in the previous chapter 3, guaranteed integration solvers, such as Dynibex
dit Sandretto and Chapoutot (2016), VNODE-LP Nedialkov (2006) and CAPD Kapela
et al. (2010), use higher order integration methods (Interval Taylor Series (ITS), Interval
Hermite-Obreschkoff methods (IHO), Runge-Kutta(RK)) than the Codac differential

89

A Contractor for ODE

contractor C
d

dt
(Dynbasic in the generic solver). They compute better approximations,

while limiting the over approximations induced by interval calculations.

4.4.3 Presentation of the different solvers

Consider the IVP and IIVP problems defined respectively in the equations 3.7 and 3.14.

4.4.3.1 VNODE-LP

VNODE-LP is a guaranteed integration library dedicated to solve IVPs 3.7 and IIVPs
3.14. It is based on (ITS) and (IHO). VNODE-LP dependencies are libraries for intervals
and automatic differentiation such as Filib Lerch et al. (2006) and FADBAD++ Bendtsen
and Stauning (1996).

4.4.3.2 CAPD

CAPD is a library composed of various C++ modules for numerical validation and
assisted proofs for problems related to dynamical systems. In this document, the CAPD
library refers to the CAPD dynsys module for the guaranteed resolution of IVPs and
IIVPs Kapela et al. (2010). As well as VNODE-LP, its rigorous mode is based on (ITS)
and (IHO) and involves external dependencies such as Filib and FADBAD++.

4.4.3.3 Dynibex

Dynibex is an Ibex friendly library dedicated to the resolution of IVPs and IIVPs. It is
based on interval Runge-Kutta approaches and affine arithmetic. Its external dependency
is Ibex.

4.4.4 Discussions

Dynibex dit Sandretto and Chapoutot (2016), VNODE-LP Nedialkov (2006) and CAPD
Kapela et al. (2010) are good candidates for the implementation of the ODE-Contractor.
Each one of them is dedicated to guaranteed resolution of IVPs and IIVPs using high
order methods.
When it comes to choose a solver for the ODE-Contractor implementation, a few require-
ments are needed.

1. The solver is easy to use.

2. Accuracy of the results.

90

4.5 Experiments and results

3. Simplicity of interaction with Tubex Solve.

Starting with the first question, it is relatively easy to build an ODE problem on each
one of the solvers, moreover, each one of them provides well documented content in order
to build a model efficiently.
When it comes to the solver accuracy, it is hard to establish a fair comparison between
the solvers due to the multiple parameters they provide for the resolution of IVPs and
IIVPs. As an example, CAPD allows the user to change multiple parameters such as
the order of the numerical method used for the integration, the representation of the
initial condition (doubleton or tripleton) Bourgois (2021); Kapela et al. (2010), or even
the integration method itself.
As a consequence, only a “naive” comparison can be made to answer the question: Which
solver is accurate (in average) when using the “default” way of building a problem? This
kind of information does not state which solver is the best, but it might help deciding
which solver, with default parameters, could do the work for the ODE-Contractor.
A small bench of IVPs and IIVPs has been used to compare the solvers. The result of
the comparison is that, CAPD and VNODE-LP tend to be more accurate (referring to
the fixed default parameters) than Dynibex.
Finally, the parsing functions are necessary for each solver, since not a single one of them
provides the same tube structure as Codac. Even if Dynibex is Ibex friendly, a problem
of version appears. Tubex Solve and Dynibex depend on two different versions of Ibex,
as a consequence, a parsing function would be necessary for Dynibex as well.
As a result, the first ODE-Contractor is implemented using VNODE-LP. A CAPD version
of it has been implemented afterward.

4.5 Experiments and results

Now that the main idea behind the solver and the ODE-Contractor has been sketched,
the next step is to show some results.
As previously mentioned, the DCSP solver has been implemented in the Codac library
solver: Tubex Solve.
Most of the dynamical contractors introduced in the past chapters were implemented
using only the Codac library (with Ibex as the main dependency), except for the ODE-
Contractor which required additional dependencies.
The first version of the ODE-Contractor was implemented using the VNODE-LP solver
Nedialkov (2006), but another version, using CAPD Kapela et al. (2010) was implemented
later on.

91

A Contractor for ODE

This section will be divided into 3 parts. First, the problems that have been handled by
the solver, mainly IIVPs and BVPs are described. Then the results are presented and a
discussion about the results concludes the section.

Remark 4.1. The experiments have been carried out using an Intel(R) Xeon(R) CPU
E3-1225 V2 at 3.20GHz

4.5.1 The problems: IIVPs

The first category of problems are composed of IIVPs. Problems 4.3 and 4.4 come from
Deville’s paper Deville et al. (1998). The interval initial condition is important as it
highlights two aspects of the solver. The first one, related to the interval approach, shows
that an initial condition, even subject to noise or uncertainties, can be held in a box.
The second aspect shows the stability of the solution during the integration.

ẋ = −x2

x(0) ∈ [0.1, 0.4]
[t0, tf] = [0, 5]

(4.3)

ẋ1 = −x1 − 2x2

ẋ2 = −3x1 − 2x2

x1(0) ∈ [5.9, 6.1]
x2(0) ∈ [3.9, 4.1]
[t0, tf] = [0, 1]

(4.4)

The problem 4.5 is a home made problem designed to have wrapping effect issues. ODE
solvers use to be less stable with problems involving wrapping effect. The idea is to
observe how the generic solver handles this issue.

ẋ1 = −x2 + 0.1x1 (1 − x2
1 − x2

2)
ẋ2 = x1 + 0.1x2 (1− x2

1 − x2
2)

x1(0) ∈ [0.7, 1.3]
x2(0) = 0
[t0, tf] = [0, 5]

(4.5)

4.5.2 Results: IIVPs

The results of the DCSP solver for IIVPs 4.3, 4.4 and 4.5 are displayed in the tables 4.1
and 4.2.

92

4.5 Experiments and results

The tables are organized as follows:
The problems (sys), the contraction strategy (Ctc strategy), the stopping condition
parameter (SC) or (SCg), the diameter of the tube at the final time (tf diam), the
volume of the tube (vol), the number of slices #slices, the CPU time in seconds (CPU),
and the number of bisections (#bis).

Table 4.1 Results obtained for the systems 4.3, 4.4 and 4.5. For each system the table
displays three contraction strategies. The first, (ODE-Ctcoutside), is a strategy
based on the ODE-Contractor outside the DCSP solver. The second and the
third strategies are used inside the DCSP solver and they are respectively
based on the ODE-Contractor (only) and a combination of ODE-Contractor
with the Dyn3B shaving procedure.

Sys. Ctc strategy SCg tf diam. vol. #slices CPU #bis.
(4.3) ODE-CtcOutside - 0.206 1.29 20 0.001 -

ODE-Ctc 0.2 0.083 0.86 1000 0.08 1
ODE-Ctc+3BODE-Ctc 0.2 0.0667 0.80 1000 0.14 1

(4.4) ODE-CtcOutside - (0.544,0.544) 2.01 13 0.01 -
ODE-Ctc 0.5 (0.544,0.544) 1.99 38 0.01 1
ODE-Ctc+3BODE-Ctc 0.5 (0.544,0.544) 1.95 74 0.05 1

(4.5) ODE-CtcOutside - (2.290,2.137) 8.19 69 0.027 -
ODE-Ctc 0.15 (0.076,0.240) 3.31 70 0.17 4
ODE-Ctc+3BODE-Ctc 0.15 (0.076,0.240) 2.97 133 1.74 4

Table 4.2 Results obtained for the systems 4.3, 4.4 and 4.5. For each system the table
displays two contraction strategies. Each strategy is a combination of the
different contractors of the DCSP solver. The first strategy represent the best
strategy during the early stages of the solver. The second the best strategy
so far.

Sys. Ctc strategy SC tf diam. vol. #slices CPU #bis.
(4.3) DCG(CP) 0.2 0.06668 0.694 40000 9.35 1

ODE-Ctc+DCG * 0.2 0.06679 0.695 1000 0.19 0
(4.4) ODE-Ctc+DCG(CP) 0.5 (0.544,0.544) 0.70 2000 3.93 1

ODE-Ctc+DB* 0.5 (0.544,0.544) 0.85 2000 0.1 0
(4.5) ODE-Ctc+DB(CP) 0.15 (0.069,0.227) 2.54 1000 13.3 7

ODE-Ctc+DB* 0.05 (0.069,0.227) 2.52 1000 0.73 15

93

A Contractor for ODE

4.5.3 Discussion: IIVPs

Two main approaches have been used to solve the IIVPs 4.3, 4.4 and 4.5. The first
approach is gate oriented and it is displayed in the table 4.1. The second approach is
slice oriented and it is displayed in the table 4.2.

The gate oriented approach is mainly based on the ODE-Contractor. It computes tubes
such that the diameter of each of their final gates does not exceed the parameter SCg.
Usually, this approach provides precise results in terms of gate diameter in a short CPU
time. However, the volume of the tube is usually large. This is mainly due to the ODE
solvers wrapped inside the ODE-Contractor. As explained in chapter 3, ODE solvers,
such as VNODE-LP or CAPD, tend to compute thin gates (local enclosure) and large
slices (global enclosures).
Adapting the slicing policy or adding a slice contractor may help to reduce the volume of
the tube for this approach. As a counterpart, the CPU time may increase.

On the other hand, the slice approach is mainly based on slice contractors such as
DynBasic or DynCidGuess. It computes tubes with thin slices such that the diameter of
each slice does not exceed the parameter SC.
This approach provides precise results in terms of volume, resulting in relatively thin
gates as well. The CPU time is usually larger compared to the gate approach, as the
tube must be sliced into a greater number of slices, especially when the ODEs is stiff.
As well as the gate approach, using the different options of the solver for the slice
approach may improve the solution. As an example, adding a gate contractor such as
the ODE-Contractor may improve the gates of a tube. Moreover, when the contraction
is successful, the ODE-Contractor computes a finite tube. The slice contractors will have
to proceed on large slices instead of infinite slices, which may lead to improve the CPU
time performances.

Tables 4.1 and 4.2 highlight the different aspects of the two approaches.

Firstly, table 4.1 shows the results for the IIVPs 4.3, 4.4 and 4.5 using the gate approach.
As expected, the ODE-Contractor is less efficient when it is used outside the DCSP
solver, especially for non linear IIVPs such as 4.3 and 4.5. However, when it is used
inside the DCSP solver, it becomes more efficient. The most significant improvement is
for the problem 4.5 sensitive to the wrapping effect.

94

4.5 Experiments and results

Regarding the Dyn3B contractor, it is not yet clear how important it is for IIVPs. It
is not always worth using, regarding its needs in terms of CPU resources, but it does
sometimes improve the results, such as for the problem 4.3. At this point there are not
enough information to determine when a problem is more likely to require the Dyn3b.
Nevertheless, it seems that when it is used, it should be targeting the gate/slice at tf as
it is expected to carry the largest overestimation.

Secondly, the table 4.2 shows the results for the IIVPs 4.3, 4.4 and 4.5 using the slice
approach.
The results shown in the table describe the best strategy during the early stage of the
solver (CP) and the best strategy now (*). Note that in terms of volume, the slice
approach performs better than the gate approach while providing thin gates as well. The
main difference is in the CPU resources, as the gate approach consumes more.
Another aspect to highlight is the difference between the performances of the strategies.
The improvements are mostly due to a better understanding of the different contractors
and their interactions.
Taking the ODE-Contractor as an example, the ODE solvers wrapped inside it can be
considered as black boxes.
It is difficult to access the true information about the tube or how it is represented during
the numerical resolution of the ODE. As a result, when a gate, or a slice, is returned
by the ODE solver, it is a Cartesian box containing the solution. This box may be
overestimated, leading to a less efficient contraction.
Another difficulty lies in the application of the slicing policy to the ODE-Contractor. The
ODE solvers wrapped inside the ODE-Contractor have their own time-step management.
Forcing the ODE-Contractor to adopt the same slicing as the input tube may lead to
unnecessary evaluations, intersections or integration.

95

A Contractor for ODE

4.5.4 Experiments on BVPs

The second category of problems is composed of BVPs. Every BVP is formulated as a
two point BVP problem, with a constraint g(x(t0),x(tf)) = 0. This constraint could
be an algebraic relation between x(t0) and x(tf) such as in the equation 4.6, or partial
information about x(t) at t0 and tf such as in the equations 4.6, 4.7, 4.9 and 4.10 or
both such as in 4.12.
Starting with problem 4.6, it is a one dimensional equation with a boundary condition
expressed as an algebraic constraint involving x(t0) and x(tf). This problem shows how
the generic solver handles this type of constraints and highlights the importance of the
numerical contractors such as HC4-revise.

ẋ = x

x(0)2 + x(1)2 = 1
[t0, tf] = [0, 1]

(4.6)

Problem 4.7 is a linear second order BVPs from the wikipedia page of boundary value
problems. The true solution is known as x(t) = A.cos(t) + B.sin(t) with A = 0 and
B = 2.

ẋ1 = x2

ẋ2 = −x1

x1(0) = 0; x1(π/2) = 2
(4.7)

Problems 4.8 and 4.9 come from the bvpSolve Mazzia et al. (2014) benchmark. Both
BVPs are non linear and the main challenge for the solver is to compute stable solutions
for these problems. Moreover, BVP 4.9 has two different solutions, and the generic solver
is expected to find them both.

ẋ1 = x2

ẋ2 = −10(x2 + x2
1)

x1(0) = 0; x1(1) = 0.5
x2(0) ∈ [−20, 20];x2(1) ∈ [−20, 20]
[t0, tf] = [0, 1]

(4.8)

96

4.5 Experiments and results

ẋ1 = x2

ẋ2 = − exp(x1)
x1(0) = 0; x1(1) = 0
x2(0) ∈ [−20, 20]
x2(1) ∈ [−20, 20]
[t0, tf] = [0, 1]

(4.9)

Problem 4.10 is the Cruz system Cruz and Barahona (2003). This problem is not
formulated as a usual two point BVP since no information is known at tf = 6. Therefore,
partial information at t0 = 0 and t ∈ [1, 3] are known, and the contractors are expected
to perform as well as for usual two point BVPs.

ẋ1 = −0.7x1

ẋ2 = 0.7x1 − (ln(2)/5)x2)
x1(0) = 1.25;
x2 ∈ [1.1, 1.3] during [1, 3]
[t0, tf] = [0, 6]

(4.10)

Finally, problem 4.11 is an integro-differential equation subject to an algebraic constraint.
This equation can be reformulated as a two point BVP and solved with help of the
ODE-Contractor, see equation 4.12. As well as for problem 4.6, the generic solver uses
numerical HC4-Revise contractor for the algebraic constraint. ẋ(t) = 1− 2x(t)− 5

∫ t
0 x(τ)dτ ; t ∈ [0, 1]

x(0)2 + x(1)2 = 1
(4.11)

ẋ1 = x2

ẋ2 = 1− 2x1 − 5x2

x1(0) = 0
x2(0)2 + x2(1)2 = 1

(4.12)

97

A Contractor for ODE

4.5.5 Results: BVPs

Table 4.3 Results obtained for the BVP systems using a gate oriented approach.

