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Nomenclature 

List of symbols 

o 𝐴0, 𝐴𝑘, 𝐵𝑘: Fourier analysis coefficients [-] 

o 𝐴1: Upper asymptote [-] 

o �̂�1: Reduced upper asymptote [-] 

o 𝐴2: Lower asymptote [-] 

o 𝑎: Slope [-] 

o 𝐵𝑙: Left sampling bound [-] 

o 𝐵𝑟: Right sampling bound [-] 

o 𝑐: Intercept [-] 

o 𝑑∗: Euclidean distance [-] 

o 𝑑𝑑𝑖𝑠𝑡: Distance between posteriors and true values [-] 

o 𝐷: Total variance of the model response [-] 

o 𝐷𝑖: Model response variance caused by parameter 𝜃𝑖 [-] 

o 𝐷(~𝑖): Model response variance caused by all parameter except 𝜃𝑖 [-] 

o 𝑒𝑖: Exposure coefficient [-] 

o 𝑓: Frequency [-] 

o 𝑓𝑚𝑎𝑥: Maximum frequency [-] 

o 𝑓(𝜃) : Model response at parameter 𝜃 [℃] 

o 𝑓𝑡(∙): Intermediate distributions in SMC samplers [-] 

o 𝐺: Transformation function [-] 

o 𝐼(. ): Criterion applied to each node [-] 

o 𝑘: Search parameter [-] 

o 𝐾(∙): Kernel function [-] 

o 𝑙𝑏(𝑌): Leaf in which the sample y landed [-] 

o 𝑀: Harmonics (FAST sensitivity analysis) [-] 

o 𝑁: Number of samples [-] 

o 𝑁𝑠𝑡𝑒𝑝𝑠: Number of MCMC jumps in one iteration [-] 
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o 𝑁𝛼: Particles with distances less than 𝛼-quantile [-] 

o 𝑁(∙): Normal distribution [-] 

o 𝑁𝑚𝑖𝑛: Minimum number of samples in a node [-] 

o 𝑁1: Sample size to train the first RF in ARF [-] 

o 𝑁𝑡: Sample size at iteration t [-] 

o 𝑛𝑏: Number of samples in leaf 𝑙𝑏(𝑌) [-] 

o 𝑛𝑐: Number of concordant pairs [-] 

o 𝑛𝑑: Number of discordant pairs [-] 

o 𝑛50: Air change rate per hour [vol/hr] 

o 𝑛𝑚𝑟
: Number of samples in right node [-] 

o 𝑛𝑚𝑙
: Number of samples in left node [-] 

o 𝑛𝑡𝑟𝑦: Subset on which the criteria is minimised [-] 

o 𝑛𝑡: Number of newly generated samples at each iteration in ARF [-] 

o 𝑝(𝜃): Prior distribution of parameter 𝜃 [-] 

o 𝑝(𝜃|𝑍): Likelihood; distribution of parameter 𝜃 given data 𝑍 [-] 

o 𝑝(𝑍): Normalising factor in Bayes law [-] 

o 𝑝: Covariance scaling parameter [-] 

o 𝑃𝑎𝑐𝑐𝑚𝑖𝑛
: Convergence threshold [-] 

o 𝑄𝑖𝑛𝑓𝑖𝑙𝑡: Infiltration flow rate [m3/hr] 

o 𝑟𝜃𝑖
: Ranking of parameter 𝜃𝑖 by Sobol method [-] 

o 𝑥𝜃𝑖
: Ranking of parameter 𝜃𝑖 by either Morris or RBD-FAST [-] 

o 𝑅𝐿: Residual matrix [-] 

o 𝑆: Sensitivity matrix [-] 

o 𝑠: Shift from true values [-] 

o 𝑆(∙): Summary statistic [-] 

o 𝑆𝑖: First-order sensitivity index [-] 

o 𝑆𝑖𝑗: Second-order sensitivity index [-] 

o 𝑆𝑐: Corrected sensitivity index [-] 

o 𝑆𝑚: Mean sensitivity index [-] 

o 𝑆𝑠𝑡𝑑: Standard deviation sensitivity index [-] 
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o 𝑆𝐿: Sensitivity matrix comprising L columns [-] 

o 𝑆𝑃: Projected sensitivity matrix [-] 

o 𝑇𝑆: Total sensitivity index [-] 

o 𝑇: Temperature [℃] 

o 𝑡: Time [hr] 

o 𝑈(∙): Uniform distribution [-] 

o 𝑉: Volume of the heated space [m3] 

o 𝑉(𝑌): Weighted variance of the random forest posterior [-] 

o 𝑤: Weights [-] 

o �̅�𝑚: The average value of the responses in node m [-] 

o 𝑦𝑖: Response of each sample in random forest data set [-] 

List of greek letters 

o 𝛼: Acceptance rejection ratio [-] 

o 𝛽𝑡: Annealing parameter at iteration t [-] 

o 𝛿: Tolerance [℃] 

o 𝛿(𝑥): Model discrepancy [-] 

o ∆𝑡: Difference between two time steps [hr] 

o ∈𝑖: Wind speed correction coefficient [-] 

o 휀(𝑥): Observation errors [-] 

o 𝜂: Model [-] 

o 𝜃: Parameter [-] 

o 𝜃∗: Perturbed or proposal sample [-] 

o �̅�𝑡: Weighted samples mean of parameter 𝜃 at iteration t [-] 

o 𝜇: Average over all trees predictions [-] 

o 𝜇∗: Absolute mean of elementary effects [℃] 

o 𝜇𝑏: Prediction of tree b [-] 

o 𝜇𝜃: Prior mean of parameter 𝜃 [-] 

o 𝜌(𝑥, 𝑦): Distance between measurements and predictions [℃] 
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o 𝜎𝑗: Sample variance of parameter j [-] 

o 𝜎𝜃: Prior standard deviation of parameter 𝜃 [-] 

o Σ𝑡: Samples covariance at iteration t [-] 

o 𝜏: Kandall tau correlation [-] 

Abbreviations 

o ABC: Approximate Bayesian computation [-] 

o ABC-RF: Random forest for approximate Bayesian computation [-] 

o APMC: Adaptive population Monte Carlo [-] 

o AIC: Akaike information criterion [-] 

o ARF: Adaptive random forest [-] 

o DAISY: Differential algebra for identifiability of systems [-] 

o DBEM: Dynamic building energy model [-] 

o CMV: Controlled mechanical ventilation [-] 

o CATMIP: Cascading adaptive transitional metropolis in parallel [-] 

o DIC: Deviance information criterion [-] 

o EPC: Energy performance contracting [-] 

o ESCOs: Energy sevice companies [-] 

o ESS: Effective sample size [-] 

o FAST: Fourier amplitude sensitivity test [-] 

o EFAST: Extended FAST [-] 

o HVAC: Heating ventilation and air conditioning [-] 

o ID: Identifiability distance indicator [-] 

o JS: Janson-Shannon [-] 

o KL: Kullback-Leibler  [-] 

o MCMC: Markov chain Monte Carlo [-] 

o TMCMC : Transitional MCMC [-] 

o PCA: Principle component analysis [-] 

o PCC: Pearson correlation coefficient [-] 

o PMC: Population Monte Carlo [-] 
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o RBD: Random balance design [-] 

o RMSE: Root-mean-square-error [-] 

o RF: Random forest [-] 

o SMC: Sequential Monte Carlo [-] 

o SRC: Standardised regression coefficient [-] 

o SRRC: Standardised rank regression coefficient [-] 

o TMCMC: Transitional Marchov chain Monte Carlo [-] 
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General introduction 

The world has experienced a significant increase in the energy consumption in the recent 

years (Marchi and Zanoni 2017). Energy efficiency measures have been employed in different 

sectors such as the industrial sector since it plays a big role in the energy consumption. The 

building sector is responsible for 40 % of the total energy consumption and 36 % of the 

greenhouse gases emissions in the EU1. As stated by the European commission1, roughly 75 % 

of the EU building stock is energy inefficient which explains its huge role in energy 

consumption. Recently, efforts have been focused on developing new measures and strategies 

in the building sector (Ruggeri et al., 2020). The rate at which buildings are renovated in the 

EU is less than 1 % of the national building stock every year1. Sandberg et al. (2016) used a 

probabilistic dynamic building stock model to simulate the development of dwellings in 

different EU countries. They found that the renovation rate is very unlikely to grow higher than 

the current rates. Tuominen et al. (2012) summarised the main barriers against renovation 

reported by stakeholder interviews in different countries. Some reported barriers were related 

to financing. People’s low income in certain countries prevented the application of such 

improvements. Another reason related to financing is that the pollution caused by existing 

building stocks is not included in the energy price; this makes people less prone to save energy. 

A common barrier is that people are ill-informed about energy efficiency and regulations which 

makes it a low priority for them in addition to the risk and inconvenience that they might feel 

about these works. Some reported barriers clearly show a lack of knowledge about the relation 

between energy efficiency and price and how cost effective renovation could be. In October 

2020, the European Commission presented the strategy which aims at increasing the rate of 

building renovation1. 

Energy performance contracting (EPC) is a well established type of contract in which the 

customers do not bare any performance and technological risks. EPC is the contracting of a 

specialised energy service company (ESCO) to guarantee energy saving during the contract 

time. An ESCO performs a comprehensive energy audit of the concerned building and identifies 

energy efficient improvements that meet the customers’ needs. It guarantees that the new 

measures will generate sufficient energy cost savings to finance the project before the end of 

                                                 
1 https://ec.europa.eu/info/news/focus-energy-efficiency-buildings-2020-lut-17_en 
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the contract. After the contract ends, the customer will benefit from all the cost savings. A 

diagram of the EPC concept is presented in Figure 1.  

 

Figure 1: EPC concept2 

Dynamic building energy models (DBEMs) are the main tools for ESCOs to simulate and 

analyse different possible improvements. Over the past decade, DBEMs have been increasingly 

used to estimate the energy behaviour of buildings and to predict the performance of newly 

designed buildings that are to be constructed, or existing buildings to be renovated. It can also 

be used to aid in designing appropriate HVAC systems to meet the needs of the buildings by 

the ability to test different control strategies. Control of building usages can easily be assessed 

using these tools in order to evaluate the building's performance subject to different conditions 

and operation (offices, residential buildings, etc.). These tools can be used for many more 

purposes as they are less expensive and much faster to run compared to an experimental 

campaign. 

However, the results of these models are characterised by some degree of uncertainty and 

could show poor fit to the measured observations. Normally, this is the case in all numerical 

models as they share the same aspects and requirements that are themselves uncertain. Several 

factors serve as the source of uncertainty and inaccuracy in the numerical models predictions. 

These models and especially DBEMs are physics-based simulation tools built on simplified 

models of physical phenomena that are in reality more complicated. These simplifications and 

assumptions cause what is called model inadequacy, which is the discrepancy between the 

observations and simulations even if the case study with all its specifications is accurately 

defined. In practice, it is difficult to define precisely these specifications, which are also called 

the parameters of the DBEM. Thus, the accuracy and the confidence in the model predictions 

                                                 
2 adapted from https://deq.mt.gov/energy/Programs/epc  accessed 19/07/2022 
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is affected. In reality, there is no such detailed and accurate information about the building 

geometry, construction materials thermophysical properties, and its mechanical systems. Thus, 

the modeller will have to identify them with a degree of uncertainty and try to guess the best 

possible scenarios. Those uncertainties impacting the inputs will eventually propagate through 

the model and lower the confidence in its predictions, this is called parameter uncertainty. 

These problems affect the level of confidence in guaranteeing the energy performance and 

thus puts a huge risk on the EPC provider. Due to this, uncertainty analysis has received an 

increasing attention in the field of building energy simulation (Tian et al. 2018). Uncertainty 

analysis can be classified into two types. The first type is the forward uncertainty analysis 

(uncertainty propagation) which aims at quantifying how much the uncertainty in the inputs 

contributes to the uncertainty in the outputs (i.e. how much certain one is about model’s 

outputs). This differs from the sensitivity analysis in the manner that even if a specific parameter 

is very important in the model, it will not contribute much to the simulation output uncertainty 

if it is well known, since it will then be provided to the model as a constant value or as a very 

precise probability distribution. The second type is the inverse uncertainty analysis that is also 

called calibration. The aim is to diminish the uncertainties in the model predictions and to fit 

better to the actual behaviour of the building. It also estimates the most probable values of the 

uncertain parameters from collected in-situ measurements. This process provides the designer 

with a model calibrated on the same building as the one on which the retrofit will be applied 

which aids the performance guarantee process. It is important to mention that EPC is only one 

example where calibration is applied to enhance the confidence level. 

At some point, manual calibration might be preferred against automatic calibration since 

the latter is a mathematical-based approach that could fail to attach physical reality to the 

uncertain parameters. However, it can be argued that automatic calibration performs better in 

fully exploring the parameter space, which makes it less prone to sub-optimal results compared 

to manual calibration. Bayesian calibration is an automated calibration method that combines 

both the in-situ measurements available and the prior knowledge about the building, to generate 

a model that fits better to data while accounting for the uncertainties in the predictions and 

model parameters. In other words, it naturally quantifies the uncertainties in the model 

predictions after calibration since the calibrated parameters are in the form of probability 

distributions. 



 

12 

 

This thesis is oriented towards enhancing the application of Bayesian calibration methods 

to building energy models. One of the main issues in calibration methods is that they could be 

computationally intensive. Accordingly, the building energy models are calibrated on a subset 

of the most influential parameters. A sensitivity analysis is applied to select these parameters. 

However, the sensitivity methods that provide a very precise ranking could also be 

computationally intensive. In the literature, the most used method is Morris since it provides a 

good approximation of the importance with a relatively low computational cost. RBD-FAST is 

another promising method in the field which is also computationally efficient. In chapter 2, a 

detailed comparison between Morris and RBD-FAST methods is conducted in terms of 

robustness, accuracy and computational efficiency using Sobol method as the reference method. 

Bayesian methods can be divided into two main families: likelihood-dependent and 

likelihood-independent methods also called approximate Bayesian computation (ABC). In 

chapter 3, different methods are selected from the literature and applied to a virtual case study. 

The methods are then assessed in terms of accuracy and computational efficiency. 

Another issue of calibration is the un-identifiability of the calibration parameters. Un-

identifiability of a parameter means that the parameter cannot be identified from the data. The 

reason behind un-identifiability could be that the parameter itself is unimportant. It could also 

be that the set of parameters chosen for calibration have a significant degree of interactions, 

which means that there is no  unique solution for the problem. It could also be related to the 

insufficiency or the poor quality of the data, which is not accounted for in this thesis. In chapter 

1, the concept of identifiability analysis is explained in more details. In chapter 4, a sensitivity-

based identifiability analysis is applied to select the parameters while accounting for their 

identifiability in addition to their importance. 

The number of calibration parameters is also an important thing to account for. Too many 

parameters lead not only to more un-identifiability problems, but also make the calibration 

process computationally intensive. Too few parameters means that some influential ones might 

not be accounted for, affecting the precision of the calibration. However, selecting the 

appropriate number of parameters for a given case study is a hard task. In chapter 4 this issue 

is analysed by assessing the calibration performance with an increasing number of parameters. 

In chapter 5, a new Bayesian method that belongs to the ABC family is proposed. This 

method applies the concepts from machine learning to find the best estimates of the calibration 
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parameters in form of distributions. It is applied to a virtual case study and compared to other 

existing methods in the literature. Finally, a real case study corresponding to real monitored 

data is used to evaluate the calibration methods. 
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Chapter 1 Context and state of art  

 

 

 

 

 

 

 

 

 

 

The objective of this chapter is to highlight the main steps in the calibration 

methodology. Firstly, an overview on the sensitivity methods and its application on 

building energy models is conducted. Secondly, the concept of identifiability analysis 

is explained and an overview on different existing methods is provided. Finally, 

Bayesian calibration is presented and various sampling methods are introduced. This 

chapter serves as a background for all the subsequent chapter in this thesis. 
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Résumé du chapitre 

Du fait que le secteur du bâtiment est responsable de la plus grande part de la 

consommation d'énergie en France et en Europe, les chercheurs s'intéressent de plus en plus à 

l'amélioration de l'efficacité énergétique des bâtiments. De nombreux pays ont établi des lignes 

directrices et des politiques à prendre en compte lors de la construction de nouveaux bâtiments 

pour s'assurer qu'ils sont conformes aux objectifs de performance énergétique. Cependant, le 

pourcentage de bâtiments nouvellement construits par rapport à ceux déjà existants est faible. 

Cela signifie qu'il y a un grand intérêt à rénover ces bâtiments existants. Les modèles 

énergétiques des bâtiments sont normalement utilisés pour faciliter la quantification et la 

comparaison de différentes mesures et de leurs économies d'énergie possibles. Une telle 

approche basée sur des modèles est soumise à de nombreuses sources d'incertitude. Cela signifie 

que ces modèles peuvent permettre des prises de décision pour des mesures de rénovation, 

cependant la gestion des risques ou l’estimation de la fiabilité nécessite des efforts 

supplémentaires.  

Pour résoudre ce problème, le calibrage des modèles énergétiques des bâtiments améliore 

la précision de ces modèles dans la représentation du comportement réel du bâtiment étudié. 

D’autre part, le calibrage bayésien est une approche efficace pour quantifier les incertitudes 

dans les paramètres du modèle et les prédictions correspondantes du modèle sur les mesures de 

rénovation proposées, ce qui permet de représenter les économies d'énergie prévues dans le 

futur sous la forme d’une distribution de probabilité à partir de laquelle un niveau de confiance 

peut être évalué. En conséquence, ces dernières années, de nombreux chercheurs se sont 

concentrés sur ces approches de calibrage pour améliorer la performance des évaluations en 

termes de précision et d'efficacité de calcul. Dans cette thèse, une méthodologie de calibrage 

est étudiée sur l’ensemble de ses étapes. 

Notre objectif principal dans cette thèse est de rendre compte d'une source d'incertitudes 

des modèles numériques qui est liée à la connaissance imprécise des paramètres qui ont une 

influence importante sur la simulation. Normalement, ces paramètres doivent décrire 

précisément le cas étudié pour pouvoir prédire avec précision la consommation d'énergie 

observée ou prévoir le comportement futur d'un bâtiment en cours de conception. Cependant, 

dans la pratique, la plupart de ces paramètres ne sont pas connus avec précision et ne peuvent 

être affectés d'une valeur spécifique en raison de diverses sources d'incertitude. Différentes 

études visaient à recueillir un maximum de données expérimentales sur les paramètres 
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habituellement utilisés dans la simulation du bâtiment. Par exemple, Clarke et al. (1991) ont 

fourni un examen complet des données disponibles dans le monde concernant les propriétés 

thermophysiques des matériaux utilisés dans la simulation en construction. Ces études 

constituent la base sur laquelle repose la quantification de l'incertitude des paramètres. La 

quantification de l'incertitude est une étape essentielle de la méthodologie d'analyse de 

l'incertitude et plus ces quantifications et distributions sont réalistes, plus nous pouvons être 

sûrs des limites d'incertitude de la sortie de simulation. 

Normalement, dans le processus de calibrage, après avoir collecté et traité les données, un 

sous-ensemble de l'ensemble des paramètres est choisi pour être estimé à partir des mesures. 

Cela amène le besoin d'une analyse de sensibilité (AS) qui est souvent utilisée comme base pour 

l'analyse d'incertitude. Dans le contexte de la réalisation d'une analyse d'incertitude inverse, 

comme cela sera discuté dans les chapitres suivants, la demande de calcul devient coûteuse si 

le nombre de paramètres impliqués est trop grand. Ainsi, il est important d'analyser l'effet de 

tous les paramètres d'entrée du modèle sur les sorties du modèle pour effectuer l'analyse 

d'incertitude sur ceux qui sont les plus influents et d'écarter les paramètres dont les variations 

n'affectent pas la sortie du modèle. Dans ce contexte, rejeter signifie attribuer une valeur 

constante lors de l'analyse de l'incertitude. 

L'analyse de sensibilité est une méthode statistique qui permet de simplifier ou de mieux 

comprendre les modèles numériques en classant et hiérarchisant les facteurs d'incertitude selon 

leur influence sur l'incertitude de sortie. Les indices de sensibilité sont calculés pour chaque 

facteur du modèle. Plus la valeur de l'indice de sensibilité est élevée, plus le paramètre est 

influent. Il existe un grand nombre de méthodes d'analyse de sensibilité et le choix de l'une ou 

de l'autre doit se faire en fonction des objectifs de l'étude. Pour une description détaillée des 

différentes méthodes et de leurs applications, le lecteur est renvoyé à Pannier et al. (2018). 

En bref, la sensibilité locale est considérée comme l'une des méthodes de sensibilité les 

plus simples et est largement utilisée dans la littérature (Spitz et al. 2012). Cette méthode est 

une méthode un à la fois (OAT) puisque l'approche consiste à modifier un facteur à la fois et à 

effectuer la simulation pour détecter le changement dans la sortie de simulation causé 

uniquement par le facteur perturbé. Cette méthode est classée dans les méthodes qualitatives 

car elle ne donne qu'une information qualitative sur l'importance de chaque paramètre. Un autre 

ensemble de méthodes est constitué par les méthodes de dépistage. Une méthode de dépistage 

largement utilisée est la méthode de Morris (Morris, 1991). Elle est classée dans les méthodes 
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« une à la fois » où, pour chaque exécution du modèle, un seul paramètre d'entrée est modifié. 

Elle est plus précise que les méthodes locales car elle tient compte de la non-linéarité et des 

interactions entre les paramètres : la sensibilité d'un paramètre peut dépendre des valeurs 

d'autres paramètres. 

Les méthodes de sensibilité globale évaluent quantitativement l'importance de chaque 

paramètre sur l'ensemble de l'espace d'entrée en tenant compte de l'interaction entre les 

paramètres. Ainsi, elles explorent tout l'espace des paramètres mais peuvent être 

considérablement intensives en calcul contrairement aux méthodes locales et de dépistage. La 

raison en est qu'il s'agit de méthodes basées sur des échantillons et que certaines d'entre elles 

utilisent la simulation de Monte-Carlo qui nécessite de nombreuses simulations pour couvrir 

l'ensemble de l'espace des paramètres et donner des résultats relativement précis. Cela devient 

un problème si le modèle utilisé nécessite une durée importante pour la simulation. En pratique, 

lors de la mise en œuvre d'une analyse de sensibilité globale, un compromis entre précision et 

coût de calcul est pris en considération dans la technique d'échantillonnage et dans le choix de 

la méthode appropriée. 

L'analyse de sensibilité garantit que chaque paramètre sélectionné est identifiable compte 

tenu de la structure du modèle lorsqu'il est considéré seul ; cependant, elle n'indique pas si la 

combinaison des paramètres sélectionnés est également identifiable ou non. L'identifiabilité des 

paramètres est assurée si les paramètres du modèle peuvent être déduits de manière unique à 

partir des données. La structure du modèle ainsi que les données disponibles conditionnent 

l'identifiabilité des paramètres. L'interaction qui pourrait exister entre les paramètres les plus 

influents pourrait rendre cette combinaison non identifiable. Par conséquent, il est nécessaire 

de quantifier l’identifiabilité et d’adapter si besoin le jeu de paramètres avant de lancer le 

calibrage. La méthode de calibrage est expliquée plus en détail dans ce chapitre. 

L'analyse bayésienne est une approche automatisée basée sur les probabilités qui permet 

d'améliorer la fiabilité d’un modèle en affinant une fonction de densité de probabilité (PDF) 

d'un paramètre d'entrée en fonction des données mesurées. Les paramètres estimés à partir d'une 

approche bayésienne prennent la forme d'une distribution de probabilité qui permet de calculer 

la confiance dans ces estimations et de mener une propagation de l'incertitude. Il existe de 

nombreuses approches de calibrage bayésien. Elles peuvent être classées en approches 

dépendantes de la vraisemblance et indépendantes de la vraisemblance, également appelées 

calcul bayésien approché (ABC). 
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Dans ce chapitre, une revue approfondie de la littérature sur les sujets énumérés ci-dessus 

est effectuée. 
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1.1 Introduction 

This chapter aims at providing a background about the presence of uncertainties inherited 

within the building energy models and the importance of tackling it for better and more reliable 

predictions. A brief description of the most used dynamic building energy models (DBEM) is 

provided. In order to account for the uncertainties in a model, it is important to specify their 

sources and to quantify them in accordance with the calibration methods that will take 

advantage of this quantification to calibrate DBEM.  

Different ways to quantify uncertainties in the DBEM parameters depending on the 

characteristics of these parameters can be found in the literature. A short review on different 

uncertainty quantification ideas adapted by the researchers in the field is presented. 

To undergo calibration, it is important to select the most influential parameters and to 

estimate the degree of interaction between them. Different sensitivity analysis methods having 

different characteristics exist in literature. A brief description of different methods and their 

application in the field on DBEM is provided. Sensitivity-based identifiability analysis is also 

proposed to be used in the field of building energy efficiency. 

Different calibration methods classified as manual and automated methods have been used 

in this field. An overview of their application and characteristics is provided especially the 

Bayesian calibration methods. 

1.2 Building energy models 

The use of BEM has been increasing in the last years to aid optimise and invest in the 

scenarios and designs that have the greatest effect on the buildings efficiency and occupants 

comfort. Those tools have evolved through three generations starting from ''simplified methods'' 

where many simplifying assumptions were considered and the results were very indicative. This 

was the first generation of BEM. The second generation arose when the dynamic behaviour of 

the buildings started to be slightly considered rather than just carrying out steady state 

calculations which do not reflect the real state of the buildings. The software tools that are 

currently widely spread and utilized are the third generation of the BEM where the dynamic 

behaviours became much easier to compute with the developments in the computational 
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technologies. Several simulation tools are used internationally as decision-making aid tools for 

the building designs and system implementations. 

Pleiades is a dynamic building energy simulation tool that has been developed at Mines 

ParisTech for more than thirty years, originally for the bioclimatic design of buildings, and later 

to account for their environmental impacts. The software enables different types of calculations 

including regulatory verification, sizing of equipment, indoor air quality, and statistical 

analysis. Dynamic thermal and energy simulation are also performed via COMFIE calculation 

engine. COMFIE is based on a multizone finite volumes modelling with model reduction 

technique used to significantly reduce the simulation time while offering the same precise 

simulation results with the corresponding sensitivity to the design parameters. This is very 

essential especially when many simulation runs are required as it is the case when uncertainty 

analysis and calibration techniques are applied. It calculates the heating and cooling load, 

humidity and temperature in each zone of the building while accounting for heat transfer 

between zones. This model passed several validation tests (Peuportier 2005) on different case 

studies and proved to be precise whether compared to experimental measurements (Munaretto 

et al., 2017) or other international building energy models like EnergyPlus, TRNSYS, etc. (Brun 

et al., 2009).  

Uncertainty analysis has been recorded extensively in literature in application on these 

two tools as they are internationally the most used ones (especially EnergyPlus). Brun et al. 

(2009) conducted a comparative study between the five most used BEM in France in the domain 

of buildings energy (Energy Plus, TRNSYS, Pleiades + COMFIE, CoDyBa, PHPP) and clear 

agreement in the results were shown between all the tools. 

However, even though these programs can be sophisticated in estimating the behaviour of 

a building, they still suffer from discrepancy between the simulation results and the 

experimental measurements that can be revealed after carrying out validation tests. This is due 

to the uncertainties associated with the simulation which are classified as different sources of 

uncertainties in numerical models as listed earlier. One very important source is the parameters 

uncertainty that is associated with the parameters that describe the case study on which the 

simulation is carried out. In the building context, this source of uncertainty is a critical issue. 

Even if we are certain about a parameter, it is not guaranteed that it will remain constant over 

time as the building is subject to different climatic and other changes. As stated by Tian et al. 

(2018), different types of uncertain parameters can be classified in the building context: weather 
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data, building envelope, HVAC systems, and occupants behaviour. Those can be generally 

classified as dynamic inputs or static inputs. The dynamic inputs which are also called variable 

inputs are those that vary during the simulation with time such as the meteorological data: the 

outside temperature, the humidity, wind speed, etc., The static inputs which are also called the 

model parameters are those that have constant values throughout the simulation. They can be 

the parameters that describe the materials properties (assuming they do not vary), building 

geometry, and other specification of the energy systems inside the building. 

The global purpose of this thesis is to enhance the accuracy in the BEM predictions. 

Calibration and uncertainty propagation analyses allow to estimate the model parameters and 

provide a degree of confidence in its predictions. We will focus solely on the COMFIE model 

as it has been extensively validated. Moreover, it has been used for different uncertainty 

analyses, optimisations, and calibration methods. The access to the code allows us to perform 

modifications based on our needs in the software simulation settings. 

1.3 Parameters uncertainty 

Our main focus in this thesis is to account for one source of numerical models uncertainties 

which is related to the indication of the parameters that are the basis to carry out the simulation. 

Normally these parameters have to describe precisely the case under study to be able to 

accurately predict the observed energy consumption or to forecast the future behaviour of a 

building that is being designed. However, in practice most of these parameters are not precisely 

known and cannot be assigned a specific value due to various sources of uncertainty. Different 

studies aimed at collecting as much experimental data as possible of the parameters usually 

used in building simulation. For example, Clarke and al. (1991) provided a comprehensive 

review of the available data worldwide regarding the thermo-physical properties of materials 

used in building simulation. Such studies are the basis on which parameter uncertainty 

quantification depends. Uncertainty quantification is an essential step in the uncertainty analysis 

methodology and the more realistic those quantifications and distributions are the more 

confident we can be about the simulation output uncertainty bounds.  

Different studies focused on uncertainty quantifications of the building simulation 

parameters. In these studies, minimum and maximum bounds and PDFs (probability 

distribution functions) are fitted to the parameters based on empirical data from official 

databases and researches. Macdonald (2002) applied uncertainty analysis preceded by 
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uncertainty quantification of different types of uncertain building simulation parameters 

(thermo-physical properties, surface properties, internal gains, and infiltration rate). He based 

his work on different empirical data found in the literature and his quantifications were used in 

subsequent uncertainty analysis applications by many studies.  

Sun (2014) also quantified different types of parameters using different databases (micro-

climate parameters, materials properties, building envelope, and internal gains). Regarding the 

microclimate parameters, he used different models that estimate their values and quantified the 

uncertainties impacting the results of each model. He then used these quantifications to assign 

the uncertainty bounds to these models predictions. Lee et al. (2013) selected the seven most 

influential parameters indicated by a sensitivity analysis and fitted PDFs that describe their 

uncertainties. They based their work on different empirical data sets which describe the 

variability in the observations chosen from the literature for each parameter. They also used 

three goodness-of-fit tests to accept or reject the null hypothesis i.e. the distributions assigned 

to the parameters fit the observed data sufficiently with a 5 % significance level. The quantified 

parameters are the temperature setpoint, the chiller plant COP, internal gains, and outdoor 

temperatures. Normally, the degree of uncertainty of some parameters can be highly related to 

the case study in hand. If specific in-situ measurements are carried out to determine a parameter 

value (e.g. albedo on the site), the uncertainty weighting in this parameter could then be a 

function of how accurate these measurements are and this will be more realistic for the case 

study than relying on uncertainty bounds from the literature. 

This section defines all the types of uncertain parameters in building energy simulation 

and provide a literature review on how each type is handled in uncertainty analysis 

methodology. 

1.3.1 Building envelope 

The building envelope combines the static parameters of the building including the 

thermo-physical properties of its materials and its surface properties such as the emissivity. 

Other uncertain parameters can be put under this group: the infiltration rate, thermal bridges, 

etc. 

Even though, these are considered as static parameters having a constant values that does 

not change with time and are not stochastic in nature, they might end up having variability in 
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their values affected with time as they are subjected to different conditions through time such 

as the effect of the humidity on the thermo-physical properties of a material. The properties 

given by the manufacturer corresponding to the construction materials used in the building (e.g. 

thermo-physical properties) might be uncertain due to experimental measurements errors in the 

determination of these values. Moreover, the materials in use are not the same materials that are 

exposed to the experiments while evaluating their properties, and this adds another source of 

manufacturing uncertainty. 

1.3.1.1 Infiltration rate 

The air infiltration flowrate acts like a scenario that varies with time and is not considered 

as a static parameter as it is globally the case for all the parameters that are grouped under the 

''building envelope''. That is due to the fact that air infiltration is function of the pressure 

difference between the interior and the exterior of the building that is in its turn dependent on 

the varying external weather conditions. However, in practice, the infiltration rate is generally 

taken as an average annual value based on the case study at hand calculated from correlations 

present in standards. One can also define a constant value for the building airtightness from 

which the infiltration rate can be estimated and thus, the airtightness can be calibrated. 

However, the infiltration estimation requires accurate knowledge of the wind pressure 

distribution over the building envelope and the complexity and uncertainty in determining this 

pressure distribution (wind pressure coefficient) lead to additional uncertainties in the 

infiltration rate evaluation. 

 Heo et al. (2012) collected infiltration rate measured data from 10 naturally ventilated 

office buildings recorded at a pressure of 50 Pa and compared the values with those 

recommended in the standards ATTMA and CIBSE. They found that the measured minimum 

and maximum infiltration rate data were higher than the ranges found in the standards and they 

quantified the minimum and maximum values as 0.10 and 1.25 ℎ−1 (number of air changes per 

hour). For the calibration approach that they aimed to execute, they assigned a triangular 

distribution of this parameter as a prior with the quantified minimum and maximum values. 

For the uncertainty analysis carried out by Munaretto (2014), the correlation of the 

standard EN 12831 was used:  

 𝑄𝑖𝑛𝑓𝑖𝑙𝑡 = 2𝑉𝑖𝑛50𝑒𝑖𝜖𝑖 (1.1) 
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where 𝑉i is the volume of the heated space, 𝑛50 is the air change rate in ℎ−1 of the building at 

pressure difference 50 Pa between the building interior and exterior. 𝑒𝑖 is the exposure 

coefficient, and 𝜖𝑖 is a correction factor that accounts for the increase in the wind speed with 

the height of the heated space from the ground level. 

His case study was a house built within the INCAS platform of INES in the ''Le Bourget-

du-Lac''. Following the standard, the exposure coefficient chosen 𝑒𝑖 was 0.05 as the site of the 

case study is unsheltered, and the correction factor of the wind speed 𝜖𝑖 was taken 1 as 

recommended by the standard since the house height is less than 10 m. The air change rate 𝑛50 

was taken from the in-situ measurements that was done by CETE of Lyon in February 2010 

that yielded a value of 0.26 ℎ−1 with a pressure difference of 50 Pa. As a result, with a volume 

of heated space of 271 𝑚3, the infiltration rate used in the analysis was calculated to be 

7.05𝑚3 ℎ𝑟⁄ (0.03 𝑉𝑜𝑙 ℎ𝑟⁄ ). This value was considered for all the rooms of the house except 

for the attic and crawl space where he used values of 3 and 1 𝑉𝑜𝑙 ℎ𝑟⁄  respectively (not from the 

correlation in the standard). As for the uncertainty bounds, a range of ±10 % was added. 

However, regarding the attic and crawl space, higher degrees of uncertainty (±1𝑣𝑜𝑙/ℎ𝑟 and 

±0.5 𝑣𝑜𝑙/ℎ𝑟) were respectively added as they are highly uncertain. In the model, he chose not 

to include the infiltration rate when the mechanical ventilation was on. After all, the infiltration 

was not found to be an influential parameter after applying the sensitivity analysis and was 

chosen to be discarded and not used in the uncertainty analysis. 

In the thesis of Robillart (2015), the same case study was used. The aim was to apply an 

inverse uncertainty analysis rather than an uncertainty propagation that was applied by 

Munaretto (2014). The same value 0.03 𝑉𝑜𝑙 ℎ𝑟⁄  for the infiltration rate was also considered. 

After applying the sensitivity analysis of Morris, it was found that the infiltration rate was not 

an influential parameter as the mechanical ventilation rate took over it and was calibrated 

instead. 

Booth et al. (2012) applied blower door tests on four flats in their case study to measure 

the infiltration rate at 50 Pa. They compared their measurements with the CIBSE guidelines 

and found that in their case, the lower bound is much more certain than the upper bound as 75 % 

of their measurements data were closer to the lower bound recommended by the standard. 

Accordingly, in their Bayesian calibration framework, they assigned a prior Frechet distribution 

with a short-left tail where the values are more certain and a long right tail where the values are 

uncertain. 
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1.3.1.2 Albedo 

The fraction of the incident radiation that is reflected from a surface (which is in this case 

the ground surrounding the building) is called the albedo. The measurement of the albedo is not 

an easy task and is subjected to some degrees of uncertainties. One of the reasons behind this is 

that the albedo-meter will receive different sources of diffuse radiation and not only the direct 

radiation incident from the sun.  

Munaretto (2014) found that this is an influential parameter by the aid of the sensitivity 

analysis that he carried out, and it was included in the uncertainty analysis. An albedo-meter 

was placed on the soil surrounding the house and the measurements indicated a value of 0.35. 

They assumed it to remain constant the whole year despite the different conditions that may 

affect its value. In the uncertainty analysis, they have provided a uniform distribution for this 

parameter having 0.3 as a lower bound and 0.4 as an upper bound. 

Thevenard and Haddad (2006) listed some of the albedo values in the absence of snow 

found in the literature and also generated models to estimate it in the presence of snow. From 

these values, Silva and Ghisi (2014) assigned a triangular distribution for the albedo parameter 

bounded by 0.13 & 0.26 in their uncertainty analysis that was applied to EnergyPlus model. 

Sun et al. (2014) in their aim to quantify the uncertain microclimatic parameters of 

building energy simulation, have used the meso-scale model equation that calculates the ground 

reflectance based on the pervious and impervious road compositions (road solar reflectance and 

area fraction). The range of each parameter involved in the equation was collected from a global 

data set available in the literature and modeled the uncertainty of each with a uniform 

distribution. Then, following a Monte Carlo sampling approach, where particles were sampled 

from the uniform distributions, the meso-scale model equation was evaluated at each sample. 

This propagation concluded a distribution function that is centered on 0.25 and bounded 

between 0.05 and 0.4 for “terrain city”. These values do not work in the presence of snow. They 

based their uncertainty quantification for the albedo in the presence of snow on a literature 

review. 

In his thesis, Robillart (2015) considered modelling the prior of the albedo parameter for 

calibration with a uniform distribution ranging from 0.28 to 0.42. 
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1.3.1.3 Thermo-physical properties 

Not only the errors accompanied with the measurements impose uncertainties in the values 

estimated for the material thermo-physical properties, but also the moisture content, 

temperature variation, and ageing also change the base value of these properties and adds 

eventually a degree of uncertainty in using the base value Macdonald (2002). 

Macdonald (2002) quantified the uncertainties of the conductivity, density, and specific 

heat of different materials used in the building construction based on the data available 

worldwide of the thermo-physical properties that are used in building simulation as collected in 

the report of Clarke et al. (1991). Actually, four classes of materials were held in the study 

(impermeable which has 0 % moisture content, non-hygroscopic which was assigned a 1 % 

moisture content, inorganic-porous which was assigned a 4 % moisture content, organic-

hygroscopic which was assigned a 7 % moisture content). The material temperature variation 

was assumed to be 10 K in those uncertainty quantifications. He assigned a 5 % uncertainty on 

the measurement of the conductivity. The levels of moisture content affect the conductivity 

value and add uncertainty degrees of 5 %, 15 % and 25 % respectively for the aforementioned 

materials classes excluding the impermeable materials. The assumed temperature variation 

increases the uncertainty by 5 %. The materials density is only affected by the moisture content 

and not by the temperature change. The uncertainties caused by the moisture content are 

respectively 13 %, 4 %, and 11 %. An additional 1 % point of uncertainty is assigned to account 

for the measurement errors. The specific heat capacity was assigned the following respective 

uncertainty levels 4 %, 19 %, and 8 % caused by the assumed moisture content for these 

materials with additional 10 % point caused by the 10 K change in temperature, and a 12.25 % 

uncertainty level due to the measurements. Based on these considerations and quantifications, 

an average value and a standard deviation that describe the uncertainty impacting 36 classes of 

materials in the available data were assigned. These uncertainty bounds have been the basis of 

numerous uncertainty analysis conducted in building simulation. 

Domínguez-Muñoz et al. (2010a) also quantified the uncertainties in the conductivity of 

insulation materials used in building simulation. They based their study on an extensive data 

set that includes products from different European manufacturers. Figure 1.1 adapted from 

Domínguez-Muñoz et al. (2010a) shows the minimal and maximal conductivities of materials 

and group of materials resulting from their quantification study. 
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Figure 1.1: Max & min declared conductivities of materials and groups of materials (adapted from 

Domínguez-Muñoz et al. (2010a)) 

Munaretto (2014) assigned the thermo-physical properties of the materials in the case 

study of house IBB in the INCAS platform based on specific in-situ measurements taken by the 

CEA and listed in the (SIMINTHEC report). Some of the variations around these specified 

measurements for the uncertainty analysis were taken from the standard deviation pointed in 

Macdonald (2002). This was the methodology followed for both the conductivity and the 

volumetric heat capacity. When uncertainty bound was not found, ±5 % was then considered. 

Among the influential parameters identified and propagated through uncertainty analysis there 

has been two thermo-physical properties: the conductivity of the wall polystyrene and the 

volumetric heat capacity of the concrete with means 0.03 𝑊 𝑚𝐾⁄  and 2116 𝐾𝐽 𝑚3𝐾⁄ , and 

standard deviations of 0.003 𝑊 𝑚𝐾⁄  and 210 𝐾𝐽 𝑚3𝐾⁄  respectively. The values are taken from 

the specific analysis of the study case from the (SIMINTHEC report), However, the uncertainty 

of the conductivity was taken from Macdonald (2002). Robillart (2015) modelled the prior 

distributions of these two parameters based on the same mean and standard deviation values. 

1.3.1.4 Convective and radiative heat transfer coefficients 

The surface heat transfer phenomenon is in itself complex and this explains why there 

exist many different correlations to estimate the heat transfer coefficients that may give 

considerably different results. The convective and radiative heat transfer coefficients and their 

correlations are subjected to uncertainties. They can be related to the uncertainties in the 



 

29 

 

measurements, intermediate calculation, and modeling assumptions used to derive those 

correlations (Driscoll and Landrum 2004). 

Sun (2014) gathered a number of convective heat transfer coefficient correlations found 

in the literature and showed how the uncertainty in computing the coefficient can yield to 

differences by a factor of 10 between the minimal and maximal values if computed by different 

correlations. He then quantified this uncertainty by fitting a bivariate kernel density estimator 

to the coefficients of all of these correlations. The reason behind using a bivariate kernel is that 

the coefficients of the correlation were found to be correlated. He fitted such distribution for 

the external wall, internal wall, floor, and ceiling convective heat transfer coefficients by 

gathering the appropriate correlations corresponding to each type. 

For the external heat transfer coefficients, the correlation is a function of the wind speed 

which is also another source of uncertainty in this correlation. As an extension to this work, Sun 

et al. (2014) used a standard ASHRAE model that downscales the measured wind speed at a 

meteorological station to predict the local wind speed at a coarser (local) resolution at the case 

study. They quantified the uncertainty of this model by analysing the differences between its 

results and the results of a high-fidelity Community Land Model (CLM). The models were run 

on a global data set comprised of different characteristics and parameters (e.g. tall building 

district, high, medium and low-density urban areas) to include all sources of uncertainty in 

modelling the differences between the results. This statistical model allows to obtain a 

distribution of differences between the two models for each height needed. As a result, 

quantifying the uncertainty of the local wind speed was done by adding a difference distribution 

(corresponding to the specified height) to the predicted local wind speed estimated by the 

standard ASHRAE model. 

Wit (2001) considered several semi-empirical convective heat transfer coefficient 

correlations in his analysis and quantified the uncertainties weighting on this parameter to have 

a lower and upper bound based on the correlation results and on how widely spread they are. 

For example, for vertical walls, the internal convective heat transfer coefficient was chosen to 

be bounded by the correlation that yields the relative minimum value and the correlation that 

yields the relative maximum value among all the correlations used in the study. For the case of 

horizontal wall where the heat flow is upward, he used the same bound as those used for the 

horizontal heat flow cases but multiplied by 1.2 to account for the fact that the coefficients of 
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upward heat flow are commonly higher by 0-30 % than those of horizontal heat flow. Table 1.1 

shows the correlations used as uncertainty bounds in this study. 

Table 1.1: Uncertainty bounds of convective heat transfer coefficient assigned by Wit (2001) 

 Convective heat transfer coefficient 

Bound 
Internal 

(vertical wall) 

Internal 

(upward heat flow) 

Internal 

(downward heat 

flow) 

External 

Lower 
Alamdari and 

Hammond 1983 

(Alamdari and Hammond 

1983) *1.2 
ASHRAE 1997 

Ito et al. 

1972 

Upper Li et al. 1987 (Li et al. 1987) *1.2 Min et al. 1956 
Sharples 

1984 

Munaretto (2014) also quantified the uncertainties impacting the convective and radiative 

heat transfer coefficients based on deterministic values found in the literature. He estimated the 

standard deviation for each coefficient based on the variability in the values assigned for them 

in the literature. All the convective coefficients were included in this quantification analysis 

(vertical wall, horizontal, internal, external). The convective heat transfer coefficient of vertical 

walls was found to be influential and was included in the uncertainty analysis. 

1.3.1.5 Surface absorptivity and emissivity 

Macdonald (2002) also quantified those parameters for different materials based on the 

data collected from Clarke et al. (1991) by assigning a base value and a standard deviation for 

each. Silva and Ghisi (2014) built on these quantifications and assigned a 0.02, and 0.04 

standard deviation for the emissivity and solar absorptivity respectively. They have fitted 

normal distributions for these two parameters centered on a base value each of which 

correspond to the ceiling or the wall. Munaretto (2014) assigned the absorptivity and emissivity 

of the surfaces (external mortar, internal painting, internal side of the roof, floor tiling) by 

estimation, thus the uncertainties impacting these values can be high. They have assigned a 

±15 % degree of uncertainties on the absorptivity and ±5 % on the emissivity. He has 

specifically assigned different bounds for the internal surface of the roof under the photovoltaic 

solar panels present in the house of his case study (±50 % for the absorptivity and ±20 % for 

the emissivity). 
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1.3.1.6 Thermal bridges 

The thermal bridges effect on the building behaviour is dependent on the quality of the 

design and building construction. Low efficiency building can result if the designer’s choice 

induce an interruption of insulation (e.g. internal facade insulation interrupted by a floor) or if 

it was constructed by a bad workmanship. Thermal bridge catalogues comprise coefficients 

based on fixed dimensions and materials. However, the configurations on which the coefficient 

values are listed may be different than those in the case study. This necessitates choosing a best 

fitting configuration in the catalogue which adds uncertainty. A flexible way is to calculate the 

thermal bridge coefficients for the particular case study configuration at hand using numerical 

tools. We call it flexible since the exact case study details are considered. As stated in the 

international standard ISO 14683, the numerical tools generally yield an accuracy of ±5% in 

the estimation of the lineic thermal brigde coefficient if the configuration is well defined. On 

the contrary, even if the loss through thermal bridges calculation is unbiased, poor construction 

can still add uncertainties to this parameter.  

Moon (2005) quantified the severity of the thermal bridge effect using the temperature 

factor based on measurements and calculated results from the simulation tool KOBRA for three 

buildings. The temperature factor is a measure of how severe the thermal bridge is with 0 being 

the worst (internal surface temperature equals the external air temperature) case and 1 being the 

best case (internal surface temperature equals the internal air temperature). He focused on the 

thermal bridges at cavity wall corners. The idea of the analysis was to compare the 

measurements with the calculated results in order to quantify the uncertainty impacting the 

calculated values due to construction quality. No quantification about the thermal bridge 

coefficient was done in this study. Little studies have been carried out to quantify the 

uncertainties of this parameter. As stated by Wang et al. (2014), the thermal bridge effect 

quantification should be conducted on building specific bases.  

Munaretto (2014) calculated the values of the thermal bridges using the software 

(TRISCO). They were calculated following two different conventions and used the differences 

in the results of each calculated coefficient to correspondingly set uncertainty bounds which at 

last were found to be varying between 10 and 30%. These variations were used in the sensitivity 

analysis but, in this careful design (external insulation avoiding interruption of insulation), were 

not found to be influential and were discarded in the uncertainty analysis. 
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1.3.2 HVAC systems 

The HVAC systems performance also suffers from several sources of uncertainties. The 

uncertainties in the specifications related to the building design propagates to the HVAC system 

design. Ageing, maintenance and usual wear and tear also change the behaviour of these 

systems and consequently make their operation uncertain with time. The specifications 

provided by the manufacturer can also be misleading as normally the conditions on which the 

HVAC system will operate are different from those on which the specifications were identified. 

Uncertainties are larger in the case of boilers, and even more for heat pumps, because of 

efficiency variations in terms of temperatures and heating loads. The same is true also for 

cooling systems. In the case study of Munaretto (2014), uncertainty intervals of ± 5 % were 

added to the measured nominal value of 1200 W heating power provided by an electrical 

resistance.  

1.3.2.1 Internal gains 

The uncertainty in identifying this parameter is related to the occupants’ usage of 

appliances (domestic appliances, office appliances etc.) which is related to the occupants’ 

behaviour. On the other hand, if the internal heat gain provided by the monitoring equipment is 

measured, therefore the uncertainty level is small. As stated by Parslo and Hejab (1992), this 

could be less than 1 %. Munaretto (2014) identified the values of the heat gain from the 

monitoring equipment in the house and considered ±5 % uncertainty of the parameter in the 

uncertainty analysis. The total measured heat gain was 208 W. Robillart (2015) modelled a 

normal prior distribution for this parameter based on the same values. Normally, these internal 

heat gains can be very uncertain in the presence of occupants. Different studies have been 

carried out to account for this degree of uncertainty and to assign uncertainty intervals 

depending on the type of the building (whether it is e.g. an office or a residential building). In 

the study case of both Robillart and Munaretto, internal gain values were not uncertain as there 

were no occupants in the house during the experimental campaign. 

Vorger et al. (2014) developed a statistical based occupancy model that simulates the 

presence/absence and activities of occupants during the day for residential and office buildings. 

Uncertainty propagation of the parameters of this model and the BEM allows for uncertainty 

analysis that considers the stochastic behaviour of the occupants. For calibration, this model is 
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not required since instead, real data concerning the occupancy behaviour sould be available and 

used. However, using the calibrated model to predict and analyse the uncertainty of the building 

performance in the future could require such stochastic occupancy model. 