Sys. Ctc strategy #sol SCg t0 diam. tf diam. vol. #slices CPU #bis.
(4.6) ODE-Ctc #1 1e-12 7e-14 2e-14 0.59 4 0.04 23

#2 1e-16 7e-14 0.59 4
ODE-Ctc+3BODE-Ctc #1 1e-12 1e-15 2e-15 0.59 1 0.09 7

#2 1e-14 3e-14 0.59 1
(4.7) ODE-Ctc #1 5e-4 9e-15 8e-15 6.28 1 0.003 0

ODE-Ctc+3BODE-Ctc #1 5e-4 9e-15 8e-15 6.28 1 0.007 0
(4.8) ODE-Ctc #1 0.05 0.04 0.002 0.33 84 22.14 643

ODE-Ctc+3BODE-Ctc #1 0.05 0.008 1e-4 0.34 84 3.82 371
(4.9) ODE-Ctc #1 0.005 0.003 0.003 0.22 234 1.12 68

#2 8e-5 4e-5 0.02 112
ODE-Ctc+3BODE-Ctc #1 0.005 0.002 0.002 0.21 230 1.67 34

#2 1e-5 3e-5 0.03 63
(4.10) ODE-Ctc #1 0.04 0.065 0.028 1.21 19 0.05 2

ODE-Ctc+3BODE-Ctc #1 0.05 0.065 0.028 1.21 19 0.11 1
(4.12) ODE-Ctc #1 0.02 1e-6 4e-7 0.17 400 0.48 3

#2 1e-5 4e-6 0.20 400
ODE-Ctc+3BODE-Ctc #1 0.02 2e-14 1e-13 0.17 400 1.1 1

#2 1e-12 3e-12 0.01 400

Table 4.4 Results obtained for the BVP systems using a slice oriented approach.

Sys. Ctc strategy #sol SC t0 diam. tf diam. vol. #slices CPU #bis.
(4.6) ODE-Ctc+DB(cp) #1 0.0005 2e-8 5e-8 2e-4 5000 7.63 1

#2 2e-8 5e-8 2e-4 5000
ODE-Ctc+DB #1 0.0005 3e-9 8e-9 2e-4 5000 0.13 1

#2 3e-9 8e-9 2e-4 5000
(4.7) ODE-Ctc+DB(cp) #1 0.0005 7e-15 7e-15 6e-4 12,288 12.7 0

ODE-Ctc+DB #1 0.0005 9e-15 8e-15 6e-4 24,576 0.12 0
(4.8) ODE-Ctc+DCG+3BDB(cp) #1 0.05 3e-2 2e-4 0.012 5,000 81 6

ODE-Ctc+DCG+3BODE-Ctc #1 0.05 1e-6 2e-10 0.01 1032 2.61 0
(4.9) ODE-Ctc+DB(cp) #1 0.05 3e-6 2e-6 7e-4 2000 75 62

#2 5e-3 5e-3 0.025 2000
ODE-Ctc+DB #1 0.05 6e-6 1e-5 9e-4 2000 1.6 25

#2 4e-3 5e-3 0.026 2000
(4.10) DCG(cp) #1 0.04 0.0644 0.0282 0.264 10,000 6.85 1

ODE-Ctc+DCG+3BODE-Ctc #1 0.04 0.0642 0.0279 0.263 10,000 2 1
(4.12) DB(cp) #1 0.02 0.015 0.03 0.018 400 8.35 66

#2 0.034 0.022 0.024 400
ODE-Ctc+DB #1 0.02 1e-10 5e-11 0.008 400 0.1 3

#2 5e-8 1e-8 0.009 400

98

4.5 Experiments and results

4.5.6 Discussion: BVPs

As well as for IIVPs, a gate approach and a slice approach have been used to solve the
BVPs 4.6, 4.7, 4.8, 4.9, 4.10 and 4.12.

The observations on the two approaches are the same as for the IIVPs. The gate oriented
approach (see table 4.3) is fast and precise in terms of gate diameters, but the obtained
volumes are relatively large. The slice oriented approach (see table 4.4) is precise in
terms of volume and provides thin gates as well, but it requires more CPU resources.
The main difference with IIVPs is that the ODE-Contractor cannot be used outside the
DCSP solver for BVP resolution, as the ODE solvers were not initially made for that.
The reason is that ODE-Contractor requires at least one initial condition at a time
ti ∈ [t0, tf] to perform a contraction. The initial condition must be a finite (and
sufficiently small) interval for all the dimensions of the problem. A BVP provides only
partial information on the initial condition through its boundary constraint. As a result,
the necessary input for using the ODE-Contractor is incomplete.
The idea is then to fill the missing part of the initial conditions in order to have a valid
input for the ODE-Contractor during the BVP resolution.

When the DCSP performs an IIVP resolution, its initial condition is propagated in order
to contract the domain of the solution. When the propagation is not sufficient, the DCSP
performs series of bisections.
The BVP resolution is slightly different, but it is based on the same approach. So far, the
boundary condition of a BVP is not sufficient to be propagated by the DCSP dynamical
contractors, however, it provides useful information about the solution.
Taking the BVPs 4.7 and 4.9 as examples, the boundary conditions are characterized
by partial information on the domains of the variables at t0 and tf (for instance, x1 is
known at t0 and tf for both BVPs and x2 is unknown). Starting from that, the idea is
to set large domains for the unknown variables, and to reduce them by removing the
parts that are inconsistent with the boundary condition.
The domain reduction is performed during the propagation loop of the contractors of the
DCSP, during the bisection and during the Dyn3B shaving procedure.
For linear problems, such as 4.7, the propagation loop seems to be sufficient, however,
for the non linear ones, bisection is required, especially for problem having more than
one solution such as 4.9. For such problems, bisection is mandatory in order to separate
the different solutions of the problem.

99

A Contractor for ODE

When the boundary condition is characterized by an algebraic constraint, such as for 4.6,
the domains of all the variables of the system are initialized to be sufficiently large.
Moreover, the numerical contractors must be added to the propagation loop of contractors.
The domains of the variables are firstly contracted by numerical contractors with respect
to the algebraic constraint, then the dynamical contractors contract the rest of the tube.
Bisection could also be required in this case, first, to target correctly which part of the
tube must be contracted with respect to the algebraic constraint (such as at t0 or tf),
then, to reduce the domains of the tube, and finally, to separate the different solutions if
there is more than one.
That is especially the case for the BVPs 4.6 and 4.12.
Contrary to IIVPs, the Dyn3B shaving procedure seems to be more often useful for BVPs.
The reason is probably due to the large domains initially assigned to the variables. The
shaving procedure eliminates unnecessary parts of the tubes that are inconsistent with
the set of the constraints, reducing the number of bisections performed by the solver
afterwards.

4.6 Conclusion

This chapter has presented the main idea about the ODE-Contractor, a contractor for
ordinary differential equations.
The ODE-Contractor has been implemented using the VNODE-LP lirary and another
version using with the CAPD library has been implementer afterward.
It was shown in this chapter that the ODE-Contractor is capable to address efficiently
IVPs and IIVPs especially when the ODE is smooth enough and the initial condition is
reasonably large.
This chapter has also highlighted the DCSP solver as well as its interactions with the
ODE-Contractor. Regarding the different results displayed for the various experiments,
it is clear that the ODE-Contractor is a key element for the solver, however, the fact
that it depends on underling solvers is a limitation. Indeed, these solvers can be seen
as black boxes because of the limited access to the real data of their solutions (such as
polytops). Increasing the transparency of the ODE solvers used for the design of the
ODE-Contractor would be more suitable. Fortunately, some recent work on the domain
has been provided by Bourgois (2021) about a white box guaranteed integration solver
based on the Lohner algorithm Lohner (1987).
Considering BVPs, the DCSP solver proved to be efficient to address these problems,
however, there are still some limitations that could be pointed up.

100

4.6 Conclusion

Starting with the initial domain, it is not yet possible to consider infinite domains for the
unknown variables of the BVP, as a result, the user must rely on his intuition to define
an initial domain to look for a solution. Moreover, the DCSP solver uses a branch and
filter algorithm to remove the undesired parts of the domains of the variables in order
to compute a solution. Most of the time, when the DCSP solver is unable to remove
inconsistent parts of a tube domain, a solution for the BVP is contained inside this tube,
but this is not sufficient to prove its existence neither its uniqueness.
The next chapter introduced an interval shooting method dedicated to boundary value
problems in order address these limitations.

101

Chapter 5

Dedicated method for two-point
Boundary Value Problems

Synopsis This Chapter presents an approach dedicated to the resolution of boundary
value problems using an interval shooting method approach validated by an interval
Newton operator.

5.1 Introduction

As previously mentioned, solving a BVP with the DCSP solver requires to initially set the
domains of the variables to finite intervals. These domains are reduced by removing the
parts that are inconsistent with the boundary constraint and the differential constraint.
The main advantage of this method is that the DCSP solver finds all the different
solutions of the BVP in that domain. As a result, if there are 2, 3 or even 100 solutions
in that domain, then the DCSP solver is able to compute tubes containing each of them.
However, if there exist solutions outside of this domain, then the DCSP solver will not
be able to find them.
Taking the BVP 18 as example, the initial domain of the unknown variable is set to
[-20,20]. The DCSP solver successfully computes two solutions in these domains, but
what if the domain was initially set to [5,15]? In that case, only one solution would have
been found by the DCSP solver.
This is actually one of the limitations of the solver, although in practice, the user may
know the nature of the problem and have some intuitions on the initial domain to set.
Another limitation of the DCSP solver is that when a tube is returned as a solution for
a BVP, it is not proven to contain a solution. The DCSP iteratively removes parts of

103

Dedicated method for two-point BVP

the domains that are inconsistent with the constraints of the BVP, but when a domain
cannot be reduced anymore, there is no guarantee that a solution exists inside it.
In order to overcome these issues, another approach for the BVP resolution is proposed
in the following sections as well as a method for validating a solution for a BVP.

5.2 Shooting method

One way to solve two-point BVPs is using the simple so called shooting method Press
et al. (2007). This method is summarized as follows:
Let the BVP: ẋ = f(x, t)

g(x(t0),x(tf)) = 0
(5.1)

The idea is to replace the BVP 5.1 by the following IVP: ẋ = f(x, t)
x(t0) = s

(5.2)

Where s is a vector containing the guessing values for xi ∈ x at t = t0.
It is well known Lohner (1987) that the solutions of BVP 5.1 are the same solutions of
IVP 5.2 satisfying the following constraint :

F(s) = g(s,xs(tf)) = 0 (5.3)

Where xs(tf) is the solution of the IVP 5.2 at tf .

Solving the problem 5.1 is reduced to find the zeros of the equation 5.3.
Finding the zeros of the equation 5.3 can be performed by root finding algorithms such
as the Newton method. The approach can be roughly summarized as follows:

• Given an initial guess s, the system 5.2 is solved numerically to compute xs(tf).

• If the constraint 5.3 is verified for s and xs(tf), then a solution for the BVP 5.1 is
found. Otherwise, a new guess for s is computed.

• The whole procedure is iteratively repeated until a couple s and xs(tf) verifying
the constraint 5.3 is found.

104

5.2 Shooting method

5.2.1 Overview on the Newton’s method

The Newton method also known as the Newton-Raphson is one of the most popular
algorithms for numerical approximation of the zeros of a real-valued function such as in
the equation 5.3.
Considering the one dimensional case, let f : R → R be a continuously differentiable
function, and suppose that x∗ is a zero of f .
Given an initial guess x0, the goal is to compute iteratively values xk (with k ≥ 0) such
that xk approaches x∗ at each iteration (under the assumption that x0 is close enough to
x∗).
An iteration of the Newton method is usually given as follows:

xk+1 = xk −
f(xk)
f ′(xk) (5.4)

Such that xk is the initial guess when k = 0 and f ′(xk) ̸= 0.
Each point xk+1 corresponds to the intersection of the x-axis and the tangent at f(xk).

Remark 5.1.

• The Newton method requires the derivative of the function f to be known (or the
Jacobian for the multivariate case).

• When the derivative of the function f is not known, methods such as the Secant
method can be used to replace the Newton method. However, the convergence
properties of the Secant method are not as good as the Newton method.

• When f is multivariate, the Broyden’s method can be used instead of the Newton
method. This method can be seen as a generalization of the Secant Method Broyden
(1965).

5.2.2 Application to BVPs

As introduced previously, solving the BVP 5.1 amounts to solving the IVP 5.2 using
different guesses as initial conditions. This is done iteratively until the zeroes of the
equation 5.3 are found.
Each new guess is computed by the Newton iteration associated to the BVP and it is
defined as follows:

sk+1 = sk −
F (s)
F ′(s) (5.5)

105

Dedicated method for two-point BVP

Where sk is the vector of the guessing values of xi ∈ x from the IVP 5.2 and F is the
univariate version of the function 5.3.
When F is a multivariate function the Newton iteration becomes:

sk+1 = sk − J−1
F (s)F(s) (5.6)

If a vector sk exists such that F(sk) = 0 then xsk
(·) is a solution for the BVP 5.1.

5.3 Interval Newton validation for the shooting method

As previously introduced, the simple shooting method can be used to solve two-point
BVPs. However, such methods are not reliable and cannot prove the existence and
uniqueness of a solution.
Here, the idea is to use an approach based on an interval arithmetic approach. This
approach relies on guaranteed integration coupled with an interval Newton method to
find a solution for BVPs while proving its existence and uniqueness.
Interval approaches have been studied in the past such as in Lohner (1987). In this
paper, the author proposed a shooting method coupled with an interval Newton method
to solve the BVP 5.1.

5.3.1 Interval Shooting method

Given the BVP 5.1, it is replaced by the following IIVP: ẋ = f(x, t)
x(t0) ∈ [s]

(5.7)

Where [s] is an interval vector containing the guessing values for xi ∈ x at t = t0.
Similarly to the previous section, the solutions of the BVP 5.1 are the same solutions of
IIVP 5.7 satisfying the constraint

0 ∈ F([s]) = g([s], [x][s](tf)) (5.8)

Where x[s](tf) is the solution of the IIVP 5.7 at t = tf .
Even if this method uses intervals and guaranteed integration, a solution [s] satisfying
5.3 is not proven to exist nor to be unique.
Proving that a solution [s] exists and is unique can be done through the interval Newton
method.

106

5.3 Interval Newton validation for the shooting method

The whole approach can be summarized as follows:

• Given an initial guess [s], the system 5.7 is solved numerically to compute [x][s](tf).

• If the constraint 5.8 is verified for [s] and [x][s](tf), then a solution for the BVP 5.7
is found. Otherwise, a new guess for [s] is computed.

• The whole procedure is iteratively repeated until a couple [s] and [x][s](tf) verifying
the constraint 5.3 is found.

• Now that [s] and [x][s](tf) are known as a solution for the BVP 5.1, an interval
Newton iteration is necessary to prove its existence and uniqueness.

Figure 5.1 illustrates the whole approach.

Fig. 5.1 On the left, a root finding algorithm computes iteratively intervals sk. s0 and
s1 do not satisfy the constraint 5.16 but s2 does. However, the true solution of
the BVP at t0 (in green) does not belong to s2. This can be due to the over
approximation carried out by the tube starting at s2.
On the right, the interval Newton operator is applied to a bigger box containing
s2 (in blue). The blue box satisfies the constraint given by the interval Newton
operator, meaning that it contains a solution of the BVP.

This approach is motivated by two main reasons:

• Due to the libraries used to perform the guaranteed integration, it is not yet possible
to perform a whole interval Newton algorithm on a BVP. When the initial guess
[s] is too large, the guaranteed integration fails.

107

Dedicated method for two-point BVP

• It is still possible to approach a solution to the BVP 5.1 with a shooting method
(on in this case an interval shooting method), then, apply an interval Newton
algorithm to a small neighborhood around this solution.

As a result, this approach might provide a solution to BVP 5.1 while ensuring its existence
and uniqueness.
The rest of this chapter will consist in presenting an overview of the interval Newton
method, as well as its application to BVPs, highlighting the most important difficul-
ties. This will be followed by an algorithm detailing this approach, and finally some
experiments.

5.3.2 Overview on the Interval Newton method

As mentioned previously, an interval Newton iteration is necessary to prove the existence
and the uniqueness of a solution to the BVP 5.1. An overview of this method is described
below.

Instead of computing series of values xk, the interval Newton method aims to compute
an interval [x] such that x∗ ∈ [x]. This requires that f is continuously differentiable and
an interval extension F ′ of f ′ exists and satisfies 0 /∈ F ′([x]).
Using the mean value form for a given x̂ ∈ [x], the function f becomes:

f(x̂) = f(x∗) + f ′(ξ)(x̂− x∗) (5.9)

With some ξ between x̂ and x∗ and f ′(ξ) ̸= 0.
It is possible to solve for the zero x∗:

x∗ = x̂− f(x̂)
f ′(ξ) ∈ x̂−

f(x̂)
F ′([x]) = N([x]; x̂) (5.10)

Since it was assumed that x∗ ∈ [x] and x∗ ∈ N([x]; x̂) then x∗ ∈ N([x]; x̂) ∩ [x] for all
x̂ ∈ [x].
N([x]; x̂) is called the interval Newton operator when x̂ is taken as x̂ = m = mid([x]),
therefore, it is defined as follows.

N([x]) = N([x];m) = m− f(m)
F ′([x]) (5.11)

Taking the interval [x]k = [x] (with k = 0) as an initial enclosure of x∗, an iteration of
the interval Newton method is given as follows:

108

5.3 Interval Newton validation for the shooting method

[x]k+1 = N([x]k;m) ∩ [x]k (5.12)

If a call to the Newton operator is contracting, i.e. N([x]k;m) ⊂ [x]k, then it guarantees
the existence and the uniqueness of the solution.

Theorem 5.1. Moore
Let f be a real-valued function of a real variable x continuously differentiable.
If f([x]0) contains a zero x∗ of f , so does each interval [x]k for all k = 1, 2, 3, . . . , defined
by 5.12. Furthermore, the intervals [x]k form a nested sequence converging to x∗ if
0 /∈ f ′([x]0).

Proof. A proof is given in Moore (1966).

5.3.3 Application of the interval shooting method to BVPs

Interval shooting method coupled with interval Newton method seems to be a good
approach to find a solution satisfying the constraint 5.8 while proving its existence and
uniqueness.
However various difficulties rise with this method.
First, the dimension of the system, if the equation 5.8 associated to the BVP is not a
one dimensional function, the interval Newton method previously presented cannot be
used. Fortunately, the interval Newton method can be generalized to an n-dimensional
equation, requiring the Jacobian of the function f instead of its derivative. This implies
that the Jacobian of f must be known and must be non singular, as its inverse has to be
used to compute the sequence of intervals containing the zeros of the function f .
The interval Newton iteration for the n-dimensional case becomes:

[x]k+1 = N([x]k; m) ∩ [xk] (5.13)

With the interval Newton operator:

N([x]k; m) = m− J−1([x]k)f(m) (5.14)

The second difficulty lies in the Jacobian of the function 5.3 associated to the IVP 5.2.
One of the arguments of this function is xs(tf)). This argument is the solution of the IVP
5.2 at tf and it is known as a numerical enclosure for the true solution x∗(tf)) (which is
a box when using intervals). Consequently, the analytical expression of the function 5.3
cannot be known, neither its Jacobian.

109

Dedicated method for two-point BVP

There exist in the literature different approaches to compute an enclosure for the Jacobian
[x](t), and by extension, the Jacobian of the function 5.3 Kapela et al. (2010); Lohner
(1987) and there is one in particular that will be used in this document, it is based on a
function of the CAPD library Kapela et al. (2010).
The CAPD library proposes a function that is capable to return the enclosure of the
Jacobian of the solution of an IVP such as IVP 5.2. Using that, the enclosure of the
Jacobian of 5.3 can be computed and the interval Newton operator becomes:

N([x]k; m) = m−B−1([x]k)f(m) (5.15)

Where B([x]k) is an enclosure of the Jacobian of 5.3 evaluated at [x]k.

The last difficulty consists in the fact that the initial interval [x]k=0 must contain x∗,
which implies that, as well as the DCSP solver, the initial domain [x]0 must contain a
root x∗. Consequently, if [x]0 is too large, the guaranteed integration solvers previously
mentioned (such as CAPD or VNODE-LP), will not be able to compute a stable enclosure
xs(tf)), they might be unable to compute it at all. Consequently, the Newton iteration
might be unfeasible.
A solution would be to divide [x]k=0 into sub-boxes such that the guaranteed integration
solvers could perform the guaranteed integration within the best conditions, this is
actually what is done in the DCSP solver, but also in other approaches such as in Lin
et al. (2008).

5.3.4 Broyden’s method

Here, the idea is to use replace the "classical" Newton method with the a Quasi-Newton
method called the Broyden’s method Broyden (1965).
First, the Broyden’s method will be used to find an interval close enough to a zero of the
function 5.8. This can be done without caring about the existence and the uniqueness
of the solution inside this interval. This step consists in iteratively computing intervals
[s]k = [x]k that might contain a root x∗ for the equation 5.3 with respect to the following
constraint:

0 ∈ F([s]k) = g([s]k,x[s]k(tf)) (5.16)

Such that, xsk
(tf) is the solution of the IIVP 5.7 with [s]k = [x]k as its initial condition.

Once a couple ([s]k, [x]sk
(tf)) verifying 5.16 is found, it means that the true solution x∗

of the BVP is probably close.

110

5.4 Algorithm

This step only consists in finding the couple [s]k, [x]sk
(tf)). It does not prove the existence

of the solution nor its uniqueness.

5.3.5 Interval Newton validation

This is where the interval Newton method takes the lead.
Once the couple ([s]k, [x]sk

(tf)) is found with the Broyden’s method, the interval Newton
operator applied to the interval [s]k can be used as a validation constraint (see Figure
5.1). If the interval Newton operator is contracting, such that N([s]k) ⊆ int([s]k), it
means that there exist a root x∗ ∈ [s]k and it is unique Kapela et al. (2020); Moore
(1966); Tucker (2011). The solution of the IIVP 5.7 with the initial condition [s]k is a
solution for the BVP 5.1.

5.4 Algorithm

The method described in the previous section is the main contribution of this Chapter.
It consists of a compromise between an approximation method and a guaranteed method.
The approximation method consists of an interval shooting method, using guaranteed
integration to compute the solutions at each iteration, and a Broyden’s method through
the the Sherman–Morrison formula Broyden (1965); Sherman and Morrison (1950). The
guaranteed method consists of an iteration of the Interval Newton method through the
Interval Newton operator that validates a solution once it is found by the approximation
part.
The whole method can be summarized with the following algorithm:

5.4.1 Description of the algorithm

Algorithm 7 describes an interval shooting method based on a root finding algorithm
(for instance, the Broyden’s method) and an Interval Newton Method.
The interval shooting method is used to find a root [s] to the function F associated to a
two-point BVP. [s] is supposed to be close enough to a true root x∗ of the problem (or
contains it).
The interval shooting method is followed by an iteration of an Interval Newton method
for the validation of a box containing a true root of F, based on the one computed by
the shooting method.
The interval shooting method starts with an initial guess, [s] = [s0], as a candidate for
the root of the function F.

111

Dedicated method for two-point BVP

Algorithm 7: Interval Shooting Method Algorithm
1 Input: (P , [s0], F(x) = g(x(t0),x(tf)), MaxDiam, InflationParam)
2 shooting ← true
3 [s]← [s0]
4 while (shooting=true) do
5 [x](tf) = GIntegration(P, [s], FWD) // Algorithm 4 from Chapter 4.
6 /* Checking the first constraint */
7 if (0 ∈ F (x) = g([s], [x](tf)) and w([x](tf)) < Maxdiam) then
8 shooting← false
9 else

10 /* Update of [s] */
11 [s]← mid([s]) + B−1

F ([s])F (mid([s]))
12 end
13 end
14 /* Looking if the true solution is around [s] */
15 [s]+ ← [s] + InflationParam
16 N([s]+)← mid([s]+) + J−1

F ([s]+)F (mid([s]+))
17 if (N([s]+) ⊂ [s]+) then
18 return N([s]+)
19 else
20 return ∅
21 end

After that, the IIVP 5.7 is solved using guaranteed integration in order to compute an
enclosure for [x](tf).
The guess [s] is considered close enough to x∗ if the constraint 5.16 is satisfied by the
couple ([s], [x](tf)). The diameter of the computed [x](tf) must be sufficiently small
to ensure that the enclosure of the solution computed by the guaranteed integration
function is stable (i.e, the tube [x](t) does not get too large).
When a guess [s] does not satisfy the constraint 5.16, it is updated. The update of [s] can
be done using the Newton method. This method requires us to compute J−1

F , the inverse
of the Jacobian of the function F. Solvers such as CAPD are endowed with functions
capable to compute an enclosure for the Jacobian Jx associated to [x]s(tf), hence, the
Jacobian of F at t = tf Kapela et al. (2010).
For the sake of simplicity, the Broyden’s method Broyden (1965) is preferred to the
Newton method during the interval shooting part of Algorithm 7. The main reason is that
even if the Broyden’s method is less precise, it provides through the Sherman–Morrison
formula Sherman and Morrison (1950) a way to compute directly an approximation B−1

F

for the inverse of the Jacobian of F.

112

5.4 Algorithm

On the other hand, computing an enclosure for the Jacobian Jx requires one dedicated
guaranteed integration at each step of the shooting method with an ODE solver such as
CAPD. The enclosure of Jx is then used to compute an enclosure for JF, then its inverse
J−1

F . Moreover, the guaranteed integration step necessary to compute the enclosure of Jx

uses [s]k as interval initial condition. When [s]k is too large, the guaranteed integration
might be unsuccessful or provide a large enclosure for Jx.
The interval shooting method goes from lines 2 to 13 of the algorithm 7.
Once a guess [s] satisfying the constraint 5.16 is found, an interval Newton method is used
to verify if a root of the function F exists in a box [s]+ ⊇ [s]. In this case, the Broyden’s
method cannot be used to approximate the inverse of Jacobian of F. An interval Newton
operator is required for the reliable validation of the solution. Consequently, it is necessary
to compute an enclosure for the Jacobian of F. This enclosure can be provided by the
CAPD solver through the Jacobian of [x](t) at t = tf .
This step corresponds to lines 14 to 20 of Algorithm 7.

Remarks 5.1.

• The initialization of B−1 for the Broyden’s method can be provided by CAPD
through the enclosure of the Jacobian of [x](t) at t = tf . This requires only one
extra guaranteed integration and one matrix inversion to compute the enclosure of
the Jacobian. This allows the Broyden’s method to have a closer approximation
for the Jacobian of F than a random initialization.

• The validation procedure using interval Newton algorithm can be added to the DCSP
solver during the resolution of BVPs. This step would validate the tubes solutions
found by the DCSP solver, proving the existence and uniqueness of a solution inside
each tube.

• In practice, J−1
F is not computed by inverting JF. A linear system of the type

J [x] = f(m) is solved instead to better fit the equation 5.11 (thus JF for the
interval Newton iteration, line 16 from Algorithm 7).

• The validation of the solution (either for the shooting method or the DCSP solver)
can be replaced by the whole Interval Newton algorithm if the inflated [s]+ (or the
tube returned by the DCSP solver) is considered too large.

113

Dedicated method for two-point BVP

5.5 Experiments

This section shows some experiments performed with IBVPsolve using mostly the CAPD
library. This solver is based on Algorithm 7. It uses a simple shooting method based on
guaranteed integration with the CAPD solver, and a Broyden’s method to update each
solution found by the shooting method until the constraint 5.10 is satisfied. After that,
the solver uses the interval Newton Method to verify if the solution found during the
shooting method exists and is unique in a small radius around the solution.
The experiments involve problems already presented in the previous Chapter. They are
redefined as follows:

ẋ1 = x2

ẋ2 = −10(x2 + x2
1)

x1(0) = 0; x1(1) = 0.5
x2(0) ∈ [−20, 20];x2(1) ∈ [−20, 20]
[t0, tf] = [0, 1]

(5.17)

ẋ1 = x2

ẋ2 = − exp(x1)
x1(0) = 0; x1(1) = 0
x2(0) ∈ [−20, 20]
x2(1) ∈ [−20, 20]
[t0, tf] = [0, 1]

(5.18)

Some other BVPs are defined below. The first three BVPs come from the paper Noor
and Mohyud-Din (2007) dedicated to the resolution of fourth order BVPs. Each BVP is
provided with its exact solution.

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = x2
1 − t10 + 4t9 − 4t8 − 4t7 + 8t6 − 4t4 + 120t− 48

x1(0) = x2(0) = 0; x1(1) = x2(1) = 1
[t0, tf] = [0, 1]

(5.19)

The original ODE and its exact solution:

x(4) = x2 − t10 + 4t9 − 4t8 − 4t7 + 8t6 − 4t4 + 120t− 48
x(t) = x5 − 2x4 + 2x2 (5.20)

114

5.5 Experiments

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = x1 + x3 + (t− 3)et

x1(0) = 1; x2(0) = 0; x1(1) = 0; x2(1) = −e
[t0, tf] = [0, 1]

(5.21)

The original ODE and its exact solution:

x(4) = x+ x(2) + (t− 3)et

x(t) = (1− t)et
(5.22)

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = sin(t) + sin(t)2 − x2
3

x1(0) = 0; x2(0) = 1; x1(1) = sin(1);x2(1) = cos(1)
[t0, tf] = [0, 1]

(5.23)

The original ODE and its exact solution:

x(4) = sin(t) + sin(t)2 − (x(2))2

x(t) = sin(t)
(5.24)

The last BVP comes from the paper El-Gamel and Zayed (2004) and it is a 6th order
BVP problem.

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = x5

ẋ5 = x6

ẋ6 = −e−tx2
1 + e−t + e−3t

x1(0) = 1; x2(0) = −1;x3(0) = 1
x1(1) = e−1;x2(1) = −e−1;x3(1) = e−1

[t0, tf] = [0, 1]

(5.25)

The original ODE and its exact solution:

115

Dedicated method for two-point BVP

x(6) = −e−tx2 + e−t + e−3t

x(t) = e−t
(5.26)

5.5.1 Results

Table 5.1 displays the results of a solver IBVPsolve based on Algorithm 7. The table
shows the results of the solver for each problem introduced above.

Table 5.1 Results obtained with a solver based on the Interval Shooting method algo-
rithm 7. From left to right, the table describes the dynamical system, the
step, the number of iterations, the results at t0 and tf , the max diameters at
t0 and tf and the CPU time.