1.3.2.2 Temperature setpoint 

Heo et al. (2012) used the Morris sensitivity analysis and deduced five influential 

parameters among which was the temperature setpoint. The temperature setpoint was 22 °C and 

a ± 2 °𝐶 uncertainty was considered. They modeled this interval with a triangular distribution 

topping on 22°C and the resulted calibration posterior was found to be shifted a little towards a 

mean of 21 °C. The same interval was also adapted by McDonald and Strachan 2001 in their 

uncertainty analysis where the base value was 20 °C. Munaretto (2014) set a ± 0.5 °𝐶 interval 

for this parameter but it was not included in his uncertainty analysis because the heating power 

was not controlled by a setpoint in the experimental protocol. 

1.3.2.3 Mechanical ventilation 

Munaretto (2014) used the measurements applied by CEA to estimate the mechanical 

ventilation flowrate in the building and found that the measured flowrate differs from that 

indicated by the manufacturer of the ventilator. Due to the different scenarios applied in the 

case study, two ventilation rates were considered depending on each scenario. The values 

measured by the CEA in their study indicated a nominal ventilation flow rate 𝑄𝑣,𝑛𝑜𝑚1 =

110m3 hr⁄  for scenarios 1,4,5 and 𝑄𝑣,𝑛𝑜𝑚1 = 160m3 hr⁄  for scenario 6. These values were 

assigned ±15 %  uncertainty. 

1.4 Sensitivity analysis 

Normally in the calibration process, after having collected and processed the data, a subset 

of the whole parameters set is chosen to be estimated from the measurements. This brings the 

need for sensitivity analysis (SA) which is often used as a basis to the uncertainty analysis. In 

the context of performing inverse uncertainty analysis as will be discussed in the following 

chapters, the computational demand becomes expensive if the number of parameters involved 

is too large. Thus, it is important to analyse the effect of all the model input parameters on the 

model outputs to perform the uncertainty analysis on those that are more influential and to 
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discard the parameters whose variations do not affect the model’s output. In this context, 

discarding means to assign a constant value during the uncertainty analysis.  

Sensitivity analysis is a statistical method that makes it possible to simplify or better 

understand numerical models by classifying and ranking uncertain factors according to their 

influence on the output uncertainty. Sensitivity indices are calculated for each factor in the 

model. The greater the value of the sensitivity index, the more influential the parameter. There 

are a large number of sensitivity analysis methods and the choice of one or the other must be 

made according to the objectives of the study. For a detailed description of various methods and 

their applications, the reader is referred to Pannier et al. (2018). In this section, a brief summary 

on popular methods is presented. 

The general steps followed while performing the sensitivity analysis can be arranged as 

follows. 

1. Define what are the model outputs that are of an interest. 

2. Choose the parameters that need to be included in the analysis (this might be based on 

a previous experience and knowledge about some uninfluential parameters so as not to 

be included). 

3. Define a distribution function for each input parameter with a known mean and variance 

(this could be done based on a previous experience). 

4. Define a sampling technique to sample realisation from the parameters distributions. 

5. Choose the most appropriate sensitivity analysis. 

6. Carry out the selected sensitivity analysis on the sampled realisations from the input 

parameters distributions. 

a. Evaluate the model N times based on the samples taken from the distributions 

and on the simulation runs required for the selected SA. 

b. Analyse the model outputs and draw conclusions regarding the input parameters 

(the procedure of analysing the outputs is dependent on the method used). 

These steps correspond to variance-based methods. They do not apply for other SA 

methods. For example, the local methods do not require an identification of the distributions for 

the input parameters as will be discussed in the following section.  

There are different sampling techniques that could be adapted. The simplest one is the 

random Monte Carlo sampling where samples are taken randomly from the distribution. A more 
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effective sampling technique is the Latin hypercube sampling (LHS) which divides the 

distribution into intervals of equal probabilities and draws randomly one sample from each 

interval. This ensures that the samples generated cover all the distribution space which may not 

be accomplished in the random Monte Carlo technique. Quasi-random Monte Carlo is a 

sampling technique adapted by Sobol in his SA method called (Sobol indices). Different 

techniques that relate to a specific SA method should be adapted. For example, the FAST 

method follows a unique way of sampling that is sampling in the frequency domain and 

applying a Fourier transformation to the input parameters. 

The sensitivity analysis methods can be classified into three different categories (Saltelli, 

2008) though it is not the only way to consider classifying these methods.  

1.4.1 Local sensitivity analysis 

This method is a one-at-a-time method (OAT) since the approach is to change one factor 

at a time and undergo the simulation to detect the change in the simulation output caused purely 

by the perturbed factor. This is considered one of the simplest sensitivity methods and is used 

extensively in the literature (Spitz et al. 2012). It is categorised with the qualitative methods as 

it only gives a qualitative information about the importance of each parameter.  

Spitz et al. (2012) applied the local sensitivity analysis in order to evaluate the uncertainty 

of building simulation applied to the INCAS experimental platform of INES. Sensitivity indices 

were calculated for 139 input parameters. They varied the parameters equally with +1 % from 

their nominal values and used the mean air temperature simulation output as the variable with 

which the indices are calculated. Since the output is a time series, a sensitivity index is 

calculated for each timestep allowing to monitor the variation of the parameters effect on the 

simulation with time. For each parameter, a mean sensitivity index 𝑆𝑖,𝑚 and standard deviation 

𝑆𝑖,𝑠𝑡𝑑 were calculated, and instead of using the mean value to indicate the importance of the 

parameters, the distance √𝑆𝑖,𝑚
2 + 𝑆𝑖,𝑠𝑡𝑑

2 was used. It was chosen because it detects the degree 

of variation which might be high for some parameters with low means indicating that they are 

influential in contrary to what the mean sensitivity index tells. Seventeen parameters grouped 

into ten different families comprising those parameters that have the same effect, were found to 

be the most influential. This grouping was possible through a correlation analysis applied on 

the parameters sensitivity mean and standard deviation indices. Ten parameters which mimic 
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the uncertainty caused by all the 17 parameters were chosen for the uncertainty analysis. The 

first four influential groups were the power of the electric heating, heat exchanger efficiency, 

conduction of insulation that includes its thickness and conductivity, and the internal gains. 

1.4.2 Screening methods 

A widely used screening method is Morris’ method (Morris 1991). It is categorised as a 

one-at-a-time method where, for each model run, only one input parameter is changed. It is 

more accurate than local methods as it accounts for non-linearities and interactions between 

parameters where the sensitivity of a parameter may depend on the values of other parameters. 

For instance, in the case of constant temperature heating, the influence of thermal mass is 

negligible if solar or internal gains are small, but high in the case of a large area of well exposed 

glazing. Moreover, they are computationally less expensive than global methods. What makes 

it preferred by researchers in the context of buildings, is its ease of use in addition to the fact 

that it accounts for the interaction between the parameters.  

Heo et al. 2012 used Simlab to carry out Morris’ method to identify the four most 

important parameters; they were the intercept for windows opening (i.e. the constant in the 

logistic regression that computes the percentage of windows opeing based on the outdoor 

temperature), the indoor temperature, the infiltration rate, and the discharge coefficient.  

Munaretto (2014) applied Morris’ method to 153 parameters to deduce 11 most important 

parameters to propagate through the uncertainty analysis. He used 6 discretisation levels, with 

30 repetitions requiring 4620 model runs. He classified the important parameters based on the 

distance 𝑑𝑗
∗ 

 𝑑𝑗
∗ = √𝜇𝑗

∗2 + 𝜎𝑖
2 (1.2)  

This method is widely used in the context of building simulation in the domain of 

uncertainty propagation and calibration where applying sensitivity analysis is an essential step. 

1.4.3 Global sensitivity analysis 

Contrary to the local methods, the global methods evaluate quantitatively the importance 

of each parameter over the whole input space taking into consideration the interaction between 
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parameters. Thus, they explore the entire parameter space. They are similar to Morris’ method 

in terms that they are model independent approaches but they can be expensive computationally. 

The reason behind that is that they are sample based methods and some of them use Monte-

Carlo simulation which requires many realisations to cover the entire parameter space and give 

relatively accurate results. This becomes a problem if the model at hand requires a significant 

amount of time for the simulation. In practice, when implementing global sensitivity analysis, 

a trade-off between accuracy and computational cost is taken into consideration in the sampling 

technique and in choosing the appropriate method. 

1.4.3.1 Regression-based methods 

Regression-based sensitivity analysis is one of the GSA methods. The main idea behind it 

is to fit a multivariate linear regression between the model output and the parameters by running 

a Monte-Carlo simulation. The methods vary depending on the complexity of the model. The 

SRC method requires a linear model with independent parameters to function properly, whereas 

partial correlation coefficient (PRC) method can handle correlated parameters. A widely used 

technique in regression methods is the forward stepwise technique (Tissot and Prieur 2012). Its 

idea is to add the parameters individually to the regression model starting with the most 

important parameter until no variable is significant anymore. The most important parameter is 

the one that provides the highest increases in the coeffient of determination 𝑅2 or that provides 

the higest drop in the residual sum of squares. The advantage of regression methods is that they 

can be easily implemented and understood and they are computationally faster than the other 

global methods (Tian 2013). Different regression-based methods are reported for sensitivity 

analysis application in the building sector. 

Domínguez-Muñoz et al. (2010b) used a regression-based method (SRC) to estimate the 

importance of different input parameters on the peak cooling load of an office in Malaga. The 

sensitivity analysis was applied using the uncertainty probability distributions on input 

parameters that are used for the uncertainty propagation according to the literature, theoretical 

considerations, and educated guesses as stated. The SRC associated with all the input 

parameters enabled ranking the parameters in decreasing order in terms of importance. Among 

the 20 uncertain parameters involved in the analysis, 8 were found to have an important effect 

on the peak load, two of which were related to the thermal inertia (internal thermal mass, and 

convective heat transfer coefficient between internal mass and the room air), and the rest were 

related to the internal gains, solar gains, and mechanical ventilation flowrate.  
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Yildiz et al. (2012) used the Standardised Rank Regression Coefficient (SRRC) sensitivity 

analysis to identify the parameters that greatly affect the annual cooling energy loads in low 

rise apartment buildings for Izmir (Turky) climate. The same analysis was done for the present 

climate and for climate scenarios expected in the 2020s, 2050s, 2080s. The same parameters 

were indicated to be the most important for the selected time periods with small differences in 

the order of importance of some parameters. 33 parameters which can be grouped into 10 

different families were involved in the analysis and bounded according to commonly used data 

in the construction industry and regulations in Turkey. The most important families of 

parameters were estimated to be the natural ventilation, window area, and the solar factor of the 

glazing. 

1.4.3.2 Variance-based methods 

The idea behind the variance-based method is to decompose the model’s output variance 

into a sum of variances that are caused by different input parameters. These variances are then 

transformed into indices to evaluate the parameters influence on the model results. For each 

parameter a first order index that explains its influence separately without accounting for the 

interaction with the other parameters, and a high order index that explains its interaction with 

other parameters can be calculated. A total sensitivity index that takes both into consideration 

can also be estimated for each parameter. The total sensitivity index is defined as the sum of all 

the sensitivity indices (separate and with interactions) involving the parameter in question. The 

parameters are introduced as probability distributions with known means and variances. These 

distributions can be taken from the literature or based on an expert’s opinion. 

Unlike Morris’ method, the variance-based methods are quantitative methods that 

quantifies the amount by which a certain parameter is more influent than the other. In these 

methods, the model can be treated as a black box because it does not interfere with the method. 

However, the drawback of these methods is their computational cost because in order to explore 

the whole parameters space, they requires thousands of computations.  

1.4.3.2.1 Sobol’s method 

Sobol’s method implemented by Sobol and Shukman (1993) explains by how much each 

internal model parameter has contributed to the variance in the model output. It also includes 

the effect of interaction between the parameters and its contribution to the variance in the model 

output. Unlike the regression based methods, this method could be used no matter what and 
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how complex the model is. One main feature of Sobol’s method is that it computes the first and 

the total sensitivity indices of each parameter, however, under a high computational cost 

required requiring 𝑁(𝐾 + 2) number of simulaitons where N is the size of samples and K is the 

number of parameters included. 

Spitz et al. (2012) applied local sensitivity analysis on 139 uncertain parameters to deduce 

the most influential ones on the building energy performance. This was their first step to get 

useful information about what parameters can be fixed. Then, they used Sobol's method to 

quantify the influence of ten parameters selected from the local analysis. This required 

6669 simulations. They used EnergyPlus as the modeling tool for their analysis. The analysis 

was applied to a single house test facility at INES in France (Le Bourget-du-Lac). They 

measured the local weather conditions on the site and made a weather file from these 

measurements. 

1.4.3.2.2 Fourier amplitude sensitivity test (FAST) 

The Fourier Amplitude Sensitivity Test (FAST) has been firstly proposed by Cukier et al. 

(1973) to study the uncertainties in the rate coefficients of chemical reactions. It is used to 

discretise the model output variance into partial variances corresponding to each parameter. It 

is based on transforming the k-dimensional parameter space into one dimensional space in the 

frequency domain using a transformation function. 

One of its drawbacks is that it only evaluates the first order index of the parameters and it 

does not account for the quantification of the interactions between the parameters. If the indices 

of the parameters sum up to approximately 1, then this approach is sufficient as such summation 

indicates that the model has few interactions between its parameters. Otherwise, another 

approach has to be considered in order to quantify those interactions.The FAST method has 

been used in the building sector by several authors. Mechri et al. (2010) used the FAST method 

to study the effect of different parameters on the heating and cooling energy consumption in a 

building in Italy. They have included only six most important parameters in their perspective 

for the sensitivity analysis. 

1.4.3.2.3 Extended FAST 

Saltelli et al. (1999) extended the Fast method to be able to estimate the total index of each 

parameter (EFAST). The difference is that a high frequency is associated to the parameter under 
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investigation and low frequencies that have no limitations of interference are assigned to all 

other parameters. The idea is that the variance explained by all 𝑥~𝑖 (i.e. all parameters except 

𝑥𝑖) parameters and their interactions are isolated in these low frequencies. 

The benefit of this improvement compared to the classical FAST approach is that the 

interference is not a problem anymore and the difficulty in assigning the frequency set is 

avoided. However, it is less efficient computationally than the FAST approach because different 

sets of model evaluations are required to evaluate all the total effects leading to  

𝑁 = 𝑘(2𝑀𝑓 + 1) where 𝑤ℎ is the highest frequency assigned. 

Shen and Tzempelikos (2013) used the extended FAST (EFAST) method for their 

sensitivity analysis. They have used a thermal and lighting simulation model to estimate the 

daylighting and the energy performance of private office spaces situated in Philadelphia (USA). 

They included only seven parameters in the analysis which made the EFAST method a 

reasonable choice. 

1.4.3.2.4 Random balance design (RBD-FAST) 

Another method for computing the first order sensitivity indices was proposed by 

Tarantola et al. (2006). It is based on the random balance experimentations techniques 

elaborated by Satterthwaite (1959). The random balance design approach RBD avoids the 

difficulty of choosing appropriate frequencies as it is the case in the FAST method by assigning 

one single common frequency value to all the parameters. It is cheaper computationally than 

the FAST and EFAST methods and the number of realisations is independent from the number 

of parameters due to the common frequency used (Gatelli et al. 2009). Under one simulation 

done on all the sampled points, it is sufficient to calculate the first indices for all the parameters.  

As discussed by Tarantola et al. (2006), the RBD method can yield first order indices 

estimates for the most important parameters at a higher accuracy compared to the Sobol method, 

with only 2000 simulations in the former against 10200 simulations in the latter. However, for 

the less important parameters, Sobol was found to provide better estimates, but this is useless 

in the context of influential parameters identification. 

Goffart et al. (2017) used the RBD method to study the moisture effect on cooling energy 

demand and indoor air conditions for the climate of Singapore. The analysis was applied for 

14 parameters that are related to the walls and building materials. They used a maximum 
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harmonic of M=10 which yielded a minimum number of simulations of 220. However, they 

chose 600 simulations to ensure full coverage of the input space. They had to study five 

different cases which then required a number of 3000 simulations. 

1.4.3.2.5 Synthesized FAST 

All of these introduced approaches require the input parameters to be independent, thus 

they cannot be accurately applied when the parameters are correlated. Xu and Gertner (2008) 

proposed a generalisation of the RBD method and added some modifications to account for the 

correlated parameters. Their method is called synthesised Fast. This method uses only one 

frequency assigned to all the parameters as in the RBD approach in order to avoid the 

interference and the aliasing effects. However, instead of randomly permuting the common 

variable s, they proposed to keep it periodic to generate the samples in the parameter space 

accordingly, and then to apply the permutation directly on the samples in the parameter space. 

This method as the previous ones has no restriction on the model used. However, it can also be 

applied with as many correlated/uncorrelated parameters as the user specifies. 

Mara (2009) extended the RBD-FAST method to include the estimation of the total 

measures. They tested this algorithm using a mathematical function for which an analytical 

solution can be found for the sensitivity indices. The number of parameters was set to eight.. 

They tested the method with different sample sizes ranging from small samples of 128 to large 

samples of 2048 and compared the results with the analytical solution and with EFAST. Both 

methods were shown to yield approximately the same total indices accuracy at large sample 

sizes. At low sample sizes, the RBD-FAST was found to perform better in general and even 

accurately specifically in estimating the 𝑇𝑆𝑖 measures with low values. 

1.4.3.2.6 Random balance design (RBD-Sobol) 

RBD sampling technique can also be applied to the Sobol method in order to enhance its 

computational efficiency as stated by Mara and Joseph (2008). Goffart (2013), as a part of her 

thesis evaluating the uncertainties in the field of thermal and energy modeling of low 

consumption buildings, used the RBD Sobol method as a sensitivity analysis, applying the 

bootstrap resampling technique. 
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1.4.4 When to use what 

Each model and project require a certain method of sensitivity analysis which fits better 

than the others. Each sensitivity analysis method has its own features and properties which 

might be suitable for a specific model but inappropriate to use in another. The choice of the 

method depends on several criteria (Saltelli, 2008): 

 the correlations of the parameters; 

 the model computational cost; 

 the number of input parameters; 

 the model characteristics (linear/non-linear) if a model depended method is used; 

 the simplicity of the method; 

 whether the method is model dependent or not; 

 the need of qualitative or quantitative measures; 

 whether including the interaction effects in the measures is needed or not. 

Some methods share the same characteristics; thus, several methods may be suitable to the 

same problem. In the context of complex models which require a significant amount of time to 

run one simulation, the computational efficiency of the method is a primary concern. 

One of the main drawbacks of the local sensitivity analysis is that the interactions between 

the parameters are not considered in the sensitivity measures. It also does not explore the entire 

space of the parameters, instead, it only explores its subspace around its base case. However, it 

is computationally more efficient than other more accurate methods. Thus, if the global 

sensitivity methods are prohibitive due to their computation time, the local method could be a 

good choice to provide some information about the model behaviour near the nominal values 

of its parameters, or in this case, a metamodel can be trained to replace the original expensive 

model. Another efficient use of the local methods is to apply them firstly on all the input 

parameters to detect those parameters that have negligible effect and then to apply a global 

method excluding those identified parameters. This enhances the global method computational 

efficiency as it is for some of them highly dependent on the number of parameters. 

The regression global sensitivity analysis is model dependent. Some of these methods 

require the model to be linear and monotonic others require only monotonicity. If these 

conditions were met, it would be a good choice to use a regression-based method as they are 
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computationally less expensive than the variance-based methods. Otherwise, using these 

methods for a nonlinear non-monotone model enables the modeller to draw only limited 

conclusions from the sensitivity quantification. 

Among the screening methods, Morris’ sensitivity analysis is the most frequently used in 

the context of building energy models (Tian 2013). The main characteristic of this method and 

which makes it the preferred one for many studies on BEM calibration, is its computational 

cheapness compared to global methods, and that it estimates the interactions between the 

parameters. This method does not allow for the quantification of how much each parameter has 

contributed to the output variance. However, it can still rank the parameters with sufficient 

accuracy. 

For more accurate quantification, the global methods are used and more specifically the 

variance based methods due to their relatively higher accuracy and to the ability some of this 

class methods to quantifying both the main and the interaction effects. Similar to Morris’ 

method, they are model free approaches. However, they require a relatively large number of 

model computations. 

Several variance-based methods are proposed in the literature among which the main 

difference regards the computational cost. Sobol and FAST methods are commonly used 

sensitivity methods (Tian 2013) due to their accuracy compared to other variance-based 

methods. Sobol, classical FAST, and the extended FAST computational cost is highly 

dependent upon the number of parameters with Sobol being the most accurate one. The classical 

FAST is much more efficient compared to the others but under the drawback of not evaluating 

the total effects. Thus, if the summation of the first indices estimated by the classical FAST is 

found to be considerably less than 1, the modeller should think of using another method that 

quantifies the interactions missed by the classical FAST. If the number of parameters is too 

large, and the model itself is expensive, Sobol and EFAST can be computationally burdensome 

inapplicable. In this case, the RBD-FAST could be the solution where the computational cost 

is equal to the sample size 𝑁 (Tarantola et al., 2006). The main drawback though is that it only 

evaluates the first order indices. The improved version of the RBD-FAST estimates the total 

sensitivity indices and was proved to perform better than the EFAST with small sample sizes 

and as accurately with large sample sizes. However, it is computationally more expensive than 

the original RBD-FAST. 
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Those discussed variance-based methods do not handle correlated parameters. In the case 

of correlated parameters, the synthesised FAST, which builds on RBD (the original), could be 

suitable with the same number of simulations required as in RBD. Once again, if the sum of all 

the first order indices was close to 1, this method is then considered to be sufficient, otherwise, 

the modeller should think of using another method for more accurate measures. 

1.5 Identifiability analysis 

Sensitivity analysis ensures that each selected parameter is identifiable given the model 

structure when considered alone; however, it does not inform whether the combination of the 

selected parameters is also identifiable or not. Parameters identifiability is the concept of 

whether the model parameters can be uniquely inferred from the data. Model structure as well 

as the available data indicates whether parameters’ identifiablity is attainable or not. Interaction 

that might exist between the most influential parameters could make this combination 

unidentifiable. Therefore, there is a need to quantify this and solve it before lanching calibration. 

In this section, based on literature, a brief description on different identifiability methods is 

provided.  

Parameters identifiability is an indispensable model property for good calibration practice. 

In other words, if two model simulations 𝜂(𝑥, 𝜃1), and 𝜂(𝑥, 𝜃2) where 𝑥 represents the 

uncalibrated parameters and 𝜃 is the parameter of the model 𝜂 included for estimation, were 

found to be identical, then 𝜃 is considered identifiable only if the sets 𝜃1 and 𝜃2 are also 

identical. 

𝜂(𝑥, 𝜃1) = 𝜂(𝑥, 𝜃2)     for     𝜃1 ≠ 𝜃2     ⟹     unidentifiability (1.3) 

Unidentifiabilities can be due to the model’s structure itself no matter what the quantity or 

the quality of the available data is, and can be caused by the data insufficiency or the bias caused 

during the measurements campaign. The former is called structural unidentifiably and the latter 

is called practical unidentifiability after Raue et al. (2009).  

1.5.1 Structural identifiability 

As mentioned previously, structural identifiability is strictly related to the structure of the 

model and not to the system under investigation and its corresponding measurements. If a model 
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is structurally unidentifiable, then at least one of its parameter can vary without exposing any 

variation to the model output, or a set of parameters can change values correspondingly while 

maintaining an approximately fixed model output. If the correlation between the parameters is 

linear, then a fixed model output is attained with different combinations. 

It is highly recommended to check for structural identifiability prior to performing 

parameters estimation. On the one hand, if it is overlooked, then there will be no way to identify 

the source of uncertainties in the parameters’ estimates, whether it is due to the available data, 

the model structure, or both. This means that enhancing the data quality or quantity may or may 

not add any significant improvements to the parameter estimates. On the other hand, if structural 

identifiability is confirmed, then, it will be obvious that the uncertainty in the parameter 

estimates are mainly due to the quality of the data: its accuracy and the relevance of the 

experimental conditions to the parameters.  

With a structurally identifiable model, assuming that the data is sufficient to ensure 

practical identifiability, the parameters can be determined from the data and unique solutions 

and probability distributions can be attained. However, if the model is structurally 

unidentifiable, then its parameters cannot be uniquely identified, meaning that numerous sets 

of parameter combinations will resemble the data which biases the estimation of the parameters 

and the final precision of the calibrated model. Having highlighted this, it should be emphasised 

that the purpose of calibration could be one of two objectives. One may want to estimate the 

real values of the model parameters; in that case, a thorough identifiability analysis needs to be 

executed. Alternatively, one may want to achieve good predictions with the model, without 

attaining a precise estimate of the parameters, however, the validity of the model outside the 

range of the training data may be limited. Thus, in both cases, structural identifiability analysis 

is indispensable to screen out the parameters that are highly unidentifiable to ensure an adequate 

performance of the inverse analysis. 

Different structural identifiability approaches have been illustrated in the literature, some 

of which apply to linear models, and other apply to nonlinear models. Juricic (2020) used three 

approaches to asses the structural Identifiability of different RC models. She used Taylors series 

and Laplace expansion which only can be used with linear models and differential algebra 

which generalises to nonlinear models. It is out of the scope of this thesis to present those 

algorithms since the model used here is nonlinear and the differential algebra approach can 

become difficult to apply for complicated and large systems. 
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Another family of structural identifiability methods is called sensitivity based 

identifiability analysis and most often referred to as estimability analysis. Miao et al. (2011) 

classified it as a third class between the structural and practical identifiabilities. In fact, it is 

considered to be similar to structural identifiability. The concept is that after a sensitivity 

analysis is performed, a sensitivity-based identifiability method is conducted to examine the 

dependency of the sensitivity matrix columns and to re-rank the parameters taking into 

consideration not only the parameters’ importance but also their interactions.  

The orthogonalisation method was originally proposed by Yao et al. (2003). The idea is 

that it re-ranks the parameters while accounting for two aspects: the importance of the 

parameters, and the interaction between them. In this method, the columns of the temporal 

sensitivity matrix are projected on the column corresponding to the most influential parameter. 

The parameter associated with the column corresponding to the least magnitude after projection 

is considered the least interacting with the firstly selected parameter. This method scales well 

with increasing number of parameters except for the additional computational cost concerning 

the sensitivity analysis.  

Another method introduced by Brun et al. (2001) is called the collinearity method. It is a 

combinatorial problem where subsets of the parameter set are chosen and assessed whether 

identifiable or not. The idea is that firstly, the most important parameters are selected and the 

rest are discarded from further analysis. A combinatorial analysis is then executed to the 

selected parameters and the largest size of parameters set needs to be identified by the user. For 

each parameter subset, a collinearity index is calculated from the corresponding sensitivity 

matrix. 

Gábor et al. (2017) proposed to estimate the largest identifiable subset using combinatorial 

optimisation. They chose the variable neighbourhood search optimisation technique. This 

allows to estimate the maximum size of parameters that can be identifiable which depends on 

the minimum threshold. It is then possible to extract all identifiable and unidentifiable sets. It 

could be said that this work is an organisation of how to perform the collinearity method 

efficiently. 

In summary, sensitivity-based and structural identifiability are very similar and the same 

information regarding the identifiability of the parameters can be extracted. The application of 

structural identifiability approaches to nonlinear model can become difficult with high 
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dimensional systems which is not the case in sensitivity based methods. In the field of buiding 

energy efficiency, structural identifiability methods to linear models have been applied, and up 

to our knowledge structural identifiability as well as sensitivity based methods were not applied 

to large non linear building energy models. 

1.5.2 Practical identifiability  

Unlike structural and sensitivity based identifiability, practical identifiability reveals if the 

parameters could be learnt from the available data even if they were confirmed to be structurally 

identifiable. Insufficient data may not supply enough information for some parameters and thus, 

affect their estimability rank. Beyond the quantity, the deteriorated quality of the data due to 

measurement errors and uncertainties which is commonly the case poses problems too. Contrary 

to structural identifiability, practical identifiability could only be checked after calibration. 

One approach to estimate the practical identifiability is the profile likelihood. Lets define 

a parameter space consisting of two parameters {𝜃1, 𝜃2}. Set 𝜃1 to a given value and then find 

the value of 𝜃2 that maximises the log-likelihood given that value of 𝜃1. Repeat this for different 

values of 𝜃1. This results in a function showing the maximum possible likelihood for each value 

of 𝜃1 and is called a profile likelihood. In this frame, practical non identifiability will show as 

a flatness in the likelihood. 

This approach becomes burdensome with increasing numbers of parameters. In fact, it is 

one way of estimating the parameters of the model. It will then be inconvenient to run profile 

likelihood and then to start calibration because it will become computationally intensive. An 

alternative is to estimate the parameters following Bayesian approach and then apply 

identifiability analysis to the posteriors. That is, to check for the presence of flatness in the 

likelihoods of the estimated posteriors.  

Yi et al. (2019) applied Bayesian inference and checked the identifiability of the estimated 

parameters by comparing the parameter range to its likelihood confidence interval. If the 

likelihood confidence interval (CI) of a parameter is close to its parameter range, the parameter 

would not be identifiable. They also used a biplot analysis to check for correlations between the 

parameters and they used principle component analysis (PCA) for dimensionality reduction. A 

biplot is used to visualise the parameters in two dimensions after reducing the dimension of the 

parameter space using PCA decomposition. 
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Juricic (2020) proporsed to use the KL-divergence metric to estimate the difference 

between the posteriors and the priors. This helps estimate how much the data is informative. If 

the posterior is identical to the prior, it means that the parameters could not be estimated from 

the data, either because the priors are so accurate that the data confirmed that the true 

distribution is actually the prior itself, or due to parameter un-identifiability. Thus comparing 

the posterior to the prior only gives information about how much was learnt from the data. 

1.6 Calibration 

Uncertainty analysis is applied to predictive processes in order to estimate how our 

knowledge and uncertainty about its driving factors would contribute to our confidence about 

its prediction and how uncertain it is. In our context, the predictive process is the building 

simulation model and the driving factors are the model parameters. Uncertainty analysis is a 

broad expression that comprises two different types of analysis: forward and inverse uncertainty 

quantification. The first type aims at propagating the uncertainty of the input parameters through 

the model to quantify their effect on the certainty of its outputs, that is estimating for example 

how the energy used or temperature profile in the building varies with the corresponding 

hundreds of parameter combinations. It is thus very important to accurately quantify the 

uncertainties of the parameters that are to be propagated. 

The second type of uncertainty analysis is the inverse uncertainty quantification which, 

contrary to the previous type, aims at quantifying the parameters by indicating the values that 

yield simulation results consistent with in-situ case study experimental observations. This class 

is also called calibration. Models like COMFIE, EnergyPlus, etc. contain several hundred 

parameters each of which is associated with uncertainties. Eventually, to be able to rely on the 

results of these models and use them for renovation projects with a certain degree of confidence, 

the discrepancy between the observed data and the simulation results have to be minimised. 

This process of minimisation is called calibration. Calibration is a procedure to learn from data 

about the model structure. Given an appropriate model and sufficient data, the model parameters 

can be numerically inferred. Some calibration methods identify a unique solution, while others 

find a most probable set of solutions by sampling and resampling given the model at hand and 

the collected data. 

Ahmad and Culp (2006) showed that uncalibrated simulations could have very high 

inaccuracy in predicting the energy use in a building, where the calculated total energy of the 



 

49 

 

building varied in the range of ±30 % compared to measured data. This inaccuracy significantly 

influences design choices especially in the case of green buildings that integrate passive heating 

and cooling. Thus, the main purpose of calibration is to improve the use of simulation in order 

to be able to predict the future real-world behaviour with higher accuracy. 

Calibration methodologies used in the building sector can be broadly classified into 

manual and automated techniques (Coakley et al., 2014). The manual approaches do not include 

any kind of automated mathematical method to assist in the calibration process. On the contrary, 

automated approaches do not need any user intervention throughout the process, because they 

rely only on mathematical tools, although, they still require the user to tune their hyper-

parameters prior to launching the process. 

1.6.1 Manual calibration 

The manual based calibration methods are the earliest techniques in the field. they are 

based on manually tuning and modifying the input parameters iteratively. This requires an 

expertise in the domain of building simulation so that the user will be capable of changing the 

parameters efficiently in a meaningful pattern.  

Diamond et al. (1986) calibrated simulations using the DOE-2 program in the case of 

seven commercial building types under monthly and annual basis. They used the utility bills for 

an entire year and information about the buildings and their HVAC systems and operating 

schedules as observations to carry out the calibration.  

O’Neill et al. (2011) manually tuned the input parameters to minimise the gap between 

measurements and simulated results after identifying the most influential parameters using a 

sensitivity analysis. They developed two models to be calibrated, one using EnergyPlus and the 

other using TRNSYS which enables to incorporate different global and local control sequences 

that could be hard to evaluate using EnergyPlus. They based their calibration on the electricity 

consumption. For the months where real weather data is available, the EnergyPlus calibrated 

model yielded results within ±10 % from the recorded measured data whereas for the same 

months, the uncalibrated model results differed by 25 % to 40 %. The calibrated TRNSYS 

model was found to be less accurate due to the less accurate zoning as explained by the authors. 

Royapoor and Roskilly (2015) manually calibrated EnergyPlus simulation using the 

ASHRAE guide 14-2002. This guide states that in order for the model to be considered 
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calibrated, the Mean Bias Error (MBE) values should be in the range of ±10 %, and the 

Cumulative Variation of Root Mean Square Error (CVRMSE) should fall below 30 %. They 

applied their study on a 5-storey sandstone office and achieved the required calibration criteria. 

The calibration was based on the recorded electricity and gas consumption in 2012 and then 

used the actual measured zone temperatures to validate that the calibrated model can predict the 

zone temperatures with an accuracy of ±1.5 °C for 99.5 % of the time and of ±1 °C for 93.2 % 

of the time. 

There are several manual methods that have been adapted in the past in the building sector. 

Reddy (2006) carried out a literature review on previous works done in this field using manual 

methods. Those methods may be based on some graphical advanced presentations to help in 

carrying out the discrepancy minimisation like the graphical statistical indices and the signature 

analysis. Since calibration required many data points for more accurate results (e.g. hourly 

instead of monthly data), it will become harder for the user of such a manual approach to 

identify the causes of difference among the input data, thus it becomes more complicated to 

specify the appropriate parameters that need to be tuned. Accordingly, these methods can be 

considered as the less practical ones in the field of BEM calibration (Coakley et al., 2014). 

1.6.2 Non-Bayesian automated optimisation 

The automated calibration techniques rely on mathematical and statistical approaches that 

tune the parameters automatically without the need of a user intervention. This makes the model 

calibration not only limited to experts in the field, but also users with little expertise can thus 

use those techniques. The automated methods can also be further classified into different 

approaches. In these methods, error metrics are also used to carry out the comparison. However, 

instead of manually tuning the parameters, optimisation methods based on numerical simulation 

are applied. These methods can then be used to perform calibration. For the optimisation, an 

objective function has to be defined. Usually in calibration application, the objective function 

is defined as a function of the difference between measured and simulated data which is 

evaluated using the error metric function defined. 

Lavigne (2014) defined an objective function which is based on the monthly energy 

consumption and power demand. He worked with the DOE-2 software tool coupled with an 

optimisation algorithm (Maquardt–Levenberg nonlinear least squares method). He based his 
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calibration on the electrical energy consumption and power demand measurements and used 

two building study cases. 

Yoon et al. (2011) used an optimisation-based calibration technique to calibrate the 

unknown input parameters involved in the estimation of the heat and mass transfer of a double-

skin system. They used a lumped 1D model. They calibrated the most noticeable unknown 

parameters that cannot be estimated analytically such as the convective heat transfer coefficient, 

the air flow coefficient etc. They used a decoupled approach, where the airflow and the heat 

transfer models are interacting, each using the results of the other in the previous step. Each 

model had its own objective function, used to calibrate its own set of parameters. 

Some of the optimisation methods are approaches that handle a range of probable values 

for each parameter and then these distributions propagate through the model using the Monte 

Carlo simulation. This ensures that the calibration results in a set of values as a solution instead 

of one single value Reddy (2006). However, the main objective of most of these methods is not 

to reduce the uncertainty: they are just meant to reduce the discrepancy between the simulation 

results and the observed data (Muehleisen and Bergerson 2016). In this context, the Bayesian 

based calibration is a better choice to both reduce the discrepancy and to quantify the 

uncertainties in the parameters and predictions. Different approaches can be followed in 

Bayesian calibration methodology and they are explained in the following section.  

In section 1.6.3, a brief overview on the Bayesian algorithms corresponding to the two 

different families (likelihood-dependent/independent) is conducted. Note that there are many 

more approaches and improvements in the field that are not mentioned here. Only the methods 

that are well known in the field and are of an interest for the current thesis are presented. 

1.6.3 Bayesian calibration 

Bayesian analysis is an automated probabilistic based approach that allows enhancing our 

belief around a probability density function (PDF) of an input parameter given measured data. 

Bayesian approach maximises the likelihood that the model results are consistent with the 

measured data which is explained via probability distributions. This methodology is based on 

the Bayesian way of thinking. In Bayes’ theorem, it is possible to update your belief about a 

certain parameter based on some conditional probability that relates this parameter to a certain 

event (measured data) using the following law: 
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 𝑝(𝜃|𝑍) =
𝑝(𝜃) × 𝑝(𝑍|𝜃)

𝑝(𝑍)
 (1.4) 

The term 𝑝(𝜃) represents the so-called prior distribution of the parameter 𝜃 under 

investigation, which is based on a previous knowledge and expertise. The term 𝑝(𝜃|𝑍) is the 

conditional probability of the parameter theta given the data or certain events Z; it represents 

the posterior probability of the parameter 𝜃 which we aim at calibrating. The term 𝑝(𝑍) is a 

normalising factor which is most of the time difficult to compute, thus, the relation might be 

reformulated as follows: 

 𝑝(𝜃|𝑍) ∝ 𝑝(𝜃) × 𝑝(𝑍|𝜃) (1.5) 

This makes the posterior distribution proportional to the multiplication of the likelihood 

function and the prior distribution. The link between the prior and the posterior is the likelihood 

function 𝑝(𝑍|𝜃), which is the conditional probability of the data observed given the parameter.  

Kennedy and O’Hagan (2001) proposed a mathematical formulation that relates the 

measurement data with the model outputs as follows: 

 𝑍(𝑥) = 𝜂(𝑥, 𝜃) + 𝛿(𝑥) + 휀(𝑥) (1.6) 

Before proceeding with the formulation, it should be distinguished between the model 

parameters and model inputs. The model inputs 𝑥 such as the dry bulb temperature, and 

occupancy scenarios are not included in calibration. The model parameters 𝜃 that take fixed 

values during the model simulation such as the conductivities are considered for calibration. 

This formulation states that no model is perfect, and even at the true value of the input 

parameter, the model will not exactly fit the measured data and there will stay some discrepancy 

that is referred to as model inadequacy (Kennedy and O’Hagan 2001). This is taken into account 

by the term 𝛿(𝑥). 휀(𝑥) is the measurement errors occurred during collecting the measured data. 

𝜂(𝑥, 𝜃) is the model output under the two specified input types and 𝑍(𝑥) is the measured data 

under the conditions 𝑥. Accordingly, under known conditions 𝑥, this formulation accounts not 

only for the parameters uncertainties, but also for the other two types of errors that normally 

occur.  
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Different methodologies exist for Bayesian calibration, all of which follow the same 

concept as in equation (1.4). Globally, they are classified into two main groups: likelihood-

independent and likelihood-dependent approaches. The main difference is that the former 

approximates the likelihood function with some metric and a defined threshold from which 

comes the name approximate Bayesian computation (ABC). ABC originated in the biological 

science department by Pritchard et al. (1999) and then has been improved and recently it is 

getting the attention of researchers in different fields. A likelihood-dependent approach was 

firstly introduced by Kennedy and O’Hagan (2002) and was firstly used in the building sector 

by Heo et al. (2012). 

1.6.3.1 Likelihood-dependent approaches 

If there exists an analytical form of the likelihood function, then it is possible to deduce 

the posterior distribution through Bayes’ theorem: if the form of the posterior distribution is 

known, we can find the posterior probabilities of interest directly. However, if the posterior 

distribution form does not follow a convenient distribution, then it can be estimated by drawing 

samples from it (Turner and Van Zandt 2012). The difference between one Bayesian algorithm 

and the other is the sampling technique adopted.  

One of the most used samplers in the domain is the Markov Chain Monte-Carlo (MCMC). 

At the beginning a sample (proposal) is drawn from the prior and simulated. Then another 

sample is drawn and is compared to the previous sample and is accepted or rejected with a 

certain probability (like the Metropolis-Hasting acceptance rejection rate). This is done 

iteratively until a sufficient number of samples that satisfy the posterior distribution are selected 

and they form an approximation of the posterior PDF. 

MCMC quickly becomes inefficient with increasing number of parameters, and it highly 

depends on the proposal indicated by the user at the beginning (e.g. the value of the first sample 

generated) in which if they were inappropriately selected, biased samples could be generated. 

Another sampler which belongs to the same family is the Hamiltonian Monte Carlo (HMC) one. 

It is a gradient-based approach which selects new proposals by applying the Hamiltonian 

dynamics physics concept. It allows the sampler to select distant proposals which are still in the 

high probability region of the posterior and less correlated with the previous sample. The 

uncorrelated samples eventually allow the sampler to converge with smaller numbers of 

samples as compared to the previous approach. No-U-Turn sampler (NUTS) is an extension to 
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the HMC sampler. The difference is that it automatically selects the hyperparameters of the 

HMC algorithm which makes it possible to run HMC without user tuning. 

Another family of samplers is the sequential Monte Carlo (SMC). Ching and Chen (2007) 

proposed the transitional MCMC (TMCMC) sampler which belongs to the SMC family. The 

general concept is that instead of directly sampling from the posterior, intermediate distributions 

could firstly be sampled before the posterior is reached hence the name sequential. At each step, 

the distribution to which the samples will belong will be closer to the posterior and further from 

the prior. At each iteration, the best samples of the previous one are resampled again and tuned 

to explore the parameter space instead of drawing new parameter values once again from the 

prior. 

Minson et al. 2013 proposed in his algorithm CATMIP to run multiple Markov jumps for 

each chain at each iteration in which the number of jumps is automatically determined to stay 

within an acceptable acceptance rate instead of only doing one jump as in TMCMC. This 

modification makes the sampler less prone to be trapped in local minimums. 

Another variant to the SMC sampler was followed in Adams et al. 2020. The main 

difference is related to the selection of the number of MCMC jumps identified at each iteration. 

The application of SMC samplers in the building sector is very rare. Most researchers tend to 

apply MCMC instead. 

Heo et al. (2012) introduced the application of Bayesian calibration to the building sector 

where they used it to calibrate normative energy models applied on a UK campus building based 

on the measured gas energy consumption. They started with quantifying the uncertainty of the 

input parameters, and then they applied a sensitivity analysis based on Morris’ method to 

identify the most influential parameters, then they used this approach to propagate the chosen 

parameters uncertainties and to refine their prior PDF into an appropriate posterior PDF. They 

used MCMC for this purpose.  

Kim and Park (2016) applied two calibration techniques: a deterministic (optimisation) 

and a stochastic (BC Bayesian calibration). They used EnergyPlus as the simulation tool and 

applied the analysis on a 5-storey office building located in south Korea. Morris’ screening 

method was applied in this study to point out the most influential parameters. They aimed also 

at investigating how calibration methods depend on the model quality and measurement errors. 
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Kristensen et al. (2017) used the same framework as Kennedy and O’Hagan (2001) to 

calibrate a simple ISO13790 calculation tool using the seven most influential parameters 

estimated from the Sobol sensitivity analysis method applied on 32 parameters. They used a 

monthly calibration resolution, and based their analysis on the annual energy use. 

Lim and Zhai (2017) carried out a comparative study between different types of 

metamodels used in the Bayesian calibration framework applied to the building energy model 

EnergyPlus. Five different metamodels were tested (multiple linear regression model, neural 

network, support vector machine, multivariate adaptive regression splines, and Gaussian 

process emulators). They used the monthly average energy use intensity of electricity and gas 

estimated using the software based on true predefined values of the parameters that are to be 

calibrated so that they can validate the calibration results. They showed that all the metamodels 

used were able to yield posterior PDFs that predict the true values, the Gaussian process 

emulator being the most accurate metamodel but with the highest computational time. 

Sokol et al. (2017) applied this framework on Urban Building Energy Model (UBEM). 

They split their data into a training data of 399 homes to predict the distributions of six uncertain 

parameters, and a test data of 2263 homes to validate those posterior PDFs. The approach is 

applied once using the measured monthly electricity and gas consumption and once using the 

annual data. They compared the models results when using the values of the posterior 

distributions with the deterministic values and showed that they better fit the observed data. 

They also clarified the importance of using appropriate time steps (hourly instead of monthy) 

in model simulations compared to aggregated data as the posteriors based on the monthly 

observations yielded higher accuracy. 

As stated by Heo et al. (2015), using a Gaussian process meta model limits the method to 

aggregated energy data (i.e. monthly data). This is due to the resulting large sample size used 

to train the gaussian process model (which has a computational cost of 𝑂(𝑁3)). In order to 

make the Bayesian framework computationally applicable in the case of large datasets, Chong 

et al. (2017) proposed two modifications. Firstly, they proposed to reduce the sample size of 

the data by generating a subset that is representative of the original set by randomly sampling 

from it. They used a sample quality metric to measure how similar the subset is compared to 

the original set. The second modification is the use of NUTS-MCMC that converges faster in 

high dimensional problems. They applied their method on two case studies, TRNSYS model of 

water-cooled-chiller for a mixed use located in Singapore, and EnergyPlus model of the cooling 
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system of a 10-storey building in USA. They based their calibration on hourly measured data 

of the cooling energy consumption. They needed to calibrate 2 parameters in the TRNSYS 

model as they used Type 666 (at each time step 4 variable inputs and 2 parameters: COP of the 

chiller, and the chiller rated capacity are needed). They calibrated five parameters in the study 

using the EnergyPlus model. 

As revealed by the results of Sokol et al. (2017), the use of smaller timesteps in the 

simulation such as hourly steps contributes to a more precise calibration. Thus, aggregating the 

data into yearly or monthly for the ease of calibration adds another source of bias to the 

inaccuracies already present in the approach. Recent studies focused on using hourly data 

(Chong and Menberg 2018; Kristensen et al. 2017; Menberg et al. 2017). In this thesis hourly 

data is used. 

1.6.3.2 Approximate Bayesian computation (ABC) 

In complex models, the likelihood functions might be intractable due to their complexity. 

Approximate Bayesian computation algorithms are appropriate in this case because they do not 

require such likelihood functions. It is based on approximating the likelihood function with a 

metric that computes the discrepancy between the observed measured data from experimental 

setups and the model outputs, and then deciding what parameter value to keep and what to 

discard until representative distributions of these parameters, that approximate the true posterior 

PDF, is obtained. This avoids the necessity of the likelihood function knowledge. 

Generally, in complex systems, the data are highly dimensional (e.g. a temperature time 

series can consist of hundreds of data); this reduces the probability of generating model output 

that closely matches the observed data. This leads to a lower acceptance rate of input parameters 

and thus a computation inefficiency. A common solution to this problem is to summarise the 

measured data (𝑍) into a lower dimensional summary statistic 𝑆(𝑍) which captures all the 

relevant information in (𝑍) and use it instead of the original data. Accordingly, the same 

summary statistic should be applied to the simulated outputs of the model (𝑌) in order to obtain 

𝑆(𝑌) and to perform the comparison.  

This increases the efficiency of the computation as a low dimensional data is now 

considered, however it may introduce a bias in estimating the parameter values. This depends 

on how sufficient the summary statistic is with respect to the parameter (𝜃). If all the 
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information of (𝑍) about (𝜃) are captured by the summary statistics 𝑆(𝑍), the estimation will 

be exactly the same as if all the data was introduced in the computation. But this is theoretical 

because in fact, selecting small number of sufficient summary statistics has been one of the 

major problems within ABC applications in different fields: only informative but insufficient 

statistics are often used in ABC applications (Harrison and Baker 2020). However, this is not very 

critical with BEM applications in the case of time series data, where the RMSE could be a 

sufficient summary statistic. 

1.6.3.2.1 Rejection algorithm 

The first ABC algorithm called rejection algorithm was proposed by Pritchard et al. 

(1999). They summarised their data set into three statistics 𝑆(𝑍). There were four parameters 

(𝜃) to be calibrated. The rejection algorithm draws large number of samples from the priors 

and compares the corresponding model output with the measurements and accepts or rejects the 

draws based on a predefined tolerance value δ. If the difference between the model’s output and 

the observed data is lower than this tolerance value, then the considered draw is accepted: 

 {
𝑆(𝑍) − 𝑆(𝑌) ≤ 𝛿                  sample accepted

𝑆(𝑍) − 𝑆(𝑌) > 𝛿                  sample rejected 
 (1.7) 

The samples that respect the criteria are accepted under equal probabilities without taking 

into account the value of the difference itself whether it is very small or close to the tolerance. 

The parameter that yielded a smaller difference is more likely to be within the posterior than 

the one that yielded a higher difference even if both were below the indicated tolerance. 

Beaumont et al. (2002) refined the model proposed by Pritchard et al. (1999) by weighting the 

candidate 𝜃𝑖 according to the value of |𝑆(𝑍) − 𝑆(𝑌𝑖)| instead of accepting it with probability 1. 

They have also applied a local linear regression on the posterior to adjust the accepted 

parameters in order to weaken the effect of the difference between the observed data and the 

simulation output.  

This regression adjustment of the posterior distribution after the termination of the ABC 

algorithm is called post-processing. Different ABC-post-processing techniques and approaches 

have been proposed by different authors. Some of these approaches are regression-based 

methodologies and some follow a different concept. 
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1.6.3.2.2 Hierarchical ABC 

Hickerson et al. (2006) used the ABC framework of Beaumont et al. (2002) and developed 

a hierarchical model which is then called HABC. The idea behind this modification is that the 

prior distributions are function of some parameters (hyper-parameters) that are also inferred in 

the ABC framework by assigning prior distributions for them (hyper-priors). This allows to 

group the responses of the inferred parameters as a function of the inferred hyper-parameters. 