Sys Step Guess #it t0 sol tf sol t0 diam tf diam CPU
5.17 SM {0,0} 9 {[0, 0],[8.63, 8.63]} {[0.5, 0.5],[-0.28, -0.28]} {0,1.7e-15} {6e-15,7e-15} 0.001

NV / / {[0, 0],[8.63, 8.63]} {[0.5, 0.5],[-0.28, -0.28]} {0,2.2e-13} {1e-14,1e-14}
5.18 SM {0,0} 6 {[0, 0],[0.54, 0.54]} {[-7e-16, 7e-16],[-0.54, -0.54]} {0,1e-16} {1e-15,3e-15} 0.002

NV / / {[0, 0],[0.54, 0.54]} {[-1e-15, 1e-15],[-0.54, -0.54]} {0,2e-15} {3e-15,4e-15}
SM {0,15} 7 {[0, 0],[10.84, 10.84]} {[-9e-14, 9e-14],[-10.84, -10.84]} {0,1e-15} {1e-16,3e-13} 0.02
NV / / {[0, 0],[10.84, 10.84]} {[-1e-13, 1e-13],[-10.84, -10.84]} {0,3e-13} {3e-13,6e-13}

5.19 SM {0,0, 9 {[0, 0],[0, 0], {[1, 1],[1, 1], {0,0 {7e-15,1e-14, 0.04
100,200} [4, 4],[-1e-15, -1e-15]} [-1e-14, 1e-14],[12, 12]} 8e-16,4e-19} 2e-14,7e-14}

NV / / {[0, 0],[0, 0], {[1, 1],[1, 1], {0,0, {9e-14,2e-13,
[4, 4],[-9e-14, 8e-14]} [-1e-13, 16e-13],[12, 12]} 1e-13,1e-13} 3e-13,2e-13}

5.21 SM {1,0, 2 {[1, 1],[0, 0], {[-1e-11, 1e-11],[-2.71, -2.71], {0,0, {2e-11,5e-11, 0.002
-10,50} [-1.00, -0.99],[-2, -1.99]} [-5.43, -5.43],[-8.15, -8.15]} 2e-11,5e-11} 1e-10,1e-10}

NV {[1, 1],[0, 0], {[-1e-10, 1e-10],[-2.71, -2.71], {0,0, {3e-10,8e-10,
[-1.00, -0.99],[-2, -1.99]} [-5.43, -5.43],[-8.15, -8.15]} 3e-10,7e-10} 1e-09,1e-09}

5.23 SM {0,1, 10 {[0, 0],[1, 1], {[0.84, 0.84],[0.54, 0.54], {0,0, {2.e-15,2.e-15, 0.007
-2,4} [-4.e-16, -4.e-16],[-1, -1]} [-0.84, -0.84],[-0.54, -0.54]} 5.e-20,1.e-16} 3.e-15,6.e-15}

NV / / {[0, 0],[1, 1], {[0.84, 0.84],[0.54, 0.54], {0,0, {2.e-14,5.e-14,
[-1.e-14, 1.e-14],[-1, -1]} [-0.84, -0.84],[-0.54, -0.54]} 2.e-14,4.e-14} 9.e-14,1.e-13}

5.25 SM {1,-1, 6 {[1, 1],[-1, -1],[1, 1], {[0.36,0.36],[-0.36,-0.36],[0.36, 0.36], {0,0,0, {2.2e-15,2.1e-15,2.3e-15, 0.012
-350,600, [-1, -1],[1, 1], [-0.36, -0.36],[0.36, 0.36], 1.1e-16,1.1e-16, 2.6e-15,3.3e-15,
1000} [-1, -1]} [-0.36, -0.36]} 1.1e-16} 4.2e-15}

NV / / {[1, 1],[-1, -1],[1, 1], {[0.36,0.36],[-0.36,-0.36],[0.36, 0.36], {0,0,0, {3.1e-13,1.0e-12,2.6e-12,
[-1, -1],[1, 1], [-0.36, -0.36],[0.36, 0.36] 1.3e-12,1.6e-12, 4.5e-12,4.7e-12,
[-1, -1]} [-0.36, -0.36]} 3.1e-12} 3.1e-12}

5.5.2 Discussion

As it was previously mentioned, IBVPsolve is a solver based on Algorithm 7 using a
shooting method coupled with the interval Newton validation.
Different aspects of the solver will be discussed in order to get an overall idea about it.
The approach here is gate oriented, hence, only the gates at t0 and tf will be taken into
account.

Reliability of the solutions computed by the solver
Most of the problems addressed in this Chapter with IBVPsolve have an analytical

116

5.5 Experiments

Table 5.2 Solutions of systems 5.19, 5.21, 5.23 and 5.25. From top to bottom, each line
of each system corresponds to a solution xi = x(i+1) where x(1) = x2 is the
first derivative of x(0) = x1 and so on. Each solution is evaluated at t0 = 0
and tf = 1

.

Sys x(t) Solution at t0 Solution at tf
5.19 x5 − 2x4 + 2x2 0 1

/ 5x4 − 8x3 + 4x 0 1
/ 20x3 − 24x2 + 4 4 0
/ 60x2 − 48x 0 12

5.21 (1− t)et 1 0
/ −tet 0 -e
/ (−t− 1)et -1 -2e
/ (−t− 2)et -2 -3e

5.23 sin(t) 0 ≈ 0.84
/ cos(t) 1 ≈ 0.54
/ −sin(t) 0 ≈ −0.84
/ −cos(t) -1 ≈ −0.54

5.25 e−t 1 ≈ 0.36
/ −e−t -1 ≈ −0.36
/ e−t 1 ≈ 0.36
/ −e−t -1 ≈ −0.36

solution. Consequently, it is possible to verify whether each interval solution returned by
the solver contains the exact solution or not.
Each analytical solution associated to each problem is given in the equations 5.20, 5.22,
5.24 and 5.26. Each solution can be derived and evaluated to obtain the true results of
each problem. The results are given in the table 5.2.
Problem 5.18 and 5.17 have already been solved by the DCSP solver. As a result, an
envelope of the solution is known and can be compared to the solutions computed by the
IBVPsolve. These envelopes are displayed in the table 5.3

Table 5.3 Solutions of systems 5.17 and 5.18 computed by the DCSP solver using the
gate oriented strategy ODE-Ctc + 3BODE-Ctc. The results are evaluations of
the tubes computed by the DCSP solver at t0 = 0 and t0 = 1.

sys ODE-Ctc at t0 ODE-Ctc at tt
5.17 {[0, 0] ; [8.62737, 8.66795]} {[0.5, 0.5] ; [-0.285234, -0.283725]}
5.18 {[0, 0] ; [0.549298, 0.549381]} {[0, 0] ; [-0.54938, -0.549339]}

/ {[0, 0] ; [10.8446, 10.8478]} {[0, 0] ; [-10.8477, -10.8445]}

117

Dedicated method for two-point BVP

As it can be seen in table 5.2, each solution computed by IBVPsolve contains the true
solution of each system at t0 and tf . Moreover, IBVPsolve manages to compute better
solutions than the DCSP solver for problems 5.17 and 5.18, see in table 5.3.
The interval Newton operator ensures that each solution exists and is unique. It also
validates the solutions computed during the interval shooting method. As example, in
the problem 5.19, the interval x4(t0) = [−1e− 15,−1e− 15] is close to the true solution
x4(t0) = 0 but does not contain it. The Newton operator improves it by computing the
solution x4(t0) = [−9.e− 14, 8e− 14].
Finally, it is now safe to say that each solution computed by the DCSP solver for the
problems 5.17 and 5.18 exists and is unique as the interval Newton operator is contracting
for each one of them during their resolution by IBVPsolve.

The stability of the solutions
So far, IBVPsolve is able to solve any two-point BVP as long as the IIVP associated to
each problem can be handled by the guaranteed integration solver CAPD.
There are some problems that IBVPsolve was not able to solve, and so far the most
recurrent difficulties are either caused by the stiffness of the ODE or a clumsy first guess.
When the ODE is stiff, CAPD is not able to compute a solution at tf which fatally leads
to a failure of the shooting method. This is actually the case of a variation of the problem
5.18 where ẋ2 = ρ ∗ exp(x1) with ρ = 0.01. CAPD is not able to compute solutions at tf
for the different guesses, as a result, the shooting method fails and does not converge to
a solution.
The second most common problem is the first guess. Root finding algorithms, such as
the Broyden’s method, are known to converge better to a solution when the first guess is
close to it Broyden (1965). As example, IBVPsolve was unable to find a solution for the
equation 5.23 when the first guess was {0., 1., 9., 5.}, the shooting method stops at the
8th iteration without finding a root satisfying the constraint 5.16.

The boundary constraint
IBVPsolve is limited to boundary constraints of the nature g(x(t0),x(tf)) = 0 =
xs(tf)− x(tf) = 0. The reason is that in this particular case, the Jacobian of F(x) =
g(x(t0),x(tf)) = 0 is a sub matrix of the Jacobian of xs(ti). This makes it easier to
compute the Jacobian of F(x) as well as its inverse. As a result, the solver is not able to
address algebraic constraints such as for problem (simon bvp).

118

5.6 Conclusion

5.6 Conclusion

This Chapter has presented another aspect for the ODE-Contractor through the resolution
of BVPs based on an interval shooting method described in Lohner (1987).
So far, the DCSP solver presented in the previous Chapter provides better results for the
BVP resolution, as it is able to address a wider variety of problems, while computing
thin tubes containing the solutions. On the other hand, the interval shooting method
proposed in this Chapter is at its early stages but provides promising results.
The most interesting aspect is that each solution found by IBVPsolve is guaranteed and
the CPU performances are better than those obtained with DCSP solver, at least for
5.17 and 5.18.
The limitations for the DCSP solver and the interval shooting method are somehow
similar. Both require a good intuition on the first domain (for the DCSP solver) and
the first guess (for IBVPsolve). However, the DCSP solver is able to compute all the
solutions inside a given domain, while IBVPsolve can only compute one solution per
guess on an unbounded domain.
There were different ideas to improve the DCSP solver with IBVPsolve, such as using
the interval shooting method as a heuristic to better target the contractions/bisections
of the DCSP solver, but so far, the first results were not good enough.

119

Part IV

Quasi Capture Tube Validation

121

Chapter 6

Quasi Capture Tube Validation

Synopsis This Chapter presents the last contribution of this thesis, the quasi capture
tube validation. It consists in an interval constraint programming approach dedicated to
the validation of temporal sets that the trajectories of a dynamical system are unable to
escape.

6.1 Introduction

Many mobile robots such as wheeled robots, boats, or planes are described by differential
equations. For this type of robots, it is difficult to prove some properties such as the
avoidance of collisions with some moving obstacles. This is even more difficult when the
initial condition is not known exactly or when some uncertainties occur.
A Graal would be to compute a capture tube (or equivalently a positive invariant tube
Olaru et al. (2010)), i.e. a time moving “bubble” (a set-valued function associating
to each time t a subset of Rn) from which a feasible trajectory cannot escape. The
definitions and properties of capture tubes have been studied by several authors (Aubin,
2001; Blanchini and Miani, 2008), but the algorithms for their computation are almost
absent except in the linear case (Girard et al., 2006; Rakovic et al., 2005; Tahir and
Jaimoukha, 2015).
In the nonlinear case, approaches based on interval analysis (Lhommeau et al., 2007;
Romig et al., 2019) or Lipschitz assumptions (Saint-Pierre, 2002) have also been investi-
gated, but the performances are poor if no propagation techniques are used.
When time is discrete, efficient algorithms are given in (Wan et al., 2009), but they
cannot be extended to robotics systems described by differential equations.
Instead, a satisfactory alternative is to present a candidate tube to a tool that could
validate whether it is a capture tube or not. This validation problem can generally

123

Quasi Capture Tube Validation

be transformed into proving the inconsistency of a constraint system by combining
guaranteed integration and Lyapunov theory (Ratschan and She, 2010; Yorke, 1967).
Unfortunately, when the system dynamics is complex, even with a good intuition, it is
difficult for a human to present a significant capture tube because of its irregular form.
Jaulin et al. proposed in (Jaulin et al., 2016) an original approach based on interval
analysis. The idea is to validate a quasi capture tube, also called periodic invariant set
(Lee and Kouvaritakis, 2006), i.e. a candidate tube (with a simple form) from which
the mobile system can escape, but into which it will enter again before a given time.
Merging these trajectories with the candidate tube computes the smallest capture tube
enclosing the quasi capture one. Jaulin et al. established properties that support this
new approach, but the algorithms were not described and were validated only on a simple
pendulum example with two degrees of freedom. Their approach worked in two steps,
where the first one focused on the crossout constraints (see Section (refsec:tubecapture))
while the second step managed the other constraints.
The contribution presented in this Chapter is built upon those properties. Compared
to Jaulin et al. approach, the solver follows a pure CSP approach expressing the quasi
capture tube validation problem, where the domains are tubes defined recently in the
Codac library (Rohou et al., 2020, 2017). After the related work presented in Section 6.2,
Section 6.3 formally defines the quasi capture tube validation problem and its expression
as a CSP. Then, a Branch and Contract solver dedicated to this problem is proposed in
Section 6.4, and Section 6.5 shows how it scales up on several problems from 2 to 5 state
dimensions.

6.2 Related work

Let Sf be the dynamical system defined in Chapter 3:

Sf : ẋ(t) = f(x(t), t) (6.1)

As it was mentioned in the introduction, the validation stability properties of such a
system is a difficult and important problem. When it comes to invariant systems (systems
where f does not depend on t), approaches based on V-stability (Jaulin and Le Bars,
2012), combined with Interval analysis are able to solve this problem efficiently.
Jaulin et al. (Jaulin et al., 2016) have extended this work to non-autonomous systems
(where f depends on time), introducing the concept of a set valued function called a
capture tube.

124

6.2 Related work

This section will provide the necessary elements to understand the concept of capture
tube and its validation. After that, an example will be presented in order to highlight the
main difficulty encountered.

6.2.1 Capture tube

As introduced in Chapter 3, a tube [x](·) is a function which associates to each t ∈ R a
subset of R. Until now, tubes have been mainly used to represent an envelope containing
a trajectory, often the solution of a dynamical system. In the same philosophy, tubes are
the domains of the variables of a DCSP (which in a way, can be reduced to envelopes
containing the solution of a dynamical system). Here, the definition of a tube is also used
to represent a positive invariant set, called a positive invariant tube or a capture tube.
Given the system 3.1 and a tube G. G is supposed to be a capture tube if it contains
the trajectories of the system 3.1 such that:

• If a trajectory of the system 3.1 enters G, then it stays inside G.

• If a trajectory of the system 3.1 is inside G, it stays inside G.

If all the trajectories of the system 3.1 verify the two previous conditions, then G is a
capture tube (see figure 6.1).

Fig. 6.1 A tube painted in red and possible trajectories for a dynamical system. If
trajectories such as the dotted ones exist, then G(x(t), t) is not a capture tube.