The probability of certain responses of the values of the calibrated parameters can be function 

of the variation of the values of the hyper-parameters. The hyper-parameter values are the 

highest level of the hierarchy on which the rest of the parameters are conditioned. This 

hierarchical modification is not only applied to rejection algorithm, however, it is also 

implemented to the updated versions of ABC as will be shown in the following sections.  

1.6.3.2.3 ABC-Markov chain Monte Carlo (ABC-MCMC) 

The rejection ABC is still computationally expensive since all the samples are drawn from 

the prior distribution, and if the posterior is significantly different from the prior, the great 

majority of drawn particles values will not yield acceptable simulation outputs, which 

contributes to a high rejection rate and low computation efficiency. Marjoram et al. (2003) 

proposed to use the Markov Chain approach described earlier in ABC. In this case, the 

Metropolis acceptance rejection probability is only applied when the discrepancy between the 

model output and the observed data is under the tolerance identified. 

As explained by Sisson et al. (2007), the ABC-MCMC approach may get stuck in the 

regions where the probability of acceptance is very low which causes a high computation 

inefficiency especially if the proposal selected is bad. Besides the computational cost 

perspective, the MCMC algorithm usually suffers from poor mixing problems. That is to say 

that the algorithm may not explore the whole parameter space and sample from all the posterior 

regions. To account for this problem, Bortot et al. (2007) proposed to treat the tolerance as an 

additional parameter with a distribution so that at each step, along with sampling a particle from 

the distributions of the parameter space 𝜃, a new value of the tolerance 𝛿 is also sampled from 

its distribution. This will allow to occasionally sample a high value of 𝛿 allowing to explore 

better the parameter space if the chain is stuck in a local minimum and to get out of areas of 

low probabilities. In this algorithm, a tight tolerance distribution can be used to keep the value 
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of 𝛿 closer to zero so that the number of particles accepted on a high tolerance is as low as 

possible. 

1.6.3.2.4 ABC-sequential Monte Carlo (ABC-SMC) 

Sisson et al. (2007) proposed the use of the SMC or “particle filter” concept in the 

approximate Bayesian computation context to solve the problem of convergence associated 

with the previous algorithms. The idea is similar to the SMC applied in the likelihood-dependent 

approaches. The criterion that defines the sequence of ditributions from the prior to the posterior 

is a sequence of decreasing tolerances. Instead of defining one tolerance value, a sequence is 

defined. At each iteration, the samples respecting the corresponding tolerance are kept. This 

enhances the computational efficiency of the approach compared to the previous ones. Sisson 

et al. (2007) proposed this method in combination with ABC under the name ABC-PRC (partial 

rejection control). 

1.6.3.2.5 ABC-population Monte Carlo (ABC-PMC) 

Beaumont et al. (2009) showed that the weighting ratio used to weight the particles in 

Sisson’s approach was biased, and he proposed a different weighting scheme of the following 

form. The approach of Beaumont et al. (2009) named ABC-PMC (population Monte Carlo) is 

the same as the PRC approach but with corrected weighting ratios that avoid the bias presented 

in the PRC method.  

The approach of Beaumont et al. (2009) combines the benefits of the basic rejection and 

MCMC algorithms. As in the MCMC, the parameter values are drawn from a distribution closer 

to the posterior instead of being drawn from the prior, and as in the rejection algorithm, this 

approach has no risk to be stuck in a region of low probability. The problem in this approach is 

in choosing the sequence of tolerance values through the iterations (𝛿1, 𝛿2 …𝛿𝑡), and in deciding 

when to stop the iterations. The sequence of decreasing tolerances can influence the accuracy 

of the obtained results and the computational efficiency. Moreover, if the tolerance value at the 

last iteration (𝛿𝑡) is too large, the final posterior will perform badly in estimating the true 

posterior, and on the other hand, the posterior resulted under using a very small tolerance value 

on the last iteration could have been approximately reached with a higher tolerance (less model 

runs). 
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1.6.3.2.6 Adaptive-PMC (APMC) 

Lenormand et al. (2013) proposed a solution to this problem by determining the tolerance 

of each iteration based on the samples of the previous iteration. The tolerance (𝛿𝑡) is determined 

as the first quantile of the distances found in the previous iteration. They based their work on 

the PMC-ABC algorithm where they modified it with this criterion and different weighting 

function and they called their algorithm adaptive population Monte Carlo ABC (APMC). 

The difference is that in the regular PMC-ABC, each particle in the previous iteration is 

perturbed until it is moved to a value that yields a lower discrepancy than a predefined tolerance 

at the current iteration and a new set of samples is formed that only contains the new particles. 

However, in this algorithm, each particle is perturbed only once and then weighted to be 

subjected to filtering after the indication of the appropriate tolerance. 

Drovandi and Pettitt (2011) firstly suggested the idea of automatically computing the 

tolerance at each iteration based on an 𝛼-quantile. They used an MCMC kernel to avoid the bias 

present in Sisson et al. (2007) with a lower computational cost of 𝑂(𝑁). However, this kernel 

inherits the problem of particles duplication, that is the presence of the same sample multiple 

times in the sample set. APMC avoids this problem. 

1.6.3.2.7 ABC in different fields 

ABC methods have been extensively used in the field of biology and genetics. The first 

approximate Bayesian model was implemented by Pritchard et al. (1999) in the field of 

molecular biology as stated earlier. Then, Beaumont et al. (2002) extended the approach as 

explained in the same field where they based their tests on the models and data set analysed by 

Pritchard et al. (1999). Hickerson et al. (2006) used the framework of Beaumont et al. (2002) 

in the field of biology to test the simultaneous divergence between taxon pairs. Johnston et al. 

(2014) used Marjoram et al. (2003) framework of ABC (ABC-MCMC) to estimate the cell 

diffusivity and the cell proliferation to enhance the drugs design for the treatment of chronic 

wounds and different applications. Fan and Kubatko (2011) estimated the species tree topology 

and branch lengths using the ABC algorithm. They applied the same framework of Pritchard et 

al. (1999). However, they did not use a tolerance to reject or accept any of the sampled priors, 

instead, they simulated samples from the priors N times and recorded the distances and then 

retained the ones with the relatively smallest distances. It has also been used in different fields 
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like in image analysis, hydrological models, ecology etc. A summary of the fields in which 

ABC methods were implemented can be found in Sisson et al. (2018). 

In the context of building energy models calibration, the likelihood-free inference (ABC 

framework) was firstly implemented by Robillart (2015). The aim of his thesis was to develop 

real time control strategies for electric load shifting in energy efficient buildings, so the 

simulation tool used was calibrated using the ABC-PMC approach. The DBEM was (COMFIE) 

which is the most widely used in France in the field of dynamic building energy simulation. 

The case study was a house of the INCAS platform of INES (Institute National de l’Énergie 

Solaire) located in Le Bourget-du-Lac. The experimental protocol included six different 

scenarios. For each scenario, several operating parameters were modified such as the heating 

set point, shutter state, mechanical ventilation air flow rate etc. Four of these scenarios were 

used in the sensitivity analysis and calibration, and two of them were used for validation. He 

evaluated the influence of 102 uncertain parameters using the Morris sensitivity analysis and 

chose the six most influential parameters related to HVAC system, heat gains, and materials 

properties. The prior distributions fit to these parameters were either normal or uniform. The 

difference between the simulated results and the measured data during calibration was 

calculated using the mean square distance: 

 

𝜌(𝑇𝑖
𝑠𝑖𝑚, 𝑇𝑚𝑒𝑠) = 𝑅𝑀𝑆𝐸𝑖 = √(∑ (𝑇𝑖

𝑠𝑖𝑚(𝑘∆𝑡) − 𝑇𝑚𝑒𝑠(𝑘∆𝑡))
2
/𝑁

𝑁

𝑘=1
) (1.8) 

where ∆𝑡 is the simulation time step, and 𝑇𝑖
𝑠𝑖𝑚(𝑘∆𝑡) and 𝑇𝑚𝑒𝑠(𝑘∆𝑡) are the simulated and 

measured temperatures at instant 𝑘∆𝑡. He based the calibration on the temperature 

measurements rather than on the energy consumption data. The algorithm proposed by 

Beaumont et al. (2009) ABC-PMC was used as the calibration method in this thesis with 

tolerance varying from 20°C to 0.4°C at the last iteration. In each iteration, the number of 

particles that needs to be accepted under the specified tolerance was chosen to be 300. The 

model used in his thesis is a monozone model and not multizone which necessitated averaging 

the measured data over all the zones based on the areas corresponding to each zone to be able 

to apply the comparison with the model output which affects the accuracy of the measurements. 

The experimental campaign lasted for four months from January to the end of April and six 

different scenarios were applied to the house with each lasting for a certain period of time. The 

data collected for four of these scenarios was used for the sensitivity analysis and the calibration 
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methodology to identify the posterior distributions. The other two scenarios were used for 

validation. The comparison of the validation data (experimental scenarios 4 and 6 in his thesis) 

when simulated by the model before and after calibration showed some improvement. He 

explained the small decrease in RMSE in several ways. Firstly, the model considered in this 

study is a single-zone model whose precision is lower than that of a multizone model. Secondly, 

in order to compare the simulated temperatures with the measured temperatures, the latter were 

aggregated in proportion to the interior surfaces of the rooms in the building, also leading to a 

decrease in accuracy.  

Zhu et al. (2020) applied the ABC approach based on Pritchard et al. 1999 framework with 

different posterior post-processing techniques to reduce the effect of high discrepancy threshold 

normally used in this algorithm. They applied and compared the performance of three different 

techniques: no post processing (Pritchard et al., 1999), ridge regression (Beaumont et al. 2002), 

neural network (Blum et al. 2010). They also used machine-learning methods to replace the 

detailed energy model to generate 100,000 samples from the posterior. The applied method as 

stated previously suffers from computational burden and robustness issues since all the samples 

are drawn from the prior distribution, and if the posterior is significantly different from the 

prior, the great majority of drawn samples will not yield acceptable simulation outputs, which 

contributes to a high rejection rate and low computation efficiency. ABC-PMC applied by 

Robillart (2015) overcomes this problem by sampling from a kernel closer to the posterior rather 

than sampling from the prior. 

1.7 Conclusion 

The use of BEM has been increasing in the past decades. Such simulation tools cannot be 

reliable if they are not validated with observed data. Generally, those models are built on 

simplifications and assumptions which could make the predictions inconsistent with the real 

behaviour even if the study case is assumed to be well specified. In practice, the case study 

cannot be defined in those models exactly as it is in reality due to the uncertainties in identifying 

the values of its parameters. Those uncertainties propagate through the models impacting their 

outputs and yielding inaccurate predictions. 

Uncertainty propagation has been extensively applied in building simulation where it 

enables the user to quantify how much uncertain the simulation results are. Inversely, the 

calibration methodology aims at identifying the BEM parameters values using in-situ data by 
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tuning parameters and running the model. This tuning procedure can be done in different ways 

depending on the calibration method and its settings. 

Different calibration methodologies in building simulation are found in the literature and 

are briefly reviewed in this chapter. Among these methods, we settled our choice on the 

Bayesian calibration technique since it accounts for uncertainties impacting the parameters and 

since the calibrated results are in the form of probability distributions functions for these 

parameters. This is advantageous against other calibration techniques that generate a unique 

value for each parameter. The application of this method requires fitting distributions (priors) 

to the input parameters in question and then they are updated through the algorithm to generate 

posterior distributions that are more likely to yield model predictions which are more consistent 

with observations.  

Their dependence on the fitted priors necessitates to accurately identify those distributions. 

The uncertainty bounds impacting each parameter should be carefully evaluated based on 

empirical data and different standards found in literature. Some of the articles that focused their 

work on setting up these bounds for different parameters of building simulation are presented 

in this chapter. 

Another essential step that also precedes calibration is the so called sensitivity analysis. 

The aim is to reduce as much as possible the number of considered parameters in the calibration 

process due to the computational burden. Moreover, including all the parameters caused what 

is called over parametrisation. This means that there will exist huge interactions allowing for 

different combinations that fit the measurements correctly but with no physical interpretation 

to the parameters estimates which might in turn affect the model accuracy. A brief overview on 

different sensitivity analysis methods available and used in building simulation is also provided 

in this chapter. 

Even the most important parameters might have high interactions which makes it difficult 

to calibrate them at once. To this end, the identifiability analysis is an essential technique to 

quantify this issue. It enables to select the parameters by accounting to their importance and 

interactions at the same time. A brief description of this concept is conducted in this chapter. 

In the following chapters, the described methods and concepts will be implemented in the 

calibration framework with real and synthetic data in an objective to study and enhance their 

application to building energy models.  
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Chapter 2 Sensitivity methods assessment  

  

 

 

 

 

 

 

 

 

 

 

 

 

Since calibration is performed in a subset of the parameters, it is essential to rank the 

parameters correctly in terms of the most to the least important one. The most accurate 

sensitivity method is computationally intensive; therefore, it is not preferred in practice. 

This chapter focuses on different sensitivity methods available. A comparative analysis 

is conducted between the retained methods to assess their precision, robustness and 

computational efficiency. 
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Résumé du chapitre 

Pour faciliter le calibrage, il est important de sélectionner les paramètres les plus influents 

de manière à réduire le coût de calcul. Une analyse de sensibilité classe les paramètres du plus 

influent au moins influent. Il existe différentes analyses de sensibilité qui diffèrent par leur 

efficacité et leur précision. Dans ce chapitre, Morris et RBD-FAST sont retenues de la 

littérature. Morris est une méthode de sensibilité très connue qui est largement utilisée dans le 

domaine des modèles énergétiques des bâtiments en raison de son efficacité de calcul et de sa 

précision suffisante. RBD-FAST est une méthode de sensibilité efficace sur le plan 

informatique qui a été récemment appliquée aux modèles énergétiques des bâtiments. Une 

comparaison détaillée est effectuée entre ces deux méthodes en termes de précision, de 

robustesse et d'efficacité de calcul. La méthode Sobol est considérée comme la méthode de 

référence dans ce chapitre. 

Il est important de mentionner que la grandeur d'intérêt, qui est dans notre cas le profil de 

température, est découpée en pas de temps de 24 heures. C'est-à-dire que pour chaque période 

de 24 heures, l’erreur quadratique moyenne (RMSE) entre les mesures et les simulations est 

évaluée. Les indices de sensibilité sont alors calculés pour chaque paramètre à chaque pas de 

temps. Ceci génère une matrice d'indices de sensibilité ; chaque colonne correspond à un vecteur 

de sensibilité d'un paramètre distinct. Pour classer les paramètres, la norme euclidienne de 

chaque vecteur est calculée et les paramètres sont classés en fonction de ces valeurs. 

Les critères sélectionnés pour la comparaison sont la précision des méthodes dans le 

classement précis des paramètres par rapport au classement par la méthode Sobol, leur 

robustesse dans le classement de tous les paramètres, ceux responsables de 95 % de la variance 

totale et ceux responsables de 90 % de la variance totale. De plus, leur efficacité de calcul est 

également prise en compte en évaluant leurs performances avec un nombre croissant 

d'évaluations de modèles. Les indicateurs utilisés sont principalement, le coefficient de 

corrélation de Pearson et le coefficient tau de Kendall. Les méthodes sont appliquées sur une 

étude de cas  : une maison individuelle, dont le modèle comporte 113 paramètres. 

La méthode de Morris montre une très bonne performance même avec un petit nombre de 

répétitions donnant des rangs approximativement similaires à la méthode de Sobol même sur 

les paramètres relativement peu influents. Elle est très efficace pour regrouper les paramètres 

les plus influents même si, à certains moments, elle ne classe pas exactement tous les paramètres 
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influents identifiés par la méthode de Sobol. Une certaine variation dans les rangs de certains 

paramètres influents est observée mais elle est négligeable. Cependant, le classement entre les 

troisième et quatrième paramètres est peu reproductible, ce qui n'est pas le cas avec RBD-FAST. 

RBD-FAST montre une bonne performance dans le classement des paramètres 

responsables de 90 % de la variance totale estimée par la méthode de Sobol, en particulier pour 

les trois premiers paramètres. Ces paramètres sont systématiquement regroupés avec un nombre 

relativement faible d'évaluations de modèles par rapport à la méthode de Sobol, tandis que les 

autres sont classés avec des variabilités significatives. Avec davantage d'évaluations de 

modèles, jusqu'à 3200, ses performances sont améliorées pour classer correctement avec un 

faible degré de variabilité les 13 premiers paramètres responsables de 95 % de la variance totale, 

cependant, au-delà de ces paramètres, les performances sont médiocres. Au-delà de 3200, il 

semble tendre vers une meilleure précision et une estimation plus robuste avec plus 

d'évaluations de modèles. 

Les performances de RBD-FAST sont conformes à ce que l'on trouve dans la littérature 

en ce sens qu'elles fonctionnent mieux sur les paramètres les plus influents. La méthode de 

Morris a un très bon potentiel non seulement pour les paramètres les plus importants mais aussi 

pour classer correctement les paramètres moins importants. Dans cette étude de cas, uniquement 

pour les trois premiers paramètres, la méthode de Morris a donné des résultats légèrement 

inférieurs à ceux de RBD-FAST ; cependant, au-delà de ces paramètres, elle a obtenu de 

meilleurs résultats en termes de robustesse et de précision. Ceci doit être confirmé sur d'autres 

études de cas. Globalement, la méthode de Morris est plus robuste et précise que RBD-FAST, 

et elle peut être utilisée avec moins de risques ; en particulier, elle fonctionne mieux que RBD-

FAST en regroupant les paramètres les plus influents avec moins d'évaluations de modèles. 
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2.1 Introduction 

Estimating a large number of model parameters through calibration could be unattainable 

due to identifiability problems caused by the interactions between these parameters. 

Considering a large number of parameters could also be cumbersome in terms of computational 

efficiency. Thus, a subset of the parameters is selected for calibration. Sensitivity analysis is a 

statistical method that aids in selecting this subset by estimating the influence of each parameter 

on the model outputs. 

There are many different sensitivity methods that are available in literature. Some of these 

methods are accurate but computationally intensive such as Sobol method which is considered 

the most accurate one, others are computationally efficient but suffer from different drawbacks 

in terms of precision. In the context of building energy models, screening methods are 

extensively used due to their ability of retaining a sufficiently accurate ranking of the parameters 

with a relatively small number of model evaluations. There has been different developments in 

the field to improve the accuracy and computational efficiencies of the sensitivity methods. 

Thus it is important to quantify and evaluate how sufficient the accuracy of these more 

computational efficient methods is. 

In this chapter, based on literature, different sensitivity methods are selected based on how 

frequently used in the field of building energy models and how promising they are. A detailed 

description of the different approaches retained is provided. The methods are applied to the case 

study of the concrete house located in Le Bourget-du-Lac, which is described in section 2.4 and 

a thorough comparison in terms of accuracy, robustness and computational efficiency is 

conducted. 

2.2 Methods 

Different existing sensitivity methods are briefly presented in chapter 1 and a general 

recommendation for the selection of appropriate methods is also provided.  

Local sensitivity method was discarded since it does not account for parameters 

interactions, and it only allows for a limited perturbation around the nominal values of the 

parameters which consequently does not explore well the parameter space. In the following 

chapter, sensitivity methods that allow for better parameter space exploration are considered. 
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Screening methods account for the interactions between the parameters and explore better 

the parameters space with a reasonable number of model evaluations. Morris method is the most 

widely used in the context of building energy models due to its relative accuracy in screening 

the most important parameters and computational efficiency. Accordingly, Morris method is 

retained for further analysis in this chapter. 

Global sensitivity analysis, and especially the variance based methods are known by their 

accuracy in the estimation of the sensitivity indices. RBD-FAST – a variance based method – 

overcomes the computational challenges of other methods. It has a considerable advantage 

compared to other methods like FAST or EFAST in this essence where it is able to estimate the 

main effects of the parameters with a data set of fixed N model evaluations (Gatelli et al. 2009). 

Under one set of simulations done on all the sampled points, it is sufficient to calculate the first 

indices for all the parameters. But one can pose the question about what the sufficient data set 

size N is to attain precise ranking of the parameters. Synthesised FAST is a method dedicated 

for a model with correlated parameters which is not the case with BEMs so it is discarded. 

Recently, some papers applied RBD-FAST to BEMs and it seems very promising (Goffart and 

Woloszyn 2021; Juricic 2020). Accordingly, and due to its computational advantage against 

other methods like FAST and EFAST, it is retained in this chapter for further analysis 

concerning its performance.  

Among the variance based methods, Sobol method is selected as a reference method to 

which RBD-FAST and Morris’ methods are compared since its results are the most accurate 

(Saltelli and Bolado 1998). This study allows to analyse the performance of both methods in 

terms of accuracy and stability through a robustness analysis. A detailed presentation of the 

Morris method is provided in appendix A. In the following section, a brief introduction to the 

variance-based methods is presented. 

2.2.1 Variance-based methods 

Sobol and Shukman (1993) used the Monte Carlo sampling method to solve the high 

dimensional integrals involved in calculating parameter indices. They started by decomposing 

the function f(x) (which is the model) into summands of increasing dimensionality as follows: 

 𝑓(𝜃) = 𝑓0 + ∑ 𝑓𝑖(𝜃𝑖)
𝑖

+ ∑ ∑ 𝑓𝑖𝑗(𝜃𝑖 , 𝜃𝑗)
𝑗𝑖

+ ⋯+ 𝑓1…𝑘(𝜃1, … , 𝜃𝑘) (2.1) 
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where 𝜃 = (𝜃1, 𝜃2, … 𝜃𝑘 ) represents the k uncertain parameters. The model 𝑓(𝜃1, … 𝜃𝑘) is 

decomposed into different parts 𝑓𝑖(𝜃𝑖), 𝑓𝑖𝑗(𝜃𝑖 , 𝜃𝑗),… , 𝑓1…𝑘(𝜃1, … , 𝜃𝑘) , each is a part of the 

model output that is only affected by one indicated parameter i.e. 𝑓𝑖(𝜃𝑖) is the part of the model 

output 𝑓(𝜃) that is uniquely caused by the parameter 𝜃𝑖, 𝑓𝑖𝑗(𝜃𝑖 , 𝜃𝑗) is the part of the model 

output 𝑓(𝜃) that is uniquely caused by the two parameter 𝜃𝑖 and 𝜃𝑗. 𝑓0 is a constant; it is the 

mean value of 𝑓(𝜃). The total variance of the model output 𝑓(𝜃) can be formulated as defined 

 𝐷 = ∑ 𝐷𝑖(𝜃𝑖)
𝑖

+ ∑ ∑ 𝐷𝑖𝑗(𝜃𝑖 , 𝜃𝑗)
𝑗𝑖

+ ⋯+ 𝐷1…𝑘(𝜃1, … , 𝜃𝑘) (2.2) 

It is shown how the total variance of the model can be decomposed to the partial variances 

caused by the parameters and their interactions. By dividing both sides of equation (2.2) by the 

total variance of the model output D, we obtain a summation of the indices of all the parameters 

(first summation) and their interaction (all other summations) and they all sum up to 1. 

 1 = ∑ 𝑆𝑖(𝜃𝑖)
𝑖

+ ∑ ∑ 𝑆𝑖𝑗(𝜃𝑖 , 𝜃𝑗)
𝑗𝑖

+ ⋯+ 𝑆1…𝑘(𝜃1, … , 𝜃𝑘) (2.3) 

𝑆𝑖 is the first order sensitivity index associated with the parameter 𝜃𝑖 which does not take into 

account the interaction between 𝜃𝑖 and all the other parameters. It is then deduced that 𝑆𝑖 is 

equal to the variance of the output caused only by 𝜃𝑖 divided by the total variance of the model 

output.  

 
𝑆𝑖 =

𝐷𝑖

𝐷
 (2.4) 

𝑆𝑖𝑗 is the second order sensitivity index associated with the interaction between the two 

parameters 𝜃𝑖 and 𝜃𝑗. It measures the interaction effect between those two parameters on the 

variance of the model output (it is not the sum of the individual effects of 𝜃𝑖 and 𝜃j ). The same 

applies to the interaction between three or more parameters S1,2,..k. Any interaction index 

between any different parameters can be obtained by dividing the variance caused by this 

interaction on the model output 𝐷𝑖,𝑗,..𝑘 by the total variance D 

 
𝑆𝑖,𝑗,…,𝑘 = 

𝐷𝑖,𝑗,…,𝑘

𝐷
 (2.5) 
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From equation (2.3), if ∑ 𝑆𝑖
𝑘
𝑖=1  approximately equals 1, this means that the parameters 

have few interactions as the second summation that correspond to interactions will 

approximately be zero. 

The total sensitivity index is of a greater interest as it accounts for the variations caused 

by the parameter under question solely, in addition to its interaction with all the other 

parameters. Let us consider an example where there are two different parameters 𝑋(𝑥1, 𝑥2) in 

which the total variation D of the model output is calculated as the summation of the variances 

caused by 𝑥1, 𝑥2, and 𝑥12. The total variance on the output caused by 𝑥1 is follows: 

 𝐷1𝑇𝑜𝑡𝑎𝑙 = 𝐷1 + 𝐷12 = 𝐷 − 𝐷2 (2.6) 

Then, following the definition of the index, the total index effect of parameter 𝑥𝑖 is the 

division of its total variance 𝐷1𝑇𝑜𝑡𝑎𝑙 by D, (𝑇𝑆(1) = 1 − 
 𝐷1

𝐷
). This applies for all the parameters 

in the space as follows: 

 
𝑇𝑆(~𝑖) = 1 − 

 𝐷(~ 𝑖)

𝐷
= 1 − 𝑆(~𝑖) (2.7) 

where 𝐷(~𝑖) is the sum of all the variances that did not include parameter i at all. The objective 

of this method is then to evaluate those two indices 𝑆𝑖 and  𝑇𝑆(𝑖) for all the parameters in the 

space. To estimate these indices, a particular experimental design is generated. This design is 

contructed based on specific demarche in drawing the samples to account for first and second 

order indices. After this experimental design is constructed, different estimators can be used to 

estimate the Sobol indices. A detailed description on the experimental design and the different 

estimators is provided in appendix B. 

2.2.1.1 RBD-FAST 

Another method for computing the first order sensitivity indices is proposed (Tarantola et 

al. 2006). It is based on combining the random balance experimentations techniques elaborated 

by Satterthwaite (1959) with the FAST method. FAST is based on transforming the k-

dimensional parameter space into one dimensional s space in the frequency domain using a 

transformation function 𝐺𝑖. Each parameter will be assigned an appropriate transformation 

function.  
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 𝜃𝑖 = 𝐺𝑖(sin 𝑓𝑖𝑠) (2.8) 

where i goes from 1 to k (the number of uncertain parameters). s is the common variable for all 

the parameters and it oscillates from (−𝜋, 𝜋). In FAST, each parameter is assigned an 

appropriate angular frequency 𝑤𝑖. This can be thought of as a sampling technique, where each 

parameter is periodically oscillating at its corresponding frequency 𝑓𝑖. Assigning only one 

frequency to all the parameters will lead to generating sample points that are poorly distributed 

in the sample space, more specifically, in 2-D space, the sample points will only form a straight 

line. Tarantola et al. (2006) adapted the random balance design technique within RBD-FAST 

to perturb the generated samples. This allows to assign one single common frequency to all the 

parameters without generating a poor distribution. In another words, N points are sampled from 

the interval (−𝜋,+𝜋), then the samples are perturbed randomly and differently for each 

parameter. Accordingly, the samples 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑗 , … , 𝑠𝑁} propagating in the search 

function to produce samples in the parameter space are differently ordered for each parameter 

 𝑆(𝑖) = {𝑠1
(𝑖), 𝑠2

(𝑖), … , 𝑠𝑙
(𝑖), … , 𝑠𝑁

(𝑖)} (2.9) 

where i represents the parameter according to which the samples are being permuted, and l is 

the order of a permuted sample. Thus, through the search function, the values in the parameter 

space are correspondingly randomly permuted too. Eventually, the sample points will be well 

distributed in the sample space. Under these samples, the model is run N times. 

 𝑌(𝑠𝑗) = 𝑓 (𝜃1(𝑠1𝑗), 𝜃2(𝑠2𝑗), … , 𝜃𝑘(𝑠𝑘𝑗))    ∀𝑗 = 1,2, … , 𝑁 (2.10) 

To calculate the sensitivity index of a parameter 𝜃𝑖, we apply an inverse permutation for 

all the parameters variables so that the 𝜃𝑖 values are reordered in an increasing form. This step 

orders 𝜃𝑖 in an increasing form but generates a new random permutation for all the other 

parameters. It is important to permute all the parameters corresponding to the same simulation 

at once and not only the parameter variable 𝜃𝑖 to ensure that the simulation results are consistent 

with the inputs. Correspondingly, the values of 𝑌(𝑠𝑗) ∀ 𝑗 = 1,2,… ,𝑁 are then reordered in the 

same manner as 𝜃𝑖(𝑠𝑖𝑗) and noted as 𝑌𝑅(𝑠𝑗). The Fourier analysis and its coefficients are then 

estimated based on the reordered form of the model output based on the parameter in question 

as follows:  
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 𝐴0 =
1

𝑁
∑𝑌𝑅(𝑠𝑗)

𝑁

𝑗=1

 (2.11) 

 𝐴𝑘 =
2

𝑁
∑𝑌𝑅(𝑠𝑗) cos(𝑠𝑗𝑘)

𝑁

𝑗=1

 (2.12) 

 𝐵𝑘 =
2

𝑁
∑𝑌𝑅(𝑠𝑗) sin(𝑠𝑗𝑘)

𝑁

𝑗=1

 (2.13) 

The partial variance is then calculated using a predefined maximum harmonic M. 

 

𝐷 = ∑𝐹(𝑤)𝑓=𝑙 = ∑𝐹(𝑙)

𝑀

𝑙=1

𝑀

𝑙=1

 (2.14) 

where 𝐹(𝑤)𝑓=𝑙 is the Fourier coefficient calculated in the previous step for the reordered 

samples according to parameter 𝜃𝑖, and all these harmonics are summed up to obtain the 

variance just as in FAST. 

 

𝐷 = 2∑(𝐴𝑖
2 + 𝐵𝑖

2)

𝑀

𝑖=1

 (2.15) 

For each parameter, the model output is reordered based on an increasing form and the 

Fourier coefficients are calculated to estimate the corresponding first order sensitivity index. It 

is cheaper computationally than the FAST and EFAST methods and the number of realisations 

is independent on the number of parameters due to the common frequency used (Gatelli et al. 

2009). However, as mentioned earlier, this is true regarding the applicability of the method but 

needs to be investigated regarding the accuracy of the corresponding ranking. The parameters 

are sampled with the same frequency 𝑓. The maximum value allowed for the frequency in 

theory as stated by Tarantola et al. (2006) is: 

 𝑓𝑚𝑎𝑥 = (𝑁 − 1) 2𝑀⁄   (2.16) 

where N is the data set size. In this paper the frequency is set to 1 following the arbitrary choice 

of Tarantola et al. (2006). 
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This method results in a biased estimation of the indices 𝑆𝑖. This is due to the fact that 

each harmonic of w is related to the variance of all the other parameters and is falsely attributed 

to 𝑉𝑖. Tissot and Prieur (2012) provided a correction to this bias to account for the 

overestimation found in the original method: 

 
𝑆𝑖

𝑐 = 𝑆𝑖 −
𝜆

1 − 𝜆
(1 − 𝑆𝑖) (2.17) 

where 𝑆𝑐 is the corrected sensitivity index and, and 𝜆 =
2𝑁ℎ

𝑁
. As the sample size N and 𝑆𝑖 

increase the bias becomes less significant. 

2.3 Methodology and criteria 

To perform the comparison between the two selected methods (Morris and RBD-FAST), 

Sobol method is retained as a reference method since it is proven in literature that it is the most 

accurate variance-based sensitivity method. The methods are compared in terms of accuracy, 

robustness, and computation time. 

It is important to mention that the quantity of interest, which is in our case the temperature 

profile, is divided into 24-hours time steps. That is that for each 24-hours period, the RMSE 

between the measurements and the simulations is taken. The sensitivity indices are then 

calculated for each parameter at each time step This generates a matrix of sensitivity indices; 

each column corresponds to a sensitivity vector of a separate parameter. To rank the parameters, 

the Euclidean norm of each vector is computed, and the parameters are ranked based on these 

values. 

The ranking of Sobol method is retained as the reference ranking. The other methods are 

then analysed regarding how they can resemble the ranking obtained by Sobol method whether 

in obtaining the same exact ranking or in being able to at least cluster the most influential 

parameters even if they are not exactly ranked. This is done visually by plotting the paramerters 

as a function of their ranks. The Kandall rank correlation coefficient is also retained to quantify 

the similarities in the ranks between Sobol and the other two methods. The Kandall rank 

correlation 𝜏 is a statistic used to quantify the similarlity of the ranks between two data. The 

value of 𝜏 ranges from -1 to +1. A value of 1 means that the two data are ranked perfectly 
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similar, and a value of -1 means that the data are ranked in an opposite order. The Kandall 

correlation is given as follows: 

 𝜏 =
𝑛𝑐 − 𝑛𝑑

𝑁(𝑁 − 1)
2

 
(2.18) 

where 𝑛𝑐 is the number of concordant pairs and 𝑛𝑑 is the number of discordant pairs. 𝑁 is the 

number of data samples. Concordant pairs are two point (𝑥𝑖 , 𝑥𝑗) and (𝑦𝑖 , 𝑦𝑗) that satisfy 𝑥𝑖 >

𝑥𝑗 and 𝑦𝑖 > 𝑦𝑗 or 𝑥𝑖 < 𝑥𝑗 and 𝑦𝑖 < 𝑦𝑗. The opposite is a discordant pair. 

The Kandall correlation cannot be applied to a subset of the whole data set otherwise the 

results would not be reliable. For this, the Pearson correlation is also retained to be applied to 

subsets of the data. The Pearson correlation coefficient (𝑃𝐶𝐶) is a measure of linear correlation 

between two set of data. A value close to unity means that the ranks between the two methods 

are close to be linearly correlated meaning that the tested method is able to resemble the ranks 

in the reference method. PCC is computed as follows: 

 
𝑃𝐶𝐶 =

𝑘 ∑ 𝑟𝜃𝑖
𝑥𝜃𝑖

𝑘
𝑖=1 − ∑ 𝑟𝜃𝑖

𝑘
𝑖=1 − ∑ 𝑥𝜃𝑖

𝑘
𝑖=1

√𝑘 ∑ 𝑟𝜃𝑖

2𝑘
𝑖=1 − (∑ 𝑟𝜃𝑖

𝑘
𝑖=1 )

2
√𝑘 ∑ 𝑥𝜃𝑖

2𝑘
𝑖=1 − (∑ 𝑥𝜃𝑖

𝑘
𝑖=1 )

2
 

(2.19) 

where 𝑟𝜃𝑖
 is the rank of parameter 𝜃𝑖 in the reference method, and 𝑥𝜃𝑖

 is its rank in either Morris’ 

method or RBD-FAST, and 𝑘 is the total number of parameters. The Pearson correlation is 

applied to all the parameters sequentially starting from the first two parameters 𝑘 = 2, and 

increasing k until at all the parameters are included. This enables to asses the performance of 

each method with different clusters of parameters: the methods performance on the most 

influential parameters only and on all the parameters. 

The robustness of each method is also analysed. The stability in ranking the parameters 

after multiple repetitions is essential to ensure that the selection of the parameters is reliable. 

To assess this behaviour, each method is repeated several times with increasing data set sizes 

(number of model evaluations). Note that for Morris’ method, it is important to select the 

number of levels and the repetitions beforehand which results in a specific data set size required 

to execute the method. However, in contrary to Morris and Sobol methods, RBD-FAST does 

not depend on a specific data set size to be executed, which makes it easy to choose a size that 

is consistent with that required by Morris’ method. All of these runs form a data set comprising 
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the rank of each parameter after each run. It is useful to compute the standard deviation of the 

ranks of each parameter to analyse the stability of the methods. 

The methods robustness and accuracy enables to have a better idea about the required data 

set sizes needed by each method to attain reliable results. This in turn reflects on the 

computational efficiency of each method. The time accounted for is the simulation time of the 

BEM to generate the required data set. The time taken by the method itself to compute the 

sensitivity indices is not taken into account since it is negligible. 

2.4 Case study 

The studied building corresponds to the I-BB house (Concrete construction) of the INES 

(National Institute of Solar Energy) "INCAS" platform, located in Le Bourget-du-Lac (France) 

(Figure 2.1). The net floor area is 89 m² on two levels. The house is designed to match the 

performance of the "PassivHaus" label, thanks to high insulation, very low thermal bridges, and 

high-performance glazing. 

 

Figure 2.1: Sketch of the IBB house 

The interior dimensions are 7.5 m in length and 6.5 m in width. The house is built on a 

crawl space 80 cm high and is surmounted by an unheated attic. Its orientation is offset 15 ° 

counter clockwise from the north-south axis. The roof is two-sided with a North / South 

orientation and an overhang of 60 cm to the east, west and north. The south facade of the 

building includes a large glazed surface (28 % of the facade) protected from the sun by a 

balcony with a width of 1.3 m and a roof overhang of 1 m. The east and west facades have a 

glass area ratio of 5 % and 10 % respectively. 



 

78 

 

The I-BB house is highly insulated (external insulation in walls). 20 cm of extruded 

polystyrene are added to the external walls of the house that are composed of 15 cm of shuttered 

concrete. The ground floor consists of 20 cm extruded polystyrene, 16 cm cast-in place 

concrete, and 8 cm of concrete screed. For more details about the compositions of the different 

parts of the building, see Spitz (2012). 

The house is equipped with a double-flow type CMV (Controlled Mechanical Ventilation) 

with heat recovery and two fans: one for the fresh air circuit and the other for the stale air circuit. 

Fresh air is blown into the living room and bedrooms, while vents in the toilets and bathroom 

ensure the extraction of stale air. The plate heat exchanger allows up to 90 % heat recovery. A 

by-pass allows cooling by direct ventilation. Heating is provided by an electric resistance 

located at the start of the fresh air distribution network.  

An experimental campaign has been conducted to measure the temperature profile in the 

building. The considered period (January 1st to April 22nd, 2012) was subdivided into six 

scenarios (Table 2.1), with different physical phenomena. Parameters, such as the heating 

setpoint, the opening / closing of the shutters, or the mechanical ventilation flowrate were 

modified. The ventilation mode was also varied between a by-pass (BP) mode and single-flow 

ventilation. The ventilation flowrate when turned on also changed in the last scenario where 

rate-a corresponds to 110 m3/hr, and rate-b corresponds to 150 m3/hr. 

Table 2.1: Illustration of the different scenarios of the case study 

 

The sensitivity analysis is applied to select the parameters on which calibration will then 

be performed. Thus, it is important to peform the sensitivity analysis on the scenarios that will 

be considered for training the calibration model. As in Robillart (2015), scenarios 

1, 2, 3, and 5 are considered training scenarios on which calibration process will be performed. 

Scenarios 4 and 6 are chosen as validation data because they are respectively close to the 1st and 

5th scenarios. We can thus evaluate the behaviour of the calibrated model under relatively 
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similar experimental conditions. Accordingly, in this chapter the sensitivity analysis will only 

be applied on the training scenarios. 

2.5 Results and discussion 

The bounds assigned to the parameters are taken from Munaretto (2014) and are presented 

in appendix. Some parameters that Munaretto included are not considered in this study such as 

the setpoint temperature: only those that can be calibrated are included. The same bounds are 

set for Morris methods, however, for Sobol method and RBD-FAST, normal distributions over 

these bounds are considered. The standard deviation of each parameter is selected so that the 

bounds of Munaretto (2014) are within 2 standard devations from the mean. This ensures the 

consistency in the comparison between the methods. It is preferred to use normal distributions 

instead of uniform for the variance based methods to account for their capability of 

incorporating such distributions. 

Sobol method is executed with 4000 samples following Pannier (2017). She assessed the 

convergence of the total sensitivity indices with different sample sizes starting from 100 ending 

with 5000. The study showed that the total indices started converging from a sample size of 

2000. She used in her study a sample size of 5000 to ensure the reliability the ranking. In our 

study, the number of parameters included is larger than those used in her study, so, a smaller 

sample size of 4000 is used to reduce the computation time while ensuring reliable ranking . 

There are 113 parameters in the model, which means that 460,000 simulations are executed. 

Figure 2.2 shows the parameters temporal ranking obtained via Sobol method. It only 

presents the parameters that explain 90 % of the total variance: ventilation flowrate (�̇�), heating 

power (𝑄𝑝), specific heat of wall concrete (𝑐𝑝,𝑐𝑜𝑛𝑐𝑊), conductivity of polystyrene wallmate 

(𝜆𝑝𝑜𝑙𝑊), dissipated heat (𝑄𝑑), solar albedo3 (𝐴𝑙𝑏), specific heat of concrete screed (𝑐𝑝,𝑐𝑜𝑛𝑐𝑆), 

and conductivity of polystyrene Styrofoam (𝜆𝑝𝑜𝑙𝑆). The importance in the four training 

scnearios is shown here. The last training scenario is combined in the plot with the first three 

eventhough in reality they are separated by one testing scenario.This explains the sudden 

increase in the importance at day 50. The first scenario corresponds to the first 16 days, then 

                                                 
3 Reflectivity of the ground around the building 
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the next 34 days correspond to the second and third scenarios, and the rest correspond to the 

fifth scenario.  

 

Figure 2.2: Temporal sensitivity indices 

This figure allows to visualise the importance of each parameter and how it varies with 

time. On the y-axis is the total sensitivity index computed at each 24-hours time step. For the 

first scenario: first 16 days, it is obviously observed that the ventilation flow-rate and the heating 

power are the most important parameters compared to the rest. The building model considered 

being single-zone, scenarios 2 and 3 are identical. Therefore, the results are similar for these 

two scenarios. It can be observed (day 16 to 50) that the importance of both the ventilation flow-

rate and the heating power decreases gradually since in these two scenarios the heating power 

is turned off and there is no ventilation. The building is kept in free evolution during these two 

scenarios. Accordingly, the importance of the insulation conductivity and the specific heat of 

the concrete becomes more obvious in these scenarios. It is also important to mention, that 

during all the experimental setup, the dissipated heat (representing internal gains) is constant 

and is not changed, however, its importance is only significant during the free evolution of the 

building.  

At the end of scenario 3, a sudden change in the parameters importance is observed. That 

is because, the sensitivity indices are computed only for scenarios 1, 2, 3, and 5: the variation 

in the sensitivity indices caused by scenario 4 are not shown. The influence of the heating power 

at the beginning of scenario 5 is high, and then directly starts decreasing. The reason behind 
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that, is that the heating power is turned on in scenario 4 and then turned off at the beginning of 

scenario 5. The ventilation existed in both scenario 4 and scenario 5 which explains its high 

importance at scenario 5 where it does not decrease as is the case for the heating power. 

However, its importance is not constant as it is the case in the first scenario. The reason behind 

that is that the solar albedo started sharing some importance with the ventilation starting from 

scenario 5. This is due to the fact that the shutters in scenario 5 are open. 

After computing the length of each vector using the Euclidean distance, the parameters 

are ranked from the parameter having the largest length to the parameter having the smaller 

length. Figure 2.3 shows the ranking of the parameters responsible for 90 % of the total 

variance. 

 

Figure 2.3: Parameters ranking with Sobol 

In a first step, the aim is to assess the performance of Morris method and RBD-FAST with 

a sufficient sample size and in a second step to assess their robustness with different sizes. 

Accordingly, Morris’ method is launched with 60 repetitions which corresponds to 6840 model 

evaluations. This is close to the number of repetitions (50) sufficient for a precise ranking of 

the parameters as found by Pannier (2017). To undergo a reliable comparison, the data set 

generated for RBD-FAST is of the same size. 
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The first interesting indicator is to count the number of parameters that are ranked exactly 

as Sobol method. With Morris’ method, 33 parameters had similar ranks as estimated by Sobol 

method; with RBD-FAST 14 parameters are correctly ranked. Figure 2.4 and Figure 2.5 show 

a scatter plot for the parameters’ ranks of Morris’ method and RBD-FAST versus Sobol method 

respectively.  

 

Figure 2.4: Correlation between Sobol and Morris ranking 

 

Figure 2.5: Correlation between Sobol and RBD-FAST ranking 
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It is clearly depicted how Morris’ method fits better to Sobol method than RBD-FAST, 

even with the parameters that are not exactly ranked as Sobol method, they do not diverge 

significantly as with RBD-FAST, where a random dispersion exists. The degree of similarity in 

the ranks between Morris’ method and Sobol method is estimated via Kandall rank coefficient 

and it yielded a value of 0.95. On the contrary, the coefficient between RBD-FAST and Sobol 

method is 0.5. The difference between both methods is quite large and it can be clearly 

visualised in the scatter plots. It is also clearly depicted that for the most influential parameters, 

the relation between Sobol and RBD-FAST seems to follow a linear behaviour. This points out 

the importance of analysing not only the ranks of the whole parameter space, but also to focus 

the comparison on ranking the sets of the most influential parameters. 

To quantify the differences between both methods with different set of parameters, the 

Pearson correlation coefficient (PCC) between Sobol and these methods is computed 

sequentially starting from ranking the three most important to ranking all the parameters. The 

reason behind starting with three parameters and not from two is that a linear relationship could 

always be found for two data points. 

Figure 2.6 shows how the correlation between Sobol and the other methods change with 

increasing number of parameters. On the one hand, it shows a close linear correlation between 

the ranks of the reference method and RBD-FAST with a limited number of parameters (around 

20); then, the coefficient of linearity decreases with increasing number of parameters to reach 

a value of 0.68. The evolution of PCC is not perfectly smooth: PCC tends to decrease with 

increasing number of parameters but there exist increases and decreases in between. This could 

be related to the randomness in ranking the less influential parameters compared to the reference 

method. On the other hand, PCC between Morris’ method and the reference method stays 

approximately constant around 0.98 with increasing number of parameters. At the beginning, 

there exists a slight decrease to 0.8 and then the PCC increases again. The reason behind this 

decrease is that, there is a swap in ranking the third and the fourth parameter (specific heat of 

concrete, and conductivity of polystyrene) with Morris’ method, which is translated by a 

decrease in the value of PCC when computed on the first three and four parameters. Since 

Morris’ method functions well in resembling the ranks of Sobol method with very small 

variation, the PCC tended to increase towards a value very close to unity. The intersection 

between the two curves in Figure 2.6. occurs at the fourth parameter which explains this 

analysis. 
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Figure 2.6: PCC correlation between Sobol, Morris, and RBD-FAST rankings 

The sensitivity indices and the resulting rankings could vary if the method is repeated with 

a different data set. Thus, it is also important to analyse how accurate and robust each method 

is against repetitions and how the performance changes with different   sample sizes. For this 

purpose, Morris’ method is performed on the same case study with different repetition starting 

from 5 ending with 60. Correspondingly, RBD-FAST is repeated with different sample sizes 

equivelent to those indicated with Morris’ method repetitions. The robustness of each method 

is evaluated by estimating the variabilities in the parameters rankings. 

Figure 2.7 shows the Kandall  rank coefficient for each execution of the two sensitivity 

methods. Morris’ method shows a constant performance with an increasing number of 

repetitions, where the value of 𝜏 remained almost constant around 0.98. This also indicates a 

good robsutness against number of repetitions with negligible variabilities. In the graph, the 

number of model evaluations correspoding to Morris’ repetitions is displayed and not the 

number of repetitions. On the other side, with RBD-FAST the value of 𝜏 shows a significant 

variability compared to Morris method with an increasing trend. This means that with a larger 

data set, RBD-FAST tends to rank the parameter more accurately however, with a significant 

degree of variability: the standard deviation for the values of 𝜏 for RBD-FAST is 0.078, 

compared to 0.005 for Morris’ method. 
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Figure 2.7: Kandall  correlation for Morris and RBD-FAST 

Computing the coefficient on all the parameters gives some sort of information on how 

each method accurately ranks the ensemble of all the parameters. Same as previously done, the 

PCC is computed sequentially for each execution of the methods. The aim is to analyse the 

robustness of each method against number of simulations in ranking the most influential 

parameters. To this end, it is interesting to assess the accuracy of both methods to ranking the 

parameters responsible for 90 % (first 8 parameters) and 95 % (first 13 parameters) of the total 

variance estimated by Sobol method. Figure 2.8 shows the PCC computed for both methods on 

the first eight parameters. It shows an approximate similar performance for both methods in 

ranking the first 8 parameters with a slight advantage to RBD-FAST. The variations in the PCC 

for Morris’ method is due to the variations in ranking 𝑐𝑝,𝑐𝑜𝑛𝑐𝑊, and 𝜆𝑝𝑜𝑙𝑊 as shown in Figure 

2.9. 
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Figure 2.8: PCC of Morris and RBD-FAST on first 8 parameters vs increasing simulations 

 

Figure 2.9: Morris ranking of the first 8 parameters 

It could be visualised that the PCC of Morris’ method in Figure 2.8 increases only when 

these two parameters are ranked as with Sobol method. The last two parameters are consistently 

ranked, however different to the order estimated by Sobol method. RBD-FAST is more 

consistant at ranking the first 4 parameters as shown in Figure 2.10. However for the last two 

parameters, there exists significant variabilities in the ranks. The dissipated heat and the albedo 

are consistently ranked, however differ from the order estimated by Sobol method. To 

summarise, in both methods, four parameters are precisely ranked in a consistent manner and 
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the other four are not. Given these observations, and the results of PCC shown in Figure 2.8, it 

could be said that RBD-FAST performed in this case slightly better than Morris’ method in 

ranking the first 8 parameters. One more thing to add is that RBD-FAST at some runs is not 

able to cluster the conductivity of polystyrene as one of the eight most influential parameters 

estimated by Sobol method which is not the case with Morris’ method. On the contrary, the first 

three parameters are consistently ranked by RBD-FAST and not by Morris’ method. 