Formally, a capture tube is defined as follows:

125

Quasi Capture Tube Validation

Definition 6.1. Let Sf be a dynamic system defined in Chapter 3. Let G(x(t), t) be
a tube defined by an inequality {x(t) | g(x(t), t) ≤ 0}, where g : Rn × R → Rm is a
differentiable function w.r.t. x and t.
Then:
G(x(t), t) is said to be a capture tube for Sf if:

x(ti) ∈ G(ti), τ > 0 =⇒ x(ti + τ) ∈ G(ti + τ)

The tube G(x(t), t) displayed in Figure 6.1 does not correspond to the definition of
a capture tube, since there is at least one trajectory escaping the tube (as example,
trajectory represented in dotted lines).
The problem of proving that G(x(t), t) is a capture tube can be cast into proving that a
set of inequalities has no solution through the following theorem:

Theorem 6.1. (Cross-out conditions (Jaulin et al., 2016))
Let Sf be a dynamic system defined by ẋ(t) = f

(
x(t), t

)
, and a tube G(x(t), t) =

{x(t) | g(x(t), t) ≤ 0}. Consider the constraint system:
(i) ∂gi(x, t)

∂x
.f(x, t) + ∂gi(x, t)

∂t
≥ 0

(ii) gi(x, t) = 0
(iii) g(x, t) ≤ 0

(6.2)

If 6.2 is inconsistent (i.e., for all x, all t ≥ 0, and all i ∈ {1, . . . ,m}, 6.2 has no solution),
then G(x(t), t) is a capture tube.

Proof. The proof of the theorem 6.2 is detailed in (Jaulin and Le Bars, 2012; Jaulin
et al., 2016).

Remark 6.1. For the sake of clarity, and because the application problems studied in this
Chapter fall in this case, the tube G(x(t), t) is restricted to the case where it is defined by
only one inequality (m = 1). The corresponding cross out constraint system is slightly
more complicated otherwise (Jaulin et al., 2016).

6.2.2 Difficulty

The main difficulty about capture tubes is the choice of a capture tube. The validation
of a capture tube can be easily performed by solving the set of non linear equations
induced by the theorem 6.2. This can be efficiently done with help of interval analysis
and contractors. The real question is how to select a capture tube? In order to illustrate

126

6.2 Related work

the difficulty of defining a capture tube, consider the following equation describing the
motion of a simple pendulum.

θ̈ = −sin(θ)− ρ.θ̇ (6.3)

Where θ is the angular position of the pendulum, θ̇ its rotational velocity and ρ = 0.15 a
coefficient of friction (for sake of simplicity, the usual constants such as the mass of the
pendulum or the length of the cord are set to 1).

Fig. 6.2 Simple pendulum

The goal is to start from a set candidate and use the theorem 6.2 in order to tell whether
it is a positive invariant set (i.e. capture tube) for 6.3 or not. In (Jaulin et al., 2016)
the authors suggest to take sub-level sets of the energy of the system. This intuition
comes from the fact that the energy of the system decreases with time, for instance, the
coefficient of friction ρ causes the pendulum to lose its kinetic energy and to stop after
some time.
In the case of the simple pendulum, the energy E(θ) of the system is expressed as a
combination of its potential energy Ep(θ) and its kinetic energy Ek(θ) such that:

127

Quasi Capture Tube Validation

E(θ) = Ep(θ) + Ek(θ) = (1− cos(θ)) + 1
2 θ̇

2 (6.4)

Hence, the following tube can be taken as a candidate for a capture tube:

G(θ) = E(θ)− 1 (6.5)

When the theorem 6.2 is applied to the system 6.3 and the tube 6.5 the following set of
equations are obtained: (i) −0.15 θ̇2 ≥ 0

(ii) 1
2 θ̇

2 − cos(θ) = 0
(6.6)

Remark 6.2. Since G(θ) is scalar, the condition (iii) of theorem 6.2 is a consequence
of the condition (ii).

The system 6.6 has two solutions (θ, θ̇) = (±π
2 , 0), hence, the tube candidate 6.5 is not a

capture tube.

6.3 Quasi capture tube validation

As it was shown in the previous section, it is difficult to find a capture tube, even for a
simple system such as 6.3. In the paper (Jaulin et al., 2016), the authors proposed a
method to build capture tubes from tubes candidates that do not satisfy the condition of
inconsistency of the theorem 6.2. In a nutshell, their approach can be summarized as
follows:
First, a tube candidate (G(x(t), t)) is selected and the inconsistency of the set of nonlinear
equations of the theorem 6.2 is checked.
If the system has no solutions, then G(x(t), t) is a capture tube. Otherwise, the idea is to
characterize the smallest capture tube which encloses G(x(t), t).
To do this, it is necessary to compute, for every trajectory escaping G(x(t), t), an envelope
within a finite time-horizon window ([t, t+ τ]. If all the corresponding envelopes belong
to G(t+ τ), then the union of all the envelopes with the tube G(x(t), t) corresponds to
the smallest capture tube enclosing G(x(t), t).
Based on that, a CSP approach has been proposed to validate tube candidates that can
be extended to capture tubes called quasi-Capture tubes.
This approach is based on a branch contract algorithm and it is the main contribution of
this Chapter.

128

6.3 Quasi capture tube validation

6.3.1 Quasi-capture tubes

Let be Sf the dynamical system introduced in the system 6.1 and G(x(t), t) a tube. A
quasi-capture tube is supposed to allow some trajectories of the system Sf to escape, but
they can enter into the tube later, before a horizon tf . Such a trajectory satisfies the
following constraints:

1. ẋ(t) = f(x(t), t) (Differential constraint)

2. ∃t0 ∈ [t0], x(t0) satisfies 6.2 (Cross out constraint)

3. ∃tin ∈]t0, tf] s.t. x(tin) ∈ G(tin) (Capture constraint)

First, the constraint (1) is a differential constraint. It states that x(t) is a trajectory of
Sf .
Second, the constraint (2) is a cross out condition constraint, it is a high level constraint
described by the set of equations of theorem 6.2. This constraint states that there exist
a time t0 in a range of time [t0] such that a trajectory x(t) escapes the tube G(t).
Finally, the constraint (3) is a capture constraint, it states that the escaping trajectory
(from constraint (2)) goes back to the tube G(x(t), t) (or is captured) at tin within a
time-horizon window]t0, tf].

6.3.2 CSP approach

Let G(x(t), t) be a non capture tube (i.e., a tube that does not satisfy 6.2) and Sf be the
dynamical system defined in 3.1. Proving that G(x(t), t) is a quasi capture tube can be
done using a CSP approach through DCSPs. In this context, the CSP would involve the
trajectories of Sf as variables, tubes as domains for the variables, and the constraints
defined in the equation 6.3.1.
Here the approach is slightly different. Instead of proving that all the trajectories leaving
G(x(t), t) are captured before a time horizon tf , the idea is to find at least one trajectory
that escapes G(x(t), t) for ever (or at least before tf). If such a trajectory exists, then
G(x(t), t) is not a quasi capture tube. However, if no trajectory is found, then G(x(t), t)
is guaranteed to be a quasi capture tube.
The CSP associated to this approach is defined as follows:

Definition 6.2. (CSP defining the quasi capture validation problem)
Let Sf be a dynamic system defined in 3.1, and a candidate tube G(x(t), t) = {x(t) | g(x(t), t) ≤
0}.

129

Quasi Capture Tube Validation

The DCSP N = (x(.), [x(.)], c) defines the quasi capture validation problem, where x(.)
describes the system living in the domain/tube [x(.)], and c includes the three following
(vectorial) constraints:

ẋ(t) = f(x(t), t) (differential constraint)
∃t0, x(t0) satisfies 6.2 (cross out constraint)
∀t ∈]t0, tf] g(x(t), t) > 0 (escape constraint)

The constraints model the fact that the system can escape from G(x(t), t) “for ever”, i.e.
cannot go back in G(x(t), t) before tf . If N is inconsistent, then it proves that G(x(t), t)
is a quasi capture tube.
Furthermore, consider the trajectories that satisfy the cross out constraint but violate
the escape constraint. It is straightforward to check that if the CSP has no solution,
adding these trajectories to the candidate (quasi capture) tube builds a capture tube
(Jaulin et al., 2016).

6.4 Method and algorithm

This section describes a method based on a branch and contract algorithm to solve the
differential CSP defined in Definition 6.2.

6.4.1 Main algorithm

The initial domain initTube is [t0, tf]× [x], where [x] is a big or infinite box initializing
the state variables. The other input parameters are the candidate capture tube G(x(t), t),
a precision parameter on the time (timestep) and vectorial parameters ϵstart and ϵmin,
that specify the diameters of all variables at the initial gate. They are detailed further.
Algorithm 8 follows a tree search that combinatorially subdivides the initial domain
initTube into smaller tubes, in depth-first order. At each node of the search tree handling
a tube, a contraction is achieved using the three types of constraints detailed in Definition
6.2.
The function Contraction (Line 6) returns a contracted tube and a status Contrac-
tionResult associated to it. tube can become empty (and ContractionResult = in) if
Contraction could prove that the tube is entirely inside G(t) at an instant between t0

and tf (see Lines 16–18).

130

6.4 Method and algorithm

Algorithm 8: Branch and contract
1 Input (G(t), initTube, t0, tf , timestep, ϵstart, ϵmin)
2 Output (OutList : list of solution tubes ; UndeterminedList : list of “small” tubes

still undetermined)
3 tubes ← {initTube}
4 while (tubes ̸= ∅) do
5 tube ← Pop(tubes)
6 (ContractionResult, tube) ← Contraction(tube, S, G(t), t0, tf , timestep, ϵstart)
7 if (ContractionResult = out) then
8 OutList ← OutList ∪ {tube}
9 else if (ContractionResult = undetermined) then

10 if Diam(tube(t0)) ≤ ϵmin then
11 UndeterminedList ← UndeterminedList ∪ {tube}
12 else
13 (tubeleft, tuberight) ← Bisect(tube, bisectionStrategy)
14 tubes← {tubeleft} ∪ {tuberight} ∪ tubes
15 end
16 else
17 /* ContractionResult = in: Nothing to do : tube is discarded because its

trajectories all enter inside G(x(t), t) at an instant in [t0, tf] */
18 end
19 end

A second case occurs when tube has been detected outside G(x(t), t) after a time and
until tf (Line 7). It is not useful to subdivide tube further because all the trajectories
inside tube are solutions. Therefore tube is stored in OutList.
The last case corresponds to an internal node of the search tree and occurs when the
contraction cannot decide one of the cases “in” or “out” above (Line 9). If tube is
sufficiently large (Line 12), the branching operation bisects tube in two sub-tubes tubeleft

and tuberight and pushed them in front of tubes (depth first order). The tube bisection
is performed at the first gate (at t0) because one has the most information at this time
(cross out conditions hold). Note that it is sufficient to perform all the bisections at the
same time because with an ODE an “instanciation” at one time allows one to deduce the
trajectory perfectly.
No more bisection is achieved if the tube size has reached a given precision ϵmin, and tube
is stored in a list of “undetermined” tubes (Line 11). Algorithm 8 stops when tubes is
empty. If OutList and UndeterminedList are empty, then G(x(t), t) is a quasi capture
tube for the system S.

131

Quasi Capture Tube Validation

Algorithm 9 details the different contractors applied to the current tube. tube is first
contracted by the cross out constraints (Line 3). CrossoutContraction contracts tube
at time t0 according to the cross out constraints. It calls the state-of-the-art contractors
HC4 (Benhamou et al., 1999) and 3BCID (Lhomme, 1993b; Trombettoni and Chabert,
2007) on the cross out constraint subsystem (see Section 6.5 describing the experiments).
With the call to ODEEvalContraction (Line 6), the algorithm proceeds with the con-
traction of the differential (ODE) constraint and the escape constraint. Note that this
contraction procedure is run only under a given level of the search tree, where, for each
dimension, the tube diameter at t0 is lower than the user parameter ϵstart. Indeed, this
differential contraction during the time window [t0, tf] is costly and needs a relatively
small input box (initial condition) to efficiently contract tube, with the help of guaranteed
integration.

Algorithm 9: Function Contraction of Algorithm 8
1 Function Contraction(S, G(x(t), t), tube, t0, tf , timestep, ϵstart)
2 tube ← CrossOutContraction(tube, S, G(x(t), t))
3 if (tube = ∅) then
4 ContractionResult ← in
5 else if (Diam(tube(t0)) < ϵstart) then
6 ContractionResult ← ODEEvalContraction(S, tube, G(x(t), t), t0, tf ,

timestep)
7 else
8 ContractionResult ← undetermined
9 end

10 return (ContractionResult, tube)
11 end

6.4.2 Differential contraction

White box differential contractors, such as the ctcDeriv introduced in Chapter 3 could
be used to contract tube w.r.t. the ODE and escape constraints.
Instead, for performance reasons, it was preferred to exploit an ODE-Contractor based on
the state-of-the-art guaranteed integration (GI) tool, like VNODE-LP (Nedialkov, 2006)
or CAPD (Kapela et al., 2010), to benefit from its optimized internal representations.
This ODE-Contractor is slightly different from the ODE-Contractor introduced in Chapter
4 . Here, it is endowed with an evaluation function dedicated for the escape constraint of
6.2. This ODE-Contractor is referred as the ODEEvalContraction, and it is described in
Algorithm 10.

132

6.4 Method and algorithm

Algorithm 10: Function ODEEvalContraction of Algorithm 9
1 Function ODEEvalContraction(S, tube, G(x(t), t), t0, tf , timestep)
2 ti ← t0
3 tout ←∞
4 repeat
5 (slice, ti+1) ← GI_Simulation(S, tube(ti), ti, tf)
6 (ContractionResult, tout) ← GI_Eval (slice, G(x(t), t), timestep, ti, ti+1,

tout)
7 tube[ti, ti+1] ← tube[ti, ti+1] ∩ slice
8 ti ← ti+1
9 until (ti = tf) or (ContractionResult = in)

10 if ContractionResult = in or tout ̸=∞ then
11 return ContractionResult
12 else
13 return undetermined
14 end
15 end

The ODEEvalContraction function contracts tube by integrating the ODE from t0 to tf
using the CAPD GI solver. The function GI_Simulation (Line 5) calls the GI solver
with the interval initial value tube(ti), the tube gate at time ti. As previously explained
in the Chapter 3 , the GI generally needs to construct several gates before reaching
tf , and GI_Simulation allows one to incrementally build the next slice between ti and
a computed time ti+1. By doing this integration, the GI solver builds an associated
high-order Taylor polynomial that can be evaluated rapidly at any gate or subslice
inside [ti, ti+1]. This is the task achieved by GI_Eval (see Algorithm 11) by splitting
[ti, ti+1] into contiguous subslices of (time) size timestep and tests whether tube during
the studied subslice satisfies the escape (from G(x(t), t)) constraint or not. In the latter
case, the integration is interrupted (Algorithm 10 stops) and ContractionResult is set
to in. The whole tube is rejected. If a subslice satisfies the escape constraint, tout is
used to memorize the first instant where it occurs. If tout =∞, then tout is set to ti. If a
subsequent subslice evaluation does not return out, then tout is set back to ∞. Indeed, a
solution tube must satisfy the escape constraint in all times from tout to tf . When tf is
reached, only two cases are still possible. Either tube has escaped from G(x(t), t) at tout

until tf (a solution), or tube has intersected G(x(t), t) at some instants, including tf . In
that case, it is not possible to make a conclusion and the result of the contraction will be
undetermined. Figure 6.3 summarizes the different cases described above.