 

Figure 2.10: RBD-FAST ranking of the first 8 parameters 

Morris’ method shows a consistent rank for the first 13 most influential parameters with 

different runs. Figure 2.11 shows the rank of the 9th to the 13th most important parameter: 

concrete wal thickness (𝑡𝑐𝑜𝑛𝑐𝑊), thermal bridge (𝜓), window heat transfer coefficient (𝑈𝑤), 

thickness of polystyrene Wallmate (𝑡𝑝𝑜𝑙𝑊), and the specific heat of reinforced concrete 

(𝑐𝑝,𝑐𝑜𝑛𝑐𝑅). It is clearly depicted that those parameters are consistently clustered as the most 

influential ones. On the contrary, RBD-FAST does not do as well with the group responsible 

for 95% with smaller sample sizes. To quantify this better, the PCC of Morris’ method and 

RBD-FAST in ranking the parameters responsible for 95 % of the total variance is depicted in 

Figure 2.12. Morris performs better and more consistently with small sample sizes: less than 

3200. The performance of RBD-FAST is improved with bigger sample size: PCC approaches 

that of Morris’ method. However, unlike Morris’ method, there exists a greater degree of 

variability on the PCC value even after a sample size of 3200: the standard deviation of PCC 
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estimated with a sample size of 3200 and above for RBD-FAST is 0.027 compared to 0.0036 

for Morris’ method. 

 

Figure 2.11: Morris ranking of the parameters contributing to 95 % of the total variance 

 

Figure 2.12: PCC of Morris and RBD-FAST on the first 13 parameters vs increasing simulations 

One more important observation is that unlike Morris’ method, RBD-FAST is not capable 

of consistently clustering the 13 most influential parameters as depicted in Figure 2.13 This 

gives an advantage for Morris’ method against RBD-FAST. 
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Figure 2.13: RBD-FAST ranking of the parameters contributing to 95 % of total variance 

According to these observations, it could be said, if only a very small set of parameters is 

needed (the first two or the first three), then RBD-FAST could be a better choice, however if 

more than that is needed, then Morris’ method could be a better choice given that it shows a 

better performance in clustering the important parameters. 

2.6 Conclusion 

The objective of this chapter is to analyse the performance of efficient sensitivity analysis 

methods compared to Sobol method. Morris method is a screening method that is widely used 

especially in the field of building energy models. RBD-FAST has been recently applied in the 

field and it is computationally efficient compared to other variance-based methods. A 

comparison is executed between these two methods in terms of accuracy, computational 

efficient and robustness. Sobol method is considered as the reference method. 

Morris’ method shows a very good performance even with a small number of repetitions 

yielding approximately similar ranks as Sobol’s method even on the relatively non influential 

parameters. It is very good at clustering the most influential parameters even if at some points 

it does not exactly rank all the influential parameters that are ranked by Sobol’s method. Some 

variation in the ranks of some influential parameters is observed but is negligible. However, the 

third and the fourth parameters are swapped very often with different runs which is not the case 

with RBD-FAST. 
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RBD-FAST shows a good performance in ranking the parameters responsible for 90 % of 

the total variance estimated by Sobol’s method, especially for the first three parameters. These 

parameters are consistently clustered with a relatively small number of model evaluations 

compared to Sobol’s method while the rest are ranked with significant variabilities. With more 

model evaluations, up to 3200, its performance is enhanced to correctly rank with a small degree 

of variability the first 13 parameters responsible for 95 % of the total variance, however, beyond 

these parameters the performance is poor. Beyond 3200, it seems to tend towards better 

accuracy and more robust estimation with more model evaluations.  

RBD-FAST performance is consistent with what is found in the literature in that it 

performs better on the most influential parameters. Morris’ method has a very good potential 

not only for the most important parameters but also in correctly ranking less important 

parameters. In this case study, only for the first three parameters, Morris’ method performed 

slightly worse than RBD-FAST; however, beyond these parameters, it performed better in terms 

of robustness and accuracy. This needs to be confirmed on other case studies. Globally, Morris’ 

method is more robust and accurate than RBD-FAST, and it can be used with less risk; 

especially, it performs better than RBD-FAST in clustering the most influential parameters with 

less model evaluations.  
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Chapter 3 Calibration methods 

assessment  

 

 

 

 

 

 

 

 

 

This chapter focuses on various Bayesian calibration methods existing in literature. A 

detailed explanation on the statistical background of these methods is provided. Then, they 

are applied on a virtual case study and compared in terms of precision and computational 

efficiency. Their performance in identifying the true values and in enhancing the calibrated 

model precision is studied. 
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Résumé du chapitre 

Le calibrage bayésien a suscité l'intérêt de nombreux chercheurs dans le domaine de 

l’énergétique des bâtiments. Il permet de connaître l'incertitude dans la prédiction d’un modèle 

à partir des distributions a posteriori qu'il fournit sur les paramètres d’entrée. Cela permet 

d'estimer le niveau de confiance dans les prédictions du modèle utilisé. Il s'agit d'une 

méthodologie appropriée dans le cadre de la rénovation des bâtiments et des contrats de 

performance énergétique. 

Cinq méthodes de calibrage bayésienne (ABC-PMC, APMC, ABC-RF, CATMIP, 

Adams) sont sélectionnées dans la littérature, en fonction de leur popularité et de leur capacité 

à être parallélisées. Une analyse comparative entre ces algorithmes est effectuée en termes de 

précision et d'efficacité de calcul. La même étude de cas utilisée dans le chapitre précédent est 

conservée. En conséquence, les résultats de l'analyse de sensibilité sont pris en compte pour 

sélectionner les paramètres de calibrage. Les données virtuelles sont utilisées pour effectuer le 

calibrage. Cela permet d'analyser les performances des méthodes dans des conditions contrôlées 

sans l'effet d'erreurs et d'incertitudes de mesure et de modèle supplémentaires, et également 

d'évaluer les performances des méthodes dans l'identification des vraies valeurs des paramètres 

(qui sont connues car elles constituent les entrées de la simulation ayant produit les mesures 

virtuelles). 

Les critères utilisés pour mener cette comparaison sont la distance euclidienne pondérée 

entre les distributions a posteriori des paramètres et leurs vraies valeurs, et la RMSE moyenne 

de la propagation a posteriori. Ces critères sont appliqués sur les postérieurs obtenus par chaque 

méthode. De plus, ils sont également appliqués sur les distributions de paramètres obtenues 

dans les itérations intermédiaires. Cela permet d'analyser le comportement des méthodes avec 

un nombre croissant d'évaluations de modèles. 

Les résultats ont montré que APMC et Adams surpassent les trois autres algorithmes. La 

raison de cette performance différente est liée à l'échantillonneur adapté et non à la dépendance 

à la fonction de vraisemblance. ABC-RF a montré une meilleure performance avec un nombre 

inférieur d'évaluations de modèles mais la pire performance avec un nombre croissant de 

simulations. Mais dans cette évaluation, le nombre d’arbres et la taille des feuilles n’ont pas été 

augmentés en fonction du nombre de simulations : les valeurs par défaut du module fourni dans 
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l’environnement R ont été considérées. Par conséquent, une enquête plus approfondie sur ABC-

RF serait utile compte tenu de ses bonnes performances relatives avec moins de simulations.  
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3.1 Introduction 

Bayesian calibration applied to building energy models have gained the interest of many 

researchers in the field. It naturally accounts for the uncertainty in the model prediction through 

the posterior distributions that it provides. This allows estimating the level of confidence in the 

predictions of the BEM used. It is an appropriate methodology to apply in the context of 

building renovation and energy performance contracting. 

Using Bayesian calibration, the parameters are modelled with a distribution that explains 

the belief about their values called prior distributions. These parameters are then estimated by 

updating these distributions. Accordingly, the estimated parameters take the form of 

distributions called posteriors. As described earlier, an analytical form of the posterior is often 

impossible to attain. Due to this, the posterior could be estimated by drawing samples from it. 

Then if these samples are found to be normally distributed for example, their mean and standard 

deviation can be taken to identify a Gaussian posterior law. Different types of samplers exist 

and have been applied in the Bayesian context. The choice of the sampler has a considerable 

effect on the accuracy and computational efficiency of calibration. 

Different calibration methods are selected from literature, according to their popularity 

and their ability to be parallelised. A comparative analysis between those algorithms is done in 

terms of accuracy and computational efficiency. To perform this analysis, the same case study 

on which the sensitivity analysis is performed is retained and the results of the sensitivity 

analysis are taken as the basis for the calibration. The comparison in this chapter is executed on 

virtual data. This allows to analyse the performance of the methods in controlled conditions 

without the effect of additional measurement and model errors and uncertainties. 

Firstly, the methods retained and implemented in this chapter are illustrated with sufficient 

details in section 3.2. Then the methodology and comparison criteria on which the conclusions 

are drawn is presented in section 3.3. Then the results are presented and discussed in section 

3.4. 

3.2 Methods 

Bayesian calibration is divided into two families: likelihood-dependent and likelihood-

free approaches also called approximate Bayesian computation (ABC). Recently, many 
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researchers have been focusing on improving the ABC methods. Various updated more robust 

versions has been published some of which are very robust in terms of hyper parameters. Still 

in the context of building energy efficiency, there is no sufficient applications of these methods 

and both families of Bayesian calibration are not compared. 

In this chapter, five algorithms from both families with different sampling techniques are 

selected, according to their popularity and their ability to be parallelised. A comparative 

analysis between those algorithms is done in terms of accuracy and computational efficiency. 

3.2.1 Likelihood dependant approaches 

Recently, with the increase of the application of methods that require sampling from an 

unknown distribution, many studies have focused on developing better sampling techniques. 

This section walks through the different types of samplers existing with detailed description of 

those that are used in the thesis. 

One class on which many subsequent samplers are based is the Marchov chain Monte 

Carlo (MCMC). One of the well known implementations of this sampler is the Metropolis-

Hastings technique. This approach describes a sequence of possible events in which the 

probability of each event depends only on the state attained after the previous event. The 

sequence of events here means the sequence of samples generated. To understand the concept 

of this sampler, it is important to define two main aspects. The first is the proposal distribution, 

also called transitional kernel 𝐾(. ). The objective of this distribution is to generate new 

proposal at each step given the sample at the current step. The proposal here means a new value 

for the parameter to be calibrated. The second is the Metropolis-Hastings acceptance-rejection 

ratio 𝛼 which is used to decide whether to accept or reject the proposed parameter value as a 

sample from the posterior: 

 𝛼 =
𝑝(𝜃∗|𝑍) 𝐾(𝜃(𝑖−1)|𝜃∗)

𝑝(𝜃(𝑖−1)|𝑍) 𝐾(𝜃∗|𝜃(𝑖−1))
 (3.1) 

𝜃𝑖−1 is the sample at the previous step and 𝜃∗ is the sample to be accepted or rejected. If a 

symmetric kernel is chosen, then the ratio 𝐾(𝜃(𝑖−1)|𝜃∗)/𝐾(𝜃∗|𝜃(𝑖−1)) will cancel to 1. 

Normally, a Gaussian distribution is used as a transitional kernel having a mean 𝜃(𝑖−1) and a 
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variance. The variance is one of the hyper-parameters of the sampler based on which the global 

performance of the MCMC can change.  

As shown in algorithm-1, to launch the sampler, the first sample 𝜃(𝑖−1) is drawn from the 

prior distribution and its probability being a sample from the posterior is estimated from 

equation (1.5) from chapter 1. This sample serves as the starting point of the Marchov chain. 

The transitional kernel in then used to draw another sample (𝜃∗|𝜃(𝑖−1)). The generated sample 

is called proposal. Equation (3.1) is then computed and a random number 𝑢 is generated from 

a uniform distribution over the interval [0,1]. If 𝛼 is greater than the random value, then the 

proposed sample is accepted and the chain continues, otherwise the chain stays at the current 

sample and generates a new proposal 𝜃∗ through the transitional kernel. In other words, the 

proposal that is more probable than the current sample will always be accepted. However, if the 

proposal is less probable than the current sample, sometimes the proposal will be accepted and 

sometimes it will be rejected; the larger the relative drop in probability, the more likely the 

proposal will be rejected. This methodology will then keep the sampler most of the time around 

the high density regions of the posterior.  

In the computation of 𝛼, the normalising constants present in equation (1.4) in chapter 1 

cancel out which avoids the trouble of computing it. The Markov chain allows the sampling 

from the prior PDF only the first iteration and then all the other samples are drawn from the 

kernel that depend on the previously accepted sample which makes them closer to the posterior 

than to the prior PDF. Understanding the concept behind algorithm 3.1 is necessary to 

understand the following more developed algorithms. 
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Algorithm 3.1 

1. Initialise by proposing a sample 𝜃0 from the prior 𝑝(𝜃) and compute 𝑝(𝜃|𝑍) 

2. Identify the length of the random walk 𝑁 

3. for 𝑖 = 1,… , 𝑁: 

a. Generate a new proposal 𝜃′ from 𝐾(𝜃∗|𝜃(𝑖−1)) 

b. Compute 𝛼 =
𝑝(𝜃∗

|𝑍) 𝐾(𝜃(𝑖−1)
|𝜃∗

)

𝑝(𝜃(𝑖−1)
|𝑍) 𝐾(𝜃∗

|𝜃(𝑖−1)
)
 

c. Generate a random number 𝑢 from a uniform distribution 𝑈(0,1) 

d. if 𝛼 ≥ 𝑢: 

i. Set 𝜃𝑖 = 𝜃′ 

e. else: 

i. Set 𝜃𝑖 = 𝜃𝑖−1 

An efficient MCMC sampler NUTS proposed by Hoffman and Gelman (2011) is recently 

used for building energy models. NUTS can converge with a relatively small number of samples 

compared to Metropolis-Hastings. However, the number of samples generated is not the total 

number of likelihood computations. In order to attain the posterior samples, NUTS requires 

numerous computations of the likelihood gradients, which is computationally inefficient given 

that it is un-parallelisable and that in this chapter, no metamodel is used to replace the original 

one. For this reason, sequential Monte Carlo samplers (SMC) are preferred since they benefit 

from their capability of being easily parallelised. 

MCMC can be extended to be applied sequentially. Ching and Chen (2007) proposed the 

transitional MCMC (TMCMC) sampler. The general concept is that instead of directly sampling 

from the posterior, intermediate distributions could firstly be sampled before the posterior is 

reached. This is called the sequential Monte Carlo (SMC) or particle filter. Instead of starting 

with one draw from the prior and constructing one chain, N samples (also called particles) 

corresponding to N chains are drawn and assigned weights; each sample is moved in the 

parameter space to explore it using an appropriate transition kernel and then accepted or rejected 

following the Metropolis Hastings ratio. However, instead of directly being accepted or rejected 

as a sample from the posterior, at each iteration, the samples are validated as to follow different 

distributions. At each iteration the distribution to which the samples belong will be closer to the 

posterior and further from the prior. Those distributions are controlled with an annealing 
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parameter 𝛽 that indicates how far or close each distribution is to the previous. These 

distributions  are determined as follows: 

 𝑓𝑡(𝜃|𝑍) ∝ 𝑝(𝜃)𝑝(𝑍|𝜃)𝛽𝑡 𝛽𝑡 = 0,… ,1 (3.2) 

where t is the iteration indicator. If 𝛽𝑡 = 0, then the samples generated estimates the prior 

distribution, and if 𝛽𝑡 = 1, then the samples are generated from the target posterior distribution. 

The sequence of 𝛽𝑡 that defines the intermediate distributions has a huge effect on the 

performance of the sampler. On the one hand, if there exists a great difference between two 

subsequent distributions, then the sampler might collapse due to degeneracy problem; all the 

particles collapse to one duplicated particle. On the other hand, if the subsequent distributions 

are very close to one another, then too many intermediate distributions are defined before 

reaching the target distribution which makes it computationally inefficient.  

For this purpose, Ching and Chen (2007) proposed to define the value of 𝛽 adaptively at 

each step such that the coefficient of variation (cov) of the particles weights is unity.  

 𝑐𝑜𝑣 {𝑤(𝜃𝑡,𝑖) ∶ 𝑖 = 1, … , 𝑁} = 1 (3.3) 

The weights 𝑤(𝜃𝑡,𝑖) are computed by taking the ratio of the probability of each particles 

at the next distribution 𝛽𝑚+1 to their probability at the current iteration 𝛽𝑚.  

 𝑤(𝜃𝑡,𝑖) =
𝑝(𝜃𝑡,𝑖) 𝑝(𝑍|𝜃𝑡,𝑖)

𝛽𝑡+1

𝑝(𝜃𝑡,𝑖) 𝑝(𝑍|𝜃𝑡,𝑖)
𝛽𝑡

= 𝑝(𝑍|𝜃𝑡,𝑖)
𝛽𝑡+1−𝛽𝑡

 (3.4) 

The sampler proceeds from a current iteration 𝑡 to a subsequent iteration 𝑡 + 1 through 

resampling. Resampling here means to choose particles from iteration 𝑡 and move them to 

iteration 𝑡 + 1. This selection is based on the weights 𝑤(𝜃𝑡,𝑖) assigned to each particle in 

iteration 𝑡. Resampling removes particles with small weights and duplicates particles that have 

high probability of occurrence. After resampling, the particles are mutated following the 

MCMC approach, however, the proposed samples are generated from a multivariate Gaussian 

distribution 𝐾(�̅�, Σ) 

 

𝑝2. Σ𝑡 = 𝑝2 ∑
𝑤(𝜃𝑡,𝑖)

∑ 𝑤(𝜃𝑡,𝑖)
𝑁
𝑖=1

𝑁

𝑖=1

(𝜃𝑡,𝑖 − �̅�𝑡)(𝜃𝑡,𝑖 − �̅�𝑡)
𝑇

 (3.5) 
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where �̅�𝑡 is the weighted mean of the sample at iteration 𝑡. It is a vector comprising the means of 

all the parameters included in the covariance matrix: 

 

�̅�𝑡 =
∑ 𝑤(𝜃𝑡,𝑖) 𝜃𝑡,𝑖

𝑁
𝑖=1

∑ 𝑤(𝜃𝑡,𝑖)
𝑁
𝑖=1

 (3.6) 

The covariance is scaled by the term 𝑝2. The objective is to scale the covariance so that 

the rejection rate is not too high and at the same time it is convenient well explore the parameter 

space. Ching and Chen (2007) proposed a value of 0.2 for 𝑝. The proposed particle is accepted 

or rejected based on the acceptance ratio of Metropolis-Hastings as explained previously. 

3.2.1.1 CATMIP 

In order to better estimate the posterior, several authors updated this general 

implementation. Minson et al. (2013) proposed in his algorithm CATMIP to run multiple 

Markov jumps 𝑁𝑠𝑡𝑒𝑝𝑠 for each chain at each iteration before preceding to the subsequent 

iteration instead of only doing one jump as in TMCMC. Each chain should be long enough to 

ensure exploration of the whole parameter space and to ensure that the samples drawn from the 

priors at the beginning of each chain do not have influence on the posteriors estimated. In 

TMCMC, proceeding from one iteration to another with only one MCMC jump makes the 

sampler prone to be trapped in local minimums, which is avoided in CATMIP. Still, if 𝑁𝑠𝑡𝑒𝑝𝑠 

is not sufficient for parameter exploration, CATMIP will also suffer from the same problem. 

Thus 𝑁𝑠𝑡𝑒𝑝𝑠 is an essential hyper-parameter of this sampler. 

For the same purpose, the scaling factor 𝑝 is also automatically determined at each 

iteration to scale the covariance Σ𝑡 as follows: 

 𝑝 = 𝑤𝑎 + 𝑅 ∙ 𝑤𝑏 (3.7) 

R is the acceptance rate of the sampler, 𝑤𝑎 is the acceptance weight, and 𝑤𝑏 is the rejection 

weight. The idea is if the acceptance rate is high, the covariance is scaled up to explore more 

the parameter space, otherwise, 𝑝 scales down the covariance. 𝑤𝑎 and 𝑤𝑏 are two constants and 

are set by Minson et al. (2013) to be 1/9 and 1/8 respectively. 

Another way to adaptively select 𝛽 is by ensuring that the effective sample size (ESS) (Eq-

3.8) is not less than a predefined threshold which is often chosen to be 𝑁/2 with 𝑁 being the 

total number of samples. ESS measures how informative the sample set is and how independent 
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or correlated the samples in a chain are. The higher the ESS the more informative and 

independent the samples are. EES is computed as follows: 

 

𝐸𝑆𝑆 =
1

∑ 𝑤(𝜃𝑡,𝑖)
2𝑁

𝑖=1

 (3.8) 

The details of CATMIP sampler are illustrated in algorithm 3.2. 

Algorithm 3.2 

1. Sample N particles 𝜃𝑡 = {𝜃1, … , 𝜃𝑁} for 𝑡 = 0 from the prior distributions 𝑝(𝜃). 

2. while 𝛽𝑡 ≤ 1:  

a. Increment the distribution subscript 𝑡 = 𝑡 + 1 

b. Estimate 𝛽𝑡 such that 𝑐𝑜𝑣 {𝑤(𝜃𝑡,𝑖) } = 1 or 𝐸𝑆𝑆 =
1

∑ 𝑤(𝜃𝑡,𝑖)
2𝑁

𝑖=1

≥ 𝑁 2⁄  

c. Compute Σ𝑡 and 𝑝𝑡 

d. Resample 𝑁 particles 𝜃𝑡
0 from 𝜃𝑡−1 with probabilities 𝑤(𝜃𝑡−1,𝑖) 

e. for i = 1, …, 𝑁𝑠𝑡𝑒𝑝𝑠: 

i. Generate a proposal 𝜃𝑡
𝑖 for each chain from 𝐾(𝜃𝑡

𝑖|𝜃𝑡
𝑖−1 ,Σ𝑡

0) 

ii. Set 𝜃𝑡
𝑖−1 = 𝜃𝑡

𝑖 with probability 𝑚𝑖𝑛 {1,
𝑓(𝜃𝑡

𝑖 |𝑍) 𝐾(𝜃𝑡
𝑖−1|𝜃𝑡

𝑖 ,Σ𝑡
0)

𝑓(𝜃𝑡
𝑖−1|𝑍) 𝐾(𝜃𝑡

𝑖 |𝜃𝑡
𝑖−1,Σ𝑡

0)
} else retain 

𝜃𝑡
𝑖−1 unchanged 

3.2.1.2 SMC variant 

Another variant of the SMC family is the algorithm used in Adams et al. (2020). The 

concept is very similar to CATMIP; however, instead of specifying a number for Markov jumps 

𝑁𝑠𝑡𝑒𝑝𝑠 at each iteration, the sampler keeps on making new jumps until a certain predefined 

percentage of the samples change their position: 95 % is considered in their paper. In other 

words, the hyper-parameter 𝑁𝑠𝑡𝑒𝑝𝑠 in CATMIP is replaced by this percentage. The scaling factor 

of the kernel covariance is also determined differently. The idea is that at each new Markov 

jump within a given iteration, the covariance is divided by the square of the jump iterator as 

follows: 

 

𝐾 (�̅�,
Σ

𝑟2
) (3.9) 
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where r is the number of MCMC jumps executed in a current iteration. This increases the chance 

of moving the particles with each new Markov jump. Unlike CATMIP, this approach does not 

resample at every iteration, however it resamples only when found necessary. That is, the 

samples are reweighted following equation (3.10), and then normalised. Using these weights, 

the ESS is computed; if the samples at the previous iteration are found sufficiently independent 

(ESS largerthan 𝑁 2⁄ ), then the samples are moved to the subsequent iteration without being 

resampled and the weights are updated as follows: 

 𝑤(𝜃𝑡,𝑖) = 𝑤(𝜃𝑡−1,𝑖) × 𝑤(𝜃𝑡,𝑖) (3.10) 

If the samples are found to be correlated, then the particles are resampled with weights 

and moved to the subsequent iterations and then their weights are reset to one. 

The intermediate distributions are specified by selecting 𝛽 such that: 

 𝐸𝑆𝑆𝑡 = (1 − ∆)𝐸𝑆𝑆𝑡−1 (3.11) 

where ∆ is a number that indicates how close the distributions are to each other. The smaller ∆ 

is the more intermediate distributions are generated and vice versa. Adams et al. (2020) 

proposed to set: ∆ = 0.02. The details of the sampler are illustrated in algorithm 3.3. 
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Algorithm 3.3 

1. Sample N particles 𝜃𝑡 = {𝜃1, … , 𝜃𝑁} for 𝑡 = 0 from the prior distributions 𝑝(𝜃). 

2. Set equal weights 𝑤(𝜃𝑡,𝑖) = 1 𝑁⁄   

3. while 𝛽𝑡 ≤ 1:  

a. Increment the distribution subscript 𝑡 = 𝑡 + 1 and 𝑟 = 1 

b. Estimate 𝛽𝑡 such that 𝑐𝑜𝑣 {𝑤(𝜃𝑡,𝑖) } = 1 or 𝐸𝑆𝑆 =
1

∑ 𝑤(𝜃𝑡,𝑖)
2𝑁

𝑖=1

≥ 𝑁 2⁄  

c. Reweight all samples 𝑤(𝜃𝑡,𝑖) = 𝑤(𝜃𝑡−1,𝑖) × 𝑤(𝜃𝑡,𝑖) then normalise them 

d. if 𝐸𝑆𝑆 < 𝑁 2⁄ : 

i. Resample 𝜃𝑡,𝑖 from {𝜃𝑡−1,𝑖, 𝑤(𝜃𝑡−1,𝑖)} and set 𝑤(𝜃𝑡,𝑖) = 1 𝑁⁄  

ii. End 

e. Set number of samples that changed location (𝑁𝑐) to zero 

f. while 100 ∙ 𝑁𝑐 𝑁⁄ < 0.95 ∙ 𝑁 : 

i. Generate a proposal 𝜃𝑡
∗ for each chain from 𝐾(𝜃𝑡

∗|𝜃𝑡 ,
Σ𝑡

𝑟2) 

ii. Set 𝜃𝑡 = 𝜃𝑡
∗ with probability  𝑚𝑖𝑛 {1,

𝑓(𝜃𝑡
∗|𝑍) 𝐾(𝜃𝑡|𝜃𝑡

∗,
Σ𝑡
𝑟2

)

𝑓(𝜃𝑡|𝑍) 𝐾(𝜃𝑡
∗|𝜃𝑡,

Σ𝑡
𝑟2

)
} else retain 𝜃𝑡 

unchanged and denote the number of accepted particles 𝑁𝑎𝑐𝑐 

iii. Set 𝑁𝑐 = 𝑁𝑐 + 𝑁𝑎𝑐𝑐 

iv. Increment the MCMC jump iterator 𝑟 = 𝑟 + 1 

3.2.2 Approximate Bayesian computation (ABC) 

Approximate Bayesian computation was firstly used in biological sciences by Pritchard et 

al. (1999). The approach used was lately named rejection ABC. The idea is to approximate the 

likelihood with a discrepancy function 𝜌(. ) to compute the distance between measurements and 

model outputs. The framework is illustrated in algorithm 3.4. 

Algorithm 3.4 

1. Repeat the following until N samples are accepted 

i. Draw 𝜃𝑖~𝜋(𝜃) 

ii. Simulate 𝑦𝑖~𝑝(𝑍|𝜃𝑖) 

iii. Reject 𝜃𝑖 if 𝜌(𝑆(𝑦𝑖), 𝑆(𝑧)) > 𝛿 
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The introduced tolerance 𝛿 is a measure of the accuracy of the algorithm. If the drawn 

samples yield a difference less than this tolerance, then the sample is considered a sample from 

the posterior.  

The accepted parameter values cannot be considered as samples from the true posterior 

𝑝(𝜃|𝑍); however, they are samples from another distribution that is an approximate of the 

posterior 𝑝(𝜃|𝑆(𝑌) − 𝑆(𝑍) ≤ 𝛿). The tolerance value determines how close or far this 

approximation is. A zero tolerance, 𝛿 =  0, means that the algorithm is exact and gives draws 

from the posterior distribution 𝑝(𝜃|𝑍) (Beaumont 2010). If 𝛿 is very large, the algorithm is 

inaccurate and all the samples drawn from the prior distribution are accepted so that the 

posterior PDF is the same as the prior and calibration is useless. A small value of 𝛿 leads to a 

better approximation of the posterior, but it decreases the acceptance rate and thus more 

computation has to be performed to reach a given sample size of parameter values. A large 

tolerance value leads to a fast computation but inaccurate results. Consequently, the tolerance 

𝛿 can be considered as a trade-off between computability and accuracy (Wilkinson 2013). 

As stated in the first chapter, there exists different post processing techniques to overcome 

the considered tolerance. In practice, a higher tolerance value is used for computational 

efficiency purposes and then, it is accounted for in these post-processing techniques. For more 

information on this topic, the reader is referred to appendix C. 

Marjoram et al. (2003) proposed to use MCMC described earlier within ABC. The 

algorithm is called ABC-MCMC. In this case, the Metropolis acceptance rejection probability 

is only applied when the discrepancy between the model output and the observed data is smaller 

than the identified tolerance. The advantage is that instead of generating all the samples from 

the prior, a random MCMC walk is performed to detect high probability regions.  

ABC-MCMC suffers from the problem of being trapped in low probability regions (Sisson 

et al. 2007). Normally the sampler will pass onto the tails of the posterior distribution. Thus let 

us consider the case where a certain parameter value in this tail region is accepted: then the 

kernel transition function will be centred on this parameter value. Accordingly, the sampler will 

be obliged to keep moving through the boundaries of this kernel until it finds another accepted 

value and this will need numerous iterations as it is very unlikely to accept a parameter value 

in this region. This will cause a high computation inefficiency especially if the starting sample 
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is chosen far into the tails of the posterior distribution: in MCMC, a random sample is selected 

to serve as a start for the MCMC chain.  

3.2.2.1 ABC-PMC 

Sisson et al. (2007) applied the sequential Monte Carlo or “particle filter” concept in the 

approximate Bayesian computation context to overcome the problem of convergence associated 

with the previous algorithms and they called it ABC-PRC. Beaumont et al. (2009) introduced 

another SMC approach named ABC-PMC (population Monte-Carlo). It is based on the PRC 

approach but with corrected weighting ratios that avoid the bias presented in the PRC method. 

They showed that the weighting mechanism adapted in PRC is biased and the proposed a 

correction for it.  

The intuition behind ABC-PMC is that instead of drawing one parameter value 𝜃𝑖 at a 

time, a whole set of 𝑁 parameter values called particles are drawn from the prior population 

and assigned weights. Then, each particle is moved in the parameter space to explore it using 

an appropriate transition kernel and is updated once it is moved to a space that yields an 

acceptable difference between the measured data and the simulation output based on a chosen 

tolerance. This can be done T times, where at each iteration, the particles are resampled in a 

way that the ones that have been assigned higher weights from the previous iteration are kept; 

and those that are less likely to represent the posterior population are discarded. Thus, in each 

iteration, particles are resampled from the previous iteration instead of drawing new parameter 

values from the prior, as it is the case in the basic rejection algorithm.  

A second feature of the particle filtering approach is that at each iteration, the tolerance is 

decreased. In other words, each iteration t yields distributions of the input parameters based on 

the chosen tolerance 𝑃(𝜃/𝑆(𝑍) − 𝑆(𝑌) ≤ 𝛿𝑡), then for the next iteration, this posterior 

population is updated based on a lower tolerance to better approximate the final posterior 

population and so on until a certain low tolerance is considered, which closely approximates 

the true posterior population. This is similar to the SMC applied to the likelihood-dependent 

algorithm. However, instead of updating 𝛽, the tolerance 𝛿 is updated and identifies the 

distribution at each iteration. This enhances the computational efficiency of the approach 

compared to the previous ABC methods.  
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In a first step, 𝑁 parameter values are sampled according to the prior PDF based on the 

basic rejection ABC algorithm but with a high tolerance value to achieve a high acceptance rate. 

In this step, equal weights are assigned to all the accepted parameter values. Eventually, in the 

second iteration, all those chosen particles will be resampled as they are all equally weighted. 

They are then perturbed based on a certain transitional kernel 𝐾(𝜃𝑖
∗|𝜃𝑖

𝑡−1). The sampler keeps 

on perturbing the particle 𝜃𝑖
𝑡−1 until 𝜃𝑖

∗ is accepted. Then, a weight is given to this particle. This 

is done to all the particles resampled from the previous iteration’s distribution and thus, a new 

weighted distribution is obtained. The weighting ratio used in this algorithm is shown in the 

following equation: 

 𝑤𝑖
(𝑡) = 𝜋(𝜃𝑖

(𝑡))/∑ 𝑤𝑗
(𝑡−1)

𝐾 (𝜃𝑖
(𝑡)|𝜃𝑗

(𝑡−1)
; 𝜎𝑡

2)
𝑁

𝑗=1
 (3.12) 

Beaumont et al. (2009) also proposed to evaluate the kernel transition at each iteration 

based on the previous iteration as follows: 

 𝐾(𝜃∗, 𝜎𝑡
2) (3.13) 

where 𝜃∗ is the particle sampled from the previous iteration to be perturbed by the kernel, and 

𝜎𝑡
2 is the variance of the kernel which is proposed by Beaumont et al. (2009) to be twice the 

variance of the particle of the previous iteration derived this by minimising the Kullback-Leibler 

divergence between the target and proposal distributions: 

 𝜎𝑡
2 = 2𝜎𝑡−1

2  (3.14) 

The kernel function used by Beaumont et al. (2009) is a Gaussian kernel: 

 𝐾(𝑥) =
1

𝜎𝑡√2𝜋
𝑒−

1
2𝑥2

 (3.15) 

 

where 𝑥 =
𝜃𝑘

𝑡 − 𝜃𝑘
𝑡−1

𝜎𝑡
 (3.16) 

Toni et al. (2009) formulated an equivalent approach to that of Beaumont et al. (2009) but 

with a different kernel (also called perturbation kernel), which is also automatically adapted 
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after each iteration. They proposed the use of a normal or uniform distribution with mean 𝜃∗ 

and variance 𝜎𝑡
2 that depends on the length of a parameter range achieved in population (𝑡 − 1) 

In the case of a uniform kernel: 𝐾𝑡(𝜃|𝜃∗) = 𝜃∗ + 𝑈(−𝜎𝑡 , 𝜎𝑡) (3.17) 

 

In the case of a normal Kernel:  𝐾𝑡(𝜃|𝜃∗) = 𝑁(𝜃∗, 𝜎𝑡
2) (3.18) 

 

where  𝜎𝑡 = 𝐷(𝑚𝑎𝑥{𝜃}𝑡−1 − 𝑚𝑖𝑛{𝜃}𝑡−1), 𝐷𝜖ℝ (3.19) 

D is a value that can be changed according to the problem at hand (e.g. 0.5, 1.0, 2.0); the larger 

D, the larger the variance becomes by which more particles fall outside the acceptance region, 

and this causes a computation inefficiency. 

The choice of the perturbation Kernel plays a big role in the computational efficiency of 

this approach. A local perturbation kernel or a perturbation kernel with a small variance has a 

high acceptance rate as the candidate (proposed) particle will be close to the previous one. On 

the other hand, a widely spread out perturbation kernels with big variances explore the 

parameter space but with a low acceptance rate as the candidate particle will have a high 

probability of falling outside the acceptance region of the posterior distribution. Thus, the 

choice of the perturbation kernel and its parameters (e.g. variance, covariance…) is decided as 

a trade-off between space exploration and the computational efficiency (Filippi et al. 2013). 

Parameter space exploration is very important to ensure that the samples are drawn from all the 

range of the posterior in order to well approximate it. If the kernel does not explore sufficiently 

the parameter space, the samples will only be drawn from a certain region of the posterior and 

this will lead to a biased estimation of the posterior: the samples approximate a part of the 

posterior and not all the posterior. 

Both kernels used in Beaumont et al. (2009) and Toni et al. (2009) are component-wise 

perturbation kernels: the particles of each parameter are perturbed independently following an 

independent kernel specific to each parameter. If the parameter vectors are correlated or have 

significant interactions, it might get inefficient to perturb the particles based on these kernels, 

since they do not account for probable correlations and interactions between different 

parameters. Under these conditions, a multivariate normal perturbation kernels may be more 
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efficient computationally (Filippi et al. 2013). The multivariate normal function is given as 

follows: 

 𝐾(𝑥) =
1

|𝛴|(2𝜋)
𝑛
2

𝑒−
1
2
𝑥
 (3.20) 

 

where 𝑥 = (𝜃𝑘
𝑡 − 𝜃𝑘

𝑡−1)𝑇𝛴−1(𝜃𝑘
𝑡 − 𝜃𝑘

𝑡−1) (3.21) 

As with the previous kernels, the covariance of this kernel at iteration 𝑡 is based on the 

previous population parameter covariance. Previously, the kernel is estimated for each 

parameter separately based on its particles variance in t-1 ; however, a multivariate kernel is 

estimated based on the covariance of all the parameter vector in t-1. Following the same 

derivation of Beaumont et al. (2009), Filippi et al. (2013) showed how an optimal covariance 

for the multivariate kernel can be found to be  𝛴𝑡 = 2𝐶𝑂𝑉 ({𝜃𝑖,𝑡−1}
1≤𝑖≤𝑁

). Consequently in 

this method, a multivariate kernel, with this optimal covariance is used. Some other kernels are 

presented in appendix D. 

The approach of Beaumont et al. (2009) combines the benefits of the basic rejection and 

MCMC algorithms where as in the MCMC, the parameter values are drawn from a distribution 

closer to the posterior instead of being drawn from the prior. As in the rejection algorithm, this 

approach has no risk to get stuck in a region of low probability. The problem in this approach 

is in choosing the sequence of tolerance values for each iteration (𝛿1, 𝛿2 …𝛿𝑡), and in deciding 

when to stop the iterations. The sequence of decreasing tolerances can influence the accuracy 

of the obtained results and the computational efficiency. Moreover, if the tolerance value at the 

last iteration 𝛿𝑡 is too large, the posterior will not be well estimated, and a very small value 

could be infeasible. 

One solution to this problem is to determine the tolerance of each iteration 𝛿𝑡 based on the 

samples retained in the previous one. The idea is to complete the first iteration with a predefined 

tolerance and then for the subsequent iterations, the tolerance 𝛿𝑡+1 is chosen by taking the 𝛼-

quantile of the distances of the previous iteration: 𝛿𝑡+1 is the maximum distance below the 𝛼-

quantile recorded in 𝜌1≤𝑖≤𝑁
𝑡−1 . This is called the quantile approach for deterning the tolerances. 

The steps of this algorithm are illustrated in algorithm 3.5. 
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Algorithm 3.5 

1. Initialise by setting: a final tolerance 𝛿𝑇 

2. for 𝑖 = 1…𝑁: 

a. Sample 𝜃𝑖   from 𝜋(𝜃) and simulate 𝑥~𝑓(𝑥|𝜃𝑖) 

b. Compute and save the distance 𝜌𝑖 = 𝜌(𝑆(𝑥), 𝑆(𝑦)) 

c. Set the weights 𝑤𝑖 = 1 and 𝑡 = 2 

3. for 𝑡 = 2…𝑇: 

a. Let 𝛿𝑡 be the first α quantile of 𝜌𝑖
𝑡−1 = {𝜌𝑖

𝑡−1}
1≤𝑖≤𝑁

 

b. Compute the variance 𝜎𝑡−1
2  of  {𝜃𝑖

(𝑡−1)
, 𝑤𝑖

(𝑡−1)
} and set 𝜎𝑡

2 = 2𝜎𝑡−1
2  

c. for 𝑖 = 1…𝑁: 

i. Sample 𝜃∗ from {𝜃(𝑡−1)} with weights {𝑤(𝑡−1)} 

ii. Generate  𝜃′|𝜃𝑖
∗~𝐾(𝜃𝑖

∗, 𝜎(𝑡−1)
2 ) and simulate 𝑥~𝑓(𝑥|𝜃′) 

iii. if 𝜌(𝑆(𝑥), 𝑆(𝑦)) ≤ 𝛿𝑡: 

o Set 𝜃𝑖 = 𝜃′ and increment 𝑖 = 𝑖 + 1 

d. Set the weights 𝑤(𝑖,𝑡) and normalise them and increment 𝑡 = 𝑡 + 1  

3.2.2.2 APMC 

There are different methods to implement the quantile approach. All such algorithms 

follow the same principle of determining 𝛿𝑡+1 as the maximum distance below the 𝛼-quantile 

recorded in 𝜌1≤𝑖≤𝑁
𝑡−1 ; however with some differences in their implementation. Lenormand et al. 

(2013) implemented a different method to apply the quantile approach. They modified the 

framework in ABC-PMC algorithm and they called their algorithm adaptive population Monte-

Carlo ABC (APMC). They used the same perturbation kernel proposed by Beaumont et al. 

(2009) with 𝜎𝑡
2 taken as twice the variance of the previous iteration samples. The weight 

expression for the particles at iteration 𝑡 differs from that of the ABC-PMC algorithm by the 

addition of ∑ 𝑤𝑘
𝑡−1𝑁𝛼

𝑘=1  in the denominator as shown in the following expression: 

 
𝑤𝑖

𝑡 =
𝑃(𝜃𝑖

𝑡)

∑ (
𝑤𝑗

𝑡−1

∑ 𝑤𝑘
𝑡−1𝑁𝛼

𝑘=1

)𝐾(𝜃𝑖
𝑡/𝜃𝑗

𝑡−1; 𝜎𝑡
2)

𝑁𝛼
𝑗=1

 
(3.22) 

This formula is used to weight the new particles 𝜃𝑁𝛼…𝑁 that are generated on top of 𝜃1… 𝑁𝛼
. 

The reason behind this variation is that in this algorithm, instead of generating the sample at a 
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new iteration from scratch, new particles are generated and concatenate with the particles of the 

previous sample set. Thus, the scaling of weights needs to be consistent across the different 

steps of the algorithm (Lenormand et al. 2013). 

At the first iteration, 𝑁 particles are drawn from the prior distribution and the model 

simulates the corresponding 𝑥~𝑓(𝑥|𝜃𝑖). The particles are weighted and the discrepancy 

distance 𝜌(∙) for each particle is saved as shown in algorithm 3.5. The tolerance 𝛿 is then taken 

to be the first alpha-quantile of these distances. The particles chosen for this iteration are those 

that yielded a tolerance lower than the calculated one, and their number is noted as 𝑁𝛼. 

In the next iterations, a candidate particle 𝜃∗ from the previous sample is chosen according 

to its weight 𝑤𝑖
𝑡 and then perturbed with a transitional kernel. The discrepancy of the newly 

generated particle is saved and a weight is assigned to the new based on equation (3.22). This 

is done to 𝑁 − 𝑁𝛼 particles. The new simulated particles after perturbation are concatenated 

with the ones from the previous iteration 𝑁𝛼 with their weights and distances to form 𝑁 

particles. The tolerance 𝛿 of this new iteration can now be determined based on 𝛼-quantile of 

the discrepancy distances of all the previous and the concatenated particles. The 𝑁 particles, 

ensemble of previous iteration 𝑁𝛼 and the ones attained after perturbation in this iteration 𝑁 −

𝑁𝛼, are filtered according to the newly indicated tolerance 𝛿. The chosen particles form the 

sample of this current iteration 𝑡 and their number is noted 𝑁𝛼 again. 

The difference is that in the regular ABC-PMC, each particle in the previous iteration is 

perturbed until it is moved to a value that yields a lower discrepancy than a predefined tolerance 

and a new sample is formed that only contains the new particles. However, in this algorithm, 

each particle is perturbed only once and then weighted to be subjected to filtering after the 

indication of the appropriate tolerance. 

Lenormand et al. (2013) also introduced a stopping criterion. At each iteration, the 

proportion of the accepted particles among the 𝑁 − 𝑁𝛼 new particles are calculated: 

 

𝑝𝑎𝑐𝑐(𝑡) =
1

𝑁 − 𝑁𝛼
∑ 𝕝

𝜌𝑘
(𝑡−1)

<𝛿𝑡−1

𝑁

𝑘=𝑁𝛼+1

 (3.23) 

The tolerance and the discrepancy are subscripted with 𝑡 − 1 to indicate that the particles 

are concatenated with the ones from the previous iteration. If this proportion is below a 
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predetermined threshold𝑝𝑎𝑐𝑐𝑚𝑖𝑛
, the algorithm terminates. This chosen criterion ensures that 

additional simulations would not have considerable changes on the posterior distribution. They 

proved that the algorithm will terminate even if 𝑝𝑎𝑐𝑐𝑚𝑖𝑛
= 0, this ensures that the algorithm 

converges. The details of this method are shown in algorithm 3.6. 

Algorithm 3.6 

1. Initialise the algorithm with 𝑁,𝑁𝛼 = 𝛼𝑁, 𝛼 ∈ ⌊0,1⌋, and 𝑝𝑎𝑐𝑐𝑚𝑖𝑛
. 

2. for 𝑖 = 1,… ,𝑁: 

a. Generate a sample from the prior 𝜃𝑖
(0)

~𝜋(𝜃)  

b. Save the distances 𝜌𝑖
(0)

= 𝜌(𝑆(𝑥), 𝑆(𝑦)) 

c. Set the weights 𝑤𝑖
(0)

= 1 

3. Let 𝛿1 be the first α quantile of 𝜌(0) = {𝜌𝑖
(0)

}
1≤𝑖≤𝑁

 

4. Let {𝜃𝑖
(1)

, 𝑤𝑖
(1)

, 𝜌𝑖
(1)

} = {(𝜃𝑡
(0)

, 𝑤𝑡
(0)

, 𝜌𝑡
(0)

) |𝜌𝑖
(0)

≤ 𝛿1, 1 ≤ 𝑖 ≤ 𝑁} 

5. Compute the variance 𝜎1
2 of  {𝜃𝑖

(1)
, 𝑤𝑖

(1)
} and set 𝜎1

2 = 2𝜎1
2 

6. Increment 𝑡 = 2 and 𝑝𝑎𝑐𝑐 = 1 

7. while 𝑝𝑎𝑐𝑐 > 𝑝𝑎𝑐𝑐𝑚𝑖𝑛
: 

a. for 𝑖 = 𝑁𝛼 , … , 𝑁:  

i. Sample 𝜃𝑖
∗ form 𝜃𝑗

(𝑡−1)
 with probability 

𝑤𝑗
(𝑡−1)

∑ 𝑤𝑘
(𝑡−1)𝑁𝛼

𝐾=1

, 1 ≤ 𝑗 ≤ 𝑁𝛼 

ii. Generate 𝜃𝑖
(𝑡−1)

|𝜃𝑖
∗~𝐾(𝜃𝑖

∗, 𝜎(𝑡−1)
2 ) and simulate 𝑥~𝑓 (𝑥|𝜃𝑖

(𝑡−1)
) 

iii. Set 𝜌𝑖
(𝑡−1)

= 𝜌(𝑆(𝑥), 𝑆(𝑦)) 

iv. Set the weights  𝑤𝑖
(𝑡−1)

=
𝜋(𝜃𝑖

∗)

∑ (𝑤𝑗
(𝑡−1)

∑ 𝑤𝑘
(𝑡−1)𝑁𝛼

𝑘=1⁄ )𝐾(𝜃𝑖
∗/𝜃𝑗

𝑡−1;𝜎(𝑡−1)
2 )

𝑁𝛼
𝐽=1

  

b. Compute 𝑝𝑎𝑐𝑐 from equation (3.23) 
 

c. Let 𝛿𝑡 be the first α quantile of 𝜌(𝑡−1) = {𝜌𝑖
(𝑡−1)

}
1≤𝑖≤𝑁

 

d. Let {(𝜃𝑖
(𝑡)

, 𝑤𝑖
(𝑡)

, 𝜌𝑖
(𝑡)

)} = {(𝜃𝑖
(𝑡−1)

, 𝑤𝑖
(𝑡−1)

, 𝜌𝑖
(𝑡−1)

) |𝜌𝑖
(𝑡−1)

≤ 𝛿𝑡 , 1 ≤ 𝑖 ≤ 𝑁} 

e. Compute the variance 𝜎𝑡
2 of {𝜃𝑖

(𝑡)
, 𝑤𝑖

(𝑡)
} and set 𝜎𝑡

2 = 2𝜎𝑡
2 

f. Increment 𝑡 = 𝑡 + 1 

3.2.3 Machine learning for calibration 

A new class of Bayesian inference that belongs to the approximate Bayesian computation 

is proposed by Raynal et al. (2017). It is based on using the machine learning framework in the 

context of ABC. They proposed to use the random forest RF for parameter inference. A brief 

introduction on random forests is firstly presented in this section and then its relation to 

Bayesian calibration is clarified. 



 

112 

 

3.2.3.1 Random forest concept 

Random forest is a supervised machine learning algorithm used for classification and 

regression. It is an ensemble learning algorithm where it combines the outputs or the 

classification decisions of individual classifiers called decision trees (Yan and Goebel 2004). 

Decision tree is a predictive model that relates the input (predictors 𝜃) of a certain process to 

its outputs (responses 𝑦) by following a series of splitting decision to the predictor space. It 

starts with the full predictor data set available which represents the tree base and splits it into 

two parts called nodes based on a splitting rule. The tree base is called a root node. Each node 

𝑚 is then split following the same methodology until no more than 𝑁𝑚𝑖𝑛 samples are 

categorised in the node. Another stopping criterion is when all the samples in a given node have 

the same response value or the same predictor value. The final nodes from which no further 

nodes are generated are called leaf nodes. For regression 𝑁𝑚𝑖𝑛 is often set to 5, and the average 

�̅�𝑚 of the samples 𝑛𝑚 responses in the leaf node represents the prediction value associated with 

this node.  

 �̅�𝑚 =
1

𝑛𝑚
∑𝑦𝑖

𝑛𝑚

𝑖

 (3.24) 

For continuous problem as it is the case for BEMs, the splitting rule is a comparison held 

on a parameter selected in the predictor space:  

 𝜃𝑗 ≤ 𝑣 or 𝜃𝑗 > 𝑣 (3.25) 

where 𝑗 is a subscript that indicates the parameter chosen for the splitting decision among the 

predictor space. The best parameter 𝑗 and the best value of 𝑣 for a split decision at a given node 

𝑚 are selected by minimising the following equation: 

 
𝑛𝑚𝑟

𝑛𝑚
𝐼(𝑚𝑟) +

𝑛𝑚𝑙

𝑛𝑚
𝐼(𝑚𝑙) (3.26) 

where 𝑛𝑚𝑟
 and 𝑛𝑚𝑙

 are the number of samples present in the right and left child nodes 

respectively. 𝐼(. ) is the criterion applied to each child node: the two nodes split from one node. 

For classification, there are different criteria that can be applied such as the Gini impurity or 

entropy. For regression, the 𝐿2 loss function (sum of squared errors) is often applied: 
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 𝐼(𝑚) =
1

𝑛𝑚
∑(𝑦𝑖 − �̅�𝑚)2

𝑛𝑚

𝑖=1

 (3.27) 

where �̅�𝑚 is the average of the responses of all the samples in the node. This weights the loss 

function of each child node based on the number of samples in each one relative to node 𝑚. 