133

Quasi Capture Tube Validation

1

2

tf t0

 t0 t0

tin

 tf tf

tf

A B

DC

 t0

3

Fig. 6.3 Different tubes built by the solver. Three particular trajectories (1), (2) and (3)
are highlighted in the figure. A: First slice satisfying the cross out constraints
corresponding to the three trajectories leaving the tube G(x(t), t). B: A tube
enclosing (1) is integrated and is getting inside G(x(t), t). C: A tube enclosing
(2) is escaping from G(x(t), t). D: An undetermined tube enclosing (3): the
algorithm cannot conclude.

Another possible case not described in the pseudo-code is when GI_Simulation fails to
compute a part of the simulation. This result is equivalent to the undetermined result
since the algorithm is not able to conclude if the tube goes inside G(x(t), t) or not. The
choice of ϵstart has a significant impact on the frequency of this “pathological” case (see
experiments).

6.4.3 Discussion

Algorithm 8 provides two main answers. The favorable case is when the solver returns
no solution: OutList and Underdeterminedlist are empty. The algorithm is correct
and guarantees that G(x(t), t) is a quasi capture tube. Furthermore, as a side effect,
by merging with G(x(t), t) all the in tubes rejected by the algorithm, it is possible
to build the smallest (i.e., inclusion-wise minimal) capture tube including the quasi
capture tube. The second case occurs when the solver computes a non empty OutList
or Underdeterminedlist. This corresponds generally to the computation of a non quasi

134

6.5 Experiments

Algorithm 11: Function GI_Eval of algorithm 10
1 Function GI_Eval((slice, G(x(t), t), timestep, ti, ti+1, tout)):
2 ts ← ti
3 while (ts < ti+1) do
4 [teval]← [ts, ts + timestep]
5 subSlice ← slice([teval])
6 if G : {g(teval, subslice) < 0} then
7 return "in"
8 else if G : {g(teval, subslice) > 0}) then
9 tout ← ts // ∃t0 < tout <<∞ such that x(t) /∈ G(t)

10 end
11 else if (G : {0 ∈ g(teval, subslice)}) then
12 tout ←∞
13 end
14 ts ← ts + timestep

15 end
16 if tout ̸=∞ then
17 return "out"
18 else
19 return "undetermined"
20 end
21 end

capture tube but, theoretically, it is possible that a trajectory could enter inside G(x(t), t)
after tf , before tout (OutList ̸= emptyset), or during the undetermined temporal slices.
In this sense, the solver is not complete while these numerical issues occur rarely provided
tf is large enough (according to the command of the system), and the precision size ϵmin

is sufficiently small.

6.5 Experiments

The current section presents some results provided by an implementation of Algorithm
8 that significantly improves a first code called Bubbibex and written to validate the
pendulum problem (Akkouche et al., 2014). This new Bubbibex is implemented in C++.
It uses the Ibex library (Chabert, 2020) with the HC4 (Benhamou et al., 1999) and
3BCID (Lhomme, 1993b; Trombettoni and Chabert, 2007) contractors for propagating
the cross out conditions constraints. It also uses the CAPD/DynSys library for the
differential contractor based on guaranteed integration (Kapela et al., 2010) and the
Tubex/CODAC library for tube structure (Rohou et al., 2021b).

135

Quasi Capture Tube Validation

Experiments have been carried out using an Intel(R) Xeon(R) CPU E3-1225 V2 at
3.20GHz. In each experiment, see Table [6.1], the results obtained by the solver are
highlighted for different values of the so-called observed parameter (ϵstart or bubble radius
or etc.).
These responses include the running time of each experiment (CPU-Time) in second,
and the number of computed tubes corresponding to the leaves of the search tree: “In”
for tubes getting inside G(x(t), t),“Und” for undetermined tubes and “Out” for tubes
staying out of G(x(t), t) at tf . These numbers are reported in the tables presenting the
results of each experiment.
The simulation time of each experiment is at most tf = 100 with timestep = 0.01. The
bisection strategy used is the Maximum Diam Ratio, selecting the variable [xi] with the
greatest ratio Diam([xi])/ϵi.

Remark 6.3. As introduced in Chapter 3, rewriting a non autonomous ODE as an
autonomous ODE adds the temporal variable “t” to the state variables, increasing the
dimension of the problem by 1. As a result, the dimension of the vectorial parameters
ϵstart and ϵmin might increase if the domain of the temporal variable "t" defined by [t0] is
not a degenerate interval (i.e. [t0 < t0]).

Table 6.1 Characteristics of the different experiments

Problem Type State variables Bubble
Pendulum Non Linear 2 Static
2D Linear system Linear 2 Dynamic
Tracking Linear 2 and 3 Static and Dynamic
Pursuit game Non Linear 3 and 5 Dynamic

6.5.1 Pendulum

Let P the first order differential equation of the system 6.3 :

P :

 ẋ = y

ẏ = −sin(x)− 0.15y
(6.7)

Where θ = x and θ̇ = y.
The goal is to find a quasi capture tube for the system P .
When ϵstart={1,1} (Line 1 of Table 6.3), the differential contractor is not able to suc-
cessfully contract the tube. This is due to a large initial condition that prevents the

136

6.5 Experiments

Table 6.2 Parameters of the pendulum experiment:

First gate Bubble r0 Observed parameter
x, y ∈ [−10, 10] x2 + y2 − r2

0 ≤ 0 1 ϵstart

guaranteed integration from computing a solution and leads the solver to bisect the
initial gate of the tube before reaching the right precision. Having a good intuition on
the parameter ϵstart (Line 2 of Table 6.3) can improve the efficiency of the method. The
CSP has no solution, therefore the studied bubble is a quasi capture tube.

Table 6.3 Results for pendulum system.

ϵstart ϵmin In Und Out CPU
{1,1} {0.1,0.1} 6 0 0 72.2
{0.5,0.5} {0.1, 0.1} 6 0 0 0.00734

6.5.2 2D linear system

R :

 ẋ = u1

ẏ = u2
(6.8)

Let R be a robot described by the linear dynamical system 6.8 such that (x, y) is the
position and u1 = −x+ t, u2 = −y the controllers.
The goal for the robot is to stay inside a dynamic bubble.

Table 6.4 Parameters of the 2D linear system experiment.

First gate Bubble Observed parameter
x, y ∈ [−100, 100] (x− t)2 + (y)2 − r2

0 ≤ 0 r0

For bubbles with radius r0 ≥ 1.2, the solver is able to verify that they are capture tubes
(the cross-out constraint contracts to an empty domain).
Table 6.5 depicts the results obtained with bubbles having a constant radius r0 = 1.1,
r0 = 1 or r0 = 0.9 or a time dependent radius r0 = 1√

5(1 + t). For instance, for [t0] = 0,
it is possible to prove that, for r0 = 0.9, the bubble is not a quasi capture tube, but it is
not possible to conclude for r0 = 1, even for a small ϵmin. It is therefore not necessary
for r0 = 1 and for r0 = 0.9 to perform the experiment for [t0] = [0, 100] since the bubble
cannot be proved to be a quasi capture tube for t0 = 0. On the other hand, the bubble
with a radius r0 = 1.1, and the bubble with an increasing radius r0 = 1√

5(1 + t) are quasi
capture tubes for all t0 in [0, 100].

137

Quasi Capture Tube Validation

Table 6.5 Results for r0 = 1.1, r0 = 1, r0 = 0.9 and r0 = 1√
5(1 + t).

r0 [t0] ϵstart ϵmin In Und Out CPU
1.1 [0, 100] {1,1,0.1} {0.1,0.1,0.01} 2048 0 0 2.6
1 0 {1,1} {0.1,0.1} 0 2 0 0.08
1 0 {1,1} {1e-8,1e-8} 0 10 0 0.91

0.9 0 {1,1} {0.1,0.1} 0 0 2 0.05
(1+t)√

5 [0, 100] {1,1,0.1} {0.1,0.1,0.01} 7 0 0 0.04

6.5.3 Linear tracking system

Consider the following linear dynamical system:

ẋ(t) = A(x(t)−T(t)) (6.9)

with x(t) the tracking system and T(t) the target.
The goal is to study the stability of the system 6.9 by finding a quasi capture tube. Two
cases will be studied for the system 6.9, one with a static bubble centered at the origin,
and the other one with a dynamic bubble centered on the target.

2D and 3D tracking systems Consider the 2D linear system:

n = 2 : A =
 1 3
−3 −2

 , T (t) =
 cos(t)
sin(2t)

 (6.10)

and the 3D linear system:

n = 3, A =

1 3 0
−3 −2 −1
0 1 −3

 , T (t) =

cos(t)

cos(t) sin(2t)
− sin(t) sin(2t)

 (6.11)

Table 6.6 Parameters of the linear tracking system experiment:

First gate Bubble r0 Observed parameter
x1, x2 ∈ [−10, 10] x2

1 + x2
2 − r2

0 ≤ 0 2 Dim/Bubble
x1, x2 ∈ [−10, 10] (x1 − T1(t))2 + (x2 − T2(t))2 − r2

0 ≤ 0 2 Dim/Bubble
x1, x2, x3 ∈ [−10, 10] x2

1 + x2
2 + x2

3 − r2
0 ≤ 0 2 Dim/Bubble

x1, x2, x3 ∈ [−10, 10] (x1 − T1(t))2 + (x2 − T2(t))2 + (x3 − T3(t))2 − r2
0 ≤ 0 2 Dim/Bubble

Both targets, in the 2D and 3D linear systems, have a periodic pattern movement and
their period is 2π. The study can be restricted to the stability of both systems to
t0 ∈ [0, 2π] by setting the time domain of the initial gate to [t0] = [0, 2π].

138

6.5 Experiments

Table 6.7 Results for both systems (2D and 3D) and both bubbles (static and dynamic).

Dim Bubble ϵstart ϵmin In Und Out CPU
2D Static {1,1,0.05} {0.1,0.1,0.01} 370 0 0 1.20
2D Dynamic {1,1,0.05} {0.1,0.1,0.01} 1021 0 0 1.65
3D Static {1,1,1,0.05} {0.1,0.1,0.1,0.01} 3290 0 0 7.10
3D Dynamic {1,1,1,0.05} {0.1,0.1,0.1,0.01} 4040 0 0 11.94

The results displayed in Table 6.7 prove that both bubbles are quasi capture tubes for
the system 6.9. Fig. 6.4 illustrates the 3D tracking system.

First gate

First gate

First gate
In

In

In

First gates of the cross out condition

Tube

Tube

Tube

A

C D

B

1

2
3

Fig. 6.4 Sample of tubes of the 3D linear tracking system leaving the static bubble.
The figure illustrates the bubble and the tubes in the state dimensions. A:
First gates satisfying the cross out constraints appear in white on the spherical
bubble of radius r0 = 2. The periodic target, with an “∞” trajectory, appears
in the center of the bubble. Its color is going from red at t = 0 to white at
t = 2π. B and C: Tubes (in red) getting almost immediately inside the sphere.
D: Tube going far away from the sphere and finally landing after one first
unsuccessful landing trial.

139

Quasi Capture Tube Validation

6.5.4 Pursuit evasion game

A “pursuit evasion” game is a situation where a pursuer (P) wants to catch an evader
(E) trying to escape from him. In the following experiment, two problems problems
based on the “pursuit evasion” game will be presented, one in the plane, and the other
one in the 3D-space. The evader (E) will be at the center of a dynamic bubble, and
the pursuer is expected to stay inside the bubble in order to catch the evader. In other
words, the bubble is expected to be a quasi capture tube.

Pursuit game on the plan Consider the following pursuer P and evader E:

P :

ẋ = u1.cos(θ)
ẏ = u1.sin(θ)
θ̇ = u2

E :

 xd = v.t

yd = sin(ρt)
(6.12)

where x and y are the position and θ the heading of P .
The velocity of the pursuer and its heading are respectively controlled by u1 = ||n|| and
u2 = −K.sin(θ − θd) such that θd is the angle between the positive part of the x axis
and the ray to the point (xd, yd) and n is defined as follows:

n =
 nx

ny

 = 1
dt

 xd − x
yd − y

 +
 ẋd

ẏd

In order to remove undesired trajectories, the following constraint on the heading of the
pursuer was added:

h(x, y, θ, t) = (cos(θ)− cos(θd))2 + (sin(θ)− sin(θd))2 − ϵh ≤ 0

Constants: K = 1, v = 7, ρ = 1, dt = 1

Table 6.8 Parameters of the pursuit game on the plan experiment:

First gate Bubble r0 Observed parameter
x, y ∈ [−10, 10], θ ∈ [0, 2π] (x− xd)2 + (y − yd)2 − r2

0 = 0 1 ϵh

140

6.5 Experiments

Pursuit Evasion game in the 3D-space Let the pursuer P and the evader E:

P :

ẋ = u1.cos(θ).cos(ψ)
ẏ = u1.cos(θ).sin(ψ)
ż = u1.sin(θ)
ψ̇ = u2

θ̇ = u3

E :

xd = v.w.t

yd = v.w.sin(w.t)
zd = −v.w.cos(w.t)

(6.13)

where x, y and z are the position, ψ is the circular angle (horizontal) and θ is the angle of
elevation (vertical) of P. u1, u2 and u3 are the controllers of the system. They respectively
correspond to module of the speed vector, the horizontal rotation rate and the elevation
rate. They are defined as follows: u1 = ∥n∥ where :

n =

nx

ny

nz

 = 1
dt

xd − x
yd − y
zd − z

 +

ẋd

ẏd

żd

u2 = sin(ψ − ψd) = cos(ψ)sin(ψd)− sin(ψ)cos(ψd)

= cos(ψ).ny − sin(ψ).nx

∥nxy∥

u3 = sin(θ − θd) = cos(θ)sin(θd)− sin(θ)cos(θd)

= cos(θ).nz − sin(θ).∥nxy∥
∥n∥

With ∥nxy∥ =
√
n2

x + n2
y

As well as for the 2D-space model, the following constraints on the circular and vertical
rotations of the pursuer are added in order to remove undesired trajectories:

h1(ψ, t) = (cos(ψ)− cos(ψd))2 + (sin(ψ)− sin(ψd))2 − ϵh ≤ 0

h2(θ, t) = (cos(θ)− cos(θd))2 + (sin(θ)− sin(θd))2 − ϵh ≤ 0

Constants: v = 2, w = 1, K = 10, dt = 1.

Table 6.9 Parameters of the pursuit game in the 3D-space experiment:

First gate Tube candidate r0 Observed parameter
x, y, z ∈ [−10, 10], θ, ψ ∈ [0, 2π] (x− xd)2 + (y − yd)2 + (z − zd)2 − r2

0 = 0 1 ϵh

141

Quasi Capture Tube Validation

Pursuit evasion game results Here again, both evaders follow a periodic pattern of
period 2π, so the study is restricted to a time domain t0 ∈ [0, 2π].
When the problem scales up (in the number of the state variables, number of nonlinearities,
system stiffness, etc.), the solver faces some difficulties. Tables 6.10 and 6.11 display how
varies the number of tubes computed by the solver for validating a quasi capture tube
(the reader can compare with the previous experiments). The number of tubes required
can be drastically lowered by using small values for parameter ϵh that restrict the initial
heading (resp. circular and vertical rotations) of the pursuer (see Fig. 6.5).