The combination of (𝑗, 𝑏) that minimises equation (3.26) is selected.  

After the decision tree is trained on the available data set, the prediction of a new sample 

𝜃∗ is achieved by applying the splitting decisions of the trained tree on the sample until it 

reaches a leaf node. The prediction of the sample 𝑓(𝜃∗) is then the value associated with that 

leaf node. A general name that refers to both classification and regression is classification and 

regression tree (CART) after Breiman et al. (1983).  

Breiman (2001) based on previous developments in the field: (Amit and Geman 1997; 

Breiman 1996; Ho 1998; 1995) and some novel ideas introduced a method for building a 

random forest. Random forest is an ensemble classification algorithm that combines the 

predictions of 𝐵 uncorrelated trees by taking their average for regression as shown in equation 

(3.28) where 𝑏 is the subscript indicating the individual decision tree in the ensemble. For 

classification, the class corresponding to the maximum votes among the 𝐵 trees is the final 

prediction of this ensemble predictions. 

 𝜇 =
1

𝐵
∑ 𝜇𝑏(𝜃

∗)

𝐵

𝑏=1

 (3.28) 

With random forests, each tree is trained on a bootstrap sample of the original data set 

with the same sample size 𝑁. Bootstrapping dates back to Efron (1979). It is a resampling 

technique where samples are randomly generated with replacement from a set of data.  

Another aspect of random forest is that the minimisation of equation (3.26) is performed 

on a subset of parameters 𝑛𝑡𝑟𝑦 uniformly drawn from the whole predictor space. Each time a 

node needs to be split a new sample 𝑛𝑡𝑟𝑦 is drawn. Different studies have been performed to 

analyse the effect of the random forest hyper-parameters (Biau and Scornet 2015; Genuer et al. 

2010; Genuer et al. 2008). Here, the values for the hyper-parameters recommended by Raynal 

et al. (2017) that comply with the general recommendations in RF context are retained. The 

general steps followed to construct the random forest are shown in algorithm 3.7. 
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Algorithm 3.7 

1. Generate the data set 𝑁 = (𝜃1:𝑃,1, … , 𝜃1:𝑃,𝑁;  𝑦1, … , 𝑦𝑁) comprising perdictors and responses. 

2. for b in {1, … , 𝐵}: 

a. Generate a bootstrap sample 𝑁𝑏 from 𝑁 

b. for 𝑛𝑚 > 𝑁𝑚𝑖𝑛 and other stopping criteria not met: 

i. Split node 𝑚 into 𝑚𝑟 and 𝑚𝑟 

ii. Draw parameter subset 𝜃𝑛𝑡𝑟𝑦 = (𝜃1,…,𝑛𝑡𝑟𝑦
) from predictor space 𝜃 = (𝜃1, … , 𝜃𝑃) 

iii. for 𝑖 = 1,… , 𝑛𝑡𝑟𝑦: 

o Find bound 𝑏𝑖 that minimises equation (3.26) 

iv. Find the combination (𝜃𝑖 , 𝑏𝑖) among 𝜃𝑛𝑡𝑟𝑦 that minimises equation (3.26) 

v. Set the combinations as the splitting rule for node 𝑚 

c. Associate the average value of the responses in the leaves as the predictions of the leaves 

3.2.3.2 Random forest ABC (ABC-RF) 

Pudlo et al. (2015) firstly proposed to use the random forest classifier to replace ABC for 

model selection. They called it ABC-RF. Raynal et al. (2017) then extended the application of 

ABC-RF so that it is not only used for model selection but also for parameter inference. In this 

case, the random forest is trained for regression instead of classification. Normally RF is used 

as a machine learning algorithm to generate predictions y: which can be the heat consumption 

of a building, temperature profile or its summary statistics. Accordingly, the building 

parameters 𝜃 are the predictor space on which the splitting rules and decisions will be performed 

to construct the random forest, and y are the predictions associated with each corresponding 

leaf. With ABC-RF , the aim is to estimate the parameters 𝜃 given the data y. Thus, the 

predictions of the random forest associated with each leaf will be in this case the predictions of 

the parameters 𝜃, and the predictor space on which the splitting rules will be applied to contruct 

the random forest will be y or its summary statistics..  

ABC-RF has several advantages against ABC algorithms in that it overcomes the 

difficulty in choosing appropriate summary statistics for the data available which is one of the 

main problems in ABC algorithms. This is related to the characteristic of random forest: it can 

handle numerous predictors (summary statistics of responses 𝑦 in this case) including some that 

are totally uninformative. This is not very critical with BEM applications in the case of time 
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series data, where the RMSE could be a sufficient summary statistic. Another main advantage 

is that it does not require to define a distance function or a minimum threshold. The 

classification and splitting rules taken sequentially throughout the construction of each tree 

approximate well the likelihood function and thus do not need a distance metric. It is worth 

mentioning that each random forest solves the inference problem for one parameter and it is 

required to train separate random forests for each parameter. In this framework, the objective is 

to extract statistics that describe the parameter posterior: posterior mean, posterior variance, 

posterior quantiles.  

To apply ABC-RF, a data set of 𝑁 samples comprising the parameters to calibrate 𝜃 =

(𝜃1:𝑃
1 , … , 𝜃1:𝑃

𝑁 ) and their corresponding outputs 𝑦 = (𝑦1, … , 𝑦𝑁) is generated. The outputs 𝑦 can 

be replaced with summary statistics describing them. This ensures that the interactions between 

the parameters are taken into account. Then individual RFs are trained to infer each parameter 

separately. This means thatthe data set on which the random forest 𝑅𝐹(𝜃𝑖) is trained to estimate 

the parameter 𝜃𝑖 comprise only the samples of this parameter with their corresponding BEM 

outputs {𝜃𝑖
1, … , 𝜃𝑖

𝑁; 𝑦1, … , 𝑦𝑁}. Another thing to point out is that in the case of using RF for 

parameter inference, the parameter space will be called the response variable and the outputs 

are the predictors. Lets denote by 𝑌 the summary statistics of the data Z, and by 𝑙𝑏(𝑌) the leaf 

in tree 𝑏 in which the data 𝑌 is categorised after following the splitting rules of 𝑅𝐹(𝜃𝑖). The 

parameter value of 𝜃𝑖 corresponding to data 𝑌 predicted by tree 𝑏 is computed as follows: 

 𝜇𝑏(𝑌) =
1

𝑛𝑙𝑏

∑(𝑛𝑏
𝑗
1

{𝑦𝑖
𝑗
∈ 𝑙𝑏(𝑌)}

) 𝜃𝑖
𝑗

𝑁

𝑗=1

 (3.29) 

This expression corresponds to the weighted average of the responses 𝜃𝑖
1:𝑁 belonging to 

leaf 𝑙𝑏(𝑌) where 𝑌 is categorised. 𝑛𝑙𝑏 is the number of samples in leaf 𝑙𝑏(𝑌) given by: 

 𝑛𝑠𝑙𝑏 = ∑(𝑛𝑏
𝑗
1

{𝑦𝑖
𝑗
∈ 𝑙𝑏(𝑌)}

)

𝑁

𝑗=1

 (3.30) 

where 𝑛𝑏
𝑗
 defines how many times a sample (𝜃𝑖

𝑗
; 𝑦𝑖) is repeated in the bootstrap used for tree 

𝑏. This ensures to count all the samples in the leaf including the duplicates. Equation (3.29) can 

be reorganised as follows: 
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 𝜇𝑏(𝑌) = ∑𝑤𝑏
𝑗(𝑌) 𝜃𝑖

𝑗

𝑁

𝑗=1

 (3.31) 

 𝑤𝑏
𝑗(𝑌) =

𝑛𝑏
𝑗
1

{𝑦𝑖
𝑗
∈ 𝑙𝑏(𝑌)}

𝑛𝑙𝑏

 (3.32) 

The responses allocated for all the decision trees of random forest 𝐵 are then averaged to 

approximate the posterior expected value of parameter 𝜃𝑖. The weights are averaged over all 

the trees for a given sample (𝜃𝑖
𝑗
; 𝑦𝑖): 

 𝑤𝑗(𝑌) =
1

𝐵
∑ 𝑤𝑏

𝑗(𝑌)

𝐵

𝑏=1

 (3.33) 

The posterior expected values are then given as follows: 

 𝜇(𝑌) = ∑𝑤𝑗(𝑌)

𝑁

𝑗=1

 𝜃𝑖
𝑗
 (3.34) 

The steps to estimate the posterior expected value can be combined as follows: 

 𝜇(𝑌) =
1

𝐵
∑ ∑

𝑛𝑏
𝑗
1

{𝑦𝑖
𝑗
∈ 𝑙𝑏(𝑌)}

𝑛𝑙𝑏

𝑁

𝑗=1

𝐵

𝑏=1

 𝜃𝑖
𝑗
 (3.35) 

Equation (3.35) averages the response of each leaf; then, the average over all the trees  𝐵 

is retained. The weighted variance of the posterior can be approximated as follows: 

 𝑉(𝑌) = ∑𝑤𝑗(𝑌)

𝑁

𝑗=1

(𝜃𝑖
𝑗
− 𝜇(𝑌))

2
 (3.36) 

Raynal et al. (2017) proposed another variance estimator that is more specific to the 

posterior distribution. They proposed to use the output of bag (OOB) samples for the variance 

estimation: the samples that are not included in the bootstrap of a given decision tree. Those 

OOB samples are then allowed to follow the splitting rules of the trees in which they are not 
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used in the process of training. The predictions are then averaged over all these trees and are 

represented as 𝜇𝑂𝑂𝐵(𝑦). The estimator is given as follows: 

 𝑉(𝑌) = ∑𝑤𝑗(𝑌)

𝑁

𝑗=1

(𝜃𝑖
𝑗
− 𝜇𝑂𝑂𝐵

𝑗
(𝑦𝑗))

2
 (3.37) 

3.3 Methodology and criteria 

The methods presented in the previous section (ABC-PMC, APMC, Adams, CATMIP, 

ABC-RF) are compared in terms of accuracy and computational efficiency. The comparison is 

performed following two criteria. The first is the method ability in converging to the parameters 

true values. The second is the methods’ ability to fit accurately to the generated virtual data.  

The first criterion is evaluated by computing the normalised Euclidean distance between 

the posteriors samples and the true values of the parameters as follows: 

 𝑑𝑑𝑖𝑠𝑡 =
1

𝑘
∑√∑(

𝜃𝑖
𝑗
− 𝜃𝑡𝑟𝑢𝑒

𝑗

𝜃𝑡𝑟𝑢𝑒
𝑗 )

2𝑁𝑠

𝑗=1

𝑘

𝑖=1

 (3.38) 

where 𝑁𝑠 is the number of samples drawn from the posterior, 𝑘 is the number of parameters, 

and 𝜃𝑡𝑟𝑢𝑒 is the true value of the parameter used for normalisation. This distance function is 

applied to each parameter. The smaller the distance the closer the posterior is to the true value 

and vice versa. 

The parameters on which this criterion is applied do not include a temperature parameter, 

otherwise, the normalisation would not be valid. If a temperature parameter is to be calibrated, 

then another criterion would be more convenient such as the one used by Juricic (2020). This 

criterion assumes a ±5 % error around the true values which is shown in grey in Figure 3.1. 

Then the integral of the density function lying in this ±5 % acceptability error is computed and 

represents how close or far the distribution is from the true value. This criterion is depicted in 

Figure 3.1. 
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Figure 3.1: Graphical explanation of the citerion taken from Juricic (2020) 

The second criterion is to validate the performance and the prediction accuracy of the 

calibrated model, the priors and the posteriors of the parameters are propagated. This provides 

information regarding the uncertainties in the prediction before and after calibration. To 

quantify the model predictive performance, the temperature root mean square error (RMSE) 

between the measurements and the predictions is evaluated for each propagated sample and the 

average of all the samples is retained. Other indicators such as the mean absolute error could 

have also been used. 

These criteria are not only evaluated on the posterior distributions, but also on the 

distributions generated at each iteration of the algorithms. This enables to evaluate the 

performance of each algorithm with an increasing number of model evaluations which allows 

for a more comprehensive comparison. 

3.4 Results 

The calibration methods in this section are applied to the case study presented in chapter 2. 

Accordingly, following the results of the sensitivity analysis in the previous chapter, the 

parameters selected for calibration are: ventilation flowrate (�̇�), heating power (𝑄𝑝), specific 

heat of wall concrete (𝑐𝑝,𝑐𝑜𝑛𝑐𝑊), conductivity of polystyrene wallmate (𝜆𝑝𝑜𝑙𝑊), dissipated heat 

(𝑄𝑑), and solar albedo (𝐴𝑙𝑏). These are the same parameters calibrated by Robillart (2015) and 

accordingly, the same priors are retained here as listed in Table 3.1. 
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Table 3.1: Prior distributions (Robillart 2015) 

Parameters Distribution Mean 𝜎 Unit 

Ventilation flowrate Normal 110 11 [𝑚3/ℎ] 

Dissipated heat Normal 208 20.8 [𝑊] 

Heating power Normal 1200 20 [𝑊] 

Concrete specific heat Normal 2120 212 [𝐽/(𝑚3. 𝐾)] 

Solar albedo Normal 0.35 0.035 [−] 

Conductivity polys Normal 0.03 0.003 [𝑊/(𝑚.𝐾)] 

Figure 3.2 shows the model predictive performance of each algorithm averaged over all 

the scenarios against the number of model evaluations with a simulation budget of 30,000. 

APMC and Adams showed a similar performance; they converged better and faster to lower 

RMSE values than CATMIP and ABC-PMC, the latter being the slowest to converge. ABC-RF 

shows a different performance. Contrarily to the other algorithms, its accuracy with increasing 

model evaluations did not show a continuous increase: the RMSE indicator slightly decreased 

with higher model evaluations with significant variability. It is important to mention that 

recommended default values of the algorithms’ hyper-parameters are selected. For instance the 

size of leaves in ABC-RF is taken as recommended by Raynal et al. (2019); it was not changed 

with increasing number of simulations. 

 

Figure 3.2: Model prediction accuracy for each algorithm (virtual data) 
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Since the true values of the parameters are known, it is also easy to evaluate the estimation 

of the parameters by computing the distance between the distribution and the posteriors. 

Accordingly the Euclidean distance 𝑑 is computed for each algorithm at each iteration as 

described in section 3.3. Figure 3.3 shows the Euclidean distance for each algorithm for a 

simulation budget of 30000. It is clearly depicted that APMC and Adams estimate the true 

values of the parameters more accurately than the other methods with the specified simulation 

budget. ABC-PMC shows the least accurate estimation of the true values. ABC-RF estimates 

the parameters better with less model evaluations, however, it does not show a better estimation 

with increasing number of model evaluations. 

 

Figure 3.3: Euclidean distance at each iteration 

Another difference is that all the algorithms except ABC-RF are capable of reaching 

similar accuracies in finding the true values of the parameters and in model prediction 

performance but with different numbers of model evaluations. CATMIP and ABC-PMC 

required 54,000 and 95,000 simulations respectively (not shown here) to reach the same 

accuracies (same RMSE of 0.035 °C) attained by Adams and APMC with only 

30,000 simulations. However, the model predictive accuracy of ABC-RF is less than the others 

even when trained with a data set size of 100,000 samples: RF posterior yielded an RMSE 

of 0.08°C. 

These differences could be related to the difference in the criteria of convergence of each 

iteration between the algorithms. ABC-PMC discards all the samples of a current iteration when 
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switching to the subsequent one. That is, at each iteration the algorithm keeps on sampling until 

N samples are accepted for the current iteration threshold. In this case study, it required between 

2 × 𝑁 and 8 × 𝑁 samples in each iteration all of which were discarded in the next iteration. On 

the one hand, this is beneficial for a better parameter space exploration, on the other hand it 

makes the algorithm computationally intensive. APMC avoids this problem by keeping the 

particles accepted in the current iteration and dragging them to the next iteration. In the next 

iteration, only 𝑁 2⁄  particles are sampled randomly with weights then perturbed and evaluated 

by the model no matter whether they yielded the corresponding threshold or not. Consequently, 

a larger number of iterations are required to reach convergence but with less simulations per 

iteration. ABC-PMC required 35 iterations to converge, whereas APMC required 96 iterations 

but with less simulations in total. 

Adams outperformed CATMIP in terms of computational efficiency for the current 

example with the specified hyper-parameters. The main difference between both algorithms is 

that Adams automatically specifies the number of required simulations per iteration. It keeps 

on sampling new particles until a pre-specified percentage of the whole pool has moved to a 

better location given the current iteration properties and distribution. On the contrary, CATMIP 

walks a chain at each iteration with a predetermined number of jumps 𝑁𝑠𝑡𝑒𝑝𝑠. If the number of 

steps, 𝑁𝑠𝑡𝑒𝑝𝑠, is not wisely defined, the algorithm might either collapse due to particles 

degeneracy or generate too many unneeded samples. Particles degeneracy usually occurs in 

sequential Monte Carlo sampling techniques. It describes the problem when all the particles in 

an iteration collapse to a single particle. In SMC samplers applied to Bayesian inference, it 

mainly happens when there are not enough MCMC jumps. From this analysis, it could be 

confirmed that Adams is more robust in terms of its hyper-parameters than CATMIP, but a final 

conclusion around which one outperforms the other cannot be drawn. 

Figure 3.4 shows the cumulative number of model evaluations during the evolution of the 

algorithms. It clarifies the differences in the simulations required to move from one iteration to 

another for all the algorithms. 
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Figure 3.4: Model evaluations with evolution of iterations 

Moreover, ABC-RF finds the area around the true value even with only 1000 simulations. 

Figure 3.3 shows only a comparison between the methods about their precision in finding the 

true values, and it does not provide a clear idea about how close the estimated distributions are 

to the true values. Figure 3.5 shows the parameters estimated by ABC-RF and APMC with only 

1000 model evaluations. APMC is selected for this comparison since it is shown in Figure 3.3 

that it is the faster in estimating the true values compared to the rest. Figure 3.5 shows that 

ABC-RF is capable with this relatively small data set to move the priors towards the true values 

regions. For some parameters, the estimated distributions are centred very close to the true 

values. On the contrary, this is not observed with APMC, where the estimated distributions are 

closer to the priors than to the true values, which means that it needs more simulations to be 

able to move the priors closer to the posteriors. This means that ABC-RF is capable of exploring 

the parameter space better and faster than the other algorithms. 
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Figure 3.5: Parameters estimation after 1000 model evaluations 

Unlike the other algorithms, it is observed that ABC-RF is not able to narrow the posteriors 

towards the true values with a larger data set. With 30000 as a simulation budget, Figure 3.6 

shows the posteriors attained by ABC-RF and APMC. It is clearly depicted that even if the 
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posteriors of ABC-RF are close to the true values, they are still wider than those of the posteriors 

obtained by APMC. 

  

  

  

Figure 3.6: Parameters estimation after 30000 model evaluations 

The random forest in ABC-RF is trained on all the samples generated from the priors, the 

samples close and far from the true values. On the contrary, within the other algorithms, the 
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samples are generated sequentially from distributions closer to the posteriors than to the priors, 

and at each iteration, the samples in the low probability regions are discarded in favour of those 

in the high probability region. This could explain the reason behind the wider posteriors 

obtained by ABC-RF.  

Random forests are known for their randomness and this is what has been confirmed in 

this application where it shows significant variabilities as in Figure 3.2. However, from the 

same figure, it is depicted that even with the variabilities weighing on the method, it performs 

better than the other methods with a small number of model evaluations: less than 10000. It 

means that there is a potential in RF with small data set size, however, the rest can attain better 

accuracies with increasing model evaluations. 

3.5 Conclusion 

Calibration of building energy models has recently attracted the focus of researchers in the 

field especially the application of Bayesian approaches. A significant work has been dedicated 

to these approaches in order to enhance their performance in terms of accuracy, robustness, and 

computational efficiency. In this chapter, different Bayesian methods are applied on a virtual 

data to assess their performance in terms of precision and computational efficiency. Five 

algorithms were selected, according to their popularity and their ability to be parallelised. 

The analysis revealed that even if the likelihood function is approximated by a distance 

metric in the approximate Bayesian computation algorithms, it does not mean that they perform 

worse than the likelihood-dependent approaches. It is shown that all tested algorithms yielded 

sufficient accuracy for the training and the testing data no matter what group they belong to. 

APMC and Adams outperformed the other algorithms in terms of computational efficiency and 

precision. The different samplers integrated in each algorithm are the key differences. ABC-RF 

gave the least precise results with larger data sets and the most precise ones with small data sets. 

It would be interesting to increase the leaves size and number of trees with increasing number 

of simulations. This might yield a better convergence behaviour for ABC-RF with more 

simulations. 

Due to its relatively better performance with limited number of model evaluations, ABC-

RF might be a better choice if approximate results are needed. If more precise fit to the data is 
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needed, then APMC or Adams methods could be a better choice. These results orient the efforts 

towards more investigation on ABC-RF which is presented in chapter 4. 
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Chapter 4 Identifiability analysis 

 

 

 

 

 

 

 

 

 

Identifiability between the parameters is essential when calibrating a model. Due to un-

identifiability, the model may not converge to unique solutions. Therefore, it is important 

to evaluate the identifiability between the model parameters before calibration. This 

chapter presents an identifiability method and applies it on a virtual case study. The 

objective is to assess its effect on the calibration methodology. In the second part of the 

chapter, the effect of increasing number of parameters on the calibration result is assessed. 
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Résumé du chapitre 

L'importance de calibrer un sous-ensemble des paramètres du modèle énergétique du 

bâtiment a été clarifiée dans les chapitres précédents. Dans le chapitre 2, les méthodes de 

calibrage sont évaluées suite à une analyse de sensibilité qui classe les paramètres par ordre 

d'importance. L'ensemble des paramètres les plus importants qui sont généralement pris en 

compte pour le calibrage peut ne pas correspondre aux paramètres les plus estimables : une 

interaction significative peut exister au sein des paramètres les plus influents, ce qui rend 

l'identification plus difficile. De plus, des problèmes d'identifiabilité peuvent survenir en raison 

de données non informatives ou insuffisantes. L'analyse d'identifiabilité permet de sélectionner 

les paramètres qui sont les plus influents et qui ont le moins d'interaction. L'effet des données 

sur l'identifiabilité n'est pas considéré dans ce travail. 

Dans ce chapitre, basé sur la littérature, une méthode d'identifiabilité appelée méthode 

d'orthogonalisation est sélectionnée. Une description détaillée de la méthode retenue est fournie. 

L'objectif de ce chapitre est d'analyser l'avantage de sélectionner les paramètres en fonction de 

leur estimabilité par rapport à leur sélection en fonction de leur importance, et son effet sur 

l'ensemble de la méthodologie de calibrage. Les paramètres estimables sont les paramètres les 

plus importants et les plus identifiables : ils ont le moins d'interaction. 

Les critères utilisés pour évaluer l’approche expérimentée sont l'amélioration de 

l’identifiabilité des paramètres après calibrage et la performance prédictive du modèle calibré. 

Ainsi, le premier indicateur utilisé est la distance de Janson Shannon. Il est utilisé pour calculer 

la distance entre les a priori et les a posteriori afin de quantifier l'identifiabilité des paramètres 

séparément. Le deuxième indicateur (ID) est proposé spécifiquement pour cette étude. Il calcule 

l'identifiabilité totale du modèle. Le troisième indicateur est l’erreur quadratique moyenne 

(RMSE) entre les résultats du modèle calibré et les mesures virtuelles. De plus, le DIC (deviance 

information criteria) qui est basé sur la fonction de vraisemblance est également utilisé pour 

évaluer la précision du modèle calibré. L'étude de cas présentée dans le chapitre précédent est 

conservée ici avec de légères différences. Au lieu de considérer six scénarios différents, seuls 

deux scénarios (2 et 3) correspondant à l'évolution libre sont considérés : le scénario 2 étant le 

scénario d'entraînement et le scénario 3 le scénario de test. La méthode de Morris est appliquée 

en premier, et les 40 paramètres les plus influents sont sélectionnés. Dans un second temps, la 

méthode Sobol est utilisée pour classer précisément ces 40 paramètres. Cela a nécessité un coût 

de calcul de 168 000 simulations. 
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Pour l'étude de cas considérée, il est montré que le classement des paramètres à l'aide de 

la méthode d'orthogonalisation est plus approprié que de les classer sur la base d'une analyse de 

sensibilité uniquement dans le cas où peu de paramètres doivent être calibrés. Une interaction 

significative peut exister entre les plus influents, qui peuvent être identifiés et pris en compte 

par l'analyse d'identifiabilité. Si plus de paramètres sont inclus, les deux méthodes donnent des 

résultats similaires. 

L'effet du nombre de paramètres est également traité dans ce chapitre. L'étude de cas du 

chapitre 2 est conservée avec le classement de sensibilité correspondant. La méthode consiste 

à effectuer un calibrage avec un nombre croissant de paramètres, en commençant par calibrer 

uniquement le plus influent jusqu'à calibrer les 15 premiers paramètres. Le calibrage étant 

stochastique, il est répété dix fois pour chaque ensemble de paramètres. L’indicateur de Janson 

Shannon, RMSE, et le DIC sont également utilisés comme indicateurs dans cette analyse. Le 

but de cette analyse est d'évaluer le comportement du calibrage en termes de performance 

prédictive du modèle d'une part et d'identifiabilité des paramètres d'autre part avec un nombre 

différent de paramètres. Pour l'étude de cas considérée, on constate que le calibrage des trois 

premiers paramètres est le plus précis, cependant, le calibrage des huit premiers paramètres a 

donné une précision presque similaire, même si les six premiers paramètres s'avèrent plus 

identifiables que les autres. 
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4.1 Introduction 

The importance of calibrating a subset of the building energy model parameters was 

clarified in the previous chapters. In chapter 2, the calibration methods are assessed following 

a sensitivity analysis which ranks the parameters in terms of importance. The set of most 

important parameters that are usually considered for calibration might not be the most estimable 

parameters: significant interaction might exist within the most influential parameters, which 

makes identification more difficult. In addition, identifiability problems may arise due to non-

informative or insufficient data. Identifiability analysis allows to select the parameters that are 

most influential and have the least degree of interaction. The effect of the data on identifiability 

is not considered in this work. 

In this chapter, based on literature, an identifiability method is selected. A detailed 

description of the retained method is provided. The aim of this chapter is to analyse the 

advantage of selecting the parameters based on their estimability compared to selecting them 

based on their importance, and its effect on the whole calibration methodology. Estimable 

parameters are the parameters that are the most important and most identifiable: they have the 

least degree of interaction. To this end, different criteria are applied on the calibrated posteriors 

as explained in details in section 4.2.2. 

Several aspects concerning Bayesian inference applied to BEM require further analysis. 

One of the issues with calibration is the number of parameters to be estimated. On the one hand, 

including too many parameters lead to un-identifiability problems due to interaction; on the 

other hand, calibrating only few parameters is necessitates setting some of the important 

parameters at fixed values, which is subjected to uncertainties and error and could influence the 

estimation of the other parameters. Normally, neither too many nor too few parameters are 

considered. However, in the literature there is no clear answer to how many parameters should 

be included. Moreover, there is no sufficient analysis on this topic based upon different case 

studies, which would be needed to draw a conclusion on the recommended number of 

parameters allowing to achieve good calibration practice. In the second part of this chapter, the 

focus is oriented towards this issue and the effect of the number of parameters on the calibration 

performance is analysed. 
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4.2 Identifiability analysis 

A brief introduction to the identifiability analysis, its importance, methods, and 

applications is provided in chapter 1. In this section, the selected identifiability method is 

defined and explained briefly, then it is applied to a case study. 

The terms structural identifiability and sensitivity-based identifiability methods are used 

interchangeably in this thesis even though they could be separated. The main difference is that 

structural identifiability methods directly use the model structure to perform the identifiability 

analysis (Miao et al. 2011). Due to this, many structural methods only apply to linear (e.g. 

Laplace transforms), or simple non-linear models (power series expansion, similarity transform, 

direct test, etc.). Other structural identifiability methods apply to general non-linear models such 

as the differential algebra methods. However, the application of these methods to large systems 

such as BEMs could be quite complex. There are some open source software that apply these 

concepts such as DAISY (differential algebra for identifiability of systems (Bellu et al. 2007), 

however they are prohibitive for large systems (Rouchier 2018). Accordingly, the structural 

methods are not retained in this study. 

Sensitivity-based methods do not directly use the structure of the model, however they 

benefit from the sensitivity matrix to perform the identifiability analysis, which makes them 

simple to implement. Thus, the methods selected in this chapter belong to this family. 

The collinearity index method could be misleading since it does not account for the 

importance of the parameters. With a combinatorial analysis it computes the collinearity indices 

of different possible combinations of different sizes no matter how important the parameters 

are. It also requires the definition of a collinearity index threshold to decide whether the subset 

of parameters is identifiable or not. A recent study in the field of solids and structures (Zhang 

et al. 2022) applied this method and confirmed that there is a risk to discard highly influential 

identifiable parameters because, in their case, the collinearity index of these parameters is larger 

than the recommended threshold in literature which is between 15 and 20. Accordingly, this 

method is not retained in this chapter. 

The correlation method suffers from two main drawback; the first is that it computes the 

correlation between pairs of parameters. Therefore, if significant correlation exists between a 

set of more than two parameters, the correlation method will not detect it (Quaiser and 
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Mönnigmann 2009). The second drawback is that it only accounts for correlations and it does 

not account for the importance of each parameter separately. 

Quaiser and Mönnigmann (2009) compared four different sensitivity-based methods 

(correlation method, eigenvalue method, orthogonalisation method, and PCA method) with 

three different models. They concluded that for the three models, the eigenvalue and the 

orthogonalisation methods overcome the rest . In this chapter, the aim is not to compare 

different identifiability methods, however, it is to analyse the effect of a validated identifiability 

method on the calibration process. Accordingly, since the eigenvalue and the orthogonalisation 

methods showed similar performance in literature, only one out of the two methods is selected 

that is the orthogonalisation method. 

The main objective of the study is to assess the behaviour of the calibration methods with 

different ways of parameters selection and to analyse how the identifiability analysis retained 

in this chapter enhances the global identifiability of the calibration method. Accordingly, the 

identifiability of the estimated posteriors is checked after calibration using the different criteria 

presented in section 4.2.2. 

In this section, the orthogonalisation method selected among different sensitivity-based 

methods is firstly presented and explained in details, then the methodology and criteria used to 

assess the performance of the method are elaborated. 

4.2.1 Orthogonalisation method 

The orthogonalisation method was originally proposed by Yao et al (2003). The idea is 

that it re-ranks the parameters from the most to the least estimable. Most estimable means that 

the parameters are important and at the same time, the combination between the parameters has 

the least degree of interaction. 

The procedure is to firstly compute the sensitivity indices matrix. This matrix should 

comprise 𝑘 columns, each corresponding to a separate parameter and 𝑡𝑁 rows, each 

corresponding to a given time step. Each column represents a vector of sensitivity indices of 

one parameter for each time step. The sensitivity matrix index is defined as follows: 



 

134 

 

𝑆 = (

𝑠𝑡1,1

𝑠𝑡2,1

⋮
𝑠𝑡𝑁,1

  

𝑠𝑡1,2 ⋯ 𝑠𝑡1,𝑘

𝑠𝑡2,2  𝑠𝑡2,𝑘

⋮
𝑠𝑡𝑁,2

⋱
 

⋮
𝑠𝑡𝑁,𝑘

) (4.1) 

The most important parameter is selected as the most estimable parameter. Then, all the 

columns of the sensitivity matrix are projected onto the chosen column. This projection forms 

another matrix 𝑆𝑝 having similar dimensions as the sensitivity matrix 𝑆. 

𝑆𝑝  =  𝑆𝐿  (𝑆𝐿
𝑇𝑆𝐿)

−1𝑆𝐿
𝑇𝑆 (4.2) 

where 𝑆𝐿 is a 𝑡𝑁 × 𝐿 matrix with 𝐿 being the number of estimable parameters selected. At the 

first iteration of the algorithm, 𝐿 is 1 since 𝑆𝐿 comprise only the most influential parameter. After 

each iteration, a new parameter is selected to be the next most estimable parameter and is then 

concatenated to 𝑆𝐿. At the end, 𝑆𝐿 will contain the sensitivity vectors in the original sensitivity matrix 𝑆 

but in a different order: the first column is now the sensitivity vector of the most estimable 

parameter and the last one is that of the least estimable one. 

The selection of the next most estimable parameter at each iteration is done via the residual 

matrix 𝑅𝐿 which is computed by subtracting 𝑆𝑝 from the original sensitivity matrix 𝑆. The column 

having the largest magnitude in 𝑅𝐿 is then selected as the second most estimable parameter. The 

residual matrix accounts not only for interaction, but also for the level of importance of each 

parameter: if two parameters are correlated, the method selects the one which is more 

influential. The steps are summarised as follows (adapted from Yao et al., 2003): 
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Orthogonalisation method 

1. Calculate the magnitude of each column of the sensitivity matrix S. 

2. Select the parameter whose column in S has the largest magnitude as the first 

estimable parameter. 

3. Mark the corresponding column as 𝑆𝐿 (L=1 for the first iteration). 

4. Project the columns in S onto 𝑆𝐿 : 𝑆𝑝 = 𝑆𝐿 (𝑆𝐿
𝑇𝑆𝐿)

−1𝑆𝐿
𝑇𝑆. 

5. Calculate the residual matrix 𝑅𝐿 = 𝑆 − 𝑆𝑝. 

6. Calculate the sum of squares of the residuals in each column of 𝑅𝐿. The column 

with the largest magnitude corresponds to the next estimable parameter. 

7. Select the corresponding column in S, and augment the matrix 𝑆𝐿 by including the 

new column. 

8. Advance the iteration counter by one and repeat steps 4 to 7 until the column with 

the largest magnitude in the residual matrix is smaller than a prescribed cut-off 

value. 

4.2.2 Methodology and criteria 

To assess the importance of identifiability analysis prior to calibration, the most 

influential, then the most estimable parameters are calibrated. Since, the calibration is stochastic 

and different results might be obtained with different runs, the calibration is repeated several 

times for each model. This overcomes the stochasticity of calibration and makes the comparison 

more reliable. Since this methodology can be computationally intensive, the minimum threshold 

of RMSE is set to 0.05℃. This allows the calibration to converge faster. Here, the model refers 

to the BEM with the selected parameters for calibration: choosing the most important 

parameters is a model, and choosing the most estimable is another model. 

Virtual data based on known parameters values are generated. This allows analysing how 

well each parameter is estimated and how close it is to its true value, which is not attainable 

with real measurements. At each repetition of calibration, the parameters that are not included 

in calibration are retained to their true values. 

Since there is no clear recommendation on the maximum number of parameters that can 

be included for calibration, an increasing set of parameters is considered. That is firstly, the two 
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most important parameters are calibrated and then the three most important ones are calibrated 

and so on. The same is done for the most estimable parameters. The aim here is to compare the 

results attained after calibrating the most influential parameters against calibrating the most 

estimable parameters. To undergo this comparison, different criteria are retained. 

The Jensen-Shannon JS distance is a criterion used to measure the distance between the 

prior and the posterior. The larger the distance, the more identifiable the parameter is. JS is built 

on the KL-divergence between two distributions as follows: 

𝐽𝑆(𝑃||𝑄) =
√𝐾𝐿 (𝑃||

𝑃 + 𝑄
2

) + 𝐾𝐿 (𝑄||
𝑃 + 𝑄

2
)

2
 

(4.3) 

where 𝑃 and 𝑄 represent the two distributions between which the similarity is computed. 𝐾𝐿-

divergence is not symmetric and thus it is not considered to be a distance, however, 𝐽𝑆 could be 

considered as a symmetric version of the 𝐾𝐿-divergence: 

𝐾𝐿(𝑃||𝑄) = ∫𝑃(𝜃) × log
𝑃(𝜃)

𝑄(𝜃)
𝑑𝜃 = ∑𝑃(𝜃𝑖) × log

𝑃(𝜃𝑖)

𝑄(𝜃𝑖)

𝑁

𝑖=1

 (4.4) 

This metric should be used carefully. Even if the posterior is very close to the prior, one 

cannot conclude the presence of un-identifiability. This could be related to the proper selection 

of the prior. In our case, no conclusions concerning the identifiability issues will be drawn from 

the JS distances of one model, however, a comparison on the JS distances of the two models is 

considered. 

Another misleading result should also be accounted for. A parameter could be perturbed 

linearly with another parameter by maintaining approximately similar results if a linear 

correlation exists between them. Thus, even if the posteriors of those two parameters are 

different from their priors, this does not mean that they are identifiable. To avoid this, the 𝐽𝑆 

distance is used to measure how narrow the posterior distribution is compared to the prior given 

that both have the same mean value. Since a virtual data is considered and the true values of the 

parameters are known, the priors are centred on the true values. This allows the posteriors to 

have same means as those of the priors, which means that the JS distance between the prior and 

the posterior represents how much the variance around the true value is reduced. This is 

illustrated in Figure 4.1, where the distribution in case 2 is narrower than that in case 1, and this 
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is explained by the larger value of JS. The interpretation of JS values should not be confused 

by cases 3 and 4 since the posteriors in the cases studied do not shift away from the true values 

(priors means). Biased priors are not used in this study since it will be computationally more 

intensive especially that calibration is repeated several times. Moreover, the considered method 

with the chosen priors answers the question of identifiability that is looked for in this section. 

This criterion enables one to estimate the identifiability of each parameter separately.  

 

Figure 4.1: Illustration of JS criterion 

To compute the total identifiability of the model, another indicator is proposed. Through 

calibration, the samples with low likelihood or high RMSE in the context of ABC are discarded 

in favour of those that yield higher likelihood or lower RMSE. This is done iteratively until the 

posterior is reached. If the set of parameters are unidentifiable, then the samples retained for the 

posterior might be just sets of different possible combinations that respect the convergence 

criterion of the sampler. Therefore, if posteriors are constructed from the average and variance 

of these samples and then those posteriors are propagated, the resulting likelihoods or RMSE 

will be worse than those achieved by the samples drawn from the MCMC sampler. 

This is clearly observed in ABC algorithms, where even if the minimum threshold of 

RMSE identified for convergence is reached, the propagation of the posteriors may yield higher 

values of RMSE. The difference between the minimum threshold 𝛿𝑚𝑖𝑛 and the average over all 

RMSEs resulting from the posteriors propagation is thus considered as an indicator of the model 

total identifiability. 
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𝐼𝐷 =
1

𝑁
∑𝑅𝑀𝑆𝐸(𝜂(𝜃𝑖), 𝑍)

𝑁

𝑖=1

− 𝛿𝑚𝑖𝑛 (4.5) 

Another criterion assesses the model predictive performance. That is how much the model 

fits to the data. Since for all the models, the same data is used, it is possible to use a model 

selection criterion. AIC (Akaike Information Criterion) is a well-known and widely used model 

selection criteria (Akaike 1974). This metric is calculated from the maximum likelihood 

estimate of the parameters, which makes it more suitable for frequentist approaches such as 

profile likelihood. In this thesis, there is an interest not only to quantify the best parameters 

values that fit to data, but to generate a distribution of values that describe the uncertainty of 

the estimates. Thus, taking only the maximum likelihood in AIC (equation 4.6) discards the 

additional information that can be obtained from the posterior PDF. 

𝐴𝐼𝐶 = −2 log 𝑝(𝑍|𝜃𝑀𝐿𝐸) + 2𝐾 (4.6) 

In equation (4.6), 𝐾 is the number of parameters in the model, and 𝜃𝑀𝐿𝐸 is the parameters 

values which corresponds to the maximum likelihood. To this end, DIC (deviance information 

criterion) is more suitable in the Bayesian context and is retained. The idea is that instead of 

computing the log-likelihood at 𝜃𝑀𝐿𝐸, it is calculated at the posterior mean. Moreover, the 

second term in AIC is replaced with a data-based bias correction 𝑝 given as follows (Gelman et 

al. 2013): 

𝐼 = 2(log 𝑝(𝑍|�̅�) −
1

𝑁
∑ log 𝑝(𝑍|𝜃𝑛)

𝑁

𝑛=1

) (4.7) 

where �̅� is the mean of the parameters posteriors. The second term in 𝐼 computes the log-

likelihood of all the posteriors samples and averages them. This shows how DIC accounts for 

the posterior against the AIC, which is more suitable for point estimate problems. The DIC is 

then computed as follows: 

𝐷𝐼𝐶 = −2 log 𝑝(𝑍|�̅�) + 2𝐼 (4.8) 

The value of the DIC has no interpretable meaning if considered alone, instead, the 

comparison between two values gives information about which model is better in terms of 

fitting to data than the other. The lower the value of DIC, the more the model fits to the data. 
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To sum up, the criteria used in this analysis are the JS, and ID as identifiability indicators 

and DIC as model predictive performance indicator. 

4.2.3 Case study 

The case study presented in the previous chapter is retained here with slight differences. 

Instead of considering six different scenarios, only two scenarios (2 and 3) that correspond to 

the free evolution are considered: scenario 2 being the training scenario, and scenario 3 the test 

scenario. Compared to the previous studies, no heating power, ventilation, or internal gains are 

included.  

In the following section, the aim is to assess the behaviour of calibration when estimating 

the most important versus the most estimable parameters. Morris’ method was found to be 

robust and accurate in estimating the parameters ranking as shown in chapter 2, but still there 

exists some influential parameters that are ranked differently from Sobol method. Even if the 

difference between Sobol and Morris methods is small, this would bias the comparison, since a 

sequential selection of the parameters is taken into account as described in section 4.2.2 and not 

the cluster of the most important parameters. This means that if there is no accurate ranking, 

the selected parameters may not be the true most important ones. Accordingly, Sobol  (reference 

method) is retained to rank the parameters in terms of importance, then identifiability analysis 

is performed on the Sobol indices.  

However, due to its computation cost, and since Morris ranks all the parameters with 

sufficient accuracy, Morris method is used as a first step to screen the less influential 

parameters, then Sobol is applied to the 40 most influential parameters ranked by Morris 

method. This decreases a lot the computational cost of Sobol method since it is highly dependent 

in the number of parameters: instead of 460,000 simulations, only 168,000 simulations are 

required. 

4.2.4 Results and discussion 

4.2.4.1 Sensitivity analysis 

Sobol method is applied to the given case study on the second scenario. Figure 4.2 shows 

the ranking of the first 8 parameters: specific heat of concrete wall (𝑐𝑝,𝑐𝑜𝑛𝑐𝑊), conductivity of 
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polystyrene wallmate (𝜆𝑝𝑜𝑙𝑊), specific heat of concrete screed (𝑐𝑝,𝑐𝑜𝑛𝑐𝑆), specific heat of 

reinforced concrete (𝑐𝑝,𝑐𝑜𝑛𝑐𝑅), thickness of concrete wall (𝑡𝑐𝑜𝑛𝑐𝑊), conductivity of polystyrene 

styrofoam (𝜆𝑝𝑜𝑙𝑆), specific heat of slab joist (𝑐𝑝,𝐽), and thickness of polystyrene wallmate 

(𝑡𝑝𝑜𝑙𝑊). Since the considered scenario resembles the free evolution of the building and since 

the building is made of concrete construction (external walls with concrete, floor with 

reinforced concrete and concrete screed), the specific heats of concrete, reinforced concrete, 

and concrete screed are classified within the four most influential parameters. The specific heat 

of concrete wall is the most influential since it is used in the external walls where it is subjected 

to weather variations more than the others, moreover, it is present in the four external walls 

compared to the presence of the rest only in the ground floor. The building is well insulated 

from the ground with polystyrene styrofoam, and from the walls with polystyrene wallmate. 

This explains why the conductivity of these two materials is also classified within the first most 

influential parameters. 

 

Figure 4.2: Sobol rank of the first 8 parameters 

4.2.4.2 Estimability ranking 

The orthogonalisation method is applied to the sensitivity matrix computed, and the 

parameters are re-ranked as shown in Table 4.1. It also shows the value of the threshold in the 

orthogonalisation method. This means that if the threshold is set at 0.16, the orthogonalisation 
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method states that only two parameters (𝑐𝑝,𝑐𝑜𝑛𝑐𝑊, and 𝜆𝑝𝑜𝑙𝑊) can be estimated and the rest 

should not be included in parameter estimation. With a threshold of 0.04, the orthogonalisation 

method states that in addition to the first two, the specific heat of the reinforced concrete is the 

third most estimable parameter. Only six parameters are illustrated. The reason is that it is found 

after calibrating the first three parameters that more parameters are significantly less 

identifiable, and that both rankings start to yield equal results. Moreover, this method is 

computationally intensive as it requires multiple calibration run, so it is decided to stop at 6 

parameters.  

Table 4.1: Sobol and estimability ranks 

Rank Sobol method Orthogonalisation Threshold 

1 
Specific heat of concrete wall 

(𝑐𝑝,𝑐𝑜𝑛𝑐𝑊) 

Specific heat of concrete wall 

(𝑐𝑝,𝑐𝑜𝑛𝑐𝑊) 
 

2 
Conductivity of polystyrene 

wallmate (𝜆𝑝𝑜𝑙𝑊) 

Conductivity of polystyrene 

wallmate (𝜆𝑝𝑜𝑙𝑊) 
0.16 

3 
Specific heat of concrete screed 

(𝑐𝑝,𝑐𝑜𝑛𝑐𝑆) 

Specific heat of reinforced 

concrete (𝑐𝑝,𝑐𝑜𝑛𝑐𝑅) 
0.04 

4 
Specific heat of reinforced concrete 

(𝑐𝑝,𝑐𝑜𝑛𝑐𝑅) 

Conductivity of polystyrene 

styrofoam (𝜆𝑝𝑜𝑙𝑆) 
0.0118 

5 Thickness of concrete wall 𝑡𝑐𝑜𝑛𝑐𝑊 
Specific heat of concrete screed 

(𝑐𝑝,𝑐𝑜𝑛𝑐𝑆) 
0.011 

6 
Conductivity of polystyrene 

styrofoam (𝜆𝑝𝑜𝑙𝑆) 

Thermal bridge living room to 

exterior (𝜓) 
0.00315 

The value of the threshold is important since, the number estimable parameters is based 

on it. In this section, the aim is to compare the two methods of selecting the parameters for 

calibration, and after that to analyse the effect of the threshold value. Accordingly, no cut-off 

value for the threshold is considered here: the most estimable parameters are selected 

sequentially as described in the section 4.2.2. 

4.2.4.3 Identifiability assessment 

The next step is to assess the performance of calibration based on the most important and 

most estimable parameters. For this reason, APMC (adaptive population Monte Carlo) 

algorithm, which is detailed in chapter 2, is retained since it showed the best performance 

against the other methods. The minimum threshold at which the algorithm converges to the 

posterior is taken to be RMSE = 0.01℃. 
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At each calibration repetition, the discarded parameters are fixed at their true values. Since 

sensitivity and identifiability methods rank the first two parameters equally, the calibration is 

applied starting from three parameters. APMC is run 20 times on the three most influential 

parameters (𝑐𝑝,𝑐𝑜𝑛𝑐𝑊, 𝜆𝑝𝑜𝑙𝑊, and 𝑐𝑝,𝑐𝑜𝑛𝑐𝑆), and then run again for 20 times on the three most 

estimable parameters (𝑐𝑝,𝑐𝑜𝑛𝑐𝑊, 𝜆𝑝𝑜𝑙𝑊, and 𝑐𝑝,𝑐𝑜𝑛𝑐𝑅), and so on. 

For all the runs, the posteriors are centred on the true values of the parameters. The 

difference between one run and the other is just related to how spread the posterior is. 

Accordingly, the Jensen Shannon distance is a good indicator in this situation to describe how 

well the parameters are identified from the data. For the rest of this section, calibrating the most 

important parameters is called I-model, and calibrating the most estimable parameters is called 

E-model. Figure 4.4 shows the distances between the priors and the posteriors of 𝑐𝑝,𝑐𝑜𝑛𝑐𝑆 and 

𝑐𝑝,𝑐𝑜𝑛𝑐𝑅, which are the parameters that differ between the two models, in a form of boxplot. A 

boxplot combines five summary statistics that describe the data in one chart. The box shows the 

region where the interquartile range of the data exists: the data above first quartile (25 % centile) 

and below the third quartile (75 % centile). The horizontal line in the box represents the average 

value. The upper and lower ticks also called whiskers of the chart represent the minimum and 

maximum values in the data. It is obviously depicted that the difference between the prior and 

the posterior of 𝑐𝑝,𝑐𝑜𝑛𝑐𝑅 is much larger than that of 𝑐𝑝,𝑐𝑜𝑛𝑐𝑆. Given that both posteriors are 

centred on their true values as depicted in Figure 4.3, this means that the posterior of 𝑐𝑝,𝑐𝑜𝑛𝑐𝑅 

is much narrower than the posterior of 𝑐𝑝,𝑐𝑜𝑛𝑐𝑆 which means that it is more identifiable, even 

though it is estimated by Sobol method that 𝑐𝑝,𝑐𝑜𝑛𝑐𝑆 is more important than 𝑐𝑝,𝑐𝑜𝑛𝑐𝑅. Note that 

the first two parameters are ranked equally by the two methods, so the results of calibrating 

only those two parameters are not shown. 
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Figure 4.3: Posterior vs prior of Cp,concS and Cp,concR in set of three parameters 

 

Figure 4.4: JS distance in both models for Cp,concS and Cp,concR (set of three parameters) 

To validate the importance of 𝑐𝑝,𝑐𝑜𝑛𝑐𝑆 and 𝑐𝑝,𝑐𝑜𝑛𝑐𝑅, each one is calibrated alone without 

any other parameter. The two parameters can be correctly identified as depicted in Figure 4.5. 

Both parameters are similarly identifiable with a slight tendency for the 𝑐𝑝,𝑐𝑜𝑛𝑐𝑆 to be better 

estimated. 
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Figure 4.5: JS distance of parameter Cp,concS, and Cp,concR when estimated separately 

This validates the ranking of the Sobol method, and thus, it could be said that the reason 

behind not being able to well identify 𝑐𝑝,𝑐𝑜𝑛𝑐𝑆 in the Imodel is the interaction with other 

parameters. To investigate this even more, the JS distances of 𝑐𝑝,𝑐𝑜𝑛𝑐𝑊, and 𝜆𝑝𝑜𝑙𝑊 are computed 

for the two models as depicted in Figure 4.6. It shows that the JS distances of both parameters 

in the E-model are greater than those in the I-model, which means that 𝑐𝑝,𝑐𝑜𝑛𝑐𝑊, and 𝜆𝑝𝑜𝑙𝑊 in 

the E-model can be identified better than in the I-model. 

 

Figure 4.6: JS distance in both models for Cp,concW, and λpolW (set of three parameters) 

To complement this analysis, ID and DIC are applied to both models (Figure 4.7). The 

plot on the left shows the DIC for each model. The whiskers of each model do not intersect 

which means that the minimum DIC obtained with the I-model is greater than the maximum 
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value obtained with the E-model. This shows that the E-model performs better in terms of fitting 

to the data than the I-model, which is consistent with the results, attained from assessing the 

identifiability of each parameter. 

The plot on the right in Figure 4.7 shows the ID of both models for the set of three 

parameters (Table 4.1). The greater the value of ID, the larger the difference between the 

minimum threshold and the RMSE of the posteriors propagation as explained in section 4.2.2. 

Both models show that there is a certain degree of un-identifiability, where the average of the 

I-model and the E-model results are 0.09℃ and 0.07℃ respectively. For a perfectly identifiable 

model, this value should be zero. The E-model is less than that corresponding to the I-model, 

which means that E-model is more identifiable than the I-model. The RMSE of the propagation 

of the I-model and E-model can be extracted from the ID by adding 0.01 ℃ (the minimum 

threshold used in calibration) to the values of ID. This is done for the average ID values, and 

yields an RMSE of 0.1 ℃ and 0.08 ℃ for the I-model and E-model respectively, which is a 

20 % difference. This difference is not negligible and thus, it can be said that E-model is better 

fitting to the data than I-model. 

  

Figure 4.7: DIC and ID of both models for the set of three parameters 

The identifiability of the two most estimable and important parameters (𝑐𝑝,𝑐𝑜𝑛𝑐𝑊, and 

𝜆𝑝𝑜𝑙𝑊) in each parameter set, starting from three ending with six parameters, is depicted in 

Figure 4.8. With four parameters, the additional parameter in the E-model is the thermal 

conductivity of polystyrene Styrofoam, 𝜆𝑝𝑜𝑙𝑆, which is added to the ground floor of the house. 

This parameter possesses some degree of interaction with 𝜆𝑝𝑜𝑙𝑊 which explains why the degree 

of identifiability of 𝜆𝑝𝑜𝑙𝑊 decreases in the E-model after including 𝜆𝑝𝑜𝑙𝑆. It is also evident that 
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𝜆𝑝𝑜𝑙𝑆 does not have significant interaction with 𝑐𝑝,𝑐𝑜𝑛𝑐𝑊, which explains why the identifiability 

of the latter remained almost the same from set three to set four. 

In the I-model, the identifiability of 𝜆𝑝𝑜𝑙𝑊 did not significantly vary since the additional 

parameter at set four is 𝑐𝑝,𝑐𝑜𝑛𝑐𝑅, which does not have a significant degree of interaction 

with 𝜆𝑝𝑜𝑙𝑊. This also explains why the variation in the identifiability of 𝑐𝑝,𝑐𝑜𝑛𝑐𝑊 is not 

significant, which is consistant with the results of the orthogonalisation method that states that 

the degree of interaction between these two parameters is small. 

Having said that, the E-model performs worse than the I-model in identifying the 

conductivity of polystyrene wallmate. It is still better than the I-model in identifying the specific 

heat of concrete wall since with this set of parameters the specific heat of the concrete screed 

which is more correlated to the conductivity of the polystyrene wallmate, is not calibrated. 

  

Figure 4.8: JS distance of 𝜆𝑝𝑜𝑙𝑊 (left), and 𝑐𝑝,𝑐𝑜𝑛𝑐𝑊 (right) with all sets in both models 

The additional parameter at set five in the I-model is 𝑡𝑐𝑜𝑛𝑐𝑊. This causes an additional 

degree of un-identifiability on the estimation of 𝑐𝑝,𝑐𝑜𝑛𝑐𝑊. This also explains why the 

identifiability of 𝜆𝑝𝑜𝑙𝑊 did not show significant variation, since there is no direct interaction 

between these two parameters. 

On the contrary, the additional parameter at set five in the E-model is 𝑐𝑝,𝑐𝑜𝑛𝑐𝑆. 

Accordingly, the identifiability of 𝑐𝑝,𝑐𝑜𝑛𝑐𝑊 decreased, however, the conductivity of polystyrene 

wallmate identifiability is the same. At this set, the E-model performs better than the I-model 

in identifying 𝑐𝑝,𝑐𝑜𝑛𝑐𝑊 since in the Imodel, there exists two parameters that seem to interact 
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with 𝑐𝑝,𝑐𝑜𝑛𝑐𝑊 that are: 𝑐𝑝,𝑐𝑜𝑛𝑐𝑆 and 𝑡𝑐𝑜𝑛𝑐𝑊, however, in the Emodel, 𝑡𝑐𝑜𝑛𝑐𝑊 is still not accounted 

for in calibration. On the contrary, the I-model performed better in identifying 𝜆𝑝𝑜𝑙𝑊 than the 

Emodel, since 𝜆𝑝𝑜𝑙𝑆 is still not present in the Imodel. 

In set six, the I-model includes 𝜆𝑝𝑜𝑙𝑆. Consequently, the identifiability of 𝜆𝑝𝑜𝑙𝑊 decreased 

as depicted in Figure 4.8 compared to an approximate similar identifiability for 𝑐𝑝,𝑐𝑜𝑛𝑐𝑊. In the 

Emodel, the additional parameter is the thermal bridge between the living room and the exterior 

and it caused no significant variation on 𝑐𝑝,𝑐𝑜𝑛𝑐𝑊 and 𝜆𝑝𝑜𝑙𝑊. Similar performance is obtained 

between both models in estimating these two parameters with a slight advantage for E-model 

to estimate 𝑐𝑝,𝑐𝑜𝑛𝑐𝑊. 

The average of the JS distance is estimated for the parameters. This average value 

represents the degree of identifiability in the posteriors. This is done for each calibration run. 

Figure 4.9 shows the average values as boxplots for the two models with an increasing number 

of parameters. It shows that the largest difference between the two models is with three 

parameters, and the difference becomes smaller with an increasing number of parameters. With 

four parameters, there is a slight difference between both models, where the median of the E-

model is greater than that of the I-model but the whiskers are close.  

This graph only gives a representative estimation about the difference between the two 

models. If two models have the same average value of the JS distance, it does not mean that 

both models will perform equally in fitting to the data. For example, if JS of an influential 

parameter is 1 and of an un-influential parameter is 0, then the average is 0.5, which is the same 

exact average if the JS of the two parameters are switched. Thus, these results need to be 

complemented by looking at the identifiability of the parameters separately on the one hand, 

and applying other indicators such as ID and DIC on the other hand. 
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Figure 4.9: Average over JS distances for each parameter set size 

Figure 4.10 shows the identifiability of each of the four parameters in set four in both 

models. It could be seen that the difference in the identifiability of 𝑐𝑝,𝑐𝑜𝑛𝑐𝑅 between the two 

models is not very significant. 𝜆𝑝𝑜𝑙𝑆 is estimated slightly better than 𝑐𝑝,𝑐𝑜𝑛𝑐𝑆, eventhough it is 

less influential. This reflects the importance of studying identifiability between the parameters 

prior to calibration. Since, the difference in the estimation of 𝑐𝑝,𝑐𝑜𝑛𝑐𝑊 in favour of E-model (E-

model estimates it better) is more significant than the difference in the estimation of 𝜆𝑝𝑜𝑙𝑊 in 

favour of I-model (I-model estimates it better), it could be said that the E-model would fit better 

to data than the I-model. 

 

Figure 4.10: JS distance of all the parameters in the set of four parameters 
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This is confirmed in Figure 4.11. The plot on the right shows the DIC of each model and 

it states that the E-model fits better to data. The one on the left shows the ID of each model and 

it states that the E-model has a higher degree of identifiability than the I-model. This is 

consistent with the observations extracted from Figure 4.9. The RMSE are also extracted as 

previously. The RMSE of the I-model is 0.106℃ and 0.095℃ respectively, which represents a 

10 % difference. The difference is not as significant as it was in the previous set. 

  

Figure 4.11: DIC and ID of both models for the set of four parameters 

For the set of five parameters, Figure 4.12 show that both models have very similar 

performance in terms of ID and DIC with a slight better performance for I-model, since the 

interquartile regions significantly intersect and the whiskers are also close to each other. The 

better estimation of 𝑐𝑝,𝑐𝑜𝑛𝑐𝑊 in the Emodel is in this case compensated by a better estimation 

of 𝜆𝑝𝑜𝑙𝑊 in I-model as depicted in Figure 4.13. The RMSE of the I-model and the E-model are 

0.116℃ and 0.119℃ respectively, which represents a negligible difference of 2.5% in favour of 

I-model. These RMSE values in addition to the data found in the boxplot mean that both 

rankings at this point behave similarly. 
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Figure 4.12: DIC and ID of both models for the set of five parameters 

 

Figure 4.13: JS distance of all the parameters in the set of five parameter 

For the last set of parameters (Figure 4.14), all the parameters have more or less similar 

degrees of identifiability except for 𝑐𝑝,𝑐𝑜𝑛𝑐𝑊 which is better estimated in the Emodel as 

discussed previously. Consequently, both models perform similarly in terms of ID and DIC 

with a slight advantage for the E-model as depicted in Figure 4.15. In terms of RMSE, the 

difference is 7 % on average in favour of the E-model. The reason behind this slight increase in 

the difference percentage between the set of five parameters and the set of six parameters is as 

discussed earlier, the addition of the thickness of concrete wall, which has direct interaction 

with its specific heat. 
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Figure 4.14: JS distance of all the parameters in the set of six parameter 

  

Figure 4.15: DIC and ID of both models for the set of six parameters 

It is also worth noting that identifiability of the parameters other than the three most 

estimable is significantly lower than these three: the difference could be clearly visualised in 

Figure 4.10, Figure 4.13, and Figure 4.14. Referring back to Table 4.1, the estimability threshold 

corresponding to the first three estimable parameters is 0.04 and then decreases to 0.011 for the 

set of four parameters. Yao et al. (2003) used a value of 0.04 as a threshold below which the 

parameters are discarded. However, this value was selected arbitrarily, and it is not proven that 

this is the recommended value, since it might vary with different case studies. For this case 

study, it seems like a threshold of 0.04 is able to classify the parameters that can be easily 

estimated from data and the parameters that are more difficult to estimate. 
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4.2.5 Conclusion 

In this section, an identifiability analysis based on orthogonalisation is implemented and 

applied to a virtual case study. Morris’ method followed by Sobol’s method is applied to screen 

out the less influential parameter and to ensure a correct rank of the most influential parameters. 

Orthogonalisation is then applied on the Sobol indices matrix. 

A comparison is then established between calibrating the most important parameters 

ranked by Sobol method and the most estimable parameters re-ranked by the orthogonalisation 

method. To ensure the reliability of this comparison, and to diminish the effect of the calibration 

variability on the results, each calibration is repeated 20 times. Three different indicators are 

used: Jensen-Shannon distance between the priors and the posteriors to quantify the 

identifiability of each parameter, ID distance that is used to quantify the identifiability of the 

model regardless of each parameter separately, and DIC that estimates how the calibrated model 

fits to data. 

Based on these indicators, it is shown that calibrating the parameters based on estimability 

rank is better than taking the most important ones. Significant interaction may exist between 

the most important ones, which can be identified and accounted for through the identifiability 

analysis. If more parameters are included, the estimation based on both rankings become 

similar: the interaction avoided between the first more estimable parameters appear again with 

more parameters included. 

No cut-off value for the orthogonalisation method threshold is identified, since the aim is 

to compare both rankings. In fact, the orthogonalisation method terminates when a threshold 

value is reached, which means that the parameters that are not ranked are considered not 

estimable. In this case study, it is shown that the parameters that were more accurately estimated 

than the others are those ranked by the orthogonalisation method with a threshold of 0.04. This 

is consistent with the work of Yao et al. (2003), but further study is needed to confirm this 

value. It is very useful if a generalised value of this threshold could be recommended, since this 

helps the calibration practitioners to select the appropriate number of parameters for calibration.  

Moreover, the identifiability analysis in this chapter is coupled with Sobol sensitivity 

method. This is important for analysing the effect of the identifiability analysis where an 

accurate ranking of the parameters is required. However, in practice, this could not be feasible 

due to the Sobol method computational burden. In this case, it is very important to assess the 
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performance of the identifiability analysis if coupled with Morris method. This is not considered 

in this thesis, but it is an important study to be performed in the future. 

4.3 Effect of number of parameters 

Few studies focused on the effect of the number of parameters on the identifiability of the 

calibration approach and its computational cost. Chong and Menberg (2018) studied the effect 

of calibrating two to six parameters. The study was conducted on real data and not on virtual 

data, so the un-identifiability indicator was the increase in the posterior uncertainty. They found 

that un-identifiability problems occurred starting from calibrating four parameters. Kang and 

Krarti (2016) investigated the influence of the number of parameters on the posteriors. They 

calibrated one to 11 parameters. The root mean square error, coefficient of variation, and mean 

bias error were used to indicate the dispersion and uncertainty in the posteriors. They found that 

the posteriors errors and uncertainties increase gradually with the increase of the number of 

parameters. They did not propose what the best number of parameters corresponding to their 

study is. 

4.3.1 Methodology and criteria 

The aim is to evaluate the effect of the parameters number on the parameters estimation 

on the one hand and on the model predictive performance on the other hand. To do that, an 

increasing number of parameters is considered. This means that, firstly, the most estimable 

parameter is calibrated, then the two most estimable are calibrated and so on. 

The ranking based on estimability, which is attained after applying the orthogonalisation 

method is used instead of the importance ranking, since it showed better performance in the 

previous section. Moreover, applying it on another case study (described below) is essential to 

validate its performance on the one hand and to assess the best value of the cut-off threshold. 

In the previous section, it is shown that a cut-off threshold of 0.04 is valid to cluster the 

estimable parameters from the non-estimable ones. It is important to assess the generalisability 

of this value with different case studies.  

The case study used in chapter 2 is retained. Accordingly, it is not needed to run again a 

sensitivity analysis on the parameters. The results of Sobol method are used as a basis for the 

identifiability method. 
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Since, the calibration is stochastic and different results might be obtained with different 

runs, the calibration is repeated 20 times for each set of parameters. This overcomes the 

stochasticity of calibration and makes the comparison more reliable. 

Virtual data based on known values of the parameters are generated. This allows analysing 

how well each parameter is estimated and how close it is to its true values, which is not 

attainable with real measurements. At each repetition of calibration, the parameters that are not 

included in calibration are retained to their true values. To analyse the identifiability of each 

parameter, the Jensen-Shannon distance is used. 

The deviance information criterion (DIC) is also retained in this section to quantify the 

ability of each calibrated model to fit well to the data. In order to account for the uncertainties 

in the discarded parameters and to be able to analyse the relation between estimating few 

parameters versus estimating more parameters on the model predictive performance, the 

uncertainties of the calibrated and un-calibrated parameters are propagated. Firstly, before 

running any calibration, the priors of all the parameters are propagated and the DIC value is 

recorded. Secondly, the first most estimable parameter is calibrated with all the other parameters 

set at their true value. This ensures that calibration is performed in controlled conditions: no 

noise or uncertainties are present which facilitates the analysis. Then the posterior of the most 

estimable parameter along with the priors of the rest are propagated and the DIC values are 

recorded. This is applied to all the parameters sequentially. 

4.3.2 Results and discussion 

The orthogonalisation method is applied to the sensitivity vectors of the Sobol method. 

Table 4.2 shows the results of the importance and estimability ranking with different cut-off 

values of the threshold. 
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Table 4.2: Sobol and estimability ranking 

Rank Sobol method Orthogonalisation Threshold 

1 Ventilation flowrate (�̇�) Ventilation flowrate (�̇�)  

2 Heating power (𝑄𝑝) 
Specific heat of concrete wall 

(𝑐𝑝,𝑐𝑜𝑛𝑐𝑊) 
0.898 

3 
Specific heat of concrete wall 

(𝑐𝑝,𝑐𝑜𝑛𝑐𝑊) 
Heating power (𝑄𝑝) 0.427 

4 
Conductivity of polystyrene 

Wallmate (𝜆𝑝𝑜𝑙𝑊) 
Albedo (𝐴𝑙𝑏) 0.304 

5 Internal gains (𝑄𝑑) 
Conductivity of polystyrene 

Wallmate (𝜆𝑝𝑜𝑙𝑊) 
0.196 

6 Albedo (𝐴𝑙𝑏) Internal gains (𝑄𝑑) 0.04 

7 
Specific heat of concrete screed 

(𝑐𝑝,𝑐𝑜𝑛𝑐𝑆) 

Conductivity of polystyrene 

Styrofoam (𝜆𝑝𝑜𝑙𝑆) 
0.015 

8 
Conductivity of polystyrene 

Styrofoam (𝜆𝑝𝑜𝑙𝑆) 

Window heat transfer coefficient 
(𝑈𝑤) 

0.0087 

9 Thickness of concrete wall 𝑡𝑐𝑜𝑛𝑐𝑊 
Specific heat of concrete screed 

(𝑐𝑝,𝑐𝑜𝑛𝑐𝑆) 
0.007327 

10 
Thermal bridge living room to 

exterior (𝜓) 

Thickness of concrete wall 

𝑡𝑐𝑜𝑛𝑐𝑊 
0.0066 

11 
Window heat transfer coefficient 

(𝑈𝑤) 

Specific heat of reinforced 

concrete (𝑐𝑝,𝑐𝑜𝑛𝑐𝑅) 
0.006 

12 
Thickness of polystyrene Wallmate 

(𝑡,𝑝𝑜𝑙𝑊) 
Infiltration flowrate (𝑖𝑛𝑓) 0.00265 

13 
Specific heat of reinforced concrete 

(𝑐𝑝,𝑐𝑜𝑛𝑐𝑅) 

Thermal bridge living room to 

exterior (𝜓) 
0.0016 

14 Glass wool conductivity (𝜆𝑔𝑤) Slab joist specific heat (𝑐𝑝,𝑠𝑗) 0.001 

15 Slab joist specific heat (𝑐𝑝,𝑠𝑗) 
Thickness of polystyrene 

Wallmate (𝑡,𝑝𝑜𝑙𝑊) 
0.0008 

Figure 4.16 shows the estimability ranking against the Sobol method ranking of the first 

15 parameters. The difference is not very huge. The cluster of the first fifteen parameters is the 

same except for only one parameter that is the conductivity of glass wool (𝜆𝑔𝑤), which is ranked 

18th by the orthogonalisation method. 
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Figure 4.16: Sobol ranking vs orthogonalisation ranking for the first 15 parameters 

Calibration with APMC is applied to different sets of parameters starting from the most 

estimable to the least estimable. Figure 4.17 shows the total identifiability of the parameters for 

each parameter set: the average over the JS distances over all the parameters is taken. It clearly 

depicts that the total identifiability decreases with increasing number of parameters as expected. 

The reason is that the less estimable parameters have lower values of JS. Thus, as more low JS 

values are included (when including more parameters), the average JS value decreases. 

 

Figure 4.17: Parameters identifiability with increasing parameters number (orthogonalisation 

ranking) 
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The decrease in the total identifiability explained by the average JS distance does not 

necessarily mean that the identifiability of the most estimable parameters decrease. It might 

mean that the included parameter is very much un-identifiable due to its unimportance and thus 

it dragged down the total identifiability of the parameters set. 

It is thus important to study the identifiability of the most estimable parameter with 

increasing parameters set size. Figure 4.18 shows the identifiability of the ventilation flowrate. 

It is clearly depicted that it is mostly identifiable when calibrated alone, however, it does not 

decrease continuously with increasing number of parameters. Its identifiability depends on the 

type of parameter that is included. Two significant decreases can be visualised. The first is when 

the third most estimable parameter (heating power) is included which is expected, since the heat 

loss through ventilation and the heat gain through the electrical power are included in the same 

way within the building energy model. In the fifth scenario of the virtual data, only the 

ventilation flow rate is considered and there is no heating power. This explains why the 

interaction between these two parameters is not perfectly linear. The second significant decrease 

is when the fourth parameter (solar albedo) is included. The reason is that in the fifth scenario, 

the shutters are opened which means that the solar gains will have influence on the interior 

temperature. Therefore, the solar albedo becomes important and it interacts significantly with 

the ventilation flowrate. 

On the other side, no significant decrease is depicted when the second most estimable 

parameter (the specific heat of concrete wall) is included. The explanation to this is that the 

specific heat of the concrete wall is found to be very influential in the second and third scenarios, 

where the building is in free evolution and there is neither heating power nor ventilation. 

Consequently, the interaction between the specific heat of concrete wall and the ventilation is 

not very significant. Similarly, including the sixth, seventh, and eighth most estimable 

parameter (internal gains, conductivity of the insulation in the ground and the heat transfer 

coefficient of the window) did not affect the identifiability of the ventilation flow rate for the 

same reason. However, it is depicted that with an increasing number of parameters, the 

variability of the JS distance of the ventilation flowrate with different calibration runs increases 

as clearly shown from the wider interquartile and whiskers. 
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Figure 4.18: Identifiability of the ventilation flowrate 

The threshold value used in the orthogonalisation method is analysed from two points of 

views. The first is the identifiability of the parameters ranked above and below this value, and 

the second is the model predictive performance after calibrating the parameters ranked above 

and below this value.  

There are six parameters ranked with a threshold of 0.04: ventilation flowrate, heating 

power, internal gains, solar albedo, the specific heat of concrete, and conductivity of 

polystyrene wallmate. Figure 4.19 shows the identifiability of each parameter after calibrating 

a subset of 15 parameters. The ventilation flowrate, heating power, internal gains, solar albedo, 

and the specific heat of concrete wall are more identifiable than the rest. The conductivity of 

polystyrene wallmate has slightly better identifiability than the rest. The other parameters are 

found to be less identifiable. In this figure, there exists no clear clusters of parameters as shown 

in the case study of the previous section where the parameters that are ranked as the most 

estimable with a threshold of 0.04 are clearly more identifiable than the rest. This is not the case 

in this example. However, beyond six parameters, all the other parameters are found to have 

zero identifiability for some calibration runs: their posteriors are wider than their priors which 

is explained by retaining a zero for the JS distance as depicted in Figure 4.19. This shows that 

the parameters ranked above a threshold of 0.04 tend to be more identifiable than the rest. 
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Figure 4.19: Identifiability of parameter subset of 15 

Calibrating only the most estimable parameter is the most identifiable calibration, 

however, other parameters are discarded which affects the capability of the calibrated model to 

fit well to data. Thus, accounting only for identifiability is not sufficient to have a better model. 

Even if the identifiability slightly decreases, the addition of another parameter could lead to a 

better model predictive performance. Figure 4.20 shows the DIC variation as a function of the 

number of parameters. The propagation of the priors shows the highest values of DIC since no 

parameter is calibrated yet. A significant decrease in the value of DIC is observed after 

calibrating the most estimable parameter: it is the largest variation shown. The reason is that 

the ventilation flowrate (the most estimable parameter) has the most influence on the data. It is 

observed that the DIC keeps on decreasing until the fourth parameter is included: calibrating 

only the most estimable parameter is less accurate than calibrating the three most estimable 

parameters. The DIC of four parameters is slightly higher than that of three parameters. This is 

explained in the previous paragraph by the decrease in the ventilation flowrate identifiability. 

Beyond four parameters, the variation in the DIC is not very significant and they are very close 

to the performance of calibrating three parameters. However, with more than nine parameters, 

the minimum values of DIC are very low compared to what is depicted with less parameters. 

Moreover, the maximum values depicted with these sets are relatively high. The reason behind 

this relatively significant variability as also shown in the identifiability of the ventilation 

flowrate in Figure 4.18 is that with more parameters, the probability of having different valid 

combinations of values is higher in addition to the randomness behaviour in the calibration 

process. 
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Figure 4.20: Model predictive performance with an increasing number of parameters 

It is good to complement the DIC with the RMSE criterion since it gives an additional 

insight because it represents the difference between the simulations and data (in ℃). In this way, 

it is easier to draw conclusions about how good or bad the fit is. Figure 4.21 shows the model 

predictive performance of the calibrated models with an increasing number of parameters in 

term of RMSE. The same behaviour is depicted as with DIC. For instance, for the subset of 10 

parameters, the lower whisker corresponds to RMSE of 0.102℃, while the upper whisker 

corresponds to an RMSE of 0.15℃. This difference is not negligible; especially, the RMSE of 

the priors propagation is 0.2℃. To go further, the calibration runs corresponding to these two 

whiskers are investigated more in depth: their posteriors estimation and the predicted 

temperature profile are analysed in the following paragraph. These two runs are retained since 

they seem to record the highest difference in RMSE and DIC among all other sets. 
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Figure 4.21: Model predictive performance in RMSE 

Figure 4.22 shows the posteriors for these two calibration runs, the posteriors on the left 

corresponds to the maximum DIC, and the ones on the right correspond to the minimum DIC. 

It is clearly depicted that the posteriors on the left are more uncertain and some parameters have 

slightly wider posteriors than the priors, which means that samples that are further from the true 

values are retained in the posteriors. On the contrary, the posteriors on the right are narrower 

towards the true values, which means that the retained samples are mostly closer the true values. 

Given that the convergence criterion for all the calibration runs is similar, this means that both 

posteriors yielded similar accuracy during calibration. This highlights the presence of 

overparametrisation problem occurring with these sets (subsets of more than eight parameters). 

Overparametrisation is more significant in the figures on the left than in the figures on the right. 
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Figure 4.22: Posteriors vs priors in two calibration runs with a subset of ten parameters (left: high 

DIC; right: low DIC) 

Having visualised the variabilities in larger sets of parameters in identifying the posteriors, 

it is important to assess how significant this variability is in estimating the quantity of interest, 
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which is in this case the temperature profile. The RMSE values showed that these variabilities 

could be significant, but it is better to depict the temperature profile. The posteriors belonging 

to the two calibration runs presented in Figure 4.22 are propagated (Figure 4.23). The difference 

between the two calibration runs appears not to be substantial: the two propagated curves 

belonging to calibration runs 1 and 2 are close to each other. This is actually due to the fact that 

the priors themselves are close to the virtual data (RMSE 0.2℃). In fact, the two propagated 

curves are significantly different if you look at them relative to the prior propagation (especially 

for the first two scenarios). 

Accounting only for the posteriors propagation for the two runs without looking at the 

prior, one can say that the difference in the predicted temperature profile is not significant. 

However, compared to the prior, the reduction in the RMSE is non negligible. Accordingly, it 

could be said that the variability present in the set of ten parameters is not negligible. 
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Figure 4.23: Propagation of prior and posterior of two calibration runs in set of 10 parameters
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To summarise, calibrating up to eight parameters in this case study showed no significant 

variabilities and randomness. In terms of model predictive performance, the three most 

estimable parameters (ventilation flowrate, specific heat of concrete wall and the heating 

power) that are ranked with a threshold of 0.427 showed the best performance, even though it 

is not significantly better than calibrating more parameters. For example the average value in 

the box plot of the set of three parameters lies within the interquartile of the box plot of the six 

parameters, and the minimum value of both is similar. There is no significant difference 

between calibrating 4, 5, 6, 7, and 8 parameters: the corresponding DICs and RMSEs are very 

close. 

Thus, it could be said that for a stable calibration performance with repetition, calibrating 

up to eight parameters in this case study is reasonable where the randomness effect of 

calibration is not significant, the best performance is with three parameters. The threshold value 

(0.04) showed no clear relation to the model predictive performance. Stability and similar 

performance is observed when calibrating parameters ranked below and above 0.04. More case 

studies need to be analysed in order to either set a general recommendation for the threshold 

value or to show that it varies with different cases. 

4.3.3 Conclusion 

In this section, the effect of the number of parameters on the calibration results in 

controlled conditions is analysed. The parameters are ranked based on the results of the 

sensitivity-based identifiability analysis. Calibration is executed sequentially, firstly, the most 

estimable parameter is calibrated, then the two most estimable parameters are calibrated and so 

on until fifteen parameters are included. 

The effect of the parameters number is evaluated based on the identifiability in the 

posteriors using the JS distance on the one hand and on the calibrated model predictive 

performance using the DIC criterion on the other hand. The first six estimable parameters are 

shown to be more identifiable than the rest, however, the three most estimable parameters 

yielded the best model predictive performance. Beyond eight parameters, the calibration results 

started to be more variable due to the more possible parameters combinations. Accordingly, for 

this case study, three parameters could be considered as a good choice for the number of 

parameters. Eight parameters are also a good choice since the difference between their 

corresponding results and the results of calibrating three parameters is not very significant. A 



 

166 

 

threshold value of 0.04 is convenient for this case study to distinguish the identifiable 

parameters from less identifiable ones, but in terms of model predictive performance, 

calibrating parameters ranked below this threshold showed similar performance. Thus, further 

analysis should be conducted on this value. 

4.4 Chapter conclusion 

The objective in the first part of the chapter is to analyse the importance of ranking the 

parameters in terms of estimability compared to ranking them in terms of importance, and how 

each influences the calibration results. For this, Sobol’s method is used for importance ranking, 

and then orthogonalisation method is considered for estimability ranking. The study showed 

that calibrating the most estimable parameters yielded better results in terms of identifiability 

and in terms of fitting to data than calibrating the most influential parameters. 

It should be noted that in this study, when the most estimable parameters are taken into 

account, the influential parameters that are discarded are set at their true values. In reality, the 

discarded parameters could be uncertain and they could be set at false values. Accordingly, this 

might affect the ability of the calibrated model to fit to the testing data if its conditions are 

different than the training data. The current study did not tackle this issue because perfectly 

controlled conditions were assumed. A possible approach to study this would be to fix the 

discarded parameters at false values and repeat the same methodology. 

In the second part of the chapter, the objective is to analyse the performance of calibration 

with different numbers of parameters. In the retained case study, three parameters yielded the 

best performance. Calibrating eight parameters is not significantly worse than calibrating only 

three parameters. More parameters showed significant variabilities in the calibration results 

with repetitions. It is also concluded that there is no clear relations between the 

orthogonalisation method threshold and the model predictive performance of calibration, 

however, a value of 0.04 is found to provide a reasonable performance: it does not include too 

many parameters, which would yield worse performance. 
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Chapter 5 Adaptive random forest 

 

 

 

 

 

 

 

 

 

 

In chapter 3, it was shown that ABC-RF is able to yield better performance than other 

methods with small number of model evaluations. In this chapter more investigation is 

done on this method. Accordingly, a new approach called adaptive random forest (ARF) 

that is based on ABC-RF is proposed. Detailed explanation about the principle of ARF is 

firstly provided. Then it is applied on different virtual case studies and compared with the 

methods used in chapter 3. Finally, all the methods used in this thesis are applied on a real 

case study with on-site measurements. 
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Résumé du chapitre 

Les méthodes bayésiennes existantes nécessitent un nombre non négligeable de calculs de 

vraisemblance, c'est-à-dire un nombre non négligeable d'évaluations de modèles. Cela les rend 

inefficaces sur le plan informatique, sauf si un métamodèle est constitué pour remplacer 

l'original, au prix d'une erreur et d'une incertitude supplémentaires, ce qui affecte la précision 

de l'ensemble du processus de calibrage. Ainsi, il est intéressant de converger vers des résultats 

précis avec un nombre réduit de calculs de vraisemblance. ABC-RF, une méthode récemment 

introduite, semble selon les résultats du chapitre 3 avoir un potentiel d'approximation des 

distributions a posteriori intéressant, avec un nombre limité d'évaluations de modèles. 

Cependant, elle devient moins précise que les autres méthodes avec davantage de simulations. 

Dans ce chapitre, l'objectif est d’étudier des solutions aux problèmes des méthodes de 

calibrage, en particulier le problème lié à la charge de calcul. A cette fin, en se basant sur les 

développements récents dans le domaine et particulièrement sur l’association entre le calibrage 

bayésien et les forêts aléatoires (ABC-RF), un nouvel algorithme appelé forêt aléatoire 

adaptative (ARF) est proposé. Cet algorithme bénéficie de ABC-RF car il ne nécessite pas la 

définition de nombreux hyper-paramètres, et de l'échantillonnage séquentiel de Monte Carlo 

car il échantillonne à partir de distributions plus proches de la postérieure plutôt que 

d'échantillonner à partir des distributions initiales (priors), ce qui le fait converger vers les 

postérieurs avec moins d'évaluations de modèles. De plus, ARF, avec l'échantillonnage 

séquentiel adapté, évite la limitation d'extrapolation d'ABC-RF. 

La méthode proposée est appliquée sur une étude de cas virtuelle avec cinq distributions 

initiales différents : des distributions larges, des distributions précises et des distributions 

décalées des vraies valeurs. Les indicateurs utilisés sont les mêmes que ceux utilisés au chapitre 

3 lors de la comparaison de différentes méthodes bayésiennes. Les résultats ont montré que 

cette méthode peut obtenir des estimations très précises des vraies valeurs et par conséquent 

une bonne performance prédictive du modèle avec un petit nombre d'évaluations du modèle 

(pas plus de 3000). La méthode est également comparée à celles présentées au chapitre 3 et elle 

a montré une efficacité de calcul considérablement meilleure (plus de 10 fois plus rapide que 

certaines autres méthodes). 

Enfin, toutes les méthodes sont appliquées à un cas d'étude réel avec un profil de 

température mesuré expérimentalement. Le calibrage a permis d’améliorer la performance 
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prédictive du modèle sur les données d'entraînement et de test avec tous les algorithmes utilisés 

dans ce chapitre. Des performances relatives similaires se retrouvent donc aussi bien sur des 

données réelles que sur des données virtuelles. Cependant, ARF s'avère diverger avec un 

nombre croissant d'itérations, ce qui n'est pas le cas des autres algorithmes. Mais dans cette 

évaluation, le nombre d’arbres et la taille des feuilles n’ont pas été augmentés en fonction du 

nombre de simulations. Davantage d'investigations doivent être effectuées sur cette méthode 

d'ARF pour améliorer ses performances dans des conditions non contrôlées, et vérifier sa 

convergence. Pour le moment, en l’absence de cette vérification, APMC pourrait être le 

meilleur choix parmi ceux illustrés dans cette thèse. ARF a montré un potentiel par rapport aux 

autres méthodes avec un nombre limité d’évaluations, mais cela doit être confirmé à partir 

d’autres études de cas. 
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5.1 Introduction 

Existing Bayesian methods require a non-negligible number of likelihood computations, 

which means a non-negligible number of model evaluations. This makes them computationally 

inefficient except if a metamodel is trained to replace the original one, under the cost of adding 

additional error and uncertainty which affects the accuracy of the whole calibration process. 

Thus, it is interesting if precision could be reached with a reduced number of likelihood 

computation. ABC-RF, a recently introduced method, is shown in chapter 3 having a potential 

in approximating the posteriors with a limited number of model evaluations. Moreover, ABC-

RF overcomes the difficulty of choosing appropriate summary statistics for the data, and it does 

not require the definition of a distance function or a minimum threshold as it is the case for 

other ABC methods. However, with ABC-RF all samples are generated from the priors and 

cannot be extrapolated outside the ranges of the priors. 

In this chapter, the objective is to tackle the disadvantages inherited with the calibration 

methods particularly the problem related to computational burden. To this end, based on recent 

development in the field and particularly on ABC-RF, a new algorithm called adaptive random 

forest (ARF) is proposed. This algorithm benefits from ABC-RF because it does not require the 

definition of many hyper-parameters, and from sequential Monte Carlo sampling because it 

samples from distributions closer to the posterior rather than sampling from the priors, which 

makes it converge to the posteriors with less model evaluations. Moreover, ARF, with the 

adapted sequential sampling, avoids the extrapolation limitation of ABC-RF. 

The proposed method is applied to virtual and real in-situ data and its performance is 

compared to other calibration methods presented in chapter 3 in terms of accuracy and 

computational efficiency. 

5.2 Motivation 

ABC-RF has a significant advantage against other algorithms: it requires less hyper-

parameters and these parameters are easier to tune. The hyper-parameters in ABC-RF are 

related to those required to train the random forest such as the number of trees, leaf size, etc. In 

fact, there exists numerous applications of random forests in the literature, including some clear 

recommendations concerning these hyper-parameter. Moreover, these hyper-parameters can 

easily be tuned. One can train as many random forests as needed for tuning purposes without 
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the need to launch any additional BEM simulation. However, the structure of the other 

approaches necessitates to sample and go back to the model iteratively which requires a whole 

new set of model evaluations. One may say that this could be avoided if the original model was 

replaced by a metamodel and thus, tuning would become possible with only one data set 

generated just like ABC-RF. However, it can be argued that using a metamodel makes the 

whole problem more uncertain and using the original model is definitely favoured. ABC-RF 

also avoids the difficulty inherited in ABC approaches to select a small number of sufficient 

summary statistics. This is considered one of the main advantages of ABC-RF over other 

algorithms. This is why it is mentioned in this section, however, the selection of sufficient 

summary statistics is not a very critical problem with BEM applications in the case of time 

series data, where the RMSE could be a sufficient. 

There are some problems with ABC-RF concerning the accuracy of the generated 

posteriors and their variability with repetitions. Despite this, it is shown in chapter 3 that ABC-

RF has a potential with relatively small data set size (Akkari et al. 2022). In this section, a new 

method, adaptive random forest (ARF), based on ABC-RF is proposed. This method applies 

the sequential sampling techniques to ABC-RF so that more samples from the posterior regions 

are generated. Accordingly, ARF benefits from all the advantages of ABC-RF and solves its 

variability and accuracy issues, but under the cost of adding some new hyper-parameters that 

are detailed in the following sections. 

5.3 Principle 

Random forests require large data sets to solve the variability issues that it might suffer 

from. Raynal et al. (2017) recommended a default choice of 100,000 data set samples and 

suggested to consider a larger data set if the variabilities are non-negligible. This might decrease 

the variabilities but under the cost of computational burden. A better way is that, instead of 

generating the data set in one batch, it could be generated adaptively. The algorithm is initialised 

by training a random forest on a data set {𝜃1:𝑃
1 , … , 𝜃1:𝑃

𝑁1
; 𝑦1, … , 𝑦𝑁1

} of size 𝑁1. The expectation 

and variance of the parameters distributions are extracted like in ABC-RF. This serves as the 

first iteration of the algorithm. In the subsequent iterations 𝑡 = {2,… , 𝑇}, new samples 𝜃𝑡 =

(𝜃1:𝑃
1 , … , 𝜃1:𝑃

𝑛𝑡
) of size 𝑛𝑡 are generated from the distributions of the previous iteration (𝑡 − 1). 

These samples 𝜃𝑡 with their corresponding outputs 𝑦𝑡 = (𝑦1, … , 𝑦𝑛𝑡
) are then concatenated 
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with the samples of all the preceding iterations to form a new data set of size 𝑁𝑡. This allows 

to adaptively generate samples from regions closer to the posteriors than to the priors. 

In fact, ARF does not generate samples directly from the parameters distributions: the 

samples are drawn from uniform PDFs constructed over the ±3 𝜎 of these distributions (±3 𝜎 

corresponds to 99.7 % confidence interval). The underlying reason is that sampling from the 

tails of a normal distribution is significantly less probable. Instead, if it were replaced with a 

uniform distribution constructed over its ±3 𝜎, it would become more probable to draw the 

samples that are in the tails. This is important if the true value of the parameter lies in the tails 

of the priors. One can say that if a sufficient number of samples are generated, the tails could 

be explored. This could be argued that the aim of ARF is to reach convergence with as few 

model evaluations as possible, and this is why with ARF a small number of samples are 

generated at each iteration, so a uniform distribution is a better choice to well explore the whole 

parameter space even in the tails. In this thesis, the boundaries of the uniform distribution is 

called the sampling bounds, and the value that is multiplied by the standard deviation is called 

the search parameter. 

Choosing a fixed value for the search parameter makes the algorithm prone to the problem 

of extrapolation: it might be difficult to draw samples outside the range of the priors. This could 

be problematic if the true value of the parameter is not inside the prior range. To overcome this 

issue, the sampling bounds of the uniform distribution from which samples are drawn at each 

iteration are adaptively modified as follows: 

 𝑈𝑡[𝐵𝑙
𝑡 , 𝐵𝑟

𝑡] = {
[𝜇𝑡(𝑌) − 𝑘𝑡 ∙ √𝑉𝑡(𝑌) ;  𝜇𝑡(𝑌) + 3 ∙ √𝑉𝑡(𝑌) ]         𝑖𝑓 𝑥𝑡 < 0.5

[𝜇𝑡(𝑌) − 3 ∙ √𝑉𝑡(𝑌) ;  𝜇𝑡(𝑌) + 𝑘𝑡 ∙ √𝑉𝑡(𝑌) ]         𝑖𝑓 𝑥𝑡 > 0.5
 (5.1) 

where 𝐵𝑙 and 𝐵𝑟 are the left and right sampling bounds of the uniform distribution 𝑈𝑡[𝐵𝑙 , 𝐵𝑟]. 

𝑥𝑡 represents the distance from the expected distribution value estimated at the current iteration 

𝜇𝑡(𝑌) to the sampling bounds of the distribution of the previous iteration [𝐵𝑙
𝑡−1, 𝐵𝑟

𝑡−1]. The 

distance is then normalised by the difference between the sampling bounds as follows: 

 𝑥𝑡 = −
𝜇𝑡(𝑌) − 𝐵𝑙

𝑡−1

𝐵𝑟
𝑡−1 − 𝐵𝑙

𝑡−1  (5.2) 

𝑘 is the search parameter. Its default value is 3 since it accounts for 99.7 % confidence interval 

as introduced previously. The search parameter is used to identify the sampling bounds of the 
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current iteration: the bounds between which the samples of the subsequent iteration 𝑡 + 1 are 

generated. Depending on the value of 𝑥𝑡, the search parameter is identified. For example, if 

𝜇𝑡(𝑌) is closer to the left bound 𝐵𝑙
𝑡−1 which is represented by 𝑥𝑡 < 0.5 in equation (5.1), the 

default value of the search parameter is retained to determine the right bound 𝐵𝑟
𝑡, and the left 

bound 𝐵𝑙
𝑡 is determined by setting a non-default value for 𝑘. In this case, the value of 𝑘 is 

computed from the following expression: 

 𝑘𝑡 = −
𝐴1 − 𝐴2

2
× sin(arc tan(𝑎𝑥 − 𝑐)) +

𝐴1 + 𝐴2

2
 (5.3) 

This expression is used since it allows for k to change between two bounds 𝐴1 and 𝐴2 

following a monotonic nonlinear decrease with increasing x, which allows to widen or shorten 

the sampling bounds according to how close or far the distribution expected value is to the 

boundaries. 𝐴1 and 𝐴2 are the lower and upper asymptotes. The reason behind using a formula 

that has an upper and a lower bounds is that 𝑘 should neither be too small, which would induce 

the risk that the parameters space is not well explored nor to be too large with the risk that more 

samples and iterations are required which affects the computational efficiency of the algorithm. 

𝑎 and 𝑐 are the slope and location parameters. These parameters identify how the search 

parameter 𝑘 changes with 𝑥. 

The incorporation of an adaptively identified search parameter is essential to widen the 

sampling bounds and narrow them when necessary, so that the algorithm does not get stuck in 

local minimums. It also ensures that ARF can extrapolate outside the ranges of the priors. If the 

variances 𝑉𝑡(𝑌) and 𝑘𝑡 at a current iteration are both large, this will result in a very wide 

sampling bounds, which could be computationally problematic. Accordingly, the upper 

asymptote 𝐴1 is also updated adaptively at each iteration. The idea is that if the variance is very 

close to the variance of the prior, 𝐴1 could be reduced to �̂�1 as follows: 

 �̂�1
𝑡 = 𝐴1 (1 −

√𝑉𝑡(𝑌)

√𝑉𝑝𝑟𝑖𝑜𝑟
) (5.4) 

If the distribution at iteration 𝑡 is very similar to that of the prior such that �̂�1
𝑡  was found 

to be smaller than the lower asymptote 𝐴2, then 𝐴2 is chosen as the value for �̂�1
𝑡 . Moreover, if 

𝑘𝑡 is found bigger than �̂�1
𝑡 , then �̂�1

𝑡will be retained as the value for 𝑘𝑡. This modification ensures 

that the sampling bounds are not very wide while at the same time aiming at sufficient parameter 

exploration. 
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The steps of the proposed method are listed in algorithm 5.1. ARF is initialised with the 

prior distributions without the application of equations (5.3), and (5.4). Starting from the third 

iteration, these equations are introduced. The reason is that ARF without these improvements 

is capable of finding the true values of the parameter even if they lie in the boundaries of the 

priors. ARF is able to push the boundaries a little and find those values without the need to 

introduce the search parameter. In this case, introducing the search parameter increases the 

parameter space from which to sample which causes a higher computational cost. Thus, to study 

the possibility that the true value is in the tails of the priors, the algorithm is given time to 

sample from the tails in the second iteration without any tuning of the boundaries, and then the 

3rd and all the subsequent iterations are generated after introducing the search parameter. 

Algorithm 5.1 

1. Initialise ARF with 𝑁1, sequence for 𝑛𝑡, and 𝑘 parameters. 

2. Generate the data set {𝜃1:𝑃,1, … , 𝜃1:𝑃,𝑁1;  𝑦1, … , 𝑦𝑁1} and train RF. 

3. Compute 𝜇1(𝑌) and 𝑉1(𝑌). 

4. Sample {𝜃1:𝑃,1, … , 𝜃1:𝑃,𝑛2; 𝑦1, … , 𝑦𝑛2} from 𝑈 [𝜇1(𝑌) − 3 ∙ √𝑉1(𝑌); 𝜇1(𝑌) + 3 ∙

√𝑉1(𝑌)]. 

5. for 𝑡 in {2, … , 𝑇}: 

a. Concatenate data of all iterations {𝜃1:𝑃,1, … , 𝜃1:𝑃,𝑁𝑡;  𝑦1, … , 𝑦𝑁𝑡}. 

b. Train RF and compute 𝜇𝑡(𝑌) and 𝑉𝑡(𝑌). 

c. Compute 𝑘𝑡 and �̂�1
𝑡 . 

d. Sample {𝜃1:𝑃,1, … , 𝜃1:𝑃,𝑛𝑡; 𝑦1, … , 𝑦𝑛𝑡} from 𝑈𝑡[𝐵𝑙 , 𝐵𝑟]. 

e. Increment 𝑡 = 𝑡 + 1. 

5.4 Parameters tuning 

The hyper-parameters related to the construction of the random forest are not tuned. 

Different studies have been performed to analyse the effect of the random forest hyper-

parameters (Genuer et al. 2008; Genuer et al. 2010; Biau and Scornet 2015). Here, the values 

for the hyper-parameters recommended by Raynal et al. (2017) that comply with the general 

recommendations in RF context are retained. Table 5.1 shows the values considered for the 

random forest hyper-parameters. 
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Table 5.1: ABC-RF hyper-parameters 

Name Symbol Value 

Number of trees 𝑏 500 

Maximum leaf size 𝑁𝑚𝑖𝑛 5 

Number of features at each split 𝑛𝑡𝑟𝑦 nb_features 3⁄  

The data set size is another hyper-parameter for the random forest, however, in the context 

of ARF, it is replaced with another hyper-parameter related to sample size of the initialising 

data set 𝑁1: the number of samples generated to initialise the algorithm at the first iteration. To 

ensure a good exploration of the parameter space, it is set at 1000. The sample size at all the 

subsequent iterations in ARF is defined by 𝑛𝑡. To explore well the space and at the same time 

to reduce the computational cost of the method, 300 samples are generated at each iteration. 

Some preliminary analysis on this parameter not presented here showed that less samples at 

each iteration is adequate to reach same convergence with a smaller number of simulations. 

There are additional tuning parameters specific to the application of ARF (Table 5.2). The 

default value of the search parameter is set at 3, since ±3𝜎  corresponds to 99.7 % confidence 

interval which is sufficient to explore the distribution. The default values are used for the 

boundary to which the distribution is further away and an adaptively computed value of the 

search parameter is used to the other boundary. For instance, if the distribution moved to the 

right, the default values are used on the left boundary and the adaptively computed values are 

used on the right boundary. For this adaptive computation, the hyper-parameters: 𝐴1, 𝐴2, 𝑎, and 

𝑐 are introduced. 𝐴1 should neither be too large which would result in a very wide sampling 

bounds, nor too small which would make the search parameter very close to its default value 

(3), and thus the benefit of the search parameter would be lost. Accordingly, a value of 9 is 

found to be an adequate choice. 𝐴2 is set at the default value of the search parameter that is 3 

to ensure a good exploration of the distribution at all stages and iterations of the algorithm, 

since ±3𝜎 corresponds to the 99.7% confidence interval as mentioned earlier. 𝑎, and 𝑐 are 

related to the shape of the search parameter function. Their values (29 and 4 respectively) are 

chosen in a way that the k is nearly constant at a value close to 𝐴2 when the estimated 

distribution is not very close to the sampling bound and quickly increases otherwise. Figure 5.1 

depicts the evolution of the search parameter k against the distance (represented by x in the 

figure) from the distribution expected value to the closer bound. The function shape depicted 

corresponds to the hyper-parameters values discussed and shown in Table 5.2. These values 
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should be robust against different case studies even in different fields since they are identified 

based on reasonable justification and not randomly. 

Table 5.2: ARF hyper-parameters 

Name Symbol Value 

Sample size (initialisation) 𝑁1 1000 

Sample size (at each iteration) 𝑛𝑡 300 

Upper asymptote of the 𝑘 function 𝐴1 9 

Lower asymptote of the 𝑘 function 𝐴2 3 

Slope of the 𝑘 function 𝑎 29 

Shape parameter of the 𝑘 function 𝑐 4 

 
Figure 5.1: Search parameter (k) (illustration of equation-5.3) 

5.5 Validation in controlled conditions 

The proposed method is applied firstly in controlled conditions. This means that the data 

on which calibration is performed are generated virtually from the BEM under known 

parameters values that are called true values. The calibration role is to find these true values 

using the generated virtual data. Uncertainties regarding the model and measurements are thus 

avoided. This application is presented in section 5.5. In a second step, section 5.6, ARF is 

applied to a real case study using on site measurements. 
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5.5.1 Methodology and criteria 

The proposed method is validated on virtual data, and compared with other algorithms. 