Remark 6.4. The pursuit evasion games as they were modeled in this document are
incomplete. Saturation must be applied to the different controllers of the system in order
to be more realistic. As an example, the speed is controlled by the distance between P and
E, if the distance increases too much, the speed of P will increase as well without taking
into account any kind of physical limitations.
The reason of this incomplete adaptation is that the saturation of the original problems
creates discontinuities on the function of the system, which cannot be handled by the
ODE solver used to simulate the trajectories.

Table 6.10 Results of the pursuit game on the plane show that, with a small parameter
ϵh, the quasi capture tube can be validated on the whole period of the
evader.

[t0] ϵh ϵstart ϵmin In Und Out CPU
0 0.02 {0.1, 0.1, 0.1} {0.01, 0.01, 0.005} 129 0 0 1.74

[0, 2π] 0.02 {0.1, 0.1, 0.1, 0.05} {0.01, 0.01, 0.005, 0.005} 16672 0 0 585
0 0.2 {0.1,0.1,0.1} {0.01, 0.01, 0.005} 437 0 0 8.01

[0, 2π] 0.2 {0.1, 0.1, 0.1, 0.05} {0.01, 0.01, 0.005, 0.005} 105735 0 0 6561

Table 6.11 Results of the pursuit game in 3D-space: Even for small ϵh, studying 1
10 of

the period for [t0] requires a huge CPU time. On the other hand, the quasi
capture tube is then validated.

[t0] ϵh ϵstart ϵmin In Und Out CPU
0 0.1 {0.1,0.1,0.1,0.05,0.05} {0.01,0.01,0.01,0.005,0.005} 21414 0 0 590
0 0.08 {0.1, 0.1, 0.1, 0.05, 0.05} {0.01, 0.01, 0.01, 0.005, 0.005} 8128 0 0 236
0 0.0625 {0.1, 0.1, 0.1, 0.05, 0.05} {0.01, 0.01, 0.01, 0.005, 0.005} 1852 0 0 62.4
0 0.05 {0.1, 0.1, 0.1, 0.05, 0.05} {0.01, 0.01, 0.01, 0.005, 0.005} 176 0 0 11.1

[0, π
5] 0.05 {0.1, 0.1, 0.1, 0.05, 0.05, 0.05} {0.01, 0.01, 0.01, 0.005, 0.005, 0.005} 241103 0 0 105

142

6.6 Conclusion

A B

C D

First gates of the cross out condition

Evader
trajectory

Evader position at [t0]

Fig. 6.5 Pursuit evasion game in 3D-space: Illustration of the bubble and the evader
trajectory (in red) in the state dimensions. First gates satisfying the cross out
constraints at [t0] = 0 appear in white on the spherical bubble of radius r0 = 1,
centered on the position of the evader at [t0] = 0. Notice how the number
of gates varies for different values for ϵh. A: ϵh = 0.05. B: ϵh = 0.0625. C:
ϵh = 0.08. D: ϵh = 0.1

6.6 Conclusion

In this Chapter, a Branch and Contract solver dedicated to the quasi capture tube
validation has been proposed, a problem for which the algorithms are almost absent.
The solver is sufficiently generic to handle different problems. The performance of the
solver is based on filtering/contraction algorithms and on the use of the guaranteed
integration solver CAPD for the integration of differential equations. The solver has
been validated in different application examples scaling from 2 to 5 state dimensions.
To simplify the problem, the solver can accept additional constraints on the command

143

Quasi Capture Tube Validation

parameters. It has been tried to propagate domain reductions backward (from the escape
constraint deductions to t0) with no success. Nevertheless, there is still improvement
space for future work. The shape of the capture tube candidate could be improved
using Lyapunov approaches or parametric barrier functions (Djaballah et al., 2017).
Moreover, the algorithm could be adapted for computing in an auto-adaptive manner the
ϵstart parameter deciding the tube size under which it is relevant to run the guaranteed
integration solver. Finally, for the software oriented improvements, a multi-thread
approach could be explored in order to simulate all the trajectories of the crossout
condition at once, the main issue at the moment is that the ODE solvers used are not
compatible with multi threading (at least for the few tests that have been carried out).
Another improvement could come from the Codac library (Rohou et al., 2021b). Even if
the white box contractors of the library are not as efficient as the ODE solvers for the
type of problems seen in this Chapter, they improve constantly and provide a better
access to the real data about the trajectory. Taking the escape constraint as example, it
is based on the evaluation of a box returned by the ODE solver (often overestimated),
but a more intelligent representation of the trajectory could lead to a better contraction.

144

Part V

Epilogue

145

Chapter 7

Conclusion

7.1 Looking back

In the context of the ANR CONTREDO project, this thesis has proposed a contractor
dedicated for the resolution of ordinary differential equations through the CSP framework.
As it was presented in this document, when a CSP involves trajectories as variables, the
CSP becomes a Differential CSP (DCSP). As a result, solving an ordinary differential
equation amounts to solving a DCSP.
This resolution is usually performed through a branch and filter algorithm, where
branching is performed by bisection and filtering is performed with contractors.
One of the first differential contractor C d

dt
Rohou et al. (2017) developed for dynamical

systems was mostly dedicated to state estimation problems, showing competitive results
with the state of the art solvers such as CAPD Kapela et al. (2010) and VNODE-LP
Nedialkov (2006), at least for this type of problems. However, for more general ODEs,
the differential contractor C d

dt
got outperformed and a contractor dedicated to ODEs

called ODE-Contractor was developed.
The ODE-Contractor was developed using the state of the art guaranteed integration
solvers. The first version of the ODE-Contractor was developed using the VNODE-LP
library Nedialkov (2006), and the latest was developed using the CAPD library Kapela
et al. (2010).
The ODE-Contractor is the first contribution of this thesis and is at the core of all the
other contributions. The overall contributions are summarized as follows:

• The first contribution was the ODE-Contractor and its implementation in the
DCSP solver of the ANR CONTREDO project: Tubex Solve.

147

Conclusion

• The second contribution was an interval shooting method dedicated for the guaran-
teed resolution of two-point boundary value problems.

• The last contribution was a DCSP approach for Quasi Capture Tube Validation.

7.1.1 Detail of the contributions

ODE-Contractor and DCSP solver
The first contribution of the thesis was the ODE-Contractor. It was originally designed
to improve the performances of the dynamical contractor of the DCSP solver mostly
dedicated to state estimation problems Rohou et al. (2017). The first results of the
ODE-Contractor were good enough to consider its implementation in Tubex Solve, the
solver of the ANR CONTREDO project.
This implementation had two main goals. First, the ODE-Contractor was expected to
improve the contraction for ODEs other than state estimation problems. Then, the
DCSP solver was supposed to improve the results of ODE-Contractor with tools such as
the other contractors, the slicing policies and bisection.
So far, both goals were achieved as most of the best results obtained with the DCSP
solver involve the ODE-Contractor.

Interval shooting method for two-point BVPs
The second contribution of this thesis was an interval shooting method dedicated to the
guaranteed resolution of two-point BVPs. This method consists of two parts. First, an
interval shooting method based on an underlying function of the ODE-Contractor that
computes iteratively solutions of IIVPs in order to find a "zero" of a function associated
to the BVP. Finding a "zero" of this function is equivalent to solve the BVP Kapela et al.
(2010).
Once a "zero" is found, a validation method based on an interval Newton operator is
used in order to validate the solution.
The interval Newton operator can also be used to validate a solution computed by Tubex
Solve for a two-point BVP.

DSCP approach for Quasi Capture Tube Validation
The last contribution of this thesis was a DCSP approach based on a branch and filter
algorithm for quasi capture tube validation.
The problem of quasi capture tube validation was initially formulated by Jaulin et al.
(2016). It consists in proving that a set of trajectories belongs to a capture tube.

148

7.2 Looking ahead

This problem is formulated as a DCSP involving differential constraints, cross-out
condition constrains, and escape constraints.
Each constraint is addressed with a set of contractors previously introduced for the DCSP
framework, including the ODE-Contractor.
So far, algorithms addressing this kind of problems with a CSP approach are absent, and
in this thesis, it was shown that this approach could be validated in various examples.

7.2 Looking ahead

The work presented in this thesis could be continued in many ways. A few perspective
ideas are described below:

• First, improving the ODE-Contractor.

• Second, improving the DCSP solver of the ANR CONTREDO project.

• Finally, making a new step towards the capture tube validation.

7.2.1 Detail of the perspectives

The ODE-Contractor
As it was previously mentioned, the ODE-Contractor is based on the state of the art
guaranteed integration solvers (CAPD Kapela et al. (2010) and VNODE-LP Nedialkov
(2006)). These solvers have shown to be efficient for problems such as IVPs and IIVPs,
as long as some conditions on the initial condition and the nature of the ODE are
respected (such as wrapping effect, stiffness...). The first idea would be to improve the
ODE-Contractor by using ODE solvers capable to handle large initial conditions, stiffness
and the wrapping effect. As example, solvers such as COSY Revol et al. (2005) are
expected to compute more stable solutions for problems with large initial conditions
Nedialkov (2006).
The second idea would be to use more transparent solvers (white boxes), or to develop
CODAC/Tubex based guaranteed integration solvers. The actual ODE-Contractor
requires parsing functions and returns solutions in the form of tubes. These tubes consist
in a list of temporal boxes where each box is the projection of the underlying solution
computed by the ODE solver in the Cartesian space. This projection might carry over
estimation, leading operations such as intersections or unions to be less efficient.

149

Conclusion

Recently, the Lohner method Lohner (1987) was implemented in the CODAC/Tubex
library Bourgois (2021). This might be the starting point of an ODE-Contractor based
on a white box.

The DCSP solver
As it was shown in this thesis, the DCSP solver is capable to address various types of
problems involving ODEs. IVPs, IIVPs and BVPs are the most common problems.
The first improvement for the DCSP is to generalize it to a greater variety of problems
such as Differential Algebraic Equations (DAE) or problems involving delay constraints.
The second improvement for the DCSP solver would be to reduce the number of parameters
required to solve a problem. Right now, the best parameters vary according to the problem.
As example, most of the IIVPs require the bisection to be performed at t = tf , while
two-point BVPs usually require a round robin between t = t0 and t = tf . As example,
the solver could learn to classify problems according to their nature in order to setup the
most adequate set of parameters.

Towards a capture tube validation
So far, the original problem of capture tube validation was simplified in order to address
a Quasi Capture Tube Validation problem.
In this thesis, the first algorithm based on a CSP approach for quasi capture tube
validation was proposed and was mostly based on the validation of tube candidates (or
bubbles) given as simple shapes (circles or spheres).
The first improvement would be on the shape of the bubble in order to make a step
forward to a Capture Tube Validation such as in Djaballah et al. (2017).
The second improvement would be to develop multi-threading policies as this kind of
problems involve similar operations on interval analysis and guaranteed integration. So
far, some of the libraries used for the experiments of Chapter 6 are not thread safe, but
considering the number of computations performed at once, developing a multi-threaded
approach has to be considered.

Overall perspectives
Finally, a last perspective would be to solve problems closer to reality in order to meet
industrial and technical challenges. Taking as an example hybrid dynamic systems, they
can be used to model several industrial problems Bourgois (2021). Approaches such as
in Ramdani and Nedialkov (2011)Eggers et al. (2011) may be interesting to explore in
order to improve the methods presented in this thesis and to reduce the gap between
theory and reality.

150

References

[1] Akkouche, A., Bénéfice, J.-B., Bréfort, Q., F. Carbonera, B. D., Issautier, T.,
Laranjeira-Moreira, M., Doze, V. L., Monnet, D., and Oubelhaj, A. (2014). BUBBIBEX
with IBEX. Engineering internship report, ENSTA Bretagne.

[2] Aubin, J.-P. (2001). Viability Kernels and Capture Basins of Sets Under Differential
Inclusions. SIAM Journal on Control and Optimization, 40(3):853–881.

[3] Bedouhene, A., Neveu, B., Trombettoni, G., Jaulin, L., and Le Menec, S. (2021).
An Interval Constraint Programming Approach for Quasi Capture Tube Validation.
In Michel, L. D., editor, 27th International Conference on Principles and Practice of
Constraint Programming (CP 2021), volume 210 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 18:1–18:17, Dagstuhl, Germany. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

[4] Bendtsen, C. and Stauning, O. (1996). Fadbad, a flexible c++ package for automatic
differentiation. Technical report, Citeseer.

[5] Benhamou, F., Goualard, F., Granvilliers, L., and Puget, J.-F. (1999). Revising
Hull and Box Consistency. In Schreye, D. D., editor, Logic Programming: The 1999
International Conference, Las Cruces, New Mexico, USA, November 29 - December 4,
1999, pages 230–244. MIT Press.

[6] Berz, M. and Makino, K. (2006). Cosy infinity.

[7] Bessiere, C. and Debruyne, R. (2008). Theoretical Analysis of Singleton Arc Consis-
tency and its Extensions. Artificial Intelligence, 172(1):29–41.

[8] Bethencourt, A. and Jaulin, L. (2014). Solving non-linear constraint satisfaction
problems involving time-dependant functions. Mathematics in Computer Science,
8(3):503–523.

[9] Blanchini, F. and Miani, S. (2008). Set Theoretic Methods in Control. Birkhauser.

[10] Bourgois, A. (2021). Safe & collaborative autonomous underwater docking : interval
methods for proving the feasibility of an underwater docking problem. PhD thesis.
Thèse de doctorat dirigée par Jaulin, Luc Robotique Brest, École nationale supérieure
de techniques avancées Bretagne 2021.

[11] Broyden, C. G. (1965). A class of methods for solving nonlinear simultaneous
equations. Mathematics of computation, 19(92):577–593.

151

References

[12] Butcher, J. (2004). Numerical Methods for Ordinary Differential Equations. Wiley.

[13] Chabert, G. (2020). IBEX – an Interval-Based EXplorer.

[14] Chabert, G. and Jaulin, L. (2009). Contractor programming. Artif. Intell.,
173(11):1079–1100.

[15] Collavizza, H., Delobel, F., and Rueher, M. (1999). Comparing Partial Consistencies.
Reliable Computing, 5(3):213–228.

[16] Cruz, J. and Barahona, P. (2003). Constraint Satisfaction Differential Problems. In
Principles and Practice of Constraint Programming - CP 2003., pages 259–273.

[17] Deville, Y., Janssen, M., and VanHentenryck, P. (1998). Consistency Techniques in
Ordinary Differential Equations. In Proc. of CP98, pages 162–176.

[18] dit Sandretto, J. A. and Chapoutot, A. (2016). Validated Explicit and Implicit
Runge–Kutta Methods. Reliable Computing, 22(1):79–103.

[19] Djaballah, A., Chapoutot, A., Kieffer, M., and Bouissou, O. (2017). Construc-
tion of Parametric Barrier Functions for Dynamical Systems using Interval Analysis.
Automatica, 78:287–296.

[20] Eggers, A., Ramdani, N., Nedialkov, N., and Fränzle, M. (2011). Improving sat
modulo ode for hybrid systems analysis by combining different enclosure methods. In
Barthe, G., Pardo, A., and Schneider, G., editors, Software Engineering and Formal
Methods, pages 172–187, Berlin, Heidelberg. Springer Berlin Heidelberg.