Accordingly, different cases corresponding to different priors’ definitions are considered. Some 

cases are generated with narrow priors and others with wider priors. In all the cases studies, the 

prior means are shifted from the true values of the parameters as follows: 

 𝜇θ = 𝜃𝑡𝑟𝑢𝑒 ± 𝑠𝜎𝜃 (5.5) 

where 𝜃𝑡𝑟𝑢𝑒 is the true value of the parameter, 𝑠 is the shift from the true value, and 𝜎𝜃 is the 

standard deviation of the prior. In certain cases, the priors are shifted so that the true values are 

outside the 99.7% confidence region. This allows validating the method performance in 

interpolating and extrapolating outside the priors’ ranges. 

The comparison criteria used in chapter 3 – normalised Euclidean distance between the 

true values and the posteriors (𝑑𝑑𝑖𝑠𝑡), and the average RMSE between the posteriors 

propagation and the virtual data – are retained. Likewise, these criteria are not only evaluated 

on the posterior distributions, but also on the distributions generated at each iteration of the 

algorithms. This allows to evaluate the performance of each algorithm with an increasing 

number of model evaluations which allows for a more comprehensive comparison. 

5.5.2 Case study 

The case study presented in chapter 2 is retained in this study. The sensitivity-based 

identifiability analysis is applied on this case study and illustrated previously (refer section 4.2). 

The first six most estimable parameters - ventilation flow rate (𝑄𝑣), internal gains (𝑄𝑑), heating 

power (𝑄𝑝), specific heat of concrete (𝑐𝑝,𝑐), solar albedo (𝑎𝑙𝑏), and the conductivity of 

polystyrene (𝜆𝑃). are chosen. Five different cases are considered in this section. The difference 

between the cases is in the selection of the priors. 

In the first two cases as presented in Table 5.3, the priors are shifted from the true values 

by 1 and 2.9 standard deviations respectively. The priors are not all shifted in the same direction: 

all to the right or all to the left of the true value. This enables to avoid different possible bias 

and interactions. In case 3, some of the parameters are shifted in a way that the true values are 

located outside the ranges of the priors while the others are within the prior ranges. In case 4, 

all the parameters are shifted by four standard deviations.  
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Table 5.4 presents the standard deviations of the priors used in cases 3 and 4 which are 

narrower than those used in the previous cases to check if the algorithm might get stuck in local 

minimums. It also shows by how many standard deviations the prior of each parameter is shifted 

from the true value. Case 5 is used to perform a comparative analysis between the algorithm 

presented in chapter 3 and ARF. For this case, the virtual data are generated based on different 

values and the priors are shifted by two standard deviations from the true values (Table 5.5).  

For all the cases studied, the parameters that are not included in calibration are set at their 

true values used for generating the virtual data which means that theoretically, in this case, since 

there is no uncertainties about the data used and no model error, the calibration should converge 

to the true values. 

Table 5.3: Prior distributions (cases 1 and 2) 

Parameters Prior distribution 𝑁(𝜇θ, 𝜎𝜃) True value Unit 

 Case 1 (𝑠 = 1) Case 2 (𝑠 = 2.9)   

𝑄𝑣 𝑁(88,22) 𝑁(46,22) 110 [𝑚3/ℎ] 

𝑄𝑑 𝑁(166,41.6) 𝑁(87,41.6) 208 [𝑊] 

𝑄𝑝 𝑁(1080,120) 𝑁(852,120) 1200 [𝑊] 

𝑐𝑝𝑐 𝑁(0.362,0.106) 𝑁(0.5634,0.106) 0.256 [𝑊ℎ (𝐾𝑔. 𝐾)⁄ ] 

𝑎𝑙𝑏 𝑁(0.55,0.2) 𝑁(0.93,0.2) 0.35 [−] 

𝜆𝑃 𝑁(0.05,0.02) 𝑁(0.088,0.02) 0.03 [𝑊/(𝑚.𝐾)] 

 

Table 5.4: Prior distributions (cases 3 and 4) 

 
Prior distributions shift (𝑠) and standard deviation (𝜎𝜃) 

 
Case 3 Case 4 

Parameters 𝑠 𝜎 𝑠 𝜎 Units 

𝑄𝑣 2 11 4 11 [𝑚3/ℎ] 

𝑄𝑑 2 20.8 −4 20.8 [𝑊] 

𝑄𝑝 6.25 20 4 20 [𝑊] 

𝑐𝑝𝑐 −4.2 0.0256 −4 0.0256 [𝑊ℎ (𝐾𝑔.𝐾)⁄ ] 

𝑎𝑙𝑏 −5.7 0.035 4 0.035 [−] 

𝜆𝑃 6.6 0.003 −4 0.003 [𝑊/(𝑚.𝐾)] 
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Table 5.5: Prior distributions (case 5) 

Parameters Prior distribution 𝑁(𝜇θ, 𝜎𝜃) True value Unit 

 Case 5 (𝑠 = 2)   

𝑄𝑣 𝑁(110,11) 132 [𝑚3/ℎ] 

𝑄𝑑 𝑁(208,20.8) 250 [𝑊] 

𝑄𝑝 𝑁(1200,20) 1161 [𝑊] 

𝑐𝑝𝑐 𝑁(0.256,0.0256) 0.3072 [𝑊ℎ (𝐾𝑔. 𝐾)⁄ ] 

𝑎𝑙𝑏 𝑁(0.35,0.035) 0.42 [−] 

𝜆𝑃 𝑁(0.03,0.003) 0.024 [𝑊/(𝑚.𝐾)] 

5.5.3 Application and results 

In all the cases, ARF is terminated at the 7th iteration since a sufficient accuracy is 

established at this level, which corresponds to a total of 2800 model evaluations. Sufficient 

accuracy here is identified from the relative decrease in RMSE compared to the priors, and how 

close the posteriors are to the true values. Please note that this sufficiency is identified only 

visually without considering quantitative accuracy thresholds for the RMSE or the posterior 

distributions. 

Figure 5.2 and Figure 5.3 show the evolution in the estimation of the heating power with 

the algorithms iterations for cases 1 and 2 respectively for ARF. Only one parameter is depicted 

(heating power) to illustrate the performance of ARF on the parameters estimation. The other 

parameters are all well estimated and illustrating them gives no additional information 

regarding the performance of ARF. The reader can refer to appendix E to visualise the 

estimation of all other parameters in the various cases. The green line in Figure 5.2 and Figure 

5.3 is the expected value at each iteration and the other solid lines are the corresponding lower 

and upper bounds. The dotted line is the represents the true value of the parameter. The y-axis 

is the values of the parameter but given in terms of ratio: 1 represents the true value which is 

1200 W for heating power. The posteriors in these two figures are centred on the true value. 

The standard deviation in case 1 and case 2 are 0.0067 and 0.009 respectively compared to 0.1 

for the prior. 
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Figure 5.2: Evolution of heating power with ARF iterations (case 1) 

 

Figure 5.3: Evolution of heating power with ARF iterations (Case 2) 

ARF is able to get close to the true value after the first iteration, however with a relatively 

large variance. With the subsequent iterations, ARF is able to precisely identify the true value 

with smaller variance. These results were attained for both cases with only 7 iterations 

corresponding to 2800 model evaluations. Figure 5.4 shows the variation of the search 

parameter with respect to the algorithm iterations. It shows that the value of the search 
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parameter is almost constant at the default value for all the iterations. Even if the search 

parameter is not adaptively tuned and is kept at the default value 3, it is able to well estimate 

the parameters even if the true values are at the boundaries of the priors. This justifies the benefit 

of using the default value of the search parameter for the first two iterations, where ARF is 

capable of independently managing the boundaries if the true value is not very far from the 

priors range. 

 

Figure 5.4: Evolution of search parameter k with ARF iterations (case2) 

To have a more comprehensive analysis, the distributions of each iteration is propagated. 

Figure 5.5 shows the model predictive accuracy in terms of RMSE with respect to the number 

of simulations for both cases. Since, the parameters are well estimated to their true values, 

Figure 5.5 does not separate between the training and the validation scenarios, however, it plots 

the model predictive performance in fitting to the whole data comprising the six scenarios. 
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Figure 5.5: Model prediction accuracy (case 1 and case 2) 

With a small number of model evaluations, ARF is capable of achieving sufficient 

accuracy (less than 0.1 C with 2800 simulation as shown in Fig. 5) in finding the true values 

and in fitting well to the data. Case 1 reaches a better performance slightly faster than case 2 

due to the priors selected: the priors of the 1st case are closer to the true values than case 2. 

However, it is observed that unexpectedly, at the first iteration, case 2 has a smaller RMSE. 

Figure 5.6 and Figure 5.7 show the estimation of the heating power for cases 3 and 4 

respectively. In case 3, the confidence region of some priors do not comprise the true values 

while for other parameters it does. In case 4, all the priors are shifted by ±4 𝜎.  It clearly shows 

how ARF is capable of widening the ranges to find the region of high probability. At the first 

iteration, the boundaries do not contain the true value (1), however, in the subsequent iterations, 

it is able to encompass it. 
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Figure 5.6: Evolution of heating power with ARF iterations (Case 3) 

 

Figure 5.7: Evolution of heating power with ARF iterations (Case 4) 

To illustrate the importance of the search parameter, ARF is run on case 3 without 

adaptively tuning the search parameter 𝑘. It is kept at its default value which is 3 at all the 

iterations. ARF is able to widen the sampling bounds of the heating power correctly in a way 

that it could easily sample around the true value as shown in Figure 5.8. However, without the 
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adaptive tuning of the search parameter, ARF is not able to shift all the parameters towards the 

true value. For example, the solar albedo is stuck in a local minimum below its true value, as 

shown in Figure 5.9. The y-axis in this figure is also given in terms of ratio: 1 represents the 

true value of the solar albedo which is 0.35. 

 

Figure 5.8: Evolution of heating power with ARF iterations without search parameter (Case 3) 

 

Figure 5.9: Evolution of solar albedo with ARF iterations without search parameter (case3) 
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This is avoided by adaptively tuning the search parameter. Figure 5.10 shows the 

estimation of the solar albedo in case 3 when the search parameter is adaptively tuned as is 

clearly depicted in Figure 5.10. It is shown that there is a significant increase in the upper bound 

from the third to the fourth iteration. 

 

Figure 5.10: Evolution of solar albedo with ARF iterations with search parameter (case3) 

Figure 5.11 shows the variation in the search parameter induced on the solar albedo 

corresponding to each iteration. It shows how the search parameter 𝑘 widened the search area 

when necessary in the 3rd, 4th, and 5th iterations and then narrowed it starting from the 6th 

iteration when the algorithm found the high probability regions around the true value. 
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Figure 5.11: Evolution of search parameter k of solar albedo with ARF iterations (case 3) 

Figure 5.12 shows the model predictive performance with respect to the number of 

simulations: the distribution at each iteration is propagated for cases 3 and 4. It illustrates that 

even with shifted and narrow priors, ARF can overcome these challenges and fit very good to 

data. Case 4 is found to be slightly faster than case 3. This is expected since most of the priors 

in case 4 are closer to the true values than case 3. Globally, similar accuracy after 

2800 simulations is reached for both cases. This indicates that ARF is also robust against shifted 

priors. 

0

1

2

3

4

5

6

7

0 2 4 6 8

S
ea

rc
h
 p

ar
am

et
er

 (
k
)

Iterations



 

188 

 

 

Figure 5.12: Model prediction accuracy (case 3 and case 4) 

Case 5 is dedicated to perform a comparative analysis between the algorithms presented 

in chapter 3 and ARF. APMC is selected among the algorithms presented in literature since it 

showed the best performance compared to the rest. Moreover, ABC-RF is also retained for the 

comparison since it is the basis of ARF. A simulation budget of 30,000 is considered for all the 

algorithms except for ARF, where it is terminated when its RMSE drops below that attained by 

the other algorithms after 30,000 simulations. 

It is hard to fix APMC at a definite simulations budget due to the nature of the sequential 

sampling adapted. Accordingly, the parameters estimated after an iteration that corresponds to 

a total simulations close to 30,000 are retained (iteration 96 with a corresponding 

29,700 simulations). On the contrary, it is easy to fix ABC-RF at a specified simulation budget 

which corresponds to the data set size on which the random forest is trained. 

Figure 5.13 shows the Euclidean distance between the parameters distributions and their 

true values obtained by the three algorithms with increasing number of model evaluations. The 

normalised Euclidean distance between the posteriors and the true values attained by APMC is 

0.11. On the other side, closer distributions are estimated by ARF (d=0.082) after only 2200 

simulations. With 1000 simulations both ABC-RF and ARF perform similarly and considerably 

better than APMC. This is expected since the first iteration of ARF is exactly similar to ABC-

RF algorithm: ARF differs from ABC-RF in that it incorporates additional iterations. 
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Figure 5.13: Euclidean distance between the parameters distributions and their true values (case 5) 

Figure 5.14 shows the model predictive performance with respect to the number of 

simulations of the three algorithms in case 5. The model predictive performance with APMC 

decreases continuously to reach an RMSE of 0.036℃ after 29,700 model evaluations. ABC-

RF reaches an RMSE of 0.0992℃ after 30,000 simulations which is not the minimum value 

due to variabilities. ARF is terminated when the accuracy of the parameters distribution became 

similar to that attained with APMC, that is an RMSE close to 0.036°C. Hence, ARF is stopped 

at the fifth iteration with an RMSE of 0.031°C corresponding to 2200 model evaluations. This 

shows that ARF is able to achieve similar accuracies with a considerable reduced number of 

model evaluations. The method convergence is shown in Fig.5.14 but it is not statistically 

proven yet. In this evaluation also, the number of trees and size of leaves were not increased 

according to the number of simulations. 
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Figure 5.14: Model prediction accuracy (SMC, ABC-RF, ARF) (case 5) 

It is shown in chapter 3 that ABC-RF explores well the parameter space but cannot narrow 

the distributions on the true values. Figure 5.15 to Figure 5.20 show the posteriors attained with 

ABC-RF and ARF. The posteriors of ABC-RF are those attained after 100,000 simulations. 

The reason behind going to 100,000 simulations is that random forests generally require a big 

data set to yield robust and more accurate results. Raynal et al. (2019) mentions that 100,000 is 

a good choice for ABC-RF and if the degree of variability in its results is found significant, 

they recommend to increase the size of the data set even more. Therefore, in this work, the data 

set is increased to 100,000 to make sure that this hyper-parameter of the algorithm is not badly 

identified. The posteriors of ARF are those attained after 2200 simulations.  

The orange lines at the bottom of the graphs represent the rug plot of the data set used to 

build the random forests in each algorithm. A rug plot is a way to display the distribution of a 

data set. It projects all the data samples on an axis (here the x-axis). It is very similar to the 

histogram but it does not combine the samples of the data into separate bins. The samples are 

thus represented as marks on the x-axis (the orange marks in Figure 5.15 to Figure 5.20.). With 

ABC-RF, the 100,000-size data set is generated directly from the priors, however, with ARF, 

the 2200-size data set is generated sequentially, where at each iteration new data are generated 

from regions closer to the posteriors. This can be visualised in Figure 5.15 to Figure 5.20 by 

the concentration of more marks around the posteriors. This shows that ARF does not only 
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explore well the parameter space, but also it does not underestimate the posteriors. Note that in 

these figures, the true values are those present in Table 5.5. The heating power, internal gains, 

and ventilation flowrate are all divided by their prior mean values, which are also presented in 

Table 5.5. 

  

Figure 5.15: Heating power data set and posteriors of ABC-RF (left) and ARF (right) with 100,000 

and 2500 samples respectively 

  

Figure 5.16: Internal gains data set and posteriors of ABC-RF (left) and ARF (right) with 100,000 and 

2500 samples respectively 
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Figure 5.17: Ventilation flowrate data set and posteriors of ABC-RF (left) and ARF (right) with 

100,000 and 2500 samples respectively 

  

Figure 5.18: Specific heat of concrete wall data set and posteriors of ABC-RF (left) and ARF (right) 

with 100,000 and 2500 samples respectively 

  

Figure 5.19: Albedo data set and posteriors of ABC-RF (left) and ARF (right) with 100,000 and 2500 

samples respectively 
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Figure 5.20: Polystyrene conductivity data set and posteriors of ABC-RF (left) and ARF (right) with 

100,000 and 2500 samples respectively 

The posteriors of ABC-RF attained with a data set size of 100,000 are propagated. The 

aim is to undergo a comparison in terms of model predictive performance between the original 

method ABC-RF and its updated version ARF. Figure 5.21 shows the precision of the model 

prediction in all the scenarios for both algorithms. The number of model evaluations used for 

these results in ARF is 2500. It shows clearly that ARF can reach a significantly better accuracy 

than ABC-RF with a lower number of model evaluations. 

 

Figure 5.21: Model prediction accuracy for each scenario (case 5) 
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In all the six cases, ARF is initialised with 1000 samples followed by 300 samples per 

iteration. Samples could be generated following another form. For example, less samples per 

iteration results in more iterations which means the parameters space from which samples are 

generated is updated more often. This more frequent update of the parameter space allows 

sampling more from the posteriors regions. This might decrease the global model evaluations 

required. Another option that could also be promising is to follow a decreasing sequence: large 

sample size at first iterations account for the relatively large variances and then smaller sample 

sizes are generated. This is one of the algorithm hyper-parameters whose effect on the global 

performance would deserve further study. 

5.6 Application using in-situ measurements 

So far, virtual case studies were considered in the previous section. In this chapter, a real 

case is considered. The objective is to apply the calibration methodology on real in-situ 

measurements. The same case study illustrated in the chapter 2 is retained but the real monitored 

temperature profile is considered. 

In section 5.6.1, the calibration methodology is presented. This methodology is formulated 

based on previous literature and on some findings of this thesis. In section 5.6.2, a brief 

description of the case study is provided. The parameters quantification of the case study are 

taken from previous work and they are briefly presented in section 5.6.3. In section 5.6.4, all 

the calibration methods presented in this thesis are applied to the real case study and compared. 

5.6.1 Calibration methodology 

In this section, a workflow for applying Bayesian calibration to building energy models is 

proposed based on the findings of this thesis. 

One of the major aspects of calibration, which is critical for its performance, is the 

identifiability of the parameters. To this end, structural identifiability could be applied to simple 

linear models to detect unidentifiable parameters. These methods could be limited to such 

simple models. For complex building energy models, sensitivity-based identifiability analysis 

is preferred since it does not require entering to the model structure. In this thesis, 

orthogonalisation method is found to perform well in ranking the parameters in terms of 
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estimability. Accordingly, sensitivity analysis preceded by orthogonalisation is advised to be 

applied as a basis for parameter selection. 

Another critical choice for calibration is the number of parameters that are included. To 

this end, based on two virtual case studies applied in this thesis, it was shown that the parameters 

ranked with an estimability threshold of 0.04 are identifiable. It is also shown that similar 

performance in terms of model predictive performance with lower thresholds. Accordingly, the 

selection of this value is still arbitrary. For the following case study, a cut-off value of 0.04 is 

considered to separate the estimable parameters from the non-estimable ones. 

The five calibration methods reviewed in chapter 3 along with the ARF method proposed 

in this thesis are applied to the real case study. The indicators used in chapter 3 are retained to 

perform this comparison. 

5.6.2 Case study 

The same house described in chapter 2 is retained. The meteorological data correspond to 

the measured values (outdoor temperature, global solar radiation and horizontal diffuse 

radiation) at hourly time intervals at Le Bourget-du Lac airport (France) located near the I-BB 

house: the shading induced by the surrounding mountains are taken into account in the 

measured data. The information relating to the site is: 

 Longitude: 5.8814°E 

 Latitude: 45.6876°N  

 Altitude: 233 m 

 Average ground temperature at 10 m depth: 9°C. 

For the experimental campaign, eight temperature sensors are mounted at a height of 1.10 

m in the different rooms. The sensors are platinum probes protected by a heat shield to prevent 

radiation from influencing the measurement. In this study, a single thermal zone is considered. 

Consequently, the interior temperatures measured in the rooms of the house are weighted in 

proportion to the net floor area of these rooms in order to compare their average with the interior 

temperature simulated by the monozone model. 
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Similarly to chapter 2, the different scenarios of the experimental campaign are split into 

training and testing. Scenarios 1, 2, 3 and 5 are taken as training scenarios and scenarios 4 and 

6 are kept for validation. 

5.6.3 Parameters quantification 

Munaretto (2014) conducted a detailed parameters quantification for this case study. Here, 

the quantification of some parameters that are considered in the subsequent sections is provided. 

The house is equipped with a double flow controlled mechanical ventilation (CMV). Fresh 

air is blown into the living room and the bedrooms (flowrate V1), while outlets located in the 

toilets and the bathroom ensure the extraction of stale air (flowrate V2). After in-situ 

measurements conducted by a French research institute (Commissariat à l'énergie atomique et 

aux énergies, CEA), the nominal ventilation flowrates �̇�1 and �̇�2 are set at 110 and 160 m3 hr⁄  

respectively. The maximum heating power during the experimental campaign is 1200 kW. Over 

the period of the study, the temperature setpoint is never reached, so the electric resistance is 

working all the time at its maximal power. The total internal gains in all the different rooms 

generated by different equipment (transformers, measurement processing unit, various sensors, 

CMV motor) is measured to be 208 W. The house is surrounded by white sand and grass. An 

albedo-meter is set up to measure the average reflexivity of the surrounding ground and a value 

of 0.35 is measured. 

5.6.4 Application and results 

The sensitivity and identifiability analysis are taken from the previous chapter and the 

same ranking is considered here. The six most estimable parameters which are in this case also 

the six most influential parameters are calibrated using the real data. The prior distribution fit 

to each parameter are taken from Robillart (2015) except the solar albedo which was modeled 

as a uniform distribution bounded by [0.28, 0.42].To avoid overfitting towards one of the 

boundaries, the solar albedo is modeled in this chapter as a normal distribution as illustrated in 

Table 5.6. 
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Table 5.6: Prior distributions (Robillart 2015) 

Parameters Distribution Mean 𝜎 Unit 

Ventilation 

flowrate 
Normal 110 11 [𝑚3/ℎ] 

Internal gains Normal 208 20.8 [𝑊] 

Heating power Normal 1200 20 [𝑊] 

Specific heat of 

concrete 
Normal 0.256 0.0256 [𝑊ℎ/(𝐾𝑔.𝐾)] 

Solar albedo Normal 0.35 0.035 [−] 

Conductivity of 

polystyrene 
Normal 0.03 0.003 [𝑊/(𝑚.𝐾)] 

The five calibration methods presented in chapter 3 are firstly applied and compared based 

on their predictive performance. Figure 5.22 shows the RMSE of the posteriors and of the priors 

after a simulation budget of around 44,000 model evaluations and Figure 5.23 shows the 

temperature profile in all the scenarios. All algorithms yielded a more precise model to 

adequately fit the data. There is a significant decrease in the RMSE value between the calibrated 

and the un-calibrated model, with APMC being the best and ABC-RF being the least accurate. 

The performance is good on the training scenarios (1, 2, 3 and 5) and on the testing scenarios 

(4 and 6) even though, some scenarios are better fitted than the others. 

 

Figure 5.22: Model prediction accuracy of calibration algorithms 

Robillart (2015) who proposed using the sequential ABC algorithms to calibrate building 

energy models applied an ABC algorithm on the same case study. However, the algorithm 
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calibration performed was able to obtain better posteriors than priors. The propagation yielded 

an RMSE 0.8 and 0.5 on the testing scenarios 4 and 6 respectively. In this work, using the 

improved algorithms, the model predictive performance of the calibrated model was enhanced 

even more to reach RMSE of 0.45 and 0.25 on the same two scenarios respectively. 
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Figure 5.23: Uncertainty propagation on temperature profile (S1: scenario1; S2: scnenario2; S3: scenario3; S4: scenario4; S5:scenario5; S6: 

scenario6)
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The accuracy of the algorithms is consistent with what was observed on the virtual data. 

Figure 5.24 shows the performance during the evolution of the algorithms. In this case, unlike 

previously, its slope is decreasing with increasing simulations and it seems like the methods are 

converging to an RMSE higher than the threshold. This means that the model is having 

difficulty in fitting the actual behaviour better. This could be related to different issues such as 

measurement bias and uncertainty, error in the specification of the un-calibrated parameters, or 

errors due to model assumptions. It can also be emphasised that the algorithms show similar 

relative computational efficiency as depicted previously on the virtual data. 

 

Figure 5.24: Model prediction accuracy evolution (real measurements) 

ABC-RF was also run with a data set size of 100,000 samples and there were no major 

differences with the results obtained with a smaller size under default hyper-parameters values. 

One of the main aspects of ABC-RF is that it cannot predict values outside the range of 

the priors. Thus, if the true value of the process lies outside the boundaries of the priors, ABC-

RF could only favour the samples that lie in the prior and are closer to the true value. That is to 

say that ABC-RF is less robust to the selection of the priors than the other algorithms. To clarify 

this finding, Figure 5.25 depicts the prior and the posterior of the heating power obtained with 

APMC and ABC-RF algorithms. We note that the posterior is quite similar for all algorithms 

except for ABC-RF. 
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Figure 5.25: Prior vs posterior (heating power) APMC, ABC-RF 

The mean of the posterior obtained with ABC-RF is 1262 W, whereas, for the other 

algorithms, it is around 1400 W. The same behaviour is also noticed with the specific heat of 

the concrete wall. To improve the performance of this algorithm, it could be better to increase 

the ranges of the priors which would require a larger data set to explore well the parameter 

space. However, since it is observed that ABC-RF can yield, with a small data set, similar 

results as with a big data set, it could be better to increase the prior range with a similar data set 

size. 

Figure 5.26 displays the posterior against the prior of the APMC algorithm corresponding 

to the specific heat of the concrete. Similar posteriors are obtained by the other algorithms with 

slight differences. 

 

Figure 5.26: Prior vs posterior of specific heat of concrete (APMC) 
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It is clear that the posterior distribution overestimates the real value of the specific heat. 

In fact, the prior of this parameter is determined with a high degree of confidence because it is 

based on the type of concrete and since this house is constructed for laboratory experiments. So 

it is surprising to see such shift that is quire large. Only the six most influential parameters are 

calibrated, however, it was shown in the previous chapters that the specific heats of concrete 

screed and slab are also influential, but they are not considered in calibration. This means that 

the global underestimation of the global thermal capacity might be compensated by the specific 

heat of concrete wall. However, the calibrated model is able to perform well even on 

experimental data. If the objective is to have a well calibrated model that fits to real 

measurement, this is an acceptable behaviour. However, this method must be used with caution 

to identify the value of a specific parameter.  

Another point regarding the precision attained for the different scenarios should also be 

highlighted. In Figure 5.22, it is observed that unlike scenarios 1, 2 and 3, the RMSE values for 

scenario 5 are relatively large. The model was calibrated on these four scenarios; scenarios 4 

and 6 were left for validation. The reason behind this difference can be related to the fact that 

the building was modelled as one thermal zone, and that the measured temperature profiles of 

rooms were averaged. Figure 5.27 adapted from Munaretto (2014), illustrates the temperature 

evolution of the different zones of the building. In the first three scenarios, all the zones had a 

quite similar temperature evolution. However in the 5th scenario, the variability caused by the 

exterior temperature on each zone is different. For example, the variability in bedroom 3 (Ch.3) 

is less than that in the living room (Salon). A monozone model could not replicate these 

different variabilities in the zones.  
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Figure 5.27: Temperature profile for different zones (Munaretto, 2014) 

To verify this analysis, the temperature profile of the posterior model simulation was 

plotted against the measured temperature evolution (the average of all the rooms) as shown in 

Figure 5.28. It is clear how the monozone model could not precisely replicate the variability 

shown in the measurements.  

 

Figure 5.28: Simulation vs measurement temperature evolution (scenario 5) 
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A multizone model of the building needs to be established to better approximate the real 

behaviour with as little bias as possible, especially in this case study which is intended for 

scientific research and has relatively low uncertainty. This application allows to verify if the 

monozone assumption and thus faster model was a good assumption or not. 

The proposed method ARF was also applied on the same case study. Contrary to the 

behaviour depicted on the virtual data, the model predictive performance of ARF does not show 

a continuous increase in the precision with more iterations. Figure 5.29 shows the RMSE 

averaged over all the scenarios as a function of the algorithm iterations. 

 

Figure 5.29: Model prediction accuracy for ARF (real measurements) 

It is clearly depicted that the minimum RMSE obtained corresponds to the third iteration, 

which is reached with a 1600 model evaluations. After the third iteration, the RMSE started 

increasing. This behaviour is different from what is observed for the other algorithms applied 

in this chapter. To compare the algorithms, the posteriors of the third iteration is propagated 

and compared to the posteriors of the other algorithms attained with a simulation budget of 

44,000 (Figure 5.30). ARF shows a better performance than RF. Compared to CATMIP and 

ABC-PMC, ARF shows an approximately similar performance, and compared to APMC and 

Adams, its performance is slightly worse. 
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Figure 5.30: Model predictive performance of the algorithms (ARF: 1600 simulations, rest: 44,000) 

It is important to mention that the comparison between ARF and the other algorithms is 

held with different number of model evaluations (1600 for ARF and 44,000 for the others). 

With more simulations, all the algorithms are capable to attain better performance than ARF 

except RF. However, ARF is observed to diverge with more simulations. The average RMSE 

attained by ARF with 1600 simulations is 0.33 ℃. Table 5.7 shows for each algorithm the 

required number of simulations to reach this value of RMSE. 

Table 5.7: Simulation required by calibration algorithms to reach ARF minimum RMSE 

Algorithm Number of simulations 

APMC 15600 

Adams 21900 

CATMIP 42300 

ABC-PMC 49065 

One advantage of ARF is that it explores well the whole parameter space very efficiently; 

however, even if good distributions are found at a given iteration, it might shift away from them 

towards worse distributions in subsequent iterations. In ARF framework, at each iteration, all 

the newly simulated samples are retained to train a new random forest. If the new samples are 

all worse than the previous ones, the trained random forest could yield worse results than in 

previous iterations as observed in this case study. One way to deal with this is that instead of 

retaining all the simulated samples at a given iteration, only those that yield RMSE values less 
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than the 𝛼-qunatile of the RMSE in the previous iteration are retained to run a new random 

forest. This ensures that when the algorithm proceeds from one iteration to another, only better 

samples are kept and this could avoid the diverging behaviour observed. 

5.7 Conclusion 

Calibration of building energy models has recently attracted the focus of researchers in 

the field especially the application of Bayesian approaches. A significant work is conducted on 

these approaches to enhance their performance in terms of accuracy, robustness, and 

computational efficiency. In this chapter, recent developments in the field of Bayesian 

calibration were used and a new algorithm called adaptive random forest ARF was proposed. 

ARF was compared to ABC-RF and APMC. APMC is selected since it showed the best 

performance compared to the other algorithms presented in chapter 3. ABC-RF was also 

retained for comparison since it is the original method on which ARF is based. ARF overcomes 

the variabilities present in ABC-RF and the computational burden present within APMC. With 

only a few thousand model evaluations, ARF is capable of attaining accurate results which is 

considered very fast compared to other methods in the field (it is shown to be more than 10 

times faster than some methods). This computational efficiency replaces the need of using a 

metamodel, which poses an additional problem of error and uncertainty to the calibration.  

ARF is also able to overcome the extrapolation problem with ABC-RF. It can easily 

sample outside the ranges of the priors without requiring considerable additional model 

evaluations and iterations. This means that ARF is robust relative to a poor prior definition; 

however, further robustness analysis should be conducted on other case studies. Another very 

interesting aspect concerning ARF is that it is robust (repeating calibration leads to similar 

results), but its convergence is not statistically proven though it is shown empirically in the case 

study. 

ARF is tested on temperature profile as the calibration data. It would be interesting to 

analyse its performance on the hourly heat consumption, monthly, and yearly heat consumption. 

ARF is terminated when its RMSE dropped below the ones reached by other methods. This is 

sufficient to perform the comparison between the methods, however, it is also important to 

simulate more iterations to analyse better its performance. 
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The various methods that are presented in chapter 3 are applied to the case study with in-

situ measurements of the temperature profile. Except for ABC-RF which does not perform very 

well, the parameters estimation are quite similar for all the algorithms with slight differences 

while maintaining similar model predictive performance. Globally, all the considered 

algorithms enhanced the performance and the capability of the model to fit to the training and 

the testing data. Further improvements could have been attained if the building under 

investigation had been simulated based on a multizone model instead of a single thermal zone. 

Moreover, the training and testing scenarios can be swapped. This allows to assess better the 

case study and to verify the sources of uncertainties. It will also allow to have more testing 

scenarios on which calibration can be validated. For instance, calibration can be performed on 

one or two scenarios, which keeps four testing scenarios. This can also be used to assess how 

the calibration is affected by the quantity and quality of the data. 

ARF was also applied with real in-situ measurements. It was observed with ARF, that on 

real data a divergence in the model predictive performance occurred with more iterations. At 

the third iteration with 1600 simulations, it yielded the best posteriors. These posteriors were 

compared to the posteriors of the other algorithms. The comparison shows that for a limited 

simulation budget of 1600, ARF performed the best in fitting to the data, however, with more 

simulations, the other algorithms yielded a better data fit.  

With the controlled conditions, the algorithms performed better than with real 

measurements. Multiple factors are probably involved. Firstly, the uncertainties in the 

influential parameters that are excluded might be presumed into the parameters considered and 

caused such problem. The bias in the model, measurements and the noise also have their 

influence on the parameters estimation.  

The behaviour of ARF was different to what was observed with virtual data. The is related 

to the unknown uncertainty and error in the model and measurements. The reason behind the 

continuous decrease in the RMSE with iterations in the other algorithms compared to ARF is 

the sampler. In ABC-PMC and APMC, only better samples are accepted at each iteration. 

Likewise with Adams and CATMIP, due to the incorporation of the Metropolis Hastings 

method of MCMC, the sampler only occasionally accepts samples that are less probable than a 

current sample. In ARF, all the samples generated at a new iteration are used without comparing 

their probability with the samples of the previous iteration. This could be modified by only 

retaining the samples with higher probability of occurrence than those in the previous iteration. 
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This might solve the problem of divergence, but on the other side it is expected that the total 

computational cost of the algorithm might increase. Another option would be to increase the 

number of trees and leaves size according to the number of simulations. Moreover, it is 

important to statistically prove the convergence of the method in addition to showing its 

empirical convergence. 

At the moment, without further modification of ARF, one could simply retain the results 

of the best iteration (with minimal RMSE). This is a good solution if speed is of a main 

importance, otherwise, if it is focused on precision with less limitations on the speed of 

calibration, then APMC would be the best algorithm to use among the ones used on this thesis. 
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General conclusion and perspectives 

Due to the fact that the building sector is responsible for the largest share of energy 

consumption in France and in Europe, researchers are increasingly interested in improving the 

energy efficiency of buildings. Many countries have set some guidelines and policies to abide 

by while constructing new buildings to ensure that they comply with the objectives of energy 

efficient buildings. However, the percentage of newly constructed buildings to those already 

existing is small. This means that there is a large interest in renovating these existing buildings. 

Building energy models are normally used to help quantifying and comparing different 

measures and their possible energy savings. Such an approach based on models is subjected to 

many sources of uncertainty. This means that these models can allow decision-makings for 

renovation measures; however, risk management or confidence quantification requires 

supplementary efforts. To tackle this issue, calibration of building energy models improves the 

precision of these models in representing the actual behaviour of the building under study. 

Moreover, Bayesian calibration is an efficient approach in quantifying the uncertainties in the 

model parameters and the corresponding model predictions of the proposed renovation 

measures, which allows to represent the predicted energy savings in the future in a form of a 

probability distribution from which a confidence level can be computed. Accordingly, in recent 

years, many researchers have focused on these calibration approaches to enhance their 

performance in terms of precision and computational efficiency. In this thesis, a whole 

calibration methodology was studied and a thorough literature review is presented in chapter 1. 

In the subsequent chapters, each topic is analysed and elaborated in more details. 

Sensitivity analysis is one of the main steps in the calibration methodology. It is conducted 

to select the most influential parameters on which calibration should be performed. In chapter 

2, two methods from literature (Morris and RBD-FAST) are tested due to their computational 

efficiency and accuracy. These two methods are compared using Sobol method as the reference. 

The criteria selected for comparison are the methods precision in ranking the parameters 

accurately as ranked by Sobol method, their robustness in ranking all the parameters, the ones 

responsible for 95 % of the total variance, and the ones responsible for 90 % of the total 

variance. Moreover, their computational efficiency is also accounted for by assessing their 

performance with an increasing number of model evaluations. The indicators are mainly, the 

Pearson correlations coefficient and the Kendall tau coefficient. The case study for this analysis 
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is an individual house with 113 model parameters. The number of model evaluations needed 

by Sobol’s method to rank the parameters is 460,000 corresponding to a sample size of 4000. 

RBD-FAST is found to rank with sufficient accuracy the parameters responsible of 90 % of the 

total variance with only hundreds of model evaluations. Morris’ method performs even better 

in clustering these parameters. The difference is that with Morris, even the less important 

parameters are ranked with sufficient accuracy as Sobol method with only hundreds of model 

evaluations, which is not the case with RBD-FAST. All in all, Morris’ method is found to be 

more robust and accurate than RBD-FAST, and it can be used with less risk; especially, if it 

needs to be followed with an identifiability analysis. 

In chapter 3, different calibration methods (likelihood dependant and independent) are 

retained from literature and explained in details. The selected methods are applied on a virtual 

case study where the temperature profile is the data on which calibration is performed. The 

methods are compared in terms of accuracy and computational efficiency. The criteria used to 

undergo this comparison are the weighted Euclidean distance between the parameters’ 

posteriors and their true values, and the average RMSE of the posteriors propagation. The 

results showed that APMC and Adams outperformed the other three algorithms. The reason 

behind this different performance is related to the sampler adaptation and not to the dependence 

on the likelihood function. ABC-RF showed a better performance with a lower number of 

model evaluations but the worst performance with an increasing number of simulations 

simulations when using the default hyper-parameters values for all the runs. 

Another issue treated in this thesis is the identifiability of the calibration parameters. If the 

degree of interaction between the selected parameters is high, it will be harder for the calibration 

algorithm to converge. Accordingly, it is important to select not only the influential parameters 

but also the ones that have the least interactions. The identifiability concept is detailed in chapter 

1. In chapter 4, a sensitivity-based identifiability analysis called orthogonalisation method is 

selected from literature and applied to a virtual case study. The aim is to study the effect of 

identifiability analysis through the assessment of the corresponding calibration performance 

compared to calibrating only the most influential parameters. The criteria are the identifiability 

of the parameters after calibration and the model predictive performance of the calibrated 

model. Accordingly, the first indicator is the Janson-Shannon distance computed between the 

priors and the posteriors to quantify the identifiability of the parameters separately. This 

indicator is only used under the conditions listed in chapter 4. The second indicator is the 

proposed distance measure ID, which computes the total identifiability of the model. The third 
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indicator is the deviance information criterion, which is used to evaluate the model predictive 

performance of the calibrated model. For the considered case study, it is shown that ranking the 

parameters using the orthogonalisation method is more appropriate than ranking them based on 

a sensitivity analysis only if few parameters are to be calibrated. Significant interaction may 

exist between the most important ones, which can be identified and accounted for through the 

identifiability analysis. If more parameters are included, both methods yield similar results. 

This highlights the importance of an appropriate decision regarding the number of 

parameters to calibrate. This issue is also treated in chapter 4. The Janson Shannon and DIC are 

also used as indicators in this analysis. The aim of this study analysis is to assess the behaviour 

of calibration in terms of model predictive performance on the one hand and identifiability of 

the parameters on the other hand starting from calibrating only one parameter to calibrating 

15 parameters. For the considered case study, it is found that calibrating the first three 

parameters is the most accurate, however, the calibration of the first eight parameters yielded 

almost similar precision, even though the first six parameters are found to be more identifiable 

than the rest. 

The behaviour of ABC-RF found in chapter 3 triggered a deeper investigation on this 

method. In chapter 5 a new method called adaptive random forest (ARF) that is based on ABC-

RF is proposed. This method integrates the sequential sampling used in other methods in ABC-

RF. This method is applied to a virtual case study with five different priors: wide priors, precise 

priors, and priors shifted away from the true values. The results showed that this method can 

achieve very precise estimates for the true values and consequently a good model predictive 

performance with a small number of model evaluations (no more than 3000). The method was 

also compared to the ones presented in chapter 3 and it showed a considerably better 

computational efficiency.  

Finally, all the methods were applied to a real case study with a real monitored temperature 

profile. The calibration yielded a better model predictive performance on both training and 

testing data with all the algorithms used in this chapter. ARF was found to be less accurate with 

an increasing number of iterations, which is not the case with the other algorithms. But again 

in this evaluation, the number of trees and leaves was not increased according to the number of 

simulations. More investigations need to be performed on ARF to enhance its performance in 

uncontrolled conditions, and to check its convergence. At the moment, without such a 

verification, APMC could be the best choice among the ones illustrated in this thesis. ARF has 
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shown potential compared to other methods with a limited number of model evaluations, but it 

has to be confirmed using different case studies.  

This work leads to propose several perspectives in the future. The sensitivity methods used 

in this thesis are compared on one case study. It is obviously important to extend this study and 

do the same comparison on many different case studies in order to be able to draw more general 

conclusions. This is true for all the studies performed in this thesis, like the comparison of 

calibration methods, the application of the identifiability analysis, and the analysis regarding 

the number of parameters. 

Away from extending the work of this thesis and replicate it on new case studies, it is also 

important to be aware of the limits in the methodologies. The comparison between the 

calibration methods was held by setting default values for the algorithms hyper-parameters, 

which are recommended by the authors. It is interesting to elaborate more on this and to tune 

the parameters of each algorithm and then do the comparison with the tuned hyper-parameters. 

This might be burdensome if the original model is used. Therefore, a metamodel is an option to 

bring down the computational cost. In this case, including the un-parallelisable NUTS sampler 

will pose no computational problems. Therefore, to include it in the comparison, the number of 

likelihood computations in each algorithms should be tracked, then to account for the 

computational efficiency, the time expected for each algorithm after considering parallelising 

could be estimated. 

Another interesting aspect of calibration, which was not analysed in this thesis, is the data 

on which calibration is performed. In this thesis, only temperature profiles were used. In 

literature, some studies calibrate the model on temperature profiles, and some use the heat 

consumption as the basis for calibration. However, it seems like there is not clear analysis on 

what is more appropriate to do if both data are available. Moreover, if the model was calibrated 

on the heat consumption data, one wonders if it would perform well when used to predict the 

temperature profile and vice versa. This question is of importance e.g. when the model is 

calibrated based on the temperature profile in the summer where there is no heating power, and 

then used to predict the energy consumption in winter. 

Moreover, the quantity and quality of the data on which calibration is performed is also a 

very important aspect of calibration. In many cases, the available data is uncertain or 

insufficient especially if occupancy-friendly sensors used. Accordingly, more research should 
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be performed to increase the reliability of the experimental campaigns on the one hand and to 

analyse the effect of the data quality and quantity on the whole inverse problem on the other 

hand.  

ARF when applied to virtual data showed better performance than when applied to real 

measurements. It is one of the perspectives to investigate more on this method especially that 

it works very well in controlled conditions. Further work would be needed, particularly 

checking its statistical convergence e.g. using a statistical toy model, and increasing the number 

of trees and size of leaves according to the number of simulations. 

  



 

215 

 

  



 

216 

 

References 

Adams, M.P., Koh, E.J.Y., Vilas, M.P, Collier, C.J., Lambert, V.M., Sisson, S.A., Quiroz, M., 

Eve McDonald-Madden, McKenzie, L.J., and O’Brien, K.R. 2020. ‘Predicting Seagrass 

Decline Due to Cumulative Stressors’. Environmental Modelling & Software 130 (August): 

104717. https://doi.org/10.1016/j.envsoft.2020.104717. 

Ahmad M., and Culp C.H. 2006. ‘Uncalibrated Building Energy Simulation Modeling Results’. 

HVAC&R Research 12 (4): 1141–55. https://doi.org/10.1080/10789669.2006.10391455. 

Akaike, H. 1974. ‘A New Look at the Statistical Model Identification’. IEEE Transactions on 

Automatic Control 19 (6): 716–23. https://doi.org/10.1109/TAC.1974.1100705. 

Akkari, S., Schalbart, P., and Peuportier, B. 2022. ‘Assessment of Multiple Advanced Bayesian 

Calibration Algorithms in Building Energy Models’. Conference IBPSA France, May 2022. 

Mara, T.A., and Joseph, O.R. 2008. ‘Comparison of Some Efficient Methods to Evaluate the 

Main Effect of Computer Model Factors’. Journal of Statistical Computation and Simulation 

78 (2): 167–78. https://doi.org/10.1080/10629360600964454. 

Amit, Y., and Geman, D. 1997. ‘Shape Quantization And Recognition With Randomized 

Trees.’ Neural Computation 9 (October): 1545–88. 

https://doi.org/10.1162/neco.1997.9.7.1545. 

Beaumont, M.A. 2010. ‘Approximate Bayesian Computation in Evolution and Ecology’. 

Annual Review of Ecology, Evolution, and Systematics 41 (1): 379–406. 

https://doi.org/10.1146/annurev-ecolsys-102209-144621. 

Beaumont, M.A., Cornuet, J.M., Marin, J.M, and Robert, CP. 2009. ‘Adaptive Approximate 

Bayesian Computation’. Biometrika 96 (4): 983–90. https://doi.org/10.1093/biomet/asp052. 

Beaumont, M.A, Zhang, W., and Balding, D.J. 2002. ‘Approximate Bayesian Computation in 

Population Genetics’. Genetics 162 (4): 2025–35. https://doi.org/10.1093/genetics/162.4.2025. 

Bellu, G., Saccomani, M., Audoly, S., and D’Angiò, L. 2007. ‘DAISY: A New Software Tool 

to Test Global Identifiability of Biological and Physiological Systems’. Computer Methods and 

Programs in Biomedicine 88 (November): 52–61. https://doi.org/10.1016/j.cmpb.2007.07.002. 

Biau, G., and Scornet, E. 2015. ‘A Random Forest Guided Tour’. ArXiv:1511.05741 [Math, 

Stat], November. http://arxiv.org/abs/1511.05741. 

Blum, M.G.B., and François, O. 2010. ‘Non-Linear Regression Models for Approximate 

Bayesian Computation’. Statistics and Computing 20 (1): 63–73. 

https://doi.org/10.1007/s11222-009-9116-0. 

Booth, A.T., Choudhary, R., and Spiegelhalter, D.J. 2012. ‘Handling Uncertainty in Housing 

Stock Models’. Building and Environment 48 (February): 35–47. 

https://doi.org/10.1016/j.buildenv.2011.08.016. 



 

217 

 

Bortot, P., Coles S.G., and Sisson, S.A., 2007. ‘Inference for Stereological Extremes’. Journal 

of the American Statistical Association 102 (477): 84–92. 

https://doi.org/10.1198/016214506000000988. 

Breiman, L., Friedman, J., Olshen, R., and Stone, C.J. 1983. ‘Classification and Regression 

Trees’. https://doi.org/10.2307/2530946. 

Breiman, L. 1996. ‘Bagging Predictors’. Machine Learning 24 (2): 123–40. 

https://doi.org/10.1007/BF00058655. 

Breiman, L. 2001. ‘Random Forests’. Machine Learning 45 (1): 5–32. 

https://doi.org/10.1023/A:1010933404324. 

Brun, A., Clara S., and Wurtz, E. 2009. ‘Analyse Du Comportement De Differents Codes De 

Calcul Dans Le Cas De Batiments À Haute Efficacite Energetique’. 9th colloque 

interuniversitaire Franco-québécois, Lille, 18-19 May 2009. 

Brun, R., Reichert, P., and Künsch, H.R. 2001. ‘Practical Identifiability Analysis of Large 

Environmental Simulation Models’. Water Resources Research 37 (4): 1015–30. 

https://doi.org/10.1029/2000WR900350. 

Ching, J., and Chen, Y. 2007. ‘Transitional Markov Chain Monte Carlo Method for Bayesian 

Model Updating, Model Class Selection, and Model Averaging’. Journal of Engineering 

Mechanics 133 (7): 816–32. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:7(816). 

Chong, A., Lam, K.P., Pozzi, M., and Yang, J. 2017. ‘Bayesian Calibration of Building Energy 

Models with Large Datasets’. Energy and Buildings 154 (November): 343–55. 

https://doi.org/10.1016/j.enbuild.2017.08.069. 

Chong, A., and Menberg, K. 2018. ‘Guidelines for the Bayesian Calibration of Building Energy 

Models’. Energy and Buildings 174 (September): 527–47. 

https://doi.org/10.1016/j.enbuild.2018.06.028. 

Clarke, J.A., Yaneski, P.P., Pinney, A.A. 1991. Harmonization of Thermal Properties of 

Building Materials. Building Environmental Performance Analysis Club. 

Coakley, D., Raftery, P., and Keane, M. 2014. ‘A Review of Methods to Match Building Energy 

Simulation Models to Measured Data’. Renewable and Sustainable Energy Reviews 37 

(September): 123–41. https://doi.org/10.1016/j.rser.2014.05.007. 

Cukier, R.I., Fortuin, C.M., Shuler, K.E., Petschek, A.G., and Schaibly, J.H., 1973. ‘A Study 

of the Sensitivity of Coupled Reaction Systems to Uncertainties in Rate Coefficients. I. 

Theory’: Fort Belvoir, VA: Defense Technical Information Center. 

https://doi.org/10.21236/AD0762420. 

Wit, M.S. 2001. ‘Uncertainty in Predictions of Thermal Comfort in Buildings’. 

https://repository.tudelft.nl/islandora/object/uuid%3Aa231bca8-ec81-4e22-8b34-

4bafc062950e. 

Diamond, S.C., Cappiello, C.C., and Hunn, B.D. 1986. ‘DOE-2 Verification Project. Phase I. 

Final Report’. LA-10649-MS. Los Alamos National Lab., NM (USA). 

https://www.osti.gov/biblio/6025484. 



 

218 

 

Domínguez-Muñoz, F., Anderson, B., Cejudo-López, J.M, and Carrillo-Andrés, A. 2010. 

‘Uncertainty in the Thermal Conductivity of Insulation Materials’. Energy and Buildings 42 

(11): 2159–68. https://doi.org/10.1016/j.enbuild.2010.07.006. 

Domínguez-Muñoz, F., Cejudo-López, J.M., and Carrillo-Andrés, A. 2010. ‘Uncertainty in 

Peak Cooling Load Calculations’. Energy and Buildings 42 (7): 1010–18. 

https://doi.org/10.1016/j.enbuild.2010.01.013. 

Driscoll, E.A., and Landrum, D.B. 2004. ‘Uncertainty Analysis on Heat Transfer Correlations 

for RP-1 Fuel in Copper Tubing’. In . Las Vegas, NV. 

https://ntrs.nasa.gov/citations/20040076962. 

Drovandi, C.C., and Pettitt, A.N. 2011. ‘Estimation of Parameters for Macroparasite Population 

Evolution Using Approximate Bayesian Computation’. Biometrics 67 (1): 225–33. 

https://doi.org/10.1111/j.1541-0420.2010.01410.x. 

Efron, B. 1979. ‘Bootstrap Methods: Another Look at the Jackknife’. The Annals of Statistics 

7 (1): 1–26. 

Fan, H.H., and Kubatko, L.S. 2011. ‘Estimating Species Trees Using Approximate Bayesian 

Computation’. Molecular Phylogenetics and Evolution 59 (2): 354–63. 

https://doi.org/10.1016/j.ympev.2011.02.019. 

Filippi S., Barnes, C.P., Cornebise, J., and Stumpf, M.P.H., 2013. ‘On Optimality of Kernels 

for Approximate Bayesian Computation Using Sequential Monte Carlo’. Statistical 

Applications in Genetics and Molecular Biology 12 (1). https://doi.org/10.1515/sagmb-2012-

0069. 

Gábor, A., Villaverde, A.F., and Banga, J.R. 2017. ‘Parameter Identifiability Analysis and 

Visualization in Large-Scale Kinetic Models of Biosystems’. BMC Systems Biology 11 (1): 54. 

https://doi.org/10.1186/s12918-017-0428-y. 

Gatelli, D., Kucherenko, S., Ratto, M., and Tarantola, S. 2009. ‘Calculating First-Order 

Sensitivity Measures: A Benchmark of Some Recent Methodologies’. Reliability Engineering 

& System Safety 94 (7): 1212–19. https://doi.org/10.1016/j.ress.2008.03.028. 

Gelman, A., Hwang, J., and Vehtari, A. 2013. ‘Understanding Predictive Information Criteria 

for Bayesian Models’. ArXiv:1307.5928 [Stat], July. http://arxiv.org/abs/1307.5928. 

Genuer, R., Poggi, J., and Tuleau, C. 2008. ‘Random Forests: Some Methodological Insights’. 

ArXiv:0811.3619 [Stat], November. http://arxiv.org/abs/0811.3619. 

Genuer, R., Poggi, J., and Tuleau-Malot, C. 2010. ‘Variable Selection Using Random Forests’. 

Pattern Recognition Letters 31 (14): 2225–36. https://doi.org/10.1016/j.patrec.2010.03.014. 

Goffart, J. 2013. ‘Impact de la variabilité des données météorologiques sur une maison basse 

consommation. Application des analyses de sensibilité pour les entrées temporelles.’ PhD 

thesis, Université de Grenoble. https://tel.archives-ouvertes.fr/tel-00982150. 

Goffart, J., Rabouille, M., and Mendes, N. 2017. ‘Uncertainty and Sensitivity Analysis Applied 

to Hygrothermal Simulation of a Brick Building in a Hot and Humid Climate’. Journal of 



 

219 

 

Building Performance Simulation 10 (1): 37–57. 

https://doi.org/10.1080/19401493.2015.1112430. 

Goffart, J., and Woloszyn, M. 2021. ‘EASI RBD-FAST: An Efficient Method of Global 

Sensitivity Analysis for Present and Future Challenges in Building Performance Simulation’. 

Journal of Building Engineering 43 (November): 103129. 

https://doi.org/10.1016/j.jobe.2021.103129. 

Harrison, J.U., and Baker, R.E. 2020. ‘An Automatic Adaptive Method to Combine Summary 

Statistics in Approximate Bayesian Computation’. PLOS ONE 15 (8): e0236954. 

https://doi.org/10.1371/journal.pone.0236954. 

Heo, Y., Choudhary, R., and Augenbroe. G.A. 2012. ‘Calibration of Building Energy Models 

for Retrofit Analysis under Uncertainty’. Energy and Buildings 47 (April): 550–60. 

https://doi.org/10.1016/j.enbuild.2011.12.029. 

Heo, Y., Graziano, D.J., Guzowski, L., and Muehleisen, R.T., 2015. ‘Evaluation of Calibration 

Efficacy under Different Levels of Uncertainty’. Journal of Building Performance Simulation 

8 (3): 135–44. https://doi.org/10.1080/19401493.2014.896947. 

Hickerson, M.J., Stahl, E.A., and Lessios, H.A. 2006. ‘Test for Simultaneous Divergence Using 

Approximate Bayesian Computation’. Evolution 60 (12): 2435–53. 

https://doi.org/10.1111/j.0014-3820.2006.tb01880.x. 

Ho, T.K. 1995. ‘Random Decision Forests’. In Proceedings of 3rd International Conference on 

Document Analysis and Recognition, 1:278–82 vol.1. 

https://doi.org/10.1109/ICDAR.1995.598994. 

Ho, T.K. 1998. ‘The Random Subspace Method for Constructing Decision Forests’. IEEE 

Transactions on Pattern Analysis and Machine Intelligence 20 (8): 832–44. 

https://doi.org/10.1109/34.709601. 

Hoffman, M.D., and Gelman, A. 2011. ‘The No-U-Turn Sampler: Adaptively Setting Path 

Lengths in Hamiltonian Monte Carlo’. ArXiv:1111.4246 [Cs, Stat], November. 

http://arxiv.org/abs/1111.4246. 

Homma, T., and Saltelli, A. 1996. ‘Importance Measures in Global Sensitivity Analysis of 

Nonlinear Models’. Reliability Engineering & System Safety 52 (1): 1–17. 

https://doi.org/10.1016/0951-8320(96)00002-6. 

Jansen, M.J.W. 1999. ‘Analysis of Variance Designs for Model Output’. Computer Physics 

Communications 117 (1–2): 35–43. https://doi.org/10.1016/S0010-4655(98)00154-4. 

Johnston, S.T., Simpson, M.J., McElwain, D.L.S, Binder, B.J, and Ross, J.V. 2014. 

‘Interpreting Scratch Assays Using Pair Density Dynamics and Approximate Bayesian 

Computation’. Open Biology 4 (9): 140097. https://doi.org/10.1098/rsob.140097. 

Juricic, S. 2020. ‘Identifiability of the Thermal Performance of a Building Envelope from 

Poorly Informative Data’. PhD thesis, Thermics [physics.class-ph]. Université Savoie Mont 

Blanc, 2020. English. NNT: 2020CHAMA014. tel-03181809. 



 

220 

 

Kang, Y., and Krarti, M. 2016. ‘Bayesian-Emulator Based Parameter Identification for 

Calibrating Energy Models for Existing Buildings’. Building Simulation 9 (4): 411–28. 

https://doi.org/10.1007/s12273-016-0291-6. 

Kennedy, M.C., and O’Hagan, A. 2001. ‘Bayesian Calibration of Computer Models’. Journal 

of the Royal Statistical Society: Series B (Statistical Methodology) 63 (3): 425–64. 

https://doi.org/10.1111/1467-9868.00294. 

Kim, Y., and Park, C. 2016. ‘Stepwise Deterministic and Stochastic Calibration of an Energy 

Simulation Model for an Existing Building’. Energy and Buildings 133 (December): 455–68. 

https://doi.org/10.1016/j.enbuild.2016.10.009. 

Kristensen, M.H., Choudhary R., Pedersen, R.H., and Petersen, S. 2017. ‘Bayesian Calibration 

Of Residential Building Clusters Using A Single Geometric Building Representation’. 5th 

IBPSA Building Simulation Conference, San Francisco, August. 

Lavigne, K. 2014. ‘Assisted Calibration in Building Simulation–Algorithm Description and 

Case Studies’. Text. AIVC. 23 June 2014. https://www.aivc.org/resource/assisted-calibration-

building-simulation-algorithm-description-and-case-studies. 

Lavigne, K. 2009. ‘Assisted Calibration in Building Simulation–Algorithm Description and 

Case Studies’. Building Simulation 2009 conference (IBPSA), Glascow, July. 

Lee, P., Lam, P.T.I, Yik, F.W.H, and Chan, E.H.W. 2013. ‘Probabilistic Risk Assessment of 

the Energy Saving Shortfall in Energy Performance Contracting Projects–A Case Study’. 

Energy and Buildings 66 (November): 353–63. https://doi.org/10.1016/j.enbuild.2013.07.018. 

Lenormand, M., Jabot, F., and Deffuant, G. 2013. ‘Adaptive Approximate Bayesian 

Computation for Complex Models’. Computational Statistics 28 (6): 2777–96. 

https://doi.org/10.1007/s00180-013-0428-3. 

Lim, H., and Zhai, Z.J. 2017. ‘Comprehensive Evaluation of the Influence of Meta-Models on 

Bayesian Calibration’. Energy and Buildings 155 (November): 66–75. 

https://doi.org/10.1016/j.enbuild.2017.09.009. 

Lintusaari, J., Gutmann, M.U., Dutta, R., Kaski, S., and Corander, J. 2016. ‘Fundamentals and 

Recent Developments in Approximate Bayesian Computation’. Systematic Biology, October, 

syw077. https://doi.org/10.1093/sysbio/syw077. 

Macdonald, I.A. 2002. ‘Quantifying the effects of uncertainty in building simulation’. PhD 

thesis, Glasgow, Scotland: University of Strathclyde. Dept. of Mechanical 

Engineering.https://www.strath.ac.uk/media/departments/mechanicalengineering/esru/researc

h/phdmphilprojects/macdonald_thesis.pdf. 

Mara, T.A. 2009. ‘Extension of the RBD-FAST Method to the Computation of Global 

Sensitivity Indices’. Reliability Engineering & System Safety 94 (8): 1274–81. 

https://doi.org/10.1016/j.ress.2009.01.012. 

Marchi, B., and Zanoni, S. 2017. ‘Supply Chain Management for Improved Energy Efficiency: 

Review and Opportunities’. Energies 10 (10): 1618. https://doi.org/10.3390/en10101618. 



 

221 

 

Marjoram, P., Molitor, J., Plagnol, V., and Tavare, S. 2003. ‘Markov Chain Monte Carlo 

without Likelihoods’. Proceedings of the National Academy of Sciences 100 (26): 15324–28. 

https://doi.org/10.1073/pnas.0306899100. 

Mechri, H.E., Capozzoli, A., and Corrado, V. 2010. ‘USE of the ANOVA Approach for 

Sensitive Building Energy Design’. Applied Energy 87 (10): 3073–83. 

https://doi.org/10.1016/j.apenergy.2010.04.001. 

Menberg, K., Heo, Y., and Choudhary. R. 2017. ‘Efficiency and Reliability of Bayesian 

Calibration of Energy Supply System Models’, 10. 

Miao, H., Xia, X., Perelson, A.S., and Wu, H. 2011. ‘On Identifiability of Nonlinear ODE 

Models and Applications in Viral Dynamics’. SIAM Review 53 (1): 3–39. 

https://doi.org/10.1137/090757009. 

Minson, S.E., Simons, M., and Beck, J.L. 2013. ‘Bayesian Inversion for Finite Fault Earthquake 

Source Models I—Theory and Algorithm’. Geophysical Journal International 194 (3): 1701–

26. https://doi.org/10.1093/gji/ggt180. 

Moon, H. 2009. ‘Assessing Mold Risks in Buildings under Uncertainty’. Undefined. 

https://www.semanticscholar.org/paper/Assessing-Mold-Risks-in-Buildings-under-

Uncertainty-Moon/c63d8df34f290e6f41774b4207a428645cc60fcc. 

Morris, M.D. 1991. ‘Factorial Sampling Plans for Preliminary Computational Experiments’. 

Technometrics 33 (2): 161–74. https://doi.org/10.1080/00401706.1991.10484804. 

Muehleisen, R.T., and Bergerson, J. 2016. ‘Bayesian Calibration - What, Why And How’, 

International High Performance Buildings Conference. Paper 167. Purdue. 

http://docs.lib.purdue.edu/ihpbc/167. 

Munaretto, F. 2014. ‘Étude de l’influence de l’inertie thermique sur les performances 

énergétiques des bâtiments’. PhD., Ecole Nationale Supérieure des Mines de Paris. 

https://pastel.archives-ouvertes.fr/pastel-01068784. 

O’Neill, Z., Eisenhower, B., Yuan, S., Bailey, T., Narayanan, S., and Fonoberov, V. 2011. 

‘Modeling and Calibration of Energy Models for a DoD Building’. In . Vol. 117. ASHRAE 

journal. 

Pannier, M. 2017. ‘Etude de La Quantification Des Incertitudes En Analyse de Cycle de Vie 

Des Bâtiments’. PhD thesis, MINES ParisTech PSL. 

Pannier, M, Schalbart, P., and Peuportier, B. 2018. ‘Comprehensive Assessment of Sensitivity 

Analysis Methods for the Identification of Influential Factors in Building Life Cycle 

Assessment’. Journal of Cleaner Production 199 (October): 466–80. 

https://doi.org/10.1016/j.jclepro.2018.07.070. 

Peuportier, B. 2005. ‘Bancs d’essais de Logiciels de Simulation Thermique.’, Journée 

thématique IBPSA France, La Rochelle. 

Pritchard, J.K., Seielstad, M.T., Perez-Lezaun, A. and Feldman, M.W. 1999. ‘Population 

Growth of Human Y Chromosomes: A Study of Y Chromosome Microsatellites’. Molecular 



 

222 

 

Biology and Evolution 16 (12): 1791–98. 

https://doi.org/10.1093/oxfordjournals.molbev.a026091. 

Pudlo, P., Marin, J., Estoup, A., Cornuet, J., Gautier, M., and Robert, C.P. 2015. ‘Reliable ABC 

Model Choice via Random Forests’. ArXiv:1406.6288 [q-Bio, Stat], September. 

http://arxiv.org/abs/1406.6288. 

Quaiser, T., and Mönnigmann, M. 2009. ‘Systematic Identifiability Testing for Unambiguous 

Mechanistic Modeling – Application to JAK-STAT, MAP Kinase, and NF-κ B Signaling 

Pathway Models’. BMC Systems Biology 3 (1): 50. https://doi.org/10.1186/1752-0509-3-50. 

Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmüller, U., and Timmer, 

J. 2009. ‘Structural and Practical Identifiability Analysis of Partially Observed Dynamical 

Models by Exploiting the Profile Likelihood’. Bioinformatics 25 (15): 1923–29. 

https://doi.org/10.1093/bioinformatics/btp358. 

Raynal, L., Marin, J., Pudlo, P., Ribatet, M., Robert, C.P., and Estoup, A. 2017. ‘ABC Random 

Forests for Bayesian Parameter Inference’. Peer Community in Evolutionary Biology, 

November, 100036. https://doi.org/10.24072/pci.evolbiol.100036. 

Reddy, A. 2006. ‘Literature Review on Calibration of Building Energy Simulation Programs: 

Uses, Problems, Procedure, Uncertainty, and Tools’. ASHRAE Transactions 112 (January): 

226–40. 

Robillart, M. 2015. ‘Etude de stratégies de gestion en temps réel pour des bâtiments 

énergétiquement performants’. PhD thesis, Ecole Nationale Supérieure des Mines de Paris. 

https://pastel.archives-ouvertes.fr/tel-01299525. 

Rouchier, S. 2018. ‘Solving Inverse Problems in Building Physics: An Overview of Guidelines 

for a Careful and Optimal Use of Data’. Energy and Buildings 166 (February). 

https://doi.org/10.1016/j.enbuild.2018.02.009. 

Royapoor, M., and Roskilly, T. 2015. ‘Building Model Calibration Using Energy and 

Environmental Data’. Energy and Buildings 94 (May): 109–20. 

https://doi.org/10.1016/j.enbuild.2015.02.050. 

Ruggeri, A.G., Gabrielli, L., and Scarpa, M. 2020. ‘Energy Retrofit in European Building 

Portfolios: A Review of Five Key Aspects’. Sustainability 12 (18): 7465. 

https://doi.org/10.3390/su12187465. 

Saltelli, A., ed. 2008. Global Sensitivity Analysis: The Primer. Chichester, England ; Hoboken, 

NJ: John Wiley. 

Saltelli, A., Tarantola, S., and Chan, K.P.S. 1999. ‘A Quantitative Model-Independent Method 

for Global Sensitivity Analysis of Model Output’. Technometrics 41 (1): 39–56. 

https://doi.org/10.1080/00401706.1999.10485594. 

Saltelli, A., ed. 2008. Sensitivity Analysis. Paperback ed. Wiley Paperback Series. Chichester: 

Wiley. 

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., and Tarantola, S. 2010. ‘Variance 

Based Sensitivity Analysis of Model Output. Design and Estimator for the Total Sensitivity 



 

223 

 

Index’. Computer Physics Communications 181 (2): 259–70. 

https://doi.org/10.1016/j.cpc.2009.09.018. 

Saltelli, A., and Bolado, R. 1998. ‘An Alternative Way to Compute Fourier Amplitude 

Sensitivity Test (FAST)’. Computational Statistics & Data Analysis 26 (4): 445–60. 

https://doi.org/10.1016/S0167-9473(97)00043-1. 

Sandberg, N.H., Sartori, I., Heidrich, O., Dawson, R., Dascalaki, E., Dimitriou, S., Vimm-r, T., 

et al. 2016. ‘Dynamic Building Stock Modelling: Application to 11 European Countries to 

Support the Energy Efficiency and Retrofit Ambitions of the EU’. Energy and Buildings 132 

(November): 26–38. https://doi.org/10.1016/j.enbuild.2016.05.100. 

Satterthwaite, F.E. 1959. ‘Random Balance Experimentation’. Technometrics 1 (2): 111–37. 

https://doi.org/10.2307/1266466. 

Shen, H., and Tzempelikos, A. 2013. ‘Sensitivity Analysis on Daylighting and Energy 

Performance of Perimeter Offices with Automated Shading’. Building and Environment 59 

(January): 303–14. https://doi.org/10.1016/j.buildenv.2012.08.028. 

Silva, A.S., and Ghisi, E. 2014. ‘Uncertainty Analysis of User Behaviour and Physical 

Parameters in Residential Building Performance Simulation’. Energy and Buildings 76 (June): 

381–91. https://doi.org/10.1016/j.enbuild.2014.03.001. 

Sisson, S.A., Fan, Y. and Beaumont, M.A. 2018. ‘Overview of Approximate Bayesian 

Computation’. ArXiv:1802.09720 [Stat], February. http://arxiv.org/abs/1802.09720. 

Sisson, S.A., Fan Y., and Tanaka, M.M. 2007. ‘Sequential Monte Carlo without Likelihoods’. 

Proceedings of the National Academy of Sciences 104 (6): 1760–65. 

https://doi.org/10.1073/pnas.0607208104. 

Sobol, I.M., and Shukman, B.V. 1993. ‘Random and Quasirandom Sequences: Numerical 

Estimates of Uniformity of Distribution’. Mathematical and Computer Modelling 18 (8): 39–

45. https://doi.org/10.1016/0895-7177(93)90160-Z. 

Sobol, I.M., Tarantola S., Gatelli, D., Kucherenko, S.S., and Mauntz, W. 2007. ‘Estimating the 

Approximation Error When Fixing Unessential Factors in Global Sensitivity Analysis’. 

Reliability Engineering & System Safety 92 (7): 957–60. 

https://doi.org/10.1016/j.ress.2006.07.001. 

Sokol, J., Davila, C.C., and Reinhart, C.F. 2017. ‘Validation of a Bayesian-Based Method for 

Defining Residential Archetypes in Urban Building Energy Models’. Energy and Buildings 134 

(January): 11–24. https://doi.org/10.1016/j.enbuild.2016.10.050. 

Spitz, C. 2012. ‘Analyse de la fiabilité des outils de simulation et des incertitudes de métrologie 

appliquée à l’efficacité énergétique des bâtiments’. PhD thesis, Université de Grenoble. 

https://tel.archives-ouvertes.fr/tel-00768506. 

Spitz, C, Mora, L., Wurtz, E., and Jay, A. 2012. ‘Practical Application of Uncertainty Analysis 

and Sensitivity Analysis on an Experimental House’. Energy and Buildings 55 (December): 

459–70. https://doi.org/10.1016/j.enbuild.2012.08.013. 



 

224 

 

Sun, Y. 2014. ‘Closing the Building Energy Performance Gap by Improving Our Predictions’, 

June. https://smartech.gatech.edu/handle/1853/52285. 

Sun, Y., Heo, Y., Tan, M., Xie, H., Jeff Wu, C.F., and Augenbroe, G. 2014. ‘Uncertainty 

Quantification of Microclimate Variables in Building Energy Models’. Journal of Building 

Performance Simulation 7 (1): 17–32. https://doi.org/10.1080/19401493.2012.757368. 

Tarantola, S., Gatelli, D., and Mara, T.A. 2006. ‘Random Balance Designs for the Estimation 

of First Order Global Sensitivity Indices’. Reliability Engineering & System Safety 91 (6): 717–

27. https://doi.org/10.1016/j.ress.2005.06.003. 

Thevenard, D., and Haddad, K. 2006. ‘Ground Reflectivity in the Context of Building Energy 

Simulation’. Energy and Buildings 38 (8): 972–80. 

https://doi.org/10.1016/j.enbuild.2005.11.007. 

Tian, W. 2013. ‘A Review of Sensitivity Analysis Methods in Building Energy Analysis’. 

Renewable and Sustainable Energy Reviews 20 (April): 411–19. 

https://doi.org/10.1016/j.rser.2012.12.014. 

Tian, W., Heo Y., De Wilde, P., Li, Z., Yan, D., Park, C.S., Feng, X., and Augenbroe, G. 2018. 

‘A Review of Uncertainty Analysis in Building Energy Assessment’. Renewable and 

Sustainable Energy Reviews 93 (October): 285–301. 

https://doi.org/10.1016/j.rser.2018.05.029. 

Tissot, J., and Prieur, C. 2012. ‘Bias Correction for the Estimation of Sensitivity Indices Based 

on Random Balance Designs’. Reliability Engineering & System Safety 107 (November): 205–

13. https://doi.org/10.1016/j.ress.2012.06.010. 

Toni, T., Welch, D., Strelkowa, N., Ipsen, A., and Stumpf, M.P.H. 2009. ‘Approximate 

Bayesian Computation Scheme for Parameter Inference and Model Selection in Dynamical 

Systems’. Journal of The Royal Society Interface 6 (31): 187–202. 

https://doi.org/10.1098/rsif.2008.0172. 

Tuominen, Pekka, Krzysztof Klobut, Anne Tolman, Afi Adjei, and Marjolein de Best-

Waldhober. 2012. ‘Energy Savings Potential in Buildings and Overcoming Market Barriers in 

Member States of the European Union’. Energy and Buildings 51 (August): 48–55. 

https://doi.org/10.1016/j.enbuild.2012.04.015. 

Turner, B.M., and Van Zandt, T. 2012. ‘A Tutorial on Approximate Bayesian Computation’. 

Journal of Mathematical Psychology 56 (2): 69–85. https://doi.org/10.1016/j.jmp.2012.02.005. 

Vorger, E., Schalbart, P., and Peuportier, B. 2014. ‘Integration of a Comprehensive Stochastic 

Model of Occupancy in Building Simulation to Study How Inhabitants Influence Energy 

Performance’. In 30th International Plea 2014 Conference. Ahmedabad, India. https://hal-

mines-paristech.archives-ouvertes.fr/hal-01460068. 

Wang, Q., Augenbroe, G., and Sun, Y. 2014. ‘The Role of Construction Detailing and 

Workmanship in Achieving Energy-Efficient Buildings’. In Construction Research Congress 

2014, 2224–33. Atlanta, Georgia: American Society of Civil Engineers. 

https://doi.org/10.1061/9780784413517.226. 



 

225 

 

Wilkinson, R. 2013. ‘Approximate Bayesian Computation (ABC) Gives Exact Results under 

the Assumption of Model Error’. Statistical Applications in Genetics and Molecular Biology 

12 (May): 1–13. https://doi.org/10.1515/sagmb-2013-0010. 

Xu, C., and Gertner, G.Z. 2008. ‘A General First-Order Global Sensitivity Analysis Method’. 

Reliability Engineering & System Safety 93 (7): 1060–71. 

https://doi.org/10.1016/j.ress.2007.04.001. 

Yan, W., and Goebel, K. 2004. ‘Designing Classifier Ensembles with Constrained Performance 

Requirements’. Proceedings of SPIE - The International Society for Optical Engineering 5434 

(April). https://doi.org/10.1117/12.542616. 

Yao, K.Z., Shaw, B.M., Kou, B., McAuley, K.B., and Bacon, D.W. 2003. ‘Modeling 

Ethylene/Butene Copolymerization with Multi‐site Catalysts: Parameter Estimability and 

Experimental Design’. Polymer Reaction Engineering 11 (3): 563–88. 

https://doi.org/10.1081/PRE-120024426. 

Yildiz, Y., Korkmaz, K., Göksal Özbalta, T., and Durmus Arsan, Z. 2012. ‘An Approach for 

Developing Sensitive Design Parameter Guidelines to Reduce the Energy Requirements of 

Low-Rise Apartment Buildings’. Applied Energy 93 (May): 337–47. 

https://doi.org/10.1016/j.apenergy.2011.12.048. 

Yoon, S., Park, C., and Augenbroe, G. 2011. ‘On-Line Parameter Estimation and Optimal 

Control Strategy of a Double-Skin System’. Building and Environment 46 (5): 1141–50. 

https://doi.org/10.1016/j.buildenv.2010.12.001. 

Zhang, Y., Van Bael, A., Andrade-Campos, A., and Coppieters, S. 2022. ‘Parameter 

Identifiability Analysis: Mitigating the Non-Uniqueness Issue in the Inverse Identification of 

an Anisotropic Yield Function’. International Journal of Solids and Structures 243 (May): 

111543. https://doi.org/10.1016/j.ijsolstr.2022.111543. 

Zhu, C., Tian, W., Yin, B., Li, Z., and Shi, J. 2020. ‘Uncertainty Calibration of Building Energy 

Models by Combining Approximate Bayesian Computation and Machine Learning 

Algorithms’. Applied Energy 268 (June): 115025. 

https://doi.org/10.1016/j.apenergy.2020.115025. 

 

  



 

226 

 

  



 

227 

 

 

 

 

 

 

 

 

 

 

 

  



 

228 

 

Appendix A. Morris’ method 

Morris is a screening sensitivity method. With this method, each parameter is assigned a 

uniform distribution with a lower and upper bound, unlike variance based methods, where they 

can take advantage of the probability distributions assigned to each parameter. The parameters 

are then reduced to be dimensionless varying between 0 and 1. 

The parameter space is then discretised based on a pre-identified 𝑝 value that corresponds 

to the number of discretisation levels associated to each parameter 𝜃𝑖 with the step 
1

𝑝−1
. The 

discretised space for each parameter can then be expressed as a set as shown in equation (A.1). 

The set size is the number of levels 𝑝 indicated. Only values from this set are drawn. 

 𝜃𝑠𝑒𝑡 = {0,
1

𝑝−1
,

2

𝑝−2
, … ,1}. (A.1) 

The methodology is to assign base values for all the parameters and to carry out one 

simulation run. Then, one parameter is perturbed keeping all the others at their base values and 

another model run is executed. At the next step, another parameter is perturbed keeping the 

previous parameter at its perturbed value and all the others at their base. The base values and 

the perturbations correspond to random draws from the set of each parameter space 𝜃𝑠𝑒𝑡. This 

perturbation is done via a defined step that is proposed by Morris (1991) to be estimated via 

∆=
𝑝

2(𝑝−1)
 with 𝑝 being an even number.  

This is then done for all the parameters (in random order) until all of them are perturbed 

summing up to (𝑘 + 1) number of model runs where 𝑘 is the parameters number. This is 

repeated 𝑟 times. This leads to 𝑟(𝑘 + 1) number of model runs to carry out this method.   

The influence of each parameter on the model output is estimated by calculating the 

change of the model output relative to the change of the model parameter. This is called the 

elementary effect 𝐸𝐸𝑗 of the parameter 𝑗. The elimentary effect 𝐸𝐸𝑗
𝑖 for a parameter 𝑗 in the 

repetition 𝑖 can be calculated as follows: 
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𝐸𝐸𝑗
𝑖 =

𝑌(𝜃1
𝑖 ,  𝜃2

𝑖 , … , 𝜃𝑗
𝑖 + ∆,…𝜃𝑘

𝑖 ) − 𝑌(𝜃1
𝑖 , … , 𝜃𝑗

𝑖 , … , 𝜃𝑘
𝑖 )

∆𝜃
 

 

(A.2) 

 

This effect is calculated for the same parameter 𝑗 in each repetition 𝑖 until 𝑟 values of the 

elementary effects compose a sample for the parameter. Then the absolute mean and the 

variance of this sample are calculated: 

 𝜇𝑗
∗ =

1

𝑟
∑|𝐸𝐸𝑗

𝑖|

𝑟

𝑖=1

 (A.3) 

 𝜎𝑗 = √
1

𝑟 − 1
∑(𝐸𝐸𝑗

𝑖 − 𝜇𝑗)
2

𝑟

𝑖=1

 (A.4) 

where 𝜇𝑗
∗ is the sample absolute mean, and 𝜇𝑗 is the sample mean. 

Plotting the values of 𝜎𝑗 as a function of 𝜇𝑗
∗ for all the parameters allows to classify the 

parameters into three different groups (Figure A.1): 

 Parameters with negligible effects (shown as group 1) 

 Influential parameters with linear effects and no interactions  (shown in group 2) 

 Influential parameters with nonlinearities and/or interaction effects (shown in group 3). 

 

 
Figure A.1: Groups of parameters in Morris method (Iooss, 2011) 
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In order to obtain a ranking of the parameters according to their influence, considering 

the linear and additive effects and non-linear and interaction effects, the Euclidean distance to 

the origin of the graph for each parameter is considered (Recht et al., 2014). The further the 

point corresponding to a parameter is from the origin on the graph (i.e. the larger µ*, or the 

larger σ), the more influential the parameter is on the results. 

 𝑑𝑗
∗ = √𝜇𝑗

∗2 + 𝜎𝑖
2 (A.5) 
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Appendix B. Sobol indices 

There exist different estimators that evaluate the Sobol sensitivity indices. Here, the 

demarche of computing these indices is presented. Two matrices A and B each of dimension 

(N, k) are generated. The ith row in both matrices corresponds to the same parameter but with 

different values. The values for each parameter are sampled from its distribution function. We 

can consider A as the sampling matrix and at B as the resampling matrix. For estimating the 

variance caused by a parameter 𝜃𝑖 a new matrix 𝐶𝑖 is created of the same dimensions consisting 

of the same values of matrix B except for the ith column (parameter under investigation) where 

it is taken from A. Thus, it can be stated that the new matrix 𝐶𝑖 (annotated 𝐵𝐴
(𝑖)) resamples all 

the parameters except the parameter that is to be studied. The multiplication of these two 

functions results in an intuitive justification whether the parameter under question is important 

or not. When 𝑥𝑖 is uninfluential, low and high f values will be randomly multiplied by each 

other yielding a low 𝐷𝑖, thus a low 𝑆𝑖. On the contrary if 𝜃𝑖 is important, then low values of f 

will be multiplied by low values of the second function, and high values will be multiplied by 

high values resulting in a high 𝐷𝑖 and accordingly a high 𝑆𝑖. 

 

A =  

[
 
 
 
 
 

 

𝜃1
(1)

𝜃2
(1)

… 𝜃i
(1)

… 𝜃k
(1)

𝜃1
(2)

𝜃2
(2)

… 𝜃i
(2)

… 𝜃k
(2)

… … … … … …

𝜃1
(N−1)

𝜃2
(N−1)

… 𝜃i
(N−1)

… 𝜃k
(N−1)

𝜃1
(N)

𝜃2
(N)

… 𝜃i
(N)

… 𝜃k
(N)

 

]
 
 
 
 
 

 (B.1) 

 

B =  

[
 
 
 
 
 

 

𝜃k+1
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𝜃k+2
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… 𝜃k+i
(1)

… 𝜃2k
(1)

𝜃k+1
(2)

𝜃k+2
(2)
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… 𝜃2k
(2)

… … … … … …
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(N−1)

𝜃k+2
(N−1)

… 𝜃k+i
(N−1)

… 𝜃2k
(N−1)

𝜃k+1
(N)

𝜃k+2
(N)

… 𝜃k+i
(N)

… 𝜃2k
(N)

 

]
 
 
 
 
 

 (B.2) 
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Theses matrices are then solved as shown in the following formulation given by (Andrea 

Saltelli 2008): 

 
𝐷𝑖 =

1

𝑛
∑ 𝑓(𝜃(~𝑖)𝑚

1 , 𝜃𝑖𝑚
1 )𝑓(𝜃(~𝑖)𝑚

2 , 𝜃𝑖𝑚
1 )

𝑛

𝑚=1
− 𝑓0

2 (B.4) 

where n is the number of samples and 𝜃𝑖𝑚 means the sample number m of the ith parameter. The 

annotation (~i)𝑚 corresponds to the samples at number m (iteration m) for each parameter 

except the ith one. The superscripts (1) and (2) indicate the usage of two sampling matrices A 

and B.  

Simulating the model with all the input values in the matrices A, B, and 𝐶𝑖 yields three 

different output vectors (𝐴), 𝑌(𝐵), 𝑌(𝐶𝑖). Accordingly, equation (B.4) can be written as 

follows: 

 
𝐷𝑖 =

1

𝑁
× (∑ (𝑌(𝐴))

(𝑗)
×

𝑁

𝑗=1
(𝑌(𝐶𝑖))

(𝑗)
) − 𝑓0

2 (B.5) 

The total variance can be formulated as follows: 

 
𝐷 =

1

𝑁
× (∑ 𝑌(𝐴)(𝑗)2  

𝑁

𝑗=1
) − 𝑓0

2 (B.6) 

The Monte Carlo estimation of the integral 𝐷(~𝑖) needed to evaluate the total index is: 

 1

𝑁
× (∑ (𝑌(𝐵))

(𝑗)𝑁

𝑗=1
× (𝑌(𝐶𝑖))

(𝑗)
) − 𝑓0

2 (B.7) 

Equations (B.5), (B.6), and (B.7) can be replaced in equations (2.4) and (2.7). 

Consequently, the first and the total effect indices for all the parameters can be estimated using 

the following formulas: 

 

𝑆𝑖 =

1
𝑁

× (∑ (𝑌(𝐴))
(𝑗)

×𝑁
𝑗=1 (𝑌(𝐶𝑖))

(𝑗)
) − 𝑓0

2

1
𝑁

× (∑ 𝑌(𝐴)(𝑗)2  𝑁
𝑗=1 ) − 𝑓0

2
 (B.8) 



 

233 

 

 

𝑇𝑆𝑖 = 1 −

1
𝑁

× (∑ (𝑌(𝐵))
(𝑗)𝑁

𝑗=1 × (𝑌(𝐶𝑖))
(𝑗)

) − 𝑓0
2

1
𝑁

× (∑ 𝑌(𝐴)(𝑗)2  𝑁
𝑗=1 ) − 𝑓0

2
 (B.9) 

The parameter is considered non-influential if its total effect index 𝑇𝑆𝑖 is low and it can 

be fixed as a constant value without affecting on the model output. Such a parameter should not 

be accounted for in the calibration analysis as it just increases the complexity of the algorithms 

used with no benefit. If the sum of all the first order indices for all the parameters is nearly 1, 

the model is considered to be additive with no interaction between the different parameters 

where the difference (1 − ∑𝑠𝑖) is an indicator of the presence of interaction in the model. In 

the same manner, by subtracting 𝑆𝑖 from 𝑇𝑆𝑖 of a parameter, it can be indicated whether this 

parameter has interaction with the other parameters or not and by how much. Another property 

about the indices is that if the summation of all the total effect indices of all the parameters is 

near one, then the model is considered to have few interactions between its parameters. The 

reason behind this is that the interaction between two parameters for example is computed once 

during the calculation of the index of the first parameter and another time during the estimation 

of the other parameter, thus the interactions between the same parameters are computed more 

than once during the whole process.  

This method needs to simulate N samples twice (once for matrix A and once for matrix B) 

and then to simulate matrix 𝐶𝑖 consisting of N samples K times for each parameter. Thus, the 

number of simulations needed to estimate all the indices is 2𝑁 + 𝐾𝑁 = 𝑁(𝐾 + 2). This is 

computationally expensive especially with complex models that consume a considerable 

amount of time to finish simulation. 

Different studies have been dedicated to the improvement of the estimators. Jansen (1999) 

proposed modified estimators based on the same matrices for 𝑆𝑇𝑖 as follows: 

 

𝑇𝑆𝑖 =

1
2𝑁

∑ ((𝑌(𝐴))
(𝑗)

− 𝑌(𝐴𝐵
(𝑖))(𝑗))

2
𝑁
𝑗=1

𝐷
 

(B.10) 

where 𝑌
𝐴𝐵

(𝑖) is the simulation output of a matrix 𝐴𝐵
(𝑖)

 which contrary to 𝐶𝑖 comprises the samples 

in matrix 𝐴 except for the 𝑖𝑡ℎ factor which is taken from matrix 𝐵. Saltelli et al. (2010) proved 

that the high order indices estimator of Jansen (1999) is the best estimator compared to those 

of Sobol’ et al. (2007) and Homma and Saltelli (1996). Consequently it is used in this thesis.  
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Appendix C. Regression post-processing 

Beaumont et al. (2002) refined the model proposed by Pritchard et al. (1999). Briefly, in 

this refined approach, the tolerance (or minimum threshold) is not specified beforehand. 

However, it is specified after simulating M particles in a way that a certain proportion of these 

particles are accepted. The idea is to weight the accepted samples 𝜃 of the parameters according 

to the difference between the simulation output and the observed data 𝑆(𝑍) − 𝑆(𝑌𝑖). These 

weights are used to train a weighted linear regression on the accepted samples 𝜃. These samples 

are corrected using this linear regression. This adjusts the parameters posteriors in order to 

weaken the effect of the specified tolerance. 

They have used the Epanechnikov kernel function presented as follows to weight the 

accepted samples: 

 𝑘𝛿(𝑡) = {  𝑐𝛿
−1(1 − (𝑡 𝛿⁄ )2)         𝑡 ≤ 𝛿

0                                        𝑡 > 𝛿
 (C.1) 

where c is a normalising constant. The regression model that is fit to the accepted samples is 

given as follows: 

 𝜃𝑖 = 𝛼 + (𝑠𝑖 − 𝑠)𝑇𝛽 + 휀𝑖 , 𝑖 = 1,… ,𝑚, (C.2) 

where 𝛼 is an intercept, 𝛽 is a vector of regression coefficients, 𝜖𝑖 are uncorrelated random 

variables with zero mean and common variance. These regression parameters are specified by 

minimising the weighted least squares criterion given as follows: 

 

∑{𝜃𝑖 − (𝛼 + (𝒔𝑖 − 𝒔)𝑡𝛽)}2𝐾𝛿(‖𝒔𝑖 − 𝒔‖)

𝑀

𝑖=1

 (C.3) 

The corrected particles 𝜃𝑖
∗ can then be estimated using the regression model as follows: 

 𝜃𝑖
∗ = 𝜃𝑖 − (𝒔𝑖 − 𝒔)𝑇𝛽 (C.4) 

The solution to the weighted least squares criterion to estimate 𝛼 and 𝛽 holds the 

following form: 
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 (𝛼, 𝛽) = (𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊𝜃 (C.5) 

where 𝑋 = (

1 𝑠11 − 𝑠1 … 𝑠1𝑞 − 𝑠𝑞

⋮ ⋮ ⋱ ⋮
1 𝑠𝑚1 − 𝑠1 … 𝑠𝑚𝑞 − 𝑠𝑞

) ,       𝜃 = (
𝜃1

⋮
𝜃𝑚

) (C.6) 

where 𝑞 is the dimension of the summary statistic and 𝑚 is the number of parameters. 𝑊 is an 

𝑚 × 𝑚 diagonal matrix of the weights whose diagonal entries are 𝐾𝛿(‖𝑠𝑖 − 𝑠‖). A summary of 

the steps followed in this algorithm is shown in algorithm C.1. 

Algorithm C.1 

1. Repeat the following until M points have been generated: 

a) Draw 𝜃𝑖~𝜋(𝜃). 

b) Simulate 𝑥𝑖~𝑝(𝑥|𝜃𝑖). 

2. Compute 𝑘𝑗, the empirical standard deviation of the 𝑆𝑗(𝑥). 

3. Define 𝜌(𝑆(𝑥) , 𝑆(𝑦)): √∑ (𝑆𝑗(𝑥) 𝑘𝑗⁄ − 𝑆𝑗(𝑦) 𝑘𝑗⁄ )
2𝑠

𝑗=1 . 

4. Choose tolerance 𝛿 such that the proportion of accepted points 𝑃𝜖 = 𝑁 𝑀⁄ . 

5. Weight the simulated points 𝑆(𝑥𝑖), using 𝑘𝜖 (𝜌(𝑆(𝑥𝑖), 𝑆(𝑦))) where  

𝑘𝜖(𝑡) = {
𝛿−1 (1 − (𝑡 𝛿⁄ )2)  𝑡 ≤ 𝛿
0                 𝑥, 𝑡 > 𝛿

 

6. Apply weighted linear regression to the N points, to obtain an estimate of 𝐸(𝜃|𝑆(𝑥𝑖)). 

7. Adjust 𝜃𝑖
∗ = 𝜃𝑖 −  𝐸(𝜃|𝑆(𝑥𝑖)) + 𝐸(𝜃|𝑆(𝑦)). 

8. The 𝜃𝑖
∗, with weights 𝑘𝛿 (𝜌(𝑆(𝑥𝑖), 𝑆(𝑦))), are drawn from the adjusted distribution.  

Lintusaari et al. (2016) illustrated the local linear regression technique in a schema (Figure 

C.1). They stated that the same accuracy can be achieved with a higher tolerance value as that 

achieved with a lower one, if a regression analysis is applied to the sampled parameters, which 

increases the computation efficiency. The regression adjustments in this algorithm are done for 

one parameter at a time assuming that the parameters and their residuals are uncorrelated. Even 

if a multivariate regression was applied to all the parameters, the same results would be obtained 

since the residuals between parameters are assumed to be uncorrelated when applying the least-

squares method to minimise the distances while fitting the model. 
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Figure C.1: Illustration of the local linear regression adjustments. t_0: observation summary statistic 

(Lintusaari et al. 2016) 

In order to benefit from this technique, the fitted regression has to be accurate to avoid 

adjusting the particles in the direction of un-informative statistics. Moreover, it can easily 

happen that the adjusted particle falls outside the range of values assigned to the distribution, 

particularly if the slope of the regression is high. Thus, this technique should be applied 

carefully so that we do not end up with a distribution that is less accurate than the posterior PDF 

resulting from the ABC algorithm. Hickerson et al. (2006) transformed each particle that ended 

up having a value outside the range of its prior distribution after regression adjustment to the 

prior distribution boundary value. 

This regression adjustment of the posterior distribution after the termination of the ABC 

algorithm is called post-processing. Different ABC-post-processing techniques and approaches 

have been proposed by different authors. Some of these approaches are regression-based 

methodologies and some follow a different concept. 
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Appendix D. Perturbation kernels 

There exists multiple different kernel functions that can be adapted to the ABC sequential 

samplers presented in the thesis. Filippi et al. (2013) proposed an optimal covariance matrix: 

 ∑ = 𝐸𝜃(𝑡)
~𝑝(.|𝑥)

[(𝜃(𝑡) − 𝜃(𝑡−1))(𝜃(𝑡) − 𝜃(𝑡−1))
𝑇
]

(𝑡)

𝜃(𝑡−1)
 (D.1) 

They recommended the use of such covariance matrix as a general rule of thumb as it 

yielded the highest acceptance rate between different other kernels in their toy examples under 

an acceptable computational cost. 

An alternative to compute the covariance of the multivariate normal kernels using all the 

particles of the previous iteration, is to only consider the K-nearest neighbours of the particle in 

question. The reason behind the need of doing so is that considering all the particles might be 

inefficient if the parameters are highly correlated (Filippi et al. 2013). In other words, the 

correlation between the parameters is not all the time linear, there might exist different patterns 

in the correlation between two different parameters. In this case a covariance based on all the 

particles would not capture the local pattern and information needed around the particle to be 

perturbed. Thus, it is better to compute the covariance based only on the neighbour particles. 

The kernel is then a multivariate normal distribution having the particle in question as its centre 

and a covariance 𝛴𝜃,𝑘
𝑡  computed only from the K-nearest neighbours. The value of K in such 

kernels should be carefully chosen so that it is not too big in a way that it becomes similar to 

the standard multivariate kernel and not too small, so it leads to a narrow posterior distribution 

(no space exploration). 
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Appendix E. Complementary results 

The estimation of the parameters not illustrated in the thesis are presented here. As a 

reminder, in chapter 5, five case studies are considered. The parameters estimation was 

evaluated using weighted Euclidean distance. The estimation of some parameters was 

visualised and convey clearly the behaviour of ARF. In this section all the parameters 

estimation for the five cases are presented. 

E.1. Application of ARF on case 1 

 

Figure E.1: Evolution of internal gains with ARF iterations (case 1) 
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Figure E.2: Evolution of ventilation flowrate with ARF iterations (case 1) 

 

Figure E.3: Evolution of concrete specific heat with ARF iterations (case 1) 
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Figure E.4: Evolution of solar albedo with ARF iterations (case 1) 

 

Figure E.5: Evolution of conducitivity of polystyrene with ARF iterations (case 1) 
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E.2. Application of ARF on case 2 

 

Figure E.6: Evolution of internal gains with ARF iterations (case 2) 

 

Figure E.7: Evolution of ventilation flowrate with ARF iterations (case 2) 
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Figure E.8: Evolution of concrete specific heat with ARF iterations (case 2) 

 

Figure E.9: Evolution of solar albedo with ARF iterations (case 2) 
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Figure E.10: Evolution of conductivity of polystyrene with ARF iterations (case 2) 

E.3. Application of ARF on case 3 

 

Figure E.11: Evolution of internal gains with ARF iterations (case 3) 
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Figure E.12: Evolution of ventilation flowrate with ARF iterations (case 3) 

 

Figure E.13: Evolution of concrete specific heat with ARF iterations (case 3) 
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Figure E.14: Evolution of conductivity of polystyrene with ARF iterations (case 3) 

E.4. Application of ARF on case 4 

 

Figure E.15: Evolution of internal gains with ARF iterations (case 4) 
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Figure E.16: Evolution of ventilation flowrate with ARF iterations (case 4) 

 

Figure E.17: Evolution of concrete specific heat with ARF iterations (case 4) 
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Figure E.18: Evolution of solar albedo with ARF iterations (case 4) 

 

Figure E.19: Evolution of conductivity of polystyrene with ARF iterations (case 4) 
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E.5. Application of ARF on case 5 

 

Figure E.20: Evolution of internal gains with ARF iterations (case 4) 

 

Figure E.21: Evolution of heating power with ARF iterations (case 4) 
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Figure E.22: Evolution of ventilation flowrate with ARF iterations (case 4) 

 

Figure E.23: Evolution of concrete specific heat with ARF iterations (case 4) 
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Figure E.24: Evolution of solar albedo with ARF iterations (case 4) 

 

Figure E.25: Evolution of conductivity of polystyrene with ARF iterations (case 4) 
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MOTS CLÉS 

 

Analyse de sensibilité, analyse d'identifiabilité, calibrage bayésienne, forêt aléatoire 

RÉSUMÉ 

 

Les outils de simulation énergétique dynamique des bâtiments sont essentiels pour analyser 

la performance de projets de rénovation ou de construction neuve. Cependant, ces modèles sont 

caractérisés par un degré d'incertitude et un biais est généralement constaté par rapport aux 

observations mesurées. Ainsi, le calibrage des modèles et la propagation des incertitudes ont reçu 

une attention croissante dans le domaine de la simulation énergétique des bâtiments. Dans cette 

thèse, différentes méthodes bayésiennes sont sélectionnées dans la littérature et évaluées en 

termes de précision et d'efficacité de calcul. Une nouvelle méthode plus rapide en termes de calcul 

que celles trouvées dans la littérature est également proposée et testée sur des données virtuelles. 

Une comparaison détaillée entre des méthodes d’analyse de sensibilité est effectuée en termes de 

robustesse, de précision et d'efficacité de calcul. De plus, une analyse d'identifiabilité basée sur les 

résultats de sensibilité est menée pour classer les paramètres non seulement en termes 

d'importance mais aussi pour tenir compte d’éventuelles interactions. L'effet de cette étape est 

évalué en termes de performance du calibrage. De plus, le choix du nombre de paramètres pour 

le calibrage est étudié sur une étude de cas virtuelle suivant une méthodologie appropriée. Enfin, 

une étude de cas réel correspondant à des données réelles monitorées est utilisée pour vérifier les 

conclusions de cette thèse. 

 

KEYWORDS 

 

Sensitivity analysis, identifiability analysis, Bayesian calibration, random forest 

ABSTRACT 

 

Dynamic building energy simulation models are essential to analyse the energy performance of 

building renovation or new construction projects. However, these models are characterised by 

some degree of uncertainty and they could show poor fit to measured observations. Thus, 

calibration and uncertainty propagation have received an increasing attention in the field of building 

energy simulation. In this thesis, different Bayesian calibration methods are selected from literature 

and assessed in terms of accuracy and computational efficiency. A new method that is 

computationally faster than the ones found in literature is proposed and tested on virtual data. A 

detailed comparison between sensitivity analysis methods is conducted in terms of robustness, 

accuracy and computational efficiency using Sobol method as the reference method. Additionally, 

an identifiability analysis based on the sensitivity results is applied to rank the parameters not only 

in terms of importance but also to account for possible interactions. The effect of this step is 

evaluated in terms of calibration performance. Moreover, the choice of the number of parameters 

for calibration is studied on a virtual case study following an appropriate methodology. Finally, a 

real case study corresponding to real monitored data is used to check the findings of this thesis. 