[21] El-Gamel, M. and Zayed, A. (2004). Sinc-Galerkin method for solving nonlinear
boundary-value problems. Computers & Mathematics with Applications, 48(9):1285–
1298.

[22] Girard, A., Guernic, C. L., and Maler, O. (2006). Efficient Computation of Reachable
Sets of Linear Time-invariant Systems with Inputs. Hybrid Systems: Computation and
Control, 3927:257–271.

[23] Hansen, E. et al. (1969). Topics in interval analysis. Clarendon Press Oxford.

[24] Jaulin, L., Kieffer, M., Didrit, O., and Walter, E. (2001). Ap-
plied Interval Analysis with Examples in Parameter and State Es-
timation, Robust Control and Robotics. Springer London Ltd.
http://www.springer.com/engineering/computational+intelligence+and+complexity/book/978-
1-4471-1067-5.

[25] Jaulin, L. and Le Bars, F. (2012). An interval approach for stability analysis:
Application to sailboat robotics. IEEE Transactions on Robotics, 29(1):282–287.

[26] Jaulin, L., Lopez, D., Le Doze, V., Le Menec, S., Ninin, J., Chabert, G., Ibnseddik,
M. S., and Stancu, A. (2016). Computing Capture Tubes. In Nehmeier, M., Wolff von
Gudenberg, J., and Tucker, W., editors, Scientific Computing, Computer Arithmetic,
and Validated Numerics, pages 209–224, Cham. Springer International Publishing.

152

References

[27] Jaulin, L. and Walter, E. (1993). Set inversion via interval analysis for nonlinear
bounded-error estimation. Automatica, 29(4):1053–1064.

[28] Joudrier, H. (2018). Optimisation Globale Déterministe Garantie sous Contraintes
Algébriqueset Différentielles par Morceaux. PhD thesis. Thèse de doctorat dirigée par
Hadj Hamou, Khaled Génie Industriel : conception et production Université Grenoble
Alpes (ComUE) 2018.

[29] Kapela, T., Mrozek, M., Pilarczyk, P., Wilczak, D., and Zgliczynski, P.
(2010). CAPD – a rigorous toolbox for Computer Assisted Proofs in Dynamics.
http://capd.ii.uj.edu.pl/.

[30] Kapela, T., Mrozek, M., Wilczak, D., and Zgliczynski, P. (2020). CAPD: : Dynsys:
a flexible C++ toolbox for rigorous numerical analysis of dynamical systems. CoRR,
abs/2010.07097.

[31] Le Bars, F., Sliwka, J., Jaulin, L., and Reynet, O. (2012). Set-membership State
Estimation with Fleeting Data. Automatica, 48(2):381–387.

[32] Le Menec, S. (2011). Linear Differential Game with Two Pursuers and One Evader.
Advances in Dynamic Games, 11:209—226.

[33] Lee, Y. I. and Kouvaritakis, B. (2006). Constrained Robust Model Predictive Control
Based on Periodic Invariance. "Automatica", 42:2175–2181.

[34] Lerch, M., Tischler, G., Gudenberg, J. W. V., Hofschuster, W., and Krämer, W.
(2006). Filib++, a fast interval library supporting containment computations. ACM
Trans. Math. Softw., 32(2):299–324.

[35] Lhomme, O. (1993a). Consistency Techniques for Numeric CSPs. In IJCAI, pages
232–238.

[36] Lhomme, O. (1993b). Consistency Techniques for Numeric CSPs. In Bajcsy, R.,
editor, Proceedings of the 13th International Joint Conference on Artificial Intelligence.
Chambéry, France, August 28 - September 3, 1993, pages 232–238. Morgan Kaufmann.

[37] Lhommeau, M., Jaulin, L., and Hardouin, L. (2007). Inner and Outer Approximation
of Capture Basins using Interval Analysis. ICINCO 2007.

[38] Lin, Y., Enszer, J. A., and Stadtherr, M. A. (2008). Enclosing all solutions of
two-point boundary value problems for ODEs. Computers & Chemical Engineering,
32(8):1714–1725.

[39] Lohner, R. (1987). Enclosing the Solutions of Ordinary Initial and Boundary Value
Problems. In Kaucher, E., Kulisch, U., and Ullrich, C., editors, Computer Arithmetic:
Scientific Computation and Programming Languages, pages 255–286. BG Teubner,
Stuttgart, Germany.

[40] Mackworth, A. K. (1977). Consistency in networks of relations. Artificial intelligence,
8(1):99–118.

153

References

[41] Mazzia, F., Cash, J., and Soetaert, K. (2014). Solving boundary value problems in
the open source software R: Package bvpSolve. Opuscula mathematica, 34(2):387–403.

[42] Messine, F. (1997). Méthodes d’Optimisation Globale basées sur l’Analyse d’Intervalle
pour la Résolution des Problèmes avec Contraintes. PhD thesis, LIMA-IRIT-
ENSEEIHT-INPT, Toulouse.

[43] Montanari, U. (1974). Networks of constraints: Fundamental properties and appli-
cations to picture processing. Information sciences, 7:95–132.

[44] Moore, R. E. (1966). Interval Analysis, volume 4. Prentice-Hall Englewood Cliffs.

[45] Nedialkov, N., Jackson, K., and Corliss, G. (1999). Validated Solutions of Initial Value
Problem for Ordinary Differential Equations. Applied Mathematics and Applications,
105(1):21–68.

[46] Nedialkov, N. S. (2006). Vnode-lp. Dept. of Computing and Software, McMaster
Univ. TR CAS-06-06-NN, Hamilton, ON, Canada.

[47] Nedialkov, N. S., Jackson, K. R., and Pryce, J. D. (2001). An Effective High-Order
Interval Method for Validating Existence and Uniqueness of the Solution of an IVP
for an ODE. Reliable Computing, 7(6):449–465.

[48] Noor, M. A. and Mohyud-Din, S. T. (2007). An efficient method for fourth-order
boundary value problems. Computers & Mathematics with Applications, 54(7-8):1101–
1111.

[49] Olaru, S., Dona, J. D., Seron, M., and Stoican, F. (2010). Positive Invariant Sets
for Fault Tolerant Multisensor Control Schemes. International Journal of Control,
83(12):2622–2640.

[50] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007).
Numerical recipes 3rd edition: The art of scientific computing. Cambridge university
press.

[51] Rakovic, S. V., Kerrigan, E. C., Kouramas, K. I., and Mayne, D. Q. (2005). Invariant
approximations of the minimal robust positively invariant set. IEEE Trans. Autom.
Control, 50(3):406–410.

[52] Ramdani, N. and Nedialkov, N. S. (2011). Computing reachable sets for uncertain
nonlinear hybrid systems using interval constraint-propagation techniques. Nonlinear
Analysis: Hybrid Systems, 5(2):149–162. Special Issue related to IFAC Conference on
Analysis and Design of Hybrid Systems (ADHS’09).

[53] Ratschan, S. and She, Z. (2010). Providing a Basin of Attraction to a Target Region
of Polynomial Systems by Computation of Lyapunov-like Functions. SIAM J. Control
and Optimization, 48(7):4377—4394.

[54] Revol, N., Makino, K., and Berz, M. (2005). Taylor Models and Floating-point
Arithmetic: proof that arithmetic operations are validated in COSY. Journal of Logic
and Algebraic Programming, 64:135–154.

154

References

[55] Rohou, S. (2017). Reliable robot localization : a constraint programming approach
over dynamical systems. PhD thesis. Thèse de doctorat dirigée par Jaulin, LucLe Bars,
Fabrice et Mihaylova, Lyudmila Robotique Brest 2017.

[56] Rohou, S., Bedouhene, A., Chabert, G., Goldsztejn, A., Jaulin, L., Neveu, B., Reyes,
V., and Trombettoni, G. (2020). Towards a generic interval solver for differential-
algebraic CSP. In Simonis, H., editor, Principles and Practice of Constraint Program-
ming - 26th International Conference, CP 2020, Louvain-la-Neuve, Belgium, September
7-11, 2020, Proceedings, volume 12333 of Lecture Notes in Computer Science, pages
548–565. Springer.

[57] Rohou, S., Bedouhene, A., Chabert, G., Goldzstzejn, A., Jaulin, L., Neveu, B.,
Reyes, V., and Trombettoni, G. (2021a). Un solveur générique par intervalles pour le
csp différentio-algébrique. Journées Francophones de Programmation par Contraintes.

[58] Rohou, S. et al. (2021b). The Tubex Library – Constraint-programming for robotics.

[59] Rohou, S., Jaulin, L., Mihaylova, L., Bars, F. L., and Veres, S. M. (2018). Reliable
Nonlinear State Estimation Involving Time Uncertainties. Automatica, 93:379–388.

[60] Rohou, S., Jaulin, L., Mihaylova, L., Le Bars, F., and Veres, S. M. (2017). Guaranteed
Computation of Robot Trajectories. Robotics and Autonomous Systems, 93:76–84.

[61] Romig, S., Jaulin, L., and Rauh, A. (2019). Using Interval Analysis to Compute the
Invariant Set of a Nonlinear Closed-Loop Control System. Algorithms, 12(262).

[62] Saint-Pierre, P. (2002). Hybrid Kernels and Capture Basins for Impulse Constrained
Systems. In Tomlin, C. and Greenstreet, M., editors, in Hybrid Systems: Computation
and Control, volume 2289, pages 378–392. Springer-Verlag.

[63] Sherman, J. and Morrison, W. J. (1950). Adjustment of an inverse matrix corre-
sponding to a change in one element of a given matrix. The Annals of Mathematical
Statistics, 21(1):124–127.

[64] Tahir, F. and Jaimoukha, M. (2015). Low-Complexity Polytopic Invariant Sets for
Linear Systems Subject to Norm-Bounded Uncertainty. IEEE Trans. Autom. Control,
60:1416–1421.

[65] Trombettoni, G. and Chabert, G. (2007). Constructive interval disjunction. In
Bessiere, C., editor, Principles and Practice of Constraint Programming - CP 2007,
13th International Conference, CP 2007, Providence, RI, USA, September 23-27,
2007, Proceedings, volume 4741 of Lecture Notes in Computer Science, pages 635–650.
Springer.

[66] Tucker, W. (2002). A Rigorous ODE Solver and Smale’s 14th Problem. Foundations
of Computational Mathematics, 2(1):53–117.

[67] Tucker, W. (2011). Validated Numerics: A Short Introduction to Rigorous Compu-
tations. Princeton University Press.

155

References

[68] Wan, J., Vehi, J., and Luo, N. (2009). A Numerical Approach to Design Control
Invariant Sets for Constrained Nonlinear Discrete-time Systems with Guaranteed
Optimality. "Journal of Global Optimization", 44:395–407.

[69] Yorke, J. A. (1967). Invariance for Ordinary Differential Equations. Mathematical
System Theory, 1(4):353–372.

156

	Table of contents
	I PROLOGUE
	1 INTRODUCTION
	1.1 Context of the thesis
	1.2 Thesis motivations
	1.3 Approach
	1.4 Contributions
	1.4.1 Contractor for ODEs and interval BVP solver
	1.4.2 Quasi Capture Tube Validation
	1.4.3 Organization of the contributions

	1.5 Organization of the thesis

	II Background
	2 Intervals and CSP
	2.1 Introduction
	2.2 Intervals
	2.2.1 Interval representation
	2.2.2 Set operations on intervals
	2.2.3 Interval arithmetic
	2.2.4 Interval vectors (box)
	2.2.5 Inverse element
	2.2.6 Inclusion function
	2.2.7 Wrapping Effect

	2.3 Constraint satisfaction problems
	2.3.1 Introduction
	2.3.2 Numerical constraint satisfaction problems
	2.3.3 Contractors
	2.3.4 Other contractors for NCSPs

	2.4 Conclusion

	3 Dynamical systems and DCSP
	3.1 Introduction
	3.2 Dynamical systems: Ordinary differential equations
	3.2.1 Examples of ODEs

	3.3 Solving ordinary differential equations
	3.3.1 Existence of solutions

	3.4 Numerical solutions
	3.4.1 Euler Method
	3.4.2 Taylor Method
	3.4.3 Interval Methods
	3.4.4 Interval Euler method

	3.5 Guaranteed integration methods
	3.5.1 The general method
	3.5.2 Global enclosure
	3.5.3 Local enclosure
	3.5.4 Related work

	3.6 CSP approach
	3.6.1 Solving a DCSP
	3.6.2 Tube Contractors
	3.6.3 Differential contractors for tubes
	3.6.4 Differential tube contractor Cddt
	3.6.5 Forward contractor Cddt
	3.6.6 Backward contractor Cddt

	3.7 Conclusion

	III First and second contributions
	4 A Contractor for ODE
	4.1 Introduction
	4.2 ODE-Contractor motivations
	4.2.1 ODE-Contractor: The method
	4.2.2 Limitations of the ODE-Contractor

	4.3 Generic solver for dynamical systems
	4.3.1 Overview of the generic solver
	4.3.2 The Generic solver Algorithm
	4.3.3 Contractors in the generic solver
	4.3.3.1 Contraction function
	4.3.3.2 DynBasic
	4.3.3.3 DynCidGuess
	4.3.3.4 Dyn3b
	4.3.3.5 ODE-Contractor
	4.3.3.6 Contraction function algorithm

	4.4 Implementation
	4.4.1 Main libraries
	4.4.2 Guaranteed integration solvers
	4.4.3 Presentation of the different solvers
	4.4.3.1 VNODE-LP
	4.4.3.2 CAPD
	4.4.3.3 Dynibex

	4.4.4 Discussions

	4.5 Experiments and results
	4.5.1 The problems: IIVPs
	4.5.2 Results: IIVPs
	4.5.3 Discussion: IIVPs
	4.5.4 Experiments on BVPs
	4.5.5 Results: BVPs
	4.5.6 Discussion: BVPs

	4.6 Conclusion

	5 Dedicated method for two-point BVP
	5.1 Introduction
	5.2 Shooting method
	5.2.1 Overview on the Newton's method
	5.2.2 Application to BVPs

	5.3 Interval Newton validation for the shooting method
	5.3.1 Interval Shooting method
	5.3.2 Overview on the Interval Newton method
	5.3.3 Application of the interval shooting method to BVPs
	5.3.4 Broyden's method
	5.3.5 Interval Newton validation

	5.4 Algorithm
	5.4.1 Description of the algorithm

	5.5 Experiments
	5.5.1 Results
	5.5.2 Discussion

	5.6 Conclusion

	IV Last contribution
	6 Quasi Capture Tube Validation
	6.1 Introduction
	6.2 Related work
	6.2.1 Capture tube
	6.2.2 Difficulty

	6.3 Quasi capture tube validation
	6.3.1 Quasi-capture tubes
	6.3.2 CSP approach

	6.4 Method and algorithm
	6.4.1 Main algorithm
	6.4.2 Differential contraction
	6.4.3 Discussion

	6.5 Experiments
	6.5.1 Pendulum
	6.5.2 2D linear system
	6.5.3 Linear tracking system
	6.5.4 Pursuit evasion game

	6.6 Conclusion

	V Epilogue
	7 Conclusion
	7.1 Looking back
	7.1.1 Detail of the contributions

	7.2 Looking ahead
	7.2.1 Detail of the perspectives

	References

